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Introduction

T
he intrinsic statistical behavior of light, arising from its quantum nature, induces
fluctuations which degrade the precision of the measurements. Such fluctuations
are unavoidable even when all other sources of noise have been canceled and are

usually referred to as quantum noise. The quantum noise level associated to usual light
sources, in which the photons are randomly distributed, is known as shot-noise or stan-

dard quantum limit. For a classical field the shot-noise represents the ultimate precision
permitted in a measurement of one of the field quadrature, but since the 70’s the existence
of states of the light for which quantum fluctuations are below the shot-noise was experi-
mentally demonstrated. In fact Heisenberg’s principle is a constraint only for the product
of the variances of two conjugate observables (i.e. two field quadratures), which means
that the fluctuations of one observable can be reduced below the shot-noise provided that,
at the same time, the noise on the conjugate observable is enhanced.

After the first pioneering works in the ’70, the possibility of controlling and manipu-
lating quantum fluctuations was soon predicted then experimentally demonstrated. The
existence of such non-classical states permits to exploit them as sources to beat the limit
of the shot-noise in many applications involving the detection of light. The reduction (or
squeezing) of the fluctuations of a particular quadrature of the electromagnetic field has
been proposed for increasing the sensitivity of phase-sensitive measurements beyond the
quantum limit, for example in high sensitivity spectroscopy and interferometric measure-
ments for the detection of gravitational waves.

The interest in manipulating quantum fluctuations does not only reside in squeezing
quantum noise. In 1935, Einstein, Podolsky and Rosen pointed out the paradoxical fact
that for a special class of states, say entangled, quantum theory could predict correlations
stronger than the ones predictable by any other theory obeying “local realism” and this
led them to conclude that quantum theory was incomplete. In 1964, J. S. Bell derived
his well-known inequalities which fix an upper limit to the strength of correlations for
theories obeying local realism and permitted to test experimentally quantum theory. After
1964, an increasing number of experimental tests supported the consistency of quantum
entanglement and, after quantum teleportation was demonstrated, entangled states began
to be considered as the main resource in quantum communication protocols.

The generation, investigation and manipulation of quantum states has been, so far,
essentially performed in single mode systems. In recent years, it has become more and
more appealing to exploit optical systems supporting multi-mode electromagnetic fields for
reasons that are grounded both on a fundamental and practical point of view. Well known
since the beginnings of the laser physics, complex phenomena connected to the presence of
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several (temporal or spatial) modes of the electromagnetic field inside laser cavities have
been considered undesirable because they are not easy to handle: for this reason filters were
used in order to reduce their number. After the 80’s the interest in complex systems led to
reassess the multi-modal phenomena arising in laser systems, now regarded as paradigms
of what happens in more complex systems such as fluids, chemistry and biology [Haken].
Self-organization, in general, stems out each time that several number of modes are let
to compete by means of a non-linear interaction. Therefore non-linear laser systems are
the best candidates for putting in evidence these phenomena in optical domain: pattern
formation in the space domain and self phase-modulation in time domain are among the
most known examples. On the other side, applications like the mode-locking of laser fields,
the need to exchange informations through communication channels of higher and higher
capacities, the capability to extract information from complex signals (like a radio signal
or an image from a CCD camera) require devices exploiting a larger number of modes.

An optical image corresponds to a specific light distribution that can be recorded onto
our retina or onto a detection device such as the CCD detector of a camera. The classical
criterion of Rayleigh sets a lower limit, of the order of a detected light wavelength, to the
resolution power of optical devices ascribing it to diffraction, but the great improvement
reached in processing of detected images permits to go beyond this classical limit. The
quantum nature of light will manifest as a shot-noise by limiting the quality of the detected
signal. In order to account for the transverse spatial distribution of quantum fluctuations
a complete quantum multi-mode description of the field is needed. Inside this picture the
concept of noise reduction or signal amplification can be transferred from mono-mode to
multi-mode beams so that concepts such as local squeezing [Kolobov1989] or the amplifi-
cation of several transverse modes [Kolobov1995] can be introduced. The investigation of
ultimate performance limits in optical imaging imposed by the quantum nature of light
and the conciliation of this description of the electromagnetic field with imaging processing
are among the principal goals of quantum imaging [Lugiato1995].

Sources producing highly multi-mode fields are needed not only in image processing
experiments but also because multi-modal aspect of quantum imaging allows to greatly
increase the information capacity of several quantum information protocols such as, for
example, quantum teleportation and quantum dense coding. Most of the proposition
for producing non-classical spatial multi-mode beams involve the parametric down con-
version effect in nonlinear crystals and the two main systems in which these effects have
been studied, theoretically and experimentally, are the optical parametric amplifier (OPA)
[Kolobov1999, Lugiato2002] and the optical parametric oscillator (OPO)
[Lopez2005, Fabre2007].

At the same time, a great number of experiments have obtained extraordinary perfor-
mances combining image processing techniques to the use of high precision detectors. For
example precisions of the order of nanometer have been achieved in the measure of position
of a laser beam by means of a double quadrant detector [Boccara1980, Charbonnier1990,
Putman1992, Kojima1997]. It is possible to show that, whereas a mono-mode squeezed
beam cannot improve the measurement [Fabre2000], squeezed fluctuations in an appropri-
ate mode can be used to beat the standard quantum limit [Treps2002].

Nowadays protocols for standard communication or for extraction of information from
complex signals are rather based on the exchange of broadband light in a well defined
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transverse spatial mode (for example the guided mode of an optical fiber), in which the
information is conveyed by the temporal variation of the light amplitude and phase, in an
analog or digital way. In this case the multimode optical system considered is the set of
all the possible temporal shapes of the light pulses. Temporal multi-mode laser sources
gain the same appeal as spatial multi-mode devices in the measure they are employed to
beat quantum standard limit. For example, like the quantum laser pointer, a multi-mode
pulsed source of squeezed light could be exploited for beating the shot-noise in measures
of time delay with very high sensibility. Implementation for parallel transfer of quantum
communication by means of several temporal modes can be envisaged too.

It is clear that for implementing these applications, sources of temporal multi-mode
non-classical light are required. Parametric down conversion in concomitance with a pulsed
pump field is at the base for such a sources. The simplest device is made up of a single
pass amplifier (OPA) pumped by means of one short pump pulse [Wasilewski2006a]. As a
consequence, in the Fourier space, temporal modes are described by a continuous spectrum.
Since perfect quantum properties are achieved only when the pump power goes to infinity,
systems combining high peak pump powers (obtained for examples from Q-switched or
mode-locked lasers) with the feedback of the cavities are more efficient than OPAs. Such
systems are the synchronously pumped optical parametric oscillators (SPOPO) which are
OPO cavities pumped by a c.w. train of ultra-short (femtoseconds) pump pulses generated
by a mode-locked laser whose cavity free spectral range is adjusted in order to be equal
to the OPO free spectral range (synchronization). SPOPO devices have been used in
order to generate ultrashort optical pulses of tunable wavelength or to efficiently control
the pulse compression, and their temporal properties have been theoretically investigated
[Cheung1991] but, at the best of our knowledge, their properties have not been studied
yet on the quantum point of view.

The goal of this thesis is to extend to the time and frequency degrees of freedom of an
optical beam the multi-modal approach so far adopted in the context of quantum imaging.
Indeed, the analogy between the spatial and time/frequency degrees of freedom immedi-
ately appears by observing that as like an optical image can be regarded as a coherent
superposition of several transverse modes, a frequency comb is a coherent superposition
of optical frequencies. Such combs are produced by means of mode-locked lasers and,
in a temporal picture, they correspond to a train of pulses which are mutually coherent.
For these reasons, a good choice for a temporal multi-modal analysis is represented by a
SPOPO. We, therefore, present here the complete quantum multi-mode model of SPOPO
cavities. Starting from the equations of the motion for the intra-cavity field operators, the
classical problem of the steady state solutions below threshold will first be approached,
thus permitting a detailed study of the classical functioning of the device. This prob-
lem depends on the solution of an eigenvalue equation from the spectrum of which it is
possible to extract information about the threshold and the spectral shape of the tempo-
ral modes that will oscillate. On the other hand, the quantum analysis shows not only
that SPOPOs are able to produce non-classical states, for example squeezed states, but
also that a whole set of temporal modes (say “super-modes”) own non-classical proper-
ties. Finally, we illustrate that, thanks to their multi-modal character, SPOPOs could
be exploited as a compact source of multi-mode entangled states which can be useful in
quantum communication protocols.
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In the first chapter of this thesis, we will resume the fundamental theoretical aspects
of the quantum optics such as the notion of continuous variables, the Heisenberg inequal-
ities for conjugate observables and the statistical properties of the field fluctuations that
characterize squeezed or entangled states. The second chapter is dedicated to a brief in-
troduction of the basic functioning of synchronously pumped OPOs. It will be introduced,
also, a formal description of mode-locked laser beams, both from a classical and quantum
point of view. Being made of a large number of longitudinal modes of the laser cavity,
we address the question whether or not mode-locked beams are multi-mode and introduce
some tools, developed in the context of quantum imaging, for discerning multi-mode from
single-mode light. In the third chapter we will present a complete multi-mode quantum
model for different typologies of degenerate type I SPOPOs. We will consider both ring
and linear geometries and both singly resonant (for the signal field) and doubly resonant
configurations for the resonator. The fourth chapter is dedicated to the study of the clas-
sical linearized dynamics of the SPOPO in the below threshold regime, with a particular
attention to the influence of the typology of the non-linearity and of other experimental
parameters on the dynamics of the device. Finally in the fifth chapter we will approach,
from the quantum point of view, the multi-mode characterization of the output field of
SPOPOs. Starting, then, from the evidence of its multi-mode non classical character, we
will finally illustrate a general scheme for the engineering of multi-mode quantum states.
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Quantum optics in continuum variables
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1.3.5 Squeezing and entanglement . . . . . . . . . . . . . . . . . . . . . 11

1.4 Parametric generation of non-classical states . . . . . . . . . . . 11

Q
uantum fluctuations and correlations of variables of the electromagnetic field with a
continuous spectrum have been extensively studied in the field of quantum optics.
The capacity of manipulating them is witnessed by results such as squeezing of

light [Slusher1987], generation of twin beams [Heidmann1987, Fabre1989], quantum non-
destructive measurements [Roch1997, Grangier1998].

The great variety of practical applications of quantum systems to the exchange and
treatment of the information has lead, in the past years, to the birth of the domain of
quantum information and communication. Initially, protocols adapted to this purpose
were realized by manipulating systems for which the possible results of a measurement
can assume only discrete values, like as particles of spin 1/2, two level atoms or the polar-
ization of a photon. Nevertheless, more recently, the possibility of coding an information
by means of the quadratures of the electromagnetic field (phase or amplitude, for ex-
ample) or by means of the collective angular momentum of an ensemble of atoms made
quantum systems with continuous variables more and more appealing. This was confirmed
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6 Chapter 1. Quantum optics in continuum variables

by the experimental demonstration of teleportation, dense coding and entanglement with
continuous variables systems, which presents different advantages with respect to discrete
variables like as the simplicity to produce, manipulate and detect the corresponding quan-
tum states.

In this chapter we will shortly introduce some basic aspects of quantum optics in
continuous variables with a particular attention to non-classical two-mode correlations.

1.1 Quantization of e.m. field in continuum variables

A single mode of the electromagnetic field corresponding to a plane wave propagating
and polarized along well established directions and oscillating at a frequency ω can be
classically described as the real part of a complex number:

E (t) = E0 (t) e−iωt + E∗
0 (t) eiωt (1.1)

where E0 = |E0 (t)| e−iφ(t) is its slowly varying complex envelope at the carrying frequency
ω. This expression can be recasted after the introduction of the two terms in quadrature
X (t) and P (t):

E (t) = X (t) cos (ωt) + P (t) sin (ωt) (1.2)

where:

X (t) = |E0 (t)| cos (φ (t))

P (t) = |E0 (t)| sin (φ (t))

In Heisenberg’s representation, the description of a quantized field is made by means
of the construction and destruction operators â and â† associated to the considered e.m.
mode:

Ê (t) = â (t) e−iωt + â† (t) eiωt (1.3)

where â (t) and â† (t) satisfy the commutation relation:[
â (t) , â†

(
t′
)]

= δ
(
t − t′

)
(1.4)

The choice of the quadrature components is arbitrary because it corresponds to a particular
definition of the Fresnel reference frame. In this way it is possible to define, in a general
manner, a couple of conjugated quadratures as:

X̂θ (t) = â (t) e−iθ + â† (t) eiθ

P̂θ (t) = −i
(
â (t) e−iθ − â† (t) eiθ

) (1.5)

In the case where the field has a non-null average, the couple of conjugated quadratures
for θ = φ is privileged respect to the others and corresponds respectively to the amplitude
and phase quadrature.

Quadrature operators are simply dimensionless form of position and momentum op-
erators corresponding to the harmonic oscillator associated to the field mode during the
quantization formalism. Their commutation relation is:[

X̂ (t) , P̂
(
t′
)]

= 2i δ
(
t − t′

)
(1.6)
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1.2 Fluctuations of the e.m. field

A non-null commutator implies a lower limit to the product of the variances which im-
plies the existence of a Heisenberg’s uncertainty relation for the two conjugate quadrature
operators:

〈∆2X̂θ〉〈∆2P̂θ〉 ≥ 1 (1.7)

This means that, even in principle, it is not possible to measure at the same time with
an arbitrary precision the two quadratures as a consequence of the fact that quantum
fluctuations are an intrinsic property of physical observables.

In the Fresnel reference frame, a classical field like the one in Eqs. (1.1) and (1.2) is
represented by means of its quadrature components Xθ and Pθ as a vector whose the norm
and angle represent respectively the field amplitude and phase (see figure). The quantum
nature of the light, however, is at the origin of fluctuations around the mean value repre-
sented by the classical amplitude and phase of the field thus producing a distribution in the
Fresnel reference frame for repeated measurements. The properties of such a distribution
is completely determined by means of its moments, but in general for the states that will
be presented in the following it is enough the first and the second moments, respectively
the mean value and the variance of the distribution. In general the distribution is not
homogeneous, therefore variances of all quadratures should be determined by performing
a tomography of the specific state.

1.2.1 Vacuum and coherent states

The quantification of the electromagnetic field brings to an exact parallelism between the
dynamics of each electromagnetic mode and the dynamics of a harmonic oscillator. Clas-
sically speaking, the state corresponding to the minimum allowed energy is referred to as
vacuum state in the sense that there is absence of any excitation. In a quantum framework,
even if the expectation values of position and momentum operators in the vacuum state
are zero, Heisenberg’s inequalities fix a minimum bound for the product of their variances.
Zero-point fluctuations have a number of consequences such as spontaneous emission, the
Casimir effect, the Van-Der Waals bonds, the Lamb shift, all phenomena experimentally
tested with success.

The vacuum state is a minimal incertitude state for which Eq. (1.7) becomes an
equality and all the quadrature components have the same variance ∆2X̂θ = ∆2P̂θ =
1. The fluctuations corresponding to the vacuum state are referred to as the standard
quantum limit or shot-noise and are reference for a long time considered an ultimate limit
now overcome by non-classical states.

To the class of minimal incertitude states belong in general the coherent states of which
vacuum state is a particular case. Differently from the latter, their mean photon number is
not zero. Introduced by Glauber in 1963 [Glauber1963], coherent states are the one whose
properties better approach that of the classical field of stable amplitude and fixed phase.
According to the idea that a coherent state corresponds to the vacuum state but of a
non zero excitation, their formal expression can be obtained by applying the displacement

operator:

D̂ (α) = eαâ†−α∗â (1.8)
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where α ∈ C, to the vacuum state |0〉:

|α〉 = D̂ (α) |0〉 (1.9)

The first and second moment for the number operator N̂ = â†â are:

〈N̂〉 = |α|2 (1.10)〈
∆2N̂

〉
= 〈N̂〉2 + 〈N̂〉 (1.11)

Eq. (1.10) clarify how |α| is connected to the amount of excitation (the number of photons)
of the considered e.m. mode, while Eq. (1.11) is the typical expression for poissonian
probability distributions. In fact the probability of finding n photons in the mode is given
by:

P (n) = |〈n | α〉|2 = e−〈N̂〉 〈N̂〉n

n!
(1.12)

that is the typical distribution of completely aleatory events.

1.2.2 Squeezed states

If Heisenberg’s inequality fixes a lower bound for the product of the variances for a given
field state, on the other side it does not fix any constraint on the individual variances. The
homogeneity of conjugated quadratures respect to any choice of the angle θ can be then
not verified and state for which one of the two quadratures presents fluctuations below the
shot-noise are possible at the price that the conjugated quadrature presents fluctuation
amplified at least as much the fluctuations of the other quadrature have been reduced
respect the standard quantum limit. Such states are called squeezed states and their
fluctuations in the Fresnel reference frame have a Gaussian distribution characterized by
the two widths corresponding to the variances respectively of the reduced and the amplified
quadratures (see figure). In this case the probability of finding n photons in a squeezed
state has a sub-Poissonian distribution. Squeezed states can be formally obtained applying
the squeeze operator:

Ŝ (Λ) = e
1
2

(
Λ∗â2−Λ â† 2

)
(1.13)

with Λ ∈ C, to a general coherent state |α〉 = D̂ (α) |0〉. As an example results only for the
vacuum state will be reported without loosing generality since the action of the D̂-operator
produce only a displacement proportional to the absolute value of the complex number α.
The expectation values of the quadrature operators defined in (1.5) for vacuum squeezed
state |Λ〉 = Ŝ (Λ) |0〉 are:

〈Λ|X̂θ|Λ〉 = 〈Λ|P̂θ|Λ〉 = 0 (1.14)

and, setting Λ = ζeiϑ, the corresponding variances are:

〈∆2Xθ〉 = e2ζsin2
(

ϑ
2 − θ

)
+ e−2ζcos2

(
ϑ
2 − θ

)
(1.15)

〈∆2Yθ〉 = e2ζcos2
(

ϑ
2 − θ

)
+ e−2ζsin2

(
ϑ
2 − θ

)
(1.16)
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1.2.3 GHZ states

Greenberger-Horne-Zeilinger states (GHZ) are states that involve many subsystems (for
example particles) and have extremely non-classical properties. For an ensemble of N

qubits states, if the Hilbert space of the k-th subsystem is Hk, a GHZ state living in the
space Hk = H1 ⊗ . . . ⊗HN can be expressed:

|GHZ〉N =
1√
2

(|0 . . . 0〉 + |1 . . . 1〉) . (1.17)

1.3 Quantum correlations

In 1935, Einstein, Podolsky and Rosen proposed a thought experiment by means of which,
using a special two-particle quantum state owing perfect correlations in position and mo-
mentum, they raised the problem of the completeness of quantum mechanics. The EPR
experiment, in fact, brings to the dichotomy according to which either the measurements
performed of one part A of the quantum state has a non-local effect on the physical reality
of the other distant part, in the sense that quantum mechanics can predict outcomes of
some measurements carried out at B, or quantum mechanics is incomplete in the sense
that some element of physical reality corresponding to the cannot be accounted for by
quantum mechanics (that is, some extra variable is needed to account for it).

If the hypothesis of the incompleteness of quantum mechanics is accepted, “hidden”
variables obeying to some classical probability distribution law should be introduced in
order to complete the theory. As proven by Bell [Bell1964] and after confirmed in many ex-
periments [Aspect1981, Aspect1982, Incompleteness], local causality cannot be maintained
even considering a local hidden variables model.

The consequence is that quantum mechanics is a non-local theory and entangled quan-
tum states such the one proposed in the thought experiment by EPR reveal to be an
essential resource in information processing.

The following is a rapid summary of the more complete review [Treps2004] of some
criteria commonly used to recognize quantum correlations.

1.3.1 Twin states

Let’s consider two modes 1 and 2 that can be spatially separated and the two corresponding
quadratures X̂i, i = 1, 2.

The variance on the difference operator X̂− = X̂1 − X̂2 defines a quantity known as
“gemellity” (“twinship”) that is a measure of correlations that exist between the fluctuation
of the two quadratures:

G =
〈∆2X̂−〉

2
=

〈∆2(X̂1 − X̂2)〉
2

(1.18)

If G < 1, or equivalently the gemellity is below the quantum standard limit, the measured
correlation cannot be explained by a model involving only classical fluctuations and the
two modes are said to be twin.



10 Chapter 1. Quantum optics in continuum variables

1.3.2 QND-correlated states

A QND measurement consists in performing a measure on a first system highly correlated
to a second one in order to extract information from the latter without perturbing it. If
the quadratures X̂1 and X̂2 of two distinguishable modes of the e.m. field are perfectly
correlated, a QND measure will thus permit to obtain without incertitude the expectation
value of X̂2 by measuring the first quadrature.

The estimator for a QND measure is given by the conditional variance of X̂2:

〈∆2(P̂2|P̂1)〉 = 〈∆2P̂2〉 −
〈δP̂1δP̂2〉2

〈∆2P̂1〉
(1.19)

where δP̂i = P̂i −〈P̂i〉. If 〈∆2(P̂2|P̂1)〉 lower than the shot-noise then the measure is QND
and it is the mark that there are quantum correlations between the two modes.

1.3.3 EPR correlations and Reid’s criterion

The paradox as originally proposed by EPR considered two causally separated particles
whose position and momentum operators (represented by X̂A, P̂A, X̂B and P̂B) are, respec-
tively, perfectly correlated and anti-correlated. By virtue of their correlation, a measure
of X̂A gives with certainty the position of the particle B without perturbing the system.
Thus, it must exist an element of reality associated to the position of B. An analogous
reasoning imply that also the momentum P̂B has a predetermined value. But in quantum
mechanics the position and momentum of a system cannot have definite values at the
same time: the paradoxical situation led EPR to conclude that quantum mechanics is not
complete.

The EPR thought experiment was, after, extended by Reid [Reid1989] to contin-
uum variables optical systems envisaging an experimental implementation. According
to Reid’s argument, EPR paradox can be directly obtained by means of not maximal
correlations/anti-correlations between the conjugated quadratures of two optical modes.
In this case there will be an error in deducing information about the first system by a
measure on the second one. However, it is still possible to obtain a paradox provided
that the product of the inferred variances on the conjugated quadratures is small enough
compared to the Heisenberg’s uncertainty bound. This is equivalent to require that:

〈∆2(X̂2|X̂1)〉〈∆2(P̂2|P̂1)〉 < 1 (1.20)

1.3.4 Inseparable states

A more general class of quantum states whose EPR states are a subset are the non-
separable states. A bipartite system completely characterized by its density matrix ρ is
said to be not separable if:

ρ̂ 6=
∑

i

pi ρ̂i1 ⊗ ρ̂i2 (1.21)

where ρ̂i1 and ρ̂i2 are the density matrices of modes 1 and 2 and pi the associated probabil-
ities. Several criteria have been proposed to investigate separability of the mixed states for
continuum variables systems [Duan2000, Simon2000, Mancini2002] and a unifying criterion
has been proposed by Giovannetti et al. [Giovannetti2003].
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1.3.5 Squeezing and entanglement

There is a close connection between squeezing and entanglement. Let’s consider a 50/50
beam splitter on which are mixed two beams represented by destruction operators â1 and
â2. The transformation induced by the beam splitter is:

â(+) =
â1 + â2√

2
(1.22)

â(−) =
â1 − â2√

2
(1.23)

The variances of the two conjugated quadrature operators of the sum and difference modes
are therefore:

〈∆2P̂(−)〉 =
〈∆2(P̂1 − P̂2)〉

2
(1.24)

〈∆2X̂(+)〉 =
〈∆2(X̂1 + X̂2)〉

2
(1.25)

If the modes 1 and 2 are EPR correlated then 〈∆2(P̂1− P̂2)〉 → 0 and 〈∆2(X̂1 + X̂2)〉 → 0,
and the sum and difference modes result squeezed. Inverting the relation (1.22), it is
easy to show that two EPR correlated states can be obtained by mixing at a 50/50 beam
splitter two squeezed modes.

Let’s consider, now, the photon-pair operator

Ŝ2 (Λ) = eΛ
(
â†
1â†

2−â1â2

)
(1.26)

with Λ ∈ R. Eq. (1.26) is a generalization at two field modes of Eq. (1.13) and it
creates a pair of entangled photons in the modes 1 and 2. Its action on the vacuum state
|0〉 ≡ |01, 02〉 produce the entangled state [Banaszek1999]:

|ψ〉 =
1

coshΛ

∞∑
n=0

(tghΛ)n |n, n〉 (1.27)

which is the eigenstate of the operators X̂1 + X̂2 and P̂1− P̂2. For Λ → +∞, |ψ〉 converges
to a maximally entangled state that is the continuum variables parallel of a bidimensional
GHZ state (1.17) [Walls, vanEnk1999]:

|ψ〉 →
∫

dx|x〉1|x〉2 =
∫

dp|p〉1| − p〉2 =
∞∑

n=0

|n〉1|n〉2 (1.28)

It corresponds exactly to the state used by EPR in their paper of 1935 [EPR].

1.4 Parametric generation of non-classical states

The first example of non-classical state can be even dated back to 1927, when Kennard
[Kennard1927] considered the evolution on time of a generic Gaussian wavepacket. How-
ever only after applications for squeezed light were proposed in the 1980’s squeezing was
studied in more detail. There has been a whole variety of successful demonstrations of
squeezed states in several non-linear physical systems, such as four-wave mixing, optical



12 Chapter 1. Quantum optics in continuum variables

parametric amplifier, optical fiber, cold atomic vapors. The first demonstration have been
done by Slusher et al. in 1985 using four wave mixing in a sodium vapor [Slusher1985].
The latest best result reported amounts to 10dB [Vahlbruch2008].

In general, the propagation of e.m. field through a dielectric medium induces the
macroscopic polarization whose components are given by the convergent series of powers
of the electric field:

Pi = ε0
∑

j

χ
(1)
ij Ej + ε0

∑
j,k

χ
(2)
ijkEjEk + ε0

∑
j,k,l

χ
(3)
ijklEjEkEl + . . . (1.29)

for i, j, k, l ∈ {x, y, z}, and where ε0 is the dielectric permittivity of vacuum. The first
term χ(1) is connected to the linear properties of the medium such as its refraction and
absorption index. For low intensities, the χ(1)E term is bigger the the others terms of the
series and the propagation of e.m. field is linear. For high intensities, instead, the others
terms cannot be neglected and non-linear phenomena of wave mixing (sum and difference
generation, harmonic generation) become more relevant. Since polarization behaves as
a source term for the e.m. field, n > 1 order terms induce a non-symmetric dynamics
and modify the statistics of its components. Therefore non-linear crystals behaves as a
phase-sensitive amplifiers and can produce deamplification (squeezing) or amplification
(anti-squeezing) of fluctuations of the field quadratures.

Among a whole variety of non-linear processes (based on second- and third-order non-
linearities), an interesting case is the parametric down conversion, where a strong pump
field at frequency ωp and a weak field (seed) at frequency ωs are injected into a non-linear
crystal. Due to χ(2) non-linear effect, the two field “mix” inside the crystal and a weak
field at frequency ωi = ωp − ωs is generated by the polarization:

P (2)(ωp − ωs) = ε0χ
(2)EpE

∗
s (1.30)

In a quantum picture, the same process can be depicted as the absorption by the crystal
of the pump photon that excites a virtual level and the successive decay by two photon
emission at frequency ωs and ωi stimulated by the presence of the weak seed field. The
energy and momentum conservation requires the generated photons to satisfy the relations:

ωp = ωs + ωi (1.31)

~kp = ~ks + ~ki (1.32)

In the interaction picture, the Hamiltonian describing the quantum evolution of parametric
conversion involves a destruction operator of one pump photon âp and two construction
operators of a signal and a idler photons, respectively â†s and â†i mediated by the non-linear
interaction parameter χ(2):

Ĥint = i~χ(2)
(
âpâ

†
sâ

†
i − â†pâsâi

)
(1.33)

In many practical cases pump field can be considered a classical one in the limit its
intrinsic fluctuations and the fluctuations induced by the down-conversion in signal and
idler photons are negligible respect to its intensity. That amount to require the hypothesis
of strong coherent pump field and low depletion of the pump field. In such eventuality,
the quantum operator âp can be substituted by a “classical” complex number Ap because
pump field is a strong coherent and the Hamiltonian is linearized in:
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Ĥint = i~χ(2)
(
Apâ

†
sâ

†
i − A∗

pâsâi

)
(1.34)

Therefore, the unitary evolution of a vacuum input state |0〉 = |0s, 0i〉 will produce
an entangled state as the one (1.26) discussed in subsection 1.3.5. In an analogous way,
if signal and idler modes are indistinguishable, thus âi ≡ âs, the unitary evolution of a
vacuum input state will produce a signal squeezed state like the one in (1.13) discussed in
section 1.2.2.

The quantum properties we summarized here for the case of single-mode beams, in
particular entanglement and squeezing, are at the basis of the quantum effects in multi-
mode systems we are going to discuss in the following chapters.
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I
n this introductory chapter we briefly introduce synchronously pumped OPOs and
tools useful to describe quantum effects in SPOPOs. We will see that, in condition of
synchronization, when a OPO cavity is pumped by a mode-locked laser, its properties

of inter-pulse coherence are preserved inside the cavity and the intra-cavity fields generated
by parametric conversion can still be considered mode-locked. Then, their description can
be made, in a compact way, by means of frequency combs that are the coherent super-
position of optical frequencies. This picture is extended to the quantum domain, by the
introduction of appropriate monochromatic operators. Being the superposition of several
modes (which are the degrees of freedom of the system), we address the question whether
or not a frequency comb is multi-mode. In analogy with the study of “multimodicity”
of images in the context of quantum imaging [Treps2005], we find that, from a classical
point of view, a mode-locked beam can always be depicted by a single mode, but that the
answer is not trivial from a quantum point of view, being this last case the object of a
deeper study in Chapter 5.

15



16 Chapter 2. Quantum optics with trains of ultra-short pulses

2.1 Synchronously Pumped Optical Parametric Oscillators

Optical Parametric Oscillators are among the best sources of squeezed [Wu1986],
[Takeno2007, Vahlbruch2008], correlated [Heidmann1987, Laurat2003] and entangled
[Ou1992] light in the so-called continuous variable regime. They have allowed physicists
to successfully implement demonstration experiments for high sensitivity optical measure-
ments and quantum information protocols. In order to maximize the quantum effects,
one needs to optimize the parametric down-conversion process. This has been achieved
so far by using either intense pump lasers or resonant cavities. Having in mind that the
parametric process is an almost instantaneous one, femtosecond mode-locked lasers are
the best pump sources in this respect, as they generate very high peak optical powers with
high coherence properties. Furthermore, they minimize the thermal effects in the linear
crystal which often hamper the normal operation of parametric devices.

Mode-locked lasers have been already used extensively to generate non classical light,
either to pump a parametric crystal [Slusher1987, Shelby1992] or an optical fiber
[Rosenbluh1991]. However in such single-path configurations, perfect quantum proper-
ties are only obtained when the pump power goes to infinity. This is the reason why
mode-locking is often associated to Q-switching and pulse amplification [Levenson1993] in
order to reach even higher peak powers, at the expense of a loss in the coherence proper-
ties between the successive pump pulses. In contrast, intracavity devices produce perfect
quantum properties for a finite power, namely the oscillation threshold of the device. It
is therefore tempting to consider devices in which one takes advantage of the beneficial
effects of both high peak powers and resonant cavity build-up. Such devices exist: they
are the so-called synchronously pumped OPOs or SPOPOs (see Figure 2.1). In a SPOPO
the cavity round-trip time is equal to that of the pumping mode-locked laser, so that the
effect of the successive intense pump pulses add coherently, thus reducing considerably its
oscillation threshold.

Such SPOPOs have already been implemented as efficient sources of tunable ultra-
short pulses [Piskarskas1988, Edelstein1989, Mak1992, Maker1990, Ebrahimzadeh1991,
McCarty1992] and their temporal properties have been theoretically investigated
[Cheung1991, McCarty1993, Becker1974]. Let us mention that mode-locked OPOs have
also been developed: in such devices, the cavity is resonant only for the signal modes
and idler modes, and the pump pulses are not re-circulating. Mode-locked OPOs have
been used to generate picosecond pulsed squeezed light in a degenerate configuration

Mode-Locked

Laser
OPOPump pulses

Signal/Idler pulses

Figure 2.1: Synchronously pumped OPO.
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[Shelby1992] or in quasi-degenerate configurations [Forget2006].
In this thesis we will present a complete multi-mode quantum analysis of degenerate

SPOPOs and show theoretically that these devices are very efficient to produce squeezed
states and that squeezing is effective not just in a single frequency mode but instead in a
whole set of “super-modes”, which are well defined linear combinations of signal modes of
different frequency.

2.1.1 Experimental implementation of a SPOPO

The theoretical study presented in this manuscript has been developed in the context of a
more general analysis about dynamical and quantum properties of SPOPOs. In this same
context, indeed, Olivier Pinel, Benoit Chalopin and Nicolas Treps, from the quantum optic
group directed by Prof. Claude Fabre at Laboratoire Kastler Brossel, are experimentally
implementing a synchronously pumped OPO. It is quite natural, therefore, that both the
theoretical and the experimental works benefited from an intense mutual support. From
the point of view of this work, the experimental setup represented a guide line in all those
choices that are involved in modeling of a real system. Hence, it is worth to present in this
section a brief description of the SPOPO device experimentally implemented and sketched
in Figure 2.2. The experimental device is based on a Ti:Sa mode-locked laser generating
a c.w. train of 100fs pulses at 800nm with a repetition rate of about 80MHz. A part of
its output is doubled by a simple passage frequency double based on a bismuth borate
BiB3O6 (BIBO) crystal. The 400nm beam produced is then used for pumping a 2m linear
cavity OPO which exploits the nonlinearity of a BIBO crystal. A critical point for the
functioning of a SPOPO is the synchronization between the pumping laser and the OPO
cavity. In the time picture, the round trip time of the signal pulse circulating inside the
cavity has to be equal to the temporal inter-pulse separation of the mode-locked pump. If
this condition is satisfied, the signal field will benefit not only from the cavity feed-back
but also from the coherent superposition of successive pump pulses. As an effect, the
efficiency of the device increases and the threshold lowers. In this condition, a description

Figure 2.2: Experimental implementation of a Synchronously pumped OPO (This figure
has been kindly provided by O. Pinel).
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in terms of frequency combs is allowed also inside the cavity. It is clear, then, that the
synchronization condition, in the frequency domain, corresponds to requiring the signal
field comb to be resonant with the cavity. This synchronization is performed by locking
the OPO cavity length to the mode-locked cavity length by means of the Drever-Pound-
Hall method [Drever1983]. However, for ultra-short pulses the dispersion caused by the
nonlinear crystal represents a serious problem because their broadband spectrum. The
solution consists in introducing in the cavity some dispersive elements (like prisms or
gratings) in order to compensate the crystal dispersion.

Differently from what we considered in the model, the experimental realization of the
SPOPO considers also a small injection of the field at 800nm (the signal field). This
solution has two practical implications: it makes easier both the alignment of the cavity,
since the signal field is not in the vacuum state, and the configuration of the OPO working
point. Therefore another small part of the Ti:Sa laser is sent into the cavity through a
delay line which is needed for synchronizing the pump pulse and the seed pulse. Instead,
by means of a piezoelectric crystal, it is possible to control the relative phase between the
pump and the seed and, thus, change the quadrature of the signal field that is amplified.

The output signal field is detected, then, by means of a classical homodyne detection
scheme where the local oscillator consists of a third part of the output of the Ti:Sa mode-
locked laser. In order to detect with the best efficiency the quantum properties of the
signal field, the frequency comb describing the local oscillator field has to be matched
to its frequency comb. The mode matching is realized by means of a pulse shaper. It
consist of a first dispersive element such as a grating or a prism that spatially separates
the frequency constituting the incoming optical pulse. Then a spatial light modulator can
control, for each frequency1 component, the phase and/or the amplitude of the beam in
order to give it the wanted spectral shape. Then the frequency components are recombined
at a second dispersive element.

Up to now, the goals that have been successfully achieved are the frequency doubling
of 400nm beam, the synchronization between the OPO and the Ti:Sa laser cavity and the
phase-sensitive amplification of the seed beam.

2.1.2 Mode-locked laser sources

The use of the output field of a mode-locked laser for pumping an OPO cavity reveals the
double advantage of producing broadband non-classical field and increasing the efficiency
of the parametric conversion thanks to the coherence properties between each pulse of
mode-locked beam. In this section we will present the main features of mode-locked field
and show that, thanks to their inter-pulse coherence, they can be described in a compact
way by means of a comb of frequencies in the Fourier space.

In a simple laser, generally, each of the lasing longitudinal modes oscillate indepen-
dently with no fixed relationship between them and with randomly varying phase. Con-
sequently, their incoherent interference will produce a averaged almost constant output
intensity known as c.w. operation. On the other hand, mode-locked lasers generate a
train of short optical pulses by establishing a fixed phase relationship between all of the
lasing longitudinal modes. Having well established phase relations, these modes will con-

1In fact, since the spatial light modulator is made of a discrete number of pixels, it modulates the

phase/amplitude over a small interval of spectral frequencies.
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structively interfere generating a beating effect that, for a huge number of lasing modes,
will result in a train of very intense and short pulses equally spaced in time with period
Trep.

The output field can be depicted, in the temporal domain, by an optical wave with
carrier frequency ωc and envelope A(t):

E(t) = A(t)e−iωct + c.c. (2.1)

Since the train of pulses is periodic in time A(t) = A(t − Trep), one can decompose it on
a discrete Fourier basis:

E(t) =
∑
m

Ame−i(ωc+mωrep)t + c.c., (2.2)

where Am are the Fourier components of A(t) and ωrep = 2π/Trep. The spectrum of the
output of a mode-locked field is, therefore, represented by a comb of equally separated
frequencies around ωc:

ωm ≡ ωc + mωrep. (2.3)

Notice that this result have been obtained under the assumption of identical pulses. Gen-
erally, for any pulse shape, there exists a carrier-envelope phase ∆φce that corresponds
to the phase shift between the peak of the envelope and a given wavefront of the carrier
wave. In presence of dispersive material, the difference between group and phase velocities
is at the origin of ∆φce. After a round-trip, in fact, the phase accumulated between the
envelope and the carrier is:

∆φce =
(

1
vg

− 1
vp

)
Lωc mod2π, (2.4)

where vg and vp are, respectively, the group and phase velocities and L is the length of
the laser cavity. The consequence is that the phase carrier-envelope induces a rigid shift
of the frequencies of the comb by an amount ωce that is linked to ωc through the relation:

ωce =
ωc

2π
∆φce. (2.5)

There exist different mechanisms for locking the phases of lasing longitudinal modes
based on active or passive phase modulators. Currently the generation of ultra-short pulses
is dominated by the Kerr-lens mode-locking. This method exploits the variation of the
refraction index inside the gain medium (usually Ti:Sa) across the beam profile by optical
Kerr effect. For a Gaussian beam (as found in laser resonators), then, the center of the
beam will experience a greater refractive index than the low intensity tails, thus inducing
a greater focalization. In this way, the amplification of short intense pulses will be favored
with respect to the c.w. solutions.

2.1.3 Quantum description of c.w. trains of pulses in time domain

The evolution of a linearly polarized electric field operator ~̂E(~r, z, t) in the Heisenberg
representation [Cohen-Tannoudji] can be described in terms of its positive frequency part
and its Hermitian conjugate as follows:

~̂E (~r, t) = ue

[
Ê(+) (~r, t) + Ê(+) † (~r, t)

]
, (2.6)
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where ue refers to the direction of polarization. Since we will consider in this manuscript
a field that propagates as a plane wave along the axis uz at the frequency ω0 and with a
transverse dimension of A, the field operator can be written in the form:

Ê(+) (z, t) = Ê(+) (z, t) e−iω0(t− z
c ), (2.7)

where the quantity e−iω0(t− z
c ) is the carrier for a wave propagating in vacuum along the

z axis at the speed of light c and Ê(+) (z, t) is the envelope field operator.
The quantization of the electric field in the free (one-dimensional) space is given by

the corresponding operator:

Ê(+) (~r, t) = i

√
~

2ε0A

∫
dk√
2π

√
ω(k) â(k)eik(z−ct), (2.8)

where â(k) and â†(k) are the annihilation and creation operators of a photon with wave
number k. These operators satisfy the following commutation rules:[

â(k), â†(k′)
]

= δ(k − k′),[
â(k), â(k′)

]
= 0,[

â†(k), â†(k′)
]

= 0.

(2.9)

Then, by writing, for an electric field propagating with carrier e−ik0(z−ct), its envelope as:

Ê(+) (z, t) ≡ i

√
~ω0

2ε0A
â (z, t) , (2.10)

the expression of the operators â(z, t) can be derived from Eq. (2.8):

â (z, t) =
∫

dk√
2π

√
ω(k)
ω0

â(k)ei((k−k0)(z−ct). (2.11)

The corresponding commutation rules are straightforwardly obtained from Eq. (2.9):[
â(z, t), â†(z′, t′)

]
=

∫
dk√
2π

ω(k)
ω0

ei(k−k0)((z−z′)−c(t−t′)). (2.12)

Since we will deal only with c.w. mode-locked optical beams, it is worth to adapt the
notation for the quantized fields to the notation for frequency combs. We have to pass,
thus, to a discrete formulation of the operator â (z, t). Let’s write the integral as a sum
over intervals of width ∆k and centered at kr = k0 + r∆k, being r ∈ Z. Thus (2.11)
becomes:

â (z, t) = e−ik0(z−ct)
∑

r

∫ kr+∆k
2

kr−∆k
2

dk√
2π

â(k)eik(z−ct). (2.13)

Let’s define, now, new operators:

eikr(z−ct)âr(z, t) ≡
∫

r

dk√
2π

â(k)eik(z−ct), (2.14)
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where the subscript r of the integral denotes the interval [kr − ∆k/2, kr + ∆k/2]. They
verify the usual boson commutation rule:[

âr(z1, t1), â
†
r′(z2, t2)

]
=

1
2π

e−i(kr−kr′ )(z1−z2−c(t1−t2)) ×

×
∫

r
dk

∫
r′

dk′
[
â(k), â†(k′)

]
eik(z1−ct1)e−ik′(z2−ct2)

=
1
2π

e−ikr(z1−z2−c(t1−t2))δr,r′

∫
r
dk eik[z1−z2−c(t1−t2)]

= δr,r′
sin

[
∆k
2 (z1 − z2 − c(t1 − t2))

]
π (z1 − z2 − c(t1 − t2))

' δr,r′δ (z1 − z2 − c(t1 − t2)) . (2.15)

In order to arrive to Eq. (2.15) we used Eq. (2.9) and kept in mind that the δr,r′ term
appears because the double integral vanishes if r 6= r′ since the integration domains in k

and k′ are not overlapping in that case. Hence the operators (2.11) can be expressed as a
discrete superposition of the boson operators âr(z, t):

â (z, t) =
∑

r

ârei(kr−k0)(z−ct), (2.16)

that used in Eqs. (2.7) and (2.8) gives the electric field:

Ê(+)(z, t) = i

√
~ω0

2ε0A

∑
r

âreikr(z−ct), (2.17)

which is consistent with the classical expression for the mode-locked field (2.2).

2.1.4 A different modal decomposition of the electromagnetic field: the

temporal Gaussian modes

Either in space or time or space-time domain, the wave equation in a dielectric medium
for electric components admits, for propagation in vacuum (or linear propagation in a
dielectric medium), a modal decomposition of the electric field on several complete set of
functions {uk} which correspond to the monochromatic solutions of the Maxwell equations
for given boundary conditions. While the previous method does not keep in account
the propagative aspects of a e.m. field, it is possible quantize it by associating to each
eigenmode of the propagation a quantum operator [Walls]. In time domain the linear
propagation in a dispersive medium along the z-axis of the slowly varying field envelope
E(+) (z, η) in the plane wave approximation is given by:(

i
g

2
∂2

∂η2
+

∂

∂z

)
E (z, η) = 0 (2.18)

where η = t− z/v is the reduced time in a frame of reference co-propagating with the e.m.
wave-packet, v is the velocity of light for the considered dispersive medium and g is the
group velocity dispersion evaluated at the carrier frequency. Together with the boundary
conditions imposed by a usual optical cavity, Eq. (2.18) admits a complete set of modes
{uk (z, η)} that are given by the 1-dimensional Gauss-Hermite functions:

uk(z, η) =
(

2
π

)1/4 (
2kk!

)1/2 1√
w(z)

Hk

(√
2 η

w(z)

)
e
− η2

w2(z)
+i η2

2gR(z)
+i(n+1)ψ(z)

, (2.19)
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where:

w(z) = w0

√
1 +

(
z

zR

)2

,

R(z) = z +
z2
R

z
,

ψ(z) = arctan
(

z

zR

)
,

zR =
w2

0

2g
.

(2.20)

These modes are orthogonal to each other:∫ +∞

−∞
d ηu∗

k(z, η)ul(z, η) = δk,l, (2.21)

and satisfy the relation of completeness:∑
k

u∗
k(z, η)ul(z, η′) = δ(z − z′)δ(η − η′). (2.22)

The field envelope can be, thus, expanded on this basis:

E(+)(z, η) =
∑

k

akuk(z, η). (2.23)

In a quantum picture, each mode uk(z, η) can be associated with an independent quantum

oscillator so that the complex coefficients ak are replaced by the operators i
√

~ωk
2ε0

âk where

âk and â†k is the set of photon creation/annihilation operators in each mode. Then, from
Eq. (2.7), the modal decomposition for the electric field reads:

Ê (z, η) = i
∑

k

√
~ωk

2ε0
âkuk (z, η) . (2.24)

Therefore, in a general way, the e.m. field can be decomposed into a linear superposition of
several modes as many as the number of degrees of freedom needed for giving a complete
description of it. Is such number the least dimension of the Hilbert space in which the field
“lives” needed? The answer to this question will clarify the differences that occur between
simple-modal systems and multi-modal ones and provide a criterium for distinguishing the
two cases.

2.2 Multi-mode light

In the domain of the continuous variables (CV) quantum optics, the use of macroscopic
intense optical beams involves a huge number of photons so that they cannot be individu-
ally distinguished, and a statistical characterization of their quantum fluctuations has to
be privileged. Therefore, with respect to regimes with a very small number of photons, a
larger variety of non-classical states can be produced like, for example, squeezed or entan-
gled states usually by means of sources based on the non-linear parametric interaction. To
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this purpose, the most reliable and exploited sources are the optical parametric oscillators.
However, the non-linearities involved and the detection techniques adopted usually allows
for no more than small quantum fluctuation, thus preventing the possibility to realize
quantum states with negative Wigner function. Nevertheless, the richness of quantum
states that can be generated by OPO based sources and of the number of applications can
be enlarged, in spite of this limitation, by multiplying the number of “modes” or degree
of freedom at stake in the process of detection. This is the domain of the multi-mode
quantum optics.

On one hand, the multimodal complexity has great potentialities for applications con-
cerning the quantum treatment of the information like, for example, the increasing of
storage and transfer of information, the generation of more robust entangled states, the
parallel treatment of the information. On the other hand, multi-mode optical systems can
improve the precision measurements in the domains of imaging and metrology.

During recent years, spatial quantum optical effects, usually called quantum imaging ef-
fects, has witnessed a growing interest since the generation of spatial correlations of spatial
squeezing in the transverse plane can find application in the detection of small transverse
displacement and tilt of an optical beam surpassing the standard quantum noise limit
[Treps2002, Treps2003, Delaubert2006], detection of weak phase images [Lugiato2002],
quantum teleportation of optical information [Sokolov2001], transverse spatial quantum
correlation for transmission of images [Gigan2006] and noiseless image amplification
[Kolobov1995, Lopez2008]. On the other hand, it was already known that that the in-
troduction of spatial features in the transverse plane of laser beams can lead to parallel
information processing and multichannel operations [Caves1994], thus allowing the imple-
mentation of quantum protocols such as quantum entanglement, quantum cryptography,
dense coding and quantum teleportation [Lassen2007] that already have been demon-
strated in the simple-mode regime [Ou1992, Silberhorn2001, Mattle1996].

In problems concerning the characterization of an optical image and the extraction of as
much as possible of details from it, without knowing where they are placed, it is necessary
the use of detectors with a great number of pixels and and of superresolution techniques
[Kolobv2000]. In these cases, differently from the detection of small displacements and tilt,
where a small number of degrees of freedom are involved, the absence of an a priori informa-
tion does not allow to know the form of the modes in order to optimize the signal-to-noise
ratio. Consequently, one needs to simultaneously reduce the noise in all the degrees of free-
dom of the optical beam. Such situation can be reproduced in configurations of degeneracy
with respect to all the modes involved. In the context of optical images, a successfully
scheme, exploited for obtaining this, concerns OPO cavities which are degenerate for a
large number of transverse modes [Gigan2005, Martinelli2003, Lopez2005, Lopez2008].
For these systems, the amplification/de-amplification, affected by a noise lower than the
standard quantum limit, of an optical image prove their quantum multi-modal character.
The results obtained in Section 2.1 authorize to depict the output field of a mode-locked
laser by means of a comb of optical frequencies which, in the time domain, corresponds
to a train of short pulses that are coherent each other. From the point of view of the
frequencies, then, there is a perfect analogy with the optical images, since an image can be
considered as the coherent superposition of several transverse modes. In the light of these
considerations, a synchronously pumped OPO is a device potentially multi-mode since it
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is completely degenerate for all the frequencies of the comb that resonate simultaneously.
It is the goal of this work to understand whether or not a SPOPO is a multi-mode system
and complete, at least in part, the analogy with spatial multi-mode systems.

2.2.1 Single mode or multi-mode light

In this section we report a brief resume of a criterium which permits to precisely charac-
terize intrinsic single-mode and multi-mode light [Treps2005].

Classical approach

For a number greater than one of non null coefficients ak, modal decomposition (2.23)
could induce to think that the field is multi-mode. In effect, if the ak coefficients are a
coherent superposition (and not a statistical one), it is always possible to define a new
mode:

v0 =
1√∑
k |ak|2

∑
i

akuk (2.25)

and build a basis {vk} in which v0 is the first element. Therefore, on a classical point
of view, an intrinsic multi-mode description of the e.m. field cannot exist, because, at least
for coherent modes superposition, it is always possible to find a new basis in which the
field is mono-mode. On the other hand, for a statistical superposition of modes the vector
v0 (ζ) cannot be defined and the multi-mode character assumes an intrinsic meaning. In
time domain, for example, a mode-locked laser is a mono-mode system because it is the
coherent superposition of many temporal modes.

Single mode or multi-mode light: quantum approach

Let’s consider the most general state of the field in the Fock state basis |N1, N2, . . . , Nk, . . .〉,
where Nk stands for the number of photons in the field mode uk. It reads:

|ψ〉 =
∑

N1,...,Nk,...

CN1,...,Nk,...|N1, N2, . . . , Nk, . . .〉, (2.26)

where {CN1,...,Nk,...} are complex coefficients of the decomposition in the Fock state basis.
Then, the mean value of the field envelope operator (2.17) (or (2.24)) can be written:

〈ψ|Ê |ψ〉 = i

√
~ωk

2ε0A

∑
k

√
Nk

 ∑
N1,...,Nk,...

C∗
N1,...,Nk−1,...CN1,...,Nk,...

uk (2.27)

Using these notations, we can give a definition of a single mode beam:

Definition 1 A state is single mode is there exists a mode basis {v0, v1, . . .} in which it
can be written:

|ψ〉 = |φ〉 ⊗ |0, . . . , 0, . . .〉 (2.28)

where |φ〉 is the field state in the first mode.

But does it exist quantum states that cannot be written as in Eq. (2.28)? The answer
to this question is given by the following proposition:
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Proposition 1 A quantum state of the field is single mode if and only if the action on it
of all the annihilation operators of a given basis gives proportional vectors.

Leaving the details of the demonstration to the paper [Treps2005], let’s consider, here, an
example. Assuming that a state |ψ〉 with respect to the basis {uk, âk} reads as:

|ψ〉 = |φ1〉 ⊗ . . . ⊗ |φk〉 ⊗ . . . (2.29)

the action of the annihilation operators on it gives:

âk = |φ1〉 ⊗ . . . ⊗ (âk|φk〉) ⊗ . . . (2.30)

Consequently, there are only two possibilities to have all these states proportional: (i)
either only one of the projection is different from zero, which means we are already in the
basis in which the state is single mode, (ii) or all the states are coherent states. If, for
instance, one considers the superposition of several field modes, if at least one of them is
a non-coherent state, one gets a multi-mode quantum state.

One can characterize a beam which is not single-mode, by its degree N :

Definition 2 For a beam |ψ〉, the minimum number of modes necessary to describe it (or
the minimum number of non-vacuum modes in its modal decomposition), reached by choos-
ing the appropriate basis, is called the degree N of a multi-mode beam. Any corresponding
basis is called a minimum basis for the field |ψ〉.

Accordingly, it can be shown that a quantum field is in a N -mode state if and only if the
action of all the annihilation operators belongs to the same N -dimensional sub-space.

Among all the possible minimal basis, it exists a special one that will be called eigen-

basis or mean-field basis that verifies the following proposition

Proposition 2 For a state |ψ〉 of degree N , it is always possible to find a basis {vk, b̂k}
such that the mean value of the electric field is nonzero only in the first mode and it is a
minimum basis.

Starting from a minimal basis {uk, âk}, such a basis can be obtained by means of the
following combinations:

v0 =
1√∑N−1

k=0 〈âk〉2

N−1∑
k=0

〈âk〉uk (2.31)

vk,0<k<N =
N−1∑
l=0

ckl ul (2.32)

vk,k≥N = uk (2.33)

where the coefficients {cij} are chosen in order to get an orthonormal basis. Definition
(2.31) apply also for the annihilation operators b̂k.

In a classical sense the mean field is single mode because the only non null expectation
value is the one corresponding to the first mode while all the other modes have zero mean
value. However, the energy lying in all the modes labeled from 1 to N-1 is not necessarily
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zero. These states, in fact, are not necessarily traditional vacuum states. Although their
electric field mean value is zero, they can still correspond to squeezed vacuum states or
correlated vacuum states. Therefore, for a multi-mode beam, this description shows that
some of the modes orthogonal to the mean fields are sources of noise but do not contribute
to the mean value and, consequently, that the noise distribution in the profile of the field
is independent of the one of the mean field.

In the specific case of a SPOPO, from a classical point of view, if all the terms con-
tributing to the phase diffusion affecting a laser radiation and others technical noises can be
neglected, we can conclude that the intra-cavity mode-locked fields can always be depicted
by means of the mode corresponding to the mean field mode (2.25). On the other hand,
in a quantum picture, the multi-modal character of the fields has to be thoroughly inves-
tigated, since the modes orthogonal to v0 can independently contribute to the temporal
distribution of quantum fluctuation.
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S
ynchronously pumped OPOs or SPOPOs, in the recent past, have been used for
generating ultrashort optical pulses of tunable wavelength or for efficient control-
ling of the pulse compression and their temporal properties have been theoretically

investigated (see for example Cheung et al. [Cheung1991]). A different application could
be addressed for the generation of non-classical states and implement demonstration ex-
periments for high sensitivity optical measurements and quantum information protocols.
Mono-mode cw OPOs have been already used for this purpose by exploiting the coher-
ence properties of the interaction (i.e. parametric down conversion) between a non-linear
medium and strong e.m. fields; in this way, squeezed, correlated, entangled light has been
produced in the so-called continuous variable regime. In order to maximize the quantum
effects, one needs to optimize the non-linear coupling. This has been achieved, so far, by
using either intense pump lasers or resonant cavities. In the first case, due to the fact
that parametric process is an almost instantaneous one, femtosecond mode-locked lasers
are the best sources because they generate very high peak optical powers with high co-
herence properties. Therefore, such a sources have been extensively used to generate non
classical light either by pumping a parametric crystal or an optical fiber. However in such
single-path configurations, perfect quantum properties are obtained only when the pump
power goes to infinity. On the other side, intracavity devices produce perfect quantum
properties for a finite power, say the oscillation threshold of the device. SPOPO devices
take advantage of the effects of both high peak powers and resonant cavity build-up. This
is efficiently achieved when the repetition rate of the pumping mode-locked laser is syn-
chronized to the round-trip time of the pump pulses inside the OPO cavity because of
their coherent superposition.

In this chapter the complete quantum model for a single-transverse mode, synchronously
pumped optical parametric oscillator (SPOPO) is addressed. We will consider high finesse
optical cavities, of either ring or linear geometry, pumped by a c.w. train of femtosec-
ond pulses (about 100 fs). Two possibilities for pumping have been envisaged: either (i)
the pump is also resonated inside the cavity (doubly resonant case) or (ii) the cavity
is transparent for the pump (singly resonant case). For sake of simplicity, we will con-
sider quasi-degenerate collinear type I interaction in a χ(2) non-linear crystal placed inside
optical cavity which is assumed to be dispersion compensated be intracavity dispersive
elements. This hypothesis will permit to assume all signal cavity modes equally spaced by
a common free spectral range.

In the below threshold regime and in the linear approximation, both singly resonant and
doubly resonant cases are described by formally identical models, so the results obtained
are in fact more general. We will extend our analysis to non-chirped pumps as chirping
requires another, more general treatment, as will be presented in the last section.

3.1 Doubly resonant ring cavity

Let’s consider quasi-degenerate collinear type I interaction, by means of which the pumping
frequency comb, at frequencies around 2ω0, is converted by a nonlinear χ(2) crystal into
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multi-mode signal radiation at frequencies around ω0 and vice-versa, being 2ω0 and ω0

the two frequencies at which phase matching occurs, i.e. n (2ω0) = n (ω0) ≡ n0, being n

the crystal refractive index. The nonlinear crystal is placed inside a high finesse optical
cavity of length L which is assumed to be dispersion compensated by intracavity dispersive
elements, so that all signal cavity modes are equally spaced by a common free spectral
range Ω, which is made equal to that of the pumping laser Ωp. This ensures that the
pulse-to-pulse delay of the pump beam coincides with the cavity round-trip time and
successive pump and signal pulses superpose in time thus maximizing the strength of the
interaction. As we will be concerned with femtosecond lasers (pulse durations around
100 fs) and cavity lengths around 1− 4m, the number of pump modes will be typically on
the order of 104 − 105.

3.1.1 Longitudinal modes of the resonator

Let’s consider a ring resonator of length L where the intracavity field is supposed to
be a superposition of plane waves propagating along the positive direction of uz axis
of the resonator. This implies that the nonlinear crystal is assumed to be broadband
antireflection coated. Plane wave assumption is still approximately valid for Gaussian
beams as far as the thin crystal is placed at the (common) beam waist of pump and
signal, and the Rayleigh lengths are much longer than the crystal length l. Taking the
crystal entrance facet at z = −l/2, any resonator mode Um (z, t) can be written as:

U ring
m (z, t) =


1√

n(ωm)
umei(kmz−ωmt) + c.c., z ∈

[
− l

2 , l
2

]
umei(kvac

m z−ωmt)eiφm + c.c., z /∈
[
− l

2 , l
2

] , (3.1)

where kvac
m = ωm/c is the wavenumber in vacuum, km = n (ωm) kvac

m , n (ωm) is the refractive
index of the crystal at frequency ωm, um is a classical complex amplitude, the transmission
factor 1/

√
n (ωm) is due to the flux conservation keeping in count that reflection at the

entrance facet is absent, and φm is a suitable phase. If the crystal is the only refractive
element inside the cavity, the frequencies ωm verify the following resonance condition:

ωm = m
2πc

[n (ωm) − 1] l + L
, (3.2)

with m ∈ N. This expression keep accounts for the dispersion of the nonlinear crystal
that produces a nonuniform free spectral range across the broadband frequency comb
propagating inside the cavity. When the phase-matching is not of type I, pump, signal
and idler feel e different dispersion owing to the different refraction index. This can be
a serious problem for the synchronization of the three resonating fields and an external
dispersion compensation is needed. For the case, that will be considered here, of type I
phase-matching the problem is less severe, but in any case a resonator compensated by
intracavity dispersive elements (such as prisms or diffraction gratings) will be admitted.

Calling ωp,0 and ωs,0 the two cavity modes closest to pump and signal carrying fre-
quencies 2ω0 and ω0 respectively, the cavity modal frequencies can be written as:

ωp,m = ωp,0 + mΩ (3.3)

ωs,m = ωs,0 + mΩ (3.4)
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where Ω is the cavity free spectral range, equal for signal and pump, because of the hy-
pothesis of dispersion compensation, and m ∈ Z because by convention m = 0 corresponds
to the cavity modes ωp,0 and ωs,0. Therefore the assumption that ω0 and 2ω0 are phase-
matched forces the equality ωp,0 = 2ωs,0. Note that according to (3.2) the hypothesis of
constant cavity free spectral range Ω is valid only in presence of intracavity dispersive
elements for dispersion compensation, otherwise terms in Ω of order larger than the first
in (3.3) and (3.4) should be considered.

The expansion of the external pump field on the same base of longitudinal plane modes,
instead, reads:

Eext (t) = i

√
P

2ε0c

∑
m

αme−i(2ω0+mΩp)t + c.c., (3.5)

which is a classical, phase-locked multi-mode coherent field. Here P is the average laser
irradiance (power per unit area), αm is the normalized (

∑
m |αm|2 = 1) complex spectral

component of longitudinal mode labeled by the integer index m, and m = 0 corresponds
to the phase-matched mode.

3.1.2 The fields

Since type I operation is assumed, let’s take pump and signal fields, respectively Ep and
Es, polarized along two orthogonal directions, for example uy and ux. The total field can
be written as:

Ê (z, t) = Êp (z, t)uy + Ês (z, t)ux. (3.6)

Inside the nonlinear crystal, which extends from z = −l/2 to z = +l/2, the fields are
written, in the Schrödinger picture, as:

Êp (z, t) = i
∑
m

Ep,m

(
p̂m (t) eikp,mz − p̂†m (t) eikp,mz

)
, (3.7)

Ês (z, t) = i
∑
m

Es,m

(
ŝm (t) eiks,mz − ŝ†m (t) eiks,mz

)
, (3.8)

where Ef,m =
√

~ωf,m

2ε0n(ωf,m)AfL
, f = p, s are single photon fields, and Af is the transverse

area of pump (f = p) or signal (f = s) fields. The boson operators p̂j and ŝm verify usual
commutation relations:[

ŝm (t) , ŝ†n (t)
]

=
[
p̂m (t) , p̂†n (t)

]
= δm,n, (3.9)[

p̂m (t) , ŝ†n (t)
]

=
[
ŝm (t) , ŝn (t)

]
=

[
p̂m (t) , p̂n (t)

]
= 0. (3.10)

3.1.3 The interaction Hamiltonian

A phenomenological approach to quantization of nonlinear optics permits to use the fol-
lowing form for the interaction Hamiltonian:

ĤI = −
∫

VI

d~r Ê · P̂, (3.11)

where VI is the volume inside the crystal where the pump and signal fields overlaps. In the
situation where only plane waves are considered, the fields do not depend on the transverse
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coordinates (x, y) and the integral (3.11) becomes:

ĤI = −AI

∫ l/2

−l/2
dz Ê · P̂, (3.12)

being AI the surface of the crystal in the transverse plane xOy. In the case of Gaussian
beams, under the hypothesis that the crystal thickness is smaller than the Rayleigh range
of the pump and signal beams, the interaction volume can be approximated as a cylinder of
thickness l along uz and transverse section AI given by the overlapping integral between the
three Gaussian transverse modes up(x, y)u2

s (x, y), with up (x, y) = exp
{
−π

(
x2 + y2

)
/Ap

}
and us (x, y) = exp

{
−π

(
x2 + y2

)
/As

}
:

AI =
∫

dxdy up (x, y) us (x, y) us (x, y) =
(

2
As

+
1

Ap

)−1

, (3.13)

where Ap and As are the transverse section of the pump and signal beams, respectively.
Returning to Eq. (3.12), the nonlinear polarization P̂ can be written as:

P̂ (z, t) = P̂p (z, t)uy + P̂s (z, t)ux. (3.14)

and P̂s (z, t) and P̂p (z, t) are the nonlinear electric polarization at signal and pump fre-
quencies. According to the form of the fields, they are given by:

P̂s (z, t) = −ε0χ
∑
m,q

Es,mEs,q

[
ŝm (t) ŝq (t) ei(ks,m+ks,q)z + ŝ†m (t) ŝ†q (t) e−i(ks,m+ks,q)z

]
(3.15)

P̂p (z, t) = ε0χ
∑
j,m

Ep,jEs,m

[
ŝ†m (t) p̂j (t) ei(kp,j−ks,m)z + ŝm (t) p̂†j (t) e−i(kp,j−ks,m)z

]
(3.16)

where χ is the relevant nonlinear susceptibility and the dispersion of the nonlinear suscep-
tibility has been neglected. The interaction Hamiltonian becomes therefore:

ĤI = −AI

+l/2∫
−l/2

dz
[
Êp (z, t) P̂p (z, t) + Ês (z, t) P̂s (z, t)

]
. (3.17)

Substitution of the expressions for the field and the polarization into the interaction
Hamiltonian yields:

ĤI = 2iε0χlAI

∑
j,m,q

Ep,jEs,mEs,qFj,m,q

(
p̂j (t) ŝ†m (t) ŝ†q (t) − p̂†j (t) ŝm (t) ŝq (t)

)
, (3.18)

where we defined the phase-mismatch factor:

Fj,m,q =
sinΦj,m,q

Φj,m,q
, (3.19)

being

Φj,m,q =
1
2

(kp,j − ks,m − ks,q) l, (3.20)

the phase-mismatch angle. In Eq. (3.18), only the terms that approximatively preserve
momentum conservation have been retained.
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3.1.4 The Heisenberg equations

The total Hamiltonian of the system is given by:

Ĥ = Ĥ0 + ĤI, (3.21)

where:
Ĥ0 =

∑
j

~ωp,j p̂
†
j p̂j +

∑
m

~ωs,mŝ†mŝm, (3.22)

is the free evolution Hamiltonian. The Heisenberg equations for pump and signal boson
operators are:

i~
dp̂j

dt
=

[
p̂j , Ĥ

]
, (3.23)

i~
dŝm

dt
=

[
ŝm, Ĥ

]
, (3.24)

that, making use of (3.9) and (3.18), can be written as:

i~
dp̂j

dt
= ~ωp,j p̂j − 2iε0χAIl

∑
m,q

Ep,jEs,mEs,qFj,m,q ŝmŝq, (3.25)

i~
dŝm

dt
= ~ωs,mŝm + 4iε0χAIl

∑
j,q

Ep,jEs,mEs,qFj,m,qp̂j ŝ
†
q, (3.26)

Up to here we considered the Hamiltonian dynamics of the fields in the crystal. Nev-
ertheless the optical cavity has losses, which must be incorporated into the description.
According to the input-output formalism of quantum optics, losses occur at a single mirror
at rates γs and γp, for the signal and pump fields, respectively. They are obtained from
pump and signal power transmission coefficients of the cavity output mirror, Tp and Ts,
according to the relation γf = cTf

2L (f = p for pump field, f = s for signal field). Then, the
equations of motion are transformed into the following quantum Langevin equations:

dp̂j

dt
= − (γp + iωp,j) p̂j + γppext,je−i(ωp+jΩp)t − κ

2

∑
m,q

Fj,m,q ŝmŝq

+
√

2γp p̂in,j , (3.27)

dŝm

dt
= − (γs + iωs,m) ŝm + κ

∑
j,q

Fj,m,qp̂j ŝ
†
q +

√
2γsŝin,m, (3.28)

where the losses for pump γp on one hand, and signal γs on the other hand are supposed
occur at the same rates for all modes, the complex numbers pext,q account for the classical
external pump and the ”in” operators correspond to quantum fields entering the cavity
through the coupling mirror. When that input is vacuum, the case we consider, the ”in”
operators verify 〈p̂in,m (t)〉 = 〈ŝin,m (t)〉 = 0 and the following correlations:〈

p̂in,m (t) p̂†in,m′
(
t′
)〉

=
〈
ŝin,m (t) ŝ†in,m′

(
t′
)〉

= δm,m′δ
(
t − t′

)
, (3.29)〈

p̂in,m (t) ŝ†in,m′
(
t′
)〉

= 0. (3.30)
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The coupling constant κ is real and it is:

κ = 2χl
AI

As

√
Ap

(
ω0

n0L

)3/2 √
~
ε0

(3.31)

taking the assumption that Es,m = Es,0 ∀m and Ep,q = Ep,0 ∀q, which is a very good
approximation as far as pulses are not too short (say, larger than 30 fs in the visible).

Passing to the pump-interaction picture, the fields operators (also the input noise
terms) are rewritten as:

p̂j (t) = p̃j e−i(ωp+jΩp)t, (3.32)

ŝm (t) = s̃m e−i( 1
2
ωp+mΩp)t, (3.33)

which, substituted in (3.27) and (3.28), yield the following evolution equations (after
dropping the tildes for simplicity):

dp̂j

dt
= − (γp + i∆p,j) p̂j + γppext,j −

κ

2

∑
m,q

Fj,m,qei(j−m−q)Ωptŝmŝq

+
√

2γp p̂in,j , (3.34)

dŝm

dt
= − (γs + i∆s,m) ŝm + κ

∑
j,q

Fj,m,qe−i(j−m−q)Ωptp̂j ŝ
†
q +

√
2γsŝin,m, (3.35)

where:

∆p,j = ωp,j − (ωp + jΩp) = 2∆ + j (Ω − Ωp) , (3.36)

∆s,m = ωs,m −
(

1
2

ωp + mΩp

)
= ∆ + m (Ω − Ωp) , (3.37)

and keeping in mind the phase-matching condition ωp,0 = 2ωs,0:

∆ = ωs,0 −
1
2

ωp =
1
2

(ωp,0 − ωp) . (3.38)

For a high finesse cavity the condition γp, γs ¿ Ω ∼ Ωp is satisfied, therefore only
the terms that cancel the exponential factor j − m − q = 0 contribute significantly to the
evolution of the fields. In other terms, this is the condition for energy conservation of each
parametric process. The evolution equations (3.34) and (3.35) then become:

dp̂j

dt
= − (γp + i∆p,j) p̂j + γppext,j −

κ

2

∑
m

fj,mŝmŝj−m +
√

2γp p̂in,j , (3.39)

dŝm

dt
= − (γs + i∆s,m) ŝm + κ

∑
q

fm+q,mp̂m+q ŝ
†
m +

√
2γsŝin,m, (3.40)

where the phase-mismatch factors are now redefined:

fj,m =
sinφj,m

φj,m
, (3.41)

φj,m =
1
2

(kp,j − ks,m − ks,j−m) l. (3.42)
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For the calculation of phase-mismatch term (3.42), let’s consider the standard approx-
imation consisting in Taylor expanding kp,j and ks,m around their phase-matched values
2k0 = 2ω0 n (2ω0) and k0 = ω0 n (ω0):

kp,j = 2k0 + k′
p (ωp,j − 2ω0) +

1
2
k′′

p,j (ωp,j − 2ω0)
2

= 2k0 + 2k′
p∆ + 2k′′

p∆2 + j
(
k′

p + 2k′′
p∆

)
Ω +

1
2
k′′

p,jj
2Ω2, (3.43)

ks,m = k0 + k′
s (ωs,m − ω0) +

1
2
k′′

s,m (ωs,m − ω0)
2

= k0 + k′
s∆ + k′′

s ∆2 + m
(
k′

s + k′′
s ∆

)
Ω +

1
2
k′′

s,mm2Ω2, (3.44)

where k′
p = (∂kp/∂ω)ω=2ω0

and k′
s = (∂ks/∂ω)ω=ω0

are the inverse of the group velocities
at the phase-matched pump and signal frequencies and k′′

p =
(
∂2kp/∂ω2

)
ω=2ω0

and k′′
s =(

∂2ks/∂ω2
)
ω=ω0

are responsible for group velocity dispersion. From these expressions the
phase-mismatch term can be written as:

φj,m = l

[(
k′

p − k′
s

)
∆ +

1
2

(
2k′′

p − k′′
s

)
∆2 +

1
2
j
(
k′

p − k′
s +

(
2k′′

p − k′′
s

)
∆

)
Ω

+
1
4
j2

(
k′′

p − k′′
s

)
Ω2 +

1
2
m (j − m) k′′

s Ω2

]
. (3.45)

This expression can be simplified noting that the inequality
∣∣(2k′′

p − k′′
s

)
∆

∣∣ ¿ ∣∣k′
p − k′

s

∣∣ is
in general always verified. Therefore Eq. (3.45) reads:

φj,m = l

[(
k′

p − k′
s

)
∆ +

1
2
j
(
k′

p − k′
s

)
Ω +

1
4
j2

(
k′′

p − k′′
s

)
Ω2 +

1
2
m (j − m) k′′

s Ω2

]
. (3.46)

Let’s notice that the phase-mismatch verifies the symmetry φm,m+q = φq,m+q, hence:

fm+q,m = fm+q,q. (3.47)

This property will reveal to be important for the problem connected to the threshold of
SPOPOs.

In order to relate the term pext,j to the actual pump parameters as given by Eq. (3.5),
we note that Eq. (3.39) with κ = 0 describes a passive ring resonator. Ignoring quantum
fluctuations, the asymptotic solution is 〈p̂j〉 = pext,j . Plugging this solution into Eq. (3.7)
we obtain:

Epassive
p (z, t) = i

∑
j

Ep,jpext,je
i(kp,jz−ωp,jt) + H.c. (3.48)

However this expression must coincide with the one obtained assuming that the cavity
is pumped by the external field (3.5). As the cavity is resonant the following relation is
obtained:

Ep,jpext,j =
tp

1 − rp

(
P

2ε0c

) 1
2

αj , (3.49)

where tp and rp =
√

1 − t2p are the transmission and reflection coefficients at the coupling

mirror. As high finesse is assumed tp ¿ 1 and rp ' 1 − 1
2 t2p, hence:

Ep,jpext,j = 2
(

P

2ε0cTp

) 1
2

αj , (3.50)
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where Tp = t2p is the transmission factor of the coupling mirror. Finally putting Ep,j =√
~ω0

ε0n0ApL we obtain:

pext,j = 2

√
n0ApLP

2cTp~ω0
αj . (3.51)

Equations (3.39) and (3.40) constitute the general model of a resonant SPOPO.

3.1.5 The resonant model

In order to have well behaved subharmonic pulses and the SPOPO working in a phase-
locked regime, the amount of the detuning is required to be smaller than an admissible
limit. In fact in presence of mode-dependent detunings, Eqs. (3.39) and (3.40) can hardly
admit phase-locked solutions. A rough estimate of the maximal admissible detunings
could be achieved imposing that |∆p,jmax |/ γp ¿ 1 and |∆s,mmax |/ γs ¿ 1, where jmax and
mmax are the largest values of q and m approximatively fixed by the pump and single
combs spectral width, respectively. While we don’t know yet the features of the signal
combs, it is possible to estimate the pump spectral width that is basically determined by
the external pump properties. Assuming pump pulses of 100 fs duration produced by a
laser cavity of 1m length, jmax is of the order of 104. By recalling Eq. (3.36) and that
γp = TpΩ/4π (Tp = t2p is the power transmissivity of the output coupler for the pump
field), the constraint |∆p,jmax |/ γp ¿ 1 is equivalent to:∣∣∣∣Ω − Ωp

Ω

∣∣∣∣ ¿ 10−6, (3.52)

for mirror transmissivities of about 0.1. For a ring cavity Ω = 2πc/L, while Ωp = 2πc/Lp

(where Lp denotes the effective cavity length of the pumping laser), therefore the previous
constraint amounts to ask in terms of cavity lengths:∣∣∣∣L − Lp

Lp

∣∣∣∣ ¿ 10−6, (3.53)

which require an adjustment of the SPOPO cavity length with a precision better than
100 nm. Another argument to understand the physical reasons to this limitation is that
the incertitude on the OPO cavity length should be smaller than the spatial extension of
the pump pulse:

∆L ¿ c∆t. (3.54)

If ∆t ' 100 fs, then ∆L ¿ 100 nm which is in a good agreement with the former
estimate. For shorter pulses (say 10 fs) or for better output couplers (say Tp = 0.01),
this estimate imposes precisions of 1 nm. This poses serious problems for the operation of
SPOPOs pumped by ultrashort pulses.

Leaving the challenge for high precision synchronization to experimentalists, in the
following we will consider that the SPOPO cavity length is perfectly matched to the
pumping laser cavity: Ω = Ωp. In the case of perfect synchronization, the bias detuning
term (see Eq. (3.38)) is also null. Consequently Eqs. (3.39) and (3.40) becomes:

dp̂j

dt
= −γpp̂j + γppext,j −

κ

2

∑
m

fj,mŝmŝj−m +
√

2γp p̂in,j , (3.55)

dŝm

dt
= −γsŝm + κ

∑
q

fm+q,mp̂m+q ŝ
†
m +

√
2γsŝin,m. (3.56)
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3.1.6 The SPOPO below threshold

Equations (3.55) and (3.56) are nonlinear in the pump and signal bosonic operators and
are usually solved by linearization of the operators p̂q (t) and ŝm (t) around their steady
state values [Graham1968]:

p̂j (t) = 〈p̂j〉 + δp̂j (t) , (3.57)

ŝm (t) = 〈ŝm〉 + δŝm (t) , (3.58)

where δp̂j (t) and δŝm (t) represents field fluctuations around the steady state solutions.
Below threshold signal modes are almost not excited and 〈ŝm〉 = 0, therefore, at the 0-th
order in the field fluctuations, Eq. (3.55) admits the solution:

〈p̂j〉 = pext,j , (3.59)

while, at the first order eqs. (3.55) and (3.56) read as:

d

dt
δp̂j (t) = −γpδp̂j +

√
2γpδp̂in,j −

κ

2

∑
m

fj,mδŝm δŝj−m, (3.60)

d

dt
δŝm (t) = −γsδŝm + κ

∑
q

fm+q,m〈p̂m+q〉 δŝm
† +

√
2γsδŝin,m

+κ
∑

q

fm+q,m δŝm
† δp̂m+q. (3.61)

Neglecting the second order nonlinear term in Eq. (3.60), the solution for pump field
fluctuations is readily obtained:

δp̂j (t) '
√

2γp

∫ t

−∞
dt′δp̂in,j

(
t′
)
eγp(t−t′), (3.62)

where δp̂j (t) is a new noise term that verify the following properties:

〈δp̂j (t)〉 = 0, (3.63)〈
δp̂j (t) δp̂r

(
t′
)〉

= δj,re
−|t−t′|, (3.64)

trivially obtained from Eqs. (3.29) and (3.30). The quantity |pext,q|2 gives the number
of intracavity pump photons at frequency ωp,j coming from the pumping laser, and this
number is normally huge. Hence, given that the noise term δp̂j (t) is of order one, see Eq.
(3.64), one can neglect it in Eq. (3.62) so that 〈p̂j (t)〉 = pext,j .

However, at first order in Eq. (3.61), the pump fluctuations don’t play any role in the
evolution of signal field thanks to the fact that below threshold 〈ŝm〉 = 0. Taking in mind
that below threshold ŝm (t) = δŝm (t) and making use of Eq. (3.51), we finally obtain the
linearized Langevin equation for the signal field:

dŝm

dt
= −γsŝm +

√
2γsŝin,m + γsσ

∑
q

fm+q,mαm+q ŝ
†
q, (3.65)

where:
σ =

√
P/P0, (3.66)
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and

P0 =
ε0c

3n2
0T

2
s Tp

32 (ω0χl)2

(
As

AI

)2

, (3.67)

is a reference irradiance, equal to the cw OPO threshold as shown in the next chapter (see
section 4.3), and we made use of γs = cTs

2L . Making use of Eq. (3.13) we can write:

P0 =
ε0c

3n2
0T

2
s Tp

32 (χlω0)
2

(
1 +

As

2Ap

)2

. (3.68)

The corresponding power W0 = ApP0, which is proportional to
(
1 + As

2Ap

)2
Ap, plays the

role of threshold power and is thus an important quantity. The minimum of W0 occurs at
Ap = As/2, as could be expected according to the nature of the nonlinear interaction, in
which two signal photons interact with one pump photon. For this optimized setting we
obtain:

P0 =
ε0c

3n2
0T

2
s Tp

8 (χlω0)
2 . (3.69)

The linearized Langevin equations (3.65) in the below threshold regime is the general
model that has been considered in order to study the problem of the threshold (see Chapter
4) and quantum properties (Chapter 5) of SPOPO devices. In the following we will directly
consider the field operator in the interaction picture and assuming the conditions for a
resonant operation satisfied.

3.2 Doubly resonant linear cavity

In this section we retrieve the quantum model for quasi-degenerate type I SPOPO in which
both pump and signal are resonated inside a linear cavity (Fabry-Perot) of length L. The
intracavity field is always supposed to be a superposition of plane waves propagating along
uz.

3.2.1 Longitudinal modes of the resonator

The boundary condition imposed by the linear cavity to the intracavity field give origin
to stationary longitudinal modes that are written as:

U lin
m (z, t) =


1√

n(ωm)
umsin (kmz − ωmt) , z ∈

[
− l

2 , l
2

]
umsin (kvac

m z − ωmt + φm) , z /∈
[
− l

2 , l
2

] , (3.70)

where kvac
m = ωm/c is the wavenumber in vacuum, km = n (ωm) kvac

m , n (ωm) is the refractive
index of the crystal at frequency ωm, um is a classical complex amplitude, the transmission
factor 1/

√
n (ωm) is due to the flux conservation keeping in count that reflection at the

entrance facet is absent, and φm is a suitable phase. If the crystal is the only refractive
element inside the cavity, the frequencies ωm verify the following resonance condition:

ωm = m
πc

[n (ωm) − 1] l + L
, (3.71)

with m ∈ N. As for the ring cavity case, Eq. (3.71) put in evidence that the dispersion
of the free spectral range need to be compensated by extra refractive elements in order to
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achieve an optimal synchronized operation. Under the hypothesis of dispersion compen-
sation, however, is always possible to describe the intracavity pump and signal frequency
combs by means of eqs. (3.3) and (3.4).

3.2.2 The fields

Assuming the fields linearly polarized respectively along uy for the pump and uz for the
signal, let’s write the total intracavity field as in Eq. (3.6). Using the basis of longitudinal
cavity modes, signal and pump field can be expanded, inside a crystal which extends from
z = −l/2 to z = l/2, as:

Êp (z, t) = i
∑
m

Ep,mp̂m (t) sin (kp,m (z + L/2)) e−iωp,mt + H.c., (3.72)

Ês (z, t) = i
∑
m

Es,mŝm (t) sin (ks,m (z + L/2)) e−iωs,mt + H.c., (3.73)

where Ef,m =
√

~ωf,m

ε0n(ωf,m)AfL
, f = p, s are single photon fields, and Af is the transverse area

of pump (f = p) or signal (f = s) fields. The boson operators p̂j and ŝm verify the usual
commutation relations (3.9).

3.2.3 The interaction Hamiltonian

The interaction Hamiltonian (3.17) for a doubly resonant linear cavity is straightforwardly
obtained from the expressions (3.72) and (3.73) keeping in mind that, in this case, the
polarizations at pump and signal frequencies are:

P̂p(z, t) = ε0
∑
j,m

Ep,jEs,mp̂j(t)ŝ†(t) ×

× sin (kp,j(z + L/2)) sin (ks,j(z + L/2)) e−i(ωp,j−ωs,m)t + H.c. (3.74)

P̂s(z, t) = ε0
∑
j,m

Es,jEs,mŝj(t)ŝ(t) ×

× sin (ks,j(z + L/2)) sin (ks,j(z + L/2)) e−i(ωs,j+ωs,m)t + H.c. (3.75)

After having expanded, in terms of exponentials, the sinus factors, it is worth to introduce
new signal and pump boson operators:

p̂j,new (t) = p̂j (t) e+ikp,jL/2, p̂†j,new (t) = p̂†j (t) e−ikp,jL/2, (3.76)

ŝm,new (t) = ŝm (t) e+iks,mL/2, ŝ†m,new (t) = ŝ†m (t) e−iks,mL/2. (3.77)

By neglecting all the terms that will not satisfy the phase-matching condition, then, ĤI

can be put in the form:

ĤI =
iε0χlAI

2

∑
j,m,q

Ep,jEs,mEs,qFj,m,qp̂j ŝ
†
mŝ†qe

−i(ωp,j−ωs,m−ωs,q)t + H.c., (3.78)

with:

Fj,m,q =
sin

(
(kp,j − ks,m − ks,q) l

2

)
(kp,j − ks,m − ks,q) l

2

. (3.79)
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However, like in the end of Section 3.1.4, for high finesse cavities, we can make the
rotating wave approximation, which leads to:

ĤI =
iε0χlAI

2

∑
j,m

Ep,jEs,mEs,j−mfj,mp̂j ŝ
†
mŝ†j−m + H.c., (3.80)

with

fj,m =
sin

(
(kp,j − ks,m − ks,j−m) l

2

)
(kp,j − ks,m − ks,j−m) l

2

. (3.81)

3.2.4 The Heisenberg equations

From the Hamiltonian (3.80) it is, now, easy to retrieve the Heisenberg equations for pump
and signal field operators:

i~
dp̂j

dt
= − iε0χlAI

2

∑
m

Ep,jEs,mEs,j−mfj,mŝmŝj−m, (3.82)

i~
dŝm

dt
= iε0χlAI

∑
q

Ep,m+qEs,mEs,qfm+q,qp̂j ŝ
†
q, (3.83)

From Eqs. (3.82) and (3.83), it is, now, possible to retrieve the quantum Langevin equa-
tions for signal and pump operators that reads:

dp̂j

dt
= −γpp̂j + γppext,j −

κ

2

∑
m

fj,mŝmŝj−m +
√

2γp p̂in,j , (3.84)

dŝm

dt
= −γsŝm + κ

∑
q

fm+q,mp̂m+q ŝ
†
m +

√
2γsŝin,m, (3.85)

where, in this case, the coupling constant κ is:

κ =
√

2χl
AI

As

√
Ap

(
ω0

n0L

)3/2 √
~
ε0

. (3.86)

3.2.5 The SPOPO below threshold

Below threshold, the same arguments discussed in Section 3.1.6 apply. Therefore, while
the signal modes are almost in the vacuum state, the main contribution to the pump field
is given by its classical component 〈p̂in,j(t)〉 = pext,j . Keeping in mind that for a linear
cavity the pump field has been written as in Eq. (3.72), the expression (3.50) is slightly
modified in:

1
2
Ep,jpext,j = 2

(
P

2ε0cTp

) 1
2

αj , (3.87)

from which directly follows:

pext,j = 2

√
n0ApLP

cTp~ω0
αj . (3.88)

The Langevin equation for the signal field, therefore, reads:

dŝm

dt
= −γsŝm +

√
2γsŝin,m + γsσ

∑
q

fm+q,mαm+q ŝ
†
q, (3.89)
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where:
σ =

√
P/P0, (3.90)

and

P0 =
ε0c

3n2
0T

2
s Tp

128 (ω0χl)2

(
As

AI

)2

. (3.91)

P0 is a reference power per unit area which has the role of c.w. OPO threshold, defined in
a way similar to the case considered in the previous section. Since the linear geometry, we
used γs = cTs

4L , being Ts the power transmission coefficient through the output coupler, to
get Eq. (3.91). The corresponding power W0 = ApP0 plays the role of threshold power.

As in section 3.1, making use of Eq. (3.13) and for the optimized setting corresponding
to Ap = As/2 we obtain:

P0 =
ε0c

3n2
0T

2
s Tp

32 (χlω0)
2 . (3.92)

For the doubly resonant linear cavity case, then, we obtain a threshold that is lower than
the doubly resonant ring cavity of a factor 4. This occurrence is consistent with the fact
that in a linear cavity the signal field passes through the crystal two times together with
the pump field, thus feeling a parametrical gain proportional to (2l)2, which corresponds
to an increase of the intra-cavity power of the same factor 4.

The experimental setting of a OPO cavity, that is resonant both for the pump and
signal fields may result difficult, since the condition of synchronization have to be kept for
all the frequencies of the combs. From this point of view, the situation is partially simplified
by implementing an OPO cavity that is resonant only for the signal field. However, since
the pump field is no more resonating, a higher threshold should be expected. In the next
sections we are going to analyze, then, this different configuration both for the ring and
linear geometries.

3.3 Singly resonant ring cavity

Let’s consider a ring cavity of length L which is not resonant for the pump field. In
this case the pump field cannot be quantified inside the cavity and, consequently, the
derivation of the Langevin equation for the pump and signal filed operators becomes more
involved. Nevertheless, in the below threshold and linearized fluctuations regime, the
final evolution equation is formally equivalent to Eq. (3.65). We suppose the same phase
matching operation as the previous cases. The intracavity fields are considered of fixed
linear polarization as in (3.6).

3.3.1 The fields

The resonating signal field is expanded on the usual basis of longitudinal cavity modes,
while the pump field, that in general is the superposition of continuous modes, is quantized
in a box of length Lp, with periodic boundary conditions, that at the end will be assumed
Lp → +∞:

Êp (z, t) = i
∑

j

E (νj)
[
p̂
(+)
j (t) eiκjz + p̂

(−)
j (t) e−iκjz

]
e−iνjt + H.c., (3.93)

Ês (z, t) = i
∑
m

Es,mŝm (t) ei(ks,mz−ωs,mt) + H.c., (3.94)
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where the superscripts (±) label the propagation direction. The fields have been written
in the interaction picture under the hypothesis that no detuning of the pump respect to
the cavity modes occurs.

However, since the counter-propagating pump component labeled with (−) is never
phase matched with the signal field, Eq. (3.93) can be written in a simpler form:

Êp (z, t) = i
∑

j

E (νj) p̂j (t) ei(κjz−νmt) + H.c., (3.95)

where the superscript (+) has been understood. The signal single photon field ampli-

tude is Es,m =
√

~ωs,m

2ε0n(ωs,m)AsL
and the pump single photon field amplitude is E (νj) =√

~νj

2ε0n(νj)ApL . The frequencies νj are given by νj = j 2πc
Lp

and the wavenumbers κj = n(νj)νj

c ,
with n (νj) the crystal refractive index.

3.3.2 The interaction Hamiltonian

The interaction Hamiltonian ĤI is calculated as usual as:

ĤI = −AI

+l/2∫
−l/2

dz
[
Êp (z, t) P̂p (z, t) + Ês (z, t) P̂s (z, t)

]
, (3.96)

where AI is the effective area of interaction corresponding to the three-mode overlap-
ping integral across the transverse plane. According to (3.94) and (3.95) and neglecting
the terms that will not satisfy the phase-matching conditions, the polarization at signal
frequencies is:

P̂s (z, t) = ε0χ
∑
j,m

E (νj) Es,mp̂j (t) ŝ†m (t) ei(κj−ks,m)ze−i(νj−ωs,m)t + H.c., (3.97)

therefore:

Ês (z, t) P̂s (z, t) = −iε0χ
∑
j,m,q

E (νj) Es,mEs,qp̂j ŝ
†
mŝ†qe

i(κj−ks,m−ks,q)ze−i(νj−ωs,m−ωs,q)t

+H.c. (3.98)

Similarly, for the polarization at pump frequencies:

P̂p (z, t) = −ε0χ
∑
m,q

Es,mEs,q ŝm (t) ŝq (t) ei(ks,m+ks,q)ze−i(ωs,m+ωs,q)t + H.c. (3.99)

Since the product ÊpP̂p has the same expression as Eq. (3.98), the interaction Hamiltonian
is easily evaluated from (3.96):

ĤI = 2iε0χAIl
∑
j,m,q

E (νj) Es,mEs,qFj,m,qp̂j ŝ
†
mŝ†qe

−i(νj−ωs,m−ωs,q)t + H.c., (3.100)

where we defined:

Fj,m,q =
sin (κj − ks,m − ks,q) l

2

(κj − ks,m − ks,q) l
2

. (3.101)
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3.3.3 The Heisenberg equations

The time evolution for the pump field operators is given by the following Heisenberg
equations:

d p̂j

dt
= −2ε0χAIl

~
∑
m,q

E (νj) Es,mEs,q ŝmŝqFj,m,qei(νj−ωs,m−ωs,q)t, (3.102)

d ŝm

dt
=

4ε0χAIl

~
∑
j,q

E (νj) Es,mEs,q ŝ
†
qp̂jFj,m,qe−i(νj−ωs,m−ωs,q)t. (3.103)

Integration of Eq. (3.102) yields:

p̂j (t) = p̂
(0)
j − 2ε0χAIl

~
∑
m,q

E (νj) Es,mEs,qFj,m,q

×
∫ t

0
dt ŝm

(
t′
)
ŝq

(
t′
)
ei(νj−ωs,m−ωs,q)t′ , (3.104)

where p̂
(0)
j is the pump field that has not yet interacted with the crystal. Since the nonlinear

interaction can be assumed instantaneous respect to the oscillating term ei(νj−ωs,m−ωs,q)t′ ,
it is possible to make use of the Wigner-Weisskopft approximation, that leads to:

p̂j (t) = p̂
(0)
j − 2ε0χAIl

~
∑
m,q

E (νj) Es,mEs,qFj,m,q ŝm (t) ŝq (t)
∫ t

0
dt ei(νj−ωs,m−ωs,q)t′

= p̂
(0)
j − 2ε0χAIl

~
∑
m,q

E (νj) Es,mEs,qFj,m,q ŝm (t) ŝq (t)

×e−
i
2
(ωs,m+ωs,q−νj)

sin (ωs,m + ωs,q − νj) t
1
2 (ωs,m + ωs,q − νj)

' p̂
(0)
j − 4πε0χAIl

~
∑
m,q

E (νj) Es,mEs,qFj,m,q ŝm (t) ŝq (t)

×δ (ωs,m + ωs,q − νj) , (3.105)

where in the last row the sign “'” has to be understood in the sense of weak convergence
of the approximation below:

sin (ωs,m + ωs,q − νj) t
1
2 (ωs,m + ωs,q − νj)

' 2πδ (ωs,m + ωs,q − νj) . (3.106)

that will become meaningful in the continuum limit Lp → +∞. After substituting (3.105)
in (3.103), the signal field equation becomes

d ŝm

dt
=

4ε0χAI l

~
∑
j,q

E (νj) Es,mEs,qF
j
m,q ŝ

†
q (t) p̂

(0)
j e−i(νj−ωs,m−ωs,q)t

−π

(
4ε0χAI l

~

)2 ∑
j,q

E (νj) Es,mEs,qF
j
m,q ŝ

†
q (t) e−i(νj−ωs,m−ωs,q)t

×
∑
n,r

E (νj) Es,nEs,rF
j
n,rŝn (t) ŝr (t) δ (ωs,n + ωs,r − νj) . (3.107)
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In order to perform the passage to the continuum, let’s define the continuum pump
operators as:

p̂(0) (νj) ≡
√

Lp

2πc
p̂
(0)
j , (3.108)

which verify: [
p̂(0) (νj) ,

(
p̂(0) (νk)

)†
]

=
Lp

2πc
δj,k

Lp→+∞−→ δ (νj − νk) . (3.109)

Keeping in mind that E (νj) =
√

~νj

2ε0n(νj)ApLp
, Eq. (3.107) becomes

d ŝm

dt
= 2

AI√
Ap

χl

√
ε0

π~c

∑
j,q

2πc

Lp

√
νj

n (νj)
Es,mEs,qFj,m,q ŝ

†
qp̂

(0) (νj) e−i(νj−ωs,m−ωs,q)t

−π

(
4ε0χAIl

~

)2 ~
4πε0cAp

∑
j,q

2πc

Lp

νj

n (νj)
Es,mEs,qFj,m,q ŝ

†
qe

−i(νj−ωs,m−ωs,q)t

×
∑
n,r

Es,nEs,rFj,n,rŝnŝrδ (ωs,n + ωs,r − νj) . (3.110)

In the limit Lp → +∞, the sums over j are transformed into integrals:

d ŝm

dt
= 2

AI√
Ap

χl

√
ε0

π~c

∑
q

Es,mEs,q ŝ
†
qI

(1)
m,q

− 4 (χl)2
(

AI√
Ap

)2
ε0
~c

∑
q,n,r

Es,mEs,qEs,nEs,rŝ
†
q ŝnŝrI

(2)
m,q, (3.111)

where:

I(1)
m,q =

∫
dν

√
ν

n (ν)
sin

[
(k(ν) − ks,m − ks,q) l

2

]
(k(ν) − ks,m − ks,q) l

2

p̂(0) (ν) e−i(ν−ωs,m−ωs,q)t (3.112)

I(2)
m,q =

∫
dν δ (ν − ωs,m − ωs,q)

ν

n (ν)
sin

[
(k(ν) − ks,m − ks,q) l

2

]
(k(ν) − ks,m − ks,q) l

2

×
sin

[
(k(ν) − ks,n − ks,r) l

2

]
(k(ν) − ks,n − ks,r) l

2

e−i(ν−ωs,m−ωs,q)t. (3.113)

The second integral is trivial. On the other side, I
(1)
m,q requires some manipulations.

Dividing the interval of integration in a sum of frequency intervals of width Ω and centered
at frequencies ωp,r = 2ω0 + rΩ, r ∈ Z, integral I

(1)
m,q reads:

I(1)
m,q =

∑
r

∫
r
dν

√
ν

n (ν)
sin

[
(k(ν) − ks,m − ks,q) l

2

]
(k(ν) − ks,m − ks,q) l

2

p̂(0) (ν) e−i(ν−ωs,m−ωs,q)t, (3.114)

where: ∫
r
dν f (ν) ≡

∫ ωp,r+Ω/2

ωp,r−Ω/2
dν f (ν) . (3.115)
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In each interval r, each function f(ν) of the frequency ν can be approximated by the
corresponding value at the center of the interval f(ωp,r). The integral I

(1)
m,q, thus, can be

approximated by:

I(1)
m,q ' ei(ωs,m+ωs,q)t

∑
r

√
ωp,r

n (ωp,r)
sin

[
(k(ωp,r) − ks,m − ks,q) l

2

]
(k(ωp,r) − ks,m − ks,q) l

2

∫
r
dν p̂(0) (ν) e−iνt.

(3.116)
Let’s define new pump operators as follows:

√
2πe−iωp,rtp̂in,r (t) ≡

∫
r
dν p̂(0) (ν) e−iνt, (3.117)

which verify the following property:〈
p̂in,r1 (t1) [p̂in,r2 (t2)]

†
〉

=
1
2π

ei(ωp,r1 t1−ωp,r2 t2)

×
∫
r1

dν1

∫
r2

dν2e
i(ν2t2−ν1t1)

〈
p̂(0) (ν1)

[
p̂(0) (ν2)

]†〉
=

1
2π

ei(ωp,r1 t1−ωp,r2 t2)∫
r1

dν1

∫
r2

dν2e
i(ν2t2−ν1t1)δ (ν1 − ν2)

= δr1,r2

1
2π

eiωp,r1 (t1−t2)
∫
r1

dν1e
iν1(t2−t1)

= δr1,r2

sin
[

Ω
2 (t2 − t1)

]
π (t2 − t1)

' δr1,r2δ (t1 − t2) , (3.118)

where
〈
p̂(0) (ν1)

[
p̂(0) (ν2)

]†〉
= δ (ν1 − ν2) and the term δr1,r2 appears because the double

integral vanishes if r2 6= r1, being the domains of integration on ν1 and ν2 non-overlapping
in that case. With these definitions I

(1)
m,q becomes

I(1)
m,q '

√
2π

∑
r

√
ωp,r

n (ωp,r)
sin

[
(k(ωp,r) − ks,m − ks,q) l

2

]
(k(ωp,r) − ks,m − ks,q) l

2

e−i(ωp,r−ωs,m−ωs,q)tp̂in,r (t) .

(3.119)
The equation of the motion for ŝm (t) is readily retrieved after using Eq. (3.119),

the rotating wave approximation (RWA) and after having defined kp,n+r ≡ k (ωp,n+r) =
k (ωs,n + ωs,r):

d ŝm

dt
= 2

√
2

AI√
Ap

χl

√
ε0
~c

∑
q

√
ωp,m+q

n (ωp,m+q)
fm,qEs,mEs,qp̂in,m+q ŝ

†
q

−4 (χl)2
(

AI√
Ap

)2
ε0
~c

∑
q,n,r

ωp,m+q

n (ωp,m+q)
Es,mEs,qEs,nEs,m+q−n

×fm,qfn,m+q−nŝ†q ŝnŝm+q−n, (3.120)

where the phase-mismatch factor has been defined:

fm,q =
sin

[
(kp,m+q − ks,m − ks,q) l

2

]
(kp,m+q − ks,m − ks,q) l

2

. (3.121)

As remarked in previous sections, we can assume that ωp,m ' 2ω0 and Es,m =
√

~ω0
2ε0n0AsL

for all m, therefore Eq. (3.120) becomes

d ŝm

dt
= g

∑
q

fm,qp̂in,m+q ŝ
†
q −

g2

2

∑
q,n,r

fm,qfn,m+q−nŝ†q ŝnŝm+q−n, (3.122)
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where the coupling constant g has been defined as:

g = 2χ
AI

As

√
Ap

l

L

(
ω0

n0

)3/2 √
~

ε0c
. (3.123)

Accounting for the cavity losses that occur at a single mirror at rate γs, we finally
obtain the quantum Langevin equations for signal operators:

dŝm

dt
= −γsŝm (t) +

√
2γsŝin,m (t) + g

∑
q

fm,q ŝ
†
q (t) p̂in,m+q (t)

−g2

2

∑
n

∑
q

fm,qfn,m+q−nŝ†q (t) ŝn (t) ŝm+q−n (t) , (3.124)

where ŝin,m (t) corresponds to the field at signal frequencies entering the cavity through
the coupling mirror. When that input is coherent or vacuum, the case we consider, those
”in” operators verify the following correlation:〈

ŝin,m (t) ŝ†in,m′
(
t′
)〉

= δm,m′δ
(
t − t′

)
, (3.125)

and thus behave as p̂
(±)
in,r (t), see (3.118).

3.3.4 Relation between the intracavity pump field and the external

pump field

Before to approach the formulation of the Langevin equations for the field operators in
the below threshold regime, it is worth to clarify the relationship between the intra cavity
pump field and the external pump described by Eq. (3.5). Starting from the original
definition of the input pump field, which is analogous to (3.95), we rewrite this expression
in order to make explicit the passage to continuous frequencies when the quantization box
of the pump field is let toward infinity:

Êin,p (z, t) = i
∑

j

Ein,j (νj) p̂in,jei(κjz−νjt) + H.c.

= i
∑

j

√
2πc

Lp

√
~νj

2ε0n (νj) ApLp
p̂in (νj) ei(κjz−νjt) + H.c.

= i
∑

j

2πc

Lp

√
~νj

4πε0cn (νj) ApLp
p̂in (νj) ei(κjz−νjt) + H.c., (3.126)

where we substituted p̂in,j =
√

2πc
Lp

p̂in (νj). In the limit Lp → +∞, we have:

Êin,p (z, t) = i

∫
dν

√
~ν

4πε0cn (ν) ApLp
p̂in (ν) ei(κ(ν)z−νt) + H.c.

= i
∑

r

∫
r
dν

√
~ν

4πε0cn (ν) ApLp
p̂in (ν) ei(κ(ν)z−νt) + H.c.

= i
∑

r

√
~νr

4πε0cn (νr) ApLp
eiκrz

∫
r
dν p̂in (ν) e−iνt + H.c. (3.127)
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After the redefinition:
√

2πe−iωp,rtp̂in,r(t) ≡
∫

r
dν p̂in (ν) e−iνt, (3.128)

we finally get:

Êin,p (z, t) = i
∑

r

√
~ω0

ε0cn0Ap
p̂in,r(t)ei(κrz−ωp,rt) + H.c. (3.129)

By demanding that the intracavity pump field equals the external pump field given by
Eq. (3.5), we find that the following equality has to be satisfied:√

~ω0

ε0Apn0c
p̂in,r(t) =

√
P

2ε0c
αr, (3.130)

with P the average power per unit area of the mode-locked pump laser and
∑

m |αm|2 = 1.
Finally we obtain:

p̂in,r(t) =
√

n0ApP

2~ω0
αr (3.131)

3.3.5 The SPOPO below threshold

Below threshold signal modes are almost not excited and the pump “in” fields can be
approximated by their classical mean values as their fluctuation part gives rise to smaller
terms, which are neglected for the same reasons in section 3.1.6.

According to Eq. (3.117), Eq. (3.131) corresponds to the case when the external pump
is a frequency comb in which all its components are monochromatic with frequencies ωp,r,
as assumed since the beginning (see Eq. (3.5)). The linearized equations for the SPOPO
below threshold, then, become

dŝm (t)
dt

= −γsŝm (t) + γsσ
∑

q

fm,qαm+q ŝ
†
q (t) +

√
2γsŝin,m (t) , (3.132)

where:
σ =

√
P/P0 (3.133)

and

P0 =
ε0c

3n2
0T

2
s

8 (χlω0)
2

(
As

AI

)2

. (3.134)

P0 is a reference power per unit area, equal to the cw OPO threshold obtained by
using γs = cTs

2L , being Ts the power transmission coefficient through the output coupler, to
get Eq. (3.134). Hence the linearized equations (3.132) formally coincide with those for
a SPOPO with resonant cavity for the pump, Eq. (3.65), with the only difference of the
definition of the reference power per unit area P0. The corresponding power W0 = ApP0

plays the role of threshold power.
As in section 3.1, making use of Eq. (3.13) and for the optimized setting corresponding

to Ap = As/2 we obtain:

P0 =
ε0c

3n2
0T

2
s

2 (χlω0)
2 . (3.135)
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As expected, in this case, the threshold is higher than the doubly resonant case of a factor
4/Tp. We will detail in Section 3.5 the origin such a factor, even if, from a physical point
of view, it is ascribable to the fact that the intra cavity pump power is lower in a non
resonant configuration.

3.4 Singly resonant linear cavity

In this section we develop the quantum theory of a quasi-degenerate (idler and signal
coincide) type I SPOPO in which only the signal field is resonated inside a cavity. Unlike
section 3.3, we consider here a linear cavity (Fabry-Perot like). Anyway, as will be clear
in the end of this demonstration, the geometry of the cavity influences only the cw OPO
threshold P0 but not the formal appearance of the evolution equations. As in the previous
section 3.3, the treatment of this case is more involved than that for resonant case (see
section 3.2) as the pump field cannot be quantized inside the OPO cavity.

3.4.1 The fields

The signal field inside the nonlinear crystal, which extends from z = −l/2 to z = +l/2, is
written as:

Ês (z, t) = i
∑

q

Es,q sin
(
ks,qz

′) ŝq (t) e−iωs,qt + H.c., (3.136)

where z′ = z + L/2 and Es,q =
√

~ωs,q

ε0n(ωs,q)AsL
. On the contrary, the pump field is not

affected by the cavity and hence it is given by a continuum of modes. We shall use
the common approach of quantizing the pump field in a line of length Lp with periodic
boundary conditions and, in the end of the calculations, we will make Lp → ∞. As in
(3.93), we thus write:

Êp (z, t) = i
∑

j

E (νj)
[
p̂
(+)
j (t) eiκjz + p̂

(−)
j (t) e−iκjz

]
e−iνjt + H.c., (3.137)

where the superscripts (±) label the propagation direction and must not be confused
with their usual meaning of labeling positive and negative frequency parts. E (νj) =√

~νj

2ε0ApLpn(νj)
are single photon field amplitudes. As in the previous section, the frequen-

cies νj are given by νj = j 2πc
Lp

, j ∈ N, and the wavenumbers κj = n(νj)νj

c , with n (νj) the
crystal refractive index. The fields are, again written as a superposition of plane waves,
but the treatment is still approximately valid for Gaussian beams as commented before.

3.4.2 The interaction Hamiltonian

The interaction Hamiltonian ĤI is calculated as usual as:

ĤI = −AI

+l/2∫
−l/2

dz
[
Êp (z, t) P̂p (z, t) + Ês (z, t) P̂s (z, t)

]
, (3.138)

where AI is the effective area of interaction corresponding to the three-mode overlapping
integral across the transverse plane. In the case of Gaussian beams as commented in
section 3.1,

1
AI

=
1
As

+
1

2Ap
. (3.139)
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The nonlinear electric polarization at signal and pump frequencies, P̂s (z, t) and P̂p (z, t)
are given by:

P̂p (z, t) = ε0χ Ês (z, t) Ês (z, t)
∣∣∣terms oscillating at optical

frequencies around ±2ω0

(3.140)

P̂s (z, t) = ε0χ Êp (z, t) Ês (z, t)
∣∣∣
terms oscillating at optical
frequencies around ±ω0

(3.141)

where χ is the relevant nonlinear susceptibility (whose dispersion is neglected). It is then
lengthy but simple to arrive to the following form of the interaction Hamiltonian:

ĤI (t) = i
ε0χlAI

2

∑
m

∑
q

∑
j

E (νj) Es,mEs,qF
j
m,qe

−i(ks,m+ks,q)L/2

×ŝ†m (t) ŝ†q (t)
[
p̂
(+)
j (t) + p̂

(−)
j (t)

]
ei(ωs,m+ωs,q−νj)t + H.c., (3.142)

where we defined the phase-mismatch factor:

Fj,m,q =
sin

[
(κj − ks,m − ks,q) l

2

]
(κj − ks,m − ks,q) l

2

. (3.143)

In (3.142) we dropped highly phase mismatched terms, as usual. It is convenient to
define new signal boson operators through

ŝm,new (t) = ŝm (t) e+iks,mL/2, ŝ†m,new (t) = ŝ†m (t) e−iks,mL/2, (3.144)

in terms of which the interaction Hamiltonian becomes as (3.142) but without the expo-
nential e−i(ks,m+ks,q)L/2. In the following we work with the new operators but omit the
superscript “new”.

3.4.3 The Heisenberg equations

The time evolution of the pump and signal operators is ruled by the following Heisenberg
equations:

dp̂
(±)
j (t)
dt

= −ε0χlAI

2~
∑
m

∑
q

E (νj) Es,mEs,qFj,m,q ŝm (t) ŝq (t) e−i(ωs,m+ωs,q−νj)t, (3.145)

dŝm (t)
dt

=
ε0χlAI

~
∑

q

∑
j

E (νj) Es,mEs,qFj,m,q ŝ
†
q (t)

[
p̂
(+)
j (t) + p̂

(−)
j (t)

]
ei(ωs,m+ωs,q−νj)t.

(3.146)

Integration of the pump equations yields:

p̂
(±)
j (t) = p̂

(±)
free,j −

ε0χlAI

2~
∑
m

∑
q

E (νj) Es,mEs,qFj,m,q

×
∫ t

0
dt′ŝm

(
t′
)
ŝq

(
t′
)
e−i(ωs,m+ωs,q−νj)t

′
, (3.147)

where p̂
(±)
free,j = p̂

(±)
j (0) is the source-free part of the pump (the field impinging the nonlinear

crystal). As before, the Wigner-Weisskopf approximation permits to bring the signal
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operators outside the integral and to consider their values at the present time. As in
(3.105), within this approximation we obtain:

p̂
(±)
j (t) ' p̂

(±)
free,j (t) − πε0χAIl

~
∑
m

∑
q

E (νj) Es,mEs,qFj,m,q ŝm (t) ŝq (t) δ (ωs,m + ωs,q − νj) ,

(3.148)
where, in the last row, we made the approximation (3.106) that has to be understood as
a week convergence. After substituting Eq. (3.148), the signal field equations become:

dŝm (t)
dt

=
ε0χlAI

~
∑

q

∑
j

E (νj) Es,mEs,qFj,m,q ŝ
†
q (t)

[
p̂
(+)
free,j (t) + p̂

(−)
free,j (t)

]
ei(ωs,m+ωs,q−νj)t

−2π

(
ε0χlAI

~

)2 ∑
q

∑
j

E (νj) Es,mEs,qFj,m,q ŝ
†
q (t) ei(ωs,m+ωs,q−νj)t

×
∑

n

∑
r

E (νj) Es,nEs,rFj,n,rŝn (t) ŝr (t) δ (ωs,n + ωs,r − νj) . (3.149)

For the passage to the continuum we will follows the steps already detailed in section
3.3, for this reason in the following we will rapidly report the treatment for the present
case. After the definition of continuum pump operators:

p̂
(±)
free (νj) =

√
Lp

2πc
p̂
(±)
free,j , (3.150)

which verify: [
p̂
(±)
free (νj) ,

(
p̂
(±)
free (νk)

)†
]

=
Lp

2πc
δj,k −→

Lp→∞
δ (νj − νk) , (3.151)

the sums over j are transformed into integrals taking in mind that E (νj) =
√

~νj

ε0ApLpn(νj)
:

dŝm (t)
dt

=
AI√
Ap

lχ

√
ε0

4π~c

∑
q

Es,mEs,q ŝ
†
q (t) I(1)

m,q

−
A2

I

Ap
(lχ)2

ε0
2~c

∑
n

∑
r

∑
q

Es,mEs,qEs,nEs,rŝ
†
q (t) ŝn (t) ŝr (t) I(2)

m,q, (3.152)

where

I(1)
m,q =

∫
dν

√
ν

n (ν)
sin

[
(k (ν) − ks,m − ks,q) l

2

]
(k (ν) − ks,m − ks,q) l

2

[
p̂
(+)
free (ν) + p̂

(−)
free (ν)

]
ei(ωs,m+ωs,q−ν)t,

(3.153)
and I

(2)
m,q is defined in Eq. (3.113). Integration of I

(1)
m,q is performed as in the previous

section. First we write the integral as a sum over frequency intervals of width Ω (the
free spectral range of the SPOPO cavity) and centered at frequencies ωp,r = 2ω0 + rΩ,
r ∈ Z. Then approximating the function k (ν) by kp,r = k (ωp,r) and

√
ν

n(ν) by
√

ωp,r

n(ωp,r)

and defining new pump operators as follows:

√
2πe−iωp,rtp̂

(±)
in,r (t) =

∫
r
dνe−iνtp̂

(±)
free (ν) . (3.154)
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the integral results to be:

I(1)
m,q '

√
2π

∑
r

√
ωp,r

n (ωp,r)
sin

[
(kp,r − ks,m − ks,q) l

2

]
(kp,r − ks,m − ks,q) l

2

ei(ωs,m+ωs,q−ωp,r)t
[
p̂
(+)
in,r (t) + p̂

(−)
in,r (t)

]
.

(3.155)
where kp,r = k (ωp,r) = k (2ω0 + rΩ). The new pump operators verify the following
property:〈

p̂
(±)
in,r1

(t1)
(
p̂
(±)
in,r2

(t2)
)†

〉
= δr1,r2

sin
[

Ω
2 (t2 − t1)

]
π (t2 − t1)

' δr1,r2δ (t1 − t2) . (3.156)

In the RWA and taking in mind that k (ωs,n + ωs,r) = k (ωp,n+r) = kp,n+r, the equations
of motion for ŝm (t) become:

dŝm (t)
dt

= g
∑

q

fm,q ŝ
†
q (t)

[
p̂
(+)
in,m+q (t) + p̂

(−)
in,m+q (t)

]
−g2

∑
n

∑
q

fm,qfn,m+q−nŝ†q (t) ŝn (t) ŝm+q−n (t) , (3.157)

were we defined the phase-mismatch factor:

fm,q =
sin

[
(kp,m+q − ks,m − ks,q) l

2

]
(kp,m+q − ks,m − ks,q) l

2

, (3.158)

and the coupling constant:

g = χ
AI

As

√
Ap

l

L

(
ω0

n0

)3/2 √
~

ε0c
(3.159)

For obtaining (3.157), we made the usual assumption of negligible dispersion of the

single photon amplitude Es,m = Es =
√

~ω0
ε0n0AsL

and ωp,m = 2ω0 for all m.
Since the optical cavity has losses, which occur at a single mirror at rate γs, the

equations of motion must be transformed into the following quantum Langevin equations:

dŝm (t)
dt

= −γsŝm (t) +
√

2γsŝin,m (t) + g
∑

q

fm,q ŝ
†
q (t)

[
p̂
(+)
in,m+q (t) + p̂

(−)
in,m+q (t)

]
−g2

∑
n

∑
q

fm,qfn,m+q−nŝ†q (t) ŝn (t) ŝm+q−n (t) , (3.160)

where ŝin,m (t) corresponds to the field at signal frequencies entering the cavity through
the coupling mirror. When that input is coherent or vacuum, the case we consider, the
“in” operators verify the following correlation:〈

ŝin,m (t) ŝ†in,m′
(
t′
)〉

= δm,m′δ
(
t − t′

)
. (3.161)

3.4.4 The SPOPO below threshold

Below threshold signal modes are almost not excited and the double sum in (3.160) can be
neglected. Also, the pump“in”fields can be approximated by their classical mean values as
their fluctuation part gives rise to smaller terms, which are neglected for the same reasons
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as before. Hence, we write p̂
(−)
in,m (t) = 0 (unidirectional pumping). On the other hand,

the relationship between the input pump field and the external classical pump has been
retrieved explicitly in Section 3.3.4:

p̂
(+)
in,m (t) =

√
n0ApP

2~ω0
αm, (3.162)

with P the average power per unit area of the mode-locked pump laser and
∑

m |αm|2 = 1.
The linearized equations for the SPOPO below threshold then become

dŝm (t)
dt

= −γsŝm (t) + γsσ
∑

q

fm,qαm+q ŝ
†
q (t) +

√
2γsŝin,m (t) , (3.163)

where σ is defined as in (3.90) and:

P0 =
ε0c

3n2
0T

2
s

8 (χlω0)
2

(
As

AI

)2

. (3.164)

In order to obtain (3.164), we used γs = cTs
4L , being Ts the power transmission coefficient

through the output coupler, to arrive to Eq. (3.164)). Making use of Eq. (3.139) we can
write:

P0 =
ε0c

3n2
0T

2
s

8 (χlω0)
2

(
1 +

As

2Ap

)2

. (3.165)

The minimum of this function occurs at Ap = As/2. For this optimized setting we obtain:

P0 =
ε0c

3n2
0T

2
s

2 (χlω0)
2 . (3.166)

3.5 Conclusions

In this last section we want to summarize the main results about the quantum model of a
SPOPO. Its validity falls in the domain where the hypothesis of perfect synchronization
between the mode-locked laser and the OPO cavity and the below threshold regime are
verified. Let’s stress again that, when 〈ŝm〉 = 0, it is not necessary that the pump field
has negligible fluctuations since they are weighted by a vacuum signal field. It is sufficient,
then, to require the pump contains a large number of photons. Being negligible the
parametric interaction from the point of view of the intracavity pump field, the linearized
Langevin equations for the signal field reads:

dŝm

dt
= −γsŝm + γsσ

∑
q

fm+q,qαm+q ŝ
†
q +

√
2γsŝin,m, (3.167)

The phase-matching factor fm+q,m is defined as:

fm+q,m =
sinφm,q

φm,q
, (3.168)

with a mismatch angle, φm+q,m, defined as:

φm,q = l (kp,m+q − ks,m − ks,q) . (3.169)



52 Chapter 3. Quantum model for Synchronously Pumped OPOs

Keeping in mind that, by Taylor expanding φm,q in ω around the phase-matched frequen-
cies ω0 and2ω0, respectively for signal and pump field, and arresting the series up to the
second order,Eq. (3.169) can be written as in Eq. (3.46), we can further simplify the
notation by writing:

φm,q = β1 (m + q) + β2p (m + q)2 − β2s

(
m2 + q2

)
, (3.170)

where we imposed ∆ = 0 (resonant case) and where we defined:

β1 =
1
2
lΩ

(
k′

p − k′
s

)
, (3.171)

β2p =
1
4
lΩ2k′′

p, (3.172)

β2s =
1
4
lΩ2k′′

s , (3.173)

which are the temporal walk-off between pump and signal pulses and the pump and signal
group velocity dispersion, respectively.

The coupling constant σ reads:

σ =
√

P

P0
, (3.174)

where P is the external average laser irradiance (power per unit area) and P0 is a normal-
ization factor representing the c.w. threshold for a simple-mode OPO, as we will see in
Chapter 4, and defined as:

P0 = Π0
ε0c

3n2
0T

2
s

(χlω0)
2 (3.175)

being Π0 different for each cavity configuration and specified in Table 3.1. From a physical
point of view, it is very easy to understand the differences between the thresholds according
to the geometry of the cavity and the resonant or not resonant operation of the pump. In
particular, in the doubly resonant operation the intracavity pump power is higher than
that in the singly resonant case. In fact, for a field resonating inside a cavity (no matter
what kind of geometry), we have:

E(t) =
√

TpEin +
√

1 − TpE(t), (3.176)

that suddenly leads to:

E(t) ' Tp

2
Ein, (3.177)

for cavities of high finesse, where Tp ¿ 1 is the usual transmission coefficient of the
coupling mirror at the pump frequencies. Therefore the c.w. threshold in a doubly resonant
configuration results to be lower of a factor Tp/4 with respect to a singly resonant cavity.

Π0 Doubly resonant Simply resonant
Linear cavity Tp/32 1/2
Ring cavity Tp/8 1/2

Table 3.1: Coefficient for retrieving the cw threshold P0 in the different cases discussed
along this chapter.
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For what concerns the geometric configuration of the cavity, if the pump and signal field
are simultaneously resonating, in a linear cavity the signal field passes through the non-
linear crystal two times per round-trip with respect to the ring cavity case. Therefore the
first configuration is equivalent that of a ring cavity of same length but with a non-linear
crystal two time thicker. Since, from Eq. (3.175), the c.w. is inversely proportional to the
square of the crystal thickness (l), the threshold in the linear geometry have to be smaller
of a factor 4 with respect to the ring geometry. In the simply resonant configuration with
a linear geometry, since the pump is not resonating, the signal field cannot see a gain
during his second backward passage through the non-linear crystal, therefore a threshold
equal to the simply resonant ring cavity is perfectly expected.
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CHAPTER 4

Classical linear dynamics of SPOPO below

threshold
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I
n this chapter we consider in detail the classical linear dynamics of SPOPOs in the
below threshold regime. In particular, we show that this problem can be decomposed
over a basis of combs of frequencies evolving with different evolution rates Λk and

the threshold is attained when the comb with the faster dynamics starts oscillating. Such
results are obtained by diagonalizing the matrix which couples the each mode of the pump
comb to each mode of the signal comb. This problem can be solved both numerically and
analytically. In the last case, the diagonalization can be analytically performed thanks
to the fact that the coupling matrix can be substituted, without loss of information,
with a gaussian function. This occurs only when specific conditions are met. We then
analyze the solutions obtained in different experimental configurations such as different
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kind of non-linearities, different kinds of phase-matching or different sizes of crystals,
comparing the results form the analytical and the numerical approach. We find, then,
how the choice of the experimental parameters affects the spectrum of the coupling matrix
and consequently the dynamics of the modes on which the intra-cavity field has been
decomposed. Surprisingly, it turns out that it is almost completely characterized by a
small subset of combs with respect to the about 105 modes involved during the evolution.

4.1 Determination of the oscillation threshold

The classical counterpart of Eq. (3.167) is obtained by removing the input noise terms
and replacing the operators by complex numbers:

dsm

dt
= −γssm + γsσ

∑
q

fm+q,mαm+qs
∗
m, (4.1)

and completed by its adjoint:

ds∗m
dt

= −γss
∗
m + γsσ

∑
q

fm+q,mα∗
m+qsm. (4.2)

Arranging the complex numbers sm and s∗m in vector form:

s =



...
s−2

s−1

s0

s1

s2
...


and s∗ =



...
s∗−2

s∗−1

s∗0
s∗1
s∗2
...


, (4.3)

eqs. (4.1) and (4.2) can be written as:

d

dt

(
s
s∗

)
= −γs

(
I − σL̃

) (
s
s∗

)
, (4.4)

where I is the identity matrix, L̃ is the block matrix:

L̃ =

(
0 Lm,q

L∗
m,q 0

)
, (4.5)

and
Lm,q = fm+q,mαm+q. (4.6)

Recalling the property (3.47), it is easy to show that the operator L is a symmetric matrix.
In fact it satisfies the following equalities:

LT
m,q = Lq,m = fm+q,qαm+q

(3.47)
= fm+q,mαm+q = Lm,q. (4.7)

As a consequence, the operator L̃ in (4.4), that couples s to s∗, is self-adjoint and all its
eigenvalues are real numbers. In the most general case, the normalized pump spectral
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amplitudes {αm} are complex numbers, nevertheless, for all that cases in which the pump
field can be supposed to have only a global phase and no frequency dependent phase
component, they are purely real numbers. Typically, the situation for which complex
spectral amplitudes need to be considered occurs for chirped pump field and it will be
analyzed in the last section of this chapter (see section 4.4). For the following the pump
field will be considered real and this implies that L†

m,q = Lm,q.
Let’s consider the solution of Eq. (4.4) in the form:

sm (t) =
∑

k

S
(1)
k,meλkt, s∗m (t) =

∑
k

S
(2)
k,meλkt, (4.8)

where S
(1)
k,m and S

(2)
k,m are complex numbers and {λk}k∈N is the spectrum of L̃. Since λk

are real, the number S
(2)
k,m is the complex conjugated of S

(1)
k,m and in the following they will

be denoted as Sk,m and S∗
k,m. Substitution of eqs. (4.8) in (4.4) yields:

λkSk,m = −γsSk,m + γsσ
∑

q

Lm,qS
∗
k,q, (4.9)

λkS
∗
k,m = −γsS

∗
k,m + γsσ

∑
q

Lm,qSk,q. (4.10)

For fixed SPOPO parameters (γs, σ and fm+q,m), λk and Sk,m depend on the pump
spectrum {αm}.

Let’s consider the solution of (4.9) and (4.10) represented by {λk, Sk,m}. It is straight-
forward to verify that also the set:

λ′
k = −2γs − λk, S′

k,m = iSk,m (4.11)

is a solution. We can state the following:

Proposition 3 The state in quadrature with any eigenstate of (4.9) and (4.10) is an
eigenstate too. In particular the solution S′

0,m = iS0,m has the lowest eigenvalue admitted

λ′
0 = −2γs , being S0,m the solution that is undamped at threshold (i.e. λ0 = 0).

In fact, for any other solution λk 6= λ0, since λk,m+λ′
k,m = 2γs, if λ′

k,m < −2γs then λk > 0
and vice-versa thus contradicting the initial assumption that the SPOPO is at threshold.

Let’s assume, now, that the only control parameter is the total pump power σ and
that the pump power spectrum {αm} is fixed. Be σth the pumping power for which the
SPOPO is at threshold (thus a λ0 = 0 exists) and σr = rσth, with 0 ≤ r < 1, a generic
pumping power below the threshold condition. It is, then, verified the following:

Proposition 4 If it exists an order relation between the eigenvalues at threshold, the same
relation exists for any value of the pumping power below threshold.

For the demonstration, let’s take any two eigenvalues that, for r = 1 (the oscillation
threshold), satisfy the inequality λk(1) > λj(1). For each of them, Eq. (4.9) reads:

λk(1)Sk,m(1) = −γsSk,m(1) + γsσth

∑
q

Lm,qS
∗
k,q(1). (4.12)
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At different pumping power r < 1, instead, the same equation reads:

λk(r)Sk,m(r) = −γsSk,m(r) + rγsσth

∑
q

Lm,qS
∗
k,q(r). (4.13)

Eq. (4.13) is solved by setting:

Sk,m(r) = Sk,m(1), (4.14)

λk(r) = (r − 1)γs + rλk(1). (4.15)

While the first condition implies that the eigenvectors are not affected by the pumping
level, the second directly proves that λk(r) > λj(r) and therefore the eigenvalues are
ordered as they are at threshold. This means, also, that λ0 is the largest eigenvalue and
that λ′

0(r) is the smallest one for any r, and that they are given by:

λ0(r) = (r − 1)γs, (4.16)

λ0(r)′ = −(r + 1)γs. (4.17)

The solution of equations (4.9) and (4.10) and, consequently, the determination of thresh-
old and the corresponding state that will be oscillate first can be connected to the diago-
nalization of the matrix Lm,q. Its eigenvalues Λk and eigenvectors ~Lk of components Lk,m

are obtained from the following system of algebraic equations:

ΛkLk,m =
∑

q

Lk,qLk,q. (4.18)

Since, for not chirped pump fields, this matrix is self-adjoint and real, the solutions of
(4.18) are all real. Moreover, since γs and σ are also real, two sets of solutions to Eqs.
(4.9) and (4.10) exists, which are related to the solutions of Eq. (4.18) according to:

S
(+)
k,m = Lk,m, S

(−)
k,m = iLk,m,

λ
(±)
k = γs(−1 ± σΛk).

(4.19)

Let us label by index k = 0 the solution of maximum value of |Λk|: |Λ0| = max {|Λk|}.
When σ |Λ0| < 1, all the rates λ

(±)
k are negative, which implies that the null solution for

the steady state signal field is stable. For simplicity of notation, Λ0 will be assumed to
be positive in the following, but in the case of negativity the null eigenvalue at threshold
would be λ

(−)
0 instead of λ

(+)
0 .

Hence λ
(+)
0 is the largest eigenvalue and the condition λ

(+)
0 = 0 sets the SPOPO

oscillation threshold, which then occurs when σ takes the value 1/Λ0, i.e. for a pump
irradiance P = Pth equal to:

Pth = P0/Λ2
0, (4.20)

where P0 is defined in Eq. (3.175).
The value of Λ0, and therefore of the SPOPO threshold, depends on the exact shape of

the phase matching curve and on the exact spectrum of the pump laser. As will be shown
in section 4.3 through the diagonalization of matrix L, the theoretical SPOPO threshold
is extremely low, of the order of the cw single mode threshold divided by the number of
pump modes. Let us now define the normalized amplitude pumping rate r by:

r =
√

P/Pth, (4.21)
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or r = σΛ0, so that threshold occurs at r = 1. In terms of Eq. (4.21) the eigenvalues λk

become:

λ
(±)
k = γs

(
−1 ± r

Λk

Λ0

)
. (4.22)

4.1.1 Monochromatic pumping: determination of the cw oscillation thresh-

old

In the case of monochromatic pumping, the spectral pump amplitudes are expressed by
αm = δm,m0 , where m0 corresponds to the pumped mode (with m0 ∈ Z). In this case the
matrix elements of L(see Eq. (4.6)) are

Lm,q = fm,m+qδm+q,m0 , (4.23)

and the linearized equations (4.4) become

d

dt

(
sm

s∗m0−m

)
=

(
−γs γsσfm,m0

γsσfm,m0 −γs

)(
sm

s∗m0−m

)
, (4.24)

where the property fm−m0,m0 = fm,m0 has been used. The eigenvalues of Eq. (4.24) are:

λ(±) = γs (−1 ± σfm,m0) . (4.25)

This result expresses the fact that the couples of modes m and m0−m attain the oscillation
for the same pump irradiance:

Pth(m,m0 − m) = P0/f2
m,m0

. (4.26)

In general, since f2
m,m0−m ≤ 1, Pth ≥ P0. The two modes that have a lower threshold and

that attain first the oscillation are those for which f2
m,m0

is maximum. This circumstance
explains the role that the shape of the phase-matching and, in particular, the second order
dispersion have in the modal selection. In fact, from Eq. (3.46) (with ∆ = 0, i.e. the
resonant case), the phase-mismatch angle reads:

φm,m0−m = l

[
1
2
m0

(
k′

p − k′
s

)
Ω +

1
4
m2

0

(
k′′

p − k′′
s

)
Ω2 +

1
2
m (m0 − 2m) k′′

s Ω2

]
. (4.27)

The function fm,m0 depends on m as far as k′′
s 6= 0, otherwise the modal selection would

not occur. Of course this argument is valid in the case where higher order dispersion are
negligible, on the contrary they should be considered and modal selection could be still
possible. If the pump field is tuned to the phase-matching frequency so that m0 = 0, the
lowest threshold occurs at m = 0 as well because f2

0,0 = 1 and equals P0 that therefore
coincides to the cw degenerate operation of an OPO.

4.1.2 Pulsed operation

In the regime for which the pump field is a cw train of ultrashort pulses (about 100 fs) the
pump spectrum {αm,q} is not monochromatic. In particular it will be assumed a Gaussian
spectral profile:

αm =
1

π1/4
√

Np

e
− 1

2

(
m−µp

Np

)2

(4.28)
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with Np the number of pump modes (the pump bandwidth in units of the free spectral
range Ω), which verifies the normalization condition

∑
m |αm|2 = 1, and µp an offset of

the maximum of the spectrum from the phase matching frequency.
Using the properties of Fourier transform, the classical uncertainty relation between

the time duration of each pulse of the cw train, say τp, and the spectral bandwidth ∆p in
the conjugate space is given by:

τp∆p = 1. (4.29)

For a 100 fs pump pulse it is easy to show that Np ∼ 105. The number of longitudinal modes
involved in the nonlinear process is of the same order of magnitude and, accordingly, the
linear problem (4.9) and (4.10) consists in a computationally too large number of algebraic
equations to solve at the same time. However, in the next subsection, we will show that
the linear problem can be simplified by exploiting its scalability.

4.1.3 Scalability of the linear problem

In the general case one must diagonalize numerically the linear problem, which in fact
constitutes its true solution. The real difficulty with this comes from the fact that the
matrix to be diagonalized contains a huge number of elements, typically on the order of
105 × 105, which is definitely too much. The situation can be dramatically simplified from
the computational viewpoint by noting that a scale transformation affecting the SPOPO
parameters allows diagonalization of a much smaller matrix.

Under the assumption that Lm,q is a smoothest function over its indices, the scalability
of the problem can be proved after replacing the sum over q in (4.18) by an integral:

ΛkLk (m) =
∫

dqL (m, q) Lk (q) . (4.30)

Explicitly, the form of function L, using Eq. (3.170), is:

L (m, q) =
sin

[
β1 (m + q) + β2p (m + q)2 − β2s

(
m2 + q2

)]
β1 (m + q) + β2p (m + q)2 − β2s (m2 + q2)

1
π1/4

√
Np

e
− 1

2

(
m+q−µp

Np

)2

,

(4.31)
where it has been assumed a Gaussian form for the pump spectrum (other choices can be
taken, such as sech). Let’s now consider a second set of parameters defined by

β′
1 = cβ1, β′

2p = c2β2p, β′
2s = c2β2s, (4.32)

N ′
p = c−1Np, µ′

p = c−1µp, (4.33)

with c a (large and) positive real, which, in its turn, defines a new problem. Denoting by
L′ the matrix corresponding to:

L′ (m, q) =
sin

[
cβ1 (m + q) + c2β2p (m + q)2 − c2β2s

(
m2 + q2

)]
cβ1 (m + q) + c2β2p (m + q)2 − c2β2s (m2 + q2)

× 1
π1/4

√
Np/c

e
− 1

2

[
(m+q)−µp/c

Np/c

]2

, (4.34)

it is evident that:
L′ (m, q) =

√
cL (cm, cq) , (4.35)
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for which, the eigenvalue problem is then:

Λ′
kL

′
k (m) =

∫
dqL′ (m, q) L′

k (q) . (4.36)

Using (4.35), the following change of variables

x = cm, y = cq, (4.37)

leads to (√
cΛ′

k

)
L′

k (x/c) =
∫

dyL (x, y) L′
k (y/c) .

Finally, comparison with (4.30) immediately yields

Λk =
√

cΛ′
k, (4.38)

Lk,m = L′
k (m/c) . (4.39)

These two relations are very useful as they allow to compute numerically eigenvalues
and eigenvectors of a real problem represented by L in terms of the corresponding ones of
a toy problem represented by L′ because, according to (4.35), the support of L′ is much
reduced as compared with that of L. In any case the value for c must be chosen adequately
in the sense that the diagonalization of the toy problem can be cast in the integral form
(4.36) so as to keep L′ a smooth function of (m, q).

4.2 Diagonalization of the linear problem

The solutions of Eqs. (4.9) and (4.10) below/at threshold are strictly connected to the
diagonalization (4.18) of the matrix L according to relations (4.19). Apart from very simple
cases in which the pump spectrum has special shapes, as could be the monochromatic
pump, the diagonalization of L does not presents a direct, analytical solution. The two
approaches that can be envisaged in order to avoid this difficulty consist either in the
“brutal attack” with a numerical diagonalization or by using an opportune approximation
in order to reduce the solution of Eq. (4.18) to a simpler problem.

In the first case, we have seen that the numerical diagonalization can be a computa-
tionally heavy task when a pump comb consisting of 105 modes is considered. Luckily, in
the precedent section, we have seen that the problem (4.9)-(4.10) shows a scaling property
grace to which it is possible to reduce it to the diagonalization of a matrix smaller of a
factor c respect to the original one. In the other case, the analytical approach consists
in approximating the matrix L around the phase-matched frequency ω0 with a Gaussian-
shaped function thanks to the fact that L has a compact support. Diagonalization of the
new function is trivial since its solutions are well known [Gradshteyn].

4.2.1 The coupling matrix

Keeping in mind the quantum Langevin equations for the evolution of longitudinal modes
boson operators ŝm (see Eq. (3.167)), it is evident that the matrix Lm,q = fm+q,mαm+q

represents the coupling between a generic pair of longitudinal modes m-q. The two contri-
bution to L represented by fm+q,m and αm+q resumes, respectively, the crystal contribution
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and the pump contribution. From a physical point of view, the first term (fm+q,m) rep-
resents the momentum conservation in three photon interaction according the selection
rule:

~kp = ~ks + ~ks′ , (4.40)

where the sum of the linear momenta of signal and idler photons (that in our case are
indistinguishable) must equals the momentum of pump photon and fm+q,m = 1. In effect,
this selection rule does not need to be strictly observed as suggested by the functional
dependence of the phase-mismatching angle (3.169) on the cardinal sinus. In fact, for
imperfect phase-matching (i.e. φm,q 6= 0), the contribution of the crystal is still appreciable
as far as φm,q is small respect to 2π. This is the typical situation that occurs in presence
of quasi phase-matched laser beams. Because of the broadband nature of the interacting
fields, the phase-matching condition can be satisfied by several couples of signal photons,
whose ensemble forms a locus of points corresponding to a constant value of the phase-
mismatch angle φm,q. If we write Eq. (3.170) in a opportune reference frame (m + q = x

and m − q = y), the phase-mismatch angle reads:

φm,q =
(

β2p − 1
2
β2s

)
x2 − β2s y2 + β1x, (4.41)

thus showing that these lines can be either ellipses, hyperboles or parabolas according to
the values of the parameters β1, β2p and β2s. In particular, we get ellipses if the condition
(β2p − 1

2β2s)β2s > 0, hyperbolas in the opposite case and parabolas in the case where
equality is verified. From Eq. (4.41) the role of the difference between group velocities β1

represents only a translation in the plane {x, y}.
For typical non-linear crystals, in the transparency region, the main contribution to

the second derivative of the wavevector

∂2k

∂ω2
=

1
c

[
2n′ (ω) + ωn′′ (ω)

]
(4.42)

is given by the first term, that is always positive and, thus, β2s > 0. This is a consequence
of the fact that the optical region were the crystal is operated is closer to the red-shifted
resonance than to the blue-shifted one. However this does not prevent the existence of
crystals where this condition could be no more satisfied. Since, the inequality β2p > 1

2β2s is
verified too, for typical operation, the hyperbolic configuration is a more common situation
than the elliptical one.

On the other side, the term αm+q, representing the pump spectrum, reflects the energy
conservation law. Each pump photon of energy ~ωp,m+q is parametrically down-converted
in a couple of signal photons of energy ~ (ωs,m + ωs,q) according to:

ωp,m+q = ωs,m + ωs,q. (4.43)

Because of energy conservation, in the plane {m, q}, the quantity m + q has to be
constant and the pump selects a portion of the matrix fm,m+q given by the intersection of
fm,m+q with a straight band oriented along the direction m+q = 2m̄, where m̄ corresponds
to the maximum of the pump spectrum. Hence, if the pump spectrum is centered at the
phase-matching frequency 2ω0 (the case we consider) m̄ = 0 and the matrix L is given by
a portion of the upper branch of the hyperbola crossing {m = 0, q = 0} whose width is
selected by the pump bandwidth ∆p along the direction m − q = 0.
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Figure 4.1: Schematization of the phase-matching matrix fm+q,m.

In Figure 4.1 a scheme of the phase-matching matrix is represented in the space of
{m, q} assuming an hyperbolic case. Since m and q are integer numbers which unambigu-
ously identify the signal frequency ωs,m and ωs,q according to Eq. (3.4), all the quantities
represented in this figure are scaled over the cavity free spectral range Ω. Therefore, the
hyperbolas have two branches whose width is N1 (or ∆1 = N1Ω) and whose minimum
distance is given by d along the direction m− q = 0. As remarked above, we are assuming
that the maximum of the pump spectrum occurs at the phase-matched frequency 2ω0

which corresponds to the point (m = 0, q = 0). Therefore the energy conservation rule
selects a slice of the phase-matching matrix whose direction is m + q = 0 or, in terms
of frequencies, ωs,m + ωs,q = 2ω0. Because of the selection acted by the pump, the final
coupling matrix L has a compact support characterized by two typical width represented
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Figure 4.2: Matrix L resulting from the product of αm+q and fm+q,m.
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by N1 and N2 (respectively ∆1 and ∆2). In Figure 4.2 we traced the matrix L resulting
from the product of the pump and the phase-matching terms. As we can see, the coupling
matrix consists of a bell-shaped main part and oscillating lateral tails due to the cardinal
sinus dependence of the exact matrix. Therefore, the statement that L has a compact
support is not completely exact, because in principle non-null oscillations occurs at fre-
quencies whose values have not an upper limit. However, it is always possible to show
that the error committed in diagonalization by choosing a limited domain for L is small,
provided that this domain is enough large to contain sufficient information of the exact
matrix.

4.2.2 Gaussian approximation and analytical diagonalization

The role of the pump spectrum {αm} is to select from fm+q,m a slice, so that the broader
the pump spectrum the less selective it is. When the pump is centered at the phase-
matching frequency and it is not so broad, for example on the order of the width of the
phase-mismatch factor along the axis m − q = 0, the resulting matrix L is well confined
within an “ellipse” whose principal axes are oriented along the direction m + q = 0 and
m − q = 0. This allows an approximated description that leads to an analytical solution
of the diagonalization problem. In fact, we can make the assumption that the coupling
matrix is described by:

Lm,q = e−
1
2

(
m+q
N1

)2

e−
1
2

(
m−q
N2

)2 1
π1/4

√
Np

e−
1
2

(
m+q
Np

)2

, (4.44)

where the phase-mismatch factor has been approximated by the following Gaussian func-
tion:

fm+q,m = e−
1
2

(
m+q
N1

)2

e−
1
2

(
m−q
N2

)2

(4.45)

and the pump spectrum has been assumed to be a Gaussian spectrum like in (4.28).
Notice that the exact coupling matrix can be exchanged with the matrix in (4.44) without
loosing too much information as far as the oscillating tails have a negligible contribution
(see Figure 4.2).

In the following, after having retrieved the expressions for the characteristic widths (N1,
N2, d), we will define also a criterion able to discriminate between the situations where
this approximation is correct and situations where deviation from “Gaussianity” is more
critical. The characteristic widths are found by comparing a suitable approximation of the
exact coupling matrix around the phase-matched frequency ω0 with the matrix considered
in (4.44). The idea to substitute the phase-matching matrix with a Gaussian function,
characterized by two widths, has been already used in [Bennink2002, Wasilewski2006a]
for the study of the dynamics of a system consisting in a simple passage pulsed OPA.
We will return in the next chapter on the similarities between the two problems and the
consequences from a quantum point of view.

Along the axis m + q = 0, after the rotation x = m + q, y = m− q, the matrix (3.168)
reads:

fm+q=0 =
sin

(
1
2β2sy

2
)

1
2β2sy2

. (4.46)

Since, around the point y = 0, a function sin(y2)/y2 can be approximated by the
function e−y2/η, where the parameter η can be opportunely chosen so that the results
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Figure 4.3: Section of the matrix fm+q,m along the axis m − q = 0.

from diagonalization of matrix (4.44) match optimally to the results of diagonalization of
the original matrix (4.6). In our case η = 12, then the comparison with Eq. (4.45) leads
to:

N2 =
2
√

3√
|β2s|

. (4.47)

On the other side, along the axis m − q = 0, after the same rotation as above, the
matrix (3.168) reads:

fm−q=0 =
sin

[(
β2p − 1

2β2s

)
x2 + β1x

](
β2p − 1

2β2s

)
x2 + 2β1x

, (4.48)

that has been traced in Figure 4.3.
At small x and keeping in mind that in typical situations2 |2β2p − β2s| ¿ |β1|, the

function fm−q=0 can be approximated by e−(β1x)2/5. Therefore, after comparison with Eq.
(4.45), we obtain:

N1 =

√
5/2

|β1|
. (4.49)

The values of x for which fm−q=0 has the two principal maxima are, instead, obtained
when the argument is zero. Since the first maximum is at x = 0 and the second is found
at x = −|β1|/|β2p − 1

2β2s|, the distance d between the maxima is:

d =
|β1|

|β2p − 1
2β2s|

. (4.50)

If we adopted different approximations for sin(x)/x and sin(x2)/x2, other values of the
numerical constants in Eqs. (4.47), (4.49) and (4.50) would be obtained. N1 and N2 are
a measure of the spectral response of the crystal, in the frequency domain they define the
following bandwidths

∆1 = N1Ω, ∆2 = N2Ω, (4.51)

2For typical crystals |k′
p − k′

s| ∼ 10−10 − 10−9 sm-1 and k′′
p , |k′′

s | ∼ 10−25 − 10−24 s2m-1.
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which are independent from the free spectral range. In fact, according to Eqs. (4.49),
(4.47), (4.51) and keeping in mind the expressions for β-parameters (see Eqs. (3.171),
(3.172) and (3.173)), we have:

∆1 =
√

10
|k′

p − k′
s|l

, ∆2 =
4
√

3√
|k′′

s |l
. (4.52)

In their turn the bandwidths define the two characteristic times:

τ1 ≡ 1
∆1

=
|k′

p − k′
s|l√

10
, (4.53)

τ2 ≡ 1
∆2

=

√
|k′′

s |l
4
√

3
, (4.54)

which depend on the crystal properties only. Under typical conditions1, these times are on
the order of τ1 ∼ 100 fs and τ2 ∼ 5 fs for a crystal length l = 1mm, and in general τ2 ¿ τ1

whenever l & 0.1µm.
The Gaussian approximation introduced with Eq. (4.44) has a limited validity accord-

ing to the values of the pump bandwidth and the crystal parameters (β1, β2p, β2s and
l). As remarked above, in fact, the Gaussian approximation can be performed each time
the interplay between the pump spectrum and the phase-matching is opportune. More
quantitatively speaking, we have to demand that the two branches of the hyperbola in
Figure 4.1 are sufficiently separated each other, which is traduced by imposing d À ∆1

(for example d & 10∆1), and that the pump width is sufficiently smaller than the width of
each branch along the direction m− q = 0 in order that the secondary maxima of fm,m+q

do not show up, which is traduced by demanding that ∆p . ∆1. These conditions lead to
the following bounds:

β2
1

|β2p − 1
2β2s|

& 20, 2|β1|Np . 1. (4.55)

In terms of the crystal parameter and of the pump pulse duration τp, from these
relations, we obtain the two constraints

l & 20
|k′′

p − 1
2k′′

s |(
k′

p − k′
s

)2 , (4.56)

τp & |k′
p − k′

s|l, (4.57)

that have to be satisfied independently. Condition (4.56) is very easily fulfilled and as we
will see in the next section, for a BIBO crystal under typical operation, this inequality
reads l > 50µm. On the contrary, condition (4.57) is not always met. For example for a
BIBO crystal under typical conditions this inequality reads τp > 400 l fs × mm-1. Hence,
for a crystal of length l = 1mm, τp should be larger than 400 fs in order the Gaussian
approximation is valid, while for l = 0.1mm the condition is met for τp > 40 fs. Let’s
note that condition (4.57) is connected with the walk-off between signal and pump modes
along their propagation inside the crystal so that the smaller the difference between group
velocities or the crystal length, the less restrictive condition (4.57) becomes.

Under the approximation (4.44), the eigenvalue problem (4.18) admits an exact solution
in the continuous limit where the discrete variables m and q become continuous variables
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and the sum is replaced by the integral:∫ +∞

−∞
dqL (m, q) Lk (q) = ΛkLk (m) . (4.58)

The passage to the continuum is justified if ∆1 is much greater then the free spectral range
Ω. Since typically β1 ∼ 10−4, from Eqs. (3.171) and (4.51), it directly follows N1 À 1
and, then, the matrix L can be considered a function that smoothly varies over m and q.
The eigenvalues are given by (see Appendix A):

Λk = Λ0ρ
k, (4.59)

where:

Λ0 = π1/4
√

2Np
τp

τ2 +
√

τ2
1 + τ2

p

, (4.60)

ρ =
τ2 −

√
τ2
1 + τ2

p

τ2 +
√

τ2
1 + τ2

p

, (4.61)

which is a geometric progression of ratio ρ. As discussed above, unless l < 0.1µm, τ2 is
much smaller than τ1, hence the quantity

ρ ∼ −1 + 2

√
τ2
2

τ2
1 + τ2

p

(4.62)

is very close to, but larger than, −1. Equation (4.59) corresponds, then, to an alternating
geometric progression of ratio ρ, whose first element is Λ0 > 0.

The eigenvectors are (see Appendix A):

Lk,m =
1√

k!2kπ1/2Ns

e
− 1

2

(
m
Ns

)2

Hk

(
m

Ns

)
, (4.63)

where Hk is the Hermite polynomial of order k, and Ns is the number of signal modes
given by:

1
N2

s

=
2

N2

√
1

N2
1

+
1

N2
p

. (4.64)

Alternatively, Ns = (Ωτs)−1 in terms of the signal pulse duration τs (corresponding to
k = 0), which is given by:

τ2
s = 2τ2

√
τ2
1 + τ2

p . (4.65)

We see that the free spectral range Ω just appears as a proportionality factor in Λk

(through
√

2Np in Λ0, keeping in mind that Np = (Ωτp)−1), but does not affect the signal
pulse duration τs.

The strict validity of these results requires the fulfilling of condition (4.57) that, ac-
cording to the definition of τ1 (see Eq. (4.53)) becomes τp >

√
10 τ1. Hence, within the

strict domain of validity, τ2
p À τ2

1 (“long” pump pulses), so that Λ2
0 ' 2

√
πNp is roughly

the (huge) number of pump modes and τs '
√

2τ2τp (note that the signal pulse duration
τs should be quite smaller than the pump pulse duration τp as τ2 ¿ τp).
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According to Eq. (4.20), the predicted SPOPO threshold, in the limit of “long” pump
pulses, is roughly the c.w. single mode threshold P0 divided by the number of pump
modes. Under a physical point of view, the reason resides in the fact that parametric
down-conversion can be considered, with a good level of approximation, instantaneous
respect to the pump pulse duration, therefore the efficiency of the nonlinear interaction
is directly proportional to the pump peak power that, for a mode-locked beam, is the
result of contribution of all the modes present in the pump spectrum. For example, if
Np = 2×104 (corresponding to τp = 100 fs and a cavity length L = 2) and considering the
case already discussed (a 100 µm-thick BIBO based linear SPOPO pumped at 0.4µm),
we obtain threshold pump irradiances P

(singly)
th = 31.7× 10−3, 3.96, and 31.7 kW cm−2 for

Ts = Tp = 0.01, 0.05, and 0.1, respectively. For a typical pump beam radius of 70µm
these irradiances lead to the following pump threshold powers W

(singly)
th = 0.02,2.2, and

18mW, respectively.

4.2.3 General case: numerical diagonalization

In the general case, and in particular when the Gaussian limit discussed above is not met, L
has to be diagonalized numerically. However, as explained, the size of this matrix prevents
numerical procedure in practice. As demonstrated in section 4.1.3, the eigenproblem,
univocally defined by (β1, β2p, β2s, Np, µp), can be rescaled according to Eqs. (4.32) and
(4.33) allowing the diagonalization of a matrix L′ that is much smaller respect to the
original coupling matrix. The necessary condition for the validity of Eqs. (4.38) and
(4.39) is that also L′ be a smooth function over the variables m′ and q′. According to
the same reasoning used in section 4.2.2, this is true when N ′

1 À 1 and, consequently, the
choice of the scaling parameter c have to be done in order to respect (even if not strictly)
this inequality.

Keeping in mind these observations, we applied numerical diagonalization for studying
typical experimental situations in several configurations, eventually comparing the results
with predictions that can be obtained with the analytical model. In particular, we con-
sidered both BIBO and KNbO3 crystals in configurations involving different pump pulse
durations τp, cavity lengths L, crystal thicknesses l and phase-matching conditions, such
as critical or non-critical, that give rise to different dispersion properties. When these
parameters satisfy the conditions (4.56) and (4.57), we found confirmation that the ana-
lytical description obtained in the Gaussian approximation describes very well the results
obtained via numerical approach. On the other side, when that conditions get violated,
deviations from the the analytical results are found.

4.3 Application to BIBO and KNbO3 based SPOPOs

The connection between the linear problem (4.18) and the threshold of a SPOPO permits
to have access to the dynamical properties of the system below/at threshold. According to
Eq. (4.6), since the coupling matrix is the product of the phase-matching matrix and the
pump spectrum, they can be, somehow, controlled acting on the type of phase-matching
or of the pump field.

Under the hypothesis of Fourier-transform-limited pump pulses, the spectrum of the
pump field can be assumed to be in the Gaussian form as in Eq. (4.28) whose bandwidth is
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connected to the time duration of the pulse according to the classical incertitude relation
(4.29). In our analysis we considered a Gaussian pump spectrum, limiting our study to
the dependence of the threshold on ∆p (or τp) without considering spectra different from
Eq. (4.28).

For what concerns the phase-matching, several choices are possible such as the type of
the non-linear crystal, its thickness, the type of phase-matching. For tunable ultra-short
pulse generation, continuous operation of a SPOPO has been demonstrated by Piskarskas
et al. [Piskarskas1988] in a doubly resonant oscillator configuration using a Ba2NaNb5O12

crystal as the gain medium. Although the doubly resonant configuration results in low
oscillation threshold, it is very sensitive to perturbations since the requirements for simul-
taneous resonance for both the generated fields demands a high stability on the pump
laser and the OPO cavity. Resonating only one of the generated fields in a singly res-
onant oscillator can greatly relax the tolerances on the pump laser and OPO cavity, as
we have already discussed in Section 3.1.5. On the other side, the price to pay is for
an order-of-magnitude increase in the oscillation threshold condition. Edelstein et al.

[Edelstein1989] and Wachman et al. [Wachman1990], first, experimentally demonstrated
the operation of a c.w. singly resonant SPOPO using potassium titanyl phosphate (KTP)
as the gain medium and colliding-pulse mode-locked dye laser as the pump source. In the
quest for more efficient pulse compression, several experimental strategies, leading to the
choice of different kind of nonlinear crystals, type of phase-matching, have been explored.
Among the great variety of crystals, the most exploited have been KTP, BBO and LBO,
and more recently BIBO [Ghotbi2004]. In contrast to the restrictions of standard birefrin-
gent phase-matching, quasi-phase-matching offers several advantages, since PPLN crystals
presents high conversion gain (17 pm/V [Galvanauskas1997]) and a relatively large trans-
parency range thus leading to better pulse compression. Synchronously pumped OPO
based on PPLN has been demonstrated, instead, in [McGowan1998]. On the other side,
in experiments such as the generation of pulsed squeezed light [Slusher1987, Wenger2004],
commonly the choice has fallen on the nonlinearity of KNbO3 crystals.

We performed numerical calculations on the nonlinearities of BIBO and KNbO3 crys-
tals for different reasons. The first crystal has been chosen since this work aims at provid-
ing a theoretical support to the experiment set up at Laboratorie Kastler Brossel where
a BIBO based SPOPO is operated in the femtosecond regime. BIBO crystals, in fact,
present at the same time very high resistance to optical damage and the same nonlinear-
ities of KTP [Ebrahimzadeh1991]. On the other side, KNbO3 is a nonlinearity that have
been not explored for applications like SPOPOs and consequently can represent a new
situation.

4.3.1 Phase-matching conditions

In accordance with the model developed in Chapter 3, a collinear, degenerate type I phase-
matching will be considered only.

For a BIBO crystal, the Sellmeyer coefficients corresponding to equations:

n2
i (λ) = Ai +

Bi

λ2 − Ci
− Diλ

2, (4.66)

can be found in [Nikogosyan2005] and are reported in Table 4.1. Notice that, in eq. (4.66),
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the indices i = x, y, z represent the coordinates in the crystal reference frame and λ have
to be expressed in µm.

i Ai Bi Ci Di

x 3.0722 0.0324 0.0315 0.0133
y 3.1669 0.0372 0.0348 0.0175
z 3.6525 0.0511 0.0370 0.0266

Table 4.1: Sellmeier coefficients for BIBO

Since BIBO is a biaxial crystal, the type I collinear and degenerate phase matching
condition (o → e + e) at the pump wavelength λ0,

2π

λ0
(no(λ0) + ne(2λ0)) = 0, (4.67)

in the general case requires to solve the intersection between the plane determined by
the pump wavevector

−→
k = sin θ cos φux + sin θ sinφuy + cos θ uz and the ellipsoid of

the refraction indexes whose principal axes are determined by eqs. (4.66). This problem
can be simplified considering a ordinary pump field polarized along the direction ux and
propagating along a direction laying in the plane yOz (i.e. φ = π) so that no ≡ nx and

ne(θ) =
(

sin2(π − θ)
n2

y

+
cos2(π − θ)

n2
z

)−1/2

. (4.68)

Using Sellmeier’s coefficients and for a pump at 0.4 µm, we obtain that such phase-
matching occurs at an angle π − θ = 151◦, in agreement with [Ghotbi2004]. Once deter-
mined the ordinary and extraordinary refraction indexes, respectively for the propagation
of the pump and signal fields inside the crystal, we can retrieve the values of the dispersion
parameters. In fact, from k(ω) = ω n(ω/c), the inverse of the group velocity k′(ω) and of
the group velocity dispersion (GVD) k′′(ω) are:

k′ =
n(λ) − λdn

dλ

c
, (4.69)

k′′ =
λ3 d2n

dλ2

2πc2
, (4.70)

where the r.h.s. must be evaluated at ω = 2πc/λ. Therefore, for a 0.4µm pump field and
a 0.8µm signal field, the dispersion parameter up to the second order in the perturbative
expansion around the phase matched frequencies are:

k′
s = 6.2664 × 10−9 sm-1, k′′

s = 1.6420 × 10−25 s2 m-1, (4.71)

k′
p = 6.6537 × 10−9 sm-1, k′′

p = 4.7248 × 10−25 s2 m-1 . (4.72)

In the case of noncritical phase-matching, the phase mismatch is minimized by ad-
justing the crystal temperature so that the phase velocities of pump and signal fields are
equal. Under the simplificative assumption that the fields propagate along one of the
crystal directions {ux,uy,uz}, the only possibility to find noncritical phase-matching at
room temperature is a situation where the pump field is polarized along uy, the signal
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i Ai Bi Ci Di

x 4.4308 0.10044 0.054084 0.019592
y 4.8355 0.12839 0.056342 0.025379
z 4.9873 0.15149 0.064143 0.028775

Table 4.2: Sellmeier coefficients for KNbO3

field along uz and at a pumping wavelength of λp ' 0.589 µm. In such a case, then, the
dispersion parameters are:

k′
s = 6.0390 × 10−9 sm-1, k′′

s = 2.5606 × 10−25 s2 m-1, (4.73)

k′
p = 6.1603 × 10−9 sm-1, k′′

p = 2.1917 × 10−25 s2 m-1 . (4.74)

Let’s consider now a KNbO3 crystal. The Sellmeier’s coefficients given in Table 4.2
can be found, for example, at [SellmeierKNbO3].

As for the previous case, KNbO3 is a biaxial crystal too. Therefore, for sake of simplic-
ity, we will assume a pump field propagating in the plane xOy (then θ = 0) and polarized
along uz so that no ≡ nz. On the other side, the signal field, polarized along a direction
orthogonal to the plane determined by {

−→
k p,uz}, sees an extraordinary refraction index

given by:

ne(φ) =
(

cos2(π − φ)
n2

x

+
sin2(π − φ)

n2
y

)−1/2

. (4.75)

For a 0.4µm pumping (and at room temperature), we found a phase-matching for an
angle φ ' 20◦. Therefore, using Eqs. (4.69) and (4.70), we obtain:

k′
s = 7.6301 × 10−9 sm-1, k′′

s = 1.1845 × 10−25 s2 m-1, (4.76)

k′
p = 7.7629 × 10−9 sm-1, k′′

p = 4.4721 × 10−25 s2 m-1 . (4.77)

For a noncritical phase-matching at room temperature two favorable situations close
to 0.4µm exist. In the first case, the pump field is polarized along ux, the signal along uz

and the phase-matching occurs at λp ' 0.431 µm. In the second case, the pump field is
polarized along ux, the signal along uy and the phase-matching occurs at λp ' 0.496 µm.
Finally the dispersion parameters (4.69) and (4.70), in the two cases, have been reported
in Table 4.3.

λp ' 0.431 µm λp ' 0.496 µm
k′

s (×10−9 sm-1) 7.9868 7.6779
k′′

s (×10−25 s2 m-1) 2.7869 1.3196
k′

p (×10−9 sm-1) 9.1762 8.4323
k′′

p (×10−25 s2 m-1) 1.5945 1.0536

Table 4.3: Dispersion parameters for noncritical phase-matching of KNbO3 at room tem-
perature

As we shall see in the next paragraph, the conditions (4.56) and (4.57) can be sat-
isfied/violated not only by playing with pump pulse duration or crystal thickness, but
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also with an opportune choice of the phase-matching conditions which, among several
possibilities, represent already some significative examples.

4.3.2 The case: τp = 100fs, L = 4m, l = 0.1mm

The first parametrical setup we consider is the one corresponding to a ring cavity pumped
by a c.w. train of 100 fs pulses at 0.4 µm and filled with a nonlinear crystal of thickness
of about 0.1mm, because this is the setup adopted for the real experiment. The pump
spectrum is assumed to be Gaussian as expressed in eq. (4.28).

Critically phase-matched BIBO

Let’s consider the case of BIBO crystal critically phase-matched at a pump wavelength
of 0.4µm discussed in Section 4.3.1. Using the values of the dispersion parameters of the
crystal in Eqs. (4.71) and (4.72), the limits of validity of the Gaussian approximation,
represented by Eqs. (4.56) and (4.57), reads l > 50µm and τp > 40 fs and are both
satisfied. The matrix L corresponding to this parametric case has been traced in Figure
4.4(a) in a frequency representation (where the labels m and q represents the order of
the longitudinal cavity mode expressed in eq. (3.4)), which is the actual matrix to be
diagonalized, while in Figure 4.4(b) the wavelength representation is displayed.
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Figure 4.4: Appearance of L matrix in the case of critically phase-matched BIBO of 0.1mm
of thickness, in a ring cavity of 4m, pumped at 0.4µm by a cw train of 100 fs pulses. In
(b) the axes are wavelengths.

The characteristic times, evaluated from Eqs. (4.53) and (4.54), are τ1 ' 12.25 fs
and τ2 ' 1.17 fs, in agreement with the previous statement that for typical configuration
τ2 ¿ τ1. As explained in Section 4.1.3, since the numerical solution of the linear problem
(4.18) is a highly demanding task in terms of CPU resources, the best solution is to exploit
the scaling property illustrated in that section. Such a property, however, is valid only in
the case where the rescaled coupling matrix is still a smooth function over the domain of
integers. Figures 4.4(a) and 4.4(b) have been traced over a grid of 4800 × 4800 points,
with a scaling parameter c = 1000. In this situation, from Eq. (4.49), the rescaled width
N ′

1 ' 170 is much bigger than 1, thus guaranteeing the smoothness of L. If we wanted
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Figure 4.5: Comparison between the spectrum of eigenvalues retrieved for a grid of 1600×
1600 points, a grid of 2400 × 2400 points and a grid of 4800 × 4800 points.

further reduce the dimension of the matrix to diagonalize, we could increase the scaling
parameter c but at the expenses of the validity of the integral approximation (4.30). The
last remark, on the numerical method adopted for diagonalizing the coupling matrix, is
concerned with the fact that, at fixed scaling, the dimension of the grid over which is drawn
L plays an important role from the point of view of the diagonalization and, obviously,
there is a minimum dimension below of which is not possible to go. With reference to
Figure 4.4(a), a diagonalization performed on a grid of 2400×2400 points (corresponding,
approximatively, to the red box) gives a spectrum that is correct only for the first highest
eigenvalues (the first 59 eigenvalues), for k > 59 discrepancies between the 4800 × 4800
become evident, as it can be appreciated in Figure 4.5.

The reason is easy to understand. In fact, over the 2400 × 2400-grid, the zones where
there is a residual information about the phase-matching (boxed in green) are neglected.
The progressive enlarging of the dimension of L leads to successive corrections which make
converge the numerical spectrum toward the exact solution obtained for an infinite space.
In the case presented of a 4800× 4800 coupling matrix discrepancies are almost negligible
and affect eigenvalues for very high k.

In the light of these observations, we performed numerical diagonalization over a grid of
4800×4800 points and with a scaling parameter of c = 1000. The results of such numerical
diagonalization are presented in Figures 4.6 and 4.7 where the spectrum of eigenvalues
and the four eigenvectors, corresponding to the four highest |Λk|, have been compared
with the analytical results obtained from (4.60), (4.62) and (4.63). The comparison of
the analytical eigenspectrum (represented by red dots) with the corresponding numerical
solution (in blue stars) - that we consider the “exact” solution in the sense previously
explained - evidences a good agreement between the two curves. In particular the highest
eigenvalue, which is the one connected to the SPOPO threshold, is Λanalyt,0 ' 269.11
from Eq. (4.60) and Λnum,0 ' 271, 71 from the numerical diagonalization, with a relative
error of about the 0.1% respect to the true value Λ0 ≡ Λnum,0. However, from Figure
4.6, there is a substantial difference between the analytical spectrum and the numerical
one that presents little deviations from the geometric progression. The reason resides in
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Figure 4.6: Comparison between the numerical and analytical solutions of the eigenspec-
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Figure 4.7: Comparison between the numerical and analytical solutions of the first four
eigenvectors.

the fact that, even if the parameters respect the bounds for the Gaussian approximation,
the coupling matrix L cannot be completely considered as the Gaussian (4.44) because
the presence of the small oscillations (boxed in green in Figure 4.4(a)) due to the “sinc”
modulation. The maximum relative error does not exceeds 10% for k < 50, while in the
interval 50 < k < 200 does not exceeds the 30%. For k > 200 the discrepancy between
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the numerical and the analytical curves can exceed the 30%, mainly for two reasons. The
first is ascribed to the fact that the analytical curve does not faithfully represent the true
solution and the relative error becomes more and more significative since for k > 200
the eigenvalues become small numbers as they converge to 0 for k → ∞. The second
reason resides in the fact that even the numerical solution cannot be considered as the
correct one since we diagonalized L in a truncated space. However, since we assumed a
temporal dependence of the type e−Λkt for the solutions of eq. (4.4), this is not a great
problem because on a dynamical point of view the evolution of the intracavity field, below
threshold, will be steered by the solutions (i.e. the eigenvectors) connected to the greatest
values of |Λk|, while for small |Λk| the dynamics of the corresponding solution is less
important respect to the global behavior of the system. This last remark, therefore, lay in
emphasis the role of the diagonalization of the matrix L in simplifying the description of
the dynamics of a system, such a SPOPO, where many modes evolves and interact each
other. In fact, since not all the eigenmodes are equally important in the evolution of the
system, from a set of about 105 modes generated by parametric interaction, it is possible
to extract a finite set of eigenmodes (or frequency combs). In the next chapter we will see,
not only, that these objects embody almost all the dynamical properties of a SPOPO but
also all the quantum effects generated by the intracavity parametric interaction.

The eigenvectors
−→
L k (for k = 0, 1, 2, 3) connected to the four highest |Λk|, traced in

Figure 4.7 with the blue line, are the solutions obtained form the numerical diagonalization
of L. Let’s note that the eigenvectors

−→
L k should appear as combs made up by a discrete

number of frequencies while, in the figure, they have been traced by means of a continuous
line which represents their envelopes.

As expected, since we are considering a parametrical situation that satisfies the condi-
tions (4.56) and (4.57), the eigenvectors are close to Hermite-Gauss polynomials given by
eq. (4.63). In fact, the numerical solution is fitted by a Gauss-Hermite function having
Ns ' 236 × 103 and the scalar product

−→
L 0 · −−→GH0(Ns = 236.88 × 103) ' 0.9991 can be

considered as an indicator of the quality of the fit (GHk,m corresponds to polynomials
(4.63)). Keeping in mind that τs = (NsΩ)−1, the time duration of the generated signal
pulse is about τs ' 11.1 fs which is an order of magnitude smaller than the pump pulse
width. In fact, from eq. (4.65), we expect a pulse compression of the signal field since
τ2 is much smaller than τp and τ1. From a physical point of view, this effect is directly
connected to the fact that the parametric conversion has a broadband gain proportional
to the spectral width ∆2 that is about one order of magnitude greater than the pump
bandwidth ∆p.

On the other side, the analytical solutions are obtained from eq. (4.63) once calculated
the signal pulse width τs ' 9.3 fs from the crystal coherences τ1 and τ2 given by eqs. (4.53)
and (4.54) (respectively 12.25 fs and 1.17 fs). Notice that these coherences are expressed
in terms of the crystal dispersion parameters k′ and k′′ when the Gaussian approximation
of the coupling matrix is considered. They have been traced in Figure 4.7 with the dotted
red line. In particular, the scalar product with the numerical solution amounts to about
0.9954.

As shown in Section 4.1, from a dynamical point of view, when all parameters are real,
in particular when the pump field is assumed to be not chirped, two kind of solutions, S

(+)
k,m

and S
(−)
k,m, of eq. (4.4) are admitted according eqs. (4.19). For a given k and assuming for a
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while that Λk > 0, the solution S
(+)
k,m will attain its threshold/amplification (i.e. λ

(+)
k ≥ 0)

when σΛk ≥ 1. At the same time, the solution S
(−)
k,m, in quadrature with the previous one,

cannot attain its threshold/amplification (i.e. λ
(−)
k ≥ 0) since the condition σΛk ≥ −1 is

not satisfied. Conversely, the opposite situation occurs when Λk < 0. Since the spectrum
of eigenvalues is approximatively an oscillating geometric progression, the first mode that
will attain the oscillation, by increasing from 0 the pump power, is S

(+)
0,m whose threshold

coincides with Pth (see eq. (4.20)). Above this value the condition for oscillation will be
attained by the other solutions in the order

−→
S

(−)
1 ,

−→
S

(+)
2 , . . . ,

−→
S

(−)
2k−1,

−→
S

(+)
2k , . . .. However,

as for lasers, the first mode that attains the threshold kills the oscillations of all the others
and it is the only one to be amplified for pump powers above Pth. In the ambit of a below
threshold theory, all the solutions are dumped, nevertheless these properties will be reveal
important from quantum point of view. From eq. (4.20), a threshold of Wth = 4.1mW is
readily obtained for the corresponding eigenvalue Λ0 = 271.71 in the case of ring cavity
singly resonant SPOPO with Ts = 0.01 and a beam waist of 70 µm.

Non-critically phase-matched BIBO

In the case of non critically phase-matched BIBO, at room temperature, the pump field
must be tuned at a wavelength of 0.589 µm. In this situation, eqs. (4.56) and (4.57)
reads l > 0.1mm and τp > 12 fs. Even if the condition on l is only just verified, also
this parametrical situation satisfies the Gaussian approximation . We will give later an
explication showing that, for such situation, the bound on the crystal thickness can be not
strictly observed for particular values of the pump pulse duration in order to still consider
the Gaussian approximation valid. The results obtained from the diagonalization of the
coupling matrix shows a good agreement with the analytical solutions as discussed in the
previous parametrical case and does not represent a new situation. For the spectrum of
eigenvalues, the numerical diagonalization of L gives Λ0 ' 272.9 that have to be compared
with the analytical result Λ0 ' 270.1, with a relative error of about the 1%. Therefore,
in the case of a ring cavity singly resonant SPOPO with Ts = 0.01 and a beam of 70 µm,
a threshold of 4.1mW is obtained. For what concerns the eigenvectors, the agreement
between the numerical and the analytical solutions is quantified by the scalar product
which amounts to 0.9950 while, from eq. (4.65), the signal pulse duration is about τs '
12.1 fs.

Critically phase-matched KNbO3

For the KNbO3 crystal critically phase-matched at a pump wavelength of 0.4µm discussed
in Section 4.3.1 the conditions (4.56) and (4.57) reads l > 0.4mm and τp > 13.3 fs. While
the condition on the pump pulse duration is largely satisfied, since we are considering a
0.1 mm-thick crystal, the bound on l is violated. A priori, then, we would expect that
the numerical diagonalization of L leads to results that are in disagreement with Eqs.
(4.59) and (4.63). In fact, observing the phase-matching matrix, shown in Figure 4.8(a),
is characterized by coherences τ1 ' 4.2 fs and τ2 ' 1.0 fs, obtained by using the dispersion
parameters of the crystal in (4.76) and (4.77). Since τ1 is about one order of magnitude
smaller than the cases previously shown, in the frequency domain this is translated in
a spectral width ∆1 that is one order of magnitude bigger (about 2.38 × 1014 s-1). On
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Figure 4.8: Critically phase-matched KNbO3 of 0.1mm of thickness, in a ring cavity of
4m, pumped at 0.4µm by a c.w. train of 100 fs pulses. Appearance of the phase-matching
matrix (a) and of the coupling matrix L (b) in the frequency representation.

the other hand, the distance d between the branches of the hyperbola evaluated along
the direction m − q = 0, in the frequency domain, is about 6.84 × 1014 s-1. In order the
Gaussian approximation to be valid, we imposed the condition that d & 10∆1 that in this
situation is not satisfied. However, this situation is not dramatic since, on the other hand,
the pump bandwidth ∆p ' 1013 s-1 is one order of magnitude smaller than ∆1 and thus
the energy conservation constraint selects only a small slice around the phase-matched
principal maximum (corresponding to m = q = 0), without including “sinc” oscillations
or the second branch of the hyperbole that would play a role in deviations from the
Gaussian limit. Resulting from the interplay between the phase-matching condition and
the energy conservation, the coupling matrix, shown in Figure 4.8(b), consists in a bell-
shaped function centered in m = q = 0 that still can be thought as Gaussian function
similarly to the previous cases, therefore we expect that the numerical solutions are in
accord with the analytical ones. The spectrum of the eigenvalues has been traced in
Figure 4.9, where the numerical and the analytical solutions are compared. Like in the
previous cases the agreement is confirmed by the fact that the relative error between the
numerical and analytical eigenvalues does not exceed the 10% for k < 50 and it is less
than the 30% for k < 200 while for the maximum eigenvalue the relative error is less then
the 1%. In particular we have Λ0 ' 273.37 which gives a threshold of Wth ' 0.44mW
for a ring cavity singly resonant SPOPO with Ts = 0.01 and a beam waist of 70 µm. In
Figure 4.10 are compared, instead, the eigenvectors obtained numerically and analytically.
The compatibility of the two results is confirmed by a scalar product of about 0.9906,
which, therefore, puts into evidence the fact that the solutions obtained in the Gaussian
approximation are able to describe the numerical results in a parametrical situation that
seems to violate the condition on the crystal thickness. Introducing the values of the
crystal coherences τ1 and τ2 in Eq. (4.65), the signal pulse width results to be about
τs ' 10.0 fs.
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4.3.3 Non-Gaussian configurations

We have seen in the previous subsection that, for parametrical configurations satisfying the
bounds (4.56) and (4.57), the analytical solutions (4.59) and (4.63) describe with enough
accuracy the results obtained from the numerical diagonalization of the coupling matrix.
However, in particular conditions (for example for special choices of the nonlinearities or
of the phase-matching conditions as it is the case of the critically phase-matched KNbO3),
parametrical setups violating these bounds could exist. In such cases the efficacy of the
analytical prediction rapidly run out and the numerical diagonalization is the only support.
In a first instance, then, understanding how and how much such predictions deviate from
the“true”solutions is an important issue. Nevertheless, we will see in the next chapter that
configurations violating the Gaussian limits are even desirable for certain applications.
Therefore, learning to master the parameters at stake in order to enhance the wanted
effects becomes a critical point. In the case of the KNbO3 the choice of the phase-matching
conditions leads to a violation of the condition (4.56) on the crystal thickness that, however,
reveals to be not critical since the pump bandwidth is small enough to prevent deviations
from Gaussian solutions. Then, the condition (4.57) on the pump pulse duration results
to be a stronger constraint. Moreover, the violation of the Gaussian limits by means of the
good choice of the nonlinearities or the phase-matching operation may results too difficult
or too tough to be properly mastered and it is clear that such way should be engaged as
“extrema ratio”. On the other hand, acting over the crystal length l or the pump pulse
duration τp represent a more flexible manner to master the “Gaussianity” of the problem
also in view of an experimental implementation.

Critically phase-matched BIBO with l = 5mm

For the parametrical situation illustrated above, where a critically phase-matched 0.1mm-
thick BIBO crystal is pumped at 0.4µm, the bound (4.57) reads τp & 40 fs which is largely
verified for a c.w. train of 100 fs pulses. In fact the numerical solutions obtained from
the diagonalization of L results to be well described by Eqs. (4.59) and (4.63). However,
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Figure 4.9: Comparison between the numerical and analytical solutions of the eigenspec-
trum.
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Figure 4.10: Comparison between the numerical and analytical solutions of the first four
eigenvectors.
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Figure 4.11: Appearance of L matrix in the case of critically phase-matched BIBO of 5mm
of thickness, in a ring cavity of 4m, pumped at 0.4µm by a c.w. train of 100 fs pulses.

from Eq. (4.57), the choice of a thicker crystal permits to violate such limit. A strongly
non-Gaussian configuration can be obtained in correspondence of a 5mm-thick crystal. In
such case the Gaussian limit for the pump pulse duration reads τp & 1.94× 10−12 s, which
is violated for 100 fs pump pulses. The coupling matrix corresponding to this situation is
illustrated in Figure 4.11.
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Figure 4.12: Comparison between the numerical and analytical solutions of the absolute
value of the eigenspectrum.

In terms of frequencies, a non-Gaussian configuration occurs when the pump spectral
width ∆p is sufficiently greater than the bandwidth ∆1 of the phase-matching function.
In this case, indeed, the pump is large enough to select not only the main peak of the
cardinal sinus modulation of the phase-matching matrix, but also the secondary maxima,
as one could easily realize by comparing Figure 4.11 with the Gaussian case represented
in Figure 4.4(a). This has an important consequence for what concerns the eigenvectors
and eigenvalues of L that have been reported in Figures 4.12 and 4.13. In Figure 4.12, the
spectrum of the eigenvalues obtained from the analytical solution (4.59) (red circles) shows
a great discrepancy with the eigenvalues obtained from numerical diagonalization of L.
In particular, the eigenvalues flatten around the critical value Λ0 ' 36 in the first part of
the spectrum (for k < 50), while the Gaussian approximation predicts always a geometric
progression-like behavior with a critical eigenvalue ΛGauss,0 ' 44. On the other hand, in
Figure 4.13, the eigenvectors retrieved in the Gaussian approximation (4.63) do no more
fit the numerical solutions which still preserve a shape similar to Gauss-Hermite functions,
but, nevertheless, are affected by a small modulation of the spectral amplitude. From a
physical point of view, the Gaussian limit corresponds to the optimal circumstance where
the length of the nonlinear crystal is sufficiently small to prevent the pump and signal
pulses from spatially separate inside the crystal because of the difference between their
group velocities. In other terms, this amount to require the temporal walk-off, between
pump and signal pulses, be not greater than the pump temporal width τp. In this way,
all the pump energy is optimally transferred, inside the crystal, towards the signal pulse.
On the contrary, when we are considering a non-Gaussian configuration, the overlapping
between the pump and signal pulses is not perfect all along the crystal, thus preventing
an optimal energy exchange between the two fields. At the light of this interpretation, it
is quite natural, then, to expect threshold that is higher (and consequently a Λ0 which is
lower) than the prediction of the Gaussian approach. Therefore, if the temporal walk-off
is big enough, we can manage to approach the eigenvalues of several eigenmodes simply
because we are making energetically disadvantageous the coupling between the pump and
signal field.
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Figure 4.13: Comparison between the numerical and analytical solutions of the first four
eigenvectors.

We can explain this result in different way, too. Let’s notice that the critical eigenvalue
obtained by means of the Gaussian approach (see Eq. (4.60)) depends on the number of
modes in the pump pulse Np. Since we observed that, beyond the Gaussian limit, the
spectral width of the pump field is greater than the phase-matching bandwidth ∆1, not
all the Np pump modes are equally phase-matched and, then, not all can transfer energy
towards the signal modes. We see, therefore, that this picture confirms a lower threshold
(or higher Λ0) for a non-Gaussian configuration. Moreover, we think that the modulation
of the spectral amplitude of the eigenvectors of L can be equally be ascribed to the cardinal
sinus modulation of the phase-matching matrix, which is impressed on the signal modes
by means of the not equally phase-matched pump modes. However, we have not yet
completely understood this mechanism, which deserves a more accurate study.

The dependence on the crystal thickness l

The passage from a Gaussian to a non-Gaussian regime can be performed, then, simply by
increasing the crystal length in order to induce a temporal walk-off between the pump and
signal pulses. It is interesting, hence, to study how the threshold behaves as a function of l.
A priori, the analytical results obtained in the Gaussian approximation when the condition
τp ¿ |k′

p−k′
s|l is violated are not supposed to be in agreement with the numerical solutions.

Indeed, in the situation considered above, with l = 5mm, the value of Λ0 obtained by the
analytical approach is in complete disagreement with the numerical value. Nevertheless,
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let’s consider Eq. (4.60) in the limit of very large l. Since from Eq. (4.53), in such case,
τ1 À τp, then Λ0 asymptotically converges to:

Λ0 ' π1/4
√

20Np
τp

|k′
p − k′

s|
1
l
. (4.78)

This expression suggests that the product Λ0 l is constant for values of l compatible with
a non-Gaussian regime. In Figure 4.14, then, we report the values of this product as a
function of the crystal thickness. For l . 1mm the analytical solution, as expected, is
in good agreement with the numerical one, while for greater thicknesses the discrepancy
is significative. This is an expected results, since, the analytical solution for the critical
eigenvalue has not validity when the condition (4.57) is violated. However, the fact that
also the analytical solution reaches asymptotically, for increasing l, a plateau suggests a
1/l-like behavior of Λ0. A possible interpretation, in the light of what we have observed
above, is that the number of pump modes actually involved is smaller than the nominal
value Np, in agreement to the observation that, when the pump pulse width is smaller
than τ1 (or equivalently ∆p À ∆1) not all the pump modes are phase matched.
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Figure 4.14: Dependence of the product Λ0 × l on the crystal length l for numerical and
analytical solutions.

4.4 SPOPO injected with a chirped pump field

In Section 4.1, the assumption of real dynamical constants and the property of the coupling
matrix to be self-adjoint lead to two sets of solutions {−→S (+)

k ,
−→
S

(−)
k }, of Eq. (4.4), satisfying

conditions (4.19). In general, these conditions do not hold any longer when γs, γp, σ and
L are not real. In particular this situation occurs when L is complex, usually in presence
of frequency dependent pump field phase.

The chirp is usually understood as the time dependence of its instantaneous frequency.
For example, a pulse with a Gaussian envelope and quadratic temporal phase:

E(t) = |E(t)|eiΦ(t) = E0e−at2+ibt2 , (4.79)
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is associated with an instantaneous frequency which varies linearly in time:

ω(t) =
∂Φ
∂t

= 2bt. (4.80)

Intrinsically connected to a nontrivial dependence of the spectral phase φ(ω), defined
as:

E(ω) = |E(ω)|eiφ(ω), (4.81)

on the frequency components ω, in the Fourier space, the chirp can be explained by the
presence of a dispersion of the group velocity which causes different delays for each spectral
components. The expansion of the spectral phase around the phase-matched frequency
2ω0 gives:

ϕ(ωp,m) = ϕ(ωp,0) +
∂ϕ

∂ω

∣∣∣∣
ω=2ω0

(ωp,m − 2ω0) +
1
2

∂2ϕ

∂ω2

∣∣∣∣
ω=2ω0

(ωp,m − 2ω0)
2 + . . . , (4.82)

that, after Eq. (3.36) and under the assumption that the pump field is resonant with the
OPO cavity (i.e. ∆ ' 0), can be rewritten as:

ϕ(ωp,m) = φ0 + φ1 m + φ2 m2 + . . . , (4.83)

where φ0 = ϕ(ωp,0), φ1 = Ω ∂ϕ
∂ω

∣∣∣
2ω0

and φ2 = 1
2Ω2 ∂ϕ

∂ω

∣∣∣
2ω0

.

Arresting the expansion up to the second order and neglecting the factor φ1 since it
represents a simple time delay, the pump field defined in Eq. (3.5) can be cast as:

Eext (t) = i

√
P

2ε0c

∑
m

αme−i(2ω0+mΩp)teiφ2 m2
+ c.c.. (4.84)

The quadratic dependence of the field phase on ωp,m corresponds to a group delay

τ(ωp,m) =
∂ϕ

∂ω

∣∣∣∣
2ω0

' φ2 (ωp,m − 2ω0) (4.85)

linearly varying with the spectral components also known as second-order chirping. From
Eq. (4.84) directly descends the fact that

Lch
m,q = Lm,qeiφ2 (m+q)2 (4.86)

is a complex matrix. In such case the classical couterpart of the linearized Langevin
equations for the resonant signal field are (see Eq. (4.4)):

d

dt

(
s
s∗

)
= −γs

(
I − σL̃ch

) (
s
s∗

)
, (4.87)

where s is the vector defined in Eq. (4.3) and:

L̃ch =

(
0 Lch

m,q

Lch
m,q

∗ 0

)
, (4.88)

which is, still, a self-adjoint matrix. Then, all its eigenvalues Λ, are real numbers. As for
its eigenvectors Ψ, denoting them as:

Ψ ≡

(
~L
~L′

)
, (4.89)
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they verify:

Lch · ~L′ = Λ~L, (4.90)

Lch ∗ · ~L = Λ~L′. (4.91)

Since Λ is real, by complex conjugating Eq. (4.90) and comparing with Eq. (4.91), we
find that:

~L′ = ~L∗, (4.92)

and relations (4.90) and (4.91) becomes:

Lch · ~L∗ = Λ~L, (4.93)

Lch ∗ · ~L = Λ~L∗. (4.94)

Multiplying by −i Eq. (4.93) and by i Eq. (4.94), we obtain the following:

Lch ·
(
−i~L

)
= (−Λ)

(
i~L

)
, (4.95)

Lch ∗ ·
(
i~L

)
= (−Λ)

(
−i~L∗

)
, (4.96)

from which it follows that if Ψ = col
(
~L, ~L∗

)
is the eigenvector of L̃ with eigenvalue Λ,

then, Ψ′ = col
(
i~L,−i~L∗

)
is eigenvector with eigenvalue Λ′ = −Λ as well. This result is

equivalent to the one obtained for the real case in Section 4.1, since two eigenvectors in
quadrature, Ψ(+)

k and Ψ(−)
k , correspond to a positive Λk and a negative −Λk. However, if

in the real case the diagonalization of L̃ is directly related to the diagonalization of one
of its blocks (i.e. Lch), a priori this is not possible for a complex L̃. Anyway, provided
that

(
~L, ~L∗

)
is an eigenvector of Lch, by multiplying Eq. (4.94) from the left by Lch and

introducing Eq. (4.93), a simplification can be achieved noting that the following relation:(
Lch · Lch ∗) · ~L = Λ2~L (4.97)

permits to get the eigenvectors and the eigenvalues of L̃ apart from a global phase. Let’s
denote with ~Laux the eigenvectors obtained from Eq. (4.97) (with eigenvalue Λ2) and by
~L = eiη~Laux the eigenvector of (4.93) and (4.94) with a phase η. In order to determine η,
we make use of Eq. (4.93):

Lch ·
(
eiη~Laux

)
= Λ

(
eiη~Laux

)
, (4.98)

which, written in terms of its components, leads to:

Λ−1

(
Lch · ~L∗

aux

)
m(

~L∗
aux

)
m

= e2iη. (4.99)

Since Λ is determined from Eq. (4.97) up to a sign, two values for the phase η, differing
by π/2, are obtained, in accordance with the fact that the eigenspectrum of L̃ is made up
by couples of eigenvalues Λ± = ±

√
Λ2. Then we obtain:

Λ−1
±

(
Lch · ~L∗

aux

)
m(

~L∗
aux

)
m

= e2iη± , (4.100)
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with η− = η+ + π/2, which finally determine the searched eigenvectors.
Vectors ~L and ~L∗ are not eigenvectors of the matrix L̃, hence their orthogonality must

be studied. We can prove the following:

Proposition 5 Given any two eigenvectors Ψ+
k and Ψ+

l (or Ψ−
k and Ψ−

l ) with eigenvalues
Λ+

k and Λ+
l (or Λ−

k and Λ−
l ), then:

~L∗
k · ~Ll = δk,l. (4.101)

Writing Eq. (4.93) in terms of its components and using the symmetry Lch
m,q = Lch

q,m, we
obtain: ∑

q

Lch
m,qL

∗
k,q =

∑
q

L∗
k,qLch

q,m = ΛkLk,m, (4.102)

which, in vector form, reads:
~L∗

k · Lch = Λk
~Lk. (4.103)

By computing the quantity ~L∗
l · Lch · ~L∗

k and using alternatively (4.93) and (4.103), we
obtain:

Λk
~L∗

l · ~Lk = Λl
~Ll · ~L∗

k. (4.104)

Since Λk and Λl are real, the phase of ~L∗
l · ~Lk and ~Ll · ~L∗

k must coincide, but, as they
are complex-conjugate, both must be real and the equal. Thus we obtain:

(Λk − Λl) ~L∗
l · ~Lk = 0, (4.105)

from which directly follows (4.101). The relation (4.105) can result problematic when
Λk = Λl, with k 6= l, in which case the subspace spanned by the two vectors is degenerate
and on can find suitable new vectors satisfying Eq. (4.101). However, such situation is
very exotic since in usual experimental situations the eigenspectrum is never degenerate
(as we have seen in Section 4.3). In the following we will show a second property that will
be useful in the next chapter.

Proposition 6 Given a complete set of eigenvectors of L̃, it is possible to write:

Lm,q =
∑

k

2ΛkLk,mLk,q, (4.106)

L∗
m,q =

∑
k

2ΛkL
∗
k,mL∗

k,q. (4.107)

This proposition follows directly from the spectral theorem. In fact, for a given set of
eigenvectors {Ψ(+)

k , Ψ(−)
k } with eigenvalues Λ±, the matrix L̃ can be written as:

L̃ =
∑

k

ΛkΨ
(+)
k ⊗

(
Ψ(+)

k

)†
+

∑
k

(−Λk)Ψ(−)
k ⊗

(
Ψ(−)

k

)†
, (4.108)

which becomes:

L̃ =
∑

k

Λk

{(
~Lk

~L∗
k

)
⊗

(
~L†

k,
~L∗

k

†
)
−

(
i~Lk

−i~L∗
k

)
⊗

(
−i~L†

k, i ~L∗
k

†
)}

=
∑

k

2Λk

(
0 ~Lk ⊗ ~L∗

k

†

~L∗
k ⊗ ~L†

k 0

)
, (4.109)
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and straightforwardly demonstrates the proposition.
The properties we have shown here are useful for characterizing the classical dynam-

ics of a SPOPO in presence of a chirped field by means of a decomposition over non
monochromatic modes, similarly to the analysis we discussed in the previous sections in
the case of not-chirped pump field. Moreover, from a quantum point of view, Proposition
6 is necessary for a complete equivalence of the modal-decomposition (see Section 5.1.1) of
the signal output field with not-chirped cases. However, in this thesis we will not present
the results for this case, which will be the object of future works.
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I
n the previous chapter we have studied the classical behavior of the SPOPO intracavity
field mean values in the below threshold regime. Its linear dynamics can be decom-
posed into a discrete basis of independently evolving frequency combs. The threshold

of the device corresponds to the threshold of the mode with the faster dynamics and that,
consequently, will attain the oscillation faster than the others. To some extent, therefore,
from a classical point of view, the dynamics of the other modes has less importance. On the
other hand, for a complete quantum characterization of the output field, below threshold,
as announced in Section 2.2, we have to consider global quantum noise properties of whole
the set of modes. We discover, then, that the SPOPO dynamics is formally equivalent
to the dynamics of N single-mode OPOs, squeezing the noise fluctuations of the signal
field in each one of the modes of the basis. Once verified the multi-mode character of

87
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SPOPO systems, special combination of combs can be considered in order to put in evi-
dence multi-mode non-classical correlations. The demonstration of their feasibility, under
certain conditions, suggests SPOPOs as possible sources by means of which multi-partite
entanglement can be investigated or protocols for the quantum communication can be
implemented.

5.1 Multi-mode representations

As discussed in Chapter 2, from a classical point of view, the field generated by a SPOPO
device which is the result of a coherent superposition of longitudinal modes can be always
thought as single-mode provided that it is observed in the good basis (for example the
one built starting from the vector (2.31)). Nevertheless, from a quantum point of view
the situation is more complicated since the down-converted photons are generated not
necessarily in a particular longitudinal mode but in a wide range of modes limited only
by energy-conservation and phase-matching conditions. In fact, for a given photon in a
general longitudinal mode of the signal field, one cannot trace back the pump photon who
generated it since the energy and momentum selection rules allows several possibilities.
Thus, an excitation in one longitudinal mode of the signal field could be connected to
several different couples of down-converted photons and, a priori, the signal field cannot be
more considered as a coherent superposition of modes since there are not-trivial quantum
correlations distributed among its whole spectrum and, then, its “multimodicity” has to
be thoroughly investigated.

Although the description of pulsed beams in the context of the parametric down-
conversion, such as the mode-locked beam outgoing a SPOPO, involves a very large number
of degree of freedom (about 105 modes for the case which we are interested to), their
quantum properties do not necessarily involve all of them. As discussed in Section 2.2,
one could construct a set of modes, as linear combination of the canonical ones, in order
that, in such a modal picture, the global quantum state of the beam can be written as
ρ̂ = ρ̂exc ⊗ ρ̂vac, where ρ̂exc is some nontrivial density operator of few excited modes and
ρ̂vac is the vacuum state density operator of the remaining modes. Therefore, the critical
question is how to identify which modes are relevant in the quantum description of the
considered field.

The interest in pulsed squeezed light and in general in two-photon quantum correla-
tions in pulsed systems dates back to the first experimental realizations by Slusher et al.

[Slusher1987] since nonclassical properties of quantum states find applications in quantum
communication and quantum information protocols. In the small gain regime of paramet-
ric conversion of simple pulses, Law et al. [Law2000] have shown the existence of a finite
but not null set of “special” two-photon modes (not monochromatic), among an infinite
number of degrees of freedom, which contribute to and completely characterize pairwise
entanglement. The set of these modes, as we will see, introduces a discretization of the
continuum which is exact (not an approximation) and unique.

A simplified picture of the experimental situation considered by Law et al. consists of
a single pump pulse impinging a degenerate optical parametric amplifier. If the field at
the down-converted frequencies is initially in the vacuum state |0〉, the output state can
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be written as:

|ψout〉 = Û |ψin〉 ' |0〉 +
1
2

∫
dω dω′ Ψ

(
ω, ω′) â† (ω) â†

(
ω′) |0〉, (5.1)

where Ψ (ω, ω′) is the symmetric two-photon wave function given by the product of the
spectral pump amplitude at the frequency ω + ω′ and the phase-matching function at the
down-converted frequencies. By performing the Schmidt decomposition, Ψ can be put in
the form:

Ψ
(
ω, ω′) =

∞∑
n=0

√
λnψn (ω) ψ∗

n

(
ω′) , (5.2)

where λn and ψn (ω) are the solutions of the integral eigenvalue equation:∫
dω′ Ψ

(
ω, ω′) ψn

(
ω′) = λnψn (ω) . (5.3)

The mathematical properties of the eigenvalues and eigenvectors of Eq. (5.3) can be
found more detailed in [Tricomi1967, Parker2000]. Here we will limit to remark that for
quadratically integrable kernels, such as Ψ in equation (5.3), the spectrum of eigenvalues
{λn}n∈N has infinitely many nonzero values and have no accumulation points (i.e. the
eigenvalues do not form a continuous set) except at zero. The use of Schmidt decomposition
for continuous variables has been previously discussed in problems focused to quantify
entanglement for two-photon wave-functions [Parker2000, Huang1996].

The decomposition performed suggests the introduction of a set of field operators
defined by:

b̂n =
∫

dω ψn (ω) â (ω) , (5.4)

which are not monochromatic. These operators satisfy standard bosonic commutation
relations [b̂n, b̂†m] = δn,m, which directly follow from the orthogonality of the eigenfunctions
ψn (ω) and, unlike the canonical set of annihilation operators â (ω), they forms a discrete
set. In terms of b̂n the two-photon wave-function reads:

|ψout〉 = Û |ψin〉 ' |0〉 +
1
2

∞∑
n=0

√
λn b̂†n

2 |0〉, (5.5)

in which the continuous integral in Eq. (5.1) has been replaced by an infinite discrete
summation. The wave-function (5.5) can be obtained from the perturbative expansion of
the multimode squeezing operator of the form:

Û =
∞⊗

n=0

exp
{√

λn

2

[
b̂†n

2 − b̂2
n

]}
. (5.6)

This result has been retrieved with a different approach in [Xin1990] by disentangling the
N -mode squeezing operator defined in general manner as:

ŜN (ξ) ≡ exp
{

1
2

[
â†

T
ξâ† − âTξâ

]}
, (5.7)

where â ≡ (â1, . . . , âN)T and ξ is a symmetric N × N matrix.
The advantages of using the Schmidt-mode representation are now clear. In fact, ac-

cording to the picture (5.5) or (5.6), two-photon correlations - which in the specific case
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of degenerate parametric conversion correspond to the squeezing properties of the beam -
appear only in Schmidt modes and the decomposition identifies precisely in which modes
photons go as pairs. On the other hand, the values of λn determines the occupation prob-
ability of the corresponding mode. Since the analytical properties of the eigenspectrum
of (5.3) require it to converge asymptotically towards zero, only a finite set of λn’s will
have a significant value. Therefore the representation (5.5) gives an information about
the effective dimension of the Hilbert space in which the state of the signal field lives. In
the eventuality that only one eigenvalue has a not null value, a single modal description
of the field completely characterizes the considered quantum state. The “pulse mode” in
which the Schmidt operator b̂n generates or destroys a photon is easily retrieved from the
definition of the field operator:

Ê(+) (t, x) =
∫

dω

√
~ω

2ε0cn(ω)
â (ω) e−iω(t−x

c
). (5.8)

By using the completeness of ψn(ω), the field operator takes the simple form:

Ê(+) (t, x) =
∑
n

b̂nun

(
t − x

c

)
, (5.9)

when the “pulse mode” is defined as:

un(t) ≡
∫

dω

√
~ω

2ε0cn(ω)
ψn(ω)e−iωt. (5.10)

The multi-modal approach depicted above turn out to be a powerful tool for a mean-
ingful and complete characterization of the quantum state of an optical pulse. In 2002, R.
S. Bennink and R. Boyd [Bennink2002], on the basis of the results obtained in [Xin1990],
extended the approach of Law et al. to multi-mode squeezed light generated by para-
metric down-conversion. A similar approach was independently developed by Opatrný
[Opatrný2002] for the complete characterization of the quantum state of solitons in opti-
cal fibers. The approach used by Bennink and Boyd not only introduces the concept of
eigenmodes of the squeezing, which have the same physical interpretation of the Schmidt
modes, and provide insight into the correlations which exist in multi-mode squeezed fields,
but also gives information on the mode structure of the local oscillator that should be
used in order to measure the smallest quadrature noise. In fact, although the impor-
tance of mode matching in homodyne detection was already known (see for example
[LaPorta1991, Kim1994, Werner1995, Levandovsky1999]), the typical experimental setups
were suboptimal while, in such cases, the shaping of the local oscillator according the multi-
mode theory suggested by Bennink and Boyd lead to a great improvement of squeezed light
measurements in accordance with the results of the theory.

A modal decomposition as the one discussed above in the case of small gain exists also
in a generalized form, far from the perturbative limit, as long as the multi-mode evolution
remains linear in the field operators. This usually happens when the pumping fields are
strong enough that their quantum fluctuations and pump depletion may be neglected.
In such case the evolution of the field can be written as a Bogoliubov transformation
[Ekert1991] which connects the the output field operator âout (ω) to the input field operator
âin (ω):

âout (ω) =
∫

dω′
[
C

(
ω, ω′) âin

(
ω′) + S

(
ω, ω′) âin (ω)†

]
. (5.11)
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The reduction of linear Bogoliubov transformations is given by the Bloch-Messiah
theorem for bosons [Braunstein2005] which is a formal extension of the original result for
fermions [Ring1980]. For the transformation (5.11) the Bloch-Messiah reduction leads to
the decomposition:

C
(
ω, ω′) =

∞∑
n=0

ζnψn (ω) φ∗
n

(
ω′) , (5.12)

S
(
ω, ω′) =

∞∑
n=0

ξnψn (ω) φ∗
n

(
ω′) , (5.13)

where ψn (ω) and φn (ω) are two independent orthonormal sets of functions and ζn and ξn

are two parameters which have to satisfy:

ζ2
n − ξ2

n = 1, (5.14)

which comes from the fact that the output operators must satisfy the canonical commu-
tation relations. Analogously to Eq. (5.4), we can define a discrete set of field operators
according to:

b̂in,n =
∫

dω ψn (ω) âin (ω) , (5.15)

b̂out,n =
∫

dω φn (ω) âout (ω) , (5.16)

whose evolution is completely characterized by the following transformation:

b̂out,n = b̂in,ncoshr + b̂†in,nsinhr, (5.17)

with ζn = coshr, ξn = sinhr and r a real number. It is clear then, from Eq. (5.17), that the
Bloch-Messiah reduction permits the description of a multi-mode optical field by means of
a discrete set of squeezing modes evolving independently, generalizing the result obtained
in the limit of small gain represented by Eq. (5.6). One of the most relevant implications
of this theorem is that any optical circuit, characterized by a linear input-output relation,
can be equivalently obtained with a system made of a linear multi-port interferometer
(performing a linear local transformation) followed by the parallel application of a set of
single-mode squeezers and then another multi-port interferometer as shown in Figure 5.1.
As a consequence the number of independent modes, in the Bloch-Messiah reduced form,
represents an intrinsic and irreducible resource of squeezing of any given multi-port optical
device. A smaller number of squeezers will not result sufficient for the device construction.
In the same manner than the λn’s of the Schmidt-mode representation, the minimum
number of Bloch-Messiah modes necessary to completely characterize the optical system
is intrinsically connected to its “multimodicity” since it determines the effective dimension
of the Hilbert space in which the quantum state of the system can be written, as in the
beginning of this section, by means of a density operator ρ̂ = ρ̂exc ⊗ ρ̂vac.

As an example we can consider the field generated by a two-mode down-converter
through an interaction Hamiltonian of the form:

Ĥ2 ∝
(
â†1â

†
2 − â1â2

)
. (5.18)
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S S S S

Multi-port

Multi-port

Multi-mode

interaction

Bloch-Messiah

reduction

Figure 5.1: An arbitrary complicated multi-mode interaction may be decomposed by
Bloch-Messiah reduction into an input linear multi-port followed by an irreducible number
of squeezers and an output multi-port coupler.

The Bloch-Messiah theorem states the equivalence with an optical system formed by
two squeezers acting on the two independently evolving modes:

v̂+ =
â1 + â2√

2
, v̂− =

â1 − â2√
2

, (5.19)

and mixed at a 50/50 beam splitter. We discover, therefore, that the equivalence between
squeezing and entanglement, discussed in the Section 1.3.5, finds in the Bloch-Messiah
theorem an elegant generalization to multi-mode bosonic fields.

In its original form the Bloch-Messiah theorem was introduced by Braunstein for dis-
crete bosonic linear systems [Braunstein2005] and only later was extended to continuous
system. In particular it has been adapted by Wasilewski et al. to the characterization of the
spectral properties of squeezed light produced be means of pulsed, single-pass degenerate
parametric down-conversion [Wasilewski2006a] and of the quantum entanglement of Stokes
light in single-pass stimulated Raman scattering by atomic-ensembles [Wasilewski2006b].

5.1.1 Definition of “super-modes” in SPOPOs

In the case we are interested in, instead of the simple passage of one short impulsion
through a nonlinear medium, a mode-locked coherent field (described by a comb of fre-
quencies) interacts with a nonlinear medium inside a cavity which is supposed to be reso-
nant with all the frequencies of the comb. Therefore, in contrast to the situations analyzed
in [Law2000, Wasilewski2006a], we are in a context of a system with a discrete, but still
huge, number of degrees of freedom represented by the longitudinal modes of the comb
whose evolution is described by the discrete set of bosonic operators {ŝm}m∈Z. As seen in
previous chapters, in a typical experimental situation the mode-locked beam pumping a
SPOPO consists of about 105 longitudinal modes. Following the evolution of each degree
of freedom and characterizing the quantum properties of such field is not convenient, there-
fore making a multi-mode approach to the problem advisable for a compact and complete
description.

The study of the linear dynamics of a SPOPO system we performed in Chapter 4 al-
ready evidenced the fact that the eigenvectors of the coupling matrix L follow independent
evolutions with the rates λk (see Eq. (4.19)). In fact, if the coupling matrix is written in its
normal form L = L†DL, where D is the diagonal matrix whose entries are the eigenvalues
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{Λk} of L and L is the unitary matrix constructed with the eigenvectors {Lk,m} of L, the
multi-modal evolution described by Eq. (4.4) assumes the expression:

d

dt

(
S
S∗

)
= −γs

(
Ĩ − σD̃

) (
S
S∗

)
+

√
2γs Sin, (5.20)

where S = col{Ŝ0, Ŝ1, . . .} and Sin = col{Ŝin,0, Ŝin,1, . . .} are, respectively, the vector of
intracavity signal operators and the vector of input signal operators, Ĩ = I ⊗ I is the
identity matrix and

D̃ =

(
0 D

D 0

)
. (5.21)

The modes S reveal, therefore, to be equivalent of the Schmidt modes or of the Bloch-
Messiah modes discussed before and are defined as:

Ŝk (t) =
∑
m

Lk,mŝm (t) , (5.22)

Ŝin,k (t) =
∑
m

Lk,mŝin,m (t) . (5.23)

It is important to stress the fact that, likewise the Schmidt and Bloch-Messiah reduc-
tion, the modal formulation represented by (5.22) and (5.23) it is possible thanks to the
linearization of the evolution equations due to small-fluctuations.

Since
−→
L k ·

−→
L k′ =

∑
m Lk,mLk′,m = δk,k′ , one has trivially:[

Ŝk (t) , Ŝ†
k (t)

]
= δk,k′ , (5.24)[

Ŝin,k (t) , Ŝ†
in,k

(
t′
)]

= δk,k′δ
(
t − t′

)
, (5.25)

as well as the correlations:

〈Ŝin,k (t) , Ŝ†
in,k

(
t′
)
〉 = δk,k′δ

(
t − t′

)
, (5.26)

which have been obtained from the non-null correlations of the longitudinal mode operators
ŝm (t):

〈ŝin,m(t)ŝ†in,m′(t′)〉 = δm,m′δ(t − t′), (5.27)

when the input is in the vacuum state. Hence Ŝk and Ŝin,k are the annihilation operators
of the combination of signal modes of different frequencies corresponding to the mode

−→
L k.

The corresponding creation operator applied to the vacuum state creates a photon in the
mode

−→
L k which we will call “super-mode” and which globally describes a frequency comb.

Analogously one can define super-mode output operators:

Ŝout,k (t) =
∑
m

Lk,mŝout,m (t) , (5.28)

where the output boson operator ŝout,m (t) is related to the intracavity and input boson
operators through the usual input-output relation of optical cavities [Gardiner1985] valid
for very small transmission:

ŝout,m (t) + ŝin,m (t) =
√

2γs ŝm (t) . (5.29)
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Starting from the linear quantum evolution of the super-mode operators (5.20), which
reads:

d

dt
Ŝk = −γsŜk + γsσΛkŜ

†
k +

√
2γs Ŝin,k, (5.30)

d

dt
Ŝ†

k = −γsŜ
†
k + γsσΛkŜk +

√
2γs Ŝ†

in,k. (5.31)

we derive now a relation between the output super-mode operators Ŝout,k and the input
super-mode operators Ŝin,k. The quadrature hermitian operators Ŝ

(±)
k defined by:

Ŝ
(+)
k = Ŝk + Ŝ†

k, (5.32)

Ŝ
(−)
k = −i

(
Ŝk − Ŝ†

k

)
, (5.33)

evolve according to the following equations:

d

dt
Ŝ

(±)
k = λ

(±)
k Ŝ

(±)
k +

√
2γs Ŝ

(±)
in,k, (5.34)

where Ŝ
(±)
in,k and Ŝ

(±)
out,k have been defined as in (5.32) and (5.33) and λk are given by Eq.

(4.19). These relations enable us to determine the intracavity quadrature operators in the
Fourier domain S̃

(±)
k (ω):

iωS̃
(±)
k (ω) = λ

(±)
k S̃

(±)
k (ω) +

√
2γs S̃

(±)
k (ω) . (5.35)

On the other side the usual input-output relation (5.29) on the coupling mirror which can
be written as:

s̃out,m(ω) = −s̃in,m(ω) +
√

2γss̃m(ω), (5.36)

being s̃out,m(ω) the Fourier transform of the output boson operator ŝout,m (t), extends by
linearity to any super-mode operator as the mirror is assumed to have a transmission
independent of the mode frequency. One, then, obtains the following expression for the
quadrature component in Fourier space of any signal super-mode:

S̃
(±)
out,k(ω) = v

(±)
k (ω) S̃

(±)
in,k(ω), (5.37)

v
(±)
k (ω) =

γs (1 ± rΛk/Λ0) − iω

γs (−1 ± rΛk/Λ0) + iω
. (5.38)

It is easy to compute the following correlations3, corresponding to vacuum inputs,
which follow straightforwardly from Eqs. (5.23) and (5.27):〈

S̃
(+)
in,k (ω) S̃

(+)
in,l (ω2)

〉
=

1
2π

δklδ (ω + ω2) , (5.39)〈
S̃

(−)
in,k (ω) S̃

(−)
in,l (ω2)

〉
=

1
2π

δklδ (ω + ω2) , (5.40)〈
S̃

(+)
in,k (ω) S̃

(−)
in,l (ω2)

〉
= i

1
2π

δklδ (ω + ω2) , (5.41)〈
S̃

(−)
in,k (ω) S̃

(+)
in,l (ω2)

〉
= −i

1
2π

δklδ (ω + ω2) . (5.42)

3Provided the Fourier transform have been defined like S̃(ω) = 1
2π

∫
dt e−iωtŜ(t).
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From these relations one can finally compute the corresponding output correlations:〈
S̃

(+)
out,k (ω) S̃

(+)
out,l (ω2)

〉
=

v
(+)
k (ω) v

(+)
l (−ω)

2π
δklδ (ω + ω2) , (5.43)

〈
S̃

(−)
out,k (ω) S̃

(−)
out,l (ω2)

〉
=

v
(−)
k (ω) v

(−)
l (−ω)

2π
δklδ (ω + ω2) , (5.44)

〈
S̃

(+)
out,k (ω) S̃

(−)
out,l (ω2)

〉
= i

v
(+)
k (ω) v

(−)
l (−ω)

2π
δklδ (ω + ω2) , (5.45)

〈
S̃

(−)
out,k (ω) S̃

(+)
out,l (ω2)

〉
= −i

v
(−)
k (ω) v

(+)
l (−ω)

2π
δklδ (ω + ω2) . (5.46)

The relations retrieved above will result useful in the next section, when the multi-
mode characterization of the quantum fluctuations of the field generated by a SPOPO will
be approached.

5.2 Noise properties of super-modes

The modal decomposition illustrated in the previous section allows, then, a compact way
to completely characterize the quantum state of the multi-mode light generated by a
SPOPO. As for the dynamical properties discussed in Chapter 4, we learned that the
eigenvalues Λk of the coupling matrix L are intrinsically connected to the dimension of the
reduced Hilbert space in which the characterization of such system is still effective. Such
characterization is carried out by the measure of the variance of the operators (5.28) by
means of the usual balanced homodyne detection scheme. In this case the local oscillator
is a coherent mode-locked multi-mode field EL (t) having the same repetition rate as the
pump laser:

EL(t) = E−
L (t) + E+

L (t), (5.47)

E−
L (t) = iεL

∑
m

em e−iωs,mt, (5.48)

E+
L (t) =

[
E−

L (t)
]∗

, (5.49)

where
∑

m |em|2 = 1, and εL is the LO field total amplitude factor. The output signal field
exiting the SPOPO, Ês,out(t), is combined with EL(t) in a 50% − 50% beam splitter, and
the intensity difference between the two output ports is measured. Writing the output
field as:

Ês,out(t) = Ê−
s,out(t) + Ê+

s,out(t), (5.50)

Ê−
s,out(t) = iEout

∑
m

ŝout,m(t) e−iωs,mt, (5.51)

Ê+
s,out(t) =

[
Ê−

s,out(t)
]†

, (5.52)

the quantity Eout is an appropriate proportionality constant which needs not to be fixed
here. If sufficiently fast detectors were used, the measurement would give an instantaneous
signal represented by the photocurrent operator:

î(t) =
1

εLEout

[
E−

L (t)Ê+
out,m(t) + E+

L (t)Ê−
out,m(t)

]
. (5.53)
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When detectors are not so fast, they average over many pulses along their response time
τd (we are considering inter-pulse separation on the order of few ns) and the photocur-
rent operator must be substituted by îH(t) = 1

τd

∫ t+τd
t−τd

dt′ î(t′), which can be very well
approximated by:

îH(t) =
1

εLEout

[
emŝ†out,m(t) + e∗mŝout,m(t)

]
, (5.54)

where we considered that τd À 2π/Ω and used the fact that ŝout,m(t) and ŝ†out,m(t) vary
little during the time τd [Knöll1991], what roughly requires that τd ¿ γ−1

s . Note that
this case, that reads 2π/Ω ¿ τd ¿ γ−1

s , requires Ts ¿ 1 since γs = TsΩ/4π, being Ts the
transmission factor of the single cavity mirror at which signal losses are assumed to be
concentrated.

5.2.1 Homodyne detection in conditions of perfect mode-matching

Since the balanced homodyne detection scheme measures the variance of the fluctuations
of the projection of the output field on the local oscillator mode, the mode-matching is
a critical point for an optimal probing of the squeezed field. When the local oscillator is
perfectly matched to one of the super-modes (5.28), the coefficients em of the LO field
spectral decomposition are equal, apart from a global phase φL, to the coefficients Lk,m of
the k-th supermode and the photocurrent difference is given by:

îH(t) = eiφLŜ†
out,k(t) + e−iφLŜout,k(t) = Ŝ

(+)
out,m(t)cos φL + Ŝ

(−)
out,m(t)sinφL. (5.55)

The noise variance spectrum V (ω), associated to îH(t), defined as:

V (ω) =
∫ +∞

−∞
dτ e−iωτ

〈
îH (t + τ) îH (t)

〉
, (5.56)

can be computed as:

V (ω) =
∫ +∞

−∞
dτ e−iωτ

∫ +∞

−∞
dω1e−iω1(t+τ)

∫ +∞

−∞
dω2 e−iω2τ

〈̃
iH (ω1) ĩH (ω2)

〉
=

∫ +∞

−∞
dω1

∫ +∞

−∞
dω2 ei(ω1+ω2)t

〈̃
iH (ω1) ĩH (ω2)

〉 ∫ +∞

−∞
dτ e−i(ω−ω1)τ︸ ︷︷ ︸

2π δ(ω−ω1)

= 2π

∫ +∞

−∞
dω2 ei(ω+ω2)t

〈̃
iH (ω) ĩH (ω2)

〉
, (5.57)

provided the Fourier transform of îH(t) is defined as:

ĩH (ω) =
1
2π

∫ +∞

−∞
dt e−iωt îH (t) . (5.58)

Thus, the variances of the two quadratures relative to the super-mode operator Ŝk(t),
which can be measured by changing the phase φL of the local oscillator (see Eq. (5.55)),
are given by:

V
(−)
k (ω) = v

(−)
k (ω) v

(−)
k (−ω) =

γ2
s (1 − rΛk/Λ0)

2 + ω2

γ2
s (1 + rΛk/Λ0)

2 + ω2
, (5.59)

V
(+)
k (ω) = v

(+)
k (ω) v

(+)
k (−ω) = V

(−)
k (ω)−1 . (5.60)
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Equations (5.59) and (5.60) show that the device produces a minimum uncertainty
state, that quantum noise reduction below the standard quantum limit (here equal to
1) is achieved for any super-mode characterized by a non-zero Λk and that the smallest
fluctuations are obtained close to threshold (r ' 1) and at zero Fourier frequency:

Vk,min =
(

Λ0 − |Λk|
Λ0 + |Λk|

)2

. (5.61)

In particular, if one uses as the local oscillator a copy of the critical mode k = 0 (identical
to the one oscillating just above the threshold r = 1) one then gets perfect squeezing
just below threshold and at zero noise frequency, just like in the c.w. single mode case
4. But modes of k 6= 0 may be also significantly squeezed, provided that |Λk/Λ0| is not
much different from 1. In Section 4.3 we found that the eigenvalues Λk of the coupling
matrix L form a discrete set asymptotically converging to zero. Consequently, among a
huge number of super-modes, only a smaller set, corresponding to the most significant
Λk, will contain almost all the information of the quantum state of the output signal field
which could be approximatively factorized as ρ̂exc ⊗ ρ̂vac. For example, in the case of
the critically phase-matched BIBO analyzed in Section 4.3.2, the first 100 super-modes
accounts for about the 92% of the signal quantum state. It is important to remark that,
differently from a c.w. single mode OPO, the cavity does not naturally selects any special
mode and the system behaves like a multi-mode device squeezing a large number of them.

5.2.2 Homodyne detection with a generic local oscillator

The optimal measuring of the noise variances associated to the super-modes requires the
use of pulse shaping techniques of the local oscillator so that the mode-matching is the best
possible, namely em = eiφLLk,m. In general, this can be a difficult task in experimental
implementations. Therefore it is necessary to determine the actual noise measured with
an arbitrary local oscillator. Form Eq. (5.53), the photocurrent difference îH(t) measured
in a balanced homodyne detection will be proportional to:

îH(t) =
∑
m

[
emŝ†out,m(t) + e∗mŝout,m

]
. (5.62)

The projections of the local oscillator frequency comb onto the super-modes
−→
L k are defined

as:
βk =

∑
m

Lk,mem, (5.63)

and its inverse:
em =

∑
k

Lk,mβk, (5.64)

where the result
∑

m Lk,mLk,n = δm,n involving the elements of a basis has been used.
Substitution of Eq. (5.64) into (5.62) yields:

îH(t) =
∑

k

[
Re (βk) Ŝ

(+)
out,k(t) + Im (βk) Ŝ

(−)
out,k(t)

]
, (5.65)

4Notice that the unphysical results of perfect squeezing on the quadrature Ŝ
(−)
0 and infinite noise

fluctuations on the quadrature Ŝ
(+)
0 have been obtained in the context of linear approximation of quantum

Langevin equations. Considering the orders greater than one in the perturbative expansion will prevent

the noise to diverge.
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where the quadrature super-mode operators (5.32) and (5.33) have been used. The auto-
correlation 〈̃ıH (ω) ı̃H (ω2)〉 can be computed by using Eq. (5.37) and Eq. (5.65) and
reads:

〈̃ıH (ω) ı̃H (ω2)〉 =

=
∑
k,l

{
Re (βk) Re (βl)

〈
S̃

(+)
out,k (ω) S̃

(+)
out,l (ω2)

〉
+ Re (βk) Im (βl)

〈
S̃

(+)
out,k (ω) S̃

(−)
out,l (ω2)

〉
+Im (βk)Re (βl)

〈
S̃

(−)
out,k (ω) S̃

(+)
out,l (ω2)

〉
+ Im (βk) Im (βl)

〈
S̃

(−)
out,k (ω) S̃

(−)
out,l (ω2)

〉}
=

δ (ω + ω2)
2π

∑
k

{
(Reβk)

2 v
(+)
k (ω) v

(+)
k (−ω) + (Imβk)

2 v
(−)
k (ω) v

(−)
k (−ω)

+i Re (βk) Im (βk)
[
v

(+)
k (ω) v

(−)
k (−ω) − v

(−)
k (ω) v

(+)
k (−ω)

]}
, (5.66)

where v
(±)
k (ω) are defined by Eq. (5.38) and we used the output correlation functions

(5.43), (5.44), (5.45) and (5.46). It is then straightforward to compute the noise variance
spectrum from Eq. (5.66), the final result reading:

V (ω) =
∑

k

{
(Reβk)

2 v
(+)
k (ω) v

(+)
k (−ω) + (Imβk)

2 v
(−)
k (ω) v

(−)
k (−ω)

+iReβk Imβk

[
v

(+)
k (ω) v

(−)
k (−ω) − v

(−)
k (ω) v

(+)
k (−ω)

]}
. (5.67)

Equation (5.67) gives the general expression of the squeezing spectrum corresponding to
a generic LO defined by its supermodal amplitudes βk, Eq. (5.63). When the LO is
proportional to the super-mode labeled by k, say em = eiφLLk,m, and φL = 0, π/2, the
two special quadratures (5.32) and (5.33) are selected and the results (5.59) and (5.60) are
recovered.

5.2.3 Squeezing properties in BIBO based SPOPOs

By way of example we consider the case of a 0.1µm thick BIBO crystal inside a 4m ring
OPO cavity pumped by a c.w. train of 100 fs pulses for a degenerate type I critically
phase-matching operation at 0.4µm pumping.

From Eq. (5.61), close to the threshold (r ' 1), the minimum noise fluctuations at
zero Fourier frequency depend only on the eigenvalues Λk of the parametric interaction.
Independently from the magnitude of the critical value Λ0 (which for the specific case is
about 272), the corresponding super-mode will show perfect squeezing, while the other
super-modes will be squeezed according the ratio Λk/Λ0.

In Figure 5.2(a) we report the minimum noise fluctuations given by Eq. (5.61) under
the hypothesis of being able to perfectly mode-match the local oscillator to the correspond-
ing super-mode. A significative number of super-modes, namely for 0 ≤ k ≤ 62, shows a
noise reduction better than −3 dB. In particular, for the first three super-modes (apart
from the critical one) we obtain V1,min ' −48 dB, V2,min ' −40 dB and V1,min ' −36 dB.
Notice that, since the oscillating character of the eigenspectrum {Λk}, the quadratures of
Ŝk which are squeezed (anti-squeezed) are Ŝ

(−)
2n and Ŝ

(+)
2n+1 (Ŝ(+)

2n and Ŝ
(−)
2n+1).

However, in experimental implementations, the mode-matching of the local oscillator
to the quadrature to analyze can be a hard task. In fact, the super-modes have a generally
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Figure 5.2: 5.2(a) Noise variance at threshold (r ' 1) and ω = 0, in decibels. Notice that,
since in decibels V0,min = −∞, the variances are traced for k ≥ 1. 5.2(b) Maximum noise
reduction measured by means of a Gauss-Hermite local oscillator in function of spectral
width ∆LO. The order of the G-H polynomial optimizes the projection of k = 1, 2, 3 and
4 super-modes on the local oscillator (respectively the cases blue, red, green and yellow).

complicated spectral form that can be theoretically retrieved from the analysis of the linear
problem (4.9). A simpler situation occurs when the conditions for Gaussian approximation
(4.56) and (4.57) are satisfied. In this case, we expect the super-mode to have a spectral
form like (4.63) and the shaping of the local oscillator can result easier than the general
case. While in the next section we will discuss in more detail the methods for shaping
the local oscillator and we will outline a possible algorithm for experimentally retrieving
the true shape of super-modes, here we consider a local oscillator shaped as a Gaussian-
Hermite polynomial:

ek,m =
1

π1/4N
−1/2
L

e−
1
2
(m/NL)2Hk (m/NL) , (5.68)

where NL is the number of longitudinal modes of the local oscillator comb. In this case, the
variance noise spectrum has to be evaluated using Eq. (5.67) and is given by the sum of all
super-modes noise variance spectra weighted by the mode-matching parameter βk, which
describes how well each super-mode projects onto the local oscillator field. Since we expect
Gaussian solutions for super-modes, for each k the local oscillator is almost orthogonal
to every Lk′,m with k′ 6= k. As an example we reported in Figure 5.2(b) the variances
evaluated at zero Fourier frequency in correspondence of the first four Gauss-Hermite
polynomials as functions of the spectral width of the local oscillator in the experimental
conditions as above but considering the system below threshold (r = 0.9). The optimal
NL is found in correspondence of the minima of the curves, which represent the best noise
reductions measurable with a local oscillator of the form (5.68). Such value, of course, is
greater than the one obtained in the perfect case (see Section 5.2.1) because of a small
contribution of the super-modes k′ 6= k. In particular, for e0,m, the maximum noise
reduction is obtained for NL = 220000 with a variance V

(−)
GH0 ' −25 dB that coincides with

the noise reduction in the ideal situation V
(−)
0 ' −25 dB. Hence, this result shows that



100 Chapter 5. Quantum properties of SPOPO below threshold

the mode-matching between the local oscillator and the super-mode L0,m is quite optimal
what is confirmed by the fact that their scalar product is β0 ' 0.999. For the other
super-modes (i.e. k = 1, 2, 3) the optimal spectral width is obtained in correspondence
of NL ' 2 × 105, 1.9 × 105, 1.8 × 105, respectively. Therefore, even with the most trivial
mode-shaping of the local oscillator, consisting of gaussian pulses of adjustable spectral
width, it is possible to measure the squeezing of the output filed of a SPOPO with very
high efficiencies and confirm again the quality of the Gaussian approximation introduced
in the previous chapter.

5.2.4 Experimental shaping of the local oscillator

In general the super-modes characterizing the multi-mode output field of a SPOPO have
not necessarily a Gauss-Hermite form and, however, even the simplest shaping, represented
by Eq. (5.68), may be not an easy task to accomplish only by means of passive interfer-
ometric optics. In the context of ultra-short pulses, the use of Spatial Light Modulators
(SLMs) represents a simple and compact method to shape the temporal mode of an op-
tical pulse [Jiang2007, Huang2008, Supradeepa2008] that, thus, permits to overcome the
difficulties relatives to the shaping of the mode-locked local oscillator we are considering.
The principle of functioning of a SLM based pulse-shaper is illustrated in Figure 5.3. A
given pulsed beam is sent on a first diffracting optical element that spatially separates
the frequencies constituting it. Such frequency components, after, pass through the SLM
which is a device that, electronically driven by a conventional interface (usually a VGA or
DVI input), permits some form of spatially-varying modulation (for both amplitude and
phase) according to the wanted output spectral shape. Finally they are recombined on a
second diffractive optical element.

From an experimental point of view the knowledge of the theoretical form of the
super-modes could be not sufficient and it could be more interesting to have direct access
to their true shape since it does not straightforwardly coincide with the experimental one.
For this reason an adaptive algorithm permitting to retrieve the true form of super-modes
could be envisaged. Since each super-mode can be distinguished each other by their noise
properties, which depend on the ratio |Λk/Λ0|, the strategy that one could follow is simple:
starting from an initial guess in the total space, say H, if the local oscillator coincides with
one super-mode the algorithm stops otherwise a feed-back loop will slightly change the
initial guess and will check again until local oscillator matches a super-mode. Each time
a particular super-mode ~Lk is found, the algorithm restarts with a new guess but in the

Figure 5.3: Sketch of a SLM based pulse shaper.
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reduced space H − span{~Lk} ≡ span{~Lk}⊥. Then, it is worth to study better the noise
properties of the points Lk,m as functions of the pump field spectral amplitudes {ek,m}.

For sake of simplicity, let’s consider the case of real pump field. Then, the eigenvectors
of the coupling matrix will be real too and, consequently, also the scalar products βk will
be real. Therefore, the sum in eq.(5.67) reduces only to the terms proportional to Re (βk).
In the space of the pump spectral amplitude coefficients {em}, a point in the neighborhood
of

{
~Lk̄

}
can be represented as:

em =
√

1 −
∑
k′ 6=k̄

ε2k′,m Lk̄,m +
∑
k′ 6=k̄

εk′,mLk,m, (5.69)

with εk′ ¿ 1, ∀ k′ ∈ N. Let’s note that the condition
∑

m |em|2 = 1 is satisfied. According
to definition (5.63), the scalar products βk are expressed as:

βk =
√

1 −
∑
k′ 6=k̄

ε2k′,m δk,k̄ +
∑
k′ 6=k̄

εk′,mδk′,k, (5.70)

and thus the spectrum (5.67) can be written as:

V (ω) =
(
1 −

∑
k 6=k̄

ε2k,m

)
Vk̄ (ω) +

∑
k 6=k̄

ε2k,mVk (ω) , (5.71)

where Vk (ω) ≡ v
(±)
k (ω) v

(±)
k (−ω). The first derivative of Eq. (5.71) with respect to a

given εq reads:
∂V

∂εq
= 2εq (Vq (ω)) − Vk̄ (ω)) , q 6= k̄, (5.72)

and is equal to zero if for each q ∈ N: εq = 0; therefore, in the space of the parameters

{em} and with the constraint
∑

m |em|2 = 1, the points
{

~Lk

}
are stationary. Further, the

Hessian matrix is given by:

∂2V

∂εq∂εm
=

{
0, if q 6= m

2 (Vq (ω) − Vk̄ (ω)) , if q = m 6= k̄
(5.73)

Since the difference Vq (ω)−Vk̄ (ω) can be greater or smaller than zero according to the sign
of Λk/Λ0, in general the Hessian matrix has not a definite sign and therefore the points{

~Lk

}
are saddle points. On the contrary, ~L0 and ~L1 are, respectively, a minimum and

a maximum, since they corresponds to the maximum squeezing V0(ω) and anti-squeezing
V1(ω) achievable for a given quadrature.

Hence, the properties expressed by Eqs. (5.72) and (5.73) of the noise variance spectra
permit to recognize each super-mode from the level of squeezing measured by means of
an algorithm of minimization (maximization). In particular, starting from an initial guess
for the local oscillator parameters {eguess,m}, a homodyne detection scheme measures the
noise level of a specific quadrature of the output signal field at a convenient frequency.
Subsequently, the pulse shaper slightly changes the initial guess to another value {eguess,m+
εm} and compares the output noise level with the previous one. This algorithm can be
programmed in order to find the absolute minimum (maximum) represented by ~L0 (~L1) and
when accomplished, to restrict the parameter space excluding the super-mode just found
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Figure 5.4: Bidimensional sketch of the structure of the parameters space {em} and the
main directions covered by an algorithm which minimizes the noise level of the output
field. This particular structure permits any minimization (maximization) algorithm to
find absolute minima (maxima). Starting, in fact, from a general point in this space
(the initial guess) the minimization occurs along the arrows which lead towards points of
progressively smaller noise variance. For example, starting from a guess about the point
~L3, the algorithm has many possible paths which lead to points of lower noise variance
(i.e. ~L0, ~L2, . . . , ~L2k, . . .). Once it is in proximity of one of them, for example ~L2k, it can
minimize the variance only evolving along the 2(k − 1) possible paths towards the points
~L0, ~L2, . . . , ~L2k−2, . . .. It will stops only when, finally, it will be arrived in about ~L0

.

and restart the procedure. The particular structure of the parameter space (see Figure
5.4), in fact, assures that, sooner or later, the actual absolute minimum (maximum) will
be discovered since the particular ordination of Vk. Starting from any point of the space
{αm}, the algorithm, programmed for minimize (maximize) the noise level of the output
field, will reach the closest saddle below the starting point which correspond to a general
stationary ~Lk. After that, the only possibility the algorithm has is to fall down (to rise
up) towards any other saddle point which shows lower noise level and so on till the lowest
possible noise level.

5.2.5 Conclusions

Since, by means of the super-modes basis it is possible to describe the quantum properties
of the output field of a SPOPO in a compact and simple way, in this section we have
studied their quantum properties. We studied the results of a standard balanced homodyne
detection both for perfect and imperfect mode-matching of the local oscillator. Then, we
have found that, among a huge variety, only a small but not null subset of this basis shows
a significant reduction of the noise fluctuations below the standard quantum limit, hence,
proving that a SPOPO is a multi-mode device. Finally, in the last part of this section,
we approached the problem of experimentally implementing a system for controlling the
wanted spectral shape of the local oscillator in order to optimize the mode-matching and
suggested a possible scheme for experimentally retrieving the exact form of super-modes.
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5.3 Two-mode correlations

One of the most appealing features of quantum mechanics is the existence of states formed
by many parties for which the global wave-function cannot be factorized in a product
of mono-partite wave-functions. Since they were originally introduced by Schrödinger
[Schrödinger1935], such entangled states have been subject of animated scientific discus-
sions. The two probably most significant contributions are represented by the works of
Einstein et al. [EPR] and Bell [Bell1964]. Nowadays, the quantum correlations shared
between two (or more) parties of a complex system are universally recognized as an im-
portant resource not only in the understanding of the fundamental principles of quantum
mechanics, but also as resources for quantum information and quantum computation pro-
tocols which has not equals in classical mechanics. In principle, in fact, entanglement
allows quantum teleportation [Bennett1993], quantum dense coding [Bennett1992a] or
quantum key distribution [Bennett1984, Ekert1991, Bennett1992b]. The first experimen-
tal realizations of the EPR paradox and tests of the Bell’s inequalities were performed
on the entangled polarizations of two photons [Fry1976, Aspect1982]. Successively, in or-
der to realize the original EPR paradox in continuous variables regimes, Reid proposed
a schema for entangling the quadratures of the field with an OPO [Reid1989] that was
experimentally implemented by Ou [Ou1992].

5.3.1 Perfect two-mode correlations

In the previous sections of this chapter we have shown the multi-modal character of the field
produced by a synchronously pumped OPOs that, in the context of continuous variables
regimes, could be, then, exploited as sources for entangling frequency combs. In order
to see that, let’s consider the interaction Hamiltonian below threshold and in the linear
approximation:

ĤI =
i

2
~κ

∑
m,q

Lm,q

(
ŝ†mŝ†q − ŝmŝq

)
. (5.74)

Inverting Eq. (5.22) and its hermitian conjugate, the interaction Hamiltonian can be
written in function of the super-mode operators:

ĤI =
i

2
~κ

∑
k

ΛkŜ
†
kŜ

†
k + H.c., (5.75)

and is equivalent to the interaction Hamiltonian of independent squeezers. In general, the
squeezing parameter Λk is different for each super-mode and the whole spectrum depends
on the choice of the phase-matching properties of the crystal and on the shape of the pump
width (see Eq. (4.6)). Nevertheless, as we have seen in Chapter 4 and discussed in Section
5.1, the sum rather than being infinite is usually limited to some number of super-modes
as Λk is approximatively zero for most of them. Considering two specific super-modes Ŝj

and Ŝl (j 6= l), let’s define the two operators:

â = Ŝj cosθ + Ŝl sinθ (5.76)

b̂ = Ŝj sinθ − Ŝl cosθ (5.77)



104 Chapter 5. Quantum properties of SPOPO below threshold

Hence, the contribution of Ŝj and Ŝl to the sum (5.75) can be written as:

ΛjŜ
2
j + ΛkŜ

2
k = â2

(
Λj cos2θ + Λk sin2θ

)
+ b̂2

(
Λj sin2θ + Λk cos2θ

)
+ 2 (Λj − Λk) â b̂ cosθ sinθ. (5.78)

The condition for having only crossed products is that Λj cos2θ + Λk sin2θ = Λj sin2θ +
Λk cos2θ = 0 and one can verify that this occurs when Λk = −Λj , in which case cos2θ =
0 ⇒ θ = π/4, for instance. Then the two-modes contribution reads:

ΛjŜ
2
j + ΛkŜ

2
k = 2Λj â b̂. (5.79)

Therefore, the super-modes â and b̂ are entangled and detection in this special basis
will show two-mode non-classical correlations. In general the condition Λk = −Λj is not
met, usually, in the case we already analyzed. In fact, a situation that seems favorable
is that of non-Gaussian regimes we discussed in section 4.3.3, since one of the effects of
the temporal walk-off in long crystals is to flatten a part of the eigenspectrum so that
in a non-null subset of Λs they have very close values. This not perfect situation will be
discussed in the following section.

We found that a favorable situation occurs when the pump field is detuned with respect
to the phase-matched frequency ω0 so that the offset parameter µp introduced in Eq. (4.28)
is not null. In this case, the pump field selects from the phase-matching matrix a slice of
width ∆p around the frequency ω0 + µp.

Let’s consider the realistic case of a 0.1µm thick BIBO crystal inside a 4m ring OPO
cavity pumped by a c.w. train of 100 fs pulses for a degenerate type I critically phase-
matching operation at 0.4µm pumping. The resulting coupling matrix consists of two
bell-shaped functions symmetric respect the axis ωm − ωq = 0, which have been boxed
in Figure 5.5. The most significative eigenvalues satisfy (exactly) the condition Λ2k+1 =

m (´ 105)
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Figure 5.5: Coupling matrix when the pump field is mismatched of about 2∆p respect to
the frequency ω0.
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Figure 5.6: Spectrum of the first four eigenvectors of the coupling matrix in the case
µp = 2∆p.

−Λ2k, while the fact the others are not exactly equal reflects only the necessity to have
cut the space in which we diagonalized L, as discussed in Section 4.3.2. Therefore, the
couples of super-modes, obtained from the couples of super-modes Ŝ2k and Ŝ2k+1 by means
of the transformation (5.76), are entangled. The first four super-modes found by the
diagonalization of L are represented in Figure 5.6. Notice that, since one half of the
2k +1-th eigenvector has a phase of π with respect to the phase of the 2k-th one and since
the super-modes:

âk =
Ŝ2k + Ŝ2k+1√

2
(5.80)

b̂k =
Ŝ2k − Ŝ2k+1√

2
(5.81)

result to be entangled. Therefore, by manipulating the pump field, we are able to produce
two well separated spectral bands of the signal field which have non-classical correlations.
This situation corresponds to that of the non degenerate c.w. OPO where twin photons
are generated at the signal and idler frequencies. From this point of view, the operators
âk and b̂k create/annihilate a couple of twin distinguishable broadband photons in two
different parts of the signal spectrum.

5.3.2 Imperfect two-mode correlations

Even if the situation discussed in the section above is very easy to obtain in order to pro-
duce two-mode quantum correlations, here we want to discuss a simpler way to “produce”
entanglement. Since the optical field generated by a SPOPO is intrinsically multi-mode,
we want to stress that one is not obliged to measuring noise correlations in a particular
basis of super-modes. The basis of Ŝk results to be perfect for characterizing squeezing
properties of the output signal field, but another set of super-modes could be more suit-
able for putting in evidence two-mode or multi-mode quantum correlation, exactly as we
did above by defining the super-modes âk and b̂k. The question we will try to answer
in this section is the following: what will happen if we detect noise correlations between
suitable linear combinations (like in the transformation (5.76)) of super-modes Ŝk associ-
ated to eigenvalues Λk which don’t satisfy the condition Λk = −Λj for perfect two-mode
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correlations? Notice that this problem is equivalent to study what happens when we mix
at a beam splitter two optical fields that are not equally squeezed, since the eigenvalues
Λk determine the amount of squeezing of each super-mode. However, in the case of a
SPOPO, we don’t need to use two physically separate squeezers and a beam splitter, but
we need only to choose the desired superposition of super-modes on which to perform
our detections. These detections are standard homodyne detections which need, there-
fore, an suitable shaping of the local oscillator. For this reason the implementation of a
pulse shaper is critical for an experimental realization of such measurements. Since the
quantum state of the output signal field results factorized in the representation of the
super-modes (5.22), if we limit our measurements to the subspace spanned by any couple
of super-modes, for example {Ŝ1, Ŝ2}, we can neglect, for the sake of simplicity, all the
terms in the interaction Hamiltonian (5.75) that are orthogonal to this space and consider
only the evolution in it:

ĤI =
i

2
~κ

{
Λ1Ŝ

†
1Ŝ

†
1 + Λ2Ŝ

†
2Ŝ

†
2

}
+ H.c. (5.82)

As we learned from the diagonalization of L, its eigenvalues (or the squeezing parameter,
from the point of view of Eq. (5.82)) form a decreasing progression which tends to zero
and where Λk is positive if k is even or negative if k is odd. Even if the difference between
Λ1 and Λ2 can be appreciable for typical configurations, for non-Gaussian regimes we
have shown that a significative number of eigenvalues assumes values that are close each
others. In such situations it is therefore reasonable to assume that the difference between
the magnitude of the squeezing parameters |Λ1| − |Λ2| is small. Also, let’s suppose that
Λ1 > 0 > Λ2 and |Λ1| > |Λ2|. By means of a rotation, new operators can be defined as
follows:

â =
Ŝ1 + Ŝ2√

2
(5.83)

b̂ =
Ŝ1 − Ŝ2√

2
(5.84)

The two-mode Hamiltonian (5.82), thus, become:

ĤI =
i

2
~κ

(
Λ1 + Λ2

2

) (
â†â† + b̂†b̂†

)
+

i

2
~κ (Λ1 − Λ2) â†b̂† + H.c. (5.85)

By defining: {
Λ1 − Λ2 ≡ 2Λ
Λ1 + Λ2 ≡ ε

(5.86)

the interaction Hamiltonian becomes:

ĤI =
i

2
~κ

{ ε

2

(
â†â† + b̂†b̂†

)
+ 2Λâ†b̂†

}
+ H.c. (5.87)

The first term on the right hand side of eq. (5.87) is responsible for generation, in inde-
pendent way, of couples of photons in the mode â and in the mode b̂. Detection in each
mode will give as result squeezed light. On the other side, detection of photons belonging
to couples which are in different modes will give no correlations. Differently, the second
term on the right hand of eq. (5.87) is responsible for generation of twin photons; there-
fore we expect to find quantum correlations between the modes â and b̂. On the whole,
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therefore, from a detection in the two modes we expect to find a melange of twin photons
and uncorrelated photons which will decrease the amount of correlations that would be in
the ideal case. In particular, this mixing depends on the relative magnitude of ε respect
to Λ. In fact, solving the Heisenberg equations for the modes â and b̂ gives squeezed joint
quadratures:

P̂a,out + P̂b,out = (P̂a + P̂b)e−(Λ−ε/2)T

X̂a,out − X̂b,out = (X̂a − X̂b)e−(Λ−ε/2)T
(5.88)

where P̂ and X̂ are respectively the phase and amplitude quadratures of modes â and
b̂, T ≡ κl/(2v) and l/v is the interaction time necessary to the field to go through the
crystal (with l the crystal length and v the velocity of the optical field in the crystal. The
squeezing on the joint quadratures (5.88) reflects the fact that the field phase and ampli-
tude quadratures are not maximally entangled, situation that occurs when Λ → ∞, for
the simple passage interaction here considered, or at threshold when we consider also the
effects of a cavity on the system evolution. Therefore, also in a not ideal situation, where
the squeezing parameters are not equal, non-classical correlation can still be demonstrated.
In order to put them in evidence, several criteria have been developed (for a short review
see for example [Treps2004]). In the following we will discuss the Reid’s criteria for EPR
correlations [Reid1989] and the Giovannetti’s criteria for separability [Giovannetti2003].

Reid’s formulation for the EPR paradox

For observables maximally correlated it is possible to infer an observable of one subsystem
from the result of measurement performed on a second subsystem spatially separated from
the first, thus demonstrating an EPR paradox. According to Reid’s argument [Reid1989]
instead, for observables not maximally correlated, there will be an error in deducing infor-
mation about the first system by a measure on the second one. However, it can be shown
that it is still possible to obtain an EPR paradox proving the error is small enough com-
pared to the Heisenberg uncertainty principle for two non-commuting observables. The
estimator for proving the EPR paradox is given by the minimized inference errors respec-
tively on the quadrature X̂a by a measure of the quadrature P̂b and on the quadrature P̂a

by a measure of the quadrature X̂b. It is possible to show that such inference errors are
given by the product of the conditional variances for the phase and amplitude quadratures:

∆2Xc
a = 〈X̂2

a,out〉 −
〈X̂a,outP̂b,out〉

〈P̂ 2
b,out〉

, (5.89)

∆2P c
a = 〈P̂ 2

a,out〉 −
〈P̂a,outX̂b,out〉

〈X̂2
b,out〉

, (5.90)

where the quadrature operators have been defined as:{
X̂a = â + â†, P̂a = −i

(
â − â†

)
X̂b = b̂ + b̂†, P̂b = −i

(
b̂ − b̂†

) (5.91)

On the other side, in the Schrödinger picture, the evolution of the system is given
applying the propagator generated by ĤI to the vacuum state:

|ψ(t)〉 = exp
{
−iĤIt/~

}
|0〉 (5.92)
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Since
[
â†â† − ââ + b̂†b̂† − b̂b̂, â†b̂† + âb̂

]
= 0, by means of the Campbell-Baker-Hausdorff

formula we can disentangle the propagation operator, after an interaction time which
corresponds to τ = l/v:

Û = e−iĤIτ/~ = e
ε
2(â†â†−ââ)T e

ε
2(b̂†b̂†−b̂b̂)T e2Λ(â†b̂†−âb̂)T ≡ Ûa,aÛb,bÛa,b, (5.93)

where, again, we defined T ≡ κl/(2v).
Then, the evolution of the operators (5.91), after the parametric interaction in the

crystal, is given applying the propagator (5.93):

X̂a,out = ÛX̂aÛ
† =

[
cosh (εT ) X̂a + sinh (εT ) P̂a

]
cosh (2ΛT )

+
[
cosh (εT ) P̂b + sinh (εT ) X̂b

]
sinh (2ΛT ) , (5.94)

P̂a,out = Û P̂aÛ
† =

[
cosh (εT ) P̂a + sinh (εT ) X̂a

]
cosh (2ΛT )

+
[
cosh (εT ) X̂b + sinh (εT ) P̂b

]
sinh (2ΛT ) , (5.95)

X̂b,out = ÛX̂bÛ
† =

[
cosh (εT ) P̂a + sinh (εT ) X̂a

]
sinh (2ΛT )

+
[
cosh (εT ) X̂b + sinh (εT ) P̂b

]
cosh (2ΛT ) , (5.96)

P̂b,out = Û P̂bÛ
† =

[
cosh (εT ) X̂a + sinh (εT ) P̂a

]
sinh (2ΛT )

+
[
cosh (εT ) P̂b + sinh (εT ) X̂b

]
cosh (2ΛT ) . (5.97)

Hence, minimized inference errors are:

∆2X̂c
a =

cosh (εT )
cosh (2ΛT )

, (5.98)

∆2P̂ c
a =

cosh (εT )
cosh (2ΛT )

. (5.99)

According to quantum mechanics two non-commuting operators cannot be simultaneously
measured with a certainty greater than that allowed by the uncertainty principle. In
the Reid’s original argumentation the product ∆X̂a,out∆P̂a,out is always less than one for
equally squeezed optical beams. On the other hand, if not perfectly correlated photons are
assumed to be detected, the amount of quantum correlations can be degraded. However,
since:

∆X̂c
a∆P̂ c

a =
cosh (εT )

cosh (2ΛT )
, (5.100)

the EPR paradox can be still demonstrated provided ε is small enough. In particular, under
the conditions we assumed at the beginning of this section (|Λ1| > |Λ2|), the inequality
ε < 2Λ is always verified. Then the product of conditional variances (5.100) is always
smaller than zero and EPR correlations are verified. However, the smaller ε is the greater
the violation of the Heisenberg inequality is. Since a non-null ε degrades the quality of
the EPR state generated, reducing its magnitude is a crucial ingredient for the generation
of such a state. From this point of view, then, it turns out that non-Gaussian regimes are
important resources for their realization.
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Giovannetti’s criterion and verification of entanglement in the parametric am-
plification case

For bipartite quantum systems, Giovannetti’s criterion [Giovannetti2003] can be used as
necessary condition to identify entangled systems. From the couples of evolved operators
after the parametric evolution in Eqs. (5.94), (5.95), (5.96) and (5.97), two new operators
acting respectively on each of the two Hilbert subspaces of â and b̂ can be defined:

Ĉ1 = i
[
X̂a,out, P̂a,out

]
, (5.101)

Ĉ2 = −i
[
X̂b,out, P̂b,out

]
. (5.102)

Let’s introduce the following observables on the global Hilbert space:

û = a1X̂a,out + b1P̂b,out, (5.103)

v̂ = a2P̂a,out + b2X̂b,out, (5.104)

where ai, bi are real parameters; if the considered state is a separable one, then the
following inequality is verified: 〈

∆2û
〉 〈

∆2v̂
〉
≥ Õ2, (5.105)

with:
Õ =

1
2

(
|a1a2| |〈Ĉ1〉| + |b1b2| |〈Ĉ2〉|

)
. (5.106)

If coherent vacuum inputs are considered, we have 〈X̂k,out〉 = 0 = 〈P̂k,out〉 (for k,m = a, b),
〈F̂aF̂b〉 = 0 (with F̂ ∈ {X̂, P̂}). Therefore, by using Eqs. (5.94), (5.95), (5.96) and (5.97),
the variances of the operators û and v̂ turn out to be:〈

∆2û
〉

=
(
a2

1 + b2
1

)
coshε cosh (2Λ) + 2a1b1coshε sinh (2Λ) , (5.107)〈

∆2v̂
〉

=
(
a2

2 + b2
2

)
coshε cosh (2Λ) + 2a2b2coshε sinh (2Λ) . (5.108)

On the other hand, operators Ĉ1 and Ĉ2 can be evaluated, from Eqs. (5.94), (5.95), (5.96)
and (5.97), after very tedious algebra:

Ĉ1 = i
{

cosh2 (2ΛT )
[
X̂a, P̂a

]
− sinh2 (2ΛT )

[
X̂b, P̂b

]
+

1
2

sinh (4ΛT )
([

X̂a, X̂b

]
−

[
P̂a, P̂b

])}
, (5.109)

Ĉ2 = −i
{

cosh2 (2ΛT )
[
X̂b, P̂b

]
− sinh2 (2ΛT )

[
X̂a, P̂a

]
− 1

2
sinh (4ΛT )

([
X̂a, X̂b

]
−

[
P̂a, P̂b

])}
. (5.110)

In the case defined by Eq. (5.91),
[
F̂a, F̂

′
b

]
= 0 (with F̂ , F̂ ′ ∈ {X̂, P̂}) and

[
X̂k, P̂k

]
= 2i

(with k = a, b), therefore Ĉ1 = −2, Ĉ2 = 2 and the operator Õ2 is:

Õ2 =
(
a2

1a
2
2 + 2|a1a2b1b2| + b2

1b
2
2

)
. (5.111)
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When the special symmetrical conditions a1 = 1, a2 = 1, b1 = −1 and b2 = −1 are
considered 5, we obtain: 〈

∆2û
〉 〈

∆2v̂
〉

= 4 cosh2 (εT ) e−4ΛT , (5.112)

Õ2 = 4. (5.113)

Therefore Giovannetti’s criterion is satisfied for all values of Λ and ε according the following
inequality:

cosh2 (εT ) e−4ΛT ≤ 1. (5.114)

Similarly to the previous case, such inequality is satisfied for any values of ε and Λ.
However, in situations where the squeezing parameters are very different from each others
the quality of separability can be very degraded with respect to the case where ε = 0 and
Λ → +∞.

Entangled super-modes in the SPOPO case

In the case of synchronously pumped OPO, let’s consider the usual case of a 0.1mm thick
BIBO crystal inside a 4m ring OPO cavity pumped by a c.w. train of 100 fs pulses for a
degenerate type I critically phase-matching operation at 0.4 µm pumping. In this situation,
besides the evolution of quadrature operators described by the interaction Hamiltonian
(5.82), we have to consider the effects of the cavity feed-back thus leading to the usual
quantum Langevin equations for super-modes (5.34) whose solutions are expressed in the
Fourier domain by Eqs. (5.37) and (5.38). From these solutions, one can chose any couple
of Ŝout,k and Ŝout,m (with k 6= m) and mix them by means of the transformation (5.83)
and (5.84), quantum correlations are expected to appear in the modes â and b̂ according
to the values of Λk and Λm. Giovannetti’s criterion can be used to preview how much such
modes are entangled. For this specific case all the operators will be defined directly in the
Fourier domain and identified with a tilde signs. Supposing coherent vacuum input, the
product of the variances of the û and v̂ operators is readily obtained:〈

∆2ũ
〉 〈

∆2ṽ
〉

= 4 v
(−)
k (ω) v

(−)
k (−ω) v(+)

m (ω) v(+)
m (−ω) , (5.115)

where the functions v
(±)
k (ω) have been defined in (5.38). The explicit expression of the

operators C̃1 and C̃2 is instead:

C̃1 = −1
2

{
v

(+)
k (−ω) v

(−)
k (ω) + v

(+)
k (ω) v

(−)
k (−ω)

+ v(+)
m (−ω) v(−)

m (ω) + v(+)
m (ω) v(−)

m (−ω)
}

(5.116)

C̃2 = −1
2

{
v

(+)
k (−ω) v

(−)
k (ω) + v

(+)
k (ω) v

(−)
k (−ω)

+ v(+)
m (−ω) v(−)

m (ω) + v(+)
m (ω) v(−)

m (−ω)
}

. (5.117)

In figure 5.7 we report the difference 〈∆2ũ〉〈∆2ṽ〉−Õ2 for different couples of super-modes,
namely the couples {Ŝ0, Ŝ1}, {Ŝ0, Ŝ10}, {Ŝ0, Ŝ25} and {Ŝ0, Ŝ50}, under the assumption to
be at threshold (r = 1). For small values of the difference ε = Λ0−Λk between the eigenval-
ues associated the quantum state associated to the couple of super-mode can be considered

5This choice of parameters guarantees [û, v̂] = 0.
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Figure 5.7: Giovannetti’s estimator for separability evaluated for the couples of super-
operators where the difference ε between the squeezing parameters increases. {Ŝ0, Ŝ1}
(blue line), {Ŝ0, Ŝ10} (red line), {Ŝ0, Ŝ25} (green line) and {Ŝ0, Ŝ50} (yellow line). The
quality of the entanglement between the modes obtained by mixing the super-modes which
have approximatively equal squeezing parameters (Λ0 ' 272 and Λ1 ' 269, blue curve) is
greater than situations where this difference is more significative (Λ50 ' 76, yellow curve).

inseparable since the Giovannetti’s estimator assumes negative values in a frequency in-
terval 0 < ω . 1.41γs (in correspondence of the couple {Ŝ0, Ŝ1}). When ε increases, the
region of negativity of the Giovannetti’s estimator reduces too. In particular the couple of
super-modes {Ŝ0, Ŝ50} cannot be any longer considered entangled. Notice, however, that
the great number of couples which still can be considered entangled witnesses, once again,
the significant “multimodiciy” of a SPOPO.

5.4 Multi-mode entanglement

The entanglement shared between two parties enhances their capabilities to exchange
information and to increase the security in communicating messages by means, for exam-
ple, of quantum teleportation, quantum dense coding or quantum key distribution. Such
communication schemes based on quantum protocols can be generalized to an arbitrary
number of parties that share multipartite entanglement. For example optimal cloning can
be achieved when a sender transfers quantum information to several receivers [Murao1999],
or the parties share an information that can be retrieved only when all the parties coop-
erate (quantum secret sharing [Hillery1999]). The possibility of producing multipartite
entanglement was experimentally demonstrated for the first time with the realization
of GHZ states [Greenberger1990] of single-photon polarization [Bouwmeester1999], but
a simple scheme for producing bipartite entangled states in continuous variable regimes
had already been demonstrated by mixing independent squeezed states on beam splitter
[Furusawa1998]. Multi-mode entanglement of continuous variables was first proposed by
van Loock and Braunstein [vanLoock2000] and experimentally demonstrated in two differ-
ent regimes [Aoki2003, Jing2003]. In their theoretical proposition N squeezed modes are
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independently generated by N degenerate OPAs and coupled through a N -port beam split-
ter. Pfister et al. [Pfister2004] proposed a scheme where the simultaneous phase-matching
of several second-order nonlinearities creating two-mode squeezing between N cavity field
modes permits the use of a single OPA and no beam splitters. A similar scheme was re-
cently reproposed by Menicucci et al. [Menicucci2007] showing the possibility of realizing
an ultra-compact experimental setup involving only one OPO and no beam splitters. In
both propositions a crucial point is the engineering of concurrent nonlinear interactions
between (in principle) an arbitrary number of modes. The proposed set up seems to be
rigid because of concurrent nonlinearities have to be designed expressly for a give number
of input modes. Even if this complicated problem is solved using quasi-phase-matched ma-
terials [Pfister2004, Lifshitz2005], an experimental implementation could result of difficult
feasibility when frequency combs of huge number of modes are considered, thus limiting
the number of entangled modes.

In this section we will show that the scheme for the production of multi-mode entangled
state proposed by Pfister without the beam-splitter network can be generalized to the
class of multi-mode systems and in particular to OPOs that show multi-mode quantum
character in spatial [Lopez2005, Navarrete2008] or temporal domain. While in the Pfister’s
proposal the engineering of the nonlinearities is necessary in order to obtain equal squeezing
parameters for different modes, our purpose is to show that, even if, a priori, the squeezing
parameters Λk are not exactly equal, quantum correlations can still exist, as we have
discovered in Section 5.3.2 for the two-mode case. Further, under particular conditions (i.e.
non-Gaussian regimes) one can make approaching the values of the squeezing parameters
of a non-null set of super-modes, thus increasing the quantity and quality of non-classical
correlations. Under this point of view, the advantage of a multi-mode system such a
SPOPO is that one can use just typical nonlinearities (the one used in standard OPOs)
in concomitance with a space or time multi-mode pump field.

On the other hand, a critical point is how measurements are realized. In the continuous
variables regimes quantum fluctuations of the output field are projected onto a strong
coherent local oscillator. Therefore the detection of the good entangled states presupposes
the capability to shape the local oscillator in order to have access to that portion of Hilbert
space where multi-mode entanglement is present. In Pfister’s proposal this could be not
too much critical for two reasons: primarily, the dimension of the total Hilbert space is
exactly the dimension of the entangled state, secondarily, all the parties involved are easily
physically separable by means of filters like polarizing beam splitters.

In the following we will analyze, first, the occurrence of three-mode and N-mode en-
tanglement in the case of not equal squeezing parameters for a simple system such as the
simple passage parametric interaction with a nonlinear crystal. We will find the eigen-
modes of the Heisenberg evolution equations that result to be squeezed. Afterwards, we
will consider the complete evolution equations for a SPOPO and we will show that for
these eigenmodes is still possible to measure strong quantum correlations.

Three-mode entanglement

By restricting our measurement to the sub-space spanned by {Ŝ1, Ŝ2, Ŝ3}, where the sub-
scripts 1,2 and 3 indicate a general tern chosen among all the possible super-modes, the
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interaction Hamiltonian can be written as:

ĤI =
i

2
~κ

{
Λ1Ŝ

†
1Ŝ

†
1 + Λ2Ŝ

†
2Ŝ

†
2 + Λ3Ŝ

†
3Ŝ

†
3

}
+ H.c. (5.118)

As anticipated above, in the introduction to this section, we are starting from an
interaction Hamiltonian where each term is weighted by a squeezing parameter Λk which
is different for each mode. Differently, in the case considered in Pfister’s work, the starting
point is an Hamiltonian where the squeezing on each mode occurs with equal strength
(Λ1 = Λ2 = Λ3). This situation can be obtained by a proper engineering of the non-
linearities. Our purpose is, instead, to release this condition and consider the general case
of a standard non-linearities. In fact, for the case of SPOPOs, we have shown that it is
possible to bring closer, simultaneously, a significant number of squeezing parameters by
increasing the temporal walk-off between pump and signal pulses, that can be realized
simply by controlling the crystal length l or the pump pulse duration τp. Therefore,
our purpose in this section and in the next, is to obtain a general expression for the mode
operators where three-mode or multi-mode entanglement is present, in a simple case where
the effects of the cavity are temporarily neglected. By means of these expressions, then,
we will discuss the specific case of SPOPOs, keeping in account for the cavity feed-back,
showing that multi-mode entanglement can be still demonstrated for a large number of
modes.

Let’s assume, without loss of generality, that −Λ1 > Λ2 > Λ3 > 0. The operators â, b̂

and ĉ on which the measurement have to be performed are given by the following rotation:

â

b̂

ĉ

 = B1,2

(
1√
3

)
B2,3

(
1√
2

)
=


1√
3

√
2
3 0

1√
3

− 1√
6

1√
2

1√
3

− 1√
6

− 1√
2


Ŝ1

Ŝ2

Ŝ3

 (5.119)

that is formally equivalent to a “tritter” [Braunstein1998b] mixing ports 1 and 2 of an
angle of arccos

(
1/

√
3
)

and ports 2 and 3 of an angle of π/4 (see Figure 5.8). After the

B1,2 B2,3S1

S2 S3

a .b

.c

Figure 5.8: Equivalent representation of the transformation (5.119). The new super-mode
operators â, b̂ and ĉ are obtained by mixing the operators Ŝ1, Ŝ2 and Ŝ3 by means of two
beam splitters B1,2 (equivalent to a rotation of θ1,2 = arccos(1/

√
3)) and B2,3 (equivalent

to a rotation of θ2,3 = arccos(1/
√

2)).



114 Chapter 5. Quantum properties of SPOPO below threshold

transformation (5.119), the Hamiltonian (5.118) can be rewritten as:

ĤI =
i

2
~κ

{(
Λ
3
− 2

3
ε2

)
â†

2
+

(
Λ
3
− 1

6
ε2

)
b̂†

2
+

(
Λ
3
− 2

3
ε2 −

1
2
ε3

)
ĉ†

2
+

−
(

4
3
Λ − 2

3
ε2

)
â†b̂† −

(
4
3
Λ − 2

3
ε2

)
â†ĉ† −

(
4
3
Λ +

1
3
ε2 − ε3

)
b̂†ĉ†

}
+ H.c. (5.120)

where we defined Λ1 = −Λ, Λ2 = Λ − ε2 and Λ3 = Λ − ε3. Notice that, in the symmetric
situation where the three squeezing parameter are equally separated, the Hamiltonian
(5.120) converges to Eq. (13) in [Pfister2004] for ε → 0. The system of Heisenberg
equations, describing the evolution of the super-modes â, b̂ and ĉ in a simple passage
interaction, can be written as:

d

dt

â

b̂

ĉ

 = κ

 Λ−2ε2
3 −2Λ−ε2

3 −2Λ−ε2
3

−2Λ−ε2
3

Λ
3 − ε2+3ε3

6 −2Λ+ε2−3ε3
3

−2Λ−ε2
3 −2Λ+ε2−3ε3

3
Λ
3 − ε2+3ε3

6


â†

b̂†

ĉ†

 . (5.121)

As discussed in Section 4.3.3, when some parameters of the system (namely, the pump
pulse width τp and the crystal thickness l) are changed in order to progressively approach
a non-Gaussian regime – where the conditions (4.56) and (4.57) are no more verified – the
values of an increasingly large number of eigenvalues approach each other. Therefore, we
are allowed to suppose that ε2 and ε3 become negligible respect to Λ. In such case the
eigenvalues of M are (−Λ, Λ, Λ) and its eigenvectors, given by:

X̂a,out + X̂b,out + X̂c,out = (X̂a + X̂b + X̂c)e−ΛT ,

P̂a,out − P̂c,out = (P̂a − P̂c)e−ΛT ,

P̂b,out − P̂c,out = (P̂b − P̂c)e−ΛT ,

(5.122)

are squeezed joint operators, whose common eigenstate is a three-mode entangled state
that converges towards the GHZ state

∫
dx|x, x, x〉 when Λ → ∞. Notice that we labeled

with “out” the operators outgoing the crystal after an interaction time l/v and we defined
T ≡ κl/(2v). However ε2 and ε3 cannot be considered, in general, exactly zero even in a
non-Gaussian regime and the operators (5.122) are no more eigenstates of M. In this case
the eigenvalues are (−Λ, Λ − ε2, Λ − ε3) and the eigenvectors are:

v̂1,out =
(
X̂a + X̂b + X̂c

)
e−ΛT , v̂4,out = −

(
P̂a + P̂b + P̂c

)
eΛT ,

v̂2,out =
(
2P̂a − P̂b − P̂c

)
e−(Λ−ε2)T , v̂5,out =

(
−2X̂a + X̂b + X̂c

)
e(Λ−ε2)T ,

v̂3,out =
(
P̂b − P̂c

)
e−(Λ−ε3)T , v̂6,out = −

(
X̂b − X̂c

)
e(Λ−ε3)T .

(5.123)

Hence, in the basis {v̂1,out, v̂2,out, v̂3,out, v̂4,out, v̂5,out, v̂6,out}, the evolved joint operators like
in (5.122) are given by:

X̂a,out + X̂b,out + X̂b,out =
(
X̂a + X̂b + X̂c

)
e−ΛT ,

P̂a,out − P̂c,out =
1
2

(
v̂2e−(Λ−ε2)T + v̂3e−(Λ−ε3)T

)
,

P̂b,out − P̂c,out =
(
P̂b − P̂c

)
e−(Λ−ε3)T .

(5.124)
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From (5.124), we can conclude that the amount of quantum three-mode correlations and
the reliability of the three-mode GHZ state corresponding to the system of modes (5.124)
depend on how small the differences between the squeezing parameters, ε2 and ε3, are with
respect to the amount of squeezing determined by Λ.

Generalization to N-mode entanglement

Let’s now consider the interaction Hamiltonian corresponding to the parametric evolution
in the N -dimensional Hilbert space spanned by the super-operators {Ŝ1, . . . , ŜN}:

ĤI =
i

2
~κ

{
Λ1Ŝ

†
1Ŝ

†
1 + . . . + ΛN Ŝ†

N Ŝ†
N

}
+ H.c. (5.125)

Like in the previous section, after the definition of new super-mode operators {â1, . . . , âN}
according to the multi-mode transformation proposed by Braunstein [Braunstein1998b,
vanLoock2000], we will express the evolution equations, for a simple passage interaction
inside a non-linear crystal, in function of such operators in order to obtain the eigenmodes
of squeezing (say {v̂1, . . . , v̂N}). Then, we will write the joint-quadrature operators of
the âk operators in function of v̂k operators in order to put in evidence multi-mode non-
classical correlation.

The set of operators {â1, . . . , âN} giving N -mode quantum entanglement is obtained
applying the following rotation [Braunstein1998b, vanLoock2000] to the operators {Ŝk}1≤k≤N

(see Figure 5.9):

BN = BN−1,N

(
1√
2

)
BN−2,N−1

(
1√
3

)
· . . . · B1,2

(
1√
N

)
(5.126)

where matrix Bk,l (x) is an N -dimensional identity matrix where the entries Ik,k, Ik,l, Il,k,
Il,l have been replaced by the beam-splitter matrix:(

x
√

1 − x2
√

1 − x2 −x

)
(5.127)

In an explicit form, the matrix BN reads:

BN
ij =



0 i ≥ j + 2
1√
N

i = 1, j = 1, 2, . . . , N√
N−i+1
N−i+2 i = j + 1

− 1√
(N−i+1)(N−i+2)

i ≤ j

(5.128)

B1,2 B2,3S1

S2 S3

a1
.a2

BN-1,N

SN

aN-1

aN

Figure 5.9: Equivalent representation of the transformation (5.126). The new super-mode
operators â1, â2, . . . , âN are obtained by mixing the operators Ŝ1, Ŝ2, . . . ŜN by means of
N − 1 beam splitters.
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After a change of basis by means of the transformation (5.126) and by defining Λ1 = −Λ,
Λk = Λ − εk for k = {2, . . . , N}, the Hamiltonian (5.125) can be recast as:

ĤN = Ĥ
(0)
N − i

2
~κ

 N∑
k=1

N∑
p,q=1

εkBN
k,pBN

k,qâ
†
pâ

†
q − H.c.

 (5.129)

where the first term on the right hand side is the ”unperturbed” Hamiltonian like in
[Pfister2004]:

Ĥ
(0)
N =

i

2
~κ

N − 2
N

N∑
m=1

â†m
2 − 2

N

N∑
p=1

N∑
q>p

â†pâ
†
q

 + H.c. (5.130)

In order to solve the Heisenberg equations in the N -dimensional case, we need to write in
explicit form the corrections to the matrix M = M(0) + κ

∑N
k=1 εkEN

kij which are propor-
tional to the entries of the matrix EN

kij = BN
kiBN

kj given below:

EN
kij =


0 i ≤ k − 2 or j ≤ k − 2
N−k+1
N−k+2 (i, j) = (k − 1, k − 1)

− 1
N−k+2 i = k − 1, j ≥ k or j = k − 1, i ≥ k

1
(N−k+1)(N−k+2) i ≥ k or j ≥ k

(5.131)

which, more explicitly, appears as:

EN
kij =



0 . . . 0 0 . . . . . . 0
...

. . .
...

... . . . . . .
...

0 . . . 0 0 . . . . . . 0
0 . . . 0 N−k+1

N−k+2 − 1
N−k+2 . . . − 1

N−k+2
...

...
... − 1

N−k+2
1

(N−k+1)(N−k+2) . . . 1
(N−k+1)(N−k+2)

...
...

...
...

...
. . .

...
0 . . . 0 − 1

N−k+2
1

(N−k+1)(N−k+2) . . . 1
(N−k+1)(N−k+2)


(5.132)

Hence, the eigenvalues of M are {−Λ, Λ − ε2, . . . , Λ − εN} and the corresponding eigen-
vectors, in terms of quadratures of the super-mode operators {â1, . . . , âN}, are:

v̂1 (τ) =
N∑

k=1

X̂k e−ΛT ,

v̂l (τ) =

[
(N − 1) P̂l−1 −

N∑
k=l

P̂k

]
e−(Λ−εl)T ,

v̂N+1 (τ) = −
N∑

k=1

P̂k eΛT ,

v̂N+l (τ) =

[
− (N − 1) X̂l−1 +

N∑
k=l

X̂k

]
e(Λ−εl)T ,

(5.133)
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for l = 2, . . . , N . As in the three-mode case, we can retrieve the evolved amplitude and
phase quadrature operators, using the basis (5.133). In fact, by inverting Eq. (5.133) we
obtain:

X̂k =
1
N

v̂1 −
1

N − k + 1
v̂N+k+1 +

k∑
j=2

v̂N+j

(N − j + 2) (N − j + 1)
,

P̂k = − 1
N

v̂N+1 +
1

N − k + 1
v̂k+1 −

k∑
j=2

v̂j

(N − j + 2) (N − j + 1)
,

(5.134)

for k = 1, . . . , N − 1, and for k = N :

X̂N =
1
N

v̂1 +
N∑

j=2

v̂N+j

(N − j + 2) (N − j + 1)
,

P̂N = − 1
N

v̂N+1 −
N∑

j=2

v̂j

(N − j + 2) (N − j + 1)
.

(5.135)

Hence, the joint operators after parametric interaction are:

X̂1 (τ) + . . . + X̂N (τ) =
N∑

k=1

X̂k e−ΛT ,

P̂k (τ) − P̂k+1 (τ) =
1

N − k + 1
v̂k+1e

−(Λ−εk+1)T − 1
N − k

v̂k+2e
−(Λ−εk+2)T ,

P̂N−1 (τ) − P̂N (τ) = v̂Ne−(Λ−εN )T ,

(5.136)

for k = 1, . . . , N − 2.
Similarly to the case of three-mode entanglement, this result shows that N -mode non-

classical correlations are degraded in the case we mix N modes with different squeezing
parameters. However, provided that εk → 0 for k = 2, . . . , N , such correlations can still be
significative and the N -mode quantum state corresponding to operators (5.136) converges
towards the generalized N -mode GHZ state

∫
dx|x〉1 ⊗ . . . ⊗ |x〉N in the limit of infinite

squeezing Λ → +∞.

5.4.1 Multi-mode entanglement in the SPOPO case

In this section we consider the complete model for a SPOPO, in the realistic case of the
BIBO nonlinear crystal, keeping into account not only the interaction Hamiltonian (5.75)
but also the effects resulting from the cavity feedback and losses. The evolution for each
super-mode Ŝk (t), described by (5.30) and (5.31), permits to obtain the corresponding
Langevin equation for operators defined as like as in Eqs. (5.83) and (5.84), (5.119) or by
means of the rotation (5.126) and finally retrieve the noise variance spectrum of the joint
quadrature operators. In the following we will first consider the three-mode case and then
we will generalize to an N-mode entangled state.

Three-mode entanglement

Starting from the evolution equations (5.30) and (5.31) for k = 1, 2, 3, let us mix now the
operators Ŝ1, Ŝ2 and Ŝ3 by means of the tritter matrix (5.119) in order to obtain operators
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â1, â2 and â3 and their corresponding Langevin equations. The vectors φ̂1, φ̂2 and φ̂3 are
constants of motion, as in (5.123), and in the Fourier space they are given by:

φ̃out,1 (ω) = V1 (ω) φ̃in,1 (ω) ,

φ̃out,2 (ω) = V2 (ω) φ̃in,2 (ω) ,

φ̃out,3 (ω) = V3 (ω) φ̃in,3 (ω) ,

(5.137)

where:

V1 (ω) =
γ2 (1 − r)2 + ω2

γ2 (1 + r)2 + ω2
,

V2 (ω) =
γ2

(
1 − r

(
1 − ε2

Λ

))2 + ω2

γ2
(
1 + r

(
1 − ε2

Λ

))2 + ω2
,

V3 (ω) =
γ2

(
1 − r

(
1 − ε3

Λ

))2 + ω2

γ2
(
1 + r

(
1 − ε3

Λ

))2 + ω2
.

(5.138)

As before, we defined Λ1 = −Λ, Λ2 = Λ− ε2 and Λ3 = Λ− ε3. Hence, the joint quadrature
operators (5.124) have the following expressions:

X̃out,1 (ω) + X̃out,2 (ω) + X̃out,3 (ω) = V1 (ω) φ̃in,1 (ω) ,

P̃out,1 (ω) − P̃out,3 (ω) =
1
2
(
V2 (ω) φ̃in,2 (ω) + V3 (ω) φ̃in,3 (ω)

)
,

P̃out,2 (ω) − P̃out,3 (ω) = V3 (ω) φ̃in,3 (ω) ,

(5.139)

and the corresponding variances are expressed by:

VX̂1+X̂2+X̂3
(ω) = V1 (ω)V1 (−ω) ,

VP̂1−P̂3
(ω) =

1
2
(
V2 (ω)V2 (−ω) + V3 (ω)V3 (−ω)

)
,

VP̂2−P̂3
(ω) = V3 (ω)V3 (−ω) ,

(5.140)

which have been obtained renormalizing the eigenvectors φ̂i for i = 1, 2, 3 and keeping in
mind that the only non null correlations, for vacuum input state, are:〈

φ̃in,i (ω) φ̃†
in,j

(
ω′)〉 = δij δ

(
ω − ω′) . (5.141)

Let’s address to the case of a 0.1µm thick BIBO crystal inside a 4m ring OPO cavity
pumped by a c.w. train of 100 fs pulses for a degenerate type I critically phase-matching
operation at 0.4µm pumping. Then the squeezing parameters for the first three super-
modes are Λ1 = −272, Λ2 = 269 and Λ3 = 266. At threshold (r = 1) and at the
carrying frequency (ω = 0) the variances for the joint quadrature operators (5.139) are
VX̂1+X̂2+X̂3

= 0, VP̂1−P̂3
= 5 × 10−5 (i.e. about −43 dB) and VP̂2−P̂3

= 9 × 10−5 (i.e.
about −40 dB). In typical configurations for BIBO based SPOPOs, therefore, we expect
to find excellent quantum three-mode correlations between the quadratures defined in
(5.119) even if there are small differences between the Λk and the use of a experimental
configuration for which the system is in a non-Gaussian regime is not necessary.
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Multi-mode entanglement

Let’s consider, now, the evolution in the subspace {Ŝ1, . . . , ŜN} which is described by the
equations (5.30) and (5.31) for k = 1, . . . , N . The eigenvectors {ψ̂1, . . . , ψ̂N} introduced
in (5.133) are constants of motion and, thus, we can write in the Fourier space:

ṽout,k (ω) = Vk (ω) ṽin,k (ω) , (5.142)

for k = 1, . . . , N , where:

Vk (ω) =
γ2

(
1 − r

(
1 − εk

Λ

))2 + ω2

γ2
(
1 + r

(
1 − εk

Λ

))2 + ω2
, (5.143)

with Λ1 = −Λ, Λk = Λ − εk, for k = {2, . . . , N}. The joint quadrature operators (unnor-
malized) have, thus, the following expressions:

X̃out,1 + . . . + X̃out,N = V1 (ω) φ̃in,1,

P̃out,k − P̃out,k+1 =
Vk+1 (ω)

N − k + 1
φ̃in,k+1 −

Vk+2 (ω)
N − k

φ̃in,k+2,

P̃out,N−1 − P̃out,N = VN (ω) φ̃in,N ,

(5.144)

where we omitted the frequency dependence of the operators. The variances correspond-
ing to operators (5.144) are obtained considering a vacuum input state and correlations
between φ̂k operators as in Eq. (5.141) for i, j ∈ {1, . . . , N}. They result to be:

VX̂1+...+X̂N
(ω) = |V1 (ω)|2 ,

VP̂k−P̂k+1
(ω) =

1
Nk

(
|Vk+1 (ω)|2

(N − k + 1)2
+

|Vk+2 (ω)|2

(N − k)2

)
,

VP̂N−1−P̂N
(ω) = |VN (ω)|2 ,

(5.145)

for k = 1, . . . , N − 2. The factor Nk is chosen in order to make the shot noise level equal
to one:

Nk =
1

(N − k + 1)2
+

1
(N − k)2

. (5.146)

The joint operator X̂1 + . . . + X̂N at threshold and at zero analysis frequency is al-
ways perfectly squeezed. In Figure 5.10(a) we report the variances (5.145) of the joint
quadrature operators for N = 20. The blue line correspond to the BIBO 0.1mm-crystal
case analyzed before for two-mode and three-mode entanglement. Non classical correla-
tions for joint quadrature operators are included between about −15 dB for k = 19 and
−37.5 dB for k = 1. The red and green lines, instead, represent the same case as before
but with a crystal length of 0.65mm and 5mm. The degree of non classical correlations
between each party of the output field is greatly increased by increasing the thickness of
the crystal till about a minimum of about −97 dB for k = 1 and maximum of −52 dB
for k = 19 in the case of 5mm thick crystal. In fact, an increase of the crystal thickness
has, on one side, the negative effect to rise upward the threshold of the system, while,
from the multi-mode entanglement point of view, the spectrum of the squeezing parame-
ters flatten and for a non-null subset of super-modes the associated values of Λk assume
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Figure 5.10: (a) Variances of joint quadrature operators VP̂k−P̂k+1
for N = 20 at r = 1 and

ω = 0 corresponding to three different thickness of a BIBO crystal. (b) Variances of joint
quadrature operators VP̂k−P̂k+1

for N = 50 at r = 1 and ω = 0 for a 5mm-thick BIBO
crystal.

approximatively the same magnitude reflecting the fact that we are increasing the degree
of correlations between the joint quadrature operators. In the case of l = 5mm we can
even realize a bigger multi-mode entangled state, with N = 50. In Figure 5.10(b) we show
the variances for the joint quadrature operators, being the spread of squeezing between
−79 dB and −20 dB.

The results of this section as well as those of the one about the three-mode entanglement
explains clearly that SPOPOs are systems which reveals marked multi-mode properties
thus proving their great potential for producing multi-mode quantum states of very high
dimensionality. Firstly, we do not need to produce N squeezed beams which are physically
separated and mix them by means of a N -port interferometer, but the system naturally
produces a beam which multi-mode. We need only to understand in which basis it shows
N -mode entanglement and then perform the detection. From this point of view, a multi-
mode device, and in particular a SPOPO, reveals to be a very compact source for the
production of the quantum states needed in quantum communication protocols. Secondly,
we learned that the condition of equal squeezing parameters required in [Pfister2004] can
be slightly released. Consequently the engineering of non-linearities with perfectly equal
coupling constant between the modes of an pump comb becomes less critical. Moreover,
for a device such a SPOPO, we do not even need an engineering of the non-linear crystal,
but use the standard non-linearities of c.w. OPOs, since the simple control of the temporal
walk-off between the pump and signal pulses (by controlling the crystal length or the width
of the pump pulse) permits us to increase (or decrease) the amount of correlations between
the super-modes.

If the compactness of a SPOPO as source of multi-mode entangled states represents an
advantage respect to standard schemes, on the other side the realization of a measurement
of joint-quadrature correlations is a critical point. In fact, all along the section dedicated
to multi-mode entanglement we supposed to restrict the space of interest to the space
spanned by a limited number of super-modes. This situation can be realized only if
the measure performed by a standard homodyne detection projects the global state of the
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field considered over the space in which the multi-mode entanglement has to be evidenced.
We need, therefore, techniques of shaping of the local oscillator as the one discussed in
Section 5.2.4. Another difficulty affects the use of SPOPOs as multi-mode sources for
multi-partite entangled states. Indeed, since the super-modes of the output signal field
are degenerate for the carrying frequency ω0, physical separation could result a difficult
task. For what concerns spatial multi-mode OPOs it is still possible the use of filtering
cavities (see for example [DelaubertPhD]), while for time multi-mode optical beams, at
the best of our knowledge, there is still not an experimental evidence of frequency-filtering.
A possible solution to this problem may come from [Schmidt2000, Opatrný2002]. Their
proposal is based on the result that any discrete unitary operator can be constructed
interferometrically [Reck1994]. The idea, basically, is to decompose the original pulse into
quasi-monochromatic components, as illustrated in Figure 5.11, by means of a grating.
Afterwards, each component is frequency shifted by an acusto-optical modulator (AOM)
so that each channel has the same central frequency. These channels, then, interfere
on a 2N port consisting of beam splitters and mirrors. By a proper choice of the 2N

port parameters the output channels of such interferometer will consist of the physically
separated modes âk. In principle, then, the output signal field which has N -mode quantum
correlations among the modes âk can be decomposed in N entangled parties which can be
finally used for implementing protocols for quantum communication.

AO
MAO

M

AO
MAO

M

Separated

output

Modes

Grating

Input pulse

Figure 5.11: Scheme to separate individual non-monochromatic modes. The pulse is first
decomposed into quasi-monochromatic channels. The frequency of each channel is then
shifted by means of an AOM to the central frequency of the pulse. The resulting modes
(with the same central frequency) then interfere on a 2N port [Opatrný2002].
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Conclusions

S
tarting from the Heisenberg equations for pump, signal and idler intracavity field
operators, we studied the evolution of the average values of the generated fields
for a synchronously pumped optical parametric oscillator (SPOPO) in the below

threshold regime. This problem depends on the solution of an eigenvalue equation from
the spectrum of which we can extract information, for example, about the threshold and
the shape of the super-mode that will oscillate at threshold. Not all the super-modes are
equally important in the evolution of the system. When 105 pump modes generate by
parametric interaction roughly 105 signal and idler modes, it is possible to extract in this
huge, almost continuous, Hilbert space a finite set of simple objects: these are the eigen
“super-modes”, or “frequency combs”, in which are concentrated all the quantum effects
generated by the intracavity parametric interaction. Similar “super-modes” have been
independently introduced by Wasilewski et. al [Wasilewski2006a] in the different context of
transient degenerate down-conversion in a single-pass, single-pulse configuration. In their
case, the “super-modes” are continuous linear superpositions of the annihilation operators
in free space, whereas in our case, because of the resonant cavity, they are a discrete
combination of modes. From the quantum point of view, parametric down conversion
hamiltonian destroys a pump photon and creates two photons in any two of the about
105 temporal modes (in the case of 100 fs pulses) of the signal and idler according to the
energy conservation and in a way that cannot be controlled from outside; in other words,
in the standard representation of annihilation/creation field operators, such interaction
hamiltonian is not diagonal. On the other side, all linear combinations of longitudinal
mode annihilation/creation field operators which diagonalize the interaction hamiltonian,
give rise to new special basis of operators which destroy a pump photon and produce two
correlated photons in a single “super-mode”. The novel aspect of our study is grounded on
the fact that squeezing spectrum of a finite set of super-modes operators can be below the
standard quantum limit, giving a clear image that the system is a highly quantum multi-
mode system. In fact, not only the super-mode of minimum threshold is perfectly squeezed
at threshold but, further, all the other super-modes have nonclassical character and are
significantly squeezed provided that their threshold is sufficiently close to the minimum
one. In effect, both numerical and analytical results show that a large number (in any case,
greater than one) of super-modes whose threshold is close to the minimum one exists, thus
proving the multi-modal character of this device. Hence, synchronously pumped OPOs
reveal to be very interesting devices for studying frequency combs at the quantum level;
their quantum multi-modal behavior could be exploited for generation of nonclassical states
of the light used for implement optical time measurement of great sensitivity [Lamine2008]
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or quantum information protocols. Moreover, the results illustrated at the end of this
work (Section 5.4) prove that SPOPOs can be very promising devices for quantum state
engineering. In fact, the quantum properties of super-modes depends on the spectrum of
Λk which can be adjusted by means of the good choice of the number of modes or the
spectral shape of the pump field as well as the form of the phase-matching. In this context
one has to consider, then, the demonstration that a SPOPO, in principle, can produce
generalized multi-mode GHZ states. One could go further. Keeping in mind that, in the
scheme used in Section 5.4, we started from well defined transformations for obtaining the
joint-quadrature operators which presents multi-mode entanglement, one could reverse
the problem and try to understand which transformation and which parameters Λk are
needed for generating a general quantum multi-mode state as like, for example, cluster
states [Briegel2001]. Since the great manageability of SPOPOs, such a problem appears
to have a promising solution and, even if not presented in this thesis, it is the object of
our current research about the engineering of quantum states.
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Appendix

A Solution of Fredholm integral with a Gaussian kernel

In Section 4.2 we have seen that the diagonalization of the matrix Lm,q can be reduced to
the solution of the integral equation (4.58) with a Gaussian kernel. In this Appendix we
retrieve the eigenvectors and the eigenvalues for this class of problem generally known as
Fredholm integral equations. Let’s consider, then, the integral equation:

∫ +∞

−∞
dy e−σ2

1(x+y)2−σ2
2(x−y)2ψ(y) = λψ(x), (A-1)

and verify that the function e−τ2x2
Hk(

√
2τx) satisfies Eq. (A-1), being Hk(

√
2τx) the

Hermite polynomial of order k-th and τ ≡
√

2σ1σ2. In fact, we have:

∫ +∞

−∞
dy e−σ2

1(x+y)2−σ2
2(x−y)2e−τ2y2

Hk(
√

2τy) =

=
∫ +∞

−∞
dy e−[(σ2

1+σ2
2)x2+(σ2

1+σ2
2+τ2)y2+2xy(σ2

1−σ2
2)]Hk

(√
2τy

)
=

τ=
√

2σ1σ2= e−(σ2
1+σ2

2)x2
∫ +∞

−∞
dy e−[(σ2

1+σ2
2)y2+2xy(σ1+σ2)(σ1−σ2)] ×

× e[(σ1−σ2)2x2−(σ1−σ2)2x2]Hk

(√
2τy

)
=

= e−(σ2
1+σ2

2−(σ1−σ2)2)x2
∫ +∞

−∞
dy e−[(σ1+σ2)y+(σ1−σ2)x]2Hk

(√
2τy

)
. (A-2)

After the making the substitutions:


ỹ = (σ1 + σ2) y

x̃ = − (σ1 − σ2) x

dỹ = dy (σ1 + σ2)

(A-3)

We use the well known result [Gradshteyn]:

∫ +∞

−∞
dy e−(x−y)2Hk(αy) =

√
π

(
1 − α2

)k/2
Hk

(
αx√

1 − α2

)
, (A-4)
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in Eq. (A-2), then obtaining:∫ +∞

−∞
dy

dỹ

σ1 + σ2
e−(ỹ−x̃)2Hk

( √
2τ ỹ

σ1 + σ2

)
=

=
√

π

σ1 + σ2

(
1 − 2τ2

(σ1 + σ2)
2

)k/2

Hk

( √
2τ

σ1 + σ2
x̃

)
=

=
π

σ1 + σ2

(
(σ1 − σ2)

2

(σ1 + σ2)
2

)k/2

Hk

(
−
√

2τx
)

. (A-5)

Therefore, we have:∫ +∞

−∞
dy e−σ2

1(x+y)2−σ2
2(x−y)2e−τ2y2

Hk(
√

2τy) =

=
√

π

σ1 + σ2
(−1)k

(
σ1 − σ2

σ1 + σ2

)k

e−τ2x2
Hk

(√
2τx

)
=

=
√

π

2
√

σ1σ2

tghk
(
ln

√
σ2/σ1

)
cosh

(
ln

√
σ2/σ1

)e−τ2x2
Hk

(√
2τx

)
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Résumé

Ce mémoire présente une étudie théorique des propriétés dynamiques et quantiques d’un
oscillateur paramétrique optique dégénéré de type I que est pompé de manière synchrone
par un laser verrouillé en phase (SPOPO). Récemment, des SPOPO ont été exploité pour
générer des impulsions optique de très bref durée et leurs propriétés temporelles ont été
étudiées théoriquement. Ayant un très grand nombre de degrés de liberté, le champ sor-
tant d’un SPOPO doit être caractérisé au moyen d’une analyse quantique multimodale.
Par conséquent, nous développons d’abord un modèle multi-mode de ce système en dé-
duisant des équations quantiques pour les opérateurs de champ intra-cavité. Ensuite,
nous étudions les solutions stationnaires pour les champs générés. Celles-ci sont solution
d’une équation aux valeurs propres dont le spectre donne des informations sur le nombre de
modes“utiles”qui peuvent être extraits et qui condensent toutes les propriétés dynamiques
et quantiques du champ intra-cavité et que nous appelons “super-modes”. En fait, nous
montrons que non seulement le super-mode de seuil le plus bas a (idéalement) des fluc-
tuations parfaitement comprimées au seuil, mais aussi tout les autres super-modes, dont
les seuils sont suffisamment proches du première, ont un caractère non-classique impor-
tant. Cette propriété démontre clairement le fait qu’un SPOPO est un système fortement
multi-mode. La dernière partie est consacrée à l’étude du champ de sortie sous le point
de vue de la génération d’états intriqué multi-modes et à l’optimisation de ces états au
moyen de configurations expérimentales spécifiques.

Mots-clef: oscillateur paramétrique optique, peignes de fréquences, impulsions de
courte durée, variables continues, réduction de bruit, intrication, multi-mode.

Abstract

This Thesis studies, from a theoretical point of view, the dynamical and quantum prop-
erties of a type I degenerate optical parametric oscillator which is synchronously pumped
by a mode-locked laser (SPOPO). In recent past, SPOPOs have been used for generating
ultra-short optical pulses of tunable wavelength and their temporal properties have been
investigated. Having a huge number of degrees of freedom, the output field of a SPOPO
needs to be characterized via a multimodal quantum analysis. Then, we first develop
a multimode model of the device, obtaining the quantum equations for the intra-cavity
field operators. Afterwards, we study the steady state solutions of the average values of
the generated fields that are the solutions of an eigenvalue equation. Its spectrum gives
information about the “useful” number of modes in which are concentrated almost all
the dynamical and quantum properties of the intra-cavity field and which we call “super-
modes”. Indeed, we show that not only the super-mode of minimum threshold is (ideally)
perfectly squeezed at threshold, but that all the other super-modes have an important
non-classical character provided that their thresholds are close enough to the minimum
one. This circumstance gives the clear image that a SPOPO is a highly quantum multi-
mode system. Finally, the last part of this Thesis is focused on the study of the output of
a SPOPO from the point of view of the generation of highly multi-mode entangled states
and their optimization by means of specific experimental configurations.

Keywords: optical parametric oscillator, frequency combs, ultra-short pulses, contin-
uous variables, squeezing, entanglement, multi-mode.
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