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Introduction

CHAPTER

1

This habilitation thesis is targeting the study of pipelined applications. Our goal
is to schedule such applications onto large-scale distributed platforms, in order to
optimize one criterion or several criteria.

In Section I, we explore the context of this work and precisely define what schedul-
ing and pipelined applications mean, together with the optimization criteria. Then
we give an overview of the document in Section II, and we detail in which context
(and in collaboration with whom) each piece of the work presented in this document
has been conducted.

I Context

I.1 Scheduling for large-scale distributed platforms

The problem of scheduling can be described as follows: where and when should
computations be executed? This implies that we have an application, consisting of a
set of computations, which needs to be executed. The execution must be orchestrated
on a computational platform, which consists of a set of heterogeneous distributed
resources. The problem turns out to be a mapping problem if we just need to answer
the question “where”, i.e., to decide which part of the application runs on which
resource. Since resources are distributed, the different parts of the applications may
need to exchange data, and particular care must be taken on the communication
model.

The mapping or scheduling problem is in fact an optimization problem in which
some criteria must be optimized. Classical scheduling for parallel machines aims
at mapping a task graph, i.e., an application made of several tasks with depen-
dencies, onto a set of distributed resources. The optimization criterion is then the
makespan, i.e., how can we map the different tasks onto processors so as to minimize
the execution time of the application? It is well known that even simple instances
of this classical optimization problem, on a homogeneous execution platform, are
already NP-hard [27]. Several scheduling and load-balancing techniques have been
developed for homogeneous architectures (see [110] for a survey) but the advent of
heterogeneous clusters and grids [50, 47] has rendered the mapping problem even
more difficult. Several heuristics have been introduced to schedule task graphs on
different-speed processors, see [94, 120] among others. Unfortunately, such heuristics
often assume no restriction on the communication resources, which renders them
somewhat unrealistic to model real-life applications.
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In contrast with traditional scheduling, we target different applications, different
platforms, and thus naturally different optimization criteria:

• Rather than scheduling task graphs, we consider mostly structured pipelined
applications, i.e., a simpler task graph which is executed many times with
different input data (see Section I.2).

• Rather than targeting a homogeneous platform with an unrealistic communi-
cation model, we aim at tackling heterogeneous dynamic platforms which take
communication contention into account, and which may be subject to unrecov-
erable interruptions (see Section I.3).

• Rather than focusing on makespan minimization, we consider new optimiza-
tion criteria which naturally emerge from the new applications and the new
platforms. With many different and often contradictory objectives, trade-offs
must be taken, and we need to define a multi-criteria objective function as our
scheduling goal (see Section I.4).

I.2 Applications: structured parallel programming

Structured parallel programming approaches have been introduced in order to rule
out many of the problems which the low-level parallel application developer is usu-
ally confronted by, such as deadlocks or process starvation. These problems are
particularly present when scheduling onto dynamic heterogeneous platforms, as in
the context of our work. One productive approach to high-level structured parallel
programming is to use algorithmic skeletons [39, 106, 41] to structure the creation
and configuration of processes. In this approach, the skeletons add expressive power
to the programming language used for sequential computing blocks, and expedite
the development of complex parallel applications by providing generic and paramet-
ric parallel processing constructs to complement the loop constructs and conditional
statements which are used in sequential computation.

In such a setting, typical applications continuously operate on a stream of data
sets, hence the term pipelined applications. An application is partitioned into tasks,
or stages, that are linked by simple constraints, such as for instance a linear chain of
precedence or a fork graph. In the most general case, constraints are described with
a directed acyclic graph (usually called DAG). In steady-state, data sets are pumped
from one task to its successor. The problem is to map tasks onto resources and to
organize the schedule of communications and computations so that no bottleneck
happens to slow down the entire process. It is a difficult problem to decide which
(and how many) resources to use for mapping each task.

Rather than being expressed as a general unstructured DAG, many important
applications fit within a range of well-known solution paradigms, such as linear or
fork-join computations. High-level approaches based on algorithmic skeletons iden-
tify such patterns and seek to make it easy for an application developer to tailor such
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a paradigm to a specific problem. A library of skeletons is provided to the program-
mer, who can rely on these already coded patterns to express the communication
scheme within her/his own application, see for instance the eSkel library [C7],[C12].
Moreover, the use of a particular skeleton carries with it considerable information
about implied scheduling dependencies, which we believe can help to tackle the com-
plex problem of scheduling a distributed application onto a heterogeneous platform.

Finally, we point out that algorithmic skeletons address the challenges of grid
computation well. In response to changing workload on servers, or unplanned un-
availability due to software or hardware faults, the application can be restructured
to use an alternative implementation skeleton or can simply reevaluate the parame-
ters to the skeleton which is currently in use. Such resilience to operational faults is
not typically found in low-level parallel programming approaches and is one of the
strengths of a structured approach to parallel programming. Furthermore, the use
of skeletons allows the programmer to provide explicit information about the future
interaction structure of the application, which would be difficult or impossible to
derive statically from an equivalent unstructured program source.

In the major part of this work, we focus on pipelined applications that can be
expressed as algorithmic skeletons, and in particular the so-called pipeline skeleton,
i.e., applications whose dependence graph is a linear chain. Indeed, this particular
skeleton is one of the most widely used. In such applications, a series of data sets
enter the input stage and progress from stage to stage until the final result is com-
puted [115, 116, 112, 123]. Each stage has its own communication and computation
requirements: it reads an input from the previous stage, processes the data and out-
puts a result to the next stage. For each data set, initial data is input to the first
stage, and final results are output from the last stage. Such applications are a popu-
lar programming paradigm for streaming applications like video and audio encoding
and decoding, DSP applications, etc [45, 118, 129]. The application operates in syn-
chronous mode: after some latency due to the initialization delay, a new data set is
completed every period. Informally, the period can often be defined as the longest
cycle-time to operate a stage, and it is the inverse of the throughput that can be
achieved. On the other hand, the latency is the maximum time required to compute
one single data set entirely (i.e., the equivalent of the makespan for pipelined appli-
cations). Both these performance criteria are important optimization functions for
such streaming applications.

Note that most scheduling problems for pipelined applications turn out to be
NP-hard if the application is not structured, see for instance [118, 18]. In [18]
the problem becomes polynomial for special classes of DAGs, such as series-parallel
graphs. Similarly, in the DataCutter project [45], task graphs are more general than
linear chains or forks, but still more regular than arbitrary DAGs, which makes
it possible to design efficient heuristics to solve the optimization problems. This
illustrates once again the utility of a structured approach.
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I.3 Platforms: communication model, variability, failures

We first discuss communication models for the heterogeneous distributed platforms
that we target, before introducing dynamic platforms. We conclude the section with
a brief discussion on alternative platforms.

Distributed platforms and communication models. Distributed-memory par-
allel computing platforms pose many challenges to the algorithm designer and the
programmer. An obvious factor contributing to this complexity is the need for net-
work communication, whose performance is difficult to model in a way that is both
precise and conducive to understanding the performance of algorithms. In light of
the complexity of performance modeling for network communications, the vast ma-
jority of scheduling works and results address a very simple model which assumes
that there is no contention for network links. In other words, a processor can send
distinct messages to a thousand of processors at the same speed as if there were a
single message!

Recent papers [63, 67, 111] suggest to take communication contention into ac-
count. Among these extensions, scheduling heuristics are considered in [16], in which
each processor can communicate with at most one other processor at a given time-
step (one-port model, [73, 85, 23]). In Chapter 2, we extensively discuss various
realistic communication models on which we conduct our study.

Dynamic platforms are characterized by their larger size, and greater degree of
heterogeneity. The resources of these platforms (topology, message routes, etc.) and
their characteristics are assumed to be known by a centralized control mechanism,
even though they change over time. Radical changes are caused by failures, but
the performance of a processor can also be slightly reduced because, for instance,
another user launched a new process onto this resource. A typical example of such
platform is a general purpose computational grid [51], or a set of resources provided
by a team of users that can change significantly over time, such as in volunteer
computing [83]. Scheduling techniques which aim at dealing with the dynamic nature
of such platforms are extensively discussed in Chapter 4.

Note that a scheduling algorithm for such platforms may aim at optimizing the
reliability of the schedule, in addition to the usual performance criteria that have been
discussed so far, such as the application throughput and the latency (or makespan).

Alternative platforms. The scheduling of pipelined computations can also be
conducted on special-purpose architectures and FPGA arrays, see for instance the
representative work by Fabiani and Lavenier [48]. They study the placement of linear
computations onto reconfigurable arrays. Another line of work is related to the design
of fault-tolerant or power-aware mapppings for embedded systems. Representative
examples are [133, 8]. We do not target such special-purpose architectures, but
rather limit our study to large-scale distributed platforms.
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I.4 Objective functions: multi-criteria optimization

Even though optimization criteria will be extensively discussed in Chapter 2, we have
already seen that, in addition to the classical “makespan” objective, our framework
raises many new questions. Can we design a schedule which ensures a good through-
put of the application? Can we design a robust schedule, which can support failures
and platform variability? How do we mix such different objective functions?

In traditional approaches, one would form a linear combination of the different
objectives and treat the result as the new objective to optimize for. But is it natural
for the user to maximize the quantity 0.7T + 0.3R, where T is the throughput and
R the reliability? Obviously, the problem here is that we mix apples and bananas:
the criteria are very different in nature and it does not make much sense for a user
to make a linear combination of them. Users are more likely to ask questions like "I
want a throughput T , how reliable can my application be?” In our work, we advocate
the use of multi-criteria with thresholds: one single criterion is optimized, under the
condition that a threshold is enforced for all other criteria.

II Overview of the document

II.1 Linear chain pipelined applications

Chapters 2 and 3 focus on the problem of scheduling linear chain pipelined applica-
tions onto heterogeneous platforms, with multi-criteria objective functions, as dis-
cussed in Section I. Their goal is to offer a good view of the state of the art research
on such problems. It is a synthesis of several pieces of work that were conducted
with various colleagues in the last few years.

Chapter 2 accurately defines the models and the scheduling problems. Many
surprising problems have been raised recently, in particular the difficulty to compute
the throughput and the latency of a given mapping, especially in a bi-criteria setting.
With less surprise, we illustrate the fact that the choice of the communication model
may have a dramatic impact on the encountered difficulties.

The complexity results are described in Chapter 3. Of course we omit in this
chapter many technical proofs, which are very involved (but references are given for
the interested reader). For instance, it took us several months to figure out how
to prove that the latency problem is NP-hard when restricting to interval mappings
on fully heterogeneous platforms, and we needed to discuss with an expert in graph
theory, Eric Thierry, in order to find the key idea.

Historically, the first study that we conducted was the throughput maximization
under the one-port model with no overlap, together with Yves Robert (see [J9]).
Then, after a visit to the group of Umit Catalyurek and Joel Saltz (Colombus, Ohio),
we realized that it would be interesting to study trade-offs between throughput and
latency. This lead to a theoretical bi-criteria study (see [J10]). Our PhD student
Veronika Rehn-Sonigo got involved in the subject, and we worked with her both on
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the reliability criterion and on a more experimental study based on a JPEG encoder
application, in collaboration with Harald Kosch (see for instance [C19], [J12]). We
also started investigating a model with overlap while visiting Kunal Agrawal at
MIT, USA (see [C24]). The full understanding of the correct model for period and
latency definition is much more recent, and some NP-completeness proofs are not
yet published at the time this document is written. Most of this part of the work
was strongly inspired by our work with Kunal Agrawal and Fanny Dufossé on the
mapping of filtering services rather than linear chain applications, see [C32].

II.2 Dynamic platforms and complex applications

In Chapter 4, we exhibit the difficulties encountered when dealing with dynamic
platforms, and we show how performance models can help us with the study.

The earlier work on this subject was conducted during my post-doctoral posi-
tion in Edinburgh, with Murray Cole, Stephen Gilmore and Jane Hillston, where we
developed a first performance model based on performance evaluation process alge-
bra PEPA [62], see [J3],[J4]. Some related projects such as the ICENI project [53]
also used performance models to improve the scheduling decisions, but these are
just graphs which approximate data obtained experimentally. Moreover, there is no
upper-level layer based on skeletons.

Building upon the weaknesses of the previous model, and using the expertise of
Bruno Gaujal on timed Petri nets [11], we designed with Matthieu Gallet and Yves
Robert a new model. This helped us capture the difficulty of period definition, since
we realized that there are cases in which there are no critical resources (see [C34]).

The third part of the chapter is dedicated to a simpler application, consisting in
a divisible workload to be scheduled on a homogeneous platform, but with a complex
probabilistic model for failures. This work was initiated while visiting Arnold Rosen-
berg in his wonderful house at Falmouth (Cape Cod), together with Yves Robert and
Frédéric Vivien. It turned out to be surprisingly difficult and we spent several weeks
before we were able to define a convincing failure model (see the result in [C25]).

Chapter 5 is also a collection of various work, but it rather tackles general appli-
cations.

We first consider filtering applications, whose study turns out to be very close
to the one conducted for linear chain pipelined applications. I worked on this sub-
ject with Yves Robert and Fanny Dufossé, during Fanny’s master and PhD thesis
(see [C26],[C29]). We pursued this study with Kunal Agrawal, and it was through
the study of filters that we got a clear vision of the difficulties of period computation
and the impact of the communication model, see [C32].

Naturally, we also decided to tackle applications with more complex dependencies
than linear chains, such as the study on fork and fork-join graphs conducted with
Yves Robert in [J10]. For general DAGs, all problems turn out to be NP-complete,
but we designed fault tolerant heuristics with Mourad Hakem, see [J11],[J15].



II. OVERVIEW OF THE DOCUMENT 9

The two last applications were studied during the PhD thesis of Veronika Rehn-
Sonigo, which I supervised together with Yves Robert, and who worked on multi-
criteria optimization problems. The replica placement problem described in this
chapter is an interesting application, and surprisingly, we could find only very con-
strained placement policies in the literature. Therefore, we decided to introduce and
study new policies (see [J8]). We did not work on all the possible extensions sug-
gested in the literature since problems rapidly became too complex, but already we
gave a good overview of the difficulties of replica placement.

Finally, the work on in-network stream processing was conducted together with
Henri Casanova and initiated during a marvelous trip to Hawai‘i. This complex
application allowed us to design sophisticated heuristics and linear programs, and it
illustrated the combined difficulties of all applications (see [C28],[C37]).

II.3 Conclusion and appendices

A general conclusion on the work presented in this document, together with a de-
scription of current and future work, is available in Chapter 6. I did not summarize
all my past research work in this document, but focused on the work related to my
main research activity, namely the study of the scheduling of pipelined applications.
In particular, there is no mention of the research work done during my PhD thesis.

In Appendix A, one can find the exhaustive list of my publications, including the
work done during my PhD thesis and my post-doctoral research position. A large
set of references is also provided, even though some detailed discussions on related
work have been omitted in this document (but are available in my publications
corresponding to each piece of work).

Finally, a brief curriculum vitae can be found in Appendix B.
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Linear chain application models

CHAPTER

2

This chapter is devoted to a precise definition of models for the scheduling of linear
chain pipelined applications. We first focus on the linear chain pipelined application
model in Section I. Then we describe in Section II the computational platform on
which we aim at scheduling the application, and we detail several communication
models, since these models have a big impact on the problem complexity. Section III
presents the definition of different application types, mapping rules, and various
objective criteria, which allows us to formally define a set of optimization problems.
Finally, we summarize the difficulties encountered during the modeling process of
linear chain applications and we conclude in Section IV. Note that all notations
used throughout this chapter are summarized in Table 2.1 (page 33).

I Linear chain pipelined applications

As already stated in Chapter 1, we focus in this work on pipelined applications,
i.e., applications which continuously operate on a stream of data sets. Moreover,
many parallel algorithms can be characterized and classified by their adherence to
one or more of a number of generic algorithmic patterns. A skeleton [39, 106, 41] is a
programming construct which abstracts such a pattern of processes and interactions.
The programmer invokes one or more skeletons to describe the structure of a program,
specializing each with types and operations from the application domain. Code
handling the interaction and invocation of the domain specific operations is inherited
implicitly from the chosen skeleton.

In the simplest form of pipeline parallelism [40], a sequence of n stages process
a sequence of inputs to produce a sequence of outputs (Figure 2.1). All inputs pass
through each stage in the same order, with the processing of a particular input
beginning as soon as its predecessor has left the first stage. Note that parallelism is
introduced by overlapping the processing of many input instances (i.e., data sets).
It is then quite normal for the processing time of each data set to be increased by
pipelining. However, performance benefits (in terms of throughput) accrue when
many data sets are processed concurrently across the pipeline. Such linear graphs

... Stage nStage 1 Stage 2
inputs outputs

Figure 2.1: Linear chain application.



12 CHAPTER 2. LINEAR CHAIN APPLICATION MODELS
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... ...S2 SnS1

w1 w2 wn

δ0 δ1 δnδi−1 δi
Si

Figure 2.2: Linear chain application with parameters.

are representative of a wide class of applications, and constitute the typical building
blocks upon which to build and execute more complex applications.

Formally, a linear chain application consists of n stages Si, 1 ≤ i ≤ n. Consecu-
tive data sets are fed into the pipeline and processed from stage to stage, until they
exit the pipeline after the last stage. Each stage executes a task. More precisely,
the i-th stage Si receives an input from the previous stage, of size δi−1, performs
a number of wi computations, and outputs data of size δi to the next stage. This
operation corresponds to the i-th stage and is repeated periodically on each data
set. The first stage S1 receives an input of size δ0 from the outside world, while
the last stage Sn returns the result, of size δn, to the outside world. An example of
application with all its parameters is given on Figure 2.2.

II Target platforms and communication models

The aim of this work consists in executing a linear chain application on a target
platform, so as to optimize some performance criteria, and this section is devoted
to platform models. We first propose a general model of the target platform in
Section II.1, and we focus on several platform types which are important in II.2.
Then we discuss the case in which processors are subject to failure (Section II.3),
and finally we describe various communication models in Section II.4.

II.1 Target platform

We target a heterogeneous platform with p + 2 processors Pu, 0 ≤ u ≤ p + 1, as
illustrated in Figure 2.3. Pin = P0 and Pout = Pp+1 are two special additional
processors devoted to input/output data: initially, the input data for each task
resides on Pin, while all results must be returned to and stored in Pout. These special
processors are thus connected to all other processors Pu, 1 ≤ u ≤ p. Processors Pu,
with 1 ≤ u ≤ p, are fully interconnected as a (virtual) clique. Therefore, there is
a bidirectional link linku,v : Pu ↔ Pv between any processor pair Pu and Pv, with
0 ≤ u ≤ p and 1 ≤ v ≤ p+1, of bandwidth bu,v. Note that we do not need to have a
physical link between any processor pair. Instead, we may have a switch, or even a
path composed of several physical links, to interconnect Pu and Pv; in the latter case
we would retain the bandwidth of the slowest link in the path for the value of bu,v.

In addition to link bandwidths, we have in some cases processor network cards
that bound the total communication capacity of each computing resource. We denote
by Bi

u (resp. Bo
u) the capacity of the input (resp. output) network card of proces-
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...

Pu Pv

Pin Pout

bin,u

bu,v svsu

bv,out

Figure 2.3: The target platform.

sor Pu. In other words, Pu cannot receive more than Bi
u data items per time-unit,

and it cannot send more than Bo
u data items per time-unit.

In the most general case, we have fully heterogeneous platforms, with different
processors speeds and link capacities. The speed of processor Pu is denoted as su,
and it takes X/su time-units for Pu to execute X floating point operations. We also
enforce a linear cost model for communications, hence it takes X/bu,v time-units to
send (resp. receive) a message of size X to (resp. from) Pv.

II.2 Platform classification

We classify below particular platform cases which are important, both from a theo-
retical and practical perspective:

Fully Homogeneous – These platforms have identical processors (su = s) and
homogeneous communication devices (bu,v = b for link bandwidths, and Bi

u =
Bi, Bo

u = Bo for network cards). They represent typical parallel machines.

Communication Homogeneous – These platforms are still interconnected with
homogeneous communication devices, but they have different-speed processors
(su 6= sv). They correspond to networks of workstations with plain TCP/IP
interconnects or other LANs.

Fully Heterogeneous – These are the most general, fully heterogeneous architec-
tures. Hierarchical platforms made up with several clusters interconnected by
slower backbone links can be modeled this way.

II.3 Unreliable processors

In the previous classification of platforms, heterogeneity may come from either pro-
cessor speed or link bandwidth. Yet another source of heterogeneity is the reliability
of each target processor. To model this, we associate a failure probability 0 ≤ fu ≤ 1,
1 ≤ u ≤ p to each processor. It is the probability that the processor breaks down
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during the execution of the application. We consider constant failure probabilities as
we are dealing with pipelined applications. These applications are meant to run dur-
ing a very long time, and therefore we address the question of whether the processor
will break down or not at any time during execution. It might seem odd that this
probability is completely independent of the execution time, since one may believe
that the longer a processor executes, the larger the chance that it fails. However, we
target a steady-state execution of the application, for instance in a scenario in which
we would loan/rent resources. Computers could be suddenly reclaimed by their own-
ers, as during an episode of cycle-stealing [7, 24, 107]. The failure probability should
thus be seen as a global indicator of the reliability of a processor. Also note that
we consider in this work only fail-silent (a faulty processor does not produce any
output) and fail-stop (no processor recovery) processor failures. We do not consider
link failures since in a grid framework, a different path can be found to tackle such
failures. However, we do target dynamic platforms in Chapter 4, and consider a
dynamic behavior from both links and processors.

A platform composed of processors with identical failure probabilities is denoted
Failure Homogeneous and otherwise Failure Heterogeneous . Note that it seems nat-
ural to consider Failure Heterogeneous platforms when processors have different
speeds, thus for Communication Homogeneous or Fully Heterogeneous platforms,
while Fully Homogeneous platforms are more likely to be Failure Homogeneous .

II.4 Communication models

Distributed-memory parallel computing platforms pose many challenges to the al-
gorithm designer and to the programmer. An obvious factor contributing to this
complexity is the need for network communication, whose performance is difficult to
model in a way that is both precise and conducive to understanding the performance
of algorithms. In light of the complexity of performance modeling for network com-
munications, the vast majority of scheduling works and results are for a very simple
model, which is as follows [130, 86, 121]. If a task T communicates data to a successor
task T ′, the cost is modeled as

cost(T, T ′) =

{

0 if alloc(T ) = alloc(T ′)
comm(T, T ′) otherwise,

where alloc(T ) denotes the processor that executes task T , and comm(T, T ′) is de-
fined by the application specification. The above model states that the time for
communication between two tasks running on the same processor is negligible. The
model also assumes that the processors are part of a fully connected clique. This so-
called macro-dataflow model makes two main assumptions: (i) communication can
occur as soon as data are available; and (ii) there is no contention for network links.
Assumption (i) is reasonable as communications can overlap with computations in
most modern computers. Assumption (ii) is much more questionable. Indeed, there
is no physical device capable of sending, say, 100 messages to 100 distinct proces-
sors, at the same speed as if there were a single message. In the worst case, it would



II. TARGET PLATFORMS AND COMMUNICATION MODELS 15

take 100 times longer (serializing all messages). In the best case, the output band-
width of the network card of the sender would be a limiting factor. In other words,
assumption (ii) amounts to assuming infinite network resources! Nevertheless, this
assumption is omnipresent in the traditional scheduling literature. Perhaps it was
the price to pay to derive tractable mathematical results on makespan minimization?

Our conviction is that we need to turn to more realistic communication models
when modeling concurrent communications, in order to obtain a much better trade-
off between realism and tractability. We outline two such models, that account for
the interference between concurrent communications.

II.4.1 The one-port model without overlap

A radical option is simply to forbid concurrent communications at each node. In the
one-port model [22, 23], a given processor can be involved in a single communication
at any time-step, either a send or a receive. However, independent communications
between distinct processor pairs can take place simultaneously. This model is thus
very pessimistic as real-world platforms can achieve some concurrency of communi-
cation. On the other hand, it is straightforward to design algorithms that follow this
model and thus to determine their performance a priori.

The one-port model fully accounts for the heterogeneity of the platform, as each
link has a different bandwidth. It generalizes simpler models [14, 88, 81] where
communication time only depends on the sender, not on the receiver. In these
models, the communication speed from a processor to all its neighbors is the same.

It is used by Bhat et al. [22, 23] for fixed-sized messages. They advocate its use
because “current hardware and software do not easily enable multiple messages to be
transmitted simultaneously.” Even if non-blocking multi-threaded communication
libraries allow for initiating multiple send and receive operations, they claim that all
these operations “are eventually serialized by the single hardware port to the net-
work.” Experimental evidence of this fact has been related by Saif and Parashar [108],
who report that asynchronous sends become serialized as soon as message sizes ex-
ceed a few tens of kilobytes1.

Another key assumption to define the execution model is to decide whether com-
putation can overlap with (independent) communication. Since the one-port model
serializes communications, it is natural to assume that communication and compu-
tation also are serialized, and thus we consider in this case a model with no overlap.

II.4.2 The bounded multi-port model with overlap

Assuming an application that runs threads on, say, a node that uses multicore tech-
nology, the network link could be shared by several incoming and outgoing com-
munications. Therefore, the sum of the bandwidths allotted by the operating sys-
tem to all communications cannot exceed the bandwidth of the network card. The

1Their results hold for two popular implementations of the MPI message-passing standard,
MPICH on Linux clusters and IBM MPI on the SP2.
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bounded multi-port model proposed by Hong and Prasanna [64, 66] assesses that an
unbounded number of communications can thus take place simultaneously, provided
that they share the total available bandwidth. We point out that recent multi-
threaded communication libraries2 now allow for initiating multiple concurrent send
and receive operations, thereby providing practical realizations of the multi-port
model.

Note that with this model there is no degradation of the aggregate throughput.
Such a behavior is typical for protocols with efficient congestion control mechanisms
(e.g., TCP). Note, however, that this model does not express how the bandwidth is
shared among the concurrent communications. It is generally assumed in this model
that the application is allowed to define the bandwidth allotted to each communi-
cation. In other words, bandwidth sharing is performed by the application and not
by the operating system. While technology exists to achieve application-level band-
width sharing, it is not the standard way in which networks and operating systems
operate (yet?).

On homogeneous platforms it would be implemented with one-port communi-
cations, because if the links have same bandwidths it is better to send messages
serially than simultaneously. However, the bounded multi-port is more flexible for
heterogeneous platforms.

In this bounded multi-port model, it is natural to assume full overlap of com-
munications and computations, so that a server can receive, compute and send (in-
dependent) data simultaneously. Indeed, most state-of-the-art processors running
a threaded operating system are capable of such an overlap. These two assump-
tions (multi-port and overlap) thus fit well together because they both require a
multi-threaded system.

II.4.3 Other communication models

There are more complicated models such as those that deal with bandwidth sharing
protocols [96, 92]. Such models are very interesting for performance evaluation pur-
poses, but they almost always prove too complicated for algorithm design purposes.
For this reason, we prefer to deal with the one-port or the bounded multi-port model.
As stated above, we believe that these models represent a good trade-off between
realism and tractability.

2See for instance MPICH2 [78].
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III Multi-criteria mapping problems

This section is devoted to the definition of the multi-criteria mapping problems. We
start by defining different stage types and replication mechanisms, and by establish-
ing different mapping rules in Section III.1. Then we introduce and motivate several
optimization criteria and we explain how to simultaneously deal with multiple crite-
ria in Section III.2. Finally, we define and classify the various optimization problems
under study in Section III.3.

III.1 Stage types and mapping rules

The general mapping problem consists in assigning application stages to platform
processors. The properties of application stages can differ, depending upon the
application, and thus we first introduce the different types of stages, and discuss
replication mechanisms. Then we define the allocation function which assigns stages
to processors; some constraints can be added to the mapping to ease the imple-
mentation of the application, and different instances of the mapping problem are
discussed.

III.1.1 Stage classification

In this work, three types of stages are considered: monolithic, dealable and data-
parallel stages. We also explain the replication mechanism for reliability, since it
looks similar to the other replication techniques, while being truly different.

Monolithic stages – If stage Si is a sequential procedure which may perform disc
accesses or write data in the memory for each data set, Si is said to be mono-
lithic. Indeed, this data may be reused from one data set to another, and thus
the rule of the game is always to process the data sets in a sequential order
within a monolithic stage. Moreover, due to the possible local memory accesses,
Si must be mapped onto a single processor: we cannot process half of the data
sets on a processor and the remaining ones on another without exchanging
intra-stage information, which might be costly and difficult to implement.

Dealable stages – If the computations of stage Si are independent from one data
set to another, Si can be replicated as a deal [115, 116, 112, 41, 20, 124]: several
consecutive computations are mapped onto distinct processors, and data sets
are processed in a round-robin fashion3 by these processors (hence the term
deal). The computations of a dealable stage can be fully sequential for a given
data set, as long as they do not depend from previous results for other data
sets.

3This round-robin behavior will be further motivated in the next section.
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Data-parallel stages – If the computations of stage Si are data-parallel, their ex-
ecution can be split among several processors. Contrarily to replicated stages
where different instances (for different data sets) are assigned to different re-
sources, each instance of a data-parallel stage is assigned to several processors,
which speeds-up the production of each result. There is another major dif-
ference: while we can replicate intervals of consecutive stages, we can only
data-parallelize single stages (but maybe several of them). To see why, con-
sider two consecutive stages, the first one executing some low-level filtering on
its input file (an image), and the second stage implementing various high-level
component extraction algorithms. Both stages can be made data-parallel, but
the entire image produced by the first stage is needed as input to the second
stage. In fact, if both stages could have been data-parallelized simultaneously,
the application designer may have chosen to gather them into a single stage,
thereby giving more opportunities for an efficient parallelization.

Replicating for failures – In order to handle failures, another replication mech-
anism can be used, for any stage type. The idea consists in doing redundant
work: several processors will process the same stage on the same data sets.
Thus in case of failure of one of the replicated processors, we still get a result.
This kind of replication is different from deal or data-parallel replication, and
both kinds of replication can be mixed.

Note that we use the term replication for several meanings. However, only the
replication for reliability is really a replication of the work, while deal replication is
rather a distribution of the work, and data-parallel replication is rather a partitioning
of the work. However, to be consistent with the literature, we keep the term replica-
tion in the following, and we always specify if we consider replication for performance
(deal or data-parallelism), or replication for reliability.

III.1.2 Allocation function and mapping rules

We aim at assigning stages onto processors, and this is achieved with an allocation
function. Two fictitious stages S0 and Sn+1 are created, and allocated respectively to
Pin and Pout. We first assume that all stages are monolithic and that no replication
is done for reliability, in order to define different mapping rules in a simpler context.
Then we extend definitions to scenarios with replication.

Simple scenario with no replication. In this first scenario, the allocation func-
tion alloc : [1..n] → [1..p] associates one single processor index to each stage index.
This function is also extended for the fictitious stages: alloc(0) = 0 (= in) and
alloc(n + 1) = p + 1 (= out).

The first mapping rule restricts the search to One-to-one mappings: each stage
is mapped onto a distinct processor, and thus alloc is a one-to-one function. Note
that such a mapping is possible only if n ≤ p.
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One-to-one mappings may be needlessly restrictive. Natural extensions are In-

terval mappings in which each participating processor is assigned an interval of
consecutive stages. Note that when p < n interval mappings are mandatory. In-
tuitively, assigning several consecutive tasks to the same processors will increase its
computational load, but will also decrease communication. The best interval map-
ping may turn out to be a one-to-one mapping, or instead may utilize only a very
small number of fast computing processors interconnected by high-speed links. An
interval mapping is defined with a partition of [1..n] into m ≤ p intervals Ij = [dj , ej ]
such that d1 = 1, dj ≤ ej for 1 ≤ j ≤ m, dj+1 = ej +1 for 1 ≤ j ≤ m−1 and em = n.
Recall that the function alloc associates a processor index to each stage index. In
a one-to-one mapping, this function was a one-to-one assignment. In an interval
mapping, for 1 ≤ j ≤ m, the whole interval Ij is mapped onto the same processor
Palloc(dj), i.e., for dj ≤ i ≤ ej , alloc(i) = alloc(dj). Also, two intervals cannot be
mapped to the same processor, i.e., for 1 ≤ j, j′ ≤ m, j 6= j′, alloc(dj) 6= alloc(dj′).

The most general mappings may be more complicated than interval mappings.
In a General mapping, a processor Pu can be assigned any subset of stages. Thus,
there are no constraints on the allocation function.

Extension to replication. These definitions can easily be extended to replication:
instead of returning a single processor index, the allocation function needs to return
a set of processor indices. We also need to specify which of those processors are used
to replicate dealable stages, for data-parallelism, and also which processors are used
for reliability replication. For a stage index 1 ≤ i ≤ n, we denote by alloc(i) the
whole set of processor indices. This set is partitioned into ti teams, and each team
consists of one or more processors. Each processor within a team is allocated the
same piece of work, and thus inside a team, redundant work is done for reliability
issues. Teams for stage Si are denoted as Ti,1, . . . , Ti,ti .

• If stage Si is neither dealable nor data-parallel, then all processors work on the
same data sets, and thus they form a single team: ti = 1 and |Ti,1| = |alloc(i)|.
In this case, if |alloc(i)| > 1, the replication only helps increasing the reliability
of the application.

• If data sets are distributed in round-robin (dealable stage), each team is in
charge of one round of the deal. We set typei = deal to differentiate it from a
data-parallel execution of a stage.

• If the stage is data-parallel, typei = dp. In this case, each team is in charge of
the computation of a fraction of each data set. The computation of one data
set is thus executed in parallel on ti processors, one in each team.

Of course, the three mapping rules can still be defined when there is replication.

• One-to-one mappings are such that alloc(i) ∩ alloc(i′) = ∅ for i 6= i′.
• Interval mappings are such that alloc(i) = alloc(dj), ti = tdj

and typei =
typedj

for each stage i in interval j, and alloc(dj) ∩ alloc(dj′) = ∅ for j 6= j′.
Also, recall that only single stages can be data-parallelized (and not intervals),
thus we enforce that typedj

= dp ⇒ dj = ej .
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• For General mappings, we enforce that a processor can be involved only in
a single team. Thus we keep a notion of interval, or more precisely subset of
stages, where dj is the index of the first stage of subset j, and stagesj the
set of indices of stages in this subset. For i in stagesj , we still enforce that
alloc(i) = alloc(dj), ti = tdj

and typei = typedj
. The difference is that subsets

are not made of consecutive stages as before. Also, we keep the constraint
stating the team exclusion in terms of processors: alloc(dj) ∩ alloc(dj′) = ∅
for j 6= j′. Finally, the data-parallel constraint for single stages now writes:
typedj

= dp ⇒ |stagesj | = 1.

Note that we could envision fully general mappings with no constraints, but our
definition of General mappings makes good sense, and it is already the source of
several difficulties, so we did not tackle fully general mappings yet.

We conclude this section with a comment on the round-robin rule enforced for the
mapping of dealable stages onto several processors. With different speed processors,
a more efficient strategy to replicate a stage interval would be to let each processor
execute a number of instances proportional to its speed. For instance, with one fast
processor of speed 2 and a slower one of speed 1, we could assign twice as many data
sets to the fast processor than to the slow one. Each resource would then be fully
utilized. However, such a demand-driven assignment is quite likely to lead to an
out-of-order execution of data sets in the general case: because of the different pace
at which processors are executing the computations, the k-th data set may well exit
the replicated stage interval later than the k + 1-st data set. This would violate the
semantics of the application if, say, the next stage is monolithic. Because in real-life
applications, some stages are monolithic and some can be replicated, the round-robin
rule is always enforced [41, 106].

III.2 Optimization criteria

Before defining the optimization problem, we need to identify objective functions. In
fact, our aim is to find the best allocation function, i.e., the allocation function which
optimizes one (or several) criterion (criteria). In this section we first describe each
criterion separately (Section III.2.1), and then we explain how to simultaneously deal
with multiple criteria in Section III.2.2. Finally, we give a formal definition of period
and latency in Section III.2.3.

III.2.1 Criteria definition

For pipelined applications, the first objective that comes to mind is throughput max-
imization: the goal is to process as many data sets per time unit as possible. The
throughput measures the aggregate rate of processing of data, and it is the rate at
which data sets can enter the system. Equivalently, the inverse of the throughput,
defined as the period, is the time interval required between the beginning of the ex-
ecution of two consecutive data sets. For each data set, a processor reads the input
from its predecessor, executes computations corresponding to all the stages assigned
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to it, and sends the output to its successor. The processor periodically repeats this
operation cycle every period4.

However, looking back at classical scheduling, makespan minimization was an
important objective too. This remains true for pipelined applications, and in par-
ticular for real-time applications. The definition must be adapted, and we talk of
latency rather than of makespan, in order to avoid confusion. The latency is the
time elapsed between the beginning and the end of the execution of a given data set,
hence it measures the response time of the system to process the data set entirely.
Note that it may well be the case that different data sets have different latencies
(because they are mapped onto different processor sets), hence the latency is defined
as the maximum response time over all data sets.

We can already note that minimizing the latency is antagonistic to maximizing
the throughput. In fact, intuitively, assigning all application stages to the fastest pro-
cessor (thus working in a fully sequential way) would suppress all communications
and accelerate computations, thereby minimizing the latency, but achieving a very
bad throughput. Conversely, mapping each stage to a different processor is likely to
decrease the period, hence increase the throughput (work in a fully pipelined man-
ner), but the resulting latency will be high, because all inter-stage communications
must be accounted for in this latter mapping. Already we guess that trade-offs will
have to be found between these criteria. Indeed, several works deal with both these
criteria, for instance see [116],[J10].

With the advent of large-scale heterogeneous platforms, resources may be cheap
and abundant, but resource failures (processors/links) are more likely to occur and
have an adverse effect on the applications. Not only every user is quite likely to
face unrecoverable hardware failures when deploying applications on clusters or
grids [52, 55, 2, 46], but unrecoverable interruptions can also take place in other
important frameworks, such as loaned/rented computers being suddenly reclaimed
by their owners, as during an episode of cycle-stealing [7, 24, 107]. What if some
processor speed suddenly decreases (or worse the processor is no longer responding)?
The throughput and latency would be severely impacted by this sudden bottleneck.
Obviously, the mapping must be robust: it should be prepared, so to speak, to react
to resource variations, and should be capable to reserve more resources than needed
so as to re-allocate computations as the execution progresses, based on some his-
togram of the current execution. A solution consists in replicating the processing of
key stages, mapping them onto distinct sets of resources, and gathering results in a
data-flow operation mode. The question of determining which stages to replicate,
and to which extent, raises a clear trade-off between the price to pay for robustness
(or performance guarantees) and the efficient usage of resources at the system level.
Altogether, there is an increasing need for developing reliable schedules. Another
optimization criterion that could be maximized is thus the reliability of the schedule,
given a failure model for the resources5.

4Section III.2.3 formalizes this definition.
5Different failure models are investigated in Chapter 4, which targets dynamic platforms.
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Another important objective emerges for current platforms, namely the energy
minimization objective. Green scheduling aims at minimizing energy consumption,
by running processors at lower frequencies [8], or by reducing the number of pro-
cessors enrolled. Of course being “green” often involves running at a slower pace,
thereby reducing the application throughput.

In addition to being green, one may also want to reduce the number of processors
enrolled in order to reduce the cost of application execution. The user may need to
pay for processing units, memory cards, network cards, or she/he may want to rent
a target platform. The cost of the platform is thus another objective that can be
considered, which is antagonist to the performance objectives (with fewer processors,
you will not be able to be as fast and efficient).

Finally, even more objectives appear in a multi-application setting, with several
concurrent applications sharing (or competing for) common computational resources.
Indeed, some form of fairness must be guaranteed between all the applications. Typ-
ical measures are the maximum stretch of an application or the sum of all application
stretches [19]. The stretch of an application is the slowdown factor incurred by its
execution time when sharing resources with the other applications.

III.2.2 Dealing with multiple criteria

How to deal with so many objective functions? In traditional approaches, one would
form a linear combination of the different objectives and treat the result as the new
objective to optimize for. But is it natural for the user to maximize the quantity
0.7T + 0.3R, where T is the throughput and R the reliability? What about adding
latency and energy parameters into the story? Obviously, the problem here is that
we mix apples and bananas: the criteria are very different in nature and it does not
make much sense for a user to make a linear combination of them.

Users are more likely to ask questions like "I want a frame rate T and a response
time L for my JPEG encoder, what is the least amount of energy that I will con-
sume?” Thus we advocate the use of multi-criteria with thresholds. To give another
example, we would aim at maximizing the throughput of the application, but accept-
ing only schedules whose reliability is at least 99%. Now, each criteria combination
can be handled in a natural and meaningful way: one single criterion is optimized,
under the condition that a threshold is enforced for all other criteria.

III.2.3 Formal definition of period and latency

In Section III.1.2, we have formally defined the allocation function which character-
izes a mapping. However, this function alone does not give enough information to
compute the actual schedule of the application, i.e., the moment at which each oper-
ation takes place. Indeed, we need the complete list of the time-steps at which each
communication and computation begins and ends, in order to compute the period
and the latency of the mapping. Note that we target cyclic schedules, which repeat
for each data set when there is no deal replication, since each processor performs the
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same operations on all data sets (we explain the changes induced by deal replication
later). In this case, we are able to define an operation list which is polynomial in the
problem size:

• For each stage Si (1 ≤ i ≤ n), each processor u ∈ alloc(i), and each data set k,
BeginCompk

i,u is the time-step at which the computation of Si on Pu for data

set k begins, and EndCompk
i,u is the time-step at which this computation ends.

• For each stage Si (0 ≤ i ≤ n), each processor u ∈ alloc(i) and v ∈ alloc(i + 1),
and each data set k, BeginCommk

i,u,v is the time-step at which the commu-
nication between Pu and Pv for the output of Si for data set k begins, and
EndCommk

i,u,v is the time-step at which this communication ends.

• The schedule starts at time-step 0 with the data set number 0, and we impose
a cyclic behavior of period λ:















BeginCompk
i,u = BeginComp0

i,u + λ × k

EndCompk
i,u = EndComp0

i,u + λ × k

BeginCommk
i,u,v = BeginComm0

i,u,v + λ × k

EndCommk
i,u,v = EndComm0

i,u,v + λ × k

(2.1)

To each communication model are associated different rules that must be satisfied
by the operation list so that the schedule is valid: no resource constraint nor model
hypothesis is violated6. Note that all models are non-preemptive: once initiated,
a computation or a communication cannot be interrupted. Also, communications
are synchronous, and the bandwidth assigned to a given communication remains
the same during its whole execution (this is not really a restriction for the one-port
model but it is an important one for the multi-port model). With the operation list
we can define the period and the latency of a mapping:

• The period is P = λ;

• The latency is L = max{EndComm0
n,u,out | u ∈ alloc(n), } Remember that

the result for data set 0 is output to Pout after being processed for the last
stage, Sn.

If we consider a mapping with deal replication, the definition of Equation (2.1)
must be revisited since a processor may handle only part of the data sets for a
given stage. For instance, if Si is replicated on Pu and Pv, then BeginCompk

i,u

is defined only for even values of k, while BeginCompk
i,v is defined for the odd

values of k. We would then have BeginCompk
i,u = BeginComp0

i,u + λ × k and

BeginCompk
i,v = BeginComp1

i,v + λ × (k − 1), since Pv starts the computation for
Si on data set number 1. The same principle can be applied for communications:
we define BeginCommi,u,u′ and EndCommi,u,u′ for the data sets which are sent

6An exhaustive example of such constraints can be found in [C32].
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from Pu to Pu′ . This can be extended to all deal replication schemes, even though
it is complicated to write the general formula. Note that the mapping is not cyclic
anymore, but rather periodic since different data sets are taking different execution
paths. Even though the operation list is still polynomial in the problem size (at most
O(np2) constraints for the beginning and end of communications), it seems difficult
to check that an operation list is valid in polynomial time, since there might be an
exponential number of constraints.

The period definition does not change, even though some processors in charge of
a round of a deal will not process cyclically anymore, and thus have an individual
period equal to λ multiplied by the number of processors involved in the deal. For the
latency, however, we need to revisit the definition in order to consider the maximum
time taken by any data set, and there might be an exponential number of different
paths taken by data sets.

In the next section, we define the optimization problems, and it turns out that
in some cases we are able to give an analytic formula to express the period and
the latency of a given mapping, just based on the allocation function (and without
detailing the operation list). However, in other cases in which the period is not
dictated by a critical resource, finding the operation list which returns the smallest
period can become a difficult challenge by itself. In such cases, the operation list
which minimizes the period can either be computed with the help of a polynomial
algorithm, or the problem may turn out to be NP-hard.

III.3 Optimization problems

In this section, we focus on three criteria: period, latency and reliability. We start
with a study of a simple scenario with no replication, and targeting One-to-one

and Interval mappings7. We add the concept of replication for fault tolerance, and
we formally define the failure probability of an application. Then we introduce deal-
able and data-parallel stages: we revisit the simpler definitions and exhibit inherent
difficulties of these more complex models. Finally we show the increasing difficulty
introduced by General mappings.

III.3.1 Interval mappings with no replication

Given a one-to-one or an interval mapping with no dealable nor data-parallel stages
(and thus no replication), recall that m processors are enrolled in the mapping (one
per interval). It is then easy to define the latency: it is the maximum time required
by a data set to traverse all stages. Note that only inter-processor communications
need to be paid.

7Note that a one-to-one mapping can be expressed as an interval mapping with each interval
reduced to a single stage, i.e., m = n and dj = j for 1 ≤ j ≤ n. Therefore we give definitions only
for interval mappings.
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L(interval) =
∑

1≤j≤m

{

δdj−1

balloc(dj−1),alloc(dj)
+

∑ej

i=dj
wi

salloc(dj)

}

+
δn

balloc(dm),out

(2.2)

For the period, the definition differs depending on the communication model (the
rules to be satisfied in the formal definition of Equation (2.1) are different). In all
cases, the period is defined as the longest cycle-time of a processor, since the whole
application will synchronize on this processor which is the bottleneck of the pipeline:
P(interval) = max1≤j≤m cycletime(Palloc(dj)).

Under the one-port model without overlap (op), each processor successively re-
ceives a data set, performs computations corresponding to the stages assigned to it,
and finally outputs the result. Thus its cycle-time is the sum of its communication
times and computation time, and the period becomes:

P(int−op) = max
1≤j≤m

{

δdj−1

balloc(dj−1),alloc(dj)
+

∑ej

i=dj
wi

salloc(dj)
+

δej

balloc(dj),alloc(ej+1)

}

(2.3)

Note that alloc(dj−1) = alloc(ej−1) = alloc(dj−1) for j > 1 and d1−1 = 0. Also,
ej + 1 = dj+1 for j < m, and em + 1 = n + 1. We still assume that alloc(0) = 0 = in
and alloc(n + 1) = p + 1 = out.

However, if we consider the bounded multi-port model with overlap (mp), the
processor can simultaneously receive, compute and send, thus the sum in the above
formula becomes a maximum. Each processor is only performing one input and one
output communication, thus the bandwidth for this communication is the minimum
between the link bandwidth and the network card bound.

P(int−mp) = max1≤j≤m

{

max

(

δdj−1

min

„

balloc(dj−1),alloc(dj),B
i
alloc(dj)

« ,

Pej
i=dj

wi

salloc(dj)
,

δej

min

„

balloc(dj),alloc(ej+1),B
o
alloc(dj)

«

)

}

(2.4)

Note that these formulas are compatible with the formal definition of Equa-
tion (2.1). Indeed, in such a case the operation list which minimizes the period
or the latency can be defined from a mapping, and these minimum period/latency
can be computed through a formula, which renders the corresponding optimization
problems tractable.
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III.3.2 Replication for reliability

To improve execution reliability, the idea is to replicate stages onto several processors.
Such a replication is aimed at increasing the probability of a successful execution.
If two processors are assigned the same monolithic stage, both will execute all data
sets for this stage8. Here we deal with replication oriented towards reliability, where
computations are replicated on several processors so as to maximize the probability
of getting the results even if some processor(s) would fail. As stated in Section II.3,
we associate a failure probability 0 ≤ fu ≤ 1, 1 ≤ u ≤ p to each processor. The
failure probability can then be computed given the number m of intervals and the
set of processors assigned to each interval (set alloc(dj) for interval j, 1 ≤ j ≤ m):

F (int−fp) = 1 −
∏

1≤j≤m

(

1 −
∏

u∈alloc(dj)

fu

)

(2.5)

Equation (2.5) is easy to derive: the execution of an interval will succeed except
when all its assigned processors fail, and the whole execution will succeed only if all
intervals succeed.

When replicating for reliability, we need a standard consensus protocol to deter-
mine which of the surviving processors performs the outgoing communications [119].
In other words, such a consensus protocol allows to pay only one incoming commu-
nication (whichever comes first) while outgoing communications are serialized (feed
all processors assigned to the next interval). Equations (2.2), (2.3) and (2.4) must
be revisited because of these extra communications.

For the latency we need to take the longest path, in the worst case scenario of
processor failures. Thus, for each interval j, we assume that the surviving proces-
sor Pu elected by the consensus is the one that takes the longest time to compute
and perform all its outgoing communications. Moreover, we assume that it is the
last one to receive the input data: the elected processor for interval j−1 serializes its
output communications and in the worst case, the last processor to be served is Pu.
The following formula returns the more pessimistic latency:

L(int−fp) =
∑

u∈alloc(1)

δ0

bin,u
+
∑

1≤j≤m

max
u∈alloc(dj)







∑ej

i=dj
wi

su
+

∑

v∈alloc(ej+1)

δej

bu,v







(2.6)

For the period we pay a single incoming communication, and we replace the
single outgoing communication by the sum of the communications to all processors
responsible for the next interval. The worst case is easy to derive through a formula:
for each processor we account for the slowest incoming communication link, and we
assume that this processor has been chosen to perform the output communications,
and thus account for all outgoing communications. We give the formula only in the

8Note that this replication is different from the replication of a non-monolithic stage.



III. MULTI-CRITERIA MAPPING PROBLEMS 27

one-port model without overlap; indeed it is quite similar for the bounded multi-port
model, except that the sum of input communications, output communications, and
computations is replaced by a maximum, and network card bandwidths are added
into the formula.

P(int−fp) = max
1≤j≤m

max
u∈alloc(dj)







δdj−1

min
v∈alloc(dj−1)

bv,u
+

∑ej

i=dj
wi

su
+

∑

v∈alloc(ej+1)

δej

bu,v







(2.7)

As already pointed out, these expressions of period and latency are a worst case
scenario, and the achieved period and/or latency of the application may well be much
better. However, the optimization problem is formally defined as the minimization
of the worst case period or latency. Indeed, when defining the operation list for the
formal definition of Equation (2.1), we need constraints to be satisfied for all failure
scenarios.

III.3.3 Replication for period and latency

In this section, we first consider dealable stages, and then we move to data-parallel
stages. In both cases, we discuss the impact of replication on the computation of the
operation list which minimizes the period or the latency, for both communication
models (bounded multi-port with overlap and one-port without overlap).

Dealable stages. If a stage is dealable, several consecutive computations can be
mapped onto distinct processors, and data sets are processed in a round-robin fashion
by these processors. The computations of a replicated stage can be fully sequential
for a given data set, as long as they do not depend upon previous results for other
data sets. We can also replicate an interval of dealable stages. In such a case,
different data sets will be processed by different processors, and the latency can be
computed as the longest path taken by a data set. Thus, replicating a stage or an
interval of stages cannot decrease latency. However, each processor gets fewer data
sets to process, thus the period may decrease. On the other hand, the replication of
a data-parallel stage can decrease both the latency and the period, at the price of
consuming several resources for a given stage.

Defining the cost model for replicated stages is difficult, in particular when two
or more consecutive intervals are replicated onto several (distinct) processor sets,
and under the one-port model without overlap. Let us start with the replication of a
single stage: assume that Si is replicated onto processors Pq1 to Pqk

. What is the time
needed to process this stage? Because Pq1 to Pqk

execute the stages in round-robin
fashion, the processing time will not be the same for each data set, and we define
the traversal time travi of Si as the longest time taken by any processor. With no
communication, travi is easy to compute from the processor speeds, and the period is
then equal to travi

k
= wi

k min1≤u≤k squ
, because each processor computes every k-th data
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set: the slowest processor has indeed travi time-steps available between the arrival
of two consecutive inputs. However, it is difficult to write formulas for travi when
there are communication times. If the stages before and after Si are not replicated,
the source of the input and the destination of the output remain the same for each
assigned processor Pqu (1 ≤ u ≤ k), which does simplify the estimation: we would
define travi as the longest time needed for a processor to receive a message from the
source, perform its computations and output the message to the destination. But if,
for instance, the stage before Si is replicated, or belongs to a replicated interval, the
source of the input will vary from each processor assigned to the latter stage, and it
becomes tricky to analyze the time needed to send and receive messages between any
processor pair. We can always take the longest path over all possible pairs, but there
may appear synchronization issues that complicate the estimation. Indeed, in some
cases, there is no critical resource, and thus we do not know how to estimate the
period with an analytical formula. We discuss and exhibit such cases in Chapter 4,
where we use a model based on timed Petri nets in order to compute the period of
a mapping with replicated dealable stages and communications.

With no constraint on the period, however, the latency can be computed as a
longest path: every data set may take a different execution path, and the latency is
constrained by the data set which takes the longest time. Resources are not shared
between data sets since we can always enforce a period equal to the latency, and thus
no more than one data set is processed by the application at any time. Note that if
a threshold period must be respected (as in bi-criteria problems), then conflicts of
resources used by different data sets are likely to occur, hot spots and synchronization
issues appear again, and the story becomes much more complex.

Data-parallel stages. When introducing data-parallel stages, even the computa-
tional model requires some attention. Consider a stage Si to be data-parallelized
on processors Pq1 to Pqk

. We could assume that a fraction of the computations is
inherently sequential, hence cannot be parallelized, and thus introduce a fixed over-
head oi that would depend only on the stage and not on the assigned processors.
Assuming that each processor executes a share of the work proportional to its speed,
the time required to compute Si on one data set is then oi + wi

Pk
u=1 squ

. In this case,

modeling communication costs is even more difficult than for replicated stages. First,
we need to model intra-stage communications. For example we can envision that a
given processor, say Pq1 , acts as the master and delivers some internal data to the
remaining processors Pq2 to Pqk

, which in turn will return their partial results to
Pq1 . This scenario would call for a more sophisticated distribution of the work than
a simple proportional sharing, because some fast computing processor Pqj

may well
have a low bandwidth link with Pq1 . In addition, inter-stage communications, i.e.,
input and output data, induce the same difficulties as for replicated stages, as they
originate from and exit to various sources. The next difficulty would be to chain
two dependent data-parallel stages on two distinct processor sets, which calls for a
precise model of redistribution costs.
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Model with no communication. Altogether, we see that it is very difficult to
come with a satisfactory model for communications, and that replicated and data-
parallel stages dramatically complicate the story. For such applications, we present
in Chapter 3 complexity results for a very simplified model, where all communi-
cation costs and overheads are neglected. This is the price to pay in order to be
able to express the period and the latency of a mapping with an analytical formula.
We agree that such a model may be realistic only for large-grain applications. In
fact, our objective is to assess the inherent difficulty of the period and/or latency
optimization problems with replication, and we believe that the complexity results
established in this framework will provide a sound theoretical basis for more experi-
mental approaches.

Replication for performance versus replication for reliability. In this sec-
tion, we have discussed the difficulties induced by replication for performance, i.e.,
dealable or data-parallel stages, when there are communications. However we point
out that it is possible to mix replication for reliability (redundant computation of
data sets) and replication of dealable or data-parallel stages (round-robin or parallel
computation of data sets), even though it mixes the difficulties of both models. For
those cases which are tractable, we detail the corresponding formulas in the following
section.

III.3.4 Optimization problems for General mappings

We have seen above that optimization problems for one-to-one and interval mappings
can be formalized in most of the cases. The difficulties arise from the introduction of
data-parallel stages (both for latency and period definition), and also the definition
of the period with replication of dealable stages, in particular when communications
are heterogeneous (Fully Heterogeneous platforms).

If we move to general mappings, some of the previous problems become even
more complicated, because a processor may have several distinct computations and
communications to perform, and it may be difficult to decide how to order these
communications in the operation list. The failure probability and latency can still
be relatively easily defined, while the period causes more problems.

Failure probability. First, we generalize the definition of the failure probability
function, including all kinds of replication. Recall that processors are organized into
teams, and a subset of stages is allocated to each team. A team either processes the
whole subset of stages, or it is processing a round of a deal on this subset, or finally
it can handle a fraction of a data-parallel computation (if the subset is reduced to a
single stage). In all cases, the application will be successful if and only if there is at
least one surviving processor per team. Note that this expression works because we
assume that one processor can be involved only in one single team, according to our
definition of general mappings. Thus we have:
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F (gen) = 1 −
∏

1≤j≤m

∏

1≤k≤tdj

(

1 −
∏

u∈Tdj,k

fu

)

(2.8)

Latency. The latency can also be defined for general mappings in a mono-criterion
problem: we can assume that a data set enters the pipeline only once the previous
one has been output, thus we avoid any conflicts during execution. The latency is
then defined as the longest path taken by a data set (recall that paths may differ
from one data set to another because of replication).

For 1 ≤ i ≤ n, we set ∆i = 1 if Si−1 and Si are in the same subset, i.e., ∃j ∈ [1..m]
such that i − 1 ∈ stagesj and i ∈ stagesj . Otherwise, ∆i = 0. Then, for 1 ≤ i ≤ n,
we denote by travi the maximum traversal time for Si. If typei 6= dp, i.e., Si is
not data-parallel, then the traversal time is constrained by the slowest processor
computing Si: travi = wi

minu∈alloc(i)su
.

When Si is data-parallel, the computation is parallelized and the effective speed of
the computation is obtained by summing the speeds of the slowest processor in each
team. Recall that Ti,k denotes the set of processors in the k-th team processing Si.
We have travi = wi

P

1≤k≤ti
minu∈Ti,k

su
. However, as discussed previously, it is difficult

to account for communications in a data-parallel scheme, and the communication
time to the various processors is difficult to estimate. Thus this traversal time is
valid only in a case with no communication and no start-up overhead. In such a
case, the latency is the sum of the traversal times, L =

∑

1≤i≤n travi.

We are then ready to write the latency formula which is valid for Communication
Homogeneous platforms if there is no data-parallelism. Note that communications
to stage Si are paid as many times as the number of processors in the target team.
Also, one final communication is paid to output the result.

L(gen) =
∑

1≤i≤n

(

max
1≤k≤ti

{

∆i|Ti,k|
δi−1

b
+

wi

minu∈Ti,k
su

})

+
δn+1

b
(2.9)

No formula can be written for Fully Heterogeneous platforms because of the
complexity added by heterogeneous communications. We could easily replace the
constant bandwidths b in Equation (2.9) by the minimum bandwidth between all
couples of processors involved in the communication. However, this would be an
upper bound of the latency, since slower links might be compensated by faster pro-
cessors in the execution paths. Moreover, it is easy to compute the exact latency in
polynomial time, since it only amounts to computing a longest path in a directed
acyclic graph.

A difficulty arises when considering latency in a bi-criteria setting in which we
also try to minimize the period. If a fixed period must be respected, then conflicts
can occur, the ordering of communications is vital, and problems similar to those
encountered with the period must be tackled. We now discuss the period for general
mappings.
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Period. We already explained why it is difficult to express the period of a linear
chain application mapping with replication as an analytical formula, even for the
simpler case of Interval mappings. We now focus on general mappings with no
replication for period and latency, but only replication for failure. Under the bounded
multi-port model with overlap, the period is defined as the maximum cycle-time of
a processor, and since all communications can occur in parallel, a processor Pu is
performing all its input communications on, say, data sets k1+1, . . . , kℓ+1, while it is
computing data sets k1, . . . , kℓ and sending the result for data sets k1 − 1, . . . , kℓ − 1.
Here, ℓ is the number of intervals of consecutive stages that Pu has been assigned,
and the processor works simultaneously on various data sets, hence avoiding conflicts.
This way, we can guarantee that the optimal period is reached, and come up with a
valid operation list satisfying the definition of Equation (2.1). Formally, the period
is therefore defined as:

P(gen−mp) = max1≤j≤m max u∈alloc(dj)

{

max

(

max
i∈stagesj

max
v∈alloc(i−1)

∆i
δi−1

bv,u
,

∑

i∈stagesj

∆i
δi−1

Bi
u

,

P

i∈stagesj
wi

su
,

max
i∈stagesj

max
v∈alloc(i+1)

∆i+1
δi

bu,v
,

∑

i∈stagesj

∆i+1
δi

Bo
u

)}

(2.10)

The first line represents constraints on input communications: the period is
greater than the maximum incoming communication of subset j, and also the sum
of incoming communications is constrained by the input network bandwidth card of
the processor. An incoming communication is paid if and only if the previous stage
is not in the same subset, i.e., ∆i = 1. Similarly, the third line expresses constraints
on output communications. The second line ensures that the period is greater than
the computation time for each subset.

However, in the model without overlap, conflicts arise similarly to the case with
replication because of communications, and it is actually NP-hard to decide in which
order communications should be performed (i.e., find a valid operation list) in order
to obtain the minimum period9.

9This NP-completeness proof is part of recent work with Fanny Dufossé, Loïc Magnan and Yves
Robert, and will soon appear as a research report on my webpage. In the meantime, please ask me
for details.
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IV Summary and conclusion

In this chapter, we have presented a realistic model to express multi-criteria problems
for the scheduling of linear chain applications. We introduced replication for reli-
ability, and also replication for performance with dealable and data-parallel stages.
We described two communication models, the one-port model without overlap, and
the bounded multi-port model with overlap.

In most cases, we were able to formally define the period, latency and failure
probability of a given mapping as an analytical formula, and in particular when
restricting to a class of simple but realistic mappings, such as Interval mappings.
This allowed us to circumvent the formal definition of Equation (2.1), based on the
operation list. However, we could not come up with a reasonable model for data-
parallel stages when taking communications into account, and it seems difficult to
handle dealable stages on Fully Heterogeneous platforms (we will exhibit in Chapter 4
cases in which, given an allocation function, the operation list which minimizes the
period can be found in polynomial time, and cases in which this problem is NP-hard).

When considering General mappings, and restricting to replication for relia-
bility (which is much easier to handle than replication for performance), problems
became even harder because a processor is no longer involved in a single commu-
nication. Under the bounded multi-port model with overlap, the period can still
be defined with an analytical formula, while it turns out that finding the minimum
period (i.e., a valid operation list which minimizes the period) of a given mapping is
NP-hard under the one-port model with no overlap. So guess the difficulty of finding
the best mapping! Anyway, we are now ready to tackle this additional difficulty,
for cases in which we can come up with a formula to define our three optimization
criteria: failure probability, latency and period. This is the goal of Chapter 3.
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n number of stages
Si stage i
δi size of data output for stage i
wi amount of computations for stage i

p number of processors
Pu processor u

Pin, Pout special processors for input/output, Pin = P0 and Pout = Pp+1

su speed of processor Pu

fu failure probability of Pu

Bi
u input network card capacity of Pu

Bo
u output network card capacity of Pu

linku,v bidirectional link between Pu and Pv

bu,v bandwidth of link linku,v

m number of intervals (or subsets)
Ij = [dj , ej ] interval j

stagesj stage indices in subset j; dj ∈ stagesj

∆i equals 1 if Si−1 and Si are in the same subset, 0 otherwise

alloc(i) processor, or set of processor indices, assigned to Si

ti number of teams for Si

Ti,k k-th team working on Si (1 ≤ k ≤ ti)
typei stage type, equal to dp or deal, if replicated

oi data-parallelization overhead
travi traversal time of Si

L latency
P period
F failure probability

Table 2.1: Notations for Chapters 2 and 3.
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Complexity results

for linear chain applications

CHAPTER

3

In this chapter, we present complexity results for the various optimization problems
defined in Chapter 2. We are interested in the scheduling of linear chain applications,
onto computational platforms which range from Fully Homogeneous to Fully Hetero-
geneous . We have introduced many optimization criteria, and in particular we have
identified cases in which we were able to express the failure probability, the latency,
and the period of a given mapping as an analytical formula (recall that finding the
operation list which minimizes the period for a given maping is NP-hard in some
cases).

We first tackle mono-criterion optimization problems in Section I, for those cases
which were identified as tractable in the previous chapter. Then we add more chal-
lenges with a study of bi-criteria optimization problems, i.e., we optimize one crite-
rion while a threshold should not be exceeded for the other one (Section II). The
chapter ends with a short summary and conclusion in Section III.

Recall that all notations are summarized in Table 2.1 (page 33).

I Mono-criterion problems

In this section, we address mono-criterion problems by increasing order of difficulty.
We start with the failure probability in Section I.1, which can be easily solved in
a mono-criterion setting, and only raises some issues for One-to-one mappings.
Then we address in Section I.2 the problem of latency, which is not difficult for
Communication Homogeneous platforms with no replication, but surprisingly turns
out more tricky on Fully Heterogeneous platforms or when considering data-parallel
stages. Finally, we consider in Section I.3 the period minimization problem, for which
it is in some cases NP-hard to even compute the period of a given mapping, i.e., find
a valid operation list which minimizes the period.

I.1 Failure probability

The failure minimization problem turns out simple for Interval and General

mappings:

Theorem 1. Minimizing the failure probability can be done in polynomial time for
Interval and General mappings.
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Table 3.1: Summary of complexity results for failure probability.

Failure Hom. Failure Het.

One-to-one polynomial NP-hard

Interval polynomial

General polynomial

Proof. This can be seen easily from Equation (2.8) which states that in the most
general case,

F = 1 −
∏

1≤j≤m

∏

1≤k≤tdj

(1 −
∏

u∈Tdj,k

fu).

The minimum is reached by replicating the whole pipeline as a single interval (m =
1) consisting in a single team (t1 = 1) on all processors (T1,1 = {1, . . . , p}), thus
obtaining F =

∏p
u=1 fu. This is true for all stage and platform types.

Note that for this criterion, there is no need to assign dealable or data-parallel
stages onto several distinct processors, since this kind of replication only affects the
period and the latency. This result is naturally retrieved from the failure probability
formula, which states that no replication for performance should be performed in
order to minimize the failure probability.

The problem turns out slightly more complex for One-to-one mappings.

Theorem 2. Minimizing the failure probability can be done in polynomial time for
One-to-one mappings if the platform is Failure Homogeneous; the problem is NP-
hard for Failure Heterogeneous platforms.

Proof. For Failure Homogeneous platforms, if we restrict to one-to-one mappings,
the failure probability formula still indicates that no replication for dealable or data-
parallel stages should be used. Then the minimum is reached by balancing the
number of processors allocated to each stage, thus for instance allocate processors in
round robin to stages.

For Failure Heterogeneous platforms, the problem is obviously in NP, and the
reduction comes from 3-PARTITION [54]. Given 3n positive integers a1, ..., a3n,
we build an instance of our problem as a pipeline composed of n stages, and the
platform made of 3n processors with fi = 2−ai , for 1 ≤ i ≤ 3n. Since 3-PARTITION
is NP-hard in the strong sense, we can encode the ai in unary, and thus the size
of our instance is polynomial in the problem size (the fi are coded in binary, thus
in a size log(fi)). The F formula is minimized if failure probabilities are balanced
between stages, and a perfect load balancing is achieved when a 3-partition exists
(the product of fi amounts to sum the ai).

Table 3.1 summarizes complexity results for the different instances of the failure
probability minimization problem. Even though these mono-criterion problems are
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very simple for the most realistic cases of interval and general mappings, we will see in
Section II.2 that bi-criteria problems involving reliability issues are more challenging.

I.2 Latency

In this section we discuss the latency minimization problem. First, note that the
replication of dealable stages can only increase latency, so does the replication for
reliability. Only the replication of data-parallel stages can impact latency. We first
discuss the case with no data-parallelism, and then we introduce it, at the price of
suppressing communications (see discussions in Chapter 2).

No data-parallelism. Recall that Equation (2.9) shows how to compute the la-
tency for mappings with no data-parallelism, for Communication Homogeneous plat-
forms. Intuitively, latency is small when all communications are zeroed out. This is
true for Fully Homogeneous and Communication Homogeneous platforms.

Theorem 3. With no data-parallelism, the latency minimization problem is polyno-
mial on Fully Homogeneous and Communication Homogeneous platforms. Finding
the General mapping which minimizes the latency is also polynomial on Fully Het-
erogeneous platforms, while the problem turns out NP-hard for One-to-one and
Interval mappings.

Let us first discuss Fully Homogeneous and Communication Homogeneous plat-
forms. For interval and general mappings, the optimal solution is to map all stages on
the fastest processor: all communications are zeroed out, except input/output ones.
For one-to-one mappings, the optimal solution consists in assigning the most com-
putationally expensive stages to the fastest processors, in a greedy manner (largest
stage on fastest processor, second largest on second fastest, and so on). The detailed
proof can be found in [C31].

This does not work any more for Fully Heterogeneous platforms, because of input
and output communications. Indeed, it turns out that both one-to-one and interval
mapping problems become NP-hard, see [C19] and [J14] for the involved reductions
which prove the completeness of these problems. However, finding the general map-
ping which minimizes the latency on Fully Heterogeneous platforms can be done in
polynomial time, since it amounts at finding a shortest path in a graph (see [C19]).

With data-parallelism. Since we neglect communication costs, we do consider ei-
ther homogeneous platforms with same speed processors, or heterogeneous platforms
with different speed processors. We have the following result:

Theorem 4. With data-parallelism and no communication, the latency minimiza-
tion problem is polynomial on homogeneous platforms. Finding the mapping which
minimizes the latency is NP-hard on heterogeneous platforms.

The proofs, which are technical, can be found in [J10]. In the homogeneous
case, we exhibit a complex dynamic programming algorithm for interval mappings.
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Table 3.2: Summary of complexity results for latency.

Fully Hom. Comm. Hom. Hetero.

no DP, One-to-one polynomial [C31] NP-hard [C19]

no DP, Interval polynomial [C31] NP-hard [J14]

no DP, General polynomial [C19]

with DP, no coms polynomial [J10] NP-hard [J10]

This dynamic programming scheme can be rather easily extended to one-to-one and
general mappings, thus filling all complexity gaps. For heterogeneous processors,
the reduction proposed in [J10] comes from 2-PARTITION, and the instance of our
problem consists of a 2-stages pipeline. The corresponding mapping is a one-to-one
mapping, which is also an interval and a general mapping, thus the reduction works
for all mapping types, which proves the NP-hardness of all problems.

Table 3.2 summarizes complexity results for the different instances of the latency
minimization problem.

I.3 Period

We discuss in this section the period minimization problem, for problem instances on
which we are able to express the period with a formula. First, note that replication
for reliability cannot decrease the period, thus we assume that the optimal mapping
does no such replication. However, both replication of dealable stages and data-
parallel stages decrease the period, and should be considered.

We start in a scenario with only monolithic stages, i.e., we do not yet consider
any replication, and we consider one-to-one mappings.

Theorem 5. For Fully Homogeneous and Communication Homogeneous platforms,
the optimal One-to-one mapping with no replication can be determined in polyno-
mial time; the problem becomes NP-hard on Fully Heterogeneous platforms.

For Fully Homogeneous and Communication Homogeneous platforms, the optimal
mapping can be found with a binary-search algorithm on the period, that iterates
until the optimal period is found. At each step of the binary search, a greedy
assignment procedure checks whether the period can be achieved or not. No simple
greedy algorithm allow to compute the optimal mapping, but the binary search in the
above algorithm can be performed in polynomial time. Please refer to [J9] for details
of this sophisticated algorithm, which mixes binary search and greedy algorithm, for
the one-port model without overlap. Note that a similar algorithm works for the
bounded multi-port model with overlap, but that instead of checking whether the
sum of communications and computations fits into the period, one may check that
the maximum respects the fixed period. Therefore, the result holds true for both
communication models.
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For Fully Heterogeneous platforms, the problem turns out to be NP-hard, see [J9]
(the involved reduction comes from the MINIMUM METRIC BOTTLENECK WAN-
DERING SALESPERSON PROBLEM, [6, 44]).

We now proceed to interval mappings, still with a pipeline consisting only of
monolithic stages (and thus, no replication). In a simplified case with no commu-
nication costs, this scheduling problem is similar to the well-known chains-to-chains
problem, which consists in partitioning an array of n elements a1, a2, . . . , an into p in-
tervals whose element sums are well balanced (technically, the aim is to minimize the
largest sum of the elements of any interval). Several algorithms and heuristics have
been proposed to solve this load-balancing problem, including [25, 70, 59, 71, 98].
We refer the reader to the survey paper by Pinar and Aykanat [102] for a detailed
overview and comparison of the literature. It amounts to load-balance n compu-
tations whose ordering must be preserved (hence the restriction to intervals) onto
p identical processors. For Fully Homogeneous platforms, the period minimization
problem remains polynomial even in presence of communications. However, the ad-
vent of heterogeneous clusters naturally leads to the following generalization of the
chains-to-chains problem: can we partition the n elements into p intervals whose el-
ement sums match p prescribed values (the processor speeds) as closely as possible?
We established the NP-hardness of this important extension of the chains-to-chains
problem, and thus the NP-completeness of the period minimization problem on Com-
munication Homogeneous platforms. The involved reduction (see [J9]) comes from
the NUMERICAL MATCHING WITH TARGET SUMS problem, which is NP-
complete in the strong sense [54].

The optimal interval mapping on Fully Homogeneous platforms can be obtained
in polynomial time with a dynamic programming algorithm: we recursively compute
the optimal period that can be achieved by any interval mapping of stages Si to Sj

using exactly k processors, for 1 ≤ i ≤ j ≤ n and 1 ≤ k ≤ p. Please refer to [J9] for
details1.

It is not possible to extend the previous dynamic programming algorithm to
deal with Communication Homogeneous platforms. This is because the algorithm
intrinsically relies on identical processors in the recursion. Heterogeneous processors
would execute sub-intervals with different cycle-times. Because of this additional
difficulty, the Interval problem for Communication Homogeneous platforms is NP-
hard, see [J9]. Note that the proof considers an application with no communication
costs, thus it remains valid whatever the communication model.

Theorem 6. For Fully Homogeneous platforms, the optimal Interval mapping
with no replication can be determined in polynomial time; the problem is NP-hard on
Communication Homogeneous and Fully Heterogeneous platforms.

For general mappings, we restrict to the bounded multi-port model with overlap
(otherwise we do not have a formula to express the period of a given mapping). In

1Here again, the proof was originally written for the one-port model without overlap, but the
extension to the bounded multi-port model with overlap is not difficult.
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Table 3.3: Summary of complexity results for period.

Fully Hom. Comm. Hom. Hetero.

One-to-one polynomial [J9] poly., NP-hard (rep) [J9] NP-hard [J9]

Interval polynomial [J9] NP-hard [J9] NP-hard [J9]

General NP-hard, poly. (rep) NP-hard

this case, even for a simple application with no communication costs, the problem
is NP-hard for Fully Homogeneous platforms. Indeed, consider a pipeline consist-
ing in n monolithic stages with computation costs ai, and two identical processors.
It is straightforward to see that the general mapping problem is equivalent to 2-
PARTITION [54], which leads to the following theorem:

Theorem 7. Finding the optimal General mapping with no replication under the
bounded multi-port model with overlap is NP-hard on all platform types.

Table 3.3 summarizes complexity results for the different instances of the period
minimization problem. General mapping problems are all NP-hard, for those in-
stances for which the period can be expressed as a formula. We see that one level
of heterogeneity (in processor speed) is enough to make interval mapping problems
NP-hard, while two levels of heterogeneity (adding different link bandwidths) are
required to make one-to-one mapping problems NP-hard as well.

When adding replication, almost all problems remain of the same complexity.
However, the polynomial case of one-to-one mappings on Communication Homoge-
neous platforms becomes NP-hard, and the NP-hard case of general mappings on
Fully Homogeneous platforms becomes polynomial.

The new NP-completeness proof can be found in [J10]. The reduction comes
from 2-PARTITION [54], and we build a 2-stages pipeline for which we enforce that
data-parallelism should used (because of different-speed processors, replication would
waste resources, since all processors synchronize on the slowest one).

Then, all other NP-completeness proofs on Communication Homogeneous plat-
forms can be adapted. For one-to-one and interval mappings, we can enforce that
only one processor can be used per interval, and thus no replication is possible. For
general mappings, we can enforce that data-parallelism must be used, by having dif-
ferences in processor speeds, such that the waste of resources in case of replication
of dealable stages is not acceptable. This does not work for general mappings on
Fully Homogeneous platforms, but this case becomes easy, similarly to the interval
mapping case: with replication, the interval or general mapping which minimizes the
period consists in replicating the whole pipeline as a single interval on all processors,
see [J10]. The problem is thus of polynomial complexity.

Finally, for one-to-one mappings on Fully Homogeneous platforms, we assign at
first one processor per stage, and then we add processors to the stages with the
greatest remaining period, until all processors are distributed. It is easy to see that
this greedy algorithm returns the optimal period. This fills all complexity gaps.
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II Bi-criteria problems

Now that the complexity of all mono-criterion problems has been established, we are
ready to deal with bi-criteria objective functions. As stated in Chapter 2, we aim at
minimizing one objective under threshold constraints on the other objective, which
seems more natural than the minimization of a linear combination of both criteria.
We focus in this section to the case of interval mappings, which are both realistic
and tractable. Also, we do not investigate trade-offs between replication for failure
and replication for performance, and we consider that all stages are monolithic.
Extensions will be discussed in Section III.

In Section II.1, we aim at minimizing the latency under period constraints (or the
converse). Because most problem instances are NP-hard, we provide a formulation
in terms of an integer linear program.

In Section II.2, we investigate trade-offs between latency and failure probability.
We succeed in identifying problem instances that have polynomial complexity. For
those problems which are NP-hard, we cannot even cast the problem in terms of a
linear program, because of the strong non-linearity of Equation (2.8).

We do not deal with the last combination, i.e., period/reliability optimization
problems, because both difficulties sum up: period minimization is NP-hard in most
instances, hence the bi-criteria problem is NP-hard as well, and an integer linear
program formulation seems unreachable.

II.1 Period and latency

In this section we deal with the problem of minimizing the period under latency
constraints, or the converse. Recall from Section I.3 that the period minimization
problem is already NP-hard for interval mappings on Communication Homogeneous
platforms. Of course, the bi-criteria period/latency interval mapping optimization
remains NP-hard for Communication Homogeneous and Fully Heterogeneous plat-
forms, since the period minimization problem already is NP-hard for such mappings.
Note that the bi-criteria problem is polynomial for Fully Homogeneous platforms,
see the dynamic programming algorithm in [116].

In the following, we present an integer linear program to compute the optimal
interval mapping on Fully Heterogeneous platforms, respecting either a fixed latency
or a fixed period. Recall that we have n stages and p processors, plus two fictitious
extra stages S0 and Sn+1 respectively assigned to two extra processor P0 and Pp+1.
First we need to define a few variables:

• For i ∈ [0..n+1] and u ∈ [0..p+1], xi,u is a boolean variable equal to 1 if stage
Si is assigned to processor Pu; we let x0,0 = xn+1,p+1 = 1, and xi,0 = xi,p+1 = 0
for 1 ≤ i ≤ n.

• For i ∈ [0..n] and u ∈ [0..p + 1], yi,u is a boolean variable equal to 1 if stages
Si and Si+1 are both assigned to Pu; we let yi,0 = yi,p+1 = 0 for all i, and
y0,u = yn,u = 0 for all u.
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• For i ∈ [0..n], u, v ∈ [0..p + 1] with u 6= v, zi,u,v is a boolean variable equal
to 1 if stage Si is assigned to Pu and stage Si+1 is assigned to Pv: hence
linku,v : Pu → Pv is used for the communication between these two stages. If
i 6= 0 then zi,0,v = 0 for all v 6= 0 and if i 6= n then zi,u,p+1 = 0 for all u 6= p+1.

• For u ∈ [1..p], firstu is an integer variable which denotes the first stage assigned
to Pu; similarly, lastu denotes the last stage assigned to Pu. Thus Pu is assigned
the interval [firstu, lastu]. Of course 1 ≤ firstu ≤ lastu ≤ n.

• O is the variable to optimize, so depending on the objective function it corre-
sponds either to the period or to the latency.

We list below the constraints that need to be enforced. For simplicity, we write
∑

u instead of
∑p+1

u=0 when summing over all processors.

• Every stage is assigned exactly one processor: ∀i ∈ [0..n + 1],
∑

u xi,u = 1.

• For all i ∈ [0..n], the communication from Si to Si+1 either is assigned a
communication link, or both stages are assigned to the same processor:

∀i ∈ [0..n],
∑

u 6=v

zi,u,v +
∑

u

yi,u = 1

• If stage Si is assigned to Pu and stage Si+1 to Pv, then linku,v : Pu → Pv is
used for this communication:

∀i ∈ [0..n],∀u, v ∈ [0..p + 1], u 6= v, xi,u + xi+1,v ≤ 1 + zi,u,v

• If both stages Si and Si+1 are assigned to Pu, then yi,u = 1:

∀i ∈ [0..n],∀u ∈ [0..p + 1], xi,u + xi+1,u ≤ 1 + yi,u

• If stage Si is assigned to Pu, then necessarily firstu ≤ i ≤ lastu. We write
this constraint as:

∀i ∈ [1..n],∀u ∈ [1..p], firstu ≤ i.xi,u + n.(1 − xi,u)

∀i ∈ [1..n],∀u ∈ [1..p], lastu ≥ i.xi,u

• If stage Si is assigned to Pu and stage Si+1 is assigned to Pv 6= Pu (i.e.,
zi,u,v = 1) then necessarily lastu ≤ i and firstv ≥ i + 1 since we consider
intervals. We write this constraint as:

∀i ∈ [1..n − 1],∀u, v ∈ [1..p], u 6= v, lastu ≤ i.zi,u,v + n.(1 − zi,u,v)

∀i ∈ [1..n − 1],∀u, v ∈ [1..p], u 6= v, firstv ≥ (i + 1).zi,u,v
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The latency of the schedule is bounded by L:

p
∑

u=1

n
∑

i=1





(

∑

t6=u

δi−1

bt,u
zi−1,t,u

)

+
wi

su
xi,u



+

(

p
∑

u=0

δn

bu,p+1
zn,u,p+1

)

≤ L.

There remains to express the period of each processor and to constrain it by P:

∀u ∈ [1..p],
n
∑

i=1





(

∑

t6=u

δi−1

bt,u
zi−1,t,u

)

+
wi

su
xi,u +

(

∑

v 6=u

δi

bu,v
zi,u,v

)



 ≤ P.

Finally, the objective function is either to minimize the period P respecting the
fixed latency L or to minimize the latency L with a fixed period P. So in the first
case we fix L and set O = P. In the second case P is fixed a priori and O = L.
With this mechanism the objective function reduces to minimizing O in both cases.

We have O(np2) variables, and as many constraints. All variables are boolean or
integer, except the period and latency, which are rational. Heuristics and experiments
for the period/latency problem can be found in [C18],[C21].

II.2 Latency and reliability

In this section we deal with the problem of minimizing the latency under reliabil-
ity constraints, or the converse. As in the previous section, we restrict to interval
mappings which correspond to the more realistic cases.

We start with a preliminary lemma which proves that there exists an optimal
solution of both bi-criteria problems consisting of a single interval for Fully Ho-
mogeneous platforms, and for Communication Homogeneous-Failure Homogeneous
platforms.

Lemma 1. On Fully Homogeneous and Communication Homogeneous-Failure Ho-
mogeneous platforms, there is a mapping of the pipeline as a single interval which
minimizes the failure probability under a fixed latency threshold, and there is a map-
ping of the pipeline as a single interval which minimizes the latency under a fixed
failure probability threshold.

The proof can be found in [C19]. We point out that this lemma cannot be
extended to the case Communication Homogeneous and Failure Heterogeneous . Fig-
ure 3.1 provides a counter-example application; the latency threshold is fixed to 22,
and the target platform consists of 11 processors with the following characteristics:

• processor P1 is slow but reliable: s1 = 1 and f1 = 0.1;
• the 10 remaining processors Pu, 2 ≤ u ≤ 11, are fast but unreliable: su = 100

and fu = 0.8;
• all communication links have a bandwidth b = 1.

Let us consider a mapping consisting of a single interval. Then the slow processor
P1 cannot be used in the replication scheme, otherwise the latency is greater than
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0
S2S1

w1 = 1 w2 = 100

10 1

Figure 3.1: Counter-example with 2 intervals.

10+101/1 > 22. Also, if we use three fast processors, the latency is 3∗10+101/100 >
22. Thus the best solution uses two fast processors and has a failure probability of
1− (1− 0.82) = 0.64, which is very high. We can do much better with two intervals,
by using the slow processor on the slow stage, and then replicate ten times the second
stage on the fast processors, achieving a latency of 10 + 1/1 + 10 ∗ 1 + 100/100 = 22
and a failure probability of 1− (1− 0.1).(1− 0.810) < 0.2. Thus the optimal solution
does not consist of a single interval in this case.

For Fully Homogeneous platforms, we consider that all failure probabilities are
identical, since the platform is made of identical processors. We have seen from
Lemma 1 that the optimal solution for a bi-criteria mapping on such platforms always
consists in mapping the whole pipeline as a single interval. Otherwise, both latency
and failure probability would be increased. It is then easy to derive a polynomial
time algorithms which solves the bi-criteria problems. Informally, the algorithms
find the maximum number of processors k that can be used in the replication set,
and the whole interval is mapped on a set of k identical processors. With different
failure probabilities, the more reliable processors would be used.

For Communication Homogeneous platforms, we first consider the simpler case
where all failure probabilities are identical (Failure Homogeneous). In this case, the
optimal bi-criteria solution still consists of mapping the pipeline as a single interval
(see Lemma 1), and polynomial time algorithms can solve the problem. Informally,
we add the fastest processors to the replication set while the latency is not exceeded
(or until F is reached), thus reducing the failure probability and increasing the
latency.

However, the problem is more complex when we consider different failure prob-
abilities (Failure Heterogeneous). It is also more natural since we have different
processors and there is no reason why they would have the same failure probability.
Unfortunately, we can exhibit in this case problem instances for which an optimal so-
lution necessarily consists of several intervals (see the example of Figure 3.1). There-
fore, the previous algorithms cannot work anymore. The complexity of the problem
remains open, but we conjecture it is NP-hard, since there is a clear trade-off between
the use of reliable processors versus the use of fast processors.

For Fully Heterogeneous platforms, since the latency minimization problem is
known to be NP-hard, both bi-criteria problems also are NP-hard.
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III Summary and conclusion

In this chapter, we have been able to assess the complexity of several instances of the
linear chain application mapping problem. Through this exhaustive study, we have
established the inherent difficulties raised by each criterion, be it the failure prob-
ability, the latency, or the period. Replication was rendering the modeling process
difficult in Chapter 2, and in this chapter we were able to exhibit cases in which the
addition of replication transforms a problem that can be solved in polynomial time
into a problem that is NP-hard (see, for Communication Homogeneous platforms,
the latency minimization problem, or one-to-one mappings to minimize the period).

We have not done an exhaustive study of multi-criteria mapping problems, but
most of them are already NP-hard (as soon as the optimization problem for one of
the criteria is NP-hard). The two case-studies that we selected allowed us first to
show an example of multi-criteria integer linear program, aiming at solving NP-hard
problems, and second to illustrate the additional complexity of mixing two criteria
which are, alone, polynomial, if not trivial.

Of course, many more combinations can be studied, see for instance [J10] for
bi-criteria problems period/latency with replication and no communication. Some
of them are still open, for instance those involving one-to-one mappings. Also, we
have not tackled tri-criteria problems in this study, which would mix difficulties of
all criteria. We rather envision an experimental approach, through the design of
sophisticated heuristics which build upon the knowledge that we gained on each
criterion, in order to tackle these complex multi-criteria problems.

In the next chapter, we come back to the problem of computing the minimum
period for a given mapping, which turned out to be a difficult problem in Chapter 2,
and we propose to address the optimization problems in the more complex setting
of dynamic platforms, thus introducing performance models.
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Dealing with dynamic platforms

CHAPTER

4

We have seen in Chapter 3 that many mapping problems are NP-hard, and it is
sometimes even difficult to compute the period achieved by a given mapping (see
Chapter 2). We investigate in this chapter the use of stochastic performance mod-
els in order to evaluate the period of a mapping. Moreover, these models aim at
extending the previous study to dynamic platforms.

In a brief introduction (Section I), we motivate the need to tackling dynamic plat-
forms. Then we present two performance models, the first one based on Performance
Evaluation Process Algebra (Section II), and the second one using timed Petri nets
(Section III). The main characteristics of each model are detailed, as well as their
utility and the ultimate goal of this modeling. An important feature of dynamic
platforms is that they might be subject to failures, and a particular care must be
brought on this point. We have discussed in Chapters 2 and 3 a failure model which
was fitting the pipelined application scenario, independent of time. We present in
Section IV a different failure model, targeting the scheduling of a divisible workload
on a dynamic platform subject to unrecoverable interruptions. Finally, we conclude
this chapter in Section V.

I Static versus dynamic platforms

Static platforms are characterized by their limited heterogeneity (processor speed,
bandwidth of the communication links, etc.). Moreover, the characteristics of the
platform are supposed to be static (or to change at very slow rate) over time. A
typical example of such platforms is a computational grid dedicated to one user, or
to a small group of well identified users, on which are running a small number of
different applications, also well identified. Another example is a set of resources pro-
vided by a team of users, and shared by these users. These resources are assumed to
be temporary dedicated to a specific application, or to a well identified small set of
applications. Static platforms engender several difficulties due to their heterogeneity,
and their hierarchical nature. Recently, several models [29, 15, 65, 17] have been pro-
posed in the literature for modeling the topology and the resources of such platforms.
The important issues concern their ability to describe heterogeneous resources (both
processing and communication resources) and the interferences between simultane-
ous activities. In particular, the following questions must be answered: is it possible
for a processor to be involved in more than one incoming (and/or) one outgoing
communication? is it important to take into account the interferences that can
occur between several distinct point to point communications? Are processing per-
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formances affected by simultaneous incoming (and/or) outgoing communications?
Note that these questions are important but are limited to assessing the static per-
formance of platform parameters. While analyzing different communication models
in Chapter 2, we have given elements of answer. Thus, in the previous chapters, we
have focused on such platforms, which were assumed to have a static behavior but
already raised many challenges.

On the other hand, dynamic platforms are characterized by their larger size,
and greater heterogeneity. Still, the resources of these platforms (topology, message
routes, etc.) and their characteristics are assumed to be known by a centralized
control mechanism, even though they change over time. Radical changes are caused
by failures, but the performance of a processor can also be slightly reduced because,
for instance, another user launched a new process onto this resource. A typical ex-
ample of such platform is a general purpose computational grid, or a set of resources
provided by a team of users that can change significantly over time. In this chapter,
we point out that dynamic platforms exhibit a great variability of their resources.
For instance, processor speeds are expected to evolve over time, as the execution
proceeds, and this evolution is likely to take the form of abrupt changes followed
by epochs of relative stability. Similarly, link bandwidths, or even availability, is
subject to dramatically change during execution. Accounting for the dynamic na-
ture of platform parameters is a key component for the design of robust scheduling
algorithms.

If we want to model variability, we need to express the fact that exact data about
processor speeds and network links cannot be obtained from a given platform. The
measured run-time of a function may vary, depending on the load of the processor on
which it is executed and many other factors. Also, the processor may be subject to
failures, and so the measured run-time may be completely different from the expected
run-time. For these reasons, the appropriate modeling formalism seems to be one
which uses probabilistic random variables to estimate times. Such a model gives
rise to a stochastic process which is analyzed in order to get information about the
performance of the system. When we do only know the average duration of run-
times, then the appropriate random number distribution to use is the exponential
distribution. An important class of stochastic processes are Continuous-Time Markov
Chains (CTMCs) [79], which have a finite state space, and whose transition rates
between states are exponentially distributed.

In Section II, we investigate the use of stochastic process algebras [62], a high-
level modeling language which allows to express CTMCs in a structured and com-
positional way. A model of a given mapping is proposed, which allows us to predict
the throughput of the application [J3],[J4], assuming exponential laws for processor
speeds and link bandwidths. With this technique, several mappings can be com-
pared, but it turns out that the predicted throughput can be far from the actual
throughput.

Therefore, we investigate the use of timed Petri nets [11] in Section III, which
allow us to compute the achieved throughput in a deterministic case. Moreover,
thanks to this model, we are able to compute the throughput in cases for which we
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do not know how to compute it with an analytical formula. This model still needs
to be extended in order to account for variability and failure of the application.

Another challenge raised by dynamic platforms is the definition of a pertinent fail-
ure model. We already tackled failures for linear chain pipelined applications in the
previous chapters, and we present a probabilistic approach to failures in Section IV.

II Performance Evaluation Process Algebra

In this section, we are interested in the mapping of a pipelined linear chain application
with deal replication. We have a set of heterogeneous processors, interconnected by
a heterogeneous network. We focus on the throughput maximization problem, and
hence the performance model aims at computing the throughput (or the period) of
a given mapping. The model can represent general mappings, in which a processor
can even be involved in a round of several deals, thus extending our definition of
general mapping to completely general ones.

Continuous-Time Markov Chains (CTMCs) are widely used to model parallel
systems because there are many efficient solution methods for finding their station-
ary probability distribution, thus easily extracting performance information. They
represent a practically useful formalism for modeling and analysis. The stationary
distribution is a vector of probabilities expressing the likelihood of the system being
in each of the states of its finite state space in the long run. Then, the throughput
of the system may be extracted from this stationary distribution. Usually, CTMCs
are not used directly as a formal modeling language. It is more convenient to use
a higher-level modeling language, and to generate the underlying CTMC from this
language. For instance, we can use stochastic Petri nets [95, 37], stochastic automata
networks [104], or stochastic process algebras [62], which enforce a structured and
compositional vision of the system.

In Section II.1, we exhibit a PEPA (Performance Evaluation Process Algebra)
model to describe the mapping of a linear chain application with deal replication.
Then we explain in Section II.2 how these models are used through a simple tool to
decide which mapping would lead to the best application performance. Finally, we
conclude and show the limits of such a model in Section II.3.

II.1 PEPA model for linear chain applications

In this section we present our approach to model the mapping of a linear chain ap-
plication with deal replication on a heterogeneous platform. The model is expressed
in Performance Evaluation Process Algebra (PEPA) [62]. We first briefly introduce
PEPA, and then we present a generic model.

II.1.1 Introduction to PEPA

The PEPA language provides a small set of combinators. These allow language
terms to be constructed defining the behavior of components, via the activities they
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undertake and the interactions between them. Timing information is associated
with each activity. Thus, when enabled, an activity a = (α, r) will delay for a
period sampled from the negative exponential distribution which has parameter r.
If several activities are enabled concurrently, either in competition or independently,
we assume that a race condition exists between them. The component combinators
used in the model in Section II.1.2, together with their names and interpretations,
are presented informally below.

Prefix: The basic mechanism for describing the behavior of a system is to give a
component a designated first action using the prefix combinator, denoted by a full
stop. For example, the component (α, r).S carries out activity (α, r), which has
action type α and an exponentially distributed duration with parameter r, and it
subsequently behaves as S.

Choice: The choice combinator captures the possibility of competition between
different activities. The component P + Q represents a system which may behave
either as P or as Q: the activities of both are enabled. The first activity to complete
distinguishes one of them: the other is discarded. The system will behave as the
derivative resulting from the evolution of the chosen component.

Constant: It is convenient to be able to assign names to patterns of behavior
associated with components. Constants are components whose meaning is given by
a defining equation.

Cooperation: In PEPA direct interaction, or cooperation, between components is
the basis of compositionality. The set which is used as the subscript to the co-
operation symbol, the cooperation set L, determines those activities on which the
co-operands are forced to synchronize. For action types not in L, the components
proceed independently and concurrently with their enabled activities. However, an
activity whose action type is in the cooperation set cannot proceed until both com-
ponents enables an activity of that type. The two components then proceed together
to complete the shared activity. The rate of the shared activity may be altered to
reflect the work carried out by both components to complete the activity (for details
see [62]). We write P ‖ Q as an abbreviation for P ⊲⊳

L
Q when L is empty.

In some cases, when an activity is known to be carried out in cooperation with
another component, a component may be passive with respect to that activity. This
means that the rate of the activity is left unspecified (denoted ⊤) and is determined
upon cooperation, by the rate of the activity in the other component. All passive
actions must be synchronized in the final model.

The dynamic behavior of a PEPA model is represented by the evolution of its
components, as governed by the operational semantics of PEPA terms (see [62]).
Thus, as in classical process algebra, the semantics of each term is given via a labelled
multi-transition system (the multiplicities of arcs are significant). In the transition
system a state corresponds to each syntactic term of the language, or derivative, and
an arc represents the activity which causes one derivative to evolve into another. The
complete set of reachable states is termed the derivative set and these form the nodes
of the derivation graph which is formed by applying the semantic rules exhaustively.
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The derivation graph is the basis of the underlying Continuous Time Markov
Chain (CTMC) which is used to derive performance measures from a PEPA model.
The graph is systematically reduced to a form where it can be treated as the state
transition diagram of the underlying CTMC. Each derivative is then a state in the
CTMC. The transition rate between two derivatives P and Q in the derivation graph
is the rate at which the system changes from behaving as component P to behaving
as Q. It is the sum of the activity rates labelling arcs connecting node P to node Q.

It is important to note that in such models the estimated durations of tasks etc.
are represented as random variables, not constant values. These random variables
are exponentially distributed. Repeated samples from the distribution will follow the
distribution and conform to the mean but individual samples may potentially take
any positive value. It thus accounts for the variability of the platform.

II.1.2 Mapping model

To model the mapping of a linear chain application, we decompose the problem into
three parts: stages, processors and network.

The stages. The first part of the model is the application model, which is inde-
pendent of the resources on which the application will be computed. The applica-
tion consists of n stages, which are each modelled by a PEPA component Stagei

(1 ≤ i ≤ n).

When Stagei is not replicated, it executes sequentially (following the one-port
model without overlap). As its first activity, it obtains data (activity movei), then
processes it (activity processi,1

1), and finally moves the processed data to the next
stage (activity movei+1):

Stagei
def
= (movei,⊤).(processi,1,⊤).(movei+1,⊤).Stagei

Note that all the rates are unspecified, denoted by the distinguished symbol ⊤,
since the processing and move times depend on the resources on which the application
is running. These rates will be defined later, in another part of the model.

When Stagei is replicated, let npi be the number of processors which are part
of the deal. Recall that, as motivated in Chapter 2, we enforce cyclic allocation of
inputs to processors. For this, we introduce, for each stage which is replicated, a
Source component and a Sink component which interface between the processors
and the move actions which link this stage to its pipeline neighbours. We denote by
worker an instance of the stage mapped onto a processor (one round of the deal).
Each worker (1 ≤ u ≤ npi) first gets an input from the source with an inputi,u
action, processes it (processi,u) then transfers its output to the sink (outputi,u).

1The 1 in the index denotes the first (and only) processor for this stage.
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We obtain the definitions Sourcei, Sinki and Workeri,u, for 1 ≤ u ≤ npi:

Sourcei
def
= (movei,⊤).(inputi,1,⊤).

(movei,⊤).(inputi,2,⊤). . . .
(movei,⊤).(inputi,npi

,⊤).Sourcei

Workeri,u
def
= (inputi,u,⊤).(processi,u,⊤).(outputi,u,⊤).Workeri,u

Sinki
def
= (outputi,1,⊤).(movei+1,⊤).

(outputi,2,⊤).(movei+1,⊤). . . .
(outputi,npi

,⊤).(movei+1,⊤).Sinki

All the workers are independent, and they are synchronized with the source and
the sink via the input and output actions. We define LIi = {inputi,u}1≤u≤npi

and
LOi = {outputi,u}1≤u≤npi

and thus we obtain:

Stagei
def
= Sourcei ⊲⊳

LIi
(Workeri,1 || . . . || Workeri,npi

) ⊲⊳
LOi

Sinki

Once all the stages have been defined, the linear chain application is then a
cooperation of the different stages over the movei activities, for 2 ≤ i ≤ n. The
activities move1 and moven+1 represent respectively, the arrival of an input into the
application, and the transfer of the final output out of the pipeline. They do not
represent any data transfer between stages, so they are not synchronized within the
application. As above, the rates on the input and output actions are left unspecified.
These will be defined elsewhere in the model. Finally, we have:

Pipeline
def
= Stage1 ⊲⊳

{move2}
Stage2 ⊲⊳

{move3}
· · · ⊲⊳

{moven}
Stagen

The processors. We consider that the application must be mapped to a set of
p processors. Each worker is implemented by a given (unique) processor, but a
processor may host several workers. In order to keep the model simple, we decide to
put information about the processor (such as the load of the processor or the number
of stages being processed) directly in the rate µi,u of the activities processi,u, for
1 ≤ i ≤ n and 1 ≤ u ≤ npi (these activities have been defined for the components
Stagei). Each processor is then represented by a PEPA component which has a cyclic
behavior, consisting of sequentially processing inputs for a worker. Some examples
follow.

• In a case with no replication and with n = p, we map one stage (i.e., one
worker) per processor (one-to-one mapping): for 1 ≤ i ≤ p,

Processori
def
= (processi,1, µi,1).P rocessori

• If several workers are hosted by the same processor, we use a choice compo-
sition. In the following example (n = p = 2, and the first stage is replicated
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2 times), the first processor processes the first worker of both stages, and the
second processor processes only the second worker of stage 1 (so that stage 1
is distributed across two processors).

Processor1
def
= (process1,1, µ1,1).P rocessor1

+ (process2,1, µ2,1).P rocessor1

Processor2
def
= (process1,2, µ1,2).P rocessor2

More generally, since all processors are independent, the set of processors is
defined as a parallel composition of the processor components:

Processors
def
= Processor1 || Processor2 || . . . || Processorp

The network. Rather than directly representing the physical structure of the un-
derlying network architecture, our network model is designed to allow us to derive the
rates of the logical communication actions (move, input, output) from the Network
Weather Service (NWS, [128]) monitored physical processor to processor latency in-
formation. Using λi for the rate of a movei and λIi,u and λOi,u for the respective
rates of inputi,u and outputi,u activities, the definition of the network is straightfor-
ward.

For example, assuming that only stage i is replicated, we obtain the following
definition2:

Network
def
= (move1, λ1).Network + . . .+ (moven+1, λn+1).Network
+ (inputi,1, λIi,1).Network + . . .+ (inputi,npi

, λIi,npi
).Network

+ (outputi,1, λOi,1).Network + . . .+ (outputi,npi
, λOi,npi

).Network

Overall model. Once we have defined the different components of the model, we
just have to map the stages onto the processors and the network by using the cooper-
ation combinator. Two cooperation sets are used. Lnet synchronizes the application
and the network (it is the set of all the move, input and output activities), while
Lproc synchronizes the application and the processors (it is the set of all the process
activities):

Mapping
def
= Network ⊲⊳

Lnet
Pipeline ⊲⊳

Lproc
Processors

II.2 Using the performance model

The performance models can be solved in order to obtain the throughput of a given
mapping. In its current form ([J3],[J4]), the solving tool is a generic analysis compo-
nent. Its ultimate role would be as an integrated component of a run-time scheduler
and re-scheduler, adapting the mapping from application to resources in response to

2If some other stages are also replicated, we need to add their input and output activities into
the choice.
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changes in resource availability and performance. On initialization, information is
obtained from the resources and the network with the help of the Network Weather
Service NWS [128]. Some additional information must be provided to the tool via
some description files. First, we need to provide the names of the processors which
are to be used for the application (list of IP addresses). Note that NWS must run
on each of these nodes, and secure shell access must be allowed to gather some in-
formation about the processors. The first processor on the list is called the reference
processor. Another file must specify the number of stages n of the pipeline, and the
average time required to compute one output for each stage on the reference proces-
sor, and finally the size of the data transferred to and from each stage. Finally we
define a set of candidate mappings of stages to processors. Each mapping specifies
where the initial data is located, where the output data must be left and (as a tuple)
the processors where each stage is processed. For instance, the tuple (1, (1, 2, 3))
means that the first stage is on processor 1, and that stage 2 is replicated on pro-
cessors 1, 2 and 3 respectively. The mapping definition is a set of mappings that we
aim to compare to each other.

In order to instantiate the parameters of the model, we then use the Network
Weather Service (NWS), which is a distributed system that periodically monitors
and dynamically forecasts the performance that various network and computational
resources can deliver over a given time interval. The service operates a distributed
set of performance sensors (network monitors, CPU monitors, etc.) from which it
gathers readings of the instantaneous conditions. It then uses numerical models to
generate forecasts of what the conditions will be for a given time frame [128].

The computing power of each processor is evaluated through its CPU frequency,
and thus we can compare it to the frequency of the reference processor. This approach
is somewhat naive since the performance of the processors depends on many other
factors including memory access speed and cache policy. Moreover, it depends on
the characteristics of the application. However, using the frequency of the processor
gives us a rough idea of its global performance.

One model is then generated from each mapping of the description file. Each
model is as described in Section II.1.2. Rates are generated from the information
gathered before, and the model generation itself is then straightforward. To compute
the µ rates, we need to know how many workers are hosted on each processor, and
we then assume that the work sharing between them is equitable. The rates of
communication (the variously subscripted λ, λI and λO terms) are derived from the
processor to processor latency values (la) obtained from NWS, and from the data
size values of the data transferred from one stage to another. However, some of the
move, input and output activities may express a data transfer from processor u to
this same processor (1 ≤ u ≤ p). The latencies lau,u should be set to zero. To
ensure the logical behavior of the model, these activities are needed and they cannot
be immediate (all activities are timed in PEPA), so we set all these latencies to an
arbitrarily small value (10−5 milliseconds). Details on the parameter generation can
be found in [J3],[J4].

Numerical results can been computed from such models with the Java Version
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of the PEPA Workbench [56, 58]. The throughput of a mapping can be obtained
via a single command line (see [J3],[J4]). When a large number of models must be
solved, we use task farming to solve them in a parallel scheme. The most lightly
loaded processors are selected with the help of the information gathered previously
with NWS, and the jobs are distributed on these processors. The gain is almost
equal to the number of processors used, even if a small overhead can be observed
due to the time required to dispatch the models and to collect the results. During
the resolution, all the results are saved in a single file, and finally we find out which
mapping produces the best throughput. This mapping is the one we should use to
run the application.

The use of the tool takes usually less than one minute for complex applications
running on several processors, even when we consider several models which can be
relatively large. The distributed resolution of the models allows us to decrease this
time significantly. Considering that the tool may be run once per hour, we believe
that the amount of time required may be quite negligible and that the gain obtained
by using the optimal scheduling can outperform the cost of the use of the tool, when
we consider large applications with long stages.

II.3 Conclusion

This first case study has already shown that our approach can allow grid systems
to obtain important information and that we have the potential to enhance the
performance of grid applications through the use of structured parallel programs
and process algebras. One main limitation of this approach is that the user needs to
specify a list of mappings from which the tool will select the best one; the tool is not
able to automatically generate mappings (and it would not be affordable to compare
all mappings, since there is an exponential number of them).

More importantly, some issues are raised by the use of exponential models having
memoryless properties: the throughput computed from the PEPA model turns out to
be far from the throughput that we would expect (and compute with our analytical
formulas for the deterministic case, see Chapter 2). For instance, consider a very
simple pipeline application composed of two stages, each of them being mapped
on a different processor. Stage 1 can either be processing a data (state 1w) or
sending result to the next stage (state 1c). Similarly, Stage 2 alternates between a
communication state (state 2c) in which it receives data from the first stage, and a
working state (state 2w). Let us assume that processing a data takes (in average) one
slot of time for both stages, and that communication is very fast. The underlying
Markov chain corresponding to the PEPA model is depicted in Figure 4.1, where
state (1x,2y) means that stage 1 is in state 1x, and stage 2 in state 2y. Therefore,
in the Markov chain, transition from (1w,2w) to (1c,2c) takes two transitions which
corresponds to two time slots. In fact, when a transition is fired, the system “forgets”
that the other stage had been working as well, and processing must start from the
beginning again. The expected behavior would be that transition from (1c,2w) or
(1w,2c) to (1c,2c) is much shorter because we come from state (1w,2w) in which both
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1w,2w 1c,2w

1w,2c 1c,2c

1

1

11 0.01

Figure 4.1: Markov chain for a 2-stage pipeline.

stages were working in parallel. However, by definition of the Markov property, this
transition is independent from previous state, there is no memory of what happened
earlier in the system. If we study the stationary solution of this Markov chain, we
obtained the fact that 1/3 of the time is spent on each of the three states (1w,2w),
(1c,2w) and (1w,2c). The transition leaving (1c,2c) is very fast, thus the average
time spent in this state is almost null. This means that during 1/3 of the time,
stage 1 is idle and waits until stage 2 is ready to communicate. The same occurs
for stage 2. In other words, the throughput of this pipeline is 2/3, while we would
expect a throughput of 1 in a deterministic fully parallel system.

We therefore decided to investigate non-markovian models in order to accurately
capture performance. A model based on timed Petri nets is presented in the following
section.

III Timed Petri nets

In this section, we investigate the use of timed Petri nets (TPNs), as defined in [11],
in order to compute the throughput of the mapping of a linear chain application
with replication. Indeed, the period is dictated by the critical hardware resource
when stages are not replicated (i.e., assigned to a single processor), but the problem
gets surprisingly complicated with replication, and we provide examples where the
optimal period is larger than the largest cycle-time of any resource. In Section III.1,
we exhibit timed Petri net models under the one-port model, either with or without
overlap. Thanks to these models, we are able to compute the optimal throughput
(period) of a given mapping, as explained in Section III.2. Finally we conclude in
Section III.3.

III.1 Timed Petri net models

We aim in this section at deriving a timed Petri net model to represent a mapping
of a linear chain application with replication. Also, we restrict here to one-to-one
mappings, and thus a processor can process at most one stage (even though a stage
may be processed by several processors, in round-robin fashion).
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Figure 4.2: Example A: Mapping with replication: S1 on 2 processors, S2 on 3
processors.

Input data Path in the system

0 P0 → P1 → P3 → P6

1 P0 → P2 → P4 → P6

2 P0 → P1 → P5 → P6

3 P0 → P2 → P3 → P6

4 P0 → P1 → P4 → P6

5 P0 → P2 → P5 → P6

6 P0 → P1 → P3 → P6

7 P0 → P2 → P4 → P6

Table 4.1: Example A: Paths followed by the first input data.

In the following only TPNs with the event graph property (each place has exactly
one input and one output transition) are considered (see [12]). Also, in all our Petri
net models, the use of a physical resource during a time t (i.e., the computation of
a stage or the transmission of a file from a processor to another one) is represented
by a transition with a firing time t, and dependencies are represented using places.
Now, let us focus on the path followed in the pipeline by a single input data set, for a
mapping with several stages replicated on different processors. Consider Example A
described in Figure 4.2: the first data set enters the system and proceeds through
processors P0, P1, P3 and P6. The second data set is first processed by processor
P0, then by processor P2 (even if P1 is available), by processor P4 and finally by
processor P6. Paths followed by the first eight input data sets are summarized up in
Table 4.1: as we can see, there are 6 different paths followed by the data sets, and
then data set i takes the same path as data set i − 6. We have the following easy
result (see [C34] for a proof):

Proposition 1. Consider a pipeline of n stages S0, . . . , Sn−1, such that stage Si is
mapped onto mi distinct processors. Then the number of paths followed by the input
data in the whole system is equal to m = lcm (m0, . . . ,mn−1).
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The TPN model given here is inspired from the TPN model of jobshops with
static schedules from [61]. Here, however, replication imposes that each path fol-
lowed by the input data must be fully developed in the TPN: if P0 appears in several
distinct paths, as in the example of Figure 4.2, then there are several transitions cor-
responding to P0 in the TPN. Furthermore, we have to add dependencies between
all the transitions corresponding to the same physical resource to avoid the simul-
taneous use of the same resource by different input data. These dependencies differ
according to the model used for communications and computations (with or without
overlap).

Model with overlap. First, let us focus on the model with overlap: any processor
can receive a file and send another one while computing. All paths followed by the
input data in the whole system have to appear in the TPN. We use the notations of
Proposition 1.

Let m denote the number of paths of our mapping. Then the i-th input data
follows the (i mod m)-th path, and we have a rectangular TPN, with m rows of
2n−1 transitions, due to the n transitions representing the use of processors and the
n− 1 transitions representing the use of communication links. The i-th transition of
the j-th row is named T j

i . The time required to fire a transition T j
2i, corresponding

to the processing of stage Si (mapped on Pu), is set to wi

su
. The time required by a

transition T j
2i+1, corresponding the transmission of a file from Si (mapped on Pu) to

Si+1 (mapped on Pv), is set to δi

bu,v
.

Then, we need to add places between these transitions, in order to model the
following set of constraints:

1. The file Fi cannot be sent before the end of the computation of Si: a place
is added from T j

2i to T j
2i+1 on each row. Similarly, the stage Si+1 cannot be

processed before the end of the communication of Fi: a place is added from
T j

2i+1 to T j

2(i+1) on each row j. All these places are shown in Figure 4.3(a).

2. When a processor appears in several rows, the round-robin distribution imposes
dependencies between these rows. Assume that processor Pi appears on rows
j1, j2, . . . , jk. Then we add a place from T jl

2i to T
jl+1

2i with 1 ≤ l ≤ k − 1, and a

place from T jk

2i to T j1
2i . All these places are shown in Figure 4.3(b).

3. The one-port model and the round-robin distribution of communications also
impose dependencies between rows. Assume that processor Pi appears on rows
j1, j2, . . . , jk. Then we add a place from T jl

2i+1 to T
jl+1

2i+1 with 1 ≤ l ≤ k − 1,

and a place from T jk

2i+1 to T j1
2i+1 to ensure that Pi does not send two files

simultaneously, if Pi does not compute the last stage. All these places are
shown in Figure 4.3(c).

4. In the same way, we add a place from T jl

2i−1 to T
jl+1

2i−1 with 1 ≤ l ≤ k − 1,

and a place from T jk

2i−1 to T j1
2i−1 to ensure that Pi does not receive two files

simultaneously, if Pi does not compute the first stage. All these places are
shown in Figure 4.3(d).
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(b) Dependencies due to the round-robin distri-
bution of computations.
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(c) Dependencies due to the round-robin dis-
tribution of outgoing communications.
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(d) Dependencies due to the round-robin dis-
tribution of incoming communications.

Figure 4.3: With overlap: places imposed by the different constraints. Circuits model
the round-robin distribution, and the single token in each circuit models the fact that
any resource can process at most one job at a time.
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Figure 4.4: Complete TPN of Example A for the model with overlap.

Finally, any resource before its first use is ready to compute or communicate,
only waiting for the input file. Indeed, a token is put in every place going from a
transition T jk

i to a transition T j1
i , as defined in the previous lines. The complete

TPN of Example A for the model with overlap is given in Figure 4.4.

Model without overlap. In the model without overlap, any processor can either
send a file, receive another one, or perform a computation while these operations were
happening concurrently in the model with overlap. Hence, we require a processor
to successively receive the data from stage Si−1, compute the stage Si and send the
result to Si+1 before receiving the next data set of Si−1. Paths followed by the input
data are obviously the same as in the case with overlap, and the structure of the
TPN remains the same (m rows of 2n − 1 transitions).

The first set of constraints is also identical to that of the model with overlap,
since we still have dependencies between communications and computations, as in
Figure 4.3(a). However, the other dependencies are replaced by those imposed by the
round-robin order of the model without overlap. Indeed, when a processor appears
in several rows, the round-robin order imposes dependencies between these rows.
Assume that processor Pi appears on rows j1, j2, . . . , jk. Then we add a place from
T jl

2i+1 to T
jl+1

2i−1 with 1 ≤ l ≤ k−1, and a place from T jk

2i+1 to T j1
2i−1. These places ensure
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(a) Dependencies due to the round-robin
distribution.
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(b) Complete TPN.

Figure 4.5: TPN of Example A for the model without overlap.

the respect of the model: the next reception cannot start before the completion of
the current sequence reception-computation-sending. All these places are shown in
Figure 4.5(a).

Any physical resource can immediately start its first communication, since it is
initially only waiting for the input communication. Thus a token is put in every
place from a transition T jk

i to a transition T j1
i , as defined in the previous lines. The

complete TPN of Example A for the model without overlap is given in Figure 4.5(b).

The automatic construction of the TPN in both cases has been implemented.
The time needed to construct the Petri net is linear in its size: O(mn).

III.2 Computing the throughput of a mapping

TPNs with the event graph property make the computation of the throughput of a
complex system possible through the computation of critical cycles, using (max,+)
algebra [12]. For any cycle C in the TPN, let L(C) be its length (number of tran-
sitions) and t(C) be the total number of tokens in places traversed by C. Then a

critical cycle achieves the largest ratio over all cycles, maxC
L(C)
t(C) , and this ratio is

the period P of the system: indeed, after a transitive period, every transition of the
TPN is fired exactly once during a period of length P [12].

Critical cycles can be computed with softwares like ERS [72] or GreatSPN [36]
with a complexity O(m3n3). By definition of the TPN, the firing of any transition of
the last column corresponds to the completion of the last stage, i.e., to the completion
of an instance of the workflow. Moreover, we know that the m transitions of this last
column (where m is still the number of rows of the TPN) are fired in a round-robin
order. In our case, m data sets are completed during any period P: the obtained
throughput is m

P .
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Model with overlap. The TPN associated to the model with overlap has a regular
structure, which facilitates the determination of critical cycles. In the complete
TPN, places are linked to transitions either in the same row and oriented forward,
or in the same column. Hence, each cycle only contains transitions belonging to
the same column: we can split the complete TPN into 2n − 1 smaller TPNs, each
sub-TPN representing either a communication or a computation. However, the size
of each sub-TPN (the restriction of the TPN to a single column) is not necessarily
polynomial in the size of the instance, due to the possibly large number of rows,
equal to m = lcm (m0, . . . ,mn−1).

It turns out that a polynomial algorithm exists to find the weight L(C)/t(C) of
a critical cycle: only a fraction of each sub-TPN is required to compute this weight,
without computing the cycle itself. The algorithm and its proof are very involved
and can be found in [C34].

Theorem 8. Consider a pipeline of n stages S0, . . . , Sn−1, such that stage Si is
mapped onto mi distinct processors. Then the average throughput of this system can

be computed in time O
(

∑n−2
i=0 (mimi+1)

3
)

.

In Example A, a critical resource is the output port of P0, whose cycle-time is
equal to the period, 189. However it is possible to exhibit cases without critical
resources: see for instance Example B presented in Figure 4.6. The cycle-time of a
critical resource is 258.3, and it corresponds to the outgoing communications of P2.
This value is strictly smaller than the actual period of the complete system (291.7).

Model without overlap. Cycles in the TPN associated to the model without
overlap are more complex and less regular, since corresponding TPNs have backward
edges. An example of such a cycle is shown in Figure 4.7. The intuition behind these
backward edges is that a processor Pu cannot compute a data set of Si before having
completely sent the result of the previous data set to the next processor Pv in charge
of Si+1. Thus, Pu can be slowed by Pv. As for the model with overlap, there exist
mappings for which all resources have idle times during a complete period. For the
model without overlap, this is the case of Example A. The corresponding Gantt
diagram is presented in Figure 4.8: the critical resource is P2, which has a cycle-time
of 215.8, strictly smaller than the period (230.7).

III.3 Conclusion

In this section, we showed how TPNs (timed Petri nets) are a useful model in or-
der to determine the critical cycles, and thus the optimal throughput, of a given
mapping with replication. The complexity of throughput evaluation depends on the
communication model. Even the simple round-robin distribution implies complex
interactions between involved resources, resulting in schedules without any critical
resource: there exist schedules, such that all resources remain partially idle, and this
is true both for a model with overlap and a model without overlap. We have also
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Figure 4.6: Example B: Stage 0 is replicated on 3 processors, and Stage 1 on 4
processors.

conducted experiments (see [C34]), in order to find out how often such cases occur.
On all mappings that were randomly generated and tested, we realized that such
cases are very rare under the model with overlap. In addition, we have established
the polynomial complexity of the problem for this model with overlap, while it turns
out to be NP-hard for the model without overlap3. For both cases, the TPN model
allows us to compute the period, thanks to the tool which computes the critical
cycles of a TPN.

Compared to the approach of Section II, we are back to a fully deterministic
setting in the current section, and thus we do not target dynamic platforms, as
motivated earlier. Also, we restrict to one-to-one mappings. However, thanks to this
non-markovian model, we were able to compute the throughput of a given mapping,
and identify cases in which there were no critical resources. Moreover, we believe
that this study opens a way on finding good schedules on dynamic platforms, whose
speeds and bandwidths are modeled by random variables. Indeed, it is possible
to introduce random laws in the timed Petri net models, in order to replace the
deterministic firing times.

In the next section, we do not account for platform variability either, but we
consider dynamic platforms subject to failures. However, we move to a simpler
application setting, in which a single divisible workload must be processed.

3This complexity result has been established recently with Fanny Dufossé, Matthieu Gallet and
Yves Robert. It is not yet published, but please ask me for details.
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Figure 4.7: Complex critical cycles on Example A.
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Figure 4.8: Gantt diagram of a schedule without critical resource.



IV. DIVISIBLE WORKLOAD 65

IV Divisible workload

In this section, we follow in the steps of sources such as [7, 24, 107], and we propose
an analytic study of algorithmic techniques for coping with uncertainty in compu-
tational settings. Whereas most of the previous work addresses the uncertainty for
an application executed on a single computer, we consider here a set of computers,
such as in a Grid computing [51] or volunteer computing [83] environment. There-
fore, we assume that one computer’s shortcomings can be compensated for by other
computers, most notably by judiciously replicating work, i.e., allocating some work
to more than one computer.

However, unlike previous chapters targeting pipelined applications and with a
failure probability independent of time, we target here a large computational work-
load whose constituent work is divisible in the sense that each chunk of work can be
partitioned into arbitrary granularity (see [21]). The similar point is that we consider
unrecoverable interruptions that cause us to lose all work currently in progress on the
interrupted computer. We have access to p ≥ 1 identical computers4 to compute the
workload via worksharing. The only external resource to help us use this tool judi-
ciously is our assumed access to a priori knowledge of the risk of a computer’s having
been interrupted—which we assume is the same for all computers (as in [24, 107], our
scheduling strategies can be adapted to use statistical, rather than exact, knowledge
of the risk of interruption—albeit at the cost of weakened performance guarantees).
Most of our results assume the linear risk model, in which the probability that a
computer will be interrupted increases linearly with the time the computer has been
available.

Our goal is then to maximize the expected amount of work that gets computed,
no matter which, or how many computers get interrupted. Therefore, we implic-
itly assume that we are dealing with applications for which even partial output is
meaningful, e.g., Monte-Carlo simulations.

We first describe the challenges that arise from such application in Section IV.1.
Then we expose the technical framework in Section IV.2 and in particular we in-
troduce two models, either with or without initiation cost. We give a selection of
results for the simple cases with one or two processors in Section IV.3, and discuss
more complex cases in the conclusion in Section IV.4. The details of this work can
be found in [C25], and proofs have therefore been omitted in the following.

IV.1 The challenges

The challenges of scheduling a divisible workload on interruptible remote computers
can be described in terms of dilemmas.

First, we note that sending each remote computer a small amount of work min-
imizes vulnerability to interruption-induced losses, but it maximizes the impact of
per-work overhead, and thus minimizes the opportunities for parallelism. We cope
with this first dilemma by sending work allocations to computers as a sequence

4The study of a heterogeneous platform is kept for future work.
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of chunks rather than as a single block per computer. This approach, advocated
in [24, 107], allows each computer to checkpoint at various times, thereby, protecting
some work from the threat of interruption. One challenge consists in finding which
size of chunks should be used.

Also, replicating work lessens vulnerability to interruption-induced losses, but it
minimizes the expected productivity advantage from having access to remote com-
puters (the pros and cons of work replication are discussed in [82]). We thus may
consider to allocate chunks to more than one remote computer in order to enhance
their chances of being computed successfully. Work should be replicated judiciously,
in deference to this second dilemma.

Because communication to remote computers is likely to be costly in time and
overhead, we limit such communication by orchestrating work replications in a static
manner, rather than dynamically, in response to observed interruptions. While we
thereby duplicate work unnecessarily when there are few interruptions among the
remote computers, we also prevent the server from becoming a communication bot-
tleneck.

IV.2 The framework

We have W units of divisible work to execute onto p ≥ 1 identical computers that are
susceptible to unrecoverable interruptions that kill all work in progress. All comput-
ers share the same perfectly known instantaneous probability of being interrupted,
and this probability increases with the amount of time the computer has been oper-
ating (whether working or not). As discussed earlier, the danger of losing work in
progress when an interruption incurs mandates that we not just divide the workload
into W/p equal-size chunks and allocate one chunk to each computer. Instead, we
aim at: (i) partitioning the workload into chunks, the unit of work that we allocate
to the computers; (ii) prescribing a schedule for allocating chunks to computers; and
(iii) allocating some chunks to several computers, as a divisible-load analogue of task
replication.

Within this model, all computers share the same risk function, i.e., the same
instantaneous probability, Pr(w), of having been interrupted by the end of the first
w time units. We measure time in terms of work units that could have been executed
successfully, i.e., with no interruption. In other words “the first w time units” is the
amount of time that a computer would have needed to compute w work units if it
had started working on them when the entire worksharing episode began. This time
scale is shared by all computers. Of course, Pr(w) increases with w; moreover, we
assume that we know its exact value.

It is useful in our study to generalize our measure of risk by allowing one to
consider many baseline moments. We denote by Pr(s, w) the conditional probability
that a remote computer will be interrupted during the next w time units, given that
it has not been interrupted during the first s time units. Thus, Pr(w) = Pr(0, w)
and Pr(s, w) = Pr(s + w)− Pr(s). We let κ ∈ (0, 1] be a constant that weights our
probabilities.
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The risk function that is the focus of this study is the linear function Pr(w) =
κw. It is the most natural model in the absence of further information: the risk of
interruption grows linearly with the time that the computer has been available, or
equivalently to the amount of work it could have done. The density function is then
dPr = κdt for t ∈ [0, 1/κ] and 0 otherwise, so that

Pr(s, w) = min

{

1,

∫ s+w

s

κdt

}

= min{1, κw}.

The constant 1/κ can be viewed as the time by which an interruption will have
occurred with probability 1, and is also denoted by X.

Risk functions help us finding an efficient way to chunk work for, and allocate
work to, the remote computers, in order to maximize the expected work production
of the assemblage. Let jobdone be the random variable whose value is the number
of work units that the assemblage executes successfully under a given scheduling
regimen. Formally, we are striving to maximize the expected value (or, expectation)
of jobdone.

We perform our study under two models, which play different roles as one con-
templates the problem of scheduling a large workload. The models differ in the
way chunk execution times relate to chunk sizes. In short, there are two classes of
time-costs, those that are proportional to the chunk size and those that are fixed
constants. When chunks are large, the second cost will be minuscule compared to
the first. This suggests that the fixed costs can be ignored, but one must be care-
ful: if one ignores the fixed costs, then there is no disincentive to, say, deploying
the workload to the remote computers in n + 1 chunks, rather than n. Of course,
increasing the number of chunks tends to make chunks smaller—which increases the
significance of the fixed cost! Therefore, we perform the current study with two cost
models, striving for optimal schedules under each one. The free-initiation model is
characterized by not charging the owner of the workload a per-chunk fixed cost. This
model focuses on situations wherein the fixed costs are negligible compared to the
chunk-size-dependent costs. The charged-initiation model, which more accurately re-
flects the costs incurred with real computing systems, is characterized by accounting
for both the fixed and chunk-dependent costs.

The free-initiation model. This model assesses no per-chunk cost. Our results
under this model approximate reality well when a priori chunks must be large, e.g.,
because large fixed-size costs demand that every remote computer do a substan-
tial amount of work in order to amortize the fixed-size costs. In such a situation,
one keeps chunks large by placing a bound on the number of scheduling “rounds,”
which counteracts this model’s tendency to increase the number of “rounds” without
bound. Importantly also: the free-initiation model allows us to obtain bounds on the
expectation of jobdone under the charged-initiation model, when such bounds are
prohibitively hard to derive directly (see Theorem 9).

Under the free-initiation model, the expected value of jobdone under a given



68 CHAPTER 4. DEALING WITH DYNAMIC PLATFORMS

scheduling regimen Θ, denoted E(f)(jobdone,Θ), the superscript “f” denoting “free-
initiation,” is

E(f)(jobdone, Θ) =

∫ ⊤

0
Pr(jobdone ≥ u under Θ) du.

For instance, if the workload is deployed as a single chunk, we have E(f)(W, Θ1) =
W (1 − Pr(W )), while for two chunks,

E(f)(W, Θ2) =

∫ ω1

0
Pr(jobdone ≥ u)du +

∫ ω1+ω2

ω1

Pr(jobdone ≥ u)du

= ω1(1 − Pr(ω1)) + ω2(1 − Pr(ω1 + ω2)).

The charged-initiation model. This model is much harder to analyze than the
free-initiation model, even when there is only one remote computer. In compensation,
this model often allows one to determine analytically what the best numbers of
chunks are. Under this model, the overhead for each additional chunk is a fixed
cost—which, in common with time, we measure in units of work—that is added to
the cost of computing of each chunk; we denote this overhead by ε (for instance this
may correspond to a checkpointing cost). Under this model, then, the expectation
of jobdone under schedule Θ, denoted E(c)(jobdone,Θ), the superscript “c” denoting
“charged(-initiation),” is

E(c)(jobdone,Θ) =

∫ ⊤

0
Pr(jobdone ≥ u + ε) du.

When the whole workload is deployed as a single chunk, E(c)(W, Θ1) = W (1 −
Pr(W + ε)), and when work is deployed as two chunks of respective sizes ω1 and ω2,
E(c)(W, Θ2) = ω1(1 − Pr(ω1 + ε)) + ω2(1 − Pr(ω1 + ω2 + 2ε)).

Relating the two models. One can bound the work completed under the charged-
initiation model via the free-initiation model. This justifies the study of the free-
initiation model.

Theorem 9. Let E(c)(W, n) and E(f)(W, n) denote, respectively, the optimal expected
value of jobdone with n chunks under the charged-initiation model and under the
free-initiation model. Then:

E(f)(W, n) ≥ E(c)(W, n) ≥ E(f)(W, n) − nε.

IV.3 With one or two computers

In this section, we only present results on how to schedule under the linear risk model
in a simple case with one or two remote computers, and the extension will be briefly
discussed in Section IV.4. Some of the results we derive bear a striking similarity to
their analogues in [24], despite certain substantive differences in models.
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IV.3.1 With one computer

We first illustrate why the risk of losing work because of an interruption must affect
our scheduling strategy, even when there is only one remote computer and under the
free-initiation model. When W ≤ 1/κ, the expected amount of work achieved when
one deploys the entire workload in a single chunk is E(f)(W, Θ1) = W − κW 2. The
analogous quantity when one deploys the workload in two chunks, of respective sizes
ω1 > 0 and ω2 > 0, with ω1+ω2 = W , is E(f)(W, Θ2) = W−W 2κ+ω1ω2κ. Note that:
E(f)(W, Θ2)−E(f)(W, Θ1) = ω1ω2κ > 0. Thus, as one would expect: For any fixed
total workload, one increases the expectation of jobdone by deploying the workload as
two chunks, rather than one—no matter how one sizes the chunks. In fact, the
expectation of jobdone for the optimal schedule strictly increases with the number of
chunks allowed (Theorem 10). This fact identifies a weakness of the free-initiation
model: increasing the number of chunks always increases the expected amount of
work done—so the (unachievable) “optimal” strategy would deploy infinitely many
infinitely small chunks.

Theorem 10. (free-initiation model) Say that one wishes to deploy W units of
work to a single remote computer in at most n chunks, for some integer n > 0. In
order to maximize the expectation of jobdone, one should have all chunks comprise

Z/n units of work, where Z = min
{

W, n
n+1X

}

. In expectation, this optimal schedule

completes E(f)(W, n) = Z − n+1
2n

Z2κ units of work.

The charged-initiation analogue of Theorem 10 is dramatically more difficult to
deal with.

Theorem 11. (charged-initiation model) Say that one wishes to deploy W units
of work to a single remote computer in at most n chunks, for some integer n > 0; say

that X ≥ ε. Let n1 =
⌊

1
2

(

√

1 + 8X/ε − 1
)⌋

and n2 =
⌊

1
2

(

√

1 + 8W/ε + 1
)⌋

. The

unique regimen for maximizing E(c)(jobdone) specifies m = min{n, n1, n2} chunks:

the first has size ω1,m = Z
m

+ m−1
2 ε , where Z = min

{

W, m
m+1X − m

2 ε
}

; the

(i + 1)th chunk inductively has size ωi+1,m = ωi,m − ε. In expectation, this schedule

completes E(c)(W, n) = Z − m+1
2m

Z2κ − m+1
2 Zεκ + (m−1)m(m+1)

24 ε2κ units of work.

The proofs, which are very technical and difficult, especially under the charged-
initiation model, can be found in [C25].

IV.3.2 With two computers

Results in [C25] suggest that finding exactly optimal schedules is surprisingly dif-
ficult as soon as we consider two computers. However, we were able to establish
characteristics of optimal schedules under general risk functions. We consider two
remote computers, P1 and P2, under the free-initiation model.

Say, for i = 1, 2, that we deploy ni chunks of work, Wi,1, . . . , Wi,ni
, on Pi; Pi

must schedule them in this order. We do not assume any a priori relation between
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W1,2 W1,3

W2,3 W2,2 W2,1

W1,1

Figure 4.9: The shape of Theorem 12’s optimal schedule for two computers; n1 =
n2 = 3. The top row displays P1’s chunks, the bottom row P2’s. Vertically aligned
parts of chunks correspond to shared work; shaded areas depict unallocated work
(e.g., no work in W2,1 is allocated to P1).

how P1 and P2 break their allocated work into chunks: work that is allocated to
both P1 and P2 may be chunked differently on the two machines. The proof of the
following theorem can be found in [C25].

Theorem 12. Let Θ be a schedule for P1 and P2. Say that, for both computers, the
probability of being interrupted never decreases as a computer processes more work.
Then there exists a schedule Θ′ that, in expectation, completes as much work as does
Θ and that satisfies the following three properties; cf. Fig. 4.9.

1. Maximal work deployment. Θ′ deploys as much of the overall workload
as possible: the workloads it deploys to P1 and P2 can overlap only if their union is
the entire overall workload.

2. Local work priority. Θ′ has P1 (resp., P2) process all of the allocated work
that it does not share with P2 (resp., P1) before it processes any shared work.

3. Shared work “mirroring.” Θ′ has P1 and P2 process their shared work “in
opposite orders.” Specifically, say for k = 1, 2, that Pk chops its allocated work into
chunks Wk,1, . . . ,Wk,nk

. Say that there exist chunk-indices a1, b1 > a1 for P1, and
a2, b2 > a2 for P2 such that: W1,a1 and W2,a2 both contain a shared “piece of work”
A, and W1,b1 and W2,b2 both contain a shared “piece of work” B. Then if Θ′ has P1

execute A before B (i.e., P1 executes W1,a1 before W1,b1), then Θ′ has P2 execute B
before A (i.e., P2 executes W2,b2 before W2,a2).

IV.4 Conclusion

We have presented in this section a selection of results from [C25], and demonstrated
how complicated the problem can become in a dynamic setting with unrecoverable
interruptions. Indeed, we were able to optimally solve the problem only when con-
sidering a single computer, and we characterized the shape of an optimal solution
with two computers. The complexity of the development about two computers sug-
gests that the general case of p remote computers will be prohibitively difficult, even
with respect to deriving asymptotically optimal schedules. For this general case, we
derived a number of well-structured heuristics, whose quality could be assessed via
explicit expressions for their expected work outputs. Extensive simulation experi-
ments suggest that our heuristics provide schedules with good expected work output
in non trivial cases, that is, when there is work to replicate (W < pX) and the
replication is not trivial (W > X).
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Much remains to be done regarding this important problem, but three directions
stand out as perhaps the major outstanding challenges. One of these is to extend the
(asymptotic-)optimality results to a larger class of risk functions, thereby covering
the range of situations that this work addresses. A second is to extend this study
to heterogeneous platforms, whose constituent computers differ in speed and other
computational resources. Finally, it would be significant to allow computers to be
subject to differing probabilities of being interrupted.

We compare the approach of this section with the other works presented so far
in this document in the following Section V.

V Summary and conclusion

In this chapter, we have demonstrated the additional difficulties raised when ad-
dressing a dynamic setting, with platform variability and failures. Already, we were
confronted to many problems in a static framework such as the one exposed in Chap-
ter 2, and the use of performance models allowed us to solve some of the previous
issues. Thus, in Section III, we were able to compute the period of a one-to-one map-
ping with replication, either with a polynomial algorithm for the model with overlap,
or with the help of a tool which computes the critical cycles of a TPN for the model
with overlap (for which the problem is NP-hard). This section was not addressing
variability yet, contrary to Section II which considered a platform with parameters
following an exponential law. However, the memoryless property of Markov chains
made us unable to obtain an accurate performance prediction from this first model,
hence the modeling of Section III. Of course, much work remains to be done in order
to transform the latter model in a non-deterministic one, to account for platform
variability. We are currently working on this point.

A dynamic platform is characterized by its variability, as we targeted in Sections
II and III. However, a dynamic platform also is subject to failures, and we focused on
the failure model in Section IV. In the linear chain pipelined application framework
that we studied so far, we motivated a constant failure model. However, such a model
has its limitations, and may not always be realistic. We thus investigated a failure
risk which increases with time, but left the linear chain framework for a simpler one,
a single divisible workload to be computed by a set of homogeneous processors. Even
in this simple framework, the problems turn out very complicated, and we were not
even able to derive optimal results with two identical processors. This section fully
demonstrated the complexity of realistic failure models.

We have conducted other work which deal with failures. In the context of DAG
scheduling, we have investigated task replication in order to be able to tolerate a fixed
number of failures, see for instance [J11],[J15]. In a different context of scheduling
for a micro-factory, we studied the problem with task failures rather than hardware
failures (see [C30]). Our current research activity focuses on dynamic platforms,
and we hope to be able to solve some of the challenges raised by the study of such
platforms.
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We have so far concentrated the study to linear chain applications, or even simpler
application such as the divisible workload of Section IV. In the next chapter, we
discuss problems raised by more complex applications.



Beyond linear chains

CHAPTER

5

We have extensively studied linear chain applications, both in a static and a dynamic
setting, and the conclusion is that even for simple application patterns, problems can
get incredibly difficult. In this chapter, we target more complex applications, and
exhibit cases in which we are able to derive interesting complexity results.

First in Section I, we add a selectivity parameter to each application stage, hence
expressing the fact that a stage can filter or expand the data. This leads to add de-
pendencies between stages in order to exploit this feature, even if there are no depen-
dence constraints initially. In Section II, we tackle applications with more complex
dependencies, such as fork graphs and directed acyclic graphs (DAGs), still in the
context of pipelined applications. Then Sections III and IV study more complex and
more realistic application scenarios. The first one is the problem of replica place-
ment in tree networks, which aims at satisfying requests coming from clients, while
optimizing some objective function. The second one considers applications which
are structured as trees of operators: basic objects must be downloaded (leaves of the
tree) and then operators must be applied continuously, in order to produce results
at some desired rate.

I Filtering applications

This section is devoted to the problem of mapping filtering services on large-scale
platforms, which corresponds to the problem of query optimization over Web ser-
vices [114, 28]. This problem is close to the problem of mapping pipelined appli-
cations onto distributed architectures, as discussed earlier, but it involves several
additional difficulties due to the filtering properties of the services.

Consider a collection of various services that must be applied on a stream of
consecutive data sets. As for pipelined applications, we have a graph with nodes
(the services) and precedence edges (dependence constraints between services), with
data flowing continuously from the input node(s) to the output node(s). Also, the
goal is to map each service onto a processor, or server, so as to optimize the same
performance objectives as before (period and/or latency). But in addition, services
can filter the data by a certain amount, according to their selectivity.

We first expose the new framework and illustrate through examples the addi-
tional complexity raised by the filtering properties of stages, even in the absence of
communication costs, in Section I.1. Then we present complexity results for such
problems in Section I.2. The extension to filtering application with communication
costs is discussed in Section I.3. Finally we conclude in Section I.4.
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I.1 Filters framework

All hypotheses and mapping rules are those of Srivastava et al. [114, 28]. Although
their papers mainly deal with query optimization over Web services (already an in-
creasingly important application with the advent of Web Service Management Sys-
tems [49, 99]), the approach applies to general data streams [9] and to database
predicate processing [31, 60]. Finally (and quite surprisingly), we note that this
framework is quite similar to the problem of scheduling unreliable jobs on parallel
machines [3], where service selectivities correspond to job failure probabilities.

The framework. The target application A is a set of services (or stages, or filters,
or queries) linked by precedence constraints. We write A = (F ,G) where F =
{C1, C2, . . . , Cn} is the set of services and G ⊂ F × F is the set of precedence
constraints. If G = {(C1, C2), (C2, C3), . . . , (Cn−1, Cn)}, we have a linear chain as
before. If G = ∅, we have services without precedence constraints. A service Ci is
characterized by its cost ci and its selectivity σi.

For the computing resources, we have a set S = {S1, S2, . . . , Sp} of servers (or
processors). In the case of homogeneous platforms, servers are identical while in the
case of heterogeneous platforms, each server Su is characterized by its speed su. We
always assume that there are more servers available than services (hence n ≤ p),
and we search a one-to-one mapping1, or allocation, of services to servers. The
one-to-one allocation function alloc associates to each service Ci a server Salloc(i).
We restrict below to a framework with no communication costs. The extension to
communication costs is discussed in Section I.3.

Filtering data. Consider a service Ci with selectivity σi: if the incoming data is
of size δ, then the outgoing data will be of size δ × σi. The initial data is of size δ0.
We see that the data is shrunk by Ci (hence the term “filter”) when σi < 1 but it can
also be expanded if σi > 1. Each service has an elementary cost ci, which represents
the volume of computations required to process a data set of size δ0. But the volume
of computations is proportional to the actual size of the input data, which may have
shrunk or expanded by the predecessors of Ci in the mapping. Altogether, the time
to execute a data set of size σ× δ0 when service Ci is mapped onto server Su is σ ci

su
.

Here σ denotes the combined selectivity of all predecessor of Ci in the mapping.

Execution graph. We also have to build a graph G = (C, E) that summarizes all
precedence relations in the mapping. The nodes of the graph are couples (Ci, Salloc(i)),
and thus they define the allocation function. There is an arc (Ci, Cj) ∈ E if Ci pre-
cedes Cj in the execution. There are two types of such arcs: those induced by the set
of precedence constraints G, which must be enforced in any case, and those added to
reduce the period or the latency. The execution graph G is called a plan.

1In general mappings, we can map several services onto the same server. Problems with general
mappings are straightforwardly shown NP-hard by reduction from 2-Partition or bin packing [54].
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C1 C2 C3

Figure 5.1: Chaining services.

C1

C3

C2

Figure 5.2: Combining selectivities.

Consider two arbitrary services Ci and Cj . If there is a precedence constraint
from Ci to Cj , we need to enforce it. But if there is none, meaning that Ci and
Cj are independent, we may still introduce a (fake) edge, say from Cj to Ci, in the
mapping, meaning that the output of Cj is fed as input to Ci. If the selectivity of
Cj is small (σj < 1), then it shrinks each data set, and Ci will operate on data sets
of reduced volume. As a result, the cost of Ci will decrease in proportion to the
volume reduction, leading to a better solution than running both services in parallel.
Basically, there are two ways to decrease the final cost of a service: (i) map it on
a fast server; and (ii) map it as a successor of a service with small selectivity. In
general, we have to organize the execution of the application by assigning a server
to each service and by deciding which service will be a predecessor of which other
service (therefore building an execution graph, or plan), with the goal of minimizing
the objective function. The edges of the execution graph must include all the original
dependence edges of the application. We are free to add more edges if it decreases
the objective function. Note that the selectivity of a service influences the execution
time of all its successors, if any, in the mapping.

For instance, consider the example with three services C1, C2 and C3 which are
organized in a linear chain, as depicted in Figure 5.1. Then, the cost of C2 is σ1c2

and the cost of C3 is σ1σ2c3. If Ci is mapped onto Si, for i = 1, 2, 3, then the period

is P = max
(

c1
s1

, σ1c2
s2

, σ1σ2c3
s3

)

, while the latency is L = c1
s1

+ σ1c2
s2

+ σ1σ2c3
s3

. Here,

we also note that selectivities are independent: for instance if C1 and C2 are both
predecessors of C3, as in Figure 5.1 or in Figure 5.2, then the cost of C3 becomes

σ1σ2c3. With the mapping of Figure 5.2, the period is P = max
(

c1
s1

, c2
s2

, σ1σ2c3
s3

)

,

while the latency is L = max
(

c1
s1

, c2
s2

)

+ σ1σ2c3
s3

. We see from the latter formulas that

the model neglects the cost of joins when combining two services as predecessors of
a third one.

Formally, Ancestj(G) denotes the set of all ancestors2 of Cj in G, but only arcs
from direct predecessors are kept in E . In other words, if (Ci, Cj) ∈ G, then we
must have Ci ∈ Ancestj(G) 3. Given a plan G, the execution time of a service Ci

is costi(G) =
(

∏

Cj∈Ancesti(G) σj

)

× ci

salloc(i)
. We note LG(Ci) the completion time of

2The ancestors of a service are the services preceding it, and the predecessors of their predeces-
sors, and so on.

3Equivalently, G must be included in the transitive closure of E .
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service Ci with the plan G, which is the length of the path from an entry node to Ci,
where each node is weighted with its execution time. We can now formally define
the period P and the latency L of a plan G:

P(G) = max
(Ci,Su)∈C

costi(G) and L(G) = max
(Ci,Su)∈C

LG(Ci).

Example with independent services. Consider a problem instance with three
services C1, C2 and C3 without precedence constraints. Assume that c1 = 1, c2 = 4,
c3 = 10, and that σ1 = 1

2 , σ2 = σ3 = 1
3 . Suppose that we have three servers of

respective speeds s1 = 1, s2 = 2 and s3 = 3. What is the mapping which minimizes
the period? and same question for the latency? We have to decide for an assignment
of services to servers, and to build the best plan.

For the period optimization, we can look for a plan with a period smaller than
or equal to 1. In order to obtain an execution time smaller than or equal to 1 for
service C3, we need the selectivity of C1 and C2, and either server S2 or server S3.
Server S2 is fast enough to render the time of C3 smaller than 1, so we decide to
assign C3 to S2. Service C2 also needs the selectivity of C1 and a server of speed
strictly greater than 1 to obtain an execution time less than 1. Thus, we assign C1

to S1 and make it a predecessor of C2. In turn we assign C2 to S3 and make it a

predecessor of C3. We obtain a period of min
(

1
1 , 1

2
4
3 , 1

2×3
10
2

)

= 1. It is the optimal

solution. In this plan, the latency is equal to 1 + 4
6 + 10

12 = 5
2 .

For the latency optimization, we have a first bound: 5
2 . Because of its cost, service

C3 needs at least one predecessor. If C1 is the only predecessor of C3, we have to
assign C3 to S3 in order to keep the latency under 5

2 . The fastest computation time
that we can then obtain for C3 is 1

2 + 1
2

10
3 , with C1 assigned to S2. In this case, the

fastest completion time for C2 is 5
2 : this is achieved by letting C2 be a successor of

C1 in parallel with C3. Suppose now that C2 is a predecessor of C3, and that there is
an optimal solution in which C2 is the only predecessor of C3. Independently of the
choice of the servers assigned to C1 and C2, if we put C1 without any predecessor,
it will end before C2. So, we can make it a predecessor of C3 without increasing
its completion time. So, we are looking for a solution in which C1 and C2 are
predecessors of C3. There are three possibilities left: (i) C1 is a predecessor of C2;
(ii) C2 is a predecessor of C1; and (iii) C1 and C2 have no predecessors. In the
first two cases, we compute for each service a cost weighted by the product of the
selectivities of its predecessors. Then, we associate the fastest server to the service
with the longest weighted cost and so on. We obtain 5

2 in both cases. For the last
case, we know that the real cost of C1 will have no influence on the latency, hence
we assign it to the slowest server S1. The weighted cost of the remaining services is
4 for C2 and 10

6 for C3. So, we assign S3 to C2 and S2 to C3. We obtain a latency of
4
3 + 1

2×3
10
2 = 13

6 . We cannot obtain a strictly faster solution if C2 is not a predecessor

of C3. As a result, 13
6 is the optimal latency. In this optimal plan for the latency,

the period is 4
3 .



I. FILTERING APPLICATIONS 77

This simple example with no precedence constraints illustrates the challenges
arising from filtering applications, even if we do not account for communication
costs. We now proceed to complexity results, first with no communication costs in
Section I.2, and then with communication costs in Section I.3.

I.2 Complexity results with no communication costs

The detailed presentation of complexity results with proofs can be found in [C26].
We outline the results first for homogeneous platforms, and then in the heterogeneous
case.

I.2.1 Homogeneous platforms: identical resources

The problem of minimizing the period with precedence constraints and identical re-
sources was shown to have polynomial complexity in [114, 28]. We extended this
result to the latency minimization problem, and give a complicated polynomial al-
gorithm to solve the problem (see [C26]). In order to give an insight of the problem
complexity, we present the simpler algorithm for the case with no precedence con-
straints, which runs in time O(n2) (see Algorithm 1).

The proof that this algorithm returns the optimal solution is already very tech-
nical. We show that Algorithm 1 verifies the following properties:

• (A) LG(C1) ≤ LG(C2) ≤ · · · ≤ LG(Cp);
• (B) ∀i ≤ n, LG(Ci) is optimal.

Because the latency of any plan G′ is the completion time of its last node (a node
Ci such that ∀Cj , LG′(Ci) ≥ LG′(Cj)), property (B) shows that L(G) is the optimal
latency. We prove properties (A) and (B) by induction on i: for every i we prove
that LG(Ci) is optimal and that LG(C1) ≤ LG(C2) ≤ · · · ≤ LG(Ci) (see [C26]).

The bi-criteria problem consists in finding a plan G whose period does not ex-
ceed K and whose latency is minimal, given a bound on the period K. Both mono-
criterion problems are polynomial, and we derive a bi-criteria polynomial algorithm

Data: n services with selectivities σ1, ..., σp ≤ 1 without precedence
constraints, σp+1, ..., σn > 1, and ordered costs c1 ≤ · · · ≤ cp

Result: a plan G optimizing the latency
G is the graph reduced to node C1;
for i = 2 to n do

for j = 0 to i − 1 do
Compute the completion time Lj(Ci) of Ci in G with predecessors
C1, ..., Cj ;

end
Choose j such that Lj(Ci) = mink{Lk(Ci)};
Add the node Ci and the edges C1 → Ci, . . . , Cj → Ci to G;

end
Algorithm 1: Latency minimization, identical servers, no precedence constraints.
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to solve this latter problem. The algorithm is based on the algorithm which mini-
mizes the latency, and its complexity in the general case with precedence constraints
is at most O(n6) (see [C26]).

I.2.2 Heterogeneous platforms

With heterogeneous resources, we show that both period and latency minimization
problems are NP-hard, even for services without precedence constraints. Thus, bi-
criteria problems on heterogeneous platforms are NP-hard.

The completeness for the period minimization problem is established through
an involved reduction from RN3DM, a special instance of Numerical 3-Dimensional
Matching that has been proved to be strongly NP-complete by Yu [131, 132]. The
problem remains NP-hard even when all service selectivities are identical. Moreover,
we prove that there exists no approximation algorithm with a constant factor, unless
P=NP.

To prove the completeness of the latency minimization problem, we first show
that the optimal solution has a particular structure. We then use this result to derive
the NP-completeness of the problem. Given a plan G and a vertex v = (Ci, Su) of
G, v is a leaf if it has no successor in G, and we define di(G) as the maximum length
(number of links) in a path from v to a leaf. Note that if v is a leaf, then di(G) = 0.
Given a set of services and servers, the optimal latency can be obtained with a plan G
such that, for any couple of nodes of G v1 = (Ci1 , Su1) and v2 = (Ci2 , Su2),

1. If di1(G) = di2(G), v1 and v2 have the same predecessors and the same succes-
sors in G.

2. If di1(G) > di2(G) and σi2 ≤ 1, then ci1/su1 < ci2/su2 .

3. All nodes with a service of selectivity σi > 1 are leaves (di(G) = 0).

The proof of this property is already very technical, and then the completeness
of the problem comes from a reduction from RN3DM: we build an instance of our
problem whose solution will necessarily be a linear chain. We refer the interested
reader to [C26] for all the details.

I.3 Filtering applications with communication costs

With different speed processors, all problems are NP-hard, even without any commu-
nication costs. We thus consider mapping filtering applications onto homogeneous
platforms: each server has the same speed, and all servers are connected to each
other by communication links of equal bandwidth. Note that we do not need to
specify which service is mapped onto which server, since all servers are equivalent.
Instead, we have to generate the execution graph, which is not constrained to be a
linear chain as in Chapter 2. Thus, even though we restrict to one-to-one mappings,
a processor may communicate with several other processors, and we need to define
an operation list, which details the time-steps at which every computation and every
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communication takes place. As before, we assume that the schedule is cyclic, so that
the execution list can be specified concisely.

We consider two commonly used communication models, as discussed in Chap-
ter 2. The no overlap communication model requires that at any point, a server
can either compute, or receive an incoming communication, or send an outgoing
communication. This models single threaded machines where every operation is
serialized. We define two variants for this model, one where we enforce in-order
execution, and another where we allow out-of-order execution (which means inter-
leaving communications and computations of different data sets) so as to reduce the
idle-time incurred by the serial ordering of the communications4. In contrast, the
overlap communication model considers the situation where a server can compute
and send/receive communications at the same time. This calls for multi-threaded
machines and parallel communications. In all models, both computations and com-
munications are non-preemptive, which means that they cannot be interrupted once
initiated. Also, communications are synchronous (by rendez-vous between the sender
and the receiver). This synchronization between servers can cause idle times.

Our main findings is that computing the period or the latency in all these models
turns out to be difficult. As already stated, the minimization problems (finding the
optimal plan to minimize the period or the latency) are all NP-hard. This result
is surprising, since polynomial algorithms exist for homogeneous machines when we
do not model communication, as discussed in Section I.2. Therefore, modeling com-
munication costs explicitly has a huge impact on the difficulty of mapping filtering
services.

In addition, and quite unexpectedly, the “orchestration” problems (given an ex-
ecution graph, find the optimal operation list) also are of combinatorial nature,
similarly to the cases exhibited in Section 2 in the context of pipelined applications
with no filtering. For the communication model with overlap, and given an execution
graph, we provide a polynomial algorithm which determines the operation list that
leads to the best period. However the same problem turns out to be NP-hard in
the model with no overlap. The counterpart results for the latency are even more
striking: this problem turns out to be NP-hard for all models (while determining
the best period is polynomial for the model with overlap). All these results imply
technically involved reduction proofs, that can be found in [C32].

I.4 Conclusion

In this section, we have explored the problem of mapping filtering streaming ap-
plications on large-scale platforms, and discussed communication models and their
impact. The following important problems have been addressed: (i) Given an execu-
tion graph, what is the complexity of computing the period or the latency? (ii) What

4Note that these two variants can been introduced for linear chain applications as well. We did
not address this level of detail in Chapter 2 because the variants have no impact on complexity
results in this case: we only need to modify the constraints of the operation list to take them into
account.



80 CHAPTER 5. BEYOND LINEAR CHAINS

is the complexity of the general period or latency minimization problem?

We have been able to provide the complexity of all optimization problems, with or
without communication costs, thereby providing solid theoretical foundations for the
study of filtering streaming applications. Several of these results apply to regular
pipelined applications, which broadens the scope and significance of these results
to quite a large applicative framework, such as the one discussed in the previous
chapters.

In the next section, we are back to classical pipelined applications, but we consider
more complex dependency graphs, such as forks and general DAGs.

II Fork and DAG application patterns

While linear chain graphs occur in many applications in the domains of image pro-
cessing, computer vision, query processing, etc, fork graphs are mandatory to dis-
tribute files or databases in master-worker environments. Both graphs are important
but also simple enough so that the design of optimal mappings is well understood
in some simple frameworks. We have already extensively discussed the case of linear
chains, and we extend this discussion to fork and fork-join graphs in Section II.1.
Fork graphs are more difficult to tackle, because there are more opportunities for
parallelism, hence a wider combinatorial space to explore when searching for good
mappings.

The study of general directed acyclic graphs (DAGs) is even more complex, and
most problems are already known to be NP-hard for such applications. We briefly
discuss the case of DAG applications in Section II.2.

II.1 Fork graphs

A fork graph of n+1 stages Sk, 0 ≤ k ≤ n is illustrated on Figure 5.3. S0 is the root
stage while S1 to Sn are independent stages that can be executed simultaneously for
a given data set. Stage Sk (0 ≤ k ≤ n) performs a number of wk computations on
each data set. As for the linear graph, consecutive data sets are fed into the fork.
Each data set first proceeds through stage S0, which outputs its results, of size δ0, to
all the other stages. The first stage S0 receives an input of size δ−1 from the outside
world, while the other stages Sk, 1 ≤ j ≤ n, may return their results, of size δk, to
the outside world.

For a fork graph, it is natural to map any partition of the graph onto the proces-
sors. Assume such a partition with q sets, where q ≤ p. The first set of the partition
contains the root stage S0 and possibly other independent stages (say S1 to Sk with-
out loss of generality), while the other sets only contain independent stages chosen
from Sk+1 to Sn. Assume that the first set (with the root stage) is assigned to P1,
and that the q − 1 remaining sets are assigned to P2, . . . , Pq. Defining the period
requires to make several hypotheses on the communication model:
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Figure 5.3: The application fork.

• A flexible model would allow P1 to initiate the communications to the other
processors immediately upon completion of the execution of S0, while a stricter
model (say, with a single execution thread) would allow the communications
to start only after P1 has completed all its computations, including those for
stages S1 to Sk.

• Either way, we need to specify the ordering of the communications. This is
mandatory for the one-port model without overlap, obviously, but this is also
true for the bounded multi-port model with overlap: a priori, there is no reason
for the q−1 communications to take place in parallel; the scheduler might decide
to send some messages first and others later.

Also, we want to allow replication of dealable stages, and then the situation gets
even more complicated since the latency depends upon whether the model is flexible
or strict, and it is hugely impacted by the communication ordering. Data-parallel
stages are also considered.

We therefore restrict this study to a framework with no communication costs
nor overheads, similarly to the simplified model presented in Chapter 2. In this
framework, the period is dictated by the critical resource. We detail how to compute
the latency for fork graphs, which requires some additional notations. Assume a
partition of the n + 1 stages into q sets Ir, where 1 ≤ r ≤ q ≤ p. Without loss
of generality, the first set I1 contains the root stage and is assigned to the set of k
processors Pq1 , . . . , Pqk

. Let travr be the delay of the r-th set, 1 ≤ r ≤ q, computed
as if it was a stage interval of a pipeline graph, i.e., using the formulas of Chapter 2
to account for data-parallelism or replication. We use a flexible model where the
computations of set Ir, r ≥ 2, can start as soon as the computation of stage S0,
from which it has an input dependence, is completed. In other words, there is no
need to wait for the completion of all tasks in I1 to initiate the other sets Ir, we
only wait for S0 to terminate. Let s0 be the speed at which S0 is processed, hence
s0 =

∑k
u=1 squ if I1 is data-parallelized, and s0 = min1≤u≤k squ if I1 is replicated.
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We then derive the latency of the mapping as

L = max

(

trav1,
w0

s0
+ max

2≤r≤q
travr

)

.

We are now ready to derive complexity results. Since communication costs are
neglected, we consider either homogeneous platforms with identical speed processors,
or heterogeneous ones with different speed processors.

Theorem 13. For homogeneous platforms, the optimal fork mapping which mini-
mizes the period can be determined in polynomial time, with or without data-parallelism.

This result actually holds for any DAGs when replication is allowed, since the
optimal solution consists in replicating the whole DAG on all processors, when they
are all identical.

Theorem 14. For homogeneous platforms, the optimal homogeneous fork mapping
which minimizes the latency can be determined in polynomial time, with or without
data-parallelism. The problem becomes NP-hard for a heterogeneous fork.

A homogeneous fork is such that stages S1 to Sn have the same computational
cost. Then we are able to derive a sophisticated bi-criteria dynamic programming al-
gorithm, for both cases with or without data-parallelism, whose complexity is always
bounded by O(n3p3). See [J10] for the details. In the general case (heterogeneous
fork), the problem is NP-hard, and the reduction comes from 2-PARTITION [54].

On heterogeneous platforms, only the homogeneous fork cases with no data-
parallelism can be solved in polynomial case, while all remaining cases are NP-hard.
With data-parallelism, even with a homogeneous fork, we can build an instance with
only two fork stages, which is indeed a linear chain graph, and thus the results are
identical to those of Chapter 3:

Theorem 15. For heterogeneous platforms with data-parallelism, finding the optimal
mapping for a homogeneous fork, for any objective (minimizing latency or period),
is NP-complete.

Without data-parallelism, the results are more interesting:

Theorem 16. For heterogeneous platforms without data-parallelism, the optimal
homogeneous fork mapping for any objectives can be determined in polynomial time.
The problem becomes NP-hard for a heterogeneous fork.

For the polynomial case, a sophisticated algorithm is provided in [J10], which
expresses the solution with intervals of similar speed processors. We derive a poly-
nomial dynamic programming algorithm in O(p5), which must be executed at each
step of a binary search on the period and/or latency. The completeness in the het-
erogeneous case comes here again from 2-PARTITION [54], see [J10].
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Extension to fork-join graphs. We have concentrated in this section on the
complexity of mapping algorithms for fork graphs, but it is also very common to
have fork-join graphs, in which a final stage, Sn+1, is gathering all the results and
performing some final computations. We briefly explain that all the complexity
results obtained for fork graphs can be extended to fork-join graphs. In other words,
the complexity is not modified by the addition of the final stage. Clearly, all the
problem instances which are NP-complete for a simple fork are still NP-complete for
a fork-join graph. The question is to check whether we can extend the polynomial
algorithms to handle fork-join or not. The answer is positive in all cases. We do not
formally present these new algorithms, but rather give an insight on how to design
the extensions.

First, consider the polynomial entries on homogeneous platforms. The straight-
forward algorithm to minimize the period for a fork is still working for a fork-join,
since the replication of the whole graph on all the processors still provides the opti-
mal period (it actually works for any DAG). Minimizing the latency or a bi-criteria
algorithm was requiring a dynamic programming algorithm for a homogeneous fork
(the problem being NP-hard for a heterogeneous fork). The dynamic programming
algorithms used in the proof of Theorem 14 extend to fork-join graphs by adding
two external loops, the first over the number of stages which belong to the same
interval as the final stage Sn+1, and the second over the number of processors onto
which these latter stages are mapped. We should also consider the case in which S0

and Sn+1 are in the same interval. The rest of the algorithms is unchanged. Taking
the new loops into account, we add a factor O(np) to the complexity, which finally
becomes O(n4p4).

The only polynomial algorithm on heterogeneous platforms is for a homogeneous
fork without data-parallelism. This corresponds to the algorithm of Theorem 16,
which executes a binary search, and a dynamic programming computation at each
iteration of the binary search. For a homogeneous fork-join graph, we are still able
to describe the form of an optimal solution, using intervals of processors with consec-
utive speeds. One of the processor intervals must be in charge of Sn+1, it can either
be the one in charge of S0 or another one. We need to distinguish both cases, and to
add a loop on the first processor of the interval which handles Sn+1 whenever it is
different from the one which handles S0. The formula are then slightly modified to
take into account the time of the final computations, but the algorithm remains sim-
ilar. We have added O(p) to the complexity, leading to a total complexity of O(p6)
for each iteration of the binary search.

On the theoretical side, we see that extending all the complexity results to fork-
join graphs is not very difficult. But we believe that this extension is worth mention-
ing, because of the importance of fork-join graphs in many practical applications.
In fact, numerous parallel applications can be expressed with the master-worker
paradigm: the master initiates some computations, and then distributes (scatters)
data to the workers (in our case, stages S1, ..., Sn of the fork-join). Results are then
collected and combined (join operation).

We move the discussion to general DAGs in the next section.
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II.2 General DAGs

As discussed before, most problems are NP-hard when tackling general DAGs. There-
fore, for such applications, rather than deriving complexity results, we have designed
multi-criteria heuristics aiming at proposing efficient solutions to our optimization
problems.

We refer to [J11],[J15] for results on non-pipelined DAGs, i.e., DAGs which are
executed only once as in classical scheduling. Here again, we targeted “dynamic”
platforms subject to unrecoverable interruptions (see Chapter 4), and the aim was to
minimize the makespan, or latency, while tolerating a given number of failures. Such
problems have been investigated for various communication models. We recently
extended this work to the case of pipelined DAGs, therefore designing heuristics
to optimize the latency of streaming applications under throughput and reliability
constraints (see [C35]).

In the two next sections, we target more complex applications which require more
than mapping pipelined tasks onto some set of resources, as discussed so far.

III Replica placement in tree networks

This section deals with the general problem of replica placement in tree networks.
Informally, there are clients issuing requests to be satisfied by servers. The clients
are known (both their position in the tree and their number of requests), while the
number and location of the servers are to be determined. A client is a leaf node of the
tree, and its requests can be served by one or several internal nodes. Initially, there
are no replica; when a node is equipped with a replica, it can process a number of
requests, up to its capacity limit. Nodes equipped with a replica, also called servers,
can only serve clients located in their subtree (so that the root, if equipped with
a replica, can serve any client); this restriction is usually adopted to enforce the
hierarchical nature of the target application platforms, where a node has knowledge
only of its parent and children in the tree.

The rule of the game is to assign replicas to nodes so that some optimization
function is minimized. Typically, this optimization function is the total utilization
cost of the servers. If all the nodes are identical, this reduces to minimizing the
number of replicas. If the nodes are heterogeneous, it is natural to assign a cost
proportional to their capacity (so that one replica on a node capable of handling 200
requests is equivalent to two replicas on nodes of capacity 100 each).

We point out that the distribution tree (clients and nodes) is fixed in our ap-
proach. This key assumption is quite natural for a broad spectrum of applications,
such as electronic, ISP, or VOD service delivery [127, 74, 75, 38, 126, 89]. The root
server has the original copy of the database but cannot serve all clients directly, so
a distribution tree is deployed to provide a hierarchical and distributed access to
replicas of the original data. On the contrary, in other, more decentralized, appli-
cations (e.g., allocating Web mirrors in distributed networks), a two-step approach
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is used [91, 125, 105, 76, 117, 80]: first determine a “good” distribution tree in an
arbitrary interconnection graph, and then determine a “good” placement of replicas
among the tree nodes. Both steps are interdependent, and the problem is much
more complex, due to the combinatorial solution space (the number of candidate
distribution trees may well be exponential).

We first detail the framework, and in particular the different policies that can
be enforced for replica placement. We describe and compare access policies in Sec-
tion III.1. Then we provide complexity results for different instances of the problem
in Section III.2. Finally we conclude in Section III.3.

III.1 Access policies

In most papers from the literature, all requests of a client are served by the closest
replica, i.e., the first replica found in the unique path from the client to the root in
the distribution tree. This Closest policy is simple and natural, but may be unduly
restrictive, leading to a waste of resources. We introduce two new policies.

In the first one, we keep the restriction that all requests from a given client are
processed by the same replica, but we allow client requests to “traverse” servers so as
to be processed by other replicas located higher in the path (closer to the root). We
call this approach the Upwards policy. The trade-off to explore is the following: the
Closest policy assigns replicas at proximity of the clients, but may need to allocate
too many of them if some local subtree issues a great number of requests. The
Upwards policy will ensure a better resource usage, load-balancing the process of
requests on a larger scale; the possible drawback is that requests will be served by
remote servers, likely to take longer time to process them. Taking QoS constraints
into account would typically be more important for the Upwards policy.

In the second approach, we further relax access constraints and grant the pos-
sibility for a client to be assigned several replicas. With this Multiple policy, the
processing of a given client’s requests will be split among several servers located in
the tree path from the client to the root. Obviously, this policy is the most flexible,
and likely to achieve the best resource usage. The only drawback is the (modest)
additional complexity induced by the fact that requests must now be tagged with
the replica server identifier in addition to the client identifier.

The comparison between access policies are done in a framework with identical
node capacities, thus the problem amounts at minimizing the number of servers.

Impact of the policies on the existence of a solution. We first show the
impact of the policies on a very simple instance of the problem. In this example
there are two nodes, B being the unique child of A, the tree root (see Figure 5.4).
Each node can process W = 1 request.

• If B has one client child making 1 request, the problem has a solution with all
three policies, placing a replica on B or on A indifferently (Figure 5.4(a)).
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Figure 5.5: Solution cost: Upwards versus Closest .

• If B has two client children, each making 1 request, the problem has no more
solution with Closest . However, we have a solution with both Upwards and
Multiple if we place replicas on both nodes. Each server will process the request
of one of the clients (Figure 5.4(b)).

• Finally, if B has only one client child making 2 requests, only Multiple has a
solution since we need to process one request on B and the other on A, thus
requesting multiple servers (Figure 5.4(c)).

Impact of the policies on the cost of a solution. We construct an instance of
the problem where the Upwards policy is arbitrarily better than the Closest policy.
We consider the tree network of Figure 5.5, where there are 2n + 2 internal nodes
of capacity W = n, and 2n + 1 clients, each of them making one request. With the
Upwards policy, we place three replicas in A, B and S2n. All requests can be satisfied
with these three replicas. When considering the Closest policy, first we need to place
a replica in A to cover its client. Then,

• Either we place a replica on B. In this case, this replica is handling n requests,
but there remain n other requests from the 2n clients in its subtree that cannot
be processed by B. Thus, we need to add n replicas among S1, . . . , S2n.

• Otherwise, n−1 requests of the 2n clients in the subtree of B can be processed
by A in addition to its own client. We need to add n + 1 extra replicas among
S1, . . . , S2n.
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Figure 5.6: Solution cost: Multiple versus Upwards .

In both cases, we are placing n+2 replicas, instead of the 3 replicas needed with the
Upwards policy, hence a performance factor of n+2

3 . This proves that Upwards can
be arbitrary better than Closest , even in the simple case with homogeneous servers.

The second comparison is between Multiple and Upwards . We build an instance
of the replica placement problem where both access policies have a solution, but the
solution of Multiple is arbitrarily better than the solution of Upwards . Consider the
instance represented in Figure 5.6, with 3 + n nodes of capacity W = 4n. The root
A has n + 2 children nodes B, C and S1, ..., Sn. Node B has two client children, one
with 2n−1 requests and the other with 4n requests. Node C has two client children,
one with 2n requests and the other with 2n + 1 requests. Each node Si (1 ≤ i ≤ n)
has a unique child, a client with 2 requests.

• The Multiple policy assigns 3 replicas to A, B and C. B handles the 4n requests
of its second client, while the other client is served by A. C handles 2n requests
from both of its clients, and the 1 remaining request is processed by A. Server A
therefore processes (2n − 1) + 1 = 2n requests coming up from B and C.
Requests coming from the n remaining nodes sum up to 2n, thus A is able to
process all of them.

• For the Upwards policy, we need to assign replicas everywhere. Indeed, with
this policy, C cannot handle more than 2n + 1 requests since it is unable to
process requests from both of its children, and thus A has (2n−1)+2n requests
coming from B and C. It cannot handle any of the 2n remaining requests, and
thus each remaining node Si (1 ≤ i ≤ n) must process requests coming from
its own client. This leads to a total of n + 3 replicas.

The performance factor is thus n+3
3 , which can be arbitrarily big when n becomes

large. This proves that Multiple can be arbitrary better than Upwards , even in the
simple case with homogeneous servers.
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III.2 Complexity results

One major goal of this study is to assess the impact of the access policy on the
problem with homogeneous versus heterogeneous servers, and without QoS versus
with QoS constraints, as explained below.

We consider a tree T = C ∪ N , where the clients C are leaves of the tree. Each
client i ∈ C has ri requests; each node j ∈ N has processing capacity Wj and storage
cost scj = Wj . We need to decide which node is equipped with a replica, and thus
becomes a server (j ∈ R, where R is the set of replicas). This problem comes in
two flavors, either with homogeneous nodes (Wj = W for all j ∈ N ) (Replica

Counting, the goal is to minimize the number of servers), or with heterogeneous
nodes, i.e., servers with different capacities/costs (Replica Cost, the goal is to
minimize the total storage cost

∑

j∈R scj). The comparison between policies was
done in the homogeneous case, and thus holds true for the heterogeneous case.

In some problem instances, we add QoS constraints to clients, in terms of distance
(in number of hops) between a client and its server(s). For each client, a maximum
distance is fixed, which should not be exceeded.

In the single server version of the problem, we need to find a server server(i) for
each client i ∈ C. R is the set of replica, i.e., the servers chosen among the nodes
in N . The constraint is that server capacities cannot be exceeded: this translates
into

∑

i∈C,server(i)=j

ri ≤ Wj for all j ∈ N .

The objective is to find a valid solution of minimal storage cost
∑

j∈R Wj . As
outlined before, there are two variants of the single server version of the problem,
namely the Closest and the Upwards strategies.

In the Multiple policy with multiple servers per client, for any client i ∈ C and
any node j ∈ N , ri,j is the number of requests from i that are processed by j (ri,j = 0
if j /∈ R, and

∑

j∈N ri,j = ri for all i ∈ C). The capacity constraint now writes

∑

i∈C

ri,j ≤ Wj for all j ∈ R,

while the objective function is the same as for the single server version.

The decision problems associated with the previous optimization problems are
easy to formulate: given a bound on the number of servers (homogeneous version)
or on the total storage cost (heterogeneous version), is there a valid solution that
meets the bound?

Table 5.1 captures the complexity results. These complexity results are all new,
except for the Closest/Homogeneous combination, and proofs can be found in [J8].

The NP-completeness of the Upwards/Homogeneous case comes as a surprise,
since all previously known instances were shown to be polynomial, using dynamic pro-
gramming algorithms. In particular, the Closest/Homogeneous variant remains poly-
nomial when adding communication costs [38] or QoS constraints [89]. We provide an
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Replica Counting Replica Cost

Homogeneous Heterogeneous
No QoS With QoS No/With QoS

Closest polynomial [38, 89] polynomial [89] NP-complete
Upwards NP-complete NP-complete NP-complete
Multiple polynomial NP-complete NP-complete

Table 5.1: Complexity results

elegant algorithm to show the polynomial complexity of the Multiple/Homogeneous
problem. This multi-pass algorithm is very involved and can be found in [J8]. An-
other important contribution is the NP-completeness of the Multiple policy with QoS
constraints for the homogeneous case, which gives a clear insight on the additional
complexity introduced by QoS constraints. Also, all problems become NP-complete
when dealing with resource heterogeneity (Replica Cost problem).

Note that previous NP-completeness results involved general graphs rather than
trees, and the combinatorial nature of the problem came from the difficulty to extract
a good replica tree out of an arbitrary communication graph [91, 105]. Here the tree
is fixed, but the problem remains combinatorial due to QoS or resource heterogeneity.

We also provide an expression of the Replica Placement optimization problem
in terms of an integer linear program. We deal with the most general instance of
the problem on a heterogeneous tree, including QoS constraints, and bounds on
server capacities. We derive a formulation for each of the three server access policies,
namely Closest , Upwards , and Multiple. This is an important extension to a previous
formulation due to [77].

The linear program, which can be found in [J8], contains boolean or integer
variables, because it does not make sense to assign half a request or to place one
third of a replica on a node. Thus, it must be solved in integer values if we wish
to obtain an exact solution to an instance of the problem, and there is no efficient
algorithm to solve integer linear programs (unless P=NP). For each access policy,
there is a large number of variables, and the problem cannot be solved for platforms
of size s > 50, where s = |N |+ |C|. Thus we cannot use this approach for large-scale
problems.

However, this formulation is extremely useful as it leads to an absolute lower
bound: we can solve the integer linear program over the rationals. In this case,
all constraints are relaxed and we assume that all variables can take rational val-
ues. The optimal solution of the relaxed program can be obtained in polynomial
time (in theory using the ellipsoid method [109], in practice using standard software
packages [30, 57]), and the value of its objective function provides an absolute lower
bound on the cost of any valid (integer) solution. For all practical values of the
problem size, the rational linear program returns a solution in a few minutes. We
tested up to several thousands of nodes and clients, and we always found a solution
within ten seconds. Of course the relaxation makes the most sense for the Multiple
policy, because several fractions of servers are assigned by the rational program.
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Moreover, for the Multiple policy, we prove that the solution of the linear pro-
gram, when solved with all variables being rational except a small subset of them, is
an achievable bound for the Multiple problem, and we can build an exact solution in
polynomial time, based on the LP solution. This interesting result is detailed in [J8].

III.3 Conclusion

In this section, we have introduced and analyzed two important new policies for the
replica placement problem. The Upwards and Multiple policies are natural variants
of the standard Closest approach, and it may seem surprising that they have not
already been considered in the published literature.

On the theoretical side, we have fully assessed the complexity of the Closest ,
Upwards , and Multiple policies, both for homogeneous and heterogeneous platforms,
and with or without QoS constraints. The polynomial complexity of the Multiple
policy in the homogeneous case without QoS constraints is quite unexpected, and we
have provided an elegant algorithm to compute the optimal cost for this policy. When
adding QoS constraints, the same problem becomes NP-complete, which illustrates
the additional complexity induced by such constraints. Not surprisingly, all three
policies turn out to be NP-complete for heterogeneous nodes, which provides yet
another example of the additional difficulties induced by resource heterogeneity.

On the practical side, we have designed in [J8] several heuristics for the Closest ,
Upwards , and Multiple policies, and we have compared their performance for several
problem instances with or without QoS constraints. In the experiments, the total cost
was the sum of the server capacities (or their number in the homogeneous case). The
impact of the new policies is impressive: the number of trees which admit a solution
is much higher with the Upwards and Multiple policies than with the Closest policy.
Finally, we point out that the absolute performance of the heuristics is quite good,
since their cost is close to the optimal solution based upon the solution of the integer
linear program.

In recent work [C33], we have provided an algorithm to build a single server
solution, which is guaranteed to use no more than two times more servers than the
optimal Multiple solution, given some constraints on the problem instance. This is a
very interesting result, given that the Upwards problem on homogeneous platforms
is NP-hard, and that some applications may not support multiple allocations. Even
though the constraints on the trees are quite restrictive, the procedure can be applied
on any tree and still return good Upwards solutions, even if the application tree does
not allow for a guarantee on the solution. We expect that the ratio of 2 should be
achievable in most practical situations.

In the following application, operators need to download basic objects from
servers, thus it amounts to a replica placement problem in a more general setting
than a tree network. This replica placement problem is mixed with a mapping prob-
lem, since operators also need to be mapped onto processors in order to perform
some computation. Through this last case study, we therefore mix all difficulties
encountered so far.
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IV In-network stream processing

We consider in this section the execution of applications structured as trees of opera-
tors, where the leaves of the tree correspond to basic data objects that are distributed
over servers in a distributed network. Each internal node in the tree denotes the ag-
gregation and combination of the data from its children, which in turn generates new
data that is used by the node’s parent. The computation is complete when all op-
erators have been applied up to the root node, thereby producing a final result. We
consider the scenario in which the basic data objects are constantly being updated,
meaning that the tree of operators must be applied continuously. The goal is to pro-
duce final results at some desired rate. This problem is called stream processing [13]
and arises in several domains.

In Section IV.1, we informally describe the problem and we illustrate its appli-
cation fields through examples. Then we explore the problem complexity in Sec-
tion IV.2. Finally we conclude in Section IV.3.

IV.1 Problem description

An important domain of application is the acquisition and refinement of data from a
set of sensors [113, 93, 26]. For instance, [113] outlines a video surveillance application
in which the sensors are cameras located at different locations over a geographical
area. The goal of the application could be to identify monitored areas in which there
is significant motion between frames, particular lighting conditions, and correlations
between the monitored areas. This can be achieved by applying several operators
(e.g., filters, pattern recognition) to the raw images, which are produced/updated
periodically. Another example arises in the area of network monitoring [43, 122, 42].
In this case routers produce streams of data pertaining to forwarded packets. More
generally, stream processing can be seen as the execution of one of more “continuous
queries” in the relational database sense of the term (e.g., a tree of join and select
operators). A continuous query is applied continuously, i.e., at a reasonably fast
rate, and returns results based on recent data generated by the data streams. Many
authors have studied the execution of continuous queries on data streams [10, 87, 33,
103, 84].

In practice, the execution of the operators must be distributed over the network.
In some cases the servers that produce the basic objects may not have the compu-
tational capability to apply all operators. Besides, objects must be combined across
devices, thus requiring network communication. Although a simple solution is to
send all basic objects to a central compute server, it often proves unscalable due to
network bottlenecks. Also, this central server may not be able to meet the desired
target rate for producing results due to the sheer amount of computation involved.
The alternative is then to distribute the execution by mapping each node in the op-
erator tree to one or more servers in the network, including servers that produce and
update basic objects and/or servers that are only used for applying operators. One
then talks of in-network stream processing [113, 101, 4]. Several in-network stream
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Figure 5.7: Examples of applications structured as a binary tree of operators.

processing systems have been developed [1, 35, 68, 34, 97, 122, 32, 90]. These systems
all face the same question: where should operators be mapped in the network?

In our problem, we enforce the constraint that the rate at which final results are
produced, or throughput, is above a given threshold. This corresponds to a Quality
of Service (QoS) requirement, which is almost always desirable in practice (e.g., up-
to-date results of continuous queries must be available at a given frequency). Basic
objects may be replicated at multiple locations, i.e., available and updated at these
locations. We also discuss the case of multiple concurrent applications that compete
for the servers. In this case each application has its own QoS requirement and the
constraint is to respect all of them. In such a framework, a clear opportunity for
higher performance with reduced resource consumption is to reuse common sub-
expression between operator trees when applications share basic objects [100].

We consider two scenarios for the computing platform. The classical “non-
constructive” scenario is the one that we have used so far: we are given a set of
compute and network resources, and we aim at mapping the application onto the
resources, while respecting QoS constraints. An objective must then be optimized,
such as the number and performance of the resources used by the application. Target
platforms can have different level of heterogeneity, as discussed in Chapter 2. One
originality of this work is that we also consider a “constructive” scenario: either the
user can build the platform from scratch using off-the-shelf components, or comput-
ing and network units are rented by a cloud provider (e.g., [5]). The goal is then
to construct a distributed network dedicated to an application, which minimizes the
monetary cost of the platform while ensuring that the desired throughput is achieved.

We restrict our study to trees of operators that are general binary trees (see
Figure 5.7(a)) and we discuss relevant special cases (e.g., left-deep trees [69], see
Figure 5.7(b)).
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IV.2 Problem complexity

Unsurprisingly, most operator mapping problems are NP-hard, because download-
ing objects with different rates on two identical servers is the same problem as 2-
PARTITION [54]. Let us consider the simplest problem class, i.e., mapping a fully
homogeneous left-deep tree application [69] (see Figure 5.7(b)) without communica-
tion costs, with objects placed on a fully homogeneous set of servers, onto a fully
homogeneous set of processors. The objective function consists in minimizing the
number of used (or rented, in the constructive setting) processors. It turns out that
even this problem is NP-hard, due to the combinatorial space induced by the map-
ping of basic objects that are shared by several operators. The completeness comes
from 3-PARTITION [54], which is NP-complete in the strong sense. The proof can
be found in [C28].

Note that this problem becomes polynomial if one adds the additional restriction
that no basic object is used by more than one operator in the tree. In this case,
one can simply assign operators to ⌈n × w/s⌉ arbitrary processors in a round-robin
fashion, where n is the number of operators, w their computation cost and s the
processor speed.

We also provide a formulation of the optimization problem as an integer linear
program, see [C28] for the constructive scenario with a single dedicated application,
and [C37] for the multi-application concurrent mapping on an existing platform.

IV.3 Conclusion

In this section, we have investigated the operator mapping problem of in-network
stream processing applications onto a collection of heterogeneous processors. These
stream processing applications come as a set of operator trees, that have to continu-
ously download basic objects at different sites of the network and at the same time
have to process this data to produce some final result. Unsurprisingly, such complex
applications lead to NP-hard problems. However, we were able to formalize them as
integer linear programs, which was a difficult task given the problem complexity.

In order to tackle these difficult problems, we have proposed in [C28] and [C37] sev-
eral polynomial heuristics and we evaluated them via extensive simulations. For sin-
gle applications we assessed the absolute performance of our heuristics with respect
to the optimal solution of the linear program for homogeneous platforms and small
problem instances. Our best heuristic almost always produces optimal results and
outperforms the other heuristics. In the case of multiple concurrent applications, ex-
periments demonstrated the importance of node reuse across applications. Reusing
nodes leads to an important number of additional solutions, and also the quality
of the solutions improves considerably. We concluded that top-down traversals of
the application trees is more efficient than bottom-up approaches, and in particular
the combination of a top-down traversal with a breadth-first search achieved good
results.
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V Summary and conclusion

This chapter has investigated applications that go beyond simple linear chains. Prob-
lems were already difficult with pipelined linear chain applications, and a more com-
plex application setting adds yet another level of difficulty.

In Section I, we have added a selectivity parameter to each application stage, and
most problems then become NP-hard, even when there are no dependence constraints
between stages. The problems are very close to the traditional pipelined application
framework, and once again we were able to exhibit cases for which, given a mapping
(for this framework, an execution plan), it is difficult to compute the operation list
which minimizes the period or the latency (complicated polynomial algorithm, or
worse, NP-hardness of the problem). Even though we restricted this study to static
frameworks (unlike in Chapter 4), almost all problems turn out to be NP-hard, and
the polynomial instances can be solved through involved algorithms. This study
helped us better understand the challenges raised in Chapter 2, and it is strongly
correlated to the study of pipelined applications without filtering.

Back to standard pipelined application, we investigated more complex depen-
dence graphs than a linear chain in Section II. For fork and fork-join graphs, we
were able to extend some of the results of Chapter 3 in a simple framework with no
communication costs and no overhead. However when targeting fully general DAGs,
all problems became too complicated and we designed multi-criteria heuristics to
offer efficient solutions to these difficult problems, adding the extra challenge of a
dynamic platform subject to unrecoverable interruptions.

Section III targeted another class of problems, which are not scheduling problems
but rather replica placement problems. The objective function is then to minimize
the number, or the cost, of replicas, while satisfying all client requests. Curiously,
only a very constrained access policy was discussed in the literature, while we demon-
strated that relaxing its constraints allowed us to derive very efficient placement poli-
cies. We derived some sophisticated polynomial algorithms for the easiest problem
instances, while several heuristics allowed us to illustrate the usefulness of the new
policies.

To conclude the chapter, we have exhibited an even more complex application
setting in Section IV, which mixes difficulties of the scheduling of pipelined appli-
cations and of the multi-criteria placement of replica. Indeed, operators need to
download basic objects from a set of servers, and deciding where to download an
object amounts to deciding where to place the replica for the operator which needs
the object. Moreover, operators must be mapped onto a set of resources, which
is a typical scheduling problem. Since data must be processed continuously at a
given throughput, we are still in the framework of pipelined applications. This last
challenging application turned out to be very difficult, and even the most simple
instances of the problem were proved to be NP-hard. It illustrates well the combined
difficulties of all applications.

As a conclusion, we recall that the previous chapters had illustrated the inherent
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difficulty of scheduling simple application patterns onto heterogeneous platforms.
Chapter 4 showed the additional complexity which arises from dynamic platforms.
This chapter has demonstrated that targeting more complex applications is even
harder. Still, we were able to derive some interesting complexity results, and for the
NP-hard instances, we designed several efficient polynomial heuristics.
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Conclusion and perspectives

CHAPTER

6

In this chapter, we first give in Section I an overall conclusion on the work presented
in this document: we summarize the challenges that we faced and the solutions that
we proposed. Then we detail more precisely our current research activities, and
future research directions in Section II.

I Conclusion

A large part of this document has been devoted to the study of the scheduling of
simple application patterns in general, and linear chain pipelined applications in
particular. Chapter 2 was devoted to the detailed presentation of this framework,
and raised unexpected challenges: not only it is difficult to find the best mapping
for an application given some objective function, but also it can turn out to be
difficult simply to compute this objective function, given the mapping! Thus, one
must enrich the mapping definition with an operation list which accurately describes
at what time each operation occurs. This was a striking result since several current
researches target such streaming applications, and many of them did not realize that
the throughput of the application may not be dictated by a critical resource. We were
able to identify such cases, and to point out which rules render the problem more
difficult. For instance, replication for performance using a round-robin distribution
to a set of processor, or general mapping rules, are adding one level of difficulty.

Chapter 3 gave an overview of complexity results for linear chain applications.
First we exhaustively solved the mono-criterion problems, with some very involved
polynomial algorithms and NP-completeness proofs. Then we demonstrated the chal-
lenges raised by a bi-criteria approach, not even to mention multi-criteria problems.
Also, we restricted the study to three criteria, which are among the most important
ones for a typical user: the application throughput (i.e., period minimization), the
response time (i.e., latency minimization), and the reliability (i.e., failure probability
minimization).

But how should we model the reliability of an application? Where does failure
come from? How can we express the fact that the application is running on a dynamic
platform, subject to variability and failures? Chapter 4 aimed at giving elements of
answer by describing typical dynamic platforms, and proposing performance models
to handle uncertainties. However, even though markovian-based models allow to
express some variability, the behavior cannot accurately capture the inherent par-
allelism of the application. We thus investigated a non-markovian model based on
timed Petri nets, but that we were only able to study in a fully determinism case
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so far. Concerning failures, the problems turn out incredibly difficult as soon as the
failure probability is related to time. This chapter raised many interesting questions,
and there surely remains a lot of work in this field (as we discuss in Section II).

Finally, we decided to abandon the simple application patterns of linear chains
and to investigate more complex applications, in order to determine if the lessons
learnt from the first study enable us to derive interesting results in more realistic
cases. Therefore, in Chapter 5, we first slightly modified the linear chain streaming
applications. For a Web service application, we added selectivities to application
stages, and ended up facing similar challenges than for linear chain applications: for
instance it is sometimes NP-hard to determine the operation list which minimizes
some criteria, given a mapping and an execution graph. Still we were able to establish
an exhaustive list of problem complexity. Back to a setting with no selectivity,
one could envision slightly more complex application graphs than a linear chain.
We exhibited the additional challenges for a simple fork or fork-join graph, and
briefly discussed the even more complex case of general DAGs. On the borderline of
scheduling problems, a replica placement optimization problem was described and
new algorithmic solutions were proposed. Building upon our algorithmic knowledge,
we were able to design efficient access policies and to demonstrate their importance.
Finally, we concluded with an involved application of in-network stream processing
which mixed all difficulties encountered so far. For such an application, since even
the simpler problem instances are NP-hard, we proposed an integer-based linear
program and a set of polynomial heuristics.

II Current and future working directions

Many challenges have been raised through the study presented in this document, and
we detail in this section our current research interests. Also, we explain our future
working directions.

Experiments on linear chain applications. The PhD thesis of Veronika Rehn-
Sonigo, my first PhD student, is coming to an end (defense planned for July 7, 2009).
During the next few months, we plan to design a set of multi-criteria heuristics
for fully heterogeneous platforms, mixing the knowledge acquired so far for period,
latency and failure probability minimization (see Chapters 2 and 3). Such a problem
appears to be very challenging: since all link bandwidths are different, it seems hard
to predict communication times as long as the mapping is not fully constructed.
Thus, it is not easy to determine a strategy capable of simultaneously load balance
computations while keeping communications under a prescribed threshold.

In collaboration with Harald Kosch in Passau University, we also plan to evaluate
the performance of these heuristics through experiments, based on a pipelined version
of the MPEG-4 encoder. A student in Passau is currently working on this application.
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New research directions for linear chains. Together with Yves Robert, we
have two master students who are currently working on linear chain applications.

Loïc Magnan is investigating the complexity of period and latency minimization,
once a mapping is given, under various realistic communication models. Some of
these recent results are given in Chapter 2. He is actually doing part of his master
at MIT with Kunal Agrawal, in order to continue this fruitful collaboration.

With Paul Renaud-Goud, we have extended all mono-criterion results in a new
framework with multiple concurrent linear chain applications. We identified cases
in which the problem becomes NP-hard because of the concurrent applications, and
derived some sophisticated polynomial algorithms for other cases. We are currently
investigating the introduction of a new criterion, the energy minimization, and we
plan to design efficient heuristics which aim at minimizing the energy, given a thresh-
old on the throughput, under the bounded multi-port model with overlap.

Finally, we started investigating trade-offs between replication for reliability and
replication for throughput maximization (deal replication) in a joint work with Loris
Marchal, Yves Robert and Oliver Sinnen.

New applications. My second PhD student, Fanny Dufossé, has been working
on filtering applications, together with Yves Robert and Kunal Agrawal. We are
currently extending our application field and we study optimization problems which
arise from network applications, such as bandwidth sharing algorithms, in collabo-
ration with Qishi Wu (University of Memphis, USA).

Also, in collaboration with Alexandru Dobrila, Jean-Marc Nicod and Laurent
Philippe (LIFC Besançon), we investigate applications for micro-factories, in which
the tasks are subject to failures (contrarily to the classical approach with platform
failures). Therefore, we need to introduce a failure model for tasks, which is closely
related to the problem of designing a good failure model for dynamic platforms, as
discussed below.

Dynamic platforms and variability. As already pointed out in this document,
most challenges come from dynamic platforms, and many problems were left open
in Chapter 4. We are actively working on this exciting topic, supported thanks to
two research projects, StochaGrid and ALEAE (see Appendix B).

With Matthieu Gallet, Bruno Gaujal and Yves Robert, we are currently working
on adding non-determinism in the timed Petri nets which we introduced in this
document. This is only a first step in the study of the impact of variability onto
scheduling algorithms, since this approach once again assumes that mappings are
known beforehand, similarly to the PEPA model designed in Edinburgh. There is
still a long way to go before we will be able to provide a tool which returns a schedule
which accounts for variability.

The work conducted with Yves Robert, Arny Rosenberg and Frédéric Vivien,
on divisible load applications with a sophisticated failure model, still needs to be
extended to heterogeneous platforms. This is a real challenge given the complexity
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of the study in the homogeneous framework.
Finally, we recently initiated new discussions with Alain Girault (INRIA re-

searcher in Grenoble) about failures, and there is certainly a lot of research waiting
for us before we can come up with a good and realistic model for platform failure
and variability.
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dents.

• 2004-2005: Tutoring on an Enterprise Computing course at the University of
Edinburgh.
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• Oct 2000-Sept 2003: Gave computer science lectures at ESISAR (INPG,
Valence, France) and at ENSIMAG (INPG, Grenoble, France): algorithms,
compilation, performance evaluation.

IV Student advising

Post-doctoral students

• 2007-2008: Co-advising Mourad Hakem with Yves Robert, on the multi-
criteria scheduling of precedence task graphs in heterogeneous systems with
realistic communication models. See Chapter 5, Section II.
Joint publications: [J11],[J15],[C22],[C23],[C35].
Mourad is now assistant professor at IUT Belfort.

PhD students

• 2008-Present: Co-advising Fanny Dufossé’s PhD thesis with Yves Robert,
on the mapping of filtering tasks onto large-scale heterogeneous platforms. See
Chapter 5, Section I.
Joint publications: [C26],[C29],[C32].

• 2006-Present: Co-advising Veronika Rehn-Sonigo’s PhD thesis with Yves
Robert, on the multi-criteria mapping and scheduling of workflow applications
onto heterogeneous platforms. Veronika defended her thesis on July 7, 2009.
See Chapter 3, and Chapter 5, Sections III and IV.
Joint publications: [J8],[J12],[C14],[C16],[C18],[C19],[C21],[C28],[C37].

Master students

• 2009: Paul Renaud-Goud: mapping of concurrent application workflows onto
heterogeneous platforms.

• 2009: Loïc Magnan: finding efficient operation lists for bi-criteria optimization
problems, given a mapping of a workflow application.

• 2008: Fanny Dufossé: her master’s project was the beginning of her PhD
thesis, see paragraph above.

• 2003: Ihab Sbeity: project on translating UML models (system verification)
in stochastic automata networks.

V Other professional activities

• Conference chairing: Program chair of the HCW 2010 workshop (19th Int.
Heterogeneity in Computing Workshop); co-organizing the workshop “Schedul-
ing for large-scale systems” in Knoxville, USA, in May 2009; co-organizing the
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PAPP Workshops (Practical Aspects of High-Level Parallel Programming) in
2006, 2007, 2008, 2009, co-located with ICCS (Int. Conf. on Computational
Science).

• Conference program committees: PC member for the ICCS conference
from 2005 to 2009 (Int. Conf. on Computational Science), IPDPS 2008 (Int.
Parallel and Distributed Processing Symp.), SBAC-PAD 2008 (Int. Symp.
on Computer Architecture and High Performance Computing), HPCC 2009
(Int. Conf. on High Performance Computing and Communications), ISPDC
2009 (Int. Symp. on Parallel and Distributed Computing), ISCIS 2009 (Int.
Symp. on Computer and Information Sciences), TCPP PhD Forum 2009 (in
conjunction with IPDPS 2009).

• Reviewing: Reviewer of several international journals, conferences and work-
shops, such as IEEE TPDS, IEEE TSE, JPDC, PPL, CCPE, ITOR, IJHPCA,
Parco, IPDPS, HCW, ICCS, PAPP, HPCC, ISPDC, EuroPar, ISCIS, ICPADS,
SBAC-PAD, PNPM, NSMC, CMPP, CC, Markov Anniversary Proceedings, ...

VI Awards

• 2007-2011: Prime d’encadrement doctoral et de recherche.

• Feb 2005: Outstanding thesis award by the Institut National Polytech-
nique de Grenoble for my PhD thesis.


