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Introduction
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Aims

Introduction

Cooperative behaviour could evaluate in interacting many-body
systems

physics, sociology, economy, biology,...

Large number of states ⇒ relevant statistical description

Phase transitions and critical phenomena

Critical exponents and universality classes

Effects of disorder on the critical behaviour

Influence of the system structure on the cooperation processes

Develop and apply capable numerical methods

Monte Carlo methods, combinatorial optimization,...
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Regular graphs and scale-free networks

Regular graphs - each site has the same degree

Solid state physics, Crystallography

Scale-free (SF) networks - degree distribution: P(k) ∼ k−γ

Self-organizing networks

Only a few well connected node

Short distance between any pair of sites

WWW, Internet, collaboration networks,
neural networks,...

Real networks: 2 < γ < 3

Barabási-Albert model: γ = 3

Dynamical evolving networks
Preferential attachment

Márton KARSAI Cooperative behaviour in complex networks



Introduction
Introduction
Regular graphs and scale-free networks
Aims

Aims

AIMS:

Study interacting many-body systems in complex structures

Analyze cooperative behavior in different macroscopic phases

Describe their critical behaviour during phase transitions

SUBJECTS:

1 Non-equilibrium phase transitions and finite size scaling in
weighted scale-free networks

2 Rounding of first-order phase transitions and optimal
cooperation in scale-free networks

3 Density of critical clusters in a strongly disordered system

4 Non-equilibrium dynamics of triangular antiferromagnetic
Ising model at T = 0
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Non-equilibrium phase transitions in scale-free networks
Optimal cooperation in scale-free networks

Density of critical clusters in a strongly disordered system
Non-equilibrium dynamics of the TAFIM at T = 0

Weighted scale-free networks
The Contact Process
Dynamical mean-field solution
Finite-size scaling
Numerical results

Non-equilibrium phase transitions and finite size scaling in
weighted scale-free networks

Interactions between agents are possible along the edges of
the network - cooperative behaviour arises

Possible some macroscopic phases

order parameter: strength of the interaction, external field,...

Scale-free networks - the structure influences the process

Homogeneous SF networks (edge weights λi ,j = const)
conventional mean-field behavior is expected to hold if γ > γu

Ising model: γu = 5
Percolation, epidemic spreading: γu = 4

Phase transition occurs if γ > 3
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Optimal cooperation in scale-free networks

Density of critical clusters in a strongly disordered system
Non-equilibrium dynamics of the TAFIM at T = 0

Weighted scale-free networks
The Contact Process
Dynamical mean-field solution
Finite-size scaling
Numerical results

Inhomogeneous SF networks

weight degradation: λi,j = λ
(kikj )

−µ

〈k−µ〉2

Scales with the degradation exponent µ (0 < µ < 1)

Effective degree exponent: γ′ =
γ − µ
1− µ

Possible phase transition for γ ≤ 3 if µ > (3− γ)/2

It is true for equilibrium critical phenomena (Giuraniuc et. al.)

AIMS:

Check this reparametrization working for non-equilibrium
phase transitions

Study the form and validity of finite-size scaling true in
Euclidean lattices
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Non-equilibrium dynamics of the TAFIM at T = 0

Weighted scale-free networks
The Contact Process
Dynamical mean-field solution
Finite-size scaling
Numerical results

Contact Process - Model with non-equilibrium phase
transition

Infection spreading model - Directed percolation
universality class

Network sites ≡ agents, edge ≡ interaction, edge weights ≡
strength of interaction

Definition of dynamics: sites are vacant (�) or occupied (A)
Infection: �iAj ,Ai�j → AiAj with rate λi,j

Immunization: Ai → �i with rate κ

Control parameter: λ/κ (we choose κ = 1)

Phase transition:
λ < λc - absorbing phase

the number of occupied sites tends to zero and vanishes

λ > λc - active phase
the number of occupied sites tends to a constant

Márton KARSAI Cooperative behaviour in complex networks
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Optimal cooperation in scale-free networks

Density of critical clusters in a strongly disordered system
Non-equilibrium dynamics of the TAFIM at T = 0

Weighted scale-free networks
The Contact Process
Dynamical mean-field solution
Finite-size scaling
Numerical results

Expected to be exact due to long-range interactions

Dynamical mean field (MF) equations for sites i = 1, ...,N:

∂ρi

∂t
=
∑

j

λi ,j (1− ρi )ρj − ρi (1)

ρi (t) - time dependent average active point density

Three regimes for the critical behavior depends on γ′ :

γ′ > 4: Conventional MF regime (at γ′ = 4 logarithmic
corrections)

3 < γ′ < 4: Unconventional MF regime - critical exponents
depend on γ′

γ′ < 3: The system for any λ value is in the active phase
⇒ No phase transition
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Weighted scale-free networks
The Contact Process
Dynamical mean-field solution
Finite-size scaling
Numerical results

ρ = L−β/ν
∗
ρ̃(δL1/ν∗ , hN∆/ν∗) (2)

where ν∗ = 2/d and β = 1, ∆ = 2 (MF exponents)

Scale-free networks: N ↔ Ld

For typical sites (k ∼ 〈k〉):

ρtyp = N−β/2ρ̃typ(δN1/2, hN∆/2) (3)

For the maximally connected site (k ∼ N1/(γ−1)):

ρmax = N−β/2+(1−µ)/(γ−1)ρ̃max (δN1/2, hN∆/2) (4)

Numerical Simulations:

Barabási-Albert network: γ = 3, m0 = m = 1, N = 26...212

We choose µ = 1/2 thus γ′ = 5 ⇒ conventional MF regime
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The order parameter mtyp (λ)
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Start the infection from a typical and
maximally connected site (here only
the typical case is presented)

Continuous phase transition with
finite-size effects at the criticality

order parameter ratio:
r(N, λ = λc ) = m(N)

m(N/2) = 2−x

Critical point:

λc = 2.30(1) (in both cases)

Finite-size scaling exponent x :

xNum
typ = 0.54(7)↔ xTheo

typ = 1/2

xNum
max = 0.27(4)↔ xTheo

max = 1/4
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Scaling of the order parameter

0

.5

-2 -1 0 1

0

1

2

-2 -1.5 -1 -0.5  0  0.5  1  1.5

N
x
 m

ty
p

N
1/ω

δ

64
128
256
512

1024

Time dependence of Na(t)

0.30.20.10

1

0.5

a t
yp

(N
)

 
1/ln(N) 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6  7  8  9

N
a

t

32
64

128
256
512

1024
2048
4096

Correlation volume exponent:
ωNum

typ = 2.1(2)↔ ωTheo
typ = 2

ωNum
max = 2.0(1)↔ ωTheo

max = 2

Dynamical scaling at λ = λc :

”Diffusion” exponent: Na(t) ∼ ta

aNum
typ = 0.95(1)↔ aTheo

typ = 1

aNum
max = 0.52(4)↔ aTheo

max = 0.5
Mean-field value: aMF = 0

Dynamical exponent:
ζtyp = ζmax = 0.5↔ ζTheo = 1/2

M. Karsai, R. Juhász and F. Iglói, Phys.Rev.E 73
036116 (2006)
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Non-equilibrium phase transitions in scale-free networks
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Density of critical clusters in a strongly disordered system
Non-equilibrium dynamics of the TAFIM at T = 0

Optimal cooperation
The q-state ferromagnetic random bond Potts model
Exact solution for homogeneous evolving networks
Numerical results

Rounding of first-order phase transitions and optimal
cooperation in scale-free networks

Phase transition in complex networks with random interactions

Study the combined effect of network topology and bond
disorder

Optimal cooperation

Each cooperating pair receive a benefit represented by the
edge weights

There is a unit support to each component (to each project)

Optimal cooperation: the total sum of pair cooperation
benefits and the supports of independent projects is maximal
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Non-equilibrium phase transitions in scale-free networks
Optimal cooperation in scale-free networks

Density of critical clusters in a strongly disordered system
Non-equilibrium dynamics of the TAFIM at T = 0

Optimal cooperation
The q-state ferromagnetic random bond Potts model
Exact solution for homogeneous evolving networks
Numerical results

Potts model is a generalization of the Ising model

H = −
∑
〈i ,j〉

Jijδ(σi , σj ) , σi = 0, . . . , q − 1 (5)

Jij > 0 - identical ferromagnetic random couplings

Partition function: q →∞ random-cluster representation

Z =
∑
G⊆E

qφ(G), φ(G ) = c(G ) + β
∑
ij∈G

Jij (6)

inverse reduced temperature: β → β/ ln q

φ(G ) is a sub-modular function related to the free-energy

calculated with a combinatorial optimization algorithm in
strongly polynomial time
largest term φ∗ = maxG φ(G ) determines an optimal graph
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Non-equilibrium phase transitions in scale-free networks
Optimal cooperation in scale-free networks

Density of critical clusters in a strongly disordered system
Non-equilibrium dynamics of the TAFIM at T = 0

Optimal cooperation
The q-state ferromagnetic random bond Potts model
Exact solution for homogeneous evolving networks
Numerical results

Phase transition occurs of different order in the
thermodynamic limit depends the strength of disorder ∆

Exact solution for homogeneous ∆ = 0 case:

Homogeneous regular graphs - first order phase transition

Homogeneous evolving networks (random graphs, SF
networks,...)

at each time step a new node is added with µ number of edges

Two typical optimal set configuration:

T < Tc (0): fully connected diagram
T > Tc (0): empty diagram with isolated nodes

Phase-transition point: Tc (∆ = 0) = Jµ

Maximally first-order phase transition
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Density of critical clusters in a strongly disordered system
Non-equilibrium dynamics of the TAFIM at T = 0

Optimal cooperation
The q-state ferromagnetic random bond Potts model
Exact solution for homogeneous evolving networks
Numerical results

Numerical parameters:

Barabási-Albert network with µ = µ0 = 2 and N = 26 . . . 212

quasi-continuous distribution: J(1±∆/2) where 0 6 ∆ 6 2

For a given size, 100 generated networks and for each, 100
independent realizations of disordered couplings

The magnetization:
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m(T ): size of the largest cluster in the
optimal set

Homogeneous system (∆ = 0): The
phase transition is maximally first-order

Random system (∆ 6= 0): The phase
transition rounded and becomes
continuous even for weak disorder
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The q-state ferromagnetic random bond Potts model
Exact solution for homogeneous evolving networks
Numerical results

Structure of the optimal set:

Fraction of intermediate size clusters
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The optimal set consist:

1 giant cluster
large number of isolated sites
small number of clusters with
intermediate size

The fraction of intermediate size
clusters is negligible

The degree distribution of the giant
cluster keeps the scale-free feature
(with exponent γ = 3 ) for any T < Tc
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Optimal cooperation
The q-state ferromagnetic random bond Potts model
Exact solution for homogeneous evolving networks
Numerical results

Distribution of the finite-size transition temperatures:

Distribution of Tc (α,N)
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Sample dependent finite-size transition
temperature Tc(α,N)

The largest cluster: N (Tc ) ' AN1−x

Magnetization exponent: x = 0.69

Distribution with two scaling exponents:

The shift of T av
c : ν̃′ = 3.8(2)

The standard deviation: ν′ = 5.6(2)

Scaling collapse: modified Gumbel
distribution

Critical temperature: Tc (∞) = 3.03(2)

from T av
c (N)− Tc (∞) ∼ N1/ν̃′

M. Karsai, J-Ch. Anglès d’Auriac and F. Iglói, Phys.Rev.E 76 041107 (2007)
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Non-equilibrium phase transitions in scale-free networks
Optimal cooperation in scale-free networks

Density of critical clusters in a strongly disordered system
Non-equilibrium dynamics of the TAFIM at T = 0

Correlated clusters in finite geometries
The breaking-up length
Density of critical clusters

Density of critical clusters in strips of a strongly disordered
system

In critical systems correlated clusters appear in all length scales
Cluster representations:

Geometrical clusters: Percolation, Ising, Potts clusters
Fortuin-Kasteleyn clusters: high-temperature expansion

Finite geometry: Restricted L ∗ 4L strip square lattice

Density of clusters: clusters touching one or more boundary
Exactly derivable using conformal mapping
Calculated for critical percolation (conformal invariance
system with geometrical clusters)

AIMS: Check conformal results for disordered systems

Fortuin-Kasteleyn clusters

average quantities expected to hold conformal invariance
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Non-equilibrium phase transitions in scale-free networks
Optimal cooperation in scale-free networks

Density of critical clusters in a strongly disordered system
Non-equilibrium dynamics of the TAFIM at T = 0

Correlated clusters in finite geometries
The breaking-up length
Density of critical clusters

Model: Random bond Potts model with large-q state

Magnetization scaling dimensions: xb = 3−
√

5
4 , xs = 1

2

Reduced random couplings:

Bimodal distribution: Kij = K ±∆ (Kc = 1/2, 0 ≤ ∆ ≤ 1/2)
∆ = 0 - Homogeneous limit
∆ = 1/2 - Percolation limit

∆=4/12

∆=5/12

∆=6/12

The breaking-up length:

lb: typical size of compact units

lb ≈ l0 exp
[
A
(

K
∆

)2
]

Choose an appropriate ∆:

Smaller than 1/2
Large enough to lb � L

Optimal choice for L = 256:

∆ ≈ 5/12 ⇒ lb ∼ 14
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Non-equilibrium phase transitions in scale-free networks
Optimal cooperation in scale-free networks

Density of critical clusters in a strongly disordered system
Non-equilibrium dynamics of the TAFIM at T = 0

Correlated clusters in finite geometries
The breaking-up length
Density of critical clusters

Definition: fraction of samples where a given point belongs to a
cluster with prescribed property

Study the densities along the y axis

y = l/L (l = 0...L− 1) - continuous limit if l � 1 and L� 1

The ρb(y) density: ρb(y) ∝ (sinπy)−xb
[(

cos πy
2

)xs +
(
sin πy

2

)xs − 1
]
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Good fit between the numerical
and analytical curves

Inset: Fit close to the surface
xs − xb = 0.309
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Density of critical clusters in a strongly disordered system
Non-equilibrium dynamics of the TAFIM at T = 0

Correlated clusters in finite geometries
The breaking-up length
Density of critical clusters
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The ρ0(y) density:

ρ0(y) ∝ (sinπy)−xb
(
cos πy

2

)xs

Clusters touch boundary at y = 0

Good fit if l/L ≥ 0.5

Deviation: middle size clusters are
underrepresented (long lb)

The ρe(y) density: ρe(y) ∝ (sinπy)−xb

Clusters touch either of boundaries

Strongly influenced by lb

Measured along spanning lines

Good fit but worse statistic

M. Karsai, I. A. Kovács, J-Ch. Anglès d’Auriac and
F. Iglói, Phys.Rev.E 78 061109 (2008)
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Non-equilibrium phase transitions in scale-free networks
Optimal cooperation in scale-free networks

Density of critical clusters in a strongly disordered system
Non-equilibrium dynamics of the TAFIM at T = 0

Triangular antiferromagnetic Ising model
Non-equilibrium dynamics
Non-equilibrium relaxation time
Equilibrium autocorrelation function
Non-equilibrium autocorrelation function

Non-equilibrium dynamics of triangular antiferromagnetic
Ising model (TAFIM) at T = 0

H = −J
∑
〈i ,j〉 σiσj − h

∑
i σi where σi = ±1 and J < 0

geometrically frustrated system

One unsatisfied bond per triangle

Reduced magnetic field: H = h/kBT

if T → 0⇒ H = O(1)
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At T = 0:

Non-zero residual entropy at the ground state

Highly degenerated ground state - loose spins

Expanded critical phase at Tc = 0 between 0 6 H 6 HKT

Kosterlitz-Thouless phase transition at HKT ' 0.266
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Non-equilibrium phase transitions in scale-free networks
Optimal cooperation in scale-free networks

Density of critical clusters in a strongly disordered system
Non-equilibrium dynamics of the TAFIM at T = 0

Triangular antiferromagnetic Ising model
Non-equilibrium dynamics
Non-equilibrium relaxation time
Equilibrium autocorrelation function
Non-equilibrium autocorrelation function

Non-equilibrium dynamics:

Quench the system from T =∞ to Tc = 0

Defects of three neighbouring ↑ or ↓ spins

Zero temperature random update Glauber dynamics

Accept spin a flip only if it does not increase the energy

Analog problems: XY model, fully frustrated Ising model

diffusive non-equilibrium dynamics with logarithmic corrections

TAFIM: contradictory interpretations in the literature

Diffusive dynamics with z = 2 dynamical exponent and
logarithmic corrections

Subdiffusive dynamics with an effective exponent z = 2.33

All these results were derived from indirect considerations
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Non-equilibrium phase transitions in scale-free networks
Optimal cooperation in scale-free networks

Density of critical clusters in a strongly disordered system
Non-equilibrium dynamics of the TAFIM at T = 0

Triangular antiferromagnetic Ising model
Non-equilibrium dynamics
Non-equilibrium relaxation time
Equilibrium autocorrelation function
Non-equilibrium autocorrelation function

AIMS:

Direct study of the non-equilibrium dynamics of TAFIM with
a new parameter
Find independent evidences to describe the relevant dynamical
behavior

Non-equilibrium relaxation time:

tr : the time when the system reaches its ground state energy
Emin = −L2 after it was proceeded from a random initial state
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tr is size and sample
dependent

sample distribution of tr

PL(tr ) ∝ e−tr/τ(L)

τ(L): size dependent
characteristic time
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Non-equilibrium phase transitions in scale-free networks
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Density of critical clusters in a strongly disordered system
Non-equilibrium dynamics of the TAFIM at T = 0

Triangular antiferromagnetic Ising model
Non-equilibrium dynamics
Non-equilibrium relaxation time
Equilibrium autocorrelation function
Non-equilibrium autocorrelation function

Two possible scenarios for the scaling of 〈tr 〉:

τ1(L) ∼ Lz and τ2(L) ∼ Lz ln(L/L0)

Fitting of 〈tr 〉 with τ1(L) and τ2(L)
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z , L0,A parameter fit:

τ1(L) = .155L2.288

τ2(L) = .174L2ln(L/3.14)

z = 2 was obtained, but not
fixed!!!

inset: extrapolation of
zeff = 2 + 1

ln(L/L0)
⇒ z ' 2

For sufficiently large size the two scenarios are distinguishable

The diffusive dynamical assumption with z = 2 and
logarithmic correction has a much better fit
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Density of critical clusters in a strongly disordered system
Non-equilibrium dynamics of the TAFIM at T = 0

Triangular antiferromagnetic Ising model
Non-equilibrium dynamics
Non-equilibrium relaxation time
Equilibrium autocorrelation function
Non-equilibrium autocorrelation function

Two time correlation function

t: execution time, s: waiting time

Invariant under time-translation ⇒ it depends only on the
difference (t − s)

Aeq(t, s) ∼ (t − s)−ac where ac = 2β/νz és 2β/ν = 1/2

 0.1

 1

 1  10  100  1000  10000

lo
g 1

0(
G

eq
(t

,s
))

log10(t-s)

s=10
s=20
s=40

s=160
s=640

s=1280

Equilibrium autocorrelation for different s

Equilibrium state:
thermalization from a
random initial state

Power-law behaviour for
t − s > 40

Fitted straight line:

ac ' 0.25⇒ z ' 2

Márton KARSAI Cooperative behaviour in complex networks



Non-equilibrium phase transitions in scale-free networks
Optimal cooperation in scale-free networks

Density of critical clusters in a strongly disordered system
Non-equilibrium dynamics of the TAFIM at T = 0

Triangular antiferromagnetic Ising model
Non-equilibrium dynamics
Non-equilibrium relaxation time
Equilibrium autocorrelation function
Non-equilibrium autocorrelation function

Use the previously calculated ac ' 0.25 exponent

Scaling of the autocorrelation function following the two scenarios:

Aag (s, t) ∼ s−ac Ã
(

t
s

)
Aag (s, t) ∼ s−ac Ã

(
tln(s)
sln(t)

)
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Logarithmically corrected scaling supply a better asymptotic
collapse

M. Karsai, J-Ch. Anglès d’Auriac and F. Iglói, submitted to J. Stat. Mech.
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Cooperative behaviour and phase transitions in regular lattices
and complex networks

Completed studies in four different subjects

Non-equilibrium phase transitions in scale-free networks

Optimal cooperation in scale-free networks

Density of critical clusters in a strongly disordered system

Non-equilibrium dynamics of triangular antiferromagnetic Ising
model at T = 0

New results are published in referred scientific journals
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M. Karsai, J-Ch. Anglès d’Auriac and F. Iglói, Phys.Rev.E 76 041107 (2007)
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061109 (2008)
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