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ABSTRACT

Neutrino oscillations, the baryon asymmetry and dark matter are important evidences

of new physics beyond the Standard Model.

Neutrino oscillations imply neutrino masses and a lepton mixing matrix that can

contribute to flavour violating processes and CP violation at low energies, accessible

to next experiments, and to the CP violation necessary for baryogenesis. Among the

most interesting implications, is flavour violation in the lepton sector, but it has only

been observed in neutrino oscillations. By analogy with quarks, it is then possible to

deduce a principle of minimal flavour violation for leptons. Since such formulation is

not straightforward in the lepton sector, we discuss different possibilities. Then we

propose a definition which could be applied to various models and could help us in

selecting between the possible neutrino mass generating mechanisms.

Furthermore, if the seesaw mechanism describes neutrino masses, we can have a

natural explanation to the baryon asymmetry of the universe with leptogenesis. In the

context of leptogenesis including flavour effects, we demonstrate that the baryon asym-

metry of the universe is insensitive to the low energy CP violating phases. This study

is performed in the minimal extension of the Standard Model, with the introduction

of 3 right-handed neutrinos and type-1 seesaw, only, and it is extended, in a following

study, to the supersymmetric case. Since the seesaw parameter space is quite large,

the numerical study is developed with the Markov Chain Monte Carlo method.

In relation to dark matter, we study a scenario with very weakly coupled candidates

and their production through the decay of a charged long-lived scalar particle. We

compute the scalar particle number density, evaluating its gauge interactions, and

compare it with Big-Bang Nucleosynthesis bounds. Then, we apply our results to the

Minimal Supersymmetric Standard Model scenario with axino or gravitino as Lightest

Supersymmetric Particle and stau or stop as Next to Lightest Supersymmetric Particle.
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I

EVIDENCES OF NEW PHYSICS

I.1 Neutrino oscillations

The Standard Model (SM) of particle physics contains 3 left-handed neutrinos νe, νµ,

ντ that are weakly-interacting particles and have null mass. This choice is in agreement

with the analysis of the invisible Z-boson width at LEP [1], from which we deduce three

“active” neutrinos with masses below the Z mass. These left-handed neutrinos do not

mix, therefore, neither flavour changes nor neutrino oscillations are predicted in the

SM.

Nevertheless, there are now many different data supporting the hypothesis of neu-

trino oscillations which come from experiments measuring fluxes of neutrinos produced

in the Sun, in the atmosphere, in accelerators and nuclear reactors. The first hint

to neutrino oscillations was given by solar and atmospheric neutrino experiments. A

deficit in the neutrino solar flux was already found in the Homestake experiment [2].

The flux of electron neutrinos from the Sun was ∼ 1/3 the value predicted by the

Standard Solar Model (SSM) [3]. But the most important confirmation to the so-called

“solar anomaly” arrived with the SNO experiment. It was in fact able to distinguish

the electron neutrino flux φνe
from the total neutrino flux φt via charged and neutral

current neutrino interactions in the detector. In 2001 it found a ratio φνe
/φt ∼ 0.34

compatible with νµ,τ appearance, and a value for the total flux φt ∼ 4.94 10−6cm−2s−1

in agreement with the SSM predictions [4]. KamLAND, confirmed the solar anomaly

discovering disappearance of νe from terrestrial reactors [5]. In the meantime, Su-

perKamiokande found a second neutrino anomaly, analysing fluxes of atmospheric

5



EVIDENCES OF NEW PHYSICS

neutrinos, that was confirmed in 2004 by the reactor neutrino experiment K2K. It

observed a dependence on the zenith angles in the muon neutrino flux, correlated with

the distance covered by neutrinos. These data were consistent with νµ disappearance

[6].

All those results are now interpreted with flavour change in the lepton sector. The

simplest way to include it in the SM is to introduce a neutrino mass matrix which

is not diagonalized in the charged lepton mass basis. It implies flavour change and

controls neutrino oscillations. The oscillation probability between two flavours a, b is

indeed given by:

P (νa
(−) → νb

(−)) = |
∑

i

U∗
aie

−im2
i L/2EUbi|2 = (I.1)

= δab − 4
∑

i>j

ℜ(U∗
aiUbiUajU

∗
bj) sin2(∆m2

ij

L

4E
)

+
(−) 2

∑

i>j

ℑ(U∗
aiUbiUajU

∗
bj) sin(∆m2

ij

L

2E
)

where U is the mixing matrix relating the neutrino and charged lepton mass bases, mi

the neutrino mass eigenstates, L the distance covered by the neutrino beam and E its

energy.

The solar and atmospheric anomalies are approximately two flavour oscillations.

The solar one is interpreted as an oscillation νe → νµ,τ , governed by a mass square

difference ∆m2
⊙ ∼ 7.6 10−5 eV 2 and a mixing angle sin2 θ⊙ ∼ 0.32, while the atmo-

spheric anomaly as an oscillation νµ → ντ with ∆m2
atm ∼ 2.4 10−3 eV 2 and a mixing

angle sin2 θatm ∼ 0.5. Those 2 flavour oscillation probabilities are approximations of

a 3 flavour mixing, governed by a 3 × 3 unitary mixing matrix, usually referred to as

UMNS
1. This matrix contains 3 mixing angles and 1 phase, if neutrinos are Dirac

particles. However, neutrinos are neutral particles and can be Majorana, i.e. identical

to their anti-particle. In this scenario, two more phases must be added to the MNS

lepton mixing matrix.

1There are still two anomalies in neutrino data that are not understood in the 3 oscillation picture,

from LSND [7] and low energy data in MinibooNE [8].

6



I.1 NEUTRINO OSCILLATIONS

The lepton mixing matrix is usually parametrized in the following way:

UMNS =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13 s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13




×




eiα 0 0

0 eiβ 0

0 0 1




The Dirac phase δ can be evaluated in neutrino oscillations, since it implies a differ-

ence between neutrino or anti-neutrino oscillation probabilities, as we can see from eq.

(I.1). Notice that this phase always appears in the UMNS with sin θ13, which induces

νµ ↔ νe oscillations at the atmospheric frequency. The value of θ13, not known at

the moment but constrained to be . 10◦ [9], therefore determines the capability of

future experiments to detect CP violation in neutrino oscillations. While the α and β

Majorana phases can be measured in experiments sensitive to lepton number violation,

like neutrinoless double beta decays [10]. However, in this case it is hard to extract a

value for those phases because of the uncertainties on nuclear matrices involved in the

reaction.

Oscillation experiments are insensitive to the determination of the absolute neutrino

mass scale. Laboratory bounds can be given in measurements of tritium beta decay,

where they have set a limit on mνe
= (

∑
i |Uei|2m2

i )
1/2 < 2.2 eV [11, 12], in future

experiments they are expected to reach a sensitivity of 0.2 eV [13]. In case of Majo-

rana neutrinos, neutrinoless double beta decays give a bound on |mee| = |∑i U
2
eimi| <

(0.44÷0.66)hN eV , where hN takes into account the uncertainties on the nuclear matri-

ces [14]. While from cosmology, the WMAP collaboration gives a bound
∑

imi < 0.61

eV by a combination of data from WMAP 5-year run on Cosmic Microwave Background

(CMB) anisotropies, Baryon Acoustic Oscillations (BAO) and Type Ia Supernovae data

[15]. Observations of CMB thermal fluctuations give the best determinations of various

cosmological parameters, as we can see in the following. A comprehensive explanation

of the more recent developments in cosmology can be found in [16]. With respect to

neutrino physics, an updated overview of neutrino experiments is given in [17].

7



EVIDENCES OF NEW PHYSICS

I.2 The baryon asymmetry of the universe

Observations tell us that the known universe is made of matter. Indeed we do not

see γ rays from particle and anti-particle annihilations so that we can deduce there is

an excess of matter over anti-matter. Visible matter is mainly composed by atoms,

implying a baryon asymmetry:

YB =
nB − nB

s
6= 0 (I.2)

where nB and nB are the number density of baryons and anti-baryons respectively, and

s is the entropy. Measurements of the baryon number density come from the estimation

of Big-Bang Nucleosynthesis (BBN) [18] relic densities and from measurements of the

CMB thermal fluctuations . Those independent measurements are compatible. The

WMAP results, combined with BAO and Supernovae, give: YB ∼ 8.75 ± 0.23 × 10−11

[15]. We have no definite information on the lepton asymmetry, however there is an

undetectable CMB of neutrinos which could contain a large lepton asymmetry.

There are strong motivations to believe that a dynamical mechanism at the early

universe is necessary to explain the present value of the baryon asymmetry. Indeed,

even if the universe was born with a baryon asymmetry, this would have been diluted

during its period of exponential expansion, called inflation. Therefore, in order to have

a baryogenesis at the origin, when the universe is repopulated by a hot thermal plasma

after inflation, the three Sakharov must be satisfied:

1. B violation, to evolve from a state with B = 0 to a state with B 6= 0;

2. C and CP violation, in order to have a different behaviour of particles and anti-

particles;

3. Out-of-equilibrium dynamics, indeed CPT conservation implies that particles and

anti-particles have the same mass and, thus, the same abundance if in equilibrium.

In the Standard Model of particle physics all the conditions are present. Indeed, even

if baryon number is conserved at three level, B violation is provided by quantum

anomalies and non-perturbative processes. C and CP violation are included in the

CKM matrix and the out-of-equilibrium dynamics is provided at the electroweak phase

transition. Nevertheless, the two last conditions are not successful, since CP violation

8



I.3 DARK MATTER

provided by the CKM matrix is too small and the Higgs potential, inducing the out-

of-equilibrium, is too smooth for Higgs masses bigger than 70 GeV [19]. Therefore, an

extension of the Standard Model scenario is inevitable.

I.3 Dark matter

Cosmology and astronomy provide another strong evidence of new physics. Obser-

vations suggest that most of the mass in the Universe is some non luminous dark

matter, of a yet unknown composition. This dark matter does not emit or absorb elec-

tromagnetic radiation at every known wavelength, while its gravitational interactions

dominate on scales from tiny galaxies, to the largest scales observed.

The cosmological matter density is usually quoted by using the matter fraction of

the critical energy density Ωm = ρm/ρc multiplied by h2, where h ≡ H0/100 km s−1 Mpc−1 =

0.701 ± 0.013 is the present Hubble parameter. Ωm could be evluated by determining

the mass-to-light ratio Υ = M/L of some system and then multiplying this by the

average luminosity density of the universe, so Ωvis = ΥL/ρc, where ρc is the critical

density. The value of Ωm obtained with these measurements, corresponding to mass

associated with light, provides less than 1% of the critical density, Ωvis . 0.01. While,

as we will see below, from other kinds of determinations there is strong evidence that

Ωm ≃ 0.3, thus supporting the idea that such a kind of dark matter exists.

Evidences for dark matter are provided at very different scales. The earliest indica-

tion for dark matter came at galactic scales from the observation that various luminous

objects (stars, gas clouds, globular clusters, or entire galaxies) move faster then one

would expect if they only felt the Newtonian gravitational attraction of other visible

objects. An important example is the measurement of the rotation curves of spiral

galaxies, namely the graph of circular velocities of stars and gas as a function of their

distance from the galactic centre. Observed rotation curves, usually exhibit a char-

acteristic flat behavior at large distances, that is outside the edge of the visible disk.

This leads to a lower bound on the dark matter density, Ωm & 0.1.

Moving to larger scales, the methods of determining Ωm involve observation of clus-

ters of galaxies. These observations include measurements of the peculiar velocities of

galaxies in the cluster, which are a measure of their potential energy if the cluster

9



EVIDENCES OF NEW PHYSICS

satisfies the virial theorem; measurements of the X-ray gas temperatures in the clus-

ter, which again correlate with the gravitational potential felt by the gas; and, most

directly, studies of gravitational lensing of background galaxies on the cluster. These

measurements are consistent with a value of Ωm ∼ 0.2−0.3. A recent spectacular proof

comes from a weak lensing observation of a unique cluster merger. Due to the collision

of two clusters, the X-ray emitting plasma is spatially segregated from the collisionless

dark matter galaxies. The gravitational lensing reconstruction shows a spatial offset of

the centre of the total mass from the center of the baryonic peaks [20].

However, the observations discussed above do not allow us to determine the total

amount of dark matter in the universe. The currently most accurate determination of

ΩDM comes from global fits of cosmological parameters to a variety of observations. For

the most recent measurements of the anisotropy of the CMB provided by WMAP 5-year

run, combined with data from Baryon Acoustic Oscillations and Type Ia Supernovae,

the dark matter density is set to [15]:

Ωmh
2 = 0.1143 ± 0.0034. (I.3)

Since ordinary matter is baryonic, the first proposal was to assume also this composition

for dark matter. The main baryonic candidates are MAssive Compact Halo Objects

(MACHOs) nevertheless, as we have seen in the chapter before, the measurements

on BBN relic densities and from CMB are consistent and set a limit to the number

of baryons that can exist in the universe. Expressed in baryon density over critical

density data from WMAP 5 year only give 0.02149 ≤ Ωbh
2 ≤ 0.02397. Hence, the

baryon density is clearly too small to account for the whole dark matter in the universe,

then we have to focus our attention on non-baryonic candidates.

Candidates for non-baryonic dark matter must satisfy several conditions: they must

be stable on cosmological time scales, otherwise they would have decayed by now, they

must interact very weakly with electromagnetic interaction, otherwise they wouldn’t

qualify as dark matter, and they must have the right relic density. Furthermore, from

studies of galaxy formations, they must be “cold”, that is non relativistic at the time

galaxies just started to form. Hot dark matter cannot cluster on galaxy scales until

it has cooled to non-relativistic speeds and, so, gives rise to a considerably different

primordial fluctuation. The leading SM dark matter candidate could be the neutrino,

but it is very light and can contribute only to the hot dark matter density. Therefore,

10
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also the requirement of non-baryonic cold dark matter implies an extension of the SM.
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II

THE FLAVOUR PROBLEM

II.1 SM flavour symmetry

As we said in section I.1, in the Standard Model of particle physics we do not expect

flavour violation in the lepton sector. The kinetic lagrangian for the SM leptons is

given by:

Lc = ℓD/ ℓ+ eRD/ eR. (II.1)

where the SU(2) lepton doublet, ℓ, is repeated over the three families, and the right-

handed neutrinos are not included. This lagrangian has an accidental global flavour

symmetry under the action of the group GSMl = Uℓ(3)×Ue(3). That is, if we consider

the three component vector ℓ, the kinetic term is invariant under the application ℓ →
V ℓ, where V ∈ Uℓ(3). To this kinetic term we add the renormalizable yukawa coupling:

LY = ℓYeH
c
ueR + h.c. (II.2)

that breaks the symmetry group into the group ULe
(1)×ULµ

(1)×ULτ
(1). This residual

symmetry is large and can be identified with the three family lepton number conser-

vations. Therefore, we do not have mixing between lepton families, and neutrino

oscillations or flavour violating processes are not predicted in the Standard Model.

Nevertheless, some new physics beyond the SM should exist if we want to explain

dark matter, neutrino oscillations and baryon asymmetry. This new physics is surely

flavoured in the lepton sector and must behaves in agreement with present strong

bounds on lepton flavour violating processes. Neutrino oscillations are indeed explained
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with the introduction of a neutrino mass matrix [mν ] in the lepton doublet space

which is not simultaneously diagonalised with the YeY
†
e operator already present. As

a consequence, it reduces the residual flavour symmetry and implies a mixing between

lepton families that, besides neutrino oscillations, allows flavour violating processes.

These processes have not been seen yet and the strongest upper bound is given on µ →
eγ, with BR < 1.2×10−11 [1]. However, the introduction of the neutrino matrix opens

new questions. An adequate neutrino mass generation mechanism should explain the

smallness of neutrino masses or the Dirac or Majorana neutrino nature, furthermore,

it would be really interesting to find a scenario were also baryon asymmetry and/or

dark matter are explained. There are theoretical motivations to believe that this new

physics should be visible at energies accessible to LHC. Indeed it could preserve the

theory from an hierarchy problem and, in some extension of the Standard Model,

could also provide a dark matter candidate. Since, as we have seen, flavour is not a

symmetry for leptons, this new physics can be flavoured and encounter the so called

“flavour problem” described in the following.

II.2 The non-renormalizable flavour violating oper-

ator

The effects of new physics at the electroweak scale are parametrised by non renormal-

izable operators, Od
n, built by the known fields:

LSM = Lgauge(ψi, A) + LHiggs(ψi, A, φ) +
∑

d≥5

cn
Λd−4

Od
n(ψi, A, φ). (II.3)

The high energy experiments completely determine the form of such operators thanks

to the direct production of new particles. However, even before attaining the necessary

energies, we can deduce some of their properties starting from the low energy data. At

present, very strong bounds exist on lepton flavour violating processes. At low energy,

flavour violating decays of charged leptons are described by a dimension six operator

of the form:
Oαβ

eγ v

m2
NP

ēασ
µνPReβFµν + h.c. (II.4)
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where Oαβ
eγ is a dimensionless coefficient and m2

NP is the new physics (matching) scale.

The flavour off-diagonal elements give flavour violating radiative decays for charged

leptons:

Γ(lα → lβγ) =
e2m5

α

16π
(|Aαβ

L |2 + |Aαβ
R |2) (II.5)

with mαAR,L = 2Oαβ,∗βα
eγ v/m2

NP .

The present bounds on flavour violating processes put strong constraints on the

form of the coefficients AL,R, that can be translated into a strong lower bound on the

new physics scale if we take Oαβ
eγ of order O(1). Indeed, defining the branching ratio

as:

BR ≡ Γ(lα → lβγ)

Γ(lα → lβνν̄)
≃ 192π3αv2

G2
Fm

2
α

(|Oαβ
eγ |2 + |Oβα

eγ |2)
m4

NP

(II.6)

and considering the process µ → eγ, which has the strongest bound, we obtain:

mNP & 104TeV × (|Oµe
eγ |2 + |Oeµ

eγ |2). (II.7)

The form of the coefficients AL,R is specified by the high-energy physics scenario. In

order to respect the present bounds on flavour violating processes and allow some new

physics at the TeV scale, we need a principle of minimal flavour violation for leptons

that restricts the form of the non-renormalizable operators.

II.3 Minimal flavour violation

Minimal Flavour Violation (MFV) is a principle that was first proposed in the quark

sector [2, 3], where the flavour and CP violation of the CKM matrix are observed in

many different ways. We can determine the CKM angles at the tree level and the

measured loop effects on flavour changing neutral currents (FCNC) are those predicted

by the Standard Model. Thus, the new effects in loops coming from new physics should

be smaller than the SM ones [4]. Similarly to the situation explained above for the

leptons sector, we have two possible scenarios. Either the new degrees of freedom

carrying flavour appear at very high energy, and they are not early testable. Or, at the

TeV scale the flavour changing couplings are suppressed by a MFV symmetry principle.

So, Minimal Flavour Violation is a principle introduced in the quark sector in

order to suppress new particle interactions and respect present data. This principle
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becomes a useful tool in model building at the TeV scale since it is very predictive

and contemporarily includes the most part of models in accord with quark flavour

physics. In [2] they define minimal flavour violation where the SM yukawas are the

only source of quark flavour symmetry breaking. With this definition flavour change

and CP violation in the quark sector are proportional to the CKM matrix and the

quark eigenvalues. Thus, MFV becomes a predictive framework that encompasses

many models. As we have seen before, the lepton sector differs sensibly. A new physics

must exist to accommodate neutrino oscillations but flavour change has not been seen

in flavour violating processes yet. Thus we do not know if the lepton mixing matrix

controls neutrino oscillations and flavour violation.

In our work reproduced in Chapter 1 we discuss the possibility of defining a principle

of minimal flavour violation in the lepton sector, where the lepton mixing matrix angles

are not measured with a precision comparable with the CKM one [5] and strong upper

bounds on lepton flavour violating processes exist. A first definition of minimal lepton

flavour violation has been proposed by Cirigliano et al. [6], where they allow only

the operators Ye and [mν ] to define a basis in the lepton doublet space. In that case,

the scenario is very predictive and flavour violation is driven by the UMNS matrix.

Some variations have been studied in subsequent papers [7, 8]. However, we look for

a more extensive definition which could be applied to various models and could help

us in selecting between the possible neutrino mass generating mechanisms. We will

see that various definitions of minimal flavour violation for leptons can be deduced

and, in particular, in the case of Majorana neutrinos, where the light neutrino mass

operator is non renormalizable at the electroweak scale. We propose a definition that

could encompass many models, where flavour violating processes are not necessarily

controlled by the UMNS mixing matrix.
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III

LEPTOGENESIS AND CP VIOLATION

III.1 The Seesaw mechanism

In our studies reported in Chapters 2 and 3 we have considered the type-1 seesaw

extension of the Standard model. It is a very attractive scenario, since it can naturally

explain the smallness of neutrino masses and give a dynamical production of the baryon

asymmetry of the universe, through leptogenesis, without inducing proton decay [1].

We have focused our attention on the CP violation provided by the seesaw mecha-

nism. As we have seen in section I.1, CP violation has not been discovered in the lepton

sector yet. Nevertheless, in the seesaw scenario we consider, CP violation is provided

by 6 phases. And, some combination of those phases can contribute to the UMNS ma-

trix and be measurable in future experiments. We recall that in neutrino oscillations

we can measure only the Dirac phase, while some constraints on the Majorana phases

can be set in neutrinoless double beta decays.

The type-1 seesaw extension of the Standard Model contains three heavy (M >∼ 109

GeV) Majorana neutrinos NI in addition to the SM particles. The Lagrangian at the

NI mass scale is given by:

L = eR
jYeijHdℓ

i +N
J
λiJHuℓ

i +N
J MJK

2
N cK + h.c. (III.1)

where the flavour index order on the Yukawa matrices Ye, λ is left-right, and Hu =

iσ2H
∗
d . This Lagrangian contains 21 parameters, among them the 6 CP violating

phases.
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In the basis where the charged lepton yukawas are diagonal (DYe
), the seesaw can

be parametrized in different ways, where the CP violating phases appear in different

combinations:

• Top-down parametrization, the usual one, at Λ > Mi, with inputs from the

right-handed neutrino sector. The neutrino yukawa coupling is bi-diagonalized

by two unitary matrices λ = V †
LDλVR. So that, the input parameters are the 9

eigenvalues of DM , Dλ and the 6 mixing angles and 6 phases of VL and VR.

• Bottom-up parametrization [2], with inputs from the left-handed sector. At low

energy the heavy degrees of freedom are integrated out and the effective light

neutrino mass matrix can be written:

[mν ] ≃ λM−1λTv2
u = UDνU

T (III.2)

where U is the lepton mixing matrix and Dν is the diagonal neutrino light mass

matrix. We are then left with the SM seesaw measurable parameters. The

remaining ones can be the taken to be the yukawa eigenvalues Dλ and VL.

• Intermediate parametrization, proposed by Casas and Ibarra [3]. The neutrino

yukawa couplings are written in terms of the lepton mixing matrix U and of a

complex orthogonal matrix R:

λ = UD1/2
ν RD

1/2
M /vu (III.3)

And the other inputs are the 6 light and heavy neutrino masses Dν and DM .

The two last parameterizations make manifest the role of the 3 low energy UMNS phases

and are, therefore, convenient to follow the role of the 3 measurable CP violating phases

also at high energy.

III.2 Flavoured leptogenesis

CP violation provided by the seesaw mechanism can be an important ingredient for the

production of the baryon asymmetry of the universe (BAU). For clarity we briefly recall,

here, the leptogenesis SM seesaw scenario, while in our work we have also considered
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Figure III.1: CP violating decay of the lightest right-handed neutrino N1.

its supersymmetric extension. In this context, BAU is provided by the CP violating

decays of the lightest right-handed neutrino N1, which populates the thermal plasma

at temperatures T ∼ M1. In this case, hierarchical N masses are assumed: M1 ∼ 109

GeV ≪ M2, M3. A population of N1 is produced, mainly by scattering processes, at

T ∼ M1. Then, the N1 decay violating CP producing a lepton asymmetry [4]:

ǫαα =
Γ(N1 → ℓαH) − Γ(N1 → ℓαH)

Γ(N1 → ℓH) + Γ(N1 → ℓH)
≃ 3M1

8πv2
u [λ†λ]11

Im
{
[λ]α1[m

†
νλ]α1

}
, (III.4)

where α specifies the flavour of the lepton doublet in the final state. The flavour indices

are explicitly written since, recently, has been suggested that flavours can have a role in

leptogenesis [5, 6, 7]. Indeed if the interactions involving charged lepton yukawas are in

equilibrium, flavours become distinguishable and the lepton asymmetry evolutions in

each flavour must be considered separately. If inverse decays and scattering processes

that erase the lepton asymmetries are out of equilibrium, then the asymmetries can

survive. The effect of those processes is included in the efficiency parameter ηα, equal

to:

ηα ≃
[(

m∗

2|Aαα|m̃αα

)−1.16

+

( |Aαα|m̃αα

2m∗

)−1
]−1

, (III.5)

in strong wash-out regime. Where Aα ∼ 2/3 and m̃ are the N1 (rescaled) decay rates:

m̃ =
∑

α

m̃αα =
∑

α

|λα1|2
M1

v2
u. (III.6)

The lepton asymmetry is then converted into baryon asymmetry by non-perturbative

processes. The central quantities for leptogenesis are then the lepton asymmetry ǫαα

and the wash-out factors ηα, so that the final baryon number density can be written as

YB ≃ −12

37

1

3g∗

∑

α

ǫαα ηα, (III.7)
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where g⋆ ∼ 106.75 in the SM and 12/37 takes into account non-perturbative effects

to convert the lepton asymmetry into baryon asymmetry. For a detailed review on

flavoured leptogenesis see [8].

III.3 CP violation

Here we concentrate on the role of CP violating phases. The phenomenological question

we want to answer, in the context of thermal leptogenesis, can be formulated in the

following way:

Given the measured value of the baryon asymmetry,

can an allowed range for the UMNS phases be predicted?

The inclusion of flavour effects has changed the standard scenario. Following the

Casas-Ibarra parametrization, see Eq. (III.3), the low-energy measurable phases are

explicitely visible in the lepton asymmetry ǫ:

ǫαα = − 3M1

16πv2

ℑ(
∑

βρm
1/2
β m

3/2
ρ U∗

αβUαρRβ1Rρ1)∑
β mβ|R1β |2

. (III.8)

Therefore, without including flavour effects YB ∝ ǫη =
∑

α ǫαα

∑
α ηα and, because of

the UMNS unitarity, the low-energy phases disappear from the total lepton asymmetry:

ǫ = − 3M1

16πv2

ℑ(
∑

ρm
2
ρR

2
ρ1)∑

β mβ|R1β |2
. (III.9)

We can than easily conclude that the baryon asymmetry, in leptogenesis without

flavours, is insensitive to the low energy phases. This result was first found by [9].

Nevertheless, this simple argument cannot be applied in flavoured leptogenesis, where

the lepton asymmetry in each flavour evolves independently and must be considered

with its own washout factor: YB ∝
∑

α ǫααηαα.

In the two publications reproduced in Chapters 2 and 3, we show that leptogenesis

is insensitive to the low energy phases even if flavour effects are taken into account.

In Chapter 2 we discuss the simplest extension of the SM with 3 right-handed

neutrinos and the type-1 seesaw mechanism. We look for an area of the unmeasurable

parameter space where we have enough baryon asymmetry and YB independent of low
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energy phases. It is found analytically, in strong washout regime, with a simple choice

of the unmeasurable R matrix defined in the Casas-Ibarra parameterization. The study

is completed by a numerical analysis, where we provide a random selection of points,

in the seesaw parameter space, with large enough baryon asymmetry for any value of

the low energy phases.

The subsequent publication, in Chapter 3, extends this work to the supersymmet-

ric seesaw scenario. This framework is particularly attractive since it stabilizes the

hierarchy between the leptogenesis scale and the electroweak one. In this context we

have preferred a phenomenological bottom-up parameterization since, besides the usual

measurable low-energy parameters U and Dν , also Dλ and VL can have physical rel-

evance in supersymmetry. They indeed may contribute to the renormalization group

running of the slepton mass matrix and, so, to the enhancement of flavour violating

processes, that could in that case be measurable in the next experiments [10]. The

analysis is performed numerically by a Markov Chain Monte Carlo scan. This method

is particularly efficient in case of a large parameter space, since it samples through a

fast random walk a representative subset of points, according to a given probability

distribution [11, 12].
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IV

PARTICLES AND THE EARLY

UNIVERSE

IV.1 The hot Big-Bang

All the cosmological processes we have discussed so far rely on the standard cosmolog-

ical model for the evolution of our universe, which has its foundations on Einstein’s

General Relativity theory. The most compelling idea is the so-called Big-Bang: our

universe was once very hot and dense and has expanded and cooled to its present

state. The first idea of a Big-Bang model was formulated in order to account for the

possibility that the abundances of light-elements, e.g. D and 4He, had a cosmological

origin. Then the presence of a relic background radiation (CMB) with a temperature

of a few K was predicted. It was found many years later giving the first confirmation

for the hot Big-Bang model [1].

At the origin, the universe was hot and dense and populated by particles maintained

in equilibrium by very fast interactions. However the universe expanded and cooled,

thus the initial equilibrium condition was no longer maintained and particles started

leaving the thermal plasma (freeze-out). The particles left the equilibrium when their

interactions with the plasma were not fast enough if compared with expansion of the

universe. This happened at different temperatures for different particles depending

on their interaction couplings and their thermal masses. A review over the standard

cosmological model can be found in [2] and, with recent developments on cosmological

perturbations, in [3].
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IV.2 Very weakly interacting dark matter

Dark matter could have been produced in the primordial thermal plasma. If stable

on cosmological scales, once frozen out of the thermal plasma, its relic density has not

changed. Then, if produced in the right amount at the origin, it could provide for the

dark matter amount observed today.

The non-baryonic cold dark matter candidates are basically elementary particles

which have not been discovered yet, like axions and Weakly Interacting Massive Par-

ticles (WIMPs). In the context of the dark matter problem, supersymmetric theories

seem to give an elegant solution, see e.g. [4]. The supersymmetric extensions of the

Standard Model which include the conservation of a new quantity, the R-parity, lead

to the appearance of an appealing candidate which could be the main constituent of

dark matter. This candidate is the lightest supersymmetric particle, the LSP, which

is absolutely stable in these models and, so, could have been produced at the origin of

our universe and now be still present and be the main constituent of matter. Between

the supersymmetric particles the dark matter candidates are those electrically neutral.

The most studied is the weakly interacting neutralino, which is the fermionic super-

partner of SM gauge and Higgs bosons and is present in the minimal supersymmetric

extensions of the SM (MSSM).

In our work we are mainly interested to dark matter candidates that have “very”

weakly interactions with the ordinary particles. Two interesting examples from su-

persymmetry are the gravitino [6] and the axino [5]. The gravitino, superpartner of

the graviton, is present in supersymmetric theories that include also gravity. Its mass

depends strongly on the supersymmetry breaking scheme and can vary between many

orders of magnitude. It is very weakly coupled since its interactions are suppressed by

the Planck scale. The axino, instead, is present in supersymmetric models that include

the axion as dynamical solution to the strong CP problem. A new chiral symmetry

U(1) is introduced and then spontaneously broken at a very large scale fa ∼ 1011 GeV.

The axion is the Goldstone boson of such a broken symmetry and the axino its su-

perpartner. The axino coupling to matter is suppressed by the fa symmetry breaking

scale and its mass can be set at different energy scales.

Thus, gravitino and axino are massive particles whose interactions with ordinary

matter are strongly suppressed. If one of them is the LSP, it can be an interesting
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candidate for cold dark matter.

IV.3 Charged relics

The LSP can be thermally produced from scattering processes with particles in the

thermal bath at the origin of the universe. But it can also be produced non-thermally,

in decay processes of particles which are already out of equilibrium. This mechanism in-

volves two steps, the freeze out of the next-to-lightest-supersymmetric particle (NLSP)

from the thermal bath and, then, its decay into the LSP. In order for a two step process

to occur, the decay width of the NLSP must be sufficiently small to allow for the de-

coupling in the first place. On the other hand, the lifetime of the NLSP cannot be too

large, otherwise the decay into axinos and ordinary particles would take place too late,

during or after nucleosynthesis, and it could destroy predictions for the abundance of

light elements. The R parity conservation implies that all the NLSP decoupled from

the thermal bath must decay into the LSP, thus for each NLSP a LSP is produced.

In this non-thermal production, the abundance of the NLSP is then strictly correlated

with the abuundance of the dark matter candidate.

In the study reported in Chapter A, we have studied the general case of a scalar

charged thermal relic. We have computed its number density and compared it with

BBN bounds. In the first part of the analysis we have considered its gauge interactions,

in both abelian and non-abelian case at the leading order in perturbation theory. They

are often the dominant interaction channels and allow a more “model independent”

analysis, since they depend on only a few parameters, the mass of the interacting

particle and its charge or representation. The strength of those gauge interactions is

enhanced by the Sommerfeld effect, that takes into account non perturbative effects

at the threshold, where the expansion in terms of the coupling is inadequate. In the

second part of the paper we apply our results to the MSSM scenario with axino or

gravitino LSP and stau or stop NLSP.
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Neutrino masses imply the violation of lepton flavour and new physics beyond the

Standard Model. However, flavour change has only been observed in oscillations. In

analogy with the quark sector, we could deduce the existence of a principle of Minimal

Flavour Violation also for Leptons. Such an extension is not straightforward, since

the mechanisms generating neutrino masses are unknown and many scenarios can be

envisaged. Thus, we explore some possible definitions of MFVL and propose a notion

that can include many models. We build an R-parity violating neutrino mass model

in agreement with our preferred definition of MFVL, and show that flavour violating

processes are not neccessarily controlled by the MNS mixing matrix.

1.1 Introduction

Minimal flavour violation[1, 2] in the quark sector, is a useful framework in which to

construct TeV-scale models of New Physics. It is predictive, and includes many or

1pre-print arXiv:hep-ph/0607329
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most models that are consistent with quark flavour data. Recently, a definition of

Minimal Flavour Violation (MFV) has been introduced for leptons [3]. The proposed

formulation is predictive—it implies that lepton flavour violation is determined by

the light neutrino mass matrix— but includes few of the many neutrino mass models

[4, 5, 6, 7, 8, 9] that are consistent with current observations.

The flavour-changing mixing angles of the leptonic sector (MNS matrix), are not

measured with the overconstrained precision of the CKM matrix. So MFV is not

strongly suggested for leptons, as it is for quarks. However, if one assumes that there

is new physics at the TeV-scale, that satisfies MFV or a similar principle in the quark

sector, then it is reasonable to expect a similar principle to apply for leptons. So it

is interesting to explore different possible definitions of minimal flavour violation for

leptons (MFVL), and in particular to study whether it implies that lepton flavour

violation is controlled by the MNS matrix and the light neutrino masses.

In this paper, we take the principle of MFV to limit the number of flavour structures

allowed to the renormalisable couplings of the theory. This flexible definition can

be applied to many models, but is less predictive than [3]. We explicitly construct

an R-parity violating neutrino mass model that is “minimally flavour violating”, in

agreement with observation, and where the lepton flavour violation is not controlled

by the light neutrino mass matrix.

In section 1.2, we review minimal flavour violation for the quarks, and classify neu-

trino mass generation mechanisms. In section 1.3, we discuss the purpose of Minimal

Flavour Violation for leptons, and various possible implementations which we apply

to some neutrino mass models. In section 1.4, we build an R-parity violating neutrino

mass model, using the λLLEc coupling, that satisfies our preferred definition of MFVL.

In the Appendix is sketched a model satisfying a more restrictive definition of MFVL.

1.2 Review

Beyond-the-Standard-Model physics, in the form of new particles or new interactions,

must exist at some scale, to explain observations such as dark matter, neutrino masses,

the baryon asymmetry and the temperature fluctuations in the Cosmic Microwave

Background. New physics at the TeV-scale (such as, for instance, supersymmetry)
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1.2 REVIEW

is particularily desirable because it could be discovered at the LHC, and would be

theoretically welcome to address the hierarchy problem. However, if there are new

flavoured TeV-scale particles, as one would like, it is puzzling that their footprints

have not been seen in rare flavoured and CP violating processes. So Minimal Flavour

Violation is introduced as a constraint on the interactions of such new particles, to

suppress their contributions to flavoured observables.

We follow the approach to Minimal Flavour Violation of [1], which starts from the

flavour transformation properties of various terms in the SM Lagrangian. We define

the SM to have massless neutrinos. In three generations, the fermionic kinetic terms

qLD/ qL + uRD/ uR + dRD/ dR + ℓD/ ℓ+ eRD/ eR (1.1)

have a global Uq(3) × Uu(3) × Ud(3) × Uℓ(3) × Ue(3) flavour symmetry. For instance,

qL is a three component vector in quark doublet flavour space, whose kinetic term is

invariant under qL → VqqL, where Vq ∈ Uq(3). This large symmetry group is broken to

UB(1) × ULe
(1) × ULµ

(1) × ULτ
(1) by the Yukawa couplings

qLYuHuuR + qLYdH
c
udR + ℓYeH

c
ueR + h.c. (1.2)

where Hu is the SM Higgs, and the index order on Yukawa matrices is left-right. In

the lepton sector, there is one “symmetry-breaking” operator, or “spurion” in the

language of [1], per vector space: YeYe
† in ℓL space, Ye

†Ye in eR space. These

hermitian matrices can be diagonalised, and are uniquely identified by their eigenvalues

in the eigenbasis. So we will sometimes say the operators can “choose a basis”, and

discuss interchangeably the matrix, the spurion and the basis of eigenvectors who are

normalised to have length2 = the eigenvalue. In the presence of Ye (and the absence of

other “basis choosing” operators in the lepton sector), there are three remaining global

U(1)s. The three conserved quantum numbers can be taken as the individual lepton

flavours 2. So in our restricted definition of the SM, neutrinos are massless and lepton

flavours are conserved. We add neutrino masses at the end of the section.

In the quark sector, YdYd
† and Yd

†Yd choose respectively a basis in the qL and

the dR flavour spaces. Similarly, YuYu
† and Yu

†Yu choose respectively a basis in

2The three U(1)s can also be taken to correspond to the three diagonal generators of U(3) =

{I, λ3, λ8}, acting simultaneously on the ℓL and eR flavour spaces. In this case one conserves the total

lepton number Le + Lµ + Lτ , and the flavoured asymmetries Le − Lµ and Le + Lµ − 2Lτ
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the qL and the uR flavour spaces. So there are two operators in qL space, YdYd
† and

YuYu
†, who are not simultaneously diagonalisable. Flavour is therefore not conserved,

and the misalignment between the two eigenbases is parametrised by the CKM matrix.

The mixing angles and phase of the quark sector are over-determined in many

flavour-changing, flavour-conserving and CP violating processes of the quark sector.

For instance, the CKM angles can be obtained in tree level processes, and used to

predict rates that are mediated by loops in the Standard Model. To date, the exper-

imentally measured rates agree with these predictions, implying that the new physics

contribution in loops should be smaller than the SM. For new particles with generic

flavour-changing couplings, this is a strong constraint, placing the mass above 10-100

TeV [10].

Minimal Flavour Violation was introduced to allow New Physics to have TeV-scale

masses, and be consistent with precision flavoured data from the quark sector. It is

a restriction on the flavour structure of new interactions. The only operators allowed

in the “flavour-spaces” are those of the SM (and the identity matrix). So flavour-

change and CP violation in the quarks are proportional to the CKM matrix and quark

Yukawa eigenvalues, eg to YdYd
† in the mass basis of up-type doublet quarks. MFV

is therefore a predictive framework, and encompasses many of the models that fit the

data.

Flavour-changing processes are also observed in the lepton sector, in neutrino oscil-

lations. The weakly intereacting neutrinos are observed to have small mass differences,

and large mixing angles with respect to the charged leptons. That is, in the lepton

doublet space, there are two operators that break the flavour Uℓ(3) symmetry. These

are the charged lepton and neutrino mass matrices, which “choose bases” related by

the MNS matrix U . In the charged lepton mass eigenstate basis (referred to as the

“flavour” basis), the light neutrino mass matrix satisfies

[mν ][mν ]
† = U∗D2

mν
UT (1.3)

where D2
mν

= diag{m2
1, m

2
2, m

2
3}. To date, only flavour changing charged current pro-

cesses (mediated by W exchange) are observed in the lepton sector, and MFV is not

“required” for the leptons. Four elements of the MNS matrix are measured—the re-

mainder being obtained from unitarity[11]—and CP violation is not observed. This

means new leptonic physics is not stringently constrained to agree with SM predictions
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for CP violation, as is the case in the quark sector. Rates for unobserved FCNC lepton

processes (e.g. µ → eγ) can be calculated using the MNS matrix and neutrino masses,

and are well below the current experimental sensitivity. So new leptonic physics is only

constrained to be less than the experimental rates, and not, as in the quark sector, to

be smaller than the prediction one obtains using observed masses.

The neutrino masses can be lepton number conserving (“Dirac”) or not (“Majo-

rana”). In the Dirac case one could define MFV in the lepton sector as an exact copy of

the quarks, so in this paper, we consider Majorana neutrino masses, which arise from

a dimension five operator

(ℓjHu)K
jk(ℓkHu) . (1.4)

Two classes of new physics generating this operator can be distinguished. One possi-

bility is that it is generated by new flavoured particles, in a new flavour space. These

new particles should be heavy or weakly coupled, since they have not been observed.

The canonical example is the seesaw, where one adds, e.g., 3 generations of νR, and

the flavour symmetry group of the kinetic terms is enlarged to U(3)6. The second

possibility is that the all flavoured particles live in the 5 flavour spaces of the SM, and

some new lepton number- or flavour-changing interactions are included. This is the

case for neutrino masses generated in the R-parity violating MSSM.

1.3 Minimal Flavour Violation for Leptons?

We assume that there are new flavoured particles at the TeV scale, and hope that this

is verified soon at the LHC. A definition of Minimal Flavour Violation in the lepton

sector [3] could then be interesting for various reasons. Firstly, MFV in the quark

sector is well motivated by the experimental observations. So one could conclude it

reflects some principle or symmetry of the underlying theory, and should apply in the

lepton sector as well. Secondly, in the lepton sector, we know there must be Beyond

the Standard Model physics at some scale, because we observe neutrino masses. We

can hope to use MFV as a tool in distinguishing among the multitude of candidate

models for new physics in the lepton sector 3. Minimal Flavour Violation for leptons

3Taking a principle of MFV to apply to the neutrino mass generation mechanism is a more am-

bitious implementation of MFV than in the quark sector. For quarks, one hopes for new TeV-scale
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should therefore be applicable to most models, and be predictive, so we can test the

hypothesis and/or differentiate models.

A predictive definition of MFV for the lepton sector has recently been introduced in

[3], and further studied in [12]. It supposes that the three light neutrinos are Majorana,

with the required lepton number violation occuring at some high scale ΛLN . Two

classes of models are considered: those whose particles transform according to the

U5(3) flavour transformations of the SM, and a second scenarino with three (heavy)

right-handed neutrinos.

In this work, we also take the light neutrino masses to be Majorana. If they were

Dirac, MFV could be defined for leptons by copying the quark definition. Models that

generate Majorana neutrino masses can be divided into two cases [3]:

• case A: models whose particles transform according to the U 5(3) flavour transforma-

tions of the SM, and

• case B: models with a flavour transformation group that is larger than that of the

SM (e.g. the seesaw, where the kinetic terms of the three νR have a U(3) symmetry).

1.3.1 Larger flavour transformation group

Suppose there are a several generations of a new particle, e.g. three right-handed

neutrinos. The kinetic terms therefore have an enlarged flavour symmetry group, which

is U6(3) when 3 νR are added to the SM. The renormalisable Lagrangian for the SM +

the new particle will contain the SM Yukawas, and some number of additional spurions

corresponding to the interactions of the new particle. In the case of the seesaw, the

Lagrangian is

LSM + ℓjYν
jKHuNK +

1

2
N c

JMJJNJ + h.c. (1.5)

and there are potentially two “basis-choosing” interactions, or spurions, in νR space:

Yν
†Yν and M. There are a variety of potential definitions of MFV, which we illustrate

particles (for instance to address the hierarchy problem), in which case MFV is almost required to

describe the Lagrangian up to scales ∼ 100 TeV. In the lepton sector, we know there is New Physics,

and it should have some connection to flavour because it generates neutrino masses. However, this

new physics could be at a high scale (∼ 1010 − 1016 GeV in the seesaw?), so in assuming that MFV

applies to the interactions that generate the neutrino masses, we may be applying it across many more

orders of magnitude than in the quark sector.
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with the seesaw example.

1. one could impose that the new physics may not introduce new spurions in the

Standard Model flavour spaces. In the case of the seesaw, this means that YνYν
†

should be diagonal in the lepton doublet flavour basis (charged lepton mass eigen-

state basis). No restrictions are imposed on the number of bases chosen in the

flavour space of the new particles. In the seesaw case, Yν
†Yν and M could have

different eigenbases, and must do so to reproduce the correct neutrino mixing an-

gles. This definition of MFV for leptons is predictive but unattractive, because

it implies that lepton flavour violation amoung charged leptons is suppressed by

neutrino masses.

2. CGIW [3] define MFV for the seesaw by allowing the renormalisable interactions

of eqn (1.5) to choose a second basis in ℓ space, but impose restrictions on the

spurions in νR space. They study the case where the νR are degenerate of mass

M , and CP is a symmetry of the right-handed neutrino sector [13]. (So there is

only one eigenbasis in νR space.)

In this case K = YνM
−1YT

ν = YνYν
T/M . The two “basis-choosing” coupling

matrices in ℓ space, that are relevant for lepton number conserving flavour viola-

tion, are

YeYe
† , YνYν

† =
M

v2
U∗Dmν

UT (1.6)

If there is no CP violation in the lepton sector (the case studied by CGIW), then

YνYν
† = MK. In either case, lepton flavour violation is controlled by parameters

from the light neutrino sector. The predictions of this scenario should be similar

to the SUSY seesaw with degenerate νR [14].

3. The more generic (and less predictive) definition of MFV for the seesaw would be

to allow all renormalisable interactions to be independent spurions, as one allows

for SM constituents (equivalently, one could allow up to two spurions per vector

space). In the case of the νR, with the seesaw Lagrangian of eqn (1.5), the Majo-

rana mass matrix M and the Yukawa coupling Yν
†Yν are independent spurions

in the νR flavour space. Similarly to YνYν
† and YeYe

† in ℓ space, they have

unrelated eigenbases. This is the “usual” type-1 seesaw, whose supersymmetric
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flavour-changing predictions have been extensively studied in the literature [15].

It is well known that in the SUSY seesaw, the rates for flavour-changing processes

among the charged leptons are not related to the neutrino masses or the MNS

matrix [16].

1.3.2 Standard Model flavour transformations

Consider now neutrino mass models whose particles transform according to the U 5(3)

flavour transformations of the SM. In the quark sector, MFV restricts the bases chosen

by flavour-dependent new interactions to be those of the SM Yukawas. That is, there

are two allowed bases (spurions) in qL space, and one in uR and dR spaces respectively.

1. CGIW define MFV for leptons, in this case, to allow two spurions (“basis-

choosing” operators) in the doublet lepton (ℓ) space, which are K and YeYe
† .

The K is the dimensionful coefficient of a lepton number violating operator, so

lepton flavour changing processes, that conserve lepton number, are controlled

by the dimensionless Λ2
LNKK†. Rates for lepton flavour violating processes (e.g.

µ → eγ) are proportional to the unknown Λ2
LN , but ratios of LFV processes are

predicted to be controlled by KK†. This describes for instance the SUSY triplet

model [9, 3, 12].

2. Alternatively one could suppose that MFV is a restriction on renormalisable cou-

plings. This is reasonable firstly because MFV is a recipe for extrapolating in

scale. We know how renormalisable couplings evolve, whereas we cannot guess,

in a bottom up approach, when a non-renormalisable interaction becomes renor-

malisable. Secondly, one could expect that flavour is introduced into the theory

at some high scale, (MGUT ?), and comes to us via renormalisable couplings.

• One could hope to define MFV, by analogy with the quark sector, as restricting

all new interactions to be aligned with the SM Yukawas. But then it is difficult

to obtain the large mixing angles of the MNS matrix. A model attempting to

satisfy this ideal can be found in Appendix A. This version of MFV would pre-

dict that lepton flavour changing amplitudes must contain the neutrino mass to

some power, or lepton number violation. Notice that this differs from the CGIW

prediction; in the present case, lepton flavour violation is suppressed by the small
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neutrino mass scale.

• A more realistic definition of MFV, that includes some models, would allow

(at least) one other basis in ℓ space. New renormalisable interactions can choose

one, and only one, new basis for ℓ space, and no new bases for {eR, uR, dR, qL}
spaces. That is, we take MFV as a statement about renormalisable interactions,

that allows two bases in the qL and ℓ spaces, one in the uR, dR and eR spaces.

The question then arises: is lepton flavour violation among charged leptons con-

trolled by the light neutrino mass matrix? If yes, then this definition of MFVL

is equivalent to that of CGIW. If the lepton flavour violating rates are indepen-

dent, one could hope they give information about the neutrino mass generation

mechanism.

Some renormalisable, lepton number violating interactions involving ℓ, that can

be used to construct the neutrino mass matrix, are

1

2
MT

~T · ~T † + gφMTH
c
u~τH

c
u · ~T + gijℓ

c

i~τℓj · ~T (triplet) (1.7)

µiLiHu + λ′jrsLjQrD
c
s +

1

2
λn

ijLiLjE
c
n (R parity Violating) (1.8)

where Hu is the Standard Model doublet Higgs, T is an SU(2) triplet scalar,

and the second line is in superfield notation, so are renormalisable interactions in

supersymmetry. Under the U(3) flavour transformations of ℓ space, g transforms

as a symmetric 6, λ′ and µ as 3̄, and the antisymmetric λ as a 3.

In the triplet model of eqn (1.7), the exchange of ~T induces the neutrino mass

operator (1.4). The light neutrino mass matrix is therefore [mν ]αβ ∝ gαβ, and

flavour violation among the charged leptons is controlled by the light neutrino

mass matrix [9]. In this model, this definition of MFV based on renormalisable

couplings, agrees with the definition of CGIW based on mass matrices.

It seems not possible to generate observed light neutrino masses with the λ′

coupling, if we implement strictly this definition of MFV. The λ′ must respect

MFV in the quark sector:
∑

ℓ,d

λ′ℓqdλ
′∗
ℓpd ∝ [YdYd

†]qp

∑

ℓ,q

λ′ℓqdλ
′∗
ℓqf ∝ [Yd

†Yd]df

so the eigenvalues of λ′ are those of the Yd. This hierarchy, when combined with

quark masses to obtain mν , gives too steep a neutrino mass hierarchy. In the
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following section, we construct a neutrino mass model that satisfies this definition

of MFV, using the λ interaction.

1.4 The λ model

The aim of this section is to construct a neutrino mass model that has two features.

It should be minimally flavour violating, in the sense that the new renormalisable

interaction λ only introduces one new basis, or spurion, which is in ℓL space. And

the model should agrees with current bounds on lepton flavour violating processes

(µ→ eγ, etc), but the predictions for these processes should not be determined by the

light neutrino mass matrix.

We take the light neutrino masses to be generated entirely by the RPV λ coupling,

so we neglect λ′ and bilinear RPV. In the charged lepton mass eigenstate basis, the

light neutrino mass matrix can be written [17]

[mν ]ij =
∑

m,n,p,q

λm
inλ

q
pjmen

δn
q Ã

mpI(mẼm
, mL̃m

) + (i↔ j) , (1.9)

where the A-term Ãmp = −((YeA)mp vd√
2

+ µ vu√
2
Ye

mp) is taken flavour diagonal and

included in the mass insertion approximation, the mass matrices for the sleptons Ẽm

and L̃m are taken diagonal in the flavour basis (which is consistent with MFV), and

I(m1, m2) = − 1

16π2

m2
1

m2
1 −m2

2

ln
m2

1

m2
2

. (1.10)

The λn
ij is an antisymmetric matrix on its doublet indices i, j, so corresponds to a

plane in ℓL space. It is convenient to rewrite it as a single index object in ℓL space (the

vector orthogonal to the plane), using the antisymmetric ǫ tensor

λ̃nk =
1

2
ǫijkλ

n
ij. (1.11)

The ǫijk is SU(3) invariant, but not U(3) invariant, so this renaming has some peculiar

consequences. Consider the case where λn
ij ∝ ǫijn, so λ̃ is “flavour diagonal”. However,

since it transforms under SUℓ(3) × SUe(3) as ℓeR, it is not invariant, and the flavour

differences Le−Lµ and Le +Lµ−2Lτ are conserved mod 2 in four fermion interactions.
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The “MFV” constraint is that
∑

j λ̃sjλ̃
∗
tj should be diagonal in the singlet charged

lepton mass basis, with eigenvalues proportional to the charged lepton Yukawas 4. We

will permute the µ−τ eigenvalues, that is
∑

ij λ
e
ijλ

e∗
ij ∝ m2

e/v
2, but

∑
ij λ

µ
ijλ

µ∗
ij ∝ m2

τ/v
2,

and
∑

ij λ
τ
ijλ

τ∗
ij ∝ m2

µ/v
2. On its doublet indices

V †
λ λ̃λ̃

†Vλ = diag{m2
e, m

2
τ , m

2
µ}/v2 (1.12)

where Vλ is a unitary matrix transforming from the charged lepton basis to the eigenba-

sis of λ̃. The observed light neutrino parameters, with masses in the inverse hierarchy,

can be obtained from

V †
λ =




−cǫ 1+sǫ√
2

−1−sǫ√
2

s c√
2

c√
2

c −s−ǫ√
2

−s+ǫ√
2


 (1.13)

where c = cos(π/4 + δ). This corresponds to

λe
αβ ∝ me

v
∼ 0

λµ
µτ = s

mτ

v
λµ

eτ =
c√
2

mτ

v
λµ

eµ =
c√
2

mτ

v

λτ
µτ = c

mµ

v
λτ

eτ = −s− ǫ√
2

mµ

v
λτ

eµ = −s + ǫ√
2

mµ

v
(1.14)

For θ = π/4, ǫ = 0 and degenerate sleptons, eqn (1.9) gives exactly degenerate

neutrinos νe and νµ−τ , whose mass varies inversely with the slepton mass. The observed

neutrino mass differences and mixing angles, in the inverse hierarchy, can be obtained

by including small perturbations. e difference between the square of the slepton masses

m̃2
µ − m̃2

τ and the small mixing angle ǫ contribute to splitting the ν1 and ν2 masses,

while the parameter δ of the Vλ matrix seems to control the solar mixing angle.

In Figure (1.4) we show the behaviour of two physical parameters, tan2 θ12 and

the ratio ∆m2
sol/∆m

2
atm, when the parameters δ and ǫ vary. For both the plots, we

have considered only those points in agreement with the experimental bounds on the

remaining set of neutrino parameters. From the intersection between the dark and the

light region we can deduce the range of availability for ǫ and δ. (The slepton mass

difference in these plots is fixed at a value that could be generated by renormalisation

group running.)

4Since the SM has only one eigenbasis in eR space, it is not required of new interactions that they

have the same eigenvalues as Ye
†
Ye, provided that they have the same eigenvectors.
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Figure 1.1: For slepton masses at ∼ 300 GeV and tanβ ∼ 25, on the left we plot

our prediction for the “solar” mixing parameter tan2 θ12 as a function of the model

parameter δ (see eqn (1.13)); where we have choosen an ǫ such that the other parameters

(∆m2
sol/∆m

2
atm, tan2 θ23, sin2 θ13) satisfy the experimental bounds. On the right we

plot the ratio ∆m2
sol/∆m

2
atm as a function of ǫ, with δ consistent with the experimental

bounds on the other physical parameters (tan2 θ12, tan2 θ23, sin2 θ13). In both cases the

horizontal light gray band represents the experimentally allowed parameter space [18].

This λ model, then, satisfies our requests. The neutrino masses are generated by

a renormalisable operator λ̃, whose eigenbasis is related with the charged lepton mass

eigenbasis by a matrix V †
λ different from the MNS mixing matrix. The matrix V †

λ , then,

has become the operator that guides flavour violating processes, whose amplitudes are

now determined by the λ couplings. In particular, we can see in (1.14) that the order

of magnitude of each λ coupling is determined by its upper index, which is related

with the flavour of the right-handed particle involved in the vertex. As we can see

in Table 1.1 the experimental bounds on FV decays are satisfied in this λ model, in

agreement with our definition of MFV.

The strongest experimental constraints on FV processes are given for the muon

decay into three electrons and the µ → eγ decay [19, 20, 21]. The flavour violating

decays with charged leptons in the initial and final states, like µ− → e−e+e−, appear at

the tree level and are mediated by the exchange of a left-handed sneutrino ν̃i. So, it can

be easily understood why the decay rates of muon, but also tau, into three electrons

are so low. In addition to the suppression due to the sneutrino mass, in each diagram

appears a vertex ν̃ee, whose amplitude is determined by a coupling of the form λe
αβ
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Expected value Experimental bound

BR(µ− → e−e+e−) ∼ 10−17
(

100 GeV
mν̃

)4

< 1.0 10−12

BR(µ− → e−γ) ∼ 10−12
(

100 GeV
mν̃

)4

< 1.2 10−11

BR(τ− → e−e+e−) ∼ 10−19
(

100 GeV
mν̃

)4

< 2.9 10−6

BR(τ− → e−µ+µ−) ∼ 10−10
(

100 GeV
mν̃

)4

< 1.8 10−6

BR(τ− → e+µ−µ−) ∼ 10−12
(

100 GeV
mν̃

)4

< 1.5 10−6

BR(τ− → µ−e+e−) ∼ 10−12
(

100 GeV
mν̃

)4

< 1.7 10−6

BR(τ− → µ+e−e−) 0 < 1.5 10−6

BR(τ− → µ−µ+µ−) ∼ 10−11
(

100 GeV
mν̃

)4

< 1.9 10−6

Table 1.1: Table of the branching ratios for flavour violating processes. In the second

column appear the branching ratios predicted in the λ model, while in the third column

are indicate the experimental bounds at 90% of confidence level [19].

which is proportional to the small electron mass, since right-handed sneutrinos are not

present in the model.

The µ → eγ decay [20], instead, appears at a loop level, mediated by a charged

lepton and slepton. In this case the main contribution comes from the diagram with

vertices proportional to λµ
µτλ

µ
eτ ∝ m2

τ/v
2, whose large contribution is somewhat com-

pensated by the loop suppression. We estimate the decay branching ratio in our model

to be ∼ 6 × 10−13, and we can notice that, although this value respects the present

experimental constraint, it could be accessible in the next experiments.
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1.5 Summary

In the lepton sector, new beyond-the-Standard-Model (BSM) interactions are required

to generate neutrino masses. If these masses are Majorana, they arise from a dimension

five operator whose flavour structure (eigenvalues, eigenvectors in lepton doublet space)

may not be the same as the (renormalisable) BSM interactions. In this context, it is not

obvious to define Minimal Flavour Violation for leptons. One can take the “minimal”

scenario to be that flavour-change in the lepton sector is controlled by the neutrino

mass matrix, which is in part known. This predictive approach was taken in [3].

However, there are neutrino mass generation mechanisms that do not make this

prediction, since flavour change may be proportional to a different combination of

renormalisable couplings than enters mν . In this paper, we explore various possible

definitions of “minimally flavour violating”, based on the renormalisable interactions

in the Lagrangian. We suppose that Minimal Flavour Violation is a restriction on the

number of inequivalent eigenbases that renormalisable flavour-dependent interactions

can choose. The most minimal possibility would be to restrict the new interactions

to align themselves with the charged lepton Yukawa, but then it is difficult to obtain

MNS mixing angles (without enlarging the flavour transformation group, for instance

by adding right-handed neutrinos). The leptonic masses and mixing angles can be

obtained in more models (e.g. triplet, R-parity violation) by allowing two eigenbases

in doublet lepton space. The second basis may be other than the neutrino mass basis;

we construct a model where flavour violation among charged leptons is not predictable

from the light neutrino mass matrix.

Data in the quark sector suggest that new particles and interactions at the TeV-scale

should satisfy Minimal Flavour Violation. Data in the lepton sector do not require a

minimal flavour violation principle, but one could imagine it is there, by analogy with

the quarks. Unfortunately, there are many possible definitions, which seem either

predictive, or able to include many models. A compelling definition of MFV, giving

different predictions for different neutrino mass generation mechanisms, could be useful

in attempting a bottom-up reconstruction of the neutrino mass mechanism [22] from

lepton flavour violating rates.
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1.6 Appendix A

The aim of this appendix is to obtain an acceptable neutrino mass matrix, using new

interactions that are diagonal in the charged lepton mass basis. We consider an RPV

model, with lepton number violating terms in the superpotential

1

2
λk

ijLiLjE
c
k + µiHuLi (1.15)

an L/ soft term BiHuLi, and we estimate the light neutrino mass matrix from the

formulae in [23]. It seems possible to obtain degenerate light neutrinos (mν ∼ 0.2 eV),

and an MNS matrix in agreement with observations 5.

This peculiar result arises by taking

λk
ij = λǫijk , µµ = δµµ0 , Bτ = δBB0 (1.16)

and all other Rp/ couplings to be zero. The usual µ0 and B0 terms are µ0HuHd in the

superpotential and B0HuHd among the soft breaking terms, and we will later solve for

the desired values of δµ, δB. We claim that λ ∝ ǫijk is “flavour-diagonal”, insofar as

it is an SU(3) invariant (see discussion after eqn (1.11)). We can obtain off-diagonal

contributions to the neutrino mass matrix, by combining it with the “bilinear” Rp/

interactions Bτ and µµ.

The leading contributions to the neutrino mass matrix, in the charged lepton mass

basis, can be estimated as [23]

[mν ] ≃
1

8π2mSUSY




λ2mµmτ λδBmτ (hµmµ − heme) λδµmµ(heme − hτmτ )

λδBmτ (hµmµ − heme) 8π2|δµ|2m2
SUSY g2δµδBm

2
SUSY /8

λδµmµ(heme − hτmτ ) g2δµδBm
2
SUSY /8 g2δ2

Bm
2
SUSY /8




(1.17)

where mSUSY ∼ 300 GeV is of order the slepton and neutralino masses.

We can match this onto the neutrino mass matrix for degenerate light neutrinos,

with θ13 = 0. Concentrating first on the µτ submatrix, we obtain

δµ ≃
√

m1

mSUSY
δB ≃ 8π

g

√
m1

mSUSY
(1.18)

5we did not scan parameter space, more realistic masses could be possible. Our example requires

delicate fine-tuning.
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and get the large atmospheric mixing by taking m1, the lightest mass of the degenerate

neutrinos, to be
√

4π∆m2
atm/g

2 ≃ .2 eV.

The first row has a desirable sign difference between the eµ and eτ entries, and can

be adjusted to give the solar mass difference and mixing angle by taking λ ∼ .02 and

tan β >∼ 10 (tanβ enters via the charged lepton Yukawas).
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If the baryon asymmetry of the Universe is produced by leptogenesis, CP violation is

required in the lepton sector. In the seesaw extension of the Standard Model with three

hierarchical right-handed neutrinos, we show that the baryon asymmetry is insensitive

to the PMNS phases: thermal leptogenesis can work for any value of the observable

phases. This result was well-known when there are no flavour effects in leptogenesis;

we show that it remains true when flavour effects are included.
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SENSITIVITY OF THE BARYON ASYMMETRY PRODUCED BY LEPTOGENESIS TO LOW
ENERGY CP VIOLATION

2.1 Introduction

CP violation is required to produce the puzzling excess of matter (baryons) over anti-

matter (anti-baryons) observed in the Universe[1]. If this Baryon Asymmetry of the

Universe (BAU) was made via leptogenesis [2], then CP violation in the lepton sector

is needed. So any observation thereof, for instance in neutrino oscillations, would

support leptogenesis by demonstrating that CP is not a symmetry of the leptons. It is

interesting to explore whether a stronger statement can be made about this tantalising

link between low-energy observable CP violation and the BAU.

In this paper, we wish to address a phenomenological question: “is the baryon

asymmetry sensitive to the phases of the lepton mixing matrix (PMNS matrix)? ”.

Electroweak precision data was said to be sensitive to the top mass, meaning that

a preferred range for mt could be extracted from the data. Here, we wish to ask a

similar question, assuming the baryon asymmetry is generated, via leptogenesis, from

the decay of the lightest “right-handed” (RH) neutrino: given the measured value of

the baryon asymmetry, can an allowed range for the PMNS phases be obtained?

It was shown in [3] that the BAU produced by thermal leptogenesis in the type 1

seesaw, without “flavour effects”, is insensitive to PMNS phases. That is, the PMNS

phases can be zero while leptogenesis works, and the CP asymmetry of leptogenesis

can vanish for arbitrary values of the PMNS phases. In fact, the “unflavoured” asym-

metry is controlled by phases from the RH sector only, and it would vanish were this

sector CP conserving. However, it was recently realised that lepton flavour matters

in leptogenesis[4, 5, 6]: in the relevant temperature range 109 → 1012 GeV, the final

baryon asymmetry depends separately on the lepton asymmetry in τs , and on the

lepton asymmetry in muons and electrons. So in this paper, we revisit the question ad-

dressed in [3], but with the inclusion of flavour effects. Our analysis differs from recent

discussions [7] (2RHN model), [8, 9] (CP as a symmetry of the N sector), [10] (sequen-

tial N dominance) in that we wish to do a bottom-up analysis of the three generation

seesaw. Ideally, we wish to express the baryon asymmetry in terms of observables,

such as the light neutrino masses and PMNS matrix, and free parameters. Then, by

inspection, one could determine whether fixing the baryon asymmetry constrained the

PMNS phases.
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2.2 NOTATION AND REVIEW

2.2 Notation and review

We consider a seesaw model [11], where three heavy (M >∼ 109 GeV) majorana neu-

trinos NI are added to the Standard Model. The Lagrangian at the NI mass scale

is

L = eR
jYeijHdℓ

i +N
J
λiJHuℓ

i +N
J MJK

2
N cK + h.c. (2.1)

where the flavour index order on the Yukawa matrices Ye, λ is left-right, and Hu =

iσ2H
∗
d .

There are 6 phases among the 21 parameters of this Lagrangian. We can work in

the mass eigenstate basis of the charged leptons and the NI , and write the neutrino

Yukawa matrix as

λ = V †
LDλVR , (2.2)

where Dλ is real and diagonal, and VL, VR are unitary matrices, each containing three

phases. So at the high scale, one can distinguish CP violation in the left-handed doublet

sector (phases that appear in VL) and in the right-handed singlet sector (phases in VR).

Leptogenesis can work when there are phases in either or both sectors.

At energies accessible to experiment, well below the NI mass scale, the light (LH)

neutrinos acquire an effective Majorana mass matrix 2:

[m ] = λM−1λTv2 = UDmU
T (2.3)

where v = 174 GeV is the Higgs vev, Dm is diagonal with real eigenvalues, and U is the

PMNS matrix. There are nine parameters in [m ], which is “in principle” experimentally

accessible. Two mass differences and two angles of U are measured, leaving the mass

scale, one angle and three phases of U unknown.

From the above we can write

Dm = U †V †
LDλVRD

−1
M V T

R DλV
∗
LU

∗v2 (2.4)

so we see that the PMNS matrix will generically have phases if VL and/or VR are

complex. Like leptogenesis, it receives contributions from CP violation in the LH and

RH sectors. Thus it seems “probable”, or even “natural”, that there is some relation

between the CP violation of leptogenesis and of the PMNS matrix. However, the

2which appears in the Lagrangian as 1

2
[m ]αβνανβ + h.c

51



SENSITIVITY OF THE BARYON ASYMMETRY PRODUCED BY LEPTOGENESIS TO LOW
ENERGY CP VIOLATION

notion of relation or dependence is nebulous [12], so we address the more clear and

simple question of whether the baryon asymmetry is sensitive to PMNS phases. By

this we mean: if the total baryon asymmetry is fixed, and we assume to know all the

neutrino masses and mixing angles, can we predict ranges for the PMNS phases?

We suppose that the baryon asymmetry is made via leptogenesis, in the decay

of the lightest singlet N1, with M1 ∼ 1010 GeV. Flavour effects are relevant in this

temperature range [4, 5, 6], 3. N1 decays to leptons ℓα, an amount ǫαα more than to

anti-leptons ℓα, and this lepton asymmetry is transformed to a baryon asymmetry by

SM processes (sphalerons). We will further suppose that the partial decay rates of N1

to each flavour are faster than the expansion rate of the Universe H . This implies that

N1 decays are close to equilibrium, and there is a significant washout of the lepton

asymmetry due to N1 interactions (strong washout regime); we discuss later why this

assumption does not affect our conclusions.

Flavour effects are relevant in leptogenesis[4, 5, 6] because the final asymmetry

cares which leptons ℓ are distinguishable. N1 interacts only via its Yukawa coupling,

which controls its production and destruction. The washout of the asymmetry, by

decays, inverse decays and scatterings of N1, is therefore crucial for leptogenesis to

work, because otherwise the opposite sign asymmetry generated at early times during

N1 production would cancel the asymmetry produced as they disappear. To obtain

the washout rates (for instance, for ℓ + Hu → N1), one must know the initial state

particles, that is, which leptons are distinguishable.

At T ∼M1, when the asymmetry is generated, SM interactions can be categorised

as much faster than H , of order H , or much slower. Interactions that are slower than

H can be neglected. H−1 is the age of the Universe and the timescale of leptogenesis,

so the faster interactions should be resummed— for instance into thermal masses. In

the temperature range 109 <∼ T <∼ 1012 GeV, interactions of the τ Yukawa are faster

than H , so the ℓτ doublet is distinguishable (has a different “thermal mass”) from

the other two lepton doublets. The decay of N1 therefore produces asymmetries in

B/3−Lτ , and in B/3−Lo, where ℓo (“other”) is the projection in ℓe and ℓµ space, of

the direction into which N1 decays[14]: ℓ̂o = (λµ1µ̂+ λe1ê)/
√
|λµ1|2 + |λe1|2. Following

[6], we approximate these asymmetries to evolve independently. In this case, the baryon

3provided the decay rate of N1 is slower than the interactions of the τ Yukawa [13]
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to entropy ratio can be written as the sum over flavour of the flavoured CP asymmetries

ǫαα times a flavour-dependent washout parameter ηα < 1 which is obtained by solving

the relevant flavoured Boltzmann equations [4, 5, 6]:

YB ≃ 12

37

1

3g∗
(ǫττητ + ǫooηo) (2.5)

where g∗ = 106.75 counts entropy, and the 12/37 is the fraction of a B−L asymmetry

which, in the presence of sphalerons, is stored in baryons.

In the limit of hierarchical RH neutrinos, the CP asymmetry in the decay N1 → ℓαH

can be written as

ǫαα ≃ − 3M1

16πv2[λ†λ]11
Im{[λ]α1[m

†λ]α1} (2.6)

where m is defined in eqn (2.3).

In the case of “ strong washout” for all flavours, which corresponds to Γ(N1 →
ℓαHu) > H(T=M1) for α = τ, o, the washout factor is approximately [6, 15]

ηα ≃ 1.3

(
m∗

6Aααm̃αα

)1.16

→ m∗

5Aααm̃αα

(2.7)

where there is no sum on α, m∗ ≃ 10−3 eV, and Aττ ≃ Aoo ∼ 2/3 [14, 6] 4. The

(rescaled) N1 decay rate is

m̃ =
∑

α

m̃αα =
∑

α

|λα1|2
M1

v2 (2.8)

2.3 An equation

Combining equations (3.20), (2.6), and (2.7), we obtain YB ∝ ǫττ/m̃ττ +ǫoo/m̃oo, where

(α not summed)

ǫαα

m̃αα
=

3M1

16πv2m̃

∑

β

Im{λ̂αmαβλ̂β}
|λβ|
|λα|

(2.9)

4The A matrix parametrises the redistribution of asymmetries in chemical equilibrium.
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and the Yukawa couplings of N1 have been written as a phase factor times a magnitude

: λ̂α|λα| = λ∗α1. So the baryon asymmetry can be approximated as

YB ≃ Y bd
B

(
Im{λ̂τ·m· λ̂τ}

matm
+

Im{λ̂o·m· λ̂o}
matm

+
Im{λ̂τ·m· λ̂o}

matm

[ |λo|
|λτ |

+
|λτ |
|λo|

])
1

Aττ
(2.10)

The prefactor of the parentheses Y bd
B =

12

37

M1matm

16πv2

m∗

5g∗m̃
is the upper bound on the

baryon asymmetry, that would be obtained in the strong washout case by neglecting

flavour effects. Recall that this equation is only valid in strong washout for all flavours.

This equation reproduces the observation [6], that: (i) for equal asymmetries and

equal decay rates of all distinguishable flavours, flavour effects increase the upper bound

on the baryon asymmetry by
∑

aA
−1
aa ∼ 3. (ii) More interestingly, having stronger

washout in one flavour, can increase the baryon asymmetry [via the term in brackets].

So models in which the Yukawa coupling λτ1 is significantly different from λµ1, λe1, can

have an enhanced baryon asymmetry (with cooperation from the phases).

Finally, this equation is attractive step towards writing the baryon asymmetry as a

real function of real parameters ( Y bd
B , depending on M1 and m̃1), times a phase factor

[16]. In this case, the phase factor is a sum of three terms, depending on the phases

of the N1 Yukawa couplings, light neutrino mass matrix elements normalised by the

heaviest mass, and a (real) ratio of Yukawas.

2.4 CP violation

In this section, we would like to use eqn (2.10) to show that the baryon asymmetry is

insensitive to the PMNS phases. The parameters of the lepton sector can be divided

into “measurables”, which are the neutrino and charged lepton masses, and the three

angles and three phases of the PMNS matrix U . The remaining 9 parameters are

unmeasurable. We want to show that for any value of the PMNS phases, there is at

least one point in the parameter space of the unmeasurables where a large enough

baryon asymmetry is obtained. The approximations leading to eqn (2.10) are only

valid in a subset of the unmeasurable parameter space, but if we can find points in
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this subspace, we are done. We first show analytically that such points exist, then we

do a parameter space scan to confirm that leptogenesis can work for any value of the

PMNS phases.

If the phases of the λα1 were independent of the PMNS phases, and a big enough

YB could be obtained for some value of the PMNS phases, then our claim is true by

inspection: for any other values, the phases of the λα1 could be chosen to reproduce

the same YB. However, there is in general some relation between the phases of m and

those of λα1, so we proceed by looking for an area of parameter space where the phases

of the λα1 can be freely varied without affecting the “measurables”. Then we check

that a large enough baryon asymmetry can be obtained.

Such an area of parameter space can be found using the R matrix parametrisation

of Casas-Ibarra [17], where the complex orthogonal matrix R is defined such that

λv ≡ UD
1/2
m RD

1/2
M . Taking a simple R of the form

R =




cosφ 0 − sinφ

0 1 0

sin φ 0 cosφ


 (2.11)

and parametrising U = V P , where V is a CKM-like unitary matrix with one “Dirac”

phase e−iδ appearing with sin θ13, and P = diag{eiϕ1/2, eiϕ2/2, 1}, gives

λτ1v√
M1m3

= Uτ1

√
m1

m3

cosφ+ Uτ3 sin φ ≃ sin φ√
2

(2.12)

λµ1v√
M1m3

= Uµ1

√
m1

m3
cosφ+ Uµ3 sin φ ≃ sin φ√

2
(2.13)

λe1v√
M1m3

= Ue1

√
m1

m3
cosφ+ Ue3 sinφ (2.14)

where we took hierarchical neutrino masses. We neglect λe1 because its absolute value

is small. With this choice of the unknown R, the phases of the λα1 are effectively

independent of the PMNS phases. So for any choice of PMNS phases that would

appear on the m of eqn (2.10), the phases of the Yukawa couplings can be chosen

independently, to ensure enough CP violation for leptogenesis.

We now check that a large enough baryon asymmetry can be obtained in this area

of parameter space. The parentheses of eqn (2.10) can be written explicitly as

Im

{
sin2 φ∗

| sinφ|2 (mττ +mµµ + 2mµτ )

}
1

matm

(2.15)

55



SENSITIVITY OF THE BARYON ASYMMETRY PRODUCED BY LEPTOGENESIS TO LOW
ENERGY CP VIOLATION

Writing φ∗ = ρ− iω, the final baryon asymmetry can be estimated from eqn (2.10) as

YB

10−10
≃ −

(
M1

1011GeV

)
sin ρ cos ρ sinhω coshω

(sin2 ρ cosh2 ω + cos2 ρ sinh2 ω)2
(2.16)

which can equal the observed 8.7+0.3
−0.4×10−11 [18] forM1 ∼ few ×1010 GeV, and judicious

choices of ρ and ω.

A similar argument can be made if the light neutrino mass spectrum is inverse

hierarchical.

The scatter plots of figure 2.1 show that a large enough baryon asymmetry can be

obtained for any value of the PMNS phases.
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Figure 2.1: A random selection of points where the baryon asymmetry is large enough,

for some choice of the unmeasurable parameters of the seesaw. The light neutrino masses

are taken non-degenerate, and the Majorana phase of the smallest one can be neglected.

The “Dirac” phase δ is defined such that Ue3 = sin θ13e
−iδ, and β is the majorana phase of

m2 = |m2|e
2iβ . The baryon asymmetry arises in the decay of N1 of mass M1 = 1010 GeV.

The plots are obtained by fixing M1 = 1010 GeV, and the measured neutrino param-

eters to their central values. To mimic the possibility that β and δ could be determined

±15o, β-δ space is divided into 50 squares. In each square, the programme randomly

generates values for: β, δ, .001 < θ13 < .2, the smallest neutrino mass <
√

∆m2
sol/10,

and the three complex angles of the R matrix. It estimates the baryon asymmetry from

the analytic approximations of [6], and puts a cross if it is big enough. The programme
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is a proto-Monte-Carlo-Markov-Chain, preferring to explore parameter space where the

baryon asymmetry is large enough.

Parametrising with the R matrix imposes a particular measure (prior) on parameter

space. This could mean we only explore a class of models. This is ok because the aim

is only to show that, for any PMNS phases, a large enough asymmetry can be found.

2.5 Discussion

The relevant question, in discussing the “relation” between CP violation in the PMNS

matrix and in leptogenesis, is whether the baryon asymmetry is sensitive to the PMNS

phases. The answer was “no” for unflavoured leptogenesis in the Standard Model

seesaw[3]. This was not surprising; the seesaw contains more phases than the PMNS

matrix, and many unmeasurable real parameters which can be ajusted to obtain a big

enough asymmetry. In this paper, we argue that the answer does not change with

the inclusion of flavour effects in leptogenesis: for any value of the PMNS phases,

it is possible to find a point in the space of unmeasurable seesaw parameters, such

that leptogenesis works. This “flavoured” asymmetry can be written as a function of

PMNS phases, and unmeasurables as entered the unflavoured calculation. These can

still be ajusted to get a big enough asymmetry. In view of this discouraging conclusion,

it is maybe worth to emphasize that CP violation from both the left-handed and

right-handed neutrino sectors, contributes both to the PMNS matrix and the baryon

asymmetry. Moreover, the answer to this question in an MSUGRA framework, with

additional information from lepton flavour violating observables[19], is still work in

progress.

In the demonstration that the baryon asymmetry (produced via thermal leptoge-

nesis) is insensitive to PMNS phases, we found an interesting approximation for the

“phase of leptogenesis” (see eqn (2.10)), when all lepton flavours are in strong washout.
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We suppose that the baryon asymmetry is produced by thermal leptogenesis (with

flavour effects), at temperatures ∼ 109 −1010 GeV, in the supersymmetric seesaw with

universal and real soft terms. The parameter space is restricted by assuming that

ℓα → ℓβγ processes will be seen in upcoming experiments. We study the sensitivity

of the baryon asymmetry to the phases of the lepton mixing matrix, and find that

leptogenesis can work for any value of the phases. We also estimate the contribution

to the electric dipole moment of the electron, arising from the seesaw, and find that

it is (just) beyond the sensitivity of next generation experiments (<∼ 10−29e cm). The

fourteen dimensional parameter space is efficiently explored with a Monte Carlo Markov

1pre-print arXiv:0806.2832 [hep-ph]
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Chain, which concentrates on the regions of interest.

3.1 Introduction

Neutrino masses are evidence for beyond the Standard Model (SM) physics. A simple

extension of the standard model that accounts for neutrino masses is the seesaw mecha-

nism [1], where heavy majorana right-handed neutrinos are added to the SM. Moreover,

the seesaw scenario provides a very attractive framework to explain the baryon asym-

metry of the universe (BAU) through the leptogenesis [2] mechanism, without inducing

proton decay.

CP violation is a necessary ingredient to explain the BAU and, if this asymmetry

is produced via leptogenesis, the required CP violation is encoded in the CP violating

phases of the lepton sector. Three of them are the well known Dirac and Majorana

phases of the PMNS mixing matrix, that are in principle measurable. Any observation

of CP violation in the lepton sector, for instance CP violation in neutrino oscillations

due to the PMNS phase δ, would then support leptogenesis by demonstrating that CP

is not a symmetry of leptons. However, even in this very promising case, the question

of whether the BAU is produced via leptogenesis is far from being answered, because

it is not possible to reconstruct the high-energy CP odd observables from the low-

energy ones [3] without assuming very constraining frameworks for the unmeasurable

quantities. Therefore, the intent of this work is to clarify the relation between the

CP violation accessible to low-energy experiments, and the CP violation necessary for

leptogenesis, in a phenomenological bottom-up perspective, with minimal assumptions

about the high scale theory. We just assume that the neutrino Yukawa couplings are

hierarchical, which is the most natural assumption given the observed values of the

charged lepton and quark Yukawas. Neutrino oscillation data then lead to hierarchical

singlet masses.

In this paper, we aim to answer the phenomenological question of whether the BAU

can be sensitive to low-energy phases, in the supersymmetric seesaw. We suppose the

observed BAU is generated via thermal leptogenesis, and enquire whether this restricts

the range of the phases. A similar issue was investigated by Branco et.al [4], where it

was shown that for any value of the measurable CP violating phases, a large enough
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BAU can be produced. This statement has been recently confirmed in a study [5]

that includes flavour effects [6], in the Standard Model seesaw framework. In the

present analysis, we want to address the question considering flavoured leptogenesis

in a supersymmetric scenario, that has the interesting feature to potentially add new

observables in the lepton sector, through the enhancement of flavour and CP violating

processes (See eg [7] for a review and references on leptonic flavour and CP violation,

induced by supersymmetry.).

The question we address, and the answer we find, differ from some other analyses

[8, 9, 10, 11]. As written above, we aim to make few untestable assumptions, and to

ask a precise phenomenological question: “Is the baryon asymmetry sensitive to PMNS

phases?”. We find the answer to be no. That is, there is “no correlation” between the

BAU and PMNS phases, when all the unmeasurables in our scenario are allowed to

vary over their whole range. To the best of our understanding, Refs. [8, 9, 10, 11] find

a correlation between the BAU and the PMNS phases because they set unmeasurables

(such as phases of the “right-handed” neutrinos) to fixed values.

We define “finding a correlation between YB and x” to mean “YB is sensitive to

x”. To show that the baryon asymmetry YB is insensitive to (or uncorrelated with) a

parameter x, we must only show that, for any value of x, we can find a large enough

YB. It would be numerically more challenging to show a correlation, because the

point distribution in scatter plots may reflect the priors on the scanned parameters

(see sections 3.6.4 and 3.7.2). Our definition of correlation differs from that used by

[8, 9, 11], and also in [19] (who extract correlations from scatter plots). We use our

narrow definition because it is parametrisation independent.

Since leptogenesis occurs at a very high-energy scale, a supersymmetric scenario

is desirable in order to stabilize the hierarchy between the leptogenesis scale and the

electroweak one. However, if supersymmetry exists at all, it must be broken and,

in principle, the soft supersymmetry breaking Lagrangian can contain off-diagonal (in

flavour space) soft terms, that would enhance lepton flavour violating (LFV) processes.

These are strongly constrained by current experiments; this is the so-called supersym-

metric flavour problem. In order to avoid it, we focus on the most conservative minimal

Supergravity (MSUGRA) scenario with real boundary conditions, where the dynamics

responsible for supersymmetry breaking are flavour blind and all the lepton flavour and
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CP violation is controlled by the neutrino Yukawa couplings. Supersymmetric expec-

tations for LFV [12, 13, 14] and possible relations to leptogenesis [7, 11, 15, 16, 17, 18]
2 and EDMs [19, 20] have been studied by many people.

We perform a scan over the seesaw parameters, looking for those points that give a

large enough BAU, and where µ → eγ and one of τ → ℓγ would be seen in upcoming

experiments. Our analysis is more restrictive than [19], in that we require these

branching ratios to be “large”. The aim is to verify if such experimental inputs imply

a preferred range of values for the low-energy PMNS phases. We also estimate the

contribution to the CP violating electron electric dipole moment. A detailed analysis of

the MSUGRA scenario would require a scan also over the supersymmetric parameters,

which is beyond the scope of our analysis.

Due to the large number of unknown parameters, instead of doing a usual grid

scan in the seesaw parameter space we construct a Markov Chain using a Monte Carlo

simulation (MCMC — see e.g. [21, 22]). This technique allows to efficiently explore

a high-dimension parameter space, and we apply it for the first time to the super-

symmetric seesaw model 3. Our work is thus pioneering in the exhaustive scanning

of the seesaw parameters, which would be otherwise prohibitive without the MCMC

technique.

The paper is organized as follows. In section 3.2 we introduce the supersymmetric

seesaw in the MSUGRA scenario and we review the low-energy interactions induced

in the supersymmetric seesaw model. Section 3.3 is devoted to thermal leptogenesis

with flavour effects, and section 3.4 describes our bottom-up reconstruction procedure.

Section 3.5 gives analytic estimates, that complement our numerical analysis, using the

MCMC technique, which is presented in section 3.6. We discuss our results in section

3.7 and conclude in section 3.8.

2See ref. [17] for a discussion about when the approximation used in [16] is not valid.
3See [23] for a detailed study of the Zee-Babu model of neutrino masses phenomenology using this

technique.
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3.2 Notation and review

We consider the superpotential for the leptonic sector in a supersymmetric seesaw

model [1] with three hierarchical right-handed neutrinos (M1 < M2 < M3):

Wlep = (LLHd)YeE
c + (LLHu)λN

c +N cM

2
N c. (3.1)

In this expression, λ, Ye and M are 3 × 3 matrices, and flavour indices are suppressed.

The LL are the supermultiplets containing left-handed lepton fields, E are those con-

taining the right-handed charged leptons, while N are the supermultiplets of the right-

handed singlets. The Majorana mass scale can be taken large 109 GeV <∼ Mi
<∼ 1015

GeV, since the corresponding operator is a singlet under the SM gauge group.

Without loss of generality one can work in the basis where Ye and M are diagonal,

so that the superpotential gives the following Lagrangian for leptons:

L = Yeα
(ℓ

α

LH
∗
d)eα

R + (ℓ
α

LH
∗
u)λ∗αiNi +

M i

2
N c

iNi + ...+ h.c. (3.2)

where the parentheses indicate SU(2) contractions and the flavour indices are written

explicitly. Since supersymmetry is broken, to this Lagrangian we must add the soft

SUSY breaking terms :

LSSB = m̃2
0

∑

f

f̃ †f̃ +

{
BM i

2
Ñ c

i Ñ
c
i + a0(yeα

ℓ̃αL ·Hdẽ
c
α + λαiℓ̃

α
L ·HuÑ

c
i ) + h.c.

}
(3.3)

where f̃ collectively represents sfermions. This soft part is written at some high scale

MX where, in MSUGRA, the soft masses are universal and the trilinear couplings are

proportional to the corresponding Yukawas. MSUGRA is then characterized by four

parameters: the scalar (m0) and gaugino (m1/2) masses, shared by all of them at the

GUT scale; the trilinear coupling involving scalars, a0, at the GUT scale; and finally

the Higgs vev ratio, tanβ.

In the chosen basis, the neutrino Yukawa matrix is in general not diagonal and

complex, and can be written as:

λ = V †
LDλVR (3.4)

whereDλ is diagonal and real. Note that in this basis the neutrino Yukawa matrix is the

only source of flavour violation in the lepton sector, through the unitary matrices VL and
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VR that act respectively on the lepton doublet space and on the right-handed neutrino

space. These matrices contribute also to CP violation, through six CP violating phases.

In general, other sources of CP violation appear in the complex neutrino B-term, in

the scalar mass m̃0 and in the trilinear coupling a0.

At energies well below the right-handed neutrino mass scale, the effective light

neutrino majorana mass matrix can be written:

[mν ] = λM−1λTv2
u = UDνU

T . (3.5)

The first equality shows that the smallness of light neutrino masses is naturally ex-

plained once the right-handed neutrino mass is set at very high energy, ∼ 1014 GeV

(in this expression vu = 〈Hu〉). In the second equality, Dν is a diagonal matrix with

real positive eigenvalues and U is the PMNS matrix containing the three low-energy

CP violating phases, the Dirac phase δ and two Majorana phases α, β. Those phases

are, in general, a combination of the 6 phases appearing in the complete theory. We

use the standard parametrisation:

U =




eiα c13c12 eiβ s12c13 s13 e
−iδ

eiα (−s12c23 − s23s13c12 e
iδ) eiβ (c23c12 − s23s13s12 e

iδ) s23c13

eiα (s23s12 − s13c23c12 e
iδ) eiβ (−s23c12 − s13s12c23 e

iδ) c23c13


 . (3.6)

If we combine the equations (3.4) and (3.5), we can write:

Dν = U †V †
LDλVRD

−1
M V T

R DλV
∗
LU

∗v2
u ≡W †DλVRD

−1
M V T

R DλW
∗v2

u, (3.7)

with VR diagonalizing the inverted right-handed neutrino mass matrix. This relation

shows that non-zero angles and phases in the unmeasurable right-handed neutrino

mixing matrix VR imply non-zero angles and phases in W = VLU , which being in the

doublet sector, is potentially more accessible. We will use this relation to reconstruct

the right-handed sector from low energy physics in sec. 3.4.

3.2.1 Low-energy footprints: LFV and EDMs in MSUGRA

Present bounds on LFV processes, shown in table 3.1, restrict the size of flavour off-

diagonal soft terms. This suggests universal soft terms at some high scale MX , see Eq.

(3.3), like in the MSUGRA scenario. There are also stringent experimental bounds, as
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Present bounds Future sensitivity

BR(µ → eγ) < 1.2 × 10−11 10−13 (MEG)[25]

BR(τ → µγ) < 6.8 × 10−8 10−9 (Belle)[26]

BR(τ → eγ) < 1.1 × 10−7

BR(µ → eν̄eνµ) ∼ 100%

BR(τ → µν̄µντ ) 17.36 ± 0.05%

BR(τ → eν̄eνµ) 17.84 ± 0.05%

Table 3.1: Present and predicted bounds on lepton flavour violating processes, and

measured branching ratios for ℓα → ℓβναν̄β decays.

Present bounds (e cm) Future sensitivity (e cm)

de < 1.6 × 10−27 10−29 (Yale group)[27]

dµ < 2.8 × 10−19 10−24 (Muon EDM Collaboration) [28]

(−2.2 < dτ < 4.5) × 10−17

Table 3.2: Present and anticipated bounds on electric dipole moments. See [7] for a

discussion of future experiments.

we can see in Table (3.2), on the CP violating electric dipole moments, which point

towards very small CP phases. To address this “SUSY CP problem” 4, we suppose

that all the soft breaking terms (namely a0, m0 and right-handed sneutrino B-term),

as well as the µ term, are real. Even under this extremely conservative assumptions, it

is well known that because of RGE running from high to low energy scales, the seesaw

Yukawa couplings potentially induce lepton flavour and CP violating contributions to

the soft terms [12, 13, 14].

We focus on these neutrino Yukawa coupling contributions to LFV and EDMs,

assuming MSUGRA with real boundary conditions at MX . Additional contributions,

arising with less restrictive boundary conditions, are unlikely to cancel the ones we

discuss, so the upper bounds that will be set if, for instance, no electron EDM is

measured by the Yale group, will equally apply. Conversely, if an electron EDM is

4See e.g. [24] for an illuminating discussion.
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measured above the range that we predict, it will prove the existence of a source of CP

violation other than the neutrino Yukawa phases.

We are interested in analytic estimates for LFV rates and electric dipole moments.

For this, we need the flavour-changing and CP violating contributions to the soft

masses, that arise from the neutrino Yukawa. Following [29], we take the one-loop

corrections to the flavour off-diagonal doublet slepton masses m̃2
Lαβ → m̃2

Lαβ + ∆m̃2
Lαβ

and to the trilinear coupling a0λ→ a0λ(1 + ∆a0) to be:

∆m̃2
Lαβ = − 1

16π2
(3m2

0 + a2
0)[C

(1)]αβ − 1

16π2
(m2

0 + a2
0 + 2a0B)[H ]αβ , (3.8)

∆(a0)αβ = − 1

16π2
[C(1)]αβ − 1

16π2
[H ]αβ , (3.9)

for α 6= β where the matrices H and C(n) are given by:

H ≡ λλ† = V †
LD

2
λVL , (3.10)

C(n) ≡ λ logn

(
MM †

M2
X

)
λ† = V †

LDλVR logn

(
MM †

M2
X

)
V †

RDλVL . (3.11)

C(1) is the leading log contribution, and terms ∝ H arise in the finite part (they could

be relevant for EDMs). The one loop corrections to the right handed charged slepton

mass matrix, m̃2
Rαβ only contain the charged lepton Yukawa couplings and therefore

cannot generate off-diagonal entries. These are generated at two loops and, as we will

see later, they can be relevant for the lepton EDMs.

At one loop, sparticles generate the dipole operator (where e without subscript is

the electro-magnetic coupling constant):

eXαβeL
ασµνeβ

RFµν + h.c. (3.12)

which leads to LFV decays (ℓα → ℓβγ), and induces the flavour diagonal anomalous

magnetic and electric dipole moments of charged leptons [7]. For α = β, the anomalous

magnetic moment is aα = 4meα
Re{Xαα} and the electric dipole moment is 2Im{Xαα}.

In the mass insertion approximation the observable LFV rates are proportional to

|m̃2
Lαβ|2 ∝ |C(1)

αβ |2 and the corresponding branching ratios are of order [13]:

BR(ℓα → ℓβ γ)

BR(ℓα → ℓβναν̄β)
∼ α3

G2
F

tan2 β

m8
SUSY

|m̃2
αβ|2 (3.13)

∼ α3

G2
F

tan2 β

m8
SUSY

(3m2
0 + a2

0)
2

(4π)4
|[C]αβ|2,
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aEXP
µ (116 592 080 ± 63) × 10−11 in BNK-E821

(276 ± 81) × 10−11 [31]

δaµ = aEXP
µ − aSM

µ (275 ± 84) × 10−11 [34]

(295 ± 88) × 10−11 [32]

Table 3.3: Experimental value and deviation from the SM predictions of the muon

anomalous magnetic moment. The errors of δaµ are the combination in quadrature of

the experimental and theoretical ones.

where GF is the Fermi constant, tan β = vu/vd, and mSUSY is a generic SUSY mass,

which substitutes for the mixing angles and the function of the loop particle masses.

An estimate of mSUSY can be obtained from the data on the anomalous magnetic

moment of the muon, as suggested in [30]. A 3.3 or 3.4σ deviation from the Standard

Model prediction is observed in the anomalous magnetic moment of the muon (in Table

(3.3) is given the experimental value of aµ and the deviation from the SM prediction

[31, 32]). We assume it is due to new physics that can also contribute to flavour vio-

lation and EDMs. In the MSUGRA seesaw scenario that we are considering, the main

contribution to aµ comes from 1-loop diagrams with neutralino or chargino exchange

and is given by [33]:

δaSUSY
µ ≃

αm2
µ

8π sin2 θweak

tan β

m2
SUSY

. (3.14)

Within this approximation, the observed deviation in the muon anomalous magnetic

moment only fixes the ratio tanβ/m2
SUSY ∼ 5 10−5 GeV −2, so our SUSY masses scale

with tan β as m2
SUSY = tan β

2
(200 GeV)2.

Assuming [30] that the main contribution to the LFV branching ratio is given by

analogous diagrams involving chargino and neutralino exchange, gives, from equations

(3.13) and (3.14) with m0 ≃ a0 ≃ mSUSY :

BR(ℓα → ℓβ γ)

BR(ℓα → ℓβναν̄β)
∼ 10−8|Cαβ|2

(
δaµ

10−9

)2

. (3.15)

Since we aim to explore seesaw parameter space, we set the MSUGRA parameters

m0 ≃ a0 ≃ mSUSY .

In our analysis, we aim for values of |Cαβ|2 that will give µ → eγ and either of

τ → ℓγ in the next round of experiments. We require only one of the τ decays, because
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the other must be small to suppress µ → eγ (recall that we assume the neutrino

Yukawas are hierarchical).

The neutrino Yukawa corrections to the soft terms can also enhance the predictions

of the CP violating electric dipole moments. In our discussion we can neglect muon

and tau EDMs, because the experimental sensitivity on dµ is currently eight orders of

magnitude weaker than on de and we expect dµ/de ∼ mµ/me.

There are two potentially important contributions to the charged lepton EDMs

induced by the neutrino Yukawa couplings. As discussed in [35, 29], the first non-zero

contribution to the complex, flavour diagonal EDMs arises at two-loop order. The

matrices ∆a0 and ∆m̃2
L in Eq.(3.8) are the available building blocks to make an EDM,

which turns out to be proportional to the commutator [H,C]. This is the dominant

contribution at low tanβ.

We follow [29] 5 to estimate:

de ∼
4α

(4π)5

m2
e

m2
SUSY

Im[H C]ee(1.9 10−11 e cm) ∼ 10−29

(
2

tan β

)
Im[H C] e cm , (3.16)

where we have used [H,C]/i = 2Im[H C], and the 2/ tanβ arises because we extracted

m2
SUSY from the δaµ.

In the large tanβ region, it has been shown [36] that a different contribution to

the EDMs can be the dominant one. This new contribution arises at three loops, and

it involves the two loop correction to the right handed charged slepton mass matrix

∆m̃2
E . It is proportional to the CP violating quantity:

Dα = Im
[
((∆m̃2

E)Tm∆m̃2
L

]
αα

(3.17)

where m is the (diagonal) charged lepton mass matrix. Despite being a higher loop

order, it is typically dominant for tanβ >∼ 10. The two loop expression for ∆m̃2
E can

be found in [29]. We approximate this contribution as:

de ≃ −e
2

8α

(4π)7

10me tanβ

m2
SUSY

Im[λ∗ekλαkm
2
ℓα
λ∗αmλem]

v2 cos2 β
F (M2

k ), (3.18)

where

F (M2
k ) =

(
log

M2
X

M2
N

log
M2

X

M2
k

log
M2

N

M2
k

+ log2 M
2
N

M2
k

log
M2

N

M2
m

)
, (3.19)

5[29] finds the same structure as [35, 36], but its result is smaller by one power of a large logarithm.
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and MX = 3 × 1016 GeV, MN = M2. It gives an electric dipole moment of order:

de ∼ 10−29

(
tanβ

50

)2 Im[λ∗ekλαkm
2
ℓα
λ∗αmλem]

m2
τ

ecm.

One comment is in order. Throughout this work, we use the approximated formulae

(3.15), (3.16) (3.18), where we have set the supersymmetric parameters m0 and a0 at a

common mSUSY scale. Of course these are very rough approximations, but given that

a detailed analysis of the MSUGRA scenario is beyond the scope of this study, which

concentrates on the seesaw parameters, it is enough to illustrate our results.

Notice that, since we normalize the LFV branching ratios to the muon g-2 deviation

from the SM, there is no enhancement of LFV for large tanβ. The three loop EDM

contribution (3.18) is enhanced, because it has extra powers of tan β.

3.3 Flavoured thermal leptogenesis

The observed Baryon Asymmetry of the Universe [37] is:

Y∆B ≡ nB − nB̄

s

∣∣∣
0

= (8.75 ± 0.23) × 10−11 (3.20)

where nB0, nB̄0, and s0 are the number densities of baryons, antibaryons, and en-

tropy, in the Universe today. We assume this excess is produced via flavoured thermal

leptogenesis[2, 6, 38], through the decays of the lightest singlet neutrino N1 and sneu-

trino Ñ1, in the thermal plasma at T ∼M1. The population of N1 and Ñ1 is produced

by inverse decays and scattering in the plasma. The decays are CP violating and con-

trolled by the neutrino Yukawa coupling, thus for hierarchical right-handed (s)neutrinos

the CP-asymmetry is given by [39]:

ǫαα =
Γ(N1 → ℓαH, ℓ̃αh) − Γ(N1 → ℓαH, ℓ̃αh)

Γ(N1 → ℓH, ℓ̃h) + Γ(N1 → ℓH, ℓ̃h)

≃ 3M1

8πv2
u [λ†λ]11

Im
{
[λ]α1[m

†
νλ]α1

}
, (3.21)

where α specifies the flavour of the (s)lepton doublet in the final state. If the CP

violating decays are out-of-equilibrium the lepton asymmetry produced can survive

and be partially converted into a baryon asymmetry through non perturbative SM

sphaleron processes[40].
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In Eq.(3.21) we have intentionally not summed over the flavour index α, because

flavours can have a role in the evolution of the lepton asymmetry [6]. That is, if a flavour

in the thermal bath is distinguishable, then the corresponding lepton asymmetry follows

an independent evolution. This occurs when the charged lepton Yukawa interaction

rate Γℓα
= 5 × 10−3TY 2

α is faster than the expansion rate H and the singlet inverse

decay rate ΓID ∼ e−m/T ΓN , where ΓN is the right-handed neutrino decay rate. Since

leptogenesis takes place at T ∼ M1 the mass of the lightest right-handed (s)neutrino

tells us if flavour effects are important.

In the MSSM, the charged lepton Yukawas are larger than in the SM: Yα =

mα/(cosβ × 174GeV), so they come into equilibrium earlier. At very high temper-

atures T > tan2 β 1012 GeV 6, the charged lepton yukawa interactions are out of

equilibrium (Γℓα
≪ H) and there are no flavour effects, so leptogenesis can be studied

in one-flavour case. However, as the temperature drops, the τ interactions come into

equilibrium. In the range tan2 β 109 . T . tan2 β 1012 GeV, we have an intermediate

two-flavour regime, so that the lepton asymmetry produced in the τ evolves separately

from the lepton asymmetry created in the linear combination:

ℓ̂o =
λµ1µ̂+ λe1ê√
|λµ1|2 + |λe1|2

. (3.22)

For T . tan2 β 109 GeV, also the µ Yukawa interactions come into chemical equilibrium

and all the three flavours become distinguishable.

In all the flavour regimes the baryon to entropy ratio can be written as:

YB ≃ 10

31

nN + nÑ

s

∑

α

ǫααηα ≃ 10

31

315ζ(3)

4π4g∗

∑

α

ǫααηα . (3.23)

The numerical prefactor indicates the fraction of B − L asymmetry converted into a

baryon asymmetry by sphalerons [41] in the MSSM. The second fraction is the equilib-

rium density of singlet neutrinos and sneutrinos, at T ≫ M1, divided by the entropy

density s. Numerically, it is of order 4 × 10−3, similar to the non-SUSY case 7. The

ǫαα are the CP asymmetries in each flavour (so that α = τ, o or α = τ, µ, e in the two-

or three-flavour regimes respectively) and the ηα are the efficiency factors which take

6We approximate tanβ ≃ 1/ cosβ because sin β ∼ 1 and tanβ is a more familiar parameter.
7The addition of the Ñs is compensated by the approximate doubling of the degrees of freedom in

the plasma : g∗ = 228.75 for the MSSM.
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into account that these CP asymmetries are partially erased by inverse decays and

scattering processes. We assume the efficiency factors have the same functional form

and numerical factors as for non-supersymmetric leptogenesis [6]:

ηα ≃
[(

m∗

2|Aαα|m̃αα

)−1.16

+

( |Aαα|m̃αα

2m∗

)−1
]−1

, (3.24)

where we neglect A-matrix [42] factors in our numerical analysis. The rescaled N1

decay rate is defined as :

m̃ =
∑

α

m̃αα =
∑

α

|λα1|2
M1

v2
u, (3.25)

and in supersymmetry mMSSM
∗ = mSM

∗ /
√

2 = 4πv2
uH1/M

2
1 ≃ 0.78 × 10−3 eV 8, where

H1 is the Hubble expansion rate at T = M1.

Combining equations Eq.(3.23), Eq.(3.21), Eq.(3.24) and Eq.(3.25), we can write

the BAU as:

YB = −10

31

135M1

4π5g∗v2
u

∑

α

ηα Im{λ̂α[m†
ν · λ̂]α}, (3.26)

where λ̂α = [λ]α1/
√

[λ†λ]11. YB is roughly a factor of
√

2 larger than in the SM, in the

limit where m̃αα > m∗ for all flavours.

Supersymmetric thermal leptogenesis suffers from the so called gravitino problem[43]:

in a high temperature plasma gravitinos are copiously produced and their late decay

can jeopardize successful nucleosynthesis (BBN). This gives an upper bound on the

reheat temperature of the Universe TRH , which constrains the temperature at which

leptogenesis can take place, and gives an upper bound on the singlet neutrino mass

M1 <∼ 5TRH [44, 45]. However, there is also a lower bound on M1 >∼ 109 GeV [46] (for

hierarchical Ns) to obtain a large enough lepton asymmetry. This can be seen from

(3.26), where YB ∝ M1. It has recently been suggested [47] that this conflict can be

avoided by generating the singlet masses after reheating. However, we here assume

that M1 > 109 GeV is fixed before reheating.

8There are factors of 2 for SUSY: defining ΓD to be the total N decay rate, we have ΓSUSY
D =

2ΓSM
D . So with the definition of eq. (3.25) for m̃, we have m̃ = 4πv2

uΓMSSM
D /M2

1 as opposed to

m̃ = 8πv2
uΓSM

D /M2
1 . So mSUSY

∗ = mSM
∗ /

√
2, where m∗ is the value of m̃ that would give ΓD = H1 at

T = M1, and the factor of
√

2 is because there are approximately twice as many degrees of freedom

in the plasma.
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There are various ways to obtain TRH ∼ 109 − 1010 GeV. If the gravitino is un-

stable, the nucleosynthesis bound leads to very stringent upper bounds on the reheat-

ing temperature after inflation [48]: TRH <∼ 104 − 105 GeV for m3/2
<∼ 10 TeV, or

TRH
<∼ 109 − 1010 GeV for m3/2 > 10 TeV. A sufficiently high reheat temperature is

obtained for very heavy gravitinos because they decay before BBN. Alternatively, if

the gravitino is the stable LSP, a correct dark matter relic density can be obtained for

TRH ∼ 109 − 1010 GeV. In this scenario, one must ensure that the decay of the NLSP

does not perturb BBN. This can be obtained, for instance by choosing the NLSP with

care [49] or by having it decay before BBN via R-parity violating interactions[50].

We can summarise that a reheat temperature >∼ 109 GeV is difficult but not im-

possible in supersymmetry. So for the purposes of this paper, we will allow M1 < 1011

GeV.

3.4 Reconstructing leptogenesis from low energy

observables

In order to search for a connection between the low-energy observables and leptogenesis,

we need a parametrisation in which we can input the low energy observables, and then

compute the BAU. Ideally we want to express the high-energy parameters in terms

of observables [51]. Therefore, we write the seesaw parameters in terms of operators

acting on the left-handed space, potentially more accessible: so we chose Dν , Dλ and VL

(that appears in the combination λλ†) and UPMNS. Within this bottom-up approach,

the CP violation is now encoded in the three, still unknown, low energy phases of the

PMNS matrix U , and in the three unknown phases in VL. We then reconstruct the

right-handed neutrino parameters in terms of those inputs.

The matricesDν and UPMNS can be determined in low-energy experiments. Through

neutrino oscillation experiments we can extract the two neutrino mass differences, the

PMNS matrix mixing angles and, in the future, the Dirac phase [52] (if Nature is kind

with us). Furthermore, we have an upper bound on light neutrino masses that comes

from cosmological evaluations[53], Tritium beta decay[54], and neutrinoless double beta

decay[55]. Observing this last process could prove the Majorana nature of neutrinos

and put some constraints on the combination of Majorana phases.
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We have seen that in MSUGRA there is an enhancement of lepton flavour violating

processes due to the neutrino Yukawa couplings. Assuming that these processes can

be measured in the near future constrains the coefficients [C]αβ , see Eq. (3.13), which

depend on Dλ and VL. We parametrise the VL matrix as the product of three rotations

along the three axes, with a phase associated to each rotation:

V †
L =




cL13c
L
12 cL13s

L
12 e

−iρ sL
13 e

−iσ

−cL23sL
12 e

iρ − sL
23 e

−iωsL
13c

L
12 e

iσ cL23c
L
12 − sL

23 e
−iωsL

13s
L
12 e

−iρ eiσ cL13s
L
23 e

−iω

sL
23 e

iωsL
12 e

iρ − sL
13c

L
23c

L
12 e

iσ −sL
23 e

iωcL12 − sL
13s

L
12c

L
23 e

−iρ eiσ cL23c
L
13


 ,

(3.27)

¿From the bottom-up parameters defined above and using the equation (3.7), we are

now able to reconstruct the right handed neutrino mass matrix and the VR matrix

appearing in the baryon asymmetry:

M−1 = VRD
−1
M V T

R = D−1
λ VLUDνU

TV T
L D

−1
λ v−2

u . (3.28)

In leptogenesis without flavour effects, the BAU is controlled only by the phases

of VR, which also contribute to the UPMNS in the parametrisation we use. However,

as demonstrated in the R matrix parametrisation [56], it is always possible to choose

VL such that the lepton asymmetry ǫ has any value for any value of PMNS phases

[4]. So for YB in its observed range, the PMNS phases can be anything, and if we

measure values of the PMNS phases, YB can still vanish. In flavoured leptogenesis,

the BAU can be written as a function of PMNS phases and unmeasurables, but it

was shown in [5] that for the Standard Model seesaw, YB is insensitive to the PMNS

phases. Relations between low energy CP violation and leptogenesis can be obtained

by imposing restrictions on the high-scale theory, for instance that there are no right-

handed phases [8].

In the case of MSUGRA, we assume that we will have two more measurable quan-

tities in the near future, µ→ eγ and either of τ → ℓγ. Naively, we do not expect LFV

rates to add more information on the CP violating phases, because the rates can be

used to fix two (real) parameters in Dλ and VL. The question is whether the remaining

phases and real parameters, can always be arranged to generate a large enough BAU.

We find the answer to be yes. For instance, in the limit of taking only the largest

neutrino Yukawa coupling in Dλ, the matrices C(n) become proportional to H , and
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using the parametrisation of the VL matrix given in Eq.(3.27) one can easily see that

the CP violating phases of the VL matrix disappear from the LFV branching ratios.

Besides the LFV processes, the neutrino Yukawa couplings can also contribute to

the CP violating electric dipole moments. These contributions are expected to be

below the sensitivity of current experiments [20, 57]. See [57] for a discussion of the

impact of EDMs on seesaw reconstruction. In our framework with hierarchical Yukawas

we expect some suppression on this contributions to the EDMs. As we have seen in

Section 3.2.1, for low tanβ the main contribution is proportional to the commutator

of the matrices C(1) and H , see eq. (3.16). Thus in the limit of taking only the largest

Yukawa, which implies C(1) ∝ H , the commutator is equal to zero. Regarding the large

tan β regime, although the contribution to the EDMs has a different dependence, given

in eq. (3.18), it can be shown that it also vanishes in this limit. This means that a

non-zero contribution will be suppressed by mixing angles and a smaller eigenvalue of

H .

3.5 Analytic Estimates

If a parametrisation existed, in which one could input the light neutrino mass matrix,

the neutrino Yukawa couplings that control lepton flavour violation, and the baryon

asymmetry, then it would be clear that the BAU, and other observables, are all insen-

sitive to each other. In this section, we argue that at the minimum values of M1 where

leptogenesis works, such a parametrisation “approximately” exists.

We analytically construct a point in parameter space that satisfies our criteria (large

enough BAU, LFV observable soon), and where the baryon asymmetry is insensitive to

the PMNS phases. To find the point, we parametrise the seesaw with the parameters of

the effective Lagrangian relevant to N1 decay. Since the observed light neutrino mass

matrix is not an input in this parametrisation, one must check that the correct low

energy observables are obtained. This should occur, in the region of parameter space

considered9, because the contribution of N1 to the light neutrino mass matrix can be

neglected. We construct the point for the normal hierarchy and small tan β; similar

9This area of parameter space was also found in [58] using a left-handed parametrisation inputting

W = VLU instead of VL. See also [59].
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constructions are possible for the other cases.

The effective Lagrangian for N1 and Ñ1, at scale M1
<∼ Λ ≪ M2, arises from the

superpotential:

WN1
= λα1L

α
LHuN

c
1 +

M1

2
N c

1N
c
1 + καβ(LL

αHu)(LL
βHu) (3.29)

where καβ is obtained by integrating out N2 and N3. It is known [60] that the smallest

M1 for which leptogenesis (with hierarchical Ni) works, occurs at m∗ <∼ m̃ <∼ msol. So

we assume that
λα1λβ1

M1
v2

u ≪ mαβ , (3.30)

implying that N1 makes negligible contribution to light neutrino observables. We are

therefore free to tune the λα1s to maximise the baryon asymmetry.

To obtain a baryon asymmetry YB ≃ 10−3
∑

α ǫααηα ≃ 8 × 10−11, we require:

∑

α

ǫααηα ≃ 8 × 10−8 . (3.31)

For tan β ≃ 2, it is unclear whether the ℓµ is distinct for leptogenesis purposes. For

simplicity we assume not, and use two flavours o and τ . The efficiency factors ηα are

maximised to ηα ≃ 1/4 for m̃αα = |λα1|2v2
u/M1 ≃

√
2m∗. Since m̃ ≃ 3m∗, this is barely

in the strong washout regime, and (3.24) should be an acceptable approximation.

We would therefore like to find a point in parameter space, such that M1 ∼ 109

GeV, ǫoo ≃ ǫττ ≃ 1.6 × 10−7. Defining λ̂α = λα1/
√∑

α |λα1|2, equation (3.21) implies

that we need, for α = o and α = τ :

Im
{
λ̂α1

[m†λ̂]α1

m3

}
>∼

109GeV

M1
. (3.32)

This means that λ̂1 needs a component along û3 (the eigenvector of m3), and, since it

should also generate m1, it needs a component along û1. It can always be written as:

~λ1 = λ11û1 + λ21û2 + λ31û3 , (3.33)

where {1, 2, 3} indices indicate the light neutrino mass basis. In the following we take

λ21 = 0, λ31 = |λ31|eiζ , |λ31| ≫ |λ11|. With equation (3.5),

Im
{
λ̂α1

[m†λ̂]α1

m3

}
=

1

|λ11|2 + |λ31|2
Im
{

(λ11λ31Uα1 + λ2
31Uα3)U

∗
α3

}

→ 1

|λ11|2 + |λ31|2
Im
{λ2

31

2

}
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(no sum on α). In the last formula, we drop the terms ∝ λ11, which may contain

asymmetries that cancel in the sum ǫoo + ǫττ . These are not useful to us, because we

aim for ηo ≃ ητ ≃ 1/4. For Im {λ2
31}/(|λ31|2 + |λ11|2) >∼ 1/2, Eq.(3.32) implies that a

large enough BAU could be produced for M1 ∼ 3 × 109 GeV.

We now check that we obtain the observed light neutrino mass matrix, even with

ζ , the phase of λ31, of order π/4. The light neutrino mass matrix is:

[m]αβ =
λα1λβ1

M1

v2
u + καβv

2
u = v2

u

[λ2
11

M1

û1û
T
1 + κ2û2û

T
2 + (

λ2
31

M1

+ κ3)û3û
T
3

]
αβ

(3.34)

where κ2 and κ3 are the eigenvalues of κ. By convention there is no phase on m3, so

in the 2 right-handed neutrino (2RHN) model that generates κ, we should put a phase

on the larger eigenvalue κ3. Since λ2
31v

2
u/M1 ≃ ei2ζ × 10−3 eV, the phase on κ3 is very

small and we neglect it in the following discussion of lepton flavour violation.. It is well

known [61] that the seesaw mechanism with 2 right-handed neutrinos can reproduce

the observed light neutrino mass matrix, with m1 = 0. In our case, we assume that

N2 and N3 give the observed m2, and m3 up to (negligeable) corrections due to N1 of

order 10−3 eV. m1 arises due to N1.

In the 2RHN model, there is less freedom to tune the LFV branching ratios [62]

than in the seesaw with three Ni. So as a last step, we check that we can obtain

LFV branching ratios just below the current sensitivity. The 2RHN model can be

conveniently parametrised with D̂κ, the 3× 2 ÛPMNS matrix, the 2× 2 unitary matrix

Ŵ = V̂LÛ , and the eigenvalues Λ2 and Λ3 of Λ̂ (matrices in the 2RHN subspace are

denoted by hats). Λ̂ is a 2 × 2 sub-matrix of λ, obtained by expressing the 3 × 3

Yukawa matrix in the eigenbases of the heavy and light neutrinos, and dropping the

first row and column, corresponding to ν1 and N1. It is straightforward to verify that

[V̂L]3e ∼ 10−3 can be obtained by taking tan θ̂W ≃ s13/(c13s12), where θ̂W is the rotation

angle in Ŵ and θij are from UPMNS . Choosing Λ2, the smaller eigenvalue of Λ, to be

∼ .06, ensures that BR(µ → eγ) is small enough. We can simultaneously take Λ3 ∼ 1

and obtain [VL]3τ ∼ [VL]3µ ∼ 1, which allows BR(τ → µγ) ∼ 10−8. The resulting

masses of N2, N3 are ∼ 1012, 1015 GeV.

Our MCMC has some difficulties in finding the analytic points. We imagine this

to be because they are “fine-tuned” in the parametrisation used by the MCMC. The

amount of tuning required in the angles of VL, to obtain the desired {λj1}, can be
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Light neutrino best fit values

∆m2
sol = (7.60 ± 0.20) × 10−5 eV2

|∆m2
atm| = (2.40 ± 0.15) × 10−3 eV2

sin θ2
sol = 0.320 ± 0.023

sin θ2
atm = 0.500 ± 0.063

Table 3.4: The best fit values of the light neutrino parameters and their 1σ errors [63].

estimated by taking logarithmic derivatives. In Appendix .1, we find a fine-tuning of

order:
m̃2

m2
3θ13

∼ .01 (3.35)

where θij are the UPMNS phases, and we optimistically assumed θ13 ≃ .1. These points

at M1 <∼ 1010 GeV with m̃ >∼ 10−3 eV, were also not found in the analysis of [19].

3.6 MCMC

In this section we describe our numerical analysis. In order to verify if the baryon

asymmetry of the universe is sensitive to the low energy PMNS phases, we perform a

scan over the neutrino sector parameters aiming for those points compatible with the

measured baryon asymmetry and the bound on the reheating temperature, that have

large enough LFV branching ratios to be seen in the next experiments.

Using the bottom-up parametrisation of the seesaw defined by the VL, Dλ, Dν and

U matrices, our parameter space consists of the 14 variables displayed in Table 3.5. We

take as an experimental input the best fit values of the light neutrino mass differences

and of the solar and atmospheric mixing angles, Table 3.4. With respect to the SUSY

parameters, we choose two different regimes for tan β, equal to 2 or 50, while themSUSY

scale is deduced from the data on the anomalous magnetic moment, see section 3.2.1.

Due to the large number of parameters it would prohibitive to consider a usual

grid scan. Thus, we choose to explore our parameter space by a Markov Chain Monte

Carlo that behaves much more efficiently, and has been already successfully employed

in other analyses [64].

79



CP VIOLATION IN THE SUSY SEESAW: LEPTOGENESIS AND LOW ENERGY

3.6.1 Bayesian inference

Given a model with free parameters X = {x1, . . . , xn} and a set of derived parameters

ξ(X), for an experimental data set d, the central quantity to be estimated is the

posterior distribution P (X|d), which defines the probability associated to a specific

model, given the data set d. Following the Bayes theorem, it can be written as:

P (X|d) =
L(d|ξ(X))π(X)

P (d)
, (3.36)

where L(d|X) is the well known likelihood, that is the probability of reproducing the

data set d from a given model X, π(X) is the prior density function, which encodes

our knowledge about the model, and P (d) =
∫
L(d|ξ(X))π(X)dX is an overall nor-

malization neglected in the following. In the case of flat priors:

π(X) =

{
1

Xmax−Xmin
if X ∈ [Xmin, Xmax]

0 otherwise
(3.37)

the posterior distribution reduces to the likelihood distribution in the allowed param-

eter space.

The main feature of the Markov chains is that they are able to reproduce a specific

target distribution we are interested in, in our case the posterior distribution, through a

fast random walk over the parameter space. The Markov chain is an ordered sequence

of points Xi with a transition probability W (Xi+1|Xi) from the i − th point to the

next one. The first point X0 is randomly chosen with prior probability π(X). Then

a new point is proposed by a proposal distribution Q(Xi+1|Xi) and accepted with

probability A(Xi+1|Xi). The transition probability assigned to each point is then

given by W (Xi+1|Xi) = Q(Xi+1|Xi)A(Xi+1|Xi). Given a target distribution P (X), if

the following detailed balance condition:

W (Xk|Xj)P (Xj) = W (Xj|Xk)P (Xk) (3.38)

is satisfied for any j, k, then the points Xi are distributed according to the target

distribution. For a more detailed discussion see [21, 22].

3.6.2 The Metropolis-Hastings algorithm

In order to generate the MCMC with a final posterior distribution (3.36), we use the

Metropolis-Hastings algorithm. In the following, we briefly recall how the algorithm
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behaves, but the discussion is done in terms of the likelihood, instead of the posterior

distribution, since we assume flat priors on our parameter space, see eq. (3.37).

Let X be the parameter set we want to scan, and L(X) our likelihood function,

the target distribution. ¿From a given point in the chain Xi with likelihood L(Xi), a

new point Xnew with likelihood L(Xnew) is randomly selected by a gaussian proposal

distribution Q(Xnew, Xi) centered in Xi and having width ǫ. This last quantity ǫ

controls the step size of the random walk. The new point is surely added to the chain

if it has a bigger likelihood, otherwise the chain adds the new point with probability

L(Xnew)/L(Xi) . So the value of the next point Xi+1 in the chain is determined by:

Xi+1 =

{
Xnew with probability min[A(Xnew, Xi), 1]

Xi with probability 1 − min[A(Xnew, Xi), 1]
, (3.39)

where A(Xnew, Xi) is the acceptance probability:

A(Xnew, Xi) =
L(Xnew)

L(Xi)
. (3.40)

Given this acceptance distribution and using the symmetry of our proposal distri-

bution Q(Xl, Xi) under the exchange l ↔ i, it is straightforward to see that the detailed

balance condition 3.38 is satisfied for the likelihood L(X) as target distribution. This

implies that when the chain has reached the equilibrium, after a sufficiently long run,

our sample is independent of the initial point and distributed according to L(X).

In order to arrive at the equilibrium in a reasonable amount of time, the step scale

ǫ of our random walk must be accurately chosen. Indeed, if we define the acceptance

rate as the number of points accepted over the number of points proposed, a too big

step ǫ implies a too low acceptance rate, so that our Markov Chain never advances,

while a too small ǫ and, so, a very large acceptance ratio, implies that our chain needs

a very large time to scan all the space. It has been suggested that ǫ must be chosen

according to an optimal acceptance rate between 20% and 50%. However, in order to

ensure the detailed balance condition, ǫ cannot change during the run of the chain,

thus, it is set by our program in a burn-in period.

A valid statistical inference from the numerical sample relies on the assumption

that the points are distributed according to the target distribution. The first points of

the chain are arbitrarily chosen and the chain needs a burn-in period to converge to the
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Free parameters Allowed range [Xmin, Xmax]

λ2/λ1 ≃ λ3/λ2 ≃ 30 λ2/λ1 ≃ 100, λ3/λ2 ≃ 50

log10 λ3 [−0.3, 0.3] [−0.5, 0.5]

log10 λ2 [−1.77,−1.17] [−2.2,−1.2]

log10 λ1 [−3.25,−2.65] [−4.2,−3.2]

log10(m1/eV) [−6,−3]

log10 θ
VL

ij [−4, log10 π]

ρ, ω, σ [0, π]

θ13 [0., 0.2]

δ [0, π]

α, β [0, π/2]

Table 3.5: Allowed parameter space, so that the uniform prior on each parameter is

defined as in eq.(3.37).

target distribution. The length of the burn-in strongly depends on the intrinsic prop-

erties of the chain and cannot be set a priori. It changes according to the complexity

of the model, to the target distribution, and the efficiency of the proposal distribution

employed. Once the chain has reached the equilibrium the first burn-in points must be

discarded to ensure the independence of the chain from the initial conditions. Never-

theless, as we will see in section 3.6.4, even following the procedure above, it can be a

delicate issue to determine if a chain has really converged.

3.6.3 The seesaw sample

In our work the free variables X are given by the 14 seesaw parameters, with uniform

priors, Eq. 3.37, on the allowed range of parameter space (see Table 3.5). The choice

of a logarithmic scale on some unknown parameters allows us to scan with the same

probability different orders of magnitude. We analyze models with two different hier-

archies in the neutrino Yukawas, so that, for a λ3 ∼ 1 we impose λ2/λ1 ∼ λ3/λ2 ∼ 30

or λ2/λ1 ∼ 100 and λ3/λ2 ∼ 50. The lightest neutrino mass is allowed to vary between

three orders of magnitude 10−6 < m1 < 10−3 eV and the θ13 mixing angle within its 3σ

range, 0 < θ13 < 0.2 rad. The VL mixing angles can vary over 4 orders of magnitude,
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with maximum value π. All the CP violating phases, those of the VL matrix indicated

by ρ, ω and σ and the Dirac and Majorana phases δ, α and β, are allowed to vary

on all their definition range: [0, π/2] for the Majorana phases and [0, π] for the others

(this avoids degeneracies).

The idea is, now, to generate a sample of points in our parameter space that provide

enough BAU, give LFV rates big enough to be seen in the next generation of exper-

iments, and also have an M1 light enough to avoid the gravitino problem. We then

define our set of derived parameters ξ(X) as in Table 3.6 and we associate to them a

multivariate gaussian likelihood with uncorrelated errors:

L(ξexp|ξ) =
1

(2π)1/2Rm/2
exp{−1

2
(ξ − ξexp)

tR−1(ξ − ξexp)} . (3.41)

Where m = 4 is the dimension of the derived parameter set. The centre values ξexp

are the best fit values and R is an m×m error matrix, in this case diagonal, since we

assume no correlation between the errors. As we can see in Table 3.6, the BAU is set to

its experimental value, while the LFV rates are set to be one order of magnitude below

the present bounds, and the expected value of lightest heavy neutrino mass M1 ∼ 109

GeV is set to escape the gravitino problem. The branching ratio of LFV τ decays is

given in terms of the combination BR(τ → eγ) + BR(τ → µγ) ≡ BRτα, since one

of them is suppressed to respect the stringent bound from BR(µ → eγ) (we assume

hierarchical yukawas).

For each point Xi of the chain, the lepton flavour violating branching ratios are

estimated with equation Eq.(3.15), while YB is computed after the reconstruction of the

right neutrino mass, see Eq.(3.28), using Eq.(3.23) in the flavour regime is in act at the

temperatures we consider. We recall that the temperature at which leptogenesis takes

place is of the same order of the reconstructed right-handed neutrino mass. Depending

on the value of tanβ, the range of temperatures at which the flavour regimes have a role

changes. As we already mentioned in Section 3.3: for small tan β, in the temperature

range 109 GeV < T < 1012 GeV the τ flavour is in equilibrium and the two flavour

regime is in order; while for T < 109 GeV µ are also in equilibrium and the three

flavours are distinguishable. Since we aim for values of M1 ∼ 109 GeV if we consider

a small value of tan β our program takes into account that the BAU can be produced

in both two or three flavour regimes. For very large tanβ, instead, already for T <

1012 GeV τ and µ are in equilibrium, thus the three flavour regime always takes place.
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Derived parameters ξ(X) ξexp ± σ

YB (8.75 ± 0.23) 10−11

log10BR(µ− > eγ) −13 ± 0.1

log10BR(τ− > lγ) −9 ± 0.1

log10(M1/GeV ) −9 ± 0.1

Table 3.6: Best values and errors for the derived parameters ξ(X) we want to maximize.

In the case of steeper yukawa hierarchy, in agreement with our analytical estimate,

we enlarge our set of derived parameters and maximise the rescaled N1 decay rate to

m̃ ∼ 10−3 eV and the heaviest right-handed neutrino masses to M2 ∼ 1012 GeV and

M3 ∼ 3 1014 GeV.

All the points that do not respect the present bounds on LFV, do not have large

enough baryon asymmetry or have M1 > 1011 GeV, have a null likelihood. We assume

that the largest uncertainty on the baryon asymmetry comes from our calculation, so

we allow YB to be as small as 4 10−11. Those points having one of the RH neutrino

masses above the MGUT ∼ 3 1016 GeV scale have a null likelihood too, since in that

case the equations we use for the evaluation of LFV processes do not apply.

3.6.4 Convergence

Convergence of the chain ensures the sample is distributed according to the target

distribution and thus allows to be confident of its statistical information. The question

we want to answer in this paper, however, does not require a statistical interpretation

of the sample. Here we only aim to show that, for any value of the low energy phases,

the unmeasurable high energy parameters can be rearranged to obtain the right baryon

asymmetry. Therefore a careful diagnostic of the convergence is not a priority. Nev-

ertheless, we briefly discuss it in this section since it is an important issue that can

help the reader to have a better overview on our results. Our sample, indeed, has some

typical features that can make difficult to check if the chain has reached the target

distribution.

As a rudimentary attempt, in our analysis we use the simplest and straightforward

approach. We run different chains starting from different values and compare the
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behaviour of the free parameters, once the chains have converged they should move

around the same limiting values. However, this method can be inadequate in case of

poor mixing, i.e. when the chains are trapped in a region of low probability relative

to the maximum of the target distribution. This happens in models with strongly

correlated variables, when the proposal distribution does not efficiently escape this

region. Therefore, it can be an issue for our numerical analysis, when, as mentioned

in section 3.5, we look for a fine-tuned region with a large baryon asymmetry and low

M1. We can understand the poor mixing situation if we imagine a landscape on the

parameter space corresponding to the target distribution, with some broad hills and a

tall but very thin peak at the maximum of the target distribution. In that case, the

step of the chain can be optimized to efficiently scan all the space but, if its size is

larger than the width of the peak, it can easily miss it.

In case of strongly correlated variables it can also happen that the region to be

scanned is mainly a plane, that is with almost null likelihoods. This is the case of

our sample, where we expect a large region with null or almost null likelihood, for

all those points that do not have large enough baryon asymmetry, low M1 or do not

respect the bounds on LFV. In this context, if a gaussian-like proposal distribution,

as in our sample, is employed, the choice of the starting point becomes important to

allow the chain to advance. Indeed, if the initial value is surrounded by points with null

likelihood (and so null acceptance rate) and its distance from the interesting region is

much larger than the step of the random walk, the chain cannot move from this point,

since it always finds points with null likelihood. On the other side, if the chain starts

in a region which is a reasonable fit to the data, it advances. Discarding the first

points of the chain can ensure independence of the chain of the initial conditions inside

the interesting region however, if this region is well separated from another interesting

region, the chain has almost null probability to find the second one.

In order to perform a valid statistical analysis, more sophisticated methods should

be employed to decide if the chain has converged. In literature many studies exist on

convergence criterion that help to check the mixing of the sample and are based on the

similarity of the resulting sampling densities of input parameters from different chains.

An example can be found in [65] and [66].
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3.6.5 Run details

In this subsection we explain the details of our MCMC run. The parameter space

we scan is very large if compared to the derived variables and, in addition, we expect

a strong correlation between the evaluated baryon asymmetry and the lightest right-

handed neutrino mass, see eq. 3.26. Thus, since we expect a sample with poor mixing,

as discussed in section 3.6.4, we first look for an initial point which is a reasonable fit

to our observables. This procedure is done running previous shorter chains without

imposing null likelihoods to the not interesting points. Once a wide enough set of

interesting starting points is found, we start running the chains.

All the simulations we present are performed by running 5 chains with 106 points

each. As explained before, during the first burn-in iterations, the scale of the random

walk ǫ is varied until the acceptance rate of points is between the optimal range 20% and

50%. This usually takes much less than 3 103 iterations. When the optimal acceptance

rate is reached, the scale ǫ is fixed during the rest of the run. The chains are then

added together after having discarded the first 105 points, corresponding to the burn-in

period, in order to give enough time to the chain to converge. As discussed above, this

procedure should eliminate the dependence on the initial point inside the interesting

region, but is only a first attempt to ensure the sample has reached equilibrium. We

run simulations for both normal and inverted hierarchy, in the two cases of small and

large tan β.

3.7 Discussion

3.7.1 Assumptions

We assume a three generation type I seesaw with a hierarchical neutrino Yukawa matrix.

We require that this model produces the baryon asymmetry via flavoured thermal

leptogenesis, and induces the observed light neutrino mass matrix. This model has a

hierarchy problem, so we include supersymmetry.

We make a number of approximations and assumptions in supersymmetrising the

seesaw. First, we use real and universal soft terms at some high scale, above the

masses Mi of the singlet neutrinos. In this restrictive model, the only contributions
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to flavour off-diagonal elements of the slepton mass2 matrix ≡ [m̃2]αβ , arise due to

Renormalisation Group running. Second, we use simple leading log estimates for the

off-diagonals [m̃2]αβ . Third, we estimate the SUSY contributions to the dimension

five dipole operator (see Eq.3.12) using simple formulae of dimensional analysis (see

equations (3.15),(3.16), (3.18)). This operator induces flavour diagonal electric and

magnetic dipole moments, and the flavour changing decays ℓα → ℓβγ. We assume

the (g − 2)µ anomaly is due to supersymmetry, and use it to “normalise” the dipole

operator. This implies that our SUSY masses scale with tanβ: m2
SUSY = tan β

2
(200

GeV)2. We imagine that there is an uncertainty ∼ 10 in our estimates of electric

dipole moments and ℓα → ℓβγ decays rates, due to mixing angles and sparticle mass

differences.

Our first approximation, of universal soft terms, seems contrary to our phenomeno-

logical perspective: the RG-induced contributions to [m̃2]αβ can be interpreted as lower

bounds on the mass2 matrix elements. However, we neglect other contributions, and

require that the RG induced flavour-violating mass terms are ∝ C
(1)
eµ (see eq. (3.11)),

give detectable rates for µ → eγ and τ → ℓγ in upcoming experiments. Realistically,

measuring µ → eγ mediated by sleptons might allow to determine m̃2
eµ, but does not

determine the seesaw model parameters C
(1)
eµ . This model dependence is compatible

with our phenomenological approach, because our result is negative: we say that even

if we could determine C
(1)
eµ , the baryon asymmetry is insensitive to the PMNS phases.

In our numerical analysis we sample the lightest neutrino mass m1 and the PMNS

mixing angle θ13, but these two low energy parameters could be eventually measured.

In this case our simulations should be reconsidered. However, from the analytical

estimates, we do not expect that fixing these parameters will change our conclusions.

3.7.2 Method

We explore the seesaw parameter space with a Monte Carlo Markov Chain, for two

reasons. First, an MCMC is more efficient than a grid scan for multi-dimensional

parameter space. It is essentially a programme for exploring hilltops in the dark. Since

the programme likes to step up and is reluctant to step down, it takes most of its steps

in the most probable areas of parameter space.

The second potential advantage of a MCMC, is that it could make the results less
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dependent on the priors, that is, the choice of seesaw parametrisation, and of the

distribution of points. The results of parameter space scans are often presented as

scatter plots, and it is difficult to not interpret the point distribution as probability.

However, the density of points in the scatter plots depends not only on what the model

predicts, but also on the distribution of input points. For this reason, seesaw scans

using different parametrisations can distribute points differently in scatter plots. For

example, if a model parameter such as a Yukawa can vary between 0 and 1, the results

will be different depending on whether the Yukawa is O(1) (take points uniformly

distributed between 0 and 1) or can vary by orders of magnitude (take the exponential

of a variable uniformly distributed between −n and 0). We had hoped that an MCMC

could improve this, because a converged MCMC distributes points in parameter space

according to a likelihood function. However, in practise there are various difficulties.

The prior on the seesaw model parameter space matters, because the MCMC takes

steps of some size in each parameter: broad hilltops are easier to find than sharp peaks.

As discussed in [66], this can be addressed by describing the model with parameters

that match closely to physical observables. For this reason we parametrise the seesaw

in terms of the diagonal singlet mass matrix DM , the light neutrino mass matrix

m = UDνU
T , and the neutrino Yukawa matrix λλ† = V †

LD
2
λVL. These are related to

low energy observables, because λλ† controls the RG contributions to the slepton mass

matrix. We take the priors for our inputs as given in Table 3.5. However, the baryon

asymmetry and the mass M1 belong to the “right-handed” sector, so are complicated

functions of the “left-handed” input parameters. The bridge between the LH and RH

sector is the Yukawa matrix, whose hierarchies may strongly distort the MCMC step

size. To obtain a large enough baryon asymmetry for M1 ∼ 109 GeV requires careful

tuning in the “right-handed” space, and our MCMC has difficulty to find these points.

This is related to a second, practical problem, that there are many more parameters

than observables, so the space to explore is big, but the peaks with enough baryon

asymmetry and small enough M1 are rare. It is difficult to ensure that the MCMC has

found all the peaks, as is discussed in section 3.6.4.

In section 3.5, we find analytically an area of parameter space that satisfies our

constraints, but where the baryon asymmetry is insensitive to PMNS phases. This area

corresponds to the limit where N1 makes a negligible contribution to the light neutrino
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Figure 3.1: Density of “successful” points, as a function of the lightest right-handed

neutrino massM1 and rescaled decay rate m̃, assuming λ3 ∼ 1 and λ2/λ1 ∼ λ3/λ2 ∼ 30,

for two different simulations: NH and tanβ = 50 (left), and IH and tanβ = 2 (right).

“Successful” points have YB > 4 10−11, and BR(µ → eγ) and BR(τ → ℓγ) an order of

magnitude below the current bounds. See section 3.6.3.

mass matrix. In this area, the seesaw model can be conveniently parametrised with the

interactions of the effective theory at M1, and it is straightforward to tune the coupling

constants to fit the light neutrino mass matrix, LFV rates, and the baryon asymmetry.

3.7.3 Results

The aim of our analysis was to verify if a preferred range of values for PMNS phases

δ, α and β can be predicted, once low energy neutrino oscillation data, a large enough

BAU, and LFV processes within the sensitivity of future experiments are requirements

of the model.

In Fig. 3.1, we show the distribution, as a function of the singlet mass M1 and

the (rescaled) decay rate m̃1, of the successful points for a yukawa hierarchy λ2/λ1 ∼
λ3/λ2 ∼ 30, with λ3 ∼ 1.

With the parametrisation described in section 3.6.3, the MCMC easily finds larger

values of M1 and m̃, than the “tuned” points found analytically in Section 3.5. This

preference for larger M1 is expected, because the baryon asymmetry and right-handed
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Figure 3.2: Density of “successful” points, as a function of the baryon asymmetry and

the lightest right-handed neutrino mass, assuming λ3 ∼ 1 and λ2/λ1 ∼ λ3/λ2 ∼ 30,

for two different simulations: NH and tanβ = 50 (left), and IH and tanβ = 2 (right).

“Successful” points are defined as for Figure 3.1.

neutrino masses are strongly correlated, see Fig. 3.2 and eqn (3.21).

Nonetheless, as illustrated in Fig.3.3, the MCMC succeeded in finding points at

lower M1, with a steeper 10 hierarchy in the yukawas λ3 ∼ 1, λ2/λ1 ∼ 100 and λ3/λ2 ∼
50. The difficulties of finding these tuned points are discussed in section 3.6.4.

The importance of the ∼ 2 decrease in M1 and m̃, at the tuned points, is unclear

to us: the cosmological bound is on TRH , rather than M1. Since in strong washout,

an equilibrium population of N1 can be generated for TRH >∼ M1/5, the points found

by the MCMC at M1 ∼ 1010 GeV, could perhaps generate the BAU at the same TRH

as the analytic points. In any case, we see in Fig.3.2 that the fraction of points with

big enough YB is very sensitive to M1, and therefore to details of the complicated

reheating/preheating process.

In Fig. 3.4, we show density plots of the points resulting from our Markov Chains,

corresponding to the the yukawa hierarchy λ2/λ1 ∼ λ3/λ2 ∼ 30, with λ3 ∼ 1, for

normal hierarchy (NH) of the light neutrino masses and tanβ = 2, and for inverse

hierarchy (IH) and tan β = 50. In Fig. 3.7 (plot on the left) we show a density

10The smallest yukawa must be small enough to ensure m̃ ∼ m∗.
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Figure 3.3: Density of “successful” points, as a function of the lightest right-handed

neutrino mass M1 and rescaled decay rate m̃, on the left-side, and between the baryon

asymmetry and the lightest right-handed neutrino mass, on the right-side. We assume

here λ3 ∼ 1 and λ2/λ1 ∼ 100 and λ3/λ2 ∼ 50, for a NH in the light neutrinos and

tan β = 2. “Successful” points are defined as for Figure 3.1.

plot in the δ − β plane for tanβ = 2, NH and the steeper hierarchy λ2/λ1 ∼ 100,

λ3/λ2 ∼ 50 and λ3 ∼ 1. From those plots we see that, for any value of the phases

δ, α and β our conditions are satisfied. The analytic results of Section 3.5 agree with

this. Thus, we can conclude that the baryon asymmetry of the universe is insensitive

to the low energy PMNS phases, even in the “best case” where we see MSUGRA-

mediated lepton flavour violating processes. For completeness we also show correlation

plots between the generated BAU and the three low energy phases in Fig.3.5. The low

energy observables do not depend on tanβ, because we assume the (g−2)µ discrepancy

is due to slepton loops, and we use it to normalise the LFV rates (see Eqn. 3.15). On the

contrary, the value of tanβ is relevant in leptogenesis because it changes the number of

distinguishable flavours. However, as we can see comparing plots for small/large tanβ,

the value of tan β does not change our conclusions.

In Figs.3.6 and 3.7 (plot on the right), we plot the contribution to the electric dipole

moment of the electron, arising in the MSUGRA seesaw with real soft parameters at

the high scale. For both low and large tanβ, points from our MCMC generate an
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Figure 3.4: Density plots in the plane of the low energy phases δ − α and δ − β in

models with λ3 ∼ 1 and λ2/λ1 ∼ λ3/λ2 ∼ 30. Upper plots correspond to a simulation

with NH and tan β = 50, and lower plots to IH and tanβ = 2. “Successful” points are

defined as for Figure 3.1.

electron EDM <∼ 10−30ecm. This agrees with the results of [29, 35, 20].

3.8 Summary

The aim of this work was to study whether the baryon asymmetry produced by thermal

leptogenesis was sensitive to the “low energy” phases present in the leptonic mixing

matrix UPMNS. We considered the three generation type-I supersymmetric seesaw
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Figure 3.5: Density of “successful” points, as a function of the BAU and the low energy

phases in models with λ3 ∼ 1 and λ2/λ1 ∼ λ3/λ2 ∼ 30. Upper plots correspond to

a simulation with NH and tanβ = 50, and the lower plots to IH and tanβ = 2.

“Successful” points are defined as for Figure 3.1.

model, in the framework of MSUGRA with real soft parameters at the GUT scale,

and required that it reproduces low energy neutrino oscillation data, generates a large

enough baryon asymmetry of the Universe via flavoured leptogenesis and induces lepton

flavour violating rates within a few orders of magnitude of current bounds. We then

enquired whether a preferred range for the low energy PMNS phases δ and β can be

predicted.

We used a “left-handed” bottom-up parametrisation of the seesaw. Our parameter

space scan was performed by a Monte Carlo Markov Chain (MCMC), which allows to

efficiently explore high-dimensional spaces. It prefers to find the right-handed neutrino

mass M1 >∼ 1010 GeV, but can also find successful points with a smaller M1 if it takes

small steps in the relevant area of parameter space. In this area, we can also show

analytically that the baryon asymmetry is insensitive to the PMNS phases.

We have checked that there is no correlation between successful leptogenesis and

the low energy CP phases. That is: for any value of the low energy phases, the
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Figure 3.6: Density of “successful” points, as a function of the baryon asymmetry and

the electron EDM generated by neutrino yukawas in models with λ3 ∼ 1 and λ2/λ1 ∼
λ3/λ2 ∼ 30. The left panel corresponds to a simulation with NH and tanβ = 50, and

the right panel to IH and tanβ = 2. “Successful” points are defined as for Figure 3.1.
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Figure 3.7: Density plot in δ − β plane and correlation between the baryon asymme-

try and the electron EDM generated by neutrino yukawas. We assume here λ3 ∼ 1,

λ2/λ1 ∼ 100 and λ3/λ2 ∼ 50, for a NH in the light neutrinos and tanβ = 2. “Success-

ful” points are defined as for Figure 3.1.
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.1 FINE TUNING OF THE ANALYTIC POINTS

unmeasurable high energy parameters and the still unmeasured m1 and θ13 can be

arranged in order to have successful leptogenesis and LFV rates in the next round of

experiments. The analytic estimates indicate that this result will still be true even if m1

and θ13 are measured and fixed to their experimental values. Finally, we have estimated,

for each point in our chains, the contribution of the complex neutrino Yukawa couplings

to the electric dipole moment of the electron. As expected, we find it to be <∼ 10−30ecm,

just beyond the reach of next generation experiments.
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.1 Fine tuning of the analytic points

In this Appendix, we estimate the fine-tuning of the points discussed in section 3.5,

with respect to the parametrisation of section 3.4, which is used by the MCMC.

We do this in two steps. First, in the parametrisation of section 3.5, we estimate

the 3 × 3 matrix W † = U †V †
L which diagonalises m in the basis where λλ† is diagonal.

Approximating this diagonal Yukawa basis to be the one where Λ̂Λ̂† is diagonal, we

obtain:

W † = [δW ]†




1 0 0

0

0
Ŵ


 (42)

where [δW ]† is the small rotations that rediagonalise m = (∆ij + D̂κ)v
2
u, and ∆ij =

λi1λj1/M1. If W † is parametrised as in eqn (3.27) (but neglecting phases for simplicity),
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we find

θW
13 ≃ ∆13

κ3

cos θ̂W +
∆12

κ2

sin θ̂W (43)

θW
12 ≃ −∆13

κ3

sin θ̂W +
∆12

κ2

cos θ̂W (44)

sin θW
23 ≃ sin θ̂W +

∆23

κ3
cos θ̂W . (45)

To obtain λ21 negligeable compared to λ31 in eqn (3.33), requires no particular tuning

of θW
12 and θW

13 with respect to λ21 andλ31.

The second step is to estimate the tuning required to obtain small angles θW
12 and

θW
13 in W † = U †V †

L . With V †
L parametrised as in eqn (3.27), this happens if the angles

of VL satisfy θL
ij ≃ θij (for i, j = 12, 13). So the “tuning” required in θL

12 and θL
13 to

obtain small θW
ij = θL

ij − θij is

θW
12

θL
12

θW
13

θL
13

≃ m̃2

m2
3θ13

(46)

This implies that θL
13 must be tuned against θ13 to obtain θW

13 ∼ .01. If instead θ13 <∼ .01,

there is no particular tuning of θW
13 , and the tuning of θW

12 with respect to θL
12 is or order

m̃/m3.
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We investigate scenarios in which a charged, long-lived scalar particle decouples from

the primordial plasma in the Early Universe. We compute the number density at time

of freeze-out considering both the cases of abelian and non-abelian interactions and

including the effect of Sommerfeld enhancement at low initial velocity. We also discuss

as extreme case the maximal cross section that fulfils the unitarity bound. We then

compare these number densities to the exotic nuclei searches for stable relics and to

1pre-print arXiv:0807.0211 [hep-ph]
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the BBN bounds on unstable relics and draw conclusions for the cases of a stau or stop

NLSP in supersymmetric models with a gravitino or axino LSP.

A.1 Introduction

The early Universe may have been populated by many exotic particles that, especially

if charged, should have easily been in thermal equilibrium. No charged relic seems

to have survived to the present day. In fact there are very strong upper bounds on

the density of electromagnetically and/or colour charged particles with masses below

10–100 TeV from extensive searches for exotic nuclei [1]. The standard lore is therefore

that only neutral relics may have survived until today.

However, it is possible that some unstable but very long-lived charged particle

froze-out from thermal equilibrium and decayed much later to a neutral one. A typical

example of this kind in supersymmetric models with R-parity conservation is the next-

to-lightest supersymmetric particle (NLSP) if the LSP and Cold Dark Matter is very

weakly interacting like the axino [2, 3, 4] or the gravitino [5, 6]. Recently, such candi-

dates have attracted a lot of attention, and indeed the signal of a charged metastable

NLSP at colliders would be spectacular [7, 8].

In general, strong bounds on the number density of any metastable relic with life-

time of about 1 s or longer are provided by Big Bang Nucleosynthesis (BBN) [9]. They

come from two classes of processes: on one hand injection of very energetic photons or

hadrons from decays during or after BBN adds an additional non-thermal component

to the plasma and can modify the abundances of the light elements [10]; on the other

hand, if the relic particle is electromagnetically charged, bound states with nuclei may

arise that strongly enhance some of the nuclear rates and allow for catalysed produc-

tion of e.g. 6Li [11]. The bounds of the first type are very tight for lifetimes of the

order of 104 s and exclude, for instance, a neutralino NLSP with a gravitino LSP in

the CMSSM [6]. An electrically charged NLSP like the τ̃ can instead escape the first

class of constraints in part of the parameter space, but it is excluded for long lifetimes

by bound state effects [12]. In the axino LSP case, the NLSP has a shorter lifetime;

the BBN bounds are hence much weaker and both, neutralino and stau, NLSP are still

allowed [2].
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A.1 INTRODUCTION

In this paper, we investigate the most general case of a scalar charged thermal

relic. We compute the number density and compare it to the bounds on exotic nuclei

for stable particles and the BBN constraints for unstable ones. Similar studies have

been carried out model-independently many years ago [13, 14, 15] for stable relics

and we will update and improve these computations.2 We mostly consider the role

of the gauge interaction for two main reasons: i) the annihilation into gauge bosons

is often the dominant channel for a charged particle and ii) it depends only on very

few parameters, just the mass of the particle and its charge or representation. It is

also enhanced by the Sommerfeld effect [17], analogous to heavy quark production

at threshold, which has previously been considered for dark matter annihilations in

[18, 19, 16, 20, 21] and recently also in the context of leptogenesis in [22]. We discuss

this Sommerfeld enhancement for the general abelian and non-abelian cases. Moreover,

we compare the cross sections with the unitarity bound and update the unitarity limit

on the mass of a stable relic.

Our main goal is to determine if it is at all possible to evade completely either the

exotic nuclei bounds or the BBN ones and how strongly the particle has to interact in

this case. We then apply our findings to the Minimal Supersymmetric Standard Model

and discuss in more detail the cases of the stau and stop NLSP.

The paper is organised as follows. In Section 2, we briefly review the computation

of the number density from thermal freeze-out. The formulae for the annihilation cross

section of a charged particle into gauge bosons are given in Section 3. Here we discuss

abelian and non-abelian cases, the Sommerfeld enhancement and the unitarity cross

section. Moreover, we compare the thermal averages with the first order in velocity

expansion. The resulting relic density is discussed in Section 4. In Section 5, we review

the constraints on stable and unstable relics. These are then applied in Section 6 to the

concrete examples of relic staus and stops. Section 7 finally contains our conclusions.

Details on the computation of the annihilation cross section and the case of massive

gauge bosons are given in the Appendices A and B.

2Recently the case of general EW charged relics as DM was also considered in full detail [16].
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A.2 Number density of a thermal relic

The number density of a stable or quasi-stable thermal relic is determined by its anni-

hilation cross section. In fact the number density of a particle in a thermal bath and

an expanding Universe is described by the Boltzmann equation [23, 24]:

ṅX + 3HnX =

∫
dp3

X

(2π)32EX
C[fX ] (A.1)

where the dot indicates the time derivative, C denotes the collision integral of all

processes that change the particle number and fX is the phase-space density for the

particle X. For a particle with a conserved parity, like R-parity, the lowest order

processes to be considered in the collision integral are just two particle scatterings, i.e.

annihilations and coannihilations. If there is a lighter particle carrying the conserved

parity number, C includes also the decay into this lighter state, but we will assume

that such a decay rate is so small it can be neglected at the time of freeze-out and

becomes effective only much later. Then we have effectively a two step process and

we can treat freeze-out and decay separately. This is a general feature if the decay

takes place via a non-renormalisable interaction and is suppressed by an intermediate

or even the Planck scale (see e.g. the axino [2, 4] and gravitino cases [5, 6]).

Taking into account only the annihilation of particle and antiparticle, we can write

the collision integral as [24]

C[fX ] = −
∫

dp3
X̄

(2π)32EX̄

(
fXfX̄ − f eq

X f
eq
X̄

)
4
√

(pX · pX̄) −m4
X σann (A.2)

where σann denotes the unpolarised annihilation cross section of an XX̄ pair summed

over initial and final states. We are here assuming that CP is conserved and no asym-

metry exists between nX and nX̄ . Note that the production cross section is taken into

account by the term proportional to f eq
X f

eq

X̄
since we are assuming that the products of

the annihilation are much lighter than X and are still in thermal equilibrium.

In this paper we will consider charged relics and concentrate therefore on the anni-

hilation into gauge bosons, which is the dominant channel in most of parameter space

and does depend only on the mass and charge of the relic. Note that adding more

channels only increases the cross section and reduces the relic particle number density

further. Instead, the inclusion of coannihilations for a charged particle does not always

reduce the number density as discussed in [25].
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We can rewrite eq. (A.1) by changing variable to YX = nX/s, where s(T ) = gS
2π2

45
T 3

is the entropy density, so that the dilution due to the expansion of the universe cancels

out in the ratio as long as entropy is conserved. It is also convenient to replace the

time variable with x = mX

T
, thanks to the relation dt = dx

(xH)
. We thus obtain

dYX

dx
= − xs(x)

H(x)m2
X

〈σv〉x
(
Y 2

X − Y 2
eq

)
(A.3)

= −2πgS

15

(
10

gρ

)1/2
MP

mX

〈σv〉x
(
Y 2

X − Y 2
eq

)
. (A.4)

Here we have used H2 = π2

90
gρ

T 4

M2
P

, for MP = 2.43×1018 GeV, valid during the radiation

dominated era. Moreover, we define the thermally averaged cross section as3

〈σv〉x =
1

4x4K2
2(x)

∫ ∞

2x

dzz2σ̃
(x
z

)
K1(z) (A.5)

where Ki(z) are the modified Bessel functions of order i, characteristic of Maxwell-

Boltzmann statistics (we are assuming that we can approximate Bose-Einstein statistics

with Maxwell-Boltzmann statistics). In this expression the rescaled cross section σ̃ is

given by the annihilation cross section averaged over initial and summed over final

states and multiplied by a factor proportional to the squared Møller velocity,

σ̃

(
mX√
s

)
= (s− 4m2

X)σ(mX , s) . (A.6)

Note that in the centre-of-mass system the Møller velocity is equal to the relative

velocity between the annihilating particles and given by

vMøl = 2β = 2

√
1 − 4m2

X

s
. (A.7)

The rescaled cross section σ̃ defined above is dimensionless and function only of x/z =

mX/
√
s (or β) for the case of annihilation into massless gauge bosons and it always

vanishes at threshold. Then it is easy to see that since we integrate in both x, z, the

main dependence on the charged relic mass is contained in the prefactor in eq. (A.4)

and can be reabsorbed in a rescaling of YX → YX/mX . For this reason we obtain

nearly exactly YX ∝ mX if there is no other mass scale involved. Note that in principle

3Note that our definition differs from the one in [24] by a factor m2
X/x2 since we prefer to work

with a dimensionless quantity and to absorb here all the dependence on x.
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a much weaker logarithmic dependence on mX is present in the value of the freeze-out

temperature, when Y begins to deviate from Yeq.

We are here computing the yield of the particle X and to obtain the yield of particle

and antiparticle we multiply by a factor of 2 or divide the cross section by 1/2, since

we are assuming nX = nX̄ . Also note that, contrary to intuition, for a particle with

internal degrees of freedom like a coloured state, the total yield is the solution of

the Boltzmann equation (A.4) with the cross section averaged over the initial states.

Instead the yield per degree of freedom is obtained from the cross section averaged

over X, but summed over X̄ 4. The presence of many degrees of freedom in the initial

state has then the effect of partially compensating the large cross section coming from

the multiplicity of the final states.

A.3 Annihilation cross section for a charged parti-

cle into gauge bosons

A.3.1 Abelian case

For an abelian gauge symmetry, there are only three Feynman diagrams contributing

to the annihilation cross section, analogous to those shown in Fig. A.1: the t- and

u-channel exchange of the scalar particle itself, and the 4-boson vertex. The amplitude

is symmetric in the exchange of the gauge bosons and for a particle of charge eXg1 it

is given by

Aµν = ig2
1e

2
X

[
(2p1 − p3)

µ(2p2 − p4)
ν

t−m2
X

+
(2p1 − p4)

ν(2p2 − p3)
µ

u−m2
X

+ 2gµν

]
. (A.8)

The cross section is a function of the mass and charge of the relic:

σab(mX , s) =
4πα2

1e
4
X

s− 4m2
X

[√
1 − 4m2

X

s

(
1 +

4m2
X

s

)

+
4m2

X

s

(
1 − 2m2

X

s

)
log


1 −

√
1 − 4m2

X

s

1 +

√
1 − 4m2

X

s




 (A.9)

4In fact any rescaling of the cross section by a factor p due to a different counting of the degrees

of freedom can be absorbed into a rescaling 1/p of the yield(s).
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Figure A.1: Feynman diagrams for the annihilation into gauge bosons, here for the case

of gluons. In the abelian case, there is no 3-gauge-boson vertex, so the last diagram is

absent.

where α1 = g2
1/(4π) is the gauge coupling; note that a symmetry factor 1/2 has to be

added due to the symmetric final state of identical particles. For the rescaled cross

section this gives

σ̃ab(β) = 8πα2
1e

4
Xβ

[
1 − 1

2
β2 +

1 − β4

4β
log

(
1 − β

1 + β

)]
, (A.10)

which is a function only of β =
√

1 − 4m2
X/s and the charge of the particle.

A.3.2 Non-abelian case

The computation for the annihilation into non-abelian gauge bosons is slightly more

involved, since there is an additional contribution from the Feynman diagram with

a gauge boson in the s-channel and the 3-gauge-boson vertex. The amplitude can

be divided into a symmetric and an antisymmetric piece in the group indices. The

symmetric one is analogous to the abelian case:

Aµν
sym = i

g2
N

2

{
T a, T b

}
ji

[
(2p1 − p3)

µ(2p2 − p4)
ν

t−m2
X

+
(2p1 − p4)

ν(2p2 − p3)
µ

u−m2
X

+ 2gµν

]
, (A.11)

while the antisymmetric part is given by

Aµν
asym = −ig

2
N

2

[
T a, T b

]
ji

[
(2p1 − p3)

µ(2p2 − p4)
ν

t−m2
X

− (2p1 − p4)
ν(2p2 − p3)

µ

u−m2
X

+ 2
gµν(t− u) − (2p4 + p3)

µ(p1 − p2)
ν + (p1 − p2)

µ(2p3 + p4)
ν

s

]
.(A.12)

The two contributions do not interfere due to the different symmetry, so we have for

the amplitude squared, summing only over physical polarisations of the final gauge
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bosons:

|M|2 = 4g4
N

{∣∣∣
{
T a, T b

}
ji

∣∣∣
2
[
1

2
+

2m4
X

(t−m2
X)2

+
2m2

X

t−m2
X

(
1 − 2m2

X

s

)]

+
∣∣∣
[
T a, T b

]
ji

∣∣∣
2
[
1

2

(s+ 2(t−m2
X))2

s2
+

4m2
X

s
+

2m4
X

(t−m2
X)2

+
2m2

X

t−m2
X

(
1 +

2m2
X

s

)]}
. (A.13)

Then the sum over all final and initial states for a scalar in the fundamental repre-

sentation T a of the gauge group SU(N), normalised such that Tr(T aT b) = δab/2, can

be obtained from the usual group invariants:

∑

j,i,a,b

1

2

∣∣∣
{
T a, T b

}
ji

∣∣∣
2

=
∑

a,b

1

2

(
1

N
δab +

1

2

∑

c

|dabc|2
)

= CF (N)

(
1 +

1

2
(C2

A(N) − 4)

)
=

(N2 − 1)(N2 − 2)

4N
,(A.14)

where we have separated the singlet and adjoint contributions to the symmetric part

for later convenience, included a factor 1/2 for identical particles in the final states and

used the Casimir invariants for the fundamental and adjoint representations, CF (N) =
N2−1
2N

, CA(N) = N . Note that the ratio of the singlet to adjoint contributions is given

simply by 2
N2−4

. The antisymmetric channel instead gives

∑

j,i,a,b

1

2

∣∣∣
[
T a, T b

]
ji

∣∣∣
2

=
N2 − 1

4
CA(N) =

N(N2 − 1)

4
. (A.15)

Finally we obtain for the cross section averaged over initial states:

σnab(mX , s) =
πα2

N

s− 4m2
X

(N2 − 1)2

N3
×

[√
1 − 4m2

X

s

(
1 +

4m2
X

s
− N2

3(N2 − 1)

(
1 − 10m2

X

s

))

+ 4
m2

X

s

(
1 +

2

N2 − 1

m2
X

s

)
log


1 −

√
1 − 4m2

X

s

1 +

√
1 − 4m2

X

s




 . (A.16)

This result coincides for N = 3 with that reported in [26] for the Born cross section of

a pair of gluons into squarks, allowing for the exchange of the initial and final state.
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Then the rescaled cross section for SU(N) is

σ̃nab(β) = 2πα2
N

(N2 − 1)2

N3
β

[
1 +

N2

4(N2 − 1)
− β2

2

(
1 +

5N2

6(N2 − 1)

)

+
1 − β2

2β

(
1 +

1

2(N2 − 1)
− β2

2(N2 − 1)

)
log

(
1 − β

1 + β

)]
. (A.17)

Note that the contribution of order β in the expression above in the limit β → 0 is due

to the symmetric part of the matrix element and that the antisymmetric piece instead

vanishes at that order. Therefore the symmetric part of the cross section dominates at

threshold.

So we see that for a non-abelian interaction the cross section is larger than for

the abelian case, not only due to the possibly larger coupling αN , but also due to

the opening of an antisymmetric channel and of course to the multiplicity of the final

states. In fact for large N the averaged cross section increases as N and therefore the

yield decreases as 1/N .

A.3.3 Annihilation into SU(N) gauge boson and photon

The annihilation cross section into gluon and photon is just the same as the abelian one,

but with a different vertex for the gluon. Then considering a particle of electromagnetic

charge eXg1, in the representation T a of the gauge group SU(N) with coupling gN ,

annihilating with its own antiparticle, the amplitude is given by 5

Aµν = ig1eXgNT
a
ji

[
(2p1 − p3)

µ(2p2 − p4)
ν

t−m2
X

+
(2p1 − p4)

ν(2p2 − p3)
µ

u−m2
X

+ 2gµν

]
.

(A.18)

From this we easily obtain the cross section as:

σ1N (mX , s) =
8πα1αNe

2
X

s− 4m2
X

|T a
ji|2
[√

1 − 4m2
X

s

(
1 +

4m2
X

s

)

+
4m2

X

s

(
1 − 2m2

X

s

)
log



1 −
√

1 − 4m2
X

s

1 +

√
1 − 4m2

X

s







 , (A.19)

5Strictly speaking, in this case the final state particles are different and therefore there are no

independent t- and u-channels, but we can still write the amplitude to be symmetric in t and u in

order to make direct contact with the previous results.
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where α1,N are the gauge couplings and the symmetry factor 1/2 in this case is absent

since the final particles are not identical.

Averaging over the initial and summing over the final state, we have

1

N

∑

j,i,a

T a
jiT

a
ij =

1

N

∑

j,i

CF (N)δij =
N2 − 1

2N
(A.20)

for the fundamental representation. This gives for the rescaled cross section

σ̃1N (β) = 8πα1αNe
2
X

N2 − 1

N
β

[
1 − 1

2
β2 +

1 − β4

4β
log

(
1 − β

1 + β

)]
(A.21)

which is a factor (N2 − 1)αN/(Nα1e
2
X) larger than the pure U(1) contribution. Again

the cross section increases as N for large N .

A.3.4 Annihilation into physical Z and SU(N) gauge boson/photon

The annihilation cross section into massive Z and photon/SU(N) gauge boson has the

same form as the abelian one. We consider here a particle with Z-coupling g1eZ , in the

representation T a of the gauge group SU(N) with coupling gN , annihilating with its

own antiparticle and we obtain

Aµν = ig1eZgNT
a
ji

[
(2p1 − p3)

µ(2p2 − p4)
ν

t−m2
X

+
(2p1 − p4)

ν(2p2 − p3)
µ

u−m2
X

+ 2gµν

]
, (A.22)

where p4 is the Z boson momentum obeying p2
4 = M2

Z ; the annihilation into photon

and Z is easily read off by taking just gNT
a
ji → g′1eX . Then we easily obtain the cross

section as:

σZN (mX ,MZ , s) =
8πα1αNe

2
Z

s− 4m2
X

|T a
ji|2
[√

1 − 4m2
X

s

(
1 − M2

Z

s
+

4(m2
X −M2

Z)

s−M2
Z

)

+
4m2

X

s

(
1 − 5M2

Z

8m2
X

− 4m2
X − 3M2

Z

2(s−M2
Z)

)
log



1 −
√

1 − 4m2
X

s

1 +

√
1 − 4m2

X

s







 ,(A.23)

where α1,N are the gauge couplings.

Averaging over the initial and summing over the final state as in eq. (A.20), we have

for the rescaled cross section

σ̃1N (β, aZ) = 8πα1αNe
2
Z

N2 − 1

2N
β

[
1 − aZ(1 − β2) +

(1 − 4aZ)(1 − β2)

1 − aZ(1 − β2)

+
1 − β2

β

(
1 − 5

2
aZ − (1 − β2)

1 − 3aZ

2 − 2aZ(1 − β2)

)
log

(
1 − β

1 + β

)]
,(A.24)
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where aZ = M2
Z/m

2
X . Note that the cross section for annihilation into photon and

Z, is given by the substitution αN
N2−1
2N

→ α′
1e

2
X . For the specific case of the right-

handed stau (stop), the coupling with the Z boson and photon are respectively given

by e2Zα1 = αem tan2 θW (e2Zα1 = 4/9αem tan2 θW ) and e2Xα
′
1 = αem (e2Xα

′
1 = 4/9αem),

where θW is the Weinberg angle.

A.3.5 Annihilation into massless EW gauge bosons

The cross section for annihilation into massless SU(2)L gauge bosons can be obtained

directly from the general formula for the non-abelian case. One has to take into account,

however, that in this case the scalar SU(2)L doublet is not degenerate in mass and that

the initial particles can be a mixture of left- and right-chiral states. We neglect here

the effects of EW symmetry breaking; the results are hence applicable for the case of

a heavy relic that decouples before EW symmetry breaking takes place.

Considering the scalar relic to be X = XL cos θ + XR sin θ and denoting with mX′

the mass of its left-handed doublet partner, which is sufficiently larger than mX to

neglect coannihilations, we obtain for the annihilation cross section into W 1,2 gauge

bosons:

σW2(s,mX , mX′) =

2πα2
2 cos4 θ

s− 4m2
X

[√
1 − 4m2

X

s

(
2

3
+

13

3

m2
X

s
− m2

X′

s
+

(m2
X +m2

X′)2

sm2
X′ + (m2

X′ −m2
X)2

)
(A.25)

+ 2

(
m2

X′ +m2
X

s
− (m2

X′ −m2
X)2

2s2

)
log

(
s+ 2(m2

X′ −m2
X) −

√
s(s− 4m2

X)

s+ 2(m2
X′ −m2

X) +
√
s(s− 4m2

X)

)]
,

while the annihilation intoW 3 is similar to the abelian one in eq. (A.9) for eX = cos θ/2.

Note that the cross section is suppressed by the mixing angle as cos4 θ and by the fact

that the group indices are not summed for the initial state. Also in this case the

rescaled cross section is not just a simple function of β, but also of the mass difference

in the doublet. We have in fact

σ̃W2(β, δ
2) = 2πα2

2 cos4 θ β

[
5

2
+

11

6
β2 − δ2 +

4β2δ4

(1 + 2δ2)2 − β2

+
1 − β2 + 2δ2 − δ4

β
log

(
1 + 2δ2 − β

1 + 2δ2 + β

)]
, (A.26)
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where δ2 = (m2
X′ −m2

X)/s. The cross section still vanishes for β = 0 and is finite for

δ2 → ∞. The detailed expressions for the case of broken EW symmetry are much more

involved and include also the contribution of the Higgs s-channel allowing for resonance

enhancement. They are given in Appendix B.

A.3.6 Sommerfeld enhancement

In the previous sections we have computed the annihilation cross sections to lowest

order in the gauge coupling. However, it was shown long ago [17] that an expansion

in terms of the coupling is inadequate close to threshold, where the velocities of the

annihilating particles go to zero,

β ≡
√

1 − 4m2
X

s
→ 0 . (A.27)

The enhancement at low velocities becomes apparent when one computes the one-

loop corrections, which are enhanced by a factor Cαπ
2β

. Here, C is a process-dependent

constant, α is the gauge coupling of the annihilating scalars, α1 in the case of U(1)

boson exchanges, or αN for SU(N) gauge boson exchanges, respectively. To account

for this long-distance effect, one therefore has to resum a whole class of diagrams, which

consist of t-channel ladder-type exchanges of massless soft Coulomb SU(N) or U(1)

gauge bosons between the annihilating charged particles.

This resummation of terms ∼ αn/βn leads to the so-called Sommerfeld factor which

multiplies the lowest-order annihilation cross section. The Sommerfeld enhancement is

given by the modulus squared of the particle wave function at the origin,

E ≡ |Ψ(0)|2 =
z

1 − exp(−z) , z =
Cαπ

β
. (A.28)

Because this effect is a long-distance one, taking place at a scale ∼ βmX , it factorises

from the annihilation cross section which is a short-distance effect at the hard-scattering

scale of order of the mass mX . Schematically,

σSF(β,mX) = E(α(βmX)) × σ0(β) . (A.29)

Here, σ0 is the leading-order annihilation cross section, which has been presented in the

preceding subsections. Eq. (A.29) is in principle only valid if the annihilating partons
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are in a single SU(N) channel, i.e. for particle in the fundamental representation either

in the singlet or adjoint configurations. If multiple channels c contribute, eq. (A.29)

has to be modified to

σSF(β,mX) =
∑

c

Ec(α(βmX)) × σ0
c (β) . (A.30)

Here, σ0
c (β) is the projection of the leading-order annihilation cross section in the

relevant channel. For a scalar in the fundamental representation of the SU(N) gauge

group annihilating into massless SU(N) gauge bosons, we have seen that only the

contribution proportional to the group-symmetric part survives in the limit of vanishing

β and is enhanced at low velocities. Therefore at leading order the cross sections σ0
c

can be taken to be the same for the singlet and adjoint part up to colour factors and

proportional to the total cross section given in eq. (A.17) 6. We note also that due

to the presence of more than one channel, the Sommerfeld factor for an SU(N) gauge

theory becomes dependent also on the final states, since not all channels may contribute

to the annihilation into a given final state.

However, the presence of the thermal bath complicates things, as the interactions

with the background gauge bosons may prevent the annihilating partons to be initially

in a definite SU(N) channel. The time scales for the Sommerfeld effect and the in-

teractions with the thermal bath are of competing order, so it is not clear how strong

such effect can be. In this paper we will consider both extreme situations, i.e. the

case when the thermal bath has no effect and the case when there is no definite initial

channel. In the latter case, it was argued in the literature that due to the mixing of

states one should just take an average Cav extracted from the averaged one-loop cor-

rection, leading again to a single Sommerfeld factor as in eq. (A.29) (see, for example,

ref. [27]). While the two approaches give identical results by construction at first order,

they correspond to two quite distinct resummations of the higher orders and they are

numerically substantially different.

We obtained the coefficients C by computing the 1/β-enhanced contributions for

t-channel SU(N) gauge boson exchange at one loop in the threshold expansion (see

for example [28] and references therein). For the generation of the relevant one-loop

6Taking the true σ0
1 and σ0

A
instead, differs from the total σ0 only in the terms suppressed by β2

and amounts to a correction smaller than 1% at threshold where the Sommerfeld factor is effective.
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graphs and the Lorentz algebra we used the Mathematica packages FeynArts and

FeynCalc [29]. We simplified the resulting expressions to only keep terms that are

leading in β, that is, we only kept terms that are enhanced in the soft region of the

one-loop integrals, which were then simple enough to perform by hand. Alternatively,

as mentioned above, one obtains the form (A.28) directly by computing the normalised

wave function at the origin from the Schrödinger equation, describing the annihilating

parton pair, with a Coulomb interaction potential for positive energies ∼ β2mX [17].

The Sommerfeld enhancement due to exchanges of massless Coulomb SU(N) gauge

bosons is the same for the singlet channel of annihilation into SU(N) gauge bosons

BN and the annihilation into U(1) gauge bosons B1,

C1

SS̄→BNBN
= CSS̄→B1B1

= CF (N) =
N2 − 1

2N
. (A.31)

The factor for the adjoint channel is instead found to be negative and thus suppressing,

CA

SS̄→BNBN
= CF (N) − CA(N)

2
= − 1

2N
. (A.32)

The same factors C1 or CA apply also for other final states of the singlet or adjoint

channels. For example, the Sommerfeld factor for t̃t̃∗ → hh is C1

SU(3) = 4/3, while that

for t̃t̃∗ → gh, gγ, gZ is CA

SU(3) = −1/6.

Even if the adjoint channel leads to a suppression, upon summing over both con-

tributions in eq. (A.30), the net effect is still quite enhancing for small N . We have

then in fact

σSFsum(β,mX) = σ0(β)

[
E1(α(βmX)) × 2

N2 − 2
+ EA(α(βmX)) × N2 − 4

N2 − 2

]
, (A.33)

where, as described above, we have taken (N 2 − 2)/2 σ0
1

= (N2 − 2)/(N2 − 4) σ0
A

=

σ0(β), and σ0(β) is given in eq. (A.17). For SU(3) this gives

σSFsum
SU(3) (β,mX) = σ0

SU(3)(β)
πα3

42β

[
16

1 − e−
4

3

πα3
β

− 5

1 − e
1

6

πα3
β

]
, (A.34)

so that the enhancement in the singlet dominates over the suppression in the adjoint

channel.

On the other hand, averaging the one loop contribution over initial channels 7 results

7Averaging over initial channels is not to be confused with averaging over initial states which is to

be done in addition when solving the Boltzmann equation.
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Figure A.2: Ratio of summed over averaged Sommerfeld enhancement, σSFsum
SU(3) /σ

SFav
SU(3),

as a function of β. The full red line shows the SU(3) case for a mass m = 100 GeV and

the dashed blue line for a mass m = 1 TeV; the dotted green line is for the hypothetical

case of SU(10) with m = 500 GeV.

in a factor

CSS̄→BNBN
=

N2 + 2

2N(N2 − 2)
=: Cav

SU(N) , (A.35)

which is although enhancing, much less so than the net effect of the summation over

singlet and adjoint channels. For SU(3), this factor is Cav
SU(3) = 11/42, leading to

σSFav
SU(3)(β,mX) = σ0

SU(3)(β)
πα3

42β

11

1 − e−
11πα3
42β

. (A.36)

Note that the first term of the expansion of eq. (A.36) coincides with the 1-loop result

of [26] for gg → q̃q̃∗ near threshold.

If the difference in the exponents in the denominators of eqs. (A.34) and (A.36)

could be neglected the two expression would be equal. However, in the small β region

where the Sommerfeld enhancement is relevant, the difference amounts to up to 50 %

for SU(3), and is even larger for hypothetical larger N , see Figure A.2.

For scalars charged under a U(1) group, there is of course a corresponding en-

hancement due to U(1) boson exchanges. However, the enhancement factor is now

governed by the U(1) coupling, and thus weaker than an enhancement under a strong

SU(N) gauge group. The Sommerfeld factor for the dominant annihilation channel

into U(1) gauge boson pairs can very simply be determined from the abelian part of
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the calculation that led to the factor quoted above. We find,

CSS̄→B1B1
= 1 , (A.37)

for t-channel U(1) exchange, and the coupling in eq. (A.28) is the U(1) coupling α1.

Another issue regarding the thermal bath is the fact that gauge bosons acquire a

mass through interactions with the plasma. This Debye screening effect happens at a

scale of order ∼ gT , whereas the Sommerfeld effect is of order ∼ αmXβ ∼ α
√
mXT ≫

gT . Thus the thermal masses of initially massless gauge bosons do not affect the

Sommerfeld enhancement.

Finally, there are also massive gauge bosons such as W s and Zs to consider. The

Sommerfeld factor arises from instantaneous Coulomb exchanges of massless gauge

bosons between the slow moving annihilating pair close to threshold, thus resulting in

an 1/β enhancement, signalling the inadequacy of trying to describe this exchange in

an expansion in terms of loop corrections. Naturally, massive gauge bosons have a finite

width, and thus cannot be exchanged instantaneously. In terms of Feynman graphs,

the momentum flowing through a massive gauge boson that is exchanged between the

annihilating pair is naturally cut off by the mass of the exchanged boson and can never

become too soft. The Sommerfeld effect is exponentially suppressed with the mass of

the gauge boson, as an analysis of the wavefunction picture reveals. It can nevertheless

become important for relics with masses much larger than the electroweak scale, as a

very heavy Wino discussed in [19]. In the following we will consider only the case of

massless gauge bosons, which is the dominant effect for coloured relics and for purely

right-handed sleptons. For a more detailed discussion in case of massive EW gauge

bosons we refer the reader to [19, 16].

A.3.7 Unitarity bound

We next compare the above cross sections with the unitarity bound. Using unitarity

and partial wave expansion, the non-elastic cross section for a particle with spin sp is

given by [15]

σnon−el,J =
4π(2J + 1)(1 − η2

J)

(2sp + 1)2 ~p2
i

(A.38)

where J is the angular momentum of the process, ~pi is the initial particle momentum,

4~p2
i = sβ2 in the centre of mass frame in our case, and η2

J is the contribution of the

118



A.3 ANNIHILATION CROSS SECTION FOR A CHARGED PARTICLE INTO GAUGE BOSONS

elastic part. This gives an upper bound for the annihilation cross section with angular

momentum J as

σann,J ≤ 16π(2J + 1)

(2sp + 1)2sβ2
. (A.39)

The lowest value is obtained taking J = 0 and since the s-wave annihilation is usually

the dominant contribution for a scalar non-relativistic particle with sp = 0, we will

take it as a reference value. We therefore have for the maximal rescaled cross section:

σ̃max = 16π (A.40)

independent of the particle mass or energy. In this case the thermal averaging is simple

and we obtain

〈σmaxv〉x =
16π

x2

K2(2x)

K2(x)2
, (A.41)

which we will consider in the following to be the maximal cross section per degree of

freedom8. We see clearly that the cross sections discussed above satisfy this bound and

are suppressed at the very least by α2. Figure A.3 shows the rescaled cross sections for

the abelian and non-abelian cases, eqs. (A.10) and (A.17), together with the unitarity

bound eq. (A.40) as a function of the relative velocity of the annihilating particles.

The unitarity cross section σ̃max can be used to obtain a lower bound of the yield.

Moreover, it can be taken as the maximal annihilation cross section possible even after

the QCD phase transition, when the coloured states are confined into the equivalent of

scalar hadrons and fermionic mesons [30]. Constraints from cosmology on such kind of

hadronic states have been mostly studied for the case of a stable exotic quark [14], a

gluino LSP [27] or for very long-lived gluino in the split SUSY scenarios [18]. It has been

argued in [31] that the annihilation cross section for such states could become much

stronger, if bound states between two scalar hadrons/fermionic mesons are formed

with rate ∼ π/Λ2
QCD and in that case the coloured relic abundance after the QCD

phase transition is further reduced below Y ∼ 10−16 − 10−17. We will not consider

this possibility in the following, but note however that, while most of the cosmological

bounds for a decaying relicare then satisfied, one still needs to consider the bounds for

a stable relic.

8Note that here we are computing explicitly in the centre of mass frame, while the Boltzmann

equation requires to use the covariant or lab frame. The difference between the two frames has been

discussed in [24] and gives only a small correction for non-relativistic particles, which we neglect here.
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Figure A.3: Dependence of the rescaled cross sections on the relative velocity β, nor-

malised to 1 at large s, i.e. β = 1. The solid lines show the leading order section,

the dashed/dashed dotted lines the effect of the Sommerfeld enhancement, that makes

the cross sections non-vanishing at the threshold β = 0. The SU(3) cross sections are

the upper (red) lines, including the averaged Sommerfeld factor in the dashed line and

the summed one in the dash-dotted. For the abelian case (blue lines) the Sommerfeld

effect is much milder and shown in the dash-dotted line. Note that the region for

β ∼ 0 contributes more strongly to the thermally averaged cross section due to the

Boltzmann-suppression for large β.

A.3.8 Thermally averaged cross sections and velocity expan-

sion

We integrate eq. (A.5) numerically to obtain the thermally averaged cross section.

Very often such a quantity is instead approximated with the first terms of its velocity

expansion, since the relevant regime takes place when the annihilating particles are

already non-relativistic. To obtain such an expansion, one can use the approximation

s− 4m2
X ≃ 4m2

Xβ
2 (A.42)

and expand in β the expression

σvMøl ≃
1

2m2
Xβ

σ̃ (β) . (A.43)
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We see that if σ̃ is constant at zero velocity, the cross section is enhanced like 1/β in

that limit. This is indeed the case both for the Sommerfeld-enhanced cross section and

the unitarity one.

The first term in the expansion, which is independent of the velocity and coincides

therefore with the first term in the expansion of the thermally averaged cross section

[24], is given by

σabv → 2πα2
1e

4
X

m2
X

+ O(β2) , (A.44)

σnabv → πα2
N

m2
X

(N2 − 1)(N2 − 2)

4N3
+ O(β2) , (A.45)

for the abelian and non-abelian cases respectively.

We plot in Figure A.4 the thermally averaged cross sections as a function of x

normalised with respect to the first term in their velocity expansion including also

the Sommerfeld enhancement factor, both for the abelian case and for the QCD case

with N = 3. We see that keeping only the lowest order overestimates the thermally

averaged cross section, i.e. underestimates the yield, in the abelian case by at most 20%

in the region of freeze-out (x ∼ 30). The non-abelian case for N = 3 is approximated

better also because the freeze-out takes place at a larger x ∼ 40, i.e. smaller β. On

the other hand, once we include the Sommerfeld enhancement, the thermally averaged

cross section does no more converge to the first constant term in the velocity expansion

due to the threshold singularity at β = 0. Nevertheless the first order term without

the enhancement can still give a reasonably good approximation for the abelian case,

since the Sommerfeld enhancement partially compensate the 20% underestimation of

the Born result. For the non-abelian case the Sommerfeld enhancement is so strong

that the low energy expansion can give only an order of magnitude estimate.

A.4 Results for the relic density

We solve the Boltzmann equation (A.4) numerically for the exact thermally averaged

cross sections given above. This improves the old results [13] that were obtained with

the velocity expansion.

For the case of an abelian charged relic, we consider eX = ±1 and we set the

coupling to be αem = 1/128. For the non-abelian case we take N = 3 and αN to be

121



THE NUMBER DENSITY OF A CHARGED RELIC

20 30 40 50 60
x

0.8

1

1.2

1.4

1.6

Σ
@x
D

��
��
��
��
��
��
��
��
��

Σ
@¥
D

Σnab
SFav

Σab
SF

Σab,nab
LO

Figure A.4: Ratio of the thermally-averaged cross section and the first term in the

velocity expansion around β = 0, for mX = 350 GeV. The thick solid line is for

the abelian, the thin line for the non-abelian (SU(3)) case. Dash-dotted and dashed

respectively are the same ratios including the Sommerfeld enhancement, only the av-

eraged one for the non-abelian case: we see that in this case the thermally averaged

cross sections do not converge to the first order term in velocity, but that the latter

can still give a good estimate within 15% of the full result in the abelian case; for

the non-abelian case the Sommerfeld enhancement changes the result considerably and

the velocity expansion fails. Note that the case of the summed Sommerfeld factor is

outside the range of the plot.

the QCD coupling α3(Q) with Q = 2mX in the hard process and Q = βmX in the

Sommerfeld correction, c.f. Sect. A.3.6. In order to avoid the non-perturbative regime,

we cut off the running of α3 at Q = 2 GeV, i.e. α3(Q < 2 GeV) ≡ α3(2 GeV).

For the entropy and energy density parameters we take g
1/2
S = g

1/2
ρ = 10, since we

expect the freeze-out to take place between 10–100 GeV, when only the light Standard

Model particles are still in equilibrium in the thermal bath.

Our results are plotted in Figure A.5. We see that the yield Y follows relatively

closely the equilibrium density until the time of freeze-out, which happens at different

values of x for the different cross sections. As expected the non-abelian interactions

being stronger gives a considerably lower relic density. The ratio between the two cases
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Figure A.5: Time evolution of the particle yield for the cases of abelian and non-abelian

cross section, for mX = 200 GeV. The upper (blue) curve is for an electromagnetically

charged scalar particle with unit charge, while the lower (red) curves correspond to a

single coloured scalar in the fundamental representation without the Sommerfeld factor

(solid) and with the Sommerfeld factor averaged (dashed). We see that the treatment

of the Sommerfeld factor has an impact of about 30% on the final number density.

is well approximated by the ratio of cross sections, σnabv/σabv, at zero velocity :

Yab

Ynab
=

7

27

α2
3

α2
em

≈ 40 . (A.46)

We next consider the dependence on the only dimensional parameter, the mass of

the charged relic. We have seen that the thermal average can be written only as a

function of x and since we are integrating the Boltzmann equation to x → ∞ we get

rid of the dependence on mX that is contained there. A subleading dependence would

survive by integrating to a finite value of x, but this effect is negligible for the present

universe with a temperature Tnow ∼ 10−4eV ≪ mX . On the other hand, the mass

directly enters in the coefficient of eq. (A.4) and that is the stronger dependence on

mX . Note that this dependence is present even in the unitarity case, where the reduced

cross section is explicitly independent of the mass and velocity. In general therefore

the yield is proportional to the mass and can be rescaled as

Y (mX) = Y (1 TeV)
( mX

1 TeV

)
. (A.47)

123



THE NUMBER DENSITY OF A CHARGED RELIC

100 150 200 300 500 700 1000
m @GeVD

1.´10-18

1.´10-16

1.´10-14

1.´10-12

Y
¥

Yab

Ynab

Ylim

Figure A.6: Dependence of the yield on the mass of the charged relic. From top to

bottom, the first (blue) line is for the case of an electromagnetically charged relic, while

the second (red) line is for a coloured relic, the dashed and dash-dotted lines include

the Sommerfeld factor, averaged and summed respectively. The lower two (black) lines

correspond to the maximal annihilation cross section given by unitarity – the solid

one for a single d.o.f., the dotted one for 3 d.o.f. for the fundamental representation of

QCD. Note that the non-abelian case is still three orders of magnitudes away from the

unitarity cross section.

with Yab(1 TeV) = 3.9 × 10−12 and Ynab(1 TeV) = 1.6 × 10−13 for the abelian and non-

abelian cases, respectively, for the total degrees of freedom, including antiparticles. For

the case of the unitarity cross section, the total yield becomes instead Ylim(1 TeV) =

6.6 × 10−18 (or 2 × 10−17 for three degrees of freedom).

Since the energy density also increases for larger masses, this can be used to give

a constraint on the mass of any stable thermal relic from the maximal cross section

allowed by unitarity [15]. Using the WMAP 5-year results [32] for the most conservative

upper bound for the matter density, we can update such bound. In fact imposing

ΩXh
2 = mXYX+X̄(Tnow)s(Tnow)/ρc ≤ 0.13 (A.48)

gives us for a single degree of freedom the constraint

mXYX+X̄(Tnow)

GeV
≤ 4.6 × 10−10 (A.49)
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resulting for a scalar particle in

mX ≤ 280 TeV . (A.50)

Note that for a fermionic spin 1/2 relic the unitarity cross section is reduced by a factor

four and therefore the bound on the mass is stronger by a factor two.

A.5 Constraints on cosmological relics

We review here the constraints on the abundance of cosmological relics that we will

compare with the number density of a charged scalar relic in the next section. First

we will consider the case of stable relics (i.e. with lifetimes longer than 1027 s) and

next relics with lifetimes in the window 0.1 − 1012s. Note that for shorter lifetimes

the constraints are non-existent, as long as the particle did not dominate the universe

dynamics before decaying or produce a large amount of entropy, while for lifetimes

between 1010 − 1027s bounds from CMB distortion [33] and from the measured photon

diffuse flux [34] apply, but will not be discussed here.

A.5.1 Stable relics

The possibility of existence of some more exotic cosmological relics than the known

light elements stimulated many years ago the search for exotic nuclei in water and other

materials on the earth. Those searches were unsuccessful and provide a very strong

limit on the number density of any relic that would bind electromagnetically with an

electron or in nuclei, under the assumption that such particles are equally distributed

in the Universe compared to baryons. If such relics were present long before structure

formation, it is highly probable that they were trapped together with baryons when the

universe’s density was still nearly homogeneous, so that we can expect their number

density not to be too strongly dependent on the local environment. Note that in any

case these bounds are so strong that the possibility of such a relic to be Dark Matter

is completely excluded.

The most recent constraints are those obtained by [35] looking for anomalously

heavy hydrogen in deep sea water, which apply to an electrically positively charged
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relic, and give for masses 5 GeV ≤ mX ≤ 1.6 TeV:

YX+ ≤ 4 × 10−17 YB = 3.5 × 10−27

(
ΩBh

2

0.0223

)
(A.51)

Taking into account the gravitational effect in deep sea, this corresponds to a concen-

tration of the order of 10−28 at sea level or equivalently

YX+ ≤ 0.9 × 10−38

(
ΩBh

2

0.0223

)
, (A.52)

which is comparable to other limits in the same mass range, [36]. For larger masses

up to a TeV, a slightly looser bound YX+/YB < 3 × 10−20 was found by [37], while

for even larger masses 10 TeV ≤ mX ≤ 6 × 104 TeV it weakens even further to

YX+/YB < 7 × 10−15, as given by [38], i.e.

YX+ ≤ 6 × 10−25

(
ΩBh

2

0.0223

)
. (A.53)

For electromagnetically neutral, but coloured relics, the bounds are obtained from

considering heavier elements and are considerably weaker; using the results of [37] for

Carbon, the limits are of the order YX+/YB ≤ 4 − 8 × 10−20 for mX = 0.1 − 1 TeV,

reaching 2 × 10−16 at the largest mass considered 10 TeV. For larger masses mX ≤
100 TeV only the constraint by [39] for lead is present, giving

YX ≤ 1.5 × 10−13 YB = 1.3 × 10−25

(
ΩBh

2

0.0223

)
. (A.54)

We see that these constraints are very strong. In order to reach even the weakest

bound of YX ≤ 10−25, the unitarity cross section is way too weak and needs to be

increased at least by nine orders of magnitude, i.e.

∑

J

(2J + 1) > 109 . (A.55)

Therefore stable relics are allowed only if their interaction does not belong to the

Standard Model and they cannot form exotic atoms/nuclei or if their annihilation rate

becomes much larger than the unitarity one as it can happen if they interact strongly

and can form intermediate bound states. But in any case, note that cross sections of

the order π/Λ2
QCD that can arise after the QCD phase transition are not sufficient to

evade these constraints [31], so their interaction would have to be stronger than QCD.
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A.5.2 Unstable relics

Different cosmological constraints exist on the density of an unstable relic, depending

on its lifetime. For lifetimes between 0.1 s and 1010 s, the strongest constraints come

from Big Bang Nucleosynthesis. In fact, if the relic decay injects very energetic particles

into the thermal bath during BBN, it can change the abundances of the light elements.

Since standard BBN agrees quite well with the primordial abundances of Helium-4,

Deuterium and (within a factor of two) Lithium-7 inferred from present astronomical

observations [9], the relic density has to be low enough not to change those predictions

too strongly. These effects are present for any decaying particle and have been studied

in various papers (see [10, 40, 41, 42] and references therein). For lifetimes above

3000 s, corresponding to the time of production of Lithium, additional constraints

are present if the relic is electromagnetically charged and can form a bound state

with positively charged nuclei increasing the rates for Lithium-6 production [11]. The

Standard BBN prediction for the 6Li abundance is actually way too small compared

to the observed one, so that the presence of a charged relic with appropriate lifetime

can help reconciling BBN with the measured abundances of 6Li, 7Li [43], but we will

disregard this possibility and only concentrate on the exclusion region.

We summarise here the main results from various BBN analyses and give conser-

vative bounds on the energy density of the decaying relic and compare them with our

computation of the relic density. Since we are interested in escaping the BBN con-

straints, we focus mainly on the strongest bounds, but we keep conservative values for

the light element abundances. Note that in many of the analysis slightly different ranges

for these abundances are considered, corresponding to slightly different constraints on

the decaying relic.

In general, the decay can produce very energetic SM particles that can initiate

either hadronic or electromagnetic showers in the plasma. The most stringent bounds

are obtained for a relic that produces mostly hadronic showers, since electromagnetic

particles like photons or electrons can thermalise very quickly by interacting with the

tail of the CMB distribution until times of about 106 s. So we will consider in the

following the constraints for relics producing hadronic showers with a branching ratio

BH = 1. We will comment later on the case where this branching ratio is smaller.

There are then practically three regions of the lifetimes as discussed in [40]:
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• 10−1 s ≤ τ ≤ 102 s : the dominant effect is the interconversion between protons

and neutrons, that changes the Helium abundance, overproducing it;

• 102 s ≤ τ ≤ 107 s: hadrodissociation is the most efficient process and the bound

come from the non-thermal production of Li and D;

• 107 s ≤ τ ≤ 1012 s: photodissociation caused both by direct electromagnetic

showers and by those generated by the daughter hadrons starts to dominate and

the overproduction of 3He is the main result.

It is clear that these limits depend on the decay branching ratio BH into hadrons

for lifetimes τ ≤ 107 s, while they are independent of BH for longer lifetimes. In

Table A.1, we give conservative bounds taken from the general analysis of [40] for the

three regions, assuming BH = 1. Similar constraints were obtained independently also

by [41]. Note that the bound for short lifetimes becomes approximately one order of

magnitude weaker if one takes a more recent value of the 4He abundance as discussed

in [42]. Unfortunately this new publication does not provide constraints for a general

relic, but discusses only the explicit cases of a bino neutralino or a right-handed stau.

The limits we use can be parameterised as

YX+X̄ ≤ 1.0 × 10−13
( mX

1TeV

)−0.3

for τX ∼ 0.1 − 102 s , (A.56)

YX+X̄ ≤ 1.1 × 10−16
( mX

1TeV

)−0.57

for τX ∼ 102 − 107 s . (A.57)

The assumption BH = 1 is surely valid if the decaying relic is coloured, while BH can

be different if it is only electromagnetically charged, as in the case of the stau. If the

branching ratio into hadronic modes for the relic is less than one, the hadronic BBN

bounds are relaxed accordingly by a factor 1/BH . For intermediate lifetimes, then

electromagnetic showers can become a more important effect, but only if BH < 0.01.

For electromagnetically charged relics with lifetimes longer than about 3000 s and

low BH < 0.1 − 0.01, strong bounds also come from considering the catalysed over-

production of 6Li [11]. In fact when bound states between nuclei and the relic can

form such as 4HeX−, many nuclear rate are modified and change the final abundance

especially of 6Li and 7Li. For particles decaying after 5× 105s it has been argued that

uncertainties in the nuclear rates make such constraints weaker than the general ones
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Maximal values of mXYX+X̄ (GeV) allowed by BBN

mX (TeV) 10−1 − 102 s 102 − 107 s 107 − 1012 s

0.1 2 × 10−11 5 × 10−14 10−14

1 1 × 10−10 10−13 10−14

10 5 × 10−10 3 × 10−13 10−14

Table A.1: Maximal allowed values ofmXYX+X̄ in the different region of lifetimes taken

from Figures 38–40 of [40]. We are assuming here that the energy released in Standard

Model particles is one half of mX as happens in a two body decay of the NLSP into

LSP and the NLSP non-supersymmetric partner and that all the energy is released in

hadrons. In general the strongest bound is for longer lifetimes and it is independent of

mX and the hadronic branching ratio. The bounds in the second column come from

D, but the 6Li ones, that are sometimes considered too strong [43], are not very far

away.

discussed above [44], so we will consider here catalysed BBN constraints only for the

intermediate lifetime range.

Unfortunately, different values for these bounds are given in the literature; in [45, 46]

they are found to be maximally at the level of YX− < 1.4 – 2 × 10−16, while the latest

value in [44] is maximally YX− < 10−14, taking a larger window for the ratio 6Li/7Li.
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Figure A.7: Maximal total yield Y max
X+X̄

allowed by BBN as a function of the relic’s

lifetime τX for the two cases BH = 1 (red) and BH = 10−3 (blue). The full lines are

for a mass of mX = 100 GeV, while the dashed lines are for mX = 1 TeV. Note that

for BH = 10−3, the limit for τX ∼> 104 s comes from CBBN.

Here we will use as a constraint the simple interpolation for the total yield 9

YX+X̄ ≤
{

2 × 10−12
(

τX

3×103s
)−2

for τX ∼< 105s

2 × 10−15 for τX ≥ 105s
(A.58)

that lies somewhat in between. The bounds from catalysed BBN do not apply for

coloured scalar relics because these should have a large branching ratio into hadrons,

such that the ‘conventional’ BBN bounds from hadronic showers are much stronger. In

passing note also that up-type squarks would mostly hadronise into neutral fermionic

mesons which are lighter than the charged ones [30].

We summarise the constraints in Fig. A.7, which shows our conservative bounds in

the plane of total number density vs lifetime. Note that the constraint from catalysed

BBN are for the stau stronger than the hadronic ones for lifetimes longer than ∼ 104 s

and exclude a light stau NLSP with a 100 GeV gravitino LSP in the CMSSM [12].

Comparing with Fig. A.6, we see that even for a charged relic that can annihilate

efficiently, the BBN bounds are very strong; in particular the case of a simple abelian

9The catalysed BBN constraints restrict only the abundance of the negatively charged particles,

but we give here the constraint for the total yield assuming 2YX− = YX+X̄ .
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interaction seems to be excluded for any charged relic whose lifetime is longer than 0.1

s and produces hadronic showers with BH = 1. For the coloured case the situation

is less severe, but even with the Sommerfeld enhancement, which reduces the yield

substantially, it is not possible to evade the bounds completely. Still all masses above

approximately 50 GeV are excluded for lifetimes longer than 100 s, while for shorter

lifetimes masses up to 700 GeV are allowed. A much larger number of colours than

three would be needed to relax all bounds. Even the unitarity case reaches the strongest

BBN constraint at masses around 700 GeV for 3 degrees of freedom or 1 TeV for a

single one.

A.6 Application to the MSSM

Until now we have considered the ideal case that the relic particle has only one single

interaction. In realistic models, however, more than one interaction – and hence more

than one annihilation channel – is present, making the BBN bounds less stringent.

In this section, we discuss the concrete examples of a relic stau or stop in the MSSM.

We use the MICROMEGAS package [47] to take into account all relevant annihilation

and co-annihilation channels, but compare also with the results for Yab or Ynab for the

case of one single gauge interaction.

A.6.1 Relic stau

Our results for an electrically charged relic can be applied, for instance, to the case of

the supersymmetric partner of the τ . We assume here that the relic stau is a right-

chiral state, τ̃R, and that all other SUSY particles as well as the heavy Higgs bosons

decouple.

The dependence of the yield on the stau mass is shown in Fig. A.8. For a 100 GeV

τ̃R, we get Yτ̃ = 4.8×10−13 at tree level from annihilation into photons (c.f. the dashed

line). This is reduced by about 12% by the Sommerfeld enhancement (dashdotted line).

In the full EW theory, the stau also annihilates into W+W−, ZZ and γZ. In fact,

for mτ̃ = 100 GeV, the γγ channel contributes about 55%, γZ about 25%, ZZ about

10% and WW about 5% to the total rate; the remaining 5% go into SM fermions. At

higher stau masses, we have ∼50% γγ and ∼30% γZ. Overall this gives a reduction of
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Figure A.8: Total yield Y (black lines) for a relic τ̃R as function of the stau mass. The

dashed and dashdotted curves are tree-level and Sommerfeld- corrected results, respec-

tively, from annihilation into photons (i.e. Yab). The full line includes also annihilation

into W and Z bosons, assuming all other sparticles decouple. Finally, the dotted line

shows the case mB̃ = 1.1mτ̃1 . BBN bounds are shown in red: as full line for 0.1–100 s

lifetime and BH = 0.65, and as dashed line for > 100 s lifetime and BH = 10−3. Note

that if the lifetime exceeds about 104 s, the CBBN constraints become more important

and quickly exclude number densities at the level of 10−13–10−15, see Fig. A.7.

Y by a factor of about 2 (solid line), leading to Yτ̃ = 2.4 × 10−13 at mτ̃ = 100 GeV.

Staus can also annihilate into ττ through t-channel neutralino exchange. We here

consider only the bino contribution. Lowering the bino mass mB̃ decreases the yield

until bino-stau coannihilation takes over, increasing it again. We find a minimum yield

at about mB̃ ≃ (1.1 − 1.2)mτ̃1 , shown as dotted line in Fig. A.8. It is roughly a factor

2 lower than the solid line, in agreement with [25]. Note also that the neutralino

exchange leads to annihilation of same-sign stau pairs, τ̃±1 τ̃
±
1 → τ±τ±, so this process

gets Sommerfeld-suppressed, and the total Sommerfeld effect almost cancels.

The annihilation into W+W− and ZZ is considerably enhanced if the relic stau

also has some τ̃L component, τ̃1 = τ̃R sin θ + τ̃L cos θ with cos θ 6= 0. In this case also

t-channel exchange of ν̃τ (for W+W−) and τ̃2 (for ZZ) has to be taken into account

in addition to the 4-vertex and s-channel γ/Z exchange, c.f. Appendix B. It turns out

that these t-channel diagrams lead to a destructive interference: for given cos θ, smaller
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ν̃τ and τ̃2 masses lead to smaller cross sections. Since the stau and sneutrino masses

and stau mixing angle are related to each other, one cannot simply maximise the cross

section by choosing maximal mixing (cos θ = 0.7) and very heavy ν̃τ and τ̃2. However,

for reasonable parameter choices, it is still possible to reduce the yield shown in Fig. A.8

by up to about an order of magnitude.Alternatively, one could rely on resonant annihila-

tion through

s-channel Higgs exchange or on coannihilation with sparticles that are close in mass to

bring Yτ̃ below the BBN bounds.

Barring these possibilities of largely enhanced cross sections, the stau lifetime and

branching ratio into hadronic modes become key parameters to decide whether the

scenario is allowed. First of all, let us discuss briefly the branching ratio into hadrons.

We are considering here the decay τ̃R → τ+LSP. The τ decays into charged mesons

65% of the time, while the remaining times into leptons only. Charged mesons have

a similar effect as nucleons during BBN only at short times < 100 seconds, because

later they decay before interacting with nucleons and give rise only to electromagnetic

showers [40]. Therefore we will take BH(τ̃ ) ∼ 0.65 for lifetimes up to 100 s, while it

becomes much smaller for longer lifetimes, we will use BH(τ̃) ∼ 10−3 as reference value.

This is in the central range computed recently for the stau decay into tau, gravitino

and a qq̄ pair, and we refer to that result for a more detailed analysis [48]. (A full

computation including a more complete treatment of the hadronic decays of the tau

for the case of a right-handed stau has been given in [42].) We have then to apply

the BBN bounds discussed in the previous section corrected by these branching ratio

factors, according to the time of decay.

Regarding the stau lifetime, this depends strongly on the nature of the LSP. For

the case of the axino LSP, the decay rate is given by

Γ(τ̃R → τ ã) = (25 s)−1ξ2
( mτ̃

102 GeV

)( mB̃

102 GeV

)2
(

1011 GeV

fa

)2(
1 − m2

ã

m2
τ̃

)
(A.59)

where mã is the axino mass, mB̃ is the Bino mass, fa is the Peccei-Quinn scale, and ξ is

a factor of order 1 taking into account some uncertainties in the loop computation [49].

Therefore only the weakest BBN bound applies and actually disappears completely

for large stau mass: in fact even for the conservative case mB̃ = 1.1mτ̃ and fa =

1011 GeV, the lifetime becomes shorter than 0.1 s for mτ̃ ≤ 590 GeV. We are here
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Figure A.9: BBN-excluded regions for a gravitino LSP in the plane m3/2 vs. mτ̃ . On

the left a zoom on mτ̃ = 50–500 GeV for Yτ̃ = Yab (light grey ), Yτ̃ = Yab/2 (medium

grey) and Yτ̃ = Yab/4 (dark grey). On the right for mτ̃ = 0.1–10 TeV. Note that LEP

excluded mτ̃ ≤ 99.4 GeV for a charged particle stable within the detector [50].

neglecting the case of a strong degeneracy between the stau and axino masses. We see

therefore that for axino LSP a very light stau is a viable possibility and, depending

on the supersymmetric spectrum, only the mass window between 125/250 − 590 GeV

is possibly excluded by the BBN constraints, as can be seen from Fig. A.8. In that

region however probably a more proper computation of the stau hadronic branching

ratio and its effect in the early stages of BBN is needed, as discussed in [42]. In fact

comparing our exclusion region with theirs, we find that their constraints are much

weaker for short lifetimes, due to an up-dated value of the Helium abundance and a

larger systematic error, allowing all the stau region for an axino LSP.

For a gravitino LSP, the decay rate is given by [49]

Γ(τ̃R → τG̃) = (5.9 × 108 s)−1
( mτ̃

100 GeV

)5
(

100 GeV

m3/2

)2
(

1 −
m2

3/2

m2
τ̃

)4

, (A.60)

which typically gives longer stau lifetimes than the axino case. Figure A.9 shows the

BBN-excluded region in the m3/2 vs mτ̃ plane. We consider a number density Yτ̃ equal

to 1/2 and 1/4 times Yab to account for the possible variation depending on mB̃. As can

be seen, to avoid all bounds we need either a very light gravitino in the MeV range for
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mτ̃ ∼ O(100) GeV, or a very heavy stau, e.g. mτ̃ ∼> 1.4 TeV (9 TeV) for m3/2 = 1 GeV

(100 GeV), corresponding to a stau lifetime shorter than 0.1 s. On the other hand, for

mτ̃ ∼ 100–250 GeV and a lifetime longer than 100 s, BH ∼ 10−3 can bring the effective

yield below the bound of mY ≈ 5× 10−14 required by hadronic showers. Last but not

least, note that the constraint from catalysed BBN becomes stronger than the hadronic

ones for lifetimes longer than about 104 s and excludes a light stau NLSP for gravitino

masses above 10-100 GeV.

A.6.2 Relic stop

To discuss the case of a relic stop, we assume that only t̃R is light while all other SUSY

particles are heavy and decouple. Moreover, we assume that the light Higgs is SM-like

with a mass of mh = 115 GeV, and that the other Higgs bosons are also heavy and do

not contribute to the stop annihilation.

Results for the yield as a function of the stop mass are shown in Fig. A.10. Let

us first discuss the left plot, Fig. A.10(a), which shows the yield at leading order

(LO). Here the full line is the pure QCD result, Ynab for SU(3), without Sommerfeld

correction. As can be seen, t̃t̃∗ → gg alone is efficient enough to avoid the BBN

constraints up to stop masses of about 700 GeV. In the full theory, the stop can also

annihilate into other particles, in particular into EW gauge and Higgs bosons. The

yield for the QCD+EW case, still assuming heavy sparticles, is shown as the dashed

line in Fig. A.10(a). The dip at mt̃ ∼ 120 GeV is due to the onset of t̃Rt̃
∗
R → hh.

Other important channels are annihilation intoW+W− and γg, contributing about 10%

each to the total annihilation cross section for mt̃ ∼> 200 GeV. Annihilation into ZZ

contributes about 5%. Annihilation into top quarks is suppressed by the heavy gluino

mass, and also by mt. However, if mt̃ > 200 GeV and mg̃ ∼ 2mt̃, t̃Rt̃R → tt further

reduces the yield by 10–20%. This is shown as the dash-dotted line in Fig. A.10(a). All

in all, annihilation into gluons is, however, always the dominant channel, contributing

at least 50%. We therefore take Ynab/2 as a rough limit, which is shown as the dotted

line in Fig. A.10(a). Comparing with the BBN constraints we see that a relic t̃R with

a lifetime of 0.1–100 s can be in agreement with BBN even for high masses of about 1

TeV.

The impact of the Sommerfeld enhancement is illustrated in Fig. A.10(b) for the
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Figure A.10: Results for Yt̃ for a relic t̃R as a function of the stop mass. In (a), tree-level

results for different channels: the solid line comes from t̃t̃∗ → gg only, the dashed line

includes all channels into QCD+EW gauge and h bosons (case of decoupled sparticles

and heavy Higgses), the dash-dotted line is the result for mg̃ = 2mt̃R , and the dotted

line the limit Yt̃ = Ynab/2. In (b), the effect of the Sommerfeld enhancement on the

yield from t̃t̃∗ → gg: the full line shows the tree level result, the dashed line the result

for σSFav, i.e. applying an averaged Sommerfeld factor Cav
SU(3) = 11/42, and the dash-

dotted line is for σSFsum, i.e. applying a summed factor according to eq. (A.34). The

BBN bound for 0.1–100 s lifetime is shown as thin red line in both plots.

case t̃t̃∗ → gg. As can be seen, taking the averaged Sommerfeld factor of Cav
SU(3) = 11/42

in eq. (A.29) reduces the LO yield by roughly a factor of 2, while a summed factor

according to eq. (A.34) reduces the LO yield by roughly a factor of 3. These results are

in qualitative agreement with those of [20], that considered the Sommerfeld correction

in the neutralino-stop coannihilation region. Here note that for colour-singlet channels

like, for instance, t̃t̃∗ → W+W− a factor of C = 4/3 applies, hence leading to even

larger enhancement. We leave a detailed numerical analysis of the enhancement of the

various stop annihilation channels for future work. Here we just note that the overall

effect can be a reduction of the yield by an order of magnitude.

Additional annihilation can take place after the QCD phase transition, when the

stops are in a confined phase with the quarks. Since the lighter fermionic mesons are

neutral and assuming that the annihilation process takes place without the formation
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of a bound state between the mesinos, the unitarity cross section is probably a good

estimate of such annihilation and allows for heavier stops to be consistent with hadronic

shower constraints. We see in fact from Fig. A.6 that the unitary cross section with

three degrees of freedom gives a yield well below all the BBN bounds (and below the

range in Fig. A.10) for stop masses up to 700 GeV. If also bound states between the

mesinos can form efficiently, the BBN constraints disappear altogether [31], but note

that we do not have to rely on the enhancement coming from such processes, which

are very difficult to compute, for a wide range of parameter space.

Let us briefly discuss the lifetime also for the stop case. For the case of an axino

LSP, the stop decay rate is a larger than for the stau since it depends on the gluino

mass and the QCD gauge coupling [3]:

Γ(t̃R → tã) = (1.3 × 10−3 sec)−1ξ2
t

( mt̃

102 GeV

)( mg̃

102 GeV

)2
(

1011 GeV

fa

)2(
1 − m2

ã

m2
t̃

)

(A.61)

where ξt is again a factor of order one taking into account the uncertainties in the loop

computation [49], in principle different than the one for the stau. Therefore, for the

axino case, the BBN bound never applies if the decay into top is kinematically allowed,

i.e. if m2
t̃
≥ (mã + mt)

2. If the stop mass is smaller, the decay can proceed through a

virtual top, for which we estimate a suppression of order O(1/100) due to the 3-body

phase space. This would still give a lifetime of order 0.1 sec, so the BBN constraints

are completely avoided, as long as there is not a strong degeneracy in mass between

LSP and NLSP or the factor ξt is exceptionally large.

For a gravitino LSP, on the other hand, the same formula applies for stop as for

stau, eq. (A.60) with τ̃ → t̃, because the gravitino couples only to mass. Note, however,

that also in this decay the width gets phase-space suppressed if mt̃ < mt + mG̃. For

illustration, we show in Fig. A.11 the band of 0.1–100 s lifetime in the plane m3/2 vs

mt̃. For lifetimes longer than 100 s, stops can still be in accord with BBN thanks to the

additional annihilation during the QCD phase transition, if their annihilation reaches

the unitarity one. We therefore conclude that cosmologically stops are an allowed

NLSP in any mass range and in particular also for a heavy gravitino. Our results are

in agreement with those for specific supersymmetric models with stop NLSP discussed

in [51]. From the colliders side, note that the low mass region mt̃ < 250 GeV has been

recently excluded by the search for charged massive particles at the Tevatron [52].
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Figure A.11: Lifetime of a relic t̃R in the plane m3/2 vs mt̃. Recent results from the

Tevatron exclude a metastable stop below 250 GeV [52].

A.7 Conclusions

We have studied the number density of a charged relic by computing the annihilation

cross section into gauge bosons, including the Sommerfeld enhancement. We have

found that the Sommerfeld factor increases the thermally averaged annihilation cross

section by 20-50% and reduces the final yield even by a factor 2 or 3 for the SU(3)

case. Moreover the result is very sensitive on how the higher orders are resummed.

Nevertheless the number density surviving the annihilation is still large and BBN

constraints are relevant for most relics. They can be avoided completely only for

very large N for particles in the fundamental representation of SU(N) (N > 100 for

mX ≤ 10 TeV) or for cross sections nearly fulfilling the unitarity bound. For the cases of

SM gauge groups, the allowed regions only correspond to very light relic masses, where

the number density is low enough, or to sufficiently heavy relic masses so that the decay

takes place in the first stages of BBN. The latter allowed region depends strongly on

the relic decay channel, and, in case of a gravitino LSP with conserved R-parity, also

on the gravitino mass. Let us mention here that if R-parity is just marginally broken,

the NLSP can decay with shorter lifetime through R-parity violating channels and the

BBN constraints can be easily evaded for any NLSP while keeping the gravitino LSP

as Dark Matter [53].
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More specifically, for the stau NLSP the light mass window has nearly completely

been excluded by direct searches at LEP, even if the annihilation cross-section is max-

imal ∼ 4σ(τ̃ τ̃ ∗ → γγ), unless the gravitino is lighter than a few tens of GeV, while

the large mass region is unfortunately out of reach at the LHC for gravitino masses

m3/2 > 100GeV. The detection of a quasi-stable stau at the LHC would then point

to a scenario with relatively light gravitino mass, R-parity breaking or an axino LSP

and could probably exclude the gravity mediated supersymmetry breaking scenario.

In that case the determination of the stau lifetime and its decays will become crucial

in distinguishing the different LSPs [7, 49].

The stop case is much less constrained thanks to the stronger annihilation cross-

section, even if in this case the decay always produces mainly hadrons. We have

practically no constraints if the LSP is an axino and even for a gravitino LSP, we can

allow for relatively light stops up to approximately 700 GeV (1 TeV for lifetimes below

107 s), if the annihilation cross section reaches the unitarity one after the QCD phase

transition. The window between the present Tevatron bound around 250 GeV and 1

TeV should be surely completely covered by the LHC, the signature being a quasi-stable

heavy fermionic meson. The detection of such a state would call for a non-minimal

SUSY breaking sector with a coloured NLSP and a very weakly interacting LSP. In

this case again only the analysis of the stop decays would allow to distinguish between

the lightest states.
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.1 Annihilation into massless SU(N) gauge bosons

.1.1 Amplitudes for the annihilation

We consider the case of one particle and antiparticle in the representation T a
i and

its conjugate, with momenta p1, p2 and mass m annihilating into two massless gauge

bosons with group indices a, b, momenta p3, p4 and Lorentz indices µ, ν respectively.

The process has four different contributions, corresponding to the following four

Feynman diagrams:

t particle exchange in the t-channel described by the amplitude

Aµν
t = ig2

N

(
T bT a

)
ji

(2p1 − p3)
µ(2p2 − p4)

ν

t−m2
; (62)

u particle exchange in the u-channel described by the amplitude

Aµν
u = ig2

N

(
T aT b

)
ji

(2p1 − p4)
ν(2p2 − p3)

µ

u−m2
; (63)

note that this contribution is identical to the t-channel under interchange of

a↔ b, µ ↔ ν, (p3, t) ↔ (p4, u);

4 supersymmetric four-scalar coupling giving the amplitude:

Aµν
4 = ig2

N

{
T a, T b

}
ji
gµν ; (64)

this contribution is symmetric in the exchange of a, b and therefore also µ, ν;
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s off-shell gauge boson in the s-channel decaying into two bosons via the non-

abelian interaction:

Aµν
s = −ig2

N

[
T a, T b

]
ji

1

s
[gµν(t− u) − (2p4 + p3)

µ(p1 − p2)
ν

+(p1 − p2)
µ(2p3 + p4)

ν ] ; (65)

this contribution is completely antisymmetric under the exchange of the gauge

bosons group indices and therefore also under the exchange of their momenta and

Lorentz indices.

For convenience, we can then separate the amplitude into symmetric and antisym-

metric part in colours a, b; then the interference between the two parts vanishes. Using

T aT b =
1

2

{
T a, T b

}
+

1

2

[
T a, T b

]
(66)

we have then

Aµν
sym =

ig2
N

2

{
T a, T b

}
ji

[
(2p1 − p3)

µ(2p2 − p4)
ν

t−m2
+

(2p1 − p4)
ν(2p2 − p3)

µ

u−m2
+ 2gµν

]

(67)

and

Aµν
asym =

ig2
N

2

[
T a, T b

]
ji

[
−(2p1 − p3)

µ(2p2 − p4)
ν

t−m2
+

(2p1 − p4)
ν(2p2 − p3)

µ

u−m2

−2
gµν(t− u) − (2p4 + p3)

µ(p1 − p2)
ν + (p1 − p2)

µ(2p3 + p4)
ν

s

]
. (68)

In the Boltzmann equation, we have to insert the averaged cross-section, so first we have

to sum over all the final and initial states, i.e. sum over the gauge bosons polarisations

and over all the group indices.

.1.2 The matrix element

The computation for the symmetric piece is straightforward:

|Asym|2 = g4
N |
{
T a, T b

}
ji
|2
[
(t+m2)2

(t−m2)2
+

(u+m2)2

(u−m2)2
+

1

2

(s− 4m2)2

(t−m2)(u−m2)

+4 +
s/2 − 4m2 − 2(t−m2)

t−m2
+
s/2 − 4m2 − 2(u−m2)

u−m2

]
(69)

= 4g4
N |
{
T a, T b

}
ji
|2
[
1

2
+

2m4

(t−m2)2
+

2m2

t−m2

(
1 − 2m2

s

)]
. (70)
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In the antisymmetric part instead we have to take into account ghost subtraction

and the total result is

|Aasym|2 = g4
N |
[
T a, T b

]
ji
|2
[
(t+m2)2

(t−m2)2
+

(u+m2)2

(u−m2)2
− 4

−1

2

(s− 4m2)2

(t−m2)(u−m2)
+ 2

(t− u)2

s2
+

16m2

s

+
(t− u)(3/2s− t− 3m2) + 2(s− 4m2)(u−m2)

s(t−m2)

+
(u− t)(3/2s− u− 3m2) + 2(s− 4m2)(t−m2)

s(u−m2)

]
(71)

= 4g4
N |
[
T a, T b

]
ji
|2
[
(t− u)2

2s2
+

4m2

s
+

2m4

(t−m2)2

+
2m2

t−m2

(
1 +

2m2

s

)]
. (72)

So for the total matrix element we have

|M|2 = 4g4
N

{
|
{
T a, T b

}
ji
|2
[
1

2
+

2m4
X

(t−m2
X)2

+
2m2

X

t−m2
X

(
1 − 2m2

X

s

)]

+|
[
T a, T b

]
ji
|2
[
1

2

(s+ 2(t−m2
X))2

s2
+

4m2
X

s
+

2m4
X

(t−m2
X)2

+
2m2

X

t−m2
X

(
1 +

2m2
X

s

)]}
. (73)

and the cross section is given in eq. (A.16).

.1.3 Comparison with QCD result

For the case of SU(3) we have

∑

a,b,i,j

∣∣∣
{
T a, T b

}
ji

∣∣∣
2

=
28

3
(74)

and

∑

a,b,i,j

∣∣∣
[
T a, T b

]
ji

∣∣∣
2

=
1

2

∑

a,b,c

f 2
abc = 12 . (75)
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So after the sum over colours, we get

|M|2 = 4g4
3

[
14

3
+ 6

(t− u)2

s2
+

48m2

s
+

2m4

(t−m2)2

(
28

3
+ 12

)

+
2m2

t−m2

(
28

3
+ 12 +

2m2

s

(
−28

3
+ 12

))]
(76)

= 4g4
3

[
32

3
+ 24

t−m2

s
+ 24

(t−m2)2

s2
+

48m2

s

+
128

3

m4

(t−m2)2
+

128

3

m2

t−m2

(
1 +

1

4

m2

s

)]
. (77)

This result coincides with the one given in the literature for the QCD case [26].

Compare in general with [26]:

|M(gg → q̃ ¯̃q)|2 = 4nfg
4
3

[
C0

(
1 − 2

(t−m2)(u−m2)

s2

)
− CK

]
× (78)

×
[
1 − 2

sm2

(t−m2)(u−m2)

(
1 − sm2

(t−m2)(u−m2)

)]

= 4nfg
4
3

[
C0 − CK + 2C0

t−m2

s
+ 2C0

(t−m2)2

s2

+4C0
m2

s
+ 4(C0 − CK)

m4

(t−m2)2

+4
m2

t−m2

(
C0 − CK + 2CK

m2

s

)]
(79)

using again the symmetry in u↔ t and eliminating u.

We have also that

C0 =
∑

a,b,c

f 2
abc = N(N2 − 1) = 24 CK =

N2 − 1

N
=

8

3
(80)

and for a single RH stop, we must use 2nf = 1. Then we get

|M(gg → t̃R
¯̃
Rt)|2 = 4g4

3

[
32

3
+ 24

t−m2

s
+ 24

(t−m2)2

s2
+ 48

m2

s

+
128

3

m4

(t−m2)2
+

128

3

m2

t−m2

(
1 +

1

4

m2

s

)]
, (81)

which coincide with our result above eq. (77).
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Now integrate over t and obtain

σ(m, s) = 32
4πα2

3

s− 4m2

[√
1 − 4m2

s

(
5

24
+

31

12

m2

s

)

+
4

3

m2

s

(
1 +

1

4

m2

s

)
log




1 −
√

1 − 4m2

s

1 +
√

1 − 4m2

s




 , (82)

which coincides with [26] allowing for the exchange of initial and final state (s−4m2 → s

in the denominator) and the initial state averaging, i.e. a factor of 1/64 for the two

gluons initial state.

.2 Annihilation into SU(2)L gauge bosons

Another important channel of annihilation for light stops or staus is into EW gauge

bosons. Let us consider first the pure SU(2)L case, neglecting the gauge boson masses,

but with a split SU(2) multiplet. We consider here the case of one left-handed sparticle

and one left-handed antisparticle of momenta p1, p2, mass m1 and SU(2) index 1,

annihilating into 2 gauge bosons of SU(2)L index i, j, momenta p3, p4 and Lorentz

indices µ, ν respectively. Then we can directly use the result for SU(N), only taking

into account that T a → σi/2, with σi denoting the Pauli matrices, and that in this case

we have an initial state made of the upper components of the SU(2)L doublet, while

the lower component is exchanged in the t- and u-channel and can have a different

mass m2.

We have then for the two amplitudes, symmetric and antisymmetric in the group

and Lorentz indices,

Aµν
sym = i

g2
2

8

{
σi, σj

}
11

[
(2p1 − p3)

µ(2p2 − p4)
ν

t−m2
2

+
(2p1 − p4)

ν(2p2 − p3)
µ

u−m2
2

+ 2gµν

]

(83)

and

Aµν
asym = i

g2
2

8
[σi, σj]11

[
−(2p1 − p3)

µ(2p2 − p4)
ν

t−m2
2

+
(2p1 − p4)

ν(2p2 − p3)
µ

u−m2
2

−2
gµν(t− u) − (2p4 + p3)

µ(p1 − p2)
ν + (p1 − p2)

µ(2p3 + p4)
ν

s

]
. (84)
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To compute the annihilation cross section, we have to sum over all the final states and

initial states; this means that we have to sum over the W polarisations and over the

SU(2)L indices i, j, but in this case the initial state group indices are fixed.

The symmetric piece gives

|Asym|2 =
g4
2

16
|
{
σi, σj

}
11
|2
[
(t+m2

1)
2

(t−m2
2)

2
+

(u+m2
1)

2

(u−m2
2)

2
+

1

2

(s− 4m2
1)

2

(t−m2
2)(u−m2

2)

+4 +
s/2 − 4m2

1 − 2(t−m2
1)

t−m2
2

+
s/2 − 4m2

1 − 2(u−m2
1)

u−m2
2

]
(85)

=
g4
2

4
|
{
σi, σj

}
11
|2
[
1

2
+

1

2

(m2
1 +m2

2)
2

(t−m2
2)

2
(86)

+
1

t−m2
2

(
3m2

2 +m2
1

2
− (m2

1 +m2
2)

2

s+ 2m2
2 − 2m2

1

)]
.

In the antisymmetric part instead gives

|Aasym|2 =
g4
2

16
|[σi, σj]11|2

[
(t+m2

1)
2

(t−m2
2)

2
+

(u+m2
1)

2

(u−m2
2)

2
− 4 (87)

−1

2

(s− 4m2
1)

2

(t−m2
2)(u−m2

2)
+ 2

(t− u)2

s2
+

16m2
1

s

+
(t− u)(3/2s− t− 3m2

1) + 2(s− 4m2
1)(u−m2

1)

s(t−m2
2)

+
(u− t)(3/2s− u− 3m2

1) + 2(s− 4m2
1)(t−m2

1)

s(u−m2
2)

]

=
g4
2

4
|[σi, σj]11|2

[
(t− u)2

2s2
+

5m2
1 −m2

2

s
+

1

2

(m2
1 +m2

2)
2

(t−m2
2)

2
(88)

+
1

t−m2
2

(
m2

2 + 3m2
1

2
+

(m2
2 +m2

1)
2

s+ 2m2
2 − 2m2

1

− (m2
2 −m2

1)
2

s

)]
.

.2.1 SU(2)L sum and total matrix element

In this case the sum over the indices i, j is simple. We have that
∑

i,j

1

4
|
{
σi, σj

}
11
|2 =

∑

i,j

1

4
|2δj

i I11|2 =
∑

i

δi
i = 2 + 1 (89)

where we have considered the annihilation into W 1,2 separately from that into W3. In

fact the intermediate particle has a different mass in the two cases.

On the other hand the antisymmetric product gives
∑

i,j

1

4
|[σi, σj]11|2 =

∑

i,j

1

4
|2ǫijkσk

11|2 =
∑

i,j

|ǫij3|2 = 2 (90)

145



THE NUMBER DENSITY OF A CHARGED RELIC

since in this case only W 3 can be exchanged in the s-channel for W 1,2 in the final state.

Then the matrix element for annihilation into W 1,2 gauge bosons is given by

|MW12|2 = g4
2

[
1 +

(t− u)2

s2
+

10m2
1 − 2m2

2

s
+ 2

(m2
1 +m2

2)
2

(t−m2
2)

2
(91)

+
4

t−m2
2

(
m2

2 +m2
1 −

(m2
2 −m2

1)
2

2s

)]
,

while the annihilation into W 3 has only the abelian contribution with the presence of

a single mass m1

|MW3|2 = g4
2

[
1

2
+

2m4
1

(t−m2
1)

2
+

2m2
1

t−m2
1

(
1 − 2m2

1

s

)]
.

The cross section for the first case is then

σW12 =
2πα2

2

s− 4m2
1

[√
1 − 4m2

1

s

(
2

3
+

13

3

m2
1

s
− m2

2

s
+

(m2
1 +m2

2)
2

sm2
2 + (m2

2 −m2
1)

2

)

+2

(
m2

2 +m2
1

s
− (m2

2 −m2
1)

2

2s2

)
×

× log

(
s+ 2(m2

2 −m2
1) −

√
s(s− 4m2

1)

s+ 2(m2
2 −m2

1) +
√
s(s− 4m2

1)

)]
, (92)

while the annihilation into W 3 is identical to the abelian one in eq. (A.9) for eX = 1/2.

.2.2 Annihilation into physical W +W−

Let us now consider the case of a broken SU(2)L symmetry like the Standard Model

and massive gauge bosons which mix to give the physical W+,W−, Z, γ. At the same

time let us consider a general initial state given by the light stau mass eigenstate

τ̃1 = τ̃L cos θτ̃ + τ̃R sin θτ̃ and its antiparticle. In this case the intermediate particle

exchanged in the t- and u-channel can be only a left-handed sneutrino and therefore

we can neglect the mixing for the intermediate state.

Then the annihilation into W+W− is given by the following channels:

t sneutrino exchange in the t-channel described by the amplitude

Aµν
t = i

g2
2

2
cos2 θτ̃

(2p1 − p3)
µ(2p2 − p4)

ν

t−m2
ν̃

; (93)
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u NO u-channel since W+ and W− are different particles !

4 supersymmetric four-scalar coupling giving the amplitude:

Aµν
4 = i

g2
2

2
cos2 θτ̃g

µν ; (94)

this contribution is symmetric in the exchange of µ, ν;

s off-shell Z/γ in the s-channel decaying into two WW via the non-abelian inter-

action:

Aµν
s = i

g2
2

2
cos2 θτ̃

(
1 − 4

3

sin2 θW

cos2 θt̃

)
1

s−M2
Z

[gµν(t− u) (95)

−(2p4 + p3)
µ(p1 − p2)

ν + (p1 − p2)
µ(2p3 + p4)

ν ]

+ie2
2

3

1

s
[gµν(t− u) − (2p4 + p3)

µ(p1 − p2)
ν

+(p1 − p2)
µ(2p3 + p4)

ν ]

= i
g2
2

2
cos2 θτ̃

(
1 − 4

3

sin2 θW

cos2 θτ̃

M2
Z

s

)
(96)

gµν(t− u) − (2p4 + p3)
µ(p1 − p2)

ν + (p1 − p2)
µ(2p3 + p4)

ν

s−M2
Z

;

this contribution is completely antisymmetric under the exchange of the W mo-

menta and Lorentz indices. Note that the photon contribution is proportional to

e2 = g2
2 sin2 θW and cancels exactly with the second term due to the Z-boson in

the case of equal mass. In that limit in fact the U(1)Y factor decouples and does

not participate in the non-abelian interaction.

s-H off-shell h/H in the s-channel decaying into two WW via the non-abelian inter-

action; in this case we have to consider both neutral Higgses:

Aµν
sH = i

g2
2

2
cos2 θτ̃g

µνM
2
W

s

[
CHs

s−M2
H

+
Chs

s−M2
h

]
; (97)

where CH/h is coming from the product of the coupling of the staus to the Higgses

and of the Higgses to the WW pair. These constants depend on the whole SUSY

breaking parameters. For the staus these couplings are probably negligible. We
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have in fact

CH/h =
(Z1H/h)

2 − (Z2H/h)
2 tan2 β

(1 + tan2 β) cos4 θW

(
1 − 4

3
sin2 θW (1 − tan2 θτ̃ )

)

+4
Y 2

τ tan βZ2H/h(Z1H/h + Z2H/h tan β)

g2
2 cos2 θW (1 + tan2 β)

(
1 + tan2 θτ̃

)

− tan θτ̃

√
2(Z1H/h + Z2H/h tanβ)

g2 cos2 θWMW

√
1 + tan2 β

×

×
(
Z2H/hAτ + Z1H/h(A′

τ + µ⋆Yτ ) + h.c.
)
, (98)

where Z is the matrix which diagonalises the Higgs mass matrix, Yτ is the tau

Yukawa coupling, Aτ , A
′
τ are the SUSY breaking trilinear terms and µ the Higgs

supersymmetric mass parameter. This contribution is suppressed by M 2
W/s for

large s. We can include it easily into the 4-vertex contribution by substituting

1 → 1 +
CHM

2
W

s−M2
H

+
ChM

2
W

s−M2
h

= 1 +KH(s) . (99)

Now we can write the t-channel as the sum of a symmetric and antisymmetric part,

adding and subtracting a fictitious u-channel, as

(2p1 − p3)
µ(2p2 − p4)

ν

t−m2
ν̃

=
1

2

[
(2p1 − p3)

µ(2p2 − p4)
ν

t−m2
ν̃

+
(2p1 − p4)

ν(2p2 − p3)
µ

u−m2
ν̃

]

+
1

2

[
(2p1 − p3)

µ(2p2 − p4)
ν

t−m2
ν̃

− (2p1 − p4)
ν(2p2 − p3)

µ

u−m2
ν̃

]

(100)

so that we can make contact with the previous computation and find for the symmetric

and antisymmetric amplitudes respectively:

Aµν
sym = +i

g2
2

4
cos2 θτ̃

[
(2p1 − p3)

µ(2p2 − p4)
ν

t−m2
ν̃

+
(2p1 − p4)

ν(2p2 − p3)
µ

u−m2
ν̃

+ 2gµν(1 +KH(s))

]
(101)

and

Aµν
asym = i

g2
2

4
cos2 θτ̃

[
(2p1 − p3)

µ(2p2 − p4)
ν

t−m2
ν̃

(102)

−(2p1 − p4)
ν(2p2 − p3)

µ

u−m2
ν̃

+ 2 (1 −GZ(s))×

×g
µν(t− u) − (2p4 + p3)

µ(p1 − p2)
ν + (p1 − p2)

µ(2p3 + p4)
ν

s−M2
Z

]
.
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where GZ(s) = 4
3

sin2 θW

cos2 θτ̃

M2
Z

s
vanishes in the limit of zero Z mass. This coincides with

the previous result for KH , GZ ,MZ = 0, a part for a sign, which just corresponds in

exchanging i↔ j.

.2.3 Polarisation sum

The sum over the W polarisation in this case is given by the polarisation tensor

Πµµ′

= −gµµ′

+
pµ

3p
µ′

3

M2
W

(103)

where p3 is the gauge boson momentum.

We have then for the matrix element

|M|2 = A∗
µνAµν − |pµ

3Aµν |2
M2

W

− |pν
4Aµν |2
M2

W

+
|pµ

3p
ν
4Aµν |2
M4

W

; (104)

in this case neither amplitude vanishes when contracted with the gauge boson’s momen-

tum. Note that the second and third contributions are related again by the symmetry

p3 ↔ p4; ν ↔ µ and are equal since the final state has two particle with the same mass.

.2.4 Symmetric part

We must compute the four contributions, and we have then

A∗
µνAµν =

g4
2 cos4 θτ̃

2

[
1 +

(m2
ν̃ +m2

τ̃ −M2
W/2)2

(t−m2
ν̃)

2
+ 2KH(s)(1 +KH(s)) (105)

+
1

2

1

t−m2
ν̃

(
4(m2

ν̃ +m2
τ̃ ) − 2M2

W + s− 4(m2
ν̃ +m2

τ̃ ) + 2M2
W

− (s− 4m2
τ̃ +M2

W )2

s+ 2(m2
ν̃ −m2

τ̃ −M2
W )

+KH(s)(s− 4m2
ν̃ − 4m2

τ̃ + 2M2
W )

)]

=
g4
2 cos4 θτ̃

2

[
1 +

(m2
ν̃ +m2

τ̃ −M2
W/2)2

(t−m2
ν̃)

2
+ 2KH(s)(1 +KH(s)) (106)

+
1

t−m2
ν̃

(
m2

ν̃ + 3m2
τ̃ − 2M2

W − 1

2

(2m2
τ̃ + 2m2

ν̃ − 3M2
W )2

s+ 2(m2
ν̃ −m2

τ̃ −M2
W )

+
KH(s)

2
(s− 4m2

ν̃ − 4m2
τ̃ + 2M2

W )

)]
,

which in the limit of vanishing MW and mν̃ = mτ̃ coincides with our old result.
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The other pieces give instead

|pµ
3Aµν |2
M2

W

+
|pν

4Aµν |2
M2

W

=
g4
2 cos4 θτ̃

4

[
(m2

ν̃ −m2
τ̃ )

2

M2
W

(
2m2

ν̃ + 2m2
τ̃ −M2

W

(t−m2
ν̃)

2
(107)

+
2

t−m2
ν̃

2m2
ν̃ + 2m2

τ̃ − 3M2
W )2

s+ 2(m2
ν̃ −m2

τ̃ −M2
W )

)

−4KH(s)
m2

ν̃ −m2
τ̃

M2
W

(
1 +

m2
ν̃ −m2

τ̃ + s/2

t−m2
ν̃

)
+ 2K2

H(s)

]

and the last part:

|pµ
3p

ν
4Aµν |2
M4

W

=
g4
2 cos4 θτ̃

4

[
(m2

ν̃ −m2
τ̃ )

2

M4
W

(
1 +

1

2

(m2
ν̃ −m2

τ̃ )
2

(t−m2
ν̃)

2
(108)

+2
m2

ν̃ −m2
τ̃

t−m2
ν̃

(
1 − 1

4

m2
ν̃ −m2

τ̃

s+ 2(m2
ν̃ −m2

τ̃ +M2
W )

))

+KH(s)
m2

ν̃ −m2
τ̃

M2
W

(
s

M2
W

− 2

)(
1 +

m2
ν̃ −m2

τ̃

t−m2
ν̃

)

+
1

4
K2

H(s)

(
s

M2
W

− 2

)2
]
.

Both these contributions vanish in the limit of equal stau and sneutrino masses and

zero gauge boson mass as they should.
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So summing all together the result is

|Msym|2 =
g4
2 cos4 θτ̃

2

[
1 +

(m2
ν̃ +m2

τ̃ −M2
W/2)2

(t−m2
ν̃)

2
(109)

+
1

t−m2
ν̃

(
m2

ν̃ + 3m2
τ̃ − 2M2

W − 1

2

(2m2
τ̃ + 2m2

ν̃ − 3M2
W )2

s+ 2(m2
ν̃ −m2

τ̃ −M2
W )

)

− (m2
ν̃ −m2

τ̃ )
2

M2
W (t−m2

ν̃)

(
m2

ν̃ +m2
τ̃ −M2

W/2

t−m2
ν̃

+
2m2

τ̃ + 2m2
ν̃ − 3M2

W

s+ 2(m2
ν̃ −m2

τ̃ −M2
W )

)

+
1

2

(m2
ν̃ −m2

τ̃ )
2

M4
W

(
1 +

1

2

(m2
ν̃ −m2

τ̃ )
2

(t−m2
ν̃)

2

+2
m2

ν̃ −m2
τ̃

t−m2
ν̃

(
1 − 1

4

m2
ν̃ −m2

τ̃

s+ 2(m2
ν̃ −m2

τ̃ +M2
W )

))

+KH(s)

(
2 − 3

m2
ν̃ −m2

τ̃

M2
W

+
s

2M2
W

m2
ν̃ −m2

τ̃

M2
W

)

+
KH(s)

t−m2
ν̃

(s
2
− 2m2

ν̃ − 2m2
τ̃ +M2

W

−m
2
ν̃ −m2

τ̃

M2
W

(
s+ 3(m2

ν̃ −m2
τ̃ )(1 − s

2M2
W

)

))

+K2
H(s)

(
7

2
− s

2M2
W

+
s2

8M4
W

)]
.

Note that the in the limit of large s, sKH(s) remains finite and therefore there is no

problem with unitarity.

.2.5 Antisymmetric part

The antisymmetric piece is more involved. We have

A∗
µνAµν =

g4
2 cos4 θτ̃

4

[
2 + 2

(m2
ν̃ +m2

τ̃ −M2
W/2)2

(t−m2
ν̃)

2
(110)

+
1

t−m2
ν̃

(
4(m2

ν̃ +m2
τ̃ ) − 2M2

W +
(s− 4m2

τ̃ +M2
W )2

s+ 2(m2
ν̃ −m2

τ̃ −M2
W )

)

+ (1 −GZ(s))2 5/2(t− u)2 − 4(s− 4m2
τ̃ )(s+M2

W/2)

(s−M2
Z)2

− (1 −GZ(s))
2(t− u) + 4(s− 4m2

τ̃ )

s−M2
Z

+ (1 −GZ(s))
(t− u)(3s− 2m2

ν̃ − 6m2
τ̃ + 2M2

W )

(s−M2
Z)(t−m2

ν̃)

− (1 −GZ(s))
4(s+m2

ν̃ −m2
τ̃ )(s− 4m2

τ̃ )

(s−M2
Z)(t−m2

ν̃)

]
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which in the limit of vanishing MW ,MZ and mν̃ = mτ̃ coincides with our old result.

The other pieces give instead

|pµ
3Aµν |2
M2

W

+
|pν

4Aµν |2
M2

W

=
g4
2 cos4 θτ̃

2
× (111)

×
[
1

2

(t− u)2

(s−M2
Z)2

(1 −GZ(s))

(
M2

Z

M2
W

− 1

2
−GZ(s)

(
s

M2
W

− 1

2

))

−(s− 4m2
τ̃ )M

2
W

(s−M2
Z)2

(
M2

Z

M2
W

− 1 −GZ(s)(
s

M2
W

− 1)

)2

−m
2
ν̃ −m2

τ̃

s−M2
Z

t− u− 2(s− 4m2
τ̃ )

t−m2
ν̃

(
M2

Z

M2
W

− 1 −GZ(s)(
s

M2
W

− 1)

)

− (m2
ν̃ −m2

τ̃ )
2

M2
W (s−M2

Z)
(1 −GZ(s))

t− u

t−m2
ν̃

+
(m2

ν̃ −m2
τ̃ )

2

M2
W (t−m2

ν̃)

(
1 +

s− 4m2
τ̃ +M2

W

s + 2(m2
ν̃ −m2

τ̃ −M2
W )

+
m2

ν̃ +m2
τ̃ −MW/2

t−m2
ν̃

)]
;

in the limit of vanishing m2
ν̃ −m2

τ̃ ,MZ ,MW masses keeping MZ/MW → 1 we have

|pµ
3Aµν |2
M2

W

+
|pν

4Aµν |2
M2

W

→ g4
2 cos4 θτ̃

4

(t− u)2

2s
, (112)

as expected from the QCD result.

The last part gives instead

|pµ
3p

ν
4Aµν |2
M4

W

=
g4
2 cos4 θτ̃

16M4
W

[
(t− u)2

(s−M2
Z)2

(
M2

Z −GZ(s)s
)2

(113)

−4(m2
ν̃ −m2

τ̃ )
2 t− u

(t−m2
ν̃)(s−M2

Z)

(
M2

Z −GZ(s)s
)

+2
(m2

ν̃ −m2
τ̃ )

4

(t−m2
ν̃)

(
1

(t−m2
ν̃)

+ 2
1

s+ 2(m2
ν̃ −m2

τ̃ −M2
W )

)]
.

Note that this contribution does not vanish in the limit of equal stop and sbottom

masses and massless gauge bosons.In fact keeping MZ/MW → 1, we have

|pµ
3p

ν
4Aµν |2
M4

W

→ g4
2 cos4 θτ̃

8

(t− u)2

2s
, (114)

which gives the annihilation into the Goldstone part of the Higgs field.
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We can now put all together to give

|Masym|2 =
g4
2 cos4 θτ̃

2

[
1 +

(m2
ν̃ +m2

τ̃ −M2
W/2)2

(t−m2
ν̃)

2
(115)

+
1

t−m2
ν̃

(
2(m2

ν̃ +m2
τ̃ ) −M2

W +
1

2

(s− 4m2
τ̃ +M2

W )2

s+ 2(m2
ν̃ −m2

τ̃ −M2
W )

)

+
1

2
(1 −GZ(s))2 5/2(t− u)2 − 4(s− 4m2

τ̃ )(s+M2
W/2)

(s−M2
Z)2

− (1 −GZ(s))
(t− u) + 2(s− 4m2

τ̃ )

s−M2
Z

+
1

2
(1 −GZ(s))

(t− u)(3s− 2m2
ν̃ − 6m2

τ̃ + 2M2
W )

(s−M2
Z)(t−m2

ν̃)

− (1 −GZ(s))
2(s+m2

ν̃ −m2
τ̃ )(s− 4m2

τ̃ )

(s−M2
Z)(t−m2

ν̃)

− (t− u)2

2(s−M2
Z)2

(1 −GZ(s))

(
M2

Z

M2
W

− 1

2
−GZ(s)

(
s

M2
W

− 1

2

))

+
M2

W (s− 4m2
τ̃ )

(s−M2
Z)2

(
M2

Z

M2
W

− 1 −GZ(s)(
s

M2
W

− 1)

)2

+
m2

ν̃ −m2
τ̃

s−M2
Z

(
M2

Z

M2
W

− 1 −GZ(s)(
s

M2
W

− 1)

)
t− u− 2(s− 4m2

τ̃ )

t−m2
ν̃

+
(m2

ν̃ −m2
τ̃ )

2

M2
W (s−M2

Z)
(1 −GZ(s))

t− u

t−m2
ν̃

− (m2
ν̃ −m2

τ̃ )
2

M2
W (t−m2

ν̃)
2

(
m2

ν̃ +m2
τ̃ −MW/2

)

− (m2
ν̃ −m2

τ̃ )
2

M2
W (t−m2

ν̃)

(
1 +

s− 4m2
τ̃ +M2

W

s+ 2(m2
ν̃ −m2

τ̃ −M2
W )

)

+
(t− u)2

8(s−M2
Z)2

(
M2

Z

M2
W

−GZ(s)
s

M2
W

)2

−1

2

(m2
ν̃ −m2

τ̃ )
2

M2
W

t− u

(t−m2
ν̃)(s−M2

Z)

(
M2

Z

M2
W

−GZ(s)
s

M2
W

)

+
1

4

(m2
ν̃ −m2

τ̃ )
4

M4
W (t−m2

ν̃)

(
1

(t−m2
ν̃)

+ 2
1

s+ 2(m2
ν̃ −m2

τ̃ −M2
W )

)]
.

Note that to reduce these expressions in terms of only the t variable, we have used

the simple decompositions, i.e. from s+ t+ u = 2m2
t̃
+ 2M2

W one obtains

1

(t−m2
ν̃)(u−m2

ν̃)
= − 1

s+ 2(m2
ν̃ −m2

τ̃ −M2
W )

(
1

t−m2
ν̃

+
1

u−m2
ν̃

)
. (116)
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.2.6 Results for the cross section

We can integrate the matrix element to obtain the cross section in the two cases:

σsym(s) =
g4
2 cos4 θτ̃

32π(s− 4m2
τ̃ )

√(
1 − 4m2

τ̃

s

)(
1 − 4M2

W

s

)[
1 +

1

2

(m2
ν̃ −m2

τ̃ )
2

M4
W

+
(m2

ν̃ +m2
τ̃ −M2

W/2)2

m2
ν̃(s+m2

ν̃ − 2m2
τ̃ − 2M2

W ) + (m2
τ̃ −M2

W )2
×

×
(

1 − (m2
ν̃ −m2

τ̃ )
2

M2
W (2m2

ν̃ + 2m2
τ̃ −M2

W )

)2

+KH(s)

(
2 − 3

m2
ν̃ −m2

τ̃

M2
W

+
s

2M2
W

m2
ν̃ −m2

τ̃

M2
W

)

+K2
H(s)

(
7

2
− s

2M2
W

+
s2

8M4
W

)

+
Ln(s)√

(s− 4m2
τ̃ ) (s− 4M2

W )

(
m2

ν̃ + 3m2
τ̃ − 2M2

W

−1

2

(2m2
τ̃ + 2m2

ν̃ − 3M2
W )2

s+ 2(m2
ν̃ −m2

τ̃ −M2
W )

− (m2
ν̃ −m2

τ̃ )
2

M2
W

2m2
τ̃ + 2m2

ν̃ − 3M2
W

s+ 2(m2
ν̃ −m2

τ̃ −M2
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(m2
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τ̃ )

3

M4
W

(
1 − 1

4

m2
ν̃ −m2
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s+ 2(m2
ν̃ −m2

τ̃ −M2
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)

+KH(s)

(
s

2
− 2m2

ν̃ − 2m2
τ̃ +M2

W − s(m2
ν̃ −m2

τ̃ )

M2
W

−3
(m2
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2
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W

(
1 − s
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W
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.

where

Ln(s) = ln

[
s+ 2(m2

ν̃ −m2
τ̃ −M2

W ) −
√

(s− 4m2
τ̃ ) (s− 4M2

W )

s+ 2(m2
ν̃ −m2

τ̃ −M2
W ) +

√
(s− 4m2

τ̃ ) (s− 4M2
W )

]
(117)
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The antisymmetric part gives instead:

σasym(s) =
g4
2 cos4 θτ̃

32π(s− 4m2
τ̃ )

√(
1 − 4m2

τ̃

s

)(
1 − 4M2

W

s

)
× (118)

×
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1 + (1 −GZ(s))
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