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1 - S

1.1 Semi-classical limits of the number and Riesz means of discrete
eigenvalues of the N-body Schrödinger operators

In this section, we introduce the main work which is done in Chapter 2.

PROBLEMS. First, we introduce the problems we considered in Chapter 2. Let H(h) denote
the N-body Schrödinger operator obtained by removing the mass center of Hamilton of an
N-particle system

−

N∑
j=1

h2

2mi
∆ri +

∑
1≤i< j≤N

Vi j(ri − r j). (1.1)

Here r j ∈ R
ν(ν ≥ 3) and m j > 0 denote the position and the mass of the j-th particle res-

pectively, and −∆ri is the Laplacian in the ri variables. Let Ci(i = 1, · · · , k) be the subsets of
{ 1, · · · ,N }. If Ci ∩C j = ∅, i , j and ∪k

i=1Ci = { 1, · · · ,N }, we say that D = { C1, · · · ,Ck } is a
partition (or cluster decomposition) of { 1, · · · ,N }. If D = { C1, · · · ,Ck }, we denote #D = k. If
i, j are two numbers in { 1, · · · ,N }, we write iD j if and only if i and j are in the same cluster
Cl, and ∼ iD j if they are in the different clusters. Let

∑
iD j

(resp.
∑
∼iD j

) denote the sum over all

pairs with i, j in the same ( resp. different ) cluster of D. We define

VD =
∑
iD j

Vi j; ID =
∑
∼iD j

Vi j;

HD(h) = H(h) − ID; ΣD(h) = inf σ (HD(h)) ;

aD = min
{x;x∈R(N−1)ν}

VD(x); Σcl = min
{D;#D≥2}

aD.

For each D, there is a natural decomposition of H = L2
(
R(N−1)ν

)
as H D ⊗HD with HD =

functions of ri j with iD j and H D = functions of Rq − Rl where Rq =
∑

i∈Cq

miri/
∑

i∈Cq

mi is the

center of the mass of Cq. Under this decomposition

HD(h) = hD(h) ⊗ 1 + 1 ⊗ tD(h).
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By the well known HVZ-theorem [54, Section XIII.5 ],

inf σess (H(h)) = Σh, (1.2)

where Σh = min
{D;#D=2}

ΣD(h). We say H(h) is unique two-cluster, if there is only one cluster

decomposition D with #D = 2, such that Σh = ΣD(h). The intuition is quite simple : if H(h)
is two-cluster, the threshold is basically due to a ν−dimensional Laplacian, namely the relative
kinetic energy of the two clusters. So one expects the coupling constant behavior to be a ν-
dimensional problem. We concentrate on the unique two-cluster H(h). We mainly work on
two problems in Chapter 2. The first one is the semi-classical limit of the number of discrete
eigenvalues of the N-body Schrödinger operator H(h). The second is the semi-classical limit of
Riesz means of discrete eigenvalues of H(h).

KNOWN RESULTS. The semi-classical limit of the number of discrete eigenvalues of H(h)
has been studied by many authors for N = 2 (see [4], [31], [40], [44], [54], [68]). Roughly
speaking, in the case of 3-dimensional space, R3, the result obtained by these authors can be
formulated as following : assume that V(x) is real and V(x) ∈ L3/2(R3), the number of the
negative eigenvalues, N(λ), of −∆ + λV obeys the asymptotic formula :

N(λ) = (6π2)−1
∫
|V−(x)|3/2 dx(1 + o(1)), λ→ ∞.

Here V−(x) = min{0,V(x)}. The remainder term in the result of Tamura is O(λ−1/2), under the
condition V(x) ∈ C∞(R3\{0}), V(x) ∼ |x|−d, 0 ≤ d < 2, |∂αx V(x)| ≤ CαV(x)|x|−|α| for |x| ≤ 1
and |V(x)| ≤ C〈x〉−m, m > 2, |∂αx V(x)| ≤ CαV(x)〈x〉−l|α|, 3 − m < l ≤ 1, for |x| ≥ 1. For the
proof [4] and [44] use the min-max principle combined with a technique of Dirichlet-Neumann
bracketing while [31],[40] and [54] use the Feyman-Kac formula. Tamura [68] uses pseudo-
differential operators and Fourier integral operators to study this problem for N = 2. Klaus-
Simon studied this problem (see [34]) for the 3-body Schrödinger operators. The main tool
they used in that paper is Birman-Schwinger kernel. Their result is the following : assume
ν ≥ 3, V ≤ 0, Vi j ∈ C∞0 (1 ≤ i < j ≤ 3) and in the unique two-cluster case, the number of bound
states, N(µ), of −µ∆ +

∑
1≤i< j≤3 Vi j on L2(R2ν) obeys the asymptotic formula :

lim
µ→0

µνN(µ) = τ2ν (2π)−2ν
∫

V(x)≤Σcl

[Σcl − V(x)]νdx.

Here τν is the volume of the unit sphere in R2ν.
Semi-classical limit of Riesz means of discrete eigenvalues of Schrödinger operator P(h) =

−h2∆ + V has been studies by Helffer and Robert [23], Bruneau [9]. Let Σ = lim
|x|→∞

V(x). They

studied semi-classical limit of Riesz means of discrete eigenvalues less than λ0. Here λ0 is a
constant that λ0 < Σ. They used pseudo-differential operators to get the asymptotic expansion
of

Rγ(h, λ) =
∑

e j(h)≤λ

(λ − e j(h))γ

8



1.1. Semi-classical limits of the number and Riesz means of discrete eigenvalues of the
N-body Schrödinger operators

for λ < λ0 as h→ 0. They did not get the semi-classical limit of Riesz means of all bound states
of P(h).

OUR METHODS AND RESULTS. In Chapter 2, we concentrate on the unique two-cluster
N−body Schrödinger operators. We also use the Birman-Schwinger kernel to get the semi-
classical limit of the number of discrete eigenvalues of the N-body Schrödinger operator. Hence
we recall some results of Birman-Schwinger kernel in Section 2.2. We use these results to get
the leading term of the number of discrete eigenvalues of the N−body Schrödinger operator.
We suppose that

Vi j ≤ 0, Vi j ∈ C2(Rν) and |Vi j| ≤ C〈x〉−ρ with some ρ > 2. (1.3)

First, we explain why we need the condition Vi j ∈ C2(Rν). In fact, we do not use this condition
in Section 2.2, since the condition |Vi j| ≤ C〈x〉−ρ with some ρ > 2 is enough. The condition
Vi j ∈ C2(Rν) is used to prove that Σh − Σcl = O(h). The number of discrete eigenvalues in
(−∞,Σcl) is standard Dirichlet-Neumann bracket. The difficulty is to estimate the number of
eigenvalues in the interval (Σcl,Σh).

Our result for the semi-classical limit of the number of discrete eigenvalues which is less
than Σh, N(h), of H(h) is the following :

Theorem 1.1. Let ν ≥ 3 and H0 = −h2∆ on L2
(
R(N−1)ν

)
. Suppose (1.3) holds. Then

N(h) = h−(N−1)ντ(N−1)ν (2π)−(N−1)ν
∫

V(x)≤Σcl

[Σcl − V(x)](N−1)ν/2dx (1 + o(1)) (1.4)

where τ(N−1)ν is the volume of the unit sphere in R(N−1)ν.

In Section 2.4, we use Dirichlet-Neumann bracket to study the Riesz means of discrete
eigenvalues of the N-body Schrödinger operator. We suppose that

Vi j ∈ C∞0 (Rν) and Vi j ≤ 0. (1.5)

Define the Riesz means of the N-body Schrödinger operator as

Rγ(h,Σh) =
∑

e j(h)≤Σh

|e j(h) − Σcl|
γ

for γ ≥ 0. We first consider the semi-classical limit of Riesz means of discrete eigenvalues of
the 2-body Schrödinger operator. Then we use this result to estimate

∑
e j(h)≤Σcl |e j(h) − Σcl|

γ.
Since ∑

Σcl≤e j(h)≤Σh

|e j(h) − Σcl|
γ ≤ N2(h)(Σh − Σcl)γ

and Σh−Σcl = O(h), we can get the estimate of
∑

Σcl≤e j(h)≤Σh

|e j(h)−Σcl|
γ. Here N2(h) is the number

of eigenvalues in (Σcl,Σh).
We get the following result :
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Theorem 1.2. Let ν ≥ 3. Let H0 = −h2∆ on L2(R(N−1)ν). Suppose (1.5) holds. Then we have

Rγ(h,Σh) = C(γ, ν)h−(N−1)ν
∫
{x; V(x)≤Σcl}

(Σcl − V(x))γ+
(N−1)ν

2 dx (1 + O(ht)), (1.6)

where C(γ, ν) = (2π)−(N−1)ντ(N−1)νCγ,(N−1)ν, Cγ,(N−1)ν = γ
∫ 1

0 βγ−1(1 − β)n/2 dβ and τ(N−1)ν is
the volume of the unit sphere in R(N−1)ν, t = min{ 12 , γ}.

NEW POINTS IN METHODS AND RESULTS. Our first result is the generalization of the
result of Klaus-Simon’s [34]. In their paper, the conditions on Vi j are too strong and they only
consider the 3-body case. Our conditions on V are much weaker than theirs and we get the
result for general N. In the second part of Chapter 2, we get the semi-classical limit of Riesz
means of all discrete eigenvalues of H(h).

1.2 Coupling constant limits and the asymptotic expansion of re-
solvent of Schrödinger operators with critical potentials

PROBLEMS. In Chapter 3, we consider a family of Schrödinger operators

P(λ) = P0 + λV

in L2(Rn). Here P0 = −∆ +
q(θ)
r2 on L2(Rn) and (r, θ) is the polar coordinates on Rn. V ≤ 0 is a

non-zero continuous function and satisfies

|V(x)| ≤ C〈x〉−ρ0 , for some ρ0 > 2. (1.7)

In Section 2.5 (Chapter 2), we study the N-body Schrödinger operator with Coulomb potential,
and we get that the effective potential has the following expansion for ρ large (see Section 2.5
(Chapter 2)) :

Ie f f (ρ) =
f1(ρ̂)
|ρ|2
+

f2(ρ̂)
|ρ|3
+ o(

1
|ρ|4

)

with ρ̂ = ρ
|ρ| , if C1 ≡

∑
i∈a1

ei = 0 or C2 ≡
∑

i∈a2

ei = 0. ei is the charge of i-th particle. f j(ρ̂)( j =

1, 2) are the continuous functions of ρ̂. Hence, we study the Schrödinger operators of the form
P(λ) = P0 + λV . We suppose that

− ∆s + q(θ) ≥ −
1
4

(n − 2)2, on L2(Sn−1). (1.8)

Here Sn−1 is the unit sphere in Rn. Under this assumption, the operator P0 is a positive operator
on L2(Rn) (see Chapter 3 for details). Set

σ∞ = {ν; ν =

√
λ +

1
4

(n − 2)2, λ ∈ σ(−∆s + q(θ))}, σk = σ∞ ∩ [0, k], k ∈ N.

10



1.2. Coupling constant limits and the asymptotic expansion of resolvent of Schrödinger
operators with critical potentials

If q = 0, then P0 = −∆. In this case, σ∞ consists of either only half-integers (n odd) or only
integers (n even). In particular, for Laplace operator −∆, one has σ1 = {0, 1}, n = 2 ; σ1 = {

1
2 },

n = 3 ; σ1 = {1}, n = 4 ; σ1 = ∅, n = 5.
We show that the discrete eigenvalue, ei(λ), of P(λ) converges to 0, as λ ↓ λ0 for some

λ0 > 0 in Chapter 3. We study the asymptotic behavior of ei(λ) as λ ↓ λ0.
Let Hr,s(Rn), r ∈ Z, s ∈ R, denote the weighted Sobolev space of order r with volume

element 〈x〉2s dx.

Definition 1.3. Set N(λ) = {u; P(λ)u = 0, u ∈ H1,−s,∀s > 1}, for λ ≥ λ0. If N(λ)\L2 , {0}, we
say that 0 is the resonance of P(λ). A non-zero function u ∈ N(λ)\L2 is called a resonant state
of P(λ) at zero. dimN(λ)\L2 is called the multiplicity of 0 as the resonance of P(λ).

Let λ1 be the value at which e1(λ) converges to 0. e1(λ) is the smallest eigenvalue of P(λ). In
Chapter 3, we show that 0 is not the eigenvalue of P(λ1). The multiplicity of 0 as the resonance
of P(λ1) is also studied in that chapter.

In Chapter 3, we also consider the Schrödinger operator P = −∆ + Ṽ . Here Ṽ = V1 + V2.
V1 ∈ C(Rn) and V1(x) = q(θ)

|x|2 for |x| > R. R > 0 is the constant. q(θ) satisfies (1.8). V2 ∈ C(Rn)
satisfies (1.7). Let

P̃0 = χ1(−∆)χ1 + χ2P0χ2.

Here 0 ≤ χ1 ≤ 1 is a smooth function on Rn such that χ1(x) = 1 for |x| ≤ R, suppχ1 ⊂ {x; |x| ≤
R1} for some R1 > R > 0 and χ2

1 + χ
2
2 = 1. Then P can be treated as the perturbation of P̃0 and

P also can be treated as the perturbation of P0. One has

P = P̃0 + W̃ = P0 + V.

Here

V = Ṽ −
q(θ)
r2 , W̃ = V +W, W =

χ2
1

r2 q(θ) +
2∑

i=1

|∇χi|
2.

Then W̃ is a continuous function and satisfies |W̃ | ≤ C〈x〉−ρ0 . V has singularity at 0. We study
the asymptotic expansion of (P − z)−1 for z near 0, =z , 0 in Chapter 3.

KNOWN RESULTS. Klaus-Simon [33] studied the asymptotic behavior of eigenvalue, ei(λ),
of H(λ) = −∆ + λV , λ near λ0. λ0 is the value at which ei(λ) → 0 as λ ↓ λ0. They got the
leading term of ei(λ) using Birman-Schwinger kernel. The result depends on the dimension of
the space. If the dimension of the space n = 3,

ei(λ) = −c(λ − λ0)2 + O((λ − λ0)3)

or
ei(λ) = −c(λ − λ0) + O((λ − λ0)3/2)

11
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and the ground state is in the first case. If n ≥ 5, and n is odd, then

ei(λ) = a(λ − λ0)2 + O((λ − λ0)3).

If n ≥ 6, and n is even, then

ei(λ) =
∞∑

n=2

∞∑
m=0

cnm[(λ − λ0)1/2]n[(λ − λ0)1/2 ln(λ − λ0)]. (1.9)

If n = 4, then ei(λ) obeys (1.9) or

ei(λ) =
q(λ − λ0)

[ln(λ − λ0)]2 + lower order term

Fassri-Klaus [20] also studied this problem for Schrödinger operator −∆ + V + λW with V
periodic. They also used Birman-Schwinger kernel in their paper.

The operators of P0 and P have been studied by Carron [14] and X.P. Wang [69, 70]. In
[14], Carron gave some properties of (P0 − z)−1 for z near 0 and got the formula for the jump at
zero of the spectral shift function associated with the pair (P0, P). In [70], X.P. Wang gave the
asymptotic expansion of (P0 − z)−1 for z near 0, =z , 0 which is used to study the asymptotic
expansion of (P− z)−1 for z near 0, =z , 0. In [69], asymptotic expansion of (P− z)−1 has been
studied for =z , 0, z near 0.

OUR METHODS AND RESULTS. In the first part of Chapter 3, we use Birman-Schwinger
kernel to study the asymptotic behavior of ei(λ) as λ ↓ λ0. To get the leading term of ei(λ) as
λ ↓ λ0, we need to know the asymptotic expansion of (P0 − α)−1 for α near 0, α < 0, which
has been studied by X.P. Wang ([70]). We recall some results of P0 and give some properties
of Birman-Schwinger kernel, |V |1/2(P0 − z)−1|V |1/2, in Section 3.2(Chapter 3). For the technical
reason, we let V ≤ 0 when we study the asymptotic behavior of discrete eigenvalues. We show
that there exists a one-to-one correspondence between the discrete eigenvalues of P(λ) and the
discrete eigenvalues of

K(α) = |V |1/2(P0 − α)−1|V |1/2, α < 0.

Therefore, we study discrete eigenvalues of K(α) in Section 3.3 (Chapter 3), and then get the
asymptotic behavior of discrete eigenvalues of P(λ). Our main result is the following :

Theorem 1.4. Assume 0 < σ∞ and n ≥ 3. Suppose that e1(λ) is the ground state energy (the
smallest eigenvalue) of P(λ). φ is some function in L2(Rn). If ρ0 > 6, one of three exclusive
situations holds :

(a). If σ1 = ∅, then e1(λ) = −c(λ − λ0) + o(λ − λ0), c = (λ0||F0|V |
1
2φ||)−2 , 0 ;

(b). If ν0 = 1, then e1(λ) = −c λ−λ0
ln(λ−λ0) + o( λ−λ0

ln(λ−λ0) ), c = λ−2
0 〈φ, |V |

1/2G1,0π1|V |1/2φ〉−1 , 0 ;

(c). If ν0 < 1, then e1(λ) = c((λ−λ0)
1
ν0 )+o((λ−λ0)

1
ν0 ), c = λ−2

0 〈φ, |V |
1/2Gν0,0πν0 |V |

1/2φ〉−1 ,

0.

12



1.3. Low-energy asymptotic of the spectral shift function for perturbation with critical decay

Similarly, we can get the asymptotic behavior of the other discrete eigenvalues of P(λ).
In Section 3.4, we use the fact that discrete eigenvalues, µi(α), of K(α) are continuous and
monotonous with respect to α to get the result for the multiplicity of 0 as the resonance of
P(λ0). Here λ0 is the value at which the smallest eigenvalue of P(λ) converges to 0.

Theorem 1.5. Suppose
∑

0<ν≤1
nν = m. If m > 0, then there exists λ1 > λ0 such that for all

λ0 < λ < λ1, the number of eigenvalues, less than 0, of P(λ) is equal to the dimension ofN(λ0).

In Chapter 3, we also study the asymptotic expansion of (P − z)−1 for z near 0, =z , 0,
which is used to study the spectral shift function. X.P. Wang ([69]) has studied the asymptotic
expansion of (P0 + V − z)−1 with V satisfying |V | ≤ Cα〈x〉−ρ0 . Since our V = Ṽ − q(θ)

r2 with

Ṽ satisfying the condition (1.7), we can not use X.P. Wang’s result directly. Note
χ2

1
r2 q(θ) ∈

L(1,−s;−1, s), ∀s > 0 for n ≥ 3. We can use X.P. Wang’s method to get the asymptotic
expansion of (P − z)−1. For z ∈ C\R, z near 0, we have

(P0 − z)−1(P − z) = 1 + F(z),

with

F(z) = (P0 − z)−1V.

In Section 3.5 (Chapter 3), we prove that 1+F(0) is a Fredholm operator in L(1,−s; 1,−s). Let
N = {u; Pu = 0, u ∈ H1,−s,∀s > 1}. If N = {0}, then (1 + F(z))−1 exists for z near 0, =z , 0.
We can get the asymptotic expansion of (P− z)−1 by formula (P− z)−1 = (1+F(z))−1(P0− z)−1.
If N , {0}, we solve a Grushin problem associated to P − z, and get that

(P − z)−1 = E(z) − E+(z)E+−(z)−1E−(z)

for z near 0. Here E(z), E+(z), E−(z) are holomorphic near 0. Hence, the main task is to study

the asymptotic expansion of E+−(z)−1 near 0. Note
χ2

1
r2 q(θ) < L(1,−s; 1,−s) for n = 2. There-

fore, we can not get the expansion of (P − z)−1 by this method for n = 2.

1.3 Low-energy asymptotic of the spectral shift function for per-
turbation with critical decay

PROBLEMS. In Chapter 4, we study the spectral shift function. The spectral shift function was
introduced in 1952 by the physicist I. M. Lifshitz in paper [41] as a trace perturbation formula
in quantum mechanics. Its mathematical theory was created by M. G. Krein. Let P, P0 be a pair
of self-adjoint operators in some separable Hilbert space H. M. G. Krein proved in [36] that if
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V = P − P0 is a trace class operator, then ∀ f ∈ S(R), f (P) − f (P0) is of trace class and there
exists some function ξ ∈ L1(R), called spectral shift function, such that

Tr ( f (P) − f (P0)) = −
∫
R

f ′(λ)ξ(λ) dλ, ∀ f ∈ S(R). (1.10)

Then it was extended by him in [37] (see [38], for a more complete exposition) to operators
P0, P with a trace class difference R(z) − R0(z). Here R0(z) = (P0 − z)−1 and R(z) = (P − z)−1.
Yafaev ([73]) proved that if there exists some c such that P + cI and P0 + cI are positive and
there exists some k ∈ N∗,

||(P + cI)−k − (P0 + cI)−k||tr < ∞. (1.11)

then f (P) − f (P0) is of trace class and there exists some function ξ ∈ L1
loc(R), such that (1.10)

holds. The right hand side of (1.10) can be interpreted as 〈 f , ξ′〉, where ξ′ is the derivative of ξ
in the sense of distributions. For simplicity we assume that P0, P are bounded below. By the
Birman-Krein theory ([6]), ξ is related with the scattering phase, ρ(λ) = arg det S (λ), by the
formula

ρ(λ) = 2πξ(λ), mod 2πZ,

and
ξ′(λ) =

1
2π

Tr T (λ),

where T (λ) = −iS (λ)∗ d
dλS (λ) is the Eisenbud-Wigner formula for the time-delay operator.

Let 0 ≤ χ1 ≤ 1 be a smooth function on Rn such that χ1(x) = 1 for |x| ≤ R, suppχ1 ⊂

{x; |x| ≤ R1} for some R1 > R > 0 and χ2
1 + χ

2
2 = 1. Let P0 = χ1(−∆)χ1 + χ2(−∆ + q(θ)

r2 )χ2 and
P = P0 + V with V satisfying

|∂αx V(x)| ≤ Cα〈x〉−ρ−|α| (1.12)

for some ρ > 2. We study the spectral shift function, ξ(λ), of the pair (P0, P).
We are mainly interested in the low-energy asymptotics of the derivative of the spectral

shift function. We use the asymptotic expansion of R0(z) = (P0 − z)−1 and R(z) = (P − z)−1 for
=z , 0, z near 0, to study the asymptotic behavior of ξ′(λ) for λ near 0. After that, we use this
result to prove the Levinson’s Theorem. The Levinson’s theorem is a fundamental theorem in
quantum scattering theory, which shows the relation between the number of bound states and
the phase shift at zero momentum. Levinson first established and proved this theorem in [39]
for the Schrödinger equation with a spherically symmetric potential V(r).

KNOWN RESULTS. The spectral shift function for Schrödinger operators has been studied
by many authors (see for example [1],[11],[12],[47], [49],[50],[73] ). High-energy asymptotics
of the spectral shift function was studied in these paper. The result got by Robert in [49] is the
following : assume |∂αx V | ≤ Cα〈x〉−ρ−|α| with ρ > n, then the spectral shift function, ξ(λ), for the
pair (−∆,∆ + V) satisfying :

14



1.4. Notation

(i). ξ(λ) is C∞ in (0,∞).
(ii). dk

dλk ξ(λ) has a complete asymptotic expansion for λ→ ∞,

dk

dλk ξ(λ) ∼ λn/2−k−1
∑
j≥0

α(k)
j λ
− j.

Levinson’s theorem has been studied by many authors (see [8],[42], [32],[18] and references
therein). In [8], Bolle got the Levinson’s theorem for V satisfying 〈x〉nV ∈ L1(Rd)(d = 1, 2, 3)
for appropriate n, and V ∈ L4/3(R2) for d = 2, such that the absence of positive embedded ei-
genvalues and of the singular continuous spectrum of −∆+V is guaranteed. Levinson’s theorem
for the nonlocal interaction in one dimension was studied in [18].

OUR METHODS AND RESULTS. In Chapter 4, we use the asymptotic expansion of (P0 −

z)−1 and (P − z)−1 for z near 0, =z , 0 to study the low-energy asymptotics of the derivative of
the spectral shift function.

Our main result is the following :

Theorem 1.6. Suppose n ≥ 3 and 0 < σ∞. If (1.12) holds for ρ > max{6, n + 2}, one has

ξ′(λ) = J0δ(λ) + g(λ),

with |g(λ)| = O(λ−1+ε0) for some ε0 > 0, as λ ↓ 0. Here J0 = N0 +
∑k0

j=1 ς jm j where N0 is the
multiplicity of zero as eigenvalues of P and m j the multiplicity of ς j-resonance of zero.

Using this Theorem and the asymptotic expansion of ξ′(λ) for λ large (see [49]), we can get
the Levinson’s Theorem.

Theorem 1.7. Suppose n ≥ 3 and 0 < σ∞. If (1.12) holds for ρ > n + 3, one has

∫ ∞

0
(ξ′(λ) −

[ n
2 ]∑

j=1

c jλ
[ n

2 ]−1− j) dλ = −(N + J0) + βn/2. (1.13)

βn/2 depends on n and V and βn/2 = 0 if n is odd.

1.4 Notation

We present some notations used is this thesis.

arg : the argument of a complex number
C∞(Ω) : the set of infinitely differentiable functions on an open set Ω
C∞0 (Ω) : the subset of C∞(Ω) consisting of functions with compact support
C : the field of complex numbers

15
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dim : the dimension of a linear set
Hr,s(Rn) : weighted Sobolev space of order r with volume element 〈x〉2s dx
= : the imaginary part of a complex number
inf : the infimum
L(Hr,s,Hr′,s′)(L(r, s; r′, s′)) : the set of bounded operator form Hr,s to Hr′,s′

Lp(p ≥ 1) : the space of functions whose p−th power is integrable
ln z : ln |z| + iargz with 0 ≤ argz < 2π
Rd : Euclidean space of dimension d
R+ : [0,∞)
<; the real part of a complex number
S(Rn) : the set of Schrwarz function
Sp : the set of operator whose p−th power is a trace class operator
Sn−1 : unit sphere in Rn

sgn : sign
sup : supremum
σ(·) : the spectra of an operator
σpp(·) the point spectra of an operator
Tr : the trace of an operator
s − lim : the strong limit of vectors and operators
zν : eν ln z

Z the set of integers
〈·, ·〉 : scalar product on L2(Rn) or on L2(R+; rn−1dr)
(·, ·) : scalar product on L2(Sn−1)
− ∆s : the Laplace operator on the unit sphere in Rn

|| · || : the norm of an operator
|| · ||tr : the trace norm of an operator
|| · ||p : norm in Sp or Lp

〈x〉 : (1 + x2)1/2
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2.1 Introduction

In this chapter, we consider the N-body system of ν−dimensional (ν ≥ 3) particles on
L2(R(N−1)ν) :

H = H0 + V;

V =
∑
i< j

Vi j(ri − r j), ri ∈ R
ν.

Here H0 is the operator resulting from removing the center of mass from
N∑

i=1
−(2mi)−1∆i. mi is

the mass of the i−th particle, ∆i is the Lpalacian in the ri variables. We discuss the semi-classical
limits of the number and the Riesz means of discrete eigenvalues of N-body Schrödinger ope-
rators H(h) = h2H0 + V .

The semi-classical limit of the number of discrete eigenvalues has been studied by many
authors for N = 2 (see [4], [31], [40], [44], [54], [68]). Roughly speaking, in the case of 3-
dimensional space, R3, the result obtained by these authors can be formulated as following :
assume that V(x) is real and V(x) ∈ L3/2(R3), the number of discrete eigenvalues less than 0,
N(λ), of −∆ + λV obeys the asymptotic formula :

N(λ) = (6π2)−1
∫
|V−(x)|3/2 dx(1 + o(1)), λ→ ∞.

Here V−(x) = min{0,V(x)}. The remainder term in the result of Tamura is O(λ−1/2) under the
condition V(x) ∈ C∞(R3\{0}), V(x) ∼ |x|−d, 0 ≤ d < 2, |∂αx V(x)| ≤ CαV(x)|x|−|α| for |x| ≤ 1
and |V(x)| ≤ C〈x〉−m, m > 2, |∂αx V(x)| ≤ CαV(x)〈x〉−l|α|, 3 − m < l ≤ 1, for |x| ≥ 1. For the
proof [4] and [44] use the min-max principle combined with a technique of Dirichlet-Neumann
bracketing while [31],[40] and [54] use the Feyman-Kac formula. Tamura [68] uses pseudo-
differential operators and Fourier integral operators to study this problem for N = 2. The semi-
classical limit of discrete eigenvalues for the 3-body Schrödinger operator has been studied by
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Klaus-Simon (see [34]). The main tool they used in that paper is Birman-Schwinger kernel.
Their result is the following : Assume ν ≥ 3, V ≤ 0, Vi j ∈ C∞0 (1 ≤ i < j ≤ 3). Denote
ai j = min

x∈Rν
Vi j(x), Σcl = min

i, j
ai j. If there exists only one ai j, such that ai j = Σcl, then the number

of discrete eigenvalues, N(µ), of −µ∆+
∑

1≤i< j≤3 Vi j on L2(R2ν) obeys the asymptotic formula :

lim
µ→0

µνN(µ) = τ2ν (2π)−2ν
∫

V(x)≤Σcl

[Σcl − V(x)]νdx.

Here τν is the volume of the unit sphere in R2ν.
Semi-classical limit of Riesz means of discrete eigenvalues of Schrödinger operator P(h) =

−h2∆ + V has been studied by Helffer and Robert [23], Bruneau [9]. Let Σ = lim
|x|→∞

V(x). They

studied semi-classical limit of Riesz means of discrete eigenvalues less than λ0. Here λ0 is a
constant less than Σ. They used pseudo-differential operators to get the asymptotic expansion
of

Rγ(h, λ) =
∑

e j(h)≤λ

(λ − e j(h))γ

for λ < λ0 as h→ 0. e j(h) is the discrete eigenvalue of P(h). They did not get the semi-classical
limit of Riesz means of all bound states of P(h).

Here is the plan of this chapter. We use the Birman-Schwinger kernel to study the number
of discrete eigenvalues of the N-body Schrödinger operator H(h). For the unique two-cluster
Schrödinger operator, we introduce a suitable Birman-Schwinger kernel in Section 2.2 and
recall the results of the Birman-Schwinger kernel. In Section 2.3, we use these results to dis-
cuss the semi-classical limit of the number of discrete eigenvalues of the unique two-cluster
Schrödinger operator H(h). The result we get is the following : if V’s lie in C2(Rn), and are
negative, |Vi j| ≤ C〈x〉−ρ with some ρ > 2, then

N(h) = h−(N−1)ντ(N−1)ν (2π)−(N−1)ν/2
∫

V(x)≤Σcl

[Σcl − V(x)](N−1)ν/2dx(1 + O(1)). (2.1)

for ν ≥ 3. Here N(h) is the number of eigenvalues of H(h) in (−∞,Σh). The number of eigen-
values of H(h) in (−∞,Σcl) is standard Dirichlet-Neumann bracketing [53, Section 8.15]. The
difficulty is to estimate the number of discrete eigenvalues in (Σcl, Σh). In Section 2.4, we use
Dirichlet-Neumann bracketing to study the semi-classical of the Riesz means of discrete eigen-
values of H(h). The result we get is following : Assume ν ≥ 3, H0 = −h2∆ on L2(R(N−1)ν) and
(1.5) holds, then the Riesz means of discrete eigenvalues of H(h) obeys the following estimate

Rγ(h,Σh) = C(γ, ν)h−(N−1)ν
∫
{x; V(x)≤Σcl}

(Σcl − V(x))γ+
(N−1)ν

2 dx (1 + O(ht)), (2.2)

where C(γ, ν) = (2π)−(N−1)ντ(N−1)νCγ,(N−1)ν, Cγ,(N−1)ν = γ
∫ 1

0 βγ−1(1 − β)n/2 dβ and τ(N−1)ν is
the volume of the unit sphere in R(N−1)ν, t = min{12 , γ}. In Section 2.5, we study the N-body
Schrödinger operator with Coulomb potential. We get the asymptotic expansion of the effective
potential, Ie f f (ρ), for |ρ| → ∞.
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2.2 A Birman-Schwinger kernel for the N−body Schrödinger ope-
rator

Consider a general N-body system of ν-dimensional particles. H is an operator on
L2

(
Rν(N−1)

)
:

H = H0 + V. (2.3)

Here H0 is the operator resulting from removing the center of mass from
N∑

i=1
− (2mi)−1 ∆ri and

V =
∑
i< j

Vi j
(
ri − r j

)
. (2.4)

Here r j and m j > 0 denote the position and the mass of the j-th particle respectively, −∆ri is the
Laplacian in the ri variables. In this chapter, we suppose

Vi j 6 0, (2.5)

and normally we suppose

Vi j ∈ C2 (
Rν

)
, and |Vi j(x)| ≤ C〈x〉−ε0 , with ε0 > 2. (2.6)

Condition (2.5) considerably simplifies the arguments since the Birman-Schwinger kernel is
self-adjoint when (2.5) holds. But most results should hold without (2.5). Condition (2.6) is si-
milarly made for technical convenience. We begin this section with introducing some notations.
NOTATION : Let Ci(i = 1, · · · , k) be the subsets of { 1, · · · ,N }. If Ci ∩ C j = ∅, i , j and
∪k

i=1Ci = { 1, · · · ,N }, we say that D = {C1, · · · ,Ck } is a partition (or cluster decomposition) of
{ 1, · · · ,N }. If D = {C1, · · · ,Ck }, we denote #D = k. If i, j are two numbers in { 1, · · · ,N }, we
write iD j if and only if i and j are in the same cluster Cl, and ∼ iD j if they are in the different
clusters. Let

∑
iD j

(resp.
∑
∼iD j

) denote the sum over all pairs with i, j in the same ( resp. different )

cluster of D. We define
VD =

∑
iD j

Vi j; ID =
∑
∼iD j

Vi j;

HD = H − ID; ΣD = inf σ (HD) ;

aD = min
{x;x∈R(N−1)ν}

VD(x); Σcl = min
{D;#D≥2}

aD.

For each D, there is a natural decomposition of H = L2
(
R(N−1)ν

)
as H D ⊗HD with HD =

functions of ri j with iD j and H D = functions of Rq − Rl where Rq =
∑

i∈Cq

miri/
∑

i∈Cq

mi is the

center of the mass of Cq. Under this decomposition

HD = hD ⊗ 1 + 1 ⊗ tD.
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By the HVZ-theorem [54, Section XIII.5 ],

inf σess (H) = Σ, (2.7)

where Σ = min
D
ΣD. We say that H is unique two-cluster, if there is only one D with #D ≥ 2,

such that Σ = ΣD. The intuition is quite simple : if the continuum is two-cluster, the threshold
is basically due to a ν−dimensional Laplacian, namely the relative kinetic energy of the two
clusters. So one expects the coupling constant behavior to be a ν-dimensional problem. We will
concentrate on the unique two-cluster N-body Schrödinger operators.

By the hypothesis of unique two-cluster, we know that there exists a decomposition D with
# (D) ≡ k , 1 such that

ΣD < ΣD′ (2.8)

for all D′ , D with # (D′) , 1. It is easy to see that (2.8) can only hold if # (D) = 2 (
since ΣD1 ≤ ΣD2 if D2 is a refinement of D1 written D1 < D2 ). If (2.8) holds, then hD must
have an eigenvalue at the bottom of its spectrum ([54, Section XIII.12] since inf σess (hD) =
min (ΣD′ |D < D′,D , D′) by the HVZ-Theorem) and this eigenvalue will be simple. Thus, we
pick once and for all a vector η ∈HD with ‖ η ‖= 1 and

hDη = ΣDη. (2.9)

Let p be the projection in HD onto η and P = p ⊗ 1, the projection in H . We define q =
1 − p,Q = 1 − P. It follows that

σ (HD ↑ QH ) = [Σ′,∞). (2.10)

with
Σ′ > Σ ≡ min

D′
ΣD′ = ΣD (2.11)

since ΣD is the simple eigenvalue of hD.
We define the Birman-Schwinger kernel by :

K (E) =| ID |
1/2 (HD − E)−1 | ID |

1/2 (2.12)

for E < Σ. In the following we recall some results for the Birman-Schwinger kernel. These
results have been studied by Klaus-Simon for Vi j ∈ C∞0 . In fact, these results are also true for
Vi j satisfying (2.6).

Proposition 2.1. (Proposition 2.1 and Proposition 2.2 [34]) Let E < Σ. Then E ∈ σ (HD + µID)
if and only if µ−1 ∈ σ (K (E)). This result remains true if σ is replaced by σess in both places.
Moreover, the multiplicity of E as an eigenvalue of HD + µ0ID is exactly the multiplicity of µ−1

0
as an eigenvalue of K (E).

Remark 2.2. This result is from Proposition 2.1 and Proposition 2.2 [34]. In fact, they did not
use the condition Vi j ∈ C∞0 in the proof.
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Proof. Write
HD + µID − E = (HD − E)

(
1 + µ (HD − E)−1 ID

)
.

We conclude that (since E < σ (HD)), E ∈ σ (HD + µID) if and only if

µ−1 ∈ σ
(
− (HD − E)−1 ID

)
= σ((HD − E)−1|ID|) = σ (K (E)) .

The last equality follows from the well-known fact (see eg.[16]) that σ (AB) \ {0} = σ (BA) \{0}
for any bounded operators A, B.

If E ∈ σess (HD + µ0ID), then since σess (HD + µID) = [Σµ,∞) with Σµ decreasing in µ, E ∈
σess (HD + µID) for all µ > µ0, so [0, µ−1

0 ) ⊂ σ (K (E)) which implies that µ−1
0 ∈ σess (K (E)).

If E < σess (HD + µ0ID), then, we claim that for some δ > 0, E < σ (HD + µID) for µ ∈
(µ0 − δ, µ0 + δ) \ {µ0}. This is obvious if E < σ (HD + µ0ID) and if E ∈ σdisc (HD + µ0ID), E <
σdisc (HD + µID) for µ near µ0, since discrete eigenvalues of HD + µID are strictly monotonous
in µ. It follows that µ−1 is either not in σ (K (E)) or is an isolated point of σ(K (E)). In the
later case, we must show that the multiplicity of µ−1

0 as an eigenvalue of K (E) is finite. But if
K (E)ψ = µ−1

0 ψ, then (HD + µID − E) φ = 0 with

φ = (HD − E)−1 |ID|
1/2ψ,

since
(HD + µID − E) φ = |ID|

1/2 (1 − µK (E))ψ.

Since (HD − E)−1 |ID|
1/2 � {ψ | K (E)ψ = µ−1

0 ψ} has no kernel, this shows that the multi-
plicity of µ−1

0 is at most the multiplicity of E as an eigenvalue of HD + µID. Notice that if
(HD + µID − E) φ = 0, then

ψ = |ID|
1/2φ

satisfies K(E)ψ = µ−1
0 ψ. Since |ID|

1/2 is non-vanishing on such φ (since ker (HD − E) = {0}).
This ends the proof. 2

In the proof of the proposition, we noted that σess (HD + µID) = [Σµ,∞) with Σµ monotone
in µ. It follows that :

Proposition 2.3. (Proposition 2.3 [34]) Let E < Σ. Then σess (K (E)) = [0,Λ (E)] where
Λ (E) = sup

λ

{
λ; E ∈ σess

(
HD + λ

−1ID
) }

.

For later reference, it is useful to show that K (E) has a norm limit as E ↑ Σ. To see this, we
decompose K(E) as K(E) = KP(E) + KQ (E) with

KP (E) = |ID|
1/2 (HD − E)−1 P |ID|

1/2;

KQ (E) = |ID|
1/2 (HD − E)−1 Q |ID|

1/2.

where P, Q are the projections introduced before (2.10). Before analyzing K (E), we need to
introduce two definitions first.
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Definition 2.4. Let A be a compact operator, and all of the singular values of A are denoted by
{µi(A)} with µ1(A) > µ2(A) > µ3(A) > · · · . We say that A ∈ Sr, r ≥ 1, if

||A||r = (
∑

i

µi(A)r)1/r < ∞.

We say that A ∈ S w
p , p > 1, if

||A||p,w = sup
n

n(−1+1/p)
n∑

j=1

µ j(A) < ∞.

From the definition, it is easy to see that ||A|| ≤ ||A||r and ||A|| ≤ ||A||p,w.
We want to consider the operators on L2(Rν) formally given by f (x)g(−i∇). First, we need

to the give the definition of these operators (see [60] for details). If f and g are a.e. finite
measurable function on Rν, the sets D f and Dg in L2 given by D f = {h ∈ L2; f h ∈ L2},
Dg = {h ∈ L2; gh ∈ L2} are dense in L2. For φ ∈ D f and F (ψ) ∈ Dg, (F denote Fourier
transform), we can unambiguously define 〈φ, Aψ〉 with A given formally by f (x)g(−i∇) as the
inner product of fφ and F−1(gFψ) (F−1 denote inverse Fourier transform). Some of the most
celebrated estimates in analysis assert that A is a bounded operator (to be pedantic, there is a
bounded operator A with 〈φ, Ãψ〉 = 〈φ, Aψ〉 for φ ∈ D f , ψ ∈ Dg ; henceforth, we will be sloppy
about this point). For example, if g(−i∇) = (−∆)−1, then F−1(gFψ) = h ∗ ψ with h = cν|x|−ν+2

for ν ≥ 3. Thus using Holder’s inequality (2 < p < ∞),

|| f (h ∗ ψ)||2 ≤ Cp|| f ||p||h||p′,w||ψ||2. (2.13)

Here p′ = p
p−1 and || · ||p′,w is the norm of Lp

w. Under this definition, we have the following result.

Theorem 2.5. ([60, Theorem 4.2],) If f ∈ Lp and g ∈ Lp
w with 2 < p < ∞, then f (x)g(−i∇) is

in S w
p and

|| f (x)g(−i∇)||p,w ≤ Cp|| f ||p||g||p,w.

We use this theorem to study KP(E).

Proposition 2.6. (1).KQ (E) has an analytic continuation to C \ [Σ′,+∞). In particular, on
account of (2.11), KQ (E) has a norm limit as E ↑ Σ.

(2). Let ν ≥ 3 and let r > ν/2. Then for all E < Σ, KP (E) is in the trace ideal S w
r and as

E ↑ Σ , KP (E) converges to an operator KP (Σ) in S w
r norm.

Proof : (1). This result is directly from (2.10) and (2.11).
(2). We use Theorem 2.5 to prove this result. We first prove the operator KP(Σ) is in

S w
r . KP(E) ∈ S w

r with E < Σ can be proved in the similar way. We need only to prove

(HD − Σ)−1/2 P|ID|
1/2 is in S w

2r . Since |ID|
1/2

( ∑
∼iD j

(
V1/2

i j

)−1
)

is multiplication by a function

bounded by 1, it suffices to show the required fact for (HD − E)−1/2 P|Vi j|
1/2 with ∼ iD j. Since

(HD − Σ)−1/2 P|Vi j|
1/2 = t−1/2

D P|Vi j
(
ri − r j

)
|1/2
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and ri− r j = R+ρ with R = Rc1 −Rc2 and ρ an ”internal coordinate”. By Theorem 2.5, we know
the operator (tD)−1/2〈R〉−s ∈ S w

ν (L2(Rν; R)) if s > 1. So (tD)−1/2〈R〉−sP ∈ S w
t for all t > ν by

the definition of S w
p . We need only to prove that 〈R〉sP|Vi j|

1/2 is a bounded operator. Then it
suffices to show that (〈R〉sP|Vi j|

1/2)∗ = |Vi j|
1/2〈R〉sP is a bounded operator.

For each u ∈ L2(R(N−1)ν),

|Vi j|
1/2〈R〉sPu(ζ, ρ) =

∫
|Vi j|

1/2(ζ, ρ)〈R〉sη(ζ)η(ζ′)u(ζ′,R)dζ′.

(i) If R ∼ ρ, we have

|〈R〉sη(ζ′)η(ζ)|Vi j(R + ρ)|1/2| ≤ |C〈ρ〉sη(ζ′)η(ζ)|

with C be a constant independent of R.
(ii) If R & ρ, since |Vi j(x)| ≤ C〈x〉−ε0 , we know |Vi j(R + ρ)|1/2 ≤ C〈R〉−ε0/2. Then, we can

get
|〈R〉sη(ζ′)η(ζ)|Vi j(R + ρ)|1/2| ≤ C〈R〉(s−ε0/2)|η(ζ′)η(ζ)|.

Choose 1 < s < ε0/2, one has

|〈R〉sη(ζ′)η(ζ)|Vi j(R + ρ)|1/2| ≤ C|η(ζ′)η(ζ)|.

(iii) If R . ρ ,
|〈R〉sη(ζ′)η(ζ)|Vi j(R + ρ)|1/2| ≤ C|η(ζ′)η(ζ)|.

From the argument above, one has 〈R〉sP|Vi j(R+ρ)|1/2 is a bounded operator, since η has an
exponential decay at infinity. It follows (HD − Σ)−1/2P|ID|

1/2 ∈ S w
2r . Then we get KP(Σ) ∈ S w

r .
In the similar way, we can get KP(E) ∈ S w

r , and

KP(Σ) − KP(E) = |ID|
1/2((HD − E)−1 − (HD − Σ)−1)P|ID|

1/2

= (Σ − E)|ID|
1/2((HD − E)−1(HD − Σ)−1)P|ID|

1/2

≤ (Σ − E)δ|ID|
1/2(tD)−1−δP|ID|

1/2

with 0 < δ ≤ 1. Then, one has KP(Σ) − KP(E) is in S w
2r and tends to zero when E → Σ. 2

Theorem 2.7. (Theorem 2.8 [34])
K (E) has a norm limit K (Σ) as E ↑ Σ and moreover :
(i). σess (K (E)) = [0,Λ (Σ)], where Λ (Σ) = sup

λ

{
λ; σess(HD + λ

−1ID) ∩ (−∞,Σ] , ∅
}
< 1 ;

(ii). K (E) ≤ K (Σ) for all E ≤ Σ.

Remark 2.8. This theorem is from Theorem 2.8 [34]. In their proof, they use that KP(E) →
KP(Σ) in norm as E ↑ Σ(Proposition 2.6 [34]). But they only proved that KP(E) were uniformly
bounded for E < Σ, E near Σ, they did not prove KP(E) → KP(Σ). So we rewrite the proof of
Proposition 2.6.
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Proof. Propositions 2.6 imply the existence of the norm limit. The identification of
σess(K(Σ)) follows form Proposition 2.3 and Lemma 2.9 below. That Λ (Σ) < 1 follows from
the fact that Σ is unique two cluster. Finally (ii) is obvious since

(HD − E)−1 ≤ (HD − Σ)−1 ,

for E ≤ Σ. 2

The following lemma is the result of [34].

Lemma 2.9. (Lemma 2.9 [34]) Let An ≥ 0, σess (An) = [0, an] and suppose An → A in norm.
Then a = lim

n→∞
an exists and σess (A) = [0, a].

Proof. Let ā (resp. a) be lim an (resp. lim an). Let λ < lim an . If λ < σ (A), then λ < σ (An)
for all large n, so [0, ā] ⊂ σess (A). Now let λ > a. Pick δ > 0 so that λ − δ > a. Pick n so large
that ‖ A−An ‖≤ δ/3 and that λ−2δ/3 > an. Since [λ−2δ/3, λ+2δ/3]∩σ (An) = ∅, we can find F
finite rank so that [λ−2δ/3, λ+2δ/3]∩σ (An + F) = ∅. Thus [λ−δ/3, λ+δ/3]∩σ (A + F) = ∅.
So λ < σess (A), i.e. σ (A) = [0, a]. 2

By Theorem 2.7, we can get the following result.

Theorem 2.10. (Theorem 2.9 [34])) Let H be the Hamiltonian of an N-body system with po-
tentials satisfying (2.5) and (2.6). Let Σ, the infimum of the essential spectrum of H be unique
two cluster. Then dim ran E(−∞,Σ) (H) < ∞ (i.e. there are finitely many ”bound states”).

Proof.

dim ran E(∞,Σ) (H) = lim
n→∞

dim ran E(−∞,Σ− 1
n ) (H)

= lim
n→∞

#
{
λ | λ > 1, λ ∈ σ

(
K

(
Σ −

1
n

)) }
(2.14)

≤ #{λ | λ > 1, λ ∈ σ (K (Σ))} (2.15)

< ∞.

In (2.14) we use the standard Birman [5]-Schwinger [56] argument ; in the next step, we use
K (E) ≤ K (Σ), in the last step, we use that [1,∞) ∩ σess (K (Σ)) = ∅ which can be get from
Lemma 2.9 and Theorem 2.7. 2

2.3 Semi-classical limit of the number of discrete eigenvalues

Let N(h) denote the number of discrete eigenvalues, less than Σh, of H(h) = h2H0 + V .
From the last section, we can see that N(h) is finite for any h > 0. In this section, we want
to discuss the small h behavior of N(h). For the two-body case the result is well-known ( see
[4, 43, 66] for original work or [54, 65] for further discussion). Here we consider the unique
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two-cluster N-body Schrödinger operators. First we will show that if (2.5) and (2.6) hold, then
|(V − Σcl)−| ∈ L(N−1)ν/2. Here (V − Σcl)− is the negative part of V − Σcl. It suffices to show that

|(V(x) − Σcl)−| ≤ C〈x〉−ε0 , ε0 > 2. (2.16)

Let A denote the set of all cluster decompositions of the N−particle system. For each D =
{C1, · · · ,Ck} ∈ A, there is a natural decomposition of H = L2

(
R(N−1)ν

)
as H D ⊗HD with

H D = {x ∈H ;
∑
l∈C j

mlxl = 0; j = 1, · · · , k};

HD = {x ∈H ; xi = x j, if (i, j) ∈ Cm, for some m = {1, · · · , k}}.

Here m j is the mass of the j−th particle. Under these notations, one has for each x ∈ H ,
x = xD + xD with xD ∈H D, xD ∈HD.

VD =
∑

#D′=N−1, D′⊂D

VD′(xD′), ID =
∑

#D′=N−1, D′1D

VD′(xD′)

Lemma 2.11. For some δ > 0 small, define

JD = {x ∈H ; |xD| > δ|x|,∀D′ 1 D},

then
⋃

#D=2
JD =H \{0}.

Proof. It is easy check that JD′ ⊂ JD, if D′ ⊂ D. Therefore, it suffices to prove that⋃
#D∈A;#D≥2

JD =H \{0}. Let S denote the unite sphere in H and

SD = {x ∈ S ∩HD; x <HD′ , ∀D′ 1 D}.

For any x ∈ S, the set Ax = {D ∈ A; x ∈ HD} is non-empty. Then x ∈ HD0 with D0 =
⋂

D∈Ax

D.

It can be easily checked that x < HD′ , ∀D′ 1 D0. For any x ∈ SD, we can take some δ0 =

δ0(x) > 0, such that

|xD′ | ≥ δ0 > 0, ∀D′ 1 D.

If Ω(x, εx) is a small conic neighborhood of x in H ,

Ω(x, εx) = {y ∈H \{0}; |ŷ − x| ≤ εx}, (εx ≤ δ0/4)

with ŷ = y
|y| , then for y ∈ Ω(x, εx), we have

|yD′ | ≥ |y|(|xD′ | − |(ŷ − x)D′ |) > |yD′ |εx.

for D′ 1 D. The family of open sets {y ∈ S; |y − x| ≤ εx} = Ox, x ∈ S forms a covering
for S and we can extract a finite covering of S from it, denoted by {Ox j ; j = 1, · · · ,N}. Put

25



S- 

δ = min j εx j > 0. Define JD as in lemma. We derive that
⋃

#D∈A;#D≥2
JD ⊇ ∪ jΩ(x j, δ) =H \{0}.

2

By the above lemma, we know that there exists a family of non-negative smooth function
{χD; D ∈ A, #D = 2} such that∑

D∈A,#D=2

χD = 1, and suppχD ⊂ B(0, 1) ∪ JD.

Here B(0, 1) is the unite ball in H . Then

V − Σcl =
∑

D∈A,#D=2

χD(VD − Σcl) +
∑

D∈A,#D=2

χDID.

Since Σcl = min
#D=2

aD with aD = min
x∈H D

VD(x), one has VD(x) ≥ Σcl. It follows that χD(VD − Σcl) ≥

0, since χD ≥ 0. Note χDID = χD
∑

#D′=N−1, D′1D
VD′(xD′), and |VD′(xD′)| ≤ C〈x〉−ε0 . One has

|χDVD′(xD′)| ≤ C〈xD′〉−ε0 ≤ Cδ〈x〉−ε0 . Therefore, we get (2.16).
The main result of this section is the following.

Theorem 2.12. Let ν ≥ 3. Let H0 = −h2∆ on L2
(
R(N−1)ν

)
and let V be given by (2.4) with Vi j

satisfying (2.5),(2.6). Suppose that (2.8) holds. Then

N(h) = h−(N−1)ντ(N−1)ν (2π)−(N−1)ν
∫

V(x)≤Σcl

[Σcl − V(x)](N−1)ν/2dx (1 + o(1)) (2.17)

where τ(N−1)ν is the volume of the unit sphere in R(N−1)ν.

Before proving this theorem, we first give a useful lemma.

Lemma 2.13. Let Σh = min
D
{minσ(hD(h))}. Σcl is defined as before. Under the condition of

Theorem 2.12, one has Σh − Σcl = O(h).

Proof. By the definition of Σh, we know that there exists a cluster decomposition D, such
that

Σh = minσ(hD) = minσ(−h2∆ + VD).

Note that Σh−Σcl > 0, it suffices to prove Σh−Σcl ≤ Ch for some constant C. By the definition of
V , we know that there exists a point x0 ∈ R

(N−2)ν, such that VD(x0) = Σcl. Let ψ ∈ C∞0 (R(N−2)ν)
be a normalized function, which is supported in B(x0, 1)(= { x ∈ R(N−2)ν; |x − x0| ≤ 1}). Define

ψh(x) = h−s(N−2)ν/2ψ(x/hs),

where s is a constant and will be fixed later. Then ||ψh|| = 1. Note that ∇V(x0) = 0, by Taylor
expansion, we have

V(x) − Σcl =

n∑
i=1

n∑
j=1

(xi − x0i)(x j − x0 j)
∂2V
∂xi∂x j

(x0) + O(|x − x0|
3).
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2.3. Semi-classical limit of the number of discrete eigenvalues

It follows

((−h2∆ + VD − Σcl)ψh, ψh) ≤ h2−2s||∇ψ||2 +Ch2s + O(h3s).

Choose s = 1/2, we have minσ(−h2∆ + VD − Σcl) ≤ Ch. This ends the proof. 2

Proof of Theorem 2.12 : Write

N(h) = N1(h) + N2(h) (2.18)

with N1(h) the number of eigenvalues of H(h) in (−∞,Σcl] and N2(h) the number of eigenvalues
of H(h) in [Σcl,Σh). We know that (see [65]) :

N1(h) = h−(N−1)ντ(N−1)ν (2π)−(N−1)ν
∫

V(x)≤Σcl

[Σcl − V(x)](N−1)ν/2dx (1 + o(1)) . (2.19)

Thus, it suffices to prove that

N2 (h) = o(h−(N−1)ν). (2.20)

Let Kh (E) be the Birman-Schwinger kernel of Section 2.2 for H (h). Below, we will prove that
for any ε > 0 :

h(N−1)ν[#{e.v. o f [Kh(Σh) − Kh(Σcl)] ≥ ε}]→ 0. (2.21)

We first note that :

Lemma 2.14. Under the condition of Theorem 2.12, one has (2.21) implies (2.20), and hence
the theorem.

Proof. Let Vε = VD + εID. Then for ε small enough, Σεcl = lim
|x|→∞

Vε(x) = Σcl. It follows

that (2.19) continuous to hold for V replaced by Vε in the integral on the right and with N1(h)
replaced by Nε

1(h), the number of eigenvalues for H(h) + εID in (−∞,Σcl]. Thus

lim
ε↓0

lim
h↓0

h(N−1)ν[Nε
1(h) − N1(h)] = 0. (2.22)

Since

Nε
1(h) = #{E; E ∈ σ(H(h) + εID), E < Σcl}

= #( o f e.v. Kh(Σcl) > (1 + ε)−1)) ,

and

N2(h) = N(h) − N1(h)

= lim
ε↓0

lim
h→0

#( o f e.v. Kh(Σh) > 1) − #( o f e.v. Kh(Σcl) ≥ (1 + ε)−1),
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then we have,

lim
h→0

h(N−1)νN2(h)

= lim
h→0

h(N−1)ν[#(e.v. o f Kh(Σh) > 1) − # (e.v. o f Kh(Σcl) > (1 + ε)−1)]

≤ lim
h→0

h(N−1)ν#(e.v. o f (Kh(Σh) − Kh(Σcl)) > (1 + ε)−1 − 1).

In the above, we use that for A, B ≥ 0,

#( e.v. o f A + B > 1) − #( e.v. o f A > 1 − δ) ≤ #( e.v. o f B > δ).

(2.21) implies (2.20) . 2

Hence, we need only to show that (2.21) holds. Before that, we recall one result.

Proposition 2.15. ([22]) Let P(h) = −h2∆ + ΣVa(xa), Va continuous, and |Va(xa)| ≤ C〈xa〉−ρ

with ρ > 0. Let δ > 0, E(h) < Σcl − δ (∀h > 0), (P(h) − E(h))ψ(h) = 0, ||ψ(h)|| = 1, then ∀ε > 0,
∃Cε > 0 and the continuous function d(·), d(x) ∼

√
Σcl − E(h) − ε|x|, x→ ∞, such that

h||O(ed/hψ(h))|| + ||ed/hψ(h)|| ≤ Cε ,

uniformly hold for all h small enough.

Lemma 2.16. Under the condition of Theorem 2.12, (2.21) holds.

Proof. Let

Σ̃cl = min {aD′ ; aD′ = min VD′ , D′ is the refinement of D }.

Let ph be the projection onto those eigenvalues of hD(h) less than α = (1/2) (Σcl + Σ̃cl). Let
Ph = ph ⊗ 1, Qh = 1 − Ph. Then

[Kh (Σh) − Kh (Σcl)] = αPh + αQh ,

where
αA = (Σh − Σcl) |ID|

1/2[A (HD (h) − Σcl)−1 (HD (h) − Σh)−1]|ID|
1/2.

Now, clearly

||αQh || ≤ ||ID||∞(Σh − Σcl)(
1
4

(Σcl − Σ̃cl))−2 ≤ C||ID||∞h(
1
4

(Σcl − Σ̃cl))−2.

It follows ||αQh || < ε/2, as h > 0 small enough. Hence, (2.21) follows from

h(N−1)ν[#{e.v. o f αPh ≥ ε/2}]→ 0.
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2.3. Semi-classical limit of the number of discrete eigenvalues

Write Ph = P1h + P2h, with

P1h = χ(|ζ | ≥ R + 1)Ph + χ(|ζ | ≤ R + 1)Phχ(|ζ | ≥ R + 1);

P2h = χ(|ζ | ≤ R + 1)Phχ(|ζ | ≤ R + 1).

where |ζ | is a measure of the total size of the internal coordinates of D and R is defined by

{ ζ; VD(ζ) < Σ̃cl } ⊂ { ζ; |ζ | < R }.

Then

αPh = (Σh − Σcl)|ID|
1/2Ph(HD(h) − Σh)−1(HD(h) − Σcl)−1|ID|

1/2

= (Σh − Σcl)|ID|
1/2(P1h + P2h)(HD(h) − Σh)−1(HD(h) − Σcl)−1(P1h + P2h)|ID|

1/2

≤ 2(Σh − Σcl)|ID|
1/2P1h(HD(h) − Σh)−1(HD(h) − Σcl)−1P1h|ID|

1/2

+2(Σh − Σcl)|ID|
1/2P2h(HD(h) − Σh)−1(HD(h) − Σcl)−1P2h|ID|

1/2

= α(1)
Ph
+ α(2)

Ph
.

Since

(Σh − Σcl)(HD(h) − Σh)−1(HD(h) − Σcl)−1

= (Σh − Σcl)(HD(h) − Σh)−1(HD(h) − Σh + Σh − Σcl)−1

= (HD(h) − Σh)−1(1 + (Σh − Σcl)−1(HD(h) − Σh)−1 )−1

≤ t−1
D ,

then we get
α(1)

Ph
≤ 2|ID|

1/2P1ht−1
D P1h|ID|

1/2.

From Proposition 2.15, we can conclude that

‖ χ (| ζ |> R + 1)ϕ(h) ‖≤ C2 exp
(
−C3h−1

)
, (2.23)

where C3 > 0 and C2,C3 is independent of h and ϕ(h) is the eigenvector of hD(h) correspondent
to eigenvalue E(h) < α. From the one body result, one has

dim ranPh ≤ Ch−(N−2)ν,

so α(1)
Ph

is a sum of at most Ch−(N−2)ν terms, and each of them of the form controlled by Pro-
position 2.6. Using the similar methods used in Proposition 2.6 and by (2.23), we can get that
each of these terms has a norm bounded by

Ch−2 exp(−C2h−1). (2.24)

It follows that ||α(1)
Ph
|| ≤ ε/4, for h > 0 small enough. Thus, it suffices to prove that

h(N−1)ν[#{e.v. o f αP(2)
h
≥ ε/4}]→ 0
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as h→ 0.
If x is a positive number, A is a positive operator, and 0 < δ < 1, one has xA−1(A + x)−1 ≤

xδA1+δ. It follows that

α(2)
Ph
= 2(Σh − Σcl)|ID|

1/2P2h(HD(h) − Σh)−1(HD(h) − Σcl)−1P2h|ID|
1/2

≤ 2|ID|
1/2P2h(Σh − Σcl)δ(HD(h) − Σh)−1−δP2h|ID|

1/2

≤ 2(Σh − Σcl)δ|ID|
1/2P2h(tD)−1−δP2h|ID|

1/2.

Because χ(|ζ | < R + 1)|ID|
1/2 ≤ C〈ρ〉−n/2, one has

α(2)
Ph
≤ (Σh − Σcl)δh−2−2δPh〈ρ〉

−n/2t−1−δ
D 〈ρ〉−n/2.

Thus,

#{e.v. o f α(2)
Ph
≥
ε

4
}

≤ dim ran(Ph) # {e.v. o f (Σh − Σcl)δh−2−2δPh〈ρ〉
−n/2t−1−δ

D 〈ρ〉−n/2 ≥
ε

4
}

= dim ran(Ph) # {e.v. o f 〈ρ〉−n/2t−1−δ
D 〈ρ〉−n/2 ≥

ε

4
(Σh − Σcl)−δh2+2δ}

= dim ran(Ph) # {e.v. o f t1+δ
D + 4ε−1h−2−2δ(Σh − Σcl)δ〈ρ〉−n ≤ 0}

≤ C dim ran(Ph)h−νh
δν

2(δ+1) ε
−ν

2(δ+1) (2.25)

in (2.25), we use Birman-Schwinger principle and in the last step, we use n > 2. Choose δ > 0
small enough. We complete the proof. 2

2.4 Semi-classical limit of Riesz means of discrete eigenvalues

In this section, we want to discuss the small h behavior of Riesz means of discrete spectrum
of Schrödinger operators. First, we consider the Riesz means of the two-body Schrödinger
operators P(h) = −h2∆ + V on L2(Rn), n ≥ 3 with

V ∈ C1(Rn), (2.26)

and

{x ∈ Rn; V(x) < 0} be a bounded set. (2.27)

We define the Riesz means of order γ ≥ 0 of P(h) by

Rγ(h; λ) =
∑

e j(h)≤λ

(λ − e j(h))γ,

where λ < σess(P(h)). Let Nh(λ) be the number of discrete eigenvalues of P(h) less than λ, then
R0(h; λ) = Nh(λ).

Then the main result for Riesz means of the two-body Schrödinger operator is the follo-
wing :

30



2.4. Semi-classical limit of Riesz means of discrete eigenvalues

Theorem 2.17. Let n ≥ 3. If (2.26) and (2.27) hold, then

Rγ(h; 0) = (2π)−nτnh−nCγ,n

∫
{x; V(x)≤0}

(−V(x))γ+
n
2 dx(1 + O(h1/2)), (2.28)

where Cγ,n = γ
∫ 1

0 βγ−1(1 − β)
n
2 dβ and τn is the volume of the unit sphere in Rn.

Before proving the theorem, we give a lemma first which can be proved by Dirichlet-
Neumann bracket. We begin with recalling some results of Dirichlet-Neumann bracket (See
[54] for details).

Let Ω be an open region of Rn with connected components Ω1, · · · (finite or infinite). The
Dirichlet Laplacian for Ω, −∆ΩD is the unique self-adjoint operator on L2(Ω) whose quadratic
form is the closure of the form q( f , g) =

∫
∇ f · ∇g dx with the domain C∞0 (Ω). The Neumann

Laplacian for Ω, −∆ΩN is the unique self-adjoint operator on L2(Ω) whose quadratic form is the
closure of the form q( f , g) =

∫
∇ f ·∇g dx with the domain H1(Ω) = { f ∈ L2(Ω); ∇ f ∈ L2(Rn)}.

Proposition 2.18. ([54])
(1). Let ND(a, λ) (respectively, NN(a, λ)) denote the dimension of the spectral projection

P[0,λ) for −∆D (respectively, −∆N) on (−a, a)m. Then for all a, λ, we have

|ND(a, λ) − τm(2a/2π)mλm/2| ≤ C(1 + (a2λ)(m−1)/2);

|NN(a, λ) − τm(2a/2π)mλm/2| ≤ C(1 + (a2λ)(m−1)/2).

Here τm is the volume of the unit ball in Rn and C is a suitable constant independent of a and
λ.

(2). Let ND(Ω, λ) (respectively, NN(Ω, λ)) be the dimension of the spectral projection P[0,λ)

for −∆D (respectively, −∆N). Then if Ω1, · · · ,Ωk are disjoint,

ND(∪k
i=1Ωi, λ) =

k∑
i=1

ND(Ωi, λ);

NN(∪k
i=1Ωi, λ) =

k∑
i=1

NN(Ωi, λ).

(3). For any Ω, 0 ≤ −∆ΩN ≤ −∆
Ω
D. If Ω1, Ω2 be disjoint open subsets of an open set Ω so

that (Ω1 ∪Ω2)
int
= Ω and Ω\(Ω1 ∪Ω2) has measure 0, then

0 ≤ −∆ΩD ≤ −∆
Ω1∪Ω2
D ;

0 ≤ −∆Ω1∪Ω2
N ≤ −∆ΩN .

Lemma 2.19. If (2.26) and (2.27) hold, then

Nh(0) = (2π)−nτnh−n
∫
{x; V(x)≤0}

(−V(x))
n
2 dx(1 + O(h1/2)), (2.29)

where O(h1/2) depends only on | {x ∈ Rn; V(x) < 0} | (|A| denotes the Lebesgue measure of set
A).
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Proof : Let h2 = λ−1. Then we consider the number of the negative eigenvalues of −∆+λV .
Let A = {x ∈ Rn; V(x) < 0}. Let Ai be the cube of the form

[a1, a1 + d) × · · · × [an, an + d),

and Rn =
∞⋃

i=1
Ai, Ai ∩ A j = ∅, if i , j. Let Ai(i = 1, · · · ,N) be the cubes such that Ai ∩ A , ∅ for

1 ≤ i ≤ N, and A ⊂
N⋃

i=1
Ai. Let

V+i = sup
x∈Ai

V(x); V−i = inf
x∈Ai

V(x).

Let
V+(x) = V+i ; V−(x) = V−i , if x ∈ Ai.

Let −∆+ be the Laplace operator on Rn but with Dirichlet boundary conditions on the boun-
daries of all the Ai, and let −∆− be the Laplace operator on Rn but with Neumann boundary
conditions on the boundaries of all the Ai. Now, since V− ≤ V ≤ V+, and −∆− ≤ −∆ ≤ −∆+ by
Proposition 2.18, we have that

−∆− + λV− ≤ −∆ + λV ≤ −∆+ + λV+.

Let N(λ) be the number of the negative eigenvalues of −∆+λV , and N+(λ) (respectively, N−(λ))
be the number of the negative eigenvalues of −∆+ + λV+ (respectively, −∆− + λV−). Then by
Proposition 2.18, one has

N(λ) ≥ N+(λ)

≥
∑

{i; V+i ≤0}

τn(2π)−ndn(λ|V+i |)
n/2 −

∑
{i; V+i ≤0}

Cn(1 + dn−1(λ|V+i |)
(n−1)/2)

≥ τn(2π)−nλn/2
∫
{x∈Ai; V+i ≤0}

|V+i |
n/2 dx

−
1
d

Cnλ
(n−1)/2

∫
{x∈Ai; V+i ≤0}

|V+i |
(n−1)/2 dx −CnC(

1
d

)n,

where Cn depends only on n. For x ∈ Ai with i satisfying V+i ≤ 0, one has

|V(x)|n/2 − |V+i |
n/2 ≤ C(|V(x)| − |V+i |)(|V |

n/2−1 + |V+i |
n/2−1) ≤ Cd|V(x)|n/2−1. (2.30)

Here C depends on ||∇V ||L∞ . In the last step, we use that |V+i | ≤ |V |, since V+i ≤ 0. It follows

N(λ) ≥ τn(2π)−nλn/2
∫
{x;V≤0}

(−V)n/2dx −Cdλn/2
∫
{x;V≤0}

(−V)n/2−1dx

−Cn(
c
d

)n −
Cn

d
λ(n−1)/2

∫
{x;V≤0}

(−V)(n−1)/2dx −Cnλ
(n−1)/2

∫
{x;V≤0}

(−V)(n−3)/2dx.
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Let d = cλ−1/4. One has

N(λV) ≥ τn(2π)−nλn/2
∫
{x;V≤0}

(−V)n/2dx −Cλ
n
2−

1
4

with C depending on |A| and ||∇V ||L∞ only.

Similarly, we can get

N(λ) ≤ N−(λ)

≤ τn(2π)−nλn/2
∫
{x∈Ai; V−i ≤0}

|V−i |
n/2 dx

−
1
d

Cnλ
(n−1)/2

∫
{x∈Ai; V−i ≤0}

|V−i |
(n−1)/2 dx −CnC(

1
d

)n.

Note that for x ∈ Ai, ν ≥ 1, one has

| |V−i |
ν − |V(x)|ν| ≤ Cν[|V(x) − V−i | |V(x)|ν−1 + |V(x) − V−i |

ν].

We can obtain that

N(λ) ≤ τn(2π)−nλn/2
∫
{x;V≤0}

(−V)n/2dx +Cn
λ(n−1)/2

d

∫
{x;V≤0}

(−V)n/2−1/2dx

+λn/2d
∫
{x;V≤0}

|V |n/2−1dx + λ(n−1)/2d
∫
{x;V≤0}

|V |n/2−3/2

+Gndn/2λn/2−1|A| + Hnλ
n/2−1d1/n−1/2|A| +Cn(

C
d

)n.

where Cn, Hn, Gn are the constants depending on n only. If we choose d = cλ−1/4, then we get

N(λ) ≤
τn

(2π)nλ
n/2

∫
{x; V(x)≤0}

|V−|n/2 +Cλn/2−1/4,

where C depends only on |A|, ||∇V ||L∞and n. This ends the proof. 2

Proof of Theorem 2.17 : By Lemma 2.19, one has, for µ ≤ 0,

Nh(µ) = (2π)−nτnh−n
∫
{x; V(x)≤µ}

(µ − V(x))
n
2 dx(1 + O(h1/2)), (2.31)
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and O(h1/2) uniformly hold for µ ≤ 0. From the definition of R(h, λ), we can compute

Rγ(h, 0) (2.32)

= −γ

∫ 0

−∞

(−µ)γ−1Nh(µ)dµ

= −γ

∫ 0

−∞

(−µ)γ−1h−n(2π)−nτn

∫
{x; V(x)<µ}

(µ − V(x))n/2dx (1 + O(h1/2)) dµ

= γ(2π)−nh−nτn

∫ 1

0

∫
{x; V(x)<0}

(−V(x))γ+n/2 dx βγ−1(1 − β)n/2 dβ (1 + O(h1/2))

= γ(2π)−nh−nτn

∫ 1

0
βγ−1(1 − β)n/2 dβ

∫
{x; V(x)≤0}

(−V(x))γ+n/2 dx (1 + O(h1/2))

= (2π)−nh−nτnCγ,n

∫
{x; V(x)≤0}

(−V(x))γ+n/2 dx (1 + O(h1/2)),

with

Cγ,n = γ

∫ 1

0
βγ−1(1 − β)n/2 dβ. (2.33)

This ends the proof. 2

We use Theorem 2.17 to study the Riesz means of the N−body Schrödinger operators
H(h) = h2H0 +

∑
i< j

Vi j with

Vi j ∈ C∞0 (Rν), (2.34)

and

Vi j ≤ 0. (2.35)

For a technical reason, we have changed a little the usual definition of Riesz means. We define

Rγ(h,Σh) =
∑

e j(h)≤Σh

|Σcl − e j(h)|γ.

Then the result for semi-classical limit of Riesz means of the N-body Schrödinger operator is
the following :

Theorem 2.20. Let ν ≥ 3. Let H0 = −h2∆ on L2(R(N−1)ν). Suppose (2.34) and (2.35) hold.
Then, we have

Rγ(h,Σh) = C(γ, ν)h−(N−1)ν
∫
{x; V(x)≤Σcl}

(Σcl − V(x))γ+
(N−1)ν

2 dx (1 + O(ht)), (2.36)

where C(γ, ν) = (2π)−(N−1)ντ(N−1)νCγ,(N−1)ν, Cγ,(N−1)ν is given by (2.33), and τ(N−1)ν is the vo-
lume of the unit sphere in R(N−1)ν, t = min{12 , γ}.
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Proof. From the definition of Rγ(h,Σh), one has

Rγ(h,Σh) =
∑

e j(h)≤Σcl

(Σcl − e j(h))γ +
∑

Σcl≤e j(h)≤Σh

|Σcl − e j(h)|γ.

By Theorem 2.12 and Lemma 2.13, one has∑
Σcl≤e j(h)≤Σh

|Σcl − e j(h)|γ = o(hγ−(N−1)ν).

Let Ṽ = V − Σcl. First, we will show that {x ∈ R(N−1)ν; Ṽ(x) < 0} is a bounded set. Let
{χD; D ∈ A, #D = 2} be a family of non-negative smooth functions such that∑

D∈A,#D=2

χD = 1, and suppχD ⊂ B(0, 1) ∪ JD.

Here B(0, 1) is the unite ball in H . Then

V − Σcl =
∑

D∈A,#D=2

χD(VD − Σcl) +
∑

D∈A,#D=2

χDID.

Note χDID = χD
∑

#D′=N−1, D′1D
VD′(xD′), and VD′(xD′) ∈ C∞0 . It is easy to check that

χDVD′(xD′) = 0 for D′ 1 D, #D′ = N−1, |x| large enough. It follows that χDID ∈ C∞0 (H ). Since
Σcl = min

#D=2
aD with aD = min

x∈H D
VD(x), one has VD(x) ≥ Σcl. It follows that χD(VD − Σcl) ≥ 0,

since χD ≥ 0. Therefore, we drive that (V(x) − Σcl)− has compact support.
Then {x ∈ R(N−1)ν; Ṽ(x) < 0} is a bounded set. Using Theorem 2.17 for Schrödinger

operator −h2∆ + Ṽ , one has∑
e j(h)≤Σcl

(Σcl − e j(h))γ = C(γ, ν)
∫
{x; V(x)≤Σcl}

(Σcl − V(x))γ+
(N−1)ν

2 dx (1 + O(h1/2)).

This ends the proof. 2

Remark 2.21. From the proof of Theorem 2.17, one can see that the uniform holding of the
remainder term of N(h, λ) with respected to λ ≤ 0 play an important role. For the two-body
case, we can only get that for the V’s satisfying (2.27). If we can extend this results to general
V, then we can get the estimate of the Riesz means for general V. In the N−body case, we need
(2.34) and (2.35), because these two conditions imply that {x; V < Σcl} is a bound set.

2.5 The N-body Schrödinger operators with Coulomb potentials

In Chapter 3 and Chapter 4, we consider the Schrödinger operators of the form −∆+V with
V = q(θ)

|x|2 + o(〈x〉−ρ) for |x| large, with some ρ > 2. Here θ = x
|x| , and q(θ) is a real continuous
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function. We explain why we consider these Schrödinger operators in this section. We consider
the N-body system of ν-dimensional particles with Coulomb potential. Let

H̃ = H̃0 + V

with

H̃0 =

N∑
i=1

1
2mi

(−∆ri);

and
V =

∑
1≤i< j≤N

eie j

|ri − r j|
.

Here m j is the mass of j-th particle and e j is the charge of j-th particle. −∆r j is the Laplacian
in the r j variables. Let H0 be the operator resulting from removing the center of mass from
H̃0 and H = H0 + V . For each cluster decomposition D, there is a natural decomposition of
H = L2

(
R(N−1)ν

)
as H D ⊗HD with HD = functions of ri j with iD j and H D = functions of

Rq−Rl where Rq =
∑

i∈aq

miri/
∑

i∈aq

mi is the center of the mass of aq. By HVZ-Theorem, we know

that there exists a decomposition D, such that

E0 ≡ inf σess(H) = min
D′
{ΣD′ ; D′ is the decomposition of { 1, 2, · · · ,N } } = inf σd(HD)

and E0 is the simple eigenvalue of HD. Obviously, #(D) = 2, since σD′ ≤ σD, if D′ is the refine-
ment of D. Without loss of generality, we can suppose that D = {a1, a2} with a1 = { 1, 2, · · · , k }
and { k + 1, k + 2, · · · ,N }. Let η be the normlized function such that

HDη = E0η.

Let ρ = R1 − R2. Define the effective potential as

Ie f f (ρ) = 〈η, IDη〉(ρ). (2.37)

Let

ξi = ri − rk for i = 1, · · · , k − 1;

ξi = ri+1 − rN for i = k, · · · ,N − 2;

ρ = R1 − R2.

Then one can check that
HD = −(2Mc)∆ρ +

∑
i=1,2

H(ai)

with M−1
c = m−1

a1
+m−1

a2
and H(ci) be the sub-Hamilton to

∑
j∈ai

1
2m j

(−∆ j)+
∑

l, j∈ai

ele j
rl−r j

with its center

of mass removed. Then one has,

rk = R1 + l(ξ1, ξ2, · · · , ξk−1);

ri = rk + ξi = R1 + li(ξ1, ξ2, · · · , ξk−1), for i = 1, 2, · · · , k − 1.
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Here l, and li are linear combination of ξ j( j = 1, 2, · · · , k − 1). Similarly, we can get

ri = rN + ξi−1 = R2 + li(ξk+1, ξk+2, · · · , ξN−1), for i = k + 1, k + 2, · · · ,N − 1

with li the linear combination of ξ j( j = k+1, k+2, · · · ,N−1). It follows that, for i ∈ a1, j ∈ a2,

ri − r j = ρ + li, j(ξ1, ξ2, · · · , ξN − 2)

with li, j = li − l j be the linear combination of ξi(i = 1, 2, · · · ,N − 2).

Lemma 2.22. Let ρ̂ = ρ
|ρ| . Then Ie f f has the following expansion :

Ie f f (ρ) =
f1(ρ̂)
|ρ|2
+

f2(ρ̂)
|ρ|3
+ O(

1
|ρ|4

) ,

if C1 ≡
∑

i∈a1

ei = 0 or C2 ≡
∑

i∈a2

ei = 0. Here

f1(ρ̂) =
∫ ∑

i∈a1, j∈a2

eie jρ̂ · li, j|η|2dξ1 · · · dξN−2;

f2(ρ̂) =
∫ ∑

i∈a1, j∈a2

eie j(|li, j|2 − 3|ρ̂ · li j|
2)dξ1 · · · dξN−2.

Moreover, if C1 = C2 = 0, f1(ρ̂) = 0.

Proof. One has

Ie f f (ρ) = 〈η, Iaη〉(ρ)

=

∫ ∑
i∈ai, j∈a2

eie j|η|
2

|ρ + li, j(ξ1, ξ2, · · · , ξN−2)|
dξ1 · · · ξN−2.

By Taylor expansion at zero of the function

f : R 3 r → |u1 + ru2|
−1

for non-zero vectors u1, u2 ∈ R
ν, for each r ∈ R, there exists some θ ∈ (0, 1) such that

f (r) = f (0) + r f ′(0) +
r2

2
f ′′(r) +

r3

6
f ′′′(rθ).

It follows that,

|ρ + li, j(ξ1, ξ2, · · · , ξN−2) |−1

= |ρ|−1 − |ρ|−2ρ̂ · li, j − |ρ|−3(|li, j|2 − 3|ρ̂ · li j|
2)

+|ρ|−4(
3|li j|

2(ρ̂ + |ρ|−1θli j) · li j

|ρ̂ + |ρ|−1θli, j|5
−

15|(ρ̂ + |ρ|−1θli j) · li j|
3

|ρ̂ + |ρ|−1θli, j|7
).
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Then, one has

Ie f f =
1
|ρ|

∫ ∑
i∈a1, j∈a2

eie j|η|
2dξ1 · · · dξN−2 +

1
|ρ|2

∫ ∑
i∈a1, j∈a2

eie jρ̂ · li, j|η|2dξ1 · · · dξN−2

+
1
|ρ|3

∫ ∑
i∈a1, j∈a2

eie j(|li, j|2 − 3|ρ̂ · li j|
2)dξ1 · · · dξN−2 + O(

1
|ρ|4

) .

The first term of the right hand side is equal to 0 if C1 = 0 or C2 = 0. Note that li j = li − l j for
i ∈ a1, j ∈ a2. It follows that

∑
i∈a1, j∈a2

eie jli, j = 0, if C1 = C2 = 0. This ends the proof. 2
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S̈   
    

   S̈ 

3.1 Introduction

In Section 2.5 (Chapter 2), we consider the N-body System of ν-dimensional particles with
Coulomb potentials. The effective potential has the form f1(ρ̂)

|ρ|2
+

f2(ρ̂)
|ρ|3
+O( 1

|ρ|4
) as |ρ| large. Here

ρ̂ =
ρ
|ρ| . Hence, we study Schrödinger operators P(λ) = P0 + λV and P(λ) = P̃0 + λV in L2(Rn)

in this chapter. Here P0 and P̃0 are perturbation of −∆ in the form −∆ + f (x) on L2(Rn) with
f (x) = q(θ)

|x|2 when |x| is large enough. Here θ = x
|x| and q(θ) is a real continuous function on unit

sphere Sn−1. Assume that V(x) = O(|x|−2−ε) with some ε > 0, when |x| large enough.
This chapter is composed of two parts. In the first part, we consider a family of Schrödinger

operators, P(λ), which are the perturbation of P0 in the form

P(λ) = P0 + λV, for λ ≥ 0

on L2(Rn), n ≥ 2. Here P0 = −∆ +
q(θ)
r2 . (r, θ) is the polar coordinates on Rn, q(θ) is a real

continuous function. V ≤ 0 is a non-zero continuous function and satisfies

|V(x)| ≤ C〈x〉−ρ0 , for some ρ0 > 2. (3.1)

Let ∆s denote Laplace operator on the sphere Sn−1. Assume

− ∆s + q(θ) ≥ −
1
4

(n − 2)2, on L2(Sn−1). (3.2)

We will show that P0 and P(λ) are self-adjoint operators in L2(Rn) with the form domain Q(P0),
when −∆s + q(θ) > − 1

4 (n − 2)2, on L2(Sn−1) (see Section 3.2), especially Q(P0) = H1 if n ≥ 3.
If (3.2) holds, we also have P0 ≥ 0 in L2(Rn)(see Section 3.2). Set

σ∞ = {ν; ν =

√
λ +

1
4

(n − 2)2, λ ∈ σ(−∆s + q(θ))}, σk = σ∞ ∩ [0, k], k ∈ N.
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If q = 0, then P0 = −∆. In this case, σ∞ consists of either only half-integers (n odd) or only
integers (n even). In particular, for Laplace operator −∆, one has σ1 = {0, 1}, n = 2 ; σ1 = {

1
2 },

n = 3 ; σ1 = {1}, n = 4 ; σ1 = ∅, n = 5.
P(λ) has continuous spectrum [0,∞) for λ ≥ 0, because lim

|x|→∞
V(x) exists and equals to 0

(See [3]). We claim that when λ large enough, P(λ) has discrete spectrum less than 0. In fact,
we need only to show that there exists a function ψ ∈ L2(Rn) such that 〈ψ, P(λ)ψ〉 < 0.

From the assumption on V , we know that there exists a point x0 ∈ R
n such that V(x0) =

inf
x∈Rn

V(x). Choose δ > 0 small enough such that for all x ∈ B(x0, δ), V(x) < 1
2 V(x0). For

ψ ∈ C∞0 (Rn), ||ψ(x)|| = 1, suppψ ⊂ B(x0, δ), one has

〈ψ, P(λ)ψ〉 = 〈ψ, P0ψ〉 + λ〈ψ,Vψ〉 < 〈ψ, P0ψ〉 +
λ

2
V(x0),

when λ large enough , one has 〈ψ, P(λ)ψ〉 < 0.
We also know that σ(P(0)) = σ(P0) = [0,∞). Hence, from the continuity of discrete

spectrum of P(λ), we know there exists some λ0 such that when λ > λ0, P(λ) has eigenvalues
less then 0, and when λ ≤ λ0, σ(P(λ)) = [0,∞). So P(λ) has an eigenvalue e1(λ) < 0 at
the bottom of its spectrum for λ > λ0. By Proposition 3.5, one has e1(λ) is simple and the
corresponding eigenfunction can be chosen to be positive everywhere. (There are many results
about the simplicity of the smallest eigenvalue of Schrödinger operator with potential without
singularity, but we did not find the result which can be used directly, because the potential of
our Schrödinger operator has singularity at 0. Theorem XIII.48 [54] can treat the Schrödinger
operator with the potential with singularity at 0, but the positivity of potential is demanded.
Hence we give this result.) In this paper, we suppose λ0 > 0. We study the 0 resonances of
P(λ0) and the asymptotic behavior of discrete eigenvalues of P(λ) at value λ0. λ0 is the value
at which some eigenvalue converges to 0. In [33], Klaus and Simon studied the convergent
rate of discrete eigenvalues of P(λ) = −∆ + λV , when λ → λ0. Here λ0 is the value at which
some discrete eigenvalue ei(λ) ↑ 0 of P(λ). Fassri-Klaus [20] also studied this problem for
Schrödinger operator −∆ + V + λW with V periodic. They used Birman-Schwinger kernel in
their papers. We also use Birman-Schwinger kernel to study this problem. In order to use the
Birman-Schwinger technic to P(λ), we need to know the asymptotic expansion of (P0 − α)−1

for α near 0, α < 0, which has been studied by X.P. Wang ([70]).
In the second part, we consider Schrödinger operator P, which is the perturbation of −∆ in

the form

P = −∆ + Ṽ , for λ ≥ 0 (3.3)

on L2(Rn), n ≥ 3. Here Ṽ = V1 + V2. V1,V2 are continuous function such that |V1| =
q(θ)
r2 when

r large enough, V2 ≤ 0 is a non-zero function and satisfies |V2| ≤ C〈x〉−ρ0 with some ρ0 > 2.
q(θ) is a real function on sphere Sn−1 such that (3.4) holds. We study the asymptotic expansion
of (P − z)−1 for z near 0, =z > 0. Let

P̃(λ) = P̃0 + λV
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with P̃0 = χ1(−∆)χ1 +χ2(−∆+ q(θ)
r2 )χ2. (r, θ) is the polar coordinates on Rn, V is given by (3.1).

χ1 ∈ C∞0 (R) such that χ1(r) = 1 for |r| ≤ 1 and χ2
1 + χ

2
2 = 1. We study the asymptotic behavior

of the smallest eigenvalue of P̃(λ) as λ → λ0. λ0 is the value, at which the smallest discrete
eigenvalue of P̃(λ) converges to 0.

Here is the plan of this chapter. In section 3.2, we recall some results of P0([70]). In section
3.3, we study the asymptotic behavior of e1(λ) of P(λ) when 0 < σ∞. We get the leading term
of e1(λ). The multiplicity of 0 as the resonance of P(λ0) is studied in Section 3.4. In Section
3.5, we study the asymptotic expansion of (P − z)−1, z near 0, =z > 0 (P is given by (3.3)). In
section 3.6, we study the asymptotic behavior of the smallest eigenvalue of P̃(λ).

3.2 Some results for P0

In this section, we consider the operator

P0 = −∆ +
q(θ)
r2

on L2(Rn) n ≥ 2. Here (r, θ) is the polar coordinates on Rn, q(θ) is a real continuous function.
Let ∆s denote Laplace operator on the sphere Sn−1. Assume

− ∆s + q(θ) ≥ −
1
4

(n − 2)2, on L2(Sn−1). (3.4)

We begin this section with studying the form domain of P0. We will show that −∆s + q(θ) ≥
− 1

4 (n − 2)2, on L2(Sn−1) implies

〈φ, (−∆ +
q(θ)
r2 )φ〉 ≥ 0, for φ ∈ D. (3.5)

Here D = C∞0 (Rn\{0}). Let D̃ be the set of functions in D which is the set of finite linear
combination of products f (r)g(θ). Note that D̃ is dense in L2(Rn). One has

P0 = −
∂2

∂r2 −
n − 1

r
∂

∂r
+

1
r2 (−∆s + q(θ)).

Let U : L2(R+, rn−1dr)→ L2(R+, dr) be the unitary operator, U : φ 7→ r(n−1)/2φ. Then

UP0U−1 = −
∂2

∂r2 +
1
r2 [

(n − 1)(n − 3)
4

+ (−∆s + q(θ))].

It follows that 〈φ,UP0U−1φ〉 ≥ 〈φ, (− ∂2

∂r2 −
1

4r2 )φ〉 for U−1φ ∈ D̃. To prove P0 ≥ 0 on D̃, it

suffices to show that 〈ψ, (− ∂2

∂r2 −
1

4r2 )ψ〉 ≥ 0 for ψ ∈ C∞0 (R\{0}, dr). Note that

(r1/2ψ)′ = r1/2ψ′ +
1
2

r−1/2ψ,
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then one has

|ψ′|2 = r−1| (r1/2ψ) ′ −
1
2

r−1/2ψ|2 ≥
1

4r2 |ψ|
2 − r−3/2ψ(r1/2ψ)′.

It follows ∫ ∞

0
|ψ′|2dr ≥

∫ ∞

0

1
4r2 |ψ|

2 − r−3/2ψ(r1/2ψ)′dr =
∫ ∞

0

1
4r2 |ψ|

2dr .

Then we get that, for all φ ∈ D̃, 〈φ, P0φ〉 ≥ 0. By a density argument, we can get (3.5). Write

q(θ) = q+(θ) − q−(θ) with q+(θ) ≥ 0, q−(θ) ≥ 0 . (3.6)

Note that −∆ is a self-adjoint operator in L2(Rn) with the form domain H1(Rn). If n ≥ 3, by
Hardy inequality, one has 〈φ, q+(θ)

r2 φ〉 ≤ C〈φ,−∆φ〉 with some C > 0, since q(θ) is a continuous
function on Sn−1. Hence, we can define

γ(φ, φ) = 〈φ,−∆φ〉 + 〈φ,
q+(θ)

r2 φ〉

for φ ∈ H1(Rn). To prove that −∆ + q+(θ)
r2 is a self-adjoint operator in L2(Rn) with the form

domain H1(Rn), we need only to show that γ(·, ·) is a closed semi-bounded quadratic form (see
Theorem VIII 15 [52]). Since 〈φ,−∆φ〉 + 〈φ, q+(θ)

r2 φ〉 ≥ 0 for φ ∈ H1(Rn), then γ is a semi-
bounded quadratic form. Note that

〈φ,−∆φ〉 + ||φ||2 ≤ 〈φ,−∆φ〉 + 〈φ,
q+(θ)

r2 φ〉 + ||φ||2 ≤ (1 +C) (〈φ,−∆φ〉 + ||φ||2),

then H1(Rn) is closed with respect to the norm || · ||1 ≡
√
〈·,−∆·〉 + 〈·,

q+(θ)
r2 ·〉 + || · ||

2. This means
γ is closed. It follows that γ is the quadratic form of a unique self-adjoint operator with form do-
main H1(Rn). Then −∆+ q+(θ)

r2 is a self-adjoint operator in L2(Rn) with the form domain H1(Rn).

If n = 2, let Q(P0) be the completion of D under the norm || · ||1 ≡
√
〈·,−∆·〉 + 〈·,

q+(θ)
r2 ·〉 + || · ||

2.

Then Q(P0) is the form domain of −∆ + q+(θ)
r2 . If

−∆s + q(θ) > −
1
4

(n − 2)2, on L2(Sn−1),

there exists a constant c > 0 such that

−∆s + q(θ) ≥ −
(n − 2)2

4
+ c, on L2(Sn−1).

Set q′(θ) = q(θ) − c, then

−∆s + q′(θ) ≥ −
(n − 2)2

4
, on L2(Sn−1).

Let Q(P0) = H1(Rn) for n ≥ 3. By (3.5), one has, for φ ∈ Q(P0),

〈φ, (−∆ +
q′(θ)

r2 )φ〉 ≥ 0. (3.7)
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Write
q′(θ) = q′(θ)+ − q′(θ)− with q′(θ)+ ≥ 0, q′(θ)− ≥ 0.

By (3.7), one has

〈φ,
q′(θ)−

r2 φ〉 ≤ 〈φ, (−∆ +
q′(θ)+

r2 )φ〉.

Then q−(θ) ≤ α0q′(θ)−. Here α0 = 0 when q(θ) ≥ 0 and α0 = max
{ θ; q(θ)<0 }

q−(θ)
q′(θ)− when q(θ) < 0.

Since q′(θ) < q(θ), one can get α0 < 1. It follows

〈φ,
q−(θ)

r2 φ〉 ≤ α0〈φ,
q′(θ)−

r2 φ〉 ≤ α0〈φ, (−∆ +
q′(θ)+

r2 )φ〉 ≤ α0〈φ, (−∆ +
q+(θ)

r2 )φ〉. (3.8)

Then we have −∆ + q+(θ)
r2 +

q−(θ)
r2 = −∆ +

q(θ)
r2 is a self-adjoint in L2(Rn) with the form domain

Q(P0) for n ≥ 2.
Now, we recall some results on the resolvent and the Schrödinger group for the unperturbed

operator P0. Let

σ∞ =
{
ν; ν =

√
λ +

(n − 2)2

4
, λ ∈ σ(−∆s + q(θ))

}
.

Denote
σk = σ∞ ∩ [0, k], k ∈ N.

For ν ∈ σ∞, let nν denote the multiplicity of λν = ν2−
(n−2)2

4 as the eigenvalue of −∆s+q(θ). Let
ϕ

( j)
ν , ν ∈ σ∞, 1 ≤ j ≤ nν denote an orthonormal basis of L2(Sn−1) consisting of eigenfunctions

of −∆s + q(θ) :
(−∆s + q(θ))ϕ( j)

ν = λνϕ
( j)
ν , (ϕ(i)

ν , ϕ
( j)
ν ) = δi j.

Let πν denote the orthogonal projection in L2(Sn−1) onto the subspace spanned by the ei-
genfunctions of −∆s + q(θ) associated with the eigenvalue λν, and π(i)

ν denote the orthogonal
projection in L2(Sn−1) onto eigenfunction ϕ(i)

ν :

πν f =
nν∑
j=1

( f , ϕ( j)
ν ) ⊗ ϕ( j)

ν , f ∈ L2(Sn−1).

π(i)
ν f = ( f , ϕ(i)

ν ) ⊗ ϕ(i)
ν , f ∈ L2(Sn−1), 1 ≤ i ≤ nν.

Let

Qν = −
d2

dr2 −
n − 1

r
d
dr
+
ν2 −

(n−2)2

4

r2 , in L2(R+; rn−1dr).

Then we have the orthogonal decomposition for the resolvent R0(z) = (P0 − z)−1,

R0(z) =
∑
ν∈σ∞

(Qν − z)−1πν, z < R
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Set

f (s; r, τ, ν) = Dν(r, τ)
∫ 1

−1
ei(ρ+θ/2)s(1 − θ2)ν−1/2dθ, ν ≥ 0,

with

ρ = ρ(r, τ) ≡
r2 + τ2

4rτ
,

Dν = aν(rτ)−
(n−2)

2 , aν = −
e−iπν/2

22ν+1π1/2Γ(ν + 1/2)
.

Then

f (s; r, τ, ν) =
∞∑
j=0

s j f j(r, τ, ν), s ∈ R,

with
f j(r, τ, ν) = (rτ)−

1
2 (n−2)P j,ν(ρ),

with P j,ν(ρ) a polynomial in ρ of degree j :

P j,ν(ρ) =
i jaν

j!

∫ 1

−1
(ρ +

1
2
θ) j(1 − θ2)ν−

1
2 dθ.

In particular,

f0(r, τ, ν) = dν(rτ)−
n−2

2 , dν = −
e−

1
2 iπν

22ν+1Γ(ν + 1)
;

f1(r, τ, ν) = idν(rτ)−
n−2

2 ρ.

Denote Jν the Bessel function of the first kind of order ν, Jν can be represented as

Jν(λ) =
1

√
πΓ(ν + 1

2 )
(
λ

2
)ν

∫ 1

−1
eiλt(1 − t2)ν−

1
2 dt, Rν > −

1
2
.

Let ON(g(s)) denote the remainder in Taylor expansion of g up to the N−th order :

ON(g(s)) = g(s) −
N∑

j=0

g(k)(0)
k!

sk =
1

N!

∫ 1

0
(1 − θ)N s(N+1)g(N+1)(sθ) dθ.

For =z > 0, t > 0, one has |ON(eizt)| ≤ CN(|z|t)N+1. Using ON(eizt) = ON−1(eizt) − 1
N! (izt)N , we

can drive that |ON(eizt)| ≤ CN(|z|t)N . It follows that for any 0 ≤ θ ≤ 1,

|ON(eizt)| ≤ CN,θ(|z|t)N+θ and (3.9)

|
d
dz
ON(eizt)| = t|ON−1(eizt)| ≤ CN,θtN+θ|z|N+θ−1 (3.10)
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for t > 0, =z > 0. For 0 < ν < 1, denote

Cν, j =
i j

j!

∫ ∞

1
t j−ν−1O j( f (

1
t

))dt +
i j

j!

j∑
k=0

fk
k − j + ν

(3.11)

bν, j = −
i je−iνπ/2Γ(1 − ν)
ν(ν + 1) · · · (ν + j)

, j ≥ 0 (3.12)

R̃ν,N,2(ζ) =
∫ ∞

1
ON(eiζt)t−1−νON( f (

1
t

)dt

−

N−1∑
j=0

f j
(iζ) j+1

j!

∫ 1

0

∫ 1

0
ON− j−1(eiζθt)(1 − θ) jt−νdtdθ. (3.13)

For ν = 0, denote

C0, j =
i j

j!

∫ ∞

1
t j−1O j( f (

1
t

))dt + i j f jb j +
i j

j!

j−1∑
k=0

fk
k − j

, j ≥ 0, (3.14)

b0 =

∫ ∞

1
eit dt

t
+

∫ 1

0
(eit − 1)

dt
t

(3.15)

b j = −
1

( j − 1)!

∫ 1

0
(1 − θ) j−1 ln θdθ +

b0

j!
, j ≥ 1 (3.16)

R̃0,N,2(ζ) =
∫ ∞

1
t−1ON(eiζt)ON+1( f (

1
t

))dt − f0

∫ 1

0
t−1ON(eiζt)dt

−

N∑
j=1

f j
(iζ) j

( j − 1)!

∫ 1

0

∫ 1

0
(1 − θ) j−1ON− j(eitζθ)

dt
t

)dθ. (3.17)

Then we have following

Proposition 3.1. (Proposition 2.1 [70])Let ν ∈ σ∞ and l ∈ N with l ≤ ν < l+ 1. Set ν′ = ν− l ∈
[0, 1),

(a) If l < ν < l + 1, one has

(Qν − z)−1 =

N∑
j=0

z jFν, j + zν
′

N−1∑
j=l

Gν, j + Rν,N(z)

with

Fν, j = −(rτ)−
n−2

2 + j i j

j!

∫ ∞

0
ei ρt −i πν2 t jJν(

1
2t

)
dt
2t

(3.18)

for 0 ≤ j ≤ l and for l + 1 ≤ j ≤ N,

Fν, j =
il( j − l)!

j!
(rτ) jCν′, j−l +

(irτ) j

j!

∫ 1

0
t j−ν−1 f (

1
t

; r, τ, ν)dt,

Gν, j = (rτ) j+ν′bν′, j f j−l l ≤ j ≤ N,
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Rν,N(z) = zν
′+NGν+N +

(irτz)l

(l − 1)!

∫ 1

0
(1 − θ)l−1

{
R̃ν′,N−l,2(θzrτ)

+

∫ 1

0
ON−l(eitθzrτ)tl−1−ν f (

1
t

; r, τ, ν)dt
}
dθ.

When l = 0, the integral in θ is absent.
(b) If ν = l ∈ N, then

(Qν − z)−1 =

N∑
j=0

z jFν, j + ln z
N∑
j=l

z jGν, j + Rν,N(z)

with Fν, j was given by (3.18) for 0 ≤ j ≤ l − 1 and

Fν, j = (rτ) j
{ il( j − l)!

j!
C0, j−l − ln(rτ)

i j f j−l

j!
− cl, j f j−l

}
+

(irτ) j

j!

∫ 1

0
t j−l−1 f (

1
t

; r, τ, ν)dt, l ≤ j ≤ N,

Gν, j = −(irτ) j f j−l

j!
, l ≤ j ≤ N,

R0,N(z) = (irτz)N+1 fN+1bN+1 + R̃0,N,2(zrτ) +
∫ 1

0
ON(eitzrτ)t−1 f (

1
t

; r, τ, ν)dt and

Rl,N(z) =
(irτz)N+1(N − l + 1)!

(N + 1)!
fN+1−lbN+1−l +

∫ 1

0
(1 − θ)l−1

{
R̃0,N−l,2(θzrτ)

+

∫ 1

0
ON−l(eitθzrτ)t−1 f (

1
t

; r, τ, ν)dt
}
dθ

for ν = l ≥ 1. Here c0, j = 0 for all j and

cl, j = −
i j

(l − 1)!( j − l)!

∫ 1

0
(1 − θ)l−1θ j−l ln θdθ, l ≥ 1, j ≥ l.

Here

Cν′, j =
i j

j!

∫ ∞

1
t j−ν′−1O( f (

1
t

; r, τ, ν))dt +
i j

j!

j∑
k=0

fk
k − j + ν′

;

bν′, j = −
i je−iν′π/2Γ(1 − ν′)
ν′(ν′ + 1) · · · (ν′ + j)

, (3.19)

for 0 ≤ ν′ < 1.

Denote for ν ∈ σ∞,
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zν =

 zν
′

, if ν < N,

z ln z, if ν ∈ N.

For ν > 0, let [ν]− be the largest integer strictly less than ν. When ν = 0, set [ν]− = 0. Define δν
by δν = 1, if ν ∈ σ∞ ∩ N, δν = 0, otherwise. One has [ν] = [ν]− + δν.

Theorem 3.2. (Theorem 2.2 [70]) The following asymptotic expansion holds for z near 0 with
=z > 0,

R0(z) = δ0 ln zG0,0π0 +

N∑
j=0

z jF j +
∑
ν∈σN

zν
N−1∑

j=[ν]−

z jGν, j+δνπν + R(N)
0 (z)

in L(−1, s; 1,−s), s > 2N + 1. Here

Gν, j(r, τ) =


bν′, j(rτ) j+ν′ f j−[ν](r, τ; ν′), ν < N

−
(irτ) j

j!
f j−[ν](r, τ; 0), ν ∈ N

F j =
∑
ν∈σ∞

Fν, jπν ∈ L(−1, s; 1,−s), s > 2 j + 1

R(N)
0 (z) = O(|z|N+ε) ∈ L(−1, s; 1,−s), s > 2N + 1, ε > 0.

Here bν′, j is given by (3.19).

Let V ≤ 0 be a non-zero continuous function and satisfying

|V(x)| ≤ C〈x〉−ρ0 , for some ρ0 > 2. (3.20)

Let P(λ) = P0 + λV .

Definition 3.3. Set N(λ) = {u; P(λ)u = 0, u ∈ H1,−s,∀s > 1}, for λ ≥ λ0. If N(λ)\L2 , {0}, we
say that 0 is the resonance of P(λ). A non-zero function u ∈ N(λ)\L2 is called a resonant state
of P(λ) at zero. dimN(λ)\L2 is called the multiplicity of 0 as the resonance of P(λ).

Let K(z) = |V |1/2(P0 − z)−1|V |1/2 for z < σ(P0), and K(0) = |V |1/2F0|V |1/2. Then we have
the following

Proposition 3.4. Let α < 0. Then α ∈ σd(P(λ)) if and only if λ−1 ∈ σd(K(α)). Moreover, the
multiplicity of α as the eigenvalue of P(λ) is exactly the multiplicity of λ−1 as the eigenvalue of
K(α).

Proof. Since P0 ≥ 0 in L2(Rn) and α < 0, then (P0 − α)−1 exists in L2(Rn).

P(λ) − α = (P0 − α)(I + λ(P0 − α)−1V(x)).

Therefore α ∈ σd(P(λ)) if and only if λ−1 ∈ σd(−(P0 − α)−1V(x)) = σd(K(α)). In the last
equality, we use that for bounded operators A, B, σ(AB)\{0} = σ(BA)\{0}(See [16]).
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For fixed α < 0, let

A = { ψ ∈ L2(Rn); (P(λ) − α)ψ = 0 },

B = {φ ∈ L2(Rn) : K(α)φ = λ−1φ}.

It suffices to prove dim A = dim B. First, we will prove that |V |1/2 is injective from A to B. Note
that if ψ ∈ A, then

K(α)φ = λ−1φ

with φ = |V |1/2ψ. And if φ = 0, then

ψ = −λ(P0 − α)−1Vψ = λ(P0 − α)−1|V |1/2φ = 0.

It follows that |V |1/2 is injective from A to B. On the other hand, we can show that (P0 −

α)−1|V |1/2 is injective from B to A. If φ ∈ B, then

(P(λ) − α)ψ = 0, with ψ = (P0 − α)−1|V |1/2φ.

And if ψ = 0, then
0 = |V |1/2ψ = K(α)φ = λ−1φ.

It follows that (P0 − α)−1|V |1/2 is injective from B to A. This ends the proof. 2

From this proposition, we can see that there is a one-to-one corresponding between discrete
eigenvalues of P(λ) and discrete eigenvalues of K(α). Thus we study discrete eigenvalue of
K(α) in the next section.

3.3 The case 0 < σ∞

If P0 and V are defined as before, we will show that if P0 + V has the eigenvalue less than
0, then the smallest eigenvalue of P0 +V is simple. We use Theorem XIII.45 [54] to prove that.

Proposition 3.5. Suppose P0+V has an eigenvalue at the bottom of its spectrum. If 0 < σ∞, then
this eigenvalue is simple and the corresponding eigenfunction can be chosen to be a positive
function.

Proof. Let 0 ≤ χ(t) ≤ 1 be a smooth function such that χ(t) = 1 if |t| < 1 and χ(t) = 0 if
t > 2. Let χn(t) = χ(nt). Let

P = P0 + V, Vn = (1 − χn(r))
q(θ)
r2 + V,

Pn = −∆ + (1 − χn(r))
q(θ)
r2 + V.

By Theorem XIII45 [54], we need only to prove that Pn converges to P, and P − Vn converges
to −∆ in the strong resolvent norm sense. By min-max principle, we know that if µ < P, then
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µ < Pn, because 0 ≤ χ(t) ≤ 1. It suffices to show that there exists some µ0 < σ(P), such that
∀φ ∈ D(P), the domain of P,

||(Pn − µ0)−1φ − (P − µ0)−1φ|| � 0 (3.21)

||(P − Vn − µ0)−1φ − (−∆ − µ0)−1φ|| � 0 (3.22)

when n � ∞. The proof of (3.21) and the proof of (3.22) are similar. So we need only to prove
(3.21). q+(θ) and q−(θ) are given by (3.6), then

(Pn − µ0)−1

= (−∆ + 1 + Vn − µ0 − 1)−1

= (−∆ +
q+(θ)

r2 + 1)−1/2[I + (−∆ +
q+(θ)

r2 + 1)−1/2(χn(r)
q+(θ)

r2 − (1 − χn(r))
q−(θ)

r2 )(−∆ +
q+(θ)

r2 + 1)−1/2

+(−∆ +
q+(θ)

r2 + 1)−1/2(V − µ0 − 1)(−∆ +
q+(θ)

r2 + 1)−1/2]−1(−∆ +
q+(θ)

r2 + 1)−1/2

≡ An(−∆ +
q+(θ)

r2 + 1)−1/2.

From (3.8), we know that (−∆+ q+(θ)
r2 +1)−1/2(1−χn(r)) q−(θ)

r2 (−∆+ q+(θ)
r2 +1)−1/2 ≤ α0I, and choose

µ0 so negative such that V − µ0 − 1 > 0, then An are uniform bounded operators. Similarly, one
has

(P − µ0)−1 ≡ (−∆ +
q+(θ)

r2 + 1)−1/2B

with B is a bounded operator. Then

(Pn − µ0)−1φ − (P − µ0)−1φ

= (Pn − µ0)−1χn(r)
q(θ)
r2 (P − µ0)−1φ

= An(−∆ +
q+(θ)

r2 + 1)−1/2χn(r)
q(θ)
r2 (−∆ +

q+(θ)
r2 + 1)−1/2Bφ

by (3.8),

(−∆ +
q+(θ)

r2 + 1)−1/2 q−(θ)
r2 (−∆ +

q+(θ)
r2 + 1)−1/2 ≤ α0

and

(−∆ +
q+(θ)

r2 + 1)−1/2 q+(θ)
r2 (−∆ +

q+(θ)
r2 + 1)−1/2 ≤ 1

Therefore,

||(Pn − µ0)−1φ − (P − µ0)−1φ|| � 0

as n � ∞.
Similarly, we can prove (3.22). This ends the proof. 2
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Lemma 3.6. Assume 0 < σ∞, and ρ0 > 3. If σ1 , ∅, then 0 is not the eigenvalue of P(λ0).

Proof. If 0 is the eigenvalue of P(λ0). Then there exists a function u ∈ L2(Rn) such that
P(λ)u = 0. By Proposition 3.5, one has that u can be chosen to be a positive function. By
Theorem 3.1 [69],

u =
∑

0<ν≤1

nν∑
j=1

−
1
2ν
〈Vu, |y|−

1
2 (n−1)+νϕ

( j)
ν 〉

ϕ
( j)
ν (θ)

r
1
2 (n−2)+ν

+ ũ

with ũ ∈ L2(Rn). Since u and ϕ(1)
ν are positive, V ≤ 0 is a non-zero function, we have u < L2(Rn).

This is contradictory to that u is the eigenfunction of P(λ0). 2

In the following of this section, we suppose that n ≥ 3.

Proposition 3.7. Assume 0 < σ∞ and n ≥ 3. P0F0u = u, for any u ∈ H−1,s, s > 1 ; F0P0u = u
for u ∈ H1,−s and P0u ∈ H−1,s, s > 1.

Proof. If u ∈ H−1,s, then F0u ∈ H1,−s. For any test function φ ∈ C∞0 (Rn), we have
〈P0F0u, φ〉 = 〈u, F0P0φ〉. If 0 < σ∞, we have lim

z→0
(P0 − z)−1 = F0 in H−1,s for =z > 0. It

follows 〈u, F0P0φ〉 = lim
z→0
〈u, (P0 − z)−1P0φ〉 = lim

z→0
〈u, φ − z(P0 − z)−1φ〉 = 〈u, φ〉, because φ and

P0φ belong to H−1,s. Hence, P0F0u = u in H−1,s.
On the other hand, if P0u ∈ H−1,s, we have P0F0P0u = P0u in H−1,s. It follows P0(F0P0u−

u) = 0. Then F0P0u = u, because F0P0u − u ∈ H1,−s and P0 has no kernel in H1,−s, s > 1. 2

Proposition 3.8. Assume 0 < σ∞, n ≥ 3 and ρ0 > 2. For λ ≥ λ0, dimN(λ) is equal to the
multiplicity of λ−1 as the eigenvalue of K(0).

Proof. We use the method used in the proof of Proposition 3.4. First, for u ∈ N(λ), one has
(1+λF0V)u = 0, by Proposition 3.7. Then K(0)ũ = λ−1ũ with ũ = |V |1/2u. Due to |V | ≤ C〈x〉−ρ0

with some ρ0 > 2, one has ũ ∈ L2(Rn). By the same argument as in Proposition 3.4, one can
show that |V |1/2 is injective from N(λ) to { ψ ∈ L2(Rn); K(0)ψ = λ−1ψ }. This means that
dimN(λ) is at most the multiplicity of λ−1 as the eigenvalue of K(0).

On the other hand, if λ−1 is the eigenvalue of K(0). Then there exists a function ũ ∈ L2(Rn)
such that K(0)ũ = λ−1ũ. Let u = F0|V |1/2ũ. Note that |V |1/2ũ ∈ H−1,ρ0/2, since |V | ≤ C〈x〉−ρ0

with some ρ0 > 2. It follows u ∈ H1,−ρ0/2 because F0 is a bounded operator in L(−1, s; 1,−s)
for s > 1. Then

P(λ)u = P0F0|V |1/2ũ + λVF0|V |1/2ũ = |V |1/2ũ − λ|V |1/2|V |1/2F0|V |1/2ũ = 0.

This implies u ∈ N(λ). As in Proposition 3.4, we can get that F0|V |1/2 is the injective from
{ ψ ∈ L2(Rn); K(0)ψ = λ−1ψ } to N(λ). It follows that the multiplicity of λ−1 as the eigenvalue
of K(0) is at most dimN(λ). 2
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Proposition 3.9. Assume 0 < σ∞. K(α) is a compact operator for α ≤ 0. And K(α) convergent
to K(0) in operator norm sense.

Proof. For α < 0, K(α) = |V |1/2(P0 − α)−1|V |1/2. Since (P0 − α)−1 is a bounded operator
from L2(Rn) to H1(Rn), and V is a compact operator from H1(Rn) to L2(Rn). Then V(P0 − α)−1

is a compact operator on L2(Rn). So is K(α). Because

K(α) − K(0) = |V |1/2[(P0 − α)−1 − F0]|V |1/2 = |V |1/2R(0)
0 |V |

1/2

and if ρ0 > 2, then |V |1/2R(0)
0 |V |

1/2 = o(|α|ε) in L2(Rn). Hence, K(α) → K(0) in operator norm
sense, as α→ 0. This means K(0) is a compact operator. 2

Lemma 3.10. Suppose A1, A2 are two bounded self-adjoint operators on Hilbert space H. Set

µn(Ai) = sup
φ1,··· ,φn

inf
||ψ||=1,ψ∈[φ1,··· ,φn]⊥

(ψ, Aiψ),

then |µn(A1) − µn(A2)| ≤ ||A1 − A2||.

Proof. By the definition of µn(Ai), one has

µn(A1) − µn(A2)

= sup
φ1,··· ,φn

inf
||ψ||=1,ψ∈[φ1,··· ,φn]⊥

(ψ, A1ψ) − sup
φ1,··· ,φn

inf
||ψ||=1,ψ∈[φ1,··· ,φn]⊥

(ψ, A2ψ)

≤ sup
φ1,··· ,φn

[ inf
||ψ||=1,ψ∈[φ1,··· ,φn]⊥

(ψ, A1ψ) − inf
||ψ||=1,ψ∈[φ1,··· ,φn]⊥

(ψ, A2ψ)]

= sup
φ1,··· ,φn

[ sup
||ψ||=1,ψ∈[φ1,··· ,φn]⊥

(ψ,−A1ψ) − sup
||ψ||=1,ψ∈[φ1,··· ,φn]⊥

(ψ,−A2ψ)]

≤ sup
φ1,··· ,φn

sup
||ψ||=1,ψ∈[φ1,··· ,φn]⊥

[(ψ,−A1ψ) − (ψ,−A2ψ)]

≤ ||A1 − A2||.

Similarly, we have µn(A2) − µn(A1) ≤ ||A1 − A2|| . This ends the proof. 2

Lemma 3.11. Suppose T (α) is a family of compact self-adjoint operators on some separable
Hilbert space H , and T (α) = T0 + o(|α|ε), for α near 0. Set

µi(α) = inf
φ1,··· ,φi

sup
||ψ||=1,ψ∈[φ1,··· ,φi]⊥

(ψ,T (α)ψ).

Then
(a). µi(α) is the eigenvalue of T (α) and µi(α) converges when α → 0. Moreover, if µi(α) �

µi, then µi is the eigenvalue of T0.
(b). Suppose E0 , 0 is the eigenvalue of T0 of multiplicity m. Then there are m eigenva-

lues (counting multiplicity), Ei(α) (1 ≤ i ≤ m) , of T (α) near E0. Moreover, we can choose
{ φi(α); 1 ≤ i ≤ m } such that (φi(α), φ j(α)) = δi j ( 1 ≤ i, j ≤ m ), φi(α) is the eigenvector of
T (α) corresponding to Ei(α) (Ei(α) → E0), and φi(α) converges as α → 0. If φi(α) converges
to φi, then φi is the eigenvector of T0 corresponding to E0.
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Proof. (a). By min-max principle, we know that µi(α) is an eigenvalue of T (α). By Lemma
3.10, one has

|µi(α) − µi(0)| ≤ ||T (α) − T0|| = O(|α|ε).

It follows µi(α) converges to the eigenvalue of T0.
(b). Because T0 is a compact operator, and E0 , 0 is the eigenvalue of T0, then E0 is a

discrete spectrum of T0. Then there exists a constant δ > 0 small enough, such that T0 has only
one eigenvalue, E0, in B(E0, δ)(= { z ∈ C; |z − E0| < δ }). For α small enough, T (α) has exactly
m eigenvalues ( counting multiplicity ) in B(E0, δ) because the eigenvalues of T (α) converge to
the eigenvalues of T0, by part (a) of the lemma. Suppose the m eigenvalues, near E0, of T (α)
are E1(α), E2(α), · · · , Em(α), and the corresponding eigenvectors are ψ1(α), ψ2(α), · · · , ψm(α)
such that (ψi(α), ψ j(α)) = δi j. Let

Pα = −
1

2πi

∮
|E−E0 |=δ

(T (α) − E)−1dE.

Then, Pα =
m∑

i=1
(·, ψi(α)) ψi(α). Let P(i)

α = (·, ψi(α)) ψi(α), then Pα =
m∑

i=1
P(i)
α . For α near 0, one

has

||Pα − P0|| = || −
1

2πi

∮
|E−E0 |=δ

(T (α) − E)−1 − (T0 − E)−1dE||

= || −
1

2πi

∮
|E−E0 |=δ

(T (α) − E)−1(T0 − Tα)(T0 − E)−1dE||

= O(|α|ε).

It follows that, there are φi, 1 ≤ i ≤ m, such that (φi, φ j) = δi j, φi ∈ RanP0 and ||P(i)
α φi − φi|| =

O(|α|ε). Let φi(α) = P(i)
α φi

||P(i)
α φi ||

. Then, (φi(α), φ j(α)) = 0 for i , j, because P(i)
α P( j)

α = 0 if i , j, and

||φi(α) − φi|| ≤ ||P
(i)
α φi − φi|| + ||(1 − 1

||P(i)
α φi ||

)P(i)
α φi|| = O(|α|ε).

This ends the proof. 2

Let 0 < α1 < α2 < · · · < αi < · · · < αn and

T (β) = T0 +

n∑
i=1

βαi(ln β)δiTi + Tr(β).

Here, δi = 0 or 1, T0 ≥ 0,Ti( 1 ≤ i ≤ m ) are compact self-adjoint operators, Tr(β) are compact
operators, and Tr(β) = O(|β|αm+ε) for β near 0. Set

ei = inf
φ1,··· ,φi

sup
||ψ||=1,ψ∈[φ1,··· ,φi]⊥

(ψ,T0ψ).

Then by min-max principle, ei is the eigenvalue of T0. Moreover, if ei , 0, then ei is a discrete
eigenvalue of T0, because T0 is a compact operator. If ei , 0 is an eigenvalue of T0 of multipli-
city m, without loss, we can suppose that ei = ei+1 = · · · = ei+m−1. Then there exist exactly m ei-
genvalues (counting multiplicity), ei(β), ei+1(β), · · · , ei+m−1(β), of T (β) near ei. By Lemma 3.11,
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we know that there exists a family of normalized eigenvector { φ j(β); j = i, i+1, · · · , i+m−1 }
of T (β) such that T (β)φ j(β) = e j(β)φ j(β), (φ j(β), φk(β)) = δ jk ( j, k = i, i + 1, · · · , i + m − 1 ),
and φ j(β) ( j = i, i + 1, · · · , i + m − 1 ) converge as β→ 0. Suppose φ j(β) converge to φ j for all
j such that e j , 0. Then (φi, φ j) = δi j. {φi} can be extended to a standard orthogonal basis. Set

T1(β) =
n∑

i=1

βαiTi + Tr(β), Ti j(β) = (φi,T1(β)φ j).

Then we having the following result.

Lemma 3.12. T (β), ei are given as before. Then the eigenvalue of T (β), e j(β) ( j = i, i+1, · · · , i+
m − 1 ), have the following form

e j(β) = ei +

∞∑
n=0

a( j)
n (β)

∞∑
n=0

b( j)
n (β)

.

Here

a( j)
0 (β) = T j j(β),

a( j)
1 (β) = −

∑
{k; ek,ei}

(ek − ei)−1T jk(β)Tk j(β),

a( j)
2 (β) =

∑
k, j,l

(ek − ei)−1(el − ei)−1T jk(β)Tkl(β)Tl j(β)

− 2
∑

{k; ek,ei}

(ek − ei)−1T jk(β)Tk j(β)T j j(β),

a( j)
n (β) = −

(−1)n

2πi

∮
|E−ei |=δ

(ei − E)−1
∑

i1,i2,··· ,in

(ei1 − 1)−1 · · · · · (ein − 1)−1

T ji1Ti1i2 · · · · · Tin jdE, for n > 2,

b( j)
0 (β) = 1,

b( j)
1 (β) = 0,

b( j)
2 (β) =

∑
{k; ek,ei}

(ei − e0)−2T1i(β)Ti1(β),

b( j)
n (β) = −

(−1)n

2πi

∮
|E−ei |=δ

(ei − E)−2
∑

i1,i2,··· ,in−1

(ei1 − E)−1 · · · · · (ein − E)−1

T ji1Ti1i2 · · · · · Tin−1 jdE, for n > 2.

Proof. If ei , 0, then ei is the discrete spectrum of T0. Suppose the multiplicity of ei is m,
and suppose ei = ei+1 = · · · = ei+m−1 as before. Hence, we can choose δ > 0 small enough,
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such that there is only one eigenvalue, ei, in B(ei, δ) = { z ∈ C; |z − ei| < δ }. We know that
ei(β) converge to ei. It follows that if δ small enough, there are exactly m eigenvalue ( counting
multiplicity ) of T (β) in B(ei, δ) for β small. Set

P(β) , −
1

2πi

∮
|E−ei |=δ

(T (β) − E)−1dE.

Then

e j(β) =
〈φ j,T (β)P(β)φ j〉

〈φ j, P(β)φ j〉

=
〈φ j,T0P(β)φ j〉

〈φ j, P(β)φ j〉
+
〈φ j,T1(β)P(β)φ j〉

〈φ j, P(β)φ j〉

= e j +
〈φ j,T1(β)P(β)φ j〉

〈φ j, P(β)φ j〉
.

One has

(T (β) − E)−1 = (T0 − E)−1(I + T1(β)(T0 − E)−1)−1

= (T0 − E)−1
∞∑

n=0

(−1)n[T1(β)(T0 − E)−1]n.

It follows

〈φ j, P(β)φ j〉 = −
1

2πi

∮
|E−ei |=δ

〈φ j, (T0 − E)−1
∞∑

n=0

(−1)n[(T1(β))(T0 − E)−1]nφ j〉dE.

Then

b( j)
n (β) = −

(−1)n

2πi

∮
|E−ei |=δ

〈φ j, (T0 − E)−1[(T1(β))(T0 − E)−1]nφ j〉dE
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In particular,

b( j)
0 (β) = −

1
2πi

∮
|E−ei |=δ

〈φ j, (T0 − E)−1φ j〉dE

= 1;

b( j)
1 (β) =

1
2πi

∮
|E−ei |=δ

〈φ j, (T0 − E)−1[(T1(β))(T0 − E)−1]φ j〉dE

=
1

2πi

∮
|E−ei |=δ

(ei − E)−2〈φ j,T1(β)φ j〉dE

= 0;

b( j)
2 (β) = −

(−1)2

2πi

∮
|E−ei |=δ

〈φ j, (T0 − E)−1[(T1(β))(T0 − E)−1]2φ j〉dE

= −
1

2πi

∮
|E−ei |=δ

(ei − E)−2〈φ j, [(T1(β))(T0 − E)−1(T1(β))]φ j〉dE

= −
1

2πi

∮
|E−ei |=δ

(ei − E)−2
∑

k

〈φ j, (T1(β))φk〉(ek − E)−1〈φ j, (T1(β))φk〉dE

= −
1

2πi

∮
|E−ei |=δ

(ei − E)−2
∑
{k;ek,ei}

〈φ j, (T1(β))φk〉(ek − E)−1〈φ j, (T1(β))φk〉dE

−
1

2πi

∮
|E−ei |=δ

(ei − E)−2
∑
{k;ek=ei}

〈φ j, (T1(β))φk〉(ek − E)−1〈φ j, (T1(β))φk〉dE

≡ I1 + I2.

For I2, note that there are only finite term in the summation, because T0 is a compact operator
and ei , 0. It is easy to check I2 = 0. From the choice of δ, we know that |(ek − E)−1| ≤ C for
ek , ei and |E − ei| = δ. Here C is independent of E. Therefore,∑

{k;ek,ei}

|(ek − e j)−2T jk(β)Tk j(β)(ek − E)−1|

≤ C
∑

(|T jk(β)|2 + |Tk j(β)|2) ≤ C(||T ∗1 (β)φ j||
2 + ||T1(β)φ j||

2) (3.23)

with C independent of E. It follows

I1(z) = −
1

2πi

∑
{k;ek,ei}

∮
|E−ei |=δ

(ei − E)−2〈φ j, (T1(β))φk〉(ek − E)−1〈φ j, (T1(β))φk〉dE

=
∑
{k;ek,ei}

(ei − ek)−2T jk(β)Tk j(β).
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By (3.23),
∑

{k;ek,ei}

(ei − ek)−2T jk(β)Tk j(β) is finite. Similarly, we can get

b( j)
n (β) = −

(−1)n

2πi

∮
|E−ei |=δ

(ei − E)−2
∑

i1,i2,··· ,in−1

(ei1 − E)−1 · · · · · (ein − E)−1

T ji1Ti1i2 · · · · · Tin−1 jdE;

and

a( j)
0 (β) = T j j(β)

a( j)
1 (β) = −

∑
{k; ek,ei}

(ek − ei)−1T jk(β)Tk j(β);

a( j)
2 (β) =

∑
{l,k; ek,e j,el}

(e j − ek)−1(e j − el)−1T jk(β)Tkl(β)Tl j(β)

−2
∑

{k; ek,ei}

(e j − ek)−1T jk(β)Tk j(β)T j j(β);

a( j)
n (β) = −

(−1)n

2πi

∮
|E−ei |=δ

〈φ j, [(T1(β))(T0 − E)−1]n+1φ j〉dE

= −
(−1)n

2πi

∮
|E−ei |=δ

(ei − E)−1〈φ j, [(T1(β))(T0 − E)−1]nT1(β)φ j〉dE

= −
(−1)n

2πi

∮
|E−ei |=δ

(ei − E)−1
∑

i1

〈φ j, [(T1(β))(T0 − E)−1]n−1

T1(β)φi1〉(ei − E)−1Ti1 j(β)dE

= · · ·

= −
(−1)n

2πi

∮
|E−e1 |=δ

(e1 − E)−1
∑

i1,i2,··· ,in

(ei1 − E)−1 · · · · · (ein − E)−1

T ji1Ti1i2 · · · · · Tin j dE.

2

Set ν0 = min{ ν; ν ∈ σ∞ }. Let u(λ) be the ground state of P(λ). u(λ) can be chosen to be a
positive function. Then

ũ(λ) ≡ |V |1/2u(λ) ∈ L2(Rn).

Choose appropriate u(λ) such that ||ũ(λ)||L2(Rn) = 1.

Lemma 3.13. Assume 0 < σ∞, n ≥ 3. u(λ) and ũ(λ) are define as above. Then ũ(λ)
converges in L2(Rn), as λ → λ0. If ũ(λ) converges to φ, then φ is the eigenvalue of K(0),
and 〈φ, |V |1/2Gν0,0πν0 |V |

1/2φ〉 , 0.
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Proof. By the assumption of ũ(λ), one has K(e1(λ))ũ(λ) = λ−1ũ(λ) ( e1(λ) is the smallest
eigenvalue of P(λ) ). One has that ũ(λ) converges to some function φ in L2(Rn) as λ → λ0

by Lemma 3.11. By Lemma3.11, we know that φ is the normalized eigenfunction of K(0)
corresponding to E0. φ is a positive function, since ũ(λ) is positive. Let u = F0|V |1/2φ, then
P(λ0)u = 0 and u is a positive function, because |V |1/2u = |V |1/2F0|V |1/2φ = K(0)φ = λ0φ.

Then

〈φ, |V |1/2Gν0,0πν0 |V |
1/2φ〉

= λ2
0〈|V |

1/2u, |V |1/2Gν0,0πν0 |V |
1/2|V |1/2u〉

= λ2
0〈Vu,Gν0,0πν0Vu〉

= λ2
0Cν0 | 〈Vu, |y|−

n−2
2 +ν0ϕν0〉|

2

, 0.

This ends the proof. 2

Let

µi(α) = inf
φ1,··· ,φi

sup
||ψ||=1,ψ∈[φ1,··· ,φi]⊥

(ψ,K(α)ψ).

Then µi(α) is the eigenvalue of K(α). Because K(α)→ K(0) as α→ 0, one has µi(α) converges
to the eigenvalue of K(0) by Lemma 3.11. Suppose µi(α) → µi, and suppose µ1 = · · · = µm,
and µ1 , µm+1, then µ1 is an eigenvalue of K(0) of multiplicity m. By Lemma 3.11, one can
choose φi(α) (1 ≤ i ≤ m), which is the eigenfunction of K(α) corresponding to µi(α) such that
〈φi(α), φ j(α)〉 = δi j and φi(α) converges. Suppose φi(α) → φi as α → 0, then φi(1 ≤ i ≤ m)
is the eigenfunction of K(0) corresponding to µ1, and 〈φi, φ j〉 = δi j for 1 ≤ i, j ≤ m. Note that
µ1 = λ

−1
0 , one has P(λ0)ψi = 0 (1 ≤ i ≤ m) with ψi = F0|V |1/2φi ∈ H1,−s, s > 1. By Lemma 3.6,

we know that 0 is not the eigenvalue of P(λ0), then ψi (1 ≤ i ≤ m) is the 0 resonance of P(λ0).
Suppose that ψi (1 ≤ i ≤ m) is νi-resonant state of P(λ0). Then 0 < νi ≤ 1 by Theorem 3.1 [70].
Then, we have

Lemma 3.14. Assume n ≥ 3, σ1 , ∅ and 0 < σ∞. ψi, φi, µi(α), µi are defined as above. Then
〈φi, |V |1/2Gνi,0πνi |V |

1/2φi〉 , 0, and 〈φi, |V |1/2Gν,0πν|V |1/2φi〉 = 0 for ν < νi . Moreover, if ν j < 1,
µ j(α) = cαν j + o(αν j) with some c , 0 ; if ν j = 1, µ j(α) = cα lnα + o(α) with some c , 0 for
1 ≤ j ≤ m.

Proof. From the definition of φ j, one has

〈φ j, |V |1/2Gν,0πν|V |1/2φk〉

= 〈λ0|V |1/2ψ j, λ0|V |1/2Gν,0πν|V |1/2|V |1/2ψk〉

= Cνλ
2
0〈Vψ j,

1

|x|
1
2 (n−2)−ν

ϕν〉〈Vψk,
1

|x|
1
2 (n−2)−ν

ϕν〉,
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where Cν , 0 is a constant dependent on ν. Hence, if 〈φ j, |V |1/2Gν,0πν|V |1/2φ j〉 = 0,
one has 〈Vψ j,

1

|x|
1
2 (n−2)−ν

ϕν〉 = 0. It follows 〈φ j, |V |1/2Gν,0πν|V |1/2φk〉 = 0. If φ j is ν j- reso-

nant state of P(λ0), then by Theorem 3.1 [70], one has 〈φ j, |V |1/2Gν,0πν |V |1/2φ j〉 , 0, and
〈φ j, |V |1/2Gν,0πν|V |1/2φ j〉 = 0 for all ν ∈ σ∞, ν < ν j. Use Lemma 3.12 to computer µ j(α). If
ν j < 1,

µ j(α) = µ1 +
αν j〈φ j, |V |1/2Gν j,0πν j |V |

1/2φ j〉 + o(αν j)

1 + o(αν j)
= µ1 + cαν j + o(αν j)

with c = 〈φ j, |V |1/2Gν,0πν|V |1/2φ j〉, for 1 ≤ j ≤ m. If ν j = 1,

µ j(α) = µ1 +
α lnα〈φ j, |V |1/2G1,0π1|V |1/2φ j〉 + o(αν j)

1 + o(αν j)
= µ1 + cα lnα + o(αν j)

with c = 〈φ j, |V |1/2G1,0π1|V |1/2φ j〉.

Theorem 3.15. Assume 0 < σ∞ and n ≥ 3. Suppose that e1(λ) is the ground state energy (the
smallest eigenvalue) of P(λ). φ is defined in Lemma 3.13. If ρ0 > 6, one of three exclusive
situations holds :

(a). If σ1 = ∅, then e1(λ) = −c(λ − λ0) + o(λ − λ0), c = (λ0||F0|V |
1
2φ||)−2 , 0 ;

(b). If ν0 = 1, then e1(λ) = −c λ−λ0
ln(λ−λ0) + o( λ−λ0

ln(λ−λ0) ), c = λ−2
0 〈φ, |V |

1/2G1,0π1|V |1/2φ〉−1 , 0 ;

(c). If ν0 < 1, then e1(λ) = c((λ−λ0)
1
ν0 )+o((λ−λ0)

1
ν0 ), c = λ−2

0 〈φ, |V |
1/2Gν0,0πν0 |V |

1/2φ〉−1 ,

0.

Proof. (a)By Theorem 3.2, one has

R0(α) = F0 + αF1 + R(1)
0 (α), in L(−1, s; 1,−s) s > 3.

Then if ρ0 > 6, we can get K(α) = K(0) + |V |1/2(αF1 + R(1)
0 (α))|V |1/2 in L(0, 0; 0, 0). Because

e1(λ) is the simple eigenvalue of P(λ), then λ−1 is the simple eigenvalue of K(e1(λ)). And we
also have that λ−1 is the biggest eigenvalue of K(e1(λ)). If not, suppose that a > λ−1 is the
eigenvalue of K(e1(λ)), then by the continuous and monotonous of the eigenvalue of K(e1(λ))
with respect to λ, we know that there exists a constant λ′ < λ such that λ ∈ σ(K(e1(λ′))). It
follows that e1(λ′) < e1(λ) is the eigenvalue of P0+λV . This is contradictory to that e1(λ) is the
smallest eigenvalue. By Lemma 3.13, we know the normalized eigenfunction ,ũ(λ), of K(e1(λ))
converges to φ. It follows ũ(λ) = Pλφ

||Pλφ||
. Then

µ(e1(λ)) = 〈ũ(λ),K(e1(λ))ũ(λ)〉 =
〈φ,K(e1(λ)Pλ)φ〉
〈φ, Pλφ〉

.

By Lemma 3.12, we should compute 〈φ, |V |1/2F1|V |1/2φ〉.
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From the definition of φ, one has

(P0 + λ0V)ψ = 0 with ψ = F0|V |1/2φ,

Since ν0 > 1, we have ψ ∈ L2(Rn) by Theorem 3.1 [70]. So ψ is the ground state of P(λ0).
We also have

|V |1/2ψ = K(0)φ = λ−1
0 φ,

(P0 − α)−1|V |ψ = λ−1
0 (ψ + αR0(α)ψ).

Hence,

|V |1/2F1|V |1/2φ = λ0|V |1/2F1|V |1/2|V |1/2ψ

= λ0α
−1|V |1/2(R0(α) − F0)|V |ψ + O(|α|ε)

= λ0α
−1|V |1/2λ−1

0 (ψ + αR0(α)ψ − ψ) + O(|α|ε)

= |V |1/2R0(α)ψ + O(|α|ε) .

It follows

〈φ, |V |1/2F1|V |1/2φ〉 = lim
α→0
〈ψ,R0(α)ψ〉

= 〈F0|V |1/2φ, ψ〉

= ||ψ||2 , 0.

So, µ(α) = λ−1
0 + c1α + o(|α|1+ε), with c1 = ||F0|V |

1
2φ||2. By the Proposition 3.4, one has

µ(e(λ)) = λ−1. It follows
λ−1 = λ−1

0 + c1e1(λ) + O(|e(λ)|1+ε).

Since λ−1 = λ−1
0 −λ

−2
0 (λ−λ0)+O(|λ−λ0|

2), we can get the leading term of e1(λ) is −c(λ−λ0),
with c = (λ0||F0|V |

1
2φ||)−2.

(b). If ν0 = 1, then

K(α) = K(0) + α lnα|V |1/2G1,0π1|V |1/2 + O(α).

By Lemma 3.13, one has
〈φ, |V |1/2G1,0π1|V |1/2φ〉 , 0.

Then we have
µ(α) = λ−1

0 + c1α lnα + o(α)

with c1 = 〈φ, |V |1/2G1,0π1|V |1/2φ〉. As in (a), using µ(e1(λ)) = λ−1, and

λ−1 = λ−1
0 − λ

−2
0 (λ − λ0) + O(|λ − λ0|),

one has
−λ−2(λ − λ0) + O(|λ − λ0|) = ce1(λ) ln e1(λ) + O(e1(λ)).
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To get the leading term of e1(λ), we can suppose that e1(λ) = (λ−λ0) f (λ−λ0) with f (λ−λ0) =
O(1). Then by comparing the leading term, we can get f (λ − λ0) = 1/ ln(λ − λ0). It follows

e1(λ) = −c
λ − λ0

ln(λ − λ0)
+ o(

λ − λ0

ln(λ − λ0)
)

with c = λ−2
0 〈φ, |V |

1/2G1,0π1|V |1/2φ〉−1.

(c). If ν0 < 1, one has

K(α) = K(0) +
∑

0<ν≤1

αν|V |1/2Gν,0πν|V |1/2 + O(|α|).

By Lemma 3.13, we know that 〈φ, |V |1/2Gν0,0πν0 |V |
1/2φ〉−1 , 0. Using the same argument as

before, we can conclude
µ(α) = λ−1

0 + c1α
ν0 + o(|α|ν0)

with c1 = 〈φ, |V |1/2Gν0,0πν0 |V |
1/2φ〉. As above, we can get that

e1(λ) = c(λ − λ0)
1
ν0 + o((λ − λ0)

1
ν0 )

with c = λ−2
0 〈φ, |V |

1/2Gν0,0πν0 |V |
1/2φ〉−1. 2

Let
ei(λ) = sup

φ1,··· ,φi

inf
||ψ||=1,ψ∈[φ1,··· ,φi]⊥,ψ∈H1

(ψ, P(λ)ψ).

Then ei(λ) is the eigenvalue of P(λ) by min-max principle. We say that there are m eigenvalues
of P(λ) converge to 0 at λ0, if there exist some k such that lim

λ↓λ0
ei(λ) = 0 for k + 1 ≤ i ≤ k + m ;

ei(λ) , 0 (i = k + 1, · · · , i = k + m) for any λ > λ0 ; ei(λ0) , 0 for some i ≤ k. Let ui(λ) be the
eigenfunction of P(λ), then ũi(λ) ≡ |V |1/2ui(λ) is the eigenfunction of K(ei(λ)) corresponding
to λ−1. Because K(ei(λ)) converges to K(0) as λ → 0, by Lemma 3.11, one can choose ui(λ)
such ũi(λ) converges as λ → λ0 and 〈ũi(λ), ũ j(λ)〉 = δi j. Let ũi(λ) → φi in L2(Rn). Then,
K(0)φi = λ

−1
0 φi and 〈φi, φ j〉 = δi j.

Theorem 3.16. Assume 0 < σ∞ and n ≥ 3. ei(λ), φi(1 ≤ i ≤ m) are defined as above, νi is
defined as in Lemma 3.14. If ρ0 > 6, one of three exclusive situations holds :

(a). If σ1 = ∅, then m = 1 and e1(λ) = −c(λ − λ0) + o(λ − λ0), c = (λ0||F0|V |
1
2φ1||)−2 , 0 ;

(b). If νi = 1, then ei(λ) = −c (λ−λ0)
ln(λ−λ0) + o(λ − λ0), c = λ−2

0 〈φi, |V |1/2G1,0π1|V |1/2φi〉
−1 , 0 ;

(c). If νi < 1, then ei(λ) = c((λ−λ0)
1
νi )+o((λ−λ0)

1
νi ), c = λ−2

0 〈φi, |V |1/2Gνi,0πνi |V |
1/2φi〉

−1 ,

0.

Proof. (a). If σ1 = ∅, by Theorem 3.2, one has

R0(α) = F0 + αF1 + R(1)
0 (α), in L(−1, s; 1,−s) s > 3.

Then if ρ0 > 6, we can get K(α) = K(0) + |V |1/2(αF1 + R(1)
0 (α))|V |1/2 in L(0, 0; 0, 0). By

definition of φi, one has P(λ)ψi = 0 with φi = F0|V |1/2φi. Because σ1 = ∅, by Theorem 3.1
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[70], one has ψi ∈ L2. This means that φi is the eigenfunction of P(λ0) corresponding to 0.
Because 0 is the simple eigenvalue of P(λ0), then m = 1. It is clearly, this case is the same as
part(a) of Theorem 3.15.

(b). If νi = 1, by Lemma 3.14, one has

µi(α) = cα lnα + o(α)

with c1 = 〈φi, |V |1/2G1,0π1|V |1/2φi〉
−1. By the same argument as in Theorem 3.15, we can get

ei(λ) = −c
λ − λ0

ln(λ − λ0)
+ o(

λ − λ0

ln(λ − λ0)
),

c = λ−2
0 〈φi, |V |1/2G1,0π1|V |1/2φi〉

−1 , 0.
(c). If νi < 1, by Lemma 3.14, one has

µi(α) = cανi + o(|α|νi)

with c1 = 〈φi, |V |1/2Gνi,0πνi |V |
1/2φi〉

−1. By the same argument as in Theorem 3.15, we can get

ei(λ) = c(λ − λ0)
1
νi + o((λ − λ0)

1
νi ),

c = λ−2
0 〈φi, |V |1/2Gνi,0πνi |V |

1/2φi〉
−1 , 0. 2

3.4 Zero resonance in coupling constant limit

In this section, we study the multiplicity of zero as the resonance of P. We have the follo-
wing result. Suppose

∑
0<ν≤1

nν = m. If m > 0, then P(λ0) has at most m linear independent zero

resonance solutions, by Corollary 4.2[70].

Theorem 3.17. Assume 0 < σ∞ and n ≥ 3. Suppose
∑

0<ν≤1
nν = m. If m > 0, then there exists

λ1 > λ0 such that for all λ0 < λ < λ1, the multiplicity of zero as the resonance of P(λ0) is equal
to the number of eigenvalues, less than 0, of P(λ).

Proof.Let n(λ, α) denote the multiplicity of λ−1 as the eigenvalue of K(α). Let λ1 > λ0 such
that for any λ0 < λ < λ1, λ−1 is not the eigenvalue of K(0). Then,

dim
{

u ∈ H1,−s(Rn)\L2(Rn); P(λ0)u = 0
}

= N(λ0)

= dim
{
φ ∈ L2(Rn); K(0)φ = λ0φ

}
= #

{
µi(λ) ∈ σ(K(α)); µi(α)→ λ−1

0 as α→ 0
}

( counting multiplicity )

=
∑
α

n(λ, α) ( λ0 < λ < λ1 )

= #
{
α; α ∈ σ(P0 + λV);

}
( counting multiplicity )
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In the first step, we use that 0 is not the eigenvalue of P(λ0), by Lemma 3.6. In the second step,
we use Proposition 3.8. In the third step, we use Proposition 3.9 and Lemma 3.11. In the fourth
step, we use that the eigenvalue of K(α) is continuous and monotonous increasing with respect
to α, and the eigenvalue of K(α) → λ−1

0 . Hence, for any λ0 < λ < λ1 , there exist αi such that
µi(αi) = λ−1 for all i such that µi(α)→ λ−1

0 . In the last step, we use Proposition 3.4. 2

3.5 Asymptotic expansion of resolvent of Schrödinger operator
with critical potential

This section is concerned with the Schrödinger operator P = −∆ + Ṽ in L2(Rn) for some
n ≥ 2. First we make some assumptions on Ṽ .

Assumption on Ṽ :
(1). Ṽ = V1 + V2 ;
(2). V1 ∈ C(Rn), and there exists a constant R such that |V1(x)| = q(θ)

r2 when |x| ≥ R, where
(r, θ) is the polar coordinate of Rn, q(θ) is a real continuous function on sphere Sn−1.

(3). V2 ∈ C(Rn), and there exists some ρ0 > 2 such that |V2(x)| ≤ c〈x〉−ρ0 .
Assume −∆s + q(θ) ≥ − 1

4 (n − 2)2 on L2(Sn−1) in this section. Here −∆s is the Laplace
operator on sphere Sn−1. In this section, we want to study the asymptotic expansion of (P− z)−1

for z ∈ C\R, z near 0, in L(−1, s; 1,−s) for appropriate s.
Set R(z) = (P − z)−1. Let R1 > R. Let 0 ≤ χ j ≤ 1, j = 1, 2 be smooth functions on Rn such

that suppχ1 ⊂ B(0,R1), χ1(x) = 1 when |x| < R and

χ1(x)2 + χ2(x)2 = 1.

Set

P0 = −∆ +
q(θ)
r2 ; P̃0 = χ1(−∆)χ1 + χ2P0χ2 .

Then

P̃0 = P0 −
χ2

1

r2 q(θ) −
2∑

i=1

|∇χi|
2 = P0 −W ,

P = P0 + (Ṽ −
q(θ)
r2 ) = P0 + V,

where

W =
χ2

1

r2 q(θ) +
2∑

i=1

|∇χi|
2, V = −

χ2
1

r2 q(θ) + W̃.

W̃ is a continuous function and satisfies |W̃ | ≤ C〈x〉−ρ0 . Under the above notation, we can see
that the Schrödinger operator P can be considered as the perturbation of the model operator P0.
In the following we use the asymptotic expansion of (P0−z)−1 to get the expansion of R(z). This
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3.5. Asymptotic expansion of resolvent of Schrödinger operator with critical potential

problem has been studied by X.P. Wang (see [69]). Note that our potential V has singularity at
0. We can not use his result directly. We use his method to get the asymptotic expansion of R(z)
for =z , 0 and z near 0.

Definition 3.18. SetN = { u; Pu = 0, u ∈ H1,−s, ∀s > 1}. We say that 0 is the regular point of
P if N = {0}.

As in [69], we need to get the asymptotic expansion of 0 resonant states of P. Set
ν0 = min

{
ν; ν ∈ σ∞

}
. Let 0 ≤ χ̃1, χ̃2 ≤ 1 belong to C∞(R+) such that χ̃1(r) = 1 on

r ≤ 1, and χ̃1 + χ̃2 = 1.

Theorem 3.19. Assume ρ0 > 3 and that 0 < σ1. Let u ∈ N . Then,

u(rθ) =
∑

0<ν≤1

nν∑
j=1

−
1
2ν

< Vu, |y|−
n−2

2 +νϕ
( j)
ν >

χ̃2(r)ϕ( j)
ν (θ)

r
n−2

2 +ν
+ ũ, (3.24)

where ũ ∈ L2 , and < ·, · > is the scalar product in L2(Sn−1). In particular,

u ∈ L2 ⇐⇒< Vu, |y|−
n−2

2 +νϕ
( j)
ν >= 0, ∀ν ∈ σ1, 1 ≤ j ≤ nν. (3.25)

Let C denote the linear span of all vectors of the form

c(u) = (
1
2ν

< Vu,−|y|−
n−2

2 +νϕ
( j)
ν >; ν ∈ σ1, 1 ≤ j ≤ nν) ∈ Cκ,

with u ∈ N , κ =
∑
ν∈σ1 nν. Then,

dim(N/(kerL2 P)) = dimC. (3.26)

Remark 3.20. This theorem has been proved for P = −∆ + q(θ)
r2 + V with |V | ≤ C〈x〉−ρ by X.P.

Wang (see [70]). We use the same method with a little change.

Proof. For u ∈ N , set

u =
∑

0<ν≤1

nν∑
j=1

uν, j ⊗ ϕ
( j)
ν (θ) + u′,

where u′ = π′u with π′ =
∑
ν>1 πν and uν, j = (u, ϕ( j)

ν )Sn−1 . Then

u = (χ̃1(r) + χ̃2(r))u = χ̃1(r)u + χ̃2(r)(
∑

0<ν≤1

nν∑
j=1

uν, j ⊗ ϕ
( j)
ν (θ) + u′).

One has χ̃1(r)u ∈ L2(Rn), since u ∈ H1,−s. We have

P0u′ = −π′(Vu).
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Let (Vu)ν, j = (Vu, ϕ( j)
ν )Sn−1 . Let ũν, j = |x|

n−2
2 uν, j. In the cylindrical coordinates (t, θ) (x = rθ,

r = et), one has
(−∂2

t + ν
2)ũν, j = −e

n+2
2 t(Vu)ν, j . (3.27)

By (3.27), ũν, j can be represented as

ũν, j(et) = C+eνt +C−e−νt −
1
2ν

∫
R

e−ν|t−s|e
n+2

2 s(Vu)ν, j(es)ds.

Since uν, j = −Fν,0(Vu)ν, j, we see that |uν, j(r)| ≤ Cr−
n−2

2 for all r > 0. This shows C+ = C− = 0.
For 0 < ν ≤ 1, set ũν, j(et) = ũ(0)

ν, j + ũ(1)
ν, j + ũ(2)

ν, j with

ũ(0)
ν, j (e

t) = −
1
2ν

∫ ∞

−∞

e−ν(t−s)e
n+2

2 s(Vu)ν, j(es)ds;

ũ(1)
ν, j (e

t) =
1
2ν

∫ ∞

t
e−ν(t−s)e

n+2
2 s(Vu)ν, j(es)ds;

ũ(2)
ν, j (e

t) = −
1
2ν

∫ ∞

t
eν(t−s)e

n+2
2 s(Vu)ν, j(es)ds.

For 0 < ν ≤ 1, one has that Gν,0πν ∈ L(−1, s; 1,−s) for s > 1 + ν. One has

−
1
2ν

∫ ∞

0
τ−

n−2
2 +ν(Vu)ν, j(τ)τn−1dτ =

1
2ν
〈Vu,−|τ|−

1
2 (n−2)+νϕ

( j)
ν 〉

is finite, because V |τ|−
1
2 (n−2)+νϕ

( j)
ν ∈ H−1,ρ0−1−ε . Hence, χ̃2(et)ũ(0)

ν, j gives the desired leading term.
Note that, if 1 < ν′ < ρ0 − 2,

rν
′+1(W̃u)ν, j ∈ L2,ρ0−2−ε−ν′(R+, rn−1dr);

rν
′+1(−

χ2
1

r2 q(θ)u)ν, j ∈ L2(R+, rn−1dr).

It follows

rν
′+1(Vu)ν, j = rν

′+1(−
χ2

1

r2 q(θ)u)ν, j + rν
′+1(W̃u)ν, j ∈ L2(R+, rn−1dr).

Then ũ(1)
ν, j (e

t) and ũ(2)
ν, j (e

t) can be bounded by

1
2ν

∫ ∞

t
eν(s−t)e

n+2
2 s|(Vu)ν, j(es)|ds

≤
1
2ν

{∫ ∞

t
e2ν(s−t)−2ν′sds

}1/2

||e(ν′+ n+2
2 )s(Vu)ν, j||L2(R;ds)

≤ Ce−ν
′t||rν

′+1(Vu)ν, j||L2(R+;rn−1dr)

with 1 < ν′ < ρ0 − 2. χ̃2v(1)
ν, j and χ̃2v(2)

ν, j give rise to the L2-remainder term of uν, j.
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For ν > 1, set ũν, j(et) = ũ(1)
ν, j + ũ(2)

ν, j with

ũ(1)
ν, j (e

t) = −
1
2ν

∫ t

−∞

e−ν(t−s)e
n+2

2 s(Vu)ν, j(es)ds;

ũ(2)
ν, j (e

t) = −
1
2ν

∫ ∞

t
eν(t−s)e

n+2
2 s(Vu)ν, j(es)ds.

Then,

1
2ν

∫ t

−∞

eν(s−t)e
n+2

2 s|(Vu)ν, j(es)|ds

≤
1
2ν

{∫ t

−∞

e2ν(s−t)−2ν′sds
}1/2

||e(ν′+ n+2
2 )s(Vu)ν, j||L2(R;ds)

≤ Ce−ν
′t||rν

′+1(Vu)ν, j||L2(R+;rn−1dr)

for 1 < ν′ < min{ρ0 − 2,min{ν ∈ σ∞}\σ1}, and

1
2ν

∫ ∞

t
eν(t−s)e

n+2
2 s|(Vu)ν, j(es)|ds

≤
1
2ν

{∫ ∞

t
e2ν(t−s)+2ν′(t−s)−2ν′tds

}1/2

||e(ν′+ n+2
2 )s(Vu)ν, j||L2(R;ds)

≤ Ce−ν
′t||rν

′+1(Vu)ν, j||L2(R+;rn−1dr)

for 1 < ν′ < min{ρ0 − 2,min{ν ∈ σ∞}\σ1}. It follows that χ̃2uν, j ∈ L2(Rn). 2

Proposition 3.21. Assume ρ0 > 3 and that 0 < σ1. 0 is a regular point of P̃0.

Proof.By Theorem 3.1 [69], we deduce that u ∈ L2,−s′(Rn) with s′ = 1 − ν0/2, because
ν0 > 0, and u ∈ H1,−s(Rn),∀s > 1. Let 0 ≤ χ̃(t) ≤ 1 be a smooth function on R such that
suppχ̃ ⊂ B(0, 2), χ̃(t) = 1 on |t| < 1. Let χ̃m(t) = χ̃( t

m ). Then 〈χ̃mu, P̃0χ̃mu〉 ≥ c〈χ̃mu, 1
r2 χ̃mu〉

with some c > 0. It suffices to prove

χ̃m(r)u→ u in H1,−s (3.28)

P̃0χ̃m(r)u→ P̃0u in H−1,s (3.29)

for some s > 1. (3.28) is trivial.
Set s0 = 1 + ν0

4 . We will show that (3.29) is correct for s = s0. Since

P̃0χ̃m(r)u − P̃0u = χ̃mP̃0u − P̃0u + [P̃0, χ̃m]u,

and ||χ̃mP̃0u− P̃0u||H−1,s0 → 0 is trivial, thus we need only to show that [P̃0, χ̃m]u→ 0 in H−1,s0 .
One has

[P̃0, χ̃m]u = −2χ1(∇χ̃m) · ∇(χ1u) − χ1(∆χ̃m)(χ1u) − 2χ2(∇χ̃m) · ∇(χ2u) − χ2(∆χ̃m)(χ2u).
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Note that
−2χ1(∇χ̃m) · ∇(χ1u) − χ1(∆χ̃m)(χ1u) = 0

for m large enough, since suppχ1(x) ∩ supp(∇χ̃m(r)) = ∅. Since u ∈ L2,−s′ , then

−∆u = (
χ2

2

r2 q(θ) +
2∑

i=1

|∇χi|
2)u ∈ L2,2−s′ .

It follows that 〈u,−∆u〉 is finite, moreover, by Parseval’s formula, one has that

〈u,−∆u〉 = 〈〈x〉−(2−s′)u, 〈x〉2−s′(−∆)u〉 =
∫
|ξ|2|û|2dξ.

This means that |∇u| ∈ L2(Rn). Let f ∈ C∞0 (Rn) and f (x) = 1 for |x| ≤ 1. Since −∆u ∈ L2,2−s′

and u ∈ L2,−s′ , then

〈〈x〉2s0−2u, (−∆)u〉 = lim
R→∞
〈 f (

x
R

)〈x〉2s0−2u, (−∆)u〉.

Using integration by part, we conclude that

〈 f (
x
R

)〈x〉2s0−2u,−∆u〉 =
∫
|∇u|2 f (

x
R

)〈x〉2s0−2 dx (3.30)

+(2s0 − 2)
∫

f (
x
R

)〈x〉2s0−4(x · ∇)|u|2 dx +
∫
〈x〉2s0−2(∇ f (

x
R

) · ∇)|u|2 dx.

Note that ∇ f ( x
R ) ≤ C〈x〉−1 with C independent of R. Let R → ∞ in both side of (3.30), we get

that |∇u| ∈ L2,s0−1(Rn). Hence

||(∇χ̃m) · ∇(χ2u)||H−1,s0 (Rn) ≤ C||〈x〉s0
1
|x|
∇(χ2u)||L2(m≤|x|≤2m) → 0

and

||∆χ̃mχ2u||H−1,s0 (Rn) ≤ C||〈x〉s0
1
|x|2

χ2u||L2(m≤|x|≤2m) → 0

when m → ∞. This implies that 〈u, P̃0u〉 = lim
m→0
〈χ̃mu, P̃0χ̃mu〉 ≥ 〈u, 1

r2 u〉 with some c > 0. It

follows that ker P̃0 = {0} in H1,−s(Rn). 2

For z ∈ C\R+, z near 0, one has

[χ1(−∆ + 1 − z)−1χ1 + χ2(P0 − z)−1χ2](P̃0 − z) = 1 − K(z) ,

where

K(z) = χ1(−∆ + 1 − z)−1A1 + χ2(P0 − z)−1A2,
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with

A1 = −[−∆, χ2
1]χ1 + χ1 +

q(θ)
r2 χ1χ

2
2 − [χ1χ2,−∆]χ2;

A2 = [χ1χ2,−∆]χ1 +
q(θ)
r2 χ2

1χ2 − [χ2
2,−∆]χ2.

Assume 0 < σ∞. Then one has (P0 − z)−1 = F0 + o(1) in L(−1, s; 1,−s) with s > 1, for z near
0, =z , 0. K(0) ∈ L(−1, s; 1,−s), s > 1 and close to 1.

Lemma 3.22. Assume 0 < σ∞, n ≥ 3. ker(1−K(0)) = {0} and 1−K(0) is a Fredhlom operator
in L(−1, s; 1,−s), s > 1.

Proof. If u ∈ H1,−s belong to ker(1 + K(0)), then P̃0u = P̃0K(0)u. It is easy to check that
P̃0K(0)u ∈ H−1,s, for some s > 1. This means that ũ = P̃0K(0)u satisfies

[χ1(−∆ + 1)−1χ1 + χ2F0χ2]ũ = 0.

Taking the dual product of the above equation with ũ,we deduce that χiũ = 0, (i = 1, 2), because
(−∆+1)−1 and F0 are positive. Therefore ũ = P̃0u = 0. By Proposition 3.21, we get that u = 0. It
is easy to check that K(0) is a compact operator. It follows that 1+K(0) is a Fredholm operator.
This ends the proof. 2

By Lemma 3.22 and Proposition 3.21, one has 1 − K(0) has bounded inverse on H1,−s. It
follows that (1 − K(z))−1 exists for z small. We can use Theorem 2.2 [69] to get the asymptotic
expansion of (P̃0 − z)−1. For z ∈ C\R+, z near 0, one has

(P̃0 − z)−1 = (1 − K(z))−1[χ1(−∆ + 1 − z)−1χ1 + χ2(P0 − z)−1χ2].

It follows that (P̃0 − z)−1 = F̃0 + O(|z|ε) in L(−1, s; 1,−s), s > 1 with some ε > 0. Here
F̃0 = (1 − K(0))−1[χ1(−∆ + 1)−1χ1 + χ2F0χ2].

We write
P = P0 + V = P̃0 − W̃

where V = Ṽ − q(θ)
r2 and W̃ = V −W. It’s easy to see that W̃ ∈ C(Rn), and |W̃ | ≤ C〈x〉−ρ0 .

For z ∈ C\R, z near 0, we have

(P̃0 − z)−1(P − z) = 1 + F̃(z), (P0 − z)−1(P − z) = 1 + F(z),

where

F̃(z) = (P̃0 − z)−1W̃, F(z) = (P0 − z)−1V.

In the following, we use these two formulas to study the asymptotic expansion of R(z).

Lemma 3.23. Assume 0 < σ∞, n ≥ 3. ker(1+F(0)) and ker(1+ F̃(0)) coincide with the kernel,
N , of P in H1,−s. 1 + F̃(0) and 1 + F(0) are Fredholm operators in L(1,−s; 1,−s), s > 1.
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Proof. It is clear that N ⊆ ker(1 + F̃(0)). If u ∈ H1,−s is in ker(1 + F̃(0)), then Pu =
−PF̃(0)u ∈ H−1,s for some s > 1, because P = P̃0 + O(r−ρ0) for some ρ0 > 2. This means
that ũ = Pu satisfies F̃0ũ = 0 in H1,−s. It follows that ũ = 0 and u ∈ N . Similarly, we can get
ker(1 + F(0)) = N .

It is easy to check that F̃(0) is a compact operator. It follows that 1 + F̃(0) is a Fredholm
operator. Note that due to the local singularity and the second order perturbation, F(0) is not
a compact operator. Since ker(1 + F(0)) = N = ker(1 + F̃(0)), and 1 + F̃(0) is a Fredholm
operator, one has that ker(1 + F(0)) is of finite dimension. In the following we will show that
Ran (1 + F(0)) is closed.

Suppose that f ∈ Ran (1 + F(0)), then there exist un ∈ H1,−s such that fn = (1+F(0))un →

f in H1,−s. Then

P0 fn = P0un + Vun = (P̃0 + W̃)un

it follows

(1 + F̃0W) fn = (1 + F̃(0))un.

Because 1 + F̃0W is a bounded operator, and fn → f in H1,−s, one has

(1 + F̃0W) fn → (1 + F̃0W) f .

It follows that

(1 + F̃(0))un → (1 + F̃(0))u

in H1,−s, because Ran 1 + F̃(0) is closed. Then (1 + F̃0W) f = (1 + F̃(0))u. It follows f =
(1 + F(0))u. This proves that the Ran (1 + F(0)) is closed. By Lemma 3.25 (a), we can derive
that dim coker(1 + F(0)) is of finite, since N is a finite dimension subspace of H1,−s. Then, we
obtain that 1 + F(0) is a Fredholm operator. 2

Denote

~ν = (ν1, · · · , νk) ∈ (σN)k, z~ν = zν1 · · · zνk ,

{~ν} =

k∑
j=1

ν′j, [~ν]− =
k∑

j=1

[ν j]−, [~ν] =
k∑

j=1

[ν j].

Here ν′j = ν j − [ν j]− for ν j > 0.
First, we need to study the operator (1 − F(z))−1. If N = {0}, then 1 + F(0) has a bounded

inverse on H1,−s, by Lemma 3.23. It follows that (1 + F(z))−1 exists for z small. We can use the
formula

R(z) = (1 − F(z))−1(P0 − z)−1

to calculate its asymptotic expansion. By Theorem 3.2, we can get the asymptotic expansion of
(P0 − z)−1 and (1 − F(z))−1. Therefore we can get the following result for R(z).
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Corollary 3.24. AssumeN = {0}. Let N ∈ N and ρ0 > 4N+2, R(z) has the following expansion
in L(−1, s; 1,−s) with s > 2N + 1

R(z) =
N∑

j=0

z jR j +

N0∑
k=1

∑
,

z~ν
N−1∑

j=[~ν]−

z jR~ν, j + O(|z|N+ε) (3.31)

Here N0 is some integer large enough depending on σ∞ and N,

R0 = (1 + F0V)−1F0.

and R j (resp., R~ν; j ) are in L(1,−s; 1,−s) for s > 2 j + 1 (resp., for s > 2 j + {~ν} + 1).

When N , {0}, we use the Grushin’s method to study (1 + F(z))−1 as in [69]. Set

N = ker(1 + F0V) ⊂ H1,−s,

N∗ = ker(1 + F0V)∗ ⊂ H−1,s, 1 < s < ρ0 − 1.

Since V(1 + F0V) = (1 + VF0)V = (1 + F0V)∗V , one can check that V is injective from N into
N∗ and V∗ = V is injective from N∗ into N . Consequently, V is bijective from N onto N∗.
This shows thatN is independent of s with 1 < s < ρ0 − 1, dimN = dimN∗, and the quadratic
form

φ→< φ,−Vφ >

is non-degenerate on N . Since P0 ≥ 0, this quadratic form is positive definite. Let

µ = dimN , µr = dimN/(kerL2 P).

We can choose a basis {φ1, · · · , φµ} of N such that

< φi,−Vφ j >= δi j. (3.32)

Here φ j, 1 ≤ j ≤ µr, are resonant states. To get the asymptotic expansion of W−1(z) = (1 +
R0(z)V)−1 for z near zero and =z > 0, we study as in [71] a Grushin problem associated to the
operator

A(z) =

 W(z) T

S 0

 :H1,−s × Cµ → H1,−s × Cµ,

where s > 1, T and S are given by

Tc =

µ∑
j=1

c jφ j, c = (c1, · · · , cµ) ∈ Cµ,

S f = (< f ,−Vφ1 >, · · · , < f ,−Vφµ >) ∈ Cµ, f ∈ H1,−s.
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Define Q : H1,−s → H1,−s by

Q f =
µ∑

j=1

< f ,−Vφ j > φ j. (3.33)

Then,

TS = Q on H1,−s and S T = Iµ on Cµ.

Decompose Q as Q = Qr + Qe where Qr =
∑µr

j=1 < ·,−Vφ j > φ j. Then,

Q2
r = Qr, Q2

e = Qe, QrQe = QeQr = 0. (3.34)

As in [69], we first show that (1 + F0V)−1 exists in some space. We need to decompose the
space H1,−s first. We have the following result.

Lemma 3.25. (a). One has the decomposition

H1,−s = N ⊕ Ran (1 + F0V). (3.35)

Q is the projection from H1,−s, s > 1, onto N with ker Q = Ran (1 + F0V).
(b). Let Q′ = 1 − Q. Then, Q′(1 + F0V)Q′ is invertible on the range of Q′ and (Q′(1 +

F0V)Q′)−1Q′ ∈ L(1,−s; 1,−s), s > 1.

Remark 3.26. This lemma has been proved by X.P. Wang [69] for V without singularity. In fact,

these two results are also true for V = −
χ2

1
r2 q(θ) + W̃, because −

χ2
1

r2 q(θ) is a bounded operator
from H1,−s to H−1,s for any s > 1, if n ≥ 3. Here |W̃ | ≤ C〈x〉−ρ0 .

Proof. (a). It is easy to check thatN ∩ Ran (1+F0V) = {0}. Since 1+F0V is continuous on
H1,−s, Ran (1 + F0V) is closed and is therefore equal to ( ker (1 + F0V)∗)⊥. For any u ∈ H1,−s,
one has u = Qu + (u − Qu) with

u − Qu ∈ ( Ker (1 + F0V)∗)⊥ = Range (1 + F0V).

This proves H1,−s = N ⊕ Ran (1 + F0V). It is easy to verify that Q is the projection onto N
w.r.t. this decomposition of H1,−s.

(b). Q′ = 1 − Q is a projection from H1,−s onto Ran (1 + F0V) = F. For u ∈ F such that
Q′(1+F0V)Q′u = 0, we have Q′u = u and 0 = Q′(1+F0V)Q′u = (1+F0V)u−Q(1+F0V)u =
(1 + F0V)u. This means u ∈ N . By (a), u = 0. This proves that Q′(1 + F0V)Q′ is injective on
Range (1 + F0V). Since Range Q′ = Range (1 + F0V), we can show also that Q′(1 + F0V)Q′

is surjective on Ran (1+ F0V). Therefore, Q′(1+ F0V)Q′ is bijective on Ran (1+ F0V). Since
Ran (1 + F0V) is closed, Q′(1 + F0V)Q′ is invertible on Ran (1 + F0V) and

D0 = (Q′(1 + F0V)Q′)−1Q′ ∈ L(1,−s; 1,−s), s > 1.
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2

By this Lemma, one has that Q′(1 + F0V)Q′ is invertible on Ran (1 + F0V). It follows that
Q′W(z)Q′ is invertible on Ran (1 + F0V) with bounded by the asymptotic expansion of R0(z).
Let

D(z) = (Q′(1 + R0(z)V)Q′)−1Q′, D0 = (Q′(1 + F0V)Q′)−1Q′.

We construct an approximate inverse of A(z) as in [69] to prove that for z ∈ Uδ, the operator
A(z) is invertible from H1,−s × Cµ to H1,−s × Cµ. Write the inverse of A(z) in the form

A(z)−1 =

 E(z) E+(z)

E−(z) E+−(z)

 ,
Then by a simply computation, we can get

E(z) = D(z), E+(z) = T − D(z)Y,

E−(z) = S − XD(z), E+−(z) = −S W(z)T + XD(z)Y,

with
X = S W(z)Q′, Y = X∗.

Note that A(z)A(z)−1 = 1 and A(z)−1A(z) = 1. We can obtain the inverse of W(z)

W(z)−1 = E(z) − E+(z)E+−(z)−1E−(z). (3.36)

We use this formula to get the asymptotic expansion of W(z)−1. First, we need to get the asymp-
totic expansion of D(z). Note that V is a bounded operator from H1,−s to H−1,s for s > ρ/2 if

ρ > 0, because
χ2

1
r2 q(θ) is a bounded operator from H1,−s to H−1,s for any s > 1, n ≥ 3. Using

the asymptotic expansion of R0(z), we can get that, if k ≥ 1 and ρ0 > 4N + 2, the following
asymptotic expansion holds

D(z) =
N∑

j=0

z jD j +

N0∑
k=1

∑
~ν∈(σN )k

z~ν
N−1∑

j=[~ν]−

z jD~ν, j + O(|z|N+ε) (3.37)

in L(−1, s; 1,−s), s > 2N + 1. Here D j (resp., D~ν; j ) are in L(1,−s; 1,−s) for s > 2 j + 1 (resp.,
for s > 2 j+ {~ν}+ 1) and D~ν, j are operators of finite rank. Here and in the following, N0 is some
integer large enough depending on σ∞ and N. Here N0 can be taken as the largest integer such
that N0ν0 ≤ N, where ν0 = min{ν ∈ σ∞} > 0. Since the terms with {~ν} + j > N can be put into
the remainder, (3.37) can be rewritten as

D(z) =
N∑

j=0

z jD j +

(1)∑
{~ν}+ j≤N

z~νz
jD~ν, j + O(|z|N+ε) (3.38)
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where D~ν, j = 0 if j < [~ν]−, and for ` ≥ 1,
∑(`)
{~ν}+ j≤N stands for the sum over all ~ν ∈ (σN)k, ` ≤

k ≤ N0 and [~ν]− ≤ j ≤ N with {~ν} + j ≤ N. In particular,

D1 = −D0F1VD0, Dν0,0 = −D0Gν0,δν0
πν0VD0. (3.39)

Similarly, we can obtain the asymptotic expansion of E+(z) (resp., E−(z)) inL(Cκ; H1,−s) (resp.,
in L(H−1,s;Cκ)) for s > 2k + 1 if ρ0 > 2k + 2. Therefore the asymptotic expansion of W(z)−1

depends on the asymptotic expansion of E+−(z)−1.

Proposition 3.27. (Proposition 4.4 [69]) Let ρ0 > 3 if µr = 0, and ρ0 > 4 if µr , 0. E+−(z) is
invertible for z small enough and its inverse is given by

E+−(z)−1 =

 (T ∗D1(z)T )−1 −(T ∗D1(z)T )−1CΦ−1
e

−Φ−1
e C∗(T ∗D1(z)T )−1 z−1Φ−1

e


×

Iν +

 O(|z|/|zςκ0 |) + O(|z|ε) O(|z|ε)

O(|z|ε) O(|z|ε) + O(|z|/|zςκ0 |)




Here
Φe =

(
< φi, φ j >

)
µr<i, j≤µ

, C =
(
< F1Vφ j,Vφi >

)
1≤i≤µr ,µr< j≤µ

T is an invertible matrix,

D1(z) =


(c′ς1

zς1)Im1 0
. . .

0 (c′ς1
zςκ0 )Imκ0


with c′ν = 4ν2cν , 0, and 0 < ς1 < · · · < ςκ0 ≤ 1 are those of ν ∈ σ1 for which there exist m j

linearly independent ς j-resonant states with
∑κ0

j=1 m j = µr.

Remark 3.28. This proposition has been studied by X.P. Wang for Schrödinger operator with
potentials without singularity.

Proof. By the formula of E+−(z), one has

E+−(z) =
(
< (W(z) −W(z)Q′D(z)Q′W(z))φ j,Vφi >

)
1≤i, j≤µ

with W(z) = 1 + R0(z)V . Set
L1(z) =

∑
ν∈σ1

zνGν,δνπν.

By expansion of R0(z), one has that for ρ0 > 4, 3 < s < ρ0 − 1, the following expansion holds
in H1,−s,

W(z)φi = (L1(z) + zF1)Vφi + O(|z|1+ε), ε > 0.
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And for µr < j ≤ µ, φi ∈ L2 and the above expansion remains true for ρ0 > 3. By Theorem
3.19, one has L1(z)Vφi = 0 if φi is an eigenfunction. Therefore W(z)φi is of the order O(|z|) if
φi is an eigenfunction and of the order O((|z|ε) if φi is a resonant state. Since D(z) is uniformly
bounded in L(1,−s; 1,−s) for s > 1, the (i, j)-th entry of E+−(z) has the asymptotic expansion

(E+−(z))i j = z < F1Vφ j,Vφi > +O(|z|1+ε) (3.40)

if at least one of φi and φ j is an eigenfunction and ρ0 > 4. In the case both φi and φ j are
eigenfunctions, since Vφi, Vφ j are in H−1,ρ0 , we can prove as in [71] that < F1Vφi,Vφ j >=<

φi, φ j > for ρ0 > 3. Since Vφi ∈ H−1,ρ0 and (1 + F0V)φi = 0, then (P0 + V)φ = 0. It follows
φi + (P0 − z)−1φi = z(P0 − z)−1φi for z near 0, z < R+. Then

F1Vφi = z−1[(P0 − z)−1 − F0]Vφi + O(|z|ε) = (P0 − z)−1φi + O(|z|ε).

It follows
〈F1Vφi,Vφ j〉 = 〈(P0 − z)−1φi,Vφ j〉 + O(|z|ε) = 〈φi, φ j〉 + O(|z|ε).

Thus we obtain that if ρ0 > 3,

(E+−(z))i j = z < φ j, φi > +O(|z|1+ε), µr < i, j ≤ µ. (3.41)

For 1 ≤ i, j ≤ µr, W(z)φi = L1(z)Vφi + O(|z|) in H1,−s, for 3 < s < ρ0 − 1 and

(E+−(z))i j

= < L1(z)Vφ j,Vφi > − < L1(z)VD(z)W(z)φ j,Vφi > +O(|z|) (3.42)

=
∑
ν

c′νzν
nν∑

l=1

u(l)
ν, ju

(l)
ν,i +

∑
ν

c′νzν
nν∑

l=1

ũ(l)
ν, j(z)u(l)

ν,i + O(|z|)

with

u(l)
ν,i = < Vφi,−|x|−

n−2
2 +νϕ(l)

ν > /(2ν);

ũ(l)
ν, j(z) = < VD(z)W(z)φ j,−|x|−

n−2
2 +νϕ(l)

ν > /(2ν);

c′ν = 4ν2cν.

Here

cν = −
e−iπνΓ(1 − ν)
ν22ν+1Γ(ν + 1)

, for 0 < ν < 1, and c1 =
1
8
. (3.43)

Let κ =
∑
ν nν and letU,V(z) denote the κ×µr matrices with entries u(l)

ν, j and ũ(l)
ν, j(z), 1 ≤ j ≤ µr,

respectively. LetD(z) denote the diagonal κ × κ matrix :D(z) = Diag (c′νzνInν). Then,

(E+−(z))1≤i, j≤µr = U
∗D(z)(U +V(z)) + O(|z|). (3.44)

73



C     

Remark that the j-th column of U is just c(φ j) defined in Theorem 3.19. Since φ1, · · · , φµr

are linearly independents as resonant states, by Theorem 3.1 [69], U is of maximum rank µr.
U∗D(z)(U +V(z)) is the matrix of the Hermitian form

Φ(·, ·) =< L1(z)V(1 − D(z)W(z))·,V · >

in the basis {φ1, · · · , φµr } of N/(kerL2 P).

It is not clear from (3.44) whether the inverse of U∗D(z)U gives the leading term of the
inverse of E+−(z), because due to different values of ν, not all of the entries in U∗D(z)V(z)
are of higher order in z than those inU∗D(z)U. To prove thatU∗D(z)(U +V(z)) is invertible
for z ∈ Uδ with an explicit leading term, we compute the matrix of the Hermitian form Φ(·, ·)
in another basis {ψ j; 1 ≤ j ≤ µr} constructed in the following way. Let 0 < ς1 < ς2 < · · · <

ςκ0 ≤ 1 be those of ν ∈ σ∞ for which there are mς j linearly independent ς j-resonant states
with mς j ≥ 1 and

∑κ0
j=1 mς j = µr. Let {ϕ(l)

ς j (θ); l = 1, · · · , nς j} (nς j ≥ mς j) be an orthonormal
basis of the eigenspace of −∆h + q(θ) associated with the eigenvalue ς2

j − (n− 2)2/4. Modifying

the orthonormal basis ϕ(l)
ν used before if necessary, we can assume that there are mς j linearly

independent ς j-resonant states in the form

ϕ(l)
ς j (θ)

r
n−2

2 +ς j
+ O(r−

n−2
2 −ς j−ε), 1 ≤ l ≤ mς j .

By an induction on j, we can construct from these resonant states mς j linearly independent
ς j-resonant states such that

ψ(l)
ς j (rθ) =

ϕ(l)
ς j (θ)

r
n−2

2 +ς j
+

∑
ν>ς j,1≤l′≤nν

cν,l′; j,l
ϕ(l′)
ν (θ)

r
n−2

2 +ν
+ OL2(1). (3.45)

Here

cν,l′; j,l =< Vψ(l)
ς j ,−

1
2ς j

ϕ(l′)
ν

r
n−2

2 −ν
> .

Subtracting if necessary a suitable multiple of ψ(l′)
ςi from ψ(l)

ς j which leaves unchanged the leading
term of ψ(l)

ς j , one can assume without loss that

cν,l′; j,l = 0, for ν = ςi, i > j, 1 ≤ l′ ≤ mςi . (3.46)

Let {ϕm; 1 ≤ m ≤ κ} be a rearrangement of the basis {ϕ(l)
ν , ν ∈ σ1, 1 ≤ l ≤ nν} such for

1 ≤ m ≤ µr

ϕm = ϕ
(l)
ς j , if m =

j−1∑
s=1

mςs + l.
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Correspondingly, set ψm = ψ
(l)
ς j , 1 ≤ m ≤ µr. The matrix of Φ(·, ·) in this new basis {ψm} is given

byM(z) = U′∗D′(z)(U′ +V′(z)), whereV′(z) = O(|z|ε),D′(z) = Diag (c′νσ( j)
zνσ( j)), with σ an

appropriate permutation of {1, · · · , κ}, c′ν being defined in Proposition 3.27 and

U′ = (u′i, j)1≤i≤κ,1≤ j≤µr ,

with u′i j = δi j for 1 ≤ i, j ≤ µr and for i > µr, u′i j = 0 if νσ(i) ≤ νσ( j). In fact, u′i j is given by

u′i j = −
1

2νσ(i)
< Vψ j, |x|−

n−2
2 +νσ(i)ϕi >

and these properties follow from (3.45) and (3.46). Write the matrices in blocks

U′ =

 Iµr

U2

 , V′(z) =
 V1(z)
V2(z)

 , D′(z) =
 D1(z) 0

0 D2(z)

 .
One has :

D1(z) = Diag (c′ς1
zς1 Imς1

, · · · , c′ςκ0 zςκ0 Imςκ0
) (3.47)

and

M(z) = D1(z) +U∗2D2(z)U2 +D1(z)V1(z) +U∗2D2(z)V2(z)

= D1(z)
(
1 +V1(z) +D1(z)−1U∗2D2(z)(U2 +V2(z))

)
.

D1(z)−1U∗2D2(z) is a µr × (κ − µr) matrix whose entries are

[
D1(z)−1U∗2D2(z)

]
i j
= u′µr+ j,i

c′νσ(µr+ j)
zνσ(µr+ j)

c′νσ(i)zνσ(i)

,

for 1 ≤ i ≤ µr, 1 ≤ j ≤ κ − µr. Since u′i j = 0 if νσ(i) ≤ νσ( j),
[
D1(z)−1U∗2D2(z)

]
i j
, 0 only when

νσ(µr+ j) > νσ(i). This proves that

D1(z)−1U∗2D2(z) = O(|z|ε).

Consequently,M(z) is invertible and its inverse is given by

M(z)−1 =
(
1 +V1(z) +D1(z)−1U∗2D2(z)(U2 +V2(z))

)−1
D1(z)−1

= (1 + O(|z|ε))D1(z)−1. (3.48)

SinceU∗D(z)(U +V(z)) is related toM(z) by

U∗D(z)(U +V(z)) = T ∗M(z)T

where T is the transfer matrix from {ψ1, · · · , ψµr } to {φ1, · · · , φµr }, it is also invertible. The
leading term of its inverse is (T ∗D1(z)T )−1 which is of the order O(|zζκ0 |

−1). This proves Pro-
position 3.27 when zero is not an eigenvalue of P under the assumption ρ0 > 4.
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When zero is an eigenvalue of P, we obtain with ρ0 > 3

E+−(z) =

 T ∗M(z)T + O(|z|) zC + O(|z|1+ε)

zC∗ + O(|z|1+ε) zΦe + O(|z|1+ε)

 , (3.49)

where Φe and C are given in Proposition 3.27. Let S (z) = (T ∗M(z)T )−1. One has

E+−(z)

 S (z) −S (z)CΦ−1
e

−Φ−1
e C∗S (z) z−1Φ−1

e


= Iν +

 O(|z/zςκ0 | + |z|
ε) O(|z|ε)

O(|z|ε) O(|z/zςκ0 | + |z|
ε)

 .
This proves that E+−(z) is invertible for z ∈ Uδ with δ small enough. This ends the proof. 2

In the following, we use Proposition 3.27 and the formula R(z) = (1+ F(z))−1R0(z) to study
the asymptotic expansion of R(z). Let 0 < ς1 < · · · < ςκ0 ≤ 1 be the points in σ1 such that P
has m j linearly independent ς j-resonant states with

∑κ0
j=1 m j = µr. Then there exists a basis of

ς j-resonant states, u(i)
j , i = 1, · · · ,m j verifying

|cς j |
1/2 < Vu(l)

j ,−|x|
− n−2

2 +ς jϕ(l′)
j >= δll′ , 1 ≤ l, l′ ≤ m j, 1 ≤ j ≤ κ0, (3.50)

where cς j is given by (3.43) and δll′ = 1 if l = l′ ; 0 otherwise. Then we have the following
result.

Theorem 3.29. (Theorem 4.6 [69]) Assume 0 < σ∞. Let µ = dimN , 0.Assume
ρ0 > max{4N − 6, 2N + 1} if µr = 0 and
ρ0 > max{4N − 6, 2N + 2} if µr , 0.

One has the following asymptotic expansion for R(z) in L(−1, s; 1,−s), s > max{2N − 3, 2} :

R(z) =
N−2∑
j=0

z jT j +

(1)∑
{~ν}+ j≤N−2

z~νz
jT~ν; j + Te(z) + Tr(z) + Ter(z) + O(|z|N−2+ε) (3.51)

Here T j (resp., T~ν, j) is in L(1,−s;−1, s) for s > 2 j + 1 (resp., for s > 2 j + 1 + {~ν}),

T0 = AF0,T1 = −AF1VA∗.

with A = (1+F0V)−1 The sum
∑(1)
{~ν}+ j≤N has the same meaning as in (3.38) and the first singular

term in this sum is zν0 with coefficient Tν0,0 given by

Tν0,0 = AGν0,δν0
πν0 A∗,
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3.5. Asymptotic expansion of resolvent of Schrödinger operator with critical potential

where ν0 is the smallest value of ν ∈ σ∞. Te(z), Tr(z) describe the contributions up to the order
O(|z|N−2+ε) from eigenfunctions and resonant states, respectively, and Ter(z) the interaction
between eigenfunctions and resonant states. One has

Te(z) = −z−1Π0 +

(1)∑
j≥−1, {~ν}+ j≤N−2

z~νz
jTe;~ν; j

Tr(z) =
κ0∑
j=1

z−1
ς j

(Πr, j +

+,N−1∑
α,β,~ν,l

z~νz
|β|(z~ς)

−α−βzlTr;~ν,α,β,l, j), with

Πr, j = eiπς j

m j∑
l=1

< ·, u(l)
j > u(l)

j , j = 1, · · · , κ0

Ter(z) =
κ0∑
j=1

z−1
ς j

(Π0VQeF1VΠr, j + Πr, jVQrF1VΠ0 +

+,N−1∑
α,β,~ν,l

z~νz
|β|(z~ς)

−α−βzlTer;~ν,α,β,l, j).

Π0 is the spectral projection of P at 0, and Te(z) is of rank not exceeding Rank Π0 with leading
singular parts given by ν j ∈ σ2 :

Te;~ν;−1 = (−1)k′+1(Π0VGν1,1+δν1πν1V) · · · (Π0VGνk′ ,1+δνk′
πνk′V)Π0, (3.52)

for ~ν = (ν1, · · · , νk′) ∈ σk′
2 with {~ν} ≤ 1, (z~ς)−α = (zς1)−α1 · · · (zςκ0 )−ακ0 . The summation

∑+,N−1
α,β,~ν,l

is taken over all possible α, β ∈ Nκ0 with 1 ≤ |α| ≤ N0, |β| ≥ 1, ~ν = (ν1, · · · , νk′) ∈ σk′
N , k′ ≥ 2|α|,

for which there are at least αk values of ν j’s belonging to σ1 with ν j ≥ ςk, for 1 ≤ k ≤ κ0, l ∈ N,
satisfying

|β| + {~ν} + l −
κ0∑

k=1

(αk + βk)ςk ≤ N − 1.

Remark 3.30. This theorem has been studied by X.P. Wang [69] for the Schrödinger operator

P = P0 +V with V satisfying |V | ≤ C〈x〉−ρ0 . Note our V = −
χ2

1
r2 q(θ)+ W̃ with W̃ be a continuous

function and satisfying |W̃ | ≤ C〈x〉−ρ0 . We can not use X.P. Wang’s result directly.

Proof. We only give the proof of (3.51) based on the representation formula R(z) = (E(z) −
E+(z)E+−(z)−1E−(z))R0(z) in the case N = 2 and ρ0 > 6. The proof for general case is the same.
It is clear that the asymptotic expansion of E(z)R0(z) gives arise to the first two sums in (3.51).
Let us study the leading singularities and the form of asymptotic expansion related to the term
E+(z)E+−(z)−1E−(z)R0(z) which is of rank ≤ µ. One has

−E+(z)E+−(z)−1E−(z)

= −(T − D(z)Y)(−S W(z)T + S XY)−1(S − S X)

= −(1 − D(z)W(z))Q (Q(−W(z) +W(z)D(z)W(z))Q)−1 Q(1 −W(z)D(z))
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and

QW(z) = Q((L1(z) + zF1 + L2(z) + z2F2)V + O(|z|2+ε)),

D(z) = D0 + D1(z) + D2(z) + O(|z|2+ε),

in L(1,−s; 1,−s), 5 < s < ρ0 − 1, where

L1(z) =
∑
ν∈σ1

zνGν,δνπν, L2(z) =
∑

ν∈σ2\σ1

zνzGν,δνπν +
∑
ν∈σ1

zνzGν,1+δνπν

D1(z) = zD1 +
∑
ν∈σ1

zνDν,0, D2(z) = z2D2 +
∑
ν∈σ1

zνzDν,1 +
∑

ν∈σ2\σ1

zνzDν,0

with σ j = σ∞ ∩ [0, j]. It follows that

Q(−W(z) +W(z)D(z)W(z))Q

= Q{−[L1(z) + zF1 + L2(z)]V + [L1(z) + zF1 + L2(z)]V(D0 + D1(z))L1(z)V

+L1(z)V[D2(z)L1(z) + (D0 + D1(z))(zF1 + L2(z))]V + O(|z|2)}Q

Let S (z) = Q(−W(z) +W(z)D(z)W(z))Q. Set

ν0 = min{min{ν ∈ σ1},min{ν − 1; ν ∈ σ2 \ σ1}}.

Assume first that 0 is not a resonance of P. Then QL1(z)V = L1(z)VQ = 0 and QW(z) =
Q(zF1 + L2(z))V + O(|z|2)). We have for ρ0 > 5

S (z) = Q(−(zF1 + L2(z))V + O(|z|2))Q

= −Q(QF1VQ)[z + Q(QF1VQ)−1L2(z)V + O(|z|2)]Q

As in [71], it can be shown that (QF1VQ)−1Q = Π0V , whereΠ0 is the orthogonal projection
onto the zero eigenspace of P. Note that Q = −TT ∗, it suffices to show (QF1VQ)−1(−TT ∗) =
Π0. Since {φi; i = 1, 2, · · · , µ} is a basis of the zero eigenspace of P, and TT ∗, QF1VQ, are
linear operator no zero eigenspace of P, we need only to computer the corresponding matrixes
of TT ∗, QF1VQ under the basis {φi; i = 1, 2, · · · , µr}. we calculate the matrix corresponding to
QF1VQ first. The (i, j) entry of the matrix is

〈QF1VQφ j,Vφi〉

= 〈QF1Vφ j,Vφi〉

=
∑

k=1,··· ,µ

〈F1Vφ j,−Vφk〉〈φk,Vφi〉

= 〈φ j, φi〉.

Similarly, we can get the (i, j) entry of the matrix of TT ∗ under the basis {φi; i = 1, 2, · · · , µ}.
〈QF1VQφ j,Vφi〉 = 〈φ j, φi〉. Hence, one has (QF1VQ)−1Q = Π0V . Since z−1L2(z) = O(zν0) is
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small, we obtain

S (z)−1 = −z−1

1 + N0∑
j≥1

(−1) j(z−1Π0VL2(z)VQ) j

Π0V + O(1),

with N0 large enough so that N0ν0 ≥ 1.

−E+(z)E+−(z)−1E−(z)

= z−1

1 + N0∑
j≥1

(−1) j(z−1Π0VL2(z)V) j

Π0V + O(1).

Since R0(z) = F0 + L1(z) + O(z) and Π0VL1(z) = 0, we obtain that

−E+(z)E+−(z)−1E−(z)R0(z)

= −z−1

1 + N0∑
j≥1

(−1) j(z−1Π0VL2(z)V) j

Π0 + O(1).

This gives the formula for Te,~ν,−1 in the case when there is no resonant state. Since Q′W(z)Q =
zQ′F1VQ + O(|z|1+ν0), it follows that

− (1 − Π0)E+(z)E+−(z)−1E−(z)R0(z) = −(1 − Π0)D0F1VΠ0(z−1L2(z))VΠ0 + O(|z|) (3.53)

This shows that (1 − Π0)Te(z) = O(|z|ν0).

Assume now that zero is a resonance of P. One has in H1,−s with s > 1 sufficiently close to
1 :

S (z) = S r(z) + S e(z) + S re(z) + S er(z) + O(|z|2) with

S e(z) = −Qe(zF1 + L2(z))VQe

S r(z) = Qr{−[L1(z) + zF1 + L2(z)] + [L1(z) + zF1 + L2(z)]V(D0 + D1(z))L1(z)

+L1(z)V[D2(z)L1(z) + (D0 + D1(z))(zF1 + L2(z))]}VQr

S re(z) = Qr{−(zF1 + L2(z)) + L1(z)V(D2(z)L1(z) + (D0 + D1(z))[zF1 + L2(z)])}VQe

S er(z) = Qe{−(zF1 + L2(z)) + [zF1 + L2(z)]V[D0 + D1(z)]L1(z)}VQr.

From the proof of Proposition 3.27,

Ir(z) ≡ S r(z)−1Qr, Ie(z) ≡ S e(z)−1Qe

exist. We have

S (z)(Ir(z) + Ie(z)) = Q + S er(z)Ir(z) + S re(z)Ie(z) + O(|z|)
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Note that Ie(z) = O(|z|−1), Ir(z) = O(|zςκ0 |
−1). It follows that S er(z)Ir(z)→ 0, S re(z)Ie(z)) = O(1)

as z→ 0, which implies

(S er(z)Ir(z) + S re(z)Ie(z))2 = S er(z)Ir(z)S re(z)Ie(z) + S re(z)Ie(z)S er(z)Ir(z)→ 0

as z → 0. Therefore, Q + S er(z)Ir(z) + S re(z)Ie(z) is invertible on the range of Q and we have
the convergent expansion :

(Q + S er(z)Ir(z) + S re(z)Ie(z))−1Q = Q +
∞∑
j=1

(−1) j(S er(z)Ir(z) + S re(z)Ie(z)) j

in L(1,−s; 1,−s) for s > 1. S (z)−1 is then given by

(Ie(z) + Ir(z))(Q +
∞∑
j=1

(−1) j(S er(z)Ir(z) + S re(z)Ie(z)) j) + O(1).

It follows that

−E+(z)E+−(z)−1E−(z)

= (1 − (D0 + D1(z))L1(z)V)Ir(z)Qr(1 − L1(z)V(D0 + D1(z))) + Ie(z) + Ier(z) + O(1).

Here, Ier(z) is defined by

Ier(z) = (1 − (D0 + D1(z))L1(z)V)(Ir(z) + Ie(z))

×

 ∞∑
j=1

(−1) j(S er(z)Ir(z) + S re(z)Ie(z)) j

 (Qr(1 − L1(z)V(D0 + D1(z))) + Qe),

Ier(z) is the contribution from the interaction between resonant states and eigenfunctions. Ie(z)
has the same asymptotic expansion as in the case µr = 0. The contribution from resonant states
is given by

(1 − (D0 + D1(z))L1(z)V)Ir(z)Qr(1 − L1(z)V(D0 + D1(z))).

By the analysis made in Proposition 3.27, Qr(−L1(z)V + L1(z)V(D0 +D1(z))L1(z)V)Qr is inver-
tible on the range of Qr. Let Ir,0(z) denote its inverse. By (3.48),

Ir,0(z) = T (T ∗D1(z)T )−1S (1 + O(|z|ε)),

where T is the transfer matrix from {ψ1, · · · , ψµr } to {φ1, · · · , φµr } andD1(z) is given in Propo-
sition 3.27. Note that S = −T ∗V , where T ∗ : H1,−s → Cµ is the formal adjoint of T . Let

Πr(z) = T (T −1D1(z)−1(T −1)∗)T ∗

One can verify that

Πr(z) =
κ0∑
j=1

(zς j)
−1

m j∑
l=1

1
4ς2

j cς j

< ·, ψ(l)
j > ψ(l)

j . (3.54)
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T −1 is the transfer matrix from {φ1, · · · , φµr } to {ψ1, · · · , ψµr }, and suppose the (i,j) entry of the
this matrix is ai, j. Then one has

∑
i=1,··· ,µr

ai, jφi = ψ j. It follows

T (T −1D1(z)−1(T −1)∗)T ∗ f

= T (T −1D1(z)−1(T −1)∗)


〈 f , φ1〉

· · ·

〈 f , φµr〉


= T (T −1D1(z)−1)


∑

j a j,1〈 f , φ j〉

· · ·∑
j a j,µr〈 f , φ j〉


= T (T −1D1(z)−1)


〈 f , ψ1〉

· · ·

〈 f , ψµr〉


= TT −1


(4cς1ς

2
1zς1)−1〈 f , φ j〉

· · ·

(4cςκ0ς
2
κ0

zςκ0 )−1〈 f , φ j〉


=

κ0∑
j=1

(zς j)
−1

m j∑
l=1

1
4ς2

j cς j

< f , ψ(l)
j > ψ(l)

j .

Since Ir,0(z) = −Πr(z)V(1 + O(|z|ε)), we obtain

Ir,0(z)R0(z) = Πr(z)(1 + O(|z|ε)).

By Theorem 3.1 [69] and (3.45), ψ(l)
j satisfies

< Vψ(l)
j ,−

1
2ς j
|y|−

n−2
2 +ς jϕ(l′)

ς j >= δll′ .

It suffices to take
u(l)

j =
1

2ς j|cς j |
1
2

ψ(l)
j (3.55)

in order to obtain the leading part of the singularity from resonant states as stated in Theorem
3.29. For z small enough, Ir,0(z) has a convergent expansion

Ir,0(z) = −

1 + ∞∑
j=1

(Πr(z)V(L1(z)V(D0 + D1(z))L1(z)V)Qr) j

Πr(z)V. (3.56)

We need only to sum up to j = N0 for some N0 large enough such that the remain-
der is O(|z|N−2+ε). By Theorem 3.1 [69]and (3.45), Πr, jGν,δνπν = 0 if ν < ς j. Therefore,
Πr(z)V(L1(z)V(D0 + D1(z))L1(z)V)Qr can be written as

κ0∑
j=1

z−1
ς j
Πr, j

 +∑
~ν∈(σ1)s,s=2,3,k=0,1

z~νz
kJr;~ν,k, j
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where the notation
∑+
~ν∈(σ1)l , l = 2, 3, means that the summation is taken over those ~ν =

(ν1, · · · , νl), which has at least one component, say ν1, verifying ν1 ≥ ς j and Jr;~ν,k, j = 0 for
~ν ∈ (σ1)3 and k = 1. It follows that Ir,0(z) can be expanded as

Ir,0(z) = (1 +
N0∑
l=1

(
κ0∑
j=1

z−1
ς j
Πr, j

∑
~ν∈(σ1)s,s=2,3,k=0,1,ν1≥ς j

z~νz
kJr;~ν,k, j)

l)Πr(z)V + O(|z|N−2+ε)

= −Πr(z)V +
∑

α∈Nκ0 ,1≤|α|≤N0

+∑
~ν∈σs

1,2|α|≤s≤3|α|;k≤|α|

z~νz
k(z~ς)

−αIr;~ν,α,k, jΠr(z)V + O(|z|N−2+ε).

Here (z~ς)−α = (zς1)−α1 · · · (zςκ0 )−ακ0 and the summation
∑+ is taken over all possible ~ν =

(ν1, · · · , νs) ∈ σs
1 for which there are at least αl of the ν j’s belonging to σ1 with ν j ≥ ςl for all

1 ≤ l ≤ κ0.
Since Ir,0(z)S r,1(z) = O(| z

zςκ0
|) = O(| 1

ln z |), one has the following convergent series in
L(1,−s; 1,−s), s > 1, for z ∈ Uδ with δ > 0 small enough,

Ir(z) = S r(z)−1Qr = Ir,0(z) +
∞∑
j=1

(−1) j(Ir,0(z)S r,1(z)) jIr,0(z)

where

S r,1(z) = Qr(−[zF1 + L2(z)] + [zF1 + L2(z)]V[D0 + D1(z)]L1(z)

+L1(z)V[D2(z)L1(z) + (D0 + D1(z))(zF1 + L2(z))])VQr

= zQr(−F1 +
∑

~ν∈(σ2)s,1≤s≤3, j=0,1

z~νz
jS r;~ν, j)VQr.

Inserting the expansions of Ir,0(z) and S r,1(z) into Ir(z) and rearranging the terms, we obtain

Ir(z) = −Πr(z)V +
+,N−1∑

j,α,β,~ν∈σk
2,k≥2|α|

z~νz
|β|+ j(z~ς)

−α−βIr;~ν,α,β, jΠr(z)V + O(|z|N−2+ε).

Note that here N = 2 and only νσ2 is needed. In the case ςκ0 < 1, a finite sum on β is sufficient
in order to obtain an asymptotic expansion of R(z) up to O(|z|N−2+ε). In the case ςκ0 = 1,
zςκ0 = z ln z. It is then necessary first to sum over all β in order to expand R(z) up to O(|z|N−2+ε).
It is now clear that

(1 − (D0 + D1(z))L1(z)V)Ir(z)Qr(1 − L1(z)V(D0 + D1(z)))R0(z)

has the asymptotic expansion of Tr(z).
For the interaction between resonant states and eigenfunctions, note that S er(z) =

−zQe(F1V + O(|z|ε))Qr and S re(z) = −zQr(F1V + O(|z|ε))Qe. It follows that

Ie(z)S er(z)Ir(z) = −Π0VQeF1VΠr(z)V + O(|z|ε/|zςκ0 |) + O(|z|/(|zςκ0 |)
2)

Ir(z)S re(z)Ie(z) = −Πr(z)VQrF1VΠ0V + O(|z|ε/|zςκ0 |) + O(|z|/(|zςκ0 |)
2)
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which gives

Ier(z) = −(Π0VQeF1VΠr(z)V + Πr(z)VQeF1VΠ0V) + O(|z|ε/|zςκ0 |) + O(|z|/(|zςκ0 |)
2)

The remainder terms have asymptotic expansions of the form of Ter(z). Theorem 3.29 is proved.
2

Theorem 3.29 shows that the asymptotic expansion of R(z) may contain any terms of the
form z~νzl, ( zς

zς j )k, ς ∈ σ1 with ς j < ν ≤ 1, and ( 1
ln z )m. If P has only 1-resonant states (i.e., κ0 = 1

and ς1 = 1) which may, however, still have an arbitrarily large multiplicity, α is absent in the
summation

∑+,N−1
α,β,~ν,l and the sum on β is infinite and gives rise to convergent series in 1

ln z . In this
case, Tr(z) in Theorem 3.29 can be written in the form

Tr(z) =
1

z ln z
{Πr,1 +

∑
~ν∈(σN )s,s≤N0,l≥0,{~ν}+l≤N−1

z~νz
lΨ~ν,l(z)}

where Ψ~ν,l(z) is a convergent series of the form

Ψ~ν,l(z) =
∞∑

k=1

1

lnk z
Tr;~ν,k,l.

3.6 Asymptotic behavior of the smallest eigenvalue of P̃(λ)

In this section, we consider a family of Schrödinger operators, P̃(λ), which are the pertur-
bation of P̃0 in the form

P̃(λ) = P̃0 + λV(x), for λ ≥ 0

on L2(Rn), n ≥ 3. Here
P̃0 = −∆ + V1(x).

V1(x) = χ2
2(x) q(θ)

r2 , 0 ≤ χ2 ≤ 1 be a smooth function such that χ2(x) = 1 when |x| > R1, χ2 = 0
when |x| < R. Let χ1 be a non-negative function such that χ2

1 + χ
2
2 = 1. V and q(θ) are defined

in Section 2, (r, θ) is the polar coordinates on Rn.
By min-max principle, one has P̃0 ≥ 0, because P0 ≥ 0. As in Section 1, we can also show

that P̃(λ) has negative eigenvalue when λ large enough and there exists some λ0 such that when
λ > λ0, P̃(λ) has eigenvalues less then 0, and when λ ≤ λ0, σ(P̃(λ)) = [0,∞). As in Section
3, to study the asymptotic behavior of the smallest eigenvalue of P̃(λ), we need to know the
asymptotic expansion of (P̃0 − z)−1.

Assume 0 < σ∞. Let N ∈ N and ρ0 > 4N + 2. For z ∈ C\R, z near 0, (P̃0 − z)−1 has the
following expansion in L(−1, s; 1,−s) with s > 2N + 1

(P̃0 − z)−1 =

N∑
j=0

z jR j +

N0∑
k=1

∑
~ν∈(σN )k

z~ν
N−1∑

j=[~ν]−

z jR~ν, j + O(|z|N+ε).
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Here N0 is some integer large enough depending on σ∞ and N, and

R0 = AF0; R1 = AF1A∗; Rνi,0 = AGνi,0πνi A
∗;

R(νi,ν j),0 = AGνi,0πνi

χ2
1

r2 q(θ)AGν j,0πν j A
∗;

R(νi,ν j,νk),0 = AGνi,0πνi

χ2
1

r2 q(θ)AGν j,0πν j

χ2
1

r2 q(θ)AGνk ,0πνk A∗,

where A = (1 − F0
χ2

1
r2 q(θ))−1.

Definition 3.31. Set Ñ(λ) = {u; P̃(λ)u = 0, u ∈ H1,−s,∀s > 1}, for λ ≥ λ0. A function u ∈
Ñ(λ)\L2 is called a resonant state of P̃(λ) at zero.

Set K̃(z) = |V |1/2(P̃0 − z)−1|V |1/2 for z < σ(P̃0), and K̃(0) = |V |1/2AF0|V |1/2.
There are some results for P̃(λ) similar to those for P(λ). We state these results without

proof (see Section 3 for details).

Proposition 3.32. Let α < 0. Then α ∈ σ(P̃(λ)) if and only if λ−1 ∈ σ(K̃(α)). Moreover, the
multiplicity of α as the eigenvalue of P̃(λ) is exactly the multiplicity of λ−1 as the eigenvalue of
K̃(α).

Proposition 3.33. K̃(α) is a compact operator for α ≤ 0. And K̃(α) converges to K̃(0) as α→ 0
in operator norm sense.

Let

µi(α) = inf
φ1,··· ,φi

sup
||ψ||=1,ψ∈[φ1,··· ,φi]⊥

(ψ, K̃(α)ψ).

Then, µi(α) is the eigenvalue of K̃(α). Because K̃(α)→ K̃(0) as α→ 0, one has µi(α) converges
to the eigenvalue of K̃(0) by Lemma 3.11. Suppose µi(α) → µi, and suppose µ1 = · · · =

µm, µ1 , µm+1, then µ1 is an eigenvalue of K̃(0) of multiplicity m. By Lemma 3.11, one can
choose φi(α) (1 ≤ i ≤ m), which is the eigenfunction of K̃(α) corresponding to µi(α) such that
〈φi(α), φ j(α)〉 = δi j and φi(α) converges. Suppose φi(α) → φi as α → 0, then φi(1 ≤ i ≤ m)
is the eigenfunction of K̃(0) corresponding to µ1, and 〈φi, φ j〉 = δi j for 1 ≤ i, j ≤ m. Note that
µ1 = λ−1

0 , one has P̃(λ0)ψi = 0 (1 ≤ i ≤ m) with ψi = AF0|V |1/2φi ∈ H1,−s, s > 1. Because
0 is the simple eigenvalue of P̃(λ0), then there is at most one ψi ∈ L2(Rn) and the other ψi is
the 0 resonant solution of P̃(λ0). Suppose that ψi (1 ≤ i ≤ m) which is not belongs to L2(Rn) is
νi-resonant state of P̃(λ0), 0 < νi ≤ 1. Then we have

Lemma 3.34. Assume 0 < σ∞. Let φi, ψi, µi, µi(α), νi are defined as above. If ψi < L2, and
ψi is νi-resonant state. If νi < 1, then µi(α) = cανi + o(ανi) with some c , 0 ; if νi = 1 then
µi(α) = cα lnα + o(α) with some c , 0.
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Proof. The proof of this lemma is similar to that of lemma3.14. Because ψi ∈ H1,−s, s > 1

satisfies (P̃0 + λ0V)ψi = 0, then (P0 −
χ2

1
r2 q(θ))ψi = 0. It follows that

( (1 −
χ2

1

r2 q(θ)F0)P0 + λ0V)ψi = 0,

since

P0ψi =
χ2

1

r2 q(θ)ψi − λ0Vψi ∈ H−1,s.

Then (P0 + λ0(1 −
χ2

1
r2 q(θ)F0)−1V)ψi = 0. By Theorem 3.19, we have

ψi =
∑

0<ν≤1

nν∑
j=1

−
1
2ν
〈(λ0V −

χ2
1

r2 q(θ))ψi, |y|−
1
2 (n−1)+νϕ

( j)
ν 〉

ϕ
( j)
ν (θ)

r
1
2 (n−2)+ν

+ ũ

=
∑

0<ν≤1

nν∑
j=1

−
1
2ν
− 〈P0ψi, |y|−

1
2 (n−1)+νϕ

( j)
ν 〉

ϕ
( j)
ν (θ)

r
1
2 (n−2)+ν

+ ũ

=
∑

0<ν≤1

nν∑
j=1

−
1
2ν
〈λ0A∗Vψi, |y|−

1
2 (n−1)+νϕ

( j)
ν 〉

ϕ
( j)
ν (θ)

r
1
2 (n−2)+ν

+ ũ.

One has

〈φ j, |V |1/2AGν,0π
(i)
ν A∗|V |1/2φk〉

= λ2
0〈A
∗Vψ j,

1

|x|
1
2 (n−2)−ν

ϕ(i)
ν 〉〈A∗Vψk,

1

|x|
1
2 (n−2)−ν

ϕ(i)
ν 〉.

As the proof of Lemma 3.14, we can get the result. 2

Using this lemma, we can get the following result.

Theorem 3.35. Assume 0 < σ∞. Suppose that e1(λ) is the ground state of P̃(λ), and φ1, ψ1 are
defined as in Lemma 3.34. Then,

(a). If ψ1 ∈ L2, then e1(λ) = −c(λ − λ0) + o(λ − λ0), with some c , 0 ;
(b). If ψ1 < L2, and ψ1 is ν-resonant state of P̃(λ0), then if ν′ = 1, e1(λ) = c λ−λ0

ln(λ−λ0)+o(λ−λ0),

and if ν′ < 1, e1(λ) = c((λ − λ0)
1
ν′ ) + o((λ − λ0)

1
ν′ ).

Moreover, if the eigenvalue of P̃(λ), e(λ), which is not ground state, approaches to 0 as
λ ↓ λ0, then e(λ) has the similar asymptotic expansion as e1(λ).

The proof of this Theorem is similar to that of Theorem 3.15. We omit the proof.
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4.1 Introduction

In this chapter, we study Schrödinger operator P = −∆ + V(x) on L2(Rn) with V(x) a real
smooth function on Rn, n ≥ 3, satisfying

V(x) =
q(θ)
r2 + O(〈x〉−ρ), |x| → ∞. (4.1)

for some q ∈ C∞(Sn−1) and ρ > 2. Here x = rθ with r = |x| and θ = x
|x| . S

n−1 is the unit sphere
in Rn.

Let 0 ≤ χ j ≤ 1 ( j = 1, 2) be smooth functions on Rn such that suppχ1 ⊂ B(0,R1), χ1(x) = 1
when |x| < R0 and

χ1(x)2 + χ2(x)2 = 1.

Consider the operator

P0 = χ1(−∆)χ1 + χ2P̃0χ2,

on L2(Rn), where P̃0 = −∆ +
q(θ)
r2 . Let ∆s denote the Laplacian on the sphere Sn−1. Assume that

λ1 is the smallest eigenvalue of −∆s + q(θ) on the sphere Sn−1 and verifies

λ1 > −
1
4

(n − 2)2. (4.2)

Under this assumption, one has P0 ≥ 0 on L2(Rn). The operator P can be considered as a
perturbation of model operator P0. We are mainly interested in the low-energy asymptotics of
the derivative of the spectral shift function.

The spectral shift function was introduced in 1952 by the physicist I. M. Lifshitz in paper
[41] as a trace perturbation formula in quantum mechanics. Its mathematical theory was created
by M. G. Krein. Let H, H0 be a pair of self-adjoint operators in some separable Hilbert space
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H . Krein proved in [36] that if V = H − H0 is a trace class operator, then f (H) − f (H0) is of
trace class and there exists some function ξ ∈ L1(R), called spectral shift function, such that

Tr ( f (H) − f (H0)) = −
∫
R

f ′(λ)ξ(λ) dλ, ∀ f ∈ S(R). (4.3)

Then it was extended by him in [37] (see [38], for a more complete exposition) to operators
H0, H with a trace class difference R(z) − R0(z). Here R0(z) = (H0 − z)−1 and R(z) = (H − z)−1.
Yafaev ([73]) proved that if there exists some c such that P + cI and P0 + cI are positive and
there exists some k ∈ N∗,

||(P + cI)−k − (P0 + cI)−k||tr < ∞. (4.4)

then f (P) − f (P0) is of trace class and there exists some function ξ ∈ L1
loc(R), such that (4.3)

holds. The right hand side of (4.3) can be interpreted as 〈 f , ξ′〉, where ξ′ is the derivative of ξ in
the sense of distributions.

The spectral shift function of Schrödinger operator has been studied by many authors (see
for example [1],[47],[49],[50],[73] ). High-energy asymptotics of the spectral shift function
was studied in these paper. The result got by Robert in [49] is the following : assume |∂αx V | ≤
Cα〈x〉−ρ−|α| with ρ > n, then the spectral shift function, ξ(λ), for the pair (−∆,∆+V) satisfying :

(i). ξ(λ) is C∞ in (0,∞).
(ii). dk

dλk ξ(λ) has a complete asymptotic expansion for λ→ ∞,

dk

dλk ξ(λ) ∼ λn/2−k−1
∑
j≥0

α(k)
j λ
− j.

In this chapter, we use the asymptotic expansion of (P0 − z)−1 and (P − z)−1 for z near 0,
=z , 0 to study the low-energy asymptotics of the derivative of the spectral shift function.
The main result we get is the following : assume V = q(θ)

r2 +W, and |∂αx W | ≤ Cα〈x〉−ρ−|α| with
ρ > max{6, n + 2} for |x| large, then

ξ′(λ) = J0δ(λ) + g(λ),

with |g(λ)| = O(λ−1+ε0) for some ε0 > 0, as λ → 0, J0 depends on the multiplicity of 0 as the
eigenvalue of P and the multiplicity of 0 as the resonance of P. Then we use this result and
Robert’s result to study Levinson’s theorem. If ρ > n + 3, we can get that∫ ∞

0
(ξ′(λ) −

[ n
2 ]∑

j=1

c jλ
[ n

2 ]−1− j) dλ = −(N + J0) + βn/2. (4.5)

Here βn/2 depends on the dimension n and V . βn/2 = 0 if n is odd. N is the number of discrete
eigenvalues of P.

Here is the plan of this chapter. In Section 4.2, we study a representation formula of the
spectral shift function which is used to study Levinson’s theorem. In Section 4.3, we use the
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asymptotic expansion of (P̃0 − z)−1 to get the asymptotic expansion of (P0 − z)−1. The residues
of Tr(R(z)−R0(z)) f (P) is studied in Section 4.4. Here f is some smooth function with compact
support. This result is used to study the low-energy asymptotics of the derivative of the spectral
shift function in Section 4.5. The Levinson’s theorem is also studied in this section.

4.2 A representation formula

Let P, P0 be a pair of self-adjoint operators, semi-bounded from below, in some separable
Hilbert space H. Assume that for some k ∈ N∗,

||(P − i)−k − (P0 − i)−k||tr < ∞. (4.6)

Then for any f ∈ S(R), f (P)− f (P0) is of trace class and there exists some function ξ ∈ L1
loc(R),

called spectral shift function, such that

Tr ( f (P) − f (P0)) = −
∫
R

f ′(λ)ξ(λ) dλ, ∀ f ∈ S(R). (4.7)

The right hand side can be interpreted as 〈 f , ξ′〉, where ξ′ is the derivative of ξ in the sense
of distributions. By the Birman-Krein theory, ξ is related with the scattering phase, ρ(λ) =
arg det S (λ), by the formula

ρ(λ) = 2πξ(λ), mod 2πZ,

and
ξ′(λ) =

1
2π

Tr T (λ),

where T (λ) = −iS (λ)∗ d
dλS (λ) is the Eisenbud-Wigner formula for the time-delay operator. We

make the following assumptions.
• The spectra of P and P0 are purely absolutely continuous in ]0,+∞[

σ(P0) = σac(P0) = [0,+∞[, (4.8)

σac(P) = [0,+∞[. (4.9)

In particular, there are no embedded eigenvalues of P and P0 in ]0,+∞[.
• Let f ∈ C∞0 (R). There exists some ε0 > 0 and C f > 0 such that

| Tr [(R(z) − R0(z)) f (P)] | ≤ C f
1
|z|1+ε0

, (4.10)

uniformly in z ∈ C with |z| large and z < σ(P). For any δ > 0, and λ > δ, lim
ε↓0

Tr[(R(λ ±

iε) − R0(λ ± iε)) f (P)] exists. Moreover, there exists Cδ, f > 0 such that

| lim
ε↓0

Tr [(R(λ ± iε) − R0(λ ± iε)) f (P)]| ≤ Cδ, f ,

uniformly in λ with λ > δ.
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• The residue of the function z→ Tr [(R(z) − R0(z)) f (P)] at z = 0 is finite in the following
sense :

J0 = −
1

2πi
lim
ε→0

lim
δ→0

∫
|z|=ε,|=z|≥δ

Tr [(R(z) − R0(z)) f (P)] dz < ∞. (4.11)

• ξ′(λ) ∈ L1
loc(]0,∞[).

• The total number, N, of negative eigenvalues of P is finite.
We have the following representation formula for the spectral shift function ξ(λ).

Theorem 4.1. Under the above assumptions, suppose in addition that ξ(·) is absolutely conti-
nuous in ]0,∞[. Let f ∈ C∞0 (R) such that f (λ) = 1 for λ in neighborhood of σpp(P)∪{0}. Under
the above assumptions, the limit∫ ∞

0
f (λ)ξ′(λ)dλ = lim

δ→0+
lim

R→∞

∫ R

δ
f (λ)ξ′(λ)dλ

exists and one has

Tr( f (P) − f (P0)) −
∫ ∞

0
ξ′(λ) f (λ)dλ = N + J0. (4.12)

Proof. (R(z) − R0(z)) f (P) can be written as

(R(z) − R0(z)) f (P) = (R(z) f (P) − R0(z) f (P0)) − (R0(z)( f (P) − f (P0))).

Under the condition (4.6), (R(z) − R0(z)) f (P) is of trace class for any f ∈ S(R) and z < σ(P)
and the function

F(z) = Tr(R(z) − R0(z) f (P))

is holomorphic outside σ(P). We want to deduce (4.12) from Cauchy’s formula applied to F(z).
Let N be the total number of discrete eigenvalues of P (counted with the multiplicity). Let

Ei, 1 ≤ i ≤ k, be the distinct eigenvalues of P with multiplicity mi, such that Ei < E j if i < j.
Then,

∑k
i=1 mi = N. Denote for z0 ∈ C and δ > 0

γ(z0; δ) = { z ∈ C; |z − z0| = δ }; D(z0; δ) = { z ∈ C; |z − z0| ≤ δ }.

Then if δ > 0 small enough, σ(P) ∩ D(Ei; δ) = {Ei} and σ(P0) ∩ D(Ei; δ) = ∅ for 1 ≤ i ≤ k.
Set E0 = 0. For R >> 1 and 0 < ε << δ, denote

γR,ε = {z ∈ C; |z| = R, dist(z,R+) ≥ ε}

γ(1, δ, ε) = {z ∈ C; |z − E1| = δ, dist(z, ]E1,∞[) ≥ ε}

γ(i, δ, ε) = { z ∈ γ(Ei, δ), |=z| ≥ ε}, 0 ≤ i ≤ k with i , 1

d±j = [E j +
√
δ2 − ε2 ± iε, E j+1 −

√
δ2 − ε2 ± iε], 1 ≤ j ≤ k, Ek+1 = E0 = 0

d±R(δ, ε) = [
√
δ2 − ε2 ± iε,R ± iε].
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We denote by Γδ,ε,R the closed curve defined by

Γδ,ε,R = (∪k
j=0γ( j; δ, ε)) ∪ (∪k

j=1d+j ∪ d−j ) ∪ d+R(δ, ε) ∪ d−R(δ, ε) ∪ γR,ε .

Γδ,ε,R is positively oriented according to the anti-clockwise orientation of the big circle γR,ε .
Since F(z) is holomorphic in the domain limited by Γδ,ε,R, the Cauchy integral formula gives

1
2πi

,
Γδ,ε,R

F(z)dz = 0.

We split the integral into four terms

1
2πi

,
Γδ,ε,R

F(z)dz =
4∑

j=1

I j with (4.13)

I1 =
1

2πi

,
γ(R,ε)

F(z) dz, I2 =

k∑
j=0

1
2πi

,
γ( j;δ,ε)

F(z) dz

I3 = −
1

2πi

k∑
j=1

,
d+j ∪d−j

F(z) dz, I4 =
1

2πi

,
d+R (δ,ε)∪d−R (δ,ε)

F(z) dz

By condition (4.10), one has I1 = O(R−ε0) uniformly in ε > 0. For z in D(E j, δ), j = 1, · · · , k,
one has

R(z) = Π j(E j − z)−1 + R j(z)

where Π j is the spectral projection onto the eigenspace of P associated with the eigenvalue E j

and R j(z) is holomorphic in D(E j, δ). (R j(z) − R0(z)) f (P) is of trace class and z → Tr(R j(z) −
R0(z)) f (P) is holomorphic near z = E j. Therefore, for j = 1, · · · , k

1
2πi

,
γ( j;δ,ε)

F(z) dz→
1

2πi

,
γ( j;δ)

Tr(Π j f (P))(E j − z)−1 dz = −m j f (E j) = −m j.

as ε → 0, for each δ > 0 sufficiently small. For the integral over γ(0; δ, ε), the assumption (4.11)
and the choice of orientation on Γδ,ε,R gives

lim
δ→0

lim
ε→0

1
2πi

,
γ(0;δ,ε)

F(z) dz = −J0.

Therefore
lim
δ→0

lim
ε→0

I2 = N + J0. (4.14)

For δ > 0 small enough and for j = 1, · · · , k, [E j + δ, E j+1 − δ] ∩ σ(P) = ∅ and F(z) is
holomorphic in a connected domain containing [E j + δ, E j+1 − δ]. Thus,

lim
ε→0

,
d+j ∪d−j

F(z) dz = lim
ε→0

∫ E j+1−δ

E j+δ
(F(λ + iε) − F(λ − iε))dλ = 0
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which shows that limε→0 I3 = 0. We obtain that

lim
R→∞,δ→0

lim
ε→0

I4 = −N − J0. (4.15)

Decompose F(z) as
F(z) = F1(z) + F2(z)

where

F1(z) = Tr(R(z) f (P) − R0(z) f (P0)), F2(z) = Tr(R0(z)( f (P0) − f (P))

By the definition of the spectral shift function,

F1(z) = −
∫
R
ξ(λ) f ′z (λ)dλ =

∫
R
ξ′(λ) fz(λ)dλ

with fz(λ) = (λ − z)−1 f (λ), f ′z is the derivative of fz with respect to λ and ξ′(·) denotes the
derivative of ξ(·) in the sense of distributions. It is elementary to check that

lim
ε→0

1
2πi

,
d+R (δ,ε)∪d−R (δ,ε)

fz(λ) dz =


f (λ), if λ ∈]δ,R[;
f (λ)
2 , if λ = δ or R;

0, if λ ∈ R \ [δ,R]
(4.16)

Note that ξ′(λ) is in L1
loc(]0,∞[). Making use of Fubini and the dominated convergence theo-

rems, one derives that

lim
ε→0

1
2πi

,
d+R (δ,ε)∪d−R (δ,ε)

F1(z) dz =
∫ R

δ
ξ′(λ) f (λ)dλ. (4.17)

For F2(z), making use of the Stone’s formula for P0 and the assumption (4.8), one has

lim
ε→0

1
2πi

,
d+R (δ,ε)∪d−R (δ,ε)

F2(z) dz = Tr(E0(δ,R)( f (P) − f (P0))

where E0(δ,R) is the spectral projection of P0 onto the interval [δ,R]. Since

s − lim
δ→0,R→∞

E0(δ,R) = I

and f (P) − f (P0) is of trace class, one can deduce that

lim
δ→0,R→∞

TrE0(δ,R)( f (P0) − f (P)) = Tr ( f (P0) − f (P))

See Lemma 4.2 below. (4.15) shows that the limit∫ ∞

0
ξ′(λ) f (λ)dλ = lim

δ→0,R→∞

∫ R

δ
ξ′(λ) f (λ)dλ

exists and

Tr( f (P) − f (P0)) −
∫ ∞

0
ξ′(λ) f (λ)dλ = N + J0. (4.18)

2
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Lemma 4.2. Suppose A is of trace class and f (λ) is an operator valued function such that
|| f (λ)|| ≤ C with C independent of λ. If B = s − lim

λ→λ0
f (λ) exists, then f (λ)A converges to BA in

S 1 as λ→ λ0. In particular,

lim
λ→λ0

Tr f (λ)A = TrBA.

Proof. For any ε > 0, let F be a finite rank operator such that ||A − F||1 < ε. Then

|| f (λ)A − BA||1 ≤ ||( f (λ) − B)F||1 + ||( f (λ) − B)(F − A)||1.

The first term on the right hand side can be controlled by Cε when |λ− λ0| ≤ δ with some δ > 0
small enough, since s − lim

λ→λ0
f (λ) = B and F is a finite rank operator. The second term also

can be controlled by Cε, since f (λ) − B is a bounded operator and ||A − F||1 ≤ ε. This ends the
proof. 2

Remark. In many cases, the high energy asymptotics of the spectral shift function is known.
For example, if P0 = −∆ and P = −∆g + V(x) on Rn with g a smooth metric g and a smooth
potential V(x) satisfying

|∂αx (g(x) − I)| + |∂αx V(x)| ≤ Cα〈x〉−ρ−|α|

for some ρ > n and the metric g has no trapped geodesics. Then, the asymptotic expansion of
ξ′(λ) as λ→ +∞ is given in [49] :

ξ′(λ) ∼ λ
n
2−1

∑
j≥0

c jλ
− j (4.19)

where

c0 =
4π(n+1)/2

Γ(n/2 + 1)

∫
Rn

√
det g(x) − 1 dx.

If one can show that ξ′(λ) is integrable in ]0, 1], then one can take a family of functions fR(λ) =
χ( λR ), where χ is smooth and 0 ≤ χ(s) ≤ 1, χ(s) = 1 for s near 0, χ(s) = 0 for s > 1 and expand
both the terms ∫ ∞

0
ξ′(λ) fR(λ) dλ, and Tr( fR(P) − fR(P0))

in R→ ∞. Theorem 4.1 will give a generalized Levinson’s theorem.
The remaining part of this work is to apply Theorem 4.1 to Schrödinger operator, using the

known results on the asymptotic expansion of ξ′(λ) as λ → ∞. The main task is to study ξ′(λ)
as λ→ 0.
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4.3 Some results for P0 and P

In this section, we will study the operator P = −∆+V1+V2. Here Vi(x) ∈ C∞(Rn), (i = 1, 2).
V1(x) = q(θ)

|x|2 , if |x| > R0 for some R0 large enough. V2(x) satisfies

|∂αx V2(x)| ≤ Cα〈x〉−ρ−|α| (4.20)

for some ρ > 2. Let 0 ≤ χ j ≤ 1 ( j = 1, 2) be smooth functions on Rn such that suppχ1 ⊂

B(0,R1), χ1(x) = 1 when |x| < R0 and

χ1(x)2 + χ2(x)2 = 1.

Consider the operator

P0 = χ1(−∆)χ1 + χ2P̃0χ2,

on L2(Rn), where P̃0 = −∆ +
q(θ)
r2 . (r, θ) is the polar coordinates on Rn, q(θ) is a real continuous

function. Let ∆s denote Laplace operator on the sphere Sn−1. Assume

− ∆s + q(θ) ≥ −
1
4

(n − 2)2, on L2(Sn−1). (4.21)

We have that P̃0 ≥ 0 in L2(Rn), if (4.21) holds. By the above notation, we can see that operator

P can be treated as the perturbation of P0, and if we denote V =
2∑

i=1
|∇χi|

2 + V2 + χ
2
1V1, then

P = P0 + V . V satisfies

|∂αx V(x)| ≤ Cα〈x〉−ρ−|α|. (4.22)

Let R̃0(z) = (P̃0 − z)−1 for z < σ(P0). For the later purpose, we should establish the asymp-
totic expansion of d

dz R̃0(z) for z near 0. Let

Qν = −
d2

dr2 −
n − 1

r
d
dr
+
ν2 −

(n−2)2

4

r2 , in L2(R+; rn−1dr).

Then we have the orthogonal decomposition for the resolvent R̃0(z),

R̃0(z) =
∑
ν∈σ∞

(Qν − z)−1πν, z < R

As in [70], we first expand each d
dz (Qν − z)−1 and estimate the remainder term. First, we will

give the kernel of d
dz (Qν − z)−1. The Schwartz kernel of (Qν − z)−1, =z > 0 is (see [70])

Kν(r, τ; z) = −(rτ)−
1
2 (n−2)

∫ ∞

0
ei ρt +izrτt−i πν2 Jν(

1
2t

)
dt
2t
.

Here Jν is the Bessel function of the first kind of order ν and

ρ = ρ(r, τ) ≡
r2 + τ2

4rτ
.
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Lemma 4.3. The Schwartz kernel of d
dz (Qν − z)−1, =z > 0 on L2(R+; rn−1dr) is d

dz Kν(r, τ; z).

Proof. By the definition of d
dz (Qν − z)−1, one has that for φ ∈ L2(R+, rn−1dr),

d
dz

(Qν − z)−1φ(r) =
d
dz

∫ ∞

0
Kν(r, τ; z)φ(τ)τn−1 dτ. (4.23)

Let U be a bounded set such that =z ≥ ε0 > 0, for all z ∈ U. To show that the kernel of
d
dz (Qν− z)−1 is d

dz Kν(r, τ; z), it suffices to show that for z ∈ U, fixed r > 0, there exists a function
g(τ) ∈ L1(R+), such that | ddz Kν(r, τ; z)φ(τ)τn−1| ≤ g(τ). Since =z > 0, and Jν( 1

2t ) = O(t1/2) as
t → 0, Jν( 1

2t ) = O(t−ν) as t → ∞, one has

d
dz

Kν(r, τ; z) = A(r, τ; ν)
∫ ∞

0
ei ρt +izrτt Jν(

1
2t

) dt,

where
A(r, τ; ν) = −(rτ)−

n
2+2e−i πν2

i
2
.

For τ ≤ (ε0r)−1, one has

|
d
dz

Kν(r, τ; z)| ≤ C(rτ)−
n
2+2|

∫ (ε0rτ)−1

0
e−=ztrτJν(

1
2t

) dt +
∫ ∞

(ε0rτ)−1
e−=ztrτJν(

1
2t

) dt|

≤ Cε−3/2
0 (rτ)−

n−1
2 +C(εν−1

0 + 1)(rτ)−
n
2+1+ν. (4.24)

For τ ≥ (ε0r)−1, note that∫ ∞

0
ei ρt +izrτt Jν(

1
2t

) dt =
∫ ∞

0
eiρλ+i zrτ

λ Jν(
λ

2
)λ−2 dλ,

and ρ , 0. One has, for any N > 0 large enough,∫ ∞

0
eiρλ+i zrτ

λ Jν(
λ

2
)λ−2 dλ

= (
1
iρ

)N(−1)N
∫ ∞

0
eiρλ

∑
i1+i2+i3=N

C(i1, i2, i3)
di1

dλi1
(ei zrτ

λ )
di2

dλi2
(Jν(

λ

2
))

di3

dλi3
(λ−2) dλ

= (
i
ρ

)N
∫ ∞

0
eiρλ+i zrτ

λ

∑
i1+i2+i3=N

∑
0≤k≤i1

C′(i1, i2, i3, k)
di2

dλi2
(Jν(

λ

2
))(izrτ λ−2)kλk−i1λ−2−i3 dλ

= (
i
ρ

)N
∫ ∞

0
ei ρt +izrτt

∑
i1+i2+i3=N

∑
0≤k≤i1

C′(i1, i2, i3, k)
di2

dti2
(Jν)(

1
2t

)(izrτ)kti1+i3+k dt.

One has di2

dzi2
Jν(z) = O(|z|ν−i2) when z → 0, and di2

dzi2
Jν(z) = O(|z|−1/2) when z → ∞, since

J′ν(z) = νJν(z)/z − Jν+1(z) (see [72, P.45]). It follows that

|
d
dz

Kν(r, τ; z)|

≤ C(rτ)−
n
2+2

∑
i1+i2+i3=N

∑
0≤k≤i1

C′(i1, i2, i3, k)|z|k
(4rτ)N

(r2 + τ2)N |

∫ ∞

0
e−=ztrτti1+i3+kJ(i2)(

1
2t

) dt|

≤ C(ε−(N+2k−ν+1)
0 + 1)

(4rτ)N(rτ)−
n
2+2

(r2 + τ2)N
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where C is independent of r and z. Let

g(τ) =


Cε−3/2

0 (rτ)−
n−1

2 +C(εν−1
0 + 1)(rτ)−

n
2+1+ν, ifτ ≤ (ε0r)−1 ;

C(ε−(N+2k−ν+1)
0 + 1)

(4rτ)N(rτ)−
n
2+2

(r2 + τ2)N , if τ ≥ (ε0r)−1.

Then for all z ∈ U, one has | ddz Kν(r, τ; z)φ(τ)τ(n−1)| ≤ g(τ), and g(τ) ∈ L1(R+) if N large enough.
This ends the proof. 2

In the following, we suppose that 0 < σ∞. We use the method used in [70] to get the
asymptotic expansion of d

dz (P̃0 − z)−1. In [70], X.P. Wang got the expansion of (P̃0 − z)−1, we
wish to take the derivative in that formula.

Proposition 4.4. Suppose that 0 < σ∞. The following asymptotic expansion holds for z near 0
with =z > 0.

d
dz

R̃0(z) =
N∑

j=1

jz j−1F j +
∑
ν∈σN

d
dz

(zν
N−1∑

j=[ν]−

z j)Gν, j+δνπν +
d
dz

R̃(N)
0 (z), (4.26)

in L(0, s; 0,−s), s > 2N + 1. Here

F j =
∑
ν∈σ∞

Fν, jπν ∈ L(0, s; 0,−s), s > 2 j + 1 (4.27)

d
dz

R̃(N)
0 (z) = O(|z|N−1+ε) ∈ L(0, s; 0,−s), s > 2N + 1, ε > 0. (4.28)

Proof. The proof of the first part is similarly as that in [70]. First, we will show that

d
dz

Rν,N(z) = O(|z|N−1+ε) ∈ L(0, s; 0,−s), s > 2N − ν + 1.

By Lemma 4.3 and Proposition 3.1, one has, for l < ν < l + 1, and l ≥ 1,

d
dz

Rν,N(z) = (ν′ + N)zν
′+N−1Gν,N +

1
(l − 1)!

d
dz

∫ 1

0
(1 − θ)l−1(irτz)lR̃ν′,N−l,2(θzrτ)dθ

+
1

(l − 1)!
d
dz

∫ 1

0
(1 − θ)l−1

∫ 1

0
(irτz)lON−l(eitθzrτ)tl−1−ν f (

1
t

; r, τ, ν)dtdθ

≡ I + II + III.

By the definition of Gν,N , one has

|I| ≤ C|z|ν
′+N−1(rτ)N+ν′− n−2

2 FN−l(ρ).

Here FN−l(ρ) is a polynomial of degree N− l of ρ. It is easy to see that if s > 2N− l+ν′+1, (1+
r)−sGν,N(1 + τ)−s defines a Hilbert-Schmidt operator on L2(R+; rn−1dr). Hence I = O(|z|ν

′+N−1)
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in L(0, s; 0,−s), s > 2N − l + ν′ + 1.

III =
l

(l − 1)!

∫ 1

0
(1 − θ)l−1

∫ 1

0
(irτ)lzl−1tl−1−νON−l(eirτtθz) f (

1
t

; r, τ, ν) dtdθ

+
1

(l − 1)!

∫ 1

0
(1 − θ)l−1

∫ 1

0
(irτz)l d

dz
ON−l(eirτtθz)tl−1−ν f (

1
t

; r, τ, ν) dtdθ

≡ III1 + III2.

Using (3.9) and (3.10), we can get |III1| ≤ CN |z|N(rτ)N+1− n−2
2 , and |III2| ≤ CN |z|N(rτ)N+1− n−2

2 . It
follows that III = O(|z|N) in L(0, s; 0,−s), s > N + 2.

II =
1

(l − 1)!

∫ 1

0
(1 − θ)l−1 d

dz
(R̃ν′,N−l,2(irτz)l(θzrτ)dθ

=
1

(l − 1)!

∫ 1

0
(1 − θ)l−1 d

dz

∫ ∞

1
(irτz)lON−l(eitθzrτ)t−1−νON−l( f (

1
t

)) dtdθ

−
1

(l − 1)!

∫ 1

0
(1 − θ)l−1 d

dz
(
N−l−1∑

j=0

f j
(iθzrτt) j+1

j!

∫ 1

0

∫ 1

0
(irτz)lON−l−1− j(eitθzrτ) dtdθ′)dθ

≡ II1 + II2

As above, we can get that II1 = O(|z|N) in L(0, s; 0,−s), s > N + 2 and II2 = O(|z|N) in
L(0, s; 0,−s), s > 2N − l + 1.

Summing up the estimate of I, II and III, we get that

d
dz

Rν,N(z) = O(|z|N+ν
′−1) ∈ L(0, s; 0,−s), s > 2N − l + 1.

Note that R̃ν,N(z) can be expressed in terms of Rν,N−1(z) and Fν,N ,Gν,N−1. It follows

d
dz

Rν,N(z) = O(|z|N+ν
′−2) ∈ L(0, s; 0,−s), s > 2N − l − 1.

Lemma 4.8 gives that

d
dz

Rν,N(z) = O(|z|N−1+ε) ∈ L(0, s; 0,−s), s > 2N − ν + 1,

for some ε > 0.
By the similar argument, we can also prove that d

dz Rν,N(z) has the same estimate for 0 < ν <
1 and ν = l ∈ N.

For fixed N, let 0 < ε < 1
2 min{ν′; ν ∈ σN}. By the above computation, we can get that for

ν ∈ σN , d
dz Rν,N(z) = O(|z|N−1+ε) ∈ L(0, s; 0,−s), s > 2N − ν + 1. For ν > N, one has that

Rν,N(z) = −(rτ)−
n−2

2

∫ ∞

0
ei ρt −i πν2 ON(eirτzt)Jν(

1
2t

)
dt
2t
.
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By (3.10), we know that for any ν > N, 0 ≤ θ ≤ 1, | ddzON(eirτzt)| ≤ CN,θ(rτt)N+θ|z|N−1+θ, where
CN,θ is independent of ν. Thus, we can get that

d
dz

Rν,N(z) = O(|z|N−1+ε) ∈ L(0, s; 0,−s), s > N + ε + 1,

uniformly hold for ν > N. Summing up ν ∈ σ∞, one can get the expansion of d
dz R̃0(z) in

L(0, s; 0,−s) for appropriate s. 2

Definition 4.5. Let X be a complex vector space. Two norms || · ||(0) and || · ||(1) on X are called
consistent if any sequence {xn} that converges to zero in one norm and which is Cauchy in the
other norm converges to zero in both norms. If || · ||(0) and || · ||(1) are consistent, we define

||x||+ = inf{||y||(0) + ||z||(1)|x = y + z}.

Let S denote the closed strip {z ∈ C | 0 ≤ <z ≤ 1}, S the interior of S , and let || · ||(0) and
|| · ||(1) be two consistent norms on a complex vector space X. We define F (X) to be the set of
continuous functions f from S to X+ which are analytic in S and which satisfy :

(1). if<z = 0, then f (z) ∈ X0, and if<z = 1, then f (z) ∈ X1 ;
(2). sup

z∈S
|| f (z)||+ < ∞ ;

(3). ||| f ||| ≡ sup
t∈R
{|| f (it)||(0), || f (it)||(0)} < ∞.

Proposition 4.6. ([55, IX.4])
(a). F (X) with the norm ||| · ||| is a Banach space.
(b). For each t ∈ [0, 1], the subspace

Kt = { f ∈ F (X)| f (t) = 0}

is ||| · |||-closed.

∀x ∈ X, let ||x||(t) = inf{||| f ||| | f ∈ F (X), f (t) = x}. Let Xt be the completion of X in the
norm || · ||(t). From appendix of IX.4 [55], we know that Xt = F (X)/Kt.

Theorem 4.7. (Calderon-Lions interpolation theorem) Let X and Y be complex vector spaces
with given consistent norms || · ||(0)

X and || · ||(1)
X on X and || · ||(0)

Y and || · ||(1)
Y on Y. Suppose that T (·)

is an analytic, uniformly bounded, continuous, L (X+,Y+)-valued function on the strip S with
the following properties :

(1). T (t) : X → Y for each t ∈ (0, 1).
(2). For all y ∈ R, T (iy) ∈ L (X0,Y0) and

M0 = sup
y∈R
||T (iy)||L (X0,Y0) < ∞.

(3). For all y ∈ R, T (1 + iy) ∈ L (X1,Y1) and

M1 = sup
y∈R
||T (1 + iy)||L (X1,Y1) < ∞.
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Then for any t ∈ (0, 1),
T (t)[Xt] ⊂ Yt

and

||T (t)||L (Xt ,Yt) ≤ M1−t
0 Mt

1.

We use Calderon-Lions interpolation theorem to get the interpolation spaces between
L2,s1(Rn) and L2,s2(Rn).

Lemma 4.8. (a). s1, s2 are two real number. Then the interpolation spaces between X0 =

L2,s1(Rn) and X1 = L2,s2(Rn), Xt(0 < t < 1) are L2,pt with pt = (1 − t)s1 + ts2.
(b). Suppose F(z) = O(|z|m1) ∈ L(0, s1; 0,−s1) and F(z) = O(|z|m2) ∈ L(0, s2; 0,−s2). Then

F(z) = O(|z|(1−t)m1+tm2) ∈ L(0, pt; 0,−pt).

Proof. (a). Let X = L2,s1(Rn)∩L2,s2(Rn). Since C∞0 (Rn) is dense in X, it suffices to show that
|| · ||(t)−norm on C∞0 (Rn) coincides with || · ||pt−norm on C∞0 (Rn). Let t ∈ (0, 1) and φ ∈ C∞0 (Rn)
and define

f (z) = 〈x〉
pt−s1+z(s1−s2)

2 φ.

Then for each z ∈ S , f (z) ∈ X, and

|| f (iy)||L2,s1 = ||〈x〉
pt−s1

2 φ||L2,s1 = ||φ||L2,pt ,

|| f (1 + iy)||L2,s2 = ||〈x〉
pt−s2

2 φ||L2,s2 = ||φ||L2,pt .

Thus ||| f ||| = ||φ||pt , so || f ||(t) = || f ||F (X)/Kt ≤ ||φ||L2,pt . To prove ||φ||L2,pt ≤ || f ||(t), let f ∈ F (X)

and let ψ ∈ C∞0 (Rn). Let g(z) = 〈x〉−
pt−s1+z(s1−s2)

2 ψ, H(z) =
∫
Rn f (z)g(z) dx. Then H(z) is analytic

and bounded in S , and H(t) =
∫
Rn f (t)ψ dx. By the three line theorem, one has

|H(t)| ≤ sup
y∈R
{|H(iy)|, |H(1 + iy)|}

≤ sup
y∈R
{|| f (iy)||L2,s1 , || f (1 + iy)||L2,s2 } sup

y∈R
{||g(iy)||L2,−s1 , ||g(1 + iy)||L2,−s2 }

= ||| f ||| · ||ψ||L2,−pt .

It follows that f ∈ L2,pt and || f (t)||L2,pt ≤ ||| f |||. Thus, for any φ ∈ C∞0 (Rn), and f ∈ φ + Kt,
||φ||(t) = inf

f∈φ+Kt
||| f ||| ≥ ||φ||L2,pt . Thus the norms || · ||L2,pt and ||φ||(t) agree on C∞0 . Since C∞0 is

dense in X, we conclude that Xt = L2,pt .
(b). Let T (λ; z) = |z|m1(λ−1)−m2λF(z), for λ ∈ S . Apply Calderon-lions interpolation theorem

to T (λ; z), we conclude (b). 2

Definition 4.9. Set N = { u; Pu = 0, u ∈ H1,−s, ∀s > 1}. A function u ∈ N\L2 is called a
resonant state of P at zero. If N = {0}, we say that 0 is the regular point of P.
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Denote
~ν = (ν1, · · · , νk) ∈ (σN)k, z~ν = zν1 · · · zνk ,

{~ν} =

k∑
j=1

ν′j, [~ν]− =
k∑

j=1

[ν j]−, [~ν] =
k∑

j=1

[ν j].

Here ν′j = ν j − [ν j]− for ν j > 0. If ~νi ∈ (σN)mi , i = 1, · · · , k, and ~νi = (νi,1, · · · , νi,mi), denote

(~ν1, · · · , ~νk) = (ν1,1, · · · , ν1,m1 , ν2,1, · · · , νk,mk ).

Let R0(z) = (P0−z)−1 and R̃0(z) = (P̃0−z)−1. Let W =
χ2

1
r2 q(θ)+

2∑
i=1
|∇χi|

2, then P0 = P̃0−W.

By Proposition 3.21 and Lemma 3.23, we know that 0 is the regular point of P0 and 1 − F0W
is a Fredholm operator in H1,−s, s > 1. It follows that (1 − R̃0(z)W)−1 exists for z near 0 and
z < σ(P0). Then (P0 − z)−1 exists, and

R0(z) = (1 − F(z))−1R̃0(z) with F(z) = R̃0(z)W. (4.29)

We use this formula to get the asymptotic expansions of R0(z) and d
dz R0(z) for z near 0.

Proposition 4.10. Suppose that 0 < σ∞. The following asymptotic expansions hold for z near
0 with =z > 0.

(a).

R0(z) =
N∑

j=0

z jR j +
∑

{~ν}+[~ν]≤N

zν
N−1∑

j=[~ν]−

z jR~ν, j + R(N)
0 (z), (4.30)

in L(−1, s; 1,−s), s > 2N + 1. Here

R0 = AF0; R1 = AF1A∗;

R~ν,0 = AGν1,δν1
πν1WAGν2,δν2

πν2W · · · AGνk ,δνk
πνk A∗

for ~ν = (ν1, ν2, · · · , νk) with A = (1−F0W)−1. R j (resp. R~ν, j) are inL(−1, s; 1,−s) for s > 2 j+1
(resp. for s > 2 j + {~ν} + 1), and R(N)

0 (z) = O(|z|N+ε) in L(−1, s; 1,−s), s > 2N + 1.
(b).

d
dz

R0(z) =
N∑

j=0

jz j−1R j +
∑

{~ν}+[~ν]≤N

d
dz

(z~ν
N−1∑

j=[~ν]−

z jR~ν, j) + O(|z|N−1+ε), (4.31)

in L(0, s; 0,−s), s > 2N + 1, with some ε > 0.

Proof. Since W is a bounded operator in L(1,−s;−1, s), ∀s > 0, thus by Theorem 3.2, one
has for z near 0, =z > 0,

F(z) =
N∑

j=0

z jF jW +
∑
ν∈σN

zν
N−1∑

j=[ν]−

z jGν, j+δνπνW + R̃(N)
0 (z)W (4.32)
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in L(1,−s; 1,−s), s > 2N + 1. Since (1 − F0W)−1 exists on H1,−s, s > 1, we can get the
asymptotic expansion of (1 − F(z))−1. For z near 0, =z > 0,

(1 − F(z))−1 =

N∑
j=0

z jS j +
∑

{~ν}+[~ν]≤N

z~ν
N−1∑

j=[~ν]−

z jS ~ν, j + O(|z|N+ε)

in L(1,−s; 1,−s), s > 2N + 1. Here

S 0 = A ∈ L(1,−s; 1,−s), s > 1;

S ~ν,0 = AGν1,δν1
πν1WAGν2,δν2

πν2W · · · AGνk ,δνk
πνk WA ∈ L(1,−s; 1,−s), s > 2N + 1

with ~ν = (ν1, ν2, · · · , νk). Using (4.29) and the asymptotic expansion of (1 − F(z))−1 and R̃0(z),
we can get (4.30).

(b). We only give the proof of (4.31) for N = 1. The general case can be proved similarly.
By Proposition 4.4, one has d

dz R̃(1)
0 (z) = O(|z|ε) in L(0,−s; 0, s), s > 3. Take the derivative in

both sides of (4.32), we drive that

d
dz

F(z) = F1W +
∑
ν∈σ1

d
dz

(zνGν,δνπνW) +
d
dz

R̃(1)
0 (z)W (4.33)

in L(0,−s; 0,−s), s > 3. It follows that d
dz (1 − F(z))−1 = (1 − F(z))−1 d

dz F(z)(1 − F(z))−1 ∈

L(0,−s; 0,−s), s > 3. Moreover,

d
dz

(1 − F(z))−1 = AF1WA +
4∑

i=1

Li(z) + O(|z|ε) (4.34)

in L(0,−s; 0,−s), s > 3. Here

L1(z) =
∑
ν∈σ1

d
dz

zνS ν,0; L2(z) =
∑

ν+{~ν1}+{~ν2}≤1

(
d
dz

zν)z~ν1z~ν2S (~ν1,ν,~ν2),0;

L3(z) =
∑

ν+{~ν}≤1

(
d
dz

zν)z~νS (ν,~ν),0; L4(z) =
∑

ν+{~ν}≤1

(
d
dz

zν)z~νS (~ν,ν),0.

Thus

d
dz

(1 − F(z))−1R̃0(z) = AF1WAF0 +

5∑
i=1

Ii(z) + O(|z|ε)

in L(0, s; 0,−s), s > 3, where

I1(z) =
∑

ν1+ν2≤1

(
d
dz

zν1)zν2S ν1,0Gν2,δν2
πν2 ;

I2(z) =
∑

ν1+{~ν1}+{~ν2}+ν2≤1

(
d
dz

zν1)zν2z~ν1z~ν2S (~ν1,ν,~ν2),0Gν2,δν2
πν2 ;
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I3(z) =
∑

ν1+{~ν}+ν2≤1

(
d
dz

zν1)zν2z~νS (ν,~ν),0Gν2,δν2
πν2 ;

I4(z) =
∑

ν1+{~ν}+ν2≤1

(
d
dz

zν1)zν2z~νS (~ν,ν),0Gν2,δν2
πν2 ; I5(z) =

4∑
i=1

Li(z)F0.

Similarly, we can get that

(1 − F(z))−1 d
dz

R̃0(z) = AF1 +
∑
ν∈σ1

d
dz

zνAGν,δνπν +
∑

ν+{~ν}≤1

z~ν
d
dz

zνS ~ν,0Gν,δνπν + O(|z|ε)

in L(0, s; 0,−s), s > 3. Using

d
dz

R0(z) =
d
dz

(1 − F(z))−1R̃0(z) + (1 − F(z))−1 d
dz

R̃0(z),

we can get the asymptotic expansion of d
dz R0(z) in L(0, s; 0,−s), s > 3. For ~ν = (ν1, · · · , νk) and∑k

i=1 νi ≤ 1, let ~ν1, ~νi,1~νi,2, (i = 2, · · · , k − 1), ~νk satisfy

~ν = (ν1, ~ν1) = (~νi,1, νi, ~νi,2) = (~νk, νk).

It is easy to check that

∑
ν∈σ1

d
dz

zνAGν,δνπν +
∑

ν+{~ν}≤1

z~ν
d
dz

zνS ~ν,0Gν,δνπν +

5∑
i=1

Ii(z) =
∑

{~ν}+[~ν]≤1

(I~ν,1(z) + I~ν,2(z)),

where

I~ν,1(z) = (
d
dz

zν1)z~ν1S ~ν,0F0 +

k−1∑
i=2

(
d
dz

zνi)z~νi1
z~νi2

S ~ν,0F0 + (
d
dz

zνk ) z~νk S ~ν,0F0

I~ν,2(z) = (
d
dz

zν1)z~ν1S ~νk ,0Gνk ,δνk
πνk +

k−1∑
i=2

(
d
dz

zνi)z~νi1
z~νi2

S ~νk ,0Gνk ,δνk
πνk

+(
d
dz

zνk )z~νk S ~νk ,0Gνk ,δνk
πνk .

By a simple computation, one has

I~ν,1(z) =
d
dz

z~νS ~ν,0F0,

I~ν,2(z) =
d
dz

z~νS ~νk ,0Gνk ,δνk
πνk .

Note that WAF0 + 1 = A∗ and AF1 + AF1WAF0 = AF1A∗. It follows that I~ν,1(z) + I~ν,2(z) =
d
dz z~νR~ν,0 . Then we prove (4.31) for N = 1. The general case is the same. This ends the proof.
2

102



4.4. Residues of the trace at zero

4.4 Residues of the trace at zero

Let f ∈ C∞0 (R) and f (t) = 1 for t near 0. Then (R(z)−R0(z)) f (P) is in trace class for z < σ(P)
and z → T (z) = Tr [(R(z) − R0(z)) f (P)] is meromorphic on C\R+. We want to calculate the
residues of T (z) at z = 0. First, we recall some results (see [55, IX.4] for details ).

Definition 4.11. Let A be a compact operator on a separable Hilbert space H. We say that
A ∈ Sp(H), 1 ≤ p < ∞, if |A|p is a trace class operator and set ||A||p = (Tr |A|p)1/p.

Proposition 4.12. ([55, IX.4]) Let 1 ≤ p < ∞ and p−1 + q−1 = 1.
(a).If A ∈ Sp and B ∈ Sq, then AB ∈ S1 and ||AB||1 ≤ ||A||p · ||B||q.
(b). Sp is a Banach space with norm || · ||p.
(c). S1 ⊂ Sp .
(d).If A ∈ Sp, then A∗ ∈ Sp and ||A∗||p = ||A||p.

By Proposition 4.10, one has for z near 0, =z , 0,

R0(z) = R0 + R(0)
0 (z)

in L(−1, s; 1 − s), s > 1 .

Lemma 4.13. Let m > n/2, s > 3. For z near 0, =z , 0, 〈x〉−sR0(z)〈x〉−s ∈ Sm and there exists
a constant C independent of z, such that

||〈x〉−sR0(z)〈x〉−s||m ≤ C.

Moreover, 〈x〉−sR0〈x〉−s ∈ Sm.

Proof. Let χ ∈ C∞0 (R) such that χ(r) = 1 for |r| < 1. Then 〈x〉−sR0(z)〈x〉−s can be written as

〈x〉−sR0(z)〈x〉−s = F1(z) + F2(z)

with

F1(z) = 〈x〉−sR0(z)χ(P0)〈x〉−s; F2(z) = 〈x〉−sR0(z)(1 − χ(P0))〈x〉−s.

F2(z) can be decomposed as F2(z) = F21 + F22(z), where

F21 = 〈x〉−sR0(−1)(1 − χ(P0))〈x〉−s;

F22(z) = (1 + z)〈x〉−sR0(z)〈x〉−s′〈x〉s
′

R0(−1)(1 − χ(P0))〈x〉−s.

Here s′ > 1 is a constant very close to 1. It is easy to check F21 is in Sm and 〈x〉s
′

R0(−1)(1 −
χ(P0))〈x〉−s is in Sm for some s′ > 1. By Proposition 4.10, one has 〈x〉−sR0(z)〈x〉−s′ is uniformly
bounded for z near 0, =z , 0. Then we deduce that F2(z) ∈ Sm, and ||F2(z)||m ≤ C with some
constant C independent of z. Moreover from the above argument, we can see that lim

z→0
F2(z)
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exists in Sm. One has F1(z) = 〈x〉−sR0(z)〈x〉−s′〈x〉s
′

χ(P0)〈x〉−s for s′ > 1. Using the similar
argument as above, we can get that ||F1(z)||m ≤ C with some constant C independent of z, and
lim
z→0

F1(z) exists in Sm. Therefore 〈x〉−sR0(z)〈x〉−s ∈ Sm, 〈x〉−sR0〈x〉−s ∈ Sm and

||〈x〉−sR0(z)〈x〉−s||m ≤ ||F1(z)||m + ||F2(z)||m ≤ C

for some C independent of z. 2

Note that if u ∈ N , then ũ ≡ |V |1/2u satisfies

ũ + sgnV |V |1/2AF0|V |1/2ũ = 0. (4.35)

If u ∈ N , then (P̃0 + Ṽ)u = 0 with A = (1 − F0W)−1. It follows that (P̃0 + A∗V)u = 0. Then we
get

A∗Vu = Ṽu. (4.36)

Theorem 4.14. Assume 0 < σ∞ and ρ > max{6, n + 2}. Suppose f satisfies the condition of
Theorem 4.1, then the residue of T (z) = Tr [(R(z) − R0(z)) f (P)] at 0 is given by

J0 = N0 +

k0∑
j=1

ς jm j (4.37)

where N0 is the multiplicity of zero as the eigenvalue of P and m j the multiplicity of ς j-resonance
of zero.

Proof. Let k ∈ N with k > n
2 − 1. We decompose T (z) = −Tr [R0(z)VR(z) f (P)] as

T (z) = T1(z) + T2(z), (4.38)

where

T1(z) = −Tr [R0(z)V f (P)(R0(z) +
k−1∑
j=1

(−1) j(R0(z)V) jR0(z))] (4.39)

T2(z) = (−1)k+1Tr [R0(z)V f (P)R(z)(VR0(z))k)]. (4.40)

One has
Tr R0(z)V f (P)R0(z) = −Tr〈x〉−s d

dz
R0(z)〈x〉−s〈x〉sV f (P)〈x〉s

s > 1. By Proposition 4.10, we can deduce that if ρ > n + 2,

Tr R0(z)V f (P)R0(z) = O(|z|−1+ε)

with some ε > 0. Similarly, we can get that if ρ > n + 2, the other terms of T1(z) are O(|z|−1+ε).
It follows that T1(z) = O(|z|−1+ε). Thus the residue of T1(z) at 0 is zero. Let

T3(z) = (−1)k+1Tr [R0(z)VR(z)(VR0(z))k)].
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Then

T2(z) − T3(z) = (−1)k+1Tr [R0(z)VR(z)(1 − f (P))(VR0(z))k)]

= (−1)kTr [〈x〉−s d
dz

R0(z)〈x〉−s〈x〉sVR(z)(1 − f (P))(VR0(z))k−1)V〈x〉s]

for s > 1. Since 1 − f (t) is equal to 0 for t near 0, R(z)(1 − f (P)) is continuous in weighted
Sobolev spaces. By Proposition 4.10, and Lemma 4.13, we conclude that, if k > n

2 + 1,

T2(z) − T3(z) = O(|z|−1+ε),

for some ε > 0, for z near 0 and =z , 0. Therefore the residue of T2(z)−T3(z) at 0 is zero. Now,
we apply Proposition 4.10, Theorem 3.19 and 3.29 to compute the residues of T3(z).

First, we assume that 0 is not an eigenvalue of P. To begin with, remark that

T3(z) = (−1)kTr [(
d
dz

R0(z))VR(z)V(R0(z)V)k−1].

By Proposition 4.10, one has

R0(z) = R0 + R(0)
0 (z) (4.41)

in L(−1, s; 1,−s), s > 1, and

d
dz

R0(z) = R1 +
∑

{~ν}+[~ν]≤1

d
dz

z~ν,0R~ν,0 + O(|z|−1+ε) (4.42)

in L(0, s; 0,−s), s > 3. Denote

sgn(V)|V |−1/2 = U1; |V |−1/2 = U2; sgn(V)|V |−1/2R0|V |−1/2 = R̃0.

Let

S 1(z) = U1
d
dz

R0(z)U2; S 2(z) = U1R(z)U2; S 3(z) = U1R0(z)U2.

Then

T3(z) = (−1)kTr S 1(z)S 2(z)S k−1
3 (z).

By Lemma 4.13, one has that, if k > n
2 + 1, S k−1

3 (z) is of trace class, and ||S k−1
3 (z)||1 = O(1) for

z near 0 with =z , 0. By Proposition 4.10, one has

S 1(z) = S 11(z) + S 12(z) in L2(Rn)

with

S 11(z) = U1R1U2 +
∑

[~ν]+{~ν}≤1

d
dz

z~νU1R~ν,0U2; S 12(z) = O(|z|ε)
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in L2(Rn) for some ε > 0. By Theorem 3.29, we can decompose S 2(z) as

S 2(z) = S 21(z) + S 22(z) + S 23(z) in L2(Rn)

with

S 21(z) = U1

k0∑
j=1

z−1
ς j
Πr, jU2 S 23(z) = O(|z|ε),

S 22(z) =
k0∑
j=1

+,1∑
α,β,~ν,l

z−1
ς j

z~νz
|β|(z~ς)

−α−βzlU1Tr;~ν,α,β,l, jU2

in L2(Rn), for some ε > 0. It follows

T3(z) = T31(z) + T32(z) + T33(z)

where

T31(z) = (−1)kTr S 11(z)S 21(z)S k−1
3 (z); T32(z) = (−1)kTr S 11(z)S 22(z)S k−1

3 (z);

T33(z) = (−1)kTr [(S 11(z)S 23(z) + S 12(z)S 21(z) + S 12(z)S 22(z) + S 12(z)S 23(z))S k−1
3 (z)].

Using the fact ||S k−1
3 (z)||1 = O(1) for z near 0 and =z , 0, k > n

2 + 1, it is easy to see that
T33(z) = O(|z|−1+ε) for some ε > 0. For k > n

2 + 1, we have

(−1)kT31(z)

= Tr [U1

∑
[~ν]+{~ν}≤1

d
dz

z~νR~ν,0U2

k0∑
j=1

z−1
ς j

U1Πr, jU2(S 3(z))k−1] + O(|z|−1+ε)

=
∑

[~ν]+{~ν}≤1, j,l

z−1
ς j

eiπς j
d
dz

z~νTr [U1R~ν,0U2〈U2(S 3(z))k−1·, u(l)
j 〉U1u(l)

j ] + O(|z|−1+ε) (4.43)

=
∑

[~ν]+{~ν}≤1, j,l

z−1
ς j

eiπς j
d
dz

z~ν〈U1R~ν,0U2U1u(l)
j , (S

∗
3(z))k−1U2u(l)

j 〉 + O(|z|−1+ε).

Since (S ∗3(z))k−1 = R̃k−1
0 + O(|z|−1+ε) in L2(Rn) and R̃k−1

0 U2u(l)
j = (−1)k−1U2u(l)

j by (4.35), one
has

T31(z) = −
∑

[~ν]+{~ν}≤1, j,l

z−1
ς j

eiπς j
d
dz

z~ν〈U1R~ν,0U2U1u(l)
j ,U2u(l)

j 〉 + O(|z|−1+ε).

For ~ν = (ν1, . . . , νk) and
k∑

i=1
νi > ς j, one has z−1

ς j
d
dz z~ν = O(|z|−1+ε) for some ε > 0. For

k∑
i=1
νi ≤ ς j,

if νk = ς j, then ~ν = ς j. We use the normalization condition of resonant states given in Theorem
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3.19 to calculate
m j∑
l=1

〈R~ν,0Vu(l)
j ,Vu(l)

j 〉 =

m j∑
l=1

cς j |〈A
∗Vu(l)

j ,−|y|
− n−2

2 +ς jϕ(l′)
ς j 〉|

2

=

m j∑
l=1

cς j |〈Ṽu(l)
j ,−|y|

− n−2
2 +ς jϕ(l′)

ς j 〉|
2 = −e−iπς jm j. (4.44)

In the second step, we use (4.36), and in the last step, we use (3.50). If νk < ς j, one has

〈R~ν,0Vu(l)
j ,Vu(l)

j 〉 = 〈BνGνk ,δνk
πνk A∗Vu(l)

j , A
∗Vu(l)

j 〉

=
∑

l′
cνk〈Ṽu(l)

j ,−|y|
− n−2

2 +νkϕ(l′)
νk 〉〈B̃

∗
νVu(l)

j ,−|y|
− n−2

2 +νkϕ(l′)
νk 〉 = 0. (4.45)

Here Bν ∈ L(−1, s; 1,−s), s > 3. In the last step, we use that u(l)
j is ς j-resonant state and (3.50).

Trivially,

z−1
ς j

d
dz

zς j =


ς j

z
, if ς j ∈ (0, 1),

1
z
+

1
z ln z

, if ς j = 1.

Summing up, we proved that

T31(z) =
1
z

∑
j

ς jm j +
m

z ln z
+ O(|z|−1+ε), (4.47)

with m the multiplicity of 1−resonance of zero, as z→ 0. For T32(z), from the proof of Theorem
3.29, we know that Tr;~ν1,α,β,l, j has the form

Πr, jBr;~ν1,α,β,l, j or Ar;~ν1,α,β,l, jΠr, jṼGν,δνπνBr;~ν1,α,β,l, j.

Here Ar;~ν1,α,β,l, j is a bounded operator in L(1,−s; 1,−s), s > 3 and Br;~ν1,α,β,l, j is a boun-
ded operator in L(−1, s;−1, s) for s > 3 and Gν,δνπνBr;~ν1,α,β,l, j comes from the expansion of
L1(z)V(D0 + D1(z))R̃0(z). Note that the summation

∑+,1
α,β,~ν1,l

is taken over all possible α, β ∈ Nκ0

with 1 ≤ |α| ≤ N0, |β| ≥ 1, ~ν1 = (ν1, · · · , νk′) ∈ σk′
1 , k′ ≥ 2|α|, for which there are at least αk

values of ν j’s belonging to σ1 with ν j ≥ ςk, for 1 ≤ k ≤ κ0 l ∈ N, satisfying

|β| + {~ν1} + l −
κ0∑

k=1

(αk + βk)ςk ≤ 1.

It follows that z|β|(z~ς)−β = O( 1
| ln z|β ) and z~ν1(z~ς)−α = O(|z|ε) for some ε > 0. For ~ν = (ν1, . . . , νk)

and
k∑

i=1
νi ≥ ς j, one has

∑
[~ν]+{~ν}≤1, j,l

+,1∑
α,β, ~ν1,l

z−1
ς j

z~ν1z|β|(z~ς)
−α−βzl d

dz
z~ν = O(|z|−1+ε)
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for some ε > 0. When
k∑

i=1
νi < ς j, if Tr;~ν,α,β,l, j = Πr, jBr;~ν,α,β,l, j, using the same computation

made for T31(z), we can get

Tr [U1R~ν,0U2U1Tr;~ν1,α,β,l, jU2] = 〈U1R~ν,0U2U1u(l)
j , (S

∗
3(z))k−1U2B∗r;~ν1,α,β,l, j

u(l)
j 〉.

Since u(l)
j is ς j-resonant state and νk < ς j, as (4.45), one has

〈U1R~ν,0U2U1u(l)
j , (S

∗
3(z))k−1U2B∗r;~ν1,α,β,l, j

u(l)
j 〉

=
∑

l′
〈cνk Ṽu(l)

j ,−|y|
− n−2

2 +νkϕ(l′)
νk 〉〈Bu(l)

j ,−|y|
− n−2

2 +νkϕ(l′)
νk 〉 = 0.

Here B is a operator belongs to L(1,−s,−1, s), s > 3. If

Tr;~ν1,α,β,l, j = Ar;~ν1,α,β,l, jΠr, jṼGν,δνπνBr;~ν1,α,β,l, j,

since Gν,δνπν Br;~ν1,α,β,l, j is from the expansion of L1(z)Ṽ(D0 + D1(z))R̃0(z), the coefficient of
Gν,δνπν Br;~ν1,α,β,l, j is O(zν). Note Ar;~ν1,α,β,l, jΠr, jṼ comes from the the expansion of (1 − (D0 +

D1(z))L1(z)Ṽ)Ir(z)Qr. From the proof of Theorem 3.29, we can see that the coefficient of
Ar;~ν1,α,β,l, jΠr, jṼ is o(|z|−ς j+ε). It follows that the coefficient of Tr;~ν1,α,β,l, j is O(|z|ε+ν−ς j) with some
ε > 0. By Theorem 3.19 and (3.50), Πr, jṼGν,δνπν = 0 if ν < ς j. If ν ≥ ς j, one has

∑
[~ν]+{~ν}≤1, j,l

+,1∑
α,β,~ν1,l

z−1
ς j

z~ν1z|β|(z~ς)
−α−βzl d

dz
z~ν = O(|z|−1+ε).

Therefore T32(z) = O(|z|−1+ε). Note that

1
2πi

lim
ε→0

lim
δ→0

∫
|z|=ε,|=z|≥δ

1
z ln z

dz = 0.

Therefore we drive (4.37) when 0 is not the eigenvalue of P.
From now on, we assume that 0 is the eigenvalue of P. S 1(z), S 2(z), S 3(z), S 11(z), S 12(z) are

the same as before. S 2(z) can be decomposed as

S 2(z) = S 21(z) + S 22(z) + S 23(z) + S 24(z) + S 25(z) in L2(Rn)

with

S 21(z) =
k0∑
j=1

z−1
ς j

U1Πr, jU2 +

k0∑
j=1

+,1∑
α,β,~ν,l

z−1
ς j

z~νz
|β|(z~ς)

−α−βzlU1Tr;~ν,α,β,l, jU2

S 22(z) = −z−1U1Π0U2, S 23(z) =
(1)∑
{~ν}≤1

z~νz
−1U1Te;~ν; jU2

S 24(z) = U1

κ0∑
j=1

z−1
ς j

(Π0ṼQeF1ṼΠr, j + Πr, jṼQrF1ṼΠ0 +

+,1∑
α,β,~ν,l

z~νz
|β|(z~ς)

−α−βzlTer;~ν,α,β,l, j)U2,

S 25(z) = O(|z|ε)

108



4.4. Residues of the trace at zero

in L2(Rn), for some ε > 0. It follows

T3(z) = T31(z) + T32(z) + T33(z) + T34(z) + T35(z)

where

T31(z) = (−1)kTr S 11(z)S 21(z)S k−1
3 (z); T32(z) = (−1)kTr S 11(z)S 22(z)S k−1

3 (z);

T33(z) = (−1)kTr S 11(z)S 23(z)S k−1
3 (z); T34(z) = (−1)kTr S 11(z)S 24(z)S k−1

3 (z);

T35(z) = (−1)kTr [(S 11(z)S 25(z) + S 12(z)S 21(z) + S 12(z)S 22(z)

+S 12(z)S 23(z) + S 12(z)S 24(z) + S 12(z)S 25(z))S k−1
3 (z)].

Since ||S k−1
3 (z)||1 = O(1) for z near 0 with =z , 0 , k > n

2 + 1, we can conclude that T35(z) =
O(|z|−1+ε) for some ε > 0. Let {φ j; j = 1, · · · ,N0} be the basis of eigenspace of P associated
with the eigenvalue 0. One has

(−1)kT32(z) = I1(z) + I2(z)

with

I1(z) = −
∑

[~ν]+{~ν}≤1

z−1 d
dz

z~νTr [U1R~ν,0U2

k0∑
j=1

U1Π0U2(S 3(z))k−1]

I2(z) = −z−1Tr [U1R1U2U1Π0U2(S 3(z))k−1]

By the similar computation as (4.43), we can get that

I1(z) = −
N0∑
j=1

∑
[~ν]+{~ν}≤1, j,l

d
dz

z~νz
−1〈U1R~ν,0U2U1φ j, (S ∗3(z))k−1U2φ j〉.

We drive that I1(z) = 0 using the similar argument as (4.45), since φ j ∈ L2(Rn). One has

Tr [U1R1U2U1Π0U2(S 3(z))k−1] = −〈U1R1U2U1φ j,U2φ j〉 + O(|z|ε)

and
〈U1R1U2U1φ j,U2φ j〉 = 〈U1R1U2U1φ j,U2φ j〉 = 〈F1Ṽφ j, Ṽφ j〉.

In the last step, we use (4.36). It is easy to check that 〈F1Ṽφi, Ṽφ j〉 = δi j. It follows that

I2(z) = (−1)k N0

z
+ O(|z|−1+ε).

Therefore the residues of T32(z) is N0. Note Te;~ν; j = Π0Ae;~ν; j with Ae;~ν; j be a bounded operator in
L(−1, s;−1, s), s > 3, and z~νz−1 = O(|z|−1+ε) for some ε > 0. Making use a similar computation
as T32(z), we can get T33 = O(|z|−1+ε). Decompose T34(z)

T34(z) = J1(z) + J2(z) + J3(z)
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where

J1(z) = Tr [U1

∑
[~ν]+{~ν}≤1

d
dz

z~νR~ν,0U2U1

κ0∑
j=1

z−1
ς j
Π0ṼQeF1ṼΠr, jU2(S 3(z))k−1]

J2(z) = Tr [U1

∑
[~ν]+{~ν}≤1

d
dz

z~νR~ν,0U2U1

κ0∑
j=1

z−1
ς j
Πr, jṼQrF1ṼΠ0U2(S 3(z))k−1]

J3(z) = Tr [U1

∑
[~ν]+{~ν}≤1

d
dz

z~νR~ν,0U2U1

κ0∑
j=1

z−1
ς j

+,1∑
α,β,~ν1,l

z~νz
|β|(z~ς)

−α−βzlTer;~ν1,α,β,l, jU2(S 3(z))k−1]

We only computer J1(z). J2(z), J3(z) can be computed in a similar way. By a similar computation
as (4.43), we can get that

J1(z) =
N0∑
j=1

∑
[~ν]+{~ν}≤1, j,l

d
dz

z~νz
−1
ς j
〈U1R~ν,0U2U1φ j, (S ∗3(z))k−1U2Pr, jṼF1QeṼφ j〉.

Note that φ j ∈ L2(Rn). We can get that J1(z) = 0 as (4.45). Similarly, we can conclude that
J2(z) = O(|z|−1+ε) and J3(z) = O(|z|−1+ε). T31(z) has been computed in the case 0 is not the
eigenvalue of P. This ends the proof. 2

4.5 Levinson’s theorm

In this section, we use Theorem 4.1 to prove Levinson’s theorem. First, we should verify
that the conditions (4.6) and (4.10) hold. We start this section with recalling a result.

Theorem 4.15. (Theorem 2.2 [25]) Assume that n ≥ 3, V ∈ Ln/2
loc and there exists some q ∈

[ n
2 ,∞] such that

lim
R→∞

Rβ(q)||V ||Lq({x;|x|∈[R,2R]}) = 0 (4.48)

Here β(q) = (2q − n)/(2q). Assume that u belongs to the Sobolev space W2,1
loc satisfies the decay

(1 + |x|)−1/2+δ0u(x) ∈ L2

for some δ0 > 0. If −∆u + Vu = Eu for some E > 0, then u ≡ 0.

Lemma 4.16. (a). f ∈ C∞0 (R). Let F(z) = Tr [(R(z) − R0(z)) f (P)]. Then, if ρ > n + 1,

|F(z)| ≤ C f
1
|z|1+ε

, if |z| > R0, =z , 0.

C f is the constant independent of z. For any δ > 0, if ρ > n+3, lim
ε↓0

Tr[(R(λ±iε)−R0(λ±iε)) f (P)]

exists if λ > δ. Moreover, there exists Cδ, f > 0 such that

| lim
ε↓0

Tr [(R(λ ± iε) − R0(λ ± iε)) f (P)]| ≤ Cδ, f
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uniformly hold for λ with λ > δ.
(b).Assume 0 < σ∞ and n ≥ 3. The total number, N, of negative eigenvalues of P is finite.
(c). (P − i)−k − (P0 − i)−k is of trace class, if k > n/2 − 1 and ρ > n.
(d). σac(P0) = σac(P) = [0,+∞[.
(e). ξ′(λ) ∈ L1

loc(]0,∞[).

Proof. (a). Let f1 be the smooth function such that f1 f = f . For z < σ(P) ∪ σ(P0),

R0(z) − R(z) = R0(z)VR(z),

one has

F(z) = −Tr [R0(z)VR(z) f (P)]

= −Tr [〈x〉−sR0(z)〈x〉−s · 〈x〉sV f (P)〈x〉s · 〈x〉−s f1(P)R(z)〈x〉s]

For any s > 1/2, one has 〈x〉−sR0(z)〈x〉−s = O(|z|−1/2) ([51]) for |z| large, =z , 0. 〈x〉sV f (P)〈x〉s

is a trace class operator, if s <
ρ−n

2 . Note that the principal symbol of 〈x〉−s f1(P)R(z)〈x〉s is
f (|ξ|2+V1+V2)
|ξ|2+V1+V2−z , and f1 is a smooth function with compact support. By Calderon-Vaillancourt theo-

rem, one has that ||〈x〉−s f1(P)R(z)〈x〉s|| = O(|z|−1) for |z| large enough. Choose 1/2 < s < ρ−n
2 ,

then

|F(z)| ≤ ||〈x〉−sR0(z)〈x〉−s|| · ||〈x〉sV f (P)〈x〉s||1 · ||〈x〉−s f1(P)R(z)〈x〉s|| ≤ C f
1
|z|3/2

.

For any λ > δ, F(λ + iε) = F1(λ + iε) + F2(λ + iε) with

F1(λ + iε) = −Tr(R0(λ + iε)V f (P)R0(λ + iε));

F2(λ + iε) = Tr(R0(λ + iε)V f (P)R(λ + iε)VR0(λ + iε)).

One has

F1(λ + iε) = −Tr(〈x〉−sR2
0(λ + iε)〈x〉−s · 〈x〉sV f (P)〈x〉s).

If s > 3/2, there exists some Cδ > 0 such that || limε↓0〈x〉−sR2
0(λ + iε)〈x〉−s|| ≤ Cδ for λ > δ.

Since 〈x〉sV f (P)〈x〉s is a trace class operator, if ρ − 2s > n. It follows that if ρ > n + 3,
| lim
ε↓0

F1(λ + iε)| ≤ Cδ, f for some Cδ, f > 0. Similarly, we can get | lim
ε↓0

F2(λ + iε)| ≤ Cδ, f . It

follows that | lim
ε↓0

F(λ + iε)| ≤ Cδ, f . | lim
ε↓0

F(λ − iε)| ≤ Cδ, f can be proved in the same way.

(b). One has P = P0 + V with V satisfying |V | ≤ C〈x〉−ρ, ρ > 2. Let q(θ) = q+(θ) − q−(θ).
Here q+(θ) is the positive part of q(θ). By (3.8), one has that if 0 < σ∞, there exists a constant
0 < α0 < 1 such that

q−(θ)
r2 ≤ α0(−∆ +

q+(θ)
r2 ) in H1(Rn).
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It follows that

P0 ≥ (1 − α0)(χ1(−∆)χ1 + χ2(−∆ +
q+(θ)

r2 )χ2) ≥ (1 − α0)(−∆) − (1 − α0)(
2∑

i=1

|∇χi|
2).

Then

P ≥ (1 − α0)(−∆) + W̃,

with W̃ = V − (1− α0)(
∑2

i=1 |∇χi|
2) in H1(Rn). Then the number of negative eigenvalues of P is

less then the number of negative eigenvalues of (1−α0)(−∆)+W̃. Since ρ > 2, W̃ ∈ Ln/2(Rn) for
n ≥ 3. By Cwikel-Lieb-Rosenbljum formula ([54, Theorem XIII.12]), one has that the number
of bound states, N(W̃), of (1 − α0)(−∆) + W̃ has the following estimate

N(W̃) ≤ cn

∫
|(1 − α0)−1W̃ |n/2 dx.

Here cn is a constant only depending on n. It follows that the number of negative eigenvalues,
N, of P is finite.

(c). By a simple computation, one has

(P − i)−k − (P0 − i)−k = −

k−1∑
j=0

(P − i)− j+1V(P0 − i)−k+ j.

It is easy to check that (P− i)− j+1V(P0− i)−k+ j is a trace class operator if ρ > n, and k > n/2−1.
(d). We need only to show that P0 and P have no positive eigenvalues. Suppose that u ∈ L2

such that P0u = Eu for some E > 0. It is easy to check that the conditions of Theorem 4.15 are
satisfied for q = n and 0 < δ0 < 1/2. Then by Theorem 4.15, one has that u = 0. This means
that P0 has no positive eigenvalues. Similarly, we can get that P has no positive eigenvalues.

(e). By Theorem 1.2 [49], one has that ξ′(λ) ∈ C∞([λ0,∞) for any λ0 > 0. This ends the
proof. 2

Let b0(x, ξ) ∈ C∞0 (Rn) and b±(x, ξ) ∈ C∞(Rn) be non-negative functions such that

|∂αx∂
β
ξb±(x, ξ)| ≤ Cα,β〈x〉−|α|〈ξ〉−|β|; (4.49)

b0(x, ξ) + b+(x, ξ) + b−(x, ξ) = 1

and for some 0 < δ < 1, suppb±(x, ξ) ⊂ {(x, ξ); ±x̂ · ξ̂ > −(1 − δ)}. Let b̃±(x, ξ) ∈ C∞ satisfy
(4.49) and b0(x, ξ) + b̃+(x, ξ) + b̃−(x, ξ) = 1, and there exists some 0 < δ′ < 1 such that
suppb̃±(x, ξ) ⊂ {(x, ξ); ±x̂ · ξ̂ > −(1 − δ′)}, and b−b̃+ = 0. Denote by a(x,D) by the pseudo-
differential operator with the symbol a(x, ξ) defined by

a(x,D)u(x) =
1

(2π)n

∫
Rn

eix·ξa(x, ξ)û(ξ) dξ

where u ∈ S(Rn) and û is the Fourier transform of u.
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Theorem 4.17. Under the condition of Theorem 4.14. One has

ξ′(λ) = J0δ(λ) + g(λ),

with |g(λ)| = O(λ−1+ε0) for some ε0 > 0, as λ ↓ 0.

Proof. Let f ∈ C∞0 (R+). Then one has f (P) − f (P0) ∈ S 1, and

Tr ( f (P) − f (P0)) =
∫
R

f (λ)ξ′(λ) dλ.

Let δ > 0, R0 > 0, such that supp f ∈ [δ,R0]. Let f1 ∈ C∞0 (R) such that f1(t) = 1 for t ∈
[−δ′,R0]. Here δ′ > 0. Then f (P) = f (P) f1(P)E(δ,R0), and f (P0) = f (P0) f1(P0)E0(δ,R0).
Here E(δ,R0) (respectively, E0(δ,R0)) is the spectral projection of P (respectively, P0) onto the
interval [δ,R0]. Let 0 ≤ χ ≤ 1 be a smooth function with compact support such that χ(x) = 1
for |x| ≤ 1. Let χR(x) = χ( x

R ). By (3.7) [49], one has

Tr[χR( f (P) − f (P0))χR] =
1

2π

∫
R

f (λ)τR(λ) dλ

and by Theorem 3.2 [49], one has ξ′(λ) = 1
2π lim

R→∞
τR(λ). By functional calculus, one has that

s − lim
ε→0

1
2πi

∫ R0

δ
f (λ)(R(λ + iε) − R(λ − iε)) dλ = f (P)E(δ,R0);

s − lim
ε→0

1
2πi

∫ R0

δ
f (λ)(R0(λ + iε) − R0(λ − iε)) dλ = f (P0)E0(δ,R0).

It follows that

χR( f (P) − f (P0))χR = s − lim
ε→0

1
2πi

[
∫ R0

δ
f (λ)χR(R(λ + iε) f1(P) − R0(λ + iε) f1(P0))χR dλ

−

∫ R0

δ
f (λ)χR(R(λ − iε) f1(P) − R0(λ − iε) f1(P0))χR dλ]

= F1(R) + F2(R).

Here

F1(R) = s − lim
ε→0

1
2πi

∫ R0

δ
f (λ)χR(R(λ + iε) − R0(λ + iε) − R(λ − iε) + R0(λ − iε)) f1(P)χR dλ,

F2(R) = s − lim
ε→0

1
2πi

∫ R0

δ
f (λ)χR(R0(λ + iε) − R0(λ − iε))( f1(P) − f1(P0))χR dλ.

Since f1(P) − f1(P0) ∈ S 1 and 〈x〉−sR0(λ ± iε)〈x〉−s converge to 〈x〉−sR0(λ ± i0)〈x〉−s as ε ↓ 0,
s > 1, by Lemma 4.2, one has χR(R0(λ + iε) − R0(λ − iε))( f1(P) − f1(P0))χR converges to
χR f (P0)(R0(λ + i0) − R0(λ − i0))( f1(P) − f1(P0))χR in S 1. Hence,

Tr F2(R) =
∫ R0

δ
f (λ) lim

ε→0
=Tr[χRR0(λ + iε)( f1(P) − f1(P0))χR] dλ.
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Since
χR(R(λ ± iε) − R0(λ ± iε)) f1(P)χR = χRR0(λ ± iε)VR(λ ± iε) f1(P)χR,

and χRR0(λ ± iε)〈x〉−s converge to χRR0(λ ± i0)〈x〉−s in norm, 〈x〉V s f1(P)〈x〉s is of trace class,
if s > 1 and ρ > n + 2s, then

χR(R(λ ± iε) − R0(λ ± iε)) f1(P)χR −→ χRR0(λ ± i0)V f1(P)R(λ ± i0)χR

in S 1 as ε ↓ 0, if s > 1 and ρ > n + 2s. It follows that

Tr F1(R) =
∫ R0

δ
f (λ) lim

ε↓0
=Tr[χR(R0(λ + iε)V f1(P)R(λ + iε))χR] dλ.

Then we obtain

τR(λ) = lim
ε↓0
=Tr[χRR0(λ + iε)( f1(P) − f1(P0))χR]

+ lim
ε↓0
=Tr[χR(R0(λ + iε)V f1(P)R(λ + iε))χR].

Thus
ξ′(λ) = lim

R→∞
lim
ε→0
=Tr F1(R, ε) + lim

R→∞
lim
ε→0
=Tr F2(R, ε)

with

F1(R, ε) = χRR0(λ + iε)( f1(P) − f1(P0))χR;

F2(R, ε) = χRR0(λ + iε)V f1(P)R(λ + iε)χR.

By (2.10)[24], one has

f1(P) − f1(P0) =
M∑

m=1

(−1)mXm f (m)(P0)
m!

+
1
π

∫
∂̄ f̃1(z)R(z)XM+1R0(z)M+1L(dz).

Here L(dz) is the Lebesgue measure in C, and f̃1 ∈ C∞0 (C) is an almost analytic extension
of f1 with support close to that of f1 (see Chapter 8 in [17] and the references given there).
X1 = −V, Xm = −VXm−1 + [Xm−1,H0]. A simply proof by induction shows that Xm can be
written in the following form

Xm =
∑
|α|≤m−1

bmα(x)Dα
x ,

with bmα(x) satisfying |∂αx bmα(x)| ≤ Cmα〈x〉−ρ−m+1−|α|. By Lemma 2.3 [24], one has that (−∆ +
V−z)−1XM+1(−∆−z)−(M+1) is of trace class operators on L2(Rn) for =z , 0 for M large enough,
of the trace norm

O(1)
〈z〉M/2+M+1

|=z|M+2+(M+1)/2 .
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For =z , 0,

R(z)XM+1R0(z)M+1

= R(z)(−∆ + V − z)(−∆ + V − z)−1XM+1(−∆ − z)−(M+1)(−∆ − z)M+1R0(z)M+1.

Since the principal symbol of (−∆ − z)M+1RM
0 (z) is ( ξ2−z

ξ2+g(x)−z )M+1, with g(x) = q(θ)
r2 (1 − χ2

1(r)),
then by Calderon-Vaillancourt theorem

||(−∆ − z)M+1R0(z)M+1|| ≤ C(1 +
1
|=z|

)AM .

Here Am is a constant depending on M. Similarly, one has ||(−∆ + V − z)(−∆ + V − z)−1|| ≤

C(1 + 1
|=z| )

C . It follows that R(z)XM+1R0(z)M+1 is of trace class operators on L2(Rn) for =z , 0,
of the trace norm

O(1)
〈z〉M/2+M+1

|=z|M+2+(M+1)/2 (1 +
1
|=z|

)AM .

According to the fact ∂̄ f̃1(z) = O(|=z|∞), we have 〈x〉s( f1(P) − f1(P0))〈x〉s is a trace class
operator if ρ > n + 2s. Hence,∀s > 1,

Tr F1(R, ε) = Tr 〈x〉−sχ2
RR0(λ + iε)〈x〉−s〈x〉s( f1(P) − f1(P0))〈x〉s.

Since s − lim χ2
R = 1 on L2(Rn), and 〈x〉s( f1(P) − f1(P0))〈x〉s is of trace class, by Lemma 4.2,

one has

lim
R→∞

lim
ε→0
=Tr F1(R, ε) = =Tr[〈x〉−sR0(λ + i0)〈x〉−s · 〈x〉s( f1(P) − f1(P0))〈x〉s] = O(1)

for λ ≥ 0, ρ > n + 2.
For s > 3/2, one has

Tr F2(R, ε) = Tr I1(R, ε) + Tr I2(R, ε)

with

Tr I1(R, ε) = Tr [〈x〉−sR0(λ + iε)χ2
RR0(λ + iε)〈x〉−s · 〈x〉sV f (P)〈x〉s];

Tr I2(R, ε) = Tr [〈x〉−sR0(λ + iε)χ2
RR0(λ + iε)〈x〉−s · 〈x〉sV f (P)〈x〉s · 〈x〉−sR(λ + iε)V〈x〉s].

Let b0, b±, b̃±be the functions introduced before this theorem. Then

Tr I1(R, ε) = Tr I11(R, ε) + Tr I12(R, ε) + Tr I13(R, ε).

Here

Tr I11(R, ε) = Tr [〈x〉−sR0(λ + iε)b+(x,D)χ2
RR0(λ + iε)〈x〉−s · 〈x〉sV f (P)〈x〉s];

Tr I12(R, ε) = Tr [〈x〉−sR0(λ + iε)b−(x,D)χ2
RR0(λ + iε)〈x〉−s · 〈x〉sV f (P)〈x〉s];

Tr I13(R, ε) = Tr [〈x〉−sR0(λ + iε)b0(x,D)χ2
RR0(λ + iε)〈x〉−s · 〈x〉sV f (P)〈x〉s].
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By Theorem 1 [26], one has 〈x〉−sR0(λ + iε)b+(x,D)〈x〉s−1 converges to 〈x〉−sR0(λ +
i0)b+(x,D)〈x〉s−1 as λ→ 0 if s > 1/2. If s > 3/2, one has

s − lim
R→∞

lim
ε↓0
〈x〉1−sχ2

RR0(λ + iε)〈x〉−s = 〈x〉1−sR0(λ + i0)〈x〉−s.

It follows that I11(R, ε) converges to 〈x〉−sR0(λ + i0)b+(x,D)R0(λ + i0)〈x〉−s · 〈x〉sV f (P)〈x〉s in
S 1 by Lemma 4.2, since 〈x〉sV f (P)〈x〉s is a trace class operator if ρ > n + 2s. Similarly, we
can show that I13(R, ε) converges to 〈x〉−sR0(λ + i0)b0(x,D)R0(λ + i0)〈x〉−s · 〈x〉sV f (P)〈x〉s in
S 1, since b0(x, ξ) ∈ C∞0 . Decompose I12(R, ε) as

I12(R, ε) = T1(R, ε) + T2(R, ε) + T3(R, ε)

with

T1(R, ε) = 〈x〉−sR0(λ + iε)b−(x,D)χ2
Rb̃−(x,D)R0(λ + iε)〈x〉−s · 〈x〉sV f (P)〈x〉s;

T2(R, ε) = 〈x〉−sR0(λ + iε)b−(x,D)χ2
Rb̃+(x,D)R0(λ + iε)〈x〉−s · 〈x〉sV f (P)〈x〉s

T3(R, ε) = 〈x〉−sR0(λ + iε)b−(x,D)χ2
Rb0(x,D)R0(λ + iε)〈x〉−s · 〈x〉sV f (P)〈x〉s.

Since b−(x, ξ)b̃+(x, ξ) = 0, then we can get that T2(R, ε) = 0. Note that b0(x, ξ) ∈ C∞0 . We can
get that

T3(R, ε) −→ 〈x〉−sR0(λ + i0)b−(x,D)b̃0(x,D)R0(λ + i0)〈x〉−s · 〈x〉sV f (P)〈x〉s

in S 1, as ε → 0 and R→ ∞. Using Theorem 1 [26] again, we can deduce that

T1(R, ε) −→ 〈x〉−sR0(λ + i0)b−(x,D)b̃−(x,D)R0(λ + i0)〈x〉−s · 〈x〉sV f (P)〈x〉s.

in S 1, as ε → 0 and R → ∞, if ρ > n + 2s. It follows that I12(R, ε) converges to 〈x〉−sR0(λ +
i0)b−(x,D)R0(λ + i0)〈x〉−s · 〈x〉sV f (P)〈x〉s in S 1, as ε → 0 and R→ ∞. Therefore, we obtain

I1(R, ε) −→ 〈x〉−sR0(λ + i0)2〈x〉−s · 〈x〉sV f (P)〈x〉s

in S 1, as ε → 0 and R→ ∞ if ρ > n + 2s and s > 3/2. It follows that

lim
R→∞

lim
ε→0

Tr I1(R, ε) = lim
ε→0

Tr 〈x〉−sR2
0(λ + iε)〈x〉−s · 〈x〉sV f (P)〈x〉s.

Similarly, we can prove that

lim
R→∞

lim
ε→0

Tr I2(R, ε) = lim
ε→0

Tr [〈x〉−sR2
0(λ + iε)〈x〉−s · 〈x〉sV f (P)〈x〉s · 〈x〉−sR(λ + iε)V〈x〉s]

if s > 3/2 and ρ > n + 2s. Thus, one has

lim
R→∞

lim
ε→0
=Tr F1(R, ε) = lim

ε→0
=Tr [R0(λ + iε)V f1(P)R(λ + iε)].
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Hence, one has that in the distributions sense, for λ > 0,

ξ′(λ) =
1
π

lim
ε↓0

[
=Tr [(R(λ + iε) − R0(λ + iε)) f1(P)] + =Tr [R0(λ + iε)( f1(P) − f1(P0))]

]
.

Note that ||〈x〉−sR0(λ + iε)〈x〉−s · 〈x〉s( f1(P) − f1(P0))〈x〉s||1 ≤ C for 0 < λ < 1. From the proof
of Theorem 4.14, we have for 0 < λ < 1,

Tr [(R(λ + iε) − R(λ + iε)) f (P)] =
J0

λ + iε
+

m
(λ + iε) ln(λ + iε)

+ O(|λ + iε|−1+ε0).

For fixed λ , 0,

lim
ε↓0
=

m
(λ + iε) ln(λ + iε)

= lim
ε↓0

−λθ − ε ln
√
λ2 + ε2

(λ2 + ε2) · (θ2 + ln
√
λ2 + ε2)

= 0.

Here θ = arctan ε
λ . Note that lim

ε↓0

J0
λ+iε = πJ0δ(λ). It follows that

ξ′(λ) = J0δ(λ) + O(|λ|−1+ε0).

This ends the proof. 2

Theorem 4.18. Assume that 0 < σ∞, ρ > n + 3 and n ≥ 3. One has∫ ∞

0
(ξ′(λ) −

[ n
2 ]∑

j=1

c jλ
[ n

2 ]−1− j) dλ = −(N + J0) + βn/2. (4.50)

βn/2 depends on n and V. βn/2 = 0 if n is odd.

Proof. Let χ ∈ C∞0 and χ(r) ≡ 1 for r ≤ 1. Then for R >> 1, χ( ·R ) satisfies the conditions of
Theorem 4.1.

Case 1. The dimension n is odd.
We first compute the second term on the left hand side of (4.12) for f = χ( ·R ).∫ ∞

0
χ(
λ

R
)g(λ) dλ

=

∫ ∞

0
χ(
λ

R
)[g(λ) −

[ n
2 ]∑

j=1

c jλ
n
2−1− j] dλ +

[ n
2 ]∑

j=1

c j

∫ ∞

0
χ(
λ

R
)λ

n
2−1− j dλ

=

∫ ∞

0
χ(
λ

R
)[g(λ) −

[ n
2 ]∑

j=1

c jλ
n
2−1− j] dλ +

[ n
2 ]∑

j=1

c̃ jR
n
2− j,

with c̃ j = c j
∫ ∞

0 χ(t)t
n
2−1− j dt. By Theorem 1.1 [49], one has

Tr (χ(
P
R

) − χ(
P0

R
)) ∼

∑
j≥1

β jR
n
2− j, (4.51)
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as R→ ∞. It follows

∫ ∞

0
χ(
λ

R
)[g(λ) −

[ n
2 ]∑

j=1

c jλ
n
2−1− j] dλ = −(N + J0) +

[ n
2 ]∑

j=1

(β j − c̃ j)R
n
2− j + O(R−ε) (4.52)

where ε = −1 + n
2 − [ n

2 ] > 0.
∫ ∞

0 χ( λR )[g(λ) −
∑[ n

2 ]
j=1 c jλ

n
2−1− j] dλ can be written as

∫ ∞

0
χ(
λ

R
)[g(λ) −

[ n
2 ]∑

j=1

c jλ
n
2−1− j] dλ

=

∫ 1

0
χ(
λ

R
)[g(λ) −

[ n
2 ]∑

j=1

c jλ
n
2−1− j] dλ +

∫ ∞

1
χ(
λ

R
)[g(λ) −

[ n
2 ]∑

j=1

c jλ
n
2−1− j] dλ.

Since g ∈ C∞(0, 1) and g is integrable at 0, thus

lim
R→+∞

∫ 1

0
χ(
λ

R
)[g(λ) −

[ n
2 ]∑

j=1

c jλ
n
2−1− j] dλ =

∫ 1

0
[g(λ) −

[ n
2 ]∑

j=1

c jλ
n
2−1− j] dλ.

By Theorem 1.2 [49], one has ξ′(λ) ∈ C∞(0,∞) and

ξ′(λ) ∼
∑
j≥1

c jλ
n
2− j−1, as λ→ +∞. (4.53)

By Lemma 4.17 and the above formula, we get |g(λ)−
∑[ n

2 ]
j=1 c jλ

n
2−1− j| ≤ Cλ−ν with ν = 2− ( n

2 −

[ n
2 ]) > 1. Therefore,

lim
R→+∞

∫ ∞

1
χ(
λ

R
)[g(λ) −

[ n
2 ]∑

j=1

c jλ
n
2−1− j] dλ =

∫ ∞

1
[g(λ) −

[ n
2 ]∑

j=1

c jλ
n
2−1− j] dλ.

It follows that

lim
R→+∞

∫ ∞

0
χ(
λ

R
)[g(λ) −

[ n
2 ]∑

j=1

c jλ
n
2−1− j] dλ

=

∫ ∞

0
[g(λ) −

[ n
2 ]∑

j=1

c jλ
n
2−1− j] dλ =

∫ ∞

0
[ξ′(λ) −

[ n
2 ]∑

j=1

c jλ
n
2−1− j] dλ.

Let R → +∞ in both sides of (4.52) we get that β j = c̃ j. Thus, we get the Levinson’s Theorem
for odd dimension.

Case 2 : The dimension n is even. Suppose n = 2p.
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As in case 1, we can drive that∫ ∞

0
χ(
λ

R
)[g(λ) −

p−1∑
j=1

c jλ
p−1− j] dλ

= −(N + J0) +
p−1∑
j=1

(β j − c̃ j)R
n
2− j + βp + O(R−1), (4.54)

with c̃ j =
∫ ∞

0 χ(t)tp−1− j dt. The first term in (4.54) can be written as :∫ 1

0
χ(
λ

R
)[g(λ) −

p−1∑
j=1

c jλ
n
2−1− j] dλ +

∫ ∞

1
χ(
λ

R
)[g(λ) −

p−1∑
j=1

c jλ
n
2−1− j] dλ.

Note that ∫ ∞

1
χ(
λ

R
)[g(λ) −

p−1∑
j=1

c jλ
n
2−1− j] dλ =

∫ ∞

1
χ(
λ

R
)[

cp

λ
+ h(λ)] dλ.

with h(λ) = O( 1
λ2 ). Formula (4.54) can be written as :∫ 1

0
χ(
λ

R
)[g(λ) −

p−1∑
j=1

c jλ
n
2−1− j] dλ +

∫ ∞

1
χ(
λ

R
)h(λ) dλ

= −(N + J0) +
p−1∑
j=1

(β j − c̃ j)Rp− j − cp

∫ ∞

1
χ(
λ

R
)

dλ
λ
+ βp + O(

1
R

).

As before, we can conclude that∫ 1

0
χ(
λ

R
)[g(λ) −

p−1∑
j=1

c jλ
n
2−1− j] dλ +

∫ ∞

1
χ(
λ

R
)h(λ) dλ

converges to ∫ 1

0
[ξ′(λ) −

p−1∑
j=1

c jλ
p−1− j] dλ +

∫ ∞

1
h(λ) dλ

as R → +∞. It follows β j = c̃ j. Since
∫ ∞

1 χ( λR ) dλ
λ =

∫ ∞
1
R
χ(t) dt

t ∼ log R, we can drive that
cp = 0. Hence

h(λ) = ξ′(λ) −
p−1∑
j=1

c jλ
p−1− j.

Therefore, we get the Levinson’s theorem for even dimension :∫ ∞

0
(ξ′(λ) −

p−1∑
j=1

c jλ
p−1− j) dλ = −(N + J0) + βp.

2
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Remark 4.19. The values of βp is independent of χ. We use the formula in [15] to compute βp.

Let V0 =
χ2

2
r2 q(θ) −

∑2
i=1 |∇χi|

2 and Ṽ0 = V0 + V. Then P0 = −∆ + V0 and P = −∆ + Ṽ0.
• n=2 (i.e. p=1) :

β1 =
1

(2π)2γ2

∫
R2

Ṽ0 dx
∫
R+

χ′(ρ) dρ.

Using
∫
R+
χ′(ρ) dρ = 1, we get that

β1 = C
∫
R2

Ṽ0 dx

with C = 1
(2π)2γ2.

• n=4 (i.e. p=2) :

β2 =
1

(2π)4

γ4

2

∫
R4

Ṽ2
0 (x) + 2Ṽ0(x)V0(x) dx

∫
R+

ρχ′′(ρ) dρ.

Using
∫
R+
ρχ′′(ρ) dρ = 1, we get that

β2 = C
∫
R4

Ṽ2
0 (x) + 2Ṽ0(x)V0(x) dx

with C = 1
(2π)4

γ4
2 .

• n=6 (i.e. p=3) :

β3 = C
∫
R6

Ṽ3
0 (x) + 3Ṽ2

0 (x)V0(x) + 3Ṽ0(x)V2
0 (x)

+
1
4
|∇Ṽ0(x)|2 +

1
2
∇Ṽ0(x) · ∇V0(x) dx

∫
R+

ρ2χ′′′(ρ) dρ.

Using
∫
R+
ρ2χ′′′(ρ) dρ = 2,

β3 = C
∫
R6

Ṽ3
0 (x) + 3Ṽ2

0 (x)V0(x) + 3Ṽ0(x)V2
0 (x) +

1
4
|∇V(x)|2 +

1
2
∇Ṽ0(x) · ∇V0(x) dx.
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Résumé : On étudie dans cette thèse certains problèmes spectraux pour des opérateurs de
Schrödinger. On s’intéresse d’abord à la limite semi-classique pour le nombre d’états propres
de l’opérateur de Schrödinger à N corps. On utilise ensuite le crochet de Dirichlet-Neumann
pour obtenir la limite semi-classique des moyennes de Riesz des valeurs propres discrètes pour
l’opérateur de Schrödinger à N corps. On considère également le potentiel effectif de l’opérateur
de Schrödinger à N corps avec potentiel de Coulomb et on obtient qu’il a une décroissance cri-
tique à l’infini. On étudie donc l’opérateur de Schrödinger à potentiel critique. On s’intéresse
au seuil pour la constante de couplage et au développement asymptotique de la résolvante de
l’opérateur de Schrödinger, puis on utilise ce développement pour étudier la limite à basse
énergie de la dérivée de la fonction de décalage spectral pour une perturbation à décroissance
critique. Finalement, on utilise ce résultat avec le résultat connu pour le développement asymp-
totique à haute énergie de cette fonction de décalage spectral pour obtenir le théorème de Le-
vinson.

Mots clé : limite semi-classique ; moyenne Riesz ; opérateur de Schrödinger à N-corps ; limite
de la constante du couplage ; résolvante ; état résonnants ; décroissance critique ; fonction de
décalage spectral ; théoème de Levinson.

Summary : This PhD thesis deals with some spectral problems of Schrödinger operators. We
first consider the semi-classical limit of the number of bound states of unique two-cluster N-
body Schrödinger operator. Then we use Dirichlet-Neumann bracket to get semi-classical limit
of Riesz means of the discrete eigenvalues of N-body Schrödinger operator. The effective po-
tential of N-body Schrödinger operator with Coulomb potential is also considered and we find
that the effective potential has critical decay at infinity. Thus, the Schrödinger operator with cri-
tical potential is studied in this thesis. We study the coupling constant threshold of Schrödinger
operator with critical potential and the asymptotic expansion of resolvent of Schrödinger opera-
tor with critical potential. We use that expansion to study low-energy asymptotics of derivative
of spectral shift function for perturbation with critical decay. After that, we use this result and
the known result for high-energy asymptotic expansion of spectral shift function to obtain the
Levinson theorem.

Key words : semi-classical limit, Riesz means, N-body Schrödinger operator, coupling constant
limit, resolvent, resonant states, critical decay, spectrum shift function, Levinson theorem.
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