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Résumé

La tâche principale d’un routeur est d’acheminer des paquets jusqu’à leur destination
finale en passant par les différentes réseaux. Comme chaque paquet est traité individuelle-
ment, la performance d’un routeur dépend du temps nécessaire pour traiter chaque paquet.
Due à la croissance et à la diversité du trafic dans l’Internet, le traitement nécessaire pour
acheminer des paquets doit être optimisé. Cette thèse propose des algorithmes pour opti-
miser la performance du traitement de paquets lors de leur acheminement dans les routeurs
best-effort.

Pour acheminer (réexpédier) des paquets, un routeur doit tout d’abord rechercher l’in-
formation de routage correspondant à chaque paquet. La recherche d’information de routage
est basée sur l’adresse destination du paquet et elle s’appelle consultation d’adresse. Nous
proposons dans cette thèse deux mécanismes pour la mise à jour incrémentale des table de
routage basées sur des tries multibit. Tout d’abord, nous déterminons les conditions néces-
saires pour supporter des mises à jour incrémentales dans les tries multibit. À partir de ces
conditions, nous proposons des algorithmes et des structures de données pour effectuer ces
mises à jour incrémentales. En particulier, nous proposons une structure de données que
nous appelons le vecteur de bits PN (pour prefix nesting en anglais). Le vecteur de bits
PN code un ensemble de préfixes et leurs relations d’inclusion, car cette information est
nécessaire pour supporter des mises à jour incrémentales. Nous évaluons la performance
de nos mécanismes implémentés en langage C. Nous présentons les performances de nos
mécanismes pour les opérations de recherche, insertion et suppression. Nous présentons
également les besoins en termes de mémoire.

Une deuxième contribution de cette thèse est l’introduction d’une taxonomie et un cadre
de référence pour les algorithmes de consultation rapide d’adresse IP. Notre taxonomie
est basée sur l’observation que la difficulté de trouver le plus long préfixe commun avec
l’adresse destination est sa double dimension : valeur et longueur. Lorsque nous présentons
et classifions les différents mécanismes, l’accent est mis sur le type de transformation que
l’on effectue sur l’ensemble de préfixes pour chaque mécanisme. Cette approche unificatrice
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que nous proposons nous permet de comprendre et de comparer les compromis des diffé-
rentes mécanismes. Nous comparons les mécanismes en termes de leur complexité en temps
et en espace. Nous comparons aussi leur performance en mesurant le temps de l’opération
de recherche. Ces mesures sont réalisées sur une même plateforme et en utilisant une vrai
table de routage.

Une troisième contribution de cette thèse est un mécanisme qui optimise l’usage des
buffers dans les routeurs pour offrir un haut dégrée d’isolation entre flux. Tout d’abord,
nous étudions la fonctionnalité des buffers dans les routeurs et nous déterminons les ca-
ractéristiques souhaitables des buffers dans les routeurs. Ensuite nous proposons MuxQ un
mécanisme qui fournit un haut degré d’isolation entre flux. MuxQ est basé sur l’idée de pro-
téger la fonction de multiplexage de la fonction d’absorption de rafales d’un buffer. Nous
évaluons MuxQ en utilisant le simulateur ns-2. En particulier, nous étudions la capacité de
MuxQ pour isoler différent types de flux. Nous comparons les performances de notre mé-
canisme avec celles des mécanismes Drop-Tail, CSFQ, FRED et DRR. Nous présentons les
résultats de simulations avec des conditions de trafic différentes. MuxQ est un mécanisme
simple, deployable et qui fournit un haut degré d’isolation de flux, tout en gardant une quan-
tité limitée d’état.



Abstract

The main task of a router is to forward packets through the networks to deliver them to
their final destination. Since each packet must be treated individually, the performance of
a router depends on the time to process each packet. To keep pace with increasing traffic
and wide spectrum of traffic requirements, the packet forwarding capacity of routers need
to be optimized. This thesis proposes several algorithms to optimize the performance of the
packet forwarding process in best effort routers.

To forward packets, routers must make a forwarding decision. The operation of deter-
mining the forwarding information is based on the packet’s destination address and it is
called address lookup. We propose in this thesis two incremental update mechanisms for
address lookup schemes based on the multibit-trie data structure. First, we determine the
requirements to support incremental updates in multibit-tries based forwarding databases.
Then, we propose algorithms and data structures to support incremental updates. In par-
ticular, we propose a data structure called Prefix Nesting bit vector, or PN bit vector for
short. The PN bit vector encodes a set of prefixes and their nesting structure, for this in-
formation is necessary to support incremental updates. We present performance results of a
C-language implementation of our scheme. Performance results are shown in terms of time
for the search, insert and delete operations. Memory requirements are also shown.

A second contribution of this thesis is the introduction of a taxonomy and a framework
of reference of existing fast address lookup schemes. Our taxonomy is based on the observa-
tion that the difficulty of the best prefix matching problem resides in its double dimension:
value and length. In our analysis, we emphasize that to improve the performance of the
address lookup operation, the different methods make a transformation of the original set of
prefixes of the forwarding database. We state the different tradeoffs of the different transfor-
mation methods in terms of time and space and we compare the performance of the different
schemes. While the most important aspect is the search operation, we also analyze the po-
tential capabilities of the schemes to support incremental updates. We state that to support
incremental updates, a mechanism must have additional data structures to keep track of the
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prefix transformation process.
A third contribution of this thesis is a mechanism to optimize the use of the buffer in

routers to provide flow isolation. First, we study the buffering functionality of IP routers.
We find the desired properties of a router buffer system, then we design a mechanism based
on these characteristics. We emphasize that buffers in routers have two functions: a multi-
plexing function and a burst absorbing function. Our mechanism, which we call MuxQ, is
based on the idea of protecting the multiplexing function from the burst absorbing function
by progressively and dynamically controlling the allocation of buffer space in a FIFO queue.
MuxQ is a new queue management mechanism that provides flow isolation by using a very
simple algorithm and without using per-flow queuing. We compare the performance of the
MuxQ scheme to that of classical Drop-Tail and to that of other proposed schemes, includ-
ing CSFQ and DRR which provides nearly perfect isolation by using per-flow queuing. By
keeping only limited flow-state, our mechanism performs very much better than Drop-Tail.
MuxQ achieves performance similar to that of CSFQ but MuxQ does not need modifications
to the IP packet header as it is the case for CSFQ. Since MuxQ does not need modifications
of the IP packet header and does not expect a special behavior from other routers, MuxQ
can be deployed incrementally. We believe that MuxQ is an interesting approach to achieve
a high degree of flow isolation with respect to Drop-Tail by using a very simple algorithm.
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Présentation des travaux de thèse

Introduction

Dans l’Internet, la communication entre machines hôtes est effectuée en utilisant des
paquets d’information. Une fois que les machines hôtes émettent leurs paquets dans le ré-
seau, ce sont les routeurs qui retransmettent ces paquets sur les liaisons des réseaux pour
les acheminer vers leur destination finale. C’est à ce processus d’acheminement de paquets
dans les routeurs que nous allons nous intéresser dans cette thèse.

Dans l’Internet, chaque paquet est acheminé indépendamment des autres. Ce mode
d’opération est connu comme le mode datagramme. Le mode datagramme permet d’of-
frir un service robuste, car les routeurs peuvent adapter l’acheminement des paquets lors
des changements dans la topologie des réseaux. Cependant, le mode datagramme nécessite
que les routeurs aient la capacité suffisante pour traiter tous les paquets arrivant à leurs ports
d’entrée. Ainsi, avec l’accroissement du trafic, il est nécessaire d’optimiser la performance
des routeurs lors de l’acheminement des paquets. Nous proposons dans cette thèse des al-
gorithmes pour optimiser la performance de l’acheminement de paquets dans les routeurs
best-effort.

Pour acheminer les paquets, les routeurs doivent accomplir trois tâches principales :
Premièrement, les routeurs doivent déterminer où envoyer chaque paquet reçu. Plus spéci-
fiquement, les routeurs doivent déterminer, pour chaque paquet reçu, l’adresse du prochain
routeur (ou l’adresse de la destination finale s’il s’agit du dernière relais) et le port de sor-
tie par lequel sera réexpédie le paquet. On appelle l’ensemble de ces deux informations
l’information de routage et le fait de déterminer l’information de routage la décision de rou-
tage. Pour déterminer l’information de routage, le routeur consulte l’adresse destination du
paquet reçu dans une table de routage. Cette opération s’appelle consultation d’adresse (ad-
dress lookup). Deuxièmement, les routeurs doivent commuter le paquet du port d’entrée au
port de sortie approprié. Ensuite, si le lien de sortie est disponible, le paquet sera retrans-
mis sur ce lien ; dans le cas contraire, le routeur doit mémoriser le paquet dans un buffer
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en attendant que le lien soit disponible. Ainsi, la troisième tâche à accomplir par le routeur
pour acheminer des paquets est de résoudre les possibles contentions pour le lien de sortie.
Dans cette thèse, nous nous focalisons sur la première (décision de routage) et la troisième
(contention du lien de sortie) tâches. Dans ce qui suit, nous résumons nos travaux avec des
renvois sur les sections appropriées pour en connaître les détails.

Mise à jour progressive de tables de routage basées sur des
tries multibit

Chaque routeur maintien une table de routage qu’il construit à partir des informations
échangées avec d’autres routeurs. Ces échanges d’information sont réalisés par l’intermé-
diaire de protocoles de routage, tels que RIP, OSPF ou BGP. Cette table de routage contient
en général plus d’information que celle strictement nécessaire pour l’acheminement de pa-
quets (e.g., des informations de gestion). Afin de simplifier le processus d’acheminement
de paquets, les routeurs maintiennent aussi une autre table ne contenant que l’information
absolument nécessaire pour acheminer les paquets. Cette dernière table est appelée la table
d’acheminement (en anglais : the forwarding table). Néanmoins, pour ne pas alourdir le
texte, nous utiliserons aussi le terme table de routage pour désigner la table d’achemine-
ment, même si elles sont, dans la pratique, différentes.

Pour pouvoir passer à l’échelle, les tables de routage n’ont pas une entrée pour chaque
adresse destination, mais une entrée par groupes d’adresses. En particulier, les adresses
sont agrégées en utilisant leur préfixe commun. Ainsi, chaque entrée de la table de routage
contient l’information de routage correspondant à un groupe d’adresses destination repré-
senté par le préfixe commun de ces adresses. Historiquement, il y avait trois tailles fixes de
préfixes (i.e., 8, 16 et 24 bits). Chaque taille fixe de préfixe déterminait une classe différente
d’adresses. Mais à l’heure actuelle, la taille des préfixes peut être de 0 à 32 bits dans ce que
l’on appelle le routage interdomaines sans classes (CIDR).

Une des opérations essentielles pour acheminer les paquets arrivant à un routeur est
la décision de routage, c’est à dire la recherche d’information de routage dans la table de
routage. Depuis l’introduction de CIDR (Classless Interdomain Routing), cette recherche
d’information de routage consiste à trouver l’entrée de la table de routage ayant le plus
long préfixe commun avec l’adresse destination du paquet à acheminer. En effet, plusieurs
entrées de la table de routage peuvent avoir un préfixe commun avec l’adresse destina-
tion, mais l’entrée avec le plus long préfixe aura l’information de routage la plus spécifique
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et donc c’est cette entrée qui doit être utilisée pour effectuer l’acheminement du paquet.
Afin de simplifier la lecture, nous utiliserons parfois l’acronyme BMP (Best Matching Pre-
fix) pour designer ce plus long préfixe. Compte tenu que le but principal d’un routeur est
d’acheminer des paquets, un facteur capital dans la performance d’un routeur est la vitesse
avec laquelle le routeur trouve l’information de routage. Une façon d’optimiser le temps
pour trouver le plus long préfixe, et donc de trouver l’information de routage, est d’utiliser
une structure de données appelée trie multibit. L’idée de cette approche est de transformer
l’ensemble original de préfixes de la table de routage en une autre ensemble équivalent ;
équivalent dans le sens où l’on obtient toujours la même information de routage lors des
opérations de recherche. La particularité de cet ensemble équivalent est que le nombre de
longueur différentes des préfixes est inférieur à celui de l’ensemble original. Avoir moins de
longueurs différentes permet de réduire le nombre d’accès à la mémoire et donc de diminuer
le temps de recherche. En revanche, en réalisant cette transformation le nombre de préfixes
de l’ensemble équivalent est généralement plus grand que celui de l’ensemble original. Plu-
sieurs méthodes basées sur les tries multibit ont été proposées récemment [PZ92], [SV98],
[GLM98], [DBCP97], [MS98], [HZ99], [NK99]. Néanmoins, la plus part de ces méthodes
ne prennent pas en compte l’aspect de la mise à jour progressive de la table de routage. Or,
cet aspect est essentiel car la robustesse du système de routage dépend de la capacité des
routeur à s’adapter aux changements dans la topologie du réseau. D’ailleurs, des chercheurs
ont constaté que les routeurs de cœur (backbone routers) reçoivent fréquemment des mes-
sages de mise à jour [Lab99]. Dans cette thèse nous proposons deux mécanismes permettant
la mise à jour progressive dans des tables de routage basées sur des tries multibit. Mais avant
de présenter nos mécanismes, nous décrivons brièvement les tries multibit. Les tries multibit
sont présenté avec beaucoup plus de détails dans le chapitre 3.

Les routeurs agrègent l’information de routage en utilisant des préfixes. Ainsi, dans une
table de routage, chaque entrée contient un préfixe et son information de routage corres-
pondante. Puisqu’un préfixe est une chaîne de bits de longueur variable, ils peuvent être
représentés tout naturellement par un trie. Un trie est une structure de données en arbre qui
organise ses données en tirant profit du caractère décomposable de ses données. Dans le
cas spécifique des préfixes, ce sont les bits des préfixes qui sont utilisés pour déterminer
les branches du trie. Par exemple, la figure 3.1 montre un trie binaire (chaque noeud a un
maximum de deux fils) qui représente un ensemble de préfixes d’une table de routage. Les
préfixes eux mêmes sont représentés par certains noeuds du trie : Chaque feuille du trie
représente un préfixe ; mais les noeuds internes peuvent ils aussi représenter des préfixes.

Pour une adresse destination donnée, la recherche du plus long préfixe dans un trie
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consiste essentiellement à parcourir le trie à partir de sa racine. On parcourt le trie en uti-
lisant les bits de l’adresse destination pour emprunter les branches correspondantes. Ainsi,
à chaque noeud la recherche se poursuivra à droite ou à gauche en fonction de la valeur du
bit correspondant. La recherche termine lorsqu’il n’y a plus de chemin à suivre, et le dernier
préfixe visité sera le plus long préfixe correspondant à l’adresse destination donnée. La mise
à jour d’un trie binaire est relativement facile. Néanmoins, le principal problème avec les
tries binaires est que le nombre d’accès à la mémoire lors des recherches est grande. En
effet, lors d’une recherche, chaque fois que l’on teste un bit pour décider quelle branche
emprunter dans le trie, un accès à la mémoire est nécessaire. C’est à dire que dans le pire
des cas, une recherche a besoin de 32 accès à la mémoire dans IPv4. Comme ces accès à la
mémoire sont lents, la recherche dans un trie binaire n’est pas appropriée pour des routeurs
de haute performance. Une façon de réduire le nombre d’accès à la mémoire nécessaires
pour une recherche est l’utilisation de tries multibit. Dans un trie multibit, on ne parcours
pas le trie en testant un bit de l’adresse destination à la fois, mais plusieurs bits à la fois.
Un exemple de trie multibit est montré dans la figure 3.3. Puisque le parcours dans un trie
multibit est effectué par des pas de plusieurs bits, le trie multibit ne peut pas accepter des
préfixes de longueur arbitraire. En effet, un trie multibit donné n’accepte que les préfixes de
longueur déterminée par la taille des pas du trie multibit. Il est possible cependant d’utiliser
un trie multibit pour représenter une table de routage quelconque. Pour ce faire, l’ensemble
de préfixes de la table de routage doit être transformé en un autre ensemble de préfixes dont
les longueurs soient acceptées par le trie multibit, tout en conservant la même information
de routage. Cette transformation est réalisée par une technique appelée expansion de préfixe.

Bien que l’utilisation d’un trie multibit permette de réduire le nombre d’accès à la mé-
moire lors d’une recherche et donc d’améliorer la performance de la recherche d’information
de routage, le fait de transformer l’ensemble original de préfixes rend plus difficile les opé-
rations de mise à jour. Bref, la recherche dans un trie multibit est plus rapide, mais la mise
à jour est beaucoup plus compliquée, par rapport au trie binaire. Dans la section 3.4 nous
analysons la problématique liée à la mise à jour progressive des tables de routage basées sur
le multibit trie. Nous concluons qu’il est nécessaire, entre autres, une structure de données
additionnelle pour permettre la mise à jour progressive du trie multibit. Nous y introduisons
deux notions qui sont utilisées dans la conception de notre structure de données addition-
nelle et de nos algorithmes pour la mise à jour progressive. Ces notions sont l’éventail (span)
d’un préfixe et le préfixe remplaçant (the coverer). Puis nous proposons dans les sections 3.5
et 3.6 deux mécanismes pour la mise à jour de tables de routage basées sur un trie multibit.

Due à la transformation de préfixes, le trie multibit ne mémorise pas les préfixes origi-
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naux de la table de routage, mais les préfixes dérivés. Or les opérations de mise à jour de la
table de routage doivent agir directement sur les préfixes originaux.

La recherche du plus long préfixe (BMP) dans un trie multibit est effectuée par approxi-
mation successives. Ainsi, l’opération de recherche consiste essentiellement à parcourir à
chaque pas un subtrie du niveau suivant. Dans chaque subtrie, on obtient le plus long préfixe
(BMP) local commun avec l’adresse destination. À la fin du parcours dans le trie multibit,
le dernier BMP local obtenu sera le résultat de la recherche.

Chaque subtrie de degré 2k est représenté par un tableau à 2k entrées ; k étant le nombre
de bits à tester dans chaque subtrie. Pour que l’opération de recherche marche correctement,
il est nécessaire que chaque entrée du tableau soit associée à son BMP local. Le BMP local
d’une entrée peut être vide.

Lorsqu’un préfixe est inséré ou supprimé un certain nombre d’entrées d’un tableau
doivent être mises à jour ; c’est à dire, on doit mettre à jour leur BMP local. Le nombre
d’entrées à mettre à jour est déterminé par l’éventail (span) du préfixe à insérer ou suppri-
mer. Potentiellement, toutes les entrées dans l’éventail du préfixe peuvent être modifiées,
mais seulement celles qui n’appartiennent pas à des éventails plus spécifiques seront modi-
fiées. Rappelons que, en général, une même entrée d’un tableau peut être incluse dans des
éventails de plusieurs préfixes. La modification des entrées dans un éventail consiste à chan-
ger leur BMP local avec un nouveau BMP local. S’il s’agit d’insérer un nouveau préfixe P,
alors le nouveau BMP local sera P. S’il s’agit de supprimer un préfixe P alors il faut trouver
le nouveau BMP local Q parmi les autres préfixes du subtrie dont il s’agit. En fait, Q est le
préfixe dont l’éventail est le plus petit éventail incluant l’éventail de P.

Pour effectuer la mise à jour d’une table de routage basée sur un trie multibit, il est
nécessaire de mémoriser les préfixes originaux. Dans notre approche les préfixes originaux
sont mémorisés dans des listes chaînées associées aux entrées du tableau. Ces listes chaînées
contiennent aussi avec chaque préfixe original l’information de routage correspondante. Les
préfixes originaux mémorisés dans les listes chaînées sont utilisés dans la mise à jour pour
deux objectifs. Le premier objectif est de décider quels sont les entrées à modifier dans
l’éventail d’un préfixe donnée P. Les entrées à ne pas modifier seront déterminées par les
préfixes contenus dans l’éventail du préfixe P qui sera inséré ou supprimé. Le deuxième
objectif est de trouver le préfixe remplaçant Q lors de la suppression d’un préfixe.

Pour accélérer l’accès aux préfixes, nous proposons deux méthodes. La première mé-
thode, proposée dans la section 3.5, utilise un vecteur de bits par entrée dans chaque tableau.
Ainsi, chaque vecteur de bits d’une entrée est associé aux préfixes mémorisés dans la liste
chaînée de la même entrée. En d’autres termes, chaque préfixe dans une liste chaînée est
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identifié par un bit dans le vecteur de bits correspondant. Les vecteurs de bits permettent
d’identifier rapidement la présence ou absence d’un préfixe en testant le bit correspondant.
Notre deuxième méthode, proposée dans la section 3.6, n’utilise pas un vecteur de bits par
entrée mais un vecteur de bits par tableau. Nous appelons ce vecteur de bits par tableau le
vecteur de bits PN. Le vecteur de bits PN est un vecteur de bits qui résulte de la compression
de tous les vecteurs de bits du tableau de la première méthode. L’utilisation du vecteur de
bits PN optimise l’occupation mémoire ; en revanche, elle requiert le calcul de fonctions
pour décoder la position des préfixes dans le vecteur de bits PN. Mais la principal avantage
du vecteur de bits PN est qu’il séparé de la structure de données principale, c’est à dire celle
qui est utilisée pour la recherche du BMP. Cette séparation implique que la recherche du
BMP ne sera pas perturbée par le mécanisme de mise à jour. Nous avons mesuré le temps de
recherche du BMP pour nos deux mécanismes et nous l’avons comparé avec celui d’un trie
multibit de base, c’est à dire un trie multibit sans la capacité d’effectuer des mises à jour.
Nos mesures montrent que nos mécanismes de mise à jour ont un impact quasiment nul sur
les performances de l’opération de recherche du BMP.

En conclusion, nous avons proposé deux mécanismes pour effectuer la mise à jour pro-
gressive de tries multibit représentant une table de routage. La mise à jour requiert que
les préfixes originaux soient mémorisés car le trie multibit ne le fait pas en réalité. Nous
utilisons des listes chaînées pour stocker les préfixes originaux. Potentiellement, une liste
chaînée est associée à chaque entrée d’un tableau (subtrie). Pour optimiser les opérations
de mise à jour, il faut accélérer l’accès et le parcours de ces listes chaînées. Pour ce faire,
notre premier mécanisme utilise un vecteur de bits dans chaque entrée de chaque subtrie
(tableau). Notre second mécanisme est plus efficace dans l’utilisation de la mémoire car il
utilise un seul vecteur de bits par subtrie. En revanche, notre second mécanisme doit calculer
des fonctions pour décoder la position des préfixes dans le vecteur de bits PN.

Un cadre de référence et taxonomie pour des algorithmes de
consultation d’adresse IP

À part les tries multibit, d’autres approches ont été proposées pour optimiser la recherche
de l’information de routage dans les routeurs, c’est à dire pour optimiser la consultation
d’adresse IP dans les tables de routage. Nous proposons dans cette thèse une taxonomie de
ces méthodes. Notre taxonomie est basée sur l’observation que la difficulté de trouver le plus
long préfixe commun avec l’adresse destination est sa double dimension : valeur et longueur.
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Ainsi, pour déterminer le BMP, il est nécessaire aussi bien de trouver une correspondance
au niveau de la valeur de la séquence binaire, que de trouver la longueur appropriée. Notre
taxonomie classifie les algorithmes de recherche en fonction de la dimension principale à
chercher et si cette recherche est linéaire ou binaire. Ainsi, nous considérons les quatre
cas principaux suivants : 1) recherche linéaire basée sur la dimension de la longueur ; 2)
recherche binaire basée sur la dimension de la longueur ; 3) recherche linéaire basée sur la
dimension de la valeur ; 4) recherche binaire basée sur la dimension de la valeur.

Lorsque nous présentons et classifions les différents mécanismes, l’accent est mis sur le
type de transformation que l’on effectue sur l’ensemble de préfixes pour chaque mécanisme.
Cette approche unificatrice que nous proposons nous permet de comprendre et de compa-
rer les compromis des différentes mécanismes. La transformation de l’ensemble original
de préfixes consiste, en général, à désagréger de façon contrôlée l’information de routage.
Cette transformation vise à optimiser le temps de recherche. Cependant cette désagrégation
représente un compromis entre d’une part le temps de recherche de l’information de routage
et d’autre part la place mémoire nécessaire et le temps de mise à jour de l’information de
routage. Dans ce qui suit nous analysons brièvement les différents cas de notre taxonomie.

Dans le premier et deuxième cas la recherche est basée sur la dimension de la longueur.
Les préfixes peuvent être organisés soit en utilisant une table pour chaque longueur diffé-
rente ; soit en utilisant des tries. Dans le cas de l’utilisation de tables pour chaque longueur,
l’approche la plus facile est de faire une recherche linéaire. Ainsi, les tables sont cherchées
par ordre descendant de longueur. Dans une table, on cherche si une des entrées a un préfixe
commun avec l’adresse destination. Cette opération peut être effectuée par une fonction de
hachage. Si cette entrée existe, alors le BMP se trouve à cette entrée, ainsi que l’information
de routage correspondante. Si ce n’est pas le cas, alors on continue la recherche dans les
autres tables. Dans le pire des cas, toutes les tables devront être cherchées, et donc la com-
plexité du temps de recherche est O(W ), W étant la longueur maximale des préfixes. Ceci
supposant une fonction de hachage parfaite.

Évidemment, une recherche binaire est préférable mais une recherche binaire sur la lon-
gueur des préfixes ne peut être effectuée qu’à condition de transformer l’ensemble de pré-
fixes de la table de routage. Dans une recherche binaire, on réduit l’espace de recherche de
moitié à chaque fois. Si la recherche est basée sur la longueur des préfixes, alors on vou-
drais décider à chaque fois dans quelle moitié des tables se trouve le BMP. Ainsi,on cherche
tout d’abord la table correspondant à la longueur de milieu et si l’on trouve une entrée étant
préfixe de l’adresse destination, c’est à dire si on obtient un succès partiel, alors on continue
la recherche uniquement dans les tables correspondant aux longueurs plus grandes ; et dans
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le cas contraire, on continue la recherche dans les tables correspondant aux longueurs plus
petites. Mais cette approche ne marche pas. Il est vrai que si l’on obtient un succès partiel,
il faut chercher dans la moitié de longueurs plus grandes ; mais s’il n’y a pas de succès par-
tiel, alors le BMP peut se trouver dans n’importe quelle moitié. Pour que la décision basée
sur le succès partiel marche, il est nécessaire de transformer l’ensemble de préfixes. Cette
transformation consiste à ajouter des préfixes qui serviront à guider la recherche dans le bon
sens. Dans la section 4.2.3 nous décrivons cette transformation.

Dans le cas de tries, l’optimisation de la recherche est réalisée en utilisant des tries multi-
bit. Nous avons explique l’utilisation de tries multibit dans le chapitre 3, où nous avons aussi
proposé deux mécanismes de mise à jour progressive. Les tries multibit peuvent être utilisés
en combinaison avec d’autres techniques. Par exemple, dan la section 4.2.2.2 nous expli-
quons comment les tries multibit peuvent être utilisés avec des techniques de compression
afin de réduire la quantité de mémoire nécessaire.

Dans le troisième et quatrième cas la recherche est basée sur la dimension de la valeur.
L’idée de cette approche est de trouver un moyen pour se débarrasser de la dimension de
la longueur des préfixes. Pour ce faire, les préfixes doivent être transformés de sa repré-
sentation valeur/longueur en une représentation comportant deux valeurs. Ces deux valeurs
représentent les bornes de l’intervalle d’adresses défini par le préfixe. Comme ces valeurs
n’ont pas une dimension de longueur, il est possible d’utiliser les méthodes classiques de re-
cherche basées sur la comparaison de valeurs. Ainsi, le problème de trouver le BMP revient
à déterminer, pour une adresse donnée, un des bornes appropriés ; car ces bornes auront
l’information de routage associée au préfixe. En principe, n’importe quel de deux bornes
peut être cherché pour une adresse donnée. Par exemple, si l’on choisit la borne supérieur,
alors trouver cette borne revient à chercher le successeur de l’adresse en question. Tandis
que si l’on choisit la borne inférieure, alors on cherchera le prédécesseur de l’adresse en
question. Néanmoins, cette approche ne marche pas si les intervalles contiennent d’autres
intervalles ; ce qui est le cas avec CIDR. Le problème est que si des intervalles contiennent
d’autres intervalles, chercher l’information de routage appropriée requiert chercher tantôt
le prédécesseur tantôt le successeur, en fonction de l’ensemble spécifique de préfixes et de
l’adresse en question. Pour que cette approche marche en cherchant soit le prédécesseur ou
soit le successeur mais un seul et bien déterminé des deux, il faut transformer les intervalles
des préfixes originaux en intervalles disjoints. Avec des intervalles disjoints, le BMP d’une
adresse destination est obtenu en cherchant soit son prédécesseur soit son successeur. Le
prédécesseur ou le successeur peut être trouvé en utilisant des méthodes de recherche tradi-
tionnelles. Dans la section 4.3 nous montrons en détail comment ces méthodes de recherche
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traditionnelles sont utilisées pour trouver le BMP. Nous signalons aussi la difficulté de la
mise à jour due à la transformation des préfixes en intervalles disjoints. En effet, un seul
préfixe peut être transformé en O(N ) intervalles disjoints. Nous montrons aussi comment la
mise à jour peut être effectuée avec cette approche.

Après avoir analysé les différentes approches pour trouver le BMP, dans la section 4.5.1
nous les comparons au niveau des complexités en temps, en espace et en temps de mise à
jour. Puis dans la section 4.5.2 nous comparons les performances de différents approches
en mesurant le temps de recherche. Les performances ont été mesurées en utilisant l’infor-
mation de routage d’une vrai table de routage d’un routeur de cœur de réseau. Nous avons
trouvé que l’approche avec les meilleurs performances pour le temps de recherche est l’ap-
proche qui utilise un trie multibit compressé. Cependant, cette approche ne permet pas la
mise à jour progressive. Dans l’autre extrême, l’approche du trie binaire est la moins per-
formante. Les approches basées sur des tries multibit non compressés offrent de bonnes
performances tout en gardant la possibilité d’effectuer de mises à jours progressives.

Optimisation de l’usage des buffers dans les routeurs.

Bien que déterminer l’information de routage soit une tâche essentielle pour acheminer
un paquet, pour qu’un routeur accomplisse l’acheminement d’un paquet, il faut en plus le
commuter du port d’entrée au port de sortie et puis le transmettre sur le lien de sortie. Or,
il se peut que lorsqu’un paquet doit être transmis, le lien de sortie soit déjà occupé. En
général, plusieurs paquets provenant d’entrées différentes peuvent simultanément vouloir
aller au même lien de sortie. Le routeur doit donc résoudre la contention du lien de sortie
pour pouvoir acheminer les paquets. L’utilisation d’un buffer aide à résoudre la contention
du lien de sortie en évitant que des paquets soient jetés lorsque le lien de sortie est occupé.
Ainsi, l’utilisation d’un buffer est essentielle pour que le trafic des différentes liens d’entrée
puissent être multiplexé sur le lien de sortie. Un buffer a donc une fonction de multiplexage.
En général, cette fonction de multiplexage d’un buffer permet que les différents flux puissent
partager le même lien de sortie. Mais cette fonction de multiplexage peut être perturbée
par le trafic de certains utilisateurs, car les buffers sont aussi utilisées pour absorber les
rafales des flux individuels. Il est nécessaire donc pour protéger la fonction de multiplexage
d’un buffer de contrôler le trafic. Traditionnellement, le contrôle du trafic dans l’Internet est
effectué par les sources. En particulier, les sources utilisent TCP pour adapter leur trafic en
fonction de la charge du réseau. Néanmoins, en général, les utilisateurs ont le choix d’être
ou ne pas être coopératifs. Ainsi, en général, les sources coopératives sont pénalisées de
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manière intentionnelle ou non par les sources qui ne contrôle pas leur trafic. Pour résoudre
ce problème, c’est à dire pour isoler les flux, il est nécessaire que les routeurs protègent la
fonction de multiplexage des buffers. Dans cette thèse nous proposons un mécanisme appelé
MuxQ qui optimise l’usage du buffer de façon à protéger sa fonction de multiplexage, et
fournir ainsi un haut dégrée d’isolement entre les flux qui partagent le même lien de sortie.

Dans la section 5.1 nous analysons les fonctions des buffers dans les routeurs. En par-
ticulier, nous concluons que pour protéger la fonction de multiplexage des buffers deux
conditions sont nécessaires. La première est d’avoir espace libre dans le buffer pour absor-
ber des surcharges passagères, soit sous la forme de flux nouveaux soit sous la forme de
rafales passagères des flux individuels. La deuxième condition concerne le choix de paquets
à jeter. Ce choix doit être effectué en fonction du niveau d’occupation de chaque flux dans
le buffer.

Dans la section 5.3 nous proposons MuxQ un mécanisme qui fournit un haut degré
d’isolation entre flux. MuxQ est basé sur l’idée de protéger la fonction de multiplexage de
la fonction d’absorption de rafales d’un buffer. Pour remplir la première condition (c’est à
dire avoir de la place libre dans le buffer pour les surcharges passagères) MuxQ contrôle la
longueur de la queue. Quand à la deuxième condition, MuxQ prends la décision d’accepter
ou jeter un paquet en fonction de l’information d’état d’un nombre limité de flux : les flux
qui ont des paquets dans le buffer à ce moment-là. L’algorithme de MuxQ consiste à décider
pour chaque paquet s’il sera accepté ou pas dans le buffer. Cette décision est basée sur
l’information du nombre de paquets que le flux a déjà dans le buffer ainsi que le nombre
de flux actifs, c’est à dire le flux qui ont des paquets dans le buffer à ce moment-là. Notons
que l’information d’état à garder est limitée ce qui permet à notre mécanisme de passer à
l’échelle. Par ailleurs, de façon à ce qu’un paquet appartenant à un flux nouveau puisse être
accepté la taille de la queue est contrôlée par un paramètre que nous dénotons par ltqlen

(pour long-term queue length). La valeur de ce paramètre détermine la longueur de la queue
à long terme lorsque le nombre de flux actifs reste constant et le trafic de ces flux surchargent
le lien de sortie. Pour qu’un paquet appartenant à un flux nouveau soit accepté ce paramètre
doit être inférieur à la taille du buffer.

Lorsqu’un paquet ne peut pas être transmis sur le lien de sortie et doit donc être stocké
dans le buffer, le routeur vérifie s’il s’agit d’un flux actif et dans ce cas combien de paquets
il a déjà dans le buffer. Cette vérification est effectuée en utilisant une opération de hachage
sur une table qui garde l’état des flux actifs. S’il s’agit d’un paquet d’un nouveau flux, le
paquet est accepté. S’il s’agit d’un flux actif le routeur vérifie si le nombre de ses paquets
dans le buffer est inférieur à maxpkts = ltqlen

n
, où n est le nombre de flux actifs. S’il est
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vrai le paquet est accepté, dans le cas contraire le paquet est jeté. Notons que maxpkts est
le nombre maximum de paquets qu’un flux peut avoir dans le buffer en même temps. Cette
valeur est dynamique car elle change en fonction du nombre de flux actifs. Notons aussi que
la longueur de la queue peut être plus grande que ltqlen. Ceci arrive lorsque la longueur de
la queue est déjà ltqlen est des paquets de nouveaux flux arrivent. Notons également que
puisque maxpkts varie en fonction du nombre de flux actifs, un flux peut bien avoir plus
de paquets que la valeur maxpkts. Cependant, cette situation sera passagère car les paquets
suivants de ce flux ne seront pas acceptés (tant que le nombre de ses paquets reste supérieur
ou égal à maxpkts, bien sûr). La section 5.3.3 présente de façon détaillée les algorithmes
de notre mécanisme MuxQ.

Dans la section 5.4 nous évaluons notre mécanisme en utilisant le simulateur ns-2. En
particulier, nous étudions la capacité de MuxQ pour isoler différent types de flux. Nous
comparons les performances de notre mécanisme avec celles des mécanismes Drop-Tail,
CSFQ, FRED et DRR. Nous présentons les résultats de simulations avec des conditions de
trafic différentes. Nous avons simulé les scénarios suivants : uniquement des flux coopératifs
(TCP) ; des flux coopératifs avec des flux non coopératifs ; des flux de courte durée type
web avec des flux de long durée (coopératifs et non coopératifs) ; uniquement des flux non
coopératifs mais à différents débits ; Les résultats de ces simulations montrent que MuxQ
fournit un haut degré d’isolation dans tous ces cas. Bien que DRR et CSFQ offrent aussi
un haut degré d’isolation de flux, MuxQ a les avantages suivantes : MuxQ n’a pas besoin
de maintenir une queue par flux, comme c’est le cas pour DRR. MuxQ ne maintien qu’une
quantité limitée d’état, l’information d’état concernant les flux qui ont des paquets dans le
buffer. Une autre avantage de MuxQ est que à la différence de CSFQ, MuxQ n’a pas besoin
de modifications dans l’entête du paquet IP. En outre, MuxQ n’attend pas une coopération
spécifique vis à vis des autres routeurs, comme c’est le cas de CSFQ. En effet CSFQ a besoin
que les routeurs de bordure mesure le débit des flux et que cet information soit enregistrée
dans l’entête des paquets IP. Ce qui veut dire qu’à la différence de CSFQ, MuxQ peut être
déployé de façon incrémentale. MuxQ est donc un mécanisme simple, deployable et qui
fournit un haut degré d’isolation de flux, tout en gardant une quantité limitée d’état.

Conclusion

Une caractéristique clé de l’Internet est sa capacité d’adaptation. L’Internet a été capable
de s’adapter au nombre croissant d’utilisateurs et de volume de trafic. Ce type d’adaptation
est souvent connue comme la capacité de passage à l’échelle. L’Internet a été aussi capable
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de s’adapter aux changements de topologie et de charge. Cette adaptation consiste à dégrader
graduellement le service offert par le réseau et elle détermine la robustesse de l’Internet.
Cette thèse a été motivée par l’idée de maintenir la robustesse et la capacité de passage à
l’échelle de l’Internet.

Dans le paradigme de datagramme de l”internet, les routeurs jouent un rôle très im-
portant, car c’est eux qui doivent traiter chaque paquet. Comme chaque paquet doit être
traité de façon indépendante, la performance de l’Internet dépend directement de la capa-
cité de traitement des routeurs. Dans cette thèse, nous avons proposé des algorithmes pour
améliorer l’acheminement de paquets dans les routeurs best-effort. Plus spécifiquement, des
mécanismes permettant la mise à jour progressive de tables de routage basées sur les tries
multibit, tout en optimisant l’opération de recherche d’information de routage. Nous avons
également proposé un cadre de référence et une taxonomie des méthodes existants pour
optimiser la recherche d’information de routage, quand elle nécessite la recherche du plus
long préfixe commun avec l’adresse destination du paquet. Finalement nous avons proposé
MuxQ, un mécanisme pour fournir un haut degré d’isolation de flux sans avoir besoin que
les sources soient coopératives.

Bien que les algorithmes que nous avons proposés dans cette thèse contribuent à amé-
liorer la performance de l’acheminement de paquets dans les routeurs, le trafic de l’Internet
ne cesse pas de croître. Nos travaux futurs visent à continuer à améliorer d’avantage la per-
formance de l’acheminement de paquets dans les routeurs best-effort. Dans le cas de l’opti-
misation de la recherche d’information de routage, nous envisageons de nouvelles méthodes
qui puissent effectuer l’opération de recherche avec un seul accès à la mémoire. Nous consi-
dérons deux approches possibles. La première consiste à paralléliser le traitement lors de
l’utilisation de tries multibit. Ici les problèmes à résoudre sont notamment la distribution de
la mémoire dans les différentes étapes parallèles. Un autre problème est comment supporter
la mise à jour dans ce type d’approche sans dégrader l’opération de recherche. La seconde
approche consiste à utiliser des TCAMs. Les TCAMs permettent de chercher l’information
de routage avec un seul accès à la mémoire, mais les TCAMs nécessitent que les préfixes
soient ordonnés par longueur. Dans ce cas, la difficulté est de trouver de méthodes efficaces
pour maintenir les préfixes ordonnés tout en permettant de mises à jour progressives de la
table de routage.

En ce qui concerne l’isolation de flux, nous avons supposé que les buffers sont placés
dans les port de sortie des routeurs. Cependant les routeurs peuvent avoir aussi des buffers
juste avant et après le commutateur interne du routeur. Nous envisageons des mécanismes
pour l’isolation de flux qui exploitent cette caractéristique.
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Chapter 1

Introduction

The Internet allows host computers to communicate by using packets of bits. To this end,
packets are transfered by routers which are interconnected by links. In the Internet, routers
treat each packet independently of the others. This mode of operation is known as the data-
gram paradigm. The datagram paradigm allows the Internet to provide a robust service be-
cause routers can make different forwarding decisions for each packet according to changes
in the topology of the network. While the datagram paradigm provides a robust service, to
keep pace with increasing traffic and wide spectrum of traffic requirements, the packet for-
warding capacity of routers need to be optimized. This thesis proposes several algorithms
to optimize the performance of the packet forwarding process in best effort routers.

To forward packets, routers must complete three critical tasks: First, routers must make
a forwarding decision; that is, find out the next hop to which the packet has to be sent as well
as the output port through which the packet should be sent. The operation of determining the
forwarding information is based on the packet’s destination address and it is called address
lookup. Second, routers must transfer packets from the input port to the appropriate output
port, in an operation called switching. After switching, the router can transmit the packet on
the outgoing link. However, due to the statistical nature of packet multiplexing, it is possible
that packets from different inputs need to be forwarded through the same output link. Hence,
a third critical task in the packet forwarding process is to resolve possible contentions for
packets that need to be forwarded through the same output link. We concentrate in this thesis
on the first (address lookup) and third (output link contention) critical tasks of the packet
forwarding process. In the next section we summarize the main contributions of this thesis.
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1.1 Contributions

Incremental updates for multibit-tries based forwarding databases

Routers make their forwarding decisions based on routing information gathered by routing
protocols. Routers maintain simplified routing information in a forwarding database, also
called a forwarding table. To cope with scalability issues, the forwarding database does not
contain an entry for each possible destination address; instead, the destination addresses are
grouped; and each group is represented in the forwarding database by an address prefix.

One of the main tasks of the packet forwarding process in IP routers is the address lookup
operation. With CIDR, the address lookup operation consists in finding the best (longest)
prefix that matches the destination address of the incoming packet. Since the performance
of routers depends on its forwarding capacity, high performance routers must provide fast
address lookups. One way to provide fast address lookups is the use of a data structure
called multibit trie. The idea is to transform the set of original prefixes of a forwarding
database into a different set of prefixes with less different lengths but with the same for-
warding information. While several schemes has been proposed to provide fast address
lookups with multibit tries, most of these schemes diminishes the issue of providing incre-
mental updates. Since one of the key aspects of the Internet is its robustness in the form of
adaptation to topological changes, providing incremental updates is a requirement. In fact,
it is observed that routing information does change frequently in backbone routers. We pro-
pose in this thesis two incremental update mechanisms for address lookup schemes based on
the multibit-trie data structure. First, we determine the requirements to support incremental
updates in multibit-tries based forwarding databases. Then we propose algorithms and data
structures to support incremental updates. In particular, we propose a data structure called
Prefix Nesting bit vector, or PN bit vector for short. The PN bit vector encodes a set of
prefixes and their nesting structure, for this information is necessary to support incremental
updates. The PN bit vector is used as an additional data structure to the main multibit trie
data structure. The use of the PN bit vector does not affect the Best-Matching-Prefix lookup
operation because our scheme effectively separates the PN bit vector from the main data
structure used for doing efficient lookup operations. We present performance results of a
C-language implementation of our scheme. Performance results are shown in terms of time
for the search, insert and delete operations. Memory requirements are also shown.

Part of this work is based on our previous publication [RSD00].
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A Framework and a Taxonomy of IP Address Lookup Algorithms

Multibit tries are not the only way to provide fast address lookups. Another contribution
of this thesis is the introduction of a taxonomy and a framework of reference of existing
fast address lookup schemes. Our taxonomy is based on the observation that the difficulty
of the best prefix matching problem resides in its double dimension: value and length. As
a result, determining the best matching prefix involves not only comparing the bit pattern
itself (i.e., finding a match), but also finding the appropriate length (i.e., the longest one).
Our taxonomy classifies the address lookup schemes according to these two dimensions and
also if a linear or a binary search is performed. We analyze the next four cases: 1) Linear
search based on values; 2) Binary search based on values; 3) Linear search based on lengths;
4) Binary search based on lengths.

Routers aggregate forwarding information by the use of prefixes. In our analysis we
emphasize that to improve the performance of the address lookup operation, the different
methods make a transformation of the original set of prefixes of the forwarding database.
We state the different tradeoffs of the different transformation methods in terms of time and
space and we compare the performance of the different schemes. While the most important
aspect is the search operation, we also analyze the potential capabilities of the schemes to
support incremental updates. We state that to support incremental updates, a mechanism
must have additional data structures to keep track of the prefix transformation process.

Part of this work is based on our previous publication [RSBD01].

Optimizing the use of buffers for flow isolation

While performing an address lookup operation allows routers to decide where to send a
packet next, this task is only a part of the process to achieve the actual relaying of a packet.
Once the router has decided through which output port the packet will be forwarded, the
router must multiplex all the packets that need to be forwarded through the same output
port. Furthermore, routers must resolve possible contention for a given output port because
it is possible that several packets from different inputs need to be forwarded through the
same output port at the same time. Usually, routers use buffers to address the problem of
output-port contention. Buffering allows routers to retain packets while one of the contend-
ing packets is transmitted. However, buffering alleviates the output-port contention only to
some extent because, in case of sustained overload, the buffer will eventually overflow and
packets will be dropped. Hence, buffers can help to resolve contention only in the case of
transient overload. Unfortunately, in the Internet sustained overload is possible and to make
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effective use of buffers one needs mechanisms to control the traffic. The control of traffic
can be made in two places: at end systems or/and at routers. Traditionally, the traffic control
in the Internet has been done by end systems. The sources use algorithms to try to discover
the available resources in the network and so adapt their traffic pattern in a dynamic manner.
In particular, if congestion occurs the sources should respond by reducing their traffic. The
classical algorithm to control traffic of end systems is the TCP congestion control protocol.
Nevertheless, in today’s Internet responding to congestion is rather a user’s choice and in
general there are responsive as well as unresponsive users. As a result, buffers in routers are
not always used effectively. When the buffers are not used effectively, the network service
is degraded in the form of packet losses and/or packet delay. Furthermore, adaptive sources
are penalized because unresponsive sources, intentionally or unintentionally, abuse the co-
operative nature of responsive traffic. To address this problem, routers need to provide flow
isolation. Providing flow isolation is important because with flow isolation the performance
perceived by users does not depend on the good behavior of other users. This thesis proposes
also a mechanism to optimize the use of the buffer in routers to provide flow isolation. First,
we study the buffering functionality of IP routers. We find the desired properties of a router
buffer system then we design a mechanism based on these characteristics. We emphasize
that buffers in routers have two functions: a multiplexing function and a burst absorbing
function. Our mechanism, which we call MuxQ, is based on the idea of protecting the
multiplexing function from the burst absorbing function by progressively and dynamically
controlling the allocation of buffer space in a FIFO queue. MuxQ is a new queue manage-
ment mechanism that provides flow isolation by using a very simple algorithm and without
using per-flow queuing.

We compare the performance of the MuxQ scheme to that of classical Drop-Tail and to
that of other proposed schemes, including CSFQ and DRR which provides nearly perfect
isolation by using per-flow queuing. By keeping only limited flow-state, our mechanism
performs very much better than Drop-Tail. MuxQ achieves performance similar to that of
CSFQ but MuxQ does not need modifications to the IP packet header as it is the case for
CSFQ.

One of the important characteristic of a new router mechanism is its incremental deploy-
ability. MuxQ does not need modifications of the IP packet header. Moreover, since MuxQ
does not expect a special behavior from other routers, MuxQ routers can interact without
problem with classical Drop-Tail routers and thus MuxQ can be deployed incrementally.
We believe that MuxQ is an interesting approach to achieve a high degree of flow isolation
with respect to Drop-Tail by using a very simple algorithm.
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Part of this work is based on our previous publication [RSD03].

1.2 Thesis Overview

The rest of this thesis is organized as follows: Chapter 2 gives the relevant background for
the per-packet processing in best effort routers, along with short reviews of work in the re-
lated areas. Chapter 3 presents our first contribution: a set of data structures and algorithms
to provide incremental updates for BMP lookup schemes based on multibit tries. Chapter
4 presents our second contribution: a taxonomy and a reference framework to analyze and
compare fast BMP lookup algorithms. Chapter 5 presents our third contribution: a scheme
to optimize the use of buffers in best effort routers towards providing flow isolation. Finally
chapter 6 gives conclusions and discusses directions for future work.
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Chapter 2

Background and Problem Definition

The networks that make up the Internet are composed of end systems, communication links
and routers. End systems communicate by using IP, the Internet Protocol [Pos81]. IP pro-
vides a basic communication service based on the datagram paradigm. With the datagram
paradigm, the information to be transmitted is partitioned into independent packets with a
header containing routing directive information. These packets are transmitted through the
communication links with the help of routers which forward packets towards their final des-
tination. Each packet is independent because in the datagram paradigm the routers do not
keep state of the on-going connections. The end systems use the Internet on a demand basis;
that is, the network resources are not reserved; instead, the Internet allows end systems to
share the network resources by using packet switching.

The datagram paradigm allows end systems ready access to the network because users
can send data at any time without the need to request permission before transmitting; end
systems simply send packets whenever they have data to send; and routers multiplex packets
in an on-demand order. In other words, routers employs statistical multiplexing. Moreover,
statistical multiplexing is particularly adequate to the bursty characteristics of the data traf-
fic. The datagram paradigm provides also robustness because each packet is independent
and routers can adapt to changes in the topology of the network. While datagram packet
switching provides robustness and leads to a more efficient use of network resources, it re-
quires expensive per-packet processing. As a result the performance of the Internet depends
directly on the capacity of routers to process packets. Improving per-packet processing has
become even more important because of the increasing traffic load that faces the Internet.
We describe in this chapter some background to understand the problems addressed in this
thesis. In particular, we will see in the next section the main tasks that a router must perform
to process packets.
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2.1 The Packet Forwarding Function of Routers

Routers transfer packets between networks and, ultimately from senders to receivers. This
transfer of packets, called packet forwarding is the main task of a router. A generic router
architecture is shown in figure 2.1. A router consists basically of some input ports, where
packets are received; some output ports, through which packets are forwarded; a switching
fabric that transfers packets from the input ports to the output ports; and a routing processor
that executes the routing protocols (not shown in the figure).

forwarding
decision

forwarding
decision

forwarding
decision

Switching Fabric

Input Ports Output Ports

Figure 2.1: A basic IP router

When a router receives a packet in an incoming link, the router should forward the packet
to the next router or to the final destination. More precisely, to forward a packet, the router
requires to perform three critical tasks1:

• Make a forwarding decision; that is find out the next hop to which the packet has to
be sent.

• Switch the packet from the input port to the appropriate output port.

• Resolve possible contention for packets that need to be forwarded through the same
output link at the same time.

While all three of these tasks present challenges of their own, in this thesis we are interested
only in the first and third tasks of the packet forwarding process of IP routers.

For the first task, routers make forwarding decisions based on the destination address
of the packet and the contents of a forwarding table. Since the operation of determining
the forwarding information is based on the packet’s destination address, it is called address
lookup. The address lookup operation is discussed in section 2.2. In particular, we will

1Other less time consuming tasks are also performed in the packet forwarding process. The interested
reader can refer to [Bak95] [Awe00] [PCB+98] for the details.
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see the relation between the address lookup operation and evolution of the IP addressing
structure. Later in section 2.3, we describe more precisely what the address lookup operation
consist of in the current Internet addressing scheme.

Concerning the second task, we do not address in this thesis the topic of how packets are
switched internally in routers. The next reference can be consulted for details on this topic
[Min01].

For the third task, routers generally resolve output link contention by the use of a buffer.
However, the use of buffers to resolve output link contention is only effective under condi-
tions of transient overload. In the general case , when sustained overload can exist, to obtain
effective resolution of output link contention, routers need to make effective use of buffers
by controlling the input traffic. In section 2.4, we discuss the relation between the output
link contention resolution and the problem of flow isolation.

2.2 The IP Address Lookup Operation

The primary role of routers is to forward packets towards their final destination. To this
purpose, a router must decide for each incoming packet where to send it next. More exactly,
the forwarding decision consists in finding both the address of the next hop (router or final
destination) and the egress port through which the packet should be sent. This forwarding
information is stored in a forwarding table that the router computes based on the information
gathered by routing protocols [Hui00]. The router searches for the appropriate entry in the
forwarding table, based on the destination address of the packet; this operation is called
address lookup. To cope with scalability, routers do not maintain forwarding information
at the granularity level of individual destination addresses; instead, entries in the forwarding
tables represent aggregates of addresses. The way the forwarding information is aggregated
has followed the evolution of the Internet addressing architecture. Hence, before discussing
in more detail the address lookup operation of IP routers, we trace in the next section the
evolution of the IP addressing architecture2.

2.2.1 Evolution of the Internet Addressing Architecture

2.2.1.1 The Classful Addressing Scheme

In IP version 4, IP addresses are 32-bit binary numbers and, when broken up into 4 groups
of 8 bits, are normally represented as four decimal numbers separated by dots. For example,

2For additional information of the IP addressing the reader is referred to [Sem01].
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the address 10000010_01010110_00010000_01000010 corresponds in the dotted-decimal
notation to 130.86.16.66.

One of the fundamental objectives of the Internet Protocol is to interconnect networks;
so routing on a network basis was a natural choice (rather than routing on a host basis).
Thus, the IP address scheme initially used a simple two-level hierarchy, with networks at
the top level and hosts at the bottom level. This hierarchy is reflected in the fact that an IP
address consists of two parts, a network part and a host part. The network part identifies the
network to which a host is attached and thus all hosts attached to the same network agree in
the network part of their IP addresses.

Since the network part corresponds to the first bits of the IP address we will refer to
this network part also as the address prefix, or simply the prefix, for short. We will
write prefixes as bit strings of up to 32 bits in IPv4 followed by a “*”. For example, the
prefix 1000001001010110* represents all the 216 addresses that begin with the bit pattern
1000001001010110. Alternatively, prefixes can be indicated using the dotted-decimal no-
tation, so the same prefix can be written as 130.86/16, where the number after the slash
indicates the length of the prefix.

With a two-level hierarchy, IP routers forwarded packets based only on the network part,
until packets reached the destination network. As a result, a forwarding table only needed
to store a single entry to forward packets to all the hosts attached to the same network. This
technique is called address aggregation and allows routers to represent with a single prefix
a group of addresses with the same forwarding information. In other words, each entry in
a forwarding table contains a prefix and its corresponding forwarding information, as can
be seen in Table 2.1. To find the forwarding information for a given destination address, a
router search for the prefix in the forwarding table that matches the corresponding bits of
the destination address.

Destination Address Next-hop Output
Prefix interface

24.40.32/20 192.41.177.148 2
130.86/16 192.41.177.181 6

208.12.16/20 192.41.177.241 4
208.12.21/24 192.41.177.196 1

167.24.103/24 192.41.177.3 4

Table 2.1: A forwarding table
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To forward packets based on the network part, the IP address space must be allocated
by partitioning it into networks. The addressing architecture specifies how the allocation of
addresses is performed, that is it defines how to partition the total IP address space of 232

addresses. Specifically, how many network addresses will be allowed and of what size each
of them should be. When the Internet addressing was initially designed, a rather simple
address allocation scheme was defined, which is known today as the classful addressing
scheme. Basically, three different sizes of networks were defined in this scheme, identified
by a class name: class A, B, and C (see figure 2.2). Size of networks was determined by the
number of bits used to represent the network part and the host part. Thus networks of class
A, B or C consisted in an 8, 16 or 24-bit network part and a corresponding 24, 16 or 8-bit
host part.

Network Host

Class C
110

21 8

Class B
10

14 16

Network Host

Class A 0
7 24

Network Host

Figure 2.2: Classful Addresses

With this scheme there were very few class A networks and their addressing space rep-
resented 50% of the total IPv4 address space (231 addresses out of a total of 232). There were
16,384 (214) class B networks with a maximum of 65,534 hosts per network and 2,097,152
(221) class C networks with up to 256 hosts. This allocation scheme worked well in the
early days of the Internet. However, the continuous growth of the number of hosts and net-
works have made apparent two problems with the classful addressing architecture. First,
with only three different network sizes to choose, the address space was not used efficiently
and the IP address space was getting exhausted very rapidly, even though only a small frac-
tion of the addresses allocated were actually in use. Second, although the state information
stored in the forwarding tables did not grow in proportion to the number of hosts, it still
grew in proportion to the number of networks. This was especially important in the back-
bone routers, which must maintain an entry in the forwarding table for every allocated net-
work address. As a result, the forwarding tables in the backbone routers were growing very
rapidly [Hus01][Hus]. The growth of the forwarding tables resulted in higher lookup times
and higher memory requirements in the routers and threatened to impact their forwarding
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capacity.

2.2.1.2 The CIDR Addressing Scheme

To allow for a more efficient use of the IP address space and to slow down the growth of the
backbone forwarding tables, a new scheme called Classless Inter-domain Routing or CIDR
[FLYV93] [RL93]was introduced.

Remember, that in the classful address scheme, only 3 different prefix lengths are al-
lowed: 8,16 and 24 corresponding to the classes A, B and C, respectively (see figure 2.2).
CIDR makes more efficient use of the IP address space by allowing a finer granularity in the
prefix lengths. With CIDR, prefixes can be of arbitrary length rather than constraining them
to be 8, 16 or 24 bits long.

To address the problem of forwarding table explosion, CIDR allows address aggregation
at several levels. The idea is that the allocation of addresses has a topological significance.
Then, we can recursively aggregate addresses at various points within the hierarchy of the
Internet’s topology. As a result, backbone routers maintain forwarding information not at the
network level but at the level of arbitrary aggregates of networks. Thus, recursive address
aggregation reduces the number of entries in the forwarding table of backbone routers.

To understand how this works, consider the networks represented by the network num-
bers from 208.12.16/24 through 208.12.31/24 (see figures 2.3 and 2.4). Suppose that in a
router all these network addresses are reachable through the same service provider. From
the binary representation we can see that the leftmost 20 bits of all the addresses in this
range are the same (11010000 00001100 0001). Thus, we can aggregate these 16 net-
works into one “supernetwork” represented by the 20-bit prefix, which in decimal notation
gives 208.12.16/20. Note that indicating the prefix length is necessary in decimal nota-
tion, because the same value may be associated with prefixes of different lengths; for in-
stance, the prefix 208.12.16/20 (11010000 00001100 0001*) is different from the prefix
208.12.16/22 (11010000 00001100 000100*).

While a great deal of aggregation can be achieved if addresses are carefully assigned, in
some situations, a few networks can interfere with the process of aggregation. For example,
suppose now that customer owing the network 208.12.21/24 changes its service provider and
does not want to renumber its network. Now, all the networks from 208.12.16/24 through
208.12.31/24 can be reached through the same service provider, except for the network
208.12.21/24 (see figure 2.4). We cannot perform aggregation as before, and instead of
only one entry, 16 entries need to be stored in the forwarding table. One solution that can
be used in this situation is aggregating in spite of the exception networks and additionally
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110100000000110000010000*

110100000000110000010 0 *1 1

11010000000011000001 *1111

11010000000011000001*208.12.16/20

208.12.31/24

208.12.21/24

208.12.16/24

Figure 2.3: Prefix aggregation

208.12.16/24

208.12.21/24

208.12.31/24

2³²−10
Total IPv4 Adress Space

Figure 2.4: Prefix Ranges

storing entries for the exception networks. In our example, this will result in only two entries
in the forwarding table: 208.12.16/20 and 208.12.21/24, see figure 2.5 and table 2.1. Note
however, that now some addresses will match both entries because prefixes overlap. In order
to always make the correct forwarding decision, routers need to do more than to search for
a prefix that matches. Since exceptions in the aggregations may exist, a router must find
the most specific match, and the most specific match is the longest matching prefix. In
summary, the address lookup problem in routers now requires to search the forwarding table
for the longest prefix that matches the destination address of a packet.

208.12.21/24

208.12.16/20

0 2³²−1
Total IPv4 Adress Space

These adresses match both prefixes

Figure 2.5: Exception prefix
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2.3 The Best (Longest) Matching Prefix Search

In the classful addressing architecture, the length of the prefixes was coded in the most
significant bits of an IP address (see figure 2.2), and the address lookup was a relatively
simple operation: Prefixes in the forwarding table were organized in three separate tables,
one for each of the three allowed lengths. The lookup operation amounted to find an exact
prefix match in the appropriate table. The search for an exact match could be performed
using standard algorithms based on hashing or binary search.

While the use of CIDR reduces the size of the forwarding tables, the address lookup
operation becomes more complex. The use of CIDR complicates the address lookup op-
eration because the prefixes in the forwarding tables have arbitrary lengths and no longer
correspond to the network part since they are the result of an arbitrary number of network
aggregations. Therefore, when using CIDR, the search in a forwarding table can no longer
be performed by exact matching because the length of the prefix cannot be derived from the
address itself. As a result, determining the longest matching prefix involves not only com-
paring the bit pattern itself, but also finding the appropriate length. Therefore, we talk about
searching in two dimensions: value and length. In what follows we will use N to denote
the number of prefixes in a forwarding table and W to indicate the maximum length of
prefixes, which is typically also the length of the IP addresses.

2.3.1 Requirements and Performance Metrics for the BMP Lookup
Schemes

Obviously, the main aspect of the performance of BMP lookup scheme is the search time,
but it is also important to take into account that to provide robustness, routers must be
able to adapt to changes in the network topology. In other words, routers must be able to
update dynamically their forwarding databases. In fact, instabilities in the backbone routing
protocols can change fairly frequently the entries in a forwarding table. Labovitz [Lab99]
found that backbone routers may receive bursts of route changes at rates exceeding several
hundred prefix updates per second. He also found that, in average, route changes occur one
hundred times per second. Thus, update operations must be performed in 10 msec or less. In
summary, a BMP lookup scheme must provide not only fast searches but also incremental
updates.

Performance is measured in both time and space requirements. In general, the time to
access memory dominates the performance of search schemes. Hence the search time is
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generally measured in terms of the number of memory accesses required.

2.3.2 Related BMP Lookup Work

In chapter 4, where we propose a taxonomy and a reference framework for the BMP lookup
algorithms, we will classify and describe in more detail the different methods that have been
proposed for fast BMP lookups. However, in this section we give a general overview of
these proposed schemes for BMP lookups to motivate our work.

A forwarding database of prefixes can be naturally implemented with a binary trie
[Sed97] data structure. Several BMP lookup schemes based on variants of binary tries
have been proposed [Skl91] [DKN96]. The most commonly implementation is available
in the 4.4BSD operating system kernel [Skl91][WS95] (referred to as the BSD trie). Bi-
nary tries organizes prefixes in such a way that we can do a sequential search on the prefix
length dimension. That is, we can check at step i whether a prefix of length i matches
the given address. While binary tries or its variants allow for straightforward algorithms
to search, insert and delete prefixes, their main problem is that a search needs to do many
memory accesses: O(W ); i.e., 32 in the worst case for IPv4 addresses. To improve the
search performance of binary tries, a number of schemes use the multibit trie data struc-
ture [DBCP97][SV98][GLM98][NK98]. Multibit tries still do linear search on length, but
improves search by a constant factor because they allow for inspection of several bits simul-
taneously at each step. While search performance is improved with multibit tries, insertion
and deletion of prefixes are no longer straightforward. Although incremental updates with
multibit tries are possible, we need additional data structures to support incremental updates.

Another way to improve the performance of the BMP lookup operation is to use binary
search on the prefix length dimension. While binary search on length is not straightforward
for best prefix matching, Waldvogel et al. [WVTP97] proposed the use of additional prefixes
to guide the binary search. At each step the algorithm checks for a match by using hash-
ing. While this scheme provides O(logW ) search performance (assuming perfect hashing),
update operations are complex and expensive due to the additional prefixes.

Lampson et al. [LSV98] has proposed to transform a set prefixes into a set of disjoint
intervals. Then, BMP lookup can be achieved by using traditional binary search on the
endpoints of the disjoint intervals. While the BMP lookup takes O(logN) time (N being
the number of prefixes), with this scheme update is very expensive because insertion or
deletion of a single prefix may need to update O(N) disjoint intervals.

While intensive research has been conducted to improve the address lookup performance
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of routers, most of the proposed schemes addresses the static case; that is, they do not
provide for incremental updates. Nevertheless, to provide robustness, routers must be able
to adapt to changes in the network topology; and hence, routers must be able to update
dynamically their forwarding databases.

We will propose, in chapter 3, our first contribution which allows incremental updates
for multibit tries based forwarding databases. More specifically, we will show the details of
the additional data structures and algorithms that we have designed to support incremental
updates for BMP lookup schemes based on multibit tries.

2.4 Optimizing the Use of Buffers for Flow Isolation

While determining where to send a packet next is essential to forward a packet, this task is
only a part of the process to achieve the actual relaying of a packet. Once the router has
decided through which output port the packet will be forwarded, the router must multiplex
all the packets that need to be forwarded through the same output port. Furthermore, routers
must resolve possible contention for a given output port because it is possible that several
packets from different inputs need to be forwarded through the same output port at the same
time. Usually, routers use buffers to address the problem of output bandwidth contention.
Buffering allows routers to retain packets while one of the contending packets is transmit-
ted. However, buffering alleviates the output-port contention only to some extent because in
case of sustained overload, the buffer will eventually overflow. This situation is referred to
as congestion. In fact, buffers are not only used to resolve the output bandwidth contention,
but also to absorb bursts of packets of individual flows. While absorbing bursts of individ-
ual flows can help to increase the bandwidth use, it is important to protect the multiplexing
function of buffers. Without protecting the multiplexing function, flows can suffer high ser-
vice degradation in case of congestion. Traditionally, to control congestion in the Internet,
sources use the TCP algorithms [Jac88] to discover the available resources and adapt their
traffic pattern dynamically.

While control of traffic with TCP allows for flow isolation to some extent, this scheme
requires that all users cooperate and respond to congestion signals. Nevertheless, in today’s
Internet responding to congestion is rather a user’s choice and in general there are respon-
sive as well as unresponsive users. Furthermore, adaptive sources are penalized because
unresponsive sources, intentionally or unintentionally, abuse the cooperative nature of re-
sponsive traffic. To address this problem, routers need to provide flow isolation as part of
the best effort service. Providing flow isolation is important because with flow isolation the
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performance perceived by users does not depend on the good behavior of other users. We
propose in chapter 5 a mechanism to optimize the use of the buffer in routers to provide flow
isolation.

2.4.1 Related work

To provide flow isolation the router need to control the incoming traffic in times of overload.
To provide flow isolation routers need to protect the multiplexing function of buffers. With
a FIFO scheduling scheme the router can protect the multiplexing function by selectively
discarding packets. One way to protect the multiplexing function of buffers and hence pro-
vide flow isolation is to use a separate queue for each flow [Nag87]. With this approach
the selection of packets to drop is automatically performed, but it is not scalable and it is
complex to implement. RED also uses packet dropping to provide flow isolation to some
extent, but it is designed for responsive sources only. RED uses randomization to select the
packet to drop. A different way to allow routers to select packets to drop is by including
some rate flow information. Schemes that use this approach are [SSZ98][CWZ00][CD01].
While these approaches provide flow isolation for responsive and non responsive flows, to
some extent, they require to insert additional information in packets and more importantly
they require that all edge routers (or end-hosts) in the system agree on a single scheme to
consistently label packets. Our approach, which is proposed in chapter 5 does not need
modifications of the IP packet header and achieves a high degree of flow isolation by using
a very simple algorithm and without using per-flow queuing.

2.5 Summary

This chapter has provided the necessary background for the rest of this thesis. We have also
stated the specific problems that this thesis will address: incremental updates in multibit-
tries-based forwarding databases, and optimization of the buffer usage for flow isolation. In
the next chapters we provide details of our contributions to these problems.
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Chapter 3

Incremental Updates for Multibit-tries
based Forwarding Databases

One of the main tasks of the packet forwarding process in IP routers is the address lookup
operation. With CIDR, the address lookup operation consists of finding the best (longest)
prefix that matches the destination address of the incoming packet. Since the performance of
the routers depends on its forwarding capacity, high performance routers must provide fast
address lookups. One way to provide fast address lookups is the use of a data structure called
multibit trie. While several schemes has been proposed to provide fast address lookups with
multibit tries [PZ92], [SV98], [GLM98], [DBCP97], [MS98], [HZ99], [NK99], most of
these schemes ignore or diminishes the issue of providing incremental updates. Since one
of the key aspects of the Internet is its robustness in the form of adaptation to topologi-
cal changes, providing incremental updates is a requirement. Furthermore, instabilities in
the backbone routing protocols can change fairly frequently the entries in a forwarding table
[Lab99]. We propose in this chapter two incremental update mechanisms for address lookup
schemes based on the multibit-trie data structure. We start by explaining the multibit trie
data structure. Then we state the requirements to support incremental updates in multibit
tries. In particular, we introduce two new notions that help to address the problem of pro-
viding incremental updates in multibit tries. Finally we develop additional data structures
and algorithms that we designed to allow the multibit tries to be updated incrementally.

51
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3.1 The Classical Binary Trie

Routers aggregate forwarding information by using address prefixes; recall that a prefix
represents a consecutive interval of IP addresses. As a result, a forwarding table consists of
prefixes and their corresponding forwarding information. Prefixes are bit strings of variable
length and a natural way to represent prefixes is using a trie data structure [Fre60][Knu98].
A trie is tree-based data structure that organizes prefixes on a digital basis. More specifically,
a trie uses the bits of prefixes to direct the branching of its structure. For example, Figure
3.1 shows a binary trie (each node has at most two children) representing a set of prefixes of
a forwarding table.

a  0*
b  01000*
c  011*
d  1*
e  100*

g  1101*
h  1110*
i   1111*

f   1100*

Prefixes

0

0

0

0

0

0

0

0 0

1

1

1

11

1

1

b

c e

f ig h

a d

Figure 3.1: Binary trie for a set of prefixes.

Note that in a trie, the bit sequence of a prefix corresponds to the string of bits labeling
the path from the root to a node. Note also that a node on level l corresponds to a prefix
of length l. For example, node c in figure 3.1 is at level 3 and corresponds to a prefix of
length 3. More specifically, node c corresponds to the prefix that represents all addresses
beginning with the sequence 011. In figure 3.1 the nodes that correspond to prefixes are
shown in a darker shade; these nodes will contain the forwarding information or a pointer
to it. Note also that prefixes are not only located at leaves but also at some internal nodes.
This situation arises because of exceptions in the aggregation process (see section 2.2.1.2).
For example, in figure 3.1 the prefixes b and c represent exceptions to prefix a. Figure 3.2
illustrates this situation better. The trie shows the total address space, assuming 5-bit long
addresses. Each leaf represents one possible address. We can see that the address intervals
covered by prefixes b and c are included in the address interval covered by prefix a. Thus,
prefixes b and c represent exceptions to prefix a and refer to specific subintervals of the
address interval covered by prefix a. In the trie in figure 3.1, this is reflected by the fact
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that prefixes b and c are descendants of prefix a; or in other words, prefixes b and c have
themselves a as a common prefix. As a result, some addresses will match several prefixes.
For example, addresses beginning with 011 will match both prefixes c and a. Nevertheless,
prefix c must be preferred because it is more specific (longest match rule).

a  0*
b  01000*
c  011*
d  1*
e  100*

g  1101*
h  1110*
i   1111*

f   1100*

Prefixes

ba a a a a a a a a aa c c c c e e e e d d d d f f g g h h i i

a

c e

d

f g h i

Figure 3.2: Address space

Tries allow finding, in a straightforward way, the longest prefix that matches a given
destination address. The search in a trie is guided by the bits of the destination address. At
each node, the search proceeds to the left or right according to the sequential inspection of
the address bits. While traversing the trie, every time we visit a node marked as prefix (i.e.,
a dark node) we remember this prefix as the longest match found so far. The search ends
when there are no more branches to take, and the longest or best matching prefix will be the
last prefix remembered. For instance, if we search the best matching prefix (BMP) for an
address beginning with the bit pattern 10110 we start at the root in figure 3.1. Since the first
bit of the address is 1 we move to the right, to the node marked as prefix d and we remember
d as the BMP found so far. Then we move to the left since the second address bit is 0; this
time the node is not marked as a prefix, so d is still the BMP found so far. Next, the third
address bit is 1, but at this point there is no branch labeled 1, so the search ends and the last
remembered BMP (i.e., prefix d) is the longest matching prefix.

In fact, what we are doing is a sequential prefix search by length, trying at each step to
find a better match. We begin by looking in the set of length-1 prefixes, which are located
at the first level in the trie, then in the set of length-2, located at the second level, and so
on. Moreover, using a trie has the advantage that while stepping through the trie, the search
space is reduced hierarchically. At each step, the set of potential prefixes is reduced, and the
search ends when this set is reduced to one.

Update operations are also straightforward to implement in binary tries. Inserting a
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prefix begins by doing a search. When arriving at a node with no branch to take, we can
insert the necessary nodes. Deleting a prefix starts again by a search, unmarking the node
as prefix and, if necessary deleting unused nodes (i.e., leave nodes not marked as prefixes).
Note finally that since the bit strings of prefixes are represented by the structure of the trie,
the nodes marked as prefixes do not need to store the bit strings themselves.

3.2 Prefix Transformation

Forwarding information is specified with prefixes that represent intervals of addresses. Al-
though the set of prefixes to use is usually determined by the information gathered by the
routing protocols, the same forwarding information can be expressed with different sets of
prefixes. Various transformations are possible according to special needs, but one of the
most common prefix transformation techniques is prefix expansion. Expanding a prefix
means transforming one prefix into several longer and thus more specific prefixes but that
together cover the same interval of addresses as the original prefix. These new prefixes will
be called the derived prefixes of the original prefix. As an example, the interval of ad-
dresses covered by prefix 1* can also be specified with the two derived prefixes: 10*, 11*;
or also, with the four derived prefixes: 100*, 101*, 110*, 111*. In general, to obtain derived
prefixes of length h from an original prefix of length l, all we need is to append, at each time,
one of all the possible bit patterns of length h-l to the original prefix. Since there are 2h−l

distinct binary patterns of length h-l, the expansion of an original prefix will result in 2h−l

derived-prefixes.

If we do prefix expansion appropriately, we can get a set of derived-prefixes that has
fewer different lengths, which can be used to make a faster search, as we will show next.

3.3 Multibit tries

3.3.1 Basic Scheme

Binary tries provide an easy way to handle arbitrary length prefixes. Lookup and update
operations are straightforward. Nevertheless, the search in a binary trie can be rather slow
because we inspect one bit at a time and in the worst case 32 memory accesses are needed
for an IPv4 address.

One way to speedup the search operation is to inspect not just one bit a time but several

bits simultaneously. For instance, if we inspect 4 bits at a time we need only 8 memory
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accesses in the worst case for an IPv4 address. The number of bits to be inspected per
step is called stride and can be constant or variable. A trie data structure that allows the
inspection of bits in strides of several bits is called multibit trie. Thus, a multibit trie is a
trie where each node has 2k children, where k is the stride.

While multibit tries allow the data structure to be traversed in strides of several bits at
a time, for the same reason, they cannot support arbitrary prefix lengths. To use a given
multibit trie, the prefix set must be transformed into an equivalent set with the prefix lengths
allowed by the multibit strides, while preserving the same forwarding information. That is,
the set of prefixes must be fitted to the strides allowed by the multibit trie. To this end, the
original prefixes need to be expanded up to the nearest length allowed in the multibit trie.
These new stride-fitted prefixes, i.e the derived prefixes, can now be readily stored in the
multibit trie. For instance, a multibit trie corresponding to our example from figure 3.1 is
shown in figure 3.3. Since the first stride of the multibit trie is two, prefixes of length one
are not allowed, and we need to expand prefixes a and d to length 2. Expansion of prefix
a results in the two derived prefixes: 00* and 01*. Similarly, the derived prefixes of the
expansion of d are: 10* and 11*. Since the derived prefixes represent together the same
interval of addresses as their corresponding original prefix, the derived prefixes must have
the same forwarding information as their original prefix; in figure 3.3, this is indicated by
labeling the derived prefixes with the name of their original prefix. In the same figure it
is shown how prefix c has been expanded to length 4 (0110* and 0111*). Note that the
other prefixes has not been expanded because they fit exactly into the strides of the multibit
trie. Note also that the height of the trie has decreased, and so has the number of memory
accesses when doing a search.

a  0*
b  01000*
c  011*
d  1*
e  100*

g  1101*
h  1110*
i   1111*

f   1100*

Prefixes

100100 11

00 01 10 11 01 10 1100

0 1

0 1

e ihgf

dda

c c

b

a

Figure 3.3: An example of multibit trie with the same forwarding information as the binary
trie of figure 3.1
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Figure 3.4 shows a different multibit trie for our example. We can see again that prefixes
a and d have been expanded, but now to length three. However, two of the derived prefixes
produced by expansion already exist (prefixes c and e). We must preserve the forwarding
information of prefixes c and e, since their forwarding information is more specific than that
of the expanded prefixes (i.e., a and d). Thus, for prefix a only three of its four derived
prefixes are associated with the forwarding information of a. The same applies for prefix d.

a  0*
b  01000*
c  011*
d  1*
e  100*

g  1101*
h  1110*
i   1111*

f   1100*

Prefixes

000 001 010 011 100 101 110 111

00 01 10 11 00 01 10 11 00 01 10 11

b f f g g h h i i

a a a c e d d d

Figure 3.4: Another example of a multibit trie

Figure 3.5 shows the multibit trie in figure 3.4 after inserting a new prefix j=11*. Note
that this prefix needs to be expanded to length 3, and that its derived prefixes are 110* and
111*. Note also that these same derived prefixes resulted also from the expansion of the
prefix d=1*. To respect the rule of the longest match, the forwarding information of these
derived prefixes must be that of prefix j=11* and not that of d=1*. This is indicated in figure
3.5 by relabeling the corresponding nodes with j instead of d.

000 001 010 011 100 101 110 111

00 01 10 11 00 01 10 11 00 01 10 11

a  0*
b  01000*
c  011*
d  1*
e  100*

g  1101*
h  1110*
i   1111*

f   1100*

Prefixes
j  11*

b f f g g h h i i

a a a c e d j j

Figure 3.5: The multibit trie of figure 3.4 after inserting prefix j=11*
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In general, the same node in a multibit trie can be the derived prefix of different original
prefixes, when they are expanded. To preserve the forwarding information, we must respect
the longest matching rule; hence, we always assign to this node the forwarding information
of the longest of these original prefixes. Note that if we insert the prefixes in increasing order
of length, we do not need to care whether a node is the derived prefix of several original
prefixes. Thus, if we insert the prefixes in increasing order of length, we simply assign to
each and all of the derived prefixes of the expansion of prefix P the forwarding information of
P; nodes will be automatically relabeled when appropriate. While the approach of inserting
prefixes in increasing order of length simplifies the process of expansion of prefixes, clearly,
this approach does not allow incremental updates. We will see in section 3, how to avoid
the restriction of inserting prefixes in increasing order of length, while still preserving the
original forwarding information.

Searching in a multibit trie is essentially the same as in a binary trie. To find the BMP of
a given address consists of successively looking for longer prefixes that match. The multibit
trie is traversed, and each time a prefix is found at a node, this prefix is remembered as the
new BMP seen so far. At the end, the last BMP found is the correct BMP for the given
address. Multibit tries still do linear search on lengths as do binary tries, but the search is
faster because the trie is traversed using larger strides.

In a multibit trie, if all nodes at the same level have the same stride size we say that it
is a fixed stride, otherwise it is a variable stride. We can choose multibit tries with fixed or
variable strides. Fixed strides are simpler to implement than variable strides, but in general
waste more memory. Figure 3.4 is an example of a fixed-stride multibit trie, figure 3.3 a
variable-stride multibit trie.

3.3.2 Choice of Strides

Choosing the strides requires a tradeoff between search speed and memory consumption. In
the extreme case, we could make a trie with a single level; that is, a one-level trie with a
32-bit stride for IPv4. Search would take in this case just one access, but we would need a
huge amount of memory to store 232 entries.

One natural way to choose strides and control the memory consumption is to let the
structure of the binary trie determine this choice. For example, if we look at figure 3.1, we
observe that the subtrie with its root the right child of node d is a full subtrie of two levels
(a full binary subtrie is a subtrie where each level has the maximum number of nodes).
We can replace this full binary subtrie with a one-level multibit subtrie. The stride of the
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multibit subtrie is simply the number of levels of the substituted full binary subtrie, two in
our example. In fact, this transformation was already made in figure 3.3. This transformation
is straightforward, but since it is the only transformation we can do in figure 3.1, it has a
limited benefit. We will see later how to replace, in a controlled way, binary subtries that are
not necessarily full subtries . The height of the multibit trie will be reduced while controlling
memory consumption. We will also see how optimization techniques can be used to choose
the strides.

While multibit tries allows for fast BMP lookups, incremental update of the forwarding
database is no longer straightforward with multibit tries, as it was the case with binary tries.
Incremental updates in multibit tries are possible, and we will see in the next section what are
the requirements to support incremental updates in forwarding databases based on multibit
tries, whatever the strides they use.

3.4 Requirements to Support Incremental Updates in Multi-
bit Tries

We have seen how to transform a set of prefixes to fit it into a given multibit trie. We have
seen that by inserting the prefixes in increasing order of length, we can easily expand the
prefixes while preserving the original forwarding information. Unfortunately, this method
does not allow incremental updates. In this section we analyze the requirements to support
incremental updates in multibit tries.

To better understand the update problem, let’s see the multibit trie data structure from
a slightly different point of view. We will assume a multibit trie where some prefixes are
already inserted, and new prefixes of arbitrary length can be inserted or existing prefixes
deleted. Suppose we have a multibit trie of two levels as it is shown in figure 3.5. This
multibit trie can also be viewed as a tree of subtries, where every subtrie has only one level.
This is best illustrated in figure 3.6; the multibit trie has one subtrie at its first level and three
subtries at its second level. Note that a subtrie of stride k has 2k child nodes. In general,
each of these child nodes is associated with an original prefix (we will see shortly why some
nodes are not). The original prefix associated with each child node is, in fact, its BMP.
For example, the child node whose bit string (i.e., its path) is 11001 is associated with the
original prefix f because f =1100* is its BMP. Since the BMP of the child nodes depends on
the specific set of prefixes of the forwarding database, when a prefix is inserted or deleted
we need to update appropriately the BMP of the child nodes.
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Figure 3.6: Subtries in a multibit trie

While the BMP associated with each child node must be one of the original prefixes, to
select the BMP of a given child node, we do not need to consider the whole set of original
prefixes. For instance, in figure 3.6, to find the BMP of each child node in the subtrie at
the first level (subtrie I), we need to consider only the subset of prefixes {a, c, d, e, j}. In
the subtrie II, the BMP for each child node will be selected from the subset {b}. In the
subtrie III, the BMP for each child node is selected among the prefixes in the subset {f, g},
and subtrie IV is concerned only with prefixes in the subset {h,i}. In general, the subset
of prefixes, to be considered when selecting the BMP for a child node, consists of only the
original prefixes that, due to their length and value, fit into the stride of the concerned subtrie.
Since the subsets of prefixes for the different subtries are disjoint, the BMPs computed at
each subtrie are entirely independent of the BMPs computed at other subtries. As a result,
multibit tries divide the problem of finding the BMP into small problems in which local
BMPs are selected among a well defined subset of prefixes.

Finally note that in figure 3.6, subtrie II has some child nodes without BMP. In fact, the
absence of BMP in a child node indicates simply that there is no local BMP for this node;
i.e., among the subset of prefixes corresponding to this subtrie. Of course, when looking for
the BMP of a given address, we can always obtain the BMP of this address by traversing the
tree of subtries and remembering the last local BMP as we go through it.

Since the subsets of original prefixes for the subtries are disjoint, each original prefix is
associated with only one subtrie. As a result, inserting or deleting an original prefix needs
to update only one of the subtries; prefix update is completely local. But, which nodes need
to be updated in a subtrie when a prefix is inserted or deleted?

When a prefix is inserted or deleted in the forwarding database, we need to update the
multibit trie by changing the BMP of some of the child nodes of the appropriate subtrie.
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More precisely, when a prefix P is inserted or deleted, the candidate nodes to be updated are
the child nodes that correspond to the derived prefixes of the expansion of P in the subtrie.
For example, in figure 3.6, if we want to delete the prefix j=11*, the candidate nodes to
be updated are 110 and 111 because these nodes correspond to the derived prefixes of the
expansion of j. Similarly, if we want to insert a new prefix t=0100*, then the candidate
nodes to be updated are 01000 and 01001 because these nodes correspond to the derived
prefixes of the expansion of t.

We will refer to the set of derived prefixes resulting from the expansion of a prefix P
in a subtrie as the span of P. For example, figure 3.7 shows the spans of the prefixes d, e

and j. Thus, when a prefix P is inserted or deleted, we need to update only the nodes (in
the subtrie) that are included in the span of the prefix P. Moreover, while all the nodes in
the span of a prefix need to be potentially updated, only the nodes not included in the span
of longer prefixes than P are actually updated. The spans of longer prefixes than P are not
updated to respect the longest matching rule. For example, in figure 3.7 if we delete the
prefix d, the only node to be updated is actually the node 101, because all the other nodes
in the span of d are also included in the span of longer prefixes; that is, they correspond to
prefixes with more specific forwarding information.

000 001 010 011 100 101 110 111

00 01 10 11 00 01 10 11 00 01 10 11

a  0*
b  01000*
c  011*
d  1*
e  100*

g  1101*
h  1110*
i   1111*

f   1100*

Prefixes
j  11*

Span of d

Span of jSpan of e

b f f g g h h i i

a a a c e d j j

Figure 3.7: Spans of some of the prefixes in the multibit trie

Thus, to support dynamic updates we need a way to identify the spans of (longer) pre-
fixes already inserted.

In the case of insertion of a new prefix P, the operation consists in finding the appropriate
subtrie, expanding the original prefix to get the derived prefixes and changing the BMP of
the nodes in the span of P not included in spans of longer prefixes than P. That is, for each
node in the span of P, it must be decided whether the node keeps its current BMP or its BMP
must be substituted with the new prefix P.
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In the case of the deletion operation the process is a little more complicated. Suppose
that we want to delete the original prefix P. First, we need to find the target subtrie, then
we must locate the span of the prefix P. Then again, we must decide for each node in the
span of P whether its BMP must be changed: For each node in the span of P, its current
BMP must be changed only if it is equal to P. Note that if the current BMP is not P, then the
current BMP is necessarily longer than P, and thus the current BMP must not change. But,
what is the new BMP in the case that the node’s BMP needs to be updated? For example,
in figure 3.6, if we delete the prefix j=11*, the nodes to be updated are those in the span
of j; that is, nodes 110 and 111. From the figure 3.7, we can see that when the prefix j

is deleted, the smallest span that includes these nodes is that of prefix d. In other words,
when the prefix j is deleted, the new BMP for the nodes in the span of j is the prefix d,
because after j the next BMP for these nodes is d. In fact, these nodes were labeled with d

before the insertion of prefix j, as can be seen in figure 3.4. Note that d is the BMP of j;
and in general, the new BMP for the nodes in the span of a prefix P to be deleted can be
obtained by finding the BMP of the prefix P. We will refer to the BMP of an original prefix
P as the coverer of P. To find the coverer of a prefix we need an additional data structure
besides the multibit trie itself. This additional data structure is needed because, in general,
a multibit trie does not store the original prefixes of the forwarding database themselves;
instead, a multibit trie stores the stride-fitted prefixes derived from the expansion of these
original prefixes. Actually, the original prefixes appear only as the associated BMP of each
derived prefix (except when the original prefix fits exactly into the stride of the subtrie). To
see this better, suppose we insert the prefix m=10*, in the multibit trie in figure 3.7. Clearly,
prefix d will disappear in the multibit trie, while it still exists in the forwarding database.
Hence, to support update operations we need an additional data structure that keeps the
original prefixes of the forwarding database. Obviously, to find the coverer of a prefix, this
additional data structure must also keep the covering relationship among the prefixes.

Thus, in summary, incremental updates in multibit tries are possible because insertion
or deletion of a prefix needs modifications in only one subtrie. More specifically, if a prefix
is inserted or deleted, in a subtrie with a stride of k bits, the update needs to modify the
local BMP of at most 2k−1nodes (the span of a prefix in a subtrie has at most half of the
child nodes in a subtrie). Thus, choosing appropriate stride values allows the update time
to be bounded. While incremental updates in multibit tries are possible, to actually provide
incremental updates, we need an additional data structure with two requirements:

1. Identify the spans of prefixes already inserted in a subtrie.
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2. Find the coverer of an original prefix in a subtrie.

We present in the next sections the details of our data structures and algorithms that we
designed to provide incremental updates for multibit tries. We start with the basic scheme
that provides the basic BMP search operation. Then we refine progressively our scheme to
provide insertions and deletions of prefixes. Later we propose an optimized scheme based
in a data structure that we call Prefix Nesting bit vector, which is introduced in section 3.6.

3.5 A Scheme to support incremental updates in Multibit
Tries

In the previous section we have stated the requirements to support incremental updates in
multibit-tries-based address lookup schemes. These requirements are based on the notions
of span and coverer of a prefix, that we introduced also in the previous section. In this
section we propose a first mechanism to support incremental updates in multibit-tries-based
address lookup schemes. More specifically, we present the details of the additional data
structures and algorithms that we have designed to allow for incremental updates in multibit
trie based forwarding databases. Later, in section 3.6, we will propose a second mechanism
for incremental updates in multibit tries. This second mechanism uses memory more effi-
ciently than our first mechanism by using a new data structure that we call the Prefix Nesting
bit vector.

3.5.1 Implementation of the Basic Multibit Trie

The data structure to implement the multibit trie is very simple. Each k-stride subtrie of the
multibit trie is implemented as an array with 2k entries. The entries in an array correspond
to the child nodes in the subtrie. Each array entry has a pointer to a next possible subtrie.
Also, each array entry has a pointer to its current local BMP. In the case of a variable stride
multibit trie, each array entry has an additional field to store the stride of the next possible
subtrie. Figure 3.8 shows the array structure corresponding to the fixed-stride multibit trie
of the figure 3.6.

To find the BMP of a destination address A, we proceed as follows: We follow a path
in the multibit trie guided by the bit string of the destination address A. More specifically,
we partition this bit string into segments according to the strides of the subtries that we
follow in the path. These segments are used as indexes into the arrays. At each step, the
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Figure 3.8: The array implementation of the multibit trie

corresponding entry in the array will contain the pointer to the next array. Also, we keep the
BMP of this entry, if any, as the BMP found so far. Eventually, an entry will contain no next
subtrie pointer to follow. At this moment, the last BMP remembered will be the BMP of the
destination address A.

3.5.2 Locating the target subtrie

We have seen that we need to modify only one subtrie when a prefix P is inserted or deleted.
Hence, the algorithm must first find the appropriate subtrie for the prefix P; we will refer
to this subtrie as the target subtrie. To locate the target subtrie of prefix P, we follow a
path in the multibit trie guided by the bit string of P. More specifically, we partition this bit
string into segments according to the strides of the subtries that we follow in the path. These
segments are used as indexes into the arrays (as in the search operation). At each step, the
corresponding entry in the array will contain the pointer to the next array. Eventually, the
last segment of the prefix will be shorter or equal to the stride of the corresponding subtrie.
This subtrie is the target subtrie. Of course, this supposes that all the required subtries
already exist. If this is not the case, we simply create arrays when we encounter no more
pointers to follow until the last segment of the prefix. Fig 3.9 shows the target subtrie for
the prefix P=1100011*, when the subtries have 3-bit strides. Let p1, ..., pn be the segments
of the prefix P, and let Ki be the stride of the i-th subtrie in the path, then the length of the
last segment is smaller or equal than the stride of the target subtrie, that is | pn |≤ Kn.

Actually, not all the entries in the target subtrie need to be updated when a prefix is
inserted or deleted, only the entries corresponding to the span of the prefix need to be up-
dated. Remember that the span of a prefix P is the set of derived-prefixes resulting from
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Figure 3.9: The target subtrie and span of a prefix P

the expansion of P, to fit the stride of the target subtrie. The span of a prefix corresponds
to a block of consecutive entries in the array. For example, figure 3.9 shows the span of
the prefix 1100011*. We can index the entries of the span by using the last segment of
the prefix, pn, and a binary counting sequence. This binary counting sequence is the set of
all the bit patterns of length w, where w is equal to the number of necessary bits to fit the
original prefix to the stride of the target subtrie. Thus, the length of these bit patterns is
given by Kn-| pn |; and the initial and final values of the binary counting sequence are 0
and 2Kn−|pn| − 1, respectively. For example, in figure 3.9, the binary counting sequence for
prefix P has 4 different bit patterns of length 2 because K3-| p3 |= 3-1=2.

3.5.3 The additional data structure to support incremental updates

We have seen that the multibit trie actually do not store the original prefixes of the for-
warding database; instead, each array entry has a variable current BMP, selected among the
original prefixes.

To support incremental updates we need an additional data structure to keep track of the
original prefixes in the forwarding database. This additional data structure must also keep
the covering relationship among the original prefixes to meet the two requirements defined
in section 3.4. We explain progressively how we implement this additional data structure.
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Figure 3.10 shows the updated entries in the target subtrie once the prefix P has been
inserted in the example shown in figure 3.9. Apparently, the prefix P itself is stored in
our data structure, but this is not true. Suppose that we insert prefixes Q=11000110* and
R=11000111*. Figure 3.11 shows the insertion of these prefixes. Note that now there is no
way to further find prefix P. This is a problem because if later prefix Q or R are deleted, the
corresponding entries must be updated back again with prefix P. The problem lies in the fact
that the pointers point, in fact, to the current BMP, which can change when new prefixes are
inserted.
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Figure 3.10: The target subtrie after inserting prefix P
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Figure 3.11: The target subtrie after inserting prefixes P,Q and R

One solution is to use an additional pointer per prefix. This additional pointer will always
point to the original prefix, even if no array entry has it as its current BMP. That is, a
requirement is that once a prefix is inserted, this pointer will exist until the prefix is actually
deleted from the forwarding database. The question now is where these pointers should be
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stored. We use the following simple rule to store the original prefixes:

Prefix storing rule: Store the pointer to the original prefix P in the entry of the
target subtrie where the span of P starts.

The span of prefix P starts at the entry whose index is the last segment of the prefix followed
by Kn-| pn | bits “0”. We will refer to this array entry as the start of the span of P. Note,
however, that by using this prefix storing rule, the same array entry may need to point
to several original prefixes. More specifically, the prefixes with the same value but with
different length (in the same target subtrie). To point to several prefixes in the same entry,
the algorithm uses, in fact, a linked list of prefixes. Figure 3.12 shows this data structure.
The array entry with index 100 has a linked list of the prefixes P and Q, because P and Q
start their span at this entry.

Prefix  P 1  1  0  0  0  1  1  

  P   Q
1  1  0  0  0  1  1  

1  1  0  0  0  1  1  
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1  

Prefix  Q

Prefix  R
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111

Prefix Segments

Pointers to Original Prefixes

Pointers to current local BMP

Target Subtrie

  R

Figure 3.12: Using both a pointer to the current BMP and a pointer to the linked list of
original prefixes

Since each entry in the array can potentially be the start of the span of some prefix, one
could think that each array entry should store two pointers, as figure 3.12 suggests: One for
the current local BMP and one for the linked list of original prefixes. Actually, each array
entry needs only one pointer, because if an entry has a linked list, the current local BMP
for this entry is, in fact, included in its linked list. All that is needed is a way to identify
the current local BMP among the prefixes in the list. To make the BMP search operation
efficient, we always keep the current local BMP at the front of the list. In other words, the
first prefix is the longest in the list. Figure 3.13 shows the simplified data structure. Note
that the pointers at entries with indexes 101 and 111 conceptually do not point to a linked
list but only to their current BMP. Figures 3.14 and 3.15 show, respectively, the algorithms
to insert and delete the original prefixes in a linked list.
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Figure 3.13: Using only one pointer to point to both: the linked list and the BMP

input : prefix to be inserted in the linked list; the pointer to this list is stored in
the entry of the target subtrie indexed by entryindex

procedure insertoriginalprefix(prefix, targetsubtrie, entryindex, k)
begin

listpointer = targetsubtrie[entryindex].BMP ;
if (listpointer = Null) then

targetsubtrie[entryindex].BMP = memoryaddress(prefix);
else

sp = startspan(listpointer->value, k);
if (sp 6= entryindex) then

/* i.e. no list at this entry, only the current BMP */
targetsubtrie[entryindex].BMP = address(prefix);

else if (listpointer−>length < length(prefix)) then
/* insert prefix in front of the list */
prefix.next= listpointer ;
targetsubtrie[entryindex].BMP = address(prefix);

else
prefix.next= listpointer−>next ;
listpointer−>next = address(prefix);

end
end

end

Figure 3.14: Algorithm to insert a prefix in the appropriate linked list
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input : prefix to be deleted from the linked list; the pointer to this list is stored in
the entry of the target subtrie indexed by entryindex

procedure deleteoriginalprefix(prefix, targetsubtrie, entryindex)
begin

listpointer = targetsubtrie[entryindex].BMP ;
while listpointer−>length 6= length(prefix) do

prevptr = listpointer;
listpointer = listpointer−>next;

end
prevptr−>next = listpointer−>next ;
freememory(listpointer);

end

Figure 3.15: Algorithm to delete a prefix from the appropriate linked list

3.5.4 Getting the coverer of a prefix

In section 3.4 we have seen that to support incremental updates two requirements are neces-
sary: Find the coverer of a prefix and find the longer prefixes already inserted in the span of
the concerned prefix. In this section we propose an algorithm to meet the first requirement.

We have seen that to delete or to insert a prefix we need to update only the array entries
in the span of the prefix. While both operations, insertion and deletion of a prefix need
to update the span of the prefix, the update of the span of a prefix to be deleted is more
complicated. When we insert a prefix P, P is used as the new BMP for the entries that need
to be updated. In contrast, in the case of deletion of a prefix, we need first to find the new
BMP to be used to update the entries. In the case of deletion of a prefix P, the new BMP to
update the span of P is the coverer of P; a concept that we introduce in section 3.4.

From the above discussion we know that to support deletion of prefixes we need to
implement a function that finds the coverer of a given original prefix. To this end, we need a
data structure that stores the original prefixes and that keeps the covering relationship among
these prefixes.

To locate the coverer of the prefix P, we have to find the longest prefix of P among the
original prefixes stored in the target subtrie. If the length of P is l then we look successively
for the prefix of P of length l-1, l-2, ... l-| pn |+1. The first prefix found will be the coverer.
First, we search the coverer in the same linked list where the prefix to be deleted is located.
If the coverer of P is not in this list then we need to search this coverer in other lists. From
the rule definition of where to store the prefixes, it follows that to go from one list to another,
we start with the current entry index, and proceeding from right to left, we toggle the first
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bit “1” we encounter to “0”. The result will be the index of the entry where the next linked
list to search is located. With this procedure, we can go from linked list to linked list, to
search the coverer of P.

For example, in figure 3.16, if we want to find the coverer of prefix U (110001111),
we proceed as follows: We start at the entry where the prefix U is located, that is the entry
whose index is 111. Since the list at this entry has no other prefix than U, we need to go to
the next linked list to search for the possible prefix 11000111*. To this end, we toggle the
last bit “1” to “0” in the index value 111; we obtain 110 as the entry index for the next linked
list. Since the prefix 11000111* is not included in the list at this entry, then we continue the
search in the next list, but now to search for the prefix 1100011*. Again we toggle the last
bit “1” to “0” in the index value 110; we obtain 100 as the entry index for the next linked
list. The linked list at this entry does have the prefix 1100011*. Hence, the coverer of U is
the prefix P=1100011*.
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Figure 3.16: Example with a target subtrie after inserting prefixes P, Q, S, T, and U

Now, we propose an optimization to make the search for the coverer faster. Instead of
search explicitly at each linked list, we store at each entry a bit vector of size equal to
the stride. The idea is that the bits in the bit vector indicate whether the prefixes of the
corresponding length are in the linked list. With these bit vectors, we do not need to search
explicitly in the linked lists, except at the very last list where we search explicitly through
the linked list to retrieve the coverer. Actually, the bits in the bit vector indicate only the
length of the last segment of the prefix, because the length of the previous segments is the
same for all the prefixes in the same target subtrie. That is, prefixes in a subtrie can be
uniquely identified by their last segment. Figure 3.17 shows the same example in figure
3.16 but using bit vectors. The complete algorithm to find the coverer of a prefix with the
use of bit vectors is shown in figure 3.18.
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Figure 3.17: Use of a length bit-vector to efficiently search in lists

Data : prefix P of length l
procedure findcoverer(P, targetsubtrie, k)
begin

lastsegmentP = last segment of prefix P;
startspanP = startspan(lastsegmentP, k) ;
entryindex = startspanP ;
targetlength= length(lastsegmentP);
partiallen= length(P)-length(lastsegmentP);
bp = k-targetlength;
while targetlength>0 and NOT(targetsubtrie[entryindex].bitlengths & 2bp) do

targetlength−−;
bp = k-targetlength;
/* clear the last bp bits of entryindex */
entryindex= (entryindex>>bp)<<bp;

end
if targetlength>0 then

listpointer = targetsubtrie[entryindex].BMP;
covererlen= partiallen + targetlength;
while listpointer−>length 6= covererlen do

listpointer = listpointer−>next;
end
return listpointer;

else
return Null;

end
end

Figure 3.18: First Algorithm to find the coverer of a prefix P. startspan is function
defined in figure 3.24 that returns the array index where the span of P starts. & is the
bitwise and operator. >> and << are respectively the right and left bit shift operators.
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3.5.5 Updating the span of a prefix

Both operations, insertion and deletion of a prefix need to update the span of the concerned
prefix. The only difference is that for insertion the new BMP is the prefix itself, while in
the case of deletion the new BMP is to be searched among the remaining prefixes. In this
section we detail the process of updating the span of a prefix with a new BMP.

Remember that the span of a prefix P is the set of derived-prefixes resulting from the
expansion of P. In the array, the span of P corresponds to a block of consecutive entries. For
example, figure 3.19 shows the spans of the prefixes Q, S, and U. Note that the span of the
prefix S is included in the span of the shorter prefix Q. Thus, the span of S is a subspan of
Q; and we say that the prefix S is covered by the shorter prefix Q; or equivalently that the
prefix Q covers the longer prefix S.

Since the span of a prefix P can include several subspans (i.e., smaller spans of longer
prefixes), when a prefix P is inserted or deleted, not all the entries in the span of P need
to be updated; only the entries not included in subspans need to change their BMP. This is
illustrated in figure 3.20, which shows the example of figure 3.19 after inserting the prefix
P. We can see that the only entry not included in subspans is the entry with index 110; thus,
only this entry is updated with P as BMP.

We have seen that the subspans of a prefix P are the spans of longer prefixes covered by
the prefix P. Note that, by the prefix storing rule definition, the prefixes covered by prefix P
are necessarily stored in the entries in the span of P. Hence, update of the span of a prefix P
consists of scanning the entries of its span to check the presence of longer prefixes. When
such a longer prefix is found the algorithm skips the span of this longer prefix, to respect
the more specific forwarding information of this span. In the other case, the entry is updated
with the new BMP. The detailed algorithm to update the span of a prefix is shown in figure
3.21. Note that the algorithm skips spans efficiently, because the algorithm always skips
the largest possible subspan, when the span of P contains nested subspans. For example,
in figure 3.20, when prefix P is inserted, the algorithm skips the span of prefix Q, which
includes the span of prefix S. Note that by scanning the entries in the span of P from lowest
to greatest index and with the help of the bit vector, the algorithm always skips the largest
possible span.

3.5.6 Inserting a prefix

The algorithm to insert a prefix P consists basically in the following steps:

• Find the target subtrie.
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Data : prefix P of length l
procedure updatespan(P, targetsubtrie, k, newBMP)
begin

lastsegmentP = last segment of prefix P;
startspanP = startspan(lastsegmentP, k) ;
endspanP = endspan(lastsegmentP, k) ;
entryindex = startspanP ;
while entryindex ≤ endspanP do

targetlength= length(lastsegmentP);
/* Is there a prefix longer than P? */
if targetsubtrie[entryindex].lengthbits ≥ 2targetlength then

/* Find the exact length of the shortest prefix longer than P */
while NOT(targetsubtrie[entryindex].lengthbits & 2targetlength) do

targetlength++;
end
skipentries = 2k−targetlength−1;

else
/*update current BMP of targetsubtrie[entryindex] with new BMP */
targetsubtrie[entryindex].BMP = memoryaddress(newBMP);
skipentries = 1 ;

end
/* skip the entries in the span of the longer prefix Q */
entryindex = entryindex + skipentries

end
end

.

Figure 3.21: First Algorithm to update the span of a prefix P with a new BMP. startspan
and endspan are functions defined in figure 3.24 that return the array indexes delimiting
the span of P. & is the bitwise and operator.
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• Check whether the prefix P is already inserted.

• Expand the prefix P; that is, update the span of P using P as the new BMP.

• Set the bit in the corresponding bit vector.

• Insert prefix P in the appropriate linked list.

The complete algorithm is shown in figure 3.22.

Data : prefix P of length l
procedure InsertPrefix(P)
begin

Locate the target subtrie ;
k = the stride of the target subtrie ;
lastsegmentP = last segment of prefix P;
len=length(lastsegmentP);
startspanP = startspan(lastsegmentP, k) ;
/* Is the length position of P in the corresponding bit-vector set?*/
if targetsubtrie[startspanP].bitlengths & 2len−1 then

print(" prefix P already exists");
return "error";

else
updatespan(P,targetsubtrie, k, P);
/* set bit corresponding to P, in the bit vector */
targetsubtrie[startspanP].bitlengths | = 2len−1;
insertoriginalprefix(P, targetsubtrie, startspanP, k);

end
end

Figure 3.22: First Algorithm to insert a prefix in a multibit trie. startspan is function
defined in figure 3.24 that returns the array index where the span of P starts. & is the
bitwise and operator. | is the bitwise or operator.

3.5.7 Deleting a prefix

The algorithm to delete a prefix P consists basically in the following steps:

• Find the target subtrie.

• Check whether the prefix P does really exists.

• Retrieve prefix Q, which is the coverer of P.
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• Update the span of P using Q as the new BMP.

• Clear the bit, which corresponds to P in the appropriate bit vector.

• Delete prefix P in the appropriate linked list.

Figure 3.23 shows the complete algorithm for the deletion of a prefix in a multibit trie. Note
that, in the insertion algorithm the subroutine updatespan is called with P as both, the prefix
and the new BMP, while the deletion algorithm calls updatespan with P as prefix and Q as
new BMP; where Q is the prefix obtained by the function findcoverer.

Data : prefix P of length l
procedure DeletePrefix(P)
begin

Locate the target subtrie ;
k = the stride of the target subtrie ;
lastsegmentP = last segment of prefix P;
len=length(lastsegmentP);
startspanP = startspan(lastsegmentP, k) ;
if NOT(targetsubtrie[startspanP].bitlengths & 2len−1) then

print(" prefix P does not exist");
return "error";

else
Q = findcoverer(P, targetsubtrie, k);
updatespan(P,targetsubtrie, k, Q);
targetsubtrie[startspanP].bitlengths & = ∼ (2len−1);
deleteoriginalprefix(P, targetsubtrie, startspanP);

end
end

Figure 3.23: First Algorithm to delete a prefix from a multibit trie. startspan is function
defined in figure 3.24 that returns the array index where the span of P starts. & is the
bitwise and operator. ∼ is the bitwise not operator.

3.6 Optimized scheme using a single bit vector per subtrie:
The PN bit vector

While the use of a length bit-vector per array entry allows the linked lists to be searched
fast, the memory usage is incremented. In this section we propose a method to use memory
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input : bitstring is the last segment of the prefix; and k is the stride of the target
subtrie (i.e., the array)

output : the array index where the span of the prefix starts
procedure startspan (bitstring, k)
begin

segmentlength = lengthstring(bitstring);
/* padding with "0"s to fit the stride */
startspan = bitstring << (k - segmentlength);
return startspan;

end

input : bitstring is the last segment of the prefix; and k is the stride of the target
subtrie (i.e., the array)

output : the array index where the span of the prefix ends
procedure endspan (bitstring, k)
begin

segmentlength = lengthstring(bitstring);
paddingbits = k - segmentlength ;
/* padding with "1"s to fit the stride */
endspan = (bitstring << paddingbits) | (2paddingbits − 1);
return endspan;

end

Figure 3.24: Algorithm to calculate the start and end of the span of a prefix in a target
subtrie of stride k. << is the left bit shift operator. | is the bitwise or operator.
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Figure 3.25: The target subtrie after deleting prefix U
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efficiently while keeping the advantages of the length bit-vector. Our second mechanism to
support incremental updates in multibit tries is based on a new data structure called the Prefix
Nesting (PN) bit vector which we will introduce next. To distinguish the PN-bit-vector
mechanism proposed in this section from the first mechanism proposed in the previous
section, we will refer to the mechanism proposed in the previous section as the bit-vector-
array mechanism.

A key observation is that while every entry in the array can potentially have a linked
list of original prefixes, the maximum number of potential prefixes in each linked list is
different. In other words, for each array entry, not all the prefix lengths in its bit-vector
are possible. For example, in figure 3.20, the bit vector at the array entry whose index
is 111 can have set only the bit corresponding to length 3 (prefix U). This bit vector will
never have set the bits corresponding to lengths 1 and 2, because the corresponding prefixes
are stored in other linked lists (according to the prefix storing rule). As a result, some bit
positions in the length bit-vectors are useless. To use the memory efficiently, our idea is to
use one single length bit-vector per subtrie, without the useless bits, instead of one length
bit-vector per entry with some useless bits. Note also that for small strides, the gain in
memory lies in the fact that the minimum length bit vector would be a byte, i.e., without the
optimization. Another advantage is that we can keep this unique length bit-vector separated
from the array data structure, which optimize the BMP search operation (search of the BMP
of a given address). We call this single length bit vector the Prefix Nesting bit vector or PN
bit vector, for short. As we will see shortly, the PN bit vector not only encodes the length
of prefixes but also their nesting structure or covering relationship.

To obtain the single PN bit-vector we conceptually concatenate the length bit-vectors in
the array entries, from the smallest index to the greatest index, but without including the
useless bits. (We joint the individual bit-vectors of array entries into a single bit vector but
without the useless bits). For example, figure 3.26 shows the single PN bit-vector for the
example in figure 3.17.

3.6.1 Mapping prefixes to bit positions in the PN bit vector

To support update operations we need to be able to find the coverer of a prefix and also the
longer prefixes already inserted in the span of the concerned prefix. To support these tasks
with the PN bit vector we need a way to map prefixes to bit positions in the PN bit vector.
We introduce in this section these mapping operations.

For a given prefix P, we can obtain its corresponding position in the PN bit-vector
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Figure 3.26: The PN bit Vector

as follows: Let bmbm−1...b2b1 be the bit string of the last segment pn of prefix P, then
its bit position (bp) in the PN bit vector is defined by the following function: bp(P ) =

(2k−m)
∑m

i=1 bi2
i +

∑m
i=1 bi , where k is the stride of the target subtrie and bi is the bit com-

plement of bi . Intuitively, this function takes into account the value as well as the length
of the prefix to uniquely identify a given prefix. The term 2k−m is to take into account the
number of padding bits to fit the stride. The first summation takes into account the bits “1”,
while the second summation corresponds to the bits “0”. Since this function follows the
order of the entries in the array, the nesting structure among the prefixes is also encoded.
Figure 3.27 shows the algorithm to compute the bit position of a prefix in the PN bit vector.
The inverse operation can be readily computed. Figure 3.28 shows the algorithm to recon-
struct the binary string of the last segment of a prefix, given its bit position in the PN bit
vector.

3.6.2 Getting the coverer of a prefix with the PN bit vector

Remember that the coverer of a prefix P is the longest prefix of P among the original prefixes
stored in the target subtrie. Thus if the length of P is l then we look successively for the prefix
of P of length l-1, l-2, ... l-| pn |+1; and the first prefix found will be the coverer. In the
case of the bit-vector-array mechanism, to check each of the bit vectors we needed to access
the corresponding entry in the array. With the single bit vector we do all the process in the
single bit vector and we access only the array entry where the coverer is actually stored, at
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input : bitstring is the last segment of the prefix; and stride is the stride of the
target subtrie

output : the bitposition of the prefix, in the bit-vector of the target subtrie
procedure getbitposition (bitstring, k)
begin

bitposition = 0 ;
length = lengthstring(bitstring);
paddingbits = k - length ;
for i=1 to length do

bit = (bitstring & 1); /* get the rightmost bit */
if bit is set then

bitposition = bitposition + 2i+paddingbits ;
else

bitposition = bitposition + 1 ;
end
bitstring= bitstring >> 1 ; /* to check next bit */

end
return bitposition;

end

Figure 3.27: Algorithm to calculate the bit position of a prefix in a bit-vector

end of the process. Note that checking for the next shorter possible prefix of P is readily
done by computing at each step the corresponding bit position. The complete algorithm is
shown in figure 3.29.

3.6.3 Updating the span of a prefix with the PN bit vector

The algorithm to update the span of a prefix is essentially the same as in the bit-vector-array
mechanism; except that the longer prefixes covered by the prefix are not searched in the
array but in the single bit vector instead. Note that we can delimit exactly where the prefixes
covered by P are in the PN bit vector. These prefixes are located in the PN bit vector from
the bit position where the prefix P is located to the bit position where the last prefix in the
span of P is located. For example, for prefix 0* its end of span is 011, and between the bit
position corresponding to prefix 0* (i.e., 1) and the bit position of prefix 011 (i.e., 7) are all
the possible prefixes covered by 0*.

Hence, when a covered prefix is found its bit string is computed and its corresponding
span is skipped in the array. Since the PN bit vector keeps the nesting structure of the covered
prefixes, the algorithm skips efficiently the subspans, when there are nested subspans. The
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input : bitposition of a prefix in the bit-vector; stride is the stride of the target
subtrie

output : a string, which is equal to the last segment of the prefix
procedure computebitstring (bitposition, k)
begin

lastsegment = "";
length = 0;
value = bitposition;
i = k ;
while value > 0 do

if value >= 2i then
value = value - 2i ;
/* Concatenate a bit "1" at the end of lastsegment */
lastsegment=lastsegment<<1 ;
lastsegment++ ;

else
value = value - 1 ;
/* Concatenate a bit "0" at the end of lastsegment */
lastsegment=lastsegment<<1 ;

end
length++ ;
i−− ;

end
return lastsegment;

end

Figure 3.28: Algorithm to reconstruct the last segment of a prefix, given its bit position
in a bit-vector
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input : bitstring is the last segment of the prefix; k is the stride of the target subtrie;
and PN is the PN bit-vector for the target subtrie

output : the pointer to the prefix that is the coverer of the input prefix
procedure findcoverer (P, bitposition, targetsubtrie, k, PN)
begin

lastsegmentP = last segment of prefix P;
len = length(lastsegmentP);
partiallen = length(P)-len;
paddingbits = k - len ;
bitstring = lastsegmentP;
repeat

bit = (bitstring & 1); /* get the rightmost bit */
if bit is set then

bitposition = bitposition - 2k−len+1 ;
else

bitposition = bitposition - 1 ;
end
bitstring= bitstring >> 1 ; /* to check next bit */
len−−;

until (PN[bitposition] is SET) or (len ≤ 0) ;
if len > 0 then

startspanQ = startspan(bitstring,k);
listpointer = targetsubtrie[startspanQ].BMP;
covererlen = partiallen+len;
while listpointer−>length 6= covererlen do

listpointer = listpointer−>next;
end
return listpointer;

else
return Null;

end
end

Figure 3.29: Algorithm to find the coverer of a prefix P in a PN bit-vector
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complete algorithm to update the span of a prefix is shown in figure 3.30.

3.6.4 Inserting a Prefix

The algorithm to insert a prefix P consists basically in the following steps:

• Find the target subtrie.

• Check whether the prefix P is already inserted.

• Expand the prefix P; that is, update the span of P using P as the new BMP.

• Set the bit corresponding to prefix P in the PN bit vector.

• Insert prefix P in the appropriate linked list.

The complete algorithm is shown in figure 3.31.

3.6.5 Deleting a Prefix

The algorithm to delete a prefix P consists basically in the following steps:

• Find the target subtrie.

• Check whether the prefix P does really exists.

• Retrieve prefix Q, which is the coverer of P.

• Update the span of P using Q as the new BMP.

• Clear the bit, which corresponds to P in the PN bit vector.

• Delete prefix P in the appropriate linked list.

Figure 3.32 shows the complete algorithm for the deletion of a prefix in a multibit trie. Note
that, in the insertion algorithm the subroutine updatespan is called with P as both, the prefix
and the new BMP, while the deletion algorithm calls updatespan with P as prefix and Q as
new BMP; where Q is the prefix obtained by the function findcoverer.
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Data : prefix P. bp is the bit position of P in the PN bit-vector of the target subtrie
procedure updatespan(P, bp, targetsubtrie, k, PN, newBMP)
begin

lastsegmentP = last segment of prefix P;
startspanP = startspan(lastsegmentP, k) ;
endspanP = endspan(lastsegmentP, k) ;
endbp = getbitposition(endspanP, k) ;
bp++;
entryindex = startspanP ;
while entryindex ≤ endspanP do

while PN[bp] is NOT SET and bp ≤ endbp do
bp++;

end
if bp ≤ endbp then

/* compute the last segment of the prefix corresponding to PN[bp], re-
ferred as Q */
lastsegmentQ = computebitstring (bp, k) ;
y = startspan(lastsegmentQ, k) ;
endspanQ = endspan(lastsegmentQ, k) ;
bp = getbitposition (endspanQ, k) + 1;
skipentries = endspanQ - y + 1;

else
y = endspanP + 1;
skipentries = 0 ;

end
while entryindex < y do

/*update current BMP of targetsubtrie[entryindex] with new BMP *
targetsubtrie[entryindex].BMP = memoryaddress(newBMP);
entryindex++ ;

end
/* skip the entries in the span of prefix Q just found*/
entryindex = entryindex + skipentries

end
end

Figure 3.30: Algorithm to update the span of a prefix P with a new BMP
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Data : prefix P of length l
procedure InsertPrefix(P)
begin

Locate the target subtrie ;
k = the stride of the target subtrie ;
PN = the PN bit-vector of the target subtrie;
lastsegmentP = last segment of prefix P;
startspanP = startspan(lastsegmentP, k) ;
/* calculate bit position of P in the length bit-vector V
bp = getbitposition(lastsegmentP, k) ;
if PN[bp] is SET then

print(" prefix P already exists");
return "error";

else
updatespan(P,bp,targetsubtrie,k,PN, P);
setbit(PN[bp]);
insertoriginalprefix(P, targetsubtrie, startspanP, k);

end
end

Figure 3.31: Algorithm to insert a prefix in a multibit trie

3.7 Performance evaluation

We have proposed two mechanisms to support incremental updates in multibit-trie-based
forwarding databases: the bit-vector-array mechanism and the PN-bit-vector mechanism.
While the bit-vector-array mechanism does not need to compute mapping functions, it uses
memory inefficiently. The PN-bit-vector mechanism uses memory more efficiently than
the bit-vector array mechanism. The PN bit vector mechanism obtains efficient memory
usage by using our PN bit vector data structure and computing the corresponding mapping
functions. In other words, the PN bit vector mechanism trades computation for efficient
memory usage. Moreover, Since the PN bit vector mechanism separates the additional data
structure needed to support incremental updates from the main data structure used for doing
BMP lookup operations, the performance of the BMP lookup operation is not affected.

We present in this section the performance results of our two mechanisms: the bit-vector-
array mechanism, which uses several bit vectors per subtrie and the optimized mechanism,
which uses only one vector per subtrie, that is the PN bit vector mechanism.

The forwarding database used was extracted from a typical backbone router table [Tel03].
In particular, we used a forwarding table with 143168 prefixes. Our programs were coded
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Data : prefix P of length l
procedure DeletePrefix(P)
begin

Locate the target subtrie ;
k = the stride of the target subtrie ;
PN = the PN bit-vector of the target subtrie;
lastsegmentP = last segment of prefix P;
startspanP = startspan(lastsegmentP, k) ;
/* calculate bit position of P in the length bit-vector V
bp = getbitposition(lastsegmentP, k) ;
if PN[bp] is NOT SET then

print(" prefix P does not exist");
return "error";

else
Q = findcoverer(P, bp, k, PN);
updatespan(P,bp,targetsubtrie,k,PN, Q);
clearbit(PN[bp]);
deleteoriginalprefix(P, targetsubtrie, startspanP);

end
end

Figure 3.32: Algorithm to delete a prefix from a multibit trie
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in C and were executed in the user space under the Linux operating system in a Pentium-
III-based computer with a clock speed of 935 MHz.

We have used a multibit trie with the next fixed strides: 16, 8, 8 at the first,second ant
third level respectively. While we have used a fixed stride multibit trie in our emulations,
our mechanisms can be used with any multibit trie.

3.7.1 Time performance

In this emulation the forwarding database was randomized. Prefixes were inserted in random
order to reduce the effects of cache locality. Once all the prefixes were inserted, the prefixes
were deleted in the same random order.

Figure 3.33 shows the cumulative distribution of the prefix insertion times for our two
mechanisms. Note that the performance of both mechanisms is very similar, which means
that the computing overhead of the mapping functions in the PN bit vector mechanism has
no impact on the insertion times.
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Figure 3.33: The cumulative distribution of the prefix insertion times

Figure 3.34 shows the cumulative distribution of the prefix delete times for our two
mechanisms. Again, the performance of both is very similar.

To investigate the impact of the bit vectors on the BMP search operation, we measured
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Figure 3.34: The cumulative distribution of the prefix deletion times

the performance of the BMP lookup operation in our two mechanisms and we compared
the performance of our mechanisms with that of a “basic” multibit trie mechanism; that
is, a multibit trie mechanism without update capabilities. Since traffic statistics depend
on the location of the router, what we have done to measure the performance of the lookup
operation is to consider that every prefix in the forwarding database has the same probability
of being accessed. In other words, we suppose that the traffic per prefix is the same for all
prefixes. With this approach we can measure the lookup times inherent to the forwarding
database. Indeed, a better knowledge of the specific traffic statistics would allow only a
better evaluation of the average lookup time.

Figure 3.35 shows the cumulative distribution of the BMP lookup times for our two
mechanisms compared to that of a “basic” multibit trie. Note that the performance of the
PN bit vector mechanism is almost equal to that of the “basic” multibit trie. The performance
of the bit-vector-array mechanism is slightly lower than that of the “basic” multibit trie. This
slight reduction in the performance of the bit-vector-array mechanism is due to the fact that
this mechanism increments the memory size of the “main” data structure of the multibit
trie (each entry of the arrays must contain one bit vector). In contrast, since in the PN bit
vector mechanism the bit vector is maintained separated from the “main” data structure of
the multibit trie, the performance of the BMP lookup operation is not affected.
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Figure 3.35: The cumulative distribution for the BMP lookup operation

3.7.2 Memory requirements

Table 3.1 shows the number of subtries at each level of the multibit trie and the number of
entries for the subtries. The number of entries per subtrie is equals to 2k where k is the stride
of the subtrie. The last row of the table shows the total number of subtries and entries for
the multibit trie. Note that these statistics are for the main data structure, that is the data
structure needed to do BMP lookups; and they are valid for our two mechanisms. The last
column shows the number of bytes required for the entries. Each entry in a subtrie requires
to store two pointers1; thus, 8 bytes are needed per entry.

Multibit-trie Number of Entries per Total of Total of
Level subtries subtrie entries bytes

1 1 216 65 536 524 288
2 3 642 28 932 352 7 458 816
3 65 28 16 640 133 120

Total 3 708 1 014 528 8 116 224

Table 3.1: Subtries per level

1one for the current BMP and one for a next possible subtrie
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In the bit-vector-array mechanism, each entry in a subtrie has a bit vector. Thus, this
mechanism needs additional memory for 1 014 528 bit vectors. The size of each bit vector
depends on the stride size of the subtrie. For example, if the maximum stride size is 16,
the bit vector needs a minimum of two bytes (i.e., 16 bits). Table 3.2 shows the additional
memory required for the bit vectors in the bit-vector-array mechanism. Note that the stride
for the first level of the multibit trie is 16, and the strides for the second and third level are
8.

Multibit-trie Level Number of bit vectors bytes per bit vector Total of bytes
1 65 536 2 131 072
2 932 352 1 932 352
3 16 640 1 16 640

Total 1 080 064

Table 3.2: Additional memory for the bit-vector-array mechanism

For the PN bit vector mechanism, only one bit vector per subtrie is required. The size of
a PN bit vector in bytes is given by the expression 2k−2, where k is the stride of the subtrie.
The table 3.3 shows the additional memory required for the PN bit vectors.

Multibit-trie Level Number of bit vectors bytes per bit vector Total of bytes
1 1 214 16 384
2 3 642 26 233 088
3 65 26 4160

Total 253 632

Table 3.3: Additional memory for the PN bit vector mechanism

The memory consumption for the two mechanisms is summarized in table 3.4. The table
shows also the fraction of memory for the bit vectors with respect to the total memory for
each mechanism.

For the bit-vector-array mechanism the total of memory is obtained by adding the mem-
ory size of the main data structure (table 3.1) and the memory size of the bit vectors (table
3.2).

For the PN bit vector mechanism the total memory is again obtained by adding the
memory size of the main data structure and the memory size of the PN bit vectors (3.3);
but we need to addition also one extra entry per subtrie. This extra entry is needed to point
to the PN bit vector. Since there are 3708 subtries, the additional entries contributes with



90

29664 (3708 x 8) bytes. Note that although each entry in a subtrie has two pointers we use
only one of the pointers in the extra entry.

Mechanism Total of memory bit vectors bit vectors
bytes bytes % of total memory

bit-vector-array 9 196 288 1 080 064 11.74 %
PN bit vector 8 399 520 253 632 3.02 %

Table 3.4: Comparison of memory consumption of our two mechanisms

3.8 Related work

While several schemes use multibit tries for fast BMP lookups [PZ92], [SV98], [GLM98],
[DBCP97], [MS98], [HZ99], [NK99], most of them do not allow for incremental updates.
We discuss in this section the schemes that treat the incremental update aspect.

Srinivasan et al. [SV99a] suggests the use of an additional binary trie in each subtrie to
store the original prefixes and to find the next best match (the coverer2) of an original prefix.
Also, they use an extra field in each array entry to store the length of its current BMP. While
not all the details of the update algorithms are given (e.g., the deletion algorithm), the idea
seems to work. Nevertheless, the use of the extra field per array entry to keep the length of
its current BMP can have an impact on the search operation. While the authors claim that
this extra field can be stored in auxiliary storage and used only by the update routines, it
is not clear how this can be achieved. Also, in their approach, to update the BMP of array
entries, they do not skip subspans efficiently, instead they check each entry of the array to
decide whether the BMP of the entry must be updated. This is in fact because their approach
does not have the notion of spans, which we introduced in section 3.4.

Hong-Yi Tzeng et al. [TP99] use linked lists to store the original prefixes as in our
approach. Additionally, they use an extra field per array entry to keep the length of its
current BMP, as in the scheme of Srinivasan. Our mechanism differs in that we optimize the
search from linked list to linked list by the use of a bit vector. Also we do not need the extra
length field which can degrade the search performance.

Hariguchi [Har] scheme also supports incremental updates. However, his approach dif-
fers to our approach in that it uses a second pointer instead of our PN bit vector. As a result,

2While the notion of coverer is implicitly used in the Srinivasan’s approach, it is not clearly defined as we
do in our approach.
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the arrays need to store three pointers per entry, instead of two as in our approach. While
this allows the router to find the coverer with only one access, the memory consumption is
incremented, which can impact the search operation performance.

Another approach that supports incremental updates is the Tree bitmap scheme of Eather-
ton [Eat99]. The Tree bitmap approach reduces the memory requirements by using two bit
vectors. One for the pointers to subtries and one for the prefixes in the subtrie. The disad-
vantage is that subtries need to be stored contiguously. This implies that when a new subtrie
is created the array of subtries need to be reallocated and thus rebuild. It is worth to note that
Eatherton [Eat99] also uses a bit vector to encode prefixes in a subtrie. Nevertheless, our
approach differs from Eatherton approach in several points. First, Eatherton approach uses
the bit vector as part of the main multibit data structures. In his scheme the bit vector is used
in part for the BMP lookup operation, so its use impacts directly the search operation. The
second and more important difference is that our PN bit vector not only encodes existence of
prefixes but also their nesting structure. Encoding the nesting structure of prefixes facilitates
the updating process in multibit tries.

3.9 Summary

Incremental updates for multibit-trie-based forwarding databases is challenging because it
requires to keep track of the prefix transformation process. The main contribution of this
chapter is a set of data structures and algorithms to support incremental updates in BMP
lookup schemes based on multibit tries. In particular, we have proposed two mechanisms
to support incremental updates in multibit-trie-based BMP lookup schemes: the bit-vector-
array mechanism and the PN-bit-vector mechanism. While the bit-vector-array mechanism
does not need to compute mapping functions, it uses memory inefficiently. The PN-bit-
vector mechanism uses memory more efficiently than the bit-vector array mechanism. The
PN bit vector mechanism obtains efficient memory usage by using our PN bit vector data
structure and computing the corresponding mapping functions. In other words, the PN bit
vector mechanism trades computation for efficient memory usage. Moreover, Since the PN
bit vector mechanism separates the additional data structure needed to support incremental
updates from the main data structure used for doing BMP lookup operations, the perfor-
mance of the BMP lookup operation is not affected. In our approach we have introduced
two key concepts in the framework of incremental updates for multibit tries: the notions of
span and coverer.

While the use of multibit tries provides fast BMP lookups, alternative approaches for
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doing BMP lookups have been presented by the research community. However, few efforts
have been made to provide a framework of reference to compare the different schemes and
contrast the tradeoffs of these schemes. In the next chapter, we propose a taxonomy and a
framework of reference to analyse and compare the different schemes for doing fast BMP
lookups.



Chapter 4

A Framework and a Taxonomy for IP
Address Lookup Algorithms

While intensive research has been conducted in the area of IP address lookup, few efforts
have been proposed to provide a framework of reference to compare the different schemes
and contrast tradeoffs of these schemes. Previous works focuses only on surveying the
different methods [TP99][SV99b]. To our knowledge, this is the first time that a taxonomy
based on the double dimension of the BMP search is proposed. We propose in this chapter
a taxonomy and an effort to use consistent terminology. Moreover, we provide a framework
to analyze and compare the different methods to perform fast address lookups when the
address lookup operation needs a search for the longest matching prefix.

In chapter 3 we focused on the approach based on the multibit trie data structure and
we proposed two mechanisms to support incremental updates. In this chapter we place this
approach in the general context of IP address lookup algorithms.

4.1 A Taxonomy of Address Lookup Algorithms

Remember from chapter 2 that, with CIDR, the address lookup operation requires a search
for the best matching prefix (BMP). In this section, we propose a taxonomy of the main
algorithms to provide fast address lookups; but before and to motivate our taxonomy, we
describe the naive algorithm to search for the BMP.
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4.1.1 The naive algorithm for the BMP lookup

The simplest method to find the longest matching prefix is a sequential search of all the
prefixes. The data structure needed is just an array with unordered prefixes. Each array
entry contains the bit string and the length of the prefix. The search algorithm is very
simple. It goes through all the entries comparing the prefix with the corresponding bits of a
given address. When a match is found, we keep the longest match so far and continue. At
the end, the last prefix remembered is the BMP. The problem with this approach is that the
search space is reduced only by one prefix at each step. Clearly the search complexity in
time for this scheme is a function of the number of prefixes O(N ), and hence the scheme
is not scalable. With this approach, we do exhaustive search; that is, the search terminates
only when all the prefixes has been checked. The only advantage of this approach is that
it uses memory efficiently; that is, no extra storage requirements are needed except for the
prefixes themselves. Since prefixes are not ordered, insertion is straightforward but deletion
needs a search operation.

In the next section we present methods to do more efficient search of the BMP.

4.1.2 Optimized methods

Our taxonomy is based on the observation that the difficulty of the best matching prefix
search resides in its double dimension: value and length. Determining the best matching
prefix involves not only comparing the bit pattern itself (finding a match), but also finding the
appropriate length (the longest one). Our taxonomy classifies the address lookup schemes
according to these two dimensions and also if a linear or a binary search is performed. As a
result, we have 4 cases:

• Linear search based on lengths

• Binary search based on lengths

• Linear search based on values

• Binary search based on values

We explain each of these categories in the next sections. While the most important aspect
is the search operation, it should be taken into account also that the forwarding database is
dynamic; that is, it is subject to frequent insertions and deletions. Hence, we analyse the
update aspect when we explain the different approaches.
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4.2 BMP search based on lengths

In this case the main dimension to search is the length of the prefix. Thus, we organize the
prefixes by length, and for a given length, we search for an exact match.

4.2.1 Linear search based on lengths using hash tables

To organize the prefixes by length, we can use different tables for every different length. In
each table, we can search for a match by using hashing. Since we need to find the longest
matching prefix, the simplest approach is to perform sequential search from the longest
length to the shortest one. If we assume a perfect hashing function then the complexity
of the search time is O(W ); where W is the maximum possible prefix length. Clearly,
insertions and deletions are straightforward. Storage requirements are minimal.

4.2.2 Linear search based on lengths using multibit tries

4.2.2.1 The classical binary tries

Another way to organize prefixes by length is by using tries. In fact, as we have seen in
chapter 3, a trie organizes prefixes by using their bits to direct the branching. As a result,
all the prefixes of the same length are located at the same level of the trie. Hence, when we
follow a search path in a trie, we can check at each step i the prefixes of length i. Moreover,
by the way a trie organizes its data, we can check for a match at each length (i.e., level)
with a constant time cost (the memory access time). Hence, with tries, we can perform
linear search on lengths with cost O(W ), without the need to assume a perfect hashing
function. The simplest trie, i.e., the binary trie, supports arbitrary prefix lengths, and allows
for straightforward insertions and deletions.

While binary tries allow the representation of arbitrary length prefixes, they have the
characteristic that long sequences of one-child nodes may exist (see prefix b in figure 4.1).
Since these bits need to be inspected, even though no actual branching decision is made,
search time can be longer than necessary in some cases. Also, one-child nodes consume
additional memory. In an attempt to improve time and space performance, a technique
called path-compression can be used. Path-compression consists of collapsing one-way
branch nodes. When one-way branch nodes are removed from a trie, additional information
must be kept in remaining nodes so that the search operation can be performed correctly.

There are many ways to exploit the path-compression technique; perhaps the simplest to
explain is illustrated in figure 4.2, corresponding to the binary trie in figure 4.1. Note that



96

a  0*
b  01000*
c  011*
d  1*
e  100*

g  1101*
h  1110*
i   1111*

f   1100*

Prefixes

0

0

0

0

0

0

0

0 0

1

1

1

11

1

1

b

c e

f ig h

a d

Figure 4.1: Binary trie for a set of prefixes.

the two nodes preceding b now have been removed. Note also that since prefix a was located
at a one-child node, it has been moved to the nearest descendant not being a one-child node.
Since in a path to be compressed several one-child nodes may contain prefixes, in general,
a list of prefixes must be maintained in some of the nodes. Because one-way branch nodes
are now removed, we can jump directly to the bit where a significant decision is to be made,
bypassing the bit inspection of some bits. As a result, a bit number field must be kept now
to indicate which bit is the next bit to inspect. In figure 4.2 these bit numbers are shown
next to the nodes. Moreover, the bit strings of prefixes must be explicitly stored. A search
in this kind of path-compressed tries is as follows: The algorithm performs, as usual, a
descent in the trie under the guidance of the address bits, but this time only inspecting bit
positions indicated by the bit-number field in the nodes traversed. When a node marked
as prefix is encountered, a comparison with the actual prefix value is performed. This is
necessary since during the descent in the trie we may skip some bits. If a match is found,
we proceed traversing the trie and keep the prefix as the BMP so far. The search ends when
a leaf is encountered or a mismatch found. As usual, the BMP will be the last matching
prefix encountered. For instance, if we look for the BMP of an address beginning with the
bit pattern 010110 in the path compressed trie shown in figure 4.2, we proceed as follows.
We start at the root node and, since its bit number is 1, we inspect the first bit of the address.
The first bit is 0, so we go to the left. Since the node is marked as a prefix, we compare prefix
a with the corresponding part of the address (0). Since they match, we proceed and keep a

as the BMP so far. Since the node’s bit number is 3, we skip the second bit of the address
and inspect the third one. This bit is 0, so we go to the left. Again, we check whether the
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prefix b matches the corresponding part of the address (01011). Since they do not match,
the search stops, and the last remembered BMP (prefix a) is the correct BMP.

a  0*
b  01000*
c  011*
d  1*
e  100*

g  1101*
h  1110*
i   1111*

f   1100*

Prefixes

23

3

4 4

0 1

0 1

0 1

0 1

0 1 0 1

1

f ig h

a d

cb e

Figure 4.2: A path-compressed trie

Path-compression was first proposed in a scheme called PATRICIA [Mor68], but this
scheme does not support longest prefix matching. Sklower proposed a scheme with modifi-
cations for longest prefix matching in [Skl91]. In fact, this variant was originally designed
to support not only prefixes but also more general noncontiguous masks. Since this feature
was really never used, current implementations differ somewhat from Sklower’s original
scheme. For example, the BSD version of the path-compressed trie (referred to as BSD trie)
is essentially the same as that just described. The basic difference is that in the BSD scheme,
the trie is first traversed without checking the prefixes at internal nodes. Once at a leaf, the
traversed path is backtracked in search of the longest matching prefix. At each node with a
prefix or list of prefixes, a comparison is performed to check for a match. The search ends
when a match is found. Comparison operations are not made on the downward path in the
hope that not many exception prefixes exist. Note that with this scheme, in the worst case
the path is completely traversed two times. In the case of Sklower’s original scheme, the
backtrack phase also needs to do recursive descents of the trie because noncontiguous masks
are allowed.

4.2.2.2 Multibit tries

We have seen in chapter 3 that we can improve the search performance by using multi-
bit tries. While multibit tries improve search performance, insertion and deletion are not
straightforward because prefixes need a transformation. We have seen in chapter 3 how to
provide efficient insertions and deletions while not degrading the search performance.
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Linear search of hashing tables provides search, insertion and deletion with similar cost.
By organizing prefixes with binary tries, the storage requirement increases but we do not
need a perfect hashing function to provide the same O(W ) time cost for search, insertion
and deletion operations. While multibit tries need increased memory requirements, they
allow for a tuning tradeoff between the search time cost and the insertion/deletion time cost.
This tradeoff is tuned by choosing the strides and levels of the multibit trie. Multibit tries
are usually implemented by using one array per subtrie. Hence, search in a multibit trie can
be performed by successively indexing the arrays with the corresponding bits of the packet’s
destination address.

Choosing the strides requires a trade-off between search speed and memory consump-
tion. In the extreme case, we could make a trie with a single level (i.e., a one-level multibit
trie with a 32-bit stride for IPv4). Search would take in this case just one access, but we
would need a huge amount of memory to store 232 entries.

One natural way to choose strides and control memory consumption is to let the structure
of the binary trie determine this choice. For example, if we look at Fig. 4.1, we observe that
the subtrie with its root the right child of node d is a full subtrie of two levels (a full binary
subtrie is a subtrie where each level has the maximum number of nodes). We can replace
this full binary subtrie with a one-level multibit subtrie. The stride of the multibit subtrie is
simply the number of levels of the substituted full binary subtrie, two in our example. Figure
4.3 shows the result of this transformation. This transformation is straightforward, but since
it is the only transformation we can do in Fig. 4.1, it has a limited benefit. We will see later
how to replace, in a controlled way, binary subtries that are not necessarily full subtries. The
height of the multibit trie will be reduced while controlling memory consumption. We will
also see how optimization techniques can be used to choose the strides.

Multibit tries with the path compression technique

Nilsson et al. [NK99] uses the idea of replacing full binary subtries with multibit subtries.
More specifically, the authors recursively transform the binary trie representation of a for-
warding database into a multibit trie with variable strides. Starting at the root, they replace
the largest full binary subtrie with a corresponding one-level multibit subtrie. This process
is repeated recursively with the children of the multibit subtrie obtained. Additionally, one-
child paths are compressed. Since we replace at each step a binary subtrie of several levels
with a multibit trie of one level, the process can be viewed as a compression of the levels
of the original binary trie. Level-compressed (LC) is the name given by Nilsson to these
multibit tries. Figure 4.4 shows the resulting multibit trie (i.e., the LC trie) for the binary
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Figure 4.3: Replacing a full binary subtrie with a multibit subtrie.

trie in figure 4.1. Note that prefixes a and d are not shown in the multibit trie, this is because
in a LC trie the internal nodes cannot contain prefixes. Instead, each leaf has a linear list
with prefixes; the prefixes that should be in the path to this leaf (i.e., less specific prefixes).
As a result, a search in an LC trie proceeds as follows. The LC trie is traversed as in a basic
multibit trie. Nevertheless, since path compression is used, an explicit comparison must be
performed when arriving at a leaf. In case of mismatch, a search of the list of prefixes must
be performed (less specific prefixes, i.e., prefixes in internal nodes in the original binary
trie). To achieve a space efficient implementation of the multibit trie, Nilsson stores all the
nodes of the LC trie in a single array: first the root, then all the nodes at the second level,
then all the nodes at the third level, and so on.

a  0*
b  01000*
c  011*
d  1*
e  100*

g  1101*
h  1110*
i   1111*

f   1100*

Prefixes
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skip=1cb
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e

Figure 4.4: The LC multibit trie for the last binary trie. Since the LC trie cannot store
prefixes at internal nodes, prefixes a and d are maintained in an additional data structure,
which is reached by pointers in the leaves.
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While letting the structure of the binary trie strictly determine the choice of strides is
a straightforward and simple strategy, this strategy does not allow for control of the height
of the resulting multibit trie. One way to further reduce the height of the multibit trie is to
let the structure of the trie only guide, not determine, the choice of strides. In other words,
we will replace nearly full binary subtries (i.e., binary subtries where only few nodes are
missing) with a multibit subtrie. Nilsson proposes replacing a nearly full binary subtrie with
a multibit subtrie of stride k if the nearly full binary subtrie has a sufficient fraction of the
2k nodes at level k, where a sufficient fraction of nodes is defined using a single parameter
called fill factor x, with 0 < x ≤ 1. For instance, in Fig. 4.1, if the fill factor is 0.5, the
fraction of nodes at the fourth level is not enough to choose a stride of 4, since only 5 of the
16 possible nodes are present. Instead, there are enough nodes at the third level (5 of the 8
possible nodes) for a multibit subtrie of stride 3.

Although this optimization allows for a better control of the height of the multibit trie,
this strategy does not allow to control the worst case lookup time. Moreover, since the
LC trie is implemented using a single array of consecutive memory locations and a list of
prefixes must be maintained at leaves, incremental updates are very difficult. Updates will
need that almost every array entry to be moved to make space for new nodes. Also, since
location of the children of a node is coded with array offsets, insertions or deletions cause
the need to update these array offsets.

The additional table maintaining the information about the prefixes that should be at
internal nodes is also implemented as a single array using array offsets to relate its elements.
As a result, updates will need also array entries to be moved and array offsets to be updated.

Multibit tries and optimization techniques

One easy way to bound worst-case search times is to define fixed strides that yield a well-
defined height for the multibit trie. The problem is that, in general, memory consumption
will be large, as seen earlier. On the other hand, we can minimize the memory consumption
by letting the prefix distribution strictly determine the choice of strides. Unfortunately, the
height of the resulting multibit trie cannot be controlled and depends exclusively on the
specific prefix distribution. We saw in the previous section that Nilsson uses the fill factor
as a parameter to control the influence of the prefix distribution on stride choice, and so
influences somewhat the height of the resulting multibit trie. Since prefix distribution still
guides stride choice, memory consumption is still controlled. Nevertheless, the use of the
fill factor is simply a reasonable heuristic and, more important, does not allow a guarantee
on worst-case height. Srinivasan et al. [SV98] use dynamic programming to determine,



101

for a given prefix distribution, the optimal strides that minimize memory consumption and
guarantee a worst-case number of memory accesses. The authors give a method to find the
optimal strides for the two types of multibit tries: fixed stride and variable stride. Another
way to minimize lookup time is to take into account, on one hand, the hierarchical structure
of the memory in a system and, on the other, the probability distribution of the usage of
prefixes (which is traffic-dependent). Cheung et al. [CM99] give methods to minimize the
average lookup time per prefix for this case. They suppose a system having three types of
hierarchical memories with different access times and sizes. Using optimization techniques
makes sense if the entries of the forwarding table do not change at all or change very little,
but this is rarely the case for backbone routers. Inserting and deleting prefixes degrades the
improvement due to optimization, and rebuilding the structure may be necessary.

Multibit tries and compression

Multibit tries are usually implemented by using arrays. While the use of arrays allows
for fast indexed accesses in each subtrie, memory requirements are increased. To save
some memory, a number of approaches uses compression techniques when implementing
the multibit tries. Two general techniques are used to save memory. The first technique
comes from the observation that the entries in the array stores two pointers, one for the
current BMP and one for the next possible subtrie (see section 3.5.1). The idea is to use
a prefix transformation in such a way that we can have a multibit trie where entries in the
arrays have only one pointer: a pointer to a next subtrie or a pointer to the current BMP,
but not both. This prefix transformation exists. All we need to do is to transform the set of
prefixes into an equivalent set of disjoint prefixes; that is, a set of non nested prefixes. But
how many new prefixes can be generated? To transform a multibit trie with nested prefixes
into a multibit trie with disjoint prefixes, we proceed, conceptually, as follows: We begin
at the subtrie in the first level. For every array entry having a non null pointer to a next
subtrie, we suppress the current BMP pointer, and we remember this BMP. Then, we follow
the next subtrie pointer to arrive at a subtrie in the second level. In this subtrie, for all the
array entries having a null BMP pointer, we change this null pointer with a pointer to the
BMP just remembered in the last subtrie. In other words, we expand in this subtrie the re-
membered BMP. Once this expansion has been done, we recursively repeat the process; that
is, in this subtrie, we repeat the process for every array entry having a non null pointer to a
next subtrie. At the end of this process, all the subtries will have only one pointer: a pointer
to a next subtrie or a pointer to a BMP, but not both. In fact, only leaves will have a pointer
to BMP, while only internal nodes will store a pointer to a next subtrie. Figure 4.6 shows
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the multibit trie with disjoint prefixes resulting from the multibit trie in figure 4.5.
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Figure 4.5: A multibit trie.
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Figure 4.6: A multibit trie with disjoint prefixes.

The second technique to save memory consists in using a bit vector to represent with
only one bit each entry of the array. The bits in the bit vector are set by using the Run-
length encoding technique [Sto88] as follows: We scan the entries in the original array,
each time that a different pointer is found, the bit corresponding to this entry is set. On the
contrary, if the pointer is the same than that of the previous entry, then the corresponding bit
is cleared. Once the bit vector is built, we can store only the different pointers in the array in
a contiguous block, that is, in a smaller compressed array. Now, indexing the subtrie consists
in two steps: In the first step, we index the bit vector to locate the target bit position, then we
count the number of bits set from the beginning of the bit vector until the target bit position.
In the second step, this count number is used to index the compressed array. Figure 4.8
shows the compressed multibit trie of figure 4.7.
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Figure 4.7: A multibit trie with disjoint prefixes.
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Figure 4.8: The compressed multibit trie corresponding to the multibit trie of figure 4.7.
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The Lulea scheme [DBCP97] uses these two techniques to reduce memory consumption.
Furthermore, to count efficiently the number of set bits, the Lulea scheme partitions the bit
vector in blocks, then precomputes and stores the count of set bits in each block. That is,
the count is done in several stages, with precomputed values.

Another example of compressed multibit tries is the Full expansion/Compression scheme
proposed by Crescenzi et al. [CDG99]. In this approach both techniques described above
are also used, but with some modifications. The scheme uses a multibit trie of two lev-
els; and conceptually, it expands prefixes to the maximum length. We will illustrate their
method with a small example where we do a maximal expansion supposing 5-bit addresses
and use a two-level multibit trie. The first level uses a stride of 2 bits and the second level
a stride of 3 bits, as shown in figure 4.9. The idea is to compress each of the subtries at the
second level. In figure 4.10 we can see how the leaves of each subtrie at second level have
been placed vertically. Each column corresponds to one of the second-level subtries. The
goal is to compress the repeated occurrences of the BMPs. Nevertheless, the compression
is done in such a way that at each step the number of compressed symbols is the same for
each column. With this strategy the compression is not optimal for all columns, but since
the compression is made in a synchronized way for all the columns, accessing any of the
compressed subtries can be made with one common additional table of pointers, as shown
in figure 4.10. To find the BMP of a given address, we traverse the first level of the multibit
trie as usual; that is, the first two bits of the address are used to choose the correct subtrie
at the second level. Then the last three bits of the address are used to find the pointer in the
additional table. With this pointer we can readily find the BMP in the compressed subtrie.
For example, searching for the address 10110 will guide us to the third subtrie (column) in
the compressed structure; and using the pointer contained in the entry 110 of the additional
table, we will find d as the best matching prefix.

In the actual scheme proposed by Crescenzi, prefixes are expanded to 32 bits. A multibit
trie of two levels is also used, but the stride of the first and second levels is 16 bits. It is worth
noting that even though compression is done, the resulting structure is not small enough to
fit in the cache memory. Nevertheless, because of the way to access the information, search
always takes only three memory accesses. The reported memory size for a typical backbone
forwarding table is 1.2 Mbytes.

While compression saves memory requirements, update cost is very high and in general
these approaches do not allow for incremental updates. Obtaining disjoint prefixes can be
very costly. Insertion of a new prefix in a compressed array involves shifting already inserted
prefixes to make space for the new one. When obtaining disjoint prefixes, the disaggregation
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Figure 4.9: A two level full expanded multibit trie
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cannot be controlled.

4.2.3 Binary search based on lengths

The problem with arbitrary prefix lengths is that we do not know how many bits of the
destination address should be taken into account when compared with the prefix values.
Tries allow a sequential search on the length dimension: first we look in the set of prefixes
of length 1, then in the set of length 2 prefixes, and so on. Moreover, at each step the search
space is reduced because of the prefix organization in the trie. We have seen that another
approach to do sequential search on lengths without using a trie is organizing the prefixes
in different tables according to their lengths. In this case, a hashing technique can be used
to search in each of these tables. Since we look for the longest match, we begin the search
in the table holding the longest prefixes; the search ends as soon as a match is found in
one of these tables. Nevertheless, the number of tables equals the number of different prefix
lengths. If W is the address length (32 for IPv4), the time complexity of the search operation
is O(W ) assuming a perfect hash function, which is the same as for a trie.

In order to reduce the search time, a binary search on lengths was proposed by Waldvogel
et al. [WVTP97]. In a binary search, we reduce the search space in each step by half.
On which half to continue the search depends on the result of a comparison. However, an
ordering relation needs to be established before being able to make comparisons and proceed
to search in a direction according to the result. Comparisons are usually done using key
values, but our problem is different since we do binary search on lengths. We are restricted
to checking whether a match exists at a given length. Using a match to decide what to do
next is possible: if a match is found, we can reduce the search space to only longer lengths.
Unfortunately, if no match is found, we cannot be sure that the search should proceed in the
direction of shorter lengths, because the BMP could be of longer length as well. Waldvogel
et al. insert extra prefixes of adequate length, called markers, to be sure that, when no match
is found, the search must proceed necessarily in the direction of shorter prefixes.

To illustrate this approach consider the prefixes shown in Fig. 4.11. In the trie we can
observe the levels at which the prefixes are located. At the right, a binary search tree shows
the levels or lengths that are searched at each step of the binary search on lengths algorithm.
Note that the trie is only shown to understand the relationship between markers and prefixes,
but the algorithm does not use a trie data structure. Instead, for each level in the trie, a hash
table is used to store the prefixes. For example, if we search for the BMP of the address
11000010, we begin by searching the table corresponding to length 4; a match will be found
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because of prefix f, and the search proceeds in the half of longer prefixes. Then we search
at length 6, where the marker 110000* has been placed. Since a match is found, the search
proceeds to length 7 and finds prefix k as the BMP. Note that without the marker at level
6, the search procedure would fail to find prefix k as the BMP. In general, for each prefix
entry a series of markers are needed to guide the search. Since a binary search only checks a
maximum of log2 W levels, each entry will generate a maximum of log2 W markers. In fact,
the number of markers required will be much smaller for two reasons: no marker will be
inserted if the corresponding prefix entry already exists (prefix f in Fig. 4.11), and a single
marker can be used to guide the search for several prefixes (e.g., prefixes e and p, which use
the same marker at level 2). However, for the very same reasons, the search may be directed
toward longer prefixes, although no longer prefix will match. For example, suppose we
search for the BMP for address 11000001. We begin at level 4 and find a match with prefix
f, so we proceed to length 6, where we find again a match with the marker, so we proceed
to level 7. However, at level 7 no match will be found because the marker has guided us
in a bad direction. While markers provide valid hints in some cases, they can mislead in
others. To avoid backtracking when being misled, Waldvogel uses precomputation of the
BMP for each marker. In our example, the marker at level 6 will have f as the precomputed
BMP. Thus, as we search, we keep track of the precomputed BMP so far, and then in case of
failure we always have the last BMP. The markers and precomputed BMP values increase
the memory required. Additionally, the update operations become difficult because of the
several different values that must be updated.
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4.3 BMP search based on values

The previous section presented BMP search methods that use the length of prefixes as the
main search dimension. In this section we present BMP search methods that get rid of the
prefix length dimension. The idea is to transform the prefixes of the forwarding database
in such a way that traditional search methods based on value comparisons can be applied.
To base the search on values only, we need to get rid of the length dimension in some way.
One way of doing this is by changing the prefix representation (value/length) to an explicit
interval representation. In this way, instead of using value/length we use two values the
first (lowest) value of the interval and the last (highest) value of the interval. Note that with
this representation we get rid of the length dimension because all the elements have the same
length; that is, the maximum prefix length, which is also the length of the IP addresses. Now
we can use search methods based on comparison of values exclusively. Now the problem
is transformed into finding any of the two endpoints of the appropriate prefix interval, for
these endpoints have the associated forwarding information of the corresponding prefix.
One natural way to search for one of the two appropriate endpoints is to search for the
predecessor of a given address. The predecessor of a given address is defined as the greatest
endpoint smaller than or equal to the given address. When we search for the predecessor of a
given address, what we are trying to find is, in fact, the left endpoint of the prefix interval that
contains the given address. Unfortunately, this approach does not work because the prefix
intervals can be included in other prefix intervals, i.e., prefix intervals can be nested. Since
prefix intervals can be nested, the predecessor of a given address is not always the endpoint
of the prefix interval that contains this address. For example, figure 4.12 shows the full
expansion of prefixes assuming 5-bit-length addresses. The same figure shows the endpoints
of the different prefix intervals, in binary as well as decimal form. There we can see that the
predecessor of the address 21 is the endpoint 19; nevertheless, the correct BMP for address
21 is not the one associated with endpoint 19 (i.e., e), but d instead. Since the idea of the
search of the predecessor works only for non nested intervals, one solution is to transform
the original prefix intervals into non nested intervals, i.e., disjoint intervals. Let’s see with an
example how this transformation can be achieved. In figure 4.12, we can see that the interval
corresponding to the prefix a can be partitioned into 4 subintervals. Two of them are in fact
the intervals of prefixes b and c; and only the other two subintervals: [0,7] and [9,11] have
a as their closest covering prefix. While the search for the predecessor of addresses in the
interval [0,7] gives the correct result, this is not the case for addresses in the interval [9,11].
The problem is that there is no explicit left endpoint for the subinterval [9,11]. Obviously,
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the solution is to store a new left endpoint for this subinterval, and associate this new left
point (i.e., 9) with the forwarding information of prefix a. What we have just done is, in
fact, transforming the set of nested intervals of prefixes a, b, and c into an equivalent set of
disjoint intervals; that is, a set of disjoint intervals with the same forwarding information.
We will refer to the disjoint intervals resulting of this transformation as the basic intervals.
In our example, to obtain disjoint intervals, the interval of prefix a was transformed into
two basic intervals. In general, to obtain disjoint intervals, the interval of a prefix covering
m prefixes will be transformed into a maximum of m+1 basic intervals. Figure 4.12 shows
the basic intervals for an example of a set of prefixes. Note that for the algorithm to work
properly, each basic interval must be associated with its BMP, which is simply the closest
prefix covering this basic interval. In summary, the transformation consists in two stages.
In the first stage, the basic intervals are determined by using the endpoints of the prefix
intervals; and adding extra left endpoints for the basic intervals without it. In the second
stage, each left endpoint of the basic intervals is associated with its BMP, which is its closest
covering prefix. Now, we can use classical search methods based on value comparisons to
find the correct predecessor of a given address and so obtain its correct BMP. Note that once
the basic intervals are determined and the extra left endpoints are added, we do no longer
need to maintain the right endpoints because they are redundant. Note also that an equivalent
approach can be based on the use of right endpoints, instead of left endpoints. In this case
the search for the BMP is achieved by searching for the successor of a given address; where
the successor of a given address is defined as the smallest endpoint greater than or equal to
the given address.

4.3.1 Linear search based on values

The simplest method to search for the predecessor of a given address is to sequentially scan
an array containing the left endpoints of the basic intervals. This linear search method has
time cost O(N ), where N is the number of prefixes of the forwarding database. Obviously,
a binary search method is possible. We describe in the next section some variants for doing
binary search based on values

4.3.2 Binary search based on values

Different implementations of this idea can vary in how the endpoints are managed. In the
general scheme described above, once the basic intervals are determined, we need to main-
tain, in fact, only their left endpoints (the original and the new ones) because the right
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endpoints are redundant. Another variant is the scheme of Lampson et al. [LSV98]. In this
scheme, the authors do not store explicitly the left endpoints of the new intervals resulting
of the transformation process; instead, both left and right original endpoints maintain two
BMPs, one for the interval they belong to and one for the potential next basic interval. For
example, in figure 4.12, endpoint 19 will maintain two BMPs, one for basic interval I5 and
one for I6. Figure 4.13 shows the search tree indicating the steps of the binary search algo-
rithm. The leaves correspond to the endpoints, which store the two BMPs (= and >). For
example, if we search the BMP for address 10110 (22), we begin comparing the address
with key 26; since 22 is smaller than 26, we take the left branch in the search tree. Then we
compare 22 with key 16 and go to the right; then at node 24 we go to the left arriving at node
19; and finally, we go to the right and arrive at the leaf with key 19. Because the address (22)
is greater than 19, the BMP is the value associated with > (i.e., d). As for traditional binary
search, the implementation of this scheme can be made by explicitly building the binary
search tree. Moreover, instead of a binary search tree, a multiway search tree can be used
to reduce the height of the tree and thus make the search faster. The idea is similar to the
use of multibit tries instead of binary tries. In a multiway search tree, internal nodes have k
branches and k-1 keys; this is especially attractive if an entire node fits into a single cache
line because search in the node will be negligible compared to normal memory accesses.
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As previously mentioned, the transformation process consists of two stages. First, the
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basic intervals are determined; and second, each basic interval is associated with its BMP,
which is its closest covering prefix. While inserting a new prefix can generate in the worst
case only 2 new endpoints, it may need to change the BMP of N basic intervals, in the worst
case. This is because a new prefix when inserted can become the new closest covering prefix
of many basic intervals. Similarly, when a prefix P is deleted, all the basic intervals whose
closest covering prefix is P will need to update their BMP with a new closest covering prefix.
In the worst case we would need to update the BMP for N basic intervals, N as usual being
the number of prefixes. This is the case when all the 2N endpoints are all different and one
prefix contains all the other prefixes.

Remember that a prefix interval containing m prefix intervals can be transformed into
up to m+1 new disjoint subintervals. Similarly, when an existing prefix is deleted, the BMP
of N basic intervals may need to change in the worst case. Hence, the problem with this
approach is that inserting or deleting a single prefix may require recomputing the BMP for
many basic intervals. In general, every prefix interval spans several basic intervals. The
more basic intervals a prefix interval covers, the higher the number of BMPs to potentially
recompute. In fact, in the worst case we would need to update the BMP for N basic intervals,
N as usual being the number of prefixes. This is the case when all 2N endpoints are different
and one prefix contains all the other prefixes.

Thus, to support incremental updates we need to find a way to aggregate the basic in-
tervals in such a way that when they need to be updated we only need to update aggregates
of basic intervals and not each individual basic interval. To provide incremental updates,
we need to control the transformation process. Remember that to obtain disjoint intervals,
a prefix interval can be transformed into N basic intervals, in the worst case. We need a
way to organize hierarchically the new derived subintervals. That is, we need to maintain an
additional structure to be be able to update by modifying aggregates of subintervals and not
each of the basic subintervals individually.

In Fig. 4.13 we can observe that the leaves of the tree correspond to basic intervals.
We can observe also that internal nodes correspond to intervals that are the union of basic
intervals (Fig. 4.14). Also, all the nodes at a given level form a set of disjoint intervals. For
example, at the second level the nodes marked 12, 24, and 28 correspond to the intervals
[0,15], [16,25], and [26,29], respectively. So why store BMPs only at leaves? For instance,
if we store a at the node marked 12 in the second level, we will not need to store a at
leaves, and update performance will be better. In other words, instead of decomposing
prefix intervals into basic intervals, we decompose prefix intervals into disjoint subintervals
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as large as possible. Figure 4.14 shows how prefixes can be stored using this idea1. Search
operation is almost the same, except that now it needs to keep track of the BMP encountered
when traversing the path to the leaves. We can compare the basic scheme to using leaf
pushing and the new method to not doing so. Again, we can see that pushing information to
leaves makes update difficult, because the number of entries to modify grows. The multiway
range tree approach [SVW01] presents and develops this idea to allow incremental updates.
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Figure 4.14: A range search tree.

Another way to aggregate the basic intervals is by using the nesting structure of prefixes
itself. What changes essentially when a prefix is inserted or deleted is the nesting relation-
ship between the prefixes and the basic intervals. For example, when a prefix is inserted a
number of basic intervals can change their closest covering prefix; that is, the new prefix
can become their new closest covering prefix. Similarly, when a prefix is deleted some of
the basic intervals can change their closest covering prefix. As a result, insertion or deletion
of a prefix can change the BMP of a number of basic intervals.

To better understand this aggregation strategy, let’s define the set of basic intervals cov-
ered by a prefix P as the cover of P. Note that among the basic intervals in the cover of a
prefix P, some have P as their closest covering prefix but some others do not. This is because
prefixes can be nested and hence, some basic intervals that are in the cover of P can also be

1The data structure based on the idea of storing intervals at nodes as high as possible is called the segment
tree, in the area of computational geometry [BKOS97].
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in the cover of longer prefixes than P. Let’s define the set of basic intervals covered directly
by a prefix P (that is, not covered by longer prefixes) as the direct cover of P. In other words,
the direct cover of P is the set of basic intervals whose closest covering prefix is P. We will
refer also to the basic intervals in the direct cover of P as the basic intervals seized by P, for
these are the basic intervals that have P as their BMP. Intuitively, when a prefix is inserted,
the direct cover of some prefixes will change, but which prefixes? Suppose we have a prefix
Q and we insert a prefix P such that Q and P are non nested. Clearly the insertion of P does
not modify the direct cover of Q because the cover of P and the cover of Q are disjoint.
Now suppose that P and Q are nested and P is shorter than Q. Again, the direct cover of Q
is not modified because P cannot become a closer covering prefix for the basic intervals in
the direct cover of Q (Q is longer than P). In fact, the only case in which the direct cover of
Q is modified is when P and Q are nested and P is directly covered by Q (and hence, P is
longer than Q). Again, we say that P is directly covered by Q when Q is the closest covering
prefix of P. Let’s call for convenience the closest covering prefix of a prefix P the coverer

of P. Thus, when a prefix P is inserted, the only prefix whose direct cover is modified is the
prefix which is the coverer of P. More specifically, if Q is the coverer of a new prefix P to be
inserted, then the basic intervals that are in both the direct cover of P and the direct cover of
Q will be seized by P. This is because these basic intervals are no longer covered directly by
Q but by P. As a result, the direct cover of Q will be reduced.

Similarly, when a prefix P is deleted the only prefix whose direct cover is modified is the
prefix which is the coverer of P. In the case of deletion of P, the direct cover of Q is increased
because the basic intervals that are in both the direct cover of P and the direct cover of Q
will be seized by Q.

In the CBST (Collection of Binary Search Trees) approach [SK02], the cover of a prefix
is represented by a binary search tree. The prefix itself is represented by the header-node
of the tree; and each node in the tree represents either a directly covered basic interval
or a directly covered prefix interval. Since each prefix is represented by a different tree,
modifying the direct cover of a prefix translates into moving nodes from one tree to another.
For example, if Q is the coverer of a prefix P to be inserted, then some of the nodes in the
tree of Q will be moved to the new tree of the prefix P. Similarly, when prefix P is deleted,
the nodes in the tree of P will be merged into the tree of Q. The advantage of using a tree is
that we can move aggregates of nodes and not only individual nodes. Moving aggregates of
nodes can be performed by splitting and joining subtrees.

To provide incremental updates, the CBST scheme uses basically two data structures:
The first data structure is essentially the classical basic interval tree described for the prece-
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dent schemes. The second data structure is a collection of binary search trees; in which each
of these binary trees represents the cover of each prefix. Every basic interval is stored at
two different places: at a leaf in the basic interval tree, and at a node in one of the trees in
the collection of trees. Both are related by a pointer stored in each leaf of the basic interval
tree. As a result, the search of the BMP for a given address consists in two steps: First, we
search the appropriate basic interval for the given address in the basic interval tree. Once
the appropriate basic interval (leaf) is found by using binary search, the pointer in the leaf is
followed into the corresponding tree; where the BMP is found by following parent pointers
until the header-node of the tree. As described above, in the case of updates, the nodes in the
collection of trees are moved from one tree to another and so the BMP of the corresponding
basic intervals is automatically updated.

4.4 Transforming Original Prefixes and Incremental Up-
dates

To cope with scalability, a forwarding database aggregates forwarding information by the
use of prefixes. While the use of prefixes allows routers to reduce the size of their forwarding
tables, a direct implementation of a forwarding table based on the original prefixes does not
always allow for fast address lookups. We have seen in previous sections how a number of
transformations can be applied to the set of original prefixes to optimize the address lookup
operation:

1. Transformation of an original prefix into several longer but equal-length prefixes (pre-
fix expansion).

2. Transformation of the set of original prefixes into a set of disjoint prefixes.

3. Transformation of a set of prefixes into a set of disjoint intervals.

4. For a given prefix, addition of redundant shorter prefixes (markers).

When a prefix is transformed, what we do in fact, is to disaggregate to some extent the orig-
inal prefixes. As a result, a single prefix can be transformed into several different prefixes
or intervals. While this transformation is to make the search operation faster, inserting or
deleting a single prefix needs more work because we need to take into account the transfor-
mation process. To allow for incremental updates we need to limit in a controlled way the
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extent of the disaggregation process and maintain additional data structures to keep track of
the disaggregation. In other words we need to do hierarchical disaggregation.

4.5 Comparison and Measurements of Schemes

Each of the schemes presented has its strengths and weaknesses. In this section, we compare
the different schemes and discuss the important metrics to evaluate these schemes. The
ideal scheme would be one with fast searching, fast dynamic updates, and a small memory
requirement. The schemes presented make different tradeoffs between these aspects. The
most important metric is obviously the lookup time, but update time must also be taken into
account, as well as the memory requirements. Scalability is also another important issue,
with respect to both the number and length of prefixes.

4.5.1 Complexity Analysis

The complexity of the different schemes is compared in table 4.1. The next sections carry
out detailed comparison.

Scheme Worst case lookup Update Memory
Binary trie O(W ) O(W ) O(NW )

Path-compressed tries (BSD trie) O(W ) O(W ) O(N )
k stride Multibit trie O(W

k
) O(W

k
+2k) O(2kN W

k
)

LC trie O(W
k

) - O(2kN W
k

)
Lulea trie O(W

k
) - O(2kN W

k
)

Full expansion/compression 3 - O(2k+N2)
Binary search on prefix lengths O(log2W ) O(N log2W ) O(N log2W )

Binary range search O(log2N ) O(N ) O(N )
Multiway range search O(logkN ) O(N ) O(N )
Multiway range trees O(logkN ) O(klogkN ) O(NklogkN )

Table 4.1: Complexity comparison

4.5.1.1 Tries

In binary tries we potentially traverse a number of nodes equal to the length of addresses.
Therefore, the search complexity is O(W ). Update operations are readily made and basi-
cally need a search, so update complexity is also O(W ). Since inserting a prefix potentially
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creates W successive nodes (along the path that represents the prefix), the memory con-
sumption for a set of N prefixes has complexity O(NW ). Note that this upper bound is not
tight, since some nodes are, in fact, shared along the prefix paths. Path compression reduces
the height of a sparse binary trie, but when the prefix distribution in a trie gets denser, height
reduction is less effective. Hence, complexity of search and update operations in path com-
pressed tries, is the same as in classical binary tries. Path-compressed tries are full binary
tries. Full binary tries with N leaves have N -1 internal nodes. Hence, space complexity for
path-compressed tries is O(N ).

Multibit tries still do linear search on lengths, but since the trie is traversed in larger
strides the search is faster. If search is done in strides of k bits, the complexity of the lookup
operation is O(W

k
). As we have seen, updates require a search and will modify a maximum

of 2k−1 entries (if leaf pushing is not used). Update complexity is thus O( W
k

+2k) where
k is the maximum stride size in bits in the multibit trie. Memory consumption increases
exponentially with k: each prefix entry may need potentially an entire path of length W

k
,

and paths consist of one-level subtries of size 2k. Hence, memory used has complexity
O(2kN W

k
).

Since the Lulea and Full expansion/Compression schemes use compressed multibit tries
together with leaf pushing, incremental updates are difficult if not impossible, and we have
not indicated update complexity for these schemes. The LC trie scheme uses an array layout
and must maintain lists of less specific prefixes. Hence, incremental updates are also very
difficult.

4.5.1.2 Binary Search on Lengths

For a binary search on lengths, the complexity of the lookup operation is logarithmic in
the prefix length. Notice that the lookup operation is independent of the number of entries.
Nevertheless, updates are complicated due to the use of markers. As we have seen, in
the worst case log2W markers are necessary per prefix; hence, memory consumption has
complexity O(N log2W ). For the scheme to work, we need to precompute the BMP of
every marker. This precomputed BMP is a function of the entries being prefixes of the
marker; specifically, the BMP is the longest among them. When one of these prefix entries
is deleted or a new one is added, the precomputed BMP may change for many of the markers
that are longer than the new (or deleted) prefix entry. Thus, the marker update complexity
is O(N log2W ) since theoretically an entry may potentially be prefix of N -1 longer entries,
each having potentially log2W markers to update.



118

4.5.1.3 Range Search

The range search approach gets rid of the length dimension of prefixes and performs a search
based on the endpoints delimiting disjoint basic intervals of addresses. The number of basic
intervals depends on the covering relationship between the prefix ranges, but in the worst
case it is equal to 2N . Since a binary or a multiway search is performed, the complexity
of the lookup operation is O(log2N ) or O(logkN ), respectively, where k is the number of
branches at each node of the search tree. Remember that the BMP must be precomputed
for each basic interval, and in the worst case an update needs to recompute the BMP of N

basic intervals. The update complexity is thus O(N ). Since the range search scheme needs
to store the endpoints, the memory requirement has complexity O(N ).

We previously mentioned that by using intervals made of unions of the basic intervals,
the approach of [SVW01] allows better update performance. In fact, the update complexity
is O(klogkN ), where k is the number of branches at each node of the multiway search tree.

4.5.1.4 Scalability and IPv6

An important issue in the Internet is scalability. Two aspects are important: the number
of entries and the prefix length. The last aspect is specially important because of the next
generation of IP (IPv6), which uses 128-bit addresses. Multibit tries improve lookup speed
with respect to binary tries, but only by a constant factor on the length dimension. Hence,
multibit tries scale badly to longer addresses. Binary search on lengths has a logarithmic
complexity with respect to the prefix length, and its scalability property is very good. The
range search approaches have logarithmic lookup complexity with respect to the number of
entries but independent, in principle, of the prefix length. Thus, if the number of entries
does not grow excessively, the range search approach is scalable for IPv6.

4.5.2 Measured Lookup Time

While the complexity metrics of the different schemes described in the previous section are
an important aspect for comparison, it is equally important to measure the performance of
these schemes under “real conditions”. We now show the results of a performance com-
parison made using a common platform and a prefix database of a typical backbone router
[Tel03].

All programs are coded in C and were executed in the user space under the Linux op-
erating system in a Pentium-III-based computer with a clock speed of 935 MHz. The code
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for the path-compressed trie (BSD trie) was extracted from the FreeBSD implementation
[WS95][MBKQ96], the code for the Multibit trie was implemented by us (as it was pro-
posed in chapter 3), and the code for the other schemes was obtained from the corresponding
authors.

While prefix databases in backbone routers are publicly available, this is not the case
for traffic traces. Indeed, traffic statistics depend on the location of the router. Thus, what
we have done to measure the performance of the lookup operation is to consider that every
prefix has the same probability of being accessed. In other words, the traffic per prefix is
supposed to be the same for all prefixes. Although a knowledge of the access probabilities
of the forwarding table entries would allow a better evaluation of the average lookup time,
assuming constant traffic per prefix still allows us to measure important characteristics, like
the worst-case lookup time. In order to reduce the effects of cache locality we used a ran-
dom permutation of all entries in the forwarding table (extended to 32 bits by adding zeroes).
Figure 4.15 and figure 4.16 show the distributions and the cumulative distributions, respec-
tively, of the lookup operation for 5 different schemes. The lookup time variability for the
5 different schemes is summarized in table 4.2, which shows the corresponding percentiles
[Jai91].
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Figure 4.15: Lookup time distributions of several lookup mechanisms

Lookup time measured for the BSD trie scheme reflects the dependence on the prefix
length distribution. We can observe a large variance between time for short prefixes and
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Figure 4.16: Lookup time cumulative distributions of several lookup mechanisms

time for long prefixes because of the high height of the BSD trie. On the contrary, the full
expansion/compression scheme always needs exactly 3 memory accesses. This scheme has
the best performance for the lookup operation in our experiment. Small variations should
be due to cache misses as well as background operating system tasks.

Scheme 10-percentile 50-percentile 99-percentile
(Median)

BSD trie 2.06 2.82 4.33
Multibit trie 0.27 0.33 0.75

LC trie 0.48 0.64 1.01
Full expansion/compression 0.06 0.23 0.63

Binary search on prefix lengths 0.39 0.71 4.00

Table 4.2: Percentiles of the lookup times (µseconds)

As we know, lookup times for multibit tries can be tuned by choosing different strides.
We have measured the lookup time for the LC trie scheme, which uses an array layout and
the path compression technique. The LC trie is a variable-stride multibit trie that uses the
distribution of prefixes to guide the choice of strides. Additionally, the fill factor was chosen
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such that a stride of k bits is used if at least 50 percent of the total possible nodes at level
k exist (see section 4.2.2.2). Even with this simple strategy to build multibit tries, lookup
times are much better than for the BSD trie.

We have also measured the lookup time for a Multibit trie implemented with a linked tree
structure and without path compression (our PN bit vector multibit trie mechanism proposed
in chapter 3). In this emulation we have used the PN bit vector multibit trie with the next
fixed strides: 16, 8, 8 at the first,second ant third level respectively (recall that while we
have used a fixed stride multibit trie in our emulations, our mechanisms can be used with
any multibit trie).

Table 4.3 shows the statistics of the BSD trie and multibit tries, which explains the
performance observed. Notice that the average height value of the BSD trie is very high.
Hence, a path compression technique used alone, as in the BSD trie, has almost no benefit
for a typical backbone router. This table explains also the best performance of the PN bit
vector multibit trie with respect to the LC trie. Note that the maximum height of the LC trie
is higher that that of the PN bit vector multibit trie. Recall that the higher the trie, the more
the number of memory accesses, which slows the BMP lookup operation. Moreover, since
the LC trie needs to do extra comparisons in some cases once at the leaves of the trie, these
extra operations further degrade the BMP lookup performance.

Scheme Average height Maximum height
BSD trie 21.57 32
LC trie 2.28 6

Multibit trie (PN bit vector) 2.24 3

Table 4.3: Trie statistics for the Telstra router (21 March, 2003)

The binary search on lengths scheme also shows a better performance than the BSD trie
scheme. However, the lookup time has a large variance. As we can see in figure 4.17, dif-
ferent prefix lengths need a different number of hashing operations. We can distinguish five
different groups, which need from one to five hashing operations. Since hashing operations
are not basic operations, the difference, between a search that needs five hashes and one that
needs only one hash can be significant.
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4.6 Summary

This chapter introduced a taxonomy and a framework of reference for fast BMP lookup
schemes. Our taxonomy is based on the two dimensional nature of the BMP search op-
eration: value and length. We have highlighted the principles behind the BMP lookup al-
gorithms. We have reviewed approaches for fast BMP lookups, both static and dynamic;
that is, whether they provide or not incremental update capabilities. We have seen that to
provide fast BMP lookups, the different approaches perform a transformation of the prefix
set, i.e., they do controlled disaggregation of the forwarding database. We have seen that to
support incremental updates we must find a way to manage in an aggregated way the de-
rived prefixes or intervals resulting of the transformation. While these ideas has been flying
around, we have made an effort to treat them in depth and we have used them to establish a
framework of reference in this area. The purpose of our taxonomy was two fold. In addition
to analysing and surveying the different schemes, our taxonomy identifies and contrasts the
different tradeoffs in the address lookup schemes. Another contribution of this chapter is the
comparison of the different schemes in terms of their complexity and measured execution
time on a common platform. We believe that our taxonomy and framework of reference has
greatly increased understanding of the relationships among the existing fast address lookup
algorithms and hence we believe that our contribution can help to point researchers in fruit-
ful directions in this area.

While performing a BMP lookup allows routers to decide where to send a packet next,
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this task is only a part of the process to achieve the actual relaying of a packet. Once the
router has decided through which output port the packet will be forwarded, the router must
multiplex all the packets that need to be forwarded through the same output port. Further-
more, routers must resolve possible contention for a given output port because it is possible
that several packets from different inputs need to be forwarded through the same output port
at the same time. In the next chapter, we concentrate in this aspect of the forwarding process
of packet.
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Chapter 5

Optimizing the use of buffers for flow
isolation

In the previous chapter we have studied how routers search the forwarding information for
every incoming packet. This forwarding information allows routers to decide where the
packet should be sent next and through which output port the packet will be forwarded.
Since a router has in general several input ports, it is possible that several packets need to
be sent through the same output port at the same time. As a result, routers need to be able
to resolve the possible contention for a given output port. Usually, routers use buffers to
address the problem of output-port contention. Buffering allows routers to retain packets
while one of the contending packets is transmitted.

However, buffering alleviates the output-port contention only to some extent because, in
case of sustained overload, the buffer will eventually overflow. When the buffer overflows,
packets are dropped. Hence, the use of buffers is effective only in the case of transient
overload. Furthermore, while the use of buffers avoid packet losses to some extent, its use
introduces packet delay. While packet delay is in general better than packet loss, some traffic
conditions can lead to situations in which the buffer adds unnecessary packet delay. The use
of buffers to alleviate the output-port contention is based on the assumption that overload is
only transient and not sustained. However, this assumption is not always valid in the Inter-
net. As a result, to make effective use of buffers we need mechanisms to control the traffic.
The control of traffic can be made in two places: at end systems or/and at routers. Tradi-
tionally, the control of traffic in the Internet has been done by end systems. The sources use
algorithms to try to discover the available resources in the network and so adapt their traffic
pattern in a dynamic manner. In particular, if congestion occurs the sources should respond
by reducing their traffic. The classical algorithm to control traffic of end systems is the
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TCP protocol [Jac88][APS99]. Nevertheless, in today’s Internet responding to congestion
is rather a user’s choice and in general there are responsive as well as unresponsive users.
As a result, buffers in routers are not always used effectively. When the buffers are not used
effectively, the network service is degraded in the form of packet losses and/or packet delay.
Furthermore, adaptive sources are penalized because unresponsive sources, intentionally or
unintentionally, abuse the cooperative nature of responsive traffic. To address this problem,
routers need to provide flow isolation. Providing flow isolation is important because with
flow isolation the performance perceived by users does not depend on the good behavior of
other users. In this chapter we propose a mechanism to optimise the use of buffers in routers
towards providing flow isolation.

5.1 The Functions of Router Buffers

To understand the rationales of our approach we first revise the forwarding process in a
router. When a packet arrives at a router, the router examines the packet’s destination address
to determine the appropriate outgoing link for the packet and then directs the packet to the
link.

Since flows share the link capacity on a need basis, packets from different flows may
need to be transmitted over the same link at the same time. In order to be able to multi-
plex different flows, packets are queued at the buffers associated with outgoing links and
scheduled for transmission.

Also, since in packet networks there is no blocking mechanism, sources do not have
restrictions nor in the traffic amount nor in its traffic pattern. As a result, a source can
temporarily send packets at a rate that exceeds output link bandwidth (burst) and so a buffer
is also used to absorb sporadic bursts of packets from individual flows.

In summary, load at a router varies dynamically as new flows appear and end, and also
as burstiness of each flow varies in time. Hence, the aggregate arrival rate of packets may
exceed the output capacity of the link and not all packets can be sent immediately. Routers
adapt to transient overloads by using buffers to store packets for later transmission, which
otherwise would be lost. In other words, by using buffers we trade delay for delivery capac-
ity.

It is very important to note that buffers in routers are used for two purposes. First, a
buffer allows to multiplex simultaneous flows into the output link. Second, it allows to
absorb bursts from individual flows. Both functions lead to packet delay. With a buffer
of limited size one function necessarily degrades the other one. We will see shortly how a
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router can protect the multiplexing function.
Buffers need to have free space to be useful, i.e. to absorb transient overloads. Thus,

if the offered load persistently exceeds link capacity, buffers have no use because they will
tend to be full or almost full most of the time.

Since users are not limited in the load they can send into the network, routers can control
sustained overload only by dropping packets. A major decision to the router is to distinguish
sustained overload from transient overload. This decision is crucial since it will determine
when to drop packets and with which rate. Another major decision is the selection of the
packets to drop.

By controlling when to drop packets, a router can improve the link utilization and its
capacity to absorb transient overload. By selecting packets to drop, the router can control
the buffer occupancy distribution among flows and thus indirectly control the bandwidth
allocation. Hence, to protect the multiplexing function of router buffers and thus provide
flow isolation, a buffer system must meet the next two requirements:

1. An ideal buffer system must always have free buffer space to absorb transient over-
loads, in the form of new flows or in the form of transient bursts from individual
flows.

2. An ideal buffer should select packets to drop in such a way that loss distribution
follows the buffer occupancy among flows.

We will see in the next section to what degree these requirements are met with the different
existing queue management mechanisms.

5.2 Discussion of Existing Capacity Allocation Schemes in
Routers

Drop-Tail FIFO

Currently, the Internet’s best-effort service is provided by FIFO scheduling and Drop-Tail
queue management in routers.

In this scheme, routers have one queue per output link and routers simply transmit pack-
ets in the order they arrive (FIFO). Also, routers have no control of how buffer is filled and
packets that arrive when the buffer space is exhausted are simply dropped (Drop-Tail). In
other words, routers cannot control neither when to drop packets nor which packets to drop;
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instead, both decisions are controlled by the users’ behavior. As a result, the service order
of packets and the occupancy distribution of the buffer depend also on the users’ behavior.

Clearly, with this scheme, routers cannot protect the multiplexing function of the buffer
by themselves; instead, the multiplexing function can only be protected by the users’ own
behavior. More specifically, users should find the appropriate traffic rate to send packets, ac-
cording to the network load conditions. Usually, users control its transmission rate with the
TCP protocol [Jac88][APS99], which ideally ensures that buffer occupancy will be evenly
distributed among the competing flows. Nevertheless, since the protection of the multiplex-
ing function of buffers depends on the cooperation of users, an aggressive user can always
monopolize the buffer space and starve cooperating flows.

Even if all users cooperate, still some problems exist with this scheme. Since Drop-Tail
cannot control buffer space allocation, users can maintain buffers full or almost full most
of the time, and routers will detect sustained overload only when the buffer overflows. Full
buffer causes problems because it does not allow buffer space availability to absorb tran-
sient overloads. Since data traffic is bursty, losses will be also bursty. This can result in
problems like “global synchronization” [SZC90], where several TCP connexions increase
and decrease their load simultaneously because router drops packets from several connex-
ions at the same time. When this happens the link utilization is reduced. By using TCP,
users can more or less preserve the multiplexing function of router buffers. But even if all
users utilize TCP, differences among flows like the round trip time (RTT) results in bias
against some flows [FJ92].

In summary, with Drop-Tail, the multiplexing function cannot be protected in the pres-
ence of unresponsive flows because these flows can occupy all the buffer space and starve
responsive flows by simply sending fast enough. With Drop-Tail, the only way to protect
the multiplexing function of buffers is by having all end-systems to control their traffic. In
particular, by using the TCP protocol.

RED

The major improvement of RED (Random Early Detection) [FJ93], with respect to Drop-
Tail, is that space to absorb transient overload is made available (first requirement to protect
the multiplexing function). RED achieves this by controlling the load in case of incipient
congestion. That is, RED begins to drop packets well before the queue length reaches the
total buffer size. The average queue length is used as an indicator of the level of sustained
overload.



129

Another improvement of RED is that it uses randomization to select packets to drop.
Since RED tends to drop each packet with equal probability, losses are distributed among
flows in proportion to their bandwidth usage. By using randomization, RED alleviates the
problems of global synchronization and phase effects, but it is assumed that users respond
to packet losses, or in general to congestion indication, by reducing their sending rate.

While RED randomization allows the routers to better distribute losses among compet-
ing flows, RED randomization cannot avoid that flows using less than their fair share lose
packets. The problem is that responsive flows respond to losses by reducing their load while
unresponsive aggressive flows can continue to get their packets stored in the buffer. In other
words, responsive flows not using their fair share are prevented from reaching it. As a result
unresponsive users can still starve responsive flows with RED [LM97].

In summary, RED allows the multiplexing function of buffer to be protected only if all
users are responsive.

A modified version of RED called FRED (Flow Random Early Drop) was proposed in
[LM97]. By using per-active-flow accounting FRED provides better isolation from aggres-
sive flows than RED.

Rate information in packets.

With Drop-Tail routers cannot select at all the packets to be dropped because this depends
on the users’ behavior. While RED improves this by using randomization in such a way
that drops are better distributed among all the flows, responsive flows are still affected in the
presence of unresponsive flows because RED randomization has limitations on the selection
of packets to drop.

A different way to allow routers to select packets to drop is by including some flow infor-
mation in the packets. In particular, flow rate information can be included in the packets in
such a way that routers can decide if a packet is accepted or dropped depending on the level
of overload. An example of this approach is CSFQ[SSZ98]. CSFQ still uses randomization
but in such a way that: First, flows sending at less than their fair share suffer no drops. Sec-
ond, flows exceeding its fair share suffer probabilistic dropping. Dropping is function of the
flow rate information of the packet and of an estimated fair share rate.

The Rainbow Fair Queueing approach, RFQ [CWZ00], also label packets with flow
information. Contrary to the CSFQ scheme, RFQ does not label packets with the estimated
flow rate; instead, each packet has a label corresponding to a layer value. These values
results from dividing conceptually a flow into a number of layers with fixed rates. Routers
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determine a dynamic threshold according to the load level and packets with labels greater
than this threshold are dropped.

Another scheme that includes flow information in packets is Tuf [CD01]. In the Tuf
approach, packets are labeled with different values. These values determine the dropping
eligibility of the packet. When the buffer overflows, the router drops the packet with the
highest label from the buffer. Labelling of packets takes into account the responsiveness of
the flow they belong to, in such a way that the average rates of flows remain fair.

The main improvement of these approaches is that the multiplexing function of buffers
is protected by avoiding that flows using less than their fair share suffer packet losses. Nev-
ertheless, these approaches require to insert additional information in packets and more
importantly it requires that all edge routers (or end-hosts) in the system agree on a single
scheme to consistently label packets.

Per-flow queuing mechanisms

A completely different way to protect the multiplexing function of router buffer is by main-
taining a separate FIFO queue for each flow [Nag87][SV95]. Queues are serviced in a
Round Robin order.

In this case the multiplexing function is “decoupled” from the burst absorbing function.
Since each flow has a different queue, the bursts or traffic pattern of each flow will not
disturb the others flows.

The problem with this approach is the difficulty of determining the number of active
flows at a given moment. Additionally, state per flow must be maintained and complex
scheduling is needed. Also, no FIFO scheduling introduces unnecessary delay for low-
bandwidth flows with short bursts arrival [CSZ92].

5.3 Our scheme

5.3.1 Design Goals

FIFO scheduling has the strength of being simple and easy to implement because no cal-
culation is needed to decide which is the next packet to send. With FIFO, the bandwidth
allocation is made by allocating the buffer space. Thus, a queue management mechanism
is necessary to provide isolation with FIFO scheduling. This is the approach we use in our
mechanism.
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The simple Drop-Tail queue management has the main problem that the burst absorbing
function troubles the multiplexing function. Our main goal is to protect efficiently the mul-
tiplexing function from the burst absorbing function in router buffers. Protecting efficiently
the multiplexing function provides isolation of flows while allowing high link utilization
level.

Since bursts are an inherent characteristic of traffic in Internet, we seek to not penalize
bursty traffic. Also, since there are many short lived flows in the Internet, it is very important
to not penalize this kind of flows. Our mechanism seeks to not refuse packets from new
flows. In fact, this is just another aspect of the protection of the multiplexing function.

We now introduce our queue management mechanism that provides flow isolation.

5.3.2 Overview

We propose a new scheme that provides isolation of flows for best-effort traffic, without
requiring per-flow queuing. Our scheme is based on the main idea that the multiplexing
function of a router buffer must be protected from its burst absorbing function. We called
our scheme MuxQ for Multiplexing Queuing. As was stated in section 5.1, to protect the
multiplexing function, routers must provide buffer space to absorb transient overloads. It
also must drop or accept packets according to the buffer occupancy distribution of flows. To
provide buffer space to absorb transient overloads, MuxQ controls the queue length while
allowing high throughput and high link utilization. Also, MuxQ progressively controls the
allocation of buffer space in a FIFO queue. The allocation decision is based only on state
information of a limited number of flows: the flows that do currently have packets in the
queue.

MuxQ has a FIFO queue called MUXqueue, see Figure 5.1. Although this queue works
essentially in the same way that the FIFO queue in traditional IP routers, we control the
buffer space of the MUXqueue in such a way that in case of overload, only a limited num-
ber of packets from each active flow is accepted. For each flow the maximum number of
packets that the router accepts is function of the number of active flows and the flow’s buffer
occupancy.

5.3.3 Detailed operation

We explain our mechanism by starting from the traditional FIFO Drop-Tail router then we
will refine the scheme to achieve our goals.
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when the number of  active flows increases

long−term queue length

MUXqueue

(or decreases) 
while the number of active flows remains constant  

Figure 5.1: The MuxQ queue

In traditional IP routers with drop tail, the buffer occupancy distribution among flows is
not controlled by the router but by the users’ behavior. Among other problems this can keep
the buffer full, because packets are dropped only when the buffer space gets exhausted.

As a result, a packet from a new flow may be refused while other flows have a rather
large number of packets accepted. In other words, the multiplexing capacity is completely
reduced because some flows have already used buffer space to absorb their bursts. To ad-
dress this problem MuxQ controls the allocation of buffer space in such a way that: First,
buffer space is always made available to accommodate packets from new flows. The idea
is to control the queue length in such a way that in the long term the queue has a smaller
length than the buffer size. We will refer to this length as ltqlen (long-term queue length),
see Figure 5.1. Second, buffer space is progressively shared among the active flows. We
explain this with an example.

Suppose the MUXqueue is empty and a packet arrives. At this moment there is only
one active flow, thus the buffer can accept a maximum of ltqlen packets from this flow. In
other words, the flow is restricted to have a maximum number of packets (denoted maxpkts)
equal to ltqlen, in the MUXqueue at the same time. Since ltqlen is set to a value smaller
than the buffer size, a packet from a second flow will always be accepted. Suppose that
by the time when the packet from the second flow arrives the first flow has already ltqlen

packets enqueued. At this moment the maximum number of packets allowed per flow will be
reduced to maxpkts=ltqlen/2 because the number of active flows has changed to 2. Note that
actually the first flow has more packets enqueued than the maximum allowed. Nevertheless,
this is a transient overload because the first flow will not be allowed to enqueue further
packets until its packet population gets smaller than the new maxpkts value. On the other
hand, the second flow can continue to enqueue packets. Clearly if no other flow appears the
queue length will tend to the ltqlen value, with half of the space for each flow (assuming



133

flows continue to send packets). But suppose that another packet from a third flow appears.
In this case the number of active flows will be 3 and the maximum number of packets
allowed per flow will decrease to maxpkts=ltqlen/3. Again flows with a packet population
exceeding the maximum allowed will not have packets accepted for some time while flows
with a number of packets below this maximum will continue to enqueue packets. Clearly,
the more the number of new flows, the more the greedy flows will be penalized.

In summary, in the long term, the queue length is maintained shorter than the buffer size
and tends to the value ltqlen. As we can see, a dynamic reserved part of the buffer is always
available to accommodate new flows. This part of the buffer is dynamically delimited by the
ltqlen value and the maximum buffer size. We protect in this way the multiplexing function
of the router buffer. Controlling the long-term queue length has the additional benefit of
controlling the long-term delay of packets. The MuxQ algorithm is shown in Figure 5.2.

As we have seen, maxpkts the maximum number of packets in the buffer from the same
flow, will be reduced according to the number of active flows. This allows to share the buffer
space among the competing flows. The more the number of competing flows, the less the
buffer space allowed per flow.

With MuxQ the bursts are naturally accepted as long as their size do not trouble the
multiplexing capacity (maxpkts). In case the aggregated bursts size (number of packets
in the MUXqueue) for an active flow is larger than maxpkts, its new incoming packet is
dropped. Note that packets are dropped also if a very large number of new flows arrives
simultaneously at the MUXqueue.

5.3.4 Active Flows

Since routers treat packets independently, the concept of flow is not natural at the router
level. Nevertheless, some notion of flow is necessary if we want to protect the multiplexing
function. This notion must be more related to a dynamic soft-state than to the real end-
to-end flow notion. In fact, in our scheme the notion of flow is associated to the group of
packets with some defined specific subset of identifiers and which are in the MUXqueue at
a given moment. In other words, a flow in our scheme lasts as long as the flow has packets
in the MUXqueue.

When a packet arrives at the router, a lookup of the output port is performed and then
the packet is directed to the output link. Then it is checked if packets from the same flow
are already in the MUXqueue. To make this operation efficient we use a hashing table
containing the number of packets of each flow in the MUXqueue. It is worth to note that
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procedure Enqueue
begin

Check number of packets (npkts) from this flow already in the
MUXqueue (* by hashing *);
if packet is from a new active flow, i.e. npkts==0 then

increment number of active flows;
set npkts=1 in the hash table entry for this flow;
insert packet in the MUXqueue;
update maxpkts=ltqlen/number of active flows;

else if npkts < maxpkts then
increment npkts in the hash table entry for this flow;
insert packet in the MUXqueue;

else
drop packet;

end
end

procedure Dequeue
begin

serve packet in the front of the MUXqueue;
decrement npkts in the hash table entry for the flow the packet belongs to;
Check number of packets (npkts) from this flow still in the MUXqueue (* by hashing
*);
if npkts== 0 then

decrement number of active flows;
update maxpkts=ltqlen/number of active flows;

end
end

Figure 5.2: The MuxQ algorithm
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state information is maintained only for the flows that do have packets in the main buffer at
any moment. The table is updated when a packet arrives and when a packet leaves the router
using a hashing operation, see Fig.5.2.

5.4 Performance

In this section, we evaluate our queue management mechanism by simulation. More specif-
ically, we study the ability of MuxQ to isolate different kind of flows. The performance of
MuxQ is compared with those of Drop-Tail, CSFQ, FRED, and DRR by using the ns-2 sim-
ulator [nns], which we extended with a MuxQ module. CSFQ and FRED simulation code
was obtained from [Sto98]. DRR and Drop-Tail are included in the standard ns-2 pack-
age. Since DRR uses per flow queuing, nearly perfect isolation can be obtained with this
mechanism; it is used as a reference in our simulations. We present the results of several
simulation experiments, each of which focuses on a particular traffic condition. Both TCP
sources and constant bit rate (CBR) UDP sources are used. Most of our simulations use
the topology shown on figure 5.3. The bottleneck link bandwidth is 10 Mbps and the link’s
propagation delay is 5 ms. The bottleneck router has a maximum buffer size of 100 KBytes
and all packets are 1000 bytes long. For MuxQ the ltqlen value was fixed at 0.75 of the
buffer size.

10 Mbps

Router Router

Sources Sinks

5 ms delay

Figure 5.3: The single bottleneck link simulation topology

5.4.1 Protecting long-lived responsive flows (TCP) from each other.

In this first experiment we seek to show that our mechanism does not interfere with the end-
to-end TCP congestion algorithm. For network traffic, we use FTP transfers over TCP. Each
source initiates an FTP transfer at the beginning of the simulation and continues until the
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end of the simulation. Figure 5.4 shows the average throughput achieved by each flow over a
50 sec interval. As we can see, MuxQ provides almost perfect isolation. DRR provides also
almost perfect isolation, but DRR uses per flow queuing which is not the case for MuxQ.
For this traffic, Drop-Tail provides reasonable isolation. This is because all sources are
responsive and all have the same round-trip time. For CSFQ and Fred the throughput of
flows shows more variability.
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Figure 5.4: Average throughput of 32 TCP flows sharing a 10 Mbps link.

5.4.2 Protecting long-lived responsive flows (TCP) from long-lived non
responsive flows

In this experiment, we examine MuxQ’s ability to isolate responsive flows from non respon-
sive flows bad effects. Five of the TCP flows in the last experiment are substituted with 5
aggressive CBR flows (flows 27 to 31) sending at 10 Mbps each one. Figure 5.5 shows the
average throughput of each flow over a 50 sec interval. Again DRR performance is almost
perfect while Drop-Tail does not protect at all the TCP flows from the aggressive CBR flows.
Performance of MuxQ is slightly better than that of CSFQ.

In another experiment, a TCP flow competes with an increasing number of CBR flows.
The TCP flow is generated by a source which always has data to send, and the CBR flows
are generated by unresponsive sources which transmit packets at a constant rate of twice
its fair share. In Figure 5.6 we show the normalized average throughput achieved by the
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Figure 5.5: Performance degradation of several TCP flows (flows 0 to 26) when competing
with 5 aggressive CBR flows (flows 27 to 31).

TCP flow. The results show again that with Drop-Tail the performance of the TCP flow is
severely degraded even with only one CBR flow. DRR provides almost perfect isolation.
With MuxQ and CSFQ the performance of the TCP flow is maintained at a reasonable level.

5.4.3 Protecting short-lived flows from long-lived flows (responsive and
non responsive)

In this experiment, short-lived web-like TCP flows compete with long-lived flows: 5 long-
lived TCP flows and 1 aggressive CBR flow sending at 10 Mbps. For the long-lived flows,
each source initiates its transfer at the beginning of the simulation and continues until the
end of the simulation, i.e 50 sec. 20 web clients make random requests to a web server. The
server responds to each request by sending a web page with one object of 12 Kilobytes. In
other words, all web-like flows are of the same size, i.e. 12 Kilobytes. The time between
retrieval of two successive pages follows an exponential distribution with mean equals to 3
sec. Figure 5.7 shows the cumulative distribution of the web-like flows. Horizontal axis is
the time to complete the flow transmission. The figure shows the number of finished web-
like flows after 50 sec of simulation. We can observe that with MuxQ most of the web-like
flows have smaller response times than with the other schemes. Note also that for the same
simulation time, the number of successful finished flows is different for each scheme. MuxQ
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Figure 5.6: Average throughput of 1 TCP flow competing with an increasing number of
CBR flows

outperforms in this aspect to DRR and Drop-Tail. Unfortunately, we were not able to run
this simulation nor with CSFQ nor with Fred with the source code from [Sto98].

5.4.4 How non-responsive flows affect each other

In this experiment, we seek to show how unresponsive flows with different rates affect each
other. CBR flow number i sends packets at a rate (i+1) times its fair share. In other words,
flows transmit at different rates which go from the fair share rate to the maximum link rate.
Note that all flows but the first one send packets at a rate greater than its fair share rate.
Figure 5.8 shows the average performance of the different flows. As we can see, Drop Tail
does not isolate flows. Flows which transmit at a larger rate get more bandwidth than lower
rate flows. MuxQ, DRR, and CSFQ provides almost perfect isolation. Fred performance is
only slightly better than that of Drop-Tail.

5.4.5 Multiple congested links

In this experiment a TCP flow traverses several congested links. The topology used in this
experiment is shown in figure 5.9. Bottleneck links have a bandwidth of 10Mbps and 1ms
of delay. The main source sends a TCP flow that traverses k consecutive congested links.
Cross traffic is generated by several groups of sources. Each source in a group sends a flow
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Figure 5.7: Web-like traffic competing with 5 long-lived TCP flows and 1 aggressive CBR
flow sending at 10 Mbps.
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Figure 5.8: Average throughput of 32 CBR flows sending at different rates. Flow i sends
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that traverses only one congested link as shown in the same figure. Each group consists of
10 sources, which send a long-lived flow each one. In each group, five sources generates
TCP flows, and the other five sources generate CBR aggressive flows at 10 Mbps. Fig 5.10
shows the normalized average throughput of the TCP flow traversing k congested links.
With Drop-Tail the normalized average throughput is zero (even with only one congested
link) while with DRR performance is almost perfect. Performance of MuxQ, CSFQ and
Fred is better than that of Drop-Tail but it degrades rapidly with increasing congested links.

sources sources sources sources
group 1 group 2 group 3 group k

sink sink sink sink

source

group 1 group 2 group kgroup k−1

Router Router Router Router Router

main

main
sink

Figure 5.9: Topology with several congested links
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Figure 5.10: A TCP flow traversing several congested links

5.4.6 MuxQ Deployability

We finish this section by indicating why we believe MuxQ can be easily deployed. Even
though some users can choose not to use TCP as their transport protocol, it is a fact that



141

TCP remains highly utilized. We have shown that MuxQ behaves very well when TCP
flows cross a MuxQ router.

Also, MuxQ does not need modifications to the IP header. More importantly, MuxQ
does not require that hosts or end-routers agree on a single scheme to consistently include
flow information. In other words, MuxQ does not expect a special behavior from routers
nor from hosts. Thus, MuxQ routers can be deployed incrementally in the Internet.

5.5 Summary

We have designed a new queue management mechanism for flow isolation. Our mechanism
is based on the idea to protect the multiplexing function from the burst absorbing function
of router buffers. MuxQ which is based on a FIFO queue, uses a very simple algorithm to
allocate buffer space and control the queue length.

We compared the performance of the proposed scheme to that of classical Drop-Tail and
to that of other proposed schemes, including CSFQ and DRR which provides nearly perfect
isolation by using per-flow queuing. By keeping only limited flow-state our mechanism
performs very much better than Drop-Tail. MuxQ achieves performance similar to that of
CSFQ but MuxQ does not need modifications to the IP packet header as it is the case for
CSFQ.

One of the important characteristic of a new router mechanism is its incremental deploy-
ability. MuxQ does not need modifications of the IP packet header. Moreover, since MuxQ
does not expect a special behavior from other routers, MuxQ routers can interact without
problem with classical Drop-Tail routers and thus MuxQ can be deployed incrementally.
We believe that MuxQ is an interesting approach to achieve a high degree of flow isolation
with respect to Drop-Tail by using a very simple algorithm.
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Chapter 6

Conclusions

One of the key characteristics of the Internet is its capacity of adaptation. The Internet has
been able to adapt to growth in terms of number of users and volume of traffic. The ability
to adapt to these changes is usually referred to as scalability. The Internet also adapts in
the short term to changes in the topology and load. The ability of the Internet to adapt to
these changes by degrading gracefully the network service is referred to as its robustness.
This thesis has been motivated by the idea of preserving the scalability and robustness of the
Internet.

The Internet is a packet network, where each packet is treated independently of all oth-
ers; that is, it uses the datagram paradigm. Routers play an essential role in the datagram
paradigm of the Internet. Since each packet must be treated independently, the performance
of the Internet depends directly on the per packet processing capacity of routers. In this
thesis we have proposed several algorithms to improve the packet forwarding process in
Internet routers. We conclude this dissertation with a summary of the main ideas and con-
tributions of this thesis. Then we discuss directions for future work.

6.1 Main ideas and contributions of this thesis

Incremental updates for forwarding databases based on multibit tries

Due to installation, reconfiguration or failure of network elements, the Internet is always
changing. Routers adapt to these changes by updating their forwarding databases. To cope
with scalability, routers use nested prefixes to aggregate forwarding information. While
the use of nested prefixes allows routers to cope with scalability issues, an implementa-
tion that maps directly these prefixes to a data structure can result in non efficient searches.
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To optimize the address lookup operation the forwarding database can be disaggregated to
some extent in a controlled way. Controlled disaggregation of a forwarding database can
be achieved by the use of multibit tries. While disaggregation of the forwarding database
optimizes the search operation, this disaggregation complicates the updating operations be-
cause inserting or deleting a single prefix may need to update many entries. Moreover, an
additional structure is needed to maintain the original prefixes and their nesting structure.

One of the main contribution of this thesis is that we have a proposed a complete and
efficient scheme to support incremental updates in forwarding databases based on multibit
tries. In our approach we have introduced two key concepts to support incremental updates:
The notions of span and coverer. In particular, we have proposed two mechanisms to sup-
port incremental updates in multibit-trie-based BMP lookup schemes: the bit-vector-array
mechanism and the PN bit vector mechanism. While the bit-vector-array mechanism does
not need computing overhead, it uses memory inefficiently. To use memory more efficiently,
we proposed the PN bit vector mechanism. The PN bit vector mechanism obtains efficient
memory usage by using our PN bit vector data structure and by computing the correspond-
ing mapping functions. In other words, the PN bit vector mechanism trades computation
for efficient memory usage. Moreover, Since the PN bit vector mechanism separates the ad-
ditional data structure needed to support incremental updates from the main data structure
used for doing BMP lookup operations, the performance of the BMP lookup operation is
not degraded by the incremental update capabilities. Another contribution in our approach
is the introduction of two key concepts in the framework of incremental updates for multibit
tries: the notions of span and coverer.

Taxonomy and framework for BMP lookup schemes

To better compare the different BMP lookup schemes, we have proposed in this thesis a
taxonomy based on the double dimension of the BMP search: value and length. That is,
determining the best matching prefix involves not only comparing the bit pattern itself (i.e.,
finding a match), but also finding the appropriate length (i.e., the longest one). Our taxon-
omy classifies the address lookup schemes according to these two dimensions and also if a
linear or a binary search is performed. We analyzed the next four cases: 1) Linear search
based on values; 2) Binary search based on values; 3) Linear search based on lengths; 4)
Binary search based on lengths. We analysed also how the different approaches can be ex-
plained in terms of classical well-known search algorithms. We highlighted the main ideas
behind the different schemes and we emphasized whether the schemes supports incremen-
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tal updates. With our taxonomy, we identified the different tradeoffs in the address lookup
schemes. We compared the different schemes in terms of their complexity and measured
execution time on a common platform.

It has been the purpose of our taxonomy to use consistent terminology. By using consis-
tent terminology, the different ideas and concepts in each scheme can be easily related each
other. We believe that by providing an integral vision of the BMP lookup schemes, as our
taxonomy does, we can help to point researchers in fruitful directions in this area.

Optimizing the use of buffers for flow isolation

To forward a packet, routers need not only to find where the packet should be sent next, but
also must resolve contentions at the output-port. Routers use buffers to solve the contention
for the output-port. In general, buffers are used not only to multiplex packets from different
flows, but also to absorb bursts of packets of individual flows.

The use of buffers is effective only in the case of transient overload. Since in the Internet
sustained overload can exist, to make effective use of buffers one needs mechanisms to
control the traffic. Traditionally, the traffic control in the Internet has been done by end
systems using the TCP algorithms. Nevertheless, in today’s Internet, the use of TCP is
rather a user’s choice and hence, in general, buffers in routers are not always used effectively.
When the buffer is not used effectively, the multiplexing function of buffers is affected by
its burst absorbing function. Degradation of the multiplexing function of buffer in routers
results in a lack of flow isolation. Based on the idea of protecting the multiplexing function
of buffers from the burst absorbing function, we have designed a mechanism to optimize
the use of the buffer in routers and to provide flow isolation with only a minimum of flow
information in routers.

Our mechanism, which we call MuxQ, protects the multiplexing function from the burst
absorbing function by progressively and dynamically controlling the allocation of buffer
space in a FIFO queue. MuxQ is a new queue management mechanism that provides flow
isolation by using a very simple algorithm and without using per-flow queuing.

We compared the performance of the MuxQ scheme to that of classical Drop-Tail and
to that of other proposed schemes, including CSFQ and DRR which provides nearly perfect
isolation by using per-flow queuing. By keeping only limited flow-state, our mechanism
performs very much better than Drop-Tail. MuxQ achieves performance similar to that of
CSFQ but MuxQ does not need modifications to the IP packet header as it is the case for
CSFQ.
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One of the important characteristic of a new router mechanism is its incremental deploy-
ability. MuxQ does not need modifications of the IP packet header. Moreover, since MuxQ
does not expect a special behavior from other routers, MuxQ routers can interact without
problem with classical Drop-Tail routers and thus MuxQ can be deployed incrementally.
We believe that MuxQ is an interesting approach to achieve a high degree of flow isolation
with respect to Drop-Tail by using a very simple algorithm.

6.2 Future work

The performance of the packet forwarding process in routers is essential for the performance
of the Internet. While we have provided algorithms to improve the packet forwarding per-
formance of routers, ever increasing traffic demands for further improvements. We discuss
in this section some directions for future work.

The address lookup operation requires to consult a table with the forwarding informa-
tion. As a result, an ideal address lookup mechanism makes a single memory access when
consulting the forwarding table. What are the options to obtain an address lookup mecha-
nism with a single memory access? There are two possible ways to obtain address lookups
with a single memory access. One is by implementing multibit tries with pipelined archi-
tectures and the other one is by using TCAMs ( Ternary Content-Addressable Memories).
However, for these approaches to work, some problems need to be solved.

To effectively implement multibit tries in a pipeline architecture, the problem of distri-
bution of memory among the different pipeline stages must be solved. A main point in this
thesis has been the capability of incremental updates. Update speed is more critical when
pipeline is used. One direction for future work is to investigate how to support efficient
incremental updates in pipeline architectures, without causing significant disruption to the
address lookup operations.

While TCAMs allow address lookups with a single memory access, they require prefixes
to be ordered by length. Hence a problem to solve is how to efficiently keep prefixes ordered
by length in TCAMS based schemes, when inserting or deleting prefixes.

We have proposed MuxQ, a mechanism to protect the multiplexing function of buffers in
routers, and hence provide flow isolation, without the need of end-systems cooperation. We
considered that buffering happens only at the output ports. While many routers have buffers
only at the output ports, the need for further high performance routers leads to routers with
buffers both before and after the internal switch of routers. A future direction is designing
flow isolation mechanisms which exploits the fact of having buffers both before and after
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the internal switch of routers.
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