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1 - SUMMARY

1.1 Semi-classical limits of the number and Riesz means of discrete
eigenvalues of the N-body Schrodinger operators

In this section, we introduce the main work which is done in Chapter 2.

PROBLEMS. First, we introduce the problems we considered in Chapter 2. Let H(h) denote
the N-body Schrodinger operator obtained by removing the mass center of Hamilton of an
N-particle system

szlAr,+ D V- (1.1)
J=

1<i<j<N

Here r; € R"(v >

3) and m; > 0 denote the position and the mass of the j-th particle res-
pectively, and —A,, is the Laplacian in the r; variables. Let C;(i = 1,--- , k) be the subsets of
{1,--- ,NLIfCiNCj=0,i# jand U* C;={1,--- N}, wesaythat D ={Cy,--- ,Cy }isa
partition (or cluster decomposition) of { 1,--- ,N }.If D ={Cy,---,C }, we denote #D = k. If
i, j are two numbers in { 1,--- , N }, we write iDj if and only if i and j are in the same cluster
Cy, and ~ iDj if they are in the different clusters. Let %' (resp. ZD .) denote the sum over all
12 ~1
pairs with i, j in the same ( resp. different ) cluster of D. \{Ve define '

Vp = Z Vijs Ip = Z Vijs
iDj iDj
Hp(h) = H(h) — Ip; Zp(h) = inf o (Hp(h));

ap = min VD(X); zcl = min ap.
{x;xeRIN=-Dv} {D;#D>2}
For each D, there is a natural decomposition of J# = I? (R(N _”") as P @ 5 with 9 =

functions of r;; with iDj and ¢ D = functions of R, — Ry where R, = 3 mjri/ 3, m;is the
ieCy ieCy
center of the mass of C,. Under this decomposition

Hp(h) = hp(h) ® 1 + 1 @ tp(h).



SUMMARY

By the well known HVZ-theorem [54, Section XIIL5 ],
inf 55 (H(h)) = Zp, (1.2)

where X, = {Dp;li)n2} 2p(h). We say H(h) is unique two-cluster, if there is only one cluster

decomposition D with #D = 2, such that £, = Xp(h). The intuition is quite simple : if H(h)
is two-cluster, the threshold is basically due to a v—dimensional Laplacian, namely the relative
kinetic energy of the two clusters. So one expects the coupling constant behavior to be a v-
dimensional problem. We concentrate on the unique two-cluster H(#). We mainly work on
two problems in Chapter 2. The first one is the semi-classical limit of the number of discrete
eigenvalues of the N-body Schrodinger operator H(h). The second is the semi-classical limit of
Riesz means of discrete eigenvalues of H(h).

KNOWN RESULTS. The semi-classical limit of the number of discrete eigenvalues of H(h)
has been studied by many authors for N = 2 (see [4], [31], [40], [44], [54], [68]). Roughly
speaking, in the case of 3-dimensional space, R3, the result obtained by these authors can be
formulated as following : assume that V(x) is real and V(x) € L32(R3), the number of the
negative eigenvalues, N(1), of —A + AV obeys the asymptotic formula :

NQ) = (677! f IV_0)P? dx(1 + o(1)), A — oo.

Here V_(x) = min{0, V(x)}. The remainder term in the result of Tamura is O(1~'/?), under the
condition V(x) € C®R3\{0}), V(x) ~ [x]7,0 < d < 2,102V(x)| < CoV(x)|x|7 for |x| < 1
and [V(x)| < Cx)™, m > 2, [0%V(x)| < CoV(x)}{x)™, 3 —m < 1 < 1, for |x| > 1. For the
proof [4] and [44] use the min-max principle combined with a technique of Dirichlet-Neumann
bracketing while [31],[40] and [54] use the Feyman-Kac formula. Tamura [68] uses pseudo-
differential operators and Fourier integral operators to study this problem for N = 2. Klaus-
Simon studied this problem (see [34]) for the 3-body Schrodinger operators. The main tool
they used in that paper is Birman-Schwinger kernel. Their result is the following : assume
v>3,V<0,V;; € CP(1 <i< j<3)and in the unique two-cluster case, the number of bound
states, N(u), of —pA + 3 <icj<3 Vij on L?(R?) obeys the asymptotic formula :

lim ©N(u) = 12, 27)"% f [Ze — V(xX)]"dx.
u=0 V(X)<Ze

Here 7, is the volume of the unit sphere in R?”.

Semi-classical limit of Riesz means of discrete eigenvalues of Schrédinger operator P(h) =
—h*A + V has been studies by Helffer and Robert [23], Bruneau [9]. Let £ = lim V(x). They

|x|—c0
studied semi-classical limit of Riesz means of discrete eigenvalues less than Ag. Here Ag is a

constant that 19 < Z. They used pseudo-differential operators to get the asymptotic expansion
of
Ry )= " (A=ej(h)”

ej(h)=A

8



1.1. Semi-classical limits of the number and Riesz means of discrete eigenvalues of the
N-body Schrédinger operators

for A < Ag as h — 0. They did not get the semi-classical limit of Riesz means of all bound states
of P(h).

OUR METHODS AND RESULTS. In Chapter 2, we concentrate on the unique two-cluster
N-body Schrodinger operators. We also use the Birman-Schwinger kernel to get the semi-
classical limit of the number of discrete eigenvalues of the N-body Schrédinger operator. Hence
we recall some results of Birman-Schwinger kernel in Section 2.2. We use these results to get
the leading term of the number of discrete eigenvalues of the N—body Schrddinger operator.
We suppose that

Vij<0, Ve C?*(R”) and [Vijl < C{x)™ with some p > 2. (1.3)

First, we explain why we need the condition V;; € C2(R”). In fact, we do not use this condition
in Section 2.2, since the condition |V;;| < C(x)™ with some p > 2 is enough. The condition
Vij € C%(R”) is used to prove that X, — X; = O(h). The number of discrete eigenvalues in
(=00, ) is standard Dirichlet-Neumann bracket. The difficulty is to estimate the number of
eigenvalues in the interval (., Xp).

Our result for the semi-classical limit of the number of discrete eigenvalues which is less
than X, N(h), of H(h) is the following :

Theorem 1.1. Let v > 3 and Hy = —h*A on L? (R(N _I)V). Suppose (1.3) holds. Then

N(h) = Nz, o)y~ N-DY f [Zer = VTN "D"20% (1 + o(1)) (1.4)
V(x)<Zy

where T(y-1), is the volume of the unit sphere in RN ~1,

In Section 2.4, we use Dirichlet-Neumann bracket to study the Riesz means of discrete
eigenvalues of the N-body Schrodinger operator. We suppose that

Vl‘j € CSO(RV) and V,‘j <0. (1.5)
Define the Riesz means of the N-body Schrédinger operator as

RyhZi)= ). lej(h) = Zal
ej(h)SEh
for y > 0. We first consider the semi-classical limit of Riesz means of discrete eigenvalues of
the 2-body Schrodinger operator. Then we use this result to estimate Y., )<s,, lej(h) — Zal”.
Since
D i) = Zal” < Na(h)(Zy — Za)”
EC[Se_,'(h)SZh

and X, —X. = O(h), we can get the estimate of > lej(h)—Z|”. Here N»(h) is the number
Sa<e;(h)<Z)

of eigenvalues in (X, Zp).
We get the following result :



SUMMARY

Theorem 1.2. Let v > 3. Let Hy = —h*A on L>(RW~=YY). Suppose (1.5) holds. Then we have

(N-1)y

Ry(h,Zy) = Cly,v)h~ V=1 f e = V(X)) 2
{X; V(.X)SZL»[}

dx (1 + O(h")), (1.6)

—(N— 1 _ ,
where C(y,v) = 2m)" VD1 y_1),Cy nv-1y Cyv-1)y = 7f0 B =By dB and T(n-1yy is
the volume of the unit sphere in RNV ¢ = min{%, v}

NEW POINTS IN METHODS AND RESULTS. Our first result is the generalization of the
result of Klaus-Simon’s [34]. In their paper, the conditions on V;; are too strong and they only
consider the 3-body case. Our conditions on V are much weaker than theirs and we get the
result for general N. In the second part of Chapter 2, we get the semi-classical limit of Riesz
means of all discrete eigenvalues of H(h).

1.2 Coupling constant limits and the asymptotic expansion of re-
solvent of Schrodinger operators with critical potentials

PROBLEMS. In Chapter 3, we consider a family of Schrodinger operators
P(l) = Pp+ AV

in L*(R"). Here Py = —A + @ on L*(R") and (r, ) is the polar coordinates on R”. V < O is a
non-zero continuous function and satisfies

[V(x)| < C{(x)™,  for some pg > 2. (1.7)

In Section 2.5 (Chapter 2), we study the N-body Schrodinger operator with Coulomb potential,
and we get that the effective potential has the following expansion for p large (see Section 2.5

(Chapter 2)) :
fi)  fp) 1

Lre(p) = + +o(—
SR T P Tl
with p = Ilp)_l’ ifCi = Y eg=00rCy, = } e =0.¢; is the charge of i-th particle. f;(0)(j =
i€a; i€ay

1,2) are the continuous functions of p. Hence, we study the Schrédinger operators of the form
P(1) = Py + AV. We suppose that

— Ay +q(0) > —%(n -2)2, onL*S". (1.8)

Here S"~! is the unit sphere in R”. Under this assumption, the operator Py is a positive operator
on L*(R") (see Chapter 3 for details). Set

1
T ={v;v={[d+ Z(n—2)2, A€ o(=A; +¢q)), o0r=0N[0,k], k€N.

10



1.2. Coupling constant limits and the asymptotic expansion of resolvent of Schrodinger
operators with critical potentials

If g = 0, then Py = —A. In this case, 0 consists of either only half-integers (n odd) or only
integers (n even). In particular, for Laplace operator —A, one has oy = {0, 1}, n =2; 0 = {%},
n=3;01={1l},n=4;0,=0,n=5.

We show that the discrete eigenvalue, ¢;(1), of P(1) converges to 0, as 4 | Ay for some
Ao > 0 in Chapter 3. We study the asymptotic behavior of ¢;(1) as 1 | Ag.

Let H>*(R"), r € Z, s € R, denote the weighted Sobolev space of order » with volume
element (x)>* dx.

Definition 1.3. Set N(1) = {u; P(D)u = 0,u € H"75, Vs > 1}, for 1 > Ao. If N(D\L?* # {0}, we
say that 0 is the resonance of P(d). A non-zero function u € N()\L? is called a resonant state
of P(1) at zero. diim N(A)\L? is called the multiplicity of 0 as the resonance of P(X).

Let A, be the value at which e; (1) converges to 0. e (1) is the smallest eigenvalue of P(1). In
Chapter 3, we show that O is not the eigenvalue of P(1;). The multiplicity of O as the resonance
of P(4;) is also studied in that chapter.

In Chapter 3, we also consider the Schrodinger operator P = —A + V. Here V = V| + V5.
Vi € C(R") and V;(x) = % for [x]| > R. R > 0 is the constant. g(6) satisfies (1.8). V, € C(R")
satisfies (1.7). Let

Py = x1(=A)x1 + x2Poxa.

Here 0 < y; < 1is a smooth function on R” such that y;(x) = 1 for |x| < R, suppy1 C {x; |x] <
Ry} for some Ry > R > 0 and x? + y3 = 1. Then P can be treated as the perturbation of Py and
P also can be treated as the perturbation of Py. One has

PZPO+W:PO+V

Here
2
_ g - X1
V=V-TE WeVAW W= r—zlq(0)+Z|V)(,-|2.
i=1
Then W is a continuous function and satisfies |[W| < C(x)™. V has singularity at 0. We study
the asymptotic expansion of (P — z)~! for z near 0, 3z # 0 in Chapter 3.

KNOWN RESULTS. Klaus-Simon [33] studied the asymptotic behavior of eigenvalue, ¢;(1),
of HA1) = —A + AV, A near Ay. Ag is the value at which ¢;(1) — 0 as 4 | Agp. They got the
leading term of e;(1) using Birman-Schwinger kernel. The result depends on the dimension of
the space. If the dimension of the space n = 3,

ei(d) = —c(d = A0)* + O((A — 20)*)

or
ei(d) = —c(d = Ap) + O((A = 20)*"?)

11



SUMMARY

and the ground state is in the first case. If n > 5, and n is odd, then
ei() = a(d = 2)* + O((A - A9)°).

If n > 6, and n is even, then

ei() = > " caml(d = 20)' "2 = 1) In(A = A9)]. (1.9)

n=2 m=0

If n = 4, then ¢;(1) obeys (1.9) or

ei(l) = q(1 = Ao)

= m + lower order term
n(4 — Ag

Fassri-Klaus [20] also studied this problem for Schrodinger operator —A + V + AW with V
periodic. They also used Birman-Schwinger kernel in their paper.

The operators of Py and P have been studied by Carron [14] and X.P. Wang [69, 70]. In
[14], Carron gave some properties of (Py —z)~! for z near 0 and got the formula for the jump at
zero of the spectral shift function associated with the pair (Po, P). In [70], X.P. Wang gave the
asymptotic expansion of (Py — z)~! for z near 0, 3z # 0 which is used to study the asymptotic
expansion of (P —z)™! for z near 0, 3z # 0. In [69], asymptotic expansion of (P —z)~! has been
studied for 3z # 0, z near 0.

OUR METHODS AND RESULTS. In the first part of Chapter 3, we use Birman-Schwinger
kernel to study the asymptotic behavior of ¢;(1) as 4 | dp. To get the leading term of e;(1) as
A ] Ao, we need to know the asymptotic expansion of (Py — a)~! for @ near 0, @ < 0, which
has been studied by X.P. Wang ([70]). We recall some results of Py and give some properties
of Birman-Schwinger kernel, IVIV2(Py — z)"1|V|/2, in Section 3.2(Chapter 3). For the technical
reason, we let V < 0 when we study the asymptotic behavior of discrete eigenvalues. We show
that there exists a one-to-one correspondence between the discrete eigenvalues of P(1) and the
discrete eigenvalues of

K(@) = [V['"*(Po - ) '|V|'2, @ <o0.

Therefore, we study discrete eigenvalues of K(@) in Section 3.3 (Chapter 3), and then get the
asymptotic behavior of discrete eigenvalues of P(1). Our main result is the following :

Theorem 1.4. Assume 0 ¢ 0« and n > 3. Suppose that e((A) is the ground state energy (the
smallest eigenvalue) of P(A). ¢ is some function in L*(R"). If pg > 6, one of three exclusive
situations holds :

(a). If o = 0, then e1(A) = —c(d = A) + o(d = o), ¢ = (AolIFolVI2¢l)72 # 0;

(b). If vo = 1, then e1(d) = —c 5% + o(F5s), ¢ = A%, IVIV2G 1 om [VI'2g)~! £ 0;
1

he 1
(c)-Afvo < 1, then e1(A) = c((A=20)"0 ) +0((1=20)"0), ¢ = A5, IVI'2G, 071, |VI'2) ™" 2

12



1.3. Low-energy asymptotic of the spectral shift function for perturbation with critical decay

Similarly, we can get the asymptotic behavior of the other discrete eigenvalues of P(A).
In Section 3.4, we use the fact that discrete eigenvalues, u;(@), of K(a) are continuous and
monotonous with respect to @ to get the result for the multiplicity of 0 as the resonance of
P(Ap). Here A is the value at which the smallest eigenvalue of P(1) converges to 0.

Theorem 1.5. Suppose ), n, = m. If m > 0, then there exists 1y > Ay such that for all
0<y<l1
Adg < A < Ay, the number of eigenvalues, less than 0, of P() is equal to the dimension of N ().

In Chapter 3, we also study the asymptotic expansion of (P — z)~! for z near 0, 3z # 0,
which is used to study the spectral shift function. X.P. Wang ([69]) has studied the asymptotic
expansion of (Py + V — z)~! with V satisfying |[V| < C,(x)7. Since our V = V — @ with

~ 2

V satisfying the condition (1.7), we can not use X.P. Wang’s result directly. Note %q(e) €
L(1,-s;-1,5), Vs > 0 for n > 3. We can use X.P. Wang’s method to get the asymptotic
expansion of (P — z)"!. For z € C\R, z near 0, we have

(Po-2)'(P-2)=1+F(2),
with
F(z)=(Po-2)"'V.

In Section 3.5 (Chapter 3), we prove that 1 + F(0) is a Fredholm operator in £(1, —s; 1, —s). Let
N ={u;Pu=0, uecH"5 Vs> 1}. If N = {0}, then (1 + F(z))~! exists for z near 0, Iz # 0.
We can get the asymptotic expansion of (P —z)~! by formula (P—z)~' = (1+ F(z))"'(Py—2)"".
If N # {0}, we solve a Grushin problem associated to P — z, and get that

(P-2'=E@ - E+:(QE+- () E-(2)

for z near 0. Here E(z), E(z), E_(z) are holomorphic near 0. Hence, the main task is to study
2

the asymptotic expansion of E._(2)7! near 0. Note %q(@) ¢ L(1,-s;1,—5) for n = 2. There-

fore, we can not get the expansion of (P — z)~! by this method for n = 2.

1.3 Low-energy asymptotic of the spectral shift function for per-
turbation with critical decay

PROBLEMS. In Chapter 4, we study the spectral shift function. The spectral shift function was
introduced in 1952 by the physicist I. M. Lifshitz in paper [41] as a trace perturbation formula
in quantum mechanics. Its mathematical theory was created by M. G. Krein. Let P, Py be a pair
of self-adjoint operators in some separable Hilbert space H. M. G. Krein proved in [36] that if

13



SUMMARY

V = P — Py is a trace class operator, then Vf € S(R), f(P) — f(Pp) is of trace class and there
exists some function ¢ € L (R), called spectral shift function, such that

Tr (f(P) = f(Po)) = —fRf'(/l)f(/l) da, VfeSR). (1.10)

Then it was extended by him in [37] (see [38], for a more complete exposition) to operators
Py, P with a trace class difference R(z) — Ro(z). Here Ry(z) = (Py — z)"' and R(z) = (P — 2)\.
Yafaev ([73]) proved that if there exists some ¢ such that P + ¢l and Py + ¢l are positive and
there exists some k € N*,

NP+ cD™* = (Py + cD)7H||yr < 0. (1.11)

then f(P) — f(Py) is of trace class and there exists some function & € L}OC(R), such that (1.10)
holds. The right hand side of (1.10) can be interpreted as (f, &), where &’ is the derivative of &
in the sense of distributions. For simplicity we assume that Py, P are bounded below. By the
Birman-Krein theory ([6]), ¢ is related with the scattering phase, p(1) = argdetS (1), by the
formula

p() = 21&(Q), mod 277,

and !
&) = =TrT(),
2n

where T(1) = —iS (/l)*ﬁS () is the Eisenbud-Wigner formula for the time-delay operator.
Let 0 < y; < 1 be a smooth function on R” such that y;(x) = 1 for |x| < R, suppy: C

{x; x| < Ry} for some Ry > R > 0and x3 + x3 = 1. Let Py = y1(—A)x1 + x2(—A + @)}(z and
P = Py + V with V satisfying

09V (x)| < Cyfxy Pl (1.12)

for some p > 2. We study the spectral shift function, £&(1), of the pair (Py, P).

We are mainly interested in the low-energy asymptotics of the derivative of the spectral
shift function. We use the asymptotic expansion of Ry(z) = (Pg — 2 ' and R(z) = (P — z)~! for
Iz # 0, z near 0, to study the asymptotic behavior of £ (1) for A near 0. After that, we use this
result to prove the Levinson’s Theorem. The Levinson’s theorem is a fundamental theorem in
quantum scattering theory, which shows the relation between the number of bound states and
the phase shift at zero momentum. Levinson first established and proved this theorem in [39]
for the Schrodinger equation with a spherically symmetric potential V(r).

KNOWN RESULTS. The spectral shift function for Schrodinger operators has been studied
by many authors (see for example [1],[11],[12],[47], [49],[501,[73] ). High-energy asymptotics
of the spectral shift function was studied in these paper. The result got by Robert in [49] is the
following : assume |[0F V| < Co(x) P10l with p > n, then the spectral shift function, £(2), for the
pair (=A, A + V) satisfying :

14



1.4. Notation

1. £() is C* in (0, c0).
(i1). dd—;kf(/l) has a complete asymptotic expansion for 4 — oo,
dk

_ n/2-k-1 (k) 1-j
TRE) ~ A Za‘, s

>0

Levinson’s theorem has been studied by many authors (see [8],[42], [32],[18] and references
therein). In [8], Bolle got the Levinson’s theorem for V satisfying (x)"V € L'(RY)(d = 1,2,3)
for appropriate n, and V € L*3(R?) for d = 2, such that the absence of positive embedded ei-
genvalues and of the singular continuous spectrum of —A+ V is guaranteed. Levinson’s theorem
for the nonlocal interaction in one dimension was studied in [18].

OUR METHODS AND RESULTS. In Chapter 4, we use the asymptotic expansion of (Py —
2)~" and (P - 2)~! for z near 0, Iz # 0 to study the low-energy asymptotics of the derivative of
the spectral shift function.

Our main result is the following :

Theorem 1.6. Suppose n > 3 and 0 ¢ 0. If (1.12) holds for p > max{6,n + 2}, one has
E'(D) = Jod() + g(2),

with |g(1)] = O(1~1+®) for some €y > 0, as 1 | 0. Here Jy = Ny + Zﬁil gjmj where Ny is the
multiplicity of zero as eigenvalues of P and mj the multiplicity of G j-resonance of zero.

Using this Theorem and the asymptotic expansion of £’(1) for A large (see [49]), we can get
the Levinson’s Theorem.

Theorem 1.7. Suppose n > 3 and 0 ¢ 0. If (1.12) holds for p > n + 3, one has

- 4
f €)= > BTy da = —(N + Jo) + Bupa. (1.13)
0 =

B2 depends on n and V and ,» = 0 if n is odd.

1.4 Notation

We present some notations used is this thesis.

arg : the argument of a complex number

C*(Q): the set of infinitely differentiable functions on an open set Q
CrQ): the subset of C*(Q) consisting of functions with compact support
C: the field of complex numbers
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SUMMARY

dim :

H™SR") :

NS

inf :

LH™ H YL, s;7, 8))

the dimension of a linear set
weighted Sobolev space of order r with volume element (x)>* dx
the imaginary part of a complex number
the infimum

LP(p=1): the space of functions whose p—th power is integrable
Inz: In|z| + iargz with 0 < argz < 2n

R4 : Euclidean space of dimension d

R*: [0, o0)

R; the real part of a complex number

SR : the set of Schrwarz function

Sy the set of operator whose p—th power is a trace class operator
s unit sphere in R”

sgn : sign

sup : supremum

o(-): the spectra of an operator

opp(+) the point spectra of an operator

Tr: the trace of an operator

s —lim : the strong limit of vectors and operators

il evlnz

Z the set of integers

OB scalar product on L*(R™) or on LA(R*; "~ 1dr)
G-, : scalar product on L2(S"

AV the Laplace operator on the unit sphere in R"
-1 : the norm of an operator

[l : the trace norm of an operator

II-1lp - norm in ., or L?

(x) : (1 +x2)1/2

16
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2 - SEMI-CLASSICAL LIMITS OF THE NUMBER
AND RIESZ MEANS OF DISCRETE EIGENVALUES
OF THE N-BODY SCHRODINGER OPERATORS

2.1 Introduction

In this chapter, we consider the N-body system of v—dimensional (v > 3) particles on
LZ(R(N—I)V) .

H=Hy+V;
V= Z V,'j(ri - I’j), r; € R”.
i<j

Here Hj is the operator resulting from removing the center of mass from % —Q2m)~ Ay m; is
the mass of the i—th particle, A; is the Lpalacian in the r; variables. We discul;sl the semi-classical
limits of the number and the Riesz means of discrete eigenvalues of N-body Schrodinger ope-
rators H(h) = h*Hy + V.

The semi-classical limit of the number of discrete eigenvalues has been studied by many
authors for N = 2 (see [4], [31], [40], [44], [54], [68]). Roughly speaking, in the case of 3-
dimensional space, R?, the result obtained by these authors can be formulated as following :
assume that V(x) is real and V(x) € L3/2(R3), the number of discrete eigenvalues less than 0,

N(A), of =A + AV obeys the asymptotic formula :
N@) = (6n*)""! fIV_(x)|3/2 dx(1+o(1)), A — oco.

Here V_(x) = min{0, V(x)}. The remainder term in the result of Tamura is O(1~'/2) under the
condition V(x) € C®R3\{0}), V(x) ~ |x[7%,0 < d < 2,109V(x)| < CoV(x)|x| for [x] < 1
and [V(x)| < C{x)™, m > 2, [09V(x)] < CoV(x){x)~, 3 —m < I < 1, for |x| > 1. For the
proof [4] and [44] use the min-max principle combined with a technique of Dirichlet-Neumann
bracketing while [31],[40] and [54] use the Feyman-Kac formula. Tamura [68] uses pseudo-
differential operators and Fourier integral operators to study this problem for N = 2. The semi-
classical limit of discrete eigenvalues for the 3-body Schrédinger operator has been studied by
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SEMI-CLASSICAL LIMITS

Klaus-Simon (see [34]). The main tool they used in that paper is Birman-Schwinger kernel.

Their result is the following : Assume v > 3,V < 0, V;; € CP(1 < i < j < 3). Denote

ajj = m]%n Vii(x), £, = mina;;. If there exists only one a;;, such that a;; = X, then the number
X xeRY i,j X :

of discrete eigenvalues, N(u), of —uA + 3} < j<3 Vij on L*(R%) obeys the asymptotic formula :

lim ("N () = 72, (27) > f [Ze - V(x)]dx.
u=0 V(0)<Z
Here 7, is the volume of the unit sphere in R?”.
Semi-classical limit of Riesz means of discrete eigenvalues of Schrédinger operator P(h) =
—h%A + V has been studied by Helffer and Robert [23], Bruneau [9]. Let ¥ = lim V(x). They

|x|—00

studied semi-classical limit of Riesz means of discrete eigenvalues less than Ag. Here Ag is a
constant less than X. They used pseudo-differential operators to get the asymptotic expansion
of
Ry, )= " (A= ej(h)
ej(h)<A
for A < Ap as h — 0. ¢(h) is the discrete eigenvalue of P(h). They did not get the semi-classical
limit of Riesz means of all bound states of P(h).

Here is the plan of this chapter. We use the Birman-Schwinger kernel to study the number
of discrete eigenvalues of the N-body Schrodinger operator H(h). For the unique two-cluster
Schrodinger operator, we introduce a suitable Birman-Schwinger kernel in Section 2.2 and
recall the results of the Birman-Schwinger kernel. In Section 2.3, we use these results to dis-
cuss the semi-classical limit of the number of discrete eigenvalues of the unique two-cluster
Schrodinger operator H(h). The result we get is the following : if V’s lie in C2(R"), and are
negative, |V;;| < C(x)"* with some p > 2, then

N(hy = i~ N=Dvg ), r)~(V-Dv/2 f [Zer = VEOIYD"24x(1 + O(1)). 2.1)
V(x)<Z

for v > 3. Here N(h) is the number of eigenvalues of H(h) in (—o0, ;). The number of eigen-
values of H(h) in (—o0, X)) is standard Dirichlet-Neumann bracketing [53, Section 8.15]. The
difficulty is to estimate the number of discrete eigenvalues in (X, X5). In Section 2.4, we use
Dirichlet-Neumann bracketing to study the semi-classical of the Riesz means of discrete eigen-
values of H(h). The result we get is following : Assume v > 3, Hy = —h?A on L>*(RN-Dv) and
(1.5) holds, then the Riesz means of discrete eigenvalues of H(/) obeys the following estimate

Ry, (h,Zy) = C(y, v)h‘(N—l)Vf (St — V(x))7+(N51)V
{x; V(0)<Z}

dx (1 + O(h"), 2.2)

where C(y,v) = Qn)" V"1 y_1),Cyv-1)s Cy.v-1yy = )’fol B =Py dB and t(n-1yy is
the volume of the unit sphere in RWV-DY, ¢ = min{%, v}. In Section 2.5, we study the N-body
Schrodinger operator with Coulomb potential. We get the asymptotic expansion of the effective
potential, I.r¢(p), for |p| — oo.
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2.2. A Birman-Schwinger kernel for the N—body Schrédinger operator

2.2 A Birman-Schwinger kernel for the N—body Schrodinger ope-
rator

Consider a general N-body system of v-dimensional particles. H is an operator on
12 (RV(N—l)) .
H=Hy+V. (2.3)

N
Here Hj is the operator resulting from removing the center of mass from }; — 2m;)7! A, and
i=1

VZZVij(ri—rj). (2-4)
i<j

Here r; and m; > 0 denote the position and the mass of the j-th particle respectively, —A,, is the
Laplacian in the r; variables. In this chapter, we suppose

Vii <O, (2.5)
and normally we suppose
Vi € C2(R), and [V;;(x)] < C(x)™®, with € > 2. (2.6)

Condition (2.5) considerably simplifies the arguments since the Birman-Schwinger kernel is
self-adjoint when (2.5) holds. But most results should hold without (2.5). Condition (2.6) is si-
milarly made for technical convenience. We begin this section with introducing some notations.
NOTATION : Let C;(i = 1,--- ,k) be the subsets of { 1,--- ,N J. If ;N C; = 0,i # jand
Uf?zlci ={1,---,N},wesaythat D = {Cy,---,Cy }is a partition (or cluster decomposition) of
{1,--- , N}y . IfD={Cy,---,Cy }, wedenote #D = k. If i, j are two numbersin{ 1,--- , N }, we
write iDj if and only if i and j are in the same cluster C;, and ~ iDj if they are in the different
clusters. Let ), (resp. ), ) denote the sum over all pairs with Z, j in the same ( resp. different )

iDj ~iDj
Vp = Z Vi, Ip= Z Vijs

cluster of D. We define
iDj ~iDj

HDZH—ID; ED:infa'(HD);

ap= min Vp(x); Zyg= min ap.
{x;xeRWN-Dv}y {D#D>2}

For each D, there is a natural decomposition of J# = L? (R(N ‘1)V) as AP ® 7 with 75 =

functions of r;; with iDj and J7 D — functions of R, — R; where R, = 3 m;r;/ , m; is the
ieCy ieCy
center of the mass of C,;. Under this decomposition

Hp=hp®1+1Q1p.
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SEMI-CLASSICAL LIMITS

By the HVZ-theorem [54, Section XIIL.5 ],
inf 0,55 (H) = Z, 2.7

where X = mDin Xp. We say that H is unique two-cluster, if there is only one D with #D > 2,
such that ¥ = Xp. The intuition is quite simple : if the continuum is two-cluster, the threshold
is basically due to a v—dimensional Laplacian, namely the relative kinetic energy of the two
clusters. So one expects the coupling constant behavior to be a v-dimensional problem. We will
concentrate on the unique two-cluster N-body Schrodinger operators.

By the hypothesis of unique two-cluster, we know that there exists a decomposition D with
#(D) = k # 1 such that

Ip < Zp (2.8)

for all D’ # D with #(D’) # 1. It is easy to see that (2.8) can only hold if #(D) = 2 (
since Xp, < Xp, if D is a refinement of Dy written Dy < Dy ). If (2.8) holds, then 4p must
have an eigenvalue at the bottom of its spectrum ([54, Section XIII.12] since inf o5 (hp) =
min (£ |D < D', D # D’) by the HVZ-Theorem) and this eigenvalue will be simple. Thus, we
pick once and for all a vector n € 77 with || 7 ||= 1 and

hpn = Zpn. (2.9

Let p be the projection in #p onto  and P = p ® 1, the projection in 7. We define g =
1-p,0=1-P.Itfollows that

o(Hp 1 QH) = [T/, ). (2.10)

with
¥ >L=minZp =5p @2.11)

since X p is the simple eigenvalue of Ap.
We define the Birman-Schwinger kernel by :

K(E)=|Ip |"? (Hp - E)™" | Ip |'? (2.12)

for E < Z. In the following we recall some results for the Birman-Schwinger kernel. These
results have been studied by Klaus-Simon for V;; € Cg". In fact, these results are also true for
Vi; satisfying (2.6).

Proposition 2.1. (Proposition 2.1 and Proposition 2.2 [34]) Let E < X. Then E € o (Hp + ulp)
if and only if u=' € o (K (E)). This result remains true if o is replaced by ey in both places.
Moreover, the multiplicity of E as an eigenvalue of Hp + polp is exactly the multiplicity of u, !
as an eigenvalue of K (E).

Remark 2.2. This result is from Proposition 2.1 and Proposition 2.2 [34]. In fact, they did not
use the condition V;; € C in the proof.
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2.2. A Birman-Schwinger kernel for the N—body Schrédinger operator

Proof. Write
Hp +ulp - E = (Hp — E) (1 + u(Hp — E)™" Ip).

We conclude that (since E ¢ o (Hp)), E € o (Hp + ulp) if and only if
p e o (- (Hp - E)y" Ip) = o((Hp — E) lipl) = o (K (E)).

The last equality follows from the well-known fact (see eg.[16]) that o (AB) \ {0} = o (BA) \{0}
for any bounded operators A, B.

If E € 0¢ss (Hp + polp), then since oes5 (Hp + ulp) = [X,, 00) with X, decreasing in u, E €
Tess (Hp + plp) for all > o, s0 [0,45") € o (K (E)) which implies that py' € oy (K (E)).
If £ ¢ 0. (Hp+ uplp), then, we claim that for some 6 > 0, E ¢ o (Hp + ulp) for u €
(1o — 0, o + 0) \ {uo}. This is obvious if E ¢ o (Hp + uolp) and if E € o gi5c (Hp + polp), E ¢
o gisc (Hp + ulp) for u near pg, since discrete eigenvalues of Hp + plp are strictly monotonous
in p. It follows that p‘l is either not in o (K (E)) or is an isolated point of o(K (E)). In the
later case, we must show that the multiplicity of 1 I as an eigenvalue of K (E) is finite. But if
K(E)¢ = uy'¢, then (Hp + plp — E) ¢ = 0 with

¢ = (Hp — E)" |Ip|'?y,
since
(Hp +ulp — E)¢ = [Ip|' (1 — uK (E)) .

Since (Hp — E) ' |Ip|"* 1 {¢ | K(E)¢¥ = py'y) has no kernel, this shows that the multi-
plicity of w !'is at most the multiplicity of E as an eigenvalue of Hp + ulp. Notice that if
(Hp +ulp — E) ¢ = 0, then

v = lpl'*¢
satisfies K(E)W = ualdx. Since |Ip|'/? is non-vanishing on such ¢ (since ker (Hp — E) = {0}).
This ends the proof. g

In the proof of the proposition, we noted that o.ss (Hp + ulp) = [X,, c0) with £, monotone
in u. It follows that :

Proposition 2.3. (Proposition 2.3 [34]) Let E < XZ. Then 0.5 (K (E)) = [0,A(E)] where
A(E) = sup { &; E € o5 (Hp + 17 Ip) }
2

For later reference, it is useful to show that K (E) has a norm limit as £ T Z. To see this, we
decompose K(E) as K(E) = Kp(E) + K¢ (E) with

Kp(E) = |Ip|"* (Hp — E)™' PIp|'%;

Ko (E) = |Ip|'* (Hp — E)™' Q |Ip|'>.

where P, Q are the projections introduced before (2.10). Before analyzing K (E), we need to
introduce two definitions first.

21



SEMI-CLASSICAL LIMITS

Definition 2.4. Let A be a compact operator, and all of the singular values of A are denoted by
{ui(A)} with u1(A) = ua(A) =2 uz3(A) = ---. Wesay that A € ., r =2 1, if

Al = O ' < eo,

We say that A € 7)), p > 1, if

n
Al = supn TP 1j(A) < oo,
n J:1

From the definition, it is easy to see that ||A]| < ||A]l, and ||A|| < [|Allp,w-

We want to consider the operators on L>(R”) formally given by f(x)g(—iV). First, we need
to the give the definition of these operators (see [60] for details). If f and g are a.e. finite
measurable function on R, the sets Dy and D in [? given by Dy = {h € L% fh € L%},
D, = {h € L*gh € L?} are dense in L*. For ¢ € Dy and F () € D,, (¥ denote Fourier
transform), we can unambiguously define (¢, Ayr) with A given formally by f(x)g(—iV) as the
inner product of f¢ and .% (.7 ) (# ! denote inverse Fourier transform). Some of the most
celebrated estimates in analysis assert that A is a bounded operator (to be pedantic, there is a
bounded operator A with (¢, Ay) = (¢, Ay) for ¢ € D ¢, ¥ € Dy ; henceforth, we will be sloppy
about this point). For example, if g(=iV) = (=A)~!, then Z 1 (g.F ) = h ¢ with h = ¢,|x| ™2
for v > 3. Thus using Holder’s inequality (2 < p < o),

If (sl < Cpll flplAll sl (2.13)

Here p’ = 1% and || -]l is the norm of L%, Under this definition, we have the following result.

Theorem 2.5. ([60, Theorem 4.2],) If f € LP and g € L}, with2 < p < oo, then f(x)g(~iV) is
in ) and
”f(x)g(_iv)”p,w < Cp”f”p”g”p,w-

We use this theorem to study Kp(E).

Proposition 2.6. (1).Ko (E) has an analytic continuation to C \ [¥’,+00). In particular, on
account of (2.11), Ko (E) has a norm limit as E T X.

(2). Let v = 3 and let r > v/2. Then for all E < X, Kp (E) is in the trace ideal .} and as
E 1 X, Kp(E) converges to an operator Kp (X) in . norm.

Proof : (1). This result is directly from (2.10) and (2.11).
(2). We use Theorem 2.5 to prove this result. We first prove the operator Kp(X) is in
S Kp(E) € .Y with E < X can be proved in the similar way. We need only to prove

-1
(Hp -/ PlIp|'/? is in .#}" . Since |1D|1/2( % (V%) ) is multiplication by a function
~iDj

bounded by 1, it suffices to show the required fact for (Hp — E)™'/? P|V; jll/ 2 with ~ iDj. Since

(Hp - )2 PV = £ 2PV (i = 1)) |12

22



2.2. A Birman-Schwinger kernel for the N—body Schrédinger operator

and r;—r; = R+p with R = R., — R, and p an "internal coordinate”. By Theorem 2.5, we know
the operator (tp)"'/2(R)™ € S ¥(L*(R"; R)) if s > 1. So (tp)"Y*(RY™ P € .Y for all t > v by
the definition of f[fv . We need only to prove that (R)SPIVL/‘W 2 is a bounded operator. Then it
suffices to show that ((R)SP|V,-J~|1/2)* = |V,-j|]/2(R)SP is a bounded operator.

For each u € L2(RN-v),

\Viil''2(RY Pu(¢, p) = f Vil 2L, p)XRY (O yu(¢ R)AL
(1) If R ~ p, we have

KRY 1 mQIVij(R + p)'2| < IC¢0) 0 ()

with C be a constant independent of R.
(ii) If R 2 p, since |V;;(x)] < C{(x)™® , we know |V;;(R + p)|'/? < C(R)~©/2. Then, we can
get
KRY n(@ mQIVij(R + p)'*] < CRYS P yn().

Choose 1 < s < €/2, one has

KRY N mOIVi(R + p)' 12| < Cin(¢ Q).

(i IfR < p,
KRY n( nDIVij(R + p)'? < Cln(¢ m(Q)l.
From the argument above, one has (R)*P|V;;(R + p)| 172 is a bounded operator, since 1 has an
exponential decay at infinity. It follows (Hp — 2P| 2 e yz‘ﬁ. Then we get Kp(Z) € .7)".
In the similar way, we can get Kp(E) € ./}, and

\Ip|"*((Hp — E)™" — (Hp — ) HPlIp|'?

(- E)Ip|"*((Hp - E)"'(Hp - )" HP|Ip|'?
(- EYlIpl"(tp) 0 PlIp|'/?

Kp(X) — Kp(E)

IA

with 0 < 6 < 1. Then, one has Kp(X) — Kp(E) is in szﬁ and tends to zero when E — X. O

Theorem 2.7. (Theorem 2.8 [34])

K (E) has a norm limit K (¥) as E T X and moreover :

(). Toss (K(E)) = [0, A (Z)], where A (X) = sup { A Ooss(Hp + A7 p) N (=00, 2] £ 0 } <l1;
Pl

(ii). K(E) < KX) forall E <%
Remark 2.8. This theorem is from Theorem 2.8 [34]. In their proof, they use that Kp(E) —
Kp(X) in norm as E 1 X(Proposition 2.6 [34]). But they only proved that Kp(E) were uniformly

bounded for E < %, E near X, they did not prove Kp(E) — Kp(X). So we rewrite the proof of
Proposition 2.6.
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Proof. Propositions 2.6 imply the existence of the norm limit. The identification of
T ess(K(2)) follows form Proposition 2.3 and Lemma 2.9 below. That A (¥) < 1 follows from
the fact that Z is unique two cluster. Finally (ii) is obvious since

(Hp-E)'<Hp-%),
for E < X. O

The following lemma is the result of [34].

Lemma 2.9. (Lemma 2.9 [34]) Let A, > 0, 055 (A;) = [0, a,] and suppose A,, — A in norm.
Then a = lim a, exists and 0.4 (A) = [0, al.
n—oo

Proof. Let a (resp. a) be lima, (resp. lima,). Let A < lima, . If A ¢ o(A),then A ¢ o (A,)
for all large n, so [0, @] C 0.z (A). Now let A > a. Pick 6 > 0 so that 4 — § > a. Pick n so large
that || A—A,, ||< 6/3 and that 1-26/3 > a,,. Since [1—26/3,A+26/3]No (A,) = 0, we can find F
finite rank so that [A—26/3,4+26/3]No (A, + F) = 0. Thus [A-6/3,4+6/3]Nc (A + F) = 0.
S0 A ¢ Teg(A), 1e. 0 (A) = [0,al. O

By Theorem 2.7, we can get the following result.

Theorem 2.10. (Theorem 2.9 [34])) Let H be the Hamiltonian of an N-body system with po-
tentials satisfying (2.5) and (2.6). Let Z, the infimum of the essential spectrum of H be unique
two cluster. Then dim ran E(_.x) (H) < oo (i.e. there are finitely many “bound states”).

Proof.
dim ran Ex)(H) = lim dim ran E(_c><> s-1) (H)
n—oo » n
1

= lim#{/ll/l>1,/lea(K(2——))} (2.14)
n—o0 n

< #HA|A>1,1e0(KQ®2))} (2.15)

< oo.

In (2.14) we use the standard Birman [5]-Schwinger [56] argument ; in the next step, we use
K (E) £ K(2), in the last step, we use that [1,00) N 0.z (K (X)) = @ which can be get from
Lemma 2.9 and Theorem 2.7. O

2.3 Semi-classical limit of the number of discrete eigenvalues

Let N(h) denote the number of discrete eigenvalues, less than X, of H(h) = h*Hy + V.
From the last section, we can see that N(h) is finite for any 2 > 0. In this section, we want
to discuss the small /4 behavior of N(h). For the two-body case the result is well-known ( see
[4, 43, 66] for original work or [54, 65] for further discussion). Here we consider the unique
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two-cluster N-body Schrodinger operators. First we will show that if (2.5) and (2.6) hold, then
(V=% )-| € LN=DY/2 Here (V — 2)_ is the negative part of V — 2. It suffices to show that

I(V(x) = Za)-| < )™, € > 2. (2.16)

Let A denote the set of all cluster decompositions of the N—particle system. For each D =
{Cy,---,Cy) € A, there is a natural decomposition of .7 = L? (R(N ‘1)") as P ® s with

P :{XE%;me:O;jz L.+, k)
IEC_,'
Hp ={x € A x; = xj, if (i, j) € Cp, forsome m = {1,--- ,k}}.

Here m; is the mass of the j—th particle. Under these notations, one has for each x € JZ,
x = xP + xp with xP € P, xp € 5.

D’ D’
o= > V), b= > Vp(P)
#D'=N-1, D’'cD #D'=N-1, D’¢D

Lemma 2.11. For some & > 0 small, define
Jp = {x € A;|xP| > 6|x|, YD’ ¢ D},

then |J Jp = 7\{O}
#D=2

Proof. It is easy check that Jpr C Jp, if D’ C D. Therefore, it suffices to prove that

U Jp = 2\{0}. Let S denote the unite sphere in # and
#DeAHD>2

Sp={xeSnNHp;x¢ #p, VD' ¢ D).

For any x € S, the set Ay = {D € A; x € #p} is non-empty. Then x € #p, with Dg = (| D.
DeA,

It can be easily checked that x ¢ %, YD’ ¢ Dg. For any x € Sp, we can take some §y =
0o(x) > 0, such that
P >60>0, VD ¢D.
If Q(x, €,) is a small conic neighborhood of x in 77,
Q(x, ) = {y € OO} 19 — x| < &}, (ex < 60/4)
with y = ﬁ, then for y € Q(x, €), we have
1= M 1= 16 = 07D > b e

for D’ ¢ D. The family of open sets {y € S; [y — x| < &} = Oy, x € S forms a covering
for S and we can extract a finite covering of S from it, denoted by {O,;; j = 1,---,N}. Put
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0 = min; €x; > 0. Define Jp as in lemma. We derive that U Jp 2 U;Q(x;,06) = s\{0}.
- #DeA#D>2

By the above lemma, we know that there exists a family of non-negative smooth function
{xp; D € A, #D = 2} such that

xp =1, and suppyp € B(0,1)U Jp.
DeAH#D=2
Here B(0, 1) is the unite ball in 7. Then
V-Xu= Z xp(Vp —Z¢p) + Z xplp.
DeA#D=2 DeAH#D=2
Since X; = min ap with ap = min Vp(x), one has Vp(x) > Z;. It follows that yp(Vp —Z) >
#D=2 x€HP

0, since yp = 0. Note yplp = xp > Vi (xP), and |Vp (xP)] < C{x)~%. One has
#D'=N-1, D'¢D

lep Vo (x2)] < C(xP"y=% < Cs(x)~®. Therefore, we get (2.16).
The main result of this section is the following.

Theorem 2.12. Let v > 3. Let Hy = —h*A on L? (R(N_I)V) and let V be given by (2.4) with V;;
satisfying (2.5),(2.6). Suppose that (2.8) holds. Then

N(h) = i N=Dvgy g, ry~ =D f [Ze = VTN D"2qx (1 + o(1)) (2.17)
V(x)<Zy

where T(N-1)y is the volume of the unit sphere in RW-Dv,
Before proving this theorem, we first give a useful lemma.

Lemma 2.13. Let X) = ngn{min o(hp(h))}. Z. is defined as before. Under the condition of
Theorem 2.12, one has Xy — X = O(h).

Proof. By the definition of X, we know that there exists a cluster decomposition D, such
that
¥, = mino(hp) = min o(-h>A + Vp).

Note that X, -2 > 0, it suffices to prove X, —X. < Ch for some constant C. By the definition of
V., we know that there exists a point xp € RWN=2Y such that Vp(xg) = Z. Let Yy eCy (RWNV=2v)
be a normalized function, which is supported in B(xp, 1)(={ x € RN=2: |x — xo| < 1}). Define

W) = SN2y ),

where s is a constant and will be fixed later. Then IIWZII = 1. Note that VV(xp) = 0, by Taylor
expansion, we have

n o n 82V
V(x) - Z¢ = le Zlm — x0)(xj — Xo ,-)WW +0(x - xo).
=l j=
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2.3. Semi-classical limit of the number of discrete eigenvalues

It follows
(=H*A + Vp = Z 0" ") < 2725 [VyI? + CH?S + O(h™).

Choose s = 1/2, we have min o-(=h*A + Vp — £,;) < Ch. This ends the proof. O

Proof of Theorem 2.12 : Write
N(h) = Ni(h) + No(h) (2.18)

with N (h) the number of eigenvalues of H(h) in (—o0, ;] and N;(h) the number of eigenvalues
of H(h) in [Z., X;). We know that (see [65]) :

Ni(h) = V"D, )y~ W=Dy f [Ze = VTN "D20x (1 + o(1)) . (2.19)
V(0)<Ze
Thus, it suffices to prove that
Na (h) = o(h~ N1, (2.20)

Let K, (E) be the Birman-Schwinger kernel of Section 2.2 for H (h). Below, we will prove that
forany e > 0:

K=YV [#ev. of [Kn(Zn) — Kn(Za)] > €}] — O. (2.21)

We first note that :

Lemma 2.14. Under the condition of Theorem 2.12, one has (2.21) implies (2.20), and hence
the theorem.

Proof. Let V¢ = Vp + €elp. Then for € small enough, Zgl = lim V¢(x) = Z,. It follows
|x|— 00

that (2.19) continuous to hold for V replaced by V¢ in the integral on the right and with N;(h)
replaced by N{(h), the number of eigenvalues for H(h) + €lp in (—oo, X]. Thus

lim lim AN~ [N€(h) — N1 (h)] = 0. (2.22)
€l0 hl0
Since
Ni(h) = #E; E e o(H(h) +€lp), E < Zy)
= #of ev. KyEa) > (1 +e)7),
and

N (h) N(h) = Ny(h)

liir(r)llliin}) #(of ev. Ky(Zp) > 1) —#(of ev. Kp(Ze) = (1 +€)7h),
€ —
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then we have,

}111—1,)% h(N_l)VNQ(//l)

= lim KNV e, of Kn(Zp) > 1) —# (ev. of Kn(Ze) > (1 +€)7H)]

IA

lim W=Dy, of (Kn(Zh) — Kn(Ee) > 1+ €)' = 1).
In the above, we use that for A, B > 0,
#(ev.of A+ B>1)—#(ev.of A>1—-0)<#(ev.of B>)0).

(2.21) implies (2.20) . O
Hence, we need only to show that (2.21) holds. Before that, we recall one result.

Proposition 2.15. ([22]) Let P(h) = —h*A + 2V,(x%), V,, continuous, and |V,(x®)| < C{(x*)~P
withp > 0. Let 6 > 0, E(h) < Zy =6 Yh > 0), (P(h) — E(W)y(h) =0, |ly(h)|| = 1, then Ve > 0,
AC, > 0 and the continuous function d(-), d(x) ~ V¢ — E(h) — €|x|, x — oo, such that

R @yl + eyl < Ce,
uniformly hold for all h small enough.
Lemma 2.16. Under the condition of Theorem 2.12, (2.21) holds.

Proof. Let
Y. = min {ap; ap = min Vp, D' is the refinement of D }.

Let p; be the projection onto those eigenvalues of hp(h) less than @ = (1/2) (Z; + 2. Let
Pr=p,®1,0,=1-Pj. Then

[Kn (Zp) — Ki ()] = ap, + ag,,

where
aa = — Z) pl"*[A (Hp (h) = Z)™" (Hp (h) — Zp)1Ip) 2.

Now, clearly

1 - 1 o
lleg,ll < llplle(Zp — Zcz)(Z(Zcz D) I CHID”ooh(Z(ch -7
It follows |lag,|l < €/2, as h > 0 small enough. Hence, (2.21) follows from

K=Y [#ev. of ap, > €/2}]] = 0.
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2.3. Semi-classical limit of the number of discrete eigenvalues

Write Py, = Py, + Py, with

Py,
Py

XUz R+ DPp+ x(I{] < R+ DPpx(I{]1 = R + 1);
XU <R+ DPpx (] <R+ D).

where |£] is a measure of the total size of the internal coordinates of D and R is defined by

(& VD) <Za} i <R

Then
ap, = (Ep—Z)pl*Pu(Hp(h) — ) \(Hp(h) — Z)Ipl'?
= (Zn = ZDUpl"2(P1y + Pap)(Hp(h) — )" (Hp(h) — Z) "' (P1y + Pap)lIpl'/?
< 2 = Z)Upl P Piy(Hp(h) — )" (Hp(h) — o)™ Pyalip) >
+2(Zy — Z)lpl 2 Pap(Hp(h) — ) (Hp(h) — Z) ' Pylip|'?
_ QY] (2)
= aPh + aPh .
Since
(En — Za)(Hp(h) — )" (Hp(h) = Z) ™!
= (Zh - Z)(Hp(h) — X)) ' (Hp(h) = Zp + X — o)~
= (Hp(h)—Zp) ' (1 + = Z) " (Hp(h) —Zp) )™
< 1,
then we get

1 -
o) < 2Ip|"?Puyty! Pulipl'2.

From Proposition 2.15, we can conclude that
Ix (£ 1> R+ 1)g(h) || Crexp(-C3h™"), (2.23)

where C3 > 0 and C,, C3 is independent of & and ¢(h) is the eigenvector of ip(h) correspondent
to eigenvalue E(h) < a. From the one body result, one has

dim ranPj, < Ch~ V=2,

)
Py
position 2.6. Using the similar methods used in Proposition 2.6 and by (2.23), we can get that

(N-2)v

SO @) 1is a sum of at most Ch~ terms, and each of them of the form controlled by Pro-

each of these terms has a norm bounded by
Ch™ 2 exp(-Coh™M). (2.24)
It follows that ||oz§,1h)|| < €/4, for h > 0 small enough. Thus, it suffices to prove that

KNV [#ev. of apo > €/4)] > 0
h
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ash — 0.
If x is a positive number, A is a positive operator, and 0 < § < 1, one has xA™' (A + x)~! <
X0 A1 Tt follows that

) = 2Zh = Ze)lpl"? Pa(Hp(h) = )™ (Hp(h) = Zer)™ Pl
212 Pap(Zh — Z)°(Hp(h) — Z3) " =0 PoplIp|'/?
< 22y = Z)°lpl 2 Pa(tn) ™ O PolIpl'.

IA

A

Because y(|/{| < R + DIIp|'/? < C<p>‘”/2, one has
ap) < (24— Za) W2 Py 15! 0y,
Thus,

@ €
#lev. of ap, 2 4_1}

< dimran(Py) # {ev. of (Zn — )’ h 220 Pplo) 215 0y > —)

€
4
= dimran(Py) # le. of (o) "5 ()" = 2(Z - Za) W)
= dimran(Py) #{ev. of 15 + 4 (2, — Za)’(p) ™" < 0}

C dim ran(Py)h~" hToem ¢ 750 (2.25)

IA

in (2.25), we use Birman-Schwinger principle and in the last step, we use n > 2. Choose 6 > 0
small enough. We complete the proof. O

2.4 Semi-classical limit of Riesz means of discrete eigenvalues

In this section, we want to discuss the small & behavior of Riesz means of discrete spectrum
of Schrodinger operators. First, we consider the Riesz means of the two-body Schrédinger
operators P(h) = —h*A + V on L>(R"), n > 3 with

VeCRY, (2.26)
and
{x € R"; V(x) <0} be abounded set. .27
We define the Riesz means of order y > 0 of P(h) by

Ry )= ) (A= ej(h),
e/'(/’l)S/l
where A < 0 55(P(h)). Let Ny(A) be the number of discrete eigenvalues of P(h) less than A, then
Ro(h; A) = Njp(A).
Then the main result for Riesz means of the two-body Schrodinger operator is the follo-
wing :
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2.4. Semi-classical limit of Riesz means of discrete eigenvalues

Theorem 2.17. Let n > 3. If (2.26) and (2.27) hold, then

Ry(h;0) = 2m)"1,h™"Cy f (=V())"*3 dx(1 + O(h'/?)), (2.28)
{x; V(0)<0}

where Cy,,, =y fol B Y1 - B)% dB and T, is the volume of the unit sphere in R".

Before proving the theorem, we give a lemma first which can be proved by Dirichlet-
Neumann bracket. We begin with recalling some results of Dirichlet-Neumann bracket (See
[54] for details).

Let Q be an open region of R” with connected components Q, - - - (finite or infinite). The
Dirichlet Laplacian for €, —A% is the unique self-adjoint operator on L*(Q) whose quadratic
form is the closure of the form ¢(f, g) = f V_f - Vg dx with the domain C(7(€2). The Neumann
Laplacian for Q, —A% is the unique self-adjoint operator on L>(Q2) whose quadratic form is the
closure of the form ¢(f, g) = [ Vf-Vg dx with the domain H'(Q) = {f € L%(Q); Vf € L2(R")}.

Proposition 2.18. ([54])
(1). Let Np(a, ) (respectively, Ny(a, 1)) denote the dimension of the spectral projection
Ppo, ) for —Ap (respectively, —Ay) on (—a,a)™. Then for all a, A, we have
IND(a, 2) = 7(2a/270)" "] < C(1 + (@ D™D,
INN(a, A) = Tpu(2a/27)" 22| < C(1 + (@® 1) D12,
Here 1, is the volume of the unit ball in R" and C is a suitable constant independent of a and
A

(2). Let Np(Q, 1) (respectively, Ny(€2, 1)) be the dimension of the spectral projection P
for —Ap (respectively, —Ay). Then if Qq,- - -,y are disjoint,

k
Np(UE, Qi ) = ) Np(Qi, );

i=1
k
NN(UL, Qi ) = ) Nu(€i, ).
i=1
(3). For any Q, 0 < —A% < —Ag. If Q1, Qy be disjoint open subsets of an open set Q) so
that Q1 U Q) = Q and Q\(Q) U Qy) has measure 0, then
0 < -Ap < —APM™:

QUQ, Q
0 S _AN S _AN'

Lemma 2.19. If(2.26) and (2.27) hold, then

Nu(0) = Qn) r,h ™" f (=V(x)? dx(1 + O(h'/?)), (2.29)
{x; V(x)<0}

where O(h'/?) depends only on | {x € R"; V(x) < 0} | (|A| denotes the Lebesgue measure of set
A).
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Proof : Let #2 = 2~!. Then we consider the number of the negative eigenvalues of —A + AV.
Let A = {x € R"; V(x) < 0}. Let A; be the cube of the form

[a19a1 +d)>< e X [anaan +d)9

and R" = _UAi,A,-ﬂAj =0,ifi # j.Let A;(i=1,---,N) be the cubes such that A; N A # 0 for

i=1
N
1<i<N,andA c |JA;. Let
i=1

Vi =supV(x); V; = inj V(x).
XEA;

xeA,-
Let
Vi) =V V() = Vi, ifx e A

Let —A* be the Laplace operator on R” but with Dirichlet boundary conditions on the boun-
daries of all the A;, and let —A~ be the Laplace operator on R” but with Neumann boundary
conditions on the boundaries of all the A;. Now, since V- <V < V* and -A~ < -A < -A" by
Proposition 2.18, we have that

—AT+ AV < A+ AV < At + AV,

Let N(2) be the number of the negative eigenvalues of —A+ AV, and N*(2) (respectively, N~ (1))
be the number of the negative eigenvalues of —A* + AV* (respectively, —A~ + AV™). Then by
Proposition 2.18, one has

NQ) = N*()

Z Tn(27r)_ndn(/l|V;r|)n/2 _ Z Cn(l + dn—l(/llvi-i—D(n—l)/Z)
{i; Vi <0} {i; VF<0)

7,(27) " A? f |Vl.+|”/2 dx
{XGA,‘; VI-FSO}

\%

v

1 1
——C, A2 f VD2 gy — C,C=)",
d {x€A;; Vi <0} d

where C,, depends only on 7. For x € A; with i satisfying V¥ < 0, one has
V)" = V2 < CqVl = VDAV + [V < e v, (2.30)

Here C depends on ||[VV/||r~. In the last step, we use that |Vl.+| < |V], since Vl.+ < 0. It follows

NQ) > 1,Q2r)" 21> f

(=V)"2dx — Ccda™? f (=V)y"* ldx
{x;V<0}

{x;V<0}

C
_CH(E)" _ _”A(n—l)/zf (_V)(n—l)/zdx _ Cn/l("_l)/zf (—V)(n_3)/2dx.
d d (xV<0) (xV<0)
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2.4. Semi-classical limit of Riesz means of discrete eigenvalues

Letd = cA~'*. One has

N(/IV) > Tn(2ﬂ')_”/ln/2 f (_V)n/de _ C/l%_%
{x;V<0}

with C depending on |A| and [|[VV]|| .~ only.

Similarly, we can get

N()

IA

N
7,20 "2 f V712 dx
{xeA;; V7 <0}

—lc,,/l(”‘”/zf VD2 gy - ooty
d (xeAn Vo0 d

IA

Note that for x € A;, v > 1, one has

VT = IVPT < CIIV(x) = VTV + [V(x) = Vil
We can obtain that

(n=1)/2
NQ) < m,2n)" 2> f VYt C, f VY12
(V<0 d (V<0

+/ln/2df |V|n/2—1dx+ /l(l’l—l)/de |V|n/2—3/2
{x;V<0} {x;V<0}

C
+Gud"P XAl + H A a1 214 ¢ Cu( )"
where C,,, H,, G, are the constants depending on n only. If we choose d = cA~!/4, then we get
(27"

T
N(/l) < _”/1"/2[ IV_ln/2 + C/ln/2_1/4,
{x; V(x)<0}

where C depends only on |A|, |[VV]|L~and n. This ends the proof. O

Proof of Theorem 2.17 : By Lemma 2.19, one has, for u < 0,

Nu(p) = Qr) " r,h ™" f (u—V(x)? dx(1 + O(h'/?)), (2.31)

{x; V(x)<u}
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and O(h'/?) uniformly hold for u < 0. From the definition of R(A, A), we can compute
R,(h,0) (2.32)
0
S f (—"" Nao)d

0
= f (= 2 f (4= V()dx (1 + OG"2) du
—0 {x; V(x)<u}

1
= e [ v ang - dp 1+ o)
0 {x; V(x)<0}

1
- e f g1 - By dp (“VE 2 dx (14 O(h'12))
0 {x; V(x)<0}
= QO "h"1,Cy f (=V())™? dx (1 + O(h'/%)),
{x; V(x)<0}
with
1
Cyn=7y f g1 -p)* ap. (2.33)
0
This ends the proof. g

We use Theorem 2.17 to study the Riesz means of the N—body Schrodinger operators
H(h) = h*Hy + ¥, Vij with

i<j
Vij e Cg R”), (2.34)
and
Vi <0. (2.35)
For a technical reason, we have changed a little the usual definition of Riesz means. We define

Ry(Zi)= ), [Za—eihl.
E_,'(h)Szh
Then the result for semi-classical limit of Riesz means of the N-body Schrédinger operator is
the following :

Theorem 2.20. Let v > 3. Let Hy = —h*A on L>(RV=DY). Suppose (2.34) and (2.35) hold.
Then, we have

(N-1)v

Ry(h,%4) = Cly,v)h~ V=D f Ce = V()2
{x; V(x)<Zer}

dx (1 + O(h)), (2.36)

where C(y,v) = (27T)_(N_UVT(N_l)VC%(N_])y, Cy.(N~1yv is given by (2.33), and t(n_1), is the vo-
Iume of the unit sphere in RNV, ¢ = min{%, v}
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2.5. The N-body Schrddinger operators with Coulomb potentials

Proof. From the definition of R, (h, X)), one has

R = ) Ea—e)Y+ D, [Ea—eil.

ej(h<Zy Ze<ej(h<Z,

By Theorem 2.12 and Lemma 2.13, one has

D1 - el = oM,

Z<ej(h)<Zy,

Let V = V — X. First, we will show that {x € RV D", ¥(x) < 0} is a bounded set. Let
{xp; D € A, #D = 2} be a family of non-negative smooth functions such that

xp =1, and suppyp C B(0,1)U Jp.
DeAH#D=2

Here B(0, 1) is the unite ball in 7. Then

V-Xy= > xoVp-Zo+ Y. xolb.
DeA#D=2 DeA#D=2

Note ypIp = xp 3 Vi (x2), and Vp(xP) € Cy. It is easy to check that
#D'=N1, D'¢D

oV (xP) = 0for D’ ¢ D,#D’ = N—1, |x| large enough. It follows that ypIp € Cy(J). Since
e = #Bi:% ap with ap = xIenjigI}D Vp(x), one has Vp(x) > Z. It follows that yp(Vp — Z) = 0,
since yp > 0. Therefore, we drive that (V(x) — X./)- has compact support.
Then {x € R¥ D", ¥(x) < 0} is a bounded set. Using Theorem 2.17 for Schrodinger
operator —h”A + V, one has
N~

Eer = ej(W)” = C(y,v) (B = V)52 dx (1 + O(h'12)).
ej(<Z {x; V(0)<Z}

This ends the proof. O

Remark 2.21. From the proof of Theorem 2.17, one can see that the uniform holding of the
remainder term of N(h, 1) with respected to A < 0 play an important role. For the two-body
case, we can only get that for the V’s satisfying (2.27). If we can extend this results to general
V, then we can get the estimate of the Riesz means for general V. In the N—body case, we need
(2.34) and (2.35), because these two conditions imply that {x; V < X} is a bound set.

2.5 The N-body Schrodinger operators with Coulomb potentials

In Chapter 3 and Chapter 4, we consider the Schrodinger operators of the form —A + V with

V= ﬁ—l? + o({x)"") for |x| large, with some p > 2. Here 8 =

X
x|

and ¢g(0) is a real continuous
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function. We explain why we consider these Schrodinger operators in this section. We consider
the N-body system of v-dimensional particles with Coulomb potential. Let

I:I=[:I()+V

with

and

Here m; is the mass of j-th particle and e; is the charge of j-th particle. —A,, is the Laplacian

in the r; variables. Let Hp be the operator resulting from removing the center of mass from

Hy and H = Hy + V. For each cluster decomposition D, there is a natural decomposition of

S = L? (R(N ‘1)") as P ® #p with #; = functions of r; ; with iDj and 77 D = functions of

R, —R; where R, = .Z m;ri/ Z m; is the center of the mass of a,. By HVZ-Theorem, we know
l€a 1€a

that there exists a decgmpositioqn D, such that

Ey=inf o, (H) = rrgn {Zp; D’ is the decomposition of { 1,2,--- ,N } } = inf o4(Hp)

and E| is the simple eigenvalue of Hp. Obviously, #(D) = 2, since ops < 0p, if D’ is the refine-
ment of D. Without loss of generality, we can suppose that D = {aj,a>} witha; ={1,2,--- ,k}
and {k+ 1,k+2,---,N }. Let  be the normlized function such that

Hpn = Eon.
Let p = R — R;. Define the effective potential as

Lsr(p) = {n, Ipn)(p). (2.37)
Let
E=ri—rfori=1,--- k-1;
E=rig—ryfori=k--- ,N-2;
p =R —Ry.

Then one can check that

Hp = —2M)A, + ) H(a)
i=1,2

with M;' = m; ! +m] and H(c;) be the sub-Hamilton to }; ﬁj(—A DR

Jj€ai l,jea;

ee;

—L with its center
ry r]

of mass removed. Then one has,

e =Ry +1U&L,E, 0 E-1);
ri=r+& =Ry + (61,6, ,ék-1), fori=1,2,---  k—1.
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2.5. The N-body Schrddinger operators with Coulomb potentials

Here /, and /; are linear combination of £;(j = 1,2,--- ,k — 1). Similarly, we can get
ri = ry + o1 = Ro + 1i(§pe1, §pa2, - -+ En-1), fori=k+1,k+2,--- \N-1
with /; the linear combination of £;(j = k+1,k+2,--- , N—1). It follows that, fori € a;, j € ay,
ri—rj=p+1j&,&, N —2)
with /; ; = I; — I; be the linear combination of §;(i = 1,2,--- ,N - 2).
Lemma 2.22. Let p = |£ Then I,z has the following expansion :

f1(0) fz(ﬂ)
lers®0) =200+ 7R

(I [+

ifCi= 2 e=00rCy= 3 e =0. Here

i€a i€ar

0= [ Y, e iidedea

i€ay,jeay

fp) = f Z eiej(li 1> = 31p - 1ij)dé, - - déns.

i€ay ,anz

Moreover, if Cy = C, =0, f1(0) = 0.

Proof. One has

n, a77>(p)

Ieff(p)

eiejnl
f o jeaz déy -+ En-a.
I,O + llj(‘f;:l’é:z» : 9§N—2)|

By Taylor expansion at zero of the function

f:RBr—>|u1+ru2|_1

for non-zero vectors uj, ur € R”, for each r € R, there exists some 6 € (0, 1) such that

2 3
f(r) = fO)+rf'(0)+ Ef”(r) + gf'”(ré’)-
It follows that,

o+ 1 jé1.6 - En2) [
= ol =100 Ly — ol = 316 - 1)
+|p|_4(3|lij|2(f) +lp7'0l;) - I 15l + o710l - 1;;P
1+ lol~"6l; 1° b + lol=61; ;7
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Then, one has

1 1 )
Ieff = H f Z eiej|7]|2d§1 e dé:N_z + — f Z eiejp - li,j|77|2d§l .. .dé'-'N_z

2
i€ay,jeay |p| i€a,jeas

1

! :
s [ 2 el P =30 1P - dna + 0.

i€ay,jeas

The first term of the right hand side is equal to 0 if C; = 0 or C; = 0. Note that /;; = [; — [; for
i €ai, j€ay Itfollowsthat 3 ee;l;j=0,if C; = C; = 0. This ends the proof. a

i€a; ,anz
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3 - COUPLING CONSTANT LIMITS OF
SCHRODINGER OPERATORS WITH CRITICAL
POTENTIALS AND THE ASYMPTOTIC EXPANSION
OF RESOLVENT OF SCHRODINGER OPERATORS

3.1 Introduction

In Section 2.5 (Chapter 2), we consider the N-body System of v-dimensional particles with
Coulomb potentials. The effective potential has the form % + ﬁ;(g) + 0(#) as |p| large. Here

o= |%|. Hence, we study Schrodinger operators P(1) = Py + AV and P(1) = Py + AV in L*(RY)
in this chapter. Here Py and Py are perturbation of —A in the form —A + f(x) on L*(R™) with
f(x) = ‘lli—? when |x| is large enough. Here 6 = ﬁ and ¢(6) is a real continuous function on unit

sphere s"1. Assume that V(x) = O(|x|72~¢) with some € > 0, when |x| large enough.
This chapter is composed of two parts. In the first part, we consider a family of Schrodinger
operators, P(1), which are the perturbation of Py in the form

P(A)=Py+ AV, fora >0

on L>(R"), n > 2. Here Py = —A + @ (r,0) is the polar coordinates on R", g(0) is a real
continuous function. V < 0 is a non-zero continuous function and satisfies

[V(x)] < C{x)7F0, for some pg > 2. (3.1
Let A, denote Laplace operator on the sphere S"~!. Assume
1
— Ay +q0) 2 —7(n - 2)2,  on L*(S"h. (3.2)

We will show that Py and P(A1) are self-adjoint operators in L*(R™) with the form domain Q(Py),
when —A + () > —1(n — 2)*,on L*(S"™") (see Section 3.2), especially Q(Po) = H' if n > 3.
If (3.2) holds, we also have Py > 0 in L*>(R")(see Section 3.2). Set

1
Too = {V;v = {[d+ Z(n—2)2, e o(=A;+q0)}, or=00Nn[0,k], keN.
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If ¢ = 0, then Py = —A. In this case, 0 consists of either only half-integers (n odd) or only
integers (n even). In particular, for Laplace operator —A, one has oy = {0,1}, n =2; 0 = {%},
n=3;01={1},n=4;01=0,n=25.

P(1) has continuous spectrum [0, c0) for 4 > 0, because lim V(x) exists and equals to 0

[x| =00

(See [3]). We claim that when A large enough, P(1) has discrete spectrum less than 0. In fact,
we need only to show that there exists a function ¥ € L*>(R") such that (¢, P()¢) < 0.

From the assumption on V, we know that there exists a point xo € R” such that V(xp) =
inf V(x). Choose 6 > 0 small enough such that for all x € B(xp,9), V(x) < %V(xo). For

xeR?

Y € CFR), [l (x0)ll = 1, suppy C B(xp, 6), one has

A
W, PQOY) = W, Poyr) + A, Vi) < (4, Poyr) + EV(XO),

when A large enough , one has (i, P(A)y) < 0.

We also know that o(P(0)) = o(Py) = [0,00). Hence, from the continuity of discrete
spectrum of P(1), we know there exists some Ay such that when 4 > Ay, P(1) has eigenvalues
less then 0, and when 4 < Ay, o (P(1)) = [0,00). So P(4) has an eigenvalue e;(1) < 0 at
the bottom of its spectrum for 4 > Ay. By Proposition 3.5, one has e;(4) is simple and the
corresponding eigenfunction can be chosen to be positive everywhere. (There are many results
about the simplicity of the smallest eigenvalue of Schrodinger operator with potential without
singularity, but we did not find the result which can be used directly, because the potential of
our Schrodinger operator has singularity at 0. Theorem XIII.48 [54] can treat the Schrédinger
operator with the potential with singularity at 0, but the positivity of potential is demanded.
Hence we give this result.) In this paper, we suppose 1o > 0. We study the O resonances of
P(1p) and the asymptotic behavior of discrete eigenvalues of P(1) at value Ay. Ag is the value
at which some eigenvalue converges to 0. In [33], Klaus and Simon studied the convergent
rate of discrete eigenvalues of P(1) = —A + AV, when 4 — Ag. Here Ay is the value at which
some discrete eigenvalue e;(1) T 0 of P(A). Fassri-Klaus [20] also studied this problem for
Schrodinger operator —A + V + AW with V periodic. They used Birman-Schwinger kernel in
their papers. We also use Birman-Schwinger kernel to study this problem. In order to use the
Birman-Schwinger technic to P(1), we need to know the asymptotic expansion of (Py — a)~!
for @ near 0, @ < 0, which has been studied by X.P. Wang ([70]).

In the second part, we consider Schrodinger operator P, which is the perturbation of —A in
the form

P=-A+V, fori>0 (3.3)
on L2(R"), n > 3. Here V = V; + V,. V4, V, are continuous function such that |V;| = @ when
r large enough, V, < 0 is a non-zero function and satisfies |V;| < C{(x)™° with some pg > 2.
g(0) is a real function on sphere S"~! such that (3.4) holds. We study the asymptotic expansion
of (P —z)~! for znear 0, 3z > 0. Let

P) = Py + AV
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with Py = X1=A)x 1+ x2 (A + @)XQ. (,0) is the polar coordinates on R”, V is given by (3.1).
x1 € C(R) such that y(r) = 1 for [r| < 1 and )(% + )(% = 1. We study the asymptotic behavior
of the smallest eigenvalue of P(1) as 4 — Ag. Ag is the value, at which the smallest discrete
eigenvalue of P(1) converges to 0.

Here is the plan of this chapter. In section 3.2, we recall some results of Po([70]). In section
3.3, we study the asymptotic behavior of e; (1) of P(1) when 0 ¢ 0. We get the leading term
of e;(1). The multiplicity of 0 as the resonance of P(Ady) is studied in Section 3.4. In Section
3.5, we study the asymptotic expansion of (P — z)~!, z near 0, 3z > 0 (P is given by (3.3)). In
section 3.6, we study the asymptotic behavior of the smallest eigenvalue of P(A).

3.2 Some results for P,

In this section, we consider the operator

_A+@

Py =
72

on L>(R") n > 2. Here (r, 6) is the polar coordinates on R”", ¢(6) is a real continuous function.
Let A, denote Laplace operator on the sphere S"~!. Assume

— Ay +q(0) > —i(n —-2)2, on L*S"h. (3.4)

We begin this section with studying the form domain of Py. We will show that —A; + g(6) >
—%(n —2)2, on L*(S™ 1 implies

(¢, (A + @)qﬁ) >0, for ¢eD. (3.5)

Here D = CF[R"\{0}). Let D be the set of functions in D which is the set of finite linear
combination of products f(r)g(6). Note that D is dense in L?>(R"). One has

? n-190 1
52T T ar + r—z(—As + q(0)).

Py =
Let U : L>(Ry, """ 'dr) — L*(R,,dr) be the unitary operator, U : ¢ — r~D/2¢_Then

& 1 m=Du-3)

PU™ = -
UPoU 8r2+r2[ 4

+(=As +q(0)].

It follows that (¢, UP U™ '¢) > (¢, (—% - ﬁ)qﬁ} for U"'¢ € D. To prove Py > 0 on D, it
suffices to show that (i, (—g—rzz - ﬁ)w > 0 for ¢ € C7(R\{0}, dr). Note that

Pyy = P12y 4 %r—1/2l//,
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then one has
’ _ , 1 _ 1 _ ,
|w |2 1| ( 1/2'70) 2’4 1/2w|2 > 2|'7”|2 . 3/2w( 1/2w) .

It follows

00 00

1 1
W Pdr > f L = g gy dr = f L ypar.
0 0 4r2 0 452

Then we get that, for all ¢ € D, (¢, Po¢) > 0. By a density argument, we can get (3.5). Write
q(0) = q*(6) — g (9) with ¢*(0) 20, ¢ (6)20. (3.6)

Note that —A is a self-adjoint operator in L*(R") with the form domain H'(R"). If n > 3, by

Hardy inequality, one has (¢, q;ge)qb) < C{¢, —A¢) with some C > 0, since g(0) is a continuous

function on $"!. Hence, we can define

q*(6)
}’2

’Y(¢’ ¢) = <¢7 _A¢> + <¢’ ¢>

for ¢ € H'(R"). To prove that —A + @ is a self-adjoint operator in L2(R") with the form
domain H'(R"), we need only to show that y(:,-) is a closed semi-bounded quadratic form (see
Theorem VIII 15 [52]). Since (¢, —A¢) + (¢, q:gg)gb) > 0 for ¢ € H'(R"), then vy is a semi-
bounded quadratic form. Note that

G
(6. ~89) + I9IP < (0, -A9) + 6. TL20) + 191 < (1 + C) (9, ~A9) + 1P

then H'(R") is closed with respect to the norm ||-||; = \/(-, =AY+ (-, @-) + || - |I2. This means
v is closed. It follows that v is the quadratic form of a unique self-adjoint operator with form do-
main H'(R"). Then —A + qr—(;)) is a self-adjoint operator in L*(R™) with the form domain H'(R").

If n = 2, let Q(Py) be the completion of D under the norm || - ||; = \/<-, —AY + (- EEy R,
Then Q(Py) is the form domain of —A + @. If

1
Ay + q(0) > —Z(n -2)%,  on LXS"h,

there exists a constant ¢ > 0 such that

(n-2)

+e, L2(S" .
) c on L“( )

—As +q(0) = -

Set ¢’ (6) = g(0) — c, then

—2)2
—As +4'(0) > _n 1 ) , on L*(S" ™.

Let Q(Py) = H'(R") for n > 3. By (3.5), one has, for ¢ € Q(Py),

o
(6, (—A + qr(z )\gy > 0, 3.7)
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Write
q' ) =4O -4 withqg' ()" >0,4'(6)” > 0.

By (3.7), one has

(¢ ¢) < (¢, (A +

q(i)‘ q<))¢>
I

Then ¢~ (6) < aoq'(6)". Here ap = 0 when g(6) = O and @p = max  ZX% when ¢(6) < 0.
(6 q(0)<0) 7

Since ¢’(6) < ¢(0), one can get o < 1. It follows

o - © a6
a0 i PO < avts. -0+ T 68

(¢,

Then we have —A + 42 (9) + 12 (9) -A+ ‘1(5) is a self-adjoint in L>(R") with the form domain
O(Py) forn > 2.
Now, we recall some results on the resolvent and the Schrodinger group for the unperturbed
operator Py. Let
(n —2)?

T ={viv= 1+ ;A Eo(-A+ q))}.

Denote
Or =00 N[0,k], k€ N.

2

For v € 0, let n, denote the multiplicity of A, = v~ — % as the eigenvalue of —A; + g(6). Let
(@)

0", v € 0w, 1 < j < n, denote an orthonormal basis of L>(S"~!) consisting of eigenfunctions
of —A; + ¢(6) :
(=D + 909 = 1,6, (@), ¢7) = 6.

Let 7, denote the orthogonal projection in L*(S"~!) onto the subspace spanned by the ei-

genfunctions of —A; + ¢(0) associated with the eigenvalue A,, and ﬂ(’)

projection in L?(S"!) onto eigenfunction (p(l) :

denote the orthogonal

. f = Z(f e, ferr s .

j=1

A f=fheedl, felX S, 1<i<n,

Let )
L n-1d »-02 _
O=-5- 5t L in LA(Ry; 7).

Then we have the orthogonal decomposition for the resolvent Ro(z) = (P — z)~',

Ro@) = Y Q=2 'm, 2¢R

VET o
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COUPLING CONSTANT LIMITS AND ASYMPTOTIC EXPANSION

Set )
f(sirt,v) = Dy(r,7) f PR — g7y 71 2dg, v > 0,
-1
with
2 2
r-+T
p = pn1)= o
rt
-2 efiﬂ'v/2
by = almy =", a,= 22T (y + 1/2)
Then
flssnt,v) = Z s'fi(r, 7, v), s €R,
=0
with

£ T,v) = () 2P (o),

with P, (p) a polynomial in p of degree j :

P = [ o+ SOV(1 ~ 6ydo,
J J-1
In particular,
s e 3inY
for,r,v) = d)(r7)" 7, d, = —m;
ATy = idoT) T p.

Denote J, the Bessel function of the first kind of order v, J, can be represented as

1 A L | 1
J D)= —— (&Y | 1 -2y "2dt, Ry > ——.
@) \/ﬁl“(v+%)(2) L ( ) 3

Let On(g(s)) denote the remainder in Taylor expansion of g up to the N—th order :

On(g(s)) = g(s) -

AN (5 1
gr0) , 1 N (N+1)_(N+1)
T s = N , a1-60"s g (s6) dé.

j=0

For 9z > 0, ¢t > 0, one has [Oy(e’®)| < Cn(|2lt)¥*!. Using On(e’?) = On_1(e™) — ﬁ(izt)N, we
can drive that |Oy(e™™)| < Cn(|z]t)". It follows that for any 0 < 0 < 1,

ION(e™)] < Crp(lzltyN*?  and (3.9)
d . .
|d_ZON(€m)| = |ON-1(e)] < Cygt" 0|z N*0-! (3.10)
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fort >0, 3z > 0.For0 < v < 1, denote

Gy

bv,j

Ryn2(0)

For v = 0, denote

CO,] =
by =
b =

Rona2(0) =

Then we have following

lJ v—1
ﬁfl 0= ))dt+—Zk o

e 2T (1 - v)
viv+ 1) (v+ )’

f ) 0N<e"~<”>f1—V0N(f<%>dt
1

N-1 vl ol ' ‘
- Z fj% f f On-j-1(“")(1 — 6)/r™d1ds.
j=0 : 0 Jo

>0

-'j
Ji j
—f £ 1O(f( )i+ £, +—Z(;k— >0,

f e"’d—t+f(e"’—1)d—t
1 4 0 4

1
. b
f (1-0/"'Inodo+ =, j>1
0 J!

T
00 1

f 0N ON-1 ()t f f 1 On (et
1 0

j 1l _ o d
_Zf]((lé’)l)'\f(; L(1_9)J—10N_j(ell§0)7t)d9.

3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

Proposition 3.1. (Proposition 2.1 [70])Letv € 0o andl e Nwithl <v <[+ 1.SetV =v—-1¢€

[0, ),

(a) Ifl <v <1+ 1, one has

with

w2 i/
Fv,j = _(rT)_zz-H%f =i /Jv( )
J-Jo

N N-1
(Qy _ Z)_l = ZZ‘/FVJ‘ + ZV/ Z GV,j + RV,N(Z)

J=0 J=l

1 dt
2t° 2t

forO< j<landforl+1<j<N,

' =D
1

jort 1
(ryiCy g + D f L vy,
J! 0 t

(rT)j+V,bvf’jfj_1 [<j<N,
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(irtz)!
(-1

1
; 1
f On-i(e"® )1~ CHAS v)dt}do
0

1
f (1 =6 Ry n-12(62r7)
0

"+N
RV,N(Z) =z’ * Gyin

When [ = 0, the integral in 6 is absent.
(b) Ifv=1€N, then

N N
(QV — Z)_l = Z Zij,j +1Inz Z Zij,j + RV,N(Z)

j=0 Jj=l

with F, ; was given by (3.18) for 0 < j <1 -1 and

’(J - l)

Fj = (ol Co.j-r = In(r7) f = —c1fi-)

+—(lr.T) f tj‘l‘lf(—;r, T,v)dt, [ < j <N,
it Jo !

Gy, —(irT)j%, I<j<N,

1
_ . 1
Ron@ = (irt)"*! fynibysr + Rono(zrt) + f 0N<e"m>f1f<;;r, 7,v)dt and
0
_ GrM W -1+ D! ! (=
Rin@) = N+l IN+1-1bNw1-1 + . 1-6 {Ro,N—l,z(QZI’T)

1
: 1
+ f On-i(e" ™)™ flzinm, v)dt}do
0

forv=12>1. Herecy ;=0 forall jand

A — 1-0"'¢"1In6ds, 1> 1, j> 1L
ctj (1—1)'(]—1)'f( )6 J

Here
LA e Ll
Coj=77 | 1 O(f( L1, T, V)~ Zk =Tt
e V' TI20(1 — )

by ;i =— , 3.19
J VO + 1)V + ) (319

forO<v < 1.

Denote for v € 0,
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2, ifv¢N,
2y =
zlnz, if v € N.
For v > 0, let [v]_ be the largest integer strictly less than v. When v = 0, set [v]- = 0. Define ¢,
by 6, = 1,if v € 0o NN, 6, = 0, otherwise. One has [v] = [v]- + 6.

Theorem 3.2. (Theorem 2.2 [70]) The following asymptotic expansion holds for z near 0 with

Jz>0,
N-1

N
Ro(z) = 60 In 2Go oo + Z ZF;+ Z %y Z ZG, jus,my + RE)N) ()

=0 veoy  j=[v]-

in L(—-1,s;1,—5),s > 2N + 1. Here
bvf’j(rr)j”,fj_[,,](r, V), v¢ N

Gy,j(r,7) = (irt)!
- J‘ f\j—[v](ry’r; 0)’ S N

Fi= ) Fyjm € L(1,51,-5),5>2j +1

VEOD

RN (@) = 00V € L(~1,5;1,-5),5 > 2N + 1€ > 0.
Here by j is given by (3.19).
Let V <0 be a non-zero continuous function and satisfying
[V(x)| < C{x)™"°, for some pg > 2. (3.20)
Let P(1) = Po + AV.

Definition 3.3. Ser N(A) = {u; P(Du = 0,u € H-5, Vs > 1}, for A > Ao. If N(D)\L?* # {0}, we
say that O is the resonance of P(1). A non-zero function u € N (D\L? is called a resonant state
of P(1) at zero. dim N (D\L? is called the multiplicity of 0 as the resonance of P(A).

Let K(z) = |VI'2(Py — 2) Y V|Y/2 for z ¢ o(Py), and K(0) = |V|'/2Fy|V|'/2. Then we have
the following

Proposition 3.4. Let @ < 0. Then « € o4(P()) if and only if 7' € oy(K(a)). Moreover, the
multiplicity of « as the eigenvalue of P(Q) is exactly the multiplicity of =" as the eigenvalue of
K(a).

Proof. Since Py > 0 in L*(R") and @ < 0, then (Py — @)~! exists in L>(R").
P) —a = (Py— ) + APy — @) ' V(x)).

Therefore & € oy(P(A)) if and only if 17! € og(=(Py — @) 'V(x)) = o4(K(a)). In the last
equality, we use that for bounded operators A, B, 0(AB)\{0} = o(BA)\{0}(See [16]).
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For fixed a < 0, let

A={yel’R"; (PQ)-ay =0},
B={pe*R"): K(a)¢=21"¢).

It suffices to prove dim A = dim B. First, we will prove that |V|'/? is injective from A to B. Note
that if v € A, then

K@¢=1"¢
with ¢ = |[V|"2y. And if ¢ = 0, then

Y =—APo—a) Vi = APy — ) 'V = 0.

It follows that |V|'/? is injective from A to B. On the other hand, we can show that (Py —
@)~'|V|'/2 is injective from B to A. If ¢ € B, then

(P(D) - )y = 0, withy = (Py — )" |V]'/?¢.
And if ¢ = 0, then
0=1V]"?y = K(@g¢ = 17",
It follows that (Py — @)~ Y|V|'/2 is injective from B to A. This ends the proof. O

From this proposition, we can see that there is a one-to-one corresponding between discrete
eigenvalues of P(1) and discrete eigenvalues of K(«@). Thus we study discrete eigenvalue of
K(a) in the next section.

3.3 ThecaseO ¢ o

If Py and V are defined as before, we will show that if Py + V has the eigenvalue less than
0, then the smallest eigenvalue of Py + V is simple. We use Theorem XIII1.45 [54] to prove that.

Proposition 3.5. Suppose Py+V has an eigenvalue at the bottom of its spectrum. If 0 ¢ o, then
this eigenvalue is simple and the corresponding eigenfunction can be chosen to be a positive
function.

Proof. Let 0 < x(¢) < 1 be a smooth function such that y(¢r) = 1 if |f| < 1 and y(¢r) = 0 if
t > 2. Let y,(t) = x(nt). Let

2]
P=Py+V, Vnz(l_)(n(r))ﬁz)‘kv,
T

Py= A+ (1) EL 4.
.

By Theorem XI1145 [54], we need only to prove that P, converges to P, and P — V,, converges
to —A in the strong resolvent norm sense. By min-max principle, we know that if u < P, then
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u < P,, because 0 < y(r) < 1. It suffices to show that there exists some ug < o(P), such that
V¢ € D(P), the domain of P,

Py = p0) "' — (P — o) "¢l = 0 (3.21)

(P = Vi = 0) "' = (=A — o) ™'l 0 (3.22)

when n — oco. The proof of (3.21) and the proof of (3.22) are similar. So we need only to prove
(3.21). g*(8) and g~ (0) are given by (3.6), then

(Pu— o)™

= (-A+1+V,—po— D!

N N LU BT LRI AU M
+-n+ 7 ()+1)-”2(v — (= A+q()+1)‘1/2] (-n+ 37 ()+1)—1/2

= Au(-A+ +(9)+1)—‘/2

From (3.8), we know that (~A+ L +1)"2(1—x, (M) LL(-A+ L2 +1)71/2 < a1, and choose
Mo so negative such that V — ug — 1 > 0, then A, are uniform bounded operators. Similarly, one

has
Py = o+ TP 41y
with B is a bounded operator. Then
(P = o) ¢ = (P~ po)™'¢
_ (0) _
= P O TZ P - o)
6 0
= A-a+ 2 ( ) 1)y )%)(—A+ O 1)"12Bg
by (3.8),
(0 (0 0
(-A+ 132 g ) 1) 12d O (2 )a+LO ( )+ 1712 < ag
r r
and
0 0
A+ q+ (0 1)-1/261()( At 61()+1)—1/2<1
I" I"
Therefore,
1Py — )™ ¢ ~ (P = o)™ ¢ll = 0
asn — co.
Similarly, we can prove (3.22). This ends the proof. g
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Lemma 3.6. Assume 0 ¢ 0, and pg > 3. If o1 # 0, then 0 is not the eigenvalue of P(Ay).

Proof. If O is the eigenvalue of P(4p). Then there exists a function u € L*(R™) such that
P()u = 0. By Proposition 3.5, one has that # can be chosen to be a positive function. By
Theorem 3.1 [69],

B S Via. -5 =D+v () &’
M_ZZ_Z_V< u, |yl o)t

i
0= =1 r2(n=2)+v

with it € L*>(R"). Since « and <p$,1) are positive, V < 0 is a non-zero function, we have u ¢ L*(R™).
This is contradictory to that u is the eigenfunction of P(Ay). O

In the following of this section, we suppose that n > 3.

Proposition 3.7. Assume 0 ¢ 0o and n > 3. PoFou = u, foranyu € H", s > 1 ; FoPou = u
forue H“S and Pou € H15 s> 1.

Proof. If u € H™"*, then Fou € H'“™*. For any test function ¢ € CF(R"), we have
(PoFou, ) = {(u, FoPo¢). If 0 ¢ 0o, we have un%(PO -2 = Fyin H" for 3z > 0. It
Véand

follows {u, FoPop) = lin(1)<u, (Py—2)"'Pyoy = lir%(u, ¢ — 2(Py — 2)~' @) = (u, ¢, because ¢ and

Py¢ belong to H~'5. Hence, PoFou = uin H™ .
On the other hand, if Pou € H~'*, we have PoFyPou = Pou in H~"*. It follows Po(FoPou—
u) = 0. Then FoPou = u, because FoPou —u € H""~* and Py has no kernel in H"™%, s > 1. O

Proposition 3.8. Assume 0 ¢ 0w, n > 3 and pg > 2. For A > Ay, dim N(Q) is equal to the
multiplicity of A~" as the eigenvalue of K(0).

Proof. We use the method used in the proof of Proposition 3.4. First, for u € N (1), one has
(1+AFV)u = 0, by Proposition 3.7. Then K(0)it = A~ it with it = |V|'/?u. Due to |V| < C{x)~*°
with some py > 2, one has it € L>(R"). By the same argument as in Proposition 3.4, one can
show that [V]'/? is injective from N(1) to { ¥ € L*(R"); K@)y = A~'y }. This means that
dim N(A) is at most the multiplicity of 27! as the eigenvalue of K(0).

On the other hand, if 17! is the eigenvalue of K(0). Then there exists a function it € L?>(R")
such that K(0)ii = A~ 1. Let u = Fo|V|'/2i. Note that |V|'/25 € H /2 since |V| < C(x)7P°
with some pg > 2. It follows u € H'"7P0/2 because Fy is a bounded operator in £(~1, s; 1, —s)
for s > 1. Then

P(Du = PoFo|VI'?ii + AVF|V' i = V' 25 — AV V| 2 Folv|' 2 = 0.

This implies # € N(X1). As in Proposition 3.4, we can get that Fo|V|!/? is the injective from

{y e L*(RY); KOy = A1y } to N(Q). It follows that the multiplicity of A7! as the eigenvalue
of K(0) is at most dim N(A). O
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Proposition 3.9. Assume 0 ¢ 0. K(@) is a compact operator for a < 0. And K(«) convergent
to K(0) in operator norm sense.

Proof. For @ < 0, K(a) = |V|'2(Py — a)"!|V|"/2. Since (Py — @)~! is a bounded operator
from L?(R™) to H'(R"), and V is a compact operator from H'(R") to L*>(R"). Then V(Py — o)™
is a compact operator on L2(R™). So is K(@). Because

K(@) = K(©0) = [VI'"?[(Py — )" = FollVI'/? = [V|'/2R|v|'/?

and if pg > 2, then |V|1/2RE)O)|V|1/2 = o(|a|€) in L*(R"). Hence, K(a) — K(0) in operator norm
sense, as @ — 0. This means K(0) is a compact operator. O

Lemma 3.10. Suppose A1, A, are two bounded self-adjoint operators on Hilbert space H. Set

()= s inf @A),
HnAi ¢1’.“I’)¢n W= 101, bl v, A

then |un(A1) — pn(A2)l < J|A1 — Azl.

Proof. By the definition of y,(A;), one has

Hn(A1) — un(A2)

= sup inf (Y, A1) — sup inf (W, Aoy)
B1, b IWII=LELDL o n ]+ b1, b WI=LYElDL - pnlt

< sup [ inf LA - inf ,Ao)]
¢,,...F,)¢,, ||w||:1,we[¢1,---.¢nﬁ(¢’ 1) ||w||:1,¢e[¢1,~-~,¢n1L(w ¥)

= sup [ sup W, —Ay) - sup (¥, —Ax)]
1 sbn WlI=10€lpr1,+ pnl* lpll=1.p€lpr, pul*
< sup sup (Y, —AY) = (Y, —Axy)]
¢| [ ,¢n ||¢||:15¢€[¢1’ »¢n]l
< AL = Aal.
Similarly, we have u,,(A2) — (A1) < ||JA1 — Azl . This ends the proof. O

Lemma 3.11. Suppose T(a) is a family of compact self-adjoint operators on some separable
Hilbert space H , and T (a) = Ty + o(||), for a near 0. Set

pie)= inf  sup W, T(@W).
Or i yll=1 el pil*
Then

(a). ui(@) is the eigenvalue of T(a) and ui(@) converges when @« — 0. Moreover, if uj(a) —
Wi, then u; is the eigenvalue of Ty.

(b). Suppose Eqy # 0 is the eigenvalue of Ty of multiplicity m. Then there are m eigenva-
lues (counting multiplicity), E{(a) (1 < i < m), of T(@) near Eg. Moreover, we can choose
{ ¢i(@);1 < i < m} such that (pi(a),pj(@) = 6;; (1 <i,j <m), ¢i(a) is the eigenvector of
T(a) corresponding to Ei(@) (Ei(a) — Ey), and ¢;(a) converges as « — 0. If ¢pi(a) converges
to ¢;, then ¢; is the eigenvector of Ty corresponding to Ey.
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Proof. (a). By min-max principle, we know that u;(@) is an eigenvalue of 7'(a). By Lemma
3.10, one has

lui(@) = wi(O)l < 1T (@) = Toll = O(lal).

It follows w;(a@) converges to the eigenvalue of 7).

(b). Because Ty is a compact operator, and Ey # 0 is the eigenvalue of Ty, then Ej is a
discrete spectrum of 7. Then there exists a constant & > 0 small enough, such that Ty has only
one eigenvalue, Ey, in B(Ey,0)(={z € C; |z — Ep| < ¢ }). For a small enough, T'(«) has exactly
m eigenvalues ( counting multiplicity ) in B(Ey, 0) because the eigenvalues of T'(a) converge to
the eigenvalues of T, by part (a) of the lemma. Suppose the m eigenvalues, near Eg, of T(a)
are E((a), Ex(@),- - , Ey(@), and the corresponding eigenvectors are Y (@), Yo (@), -+ ,¥p(a)
such that (yi(@), ¥ j(@)) = 6;;. Let

1

P,=—— (T(a) - E)"'dE.
271 JiE-Eol=s

Then, Py = 5 (- 0i(@)) wi(@). Let P? = (-, yi(@)) wi(a), then Py = 5 P, For a near 0, one
i=1 [

i=1

has

1
I1Pa=Pol = Il 5 5@ @By Ty By
1
= ll-5= 55 (T(@) — E)"(To — To)(To — E)"'dE||
T JIE-Eol=6
= O(la).

It follows that, there are ¢;, 1 < i < m, such that (¢;, ;) = 6;j, ¢; € RanPy and [|[P{¢; — ¢il| =

(i) 4 . .
O(lf). Let ¢i(@) = lu’; Q)z:”. Then, (¢i(@), ¢;(@)) = 0 for i # j, because PYPY = 0if i # j, and
Igi(@) = ¢ill < IPG' i = dill + (1 = )P dill = Oale).

This ends the proof. O

LetO<ay<ap < ---<q@; <+ <a,and

TB)=To+ » B (Inp)YT; + T.(p).

n
i=1
Here, 6; =0or 1, Ty > 0,T;( 1 <i < m) are compact self-adjoint operators, T,(5) are compact
operators, and T,(8) = O(|8|*"*€) for 5 near 0. Set
e; = inf sup W, To).
P i yll=1peln, il

Then by min-max principle, e; is the eigenvalue of T. Moreover, if ¢; # 0, then ¢; is a discrete
eigenvalue of Ty, because T is a compact operator. If e; # 0 is an eigenvalue of T of multipli-
city m, without loss, we can suppose that e; = e;41 = - -+ = e;4,—1. Then there exist exactly m ei-
genvalues (counting multiplicity), e;(8), e;+1(8), - - - , ei+m-1(B), of T(B) near ¢;. By Lemma 3.11,
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we know that there exists a family of normalized eigenvector { ¢;(8); j=i,i+1,--- ,i+m—1}

of T(B) such that T(B)¢;(B) = e(B)p;(B), (#;(B), ¢x(B) = 6jx (jik =i,i+1,---,i+m—1),
and ¢;(B) (j=1i,i+1,---,i+m—1)converge as 8 — 0. Suppose ¢ ;(8) converge to ¢; for all
J such that e; # 0. Then (¢;, ¢;) = 6;;. {¢;} can be extended to a standard orthogonal basis. Set

Ti(B) = Y BTi+ TAB), Ti(B) = (6, T1(B)9)).
i=1

Then we having the following result.

Lemma 3.12. T(B), ¢; are given as before. Then the eigenvalue of T(B), e;(5) (j = i,i+1,--- i+
m — 1), have the following form

ZO Cl(J)(,B)
ej(B) =ei + HOOT
> b)®B)
n=0
Here
(J)(ﬁ) = T},
a’B) = - O (e—e) TRBTy(P),
{k; ex#ei}
B = ) (e er— e TuBTuBTP)
ke j#l
-2 ) (@ e) TuBTYBTP),
{k; ex#e;}
)] _ (=" - _ 1
Al = - (ei—E)! Z (e,1—1> ----- (ei, = 1)
|E—ej|=6 iy
TjilTiliz s TinjdEa forn > 2,
B = 1,
e = o,
W@ = > (- e TuBTa@).
{k; ex#e;}
. 1 n
e = -0 56 (ei— E)? (ei. Byt (e, — E)!
2mi
|E ezl S i1, 12 -1
Tﬁl Tiliz ceeee Ti,l,ljdEa fOFI’l > 2.

Proof. If ¢; # 0, then ¢; is the discrete spectrum of T. Suppose the multiplicity of e; is m,
and suppose ¢; = ejy1 = -+ = eirm—1 as before. Hence, we can choose § > 0 small enough,
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such that there is only one eigenvalue, ¢;, in B(e;,0) = { z € C; |z —¢;j| < 6 }. We know that
ei(3) converge to e;. It follows that if 6 small enough, there are exactly m eigenvalue ( counting
multiplicity ) of T(8) in B(e;, 6) for 8 small. Set

1
P(B)é—z—m. SE (T(B) — E)"'dE.

|E—eil=6
Then

(¢, TBPPB)P;)
(¢, ToP(B)p ;) N (9, T\(B)PB)p ;)
_ (@, TI(BYPB)p )
= ejt .
(@, P(B);)

ejp) =

One has

(To— E)™'(I + T1(B)X(To — E)™)™!

(T®B) - E)"!

[

(To— By Y (~1)'[T1(B)(To - E)™'T".

n=0

It follows

1 (o8]
6 PB®)) = —5— 95 (@, (To = EY' Y (~1)'[(T1(B)(To - E)' 1" )dE.

|E—eil=5 n=0
Then
. —1)
b (B) = —% 56 (¢, (To — EY'(T1(B)To — E)"'1"¢ )dE
|E—eil=6
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In particular,

. 1 B
b B = 5 55 ($j,(To — E)"'¢,)dE
|E—eil=6
= ];
; 1
e = - 95 (61, (To — EY ' (TWB)To — E) " 1,)dE
|E—eil=6
1 _
= 56 (e; — EY 26, Ty (B )dE
|E—eil=6
= 0
(@) _ (_1)2 ) -1 —112
U — (3,(To - EY ' [(T1(B)(To - E)"'1°¢,)dE
|E—eil=6
1
= —— (ei — E) ¢, (T1(B)To — E)"(T1(8)1$;)dE
27
|E—eil=6
1
— o P @B Y0 TN - EY 65 Ty BNIE
|E-el=6 k
1
= 5= 56 (e, —E)? Z (D), (T1B) i) ex — E) b, (T1(8))pr)dE
|E—eil=56 {kser#ei)
1
s P @B Y T~ B0 T BIE
|E—e;|=6 {k;ex=e;}
= L +D.

For I, note that there are only finite term in the summation, because T is a compact operator
and e; # 0. It is easy to check I, = 0. From the choice of §, we know that |(e; — E)~!| < C for
e # e; and |E — ¢;| = 6. Here C is independent of E. Therefore,

D lew = e T BT (B)ex — E)|
{ksex#ei}

< C ) (B + T B < CUT; B + IT1B) 1) (3.23)

with C independent of E. It follows

11 (2)

1
~ o Z 56 (ei — EY o, (T1(B)pi)ex — E) o), (T1(B))pr)dE

{kerteilp =5

Z (ei — e) 2T (B)T1j(B).

{ksex#ei}
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By (3.23), Y (ei— ek)‘szk(,B)Tkj(,B) is finite. Similarly, we can get

{kex#e;}
e =-2L 1)" 56 (i = E)7 e —E (e, - )
|E eil=6 i 12 -1
Tji1 Tiiy - Tin—ljdE;
and
al’B) = TP
a’B) = - . (a—e) ' TRBTP);
{k; ex+ei}
B = Y, (e e - e TaBTuPBT(B)
{Lk; ek:ﬁejqﬁe/}
=2 > (ej— e TaB Ty B)T1(B);
{k; ex#e;}
Digy - ( 1)" el
@) = (@, [(TB)(To - EY'1"* ¢ )dE
|E ei|=6
1"
= —(273 56 (ei — EY ¢, (T1B)To — EY ' 1"T1(B)¢;)dE
|E—ei|=0
- S ¢ @y PXUACICI I
2mi ¢ [T 0
|E—ei|=0

T1(B)¢i, )ei — E) ' Ty, (B)IE

- & 55 er=E)y" D (e =By (e, — B

2ni L
|E—€1|:(5 11,02, 5ln

TjTi, T, dE.

a

Set vp = min{ v; v € 0w }. Let u(1) be the ground state of P(1). u(1) can be chosen to be a
positive function. Then
() = [VIV2u(2) € LARM).

Choose appropriate u(1) such that ||@#(A)l;2gm = 1.

Lemma 3.13. Assume 0 ¢ 0o, n = 3. u(d) and ii(d) are define as above. Then (A1)

converges in L>(R"), as A — Ay. If i(d) converges to ¢, then ¢ is the eigenvalue of K(0),
and (¢, |V|1/2Gvo,07rv0|vll/2¢> # 0.
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Proof. By the assumption of ii(1), one has K(ej(4))i(d) = A7) (er(Q) is the smallest
eigenvalue of P(1) ). One has that (1) converges to some function ¢ in L*(R") as 1 — Ay
by Lemma 3.11. By Lemma3.11, we know that ¢ is the normalized eigenfunction of K(0)
corresponding to Ey. ¢ is a positive function, since (1) is positive. Let u = Fo|V|'/?¢, then
P(Ao)u = 0 and u is a positive function, because VI"2u = |V|1/2F0|V|1/2¢ = K(0)¢ = Apo.

Then

(@, IVI'"2Gyy omy, | VI 0)
= VIV, IVIV2Gy oy VIRV 20
= Vi, Gy, omy, Vit
= 2C,| (Vu, T+,
+ 0.

This ends the proof. O

Let

pi(@) = inf sup W, K(a)y).
O1 i yl=1,yelgr, pilt

Then y;(a) is the eigenvalue of K(a). Because K(a@) — K(0) as @ — 0, one has y;(a) converges
to the eigenvalue of K(0) by Lemma 3.11. Suppose uj(@) — u;, and suppose y; = -+ = Uy,
and y; # pm+1, then y; is an eigenvalue of K(0) of multiplicity m. By Lemma 3.11, one can
choose ¢;(@) (1 < i < m), which is the eigenfunction of K(@) corresponding to y;(«) such that
(¢i(@), pj(a)) = 6;; and ¢;(e) converges. Suppose ¢;(a) — ¢; as @ — 0, then ¢;(1 < i < m)
is the eigenfunction of K(0) corresponding to y1, and {(¢;,¢;) = ¢;; for 1 < i, j < m. Note that
u1 = 45", one has P(Ao)y; = 0 (1 < i < m) with y; = Fo|V|'/?¢; € H'™5, 5 > 1. By Lemma 3.6,
we know that 0 is not the eigenvalue of P(Ayp), then ¢; (1 < i < m) is the 0 resonance of P(Ap).
Suppose that ¢; (1 < i < m) is v;-resonant state of P(dp). Then 0 < v; < 1 by Theorem 3.1 [70].
Then, we have

Lemma 3.14. Assume n > 3, 01 # 0 and 0 ¢ 0. ¥;, ¢i, ui(@), y; are defined as above. Then
(i, IVI'V2Gy, om,, IVI'2¢) # 0, and (¢;, IV|'*Gyom,|VI'2;) = O for v < v; . Moreover, if v < 1,
Hi(a) = ca’i + o(@”7) with some ¢ # 0, ifv; = 1, uj(a) = calna + o(a) with some ¢ # 0 for
1<j<m

Proof. From the definition of ¢;, one has

(67, V"G om, VIV 21
AolVI" 1, VPG, VIV )

1
CoAG VY j, ————, XV,

1| $(n-2)-v 1| 1(n-2)-v

‘pv>,
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where C, # 0 is a constant dependent on v. Hence, if <¢j,|V|1/2GV,()7TV|V|1/2¢]'> = 0,
one has (Viyj, —L=—¢,) = 0. It follows (¢, [VI'"2Gyom,VI'2¢) = 0. Tf ¢; is v;- reso-
x| 2727

nant state of P(dp), then by Theorem 3.1 [70], one has (¢;, |V|1/2Gy,oﬂv |V|1/2¢j> # 0, and
(), IVII/ZGV,OHVIVII/%J) =0 forall v € 0o, v < v;. Use Lemma 3.12 to computer u (). If
Vj <1,

@’ IVI'2Gy, omy IVI'2¢)) + o(@”7)
1 + o(a"/)

i) H+

Uy +ca’i + o(a’)
with ¢ = (¢}, [VI'2Gom,|V|'?¢ ), for 1 < j<m.Ifv; =1,

alna(p;, [VI'2Gom|VIV2¢;) + o(a”))
1 + o(a"V)
U +calna + o(a’’)

uj(a@) M1+

with ¢ = (¢;, [VI'2Gy om V"2 ).

Theorem 3.15. Assume O ¢ 0o and n > 3. Suppose that e|(A) is the ground state energy (the
smallest eigenvalue) of P(A). ¢ is defined in Lemma 3.13. If py > 6, one of three exclusive
situations holds :

(a). If o1 = 0, then €1(2) = —c(A — Ag) + 0(A — o), ¢ = (llFolVIZgl) 2 # 0;

(b). If vo = 1, then e1(d) = —c 25 + o(F25s), ¢ = Ag%(@, IVIV2G 1 om [VI'26)™! £ 0,
1 1

(c). If v < 1, then e1(2) = c((A—10)*0 ) +0((A=29)"0), ¢ = A5, [VI'/2Gy, 01y, |VI'2p) ™! #

Proof. (a)By Theorem 3.2, one has
Ro(@) = Fo + aF; + R} (), in L(-1,5;1,-5) s > 3.

Then if py > 6, we can get K() = K(0) + V"2 (@F; + R} (@)[VI'/? in £(0,0;0,0). Because
e1(A) is the simple eigenvalue of P(1), then 171 s the simple eigenvalue of K(ej(1)). And we
also have that 17! is the biggest eigenvalue of K(e;(1)). If not, suppose that ¢ > A~! is the
eigenvalue of K(e;(A)), then by the continuous and monotonous of the eigenvalue of K(ej(A))
with respect to A, we know that there exists a constant I’ < A such that 2 € o(K(ej(1))). It
follows that e; (1) < e (A) is the eigenvalue of Py + AV. This is contradictory to that e;(A) is the
smallest eigenvalue. By Lemma 3.13, we know the normalized eigenfunction ,ii(1), of K(ei(4))

converges to ¢. It follows (1) = ”113%. Then

(¢, K(e1(DP)$)
(¢.P¢)

u(er() = (@), K(er()ia()) =
By Lemma 3.12, we should compute (¢, |V|1/2F1|V|1/2¢>.
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From the definition of ¢, one has
(Po + V) = 0 with ¢ = Fo[V|'/?9,

Since vy > 1, we have y € L2(R") by Theorem 3.1 [70]. So  is the ground state of P(Ag).
We also have
VIY2y = K(0)p = 45" ¢,

(Po — @) ' |VIy = 25 (¥ + aRo(@)).

Hence,
VIRV = 20lVIT2F VIV v 2y
= doa VI"2(Ro(@) - Fo)lVIy + O(lal)
= Ao "IVI"225 (W + aRo(@)y — ) + O(lal®)
= [VI'?Ro(@)y + O(al) .
It follows

(6, IVIV2F V| 29y = lim (. Ro(a)y)
= (FolVI'?,y)
= |l # 0.

So, (@) = A3 + cra + o(jal'*), with ¢; = IFo|VI2¢|[2. By the Proposition 3.4, one has
u(e()) = 271, It follows
7= 451 + crer () + O(le(D]' ).

Since 7! = /161 —/162(/1—/10)+0(|/l—/10|2), we can get the leading term of e1 (1) is —c(1—Ap),
with ¢ = (ollFolVI2ll) 2.
(b). If vo = 1, then

K(a@) = K(0) + alna|V|'*Gy omi[VI'? + O(a).

By Lemma 3.13, one has
(9, IVI'"2G 1 om1 V|29 # 0.

Then we have
ula) = /161 +cialna + o(a)

with ¢1 = (8, [V|'2G 1 om|V|'/2¢). As in (a), using pu(e1 (1)) = 17!, and
A7 = 25" = A52( = 20) + 0(1A - A)),

one has
—/1_2(/1 —Ap) + O(J]A = A|) = ce1(A) Ine () + O(er ().
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To get the leading term of e (1), we can suppose that e; (1) = (41— A4p) f(1—Ag) with f(1—Ag) =
O(1). Then by comparing the leading term, we can get f(1 — dp) = 1/In(4 — Ap). It follows

A=A o A=A

a@ == T = )

with ¢ = ;%@ [VI'2G1 om VI 2)~".
(c). If vy < 1, one has

K@) =KO) + > " IVI"?GyomIV"? + O(la)).
O<v<l1
By Lemma 3.13, we know that (¢, |V|'/2G,, om,,|V|'/>¢)~! # 0. Using the same argument as
before, we can conclude
pl@) = 5" + c1@” + o(lal™)

with ¢; = (¢, |V|1/2GV0,07TVO|V|1/2¢). As above, we can get that
1 1
e1(A) = c(d = 29)* +o((A = 20)™)
with ¢ = 2,2, IVI'2Gy 071y, | V27" O

Let

ei() = sup inf W, PO)Y).
b1, b WI=1peldr, - pi]t weH!

Then e;(1) is the eigenvalue of P(1) by min-max principle. We say that there are m eigenvalues

of P(1) converge to 0 at Ay, if there exist some k such that /lllll/{l ei()=0fork+1<i<k+m;
0

e D) #0(=k+1,---,i=k+m)forany A > Ap; e;j(1p) # 0 for some i < k. Let u;(1) be the
eigenfunction of P(A), then i;(1) = [VIV2u;(2) is the eigenfunction of K(e;(1)) corresponding
to 27! Because K(e;(1)) converges to K(0) as 4 — 0, by Lemma 3.11, one can choose u;(1)
such #;(1) converges as 4 — Ao and (i;(A), (1)) = 9;;. Let it;(1) — ¢; in L*(R"). Then,
K(0)¢p:i = 45" ¢ and (pi, ¢)) = 6.

Theorem 3.16. Assume 0 ¢ 0o and n > 3. e;(1),¢;(1 < i < m) are defined as above, v; is
defined as in Lemma 3.14. If pg > 6, one of three exclusive situations holds :

(a). If o1 = 0, then m = 1 and e1(A) = —c(Ad — Ag) + o(d1 — Ap), ¢ = (/10||F0|V|%¢1”)_2 #0;

(b). If vi = 1, then ei(A) = =159 + o(d = o), ¢ = 5% IVI2Grom V] 2¢)~! #0;
1

(c). If vi < 1, then e(1) = c((A= A0} )+ (A= A0)"), € = AsK VI oy IVIV26) 71

Proof. (a). If oy = @, by Theorem 3.2, one has
Ro(@) = Fo + aFy + R (a), in L(~1,5:1,-5) 5 > 3.

Then if py > 6, we can get K(@) = K(0) + |[V|'2(@F; + R (@)IV|'/? in £(0,0;0,0). By
definition of ¢;, one has P(A)y; = 0 with ¢; = Fo|V|'/?¢;. Because oy = 0, by Theorem 3.1

60



3.4. Zero resonance in coupling constant limit

[70], one has ¥; € L?. This means that ¢; is the eigenfunction of P(Ag) corresponding to 0.
Because 0 is the simple eigenvalue of P(dp), then m = 1. It is clearly, this case is the same as
part(a) of Theorem 3.15.

(b). If v; = 1, by Lemma 3.14, one has

ui(a) = calna + o(@)

with ¢; = (¢;, |V|1/2G1’07r1|V|1/2¢,-)‘1. By the same argument as in Theorem 3.15, we can get

A=A o A=A )

=m0 T

¢ = 5%, IVIV2Gy om VY27t # 0.
(c). If v; < 1, by Lemma 3.14, one has

ui(@) = ca” + o(lal™)
with ¢; = (¢;, |V|1/2le.,o7rvl.|V|1/2¢,-)‘1. By the same argument as in Theorem 3.15, we can get
1 1
ei(d) = c(d = 19) + o((4 = 20)"),

¢ = 455, IVI'V2Gy, o, [VI2¢) 1 # 0. 0

3.4 Zero resonance in coupling constant limit

In this section, we study the multiplicity of zero as the resonance of P. We have the follo-

wing result. Suppose Y. n, = m. If m > 0, then P(1p) has at most m linear independent zero
O<v<l
resonance solutions, by Corollary 4.2[70].

Theorem 3.17. Assume 0 ¢ 0o and n > 3. Suppose Y, n, = m. If m > 0, then there exists
O<v<1
A1 > Ag such that for all 19 < A < Ay, the multiplicity of zero as the resonance of P(Ay) is equal

to the number of eigenvalues, less than 0, of P(A).

Proof.Let n(1, @) denote the multiplicity of 17! as the eigenvalue of K(a). Let A; > Ay such
that for any Ay < A < Ay, A~ is not the eigenvalue of K(0). Then,

dim{ u € H"*(RM\LA(R"); P(Ao)u = 0 |
= N(do)
= dim{ ¢ € L’®"): K(O)¢ = Ao |
= #{ 1) € 7(K(@)); pi(@) > ;" as @ — 0 } (counting multiplicity )
= Zn(/l,a/) (lg<A<;)

a

= # { a; a € o(Py+ AV); } ( counting multiplicity )
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In the first step, we use that 0 is not the eigenvalue of P(Ap), by Lemma 3.6. In the second step,
we use Proposition 3.8. In the third step, we use Proposition 3.9 and Lemma 3.11. In the fourth
step, we use that the eigenvalue of K(«) is continuous and monotonous increasing with respect
to a, and the eigenvalue of K(a) — 4, I Hence, for any dg < 4 < A; , there exist a; such that
wi(a;) = 27! for all i such that (@) — A I In the last step, we use Proposition 3.4. O

3.5 Asymptotic expansion of resolvent of Schrodinger operator
with critical potential

This section is concerned with the Schrodinger operator P = —A + V in L?>(R") for some
n > 2. First we make some assumptions on V.

Assumption on V :

). V=V, +Vy;

(2). Vi € C(R"), and there exists a constant R such that |Vi(x)| = @ when |x| > R, where
(r, 6) is the polar coordinate of R”, g(6) is a real continuous function on sphere $"~!.

(3). V, € C(R"), and there exists some pg > 2 such that |V, (x)| < c(x)7P0.

Assume —Ag + g(6) > —i(n —2)? on L*(S™!) in this section. Here —A; is the Laplace
operator on sphere S$"~!. In this section, we want to study the asymptotic expansion of (P —z)~!
for z € C\R, znear 0, in L(—1, s; 1, —s) for appropriate s.

SetR(z) = (P—-z)"".LetR; > R. Let 0 <xj <1, j= 1,2 be smooth functions on R" such
that suppy1 € B(0, R}), x1(x) = 1 when |x| < R and

X100 + x2(0)* = 1.

Set
() 5
POZ_A"'%; Py = x1(=A)x1 +x2Pox2 -
Then
Xi :
Py =Py - 72161(9) - Z Vx> = Po— W,
i=1
- 6
P:P0+(V_&2))=PO+‘/’
I
where )
) 2
_Xl 2 _ X1 i
P

W is a continuous function and satisfies |[W| < C(x)7°. Under the above notation, we can see
that the Schrodinger operator P can be considered as the perturbation of the model operator Py.
In the following we use the asymptotic expansion of (Pp—z)~! to get the expansion of R(z). This
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problem has been studied by X.P. Wang (see [69]). Note that our potential V has singularity at
0. We can not use his result directly. We use his method to get the asymptotic expansion of R(z)
for Jz # 0 and z near 0.

Definition 3.18. Set N = {u; Pu=0, uc H™%, Vs > 1}. We say that 0 is the regular point of
PifN =

As in [69], we need to get the asymptotic expansion of O resonant states of P. Set
yo = min { vV, V € O } Let 0 < ¥1,02 < 1 belong to C*(R;) such that y;(r) = 1 on
r<l, and)zl + ¥ = 1.

Theorem 3.19. Assume pg > 3 and that 0 ¢ o1. Let u € N. Then,

n=2
r2+V

ny )
| 0
uro) =y Y -5 <V, By 5 X208 O (3.24)

0<v<1 j=1
where it € L* , and < -,- > is the scalar product in LZ(S"_I). In particular,
uel? =< Vulyl Sy (’)> 0, VYveo,1<j<mn,. (3.25)

Let C denote the linear span of all vectors of the form

T'H’ (j)

c(u)—(—<Vu =PI~ >veo,l<j<n,)eC,

withu € N, kK = 3¢5, y. Then,
dim(N/(ker;» P)) = dim C. (3.26)

Remark 3.20. This theorem has been proved for P = —A + @ + Vwith |V| < C{(x)™ by X.P.
Wang (see [70]). We use the same method with a little change.

Proof. For u € N, set

u= Zuv, ® ¢l (6) + ',

0<v<l1 j=
where u’ = r'u withn’ =3 .7, and u, ; = (u, gof,f))sn_l. Then

ny

u= (1) + Raru = i+ 020 Y D @G0 + ).
O<yv<1 j=1

One has y1(r)u € L*(R™), since u € H~5. We have

Pou' = -’ (Vu).
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Let (Vu),; = (Vu, <pf,j))Sn71. Let i, ; = |X|%MV’ j- In the cylindrical coordinates (z,6) (x = 10,
r = ¢'), one has
(=02 + )ity = —"F (V) . (3.27)

By (3.27), ii,,j can be represented as

n

1 +
iyje) = Cie"+C_e™ - —fe_"lt_sle225(Vu)w-(es)ds.
2V R

Since u, ; = —F,o(Vu),,;, we see that |u, ;(r)| < Cr‘% for all » > 0. This shows C, = C_ = 0.

For 0 < v < 1, set iy j(e") = iy} +iil,) + i) with

1 o0 n+2
~0) 1y _ —(t—s) k= ) .
uv’j(e) = 3 _we Ve N (Vu),y, j(e')dss;
1 o0 n+2

~D/ oty _ —v(t—-s) "= S i
uv’j(e) = 5, z e e 2 °(Vu), j(e’)ds;
~2) N _ _ 1 * W(t—s) 12 S
uv’j(e) = % t e e 2 °(Vu), j(e’)ds.

For 0 < v <1, one has that G, om, € L(—1,s;1,—s) for s > 1 + v. One has
1 (% _u2,, 0 1 ~Ln-2)+v ()
o 72 (V) j(0)7" " dr = —(Vu, —|r] 2 @)
2V 0 ’ 2V

is finite, because Vlrl‘%("‘z)”gog,j ) e H-1wo-l-€, Hence, y2 (e’ )Et(voj? gives the desired leading term.
Note that, if 1 <V < pg —2,

rV/H(Wu)VJ e L2072 (R, P ldr);
2
VWH(—%(](@)M)VJ e LZ(R+, rn_ldr).

It follows )

’V, I(Lu)v,j - ’V, 1(' X_Zl q(e)u)v,/ ’V, 1(” M)v,j EL (R+’) ld’).
. .
Then ljtf}l]).(et) and Mi’zj)-(et) can be bounded by

1 [ nt
| UV, jeids
2v J,

00 1/2
1 . /o 7, n+2y .
7{f‘¥m”4“m} 1€ =2 (Vi 2
v ¢ ’

.y ’+1
< Ce V[”rv * (VM)V’]'”LZ(R_'_;rn—ldr)
: , o (D)o Q) 2 - ,
with 1 <v' < pg — 2. X2V, and X2v,; giverise to the L*-remainder term of u,, ;.
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For v > 1, set fiy j(¢) = iil,) + i, with
~(1)( t) _ _i —v(t—s) %S(V ) ( S)d .
i, (e) = > _ooe e u)y,j(e’)ds;
Q) _ _l * W(t-s) 2 s ()5
uy’j(e) = ), e e 2 (Vu),je’)ds.
Then,
1 t

—) ni2
5 | €T IV (eids

] 4 2 2 1/2 7, n+2
% {f 2V (s==2y sds} lle® +T)S(Vu)v,j||L2(R;ds)

J J
- 1
Ce™ " (V) jll 2 @asrn1an)

IA

for 1 < v < min{pg — 2, min{v € o }\o1}, and

1 00 n+2
= | e (Vi eds
2v J;
1 0 ’ ’ 1/2 s n+2
- {f e2v(t—s)+2v (t—5)=2Vv tds} ”e(v +T)S(VM)V,j||L2(R‘ds)
2v | J, ’
< Ce_v t||rv +1(V”)V,j||L2(R+;r”‘1dr)

for 1 < v < minf{pg — 2, min{v € o }\o1}. It follows that ¥,u, ; € L*(R™).

Proposition 3.21. Assume py > 3 and that 0 ¢ o. 0 is a regular point of Py.

Proof.By Theorem 3.1 [69], we deduce that u € L2 (R") with s’ = 1 — vo/2, because
vo > 0,and u € HV'S(R"),¥s > 1. Let 0 < 7(t) < 1 be a smooth function on R such that
suppy C B(0,2), ¥(r) = 1 on |1 < 1. Let gu(?) = ¥(%). Then (gmit, Po¥mit) 2 c{Fmt, ,%me

with some ¢ > 0. It suffices to prove

Fm(Pu—u in HY

Poim(Pu — Pou in H™

for some s > 1. (3.28) is trivial.
Setsop =1+ V4—°. We will show that (3.29) is correct for s = sg. Since

Poim(r)u — Pou = g Pou — Pou + [Po, Ymlu,

and ||, Pou — Poull 1.5, — 0 is trivial, thus we need only to show that [Py, ¥ Ju — 01in H~150.

One has

[Po, ¥mlu = ~2x1(Vm) - VOr1) = x1(AFm)x11) = 2x2(Vim) - Vxau) = x2(AFm)(x2u).
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Note that
=2x1(Vim) - Vix1u) — x1(A¢m)(x1u) = 0

for m large enough, since suppy1(x) N supp(Vi,(r)) = 0. Since u € L>~, then

2

2

X _ 4

—Au = (r—fq(e) + Z IVxilPu e 122
i=1

It follows that (u, —Au) is finite, moreover, by Parseval’s formula, one has that
(u, =Auy = (), () (~A)u) = f Pl de.

This means that [Vu| € L*(R"). Let f € C(R") and f(x) = 1 for |x| < 1. Since —~Au € L**~*
and u € L>~, then

(202, (~Ayu) = lim (£, (~Apw).
Using integration by part, we conclude that
™ =) = f Vul F()0™ 2 dx (3.30)
+(2s0 - 2) f FEXR e Vuf die+ f XAV Dl d.

Note that Vf(%) < C{(x)~! with C independent of R. Let R — oo in both side of (3.30), we get
that [Vu| € L>%~1(R"). Hence

- 1
I(Vim) - VOl gt gy < C||<X>S0MV(XZM)”LZ(mgﬂgzm) -0

and

- 1
AR mx2ull 150y < CII()™ WXZMHLZ(mspclsZm) —0

when m — co. This implies that (u, Pou) = lin})()}mu, Pojmu) > (u, rizu) with some ¢ > 0. It
m—

follows that ker Py = {0} in H'$(R?). 0

For z € C\R", z near 0, one has
(A + 1=y +x2(Po -2 " x2l(Po—2) = 1 - K(2) ,
where
K@) = xi(-A+1-27"A1 +x2(Po—2)' Ay,
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with
Al = —[-A v +x + @Xwg - xix2, —Alxz;
A2 = DAl + L0 - 13, -Alr
Assume 0 ¢ 0. Then one has (Py —z)~! = Fo + o(1) in L(—1, s; 1, —s) with s > 1, for z near

0,3z 0. K(0) e L(-1,s;1,-s), s> 1and close to 1.

Lemma 3.22. Assume 0 ¢ 0, n > 3. ker(1 — K(0)) = {0} and 1 — K(0) is a Fredhlom operator
in L(-1,s;1,—5), s> 1.

Proof. If u € H'"* belong to ker(1 + K(0)), then Pou = PyK(O)u. It is easy to check that
PoK(0)u € H™'*, for some s > 1. This means that it = PoK(0)u satisfies

e1(=A + 1) 'yy + x2Foxalii = 0.

Taking the dual product of the above equation with ii,we deduce that y;ii = 0, (i = 1, 2), because
(=A+1)~" and F are positive. Therefore it = Pou = 0. By Proposition 3.21, we get that u = 0. It
is easy to check that K(0) is a compact operator. It follows that 1 + K(0) is a Fredholm operator.
This ends the proof. g

By Lemma 3.22 and Proposition 3.21, one has 1 — K(0) has bounded inverse on H~5. It
follows that (1 — K(z))~" exists for z small. We can use Theorem 2.2 [69] to get the asymptotic
expansion of (Py — z)~!. For z € C\R*, z near 0, one has

Po-2"' =1 =K@ ' ri(=A + 1 =21 + x2(Po — 2) " yal.

It follows that (Py — 2)™! = Fo + O(2l) in £(~1,s:1,—s), s > 1 with some € > 0. Here

Fo=(1-KO) 'xi(-A+ D)y + x2Foxal.
We write
P=Py+V=Py-W

where V =V — @ and W = V — W. It’s easy to see that W € C(R"), and |W| < C{x)~*0.
For z € C\R, z near 0, we have

Po-2 " (P-2)=1+F@), (Po-2'(P-2)=1+F(),
where
F@)=Po-2"'W, F@)=(Py-2)7"V.
In the following, we use these two formulas to study the asymptotic expansion of R(z).

Lemma 3.23. Assume 0 ¢ 0, n > 3. ker(1 + F(0)) and ker(1 + F(0)) coincide with the kernel,
N, of Pin H"“5. 1+ F(0) and 1 + F(0) are Fredholm operators in L(1,-s;1,—s), s > 1.
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Proof. It is clear that N C ker(1 + F(0)). If u € H"™* is in ker(1 + F(0)), then Pu =
—PF()u € H™"* for some s > 1, because P = Py + O(r*°) for some po > 2. This means
that it = Pu satisfies Foit = 0 in H'~5. It follows that i = 0 and u € N. Similarly, we can get
ker(1 + F(0)) = N.

It is easy to check that £(0) is a compact operator. It follows that 1 + F(0) is a Fredholm
operator. Note that due to the local singularity and the second order perturbation, F(0) is not
a compact operator. Since ker(1 + F(0)) = N = ker(l + F(0)), and 1 + F(0) is a Fredholm
operator, one has that ker(1 + F(0)) is of finite dimension. In the following we will show that
Ran (1 + F(0)) is closed.

Suppose that f € Ran (1 + F(0)), then there exist u, € H 125 such that fu = A+ FO)u, —
fin H=%. Then

Po fu = Pott + Vi, = (Pg + Wy,

it follows
(1 + EgW)f, = (1 + F(0)u,.

Because 1 + FyW is a bounded operator, and f, — f in H'~%, one has
(1 + FoW)f, = (1 + EgW)f.

It follows that
(1 + FO))u, — (1 + F(0))u

in H'~%, because Ran 1 + F(0) is closed. Then (1 + FgW)f = (1 + F(0))u. It follows f =
(1 + F(0))u. This proves that the Ran (1 + F(0)) is closed. By Lemma 3.25 (a), we can derive
that dim coker(1 + F(0)) is of finite, since N is a finite dimension subspace of H =5 Then, we

obtain that 1 + F(0) is a Fredholm operator. O
Denote
V=01 ) €N 2= 200 2y
k k k
W=D =Yl =) vl
j=1 j=1 j=1

Here v/, = vj — [v,]- for v; > 0.

First, we need to study the operator (1 — F(z))~!. If N = {0}, then 1 + F(0) has a bounded
inverse on H~%, by Lemma 3.23. It follows that (1 + F(z))~! exists for z small. We can use the
formula

R@) =(1-F@) ' (Po-2)"

to calculate its asymptotic expansion. By Theorem 3.2, we can get the asymptotic expansion of
(Po —z) ' and (1 — F(z))~!. Therefore we can get the following result for R(z).
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Corollary 3.24. Assume N = {0}. Let N € N and py > 4N +2, R(z) has the following expansion
in L(-1,5;1,—s)withs >2N + 1

N No N-1
R(z) = Zo 7R+ ; Z 2y Zj} 7Ry + 0|2V *€) (3.31)
J= =l J=01-

Here Ny is some integer large enough depending on o« and N,
Ro = (1 + FoV) ™' Fy.
and Rj (resp., Ry.; ) are in L(1,—s;1,—s) for s > 2j + 1 (resp., for s > 2j + vV} +1).
When N # {0}, we use the Grushin’s method to study (1 + F (z))~! as in [69]. Set

N =ker(1 + FyV) c H"™,
N* =ker(1+ FoV)* cH™ ", 1<s<py—1.

Since V(1 + FoV) = (1 + VF)V = (1 + FoV)*V, one can check that V is injective from N into
N* and V* = V is injective from N* into NV. Consequently, V is bijective from N onto N*.
This shows that N is independent of s with 1 < s < pg— 1, dim N = dim N*, and the quadratic
form

¢ =< ¢, -V >

is non-degenerate on N. Since Py > 0, this quadratic form is positive definite. Let
pu=dimN, u,=dimN/(kers2 P).
We can choose a basis {¢1, - , ¢,} of N such that
< ¢i,—Vo; >=bij. (3.32)

Here ¢;, 1 < j < u,, are resonant states. To get the asymptotic expansion of Wl =+
Ro(2)V)~! for z near zero and 3z > 0, we study as in [71] a Grushin problem associated to the
operator

Wi T
HY S x CF - HY S x CH,
S 0

A(z) = [

where s > 1, T and S are given by

Tc =

M=

Cj¢j> C:(Cl,"',C/J)EC”,
P

Sf = (Kf,=V$1 >, ,<f,-Ve,> eC, feH"

~
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Define Q : H'™* — H'~ by
M
Of = Y. < f.-Vo;>¢,. (3.33)
=1
Then,
TS =QonH"“and ST =1, on C".

Decompose Q as Q = O, + O, where Q, = ’;;1 <. =V¢;> ¢;. Then,
0 =0, 0:=0. 00.=0.0 =0. (3.34)

As in [69], we first show that (1 + FoV)~! exists in some space. We need to decompose the
space H'~¢ first. We have the following result.

Lemma 3.25. (a). One has the decomposition
H'"™ = N® Ran (1 + FyV). (3.35)

Q is the projection from HY™%, s > 1, onto N with ker Q = Ran (1 + FoV).
(b). Let Q' = 1 — Q. Then, Q'(1 + FoV)Q' is invertible on the range of Q' and (Q'(1 +
FoV)Q')'Q € £(1,-s5;1,-5),5 > 1.

Remark 3.26. This lemma has been proved by X.P. Wang [69] for V without singularity. In fact,
2 2

these two results are also true for V = —%q(@) + W, because —%q(@) is a bounded operator

from HY=5 to H™"* for any s > 1, if n > 3. Here |W| < C{x)™*°.

Proof. (a). It is easy to check that N'N Ran (1 + FyV) = {0}. Since 1 + FV is continuous on
H'™5, Ran (1 + FyV) is closed and is therefore equal to (ker (1 + FoV)*)*. For any u € H"S,
one has u = Qu + (u — Qu) with

u—Que (Ker(l+FyV))* = Range (1 + FoV).

This proves H~* = N '@ Ran (1 + F,V). It is easy to verify that Q is the projection onto N
w.r.t. this decomposition of H'~5.

(b). O’ =1 - Qis a projection from H"“5 onto Ran (1 + FoV) = F. For u € F such that
O'(1+FyV)Qu=0,wehave Qu=uand 0= Q' (1+FyV)Q'u=_0+FyV)u— Q1+ FyV)u =
(1 + FoV)u. This means u € N. By (a), u = 0. This proves that Q'(1 + FoV)(Q’ is injective on
Range (1 + FoV). Since Range Q" = Range (1 + FyV), we can show also that Q’(1 + FoV)Q’
is surjective on Ran (1 + FyV). Therefore, Q'(1 + FoV)Q’ is bijective on Ran (1 + FyV). Since
Ran (1 + FyV) is closed, Q'(1 + FoV)Q’ is invertible on Ran (1 + FyV) and

Dy =(Q'(1+FoV)Q)7'Q € £(1,-s;1,-5), s> 1.
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g

By this Lemma, one has that Q’(1 + FyV)Q’ is invertible on Ran (1 + FV). It follows that
Q’'W(z)Q’ is invertible on Ran (1 + FV) with bounded by the asymptotic expansion of Ry(z).
Let

D) =(Q'(1 +Ry@V)Q)'Q, Do=(Q(1+FV)Q)'Q.

We construct an approximate inverse of A(z) as in [69] to prove that for z € Us, the operator
A(2) is invertible from H"™ x C* to H'"™% x CH. Write the inverse of A(z) in the form

E(z) E.(2) ]

AR ! = {
E_(7) Ei(2)

Then by a simply computation, we can get

E(z) = D(z2), E.(z) =T - D(2)Y,
E_(2)=8 —XD(z), E; (2)=-SWQ@T +XD(z)Y,

with
X=SWkQ', Y=X.

Note that A(z)A(z)"! = 1 and A(z)"'A(z) = 1. We can obtain the inverse of W(z)
W@ = E@ - E+:(E+- () E-(2). (3.36)

We use this formula to get the asymptotic expansion of W(z)~!. First, we need to get the asymp-
totic expansion of D(z). Note that V is a bounded operator from H'* to H™!* for s > p/2 if

p > 0, because 2q(@) is a bounded operator from H'~% to H* for any s > 1, n > 3. Using
the asymptotic expansion of Ro(z), we can get that, if K > 1 and pg > 4N + 2, the following
asymptotic expansion holds

D@) = ZZJD +Z D w Z 2Dy j + O(l"*) (3.37)

k=1 ye(epk  j=IV]-

in £(-1,s;1,—s),s > 2N + 1. Here D; (resp., Dy, ) are in L(1,—s;1,—s) for s > 2j + 1 (resp.,
fors >2j+{¥}+1)and D; ; are operators of finite rank. Here and in the following, Ny is some
integer large enough dependlng on 0« and N. Here Ny can be taken as the largest integer such
that Ngvg < N, where vo = min{v € 0w} > 0. Since the terms with {¥} + j > N can be put into
the remainder, (3.37) can be rewritten as

N (1)
DR = ».dDj+ Y zz/Dy;+ 0" (3.38)
=0 (#)+j<N
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where Dy ; = 0if j < [V]_, and for £ > 1, Z?§;+j<N stands for the sum over all ¥ € (oy)*, € <
k < Ny and [V]- < j < N with {¥} + j < N. In particular,

Dy = =DoF1VDy, Dy, 0 =—=DoGyys,, v, VDo. (3.39)

Similarly, we can obtain the asymptotic expansion of E, (z) (resp., E_(z)) in L(C*; H L=s) (resp.,
in L(H™'5;C¥)) for s > 2k + 1 if pg > 2k + 2. Therefore the asymptotic expansion of W(z)™!
depends on the asymptotic expansion of E,_(z)”!.

Proposition 3.27. (Proposition 4.4 [69]) Let pg > 3 if ur = 0, and pg > 4 if u, # 0. E+_(2) is
invertible for z small enough and its inverse is given by

£ ! (T*D1()T)! —(T*Di(T) "' co!
_(z =
+ _(D;lc*(T*DI(Z)T)—I Z—lq);l
O(lzl/|z¢,, ) + OClzI) O(z°) ]
X1, +
O(|zl°) O(l°) + O(lal/ Iz, )
Here
Oe=(<pind;>), o C=(<FVEVei>) o
9 is an invertible matrix,
(c;lzgl M, 0
Di(z) = :
O (C;' 1 ZS‘KO )ImKO

with ¢|, = 4v*c, #0,and0 < ¢ < --- < Sy < 1 are those of v € o for which there exist m;

linearly independent g j-resonant states with Z:‘;l mj = [

Remark 3.28. This proposition has been studied by X.P. Wang for Schrodinger operator with

potentials without singularity.

Proof. By the formula of E,_(z), one has

E.(2) = (< (W) - W) Q' DR)Q W), Vi >)

1<i,j<u

with W(z) = 1 + Ryp(z)V. Set
Li(z) = Z ZVGV,(5V7TV'

VEOo|

By expansion of Ry(z), one has that for pg > 4,3 < s < pg — 1, the following expansion holds
in H'"%,
Wi = (Li(2) + 2F)Vei + O(2]'™), € > 0.
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3.5. Asymptotic expansion of resolvent of Schrodinger operator with critical potential

And for u, < j < u, ¢; € L? and the above expansion remains true for py > 3. By Theorem
3.19, one has Li(z)V¢; = 0 if ¢; is an eigenfunction. Therefore W(z)¢; is of the order O(|z)) if
¢; is an eigenfunction and of the order O((|z|?) if ¢; is a resonant state. Since D(z) is uniformly
bounded in £(1,—s; 1, —s) for s > 1, the (i, j)-th entry of E,_(z) has the asymptotic expansion

(E+-(@))ij = 2 < F1Vg;, Vo > +0(l2]'*) (3.40)

if at least one of ¢; and ¢; is an eigenfunction and py > 4. In the case both ¢; and ¢; are
eigenfunctions, since V¢;, V¢, are in H~ 0 we can prove as in [71] that < F\V¢;,V¢; >=<
¢i,¢; > for pg > 3. Since V¢; € H™'"70 and (1 + FoV)¢; = 0, then (Py + V)¢ = 0. It follows
@i + (Po—2) ' = 2(Po — z)‘1¢,~ for znear 0, z ¢ R*. Then

F1Vgi =27 [(Po — 2" = FolVei + 0(z) = (Po — 2)~ "¢ + O(z).

It follows
(F1Vgi, V) = (Po — 2) " ¢, Vo) + O(I2l°) = (i, &) + O(2l°).

Thus we obtain that if pg > 3,
(E+@)ij =2 < ¢jntpi > +0(l"™),  pr <ij<p (3.41)

For1 <i,j < u,, W(2)¢; = L1(2)V; + O(|z]) in H'"7S for3 < s < po — 1 and

(E+—(2))ij
< LI(Z)V¢js Vi > - < LI(Z)VD(Z)W(Z)¢js Vi > +0([z)) (3.42)

n ( l I}
_ Zc;zv u §3+Z yzvz i ) + 0z

v =1

with
W) = < Ve~V > 2wy
~$1,)]'(Z) = < VD(z)W(Z)tﬁj,—lxl_*Jrv D> 12,
c, = e,
Here )
=iVl — 1
¢y = _e—(v)’ forO<v<l1,and ¢ =3. (3.43)
V22+I(y + 1) 8

Let« = Y, n, and let U, V(z) denote the « X i, matrices with entries u(vl)j and ﬁf/l)j(z), 1<j<u,
respectively. Let D(z) denote the diagonal « X k matrix : D(z) = Diag (c,z,1y,). Then,

(Ev-(@zijgu, = U DU +V(2)) + O(2)). (3.44)
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Remark that the j-th column of U is just c(¢;) defined in Theorem 3.19. Since ¢1,--- , ¢,
are linearly independents as resonant states, by Theorem 3.1 [69], U is of maximum rank g,
U D()(U + V(7)) is the matrix of the Hermitian form

r

O(,-) =< Li(xV(1 - D()W(2))-, V- >
in the basis {¢1,-- -, ¢,,} of N/(ker,2 P).

It is not clear from (3.44) whether the inverse of U*D(z)U gives the leading term of the
inverse of E,_(z), because due to different values of v, not all of the entries in U*D(z)V(z)
are of higher order in z than those in U*D(z)U. To prove that U* D(2)(U + V(z)) is invertible
for z € Us with an explicit leading term, we compute the matrix of the Hermitian form ®(, -)
in another basis {{;;1 < j < u,} constructed in the following way. Let 0 < ¢ < ¢ < -+ <
Sk < 1 be those of v € o for which there are my, linearly independent ¢;-resonant states
with mg; > 1 and Z;(;l mg, = p,. Let {gog?(e);l =1,---,ng} (ng; = mg;) be an orthonormal
basis of the eigenspace of —A;, + g(6) associated with the eigenvalue g? — (n—2)*/4. Modifying
the orthonormal basis go(vl) used before if necessary, we can assume that there are my; linearly
independent ¢;-resonant states in the form

I
e (0)
r%*’gj

0TI, 1<l<m,,

By an induction on j, we can construct from these resonant states mg; linearly independent
gj-resonant states such that

O] @)
@g;(0) 0
l,bgj)(l’e) = % + Z Cv,l’;j,l‘pz;—z(_'_) + 0L2(1) (345)
P g T<r <, ret
Here
@)
» 1 o
Cyrjid =< W’(gf)’ 2; %Vz—v
jr

Subtracting if necessary a suitable multiple of z,l/(gli’) from 1//2? which leaves unchanged the leading

term of w(gl,) one can assume without loss that
ey =0, forv=g,i> j,1 <I' <mg,. (3.46)

Let {¢; 1 < m < «} be a rearrangement of the basis {t,o(vl),v € 01,1 £ 1 £ n} such for
1<m<pu,

j-1
I )
Om = Sai‘j?a iftm= E mg, + L.
s=1
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3.5. Asymptotic expansion of resolvent of Schrodinger operator with critical potential

Correspondingly, set i, = (gl,), 1 < m < u,. The matrix of ®(-, -) in this new basis {¢,,} is given

by M(2) = U™ D' (@) (U’ + V'(2)), where V'(2) = O(Iz[°), D'(z) = Diag (¢}, zv,;)> With o an

V()
appropriate permutation of {1, - - - ,}, ¢} being defined in Proposition 3.27 and

! ’
U = (u; Dr<i<x1<j<p,»

with u;]. =¢0;jfor1 <1, j < p, and fori > yu,, ugj = 01if vo(;) < V(). In fact, u;j is given by

1 =2,
uj; = - < Vi, |x|7 7 o >
V4

and these properties follow from (3.45) and (3.46). Write the matrices in blocks

I Vi) Di(2) 0
U = Hr ’ ’ — . D)= )
( U, ) Ve ( V2(2) ) © ( 0 D@ )

One has :
D (z) = Diag (¢, z, g s C,KOZ% Im%) (3.47)

and

M(2)

D1(2) + Uy D2(2)Ur + D1 (2)V1(2) + U3 D2(2)V2(2)

D) (1 + Vi) + D1 2) U3 D2 (U + V2 (2)).

1)1(1)_17/152)2(@ is a u, X (k — p,) matrix whose entries are
’
e it Uad)

ij ot ok %
J " oty Vet

|01 U D)

forl <i<pu,1<j<«-u.Since u;j = 01if vo(iy < Vo(j)s [Dl(z)_lﬂji)g(z)]ij # 0 only when
Va(u+j) > Vo(i)- This proves that
D)~ U Da(2) = O(2).
Consequently, M(z) is invertible and its inverse is given by

(1+ V1@ + D@ Us DUy + V() D)
(1 + 00N (3.48)

Mz)™!

Since U* D(z)(U + V(z)) is related to M(z) by
U DU+ V(<)) =T MT

where 7 is the transfer matrix from {¢1,--- , ¢} to {¢1,---, ¢, }, it is also invertible. The
leading term of its inverse is (7D (z)7)~! which is of the order O(Iz%l‘l). This proves Pro-
position 3.27 when zero is not an eigenvalue of P under the assumption py > 4.
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When zero is an eigenvalue of P, we obtain with pg > 3

E.(7) = (3.49)

T*M@T + 0(z))  zC + O(|z|'*¢) )
2CF+ 032 2@, + O(lzl'e) )

where @, and C are given in Proposition 3.27. Let S (z) = (T* M(z)T)~". One has

( S(2) —S(z)ccbzl)
E, (2)

-o;'C*S(z) ot
[ O(lz/zg,, | + 1) O(|z%) ]
= IV + .
O(lz|%) O(Iz/ 2, | + 12I°)

This proves that E,_(z) is invertible for z € Us with ¢ small enough. This ends the proof. O

In the following, we use Proposition 3.27 and the formula R(z) = (1 + F(2))"'Ry(z) to study
the asymptotic expansion of R(z). Let 0 < ¢1 < --- < g, < 1 be the points in o; such that P
has m; linearly independent ¢ ;-resonant states with Z;i] mj = u,. Then there exists a basis of

gj-resonant states, ug.i), i=1,---,m;j verifying
n-2 4
leg,I'* < Vug.”, —|x|—7+€f¢§.” >=6p, 1<LU<mj, 1<j<ko, (3.50)

where cg; is given by (3.43) and 6y = 1if [ = " ; 0 otherwise. Then we have the following
result.

Theorem 3.29. (Theorem 4.6 [69]) Assume O ¢ 0. Let u = dim N # 0.Assume
po > max{4N — 6,2N + 1} if u, = 0 and
po > max{4N — 6,2N + 2} if u, # O.
One has the following asymptotic expansion for R(z) in L(—1,s;1,—s), s > max{2N — 3,2} :

N-2 &)
R@ =) Tj+ Y 22Ty + Te(@) + Tr(2) + Tur(d) + OV (3.51)
Jj=0 {V}+j<N-2

Here T (resp., Ty ) is in L(,-s;—-1,5) for s >2j+ 1 (resp., for s >2j+ 1 + {V}),
To = AF,, T, = —AFVA*.

with A = (1+FoV)™' The sum ZE;})+]'<N has the same meaning as in (3.38) and the first singular

term in this sum is z,, with coefficient T\, o given by
TV(),O = AGV(),(SVO HVOA*’
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3.5. Asymptotic expansion of resolvent of Schrodinger operator with critical potential

where v is the smallest value of v € 0. T,.(2), T/(z) describe the contributions up to the order
O(zIN=2*€) from eigenfunctions and resonant states, respectively, and T, (z) the interaction

between eigenfunctions and resonant states. One has

@

To(z) = —z Mo+ Z Z;’ZjTe;g;j
JZ=1, {7+ j<N-2
+,N-1
T,(x) = Zzg (IL,,; + Z 7Pz ™ ZlTr;g’(l’ﬁ’l’j), with
BVl

I, = ei’rcfz<-,u5.l)>u5.l), j=1,--- ko

+,N-1
Tols) = Zzg oV QF\VILj + T VO, FiVIy + > 22(ee) P2 Torgapa -
j=1 Bl

Iy is the spectral projection of P at 0, and T.(2) is of rank not exceeding Rank 1y with leading
singular parts given by v; € o :

Teyr = D AOVG,, 1, 1, V) - (VG 146, 7, VI, (3.52)
forv=(vi, -+ ,vp) € O']g with {V} < 1, (z)™® = (z)™ -+ (2, )" "0. The summation Z:g;;
is taken over all possible a, f € N¥ with 1 < |a| < Ny, Bl = 1, V= (v1, -+ ,v) € 0"1‘\,,, k' > 2|al,

for which there are at least ay values of v;’s belonging to o withv; > ¢, for 1 <k < ko, [ €N,
satisfying

I8l + {v +l_Z(ak+,8k)§k<N—1

Remark 3.30. This theorem has been studied by X.P. Wang [ 69] for the Schrodinger operator

P = Po+ V with V satisfying |V| < C{x)™P°. Note our V = ——zq(G) + W with W be a continuous
function and satisfying |W| < C{x)™P0. We can not use X.P. Wang’s result directly.

Proof. We only give the proof of (3.51) based on the representation formula R(z) = (E(z) —
E.(2)E._(2)""E_(2))Ro(z) in the case N = 2 and py > 6. The proof for general case is the same.
It is clear that the asymptotic expansion of E(z)Ry(z) gives arise to the first two sums in (3.51).
Let us study the leading singularities and the form of asymptotic expansion related to the term
E.(2)E._(z)"'E_(2)Ro(z) which is of rank < u. One has

~E,(E+- () "E_(2)
= —(T-DQRY)-SWERT +SXY)"\(S —-§X)
= —(1-DE@W@)Q(Q(-W(z) + WR)D@)W(2)Q) ™ O(1 = W(2)D(2))
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and

OWQR) = QL) +zF1 + L) + ZF)V + 0(12**)),
D) = Do+ Di(2) +Dy(z)+ 0(|Z|2+€),

in £L(1,-s;1,-5),5 < s < pg — 1, where

Li(z) = Z Zva,évﬂv’ Ly(z) = Z ZVZGV,(SVHV + Z ZVZGV,1+5V7TV

Veo veET\o| veo

Di(z) =zD1 + Z Zva,Os Dy(z) = ZZDZ + Z ZVZDV,I + Z ZVZDV,O

Ve Ve veo\oy

with o = 0 N [0, j]. It follows that

O(=W(2) + W) D(2)W(2)Q
= O{-[Li(2) + 2F1 + Ly(2]V + [L1(2) + 2F1 + L(2)]V(Do + D1 (2))L1(2)V
+L1(QVID2()L1(2) + (Do + Di(2)@F1 + La(2)]V + 0(z*)}Q

Let S(z) = Q(=W(z) + W(2)D(2)W(2)) Q. Set
vo = min{min{v € o1}, min{v — 1;v € 0 \ 01}}.

Assume first that O is not a resonance of P. Then QL (z)V = Li(z)VQO = 0 and OW(z) =
Q(zF; + Lx(2)V + O(|z]*)). We have for pg > 5

S@) = O(-GF1+L@)V+0()Q
~Q(QF\VQ)lz + Q(OF1VO) ' Lr(x)V + 0(z)]1Q

Asin [71], it can be shown that (QF;VQ)~!Q = 1)V, where Il is the orthogonal projection
onto the zero eigenspace of P. Note that Q = —TT*, it suffices to show (QF} Vo) \(-TT*) =
Iy. Since {¢;;i = 1,2,--- ,u} is a basis of the zero eigenspace of P, and TT*, QFVQ, are
linear operator no zero eigenspace of P, we need only to computer the corresponding matrixes
of TT*, QFVQ under the basis {¢;;i = 1,2, -- , u,}. we calculate the matrix corresponding to
QF,VQ first. The (i, j) entry of the matrix is

(QF1VQ4;, Vi)
= (QF1V¢;, Vi)
= > (F1Vej, =V Ve

k=T

= (¢, Pi)-

Similarly, we can get the (i, j) entry of the matrix of T77™ under the basis {¢;;i = 1,2,---,u}.
(QF1VQ¢;, Vo) = {(¢;,¢;). Hence, one has (QF; V) 'Q = V. Since 7' Ly(2) = 0(zy,) is
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3.5. Asymptotic expansion of resolvent of Schrodinger operator with critical potential

small, we obtain
No
S = -z {1 + Z(—I)J(Z_IH()VLQ(Z)VQ)J] Iy V + O(1),
=1
with Ny large enough so that Ngvg > 1.
~E;(JE+ () 'E_(2)

No
= [1 + Y (VL @V) [TV + O(D).

=1

Since Ryo(z) = Fo + L1(z) + O(z) and I1)VL(z) = 0, we obtain that
~E+(E+- () E-()Ro(2)

No
= ' [1 * Z(—l)f<z‘1HOVLz(z>V)f'] Mo + O(1).

=1

This gives the formula for 7, ;_; in the case when there is no resonant state. Since Q' W(z)Q =
2Q'F1VQ + O(|z|' ), it follows that

— (1 =To)E+()E+—(2) ' E_()Ro(2) = =(1 = Tg)Do F1 VIIp(z~' La(x))VIp + O(lel)  (3.53)

This shows that (1 — I1p)7.(z) = O(|z]"°).

Assume now that zero is a resonance of P. One has in H"~* with s > 1 sufficiently close to

S@ = SH2)+Se@)+5re(@) + Ser(z) + Oz with
Se(@ = —0.zF1 +L22)VQ.
Sz = OA-[Li(2) +zF1 + La(2)] + [L1(2) + 2F1 + La(2)]V(Do + D1(2))L1(2)
+L1(2)VID2(2)L1(2) + (Do + D1(2))(zF1 + L2(2) 1}V O,
Sre(@) = OA-(F1 + L2(2)) + L1(2)V(D2(2)L1(2) + (Do + D1(2)[zF1 + L2(2)DIV Qe
Ser(@) = Qel—(F1 + L2(2) + [2F1 + La(2)]VIDo + D1(2)1L1(2)}V O,

From the proof of Proposition 3.27,

L) =570, ()=S0

exist. We have
S@U(2) +1.(2) = O+ S (D(2)+Sre(De(2) + O(2])
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Note that I,(z) = O(|zI™ "), I(z) = O(IZ%I‘I). It follows that S ., (2)1,(z) — 0, S ,.(2)1.(2)) = O(1)
as z — 0, which implies

(S er((2) + Sre(Z)Ie(Z))2 =S o (DS re(D)1e(2) + S re(2D)e(2)S (21 (2) — O

as z — 0. Therefore, Q + S (2)1,(z) + S re(2)1.(z) is invertible on the range of O and we have
the convergent expansion :

(Q + S er@IAD) + S eI Q = @+ D (=1 (S (@) + S re(Del2))!
j=1
in £(1,-s;1,—s) for s > 1. S(z)~! is then given by
L@ + 1@)Q + Y (<1 (S erD(2) + S o)) + O(1).
j=1

It follows that

~E+(QE+ () E-(2)

= (1= Do+ Di@)Li@VI@DQ:(1 = Li@V(Do + D1(2)) + Le(2) + Ler(2) + O(L).

Here, 1,,(z) is defined by

L) = (1=(Do+ Di(2)L1(2)V)U,(2) + 1(2))
X Z(_l)j(ser(z)lr(z) + 8 1e(D1e(2)) |(Q(1 = Li(2)V(Do + D1(2))) + Qo).

j=1
I.,(2) is the contribution from the interaction between resonant states and eigenfunctions. /,(z)
has the same asymptotic expansion as in the case u, = 0. The contribution from resonant states
is given by

(1 = (Do + D1(2))L1(2)V)1(2) (1 — L1(2)V(Do + D1(2))).
By the analysis made in Proposition 3.27, Q,(=L(z)V + L1(z)V(Dg + D1(2))L1(z)V)Q, is inver-
tible on the range of Q,. Let 1, 0(z) denote its inverse. By (3.48),

Lo(2) = T(T"DiDT) 'S (1 + O(2)),

where 7" is the transfer matrix from {1, -+ , ¢, } to {¢1, - , ¢, } and D;(2) is given in Propo-
sition 3.27. Note that § = —T*V, where T* : H'~% — C* is the formal adjoint of T Let

IL(z) = T(T ' D1 (T H)T*

One can verify that

Ko mj
_ 1
L@ = Y@ 'y b NN (3.54)
=1 =1

_4j§'j
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3.5. Asymptotic expansion of resolvent of Schrodinger operator with critical potential

71 is the transfer matrix from {b1,--+ Py} to {1, , ¢, }, and suppose the (i) entry of the

this matrix is a; ;. Thenone has 3} a; j¢; = ;. It follows
=1,

TT 'O (T H)T* f

<f’¢l>
= TT'Di@ T
<f7¢/lr>
Zjaj,1<f’¢j>
= T(T 'Di@™)
2t 85
<f"701>
= TT D™ -
fivhu)

(4C§1 g%ZS‘l )_l <f’ ¢]>
= T 1 ...
(4eg, SaZey ) (S 8))

mj

Ko
_ 1 I I
YT )
=

=1 JSi

Since 1,0(z) = -I1(2)V(1 + O(|z|°)), we obtain
10(2)Ro(2) = I1.(2)(1 + O([z])).

By Theorem 3.1 [69] and (3.45), wi.l) satisfies
1 2. (!
< V'ﬁy), —2—§j|)’| : +g’<ﬁ(glj) >= 0.

It suffices to take !
I I
u§.> =——y¥ (3.55)
2¢jleg >
in order to obtain the leading part of the singularity from resonant states as stated in Theorem
3.29. For z small enough, /,0(z) has a convergent expansion

L0(2) = - [1 + Y (LQVLiV(Do + Dl<z>>L1<z>V)Qr)fJ L@V, (356
j=1

We need only to sum up to j = Ny for some Ny large enough such that the remain-

der is O(|z]N=%*¢). By Theorem 3.1 [69]and (3.45), 11, ;G,s,m, = 0 if v < g;. Therefore,

I1,(2)V(L1(z2)V(Dg + D1(2))L1(2)V)Q, can be written as

Ko
-1
Z 261
=1

+

k
yZ Jr;?,k,j]
ve(o)%,s=2,3,k=0,1
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where the notation Z;E( | = 2,3, means that the summation is taken over those v =

0.1)17
(v1,--+,v1), which has at least one component, say vy, verifying v > ¢; and J,.3; ; = 0 for

V€ (o1)® and k = 1. It follows that I,.9(z) can be expanded as

No ko
@ = (14 ) Q5 Th Y )@V + 00
=1 j=1 ve(or1)*,5=2,3,k=0,1,v1>¢;
+
= LE@ve ), 2 2722) ™ g 0k L@V + OV 7).

@eN™0,1<|a|<Np Ve 2|a|<s<3lalk<|al

Here (z5)™ = (z))™™ (g )"*o and the summation Y.* is taken over all possible v =

(v1,-++,vs) € o} for which there are at least a; of the v;’s belonging to o with v; > ¢; for all
1 <1<k
Since 1,0(2)S1(z) = 0(|ZL|) = O(Iﬁl), one has the following convergent series in
SK(Q)

L(1,-s5;1,-5), s > 1, for z € Us with 6§ > 0 small enough,

1:2) = S 0 = Io(2) + D (1) (U0(2)S 11 (2 ]10(2)
j=1

J

where

Sri() Or(=[zF1 + La(2)] + [2F1 + La(2)]V[Do + D1(2)]L1(2)
+L1(2)VID2(2)L1(2) + (Do + D1(2))(2F1 + La(z)DV O,

WO-Fi+ Y S, )V0.

Ve(orp)Y 1<5<3,j=0,1

Inserting the expansions of /,.o(z) and S, (z) into /,(z) and rearranging the terms, we obtain
+,N-1
L@ =-TL@V+ Y @™ Pl ep L@V + 0 ).
jaB et k>2lel

Note that here N = 2 and only vo~ is needed. In the case ¢, < 1, a finite sum on f is sufficient
in order to obtain an asymptotic expansion of R(z) up to O(|zN=2*¢). In the case Sk, = 1,
Zg, =2 In z. It is then necessary first to sum over all 8 in order to expand R(z) up to O(|z|V~>*€).
It is now clear that

(1 = (Do + D1()L1(2)V)1(2)Qr(1 = L1(2)V(Do + D1(2)))Ro(2)

has the asymptotic expansion of 7,(z).
For the interaction between resonant states and eigenfunctions, note that S..(z) =
—2Q:(F1V + O0(|z9))Q; and S ;.(z) = —zQ,(F1V + O(|z|9)) Q.. It follows that

1:(2)S o/ (D)1(2) —[oVQF1 VIV + O(zl/ Iz, ) + O/ (12, )*)
L@S r(@1(z) = -TRVOF1VIV + Oz /lzg, ) + OUzl/(Iz¢,, )*)
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3.6. Asymptotic behavior of the smallest eigenvalue of P(1)

which gives
Ii(z) = —(oVQF\VILE)V +T(VQ.F1VIV) + O/ Iz, |) + O/ (12, )*)

The remainder terms have asymptotic expansions of the form of 7,,(z). Theorem 3.29 is proved.
O

Theorem 3.29 shows that the asymptotic expansion of R(z) may contain any terms of the
form zvz ( )k geoywithg;<v <1, and (11 )" If P has only 1-resonant states (i.e., ko = 1
and ¢ = 1) Wthh may, however, still have an arbitrarily large multiplicity, a is absent in the

+N1

summation »; - and the sum on f is infinite and gives rise to convergent series in 1 . In this

case, T,(z) in Theorem 3.29 can be written in the form

1
7,@) = (T + D 22 ¥y ()
ve(on)*,s<No,[20,{V}+I<N—-1

where W;;;(z) is a convergent series of the form

(o)

1
Wra) = T

k=1

3.6 Asymptotic behavior of the smallest eigenvalue of P(1)

In this section, we consider a family of Schrodinger operators, P(1), which are the pertur-
bation of Py in the form
P(A) = Py + AV(x), for 1 >0

on L*(R"), n > 3. Here
Py =-A+Vi(x).

Vilx) = X%(x)@, 0 < x2 < 1 be a smooth function such that y>(x) = 1 when |x| > Ry, y2 =0
when |x| < R. Let y; be a non-negative function such that )(% + )(% = 1. V and ¢(0) are defined
in Section 2, (r, 6) is the polar coordinates on R".

By min-max principle, one has Py > 0, because Py > 0. As in Section 1, we can also show
that P(1) has negative eigenvalue when A large enough and there exists some A such that when
A > A, P(Q) has eigenvalues less then 0, and when 4 < Ay, a(P(Q)) = [0, c0). As in Section
3, to study the asymptotic behavior of the smallest eigenvalue of P(1), we need to know the
asymptotic expansion of (Py — z)7!.

Assume 0 ¢ 0. Let N € N and pg > 4N + 2. For z € C\R, z near 0, (Py — )" has the
following expansion in £(—1, s; 1, —s) with s > 2N + 1

(Po—2)" = ZZJR +Z Z Zy Z /Ry + O™ ).

k=1 ye(on)*k  j=IVI-
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Here Nj is some integer large enough depending on o, and N, and

Ry =AFop; Ri=AFIA"; Ry 0=AG, om,A%;
/\/2
Rosirpo = AGy0y "3 q(O)AGy, o7y, A

2 2
X X *
R(v,-,Vj,vk),O = AGvi,Oﬂ'vir_ZICI(e)AGVj,ONVjr_zlq(H)AGvk,Oﬂva >

2
where A = (1 — FO%Q(Q))_I-

Definition 3.31. Ser N(1) = {u; P(D)u = 0,u € H"5,¥s > 1}, for 1 > Ay. A function u €
N(O\L? is called a resonant state of P(1) at zero.

Set K(z) = [VI'2(Py — 2)"'|V|V/? for z ¢ o(Py), and K(0) = [V|'/2AF,|V|'/2.
There are some results for P(1) similar to those for P(1). We state these results without
proof (see Section 3 for details).

Proposition 3.32. Let @ < 0. Then a € o(P(1)) if and only if 77! € o(K(a)). Moreover, the
multiplicity of « as the eigenvalue of P(Q) is exactly the multiplicity of =" as the eigenvalue of
K(a).

Proposition 3.33. K(«) is a compact operator for & < 0. And K(«) converges to K(0) as & — 0
in operator norm sense.

Let

ui(a) = inf sup (W, K(a)).
PP |yl=1 el pil*

Then, u;(a) is the eigenvalue of K(a). Because K(ar) — K(0) as @ — 0, one has y;(a) converges
to the eigenvalue of K(0) by Lemma 3.11. Suppose (@) — u;, and suppose gy = -++ =
Ums U1 # MUm+1, then yg is an eigenvalue of K(0) of multiplicity m. By Lemma 3.11, one can
choose ¢;(a) (1 < i < m), which is the eigenfunction of K(a) corresponding to u;(a) such that
(¢i(@), ¢pj(a)) = 6;j and ¢;() converges. Suppose ¢;(@) — ¢; as @ — 0, then ¢;(1 < i < m)
is the eigenfunction of K(0) corresponding to u1, and (¢;, ¢ ;> =0 for 1 <1, j < m. Note that
w1 = A-! one has P(Ao); = 0 (1 < i < m) with ¢; = AF0|V|1/2¢,- € H"™5,s > 1. Because
0 is the simple eigenvalue of P(1p), then there is at most one Vi € L*(R") and the other Wi is
the 0 resonant solution of P(1p). Suppose that ; (1 < i < m) which is not belongs to L*(R™) is
vi-resonant state of P(1y), 0 < v; < 1. Then we have

Lemma 3.34. Assume 0 ¢ 0. Let ¢, i, i, i), vi are defined as above. If y; ¢ L?*, and
Wi is vi-resonant state. If v; < 1, then (@) = ca” + o(a@”) with some ¢ # 0; if vi = 1 then
ui(a) = calna + o(a) with some c # 0.
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Proof. The proof of this lemma is similar to that of lemma3.14. Because ¢; € H'™%, s > 1
~ 2
satisfies (Py + AoV)¥; = 0, then (Pg — )%61(9))% = 0. It follows that

X2
(- r—;qw)Fo)Po + V)i = 0,

since
2

X .
Poy; = r—ng)wi — AoV € H.

2
Then (Pgy + Ap(1 — %q(@)Fo)_1 V)i = 0. By Theorem 3.19, we have

ny 2 (@)
1 X e @ .
io= 3 Y -y - M@ bt 22O
, 2v r F3(=2)+v
O<v<l1 j=1
_ L Ln- 1)+v (]) SDV (9) ~
= ), Z (Potis 2 o
O<v<1 j=1
n
no 1 1 )
_ _ L(n- 1)+v (]) SDV ~
= DL D,y oAV b o
O<v<1 j=1
One has
(@, IVI'2AG, om) A V')
1 ; 1 ;
—  32/p% . (D)\ g A ()
- /10<A Vl,[/J, |x|%(n_2)_v‘pv ><A Vl//ka |x|%(n_2)_y§0v >
As the proof of Lemma 3.14, we can get the result. O

Using this lemma, we can get the following result.

Theorem 3.35. Assume 0 ¢ 0. Suppose that e{(A) is the ground state of P(1), and ¢1,\1 are
defined as in Lemma 3.34. Then,

(a). If Y € L2, then e1(1) = —c(A — o) + o(A — Ag), with some ¢ #0;

(b). If Y & L?, and g\ is v-resonant state of P(Ao), then if v/ = 1, 1 (1) = Cln(/l v )+0(/1 Ap),
and if v < 1, e1() = c((A = o)) + o((A — Ag)¥).

Moreover; if the eigenvalue of P(X), e(1), which is not ground state, approaches to 0 as
A} Ao, then e(A) has the similar asymptotic expansion as e1(Q).

The proof of this Theorem is similar to that of Theorem 3.15. We omit the proof.
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4 - LOW-ENERGY ASYMPTOTICS OF THE
SPECTRAL SHIFT FUNCTION FOR PERTURBATION
WITH CRITICAL DECAY

4.1 Introduction

In this chapter, we study Schrodinger operator P = —A + V(x) on L2(R"™) with V(x) a real
smooth function on R”, n > 3, satisfying

0
Vix) = % + O0(x)7"),  |x] > oo. (4.1)

for some ¢ € C°(S""!) and p > 2. Here x = r0 with r = |x| and 0 = & S"~!'is the unit sphere
in R”.

Let 0 < y; < 1 (j = 1,2) be smooth functions on R" such that suppy1 € B(0,R),x1(x) = 1
when |x| < Ry and

X1 + x2(x)* = 1.

Consider the operator

Po = x1(=Ax1 + x2Pox2,

on L>(R"), where Py = —A + @. Let A, denote the Laplacian on the sphere $"~!. Assume that
Ay is the smallest eigenvalue of —A; + g(6) on the sphere $"~! and verifies

A > —%(n —2)%. 4.2)

Under this assumption, one has Py > 0 on L*(R™). The operator P can be considered as a
perturbation of model operator Py. We are mainly interested in the low-energy asymptotics of
the derivative of the spectral shift function.

The spectral shift function was introduced in 1952 by the physicist I. M. Lifshitz in paper
[41] as a trace perturbation formula in quantum mechanics. Its mathematical theory was created
by M. G. Krein. Let H, Hj be a pair of self-adjoint operators in some separable Hilbert space

87



LOW-ENERGY ASYMPTOTICS OF THE SPECTRAL SHIFT FUNCTION

9H. Krein proved in [36] that if V = H — Hj is a trace class operator, then f(H) — f(Hy) is of
trace class and there exists some function & € L'(R), called spectral shift function, such that

Tr (f(H) - f(Ho)) = —ff'(/l)f(/l) da, VfeSR). (4.3)

R

Then it was extended by him in [37] (see [38], for a more complete exposition) to operators
Hy, H with a trace class difference R(z) — Ry(z). Here Ry(z) = (Hy —z) ' and R(z) = (H — 2)~\.
Yafaev ([73]) proved that if there exists some ¢ such that P + c¢I and Py + ¢l are positive and
there exists some k € N*,

P +cD™* = (Py+ D)7, < . (4.4)

then f(P) — f(Py) is of trace class and there exists some function & € L}OC(R), such that (4.3)
holds. The right hand side of (4.3) can be interpreted as (f, &), where &’ is the derivative of £ in
the sense of distributions.

The spectral shift function of Schrodinger operator has been studied by many authors (see
for example [1],[47],[49],[50],[73] ). High-energy asymptotics of the spectral shift function
was studied in these paper. The result got by Robert in [49] is the following : assume |0 V]| <
C,(x) P71l with p > n, then the spectral shift function, £(2), for the pair (—A, A+ V) satisfying :

1. £(1) is C™ in (0, c0).

(ii). j—:kf(/l) has a complete asymptotic expansion for 4 — oo,

dk

a _an/2—k-1 k) 4-j
T ~ A > a2,

j=0

In this chapter, we use the asymptotic expansion of (Py — z)~! and (P — z)~! for z near 0,
Jz # 0 to study the low-energy asymptotics of the derivative of the spectral shift function.
The main result we get is the following : assume V = @ + W, and |0{W] < Co(x) P10l with
p > max{6, n + 2} for |x| large, then

&) = Joo(D) + g(),

with |g()| = O(1~1*%) for some € > 0, as 1 — 0, Jy depends on the multiplicity of O as the
eigenvalue of P and the multiplicity of O as the resonance of P. Then we use this result and
Robert’s result to study Levinson’s theorem. If p > n + 3, we can get that

o [5]
[ €=y At a0+ e 4.5)

Here B,,/> depends on the dimension n and V. 8,2 = 0 if n is odd. N is the number of discrete
eigenvalues of P.

Here is the plan of this chapter. In Section 4.2, we study a representation formula of the
spectral shift function which is used to study Levinson’s theorem. In Section 4.3, we use the
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asymptotic expansion of (Py—2)'to get the asymptotic expansion of (Py — z)~L. The residues
of Tr(R(z) — Ro(z)) f(P) is studied in Section 4.4. Here f is some smooth function with compact
support. This result is used to study the low-energy asymptotics of the derivative of the spectral
shift function in Section 4.5. The Levinson’s theorem is also studied in this section.

4.2 A representation formula

Let P, Py be a pair of self-adjoint operators, semi-bounded from below, in some separable
Hilbert space H. Assume that for some k € N*,

(P — i)™ = (Po — i) ™l < o. (4.6)

Then for any f € S(R), f(P)— f(Po) is of trace class and there exists some function & € L' (R),

loc
called spectral shift function, such that

Tr (f(P) = f(Po)) = —jléf'(/l)f(ﬁ) da, VfeSR). 4.7)

The right hand side can be interpreted as (f, £’), where &’ is the derivative of £ in the sense
of distributions. By the Birman-Krein theory, & is related with the scattering phase, p(1) =
arg det S (1), by the formula

p(d) = 21&(A), mod 277,

and 1
)= =TrT),
2w

where T(1) = —iS (/l)*%S () is the Eisenbud-Wigner formula for the time-delay operator. We
make the following assumptions.
e The spectra of P and Py are purely absolutely continuous in ]0, +oo[

O-(PO) = O-QC(PO) = [Oa +OO[’ (48)
Oac(P) = [0, +00[. (4.9)

In particular, there are no embedded eigenvalues of P and Py in 0, +oo].
e Let f € Cj(R). There exists some & > 0 and C¢ > 0 such that

1

| Tr [(R(z) = Ro(@)f(P)]| < Cflzll—ﬂo, (4.10)

uniformly in z € C with |z| large and z ¢ o(P). Forany ¢ > 0, and 4 > 6, lig)l Tr[(R(A +
€.
i€) — Ro(A £ i€)) f(P)] exists. Moreover, there exists Cs ¢ > 0 such that

|1ilr61 Tr [(R(A + i€) — Ro(A = ie)) f(P)]| < Csp,

uniformly in A with 4 > 4.
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e The residue of the function z — Tr [(R(z) — Ro(z))f(P)] at z = 0 is finite in the following
sense :

1
Jo = —z—limlim Tr [(R(z) — Ro(2)) f(P)] dz < 0. 4.11)
2711 €—065—0 lz|=€,|3z|>6

o &() €Ly, (J0,[).

loc
o The total number, N, of negative eigenvalues of P is finite.

We have the following representation formula for the spectral shift function £(1).

Theorem 4.1. Under the above assumptions, suppose in addition that £(-) is absolutely conti-
nuous in 0, oo[. Let f € CJ(R) such that f(2) = 1 for A in neighborhood of p,,(P)U{0}. Under
the above assumptions, the limit

00 R
f FDE (DdA = lim lim f FDE (DdA
0 0—04 R—oo J5
exists and one has
Tr(f(P) = f(Po)) — fo Ef(Dda=N + Jo. (4.12)
Proof. (R(z) — Ro(z)) f(P) can be written as

(R(2) = Ro(2)) f(P) = (R(2) f(P) = Ro(2) f(Po)) = (Ro(2)(f(P) = f(Po))).

Under the condition (4.6), (R(z) — Ro(z))f(P) is of trace class for any f € S(R) and z ¢ o (P)
and the function
F(z) = Tr(R(z) — Ro(2) f(P))

is holomorphic outside o(P). We want to deduce (4.12) from Cauchy’s formula applied to F(z).

Let N be the total number of discrete eigenvalues of P (counted with the multiplicity). Let
E;,1 <i < k, be the distinct eigenvalues of P with multiplicity m;, such that E; < E; if i < j.
Then, Z;‘:l m; = N. Denote forzp € Cand 6 > 0

Y(20;0) ={z€C; |z—=z20l=0}; D(z0;0) ={z€C; [z=20[ <0 }.

Then if § > 0 small enough, o(P) N D(E;;6) = {E;} and o(Po) N D(E;;0) =0 for 1 <i<k.
Set Eg = 0. For R >> 1 and 0 < € << ¢, denote
Yre = {2 € C;lz] = R, dist(z, R;) > €}
Y(1,6,€) = {z € C;lz — Ei| = 6, dist(z, ]E1, oo[) > €}
v(i,6,€) = {z € Y(E;,0),|02 = €},0 <i < kwithi # 1
d;T' =[Ej+ V6* - € +ie,Ej.1 — V62 — € tiel, 1<j<kEwi1=Ey=0
dx(6,€) = [ V6% — € £ i€, R * ie].
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We denote by s the closed curve defined by
Tser = (U_gy(j; 6,€) U (Ui d} Ud}) U dg(6,€) U dg(5,€) Uyge.

I's.e.r is positively oriented according to the anti-clockwise orientation of the big circle yg .
Since F(z) is holomorphic in the domain limited by I's ¢ g, the Cauchy integral formula gives

1
5= F(z)dz = 0.
2700 Irser
We split the integral into four terms
| 4
— F(z)dz = I; with (4.13)
2mi Tser ]:ZI J
1 501
Il:TSE F(2) dz, Igzzrgg F(2) dz
Tt JyRe) 20 <M IyGse)
1 < 1
L=-5— ZSB F@)dz, = 5= F(7) dz
2ri < Jarua; 271 Jaz6.e0udg6.0)

By condition (4.10), one has I} = O(R™) uniformly in € > 0. For zin D(E},6), j = 1,--- ,k,
one has

R(z) =T{(E; -2+ R(2)
where I1; is the spectral projection onto the eigenspace of P associated with the eigenvalue E;
and R;(z) is holomorphic in D(E}, 6). (R (z) — Ro(2))f(P) is of trace class and z — Tr(R;(z) -
Ro(2))f(P) is holomorphic near z = E;. Therefore, for j=1,--- ,k

1 1 _
i F(2)dz > — Tr(IL; f(P))E; - 2) Vdz = —-m;f(E;j) = —m;.
T Jy(jé.e) T Jy(j:6)
as € — 0, for each 6 > 0 sufficiently small. For the integral over y(0; 6, €), the assumption (4.11)
and the choice of orientation on I's ¢ g gives

1
lim lim — F(z)dz=—-Jy.
61—I>I(1) el—I}(l) 2mi 4;(0;6,6) (Z) . 0

Therefore
limlim I, = N + Jp. (4.14)

6—0 -0

For 6 > 0 small enough and for j = 1,--- ,k, [E; + 0,Ej11 — 6] N o(P) = 0 and F(2) is
holomorphic in a connected domain containing [E; + 6, E 11 — ¢]. Thus,
Ej11—6
lim F(z)dz = 1iH(1) (F(A+ie)— F(1—ie)dA =0
€

=0 Jarud; =0 JE;+s
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which shows that lim._,¢ I3 = 0. We obtain that

lim limly =-N—-Jp. (4.15)

R—00,6—0 e—0

Decompose F(z) as
F(z) = F1(2) + F2(2)

where

F1(2) = Tr(R(z) f(P) = Ro(2)f(Po)),  F2(2) = Tr(Ro(2)(f(Po) = f(P))

By the definition of the spectral shift function,
Fi(2) = - jl; NS (DHdA = ﬁ& &' f(DdA

with £.(1) = (1 - 27" f(), f7 is the derivative of f; with respect to A and &’(-) denotes the
derivative of &£(-) in the sense of distributions. It is elementary to check that
1 S, if 1 €]6,R[;
111%736 fdz=3 2 ifa=5orR; (4.16)
-0 27 Jt -
‘ dp(0.) M (3. 0, ifAeR\[5R]

Note that &(2) is in Lllnc(]O, oo[). Making use of Fubini and the dominated convergence theo-
rems, one derives that
1 R
lim — Fi(2)dz = f ) f(DdA. 4.17)
=0 2710 Jgt(6,6)ud; (5.6) s
For F5(z), making use of the Stone’s formula for Py and the assumption (4.8), one has
o1
lim — F(2) dz = Tr(Eo(6, R)(f(P) — f(Po))
=0 2L Jgt(5,0)ud5(6.0)

where Ey(0, R) is the spectral projection of Py onto the interval [d, R]. Since

— lim EoS,R) =1
§ §—>01,R—>oo 0( )

and f(P) — f(Pyp) is of trace class, one can deduce that
Jlim TrEo(@ R)(f(Po) — f(P)) = Tr (f(Po) = f(P))

See Lemma 4.2 below. (4.15) shows that the limit

00 R
f EDf(Dda=_ lim f D f(Dda
0 6—0,R—00 Js

exists and

Tr(f(P) = f(Po)) = fo ' f(da=N + Jo. (4.18)
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Lemma 4.2. Suppose A is of trace class and f(Q1) is an operator valued function such that
Ilf (DIl < C with C independent of A. If B = s — /lhral f(Q) exists, then f(1)A converges to BA in
—AQ
FVasd— Ao In particular,
lim Trf(1)A = TrBA.
/l—)/l()

Proof. For any € > 0, let F be a finite rank operator such that ||A — F||; < €. Then

I (DA = BA[l1 < I(f(D) = B)Fl1 + [I(f(D) = B)(F = A)lhr-

The first term on the right hand side can be controlled by Ce when |1 — Ap| < ¢ with some 6 > 0
small enough, since s — /111151 f(A) = B and F is a finite rank operator. The second term also
—A0

can be controlled by Ce, since f(1d) — B is a bounded operator and ||A — F||; < €. This ends the
proof. |

Remark. In many cases, the high energy asymptotics of the spectral shift function is known.
For example, if Pp = —A and P = —A, + V(x) on R" with g a smooth metric g and a smooth
potential V(x) satisfying

10%((x) = D] + 182 V(x)] < Cofx)

for some p > n and the metric g has no trapped geodesics. Then, the asymptotic expansion of
& () as 1 — +oo is given in [49] :

£~ 7Y e (4.19)

720
where

4y D/2

y/det -1d

O T2+ 1)fn etgln) ~ldx.

If one can show that £’(1) is integrable in ]0, 1], then one can take a family of functions fz(1) =
X(f—e), where y is smooth and 0 < y(s) < 1, x(s) = 1 for s near 0, y(s) = 0 for s > 1 and expand
both the terms

fo §'(D)fr(1) da, and Tr(fr(P) — fr(Po))

in R — oo. Theorem 4.1 will give a generalized Levinson’s theorem.

The remaining part of this work is to apply Theorem 4.1 to Schroédinger operator, using the
known results on the asymptotic expansion of £’(1) as 4 — co. The main task is to study &’(2)
asd— 0.
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4.3 Some results for Py and P

In this section, we will study the operator P = —A+V|+V,. Here Vi(x) € C*(R"), (i = 1,2).
Vix) = %, if |x| > Ry for some Ry large enough. V> (x) satisfies

109 Va(x)] < Colxy Pl (4.20)

for some p > 2. Let 0 < y; < 1 (j = 1,2) be smooth functions on R" such that suppy; C
B(0,R1), x1(x) = 1 when |x| < Ry and
X107 +x2(0? = 1.

Consider the operator

Py = x1(=A)x1 + x2Pox2,
on L2(R"), where Py = —A + @. (r, 0) is the polar coordinates on R", ¢(6) is a real continuous
function. Let A, denote Laplace operator on the sphere $"~!. Assume

— A+ q(0) > —%(n -2)%, onL*S". 4.21)

We have that Py > 0 in L*(R"), if (4.21) holds. By the above notation, we can see that operator
2

P can be treated as the perturbation of Py, and if we denote V = }; |V/\(i|2 +Vy + X%Vl, then
i=1

P = Py + V. V satisfies

102V (x)| < Colxy™P71al, (4.22)

Let Ro(z) = (P — 2)~! for z ¢ o(Py). For the later purpose, we should establish the asymp-
totic expansion of diZRo(z) for z near 0. Let

2
2 n-1d »-"7E
0= s - :

: 2 =1
o — + 3 , in L°(Ry; ¥~ dr).

Then we have the orthogonal decomposition for the resolvent Ry(z),

Ro(z) = Z 0, -2'n,, z¢R

VET oo

As in [70], we first expand each d%(QV — 2)~! and estimate the remainder term. First, we will
give the kernel of diZ(QV —z)~!. The Schwartz kernel of (Q, —2)~!, 3z > 0 is (see [70])

I 0 il vizrri—i T 1 dt
Ky(r.72) = =(r)"2 " fo ¢TI o

Here J, is the Bessel function of the first kind of order v and

P2+ 72

p=pr1)=—
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Lemma 4.3. The Schwartz kernel of d%(QV -2, 97> 00n L3R,

Pldr) is d%Kv(r, T;2).

Proof. By the definition of d%(QV —2)~!, one has that for ¢ € LX(R,, " dr),

i(Qv -2)7'p(r) = 4 f K,(r,1;2)¢(n)7" dr.
dz dz Jo

(4.23)

Let U be a bounded set such that Iz > g > 0, for all z € U. To show that the kernel of

diZ(QV -2 tis d%Kv(”, T, 7), it suffices to show that for z € U, fixed r > 0, there exists a function
(1) € L'(R,), such that |d%Kv(r, 732)¢(1)T""!| < g(7). Since Iz > 0, and J,(%) = O(t'/?) as

t—0, Jv(zlt) =0@")ast — oo, one has

d ® 1
d—ZKv(r,T;z)=A(r,T; V) fo e‘gﬂm’fy(z—t)dt,

where
a i
A(r,T3v) = —(r1) "2 2715 3
For 7 < (eyr)”", one has

d n (EOrT)il 1 0
|—K,(r,T;2)] < C(TT)_2+2|f e_smTJv(—) dt+f
dz 0 2t (

€rt)7!

IA

C€63/2(}"T)_% + C(e(‘)’_1 + D(rr) 2t

For 7 > (eyr)”!, note that

R I 1 . T /l
f el§+erTtJV(2_) dt = f elp/lHTJy(_)/l—Z d/la
0 ! 0 2

and p # 0. One has, for any N > 0 large enough,
f lp/l+l 1] ( )A d/l

- @ 1 f Clinsins i @) L 1

1
~9ztrr
J (=) dt
e V(Zt) |

(4.24)

dAn dai 2 d/l‘

11+12+13 N

= &N f DY) C(l1,lz,ls,k) (J( Wiz A d
P 0

i1+ix+i3=N 0<k<i;

i +tz+13 N 0<k<iy

di
Gy [ el D Clisins s, ) iz

One has £ T ,(2) = O(|zZ"2) when z — 0, and < a5 Jv(z) O0(1z""?) when z — oo, since

J(2) = vJy(2)/z = Jy+1(2) (see [72, P.45]). It follows that

d
Id—ZKv(r, 7;2)|

142 T r (4r7) O Sutrr iy tistk (i) 1
< o0t NS Clininin bt S [T L ay
i1 +ir+i3=N 0<k<i;
N -242
—(N+2k=v+1) @ro)Y(rr)~2
< C(eo +1)—(r2+72)N
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where C is independent of r and z. Let

Ce ™" + Ce ™ + Do B, ifr < (o)
g(r) = 4r7)V —4+2
Cle kvt GO UD) 7 F(Z Jfr;)); , if T2 (n) .

Then for all z € U, one has |diZKv(r, 7;2)p(1)7" V| < g(7), and g(1) € L' (R,) if N large enough.
This ends the proof. o

In the following, we suppose that 0 ¢ o.. We use the method used in [70] to get the
asymptotic expansion of d%(f)o —z)~L. In [70], X.P. Wang got the expansion of (Py —z)~!, we
wish to take the derivative in that formula.

Proposition 4.4. Suppose that 0 ¢ 0. The following asymptotic expansion holds for z near 0

with 3z > 0.
d N-1 ‘ d
R = Z JVF + Z (s Z NGrjromy+ —R@. (426)
z VEO’N =[v]- z
in £(0,s5;0,—s),s > 2N + 1. Here
D Fyjmy € £O,50,-5), s>2j+1 (4.27)
VEO o
d
—RV@ = 0V € £0,50,-5), s>2N+1, €>0. (4.28)

dz

Proof. The proof of the first part is similarly as that in [70]. First, we will show that

d
TR = OV %) € £(0,5;0,-5), s>2N—-v+1.
Z

By Lemma 4.3 and Proposition 3.1, one has, for [ < v <[+ 1,and [ > 1,

, 1 ! -
diZRV,N@ O + NGy mdi f (1 = )~ (irt2)/ Ry j-12(62r7)d0

(l_ 1)‘ dzf ( 0)[ lf (erZ)ION l(eLIGZrT)ZJ 1- Vf( T, V)dtdg

I+11+111.

By the definition of G, y, one has
’ s _n—2
1| < ClI" N N =5 Fyvip).

Here F_;(p) is a polynomial of degree N —[ of p. It is easy to see thatif s > 2N —[+v' +1, (1 +
r)~°G, n(1 + 7)7° defines a Hilbert-Schmidt operator on L2(R,; " dr). Hence I = O(lz]” *N-1)

96



4.3. Some results for Py and P

in £(0,s;0,—5), s >2N —-[+Vv + 1.

l 1 1 _ 1
ur = f (1-9"! f irt) 2 Oy (€M) f(=s T ) didd
(-0 Jy 0 t
- f l(1 - 0! f 1(irTz)ZiON_l(eimez)tl_l_V FC vy drao
(-0 Jy 0 dz t
= Il +111,.

Using (3.9) and (3.10), we can get [[I1}] < Cylz/N r)¥*1="2, and |I11,| < CylzlY (ro)V 1= Tt
follows that 111 = O(|z|V) in £(0, 5;0, —s), s > N + 2.

1
(-n!

1 00
= ;mjk“mHif“mﬁmﬂmw+@Mmbmm

j+l
(1_1). f (-0 d(z f](lgzrm f f (ir12) O—1-1-,(¢™"™) d1de)do

= IL+1L

1
d -
11 f (1 =)' —(R, y_12(irt2)" (6zr7)d6
0 dZ

As above, we can get that II; = O(z]V) in £(0,s5;0,-s), s > N +2 and I, = O(z]N) in
£(0,5;0,—s), s>2N—1+1.
Summing up the estimate of I, I and /11, we get that

gﬁmhmMW%HMﬂw,DMJH.
74

Note that I?V,N(z) can be expressed in terms of R, y_1(z) and F, y, G, n-1. It follows

d ,
E&WhmMW%am&m,DM4q.
Z

Lemma 4.8 gives that

d
TR = 00d"7) € L0,5:0,-5), s>2N-v+1,
74
for some € > 0.
By the similar argument, we can also prove that diZRV’N(z) has the same estimate for 0 < v <
landv=17€eN.
For fixed N, let 0 < € < 1 min{v’; v € oy}. By the above computation, we can get that for

2
v € ON, d%RV,N(z) = 0(zIN1*€) € £(0, 5;0,-5), s> 2N —v + 1. For v > N, one has that

Run@) = ~(r0)”'T fo 't ’201\7(6””')Jv(2 ) Z
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By (3.10), we know that forany v > N,0 <6 < 1, IdiZON(ei’TZt)I < Cng(rrt)N+0)zN=1%9 where

Cn, 1s independent of v. Thus, we can get that

d
d_Rv,N(Z) = 0|z € £(0,5,0,-5), s>N+e+1,
Z

uniformly hold for v > N. Summing up v € 0, one can get the expansion of d%Ro(Z) in
L(0, s; 0, —s) for appropriate s. O

Definition 4.5. Let X be a complex vector space. Two norms || - 19 and || - |V on X are called
consistent if any sequence {x,} that converges to zero in one norm and which is Cauchy in the
other norm converges to zero in both norms. If || - 19 and || - || are consistent, we define

llxlls = inf{llyll @ + 12| Plx = y + z).

Let S denote the closed strip {z € C |0 < Rz < 1}, S the interior of S, and let || - |9 and
Il - IV be two consistent norms on a complex vector space X. We define .% (X) to be the set of
continuous functions f from S to X, which are analytic in S and which satisfy :

(1). if Rz = 0, then f(z) € Xo, and if Rz = 1, then f(z) € X; ;

(2). supllf@ll+ < o0

zeS
3). AN = supdllFGOND, 1GNP} < oo.
teR
Proposition 4.6. ([55, IX.4])
(a). F(X) with the norm ||| - ||| is a Banach space.

(b). Foreacht € [0, 1], the subspace
K ={f e ZXIf() =0}
is ||| - [||-closed.

Yx € X, let ||x]|® = inf{|||flll If € Z#(X), f(t) = x}. Let X; be the completion of X in the
norm || - ||V, From appendix of IX.4 [55], we know that X, = .#(X)/K,.

Theorem 4.7. (Calderon-Lions interpolation theorem) Let X and Y be complex vector spaces
with given consistent norms || - ||g?) and || - IIQ) on X and |- ||(}9) and || - II(Y]) onY. Suppose that T(-)
is an analytic, uniformly bounded, continuous, £ (X, Y.)-valued function on the strip S with
the following properties :

(1. T(): X = Y foreachte (0,1).

(2). Forally € R, T(iy) € £ (Xp, Yp) and

Mo = sup IT(iy)ll.zxo,vy) < .
yeR

(3). Forally e R, T(1 +iy) € Z(X1,Y}) and

M = Sllp”T(l + l'y)||.$(X1,Y|) < 0.
yeR
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Then for any t € (0, 1),
TOX]cY,

and
1Tl 2,y < My~ M.

We use Calderon-Lions interpolation theorem to get the interpolation spaces between
L*'(R,,) and L*2(R,,).

Lemma 4.8. (a). si,s2 are two real number. Then the interpolation spaces between Xy =
L>\(R,) and X, = L>2(R,), X;(0 < t < 1) are L*>P: with p, = (1 — )5} + 1.

(b). Suppose F(z) = O(|z|™) € L(0, s1;0,—s1) and F(z) = O(|z|™) € L(0, s2;0, —s2). Then
F(z) = O(|z/"=m*my € £(0, pr; 0, —py).

Proof. (a). Let X = L>*'(R,) N L>**(R,,). Since Cy (Ry) is dense in X, it suffices to show that
|| - I”~norm on C{(R,) coincides with || - ||,,—norm on C*(R,). Let ¢ € (0, 1) and ¢ € C(R,)

and define
Pt—s1+2(s1—sp)

Q=) 7 ¢
Then foreach z € S, f(z) € X, and

IF @2 = 11Kx) 2 @llp2s = Mol

Pt—52

WL+ ipllpzs, = 1Kx) 2 Bll2s0 = @l 2

Thus [If1Il = llgll,,» so IA1® = I/l zxk, < I18ll20- To prove l1gll20 < IV, let f € F(X)
pr—s1+2(s1—52)

and lety € CP(R"). Let g(z) =<x)" 2 ¢, H(z) = fR,, f(2)g(z) dx. Then H(z) is analytic
and bounded in §, and H(¢) = fR,, f(®y dx. By the three line theorem, one has

|H(n| < suﬁ{lH(iy)l, [H(1 + iy)l}
Y€
< Suﬂg{llf(iy)lly,x., FCL+ iy)”sz«VZ}Suﬂg{llg(iy)llev‘sl’ llg(1 + iyl 25}
ye ye
=AWl 2= -

It follows that f € L*Pt and IfOllz2ec < [lIfIll. Thus, for any ¢ € CF(R"), and f € ¢ + K;,
ol = ; i(;lfK Al > ll$ll;20. Thus the norms || - ||;2, and [|¢]|”) agree on C7. Since C3 is
cp+K,

dense in X, we conclude that X, = L>Pr.
(b). Let T(1;2) = |- D-mAE () for A € S. Apply Calderon-lions interpolation theorem
to T'(4; z), we conclude (b). O

Definition 4.9. Set N = {u; Pu =0, u € H"5, ¥s > 1). A function u € N\L? is called a
resonant state of P at zero. If N = {0}, we say that O is the regular point of P.
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Denote
k
V=1, ) €ON)S 29 = 2y Ty

k k k

W=D =Yl Wl=) vl
]:1 J:l ]:1

Here v;. =v;—[vjl-forv;>0.If v, € (op)™, i =1,--- ,k,and V; = (vj1,- -, Vim,), denote
(17)1’ e 71_/)]() = (Vl,17 e avl,mpVZ,l, e ’Vk,mk)'

Let Ry(z) = (Po—z) ' and Ry(z) = (Py—z)~'. Let W = "; q() + 2 [Vyxil?, then Py = Py—W.

By Proposition 3.21 and Lemma 3.23, we know that O is the regular point of Py and 1 — FoW
is a Fredholm operator in H" L=s s > 1. It follows that (1 — Ro(z)W)~! exists for z near 0 and
z ¢ 0(Pg). Then (Py — z)~! exists, and

Ro@) = (1-F(@) 'Ro(z) with F(z) = Ro()W. (4.29)
We use this formula to get the asymptotic expansions of Ry(z) and d%Ro(z) for z near 0.

Proposition 4.10. Suppose that 0 ¢ 0. The following asymptotic expansions hold for z near
0 with 3z > 0.

(a).
N N-1
Ri@ =Y Rj+ >z, > R+ R, (4.30)
J=0 A+IVISN - j=[V]-

in L(-1,s;1,-5),s > 2N + 1. Here

Ry = AFy; Ry =AF A"

RV,O = AGV1»5V| Ty, WAGVZJSVZ]TVZW ce AGVk’lsvankA*
forv = (vi,va, - ,vi) withA = (1-FoW)™\. Rj (resp. Ry ;) are in L(—1, s;1,—s) for s > 2j+1
(resp. for s > 2j+ {V} + 1), andR(N)(z) = 0(|z|N+E) in L(-1,5;1,-5), s > 2N + 1.

(D).

N N-1
d o d _ .
TR =Y IR+ Y Y PRy + 0N, (4.31)
. J=0 (M+[VIsN =V

in £(0,s;0,—5),s > 2N + 1, with some € > 0.

Proof. Since W is a bounded operator in £(1, —s; -1, 5), Vs > 0, thus by Theorem 3.2, one
has for z near 0, 3z > 0,

N N-1
F@) =Y dF;W+ Y 2, > G jos,mW + R (W 4.32)
=0 veon  j=vl-
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in £(1,-s;1,-s),s > 2N + 1. Since (1 — FoW)~! exists on H™%, s > 1, we can get the
asymptotic expansion of (1 — F(z))!. For z near 0, 3z > 0,

N N-1
A=FQ™" =278+ D & ), ISe+ 0wl
=0 PN j=[1-

in £(1,-s;1,—5),s > 2N + 1. Here

So=A€ L(1,-s;1,-5),s > 1;
S50 = Ale,éyl Ty, WAGV2,5V27TV2W- . -AGVk,(;VkJrkaA e L(1,-s;1,-5),s>2N +1

with V = (vq,v2, -+, v). Using (4.29) and the asymptotic expansion of (1 — F (z))~!" and Ry(z),

we can get (4.30).

(b). We only give the proof of (4.31) for N = 1. The general case can be proved similarly.
By Proposition 4.4, one has d%]?f)l)(z) = O0(|z°) in L(0, -s;0,s),s > 3. Take the derivative in
both sides of (4.32), we drive that

d d d
—F(x) = FW —(zyGy 5,1, W) + —R w
ZFQ=FW+ ) —@GumW) + K@)

veoT]

(4.33)

in £(0,-5:0,-s),s > 3. It follows that £(1 — F(z))™' = (1 - F@) ' £F@)(1 - F)™" €

-L(O’ -,

0,—s), s > 3. Moreover,

d 4
LU -F@y =AFWA+ D" Li@) + O(l)

i=1

in £(0,-s;0,—s), s > 3. Here

Thus

d d
Li(2) = Zd_ZZVSV,O; Ly(2) = Z (7205 Grnn). 06

vET] v+{V1}+{h <1

d d
L@ = ), (CauSuwe L@ = ) (almSemo
v+{V}<1 < v+{V}<1 <

d . 5
d_z(l - F(2)'Ro(2) = AF\WAF, + ; 1i(z) + 0(lz])

in £(0, 5;0,—s), s > 3, where

d
Ii(z) = Z (d_ZZV1)ZV2SV],0GV2,(SV27TV2;

vi+v<l1

d
12(Z) = Z (d_ZVl )ZVZ fo] Zf/’zS 04 ,V,Vz),OGVZ,(sVZ 7TV2 5

vi+{P1 )+ )<
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d
BR= ) (20028 690G, s

vi+H{V+r <1

4
d
L4(2) = Z (G728 300, s 15() = ZLi(Z)FO-

vi+{l+2<l i=1

Similarly, we can get that

d - d d
(1= F@) Ro@ = AF1 + 3 —-2AGuamy+ Dz 08 yoGra,my + ORI

VET| v+{<1

in £(0, s;0,—s), s > 3. Using
d d L d -
ZRo@ =21~ F(2)) '"Ro(x) + (1 = F(2))™! 7R,

we can get the asymptotic expansion of d%RO(Z) in £(0, 5;0, —s), s > 3. For v = (v1,--+ , ) and

kv < Llet i, Vi, (=2, k= 1), ¥ satisfy

V=, V1) = Vi, vi, Vi2) = (ke v).

It is easy to check that

5
d d
2. TeAGu v+ ) wraSuGum+ Y 1@ = ) (0@ + 1),

veo| V{1 i=1 P+71<1

where

k-1
d d d
L1(@) = (7-20)27, S 0Fo + Z(d—zzw)% 2, Sv0F0 + (7-2n) 235 v0Fo
i=2

k-1
d d
F52(2) = (7221027, 5 9,.0G v Ton + Z(d—zzv,»)zv,»l 25,8 3.0G v, T
i=2

d
+(d_ZZVk )ZVkS Vk,OGVk,(svk ﬂyk .
By a simple computation, one has

d
I1(2) = —-zySyoFo,

dz

d
I;2(z) = d—ZZvS 7.0Gv1.6,, T -

Note that WAFy + 1 = A and AF| + AF\WAFy = AF A" Tt follows that I;;;(2) + I;2(z) =
d%ZVRV,O . Then we prove (4.31) for N = 1. The general case is the same. This ends the proof.
g
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4.4 Residues of the trace at zero

Let f € C3(R) and f(r) = 1 for ¢ near 0. Then (R(z)—Ro(2)) f(P) is in trace class for z ¢ o-(P)
and z = T(2) = Tr [(R(z) — Ro(2))f(P)] is meromorphic on C\R;. We want to calculate the
residues of T'(z) at z = 0. First, we recall some results (see [55, IX.4] for details ).

Definition 4.11. Let A be a compact operator on a separable Hilbert space H. We say that
A€ Sy (H), 1 < p <oo,if|AlP is a trace class operator and set ||A||, = (Tr |A|P)/P.

Proposition 4.12. ([55, IX.4])Let 1 < p <ooand p™' +q~' = 1.
(a)IfA € .7, and B € .7, then AB € /1 and ||AB||; < ||All, - ||Bll4.
(b). /), is a Banach space with norm || - || .

(c). 5”1 C Yp .
(d)If A € 7, then A* € 7}, and ||A*||, = ||All.

By Proposition 4.10, one has for z near 0, 3z # 0,
Ro(2) = Ro + R)(2)
in L(-1,s;1—s), s>1.

Lemma 4.13. Let m > n/2, s > 3. For znear 0, 3z # 0, (x)*Ro(x){x)~* € .S, and there exists
a constant C independent of z, such that

[Kx)™* Ro(2){x) "l < C.
Moreover, (x)"*Ro{x)~* € .S
Proof. Let y € C’(R) such that y(r) = 1 for [r| < 1. Then {x)"*Ro(z){x)"* can be written as
() Ro(@)}x)"" = F1(2) + F2(2)
with
F1(2) = (x) " "Ro@x(Po)Xx)"";  Fa(z) = (x)""Ro(2)(1 — x(Po)){x)™".
F>(z) can be decomposed as F(z) = F»1 + F22(z), where

Fa1 = () Ro(=1)(1 = x(Po))}{x)™";

F2(2) = (1 + 2)(x) " Ro(2)(x)™" (x)* Ro(=1)(1 = x(Po)){x)™".
Here s* > 1 is a constant very close to 1. It is easy to check F3; is in .%;, and (x)“"Ro(—l)(l -
X(Pp)){x)~%isin .7, for some s’ > 1. By Proposition 4.10, one has (X) S Ro(z)(x)™* is uniformly

bounded for z near 0, Iz # 0. Then we deduce that F»(z) € .%,, and ||F2(2)|l» < C with some
constant C independent of z. Moreover from the above argument, we can see that lir% F)(2)
—
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exists in .%,. One has F(z) = (x)*Ro(2){x)™> (x)* y(Po){x)~* for s > 1. Using the similar
argument as above, we can get that ||F((z)||,, < C with some constant C independent of z, and
lir% F1(2) exists in .¥,. Therefore (x) *Ro(2){x)™* € L, {X)*Rp{x)™% € .}, and

7>

K} Ro(@)x) " llm < IF1(@)llm + 1F2()llm < C
for some C independent of z. O
Note that if u € N, then it = |V|'/2y satisfies
i+ sgnV |V|'2AFo V"% = 0. (4.35)

If u € N, then (Py + V)u = 0 with A = (1 — FoW)~!. It follows that (P + A*V)u = 0. Then we
get

A*Vu = Vu. (4.36)
Theorem 4.14. Assume 0 ¢ 0 and p > max{6,n + 2}. Suppose f satisfies the condition of

Theorem 4.1, then the residue of T(z) = Tr [(R(z) — Ro(2))f(P)] at 0 is given by

ko
Jo=No+ Sjm; (4-37)
j=1

where Ny is the multiplicity of zero as the eigenvalue of P and mj the multiplicity of  j-resonance
of zero.

Proof. Let k € N with k > 5 — 1. We decompose T(z) = —Tr [Ro(z) VR(2) f(P)] as

T(z) =T1(2) + Th(2), (4.38)
where
k-1 . )
Ti(2) = =Tr[RoVS(PYRo@) + Y (1Y (Ro(@V)Ro(2))] (4.39)
Jj=1
T2(z) = (=DM'Tr [Ro(2)VF(P)RE)(VRy(2))]. (4.40)
One has

d
Tr Ro(2)Vf(P)Ro(2) = —Tr<X>_Sd—ZRo(ZXx}_s(x}SVf (P){(x)*

s > 1. By Proposition 4.10, we can deduce that if p > n + 2,
Tr Ro(x)Vf(P)Ro(z) = Oz~ )

with some € > 0. Similarly, we can get that if p > n + 2, the other terms of 7T (z) are O(|z|~1*9).
It follows that T (z) = O(|z|~'*€). Thus the residue of T (z) at 0 is zero. Let

T5(2) = (=)' Tr [Ro(2) VR(2)(VRo(2))")].
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Then

(=D!Tr [Ro(2) VR(2)(1 = F(P))(VRo(2))")]
d
(-DFTr [<x>‘sd—ZRo(z)<x>‘~‘<x>SVR<z)<1 — F(P)(VRo(2))" HV(x)*]

T>(z) - T3(2)

for s > 1. Since 1 — f(¢) is equal to O for ¢ near 0, R(z)(1 — f(P)) is continuous in weighted
Sobolev spaces. By Proposition 4.10, and Lemma 4.13, we conclude that, if k > 5 + 1,

T2(2) — T5(z) = O(lzI7'*9),

for some € > 0, for z near 0 and Iz # 0. Therefore the residue of T5(z) — T3(z) at 0 is zero. Now,
we apply Proposition 4.10, Theorem 3.19 and 3.29 to compute the residues of 73(z).
First, we assume that 0 is not an eigenvalue of P. To begin with, remark that

d
T3(z) = (=1)*Tr [(d—zRo(Z))VR(Z)V(Ro(Z)V)k_l]-

By Proposition 4.10, one has

Ro(2) = Ro + R (2) (4.41)
in L(-1,s;1,—5), s > 1, and
d d _
—R@ =R+ Y 2R+ 0l ) (4.42)
dz . dz
+1<1

in £(0, 5;0,—s), s > 3. Denote
sgnMIVITY2 = Uy, (VT2 =0y sgn(V)IVITV2Ro|VITY? = Ry,
Let
d
S1(2) =U; d—ZRo(Z)Uz; S2(2) = UIR(QUy;  S3(z) = U1Ro(2)U>.
Then
T5(z) = (=D'Tr $1(2)S 2S5 ().

By Lemma 4.13, one has that, if k > 7 + 1, Sé“l(z) is of trace class, and ||S§_1(z)||1 = 0(1) for
z near 0 with 3z # 0. By Proposition 4.10, one has

51(2) =811+ S12(z) in L*RY)
with

d
Su@=URiUz+ ) —zUiRyUs;  S1() = 0
VI+{n<1
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in L>(R") for some € > 0. By Theorem 3.29, we can decompose S,(z) as

S2(2) = $21(2) + S22(2) + S23(z)  in L*(R")

with
ko
$2(@) = Ui ) 7/ TUs  Sx(2) = O(l),
=y
ko +,1
Sxn(z) = Z Z Z;_,] 22?2 P UNT 5051 jU>
J=1 apvl

in L2(R™), for some € > 0. It follows
T5(2) = T31(2) + T32(2) + T33(2)
where

T51(2) = (-D*Tr S1(2)S 212857 (@) Tx(2) = (=D*Tr S 11(2)S 2(2)S 57 (2);
T33(2) = (=D*Tr [(S11(2)S 23(2) + S 12(2)S21(2) + S 12(2)S 22(2) + S 12(2)S 23S 47 (2)].

Using the fact ||S§_1(Z)||1 = O(1) for z near 0 and Iz # 0, k > 5 + 1, it is easy to see that
T33(z) = O(I2I~'*€) for some € > 0. For k > 4 + 1, we have

(-DFT31(2)

ko

d -1 k—1 -1

UL D aRaoUs )2 Uil Us(S 311+ O™
[V]+{7<1 j=1

e d i i
25" 2T [U1RyUa(Ua(S 3@~ YUl 1+ O(ll ™) (4.43)
P11, ¢

1 ine. d I * — [ -
DL % € e UiRUaUnd) (830 Uau?y + O™,
1+ 711l <

Since (S5 = RE™ + 0(d™"*¢) in L2(R") and RS Ul = (=11 Uu) by (4.35), one
has

1 ine. d ! I _
Tn@=~ D, % eIk UiRyoUsUru?. Ul + O ™™).
[P <1,d ¢
k J k
For V= (vi,...,v) and } v; > ¢;, one has Z;fld_zzﬁ = O(|zJ~*¢) for some € > 0. For Y v; < Sjs

i=1 i=1
if vi = ¢}, then ¥ = ¢;. We use the normalization condition of resonant states given in Theorem
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4.4. Residues of the trace at zero

3.19 to calculate
n; m;
I I wys (1 _n2 e (!
> (RogVul Vi) = e KA VUL~ T o160
= =1

—chuwﬂ) TGP = —e ;. (4.44)
=1

In the second step, we use (4.36), and in the last step, we use (3.50). If vx < ¢;, one has

RyoVu), Vu'l) = (B,Gy, 5, nva*Vu(.l),A*Vu(.l))

~ n-2 -2
= > en (VD =T N By vadl, -y ) = (4.45)
l/
Here B, € L(—1,s;1,—s), s > 3. In the last step, we use that u() is ¢j-resonant state and (3.50).
Trivially,
Sj .
=, if ¢; € (0, 1),
S Si 1 1
' dz Sh—,  ifg=1
z zlnz '
Summing up, we proved that
_ 1 m —1+e
T3 = - ZJ} gjmj+ ==+ O™, (4.47)

with m the multiplicity of 1-resonance of zero, as z — 0. For T3,(z), from the proof of Theorem

3.29, we know that T, has the form

rivL.a,B.l,j

U, jBrgaptj O ArpapljllrjVGvs, T Bry aplj-

Here A, op,; 18 @ bounded operator in L(1,-s;1,—s), s > 3 and B,y ,p;; is a boun-
ded operator in L(—1,s;—1,s) for s > 3 and G, 5,7, B3 op,; comes from the expansion of
Li(z2)V(Dy + D1(z))Ro(z). Note that the summation Z“ 5, 1s taken over all possible @, 8 € N*
with 1 < a| < Ny, 1Bl =2 1, V1 = (v, ,vp) € 0 k’ > 2|a|, for which there are at least ay
values of v;’s belonging to oy with v; > ¢, for 1 < k < ko | € N, satisfying

Ko

B+ (1) + 1= > (aw +Bo)si < 1.

k=1

It follows that z'ﬁl(Z;) b= 0(Il |ﬂ) and zy, (z2)™* = O(|z[°) for some € > 0. For vV = (vq,..., %)

k
and }’ v; > ¢, one has
i=1

2 Z 23125, Pz —zv O(~+)

1+, )l @BV,
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k
for some € > 0. When X v; < ¢, if T34 = I1;jB,j4p, > using the same computation
i=1
made for T3(z), we can get

I I
Tr [UiRygUsU1 Ty, ap0,;U2) = (UiRygUaUnid), (S50 UaBly oy 1)
Since ui.l) is ¢j-resonant state and v, < ¢}, as (4.45), one has
(UiRsgUsUri), (S50 UaBly 51 )

~ (I _n=2 1A _n=2
D en Vul =™ g W B, —y ) = 0,
l/

Here B is a operator belongs to £(1,—s,—1,s), s > 3. If

Tr;f/’l,a,ﬁ,l,j = Ar;17| ,a,ﬁ,l,jHr,jVGV,tSvﬂvBr;?l B,

since Gys,my B,y op,,; 18 from the expansion of Li(2)V(Dy + D1(z))Ry(z), the coeflicient of
Gy, 7y Brg,apijis OE). Note A,.3, o5 11,V comes from the the expansion of (1 — (Dy +
D1(2))L1(2)V)1,(2)Q,. From the proof of Theorem 3.29, we can see that the coefficient of
Ay apl i, iV is o(|z|757*€). It follows that the coefficient of 7.y, apj 18 O(Iz|“7757) with some

€ > 0. By Theorem 3.19 and (3.50), Hr,jVGV,(;VnV =0ifv <g¢;. If v > ¢}, one has

+,1

_ o @ _
> Gwmfe™ ﬁzld_ﬁ: O(I2~"*9).

WI+<L il @Bl

Therefore T35(z) = O(|z71*€). Note that

1
— lim lim —dz=0.
271 €—06—0 lzl=€,|5z|>6 Zan

Therefore we drive (4.37) when 0 is not the eigenvalue of P.
From now on, we assume that 0 is the eigenvalue of P. S (2), S2(z), S3(2), S 11(2), S 12(2) are
the same as before. S,(z) can be decomposed as

S2(2) = $21(2) + S22(2) + S23(2) + S24(2) + S2s5(z)  in LA(R™)
with
§21(2) = Zzg U1Hr]U2+Z Z 2% 1252 (z2) P UNT 5051, U>
j=l a Byl

&)
Sn(@) =" UloUs, S22 = Y 22 Ui TegUa

M=l
+,1
524(Z) U, Z Zg (HOVQeFl VHI‘J + HerQrFl VHO + Z Z\?‘ZI'Bl(Z ) a_ﬁZlTer;V,a,ﬂ,l,j)UZa
j=1 BVl

S2s5(z) = O(lzl)
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in L2(R™), for some € > 0. It follows

T5(2) = T31(z) + T32(2) + T33(2) + T34(2) + T35(2)
where
T51(2) = (D Tr S1(2)S 212857 (2);  T3(2) = (=D Tr S 11(2)S 2(2)S 57 (2);
T33(2) = (=D'Tr S11(2)S23(2)S5 ' (2);  T3a(2) = (=1D*Tr S 11(2)S 24(2)S 5 (2);

T35(z) = (=D*Tr [(S 11(2)S 25(2) + S 12(2)S 21(2) + S 12(2)S 22(2)
+812(2) 23(2) + S 12(2)S 24(2) + S 12(2)S 25(2NS 5 (2)].

Since ||S’§‘l(z)||1 = O(1) for z near 0 with 3z # 0, k > 5 + 1, we can conclude that 735(z) =
O(|z]~1*¢) for some € > 0. Let {¢j;j = 1,---,No} be the basis of eigenspace of P associated

with the eigenvalue 0. One has
D'Tn@ = hE@+h@
with

ko

L d ]

h@=~ ) ' ZaTr WiRyUz ) UiThUa(S3@) ]
=~ Z -
1+l J=1

L) =~ 'Tr [UiRU2UiTToUa(S3(2)) ']
By the similar computation as (4.43), we can get that

No
d _ " _
h@==) D a8 (UiRylUal16;.(83@) Uag)).
J=1 P+{(M<1,jl

We drive that /1(z) = 0 using the similar argument as (4.45), since ¢; € L*(R™). One has
Tr [UiR 1 U2U ToUa(S3(2)* "' = ~(U1R 1 Ua U ¢, Ung) + O(2I)

and
(UiR\U2U1¢j, Uspjy = (UIR U2 U1 ¢, Uagpj) = (F1 Vg, V).

In the last step, we use (4.36). It is easy to check that (F Vi, Vo j» = 0;;. It follows that

N
L) = (—1>k7° +0(27').

Therefore the residues of 73,(z) is No. Note T..;.; = [pA,.5; with A, ; be a bounded operator in

L(-1,s;-1,5),s >3, and 272_1 = 0(|z|‘1+€) for some € > 0. Making use a similar computation

as T3(z), we can get T33 = O(|z]~1*9). Decompose T34(z)

T34(z) = J1(2) + J2(2) + J3(2)
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where

Ko

d e e ~ -
h@=TelUr ), —aRgUaUs ) 2 ToVQeF1VIL Us(S3(@) ']
[V]+{7i<1 N j=1

d O 1 o _ _
h@=Tr(U; ) d—zzy»Ry,oUzUlZzg}Hr,jVQrFlVH0U2<Sg(z>)k ]
[V+{<1 J=1

d Ko _ +,l o 3
J3(z) = Tr [U; Z d—ZvRv,oUzU 1 Z:Zg_/1 Z 222 P T gy 0 U2(S 321
[1+{<1 < Jj=1 a Byl

We only computer J(z). J2(z), J3(z) can be computed in a similar way. By a similar computation
as (4.43), we can get that

No
d _ . _ - -
K@=, D, % (UiRygUalUid), (S50 UaPr jVFIQ.VS)).
J=1 [P1+{(9<1, il

Note that ¢; € L*(R™). We can get that Ji(z) = 0 as (4.45). Similarly, we can conclude that
J2(2) = O(zI7'*€) and J3(z) = O(z|7'*€). T31(z) has been computed in the case 0 is not the
eigenvalue of P. This ends the proof. O

4.5 Levinson’s theorm

In this section, we use Theorem 4.1 to prove Levinson’s theorem. First, we should verify
that the conditions (4.6) and (4.10) hold. We start this section with recalling a result.

Theorem 4.15. (Theorem 2.2 [25]) Assume thatn > 3, V € LZ)/LZ and there exists some q €
[%, oo] such that

lim RPD|V|a(txperrryy = 0 (4.43)
Here B(q) = 2q — n)/(2q). Assume that u belongs to the Sobolev space Wfocl satisfies the decay
(1+1x) ™2 u(x) € L2
for some 69 > 0. If —Au + Vu = Eu for some E > 0, then u = 0.
Lemma 4.16. (a).f € CJ(R). Let F(z) = Tr [(R(z) — Ro(2))f(P)]. Then, ifp > n + 1,
IF(2)| < Cfm%’ iflzl >Ry, Bz #0.

Cy is the constant independent of z. For any 6 > 0, if p > n+3, lif(r)l Tr[(R(Axie)—Ry(Axie)) f(P)]
€.

exists if 1 > 6. Moreover, there exists Cs g > 0 such that

|1ilr61 Tr [(R(A £ i€) — Ro(A = ie)) f(P)]| < Csr
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4.5. Levinson’s theorm

uniformly hold for A with A > 6.
(b).Assume O ¢ 0 and n > 3. The total number, N, of negative eigenvalues of P is finite.
(c). (P —i)* = (Py— i)™ is of trace class, if k > n/2 — 1 and p > n.
(d). 0ac(Po) = 04c(P) = [0, +oo[.
(e). £ () € L;, (10, o).

Proof. (a). Let f; be the smooth function such that f; f = f. For z ¢ o(P) U a(Py),
Ro(2) = R(z) = Ro(2)VR(2),

one has

F(z) —Tr [Ro(2)VR(2) f(P)]

—Tr [(x) " Ro(2)(x)™" - ()*VF(PXx)” - ()7 filP)R(2){x)°]

For any s > 1/2, one has (x) *Ro(z)(x)™* = O(lz|"'/?) ([51]) for || large, Tz # 0. (x)*Vf(P){x)*
is a trace class operator, if s < ‘% Note that the principal symbol of (x)~*f1(P)R(z){x)* is
W and f; is a smooth function with compact support. By Calderon-Vaillancourt theo-
rem, one has that |[{(x)~° f1(P)R(2){x)*|| = O(lzI™") for || large enough. Choose 1/2 < s < F%,

then
! ! ! : : ' 1
IF@I < KT Ro()€) "I - K VALK [ - K0~ fi(PYR()x) || < Cf|Z|T/2-
For any A > 6, F(A + i€) = F{(A + i€) + F»(A + ie) with

Fi(A+i€) = —Tr(Ro(A + i)V f(P)Ry(A + i€)):
F2(1+ i€) = Tr(Ry(A + ie)V F(P)R(A + i€)VRy(A + ie)).

One has
Fi(A + i€) = =Tr({(x) RA(A + ie)x)™ - (x)* VF(P)x)").

If s > 3/2, there exists some Cs > 0 such that || limflo(x)‘sR(z)(/l +ie){x)’|| < Cs for A > 6.
Since (x)°V f(P){x)® is a trace class operator, if p — 2s > n. It follows that if p > n + 3,
Hiﬂ)l Fi(A +ie)| < Csr for some Csr > 0. Similarly, we can get '“E} Fr(d +ie)| < Csy. It
€. €.
follows that IIilrg F(A+ie)| < Csy. Ililrg F(A - ie)| < Cs,y can be proved in the same way.
€ €
(b). One has P = Py + V with V satisfying |V| < C{(x)7", p > 2. Let ¢(6) = ¢*(0) — g (0).
Here ¢* () is the positive part of ¢(6). By (3.8), one has that if 0 ¢ o, there exists a constant
0 < ap < 1 such that
q-(0) q* ()

< ap(—-A +
72 72

) in H'(R™).
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It follows that

2
(6
Po > (1 —a)(x1(-A)x1 +x2(-A + qr(z ))Xz) > (1 —ag)(=4) - (1 - 010)(2 Vxil®).
i=1

Then
P> (1—-ag)(-A)+W,

withW=V-(- ao)(Z?zl |V)(i|2) in H!'(R"). Then the number of negative eigenvalues of P is
less then the number of negative eigenvalues of (1—ag)(-=A)+W. Since p > 2, W € L"2(R") for
n > 3. By Cwikel-Lieb-Rosenbljum formula ([54, Theorem XIII.12]), one has that the number
of bound states, N(W), of (1 — ag)(—A) + W has the following estimate

N(W) < ¢, f I(1 = ao)” ' W2 dx.

Here ¢, is a constant only depending on n. It follows that the number of negative eigenvalues,
N, of P is finite.
(c). By a simple computation, one has

k=1
(P—iy*—(Py—i)y*=- Z(P — i)y Y(Py — i)yRH

=0
It is easy to check that (P — )~H1V(Py—i)™**/ is a trace class operator if p > n,and k > n/2 - 1.
(d). We need only to show that Py and P have no positive eigenvalues. Suppose that u € L2
such that Pou = Eu for some E > 0. It is easy to check that the conditions of Theorem 4.15 are
satisfied for ¢ = n and 0 < 69 < 1/2. Then by Theorem 4.15, one has that u = 0. This means

that Py has no positive eigenvalues. Similarly, we can get that P has no positive eigenvalues.

(e). By Theorem 1.2 [49], one has that £&(1) € C*®([Ag, o) for any Ao > 0. This ends the
proof. O

Let by(x,£) € C3(R") and D.(x, &) € C*(R") be non-negative functions such that
029b+(x, )] < Cap(x) ke P, (4.49)
bo(x,&) + b (x,6) + b-(x,6) = 1

and for some 0 < § < 1, suppb.(x, &) C {(x,&); £X 52 > —(1 = 6)}. Let bo(x, &) € C™ satisfy
(4.49) and bo(x, &) + by(x, &+ b_(x, &) = 1, and there exists some 0 < § < 1 such that
suppb.(x,&) C {(x,&); +%-& > —(1 — &)}, and b_b* = 0. Denote by a(x, D) by the pseudo-
differential operator with the symbol a(x, £) defined by

a(x, D)u(x) =

ix-& ~
S | a0t de

where u € S(R") and i is the Fourier transform of u.
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Theorem 4.17. Under the condition of Theorem 4.14. One has
E'(D) = Jod(A) + g(2),
with |g(1)| = O(A7179) for some €y > 0, as 1 | 0.

Proof. Let f € C°(R4). Then one has f(P) — f(Po) € 1, and

Tr (f(P) = f(Po)) = fR JDE' () da.

Let 6 > 0, Ry > 0, such that suppf € [6,Ro]. Let fi € CF(R) such that fi(r) = 1 for ¢ €
[-0",Ro]. Here 6" > 0. Then f(P) = f(P)f1(P)E(S,Ro), and f(Po) = f(Po)f1(Po)Eo(S, Ro).
Here E(6, Ro) (respectively, Eg(0, Rp)) is the spectral projection of P (respectively, Pg) onto the
interval [0, Ro]. Let 0 < y < 1 be a smooth function with compact support such that y(x) = 1
for [x] < 1. Let xgr(x) = x(%). By (3.7) [49], one has

1
Trlyr(f(P) = f(Po)xr]l = 5 fR Jrr(d) da

and by Theorem 3.2 [49], one has &'(1) = 21—” Igim Tg(4). By functional calculus, one has that

Ro

s — lim L SR+ ie) — R(A —i€)) dA = f(P)E(S, Ry);
e—0 27l 5

Ro
s — lim i JSD(Ry(A + i€) — Ry(A — i€)) dA = f(Po)Ey(d, Rp).
- o

It follows that

Ro

1
Xr(f(P) = f(PO)xr = s-—lim g ] F(Dxr(R(A + i€) fi(P) — Ro(A + i€) fi(Po))xr dA

Ro
-, FOXRR(A — i€) fi(P) — Ro(A — i€) fi(Po))xr dA]

= Fi(R) + F2(R).

Here

Ro
Fi(R)=s- lin’(l) ﬁ JSOYRR(A + i€) — Ry(A + i€) — R(A — i€) + Ry(A — i€)) fi(P)yr dA,
€ S
Ro

1
F2(R) = 5 - lim i s F(Dxr(Ro(A + i€) = Ro(A — i€))(/1(P) = fi(Po))xr dA.

Since f1(P) — fi(Po) € . and (x) " Ro(A + i€){x)* converge to {x) *Ro(A + i0){x) > as € | 0,
s > 1, by Lemma 4.2, one has ygr(Ro(d + i€) — Ro(d — i€))(f1(P) — f1(Pg))xr converges to
XrS(Po)(Ro(A +i0) — Ro(A — i0))(f1(P) — f1(Po))xr in .-#’!. Hence,

Ro

Tr F2(R) = f lin% ITr[xrRo(A + i€)(fi(P) = fi(Po))xr] dA.
5 e
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Since
XR(R(A £ i€) — Ro(A £ i€)) f1(P)xr = xrRo(A £ i€)VR(A + i€) f1(P)xr,

and ygrRy(A £ i€){x)~* converge to ygRo(A £ i0){x)"* in norm, {x)V* fi(P){x)* is of trace class,
if s > 1 and p > n + 2s, then

XR(R(A £ i€) — Ro(A + i€)) fi(P)xr — xrRo(A + i0)V f1(P)R(A + i0)xr

in.#"ase | 0,if s > 1 and p > n + 2s. It follows that
Ro
TeFIR) = [ ) lim STrlee(Ro(d + iO)VAGPIRC+ ie))yal d1.
) €.

Then we obtain

R = 13{51 ITr[xrRo(A + i€)(f1(P) — fi(Po))xr]
+lim ITrxr(Ro(A + ie)V fi( P)R(A + i€))xr].

Thus
&) = lim lim ITr Fi(R, €) + lim lim ITr F»(R, €)
R— 00 e—0 R—00 e—0

with

F1(R, €) = xrRo(A + i€)(f1(P) — f1(Po))xr;
F>(R, €) = xgrRo(A + i€)V f1(P)R(A + i€)xR.

By (2.10)[24], one has

(=1 X f™(Po) 1 (=~
AP - fipy = ED m{ o) - f IFiDR@Xus1Ry(M ' L(d2).
m=1 ’

Here L(dz) is the Lebesgue measure in C, and f; € Cy'(C) is an almost analytic extension
of f1 with support close to that of f; (see Chapter 8 in [17] and the references given there).
X, = -V, Xy = -VXy—1 + [ X1, Ho]. A simply proof by induction shows that X,, can be
written in the following form
X, = Z Bma(X)D,
la|l<m—1
With by (x) satisfying |[0%be(xX)] < Cpe(x)™ 1710l By Lemma 2.3 [24], one has that (A +
V=2 Xpe1(=A—2)~M*D 5 of trace class operators on L>(R") for Iz # 0 for M large enough,

of the trace norm
<Z>M/2+M+ 1

0(1) |8Z|M+2+(M+])/2 :
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For 9z # 0,

R@)Xp+1Ro(2)M*!
= R@QA+V=2(=A+V =2 X1 (=A = 2" MDA — HMHIR ()M

Since the principal symbol of (—A — Z)M”Rgl(z) is (Ezf;(_;)_z)M”, with g(x) = @(1 —)(%(r)),

then by Calderon-Vaillancourt theorem

1
I=A = " Ry < €1 + @)AM.

Here A,, is a constant depending on M. Similarly, one has |[[(-A + V - 2)(-A + V — 27l <
C(l + Ii%_zl)c‘ It follows that R(2)X741Ro(z)M*! is of trace class operators on L2(R") for 3z # 0,
of the trace norm .
—<Z> ! ( L)AM
|z M+2+(M+1)/2 RE
According to the fact dfi(x) = 0(32), we have (x)*(fi(P) — fi(Po)){x)* is a trace class

operator if p > n + 2s. Hence,Vs > 1,

o(l)

Tr F1(R, €) = Tr (x)xgRo(A + ie)(x)"*(x) (f1(P) = fi(Po)){x)".

Since s — lim)(lze = 1 on L>(R"), and X’ (f1(P) — fi(Po)){x)* is of trace class, by Lemma 4.2,
one has

im lim 3Tr F1(R, €) = ITr[(x) " *Ro(4 + i0)(x)™" - (x)*(f1(P) = fi(Po)){x)’] = O(1)

1
R— o0 €0

ford>0,p>n+2.
For s > 3/2, one has

Tr F>(R,€) = Tr [1(R, €) + Tr (R, €)
with

Tr I1(R, €) = Tr [{x)""Ro(4 + iE)X%eRO(/l +ie)(x)~" - () VL(P)x)'];
Tr I(R, €) = Tr [{x)*Ro(1 + ie))(%eRo(/l +ie){x)"" - (XY VF(PXx)* - (x)°R(A + ie)V{x)*].

Let by, b., b.be the functions introduced before this theorem. Then
TrIi(R,e) =TrI11(R,€) + Tr [12(R, €) + Tr I13(R, €).
Here

Tr I11(R, €) = Tr [{x)""Ro(A + i€)b(x, D)X%Ro(/l +ie){x) " - (X)) V(PXx)'];
Tr I12(R, €) = Tr [{x)""Ro(A + i€)b_(x, D))(,%Ro(/l +ie)(x) " - () VF(PXx)'];
Tr I13(R, €) = Tr [{x) °Ro(A + i€)by(x, D))(,%Ro(/l + ie){x)" - () VF(P)x)*].
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By Theorem 1 [26], one has (x)"*Ro(1 + i€)b,(x, D){(x)s~! converges to (x) *Rp(d +
i0)b.(x, D){(x)* "1 as 1 = 0if s > 1/2.If s > 3/2, one has

s = lim 1i?01<x>1—s)(,%ko(a +i€)(x)™ = () R(A + i0)(x) 7.

It follows that 111(R, €) converges to (x) *Ro(d + i0)b(x, D)Ro(A + i0)(x)™* - (x)*V f(P){x)* in
4 by Lemma 4.2, since (x)*V f(P){(x)* is a trace class operator if p > n + 2s. Similarly, we
can show that 13(R, €) converges to (x) *Ry(Ad + i0)bo(x, D)Ry(A + i0){(x)™* - (x)*V f(P){x)* in
71 since by(x, &) € Cy - Decompose 112(R, €) as

I2(R,e) = T1(R,€) + To(R,€) + T3(R, €)
with

Ti(R, €) = (x)*Ro(Ad + ie)b_(x, D)xgh-(x, D)Ro(A + ie)(x)™* - (x)V.f(P)(x)’;
T2(R, €) = (x)*Ro(Ad + ie)b_(x, D)y h+ (x, D)Ro(A + i€)x)™" - (x)°V f(P)(x)*
T3(R, €) = (x)"*Ro(A + ie)b_(x, D)xgho(x, D)Ro(A + i€)(x)~* - (x)'V f(P)(x)*.

Since b_(x, 5)13+(x, &) = 0, then we can get that T2(R, €) = 0. Note that bo(x,§) € C7. We can
get that

T3(R, €) — (x)*Ro(A + i0)b_(x, D)bo(x, D)Ro(A + i0){x) ™ - (x)*V f(P){x)*
in .71, as € = 0 and R — oo. Using Theorem 1 [26] again, we can deduce that
T (R, €) — (x)*Ro(A + i0)b_(x, D)b_(x, D)Ro(A + i0){x) ™" - (x)*V f(P){x)*.

in.#!, as e - 0and R — oo, if p > n + 2s. It follows that I;»(R, €) converges to {(x) *Ro(A +
i0)b_(x, D)Ro(A + i0){(x)™* - (x)*V f(P){x)* in .#!, as € — 0 and R — oo. Therefore, we obtain

I1(R, €) — (x)Ro(d +i0)}x)™ - () V f(P)(x)°
in.#!, ase > 0and R — oo if p > n + 2s and s > 3/2. It follows that

lim im Tr I; (R, €) = lirr(l) Tr <x>_SR%(/1 + ie){x)"" - (x) VF(PXx)’.

R—00 -0

Similarly, we can prove that

lim lim Tr (R, €) = lin% Tr [(x}‘sR(Z)(/l +ie){x)"" - () VF(PXx)* - (x)°R(A + ie)V{x)’]

R—00 -0

if s > 3/2 and p > n + 2s. Thus, one has

lim lim 3Tr Fi(R, €) = lin(l) ITr [Ro(A + ie)Vfi(P)R(A + i€)].

R—00 -0

116



4.5. Levinson’s theorm

Hence, one has that in the distributions sense, for A > 0,
1
&) = - 15%1 [STr [(R(A + i€) — Ro(A + i€)) fi(P)] + TTr [Ro(A + ie)(f1(P) - fi (Po))]]-

Note that [[{x) " *Ro(A + ie){x)™" - {(x)*(f1(P) — f1(Po)){x)*|l1 < C for 0 < A < 1. From the proof
of Theorem 4.14, we have for0 < A < 1,

Jo

+ + O(| + ie|"1F®),
Tvie T Qriomario oM T

Tr [(R(A + i€) — R(A + i€)) f(P)] =

For fixed 1 # 0,

m 5 -0 — €ln VA% + €2
. ; = 1um =
(A+ie)In(Ad+ie) €0 (A2 +€2)- (6% +1n Va2 + €2)

Here 6 = arctan % Note that lif{)l ﬁ = nJopo(A). It follows that
€.

limJ
€l0

&) = Jo8() + O(A™+).
This ends the proof. O
Theorem 4.18. Assume that 0 ¢ 0w, p > n+ 3 and n > 3. One has
- (51
fo € = > BTy da = ~(N + Jo) + Bupa. (4.50)
=1
B2 depends onnand V. B2 = 0 if nis odd.

Proof. Let y € C* and x(r) = 1 for r < 1. Then for R >> 1, x(3) satisfies the conditions of
Theorem 4.1.

Case 1. The dimension 7 is odd.

We first compute the second term on the left hand side of (4.12) for f = x(z).

|
fox(k)g(/l)d/l
- - _ ,ﬂ_l—j ) A ﬂ—l—j
= LX(R)[&’(/D ]Z:;CJ/U ]d/l+jz:;c]f(; XA da
= fo X(I—e)[g(/l)—ch/lf_l_J] d/l+ZEjRTJ,
J=1 =1

with &; = ¢; fooo)((t)t%‘l‘j dt. By Theorem 1.1 [49], one has

P P o
Tr (r() =) ~ ) BiRYT, .51)

Jjz1
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as R — oo. It follows

(5] (5]
© A S \ n_
f XN = > ;37 dA = ~(N +Jo) + Y (Bj = EPRT + OR™)  (4.52)
0 R =1 -

J
where € = —1 + % — [4]> 0. [ x(&)g(1) - 2] ;237771 dA can be written as

[5]
00 /l 2 0y
fo X(I—e)[g(/l)—j;cj/lz =11 da

o (5] o © (5] o
= fo X = Y eidt ™ da+ f] X = Y eidt ™1 da.

j=1 =1
Since g € C*(0, 1) and g is integrable at 0, thus

1 (5] 1 (4]
. A a_q—j _ 2_1—j
Jim fo X = Y ejat ™ da = fo [g(D) = > e;37 7 dA.

=1 =1

By Theorem 1.2 [49], one has &'(1) € C*(0, o) and

£~ Y A3 as A — oo, (4.53)

=1

By Lemma 4.17 and the above formula, we get |g(1) — Zi]l cj/lg—l—q <CA1” withy = 2— (% _
[5]) > 1. Therefore,

oo 5] o [4]
. A L _ L
lim | X = Y e ]d/l—fl [g(/l)—;cjxv 1dA.

R—+o0

j=1
It follows that

00 (5]
. A 2-1-j
GJim fo X(CIe@) = 3 et da

=1
(4]

o 1] o
= D=y izl d/l:f ‘W)=Y ¢z da
fo (D) ;cj ] ROEDNT

j=1

Let R — +o0 in both sides of (4.52) we get that §; = ¢;. Thus, we get the Levinson’s Theorem
for odd dimension.
Case 2 : The dimension 7 is even. Suppose n = 2p.
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As in case 1, we can drive that

00 1 p-1 )
fo X = Y eidr ! da

J=1
p-1

= —(N+Jy+ Z(,Bj - Ej)R%_j +Bp + OR™), (4.54)
j=1
with ¢; = fooo y(O)tP~177 dt. The first term in (4.54) can be written as :

p-1

P~ 00
5og-j 4 141
f)(( gD - ; cjA2 ] d/l+f1 X(R)[g(ﬂ) c;jA2""]dA.

j=1

~.

Note that

fw e —pz_l -/lg‘l‘j]d/l—fw 2 4 ) da
1)((Rg() llcj —1)(13)L (Dl da.

with A(1) = O(/l—lz). Formula (4.54) can be written as :

-1

1 1 p wy ©
fo MW = D esdi ™ da+ fl XD d

j=1
it © 1da 1
= —(N+J0)+jzzl(ﬂj—€‘j)Rp_j—Cpﬁ X(I_e)7+ﬂp+0(§)
As before, we can conclude that

) pzb ©
LX(E)[g(ﬂ)—;Cjﬁz_l_’] d/1+fl X(h() da
converges to
1 ) -l i o
e W)= e;ar ] d/l+f1 h(A) dA

=1

)d_/l

as R — +oo. It follows 8; = ¢&;. Since flw)((% T = ffo)((t) dT’ ~ logR, we can drive that
R

cp = 0. Hence

p-1
) =€) = > e,

=

Therefore, we get the Levinson’s theorem for even dimension :

f &) - c/lplf)d/l——(N+J0)+,8p
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Remark 4.19. The values of B, is independent of x. We use the formula in [15] to compute 3.
2 _ -
Let Vo = 3q(0) — X7, IVxil* and Vo = Vo + V. Then Py = —=A + Vo and P = —A + V),
e n=2(ie p=1I):

1 X7 ’
B1 = _(271)2)/2 jﬂ;z Vo dx II;)( () dp.

Using fR X' (o) dp =1, we get that

,31=Cf Vodx
R2

with C = #’yz.
o n=4(ie. p=2):

1 T ~
ﬁZ = (27'{)4 % ‘,[I;4 V(%(-x) + 2V0(X)V0(_x) d_x f p/\/”(p) dp

Ry

Using fR px” (o) dpo = 1, we get that
Br=C f V2 (x) + 2Vo(x)Vo(x) dx
R4

. _ 1 v
with C = a2

e n=6(i.e. p=3):
B3=C f V3(x) + 3V3(x0)Vo(x) + 3V0(x) V3 (x)
R6

1. 1.
+Z|VVO(X)|2+EVVO(X)‘VVO(X) dXI P (p) dp.
R,

Using [, p*x""(p) dp =2,

B3=C f V3(x) + 3V2(0)Vo(x) + 3Vo(x) V3 (x) + %NV(x)F + %V\Nfo(x) - VVo(x) dx.
R6
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Résumé : On étudie dans cette thése certains problémes spectraux pour des opérateurs de
Schrédinger. On s’intéresse d’abord a la limite semi-classique pour le nombre d’états propres
de I’opérateur de Schrodinger a N corps. On utilise ensuite le crochet de Dirichlet-Neumann
pour obtenir la limite semi-classique des moyennes de Riesz des valeurs propres discrétes pour
I’ opérateur de Schrodinger a N corps. On considere également le potentiel effectif de 1’ opérateur
de Schrodinger a N corps avec potentiel de Coulomb et on obtient qu’il a une décroissance cri-
tique a I’infini. On étudie donc I’opérateur de Schrodinger a potentiel critique. On s’intéresse
au seuil pour la constante de couplage et au développement asymptotique de la résolvante de
I’opérateur de Schrodinger, puis on utilise ce développement pour étudier la limite a basse
énergie de la dérivée de la fonction de décalage spectral pour une perturbation a décroissance
critique. Finalement, on utilise ce résultat avec le résultat connu pour le développement asymp-
totique a haute énergie de cette fonction de décalage spectral pour obtenir le théoreme de Le-
vinson.

Mots clé : limite semi-classique ; moyenne Riesz ; opérateur de Schrodinger a N-corps ; limite
de la constante du couplage ; résolvante ; état résonnants ; décroissance critique ; fonction de
décalage spectral ; théoeme de Levinson.

Summary : This PhD thesis deals with some spectral problems of Schrédinger operators. We
first consider the semi-classical limit of the number of bound states of unique two-cluster N-
body Schrodinger operator. Then we use Dirichlet-Neumann bracket to get semi-classical limit
of Riesz means of the discrete eigenvalues of N-body Schrodinger operator. The effective po-
tential of N-body Schrodinger operator with Coulomb potential is also considered and we find
that the effective potential has critical decay at infinity. Thus, the Schrodinger operator with cri-
tical potential is studied in this thesis. We study the coupling constant threshold of Schrédinger
operator with critical potential and the asymptotic expansion of resolvent of Schrodinger opera-
tor with critical potential. We use that expansion to study low-energy asymptotics of derivative
of spectral shift function for perturbation with critical decay. After that, we use this result and
the known result for high-energy asymptotic expansion of spectral shift function to obtain the
Levinson theorem.

Key words : semi-classical limit, Riesz means, N-body Schrodinger operator, coupling constant
limit, resolvent, resonant states, critical decay, spectrum shift function, Levinson theorem.
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