Reconstruction of peculiar velocities of galaxies: methods and application to observations Guilhem Lavaux

<u>Supervisor:</u> <u>Co-supervisor:</u> <u>Collaborators:</u> Francis Bernardeau, Stephane Colombi, Roya Mohayaee, Joseph Silk Brent Tully, John Huchra, Dale Kocevski

Cosmology, dark matter and peculiar velocities

Current cosmological paradigm

Density fluctuations & cosmology

Power spectrum of matter density fluctuations

Density fluctuations & cosmology

Why studying velocities ?

Related to the dynamics and so to the absolute matter density

Why studying velocities ?

But using peculiar velocities proved to be in practice technically very difficult.

"Measuring" peculiar velocities

An alternative approach...

Methods of reconstructions

Two coordinate systems

Lagrangian coordinates

Eulerian coordinates

t = present time

Two coordinate systems

Lagrangian coordinates **Eulerian coordinates**

The algorithms

- Lagrangian reconstructions:
 - Least-Action (Peebles 1989)
 - MAK (Monge-Ampère-Kantorovitch) (Brenier et al. 2003, Lavaux et al. 2008a)
- Eulerian reconstructions

 (e.g. POTENT Bertschinger&Dekel 1989)

The MAK reconstruction

The true galaxy orbits

The MAK reconstruction

The MAK displacements

Comoving coordinates

Hypothesis displacement field is convex potential ⇔ no shell crossing **motivated** by Lagrangian perturbation theory, N-body simulation

Mass conservation

Hypothesis displacement field is convex potential ⇔ **no** shell crossing **motivated** by Lagrangian perturbation theory, N-body simulation Mass conservation Brenier et al. 2003 $\left|\frac{\partial^2 \Phi}{\partial \mathbf{x}_i \partial \mathbf{x}_i}\right|_{i=i} = \frac{\rho(\mathbf{x})}{\rho_0}$ Monge-Ampère problem: Monge-Kantorovitch problem: $I[\boldsymbol{q}(\boldsymbol{x})] = \int \rho(\boldsymbol{x}) |\boldsymbol{x} - \boldsymbol{q}(\boldsymbol{x})|^2 d^3 \boldsymbol{x}$ $S_{\sigma} = \sum_{i} (\boldsymbol{x}_{i} - \boldsymbol{q}_{\sigma(i)})^{r}$ Discretization: ∼ Inertial least-action principle

Gravity effects are yet included

Algorithmic

• Direct solving of the minimization problem is practically impossible (O(N!) time complexity).

Algorithmic

- Direct solving of the minimization problem is practically impossible (O(N!) time complexity).
- Use a better algorithm developed by Dimitri Bertsekas (originally to solve economics problem). ⇒ O(N^{2.25}) time complexity.
- MPI/OpenMP implementation (publicly available later on http://www.iap.fr/users/lavaux/)

Direct testing on simulation

Simulation

Brenier et al. 2003 Mohayaee et al. 2005 Lavaux et al., MNRAS, 2008

 Λ CDM $\Omega_{\rm M}$ =0.30, Ω_{Λ} = 0.70, σ_8 =1.0, BBKS power spectrum 128³ particles (but results do not change with a 512³)

Direct testing on simulation

Brenier et al. 2003 Mohayaee et al. 2005 Lavaux et al., MNRAS, **383**, 1292 (2008)

100

50

0

-50

-100

-100

Mpc/h

Lavaux et al., MNRAS, 383, 1292 (2008)

Diffuse mass

Diffuse mass

Incompleteness

M/L

(introduced in Shaya et al. 1995, ApJ)

Portion of the universe selected by chance

Cosmic variance

Redshift distortion

Lavaux et al., MNRAS, 383, 1292 (2008)
Redshift distortion

Redshift distortion

Three basic mock catalogs

Statistical analysis of a scatter

Lavaux, Physica D, in press (2008) Lavaux et al., MNRAS, **383**, 1292 (2008)

Example

Lavaux et al., MNRAS, **383**, 1292 (2008)

Example

Lavaux et al., MNRAS, 383, 1292 (2008)

Summary of systematics (Ω_m)

Lavaux et al., MNRAS, 383, 1292 (2008)

The peculiar velocities of our Local Universe

Redshift catalogues

CfA/ZCAT, SDSS, 2MASS Redshift Survey (K < 11.25), 2dF, 6dFGS, SPACE

Distance catalogues

Mark III, NBG-3k, SFI, SFI++, 2MASS TF

 \Rightarrow Map making of the Local Universe

2MRS/NBG-3k catalogs

2MASS redshift catalog (Huchra et al. 2005)

- Based upon the 2MASS photometric galaxy catalog
- ~25000 galaxies, selected with $K_s < 11.25$
- Full sky & Complete down to |b|~5 degree
- Distribution peaks at ~90 Mpc/h (z~0.03)
- ~250 Mpc/h (z~0.08) deep

NBG-3k distance catalog (Tully et al. 2008)

- ~30-40 Mpc deep, outgrowth of NBGC (Tully 1988)
- 1791 galaxies with high quality distances
 - > Tully-Fisher relation
 - > Tip of the red giant branch
 - > Surface brightness fluctuation
 - Fundamental plane

⇒What do we see ?

Estimation of M/L

Estimation of M/L (virial theorem)

Filling the Zone of Avoidance

Reconstructed velocity field

Reconstructed peculiar velocities

The NBG-3k bulk flow problem

WRONG BULK FLOW

BETTER BULK FLOW

Wm estimation

Comparison of <u>smoothed</u> velocity field \Rightarrow increase signal-to-noise

Lavaux et al., ApJ submitted, (2008)

Wm estimation

With bulk flow correction

$H=80 \pm 6 \text{ km/s/Mpc}$

Comparison of <u>smoothed</u> velocity field \Rightarrow increase signal-to-noise

Lavaux et al., ApJ submitted, (2008)

Local Group velocity: COBE observation

What is the origine of the CMB dipole ?

Local Group velocity: amplitude

Local Group velocity: CDM

Local Group velocity: ACDM

Local Group velocity: ACDM+baryons

Lavaux et al. (2008, ApJ submitted)

No wiggles

Local Group velocity: ACDM+baryons

Lavaux et al. (2008, ApJ submitted)

No wiggles

40 Mpc/h

Lavaux et al. (2008)

60 Mpc/h

Lavaux et al. (2008)

80 Mpc/h

Lavaux et al. (2008)

100 Mpc/h

```
Lavaux et al. (2008)
```


150 Mpc/h

```
Lavaux et al. (2008)
```


Conclusion

Conclusion

Lagrangian reconstruction of peculiar velocities

Test of MAK reconstruction: simulation & mock catalogs

Used it on 2MRS + NBG-3k

Convergence (or lack of) of the LG velocity

Likelihood formalism

Reconstructed ⇔ observed velocities: successful comparison

Comparison with Λ CDM

Conclusion / Perspective

Lagrangian reconstruction of peculiar velocities

Test of MAK reconstruction: simulation & mock catalogs

Used it on 2MRS + NBG-3k

Convergence (or lack of) of the LG velocity

Likelihood formalism

Reconstructed ⇔ observed velocities: successful comparison

Comparison with Λ CDM

2MRS + X-ray surveys (like RBC)

Improved modelling with Euler-Poisson reconstruction

Vlasov-Poisson

More statistical analysis:

- correlation function
- improved likelihood analysis)

Constrained simulation of the Local Universe

Correlation kinetic Sunyaev-Zel'dovich

6dFGS, SDSS, LSST

Correlation with ISW on CMB

Thank you for your attention !

Conclusion

Catalogues of galaxies

Listing of global properties: luminosity, distance, sky position, shape

Conclusion / Perspectives

Edge & Finite volume effects

Portion of the universe selected by chance

Cosmic variance

Edge & Finite volume effects

Methods:

- SPH filtering (Fontanot et al. 2003)
- Yahil method (Yahil et al. 1991)
- Shaya method (Shaya et al. 1995) \Rightarrow simplest

Objects folding into the cleared ZOA

Zone of Avoidance

(introduced in Shaya et al. 1995, ApJ)