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Abstract

The growth of consumer embedded devices, where digital, analog and software compo-
nents are often combined together on a single chip, results in an increase of complexity
of the design and verification processes. The validation of such analog and mixed-signal
systems largely relies on simulation-based techniques combined with often ad-hoc anal-
ysis methods. This thesis is motivated by the export of property-based formal techniques
to the validation of analog and mixed-signal systems, at their continuous and timed lev-
els of abstraction.

Since the formal verification of non-trivial continuous systems remains very difficult,
we resort to a lighter validation technique, that is, property-based monitoring. We define
signal temporal logic STL as a high-level specification language that allows expressing
temporal properties of continuous and timed signals. STL is as an extension of the real-
time metric interval temporal logic MITL, where continuous signals are transformed into
Boolean ones using numerical predicates, and the temporal relations between them are
expressed using standard real-time temporal operators whose atomic propositions corre-
spond to those predicates. We develop two monitoring procedures, offline and incremen-
tal, for checking the correctness of simulation traces with respect to STL properties and
implement them into a stand alone analog monitoring tool (AMT). The property-based
monitoring framework is applied, using the AMT tool, to two real-world case studies,
considering properties of a FLASH memory cell and a DDR2 memory interface.

We also consider the problem of property-based formal verification of timed systems,
and develop a modular translation from MITL formulae with past and future operators to
timed automata. The construction that we propose is based on temporal testers, a special
class of input/output timed automata that realize the sequential functions defined by the
semantics of MITL operators. We first show how every MITL formula can be expressed
using six basic temporal operators (three for past and three for future) and show how to
build a temporal tester for each of these operators. Temporal testers for arbitrary MITL

formulae are obtained by composing these elementary testers.
Finally, we develop a procedure for automatic synthesis of controllers from high-level

specifications expressed in the bounded fragment of metric temporal logic (MTL). We
propose a translation from properties specified in this real-time logic and under bounded
variability assumption, into deterministic timed automata to which we apply safety syn-
thesis algorithms to build a controller that satisfies the specification by construction.





Résumé

Le développement croissant de systèmes embarqués de consommation, où les com-
posants numériques, analogiques et logiciels sont combinés sur une même puce, résulte
en une augmentation de la complexité des processus de conception et de vérification. La
validation de tels systèmes analogiques et à signaux-mixtes reste largement basée sur
des techniques de simulation, qui sont souvent combinées avec des méthodes d’analyse
de nature ad-hoc. Cette thèse est motivée par l’exportation de méthodes formelles basées
sur des propriétés, vers leur application à la validation de systèmes analogiques et à sig-
naux mixtes, considérés à leur niveaux d’abstraction continu et temporisé.

Etant-donné que la vérification formelle de systèmes continus non-triviaux reste très
difficile, nous nous tournons vers une méthode de validation plus légère appelée le mon-
itoring basé sur des propriétés. Nous définissons signal temporal logic STL comme lan-
gage de spécification de haut niveau qui permet d’exprimer des propriétés temporelles de
signaux continus et temporisés. STL est une extension de la logique de temps-réel met-
ric interval temporal logic MITL, où les signaux continus sont transformés en signaux
Booléens avec des prédicats numériques, et les relations temporelles entre ces signaux
son exprimées avec les opérateurs temporels habituels dont les propositions atomiques
correspondent à ces prédicats. Nous développons deux procédures de monitoring, une
offline et une incrémantale, qui permettent de vérifier si les traces de simulations sont
correctes par rapport aux propriétés STL. Les deux procédures sont implantées en outil
de monitoring analogique AMT. Notre approche de monitoring basé sur des propriétés
est appliquée, en utilisant AMT, à deux études de cas réalistes, où nous étudions des
propriétés d’une mémoire de type FLASH et d’une interface de mémoire DDR2.

Nous considérons aussi le problème de vérification formelle de systèmes temporisés,
et développons une traduction modulaire des formules MITL avec les opérateurs futurs
et passés, vers des automates temporisés. La construction que nous proposons est basée
sur les testeurs temporels, une classe spécifique d’automates avec les entrées et les sor-
ties qui réalisent la fonction séquentielle définie par la sémantique des opérateurs MITL.
Nous montrons d’abord comment chaque formule MITL peut être exprimée avec six
opérateurs basiques (trois opérateurs passés et trois futurs) et nous proposons une con-
struction de testeurs temporels à partir de ces opérateurs. Les testeurs temporels pour
des formules MITL arbitraires sont obtenus en composant ces testeurs élémentaires.



XIV Résumé

Finalement, nous développons une procédure pour la synthèse automatique de contrôleurs
à partir des spécifications de haut niveau exprimées avec le fragment borné de metric
temporal logic (MTL). Nous proposons une traduction des propriétés spécifiées dans
cette logique temporisée vers des automates temporisés déterministes, en supposant la
variabilité bornée. Ensuite, nous pouvons appliquer à ces automates les algorithmes
habituels de synthèse de sûreté pour construire un contrôleur qui satisfait la spécification
par construction.
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Introduction

The constant technological progress results in the design of increasingly complex sys-
tems that introduce richer functionality on smaller devices. The electronic design au-
tomation (EDA) industry provides various tools that aim to support engineers during
different stages of the design flow. Despite this large palette of tools, the growing pres-
sure to speed-up the production of high performance, low power and reliable devices
makes the design process more vulnerable to faults. Such problems are often attacked
using formal verification methods that allow detection (preferably during early stages)
potential errors in the design.

In the context of digital hardware, the EDA tool support for engineers is mature and
allows a high level of design automation. This progress has allowed huge scaling of dig-
ital designs over the past few decades. However, industrial estimations show that still
about 70% of the overall design phase is dedicated to validation in its various forms.
Consequently, different verification techniques for checking the correctness of a digital
design have been studied extensively over the past decades, and successfully integrated
into EDA toolkits. Formal verification procedures, such as model and equivalence check-
ing or theorem proving aim at showing full system correctness. A lighter approach to
verification, also called “dynamic” verification (monitoring) remains popular among the
engineers, thanks to its relative simplicity with respect to the exhaustive checking frame-
work. In this setting, the system is seen as a “black-box” that generates a finite set of
behaviors that are checked against the specification for their correctness. Although in-
complete, “dynamic” verification is effectively used to catch faults in the system, without
guaranteeing its full correctness.

In recent years, the explosive growth of consumer embedded systems such as cell
phones, GPS systems and portable multimedia devices resulted in “pushing” more tech-
nology on a single chip and combining together digital and analog components. The pas-
sage from purely digital to analog and mixed signal components is not trivial and adds
another level of complexity to the design process. As a result, the potential of inserting
an error into a design becomes higher, yielding an increasing need for automated analog
and mixed-signal (AMS) verification tools. Validation of AMS designs in industry still
relies mainly on simulation-based testing, combined with a number of common (and
heterogeneous) analysis techniques, such as frequency-domain analysis, statistical mea-
sures, parameter extraction, eye diagrams etc. The tool support is usually specific to the



10 1 Introduction

class of properties considered and includes wave calculators, measuring commands as
well as manually written scripts. These solutions are often ad-hoc and support minimal
automation resulting in a time-consuming process that requires considerable (often non-
reusable) user effort. The additional issue in AMS validation is the time required for the
simulation of complex designs. A typical simulation of several nanoseconds of real-time
transient behavior of a complex AMS circuit often takes hours or even days of simula-
tion time (see Table 1.1). A number of recent articles [Dam08, Sei08, Sub07, Mau08] in
specialized press urges for development of more automated tools to support the analog
design flow, with a particular emphasis on AMS verification techniques. According to
a small survey (see [Dam08]), 75% of analog designers questioned responded that they
considered improved AMS verification tools and methodology as the greatest single
need for enhanced EDA solutions in the AMS design1.

Circuit Simulation time
Driver 2.3h
802.11 #1 2.3h
Σ/Δ ADC 3.3h
DDR2 24.0h
I/O 176.2h
CDR 336.0h

Table 1.1. Simulation time for several AMS circuits [Sub07]

The general motivation of this thesis is to study different methods for extending some
ingredients of verification methodology from digital (discrete) to analog and mixed-
signal (timed, continuous and hybrid) systems. We adopt a property-based approach
to verification, in which the system behavior is checked with respect to a high-level
specification written in a formal language. We first define in Section 1.1 a generic model
of a dynamical system defined over an abstract state space which evolves in an abstract
time domain. The particular classes of models that we use can be obtained as special
instances of this model. Section 1.2 describes different levels of abstractions (discrete,
timed and continuous/hybrid) at which we consider systems and Section 1.3 introduces
in more details some of the main formal techniques for checking properties of system
behaviors. In section 1.4 we present the contributions of the thesis and present some of
the related work on that subject (section 1.5). We finally conclude the introduction with
section 1.6 by describing the thesis structure.

1.1 Systems and Properties

Systems, independent of the level of abstraction at which they are considered, react to
changes in their environment (inputs, etc.) and generate output traces that are observable
1 Although this survey is informal and not significantly large to make definite conclusions, it gives an interesting

insight in the current preoccupations of analog designers
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by the user. The correctness of the system can be defined in terms of the relationship
between input and output traces using a formal specification language.

States and Behaviors

A model S of a system is defined over a set V = {v1, . . . , vn} of state variables each
ranging over a domain Vi. The state space of the system is thus V = V1 × . . .× Vn. The
system evolves over a time domain T which is a linearly-ordered set. A behavior of the
system is a function w from the time domain to the state space w : T → V . A behavior
can be either complete, with w defined all over T, or partial, where w is defined only
on a downward-closed subset of T, that is, some interval of the form [0, r). We use the
notation w[t] = ⊥ when t ≥ r. We denote the set of all possible (complete and partial)
behaviors2 over a set V by V ∗.

Systems

The dynamics of a system S is defined via a rule of the form v ′ = f(v, u) which de-
termines the future state as a function of the current state and current input u ∈ U . For
some systems, there is no access to f and the interaction with the model is restricted to
stimulating it with an input sequence which is in U ∗ and then observing the generated
behavior w and checking its correctness.

Properties

Regardless of the formalism used to express it, a property ϕ defines a subset L(ϕ) of V ∗.
A property monitor is a device or an algorithm for deciding whether a given behavior w
satisfies ϕ (denoted by w |= ϕ), or, equivalently, whether w ∈ L(ϕ). The most popular
formalisms used to express properties are either based on temporal logic or regular
expressions.

1.2 Levels of Abstraction

Different systems are defined at different levels of abstraction, depending on their
functionality and the behaviors that they generate. While a synchronous digital circuit
evolves over discrete time steps called “cycles” and generating values that are Boolean
(or other finite domain) vectors, an analog amplifier transforms continuous real-valued
signals. We identify discrete, timed and continuous/hybrid systems as classes of systems
of particular interest in the context of this thesis.

2 For discrete-time behaviors, it is common to use V ∗ for finite behaviors and V ω for infinite ones, but these dis-
tinctions are less meaningful when we come to continuous behaviors.
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Discrete Systems

Digital systems, such as software or digital hardware described at gate level and above,
are usually modeled using discrete models. At this level of abstraction the set N of
natural numbers is taken as the underlying time domain. In this case the difference be-
tween w[t] and w[t + 1] reflects the changes in state variables that occur in the system
within one clock cycle (hardware) or one program step (software). The state space of
digital systems is often viewed as the set B

n of Boolean n−bit vectors3. Behaviors are,
hence, n-dimensional Boolean sequences generated by system models which are essen-
tially finite-state transition systems (automata) which can be encoded in a variety of
formalisms, such as systems of Boolean equations with primed variables or unit delays,
hardware description languages at various levels of abstractions (such as VERILOG or
VHDL), programming languages, etc.

Timed Systems

Timed systems are discrete systems that evolve over a physical time scale modeled by
real numbers. This level of abstraction is useful when the system does not have a cen-
tral clock that defines “cycles” or when considering time-dependent behaviors of digital
systems (such as gate delay propagation and timing analysis). Mathematically speak-
ing, the behaviors generated by a timed system are Boolean signals, that is functions
from R≥0 to B

n rather than sequences from N to B
n. Timed automata [AD94] are often

used to model systems that evolve over dense time. They are finite-state automata aug-
mented with auxiliary continuous variables called clocks that can measure time between
different events.

Continuous and Hybrid Systems

The state variables of continuous systems range over subsets of the set of real numbers
that, in the case of analog circuits, represent magnitudes such as voltage or current. When
considering AMS circuits, there can be several modes in which the analog components
operate, that is the continuous dynamics of analog components may change accord-
ing to the particular (discrete) mode. The behaviors generated by a hybrid/continuous
system are (piecewise)-continuous signals, that is, functions from R≥0 to R

n. Such sys-
tems can be modeled by various formalisms such as differential equations or hybrid
automata [MMP92, Hen96].

Example

As an example we consider the NAND gate, a simple component that forms the basic
block of many circuits. A NAND gate can be viewed at different levels of abstraction

3 In software, as well as in high-level models of hardware, systems may include state variables ranging over larger
domains such as bounded and unbounded numerical variables or dynamically-varying data structures such as
queues, stacks and trees, but at least in the hardware context, those can be encoded by bit vectors.
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In1 In2 Out

0 0 1
0 1 1
1 0 1
1 1 0

Table 1.2. Truth table for a NAND gate

(a)

(b) (c)

In1

In2

Out

10K

10K

4.6K

5V

In2

Out

In1

In1

In2
OutD

D ∈ [1, 3]

Out
In1

In2

In1

In2

Out

0 0 1 1 1
10000

1 1 1 1 0

In1

In2

Out
t t+ 1 t+ 3

Fig. 1.1. A NAND gate at different levels of abstraction (a) discrete (b) timed (c) continuous

depending on the properties one wants to reason about. A NAND gate is usually repre-
sented at the digital level of abstraction, as show in Figure 1.1-(a). A single gate contains
two input ports In1 and In2 and one output port Out. At each cycle, the NAND gate
reads the current input values at In1 and In2 and, accordingly, generates the output value
atOut. At this level of abstraction, one assumes that the NAND gate produces the output
value according to the truth table (see Table 1.2) of the logical operator. The analysis of
a network of NAND gates requires checking that the input/output logical behavior of the
circuit corresponds to its specification.

While this abstraction is useful for reasoning about qualitative behavior of the circuit
built from NAND gates, it assumes that the gates are perfect devices that generate the
output at the end of the cycle upon reading the input values. In practice, that is not the
case and a NAND gate takes some time to react to the inputs, processing the new values
with a certain delay. When considering a network of NAND gates, individual delays are
propagated throughout the circuit. One has to ensure that the delay propagation remains
within acceptable limits and does not eventually affect the logical expected behavior of
the circuit. In order to reason about such phenomena and do the timing analysis of the
circuit, individual gates can be considered as timed systems and modeled using timed au-



14 1 Introduction

tomata [Dil89, MP95b]. Figure 1.1-(b) represents a NAND gate with a non-deterministic
delay that can range between 1 and 3 time units.

Finally, the actual physical implementation of the gates is done at the continuous
level of abstraction using analog components such as transistors and resistors with real-
valued state variables representing physical magnitudes (see Figure 1.1 (c)). From this
level of abstraction, we can derive timing and power information for the component
and analyze its correctness and robustness to variation of some (usually environment-
controlled) parameters.
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1.3 Checking Properties of System Behaviors

Formal Verification

Formal verification consists in proving the correctness of a system with respect to some
formal specification. Model checking [CE81, QS82, BBF+01, BK08, Dam08, HR04b]
is a widely used algorithmic approach to verification where the entire state space of
the underlying model of the system is explored. In that context, verification consists of
checking whether all the (finite and infinite) behaviors generated by a system S satisfy
its specification ϕ, that is effectively deciding the language inclusion L(S) ⊆ L(ϕ). The
general model checking framework is shown in Figure 1.2.

Efficient algorithms for model checking digital systems have been studied extensively
over the past few decades. However, for very large systems, the exhaustive verification
may still be intractable. Moreover, formal verification becomes in general much more
difficult when you consider systems that are modeled with more details (such as systems
that evolve in dense-time or have numerical/real variables).

Model Checker Specification

YES NO
(counterexample)

System S

Model of S

Does model of S satisfy the specification?

Fig. 1.2. Model checking

Monitoring

For systems which are outside the scope of automated verification tools, either due to
the incorporation of unbounded variables (numbers, reals, queues) or simply due to their
size or the lack of the underlying model, the preferred validation method remains based
on testing/simulation. It has been noted that the formal specification component of ver-
ification can be still exported to simulation via the idea of property monitors. In the
context of software, it is also known as runtime verification. Unlike the inclusion test
L(S) ⊆ L(ϕ) checked in verification, in monitoring one performs a membership test
w ∈ L(ϕ) on an individual behavior (simulation trace) w generated by the system S and
the responsibility of the coverage is delegated to the test coverage generation procedure
(or abandoned altogether).
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Input Generator

System S Monitor Specification
behavior

YES NO

Does the behavior satisfy the specification?

Fig. 1.3. Monitoring

Behaviors are generated by some kind of a simulator that computes states sequen-
tially. They constitute the inputs for the monitor which checks whether they satisfy the
property in question, as shown in Figure 1.3. Assuming that the simulator produces the
behaviors forward (from past to future), one may think of three basic modes of interac-
tion between the simulator and the monitor (see Figure 1.4):

1. Offline: The behaviors are completely generated by the simulator before the check-
ing procedure starts. The behaviors are kept in a file which can be read by the monitor
in either direction.

2. Passive Online: The simulator and the checker run in parallel, with the latter observ-
ing behaviors progressively as they are generated. This method allows early error
detection and reporting the user as soon as a fault in a behavior is observed.

3. Active Online: There is a feed-back loop between the generator and the monitor
where the latter may influence the choice of inputs and hence the subsequent val-
ues of the generated behavior. Such “adaptive” test generation may steer the system
toward early detection of satisfaction or violation, and is outside of scope of this
thesis.

There are some practical reasons to prefer one method over the other. First, to save
time, we would like the checking procedure to reach the most refined conclusions as
soon as possible. In the offline setting this will only reduce checking time, while in
the online setting the effects of early detection of satisfaction/violation can be much
more significant. This is because in certain systems (analog circuits represent a notorious
example) simulation time is very long and if the monitor can abort a simulation once its
satisfiability is decided, one can save a lot of time.

The difference between online and offline is, of course, much more significant in sit-
uations where monitoring is done with respect to a physical device, not its simulated
model. We discuss briefly several instances of this situation. The first is when chips are
tested after fabrication by injecting real signals to their ports and observing the outcome.
Here, the response time of the tester is very important and early (online) detection of vi-
olation can have economic importance. In other circumstances we may be monitoring
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MonitorFile

(a)

(b)

(c)

YES/NO

YES/NO

YES/NO

Simulator

Monitor

Monitor

Simulator

SimulatorInput Generator

Input Generator

Input Generator

Fig. 1.4. Modes of interaction between a test generator and a monitor: (a) offline (b) passive online and (c) active
online

a system which is already up and running. One may think of the supervision of a com-
plex safety-critical plant where the monitoring software should alert the operator about
dangerous developments that manifest themselves by property violation or by progress
toward such violations. Such a situation calls for online monitoring, although offline
monitoring can be used for “post mortem” analysis, for example, analyzing the “black
box” after an airplane crash. Monitoring can be used for diagnosis and improvement of
non-critical systems as well. For example analyzing whether the behavior of an organi-
zation satisfies some specifications concerning the business rules of the enterprise, e.g.
“every request is treated within a week”. Such an application of monitoring can be done
offline by inspecting transaction logs in the enterprise data base.

Although the monitoring activity is incomplete, since it considers only a finite number
of behaviors of the system, this lighter approach to verification presents some advantages
when compared to its exhaustive counterpart:

• The system that is checked can be viewed as a black-box and its model is not needed
(property checks are evaluated on simulation traces produced by the system, without
the need to know how they were generated). This is an important feature when the
model of the system is unknown or hardly formalizable (for example, even the sim-
plest components in analog circuit design, such as transistors, are provided in form of
closed libraries containing internally hundreds of differential and algebraic equations
that model the component).

• Monitoring can be effectively used to catch errors in the system and report violations
during the simulation process. When combined with some test coverage methods,
monitoring the output traces can increase confidence in the system correctness.
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• When the system is too large, the simulation-based analysis is the only tractable
method to reason about it and monitoring provides a more systematic and rigorous
approach to simulation/testing.

Synthesis

Formal verification and monitoring techniques aim at checking whether the behaviors
generated by a given system S satisfy some high-level specification ϕ. Another ap-
proach, sometimes called controller synthesis, consists of starting from the specifica-
tion ϕ, and generating automatically the system S that is guaranteed to be correct by
construction (see Figure 1.5).

Specification System S
Controller

Synthesis

Fig. 1.5. Synthesis

The problem of synthesizing controllers automatically from high-level specifications
can be stated as follows: given a property ϕ defined over two distinct action alphabets A
andB (encoded using mutually-disjoint sets of variables), build a transducer (controller)
S from Aω to Bω such that all of its behaviors satisfy ϕ.
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1.4 Contributions of the Thesis

This thesis is motivated by the exportation of property-based formal techniques to the
validation of timed and hybrid systems, mainly in the context of analog and mixed-signal
circuits. Since the formal verification of non-trivial continuous and hybrid systems re-
mains very difficult, we take a step forward by using an intermediate approach, that is
property-based monitoring. We believe that the monitoring approach is appropriate for
validation of analog and mixed-signal systems and is complementary to existing tech-
niques that are already based on ad-hoc analysis of simulation traces. Following the
observation that many interesting properties of transient simulation traces are expressed
in the form of timing relations between signals, real-time extensions of temporal log-
ics seem to form a solid basis for a property-based approach. In the context of purely
timed systems, we are interested in methods for formal verification of real-time tempo-
ral logic properties. Finally, we also consider the problem of automatically synthesizing
controllers (circuits) from real-time high-level specifications such that the controller sat-
isfies the properties by construction. The contributions of this thesis can be summarized
as follows:

1. In the context of analog and mixed-signal system validation, we created a compre-
hensive framework for monitoring properties of timed and continuous behaviors:
a) We defined signal temporal logic STL as a high-level specification language for

expressing properties of continuous and hybrid behaviors. STL is an extension of
real-time metric interval temporal logic MITL [AFH96] where continuous signals
are transformed into Boolean ones using a finite number of numerical predicates,
and the temporal relations between them are expressed in a real-time temporal
logic whose atomic propositions correspond to those predicates. These defini-
tions are currently used as a basis for discussions toward the establishment of a
new industrial standard.

b) We developed two procedures for monitoring simulation traces against STL prop-
erties. The first one, first published in [MN04], is an offline procedure working on
pre-existing simulation traces stored in a file. The second procedure is incremen-
tal and works in a piecewise-online manner to monitoring traces as soon as they
are generated by the simulator. This procedure, first described in [MNP07b], can
detect early violation/satisfaction of properties and reduce simulation time. The
original algorithms in [MN04, MNP07b] were restricted to future temporal oper-
ators while those described in the thesis treat MITL in its full generality [AFH96]
with both past and future temporal operators, as well as events.

c) These monitoring procedures were implemented into a stand alone tool AMT

(analog monitoring tool) first presented in [NM07]. In addition to the two mon-
itoring procedures, AMT admits many features that help in defining properties,
managing signals, visualization and interfacing with various simulators. The tool
has been taken for evaluation by few semiconductor companies.

d) The whole property-based monitoring methodology was applied, using the AMT

tool, to two realistic case studies:
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• Checking properties of FLASH memory cells as obtained from ST Microelec-
tronics [NM07].

• Specifying timing properties from the official standard for DDR2 memory in-
terface and checking them with respect to a set of simulation traces (in collab-
oration with Rambus, [JKN08]).

2. In the context of more formal verification (model checking) of timed systems, we de-
veloped a new modular translation from metric interval temporal logic MITL formu-
lae to timed automata. Unlike the original translation of [AFH96], the construction
that we propose is based on temporal testers, a special class of input/output timed
automata (timed signal transducers) that realize the sequential functions defined by
the semantics of MITL operators. An important advantage of this approach is that
it requires the tester construction only for basic MITL temporal operators. Temporal
testers for arbitrary MITL formulae are obtained just by composing the basic testers.
Earlier versions of this translation were presented in [MNP05] for the past fragment
of MITL and in [MNP06] for its future fragment. The version presented in this thesis
is more complete, adhering to the full semantics of MITL as defined in [AFH96]
providing a unified translation of MITL formulae with future, past and event operators
to temporal testers. To the best of our knowledge this is the most direct translation
from a real-time logic that can express past and events to timed automata.
In addition to this contribution we believe that the construction provides a better
understanding of real-time temporal logic. A prototype implementation of this con-
struction into timed automata defined in the IF format has been developed.

3. We propose a complete chain for synthesizing controllers from high-level specifi-
cations. We consider the bounded fragment of metric temporal logic MTL [Koy90]
as the specification language, and from real-time properties expressed in that logic
we generate, under bounded-variability assumption, deterministic timed automata to
which we apply safety synthesis algorithms to derive a controller that satisfies the
properties by construction. This work was originally presented in [MNP07a].
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1.5 Related Work

The need for system verification techniques has been addressed extensively by the for-
mal methods community. In the context of digital systems such as hardware, a number of
formal specification languages such as LTL or CTL have been proposed and studied, and
an important part of research has been devoted to develop verification methods based on
model checking [CE81, QS82, BK08, Dam08, HR04b] of such specifications. Temporal
logic and regular expressions have been adopted as the basis for industrial specification
languages PSL [HFE04] and SVA [Acc04] used in hardware industry and are currently
supported by many commercial tools.

When considering timed systems, many variants of real-time temporal logics [Koy90,
AH92a, Hen98, HR04a] as well as timed regular expressions [ACM02] have been pro-
posed but the correspondence between simply-defined logics and variants of timed au-
tomata (automata with auxiliary clock variables [AD94]) is not as simple and canonical
as for the untimed (digital) case, partly, of course, due to the additional complexity of
the timed model. Consequently, existing verification tools for timed automata rarely use
temporal properties. One of the most popular dense-time extensions of LTL is the logic
MITL introduced in [AFH96] as a restriction of another real-time logic MTL [Koy90].
The decidability of MITL was established in [AFH96] and it was, together with MTL,
subject to further investigations. However, model checking MITL properties [AFH96]
remains complicated and, to the best of our knowledge, MITL has never been used in
dense-time verification or monitoring tools. The only logic that has been integrated into
a real-time model checking tool was the timed version of CTL, TCTL [HNSY94], used
in the tool Kronos [Yov97].

In the context of monitoring properties of timed systems, a number of tools have
considered integrating some restricted versions of real-time temporal logics. Tempo-
ralRover [Dru00] allows formulae in the discrete time fragment of the temporal logic
MTL. TimeChecker [KPA03] is a real-time monitoring system with properties written
in LTLt which uses a freeze quantifier to specify time constraints. The time notion in
TimeChecker is discrete, but the monitoring steps are not done at the chosen resolu-
tion but are rather event-based. Another monitoring method based on temporal speci-
fications expressed in MTL was presented in [TR04]. Their procedure can be seen as
an event-based on-the-fly adaptation of tableau construction. The complexity of model-
checking formulae of MTL, MITL and TCTL over restricted sets of timed paths was stud-
ied in [MR05]. In [BBKT04], the authors propose an automatic generation of real-time
observers from timed automata specifications. They use a method of state-estimation to
check whether an observed timed trace satisfies the specified property. This technique
corresponds to an on-the-fly determinization of the timed automaton by computing all
the possibles states that can be reached by the timed trace. No logic is used in that work.

Another, more ambitious extension of formal verification techniques involves sys-
tems that have continuous dynamics with switches, also called hybrid systems. The main
direction involves studying hybrid automata [MMP92, Hen96], a mathematical model
that allows to describe systems that have continuous behavior with mode switching, and
developing algorithms for the exhaustive exploration of their state space. While hybrid
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automata are particularly well-suited to model AMS systems and progress is continu-
ously being made in that field [ADF+06], the bottleneck remains the exhaustive verifi-
cation of their behavior, which still does not scale-up well, and can be currently applied
only to small (often toy) examples. The relative lack of specification formalisms similar
to LTL, but adapted to reason about hybrid systems results in only few property-based
verification methods for hybrid automata [FGP06].

Recently, there have been several attempts to apply property-based monitoring proce-
dures to continuous and hybrid systems. The authors of [JHP+07] describe a framework
based on PSL extended with analog operators, which is targeted at checking mixed sig-
nal interface properties. A similar approach for checking PSL properties of discrete time
analog and mixed signals was proposed in [AZDT07]. In [DC05], the authors introduce
an analog extension of CTL which they use to check properties of a finite state machine
which represents a set of discretized and bounded transient simulation traces. The main
limitation of these approaches compared to our framework, is that they all use discrete
time as their underlying time domain.



1.6 Structure of the Thesis 23

1.6 Structure of the Thesis

2. Temporal Logic on Discrete Behaviors: this chapter introduces temporal logic as
the high-level formal language for specification of digital systems properties with
special emphasis on linear temporal logic (LTL) with future and past operators. The
definition of LTL is followed by a discussion on its interpretation over incomplete
(finite) behaviors in the context of monitoring. We present some common approaches
for translating LTL properties into automata and describe an alternative translation
based on a network of input/output automata called temporal testers. Our translation
from MITL to timed automata is an extension of this construction to dense time.

3. Timed Systems Preliminaries: in this chapter, we present the basics of timed sys-
tems. First, we introduce dense-time Boolean signals as the semantic domain for
timed systems. Then, we present the real-time temporal logic MITL which allows us
to specify quantitative properties of timed systems. We also prove some basic proper-
ties of MITL which are used later in the procedures for monitoring and for translation
into timed automata. Finally, we define timed signal transducers as an input/output
variant of timed automata, and that will be used as the basic building blocks for the
translation of MITL formulae to timed automata.

4. Monitoring Timed Behaviors: this chapter describes algorithms for checking MITL

properties on finite timed behaviors. We first consider an offline procedure that can
be applied to already existing timed traces and then present an incremental version
of this algorithm which can be applied for online monitoring of MITL properties.

5. Monitoring Continuous Behaviors: in this chapter we extend MITL into the signal
temporal logic STL for expressing temporal properties of real-valued (continuous,
analog) signals. We discuss some issues related to the generation and representation
of such signals inside the computer and adapt the monitoring procedure to these
signals.

6. Analog Monitoring Tool: This chapter describes the structure and different features
of the AMT tool implementing the monitoring procedures presented in chapters 4
and 5.

7. Case Studies: in this chapter, we describe the FLASH memory cell and DDR2 mem-
ory interface case studies in which we applied our approach for specifying properties
of continuous and hybrid behaviors and monitoring the correctness of analog and
mixed-signal simulation traces using the AMT tool.

8. From MITL to Timed Automata: We describe the construction of timed temporal
testers for the basic MITL operators and thus, via composition, we build timed testers
for arbitrary MITL formulae.

9. On Synthesizing Controllers from Bounded-Response Properties: in appendix A
we present a procedure for synthesizing controllers from the bounded fragment of the
MTL logic under bounded variability assumption. Since in this work the definitions
of signals and of the logic differ from the rest of the document, we present the results
in the form of the originally published paper [MNP07a].





2

Temporal Logic on Discrete Behaviors

Temporal logic is a rigorous formalism for specifying behaviors of discrete systems. It
provides simple constructs to describe the order in which different “events” in the sys-
tem should happen. Decision procedures for model-checking of temporal logic formulae
[MP91, MP95a] play a central role in algorithmic verification of discrete transition sys-
tem. In the linear-time context one takes the negation ¬ϕ of the specification and derives
from it an automaton-like device A¬ϕ that accepts exactly sequences of states that vi-
olate ϕ [VW86] and then checks whether the set of behaviors generated by the system
model intersects the language of A¬ϕ . For discrete-time models, used for functional
verification of software or synchronous hardware, the logical situation is rather mature.
Logics such as LTL (linear-time temporal logic) or CTL (computation-tree logic) are
commonly accepted and incorporated into verification tools. For LTL a variety of effi-
cient algorithms for translating a formula into an equivalent automaton have been pro-
posed [GPVW95, SB00, GO01, KP05] and it even underlies industrial standards such
as PSL [HFE04] and, to some extent, SVA [Acc04].

Temporal logic has been also used as the (bases for the underlying) specification
language in a number of monitoring tools, including Temporal Rover (TR) [Dru00],
FoCs [ABG+00], Java PathExplorer (JPaX) [HR01] and MaCS [KLS+02]. TR is a com-
mercial tool that allows one to annotate programs with temporal logic formulae and
then monitor them. FoCs is a monitoring system developed at IBM that automatically
transforms PSL properties into checkers in the form of simulation blocks compatible
with various HDL simulators. JPaX is a software-oriented runtime verification system
for data race analysis, deadlock detection and temporal specifications. MaCS is another
software-oriented framework aimed at runtime checking (and steering) of real-time pro-
grams. Unlike verification, where the availability of the system model allows one to
reason about infinite sequences (carried by cycles in the transition graph), monitoring is
usually restricted to finite-length behaviors, which often requires adapting the interpre-
tation of temporal logic in some way. In [MS03], the authors show that the problem of
checking whether a finite or ultimately periodic path satisfies a temporal logic formula
can be usually solved efficiently.

When a temporal logic such as LTL is used in practice, one usually considers only its
future fragment, where the temporal modalities refer to future occurrences of events. It
has been argued that such a “futuristic” specification style is more natural for humans,
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and this approach has been indeed adopted by both industrial specification languages
PSL and SVA. Moreover, the past fragment of LTL does not add any expressive power to
its future fragment, when interpreted over sequences that have a starting point1. How-
ever, some properties can be expressed more naturally and succinctly by combining both
past and future LTL operators. For example, the property “every p should have been pre-
ceded by a q”, can be naturally expressed as 2 � (p → � q). In fact, it has been shown
in [LMS02] that temporal logic with past can be exponentially more succinct than its
pure future fragment. Another property (whose realization in dense time will be dis-
cussed in the sequel) is rise(p) which holds at time instants where p becomes true, can
be naturally expressed as p ∧ ¬ � p, namely p and previously not p. A more exhaustive
list of mixed future-past properties can be found in [KVR83].

In section 2.1 we define syntax and semantics of linear-time temporal logic LTL with
both future and past fragments. The problem of interpretation of LTL over finite traces is
discussed in section 2.2. In section 2.3, we describe some standard methods for translat-
ing LTL formulae into Büchi automata and describe in particular such a translation based
on temporal testers.

1 In other words, when the time domain is isomorphic to N, rather than Z. Languages over bi-infinite sequences have
been studied in [NP86]

2 Always p implies once in the past q. LTL operators are formally defined in 2.1.
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2.1 Linear-Time Temporal Logic - LTL

Linear-time temporal logic (LTL) with future and past is defined using the following
syntax:

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | � ϕ | � ϕ | ϕ1Uϕ2 | ϕ1Sϕ2

where p belongs to a set P = {p1, . . . , pn} of propositions. LTL is interpreted over n-
dimensional Boolean ω-sequences of the form w : N → B

n. We use w[t] to denote the
value of a sequence w at position t and abuse p to denote the projection of w on variable
p. The semantics of LTL formulae is typically given via a doubly-recursive3 definition
of the relation (w, t) |= ϕ indicating that a sequence w satisfies ϕ at position t, with the
following rules:

p (w, t) |= p ↔ p[t] = 1
not p (w, t) |= ¬ϕ ↔ (w, t) �|= ϕ
ϕ1 or ϕ2 (w, t) |= ϕ1 ∨ ϕ2 ↔ (w, t) |= ϕ1 or (w, t) |= ϕ2

next ϕ (w, t) |= � ϕ ↔ (w, t+ 1) |= ϕ
previously ϕ (w, t) |= � ϕ ↔ t > 0 and (w, t− 1) |= ϕ
ϕ1 until ϕ2 (w, t) |= ϕ1Uϕ2 ↔ ∃ t′ ∈ [t,∞) (w, t′) |= ϕ2 and

∀ t′′ ∈ [t, t′) (w, t′′) |= ϕ1

ϕ1 since ϕ2 (w, t) |= ϕ1Sϕ2 ↔ ∃ t′ ∈ [0, t] (w, t′) |= ϕ2 and
∀ t′′ ∈ (t′, t] (w, t′′) |= ϕ1

(2.1)

Basic LTL operators can be used to derive other standard Boolean and temporal op-
erators, and in particular eventually, always, once and historically operators 4

� ϕ = T U ϕ � ϕ = T S ϕ
� ϕ = ¬ � ¬ϕ � ϕ = ¬ � ¬ϕ

The until formula ϕ1Uϕ2 requires that ϕ2 will eventually occur. In some cases,
a weaker property that requires that ϕ1 holds continuously either until ϕ2 occurs or
throughout the whole duration of w is preferred to the standard until, and is expressed
by unless operator ϕ1Wϕ2 which is equivalent to the formula ϕ1Uϕ2 ∨ � ϕ1. Simi-
larly, one can define the backto operator ϕ1Bϕ2 which is the past equivalent of unless
and can be expressed as ϕ1Sϕ2 ∨ � ϕ1.

3 Both on the structure of the formula and on time.
4 T stands for true.
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2.2 Evaluation of LTL Formulae over Incomplete Behaviors

LTL was originally targeted at describing properties of reactive systems and the standard
LTL semantics is defined over complete infinite behaviors. When considering the prob-
lem of monitoring, one does not exploit the model of the system S, but rather observes
the behaviors of finite length that it generates. In this section, we discuss some problems
related to the interpretation of LTL formulae over finite traces.

The satisfaction of a past LTL formula ϕ by a sequence w at any time t is determined
according to the values of w at positions t′ ∈ [0, t] between the beginning of the trace
and “now”. In that sense, the definition of past LTL is causal and admits an immediate
translation to deterministic automata and a simple monitoring procedure [HR02] based
on this observation.

A major problem of monitoring properties expressed in the future fragment of LTL is
due to the acausal definition of the satisfaction relation for temporal operators. In other
words, the satisfiability of a formula ϕ at time t may depend on the value of the input
sequence w at some future time t′ > t. One of the questions is how to evaluate ϕ at the
end of the trace, that is at a position from which we don’t know what would happen in
the future. After observing a finite sequence w, there are three possible basic situation
with respect to its satisfaction of a property ϕ:

1. All possible infinite completions of w satisfy ϕ. Such a situation may happen, for
example, when ϕ is � p and p occurs in w. In this case we say that w positively
determines ϕ.

2. All possible infinite completions of w violate ϕ, as in the case when ϕ is � ¬p and
p occurs in w. Then, we say that w negatively determines ϕ.

3. Some possible completions ofw do satisfy ϕ and some others violate it. For example,
any sequence where p has not occurred has extensions that satisfy, as well as violate,
properties of the type � p or � ¬p. In this case we say that w is undecided

This classification into positive, negative and undecided determination is tightly re-
lated to the characterization of LTL formulae into safety and liveness properties. A for-
mula ϕ defines a safety property if and only if any sequence w that violates ϕ has a finite
prefix that negatively determines ϕ. An example of such property is � p. A formula ϕ
defines a liveness property if and only if for any finite word, there is an extension that
satisfies ϕ. A typical liveness property is � p. Note that some formulae, such as pU q are
neither, but can be decomposed into a conjunction of a safety and a liveness property,
pU q = (pWq) ∧ � q.

The “undecided” category can be refined further according to methodological, quan-
titative and logical considerations. The quantitative aspects enter the picture as well
because the longer we observe a sequence w free of p, the more we tend to believe in
the satisfaction of � ¬p, although the doubt will always remain. On the other hand,
the satisfaction of a formula like � k p, although undecided for sequences shorter than
k, will be revealed within bounded time. The most general type of answer concerning
the satisfiability of ϕ by a finite-length behavior w would be to give exactly the set of
completions of w that will make it satisfy ϕ, defined as
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w\ϕ = {w′ : w · w′ |= ϕ}.
Positive and negative determination correspond, respectively, to the special cases

where w\ϕ = X∗ and w\ϕ = ∅. This “residual” language can be computed syntac-
tically as the left quotient (“derivative”) of ϕ by w.

In certain situations we would like to give a decisive answer at the end of the se-
quence. In case of positive and negative determination we can reply with a yes/no an-
swer without ambiguity. For some sub-classes of LTL formulae an unambiguous finitary
semantics (that guarantees positive/negative determination) can be achieved. The sim-
plest among those is bounded LTL where the only future temporal operator is next �

and where the satisfiability of a formula ϕ at time 0 is always determined by the values
of the input sequence w up to some t < k, with k being a constant depending on ϕ.
Note that this class is not useless as it might seem: one can use “syntactic sugar” op-
erators such as � [0,k] ϕ as shorthand for

∧k
i=0(�

i ϕ). The implication for monitoring
is that every sufficiently-long sequence is determined with respect such formulae (see
also [KV01, MN04]).

Although useful, the class of bounded-LTL properties may not be sufficient. In some
cases, the length of the finite behavior cannot be known in advance, and a-priori “bound-
ing” of the property is not advised. Instead of specifying � [0,k] ϕ with a pre-defined
bound k, a preferred solution would be to express the property as � ϕ, with the interpre-
tation that ϕ has to hold continuously from time 0 until the end of the finite trace. This
idea can be generalized, by interpreting any quantification over time Qt,Q ∈ {∀, ∃} as
Qt < |w| and hence a safety that has not been violated during the lifetime of w is con-
sidered as satisfied, and an eventuality not fulfilled by that time is interpreted as violated.
This principle may be extended to more complex LTL formulae that involve nesting of
temporal operators, although in this case the interpretation may seem less intuitive.

Naturally many solutions have been proposed to this problem in the context of moni-
toring and runtime verification and we mention few. The work of [ABG+00] concerning
the FoCs property checker of IBM, as well as those of [KLS+02] are restricted to safety
or eventuality properties and report violation when it occurs. On the other hand, the ap-
proach of giving the residual language is proposed in [KPA03] and [TR04] in the context
of timed properties. The most systematic study of adapting LTL semantics to finite se-
quences (“truncated paths”) is presented in [EFH+03, EFH05], and has been adopted by
the industry standard PSL.

The PSL language defines four levels of satisfaction of a property by a finite-length
behavior, illustrated in Figure 2.2:

1. Holds strongly: the property has not been violated and all future obligation have
been met. Moreover, the property is guaranteed to hold on every possible infinite
completion of the behavior.

2. Holds: while the property has not yet been violated and all future obligations have
been met, there are some possible completions of the behavior that satisfy, and other
that violate the formula
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3. Pending: the property has not been violated by the behavior, but not all of the obli-
gations have been met by the finite trace. There are infinite completions that may or
may not satisfy the formula

4. Fails: the property has been violated by the finite behavior and hence there is no
extension of the behavior that will satisfy it

0 1 2 3t

w[t] p pp p

Fig. 2.1. Example of PSL levels of satisfaction wrt w: holds strongly for � p; holds for � (p→ � p); pending for
� (p→ � p); fails for � p

The future fragment of LTL is part of the PSL language and its syntax and semantics
are slightly adapted for being interpreted over both finite and infinite behaviors. The main
extension with respect to standard LTL is the introduction of strong � s and weak � w

next-time operators5. The distinction between these two operators is made only at the
last position of the sequence. In fact, � w p holds at the last position of the trace, while
� s p does not, independently of the input. The two versions of the next-time operator
have the following semantics (see [EFH05]):

(w, t) |= � s ϕ ↔ t < |w| − 1 and (w, t+ 1) |= ϕ
(w, t) |= � w ϕ↔ t ≥ |w| − 1 or (w, t+ 1) |= ϕ

Note that the weak version of the eventually operator � w ϕ and a strong version of the
always operator � s ϕ do not make much sense when interpreted over a finite behavior.
In fact, using expansion formulae, one can express the weak eventuality as � w ϕ =
ϕ∨� w � w ϕ and it is clear that � w ϕ trivially holds for any finite behaviorw. Similarly,
� s ϕ is violated by any finite sequence.

5 The same weak/strong distinction is also defined for boolean expressions because PSL can be interpreted over
empty words
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2.3 From LTL to Automata

The standard methodology for checking whether all the behaviors of a finite-state system
S, modeled by an automatonAS , satisfy a specification expressed as a temporal property
ϕ, involves building a Büchi automaton A¬ϕ that accepts exactly all the (infinite) words
that violate the property ϕ. The model checking problem, that is, the language inclusion
L(AS) ⊆ L(ϕ) between the possible behaviors of AS and the behaviors satisfying ϕ,
reduces to the checking whether the product automaton AS × A¬ϕ accepts the empty
language, implying that there exists no computation of S which violates ϕ.

In the discrete-time domain, the construction of A¬ϕ typically follows a tableau-
based procedure based on expansion formulae that separate the variable values that have
to hold at the current position from the future obligations that are propagated to the
next position, for example � ϕ = ϕ ∧ � � ϕ. As one can see, the expansion rules rely
heavily on the next operator � which allows to separate clearly current obligations from
future ones. It is not hard to see that this idea cannot be applied in a straightforward
manner to behaviors defined over a dense time domain.

The growing complexity of digital systems calls for more modular and compositional
reasoning about them. Modern specification languages used in the EDA industry such as
PSL [HFE04] or SVA [Acc04] adapted to this reality by providing constructs that facili-
tate specification of complex properties in a bottom-up fashion through the composition
of lower-level component properties. On the other hand, traditional tableau-based ac-
ceptors are hard to adapt to this paradigm because they do not compose naturally. One
reason for the lack of compositionality is that an acceptor Aϕ provides information con-
cerning the satisfaction of ϕ by the entire input sequence, that is, at position 0, but no
information concerning satisfaction of ϕ at any position t > 0. Consequently, when Aϕ1

and Aϕ2 are the acceptors constructed from formulae ϕ1 and ϕ2, respectively, there is
no simple recipe to compose them to obtain an acceptor for the formula ϕ1Uϕ2. The
property ϕ1Uϕ2 is satisfied iff there is a future position t > 0 where ϕ2 is true, and that
ϕ1 holds continuously at all positions t′ such that 0 < t′ < t. The acceptors Aϕ1 and
Aϕ2 do not provide this information.

An alternative style of construction (see [Var95]) uses alternating automata [CKS81],
automata that employ both existential and universal non-determinism. The construction
of alternating automata from formulae is, in some sense, more compositional and elegant
as it works inductively on the structure of the formula, however it is not compositional in
the following sense: the automaton for a formula may make transitions to the automata
of its sub-formulae but it does not observe the evolution of their satisfiability over time.
Moreover, since model-checkers deal only with existential non-determinism, the uni-
versal non-determinism has to be removed by a kind of subset construction [MH84] at
exponential cost.

2.3.1 Temporal Testers

There exists a construction of automata from LTL formulae which is based on temporal
testers, an orthogonal solution to the problem of compositionality where an additional
structure imposes the responsibility of being composable on the automata for the sub
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formulae [KPR98, KP05]. Consider a simple formula ϕ consisting of one temporal or
propositional operator defined over propositional variable p1, . . . , pn. A temporal tester
Tϕ for ϕ is a transducer whose input alphabet is B

n, the set of valuations of the propo-
sitional variables appearing in ϕ, and whose output alphabet is B. While observing an
input sequence w, the tester outputs a Boolean sequence u such that u[t] = 1 iff ϕ is
satisfied at t, that is (w, t) |= ϕ. Hence, unlike an acceptor Aϕ which tells us whether
the entire input sequence satisfies ϕ, the temporal tester Tϕ does so for every suffix of w.
This additional structure allows testers to compose naturally: we can view the output of
Tϕ as a propositional variable uϕ satisfying � (uϕ ↔ ϕ). For a formula ϕ which has ϕ1

and ϕ2 as sub-formulae we can then build a tester Tϕ over input variables uϕ1 and uϕ2 ,
which amounts to taking the outputs of Tϕ1 and Tϕ2 as inputs for Tϕ. A construction of
such a network of testers for the formula (p ∧ � q) U (� r) is illustrated in Figure 2.2.
Below, we list some properties of temporal that make them particularly attractive:

1. The construction of temporal testers is completely modular. It suffices to build testers
for basic temporal and logical operators, which in the case of LTL are basic operators
� p, pU q, p ∧ q and ¬p, where p and q are propositions. Testers for more complex
formulae are constructed by composing these building blocks.

2. Temporal testers naturally support extensions of the specification language. Once a
new language construct is introduced, its corresponding tester can be naturally com-
posed with testers for existing operators. This feature has already been used to extend
compositional construction of testers for LTL [KPR98] with the regular expression-
like operators of PSL [PZ06a] and with branching-time operators of CTL∗ [KP05].
Likewise, the combination of future and past operators comes for free.

3. Testers for specific properties that have been expressed directly by an automaton or a
program without a formal logical description, or that have been optimized [CRST06]
can be combined with testers developed in a different way, as long as they produce
the right output.

4. Unlike certain tableau-based techniques, the construction of temporal testers does not
require the existence of expansion formulae. This is particularly important for testers
defined algorithmically and for real-time logics such as MITL where the meaningful-
ness of the next operator � is not evident.

5. Although temporal testers are transducers that incorporate additional structure with
respect to acceptors, the complexity of constructing such a tester for an arbitrary LTL

formula is not worse than that of the acceptor. In its symbolic representation, the
size of a tester is linear in the size of the formula. This implies that the worst-case
state complexity is exponential for LTL and formulae, which is an established lower
bound.

Temporal testers have several origins. To the best of our knowledge the idea of trans-
ducers that output the truth value of a temporal formula at each position was first pro-
posed in [Mic84, Mic85] under the name machines à formules (formulae machines) as a
way to reconcile logic-based and automaton-based approaches to semantics and verifi-
cation. A similar idea has also been considered in [BCM+92] in the context of symbolic
implementation of a tableau construction. The observation that such a Boolean variable
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can replace the sub-formula itself in the context of model checking has been considered
in [CGH94]. Surprisingly, these techniques did not get much attention in the verification
community until recently. The properties of temporal testers have been studied in detail
with respect to acceptors and alternating automata in [PZ06b] and much of the material
in this chapter is based on it.

Tp∧� q

T� r

u1

u2

u3

T� q

Tp∧u1

T� r

Tu2Uu3

u4

T(p∧� q)U(� r)

p

q

r

Fig. 2.2. Composition of temporal testers for (p ∧ � q) U (� r)
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2.3.2 Temporal Testers for LTL

In this section we show how to actually build testers for the basic LTL operators. We
feel that, independently of its dense time generalization introduced in chapter 8, this
construction, which makes use of acausal transducers as testers for the future temporal
operators, may improve our understanding of temporal logic. We remind the reader that
the satisfaction of a compound LTL formula OP(ϕ1, ϕ2), where OP is a temporal or a
propositional operator, by a sequence w at position t is an OP-dependent function of
the satisfaction of the sub-formulae ϕ1 and ϕ2 by w at certain positions. The satisfac-
tion relation can be viewed as characteristic function χϕ which maps sequences over B

n

into Boolean sequences such that uϕ = χϕ(w) means that for every t ≥ 0, uϕ[t] = 1
iff (w, t) |= ϕ.6 Definition 2.1 can be seen then, as a recipe for building the character-
istic function of ϕ from the characteristic functions of its sub-formulae, as illustrated
in Figure 2.2. These characteristic functions which are to be realized by the temporal
testers are instances of the class of sequential functions (transducers) which are func-
tions that map sequences to sequences. A particular sub-class of sequential functions are
the causal (sometime called retrospective) function.

Definition 2.1 (Causal Sequential Functions). A sequential function f : Aω → Bω is
said to be causal if for every u ∈ A∗, v, v′ ∈ B∗ such that |u| = |v| = |v′| and every
α ∈ Aω and β ∈ Bω

f(u · α) = v · β and f(u · α′) = v′ · β ′ implies v = v′

In other words, the value of f(α) at time tmay depend only on the values {α[t′] : t′ ≤ t}.
Causal functions are realized naturally by deterministic automata with output (sequential
synchronous transducers) that produce the next output symbol as they read the next
input symbol. The semantics of the past fragment of LTL can be expressed using causal
functions as the satisfaction of both previously � and since S operators now (at time t)
is determined according to what have happened until now (positions t′ ≤ t).

The characteristic function of � p is nothing but a shift operator7 defined by u[t+1] =
p[t]. The temporal tester for � p, shown in Figure 2.3-(a), is a simple one-bit input-driven
shift register. Each time instant it reads the current value of p, memorizes it by going to
the appropriate state and outputs the previous value as encoded by the source state of the
transition.8 Consider for example state s0 where p is false and u is true (denoted by p/u).
When the next value of the input is p, the automaton will move to state s1 labeled by p/u,
while if it is p it will move p/u. The two states have the same output u which reflects
the value p in the source state. Likewise transitions departing from p states {s1, s1} may

6 We use u rather then of uϕ when ϕ is clear from the context. Recall that the relation between uϕ and ϕ can also
be expressed by the formula � (uϕ ↔ ϕ). We also use notations in the style p and p to denote 1 or 0 values of
variable p.

7 Known in other context as the delay operator z−1.
8 When outputs are associated with transitions, a one-place shift register has two states p and p̄, but since we associate

outputs with states as a preparation for timed automata over signals we split the state according to their output value
u or ū.
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only end up in u states {s0, s1}. The tester is input-deterministic, as from any state there
is a single outgoing transition for a given input symbol.9

(a) (b)

s0

s1

s0

s1

s0 s0

s1s1

p/u p/u

p/u p/u

p/u p/u

p/u p/u

Fig. 2.3. Temporal testers for LTL formulae: (a) � p; (b) � p

On the other hand, the characteristic function associated with future LTL operators
are not causal as the satisfaction at t may depend on satisfaction at some t′ > t. The
output of the next operator � at time t depends on the input at t + 1 and, even worse,
the output of the until operator U at t may depend on input values at arbitrary larger t′.

One can think of two ways to realize acausal sequential functions. The first approach,
which works well for operators with a bounded level of acausality, for example � d

(the next operator nested d times), is to dissociate the time scales of the input and the
output, that is, let the automaton ignore the first d input symbols, and then let u[t] =
p[t + d]. Unfortunately, this does not work for unbounded acausality. In the alternative
approach that we use, the temporal testers respond to the input synchronously, but since
at time t the information might not be sufficient to determine the output, the tester has
to “guess” the output non-deterministically and split the computation into two runs,
one that predicts u and one that predicts u. Each of the runs needs to remember the
predictions it has made and, progressively, abort runs whose predictions turn out do be
false. An automaton for an operator with acausality of depth d may need to memorize
up to 2d past predictions.

The similarity between remembering past observations (in a shift register) and re-
membering predictions is not a coincidence. The temporal tester for � p, depicted in
Figure 2.3-(b) can be obtained by reversing the transitions of the automaton for � p.
Note that, for finite sequences, if u = χ� (w) that wR = χ� (uR) where uR and wR are
the reverses of the sequences u and w. The automaton for � p is output-deterministic
and its state memorizes the prediction it made in the previous step and uses it to abort,
in the next step, runs whose predictions turned out to be wrong.

9 If we decide by convention that the output at the first instant is u, we have s0 and s1 as initial states depending on
the value of p.
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To understand how such an acausal tester works let us look at Figure 2.4-(a) which
shows the � p-tester in an extended form where input/output labels appear also on tran-
sitions and where abortions due to wrong predictions are made explicit. States s0 and s1

indicate that the prediction made in the current step is u, hence from these two states,
observing p contradicts the prediction and the run is aborted (abort transition). Input p
confirms the prediction and the automaton splits the remaining run into two by moving
non-deterministically to s1 and s1 labeled by p/u and p/u, respectively, thus generating
two predictions for the next value and so on. For every ω-sequence w, only one infinite
run survives and its output is u = χ� p(w). An initial prefix of a sample run is shown in
Figure 2.4-(b).

(a) (b)

abort

abort abort

abort

abort

abort

abort

p/u p/u

p/u p/u

p/u p/u

p/u p/u

p

p p

p

p

p

· · · · · ·

s1

s1 s1

s1 s1

p/u

p/u

p/u

p/u

p/u

p

s0

s1

s0

s0s0

p/u

p/up/u

p/u

p/u
p/u

p/u

Fig. 2.4. Behavior of temporal testers: (a) the tester for � p ; (b) An initial fragment of the behavior of this tester for
an input sequence pppp · · · producing the output uuu . . .

The output of the past temporal tester for pSq is again fully determined by the ob-
served past history. At positions where pq is observed, the property does not hold and
the tester outputs u. Likewise, when q is observed, the output is trivially determined to
be u. In a state where pq is observed, the formula pSq can be either satisfied or falsified,
depending on the previous observations, that is whether p has been continuously holding
from the last time q was true. This situation is reflected by two states spq and spq, one
outputting u and the other u. In fact, the output is determined to be u, when spq state is
entered from a q state and, likewise, the tester moves to state spq when pq is observed
right after observing pq.

The situation with pU q, although symmetric to pSq, is more involved because a
priori, due to the unbounded future horizon, one might need to generate and memorize
2ω predictions. However, the semantics of until implies that at most two confirmable
predictions may co-exist simultaneously.

Lemma 2.2. Let u = χpU q(w). Then for every t such that w[t] = w[t + 1] = pq,
u[t] = u[t+ 1].
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Proof. There are three possibilities: 1) The earliest t′ > t + 1 such that w[t′] �= pq
satisfies w[t′] = q. In that case, the property is satisfied both at t and t+ 1; 2) The same
t′ satisfies w[t] = pq and the property is violated both at t and t + 1; 3) w[t′] = pq for
every t′ > t+ 1 and the property is falsified from both time points.10

This fact is reflected by the tester of Figure 2.5-(b). At time instants where pq is
observed, the value of the output is determined to be u. Likewise, when q is observed
the output is determined to be u. The only situation that calls for non-determinism is
when pq holds and we do not know in which of the three cases of Lemma 3.7 we will
eventually found ourselves. Hence we split the run into positive and negative predictions
(states spq and spq, respectively). The only input sequences that will lead to two infinite
runs are those ending with (pq)ω. To choose the correct one among them we add a
Büchi condition which requires that one of {spq , spq, sq} is visited infinitely often, which
amounts to rejecting runs that stay in spq forever. With these four testers (and the trivial
testers for the Boolean operators), one can build testers for arbitrary (past and future)
LTL formulae.

(a) (b)

pq/u

sq spq

spqspq

pq/u

sq spq

spqspq

pq/u

pq/uq/u q/u pq/u

pq/u

Fig. 2.5. Temporal testers for LTL formulae: (a) The tester for pSq tester; (b) The tester for pU q. Accepting states are
indicated by bold lines. Note that acceptance here has nothing to do with the satisfaction of the property but whether

the sequential function u = χpU q(w) computed by the run is correct.

10 We use the strong until which requires that q eventually happens. If the weak until is used, the property is satisfied
from both positions.
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Timed Systems: Preliminaries

The passage from discrete to timed level of abstraction requires significant adaptations
of the semantic domain, the logic and the automata. The first change involves consid-
ering behaviors that evolve on a time axis defined as a set of non-negative reals. The
interaction between discrete events and dense time may give rise to certain well-known
anomalies, such as “Zeno” behaviors, that should be carefully avoided. Consequently,
in section 3.1, we define dense time Boolean signals as the semantic domain for timed
systems. The behavioral correctness of timed systems does not rely only on the correct-
ness of the output that they generate, but also on the actual timings where some discrete
events are computed. Hence, we also need to extend the temporal logic LTL to enable
expression of timing relations between subsequent events in the signal. In section 3.2 we
introduce the real-time temporal logic MITL [AFH96] as our choice for specifying such
properties. Finally, timed systems are usually modelled using timed automata [AD94],
and in section 3.3 we describe timed signal transducers as an input/output variant of
timed automata that will be used as temporal testers for MITL operators.

3.1 Signals

A signal over a domain D is a function w : T → D where T is the time domain,
which is either the set R≥0 of non-negative real numbers in the case of infinite signals
or an interval [0, r) if the signal is of finite length. We focus on the case where D is a
finite domain, typically the set B

n of Boolean vectors over n variables. Each finite signal
can be further decomposed into a punctual signal, defined only at 0 and denoted by ẇ,
and an open signal segment defined over the interval (0, r). We will denote such signal
segments as (w)r. The concatenation of a punctual signal and an open signal segment is
a finite signal, and is simply their union. Concatenation of two finite signals w1 and w2

defined over [0, r1) and [0, r2), respectively, is the finite signal w = w1 ·w2, defined over
[0, r1 + r2) as

w[t] =

{
w1[t] if t < r1
w2[t− r1] otherwise

A point-segment partition of T is an alternating sequence of adjacent points and open
intervals of the form
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J = {t0}, (t0, t1), {t1}, (t1, t2), {t2}, . . .
with t0 = 0 and ti < ti+1. With respect to such a given time partition, a signal w can be
written as an alternating concatenation of points and open segments:

w = ẇ0 · (w0)r0 · ẇ1 · (w1)r1 · · ·
where ẇi is the value of the signal at ti and (wi)ri is the segment which corresponds to
the restriction of w to the interval (ti, ti+1) whose duration is ri = ti+1 − ti. An interval
splitting is the act of partitioning a segment (ti, ti+1) into (ti, t

′), {t′}, (t′, ti+1). We say
that a time partition J ′ is a refinement of J , denoted by J ′ ≺ J if it can be obtained from
J by one or more interval splittings. A time partition is compatible with a signal w if the
value of w is uniform in each open interval, that is, the segment (wi)ri is constant for
every i.

The left and right limit of a signal w at point t are defined, as

w[→t] = limr→t+ w[r] and w[t←] = limr→t− w[r],

respectively. We say that a time point t is left-singular with respect to w if w[→t] �= w[t]
and that it is right-singular if w[t] �= w[t←]. A point is singular if it is either left- or
right-singular (or both). A point which is not singular is called stationary. Let us denote
the sequence of singular points in w by J (w). A signal is well-behaving if the sequence
J (w) = t0, t1, . . . is either finite or countable and diverging. In other words we exclude
Zeno signals, those that change their value infinitely many times in a bounded time
interval.

Every well-behaving signal w with J (w) = t0, t1, . . . induces a canonical time par-
tition

Jw = {t0}, (t0, t1), {t1}, (t1, t2), {t2}, . . . ,
which is the coarsest time partition compatible with w (see Figure 3.1 for an example).
In this case we can write the signal as

w = σ̇0 · σr00 · σ̇1 · σr11 · σ̇2 · σr22 · · ·
where σ̇i is the value at the singular point ti and σi is the value of the signal in the interval
(ti, ti+1). We will also use the notation

σr00 · σr11 · σr22 · · ·
when we do not care about the value at the singular points, that is, to denote the
countably-many signals that agree on the open segments.

Signals can be combined and separated using the standard pairing and projection
operators. Let wp : T → B, wq : T → B and wpq : T → B

2 be signals. The pairing
function is defined as

wp || wq = wpq if ∀t ∈ T wpq[t] = (wp[t], wq[t])

and its inverse operation, projection as:
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t0 t1 t2 t3 t4

σr1

1

w

σr0

0

σ̇0 σ̇1 σ̇2 σ̇3 σ̇3

σr4

4σr3

3σr2

2

Fig. 3.1. The coarsest partition of a well-behaving signal w

wp = wpq|p wq = wpq|q
Signal transductions are functions that map signals to signals. They can be memoryless
such as the pointwise extensions of Boolean operations or more general ones realized by
(timed) automata. The definition of causal signal transducers is similar to the definition
for sequence transducers (Definition 2.1).

Note that the number of singular points in wpq is at most the sum of the number
of singular points in wp and wq, and that the number of singular points in OP(wp, wq),
for a pointwise extension of a Boolean operator OP is at most that of wpq. Hence well-
behaving signals are closed under pairing, projection and Boolean operations.

The Minkowski sum A ⊕ B of two sets is the set {a + b : a ∈ A, b ∈ B}. In the
special case of intervals one has [a, b] ⊕ [c, d] = [a + b, c + d]. For intervals that may
be open/close in either one of their sides, one can see that since x < a and y ≤ b imply
x+ y < a+ b, the Minkowski sum behaves on such intervals according to the following
tables

⊕ [c (c
[a [a + c (a+ c
(a (a+ c (a+ c

⊕ d) d]
b) b+ d) b+ d)
b] b+ d) b+ d]

Table 3.1. Minkowski sum

We use the notation [a, b] � [c, d] = [a − c, b − d] ∩ T to denote the Minkowski
difference with saturation at zero and t⊕ [a, b] as a shorthand for {t} ⊕ [a, b].

When considering signals of finite length |w| = r, we use the notation w[t] = ⊥
when t ≥ |w|. The restriction of a signal of length d is defined as

w′ = 〈w〉d iff w′[t] =

{
w[t] if t < d
⊥ otherwise

When we apply operations on signals of different lengths, we use the convention

OP(v,⊥) = OP(⊥, v) = ⊥
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which guarantees that if w = OP(w1, w2) then |w| = min(|w1|, |w2|).
The d-suffix of a signal w is the signal w ′ = d\w obtained from w by removing the

prefix 〈w〉d from w, that is,

w′[t] = w[t+ d] for every t ∈ [0, |w| − d).
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3.2 MITL: a Real-time Temporal Logic

The temporal logic MITL (metric interval temporal logic) is one of the most popular
real-time extensions of LTL. It was originally introduced in [AFH96] as a restriction of
the logic MTL [Koy90]. The principal modality of MITL is the timed until U I where I
is some non-punctual interval with integer or rational endpoints. A formula pU [a,b]p is
satisfied by a signal at any time instant t that admits q at some t ′ ∈ [t + a, t + b], and
where p holds continuously from t to t′. The original version of MITL contained only
future temporal operators, although an investigation of past and future versions of MITL

was carried out in [AH92b].

3.2.1 Syntax, Semantics and Rewriting Rules

We consider the MITL logic with both future and past operators. The syntax of MITL is
defined by the grammar

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 UI ϕ2 | ϕ1 SI ϕ2

where p belongs to a set P = {p1, . . . , pn} of propositions and I is an interval of the
form [a, b], [a, b), (a, b], (a, b), [a,∞) or (a,∞) where 0 ≤ a < b are rational num-
bers.1 As in LTL the basic MITL operators can be used to derive other standard Boolean
and temporal operators, in particular the time-constrained eventually, once, always, and
historically operators:

� I ϕ = T U I ϕ � I ϕ = T S I ϕ
� I ϕ = ¬ � I ¬ϕ � I ϕ = ¬ � I ¬ϕ

The semantics of an MITL formula ϕ with respect to an n-dimensional Boolean signal w
is described via the satisfiability relation (w, t) |= ϕ, indicating that the signalw satisfies
ϕ at time t, according to following recursive definition.

(w, t) |= p ↔ p[t] = 1
(w, t) |= ¬ϕ ↔ (ξ, t) �|= ϕ
(w, t) |= ϕ1 ∨ ϕ2 ↔ (w, t) |= ϕ1 or (w, t) |= ϕ2

(w, t) |= ϕ1 U I ϕ2 ↔ ∃ t′ ∈ t⊕ I (ξ, t′) |= ϕ2 and
∀ t′′ ∈ (t, t′) (w, t′′) |= ϕ1

(w, t) |= ϕ1 S I ϕ2 ↔ ∃ t′ ∈ t� I (w, t′) |= ϕ2 and
∀ t′′ ∈ (t′, t) (w, t′′) |= ϕ1

(3.1)

A formula ϕ is satisfied by w if (w, 0) |= ϕ. Recall that the satisfaction relation can be
viewed as characteristic function χϕ mapping signals over B

n into Boolean signals, such
that u = χϕ(w) meaning that for every t ≥ 0, u[t] = 1 if and only if (w, t) |= ϕ. The
definitions of U I and S I are strict as originally proposed in [AFH96], meaning that ϕ1

need not hold at t and neither at the moment t′ when ϕ2 becomes true. Note also that
when I is left-open with a bound a, the truth of ϕ2 at t+a does not count for satisfaction.

1 As a general remark concerning timed automata and logics, by proper calibration of the time step, every finite
MITL formula and any finite timed automaton can be converted to such where a and b are integers.
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Let us remark that the original logic MTL [Koy90] for which MITL is restriction allows
also “punctual” intervals of the form [a, a] in the temporal modalities. To see why this
is problematic in dense time consider the operator � [a,a] that we denote from now on as
� a. This operator, viewed as a signal transducer is a shift: its output at t is the value of
its input at time t− a. To realize this operator we need a device which can “memorize”
the value of the input signal in a time window of length a. Without further assumptions
on the signal, such a memorization is beyond the capabilities of any automaton with a
finite number of states and clocks. The same applies to the future operator � a with the
additional complication of handling predictions. The good news, however, is that if one
knows in advance a bound on the variability of the input, this operator can be realized
by a finite timed automaton. We will make use of this fact in the sequel.

Untimed strict temporal operators U and S can be expressed using the timed oper-
ators where the interval is (0,∞) Similarly, we can define non-strict untimed temporal
operators U and S (which are the commonly-used interpretations of U and S in LTL)
in terms of the strict ones.

ϕ1 U ϕ2 = ϕ1 U (0,∞) ϕ2 ϕ1 S ϕ2 = ϕ1 S (0,∞) ϕ2

ϕ1 U ϕ2 = ϕ2 ∨ (ϕ1 ∧ (ϕ1 U ϕ2)) ϕ1 S ϕ2 = ϕ2 ∨ (ϕ1 ∧ (ϕ1 S ϕ2))

Note that U differs from U [0,∞).
In what follows we show that some of the timed operators (U I and S I , each with

all types of intervals) can be written in terms of simpler ones, which will allow us to
simplify our monitoring and verification procedures for MITL. We start with the follow-
ing lemma, proved also in [DT04, MNP06], which shows that the timed until can be
expressed by a combination of untimed until and timed eventually.

Lemma 3.1 (U I can be expressed by U and � I). For every signal w,

w |= ϕ1 U (a,b) ϕ2 ↔ w |= � (0,a] ϕ1 ∧ � (0,a](ϕ1 U ϕ2) ∧ � (a,b) ϕ2

w |= ϕ1 U (a,b] ϕ2 ↔ w |= � (0,a] ϕ1 ∧ � (0,a](ϕ1 U ϕ2) ∧ � (a,b] ϕ2

w |= ϕ1 U [a,b) ϕ2 ↔ w |= � (0,a) ϕ1 ∧ � (0,a](ϕ1 U ϕ2) ∧ � [a,b) ϕ2

w |= ϕ1 U [a,b] ϕ2 ↔ w |= � (0,a) ϕ1 ∧ � (0,a](ϕ1 U ϕ2) ∧ � [a,b] ϕ2

w |= ϕ1 U (a,∞) ϕ2 ↔ w |= � (0,a] ϕ1 ∧ � (0,a](ϕ1 U ϕ2)
w |= ϕ1 U [a,∞) ϕ2 ↔ w |= � (0,a) ϕ1 ∧ � (0,a](ϕ1 U ϕ2)

w |= ϕ1 S (a,b) ϕ2 ↔ w |= � (0,a] ϕ1 ∧ � (0,a](ϕ1 S ϕ2) ∧ � (a,b) ϕ2

w |= ϕ1 S (a,b] ϕ2 ↔ w |= � (0,a] ϕ1 ∧ � (0,a](ϕ1 S ϕ2) ∧ � (a,b] ϕ2

w |= ϕ1 S [a,b) ϕ2 ↔ w |= � (0,a) ϕ1 ∧ � (0,a](ϕ1 S ϕ2) ∧ � [a,b) ϕ2

w |= ϕ1 S [a,b] ϕ2 ↔ w |= � (0,a) ϕ1 ∧ � (0,a](ϕ1 S ϕ2) ∧ � [a,b] ϕ2

w |= ϕ1 S (a,∞) ϕ2 ↔ w |= � (0,a] ϕ1 ∧ � (0,a](ϕ1 S ϕ2)
w |= ϕ1 S [a,∞) ϕ2 ↔ w |= � (0,a) ϕ1 ∧ � (0,a](ϕ1 S ϕ2)

Proof. We prove the first of these identities, the others are similar. One direction of the
equivalence follows directly from the semantics of timed until, so we consider only the
other direction which is proved via the following observations:
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1. If w |= � (0,a] ϕ1, then ϕ1 holds continuously throughout (0, a]
2. If w |= � (0,a](ϕ1 U ϕ2), then ϕ1 U ϕ2 has to hold at a and there exists t′ > a such

that ϕ2 is true and ϕ1 holds during (a, t′)
3. Formula � (a,b) ϕ2 requires the existence of t′ ∈ (a, b) such that ϕ2 holds at t′

Combining these observations we can see that w |= � (0,a] ϕ1 ∧ � (0,a](ϕ1 U ϕ2) ∧
� (a,b) ϕ2 implies that there exists t′ ∈ (a, b) such that ϕ2 is true at t′ and ϕ1 holds
continuously during (0, t′), which is exactly the semantic definition of ϕ1 U (a,b) ϕ2. ��

Consequently, the operators U , S , � I and � I , where I ranges over the interval types
[a, b], [a, b), (a, b] and (a, b), are sufficient to express any MITL property. However we can
still reduce the number and complexity of tester types using the following observation,
first made in [AFH96], which says that the time instants in which a property of the form
� [a,b] p is satisfied are unions of intervals, each with duration not smaller than b− a.

Lemma 3.2 (Bounded Variability2). Let u = χ�
[a,b]

p(w) for an arbitrary signal w.
Then in any decomposition of u having the form u = u′·0r′·1̇·1r·u′′ or u = u′·0r′·0̇·1r·u′′,
we have r ≥ b− a.

Proof. We prove for the first case. Let t be the duration of the prefix u′ · 0r′ , and hence t
is the earliest point in its neighborhood where � [a,b] p holds. This means that p holds at
t+ b and hence � [a,b] p will hold throughout the interval t⊕ [0, b− a]. ��
Consequently, we can use identities of the form � [a,b] = � a � [0,b−a] to decompose
� [a,b] into � a, and � I with I ∈ {[0, a], (0, a], [0, a), (0, a)} where � a will be applied
only to signals of bounded variability satisfying Lemma 3.2. Moreover, observing that

� [0,a] ϕ = ϕ ∨ � a(� (0,a) ϕ ∨ ϕ)

we can conclude the following proposition which will be used in chapter 8:

Proposition 3.3 (Basic MITL Operators). Any MITL formula can be rewritten into a
form which uses only the temporal operators U , S , � (0,a), � (0,a), � a and � a, with the
last two applied to sub-formulae whose characteristic functions are of uniform bounded
variability.

Expressing Events

MITL does not provide constructs that allow to reason explicitly about instantaneous
events which can be viewed as taking place in singular intervals of zero duration. A
natural way to introduce them is to consider the instants when a signal changes its value.
To this end we propose two unary operators, rise ↑ and fall ↓, which hold at the rising and
falling edges of a Boolean signal, respectively. However, since we allow singular points
to be equal to their left neighborhood, ↑ p may hold at t even if p[t] = 0 as illustrated in
Figure 3.2. Intuitively, ↑ ϕ holds at t if ϕ is false at t and true in a right neighborhood

2 A similar claim holds for the corresponding past operator.
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of t, or if ϕ is true at t and false in a left neighborhood of t. These operators can be
expressed in MITL if we allow both future and past operators, as follows:

↑ ϕ = (ϕ ∧ (¬ϕ S T)) ∨ (¬ϕ ∧ (ϕ U T))
↓ ϕ = (¬ϕ ∧ (ϕ S T)) ∧ (ϕ ∧ (¬ϕ U T))

p1

p2

↑ p1↑ p2

(b)

(a)

(c)

t1

· · ·

· · ·

· · ·

Fig. 3.2. Two signals p1 and p2 that differ at time t where both ↑ p1 and ↑ p2 hold.

3.2.2 Interpretation of MITL over Incomplete Behaviors

The problems related to finitary interpretation of LTL discussed in section 2.2 are inher-
ited by dense-time adaptations of temporal logic. We adopt the approach of quantifying
over time within the length of the finite behavior w and accordingly adapt the semantics
of the until U I operator as follows:

(w, t) |= ϕ1 U I ϕ2 ↔ ∃ t′ ∈ t⊕ I st (t′ < |w| and (ξ, t′) |= ϕ2) and
∀ t′′ ∈ (t, t′) (w, t′′) |= ϕ1

Intuitively, this definition3 gives a strong interpretation of until which requires that ϕ2

will eventually hold within the interval I and before the end of the trace. This definition
allows to derive other standard future timed operators eventually and always in the usual
fashion

� I ϕ = T U I ϕ � I ϕ = ¬ � I ¬ϕ
where � I ϕ remains a strong operator (eventuality has to hold within I and before
the end of the behavior), while � I ϕ becomes a weak operator requiring that ϕ holds
throughout I within the length of the trace.

It is not hard to see that this finitary definition of the timed until operator preserves
the same simplification rules presented in Lemma 3.1. Finally, we can note that the PSL

3 If w is an infinite behavior, this definition of ϕ1 U Iϕ2 is equivalent to the one of section 3.2
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approach of providing an alternative weak (U w
I ) version of timed until requires minimal

effort in adapting the operator semantics:

(w, t) |= ϕ1 Uw
I ϕ2 ↔ ∃ t′ ∈ t⊕ I st (t′ ≥ |w| or (ξ, t′) |= ϕ2) and

∀ t′′ ∈ (t, t′) (w, t′′) |= ϕ1

3.2.3 Some Properties of pSq and pUq

In this section we prove some semantic properties of pSq and pU q. In particular, we
show that their satisfiability is uniform in all open time segments where their input does
not change.

Lemma 3.4 (Since is Left-continuous). Let u = u̇0 · (u0)r0 · u̇1 · (u1)r1 · · · = χpS q(w).
Then, u̇0 = 0 and for any i ≥ 1, u̇i = ui−1.

Proof. The proof for u̇0 = 0 is trivial and follows directly the semantics of pSq evalu-
ated at time 0, whose satisfaction requires the existence of t′ < 0 which is not the case.
For i ≥ 1, assume first that u̇i = 1. Then there exist t′ < ti such that q is satisfied
at t′ and that p holds continuously throughout the interval (t ′, ti). Then, it follows that
(w, t) |= pSq everywhere in (t′, ti) and, consequently ui−1 = 1 = u̇i. If u̇i = 0, there
are two possibilities, either q was never true at any t′ ∈ [0, ti), and hence u was false in
the whole interval (0, ti), or that for any t′′ ∈ [0, ti) where q was true, there is t′ ∈ (t′′, ti)
where p was false, implying that pSq was not satisfied at (t′, ti) and ui−1 = 0 = u̇i. ��

Lemma 3.5 (Until is Right-continuous). Let u = u̇0 · (u0)r0 · u̇1 · (u1)r1· = χpU q(w).
Then, for any i ≥ 0, u̇i = ui.

Proof. Assume first that u̇i = 1. Then there exists t′ > ti such that q is satisfied at
t′ and that p holds continuously throughout the interval (ti, t

′). Then, it follows that
(w, t) |= pU q everywhere in (ti, t

′) and, consequently ui = 1 = u̇i. If u̇i = 0, there are
two possibilities, either q never becomes true at any t′ > ti and hence u is false in the
whole open interval (t,∞), or for any t′′ > ti where q is true there is t′ ∈ (ti, t

′′) where
p does not hold which implies that pU q is not satisfied at (ti, t

′) and ui = 0 = u̇i. ��
Lemma 3.6 (Semantic Rules for Since). Let w = ẇ0 · (w0)r0 · ẇ1 · (w1)r1 · · · be a finite

or infinite signal and let u = u̇0 · (u0)r0 · u̇1 · (u1)r1 · · · = χpS q(w). Then, for every
i ≥ 0,

1. if wi = p, then ui = 0,
2. if wi = pq, then ui = 1
3. if wi = pq, there are three possibilities:

a) if ẇi = pq, then ui = 0
b) if ẇi = q, then ui = 1
c) if ẇi = pq, then ui = u̇i.
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Case ẇi wi ui
1 ∗ p 0
2 ∗ pq 1
3a pq 0
3b q pq 1
3c pq u̇i

(a) (b)

ẇi

p

0

pq

1

∗ q
ẇi

ti titi+1 ti+1

wi wi

uiui

Fig. 3.3. pS q rules for determining ui and examples when (a) wi = p and (b) wi = pq and ẇi = q

Proof. The value of u in the ith segment is determined with respect to the values of
inputs p and q in the same segment wi and at the preceding singular point ẇi. It is not
hard to see that the 5 cases for values of ẇi and wi shown in Figure 3.3 cover all 16
possible combinations of values for p and q at the ith singular point and the adjacent
open segment. For any t ∈ (ti, ti+1) in the ith segment, we have

Case 1: For any t′ < t which is in (ti, ti+1), by definition p does not hold throughout
(t′, t), hence (w, t) �|= pSq, that is ui = 0.

Case 2: There exists t′ < t which is also in (ti, ti+1), where by definition q holds at t′

and p holds continuously throughout (t′, t). Hence (w, t) |= pSq for all such t and
ui = 1.

Case 3-(a): p was false at ti and q does not hold anywhere in the interval (ti, t), which
implies that pSq is not satisfied throughout (ti, ti+1) and ui = 0.

Case 3-(b): q was true at ti and p was continuously true during (ti, t), implying that pSq
is satisfied at (ti, ti+1) and ui = 1.

Case 3-(c): p holds and q remains false throughout [ti, t). Hence, pSq holds at t iff there
is t′ ∈ [0, ti) where q holds, and p remains true during (t′, ti), that is iff pSq holds
at ti. This implies that pSq is satisfied at (ti, ti+1) iff it is satisfied at ti and ui = u̇i.
��

Lemma 3.7 (Semantic Rules for Until). Let w = ẇ0 · (w0)r0 · ẇ1 · (w1)r1 · · · be a finite

or infinite signal and let u = u̇0 · (u0)r0 · u̇1 · (u1)r1 · · · = χpU q(w). Then, for every
i ≥ 0,

1. if wi = p, then ui = 0,
2. if wi = pq, then ui = 1
3. if wi = pq, then either wi is the last segment in w and ui = 0, or:

a) if ẇi+1 = pq, then ui = 0
b) if ẇi+1 = q, then ui = 1
c) if ẇi+1 = pq, then ui = u̇i.

Proof. The value of u in the ith segment is determined with respect to the values of
inputs p and q in that same segment wi and the next singular point ẇi+1. It is not hard
to see that the 5 cases for values of wi and ẇi+1 cover all 16 possible combinations of
values for p and q at wi and ẇi+1. For any t ∈ (ti, ti+1) in the ith segment, we have
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Case ui wi ẇi+1

1 0 p ∗
2 1 pq ∗
3a 0 pq
3b 1 pq q
3c u̇i+1 pq

(a) (b)

pq

ti titi+1 ti+1

∗
pq

1

pq

0

ẇi+1wi ẇi+1 wi

uiui

Fig. 3.4. pU q rules for determining ui and examples when (a) wi = pq and (b) wi = pq and ẇi+1 = pq

Case 1: For any t′ > t in (ti, ti+1), and by definition p does not hold throughout (t, t′),
hence (w, t) �|= pU q and ui = 0.

Case 2: There exists t′ > t in (ti, ti+1) such that by definition q holds at t′ and p holds
continuously throughout (t, t′). Hence (w, t) |= pU q for all such t and ui = 1.

Case 3-(a): By definition p is false at ti+1 and q does not hold anywhere in the interval
(t, ti+1), which implies that pU q is not satisfied throughout (ti, ti+1) and ui = 0.

Case 3-(b): q is true at ti+1 and p continuously holds during (t, ti+1), implying that pU q
is satisfied at (ti, ti+1) and ui = 1.

Case 3-(c): p holds and q remains false throughout (t, ti+1]. Hence, pU q holds at t iff
there is t′ > ti+1 where q holds, and p remains true during (ti+1, t

′), that is iff pU q
holds at ti+1. This implies that pU q is satisfied at (ti, ti+1) iff it is satisfied at ti+1

and ui = u̇i+1.

The only remaining case is when wi = pq and it is the last segment in the signal w (end
of the signal if w is of finite length or wi is defined over (ti,∞) if w is infinite). Since in
both cases there is no t′ > ti where q is true, ui = 0. ��
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3.3 Timed Automata

Timed systems are usually modeled with timed automata [AD94], which are automata
augmented with auxiliary clock variables. Clocks may be reset to zero upon certain
transitions, and while the automaton remains in a state, their values advance uniformly,
thus indicating the time elapsed since their respective resetting events. Clock conditions
may appear as transition “guards” thus restricting transitions to take place when these
conditions are met. This way, timed automata refine ordinary automata by letting them
be sensitive not only to the logical form of their input signals but also to their metric
aspects, that is, the distance between events.

In this thesis, timed automata are used for the building temporal testers for basic MITL

operators described in Proposition 3.3. These basic testers can then be composed in or-
der to build testers for arbitrary MITL formula, and this translation will be presented in
chapter 8. We start by describing the way clock variables and the input/output alphabet
can be referred to in timed automata. Our definition deviate slightly from older defini-
tions of timed automata [AD94, HNSY94, Alu99] as well as from our own [MNP06]
mainly because we consider them as transducers where input as well as output symbols
are associated with both states and transitions. This allows us to synchronize in a clean
way the runs of the automaton (and their induced point-segment time partitions) with
the input and output signals. We consider a set C = {x1, . . . , xn} of clock variables
each ranging over R≥0 ∪ {⊥} where ⊥ is a special symbol indicating that the clock is
currently inactive.4 and extend the order relation on R≥0 accordingly by letting ⊥ < v
for every v ∈ R≥0.

The set of clock valuations, each denoted as v = (v1, . . . , vn), defines the clock space
H = (R≥0∪{⊥})n. A configuration of a timed automaton is a pair of the form (q, v) with
q being a discrete state. For a clock valuation v = (v1, . . . , vn), v + t is the valuation
(v′1, . . . , v

′
n) such that v′i = vi if vi = ⊥ and v′i = vi + t otherwise. It represents the

values of the clocks after spending t time in a state starting from valuations v. A clock
constraint is a Boolean combination of conditions of the forms x < d, x ≤ d, x ≥ d or
x > d for some integer d.

Definition 3.8 (Timed Signal Transducers). A timed signal transducer is a tuple
A = (Σ, Γ,Q, C, I, Δ, λ, γ, qin, F ) where:

1. Σ is the input alphabet and Γ is the output alphabet
2. Q is a finite set of discrete states (locations)
3. C is a finite number of clocks
4. The staying condition (invariant) I assigns to every location q a subset Iq of H

defined by a conjunction of inequalities of the form x ≤ d or x < d, for some clock
x and integer d.

5. The transition relation Δ consists of elements of the form δ = (q, g, ρ, q ′) where
• q and q′ locations
• the transition guard g is a subset of H defined by a clock constraint

4 This is syntactic sugar since clock inactivity in a state can be encoded implicitly by the fact that in all paths
emanating from the state, the clock is reset to zero before being tested [DY96].
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• ρ is the update function, a transformation of H defined by one or more assign-
ments of the form x := 0 or x := ⊥ for a clock x, as well as by copy assignments
of the form xi := xj

6. The input labeling function λ : Q−{qin}∪Δ→ 2Σ associates a subset of the input
alphabet to every location and transition

7. The output labeling function γ : Q − {qin} ∪Δ → Γ assigns output letters to each
location5 and transition

8. qin ⊆ Q is the initial state
9. F ⊆ 2Q∪Δ is a generalized Büchi acceptance condition on states and transitions.

Intuitively a run of a timed automaton consists of an alternation of discrete steps
where a transition whose guard is satisfied is taken, and time steps where the automaton
stays in a state for some duration provided that Iq holds. For transducers we need to
establish a relation between a run of the automaton, an input signal w which induces it
and an output signal uwhich is produced during the run. First, we associate via λ a subset
of the input alphabet to each location and transition. During a time step of duration r in
a location q, the automaton reads an open segment (w)r of w in which the values are
required to belong to λ(q). While taking a transition δ, the automaton reads a point in
the signal whose value should belong to λ(δ). Likewise, we associate an output symbol
(either 0 or 1 in the case of our temporal testers) with each state and transition. The
whole output signal is constructed by concatenating points and open segments collected
during the run.

Formally, a step of the automaton is one of the following:

• A time step: (q, v)
(w)r/τr−→ (q, v + r), where r ∈ R+, all the letters appearing in the

segment (w)r are in λ(q), τ = γ(q), and for all v′ ∈ (v, v+ r), v′ satisfies the staying
condition Iq;

• A discrete step: (q, v)
ẇ/τ̇−→ (q′, v′), for some transition δ = (q, g, ρ, q ′) ∈ Δ, such

that v ∈ g, v′ = ρ(v), w ∈ λ(δ) and τ = γ(δ).

A run of the automaton starting from the initial configuration (qin,⊥) and induced by
an input signal w is a finite or infinite sequence of alternating time and discrete steps of
the form

ξ : (qin,⊥)
ẇ0/τ̇0−→ (q0, v0)

(w0)r0/τ
r0
0−→ (q0, v0 + r0)

ẇ1/τ̇1−→ (q1, v1)
(w1)r1/τ

r1
1−→ (q1, v1 + r1) · · ·

such that
∑
ri diverges and

w = ẇ0 · (w0)r0 · ẇ1 · (w1)r1 · · · .
The output of the run is the signal

u = τ̇0 · τ r00 · τ̇1 · τ r11 · · · .
A run is accepting if for every F ∈ F , the set of absolute time instants in which it
visits states in F or makes transitions in F is unbounded. The automaton realizes a
5 The initial location is excluded as it serves only as a source for the first transition.
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sequential relationRA on signals over its input and output alphabets defined by (w, u) ∈
RA iff there is an accepting run induced by input signal w which produces the output
signal u. In chapter 8 we build such transducers for the MITL operators and show that
they constitute total functions from input to output which are exactly the characteristic
functions of their respective operators.

Before presenting the testers for the temporal operators, we illustrate the way timed
transducers work on the simplest example, a tester for the property p, depicted in Fig-
ure 3.5-(a). We use a statechart notation where some states may be grouped into macro-
states (dashed lines) so that a transition outgoing from a macro-state represents several
identical transitions outgoing from all the state in it and, likewise, a transition entering
a macro-state represents several identical transitions that go into all its states. We omit
the initial state qin from all the figures and the transition from it (which must take place
at time zero) appear as sourceless.

Consider the finite signal w = p · pr0 · p · pr1 · p · pr2 depicted at Figure 3.5-(b). Its
run on the automaton, which does not use clocks as all since this is an instantaneous
operator, can be written as

(qin,⊥)
p/u−→ (s0,⊥)

pr0/ur0−→ (s0,⊥)
p/u−→ (s1,⊥)

pr1/ur1−→ (s1,⊥)
p/u−→ (s0,⊥)

pr2/ur2−→ (s0,⊥),

and illustrated in Figure 3.5-(c). The automaton exhibits “infinitesimal” non determin-
ism: during any moment t in a time step, the automaton may initiate a transition to the
other state. If the value of the signal in the adjacent open segment starting at t con-
forms with the value of that state, the run is continued from there, otherwise it is aborted
immediately and the automaton continues with the time step.
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p

r1r0 r2

t1t0 t2 t3

qin

p/u

p/up/u

p/u p/u

pr2/ur2

pr0/ur0

p/u

(b) (c)

(a)

p/u p/u

p/u

p/u

p/u

p/u p/u

s1 p/u

s1

s1

s1 s0

s0

s0

s0

s0

s0

pr1/ur1

s1

Fig. 3.5. (a) The temporal tester for p; (b) A signal w = p · pr0 · p · pr1 · p · pr2 ; (c) The run of the automaton on w.
Some of the aborted runs are shown explicitly and some are illustrated by the dashed lines.
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Monitoring Timed Behaviors

In this section, we describe two procedures for monitoring timed MITL properties. These
procedures are:

1. An offline procedure that propagates truth values upwards from propositions via
super-formulae up to the main formula. The offline monitoring method is presented
in section 4.1

2. An incremental marking procedure that updates the marking each time a new seg-
ment of the input signal is observed. Section 4.2 describes the incremental monitor-
ing algorithm.

Unlike automata-based monitoring algorithms, the procedures that we propose are
directly applied to signals. A central notion in these algorithms is that of the satisfaction
signal uϕ = χϕ(w) associated with a formula ϕ and a signal w. We remind the reader
that this signal satisfies uϕ[t] = 1 iff (w, t) |= ϕ. Due to the non-causality of future
operators of MITL, the value of uϕ[t] is not necessarily known at time t, that is, after
observing w[t], and may depend on future values of w.

4.1 Offline Marking

The offline marking algorithm works as follows. It has as input an MITL formula and an
n-dimensional Boolean signal w of length r. For every sub-formula ψ of ϕ it computes
its satisfiability signal uψ = χψ(w) (we will use u when ψ is clear from the context).
The procedure is recursive on the structure (parse tree) of the formula (see Algorithm 1).
It goes down until the propositional variables whose values are determined directly by
w, and then propagates values as it comes up from the recursion. We use OP1 and OP2

for arbitrary unary and binary logical or temporal operators. As a preparation for the
incremental version, we do not pass w and uϕ as input or output parameters but rather
store them in global data structures.

Most of the work in this algorithm is done by the COMBINE function which for
ϕ = OP2(ϕ1, ϕ2) computes uϕ from the signals uϕ1 and uϕ2 . We describe how this
function works for each of the operators, and for the sake of readability we omit the
description of various optimizations. We have shown in Lemma 3.1 that timed until and
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Algorithm 1: OFFLINEMITL

input : an MITL Formula ϕ and signal w

switch ϕ do
case p

uϕ := w|p;
end
case OP1(ϕ1)

OFFLINEMITL (ϕ1);
uϕ := COMBINE(OP1, uϕ1);

end
case OP2(ϕ1, ϕ2)

OFFLINEMITL (ϕ1);
OFFLINEMITL (ϕ2);
uϕ := COMBINE (OP2, uϕ1, uϕ2);

end
end

since operators are redundant and consequently, in the remainder of the section it is
sufficient to describe the COMBINE function for the following operators:

• Negation ¬ϕ and disjunction ϕ1 ∨ ϕ2

• Untimed since ϕ1Sϕ2 and until ϕ1Uϕ2

• Timed once � I ϕ and eventually � I ϕ

4.1.1 Combine function for ¬ϕ and ϕ1 ∨ ϕ2

The negation ϕ = ¬ϕ1 is simply computed with uϕ := COMBINE(¬, uϕ1), by changing
the Boolean value of each singular point and open segment in the representation of uϕ1 .

For the disjunction ϕ = ϕ1 ∨ ϕ2, the function uϕ := COMBINE(∨, uϕ1 , uϕ2) first
refines the point-segment representation of the signals for the pairing u′ = uϕ1 ||uϕ2. This
way the value of both signals becomes uniform within every open segment. Then, we
compute the disjunction at every point/segment, concatenating them in order to obtain
uϕ. This procedure is illustrated in Figure 4.1.

4.1.2 Combine function for ϕ1 Sϕ2 and ϕ1 Uϕ2

We assume a finite signal w = ẇ0 · wr00 · · · ẇk · wrkk of length |w| = r0 + · · · + rk = r.
We have shown in Lemma 3.4 that pSq operator is left continuous, meaning that the
satisfaction of the operator at any singular point cannot differ from its satisfaction during
the previous open segment. We have also shown in Lemma 3.6 that there is a finite
number of rules that determine the value of u in open segments depending on the past
observations of p and q. The combination of these two results gives us a straightforward
recipe for computing u = χpS q(w)
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0 1 2 3 4 5 6 7 8 9 10

w|p

w|q

up∨q’

w′

Fig. 4.1. Computing u = χp∨q(w)

Now we can describe how the function that computes the value of u = χpS q(w)
works. We start reading the signal w from the beginning towards the end. Following
Lemma 3.4, u̇0 = 0, regardless of w. For every subsequent singular point, the value u̇i
is equal to ui−1, the value of u during the previous open segment. When a new open
segment of wi is read, the procedure applies the rules of Lemma 3.6 to compute ui, the
value of u in the same segment. If p is false in wi, then ui is also false. Similarly, if both
p and q hold in wi, then the segment ui is set to be true. Finally, if p holds during wi and
q is false throughout the same segment, there are three possibilities: 1) either both p and
q were false at the previous singular point ẇi and then ui is set to be false; 2) q was true
at ẇi so ui is set to true or 3) p was true and q false at ẇi and ui has the same value as in
the previous singular point u̇i.

Computing the COMBINE function for pU q operator is symmetric to the pSq case.
We have shown in Lemma 3.5 that until is right continuous, meaning that the satisfaction
of the operator at any singular point is identical to its satisfaction during the next open
segment. In Lemma 3.7 we provided a finite number of rules to determine the value of u
in the open segments depending on the future observations of p and q. The combination
of these two results provide rules for computing u = χpU q(w)

The computation of u = χpU q(w) works as follows. The signal w is read from the
end towards the beginning. We determine the value of every open segment ui according
to the rules of Lemma 3.7. If p is false in wi, then ui is also false. Similarly, if both p and
q hold in wi, then the value of the segment ui is set to be true. For segments wi where p
is true and q is false, there are four possibilities: 1) wi is the last open segment in w and
ui is false; 2) both p and q are false in ẇi+1 and ui is set to false; 3) q is true at ẇi+1 so
ui is also set to true or 4) p is true and q false at ẇi+1 and ui has the same value as in
the next singular point u̇i+1. Every singular point u̇i is set to the value of the succeeding
open segment ui, as shown by Lemma 3.5.
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Example

Consider the signal from Figure 4.2-(a,b)

w = ẇ0 ·w2
0 ·ẇ1 ·w4

1 ·ẇ2 ·w1
2 ·ẇ3 ·w3

3 =
˙(
p

q

)
·
(
p

q

)2

·
˙(
p

q

)
·
(
p

q

)4

·
˙(
p

q

)
·
(
p

q

)1

·
˙(
p

q

)
·
(
p

q

)3

The signal u = χpS q(w) is of the form u = u̇0 · u2
0 · u̇1 · u4

1 · u̇2 · u1
2 · u̇3 · u3

3 and is
computed with following steps:

• u̇0 is trivially false (Lemma 3.4)
• u0 = 0 because w0 =

(
p
q

)
, ẇ0 =

(
p
q

)
and u̇0 = 0 (case 3 (c) of Lemma 3.6)

• u̇1 = u0 = 0 (Lemma 3.4)
• u1 = 1 because w1 =

(
p
q

)
(case 2 of Lemma 3.6)

• u̇2 = u1 = 1 (Lemma 3.4)
• u2 = 0 because w2 =

(
p
q

)
(case 1 of Lemma 3.6)

• u̇3 = u2 = 0 (Lemma 3.4)
• u3 = 1 because w3 =

(
p
q

)
and ẇ3 =

(
p
q

)
(case 3 (b) of Lemma 3.6)

The resulting signal u = 0̇ · 02 · 0̇ · 14 · 1̇ · 01 · 0̇ · 13 is shown in Figure 4.2-(c).
For the same input signal w, we show how u = χpU q(w) is computed. Similarly to

the previous case, u is of the form u = u̇0 · u2
0 · u̇1 · u4

1 · u̇2 · u1
2 · u̇3 · u3

3, but now we scan
w from its end to the beginning (right to left):

• u3 = 0 because w3
3 =

(
p
q

)
and it is the last segment in the input signal (finitary

interpretation of until)
• u̇3 = u3 = 0 (Lemma 3.5)
• u2 = 0 because w2 =

(
p
q

)
(case 1 of Lemma 3.7)

• u̇2 = u2 = 0 (Lemma 3.5)
• u1 = 1 because w1 =

(
p
q

)
(case 2 of Lemma 3.7)

• u̇1 = u1 = 1 (Lemma 3.5)
• u0 = 0 because w0 =

(
p
q

)
and ẇ1 =

(
p
q

)
(case 3 (a) of Lemma 3.7)

• u̇0 = u0 = 0 (Lemma 3.5)

The resulting signal is u = 0̇ · 02 · 1̇ · 14 · 0̇ · 01 · 0̇ · 03 and by merging stationary points
with the adjacent open segments, we obtain the signal u with its coarsest time partition
u = 0̇ · 02 · 1̇ · 14 · 0̇ · 04, shown in Figure 4.2-(d).

4.1.3 Combine function for � I ϕ and � I ϕ

To compute u = χ�
I
ϕ(uϕ) and u = χ�

I
ϕ(uϕ) we first observe that whenever ϕ holds

in an interval J , u holds in the interval J � I ∩ T (respectively J ⊕ I ∩ T). Hence,
the essence of the procedure is to “propagate” the intervals in uϕ where ϕ holds either
forward or backward. We employ the auxiliary concept of interval covering of a signal.
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u
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Fig. 4.2. Computing u = χpS q(w) and u = χpU q(w)

Definition 4.1 (Interval covering). For a signal w of finite length defined over T =
[0, r), its interval covering is a sequence Iw = I0, . . . , Ik such that

⋃
Ii = T and

Ii ∩ Ij = ∅ for any i �= j. An interval covering is said to be consistent with a finite
length signal w if w[t] = w[t′] for every t, t′ that belong to the same interval Ii ∈ Iw.
We denote by Iw the minimal interval covering consistent with the signal w. The set of
positive intervals in Iw is I+

w = {I ∈ Iw|∀t ∈ I, w[t] = 1} and the set of negative
intervals is I−

w = Iw − I+
w .

Let us assume that Iuϕ is the minimal interval covering consistent with uϕ. Then

u = χ�
I
ϕ(uϕ) is computed using the following procedure. For every positive interval

I+ ∈ I+
ϕ , we compute its back shifting (Minkowski difference saturated by T) I+�I∩T

and insert it to I+
u . This set represents the intervals where � I ϕ is satisfied, and the

property is violated outside these intervals. Overlapping positive intervals in I+
u are

merged to obtain the minimal interval covering1 of u.
The combine function for u = χ�

I
ϕ(uϕ) is computed in a similar way. For every

positive interval I+ ∈ I+
ϕ , we compute its forward shifting (Minkowski sum saturated

by T) I+ ⊕ I ∩T and insert it to I+
u , and merge the overlapping positive intervals in I+

u

to obtain the minimal interval covering of u.

1 Note that the similar operation can be applied to negative intervals in I−ϕ , in order to directly compute intervals
where �

I
ϕ is violated. This procedure is not necessary for offline monitoring, but is useful for the incremental

version of the algorithm
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Example

We consider the signalw|p = 0̇·03·1̇·02·1̇·11·1̇·00.5·1̇·13.5. The minimal interval covering
consistent with w|p is the sequence Ip = [0, 3), [3, 3], (3, 5), [5, 6], (6, 6.5), [6.5, 10), the
set of positive intervals in Ip is I+

p = {[3, 3], [5, 6], [6.5, 10)} and the set of negative
intervals in Ip is I−

p = {[0, 3), (3, 5), (6, 6.5)}.

The COMBINE function that generates the signal u = χ� [1,2](w) is computed with
following steps:

• The Minkowski difference I+ � [1, 2] ∩ [0, 10) is computed for every positive in-
terval I+ ∈ I+

p and the resulting interval is inserted into the set I+
u . After applying

this operation, I+
u = {[1, 2], [3, 5], [4.5, 9)}. After merging the overlapping positive

intervals we obtain I+
u = {[1, 2], [3, 9)}.

The resulting signal is u = 0̇ · 01 · 1̇ · 11 · 1̇ · 01 · 1̇ · 16 · 0̇ · 01 as shown in Figure 4.5-(b).

The COMBINE function that generates the signal u = χ�
[1,2](w) is computed with

following steps:

• The Minkowski sum I+⊕ [1, 2]∩ [0, 10) is computed for every positive interval I+ ∈
I+
p and the resulting interval is inserted into the set I+

u . After applying this operation,
I+
u = {[4, 5], [6, 8], [7.5, 10)}. After merging the overlapping positive intervals we

obtain I+
u = {[4, 5], [6, 10)}.

The resulting signal is u = 0̇ · 04 · 1̇ · 11 · 1̇ · 01 · 1̇ · 14 as shown in Figure 4.5-(d).

(a)

(b)

(c)

(d)

w|p

0 1 2 3 4 5 6 7 8 9 10

r

u�
[1,2]

p

w|p

u�
[1,2]

p

Fig. 4.3. Computing u = χ
� [1,2] p(w) and u = χ

� [1,2] p(w)
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4.2 Incremental Marking

This approach combines the simplicity of the offline procedure with the advantages of
online monitoring in terms of early detection of violation or satisfaction and typically
smaller memory requirements. After observing a prefix w[0, t1] of the signal we ap-
ply the offline procedure (without applying the finitary interpretation rules for future
temporal operators, these are applied only at the end of the input trace). If, as a result,
uϕ = χϕ(w) is determined at time 0 we are done. Otherwise, we observe a new segment
w[t1, t2] and then apply the same procedure based on w[0, t2].

A more efficient implementation of this procedure need not start the computation
from scratch each time a new segment is observed. It will be often the case that
uψ = χψ(w) for some sub-formulae ψ is already determined for some subset of [0, t1],
based on w[0, t1]. In this case we only need to propagate upwards the new informa-
tion obtained from w[t1, t2], combined possibly, with some residual information from
the previous segments that was not sufficient for determination of the satisfaction of the
super formula. The choice of granularity (lengths of segments) in which this procedure
is invoked depends on trade-offs between the computational cost and the importance of
early detection.

The essence of the incremental marking procedure lies in the observation that the
evaluation of a Boolean or future temporal formula ϕ at time t, depends on the values of
their subformulae at t′ ≥ t. This implies that if uϕ is already determined at some interval
[0, t1], we only need to keep the values of the satisfaction signal of its subformulae after
t1. Similarly, a past temporal operator ψ depends on the satisfaction of its subformulae
at t′ ≤ t. The algorithm needs minor (and symmetric) adaptations between incremental
marking for future and past temporal operators, and in the remaining of the section we
focus on the procedure dealing with future temporal formulae.

Incremental marking is performed using a kind of piecewise-online procedure in-
voked each time a new segment of w, denoted byΔw, is observed. For each sub-formula
ψ the algorithm stores its already-computed satisfaction signal partitioned into a con-
catenation of two signals uψ · Δψ with uψ consisting of values already propagated to
the super-formula of ψ, and Δψ consists of values that have already been computed
but which have not yet been propagated to the super-formula and can still influence its
satisfaction.

Initially all signals are empty. Each time a new segment Δw is read, a recursive pro-
cedure similar to the offline procedure is invoked, which updates every uψ and Δψ from
the bottom up. The difference with respect to the offline algorithm is that only the seg-
ments of the signal that have not been propagated upwards participate in the update of
their super-formulae. This may result in a lot of saving when the signal is very long (the
empirical demonstration of this claim is given in section 7.1.2).

As an illustration consider ϕ = OP(ϕ1, ϕ2) and the corresponding truth signals of
Figure 4.4-(a). Before the update we always have |uϕ · Δϕ| = |uϕ1| = |uϕ2|: the parts
Δϕ1 and Δϕ2 that may still affect ϕ are those that start at the point from which the
satisfaction of ϕ is still unknown. We apply the COMBINE procedure on Δϕ1 and Δϕ2

to obtain a new (possibly empty) segment α of Δϕ. This segment is appended to Δϕ in



62 4 Monitoring Timed Behaviors

order to be propagated upwards, but before that we need to shift the borderline between
uϕ1 and Δϕ1 (as well as between uϕ2 and Δϕ2) in order to reflect the update of Δϕ. The
procedure is described in Algorithm 2.

uψ Δψ

uψ1

uψ2

Δψ

uψ1 Δψ1

uψ2 Δψ2

Δψ1

uψ

Δψ2

αψ

(a) (b)

Fig. 4.4. A step in an incremental update: (a) A new segment α for ψ is computed from Δψ1 and Δψ2 ; (b) α is
appended to Δψ and the endpoints of uψ1 and uψ1 are shifted forward accordingly.

Example

We illustrate the incremental monitoring procedure on the MITL formula ϕ = � (p →
� [1,2] q). The input signal w is split into three segments Δ1

w, Δ2
w and Δ3

w and the incre-
mental marking procedure is applied upon the arrival of each such segment:

1. The first step of the monitoring procedure is computed when the first segment Δ1
w =

˙(
p
q

) · (
p
q

)2 · ˙(
p
q

) · (
p
q

)0.5 · ˙(
p
q

) · (
p
q

)1.5
is appended to w. After applying recursively

the marking procedure and computing uψ for the subformulae ψ of ϕ. Figure 4.5-
(a) shows the computed signals and as we can see, uϕ for the top level formula ϕ
remains empty. Note that the segment of w defined over [0, 2) as well as the entire
computed segment of u�

[1,2]
q can be discarded, since they do not affect any more

the satisfaction of their corresponding super-formulae.

2. The segment Δ2
w = ˙(

p
q

) · (p
q

)3 · ˙(
p
q

) · (p
q

)0.5 · ˙(
p
q

) · (p
q

)0.5
is appended to the previous

segment of w, and the incremental marking procedure is applied again, computing
new segments of satisfaction signals for sub-formulae of ϕ. The satisfaction of the
top formula remains undetermined. The satisfaction signals for subformulae of ϕ
after applying the marking procedure are shown in Figure 4.5-(b).

3. Finally, the third segment Δ2
w = ˙(

p
q

) · (
p
q

)2
is appended to w and the incremental

marking procedure is applied again. Now, all the subformulae of ϕ, including the top
level formula itself can be updated, and since uϕ is false at t = 0 (see Figure 4.5-(c)),
we can conclude that the formulae is violated by w and stop the procedure.
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Algorithm 2: INC-OFFLINE-MITL

input : an MITL Formula ϕ and an increment Δw of a signal

switch ϕ do
case p

Δϕ := Δϕ · wp(Δw);
end
case OP1(ϕ1)

INC-OFFLINE-MITL (ϕ1);
α := COMBINE(OP1, Δϕ1);
d := |α| ;
Δϕ := Δϕ · α ;
uϕ1 := uϕ1 · 〈Δϕ1〉d ;
Δϕ1 := d\Δϕ1

end
case OP2(ϕ1, ϕ2)

INC-OFFLINE-MITL (ϕ1);
INC-OFFLINE-MITL (ϕ2);
α := COMBINE(OP2, Δϕ1 , Δϕ2);
d := |α| ;
Δϕ := Δϕ · α ;
uϕ1 := uϕ1 · 〈Δϕ1〉d ;
Δϕ1 := d\Δϕ1 ;
uϕ2 := uϕ2 · 〈Δϕ2〉d ;
Δϕ2 := d\Δϕ2

end
end
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(a)

(b)

(c)

0 1 2 3 4 5 6 7 8 9 10

u�
[1,2]

q

up→�
[1,2]

q

0 1 2 3 4 5 6 7 8 9 10

u�
[1,2]

q

up→�
[1,2]

q

u� (p→�
[1,2]

q)

u� (p→�
[1,2]

q)

0 1 2 3 4 5 6 7 8 9 10

u�
[1,2]

q

up→�
[1,2]

q

u� (p→�
[1,2]

q)

Δ1
w

Δ2
w

Δ3
w

w|p

w|q

w|p

w|q

w|p

w|q
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Monitoring Continuous Behaviors

In this chapter we extend the results of the previous section toward real-valued (continu-
ous, analog) signals, that is, functions from R≥0 to R

n. Such signals form a much richer
class of objects and the first issue to be resolved is to define the class of properties that
we use. Our choice is to use properties whose checking can be transformed into check-
ing MITL against a “Booleanization” of the signal via finitely many predicates. Once
this is defined, all that remains is to handle technical problems related to the (sampled)
representation of such signals inside the computer.

5.1 Signal Booleanization and the Logic STL

We consider signals of the form ξ : T → X over state-space X ⊆ R
n. A predicate

over X is a function μ : X → B which can be syntactically expressed using arithmetic
functions and inequalities over the state variable, for example, x < 5 or |x2 − y2| ≤ 1.
We consider a finite set of such predicates such that by applying them pointwise we
obtain Boolean signals describing the evolution over time of the truth values of these
predicates with respect to w.

Definition 5.1 (Booleanization). Let ξ : T → X be a real-valued signal and let M =
{μ1, . . . , μm} be be a set of predicates of the form μi : X → B. The M-Booleanization
of ξ, denoted by M(ξ), is the signal w : T → B

m satisfying for every i and for every t

wi[t] = μi(x1, . . . , xn).

Events such as rising and falling in the Boolean signal correspond to some qualitative
changes in the real-valued signal, for example threshold crossing of some continuous
variable.

We now define the signal temporal logic STL as an extension of MITL that can express
properties that depend on the Booleanization of the signal. That is, we are concerned
with properties such that if two signals ξ and ξ ′ satisfy M(ξ) = M(ξ ′) then for every
formula ϕ, ξ |= ϕ iff ξ ′ |= ϕ.

The syntax of STL is thus parameterized by a set of real-valued function symbols
f1, . . . fk. A term of STL is either a rational constant c, a real-valued variable x or a
function f(x1, . . . xn). A predicate of STL is an expression of the form E ∼ c where E
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is a term, and ∼∈ {<,≤,=,≥, >}. The whole syntax is very much like MITL where
predicates have the same role as atomic propositions:

ϕ := p | E ∼ c | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 UI ϕ2 | ϕ1 SI ϕ2

where p belongs to a set P = {p1, . . . , pn} of propositions,E is a term, ∼∈ {<,≤,=,≥
, >}, c is a constant and I is an interval of the form [a, b], [a, b), (a, b], (a, b), [a,∞) or (a,∞)
where 0 ≤ a < b are rational numbers.

Example

An example of a property that can be expressed in STL is a mixed signal stabilization
property that has the following requirements:

• The absolute value of a continuous signal x is always less than 6
• When the (Boolean) trigger rises, within 600 time units |x| has to drop below 1 and

stay like that for at least 300 time units

This property is illustrated in Figure 5.1 and expressed in STL as:

� (|x| < 6 ∧ (↑ trigger → � [0,600] � [0,300](|x| < 1)))

x

0
1

6

-1

-6

trigger

<= 600 >= 300

Fig. 5.1. Mixed signal stabilization property

The monitoring of STL can be easily reduced to Booleanization and monitoring
against the MITL-skeleton of the formula.

5.2 Continuous Signals and their Representation

The previous section dealt with the definition of the satisfaction of a property by a real-
valued signal. However, to really implement a monitoring procedure, we have to cope
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with some technical problems related to the computer representation of continuous sig-
nals.

As we have seen in section 3.1, finite non-Zeno Boolean signals, albeit the fact that
they are defined over dense time domain, admit an exact finite representation via the
switching (singular) points and the open segments that define their true and false inter-
vals. This is no longer the case for continuous signals where we have a contrast between
the ideal mathematical object, consisting of an uncountable number of pairs (t, ξ[t]) with
t ranging over some interval [0, r) ⊆ T}, and any finite representation which consist of
a collection of such pairs, with t restricted to range over a finite set of sampling points.

The values of ξ at sampling points t1 and t2 do not determine the values of ξ inside
the interval (t1, t2). They may, at most, impose some constraints on these values. Such
constraints can be based on the dynamics of the generating system and on the manner
in which the numerical simulator produces the signal values at the sampling points. Nu-
merical analysis is a very mature domain with a lot of accumulated experience concern-
ing tradeoffs between accuracy and computation time. Its major premise is that given a
model of the system as a continuous dynamical system defined by a differential equa-
tion1, one can improve the quality of a discrete-time approximation of its behavior by
employing denser sets of sampling points and more sophisticated numerical integration
procedures.2

In order to speak quantitatively about the approximation of a signal by another we
need the concept of a distance/metric imposed on the space of continuous signals. A
metric is a function that assigns to two signals ξ1 and ξ2 a non-negative value ρ(ξ1, ξ2)
which indicates how they resemble each other. Using metrics one can express the “con-
vergence” of a numerical integration scheme as the condition that limd→0 ρ(ξ, ξd) = 0
where ξ is the ideal mathematical signal and ξd is its numerical approximation using an
integration step d.

Metrics and norms for continuous signals are used extensively in circuit design, con-
trol and signal processing. There are, however, major problems concerned with their
application to property monitoring due to the incompatibility between the continuous na-
ture of the signals and the discrete nature of their Booleanization, a phenomenon which
is best illustrated using the following simple example. Consider the property � (x > 0)
and an ideal mathematical signal ξ that satisfies the property but which passes very close
to zero at some points. We can easily deform ξ into a signal ξ ′ which is very close to
ξ under any reasonable continuous metric, but according to the metric induced by the
property, these signals are as distant as can be: one of them satisfies the property and the
other violates it (see Figure 5.2).

Moreover, if the sojourn time of a signal below zero is short, an arbitrary shift in
the sampling can make the monitor miss the zero-crossing event and declare the signal
as satisfying (see Figure 5.3). In this sense properties are not robust as small variations
in the signal may lead to large variations in its property satisfaction. Let us mention
some interesting ideas [KC06] concerning new metrics for bridging the gap between the

1 It is worth noting that some models used for rapid simulation of transistor networks cannot always be viewed as
continuous dynamical systems in the classical mathematical sense.

2 For systems which are stable the quality can be improved indefinitely.
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t

t

t

t

ξ ξ′

μ(ξ) μ(ξ′)

Fig. 5.2. Two signals which are close from a continuous point of view, one satisfying the property � (x > 0) and
one violating it.

continuous and the discrete points of view. Such metrics are expressible, by the way, in
STL [NM07].

t t

Fig. 5.3. Shifting the sampling points, zero crossing can be missed.

We handle the abovementioned issues pragmatically. The following assumptions fa-
cilitate the monitoring of sampled continuous signals against STL properties, passing
through Booleanization:

1. Sufficiently-dense sampling: the simulator detects every change in the truth value of
any of the predicates appearing in the formula at a sufficient accuracy. This way the
positive intervals of all the Boolean signals that correspond to these predicates are
determined. This requirement imposes some level of sophistication on the simula-
tor that has to perform several back-and-forth iterations to locate the time instances
where a threshold crossing occurs. Many simulation tools used in industry have al-
ready such event-detection features. For instance, VERILOG-AMS [Acc08] provides
event-detection feature using constructs such as @cross, @last crossing or
@above which allow to detect the crossings of thresholds with arbitrary precision,
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by forcing the simulator to make smaller time steps around the defined threshold. A
survey of the treatment of discontinuous phenomena by numerical simulators can be
found in [Mos99].

2. Bounded variability: some restrictive assumptions can be made about the values of
the signal between two sampling points t1 and t2. For example one may assume that
ξ is monotone so that if ξ[t1] ≤ ξ[t2] then ξ[t′1] ≤ ξ[t′2] for every t′1 and t′2 such that
t1 < t′1 < t′2 < t2. An alternative condition could be a condition a-la Lipschitz:
|ξ[t2] − ξ[t1]| ≤ K|t2 − t1|. Such conditions guarantee that the signal does not get
wild between the sampling points, otherwise property checking based on these values
may become useless.

Under such assumptions every continuous signal given by a discrete-time representa-
tion, based on sufficiently-dense sampling, induces a well-defined Boolean signal ready
for MITL monitoring. When we don’t have direct connection with the simulator as in
the case with the AMT tool developed during this thesis, we replace the hypothesis of
sufficiently-dense sampling by interpolation. That is, when we have two consecutive
sampling points t1 < t2 such that one satisfies a predicate and the other does not, we use
linear interpolation to “compute” the value of the signal throughout the interval (t1, t2)
and detect the singular point t′ where the value of the predicate changes. The procedure
is illustrated in Figure 5.4

x ≥ 1

x > 1

x = 1

x′

x 1

1

Fig. 5.4. Transformation of a continuous signal to its Boolean abstraction via interpolation and numerical predicates.
The signal indicated by x′ was not sufficiently dense with respect to the predicates x ∼ 1 and hence two additional
sampling points were added.

5.3 Discussion

The standards of exactness and exhaustiveness as maintained in discrete verification can-
not and should not be exported to the continuous domain. While one can steer the analog
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simulator to make sufficient samplings around points of interest in the generated signals,
the absolute precision cannot be achieved. However, the simulator can be guided to de-
tect threshold crossings with some arbitrary tolerance, and even if we are not guaranteed
that all events are detected, we can compensate for that by using safety margins in the
predicates and properties. Note that the problem of precision achieved by analog simu-
lators is more general than in the context of property-based monitoring and concerns all
the validation techniques.
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Analog Monitoring Tool

In this chapter, we present the analog monitoring tool AMT that implements the al-
gorithms for monitoring timed and continuous behaviors described in Chapters 4 and 5.
AMT is a stand-alone tool with a graphical user interface written in C++ for GNU/Debian
Linux x86 machines. The user interface is based on the library QT1, while QWT2 was
used for visualizing results (plots for Boolean and continuous signals). Figure 6.1 shows
the general architecture of AMT. The user has to translate an informal specification (usu-
ally written in textual form) into an STL/PSL property, which is just syntactic sugar
around STL and will be presented in more detail section 6.1.1. The tool takes as inputs
the STL/PSL specification and a set of simulation traces. The specification is parsed and
transformed into a property checker that monitors whether the simulation traces satisfy
the property and outputs the result.

Fig. 6.1. Architecture of the AMT tool

The main window of the application is partitioned into five frames that allow the user
to manage STL/PSL properties and input signals, evaluate the correctness of the simula-
tion traces with respect to a specification and finally visualize the results. The property

1 http://www.trolltech.com
2 http://qwt.sourceforge.net
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edit frame contains a text editor for writing, importing and exporting STL/PSL specifica-
tions, which are then translated into an internal data structure based on the parse-tree of
the formula stored in the property list frame. An STL/PSL specification is imported into
the property evaluation frame for its monitoring with respect to a set of input simula-
tion traces, in either offline or incremental modes. The static import of the input traces is
done via the signal list frame. The imported input signals, as well as signals associated
to the subformulae of a specification can be visualized by the user from the signal plots
frame. A screenshot of the main window is shown in Figure 6.2.

Fig. 6.2. AMT main window

6.1 Property Management

The specifications in AMT are written in a simple editor with syntax highlighting for the
STL/PSL language described below. An STL/PSL specification is then transformed into
a structure adapted for the monitoring purpose, following the parse-tree of the formula.
The user can hold more than one specification that is ready for evaluation in the property
list frame.

6.1.1 Property Format

AMT tool supports the STL/PSL language, which provides syntactic sugar to STL and is
inspired by the PSL language with additional constructs intended to simplify the process
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of property specification. Each top-level STL/PSL property is declared as an assertion,
and a number of assertions can be grouped into a single logical unit in order to monitor
them simultaneously. We also add a definition directive which allows the user to declare
a formula and give it a name, and then refer to it as a variable within the assertions. The
syntax of STL/PSL is defined with the following production rules

varphi :==
vprop NAME {

{ define_directive } { assert_directive }
}

define_directive :==
define b:NAME := varphi
| define a:NAME := phi

assert_directive :==
NAME assert : varphi

where varphi corresponds to a temporal property and phi to an analog operation. The
set of operators that are included in STL/PSL is summarized in Tables 6.1 and 6.2.

6.1.2 Property Evaluation

The correctness of an STL/PSL specification with respect to input traces is monitored
through the property evaluation frame. The frame shows the set of assertions in a tree
view, following the parse structure of the formula. The user can choose between offline
and incremental evaluation of the specification.

In the offline case, the input signals are fetched from the signal list frame and the
assertions are checked with respect to them. If one or more signals are missing, the
monitoring procedure still tries to evaluate the property, but without guaranteeing a con-
clusive result.

For the incremental procedure, AMT acts as a server that waits for a connection from
the simulator. Once the connection is established, the simulator sends input segments
incrementally. The monitor alternates between reception of new input segments and in-
cremental evaluation of the assertions. The user can configure the following parameters
for the incremental evaluation:

• The user can set the TCP/IP port on which the tool and the simulator will communi-
cate

• timeout value that defines the period between two consecutive evaluations. Simu-
lations of analog circuit often have tens or even hundreds of thousands of samples
per signal. Hence, it is usually not wise to re-evaluate the property upon receiv-
ing every new individual sample. This option enables to accumulate input received
from the simulator between any two periods defined by the timeout value and ap-
ply the incremental checking procedure only at the instants when the timer expires.
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There is no pre-defined optimal value for the timeout, and it represents a trade-off
between the frequency of computations and the possibility of earlier detection of vi-
olation/satisfaction of a property

• The incremental procedure often provides better memory management that the offline
one, because the parts of the signals that have been fully determined and are not
needed by their super-formulae can be discarded. However, in some situations, one
would prefer to keep the entire signal for visualization and debugging purposes. The
tool allows the user to choose through the “keep history” option whether the entire
signal is kept, or only its segments that are needed for subsequent evaluations

There are three manners to end the incremental monitoring procedure:

1. All assertions become determined and AMT stops the evaluation closing the connec-
tion with the simulator;

2. The special termination packet is received from the simulator indicating the end of
the input traces. In that case the tool completes the evaluation of assertions with
respect to the finitary semantics of the specification language operators;

3. The user explicitly stops the procedure before the end of simulation via the GUI (re-
set button). In that case the connection with the simulator is closed and the evaluation
remains undetermined;

AMT shows visually the evaluation result of an assertion, choosing a different color
scheme for undetermined, satisfied and violated assertions. Each subformula of the spec-
ification has an associated signal with it, which can be visualized within the signal plots
frame. The visualization of the associated signals can be used for understanding why
an assertion holds/fails. During the incremental evaluation, if the “keep history” option
is enabled, all the signals within the signal plots frame are updated in real-time as new
results are computed.

6.2 Signal Management

The signals in AMT can be either real-valued or Boolean. Signals are input traces that
can be imported into the tool in an offline or incremental fashion. But signals are also
associated to each subformula of an STL/PSL specification. The user can visualize them
from the signal plots frame.

Offline Signal Input

Signals can be statically loaded from the signal list frame. AMT currently supports the
following input formats:

out The output format of the NANOSIM [Nan08] simulator. The current and voltage
signals are loaded, while logical signals are ignored.

vcd The subset of Value Change Dump [Iee01] file format including real and 2-valued
Boolean signals, commonly used for dumping simulations.
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raw The Berkeley Spice binary and ASCII file format for simulation dumps.
txt This is a simple Ascii format that can be dumped from the COSMOSSCOPE [Syn04]

wave calculator tool

The analog simulation traces are usually very large. A typical file generated by the
simulation of a complex mixed or analog circuit contains hundreds of signals, and often
exceeds hundreds of megabytes of data. AMT has been designed to be able to deal with
very large files and has been tested with simulation dumps exceeding 2GB of memory.
While a standard simulation file contains hundreds of signals, an STL/PSL specification
usually refers only to several. Hence, there is a need to efficiently navigate through the
list of available signals. For this purpose, AMT provides the option of multiple selection
of signals, as well as the selection of signals by a filter. For instance, in Figure 6.3,
the filter *data*1* selects all signals that have the pattern data withing their names
followed (not necesseraly immediately) by 1. Moreover, an additional window shows
the list of currently selected signals.

Fig. 6.3. AMT selection of signals

Incremental Signal Input

Signals can be imported incrementally to AMT, via a simple TCP/IP protocol. A simulator
that produces input signals needs to connect to AMT during the incremental evaluation
and send packets containing signal updates to the tool. The packets can be either Boolean
or continuous signal updates, or a special termination packet, informing the tool that the
simulation is over.
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STL/PSL STL Description

a:x x Analog variable
phi1 - phi2 φ1 − φ2

phi1 + phi2 φ1 + φ2

phi1 * phi2 φ1 ∗ φ2

phi1 - c φ1 − c Analog operators
phi1 + c φ1 + c
phi1 * c φ1 ∗ c
abs(phi) |φ|
phi <= c φ ≤ c
phi < c φ < c
phi >= c φ ≥ c Predicates
phi > c φ > c
phi == c φ = c
b:p p Boolean proposition
not varphi1 ¬ϕ
varphi1 or varphi2 ϕ1 ∨ ϕ2

varphi1 and varphi2 ϕ1 ∧ ϕ2 Boolean operators
varphi1 -> varphi2 ϕ1 → ϕ2

varphi1 <-> varphi2 ϕ1 ↔ ϕ2

varphi1 xor varphi2 ϕ1 �= ϕ2

eventually varphi � ϕ
eventually(a:b) varphi � (a,b) ϕ

eventually[a:b) varphi � [a,b) ϕ

eventually(a:b] varphi � (a,b] ϕ

eventually[a:b] varphi � [a,b] ϕ

eventually[>b] varphi � >b ϕ
eventually[>=b] varphi � ≥b ϕ
always varphi � ϕ
always(a:b) varphi � (a,b) ϕ
always[a:b) varphi � [a,b) ϕ
always(a:b] varphi � (a,b] ϕ
always[a:b] varphi � [a,b] ϕ Future temporal operators
always[>b] varphi � >b ϕ
always[>=b] varphi � ≥b ϕ
varphi1 until varphi2 ϕ1Uϕ2

varphi1 until(a:b) varphi2 ϕ1U (a,b)ϕ2

varphi1 until[a:b) varphi2 ϕ1U [a,b)ϕ2

varphi1 until(a:b] varphi2 ϕ1U (a,b]ϕ2

varphi1 until[a:b] varphi2 ϕ1U [a,b]ϕ2

varphi1 until[>b] varphi2 ϕ1U>bϕ2

varphi1 until[>=b] varphi2 ϕ1U≥bϕ2

Table 6.1. STL/PSL operators
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STL/PSL STL Description

once varphi � ϕ
once(a:b) varphi � (a,b) ϕ

once[a:b) varphi � [a,b) ϕ

once(a:b] varphi � (a,b] ϕ

once[a:b] varphi � [a,b] ϕ

once[>b] varphi � >b ϕ
once[>=b] varphi � ≥b ϕ
historically varphi � ϕ
historically(a:b) varphi � (a,b) ϕ
historically[a:b) varphi � [a,b) ϕ
historically(a:b] varphi � (a,b] ϕ
historically[a:b] varphi � [a,b] ϕ Past temporal
historically[>b] varphi � >b ϕ operators
historically[>=b] varphi � ≥b ϕ
varphi1 since varphi2 ϕ1Sϕ2

varphi1 since(a:b) varphi2 ϕ1S (a,b)ϕ2

varphi1 until[a:b) varphi2 ϕ1S [a,b)ϕ2

varphi1 until(a:b] varphi2 ϕ1S (a,b]ϕ2

varphi1 until[a:b] varphi2 ϕ1S [a,b]ϕ2

varphi1 until[>b] varphi2 ϕ1S>bϕ2

varphi1 until[>=b] varphi2 ϕ1S≥bϕ2

rise(varphi) ↑ ϕ Events
fall(varphi) ↓ ϕ
distance(phi1,phi2,k) |φ1 − φ2| ≤ k
distance(phi1,phi2,k,t,T) (|φ1 − φ2| > k) →

� [0,t] � [0,T−t] |φ1 − φ2| ≤ k Template properties
distance(varphi1,varphi2,t,T) (¬(ϕ1 ↔ ϕ2)) →

� [0,t] � [0,T−t](ϕ1 ↔ ϕ2)

Table 6.2. More STL/PSL operators
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Case Studies

In this chapter we present two case studies intended to evaluate the usefulness of our
property-based approach for checking the correctness of analog and mixed-signal simu-
lation traces. The first case study is described in Section 7.1 and involves checking prop-
erties of a FLASH memory with the simulation traces provided by ST Microelectronics.
The second case study is presented in Section 7.2 and involves monitoring specifications
of a DDR2 memory interface component from Rambus.

The properties used in the FLASH memory case study were provided by ST Micro-
electonics analog designers in form of informal specifications written in English lan-
guage. These properties were translated to STL/PSL matching the original requirements
from the designers. This process took several iterations involving discussions on the ex-
act meaning of the specifications. The main objective of this case study is the evaluation
of the AMT tool.

The DDR2 memory interface case study concentrates rather on the specification of
complex timing properties from the official specification document [Jed06] in STL/PSL.
The objective is to evaluate the expressiveness of STL/PSL with respect to a realistic
example used in the analog industry and identify potential weaknesses of the approach,
providing useful information about new features that could be considered in the future.

7.1 FLASH Memory Case Study

The subject of the case study is the “Tricky” technology FLASH memory test chip in
0.13μs process developed in ST Microelectronics. The FLASH memory presents a good
candidate for the analog case study, in that it is a digital system whose logical behavior
is implemented at the analog level. Hence, it presents a direct link between the analog
and the digital worlds.

For monitoring, the system under test is seen as a black box, and we do not need to
know further details about the underneath chip architecture. The memory cell can be in
one of the programming, reading or erasing modes. The correct functioning of the chip
at the analog level in a given mode is determined by the behavior of a number of signals
extracted during the simulation:
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bl: matrix bit line terminal pw: matrix p-well terminal
wl: matrix word line s: matrix source terminal
vt: threshold voltage of cell id: drain current of cell

The memory cell was simulated in the programming and the erasing modes for the
case study, with the simulation time being 5000 us and 30000 us respectively. Four
STL/PSL properties were written to describe the correct behavior of the cell in the pro-
gramming mode and one property in the erasing mode. The AMT monitoring was done
on a Pentium 4 HT 2.4GHz machine with 2Gb of memory. All the properties were found
to be correct with respect to the input traces.

7.1.1 Programming Mode

The first property requires that whenever the vt signal crosses the threshold of 5, both
vt and id have to remain continuously above 4.5 and 5 · 10−6 respectively, until id falls
below 5e− 6 (see Figure 7.1 for the resulting signals after the evaluation).

The STL/PSL specification for this property is:

vprop programming1 {

pgm1 assert:
always (rise(a:vt>5) ->

((abs (a:id) > 5e-6) and (a:vt>4.5))
until (fall(a:id>5e-6)));

}
The second property is split into two assertions. The first assertion pgm1 requires

that whenever the wordline wl is below 0.1 but will jump to above 3.8 within 15μs and
the cell is not in the programming mode (translated by the absolute value of the source
current id being below 30 · 10−6), the bitline signal bl should cross 3.8 before the end of
the simulation, and remain above that threshold continuously until the word line wl goes
above 6, which should happen within 300 and 1500μs from the bl crossing. The results
of the evaluation are shown in Figure 7.2.

The second assertion pgm2 specifies that whenever the programming procedure starts
(translated by the crossing of 3.8 threshold by the bitline signal bl), bitline should not
fall below that threshold until the signal vt becomes higher than 5 and the absolute value
of the source current id goes below 5 · 10−6. Figure 7.3 shows the results of the pgm2
assertion of the property.

We use the following STL/PSL specification to express the second STL/PSL property:

vprop programming2 {

define b:not_pgm :=
rise((a:wl <= 0.1) and eventually[0:15]

(a:wl >= 3.8 and a:id >= 30e-6));
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pgm1 assert:
always (b:not_pgm ->

eventually (rise(a:bl>=3.8) and
((a:bl>=3.8) until[300:1500] (a:wl >= 6))));

pgm2 assert:
always (rise(a:bl >= 3.8) ->

(not (a:bl <= 0.1) until (a:vt >=5 and
abs(a:id) <= 5e-6)));

}

Erasing Mode

We first define the erasing condition that holds whenever the wordline signal wl is lower
than −6 and p-well pw is above 5. The main property states that whenever an erasing
condition holds, the pointwise distance between the source s and p-well pw voltages has
to be smaller than 0.1 and the value of pw should not be greater than 0.83 from the value
of bitline bl.

The STL/PSL specification of the property is as follows:

vprop erasing {
define b:erasing_cond :=
a:wl <= -6 and a:pw > 5;

erasing assert:
always (b:erasing_cond ->

(abs (a:s-a:pw) <= 0.1)
and (a:bl-a:pw)>-0.83));

}
Figure 7.4 shows some of the representative signals of the erasing property.

P-Well Driving During Programming

This property requires that whenever both bitline bl and wordline wl signals are above
2.5 threshold, the p-well signal pw has to be below −0.5. The evaluation results for the
p-well property are shown in Figure 7.5.

The p-well property is expressed in STL/PSL using the following specification:

vprop pwell {
p_well assert:
always ((a:bl>2.5 and a:wl>2.5) ->

a:pw<=-0.5);
}
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Fig. 7.1. Evaluation results for the programming1 property

7.1.2 Tool Performance

The time and space requirements of AMT were studied with both offline and incremental
algorithms. The complexity of the algorithm used in AMT is shown to be O(k · m)
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Fig. 7.2. Evaluation results for the programming2 property (assertion pgm1)

in [MN04] where k is the number of sub-formulae and m is the size of the input signal
(number of singular points and open segments).

Table 7.1 shows the size of the input signals (number of singular points and seg-
ments). We can see that the erasing mode simulation generated 10 times larger inputs
from the programming mode simulation. Table 7.2 shows the evaluation results for the
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pgm sim erase sim
name input size input size

wl 34829 283624
pw 25478 283037
s 33433 282507
bl 32471 139511
id 375 n/a

Table 7.1. Input Size

property time (s) size

programming1 0.14 99715
programming2 0.42 405907
p-well 0.12 89071
erasing 2.35 2968578

Table 7.2. Offline algorithm evaluation

offline procedure of the tool. Monitoring the properties for the programming mode re-
quired less than half a second. Only the erasing property took more than 2 seconds,
as it was tested against a larger simulation trace. We can also see that the evaluation
time is linear in the size of signals generated by the procedure and can deduce that the
procedure evaluates about 1,000,000 intervals per second.

Offline Incremental
Property t = total size m = max active size m/t * 100

programming1 99715 65700 65.9
programming2 594709 242528 40.8
p-well 89071 8 0.01

Table 7.3. Offline/incremental space requirement comparison

The execution times of the incremental algorithm are less meaningful because the
procedure works in parallel with the simulator and the evaluation time depends on the
frequency of the incoming input. In fact, a major advantage of the incremental proce-
dure is the ability to detect property violation in the middle of the simulation and save
simulation time. Another advantage of the incremental algorithm is its reduced space
requirement as we can discard parts of the simulation after they have been fully used.
Table 7.3 compares the memory consumptions of the offline and incremental procedures.
For the former we take the total number of signal segments generated by the tool while
for the latter we take the maximal number of signal segments kept simultaneously in
memory. We can see that this ratio varies a lot from one property to another, going from
0.01% up to almost 70%. The general observation is that pointwise operators require
considerably less memory in the incremental mode, while properties involving the nest-
ing of untimed temporal properties often fail to discard their inputs until the end of the
simulation.
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7.2 DDR2 Case Study

The subject of this case study is a DDR2 memory interface developed at Rambus. DDR2
presents a number of features that make it a good candidate for property-based mon-
itoring approach. The memory interface acts as a bus between the memory and other
components in the circuit and exhibits the communication of digital data implemented
at the analog level. Hence, the correct functioning of a DDR2 memory interface largely
depends on the appropriate timing of different signals within the circuit. In section 7.2.1,
we describe an alignment property as a typical DDR2 property and different steps needed
for translating it in an STL/PSL specification. The experimental results are presented
in 7.2.3.

7.2.1 Alignment Between Data and Data Strobe Signals

In DDR2, the data access is controlled by a single-ended or differential data strobe signal,
which acts as an asynchronous clock. The official JEDEC DDR2 specification is defined
in [Jed06] and describes, amongst others, a number of properties that involve timing
relationship between events that happen in the data and data strobe signals. In this case
study, we are particularly interested in a property that defines the correct alignment be-
tween these two signals. The case study considers the specification parameters for the
single-ended data strobe DDR2-400 memory interface, which is part of the JEDEC stan-
dard.

The DDR2 specification contains a number of relevant thresholds, shown in Table 7.4.
The temporal relationship between data signal DQ and data strobe signal DQS is de-
fined with respect to the crossings of these thresholds.

Threshold Value (V)
VDDQ 1.8
VIH(AC)min 1.25
VIH(DC)min 1.025
VREF (DC) 0.9
VIL(DC)max 0.775
VIL(AC)max 0.65

Table 7.4. Threshold values for DQ and DQS

The general definition of the alignment of data DQ and data strobe DQS signals is
shown in Figure 7.6. The proper alignment between the two signals is determined by
two values, the setup time tDS and hold time tDH . The setup and hold times of DQ
and DQS are checked both on their falling and rising edges, but we only consider, for
the sake of simplicity, the specification of the property for the setup time at the falling
edge of the signals (the other cases are similar and symmetric).

Informally, the setup property at the falling edge requires that wheneverDQS crosses
the VIH(DC)min threshold from above, the previous crossing of VIL(AC)max by the signal
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DQ from above should precede it by at least a period of time of tDS. This property is
formalized in STL/PSL as follows

define b:dqs above vihdcmin := (a:DQS >= 1.025);
define b:dqs above vilacmax := (a:DQ >= 0.65);

always (fall(b:dqs above vihdcmin)
-> historically[0:tDS] not fall(b:dq above vilacmax));

Unfortunately the above property, naturally expressed in STL/PSL, does not present
the full reality. In fact, setup time tDS is not a constant value, but rather varies according
to the slew rates (slopes) of DQ and DQS signals. For example, when DQ and DQS
fall more sharply, the required tDS increases. Setup time tDS is equal to the sum of a
(constant) base term tDS(base) and a (variable) correction term ΔtDS

tDS = tDS(base) +ΔtDS

The setup base term tDS(base) is equal to 150ps for the single-ended DDR2-400.
The correction term ΔtDS is a value that depends directly on slew rates of DQ and
DQS, with the setup slew rate of a falling signal being defined as

sr =
VREF (DC) − VIL(AC)max

ΔTF
(7.1)

where ΔTF is the time that the signal spends between VREF (DC) and VIL(AC)max . As we
can see, the falling setup slew rate sr of a signal can be deduced from ΔTF .
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In order to extract the setup correction term ΔtDS from the actual slew rates of DQ
and DQS (srDQ and srDQS), we can use a specification table from [Jed06], partially
reproduced in Table 7.5. According to the JEDEC specification, ΔtDS corresponding
to the slew rates not listed in Table 7.5 should be linearly interpolated. Consequently,
we can apply the following sequence of computations in order to determine the correct
value of tDS at any time

ΔTF → setup falling slew rate → correction term → tDS

DQS Single-Ended Slew Rate tDS
2V/ns 1.5V/ns 1V/ns 0.9V/ns

DQ
Single-
Ended
Slew Rate
tDS

2V/ns 188 167 125
1.5V/ns 146 125 83 81

1V/ns 63 42 0 -2
0.9V/ns 31 -11 13

Table 7.5. Correction terms for setup time

To summarize, tDS is a value that varies during the simulation as a function of slew
rates of DQ and DQS (tDS = f(srDQ, srDQS)). The problem is that STL/PSL cannot
capture parameterized time bounds and therefore we have to use approximation in order
to express a similar alignment property that still preserves some guarantees. We can
subdivide the domain of slew rates (say R = [srmin, srmax]) into n regions R1, . . . , Rn.
For each pair (Ri, Rj) of DQ/DQS slew rate regions, we assign a separate constant
setup time tDSij . Instead of one property, we will have n× n properties of the form:
“whenever DQS crosses the VIH(DC)min threshold from above,DQ slew rate srDQ is in
Ri and DQS slew rate srDQS is in Rj , the previous crossing of VIL(AC)max by the signal
DQ from above should precede it by at least a period of time of tDSij .”
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The proper constant value for tDSij for a pair of slew rate regions (Ri, Rj) can be
chosen in two different manners. The first solution consists in computing tDS ij from
the maximum correction term for the DQ and DQS slew rates that are in the Ri and Rj

regions, respectively. This corresponds to an over-approximation of the original speci-
fication, and if this property is violated, we don’t know if it is a real failure or a false
alarm. On the other hand, the satisfaction of the over-approximated property implies
that the original one holds too. Conversely, the computation of tDSij from the mini-
mum correction term defined for the slew rates in the pair of regions (Ri, Rj) yields
to an under-approximation of the original property. If the new property is falsified, we
know that it corresponds to a real violation, while if it passes, we cannot say whether we
are indeed safe.

As an example, consider the highlighted range of Table 7.5, which we call the “top-
left” range, where the setup falling slew rates of DQ and DQS are between 1 and
2 V/ns. For the conservative approximation of tDS, with slew rates falling in that
range, we choose the worst-case ΔtDS as the correction term, that is 188ps. Hence,
the approximated falling setup time tDSTL for all DQ and DQS with falling slew rates
between 1 and 2V/ns would be equal to tDSTL = 150 + 188 = 338ps.

In order to determine the falling slew rates of DQ and DQS, we need to detect
how much time these signals remain in their falling slew region (between VREF (DC) and
VIL(AC)maxcrossing VREF (DC) from above). This can be done with the following formula

define b:dq in fsr :=
((a:DQ <= 0.9) and (a:DQ >= 0.65))
since (a:DQ >= 0.9);

define b:dqs in fsr :=
((a:DQS <= 0.9) and (a:DQS >= 0.65))
since (a:DQS >= 0.9)

which holds if the signal is in the falling slew region, as shown in Figure 7.8.
Note that according to equation (1), DQ and DQS have their slew rates in the range

between 1 and 2V/ns if their respectiveΔTF is between 125 and 250ps. Moreover, the
value of tDS is determined at the crossing of VREF (DC) by DQS from above (point ref
in Figure 7.9) with respect to the previous falling setup slew rate of DQ and the next
falling setup slew rate of DQS, as shown in Figure 7.9. Hence, the falling slew rates of
DQ and DQS are in the range between 1 and 2V/ns if the following formulae hold

define b:dq slew rate in 1 2 :=
not b:dq in fsr since
(b:dq in fsr since[125:250) (rise(b:dq in fsr)));

define b:dqs slew rate in 1 2 :=
not b:dqs in fsr until
(b:dqs in fsr until[125:250) (fall(b:dqs in fsr)));
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define b:top left region :=
b:dq slew rate in 1 2 and

b:dqs slew rate in 1 2;

Finally, the main property for the falling setup time, provided that DQ and DQS
falling slew rates are in the range between 1 and 2V/ns, is expressed as
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define b:dqs above vihdcmin := (a:DQS >= 1.025);
define b:dqs above vilacmax := (a:DQ >= 0.65);

always ((fall(b:dqs above vihdcmin)
and b:top left region)
-> historically[0:338] not fall(b:dq above vilacmax));

with similar properties that have to be written for each range of DQ and DQS slew
rates.

7.2.2 Methodological Evaluation

Property-based monitoring of analog and mixed-signal behaviors is a novel approach
and it is worth discussing some methodological aspects related to this case study. The
process started by investigating the validation methods that are currently used by ana-
log designers and understanding what are the actual difficulties that they encounter in
checking the correctness of their designs. The next step required to identify the type of
application whose validation is not fully covered by existing tools and that could benefit
from assertion-based monitoring techniques, which led us to consider the DDR2 mem-
ory interface. With the help of analog designers we were able to study in detail different
properties that are defined in the official DDR2 specification, and consequently under-
stand how to translate them into STL/PSL assertions. This preparation process of the case
study is difficult to quantify although it clearly took orders of magnitude more time than
the actual writing and evaluation of the assertions that describe DDR2 properties. De-
spite the length of this pre-processing, it was a crucial step in understanding relevance,
strengths and weaknesses of the property-based analog monitoring framework.

7.2.3 Experimental Evaluation

In this case study, we considered a single-ended DDR2-1066 memory interface, which
is not yet a JEDEC standard. Hence the exact specification parameters could not be ob-
tained for that particular version of DDR2, and we used instead the official specification
parameters for the single-ended DDR2-400 presented in Section 7.2.1, assuming that
these parameters would be conservative enough. The simulation traces contained about
180,000 samples for each signal. We used the offline monitoring for this case study
because the DDR2 simulation traces were already available.

The translation of the alignment property into a set of STL/PSL assertions started by
splitting the main property into 4 different ranges, taking an over-approximated tDS
value for each slew rate range. The evaluation of each property took about 7 seconds.
Since some of the over-approximating properties were shown to be false, we decom-
posed them further in 3 iterations into a total of 7 properties before being able to show
that the simulation traces satisfy the specification. The properties were refined manually
and this proved to be a tedious task.
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7.3 Conclusions

The FLASH and DDR2 case studies present, to the best of our knowledge, first attempts
to apply property-based monitoring framework to a realistic analog industrial designs.
The importance of these case studies lies in the fact that they exposed the relevance and
the level of maturity of assertion-based methodology in the context of analog validation.

The case studies showed that an important class of non-trivial properties describe
event-based timing relationships between analog signals, which can be in general natu-
rally expressed in a specification language such as STL/PSL. Since assertion checking re-
mains a “lightweight” simulation-based validation technique, it fits well with the current
practice of analog designers. We believe that this methodology can provide an extra set
of useful checks on simulation traces, which are already generated by the designers for
their own purposes. Moreover, in the analog domain it often takes orders of magnitude
longer to produce simulation traces than to check assertions. Consequently, the over-
head induced by property monitors with respect to simulation time remains low, while
it can provide another level of confidence in the correct functioning of the underlying
design. In our opinion, the general idea of simulation-based checking of properties to
find potential bugs may be successfully adapted from digital to analog and mixed-signal
domain and integrated into the analog validation flow in a reasonably-near future.

The DDR2 case study also revealed some weaknesses in the current state of analog
property checking, providing useful guidelines for further development and optimization
of this methodology. For instance, the timing relationship between analog signals can
be more complex than what STL/PSL (and MITL) can express. This problem has been
exposed by the DDR2 data vs. data strobe alignment property. We had to use approximate
techniques in order to show that the alignment between data and data strobe signals
was correct. Consequently, the resulting specification turned out to be quite complex
to write. Another difficulty is related to the fact that STL/PSL is based on a temporal
logic, a formalism that remains esoteric to analog designers1. Consequently, we should
consider identifying some common properties encountered by analog designers, and use
parameterized templates to “hide out” the temporal logic details.

We present here some directions for future work based on different observations made
during the evaluation of the case studies:

1. Parameterized time bounds: the DDR2 case study showed that STL/PSL temporal
operators with constant time bounds may not be sufficient to describe some realistic
relations between analog signals. The temporal relations between events in input
signals require more flexibility, such as time bounds that are functions of parameters
that vary during the simulation.

2. Tighter integration with simulators: property-based analog checking approach
would be more appealing to designers if the specification and monitoring process
were embedded in the standard design languages and simulators. In the digital world,
the assertions are often integrated into Verilog or VHDL code and are inserted at the

1 It might be the case that the verification task will be carried out by digital designers at the system integration
phase, which will make the “cultural” problems less severe. However, this observation opens the question of what
properties are most beneficial to integration within the property-based monitoring approach.
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points where the property should be checked. A tighter integration of analog and
mixed signal assertions into the current design flow would consist of the following
steps:

a) Standardization of the language, a step that could convince EDA companies
to consider integrating assertion-based AMS validation methodology into their
tools, and would encourage designers to use such assertions in their designs.
STL/PSL follows this direction as it extends the existing standard PSL constructs.
Due to the importance of the SVA specification language in the digital domain,
we would also need to consider analog and mixed-signal extensions of SVA.

b) Integration of assertions into VERILOG-AMS and VHDL-AMS code. Designers
prefer inserting assertions at the points in their design which they want to check,
than having a separate tool rather used solely for specification and evaluation
of the properties. This tight integration would bring other benefits, such as the
possibility to use existing VERILOG/VHDL-AMS constructs within the assertions
(better detection of threshold crossing using @cross, express richer properties
using derivatives and integrals, etc.). Finally, property monitors would be embed-
ded into the simulation process, and could stop it when an assertion is violated
and hence save simulation time.

3. Property-based parameter extraction: the interaction with analog designers re-
vealed that the verification with respect to the existing specification is not the only
interesting question that can be asked about an analog design. In fact, the speci-
fication parameters such as timing relationship between different signals are often
not known in advance. Such parameters are rather extracted from the simulation
traces, and the specification is completed only after simulating a model of the design.
We would like to express properties without specifying the time bounds, for exam-
ple always (rise(b:p) -> eventually![?] b:q), asking the follow-
ing question: given a set of simulation traces, what are the minimum and maximum
time bounds, if any, such that the the property is satisfied. In formal methods com-
munity, this problem is known as model measuring, and has been considered in the
context of parametric temporal logics in [AELP99].

4. Integration with test generation: an interesting direction of research would be to
combine the property-based AMS checking approach with techniques for automatic
generation of simulation traces, such as those studied in [ND07a, ND07b]. Such a
combination could make the analog validation process more automatic.

5. More comprehensive examples: the case studies carried out in this thesis pointed
out the classes of analog properties that are natural to express in a specification lan-
guage like STL/PSL, but more importantly helped us to identify possible extensions of
the language that would increase its expressiveness and make the specification pro-
cess easier to the analog designer. Applying the property-based validation method-
ology to other industrial analog and mixed-signal design examples would provide
additional useful information about the robustness of this approach and guide our
future work on extending the specification language.
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From MITL to Timed Automata

In this section we show how to build for every MITL formula ϕ a temporal tester, a
timed signal transducer which computes the characteristic function of ϕ. We assume
that that the formula has been rewritten to a form which uses only the 6 operators of
Proposition 3.3.

8.1 Temporal Testers for pSq and pUq

Proposition 8.1. One can construct a temporal tester that realizes χpS q.

The construction of the tester for pSq is similar to the untimed case. The tester reads
the input signal w and decides at every time instant t the output value u depending on
the history of the observed values of p and q. We have shown in Lemma 3.4 that pSq
is left-continuous, meaning that the satisfaction of the operator at any singular point
of the signal cannot differ from its satisfaction during the preceding open segment. In
Lemma 3.6, we provided a number of rules that determine the value of u in an open
segment based on the values of p and q in that segment and the preceding singular point,
summarized in Table 8.1. The combination of these two results gives direct guidelines
for constructing the tester for pSq.

Case ẇi wi ui
1 ∗ p 0
2 ∗ pq 1
3a pq 0
3b q pq 1
3c pq u̇i

Table 8.1. Rules of Lemma 3.6 relating ui with wi and ẇi for u = χpS q(w)

The temporal tester for pSq is shown in Figure 8.1 and is constructed as follows.
Following Lemma 3.4, the output at time 0 is u irrespective of the initial input values.
Lemma 3.4 also requires that the output at any singular point has to agree with the output
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pq/u

pq/u pq/u

p/u

pq/uq/u

¬(pq)/u

q/u

p/u

/u /u

pq/u

/u

q/u q/u

/u /u

q∨
pq/u pq/u

pq∨

/u

s1

s0 s2

s3

su su

Fig. 8.1. Temporal tester for pSq. The states are grouped, according to their outputs into su = {s0, s1} and su =
{s2, s3}.

during the preceding open segment. This fact is realized in the tester by having the output
labels on the transitions agreeing with the labels in the source locations. During an open
segment (wi)ri of w, the tester reads the inputs and generates the corresponding output
segments (ui)ri according to the rules in Lemma 3.6, which relate the output value ui
the input values wi and ẇi. When an open segment p is read, the tester is in location s2

and outputs u (case 1). The output value does not depend on the inputs at the previous
singular point, hence the ingoing transitions can have any input label. The only exception
is the self-loop s2 → s2 which is labeled by p in order to avoid a transition labeled by
p taking place at a singular point of the signal. Similarly, in location s0, the segment
labeled by pq is read and the output is u (case 2) and the incoming transitions can have
any input label (again, except for the self-looping transition). When considering case 3,
where a pq segment is read, the situation is more involved, since the output value can be
either u (location s1) or u (location s3) depending on the values of the input preceding the
pq open segment. In the case that the singular point preceding the pq segment was labeled
by pq (case 3-(a)), the output during the segment is u (transitions s2 → s3, s3 → s3 and
su → s3). If q was true at the singular point prior to the pq segment (case 3-(b)), the
tester outputs u (transitions s0 → s1, s1 → s1 and su → s1). Finally, if the value read at
the singular point preceding the pq segment was also pq (case 3-(c)), the output value has
to agree with the output value at that singular point (transitions s0 → s1 and s2 → s3).
In other words there are two pq states that differ in their history. Location s1 is entered
via histories that make pSq satisfied while s3 is entered via histories that falsify it. From
this follows that all runs of the automaton satisfy Lemma 3.4 and Lemma 3.6 and thus



8.1 Temporal Testers for pS q and pU q 99

are consistent with the semantics of since. Observing that the automaton is non-blocking
and every input has an infinite run, we can conclude the proof of Proposition 8.1. ��
Proposition 8.2. One can construct a temporal tester that realizes χpU q.

The tester for pU q is similar to the one of pSq. We have shown in Lemma 3.5 that
pU q is right-continuous, meaning that it is satisfied at some singular point t iff it is also
satisfied in its right neighborhood. In Lemma 3.7 we provided a set of rules, summarized
in Table 8.1 that relate the value of u in an open segment to the values of p and q in
that segment and the subsequent singular point. The combination of these two results
provides rules for the tester construction.

pq/u

pq/u pq/u

p/u

pq/uq/u

¬(pq)/u

/u

q/u

/u /u

p/u

/u /u

/u

q∨
pq/u

s0 s2

susu

s1 pq/u s3

pq∨
pq/u

Fig. 8.2. Temporal tester for pU q

Case ui wi ẇi+1

1 0 p ∗
2 1 pq ∗
3a 0 pq
3b 1 pq q
3c u̇i+1 pq

Table 8.2. Rules of Lemma 3.7 relating ui with wi and ẇi+1 for u = χpU q(w)

The temporal tester for pU q, shown in Figure 8.2, is symmetric to the one of pSq
and is obtained from it by simply inverting the transition arrows. Unlike its past counter-
part which reads inputs, and determines the output according to the observed history, the
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tester for pU q predicts the output non-deterministically, and the predictions have to be
confirmed by future inputs (wrong predictions are aborted). Lemma 3.5 requires that at
all singular points, the prediction of the output value has to agree with the output value
in the next open segment. This fact is realized in the tester by letting output labels on
transitions be identical to the labels at the target location. During open segments of w,
the tester generates outputs which have to be confirmed by future inputs according to
the rules of Lemma 3.7. When an open p segment is observed, the tester is at location
s2 and the output is u (case 1). The prediction is immediately confirmed and is indepen-
dent of the input value at the subsequent singular point. Hence, the outgoing transitions,
except for the self-loop, can have any input label. Similarly, when an open pq segment
is observed (location s0), the output is u and the outgoing transitions, except for the
self-loop, can have any value. Finally, when an open pq segment is read, the situation
is more involved, as the tester can make two different predictions non-deterministically,
generating two separate runs, one of which will be aborted later. This situation is real-
ized by having two separate locations s1 and s3, both labeled by pq, and predicting the
outputs u and u, respectively. After observing a pq segment there are three possibilities:
1) the prediction u (location s3) is followed by a singular point labeled by pq (case 3-(a)
of Lemma 3.7)). This situation is realized in the tester by location s3 having outgoing
transitions labeled by pq (transitions s3 → s3, s3 → s2 and s3 → su); 2) Similarly, the
tester is at location s1 predicting u and the segment pq is followed by a q-labeled singular
point (see case 3-(b) of Lemma 3.7) and the tester takes one of the q-labeled transitions
s1 → s1, s1 → s0 or s1 → su; 3) finally, the open segment pq is followed by a singular
point labeled by pq. In this case, neither prediction can be immediately confirmed or
aborted, and more input has to be read to reject the wrong prediction. However, the pre-
diction made during the open pq segment has to agree with the prediction at the adjacent
pq singular point (case 3-(c) of Lemma 3.7), so if the tester was in location s1 predicting
u, transition s1 → s0 is taken and if the tester was in location s3 predicting u, transition
s3 → s2 is taken. The only input signals which lead to two infinite runs are those that
end with an infinite pq segment and they violate pU q. To reject the wrong run which
predicted u all along the segment, we forbid the tester to remain forever in s1 without
taking any transition by setting all transitions and all locations except s1 as accepting. It
is not hard to see that the tester is non-blocking and that every run satisfies Lemma 3.5
and Lemma 3.7 and hence it realizes the semantics of until, which concludes the proof
of Proposition 8.2. ��

8.2 Temporal Testers for � (0,a) p and � (0,a) p

Proposition 8.3. One can construct a temporal tester that realizes χ�
(0,a)

p.

Intuitively, the temporal tester for � (0,a) p should monitor the truth value of p and
memorize, using clocks, the times that this value has changed. As we shall see, a single

clock is sufficient for this tester. Let u = χ�
(0,a)

p(w). When p holds in w for some
interval I with endpoints ti and tj , then u = 1 in the open interval I⊕(0, a) = (ti, tj+a)
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regardless of whether I is of the form (ti, tj), (ti, tj ], [ti, tj) or [ti, tj ] (see Table 3.1). In
other words, the value of u at ti and tj + a does not depend on the value of p at ti and
tj , respectively.

Throughout open segments where p holds, u is true (for every t in the segment, there
is t′ < t in the same segment where p is true). Suppose now that p becomes false at t1
until t2. There are three possibilities depending on the duration t2 − t1 of the p segment:

1. t2 − t1 < a (this includes, of course, the case where t1 = t2 is a singular point). In
that case, for any t between t1 and t2, there is t′ ∈ t� (0, a) which is smaller or equal
to t1 and where p holds, hence the value of u remains true throughout the p segment.
This case is illustrated in Figure 8.3-(a).

2. t2−t1 = a and hence t−a < t1 for any t ∈ (t1, t2), and there is t′ ∈ (t−a, t1] where p
holds and the property is satisfied for all such t. At time t2, the “previous” time where
p was true is at t2 − a = t1 (or its left neighborhood), while the operator requires
such existence within (t2 − a, t2), hence the property is violated at t2. Consequently,
u is true in (t1, t2) and false at t2. This case is illustrated in Figure 8.3-(b).

3. t2 − t1 > a. Then u is true throughout (t1, t1 + a) (see the previous observation) and
false in [t1 + a, t2] because for any t ∈ [t1 + a, t2], t � (0, a) is within (t1, t2) and p
is false throughout that interval (see Figure 8.3-(c)).

t1 t2 t1 + a

p

u

· · ·

· · ·

(a)

t1
t1 + a

t2

p

u
· · ·

· · ·

(b)

t1 t1 + a t2

p

u

· · ·

· · ·

(c)

Fig. 8.3. Signal where p does not hold between t1 and t2 (a) t2 − t1 < a, (b) t2 − t1 = a and (c) t2 − t1 > a

The temporal tester depicted in Figure 8.4 observes the behavior w and moves
through locations {s0, s1, s2} generating the output (see Figure 8.5 for an illustration
of a run). At time 0, the output is trivially u. In location s0, the tester reads a p-segment
and outputs u. Singular occurrences of p (transition s0 → s0) are ignored (the output
at these singular points remains u). When the input behavior w switches to p the tester
moves from s0 to s1 and the clock x is reset (as we have seen, the tester does not distin-
guish whether the input was still p or already p at the moment of the transition, hence
s0 → s1 is labeled by any letter). The clock x measures the distance from the latest
occurrence of p and as long as its value is smaller than a, the output remains u. From lo-
cation s1, there are three possible continuations, that correspond exactly to the 3 possible
relations between the duration of p and a:
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Fig. 8.4. The temporal tester for �
(0,a)
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1. p occurs before x reaches a meaning that the segment of p had the duration strictly
smaller than a (transitions s1 → s1 and s1 → s0 with guard x < a). Such “short”
periods of p are ignored by the tester, and the output remains continuously u.

2. p occurs when x reaches a. This situation is realized by transitions s1 → s0 and
s1 → s1 with guard x = a. The output at the transition is u.

3. x reaches a while p continues to be false, the tester moves to s2. The output label of
the transition is u. In location s2 the tester outputs u since the value of x is strictly
greater than a, meaning that the previous occurrence of p happened more than a time
ago. If the tester observes p either as a singular point or as a segment, transition
s2 → s1 or s2 → s1 are taken, respectively. The output label of the transition is u.

Note that independently of the input values, the output signal u = u̇0 · (u0)r0 · u̇1 ·
(u1)r1 · · · is of the form where all u̇i = 0, that is all the intervals where u is false are
closed and intervals where u is true are open (following the observation that I⊕ (0, a) is
an open interval regardless of the form of I), and all the positive open segments (ui)ri =
1 have the minimum duration ri ≥ a (following Lemma 3.2).

Proposition 8.4. One can construct a temporal tester that realizes χ� (0,a) p.

The temporal tester for � (0,a) p is similar to the one of � (0,a) p and is shown in Fig-
ure 8.7. Unlike its past counterpart, it generates the output signal non-deterministically
and checks whether the actual input confirms such predictions, aborting the wrong ones.
Similarly to the past case, whenever p is true during some interval I , which can be of
any of the type (ti, tj), (ti, tj], [ti, tj) or [ti, tj ], u is true throughout the open interval
I � (0, a) = (ti − a, tj) (see Table 3.1). When p becomes false, there are three differ-
ent cases concerning the duration of the p interval I with endpoints t1 and t2. To avoid
repetition, we just illustrate these cases in Figure 8.6.

When an open segment labeled by p is observed, the tester is in location s0 and the
output is u throughout that segment. This prediction is immediately confirmed because
for any t in the open p-segment there is t′ > t in the same segment such that p holds at t′.
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Fig. 8.5. A behavior of the temporal tester for �
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Fig. 8.6. Signal p that does not hold between t1 and t2; (a) t2 − t1 < a (b) t2 − t1 = a and (c) t2 − t1 > a

Singular occurrences of p are ignored (s0 → s0). When the input behavior w becomes
false at t1 until t2, the tester can make one of the three different predictions, which
correspond to the 3 possible relations between t2 − t1 and a:

1. Predict that the duration t2−t1 of the p segment will be smaller than a. This situation
is realized by location s2, which is entered after the last occurrence of p. At the in-
coming transitions, a clock x which measures the distance between two consecutive
occurrences of p is reset. The tester has to observe p before x reaches a (transitions
q2 → q2, q2 → q1, q2 → q3 or q2 → q0). The run is aborted if x reaches a before p is
observed. The output at location s2 remains continuously u.

2. Predict the duration of the p segment to be exactly a. The tester moves to location
s1 which outputs u and the output at the transition is u. The clock x is reset upon
entering s1 and the prediction is confirmed only if the next occurrence of p arrives
when x = a (transitions q1 → q1, q1 → q2, q1 → q3 and q1 → q0), otherwise the run
is aborted.

3. Finally, the tester can predict that the duration of the p segment will be greater than
a. The tester moves to s3 which outputs u and the incoming transition is labeled by
u. It has to guess non-deterministically the time instant t such that t+ a is the last p
time instant. At that time the tester moves to s1 where, after a time the prediction is
confirmed or the run is aborted.
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Fig. 8.7. The temporal tester for �
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Figure 8.8 illustrates some of the runs of the tester on an input signal of the form
w = w′ · pr0 · ṗ · pr1 · ṗ · pr2 ·w′′. The signal is false between t and t′ with t′ − t > a. At
time t, the tester enters s1, s2 or s3 depending whether it predicts that t′−t = a, t′−t < a
or t′ − t > a, respectively. Runs that lead to s1 and s2 at t are aborted at most at t + a,
because at that time the tester still observes a p-segment, contrary to the prediction. The
only correct prediction at t is to move to s3. From s3, the tester has to “guess” the time
t′ − a to move to s1. Predicting this transition at some other time leads to an eventual
abortion of the run.

8.3 Temporal Testers for � a p and � a p

The operators � a p and � a p are shift operators and, in general, may need infinitely
many states and clocks. Nevertheless, when their input is restricted to signals with
bounded variability, they can be realized by timed automata. Making use of Proposi-
tion 3.3 we apply this operation to signalsw such thatw = χ�

I
p(w′) orw = χ�

I
p(w′)

with I of the form (0, d), (0, d], [0, d) or [0, d]. Such signals, according to Lemma 3.2,
have the property that for any decomposition of w, for every segment (wi)ri such that
wi = 1, ri ≥ d, hence the number of changes that they may exhibit in an interval of
duration a is bounded.

Proposition 8.5. One can construct a temporal tester that realizes χ�
a
p relative to

input signals that satisfy the bounded variability assumption of Lemma 3.2.
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Fig. 8.8. Some of the behaviors of the temporal tester for �
(0,a)

p on an input signal. Only the upper run is not
aborted.

We decompose the tester into two components, the input observer and the output
generator, illustrated in Figure 8.9-(a) and 8.9-(b), respectively. The observer realizes
a kind of continuous shift register which memorizes the value of the input signal in a
past temporal window of length a. Signals satisfying the bounded variability property
(Lemma 3.2) will have at most 2n changes in any such temporal window, with n = � a

d
�.

Hence these changes can be memorized with 2n clocks {x1, y1, . . . , xn, yn} that measure
the time elapsed since subsequent changes in the signal values, and 2nBoolean variables
{px1 , py1 . . . , pxn, pyn} that specify the values of the signal at the singular points.

The input observer reads the bounded variability input signal w and memorizes the
relevant changes in the signal. Initially all the clocks are set to be inactive. Clocks xi
and yi measure the time from the beginning of the ith segment labeled by p and p,
respectively, within the temporal window of length a, and pxi , p

y
i memorize the value of

p at the singular end points of the corresponding segment. The input observer consists of
2n locations that we encode using two states, s0 and s1, and a counter i of bounded size
n. We use (s, i) to denote these locations. Initially, all clocks are set to be inactive and
the tester moves to (s0, 1) if the first open segment in the input signal is p, or to (s1, 1) if
the input signal starts with an open p-segment. From location (s0, i), the observer moves
to (s1, i) when p becomes true, resets the clock yi and assigns to pyi the value of p at the
moment of transition . Note that we cannot have a decomposition w = w ′ · 0 · 1̇ · 0 ·
w′′ because of the bounded variability assumption. When in (s1, i), two situations may
occur, either p becomes false for some positive period in time, hence the tester moves
to s0 incrementing the counter i := i + 1, and setting the clock xi and variable pxi ,
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or the tester observes p at a singular point, followed by another p segment (there is no
bounded variability assumption on the duration of p-segments). In that case, the observer
increments the counter, sets pxi and resets both clocks xi and yi.

Whenever the clock y1 reaches a, it is guaranteed that the changes memorized by x1

and y1 have been taken into account by the output generator described below, and the
two clocks do not influence the future values of u, hence they can be discarded. To keep
the number of clocks bounded, we recycle clocks by applying the operation sh which
consists in shifting the values of clock and Boolean variables xi := xi+1, yi := yi+1,
pxi := pxi+1 and pyi := pyi+1 for all i and decrementing the counter i := i − 1. This
operation guarantees that the counter i always remains bounded. Moreover, with this
operation the clocks x1 and y1 represent at any time t + a the time elapsed since the
oldest “active” change in p within the interval [t, t+ a].

The output generator uses clocks x1, y1 and variables px1 , p
y
1 to produce the value of

u. Initially, at location sin the generator trivially outputs u during the interval [0, a).
When x1 reaches a and y1 < a, this is the beginning of an a-shifted past p-segment and
the generator moves to su and outputs u as long as y1 < a. If both x1 and y1 reach a
simultaneously, this means that the p-segment was, at most, punctual, and the automaton
moves to su and outputs u. From both states su and su, the condition y1 = a (x1 = a,
respectively) indicates the end of the current segments and triggers a transition. The
values of the output at singular points are based on values memorized in py1 and px1 . As
we can see, the generator outputs the signal u that corresponds exactly to the input signal
w shifted by a, that is w[t] = u[t+ a]. ��
Proposition 8.6. One can construct a temporal tester that realizes χ�

a
p relative to

input signals w that satisfy the bounded variability assumption of Lemma 3.2.

The temporal tester for � a p is very similar to the past operator. It is decomposed
as well into an input observer and an output generator but due to the acausality of the
operator, the operation mode is slightly different. To avoid repetition, we explain the
main differences with respect to the tester for the past operator and depict the generator
and the observer in Figures 8.10-(a) and 8.10-(b), respectively.

The output generator has to produce at time t values that can be confirmed only at
t+a. Hence, all the responsibility on maintaining the variability of the output bounded is
delegated to the output generator1 (condition yi ≥ d on all the transitions outgoing from
su). More importantly, the memorization should now apply to the output: clocks x i, yi
and variables uxi , u

y
i are reset by the generator2 as it changes its output in order to repre-

sent the predicted signal. It is also responsible for taking the sh transition when y1 = a
and the oldest event in the predicted output has already been confirmed or contradicted.

The role of the observer is now to compare the input signal with those predictions. It
may move between states s0 and s1 according to the values of the input and the values

1 For predictions of the form u = 1̇ · 1r · u′, the duration of the first u-segment can be arbitrarily small. Hence,
we have an additional location sa that generates the first u-segment without the condition yi ≥ d on the outgoing
transitions.

2 We use the assignment uyi := {0, 1} as syntactic sugar to collapse two transitions into one and represent the fact
that the predicted output can be either u or u at the singular point, and the predicted value is memorized.



8.3 Temporal Testers for �
a
p and �

a
p 107

/u

/u

/u

x1 = a
y1 = a
/u

x1 = a
y1 = a

x1 = a
y1 �= a

pxi := p
xi := 0

p p

sh
y1 = a y1 = a

sh
(a)

(b)

yi := 0
xi := 0
pyi := p

yi := 0
xi := 0

i := i+ 1, pxi := p, xi := 0

/pxi /pyi

y1 = a, /py1

p

y1 < a y1 < a

x1 < a

x1 < a

y1 < a

s0 s1

su su

s

x1 = a, y1 �= a, /px1

pyi := p, yi := 0
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Fig. 8.9. The temporal tester for � a p - (a) input observer (b) output generator

of the clocks that correspond to the form of the predicted output. When those disagree
the run is aborted. It is not hard to see that the generator produces valid outputs whose
features are memorized and that the observer checks the conformity of these predictions
with the input and as result we have u[t] = w[t+ d]. ��

To complete the construction for MITL we just need to compose the testers for the
propositional, untimed and timed operators according to the structure of the formula. The
parallel composition of transducers is fairly standard and we give only the definition of
an input/output composition of signal transducers A1 �A2 where the output of A1 is the
input of A2. Note that the generalized Büchi condition comes from such a composition
of testers for unbounded operators as we need to identify accepting runs of A2 triggered
by outputs of accepting runs of A1.

Definition 8.7 (I/O Composition). Let A1 = (Σ1, Γ 1, Q1, C1, I1, Δ1, λ1, γ1, q1
in,F1)

and A2 = (Σ2, Γ 2, Q2, C2, I2, Δ2, λ2, γ2, q2
in,F2) be timed signal transducers such that

Γ 1 = Σ2. Their I/O composition is the transducer

A = A1 �A2 = (Σ1, Γ 2, Q, C, I, Δ, λ, γ, qin,F)

where
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Fig. 8.10. The temporal tester for �
a
p - (a) output generator (b) input observer

Q = {(q1, q2) ∈ Q1 ×Q2 s.t. γ1(q1) = λ2(q2)},
C = C1 ∪ C2, λ(q1, q2) = λ1(q1), γ(q1, q2) = γ2(q2) and I(q1,q2) = I1

q1 ∩ I2
q2 . The

transition relation Δ is the restriction to Q of the set of all transitions of either of the
following forms3

δ12 : ((q1, q2), g1 ∩ g2, ρ1||ρ2, (q′1, q′2)) and λ(δ12) = λ1(δ1), γ(δ12) = γ2(δ2)
δ1 : ((q1, q2), g1 ∩ Iq2 , ρ1, (q′1, q2)) and λ(δ1) = λ1(δ1), γ(δ1) = γ2(q2)
δ2 : ((q1, q2), g2 ∩ Iq1 , ρ2, (q1, q′2)) and λ(δ2) = λ1(q1), γ(δ2) = γ2(δ2)

3 When in initial state (q1in, q
2
in), the two transducers need to take the joint transition
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such that δ1 = (q1, g1, ρ1, q′1) ∈ Δ1 and δ2 = (q2, g2, ρ2, q′2) ∈ Δ2.
The accepting sets are defined as follows. Let F 1 = {F 1

1 . . . F
1
n} and F 2 = {F 2

1 . . . F
2
m}.

Then F = {F 1′
1 . . . F 1′

n , F
2′
1 , . . . F

2′
m} where each F 1′

i ∈ F consists of locations (q1, q2)
such that q1 ∈ F 1

i , transitions of the form δ12, δ1 such that δ1 ∈ F 1
i and transitions of

the form δ2 such that q1 ∈ F 1
i . Similar rules apply to locations and transitions that are

in sets F 2′
i ∈ F .

It is not hard to see that A1 �A2 realizes the sequential function obtained by composing
the sequential functions realized by A1 and A2.

Corollary 8.8 (Main Result). MITL formulae can be transformed into timed automata
using a modular procedure.

8.4 Discussion

In this section, we discuss some work related to our translation of MITL formulae to
timed automata. The decidability of MITL was established in [AFH96], which gives a
tableau-like procedure for translating MITL formulae to timed automata. This version of
MITL contained only future temporal operators.

An investigation of past and future versions of MITL was carried out in [AH92b] us-
ing two-way timed automata, that is, automata having the ability to change the direction
of reading. The authors describe a strict hierarchy of timed languages based on the num-
ber of direction reversals needed to recognize them (which roughly corresponds to the
nesting depth of past and future operators).

Event-recording automata, where only the time of the last occurrence of every input
letter can be remembered by a clock, have been shown to be determinizable in [AFH99].
Event-clock automata, introduced in the same paper, constitute a generalization of the
latter which allow also “event-predicting” clocks, to express the acausality of future
temporal operators. In [HRS98, RS97], the authors introduce event-clock temporal logic
ECL and show that it is expressively equivalent to MITL with future and past. The results
of [HRS98] provide an alternative indirect route to translate MITL formulae with future
and past to timed automata. First the MITL formula is transformed into an ECL formula,
which can be translated to an equivalent event-clock automaton, from which one can
obtain the corresponding timed automaton.

Finally, we also mention our previous translation of past [MNP05] and future [MNP06]
MITL formulae to timed automata using temporal testers. In [MNP05, MNP06], the def-
initions of the logic and signals differ from [AFH96] and this thesis in the following
respects:

1. We disallow signals that admit punctuality and restrict ourselves to right-continuous
signals, namely those that can be decomposed into a sequence of left-closed right-
open segments;

2. We restrict the temporal logic to closed intervals;
3. We modify the semantics of pU q to require a moment where both p and q hold.
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The restriction to non-punctual signals seems reasonable from a semantic point of view,
an the two other modifications are consequences of this choice as we want the output
of the testers to be valid signals as well. The restriction to right-continuous signals sim-
plifies significantly the construction of testers as no special treatment is required for the
input/output symbols on transitions. This simplicity is expressed in the construction of
the testers for � a and � a. Memorizing the form of a right-continuous signal with n seg-
ments requires O(n) locations. In our construction for the general case we need O(2n)
states for all possible values at singular points (variables pxi , p

y
i ). The main limitation of

the restricted logic is the inability to specify events (such as the rising and falling of a
signal) which prevents, for example, expressing properties such as bounded variability.
The construction presented in this thesis completes our previous results by considering
MITL formulae and signals in their most general form, and providing a unified translation
of MITL formulae with past, future and events to timed automata.
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Conclusions

This thesis was motivated by a very practical concern: improving the design process
for analog and mixed-signal circuits by introducing property-based monitoring of ana-
log signals based on temporal logic. Although practically motivated and geared toward
industrial standards, tools and case-studies, this work did not neglect the underlying the-
oretical foundations. On the contrary, this thesis shows that starting from rigorous stud-
ies of the semantics of timed systems, one can build (prototypes of) industrial-strength
tools.

Below we summarize what we consider to be the major achievements of this thesis
on the theoretical and practical sides.

Theory: the study of the marking procedure for monitoring has led to a point of view on
satisfaction of sub-formulae which finally converged with the powerful idea of timed
testers. We strongly believe that the tester-based translation from MITL to automata
described in Chapter 8 is the clearest explanation to date concerning the relation
between the two formalisms, the roles of future and past operators, the influence
of bounded variability and the origins of non-determinism in timed automata. Our
definitions of timed transducers and their runs over signals in a segment-point de-
composition, allow us to realize input-output operators over such signals in a neat
way. Finally, we mention the idea of transforming a bounded future MITL formula
into a past (and hence causal) formula for the purpose of controller synthesis.

Practice: this thesis provided a pioneering contribution to the verification of analog cir-
cuits. We suggested a specification formalism, monitoring algorithms and a compre-
hensive prototype tool for performing this task. The feedback of those in the semi-
conductor and EDA industries who came to know the methodology and the tool was
extremely positive, which may give hope for an eventual industrial transfer of these
results. A large part of this success is due to the demonstration of the applicability of
this approach via real-life case studies.

Some of the future work directions inspired by this thesis are described below:

1. Extending the scope of the AMT tool by providing a richer language and additional
types of queries. Among the extension we mention: the expression of non-temporal
properties (frequency domain, for example), interactions which are more complex
than pointwise Booleanization between real-valued and Boolean signals, extraction
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of parameters and other quantitative measures (compared to the purely yes/no nature
of the current answers).

2. Tighter integration between the AMT tool and existing simulators which will facili-
tate efficient event detection, combination with test generation methods and utiliza-
tion of building blocks that already exist in the simulators.

3. Extend the construction of temporal testers to cover some subset of the timed regular
expressions of [ACM02]. This task is particularly important because regular expres-
sions have a special importance in SVA [Acc04].

4. Gain a better understanding of the origins of non-determinism in timed automata
and the situations where one can get rid of it without auxiliary assumptions such as
bounded variability.

5. Complete and optimize the implementation of the translation from MITL to timed
automata and use it for model checking of timed systems within the IF toolset.



A

On Synthesizing Controllers from Bounded-Response
Properties

A.1 Introduction

The problem of synthesizing controllers automatically from high-level specifications
has been posed by Church [Chu63] and solved theoretically by Büchi and Landweber
[BL69, TB73]. Although the topic has been subject to further, more modern, investiga-
tions, synthesis has not enjoyed the passage from theory to practice as did the similar and
simpler problem of verification, mostly due to the practical complexity of the proposed
algorithms. Recently some improvements have been made for untimed [PPS06, PP06]
and timed [CDF+05] systems, that led to the synthesis of some non trivial controllers.
This work is a further step in this direction which attempts to give a general feasible
solution for the following problem:

Given a bounded-response temporal property ϕ defined over two distinct action al-
phabetsA andB (encoded using mutually-disjoint sets of propositional variables), build
a finite-state transducer (controller) from Aω to Bω such that all of its behaviors satisfy
ϕ at all positions.

The controller in question is realized by an automaton that observes what the envi-
ronment does (some a ∈ A), changes its state accordingly and outputs some b ∈ B. The
whole situation can be viewed as a two-player zero-sum game between the controller
and its environment where one seeks a winning strategy for the controller (see [Mal07]
for a unified game-theoretic model). Unlike other approaches, for example those used in
the control of discrete event systems [RW89] or our previous work [MPS95, AMP95],
we do not start with a given “plant” or “arena” in a form of a transition system and an
acceptance/winning condition expressed in terms of its states. Our starting point, like in
[PR89], is a temporal logic formula which specifies constraints on the behaviors of the
players as well as desired properties of their interaction. Hence the first step in the syn-
thesis procedure is to derive the automaton from the formula and then apply synthesis
algorithms to this automaton.

A major difficulty in such a procedure stems for the fact that synthesis algorithms
are more naturally defined over input-deterministic automata, or, to be more precise,
over automata where each non-deterministic choice can be unambiguously attributed to
one of the two players. In such automata each joint choice of the two players induces
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only one transition from every state.1 In contrast, the commonly-used procedures for
translating temporal logic formulae go through non-deterministic automata whose de-
terminization leads to automata of prohibitively-large size. Another obstacle toward the
efficient realization of synthesis algorithms is the fact that the acceptance conditions in
the generated automata require a complicated fixed-point computation in order to find
the winning states and strategies.

In this work we avoid some of these problems by restricting our attention to bounded-
response properties which are known to be equivalent to safety properties. These prop-
erties represent a large part of what users are interested in (especially in hard real-time
systems) and lead to automata with simpler acceptance conditions (just avoid bad states)
and hence to a simpler synthesis procedure. Concerning the limited scope of bounded-
response properties compared to more general liveness properties, we can make the fol-
lowing comments. Liveness properties typically specify something that should “eventu-
ally” happen without specifying an upper bound on the time to elapse between now and
that eventuality. Obviously, liveness properties can be viewed as an abstraction of the
real specification which requires not only that some response is eventually forthcoming
(which is often useless by itself), but also provides an upper bound on the maximal delay
on the arrival of the response. In some cases, the use of such abstractions may be justi-
fied on various grounds. However, we hope to convince the reader that, in many other
cases, the synthesis from bounded-response properties is very relevant and preferable
and can be carried out efficiently for non-trivial problems. For such cases, why settle for
an abstraction when you can work directly with the precise specification?

The main contribution of this paper is an efficient machinery that allows one to syn-
thesize controllers automatically from specifications expressed using the real-time tem-
poral logic MTL [Koy90], often interpreted of the time domain R+. Our first contri-
bution is a transformation of such formulae, under bounded variability assumptions to
deterministic timed automata. This determinization is of particular interest as it is based
on transforming the formula into a past formula and then applying the ideas presented
in [MNP05]. The obtained automaton is then interpreted as a timed game automaton
[MPS95, AMP95] to which we apply a synthesis algorithm to derive the controller.

The rest of the paper is organized as follows: Section A.2 presents the syntax and
semantics of the bounded-response fragment of MTL. Section A.3 shows how to trans-
late future bounded MTL formulae into past formulae and deterministic timed automata.
Section A.4 reports some preliminary experiments in synthesizing an arbiter from its
specifications, while Section A.5 mentions ongoing and future efforts to improve the
performance.

A.2 Signals and their Bounded Temporal Logic

Timed behaviors can be described using either time-event sequences consisting of in-
stantaneous events separated by time durations or discrete-valued signals which are
1 A notable exception is the case where the controller has limited observability and thus, after observing a sequence

of adversary actions it may find itself in one of several states and its chosen action should be good with respect to
all these states. In this case, the nondeterminism plays in favor of the adversary.
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functions from time to some discrete domain. In this work we use Boolean signals as
the semantic domain, but the extension of the results to time-event sequences (which are
equivalent to the timed traces of [AD94]) need not be a difficult exercise.

Let the time domain T be the set R≥0 of non-negative real numbers and let B =
{0, 1}. An n-dimensional Boolean signal ξ is a partial function ξ : T → B

n whose
domain of definition is an interval I = [0, r), r ∈ N ∪ {∞}. We say that the length of
the signal is r and denote this fact by |ξ| = r and let ξ[t] stand for the value of the signal
at time t. We use t⊕ [a, b] to denote [t+ a, t+ b], that is, the Minkowski sum of {t} and
[a, b], and t� [a, b] = [t− b, t− a] ∩ T for the inverse operation with saturation at zero.
In the sequel we will restrict our attention to well-behaving signals whose variability is
bounded.

Definition A.1 (Bounded Variability). A signal ξ is of (Δ, k)-bounded variability if for
every interval of the form [t, t+Δ] the number of changes in the value of ξ is at most k.
A bounded-variability signal is a signal for which such Δ > 0 and finite k exist.

Proposition A.2 (Preservation of Bounded Variability). Let ξ1 and ξ2 be two infinite
bounded variability signals characterized, respectively, by (Δ, k1) and (Δ, k2), and let
ξ = ξ1 op ξ2 be a signal obtained by applying the Boolean operation op to ξ1 and ξ2.
Then, ξ is of (Δ, k1 + k2)-bounded variability.

This fact, which follows from the observation that for ξ to switch at time t, at least
one of ξ1 and ξ2 should switch, implies that if we assume bounded variability of the
propositional signals, we will also have bounded variability for the signals that indicate
the truth values of subformulae. Hence we can build the automaton corresponding to
the formula in an inductive and compositional manner based on the temporal testers
introduced in [KP05] for discrete time and extended in [MNP05, MNP06] for dense
time. In this construction bounded variability will be guaranteed at all levels.

We define the logic MTL-B as a bounded-horizon variant of the real-time temporal
logic MTL [Koy90], such that all future temporal modalities are restricted to intervals
of the form [a, b] with 0 ≤ a ≤ b and a, b ∈ N, but allow the unbounded past operator
S (since) which is not really unbounded. Note that unlike MITL [AFH96], we allow
“punctual” modalities with a = b and in this case we will use a as a shorthand for [a, a].
Another deviation from MTL is the introduction of an additional past operator precedes
(P) which is roughly the bounded until operator from the point of view of the end of
the relevant segment of the signal. This operator is not proposed for user-friendliness
purposes, but rather to facilitate the translation from future to past. The basic formulae
of MTL-B are defined by the grammar

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1U [a,b]ϕ2| ϕ2S [a,b]ϕ1| ϕ2Sϕ1| ϕ1P[a,b]ϕ2

where p belongs to a set P = {p1, . . . , pn} of propositions corresponding naturally to
the coordinates of the n-dimensional Boolean signal considered. The future fragment of
MTL-B uses only the U [a,b] modality while the past fragment uses only the S [a,b], S and
P[a,b] modalities. The satisfaction relation (ξ, t) |= ϕ, indicating that signal ξ satisfies ϕ
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at position t, is defined inductively below. We use p[t] to denote the projection of ξ[t] on
the dimension that corresponds to variable p.

(ξ, t) |= p ↔ p[t] = T

(ξ, t) |= ¬ϕ ↔ (ξ, t) �|= ϕ
(ξ, t) |= ϕ1 ∨ ϕ2 ↔ (ξ, t) |= ϕ1 or (ξ, t) |= ϕ2

(ξ, t) |= ϕ1U [a,b]ϕ2 ↔ ∃ t′ ∈ t⊕ [a, b] (ξ, t′) |= ϕ2 and
∀t′′ ∈ [t, t′], (s, t′′) |= ϕ1

(ξ, t) |= ϕ2S [a,b]ϕ1 ↔ ∃t′ ∈ t� [a, b] (ξ, t′) |= ϕ1 and
∀t′′ ∈ [t′, t], (ξ, t′′) |= ϕ1

(ξ, t) |= ϕ2Sϕ1 ↔ ∃t′ ∈ [0, t] (ξ, t′) |= ϕ1 and
∀t′′ ∈ (t′, t], (ξ, t′′) |= ϕ1

(ξ, t) |= ϕ1P[a,b]ϕ2 ↔ ∃t′ ∈ t� [0, b− a] (ξ, t′) |= ϕ2 and
∀t′′ ∈ [t′ − b, t′] (ξ, t′′) |= ϕ1

It is important to note the difference between the future and the past operators (see
Figure A.1): the until operator points from time t toward the future, while the since and
precedes operators point from t backwards. On the other hand, the until and precedes
operators differ from the since operators as they speak on the interval before the event
that should be observed within a bounded time interval, while the latter refers to the
interval immediately after its occurrence.

ϕ2

ϕ1

t− b t′ t − a t

ϕ1

ϕ2

ϕ1 U [a,b]ϕ2

t+ bt′t + at

ϕ1P[a,b]ϕ2

ϕ1

ϕ2

tt′t − b

ϕ2 S [a,b]ϕ1

t − (b− a)

Fig. A.1. The semantic definitions of until, precedes and since.

From basic MTL-B operators one can derive other standard Boolean and temporal
operators, in particular the time-constrained sometime in the past, always in the past,
eventually in the future and always in the future operators whose semantics is defined as

(ξ, t) |= � [a,b] ϕ↔ ∃t′ ∈ t� [a, b] (ξ, t′) |= ϕ

(ξ, t) |= � [a,b] ϕ ↔ ∀t′ ∈ t� [a, b] (ξ, t′) |= ϕ
(ξ, t) |= � [a,b] ϕ↔ ∃t′ ∈ t⊕ [a, b] (s, t′) |= ϕ

(ξ, t) |= � [a,b] ϕ ↔ ∀t′ ∈ t⊕ [a, b] (ξ, t′) |= ϕ

Note that our definition of the semantics of the timed until and since operators differs
slightly from their conventional definition since it requires a time instant t ′ where both
(ξ, t′) |= ϕ2 and (ξ, t′) |= ϕ1. For the untimed since operator we retain the standard
semantics.
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Each future MTL-B formula ϕ admits a number D(ϕ) which indicates its temporal
depth. Roughly speaking, to determine the satisfaction of ϕ by a signal ξ from any
position t, it suffices to observe the value of ξ in the interval [t, t+D(ϕ)]. This property is
evident from the semantics of the (bounded) temporal operators and admits the following
recursive definition:

D(p) = 0
D(¬ϕ) = D(ϕ)
D(ϕ1 ∨ ϕ2) = max{D(ϕ1), D(ϕ2)}
D(ϕ1U [a,b]ϕ2) = b+ max{D(ϕ1), D(ϕ2)}

Note that D is a syntax-dependent upper bound on the actual depth: the satisfiability
of a formula ϕ may be determined according to segments of ξ shorter than D(ϕ). For
example, D(� [a,b] T) = b, but the formula requires no part of ξ for its satisfiability to be
determined. At the end of the day we are interested in properties of the form � ϕ where
ϕ is any (future, past or mixed) MTL-B formula. These properties are interpreted over
infinite-duration signals and require that all segments of ξ of length D(ϕ) satisfy ϕ.

A.3 From MTL-B to Deterministic Timed Automata

In [MP04, MNP05] we have studied the relation between real-time temporal logics and
deterministic timed automata. It turns out that the non-determinism associated with real-
time logics has two rather independent sources described below.

• Acausality: the semantics of future temporal logics is acausal in the sense that the
satisfiability of a formula at position t may depend on the value of the sequence
or signal at time t′ > t. If the automaton has to output this value at time t, it has
no choice but to “guess” at time t and abort later at time t′ the computations that
correspond to wrong predictions (see more detailed explanation in [MNP06]). This
bounded non determinism is harmless and in the untimed case, that is, for LTL, it can
be determinized away. We conjecture that such a determinization procedure exists
also for the timed case, but so far none has been reported. This problem does not exist
for past temporal logic whose semantics is causal and hence it translates naturally
into deterministic automata.

• Unbounded variability: when there is no bound on the variability of input signals,
the automaton needs to remember the occurrence times of an unbounded number
of events and use an unbounded number of clocks. All the pathological examples
concerning non-determinizability and non-closure under complementation for timed
automata [AD94] are based on this phenomenon.

In [MNP05] we have shown that the determinism of past MITL, compared to the non-
determinism of future MITL, is a result of a syntactic accident which somehow imposes
bounded variability (or indifference to small fluctuations) for the former but not the
latter. The punctual version, past MTL, remains non deterministic (and of infinite mem-
ory) because the operator � a realizes an ideal delay element which requires unbounded
memory.



118 A On Synthesizing Controllers from Bounded-Response Properties

The approach taken in this work in order to get rid of both sources of non determinism
is the following: we use full MTL, that is, allow punctual modalities, but assume that we
are dealing with signals of (Δ, k)-bounded variability, hence we can dispense with the
severe form of non determinism.2 We then transform future MTL-B formulae to past
MTL-B formula which, under the bounded variability assumption, can be translated to
deterministic timed automata. This part of the result is an extension of what we have
shown in [MNP05] for the (non-punctual) since operator.

The key idea of the transformation is to change the time direction from future to past
and hence eliminate the “predictive” aspect of the semantics. We will present an operator
Π which takes as an argument a future formula ϕ and a displacement d, and transforms
it to an “equivalent” past formula ψ such that ϕ is satisfied by a signal from position t
iff ψ is satisfied by the same signal from t+ d.

Definition A.3 (Pastify Operator). The operator Π on future MTL-B formulae ϕ and a
displacement d ≥ D(ϕ) is defined recursively as:

Π(p, d) = � d p
Π(¬ϕ, d) = ¬Π(ϕ, d)
Π(ϕ1 ∨ ϕ2, d) = Π(ϕ1, d) ∨Π(ϕ2, d)
Π(ϕ1U[a,b]ϕ2, d) = Π(ϕ1, d− b)P[a,b]Π(ϕ2, d− b)

Note that according the this definition Π(� [a,b] ϕ, d) = � [0,b−a]Π(ϕ, d− b).

Proposition A.4 (Relation between ϕ andΠ(ϕ, d)). Let ϕ be a bounded future formula
and let ψ = Π(ϕ, d) with d ≥ D(ϕ). Then for every ξ and t ≥ 0 we have:

(ξ, t) |= ϕ iff (ξ, t+ d) |= ψ (A.1)

Proof: We proceed by induction on the structure of the formula. The base case, the
atomic propositions, satisfy (A.1) trivially. Proceeding to the inductive case, we show
that if (A.1) holds for formulae with complexity (nesting of operators) m, it holds as
well for formulae of complexity m + 1. For Boolean operators this is straightforward.
Assume now that ϕ1 and ϕ2 satisfy (A.1) and we will show that so does ϕ = ϕ1U [a,b]ϕ2.
Note that by definition, if D(ϕ) = d then D(ϕ1) ≤ d − b and D(ϕ2) ≤ d − b. Let
ψ1 = Π(ϕ1, d− b) and ψ2 = Π(ϕ2, d− b). The fact the (ξ, t) |= ϕ amounts to

∃t′ ∈ t⊕ [a, b] (ξ, t′) |= ϕ2 ∧ ∀t′′ ∈ [0, t′] (ξ, t′′) |= ϕ1.

According to the inductive hypothesis we have that for such t′ and t′′

(ξ, t′ + d− b) |= ψ2 and (ξ, t′′ + d− b) |= ψ1.

By letting r′ = t′ + d− b and r′′ = t′′ + d− b and substituting the constraints on t′ and
t′′ we obtain

2 It is worth noting that the procedure of [Tri02] for subset construction on-the-fly, that is, determinization with
respect to a given (and hence of bounded variability) input, works due to the same reasons.
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∃r′ ∈ t+ d� [0, b− a] (ξ, r) |= ψ2 ∧ ∀r′′ ∈ [t+ d− b, r] (ξ, r′′) |= ψ1,

which is exactly the definition of (ξ, t+ d) |= ψ1P[a,b]ψ2.
For the other direction assume (ξ, t+ d) |= ψ1P[a,b]ψ2 which means that

∃r′ ∈ t+ d� [0, (b− a)] (ξ, r′) |= ψ2 ∧ ∀r′′ ∈ [t+ d− b, r′](ξ, r′′) |= ψ1.

By the inductive hypothesis such r ′ and r′′ satisfy

(ξ, r′ − (d− b)) |= ϕ1 and (ξ, r′′ − (d− b)) |= ϕ1.

Letting t′ = r′ − (d− b) and t′′ = r′′ − (d− b) and substituting the constraints on r ′ and
r′′ we obtain

∃t′ ∈ t⊕ [a, b] (ξ, t′) |= ϕ2 ∧ ∀t′′ ∈ [t, t′] (ξ, t′′) |= ϕ1

which means that (ξ, t) |= ϕ1U [a,b]ϕ2. ��
Corollary A.5 (Equisatifaction of � ϕ and � ψ). An infinite signal ξ satisfies � ϕ iff
it satisfies � ψ where ψ = Π(ϕ,D(ϕ)).

We now proceed to the construction of a deterministic timed automaton accepting ex-
actly signals satisfying a past MTL-B formula ψ under a bounded-variability assumption.
The construction, inspired by [KP05], is compositional in the sense that it yields a net-
work of deterministic signal transducers (testers), each corresponding to a subformula
of ψ. The output of every tester for ψ′ at time t equals to the satisfaction of ψ ′ from t. A
more formal description of this framework can be found in [MNP05, MNP06]. We first
present a generic automaton, the event recorder which was first introduced in [MNP05]
for the purpose of showing that the operator � [a,b] admits a deterministic timed automa-
ton.

The automaton depicted in Figure A.2 accepts signals satisfying � [a,b] ϕ by simply
memorizing at any time instant t the value of ϕ in the past temporal window [t − b, t].
Assuming that ϕ is of bounded variability and cannot change more than 2m times in an
interval of length b, the states of the automaton, {0, 01, . . . , (01)m0}, correspond to the
qualitative form of the value of ϕ in that time interval. Each clock xi (respectively, yi)
measures the time elapsed since the ith rising (respectively, falling) of ϕ in the temporal
window. When ϕ first becomes true, automaton moves from 0 to 01 and resets x1. When
ϕ becomes false it moves to 010 while resetting y1 and so on. When clock y1 > b, the first
01-episode of ϕ becomes irrelevant for the satisfaction of � [a,b] ϕ and can be forgotten.
This is achieved by the “vertical” transitions which are accompanied by “shifting” the
clocks values, that is, applying the operations xi := xi+1 and yi := yi+1 for all i. This
allows us to use only a finite number of clocks.

The following proposition, first observed in [MN04], simplifies the construction of
the automaton. It follows from the fact that if a bounded-variability signal is true at two
close points, it has to be true throughout the interval between them.

Proposition A.6. If p is a signal of (a, 1)-bounded variability then



120 A On Synthesizing Controllers from Bounded-Response Properties

y1 ≤ b ϕ

010101

y1 ≤ b

01010

¬ϕ

y1 ≥ b/s

ϕ

y1 ≤ b y1 ≤ b

¬ϕ

¬ϕ ϕ

0 01

010 0101

y1 ≥ b/s

y1 ≥ b/s y1 ≥ b/s
¬ϕ/y1 := 0

¬ϕ/y2 := 0

¬ϕy1 ≤ b

(01)m0

. . .

ϕ/x1 := 0

ϕ/x2 := 0

ϕ/x3 := 0

Fig. A.2. An event recorder, an automaton which has ϕ as input and �
[a,b]

ϕ as output. The input labels and staying
conditions are written on the bottom of each state. Transitions are decorated by the input labels of the target states and
by clock resets. The clock shift operator is denoted by the symbol s. The automaton outputs 1 whenever x1 ≥ a.

p1

p3

p2

p

Fig. A.3. Splitting p into p1 ∨ p2 ∨ p3.

• (ξ, t) |= pU [a,b]q iff (ξ, t) |= p ∧ � [a,b](p ∧ q)
• (ξ, t) |= pP[a,b]q iff (ξ, t) |= � b p ∧ � [0,b−a](p ∧ q)
Hence for a signal p satisfying this property, the automaton for P[a,b] can be constructed
from the event recorder by means of simple Boolean composition. Suppose now that p is
of (a, k)-bounded variability with k > 1. We can decompose it into k signals p1, . . . , pk
such that p = p1 ∨ p2 · · ·pk, pi ∧ pj is always false for every i �= j and each pi is of
(a, 1)-bounded variability. This is achieved by letting pi rise and fall only on the jth

rising and falling of p, where j = i mod k, as is illustrated, for k = 3, in Figure A.3. It
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is not hard to see that for such pi’s we have

(ξ, t) |= pU [a,b]q iff (ξ, t) |=
k∨
i=1

piU [a,b]q

and

(ξ, t) |= pP[a,b]q iff (ξ, t) |=
k∨
i=1

piP[a,b]q.

The splitting of p can be done trivially using an automaton realizing a counter modulo
k.

Theorem A.7 (MTL-B to Deterministic Timed Automata). Any MITL-B formulae can
be transformed, under bounded-variability assumptions, into equivalent deterministic
timed automata.

A.4 Application to Synthesis

A.4.1 Discrete and Dense-Time Tools

What remains to be done is to transform the automaton into a timed game automaton
by distinguishing controllable and uncontrollable actions and applying the synthesis al-
gorithm. There are currently several choices for timed synthesis tools divided into two
major families depending one whether discrete or dense time tools are used.3

• Discrete time: the logic and the automata are interpreted over the time domain N. A
major advantage of this approach is that the automaton becomes finite state and can
be subject to symbolic verification and synthesis using BDDs, which is very useful
when the discrete state space is large. On the other hand, the sensitivity of discrete
time analysis to the size of the constants is much higher and will lead to explosion
when they are large. Discrete-time synthesis of scheduler for fairly-large systems has
been reported in [KY03].

• Dense time: here we have the opposite problem, namely there is a compact symbolic
representation of subsets of the clock space, but the discrete states are enumerated.
Several implementations of synthesis algorithms based on [MPS95] exist. One is the
tool SynthKro included in the standard distribution of Kronos and described in
[AT02], which works by standard fixpoint computation. Another alternative, which
restricts the algorithm to work only on the reachable part of the state space is the tool
FlySynthwhich refines the reachability graph of the game automaton according to
the time-abstract bisimulation relation [TY01] yielding a finite quotient to which un-
timed synthesis algorithms can be applied [TA99]. Finally, the tool Uppaal-Tiga
improves upon these ideas by combining forward and backward search, resulting in
the most “on-the-fly” algorithm for timed synthesis [CDF+05] and probably the most
effective existing tool for timed synthesis.

3 Contrary to commonly-held beliefs, the important point of timed automata is not the density of time but the
symbolic treatment of timing constraints using addition and inequalities rather than state enumeration.
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We have conducted our first experiments in discrete time using a synthesis algorithm
implemented on top of the tool TLV, while working on the implementation of an im-
proved dense time algorithm combining ideas from [TY01] and [CDF+05].

A.4.2 Example: Deriving an Arbiter

To demonstrate our approach we present a bounded-future specification of an arbiter
module whose architectural layout is shown in Figure A.4-(a). The arbiter is expected
to allocate a single resource among n clients. The clients post their requests for the
resource on the input ports r1, . . . , rn and receive notification of their grants on the
arbiter’s output ports g1, . . . , gn. The protocol of communication between each client
and the arbiter follows the cyclic behavior described in Figure A.4-(b,c).

ri gi

ri gi ri gi

ri gi

d2 d1 d3

r

g

(b) (c)(a)

· · · · · ·Arbiter
r1

rn

g1

gn

Fig. A.4. (a) The architecture of an Arbiter; (b) The communication protocol between the arbiter and client i. Uncon-
trollable actions of the client (environment) are drawn as solid arrows, while controllable actions which are performed
by the arbiter (controller) drawn as dashed arrows; (c) A typical interaction between the arbiter and a client.

In the initial state both ri and gi are low (0). Then, the client acts first by setting
ri to high (1) indicating a request to access the shared resource. Next, it is the turn of
the arbiter to respond by raising the grant signal gi to high. Sometimes later, the client
terminates and indicates its readiness to relinquish the resource by lowering ri. The
arbiter acknowledges the release of the resource by lowering down the grant signal gi.

We structure the specification into subformulae IE, IC , SE, SC , LE and LC denoting,
respectively, the initial condition, safety component, and (bounded) liveness components
of the environment (client) and the controller (arbiter). They are given by

IE :
∧
i ri

IC :
∧
i gi

SE :
∧
i ri =⇒ riS (ri ∧ gi)) ∧ ∧

i(ri =⇒ riB(ri ∧ gi))
SC :

∧
i(gi =⇒ giS(ri ∧ gi)) ∧ ∧

i(gi =⇒ giB(ri ∧ gi))
LE :

∧
i(gi =⇒ � [0,d1]

ri)

LC :
∧
i(ri =⇒ � [0,d2]

gi) ∧ ∧
i(ri =⇒ � [0,d3]

gi)

The initial-condition requirements IE and IC state that initially all variables are low.
The safety requirements SE and SC ensure that the environment and arbiter conform to
the protocol as described in Figure A.4-(b). In the untimed case, this is usually specified
using the next-time operator � but in dense time specify these properties using the the
untimed past S and B operators. Thus, the requirement (ri =⇒ riS (ri ∧ gi)) states
that if ri is currently high, it must have been continuously high since a preceding state in
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which both ri and gi were low. The reader can verify that the combination of the safety
properties enforces the protocol.

The (bounded) liveness property gi =⇒ � [0,d1]
ri requires that if gi holds then

within b time units, client Ci should release the resource by lowering ri. The property
(ri =⇒ � [0,d2]

gi) specifies quality of service by saying that every client gets the
resource at most d2 time after requesting it. Finally, property ri =⇒ � [0,d3] gi requires
that the arbiter senses the release of the resource within d3 time and considers it available
for further allocations. Note that the required response delays for the various properties
employ different time constants. This is essential, because the specification is realizable
only if d2, the time bound on raising g, is at least n(d1 + d3). This reflects the “worst-
case” situation that all clients request the resource at about the same time, and the arbiter
has to service each of them in turn, until it gets to the last one.

The various components are combined into a single MTL-B formula by transforming
them to past formulae and requiring that the controller does not violate its requirements
as long as the environment does not violate hers:

(IE =⇒ IC) ∧ � (� (Π(SE) ∧ Π(LE)) =⇒ (Π(SC) ∧Π(LC))) (A.2)

Below we report some preliminary experiments in automatic synthesis of the arbiter.
Table A.1 shows the results of applying the procedure to Equation (A.2) with d3 = 1
and d1 (the upper bound on the execution time of the client) varying between 2 and 4.
The N column indicates the number of clients, the Size column indicate the number of
BDD nodes in the symbolic representation of the transition relation of the synthesized
automaton and Time indicates the running time (in seconds) of the synthesis procedure.
As one can see, there is a natural exponential growth in N and also in d2 as expected
using discrete time.

N d1 d2 Size Time d1 d2 Size Time d1 d2 Size Time
2 2 4 466 0.00 3 5 654 0.01 4 6 946 0.02
3 2 8 1382 0.14 3 10 2432 0.34 4 12 4166 0.51
4 2 12 4323 0.63 3 15 7402 1.12 4 18 16469 2.33
5 2 16 13505 1.93 3 20 26801 4.77 4 24 50674 10.50
6 2 20 43366 8.16 3 25 84027 22.55 4 30 168944 64.38
7 2 24 138937 44.38 3 30 297524 204.56 4 36 700126 1897.56

Table A.1. Results for d1 = 2, 3, 4.

A.5 Conclusions and Future Work

We have made an important step toward making synthesis a usable technology by sug-
gesting MTL-B as a suitable formalism that can handle a variety of bounded response
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properties encountered in the development of real-time systems. We have provided a
novel translation form real-time temporal logic to deterministic timed automata via
transformation to past formulae and using the reasonable bounded-variability assump-
tion. We have demonstrated the viability of this approach by deriving a non-trivial arbiter
from specifications.

In the future we intend to focus on efficient symbolic algorithms in the spirit of
[CDF+05] and conduct further experiments in order to characterize the relative merits
of discrete and dense-time algorithms. We also intend to apply the synthesis algorithm
to more complex specifications of real-time scheduling problems.
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