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Introduction

The conception of full autonomous robotic systems is an enduring ambition for hu-
mankind. Nowadays theoretical and technological advances have allowed engineers to
conceive complex systems that can replace humans in many tedious or dangerous ap-
plications. However, in order to considerably enlarge the flexibility and the domain of
applications of such autonomous systems we still need to face several scientific problems
at the crossroad of many domains like for example artificial intelligence, signal processing
and non-linear systems control.

Amidst these challenges, the perception of the environment and the interaction of
robotic systems with the environment are fundamental problems in the design of such
autonomous systems. Indeed, the performance of an autonomous robot not only depends
on the accuracy, duration and reliability of its perception but also on the ability to use the
perceived information in automatic control loops to interact safely with the environment
despite unavoidable modeling and measurement errors. Thus, automatic environment sen-
sing and modeling, and robust sensor-based robot control are central scientific issues in
robotics.

Several exteroceptive sensors are commonly used in robotics : contact sensors (e.g.
force sensors, tactile sensors), GPS, sonars, laser telemeters, vision sensors, and even ol-
factory sensors. However, artificial vision is of particular importance and interest, mainly
due to its versatility and extended range of applicability. It can be used both for the per-
ception and modeling of the robot’s environment and for the control of the robot itself. In
this context, the spectrum of research is vast and I will focus on vision-based estimation
and control problems. Vision-based estimation refers to the methods and techniques de-
dicated to the extraction of the information that can be useful not only for the modeling
of the environment but also for robot control. In the case of robotic applications, major
challenges are to increase the efficiency, the accuracy and the robustness of the estimation
from visual data. Vision-based control refers to the methods and techniques dedicated
to the use of visual information in automatic control loops. The challenges are to choose
the appropriate visual information and to design stable control laws that are robust to
modeling and measurement errors.

The objective of this document is to review, analyze and discuss my research work
on these topics during the last ten years : two years as a Research Associate at the
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University of Cambridge (United Kingdom) and eight years as a Research Scientist at
INRIA Sophia-Antipolis (France). In order to acknowledge the contributions from all the
colleagues and students that have collaborated with me, I have tried as far as possible to
cite all our common publications. The document is divided into four chapters :

– Chapter 1 : Modeling and Statement of Research Problems.

This introductory chapter is dedicated to presenting, as generally as possible, the
vision-based estimation and control problems that have been considered by compu-
ter vision and robotic researchers. I will start with general models that can be used
to classify and discuss the possible problems in parametric estimation and robot
control. However, in order to establish the basis for the more specific problems that
I will address in the rest of the document, I also briefly describe the specific models
and assumptions that are commonly considered in the literature.

– Chapter 2 : Numerical Analysis.

This chapter considers numerical analysis methods that can be applied both to
visual parametric estimation and vision-based control. Our research work has focu-
sed on methods which suppose that the parametric functions are differentiable. The
main contribution has been to propose a new numerical method called the Efficient
Second-order approximation Method (ESM). The main advantage of this method
is that, when applicable, it has a faster convergence rate and larger convergence
domain than standard numerical methods. Thus, it can be used to improve the
parametric estimation and control from visual data.

– Chapter 3 : Vision-based parametric estimation.

This chapter details the vision-based parametric estimation problems that I have
addressed. Our research work has focused on monocular and stereo vision systems
composed by central cameras. The main contribution has been to propose efficient
methods to solve the image registration problem (visual tracking) and the pro-
blems of localization and/or mapping. These methods have been designed to meet
the requirements of efficiency, accuracy and robustness needed in real-time robotic
applications.

– Chapter 4 : Vision-based robot control.

This chapter details the vision-based robot control problems that I have addres-
sed. Our research work has focused on vision-based control of robots that can be
considered as ideal Cartesian motion devices (such as for example omnidirectional
mobile robots or robot manipulators). The main contribution has been the design
of robust vision-based control schemes that do not need an exact measure of the
intrinsic parameters of the vision system and that do not need any “a priori” know-
ledge of the structure of the observed scene. A particular emphasis has been placed
on the theoretical analysis of the robustness of the control laws with respect to
errors on the uncertain parameters.



Chapitre 1

Modeling and problems statement

The research work presented in this document is related to both computer vision
and automatic control. Indeed, my main objective has been to design robust methods
to control a robot evolving autonomously in natural environments using real-time vision
systems. In order to control the robot, we must not only be able to find its location with
respect to the environment but we may also need to recover a representation of the envi-
ronment itself. In this context, another objective of my research work has been devoted
to real-time parametric estimation from visual data. The aim of this chapter is to give
a general statement of the vision-based estimation and control problems that have been
considered by computer vision and robotic researchers. A more detailed description of
our contributions will be presented in Chapter 2, Chapter 3 and Chapter 4.

For both parametric estimation and control objectives, it is extremely important to
have simple and accurate models of the robot, the environment and of the vision system.
Although the ideal objective would be to control any complex system in any unknown
environment with any vision system, such a general solution is out of reach. Thus, only
limited models are currently used. The objective of this chapter is not only to introduce
these models but also to understand what their limits are in terms of describing the reality.

The present chapter is organized as follows. First of all, I briefly introduce the models
that are considered in this document : the representation of the pose and of the structure
of rigid objects, their kinematics, as well as some robot models. Then, I will describe a
general model based on an ideal plenoptic function that is able to describe any possible
vision system. This function can be used to classify research work on parametric estima-
tion from visual data and to analyze the related problems. Then, I will give a general
overview of the research problems on vision-based robot control that I have considered.
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1.1 Rigid bodies and robot models

1.1.1 Rigid body kinematics

Consider a rigid body in the Cartesian space (see Figure 1.1). A point P of the
rigid body can be represented with its Cartesian coordinates mr = (Xr, Yr, Zr) ∈ R

3

with respect to an inertial reference frame Fr equipped with a right-handed Cartesian
coordinate system (in such a coordinate system, a rotation from the ~x-axis to the ~y-axis
(about the ~z-axis) is positive) which is attached to a point O. Let Fc be a current frame
attached to a point C and freely moving with respect to the inertial frame Fr.

t = ~OC

P

R

n

O

C

~OP

~CP

Fig. 1.1 – Configuration of a rigid body.

1.1.1.1 Representing pose and structure of a rigid body

The current pose of the rigid body (position and orientation) with respect to the
moving frame can be described by a (4×4) homogeneous transformation matrix rTc

containing the coordinates of the current frame Fc in the basis of the fixed frame Fr.
The matrix rTc ∈ SE(3) (see for example [Warner 71, Varadarajan 74, Hall 03]) can be
written as :

rTc =

[
rRc

rtc

0 1

]
(1.1)

where rtc = ( ~OC)r ∈ R
3 is the translation vector and rRc ∈ SO(3) is the rotation matrix

of frame Fc with respect to frame Fr. The matrix rTc tells us where the current frame Fc

is with respect to the reference frame Fr. Let mc = (Xc, Yc, Zc) ∈ R
3 be the coordinates of

the same point P expressed in frame Fc. Using the homogeneous coordinates mr = (mr, 1)
and mc = (mc, 1), the coordinates of the point P in the current frame Fc can be obtained
from the coordinates in the reference frame Fr :

mc = cTr mr (1.2)
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where cTr = rTc
−1. The change of coordinates in equation (1.2) can also be written for

non-homogeneous coordinates as follows :

mc = τ (cTr,mr) = cRr mr + ctr (1.3)

The three points O, C and P are coplanar. Thus we can obtain from equation (1.3) :

m⊤

r [rtc]×
rRc mc = m⊤

r [rEc]× mc = 0 (1.4)

where the (3 × 3) matrix rEc = [rtc]×
rRc is called the essential matrix.

When the point P belongs to a planar surface (see Figure 1.1) its coordinates satisfy
the following equation :

n⊤

r mr = 1 (1.5)

where nr is a vector normal to the plane such that ‖nr‖ = 1/dr (dr being the distance
between the plane and the point O). Thus, the point mr and mc are related by the
following equation :

mc = cHr mr (1.6)

where the (3×3) matrix cHr is called the homography matrix. This matrix can be written
as follows :

cHr = cRr + ctr nr (1.7)

Note that if det(H) = 0 the plane passes through the origin of the current frame.

1.1.1.2 Velocity of a rigid body

Consider a (4×4) matrix Ac ∈ se(3) (see [Warner 71, Varadarajan 74, Hall 03]) This
matrix contains the instantaneous rotation and translation velocity vectors ωc and νc

expressed in the current frame (i.e. the velocity of the frame Fc expressed in the current
frame itself) :

Ac =

[
[ωc]× νc

0 0

]
(1.8)

The derivative of rTc can be written as :

rṪc =

[
rṘc

rṫc

0 0

]
= rTcAc (1.9)

One may want to express the velocity of the current frame not in the coordinate system of
the current frame itself but in the coordinate system of the reference frame. Let Ar ∈ se(3)
be the velocity of the current frame expressed in the coordinates of the reference frame :

Ar =

[
[ωr]× νr

0 0

]
(1.10)

The derivative of rTc can be written as :

rṪc = Ar
rTc (1.11)
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From equations (1.9) and (1.11) we can compute Ar as a function of Ac :

Ar = rTc Ac
cTr (1.12)

Then, one can easily compute this very well known change of frame for the velocity :
[
νr

ωr

]
=

[
rRc [rtc]×

rRc

0 rRc

] [
νc

ωc

]
(1.13)

The velocity of a point in the current frame can easily be calculated by deriving equa-
tion (1.3) and using equation (1.9) :

ṁc = −νc + [mc]× ωc (1.14)

1.1.2 Robot models

In this document, I will consider robots for which the kinematic model can be written
as follows :

ẋ =
m∑

i=1

uibi(x) (1.15)

where x ∈ R
n is a vector which contains local coordinates of the configurations space, ui

are the control inputs and bi(x) are the corresponding vector fields. I will now give two
examples of models for holonomic and non-holonomic robots.

1.1.2.1 Holonomic robots

Holonomic robots (like manipulator or omnidirectional mobile robots) can be viewed
as ideal Cartesian motion devices. Let me set in this case x = (t, r) ∈ R

6, where t ∈ R
3

is the translation vector and r ∈ R
3 is a local representation of the rotation. Thus, the

vector x is a local parametrization of SE(3)). Let me use the angle-axis representation
r = θu due to its links with Lie algebra (see [Warner 71], [Varadarajan 74], [Hall 03]).
The matrix rTc can be written as a function of x as follows :

rTc = T(x) =

[
exp([r]

×
) t

0 1

]
(1.16)

The derivative of the matrix rTc can be written :

rṪc = rTc Ac (1.17)

and thus Ac = T(x)−1Ṫ(x) (see equation 1.8). Let me set v = (νc,ωc) ∈ R
6. Rearranging

equation (1.17), we can write :
ẋ = B(x)v (1.18)

where B(x) is a (6 × 6) matrix. We can identify this equation with equation (1.15) by
setting m = n = 6, ui = vi and bi(x) being the i-th column of the matrix B(x). I will
suppose that a low level controller exists such that the control input of the robot is the
Cartesian velocity v.
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1.1.2.2 Non-holonomic robots

Non-holonomic robots have kinematic constraints on the velocity in the configuration
space. This means that m < n in equation (1.15). For example, if we consider a unicycle
evolving on a planar surface we can set m = 2 and suppose that the vector x ∈ R

3 is a local
representation of SE(2). Non-holonomic robots are generally critical non-linear systems.
Some tasks that can easily be accomplished by holonomic robots become very complex for
these systems. For example, positioning a non-holonomic robot can be extremely difficult
even if the robot is controllable [Morin 04].

1.2 Image models

The formation of an image depends on the geometry of the scene and its photometric
properties, on the distribution of the illumination sources and their photometric proper-
ties as well as on the intrinsic characteristics of the image sensor and its position and
orientation with respect to the scene.

An image sensor is a device that captures light and converts it to an electric signal.
Let me suppose that the device is composed of a rectangular grid of photo-detectors
that may also be able to measure light wavelength (i.e. colors). Thus, an image can be
considered as a (su × sv × sc) tensor where sv is the number of pixel rows, su is the
number of pixel columns and sc is the number of color channels. A common assumption
is to suppose that the discrete signal measured by the image sensor has been sampled from
a smooth continuous-time signal. Let pc = (u, v) be the (2×1) vector in R

2 containing
the coordinates of a point in the sensor grid. Each point pc corresponds to an entry of
the tensor :

I(φ,pc) (1.19)

where φ is a vector containing some photometric parameters (see Section 1.2.1 for details).
We suppose that the light measured at point pc comes from a visible 3D point of the
scene mc. Thus, we suppose that a smooth projection function π exists such that :

pc = π(κ,mc) (1.20)

where κ are some projection parameters that depend on the camera model (see Sec-
tion 1.2.2). From equation (1.3) we can write mc as a function of the coordinates mr of
the same point in the inertial reference frame and of the matrix rTc which allows the
coordinate transformation from the current frame to the inertial reference frame. Plug-
ging equations (1.20) and (1.3) into (1.19) and grouping all the coordinates mr of the 3D
points in a single vector γ = (m1,m2, . . . ,mp) we obtain the following function :

ψ(φ,κ,γ,T) = {I(φ,π(κ, τ (T,m1))), . . . ,I(φ,π(κ, τ (T,mp)))} (1.21)

This function can be interpreted as a generalization of the plenoptic function proposed
by [Adelson 91]. The general plenoptic mapping in equation (1.21) is an ideal function
that describes everything that is visible from any pose in space, for any camera, for any
structure and for any illumination (and at any time).
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I will give now some examples of standard models that are generally used to describe
the plenoptic function. These models will be considered in the rest of the document.

1.2.1 Photometric models

1.2.1.1 Non Lambertian surfaces

According to major illumination models, the luminance at a particular pixel p is due
to diffuse, specular and ambient reflections :

I(φ,pc) = Is(φs,pc) + Id(φd,pc) + Ia (1.22)

where φ = (φs,φd) and φs and φd are parameters that depend on the illumination model
(e.g. [Blinn 77], or [Cook 82]). The ambient intensity Ia is constant. The parameters
φs, defining the specular reflections, also depend on the position of the image sensor
with respect to the observed surface. The diffusion parameters φd depend amongst other
parameters (e.g. the albedo) on how the surface faces the light sources.

1.2.1.2 Lambertian surfaces

Lambertian surfaces or ”ideal diffuse surfaces” are surfaces for which the image in-
tensity of a pixel depends only on how the surface faces the light sources (i.e. there are
no specular reflexions). Equation (1.22) can be written

I(φ,pc) = Id(φd,pc) + Ia, (1.23)

where φ = φd contains the diffusion parameters only. Thus, if we observe a static envi-
ronment and the light sources are fixed, then two corresponding pixels in two different
images will have the same intensity. This particular case corresponds to the well known
“Brightness Constancy Assumption”.

1.2.2 Projection models

As already mentioned we suppose that a parametric smooth function π exists such
that :

pc = π(κ,mc) = π(κ, τ (cTr,mr))

The parameters contained in the vector κ are called the camera intrinsic parameters and
depend on the considered projection model. There are two main groups of cameras :

– Central cameras : for a central camera all the light rays forming the image meet at
the same point called the center of projection.

– Non-central cameras : for a non central camera the light rays forming the image
meet in more that one center of projection. The set of centers of projection is called
a caustic and it determines the characteristics of the camera.

In this document, I will consider central cameras only. I will now describe the models
that are generally used for this type of camera.
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1.2.2.1 Central catadioptric cameras

Using the unified model for central catadioptric cameras proposed by [Baker 99],
[Geyer 00], and [Barreto 02], the image point pc is obtained by a projection of mc onto a
unit sphere, followed by a map projection onto a virtual plane, followed by a coordinate
distortion and finally followed by an affine coordinate transformation. The point mc can
be projected on the unit sphere S in a 3D point having coordinates sc = (Xs, Ys, Zs) :

sc =
mc

‖mc‖
(1.24)

Then, the projection from a point sc to a 2D image point pc can be described by a
projective mapping c : S

2 7→ R
2 :

pc = c(κ, sc)

where κ is a vector which contains the camera intrinsic parameters. I will suppose that
the map c is invertible and sc = c−1(κ,pc). For example, the function c for a generic
camera can be written as follows. The map projection of the point sc on the sphere (from
a projection point Cp) to a point qc = (x, y) on a virtual plane can be written :

qc = h(ξ, sc) =

(
Xs

Zs − ξ
,

Ys

Zs − ξ

)
(1.25)

where ξ is a parameter which defines the characteristic of the camera : The point qc may
be distorted to the point qd = (xd, yd) :

qd = d(δ,qc)

where δ is a vector containing the parameter of the distortion model. Typical distortion
models are given in [Weng 92]. Finally, the virtual point is projected on the image plane
into the point pc = (u, v) :

pc = k(ρ,qd) = (ρ1 xd + ρ2 yd + ρ3, ρ4 yd + ρ5) (1.26)

It has been shown by [Courbon 07] that this model can also approximate well several
projection models for central dioptric cameras (fish-eye cameras).

1.2.2.2 Pinhole cameras

In the particular case when there is no mirror ξ = 0 and no image distortion δ = 0 the
camera is a pinhole. Using homogeneous coordinates, the equation (1.26) can be written
as :

p
c
= Kq

c
(1.27)

where K is a (3 × 3) triangular matrix containing the camera intrinsic parameters :

K =




f f s u0

0 f r v0

0 0 1


 (1.28)
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where (u0, v0) are the coordinates of the principal point (in pixels), f is the focal length
measured in pixels, s is the skew and r is the aspect ratio. Note that equation 1.27 can
also be written :

p ∝
[
K 0

]
m

This projection model has been widely used since it is a very good approximation of
many commercial cameras with good quality lenses.

1.3 Problems statement

The principal objective of my research work has been to design robust methods for
parametric visual estimation and for controlling a robot in large scale environments using
a vision system. The information acquired by the vision system can be described by a
non-linear system of equations (see Section 1.1). The evolution of the state of the robot
can be described by a system of differential equations (see Section 1.2). Thus, in general
the overall non-linear dynamic system can be represented by the following state space
equations :

ẋ(t) = g(x(t),u(t), t) (1.29)

y(t) = h(η(t),x(t)) (1.30)

where x is the state of the system, u is the control input, g is a smooth vector function
describing the evolution of the state of the system and y is the output vector represented
by a smooth vector function h. The function h depends on the pose of the vision system
contained in x but also on the camera intrinsic parameters and on the structure of the
environment contained in the vector η. The problems related to the estimation of this
information from visual data are described in Section 1.3.1. Then, in Section 1.3.2 I will
discuss the problems related to the stabilization of the non-linear dynamic system using
visual information.

1.3.1 Estimation from visual data

The function h that describes the behavior of the output y of the vision system can be
represented using the general plenoptic function described in Section 1.2. Let me consider
the most general case where the vision system is composed of nc synchronized cameras
with varying intrinsic parameters (e.g. zooming cameras) that observe a non-rigid scene.
In this case the output y(t) of the vision system contains a collection of images acquired
at the same time by all the cameras of the vision system. The output y(t) can be obtained
by rearranging all the nc plenoptic functions in a single vector :

y(t) = {ψ(φ1(t),κ1(t),γ(t),T2(t)), . . . ,ψ(φnc
(t),κnc

(t),γ(t),Tnc
(t))} (1.31)

Suppose we have a set of visual data y(ti) acquired at times ti, ∀i ∈ {1, 2, ni}, (i.e. a
collection of images or a video sequence). Suppose also that we have a perfect model
of the plenoptic function (see Section 1.2). Thus, some parameters φk(ti), κk(ti), Tk(ti)
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and mj(ti) exist such that I(φk(ti),π(κk(ti), τ (Tk(ti),mj(ti)))) = I ijk, ∀i, j, k. Thus,
the problem of parameters estimation from the observed visual data is equivalent to the
solution of the following system of non-linear equations ∀i, j, k :

I(φk(ti),π(κk(ti), τ (Tk(ti),mj(ti)))) = I ijk (1.32)

An exhaustive description of all possible methods and algorithms that have been proposed
to solve this non-linear problem is beyond the scope of this document. The reader may
refer to numerous well-known textbooks like [Faugeras 93], [Hartley 00], [Faugeras 01]
[Ma 03]. Despite the impressive achievements of computer vision scientists, there still
exist three challenging sets of problems related to the solution of this non-linear system
of equations.

The first set of problems concerns the modeling of the plenoptic function. The parame-
tric model of the plenoptic function is supposed to be perfect. Obviously, this assumption
is not true in general. Thus, the problem is how to find simple, accurate, and general
models of the plenoptic function. Simple means that only a few parameters are needed
to represent the model. Accurate means that the model can fit the measures accurately.
General means that the same model can be applied to most of the existing vision systems.

The second set of problems concerns data association. The photodetectors of the
imaging device are supposed to instantaneously measure the light coming from an ideal
3D point. These assumptions are not true in general since during the exposure time
the photodetectors integrate the light coming from a portion of a 3D surface. When
the shutter speed is not fast enough we can have blur on moving objects. Moreover, as
the pixel resolution of the imaging device is fixed, the intensity of the same portion of
a 3D surface will not always be measured by a single pixel. Even assuming that the
shutter is almost instantaneous and the light is coming from an ideal 3D point, how do
we obtain a precise correspondence of the 3D coordinates mj(ti) and the pixel intensity
I ijk ? Similarly, how we can obtain a precise correspondence of the intensity I ijk of one
image point and the intensity of the corresponding points in the other images ? This last
problem can be simplified assuming the visual data come from a video sequence acquired
with a sufficiently fast frame rate. This allows us to suppose that two corresponding pixels
are adjacent in two consecutive images.

The third set of problems concerns the solution of the non-linear system. The plenoptic
function is supposed to be smooth and noiseless. This assumption is generally not true
but it allows us to use numerical methods that compute the derivatives of the function.
Even supposing that the problem is well posed, how can we robustly and efficiently
solve the system of non-linear equations for real-time applications ? Robustness with
respect to aberrant measures (i.e. outliers) is necessary since it is impossible to obtain
a perfect representation of the plenoptic function. Efficiency is extremely important for
fast real-time application (like vision-based control) and it can be obtained in two ways.
One possibility is to simplify the system of equations. For example we can eliminate
some of the unknowns to obtain a smaller nonlinear system (e.g. subspace methods ,
invariance ...). The second possibility is to use efficient numerical methods for the solution
of the nonlinear system. Whatever the method used to solve the nonlinear system we
need to know if the problem is well posed. Computer vision and robotic scientists soon
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realized that in this very general form the problem may not have a unique solution (not
surprisingly since inverse problems are generally not well posed). Typically, there are
more unknown parameters than equations. Thus, some additional constraints are added
to the original nonlinear system in order to obtain a well posed problem. The exhaustive
description of all possible assumptions is out of the scope of this document. However
some of them are very common for many problems that are of interest for real-time
applications. For example, a very usual assumption is to suppose that the camera observes
a rigid Lambertian surface that is static with respect to the sources of illumination. This
assumption allows us to considerably reduce the number of unknown parameters since we
can set φk(ti) = φ and mj(ti) = mj. Another technique to reduce the number of unknown
parameters is regularization. For example, we can suppose that the observed scene is
piecewise planar or that it is composed of smooth surfaces. Temporal regularization is
also a common assumption (i.e. assuming that the parameters vary slowly in time or
that the collection of images comes from a video sequence). The estimation problem can
also become well posed if we assume that the true values of some parameters are already
known “a priori”. Even if this may be a very strong assumption, this solution has been
widely used. In the following sections I will detail three standard classes of problems that
have been considered by computer vision and robotic scientists.

1.3.1.1 Calibration of the vision system

One of the first problems addressed by robotic vision scientists has been the estimation
of the intrinsic parameters of a vision system. The reason why these parameters deserve
particular attention is that in many applications they can be considered constant so that
they can be estimated once and for all. Suppose that we observe several images of a
known rigid object (a calibration grid for example) and that the intrinsic parameters of
the cameras are constant κk(ti) = κk (i.e. the cameras do not zoom). Since the object
is known the coordinates mj(ti) = mj of all the 3D points of the object are known in a
reference frame. Finally, suppose that we know that the intensity I ijk measured by each
image sensor corresponds to the point mj. Thus, we can solve the following system of
non linear equations :

I(φk(ti),π(κk, τ (Tk(ti),mj))) = I ijk (1.33)

This problem is called the “camera calibration problem” and several solutions have been
proposed in the literature. Even if only one image of a known grid can be sufficient to
solve the problem, several images are generally considered in order to obtain a precise
estimation of the parameters.

1.3.1.2 Localization and/or mapping

Suppose now that the camera intrinsic parameters have been recovered once and for
all κk = κk and that we observed a rigid scene (i.e. mj(ti) = mj). Then one may be
interested to solve the simultaneous localization and mapping problem :

I(φk(ti),π(κk, τ (Tk(ti),mj))) = I ijk (1.34)
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where the structure and the translations of the camera can be estimated only up to a
scale factor if we do not have any additional constraint.

Another problem of interest in robotic vision is the reconstruction of the structure
from known motion. Indeed, if a calibrated vision system is mounted on a well calibrated
robot we are able to measure the displacement Tk(ti) for each image. Thus the problem
becomes :

I(φk(ti),π(κk, τ (Tk(ti),mj))) = I ijk (1.35)

Another problem of interest is the localization of the vision system when the model of
the object is known. The localization can be obtained by solving the following system :

I(φk(ti),π(κk, τ (Tk(ti),mj))) = I ijk (1.36)

This problem is closely related to the camera calibration problem but here only the
camera displacement and the photometric parameters are unknown. The localization of
the vision system can also be obtained if the structure mj is unknown but the vision
system has multiple calibrated cameras (e.g. a calibrated stereo pair). In this case the
poses of the cameras with respect to each other are known.

1.3.1.3 Self-calibration of the vision system

If we observe an unknown rigid object and the cameras’ intrinsic parameters are not
constant (e.g. if we consider zooming cameras) then the problem of estimating all possible
parameters is called the “camera self-calibration problem” :

I(φk(ti),π(κk(ti), τ (Tk(ti),mj))) = I ijk (1.37)

This problem is generally not well posed and it cannot always be solved. For example,
consider the very simple case of a pinhole camera with constant camera parameters
κk(ti) = κk observing a motionless Lambertian surface. The camera self-calibration pro-
blem cannot be solved if the camera does not rotates. If all the camera intrinsic parameters
vary with time then the problem cannot be solved even if the camera rotate. Note also
that if we do not have any additional metric knowledge, the structure and the translations
of the cameras can be estimated only up to a scale factor

1.3.2 Control from visual data

The first step to controlling the robot using the visual information is to define the task
to be accomplished by the robot. There are several possible tasks that can be defined,
for example to reach a reference position or a reference velocity. The definition of the
task also depends on the configuration of the vision system and on the type of robot.
For example, the vision system can be mounted on the end-effector of the robot (this
configuration is called “eye-in-hand”) or not (this configuration is called eye-to-hand). An
exhaustive description of all possible tasks and configurations is beyond the scope of this
document. The reader may refer to numerous books, tutorials and surveys that have been
published on the subject, like [Hashimoto 93, Hutchinson 96, Malis 02b, Chaumette 06,
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Chaumette 07]. Research in visual servoing initially focused on the problem of controlling
the pose of a camera, assuming that the camera can (locally) move freely in all directions.
This is the case, for instance, when the camera is mounted on an omnidirectional mobile
robot, or on the end-effector of a classical manipulator endowed with (at least) 6 degrees
of freedom. This is equivalent to viewing the robot as an ideal Cartesian motion device.
The control part of the problem is then simplified since standard control techniques,
like pure state feedback linearization, can be applied. The case of robotic vision-carriers
subjected to either nonholonomic constraints (like car-like vehicles) or underactuation
(like most aerial vehicles) raises a new set of difficulties.

Consider now the case when the robot can be considered as an ideal Cartesian motion
device. In order to simplify the discussion a specific task is considered here : positioning
a holonomic robot with respect to a motionless object using the information acquired by
a eye-in-hand vision system. Thus, the state of the system x is locally homeomorphic to
SE(3) and the function g that describes the behavior of the state x can be modeled as in
Section 1.1. The function h that describes the behavior of the output y can be modeled
as in Section 1.2. Thus, the system of equations (1.29) can be rewritten as follows :

ẋ(t) = B(x(t))v(t) (1.38)

y(t) = h(η(t),x(t)) (1.39)

where the velocity of the camera v(t) is the control input.

1.3.2.1 Design of vision-based control schemes

The design of a vision-based control scheme depends on how the task has been defined.
For example, the positioning task can be defined directly in the Cartesian space as the
regulation of the vector x(t). Without loss of generality, we can suppose that our objective
is to regulate the vector x(t) to zero. In this case one must be able to estimate the current
camera pose from image data. Using an approximation of the parameters η̂(t), one must
design a non-linear state observer ψ such that :

x̂(t) = ψ(η̂(t),h(η(t),x(t))) (1.40)

Obviously, in the absence of modeling errors we have η̂(t) = η(t) and thus the state can be
perfectly estimated x̂ (t) = ψ(η(t),h(η(t),x(t))) = x (t). The problem of reconstructing
the pose of the camera with respect to the object has been widely studied in the robotic
vision community (see Chapter 3) and several solutions have been proposed. For example,
if we have a calibrated monocular vision system we need an accurate model of the target.
If we have a calibrated stereo system, the model of the target can be estimated on-line
by triangulation. The main limitation of this approach is that any modeling error may
produce an error in the final pose.

In order to design vision-based control schemes that are more robust to modeling
errors, researchers have proposed using a “teaching-by-showing” approach where the re-
ference pose is not given explicitly. Instead, a reference output y is acquired at the
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reference pose (again we can suppose without loss of generality that the reference pose
corresponds to x = 0) :

y = h(η, 0) (1.41)

where η contains the parameters at the time of the acquisition. Thus, we can build an
error function (not necessarily having the same size as the vector x) from image data
only :

ǫ(t) = δ(h(η(t),x(t)),h(η, 0)) (1.42)

such that if (and only if) ǫ = 0 then x = 0. The design of such an error function is not
easy, especially if the parameters η(t) vary. Thus, a common assumption is to suppose
that imaging conditions do not change η(t) = η. Even with such an assumption, the
design of the error function is not easy and its choice may greatly influence the behavior
of the visual servoing. In particular, the influence of measurement noise can be very
different depending on the choice of the error function.

In the teaching-by-showing approach, the choice of the error function cannot be gene-
rally decoupled from the design of the control law. Indeed, the same control law can have
an unstable behavior with a given control error and a stable behavior with a different
control error. Moreover, even if it is possible to compute the control error directly from
image data, the design of a stable control law often needs an estimate of the parameters
η.

1.3.2.2 Design of vision-based control laws

The design of control laws is a fairly standard problem in robotics when the pose
of the camera can be estimated explicitly. However, it is worth noting that for critical
systems the design of the control law is more difficult than for holonomic robots. Let me
consider here the design of control laws for the teaching-by-showing approach supposing
that imaging conditions do not change η(t) = η. After taking the time derivative of the
control error in equation (1.42) we obtain the following state equations :

ǫ̇(t) = L(η,x(t))v(t) (1.43)

y(t) = h(η,x(t))

where L is an interaction matrix that generally depends on the parameters η. The problem
is to find an appropriate function k in order to ensure a stable control input :

v(t) = k(η̂,y(t),y) = k(η̂,h(η,x(t)),h(η, 0))

such that ǫ(t) → 0 when t → ∞ starting from an initial pose x0 = x(0). The challenge is
to design stable control laws that depend as little as possible on the unknown parameters
η. If an estimation η̂ is needed, another challenge is to design stable control laws that
are robust to errors on the estimation of these parameters.
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1.3.2.2.1 Stability and robustness

In ideal conditions (i.e. assuming no modeling and measurement errors) the control law
should be at least locally stable. This is the minimal requirement in the design of vision-
based control laws. However, it is also important to determine the “size” of the stability
domain. A very difficult problem is to design control laws with a large stability domain.
The best would be to design globally stable control laws (i.e. the control error convergence
to zero whatever the starting position of the robot).

Another problem is the design of robust control laws. A control law can be called
“robust” if it is able to perform the assigned stabilization task despite modeling and
measurement errors. Determining the “size” of “admissible” errors is important in prac-
tice. However, carrying out this type of analysis is usually technically quite difficult.
Robustness is needed to ensure that the controlled system will behave as expected. It is
an absolute requirement for most applications, not only to guarantee the correct execu-
tion of the assigned tasks but also for safety reasons, especially when these tasks involve
direct interactions with humans (robotic aided surgery, automatic driving,...).

1.3.2.2.2 Visibility and Continuity

The aim of vision-based control techniques is to control a robot with the feedback coming
from visual information. If the visual information gets out of the camera’s field of view
feedback is no longer possible and the visual servoing must then be stopped. A very im-
portant problem is to take into account this constraint in the design of the control law.
This visibility problem is amplified when considering critical systems, like non-holonomic
robots, due to the restriction on the possible instantaneous motions of the robot.

Another problem related to the visibility appears when the target is partially occluded.
In this case, if we suppose that sufficient information is still visible in order to achieve the
task, the problem is that the occlusion may perturb the computation of the control error
and/or the control law. Depending on how the control scheme has been defined some
discontinuities may appear. These discontinuities perturb and decrease the performances
of the control law.



Chapitre 2

Numerical analysis

Many parametric estimation problems can be solved by finding the solution of a system
of non-linear equations. When the system has more equations than unknowns it is usual
to rewrite the problem as a nonlinear least squares optimization which is again solved by
finding the solution of another system of non-linear equations. In general, these nonlinear
problems do not have an analytical closed-form solution. Thus, an important research
subject concerns the study of efficient iterative numerical methods. The objective of this
chapter is to describe my contributions in this field.

Numerical methods have been widely studied in the literature. An exhaustive des-
cription of them is beyond the scope of this document. In this chapter, the focus is on
numerical methods that make use of derivatives of the nonlinear functions involved in the
problems. Indeed, such methods have a strong link with automatic control methods. The
reader may refer to well-known textbooks like [Isaacson 66], [Dennis 83], [Quarteroni 00]
which describe in detail most of the standard numerical methods. Besides the standard
methods, I will consider methods that use additional information on the derivatives at
the solution. In several robotic vision applications, such as for example parametric iden-
tification or vision-based control, it is possible to measure or approximate this additional
knowledge. In this context, one important contribution has been to propose the Efficient
Second-order approximation Method (ESM) which has several advantages with respect
to standard methods. The ESM has been successfully applied to vision-based estimation
(see Chapter 3) and to vision-based robot control (see Chapter 4).

The chapter is organized as follows. First the problem of finding the solution of one
nonlinear equation in one unknown is considered. The reason for studying the one-variable
problem separately is that it allows us to more easily understand the principles of the
different methods that have been proposed in the literature. For example, geometric inter-
pretations of the methods can be plotted [Isaacson 66]. The extension to the multidimen-
sional case (i.e. the solution of systems of nonlinear equations) is almost straightforward.
Then, the generalization of the iterative methods to nonlinear systems defined on Lie
groups is introduced. Finally, I will consider the optimization of a nonlinear least squares
problem and its modification to increase robustness with respect to aberrant measure-
ments.
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2.1 Iterative solution of non-linear equations

In this section, I consider the problem of iteratively finding a root of the equation :

f(x) = 0 (2.1)

given the function f : D = (a, b) ⊆ R 7→ R and starting from an initial approximation x̂0

of a root x. The problem of how to find the initial approximation x̂0 is not easy to solve
but is very important since we will see that most of the iterative method will not work if
x̂0 is chosen too far from x. For simplicity, let me suppose that the function f(x) ∈ C∞

so that it can be expanded using a Taylor series about x̂ :

f(x̂ + x) = f(x̂) + g(x̂) x +
1

2
h(x̂) x2 +

1

6
q(x∗) x3 (2.2)

where the last term is a third-order Lagrange remainder and x∗ ∈ (x̂, x) and the smooth
functions g(x), h(x), and q(x) are defined as follows :

g(x) =
df(x)

dx
(2.3)

h(x) =
d2f(x)

dx2
(2.4)

q(x) =
d3f(x)

dx3
(2.5)

Suppose that x is a simple root of the equation (2.1), therefore :

f(x) = 0 (2.6)

g(x) 6= 0 (2.7)

Starting from the initial approximation x̂0, the root-finding problem can be solved by
iteratively finding an increment x̃ in order to generate a sequence of values

x̂k+1 = x̂k + x̃k (2.8)

such that :

lim
k→∞

x̂k = x (2.9)

Two important questions should be answered : firstly, how far from the true root x can we
chose the initial approximation x̂0 (convergence domain) ? secondly, how fast the sequence
of values {x̂k} = {x̂0, x̂1, x̂2, . . .} does converge to the true root (convergence rate). In
order to answer these two questions let me rewrite the root finding problem in a more
general form as proposed by [Isaacson 66].
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2.1.1 Functional iteration methods for root finding

If we define :
ϕ(x) = x − k(x) f(x) (2.10)

where 0 < |k(x)| < ∞, ∀x ∈ D, then any equation f(x) = 0 can be rewritten in the
following form :

x = ϕ(x) (2.11)

As pointed out by [Isaacson 66], most of the iterative methods can be written in the form
of a functional iteration method (also known as the Picard iteration method) :

x̂k+1 = ϕ(x̂k) (2.12)

Starting from an initial approximation x̂0 of x the convergence of such an iteration process
depends on the behavior of the function ϕ. In this section, I will show under which
conditions there exists a unique fixed point x satisfying :

x = ϕ(x) (2.13)

which obviously implies that f(x) = 0 since k(x) 6= 0. First of all, let me give the
definitions of the domain of convergence and the order of convergence of a functional
iteration method.

2.1.1.1 Definition of the convergence domain

There are several possible definitions of the convergence domain of a functional itera-
tion method. The more general definition is the following :

Definition 1 (Domain of Convergence) The convergence domain C of the functional
iteration in equation (2.12) is defined as the set of the starting points {x̂0} ∈ C ⊆ D
(obviously containing the root itself) for which the iteration process converges to the root.

The problem is that finding such a domain is extremely difficult in general since it
highly depends to a large extent on the shape of the function ϕ. In order to obtain more
generic results one must restrict the definition of the convergence domain :

Definition 2 (Monotone Domain of Convergence) The monotone domain of conver-
gence C of the functional iteration in equation (2.12) is the set of the starting points
{x̂0} ∈ C ⊆ D such that the error is always decreasing |x̂k+1 − x| < |x̂k − x|.

This second definition is more restrictive since starting points may exist for which
the error initially increases and then converges. However, such a monotone convergence
domain is often easier to obtain. For example, Theorem 1 gives simple sufficient conditions
on the function ϕ(x) that assure the convergence of a functional iteration method to a
unique root in a monotone convergence domain. The corollary to Theorem 1 provides
sufficient conditions on the first derivative ϕ1(x) which are sometimes easier to compute.
However, the true monotone convergence domain is often larger than the one defined by
the conditions of the corollary.
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Theorem 1 If x = ϕ(x) has a root at x = x and

|ϕ(x) −ϕ(x)| ≤ λ|x − x| (2.14)

for all x in the domain of convergence defined by

C = |x − x| < δ (2.15)

Then, for any initial estimate x̂0 ∈ C :

i) all the iterates xk defined by equation (2.12) lie within the domain of convergence C :

x − δ < x̂k < x + δ

ii) the iterates converge to the fixed point x

lim
k→∞

x̂k = x

iii) x is the only root in the domain C.

Proof: Let me start by proving i). From equation (2.13) we have ϕ(x) = x. Setting
x = x̂k, using equation (2.13) the condition in equation (2.14) can be written

|xk+1 − x| ≤ λ|xk − x| (2.16)

which means that the error is decreasing monotonically |x̃k+1| ≤ |x̃k| since λ < 1. To
prove ii) it is sufficient to show that {x̂} is a Cauchy sequence. From equation (2.16) we
get :

|xk+1 − x| ≤ λ|xk − x| ≤ λ2|xk−1 − x| ≤ · · · ≤ λk+1|x0 − x| (2.17)

By letting k → ∞ since λ < 1 then

lim
k→∞

x̃k = 0

and :
lim

k→∞

x̂k = x

Finally, to prove iii) let me suppose that there exists x′ ∈ D such that x′ 6= x and
ϕ(x′) = x′. Then,

|x′ − x| = |ϕ(x′) −ϕ(x)| ≤ λ|x′ − x| < |x′ − x| (2.18)

This contradiction implies that x′ = x which is impossible by assumption.

Corollary 1 If we replace the assumption (2.14) with

|ϕ1(x)| ≤ λ < 1 (2.19)

for x ∈ C, then the Theorem 1 still holds.

Proof: From the mean value theorem we get :

ϕ(x) −ϕ(x) = ϕ1(x∗)(x − x)

for some x∗ ∈ (x, x). Thus, from equation (2.19) we obtain the assumption (2.14)

|ϕ(x) −ϕ(x)| ≤ |ϕ1(x∗)||x − x| ≤ λ|x − x|

where λ < 1.
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2.1.1.2 Definition of the order of convergence

In numerical analysis, the speed at which a convergent sequence approaches its limit
is called the order of convergence and it is defined as follows :

Definition 3 (Order of Convergence) Assume that the sequence {x̂k} = {x̂0, x̂1, · · · }
converges to x, and set x̃k = x̂k − x. If two positive constants r and s exist, and

lim
k→∞

|x̂k − x|

|x̂k−1 − x|r
= s

then the sequence is said to converge to x with order of convergence r. The number s is
called the asymptotic error constant. If r = 1, the convergence of {x̂k} is called linear. If
r = 2, the convergence of {x̂k} is called quadratic. If r = 3, the convergence of {x̂k} is
called cubic, and so on.

The concept of order of convergence is important since it is related to the number of
iterations that an iterative method needs to converge. A higher order of convergence is
obviously preferable. However, in order to compare the convergence rate of two different
methods one must also take into account the computational complexity for each iteration.
The following theorem gives simple conditions to determine the order of convergence of
a functional iteration method.

Theorem 2 If in addition to the assumptions of Theorem 1 :

ϕ1(x) = ϕ2(x) = . . . = ϕr−1(x) = 0 (2.20)

ϕr(x) 6= 0 (2.21)

and if ∀x ∈ C :
|ϕr(x)| ≤ r! M (2.22)

Then the sequence {x̃k} converges to x with order of convergence r.

Proof: The convergence of the iterates to the fixed point x is assured by the assump-
tions of Theorem 1. Consider the Taylor series of ϕ(x) about x is :

ϕ(x) = ϕ(x) +ϕ1(x) +
1

2!
ϕ2(x) + ... +

1

r!
ϕr(x∗)(x − x)r

where x∗ ∈ (x, x). Using equation (2.20) the Taylor series can also be written as follows :

ϕ(x) = ϕ(x) +
1

r!
ϕr(x∗)(x − x)r

Using equation (2.13) and equation (2.22) the error at iteration k can be bounded as
follows :

|x̂k − x| = |ϕ(x̂k−1) −ϕ(x)| =
1

r!
|ϕr(x∗

k−1)||x̂k−1 − x|r ≤ M |x̂k−1 − x|r (2.23)

Then, there exists a scalar s ≤ M such that

lim
k→∞

|x̂k − x|

|x̂k−1 − x|r
= s
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2.1.2 Standard iterative methods

Several root finding methods have been proposed in the literature (see for example
[Quarteroni 00]). In this section, I will describe in detail only the Newton-Raphson and
Halley methods. Despite the fact that the Newton-Raphson method is the most well
known and used method its description is unavoidable since it can be considered as a
reference method to which new ones can be compared. On the other hand, the Halley
method is less well known but its description is useful to better understand the com-
promise between order of convergence and efficiency. The Halley method is also closely
related to the ESM method that will be propose in the next section.

2.1.2.1 The Newton-Raphson method

The Newton-Raphson method, also simply called the Newton method, is a root-finding
algorithm that was independently discovered by both sir Isaac Newton and Joseph Raph-
son. The Newton-Raphson method uses the first-order terms of the Taylor series of the
function f(x) computed at x̂ ≈ x. Indeed, keeping terms of equation (2.2) only to first-
order we obtain a first-order approximation of the function :

f(x̂ + x) ≈ f(x̂) + g(x̂) x (2.24)

Evaluating f(x̂ + x) at x̃ = x − x̂ we obtain :

f(x) = f(x̂ + x̃) ≈ f(x̂) + g(x̂) x̃ = 0 (2.25)

Supposing that g(x̂) 6= 0 we can solve equation (2.24) and compute the Newton-Raphson
increment x̃ :

x̃ = −
f(x̂)

g(x̂)
(2.26)

and the estimation is updated as follows : x̂k+1 = x̂k + x̃k. For the Newton method,
k(x) = 1/g(x) and the function ϕ(x) is defined as :

ϕ(x) = x −
f(x)

g(x)
(2.27)

2.1.2.1.1 Convergence domain of the Newton-Raphson method

Theoretically, the Newton-Raphson method cannot be computed when g(x) = 0. Since
we have supposed that g(x) 6= 0 and that g(x) is smooth, the convergence domain of the
Newton-Raphson method is a connected domain which includes the root x.

C ⊂ (xmin, xmax) (2.28)

such that :

g(xmin) = g(xmax) = 0
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The convergence domain is included in these bounds but is generally much smaller. From
Theorem 1 the monotone domain of convergence is defined by :

∣∣∣∣x − x −
f(x)

g(x)

∣∣∣∣ ≤ |x − x|

From corollary 1 a more restricted monotone domain of convergence is defined by the
inequality :

|f(x)h(x)| < g(x)2

2.1.2.1.2 Order of convergence of the Newton-Raphson method

If we apply Theorem 2 to the function defined in the equation (2.27) it is easy to verify
that the Newton-Raphson method has at least quadratic order of convergence. Indeed,
the first derivative of the function is :

ϕ1(x) =
h(x)

g(x)2
f(x) (2.29)

When computed at x we obtain :
ϕ1(x) = 0 (2.30)

2.1.2.2 The Halley method

The Halley method was proposed by the mathematician and astronomer Edmond
Halley. Keeping terms of equation (2.2) only to second-order we obtain a second-order
approximation of the function :

f(x̂ + x) ≈ f(x̂) + g(x̂) x +
1

2
h(x̂) x2 (2.31)

As for the Newton-Raphson method, setting x = x̃ then f(x̂ + x̃) = 0 and solving the
following quadratic equation we obtain the irrational Halley method :

f(x̂) + g(x̂) x̃ +
1

2
h(x̂) x̃2 = 0 (2.32)

However, the solution of the quadratic equation involves a square root evaluation. Mo-
reover, its extension to the multidimensional case involves the solution of a system of n
quadratic equations in n unknowns which in general has not a closed-form solution and it
may not have a solution at all. For this reason, the only Halley method that I will consider
in this document is the rational Halley method that can be obtained by rewriting the
equation :

f(x̂) + (g(x̂) +
1

2
h(x̂) x̃)x̃ = 0 (2.33)

Plugging the Newton-Raphson iteration

x̃ = −
f(x̂)

g(x̂)
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only into the expression in the brackets one obtains :

f(x̂) +

(
g(x̂) −

1

2
h(x̂)

f(x̂)

g(x̂)

)
x̃ = 0 (2.34)

and solving this equation one obtains the rational Halley increment :

x̃ = −
2g(x̂)f(x̂)

2 g(x̂)2 − f(x̂)h(x̂)
(2.35)

for the Halley method k(x) = 2g(x)/(2 g(x)2−f(x)h(x)) and the function ϕ(x) is defined
as :

ϕ(x) = x −
2g(x)f(x)

2 g(x)2 − f(x)h(x)
(2.36)

2.1.2.2.1 Convergence domain of the Halley method

The convergence domain of the Halley method is at least as big as the convergence domain
of the Newton method. However, it could be smaller since the Halley method cannot be
computed either when 2 g(x)2 = f(x)h(x).

2.1.2.2.2 Order of convergence of the Halley method

If we apply Theorem 2 to the function defined in the equation (2.36) it is easy to verify
that the Halley method has at least cubic order of convergence. Indeed, the derivatives
of the function are :

ϕ1(x) = α(x)f(x)2 (2.37)

ϕ2(x) = (α1(x)f(x) + 2α(x))f(x) (2.38)

where

α(x) =
3h(x)2 − 2g(x)q(x)

(2g(x)2 − f(x)h(x))2

When computed at x we obtain :

ϕ1(x) = 0 (2.39)

ϕ2(x) = 0 (2.40)

The Halley method has cubic order of convergence. So why is it not the preferred root
finding method ? This is because a high order of convergence alone is not enough. It
should be weighted by the computational complexity per iteration. For example, if the
computation of the Halley iteration costs twice the computation of the Newton iteration
then we are able to compute two Newton iterations at a time. Thus, we obtain a method
that has quartic order of convergence.
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2.1.3 Iterative methods with known gradient at the solution

Suppose that we can measure the gradient g(x) of the function f(x) at the solution (i.e.
g(x) can be measured). Can we use this additional information to improve the efficiency of
root finding algorithms ? For example, using g(x) instead of g(x) in the standard Newton
method leads to an algorithm which has the same order of convergence while being more
efficient. For this reason I will call it the Efficient Newton method. The Efficient Newton
method has been applied in vision-based robot control by [Espiau 92] and for image
registration by [Baker 04]. I will show that we can use the information on g(x) differently
and we can design an algorithm called ESM (see [Malis 04a], [Benhimane 04]) which has
the same order of convergence as the Halley method while being more efficient since it
has the same computational complexity per iteration of the standard Newton method.

2.1.3.1 The efficient Newton method

The efficient Newton method can be obtained by considering the Taylor series of f(x)
about x :

f(x + x) = f(x) + g(x)x +
1

2
h(x∗)x2 (2.41)

Since f(x) = 0, keeping terms up to first order we obtain :

f(x + x) ≈ g(x)x (2.42)

Evaluating the equation at x = −x̃ = x̂ − x gives :

f(x̂) ≈ −g(x)x̃

We obtain an efficient Newton method by computing :

x̃ = −
f(x̂)

g(x)

It is efficient since the inverse of the gradient is computed once and for all. For the efficient
Newton method k(x) = 1/g(x) and the function ϕ(x) is defined as :

ϕ(x) = x −
f(x)

g(x)
(2.43)

2.1.3.1.1 Convergence domain of the Efficient Newton method

The convergence domain of the Efficient Newton method could be bigger than the conver-
gence domain of the Newton and Halley methods. Indeed, since I supposed g(x) 6= 0 the
Efficient Newton iteration can always be computed.

Theorem 3 If 0 < g(x) ≤ g(x) then the monotone convergence domain of the Newton-
Raphson method is included in the monotone convergence domain of the Efficient Newton
method. This means that if the Newton-Raphson method converges then the Efficient
Newton method also converges.
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Proof: The monotone convergence domain of the Newton-Raphson method is defined
by :

|ϕNRM(x) − x| < λ|x − x| (2.44)

where :

ϕNRM(x) = x + x̃NRM = x −
f(x)

g(x)

while the convergence domain of the Efficient Newton method is defined by :

|ϕENM(x) − x| < λ|x − x| (2.45)

where :

ϕENM(x) = x + x̃ENM = x −
f(x)

g(x)

The Efficient Newton increment can be rewritten as a function of the Newton increment :

x̃ENM = −
g(x)

g(x)

f(x)

g(x)
= γ(x) x̃NRM

where :

γ(x) =
g(x)

g(x)

If 0 < g(x) ≤ g(x) then 0 < γ(x) ≤ 1 and

|ϕENM(x) − x| ≤ |ϕNRM(x) − x| < λ|x − x| (2.46)

2.1.3.1.2 Order of convergence of the Efficient Newton method

The following theorem shows that the efficient Newton method has the same order of
convergence as the standard Newton-Raphson method.

Theorem 4 The efficient Newton method has at least quadratic order of convergence.

Proof: Simply apply Theorem 2 to the function ϕ(x) defined in equation (2.43). The
derivative of the function is :

ϕ1(x) = 1 −
g(x)

g(x)
(2.47)

When computed at x we obtain :

ϕ1(x) = 0 (2.48)

which proves that the efficient Newton method has at least quadratic order of convergence.
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2.1.3.2 The Efficient Second-order approximation Method

Like the Efficient Newton method, the Efficient Second-order approximation Method
(ESM) assumes that g(x) can be measured. Like the Newton-Raphson method, it is a
root finding method. However, like the Halley method, it uses the first two terms of the
Taylor series.

The ESM uses the Taylor series of g(x) about x̂ which can be written :

g(x̂ + x) = g(x̂) + h(x̂) x +
1

2
q(x∗) x2 (2.49)

where the last term is a second-order Lagrange remainder. Then, we can compute :

h(x̂) x = g(x̂ + x) − g(x̂) −
1

2
q(x∗) x2 (2.50)

Plugging equation (2.50) into equation (2.2) we obtain an expression of the function f(x)
without the second-order terms :

f(x̂ + x) = f(x̂) +
1

2
(g(x̂) + g(x̂ + x)) x −

1

12
q(x∗) x3 (2.51)

Keeping the terms of this equation only to second-order we obtain an efficient second-
order approximation of the function :

f(x̂ + x) ≈ f(x̂) +
1

2
(g(x̂) + g(x̂ + x)) x (2.52)

When compared to the second-order approximation (2.31) used in the Halley method, it
is evident that the second-order approximation (2.52) is more efficient since it is obtained
without computing the second derivatives of the function. Thus, the ESM can also be
viewed as an efficient version of the Halley method where instead of plugging the Newton-
Raphson iteration into the second order approximation (2.31) we plug equation (2.50).
Setting x = x̃ and f(x̂ + x̃) = 0 one can solve the following linear equation :

f(x̂) +
1

2
(g(x̂) + g(x)) x̃ = 0 (2.53)

Supposing that g(x̂) + g(x) 6= 0 we find the ESM iteration is :

x̃ = −
2 f(x̂)

g(x̂) + g(x)
(2.54)

For the ESM k(x) = 2/(g(x) + g(x)) and the function ϕ(x) is defined as :

ϕ(x) = x −
2 f(x)

g(x) + g(x)
(2.55)



Ezio Malis 28

2.1.3.2.1 Convergence domain of the ESM

The following theorem shows that the bounds on the convergence domain of the ESM are
wider than the bounds on the convergence domains of the Newton-Raphson and Halley
methods.

Theorem 5 The bounds of the convergence domains of the Newton-Raphson and Halley
methods are included in the bounds of the convergence domain of the ESM.

Proof: The bounds for the Newton-Raphson and Halley methods are defined by
g(x) = 0. On the other hand, the ESM method cannot be computed when g(x) = −g(x)
which determines the bounds of the convergence domain. This means that the sign of g(x)
must be opposite to the sign of g(x). Since g(x) is smooth, it must become null before
changing its sign. This means that if g(x1) = 0 and g(x2) = −g(x) then |x1−x| < |x2−x|
which proves that the bounds of the convergence domain of the ESM are wider.

Theorem 6 If 0 < g(x) ≤ g(x) then the monotone convergence domain of the Newton-
Raphson method is included in the monotone convergence domain of the ESM. This means
that if the Newton-Raphson method converges then the ESM also converges.

Proof: The monotone convergence domain of the Newton-Raphson method is defined
by :

|ϕNRM(x) − x| < λ|x − x| (2.56)

where :

ϕNRM(x) = x + x̃NRM = x −
f(x)

g(x)

while the convergence domain of the ESM is defined by :

|ϕESM(x) − x| < λ|x − x| (2.57)

where :

ϕESM(x) = x + x̃ESM = x −
2f(x)

(g(x) + g(x))

The ESM increment can be rewritten as a function of the Newton increment :

x̃ESM = −
2g(x)

(g(x) + g(x))

f(x)

g(x)
= γ(x) x̃NRM

where :

γ(x) =
2g(x)

(g(x) + g(x))

If 0 < g(x) ≤ g(x) then 0 < γ(x) ≤ 1 and

|ϕESM(x) − x| ≤ |ϕNRM(x) − x| < λ|x − x| (2.58)
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2.1.3.2.2 Order of convergence of the ESM

The following theorem shows that the ESM has the same order of convergence as the
Halley method which is also higher than the Newton method.

Theorem 7 The Efficient Second-order approximation Method has at least cubic order
of convergence.

Proof: Simply apply Theorem 2 to the function ϕ(x) defined in equation (2.36). The
derivatives of the function are :

ϕ1(x) =
g(x) − g(x)

g(x) + g(x)
+

2 h(x)

(g(x) + g(x))2
f(x) (2.59)

ϕ2(x) = 2 h(x)
g(x) − g(x)

(g(x) + g(x))2
+

2q(x)(g(x) + g(x)) − 4h(x)2

(g(x) + g(x))3
f(x) (2.60)

When computed at x we obtain :

ϕ1(x) = 0 (2.61)

ϕ2(x) = 0 (2.62)

This theorem is important since the computation cost of the ESM is almost the same
as the computation cost of the Newton method and much less than the computation cost
of the Halley method. This will be even more true for multidimensional systems where
the inverse of the gradient become the inverse of a matrix.

2.2 Iterative solution of nonlinear systems

The extension of the methods presented in the previous section to the iterative solution
of systems of nonlinear equations (i.e. n nonlinear equations with n unknowns) is almost
straightforward and it is mainly a matter of notations The theorems proved in the previous
section can also be extended to the multidimensional case as in [Isaacson 66].

2.2.1 Extension to systems of nonlinear equations

Consider the following system of m equations in n unknowns :

f(x) = 0 (2.63)

The Taylor series of the vector function f(x̂ + x) about x̂ can be written :

f(x̂ + x) = f(x̂) + J(x̂)x +
1

2!
H(x̂,x)x +

1

3!
Q(x∗,x2)x (2.64)
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where the last term is a third-order Lagrange remainder and x∗ ∈ (x̂,x) and the matrices
J(x), H(x), and Q(x) are defined as follows :

J(x) = ∇f(x) (2.65)

H(x̂,x) = ∇J(x)x̂ (2.66)

Q(x̂,x) = ∇H(x̂,x)x̂ (2.67)

Suppose that x is a simple solution of the system (2.63), therefore :

f(x) = 0 (2.68)

det(J(x)) 6= 0 (2.69)

Starting from the initial approximation x̂0, the problem can be solved by iteratively
finding an increment x̃ in order to generate a sequence of values

x̂k+1 = x̂k + x̃k (2.70)

such that :
lim
k→∞

x̂k = x (2.71)

Similarly to the uni-dimensional case we can define a vector function

ϕ(x) = x − K(x)f(x)

where K(x) is a full rank (n×n) matrix (i.e. det(K) 6= 0. We obtain the multidimensional
equivalent of a functional iteration by solving the problem :

x = ϕ(x) (2.72)

Again, if x is a solution of
x = ϕ(x)

then f(x) = 0 since K(x) is a full rank matrix.

2.2.1.1 The multidimensional Newton method

Keeping terms of equation (2.64) only to first order we obtain :

f(x̂ + x) ≈ f(x̂) + J(x̂)x (2.73)

This expression can be used to estimate the amount of offset x̃ needed to land closer to the
root starting from an initial guess x̂. Setting x = x̃ = x− x̂ we have f(x̂ + x̃) = f(x) = 0
and :

f(x̂ + x̃) ≈ f(x̂) + J(x̂) x̃ = 0 (2.74)

Supposing det(J(x̂)) 6= 0 we can solve equation (2.74) and obtain the multidimensional
Newton-Raphson increment :

x̃ = −J(x̂)−1f(x̂) (2.75)

The multidimensional Newton-Raphson also has at least a quadratic order of convergence.
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2.2.1.2 The multidimensional Halley method

Keeping terms of equation (2.64) only to second order we obtain :

f(x̂ + x) ≈ f(x̂) + J(x̂)x +
1

2!
H(x̂,x)x (2.76)

Setting x = x̃ = x − x̂ we have f(x̂ + x̃) = f(x) = 0 and :

f(x̂ + x̃) ≈ f(x̂) + J(x̂) x̃ +
1

2!
H(x̂, x̃) x̃ = 0 (2.77)

Plugging the Newton iterate :

x̃ = −J(x̂)−1f(x̂)

into H(x̂, x̃) of equation (2.77) we obtain the following linear equation :

f(x̂ + x) ≈ f(x̂) +
1

2
(2J(x̂) + H(x̂,−J(x̂)−1f(x̂)))x̃

which can be solved to obtain the multidimensional Halley increment :

x̃ = −2(2J(x̂) + H(x̂,−J(x̂)−1f(x̂)))−1f(x̂)

The multidimensional Halley method is extremely costly since it involves the computation
of the Hessian of the functions and two matrix inversions.

2.2.1.3 The multidimensional Efficient Newton Method

The efficient Newton method can be obtained by considering the Taylor series of f(x)
about x :

f(x + x) = f(x) + J(x)x +
1

2
H(x∗,x)x (2.78)

Since f(x) = 0, keeping terms up to first order we obtain :

f(x + x) ≈ J(x)x (2.79)

Evaluating the equation at x = −x̃ = x̂ − x gives :

f(x̂) ≈ −J(x)x̃

We obtain an efficient Newton method by computing :

x̃ = −J(x)−1f(x̂)

It is efficient since the inverse of the Jacobian is computed once and for all.
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2.2.1.4 The multidimensional ESM

Using the first order series of the matrix J(x) about x̂, we obtain :

J(x̂ + x) = J(x̂) + H(x̂,x) +
1

2!
Q(x∗,x2) (2.80)

Plugging equation (2.80) in equation (2.64), we obtain :

f(x̂ + x) = f(x̂) +
1

2
(J(x̂ + x) + J(x̂))x −

1

12
Q(x∗,x2)x (2.81)

where the second-order terms in x have disappeared. Without computing the Hessian, we
obtain an efficient second-order approximation of f (i.e. only using first order derivatives)
by setting f(x̂ + x̃) = f(x) = 0 :

f(x̂ + x̃) ≈ f(x̂) +
1

2
(J(x) + J(x̂)) x̃ = 0 (2.82)

The displacement can be obtained by computing the inverse of the mean of the Jacobians :

x̃ = −2 (J(x) + J(x̂))−1 f(x̂) (2.83)

If f(x) is quadratic in x, then the equation (2.82) is not an approximation anymore. Thus,
we can estimate the true parameters of the warping in only one iteration. If the vector
function f(x) is not quadratic, we can expect an improvement over the standard Newton
method since the ESM has a higher order of convergence at the same computational cost
per iteration.

2.2.2 Generalization to nonlinear systems on Lie groups

In order to understand the generalization of the methods presented in the previous
section to nonlinear systems of equations defined on Lie groups the reader should be fa-
miliar with Lie group theory (see [Warner 71], [Varadarajan 74], [Hall 03]). The theorems
proved when the Lie group is R

n can be generalized as in [Mahony 02].

2.2.2.1 Functional iteration on Lie groups

Consider the problem of iteratively finding a root of the equation :

f (x ) = 0 (2.84)

given the (n × 1) vector function f : G 7→ R
n where x ∈ G. Let the dimension of the

Lie group G be dim(G) = n. Let me suppose exists x such that f (x ) = 0. Similarly to
the multidimensional case, we would like to solve the problem iteratively starting from
an approximation x̂ 0 of the true solution x . The problem is to find an increment x̃ in
order to generate a sequence :

x̂ k+1 = x̂ k · x̃ k (2.85)
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such that

lim
k→∞

x̂ k = x (2.86)

The equation (2.85) is a generalization of equation (2.70) since one can choose G = R
n (in

this case the group composition is the addition). If we suppose that the approximation
x̂ is close enough to the true solution x then the increments are close to the identity
x̂−1 · x ≈ e. Let z ∈ R

n be a vector of coordinates of the Lie algebra g of the Lie Group
G such that

x (z) = exp

(
n∑

i=1

ziAi

)

where the exponential map is a map exp: g 7→ G and where Ai are vector fields in g

(for matrix Lie groups Ai are (n × n) matrices). Then, suppose that z̃ exists such that
x (z̃) = x̂−1 · x . The Taylor series of f (x̂ · x (z)) about z = 0 is :

f (x̂ · x (z)) = f (x̂ ) + J (x̂ ) z +
1

2!
H(x̂ , z) z +

1

3!
Q(x ∗, z2) z (2.87)

where the (n × n) matrices J (x̂ ), H(x̂ , z) and Q(x̂ , z2) are :

J (x̂ ) = ∇f (x̂ · x (y))y=0 (2.88)

H(x̂ , z) = ∇(J (x̂ · x (y)) z)|y=0 (2.89)

Q(x̂ , z2) = ∇(H(x̂ · x (y), z) z)|y=0 (2.90)

Finally, we can follow the same developments described in the previous section to obtain
the increment x̃ for each method.

2.2.2.2 Newton methods for nonlinear systems on Lie groups

The Newton-Raphson increment on Lie groups can be computed as follows :

x̃ = x
(
−J (x̂ )−1f (x̂ )

)

while the Efficient Newton increment is :

x̃ = x
(
−J (x )−1f (x̂ )

)

2.2.2.3 The ESM for nonlinear systems on Lie groups

The ESM increment on Lie groups can be computed as follows :

x̃ = x
(
−2 (J (x̂ ) + J (x ))−1 f (x̂ )

)
(2.91)
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2.3 Optimization of nonlinear least squares problems

Consider the following general unconstrained optimization problem :

min
x

c(x) (2.92)

where c(x) is a positive cost function that should be minimized. The necessary conditions
to obtain a (local) minimum of the cost function are :

gc(x) = ∇c(x) = 0 (2.93)

Hc(x) = ∇gc(x) > 0 (2.94)

where gc(x) is the (1× n) gradient of the cost function and Hc(x) is the (n× n) Hessian
matrix of the cost function. Thus, the problem is to solve the system of n equation in
n unknowns defined in equation (2.93). Suppose that we have a system of m nonlinear
equations and n unknowns (with m > n). In the presence of measurement errors the
system f(x) = 0 could not have a solution. Moreover, since there are more equations
than unknowns we probably do not know how to choose a particular set of n equations
over m to solve the problem. Thus, we can rewrite the root-finding problem as a least
squares minimization problem. We look for the minimum of a positive cost function
c(x) = 1

2
f(x)⊤f(x) :

min
x

c(x) = min
x

1

2
f(x)⊤f(x) (2.95)

starting from a close approximation x̂ of the true root x′. In the particular case of a
least-squares problem we have :

gc(x) = f(x)⊤J(x) (2.96)

Hc(x) = J(x)⊤J(x) +
n∑

i=1

fi(x)Hi(x) (2.97)

If we transform the root-finding problem into a minimization problem, the minimum
of the cost function is obtained when gc(x) = 0. Thus we will find either f(x′) = 0
or f(x′) ∈ ker(J(x′)). Note that solution x′ of the non-linear least squares optimization
coincides with the solution x of the nonlinear systems only if f(x) = 0. Because of aberrant
measurements errors the estimated solution can be very far from the true solution. In
this case, a robust optimization method should be used (see section 2.3.3).

2.3.1 The Newton optimization and approximated methods

The Newton optimization method performs a first order approximation of the gradient
of the cost function (or equivalently a second-order approximation of the cost function).
This implies the computation of the second derivatives (the Hessian matrices) of the vector
function f . We can apply the Newton-Raphson method to iteratively solve equation (2.93)
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which is a system of n non-linear equations in n unknowns. Taking terms up to first order
of the Taylor series of gc(x) about x̂ we obtain :

gc(x̂ + x) ≈ gc(x̂) + x⊤Hc(x̂) (2.98)

Setting gc(x̂ + x) = 0 we have to solve the following linear system :

gc(x̂) + x̃⊤Hc(x̂) = 0 (2.99)

whose solution is :
x̃ = − (Hc(x̂))−1 gc(x̂)⊤ (2.100)

In the case of a least-squares optimization, using equations (2.96) and (2.97), the solution
can be written as :

x̃ = −

(
J(x̂)⊤J(x̂) +

n∑

i=1

fi(x̂)Hi(x̂)

)−1

J(x̂)⊤f(x̂) (2.101)

2.3.1.1 The Gauss-Newton method

The Gauss-Newton method consists in approximating the Hessian of the cost function.
Supposing that the residuals at the solution are small fi(x̂) → fi(x

′) ≈ 0 we can set :

Hc(x̂) ≈ J(x̂)⊤J(x̂)

In this case the Gauss-Newton step can be written as :

x̃ = −
(
J(x̂)⊤J(x̂)

)−1
J(x̂)⊤f(x̂) (2.102)

where det(J(x̂)⊤J(x̂)) 6= 0. More generally, we can use the pseudo-inverse of the matrix :

x̃ = −J(x̂)+ f(x̂) (2.103)

since J(x̂)+ =
(
J(x̂)⊤J(x̂)

)−1
J(x̂)⊤ if rank(J(x̂)) = n. Obviously, if m = n then J(x̂)+ =

J(x̂)−1 and the Gauss-Newton method applied to the minimization of the cost function
c(x) is equivalent to the Newton method applied to the root search of the function f(x).

2.3.1.2 The Efficient Gauss-Newton method

If we are able to measure J(x) then we can use an efficient Gauss-Newton method :

gc(x + x) ≈ gc(x) + x⊤Hc(x) (2.104)

Setting gc(x + x̃) = gc(x̂) we have to solve :

gc(x̂) = −x̃⊤Hc(x) = 0 (2.105)

whose solution is :
x̃ = −J(x)+ f(x̂)

This method is efficient since J(x)+ can be computed once and for all.
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2.3.1.3 The Steepest Descent method

The Steepest Descent method consists in approximating the Hessian of the cost func-
tion as follows :

Hc(x̂) ≈ αI

where α is a positive constant. In this case the Steepest Descent method step can be
written as :

x̃ = −αJ(x̂)⊤f(x̂)

The value of the parameter α can be obtained by solving a one dimensional minimization
problem along the direction given by the vector x̃ [Dennis 83]. An efficient version of the
Steepest Descent method can be obtained using x instead of x̂ in the Jacobian.

2.3.1.4 The Levemberg-Marquardt method

The Levemberg-Marquardt method consists in approximating the Hessian of the cost
function as follows :

Hc(x̂) ≈ J(x̂)⊤J(x̂) + αI

where α is a positive constant. In this case the Levemberg-Marquardt step can be written
as :

x̃ = −
(
J(x̂)⊤J(x̂) + αI

)−1
J(x̂)⊤f(x̂)

Note that if α = 0 then we obtain the Gauss-Newton method.

2.3.2 The ESM for nonlinear least squares optimization

If we apply the ESM to the non-linear system defined in equation (2.93) we obtain :

x̃ = −
1

2
(Hc(x̂) + Hc(x

′))−1gc(x̂)

The ESM method as it is defined in this equation would require the computation of
Hessians matrices like the Newton method.

2.3.2.1 Approximated ESM

As for the Gauss-Newton method we can compute an approximation of the gradient
of the cost function as follows. Consider the gradient of the cost function :

gc(x̂ + x) = f(x̂ + x)⊤J(x̂ + x)

From equation (2.80) we compute the following expression for the Jacobian :

J(x̂ + x) =
1

2
(J(x̂ + x) + J(x̂)) +

1

2
H(x̂,x) +

1

4
Q(x∗,x2)
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Thus, using the efficient second-order approximation :

gc(x̂ + x) =
1

2

(
f(x̂) +

1

2
(J(x̂ + x) + J(x̂))x −

1

12
Q(x∗,x2)x

)⊤

(
J(x̂ + x) + J(x̂) + H(x̂,x) +

1

2
Q(x∗,x2)

)
(2.106)

which can also be rewritten as follows :

gc(x̂ + x) =
1

2

(
f(x̂) +

1

2
(J(x̂ + x) + J(x̂)) x

)⊤

(J(x̂ + x) + J(x̂)) +

+
1

2
f(x̂ + x)⊤

(
H(x̂,x) +

1

2
Q(x∗,x2)

)

−
1

24
x⊤Q(x∗,x2)⊤ (J(x̂ + x) + J(x̂)) (2.107)

Setting x = x̃′ we have x̂ + x̃′ = x′ and gc(x
′) = 0. Thus :

gc(x
′) =

1

2
(J(x) + J(x̂))⊤

(
f(x̂) +

1

2
(J(x) + J(x̂)) x̃

)
+

+
1

2
f(x′)⊤

(
H(x̂, x̃) +

1

2
Q(x∗, x̃2)

)

−
1

24
x̃⊤Q(x∗, x̃2)⊤ (J(x′) + J(x̂)) = 0 (2.108)

that can be approximated by :

gc(x
′) ≈

1

2

(
f(x̂) +

1

2
(J(x) + J(x̂)) x̃

)⊤

(J(x) + J(x̂)) = 0 (2.109)

There are two different approximations. The first approximation concerns terms that de-
pend on the residuals f(x′). Indeed, in the ideal case f(x′) ≈ 0. The second approximation
concerns terms that are third order in x̃. Finally, we find the solution :

x̃ ≈ −2 (J(x̂) + J(x′))
+

f(x̂) (2.110)

2.3.2.2 Comparison with standard optimization methods

The main advantage of the Efficient Second-order approximation Method is the cubic
order of convergence. Another advantage is the large domain of convergence that allows to
avoid some local minima close (i.e. when the second-order approximation is valid) to the
global one. These advantages are demonstrate here with the help of two simple examples.
Consider a (4×1) vector function f(x) quadratic in a (2×1) parameter vector x :

f(x) = B x + A(x)x
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where B is a (4×2) matrix and A(x) is a (4×2) which is linear in x. We choose different
coefficients in B and A(x) for each example. The objective is to find the minimum of
the SSD cost function :

c(x) =
1

2
f(x)⊤f(x)

which, in this case, is of degree 4 in x. In each example I will test the Steepest Descent
and the Efficient Steepest Descent methods, the Gauss-Newton and the Efficient Gauss-
Newton methods, the Newton method and the ESM. Thus, I suppose that we can measure
the constant Jacobian J(0) and the varying Jacobian J(x0). The simulation is repeated
4 times with different starting points : x0 ∈ {(±1.5,±1.5)}. For each simulation I take
at each iteration a very small step towards the solution in order to display a continuous
trajectory from the starting point x0 to the minimum (0 in our case). The length of the
trajectory represents the convergence rate of each algorithm. Obviously, the ideal path
(i.e. the shortest one) would be a straight line from x0 to 0.

2.3.2.2.1 Convergence rate

The results for 6 different minimization methods are given in Figure 2.1. The contours
represent isolines of the SSD (i.e. the cost function has the same value for each point of the
contour) while the red lines represent the paths for each starting point. Figure 2.3.2.2.2
shows that the varying Steepest Descent method always moves in a direction perpendi-
cular to the isolines. For this reason, it has a slow convergence rate and cannot reach
the minimum following a straight line. The paths for the constant Steepest Descent
method are even longer (see the path lengths in Figure 2.3.2.2.2). The constant (Fi-
gure 2.3.2.2.2) and the varying (Figure 2.3.2.2.2) Gauss-Newton methods perform better
than the constant and the varying Steepest Descent methods respectively. In fact, in the
constant and the varying Gauss-Newton methods a rough approximation of the Hessian is
used. Ill-conditioned and indefinite Hessian matrices cause the oscillations of the Newton
method in Figure 2.3.2.2.2. Finally, the ESM method gives the best solution since the
paths in Figure 2.3.2.2.2 are straight lines. Indeed, when the function f(x) is exactly qua-
dratic we can correctly estimate the displacement in only one step and thus the correct
descent direction regardless of the shape of the isolines.

2.3.2.2.2 Domain of convergence

In the second simulation, we choose a different quadratic function f(x) such that the
corresponding SSD cost function has a local minimum very close to the global minimum.
The Newton method and methods with varying Jacobian fall into the local minimum
when the starting point is close to it (see Figures 2.3.2.2.2, 2.3.2.2.2 and 2.3.2.2.2). In this
case, methods with constant Jacobian can eventually diverge (see Figures 2.3.2.2.2 and
2.3.2.2.2). Indeed, the constant Jacobian approximation is valid only in a neighborhood
of the true solution. On the other hand, the ESM method follows the shortest path (see
Figure 2.3.2.2.2). Thus, if f(x) is locally quadratic the ESM method is able to avoid local
minima.
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(a) Steepest Descent (b) Efficient Steepest Descent

(c) Gauss-Newton (d) Efficient Gauss-Newton

(e) Newton (f) ESM

Fig. 2.1 – Comparing the behavior of six different minimization methods.



Ezio Malis 40

(a) Steepest Descent (b) Efficient Steepest Descent

(c) varying GN (d) Efficient Gauss-Newton

(e) Newton (f) ESM

Fig. 2.2 – Comparing the behavior of six different minimization methods.
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2.3.3 Robust optimization

When dealing with robot vision applications in a real world some measurements may
be aberrant. These aberrant measures are called outliers and in theory only one of them
can make a least squares algorithm find a solution arbitrarily far from the true solution.
Least squares problems are not very robust because the objective function can grow inde-
finitely and outliers may become dominating w.r.t. measurements that verify the model.
Alternatively, it is preferable to use robust methods that modify the objective function
so as to limit the influence of the most significant residues. The principal consequence
is, usually, a slower convergence speed of the optimization algorithms. Indeed, it is very
difficult to distinguish, at first, outliers and inliers. Therefore, some inliers may be ini-
tially filtered which leads to a reduction in the convergence speed. Nevertheless, the most
difficult case to solve arises when small but aberrant residues move the minimum of the
objective function.

Several robust optimization methods have been proposed in the literature. A compa-
rison of the most known algorithm applied to robot vision applications was proposed in
[Malis 06]. I will describe here the methods that have worked better in practice.

2.3.3.1 The M-estimators

The principle of the M-estimators is to modify the objective function of the least
squares by penalizing the largest residues. The objective function is then defined by :

c(x) =
n∑

i=1

ρ(fi(x)) (2.111)

where the function ρ is at least C0. The gradient and the Hessian of the cost function
are :

gc(x) =
n∑

i=1

∂ρ(fi)

∂fi

∂fi(x)

∂x

=

[
∂ρ(f1)

∂f1

∂ρ(f2)

∂f2

· · ·
∂ρ(fm)

∂fm

]
J(x) (2.112)

Hc(x) =
n∑

i=1

∂2ρ(fi)

∂f 2
i

∂fi(x)⊤

∂x

∂fi(x)

∂x
+

n∑

i=1

∂ρ(fi)

∂fi

∂2fi(x)

∂x2

= J(x)⊤D J(x) +
n∑

i=1

∂ρ(fi)

∂fi

Hi(x) (2.113)

where D = diag

(
∂2ρ(f1)

∂f 2
1

,
∂2ρ(f2)

∂f 2
2

, · · · ,
∂2ρ(fm)

∂f 2
m

)
. Then, we can apply the Newton-

Raphson method.
Various functions ρ were proposed in the literature. Among all the possible robust

estimators ρ, the most popular are those proposed by [Beaton 74] and [Huber 81]. The
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function ρ proposed by [Huber 81] is defined by :

ρ(fi) =

{
1
2
f 2

i if f 2
i ≤ c

c
(
|fi| −

c
2

)
if f 2

i > c
(2.114)

where c = 1.345σ̂ and σ̂ is a robust estimation of the standard deviation of the inliers. It
is usually defined by the Median Absolute Deviation (MAD) given by :

σ̂ = 1.48 median(|f − median(f)|). (2.115)

In the function ρ proposed by Huber, the weakest residues are regarded as in a least
squares problem whereas the most significant residues are quickly limited (but not can-
celed).

The function ρ proposed by [Beaton 74] is defined by :

ρ(fi) =





c2

6


1 −

(
1 −

(
fi

c

)2
)3

 if f 2

i ≤ c

c2

6
if f 2

i > c

(2.116)

where c = 4.6851σ̂ and where σ̂ is a robust estimation of the standard deviation of the
inliers. As in the previous case, in the function ρ proposed by Beaton-Tukey, the weakest
residues are regarded as in a least squares problem whereas the most significant residues
are quickly canceled (completely this time).

2.3.3.2 The iteratively re-weighted least squares

An advantage of the M-estimation is that it can be implemented using a simple
iterative re-weighted least squares algorithm. Considering a linear problem, the actual
least squares problem aims at solving for x the following linear system Ax = b where x
and b are vectors and A is a matrix. Iterative re-weighted least squares algorithms aim
at solving the following system :

WAx = Wb (2.117)

where W = diag(w1, . . . , wm) is a diagonal matrix where the weight wi reflects the confi-
dence of each feature. The weights wi, are usually given computed as follows :

wi =
1

fi

∂ρ(fi)

∂fi

(2.118)

where the ρ can be any robust function (see for example those presented in the previous
section). The iteratively re-weighted algorithm estimates the value of x by solving the
weighted least squares system of the equation (2.117), and reiterates until convergence.
These methods act like automatic outlier rejectors since large residual values lead to very
small weights.
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Vision-based parametric estimation

Vision-based parametric estimation has been widely studied by computer vision and
robotic scientists. It is an inverse problem since the values of some parameters of a
model must be obtained from the observed visual data. An exhaustive description of all
possible solutions is beyond the scope of this document. The reader may refer to well-
known textbooks like [Faugeras 93, Hartley 00, Faugeras 01, Ma 03]. However, it is worth
noting that there are two main approaches to solving this problem : correspondence-based
methods and direct methods. Both have their advantages and drawbacks, which motivated
the design of hybrid approaches (i.e. a combination of both methods).

Correspondence-based methods separate the data association problem from the solu-
tion of the non-linear system of equations introduced in Chapter 1. The data association
problem is solved first, by finding the matching between corresponding pixels. The cor-
respondences may be dense like optical flow [Horn 81] or sparse like features [Torr 00].
With respect to optical flow methods, feature-based methods are correspondence-based
methods that can deal with larger inter-frame displacements in the images.

Direct methods [Horn 88, Stein 00, Irani 00] simultaneously solve the data association
problem and the non-linear system of equations introduced in Chapter 1. The problem
is formulated as the minimization of a cost function that is generally solved using the
standard local numerical methods introduced in Chapter 2. Thus, direct methods are more
adapted to solving incremental estimation problems, which is the case of video-sequences
acquired with a sufficiently high frame rate.

The contributions of my research work have been the modeling and the design of
efficient, accurate and robust estimation methods to meet the requirements needed for
real-time applications and, in particular, vision-based robot control. I will show how to
solve incremental direct image registration problems (visual tracking) and localization
and/or mapping problems and how to apply the ESM described in Chapter 2.

The present chapter is organized as follows. First, feature-based estimation methods
are presented. Their advantages and limitations are discussed. Then, direct methods are
described with a particular focus on incremental approaches.
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3.1 Feature-based methods

Suppose we have a collection of images acquired by a vision system. Feature-based
methods are so called since they are based on the extraction of a set of features (like
points, lines, contours, ...) from the images. They are correspondence-based methods
since the matching problem is solved before the parametric estimation. Thus, feature-
based methods are generally composed of three steps :

– Feature extraction ;
– Feature matching ;
– Parametric estimation (e.g. intrinsic parameters, structure, motion, ...).
Each of these steps is now discussed.

3.1.1 Features extraction

The raw images are filtered to extract some features (points, edges, contours, ...)
corresponding to characteristic geometric elements of the observed scene. Several fea-
ture detectors have been proposed in the literature. Most of them are specialized in ex-
tracting key-points like [Harris 88], [Lowe 04], [Mikolajczyk 04], [Tuytelaars 04], or edges
[Canny 86]. Higher level features (straight lines, closed contours,...) can be obtained by
chaining several elementary features. Let me consider for example key-point features since
they are generally more likely to be found in an image. An ideal filter ϕ would be able to
extract from each image the exact coordinates of n points that correspond to 3D points
of the scene :

si = ϕ(ψ(φi,κi,γ,Ti)) = (pi1,pi2, ...,pin) (3.1)

The ideal filter should also be able to extract exactly the same points in all the images,
if they are visible. Unfortunately this ideal filter does not exist and the accuracy and
repeatability (precision) of common extractor filters are limited.

3.1.1.1 Accuracy

Accuracy in feature detection is extremely important. Indeed, the error that is made
in the extraction will never be corrected in the following steps. Detection accuracy is
affected by several factors (see for example [Deriche 90]). Firstly, the filter should be
invariant to the photometric parameters φ, to the geometry of the scene and to the
viewpoint. Secondly, the filter should be robust to noise. To achieve these invariances,
filters are generally based on image processing (e.g. image gradients, smoothing, ...) that
affects the accuracy of the extraction. Note also that, the majority of filters should also
be invariant to the camera intrinsic parameters. Furthermore, most filters have been
designed and optimized for perspective cameras. Their application to other cameras, like
catadioptric sensors (due to their non uniform resolution), is not straightforward.

3.1.1.2 Repeatability

Feature association in two different images can only be performed if we are able
to extract the same features in both images. Thus, another important characteristic of
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feature extraction is repeatability. Perfect repeatability is extremely difficult to achieve.
Indeed, the extraction of the features generally depends on a threshold to decide if the
feature exists or not. When imaging conditions change the same feature may not be
detected in different images.

3.1.2 Features matching

Once we have extracted a collection of features in several images we need to match
them. Matching consists in finding which feature in the reference image corresponds to
which feature in the current image. Exhaustive features association may be performed by
considering all possible combinations of features and solving the underlying projection
model. However, this approach is computationally expensive. Thus, feature matching
algorithms are generally simplified by computing some characteristic descriptors for each
feature. Then, using a similarity measure on the descriptors we can measure the most
similar couples of features in the two images.

In general, feature descriptors are not invariant to all involved parameters (illumina-
tion, geometry, motion, ...). Moreover, the similarity measure cannot tolerate gross errors
on the descriptors. Thus, several mismatched features are generally present at the end of
the matching process. Some of the false matches (outliers) can be eliminated “a posterio-
ri” using geometric constraints. Other false matches will not be eliminated since they will
be compatible with the geometric constraints and will be considered as inliers. However,
they will contribute to reducing the accuracy of the parametric estimation.

3.1.2.1 Descriptors

Descriptors are needed to simplify the data association. They are generally compu-
ted by considering a region around the interest points (the simplest descriptor being the
region itself). Several descriptors have been proposed for interest points like [Lowe 04,
Mikolajczyk 04, Tuytelaars 04]. They are generally robust to affine image transforma-
tions and to affine illumination changes. Therefore, the performance of these descriptors
decreases with increasing perspective deformations or illumination changes.

3.1.2.2 Similarity measures

A similarity measure is needed to discriminate corresponding features. For example,
when we consider as a descriptor all the intensities of a region around an interest point,
a standard similarity measure is the zero-mean normalized cross correlation (ZNCC).
Any distance between two descriptors can be used as a similarity measure. For example,
[Lowe 04] uses an Euclidean distance between the (128× 1) vectors containing the SIFT
descriptors.

3.1.3 Parametric estimation

For simplicity, let me consider interest points as visual features and a monocular
camera. In addition, suppose that the data association problem has been perfectly solved.
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If it is not the case, we can use robust estimation techniques, like RANSAC [Fischler 81],
the Hough transform [Duda 72] or M-estimators [Huber 81], to eliminate the outliers. If
we assume a perfect matching between points, we can estimate the parameters of the
projection model given in equation (1.20) by solving the following system of non-linear
equations :

π(κi, τ (Ti,mj)) = pij

where i ∈ 1, 2, . . . , ni and j ∈ 1, 2, . . . , np (ni and ni being the number of images and
points respectively ). These equations depend on the camera intrinsic parameters κi, the
camera extrinsic parameters Ti and the structure of the rigid body mj. We can see in
the following sections how the problems presented in Section 1.3.1.1, Section 1.3.1.2 and
Section 1.3.1.3 have been solved by feature-based methods.

3.1.3.1 Calibration of the vision system

Suppose that a metric model of the structure is known (e.g. the calibration grid in
Figure 3.1.3.1). For example, we know the coordinates mj of several 3D points in a
reference frame and we know that they correspond to the point pij in the i-th image (the
correspondence is generally given by the user). Then we can solve the following system
of equations :

π(κi, τ (Ti,mj)) = pij (3.2)

where the unknowns are the camera intrinsic parameters κ̂i and the camera extrinsic
parameters T̂i. Obviously we need at least as many equations as unknowns. If the camera
is not zooming (i.e. the camera intrinsic parameters are constant) then κ̂i = κ̂ and
we obtain an over-constrained camera calibration : the number of equations is greater
than the number of unknowns. If we have more equations than unknowns, the camera
calibration can be defined as a non-linear least-squares optimization method. Calibration
methods are based on the solution of the nonlinear system (3.2). For pinhole cameras
see [Faugeras 87, Tsai 87, Weng 92, Zhang 00] while for central catadioptric cameras see
[Geyer 99, Fabrizio 02, Mei 07]. For example, using 26 images of the grid in figure 3.1.3.1
with the method proposed by [Faugeras 87], we obtain the following focal length f =
685 ± 3 and principal point (u0, v0) = (322, 229) ± (6, 40).

Image 1 Image 2 Image 3 Image 4

Fig. 3.1 – Images of a calibration grid.
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3.1.3.2 Localization and/or mapping

Suppose that we have a calibrated vision system but the structure is unknown. Then
the simultaneous localization and mapping problem can be formulated as the solution of
the following system of non-linear equations :

π(κi, τ (Ti,mj)) = pij (3.3)

Many approaches exist to solve this problem [Hartley 00, Faugeras 01, Ma 03]. They can
be classified into two groups : bundle adjustment or incremental. Those based on bundle
adjustment [Triggs 00] define a cost function containing all possible images and search
simultaneously for all the parameters. Not only is an initial estimation of the optimization
algorithms generally needed but also bundle adjustment supposes that all possible images
have already been collected. Hierarchical bundle adjustment can be used to reduce the
computational cost [Royer 07]. However, incremental approaches are more suitable for
real-time robotics applications [Davison 03][Nister 06] [Se 05].

When we consider a few images several algorithms exist to efficiently solve the system
of equations (3.3). For example, if we consider the image pairwise we can simplify the
equations and estimate the well known essential matrix [Faugeras 93]. When we consider
triplets of images we can estimate the trifocal tensor and if we consider quadruplets of
images we can estimate the quadrifocal tensor (see [Hartley 00, Faugeras 01, Ma 03] for
details).

Considering two images at a time is of particular interest for vision-based control
applications based on the teaching-by-showing approach. In this case the system of equa-
tions (3.3) can be solved as follows. Let me set mij = τ (Ti,mj). Then, we can “pseudo-
inverse” the function π in order to obtain :

mij ∝ π
+(κi,pij) (3.4)

The “pseudo-inverse” function π+ is such that π(κi,π
+(κi,pij)) = pij. Then using

equation (1.4) we find that two image points in the i-th and k-th images are related by
the following relationship :

π+(κi,pij)
⊤ iEk π

+(κk,pkj) = 0 (3.5)

The essential matrices iEk can be computed from these equations [Longuet-Higgins 81]
[Hartley 97] [Nister 04]. Then, since iEk = [itk]×

iRk we can extract the rotation iRk and
the translation itk up to a scale factor [Faugeras 93]. Finally, we can also reconstruct the
structure up to this scale factor.

A degenerate case happens when the observed scene is a plane [Longuet-Higgins 84].
Dealing with degenerate cases is quite difficult. A possible solution is to maintain multiple
hypotheses and to select the best model [Torr 98]. However, switching between several
models can induce discontinuities in the estimation that one would like to avoid when
using the estimated parameters in feedback control loops. Another solution is to solve the
system of equations (3.3) using virtual parallax approaches [Boufama 95]. The equation
can be rewritten in order to obtain the following system of equations :

π+(κi,pij) ∝
iHkπ

+(κk,pkj) + βj
itk (3.6)
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where iHk is the homography matrix related to a virtual plane and βj is a scalar that
takes into account the distance (parallax) of the 3D point with respect to the virtual
plane. Eliminating βj

itk from the equations we can directly estimate the homography
matrix iHk without knowing “a priori” if the scene is planar or not [Malis 00a] [Espiau 02].

If we know “a priori” that we are observing a planar scene we can take this information
into account since in this case we have no parallax βj = 0, ∀j. Thus, the points on the
plane are related by a homography matrix (see equation (1.7)) :

π+(κi,pij) ∝
iHkπ

+(κk,pkj) (3.7)

These equations are linear in the entries of the homography matrices. Once the matrices
iHk have been estimated we can extract the rotation and the translation up to a scale fac-
tor, and the normal to the plane. There are generally two possible solutions to the homo-
graphy decomposition. To find these solutions, several numerical decomposition methods
have been proposed [Faugeras 88, Zhang 96]. With such numerical methods, theoretical
analysis of the influence of calibration errors on the reconstruction of the rotation, transla-
tion and normal vector is impossible. This theoretical analysis is extremely useful to prove
the robustness of vision-based control laws [Malis 99, Malis 01a, Malis 02f]. This is the
reason why we have explicitly computed the analytical solutions of the decomposition :

Ra = fr(H) (3.8)

ta = ft(H) (3.9)

na = fn(H) (3.10)

The exact expressions of the functions fr(H), ft(H) and fn(H) are too long to be pre-
sented here and can be found in [Malis 07b]. The explicit analytical expression of one
solution of the decomposition as a function of the other solution can also be obtained :

Rb = Ra +
2

ρ2

[
ν ta n⊤

a − tat
⊤

a Ra − ‖ta‖
2 Ra nan

⊤

a − 2Ra nat
⊤

a Ra

]
(3.11)

tb =
‖ta‖

ρ
Ra

(
2na + R⊤

a ta

)
(3.12)

nb =
1

ρ

(
‖ta‖na +

2

‖ta‖
R⊤

a ta

)
(3.13)

where ρ = ‖2na+R⊤

a ta‖ and ν = 2 (n⊤

a R⊤

a ta+1). Again, these relationships are extremely
useful for the design of vision-based control laws. For example, in [Vargas 05] we found
that by mixing both solutions of the decomposition in an appropriate control law it is
possible to converge into a particular camera configuration where a distinction can be
made between the true and the false solution.
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Localization (pose reconstruction)

A common problem is to reconstruct the pose when the camera parameters and the
structure are known :

π(κ, τ (Ti,mj)) = pij (3.14)

This problem is of particular interest in robotic applications since the pose can be directly
used to control the robot. There are two classes of methods to solve this problem : iterative
and non-iterative methods.

Iterative methods minimize an appropriate cost function (e.g. least-squares error)
built from the equations [Lowe 91, Kumar 94b, Dementhon 95, Horaud 97, Lu 00]. They
are very accurate but they need an initial estimation of the pose to avoid local minima
of the cost function.

Non-iterative methods are generally based on a “linearization” (i.e. lifting the pro-
blem to a higher dimensional space) of the equations [Dhome 89, Fiore 01, Ansar 03,
Moreno 07]. The accuracy of these algorithms is generally lower since the non-linear
constraints on the rotation are not directly enforced. However, they can be used to ini-
tialize the iterative algorithms.

Mapping (structure reconstruction)

If the displacements between the images are known the problem becomes simpler
since only the structure must be recovered. This problem is called “structure from known
motion”. The system of non-linear equations to be solved becomes :

π(κ, τ (Ti,mj)) = pij (3.15)

This is the problem we have to solve when we consider a calibrated stereo system. The
same problem appears when we can measure the pose (or integrate the velocity) of a
well calibrated robot. Several approaches have been proposed [Matthies 89], [Smith 94],
[Chaumette 96], [De Luca 07b].

Note that the problem can also be “easily” solved without completely knowing the
pose. Indeed, it is well-known that the affine reconstruction from perspective images is
very easy if the motion of the camera between two images is a pure translation [Moons 96].
The direction of the translation can be arbitrary and unknown (if the amplitude of the
translation is also unknown the mapping will be recovered up to an unknown scale factor).
This problem can be called “structure from partially known motion”. The translation can
be performed by a perfectly calibrated robot. However, if the robot is not well calibrated
or mobile (i.e. with unavoidable drifting) it is not possible to perform an open-loop pure
translation. Thus, we have proposed in [Malis 03d] an active affine reconstruction method
in which the pure translation is performed closing the loop with a 2.5 D visual servoing
technique [Malis 99]. Note also that for an affine reconstruction the camera does not need
to be calibrated.
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3.1.3.3 Self-calibration of the vision system

Self-calibration is even more difficult than SLAM since the camera intrinsic parameters
are also unknowns. The problem is to solve the following non-linear system of equations :

π(κi, τ (Ti,mj)) = pij

Since the camera intrinsic parameters are unknowns, we cannot compute the “pseudo-
inverse” of the function π. This problem is generally not well-posed and a sufficiently rich
motion of the camera must be supposed (camera rotations are needed). Constraints on the
camera intrinsic parameters must be added if they are not constant. Bundle adjustment
approaches generalize well to this problem [Triggs 00]. However, it is generally more
difficult to find an initialization for the optimization algorithms.

The self-calibration problem becomes easier if we consider pinhole cameras. In this
case, it is possible to factor out the camera intrinsic parameters to obtain mij ∝ K−1

i p
ij
.

Thus we obtain an uncalibrated equation, equivalent to equation (3.5), for pinhole came-
ras :

p⊤

ij

iFkpkj
= 0 (3.16)

where iFk = K̂−⊤

i
iEkK̂

−1
k is the uncalibrated essential matrix (generally called the fun-

damental matrix [Faugeras 93]). Similarly, we can obtain the uncalibrated equivalent of
the virtual parallax in equation (3.6) :

p
ij
∝ iGkpkj

+ βj
iek (3.17)

where iGk = K̂i
iHkK̂

−1
k is an uncalibrated homography and iek = K̂i

itk is the epipole.
Self-calibration methods of pinhole cameras are generally based on the recovery of the

uncalibrated essential matrices for non-planar scenes or on the recovery of the uncalibra-
ted homography matrices for planar scenes [Hartley 00].

An example of a self-calibration method based on the estimation of the uncalibrated
essential matrices is given in the next section. Then, a more detailed description of our
contributions to the self-calibration from uncalibrated homographies is discussed.

3.1.3.3.1 Non planar structure

After estimating the uncalibrated essential matrices [Faugeras 93] the self-calibration
problem is solved by imposing some constraints [Triggs 97, Mendonça 99, Pollefeys 99].

The idea behind the method proposed in [Mendonça 99] inspired us to propose a
similar constraint for the self-calibration from homographies. Suppose we start from ap-
proximated values of K̂i to compute the calibrated essential matrices :

iÊk = K̂⊤

i
iF̂kK̂k

The singular values of the matrices are svd(iÊk) = (σ̂′

ik, σ̂
′′
ik, 0). They should be equal

σ̂′

ik = σ̂′′
ik. However, this is not the case if the estimated K̂i are not correct. Thus, we

can build a cost function to minimize the “difference” between the two singular values.
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3.1.3.3.2 Planar structure

For pinhole cameras, the uncalibrated homography matrix iGk links two correspon-
ding points in the i-th and k-th images :

pi ∝
iGkpk (3.18)

where iGk = Ki
iHkK

−1
k . If we have enough information (at least 4 corresponding points

for each image pair), then we can estimate iĜk for each couple of images i and k (ob-

viously iĜk = I when i = k). If the iĜk were correctly estimated they should satisfy the
constraints :

iĜk ∝ iĜj
jĜk (3.19)

This is not the case in general due to image noise and errors in features extraction
and matching. Plane-based self-calibration methods like the one proposed by [Triggs 98]
suffer from these errors. In order to reduce their influence, we proposed imposing the
constraints between uncalibrated homographies using an iterative method [Malis 00b].
By imposing the constraints, we obtained an accurate self-calibration from planar scenes
with an unknown metric structure. We do not use any key image but all the images are
equally treated, averaging the uncertainty over all of them. Assuming that the principal
point is known, the method can be applied for the self-calibration of a camera with
varying focal length [Malis 00c]. The global approach has been described in [Malis 02g]

and it is based on the following idea. Suppose we start from approximated values of K̂i

to compute the calibrated homography matrices :
iĤk ∝ K̂−1

i
iĜk K̂k (3.20)

Each estimated calibrated-homography matrix iĜk can be decomposed to find the normal
vector n̂k. These vectors should be such that the matrices iĤk [n̂k]× have two equal

singular values. This is not the case if the K̂i are not correct. Thus, we can build an
error to be minimized. Figure 3.2 shows four images of a planar structure used to test
our self-calibration algorithm. The images were taken with the same camera calibrated
in Section 3.1.3.1 with 26 images of a calibration grid. The self-calibrated parameters
were f = 678 and (u0, v0) = (355, 216) while the calibrated parameters were f = 685 and
(u0, v0) = (322, 229). Therefore, we have 1% error on the measure of the focal length,
which is a satisfactory result considering that we used four images only. Once we have
estimated the intrinsic parameters we can also recover the poses and the normal vector.

Image 1 Image 2 Image 3 Image 4

Fig. 3.2 – Images of the façade of St. Catharine’s College, Cambridge (UK).
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3.2 Direct methods

Direct methods perform data association and parameter estimation simultaneously.
The definition of direct methods given in [Irani 00] states that all pixels in the image
(or in an area of interest) must be involved in the estimation process. However, I do not
believe that this is important and I use a different definition of direct methods that allows
pixels selection. An example of pixel selection is to choose non-homogeneous regions of the
image and to discard homogeneous ones. Direct methods are more accurate than feature-
based methods not only because they use much more information but also because they
avoid the extraction of a set of distinct features from each image separately. Thus, direct
methods can be used for images that do not contain distinctive features : only sufficient
image gradient along different directions is needed. In addition, direct methods allow us
to explicitly “a priori” enforce structural constraints that feature based methods try to
impose “a posteriori”.

Parametric estimation with direct methods is generally defined as an optimization
problem, and is composed of three steps :

– register (warp) the current image into the reference frame with current parameters.
The modeling of an appropriate warping function is then fundamental ;

– compute the “difference” between the reference and the warped images. Then, com-
pute an appropriate cost function (e.g. the sum of squared differences (SSD)) ;

– compute an increment of the parameters that decreases the cost function and update
the current parameters.

The modeling of the warping function, the choice of the cost function and the design of
efficient numerical methods to minimize the cost function are central issues. In particu-
lar, direct methods are limited by the performances of numerical optimization methods.
Indeed, in order to meet real-time requirements we generally use optimization methods
that have a limited convergence domain (the computational cost of global optimization
methods is generally too high). For this reason, direct methods are believed to fall into the
class of incremental approaches, and to be only applicable when the difference between
two images is small enough.

The following two sections detail our research work on these topics. In particular, if all
the parameters are unknowns, only the image registration problem is considered. Solving
the image registration problem is equivalent to the estimation of the epipolar geometry.
On the other hand, if the camera parameters are known we can directly perform locali-
zation and/or mapping in the Euclidean space. For both problems, the ESM described
in Chapter 2 can be applied to improve the performances (convergence rate and conver-
gence domain) of incremental direct methods. Even if the ESM is shown to outperform
standard local optimization methods, it remains a local method. If the initial estimate of
the parameters is too different from the true solution any local method will fail. For this
reason, we are currently studying automatic real-time initialization and re-initialization
techniques. Promising results have been obtained in [Benhimane 08].
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3.2.1 Incremental image registration

Image registration of rigid and deformable surfaces is an active field of research. It
has many applications for example in medical imagery, augmented reality and robo-
tics. To solve this problem, several approaches have been proposed in the literature
[Brown 92, Zitova 03]. In this document, I focus on iterative direct methods that are
potentially real-time since we are interested in robotic applications, such as visual ser-
voing. Additionally, I will not consider methods that rely on an off-line learning step like
[Gleicher 97, Cootes 98, Black 98, La Cascia 00, Fleet 00].

Direct approaches minimize a similarity measure between a reference template and a
region of the current image warped with appropriate geometric and photometric parame-
ters. The underlying assumption of incremental direct methods is that the deformations
between two views of the surface are sufficiently small. This will typically be the case
in video sequences or after a correct initialization. In this document, methods based
on optical flow [Horn 81] [Horn 88] are not considered since they suppose too small a
displacement between two images.

Figure 3.2.1 shows an example for a monocular camera. The reference template T

can be the whole image I0. All possible unknown parameters are in x . Once we find
the optimal parameters x 1 to align the image I1 with the reference template T we look
for the incremental parameters x to align the image I2 with T , and so on. In some
applications, like SLAM in large scale environments the part of the scene observed in the
reference template may be no longer visible. In this case, a new reference template must
be selected (see Section 3.2.2).
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Fig. 3.3 – Incremental image registration.



Ezio Malis 54

Initial work on incremental direct image registration supposed that the scene was
planar and parallel to the image plane [Lucas 81], and that the observed surface was
Lambertian. Then all possible motions of a plane and more complex object shapes were
considered [Bergen 92, Kumar 94a, Szeliski 95, Irani 02]. These methods generally mini-
mize the sum of squared differences (SSD) using standard iterative optimization methods
like the Gauss-Newton or the Levemberg-Marquardt methods. The same optimization ap-
proach can be used for the direct image registration of deformable surfaces [Bartoli 04].

One important step towards real-time applications with a fast frame rate has been
improving the efficiency of the standard optimization method. Two approaches are pos-
sible for building efficient algorithms. The first one is to keep the same convergence rate
(the number of iterations needed to obtain the minimum of the similarity measure) while
reducing the computational cost per iteration. This can be achieved by pre-computing
partially [Hager 98] or completely [Baker 01] the Jacobian used in the minimization. The
main limitation of these approaches is that they can only be applied to certain classes of
warp.

An alternative approach for building efficient algorithms is to keep the same compu-
tational cost per iteration while increasing the convergence rate. This can be achieved for
example by using the Efficient Second-order approximation Method described in Chap-
ter 2. This approach was initially applied to the estimation of a homography for the
visual tracking of planar surfaces with a perspective camera in [Benhimane 04]. Then, we
extended our approach to the image registration of regular rigid or deformable surfaces
[Malis 07a]. In order to cope with occlusions and specularities we used in [Malis 07a]
the robust optimization techniques presented in Section 2. Despite improved results, ro-
bust optimization techniques tend to decrease the efficiency. Thus, we have proposed in
[Silveira 07b] to model the illumination changes. The proposed approach is generic : it
does not require either the characteristics of the light sources (e.g. number, power, pose),
or the reflectance properties of the surface.

If we compare the ESM to existing optimization techniques, a greater efficiency is
obtained by reducing the number of iterations needed to converge to the minimum of
the similarity measure. The convergence domain is also larger than the domains of stan-
dard optimization techniques. Therefore, the ESM algorithm is particularly adapted to
image registration. For example, we showed in [Vercauteren 07] that the ESM theory pro-
vides interesting theoretical roots to the different variants of Thirion’s demons algorithm
[Thirion 98]. The demons algorithm proposed by Thirion is one of the most efficient me-
thods for non-rigid image registration and it is related to gradient descent optimization
[Pennec 99]. One of the main results of the theoretical analysis in [Vercauteren 07] was to
show that the symmetric forces variants of the algorithm [Thirion 98, Wang 05, Rogel 06]
are related to the ESM scheme. This study thus explains why, from a theoretical point
of view, the symmetric forces demons algorithm is more efficient in practice.

3.2.1.1 Generic warping model

For the sake of simplicity, consider in this section that the observed scene is Lam-
bertian and static with respect to the light sources. Thus, the photometric parame-
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ters φi are constant and we can set I i(p) = I(φi,p). The more general case of non-
Lambertian scenes will be discussed in the next section. Consider a generic warping
function w : R

2 7→ R
2 which transforms the coordinates p0j of the j-th pixel in the

reference template into the current image coordinates :

pij = w(g i,p0j)

where g i ∈ G (G being a Lie group) contains the intrinsic camera parameters, the pose
of the camera and the parameters describing the structure of the scene. This function
is detailed in [Malis 07a]. The structure of the scene is described by a small number of
parameters (this number obviously depends on the complexity of the scene). For example,
regular surfaces can be approximated using the Radial Basis Functions (RBF) [Carr 97]
(see Section 3.2.1.2).

Let me set x i = g i and suppose that we have an initial approximation x̂ i of the true
parameters x i. Let z be the vector which contains the coordinates of the Lie algebra
of G. Thus, z is a local parametrization of G and, via the exponential map, x (z) ∈ G.
Using the same notation as Chapter 2, the incremental image registration problem can
be formulated as the solution of the following non-linear system defined on the Lie group
G :

fk(x̂ i · x (z)) = I i(w(x̂ i · x (z),p0j)) − I0j = 0

where k = {1, 2, . . . , susv} ((su × sv) being the size of the reference image or template).
The coordinates p0j of the pixels of the reference template are known and constant. We
suppose that x i exist such that the current image I i can be registered with the reference
image I i(w(x ,p0j)) = I0j. Finally, let me name z̃ the optimal increment such that we

obtain the exact solution of the problem : x (z̃) = x̂−1 · x = x̃ .

3.2.1.1.1 Computing the Jacobians for the ESM

In order to apply the ESM (see equation (2.91)), we need to compute the Jacobian J (x̂ )
(called the current Jacobian) :

J (x̂ ) = ∇f (x̂ · x (z))|z=0

and the Jacobian J (x ) (called the reference Jacobian) :

J (x ) = ∇f (x̂ · x (z))|z=ez

Without loss of generality, only the j-th row of the current and reference Jacobians
is computed. The full-sized Jacobians can easily be obtained by stacking all the rows
together. In the general case, a small part of the reference Jacobian must be approximated.
However, the experimental results demonstrate that even with this approximation the
ESM still has superior performance with respect to standard numeric methods. On the
other hand, in the particular case when the warping function is a group action of G on R

2

on the left, the reference Jacobian can be completely computed from image data. This is
the case for example when we track a planar object with an uncalibrated pinhole camera
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(x ∈ SL(3) represents a homography) [Benhimane 04]. Another example is when we track
rigid objects with a calibrated stereo pair (x ∈ SE(3) represent the displacement of the
stereo pair) [Comport 07].

Current Jacobian

The j-th row of the current Jacobian is :

J k(x̂ ) = ∇fk(x̂ · x (z))|z=0 = ∇I(w(x̂ · x (z),pj))|z=0

Let me rewrite the function I as follows :

I(w(x̂ · x (z),p)) = I(w(x̂ ,w−1(x̂ ,w(x̂ · x (z),pj))))

Thus, using the chain rules for derivatives we obtain :

∂I(w(x̂ · x (z),pj))

∂z

∣∣∣∣
z=0

=
∂I(w(x̂ ,q))

∂q

∣∣∣∣
q=pj

∂w−1(x̂ ,w(x̂ · x (z),pj))

∂z

∣∣∣∣
z=0

It is important to note that the first part of the derivative is a (1×2) vector that can be
computed directly from the current image data. The vector contains the gradient of the
warped image (i.e. the image being warped with w(x̂ )) computed at pj. The second part
of the derivative can be decomposed into two parts :

∂w−1(x̂ ,w(x̂ · x (z),pj))

∂z

∣∣∣∣
z=0

=
∂w−1(x̂ ,q)

∂q

∣∣∣∣
q=w(bx ,pj)

∂w(x̂ · x (z),p)

∂z

∣∣∣∣
z=0

The first part is :

∂w−1(x̂ ,q)

∂q

∣∣∣∣
q=w(bx ,p)

=

(
∂w(x̂ ,q)

∂q

∣∣∣∣
q=pj

)−1

and the second part is :

∂w(x̂ · x (z),pj)

∂z

∣∣∣∣
z=0

=
∂w(x ,pj)

∂x

∣∣∣∣
x=bx

∂ x̂ · x (z)

∂z

∣∣∣∣
z=0

where
∂ x̂ · x (z)

∂z

∣∣∣∣
z=0

=
∂ x̂ · x

∂x

∣∣∣∣
x=e

∂x (z)

∂z

∣∣∣∣
z=0

Finally, the j-th row of the current Jacobian can be written as follows :

J k(x̂ ) =
∂I(w(x̂ ,q))

∂q

∣∣∣∣
q=pj

(
∂w(x̂ ,q)

∂q

∣∣∣∣
q=pj

)−1
∂w(x ,pj)

∂x

∣∣∣∣
x=bx

∂ x̂ · x

∂x

∣∣∣∣
x=e

∂x (z)

∂z

∣∣∣∣
z=0

(3.21)
Therefore, the current Jacobian can be computed from image data only.
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Reference Jacobian

The j-th row of the reference Jacobian is :

J k(x ) = ∇f i(x̂ · x (z))|z=ez = ∇I(w(x̂ · x (z),pj))|z=ez

Let me rewrite the function as follows :

I(w(x̂ · x (z),pj)) = I(w(x ,w−1(x ,w(x · x̃−1 · x (z),p))))

As for the current Jacobian, the derivative can be decomposed into two parts :

∂I(w(x̂ · x (z),pj))

∂z

∣∣∣∣
z=ez

=
∂I(w(x ,q))

∂q

∣∣∣∣
q=pj

∂w−1(x ,w(x · x̃−1 · x (z),pj))

∂z

∣∣∣∣∣
z=ez

Again, the first part of the Jacobian is a (1×2) vector that can be computed directly
from the reference image data. It is very important to highlight that the gradient of the
reference image can be computed without explicitly knowing the true solution x. The the
second part of the derivative is again decomposed into two parts :

∂w−1(x ,w(x · x̃−1 · x (z),pj))

∂z

∣∣∣∣∣
z=ez

=
∂w−1(x ,q)

∂q

∣∣∣∣
q=w(x ,pj)

∂w(x · x̃−1 · x (z),pj)

∂z

∣∣∣∣∣
z=ez

The first part is :

∂w−1(x ,q)

∂q

∣∣∣∣
q=w(x ,pj)

=

(
∂w(x ,q)

∂q

)−1
∣∣∣∣∣
q=pj

and the second part is :

∂w(x · x̃−1 · x (z),pj)

∂z

∣∣∣∣∣
z=ez

=
∂w(x ,pj)

∂x

∣∣∣∣
x=x

∂x · x̃−1 · x (z)

∂z

∣∣∣∣
z=ez

where
∂ x̂ · x (z)

∂z

∣∣∣∣
z=ez

=
∂x · x

∂x

∣∣∣∣
x=e

∂ x̃−1 · x (z)

∂z

∣∣∣∣
z=ez

Due to the parametrization of the increment by using Lie Algebra, we have the following
formula :

∂x̃−1 · x (z)

∂z

∣∣∣∣
z=ez

z̃ =
∂x (z)

∂z

∣∣∣∣
z=0

z̃ (3.22)

This formula shows that we do not need to know z̃ to compute this last Jacobian. This
explains why the parametrization using Lie algebra is a key point of our algorithm.
Another parametrization may imply that this part of the Jacobian matrix depends on z̃.
As a consequence, in that case, the Jacobian is only an approximation.
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Finally, the j-th row of the reference Jacobian can be written as follows :

J k(x ) =
∂I(w(x ,q))

∂q

∣∣∣∣
q=pj

(
∂w(x ,q)

∂q

∣∣∣∣
q=pj

)−1
∂w(x ,pj)

∂x

∣∣∣∣
x=x

∂x · x

∂x

∣∣∣∣
x=e

∂x (z)

∂z

∣∣∣∣
z=0

(3.23)
The third and fourth Jacobians generally depend on the unknown value x of the para-
meters. Thus, we use their approximated value x̂ .

Computing the Jacobians when the warping is a group action

Let me suppose that the warping function is a group action of G on R
2 on the left :

w(x̂ · x ,pj) = w(x̂ ,w(x ,pj))

which means that :
w−1(x̂ ,w(x̂ · x ,pj)) = w(x ,pj)

Thus, the following identity is verified :

∂w−1(x̂ ,w(x̂ · x ,pj))

∂x

∣∣∣∣
x=e

=
∂w(x ,pj)

∂x

∣∣∣∣
x=e

Therefore, the second, third and fourth Jacobians in equation (3.21) can be replaced by
a simpler Jacobian

(
∂w(x̂ ,q)

∂q

∣∣∣∣
q=pj

)−1
∂w(x ,pj)

∂z

∣∣∣∣
x=bx

∂ x̂ · x

∂x

∣∣∣∣
x=e

=
∂w(x ,pj)

∂x

∣∣∣∣
x=e

Thus, the current Jacobian becomes :

J k(x̂ ) =
∂I(w(x̂ ,q))

∂q

∣∣∣∣
q=pj

∂w(x ,pj)

∂x

∣∣∣∣
x=e

∂x (z)

∂z

∣∣∣∣
z=0

The same manipulation can be used for the reference Jacobian :

∂w−1(x ,w(x · x ,pj))

∂x

∣∣∣∣
x=e

=
∂w(x ,pj)

∂x

∣∣∣∣
x=e

Thus, the second, third and fourth Jacobians in equation (3.23) can be replaced by a
simpler Jacobian

(
∂w(x ,q)

∂q

∣∣∣∣
q=pj

)−1
∂w(x ,pj)

∂z

∣∣∣∣
x=x

∂x · x

∂x

∣∣∣∣
x=e

=
∂w(x ,pj)

∂x

∣∣∣∣
x=e

Therefore, the reference Jacobian becomes :

J k(x ) =
∂I(w(x ,q))

∂q

∣∣∣∣
q=pj

∂w(x ,pj)

∂x

∣∣∣∣
x=e

∂x (z)

∂z

∣∣∣∣
z=0



59 Vision-based parametric estimation Chapter 3

The reference Jacobian can now be completely computed from image data only.
The warping function is a group action when we want to register, with a pinhole

camera, a Lambertian planar object that freely moves in the Cartesian space. The 8
parameters that define the transformation of the object are encoded in the (3×3) unca-
librated homography matrix G ∈ SL(3). Thus, the warping function for a planar object
can be obtained by setting x i ≡ iG0. The current image point pij can be written as
follows :

pij = w(iG0,p0j) =

(
g11 u0j + g12 v0j + g13

g31 u0j + g32 v0j + g33

,
g21 u0j + g22 v0j + g23

g31 u0j + g32 v0j + g33

)

It is easy to verify that such warping is a group action of SL(3) on R
2 on the left :

w(Ĝ,w(G,p0j)) = w(ĜG,p0j)

3.2.1.2 Generic photometric model

In [Silveira 07b], we proposed a unified method to deal with the incremental image
registration problem of either Lambertian or non-Lambertian objects under shadows,
inter-reflections, glints as well as ambient, diffuse and specular reflections which may
vary in power, type, number and space. The method is based on the following generic
model of illumination changes :

I ′(x i,p0j) = Ĩ(αi,p0j) · I i(w(g i,p0j)) + βi

where xi = (gi,αi, βi). The global illumination change is taken into account in βi while
diffuse and specular illumination changes are taken into account in αi. The function
Ĩ(αi,p0j) approximate all possible illumination changes. We model the function as a
parametric surface depending on a limited number of parameters (less parameters than
the available equations). We have tested various techniques to model such a surface. For
example, a regular surface can be approximated using the Radial Basis Functions (RBF)
[Carr 97] with a thin-plate spline function γ :

Ĩ(α,p0j) = (αc+1, αc+2, αc+3)
⊤p +

n∑

k=1

αkγ(‖p0j − ck‖)

where {ck} are n image points (called centers) that can be selected, for example, on a

regular grid. Note that the function Ĩ is linear in the unknowns α. The use of RBFs allows
the surface to be regularized but they may fail to accurately capture discontinuities. Thus,
we have also tested another suitable strategy for dealing with discontinuous surfaces. In
this case, Ĩ(αi,p0j) is approximated by a discretized surface which evolves with time
(see the figure 3.2.1.2).

The system of non-linear equations can now be written as follows :

fk(x ) = I ′(x i,p0j) − I0j = 0
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Again, we applied the ESM to the least-squares optimization problem. The computation
of the Jacobians related to the photometric parameters is detailed in [Silveira 07b].

Fig. 3.4 – Approximating the surface Ĩ(α,p) placing centers on a regular grid. The
discretized surface (represented by boxes) can handle discontinuities while RBFs provide
a regular (smooth) approximation.

3.2.1.3 Experimental results

In this section I briefly present four sets of experiments to show the performances
of our image registration approach. Figure 3.5 shows the image registration of a pla-
nar surface. The ESM allows the images acquired at 100 Hz to be aligned at run time
with a reference template of size (400 × 200) pixels. Figure 3.6 shows the image regis-
tration under arbitrary illumination changes. Note the strong perspective and photome-
tric deformations (shadows, specularities,...). Details of the experiments can be found in
[Silveira 07b]. Figure 3.7 and Figure 3.8 show the image registration of rigid surfaces.
In these experiments we used RBFs to approximate the regular surfaces. The centers
are placed on the corners of the grid. The regular grid is deformed in the current image
according to the surface of the objects, showing that the structure is correctly estimated.
After camera self-calibration, the surface can be reconstructed up to a scale factor (see for
example [Malis 07a]). Figure 3.9 and Figure 3.10 show the image registration of non rigid
surfaces. More results on non-rigid image registration can be found in [Vercauteren 07].
In the present sequences, we did not apply our approach to dealing with illumination
changes. Thus, the results can be considerably improved for the heart sequence since a
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lot of specularities perturb the the registration.

Image 1 Image 81 Image 201 Image 361

Registration 1 Registration 81 Registration 201 Registration 361

Fig. 3.5 – Image registration of a planar surface with an uncalibrated pinhole camera in
a sequence of 361 images. The size of the selected template has (400× 200) pixels. The
image registration with the ESM ran in real-time at 100 Hz. The bottom row shows the
area of interest aligned with respect to the template.

Image 1 Image 43 Image 75 Image 116

Registration 1 Registration 43 Registration 75 Registration 116

Fig. 3.6 – Image registration with an uncalibrated pinhole camera under generic illumi-
nation conditions in a sequence of 116 images. The bottom row shows the area of interest
registered with respect to the template. The compensation of the illumination changes is
not shown in the images.
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Image 1 Image 300 Image 500 Image 600

Registration 1 Registration 300 Registration 500 Registration 600

Fig. 3.7 – Image registration with an uncalibrated pinhole camera in a sequence of 600
images. The top row shows the (4×4) regular grid used to align the area of interest in
the sequence. The bottom row shows the area of interest registered with respect to the
template.

Image 1 Image 250 Image 350 Image 450

Registration 1 Registration 250 Registration 350 Registration 450

Fig. 3.8 – Image registration with an uncalibrated pinhole camera in a sequence of 450
images. The top row shows the (6×6) regular grid used to align the area of interest in
the sequence. The bottom row shows the area of interest registered with respect to the
template.
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Image 1 Image 800 Image 1000 Image 1082

Registration 1 Registration 800 Registration 1000 Registration 1082

Fig. 3.9 – Image registration of a deformable surface with an uncalibrated pinhole camera
in a sequence of 1082 images. The top row shows the (4×4) regular grid used to align
the area of interest in the sequence. The bottom row shows the area of interest registered
with respect to the template.

Image 1 Image 50 Image 130 Image 220

Registration 1 Registration 50 Registration 130 Registration 220

Fig. 3.10 – Image registration of a deformable surface with an uncalibrated pinhole
camera.
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3.2.2 Localization and/or Mapping

Our approach to visual simultaneous localization and/or mapping consists in perfor-
ming direct image registration with a calibrated camera in order to recover explicitly the
pose of the camera and/or structure parameters (in image registration these parameters
are mixed with the camera intrinsic parameters). If the structure is known and the illu-
mination conditions do not change, then the only unknown is the pose of the camera
[Benhimane 06b]. If the structure is unknown and we observe a planar scene we can es-
timate a calibrated homography matrix that contains both the pose and the normal to
the plane [Mei 06a]. The pose and the normal to the plane are recovered by decomposing
the homography. However, if we simultaneously observe several planes rigidly linked bet-
ween them, it is difficult to impose the constraint that their related homographies must
contain the same pose. Thus, instead of registering each plane separately, we obtain more
accurate results if we register all planes at the same time having as unknowns the pose
and all the normal vectors [Mei 06c]. Note that in these last two papers we have shown
how the approach can be applied to any central catadioptric camera.

When dealing with large scale environments, the part of the scene visible in the re-
ference templates may disappears. Thus, it is necessary to regularly update/insert new
reference templates. Figure 3.11 illustrates that situation. At the i-th image the region
R02 disappear. A new region Ri1 is included.

x 1

x 2

x i

x (z)

x i+1

IiI2I1I0 Ii+1

R01

R02 Ri1

R01

Ri1

R01

R02

Fig. 3.11 – Incremental visual SLAM.

The problem of how to include new visual information in the estimation is particularly
difficult when we consider a monocular camera since the structure of the scene is not
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observable when the camera does not translate (for small translations the estimation of
the structure is an ill conditioned problem). This causes an important problem for the
initialization of the visual SLAM. Moreover, for monocular cameras the localization is
obtained only up to scale (another sensor or ”a priori” information is needed to recover
the scale). Thus, an error in the estimation of the scale can have serious consequences on
the accuracy of the localization and mapping.

Using a stereo-vision system (or even more cameras) can simplify the problem but
not solve it completely. Indeed, when the baseline (the distance between the two cameras
of the stereo-vision system) is small with respect to the distance to the observed scene
the stereo-vision system will behave like a single camera.

Therefore, it is important to study both monocular and stereo configurations. The
following two sections briefly review our contributions to these topics.

3.2.2.1 Monocular vision

Standard approaches to monocular SLAM often do not consider the estimation of
variable illumination and separate the estimation of structure and motion into two distinct
processes, e.g. [Molton 04]. When the estimation of structure and motion is integrated
into a unified framework, for example using an Extended Kalman Filter, it assumes
differential image displacements which limit the system to very slow camera motions, e.g.
[Jin 03].

In [Silveira 07c] we have proposed a unified direct image registration approach for
monocular SLAM that integrates the generic photometric model and fully exploits the
ESM scheme to handle larger camera displacements. We have also made other contribu-
tions. First of all, we have handled the observability problems in the initialization step.
Then, we have parametrized the structure in order to directly enforce positive depths
in the optimization. We have shown that standard methods need to add new features
to track more frequently. Hence, the proposed method allows the drift to be reduced by
maintaining longer the estimation of the displacement with respect to the same reference
frame.

3.2.2.2 Stereo vision

The visual SLAM can be simplified by considering a stereo-vision system [Comport 07].
In this case, the structure can be directly estimated from the dense stereo correspon-
dences (the disparity map). Thus, the only unknown become the pose of the vision
system. We applied the ESM optimization by defining a quadrifocal warping function
w : SE(3)×R

2×R
2 7→ R

2×R
2 that allows the points in the reference left and right images

to be transformed into the points in the current left and right images. Let p = (pl,pr)
be a vector containing the coordinates of the same point in the left and right reference
images. The current points can be obtained as follows : p′ = w(g,p) where g ∈ SE(3)
contains the pose of the current stereo pair. The warping function also depends on the
parameters of the stereo pair (intrinsic camera parameters and the relative pose of the
two cameras) but they are known and constant. We showed that the warping function



Ezio Malis 66

proposed in [Comport 07] is a group action of SE(3) on R
2×R

2 on the left. Thus, setting
x = g the ESM scheme can be applied without any approximation (see section 3.2.1.1) in
order to align the current pair of images with the reference pair. Robustness with respect
to occlusions and errors in the reconstruction of the disparity map is handled using the
robust optimization techniques presented in Chapter 2.

Since we are dealing with large scale environments the reference pair must be updated
regularly (see Figure 3.2.2.2). A set of key reference image-pairs are used to initialize
tracking locally around the reference positions. These reference pairs provide a calibrated
set of highly redundant dense correspondences to perform tracking and pose estimation.
As will be shown by the experiments in Section 3.2.2.3, this leads to impressive results
in real-scenes with occlusions, large inter-frame displacements, and very little drift over
very long sequences of images.

T1

T2

Ti

T(z)

Ti+1

left image
left image

update reference images
right image

left image

I2I1I0 Ii+1Ii

right image
right image

Fig. 3.12 – Incremental stereo visual SLAM.

3.2.2.3 Experimental results

In this section, I briefly describe three experiments that validate the accuracy of the
direct image registration approach for visual SLAM.

Figure 3.13 shows a visual SLAM experiment with a catadioptric camera mounted on
the mobile robot Anis. The odometry of the robot has been used as a ground truth (the
experiment was run over a short distance) together with the assumption that two walls
in the corridor are perpendicular. We manually selected four reference templates (figure
3.13). The two templates on the same wall were considered to be on the same plane (i.e.
only one homography was estimated). For each homography, a translation up to a scale



67 Vision-based parametric estimation Chapter 3

factor and a rotation can be extracted (the ambiguity was solved by using several frames).
The scale was then fixed by an off-line measure of the distance of the camera to one of the
planes. The angles estimated between the planes were 87◦ and 91◦. One of the templates
was obstructed starting from image 100 but the median gives a very robust estimate : the
mean absolute error was [0.01, 0.01, 0.01] meters for the translations and [1.6, 2.2, 1.0]
degrees for the rotations. Details of the experiment can be found in [Mei 06a]. Jointly
tracking all the templates provides even more precise results [Mei 06c].

Image 1 Image 50 Image 75 Image 120

Registration 1 Registration 50 Registration 75 Registration 120
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Fig. 3.13 – Direct visual SLAM with a calibrated omnidirectional camera mounted on
a mobile robot. The plots show the estimated translations and rotations in dotted lines
and the odometry of the robot in full lines.

Figure 3.14 shows a visual SLAM experiment with a pinhole camera. The camera is
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mounted on a car travelling in Versailles, France. At the beginning of the experiment, the
structure of the scene is unknown and it can be seen as belonging to the plane at infinity
(see left image in Figure 3.14). Three planar regions were selected automatically using
the approach proposed in [Silveira 06a]. As the camera progresses, the structure and the
trajectory are recovered as shown in the right image of Figure 3.14. More details on this
experiment, as well as comparisons with other visual SLAM approaches, can be found in
[Silveira 07c].

Initialization Localization and mapping

Fig. 3.14 – Direct visual SLAM with a calibrated pinhole camera. The image on the left
shows that at the initialization the structure is unknown. The image on the right shows
the structure and the localization (the trajectory of the camera with respect to the initial
frame) being incrementally reconstructed.

Figure 3.15 shows two visual SLAM experiments with a stereo-vision system mounted
on a car travelling along different streets in Versailles, France. More details on these
experiments can be found in [Comport 07].

The image on the left in Figure 3.15 is that of a relatively straight road. The distance
travelled by the car has been measured using road markings in the images and satellite
views with a precision of 2.9cm/pixel for the Versailles region. The path length measured
by both Google earth and our algorithm was about 440m. Even if this is a qualitative
result only, the path followed by the car corresponds well to the straight road. Throughout
the sequence several moving vehicles pass in front of the cameras and, at one stage, a car
is overtaken.

The image on the right in Figure 3.15, is particularly illustrative since a full loop of
the roundabout was performed. In particular, this enables the drift to be measured at the
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crossing point in the trajectory. In the case of this roundabout the drift at the crossing
point was approximately 20cm in the vertical direction to the road-plane. Considering
that the trajectory around the roundabout is approximately 200m long (measured using
Google earth), this makes a drift of 0.01%.

Staright Line Roundabout

Fig. 3.15 – Accurate visual odometry with a calibrated stereo-vision system. The trajec-
tory shown in blue has been manually superimposed on satellite images. Typical stereo
images are shown at the top.
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Chapitre 4

Vision-based robot control

Vision-based robot control (also called visual servoing) consists in using visual in-
formation in feedback loops. Vision processing and control design have to be combined
with their respective specificities and their requirements taken into account. This topic
has motivated a lot of research over the last 30 years. The reader may refer to numerous
books, tutorials and surveys that have been published on the subject, like [Hashimoto 93,
Hutchinson 96, Malis 02b, Chaumette 06, Chaumette 07]. The design of a vision-based
robot control scheme depends not only on the task but also on the characteristics of the ro-
bot itself. Eye-to-hand systems have been considered in [Allen 93, Hager 95, Horaud 98].
Visual servoing for non-holonomic robots has been studied in [Fang 05, Maya 06] and
for non-holonomic mobile manipulators in [Fruchard 06, De Luca 07a]. Visual Servoing
of under-actuated robots has been considered in [Mahony 01, Hamel 04]. This chapter
focuses on positioning tasks with a monocular eye-in-hand holonomic system.

In this context, we have made several contributions. A first contribution was the im-
provement of standard image-based control laws using the ESM scheme. We were also
able to analyze theoretically the robustness of the local stability of several image-based
control laws with respect to errors on structure parameters. A second contribution was
the design of robust image-based control schemes that do not need an exact measure of
the intrinsic parameters of the vision system and that do not need any ”a priori” know-
ledge of the structure of the observed scene. Again, particular emphasis has been given
to the theoretical analysis of the robustness of the control laws with respect to errors on
the uncertain parameters. Finally, I proposed two methods that go beyond the standard
visual servoing approaches : the invariant visual servoing to extend the image-based ap-
proach and the controlled visual SLAM to extend the position-based approach.

The present chapter is organized as follows. First, standard image-based visual ser-
voing schemes are discussed. I will show how they can be improved by using the ESM
scheme and discuss the results of the stability analysis. Then, the research work on robust
image-based control schemes will be described. Finally, the two methods that go beyond
standard visual servoing approaches will be presented.
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4.1 Design of image-based control laws

As already mentioned in Chapter 1, teaching-by-showing approaches have been in-
troduced in order to avoid the explicit reconstruction of the pose of the vision system
[Weiss 87]. If we suppose that the imaging conditions do not change after acquisition of
the reference image h(η, 0) (e.g. the camera intrinsic parameters are constant, we ob-
serve a rigid object, the illumination does not change, ...) and that we have enough visual
information, then the robot is correctly positioned when the current visual information
coincides with that of the reference. Let me rewrite here the state equations (1.43) :

ε̇ = L(η,x)v

y = h(η,x)

where the vector ε = δ(h(η,x),h(η, 0)) is such that if (and only if) ε = 0 then x = 0.
The problem considered here is to design a stable control law v (i.e. the velocity of
the camera) in order to regulate ε to zero. For holonomic robots, the design of such
a control law has several analogies with the numerical optimization methods presented
in Chapter 2. These analogies are briefly reviewed in Section 4.1.1 (a more detailed
discussion can be found in [Malis 04a]). The analogies between vision-based control laws
and numerical optimization are important in order to understand why the application
of the ESM scheme to vision based control leads to several improvements over standard
control laws. These improvements are discussed in Section 4.1.2.

4.1.1 Analogies between numerical optimization and control

In order to use the same notations as Chapter 2 let me write :

f(x) = δ(h(η,x),h(η, 0)) = ε

Such that f(0) = 0. The derivative of f(x) is :

ḟ(x) = L(η,x)v

Suppose that the matrix L(η,x) is full rank ∀x. Let me build the following Lyapunov
function :

c(x) =
1

2
f(x)⊤f(x)

which can also be viewed as a cost function. Our objective is to go from a starting point
x0 to the equilibrium point. The time derivative of the Lyapunov function is :

ċ(x) = f(x)⊤L(η,x)v

If a control law v exists such that ċ(x) < 0 then the system is asymptotically stable.
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4.1.1.1 Standard control laws

Several vision-based robot control methods have been proposed. For example :
The Jacobian transpose control law (e.g. [Hashimoto 93]) :

v = −λL(η,x)⊤ f(x)

where λ > 0 and
ċ(x) = −2 α f(x)⊤L(η,x)L(η,x)⊤ f(x) < 0

The Jacobian inverse control law (e.g. [Espiau 92]) :

v = −L(η,x)−1f(x)

where
ċ(x) = −f(x)⊤f(x) < 0

The Damped Least-squares control law (e.g. [Wampler 86, Nakamura 86]) :

v = −(L(η,x)⊤L(η,x) + γI)−1L(η,x)⊤f(x)

where γ ≥ 0 and

ċ(x) = −f(x)⊤L(η,x)(L(η,x)⊤L(η,x) + γI)−1L(η,x)⊤f(x) < 0

These control laws are all globally asymptotically stable.
Supposing that we can measure the matrix at the equilibrium point L(η, 0), the

authors of [Espiau 92] proposed the following control law :

v = −L(η, 0)−1f(x)

where
ċ(x) = −f(x)⊤L(η,x)L(η, 0)−1f(x) < 0

which is stable if L(η,x)L(η, 0)−1 > 0. This certainly happens in a neighborhood of the
equilibrium point.

4.1.1.2 Standard optimization methods

Each vision-based control method corresponds to a standard optimization method.
The Damped Least-squares control law corresponds to the Levemberg-Marquardt opti-
mization method, the Jacobian transpose control law corresponds to Steepest descent
optimization method, and the Jacobian inverse control law corresponds to the Gauss-
Newton method. Finally, the control law using the interaction matrix computed at the
equilibrium corresponds to the Efficient Gauss-Newton method presented in Chapter 2.

The main difference between control and optimization methods is that in optimization
methods the measure of the cost function at the new location is obtained from a virtual
model. When we control a robot, it physically moves to a new location to acquire a
new measure of the cost function. Thus, we do not necessarily need a model of the cost
function to compute its value at the new location. On the other hand, the behavior of the
robot may be perturbed in order to obtain the information needed by the optimization
algorithm.
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4.1.2 The ESM for vision-based control

4.1.2.1 Improving image-based visual servoing schemes

Similarly to vision-based estimation methods, most vision-based control approaches
are based on the extraction of visual features [Espiau 92, Cervera 03]. Let me consider,
for example, interest points as visual features. The standard approach consists in building
from the selected features a task function ǫ diffeomorphic to the camera pose. Then, we
can use the standard control laws described in the previous section to regulate the task
function to zero. This approach generally works very well if the starting pose of the camera
is not too far from the reference pose. Otherwise, the behavior of the robot in the Cartesian
space may be not satisfactory. For example, it is now well known [Chaumette 98] that if
the initial camera displacement is a rotation around the ~z axis an undesirable motion is
induced by using standard control laws. For example, if we use the Gauss-Newton control
law (the interaction matrix is updated at each iteration) the camera moves backward
while rotating. On the other hand, if we use the Gauss-Newton control law (the interaction
matrix is constant and computed at the equilibrium) the camera moves forward while
rotating. Figure 4.1 illustrates these two problems. The images show the isolines of the
cost function projected into the subspace (~tz, ~rz). We repeated several simulations with
an increasing initial rotation. Since the initial movement is a pure rotation, the ideal
path (in the Cartesian space) should be a straight line perpendicular to the ~tz axis (i.e.
tz = 0). On the contrary, we observe that as rz reaches ±π the translational motion
becomes bigger since the isolines become perpendicular to the ~tz axis (i.e. the steepest
descent direction is along ~tz).

These problems can be solved by using the ESM scheme presented in Chapter 2. The
ESM control law is :

v = −
1

2
(L(η,x) + L(η, 0))−1 f(x)

Figure 4.1 shows that using this control law the camera performs a pure rotation around
the ~z axis. The benefits of using the ESM control law are not limited to the behavior in
this particular case and a more detailed discussion can be found in [Malis 04a]. Note that,
around the equilibrium point the three control laws have the same behavior. Indeed, if
x ≈ 0 then L(η,x) ≈ L(η, 0) ≈ 1

2
(L(η,x) + L(η, 0)). Thus, the stability and robustness

analysis presented in the next section applies to all of them.
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Fig. 4.1 – Comparison between standard control methods and the ESM.
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4.1.2.2 Stability and robustness analysis

In an image-based visual servoing approach, the task function can be computed di-
rectly from image data (e.g. the features extracted in the image). On the other hand, the
interaction matrix L(η,x) that links the derivative of the task function to the velocity
of the camera depends on the camera intrinsic parameters and may also depend on some
information about the structure of the target (all these parameters are in the vector η).
For example, when the selected features are interest points the interaction matrix depends
on the depths (the Z coordinates) of the corresponding 3D points. A good estimation of
the interaction matrix is necessary in order to build a stable control law. It was observed
experimentally that a rough estimation of the parameters η̂ was sufficient for a stable
control :

v = −
1

2
(L(η̂,x) + L(η̂, 0))−1 f(x)

However, it is important to theoretically understand how big the estimation error ‖η̂−η‖
on the parameters can be while still having a stable control law. Due to the complexity of
the theoretical analysis very few results have been reported in the literature. Results have
been obtained only in a few simple special cases [Espiau 93] [Cheah 98] [Deng 02], often
considering a simplified camera model and always supposing the 3D structure is perfectly
estimated. We have studied the robustness of standard image-based visual servoing control
laws with respect to uncertainties on the structure of the target [Malis 03a] [Malis 02a].
We proved theoretically that even small errors on the depths may lead to unstable control
laws [Malis 03c]. The proof has been extended to any central camera in [Mezouar 04].
We not only provided necessary and sufficient conditions for the local stability but also
sufficient conditions that can more easily be tested. From these conditions we can measure
the ”size” of the possible errors on the depths.

Figure 4.2 illustrates the results of the theoretical analysis with the example of a
planar target. When the target is planar, the depths are related to the normal vector n
to the plane. Without loss of generality, let me suppose here that ||n| = 1. Then n can
be written as a function of two parameters n(θ, φ) = (cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)).

Thus all the estimated depth Ẑi can be obtained using an approximation of n̂(θ̂, φ̂). The
figure shows the stability regions for a pinhole and for a catadioptric camera as a function
of (θ̂, φ̂) for 8 or 16 points on the same plane. The true normal is n = (0.5, 0, 0.866)

(i.e. the black cross at θ = 0 and φ = π/6). If we choose the estimated parameters (θ̂, φ̂)
in the green region the control law will be locally asymptotically stable. On the other
hand, if we choose the estimated parameters in the red region the system control law is
locally unstable. The normals obtained for parameters in the blue region are discarded
since we obtain at least a negative depth, which is impossible. Note that the cameras
have similar stability regions. Increasing the number of points on the target decreases the
unstable region but does not eliminate it completely. More complete results can be found
in [Malis 03c, Mezouar 04].
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Fig. 4.2 – Stability regions for planar targets with 8 or 16 points observed by a pinhole
or a catadioptric camera. Parameters (φ, θ) selected in the green regions lead to stable
control while parameters selected in the red regions lead to unstable control.

4.2 Design of robust visual servoing schemes

Despite the improvements in the design of image-based control laws, the theoretical
analysis of the robustness shows that for the considered control laws we need an estimation
of the structure of the target. Therefore, it is important to investigate control methods
that do not explicitly need this estimation.

4.2.1 Increasing the robustness of image-based approaches

4.2.1.1 A new class of visual servoing schemes

In [Malis 02f] we proposed a new class of visual servoing schemes that encompasses
several image-based visual servoing approaches such as [Malis 99, Basri 99]. The new
class of visual servoing schemes is based on the reconstruction of the pose (up to a scale
factor for the translation) of the camera from two images. The key idea of the new class
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is to estimate the rotation from two views. Therefore the rotation is directly controlled
and decoupled from the control of the translation. The translation can be controlled in
several different ways which differentiate between the possible methods within the class.
This class of methods has interesting properties. Since the rotation control is decoupled
from the translation control, it is possible to ”easily” study the stability and robustness
of the control law with respect to errors on the intrinsic and extrinsic camera parameters
(the extrinsic parameters are the pose of the camera with respect to the robot end-
effector) [Malis 01a, Malis 02f]. Again, the analysis of the robustness of the control law
is very important since it allowed us to show that the ”size”of the calibration error that
the control laws can tolerate is very large.

The new class of visual servoing schemes is based on the assumption that we can
estimate the rotation matrix directly from the current and reference images. In the more
general case (i.e. both for non-planar and planar objects), the rotation can be extracted
from the homography matrix (see Chapter 3). Theoretically, the homography matrix can
be estimated from any sufficient visual information (e.g. a set of points, of lines, ...). For
example, we proposed in [Chesi 00] a complete vision-based control system with respect
to planar contours. In the system we integrated the visual matching [Chesi 99], the visual
tracking [Drummond 99] and the visual servoing [Malis 99]. However, this integration
work highlighted two problems in our approach. First of all, the feature-based estimation
for the task function was specific to planar contours. A different system should be built for
different features. Secondly, it is impossible to compute the rotation from the homography
matrix using image data only (the current and reference image). Indeed, there are two
possible solutions when we decompose an homography matrix. This second problem led
us to propose a different vision-based control method that is detailed in the next section.

The solution to the first problem has been to estimate the homography directly from
image data without any feature extraction [Malis 04d, Malis 05]. We use the ESM for
the direct image registration of a planar surface (see Section 3). This allowed us to
simplify the design of the visual servoing approach and to increase its flexibility since
the planar surface can contain any information. Figures 4.3 and 4.4 show a vision-based
car-platooning experiment that is performed in a real outdoor environment.

Figure 4.3 gives an overview of the system while Figure 4.4 illustrates more details
of the experiment. Two electric vehicles of type ”Cycab” are used : one as a guider car
and the other as a follower car. A driver guides the first car while the follower car is
controlled by a position-based control scheme. The control scheme takes into account
that the vehicle is non-holonomic and tries to keep the distance between the two vehicles
constant and equal to the initial distance. The relative position is given by the ESM
visual tracking system. The pan-tilt turret is controlled in order to keep the guider car
in the field of view of the camera during the experiment.
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In the starting situation, when the guider car is in front of the follower car, a window
of (100×100) pixels is selected to be the reference pattern. In order to have a metric
reconstruction, the camera was roughly calibrated and the distance between the two cars
is given to the control process. It is the distance between the camera of the follower car
and a poster stacked on the back windshield of the guider car. Tracking this reference
pattern provides the relative position between the two vehicles. The blue square indicates
the tracked region. In the right column, the reprojections of the tracked region using
the estimated homographies are shown. The first row of the figure corresponds to the
initial position. The ESM tracking algorithm performs well although the experiment
takes place outdoors and sun reflection on the tracked region occurs. The current pattern
reprojections are very close to the reference one. More details on the experiment can be
found in [Benhimane 05].

Low−level wheel steering control
Low level velocity control

CAN bus controller

Wheel steering control
Velocity control

Serial comm. RS232

Tracking Software
ESM Vision

Frame grabber

Pan−Tilt turretCCD Camera

Computer 2 − Pentium III 700 MHz Computer 1 − Pentium III 700 MHz

CAN bus comm. process

TCP/IP socket comm. process

Fig. 4.3 – Overview of the compete system.
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Fig. 4.4 – Several images of a platooning application. The first column shows the red
car automatically following the leader. The second column shows the area of interest in
the current image. The third column shows the registered images that prove that the
homography has been correctly estimated.
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4.2.1.2 Direct visual servoing

As already mentioned, our objectives have been to find a task function that is dif-
feomorphic to the pose of the camera and to find a stable control law that can easily
be computed just from visual data extracted from the current and the reference images
(independently of the shape of the object). If the target is not planar these objectives can
be fulfilled by the visual servoing schemes presented in the previous section. On the other
hand, when the target is planar, image data from the reference and current image only
is not sufficient to compute the control law. In this case, the two images of the target are
related by a homography matrix. The decomposition of the homography generally has
two solutions and we need additional information to distinguish the true solution from
the false one.

Therefore, we studied how the two solution of the decomposition are related (see
Chapter 3). In [Vargas 05] we proved that the two solution of the homography can be
”mixed” in the computation of a stable control law. For example, we defined a task
function containing the average of the two translations and of the two rotations (on the
SO(3) group). Alternatively we can compute the average of the two rotations and control
the remaining d.o.f.s as for the 2.5D visual servoing [Malis 07b]. With such an approach
we can completely avoid the use of ”a priori” information to choose the true solution of
the homography decomposition. However, contrary to the 2.5D visual servoing scheme
the stability analysis becomes extremely difficult since the rotation control is no longer
decoupled from the translation control.

In [Benhimane 06a] we proposed a task function that is locally diffeomorphic to the
camera pose and that can be directly computed from the homography matrix. Therefore,
we completely avoid the decomposition process. We also proposed a simple control law and
we theoretically proved its local stability. Experimentally we observed that the stability
region is very large (see the experiments below). In order to build a globally stable control
scheme we should plan a trajectory and work with small errors. This was not possible with
the task function proposed in [Benhimane 06a] since it was only locally diffeomorphic to
the camera pose. Another limitation of the approach was that it was designed for planar
targets only.

Recently, we have generalized the approach to non-planar targets and we have modified
the task function to allow for path planning [Silveira 07a]. We have also proposed a simple
control law and we have theoretically prove its local stability. The general task function
that we have proposed is the following :

ε =

[
(H − I)q + ρ t

ϑ(H)µ(H)

]
(4.1)

where H is a homography matrix related to a virtual plane, t is the translation, q is a
chosen control point in the reference image that corresponds to a point on the target,
and ρ is a scalar that encodes the parallax of this point with respect to the virtual
plane. Finally, [µ(H)]

×
= H − H⊤ and ϑ(H) is detailed in [Silveira 07a]. Note that the

task function can be computed from image data only (i.e. we do not measure t and ρ
separately but the vector ρ t, which is measured from the epipolar geometry). This task
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function generalizes the one proposed in [Benhimane 06a] for planar targets. Indeed, for
planar targets the parallax is zero ρ = 0 and if we set ϑ(H) = 1 we obtain the same
task function proposed in [Benhimane 06a]. The modification that allows us to perform
trajectory planning is on the scale factor ϑ(H) (see [Silveira 07a]).

The experimental validation of the direct visual servoing approach is in progress. I will
describe here two experiments for the planar case [Benhimane 06a] and two promising
simulations for the general case [Silveira 07a].

We have tested the control scheme proposed in [Benhimane 06a] on the Cartesian
robot of the LAGADIC research team at INRIA Rennes. The robot is accurately calibra-
ted and it provides a ground truth for measuring the accuracy of the positioning task.
A calibrated camera is mounted on the end-effector of the robot and observes a planar
target. Starting from another pose (the initial pose) which allows the target to be seen
from a different view point, the robot is controlled using the control law in order to get
back to the reference pose. At the initial pose the translation displacement is 0.68 meters
and the rotation displacement is 96 degrees. We use the ESM visual tracking algorithm
[Benhimane 04] to register the area of interest and to estimate at the same time an un-
calibrated homography matrix G. We use the center of gravity of the template as the
control point.

In the first experiment, illustrated in Figure 4.5, we used the true camera intrinsic
parameters matrix K to obtain a calibrated homography H = K−1GK from which the
control law is computed. The control law is stable and both translation and rotation
velocities converge to zero. At the convergence, the robot is back to its reference pose
and the visual information coincides with the visual information of the reference pose.
As shown in Figure 4.5, the camera displacement converges to zero very accurately (less
than 1 mm error for the translation and less than 0.1 degrees for the rotation).

Figure 4.6 illustrates a second experiment that is performed under similar conditions
(the same initial camera displacement, an unknown normal vector to the plane, an unk-
nown camera/object distance...). On the other hand, we use a very bad estimation of

the camera intrinsic parameters to estimate the homography matrix Ĥ = K̂−1GK̂. Ho-
wever, the control law is robust to camera calibration errors : the translation and the
rotation velocities converge to zero. At the convergence, the visual information coincides
again with the visual information of the reference image and the camera displacement
converges to zero (as in the previous experiment we obtain around 1 mm error for the
translation and around 0.1 degrees for the rotation).

We have performed two simulations to validate the general control scheme proposed
in [Silveira 07a]. We used the image registration algorithm proposed in [Malis 07a] to
measure an uncalibrated homography G and the vector ρ e from which we obtained
Ĥ = K̂−1 GK̂ and ρ t̂ = ρ K̂−1e.

The first simulation in Figure 4.7 shows that the new control scheme encompasses the
previous one specifically designed for planar targets. Additional simulations can be found
in [Silveira 07a] that show how path planning can handle larger initial displacements than
the previous approach.

The second simulation in Figure 4.8 shows that the general control scheme works
well with non-planar targets and for very large displacements. We planned a straight line
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trajectory in the image for the control point in order to keep the target in the field of view
of the camera. In this simulation we also added errors in the estimated camera intrinsic
parameters in order to demonstrate the robustness of the control law.
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Fig. 4.5 – Direct visual servoing with respect to a planar target. A calibrated pinhole
camera is mounted on a calibrated Cartesian robot.
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Fig. 4.6 – Direct visual servoing with respect to a planar target. An uncalibrated pinhole
camera is mounted on a calibrated Cartesian robot.
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Fig. 4.7 – Direct visual servoing with respect to a planar target using the generic control
law.
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Fig. 4.8 – Direct visual servoing with respect to a non-planar target using an uncalibrated
pinhole camera
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4.2.2 Beyond standard vision-based control approaches

Standard vision-based control approaches have been widely studied and several suc-
cessful applications have been performed. One may wonder if it is possible to go beyond
the assumption behind these standard approaches. That is, can we achieve a task with an
image-based approach despite the fact that the imaging conditions have changed ? How
can we achieve a task using a monocular vision system with a position-based approach
despite the fact that a metric model of the scene is unknown ? The following section
describes two possible answers to these questions.

4.2.2.1 Visual servoing invariant to camera intrinsic parameters

The main assumption of the teaching-by-showing approach is that a reference image
has been acquired and that the imaging conditions do not change. I proposed in [Malis 04b]
to eliminate this assumption in order to enlarge the domain of application of the teaching-
by-showing approach. More precisely, I showed that for pinhole cameras it is possible to
define an error from image data that does not depend on camera intrinsic parameters.
The error only depend on the pose of the camera with respect to the target. The inva-
riant error can be defined for several types of visual features like points, lines, contours
[Malis 01c, Malis 02e].

Consider for example that the camera observes n > 3 non-colinear points. The image
homogeneous coordinates p

ij
depend on the camera internal parameters Ki and on the

homogeneous normalized coordinates q
ij

:

p
ij

= Ki qij
(4.2)

We can define two positive symmetric matrices Sq and Sp as follows :

Sq =
1

n

n∑

j=1

q
ij
q⊤

ij
= MqM

⊤

q and Sp =
1

n

n∑

j=1

p
ij
p⊤

ij
= Mp M⊤

p

where Mq and Mp are upper triangular matrices obtained applying the Cholesky decom-
position to Sq and Sp respectively. The two matrices are related by :

Mp = KiMq (4.3)

Thus, it is possible to compute the invariant vectors iij with the following transformation :

iij = M−1
p p

ij
(4.4)

Note that the vectors iij are computed only from the image coordinates. Using equa-
tions (4.3) and (4.2), we can prove that the vectors iij only depends on the normalized
coordinates q

ij
:

iij = M−1
p p

ij
= M−1

q K−1
i Ki qij

= M−1
q q

ij
(4.5)

As a consequence, the vectors iij are independent of the camera intrinsic parameters Ki.
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The transformation of the image points in the invariant space can be performed
both for the reference image and the current image. In order to regulate the error to
zero, I proposed a vision-based control technique based on the task function approach
[Malis 01b, Malis 04b]. Another interesting property of the visual servoing invariant to
camera intrinsic parameters is that it is possible to define trajectories in the invariant
space such that the camera trajectory is a straight line in the Cartesian space [Malis 02d].

Figure 4.9 shows an example of invariant visual servoing performed with the calibrated
Cartesian robot of the Lagadic research team at INRIA Rennes. The reference image is
acquired with a 12 mm lens while a 6mm lens is used for servoing. The images in the
last row of the figure show that the errors on the translation and the rotation of the
end-effector converge to zero. If we look at the trajectory of the points in the image we
can note that the final image (the green points) is obviously different from the reference
image (the yellow points). On the other hand, the error on the coordinates of the points
in the invariant space converge to zero.

Visual servoing with zooming cameras

An obvious extension of the invariant visual servoing approach was to show that the
camera intrinsic parameters may vary during the servoing [Malis 02e]. Moreover, it is
possible to define a method [Malis 02c] that unifies model-based approaches and image-
based approaches. Since the error does not depend on the camera intrinsic parameters,
a zooming camera can be used in order to keep the target in the camera field of view
(zoom out) or to obtain a better resolution (zoom in) [Benhimane 03]. In this case it is
possible to have two separate control laws for positioning the camera and for zooming.
This approach allows the domain of applicability of visual servoing to be enlarged.

Indeed, being able to zoom out on the target can reduce visibility problems. Howe-
ver, when we zoom in to increase the resolution some features may disappear and other
features may become visible. The appearance/disappearance of the visual information
during the servoing produces discontinuities in the control law that perturb the perfor-
mances of the system. Indeed, when one or several features appear or disappear during
the servoing they are added to or deleted from the task function. The amplitude of the
discontinuity depends on : i) the number of visual features, ii) the error in the image, iii)
the conditioning of the interaction matrix. In [Garcia-Aracil 05a], we proposed a solution
to avoid the discontinuities by giving a weight to each feature. We applied this approach
to the invariant visual servoing [Garcia 04a], [Garcia-Aracil 05b], [Garcia 04b], but the
approach can also be extended to standard image-based approaches.

3D Reconstruction with invariant active stereo-vision

The invariant visual servoing scheme has been used to develop an active vision method
in order to improve the 3D reconstruction of natural 3D objects in the sea. We use
a stereo pair mounted on a robot manipulator that lies on the ground. We constrain
the displacements of the stereo pair by repeating the invariant visual servoing (the two
cameras do not have the same intrinsic parameters) of the left camera on the right one
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several times [Brandou 06]. Thus, the geometry of the stereo pair define the trajectory
followed by the cameras. This simplifies the reconstruction process (constraint trajectory,
reduction of the unknowns [Brandou 07]. We have also shown that the reconstruction
process can be done in the invariant space reducing the number of unknowns of the
bundle adjustment problem [Malis 04c].
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4.2.2.2 Controlled visual simultaneous localization and mapping

In the standard ”position-based” visual servoing approaches the reference pose with
respect to a known target is directly given by the user [Wilson 96, Martinet 97]. Therefore,
we need the model of the scene to compute the pose. We have extended this concept to
visual servoing tasks when the model of the scene is not (completely) known [Silveira 06b].
Like standard ”position-based” visual servoing approaches, the robot is directly controlled
in the Cartesian space with a standard control law. However, the idea behind our approach
is to perform a controlled visual SLAM. Indeed, the reference pose may be located very
far away from the initial pose such that the same part of the scene may not always be
maintained in the camera field of view as illustrated in Figure 4.10. Thus, newly observed
parts of the rigid scene must be integrated into the scheme. The proposed approach is
adapted to robot navigation in large environments.
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Fig. 4.10 – Controlled visual simultaneous localization and mapping.

The applicability of such an approach depends on the accuracy of the visual SLAM
estimation. Since the task is uniquely defined in terms of a pose to be reached, small
calibration and measurement errors may produce gross errors after long distances. The
challenge is thus to obtain very precise estimations of structure and motion. We use our
direct visual SLAM approach described in Section 3 to simultaneously estimate the struc-
ture and camera localization [Silveira 07c]. In order to speed up the on-line estimation
we can suppose the scene is piecewise planar and we can detect the part of the scene that
best fits our model. When a new part of the scene appears in the image the new planar
regions are automatically detected [Silveira 06a]. Ath the time of writing, the experimen-
tal validation of the approach is in progress. However, promising simulation results can
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be found in [Silveira 06b].



Conclusion and future research

When dealing with real-time robotic applications, it is important to take into account
very early at the design level the respective specificities and requirements of vision-based
estimation and vision-based control problems. By doing so, we have not only improved
the performances during the execution of a task but also proposed methods and algo-
rithms that perform better than approaches that consider vision-based estimation and
vision-based control problems separately.

One important contribution has been to propose the Efficient Second-order approxi-
mation Method (ESM) for solving non-linear systems of equations defined on Lie Groups
when additional information on the derivatives at the solution can be measured. Indeed,
the ESM has been successfully applied both to vision-based estimation and to vision-based
control. The theoretical results predict a higher convergence rate and a larger convergence
domain with respect to standard numerical methods. These theoretical results have been
confirmed by several experiments.

Another contribution has been the design of direct methods for image registration.
This has permitted the accurate and robust estimation of structure and/or motion in
large scale environments, despite occlusions and large changes in the illumination condi-
tions. The proposed approach is generic, it can be used with any central catadioptric
camera and it naturally extends to stereo-vision systems. The effective application of the
ESM to our approach supposes that the Jacobians can be measured from image data
only. We have shown when and how this can be possible using Lie groups theory. We
have also experimentally shown that the ESM has very good performances even when
the Jacobians are only approximated.

Various contributions have been made to the design of vision-based control schemes.
We showed that standard image-based visual servoing schemes can be improved by using
the ESM to design the control law. Theoretical stability and robustness analysis have
allowed bounds on the “size” of the possible calibration errors to be found. Then, several
contributions have been made to the design of robust vision-based control schemes that
do not need an exact measure of the parameters of the vision system and that do not
need any “a priori” knowledge of the structure of the observed scene. Again, a particular
emphasis has been placed on the theoretical analysis of the robustness of the control
laws with respect to errors on the parameters. Finally, we have proposed methods that
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go beyond the teaching by showing approach. We have shown how to define an error
function for pinhole cameras that is invariant to camera intrinsic parameters. This allows
us to define new tasks using zooming cameras. Another new promising approach is to
integrate vision-based control into simultaneous localization and mapping approaches.

Future Research

In my future research work, I intend to develop a low level vision framework as gene-
ric as possible and well adapted to robotic applications. This framework must be able to
address a large number of situations frequently met : different sorts of cameras (central
or not), large illumination changes, rigid/deformable objects, static/dynamic scenes, etc.
The low level vision framework should also be generic enough to be coupled with other
interoceptive and/or exteroceptive sensor information in order to obtain a reliable and
robust localization for robotic applications. I believe that one way to achieve these objec-
tives is to further study and develop direct methods. Within this framework, three main
problems must be addressed.

The first problem is to find simple, accurate, yet general models of the plenoptic
function. In particular, we need general photometric models, general camera models and
general structure models. General photometric models should be able to take into account
not only illumination changes but also colorimetric information. General camera models
should be able to take into account non-central projection cameras. General structure
models should be able to take into account not only complex rigid environments but
also unknown deformable environments. These models should be realistic, but not overly
complex in order to comply with computational real-time requirements of robotic applica-
tions. Finding the right compromise is a delicate and difficult issue. Indeed, the qualities
of a model depend on the problem for which it is used (simulation, estimation, control),
and a solid methodology (which could guide the choices in this respect) does not exist.

The second problem is the efficient estimation of the parameters associated with the
models. The optimization techniques efficient enough for real-time robotic tasks have only
local convergence. Thus, a fairly accurate initialization is needed (i.e. an estimate of the
true unknown parameters). We can study how to efficiently initialize the local optimi-
zation schemes using fast data association algorithms or relying on external information
(complementary sensor modalities). However, a more general and elegant solution would
be the study of efficient global optimization methods. For example, I am currently in-
vestigating if and how the use of Interval Analysis as a global optimization tool can be
compatible with real-time constraints. With respect to other global optimization tech-
niques, the main advantage of Interval Analysis is that the solutions to the problem can
be certified.

The third problem is the use of complementary sensor modalities and fusion tech-
niques. This allows the localization and mapping tasks to be simplified and robustified
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when dealing with large scale environments. For example, a typical multi-sensor system
is composed of one or more vision sensors and/or a range sensor (laser or radar) with
the complement of an absolute positioning sensor (e.g. an inertial navigation system or a
global navigation system). To cope with multi-sensor data, I intend to relies on the direct
approach for each sensor, and to study appropriate filtering techniques in order to take
into account the uncertainty of each sensor.

Another objective of my future research work will be to further investigate the direct
vision-based robot control approach. The design of standard vision-based control schemes
rely on several assumptions : on the geometric and photometric properties of the environ-
ment, on the characteristics of the imaging device and on the characteristic of the robot.
My objective is to increase the precision and the robustness of direct vision-based control
algorithms despite modeling errors induced by these assumptions. On the one hand, I
will investigate the design of control algorithms that are robust with respect to noise and
modeling errors and analyze the associated robustness properties. On the other hand,
I will study the connections between the design of robust control laws and the system
modeling, with the objective of investigating if and how the assumptions on the geome-
tric and photometric properties of the environment, on the characteristics of the imaging
device and of the robot can be relaxed. A key point will be to handle the compromise
between the complexity of the models, the real time aspects and the robustness of the
control algorithms.

Concerning the assumptions on the vision system there are three assumptions that
we should relax. The first assumption to be relaxed should be the use of central cameras.
Indeed, non-central cameras can be useful in many applications since some of them have
constant resolution. To my knowledge, the use of non-central cameras for direct vision-
based control has not yet been investigated. A second assumption to be relaxed should be
the rigidity of the environment. Thus, I will investigate whether control methods which
do not involve an explicit metric reconstruction of a model of the environment and have
been proposed for rigid objects, can be applied to deformable ones. The key problem is
the characterization of a diffeomorphism between the sensory information and the pose of
the robot. The third assumption is that the environment is Lambertian. This assumption
is obviously not verified in practice and the estimation of the position of the light sources
in the environment can be used to increase the accuracy and robustness. Note that this
information can also be taken into account in the design of the control law in order to
avoid the presence of specular reflection or shadows in the image.

Concerning the assumption on the characteristic of the robot, I have considered so
far vision-based control applied to holonomic mechanisms. The control of these systems
is much simpler due to the fact that instantaneous motion along any direction of the
configuration space is possible. A consequence of this is that generic vision-based control
laws can be designed independently of the mechanism specificity. However, this is not
true in the case of critical systems like most ground, marine or aerial robots. I have
proposed control schemes for holonomic robots whose performance does not depend on
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parameters that cannot easily be estimated on-line (e.g. camera intrinsic parameters, pose
and 3D parameters of the target). Such control laws are structurally robust with respect
to estimation errors on the parameters. I plan to study whether these techniques can be
generalized to critical nonlinear systems.



Appendix : Resumé en français

Introduction

La conception de systèmes robotiques complètement autonomes est une des grandes
ambitions de l’humanité. De nos jours des progrès théoriques et technologiques ont permis
aux ingénieurs de concevoir des systèmes robotiques complexes qui peuvent remplacer les
êtres humains dans de nombreuses applications qui peuvent être répétitives ou dange-
reuses. Toutefois, afin d’étendre la flexibilité et le domaine d’application de ces systèmes
autonomes, nous devons encore résoudre plusieurs problèmes scientifiques qui sont à la
croisée de plusieurs domaines tel que l’intelligence artificielle, le traitement du signal et
la théorie de la commande.

Parmi ces défis scientifiques, la perception de l’environnement et l’interaction d’un
système robotique avec son environnement sont des problèmes fondamentaux dans la
conception de tels systèmes autonomes. En effet, les performances d’un robot autonome
dépendent non seulement de la précision, de la continuité et de la fiabilité de sa perception
mais aussi de son habilité à utiliser l’information perçue dans des boucles de commande
afin d’interagir de manière sûre avec son environnement malgré les inévitables erreurs de
modélisation et de mesure. Pour ces raisons, la modélisation et la perception de l’envi-
ronnement et la commande référencée capteur robuste sont des problèmes scientifiques
majeurs en robotique.

Plusieurs capteurs extéroceptifs sont couramment utilisés en robotique : GPS, cap-
teurs optiques, capteurs de contacts, sonars, télémètres lasers, et même des capteurs audi-
tifs et olfactifs. Toutefois, la vision artificielle a un intérêt et une importance particulière
principalement due à sa versatilité. Elle peut être utilisée à la fois pour la modélisation et
la perception et pour la commande du robot. Dans ce contexte, l’étendue des recherches
est très vaste et je focaliserai ce document sur l’estimation et la commande à partir d’un
système de vision. L’estimation à partir de la vision concerne des méthodes dédiées à
l’extraction des informations qui peuvent être utilisées à la fois pour la modélisation de
l’environnement et pour la commande des robots. Dans le cas des applications robotiques,
les défis majeurs sont d’augmenter l’efficacité, la précision et la robustesse de l’estimation
à partir des données capteurs. La commande référencée vision concerne des méthodes
dédiées à l’utilisation des informations visuelles dans des boucles de commande. Les défis
sont le choix approprié de l’information et la conception de lois de commande stables et
robustes aux erreurs de modélisation et de mesure.
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L’objectif de ce document est de résumer, analyser et discuter mes travaux de re-
cherche sur ces sujets pendant les derniers dix années : deux ans comme Research As-
sociate à l’Université de Cambridge (Grande Bretagne) et huit ans comme Chargé de
Recherche à l’INRIA Sophia-Antipolis (France). Afin de reconnâıtre les contributions
de tous les collègues et les étudiants avec lesquels j’ai collaboré, j’ai essayé autant que
possible de citer toutes nos publications en commun.

Activités de recherche

Mes activités de recherche se situent à la croisée de la vision par ordinateur et de
la commande référencée capteurs des systèmes dynamiques. La principale problématique
abordée dans mes travaux est comment utiliser les informations capteur dans des boucles
de commande afin de rendre un robot le plus autonome possible dans la réalisation des
tâches de type réflexe.

Pendant mon travail de post-doctorat, qui a été effectué à l’Université de Cambridge
dans le cadre du projet européen VIGOR, j’ai tout d’abord généralisé une partie de mes
travaux de thèse à une nouvelle classe de méthodes d’asservissement visuel. Ensuite, j’ai
apporté une solution au problème de la robustesse des lois de commande lié aux erreurs
d’étalonnage de la caméra. Enfin, j’ai traité le problème de la conception d’un système
complet de commande référencée vision.

Une nouvelle classe de méthodes d’asservissement visuel

Une partie très importante de mon travail de post-doctorat a été de montrer que
la méthode d’asservissement visuel proposée dans ma thèse est un cas particulier d’une
classe plus large de schémas d’asservissement visuel [Malis 02f]. Par exemple, dans la
même classe on peut concevoir un schéma d’asservissement de type “asservissement visuel
3D” en définissant comme fonction de tâche une erreur sur l’attitude de la caméra. Cette
nouvelle classe possède des propriétés très intéressantes. En particulier, il est possible
d’effectuer une analyse formelle de la stabilité et de la robustesse par rapport aux pa-
ramètres intrinsèques et extrinsèques de la caméra (le paramètres extrinsèques définissent
l’attitude de la caméra par rapport a l’effecteur du robot) [Malis 01a]. L’importance de
l’analyse de la robustesse réside dans la connaissance du taux d’erreur d’étalonnage que
le système peut supporter.

Auto étalonnage des caméras

Bien que la loi de commande proposée s’avère assez robuste, si les erreurs d’étalonnage
sont très grands le système peut avoir des performances réduites et il peut même devenir
instable. Une solution classique est de bien étalonner la caméra préalablement. Cette
étape est importante mais elle est souvent difficile à mettre en oeuvre et peu flexible.
La deuxième possibilité, plus flexible, est d’auto étalonner la caméra en ligne. Dans ce
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contexte, ma contribution principale a été de formuler le problème de l’auto étalonnage
à partir d’objets planaires d’une manière très intuitive du point de vue géométrique
[Malis 02g]. L’auto étalonnage est obtenu en imposant la contrainte que la scène observée
est rigide. Donc, la normale au plan dans un repère fixe est constante quelque soit le point
de vue [Malis 00b]. L’intérêt de l’auto étalonnage est que, sous certaines conditions, on
peut estimer la distance focale de la caméra même si elle change au cours du temps
[Malis 00c].

Conception d’un système de commande référencée vision

Un système complet d’asservissement visuel ne se réduit pas au choix de la fonction
d’erreur à réguler et à la conception de la loi de commande mais doit tenir compte aussi
d’un système de mesure de l’erreur [Malis 03b]. En collaboration avec G. Chesi nous
avons proposé un système complet pour la commande référencée vision par rapport à des
contours plans. Dans ce système, nous avons intégré l’association des données (mise en
correspondance et suivi) et la commande [Chesi 00]. La mise en correspondance consiste
à localiser dans deux images les projections d’un même pont de la scène. Notre contribu-
tion a été de proposer un algorithme pour la mise en correspondance de contours plans
[Chesi 99]. Ce travail d’intégration est très important pour la suite de mes recherches car
il a mis en évidence les limites des approches classiques de conception des systèmes de
commande référencée vision (qu’on peut classifier comme “réductionnistes”). La loi de
commande utilisée n’était pas assez générique car elle nécessite une connaissance sur la
normale au plan. De plus, le système de mesure était spécifique à des contours plan et
difficilement réutilisable dans d’autres applications.

A la suite de mon recrutement à l’INRIA en Octobre 2000 j’ai poursuivi mes travaux de
recherche sur la commande référencée vision. Tout d’abord, afin d’augmenter la robustesse
et la flexibilité des méthodes de type “asservissement visuel 2D”, j’ai travaillé sur la
conception des nouvelles méthodes d’asservissement et sur la vision active. Ensuite j’ai
travaillé sur l’extension du domaine d’application de la commande référencée vision afin
de passer des tâches de positionnement d’un robot manipulateur aux tâches de navigation
d’un robot mobile en environnement inconnu. C’est dans ce contexte que me travaux de
recherche ont peu à peu évolué vers une approche plus holistique à l’intégration des
algorithmes de vision par ordinateur dans les système de commande référencée vision.
Dans ce cadre, j’ai développé un nouvel axe de recherche transversal concernant des
méthodes d’optimisation efficaces et robustes.

Travaux de recherche en asservissement visuel 2D

Une contribution très importante de mes travaux a été de proposer une extension
de l’approche “apprentissage par démonstration” : l’asservissement visuel 2D invariant
aux paramètres intrinsèques de la caméra. Mes travaux de recherche sur les méthodes
d’asservissement visuel 2D ont été complété par une analyse de la robustesse des loi de
commande et une étude sur les problèmes de visibilité et de continuité.
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Extension de l’approche “apprentissage par démonstration” : l’asservisse-
ment visuel 2D invariant aux paramètres intrinsèques

En l’absence d’une connaissance métrique complète d’un objet par rapport auquel
on veut se positionner, les méthodes d’asservissement visuel se basent sur l’apprentissage
préalable d’une image de celui ci (l’approche “apprentissage par démonstration”). A partir
de cette image l’on extrait des caractéristiques visuelles (point, droites, contours, ...) qui
seront utilisées comme amers ”référence” à atteindre dans l’image. A partir d’une position
initiale différente, le mouvement du robot (et donc de la caméra embarquée) est contrôlé
afin que les caractéristiques visuelles observées cöıncident avec celles de ”référence”. Dans
ce cas, la caméra se trouvera, par rapport à l’objet observé, dans la même position que
celle de l’apprentissage. De manière générale, quelque soit la méthode d’asservissement
visuel employée, ceci est vrai si et seulement si les paramètres intrinsèques de la caméra
sont, à la convergence, les mêmes que lors de l’apprentissage de l’image de référence. En
effet, il est évident que si les paramètres intrinsèques de la caméra changent pendant
l’asservissement (ou si la caméra utilisée pendant l’asservissement n’est pas la même
caméra utilisée pendant l’apprentissage), même si on arrive à atteindre les informations
visuelles de référence (ce qui n’est généralement pas possible) la position de la caméra
sera très différente de sa position à l’apprentissage. Par exemple, si on double la focale,
la distance par rapport à un objet doit être réduite de moitié afin d’observer à peu près
la même image. L’hypothèse selon laquelle ”les paramètres intrinsèques de la caméra à la
convergence doivent être les mêmes que lors de l’apprentissage de l’image de référence”
est très contraignante.

J’ai donc proposé d’éliminer cette contrainte afin d’augmenter considérablement les
domaines d’application de l’asservissement visuel [Malis 04b]. Plus précisément, j’ai montré
qu’il est possible de définir une erreur à partir des données image qui ne dépende pas
des paramètres intrinsèques de la caméra avec laquelle l’image a été prise [Malis 01c].
Cette erreur ne dépend que de la position de la caméra par rapport à l’objet observé.
Afin de contrôler le mouvement de la caméra et d’asservir cette erreur à zéro, j’ai pro-
posé une technique d’asservissement visuel 2D basée sur l’approche par fonction de tâche
[Malis 01b]. L’asservissement visuel invariant aux paramètres intrinsèques de la caméra
est particulièrement intéressant car il est possible de définir des trajectoires dans l’espace
invariant sans aucune connaissance des paramètres intrinsèques. Par exemple, il est pos-
sible de définir une trajectoire dans l’espace invariant telle que la trajectoire de la caméra
dans l’espace cartésien soit une ligne droite [Malis 02d]. La loi de commande qui permet
la poursuite de trajectoire est définie directement dans l’espace invariant. Elle doit, au-
tant que possible, présenter une grande robustesse aux incertitudes sur les paramètres
du système et garantir un grand domaine de convergence. Dans le cas de notre nouvelle
approche d’asservissement visuel par rapport aux incertitudes sur la calibration, nous
avons montré que le domaine de robustesse est suffisamment grand pour permettre l’uti-
lisation d’une approximation grossière des paramètres de calibration tout en conservant
la convergence et la stabilité de l’asservissement.

Une extension évidente de l’approche a été de montrer que les paramètres intrinsèques
de la caméra peuvent varier pendant l’asservissement [Malis 02e]. En plus, il est possible
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de définir une méthode [Malis 02c] qui unifie les approches classiques proposées dans la
littérature : celle basée sur la connaissance du modèle 3D de l’environnement et celle
basée sur un apprentissage préalable de l’image de référence. De plus, avec cette nouvelle
méthode il est possible de pallier à un certain nombre de limitations de l’asservissement
visuel classique. Du fait que l’erreur ne dépende pas des paramètres intrinsèques de la
caméra avec laquelle l’image a été prise, le zoom de la caméra peut alors être utilisé afin
de garder un objet dans l’image (zoom arrière) ou afin d’augmenter sa taille dans l’image
(zoom avant) [Benhimane 03]. Dans ce cas, il est possible de séparer l’asservissement vi-
suel de la caméra, de la loi de commande utilisée pour contrôler le zoom. Cette approche
permet d’augmenter considérablement les domaines d’application de l’asservissement vi-
suel.

Analyse de la stabilité et de la robustesse de l’asservissement visuel 2D

Malgré ses propriété d’invariance aux paramètres intrinsèques de la caméra, l’asservis-
sement visuel proposé appartient à la catégorie des méthodes dite d’asservissement visuel
2D. Dans ce type de méthodes la fonction de tâche peut être calculée directement à par-
tir des caractéristiques visuelles extraites des images. Toutefois, la matrice d’interaction
qui lie la dérivée de la fonction de tâche à la vitesse de la caméra dépend de l’informa-
tion métrique de l’objet. Une estimation de cette matrice est nécessaire afin de concevoir
une loi de commande stable. Il a été observé expérimentalement qu’une approximation
grossière de l’information métrique de l’objet est suffisante pour obtenir une loi de com-
mande stable. Toutefois, une question qui n’était pas résolue est de savoir quelle erreur
peut on commettre sur l’approximation de cette structure tout en garantissant la sta-
bilité de la loi de commande. A cause de la difficulté de l’analyse très peu de résultats
théoriques ont été obtenus en littérature concernant la stabilité. Cette analyse a pu être
accomplie seulement pour des simple cas, souvent considérant un modèle simplifié de
caméra, et toujours en supposant que la distribution des profondeurs est estimée parfai-
tement. Nous avons étudié la robustesse des méthodes d’asservissement 2D par rapport
aux incertitudes sur les paramètres de la structure [Malis 03a] [Malis 02a]. Nous avons
prouvé théoriquement que même des erreurs relativement petites sur les paramètres 3D
peuvent rendre les lois de commande instables [Malis 03c]. La preuve a été étendue à
n’importe quelle caméra à centre de projection unique dans [Mezouar 04].

Visibilité et continuité de l’asservissement visuel 2D

Dans l’asservissement visuel 2D les informations extraites des images courante et de
référence sont “combinées” dans une fonction de tâche qui a la même dimension que
l’espace des configurations du robot (6. d.d.l. pour un robot manipulateur). Toutefois
de nombreuses informations visuelles peuvent ne plus être disponibles pendant la tâche
(occultation, sortie de l’image, etc..) et l’être à nouveau après un certain délai. La dis-
parition/apparition d’informations visuelles pendant l’asservissement produit des discon-
tinuités dans la loi de commande qui perturbent les performances du système. En effet,
quand une ou plusieurs informations disparaissent ou apparaissent pendant l’asservisse-
ment elles sont enlevées ou ajoutées de la fonction de tâche. Ceci produit une disconti-
nuité dans la loi de commande. L’amplitude de cette discontinuité dépend i) du nombre
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d’amers, ii) de l’erreur dans l’image, et iii) du conditionnement de la matrice d’interaction.
En collaboration avec N. Garcia, nous avons proposé une solution en [Garcia-Aracil 05a]
afin d’éviter ces discontinuités en associant un poids à chaque amer. En particulier, nous
avons adapté l’asservissement visuel invariant afin de prendre en compte les variations
qui arrivent pendant l’asservissement [Garcia 04a] [Garcia-Aracil 05b] [Garcia 04b] .

Travaux de recherche en vision active

La vision active consiste à contrôler les paramètres intrinsèques ou extrinsèques du
système de vision afin d’améliorer le processus de perception. Par exemple, afin d’améliorer
la résolution de l’image observée on peut envisager soit de changer la distance focale soit
d’approcher la caméra de l’objet. Dans ce contexte, j’ai étudié comment utiliser l’asser-
vissement visuel afin d’améliorer la précision de l’estimation de la structure 3D. Cette
information peut être ensuite utilisée dans la boucle de commande référencée vision.

Reconstruction affine de la structure 3D à un facteur d’échelle près

La reconstruction affine est une solution possible au problème de l’estimation de la
structure 3D (à un facteur d’échelle près) car elle permet d’estimer la distribution des pro-
fondeurs d’un ensemble de points tout en se basant sur des hypothèses plus flexibles que
pour la reconstruction Euclidienne. Tout d’abord, une calibration précise du robot et/ou
de la caméra n’est pas requise. Ensuite seulement deux images de l’ensemble des points
considérés sont suffisantes pour obtenir l’estimation. En effet, la reconstruction affine est
une tâche facile quand le déplacement entre les deux images est une translation pure. La
direction et l’amplitude de cette translation peuvent être arbitraires et inconnues. Une
translation pure en boucle ouverte est théoriquement possible seulement si le robot est
parfaitement étalonné. Au contraire, nous avons proposé une reconstruction affine active
où la translation pure est réalisée en contrôlant le robot avec la commande référencée
vision [Malis 03d]. Nous définissons les contraintes que les informations visuelles dans
l’image de référence doivent atteindre afin que le robot réalise une translation pure entre
l’image initiale et finale. La tâche d’asservissement visuel est spécifiquement conçue afin
de réaliser des mouvements de la caméra qui simplifient l’estimation de la structure. Une
fois que la translation pure a été obtenue la reconstruction affine à partir des images
initiale et finale est triviale.

Reconstruction euclidienne de la structure 3D à un facteur d’échelle près

La reconstruction euclidienne de la structure 3D à un facteur d’échelle près est une
tâche plus difficile car le mouvement de la caméra n’est plus contraint à une translation
pure. Nous avons alors modifié les objectifs de la tâche d’asservissement visuel afin d’ef-
fectuer un mouvement qui permette d’obtenir la structure sans trop perturber la tâche
principale de positionnement [Vargas 05]. PAI PICASSO.

Reconstruction 3D avec une paire stéréo active

Dans le cadre du projet THEMIS avec IFREMER, en collaboration avec V. Brandou
nous avons développé une méthode de vision active afin d’améliorer la reconstruction 3D
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d’objets rigides naturels dans les fonds marins. Nous utilisons une paire stéréo embarquée
sur un robot manipulateur posé sur le fond marin. Nous contraignons les déplacements de
la paire stéréo en réitérant un asservissement visuel de l’image gauche sur l’image droite
(les deux caméras ne sont pas les mêmes) avec une méthode d’asservissement invariante
aux paramètres des caméras [Brandou 06]. De ce fait, la géométrie de la paire stéréo
détermine la trajectoire suivie par les caméras. Ceci simplifie le processus de reconstruc-
tion (réduction du nombres d’inconnues, trajectoire contrainte, ...) [Brandou 07].

Travaux de recherche en optimisation efficace et robuste

Un nouvel axe de recherche transversale concerne l’optimisation efficace et robuste.
En effet, le problèmes d’association des données et de commande peuvent être for-
mulés comme des problèmes d’optimisation. Une caractéristique commune à ce type de
problèmes est que souvent nous pouvons avoir une estimation des dérivées premières du
vecteur d’erreur à la solution. Il est donc possible d’utiliser cette information supplémentaire
afin d’améliorer les performances des technique d’optimisation. J’ai donc proposé la
méthode ESM (efficient second-order method) qui permet d’obtenir une vitesse de conver-
gence plus rapide que la méthode de Newton classique. La méthode ESM a été appliquée
à la fois à la commande référencée vision et à l’association des données (plus parti-
culièrement au suivi visuel).

Application à la commande référencée vision

Les problèmes potentiels de mouvement transitoire de l’asservissement visuel 2D sont
dûs au fait que l’on utilise, pour des tâches de positionnement commençant très loin du
point d’équilibre, des lois de commande qui sont valables seulement localement. Dans ce
cas, des mouvements transitoires non souhaitables du robot peuvent se produire (comme
par exemple une translation très grande alors qu’une simple rotation suffit pour réaliser
la tâche). J’ai montré qu’une partie des problèmes de l’asservissement visuel 2D peut
être résolue en utilisant une loi de commande inspirée d’algorithmes d’optimisation ESM
[Malis 04a]. En effet, les méthodes de commande référencée vision peuvent être classifiées
en suivant une analogie avec les méthodes classiques de minimisation. Les méthodes de
commande sont généralement basée sur des approximations au premier ordre comme
des simple méthode de descente de gradient. Théoriquement, les performances des lois
de commande peuvent être améliorées en utilisant des approches possédant les mêmes
propriétés que la méthode de Newton qui implique une approximation au second ordre
de la fonction de coût. Malheureusement l’utilisation des dérivées secondes (les matrices
Hessiennes) peut être mal conditionnée, provoquant ainsi des problèmes de convergence.
Au contraire, le schéma de commande basé sur la technique d’optimisation ESM, possède
des meilleures propriétés de convergence ainsi qu’un plus grand domaine de convergence.

Application à l’association des données (suivi visuel)

En collaboration avec S. Benhimane nous avons appliqué la méthode ESM au problème
du suivi visuel [Benhimane 04]. Un algorithme de suivi temps-réel est une partie fonda-
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mentale d’un système complet de commande référencée vision. Son rôle est de mettre en
correspondance les informations visuelles extraites à partir de deux images successives
en supposant que le déplacement dans l’image n’est pas très grand. Au cours de mes
recherches j’ai utilisé plusieurs algorithmes de suivi de caractéristiques visuelles : suivi
de points d’intérêts [Espiau 02], de lignes [Mei 06b], de contours [Malis 03b]. Malheu-
reusement, les méthodes de suivi d’amers visuels sont sensibles aux échecs de détection
et aux erreurs de mesure. En plus, le choix d’un algorithme adéquat de suivi dépend
du type d’amer qui est visible dans la scène. Par exemple, un algorithme conçu pour
suivre des cercles dans l’image ne peut pas être utilisé pour suivre des objets qui ont
seulement des points d’intérêt. Au contraire, les algorithmes directs ne dépendent pas de
caractéristiques images. Pour cette raison ces méthodes sont mieux adaptées à l’asser-
vissement visuel. Nous avons alors proposé une méthode d’alignement d’images directe
pour des objets plans ayant un texture quelconque. Au lieu d’extraire des amers visuel
comme des points, lignes, ou contours, l’homographie qui caractérise le mouvement 3D et
la géométrie du plan est estimée directement à partir des intensités de la région d’intérêt.
L’optimisation ESM robuste s’avère particulièrement efficace afin d’éviter la défaillance
de la minimisation en présence de mesures aberrantes [Malis 06]. Cette nouvelle technique
d’alignement d’images basée sur l’optimisation ESM permet d’expliquer les excellentes
performance d’une technique d’alignement d’images proposée dans le domaine de l’ima-
gerie médicale [Vercauteren 07].

Les travaux de recherche sur l’optimisation efficace ont ouvert des nouvelles pers-
pectives pour la conception des approches d’asservissement visuel. Plus en particulier,
une approche plus holistique est apparue comme la meilleur solution au problème de
l’intégration des algorithmes de perception visuelle de de commande.

Une approche holistique à la commande référencée vision

L’approche standard pour la conception des approches d’asservissement visuel est
d’assembler des méthodes de vision par ordinateur et de commande qui ont été conçues
séparément. Avec cette approche, l’intégration d’un système complet peut être difficile
vu le grand nombre de techniques différentes pour le suivi et l’asservissement. Mais aussi
elle peut s’avérer peu flexible. Au lieu de considérer les systèmes de vision et de com-
mande séparément nous proposons d’unifier autant que possible des travaux en vision
par ordinateur et asservissement visuel dans un cadre unifié [Malis 05]. Mon objectif est
de construire un système générique, robuste et flexible qui peut être utilisé pour une très
grande variété d’applications robotiques comme par exemple la commande référencée vi-
sion de robot manipulateur [Malis 04d] ou celle de robots mobiles [Benhimane 05]. L’idée
principale est d’utiliser les méthodes de perception directes afin d’extraire des données
images la mesure de la fonction d’erreur à réguler à zéro. Au même temps, il faut concevoir
des lois de commande référencée vision qui ne nécessitent que des informations estimées
par le suivi visuel.
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Association des données (suivi visuel)

Le travail de recherche sur le suivi visuel direct, initié par S. Benhimane (voir travaux
de recherche en optimisation efficace), à été poursuivi en collaboration avec C. Mei et G.
Silveira. Nous avons tout d’abord étendu l’algorithme de suivi visuel à tous les capteurs à
centre de projection unique [Mei 06a]. Le capteurs à projection centrale unique incluent les
caméras omnidirectionnelles qui sont particulièrement utiles pour plusieurs applications
robotiques grâce à leur champ de vue a 360 degrés. Ensuite, nous avons propose une ex-
tension de la méthode afin de prendre en compte les changements d’éclairage quelconques
[Silveira 07b]. Avec une information supplémentaire sur le facteur d’échelle, l’algorithme
de suivi visuel ESM peut être appliqué à l’estimation précise du mouvement d’un robot
mobile a partir des l’observation de plusieurs objets plans par une caméra perspective
[Benhimane 06b] ou omnidirectionnelle [Mei 06c]. Une approximation planaire par mor-
ceaux de la scène pourrait ne pas être appropriée pour certaines applications. Pour cette
raison, nous avons commencé à étudier comment étendre le suivi visuel ESM à des objets
3D génériques.

Asservissement visuel

L’intégration des algorithmes de suivi visuel dans les schémas de commande devient
très facile si le schéma d’asservissement visuel peut utiliser directement et uniquement la
sortie du suivi. En collaboration avec S. Benhimane nous avons étudié comment concevoir
une lois de commande qui ne dépendent pas des mesures sur la structure de la cible
[Benhimane 07]. Comme dans le cas du suivi visuel, il s’agit d’une approche de commande
générique qui peut être applique aussi bien a des caméras perspectives [Benhimane 06a]
que à des caméras omnidirectionnelles [Benhimane 06c]. La loi de commande proposée
est stable localement et, contrairement à toutes les méthodes existantes, elle ne nécessite
pas de mesure du modèle de l’objet par rapport auquel la commande est effectuée. Seules
des informations issues des images de référence et courante suffisent pour calculer la loi
de commande.

Le passage des tâches de positionnement aux tâches de navigation en environnement
inconnu demandent des algorithmes de perception capables de reconstruire en ligne l’en-
vironnement et de localiser le robot par rapport a un repère de référence. C’est pourquoi
ces dernières années mes travaux de recherche se sont oriente vers la reconstruction en
temps-réel de la structure et du mouvement (odomètrie visuelle et SLAM). Ainsi l’exten-
sion de l’approche “apprentissage par localisation” classique à de tâches de navigation
vers des lieux jamais explorés devient possible.

Reconstruction de la structure et du mouvement

Odomètrie Visuelle Stéréo

Dans le cadre du projet MOBIVIP et en collaboration avec A. Comport nous avons
proposé une technique d’odomètrie visuelle pour localiser une paire stéréo par rapport à
un repère fixe attaché à l’environnement [Comport 07]. Nous utilisons une approche de
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minimisation dense qui utilise toute l’information disponible de la paire stéréo (ou d’une
région) qui produit des résultats précis et robustes. Les contraintes de rigidité sur la struc-
ture 3D sont imposées en reprojetant de manière consistante les images de la paire stéréo
afin de générer une nouvelle couple d’images. Une estimation non-linéaire de la trajectoire
est formulée sur la base de la relation quadrifocale entre les intensités des images cou-
rantes et de référence de la paire stéréo. Nous utilisons la technique d’optimisation ESM
robuste (avec des M-estimateurs) afin de rejeter les mesures aberrantes correspondant à
des objets en mouvement dans la scène ou d’autres mesures aberrantes comme des occul-
tations, changement d’illumination et erreurs de mise en correspondance. La technique
est générique et elle a été appliquée aussi bien à l’estimation de trajectoire d’un véhicule
dans un environnement urbain qu’à l’estimation de trajectoire d’un dirigeable évoluant
en 3D.

Localisation et reconstruction simultanée à l’aide d’un système de vision

Le SLAM (Simultaneous Localisation and Mapping) consiste à estimer l’attitude de
la caméra tout en imposant une cohérence temporelle sur la rigidité de la scène. Dans
le cadre du projet AURORA et en collaboration avec G. Silveira, nous avons proposé
une méthode efficace qui calcule directement le déplacement 3D de la caméra et la struc-
ture de la scène [Silveira 07c]. Il est important de noter que la méthode étant basée sur
l’utilisation directe des valeurs d’intensités de tous les pixels dans les régions d’intérêt.
Les paramètres de mouvement et de la structure sont simultanément estimés par une
technique d’optimisation ESM pour un traitement des données plus rapide et permet-
tant d’éviter des minimum locaux non significatifs. Par ailleurs, la rigidité de la scène
et le fait qu’elle soit située face à la caméra sont imposés en tant que contraintes dans
l’optimisation. Tous ces facteurs contribuent à obtenir des résultats très précis.

Extension de l’approche “apprentissage par localisation”

Dans le cadre du projet AURORA et en collaboration avec G. Silveira, nous avons
proposé une nouvelle méthode d’asservissement visuel pour positionner une caméra dans
le cadre de l’approche “apprentissage par localisation”. Notre approche d’asservissement
visuel ne nécessite ni une image de référence ni une mesure métrique a priori du modèle
de la scène [Silveira 06b]. La tâche est définie uniquement en terme d’une attitude à
atteindre. L’attitude courante est obtenue par “odomètrie visuelle”. Afin d’améliorer la
précision la stabilité et la vitesse de convergence de l’estimation nous modélisons la scène
comme un ensemble de régions planes. Le schéma d’asservissement visuel est basé sur deux
techniques. Premièrement, il est basé sur un détecteur de régions planaires [Silveira 06a]
de telle manière à détecter des nouvelle régions d’intérêt quand celles déjà utilises sortent
du champ de vue de la caméra. Deuxièmement, le suivi visuel ESM est utilisé afin d’esti-
mer en ligne la structure et le mouvement de la caméra simultanément. Cette approche
est bien adaptée à des applications temps-réel comme la navigation visuelle dans des
environnements très grands.
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Conclusion et perspectives de recherche

Quand l’on considère des applications robotiques en temps-réel, il est important
de prendre en compte très tôt, au niveau de la conception, les spécificités et les ca-
ractéristiques respective des problèmes d’estimation et de commande. Ce faisant, non
seulement nous avons pu améliorer les tâches classiques d’asservissement visuel mais
aussi nous avons pu proposer des méthodes qui sont plus performantes des méthodes qui
considèrent l’estimation et la commande comme deux problèmes séparés.

Une contribution importante a été de proposer la méthode dite Efficient Second-order
approximation Method (ESM) pour la solution de systèmes d’équations non linéaires,
définis sur des groupes de Lie, quand l’on peut mesurer une information supplémentaire
sur les dérivée à la solution. En effet, la méthode ESM a été appliquée avec succès à la
fois pour l’estimation et la commande à partir des données visuelles. L’analyse théorique
prévoit une vitesse de convergence plus rapide et un domaine de convergence potentiel-
lement plus grand par rapport aux méthodes classiques. Ces résultats théoriques ont été
confirmes par des nombreuses expériences.

Une autre contribution a été la conception de méthodes directe pour l’alignement
d’images. Ceci a permis une estimation précise et robuste de la structure et/ou de la
localisation dans des environnement à large échelle, malgré des occultations et des grands
changements des conditions d’éclairage. L’approche que nous avons propose est générique,
elle peut être utilise avec n’importe quelle caméra à centre de projection unique et elle
s’étend naturellement à des systèmes de stéréo vision. L’application de l’ESM à notre
approche suppose que les Jacobiens peuvent être mesurés seulement à partir des donnes
image. Nous avons montre quand et comment ceci est possible en utilisant la théorie des
groupes de Lie. Nous avons aussi montré que l’ESM a des performance très satisfaisantes
même quand les Jacobiens ne peuvent qu’être grossièrement estimés.

Plusieurs contribution ont été apportées à la conception de schémas d’asservissement
visuel. Nous avons montré que les schémas d’asservissement visuel classiques de type
”image-based” peuvent être améliorés en concevant une loi de commande basée sur l’ESM.
L’analyse théorique de la stabilité et de la robustesse a permis de trouver des bornes sur
la ”taille” des erreurs de calibration que le système peut tolérer avant de devenir in stable.

Ensuite, nous avons conçu des méthodes d’asservissement visuel robustes qui ne
nécessitent pas une mesure exacte des paramètres du système de vision et qui ne nécessitent
pas d’aucune connaissance ”a priori” sur la structure de la scène observée. Encore une
fois, une attention particulière a été donnée a l’analyse théorique de la stabilité et de la
robustesse des lois de commande par rapport aux erreurs d’estimation des paramètres du
système.

Enfin, nous avons proposé des méthodes qui dépassent le cadre d’application des
méthodes classique d’asservissement visuel. Nous avons montré, pour une caméra pers-
pective, comment il est possible de définir une mesure qui est invariantes aux paramètres
intrinsèques de la caméra. Ceci permet, entre autre, de définir des nouvelles taches d’asser-
vissement visuel en utilisant des objectifs a focale variable. Une autre nouvelle approche
concerne l’intégration des méthodes d’asservissement visuel dans les approche de locali-
sation et de reconstruction. Ceci permet, de définir des nouvelles tâches d’asservissement
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visuel sans mesurer au préalable une image de référence ou un modèle de la scène.

Perspectives de recherche

Dans mon travail de recherche futur, j’ai l’intention de développer un système de
perception le plus générique possible et bien adapté aux applications robotiques (c’est-à-
dire qui puisse tenir compte de la grande variabilité des environnements et de la grande
diversité des taches robotiques). Il s’agit d’un objectif à (très) long terme, vu le nombre
très diffèrent de fonctionnalités et de modalités de perception possibles. A plus court
terme je vais donc considérer comme prioritaire la fonction de localisation, qui est une
fonctionnalité primordiale en robotique. Dans ce cadre, je considère que la vision est
une modalité sensorielle primordiale (mais pas l’unique) pour accéder à une certaine
autonomie des systèmes robotisées interagissant avec des environnements dynamiques
complexes. Toutefois, malgré les énormes progrès accomplis ces dernières années dans le
domaine de la vision robotique la flexibilité, la robustesse et la fiabilité de la perception ne
sont pas encore suffisantes pour des applications dans des environnements non contrôlés ou
impliquant une interaction avec l’homme. Un système robuste et flexible basé sur la vision
doit considérer des types différents de caméras (par exemple des caméras à projection
centrale unique ou pas), doit être robuste à des très grand changements d’éclairage, doit
considérer des objets rigides ou déformable, des scènes statiques ou dynamiques, etc. Ce
système doit être assez générique afin d’être facilement couplé avec d’autres capteurs
proprioceptifs et/ou extéroceptifs afin d’obtenir une localisation précise et robuste pour
les applications robotiques. Je suis convaincu qu’une façon d’obtenir ces objectifs est
d’étudier et développer davantage les méthodes directes. Deux problèmes scientifiques
majeurs doivent êtres résolus.

Le premier problème concerne la modélisation de l’environnement et du système de
perception. La difficulté majeure provient de la grande variabilité des types d’environ-
nements, qui sont souvent des systèmes dynamiques ouverts et complexes. Les différents
capteurs utilisés en robotique ne sont pas capables individuellement de donner une in-
formation robuste et fiable dans toutes les situations. Il est donc nécessaire d’utiliser des
modalités sensorielles complémentaires. Par exemple, un système de perception multi cap-
teur typique est composé par une ou plusieurs caméras, un télémètre laser et un système
de positionnement absolu (par exemple un GPS). La modélisation de l’incertitude de
chaque capteur est nécessaire si l’on veut fusionner de manière appropriée les différentes
informations. Dans ce contexte, un problème scientifique important concerne la concep-
tion d’observateurs non-linéaire pour le filtrage des mesures. Il s’agit d’une direction de
recherche pour moi nouvelle et récente que je commence à aborder par l’étude du filtrage
de l’état d’un système non-linéaire défini sur un groupe de Lie. Une bonne modélisation
de l’environnement est aussi primordiale. Par exemple, si l’on considère des capteurs op-
tiques, il est nécessaire d’intégrer des modèles photométriques et géométriques génériques
avec des modèles d’acquisition d’images appropriées. Les modèles photométriques doivent
pouvoir tenir compte des possibles changements d’éclairage qui modifient non seulement
l’intensité lumineuse mais aussi la couleur des objets. Les modèles géométriques doivent
considérer non seulement des environnements rigides complexes (géométrie discontinues
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ou fractale) mais aussi des environnements déformables. Tous ces modèles doivent repro-
duire assez fidèlement les phénomènes physiques et naturels mais sans être trop complexes
afin d’être utilisés dans des applications robotiques temps-réel. En effet, la qualité d’un
modèle dépend du problème pour lequel il est utilisé (simulation, mesure, commande, ...).
Trouver un bon compromis entre complexité et qualité est un vrai défi scientifique car il
n’existe pas une méthodologie solide pour nous guider dans ce choix.

Un deuxième problème concerne l’estimation des paramètres, associés aux modèles
considérés, à partir des données acquises par des capteurs. Il s’agit d’un problème dif-
ficile car souvent de multiples acquisitions sont nécessaires afin de rendre le problème
observable. Dans ce cas, il est nécessaire d’effectuer une association de données entre les
différentes acquisitions. Une classe de méthodes qui a été largement étudiée en littérature
simplifie le problème en séparant cette phase d’association de données de la solution
du système. Une autre façon de résoudre le problème est d’effectuer l’association de
données simultanément, en formalisant le problème d’estimation des paramètres comme
un problème d’optimisation. Dans ce cas, il est nécessaire d’étudier des méthodes efficaces
d’analyse numérique pour la solution de systèmes d’équations non-linéaires et pour l’op-
timisation. Les technique d’optimisation qui sont assez efficaces pour être utilisées dans
des applications temps-réel robotiques ont généralement une convergence locale. Donc,
une initialisation assez précise est nécessaire (c’est-à-dire une approximation initiale assez
précise des paramètres inconnus). Une première direction de recherche est donc d’étudier
comment initialiser de manière efficace l’optimisation par exemple en utilisant des algo-
rithmes d’association des données très rapides mais fournissant seulement une approxima-
tion grossière de la solution, ou en utilisant des modalités sensorielles complémentaires.
Toutefois, une solution plus élégante et générique serait d’étudier des méthodes effi-
caces d’optimisation globales. Un effort de recherche considérable sera nécessaire car
ces méthodes sont généralement très coûteuses en temps de calcul et mal adaptées aux
applications temps-réel.

Un autre objectif de mon travail de recherche futur est l’intégration des informations
du système de perception dans des boucles de commande pour des systèmes robotiques
complexes. La conception des lois de commande référencée vision se base sur une série
d’hypothèses simplificatrices sur les propriétés géométriques et physiques de l’environne-
ment, sur les caractéristiques des capteurs et sur celles des systèmes robotiques considérés.
Mon objectif est d’augmenter la précision et la robustesse des lois de commande malgré
les erreurs de modélisation induits par ces hypothèses. Tout d’abord, j’ai l’intention de
concevoir des algorithmes de commande qui sont robustes par rapport aux erreurs de
modélisation et au bruit de mesure et d’analyser leur propriétés de robustesse. Ensuite,
j’étudierai le système dans sa globalité afin de voir si et comment il est possible d’assouplir
les hypothèses généralement admises.

Concernant le système de vision il y a trois hypothèses qu’il faudrait lever.

La première hypothèse concerne le type de capteur utilisé. Actuellement presque
uniquement des caméras à projection centrale unique sont utilisés pour la commande
référencée vision. Je propose d’étudier l’utilisation de caméras à projection non-centrales.
En effet, ce type de caméras peuvent être très utiles dans beaucoup d’applications car
certaines ont un très grand champ de vue et une résolution constante. A ma connais-



Ezio Malis 108

sance l’utilisation de caméras à projection non centrales n’a pas encore été étudiée dans
la commande référencée vision.

Une deuxième hypothèse concerne la rigidité de l’environnement. Je propose d’étudier
si les méthodes de commande, qui ne nécessitent pas une reconstruction explicite de la
structure, que j’ai proposés pour des objets rigides peuvent être appliqués aux objets
déformables. Le problème clef est la détermination d’un diffeomorphisme entre l’infor-
mation capteur et l’état Cartésien du robot. Il faut remarquer qu’il ne s’agit pas d’une
question purement académique et que des applications très importantes existent en ro-
botique médicale (par exemple la chirurgie non invasive à coeur battant).

La troisième hypothèse est que l’environnement est Lambertian. Cette hypothèse n’est
bien sûr pas vérifiée en pratique. Il sera donc nécessaire d’introduire des modelés pho-
tométriques plus génériques mais aussi d’analyser théoriquement l’influence des erreurs
de modélisation sur la stabilité des lois de commande.

Concernant les hypothèses sur les caractéristiques du robot, la plupart des lois de
commande référencées vision sont conçues en supposant que les robots sont holonômes.
Ces robots sont globalement linéarisables par retour d’état statique (permettant l’utili-
sation de techniques classiques de commande des systèmes linéaires). Pour des systèmes
robotiques plus complexes (comme par exemple les robots non-holonômes) le modèle
linéarisé autour de configurations fixes n’est pas commandable. Des nouvelles techniques
de commande ont dû être élaborées pour ces systèmes. J’ai l’intention d’étudier si et
comment les techniques de commande référencée vision que j’ai proposés pour les robots
holonômes peuvent être généralisées ou adaptées à une large classe de systèmes robotiques
complexes.
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