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Habilitation à diriger des recherches
July 8, 2009

Anne.Benoit@ens-lyon.fr HDR, July 8, 2009 Scheduling pipelined applications 1/ 45



Introduction Models Problems Complexity Conclusion

Scheduling pipelined applications: why?

Stream of data to process: images, frames, matrices, etc.

Encode images, factorize matrices

Structured applications: several steps to process one data set

Many processing resources: work on different data in parallel

Original images

Pre-processing Encoding

Final result
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Scheduling pipelined applications: why?

Stream of data to process: images, frames, matrices, etc.

Encode images, factorize matrices

Structured applications: several steps to process one data set

Many processing resources: work on different data in parallel

Original images

Pre-processing Encoding

Final result

Large class of applications
Need to efficiently use computing resources

Anne.Benoit@ens-lyon.fr HDR, July 8, 2009 Scheduling pipelined applications 2/ 45



Introduction Models Problems Complexity Conclusion

Motivating example

4 processing stages, 3 processors at our disposal

Where/how can we execute the application?
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Use all resources greedily

Many communications to pay, not efficient at all!
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Motivating example

4 processing stages, 3 processors at our disposal

Where/how can we execute the application?
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Everything on the fastest processor: no communications

Optimal execution time to process one single data
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Motivating example

4 processing stages, 3 processors at our disposal

Where/how can we execute the application?
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Optimal throughput: processing of different data in parallel

Resource selection: do not use the slowest processor
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Introduction Models Problems Complexity Conclusion

What is scheduling?

Schedule an application onto a computational platform,
with some criteria to optimize

Target application: pipelined and structured

Streaming application (workflow, pipeline): several data sets
are processed by a set of tasks (or pipeline stages)
Structured application: algorithmic skeletons, large class of
applications build upon well-known paradigms, easier to
program and to schedule
Linear chain application: linear dependencies between tasks

Target platform: various models

Ranking from fully homogeneous to fully heterogeneous
Completely interconnected, subject to failures
Emphasis on different communication models (overlap or not,
one- vs multi-port)
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Introduction Models Problems Complexity Conclusion

What is scheduling? ... the criteria

Optimization criteria

period (inverse of throughput) and latency (execution time)
reliability, and also energy, stretch, ...

Period P: time interval between the beginning of execution of
two consecutive data sets (inverse of throughput)

Latency L: maximal time elapsed between beginning and end
of execution of a data set

Reliability: inverse of F , probability of failure of the
application (i.e., some data sets will not be processed)
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What is scheduling? ... the criteria

Optimization criteria

period (inverse of throughput) and latency (execution time)
reliability, and also energy, stretch, ...

Period P: time interval between the beginning of execution of
two consecutive data sets (inverse of throughput)

Latency L: maximal time elapsed between beginning and end
of execution of a data set

Reliability: inverse of F , probability of failure of the
application (i.e., some data sets will not be processed)

failure probability
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Introduction Models Problems Complexity Conclusion

Outline

1 Models
Application model
Platform and communication models

2 Multi-criteria scheduling problems
Stage types and replication
Rule of the game
Optimization criteria
Define and classify problems

3 Complexity results
Mono-criterion problems
Bi-criteria problems

4 Conclusion
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Introduction Models Problems Complexity Conclusion Application Platform

Application model

Set of n application stages

Computation cost of stage Si : wi

Pipelined: each data set must be processed by all stages

Linear dependencies between stages

wi

... ...S2 SnS1

w1 w2 wn

δ0 δ1 δnδi−1 δi
Si
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Introduction Models Problems Complexity Conclusion Application Platform

Application model: communication costs

Two dependent stages Si → Si+1:
data must be transferred from Si to Si+1

Fixed data size δi , communication cost to pay only if Si and
Si+1 are mapped onto different processors
(i.e., no cost on blue arrow in the example)
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S2S1

w1 w2

δ1
S3

w3

δ3

w4

S4

0

P1P3

δ0 δ4
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Introduction Models Problems Complexity Conclusion Application Platform

Platform model

...

Pin

Pu Pv

Pout

bin,u

bu,v svsu

bv ,out

p + 2 processors Pu, 0 ≤ u ≤ p + 1

P0 = Pin: input data – Pp+1 = Pout : output data

P1 to Pp: fully interconnected (clique)

su: speed of processor Pu, 1 ≤ u ≤ p, linear cost model

bidirectional link Pu ↔ Pv , bandwidth bu,v

Bi
u / Bo

u: input/output network card capacity
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Introduction Models Problems Complexity Conclusion Application Platform

Platform model: classification

Fully Homogeneous: Identical processors (su = s) and
homogeneous communication devices
(bu,v = b,Bi

u = Bi ,Bo
u = Bo):

typical parallel machines

Communication Homogeneous: Homogeneous communication
devices but different-speed processors (su 6= sv ):
networks of workstations, clusters

Fully Heterogeneous: Fully heterogeneous architectures:
hierarchical platforms, grids

Anne.Benoit@ens-lyon.fr HDR, July 8, 2009 Scheduling pipelined applications 11/ 45



Introduction Models Problems Complexity Conclusion Application Platform

Platform model: unreliable processors

fu: failure probability of processor Pu

independent of the duration of the application: global indicator
of processor reliability
steady-state execution: loan/rent resources, cycle-stealing
fail-silent/fail-stop, no link failures (use different paths)

Failure Homogeneous: Identically reliable processors (fu = fv ),
natural with Fully Homogeneous

Failure Heterogeneous: Different failure probabilities
(fu 6= fv ), natural with Communication Homogeneous and
Fully Heterogeneous
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Introduction Models Problems Complexity Conclusion Application Platform

Platform model: communications, a bit of history

Classical communication model in scheduling works:
macro-dataflow model

cost(T ,T ′) =

{
0 if alloc(T ) = alloc(T ′)
comm(T ,T ′) otherwise

Task T communicates data to successor task T ′

alloc(T ): processor that executes T ; comm(T ,T ′): defined
by the application specification

Two main assumptions:

(i) communication can occur as soon as data is available
(ii) no contention for network links

(i) is reasonable, (ii) assumes infinite network resources!
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Introduction Models Problems Complexity Conclusion Application Platform

Platform model: one-port without overlap

no overlap: at each time step, either computation or
communication

one-port: each processor can either send to or receive from a
single other processor at any time step
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no overlap: at each time step, either computation or
communication

one-port: each processor can either send to or receive from a
single other processor at any time step

time

P1

P2

S1 S2

P1 P2

in(1) c(1) out(1)

in(1) c(1) out(1)

in(2) c(2) out(2)

in(2) c(2) out(2)

in(3) c(3)

period period

latency
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Introduction Models Problems Complexity Conclusion Application Platform

Platform model: bounded multi-port with overlap

overlap: a processor can simultaneously compute and
communicate

bounded multi-port: simultaneous send and receive, but
bound on the total outgoing/incoming communication
(limitation of network card)
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Introduction Models Problems Complexity Conclusion Application Platform

Platform model: communication models

Multi-port: if several non-consecutive stages mapped onto the
same processor, several concurrent communications

Matches multi-threaded systems

Fits well together with overlap

One-port: radical option, where everything is serialized

Natural to consider it without overlap

Other communication models: more complicated such as
protocols for path bandwidth allocation

Intractable for algorithm design

Two considered models: good trade-off realism/tractability
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Outline

1 Models
Application model
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2 Multi-criteria scheduling problems
Stage types and replication
Rule of the game
Optimization criteria
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Introduction Models Problems Complexity Conclusion Replication Rules Criteria Taxonomy

Mapping: stage types and replication

Monolithic stages: must be mapped on one single processor
since computation for a data set may depend on result of
previous computation

Interval [Si ..Sj ] on P1:

. . . Si−1 → Si ..Sj on P1: data sets 1, 2, 3, . . . → Sj+1 . . .
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Monolithic stages: must be mapped on one single processor
since computation for a data set may depend on result of
previous computation

Dealable stages: can be replicated on several processors, but
not parallel, i.e., a data set must be entirely processed on a
single processor (distribute work)

Replicate interval [Si ..Sj ] on P1, . . . ,Pq

. . . Si−1

� Si ..Sj on P1: data sets 1, 4, 7, . . . �
−− Si ..Sj on P2: data sets 2, 5, 8, . . . −−
� Si ..Sj on P3: data sets 3, 6, 9, . . . �

Sj+1 . . .
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Mapping: stage types and replication

Monolithic stages: must be mapped on one single processor
since computation for a data set may depend on result of
previous computation

Dealable stages: can be replicated on several processors, but
not parallel, i.e., a data set must be entirely processed on a
single processor (distribute work)

Data-parallel stages: inherently parallel stages, one data set
can be computed in parallel by several processors (partition
work)

Data parallelize single stage Si on P1, . . . ,Pq

Si (w = 16)
• • • •• • • •• • • •• • • •

⇒
P1 (s1 = 2) : • • • • • • • •
P2 (s2 = 1) : • • • •
P3 (s3 = 1) : • • • •
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Dealable stages: can be replicated on several processors

Data-parallel stages: inherently parallel stages, one data set
can be computed in parallel by several processors
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Mapping: stage types and replication

Monolithic stages: must be mapped on one single processor

Dealable stages: can be replicated on several processors

Data-parallel stages: inherently parallel stages, one data set
can be computed in parallel by several processors

Replicating for reliability: one data set is processed several
times on different processors (redundant work)

. . . Si−1

� Si ..Sj on P1: data sets 1, 2, 3, . . . �
−− Si ..Sj on P2: data sets 1, 2, 3, . . . −−
� Si ..Sj on P3: data sets 1, 2, 3, . . . �

Sj+1 . . .
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Mapping strategies: rule of the game

Map each application stage onto one or more processors

First simple scenario with no replication

Allocation function a : [1..n]→ [1..p]

a(0) = 0 (= in) and a(n + 1) = p + 1 (= out)

Several mapping strategies

... ...S2 Sk SnS1

The pipeline application
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Mapping strategies: rule of the game

Map each application stage onto one or more processors

First simple scenario with no replication

Allocation function a : [1..n]→ [1..p]

a(0) = 0 (= in) and a(n + 1) = p + 1 (= out)

Several mapping strategies

... ...S2 Sk SnS1

One-to-one Mapping: a is a one-to-one function, n ≤ p
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First simple scenario with no replication

Allocation function a : [1..n]→ [1..p]

a(0) = 0 (= in) and a(n + 1) = p + 1 (= out)

Several mapping strategies

... ...S2 Sk SnS1

Interval Mapping: partition into m ≤ p intervals Ij = [dj , ej ]
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Mapping strategies: rule of the game

Map each application stage onto one or more processors

First simple scenario with no replication

Allocation function a : [1..n]→ [1..p]

a(0) = 0 (= in) and a(n + 1) = p + 1 (= out)

Several mapping strategies

... ...S2 Sk SnS1

General Mapping: Pu is assigned any subset of stages
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Introduction Models Problems Complexity Conclusion Replication Rules Criteria Taxonomy

Mapping strategies: rule of the game

Map each application stage onto one or more processors

First simple scenario with no replication

Allocation function a : [1..n]→ [1..p]

a(0) = 0 (= in) and a(n + 1) = p + 1 (= out)

Several mapping strategies

... ...S2 Sk SnS1

With replication: rules can be extended, a(i) is a set of
processor indices, difference between processors for
reliability/performance
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Mapping: objective function

Mono-criterion

Minimize period P (inverse of throughput)
Minimize latency L (time to process a data set)
Minimize application failure probability F
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Mapping: objective function

Mono-criterion

Minimize period P (inverse of throughput)
Minimize latency L (time to process a data set)
Minimize application failure probability F

Multi-criteria

How to define it?
Minimize α.P + β.L+ γ.F?
Values which are not comparable
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Mapping: objective function

Mono-criterion

Minimize period P (inverse of throughput)
Minimize latency L (time to process a data set)
Minimize application failure probability F

Multi-criteria

How to define it?
Minimize α.P + β.L+ γ.F?
Values which are not comparable

Minimize P for a fixed latency and failure
Minimize L for a fixed period and failure
Minimize F for a fixed period and latency
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Introduction Models Problems Complexity Conclusion Replication Rules Criteria Taxonomy

Mapping: objective function

Mono-criterion

Minimize period P (inverse of throughput)
Minimize latency L (time to process a data set)
Minimize application failure probability F

Bi-criteria

Period and Latency:
Minimize P for a fixed latency
Minimize L for a fixed period

And so on...
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Formal definition of period and latency

Allocation function: characterizes a mapping

Not enough information to compute the actual schedule of the
application = time step at which each operation takes place

Time steps at which comm and comp begin and end

Cyclic schedules which repeat for each data set (period λ)

No deal replication: Si , u ∈ a(i), v ∈ a(i + 1), data set k

BeginCompk
i,u/EndCompk

i,u = time step at which comp of Si

on Pu for data set k begins/ends
BeginCommk

i,u,v/EndCommk
i,u,v = time step at which comm

between Pu and Pv for output of Si for k begins/ends
BeginCompk

i,u = BeginComp0
i,u + λ× k

EndCompk
i,u = EndComp0

i,u + λ× k

BeginCommk
i,u,v = BeginComm0

i,u,v + λ× k

EndCommk
i,u,v = EndComm0

i,u,v + λ× k
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between Pu and Pv for output of Si for k begins/ends
BeginCompk

i,u = BeginComp0
i,u + λ× k

EndCompk
i,u = EndComp0

i,u + λ× k

BeginCommk
i,u,v = BeginComm0

i,u,v + λ× k

EndCommk
i,u,v = EndComm0

i,u,v + λ× k
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Formal definition of period and latency: operation list

Given communication model: set of rules to have a
valid operation list (OL)

Non-preemptive models, synchronous communications

Period P = λ

Latency L = max{EndComm0
n,u,out | u ∈ a(n)}

With deal replication: extension of the definition, periodic
schedule rather than cyclic one

Most cases: formula to express period and latency,
no need for OL

Now, ready to describe optimization problems
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One-to-one and interval mappings, no replication

Latency: max time required by a data to traverse all stages

L =
X

1≤j≤m

(
δdj−1

ba(dj−1),a(dj )
+

Pej

i=dj
wi

sa(dj )

)
+

δn
ba(dm),out

Period: definition depends on comm model (different rules in
the OL), but always longest cycle-time of a processor:
P(interval) = max1≤j≤m cycletime(Pa(dj ))

One-port model without overlap:

P = max
1≤j≤m

{
δdj−1

ba(dj−1),a(dj )
+

∑ej

i=dj
wi

sa(dj )
+

δej

ba(dj ),a(ej +1)

}

Bounded multi-port model with overlap:
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+
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Bounded multi-port model with overlap:

P = max
1≤j≤m

(
max

„
δdj−1

min
“
ba(dj−1),a(dj ),B

i
a(dj )

” ,Pej

i=dj
wi

sa(dj )
,

δej

min
“
ba(dj ),a(ej +1),B

o
a(dj )

” «)
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Adding replication for reliability

Each processor: failure probability 0 ≤ fu ≤ 1

m intervals, set of processors a(dj) for interval j

. . . Sdj−1

� Ij on P1: data sets 1, 2, 3, . . . �
−− Ij on P2: data sets 1, 2, 3, . . . −−
� Ij on P3: data sets 1, 2, 3, . . . �

Sej +1 . . .
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F = 1−
∏

1≤j≤m

(
1−

∏
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Adding replication for reliability

Each processor: failure probability 0 ≤ fu ≤ 1

m intervals, set of processors a(dj) for interval j

. . . Sdj−1

� Ij on P1: data sets 1, 2, 3, . . . �
−− Ij on P2: data sets 1, 2, 3, . . . −−
� Ij on P3: data sets 1, 2, 3, . . . �

Sej +1 . . .

F = 1−
∏

1≤j≤m

(
1−

∏
u∈a(dj )

fu
)

Consensus protocol: one surviving processor performs all
outgoing communications

Worst case scenario: new formulas for latency and period to
account for redundant communications
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Adding replication for period and latency

Dealable stages: replication of stage or interval of stages.

No latency decrease; period may decrease (fewer data sets per
processor)
Latency: longest path in DAG, no conflicts between data sets
Period: no communication: travi/k if Si onto k processors;
with communications: cases with no critical resources,
need OL to define period

. . . Si−1

� Si ..Sj on P1: data sets 1, 4, 7, . . . �
−− Si ..Sj on P2: data sets 2, 5, 8, . . . −−
� Si ..Sj on P3: data sets 3, 6, 9, . . . �

Sj+1 . . .
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Adding replication for period and latency

Dealable stages: replication of stage or interval of stages.

No latency decrease; period may decrease (fewer data sets per
processor)
Latency: longest path in DAG, no conflicts between data sets
Period: no communication: travi/k if Si onto k processors;
with communications: cases with no critical resources,
need OL to define period

Data-parallel stages: replication of single stage

Both latency and period may decrease
Becomes very difficult with communications

Si (w = 16)
• • • •• • • •• • • •• • • •

⇒
P1 (s1 = 2) : • • • • • • • •
P2 (s2 = 1) : • • • •
P3 (s3 = 1) : • • • •
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Adding replication for period and latency

Dealable stages: replication of stage or interval of stages.

No latency decrease; period may decrease (fewer data sets per
processor)
Latency: longest path in DAG, no conflicts between data sets
Period: no communication: travi/k if Si onto k processors;
with communications: cases with no critical resources,
need OL to define period

Data-parallel stages: replication of single stage

Both latency and period may decrease
Becomes very difficult with communications

⇒ Model with no communication!
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Adding replication for period and latency

Dealable stages: replication of stage or interval of stages.

No latency decrease; period may decrease (fewer data sets per
processor)
Latency: longest path in DAG, no conflicts between data sets
Period: no communication: travi/k if Si onto k processors;
with communications: cases with no critical resources,
need OL to define period

Data-parallel stages: replication of single stage

Both latency and period may decrease
Becomes very difficult with communications

⇒ Model with no communication!

Replication for performance + replication for reliability: possible to
mix both approaches, difficulties of both models
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Moving to general mappings

Failure probability: definition in the general case easy to
derive (all kinds of replication)

Latency: can be defined with a formula for Communication
Homogeneous platforms with no data-parallelism

Fully Heterogeneous: longest path in DAG (poly. time)
With data-parallel stages: can be computed (without OL) only
with no communication

Period: case with no replication for period and latency

Bounded multi-port model with overlap: period = maximum
cycle-time of processors; communications in parallel: input
comms on data sets k1 + 1, . . . , k` + 1; computes on
k1, . . . , k`, outputs k1 − 1, . . . , k` − 1 → no conflicts;

Without overlap: conflicts similar to case with replication;
NP-hard to decide how to order communications
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Outline

1 Models
Application model
Platform and communication models

2 Multi-criteria scheduling problems
Stage types and replication
Rule of the game
Optimization criteria
Define and classify problems

3 Complexity results
Mono-criterion problems
Bi-criteria problems

4 Conclusion
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Failure probability

Turns out simple for interval and general mappings: minimum
reached by replicating (for reliability) the whole pipeline as a
single interval on all processors: F =

∏p
u=1 fu

One-to-one mappings: polynomial for Failure Homogeneous
platforms (balance number of processors to stages), NP-hard
for Failure Heterogeneous platforms (3-PARTITION with n
stages and 3n processors)

F Failure-Hom. Failure-Het.

One-to-one polynomial NP-hard

Interval polynomial

General polynomial
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Latency

Replication of dealable stages, replication for reliability: no
impact on latency

No data-parallelism: reduce communication costs

Fully Homogeneous and Communication Homogeneous
platforms: map all stages onto fastest processor (1 interval);
one-to-one mappings: most computationally expensive stages
onto fastest processors (greedy algorithm)

Fully Heterogeneous platforms: problem of input/output
communications: may need to split interval
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100 100

w2 = 2w1 = 2

100
S1 S2

100

100

100

100

100

s1 = 1

s2 = 2

Pin

P1

Pout

P2

Fully Heterogeneous platforms: problem of input/output
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Latency on Fully Heterogeneous platforms

Fully Heterogeneous platforms: NP-hard for one-to-one and
interval mappings (involved reductions), polynomial for
general mappings (shortest paths)
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Latency on Fully Heterogeneous platforms

Fully Heterogeneous platforms: NP-hard for one-to-one and
interval mappings (involved reductions), polynomial for
general mappings (shortest paths)

Idea of the reduction for interval mappings: from
DISJOINT-CONNECTING-PATH (DCP)
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Latency on Fully Heterogeneous platforms

Idea of the reduction for interval mappings: from DISJOINT-
CONNECTING-PATH (DCP) → Instance of DCP: graph G = (V ,E ),
k + 1 disjoint vertex pairs (xi , yi ). Does G contain k + 1 mutually vertex-
disjoint paths connecting xi to yi?

Anne.Benoit@ens-lyon.fr HDR, July 8, 2009 Scheduling pipelined applications 30/ 45



Introduction Models Problems Complexity Conclusion Mono-criterion Bi-criteria

Latency on Fully Heterogeneous platforms

Idea of the reduction for interval mappings: from DISJOINT-
CONNECTING-PATH (DCP) → Instance of DCP: graph G = (V ,E ),
k + 1 disjoint vertex pairs (xi , yi ). Does G contain k + 1 mutually vertex-
disjoint paths connecting xi to yi?

• The pipeline application:

wk ...wk| {z } w2k εk wk−1...wk−1| {z } w2k−1 εk−1 . . . w ...w| {z } wk+1 ε 1...1|{z}
n − 2 n − 2 n − 2 n

• The execution platform:

...

xk+1

z1 z2 zk

y1 x2 y2 x3 yk

w k

1

w k−1 w

εk εk−1 ε11Pin x1 Poutyk+1

11

• Latency L = 2n2wk?
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Latency with data-parallelism

With data-parallelism: model with no communication;
polynomial with identical processor speeds (dynamic
programming algorithm), NP-hard otherwise (2-PARTITION)

Problem becomes NP-hard for Communication Homogeneous
platforms because of data-parallelism

L Fully Hom. Comm. Hom. Hetero.

no DP, One-to-one polynomial NP-hard
no DP, Interval polynomial NP-hard
no DP, General polynomial

with DP, no coms polynomial NP-hard
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Period - Example with no comm, no replication

S1 → S2 → S3 → S4

2 1 3 4

2 processors (P1 and P2) of speed 1

Optimal period?
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S1 → S2 → S3 → S4

2 1 3 4

2 processors (P1 and P2) of speed 1

Optimal period?
P = 5, S1S3 → P1, S2S4 → P2

Perfect load-balancing in this case, but NP-hard (2-PARTITION)

Interval mapping?
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Optimal period?
P = 5, S1S3 → P1, S2S4 → P2

Perfect load-balancing in this case, but NP-hard (2-PARTITION)

Interval mapping?
P = 6, S1S2S3 → P1, S4 → P2

Polynomial algorithm?
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Period - Example with no comm, no replication

S1 → S2 → S3 → S4

2 1 3 4

P1 of speed 2, and P2 of speed 3

Optimal period?
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Polynomial algorithm?
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Period - Complexity

P Fully Hom. Comm. Hom. Hetero.

One-to-one polynomial polynomial, NP-hard (rep) NP-hard

Interval polynomial NP-hard NP-hard

General NP-hard, poly (rep) NP-hard

With replication?

No change in complexity except one-to-one/comm-hom (the
problem becomes NP-hard, reduction from 2-PARTITION,
enforcing use of data-parallelism) and general/fully-hom (the
problem becomes polynomial)
Other NP-completeness proofs remain valid
Fully homogeneous platforms: one interval replicated onto all
processors (works also for general mappings); greedy
assignment for one-to-one mappings
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Bi-criteria period/latency

Most problems NP-hard because of period

Dynamic programming algorithm for fully homogeneous
platforms

Integer linear program for interval mappings, fully
heterogeneous platforms, bi-criteria, without overlap

Variables:

Obj : period or latency of the pipeline, depending on the
objective function
xi,u: 1 if Si on Pu (0 otherwise)
zi,u,v : 1 if Si on Pu and Si+1 on Pv (0 otherwise)
firstu and lastu: integer denoting first and last stage assigned
to Pu (to enforce interval constraints)
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Linear program: constraints

Constraints on processors and links:

∀i ∈ [0..n + 1],
∑

u xi,u = 1

∀i ∈ [0..n],
∑

u,v zi,u,v = 1

∀i ∈ [0..n],∀u, v ∈ [0..p + 1], xi,u + xi+1,v ≤ 1 + zi,u,v

Constraints on intervals:

∀i ∈ [1..n], ∀u ∈ [1..p], firstu ≤ i .xi ,u + n.(1− xi ,u)

∀i ∈ [1..n], ∀u ∈ [1..p], lastu ≥ i .xi ,u

∀i ∈ [1..n− 1], ∀u, v ∈ [1..p], u 6= v ,
lastu ≤ i .zi ,u,v + n.(1− zi ,u,v )

∀i ∈ [1..n− 1], ∀u, v ∈ [1..p], u 6= v , firstv ≥ (i + 1).zi ,u,v
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Linear program: constraints

∀u ∈ [1..p],
nX

i=1

8<:
0@X

t 6=u

δi−1

b
zi−1,t,u

1A+
wi

su
xi,u +

0@X
v 6=u

δi
b

zi,u,v

1A9=; ≤ P
pX

u=1

nX
i=1

240@ X
t 6=u,t∈[0..p+1]

δi−1

b
zi−1,t,u

1A+
wi

su
xi,u

35+

0@ X
u∈[0..p]

δn
b

zn,u,out

1A ≤ L

Min period with fixed latency

Obj = P

L is fixed

Min latency with fixed period

Obj = L

P is fixed
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Other multi-criteria problems

Latency/reliability: two “easy” instances, polynomial
bi-criteria algorithms, single interval often optimal

Reliability/period: mixes difficulties, period often NP-hard and
reliability strongly non-linear

Tri-criteria: even more difficult

Experimental approach, design of polynomial heuristics for
such difficult problem instances
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Outline

1 Models
Application model
Platform and communication models

2 Multi-criteria scheduling problems
Stage types and replication
Rule of the game
Optimization criteria
Define and classify problems

3 Complexity results
Mono-criterion problems
Bi-criteria problems

4 Conclusion
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Related work

Subhlok and Vondran: Pipeline on hom platforms: extended

Chains-to-chains: Heterogeneous, replicate/data-parallelize

Qishi Wu et al: Directed platform graphs (WAN); unbounded
multi-port with overlap; mono-criterion problems

Mapping pipelined computations onto clusters and grids: DAG
[Taura et al.], DataCutter [Saltz et al.]

Energy-aware mapping of pipelined computations: [Melhem et al.],
three-criteria optimization

Scheduling task graphs on heterogeneous platforms: Acyclic task
graphs scheduled on different speed processors
[Topcuoglu et al.]. Communication contention:
one-port model [Beaumont et al.]

Mapping pipelined computations onto special-purpose architectures:
FPGA arrays [Fabiani et al.]. Fault-tolerance for
embedded systems [Zhu et al.]
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Conclusion

Definition of the ingredients of scheduling: applications,
platforms, multi-criteria objective functions

Surprisingly difficult problems: given a mapping, how to order
communications to obtain the optimal period?

Replication for performance and general mappings add one
level of difficulty

Cases in which application throughput not dictated by a
critical resource

Full mono-criterion complexity study, hints of multi-criteria
complexity results, linear program formulation
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Other results

Extension to dynamic platforms, or how to handle
uncertainties?

Markovian-based model to compute the throughput of a given
mapping with PEPA, performance evaluation process algebra
More accurate capture of the behavior with non-markovian
model based on timed Petri nets: identification of non-critical
resource cases
Failure probability related to time: problems become incredibly
difficult

Extension to more complex applications

Web service applications with filtering property on stages:
same challenges as for standard pipelined applications
Results extended for fork or fork-join graphs, additional
complexity for general DAGs
More complex problems of replica placement optimization, and
in-network stream processing applications
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On-going and future work

Experiments on linear chain applications: design of
multi-criteria heuristics and experiments on real applications
such as a pipelined-version of MPEG-4 encoder

Other research directions on linear chains:

Complexity of period and latency minimization once a mapping
is given
Multi-application setting and energy minimization
Trade-offs between replication for reliability and deal
replication

New applications: Filtering applications, micro-factories with
task failures
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Future work

Dynamic platforms and variability

StochaGrid and ALEAE projects

Adding non-determinism to the timed Petri net model

Extend work with more sophisticated failure model to
heterogeneous platforms

Come up with a good and realistic model
for platform failure and variability
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Lessons learnt

Today, resources are abundant and ubiquitous, and
demand-driven scheduling will do the job
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Lessons learnt

Today, resources are abundant and ubiquitous, and
demand-driven scheduling will do the job

Don’t believe that!

Dynamic scheduler lacks efficiency, resource selection is
mandatory (remember first motivating example): greedy or
random scheduler is likely to fail
⇒ Need of a smart static scheduler

New architectures: hierarchy of multicores, virtualization
⇒ Further need of even smarter schedulers

Important to work on this subject, many new challenges
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