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Appendix A

Definitions, conventions and
properties

Abstract: This chapter presents all mathematical objects that are used throughout the main
dissertation and the present appendices. Extra care is enforced to define a consistent set of
equations, in particular regarding phase and normalization conventions. Additionnally, building
blocks that are required for a partial wave expansion of a given function are introduced. Many
formulæ come from Refs. [1–3].
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A.1 Common operators

f̄(r) Radial part of an arbitrary function f(~r )

[L] Degeneracy [L] = 2L+ 1

L± Shortcut for L± 1

|1 : i, 2 : j〉 Normalized non-antisymmetrized two-particle product state

|i j〉 Normalized antisymmetrized two-particle product state

|i j〉 = â†i â
†
j |0〉 =

|1 : i, 2 : j〉 − |1 : j, 2 : i〉√
2

P~r/σ/τ Position/spin/isospin-flip operator

P~r |1 : ~r σ q, 2 : ~r ′ σ′ q′〉 = |1 : ~r ′ σ q, 2 : ~r σ′ q′〉
Pσ |1 : ~r σ q, 2 : ~r ′ σ′ q′〉 = |1 : ~r σ′ q, 2 : ~r ′ σ q′〉
Pτ |1 : ~r σ q, 2 : ~r ′ σ′ q′〉 = |1 : ~r σ q′, 2 : ~r ′ σ′ q〉

P12 Two-particle exchange operator

P12 = P~r Pσ Pτ

P12 |1 : i, 2 : j〉 = |1 : j, 2 : i〉
A12 Two-particle antisymmetrization operator

A12 = I− P12

A123 Three-particle antisymmetrization operator

A123 = (I + P23P12 + P31P12)(I− P12)∏
S/T/Sz/Tz

Projector on specific two-body spin/isospin state
∏

S

=

[
1 + (−1)1−SPσ

2

]

∏

Sz

=

[
(1− S2

z ) +
1

2
Sz Sz + (

3

2
S2

z − 1)S2
z

]

T [f ] Rank-k tensor

T
[f ]
µ Component µ of a rank-k tensor

[T1 ⊗ T2]
[k] µ Component µ of the rank-k tensorial product

of two tensors T1 and T2
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〈ℓ1m1 ℓ2m2 |ℓ1 ℓ2 ℓm〉 Clebsh-Gordan coefficient

(
ℓ1 ℓ2 ℓ

m1 m2 m

)
Wigner 3j coefficient

{
j1 j2 j12

j3 J j23

}
Wigner 6j coefficient





j1 j2 j12

j3 j4 j34

j13 j24 J





Wigner 9j coefficient

To keep track of all angular momenta, the following short notations will be used in place of
Dirac ones for a given operator O, where Υ denotes all other dependencies beyond the relative
momenta ~k and ~k ′

〈k (LS)JSz TTz|O(Υ)|k′ (L′S)JSz TTz〉 ≡〈k |OJSSzTTz

LL′ (Υ)|k′ 〉 ≡ OJST
LL′ (k, k′; Υ) , (A.1a)

〈k (LS)J T |O(Υ)|k′ (L′S)J T 〉 ≡〈k |OJST
LL′ (Υ)|k′ 〉 ≡ OJST

LL′ (k, k′; Υ) , (A.1b)

OLST
LL (k, k′; Υ) ≡OJST

L (k, k′; Υ) . (Uncoupled channels)
(A.1c)

A.2 Mathematical functions

A.2.1 Clebsh-Gordan and Wigner coefficients

A.2.1.1 Transformation rules

In the following, we note j = j1 + j2 + j3. One has then

〈ℓ1m1 ℓ2m2 |ℓ1 ℓ2 ℓ3m3〉 =(−1)ℓ1−ℓ2−m3
√

[ℓ3] 〈ℓ1m1 ℓ2m2 |ℓ1 ℓ2 ℓ3 −m3〉 ,

(A.2a)

〈ℓ1 0 ℓ2 0 |ℓ1 ℓ2 ℓ 0〉 =(−1)ℓ1+ℓ2
√

[ℓ]

(
ℓ1 ℓ2 ℓ

0 0 0

)
, (A.2b)

∑

ms mj

〈
ℓ′mℓ sms

∣∣ℓ′ s j mj

〉
〈ℓmℓ sms |ℓ s j mj〉 =δℓℓ′

[j]

[ℓ]
, (A.2c)

(
j′ 0 j

−m′
j 0 mj

)
=δjj′ δmjm′

j
(−1)j−m 1√

[j]
, (A.2d)

(
j j 1

mj −mj 0

)
=(−1)j−m m√

j (j + 1) [j]
, (A.2e)

(
j1 j2 j3

0 0 0

)
=(−1)

1
2
J

√
(j1 + j2 − j3)!(j1 − j2 + j3)!(−j1 + j2 + j3)!

(j1 + j2 + j3 + 1)!

×
(

1
2J
)
!(

1
2J − j1

)
!
(

1
2J − j2

)
!
(

1
2J − j3

)
!
, (A.2f)
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(
ℓ ℓ ℓ′

0 0 0

)
=(−1)ℓ+ 1

2
ℓ′ ℓ′!

√
(2ℓ− ℓ′)!

(2ℓ+ ℓ′ + 1)!

(
ℓ+ 1

2ℓ
′
)
!(

1
2ℓ

′
)
!
(

1
2ℓ

′
)
!
(
ℓ− 1

2ℓ
′
)
!

for ℓ′ even ,

(A.2g)
{
j1 j2 j3

0 j3 j2

}
=(−1)J 1√

[j2][j3]
, (A.2h)

{
j1 j2 j3

1 j3 j2

}
=(−1)J+1 2(j2(j2 + 1) + j3(j3 + 1)− j1(j1 + 1))√

2j2(2j2 + 1)(2j2 + 2)2j3(2j3 + 1)(2j3 + 2)
, (A.2i)





f f 0

d c e

b a e





=





a b e

c d e

f f 0





=
(−1)b+c+e+f

√
[e][f ]

{
a b e

d c f

}
. (A.2j)

A.2.1.2 Specific values

〈2 0 1 0 |2 1 1 0〉 = 〈1 0 2 0 |1 2 1 0〉 =−
√

2

5
, (A.3a)

〈3 0 1 0 |3 1 2 0〉 =−
√

3

7
〈2 0 2 0 |2 2 2 0〉 =−

√
2

35
, (A.3b)

(
0 1 1

0 0 0

)
=− 1√

3

(
2 1 1

0 0 0

)
=

√
2

15

(
3 1 2

0 0 0

)
=−

√
3

35
, (A.3c)

(
1 1 2

0 0 0

)
=

√
2

15
, (A.3d)

{
1 1 0

1 1 2

}
=

1

3

{
1 1 1

1 1 2

}
=

1

6

{
1 1 2

1 1 2

}
=

1

30
, (A.3e)

{
2 1 0

1 0 2

}
=0

{
2 1 1

1 0 2

}
=

1√
15

{
2 1 2

1 0 2

}
=0 , (A.3f)





1 0 1

1 0 1

1 0 1





= −





0 1 1

0 1 1

0 1 1





=
1

3
√

3





1 0 1

0 1 1

1 1 1





= −





0 1 1

1 0 1

1 1 1





=
1

9
, (A.3g)





0 0 0

1 1 1

1 1 1





=
1

3
√

3





0 0 0

1 1 1

1 1 1





=− 1

6
√

15
,

(A.3h)




1 1 0

1 1 1

2 2 1





=
1

6
√

5





3 3 0

1 1 1

2 2 1





=
1

3
√

105
,

(A.3i)
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



0 0 0

1 1 2

1 1 2





=
1

3
√

5





2 2 0

1 1 2

1 1 2





=
1

150
, (A.3j)





1 1 0

1 1 2

2 2 2





=

√
7

30
√

5





3 3 0

1 1 2

2 2 2





=
1

35
√

15
,

(A.3k)




1 1 0

0 2 2

1 1 2





=
1

15





2 2 0

0 2 2

2 2 2





=
1

25
, (A.3l)





1 1 0

1 1 2

2 0 2





=
1

15





2 2 0

0 2 2

2 0 2





=
1

25
, (A.3m)





0 0 0

2 0 2

2 0 2





=
1

5
, (A.3n)





1/2 1/2 1

1/2 1/2 0

1 1 1





=
1

3
√

6





1/2 1/2 1

1/2 1/2 1

1 1 2





=
1

9





1/2 1/2 1

1/2 1/2 0

1 1 1





=
1

3
√

6
. (A.3o)

A.2.2 Tensorial representations

Spherical components of a vector ~r can be defined as

r0 = rz , r±1 = ∓x ± i y√
2

, (A.4)

in such a way that we have

~r = r[1] = r

√
4π

3
Y [1](r̂) . (A.5)

Two vectors ~a and ~b can be combined into a tensor of rank 0, 1 or 2, with

~a ·~b =−
√

3
[
a[1] ⊗ b[1]

][0] 0
, (A.6a)

i~a ∧~b =
√

2
[
a[1] ⊗ b[1]

][1]
. (A.6b)

More generally, the scalar product of two tensors of same rank is

T [k] · U [k] = (−1)k
√

[k]
[
T [k] ⊗ U [k]

][0]
. (A.7)

A spherical tensor of rank l can be constructed from components of two other tensors as

T [ℓ]
m =

∑

m1,m2

R[ℓ1]
m1

S[ℓ2]
m2
〈ℓ1m1 ℓ2m2 |ℓ1 ℓ2 ℓm〉 . (A.8)
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A.2.3 Spherical harmonics

Standard spherical harmonics are defined as normalized eigenstates of angular momentum
operators L2 and Lz

Y m
ℓ (θ, ϕ) =

(−1)ℓ+m

2ℓ ℓ!

√
(2ℓ+ 1)(ℓ−m)!

4π (ℓ+m)!
sin(θ)m

[
∂

∂ cos(θ)

]ℓ+m

sin(θ)2ℓ ei m ϕ . (A.9)

Those functions have the following properties

Y −m
ℓ (θ, ϕ) =(−1)m Y m

ℓ
∗(θ, ϕ) , (A.10a)

∫ π

0
sin(θ) dθ

∫ 2π

0
dϕY m

ℓ
∗(θ, ϕ)Y m′

ℓ′ (θ, ϕ) =δℓℓ′ δmm′ . (A.10b)

One has also

Y m
ℓ (~̂p+ ~p ′) =

∑

ℓ1+ℓ2=ℓ

pℓ1 p′ℓ2

|~p+ ~p ′|ℓ

√
4π [ℓ]!

[ℓ1]![ℓ2]!

[
Y [ℓ1](p̂)⊗ Y [ℓ2](p̂′)

][ℓ] m
. (A.11)

The inverse relation for the expansion of the tensorial product of spherical harmonics reads

[
Y [ℓ1](p̂)⊗ Y [ℓ2](p̂)

][ℓ] m
=

√
[ℓ1][ℓ2]

4π [ℓ]
〈ℓ1 0 ℓ2 0 |ℓ1 ℓ2 ℓ 0〉 Y m

ℓ (p̂) . (A.12)

A.2.4 Tensor spherical harmonics

The definition of spherical harmonics can be extended to more general objects arising when
considering a L+ S coupling. Starting from the standard unit vectors ui, i = 1/x, 2/y, 3/z, one
can define the irreducible representation of rank (2S + 1) of the rotation group through

CS MS =
∑

αi

CS MS
α1...αS

u(1)
α1
⊗ . . .⊗ u(S)

αS
, S = 0, 1 . . . MS = −S . . . S . (A.13)

For instance

C0 0 =1 , (A.14a)

C1 1
α =

1√
2



−1

−i
0


 C1 0

α =




0

0

1


 C1−1

α =
1√
2




1

−i
0


 , (A.14b)

that is for S = 1, cartesian components of C transform a vector from cartesian to spherical
coordinates. One can then define tensor spherical harmonics [4] as

YMJ

(LS)J(Ω) =
∑

ML MS

〈LML SMS |LS J MJ〉 YML

L (Ω)CS MS , (A.15)

For S = 0 one recovers
YMJ

(L0)J(Ω) = δLJ δMLMJ
YML

L (Ω) , (A.16)

using
C0 0 = 1 , 〈LML 0 0 |L 0 J MJ〉 = δLJ δMLMJ

. (A.17)

Those tensor spherical harmonics are spinors, that is they are of dimension 2S + 1. Finally,
orthogonality of tensor spherical harmonics reads for the same spin S

∫
dΩYM ′

J

(L′S)J ′

∗
(Ω)YMJ

(LS)J(Ω) = δLL′ δJJ ′ δMJM ′
J
. (A.18)
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A.2.5 Spherical Bessel functions

The radial Helmoltz equation

x2 d2f

dx2
+ 2x

df

dx
+ (x2 − ν(ν + 1))f = 0 , (A.19)

has two linearly independent solutions, i.e. spherical Bessel functions jν(x) and Neumann
functions nν(x). In particular, spherical Bessel functions are defined as

jν(x) ≡
√

π

2x
Jν+1/2(x) ≡ (−x)ν

(
1

x

d

dx

)ν sin(x)

x
, (A.20)

where Jν are ordinary Bessel functions. They have the following properties, for ν ∈ Z:

jν−1(z) + jν+1(z) =(2ν + 1)
jν(z)

z
, (A.21a)

ν jν−1(z)− (ν + 1) jν+1(z) =(2ν + 1)
d

dz
jν(z) , (A.21b)

ν + 1

z
jν(z) +

d

dz
jν(z) =jν−1(z) , (A.21c)

ν

z
jν(z)−

d

dz
jν(z) =jν+1(z) . (A.21d)

First spherical Bessel functions, presented in Fig. A.1, and their derivatives read

j0(x) =
sin(x)

x
, (A.22a)

j1(x) =
1

x

sin(x)

x
−cos(x)

x
, (A.22b)

j2(x) =

(
3

x2
− 1

)
sin(x)

x
−3

x

cos(x)

x
, (A.22c)

j3(x) =

(
15

x3
− 6

x

)
sin(x)

x
−
(

15

x2
− 1

)
cos(x)

x
, (A.22d)

j4(x) =

(
105

x4
− 45

x2
+ 1

)
sin(x)

x
−
(

105

x3
− 10

x

)
cos(x)

x
, (A.22e)

j5(x) = . . .

dj0(x)

dx
= −1

x

sin(x)

x
+

cos(x)

x
, (A.23a)

dj1(x)

dx
= −

(
2

x2
− 1

)
sin(x)

x
+

2

x

cos(x)

x
, (A.23b)

dj2(x)

dx
= −

(
9

x3
− 4

x

)
sin(x)

x
+

(
9

x2
− 1

)
cos(x)

x
, (A.23c)

dj3(x)

dx
= −

(
60

x4
− 27

x2
+ 1

)
sin(x)

x
+

(
60

x3
− 7

x

)
cos(x)

x
, (A.23d)

dj4(x)

dx
= −

(
525

x5
− 240

x3
+

11

x

)
sin(x)

x
+

(
525

x4
− 65

x2
+ 1

)
cos(x)

x
, (A.23e)

dj5(x)

dx
= . . .
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0 1 2 3 4 5 6 7 8 9 10

x

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

j n
(x

)

n=0
n=1
n=2
n=3
n=4
n=5

Figure A.1: First spherical Bessel functions.

A.2.6 Legendre polynomials

Legendre polynomials Pℓ(x) are defined by the relationships

1√
1− 2xh+ h2

=
∑

ℓ

hℓ Pℓ(x) , (A.24a)

Pℓ(x) =

[ℓ/2]∑

r=0

(−1)r (2ℓ− 2r)!xℓ−2r

2ℓ r! (ℓ− r)! (ℓ− 2r)!
, (A.24b)

Pℓ(x) =
1

2ℓ ℓ!

dℓ

d xℓ
(x2 − 1)ℓ . (A.24c)

One can also define associated Legendre functions of the first kind Pm
ℓ (x) for |m| ≤ ℓ through

Pm
ℓ (x) = (1− x2)m/2 dm

d xm
Pℓ(x) =

(1− x2)m/2

2ℓ ℓ!

dℓ+m

d xℓ+m
(x2 − 1)ℓ . (A.25)

In particular

Pℓ(0) =1 (A.26a)

Pℓ(−x) =(−1)ℓ Pℓ(x) , Pm
ℓ (−x) =(−1)ℓ+m Pm

ℓ (x) , P−m
ℓ (x) =(−1)m (ℓ−m)!

(ℓ+m)!
Pm

ℓ (x) .

(A.26b)

For any (θ, ϕ) one has also

Pℓ(cos(θ)) =

√
4π

2ℓ+ 1
Y 0

ℓ (θ, ϕ) , (A.27a)

Y 0
ℓ (θ, ϕ) =(−1)m

√
(2ℓ+ 1)(ℓ−m)!

4π (ℓ+m)!
Pm

ℓ (cos(θ)) ei m ϕ , (A.27b)

thus Legendre polynomials are only defined in theory for arguments lower than 1 in absolute
value. They have the following properties

∫ +1

−1
Pℓ(x)Pℓ′(x) dx =

δℓℓ′

ℓ+ 1
2

, jℓ(y) =
(−i)ℓ

2

∫ +1

−1
ei x y Pℓ(x) dx . (A.28)
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First Legendre polynomials read

P0(x) =1 , (A.29a)

P1(x) =x , (A.29b)

P2(x) =
1

2
(3x2 − 1) , (A.29c)

P3(x) =
1

2
(5x3 − 3x) , (A.29d)

P4(x) =
1

8
(35x4 − 30x2 + 3) , (A.29e)

P5(x) =
1

8
(63x5 − 70x3 + 15x) , (A.29f)

P6(x) =
1

16
(231x6 − 315x4 + 105x2 − 5) , (A.29g)

P7(x) = . . .

and are represented in Fig. A.2. They verify orthogonality relations

∫ 1

−1
Pℓ(x)Pℓ′(x) dx =

2 δℓℓ′

[ℓ]
, (A.30)

and

Pλ(cos(ω)) =
4π

[λ]

λ∑

m=−λ

Y m
λ

∗(θ, ϕ)Y m
λ (θ′, ϕ′) . (A.31)

They also verify

Pn(z)Pm(z) =

m+n∑

k=|m−n|

b(n,m, k)Pk(z) , (A.32)

where

b(n,m, k) =δ0γ
[k] (k +m− n− 1)!! (k −m+ n− 1)!! (m+ n− k − 1)!! (k +m+ n)!!

(k +m− n)!! (k −m+ n)!! (m+ n− k)!! (k +m+ n− 1)!!
,

(A.33a)

γ =
1

2
(k +m+ n)MOD 1 . (A.33b)

In particular for n = 1, one has:

b(1,m, k)
❍

❍
❍

❍
❍❍

m
k

0 1 2 3 4

0 0 1 0 0 0

1 1
3 0 2

3 0 0

2 0 2
5 0 3

5 0

3 0 0 3
7 0 4

7

xP0(x) =P1(x) (A.34a)

xP1(x) =
2

3
P2(x) +

1

3
P2(x) (A.34b)

xP2(x) =
3

5
P3(x) +

2

5
P1(x) (A.34c)

xP3(x) =
4

7
P4(x) +

3

7
P2(x) . (A.34d)
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Figure A.2: First Legendre polynomials.

A.2.7 Jacobi polynomials

Jacobi Polynomials are defined as

Pα,β
n (x) =

(−1)n

2n n!

1

(1− x)α (1− x)β

dn

dxn

[
(1− x)α+n (1− x)β+n

]

=
1

2n

n∑

ν=0

(
n+ α

ν

)(
n+ β

n− ν

)
(x− 1)n−ν (x+ 1)ν , (A.35)

and normalized such that

Pα,β
n (1) =

(
n+ α

n

)
. (A.36)

In particular, Legendre polynomials are defined as

Pn(x) = P 0,0
n (x) . (A.37)

Jacobi polynomials Pα,β
n (x) are orthogonal for the scalar product

(fn|fm)α,β) =

∫ 1

−1
(1− x)α (1− x)β fn(x) fm(x) dx , (A.38)

thus, using the normalization condition from Eq. (A.36)

∫ 1

−1
(1− x)α (1− x)β Pα,β

n (x)Pα,β
m (x) dx =

21+α+β

2n+ α+ β + 1

Γ(n+ α+ 1) Γ(n+ β + 1)

Γ(n+ 1) Γ(n+ α+ β + 1)
δmn .

(A.39)

A.3 Angular expansions

A.3.1 Legendre polynomials expansion

Any function g(~k,~k ′) can be expanded in terms of Legendre polynomials, e.g.

g(~k,~k ′) =
∑

λ

Pλ(cos(ω)) ḡλ(k, k′) , (A.40)



A.3. Angular expansions 11

where ω = (~k,~k ′). Therefore one has

ḡλ(k, k′) =
[λ]

2

∫ 1

−1
Pλ(x) g(~k,~k ′) dx. (A.41)

Using Eq. (A.31), Eq. (A.40) can be written as

g(~k,~k ′) =
∑

λ

4π

[λ]

λ∑

m=−λ

Y m
λ

∗(θ, φ)Y m
λ (θ′, φ′) ḡλ(k, k′)

=
∑

λ

4π
λ∑

m=−λ

(−1)m

[λ]
Y −m

λ (k̂)Y m
λ (k̂′) ḡλ(k, k′)

=4π (−1)λ
∑

λ

〈λmλ −m |λλ 0 0〉 Y −m
λ (k̂)Y m

λ (k̂′) ḡλ(k, k′)

=4π (−1)λ
∑

λ

[
Y [λ](k̂)⊗ Y [λ](k̂′)

][0]
ḡλ(k, k′) , (A.42)

where one used Eq. (A.63) with the specific case ℓ = m = 0. Thus one has

g(~k,~k ′) =
∑

λ

[
Y [λ](k̂)⊗ Y [λ](k̂′)

][0]
g̃λ(k, k′), (A.43)

where

g̃λ(k, k′) = 2π (−1)λ
√

[λ]

∫ 1

−1
Pλ(x) g(~k,~k ′) dx =

4π√
[λ]

(−1)λ ḡλ(k, k′) . (A.44)

A.3.2 Dirac 3D delta function decomposition

To evaluate the proper normalization factor for our matrix elements (see Sec. D.2), a partial
wave expansion of the 3D Dirac delta function is needed. The latter is defined as

∇2 1

r
= −4π δ(~r ) ,

∫
d~r δ(~r − ~r ′) = 1 . (A.45)

Let j(~k,~k ′) = δ~k − ~k ′. One can use the representation of the delta function in spherical
coordinates

δ(~r − ~r ′) =
1

r2 sin(θ)
δ(r − r′) δ(θ − θ′) δ(ϕ− ϕ′) , (A.46)

such that
∫

d~r δ(~r − ~r ′) =

∫ +∞

0
δ(r − r′) dr

∫ π

0
δ(θ − θ′) dθ

∫ 2π

0
δ(ϕ− ϕ′) dϕ = 1 . (A.47)

To evaluate the coefficients j̄λ(k, k′) of the partial wave expansion using Eq. (A.41) or Eq. (A.44),
the integration domain relates to the relative angle ω between ~k and ~k ′ such that

cos(ω) = cos(θ) cos(θ′) + sin(θ) sin θ′ cos(ϕ− ϕ′) . (A.48)

Using the rotational invariance, one can put ~k ′ on the z axis such that θ′ = ϕ′ = 0, and use the
representation of the delta function

δ(~r − ~r ′) =
1

2π r2 sin(θ)
δ(r − r′) δ(θ) . (A.49)
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One has then

j̄λ(k, k′) =
[λ]

2

1

2π

δ(k − k′)
k2

∫ π

0
dθ Pλ(cos(θ)) δ(θ)

=
[λ]

4π

δ(k − k′)
k2

Pλ(cos(0))

=
[λ]

4π

δ(k − k′)
k2

. (A.50)

Thus one recovers the usual expansion

δ(~k − ~k ′) =
δ(k − k′)

k2

∑

λ

[λ]

4π
Pλ(cos(ω)) . (A.51)

Equivalently

j̃λ(k, k′) = (−1)λ
√

[λ]
δ(k − k′)

k2
. (A.52)

A.3.3 Polynomial decomposition

We start for the direct term from

f(~k,~k ′) = q2 =
(
k2 + k′

2 − 2 kk′ cos(θ)
)
. (A.53)

This gives easily

f̃0(k, k
′) =2π

∫ 1

−1

(
k2 + k′

2 − 2 kk′ x
)

dx = 4π
(
k2 + k′

2
)
, (A.54a)

f̃1(k, k
′) =− 2π

√
3

∫ 1

−1

(
k2 + k′

2 − 2 kk′ x
)
xdx =

8π√
3
kk′ , (A.54b)

f̃λ≥2(k, k
′) =0 . (A.54c)

The exchange term reads simply f(~k,−~k ′), that is the values of f̃i are the same.

A.3.4 Gaussian decomposition

We start for the direct term from

gi(~k,~k ′) = e−
1
4

µ2
i q2

= e−
1
4

µ2
i (k2+k′2) e

1
2
µ2

i kk′ cos(θ) . (A.55)

For the leading orders one has then
∫ 1

−1
e

1
2
µ2

i kk′ x P0(x) dx =

∫ 1

−1
e

1
2
µ2

i kk′ x dx = 4
sh
(

1
2µ

2
i kk

′
)

µ2
i kk

′
≡ 2

sh(Γi)

Γi
(A.56a)

∫ 1

−1
e

1
2
µ2

i kk′ x P1(x) dx =

∫ 1

−1
e

1
2
µ2

i kk′ x xdx

=
2

µ2
i kk

′

[
e

1
2
µ2

i kk′ x x
]1
−1
− 2

µ2
i kk

′

∫ 1

−1
e

1
2
µ2

i kk′ x dx

=
4

µ2
i kk

′
ch

(
1

2
µ2

i kk
′

)
− 2

µ2
i kk

′

∫ 1

−1
e

1
2
µ2

i kk′ x dx

=
4

µ4
i k

2k′2

(
µ2

i kk
′ ch

(
1

2
µ2

i kk
′

)
− 2 sh

(
1

2
µ2

i kk
′

))

≡ 2

Γ2
i

(Γi ch(Γi)− sh(Γi)) (A.56b)
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∫ 1

−1
e

1
2
µ2

i kk′ x P2(x) dx =

∫ 1

−1
e

1
2
µ2

i kk′ x 1

2
(3x2 − 1) dx

=
4

µ6
i k

3k′3

(
−6µ2

i kk
′ ch

(
1

2
µ2

i kk
′

)
+ sh

(
1

2
µ2

i kk
′

)
(12 + µ4

i k
2k′

2
)

)

≡ 2

Γ3
i

(
−3Γi ch(Γi) + (3 + Γ2

i )sh(Γi)
)

(A.56c)

∫ 1

−1
e

1
2
µ2

i kk′ x P3(x) dx =

∫ 1

−1
e

1
2
µ2

i kk′ x 1

2
(5x3 − 3x) dx

≡ 2

Γ4
i

(
Γi (15 + Γ2

i )ch(Γi)− 3 (5 + 2Γ2
i )sh(Γi)

)
(A.56d)

∫ 1

−1
e

1
2
µ2

i kk′ x P4(x) dx =

∫ 1

−1
e

1
2
µ2

i kk′ x 1

8
(35x4 − 30x2 + 3) dx

≡ 2

Γ5
i

(
−5Γi (21 + 2Γ2

i )ch(Γi) + (105 + 45Γ2
i + Γ4

i )sh(Γi)
)

(A.56e)

∫ 1

−1
e

1
2
µ2

i kk′ x P5(x) dx =

∫ 1

−1
e

1
2
µ2

i kk′ x 1

8
(63x5 − 70x3 + 15x) dx

≡ 2

Γ6
i

(
Γi (945 + 105Γ2

i + Γ4
i )ch(Γi)− 15(63 + 28Γ2

i + Γ4
i )sh(Γi)

)
,

(A.56f)

for Γi =
1

2
µ2

i kk
′. Therefore

g̃i
0(k, k

′) =4π
e−

1
4

µ2
i (k2+k′2)

Γi
sh(Γi) (A.57a)

g̃i
1(k, k

′) =− 4π
√

3
e−

1
4

µ2
i (k2+k′2)

Γ2
i

(Γi ch(Γi)− sh(Γi)) (A.57b)

g̃i
2(k, k

′) =4π
√

5
e−

1
4

µ2
i (k2+k′2)

Γ3
i

(
−3Γi ch(Γi) + (3 + Γ2

i )sh(Γi)
)

(A.57c)

g̃i
3(k, k

′) =− 4π
√

7
e−

1
4

µ2
i (k2+k′2)

Γ4
i

(
Γi (15 + Γ2

i ) ch(Γi)− 3 (5 + 2Γ2
i )sh(Γi)

)
(A.57d)

g̃i
4(k, k

′) =4π
√

9
e−

1
4

µ2
i (k2+k′2)

Γ5
i

(
−5Γi (21 + 2Γ2

i )ch(Γi) + (105 + 45Γ2
i + Γ4

i )sh(Γi)
)

(A.57e)

g̃i
5(k, k

′) =− 4π
√

11
e−

1
4

µ2
i (k2+k′2)

Γ6
i

(
Γi (945 + 105Γ2

i + Γ4
i )ch(Γi)− 15(63 + 28Γ2

i + Γ4
i )sh(Γi)

)
.

(A.57f)

Exchange terms are identical with the variable change Γi → −Γi. The first functions g̃i
n(k; k′)

are represented in Fig. A.3 for k = k′. One sees there expected convergence properties of the
series as a function of n, since the overall magnitude of the functions gi

n decrease with n.
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(k,k)
(0,k)

Figure A.3: Form factors gi
n(k, k) for µ = 1 and various values of n.

A.3.5 One-pion-exchange form factor decomposition

In this case one will have to consider for the direct terms the form factors

pf (~k,~k ′) =
q2

q2 +m2
π

1

qf
=

k2 + k′2 − 2 kk′ cos(θ)

k2 + k′2 − 2 kk′ cos(θ) +m2
π

1

|~k − ~k ′|f
, (A.58)

for f = 0, 1, 2. The f = 1 block is irrelevant for the partial wave decomposition, while one gets
in the f = 0 block

p̃0
0(k, k

′) =2π

∫ 1

−1

k2 + k′2 − 2 kk′ x

k2 + k′2 − 2 kk′ x+m2
π

dx

=2π

∫ 1

−1

(
1− m2

π

2 kk′ x− k2 − k′2 −m2
π

)
dx

=4π

[
1 +

m2
π

4 kk′
ln

(
m2

π + (k − k′)2
m2

π + (k + k′)2

)]
, (A.59a)

p̃0
1(k, k

′) =− 2π
√

3

∫ 1

−1

k2 + k′2 − 2 kk′ x

k2 + k′2 − 2 kk′ x+m2
π

xdx

=− 2π
√

3

∫ 1

−1

(
x− m2

π x

2 kk′ x− k2 − k′2 −m2
π

)
dx

=− 2π
√

3

∫ 1

−1

m2
π

2 kk′

(
1 +

k2 + k′2 +m2
π

2 kk′ x− k2 − k′2 −m2
π

)
dx

=− 4π
√

3

[
m2

π

2 kk′
+
m2

π (k2 + k′2 +m2
π)

8 k2k′2
ln

(
m2

π + (k − k′)2
m2

π + (k + k′)2

)]
, (A.59b)
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p̃0
2(k, k

′) =2π
√

5

∫ 1

−1

k2 + k′2 − 2 kk′ x

k2 + k′2 − 2 kk′ x+m2
π

1

2
(3x2 − 1) dx

=2π
√

5

[∫ 1

−1

(
3

2
x2 − 3

2

m2
π x

2

2 kk′ x− k2 − k′2 −m2
π

)
dx− 1

2
p̃0
0(k, k

′)

]

=2π
√

5

[∫ 1

−1

(
3

2
x2 − 3

2

m2
π

2 kk′

[
x+

(k2 + k′2 +m2
π)x

2 kk′ x− k2 − k′2 −m2
π

])
dx− 1

2
p̃0
0(k, k

′)

]

=2π
√

5−
√

5

2
p̃0
0(k, k

′)

+ 2π
√

5

∫ 1

−1

3

2

m2
π (k2 + k′2 +m2

π)

4 k2k′2

(
1 +

(k2 + k′2 +m2
π)

2 kk′ x− k2 − k′2 −m2
π

)
dx

=2π
√

5−
√

5

2
p̃0
0(k, k

′)

+ 3π
√

5
m2

π (k2 + k′2 +m2
π)

4 k2k′2

(
2 +

(k2 + k′2 +m2
π)

2 kk′
ln

(
m2

π + (k − k′)2
m2

π + (k + k′)2

))

=4π
√

5

[
3m2

π (k2 + k′2 +m2
π)

8 k2k′2

+ +
m2

π

2 kk′

(
−1

4

3m2
π (k2 + k′2 +m2

π)

16 k2k′2

)
ln

(
m2

π + (k − k′)2
m2

π + (k + k′)2

)]
. (A.59c)

Likewise for the f = 2 block one gets

p̃2
0(k, k

′) =2π

∫ 1

−1

1

k2 + k′2 − 2 kk′ x+m2
π

dx

=− 4π

[
1

4 kk′
ln

(
m2

π + (k − k′)2
m2

π + (k + k′)2

)]
, (A.60a)

p̃2
1(k, k

′) =− 2π
√

3

∫ 1

−1

1

k2 + k′2 − 2 kk′ x+m2
π

xdx

=
2π
√

3

2 kk′

∫ 1

−1

(
1 +

(k2 + k′2 +m2
π)

2 kk′ x− k2 − k′2 −m2
π

)
dx

=4π
√

3

[
1

2 kk′
+

(k2 + k′2 +m2
π)

8 k2k′2
ln

(
m2

π + (k − k′)2
m2

π + (k + k′)2

)]
, (A.60b)
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p̃2
2(k, k

′) =2π
√

5

∫ 1

−1

1

k2 + k′2 − 2 kk′ x+m2
π

1

2
(3x2 − 1) dx

=−
√

5

2
p̃2
0(k, k

′)− 2π
√

5

∫ 1

−1

3

4 kk′

(
x+

(k2 + k′2 +m2
π)x

2 kk′ x− k2 − k′2 −m2
π

dx

)

=−
√

5

2
p̃2
0(k, k

′)

− 4π
√

5
3 (k2 + k′2 +m2

π)

8 k2k′2

(
1 +

(k2 + k′2 +m2
π)

4 kk′
ln

(
m2

π + (k − k′)2
m2

π + (k + k′)2

))

=− 4π
√

5

[
3 (k2 + k′2 +m2

π)

8 k2k′2

+
1

4 kk′

(
−1

2
+

3 (k2 + k′2 +m2
π)2

8 k2k′2

)
ln

(
m2

π + (k − k′)2
m2

π + (k + k′)2

)]
, (A.60c)

p̃2
3(k, k

′) =− 2π
√

7

∫ 1

−1

1

k2 + k′2 − 2 kk′ x+m2
π

1

2
(5x3 − 3x) dx

=−
√

7

[
−3

2

p2
1(k, k

′)

−
√

3
+

10π

2

∫ 1

−1

x3

k2 + k′2 − 2 kk′ x+m2
π

dx

]

=−
√

7

[
−3

2

p2
1(k, k

′)

−
√

3
− 10π

4 kk′

∫ 1

−1
x2 dx

− 10π (k2 + k′2 +m2
π)

4 kk′

∫ 1

−1

x2

k2 + k′2 − 2 kk′ x+m2
π

dx

]

=−
√

7

[
−3

2

p2
1(k, k

′)

−
√

3
− 10π

6 kk′

− 10π (k2 + k′2 +m2
π)

8 k2k′2

∫ 1

−1

(
x− (k2 + k′

2
+m2

π)
x

k2 + k′2 − 2 kk′ x+m2
π

)
dx

]

=−
√

7

[
− 5π

3 kk′
+

(
5 (k2 + k′2 +m2

π)2

8 k2k′2
− 3

2

)
p2
1(k, k

′)

−
√

3

]

=− 4π
√

7

[
1

kk′

(
1

3
− 5 (k2 + k′2 +m2

π)2

16 k2k′2

)

+
(k2 + k′2 +m2

π)

16 k2k′2

(
3− 5 (k2 + k′2 +m2

π)2

4 k2 k′2

)
ln

(
m2

π + (k − k′)2
m2

π + (k + k′)2

)]
.

(A.60d)

A.4 Reduced matrix elements

Reduced matrix elements are defined using standard convention, i.e. such that

(ℓ′||̂I||ℓ) =
√

[ℓ] δℓℓ′ ((ℓ′s′)j′||̂I||(ℓs)j) =
√

[j] δℓℓ′ δss′ . (A.61)
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A.4.1 General relations

For two tensors T [k1] and T [k2] of ranks k1 and k2 respectively, acting on the same system, reduced
matrix elements of the tensorial product X [k] of rank k of T [k1] and T [k2] read

(γ′ J ′||X [k]||γ J) =
√

[k] (−1)k+J+J ′
∑

γ′′,J ′′

{
k1 k2 k

J J ′ J ′′

}
(γ′ J ′||T [k1]||γ′′ J ′′) (γ′′ J ′′||T [k2]||γ J) ,

(A.62)
where γ stands for other degrees of freedom. If T [k1] and U [k2] act on different coupled systems,
one has instead

(γ′ (J ′
1J

′
2)J

′||X [k]||γ (J1J2)J) =
√

[J ][J ′][k]





J ′
1 J1 k1

J ′
2 J2 k2

J ′ J k





×
∑

γ′′

(γ′ J ′
1||T [k1]||γ′′ J1) (γ′′ J ′

2||U [k2]||γ J2) . (A.63)

Matrix elements of the scalar product of two commuting operators of same rank T [k] and U [k]

read then

(γ′ (J ′
1J

′
2)J

′||(T [k] · U [k])||γ (J1J2)J) =
√

[J ] (−1)J1+J ′
2+J

{
J ′

1 J ′
2 J

J2 J1 k

}
δJJ ′

×
∑

γ′′

(γ′ J ′
1||T [k]||γ′′ J1) (γ′′ J ′

2||U [k]||γ J2) . (A.64)

In particular, if T [k] and U [k] are scalars, one finds

(γ′ (J ′
1J

′
2)J

′|(T [0] · U [0])|γ (J1J2)J) =

√
[J ]

[J1][J2]
δJJ ′ δJ1J ′

1
δJ2J ′

2

×
∑

γ′′

(γ′ J ′
1||T [0]||γ′′ J1) (γ′′ J ′

2||U [0]||γ J2) . (A.65)

Finally, for a tensor T [k] acting only on one part of a coupled scheme, one gets

(γ′ (J ′
1J2)J

′||T [k]||γ (J1J2)J) = (−1)J ′
1+J2+J+k

√
[J ][J ′]

{
J ′

1 J ′ J2

J J1 k

}
(γ′ J ′

1||T [k]||γ′′ J1) .

(A.66)

A.4.2 Exchange terms

Reduced matrix elements are computed in the following only for the direct terms, e.g.

(k′ J ′||O(~k ′,~k )||k J) ≡ (k′ J ′||O(~q )||k j) . (A.67)

Exchange terms are equal to the direct ones, as they read

(k′ J ′||O(~q ′)||k J) =(k′ J ′||O(~k ′,−~k )||k J)

=
∑

λ

Õλ(k′,−(−k)) (k′ J ′||
[
Y [λ](k̂′)⊗ Y [λ](−(−k̂))

][0]
||k J)

=(k′ J ′||O(~q )||k J). (A.68)

The treatment of exchange terms will therefore only require an additional factor two in the
partial wave decomposition.
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A.4.3 Reduced matrix elements of selected operators

A.4.3.1 ~σ1 · ~σ2 operator

One has

~σ1 · ~σ2 =
~S 2 − ~σ2

1 − ~σ2
2

2
. (A.69)

Thus

(S′||~σ1 · ~σ2||S) =
〈S′M ′

S |~σ1 · ~σ2|SMS〉

(−1)S−M ′
S

(
S′ 0 S

−M ′
S 0 MS

)

=

√
[S]

2
δSS′ δMSM ′

S
〈S′M ′

S |~S 2 − ~σ2
1 − ~σ2

2|SMS〉

=

√
[S]

2
δSS′ δMSM ′

S
(4S(S + 1)− 6)

=
√

[S] δSS′ (2S(S + 1)− 3) . (A.70)

A.4.3.2 Pσ/τ operator

By definition

Pσ =
1 + ~σ1 · ~σ2

2
. (A.71)

One gets easily from Eqs. (A.70,A.61)

(S′||Pσ||S) =
1

2

[√
[S] δSS′ +

√
[S] δSS′ (2S(S + 1)− 3)

]

=
√

[S] δSS′ (S(S + 1)− 1)

=
√

[S] δSS′ (−1)S+1. (A.72)

Another way to obtain the latter result stems from

(S′||Pσ||S) =
〈S′M ′

S |Pσ|SMS〉

(−1)S−M ′
S

(
S′ 0 S

−M ′
S 0 MS

)

=
√

[S] δSS′

〈
(1
2

1
2)S′M ′

S

∣∣Pσ

∣∣(1
2

1
2)SMS

〉

=
√

[S] δSS′

∑

S1,S2

〈
(1
2

1
2)S′M ′

S

∣∣ 〈1
2 S1

1
2 S2

∣∣1
2

1
2 SMS

〉
Pσ

∣∣1
2 S1

1
2 S2

〉

=
√

[S] δSS′

∑

S1,S2

〈
(1
2

1
2)S′M ′

S

∣∣ 〈1
2 S1

1
2 S2

∣∣1
2

1
2 SMS

〉 ∣∣1
2 S2

1
2 S1

〉

=
√

[S] δSS′

∑

S1,S2

〈
(1
2

1
2)S′M ′

S

∣∣ 〈1
2 S2

1
2 S1

∣∣1
2

1
2 SMS

〉 ∣∣1
2 S1

1
2 S2

〉

=
√

[S] δSS′ (−1)1+S
∑

S1,S2

〈
(1
2

1
2)S′M ′

S

∣∣ 〈1
2 S1

1
2 S2

∣∣1
2

1
2 SMS

〉 ∣∣1
2 S1

1
2 S2

〉

=
√

[S] δSS′ (−1)1+S 〈S′M ′
S |SMS〉

=
√

[S] δSS′ (−1)1+S . (A.73)
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A.4.3.3
∏

S/T operator

By definition
∏

S

=
1 + (−1)1−S Pσ

2
. (A.74)

One gets easily from Eqs. (A.72,A.61)

(S′||
∏

S0

||S) =
1

2

[√
[S] δSS′ + (−1)1−S0

√
[S] δSS′ (−1)S+1

]

=
1

2

√
[S] δSS′ (1 + (−1)S+S0)

=
√

[S] δSS′ δSS0 . (A.75)

A.4.3.4 Total angular momentum L

We have immediately, using results from Sec. A.2.1.1

(L||L||L′) =
〈LML|L0|L′M ′

L〉

(−1)L−ML

(
L 1 L′

−ML 0 M ′
L

) = δLL′

√
L (L+ 1) (2L+ 1) . (A.76)

A.4.3.5 (~σ1 + ~σ2) operator

The easiest way is to use the result from the previous section

(S||~σ1 + ~σ2||S′) = 2 (S||~S ||S′) = δSS′ 2
√
S (S + 1) (2S + 1) = δSS′ δS1 2

√
6 , (A.77)

since S = 0, 1. Another method can be used as a check, involving Eq. (A.63), that reads

(S||~σ1 + ~σ2||S′) =((1
2

1
2)S||~σ1 + ~σ2||(1

2
1
2)S′)
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2

1
2)S||σ1||(1

2
1
2)S′) + ((1

2
1
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σ Pσ σ2 Pσ P
†
σ ||(1
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1
2)S′)
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2

1
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2
1
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2
1
2)S||P †

σ σ1 P
†
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2
1
2)S′)
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2

1
2)S||σ1||(1

2
1
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1
2)S||σ1||(1

2
1
2)S′)

=(1 + (−1)S+S′
) ((1

2
1
2)S||σ1||(1

2
1
2)S′) , (A.78)

where

((1
2

1
2)S||σ1||(1

2
1
2)S′) =(1

2 ||σ1||12) (1
2 ||̂I||12)

√
[S][S′][1]
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1/2 1/2 1

1/2 1/2 0

S S′ 1


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1
2 |σ1,0|12 1
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〉

(−1)0

(
1/2 1 1/2

−1/2 0 1/2
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√
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
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=
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12
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3
√

6
. (A.79)

Thus
(S||~σ1 + ~σ2||S′) = (1 + (−1)S+S′

) δS1 δS′1

√
6 = δSS′ δS1 2

√
6 . (A.80)

Using Eq. (A.66) directly would have led to the same result for ((1
2

1
2)S||σ1||(1

2
1
2)S′).
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A.4.3.6
[
σ

[1]
1 ⊗ σ

[1]
2

][f ]
operator

This is only a small generalization of the previous results, and one has using Eq. (A.63)

(S||
[
σ

[1]
1 ⊗ σ

[1]
2

][f ]
||S′) =

√
[f ][S][S′]
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S S′ f
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(1
2 ||σ
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1 ||12)2
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1/2 1/2 1

1/2 1/2 1

S S′ f




. (A.81)

For f = 0, one recovers easily the results from the previous sections. Indeed

(S||~σ1 · ~σ2||S′) =−
√

3 (S||
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σ
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2

][0]
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3
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=− 6 δSS′
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[S] (−1)2+S (−1)2+S 3− 2S(S + 1)

6

=δSS′

√
[S] (2S(S + 1)− 3) . (A.82)

A.4.3.7 Spherical harmonics

Any finite rotation can be characterized by three Euler angles (α, β, γ), and the associated
operator is noted

D(α, β, γ) = e
i γ
~

Jz e
i β
~

Jy e
i α
~

Jz . (A.83)

Its matrix elements in the representation |j mj〉 are

D(j)
m,m′(α, β, γ) ≡ 〈j m′

j |D(α, β, γ)|j mj〉 . (A.84)

In the representations we are using Jz is diagonal, thus

D(j)
m,m′(α, β, γ) = ei m′ γ D(j)

m,m′(0, β, 0) ei m α ≡ ei m′ γ d
(j)
m,m′(β) ei m α . (A.85)

Matrix elements d
(j)
m,m′(β) can be evaluated using Jacobi Polynomials (Sec. A.2.7), and read

d
(j)
m,m′(β) =

√
(j +m′)! (j −m′)!

(j +m)! (j −m)!
cosm′+m

(
β

2

)
sinm′−m

(
β

2

)
Pm′−m,m′+m

j−m′ (cos(β)) . (A.86)
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Therefore, using Eqs. (A.85,A.39,A.86), one has for t ≡ cos(β)

1

8π2

∫ 2π

0

∫ π

0

∫ 2π

0
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2
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1

(t) dt

=
δm′

1m′
2
δm1m2 δj1j2

[j1]
. (A.87)

Transformation rules for the finite rotations read on the other hand

D(j1)
m′

1,m1
(α, β, γ)D(j2)

m′
2,m2

(α, β, γ) =
∑

j,m′,m

[j]
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j1 j2 j
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2 m′
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m1 m2 m
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(A.88)
This leads to

1

8π2
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. (A.89)

Finally, one has

D(ℓ)
0,m(α, β, γ) =

√
4π

[ℓ]
Y m

ℓ (β, γ) , (A.90)

and Eq. (A.89) becomes

∫ 2π

0

∫ π

0
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. (A.91)

This amounts to

(k′ L′||Y [k](k̂)||k L) =
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L µ ML
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4π

(
L′ k L

0 0 0

)
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(A.92)
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A.4.4 Tensorial product of spherical harmonics

Using Eqs. (A.62,A.92), we get
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A.4.5 Quadratic terms

Using Eq. (A.92) and results from Sec. A.3.3, one has
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∑
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A.4.6 Gaussian terms

Applying the same method from the previous section, one gets for the direct terms
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Appendix B

Hartree-Fock-Bogoliubov formalism
in the traditional and Russian
representations

Abstract: The present chapter provides an extended set of general equations about HFB formal-
ism. The focus is put on the link between the so-called traditional and Russian representations
in the case where time-reversal symmetry is not assumed. All equations of interest are especially
given in both configuration and coordinate spaces and are further specified for time-reversal
symmetric systems, spherical systems and infinite nuclear matter.
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B.1 One-body states

B.1.1 Representation

Spin and isospin indices will be noted σ = ±1/2 and q = ±1/2, respectively, with the notation
σ̄ = −σ, and

2σ = −2σ̄ = (−1)s−σ , (B.1)

with s = 1/2. Single-nucleon spinors {ϕµ} have good isospin projections and are represented by

〈~r |µ〉 ≡ ϕµ(~r q) =


 〈~r σ = +1/2 q|µ〉

〈~r σ = −1/2 q|µ〉


 =


 ϕµ(~r + 1/2 q)

ϕµ(~r − 1/2 q)


 . (B.2)
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Orthonormality and closure relationships in a given isospin subspace read for the set of spinors
{ϕµ} as

∫
d~r ϕ†

µ(~r q)ϕν(~r q) =
∑

σ

∫
d~r ϕ∗

µ(~r σ q)ϕν(~r σ q) =δµν , (B.3a)

∑

µ

ϕµ(~r σ q)ϕ∗
µ(~r ′ σ′ q) =δ(~r − ~r ′) δσσ′ . (B.3b)

In Dirac notations, closure relationships read as

∑

µ

|µ〉 〈µ| = 1 ,
∑

q

∑

σ

∫
d~r |~r σ q〉 〈~r σ q| = 1 , (B.4)

whereas those within a given isospin subspace are obtained by limiting the above sums to states
corresponding to a given isospin projection.

B.1.2 Symmetries

Symmetries and associated quantum numbers µ used to designate single-particle states depend
on the situation and cannot be given once and for all. Pairing requires at least the existence of
one good quantum number (beyond isospin) to split the basis into two halves that are coupled by
the Bogoliubov transformation. Because it is general enough to cover most of the situations of
interest, we use the z-signature ζz as the transformation that provides this quantum number [5].
To be complete, one should characterize transformation properties of basis states under a complete
symmetry group.

Signature transformations correspond to three rotations by an angle π around the reference
axes, that is

R̂j = eiπĴj = eiπL̂jeiπŜj = i eiπL̂j σ̂j for j = x, y, z, (B.5)

where σ̂j are the Pauli spin-matrices. The third signature depends on the other two, since

R̂iR̂j = ǫijkR̂k − δij , (B.6)

where ǫijk is the Levi-Civita symbol and δij the Kronecker symbol.

It is essential to also introduce the time-reversal operator T̂ = ei π Ŝy K̂, where K̂ is an
operator which associates to a wave function its complex conjugate and Ŝy is the spin-projection
operator of the N -body system. For single-nucleon spinors the time-reversal operator reduces
to i σ̂y K̂. We will come back extensively to the properties of T̂ below. Squares of these basic
operators for a N -body state are given by

T̂ 2 = (−1)N , R̂2
i = −1 . (B.7)

Single-particle eigenstates of R̂z have eigenvalues iζµ = ±i (ζµ = ±1). The z-signature relates,
in the restrictive case of an axially symmetric system, to the projection of orbital momentum mℓ

and spin σ on the z-axis according to

ζµ mℓ σ

+ 1 even +1/2

+ 1 odd -1/2

- 1 even -1/2

- 1 odd +1/2
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As already said, the basis will be split into two halves according to the z-signature quantum
number and pairing is assumed to take place between states of opposite signature. Consequently,
the Bogoliubov transformation only pairs states of opposite signature, noted (µ, ν̂). However,
this notation does not specify which of the two states has a positive signature.

B.2 Two-body states

Normalized and antisymmetrized two-body states will be noted |i j〉, and non-antisymmetrized
states |1 : i , 2 : j〉. It will sometimes be useful to introduce non-normalized and antisymmetrized
two-body states ‖ i j ≫ as

|i j〉 =
|1 : i , 2 : j〉 − |1 : j , 2 : i〉√

2
, ‖ i j ≫=|1 : i , 2 : j〉 − |1 : j , 2 : i〉 =

√
2 |i j〉 . (B.8)

Starting from these states, several types of two-body wave functions can be obtained, depending
on the scalar product considered. Typically, one can have

〈1 : ~r, 2 : ~r ′|1 : µ, 2 : µ′〉 = ϕµ(~r q)ϕµ′(~r ′ q) , (B.9a)

〈1 : ~rσ, 2 : ~r ′σ′|1 : µ, 2 : µ′〉 = ϕµ(~r σ q)ϕµ′(~r ′σ′ q) , (B.9b)

〈~r ~r ′|µµ′〉 = ϕµ(~r q)ϕµ′(~r ′ q)− ϕµ′(~r q)ϕµ(~r ′ q) , (B.9c)

〈~rσ ~r ′σ′|µµ′〉 = ϕµ(~r σ q)ϕµ′(~r ′σ′ q)− ϕµ′(~r σ q)ϕµ(~r ′σ′ q) , (B.9d)

〈1 : ~r, 2 : ~r ′|µµ′〉 =
1√
2

[
ϕµ(~r q)ϕµ′(~r ′ q)− ϕµ′(~r q)ϕµ(~r ′ q)

]
, (B.9e)

〈1 : ~rσ, 2 : ~r ′σ′|µµ′〉 =
1√
2

[
ϕµ(~r σ q)ϕµ′(~r ′σ′ q)− ϕµ′(~r σ q)ϕµ(~r ′σ′ q)

]
. (B.9f)

Then, care must be considered when defining closure relationships in the two-body space,
depending on the antisymmetry and normalization of the two-body states considered. The two
choices of main interest are

∑

qq′

∑

σσ′

∫
d~r d~r ′ |1 : ~rσq, 2 : ~r ′σ′q′〉 〈1 : ~rσq, 2 : ~r ′σ′q′| =1 , (B.10a)

∑

qq′

∑

σσ′

∫
d~r d~r ′ |~r σ q ~r ′ σ′ q′〉 〈~r σ q ~r ′ σ′ q′| =2 . (B.10b)

Those results are obtained through

〈1 : µ, 2 : ν|


∑

qq′

∑

σσ′

∫
d~r d~r ′ |1 : ~rσq, 2 : ~r ′σ′q′〉 〈1 : ~rσq, 2 : ~r ′σ′q′|


 |1 : µ′, 2 : ν ′〉

=

(
∑

σ q

∫
d~r ϕ∗

µ(~r σ q)ϕµ′(~r σ q)

) 
∑

σ′ q′

∫
d~r ′ ϕ∗

ν(~r
′ σ′ q′)ϕν′(~r ′ σ′ q′)




=δµµ′ δνν′

=〈1 : µ, 2 : ν|1 : µ′, 2 : ν ′〉 , (B.11)
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and

〈µ ν|


∑

qq′

∑

σσ′

∫
d~r d~r ′ |~r σ q, ~r ′ σ′ q′〉 〈~r σ q, ~r ′ σ′ q′|


 |µ′ ν ′〉

=
∑

qq′

∑

σσ′

∫
d~r d~r ′

(
ϕ∗

µ(~r σ q)ϕ∗
ν(~r

′ σ′ q′)− ϕ∗
ν(~r σ q)ϕ

∗
µ(~r ′ σ′ q′)

)

×
(
ϕµ′(~r σ q)ϕν′(~r ′ σ′ q)− ϕν′(~r σ q)ϕµ′(~r ′ σ′ q)

)

=2

[(
∑

qσ

∫
d~r ϕ∗

µ(~r σ q)ϕµ′(~r σ q)

) 
∑

q′σ′

∫
d~r ′ ϕ∗

ν(~r
′ σ′ q′)ϕν′(~r ′ σ′ q′)




−
(
∑

qσ

∫
d~r ϕ∗

µ(~r σ q)ϕν′(~r σ q)

) 
∑

q′σ′

∫
d~r ′ ϕ∗

ν(~r
′ σ′ q′)ϕµ′(~r ′ σ′ q′)



]

=2
[
δµµ′ δνν′ − δµν′ δνµ′

]

=2 〈µ ν|µ′ ν ′〉 , (B.12)

where Kronecker symbols also relates to the isospin of the states. Equivalently, in configuration
space one has

∑

µν

|1 : µ, 2 : ν〉 〈1 : µ, 2 : ν| = 1 ,
∑

µν

|µ ν〉 〈µ ν| = 2 . (B.13)

B.3 Time-reversal operator

B.3.1 Definition

In the N -body Hilbert space, one has

T̂ ≡ ei π Ŝy K̂ , T̂ 2 = (−1)N , (B.14)

The operator T̂ is antiunitary (unitary and antilinear), with the following properties:

T̂ † =T̂ −1 , (B.15a)

λ T̂ =T̂ λ∗ , ∀λ ∈ C , (B.15b)

〈u|T̂
)
|v〉 =

[
〈u|
(
T̂ |v〉

]∗
, (B.15c)

〈u|
(
T̂ †|v〉 =〈v|

(
T̂ |u〉 . (B.15d)

In particular, the basis vector, bra or ket, on which such operators are applied needs to be
specified. Representation and transformation rules differ between the Hilbert and Fock (second
quantization) spaces.

Indeed, it is important to know the number of fermions on which T̂ is applied. For even-even
systems T̂ 2 = 1, and one can find time-invariant states such that T̂ |Ψ〉 = |Ψ〉. For single-nucleon
spinors T̂ 2 = −1, and no state is invariant under the action of T̂ . Its action on a given basis
state |µ〉 defines the state |µ̄〉 according to

T̂ |µ〉 = |µ̄〉 , T̂ |µ̄〉 = −|µ〉 . (B.16)
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In particular |µ̄〉 and |µ〉 are orthogonal to each other. Indeed, one has T̂ † = T̂ −1 = −T̂ , thus

〈µ|µ̄〉 = 〈µ|
(
T̂ |µ〉 = −〈µ|

(
T̂ †|µ〉 = −〈µ|

(
T̂ |µ〉 = −〈µ|µ̄〉 = 0 . (B.17)

In the N = 1 case, the complex conjugate operator K̂ does not act on the Hibert basis states,
but ensures that T̂ is antilinear through

K̂ |µ〉 = |µ〉 , K̂ [α |µ〉] = α∗ |µ〉 . (B.18)

B.3.2 Action on single-particle wave functions

The transformation of a single-particle wave function under the application of T̂ is given by

(T̂ ϕ)µ(~r σ q) = 2σ ϕ∗
µ(~r σ̄ q) , (B.19)

thus T̂ does not change the parity of the state. It can be easily checked that (T̂ 2ϕ)µ = −ϕµ.

B.3.3 Transformation of creation and annihilation operators

One can introduce the time-reversal operator in Fock space ˆ̃T through its transformation rules
for standard creation and annihilation operators defined on the tensorial product of space, spin
and isospin as well as on the particle vacuum |0〉 as

ˆ̃T † â†~rσq
ˆ̃T =2σ â†~rσ̄q ,

ˆ̃T â†~rσq
ˆ̃T † =2σ̄ â†~rσ̄q , (B.20a)

ˆ̃T † â~rσq
ˆ̃T =2σ â~rσ̄q ,

ˆ̃T â~rσq
ˆ̃T † =2σ̄ â~rσ̄q , (B.20b)

ˆ̃T |0〉 =|0〉 . (B.20c)

In any arbitrary basis, one can define

â†k ≡ T̂ â
†
k T̂ † , (B.21)

and obtain an explicit representation of ˆ̃T under the form

ˆ̃T = exp

[
π

2

∑

k

(
â†k âk − â†k âk

)]
. (B.22)

One says that the basis is closed under time-reversal symmetry when, starting from the basis
state |k〉, one can find another basis state |k̃〉 such that

â†k ≡ ηk â
†

k̃
. (B.23)

This is for instance the case of the eigenbasis of the position, spin and isospin operators {â†~rσq}.
In this case {~̃rσq} ≡ {~r σ̄q} and η~rσq ≡ 2σ̄.

B.3.4 Action on one-body Dirac bras and kets

The representation of the same operator in Hilbert space T̂ is obtained through its action on a
basis ket |~r σ q〉 and bra 〈~r σ q| as

T̂ |~r σ q〉 = 2σ̄|~r σ̄ q〉 〈~r σ q|T̂ = 2σ 〈~r σ̄ q| , (B.24)

which is consistent with Eqs. (B.20a,B.20c). This allows one to recover Eq. (B.19) through

(T̂ ϕ)µ(~r σ q) = 〈~r σ q|
(
T̂ |µ〉 = 〈~r σ q|T̂

)
|µ〉∗ = 2σ 〈~r σ̄ q|µ〉∗ = 2σ ϕ∗

µ(~r σ̄ q) . (B.25)

Note that the different signs appearing above come from a specific choice of phase in the definition

of T̂ = e±i πσ̂y K̂(1). In the following no distinction between T̂ and ˆ̃T will be made.

1In the present case T̂ = e+i πσ̂y K̂.
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B.3.5 Matrix representation

One has to be very careful when representing T̂ through a matrix acting in the one-body Hilbert
space. We define

Tµν ≡ 〈µ|
(
T̂ |ν〉 =

∫
d~r
∑

σ

ϕ∗
µ(~r σ q) (T̂ ϕ)ν(~r σ q) =

∫
d~r
∑

σ

2σ ϕ∗
µ(~r σq)ϕ∗

ν(~r σ̄ q) . (B.26)

Some care must be taken when defining the matrix representation of related operators. Al-
though one naturally has T ∗

µν = 〈µ|
(
T̂ ∗|ν〉, T −1

µν = 〈µ|
(
T̂ −1|ν〉 and T †

µν = 〈µ|
(
T̂ †|ν〉, the matrix

representation of T̂ 2 is less trivially obtained as

〈µ|
(
T̂ 2|ν〉 = 〈µ|T̂

)(
T̂ |ν〉∗ =

∑

κ

〈µ|
(
T̂ |κ〉〈κ|

(
T̂ |ν〉∗ ≡ (T T ∗)µν 6= T 2

µν . (B.27)

Then, one can check in matrix representation the properties of T̂ when acting on the single-particle
Hilbert space, i.e.

Tνµ =

∫
d~r
∑

σ

2σϕ∗
ν(~r σq)ϕ

∗
µ(~r σ̄ q)

=

∫
d~r
∑

σ

2σ̄ϕ∗
ν(~r σ̄q)ϕ

∗
µ(~r σ q)

=− Tµν . hence T T = −T ,
(B.28a)

(T T ∗)µν =
∑

κ

Tµκ T ∗
κν

=
∑

µ

∫
d~r d~r ′

∑

σσ′

2σ ϕ∗
µ(~r σ q)ϕ∗

κ(~r σ̄ q) 2σ′ ϕκ(~r ′ σ′ q)ϕν(~r
′ σ̄′ q)

=

∫
d~r
∑

σ

2σ ϕ∗
µ(~r σ q) 2σ̄ ϕν(~r σ q)

=− δµν hence T 2 = −1 ,
(B.28b)

(T † T )µν =
∑

κ

T ∗
κµ Tκν

=
∑

µ

∫
d~r d~r ′

∑

σσ′

2σ ϕκ(~r σ q)ϕµ(~r σ̄ q) 2σ′ ϕ∗
κ(~r ′ σ′ q)ϕ∗

ν(~r
′ σ̄′ q)

=

∫
d~r
∑

σ

2σ ϕµ(~r σ̄ q) 2σ ϕ∗
ν(~r σ̄ q)

=δµν hence T −1 = T † .
(B.28c)

Since a state and its time-reversed partners have opposite signatures, non-zero matrix elements
of T necessarily couple two different halves of the basis. T denotes the transformation matrix
within each signature block from the basis ϕ to the basis formed out of their time-reversed
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partners. It takes the form

T =

(T̂ ϕ)µ (T̂ ϕ)ν̂

|
0 | Tµν̂ ϕµ

|
− − − | − − − −

|
Tν̂µ | 0 ϕν̂

|
|

(B.29)

which, if the ordering of the starting basis of size M is such that the first M/2 states have a
positive signature, shows that the ordering in the transformed basis has changed in such a way
that states of negative signature now come first. This is again because (T̂ ϕ)µ has the opposite
signature to ϕµ. Finally, a representation of the time-reversed states of a given spinor is achieved
through

(T̂ ϕ)ν̂(~r σ q) = 〈~r σ q|
(
T̂ |ν̂〉 =

∑

µ

〈~r σ q|µ〉 〈µ|
(
T̂ |ν̂〉 =

∑

µ

ϕµ(~r σ q) Tµν̂ , (B.30)

whereas the inverse equation reads

ϕµ(~r σ q) =
∑

ν̂

(T̂ ϕ)ν̂(~r σ q) T †
ν̂µ . (B.31)

B.4 Energy density functional formalism

In the energy Density functional (EDF) formalism, the ground-state energy is postulated under
the form of a functional E [ρ, κ, κ∗] of the one-body density ρq and the pairing tensor κq, defined
as

ρq
νµ ≡ 〈Φ|âq

µ
† âν |Φ〉 , κq

νµ ≡ 〈Φ|âµ âν |Φ〉 , (B.32)

where |Φ〉 is an auxiliary quasiparticle product state for the Hartree-Fock-Bogoliubov (HFB)
realization of Single-Reference EDF (SR-EDF). Without going into any details concerning
the actual form of the nuclear EDF, it is important to know that E [ρ, κ, κ∗] splits into the
uncorrelated(2) kinetic energy and the remaining correlation energy(3).

B.4.1 Normal density matrix, pair density matrix and pairing tensor

The normal one-body density matrix is defined in coordinate representation through

ρ(~r σ q, ~r ′ σ′ q′ ) ≡ 〈Φ|â†~r ′σ′q′ â~rσq|Φ〉 =
∑

µν

ϕ∗
µ(~r ′ σ′ q′ )ϕν(~r σ q) ρ

q
νµ δqq′ , (B.33)

where {ϕµ} denotes an arbitrary single-particle basis.

2In the HFB implementation of the EDF formalism, the kinetic energy is partly correlated through smooth
occupation numbers associated with the explicit treatment of pair scattering.

3Such correlation energy also accounts for the correlated part of the kinetic energy which is not treated explicitly
through the first contribution to E [ρ, κ, κ∗].
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• In the so-called traditional representation of the HFB formalism, the pairing tensor is
introduced through

κ(~r σ q, ~r ′ σ′ q′ ) ≡ 〈Φ|â~r ′σ′q′ â~rσq|Φ〉 =
∑

µν̂

ϕν̂(~r
′ σ′ q′ )ϕµ(~r σ q)κq

µν̂ δqq′ , (B.34)

and is such that κq
µν = κq

µν δ−ζνζµ , as the Bogoliubov transformation only couples states of
opposite signatures.

• In the so-called Russian representation of the HFB formalism, it is rather the pair density
which is used, and it is defined as

ρ̃(~r σ q, ~r ′ σ′ q′ ) ≡ 2σ̄′ κ(~r σ q, ~r ′ σ̄′ q′) = 2σ̄′
∑

µν̂

ϕν̂(~r
′ σ̄′ q′ )ϕµ(~r σ q)κq

µν̂ δqq′ . (B.35)

Since nucleons are chosen to have a good isospin projection, all densities and fields are isospin-block
diagonal. This suggests to introduce the notations(4)

Xq(~r σ,~r ′ σ′) ≡ X(~r σ q, ~r ′ σ′ q′) δqq′ , X = ρ, ρ̃, κ, h, h̃,∆ . . . (B.36)

The scalar part of the normal and pair density matrices, the latter being of particular interest
when pairing is restricted to the spin-singlet/isospin-triplet channel, can be introduced for a
given isospin q through

ρq(~r, ~r ′) ≡
∑

σ

ρq(~r σ,~r ′ σ) , ρ̃q(~r, ~r ′) ≡
∑

σ

ρ̃q(~r σ,~r ′ σ) , (B.37)

which leads naturally to the definition of the local scalar normal and pair densities

ρq(~r ) ≡ ρq(~r, ~r ) , ρ̃q(~r ) ≡ ρ̃q(~r, ~r ) , (B.38)

which cannot be introduced for the pairing tensor κ as it is skew symmetric (κT = −κ).

From Eqs. (B.31,B.35), one finds that

ρ̃(~r σ q, ~r ′ σ′ q′ ) =2σ̄′
∑

µν̂

∑

µ′

T ∗
ν̂µ′ (T̂ ϕ)µ′(~r ′ σ̄′ q′ )ϕµ(~r σ q)κq

µν̂ δqq′

=
∑

µν̂

∑

µ′

T ∗
ν̂µ′ ϕ∗

µ′(~r ′ σ′ q′ )ϕµ(~r σ q)κq
µν̂ δqq′

≡
∑

µµ′

ϕ∗
µ′(~r ′ σ′ q′ )ϕµ(~r σ q) ρ̃q

µµ′ δqq′ , (B.39)

which defines the matrix elements of ρ̃q
µµ′ in any arbitrary single-particle basis in terms of those

of κ and of the time-reversal operator T̂ , i.e.

ρ̃q
µµ′ =

∑

ν̂

κq
µν̂ T ∗

ν̂µ′ , κq
µν̂ =

∑

µ′

ρ̃q
µµ′ T T

µ′ν̂ , (B.40)

or, equivalently, ρ̃q = κq T ∗ and κq = ρ̃q T T . In a similar way, one can show that:

ρ̃q †
µµ′ =

∑

ν̂

Tν̂µ κ
q ∗
µ′ν̂ , κq ∗

µ′ν̂ =
∑

µ

T ∗
ν̂µ ρ̃

q †
µµ′ , (B.41)

4In configuration space, one will also use matrix elements of the kind Xq
ij where the superscript is a reminder

that the field and densities are diagonal in isospin. In all rigor however, matrix elements should be noted Xij , the
isospin superscript appearing for matrix elements of the kind X~rσq ~r ′σ′q ≡ Xq

~rσ ~r ′σ′ .
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or, equivalently, ρ̃q † = T T κq † and κq † = T ∗ ρ̃q †. Eq. (B.40) is the matrix representation of the
definition of the pair density matrix in an arbitrary matrix through

ρ̃q
µν ≡ 〈Φ| âq

ν â
q
µ |Φ〉 , (B.42)

which can be used to prove that, for time-reversal invariant systems T̂ |Φ〉 = |Φ〉, the pairing
tensor becomes hermitian. Indeed

ρ̃q
µν =〈Φ| T̂ †

) (
T̂ âq

ν T̂ † âq
µ |Φ〉

=− 〈Φ| âq
ν

(
T̂ † T̂ 2 âq

µ T̂ † T̂ |Φ〉∗

=〈Φ| âq
µ â

q
ν |Φ〉∗

=ρ̃q ∗
νµ , (B.43)

where 〈Φ| T̂ †
)

= 〈Φ|, T̂ † T̂ = 1 and T̂ 2 = −1 have been used. This result provides one advantage
to using the Russian representation in the case of time-reversal invariant systems.

B.4.2 Generalized density matrices

Since the many-body auxiliary HFB state is an independent quasiparticle state, the normal
density matrix ρ does not contain enough information to characterize the state. The generalized
one-body density matrix which does so is defined in the traditional representation as

R =


 ρ κ

−κ∗ 1− ρ∗


 =


 〈Φ|â†â|Φ〉 〈Φ|ââ|Φ〉

〈Φ|â†â†|Φ〉 〈Φ|ââ†|Φ〉


 , (B.44)

and is idempotent R2 = R, as it should be for an independent quasiparticle state. This leads to
various relations between ρ and κ, e.g.

ρ · ρ− κ · κ∗ =ρ , ρ · κ− κ · ρ∗ = 0 , (B.45a)

κ∗ · ρ− ρ∗ · κ∗ =0 , ρ∗ · ρ∗ − κ∗ · κ =ρ∗ . (B.45b)

The pairing tensor being skew symmetric, its trace vanishes, that is

Tr{κq} = Tr{κq ∗} =
∑

µ

κq
µµ =

∫
d~r
∑

σ

κ(~r σ q, ~r σ q) =

∫
d~r
∑

σ

κ∗(~r σ q, ~r σ q) = 0 . (B.46)

A generalized density matrix can also be introduced in the Russian representation through

R̃ =


 ρ ρ̃

ρ̃† 1− ρ∗


 , (B.47)

which contains the same information as R, and shares the property R̃2 = R̃, leading to

ρ · ρ+ ρ̃ · ρ̃† =ρ , ρ · ρ̃− ρ̃ · ρ∗ = 0 , (B.48a)

ρ̃† · ρ− ρ∗ · ρ̃† =0 , ρ∗ · ρ∗ + ρ̃† · ρ̃ =ρ∗ . (B.48b)
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B.5 Hartree-Fock-Bogoliubov equations

B.5.1 Traditional representation

The equations of motion for the single-particle states and the occupation amplitudes are deter-
mined self-consistently from the variation of the total constrained energy. The second constraint
makes the many-body state to remain an independent quasiparticle state whereas the first one
fixes the average particle number to the actual number of particles. This is the minimum set of
constraints. The minimization reads

δ
(
E [ρ, κ, κ∗]− 1

2

∑

q

λq(Tr{ρq}+ Tr{ρq ∗})−
∑

q

Tr{Λq(Rq 2 −Rq)}
)

= 0 , (B.49)

with the additional conditions

Tr{ρq} = Tr{ρq ∗} = 〈N̂q〉 = 〈N̂ †
q 〉 =Nq , (B.50a)

Rq 2 −Rq =0 , (B.50b)

which have to be met by adjusting the Lagrange parameters λq and Λq accordingly. The variation
is expressed through a variation of the matrix elements of the generalized density matrix Rq.
We have to remember, however, that Rq contains redundant information since only half of its
matrix elements are independent, i.e.

ρq ∗
ij = ρq

ji , κq
ij = −κq

ji , κq ∗
ij = −κq ∗

ji . (B.51)

One chooses the irreducible set of independent variables ρq
ij , ρ

q ∗
ij , κ

q
ij , κ

q ∗
ij for j < i as well as ρq

ii

for all i. The variation of Rq can be written as

δRq
kl =


 δρq

kl δκq
kl

−δκq ∗
kl −δρq ∗

kl


 . (B.52)

Then, the variation of the energy gives

δE =
∑

j<iq

(
δE
δρq

ij

δρq
ij +

δE
δρq ∗

ij

δρq ∗
ij +

δE
δκq

ij

δκq
ij +

δE
δκq ∗

ij

δκq ∗
ij

)
+
∑

iq

δE
δρq

ii

δρq
ii

≡1

2

∑

ijq

(
hq

jiδρ
q
ij + hq ∗

ji δρ
q ∗
ij −∆q ∗

ji δκ
q
ij −∆q

jiδκ
q ∗
ij

)

=
1

2
Tr {hδρ+ h∗δρ∗ −∆∗δκ−∆δκ} , (B.53)

where we have introduced, for j ≤ i,

hq
ji ≡

δE
δρq

ij

= hq ∗
ij , ∆q

ij ≡
δE
δκq ∗

ij

= −∆q
ji , (B.54)

hq ∗
ji ≡

δE
δρq ∗

ij

= hq
ij , ∆q ∗

ij ≡
δE
δκq

ij

= −∆q ∗
ji . (B.55)

The concept of trace can also be used for the combined spaces of particle indices and
submatrices of HFB theory. Introducing the generalized HFB matrix Hq in analogy to Rq as

Hq =


 hq ∆q

−∆q ∗ −hq ∗


 , (B.56)
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the variation of the energy can be rewritten as

δE =
∑

ijq

Hq
ijδR

q
ji = Tr{HδR} =

1

2
Tr






 h ∆

−∆∗ −h∗




 δρ δκ

−δκ∗ −δρ∗







=
1

2
Tr {hδρ−∆δκ∗ −∆∗δκ+ h∗δρ∗} . (B.57)

The trace has to be taken in the space of single-particle states and, if applicable, in the space of
2× 2 matrices. If the index q is absent (present), the trace in isospin space is (not) considered.
The variation of the constraint on particle number gives

δTr{ρq} =
∑

ij

δρq
ij

δ

δρq
ij

∑

k

ρq
kk =

∑

ij

δij δρ
q
ij , (B.58a)

δTr{ρq ∗} =
∑

ij

δρq ∗
ij

δ

δρq ∗
ij

∑

k

ρq ∗
kk =

∑

ij

δij δρ
q ∗
ij . (B.58b)

The variations of the constraint and of the energy functional can be combined into

δ
(
E − 1

2

∑

q

λq(Tr{ρq}+ Tr{ρq ∗})
)

= Tr{H′δR} , (B.59)

where

Hq ′
=


h

q − λq ∆q

−∆q ∗ −(hq ∗ − λq)


 ≡


 hq ′ ∆q

−∆q ∗ −hq ′∗


 . (B.60)

On the other hand, the variation of Tr{Λq(Rq 2 −Rq)} leads to

δTr{Λq(Rq 2 −Rq)} =
∑

mn

δ

δRq
mn

∑

ij

Λq
ij

(
∑

k

Rq
jkR

q
ki −R

q
ji

)
δRq

mn

=
∑

ij

Λq
ij

[
∑

k

(δjmδknRq
ki +Rq

jkδkmδin)− δjmδin
]
δRq

mn

=


∑

i

Λq
imR

q
ni +

∑

j

Λq
njR

q
jm − Λq

nm


 δRq

mn

=(RqΛq + ΛqRq − Λq)nm δRq
mn

=Tr{(RqΛq + ΛqRq − Λq) δRq} , (B.61)

in such a way that the variational equation finally reads

Tr{
(
Hq ′ −RqΛq − ΛqRq + Λq

)
δRq} = 0 . (B.62)

The latter equation has to hold for an arbitrary variation δRq. This means that the rest of
the expression has to be zero, i.e.

Hq ′ −RqΛq − ΛqRq + Λq = 0 . (B.63)

In the next step we eliminate the matrix of Lagrange parameters Λq. Subtraction of
Rq × Eq. (B.63)) from Eq. (B.63) × Rq yields to

0 =Hq ′Rq −RqΛqRq − ΛqRq 2 + ΛqRq −RqHq ′
+Rq 2Λq +RqΛqRq −RqΛq

=[Hq ′
,Rq]− Λq(Rq 2 −Rq) + (Rq 2 −Rq)Λq

=[Hq ′
,Rq] . (B.64)
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This means that the solution of the minimization problem is a basis which diagonalizes simul-
taneously Hq ′

and Rq. Finally, one obtains the HFB eigenvalues problem in the traditional
representation under the form


h

q − λq ∆q

−∆q ∗ −hq ∗ + λq




U

q[κ]

Vq[κ]




µ

= Eq
µ


U

q[κ]

Vq[κ]




µ

, (B.65)

where (Uq[κ]
µ ,Vq[κ]

µ ) are the upper and lower components of the quasiparticle eigenstate expanded
in the single-particle basis of interest one starts with, whereas Eq

µ denotes the corresponding
quasiparticle energy. Having those quasiparticle eigenstates at hand, the normal density matrix
and pairing tensor can be calculated as

ρ = Vq[κ]∗ Vq[κ]T , κ = Vq[κ]∗ Uq[κ]T = −Uq[κ] Vq[κ]† . (B.66)

B.5.2 Russian representation

We introduce the (2N × 2N) unitary matrix G as

G =


 0 1

T ∗ 0


 , (B.67)

and perform the associated basis transformation on Eq. (B.65), that is

G†


h

q − λq ∆q

−∆q ∗ −hq ∗ + λq


GG†


 U

q[κ]

Vq[κ]




µ

= Eq
µG

†


 U

q[κ]

Vq[κ]




µ

, (B.68)

to obtain 
−T

Thq ∗T ∗ + λq h̃q †

h̃q hq − λq




 V

q[ρ̃]

Uq[ρ̃]




µ

= Eq
µ


 V

q[ρ̃]

Uq[ρ̃]




µ

, (B.69)

or equivalently

h

q − λq h̃q

h̃q † −(T −1hqT )∗ + λq




 U

q[ρ̃]

Vq[ρ̃]




µ

= Eq
µ


 U

q[ρ̃]

Vq[ρ̃]




µ

, (B.70)

with the quasiparticle states in the Russian representation defined as

 U

q[ρ̃]

Vq[ρ̃]




µ

≡


 Uq[κ]

T T Vq[κ]




µ

. (B.71)

and the pair field h̃ as

h̃q ≡∆q T ∗ , (B.72a)

h̃q ≡− T T ∆q ∗ . (B.72b)

Coming back to the definition of the pairing field in the traditional representation, that is

∆q
i̂ =

∂E
∂κq ∗

i̂

=
∑

kl

∂E
∂ρ̃q †

kl

∂ρ̃q †
kl

∂κq ∗
i̂

=
∑

k

∂E
∂ρ̃q †

ki

T̂k ≡
∑

k

h̃q
ik T T

k̂ , (B.73a)

∆q ∗
i̂ =

∂E
∂κq

i̂

=
∑

kl

∂E
∂ρ̃q

kl

∂ρ̃q
kl

∂κq
i̂

=
∑

l

∂E
∂ρ̃q

il

T ∗
̂l ≡

∑

l

T ∗
̂l h̃

q †
li , (B.73b)
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and posing

h̃q
ij ≡

∂E
∂ρ̃q †

ji

, h̃q †
ij ≡

∂E
∂ρ̃q

ji

, (B.74)

one can show that

∆q =h̃q T T , (B.75a)

∆q ∗ =h̃q ∗ T † = −(h̃q T T )† , (B.75b)

which indeed is consistent with Eqs. (B.72a,B.72b).

Using Eq. (B.71), the one-body and pair density matrices read as

ρq =Vq[κ]∗ Vq[κ]T = T Vq[ρ̃]∗ Vq[ρ̃]T T † , (B.76a)

ρ̃q =κq T ∗ = −Uq[κ] Vq[κ]† T ∗ = −Uq[ρ̃] Vq[ρ̃]† , (B.76b)

which shows in particular that the one-body density expressed in terms of the quasiparticle
components does not read generally the same in the traditional and Russian representations.
Of course, the representations using κ and ρ̃ are fully equivalent, but one or the other may
present advantages under certain circumstances. The pair density matrix is particularly suited
to quasi-local pairing functionals, in particular when the corresponding effective vertex is limited
to the spin-singlet/isospin-triplet channel. When the system is invariant under time-reversal, the
pair density ρ̃ becomes hermitian which leads to simplifications. Note however that Eq. (B.70)
demonstrates that quasiparticle wave functions in the Russian representation are not solutions of
the HFB equations when time-reversal invariance is not assumed [6].

According to Eq. (B.71), the Russian representation amounts to representing the lower
component of the quasiparticle wave functions in the basis constructed with the time-reversed
states of the ones used to express the upper component. Because of the properties of the M ×M
unitary matrix G, the first M/2 components of Vq[ρ̃] have now an opposite signature to the first
M/2 components of Uq[ρ̃].

B.5.3 Coordinate ⊗ spin ⊗ isospin space

B.5.3.1 Standard notations

Two typical notations used to represent quasiparticle states in the κ representation (equivalently
in the ρ̃ representation) are


 U

q[κ]
µ (~r σ q)

Vq[κ]
µ (~r σ q)


 ≡


 U

q[κ]
~rσq,µ

Vq[κ]
~rσq,µ


 . (B.77)

The first notation is specifically used when expanding the quasiparticle states in coordinate,
spin and isospin spaces. Indeed, one then talks about the upper and lower components of the
quasiparticle wave functions. The second notation is a classic matrix notation which is more
general and used for any arbitrary single-particle basis. Using the latter notation, it becomes
obvious that the first index always refers to the particle basis used to expand the quasiparticle
states whereas the second corresponds to the quasiparticle basis.

The upper and lower components of the quasiparticle wave function are obtained explicitly
from the quasiparticle creation and annihilation operators defined in Eq. (B.110) (or Eq. (B.116))
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according to 
 U

q[κ]
µ (~r σ q)

Vq[κ]
µ (~r σ q)


 ≡


 〈~r σ q |β̂

q
µ
†|0〉

〈~r σ q |β̂q
µ|0〉∗


 . (B.78)

B.5.3.2 Dirac notations

The introduction of Dirac notations in the HFB formalism raises questions because of the use of
particle and quasiparticle operators/states. First, and in order to differentiate between those
two types of bases, the notation µ will be used when needed to characterize quasiparticle states.
Such a notation will allow one to write kets of the form |i µ〉 where the two states belong to
different spaces (particle or quasiparticle). Because the two states belong to different spaces, the
symmetry of the state |i µ〉 under the exchange of the indices does not need to be specified.

With such a notation, one can now resolve unambiguously scalar products of the type

|i µ〉 =
∑

k

|k〉 〈k|i µ〉 =
∑

k

〈k|i〉 |k µ〉 =
∑

k

δki |k µ〉 . (B.79)

Although the notations as matrix elements (or wave functions) are similar for quasiparticle
states used in the traditional and Russian representations, their Dirac notations differ in a
very significant manner. While the Dirac notation of the upper and lower components of the
quasiparticle states are those of usual one-body operators in the Russian representation, the
lower component in the traditional representation behaves as a pair destruction that connects
different Hilbert spaces for two particles. This leads to


 U

q[ρ̃]
i,µ

Vq[ρ̃]
i,µ


 ≡


 〈i|U

q[ρ̃]|µ〉

〈i|Vq[ρ̃]|µ〉





 U

q[κ]
i,µ

Vq[κ]
i,µ


 ≡


 〈i|U

q[κ]|µ〉

〈Vq[κ]|i µ〉


 , (B.80)

where i can denote a state in configuration or coordinate space. Dirac notations in a given
single-particle basis for the fields hq, h̃q and ∆q, as well as of the densities ρq, ρ̃q and κq are also
to be defined properly. For instance, matrix elements of the pairing field ∆q in coordinate space
are usually defined through

∆q
ij ≡

∑

σ1σ2

∫
d~r1 d~r2 ϕ

∗
i (~r1 σ1 q)ϕ

∗
j (~r2 σ2 q) ∆q(~r1 σ1, ~r2 σ2) . (B.81)

The corresponding Dirac notation is

∆q
ij ≡ 〈i j|∆q〉 =

1

2

∫
d~r1d~r2

∑

σ1 σ2

〈i j|~r1 σ1 q ~r2 σ2 q〉 〈~r1 σ1 q ~r2 σ2 q|∆q〉

≡1

2

∫
d~r1 d~r2

∑

σ1 σ2

〈i j|~r1 σ1 ~r2 σ2〉∆q(~r1 σ1, ~r2 σ2) . (B.82)
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and carries the skew symmetry of the pairing field through the antisymmetry of 〈i j|. To recover
exactly Eq. (B.81), the skew symmetry of the pairing field in coordinate space is used to write

∆q
ij ≡ 〈i j|∆q〉 =

1

2

∫
d~r1 d~r2

∑

σ1 σ2

〈i j|~r1 σ1 ~r2 σ2〉∆q(~r1 σ1, ~r2 σ2)

=
1

2

∫
d~r1 d~r2

∑

σ1 σ2

[
ϕ∗

i (~r1 σ1 q)ϕ
∗
j (~r2 σ2 q)

− ϕ∗
j (~r1 σ1 q)ϕ

∗
i (~r2 σ2 q)

]
〈~r1 σ1 q ~r2 σ2 q|∆q〉

=

∫
d~r1 d~r2

∑

σ1 σ2

ϕ∗
i (~r1 σ1 q)ϕ

∗
j (~r2 σ2 q) ∆q(~r1 σ1, ~r2 σ2) . (B.83)

Once again, one should write ∆q
ij ≡ 〈i j|∆〉 in all rigor since the isospin superscript should not be

further specified as it is part of the quantum numbers i/j. The latter will be kept nevertheless
to remember that the fields and densities are diagonal in isospin space. Note finally that the
most proper notation should be ∆q

ij ≡ 〈i j|∆q|0〉.

In a similar fashion, we introduce the notations

hq
ij ≡〈i|hq|j〉 hq(~r σ,~r ′ σ′) ≡〈~r σ q|hq|~r ′ σ′ q〉 , (B.84a)

h̃q
ij ≡〈i|h̃q|j〉 h̃q(~r σ,~r ′ σ′) ≡〈~r σ q|h̃q|~r ′ σ′ q〉 , (B.84b)

∆q
ij ≡〈i j|∆q〉 ∆q

ij
∗ ≡〈ij|∆q〉∗ = 〈∆q|i j〉 ∆q(~r σ,~r ′ σ′) ≡〈~r σ q ~r ′ σ′ q|∆q〉 , (B.84c)

ρq
ij ≡〈i|ρq|j〉 ρq(~r σ,~r ′ σ′) ≡〈~r σ q|ρq|~r ′ σ′ q〉 , (B.84d)

ρ̃q
ij ≡〈i|ρ̃q|j〉 ρ̃q(~r σ,~r ′ σ′) ≡〈~r σ q|ρ̃q|~r ′ σ′ q〉 , (B.84e)

κq
ij ≡〈i j|κq〉 κq

ij
∗ ≡〈ij|κq〉∗ = 〈κq|i j〉 κq(~r σ,~r ′ σ′) ≡〈~r σ q ~r ′ σ′ q|κq〉 . (B.84f)

For instance, Eqs. (B.84c,B.84f) allows to write the gap equation obtained from a bilinear EDF
(see Sec. B.11) as

∆q
ij =

1

2

∑

kl

v̄κκ
ijkl κ

q
kl ⇔ 〈i j|∆q〉 =

1

2

∑

kl

〈i j|vκκ|k l〉 〈k l|κq〉 = 〈i j|vκκ κq〉 . (B.85)

In the previous example, the operator product can be naturally worked out through the use of a
completeness relationship in the two-body Hilbert space because κq is multiplied with a two-body
operator. In other cases, such as the product of one-body-like operators with two-body-like ones
or the product of an operator carrying a quasiparticle label with one carrying two single-particle
ones, one must be very careful when inserting or removing completeness relationships in Dirac
notations (matrix-product notations is always safe). This is due to the specificity of Dirac

notation for quantities like ∆q, κq or Vq[κ]. Products like ρq = Vq[κ]∗Vq[κ]T have to be worked
out in matrix notations in order to make both indices of each quantity explicit before Dirac
notations can be used. Then, additional closure relationships can be used. For instance(5)

CANNOT DO CAN DO

ρq
~rσ ,~r ′σ′ =〈~r σ q|Vq[κ]∗ Vq[κ]T|~r ′ σ′ q〉 ρq

~rσ ,~r ′σ′ =
[
Vq[κ]∗ Vq[κ]T

]
~rσq,~r ′σ′q

=
∑

µ

〈~r σ q|Vq[κ]∗|µ〉 〈µ|Vq[κ]T|~r ′ σ′ q〉 =
∑

µ

Vq[κ]
~rσq,µ

∗
Vq[κ]

µ,~r ′σ′q

T

5Note that because of its definition in Eq. (B.78), the Dirac notation of Vq[κ]∗
~rσq,µ resembles that of a complex

conjugate.
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=
∑

µ

〈Vq[κ]|~r ′ σ′ q µ〉 〈~r σ q µ|Vq[κ]〉

Finally, one can provide a Dirac notation for the matrix elements of the time-reversal operator as

Tij ≡ 〈i|
(
T̂ |j〉 ≡ 〈i j|T̂ 〉 , (B.86)

with the same care required when writing matrix elements and products. Said in a crude way,
the Dirac notation of T̂ is related to the fact that ”it changes a bra into a ket”. It is crucial to
remember that T̂ always acts on the second index in Eq. (B.86). Using the Dirac notation given
above, it is easy to recover that T T = −T , as stated in Eq. (B.28a), since

T T
ij = Tji ≡〈j i|T̂ 〉 = −〈i j|T̂ 〉 = −Tij . (B.87)

B.5.3.3 Traditional representation

Starting from Eq. (B.65), we represent the HFB equations in the traditional representation in an
arbitrary single-particle basis. Although we could directly expand them in the basis of present
interest, the derivation below underlines the necessary care when going from one basis to another
through the insertion of completeness relationships (at the positions indicated by •) in Dirac

notations. Focusing on the upper component Uq[κ]
µ , this leads to(6) for all i

0 =− Eq
µ Uq[κ]

iµ +
∑

j

(hq
ij − λq δij)Uq[κ]

jµ + ∆q
ij V

q[κ]
jµ

=− Eq
µ 〈i| • U [q κ]|µ〉+

∑

j

(〈i|•hq •|j〉 − λq 〈i|••|j〉) 〈j|•U [q κ]|µ〉+ 〈i j|••∆q〉 〈V [q κ]•|j µ〉

=
∑

σσ′σ′′

∫
d~r d~r ′d~r ′′

[
−Eq

µ ϕ
∗
i (~r σ q)U [q κ]

µ (~r σ q)

+
∑

j

[
ϕ∗

i (~r σ q)
(
hq(~r σ,~r ′σ′)− λq δσσ′ δ(~r − ~r ′)

)

× ϕj(~r
′ σ′ q)ϕ∗

j (~r
′′ σ′′ q)U [q κ]

µ (~r ′′ σ′′ q)

+ ϕ∗
i (~r σ q)ϕ

∗
j (~r

′ σ′ q) ∆q(~r σ,~r ′ σ′)ϕj(~r
′′ σ′′ q)V [q κ]

µ (~r ′′ σ′′ q)

]]

=
∑

σ

∫
d~rϕ∗

i (~r σ q)

[
Eq

µ U [q κ]
µ (~r σ q)

−
∑

σ′

∫
d~r ′

[(
hq(~r σ,~r ′ σ′)− λq δσσ′ δ(~r − ~r ′)

)
U [q κ]

µ (~r ′ σ′ q)

−∆q(~r σ,~r ′ σ′)V [q κ]
µ (~r ′ σ′ q)

]]
. (B.88)

The latter is true for all i thus, as the set {ϕi} forms a complete basis, one has

∑

σ′

∫
d~r ′

[
h′

q
(~r σ,~r ′ σ′)Uq[κ]

µ (~r ′ σ′ q)−∆q(~r σ,~r ′ σ′)Vq[κ]
µ (~r ′ σ′ q)

]
= Eq

µ Uq[κ]
µ (~r σ q) , (B.89)

6At the level of 〈i j|••∆q〉 a closure relationship on the antisymmetrized two-body state |~r σ q ~r ′ σ′ q〉 is used.
However, using the skew symmetry of ∆q, one can “reduce” [ϕ∗

i (~r σ q) ϕ∗
j (~r

′ σ′ q) − ϕ∗
j (~r σ q) ϕ∗

i (~r
′ σ′ q)]/2 into

ϕ∗
i (~r σ q) ϕ∗

j (~r
′ σ′ q).
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where h′q(~r σ,~r ′ σ′) = hq(~r σ,~r ′ σ′)− λq δσσ′ δ(~r − ~r ′). The same method applied for the lower
quasiparticle component Vq[κ] leads to the HFB equations in coordinate space, i.e.

∫
d~r ′

∑

σ′


 h′q(~r σ,~r ′ σ′) ∆q(~r σ,~r ′ σ′)

−∆q∗(~r σ,~r ′ σ′) −h′q ∗(~r σ,~r ′ σ′)




 U

q [κ]
µ (~r ′ σ′ q)

Vq [κ]
µ (~r ′ σ′ q)


 = Eq

µ


 U

q [κ]
µ (~r σ q)

Vq [κ]
µ (~r σ q)


 ,

(B.90)

B.5.3.4 Russian representation

One can use the same method as in the traditional representation to obtain the HFB equations
in the ρ̃ representation in coordinate space. To do so, one needs first to work out

(T T h∗ T ∗)~rσq , ~r ′σ′q =

∫
d~r12

∑

σ12

T~r1σ1q , ~rσq h
q ∗
~r1σ1q , ~r2σ2q T ∗

~r2σ2q , ~r ′σ′q

=

∫
d~r12

∑

σ12

〈~r1σ1q|
(
T̂ |~rσq〉h∗(~r1σ1q , ~r2σ2q) 〈~r2σ2q|

(
T̂ |~r ′σ′q〉∗

=

∫
d~r12

∑

σ12

2σ̄ 〈~r1σ1q|~rσ̄q〉h∗(~r1σ1q , ~r2σ2q) 2σ̄′ 〈~r2σ2q|~r ′σ̄′q〉∗

=2σ̄ 2σ̄′ hq ∗(~r σ̄, ~r ′ σ̄′) . (B.91)

Representing Eq. (B.70) for the lower component of the quasiparticle, one finds easily

∫
d~r ′

∑

σ′

h̃q†(~r σ,~r ′ σ′)Uq[ρ̃]
µ (~r ′ σ′ q)

−
[
2σ̄ 2σ̄′hq∗(~r σ̄, ~r ′ σ̄′)− λq δσσ′ δ(~r − ~r ′)

]
Vq[ρ̃]

µ (~r ′ σ′ q) = Eq
µ Vq[ρ̃]

µ (~r σ q) , (B.92)

which finally leads to

Eq
µ


 U

q[ρ̃]
µ (~r σ q)

Vq[ρ̃]
µ (~r σ q)


 =

∫
d~r ′

∑

σ′




hq(~r σ,~r ′ σ′) h̃q(~r σ,~r ′ σ′)

− λq δσσ′ δ(~r − ~r ′)

h̃q∗(~r ′ σ′, ~r σ) −2σ̄ 2σ̄′ hq∗(~r σ̄, ~r ′ σ̄′)

+ λq δσσ′ δ(~r − ~r ′)





 U

q[ρ̃]
µ (~r ′ σ′ q)

Vq[ρ̃]
µ (~r ′ σ′ q)


 . (B.93)

B.5.3.5 Further connections between traditional and Russian representations

Starting from Eq. (B.75a), one can use the same type of derivation as in Eq. (B.91) to show that

∆q(~r σ,~r ′ σ′) = 2σ′ h̃q(~r σ,~r ′σ̄′) . (B.94)

In the exact same manner, one obtains from Eq. (B.71)


 U

q[ρ̃]
µ (~r σ q)

Vq[ρ̃]
µ (~r σ q)


 =


 Uq[κ]

µ (~r σ q)

2σ̄ Vq[κ]
µ (~r σ̄ q)


 . (B.95)
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B.6 Time-reversal invariant systems

B.6.1 Basic properties

In case the system is time-reversal invariant (i.e., T̂ |Φ〉 = |Φ〉), all single-particle basis of
interest(7) are closed under the action of T̂ . Thus, one can always find a state ϕµ̃(~rσq) in the
basis fulfilling

ϕµ̄(~r σ q) = (T̂ ϕ)µ(~r σ q) ≡ ηµ ϕµ̃(~r σ q) , (B.96)

where ηµ̃ = −ηµ and |ηµ| = 1 (this quantum number can be taken real), with the additional result
that ϕµ̃ has an opposite signature to ϕµ. In such a basis, the time-reversal operator becomes

Tµν̂ = ην̂ δµ̃ν̂ . (B.97)

This can be seen with the example of an eigenbasis {|µ〉} of a time-reversal invariant one-body
field ĥq

T̂ ĥq T̂ † = ĥq . (B.98)

If |µ〉 is eigenstate of ĥq with the eigenvalue ǫµ, one finds

T̂ ĥq |µ〉 =ĥq T̂ |µ〉 = ĥq |µ̄〉 , (B.99a)

=T̂ ǫµ |µ〉 = ǫµ |µ̄〉 , (B.99b)

and thus ηµ |µ̄〉 ≡ |µ̃〉 is also an eigenstate of ĥq with the same eigenvalue ǫµ. Eigenstates of ĥ
are then two-fold degenerated for time-reversal invariant systems.

B.6.2 Quasiparticle states

Starting from Eq. (B.97), the relationships between the lower quasiparticle components Vq[ρ̃]

and Vq[κ] become

Uq[ρ̃]
iµ =Uq[κ]

iµ , (B.100a)

Vq[ρ̃]
iµ =

∑

j

T T
ij Vq[κ]

jµ =
∑

j

ηi δjı̃ Vq[κ]
jµ = ηi Vq[κ]

ı̃µ , (B.100b)

which matches with Eq. (B.95) as the coordinate ⊗ spin ⊗ isospin basis is indeed closed under
time-reversal symmetry.

B.6.3 Densities

As already shown in Eq. (B.43), the pair density matrix is hermitian for time-reversal invariant
systems (ρ̃q† = ρ̃q). As a result, Eq. (B.76b) becomes

ρ̃q = −Uq[ρ̃] Vq[ρ̃]† = −Vq[ρ̃] Uq[ρ̃]† , (B.101)

which is precisely the definition of ρ̃q where only time-reversal invariant systems have been
considered [6]. Equivalently, using that T ρq T † = ρq, one obtains

ρq = T † (T Vq[ρ̃]∗ Vq[ρ̃]T T †) T = Vq[ρ̃]∗ Vq[ρ̃]T . (B.102)

7The basis which diagonalizes hq, the canonical basis, . . . .
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B.6.4 Fields

One finds from Eq. (B.75a) that the pairing gap

∆q
i̃ = ηj h̃

q
ij = ηj h̃

q
ji
∗ , (B.103)

is hermitian for time-reversal invariant systems. Furthermore, one can use that hq = T hq T † to
obtain

hq(~r σ,~r ′ σ′) =〈~r σ|hq|~r ′ σ′〉
=〈~r σ|

(
T̂ † hq T̂ |~r ′ σ′〉

=〈~r σ|T̂ †
)
hq
(
T̂ |~r ′ σ′〉∗

=2σ̄ 2σ̄′ 〈~r σ̄|hq|~r ′ σ̄′〉∗
=2σ̄ 2σ̄′ hq∗(~r σ̄, ~r ′ σ̄′) . (B.104)

Finally, the pair field h̃q has the same symmetries of ρ̃q, i.e.

h̃q∗(~r ′ σ′, ~r σ) = h̃q(~r σ,~r ′ σ′) . (B.105)

B.6.5 HFB equations

The HFB eigenvalues problem in the ρ̃ representation can be simplified using Eqs. (B.104,B.105).
Traditional HFB equations [6] can now be recovered from Eq. (B.70) using the time-reversal
invariance of the system

∫
d~r ′

∑

σ′


 h′q(~r σ,~r ′ σ′) h̃q(~r σ,~r ′ σ′)

h̃q(~r σ,~r ′ σ′) −h′q(~r σ,~r ′ σ′)




 U

q [ρ̃]
µ (~r ′ σ′ q)

Vq [ρ̃]
µ (~r ′ σ′ q)


 = Eq

µ


 U

q [ρ̃]
µ (~r σ q)

Vq [ρ̃]
µ (~r σ q)


 .

(B.106)
Such form of the HFB equations could also be obtained in configuration space through

[
T T hq∗ T ∗

]
ij

=
∑

kl

Tki h
q∗
kl T ∗

lj = ηi ηj h
q∗
ı̃̃ , (B.107)

and

ηi ηj h
q∗
ı̃̃ =ηi ηj

∫
d~r d~r ′

∑

σσ′

ϕ∗
ı̃ (~r σ q)h

q∗(~r σ,~r ′ σ′)ϕ̃(~r
′ σ′ q)

=

∫
d~r d~r ′

∑

σσ′

2σ ϕi(~r σ̄ q)h
q∗(~r σ,~r ′ σ′) 2σ′ ϕ∗

j (~r
′ σ̄′ q)

=

∫
d~r d~r ′

∑

σσ′

2σ ϕi(~r σ̄ q)h
q(~r ′ σ′, ~r σ) 2σ′ ϕ∗

j (~r
′ σ̄′ q)

=

∫
d~r d~r ′

∑

σσ′

2σ̄ ϕi(~r σ q)h
q(~r ′ σ̄′, ~r σ̄) 2σ̄′ ϕ∗

j (~r
′ σ′ q)

=

∫
d~r d~r ′

∑

σσ′

ϕi(~r σ q)h
q∗(~r ′ σ′, ~r σ)ϕ∗

j (~r
′ σ′ q)

=hq ∗
ji = hq

ij . (B.108)

Independently of any single-particle representation, one thus finds that the HFB equations, in
the Russian representation, take for time-reversal invariant systems the form


h

q − λq h̃q

h̃q −hq + λq




 U

q[ρ̃]

Vq[ρ̃]




µ

= Eq
µ


 U

q[ρ̃]

Vq[ρ̃]




µ

. (B.109)
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Except for the fact that hq is real because it is time-reversal invariant, the HFB equations in
the traditional representation do not significantly simplify for time-reversal invariant systems.

B.7 Canonical basis

B.7.1 Bloch-Messiah-Zumino decomposition in the traditional representa-
tion

In the traditional representation, the Bogoliubov transformation leading to the quasiparticle
states solution of the HFB problem takes the form


 β̂q

β̂q†


 = W q[κ]†


 âq

âq†


 =


U

q[κ]† Vq[κ]†

Vq[κ]T Uq[κ]T




 âq

âq†


 , (B.110)

where β̂q and β̂q† on the one hand and âq and âq† on the other obey fermionic anticommutation
rules. The Bloch-Messiah-Zumino theorem [7–9] states that W q[κ] may be decomposed into a set
of three consecutive transformations

W q[κ]† =


C

q † 0

0 Cq T




Ū

q[κ]† V̄q[κ]†

V̄q[κ]T Ūq[κ]T




D

q † 0

0 Dq T


 , (B.111)

where Dq and Cq are unitary, while Ūq[κ] is diagonal and V̄q[κ] is canonical (see below). This
decomposition of the matrix establishes the following bases of interest:

1. An arbitrary basis of single-particle states (âq, âq†). This can be for instance the basis in
which the one-body field hq is diagonal.

2. Dq is a unitary transformation among the single-particle states, which leads to the canonical
basis (ĉq, ĉq†) 

 ĉq

ĉq†


 =


D

q † 0

0 Dq T




 âq

âq†


 , (B.112)

in which the one-body density matrix is diagonal while the pairing tensor is canonical.
In the absence of pairing the HF and canonical bases are identical, as in this case the
mean-field Hamiltonian solves the HF equation [hq, ρq] = 0. Thus, a set of single-particle
states can be chosen that diagonalises hq and ρq at the same time. The two bases are also
identical for what is usually called the HF+BCS approximation to HFB.

3. Ūq[κ] and V̄q[κ] define the special Bogoliubov transformation


 α̂q

α̂q†


 =


Ū

q[κ]† V̄q[κ]†

V̄q[κ]T Ūq[κ]T




 ĉq

ĉq†


 , (B.113)

where only pairs of single-particle states are mixed, leading to a set of quasiparticle states
which diagonalizes the generalized density matrix Rq with eigenvalues of 1 (0) for occupied
(unoccupied) quasiparticle states. In general, this basis will not yet diagonalize the HFB
Hamiltonian Hq.



44 Appendix B. Hartree-Fock-Bogoliubov formalism

4. A further unitary transformation Cq among the quasiparticle states leads then to a set of
quasiparticle states which solve the HFB equation [Rq,Hq ′

] = 0, and therefore diagonalise
R and the HFB Hamiltonian Hq ′

:

 β̂q

β̂q†


 =


C

q † 0

0 Cq T




 α̂q

α̂q†


 . (B.114)

One has then
Uq[κ] = Dq Ūq[κ]Cq , Vq[κ] = Dq∗ V̄q[κ]Cq , (B.115)

and quasiparticle operators are defined as

β̂q
µ
† =

∑

j

Uq[κ]
jµ âq

j
†
+ Vq[κ]

jµ âq
j =

∑

j

∑

kl

Dq
jk Ū

q[κ]
kl Cq

lµ â
q
j
†
+Dq

jk
∗ V̄q[κ]

kl Cq
lµ â

q
j . (B.116)

B.7.2 General case

The canonical basis {φµ(~rq)} diagonalizes the one-body density matrix according to the transfor-
mation

ρq can
νµ =

(
DqρqDq †

)
νµ

= ρq can
µµ δνµ , (B.117)

while the pairing tensor is put in its canonical form κq can
µν̂ = κq can

µµ̂ δνµ, where µ̂ designates the

pair conjugate state of µ(8). In the HFB formalism, states are not paired a priori as in the BCS
approximation, except for the fact that only states with opposite signatures are coupled through
the Bogoliubov transformation.

If the canonical basis is ordered in such a way that conjugate states (µ, µ̂) come next to
each other, the special matrices (Ūq[κ], V̄q[κ]) are 2× 2 block diagonal, where the blocks have the
following structure:

Ūq[κ] ≡


u

q
µ 0

0 uq
µ̂


 =


u

q
µ 0

0 uq
µ


 , (B.118a)

V̄q[κ] ≡


 0 vq

µ

vq
µ̂ 0


 =


 0 ζµ v

q
µ

ζµ̂ v
q
µ 0


 , (B.118b)

uq
µ > 0 and vq

µ being real BCS-like coefficients. Thus, one has Ūq[κ]
µν = Ūq[κ]

µµ δµν and V̄q[κ]
µν = V̄q[κ]

µµ̂ δµ̂ν ,
such that

Ūq[κ]
µµ = +Ūq[κ]

µ̂µ̂ = uq
µ , V̄q[κ]

µµ̂ = −V̄q[κ]
µ̂µ = ζµ v

q
µ . (B.119)

As a result, the normal density matrix and pairing tensor are such that

ρq
µµ = +ρq

µ̂µ̂ = vq 2
µ , κq

µµ̂ = −κq
µ̂µ = ζµ u

q
µ v

q
µ . (B.120)

In the canonical basis, V̄q[ρ̃] and thus ρ̃q do not take canonical forms in general, i.e. if
time-reversal invariance of the system is not assumed. For instance, one has

ρ̃q
µµ′ =κq

µµ̂ T̂ ∗
µ̂µ′ , κq

µµ̂ =
∑

µ′

ρ̃q
µµ′ T T

µ′µ̂ . (B.121)

8We omit the subscript can in the following when it is not necessary.
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Also, one can write

ρq(~r, ~r ′) =
∑

µ

φ†µ(~r ′ q)φµ(~r q) ρq
µµ , (B.122a)

ρq(~r ) =
∑

µ

φ†µ(~r q)φµ(~r q) ρq
µµ , (B.122b)

ρ̃q(~r, ~r ′) =
∑

µ′µ

φ†µ′(~r
′ q)φµ(~r q) ρ̃q

µµ′ , (B.122c)

ρ̃q(~r ) =
∑

µ′µ

φ†µ′(~r q)φµ(~r q) ρ̃q
µµ′ = −

∑

µ

ψµµ̂(~r q)κq
µµ̂ , (B.122d)

where the local spin-singlet part of the two-body wave function has been introduced through

ψµν(~r q) ≡
∑

σ

2σ φµ(~r σ q)φν(~r σ̄ q) . (B.123)

B.7.3 BCS-like occupation numbers

In the HFB theory, explicit expressions of (uq 2
µ , vq 2

µ ) can be obtained by using the fact that the
minimization principle amounts to canceling the part of the Hamiltonian Ĥ corresponding to
two-quasiparticle excitations, i.e.

Hq 20 = Ūq[κ]† (hq − λq) V̄q[κ]∗−V̄q[κ]†
(
hq T − λq

)
Ūq[κ]∗ + Ūq[κ]† ∆q Ūq[κ]∗−V̄q[κ]† ∆q ∗ V̄q[κ]∗ = 0 .

(B.124)
For a given matrix element, this identity reads as

ζµ u
q
µ v

q
µ

(
hq

µµ + hq
µ̂µ̂ − 2λq

)
+ ∆q

µµ̂

(
uq 2

µ − vq 2
µ

)
= 0 . (B.125)

Such a set of equations leads to the well-known BCS-like expressions


 uq 2

µ

vq 2
µ


 =

1

2


1±

(
hq

µµ + hq
µ̂µ̂

)
/2− λq

√[(
hq

µµ + hq
µ̂µ̂

)
/2− λq

]2
+ ∆q 2

µµ̂


 , (B.126)

which leaves the sign of vq
µ undecided.

B.7.4 Time-reversal invariant systems

For time-reversal invariant systems, the canonical basis is closed under the action of T̂ , thus

φµ̂(~r σ q) ≡ φµ̃(~r σ q) = ηµ φµ̄(~r σ q) = ηµ 2σ φ∗µ(~r σ̄ q) , (B.127)

As a result, Tµν̂ = ην̂ δµ̃ν̂ and

ρ̃q
µµ′ = ηµ κ

q
µµ̃ δµµ′ = ηµ ζµ u

q
µ v

q
µ δµµ′ . (B.128)

This shows that, while κq is canonical, ρ̃q becomes diagonal in the canonical basis and thus

ρ̃q(~r, ~r ′) =
∑

µ

φ†µ(~r ′ q)φµ(~r q) ηµ ζµ u
q
µ v

q
µ . (B.129)
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At the same time, one finds that the lower component of the Russian quasiparticle states
becomes diagonal and the 2× 2 (µ, µ̃) blocks of the special transformation take the form

(
Ūq[ρ̃]

)
µµ̃

= uq
µ


1 0

0 1


 ,

(
V̄q[ρ̃]

)
µµ̃

= ηµ ζµ v
q
µ


1 0

0 1


 . (B.130)

Indeed

V̄q[ρ̃]
µν = (T T V̄q[κ])µν =

∑

k

Tµk V̄ [q κ]
kν

=
∑

k

ηk δµk̃ δkν̃ ζkv
q
ν

=ηµ̃ ζµ̃ v
q
µ δµν = ηµ ζµ v

q
µ δµν . (B.131)

The subtlety here is that, for a given pair (µ, µ̃), the quantum number ζµ originally used to
separate the basis into two halves coupled by the Bogoliubov transformation is not necessarily
the same as the (real) phase ηµ, i.e. ηµ ζµ = ±1 depending on the quantum number µ. For
time-reversal systems, it might thus be useful to reorder each pair of canonical states (µ, µ̃)
according to ηµ and not ζµ as done in general. This is equivalent to saying that one can redefine
the BCS-like coefficient vq

µ whose sign, as opposed to uq
µ, cannot been specified anyway. This

redefinition corresponds to the replacement ηµ ζµ v
q
µ → vq

µ in the previous formulæ. In such a
case, one will have

Ūq[κ] ≡ uq
µ


1 0

0 1


 , V̄q[κ] ≡ ηµ v

q
µ


 0 1

−1 0


 , (B.132)

and

Ūq[ρ̃] ≡ uq
µ


1 0

0 1


 , V̄q[ρ̃] ≡ vq

µ


1 0

0 1


 . (B.133)

However, if the system is not time-reversal invariant, the definition of vq
µ has to be made according

to ζµ.

B.8 Quasiparticle basis

B.8.1 Quasiparticle states

Quasiparticle operators in the traditional representation are related to the canonical ones using
the Bloch-Messiah decomposition through

β̂q
µ
† =

∑

k

Ūq[κ]
kk Cq

kµ ĉ
q
k
†
+
∑

k

V̄q[κ]

kk̂
Cq

k̂µ
ĉqk =

∑

k

uq
k C

q
kµ ĉ

q
k
†
+
∑

k

ζk v
q
k C

q

k̂µ
ĉqk , (B.134a)

β̂q
µ =

∑

k

Ūq[κ]
kk

∗
Cq

kµ
∗
ĉqk +

∑

k

V̄q[κ]

kk̂

∗
Cq

k̂µ

∗
ĉqk

†
=
∑

k

uq
k C

q
kµ

∗
ĉqk +

∑

k

ζk v
q
k Ck̂µ

∗ ĉqk
†
, (B.134b)

which can be further simplified by using the fact that the transformation Cq only couples states
with the same signature. Using Eq. (B.78) one has


 U

q[κ]
µ (~r σ q)

Vq[κ]
µ (~r σ q)


 =

∑

k




φk(~r σ q)u
q
k C

q
kµ

ηk φ
∗
k(~r σ q) v

q
k C

q

k̂µ


 , (B.135)
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B.8.2 Normal and pair density matrices, pairing tensor

We now give the expressions of the densities expressed in the traditional and Russian quasiparticle
bases and recover, using Eq. (B.135), the corresponding formulæ in the canonical basis. Using
Eq. (B.66), it is obvious that

ρq(~r σ,~r ′ σ′) =
∑

µ

Vq[κ]
~rσq,µ

∗
Vq[κ]

µ,~r ′σ′q

T
=
∑

µ

Vq[κ]
µ (~r σ q)

∗ Vq[κ]
µ (~r ′ σ′ q)

=
∑

µ

2σ Vq[ρ̃]
µ

∗
(~r σ̄ q) 2σ′ Vq[ρ̃]

µ (~r ′ σ̄′ q) , (B.136)

which leads, using
∑

µC
q
kµ

∗
Cq

k′µ = δkk′ and ζ2
k = 1, to

ρq(~r σ,~r ′ σ′) =
∑

µ

∑

kk′

ζk ζk′ φk(~r σ q) v
q
k C

q

k̄µ

∗
φ∗k′(~r ′ σ′ q) vq

k′ C
q

k̄′µ

=
∑

k

φk(~r σ q)φ
∗
k(~r

′ σ′ q) vq 2
k , (B.137)

which is compliant with Eq. (B.122a).

In the same fashion, Eq. (B.66) leads to two formulations for the pairing tensor and pair
densities in terms of the quasiparticle basis, i.e.

κ(~r σ q, ~r ′ σ′ q) =
∑

µ

Vq[κ]
~rσq,µ

∗
Uq[κ]

µ,~r ′σ′q

T
= −

∑

µ

Uq[κ]
~rσq,µ V

q[κ]
µ,~r ′σ′q

†
, (B.138a)

=
∑

µ

Vq[κ]
µ (~r σ q)

∗ Uq[κ]
µ (~r ′ σ′ q) = −

∑

µ

Uq[κ]
µ (~r σ q)Vq[κ]

µ (~r ′ σ′ q)
∗
,

(B.138b)

ρ̃(~r σ q, ~r ′ σ′ q) =
∑

µ

2σ̄′ Vq[κ]
µ

∗
(~r σ q)Uq[κ]

µ (~r ′ σ̄′ q) = −
∑

µ

2σ̄′ Uq[κ]
µ (~r σ q)Vq[κ]

µ

∗
(~r ′ σ̄′ q) ,

(B.138c)

=
∑

µ

2σ Vq[ρ̃]
µ

∗
(~r σ̄ q) 2σ̄′ Uq[ρ̃]

µ (~r ′ σ̄′ q) = −
∑

µ

Uq[ρ̃]
µ (~r σ q)Vq[ρ̃]

µ

∗
(~r ′ σ′ q) .

(B.138d)

Finally, one recovers

ρ̃(~r σ q, ~r ′ σ′ q) =
∑

µ

2σ̄′ Vq[κ]
µ

∗
(~r σ q)Uq[κ]

µ (~r ′ σ̄′ q)

=
∑

µ

∑

kk′

2σ̄′ ζk φk(~r σ q) v
q
k C

∗
k̂µ
φk′(~r ′ σ̄′ q)uq

k′ Ck′µ

=2σ̄′
∑

k

φk(~r σ q)φν(~r
′ σ̄′ q)κkk̂ , (B.139)

which is compliant with Eq. (B.35) if the latter were to be written in the canonical basis.

B.8.3 Local normal and pair scalar densities

Using Eq. (B.136), the local scalar normal density is obtained as

ρq(~r ) =
∑

µ

∑

σ

∣∣∣Vq[κ]
µ (~r σ q)

∣∣∣
2

=
∑

µ

∑

σ

∣∣∣Vq[ρ̃]
µ (~r σ q)

∣∣∣
2
, (B.140)
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whereas Eq. (B.138d) leads to a local scalar pair density of the form

ρ̃q(~r ) = −
∑

µ

∑

σ

2σ̄ Uq[κ]
µ (~r σ q)Vq[κ]

µ

∗
(~r σ̄ q) = −

∑

µ

∑

σ

Uq[ρ̃]
µ (~r σ q)Vq[ρ̃]

µ

∗
(~r σ q) . (B.141)

B.9 Spherical systems

B.9.1 Basic properties

Different phase conventions exist to define single-particle states in such a context. We chose to
write the spinors as

〈~r |µ〉 = ϕµ(~r q) =
unℓj(r q)

r

∑

mℓσ

Y mℓ

ℓ (r̂) 〈ℓmℓ
1
2 σ|j m〉 |σ〉 ≡

unℓj(rq)

r
Ωℓjm(r̂) , (B.142)

where µ ≡ nℓjmq. Ωjℓm(r̂) are spherical spinors that couple the angular part of the wave function
to spinors associated with spin 1/2. They have the properties

~̂J 2 Ωjℓm(r̂) =~2 j(j + 1) Ωjℓm(r̂) , (B.143a)

~̂L 2 Ωjℓm(r̂) =~2 ℓ(ℓ+ 1) Ωjℓm(r̂) , (B.143b)

~̂S 2 Ωjℓm(r̂) =~2 s(s+ 1) Ωjℓm(r̂) =
3

4
~2 Ωjℓm(r̂) , (B.143c)

Ĵz Ωjℓm(r̂) =~mΩjℓm(r̂) . (B.143d)

Spherical spinors are orthonormal, i.e.

2π∫

0

dϕ

π∫

0

dθ sin(θ) Ω†
jℓm(θ, ϕ) Ωj′ℓ′m′(θ, ϕ) = δjj′ δℓℓ′ δmm′ . (B.144)

and also have the properties

j∑

m=−j

Ω†
jℓm(r̂) Ωjℓm(r̂) =

2j + 1

4π
,

j∑

m=−j

Ω†
jℓm(r̂) ~̂σΩjℓm(r̂) = 0 . (B.145)

The quantum numbers of a spinor are given by its total angular momentum j, the projection
of the angular momentum m along the z axis and the value of the orbital angular momentum
ℓ. For a given j, only ℓ = j ± 1

2 are possible values. The total spin quantum number S is a
good quantum number but corresponds to the same S = 1

2 for all nucleons. The spin projection
is not a good quantum number since single-particle states mix σ = ±1

2 . For states defined by

Eq. (B.142), parity and z-signature are given by πµ = (−1)ℓ and ζµ = −i2m+1 = (−1)m− 1
2 ,

respectively.

B.9.2 Time-reversal symmetry

The time-reversed state of ϕnℓjm is obtained by applying the operator T̂ , i.e.

(T̂ ϕ)nℓjm(~r q) =
unlj(r q)

r

∑

σ

〈ℓ (m− σ) 1
2 σ|j m〉Y m−σ

ℓ
∗
(r̂) (−2σ) |σ̄〉

=
unlj(r q)

r

∑

σ

(−1)ℓ+ 1
2
−j (−1)σ− 1

2 (−1)−m−σ

× 〈ℓ (−m− σ) 1
2 σ|j (−m)〉Y −m−σ

ℓ (r̂) |σ〉
=(−1)ℓ−j−m ϕnℓj−m(~r q) , (B.146)
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where the relationships

Y mℓ

ℓ
∗(r̂) =(−1)mℓ Y −mℓ

ℓ (r̂) , (B.147a)

2σ =(−1)σ− 1
2 , (B.147b)

〈ℓmℓ
1
2 σ̄|j m〉 =(−1)ℓ+ 1

2
−j 〈ℓ (−mℓ)

1
2 σ|j (−m)〉 , (B.147c)

have been used. Thus, the basis is closed with respect to the action of T̂ . We obtain in the
present case that µ̃ ≡ nℓj(−m)q and ηµ ≡ (−1)ℓ−j−m = (−1)ℓ−j− 1

2 ζµ. This relates to the
fact that, in a time-independent calculation, a system that sustains a self-consistent spherical
symmetry is necessarily time-reversal invariant.

The quantum number ζµ is the one used to differentiate between the two halves of the basis
(ζµ > 0 and ζµ < 0). The real number ηµ is the phase connecting a state with a time-reversed
one of opposite signature when the system is time-reversal invariant. Here are typical values of
ηµ and ζµ for a selection of spherical shells

p3/2 j=3/2 l=1 d3/2 j=3/2 l=2

m ζµ ηµ — m ζµ ηµ

+ 3/2 - - + 3/2 - +

+ 1/2 + + + 1/2 + -

- 1/2 - - - 1/2 - +

- 3/2 + + - 3/2 + -

which shows that ηµ has opposite signs for states belonging to two different halves of the basis
but that it is not necessarily equal to ζµ.

B.9.3 Canonical basis

The canonical states φnℓjm verify all the properties discussed above. Note that the principal
quantum number n does not necessarily denote the number of nodes in the canonical wave
function. This property is due to the fact the Dq transformation amounts to mixing states
originating from major shells characterized by different number of nodes in order to make the
canonical states localized in space.

Because of spherical symmetry, BCS-like occupation numbers are independent on the magnetic
quantum number m. As already discussed, the time-reversal invariance of the system allows us
to order each conjugated pair (µ, µ̃) according to the number ηµ rather than ζµ. In the end, the
2× 2 blocks read as

Ūq[κ] ≡



Ūnℓjq[κ]

mm 0

0 Ūnℓjq[κ]
(−m)(−m)


 = uq

nℓj


1 0

0 1


 , (B.148a)

V̄q[κ] ≡




0 V̄nℓjq[κ]
m(−m)

V̄nℓjq[κ]
(−m)m 0


 = (−1)ℓ−j−m vq

nℓj


 0 1

−1 0


 , (B.148b)
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and in the same way,

Ūq[ρ̃] =uq
nℓj


1 0

0 1


 , (B.149a)

V̄q[ρ̃] =vq
nℓj


1 0

0 1


 , (B.149b)

while the non-zero matrix elements of the density matrices are

ρnℓjq
mm = + ρnℓjq

(−m)(−m) = vq 2
nℓj , (B.150a)

κnℓjq
m(−m) =− κnℓjq

(−m)m = (−1)ℓ−j−m uq
nℓj v

q
nℓj , (B.150b)

ρ̃nℓjq
mm = + ρ̃nℓjq

(−m)(−m) = uq
nℓj v

q
nℓj . (B.150c)

Using the previous expressions, the scalar local densities are obtained from Eqs. (B.122b,B.122d)
as

ρq(~r ) =
∑

nℓj

2j + 1

4π

u2
nℓj(rq)

r2
vq 2
nℓj , (B.151a)

ρ̃q(~r ) =
∑

nℓj

2j + 1

4π

u2
nℓj(rq)

r2
uq

nℓj v
q
nℓj , (B.151b)

and are manifestly spherically symmetric.

B.9.4 Quasiparticle basis

Due to spherical symmetry, the traditional and Russian quasiparticle wave functions are also
characterized by the quantum numbers (ℓjm). The connection between the canonical and
traditional quasiparticle wave functions is provided by Eq. (B.135) with the third part Cq of the
Bogoliubov transformation which can only mix states with different principal quantum numbers
but same (ℓjm), i.e. Cq

nℓjm,n′ℓ′j′m′ ≡ Cℓjq
nn′δjj′ δℓℓ′ δmm′ . Starting from canonical states from

Eq. (B.142) and using Eq. (B.135), one finds traditional quasiparticle wave functions of the form


 U

nℓjq[κ]
m (~r σ q)

Vnℓjq[κ]
m (~r σ q)


 ≡

∑

n′

Cℓjq
n′n

un′ℓj(rq)

r

∑

mℓ

Y mℓ

ℓ (r̂)


 uq

n′ℓj 〈ℓmℓ
1
2 σ|j m〉

2σ̄ vq
n′ℓj 〈ℓmℓ

1
2 σ̄|j m〉


 , (B.152)

whereas Eq. (B.95) allows one to recover the quasiparticle wave functions in the Russian
representation as


 U

nℓjq[ρ̃]
m (~r σ q)

Vnℓjq[ρ̃]
m (~r σ q)


 ≡

∑

n′

Cℓjq
n′n

un′ℓj(rq)

r

∑

mℓ

Y mℓ

ℓ (r̂)


 uq

n′ℓj 〈ℓmℓ
1
2 σ|j m〉

−vq
n′ℓj 〈ℓmℓ

1
2 σ|j m〉


 . (B.153)
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The latter relationships prove that the upper and lower components of the quasiparticle wave

functions are indeed eigenstates of (~̂L 2, ~̂J 2, Ĵz) with eigenvalues (ljm) and can be written as

Unℓjq[κ]
m (~r q) ≡

Uq
nℓj(r q)

r

∑

mℓσ

Y ml

l (r̂) 〈ℓmℓ
1
2 σ|j m〉 |σ〉 , (B.154a)

Vnℓjq[κ]
m (~r q) ≡

Vq
nℓj(r q)

r

∑

mℓσ

Y ml

l (r̂) 2σ 〈ℓmℓ
1
2 σ̄|j m〉 |σ〉 , (B.154b)

Unℓjq[ρ̃]
m (~r q) ≡

Uq
nℓj(r q)

r

∑

mℓσ

Y ml

l (r̂) 〈ℓmℓ
1
2 σ|j m〉 |σ〉 , (B.154c)

Vnℓjq[ρ̃]
m (~r q) ≡

Vq
nℓj(r q)

r

∑

mℓσ

Y ml

l (r̂) 〈ℓmℓ
1
2 σ|j m〉 |σ〉 , (B.154d)

where the radial parts (Uq
nℓj(r q),V

q
nℓj(r q)) are independent of the representation (traditional or

Russian) and are connected to canonical states through


 U

q
nℓj(r q)

Vq
nℓj(r q)


 ≡

∑

n′


 +uq

n′ℓj

−vq
n′ℓj


un′ℓj(rq)C

ℓjq
n′n . (B.155)

It it interesting to note, although this should not come as a surprise, that the only difference
between traditional and Russian quasiparticles in spherical symmetry relates to the angular⊗spin
part of the lower component. Basically, to produce a given magnetic quantum number m, the
spin-up (-down) component of Vq[ρ̃] couples to the orbital angular momentum as if it were a
spin-down (-up) component.

B.9.5 Local densities

Starting from Eqs. (B.140,B.141) and using the expressions of quasiparticle wave functions from
above, or starting from Eqs. (B.151a,B.151b) and using the (inverse of the) transformation from
Eq. (B.155), one finds

ρq(~r ) =
∑

nℓj

2j + 1

4π

Vq
nℓj

2
(rq)

r2
, (B.156a)

ρ̃q(~r ) =−
∑

nℓj

2j + 1

4π

Uq
nℓj(rq)V

q
nℓj(rq)

r2
. (B.156b)

More elaborate quasi-local and fully non-local densities can be easily expressed too, e.g. first in
the canonical basis and transformed if necessary into the quasiparticle basis using Eq. (B.155).

B.9.6 HFB equations

In spherical symmetry, HFB equations can be solved independently within each (lj) block. For a
non-local EDF, e.g. Gogny EDF, they do not simplify significantly in coordinate space, although
one may take advantage of symmetries of non-local densities at play to perform a partial wave
expansion of the fields. For a quasi-local EDF, e.g. Skyrme EDF, HFB equations in coordinate
space become purely radial.
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B.10 Infinite nuclear matter

B.10.1 Basic properties

Due to the translational invariance of infinite nuclear matter, the spatial part of the single-particle
wave functions of interest is known a priori and take the form of a plane wave. In addition,
nucleons are considered to have a good spin projection. The latter property leads to great
simplification but can also leads to confusion if one does not use very explicit notations. Thus,
let us use explicit notations in the first two parts of the section. A given state is going to be
characterized by the set of quantum numbers µ ≡ ~kµσµqµ, where the index µ underlines that
those denote the quantum numbers of the state and not the components of the spin-isospin spinor.
In this way, basis kets are given by |µ〉 ≡ |~kµσµqµ〉, whereas their components are obtained as

〈~r σ q|~kµσµqµ〉 ≡ ϕ~kµσµqµ
(~r σ q) = ei

~kµ·~r δσσµ δqqµ . (B.157)

B.10.2 Time-reversal symmetry

Starting from |µ〉 = |~kµσµqµ〉, we calculate the component of its time-reversed partner according
to

(T̂ ϕ)µ(~r σ q) = 〈~r σ q|
(
T̂ |µ〉 = 2σ 〈~r σ̄ q|~kµσµqµ〉∗ = 2σ̄µ e

−i~kµ·~r δσσ̄µ δqqµ = 2σ̄µ ϕ(−~kµ)(−σµ)qµ
(~r σ q) ,

(B.158)

which demonstrates that the basis is closed with respect to the action of T̂ . The corresponding
conjugated state in the basis is µ̃ ≡ (−~kµ)(−σµ)qµ and η~kµσµqµ

= 2σ̄µ. This relates to the fact

that, in a time-independent calculation, a system that sustains a self-consistent translational
symmetry is necessarily time-reversal invariant. When it is not misleading, we drop the index µ in
the following and sometimes confuse quantum numbers of a state with the ones of its spin-isospin
components.

One can see easily that |~kσq〉 are not eigenstates of the z-signature operator. Such a quantum
number is however unnecessary in the present case as the pairing is restricted from the outset to
time-reversed states(9). Thus, only the phase η~k σ q

is of importance.

B.10.3 Canonical basis

Canonical states φ~kσq
verify all properties discussed above. In the present case, the pairing

treatment reduces to a BCS approximation since the Bogoliubov transformation is known a priori.
Because of translational symmetry, BCS occupation numbers are independent of the direction
of ~k. Because of time-reversal invariance, they also are independent of σ. In the end, the 2× 2
blocks of the special Bogoliubov transformations read in the canonical basis as

Ūq[κ] ≡



Ūq[κ]

~kσ,~kσ
0

0 Ūq[κ]

−~k−σ,−~k−σ


 = uq

k


1 0

0 1


 , (B.159a)

V̄q[κ] ≡




0 V̄q[κ]
~kσ,−~k−σ

V̄q[κ]

−~k−σ,~kσ
0


 = 2σ̄ vq

k


 0 1

−1 0


 , (B.159b)

9The fact that the pairing only couples ϕ~k
and ϕ−~k

is dictated by translational symmetry and the fact that we
are considering static uniform matter. However, nothing fundamental, except for the pairing interaction that we
have in mind, prevents nucleons to pair in the spin-triplet state.
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and

Ūq[ρ̃] = uq
k


1 0

0 1


 , V̄q[ρ̃] = vq

k


1 0

0 1


 , (B.160)

while non-zero matrix elements of the density matrices are

ρq
~kσ,~kσ

= + ρq

−~k−σ,−~k−σ
= vq 2

k , (B.161a)

κq
~kσ,−~k−σ

=− κq

−~k−σ,~kσ
= 2σ̄ uq

k v
q
k , (B.161b)

ρ̃q
~kσ,~kσ

= + ρ̃q

−~k−σ,−~k−σ
= uq

k v
q
k . (B.161c)

Using the previous expressions, the non-local scalar densities are obtained from Eqs. (B.122a,B.122c)
as(10)

ρq(~r, ~r
′) =2

∫
d~k

(2π)3
ei

~k·(~r−~r ′) vq 2
k , (B.162a)

ρ̃q(~r, ~r
′) =2

∫
d~k

(2π)3
ei

~k·(~r−~r ′) uq
k v

q
k , (B.162b)

and naturally lead to constant local densities of the form

ρq(~r ) =2

∫
d~k

(2π)3
vq 2
k , (B.163a)

ρ̃q(~r ) =2

∫
d~k

(2π)3
uq

k v
q
k . (B.163b)

Note that the integration over the angle can be trivially done in the four equations above thanks
to the independence of uq

k and vq
k on the direction of ~k.

B.10.4 Quasiparticle basis

Since we are presently dealing with a BCS approximation, it is easy to find the results ”directly”
without relying on the general HFB formalism. However, our goal is precisely to recover ”intuitive”
results from the most general formalism.

Due to symmetries, traditional and Russian quasiparticle wave functions are also character-
ized by the quantum numbers ~kσq in nuclear matter. The connection between the canonical
and traditional quasiparticle wave functions is provided by Eq. (B.135) where the third part
Cq of the Bogoliubov transformation is trivial as one deals with a BCS approximation, i.e.
Cq

~kσq,~k ′σq
≡ δ(~k − ~k ′) δσσ′ δqq′ . One thus finds traditional quasiparticle wave functions of the form



Uq[κ]

~kµσµqµ
(~r σ q)

Vq[κ]
~kµσµqµ

(~r σ q)


 ≡ ei~kµ·~r


 uq

kµ
δσσµ

2σ̄ vq
kµ
δσσ̄µ


 δqqµ , (B.164)

whereas Eq. (B.95) allows to recover quasiparticle wave functions in the Russian representation
as 


Uq[ρ̃]

~kµσµqµ
(~r σ q)

Vq[ρ̃]
~kµσµqµ

(~r σ q)


 ≡ ei~kµ·~r


 uq

kµ

−vq
kµ


 δσσµ δqqµ . (B.165)

10It is interesting to note a subtlety relative to the use of Eqs. (B.122a,B.122d) in the present case. One the one
hand, the sum over σ that appears from the scalar product of the spinors φ†

µ(~r ′ q) and φµ(~r q) provides only one
term in spin space since only one component is zero. On the other hand, the sum over µ contains a sum over σµ

which provides the factor of 2 in Eqs. (B.162a,B.163b)
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The latter relationships prove that upper and lower components of quasiparticle wave functions

are indeed eigenstates of ~̂k with eigenvalues ~kµ and can be written as

Uq[κ]
~kµσµqµ

(~r q) ≡Uq
~kµ

(~r q) δσσµ δqqµ , (B.166a)

Vq[κ]
~kµσµqµ

(~r q) ≡Vq
~kµ

(~r q) 2σ δσσ̄µ δqqµ , (B.166b)

Uq[ρ̃]
~kµσµqµ

(~r q) ≡Uq
~kµ

(~r q) δσσµ δqqµ , (B.166c)

Vq[ρ̃]
~kµσµqµ

(~r q) ≡Vq
~kµ

(~r q) δσσµ δqqµ , (B.166d)

where the spatial parts (Uq
~kµ

(~r q),Vq
~kµ

(~r q)) are independent of the representation (traditional or

Russian) and are connected to canonical states through



Uq

~kµ
(~r q)

Vq
~kµ

(~r q)


 ≡ ei~kµ·~r


 +uq

kµ

−vq
kµ


 . (B.167)

In the present case, the only difference between traditional and Russian quasiparticles in
INM relates to the spin part of the lower component. In particular, upper and lower components
of traditional quasiparticles are eigenstates of σ̂z with opposite eigenvalues.

B.10.5 Densities

Although the spatial part of all wave functions of interest is known explicitly in the present case,
one can re-express non-local densities given by Eqs. (B.162a,B.162b) in terms of the spatial
parts of the quasiparticle wave functions, that is

ρq(~r, ~r
′) = 2

∫
d~k

(2π)3
Vq

~k
(~r q)Vq

~k

∗
(~r ′ q) , (B.168a)

ρ̃q(~r, ~r
′) =− 2

∫
d~k

(2π)3
Uq

~k
(~r q)Vq

~k

∗
(~r ′ q) , (B.168b)

B.10.6 Gap equation

We are now interested in obtaining the (neutron-neutron or proton-proton) gap equation in INM
from a pairing vertex vertex vκκ which is restricted to the spin-singlet/isospin-triplet channel
(see Sec. B.11). More specifically, one starts from the general gap equation given in coordinate
space by Eq. (B.187) as

∆q(~r1 σ1, ~r2 σ2) = 2σ2 δσ̄1σ2

1

2

∫
d~r3 d~r4 v

κκ
r (~r1, ~r2;~r3, ~r4) ρ̃

q(~r3, ~r4) . (B.169)

and add the fact that the interaction is Galilean invariant, i.e.

vκκ
r (~r1, ~r2, ~r3, ~r4) ≡ vκκ

r (~r, ~r ′) δ(~R− ~r ′) , (B.170)

where

~r ≡ ~r1 − ~r2 , ~R ≡ ~r1 + ~r2
2

, (B.171a)

~r ′ ≡ ~r3 − ~r4 , ~R ′ ≡ ~r3 + ~r4
2

. (B.171b)
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One starts without assessing a priori the states coupled by the pairing tensor(11). Thus, one
starts with two canonical states µ ≡ ~kµ σµqµ and µ′ ≡ ~kµ′ σµ′qµ′ such that qµ = qµ′ = q. Using
Eqs. (B.83,B.162b), one obtains

∆q
µµ′ =

∫
d~r3 d~r4

∑

σ1σ2

φ∗µ(~r1σ1q)φ
∗
µ′(~r2σ2q) 2σ2 δσ2σ̄1

1

2

∫
d~r ′ vκκ

r (~r, ~r ′) ρ̃q(~r ′)

=

∫
d~R d~r e−i ~R·(~kµ+~kµ′ )/2 e−i ~r·(~kµ−~kµ′ )/2 2σ̄µ δσµ′ σ̄µ

1

2

∫
d~r ′ vκκ

r (~r, ~r ′) ρ̃q(~r ′)

=2σ̄µ δσµ′ σ̄µ δ−~kµ′~kµ

∫
d~k

(2π)3
uq

k v
q
k

∫
d~r ′ e−i~kµ·~r vκκ

r (~r, ~r ′) ei
~k·~r ′

, (B.172)

which actually proves that the gap field only has non-zero matrix elements between µ and µ′ = µ̃
which are characterized by a total momentum zero ~kµ + ~kµ̃ = ~0. As a result, the gap field
only depends on one momentum and is thus isotropic. In order to remove the irrelevant spin
dependence of the pairing gap, one usually isolate the (positive) spatial part ∆q

k of the pairing
matrix elements through ∆q

~kσ~k ′σ′
≡ 2σ∆q

k δ(−~k ′)~k
δσ′σ̄ with(12)

∆q
k = −

∫
d~k

(2π)3
vκκ
r (~k,~k ′)uq

k v
q
k , (B.173)

where the center-of-mass part of two-body matrix elements of the effective pairing vertex has
been introduced in moment space through

vκκ
r (~k,~k ′) ≡

∫
d~r ′ e−i~kµ·~r vκκ

r (~r, ~r ′) ei
~k·~r ′

. (B.174)

A last point needs to be addressed in order to reach the final expression of the gap equation. As
discussed in Sec. B.7.3, explicit BCS-like expressions of (uq 2

µ , vq 2
µ ) leaves the sign of vq

µ undecided.
Presently, we fix it by requiring that the gap ∆q

k defined above is positive for an attractive
interaction. This leads to the final expression of the BCS gap equation in INM

∆q
k = −

∫
d~k

(2π)3
vκκ
r (~k,~k ′)

∆q
k′√

(ǫqk′ − λq)2 + ∆q 2
k′

, (B.175)

where ǫqk′ is the (spin-independent) eigenvalue of hq. Note that if the pairing vertex is reduced to
the s-wave as it is often done due to the properties of the bare nucleon-nucleon interaction, the
integration over the angles can be trivially done.

B.11 Application to the bilinear EDF

For the sake of illustration, one can consider a simple bilinear functional of the form

E [ρ, κ, κ∗] =
∑

ij

∑

q

tqij ρ
q
ji +

1

2

∑

ijkl

∑

qq′

v̄ρρ
ikjl ρ

q
ji ρ

q′

lk +
1

4

∑

ijkl

∑

q

v̄κκ
ikjl κ

q
ik

∗
κq

jl , (B.176)

where tqij denote the matrix element of the one-body kinetic operator whereas v̄ρρ
ikjl and v̄κκ

ikjl

represent (potentially) (right-)antisymmetrized and non-normalized matrix elements. With

11In full HFB, the matrix ∆q is indeed full in the canonical basis even though the pairing tensor is canonical.
12The pairing gap relates to the negative pair field through ∆q

k = −h̃q
k.
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a simple bilinear EDF, v̄ρρ
ikjl and v̄κκ

ikjl represent potentially (right-)antisymmetrized and non-

normalized matrix elements(13) of two-body effective vertices in particle-hole and particle-particle
channels, defined as

v̄
ρρ/κκ
ikjl = 〈1 : i, 2 : j|vρρ/κκ(1− Pσ Pσ P~r)|1 : k, 2 : l〉 = 〈1 : i, 2 : j|vρρ/κκ ‖ j l≫ . (B.177)

Using symmetries of non-antisymmetrized matrix elements of the effective vertices under the
exchange of two indistinguishable fermions, one can write for isospin q

〈i j|vρρ/κκ|k l〉 =

∫
d~r1234

∑

σ1234

〈i j|1 : ~r1σ1q, 2 : ~r2σ2q〉

× 〈1 : ~r1σ1q, 2 : ~r2σ2q|vρρ/κκ|1 : ~r3σ3q, 2 : ~r4σ4q〉 〈1 : ~r3σ3q, 2 : ~r4σ4q|k l〉

=
1

2

∫
d~r1234

∑

σ1234

[
ϕ∗

i (~r1 σ1 q)ϕ
∗
j (~r2 σ2 q)− ϕ∗

j (~r1 σ1 q)ϕ
∗
i (~r2 σ2 q)

]

× vρρ/κκ(~r1σ1q, ~r2σ2q;~r3σ3q, ~r4σ4q)ϕk(~r3 σ3 q)ϕl(~r4 σ4 q)

− 1

2

∫
d~r1234

∑

σ1234

[
ϕ∗

i (~r1 σ1 q)ϕ
∗
j (~r2 σ2 q)− ϕ∗

j (~r1 σ1 q)ϕ
∗
i (~r2 σ2 q)

]

× vρρ/κκ(~r1σ1q, ~r2σ2q;~r3σ3q, ~r4σ4q)ϕl(~r3 σ3 q)ϕk(~r4 σ4 q)

=
1

2

∫
d~r1234

∑

σ1234

[
ϕ∗

i (~r1 σ1 q)ϕ
∗
j (~r2 σ2 q)− ϕ∗

j (~r1 σ1 q)ϕ
∗
i (~r2 σ2 q)

]

× vρρ/κκ(~r1σ1q, ~r2σ2q;~r3σ3q, ~r4σ4q)ϕk(~r3 σ3 q)ϕl(~r4 σ4 q)

− 1

2

∫
d~r1234

∑

σ1234

[
ϕ∗

i (~r1 σ1 q)ϕ
∗
j (~r2 σ2 q)− ϕ∗

j (~r1 σ1 q)ϕ
∗
i (~r2 σ2 q)

]

× vρρ/κκ(~r1σ1q, ~r2σ2q;~r4σ4q, ~r3σ3q)ϕl(~r4 σ4 q)ϕk(~r3 σ3 q)

=
1

2

∫
d~r1234

∑

σ1234

[
ϕ∗

i (~r1 σ1 q)ϕ
∗
j (~r2 σ2 q)− ϕ∗

j (~r1 σ1 q)ϕ
∗
i (~r2 σ2 q)

]

× vρρ/κκ(~r1σ1q, ~r2σ2q;~r3σ3q, ~r4σ4q)ϕk(~r3 σ3 q)ϕl(~r4 σ4 q)

− 1

2

∫
d~r1234

∑

σ1234

[
ϕ∗

i (~r1 σ1 q)ϕ
∗
j (~r2 σ2 q)− ϕ∗

j (~r1 σ1 q)ϕ
∗
i (~r2 σ2 q)

]

× vρρ/κκ(~r2σ2q, ~r1σ1q;~r3σ3q, ~r4σ4q)ϕl(~r3 σ3 q)ϕk(~r4 σ4 q)

=
1

2

∫
d~r1234

∑

σ1234

[
ϕ∗

i (~r1 σ1 q)ϕ
∗
j (~r2 σ2 q)− ϕ∗

j (~r1 σ1 q)ϕ
∗
i (~r2 σ2 q)

]

× vρρ/κκ(~r1σ1q, ~r2σ2q;~r3σ3q, ~r4σ4q)ϕk(~r3 σ3 q)ϕl(~r4 σ4 q)

− 1

2

∫
d~r1234

∑

σ1234

[
ϕ∗

i (~r2 σ2 q)ϕ
∗
j (~r1 σ1 q)− ϕ∗

j (~r2 σ2 q)ϕ
∗
i (~r1 σ1 q)

]

× vρρ/κκ(~r1σ1q, ~r2σ2q;~r3σ3q, ~r4σ4q)ϕl(~r3 σ3 q)ϕk(~r4 σ4 q)

= 2× 1

2

∫
d~r1234

∑

σ1234

[
ϕ∗

i (~r1 σ1 q)ϕ
∗
j (~r2 σ2 q)− ϕ∗

j (~r1 σ1 q)ϕ
∗
i (~r2 σ2 q)

]

× vρρ/κκ(~r1σ1q, ~r2σ2q;~r3σ3q, ~r4σ4q)ϕk(~r3 σ3 q)ϕl(~r4 σ4 q)

=
√

2 〈i j|vρρ/κκ|1 : k, 2 : l〉
=
√

2 〈1 : i, 2 : j|vρρ/κκ|k l〉 . (B.178)

13the exchange operator (1 − Pσ Pσ P~r) is not normalized.
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The latter result leads to

|i j〉 =
1− Pσ Pσ P~r√

2
|1 : i, 2 : j〉 , v̄

ρρ/κκ
ijkl = 〈1 : i, 2 : j|vρρ/κκ ‖ k l≫= 〈i j|vρρ/κκ|k l〉 .

(B.179)
The particle-particle effective nucleon-nucleon vertex vκκ is usually restricted to the spin-
singlet/isospin-triplet channel (possibly further restricted to the s-wave, i.e. to the 1S0 partial
wave). In this case

vκκ ≡ vκκ
r

∏

S=0

∏

T=1

= vκκ
r

[
1− Pσ

2

] [
1 + Pτ

2

]
, (B.180)

where vκκ
r denotes the spatial part of the vertex.

Antisymmetrized and non-normalized matrix elements of such an interaction in coordinate,
spin and isospin space read for particles with identical isospins as

v̄κκ
1234 =〈1 : ~r1σ1q, 2 : ~r2σ2q|vκκ ‖ ~r3σ3q, ~r4σ4q ≫

=〈1 : ~r1σ1q, 2 : ~r2σ2q|vκκ (1− P~r Pσ Pτ ) |1 : ~r3σ3q, 2 : ~r4σ4q〉
=〈1 : ~r1, 2 : ~r2|vκκ

r |1 : ~r3, 2 : ~r4〉 〈1 : σ1, 2 : σ2|1− Pσ|1 : σ3, 2 : σ4〉
≡vκκ

r (~r1, ~r2;~r3, ~r4)
(
δσ1σ3 δσ2σ4 − δσ1σ4 δσ3σ2

)

=vκκ
r (~r1, ~r2;~r3, ~r4) 2σ2 2σ4 δσ1σ̄2 δσ3σ̄4 , (B.181)

since fermion selection rules imply that Pτ = P~r = 1, and

∏

S=0

(1− Pσ) =
1− Pσ

2
(1− Pσ) =

2− 2Pσ

2
= 1− Pσ . (B.182)

In this case, one finds(14)

hq
ij = tqij +

1

2

∑

klq′

(
vρρ

ikjl + vρρ
kilj

)
ρq′

lk , (B.183a)

∆q
ij =

1

2

∑

kl

vκκ
ijkl κ

q
kl , (B.183b)

where the anti-symmetry of vρρ has not been used explicitly. Equivalently in coordinate space

hq(~r σ,~r ′σ′) =
δE

δρq(~r ′σ′ q, ~r σ q)

=tq(~r, ~r ′) δσσ′ +

∫
d~r1 d~r2

∑

σ1σ2

v̄ρρ(~rσq, ~r1σ1q;~r
′σ′q, ~r2σ2q) ρ(~r2 σ2 q, ~r1 σ1 q) ,

(B.184)

14In order to derive the fields, one needs to split the sums in Eq. (B.176) in terms of contractions with j ≤ i
only.
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For the gap field, we start from its matrix elements in an arbitrary basis and use the restriction
vκκ of the pairing vertex to the spin-singlet/isospin-triplet channel

∆q
ij =

1

2

∑

kl

〈1 : i, 2 : j|•vκκ• ‖ k, l≫ κq
kl

=
1

2

∫
d~r1234

∑

σ1234

∑

kl

〈1 : i, 2 : j |1 : ~r1σ1, 2 : ~r2σ2 〉

× 〈1 : ~r1σ1q, 2 : ~r2σ2q|vκκ ‖ ~r3σ3q, ~r4σ4q ≫ 〈1 : ~r3 σ3, 2 : ~r4 σ4 |1 : k, 2 : l 〉κq
kl

=
1

2

∫
d~r1234

∑

σ1σ3

∑

kl

ϕ∗
i (~r1 σ1 q)ϕ

∗
j (~r2 σ̄1 q)

× vκκ
r (~r1, ~r2;~r3, ~r4) 2σ1 2σ3 ϕk(~r3 σ3 q)ϕl(~r4 σ̄3 q)κ

q
kl

=
1

2

∫
d~r1234

[
∑

σ1

2σ1 ϕ
∗
i (~r1 σ1 q)ϕ

∗
j (~r2 σ̄1 q)

]
vκκ
r (~r1, ~r2;~r3, ~r4)

×
[
∑

σ3

2σ3

∑

kl

ϕk(~r3 σ3 q)ϕl(~r4 σ̄3 q)κ
q
kl

]

=− 1

2

∫
d~r1234 Ψq ∗

ij (~r1, ~r2) v
κκ
r (~r1, ~r2;~r3, ~r4) ρ̃

q(~r3, ~r4) , (B.185)

where the singlet part of the two-body wave function has been used

Ψq
ij(~r1, ~r2) ≡

∑

σ

2σ ϕi(~r1 σ q)ϕj(~r2 σ̄ q) . (B.186)

The previous result combined with Eq. (B.81) allows to identify the matrix elements of the
gap field in coordinate space as

∆q(~r σ,~r ′ σ′) ≡ δE
δκq ∗(~r σ q, ~r ′σ′ q)

= 2σ′ δσσ̄′
1

2

∫
d~r1 d~r2 v

κκ
r (~r, ~r ′;~r1, ~r2) ρ̃

q(~r1, ~r2) . (B.187)

On the other hand, the pair field reads in coordinate space as

h̃q(~r σ,~r ′σ′) =
δE

δρ̃(~r ′ σ′ q, ~r σ q)

=

∫
d~r1 d~r2

∑

σ1σ2

2σ1σ2 v̄
κκ(~rσq, ~r ′σ̄′q;~r1σ1q, ~r2σ̄2q) ρ̃(~r1 σ1 q, ~r2 σ2 q)

=
1

2

∫
d~r1 d~r2 δσσ′ vκκ

r (~r, ~r ′;~r1, ~r2) ρ̃
q(~r1, ~r2) . (B.188)
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Appendix C

Many-body wave function and
one-body density

Abstract: The present chapter contains detailed notes concerning properties of the many-body
wave function and its possible decomposition in terms of single-particle states, in the case of
self-bound systems and quantum systems bound by a central potential. Internal overlap functions
are properly introduced in both cases, as they lead to the definition of the internal one-body
density. The latter is the object of interest for self-bound EDF systems.
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C.1 Spectroscopic amplitudes without center-of-mass correla-
tions

At first center-of-mass degrees of freedom are neglected, leading to a fixed-center framework.

C.1.1 Basis sets for the N-body problem

If spin and isospin degrees of freedom are suppressed(1), and the Coulomb potential is neglected,
the exact non-relativistic Hamiltonian for a N -body system reads

ĤN (~r1 . . . ~rN ) =

N∑

i=1

~̂pi
2

2m
+

N∑

i,j=1
i<j

v̂s(rij) , (C.1)

where rij = |~ri − ~rj | and vs is the bare nucleon-nucleon interaction. Without treating the
center-of-mass motion, one can consider the equivalent Hamiltonian for the (N − 1)-body system,
i.e.

ĤN−1(~r1 . . . ~rN ) =
N−1∑

i=1

~̂pi
2

2m
+

N−1∑

i,j=1
i<j

v̂s(rij) , (C.2)

Fully antisymmetrized eigenstates of ĤN−1 are noted ΨN−1
i (~r1 . . . ~rN−1) and are associated to

the energy EN−1
i , EN−1

0 being the ground-state energy. Including bound and continuum states,
{ΨN−1

i } forms a complete set in the space EN−1
A of antisymmetric (N − 1)-body wave functions.

Orthonormalization of this set reads
∫

d~r1 . . .d~rN−1 ΨN−1
i

∗
(~r1 . . . ~rN−1) ΨN−1

j (~r1 . . . ~rN−1) = δij , (C.3)

and its completeness in the space of antisymmetric (N − 1)-body wave functions, for any
ψN−1 ∈ EN−1

A , is expressed as

∫∑

i

∫
d~r ′

1 . . .d~r
′
N−1 ΨN−1

i (~r1 . . . ~rN−1) ΨN−1
i

∗
(~r ′

1 . . . ~r
′
N−1)

× ψN−1(~r ′
1 . . . ~r

′
N−1) = ψN−1(~r1 . . . ~rN−1) , (C.4)

1All spin and isospin dependences of the N -body wave function will be dropped here, and
HN (~r1 . . . ~rN ) ≡ HN (~r1σ1q1 . . . ~rNσNqN ).
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where

∫∑

i

stands for a discrete sum over bound states and an integral over continuum states. The

set {ΨN−1
i } can be used as a basis for the space EN

A of N -body antisymmetrized wave functions
by defining(2) [10]

A
ΨN

i,~r(~r1 . . . ~rN ) = A1..N ΨN
i,~r(~r1 . . . ~rN ) , (C.5)

where
ΨN

i,~r(~r1 . . . ~rN ) = ΨN−1
i (~r1 . . . ~rN−1) δ(~r − ~rN ) , (C.6)

and A1..N antisymmetrizes between the N coordinates ~ri appearing in Eq. (C.5), i.e.

A1..N ΨN
i,~r(~r1 . . . ~rN ) =

√
N

N !

∫
d~r ′

1 . . .d~r
′
N det

i,j=1..N

[
δ(~ri − ~r ′

j) ΨN
i,~r(~r

′
1 . . . ~r

′
N )
]
. (C.7)

This ”intercluster” antisymmetrization operator is normalized so as to satisfy

A2
1..N =

√
NA1..N . (C.8)

C.1.1.1 Properties of the set {ΨN
i,~r}

Wave functions {ΨN
i,~r} span a space EN which is a direct sum of the space EN

A containing totally

antisymmetric N -body states, and EN
M containing mixed-symmetric N -body states. The latter

are antisymmetric in their first N −1 coordinates and symmetric with any exchange involving the
N th coordinate(3). Any wave function ψN in EN can be written as the sum of an antisymmetric
and a mixed-symmetric component, i.e.

ψN (~r1 . . . ~rN ) ≡ψN
A (~r1 . . . ~rN ) + ψN

M(~r1 . . . ~rN ) (C.9a)

≡A1..N√
N

ψN (~r1 . . . ~rN ) +

(
1− A1..N√

N

)
ψN (~r1 . . . ~rN ) . (C.9b)

Since

(
1− A1..N√

N

)(A1..N√
N

)
= 0, the two subspaces EN

M and EN
A are orthogonal to each other,

i.e. ∫
d~r1 . . .d~rN ΨN

A
∗
(~r1 . . . ~rN ) ΨN

M(~r1 . . . ~rN ) = 0 . (C.10)

Furthermore, a symmetric operator ÔS cannot connect those subspaces, that is
∫

d~r1 . . .d~rN ΨN
A

∗
(~r1 . . . ~rN ) ÔS ΨN

M(~r1 . . . ~rN ) = 0 . (C.11)

This is in particular the case for the Hamiltonian of the N -body system ÔS = ĤN . This may
have important consequences, as it will be shown later on.

The set {ΨN
i,~r} is orthonormal with respect to both i and ~r, using Eq. (C.3)

∫
d~r1 . . .d~rN ΨN

i,~r
∗
(~r1 . . . ~rN ) ΨN

j,~r ′(~r1 . . . ~rN ) = δijδ(~r − ~r ′) , (C.12)

and completeness reads for any state ψN ∈ EN as

∫
d~r ′

1 . . .d~r
′
N

(∫∑

i

∫
d~r ΨN

i,~r(~r1 . . . ~rN ) ΨN
i,~r

∗
(~r ′

1 . . . ~r
′
N )

)
ψN (~r ′

1 . . . ~r
′
N ) = ψN (~r1 . . . ~rN ) .

(C.13)

2This is equivalent to |
A

ΨN
i,~r〉 = â†

~r|Ψ
N−1
i 〉, where â†

~r creates a nucleon at position ~r.
3For N = 2, EN

M is empty.
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C.1.1.2 Properties of the set {AΨN
i,~r}

The set {
A

ΨN
i,~r} spans the space of antisymmetrized N -body wave functions EN

A . However, these
states are no longer orthonormal, since

∫
d~r1 . . .d~rN A

ΨN
i,~r

∗
(~r1 . . . ~rN )

A
ΨN

j,~r ′(~r1 . . . ~rN ) ≡ N (i~r, j~r ′) , (C.14)

where N (i~r, j~r ′) is the kernel of the norm operator N̂ (4). Basis states
A
ΨN

i,~r are not linearly
independent, and related through the norm operator

A
ΨN

i,~r(~r1 . . . ~rN ) =
1

N

∫∑

j

∫
d~r ′N (i~r, j~r ′)

A
ΨN

j,~r ′(~r1 . . . ~rN ) . (C.17)

The basis {
A

ΨN
i,~r} is thus overcomplete and spans EN

A exactly N times(5), which explains the 1
N

factor in Eq. (C.17). Completeness conditions for the set {
A

ΨN
i,~r} become

• for ψN ∈ EN
A

∫
d~r ′

1 . . .d~r
′
N

(
1

N

∫∑

i

∫
d~r

A
ΨN

i,~r(~r1 . . . ~rN )
A

ΨN
i,~r

∗
(~r ′

1 . . . ~r
′
N )

)
ψN (~r ′

1 . . . ~r
′
N ) = ψN (~r1 . . . ~rN ) ,

(C.18)

• for ψN ∈ EN
M

∫
d~r ′

1 . . .d~r
′
N

(
1

N

∫∑

i

∫
d~r

A
ΨN

i,~r(~r1 . . . ~rN )
A

ΨN
i,~r

∗
(~r ′

1 . . . ~r
′
N )

)
ψN (~r ′

1 . . . ~r
′
N ) = 0 . (C.19)

This shows that the operator

P̂A =
1

N

∫∑

i

∫
d~r |

A
ΨN

i,~r〉〈AΨN
i,~r| , (C.20)

is a projection operator which projects any function in EN onto its fully antisymmetrized
component(6).

C.1.2 Decomposition of the N-body wave function

Using the basis sets previously defined, any antisymmetric wave function ψN
ν can be expanded in

several ways. First, using the basis set {ΨN
i,~r}

ψN
ν (~r1 . . . ~rN ) =

1√
N

∫∑

i

∫
d~rΨN

i,~r(~r1 . . . ~rN )ϕN
νi(~r ) . (C.21)

4This is the equivalent of a generating function for a series

G(an, x) =

+∞
X

n=0

an xn , (C.15)

or the integrand k(x, x′) that defines an integral transform through

(Tf)(x) =

Z

X

dx′ k(x, x′) f(x′) . (C.16)

The latter applies in the case when T is an operator.
5This is easily seen when the initial basis {ΨN

i,~r} is composed of Slater determinants.
6P̂2

A = P̂A is proven using Eq. (C.17).
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Applying the antisymmetrization operator A1..N to each side of Eq. (C.21) allows to decompose
ψN

ν in terms of the basis set {
A

ΨN
i,~r}, that is

ψN
ν (~r1 . . . ~rN ) =

1

N

∫∑

i

∫
d~r

A
ΨN

i,~r(~r1 . . . ~rN )ϕN
νi(~r ) , (C.22)

where the following identity is used:

A1..N√
N

ψN
ν (~r1 . . . ~rN ) = ψN

ν (~r1 . . . ~rN ) , (C.23)

as ψN is fully antisymmetric. Finally, the bare definition of ΨN
i,~r (Eq. (C.6)) put into the same

equation (Eq. (C.21)) provides with a decomposition in term of the basis set {ΨN−1
i } that reads

ψN
ν (~r1 . . . ~rN ) =

1√
N

∫∑

i

ΨN−1
i (~r1 . . . ~rN−1)ϕ

N
νi(~rN ) . (C.24)

In those three equations, the expansion coefficients ϕN
νi, also called overlap functions, are

identical and expressed in different ways, i.e.

ϕN
νi(~r ) =

√
N

∫
d~r1 . . .d~rN ΨN

i,~r
∗
(~r1 . . . ~rN )ψN

ν (~r1 . . . ~rN ) =
√
N〈ΨN

i,~r|ψN
ν 〉 ,

(C.25a)

=

∫
d~r1 . . .d~rN A

ΨN
i,~r

∗
(~r1 . . . ~rN )ψN

ν (~r1 . . . ~rN ) = 〈
A

ΨN
i,~r|ψN

ν 〉 , (C.25b)

=
√
N

∫
d~r1 . . .d~rN−1Ψ

N−1
i

∗
(~r1 . . . ~rN−1)ψ

N
ν (~r1 . . . ~rN−1, ~r ) = 〈ΨN−1

i |â~r|ψN
ν 〉 ,

(C.25c)

from Eq. (C.21), Eq. (C.23), and Eq. (C.24), respectively. The expansion is explicitly antisym-
metric in Eq. (C.22), while in Eqs. (C.21,C.24) the antisymmetry is carried by the expansion

coefficients. In those cases only the whole sum

∫∑

i

is antisymmetric, whereas each individual

term is not.

C.1.3 Spectroscopic quantities

C.1.3.1 Spectroscopic factors

When ψN
ν is a bound eigenstate ΨN

ν of the N -body Hamiltonian, the expansion coefficients ϕN
νi(~r )

are called spectroscopic amplitudes, and their norms

Sνi =

∫
d~r |ϕN

νi(~r )|2 , (C.26)

are called spectroscopic factors. Squaring Eq. (C.21), integrating over the coordinates and
using Eq. (C.13) gives the spectroscopic factor sum rule [11]

∑

i

∫
d~r |ϕN

νi(~r )|2 = N . (C.27)

As a property, spectroscopic amplitudes completely determine the wave function ΨN
ν . Their

spatial dependence is related to properties of single-particle states of the N -body system, and
their norm provides a measure of the structural similarity between the nth excited (N − 1)-body
state and a cluster of N − 1 particles taken from the N -body initial state.
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C.1.3.2 Upper bound for spectroscopic factors

One defines normalized spectroscopic amplitudes as

ϕN
νi(~r ) =

1√
Sνi

ϕN
νi(~r ) , (C.28)

where √
Sνi =

∫
d~r ϕN

νi
∗
(~r )ϕN

νi(~r ) = 〈A1..N [ϕN
νi ΨN−1

i ]|ΨN
ν 〉 . (C.29)

One can then introduce the projector

P̂νi =
|A1..N [ϕN

νi ΨN−1
i ]〉〈A1..N [ϕN

νi ΨN−1
i ]|

〈A1..N [ϕN
νi ΨN−1

i ]|A1..N [ϕN
νi ΨN−1

i ]〉
≡ |A1..N [ϕN

νi ΨN−1
i ]〉〈A1..N [ϕN

νi ΨN−1
i ]|

Nνi
. (C.30)

Any antisymmetric state |ΨN
ν 〉 can then be decomposed using P̂νi into components parallel and

orthogonal to |A1..N [ϕN
νi ΨN−1

i ]〉, and reads

|ΨN
ν 〉 = P̂νi|ΨN

ν 〉+ (1− P̂νi)|ΨN
ν 〉 ≡ |ΨN

νi,‖〉+ |ΨN
νi,⊥〉 . (C.31)

Thus one has for the spectroscopic factor

Sνi = Nνi〈ΨN
νi,‖|ΨN

νi,‖〉 = Nνi

(
〈ΨN

ν |ΨN
ν 〉 − 〈ΨN

νi,⊥|ΨN
νi,⊥〉

)
. (C.32)

The factor Nνi is expressed as

Nνi = 1−
∫∑

j

(∫
d~r ϕN−1

ji

∗
(~r )ϕN

νi(~r )

)2

. (C.33)

Thus Nνi ≤ 1 carries the effect of antisymmetrization. It is equal to one only if ϕN
νi(~r ) is

orthogonal to all ϕN−1
ji (~r ). It is also the upper bound for the spectroscopic factor Sνi, as both

〈ΨN
νi,‖|ΨN

νi,‖〉 and 〈ΨN
νi,⊥|ΨN

νi,⊥〉 in Eq. (C.32) are positive definite and |ΨN
ν 〉 is normalized. When

the (N − 1)-body system is completely described by the wave function |ΨN−1
i 〉(7), i.e. when

there are no distortions due to the potential of the N th nucleon, 〈ΨN
νi,⊥|ΨN

νi,⊥〉 vanishes. Thus

〈ΨN
νi,‖|ΨN

νi,‖〉 provides with a measure of the dynamic distortions induced by the presence of the
extra particle.

C.1.3.3 Reaction rates

The spectroscopic amplitudes can be used to calculate reaction rates. Let us consider a simplified
case of neutron capture, where both the N -body final bound state |ΨN

i 〉 and the wave function

in the incident channel |~ΨN
j 〉 ((N − 1)-body system + incoming nucleon) are expanded for an

arbitrary n in terms of overlap functions under the form

ϕN
in(~r ) =

√
N〈ΨN

n,~r|ΨN
i 〉 , ~ϕN

jn(~r ) =
√
N〈ΨN

n,~r|~ΨN
j 〉 . (C.34)

In particular in the entrance channel, the expansion coefficient ~ϕN
0n is a continuum wave function

(the entrance channel is unbound). Matrix elements of the one-body transition operator Ô(~r )

7That is, using 〈ΨN
νi,‖|Ψ

N
νi,‖〉 = 1, this means that the N -body system is exactly the antisymmetrized superposi-

tion of the (N − 1)-body state and the overlap function.
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read then

Mij =〈ΨN
i |Ô(~r )|~ΨN

j 〉

=

∫∑

n

∫
d~r ϕN

in
∗
(~r ) Ô(~r ) ~ϕN

jn(~r )

=

∫∑

n

√
Sin

∫
d~r ϕN

in
∗
(~r ) Ô(~rN ) ~ϕN

jn(~r ) . (C.35)

Capture reactions being peripherical, the process takes mostly place at large distance from the
center of the target nucleus, which remains in its ground state. Thus only the first term in the
expansion of the entrance channel |~ΨN

j 〉 significantly contributes to the total matrix element. The
total cross-section is then proportional to |Mi0|, thus linearly dependent on the spectroscopic
factor associated with the ground state of the (N − 1)-body system Si0.

C.1.4 Properties of the norm kernel N (i~r, j~r ′)

Following the initial definition of the kernel N (i~r, j~r ′) of the norm operator N̂ (Eq. (C.14)),
one has

N (i~r, j~r ′) =

∫
d~r1 . . .d~rN A

ΨN
i,~r

∗
(~r1 . . . ~rN )

A
ΨN

j,~r ′(~r1 . . . ~rN ) (C.36a)

=
√
N

∫
d~r1 . . .d~rN ΨN

i,~r
∗
(~r1 . . . ~rN )

A
ΨN

j,~r ′(~r1 . . . ~rN ) (C.36b)

=N

∫
d~r1 . . .d~rN ΨN

i,~r
∗
(~r1 . . . ~rN )

A1..N√
N

ΨN
j,~r ′(~r1 . . . ~rN ) (C.36c)

=〈ΨN−1
i |â~r â

†
~r ′ |ΨN−1

j 〉 , (C.36d)

which shows that N (i~r, j~r ′) is

• The kernel of the norm operator for the basis set {AΨN
i,~r} (Eq. (C.36a)).

• proportional to the overlap of an element from {AΨN
i,~r} and an element from {ΨN

i,~r}
(Eq. (C.36b)).

• such as
N (i~r, j~r ′)

N
is the matrix element of the projector

A1..N√
N

in the basis {ΨN
i,~r}

(Eq. (C.36c)).

In particular, for any antisymmetric wave function ψN
ν the decomposition from Eq. (C.21)

becomes

ψN
ν (~r1 . . . ~rN ) =

1√
N

∫∑

i

∫
d~rΨN

i,~r(~r1 . . . ~rN )ϕN
νi(~r ) . (C.37)

Multiplying the latter by
A
ΨN

j,~r ′(~r1 . . . ~rN ) and integrating over the coordinates ~r1 . . . ~rN , one
gets

ϕN
νi(~r ) =

1

N

∫∑

j

∫
d~r ′N (i~r, j~r ′)ϕN

νj(~r
′) . (C.38)

Likewise, if ψN
ν is mixed-symmetric, one has

0 =
1

N

∫∑

j

∫
d~r ′N (i~r, j~r ′)ϕN

νj(~r
′) . (C.39)
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Thus
A1..N√
N

acts like a projection operator when acting on a set of expansion coefficients. In partic-

ular, its restriction to the subspace of totally antisymmetric N -body wave functions is the identity.

This kernel can also be written in terms of particle or hole states. Inserting a complete set of
N -body states |ΨN

p 〉(8), with associated overlaps ϕN
pi(~r ) with |

A
ΨN

i,~r〉, in Eq. (C.36d), one finds

N (i~r, j~r ′) =

∫∑

p(N)

ϕN
pi(~r )ϕN

pj
∗
(~r ′) , (C.40)

where p(N) denotes that the sum runs over states of the N -body system. This expression is only
valid in the case of fixed-center systems, where the second quantization formalism can be used.
In the case of self-bound systems another definition for the kernel is used (see below). On the
other hand, using the definition of

A
ΨN

i,~r (Eq. (C.6)), the kernel can be expressed in terms of the

(N − 1)-body overlap functions as

N (i~r, j~r ′) =N

∫
d~r1 . . .d~rN ΨN

i,~r
∗
(~r1 . . . ~rN )

A1..N√
N

ΨN
j,~r ′(~r1 . . . ~rN )

=N

∫
d~r1 . . .d~rN ΨN−1

i

∗
(~r1 . . . ~rN−1) δ(~r − ~rN )

A1..N√
N

ΨN−1
j (~r1 . . . ~rN−1) δ(~r

′ − ~rN )

=

∫
d~r1 . . .d~rN ΨN−1

i

∗
(~r1 . . . ~rN−1) δ(~r − ~rN ) δ(~r ′ − ~rN ) ΨN−1

j (~r1 . . . ~rN−1)

−
N−1∑

n=1

(−1)n

∫
d~r1 . . .d~rN ΨN−1

i

∗
(~r1 . . . ~rN−1) δ(~r − ~rN )

× δ(~rn − ~r ′) ΨN−1
j (~r1 . . . ~rn−1, ~rn+1 . . . ~rN )

=δ(~r − ~r ′) δij −
N−1∑

n=1

(−1)n

∫
d~r1 . . .d~rn−1 d~rn+1 . . . d~rN−1

×ΨN−1
i

∗
(~r1 . . . ~rn−1, ~r

′, ~rn+1 . . . ~rN−1)Ψ
N−1
j (~r1 . . . ~rn−1, ~rn+1 . . . ~r )

=δ(~r − ~r ′) δij − (N − 1)

∫
d~r1 . . .d~rN−2Ψ

N−1
i

∗
(~r1 . . . ~rN−2, ~r

′)ΨN−1
j (~r1 . . . ~rN−1, ~r )

=δ(~r − ~r ′) δij − (N − 1)

∫
d~r1 . . .d~rN−2Ψ

N−1
i

∗
(~r1 . . . ~rN−2, ~r

′)ΨN−1
j (~r1 . . . ~rN−1, ~r )

=δ(~r − ~r ′) δij −
∫∑

h(N−2)

ϕN−1
ih

∗
(~r ′)ϕN−1

jh (~r ) , (C.41)

where one used an expansion of the antisymmetrization operator according to its last determinant
column, starting from the bottom (~rN ,~r ′

N ), i.e.

A1..N√
N

ΨN
j,~r ′(~r1 . . . ~rN ) =

1

N !

∫
d~r ′

1 . . .d~r
′
N det

k,l=1..N

[
δ(~rk − ~r ′

l )Ψ
N
j (~r ′

1 . . . ~r
′
N )
]

=
1

N !

∫
d~r ′

1 . . .d~r
′
N det

k,l=1..N

[
δ(~rk − ~r ′

l )Ψ
N−1
j (~r ′

1 . . . ~r
′
N−1) δ(~r

′ − ~r ′
N )
]

8They are taken here as eigenstates of ĤN but this is not mandatory.
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=
δ(~r ′ − ~rN )

N !

∫
d~r ′

1 . . .d~r
′
N−1 det

k,l=1..N−1

[
δ(~rk − ~r ′

l )Ψ
N−1
j (~r ′

1 . . . ~r
′
N−1)

]

− 1

N !

N−1∑

n=1

(−1)n

∫
d~r ′

1 . . .d~r
′
N δ(~rn − ~r ′

N )

× det
k,l=1..N
k 6=n,l 6=N

[
δ(~rk − ~r ′

l )Ψ
N−1
j (~r ′

1 . . . ~r
′
N−1)

]
δ(~r ′ − ~r ′

N )

=
δ(~r ′ − ~rN )

N
ΨN−1

j (~r1 . . . ~rN−1)

− 1

N

N−1∑

n=1

(−1)n δ(~rn − ~r ′) ΨN−1
j (~r1 . . . ~rn−1, ~rn+1 . . . ~rN ) , (C.42)

using the fact that ΨN−1
j is totally antisymmetric. Combining Eqs. (C.41,C.40) gives the

completeness relationship for the spectroscopic amplitudes

δ(~r − ~r ′) δij =

∫∑

h(N−2)

ϕN−1
ih

∗
(~r ′)ϕN−1

jh (~r ) +

∫∑

p(N)

ϕN
pj

∗
(~r ′)ϕN

pi(~r ) . (C.43)

The sum over h runs over states of the (N − 2)-body system (e.g. the ”hole” states of the
(N − 1)-body system), and the one over p runs over states of the N -body system (e.g. the
”particle” states of the (N − 1)-body system). It shows that spectroscopic amplitudes for particle
states of the (N − 1)-body system are not complete by themselves as they lack the contribution
of Pauli blocking, i.e. contributions from holes states.

C.1.5 Coupled equations for the overlap functions

The N -body Hamiltonian can be further decomposed into

ĤN (~r1 . . . ~rN ) =
N∑

i=1

~̂pi
2

2m
+

N∑

i,j=1
i<j

v̂s(rij)

=ĤN−1(~r1 . . . ~rN−1)−
~2 ∂̂2

N

2m
+

N−1∑

i=1

v̂s(riN ) . (C.44)

One defines |ΨN
ν 〉 and |ΨN−1

i 〉 as eigenvectors of ĤN and ĤN−1 respectively(9). The associated
eigenvalues problem leads to

〈ΨN−1
i |ĤN |ΨN

ν 〉 = EN
ν 〈ΨN−1

i |ΨN
ν 〉 = EN−1

i 〈ΨN−1
i |ΨN

ν 〉+ 〈ΨN−1
i | − ~2∂̂2

N

2m
+

N−1∑

k=1

v̂s(rkN )|ΨN
ν 〉 .

(C.45)
Inserting the expansion from Eq. (C.24) for |ΨN

ν 〉 gives a set of Schrödinger-like coupled equations
for the overlaps ϕN

νi(~r ), that reads

(EN
ν − EN−1

i )ϕN
νi(~r ) = −~2 ∂̂2

2m
ϕN

νi(~r ) +

∫∑

j

〈ΨN−1
i |

N−1∑

k=1

v̂s(|~rk − ~r |)|ΨN−1
j 〉ϕN

νj(~r ) . (C.46)

In this form, the ”potential” reads

vij(~r ) = 〈ΨN−1
i |

N−1∑

k=1

v̂s(|~rk − ~r |)|ΨN−1
j 〉 , (C.47)

9The following is valid for the ground state |ΨN
0 〉 of the N -body system and its exited states.



68 Appendix C. Many-body wave function and one-body density

and involves an infinite sum of terms, thus it cannot be solved directly.

C.1.6 Approximate decoupling of the problem

Solutions of Eq. (C.46) include the completely antisymmetrized states, but also mixed-symmetric
states, i.e. unphysical states. If the coupled equations are solved exactly this is not a problem
as the two subspaces do not mix (Eq. (C.11)). When approximations are performed this can
become a serious issue.

The N -body state |ΨN
ν 〉 can be approximated by a Slater determinant constructed from

the spectroscopic amplitudes {ϕN
νj(~r )}j=1..N . In this case N Hartree-Fock (HF) orbitals can be

identified as approximations to spectroscopic amplitudes and single-particle energies approximate
single-nucleon separation energies. The local (Hartree) part comes from the diagonal vjj terms in
Eq. (C.46) and the non-local/exchange (Fock) potential comes from off-diagonal matrix elements,
thus from channel couplings. From these starting points, a one-body potential model may be
obtained, treating the nucleus as a system of N non-interacting nucleons. Indeed,

• Starting from the Hartree approximation, which consists in neglecting of-diagonal terms,
this amounts to imposing that the one-body potential is the same for each single particle
orbital, i.e. vjj(~r ) = v(~r ).

• Starting from the Hartree-Fock approximation, one can use the replacement vij(~r ) = δijv(~r ).

This gives in both case the usual one-body equation for the spectroscopic amplitudes

(EN
ν − EN−1

i )ϕN
νi(~r ) = −~2 ∂2

2m
ϕN

νi(~r ) + v(~r )ϕN
νi(~r ) . (C.48)

The use of Slater determinant ensures proper antisymmetrization of the equations. In particular,
when calculating the expectation value of a one-body operator Ô(~r ), the (N − 2) remaining
states can be integrated out and only active orbitals remain. Thus the associated matrix element∫

d~rϕN
νi

∗
(~r )Ô(~r )ϕN

νj(~r ) looks like a pure one-body expression. Finally, the potential model gives
exactly N spectroscopic factors equal to one, all the other ones being zero, that is without pairing
nor many-body correlations. Adding correlations beyond the HF picture allows for instance
single-particle orbitals of the N - and (N − 1)-body systems to be different. In this case the
expansion of |ΨN

ν 〉 will contain contributions from more than N terms. As a consequence, it is
usually admitted that spectroscopic factors are all less than 1. This is however a consequence of
the antisymmetrization of the wave functions and distortion effects, as it will be shown later.

C.1.7 Asymptotic behavior of the expansion coefficients

One has to separate here between several cases.

• If one of the states |ΨN−1
i 〉 or |ΨN−1

j 〉 in Eq. (C.46) corresponds to a bound state of
the (N − 1)-body system, matrix elements vij(~r ) have a short range, as a result of the
convolution of the short-range two-body potential and a bound state wave function.

• When both |ΨN−1
i 〉 or |ΨN−1

j 〉 describe continuum states, matrix elements vij(~r ) take a
long range tail, but infinitesimal in amplitude (continuum normalization).

In the first case, overlap functions become asymptotically solutions of the free Schrödinger
equation [(

d2

dr2
+

2

r

d

dr
− lν(lν + 1)

~2r2

)
− κ2

νi

]
ϕN

νi
∞

(~r ) = 0 , (C.49)
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with

κνi =

√

−2m∗(EN
ν − EN−1

i )

~2
, (C.50)

Solutions of Eq. (C.49) take in the asymptotic region r > R the form

ϕN
νi

∞
(~r ) = Bνhlν (i κνir)Y

mν

lν
(r̂) , (C.51)

where the spherical Hankel functions are defined as

hl(i κr) ≡ jl(i κr) + i nl(i κr) = il
e−κr

(κr)

l∑

k=0

1

(2κr)k

(l + k)!

k!(l − k)! . (C.52)

This shows the overlap functions ϕN
νi(~r ) fall off exponentially at large distance where they

decouple from each other, i.e.

ϕN
νi(~r ) −→

r→+∞
∼ e−κνi r

r
Y ml

l (r̂) . (C.53)

The exponential decay is the smallest for i = 0. Thus processes with reaction probabilities peaked
in the asymptotic region only only on the asymptotic normalization coefficient (ANC) given by

ANCν = lim
r→+∞

[
ϕN

ν0(~r )× r eκνi r
]
. (C.54)

The ANC is a property of the spectroscopic amplitude which implicitly includes the spectroscopic
factor. Its expression comes from the Fourier transform of the coupled equation Eq. (C.46), that
is

ϕ̃N
νi(
~k ) =

1

EN
ν − EN−1

i − k2

2m

∫∑

j

∫
d~r ei

~k·~r〈ΨN−1
i |

N−1∑

k=1

v̂s(|~rk − ~r |)|ΨN−1
j 〉ϕN

νj(~r ) , (C.55)

where a pole in the Fourier transform appears. It has been shown that the ANC can be obtained
by an integration over the nuclear interior with a sum over spectroscopic amplitudes by taking
the residue of this pole for i = 0 [12], i.e.

ANCν = lim
k→−i κν0


4mπ2

∫∑

j

∫
d~r ei

~k·~r〈ΨN−1
0 |

N−1∑

k=1

v̂s(|~rk − ~r |)|ΨN−1
j 〉ϕN

νj(~r )


 , (C.56)

for κν0 =
√

2m(EN
ν − EN−1

0 ).

C.2 Center-of-mass correlations

In the previous section, the Hartree-Fock approximation or the definition of a one-body potential
confines the center-of-mass at a given position. The picture radically changes with the explicit
treatment of the center-of-mass motion. We start from the exact non-relativistic Hamiltonian of a
N -body system. ĤN is invariant under translation, and can be decomposed into a center-of-mass
(c.o.m.) ĤN

c.o.m. and an internal part ĤN
int




ĤN
c.o.m.(~r1 . . . ~rN ) = − ~2

2mN

(
N∑

i=1

∂̂i

)2

ĤN
int(~r1 . . . ~rN ) =

N∑

i,j=1
i<j

[
− ~2

2mN

(
∂̂i − ∂̂j

)2
+ v̂s(rij)

]
,

(C.57)
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C.2.1 Internal N-body wave function

Eigenstates of ĤN are noted ΨN
i, ~K

(~r1 . . . ~rN ) to account for the center-of-mass momentum ~K.

Because of the explicit decomposition of the Hamiltonian from Eq. (C.57), ΨN
i, ~K

(~r1 . . . ~rN ) can

be factorized into center-of-mass (plane wave) and internal contributions, i.e.

ΨN
i, ~K

(~r1 . . . ~rN ) = ei
~K·~RN ΦN

i (~r1 . . . ~rN ) , (C.58)

where ~RN is the center-of-mass coordinate

~RN =
1

N

N∑

i=1

~ri . (C.59)

The internal wave function ΦN
i may also be noted ΦN

i (~r1 . . . ~rN ) ≡ Φ̈N
i (~ξ1 . . . ~ξN−1), using the

N − 1 independent internal variables expressed in terms of the Jacobi coordinates [10; 13]

~ξi = ~ri+1 −
1

i

i∑

j=1

~rj = −~ρi , (C.60)

which all are invariant under translation. For any ~a one has

ΦN
i (~r1 + ~a . . . ~rN + ~a ) = ΦN

i (~r1 . . . ~rN ) , (C.61)

which leads to
ΨN

i, ~K
(~r1 + ~a . . . ~rN + ~a ) = ei

~K·~a ΨN
i, ~K

(~r1 . . . ~rN ) . (C.62)

C.2.1.1 Orthonormalization properties

Orthonormalization of the set {ΨN
i, ~K
} reads

(2π)3 δ( ~K − ~K ′)δij =

∫
d~r1 . . .d~rN ΨN

i, ~K

∗
(~r1 . . . ~rN ) ΨN

j, ~K ′(~r1 . . . ~rN )

=

∫
d~ξ1 . . .d~ξN−1 d~RN ei

~RN .( ~K− ~K ′)Φ̈N
i

∗
(~ξ1 . . . ~ξN−1) Φ̈N

j (~ξ1 . . . ~ξN−1)

=(2π)3δ( ~K − ~K ′)

∫
d~ξ1 . . .d~ξN−1 Φ̈N

i
∗
(~ξ1 . . . ~ξN−1) Φ̈N

j (~ξ1 . . . ~ξN−1) .

(C.63)

Note that the variable change (~r1 . . . ~rN )→ (~ξ1 . . . ~ξN−1, ~RN ) is bijective. Indeed,

• the system (~ξi)i=1,N−1 is linearly independent, as only ~ξi≥n−1 contain ~rn, so the linear

problem
∑N−1

i=1 ai
~ξi = ~0 can be solved iteratively from i = N − 1 to i = 1, leading for all i

to ai = 0.

• one has ~RN · ~ξi = 0 for all i in [1 . . . N − 1], thus (~ξ1 . . . ~ξN−1, ~RN ) is a linearly independent
system of cardinal N = card(~r1 . . . ~rN ).

The orthonormalization of the set {ΦN
i } can therefore be carried out in as

∫
d~ξ1 . . .d~ξN−1 Φ̈N

i
∗
(~ξ1 . . . ~ξN−1) Φ̈N

j (~ξ1 . . . ~ξN−1) = δij . (C.64)
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or using an explicit removal of the center-of-mass degree of freedom in the integrand, that is

∫
d~r1 . . .d~rN ΦN

i
∗
(~r1 . . . ~rN ) δ(~RN ) ΦN

j (~r1 . . . ~rN ) = δij . (C.65)

In an equivalent way, by enclosing the system in a large box of volume V, we get

lim
V→+∞

1

V

∫

V
d~r1 . . .d~rN ΦN

i
∗
(~r1 . . . ~rN )ΦN

j (~r1 . . . ~rN ) = δij . (C.66)

C.2.1.2 Completeness relationships

Completeness property of the set {ΨN
i, ~K
} reads

∫
d ~K

∫∑

i

ΨN
i, ~K

∗
(~r1 . . . ~rN ) ΨN

i, ~K
(~r ′

1 . . . ~r
′
N ) =

∫∑

i

ΦN
i

∗
(~r1 . . . ~rN ) ΦN

i (~r ′
1 . . . ~r

′
N ) (2π)3 δ( ~K − ~K ′)

=

∫
d~r

1

A!
det
i,j=1...N

[
δ(~ri − ~r ′

j + ~r )
]

(2π)3 δ( ~K − ~K ′) .

(C.67)

The extra integral over ~r in Eq. (C.67) expresses the equivalence of translated configurations.
Indeed, in the case of fixed-center systems, we would have had

∫∑

i

ΨN
i

∗
(~r1 . . . ~rN ) ΨN

i (~r ′
1 . . . ~r

′
N ) =

1

A!
det
i,j=1...N

[
δ(~ri − ~r ′

j)
]
, (C.68)

where the determinant accounts for the antisymmetrization of the wave functions. However,
using Eq. (C.68) one would from Eq. (C.61) for any arbitrary ~a

∫∑

i

ΦN
i

∗
(~r1 . . . ~rN ) ΦN

i (~r ′
1 . . . ~r

′
N ) =

∫∑

i

ΦN
i

∗
(~r1 . . . ~rN ) ΦN

i (~r ′
1 + ~a . . . ~r ′

N + ~a ) , (C.69)

thus
1

A!
det
i,j=1...N

[
δ(~ri − ~r ′

j)
]

=
1

A!
det
i,j=1...N

[
δ
(
~ri − ~r ′

j − ~a
)]
, (C.70)

which is inexact. Explicit use of Eq. (C.67) will be done later. Similarly we have for reference in
momentum space

∫∑

i

Φ̃N
i

∗
(~q1 . . . ~qN ) Φ̃N

i (~q ′
1 . . . ~q

′
N ) =

1

(2π)3

∫
d ~Q

1

A!
det
i,j=1...N

[
δ

(
~qi − ~q ′

j +
1

A
~Q

)]
, (C.71)

where

Φ̃N
i (~q1 . . . ~qN ) =

1

(2π)3N/2

∫
d~r1 . . .d~rN ΦN

i (~r1 . . . ~rN ) exp

[
−i

N∑

i=1

~qi · ~ri
]
δ(~RN ) . (C.72)

C.2.2 Decomposition of the N-body wave function

C.2.2.1 Standard and internal spectroscopic amplitudes

In the case of systems localized around a fixed center like the electrons of an atom, one defined a
single-particle overlap function between N and (N − 1)-body particle systems ΨN and ΨN−1 as
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ϕ̆N
νi =

√
N〈ΨN

i,~r|ΨN
ν 〉 (Eq. (C.25c))(10). In the case of nuclei there is no fixed external force center.

Nucleons are localized around their center of mass, and standard overlap functions read [10]

ϕ̆N
νi(~r,

~KN , ~KN−1) =
√
N

∫
d~r1 . . .d~rN δ(~r − ~rN ) ΨN−1

i, ~KN−1

∗
(~r1 . . . ~rN−1) ΨN

ν, ~KN
(~r1 . . . ~rN )

=
√
N ei ~r.( ~KN− ~KN−1)

∫
d~ξ1 . . .d~ξN−1 e

−i ~ξN−1.(N−1
N

~KN− ~KN−1)

× Φ̈N−1
i

∗
(~ξ1 . . . ~ξN−2) Φ̈N

ν (~ξ1 . . . ~ξN−1)

≡ei ~r.( ~KN− ~KN−1) ϕN
νi

(
N − 1

N
~KN − ~KN−1

)
. (C.73)

Thus the spatial dependence of spectroscopic amplitudes is given by a plane wave, as a consequence
of the translational invariance. Indeed, N−1

N
~KN − ~KN−1 is Galilean invariant. On the other

hand, the spectroscopic factor reads
∣∣∣ϕ̃N

νi

(
N−1

N
~KN − ~KN−1

)∣∣∣
2

and is the Fourier transform of

the internal spectroscopic amplitude, which can be defined by removing from Eq. (C.73)
the center-of-mass contribution, that is

ϕN
νi(~r ) =

1

(2π)3/2

∫
d ~KN−1 e

i ~r· ~KN−1 ϕ̃νi( ~KN−1)

=
1

(2π)3/2

∫
d ~KN−1 ϕ̆

N
ν,i(~r,~0,

~KN−1)

=
1

(2π)3/2

√
N

∫
d ~KN−1

∫
d~r1 . . .d~rN δ(~r − ~rN ) e−i ~RN−1· ~KN−1

× ΦN−1
i

∗
(~r1 . . . ~rN−1) ΦN

ν (~r1 . . . ~rN )

=
√
N

∫
d~r1 . . .d~rN δ(~r − ~rN ) δ(~RN−1) ΦN−1

i

∗
(~r1 . . . ~rN−1) ΦN

ν (~r1 . . . ~rN ) . (C.74)

Thus internal overlaps can be defined as [14]

ϕN
νi(~r ) =

√
N

∫
d~r1 . . .d~rN−1Φ

N−1
i

∗
(~r1 . . . ~rN−1)δ(~RN−1)Φ

N
ν (~r1 . . . ~rN−1, ~r ) (C.75a)

=
√
N

∫
d~r1 . . .d~rN−1Φ

N−1
i

∗
(~r1 . . . ~rN−1)δ(~RN−1 + ~r )ΦN

ν (~r1 . . . ~rN−1,~0 ) . (C.75b)

In particular, this shows an internal wave function of the N -body system can be expanded on a
complete set of internal eigenstates of the (N − 1)-body system using Eq. (C.67), i.e

ΦN
ν (~r1 . . . ~rN ) =

1√
A

∫∑

i

ΦN−1
i (~r1 . . . ~rN−1)ϕ

N
νi(~rN − ~RN−1) . (C.76)

One can also define overlap functions by replacing the center-of-mass projection δ(~RN−1) in
Eq. (C.75a) by the total c.o.m. projection for the N -body system δ(~RN ), leading to another
expression ϕ̇N

ij (~r ). Then, ϕ̇N
ij (~r ) and ϕN

ij (~r ) are related by a trivial scale transformation that
reads [15]

ϕ̇N
ij (~r ) =

[
N

N − 1

]3

ϕN
ij

(
N

N − 1
~r

)
. (C.77)

10From this point on for more convenience, standard overlap functions will be noted ϕ̆, whereas the internal
overlaps will be ϕ. One may note in this case that the standard overlap functions depend on the center-of-mass
momenta of the two convoluted states.
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C.2.2.2 Relation with knockout reactions

The definition from Eq. (C.75a) is the most accurate for one-neutron knockout studies, but will
also be convenient for the internal one-body density matrix. Indeed, when looking at the overlap
function in momentum space by Fourier transforming

ϕ̃N
νi(~q ) =

1

(2π)3/2

∫
d~r e−i ~q·~r ϕN

νi(~r )

=
√
N

∫
d~q1 . . .d~qN−1Φ

N−1
i

∗
(~q1 . . . ~qN−1)(2π)3δ

(
A∑

i=1

~qi

)
ΦN

ν (~q1 . . . ~qN ) , (C.78)

we find that if the N -body system is in its ground state, then ϕN
0i(~q ) ≡ ϕN

i (~q ) is the amplitude
for extracting a particle with momentum ~q from the internal ground state of the ”target” ΦN

0

ending up in the internal eigenstate ΦN−1
i of the residual system. This is closely related to

the description of one-particle knockout reactions, and in compliance with previous definitions
of the overlap functions [11; 16; 17]. In Ref. [11], the cross-section for knockout reactions is
proportional, in the plane wave impulse approximation (PWIA)(11), to the spectral function, and
it reads

P (~k,E) =
∑

i

|Ai(~k )|2δ(E − EN−1
i + EN

0 ) , (C.79)

where ~k and E are respectively the momentum and energy transferred to the nucleus, and the
amplitude Ai(~k ) is the Fourier transform of the overlap integral of the initial and final state
nuclear wave functions

Ai(~k ) =

∫
d~rN ei

~k·~rN ≪ ΨN−1
i |ΨN

0 ≫ (C.80)

where the notation ≪ .|.≫ means integration on the fewer number of coordinates, i.e.

≪ ΨN−1
i |ΨN

0 ≫=

∫
d~r1 . . .d~rN−1Ψ

N−1
i

∗
(~r1 . . . ~rN−1)Ψ

N
0 (~r1 . . . ~rN−1, ~rN ) . (C.81)

To account for translational invariance, internal quantities EN−1
i have then been introduced,

noting that the residual nucleus recoils with momentum ~k

EN−1

i,~k
= EN−1

i +
k2

2m(A− 1)
, (C.82)

one finds

P (~k,E) =
∑

i

|A′
i(
~k )|2δ

(
E + ǫi −

k2

2m(A− 1)

)
, (C.83)

where the amplitude is now

A′
i(
~k ) =

∫
d~r ′

N ei
~k·~r ′

N ≪ ΦN−1
i |ΦN

0 ≫ . (C.84)

The following quantities have been defined here:

~r ′
i = ~ri − ~RN−1 , ǫi = EN

0 − EN−1
i . (C.85)

11That is, neglecting final state interactions for the ejected particle, that is the outgoing nucleon is a plane wave.
The coincidence cross-section is then the product of the nucleon-nucleon cross-section and the spectral function.
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The overlap between internal wave functions is related to the overlap between the wave functions
in the laboratory frame through

〈ΨN−1

i, ~K
|ΨN

0 〉 =
1

V

∫
d~RN−1 e

−i ~K·~RN−1 ≪ ΦN−1
i |ΦN

0 ≫

=

∫
d~RN−1 e

−i ~K·~RN−1 ≪ ΦN−1
i |ΦN

0 ≫ δ(~RN ) . (C.86)

Eq. (C.76) expresses the distribution of the hole strength among various eigenstates of the final
nucleus, and the spectral function becomes

P (~k,E) =
∑

ij

ϕN
0i

∗
(~k )ϕN

0j(
~k )
∑

k

Sk
ij δ

(
E + ǫi −

k2

2m(A− 1)

)
, (C.87)

where
Sk

ij =≪ ΦN−1
i |ΦN−1

k ≫≪ ΦN−1
k |ΦN−1

j ≫ , (C.88)

single-particle occupation probabilities

Sij =
∑

k

Sk
ij = 〈ΦN−1

i |ΦN−1
j 〉 , (C.89)

as well as the single-particle removal energies

ǫ′i =
1

Sii

∑

k

Sk
iiǫk = 〈ΦN

0 |ĤN |ΦN
0 〉 −

1

Sii
〈ΦN−1

i |ĤN−1|ΦN−1
i 〉 , (C.90)

have been defined.

C.2.3 Internal spectroscopic factors

Second quantization formalism cannot be used any more when taking into account center-of-mass
correlations. In particular, the definition of the spectroscopic factors from Eq. (C.26)

S̆νi =

∫
d~r
∣∣∣〈ΨN−1

i |â~r|ΨN
ν 〉
∣∣∣
2
, (C.91)

is now invalid. However, the normalization of the internal overlaps ϕN
νi

Sνi =

∫
d~r |ϕN

νi(~r )|2 , (C.92)

can be defined as the internal spectroscopic factors. Using Eq. (C.67), it appears then that one
still has

+∞∑

i=0

Sνi = N . (C.93)

Actually, those are the true spectroscopic factors of the system appearing in dynamic equations.
Indeed, when taking into account center-of-mass correlations, Eq. (C.35) reads as a plane wave
transition operator(12)

Mij =〈ΨN
i |

N∑

n=1

e−i~k·~rn |~ΨN
j 〉

=
N

(2π)3

∫
d ~KN−1

∫∑

i

∫
d~r

ϕ̆N
ni

∗
(~r, ~Ki, ~KN−1)√

N
e−i~k·~r

~̆ϕN
nj(~r,

~Kj , ~KN−1)√
N

=δ(~k + ~Ki − ~Kj)

∫∑

i

∫
d~r ϕN

ni
∗
(~r ) e−i N−1

N
~k·~r ~ϕN

nj(~r ) . (C.94)

12This is the appropriate transition operator for radiative capture processes.
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The delta factor ensures momentum conservation in the process, and the N−1
N factor represents

the laboratory to center-of-mass frame transformation. It appears that internal spectroscopic
amplitudes are indeed the relevant objects for nuclear dynamics.

It must be kept in mind that individual (internal) spectroscopic factors can be greater than
one for fermion systems, because of the center-of-mass motion [11; 16; 17]. For instance in
the case of N = 2 [15; 18], any internal wave function reads Φ(2)(~r1, ~r2) = f(~r1 − ~r2) with∫
r2 dr |f(~r )|2 = 1. The only internal one-body state is Φ(1)(~r1) = 1, and its overlap ϕ1 with Φ(2)

reads ϕ1(~r ) =
√

2f(−~r ). The associated spectroscopic factor is then 2. Discussions concerning
the upper bound for spectroscopic factors are not pursued here and can be found in Refs. [15; 19].
In particular, it has been found for N fermions in an harmonic oscillator model that the upper
bound for occupation numbers (eigenvalues of the internal one-body density matrix discussed

later) is nmax =
[

N
N−1

]N−1
.

C.2.4 Coupled equations for the internal spectroscopic amplitudes

To obtain the equations satisfied by the internal spectroscopic amplitudes, ĤN
int(~r1 . . . ~rN ) can be

further decomposed into [15]

ĤN
int(~r1 . . . ~rN ) = ĤN−1

int (~r1 . . . ~rN−1)− ~2N − 1

2mN

(
∂̂N −

1

N − 1

N−1∑

i=1

∂̂i

)2

+

N−1∑

i=1

v̂s(|~rN − ~ri|) .

(C.95)
This expression can be substituted in the identity

0 =

∫
d~r1 . . .d~rN−1 δ(~RN−1) ΨN−1

i

∗
(~r1 . . . ~rN−1)

[
ĤN

int(~r1 . . . ~rN )− EN
ν

]
ΨN

ν (~r1 . . . ~rN ) .

(C.96)
This leads after some manipulations to the coupled equations

− ~2

2m∗
∂2ϕN

νi(~r )− (EN
ν − EN−1

i )ϕN
νi(~r ) =

− (N − 1)
√
N

∫
d~r1 . . .d~rN−1 δ(~RN−1) ΨN−1

i

∗
(~r1 . . . ~rN−1) vs(|~r − ~rN−1|) ΨN

ν (~r1 . . . ~rN−1, ~r ),

(C.97)

where m∗ = N−1
N m is the reduced mass, EN

ν = EN
ν, ~K
− KN 2

2mN the internal eigenenergy, and using

that
N∑

i=1

~∇iΨ
N
ν (~r1 . . . ~rN ) = 0 . (C.98)

In particular, coupled equations from Eq. (C.97) show that internal spectroscopic amplitudes
follow asymptotically the free Schrödinger equation, thus have exponential decays. One may
note that standard spectroscopic amplitudes ϕ̆ still fulfill the initial coupled equations system
but they are now plane waves.

C.2.5 Koltun sum rules

The Koltun sum rules gives a final consistency check concerning the decomposition of the N -body
wave function. It is assumed that the Hamiltonian contains only two-body forces(13). The total

13An experimental violation of this sum rule could prove the existence of 3NF, although other effects may
explain it [20].
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energy of the nucleus is then [11; 21]

EN
0 =

1

2

∫
d~k

∫
dE

(
−E +

k2

2m

)
P (~k,E) . (C.99)

The energy E is the energy transfer in the laboratory frame, and not the internal energy transfer
Eint = E − 1

N−1
k2

2m . In terms of Eint the sum rule reads

EN
0 =

1

2

∫
d~k

∫
dEint

(
−Eint +

N − 2

N − 1

k2

2m

)
P (~k,Eint) . (C.100)

In the single-particle basis this can be expressed as

EN
0 =

1

2

∫∑

i

Siiǫ
′
i +

1

2

N − 2

N − 1
TN , (C.101)

where TN is the kinetic energy. The correction factor N−2
N−1 accounts for the recoil factor, and

cancels the extra kinetic energy in the expression of ǫ′i arising from the reduced mass effect N
N−1

(14).

In the present case, the Koltun sum rule is checked for the internal energy EN
0 , where the

internal kinetic energy reads [15]

TN =

∫
d~r1 . . .d~rN δ(~RN ) ΨN

0
∗
(~r1 . . . ~rN )


−

~2

2mN

N∑

i,j=1
i<j

(∂i − ∂j)
2


 ΨN

0 (~r1 . . . ~rN )

=− ~2

2m

∫
d~rN [∂2

~r ′
N
ρ[1](~rN , ~r

′
N )]~r ′

N=~rN

=− ~2

2m

∫
d~qN q2N η(~qN ) , (C.102)

using the definition of the internal density matrix (Sec. C.3.2) and the associated momentum
distribution (Eq. (C.150)). From the coupled equations for the overlap (Eq. (C.97)), multiplied
by ϕN

0i
∗
(~r ), integrated over ~r, and after summation on the states i of the (N − 1)-body system,

one obtains

N

N − 1
TN + (N − 1)

√
N

∫
d~r1 . . .d~rN−1 d~r δ(~RN−1)

∫∑

i

ΨN−1
i

∗
(~r1 . . . ~rN−1)ϕ

N
0i

∗
(~r )

× vs(|~r − ~N − 1|) ΨN
0 (~r1 . . . ~rN−1, ~r ) = −〈Er〉N , (C.103)

where one defines the mean removal energy as

〈Er〉N =

∫∑

i

(EN−1
i − EN

0 )S0i . (C.104)

Using the completeness relationship for the set {ΨN−1
i }, the second term in Eq. (C.103) can be

converted to twice the potential energy vN in the system, reading

vN =EN
0 − TN

=
N(N − 1)

2

∫
d~r1 . . .d~rN δ(~RN ) vs(|~rN − ~N − 1|) |ΨN

0 (~r1 . . . ~rN )|2 . (C.105)

As a result the Koltun sum rule is retrieved, and it reads

EN
0 =

1

2

(
N − 2

N − 1
TN − 〈Er〉N

)
. (C.106)

14This correction can be justified when looking at the deuteron, where E2
0 = ǫ′0.
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C.2.6 Self-consistent translationally invariant theories

The decomposition from Eq. (C.76) is the most adequate when dealing with self-consistent theo-
ries for translationally invariant systems, without substraction of the center-of-mass contribution.
In the Hartree-Fock case, it was found [22] that generalized equations could be found without the
use of Slater determinants for a set of N amplitudes {φj}. Those equations are translationally
invariant, but do not come from a variational principle. In the limit of large N , those may be
then identified to the standard HF orbitals.

ΨN
i~P

ΨN−1

j ~P ′

~p

ΨN−1

i ~P
ΨN−2

j ~P ′

~p

Figure C.1: Diagrammatic definition of the amplitudes 〈ΨN−1

j, ~P ′
| â~p |ΨN

i, ~P
〉 (left-hand

side) and 〈ΨN−2

j, ~P ′
| â~p |ΨN−1

i, ~P
〉 (right-hand side). nucleon lines (double lines)

are on mass shells.

As suggested by Fig. C.1, one starts by defining the set of amplitudes {φi
j} and {φ̆i

j} as

δ(~P ′ + ~p+ ~P )φi
j

(
(N − 1)~p− (~P − ~p )

N

)
=〈ΨN−1

j, ~P ′
| â~p |ΨN

i, ~P
〉 (C.107a)

δ(~P ′ + ~p+ ~P )φ̆i
j

(
(N − 2)~p− (~P − ~p )

N − 1

)
=〈ΨN−2

j, ~P ′
| â~p |ΨN−1

i, ~P
〉 . (C.107b)

Now when considering the ground state |ΨN
0 〉 ≡ |ΨN

0,~0
〉, one can assume that only N amplitudes

φj(~p ) are needed, which are defined as

δ(~P ′ + ~p )φj

(
(N − 1)~p− (~P − ~p )

N

)
= 〈ΨN−1

j, ~P ′
|â~p|ΨN

0 〉 . (C.108)

They describe the relative motion of a nucleon of momentum ~q and a (N − 1)-body system. To
prove that this decomposition in terms of the relative motion with respect to the (N − 1)-body
system is the most accurate, the equations satisfied by the amplitudes φi can be derived. One
starts from an Hamiltonian using only two body interactions, of the form

ĤN =

∫
d~p â†~p

p2

2m
â~p +

1

2

∫
d~p1 d~p2 d~p3 dp̃4 â†p̃1

â†p̃2
〈p̃1 p̃2|vs|p̃3 p̃4〉 âp̃3 âp̃4 . (C.109)

This leads to

〈ΨN−1

j, ~P ′
|[Ĥ, â~p]|ΨN

0 〉 =

(
ĒN−1

j +
P ′2

2m(N − 1)
− EN

0

)
〈ΨN−1

j, ~P ′
|â~p|ΨN

0 〉

=〈ΨN−1

j, ~P ′
|[T̂ , â~p]|ΨN

0 〉+ 〈ΨN−1

j, ~P ′
|[v̂s, â~p]|ΨN

0 〉 . (C.110)
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After some manipulations and assumptions, in particular that the interaction is local and only
depends on the momentum transfer [22], one finds HF-like equations for the functions φj , i.e.

(
ǫ′j +

~2∂2

2m∗

)
φj(~r ) =

(
N − 2

N − 1

)3
[∫

d~r ′
N∑

k=1

φ∗k

(
N − 2

N − 1
~r ′

)
v(|~r − ~r ′|)φk

(
N − 2

N − 1
~r ′

)]
φj(~r )

(C.111a)

−
(
N − 2

N − 1

)3
[∫

d~r ′
N∑

k=1

φ∗k

(
N − 2

N − 1
~r ′

)
v(|~r − ~r ′|)φk

(
~r +

1

N − 1
~r ′

)]

× φj

(
~r ′ − 1

N − 1
(~r − ~r ′)

)
.

(C.111b)

Standard HF equations can be retrieved in the limit of large N . To simplify the exchange term
(Eq. (C.111b)), one may consider the case of a potential with a short range in comparison to the
size of the system, ie ~r ≈ ~r ′, which leads to

(
ǫ′j +

~2∂2

2m∗

)
φj(~r ) =

(
N − 2

N − 1

)3
[∫

d~r ′
N∑

k=1

φ∗k

(
N − 2

N − 1
~r ′

)
v(|~r − ~r ′|)φk

(
N − 2

N − 1
~r ′

)]
φj(~r )

(C.112a)

−
(
N − 2

N − 1

)3
[∫

d~r ′
N∑

k=1

φ∗k

(
N − 2

N − 1
~r ′

)
v(|~r − ~r ′|)φk(~r )φj(~r

′)

]
,

(C.112b)

which are indeed HF-like equations.

C.2.7 Internal Slater determinants

An interesting way to understand the expansion of Eq. (C.76) comes from the use of internal
Slater determinants (ISDs) to describe the uncorrelated motion of the N particles in N orbits
around their center-of-mass(15) [18], that is

ΦN
SD(~r1 . . . ~rN ) =

1√
N !

det
i,j=1...N

[
φj(~ri − ~RN )

]
, (C.113)

and

ΦN−1
i,SD(~r1 . . . ~rN−1) =

1√
(N − 1)!

det
i,j=1...N
i6=N,j 6=i

[
φj(~ri − ~RN−1)

]
. (C.114)

ISDs can then be used to evaluate single-particle overlap functions and spectroscopic factors
using Eq. (C.75a). Likewise, the expansion from Eq. (C.76) can be interpreted as an expansion
with respect to the first column of the determinant, followed by a translation of ~RN − ~RN−1

15This corresponds to remove the spurious c.o.m. motion in the usual fixed-frame Slater determinants.
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(ISDs are translational invariants), i.e.

ΦN
SD(~r1 . . . ~rN ) =

1√
N !

∣∣∣∣∣∣∣∣∣∣

φ1(~r1 − ~RN ) φ1(~r2 − ~RN ) . . . φ1(~rN − ~RN )

φ2(~r1 − ~RN ) φ2(~r2 − ~RN ) . . . φ2(~rN − ~RN )

. . . . . . . . .

φN (~r1 − ~RN ) φN (~r2 − ~RN ) . . . φN (~rN − ~RN )

∣∣∣∣∣∣∣∣∣∣

=
1√
N !

N∑

i=1

(−1)i+1φi(~r1 − ~RN )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(~r2 − ~RN ) . . . φ1(~rN − ~RN )

. . . . . .

φi−1(~r2 − ~RN ) . . . φi−1(~rN − ~RN )

φi+1(~r2 − ~RN ) . . . φi+1(~rN − ~RN )

. . . . . .

φN (~r2 − ~RN ) . . . φN (~rN − ~RN )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1√
N !

N∑

i=1

(−1)i+1φi(~r1 − ~RN−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(~r2 − ~RN−1) . . . φ1(~rN − ~RN−1)

. . . . . .

φi−1(~r2 − ~RN−1) . . . φi−1(~rN − ~RN−1)

φi+1(~r2 − ~RN−1) . . . φi+1(~rN − ~RN−1)

. . . . . .

φN (~r2 − ~RN−1) . . . φN (~rN − ~RN−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1√
N

N∑

i=1

(−1)i+1φi(~r1 − ~RN−1) ΦN−1
i,SD(~r2 . . . ~rN−1) . (C.115)

The phase (−1)i+1 is then to be recast in either (N − 1)-body ISDs or the overlap functions. For
more details regarding the antisymmetrization, we refer to Ref. [10].

C.3 One-body density

The ground state of the N -body system will be noted hereafter as ΨN
0,~0

(~r1 . . . ~rN ) ≡ ΨN
0 (~r1 . . . ~rN ).

C.3.1 Laboratory frame

C.3.1.1 Definition

In the laboratory frame, second quantization formalism can be used, and the density matrix
reads

ρ(~r, ~r ′) = 〈ΨN
0 |â†~r ′ â~r|ΨN

0 〉 . (C.116)

In the general case, the non-local one-body density operator ρ̂(~r, ~r ′) takes the form

ρ̂(~r, ~r ′) =
1

N !
det
i,j=1...N

[
δ(~r − ~̂ri)δ(~r ′ − ~̂r ′

j)
1

(N − 2)!
det
k 6=i,l 6=j

[
δ(~̂rk − ~̂r ′

l )
]]

. (C.117)

However because N -body wave functions are antisymmetrized one can use a reduced form which
reads

ρ̂(~r, ~r ′) =
N∑

i=1

δ(~r − ~̂ri)δ(~r ′ − ~̂r ′
i )
∏

j 6=i

δ(~̂rj − ~̂r ′
j) , (C.118)
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so that for any Slater determinant(16)

|Φ〉 =
1√
N !




φ1(~r1) φ2(~r1) . . . φN (~r1)

φ1(~r2) φ2(~r2) . . . φN (~r2)

. . . . . . . . . . . . . . .

φ1(~rN ) φ2(~rN ) . . . φN (~rN )



, (C.119)

the expectation value of ρ̂(~r, ~r ′) is

〈Φ|ρ̂(~r, ~r ′)|Φ〉 =
1

N !

N∑

j=1

∑

P̂||j

(
〈1 2..N |P̂†

||j ρ̂(~r, ~r
′)P̂||j |1 2..N〉

+
∑

k 6=j

∑

P̂||k 6=P̂||j

ǫP̂||k
ǫP̂||j
〈1 2..N |P̂†

||kρ̂(~r, ~r
′)P̂||j |1 2..N〉

)
, (C.120)

where |i1 i2..iN 〉 ≡ |φ1(~ri1)φ2(~ri2)..φN (~riN )〉, and P̂||k is a permutation matrix in the uplet
{1, 2, .., N}�{k} of signature ǫP̂||k

. If there is at least one permutation between the bra

〈1 2 ..k1..k2..N | → 〈1 2..k2..k1..N | and the ket |1 2..k1..k2..N〉(17), one obtains

〈1 2..k2..k1..N |ρ̂(~r, ~r ′)|1 2..N〉 =
N∑

i=1

∫
d~r ′

1..N

∫
d~r1..Nφ

∗
1(~r

′
1)..φ

∗
k1

(~r ′
k2

)..φ∗k2
(~r ′

k1
)..φ∗N (~r ′

N )

× δ(~r − ~ri)δ(~r ′ − ~r ′
i )
∏

j 6=i

δ(~rj − ~r ′
j)φ1(~r1)..φN (~rN )

=
N∑

i=1
i6=k1,k2

N∏

j=1
j 6=k1,k2,i

〈φj |φj〉〈φk1 |φk2〉〈φk2 |φk1〉φ∗i (~r ′)φi(~r )

+
N∏

j=1
j 6=k2,i

〈φj |φj〉〈φi|φk2〉φ∗k2
(~r ′)φi(~r )

+

N∏

j=1
j 6=k1,i

〈φj |φj〉〈φi|φk1〉φ∗k1
(~r ′)φi(~r )

=0 . (C.121)

Thus
∀k 6= j ,

∑

P̂||k 6=P̂||j

〈1 2..N |P̂†
||kρ̂(~r, ~r

′)P̂||j |1 2..N〉 = 0 , (C.122)

16Obviously the Slater determinant is not a good solution, as it is not translationally invariant. However, it
gives us a good insight of the way the one-body density operator acts.

17For symmetry reasons, we can keep the ket | 2..i..j..N〉 unchanged.
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and

〈Φ|ρ̂(~r, ~r ′)|Φ〉 =
1

N !

N∑

j=1

∑

P̂||j

〈1 2..N |P̂†
||j ρ̂(~r, ~r

′)P̂||j |1 2..N〉

=
1

N !

N∑

i=1

N∑

j=1

card({P̂||j})〈1 2..N |δ(~r − ~̂ri)δ(~r ′ − ~̂r ′
i )
∏

k 6=i

δ(~̂rk − ~̂r ′
k)|1 2..N〉

=
1

N !

N∑

i=1

N∑

j=1

(N − 1)!

∫
d~r ′

1 . . .

∫
d~r ′

N

∫
d~r1 . . .

∫
d~rNφ

∗
1(~r

′
1) . . . φ

∗
N (~r ′

N )

× δ(~r − ~ri)δ(~r ′ − ~r ′
i )
∏

k 6=i

δ(~rk − ~r ′
k)φ1(~r1) . . . φN (~rN )

=
N∑

i=1

φ∗i (~r
′)φi(~r ) . (C.123)

In the second quantization formalism, any one-body operator is implicitly considered as local in
all other variables, thus the product running over Dirac functions δ(~̂rj − ~̂r ′

j) in Eq. (C.118) is
automatically resolved in integrals like 〈1 2..k2..k1..N |ρ̂(~r, ~r ′)|1 2..N〉, but integrals running on
those variables are supposed to be trivial. We will use then the following compact notations,
which make explicit use of the antisymmetrisation.

• For the one-body density matrix

ρ̂(~r, ~r ′) ≡ N δ(~r − ~̂rN ) δ(~r ′ − ~̂rN ) , (C.124)

such that

ρ(~r, ~r ′) ≡ 〈ΨN
0 |ρ̂(~r, ~r ′)|ΨN

0 〉 ≡ N
∫

d~r1 . . .d~rN−1 ΨN
0

∗
(~r1 . . . ~rN−1 , ~r ) ΨN

0 (~r1 . . . ~rN−1 , ~r
′) .

(C.125)

• For its local part
ρ̂(~r ) ≡ ρ̂(~r, ~r ) ≡ N δ(~r − ~̂ri) , (C.126)

such that

ρ(~r ) = 〈ΨN
0 |ρ̂(~r )|ΨN

0 〉 ≡ N
∫

d~r1 . . .d~rN−1 |ΨN
0 (~r1 . . . ~rN−1 , ~r )|2 . (C.127)

These expressions assume that N -body wave functions are normalized to 1, thus the local density
integrates to N .

C.3.1.2 Laboratory density for self-bound systems

Using Eq. (C.127) and Eq. (C.58), one finds for the one-body density in the laboratory frame

ρ(~r ) = N

∫
d~ξ1

′ . . .d~ξ ′
N−1 |ΦN

0 (~ξ ′
1 . . .

~ξ ′
N−1)|2 , (C.128)

where the Jacobi coordinates are defined here as




~ξ ′
i = ~ri+1 −

1

i

i∑

j=1

~rj for i < N − 1 ,

~ξ ′
N−1 = ~r − 1

N − 1

N−1∑

j=1

~rj .

(C.129)
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Using a trivial variable change we find that the one-body density is invariant under any translation
~r → ~r +~a, thus ρ(~r ) is a constant. Indeed, using Eq. (C.116), the density matrix in the laboratory
frame is the sum of the spectroscopic amplitudes ϕ̆N

0i in the same frame, i.e.

ρ(~r, ~r ′) = 〈ΨN
0 | â†~r ′ â~r |ΨN

0 〉 =

∫∑

i

ϕ̆N
0i

∗
(~r ′) ϕ̆N

0i(~r ) . (C.130)

Thus one has for the one-body density, using Eq. (C.73)

ρ(~r ) = ρ(~r, ~r ′) =

∫∑

i

|ϕN
0i(− ~Ki)|2 =

∫∑

i

S̆0i = N , (C.131)

using the sum rule for the spectroscopic factors S̆0i. As a verification, the number of nucleons is
then

1

V

∫
d~r ρ(~r ) = N

V
V = N . (C.132)

This is a consequence of the fact that standard spectroscopic amplitudes are now plane waves.
They still verify asymptotically the free Schrödinger equation, but with positive energy, which
explains how the density in the laboratory frame can be uniform.

C.3.2 Internal density

From this point on, it is crucial to find an expression for the internal one-body density operator.
However, there are several ways to define it. We compare here two possible definitions:

• The first possible solution reads

ρ[1](~r, ~r ′) =〈ΨN
0 |ρ̂[1](~r, ~r ′)|ΨN

0 〉

=N

∫
d~r1 . . .d~rN−1 δ(~RN−1) ΨN

0
∗
(~r1 . . . ~rN−1, ~r

′) ΨN
0 (~r1 . . . ~rN−1, ~r ) . (C.133)

The variable change (~r1 . . . ~rN )→ (~ξ1 . . . ~ξN−1, ~rN ) has been used. Its diagonal part ρ[1](~r )
represents the probability to find a particle at position ~r with respect to the center-of-mass
of the remaining (N − 1) particles.

• On the other hand one may also define the internal density such that its diagonal part
is the probability to find a particle with respect to the total c.o.m. of the N-body

system

ρ[2](~r, ~r ′) =〈ΨN
0 |ρ̂[2](~r, ~r ′)|ΨN

0 〉

=N

∫
d~r1 . . .d~rN−1 δ(~RN ) ΨN

0
∗
(~r1 . . . ~rN−1, ~r

′) ΨN
0 (~r1 . . . ~rN−1, ~r ) . (C.134)

In this case the c.o.m. position is defined as

~RN =
1

N

N−1∑

i=1

~ri +
1

2N
(~r + ~r ′) . (C.135)
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C.3.2.1 Operatorial form of ρ̂[1]

Let us start in the fictious case where the operator for the local part of the density matrix
ρ[1](~r ) ≡ ρ[1](~r, ~r ) only acts on the internal wave functions ΦN/Φ̈N . One has then [13]

ρ̂[1](~r ) = N δ(~r − ~ξN−1) = N δ(~r − ~rN + ~RN−1) . (C.136)

Using Eq. (C.136) applied only to the internal wave functions, one finds

ρ[1](~r ) =N

∫
d~ξ1 . . .d~ξN−1 Φ̈N

0
∗
(~ξ1 . . . ~ξN−1) δ(~r − ~ξN−1) Φ̈N

0 (~ξ1 . . . ~ξN−1)

=N

∫
d~ξ1 . . .d~ξN−2 |Φ̈N

0 (~ξ1 . . . ~ξN−2, ~r )|2

=N

∫
d~ξ1 . . .d~ξN−2 d~RN−1 δ(~RN−1) |Φ̈N

0 (~ξ1 . . . ~ξN−2, ~r )|2

=N

∫
d~r1 . . .d~rN−1 δ(~RN−1) |ΦN

0 (~r1 . . . ~rN−1, ~r + ~RN−1)|2 (C.137a)

=N

∫
d~r1 . . .d~rN−1 δ(~RN−1) |ΦN

0 (~r1 − ~RN−1 . . . ~rN−1 − ~RN−1, ~r )|2

=N

∫
d~r1 . . .d~rN−1 δ(~RN−1) |ΦN

0 (~r1 . . . ~rN−1, ~r )|2 , (C.137b)

where Eq. (C.137a) is the exact expression one would have directly obtained using Eq. (C.136).
To find the definition of the internal density operator in the full Hilbert space, Eq. (C.136) can
be generalized into

ρ̂[1](~r ) = δ( ~̂RN )
N∑

i=1

δ(~r − ~ri + ~R
(i)
N−1) , (C.138)

where

~R
(i)
N−1 =

1

N − 1

N∑

j=1
j 6=i

~rj . (C.139)

More generally, one has for an arbitrary translation of the center-of-mass of the system

ρ̂[1](~r ) = δ( ~̂RN + ~a )

N∑

i=1

δ(~r − ~ri + ~R
(i)
N−1) , (C.140)

This leads to

ρ[1](~r ) =
N∑

i=1

∫
d~r1 . . .d~rN |ΦN

0 (~r1 . . . ~rN )|2 δ( ~̂RN ) δ(~r − ~ri + ~R
(i)
N−1)

=N3
N∑

i=1

∫
d~r1 . . .d~ri−1 d~ri+1 . . . d~rN

× |ΦN
0 (~r1 . . . ~ri−1,−(N − 1)~R

(i)
N−1, ~ri+1 . . . ~rN )|2 δ(~r +N ~R

(i)
N−1) (C.141a)

=N4

∫
d~r1 . . .d~rN−1 |ΦN

0 (~r1 . . . ~rN−1,−(N − 1)~RN−1)|2 δ(~r +N ~RN−1)

=N4

∫
d~r1 . . .d~rN |ΦN

0 (~r1 . . . ~rN )|2 δ(~r +N ~RN−1) δ(~rN + (N − 1)~RN−1) (C.141b)

=N4

∫
d~r1 . . .d~rN |Φ̈N

0 (~ξ1 . . . ~ξN−1)|2 δ(~r +N ~RN−1) δ(~rN + (N − 1)~RN−1)
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=N4

∫
d~r1 . . .d~rN−1 |Φ̈N

0 (~ξ1 . . .−N ~RN−1)|2 δ(~r +N ~RN−1)

=N4

∫
d~ξ1 . . .d~ξN−2d~RN−1 |Φ̈N

0 (~ξ1 . . . ~ξN−1,−N ~RN−1)|2 δ(~r +N ~RN−1)

=N4

∫
d~ξ1 . . .d~ξN−2d~RN−1 |Φ̈N

0 (~ξ1 . . .−N ~RN−1)|2 δ(~r +N ~RN−1)

=N

∫
d~ξ1 . . .d~ξN−2 |Φ̈N

0 (~ξ1 . . . ~ξN−1, ~r )|2 , (C.141c)

since

~RN = ~0⇒ 1

N
~ri = − 1

N

N∑

j=1
6=i

~rj ⇒
1

N
~ri =

N − 1

N
~R

(i)
N−1 ⇒ δ(~r − ~ri + ~R

(i)
N−1) = δ(~r +N ~R

(i)
N−1) ,

(C.142)
which corresponds to Eq. (C.137b). In particular, Eq. (C.141b) shows that the one-body density
operator also reads

ρ̂[1](~r ) =N4 δ(~r +N ~RN−1) δ(~rN + (N − 1)~RN−1)

=N3
N∑

i=1

δ(~r +N ~R
(i)
N−1) δ(~ri + (N − 1)~R

(i)
N−1) . (C.143)

Using the previous arguments, the one-body internal density matrix can therefore be expressed
as

ρ̂[1](~r, ~r ′) =N δ(~r − ~̂ξN−1) δ(~r
′ − ~̂ξN−1

′)

=δ(~RN )

N∑

i=1

δ(~r − ~ri + ~R
(i)
N−1)× δ(~R ′

N )

N∑

j=1

δ(~r ′ − ~r ′
j + ~R

(i)′

N−1)

=N3
N∑

i=1

δ(~r +N ~R
(i)
N−1)δ(~ri + (N − 1)~R

(i)
N−1)

×
N∑

j=1

δ(~r ′ +N ~R
(j)′

N−1)δ(~r
′
j + (N − 1)~R

(j)′

N−1) , (C.144)

which leads to [13; 15]

ρ[1](~r, ~r ′) =〈ΨN
0 |ρ̂[1](~r, ~r ′)|ΨN

0 〉

=N

∫
d~r1 . . .d~rN−1 ΨN

0
∗
(~r1 . . . ~rN−1, ~r

′) δ(~RN−1)Ψ
N
0 (~r1 . . . ~rN−1, ~r ) (C.145a)

=N

∫
d~ξ1 . . .d~ξN−2 ΨN

0
∗
(~ξ1 . . . ~ξN−2 , ~r

′) ΨN
0 (~ξ1 . . . ~ξN−2 , ~r ). . (C.145b)

A similar expression for Eq. (C.145a) reads

ρ[1](~y, ~y ′) = N

∫
d~r1 . . .d~rN−1 ΨN

0
∗
(
~r1 . . . ~rN−1,

~y ′

2

)
δ(~y + ~RN−1)Ψ

N
0

(
~r1 . . . ~rN−1,

~y ′

2

)
,

using the relative and center-of-mass coordinates ~y = ~r+~r ′

2 and ~y ′ = ~r ′ − ~r.
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C.3.2.2 Properties of ρ̂[1]

ρ̂[1](~r, ~r ′) is a N -body operator, thus includes more correlations than tye laboratory density
ρ̂lab(~r, ~r ′). This may be the reason the densities in the internal and laboratory frame have
different transformation rules under a translation of the system. Indeed, ρ̂lab(~r, ~r ′) transforms as
a scalar, ρ̂[1](~r, ~r ′) is invariant. Using Eq. (C.67), the ground state one-body internal density
becomes a function of the overlaps, i.e.

ρ[1](~r, ~r ′) =

+∞∑

i=0

ϕ∗
0i(~r

′)ϕ0i(~r ) . (C.146)

Eq. (C.146) shows immediately that ρ̂[1] has positive eigenvalues and its trace is normalized to
the total particle number. On the other hand the trace of ρ̂[1] is immediately

Tr(ρ̂[1]) =

∫
d~r ρ[1](~r, ~r ) =

∫∑

i

S0i = N , (C.147)

using the spectroscopic factors sum rule. According to the coupled equation for the internal
overlap function (Eq. (C.97)), one finds that the asymptotics of the internal one-body density
reads(18)

ρ[1](r, r′) −→
r′→+∞

ϕN
00(r) C0

e−κ0 r′

r′
, (C.148)

where κ0 = 1
~

√
2m(EN−1

0 − EN
0 ). Thus

ρ[1](r) = ρ[1](r, r) −→
r→+∞

|C0|2
e−2κ0 r

r2
. (C.149)

The associated momentum distribution becomes, using Eq. (C.72)

η(~q ) =
1

(2π)3

∫
d~y d~y ′ e−i ~q·~y ′

ρ[1](~y, ~y ′)

=N

∫
d~q1 . . .d~qN−1|ΨN

0 (~q1 . . . ~qN−1, ~q )|2 δ
(
~q +

N−1∑

i=1

~qi

)
. (C.150)

Finally, Eq. (C.137b) shows that the internal density in invariant under an arbitrary translation
T̂~a of the system of vector ~a, that is

ρ
[1]
~a (~r ) = 〈ΨN

0 |T̂~a ρ̂
[1] T̂ †

~a |ΨN
0 〉 = ρ[1](~r ) . (C.151)

Generalization of this property to other kinds of internal density (i.e. with respect to rotation,
particle number...) is still an open question, although it seems somewhat natural.

C.3.2.3 Properties of ρ̂[2]

The local part of ρ̂[2] reads

ρ[2](~r ) = N

∫
d~r1 . . .d~rN−1 δ(~R

[1]

N ) |ΨN
0 (~r1 . . . ~rN−1, ~r )|2 , (C.152)

where the c.o.m. position is defined as

~R
[1]

N =
1

N

N−1∑

i=1

~ri +
1

N
~r . (C.153)

18Note that overlaps are assimilated to their radial parts here.
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It appears that ρ[2](~r ) is the expectation value of

ρ̂[2](~r ) = N δ(~RN ) δ(~r − ~rN ) = δ(~RN )
N∑

i=1

δ(~r − ~ri) = N δ

(
~r − N − 1

N
~ξN−1

)
. (C.154)

Equivalently, for the one-body density matrix one has

ρ̂[2](~r, ~r ′) = N δ

(
~r − N − 1

N
~ξN−1

)
δ

(
~r ′ − N − 1

N
~ξ ′

N−1

)
. (C.155)

The one-body matrices ρ[1] and ρ[2] are related through

ρ[2](~r, ~r ′) =

(
N

N − 1

)3

ρ[1]

(
~r +

~r + ~r ′

2(N − 1)
, ~r ′ +

~r + ~r ′

2(N − 1)

)
, (C.156a)

ρ[2](~r ) =

(
N

N − 1

)3

ρ[1]

(
N

N − 1
~r

)
. (C.156b)

In particular, contrary to ρ[1], ρ[2](~r, ~r ′) does not have any simple decomposition in terms of
single-particle overlaps. However, its local part ρ[2](~r ) does in terms of the overlaps ϕ̇N

νi previously
defined, and Eq. (C.156b) can be derived from Eq. (C.77).

However, eigenvalues of ρ̂[2] are not necessarily positive. Indeed, let us consider the N = 2
d-dimension case [23], where an internal two-body wave function reads Ψ2(x1, x2) = f(x1 − x2),
with

∫
dx |f(x)|2 = 1. Because of permutation symmetry, Φ2 has good parity, i.e. f(−x) = η f(x),

η = +1 for bosons, η = −1 for fermions. In this case one has

ρ[2](x, x′) = 2d+1 f

(
3

2
x+

1

2
x′
)
f

(
1

2
x+

3

2
x′
)
. (C.157)

ρ[2](x, x′) is invariant under a parity transformation, thus ρ[2](−x,−x′) = ρ[2](x, x′), and its
eigenfunctions also have good parities. However, both parities ±η are present. Indeed, ρ[2](x, x′)
can be projected on its even and odd parity eigenspaces such that

ρ
[2]
± (x, x′) =

1

2

[
ρ[2](x, x′)± ρ[2](x,−x′)

]

=2d

[
f

(
3

2
x+

1

2
x′
)
f

(
1

2
x+

3

2
x′
)
± f

(
3

2
x− 1

2
x′
)
f

(
1

2
x− 3

2
x′
)]

. (C.158)

The trace of those components reads

Tr[ρ
[2]
± ] =

∫
dxρ

[2]
± (x, x) = 2d

∫
dx
[
|f(2x)|2 ± η|f(x)|2

]
= 1± η 2d . (C.159)

This shows that eigenfunctions with the wrong parity −η have a negative summed eigenvalue
strength, i.e. ∫

dxρ
[2]
−η(x, x) = 1− 2d < 0 , (C.160)

proving that negative eigenvalues are present. For d = 1 explicit examples can be constructed.
Indeed, harmonic oscillator wave functions read

f0(a, x) =
1

a1/2π1/4
e−

x2

2a2 (C.161a)

f0(a, x) =

√
2

a1/2π1/4
e−

x2

2a2
x

a
(C.161b)

f0(a, x) =

√
2

a1/2π1/4
e−

x2

2a2

[(x
a

)2
− 1

2

]
, (C.161c)
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and associated density matrices can be numerically diagonalized into

ρ
[2]
i (x, x′) = 4 fi

(
3

2
x+

1

2
x′
)
fi

(
1

2
x+

3

2
x′
)
. (C.162)

One finds then for i = 0 a lowest eigenvalue of −0.8888888888 and for i = 1 a lowest one of
−1.481481. Both are in the wrong parity eigenspace, odd for i = 0 and even for i = 1. It is found
actually after some trial and error that the corresponding eigenfunctions are

• f1(a/
√

2, x) in the i = 0 subspace, corresponding to an eigenvalue of −8/9.

• f2(a/
√

2, x) in the i = 1 subspace, corresponding to an eigenvalue of −40/27.

For this reason, ρ[2](~r, ~r ′) appears to be a bad definition for the internal one-body density(19).
ρ[1](~r, ~r ′) was found to be the tool of choice for knockout reactions, but ρ[2](~r, ~r ′) is the one
involved when looking at electron scattering [13; 22]. Indeed, in the case of a three-momentum
transfer ~q to the N -body system, as depicted in Fig. C.2, the proton matter form factor is
written as

FM (~q 2) =
1

Z

N∑

j=1

∫
d~k ′ φ∗j

(
(N − 1)(~k − ~k ′)− ~k ′

N − 1

)
φj

(
(N − 1)(~k − ~k ′ + ~q )− ~k ′

N − 1

)
, (C.163)

where the proton internal form factor is neglected. This gives for the charge density, after a
Fourier transform

ρC(~r ) =
1

Z

(
N

N − 1

)3 N∑

j=1

φ∗j

(
N

N − 1
~r

)
φj

(
N

N − 1
~r

)
. (C.164)

Indeed, the charge density is defined with the origin of the coordinate system to be the center-of-
mass of the N -body system. The factor N

N−1 relates to this coordinate system the coordinates
variables of the φj overlaps, defined with the center-of-mass of the (N−1)-body frame in the origin.

ΨN
0~k

−~k

ΨN−1

j~k ′

~k − ~k ′

ΨN
0~k

~k + ~q − ~k ′

~q

−~k − ~q

Figure C.2: Electron scattering in the center-of-mass frame for a momentum transfer
~q.

19It may be worth checking if one may use it anyway if the problem is correctly written to eliminate the wrong
parity subspace.
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C.4 Energy density functional framework

It appears that a connection with the energy density functional framework is possible by
considering that EDF auxiliary states aim at mapping the internal density ρ[1](~r ). In this case
the EDF one-body density is computed using the usual formula in the ”laboratory frame”. The
next step is to approximate further the internal overlap by either HF or HFB wave functions. In
particular spectroscopic factors are then equal to quasiparticle occupations. However, several
points have been raised and should be kept in mind:

• for self-bound systems, spectroscopic factors might be greater than one in some cases. One
has to be careful here, as the spectroscopic factors in the EDF method are by essence lower
than one.

• When computing the charge density, correction factors from Eq. (C.164) have to be taken
into account for the coordinate change.

• The definition of ISDs with respect to either ~RN and ~RN−1 has to be studied. In particular,
it should be interesting to apply ρ̂[1](~r, ~r ′) and ρ̂[2](~r, ~r ′) to those ISDs and find associated
instrinsic densities, and whether they take a ”canonical” form or not.

• One the other hand, it should be interesting, starting from a Slater determinant to evaluate
numerically the density in its three definitions, and compare it to exact formulæ [24].

Following the analysis from Ref. [19], one can introduce the natural orbitals φα defined as the
complete orthonormal set of single-particle wave functions which diagonalizes ρ̂[1], i.e.

ρ̂[1](~r, ~r ′) =
∑

α

nα φ
∗
α(~r ′)φα(~r ) , (C.165)

where corresponding eigenvalues nα are called the natural occupation numbers. For fixed-center
systems, those are lower or equal to one, but may be larger in the present case of self-bound
systems. Indeed, in the N = 2 case from Sec. C.2.3, one gets ρ[1](x, x′) = 2 f(x) f∗(x′), which
has a nα = 2 eigenvalue.

One the one hand occupation numbers of the overlap functions ϕN
νi can be defined as [25]

Nνi =
1

Sνi

∫
d~r d~r ′ϕN

νi
∗
(~r ′) ρ[1](~r, ~r ′)ϕN

νi(~r ) =
1

Sνi

∑

α

nα |〈ϕN
νi|φα〉|2 . (C.166)

Thus one has

S2
νi = |〈ϕN

νi|ϕN
νi〉|2 ≤

∫∑

j

|〈ϕN
νi|ϕN

νj〉|2 =
∑

α

nα |〈ϕN
νi|φα〉|2 , (C.167)

and one always has
Sνi ≤ Nνi ≤ nmax , (C.168)

where dmax is the largest occupation number.

On the other hand natural orbitals are defined as the solutions of the eigenvalues equation
∫

dr′ r′
2
ρ[1](r, r′)φα(r′) = nα φα(r) . (C.169)

Taking the limit r → +∞ for occupied natural orbitals(20), one finds

φα(r) −→
r→+∞

C0
e−κ0 r

r

〈ϕN
00|φα〉
dα

, (C.170)

20For dα = 0, one has
R

P

j |〈φα|ϕ
N
νj〉|

2, thus a zero overlap between φα and all the overlap functions.
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Thus all natural orbitals have the same decay as the lowest bound eigenstate, as long as the
overlap 〈ϕN

00|φα〉 does not vanish, which is true only for non-interacting systems where natural
and overlap bases coincide. Expanding the overlaps in the natural basis

ϕN
νi(r) =

∑

α

〈ϕN
νi|φα〉φα(r) , (C.171)

and taking the limit of large r gives the sum rule

∑

α

〈ϕN
00|φα〉〈φα|ϕN

0i〉
dα

= δ0ν . (C.172)

C.5 Possible extensions

Internal degrees of freedom can be easily defined in the case of translational invariance, since the
center-of-mass motion is directly separated at the wave function level. Similar definitions would
be of very interest for other symmetries, such as rotational or particle number ones, however they
would involve more complex derivations. Nevertheless, this would allow to interpret accurately the
mapping between the EDF one-body density and the true internal one of the many-body system
for these additional symmetries. This might also help devising a proper Hohenberg-Kohn-like
theorem including the internal density with respect to all underlying symmetries of the problem,
as it is under study for the translational symmetry [24].
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Appendix D

Properties of nuclear forces

Abstract: This chapter presents detailed calculations concerning the properties of nuclear forces,
such as scattering phase shifts, nuclear matter equation of state or gap equation.
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D.1 Tensor interaction

D.1.1 One-pion exchange interaction and Yukawa potential

D.1.1.1 Scalar mesons

In non-relativistic field theory, the coupling between nucleons of mass m and scalar mesons is
described by the Lagrangian density

δL(~x ) = gΨ†(~x )φ(~x ) Ψ(~x ) = −δH(~x ) , (D.1)
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where Ψ(~x ) is the nucleon wave function and φ(~x ) the scalar meson field. The latter can be
expanded in a Fourier series as

φ(~x ) ≡
+∞∑

q=0

√
2π

ωq
kq e

i ~q·~x , (D.2)

where
ωq =

√
q2 + µ2 , (D.3)

µ being the meson mass, such that the meson density is ρ = 2ωq|φ|2. The hamiltonian of the
meson field can be cast into a superposition of harmonic oscillators of energies ωq and coordinates
kq. Taking a number of quanta nq in those oscillators equal to 0 (no meson) or 1 (one meson),
the resulting nucleon-nucleon interaction is obtained in second-order perturbation theory from
the time-ordered diagrams presented in Fig. D.1.

p1

p2

p1 − q

q

p2 + q

(a)

p1

p2

p1 + q
p2 − q

q

(b)

Figure D.1: Time-ordered diagrams for the one-meson scalar exchange. Time flows
from bottom to top.

In both cases the initial energy reads

E0 =
p2
1

2m
+

p2
2

2m
, (D.4)

whereas the intermediate state energy is

E
(a)
i =ωq +

(p1 − q)2
2m

+
p2
2

2m
for the diagram of Fig. D.1a, (D.5a)

E
(b)
i =ωq +

(p2 + q)2

2m
+

p2
1

2m
for the diagram of Fig. D.1b. (D.5b)

The entire expression for the process reads in second-order perturbation theory

(
〈f |δH|i〉〈i|δH|0〉

E0 − E(a)
i

)(a)

=g2

(
2π

ωq

)
1

p2
1

2m − ωq − (p1−q)2

2m

for Fig. D.1a, (D.6a)

(
〈f |δH|i〉〈i|δH|0〉

E0 − E(b)
i

)(b)

=g2

(
2π

ωq

)
1

p2
2

2m − ωq − (p2+q)2

2m

for Fig. D.1b, (D.6b)

where |0〉 is the initial state, |i〉 the intermediate state and |f〉 the final one. It is assumed that
all momenta involved are of the same order of magnitude. The meson resonance occurs for q ∼ µ,
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thus
p2

i

2m and (pi±q)2

2m terms are of order µ
m , and for light mesons µ ≪ m they are all small in

comparison with ωq. The total matrix element for the nucleon-nucleon interaction becomes then

〈f |δH|i〉〈i|δH|0〉
E0 − Ei

= −g2 4π

ω2
q

= −g2 4π

q2 + µ2
≡ v(~q ) . (D.7)

p1 p2

p1 + q p2 − q
q

Figure D.2: Feynman diagram for the one-scalar meson exchange.

Another method consists in evaluating directly the scattering amplitude of the Feynman
diagram from Fig. D.2. Using the usual Feynman rules, the matrix element for nucleon scattering
reads

M = 2×Ψ∗ gΨ
−2i π

q2 − µ2 + i ǫ
Ψ∗ gΨ , (D.8)

where implicit integrations on the nucleon fields are left out, and q ≡ (q0, ~q ) is the momentum
transfer. The static potential is obtained by setting q0 = 0 and looking at the three-momentum
transfer only, i.e.

M = Ψ∗ Ψ

[
4i π g2

q2 + µ2

]
Ψ∗ Ψ = 〈f | − i v(~q )|0〉 . (D.9)

Thus one finds for the interaction potential v(~q ) the same expression than in Eq. (D.7). Its
Fourier transform gives the interaction in coordinate space under the form of the well-known
Yukawa potential

v(~r ) =

∫
d~q

(2π)3
v(~q ) = −g2 e

−µr

r
. (D.10)

D.1.1.2 Pseudoscalar mesons

In the low energy limit, the long-range part of the vacuum nucleon-nucleon interaction is
dominated, in the meson exchange model, by the exchange of the lightest strongly interacting
particle, which is known to be the pion. For low energy processes, one can neglect virtual nucleon

pair and π productions, given that the characteristic momentum transfer is of the order of q2

m .
The non-relativistic Lagrangian for the axial nucleon-pion Nπ coupling reads

δL(~x ) = −gA Ψ†(~x )
[
~σ · ~Π

]
Ψ(~x ) , (D.11)

where gA = 1.25 is the axial coupling constant, and ~Π is the pseudo-scalar pion propagator

~Π =
1√
2fπ

[
τx~∇πx + τy ~∇πy + τ z ~∇πz

]
, (D.12)

fπ = 132 MeV being the pion decay constant. πxyz are components of the pion field, i.e.

π± =
πx ± i πy

√
2

, π0 = πz . (D.13)
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p1 p2

p1 + q p2 − q
q

a b

Figure D.3: Feynman diagram for one-pion exchange (pseudo-scalar meson).

The nucleon-nucleon scattering matrix element becomes using an implicit summation rule

M = 2×Ψ∗ −gA√
2fπ

σiτaqi Ψ
−2i πδab

q2 − µ2 + i ǫ
Ψ∗ gA√

2fπ

σjτ bqj Ψ , (D.14)

with the convention that ∂φ = −i qφ for an incoming scalar field. Thus for the static potential,
one finds

M =iΨ∗ σiτa Ψ4π

(
gA√
2fπ

)2 qiqj

q2 + µ2
Ψ∗ σjτa Ψ,

=− i 〈f |
[
−4π

(
gA√
2fπ

)2

(~τ1 · ~τ2 )
(~σ1 · ~q ) (~σ2 · ~q )

q2 + µ2

]
|0〉

=〈f | − i vπ(~q )|0〉 . (D.15a)

The one-pion interaction reads then in momentum space

vπ(~q ) = −4π

(
gA√
2fπ

)2

(~τ1 · ~τ2 )
(~σ1 · ~q ) (~σ2 · ~q )

q2 + µ2
. (D.16)

This potential can be separated in a central part and a pure tensor one according to

vπ(~q ) = −4π

(
gA√
2fπ

)2

(~τ1 · ~τ2 )

[
(~σ1 · ~q ) (~σ2 · ~q )− 1

3 (~σ1 · ~σ2 ) q2

q2 + µ2

+
1

3
(~σ1 · ~σ2 )− 1

3
µ2 (~σ1 · ~σ2 )

q2 + µ2

]
. (D.17)

One the other hand, one gets in coordinate space

vπ(~r ) =

∫
d~q

(2π)3
ei ~q·~rvπ(~q )

=− 4π

(
gA√
2fπ

)2

(~τ1 · ~τ2 )

∫
d~q

(2π)3
ei ~q·~r (~σ1 · ~q ) (~σ2~q )

q2 + µ2

= + 4π

(
gA√
2fπ

)2

(~τ1 · ~τ2 )
(
~σ1 · ~∇

)(
~σ2 · ~∇

)∫ d~q

(2π)3
ei ~q·~r 1

q2 + µ2

=

(
gA√
2fπ

)2

(~τ1 · ~τ2 )
(
~σ1 · ~∇

)(
~σ2 · ~∇

) e−µr

r
. (D.18a)
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To recover the tensor operator S12, gradients have to be evaluated, starting in the cartesian basis
where ~r =

∑
xi~ei. We obtain

∂i ∂j

(
e−µr

r

)
= e−µr ∂i ∂j

(
1

r

)
+∂i e−µr×∂j

(
1

r

)
+∂j e−µr×∂i

(
1

r

)
+

1

r
∂i ∂j e−µr . (D.19)

The action of partial derivatives in Eq. (D.18a) can then be computed using

∂i r =∂i

√
xi2 + xj2 + xk2

=
2xi

2
√
xi2 + xj2 + xk2

= r i , (D.20a)

∂i e−µr =∂i e−µ
√

xi2+xj2+xk2

= −µ 2xi

2
√
xi2 + xj2 + xk2

eµr = −µr ie−µr , (D.20b)

∂i e−µr2
=∂i e

−µ
“

xi2+xj2
+xk2

”

= −2µ r r i e−µr2
, (D.20c)

∂i

(
1

r

)
=− r i

r2
, (D.20d)

∂i

(
1

r2

)
=− 2

r i

r3
, (D.20e)

∂i r j =∂i

(
xj

√
xi2 + xj2 + xk2

)
=
δij
r
− xj ∂i

(
1

r

)
=
δij
r
− r i r j

r
, (D.20f)

where the normalized vector ~r = ~r
r , and its components r i = xi

r have been defined. This leads to

∂i e−µr × ∂j

(
1

r

)
=µ

r i r j

r2
e−µr = ∂j e−µr × ∂i

(
1

r

)
, (D.21a)

1

r
∂i ∂j e−µr =

1

r
∂i
(
−µ r j e−µr

)
µ

[
r i r j

r2
− δij
r2

+ µ
r i r j

r

]
e−µr , (D.21b)

e−µr ∂i ∂j

(
1

r

)
=

[
(1− δij) ∂i ∂j

(
1

r

)
+ δij ∂

i ∂j

(
1

r

)]
e−µr

=

[
(1− δij) ∂i

(
−r j 1

r2

)
+

1

3
δij ∆

(
1

r

)]
e−µr

=

[
(1− δij)

(
− 1

r2
∂i r j − r j ∂i

(
1

r2

))
− 4π

3
δijδ(~r )

]
e−µr

=

[
(1− δij)

(
3 r i r j − δij

r3

)
− 4π

3
δijδ(~r )

]
e−µr

=

[
(1− δij)

(
3 r i r j

r3

)
− 4π

3
δijδ(~r )

]
e−µr , (D.21c)

where an explicit separation of the cases i = j and i 6= j is done, and the Poisson law

∆

(
1

r

)
= −4π δ(~r ) , (D.22)

is used for i = j. Likewise, the spherical symmetry of 1
r allows to write

δij ∂
i ∂j

(
1

r

)
= δij ∂

i2
(

1

r

)
=

1

3
δij ∆

(
1

r

)
. (D.23)
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Therefore, one gets for the action of spin dot gradient operators on the Yukawa potential

(
~σ1 · ~∇

)(
~σ2 · ~∇

) e−µr

r
=

3∑

i,j=1

σi
1 σ

j
2 ∂

i ∂j

(
e−µr
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)

=
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σi
1 σ

j
2
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(1− δij)

(
3 r i r j

r3

)
− 4π

3
δijδ(~r )

+ µ

(
3r i r j
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− δij
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r i r j

r

)]
e−µr

=
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i,j=1

σi
1 σ

j
2

[(
3 r i r j − δij
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)
+ µ

(
3r i r j
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− δij
r2

+ µ
r i r j
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)]
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−
3∑

i,j=1

σi
1 σ

j
2

4π

3
δijδ(~r ) e−µr

=µ3
3∑
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σi
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j
2

[(
3 r i r j − δij

)(
1 +

1

3µr
+

1

(µr)2
+

1

(µr)3

)

+
1

3µr
δij

]
e−µr − 4π

3
(~σ1 · ~σ2 )δ(~r )

=µ3

[(
3
(~σ1 · ~r )(~σ2 · ~r )

r2
− (~σ1 · ~σ2 )

)(
1 +

1

3µr
+

1

(µr)2
+

1

(µr)3

)

+
1

3µr
(~σ1 · ~σ2 )

]
e−µr − 4π

3
(~σ1 · ~σ2 )δ(~r ) ,

(D.24)

using
3∑

i,j=1

δij
3 r i r j

r3
=

3
∑3

i=1 r
i r i

r3
=

3

r3
=

3∑

i,j=1

δij
r3
. (D.25)

The one-pion interaction reads thus in coordinate space

vπ(~r ) = µ3

(
gA√
2fπ

)2

(~τ1 · ~τ2 )

[
S12

(
1 +

1

3µr
+

1

(µr)2
+

1

(µr)3

)
e−µr

+
1

3
(~σ1 · ~σ2 )

[
e−µr

µr
− 4π

3µ3
δ(~r )

]]
, (D.26)

with the usual definition for the tensor operator

S12 =
3

r2
(~σ1 · ~r ) (~σ2 · ~r )− ~σ1 · ~σ2 . (D.27)

The last term in Eq. (D.26) is usually recast into the central part of the effective vertex, and the
”tensor interaction” corresponds only to the pure tensor contribution from one-pion exchange.

D.1.2 Properties of the tensor operator

The operator (3r ir j − δij) is traceless (given that
∑

i r
ir i = 1) and symmetric, thus transforms

as a ℓ = 2 object under rotations, since

r 1 = sin(θ) cos(ϕ) , r 2 = sin(θ) sin(ϕ) , r 3 = cos(θ) . (D.28)
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therefore

3r 1r 1 − δ11 =3 sin2(θ) cos2(ϕ)− 1 = +3

√
2π

15

[
−
√

2

3
Y 0

2 (θ, ϕ) + Y 2
2 (θ, ϕ) + Y −2

2 (θ, ϕ)

]
,

(D.29a)

3r 2r 2 − δ22 =3 sin2(θ) sin2(ϕ)− 1 = −3

√
2π

15

[√
2

3
Y 0

2 (θ, ϕ) + Y 2
2 (θ, ϕ) + Y −2

2 (θ, ϕ)

]
,

(D.29b)

3r 3r 3 − δ33 =3 cos2(θ)− 1 = +4

√
π

5
Y 0

2 (θ, ϕ) , (D.29c)

3r 1r 2 − δ12 =3 sin2(θ) cos(ϕ) sin(ϕ) = −3i

√
2π

15

[
Y 2

2 (θ, ϕ)− Y −2
2 (θ, ϕ)

]
, (D.29d)

3r 1r 3 − δ13 =3 sin(θ) cos(θ) cos(ϕ) = +3

√
2π

15

[
Y −1

2 (θ, ϕ)− Y 1
2 (θ, ϕ)

]
, (D.29e)

3r 2r 3 − δ23 =3 sin(θ) cos(θ) sin(ϕ) = +3i

√
2π

15

[
Y −1

2 (θ, ϕ) + Y 1
2 (θ, ϕ)

]
. (D.29f)

We recall here the expressions of some spherical harmonics in spherical coordinates

Y −2
2 (θ, ϕ) =

1

2

√
15

2π
e−2i ϕ sin(θ) cos θ , (D.30a)

Y −1
2 (θ, ϕ) =

1

2

√
15

2π
e−i ϕ sin(θ) cos θ , (D.30b)

Y 0
2 (θ, ϕ) =

1

4

√
5

π

(
3 cos2 θ − 1

)
, (D.30c)

Y 1
2 (θ, ϕ) =− 1

2

√
15

2π
ei ϕ sin(θ) cos θ , (D.30d)

Y 2
2 (θ, ϕ) =

1

2

√
15

2π
e2i ϕ sin(θ) cos θ . (D.30e)

Thus S12 can be written entirely in terms of Y n
2 (θ, ϕ) components, thus only contributes when

the angular momentum difference between the initial and final state is ∆L = 0,±2, except for
L = L′ = 0 matrix elements which are forbidden. For instance such a tensor will couple s and d
waves, and have non-zero matrix elements within p waves.

D.2 Partial wave expansion

The standard expansion of a plane wave in terms of spherical harmonics reads [26]

ei
~k·~r ≡ 〈~r |~k 〉 = 4π

∑

ℓ mℓ

iℓ Y mℓ

ℓ
∗(k̂)Y mℓ

ℓ (r̂) jℓ(k r) =
∑

ℓ

iℓ [ℓ ]Pℓ(k̂ · r̂) jℓ(k r) , (D.31)

using spherical Bessel functions of the first kind jℓ, Legendre polynomials Pℓ, and with [ℓ] ≡ 2ℓ+1.
Thus a given state |~k 〉 is expanded into

|~k 〉 ≡ 4π
∑

ℓ mℓ

iℓ | k ℓmℓ 〉Y mℓ

ℓ
∗(k̂) . (D.32)

For two-nucleon scattering, the relative orbital angular momentum L couples to the total
spin S of the nucleon pair to give a total two-body angular momentum J , which complexifies the
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problem. Still, a partial wave expansion of the nuclear potential v(~k,~k ) can be given. Indeed,
by analogy with Eq. (D.31), one can expand the spinor |~k SSz TTz〉 describing the two-body
relative motion(1) into

|~k SSz TTz〉 ≡ 4π
∑

L

∑

JJz

iL YJz

(LS)J

∗
(k̂)

√
π

2
|k (LS)JJzSz TTz〉 , (D.33)

in terms of spin 0 or 1 tensor spherical harmonics YJz

(LS)J(k̂) (Sec. A.2.4), and with

〈~r |k (LS)JJzSz TTz〉 ≡
√

2

π
YJz

(LS)J(r̂) jL(k r) |TTz〉 |Sz〉 . (D.34)

One has then

〈~r |~k SSz TTz〉 = 4π
∑

LJJz

iL YJz

(LS)J

∗
(k̂)YJz

(LS)J(r̂) jL(kr) |TTz〉 |Sz〉 , (D.35)

such that Eq. (D.31) can be easily recovered for both S = 0 and S = 1 spinors. Indeed

• S = 0 spinors can be identified with scalars, i.e.

ei
~k·~r = 4π

∑

LJJz

iL δLJY
Jz

L

∗
(k̂)Y Jz

L (r̂) jL(kr) = 4π
∑

LLz

iL Y Lz

L

∗
(k̂)Y Lz

L (r̂) jL(kr) , (D.36)

• for S = 1 one can take any component of the dimension-3 spinor to evaluate ei
~k·~r, that is

ei
~k·~r =uα · 4π

∑

LJJz

iL
∑

LzSz

∑

L′
zS′

z

Y Lz

L

∗
(k̂)〈LLz 1Sz |L 1 J Jz〉∗

〈
LL′

z 1S′
z

∣∣L 1 J Jz

〉
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z

L (r̂) jL(kr)CSz
1

∗
C

S′
z

1

=uα·4π
∑

L

iL
∑

LzSz

Y Lz

L

∗
(k̂)Y Lz

L (r̂) jL(kr)CSz
1

∗
CSz

1

=4π
∑

LLz

iL Y Lz

L

∗
(k̂)Y Lz

L (r̂) jL(kr) . (D.37)

One cannot couple states with different spins S/S′ since the bra and kets would correspond to
different L+ S coupling schemes. Using a representation where nucleons have a good isospin,
and from the fundamental symmetries of the nuclear interaction(2) the dependence of partial
waves on T is trivial and no recoupling is needed. The partial wave expansion of potential matrix
elements v(~k,~k ′) reads in a coupled scheme as

〈~k SSz TTz|v|~k ′ SSz TTz〉 =
π

2
(4π)2

∑

LL′

∑

JJ ′

∑

JzJ ′
z

iL
′−L YJ ′

z

(L′S)J ′

∗
(k̂′)YJz

(LS)J(k̂)

× 〈k (LS)JJzSz TTz|v|k′ (L′S)J ′J ′
zSz TTz〉 . (D.38)

The latter expression can be further simplified for realistic nuclear interactions using that (i) v
is invariant under the rotation of two particles, i.e. it does not depend on Jz/J

′
z, (ii) the total

angular momentum J is conserved, (iii) the spin/isospin and their projections are conserved, and
(iv) in the absence of tensor force or for S = 0 states, the orbital momentum L is also conserved.

1We choose here to use the spin/isospin projections Sz/Tz rather that projections of spin/isospin angular
momenta MS/MT . This constitutes a fully equivalent convention.

2That is, it only couples between states of same spin S and isospin T .



D.2. Partial wave expansion 99

If a tensor interaction is present it only couples states such that |L− L′| = 0, 2 and L,L′ > 0.
One has then

〈~k SSz TTz|v|~k ′ SSz TTz〉 =
π

2
(4π)2

∑

LL′

∑

JJz

iL
′−L YJz

(L′S)J

∗
(k̂′)YJz

(LS)J(k̂) vJSSzTTz

LL′ (k, k′) ,

(D.39)
where the short notation from Eq. (A.1a) is used. In most case one will not consider CIB/CSB
forces, or the isospin projection will be specified, that is the superscripts Sz/Tz can be dropped.
One is left with partial wave matrix elements of the kind vJST

LL′ (k, k′), with conventions from
Eqs. (A.1b,A.1c), that are called matrix elements of the interaction in a given partial wave.

Regarding the partial wave expansion of a nuclear potential v, the following remarks will
hold.

• The capital angular momentum notation L, J . . . will denote relative angular momenta for
two-body states.

• All terms involved are scalar under the rotation of the two particles, thus one has using
Wigner-Eckart’s theorem

〈k′ (L′S′)J ′J ′
zS

′
z|v|k (LS)JJzSz〉

=(−1)J−J ′
z

(
J ′ 0 J

−J ′
z 0 Jz

)
(k′ (L′S′)J ′S′

z||v||k (LS)JSz)

=
δJJ ′ δJzJ ′

z√
[J ]

(k′ (L′S′)JS′
z||v||k (LS)JSz) . (D.40)

Equivalently, in the total scheme |(LS)JJzSz TTz〉, the interaction is separable into its
isospin part vT and the angular momentum part vJ , and

〈k′ (L′S′)J ′J ′
zS

′
z T

′T ′
z|v|k (LS)JJzSz TTz〉

=
δJJ ′ δJzJ ′

z
δSzS′

z√
[J ]

(k′ (L′S′)JS′
z||vJ ||k (LS)JSz)

δTT ′ δTzT ′
z√

[T ]
(TTz||vT ||TTz) . (D.41)

Standard or reduced matrix elements of the interaction can thus be evaluated, whichever is
the easiest. Unless specified, Jz-, Sz- and Tz-dependencies will be dropped thereafter.

Note that in all rigor reduced matrix elements should be written as (L′||f(~k,~k ′)||L), however
we denote them by (k′ L′||f(~k,~k ′)||k L) to keep in mind that they represent projected
quantities which only depend on k and k′.

• Spin and isospin operators are defined such as (Pauli matrices)

σ̂z |S Sz〉 = Sz |S Sz〉 , σ̂2 |S Sz〉 = 4S(S + 1)|S Sz〉 . (D.42)
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The states |k (LS)JJzSz TTz〉 in the Vlow k code are normalized according to the convention

〈k′ (L′S′)J ′J ′
zS

′
z T

′T ′
z|k (LS)JJzSz TTz〉

=δSS′ δTT ′ δTzT ′
z

∫
d~r 〈k′ (L′S)J ′J ′

zS
′
z T

′T ′
z|~r 〉 〈~r |k (LS)JJzSz TTz〉

=δSS′ δTT ′ δTzT ′
z

2

π

∫
d~rYJ ′

z

(L′S)J ′

∗
(r̂) jL′(k′ r) YJz

(LS)J(r̂) jL(k r)

=δSS′ δTT ′ δTzT ′
z

2

π
δLL′ δJJ ′ δJzJ ′

z

∫ +∞

0
r2 dr jL(k′ r) jL(k r)

=δSS′ δTT ′ δTzT ′
z
δLL′ δJJ ′ δJzJ ′

z

δ(k − k′)
kk′

. (D.43)

In the following decoupling, we have used states |k (LS)JJzSz TTz〉 with a different normalization.
Indeed, according to our conventions the partial wave expansion of the Dirac delta 3D function
(Eq. (A.52)) reads

〈k′ (L′S′)J ′J ′
zS

′
z T

′T ′
z|k (LS)JJzSz TTz〉

=〈k′ (L′S′)J ′J ′
zS

′
z T

′T ′
z|I|k (LS)JJzSz TTz〉 (D.44)

=δJJ ′ δJzJ ′
z
δSS′ δSzS′

z
δTT ′ δTzT ′

z

(k′ L′||δ(~k − ~k ′)||k L)√
[L]

(D.45)

=δJJ ′ δJzJ ′
z
δSS′ δSzS′

z
δTT ′ δTzT ′

z
(D.46)

× 1√
[L]

∑

λ

(−1)λ δ(k − k′)
k2

√
[λ](k L′||

[
Y [λ](k̂)⊗ Y [λ](k̂′)

][0]
||k L)

=δJJ ′ δJzJ ′
z
δSS′ δSzS′

z
δTT ′ δTzT ′

z
δLL′

δ(k − k′)
k2

1

4π
. (D.47)

Hence in our conventions we must carry an extra 1/4π factor to have consistent results with the
Vlow k code.

Values of L, S, J and T for the first few partial waves that are to be evaluated are found in
Tab. {D.1}.

D.3 Scattering phase shifts

Scattering phase shifts will be defined through matrix elements of the scattering T -matrix. The
latter is best expressed in momentum space, and reads

+k −k

+k′ −k′

=

+k −k

+k′ −k′

+

+k −k

+k′ −k′

〈~k |T (E)|~k ′〉 =
m

~2
〈~k |v|~k ′〉 + P

∫
d~k ′′

(2π)3
〈~k |v|~k ′′〉 〈~k ′′ |T (E)|~k ′〉

E − E(k′′)
, (D.48)



D.3. Scattering phase shifts 101

L S J T

1S0 0 0 0 1

3S1 0 1 1 0

1P1 1 0 1 0

3P0 1 1 0 1
3P1 1 1 1 1
3P2 1 1 2 1

1D2 2 0 2 1

3D1 2 1 1 0
3D2 2 1 2 0
3D3 2 1 3 0

Table D.1: First partial waves that are to be evaluated.

where P denotes a principal value integration.

The nucleon-nucleon scattering phase shifts are defined through the scattering matrix. In the
case of a rapidly decreasing (more than 1/r) potential v(r), the scattering solution Ψ~k

at a given
energy E = ~2 k2/2m, m being the reduced mass, is a solution of the Schrödinger equation

(H0 + v) Ψ~k
= EΨ~k

. (D.49)

One can write Ψ~k
as φ~k

+χ~k
, where φ~k

is a solution of the free Schrödinger equation with energy
E

H0 φ~k
= E φ~k

, (D.50)

and the normalization 〈φ~k
|φ~k
〉 = 〈Ψ~k

|Ψ~k
〉 = 〈φ~k

|Ψ~k
〉. By definition of the T -matrix one has then

for uncoupled channels

T JST
L (k, k′;E)φJST

L,~k
= δ(k − k′)δ

(
E − ~2 k2

2µ

)
vJST
L ΨJST

L,~k
, (D.51)

where a wave function is expanded into

φ~k
(~r ) =

∑

L

(2L+ 1) iL φ
L,~k

(r)PL(cos θ) . (D.52)

One has in particular

H0 φ~k
(~r ) = E φ~k

(~r ) ⇒
[

~2

2µ

d2

dr2
+ k2 − L (L+ 1)

r2

]
φ

L,~k
(r) = 0 . (D.53)

For a plane wave one has φJST
L,~k

(r) = jL(kr), and in the absence of any scattering potential

the scattering solution corresponds asymptotically to a superposition of ingoing and outgoing
spherical waves, i.e.

φJST
L,~k

(r) −→
r→+∞

1

kr
sin
(
kr − Lπ

2

)
=

1

2i kr

[
e+i(kr−Lπ/2) − e−i(kr−Lπ/2)

]
. (D.54)

The scattering matrix is defined through the expression of the asymptotic behavior of Ψ~k
as an

equivalent linear superposition.
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D.3.1 Uncoupled channels

The restriction SJST
L of the scattering matrix to an uncoupled channel is a scalar, and the

scattered wave can be written as

ΨJST
L,~k

(r) −→
r→+∞

A
−1

2i kr

[
e−i(kr−Lπ/2) − SJST

L (E) e+i(kr−Lπ/2)
]
. (D.55)

The flux conservation ensures that |SJST
L |2 = 1, thus

SJST
L (E) ≡ e2i δJST

L (E) , (D.56)

where δJST
L (E) is the scattering phase shift at a given energy E. One has then, disregarding an

arbitrary phase

ΨJST
L,~k

(r) −→
r→+∞

A 1

kr
sin
(
kr − Lπ

2
+ δJST

L (E)
)
. (D.57)

The normalization constant A is fixed by the condition 〈ΨJST
L,~k
|φ

L,~k
〉 = 〈φ

L,~k
|φ

L,~k
〉, and is easily

obtained from boundary conditions on the radial scattering function [27], i.e.

ΨJST
L,~k

(r) −→
r→+∞

jL(kr) + tan(δJST
L (E))nl(kr)

−→
r→+∞

1

kr
sin
(
kr − Lπ

2

)
+ tan(δJST

L (E))
1

kr
cos
(
kr − Lπ

2

)

−→
r→+∞

1

cos(δJST
L (E))

1

kr
sin
(
kr − Lπ

2
+ δJST

L (E)
)
. (D.58a)

One gets then

φ
L,~k

(r) −→
r→+∞

1

kr
sin
(
kr − Lπ

2

)
, (D.59a)

ΨJST
L,~k

(r) −→
r→+∞

1

cos(δJST
L (E))

1

kr
sin
(
kr − Lπ

2
+ δJST

L (E)
)
. (D.59b)

In the framework of Ref. [26], the connection between the scattering phase shifts and the
T -matrix for uncoupled channels is obtained through the following procedure.

1. From Eqs. (D.49,D.50), we have





[
×φ∗~k

]
(H0 + v) Ψ~k

= EΨ~k

l −
φ∗~k
H†

0 = E φ∗~k

[
×Ψ~k

]
⇒ φ∗~k H0 Ψ~k

− φ∗~k H
†
0 Ψ~k

= −φ∗~k vΨ~k
. (D.60)

2. From Eq. (D.53) and a projection on the angular momentum into, one gets then

φ∗
L,~k

(r)
d2

dr2
ΨJST

L,~k
(r)−ΨJST

L,~k
(r)

d2

dr2
φ∗

L,~k
(r) = −m

~2
φ∗

L,~k
(r) vJST

L (r) ΨJST
L,~k

(r) . (D.61)

3. Integrating over r leads to

∫ R

r=0
dr r2

[
φ∗

L,~k
(r)

d2

dr2
ΨJST

L,~k
(r)−ΨJST

L,~k
(r)

d2

dr2
φ∗

L,~k
(r)

]

= −m
~2

∫ R

r=0
r2 dr φ∗

L,~k
(r) vJST

L (r) ΨJST
L,~k

(r) . (D.62)
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4. Using an integration by parts, we obtain

−
∫ R

r=0
dr

d

dr

[
r φ∗

L,~k
(r)

d

dr

(
rΨJST

L,~k
(r)
)
− rΨJST

L,~k
(r)

d

dr

(
r φ∗

L,~k
(r)
)]

= −m
~2

∫ R

r=0
r2 dr φ∗

L,~k
(r) vL(r) Ψ

L,~k
(r) . (D.63)

5. One gets then

−
[
r φ∗

L,~k
(r)

d

dr

(
rΨJST

L,~k
(r)
)
− rΨJST

L,~k
(r)

d

dr

(
r φ∗

L,~k
(r)
)]

r=R

= −m
~2

∫ R

r=0
r2 dr φ∗

L,~k
(r) vJST

L (r) ΨJST
L,~k

(r) . (D.64)

For very large distances r > R, the asymptotic solutions from Eqs. (D.59a,D.59b) can be used,
whereas the fully on-shell T -matrix, expressed in fm units, is recovered in the right-hand side.
One gets then

−
∫ R

0
dr r2 φ∗~k(r)T

JST
L (E, r)φ~k

(r)

=
1

k

[
− sin

(
kR+ L

π

2

) 1

cos(δJST
L (E))

cos
(
kR+ L

π

2
+ δJST

L (E)
)

+ cos
(
kR+ L

π

2

) 1

cos(δJST
L (E))

sin
(
kR+ L

π

2
+ δJST

L (E)
)]

(D.65a)

tan(δJST
L (E))

k
=− 〈k|T JST

L (E)|k〉 , (D.65b)

with the fully on-shell condition E = ~2 k2/m. Thus one recovers for uncoupled channels the
usual expression

T JST
L

(
k, k;

~2 k2

m

)
= −tan

(
δJST
L (k)

)

k
. (D.66)

D.3.2 Uncoupled channels: alternate method

Now let us present another method to recover Eq. (D.66) which will be useful for coupled
channels. Different methods exists to regularize the Lippmann-Schwinger equation stemming
from

lim
ǫ→0

1

k2 − q2 ± iǫ = P 1

k2 − q2 ∓ iπ δ(k
2 − q2) . (D.67)

This allows to define alternate T-matrices, i.e. such that

T± = v + v
1

E −H0 ± iǫ
T± . (D.68)

Within the formalism of Ref. [28]

• the representation T , called reactance matrix, reaction matrix or Heitler’s matrix, is related
to an hermitian representation of the scattering matrix in a stationary state formalism
through

S =
1− 1

2 i T

1 + 1
2 i T

, (D.69)
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• the representations T± provide a time-independent formulation of the scattering problem
in which the small positive/negative imaginary part selects an incoming or outgoing waves
formalism(3). One has then

T± = S ∓ 1. (D.70)

From Eqs. (D.69,D.70), one gets

T+ +
1

2
i T T+ = −i T . (D.71)

Non-vanishing matrix elements for the latter expression can be obtained on the energy shell using

T+
ab ≡ −2π i δ(Ea − Eb)T

+
ab , Tab ≡ 2π δ(Ea − Eb)Tab . (D.72)

This leads, on the energy shell, to

T+

(
k, k,

~2 k2

m

)
= T

(
k, k,

~2 k2

m

)
− i π T+

(
k, k,

~2 k2

m

)
T

(
k, k,

~2 k2

m

)
. (D.73)

Now one has to advocate a different normalization to remain in agreement with Ref. [26]. Indeed,
different conventions are possible for uncoupled channels scattering, e.g.

Ref. [26] Ref. [28]

T JST
L =− 1

π
tan(δJST

L ) T JST
L =− 1

k
tan(δJST

L ) (D.74)

T+JST
L =− 1

π
ei δJST

L sin(δJST
L ) T+JST

L =− 1

k
ei δJST

L sin(δJST
L ) (D.75)

which suggests that a normalization factor of k
π must be carried out at the level of Eq. (D.73)(4)

to recover the usual expression [29]

T+

(
k, k,

~2 k2

m

)
= T

(
k, k,

~2 k2

m

)
− i kT+

(
k, k,

~2 k2

m

)
T

(
k, k,

~2 k2

m

)
. (D.76)

The same renormalization leads, using Eq. (D.70), to

SJST
L = 1− 2i k T+JST

L , (D.77)

which allows to recover Eq. (D.75). One gets then easily

T+JST
L =

T JST
L

1 + i k T JST
L

, SJST
L = 1−2i k

T JST
L

1 + i k T JST
L

, T JST
L = − 1

ik

SJST
L − 1

SJST
L + 1

,

(D.78)
that is (Eq. (D.56))

T JST
L = −1

k
tan(δJST

L ) . (D.79)

3 In all rigor, the T -matrix as defined by Lippmann and Schwinger is T+ while the T -matrix defined at the
level of Eq. (D.48) is usually called the reactance K-matrix.

4This k/π factor comes from the use of non-normalized Bessel function.
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D.3.3 Coupled channels

For channels coupled by the tensor force (hence S = 1), each channel 3(J±)J is not an eigenstate
of the scattering matrix. The wave function for a state with total angular momentum J reads

φJST
~k

(~r ) ≡ φ̃JST
J− (r)YJz

(J− 1)J
(Ω) + φ̃JST

J+ (r)YJz

(J+ 1)J
(Ω) . (D.80)

The latter is written as a spinor

φJST
~k

(~r ) ≡





φ̃JST
J−,~k

(~r )

φ̃JST
J+,~k

(~r )



 . (D.81)

Likewise

ΨJST
~k

(~r ) ≡





Ψ̃JST
J−,~k

(~r )

Ψ̃JST
J+,~k

(~r )



 . (D.82)

For large values of r each radial function can be written as a linear superposition of an incoming
and an outgoing spherical wave, i.e.

φ̃J±(r) −→
r→+∞

1

2i kr

[
e−i(kr−J±π/2) − e+i(kr−J±π/2)

]
, (D.83a)

Ψ̃J1T
J− (r) −→

r→+∞

1

2i kr

[
A1 e

−i(kr−J−π/2) −B1 e
+i(kr−J−π/2)

]
, (D.83b)

Ψ̃J1T
J+ (r) −→

r→+∞

1

2i kr

[
A2 e

−i(kr−J+π/2) −B2 e
+i(kr−J+π/2)

]
. (D.83c)

The 2×2 restriction of the S-matrix between states L,L′ = J± is then introduced as B ≡ SJ1T A.
Two parametrizations of the scattering matrix, leading to different definitions for the phase shifts,
are commonly used(5).

1. The eigenphase shifts convention [30] where

SJ1T ≡UJ1T −1
exp(2i∆J1T )UJ1T , (D.84a)

UJ1T =


 cos(ǫJ) sin(ǫJ)

− sin(ǫJ) cos(ǫJ)


 , (D.84b)

∆J1T =


 δJα 0

0 δJβ


 ≡


 δα 0

0 δβ


 , (D.84c)

SJ1T =




cos2(ǫJ) e2i δα + sin2(ǫJ) e2i δβ cos(ǫJ) sin(ǫJ)
[
e2i δα − e2i δβ

]

cos(ǫJ) sin(ǫJ)
[
e2i δα − e2i δβ

]
cos2(ǫJ) e2i δβ + sin2(ǫJ) e2i δα


 .

(D.84d)

The latter corresponds, in first approximation, to writing the two eigenstates Ψ̃α and Ψ̃β

of the T -matrix as a superposition of the uncoupled solutions in the J± states, with a

5To not overload the notations the E-dependence of the phase shifts will be dropped in the following and
reintroduced in the final results.
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mixture parameter ǫJ . These eigenstates are defined such that ratios between incoming
and outgoing waves in J± channels are equal, i.e. B2/B1 = A2/A1 hence

Aα
2 /A

α
1 = tan(ǫJ) , Aβ

2/A
β
1 = − 1

tan(ǫJ)
. (D.85)

Using Eqs. (D.84a-D.84d), the equations that connect the amplitudes of incoming Ai and
outgoing Bi waves take the usual form for uncoupled channels for the eigenstates α and β,
that is(6)

Bα
i = e2i δα Aα

i , Bβ
i = e2i δβ Aβ

i . (D.86)

The convention
lim
E→0

ǫJ = 0 , (D.87)

ensures that near zero energy (no scattering) the α wave is mainly constituted by Ψ̃J1T
J−,~k

.

To relate these eigenphase shifts to the matrix elements of the T -matrix T J1T , the easiest
way consists in using the alternate approach from Sec. D.3.2. The easiest starting point
is(7)

T J1T
L1L2

=
[
− 1

i k
(S − I)× (S + I)−1

]J1T

L1L2
, (D.88)

where, in the 2× 2 subspace L = J±

(SJ + I)−1 =
1

Γ




(1 + e2iδβ ) cos(2ǫJ) −(e2iδα − e2iδβ ) cos(ǫJ) sin(ǫJ)

+(1 + e2iδα) sin(2ǫJ)

−(e2iδα − e2iδβ ) cos(ǫJ) sin(ǫJ) (1 + e2iδα) cos(2ǫJ)

+(1 + e2iδβ ) sin(2ǫJ)



,

(D.89a)

TJ =− 1

ikΓ




(e2iδα − e2iδβ ) cos(2ǫJ) (e2iδα − e2iδβ ) sin(2ǫJ)

+e2i(δα+δβ) − 1

(e2iδα − e2iδβ ) sin(2ǫJ) (e2iδβ − e2iδα) cos(2ǫJ)

+e2i(δα+δβ) − 1



, (D.89b)

Γ =(1 + e2i δα)(1 + e2i δβ ) . (D.89c)

One gets then after some manipulations

T J1T
J+J− + T J1T

J−J+

T J1T
J−J− − T J1T

J+J+

= tan(2 ǫJ) , (D.90a)

T J1T
J−J− + T J1T

J+J+ +
T J1T

J−J− − T J1T
J+J+

cos(2 ǫJ)
=− 2

i k

e2i δα − 1

e2i δα + 1
=

2

k
tan(δα) , (D.90b)

T J1T
J−J− + T J1T

J+J+ −
T J1T

J−J− − T J1T
J+J+

cos(2 ǫJ)
=

2

k
tan(δβ) . (D.90c)

6 Equations for β relate to those for α by the phase change ǫJ → ǫJ + π
2
.

7Given that S and T are matrices one has to take matrix inverses instead of simple quotients.
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This leads to the usual expression [26]

tan [2 ǫJ (E)] =

T J1T
J−J+

(
k, k;

~2 k2

m

)
+ T J1T

J+J−

(
k, k;

~2 k2

m

)

T J1T
J−J−

(
k, k;

~2 k2

m

)
− T J1T

J+J+

(
k, k;

~2 k2

m

) , (D.91a)

tan
[
δJ1T
J− (E)

]
=− k

2

[
T J1T

J−J−

(
k, k;

~2 k2

m

)
+ T J1T

J+J+

(
k, k;

~2 k2

m

)

+

T J1T
J−J−

(
k, k;

~2 k2

m

)
− T J1T

J+J+

(
k, k;

~2 k2

m

)

cos(2 ǫJ)

]
, (D.91b)

tan
[
δJ1T
J+ (E)

]
=− k

2

[
T J1T

J−J−

(
k, k;

~2 k2

m

)
+ T J1T

J+J+

(
k, k;

~2 k2

m

)

−
T J1T

J−J−

(
k, k;

~2 k2

m

)
− T J1T

J+J+

(
k, k;

~2 k2

m

)

cos(2 ǫJ)

]
, (D.91c)

where one does the usual (wrong) approximation, coming from the zero coupling limit
ǫj → 0 where the identification α ≡ J− and β ≡ J+ is exact, i.e.

δα ≡ δJ1T
J− (E) , δβ ≡ δJ1T

J+ (E) . (D.92)

2. The bar-phaseshifts [31], where the scattering matrix is now defined as

SJ1T ≡ exp(i δ̄) exp(2i ǭ) exp(i δ̄) , (D.93a)

SJ1T =


 exp(i δ̄J1T

J− ) 0

0 exp(i δ̄J1T
J+ )




 cos(2 ǭJ) i sin(2 ǭJ)

i sin(2 ǭJ) cos(2 ǭJ)




×


 exp(i δ̄J1T

J− ) 0

0 exp(i δ̄J1T
J+ )


 .

(D.93b)

In this case ǭJ provides the proportions into which an incoming beam of a given channel
divides between the two outgoing channels. Bar- and eigen-phaseshifts are related through

δJ1T
J+ + δJ1T

J− =δ̄J1T
J+ + δ̄J1T

J− , (D.94a)

sin(δ̄J1T
J− − δ̄J1T

J+ ) =
tan 2 ǭJ
tan(2 ǫJ)

, (D.94b)

sin(δJ1T
J− − δJ1T

J+ ) =
sin 2 ǭJ
sin(2 ǫJ)

. (D.94c)

Both of these conventions are equivalent for uncoupled channels. In the present work one will
use the bar-phaseshift convention, as it is done for the reference PWA93, and will remove the
overbar on the notations δ and ǫ. Scattering phase shifts can be given either as a function of the
relative momentum k or the energy in the laboratory frame Elab, which reads

Elab = 4
~2 k2

m
. (D.95)
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D.3.3.1 Coulomb corrections for proton-proton phase shifts

In the case of proton-proton scattering, the long-range Coulomb interaction modifies the previous
picture. Indeed, the scattering matrix has to be formulated in terms of asymptotic electromagnetic
states, since plane waves are not good asymptotic solutions any more. Different formulations of
the phase shifts in the presence of the electromagnetic interaction are then possible corresponding
to the type of functions that are used to match asymptotically the interacting and non-interacting
scattering solutions. They correspond to the notation δY

X , denoting the phase shift solution
with potential X with respect to the asymptotic solution of the potential Y. For instance for
neutron-neutron scattering if the nuclear strong interaction is noted N, the scattering phase
shifts defined at the level of Eq. (D.56) and Eqs. (D.84a-D.84d) correspond to δ0N , since the
plane waves used for the matching are solutions of the free Schrödinger equation. In the presence
of long-range electromagnetic interactions, the total potential is usually decomposed into

v = vN + vEM , (D.96)

where the electromagnetic interaction vEM contains

• the improved Coulomb potential vC1 + vC2 including relativistic 1/m2 corrections and
contributions of the 2γ-exchange diagrams [32]

vC1(r) =
α′

r
, (D.97a)

vC2(r) =− 1

2m2
p

[
(∆ + k2)

α

r
+
α

r
(∆ + k2)

]
, (D.97b)

where the energy-dependent coupling constant α′ is given from the fine structure constant
α by

α′ = α
m2

p + 2 k2

mp

√
m2

p + 2 k2
, (D.98)

• the magnetic moment interaction vMM , which reads for the proton-proton interaction [33]

vMM (r) = − α

4m2
p r

3

[
µ2

p S12 + (6 + 8κp)L · S
]
, (D.99)

where µp is the proton magnetic moment and κp = µp−1 the anomalous magnetic moment,

• the vaccuum polarization vV P [34; 35]

vV P (r) =
2αα′

3π r

∫ +∞

1
dx e−2me r x

(
1 +

1

2x2

) √
x2 − 1

x2
. (D.100)

The proton-proton scattering phase shifts are then usually defined as nuclear-electromagnetic
phase shifts δEM

N+EM , that is with respect to electromagnetic wave functions.

The easiest way to compute them is to use an an intermediate step the phase shift δC1
N+C1

of the Coulomb+nuclear interaction with respect to Coulomb wave functions (see for instance
Ref. [36]). For uncoupled channels, the asymptotic wave function can be written as

ΨJST
L,k (r) −→

r→+∞
F c

L(r) + tan(δJST
L )Gc

L(r) , (D.101)

where F c
L and Gc

L are regular and irregular Coulomb wave functions [37; 38]. Likewise, for a
short-range vanishing potential one has

Ψ̃JST
L,k (r) −→

r→+∞
F 0

L(r) + tan(δ̃JST
L )G0

L(r) , (D.102)
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where F 0
L and G0

L are so-called solutions of the Coulomb problem with zero charge, and usually
expressed in terms of Bessel and Neumann functions (Eq. (D.58a)). Now the two solutions can be
matched at an arbitrary distance R where δ̃JST

L has been calculated with a Fourier-transformed
Coulomb potential integrated up to the radius R [39]. Indeed, the two wave functions ΨJST

L,k

and Ψ̃JST
L,k describe the same system on the sphere with radius R+ ε. By matching logarithmic

derivatives, the phase shift δJST
L , corresponding to δC

N+C , can then be obtained from δ̃JST
L in a

Wronskian form by

tan(δJST
L ) =

tan(δ̃JST
L ) [FL, G

0
L] + [FL, F

0
L]

[F 0
L, GL] + tan(δ̃JST

L ) [G0
L, GL]

, (D.103)

where

[XL, YL] ≡
(
YL

dXL

d r
−XL

d YL

d r

)

r=R

. (D.104)

For instance, for vacuum NN forces such as AV18 that are expressed in momentum space through
a Fourier transform, phase shifts δJST

L are easily obtained by setting the value of R and computing
accordingly the values of δ̃JST

L . The radius R is determined such that the short-range nuclear
interaction vanishes beyond this value. At the same time, the truncated Fourier transform of
the Coulomb potential will have rapid oscillations for too large values of R. For these reasons, a
value R ≈ 10 fm is usually used [40]. For coupled channels, e.g. 3P2-

3F2, the same prescription
can be applied in the 2× 2 subspace of the scattering matrix [36].

Since electromagnetic corrections beyond the Coulomb potential are small, the phase shifts
δEM
N+EM can then be expanded into [33; 36]

δEM
N+EM = δC1

N+C1 + δC1
C1+C2 + δC1+C2

C1+C2+MM

+ δC1+C2+MM
C1+C2+MM+V P − δC1+N

N+C1+C2+MM+V P ≡ δC1
N+C1ρ+ φ+ τ − ∆̃ , (D.105)

where ρ is the improved Coulomb phase shift [41], φ the magnetic moment phase shift [33], τ
the vaccuum polarization phase shift [42] and ∆̃ the improved Coulomb-Foldy correction [41],
and are usually computed using a distorted-wave Born approximation. Now all L ≥ 1 partial
waves are only weakly affected by eletromagnetic corrections, and one has in first approximation

δEM
N+EM ≈ δC1

N+C1 . (D.106)

On the other hand, the phase shifts ρ, φ, τ and ∆̃ have to be explicitly computed for L = 0
partial waves, that is the 1S0 channel (there is no proton-proton interaction in the coupled
3S1-

3D1 channel corresponding to T = 0). However (i) the first three are independent of the
nuclear strong interaction vN , and (ii) the improved Coulomb-Foldy correction ∆̃0 is found to be
independent of vN at a reasonable precision [41]. For these reasons, tabulated values at low energy
can be used [41] instead of exact computations with a suitable precision for the scope of this thesis.

Finally, the contribution of the magnetic moment interaction vMM is supposed to be small
for np and nn interactions, that is one will use in these channels the standard phase shifts δ0N .

D.3.3.2 Scattering parameters

In addition to the scattering phase shifts, other quantities can be derived. In the case of a
short-range two-body potential, it can be shown that the phase shifts behave like

δJST
L ∼

k→0
k2L+1 , (D.107)
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which implies that s-wave scattering dominates at low-energy limit(8). At low energy, one can
expand the s-wave effective range function F0(k) in powers of k2 into [43]

F0(k) ≈ −
1

aS
+

1

2
rS k

2 + v2 k
4 + v3 k

6 + v4 k
8 + . . . (D.108)

where the s-wave scattering length aS , effective range rS and shape parameters v2/3/4 have been
introduced. For s waves the effective range function is written as

F0(k) = A0 k cot
[
δJST
0

]
+B0 . (D.109)

For uncharged particles, the effective range function corresponds to A0 = 1 and B0 = 0, that
is [44]

F0(k) = k cot
[(
δ0N
)JST

0

]
. (D.110)

In the case of proton-proton scattering, the effective range function has to be modified to
take into account electromagnetic corrections. Two solutions are possible, i.e.

• the effective range function using the Coulomb potential for the long-range part of the
interaction [45; 46], which reads

F0(k) = C0(η
′) k cot

[(
δC1
N+C1

)JST

0

]
+ 2 k η′ h(η′) , (D.111)

where η′ is the relativistic Coulomb parameter [47]

η′ =
αmp

2k

1 + 2 k2

m2
p√

1 + k2

m2
p

, (D.112)

and

C2
0 (η′) =

2π η′

e2π η′ − 1
, h(η′) = Re[Ψ(1 + i η′)]− ln(η′) , (D.113)

Ψ being the digamma function [3],

• the effective range function with respect to the full electromagnetic potential, which
reads [48; 49]

F0(k) = C0(η
′) k

(1 + χ0) cot
[(
δEM
N+EM

)JST

0

]
− tan τ0

(1 +A1)(1− χ0)

+ (1−A2) 2 k η′ h(η′) + k2 d [C4
0 (η′)− 1] + 2 η′ k ℓ0 . (D.114)

D.4 Nuclear matter equation of state

The total energy per particle of spin-unpolarized infinite matter calculated via MBPT can be
decomposed into an uncorrelated kinetic energy term and a correlation part as

E

A
(kn

F , k
p
F ) =

EK

A
(kn

F , k
p
F ) +

EV

A
(kn

F , k
p
F ). (D.115)

The kinetic part can be evaluated exactly, while the calculation of the correlation energy at
lowest (HF) order using a two-body interaction expanded in partial waves is given below in

8As long as the nucleons are not identical, in which case p-wave scattering dominates, but this is not the case
here.
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Sec. D.4.3. Similar formulæ may be applied for calculations at second order in MBPT or
resumming particle-particle ladders to all orders once (i) the vacuum interaction has been replaced
by an effective one, and (ii) the additional dependencies of the latter, for instance on the total
momentum ~K or the G-matrix starting energy ω, have been specified and properly treated. Such
a derivation uses a partial wave expansion of the vertex, and thus consists in a converging series.

The system is put in a box of arbitrary volume V, in which case the transformation from
discrete sums to continuous integrals reads

∑

~k

−→ V
(2π)3

∫
d~k . (D.116)

Obviously dependencies on the volume should disappear in the final expression with the intro-
duction of the total particle number A = ρV.

In the following, one assumes that the effect of superfluidity can be neglected for the EOS(9)

and pairing properties are treated separately by solving the gap equation without any feedback
on occupations numbers nor the binding energy.

D.4.1 Kinetic energy

The uncorrelated kinetic energy is immediately

EK(kn
F , k

p
F ) ≡

=
∑

σ q

V
(2π)3

∫

k<kq
F

d~k
~2 k2

2m
=
∑

q

3

5

~2 (kq
F )2

2m
ρq V . (D.117)

The kinetic energy per nucleon is thus

EK

A
(kn

F , k
p
F ) =

∑

q

3

5

~2 (kq
F )2

2m

ρq

ρ0
. (D.118)

Symetric matter

For symmetric matter, one has β = 0, that is

EK

A
(kF ) =

3

10

~2 k2
F

m
. (D.119)

Neutron matter

For neutron matter, one has β = 1, that is

EK

A
(kn

F ) =
3

5

~2 kn
F

2

2m
= 22/3 3

5

~2 k2
F

2m
. (D.120)

9This is incorrect for low-density neutron matter where one approaches a BCS-BEC phase transition.
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D.4.2 Correlation energy at the Hartree-Fock level: generalities

The correlation energy of spin-unpolarized INM reads at the Hartree-Fock level as a double trace
over the closed loops of the two-body potential v, i.e.

EV (kn
F , k

p
F ) ≡

=
1

2

∑

ijkl

〈 i j | v (1− P12) | k l 〉 ρki ρlj (D.121a)

=
1

2

∑

q1 q2

∫

|~k1|<k
q2
F

∫

|~k2|<k
q2
F

V d~k1

(2π)3
V d~k2

(2π)3

∑

S Sz

∑

T Tz

〈12 1
2 q1q2|T Tz〉2 ρq1

~k1
~k1
ρq2

~k2
~k2

× 〈~k1
~k2 S Sz T Tz | v (1− P~k

Pσ Pτ ) |~k1
~k2 S Sz T Tz 〉 . (D.121b)

The summations over ~ki run over occupied states ki < kqi

F , and thus implicitly depend on the
associated isospin qi, which explains why the sum over q1 and q2 cannot be resolved yet, contrary
to the one over σ1 and σ2. One has however

∑

Tz

〈12 1
2 qq|T Tz〉2 = T ,

∑

Tz

〈12 1
2 (−q)q|T Tz〉2 =

1

2
. (D.122)

D.4.3 Correlation energy at the Hartree-Fock level: partial wave expansion

The following derivation allows to evaluate the correlation energy of nuclear matter at the
Hartree-Fock level for a generic vertex v. It will be only valid when the Fermi sea is unique
(PNM) or identical for protons and neutrons (INM). In this case one will note E(kn

F , k
q
F ) ≡ E(kF ).

One has

EV (kn
F , k

p
F ) =

1

2

∑

~k1
~k2

∑

S Sz

∑

T Tz

ρ~k1
~k1
ρ~k2

~k2
〈~k1

~k2 S Sz T Tz | v (1− P~k
Pσ Pτ ) |~k1

~k2 S Sz T Tz 〉

(D.123a)

=
(2π)3

2V
∑

~k ~K

∑

S Sz

∑

T Tz

θ
(
kF −

∣∣∣ ~K/2 + ~k
∣∣∣
)
θ
(
kF −

∣∣∣ ~K/2− ~k
∣∣∣
)

× 〈~k S Sz T Tz | v (1− P~k
Pσ Pτ ) |~k S Sz T Tz 〉 , (D.123b)

using from the momentum space transformation

〈~k1
~k2 | v |~k1

~k2 〉 =
1

V 〈
~k | v |~k 〉 , (D.124)

and with
ρ ~K ~K = Θ(kF −K) , (D.125)

that is

• for symmetric matter kF = kn
F = kp

F and ρ ~K = Θ(kF −K),

• for neutron matter k3
F = 1

2k
n
F and ρ ~K = Θ(kn

F −K).
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From a partial wave expansion one gets then

EV (kn
F , k

p
F ) =

(4π)2 V
2

∫
d~k

(2π)3

∫
d ~K

(2π)3
θ
(
kF −

∣∣∣ ~K/2 + ~k
∣∣∣
)
θ
(
kF −

∣∣∣ ~K/2− ~k
∣∣∣
)

×
∑

S Sz
T Tz
L Lz

L′ L′
z

J Jz

Y Lz

L (k̂)Y
L′

z

L′

∗
(k̂)CL′ S J

L′
z Sz Jz

CL S J
Lz Sz Jz

(
1− (−1)L+S+T

)
vJSSzTTz

LL′ (k, k) .

(D.126)

using Eq. (A.10a), a L+ S summation, and

P~k
Pσ Pτ |~k S Sz T Tz 〉 = (−1)S+T | − ~k S Sz T Tz 〉 . (D.127)

The product of Clebsh-Gordan coefficients implies that Lz = L′
z, and since the interaction does

not depend on the angular momentum projection Jz, one gets

EV (kn
F , k

p
F ) =

(4π)2 V
2

∫
d~k

(2π)3

∫
d ~K

(2π)3
θ
(
kF −

∣∣∣ ~K/2 + ~k
∣∣∣
)
θ
(
kF −

∣∣∣ ~K/2− ~k
∣∣∣
)

×
∑

L Lz J
S T Tz

(
1− (−1)L+S+T

) [J ]

[L]
Y Lz

L (k̂)Y Lz

L

∗
(k̂) vJSTTz

L (k, k) . (D.128)

The computation of the integral

I(k, k̄F ) ≡
∫

d ~K

(2π)3
ρ ~K

2
+~k
ρ ~K

2
−~k
, (D.129)

uses the properties of the polynomials

P±
θ (K, kF ) =

K2

4
± kK cos(θ) + k2 − kF

2 , (D.130)

such that
θ
(
kF −

∣∣∣ ~K/2± ~k
∣∣∣
)

= 1⇔ P±(K) ≤ 0 . (D.131)

The determinant of P±
θ reads in both cases

∆ = k2 cos2(θ)− k2 + kF
2 = kF

2 − k2 sin2(θ) , (D.132)

from which two cases have to be considered.

1. ∆ < 0 in which case P±
θ (K) is of the sign of k2− kF

2. That is P±
θ (K) ≤ 0 requires k < kF ,

while ∆ < 0 requires at the same time sin(θ) > kF /k. Both conditions are exclusive, thus
the case ∆ < 0 is not possible.

2. ∆ ≥ 0 in which case sin(θ) ≤ kF /k. We note θ0 the critical angle verifying sin(θ0) = kF /k.
In this case P±

θ has two roots

K±
1 = ∓2k cos(θ)− 2

√
kF

2 − k2 sin2(θ) , K±
2 = ∓2k cos(θ) + 2

√
kF

2 − k2 sin2(θ) ,

(D.133)
and for K̄ ± = (K±

1 +K±
2 )/2

P±
θ (K̄ ±) = k2 sin2(θ)− kF

2 ≤ 0 . (D.134)
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One has then

K±
1 K±

2

P±
θ + 0 - 0 +

In I(k, kF ) both P−
θ and P+

θ have to be negative at the same time, and one will have to
consider two cases:

1. for θ ≤ π/2 one has cos(θ) ≥ 0 thus K̄ + ≤ K̄ −. The condition P±
θ (K) ≤ 0 can only be

fulfilled if K−
1 ≤ K+

2 , that is

K−
1 <K+

2 , k <kF , (D.135a)

k cos(θ)−
√

∆ <− k cos(θ) +
√

∆ , k cos(θ) <

√
kF

2 − k2 sin2(θ) . (D.135b)

That means that there is actually no critical angle θ0 in this case and the upper limit of
the integral over θ can be set to π/2. On the other hand one has K−

1 ≤ 0, that is for an
integral running on K in I(k, kF ) one has to take the interval [0,K+

2 ],

2. equivalently for θ > π/2 one finds that the integral on K in I(k, kF ) runs on [0,K−
2 ].

One gets then

I(k, kF ) =Θ(kF − k)
1

(2π)2

∫
sin(θ) dθ

∫

K∈D
K2 dK

=Θ(kF − k)
1

(2π)2

∫ π/2

0
sin(θ) dθ

∫ K+
2

0
K2 dK

+ Θ(kF − k)
1

(2π)2

∫ π

π/2
sin(θ) dθ

∫ K−
2

0
K2 dK

=
1

(2π)3
Θ(kF − k)

2π

3

∫ π/2

0
sin(θ) dθK+

2
3
+

1

(2π)3
Θ(kF − k)

2π

3

∫ π

π/2
sin(θ) dθK−

2
3

=
1

(2π)3
Θ(kF − k)

32π

3

[
k3 − 3 k kF + 2 kF

3
]
. (D.136)

Symmetric matter

One has for symmetric matter

ρ =
1

(2π)3

∑

σ

∑

q

4π

3
k3

F =
1

(2π)3
16π

3
k3

F , (D.137)

that is

I(k, kF ) = Θ(kF − k) 2 ρ

(
1− 3

2

k

kF
+

1

2

[
k

kF

]3
)
. (D.138)

One finds for symmetric matter EV (kF , kF ) ≡ EV (kF ), where

EV (kF ) =(4π)2 ρV
∫ kF

0

k2 dk

(2π)3

∑

L S J
T Tz

(
1− (−1)L+S+T

)
[J ] vJSTTz

L (k, k)

(
1− 3

2

k

kF
+

1

2

[
k

kF

]3
)
,

(D.139)
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where one recalls that [J ] ≡ J + 1. Thus, assuming charge-independence of the potential and
summing over Tz

(10)

EV

A
(kF ) =

4

π

∫ kF

0
k2 dk

∑

L S J T

′
[J ][T ] vJST

L (k, k)

(
1− 3

2

k

kF
+

1

2

[
k

kF

]3
)
, (D.140)

where
∑′ denotes that the sum runs only on odd values of L+ S + T .

Neutron matter

For neutron matter one has equivalently

ρ =
1

(2π)3

∑

σ

4π

3
k3

F =
1

(2π)3
8π

3
k3

F =
1

(2π)3
4π

3
kn

F
3 , (D.141)

that is using Eq. (D.136)

∫
d ~K

(2π)3
ρ ~K

2
+~k
ρ ~K

2
−~k

= I(k, kn
F ) = Θ(kn

F − k) 8 ρ

(
1− 3

2

k

kn
F

+
1

2

[
k

kn
F

]3
)
. (D.142)

Thus

EV

A
(kn

F , 0) ≡ EV

A
(kn

F ) =
48

π

∫ kn
F

0
k2 dk

∑

L S J

′
[J ] vJS1

L (k, k)

(
1− 3

2

k

kn
F

+
1

2

[
k

kn
F

]3
)
. (D.143)

D.4.4 Correlation energy at the Hartree-Fock evel: gaussian vertices

With gaussian vertices, the computation of INM/PNM equations of state can be done exactly,
without a (truncated) partial wave summation. One will consider a gaussian vertex of the kind

v(~r ) =
∑

ST

∑

i

CST
i [ρ0] e

− r2

µ2
i

∏

S

∏

T

≡
∑

ST

∑

i

vST
i (~r )

∏

S

∏

T

, (D.144)

containing if necessary density-dependent terms, depending on ρ0 in INM. The correlation energy
reads from Eq. (D.121b)

EV (kn
F , k

p
F ) =

1

2

∑

q1 q2

∑

~k1
~k2

∑

S Sz

∑

T Tz

〈12 1
2 q1q2|T Tz〉2 ρ~k1

~k1
ρ~k2

~k2

× 〈~k1
~k2 S Sz T Tz | v (1− P~k

Pσ Pτ ) |~k1
~k2 S Sz T Tz 〉

(D.145a)

=
1

2

∑

q1 q2

∑

~k1
~k2

∑

S T

[S]
∑

Tz

〈12 1
2 q1q2|T Tz〉2 ρ~k1

~k1
ρ~k2

~k2

×
∑

i

[
〈~k1

~k2 | vST
i |~k1

~k2 〉 − (−1)S+T 〈~k1
~k2 | vST

i |~k2
~k1 〉
]
,

(D.145b)

10This implies that one assumes that the vacuum interaction is charge-independent. In practical calculations,
one takes usually Tz = 0 for CIB forces.



116 Appendix D. Properties of nuclear forces

Now using the results from Sec. E.1, one finds directly

〈~k1
~k2 | vST

i |~k1
~k2 〉 =

(µi
√
π)3CST

i [ρ0]

V , (D.146a)

〈~k1
~k2 | vST

i |~k2
~k1 〉 =

(µi
√
π)3 e−

1
4
µ2

i |~k1−~k2|2 CST
i [ρ0]

V . (D.146b)

Thus

∑

~k1
~k2

〈~k1
~k2 | vST

i |~k1
~k2 〉 ρ~k1

ρ~k2
=V (µi

√
π)3CST

i [ρ0]

(2π)6
4π (kq1

F )3

3

4π (kq2

F )3

3
, (D.147a)

∑

~k1
~k2

〈~k1
~k2 | vST

i |~k2
~k1 〉 ρ~k1

ρ~k2
=V (µi

√
π)3CST

i [ρ0]

(2π)6
J(Xq1

i , X
q2
i ) , (D.147b)

where

Xq1
i =µi k

qi

F , (D.148a)

Xi =µi kF , (D.148b)

J(Xq1
i , X

q2
i ) =

π2

6

(
2

µi

)6

F (Xq1
i , X

q2
i ) (D.148c)

F (X,Y ) =e−(X+Y
2 )

2

(X2 + Y 2 −XY − 2)− e−(X−Y
2 )

2

(X2 + Y 2 +XY − 2)

+

√
π

2
erf

(
X + Y

2

)
(X3 + Y 3) +

√
π

2
erf

(
X − Y

2

)
(X3 − Y 3) , (D.148d)

erf(X) =
2√
π

∫ X

0
e−u2

du . (D.148e)

The box volume can be noted as

V =
A

ρ
= A

3π2 µ3
i

2X3
i

. (D.149)

The correlation energy reads then

EV (kn
F , k

p
F ) =A

∑

S T

[S]CST
i [ρ0]

∑

Tz

∑

q1 q2

∑

i

〈12 1
2 q1q2|T Tz〉2

×
[

1

48
√
π

(
Xq1

i Xq2
i

Xi

)3

− (−1)S+T 1

8
√
π

F (Xq1
i , X

q2
i )

X3
i

]
(D.150a)

=
A

8
√
π

∑

S T

[S]
∑

i

CST
i [ρ0]

X3
i

[
1

6

(
T Xn

i
6 + T Xp

i
6
+ (Xn

i X
p
i )3
)

− (−1)S+T

(
T F (Xn

i , X
n
i ) + T F (Xp

i , X
p
i ) +

F (Xn
i , X

p
i ) + F (Xp

i , X
n
i )

2

)]
.

(D.150b)

Symmetric matter

One has for symmetric matter

Xn
i =Xp

i = Xi , F (Xi, Xi) = e−X2
i (X2

i − 2)− 3X2
i + 2 +

√
π erf(Xi)X

3
i . (D.151a)

The potential energy is then

EV

A
(kF ) =

∑

S T

1

8
√
π

[S] [T ]
∑

i

CST
i [ρ0]

[
X3

i

6
− (−1)S+T F (Xi, Xi)

X3
i

]
. (D.152)
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The decomposition in (S, T ) channels is thus explicit.

Neutron matter

Likewise for neutron matter

Xn
i

3 =2X3
i Xp

i = 0 , (D.153a)

F (Xi, 0) =F (0, Xi) = F (0, 0) = 0 . (D.153b)

The potential energy is then

EV

A
(kn

F ) =
∑

S

1

4
√
π

[S]
∑

i

CS1
i [ρ0]

[
Xn

i
3

6
+ (−1)S F (Xn

i , X
n
i )

Xn
i

3

]
. (D.154)

D.4.5 Equivalence between the two methods

To check the consistency between the two approaches, we will consider the case of symmetric
matter. One gets from Eq. (D.140) with an explicit decomposition into direct and exchange
terms

EV

A
(kF ) =

2

π

∫ kF

0
k2 dk

∑

L S J T

[J ][T ]

×
[
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JST
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+
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+
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∑

S T

∑

i

CST
i [ρ0] (µi

√
π)3[S][T ]

×
[
k3

F

24
− (−1)S+T

(
2− 3 kF

2 µ2
i + e−kF

2 µ2
i (kF

2 µ2
i − 2) +

√
π erf(kF µi) kF

3 µ3
i

4 kF
3 µ6

i

)]

=
∑

S T

[S][T ]
1

8
√
π

∑

i

CST
i [ρ0]

[
X3

i

6
− (−1)S+T F (Xi, Xi)

X3
i

]
, (D.155)

that is the expression found in Eq. (D.152).
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Appendix E

Properties of v
[X]
BDRS

Abstract: this chapter presents the formal derivations of the properties of vBDRS in its different
realizations, in particular concerning momentum-space and partial-wave expressions that are
carried out in a pedestrian way.
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Let us recall that the Gogny effective force D1S is defined as a finite-range local effective
vertex that reads [50–53]

v(~ri) = δ(~r1 − ~r3 )δ(~r2 − ~r4 ) vD1X(~r, ~R,
←−
k

′
,
−→
k ), (E.1)

where

vD1X(~r, ~R ) =

2∑

i=1

[Wi +Bi Pσ −Hi Pτ −Mi Pσ Pτ ] e
− r2

µ2
i (E.2a)

+ t0(1 + x0Pσ)ρα(~R )δ(~r ) (E.2b)

+ iWLS (~σ1 + ~σ2)
←−
k

′ ∧ δ(~r )
−→
k . (E.2c)

that is, the Gogny vertex consists of a finite-range central force plus zero-range spin-orbit and
density-dependent terms. Recently, improved parametrizations have been recently proposed that
contain finite-range density-dependent terms, leading to the D2 parametrization [54]. It reads

vD2(~r, ~R ) =

2∑

i=1

[Wi +Bi Pσ −Hi Pτ −Mi Pσ Pτ ] e
− r2

µ2
i (E.3a)

+ [W3 +B3 Pσ −H3 Pτ −M3 Pσ Pτ ] e
− r2

µ2
3

(
ρα(~r1 ) + ρα(~r2 )

2

)
(E.3b)

+ iWLS (~σ1 + ~σ2)
←−
k

′ ∧ δ(~r )
−→
k . (E.3c)

On the other hand, the finite-range non-empirical vertex v
[X]
BDRS reads in all its realizations

v
[X]
BDRS(~r,

~R,Λ) =

N∑

i=1

[
∑

ST

CST
i [ρ0(~R ), ρ1(~R ), ~s0(~R ), ~s1(~R ),Λ] e

− r2

µ2
i

∏

S

∏

T

]
(E.4a)

+
∑

T

C1T
so [ρ0(~R ), ρ1(~R ), ~s0(~R ), ~s1(~R ),Λ]

× e−
r2

µ2
so (~σ1 + ~σ2) · ~r ∧

−→
k
∏

S=1

∏

T

(E.4b)

+
∑

T

C1T
t [ρ0(~R ), ρ1(~R ), ~s0(~R ), ~s1(~R ),Λ] e

− r2

µ2
t r2 S12

∏

S=1

∏

T

. (E.4c)

In the following we neglect CIB/CSB effects, that is v
[X]
BDRS is independent of Sz and Tz. If it

were the case, neither the expressions in momentum space or the partial wave expansion would
change since the nuclear interaction is always diagonal in such projections.

E.1 Matrix elements in momentum space

E.1.1 Conventions and preliminary remarks

In momentum space the plane wave basis is the natural basis of interest. The single-particle
basis is composed of plane waves with good spin and isospin projection, i.e.

〈~r |~k σ q〉 = ϕ~k
(~rσq) = ei

~k·~r χσ χq , (E.5)
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whose scalar product is given by

〈~k σ q|~k ′ σ′ q′〉 = (2π)3 δ(~k − ~k ′) δσσ′ δqq′ . (E.6)

Because of the convention used to define plane waves, integrals in momentum space are charac-
terized by

∫
d~k / (2π)3, such that (1)

〈~r |~r ′〉 =

∫
d~k

(2π)3
ei

~k·(~r−~r ′) = δ(~r − ~r ′) . (E.8)

One has then

v(~k1234) =

∫
d~r1234 e

−i[+~k1·~r1+~k2·~r2−~k3·~r3−~k4·~r4] v(~r1234) , (E.9a)

v(~k1234) =
1

(2π)12

∫
d~k1234 e

−i[−~k1·~r1−~k2·~r2+~k3·~r3+~k4·~r4] v(~k1234) . (E.9b)

E.1.2 Gogny interaction

E.1.2.1 Central terms

Disregarding the initial prefactor (WBHM terms) that only depends on spin and isospin degrees

of freedom and decouple from the radial part, the vertex reduces to a pure gaussian e
− r2

µi , which
leads for the direct term to

〈~kk
~kl|VD1X|~ki

~kj〉SSzTTz

i,dir =

∫
d~r1 d~r2 e

i [~r1·(~ki−~kk )+~r2·(~kj−~kl )] e
− r2

µi

=

∫
d~R ei

~R·( ~K− ~K ′)

∫
d~r ei ~r·~q e

− r2

µi

=(µi

√
π)3 e−

1
4
µ2

i q2
(2π)3 δ( ~K − ~K ′) . (E.10)

For the exchange term, one finds equivalently

〈~kk
~kl|VD1X|~ki

~kj〉SSzTTz

i,ex = (µi

√
π)3e−

1
4
µ2

i q′2 (2π)3 δ( ~K − ~K ′) .

E.1.2.2 Spin-orbit term

The spin-orbit part reads for the direct term

〈~kk
~kl|VD1X|~ki

~kj〉1SzTTz

so,dir = iWLS

∫
d~r1 d~r2 e

−i (~r1·~kk+~r2·~kl) (~σ1 + ~σ2) ·
←−
k′ ∧ δ(~r )

−→
k ei (~r1·~ki+~r2·~kj)

= iWLS (~σ1 + ~σ2) · ~k ′ ∧
[∫

d~r1 d~r2 ~r e
i [~r1·(~ki−~kk )+~r2·(~kj−~kl )]δ(~r )

]
~k

= iWLS (2π)3 δ( ~K − ~K ′) (~σ1 + ~σ2) · ~k ′ ∧
[∫

d~r ei ~r·~q δ(~r )

]
~k

= iWLS (2π)3 δ( ~K − ~K ′) (~σ1 + ~σ2) · ~k ′ ∧ ~k . (E.11)

1That is, we are using non-unitary Fourier transforms:

f̃(k) =

Z +∞

−∞

f(r) e−i k r dr , f(r) =
1

2π

Z +∞

−∞

f̃(k) e+i k r dk . (E.7)
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E.1.2.3 Density-dependent terms: D1X

In the case of D1X, the density-dependent term is zero range, thus

〈~kk
~kl|VD1X|~ki

~kj〉SSzTTz

ρ,dir =

∫
d~r1 d~r2 e

i [~r1·(~ki−~kk )+~r2·(~kj−~kl )] ρα(~R ) δ(~r )

=

∫
d~R ei

~R·( ~K− ~K ′)ρα(~R )

∫
d~r ei ~r·~q δ(~r )

=ρ̃α( ~K − ~K ′) . (E.12)

In unpolarized symmetric infinite nuclear matter, ρα(~R ) = ρ0, thus one gets

〈~kk
~kl|VD1X|~ki

~kj〉SSzTTz

ρ,dir = ρα
0 (2π)3 δ( ~K − ~K ′) .

E.1.2.4 Density-dependent terms: D2

In the case of the D2 interaction, the expression of the density-dependent term does not allow to
decouple the dependencies on (~r1, ~r2) through the variable change (~r, ~R ). However, this can be
achieved in infinite nuclear matter, where

ρ(~r )α + ρ(~r )α

2
= ρα

0 . (E.13)

By analogy with central terms, one gets then

〈~kk
~kl|VD2|~ki

~kj〉SSzTTz

ρ,dir = ρα
0 (µ3

√
π)3 e−

1
4
µ2

3q2
(2π)3 δ( ~K − ~K ′) . (E.14)

E.1.3 Microscopic vertex

In the following all realizations v
[X]
BDRS are treated simultaneously. At the [bare(2)] level, density

dependencies of the coupling constants vanish. In this section a compact notation for the coupling
constants CST

x [ρ0(~R ), ρ1(~R ), ~S0(~R ), ~S1(~R ),Λ] ≡ CST
x (~R,Λ) will be used.

E.1.3.1 Central terms

The vertex is here a pure gaussian term CST
i (~R,Λ)e

− r2

µi , which leads to

〈~kk
~kl|v[X]

BDRS|~ki
~kj〉ST

i,dir =

∫
d~r1 d~r2 e

i [~r1·(~ki−~kk )+~r2·(~kj−~kl )]CST
i (~R,Λ) e

− r2

µi

=

∫
d~R ei

~R·( ~K− ~K ′)CST
i (~R,Λ)

∫
d~r ei ~r·~q e

− r2

µi

=(µi

√
π)3 e−

1
4
µ2

i q2
C̃ST

i ( ~K ′ − ~K,Λ) , (E.15a)

where C̃ST
i ( ~K ′ − ~K,Λ) is the Fourier transform of the coupling constant that reads

C̃ST
i ( ~K ′ − ~K,Λ) =

∫
d~R e−i ~R·( ~K ′− ~K )CST

i (~R,Λ) . (E.16)

In the case of infinite nuclear matter, the coupling constant is independent of the center-of-mass
position, hence

〈~kk
~kl|v[X]

BDRS|~ki
~kj〉ST

i,dir = CST
i [ρ0, ρ1, ~S0, ~S1,Λ](2π)3(µi

√
π)3e−

1
4
µ2

i q2
δ( ~K − ~K ′) . (E.17)

For the exchange term, one finds

〈~kk
~kl|v[X]

BDRS|~ki
~kj〉ST

i,ex = (µi

√
π)3e−

1
4
µ2

i q′2CST
i [ρ0, ρ1, ~S0, ~S1,Λ](2π)3 δ( ~K − ~K ′) . (E.18)
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E.1.3.2 Spin-orbit terms

The matrix elements in momentum space read for the direct term

〈~kk
~kl|v[X]

BDRS|~ki
~kj〉1T

so,dir =

∫
d~r1 d~r2 e

−i (~r1·~kk+~r2·~kl)C1T
so (~R,Λ)

× e−
r2

µso (~σ1 + ~σ2) · ~r ∧
−→
k ei (~r1·~ki+~r2·~kj)

= (~σ1 + ~σ2) ·
[∫

d~r1 d~r2 ~r e
i [~r1·(~ki−~kk )+~r2·(~kj−~kl )]

× C1T
so (~R,Λ) e

− r2

µso

]
∧
~ki − ~kj

2

=i C̃1T
so ( ~K ′ − ~K,Λ) (~σ1 + ~σ2) ·

[∫
d~r e

− r2

µso ei ~r·~q (−i ~r )

]
∧ ~k

=− i C̃1T
so ( ~K ′ − ~K,Λ) (~σ1 + ~σ2) · ∇~q

[∫
d~r e

− r2

µso ei ~r·~q

]
∧ ~k

=− i (µso

√
π)3 C̃1T

so ( ~K ′ − ~K,Λ) (~σ1 + ~σ2) · ∇~q e
− 1

4
µ2

soq2 ∧ ~k

=i
µ2

so (µso
√
π)3

2
e−

1
4
µ2

soq2
C̃1T

so ( ~K ′ − ~K,Λ) (~σ1 + ~σ2) · ~q ∧ ~k

=i
µ2

so (µso
√
π)3

2
e−

1
4
µ2

soq2
C̃1T

so ( ~K ′ − ~K,Λ) (~σ1 + ~σ2) · ~k ′ ∧ ~k , (E.19)

where we used ∫
d~r e

− r2

µso ei ~r·~q (i ~r ) = ∇~q

∫
d~r e

− r2

µso ei ~r·~q . (E.20)

Likewise, one gets for the exchange part

〈~kk
~kl|v[X]

BDRS|~ki
~kj〉1T

so,ex = i
µ2

so (µso
√
π)3

2
e−

1
4
µ2

soq′2 C̃1T
so ( ~K ′ − ~K,Λ) (~σ1 + ~σ2) · ~k ′ ∧ ~k . (E.21)

E.1.4 Tensor terms

E.1.4.1 Simple gaussian case

Let us look at the matrix elements in momentum space of a tensor term having a simple gaussian
form factor, that is

vt(~r, ~R,Λ) ≡ C1T
t (~R,Λ) e

− r2

µt S12 . (E.22)

In this case, following the same steps as in Sec. E.1.2.2 for the direct term leads to

〈~kk
~kl|vt|~ki

~kj〉1T
dir =

∫
d~r1 d~r2 e

−i (~r1·~kk+~r2·~kl)C1T
t (~R,Λ) e

− r2

µt S12 e
i (~r1·~ki+~r2·~kj)

=−
∫

d~RC1T
t (~R,Λ) ei

~R·( ~K− ~K ′)
[
3
(
~σ1 · ∇~q

) (
~σ2 · ∇~q

)
+ ~σ1 · ~σ2

]

×
∫

d~r e
− r2

µt ei ~r·~q r−2 , (E.23)
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and
∫

d~r e
− r2

µt e−i ~r·~q r−2 =2π

∫ +∞

r=0
dre

− r2

µt

∫ π

θ=0
dθ sin(θ) e−i rq cos(θ)

=4π

∫ +∞

r=0
dre

− r2

µt
sin(rq)

rq

=
2π2

q

(
2

π

∫ +∞

0
dr e

− r2

µt
sin(rq)

r

)

=
2π2

q

(
2

π

∫ +∞

0
dr′ e−r′2 sin

(
2r qµt

2

)

r

)

=
2π2

q
erf
(qµt

2

)
, (E.24)

where for x ∈ R

erf(x) =
2√
x

∫ z

0
e−t2dt =

2

π

∫ +∞

0

e−t2 sin(2xt)

t
dt . (E.25)

Thus

〈~kk
~kl|vt|~ki

~kj〉1T
dir = −2π2 C̃1T

t ( ~K ′ − ~K,Λ)
[
3
(
~σ1 · ∇~q

) (
~σ2 · ∇~q

)
+ ~σ1 · ~σ2

] erf
( qµt

2

)

q
, (E.26)

and for the exchange term

〈~kk
~kl|vt|~ki

~kj〉1T
ex = −2π2 C̃1T

t ( ~K ′ − ~K,Λ)
[
3
(
~σ1 · ∇~q ′

) (
~σ2 · ∇~q ′

)
+ ~σ1 · ~σ2

] erf
(

q′µt

2

)

q′
. (E.27)

The following relations may be useful for handling properly the erf function

erf(+∞) =1 (E.28a)

erf(0) =0 (E.28b)
∫

erf(b+ az) dz =
b erf(b+ az)

a
+ z erf(b+ az) +

e−a2z2−2abz

a
√
π

(E.28c)

∫
zα−1 erf(az) dz =

zα

a

(
1

(az)α
√
π

Γ

(
α+ 1

2
, a2z2

)
+ erf(az)

)
, (E.28d)

Γ(a, z) =

∫ +∞

z
ta−1 e−t dt . (E.28e)

In all cases, one sees that a subsequent partial wave decomposition of such a term would lead at
best to a very complicated expression, and at worst to a non-analytical expression. This justifies

the use of a modified gaussian expression for the tensor part of v
[X]
BDRS that is easily expressed in

coordinate and momentum spaces.

E.1.4.2 Convenient tensor term for vBDRS

We construct another expression for the tensor interaction, where we approximate the one-pion
exchange iteraction in momentum space using a gaussian expression, i.e.

Vπ(~q ) ≈ Vt(~q ) = − (~τ1 · ~τ2 ) (~σ1 · ~q ) (~σ2 · ~q ) (µt

√
π)3 e−

1
4
µ2

t q2
, (E.29)

which is equivalent, in coordinate space, to

Vt(~r ) = (~τ1 · ~τ2 )
(
~σ1 · ~∇

)(
~σ2 · ~∇

)
e
− r2

µ2
t . (E.30)
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The gradient operators are applied using Eqs. (D.20a-D.20f), which leads to

∂i ∂j e
− r2

µ2
t =− 2µt ∂

j

(
xi e

− r2

µ2
t

)

=− 2

µ2
t

(
∂j xi × e−

r2

µ2
t + xi ∂j e

− r2

µ2
t

)

=

[
4

µ4
t

r2 r i r j − 2

µ2
t

δij

]
e
− r2

µ2
t

=

[
4

3µ4
t

(
3 r i r j − δij

)
− 2

µ2
t

δij

(
1

r2
− 2

3µ2
t

)]
r2 e

− r2

µ2
t . (E.31)

Thus one has in coordinate space

Vt(~r ) =
4

3µ4
t

(~τ1 · ~τ2 ) S12 r
2 e

− r2

µ2
t − 2

µ2
t

(~τ1 · ~τ2 ) (~σ1 · ~σ2 )

(
1

r2
− 2

3µ2
t

)
r2 e

− r2

µ2
t , (E.32)

which can be recast into central and pure tensor contributions. Such a decomposition can be
equivalently performed at the level of Eq. (E.29), i.e.

Vt(~q ) = − (~τ1 · ~τ2 )

[
(~σ1 · ~q ) (~σ2 · ~q )− 1

3
(~σ1 · ~σ2 ) q2

]
(µt

√
π)3 e−

1
4
µ2

t q2

+
1

3
(~σ1 · ~σ2 ) q2 (µt

√
π)3 e−

1
4
µ2

t q2
. (E.33)

The validity of this modified gaussian approximation has to be asserted a posteriori, by considering
deuteron or INM properties of vBDRS.

E.2 Partial wave expansion

In the following, the (2π)3 factor that appears in momentum space vertices will be only reinjected
in the final result. We did not a priori assume J-invariance of the nucleon-nucleon interaction
but the former is recovered in the end.

E.2.1 D1X/D2 interaction

E.2.1.1 Brink-Booker terms

The interaction is already separable in angular momentum, spin and isospin parts, and reads for
one Brink-Booker term

vBB,i
D1X (~k ′,~k ) =(µi

√
π)3 [Wi +Bi Pσ −Hi Pτ −Mi Pσ Pτ ] e

− 1
4
µ2

i q2

≡(µi

√
π)3 [Wi +Bi Pσ −Hi Pτ −Mi Pσ Pτ ] g

i(~k ′,~k ) . (E.34)

Therefore, using Eqs. (D.41,A.65,A.70) one gets

〈k′ (L′S′)J ′ T ′|vBB,i
D1X |k (LS)J T 〉 =δJJ ′ δSS′ δTT ′ (µi

√
π)3

(k′ L′||e− 1
4
µ2

i q2 ||k L)√
[L]

×
[
Wi + (−1)S+1Bi − (−1)T+1Hi − (−1)S+T Mi

]
,

(E.35)
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Using Eq. (A.95) leads then to

〈k′ (L′S′)J ′ T ′|vBB,i
D1X |k (LS)J T 〉 = (−1)L δJJ ′ δSS′ δTT ′ δLL′

4π
√

[L]
(µi

√
π)3 g̃i

L(k′, k)

×
[
Wi + (−1)S+1Bi − (−1)T+1Hi − (−1)S+T Mi

]
. (E.36)

E.2.1.2 Density-dependent terms

Density-dependent terms for D1X and D2 in symmetric INM are trivial from this point on. This
amounts to substituting in the previous expression for the central terms

(µi

√
π)3

g̃i
L(k′, k)

4π
→ δL0 , Wi → t0 , Bi → t0 x0 , Hi = Mi → 0 . (E.37a)

One finds then

〈k′ (L′S′)J ′ T ′|vρ
D1X|k (LS)J T 〉 = δJJ ′ δSS′ δTT ′ δLL′ δL0 t0 ρ

α
0

[
1 + (−1)S+1 x0

]
. (E.38)

This term only contributes in the L = 0 channel. On the other hand

〈k′ (L′S′)J ′ T ′|vρ
D2|k (LS)J T 〉 = (−1)L δJJ ′ δSS′ δTT ′ δLL′

4π
√

[L]
(µi

√
π)3 ρα

0 g̃
3
L(k′, k)

×
[
W3 + (−1)S+1B3 − (−1)T+1H3 − (−1)S+T M3

]
. (E.39)

E.2.1.3 Spin-orbit terms

There are both a very long and a very short way to perform the partial wave expansion. One
has for both D1X and D2

V so
D1X/D2(

~k ′,~k ) = iWLS (~σ1 + ~σ2) ~k
′ ∧ ~k . (E.40)

Using Eqs. (A.5,A.6b), one has

i~k ′ ∧ ~k =
1

2
i~q ∧ ~q ′ =

√
2

2
qq′

4π

3

[
Y [1](q̂)⊗ Y [1](q̂′)

][1]
. (E.41)

That is, Eq. (A.11) leads to

i~k ′ ∧ ~k =
√

2
4π

3

∑

λ1+λ2=1
µ1+µ2=1

(−1)λ2 k′
λ1+µ1 kλ2+µ2

12π√
[λ1]![λ2]![µ1]![µ2]!

×
[[
Y [λ1](k̂′)⊗ Y [λ2](k̂)

][1]
⊗
[
Y [µ1](k̂′)⊗ Y [µ2](k̂)

][1] ][1]

. (E.42)
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The two tensors can then be recoupled by analogy to LSJ coupling, then expanded using
Eq. (A.12) such that

i~k ′ ∧ ~k =
4π

3

√
2

∑

λ1+λ2=1
µ1+µ2=1

(−1)λ2 k′
λ1+µ1 kλ2+µ2

12π√
[λ1]![λ2]![µ1]![µ2]!

∑

f,g

√
[1][1][f ][g]

×





λ1 λ2 1

µ1 µ2 1

f g 1





[[
Y [λ1](k̂′)⊗ Y [µ1](k̂′)

][f ]
⊗
[
Y [λ2](k̂)⊗ Y [µ2](k̂)

][g]
][1]

=
4π

3

√
2

∑

λ1+λ2=1
µ1+µ2=1

(−1)λ2 k′
λ1+µ1 kλ2+µ2

12π√
[λ1]![λ2]![µ1]![µ2]!

×
∑

f,g

√
[1][1][f ][g]





λ1 λ2 1

µ1 µ2 1

f g 1




〈λ1 0µ1 0 |λ1 µ1 f 0〉 〈λ2 0µ2 0 |λ2 µ2 g 0〉

×
√

[λ1][λ2][µ1][µ2]

4π
√

[f ][g]

[
Y [f ](k̂′)⊗ Y [g](k̂)

][1]
. (E.43)

Hence

(k′ L′||i~k ′ ∧ ~k||k L) (E.44)

=
√

2
∑

λ1+λ2=1
µ1+µ2=1

(−1)λ2 k′
λ1+µ1 kλ2+µ2

× 1√
[λ1]![λ2]![µ1]![µ2]!

√
[1][1][L][L′]





λ1 λ2 1

µ1 µ2 1

L′ L 1





×
〈
λ1 0µ1 0

∣∣λ1 µ1 L
′ 0
〉
〈λ2 0µ2 0 |λ2 µ2 L 0〉

√
[λ1][λ2][µ1][µ2]√

[L′][L]
(−1)L

√
[1]

=3
√

6
∑

λ1+λ2=1
µ1+µ2=1

(−1)λ2+L k′
λ1+µ1 kλ2+µ2

√
[λ1][λ2][µ1][µ2]√

[λ1]![λ2]![µ1]![µ2]!





λ1 λ2 1

µ1 µ2 1

L′ L 1





×
〈
λ1 0µ1 0

∣∣λ1 µ1 L
′ 0
〉
〈λ2 0µ2 0 |λ2 µ2 L 0〉 . (E.45)

An alternative method is to apply directly Eq. (A.6b), i.e.

i~k ′ ∧ ~k =
√

2 kk′
4π

3

[
Y [1](k̂)⊗ Y [1](k̂′)

][1]
. (E.46)

Therefore, using Eq. (A.93)

(k′ L′||i~k ′ ∧ ~k||k L) =
√

2 kk′
4π

3
(k′ L′||

[
Y [1](k̂)⊗ Y [1](k̂′)

][1]
||k L)

=− δL1 δL′1

√
2 kk′

4π

3

√
[1]

4π

=− δL1 δL′1

√
2√
3
kk′ . (E.47)
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Thus the zero-range spin orbit only acts in the L = 1 partial waves, as it was expected (the
angular dependence of ~k ′ ∧ ~k is in sin(k̂ ′ · k̂) which is a Legendre polynomial of first order. The
two methods are obviously equivalent, given that

• the terms in Eq. (E.45) corresponding to λ1 = µ1 = 1 and λ2 = µ2 = 1 imply that one of
the Clebsh-Gordan coefficient is zero (if λ1 = µ1 = 1 then L = 0, thus we must have L′ = 1
to have a non-zero 9j, in which case 〈1 0 1 0 |1 1 1 0〉 = 0),

• regardless of the values of λ1, λ2, µ1, µ2, one has two of the summed terms in Eq. (E.45)
are equal to 0, and two equal to 1, thus

√
[λ1][λ2][µ1][µ2]√

[λ1]![λ2]![µ1]![µ2]!
=

1

2
. (E.48)

• for λ1 = µ2 = 1 and λ2 = µ1 = 0, the 9j coefficient in Eq. (E.45) indicates that L = L′ = 1.
The product of the Clebsh-Gordan coefficients is (maximum coupling)

〈1 0 0 0 |1 0 1 0〉 〈0 0 1 0 |0 1 1 0〉 = 1 . (E.49)

Using Eq. (A.3g), one has then

(k′ L′||i~k ′ ∧ ~k||k L) =(−1) δL1 δL′1
3
√

6

2
kk′








1 0 1

0 1 1

1 1 1




−





0 1 1

1 0 1

1 1 1








=− δL1 δL′1

√
2√
3
kk′ . (E.50)

Thus one has, using the previous comments as well as Eqs. (A.64,A.80)

〈k′ (L′S′)J ′ T ′|vso
D1X/D2|k (LS)J T 〉

=
1√
[J ]

WLS 〈k′ (L′S′)J ′ T ′|| (~σ1 + ~σ2) .
(
i~k ′ ∧ ~k

)
||k (LS)J T 〉

=(−1)L+S′+J δJJ ′ δTT ′ WLS

{
L′ S′ J

S L 1

}
(k′ L′||i~k ′ ∧ ~k||k L) (S||~σ1 + ~σ2||S′)

=(−1)S′+J δJJ ′ δTT ′ δL1 δL′1 δS1 δS′1WLS 2
√

6

√
2√
3
kk′

{
L′ S′ J

S L 1

}

=(−1)1+J δJJ ′ δTT ′ δL1 δL′1 kk
′ δS1 δS′1 4WLS

{
1 1 J

1 1 1

}

=(−1)J δJJ ′ δTT ′ δL1 δL′1 kk
′ δS1 δS′1 4WLS (−1)J+3 4− J(J + 1)

12

=WLS δJJ ′ δTT ′ δL1 δL′1 δS1
4− J(J + 1)

3
kk′ . (E.51)

E.2.1.4 Summary

For the final result one should not forget about exchange terms, which are equal to the direct
ones in the expansion (see Sec. A.4.5), so there is an extra 2 factor that should be be carried
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on. The latter is not written here to keep consistency with the conventions in the code that
computes low-momentum interactions. One finds

VD1X(1S0, k, k
′) =

1

2π2

2∑

i=1

(µi

√
π)3

g̃i
0(k

′, k)

4π
[Wi −Bi −Hi +Mi] + 2 t0 ρ

α
0 (1− x0) , (E.52a)

VD1X(3S1, k, k
′) =

1

2π2

2∑

i=1

(µi

√
π)3

g̃i
0(k

′, k)

4π
[Wi +Bi +Hi +Mi] + 2 t0 ρ

α
0 (1 + x0) , (E.52b)

VD1X(1P1, k, k
′) =− 1

2π2

2∑

i=1

(µi

√
π)3

g̃i
1(k

′, k)

4π
√

3
[Wi −Bi +Hi −Mi] , (E.52c)

VD1X(3P0, k, k
′) =− 1

2π2

2∑

i=1

(µi

√
π)3

g̃i
1(k

′, k)

4π
√

3
[Wi +Bi −Hi −Mi] +

8

3
WLS kk

′ , (E.52d)

VD1X(3P1, k, k
′) =− 1

2π2

2∑
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(µi

√
π)3

g̃i
1(k

′, k)
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√

3
[Wi +Bi −Hi −Mi] +

4

3
WLS kk

′ , (E.52e)

VD1X(3P2, k, k
′) =− 1

2π2

2∑
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(µi

√
π)3

g̃i
1(k

′, k)

4π
√

3
[Wi +Bi −Hi −Mi]−

4

3
WLS kk

′ , (E.52f)

VD1X(1D2, k, k
′) =

1

2π2

2∑

i=1

(µi

√
π)3

g̃i
2(k

′, k)
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√

5
[Wi −Bi −Hi +Mi] , (E.52g)

VD1X(3D1, k, k
′) =VD1X(3D2, k, k

′) = VD1X(3D3, k, k
′)

=
1

2π2
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√
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′, k)
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√

5
[Wi +Bi +Hi −Mi] , (E.52h)

where (see Sec. A.3.1)

g̃i
0(k

′, k)

4π
=
e−

1
4

µ2
i (k2+k′2)

Γi
sh(Γi) , (E.53a)
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√
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Γi =
1

2
µ2

i kk
′ . (E.53d)

Equivalently for D2

VD2(
1S0, k, k

′) =
1

2π2
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√
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VD2(
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′, k)
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5
[Wi +Bi +Hi −Mi] , (E.54h)

with the convention that g̃3
λ(k′, k) includes the extra ρα

0 factor for simplicity.

E.2.2 v
[X]
BDRS vertex

The partial wave expansion is performed in unpolarized symmetric nuclear matter, where in-

medium dependencies of the coupling constants of v
[X]
BDRS only relate, when necessary, to ρ0, i.e.

they carry no angular dependency.

E.2.2.1 Central terms

The central terms of vBDRS interaction are already separated in spin/isospin channels, i.e.

vST,i
BDRS(

~k ′,~k ′) = CST
i [ρ0,Λ] (µi

√
π)3 e−

1
4
µ2

i q2
∏

S

∏

T

. (E.55)

Using Eq. (A.75) and the results from Sec. E.2.1.1, one gets easily

〈k′ (L′S′)J ′ T ′|vS0T0,i
BDRS |k (LS)J T 〉

= (−1)L δJJ ′ δSS′ δSS0 δTT ′ δTT0 δLL′

4π
√

[L]
CS0T0

i [ρ0,Λ] (µi

√
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L(k′, k) . (E.56)

E.2.2.2 Finite-range spin-orbit

We have here

v1T,so
BDRS(

~k ′,~k ′) =i C1T
so [ρ0,Λ]
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√
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∏
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∏
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2
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S=1

∏

T

. (E.57)
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Using the same approach than in Sec. E.2.1.3 for a zero-range spin-orbit, one gets from Eq. (A.43)
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soq2 ~k ′ ∧ ~k =
√

2 kk′
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Hence, using Eq. (A.93)

(k′ L′||i e− 1
4
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soq2 ~k ′ ∧ ~k||k L)

= (−1)L′
3
√

2 kk′
∑
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〈λ 0 1 0 |λ 1L 0〉 . (E.59)

Some remarks hold at this point

• one cannot have L = L′ = 0 otherwise the 9j coefficient would be zero,

• the product of the Clebsh-Gordan coefficients is non-zero if and only if λ + 1 + L and
λ+ 1 + L′ are both even. Thta is, L and L′ must be of same parity. On the other hand,
the 9j coefficient requires L′ = L,L± 1, thus L = L′, such that the finite-range spin-orbit
(i) does not couple between partial waves of different angular momenta, and (ii) acts on all
L > 1 partial waves,

• in the limit µso → 0, that is

gso
λ (~k ′,~k ) = 1 , g̃so

λ (k′, k) = 4π δλ0 , (E.60)

using Eq. (A.3h) allows to recover the results from Sec. E.2.1.3.
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Using the previous remarks one can write
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Thus

〈k′ (L′S′)J ′ T ′|v1T0,so
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2

{
L 1 J

1 L 1

}

× kk′ [L]
∑

λ

[λ]
g̃so
λ (k′, k)

4π





λ λ 0

1 1 1

L L 1





(
λ 1 L

0 0 0

)2

. (E.62)

In particular the L = 1 partial wave will involve λ = 0, 2 components, whereas in the L = 3
waves one will have λ = 1, 3. The finite-range spin-orbit only acts by construction in the S = 1
channel, but if the explicit projector

∏
S0=1 were to be removed, the conclusion would be the

same since (~σ1 + ~σ2) already acts in the S = 1 channel only. Thus the S = 1 projection operator
is redundant, but is kept for simplicity.

We provide here the matrix elements for the first partial waves.

1. For L = L′ = 1, one gets

〈k′ (1S′)J ′ T ′|v1T0,so
BDRS |k (1S)J T 〉
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=(−1)1+J δJJ ′ δTT ′ δTT0 δSS′ δS1 36
√

3C1T0
so [ρ0,Λ]

µ2
so(µso

√
π)3

2

{
1 1 J

1 1 1

}

× kk′
∑

λ

[λ]
g̃so
λ (k′, k)

4π





λ λ 0

1 1 1

1 1 1





(
λ 1 1

0 0 0

)2

=δJJ ′ δTT ′ δTT0 δSS′ δS1 3
√

3C1T0
so [ρ0,Λ]

µ2
so(µso

√
π)3

2
(4− J(J + 1)) kk′

×
[
g̃so
0 (k′, k)

4π





0 0 0

1 1 1

1 1 1





(
0 1 1

0 0 0

)2

+ 5
g̃so
2 (k′, k)

4π





2 2 0

1 1 1

1 1 1





(
2 1 1

0 0 0

)2]

=δJJ ′ δTT ′ δTT0 δSS′ δS1C
1T0
so [ρ0,Λ]

µ2
so(µso

√
π)3

2
(4− J(J + 1)) kk′

×
[
1

3

g̃so
0 (k′, k)

4π
− 1

3
√

5

g̃so
2 (k′, k)

4π

]
. (E.63)

2. For L = L′ = 2 one gets

〈k′ (2S′)J ′ T ′|v1T0,so
BDRS |k (2S)J T 〉

=(−1)1+J δJJ ′ δTT ′ δTT0 δSS′ δS1 60
√

3C1T0
so [ρ0,Λ]

µ2
so(µso

√
π)3

2

{
2 1 J

1 2 1

}

× kk′
∑

λ

[λ]
g̃so
λ (k′, k)

4π





λ λ 0

1 1 1

2 2 1





(
λ 1 2

0 0 0

)2

=δJJ ′ δTT ′ δTT0 δSS′ δS1

√
15C1T0

so [ρ0,Λ]
µ2

so(µso
√
π)3

2
(−8 + J(J + 1)) kk′

×
[
3
g̃so
1 (k′, k)

4π





1 1 0

1 1 1

2 2 1





(
1 1 2

0 0 0

)2

+ 7
g̃so
3 (k′, k)

4π





3 3 0

1 1 1

2 2 1





(
3 1 2

0 0 0

)2]

=δJJ ′ δTT ′ δTT0 δSS′ δS1C
1T0
so [ρ0,Λ]

µ2
so(µso

√
π)3

2
(−8 + J(J + 1)) kk′

×
[

1

5
√

3

g̃so
1 (k′, k)

4π
− 1

5
√

7

g̃so
3 (k′, k)

4π

]
. (E.64)

3. For L = L′ = 3

〈k′ (3S′)J ′ T ′|v1T0,so
BDRS |k (3S)J T 〉
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=δJJ ′ δTT ′ δTT0 δSS′ δS1C
1T0
so [ρ0,Λ]

µ2
so(µso

√
π)3

2
(14− J(J + 1)) kk′

×
[

1

7
√

5

g̃so
2 (k′, k)

4π
− 1

7
√

9

g̃so
4 (k′, k)

4π

]
. (E.65)

4. For L = L′ = 4

〈k′ (4S′)J ′ T ′|v1T0,so
BDRS |k (4S)J T 〉

=δJJ ′ δTT ′ δTT0 δSS′ δS1C
1T0
so [ρ0,Λ]

µ2
so(µso

√
π)3

2
(−22 + J(J + 1)) kk′

×
[

1

9
√

7

g̃so
3 (k′, k)

4π
− 1

9
√

11

g̃so
5 (k′, k)

4π

]
. (E.66)

5. One can actually extrapolate from the previous results a generic formula for any angular
momentum L = L′ under the form

〈k′ (LS′)J ′ T ′|v1T0,so
BDRS |k (LS)J T 〉

=δJJ ′ δTT ′ δTT0 δSS′ δS1C
1T0
so [ρ0,Λ]

µ2
so(µso

√
π)3

2

× (−1)1−L (2 + L(L+ 1)− J(J + 1)) kk′

×
[

1

[L]
√

[L− 1]

g̃so
L−1(k

′, k)

4π
− 1

[L]
√

[L+ 1]

g̃so
L+1(k

′, k)

4π

]
.

(E.67)

E.2.2.3 Finite-range tensor

We consider here a generic tensor interaction with an arbitrary form factor f(q), such that the

formulæ obtained can be applied for the one-pion exchange and v
[X]
BDRS. We consider then(2)

v1T,t
ff (~k ′,~k ) = g(q)

[
3 (~σ1 · ~q ) (~σ2 · ~q )− (~σ1 · ~σ2) q

2
] ∏

S=1

∏

T

. (E.68)

By construction, and according to Sec. D.1, this tensor should only couple between states of
angular momentum L′ = L± 2 because the (~σ1 · ~σ2) q

2 counter term allows to write v1T,t
ff (~k ′,~k )

as a combination of Y m
2 spherical harmonics. One has then using Eqs. (A.5,A.6a)

g(q)
[
3 (~σ1 · ~q ) (~σ2 · ~q )− (~σ1 · ~σ2) q

2
]

=g(q)

[
9
[
σ

[1]
1 ⊗ q[1]

][0] [
σ

[1]
2 ⊗ q[1]

][0]
− (~σ1 · ~σ2) q

2

]

=q2 g(q)

[
12π

[
σ

[1]
1 ⊗ Y [1](q̂)

][0] [
σ

[1]
2 ⊗ Y [1](q̂)

][0]
− (~σ1 · ~σ2)

]

=q2 g(q)

(
12π

∑

f

√
[0][0][f ][f ]





1 1 f

1 1 f

0 0 0





×
[
σ

[1]
1 ⊗ σ

[1]
2

][f ] [
Y [1](q̂)⊗ Y [1](q̂)

][f ]
− (~σ1 · ~σ2)

)

2In the case of a one-pion exchange, the isospin projection operator
Q

T has to be replaced by τ1 · τ2.
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=12π q2 g(q)
∑

f

[f ]





1 1 f

1 1 f

0 0 0





√
[1][1]√
4π [f ]

〈1 0 1 0 |1 1 f 0〉

×
[[
σ

[1]
1 ⊗ σ

[1]
2

][f ]
⊗ Y [f ](q̂)

][0]

− q2 g(q) (~σ1 · ~σ2)

=12π q2 g(q)
∑

f

[f ]
(−1)f

√
[f ]

{
1 1 f

1 1 0

}
√

[f ]

(
1 1 f

0 0 0

)
3√

4π [f ]

×
[[
σ

[1]
1 ⊗ σ

[1]
2

][f ]
⊗ Y [f ](q̂)

][0]

− q2 g(q) (~σ1 · ~σ2)

=12π q2 g(q)
∑

f

[f ] (−1)f (−1)f

√
[1][1]

(
1 1 f

0 0 0

)
3√

4π [f ]

×
[[
σ

[1]
1 ⊗ σ

[1]
2

][f ]
⊗ Y [f ](q̂)

][0]

− q2 g(q) (~σ1 · ~σ2)

=12π q2 g(q)
∑

f

√
[f ]

(
1 1 f

0 0 0

)
1√
4π

×
[[
σ

[1]
1 ⊗ σ

[1]
2

][f ]
⊗ Y [f ](q̂)

][0]

− q2 g(q) (~σ1 · ~σ2) . (E.69)

The 3j coefficient requires f = 0, 1, 2. However

• the ~σ1 · ~σ2 factor exactly cancels out the f = 0 component, since

12π

(
1 1 0

0 0 0

)
1√
4π

[[
σ

[1]
1 ⊗ σ

[1]
2

][0]
⊗ Y [0](q̂)

][0]

= − 3√
3

[
σ

[1]
1 ⊗ σ

[1]
2

][0]
= ~σ1 · ~σ2 ,

(E.70)

• for f = 1 the 3j coefficient is zero.

Thus we only have f = 2(3). One has then

〈k′ (L′S′)J ′ T ′|v1T0,t
ff |k (LS)J T 〉

=δJJ ′ δTT ′ δTT0 12π
√

5

(
1 1 2

0 0 0

)
1√
[j]

1√
4π

× (k′ (L′S′)J ′||q2 g(q)
[[
σ

[1]
1 ⊗ σ

[1]
2

][2]
⊗ Y [2](q̂)

][0]

||k (LS)J)

=δJJ ′ δTT ′ δTT0

√
6
√

4π√
[J ]

× (k′ (L′S′)J ′||q2 g(q)
[[
σ

[1]
1 ⊗ σ

[1]
2

][2]
⊗ Y [2](q̂)

][0]

||k (LS)J) . (E.71)

3This was expected by construction of the operator S12 which is proportional to Y2.
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We need thus to evaluate

(k′ (L′S′)J ′||q2 g(q)
[[
σ

[1]
1 ⊗ σ

[1]
2

][2]
⊗ Y [2](q̂)

][0]

||k (LS)J)

=
√

[J ][J ′][0]





L′ L 2

S′ S 2

J ′ J 0





(k′ L′||q2 g(q)Y [2](q̂)||k L) (S′||
[
σ

[1]
1 ⊗ σ

[1]
2

][2]
||S)

= δJJ ′

√
[J ]√
[2]

{
L′ S′ J

S L 2

}
(k′ L′||q2 g(q)Y [2](q̂)||k L) (S′||

[
σ

[1]
1 ⊗ σ

[1]
2

][2]
||S) , (E.72)

where from Eq. (A.81)

(S||
[
σ

[1]
1 ⊗ σ

[1]
2

][2]
||S′) = 6

√
[2][S][S′]





1/2 1/2 1

1/2 1/2 1

S S′ 2




. (E.73)

Thus the 9j coefficient is only non-zero when S = S′ = 1. As expected, the finite-range tensor
only acts in the spin-triplet partial waves and the S0 = 1 projector in this term is also redundant.
We have then

(S||
[
σ

[1]
1 ⊗ σ

[1]
2

][2]
||S′) = 6 δSS′ δS1

√
[2][1][1]





1/2 1/2 1

1/2 1/2 1

1 1 2





= δSS′ δS1 2
√

5 . (E.74)

On the other hand, we can use the same decoupling-recoupling method from Sec. E.2.2.2 to
obtain

(k′ L′||q2 g(q)Y [2](q̂)||k L)

=
∑

µ1+µ2=2

√
4π [2]!

[µ1]![µ2]!
(−1)µ2 k′

µ1 kµ2 (k′ L′||g(q)
[
Y [µ1](k̂′)⊗ Y [µ2](k̂)

][2]
||k L)

=
∑

µ1+µ2=2

√
4π [2]!

[µ1]![µ2]!
(−1)µ2 k′

µ1 kµ2

×
∑

λ

g̃λ(q)(k′ L′||
[
Y [λ](k̂′)⊗ Y [λ](k̂)

][0] [
Y [µ1](k̂′)⊗ Y [µ2](k̂)

][2]
||k L)

=
∑

µ1+µ2=2

√
4π [2]!

[µ1]![µ2]!
(−1)µ2 k′

µ1 kµ2

×
∑

λ

g̃λ(q)(k′ L′||
[[
Y [λ](k̂′)⊗ Y [λ](k̂)

][0]
⊗
[
Y [µ1](k̂′)⊗ Y [µ2](k̂)

][2] ][2]

||k L)

=
∑

µ1+µ2=2

√
4π [2]!

[µ1]![µ2]!
(−1)µ2 k′

µ1 kµ2
∑

λ

g̃λ(q)
∑

a,b





λ λ 0

µ1 µ2 2

a b 2




√

[a][b][0][2] (E.75)

× (k′ L′||
[[
Y [λ](k̂′)⊗ Y [µ1](k̂′)

][a]
⊗
[
Y [λ](k̂)⊗ Y [µ2](k̂)

][b] ][2]

||k L)
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=
∑

µ1+µ2=2

√
4π [2]!

[µ1]![µ2]!
(−1)µ2 k′

µ1 kµ2
∑

λ

g̃λ(q)
∑

a,b





λ λ 0

µ1 µ2 2

a b 2




√

[a][b][0][2] (E.76)

×
√

[λ][µ1][λ][µ2]

4π
√

[a][b]
(k′ L′||

[
Y [a](k̂′)⊗ Y [b](k̂)

][2]
||k L)

× 〈λ 0µ1 0 |λµ1 a 0〉 〈λ 0µ2 0 |λµ2 b 0〉

=[2]
(−1)L′

(4π)3/2

∑

µ1+µ2=2

√
[2]![µ1][µ2]

[µ1]![µ2]!
(−1)µ2 k′

µ1 kµ2
∑

λ

[λ] g̃λ(q)





λ λ 0

µ1 µ2 2

L′ L 2





×
〈
λ 0µ1 0

∣∣λµ1 L
′ 0
〉
〈λ 0µ2 0 |λµ2 L 0〉 . (E.77)

Some comments can be made here and allow to recover generic features associated with tensor
coupling:

• as expected, the tensor couples between partial waves such as |L− L′| ≤ 2, otherwise the
6j coefficient would be zero,

• one cannot have L = L′ = 0, thus the tensor does not act on L = L′ = 0 partial waves,

• if µ1 = 0 then µ2 = 2 and λ = L′. To have

(
L′ 2 L

0 0 0

)
to be non-zero, L and L′ have to

be of same parity. Same goes if µ1 = µ2 = 1 to have a non-zero product of 3j symbols. As
expected, the tensor term only couples a partial wave of angular momentum L to partial
waves L′ = L,L± 2, except for L = L′ = 0.

Finally, one obtains

〈k′ (L′S′)J ′ T ′|v1T0,t
ff |k (LS)J T 〉

=δJJ ′ δTT ′ δTT0 δSS′ δS1
10
√

6

4π
(−1)L′

{
L′ S′ J

S L 2

}

×
∑

µ1+µ2=2

√
[2]![µ1][µ2]

[µ1]![µ2]!
(−1)µ2 k′

µ1 kµ2
∑

λ

[λ] g̃λ(q)





λ λ 0

µ1 µ2 2

L′ L 2





×
〈
λ 0µ1 0

∣∣λµ1 L
′ 0
〉
〈λ 0µ2 0 |λµ2 L 0〉 . (E.78)

Like in the finite-range spin-orbit case, we provide here the explicit contributions we are interested
in.

1. For L = L′ = 1, three terms are to be considered, i.e.
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• µ1 = µ2 = 1, in which case λ = 0, 2, and

〈k′ (1S′)J ′ T ′|v1T0,t
ff |k (1S)J T 〉

=δJJ ′ δTT ′ δTT0 δSS′ δS1
10
√

6

4π

{
1 1 J

1 1 2

} √
[2]![1][1]

[1]![1]!
kk′

×
[
[0] g̃0(q)





0 0 0

1 1 2

1 1 2




〈0 0 1 0 |0 1 1 0〉 〈0 0 1 0 |0 1 1 0〉

+ [2] g̃2(q)





2 2 0

1 1 2

1 1 2




〈2 0 1 0 |2 1 1 0〉 〈2 0 1 0 |2 1 1 0〉

]

=δJJ ′ δTT ′ δTT0 δSS′ δS1

{
1 1 J

1 1 2

}
kk′
[

5

π
g̃0(q) +

1

π
√

5
g̃2(q)

]
, (E.79)

• µ1 = 0, µ2 = 2, in which case λ = 1, and

〈k′ (1S′)J ′ T ′|v1T0,t
ff |k (1S)J T 〉

=− δJJ ′ δTT ′ δTT0 δSS′ δS1
10
√

6

4π

{
1 1 j

1 1 2

} √
[2]![0][2]

[0]![2]!
k2

× [1] g̃1(q)





1 1 0

0 2 2

1 1 2




〈1 0 0 0 |1 0 1 0〉 〈1 0 2 0 |1 2 1 0〉

=δJJ ′ δTT ′ δTT0 δSS′ δS1

{
1 1 J

1 1 2

}
k2

√
3

π
g̃1(q) , (E.80)

• µ1 = 2, µ2 = 0, in which case λ = 1, and immediately

〈k′ (1S′)J ′ T ′|v1T0,t
ff |k (1S)J T 〉 = δJJ ′ δTT ′ δTT0 δSS′ δS1

{
1 1 J

1 1 2

}
k′

2

√
3

π
g̃1(q) .

(E.81)

2. For L = L′ = 2, one has also three terms to evaluate, i.e.

• µ1 = µ2 = 1, in which case λ = 1, 3, and

〈k′ (2S′)J ′ T ′|v1T0,t
ff |k (2S)J T 〉

=− δJJ ′ δTT ′ δTT0 δSS′ δS1
10
√

6

4π

{
2 1 J

1 2 2

} √
[2]![1][1]

[1]![1]!
kk′

×
[
[1] g̃1(q)





1 1 0

1 1 2

2 2 2




〈1 0 1 0 |1 1 2 0〉 〈1 0 1 0 |1 1 2 0〉

+ [3] g̃3(q)





3 3 0

1 1 2

2 2 2




〈3 0 1 0 |3 1 2 0〉 〈3 0 1 0 |3 1 2 0〉

]
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=δJJ ′ δTT ′ δTT0 δSS′ δS1

{
2 1 J

1 2 2

}
kk′
[
−
√

15

π
g̃1(q) +

3
√

5

π
√

7
g̃3(q)

]
, (E.82)

• µ1 = 0, µ2 = 2, in which case λ = 2, and

〈k′ (2S′)J ′ T ′|v1T,t
ff |k (2S)J T 〉

=δJJ ′ δTT ′ δTT0 δSS′ δS1
10
√

6

4π

{
2 1 J

1 2 2

} √
[2]![0][2]

[0]![2]!
k2

× [2] g̃2(q)





2 2 0

0 2 2

2 2 2




〈2 0 0 0 |2 0 2 0〉 〈2 0 2 0 |2 2 2 0〉

=− δJJ ′ δTT ′ δTT0 δSS′ δS1

{
2 1 J

1 2 2

}
k2

√
15

π
√

7
g̃2(q) , (E.83)

• µ1 = 2, µ2 = 0, in which case λ = 1, and immediately

〈k′ (2S′)J ′ T ′|v1T0,t
ff |k (2S)J T 〉 = −δJJ ′ δTT ′ δTT0 δSS′ δS1

{
1 1 J

1 1 2

}
k′

2

√
15

π
√

7
g̃2(q) .

(E.84)

3. For the coupled channels L′ = 0, L = 2, one has λ = µ2, the 6j coefficient

{
2 1 J

1 0 2

}
is

non-zero if and only if J = 1 because of the triangle rule. This means the only diagonal
coupling to be considered will be 3S1-

3D1. We have then

• In the case µ1 = µ2 = 1, λ = 1 and

〈k′ (0S′)J ′ T ′|v1T0,t
ff |k (2S)J T 〉

=− δJJ ′ δJ1 δTT ′ δTT0 δSS′ δS1
10
√

6

4π

{
2 1 1

1 0 2

} √
[2]![1][1]

[1]![1]!
kk′

× [1] g̃1(q)





1 1 0

1 1 2

2 0 2




〈1 0 1 0 |1 1 2 0〉 〈1 0 1 0 |1 1 0 0〉

=δJJ ′ δJ1 δTT ′ δTT0 δSS′ δS1 kk
′

√
2

π
√

3
g̃1(q) , (E.85)

• In the case µ1 = 2, µ2 = 0, λ = 2 and

〈k′ (2S′)J ′ T ′|v1T0,t
ff |k (0S)J T 〉

=δJJ ′ δJ1 δTT ′ δTT0 δSS′ δS1
10
√

6

4π

{
2 1 1

1 0 2

} √
[2]![0][2]

[0]![2]!
k′

2

× [2] g̃2(q)





2 2 0

2 0 2

0 2 2




〈2 0 0 0 |2 0 2 0〉 〈2 0 2 0 |2 2 0 0〉

=δJJ ′ δJ1 δTT ′ δTT0 δSS′ δS1 k
′2 1

π
√

10
g̃2(q) , (E.86)
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• In the case µ1 = 0, µ2 = 2, one has λ = 0 and

〈k′ (0S′)J ′ T ′|v1T0,t
ff |k (2S)J T )

=δJJ ′ δJ1 δTT ′ δTT0 δSS′ δS1
10
√

6

4π

{
2 1 1

1 0 2

} √
[2]![0][2]

[0]![2]!
k2

× [0] g̃0(q)





0 0 0

0 2 2

0 2 2




〈0 0 2 0 |0 2 2 0〉 〈0 0 0 0 |0 0 0 0〉

=δJJ ′ δJ1 δTT ′ δTT0 δSS′ δS1 k
2 1

π
√

2
g̃0(q) . (E.87)

4. Finally for the coupled channels L = 0, L′ = 2, one simply has to invert the roles of k and
k′ in the L = 2, L′ = 0 case.

There seems to be a general relation for these reduced matrix elements. Indeed, one can write

• for L = L′

〈k′ (L′S′)J ′ T ′|v1T0,t
ff |k (L′S)J T 〉

=(−1)L′+1 δJJ ′ δTT ′ δTT0 δSS′ δS1F1(L
′, J)

×
[
[L′ + 1] kk′

g̃L′−1(q)

4π
√

[L′ − 1]
+ [L′] (k2 + k′

2
)
g̃L′(q)

4π
√

[L′]

+ [L′ − 1] kk′
g̃L′+1(q)

4π
√

[L′ + 1]

]
, (E.88)

where

F1(L
′, J) =

{
L′ 1 J

1 L′ 2

}
2
√

30
√
L′ (L′ + 1)√

[L′ − 1] [L′] [L′ + 1]
, (E.89)

• for L = L′ + 2, one necessarily has J = L′ + 1, and

〈k′ (L′S′)J ′ T ′|v1T0,t
ff |k (L′ + 2S)J T 〉

=(−1)L′
δJJ ′ δTT ′ δTT0 δSS′ δS1F2(L

′)

×
[
k2

2

g̃L′(q)

4π
√

[L′]
+ kk′

g̃L′+1(q)

4π
√

[L′ + 1]
+
k′2

2

g̃L′+2(q)

4π
√

[L′ + 2]

]
, (E.90)

where

F2(L
′) =

12
√

(L′ + 1)(L′ + 2)

[L′ + 2]
. (E.91)

E.2.2.4 One-pion exchange

For reference, we provide a partial wave decomposition of the one-pion exchange, whose associated
vertex reads in momentum space

vπ(~q ) =− 4π

(
gA√
2fπ

)2

(~τ1 · ~τ2 )
(~σ1 · ~q ) (~σ2 · ~q )

q2 + µ2

=− 4π

(
gA√
2fπ

)2

(~τ1 · ~τ2 )
1

q2 + µ2

[
(~σ1 · ~q ) (~σ2 · ~q )− 1

3
q2 (~σ1 · ~σ2) +

1

3
q2 (~σ1 · ~σ2)

]
.

(E.92)
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To achieve this, we need to decompose in partial waves the counter term

vct
π (~k ′,~k ) = g(q) q2 (~σ1 · ~σ2) (~τ1 · ~τ2) , (E.93)

which is trivial. Indeed, let G(q) = q2 g(q), one has then

〈k′ (L′S′)J ′ T ′|vct
π |k (LS)J T 〉

=δJJ ′ δTT ′ δSS′

∑

λ

G̃λ(q)
1√
[L]

(k′ L′||
[
Y [λ](k̂′)⊗ Y [λ](k̂)

][0]
||k L)

× (2S(S + 1)− 3) (2T (T + 1)− 3)

=(−1)L+S+T δJJ ′ δTT ′ δSS′ δLL′
G̃l(q)

4π

1√
[L]

(2S(S + 1)− 3) (2T (T + 1)− 3)

=− δJJ ′ δTT ′ δSS′ δLL′
G̃l(q)

4π

1√
[L]

(2S(S + 1)− 3) (2T (T + 1)− 3) . (E.94)

For the one-pion exchange vπ, one introduces (see Sec. A.3.5)

pf (~k ′,~k) ≡ q2

q2 +m2
π

1

qf
, (E.95)

in which case

g(q) =− 4π

3

(
gA√
2fπ

)2 1

q2 + µ2
≡ −4π

3

(
gA√
2fπ

)2

p2(~k ′,~k ) , (E.96a)

G(q) =− 4π

3

(
gA√
2fπ

)2 q2

q2 + µ2
≡ −4π

3

(
gA√
2fπ

)2

p0(~k ′,~k ) . (E.96b)

Thus after some manipulations, without the extra 2 factor for the exchange terms

vπ(1S0, k, k
′) =vπ(3S1, k, k

′)

=− (4π)2
(

gA√
2fπ

)2 p̃0
0(k

′, k)

4π
, (E.97a)

vπ(1P1, k, k
′) =3 (4π)2

(
gA√
2fπ

)2 p̃0
1(k

′, k)

4π
√

3
, (E.97b)

vπ(3P0, k, k
′) =

(4π)2

3

(
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2fπ

)2 p̃0
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√

3

− (4π)2
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)2 4
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2
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√

3
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′, k)
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√

5

]
,

(E.97c)

vπ(3P1, k, k
′) =

(4π)2

3

(
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2fπ

)2 p̃0
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′, k)

4π
√
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6
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√
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√
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]
,

(E.97d)

vπ(3P2, k, k
′) =

(4π)2

3

(
gA√
2fπ

)2 p̃0
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′, k)

4π
√

3

− (4π)2
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(
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]
,

(E.97e)
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vπ(1D2, k, k
′) =− (4π)2

(
gA√
2fπ

)2 p̃0
2(k

′, k)

4π
√

5
, (E.97f)

vπ(3D1, k, k
′) =− (4π)2

(
gA√
2fπ

)2 p̃0
2(k

′, k)
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√

5

− (4π)2
(

gA√
2fπ
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[
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√
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+ 5(k2 + k′

2
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√
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√

7

]
,

(E.97g)

vπ(3D2, k, k
′) =− (4π)2

(
gA√
2fπ

)2 p̃0
2(k
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√

5

− (4π)2
(

gA√
2fπ
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[
7 kk′

p̃2
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√
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2
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√
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√
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]
,

(E.97h)

vπ(3D3, k, k
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√
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(

gA√
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[
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√

3
+ 5(k2 + k′
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√
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√
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]
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(E.97i)

vπ(ǫ1, k, k
′) =(4π)2

(
gA√
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)2

4π
√
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k2 p̃

2
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√
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(E.97j)

where

p̃0
0(k

′, k)

4π
=1 +

m2
π

4 kk′
ln

(
m2

π + (k − k′)2
m2

π + (k + k′)2

)
, (E.98a)
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1(k

′, k)

4π
√
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+
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π (k2 + k′2 +m2

π)

16 k2k′2

)
ln

(
m2

π + (k − k′)2
m2

π + (k + k′)2
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E.2.2.5 Summary

Using the previous work, matrix elements in the L ≤ 2 partial waves for v
[X]
BDRS read

v
[X]
BDRS(

1S0, k, k
′) =

1

2π2

N∑
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i [ρ0,Λ] (µi

√
π)3

g̃i
0(k

′, k)

4π
, (E.99a)
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√
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Appendix F

Utilities for fitpack

Abstract: This chapter presents different objects that are used in fitpack, i.e. as standard
benchmark cost functions or the algorithm for generating random curves and surfaces.

Contents

F.1 Benchmarking cost functions . . . . . . . . . . . . . . . . . . . . . . . 147

F.1.1 Unimodal functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

F.1.2 Multimodal functions with many local optima . . . . . . . . . . . . . . . 149

F.1.3 Multimodal functions with few local optima . . . . . . . . . . . . . . . . 154

F.2 Random surface generator . . . . . . . . . . . . . . . . . . . . . . . . 156

F.2.1 One-dimension case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

F.2.2 Two-dimension case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

F.1 Benchmarking cost functions

To evaluate the performances of the simplex and fitpack algorithms, several cost functions fi

have been considered [55], corresponding to different situations in terms of (i) the existence of
secondary minima (multimodal functions), (ii) the smoothness of the cost surface around the
global minimum, and (iii) the dimensionality. For some of them we represent the surface in the
two-dimension case for illustration purpose. n corresponds to the dimension of the problem, and
the absolute optimum will be noted x∗. We also suggest values for the initial search space that
are large enough to catch the complexity of the problem.

F.1.1 Unimodal functions

Unimodal functions are rather easy to optimize, although the problem becomes complex when
the dimension increases.

• The so-called sphere function f1 is defined as a simple sum of squares, i.e.

f1(x) ≡
n∑

i=1

x2
i , (F.1a)

xi ∈[−100,+100] , x∗i = 0 , f1(x
∗) = 0 . (F.1b)



148 Appendix F. Utilities for fitpack

Figure F.1: The sphere function f1 for n = 2.

• The function f2 is defined as

f2(x) ≡
n∑

i=1

|xi|+
n∏

i=1

|xi| , (F.2a)

xi ∈[−10,+10] , x∗i = 0 , f2(x
∗) = 0 . (F.2b)

• The function f3 is defined as a Schwefels’s double sum function [56]. Its gradient is not
oriented along the principal axis due to the epistasis among their variables, such that any
algorithms that use the gradient converges very slowly.

f3(x) ≡
n∑

i=1




i∑

j=1

xj




2

, (F.3a)

xi ∈[−65,+65] , x∗i = 0 , f3(x
∗) = 0 . (F.3b)

• The function f4 is defined as

f4(x) ≡max
i
|xi| , (F.4a)

xi ∈[−100,+100] , x∗i = 0 , f4(x
∗) = 0 . (F.4b)

• The function f5 corresponds to Rosenbrock’s function [57], which is unimodal for n > 3, and
multimodal for n ≤ 3. The global minimum is inside a long, narrow, parabolic-shaped flat
valley, which is why f5 is often called Rosenbrock’s valley function. Due to the non-linearity
of the valley, many algorithms converge slowly because they change the direction of the
search repeatedly. To find the valley is trivial, however to converge to the global minimum
is difficult. One has then

f5(x) ≡
n−1∑

i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2

]
, (F.5a)

xi ∈[−30,+30] , x∗i = 1 , f5(x
∗) = 0 . (F.5b)
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Figure F.2: The Rosenbrock’s function f5 for n = 2.

• The function f6 corresponds to a discontinuous step function, defined as

f6(x) ≡
n∑

i=1

(⌊xi + 0.5⌋) , (F.6a)

xi ∈[−100,+100] , x∗i ∈ [0, 0.5) , f6(x
∗) = 0 . (F.6b)

F.1.2 Multimodal functions with many local optima

This class of functions corresponds to the most complex optimization problems, since they contain
many metastable traps that must be avoided.

• The function f7 corresponds to Salomon’s function, i.e.

f7(x) ≡− cos


2π

√√√√
n∑

i=1

x2
i


+

1

10

√√√√
n∑

i=1

x2
i + 1 , (F.7a)

xi ∈[−100,+100] , x∗i = 0 , f7(x
∗) = 0 . (F.7b)

• The function f8 corresponds to the normalized Schwefel’s function [56], where the global
minimum is geometrically distant, over the parameter space, from the next best local



150 Appendix F. Utilities for fitpack

minima. Therefore, search algorithms are potentially prone to convergence in the wrong
direction. It reads

f8(x) ≡
1

n

n∑

i=1

−xi sin(
√
|xi|) + 418.982887272(...) , (F.8a)

xi ∈[−500,+500] , x∗i = 420.968746(...) , f8(x
∗) = 0 . (F.8b)

Figure F.3: The Schwefel’s function f8 for n = 2.

• The function f9 is defined as the highly multimodal Rastrigin’s function [58], i.e.

f9(x) ≡
n∑

i=1

[
x2

i − 10 cos(2π xi) + 10
]
, (F.9a)

xi ∈[−5.12,+5.12] , x∗i = 0 , f9(x
∗) = 0 . (F.9b)
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Figure F.4: The Rastringin’s function f9 for n = 2.

• The function f10 corresponds to Whitley’s function defined as

f10(x) ≡
n∑

i=1

n∑

j=1

[
(100(x3

i − xj)
2 + (1− xj))

2

4000
− cos

(
100(x3

i − xj)
2 + (1− xj)

2
)

+ 1

]
,

(F.10a)

xi ∈[−500,+500] , x∗i = 1 , f10(x
∗) = 0 . (F.10b)

• The function f11 is the Griewank’s function that reads

f11(x) ≡
1

4000

n∑

i=1

x2
i −

n∏

i=1

cos

(
xi√
i

)
+ 1 , (F.11a)

xi ∈[−500,+500] , x∗i = 0 , f11(x
∗) = 0 . (F.11b)
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Figure F.5: The Griewank’s function f11 for n = 2.

• the generalized penalized functions f12 and f13 are defined as

f12(x) ≡
π

30

[
10 sin2(π y1) +

n−1∑

i=1

(yi − 1)2(1 + 10 sin2(π yi+1)) + (yn − 1)2

]
,

(F.12a)

xi ∈[−50,+50] , x∗i = −1 , f12(x
∗) = 0 , (F.12b)

u(x, a, k,m) =





k(x− a)m , x > a ,

0 , −a ≤ x ≤ a ,
k(−x− a)m , −a > x ,

yi = 1 +
xi + 1

4
, (F.12c)

and

f13(x) ≡
1

10

[
10 sin2(3π x1) +

n−1∑

i=1

(xi − 1)2(1 + sin2(3π xi+1))

+ (xn − 1)2(1 + sin2(2π xn))

]
, (F.13a)

xi ∈[−500,+500] , x∗i = 1 , f13(x
∗) = 0 . (F.13b)

• The function f14 corresponds to Ackley’s function [59] that reads

f14(x) ≡− 20 exp

[
−0.2

√
1

n

n∑

i=1

x2
i

]
− exp

[
1

n

n∑

i=1

cos(2π xi)

]
+ 20 + e , (F.14a)

xi ∈[−32,+32] , x∗i = 0 , f14(x
∗) = 0 . (F.14b)
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Figure F.6: The Ackley’s function f14 for n = 2.

• The function f15 is Easom’s function defined in two dimension, i.e.

f15(x) ≡− cos(x1) cos(x2) exp[−(x1 − π)2 − (x2 − π)2] , (F.15a)

xi ∈[−100,+100] , x∗i = π , f15(x
∗) = −1 . (F.15b)

Figure F.7: The Easom’s function f15.



154 Appendix F. Utilities for fitpack

F.1.3 Multimodal functions with few local optima

• The function f16 is defined as Hump’s ”camel back” function, which posseses two global
optima in two dimension, i.e.

f16(x) ≡
(

4− 2.1x2
2 +

x4
1

3

)
x2

1 + x1 x2 + (4x2
2 − 4)x2

2 , (F.16a)

xi ∈[−5,+5] , (F.16b)

x∗ =[0.089842(...),−0.712656(...)], [−0.089842(...), 0.712656(...)] , (F.16c)

f15(x
∗) =− 1.031628453(...) . (F.16d)

Figure F.8: The Hump’s function f16.

• The function f17 is Branin’s function, which posseses three global optima in two dimension,
i.e.

f17(x) ≡
(
x2 −

5.1

4π2
x2

1 +
5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 10 , (F.17a)

x1 ∈[−5,+10] , x2 ∈ [0,+15] , (F.17b)

x∗ =[−π, 12.275(...)], [π, 2.275(...)], [9.4278(...), 2.475(...)] , (F.17c)

f17(x
∗) =0.397887346(...) . (F.17d)
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Figure F.9: The Branin’s function f17.

• The functions f18, f19 and f20 corresponds to Shekel’s foxhole functions in four dimen-
sion [60], for m = 5, 7 and 10, respectively, where

f17/18/19(x) ≡−
m∑

i=1

1∑4
j=1(xj − aij)2 + ci

, (F.18a)

xi ∈[−10,+10] , x∗ = [4, 4, 4, 4] , (F.18b)

f17(x
∗) =− 10.1422(...) , f18(x

∗) = −10.3909(...) , f19(x
∗) = −10.5300(...) .

(F.18c)

where the various coefficients are defined in Tab. {F.1}.

i 1 2 3 4 5 6 7 8 9 10

ai1 4 1 8 6 3 2 5 8 6 7

ai2 4 1 8 6 7 9 5 1 2 3.6

ai3 4 1 8 6 3 2 3 8 6 7

ai4 4 1 8 6 7 9 3 1 2 3.6

ci 0.1 0.2 0.2 0.4 0.4 0.6 0.3 0.7 0.5 0.5

Table F.1: Parameters of the Shekel’s modified foxhole functions.

• The function f21 is another class of two-dimension Shekel’s function that reads

f21(x) ≡


 1

500
+

25∑

j=1

(
j + (x1 − a1j)

6 + (x2 − a2j)
6
)−1



−1

, (F.19a)

xi ∈[−65,+65] , x∗i = −32 , f21(x
∗) ≈ 1 , (F.19b)

where the various coefficients are defined in Tab. {F.2}
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i 1 2 3 4 5 6 7 8 9 10

a1i −32 −16 0 16 32 −32 −16 0 16 32

a2i −32 −32 −32 −32 −32 −16 −16 −16 −16 −16

i 11 12 13 14 15 16 17 18 19 20

a1i −32 −16 0 16 32 −32 −16 0 16 32

a2i 0 0 0 0 0 16 16 16 16 16

i 21 22 23 24 25

a1i −32 −16 0 16 32

a2i 32 32 32 32 32

Table F.2: Parameters of the Shekel’s alternative foxhole function.

• The function f22 is defined as Kowalik’s function in four dimension [61] and reads

f22(x) ≡
11∑

i=1

[
ai −

x1(b
2
i + bi x2)

b2i + bi x3 + x4

]2

, (F.20a)

xi ∈[−5,+5] , x∗ = [0.1928(...), 0.1908(...), 0.1231(...), 0.1358(...)] , (F.20b)

f22(x
∗) =0.0003075(...) , (F.20c)

where the various coefficients are defined in Tab. {F.3}

i ai 1/bi

1 0.1957 0.25

2 0.1947 0.5

3 0.1735 1

4 0.1600 2

5 0.0844 4

6 0.0627 6

7 0.0456 8

8 0.0342 10

9 0.0323 12

10 0.0235 14

11 0.0246 16

Table F.3: Parameters of the Kowalik’s function.

F.2 Random surface generator

As explained in the main document, the computation of theoretical error bars using the bootstrap
algorithm requires the construction of smooth random surfaces R in the interval [−1,+1] that
allows to compute variations of Vlow k within a given tolerance around an initial input, i.e. such
that

∀ i, j = 1 . . . N , 〈R(ki, kj)〉 = 0 , Var [R(ki, kj)] = 0 . (F.21)

We have devised a simple method to construct such functions in the case of a regular mesh
Xi = X0 + (i− 1)∆X .
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F.2.1 One-dimension case

The idea consists in computing at each bin a uniform random value α in [0, 1), then convoluting
it with the values obtained for all neighbors using an effective range function. Thus we define

∀ i = 1 . . . N , α(Xi) =U(0, 1) , (F.22a)

β(Xi) ≡
N∑

j=1

α(Xj) fKσ(Xi, Xj) , (F.22b)

fKσ(Xi, Xj) ≡ exp

[
−
(
Xi −Xj

σ

)2
]

Θ(|Xi −Xj | −K) , (F.22c)

γ(Xi) ≡2

(
β(Xi)

βmax(Xi)

)
− 1 , βmax(Xi) ≡

N∑

j=1

fKσ(Xi, Xj) ,

(F.22d)

where fKσ is taken as a gaussian smoothing function. The former definition allows the random
drawings at two separate bins to interact with each other. The γ curve verifies then for each i

〈γ(Xi)〉 =2

( 〈β(Xi)〉
βmax(Xi)

)
− 1 =

2

βmax(Xi)




N∑

j=1

〈α(Xj)〉 fKσ(Xi, Xj)


− 1

=
2

βmax(Xi)

βmax(Xi)

2
− 1 = 0 . (F.23)

Finally, one renormalizes γ into a distribution of variance 1/4, such that in average the random
variable

∀ i = 1 . . . N , R(Xi) ≡
γ(Xi)

4
√

Var [γ(Xi)]
, (F.24)

remains most of the time in the interval [−1,+1], using the property that a random variable
almost never deviates over twice its standard deviation, by analogy with the normal distribution.
Finally, we evaluate

Var [γ(Xi)] =

(
2

βmax(Xi)

)2

Var [β(Xi)]

=

(
2

βmax(Xi)

)2



N∑

j=1

Var [α(Xj)] f
2
Kσ(Xi, Xj)




=
1

3β2
max(Xi)

N∑

j=1

f2
Kσ(Xi, Xj) , (F.25)

using the fact that the random variables α(Xi) and α(Xj) are decorrelated for i 6= j, and

Var [U(0, 1)] =
1

12
. (F.26)

Results are presented in Fig. F.10 for σ = 0.1, K = 0.5 and a mesh of 50 points equally spaced
in [0, 2.6](1). We consider different cases, i.e.

1Obviously we have in mind the application of this method for realistic calculations where the mesh is defined
in momentum space. These values for σ and K correspond to a good compromise for practical applications with
no brutal variations of R.



158 Appendix F. Utilities for fitpack

1. one random drawing of α in [0, 1),

2. distribution of α according to a step function,

3. distribution of α where all values except one are zero,

4. large number of random drawings.

While the first three situations probe different regimes of the algorithm, the last one allows to
compute the distribution of R(Xi) for each i.

Random
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X

Figure F.10: Generation of random curves in one dimension for different cases pre-
sented in the text. The green curve presents the value of βmax(Xi),
while in the lower panels solid and dashed lines correspond to γ and R,
respectively.

We find that using simple algorithm leads to a biaised definition of R, as shown in Fig. F.11
on the distribution of R(Xi) at different points. Indeed (i) the distribution of R(XN/2) is of mean
zero and variance one, but (ii) for i = 1 or i = N , it is of variance one but is not centered. This
unwanted property corresponds to the fact that β is statistically more likely to reach βmax at
the boundaries of the problem, where only one half of the mesh is fully weighted by the effective
range function fKσ. A signature of such a problem is the non-constant value of βmax over the mesh.

The solution consists in considering extra points below X1 and over XN , i.e. a mesh {X ′}
which verifies

∀i = 1 . . . N , X ′
i = Xi , ∀j , X ′

j+1 −X ′
j = ∆X , (F.27)

such that βmax(Xi) ≡ βmax, as well as Var [γ(Xi)] ≡ Var [γ], are independent of Xi
(2). One has

then

∀ i = 1 . . . N , α(Xi) =U(0, 1) , (F.28a)

β(Xi) ≡
+∞∑

j=−∞

α(X ′
j) fKσ(Xi, X

′
j) , (F.28b)

γ(Xi) ≡2

(
β(Xi)

βmax

)
− 1 , (F.28c)

2This justifies the use of the Θ function in the expression of fKσ, which defines K as the maximum range of
the smoothing.
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Figure F.11: Distributions of γ(Xi) and R(Xi) at different positions.

R(Xi) ≡
γ(Xi)

4
√

Var [γ]
, (F.28d)

∀j0 , βmax ≡
+∞∑

j=−∞

fKσ(X ′
j0 , X

′
j) , (F.28e)

Var [γ] =
1

3β2
max

+∞∑

j=−∞

f2
Kσ(X ′

j0 , X
′
j) , (F.28f)

Results for this so-called unbiased case are presented in Figs. (F.12,F.13). One sees immediately
that (i) βmax is indeed independent of X in the area of interest (between the blue lines), (ii) the
distribution of R is also independent of X and corresponds at each point to a random variable
of mean zero and variance one, i.e. R is indeed a ”random curve” in [−1,+1] (in average).
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Figure F.12: Same as in Fig. F.10 in the unbiased case. Only values between the
blue lines are actually considered in the end, other bins are only in
intermediate steps of the generator.
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Figure F.13: Same as in Fig. F.11 in the unbiased case.
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F.2.2 Two-dimension case

The generalization of the previous algorithm for the two-dimension case, after all biases are
removed, reads then easily

∀ i, j = 1 . . . N , α(Xi, Xj) =U(0, 1) , (F.29a)

β(Xi, Xj) ≡
+∞∑

k=−∞

+∞∑

ℓ=−∞

α(X ′
k, X

′
ℓ) fKσ(Xi, X

′
k) fKσ(Xj , X

′
ℓ) , (F.29b)

γ(Xi, Xj) ≡2

(
β(Xi, Xj)

βmax

)
− 1 , (F.29c)

R(Xi, Xj) ≡
γ(Xi, Xj)

4
√

Var [γ]
, (F.29d)

∀k0, ℓ0 , βmax ≡
+∞∑

k=−∞

+∞∑

ℓ=−∞

fKσ(X ′
k0
, X ′

k) fKσ(X ′
ℓ0 , X

′
ℓ)

=

(
+∞∑

k=−∞

fKσ(X ′
k0
, X ′

k)

)2

, (F.29e)

Var [γ] =
1

3β2
max

(
+∞∑

k=−∞

f2
Kσ(X ′

k0
, X ′

k)

)2

. (F.29f)

Results are presented in Figs. (F.14,F.15) for equivalent cases as in the previous section(3). For
large number of samplings one sees that the distribution of R(Xi, Xj) is also independent of Xi

and Xj and corresponds at each point to a random variable of mean zero and variance one, i.e.
R is indeed a ”random surface” in [−1,+1] (in average).

3The ”Dirac” case corresponds to all values are zero except in a small region.
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Figure F.14: Generation of unbiased random curves in two dimensions for different
cases presented in the text. from top to bottom are displayed surface
plots of α, β and R.
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Résumé
La méthode de la fonctionnelle de la densité d’énergie (EDF) est un outil de choix pour l’étude
de la structure nucléaire à basse énergie, car elle permet des calculs de noyaux finis aussi bien
pour des systèmes stables connus expérimentalement dont les propriétés sont reproduites avec
une bonne précision, que pour des noyaux qui ne peuvent encore être produits mais sont prédits
théoriquement. Dans la première partie de cette thèse, une nouvelle méthode quantitative
est introduite pour caractériser l’existence et les propriétés des halos dans les noyaux moyens
et lourds, ainsi que pour étudier l’impact des corrélations d’appariement ou du choix de la
fonctionnelle d’énergie sur leur formation. Il apparait que la solidité de ces résultats est limitée
par le faible pouvoir prédictif des fonctionnelles utilisées jusqu’à présent qui sont ajustées sur des
données expérimentales. Dans la seconde partie de ce mémoire, nous entreprenons la construc-
tion de fonctionnelles non-empiriques qui reposent sur un nouveau paradigme pour les forces
nucléon-nucléon dans le vide, à savoir les interactions low-momentum engendrées par l’application
des méthodes du groupe de renormalisation. Ces potentiels à cœur mou sont utilisés comme
point de départ d’une stratégie à long terme faisant le lien entre les techniques modernes de
résolution du problème à N corps et les méthodes EDF. Nous donnons ainsi des perspectives

pour construire différentes réalisations d’un modèle non-empirique d’interaction v
[X]
BDRS incluant

les effets de milieu à différents niveaux d’approximation et pouvant être traité dans les codes
dédiés à la structure nucléaire. Dans ce mémoire, la première étape de ce travail est initiée par
l’ajustement d’une représentation opératorielle des forces low-momentum dans le vide réalisé
au moyen d’un algorithme parallèle d’intelligence artificielle. Les premiers résultats mettent en
valeur la possibilité d’incorporer la physique nécessaire à la structure de basse énergie dans ce
vertex gaussien.

Abstract
The energy density functional (EDF) formalism is the tool of choice for large-scale low-energy
nuclear structure calculations both for stable experimentally known nuclei whose properties are
accurately reproduced and systems that are only theoretically predicted. We highlight in the
present dissertation the capability of EDF methods to tackle exotic phenomena appearing at the
very limits of stability, that is the formation of nuclear halos. We devise a new quantitative and
model-independent method that characterizes the existence and properties of halos in medium-
to heavy-mass nuclei, and quantifies the impact of pairing correlations and the choice of the
energy functional on the formation of such systems. These results are found to be limited by the
predictive power of currently-used EDFs that rely on fitting to known experimental data. In the
second part of this dissertation, we initiate the construction of non-empirical EDFs that make
use of the new paradigm for vacuum nucleon-nucleon interactions set by so-called low-momentum
interactions generated through the application of renormalization group techniques. These
soft-core vacuum potentials are used as a stepstone of a long-term strategy which connects
modern many-body techniques and EDF methods. We provide guidelines for designing several

non-empirical models v
[X]
BDRS that include in-medium many-body effects at various levels of

approximation, and can be handled in state-of-the art nuclear structure codes. In the present
work, the first step is initiated through the adjustement of an operatorial representation of
low-momentum vacuum interactions using a custom-designed parallel evolutionary algorithm.
The first results highlight the possibility to grasp most of the relevant physics for low-energy
nuclear structure using this numerically convenient gaussian vertex.
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