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Chapter 1IntrodutionAlthough the very idea that the positive harge of an atom ould be onentrated in asmall volume at its enter was �rst proposed by Nagaoka [Nag04℄, it was Rutherford[Rut11℄ who gave evidene for this by interpreting the experimental results whihGeiger and Marsden obtained by impinging alpha partiles on a gold foil [Gei09℄.From this point on, the physis of atomi nulei progressively emerged as a distintdomain from atom physis. However, knowledge of the true omposition of nuleiould not be ahieved before the disovery of the neutron by Chadwik [Cha32℄.A subsequent step was made with the disovery of nulear �ssion [Mei39℄, whihshowed that quantum tunneling ould happen for heavy systems, and gave rise to thedesription of nulei and their motion through the liquid drop model [Boh39℄. Thenuleus was thus understood as a system dominated by olletive behavior. Thisview was supported by the saturation of binding energies per partile, indiatingthat the interation between nuleons was short-ranged and extremely strong. Asa onsequene, quantum orrelations were expeted to be important. Indeed, afterYukawa's seminal work [Yuk35℄, the nulear interation appeared, in addition to be-ing partiularly di�ult to understand from �rst priniples, as a non-trivial potentialexhibiting a repulsive ore even stronger than the attrative part and important spindependene [Ma89b℄.However, it also beame known that some nulei were more bound than theirneighbors, ausing irregularities on the mass table at well-de�ned neutron and protonnumbers. These �magi numbers�, as Wigner alled them [Mos96℄, were explainedby Goeppert Mayer via an independent-partile shell model relying on strong spin-orbit oupling for the reprodution of their experimental sequene [GM48, GM49℄,ahieving as well to explain the majority of nulear spins known at the time [GM50a,GM50b℄.The mehanism by whih a hard-ore interation an bind many-body systemswas due to Bruekner [Bru54b, Bru54a, Bru55b℄, Bethe and Goldstone [Bet56,Bet57, Gol57℄. The reoniliation of olletive and single-partile approahes tonulear struture ensued through the de�nition of an e�etive interation arisingin the medium from short-range quantum orrelations and useable in a mean-�eld piture [Fo30℄, where eah partile moves independently in the potentialreated by the average e�et of the others ating through the e�etive intera-tion [Bru55℄. The linked-luster expansion [Bru55a, Bra67℄ ould then extend themean-�eld piture to inlude orrelations not re-summed in the e�etive interation,and be inorporated in the general framework of many-body perturbation theory11
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12 CHAPTER 1. INTRODUCTION[Hug57, Abr63, Noz63, Fet71℄ to provide, in priniple, an ab-initio desription ofboth single-partile motion and many-body, olletive e�ets in nulear struture.From then on, distint approahes to independent-partile models for nulearstruture emerged. First, models for the nuleon-nuleon interation in the va-uum were gradually improved [Ham62, Rei68, La80, Wir84, Ma87℄ and used inBruekner alulations of nulei [Be68, Be74℄ as well as Bruekner and variationalalulations of nulear matter [Day78℄. Nulei proved stubborn in their habit ofoming underbound and too small out of these alulations, while the saturationpoint of nulear matter was similarly underbound and ourred at too high a den-sity ompared to its empirial position. Coester et al. [Coe70℄ proved that two-bodypotentials adjusted on the same nuleon-nuleon sattering data ould not reproduethe empirial saturation point. The missing piee was later identi�ed as the three-nuleon fore [Pan79, Lag81, Fri81℄, the existene of whih had been previouslyexpeted from �eld-theoretial onsiderations [Loi67℄.Seond, shortly after Bruekner's papers, appeared the idea that one ould de-vise simpler e�etive interations based on more phenomenologial grounds. Skyrmeproposed suh an e�etive Hamiltonian onsisting of a two-body, veloity-dependentontat interation and a mathing three-body ontat interation [Sky56, Bel56,Sky58a, Sky58b℄. The latter was supposed to mimi the medium dependene ofBruekner's e�etive fore more than to reprodue the physis of a bare three-bodyfore. However, Skyrme's idea ame to use only later [Vau72℄, being quantita-tively motivated as an approximation to a more realisti e�etive interation by thedensity-matrix expansion method [Neg72, Neg75℄.Attempts were also made at �nding a potential whih ould bind nulei and pro-vide saturation of nulear matter without needing a hard ore for that task [Tab64,Bri67, Gog70℄. Suh a potential ould be employed diretly in an independent-partile framework, or in a low-order perturbative expansion where orrelationswould bring a mere orretion to the nulear wave funtion, binding energy andother observables. This idea, in the form then envisioned, reahed its limits. How-ever, a soft fore, augmented by a term depending on the density, was proposed asan approximation to an in-medium e�etive interation by Gogny et al. [Gog75a,De80, Ber91℄. It beame the other highly suessful non-relativisti nulear mean-�eld model, if less widely used than Skyrme's one, due mainly to its higher numerialost.An aount of nulear mean-�eld models would not be omplete without a men-tion of approahes involving e�etive relativisti Lagrangians, initiated by Waleka[Wal74℄. In this model, nuleons interat by exhanging pions and the semi-phen-omenologial sigma meson. Other degrees of freedom have sine been added, aimingat providing better nulear phenomenology.Let us now ome bak to Skyrme's interation. The latter inluded quadrativeloity-dependent terms to simulate the range and non-loality of the in-mediume�etive interation, and its spin-isospin ontent was ontrolled by spin-exhangeoperators, spin-orbit and tensor terms. A number of parameters thus had to bedetermined. Given the rather shemati link between a mirosopi e�etive inter-ation and Skyrme's one, ahieving preditive power required �tting the parameterson a set of relevant data. Early hoies inluded the binding energies of stableor exoti nulei [Bei75b, Ton83, Dob84℄ and the energies of exited states suh asolletive vibrations [Kri80, VG81℄ or �ssion barriers [Bar82a℄. Indeed, Skyrme's
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13interation ould be suessfully used not only to alulate stati observables butalso olletive exitations and nulear reations [Eng75, Neg82, Kim97℄.The onept of radioative ion beams, �rst pioneered by Kofoed-Hansen andNielsen [KH51℄, was later implemented in inreasingly apable and numerous faili-ties, starting from ISOLDE at CERN, ativated in 1967, and ulminating with themany dediated researh enters ative today, whih employ either isotope separa-tion on line (ISOL) or in-�ight fragment separation tehniques to produe beams ofshort-lived isotopes. Work performed at these failities allowed to measure proper-ties of inreasingly unstable nulei. Naturally, these new data spurred theoretiiansto improve the preditive power of available models by adjusting new parameter sets[Rei95, Rei99, Bro98℄. With the growing attention paid to the neutron-rih side ofthe hart of nulides, it was also realized that experimental data alone ould notbring enough onstraints on models and that ab-initio alulations ould supplementthem, when available, for experimentally unreahable systems suh as neutron mat-ter [Wir88, Akm98℄, whih, together with data measured for stable nulei, exerts astrong lever arm on properties of the most neutron-rih ones. Parametrization ofSkyrme's interation built aording to these priniples by the Salay-Lyon ollab-oration [Cha97, Cha98℄ are still widely used today.Nowadays, the steady progress of available omputational power allows to per-form alulations extending the mean-�eld framework and onsidering olletive or-relations in ground and exited states [Bon90, Taj93b, Val00℄ on a more systematibasis [Ben06a, Ber07, Ter08℄. One might thus expet an inrease of auray, whih,however, is taking a long time to ome. Contemporary use of Skyrme-mean-�eldtheory is itself put into question onerning its very interpretation as relying on aBruekner-like e�etive interation. Strong resemblanes have been found, indeed,with density funtional theory, a powerful tool ommonly used in ondensed-matterphysis, whih allows in priniple to re-sum all quantum orrelations present in arange of many-partile systems within a universal funtional, giving rise to an ef-fetive theoretial desription by means of independent partiles. Using suh a for-malism for nulei, though, involves extending it to self-bound, symmetry-breakingsystems where single-partile and olletive motion are tightly intertwined and bothhave to be treated expliitly. As a result, in parallel to studies aiming at improvingthe agreement of the model with experimental data and/or ab-initio alulations, amore formal work is underway to �nd a rigorous and onsistent formal motivationof the method.The present work is an attempt at improving the preditive power of the �Skyrmeinteration� model of nulear struture. More spei�ally, our aim is to use the ever-growing amount of data, oming either from experiments, �rst-priniple alulationsor mirosopi theory of the nulear interation itself, to devise new inputs andonstraints to be used in the onstrution of the next generation of models. Mostof the following will stay at the mean �eld level, the preise meaning of whih isspei�ed in hapter 2, but we shall, as muh as possible, try to keep in mind theneessity to extend our alulations by the addition of olletive orrelations.In a �rst part, we fous on the physial meaning and e�et of partiular parame-ters of the Skyrme fore, dealing �rst, in hapter 3, with the momentum-dependeneof the mean �eld and its evolution in neutron-rih nulei. The spin-isospin ontent ofthe fore is also studied at this point, both statially, by examining the ontributionof di�erent hannels of the interation to the binding energy, and dynamially, by
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14 CHAPTER 1. INTRODUCTIONstudying the response of in�nite matter, used as a model system, to various pertur-bations. In will be shown that pathologies of the model an thus be pointed out, andsolutions will be proposed. Then, in hapter 4, we add a tensor interation to themodel and study the impat of its parameters on nulear observables. Single-partileenergies, total binding energies and density distributions are onsidered.In a seond part, we fous on the desription of pairing in our model, by makinga diret onnetion with the bare nulear interation. In hapter 5, after a briefreview of the matter, we detail the formalism and interation model we use. Thenin hapter 6, we perform and study systemati alulations of spherial nulei arossthe nulide hart, disussing the omparison of our results with experimental pairinggaps, giving lues as to the physial origin of nulear pairing in terms of many-bodytheory, assessing the importane of the Coulomb interation in this spei� ase aswell as the are needed when using various bare nulear-interation models as aninput to our alulations.



Chapter 2Overview of Nulear StrutureTheory
2.1 Mirosopi theory of nulear strutureAlthough e�etive and empirial models have known some suess in the theory ofatomi nulei, the quest for a desription of the latter from �rst priniples is both along-standing and urrent topi of researh. As the fous of nulear theory is, morethan ever, on the desription of nulei lying at the fringe of experimental apabilities,the motivation for ahieving this is strong.Let us �rst speify what we all �rst priniples. The most mirosopi theoryoneptually appliable to nulei is the relativisti, non-perturbative Lagrangian ofquantum hromodynamis (QCD) ruling all hadroni systems. The latter is mostuseful, however, at energies above the GeV sale, where asymptoti freedom makesperturbation theory useful again, and for systems made of a few valene quarks whihan be simulated thanks to lattie tehniques. At lower energies, an e�etive theoryan be built whih involves only the physial, observable (i.e. olorless) degrees offreedom: baryons (nuleons and their exitations) and mesons.This brief foray into the realm of partile and hadron physis allows us to disussthe very �rst di�ulty faed by the study of nulear struture as an appliation ofquantum many-body theory: the basi Hamiltonian. Pratial appliations requireto treat neutrons and protons as pointlike partiles (further reduing them to di�er-ent states of a single objet, the nuleon) interating via some potential, the theoryof whih, owing to the ompositeness of hadrons and the omplexity of their stru-ture and dynamis, is the subjet of vast literature. Let us simply mention severalrelevant fats and assumptions.2.1.1 The Nulear HamiltonianThe notion of a Hamiltonian ating on the sole nuleoni degrees of freedom relieson the hypothesis that the struture of the nuleons, as well as the details of theproesses generating the interation between them, are irrelevant for the study oflow-energy proesses. Also, the assumption is made that a non-relativisti desrip-tion of the system, negleting anti-nuleon degrees of freedom and assuming theusual quadrati expression for the kineti energy, is valid. The latter is reasonablefor 940 MeV-mass partiles evolving at about 50 MeV kineti energy in the nuleus.15



16 CHAPTER 2. OVERVIEW OF NUCLEAR STRUCTURE THEORYApart from a kineti term, a realisti Hamiltonian also omprises, at least, two-and three-body interation terms. The basi experimental input used to determinethe two-nuleon interation is nuleon-nuleon sattering di�erential ross setions.A large amount of data are available for neutron-proton and proton-proton sattering[SAI, Nij℄, while some essential features of the neutron-neutron interation an beobtained in more model-dependent ways. The assumption is made that isospinsymmetry is weakly broken, i.e. the potential an be desribed by a �rst part whihis the same for all ombinations of nuleons (Vnn = Vpp = Vnp) to whih one addsa orretion breaking harge independene (Vnn = Vpp 6= Vnp) and an even weakerorretion breaking harge symmetry (Vnn 6= Vpp). The probability amplitude ofa transition from initial relative momentum k′ to �nal relative momentum k for apair of nuleons at energy E is expressed by the T -matrix obeying the Lippmann-Shwinger (LS) equation ([Bro76℄, see also appendix D.1.2).The urrent leading potential models rely on an e�etive meson-nuleon La-grangian. The potential is de�ned, in this ase, as the sum of diagrams entering thesattering amplitude whih are irreduible by utting a pair of nuleon propagationlines [Ma89b℄. The repulsive ore is either produed by heavy-meson exhange[Ma01℄ or modeled by phenomenologial terms [Wir95℄. Sattering data suggestthat the interation is attrative at low energy, while repulsion dominates the sat-tering of partiles having a kineti energy in the laboratory frame Elab = ~2k′2/m >
250 MeV, where m is the nuleon mass. At Elab > 350 MeV, pion prodution be-omes signi�ant, whih indiates that the nonrelativisti NN Hamiltonian piture isinappropriate. Hard-ore potentials, however, have non-vanishing matrix elementswell into this domain, whih is a onsequene of the requirement to keep a (mostly)loal, i.e. veloity-independent potential. Is is thus obvious that this part of theinteration models is purely e�etive. In fat, the hoie of high-momentum matrixelements of a potential is quite arbitrary and weakly onstrained: models of the NNinteration having di�erent matrix elements due to varying hoies for the repulsivepart yield the same low-energy sattering observables, having been �tted to them.The above onsiderations have led to devise a method to produe a universalpotential that would not involve any unontrolled high-energy physis. This wasahieved using renormalization group equations [Bog01℄, and will be further studiedin hapter 5. Moreover, a new approah to building NN potentials has been putforward, relying on hiral e�etive �eld theory (EFT) [Ent03, Epe05℄, i.e. an e�etiveLagrangian inluding nuleon-pion, pion-pion and nuleon-nuleon ontat terms,onstrained by hiral symmetry, an essential feature of QCD. This approah allows asystemati, stepwise onstrution of the potential through a perturbative expansion,whih allows to ontrol its auray. Moreover, this method has the advantage ofnaturally produing onsistent two-, three- and four-body potentials.Indeed, a omplete desription of the nulear Hamiltonian must inlude a short-range three-body (NNN) interation, whih is neessary, as a omplement to theNN interation obtained from sattering analysis, to obtain orret saturation prop-erties of nulear matter [Lag81℄ and aurate spetrosopy of light nulei [Pud95,Pie01b℄. Several models thus exist also for the three-nuleon interation [Gra89,Lej00, Pie01a℄, while urrent work on the subjet fouses on obtaining NNN poten-tials onsistent with the �eld-theoretial ontent of NN ones [Epe07, Li08℄.Starting from the Hamiltonian detailed above, an ab-initio resolution of the manyproblem an be undertaken for light and, nowadays, some medium-mass nulei. For
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2.1. MICROSCOPIC THEORY OF NUCLEAR STRUCTURE 17systems of three and four nuleons, the Faddeev and Faddeev-Yakubovsky equationsan be employed, while A ≤ 12 systems an be treated using quantum Monte-Carlotheory [Pud95, Pie01b℄, while the no-ore shell model, i.e. diagonalization in afull A-body model spae [Bog08a℄, reahes A = 16, (or A = 40 [Rot07a℄ with adisputed approximation). Finally, the oupled-luster method has been employedin doubly-magi nulei up to A = 48 [Hag07, Hag08℄.Interating shell model alulations, whih desribe orrelations expliitly al-beit in a redued model spae, implying to �freeze� deeply-bound nuleons [Cau05℄,are based on mirosopially-derived e�etive Hamiltonians. However, they requireslight readjustments of the latter to beome aurate [Hon02, Bro06b℄, and are lim-ited to nulei up to the fp-shell or lying in the viinity of losed shells [Cor02℄.Beyond lies the realm of e�etive models. Energy density funtional modelsbased on empirial e�etive interations allow to treat the majority of nulides andalulate a variety of observables with a single, redued parameter set. However,their e�etive nature means that the meaning of some of the results obtained withthem leaves room for interpretation. It is thus useful to put forward some elementsof omparison with mirosopi many-body theory.2.1.2 Single-partile Green's funtionA reurrent subjet of disussion in the following of this work will be single-partileenergies. As this setion deals with mirosopi many-body theory, let us give ashort overview of single-partile motion in orrelated systems, as understood fromGreen's funtions, and the assumptions underlying EDF theory.Let us de�ne Fok-spae operators ĉ†k orresponding to a an arbitrary set ofsingle-partile basis states |k〉 (whih an orrespond to oordinate-, momentum oron�guration-spae, but ontain all degrees of freedom inluding spin and isospin �the latter shall not be made expliit or disussed in this part), and their Heisenberg-representation ounterpart ĉ†k(t), with
ĉ†k(t) ≡ eiĤt ĉ†k e

−iĤt, (2.1)These operators allow to de�ne a single-partile Green's funtion (or propagator)written as a matrix in the above representation
G(kt; lt′) ≡ i

〈
Φ0(A)

∣∣∣T
[
ĉk(t) ĉ

†
l (t

′)
]∣∣∣Φ0(A)

〉
, (2.2)

T being the time-ordering operator, and |Φ0(A)〉 the ground state of the onsidered
A-body system (we shall not go into the details of working with two partile speiesin this setion). An important property is the relation between G(kt; lt′) and thedensity matrix,

G(k0; l0+) = G(k0−; l0) = −iρkl, (2.3)
G(k0; l0−) = G(k0+; l0) = i(δkl − ρkl), (2.4)The time variable introdued above is of little use for stationary problems. In thisase, G depends on t − t′ only and one an perform the Fourier transform to theenergy representation. As of now, we shall measure energies from the Fermi level λde�ned as a hemial potential

λ =
δE0(A)

δA
. (2.5)
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18 CHAPTER 2. OVERVIEW OF NUCLEAR STRUCTURE THEORYThe transform reads
G(k, l;ω) =

∫
dt G(kt; lt′) ei(λ+ω)(t−t′), (2.6)

G(kt; lt′) =

∫
dω

2π
G(k, l;ω) e−i(λ+ω)(t−t′). (2.7)The single-partile Green funtion desribes the propagation, in the onsidered sys-tem, of an additional partile or of the hole produed by the removal of a partile. Itthus ontains information on the exitation spetrum of A+1 and A−1-partile sys-tems. This an be made expliit thanks to the spetral, or Lehmann representationof G. De�ning the partile and hole spetral funtions, respetively,

S+(k, l;ω) =
∑

ν

〈Φ0(A)|ĉk|Φν(A+ 1)〉 〈Φν(A+ 1)|ĉ†l |Φ0(A)〉

× δ (Eν(A+ 1) − E0(A) − ω − λ) , (2.8)
S−(k, l;ω) =

∑

ν

〈Φ0(A)|ĉ†l |Φν(A− 1)〉 〈Φν(A− 1)|ĉk|Φ0(A)〉

× δ (Eν(A− 1) − E0(A) − ω − λ) , (2.9)where we introdue Φν(A ± 1) as the νth exited state of the system with A ±
1 partiles, Eν(A ± 1) being the orresponding energy, allows to write the Greenfuntion as

G(k, l;ω) = i

∫
dω′
[
− S+(k, l : ω′)

ω − ω′ − i0−
− S−(k, l : ω′)

ω + ω′ − i0+

]
, (2.10)The ground-state wave funtion of an A-body system ruled by a single-partileHamiltonian (let us write it Ĥ0) is a Slater determinant, i.e. an antisymmetrizedprodut of oupied (hole) states. These hole states belong to the eigenstates of Ĥ0,whih also omprise empty (partile) states. Let us hoose, as the representation

|k〉 used above, the eigenstates of Ĥ0. Adding or removing a partile on suh a stateyields another eigenstate of Ĥ0. It is easy to see that the spetral funtions then areDira funtions, and that the Green funtion reads
G(k, l;ω) = δkl

[
− δk(p)

ω − ε0
k − i0−

− δk(h)

ω − ε0
k − i0+

]
, (2.11)where δk(p) = 1 if |k〉 is a partile state, 0 otherwise, the onverse being true of δk(h),and the single-partile energy ε0

k used in the denominator is given by the ondition
Ĥ0|k〉 = ε0

k|k〉, while ε0k = ε0
k − λ.If the Hamiltonian Ĥ ontains an interation term, its ground state an beexpeted to ontain orrelations orresponding to the oherent motion of the inter-ating partiles. In this ase, the analytial struture of the Green funtion is non-trivial, yet it an be expressed in a ompat form by introduing the mass operator[Noz63℄, or proper self-energy [Fet71℄ Σ(k, ω) (hereafter alled simply �self-energy�),for whih approximations will be disussed below. For the sake of simpliity, weassume that there exists a representation where the Green funtion is diagonal forall energies. It is the ase in in�nite nulear matter (momentum representation),but the ase of �nite nulear systems may be more ompliated. This is, anyhow,



2.1. MICROSCOPIC THEORY OF NUCLEAR STRUCTURE 19beyond the sope of the present disussion. Therefore, let us give the expression of
G in this ase:

G(k, l;ω) = δkl

[
− δk(p)

ω − ε0
k − Σ(k, ω) − i0−

− δk(h)

ω − ε0
k − Σ(k, ω) − i0+

]
. (2.12)The mass operator is, in general, a omplex funtion. The pole of G(k, k;ω) thusours for ω = ωk = εk − iΓk, whih is a solution of ωk = ε0

k + Σ(k, ωk). In in�nitematter, the Green funtion an be deomposed into a pole part and a bakgroundpart
G(k, l;ω) = −δkl

z(k)

ω − ωk

+GBG(k, l;ω) (2.13)where z(k) is the residue of G at ωk,
z(k) =

[
1 − ∂ Σ(k, ω)

∂ω

∣∣∣∣
ω=ωk

]−1

. (2.14)The imaginary part Γk is a measure of the orrelations present in the system insofaras its non-vanishing value means that no single-partile state ĉ†k|Φ0〉 is an eigenstateof Ĥ. As for the elementary exitation spetrum, it is given by the real part εk.Negleting the imaginary part of Σ(k, ω) (along with setting z(k) = 1) thus allowsto reover the quasipartile piture.Single-partile spetrum and e�etive massThe single-partile spetrum of a nuleus usually has a non-trivial struture. Aessential feature, though, is its density, i.e. the number of levels per unit energy. Thisis related to the dispersion relation of partiles in the medium, whih depends onthe momentum- and energy-dependene of the self-energy. This is measured by theLandau mass m∗, usually expressed in in�nite matter (k then being the momentumof the partile and ε0
k its kineti energy), whih desribes the derivative of the single-partile energy (s.p.e.) with respet to the single-partile (s.p.) momentum.

m∗

m
≡

[
1 +

m

k

d ℜΣ(k, ωk)

dk

]−1

, (2.15)where ℜ denotes the real part. This quantity integrates the e�ets of the expliitmomentum-dependene of the self-energy, desribed by the k-mass m̃,
m̃

m
≡

[
1 +

m

k

∂ ℜΣ(k, ω)

∂k

∣∣∣∣
ω=ωk

]−1 (2.16)and its energy-dependene, haraterized by the e-mass m,
m

m
≡ 1 − ∂ ℜΣ(k, ω)

∂ω

∣∣∣∣
ω=ωk

= z(k)−1 (2.17)where zk has been introdued above. Both ontribute to m∗ through
m∗

m
=

m

m
· m̃
m
. (2.18)



20 CHAPTER 2. OVERVIEW OF NUCLEAR STRUCTURE THEORYThe s.p. spetrum density is thus a onsequene of both the momentum-dependeneof the �mean �eld�, or self-energy, and its energy dependene. The latter arises fromquantum orrelations present in the system, whih will not be expliitly inluded (byde�nition) in the independent-partile piture neessary to desribe heavy nulei.2.1.3 Perturbation theory (or lak thereof)Aording to the Gell-Mann-Low theorem [GM51℄, an eigenstate |Φ〉 of a Hamilto-nian
Ĥ = Ĥ0 + V̂ (2.19)an be obtained from an eigenstate |Φ0〉 of Ĥ0 by applying the perturbing operator

V̂ adiabatially, i.e.
|Φ〉 =

U I
ǫ (0,−∞)|Φ0〉

〈Φ0|U I
ǫ (0,−∞)|Φ0〉

∣∣∣∣
ǫ→0

, (2.20)where U I
ǫ (t, t′) is the time-evolution operator in the interation piture for the Hamil-tonian Ĥǫ(t) = Ĥ + exp(−ǫ|t|) V̂ .The evolution operator U I

ǫ (t, t′) an in priniple be expanded in powers of theinteration V̂ , whih is the basis of diagrammati analysis tehniques [Noz63, Fet71℄.However, this expansion diverges for loal NN potentials due to their repulsive ore,iterated tensor omponent and bound state.The Bruekner-Bethe-Goldstone (BBG) approah an be formulated as a reastof the perturbative expansion in terms of an e�etive NN vertex [Jeu76, Bal07a℄.Indeed, the problemati short-range properties of the interation an be taken intoaount by performing the re-summation of diagrams whih desribe the satteringof a pair of partiles in the medium. Compared to the vauum ase, the latter is mod-i�ed by the Pauli exlusion priniple, whih bloks the lowest-energy intermediatestates, the individual interation of partiles with the medium in the intermediatestates, and the three-body fore, whih is usually treated by averaging over the thirdpartile, yielding a medium-dependent two-body interation.An alternative sheme employed in self-onsistent Green funtion approahes tonulear matter is the Feynman-Galitskii T-matrix approximation [Mut05℄, whihdi�ers from the BBG sheme by the re-summation of hole-hole sattering proesses,as shown on Fig. 2.1.Both shemes, beause of the intermediate partile/hole propagation lines, yieldresults depending on the starting energy. This means, in partiular, that an energy-dependene is present, e.g. in the self-energy Σ(k, ω) whenever suh an e�etivevertex is used.One the re-summation underlying the sheme hosen has been performed, di-agrammati analysis an be performed with the e�etive interation used as anelementary NN vertex, attention being paid to double-ounting of diagrams gener-ated by the BBG or Feynman-Galitskii expansion. Fig. 2.2 displays several possiblediagrams entering the self-energy. The �rst line ontains the �rst diagrams of thehole-line expansion pratied in BBG theory. The �rst term of eah series is akin tothe Hartree-Fok self-energy (hene the name Bruekner-Hartree-Fok approxima-tion, or BHF), but it must be kept in mind that the G-matrix is energy-dependent.

http://dx.doi.org/10.1103/PhysRev.84.350
http://dx.doi.org/10.1016/0370-1573(76)90017-X
http://stacks.iop.org/0954-3899/34/R243
http://link.aps.org/abstract/PRC/v72/e054313
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Figure 2.1: Shemati presentation of diagrams re-summed in a Bruekner G-matrixand Feynman-Galitskii T-matrix e�etive interations. Whereas theG-matrix only sums partile-partile �ladders�, the T-matrix treatspartile-partile and hole-hole sattering on an equal footing, yieldingadditional diagrams.The two-hole-line diagram for the partile self-energy is ommonly referred to as arearrangement term, sine it an be obtained by utting an intermediate propagationline in the BHF total energy diagram.The seond line of Fig. 2.2 gives diagrams desribing the oupling of partileswith olletive vibrations desribed by the polarization propagator (or response fun-tion) Π, here de�ned in the ring, or random-phase approximation (RPA), whihshall be disussed in hapter 3. This whole ontribution is usually not taken intoaount in in�nite matter studies, where the three-hole-line approximation yieldswell-onverged results [Son98℄ but has been shown to modify the single-partilespetrum signi�antly in �nite nulei, where surfae vibrations play a partiularrole [Ber80, Lit06℄.2.2 Energy Density Funtional formalismThe Energy Density Funtional (EDF) method is frequently ited as the most generaltheoretial tool in low-energy nulear physis. Indeed, it is a mirosopi tool, in thesense that it fully takes into aount the quantal shell struture of the nuleus, aswell as olletive e�ets when extended to its multi-referene variant. At the sametime, it is tratable for nulei going from medium masses to the heaviest ones, aswell as nulei in the rust of neutron stars, the same values of the redued parameterset assoiated with the funtional being useable for all these systems.Let us �rst desribe the mean-�eld approximation whih serves as a formal basis,then the EDF method itself.2.2.1 Mean-�eld theory and pairingIt has been known, sine the work of Bohr, Mottelson and Pines [Boh58℄, thatnulei have ommon features with superondutors, and that the lear signatures forpairing between nuleons of the same speies abound, from the odd-even staggering
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Figure 2.2: Shemati presentation of diagrams entering the self-energy Σ(k, ω). (a)One-hole-line (BHF) and two-hole-line ontributions for partile states,(b) same for hole states. () Partile-vibration oupling ontribution.The polarization propagator Π is de�ned in (d); for partile states, theseond-order term has to be substrated, being already inluded in theBHF self-energy.of binding energies to rotational properties.In this setion we shall desribe the Hartree-Fok-Bogolyubov formalism, whihallows to desribe pairing in a mean-�eld approah and is the starting point of theEDF method. We diret the reader to lassi textbooks [Rin00, Fet71℄ for a disus-sion of the Hartree-Fok (HF) method it extends and the various derivations andinterpretations of the latter. A more thorough disussion of pairing, super�uidity,assoiated nulear observables as well as the relevant mirosopi theory is ontainedin hapter 5.Bogolyubov transformationOur basi tool to desribe the pair ondensation phenomenon, while remaining in aframework as easily tratable as the independent-partile (HF) approximation, is thegeneralized quasipartile (q.p.) onept. Following the introdution of the Bardeen-Cooper-Shrie�er (BCS) formalism [Bar57a, Bar57b℄, Bogolyubov and Valatin pro-posed a anonial transformation whih allows to treat elementary exitations of asuper�uid state as individual degrees of freedom [Bog58, Val58℄. The fully pairedground state of the system is thus a vauum with respet to the operators
β̂†

k =
∑

l

Uk
l ĉ

†
l + V k

l ĉl (2.21)
β̂k =

∑

l

Uk∗
l ĉl + V k∗

l ĉ†l (2.22)where ĉl and ĉ†l are the annihilation and reation operators orresponding to anarbitrary representation, as already mentioned in the last setion.The vetors Uk
l and V k

l fully parametrize the quasipartile states as well as thevauum |Φ0〉 de�ned by the requirement that ∀k β̂k|Φ0〉 = 0. In the ase of vanishing
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2.2. ENERGY DENSITY FUNCTIONAL FORMALISM 23pairing orrelations, we have Uk = 0 for hole states and V k = 0 for partile states.Otherwise, pairing orrelations are introdued by mixing partiles and holes. In thease of a ontinuous spetrum, this results in the vanishing of the disontinuity ofoupation probabilities at the Fermi level.It is useful to examine the struture of the Bogolyubov transformation. Let uswrite it under matrix form, arranging the operators β̂k and ĉk into vetors, then�super-vetors� ontaining both reation and annihilation operators:
(

β̂

β̂†

)
= W†

(
ĉ
ĉ†

)
. (2.23)The transformation matrix W an be deomposed, aording to the Bloh-Messiah-Zumino theorem [Blo62℄, as

W =

(
D 0
0 D∗

)(
U V
V U

)(
C 0
0 C∗

)
. (2.24)This expression involves two transformations of reation and annihilation operatorsamong themselves. The �rst one, D, transforms the initial basis into the set ofanonial states among whih the Bogolyubov transformation takes a simple form.The matries U and V , have, themselves, the struture

U =

(
u 0
0 u

)
, V =

(
0 v
−v 0

) (2.25)where we split the anonial basis in two halves. Hereafter the states belonging tothe two halves will be distinguished by the notation ǩ for the �rst and k̂ for theseond one, when neessary. The notation k will refer to the state assoiated with
|k〉 in the Cooper pair. The seond blok of the W-transform performs the mixingof partiles and holes to generate a set of quasipartiles de�ning the vauum |Φ0〉.The sub-matries u and v are diagonal, we all uǩ and vǩ their eigenvalues, with
U ǩǩ = uǩ = Ukk = uk and V ǩk = vǩ = −V kǩ = −vk.Finally, the C transformation produes a di�erent set of quasipartiles. This lasttransformation an be used to diagonalize a single-quasipartile Hamiltonian, as willbe disussed in the following.In the representation ĉk, the density matrix of the system, as well as the partilenumber, read

ρkl = 〈Φ0|ĉ†l ĉk|Φ0〉 =
∑

m

V m∗
k V m

l ,

N = Tr(ρ̂) =
∑

km

V m∗
k V m

k . (2.26)We see that eah quasipartile gives a (generally frational) ontribution to the par-tile number given by the norm of the orresponding V k vetor. This allows todistinguish between hole-like (|V k|2 > 1/2) and partile-like (|V k|2 < 1/2) quasipar-tiles.The addition of pairing in the quasipartile piture involves the de�nition of thepair tensor, or anomalous density matrix
κkl = 〈Φ0|ĉlĉk|Φ0〉 =

∑

m

V m∗
k Um

l , (2.27)
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24 CHAPTER 2. OVERVIEW OF NUCLEAR STRUCTURE THEORYwhih is nonzero only for states mixing di�erent partile numbers, whih is ausedby mixing partiles and holes in the Bogolyubov transformation.One an easily infer from the de�nition of ρ̂ and κ̂ that ρ̂† = ρ̂, and κ̂† =
−κ̂∗ hene κ̂T = −κ̂, where κ̂T denotes matrix transposition. Additionally, theonservation of fermioni antiommutation rules for the quasipartiles β̂k, β̂

†
k implyrelations between U and V vetors

∑

k

(Um∗
k Un

k + V m∗
k V n

k ) = δmn,
∑

m

(Um
k U

m∗
l + V m∗

k V m
l ) = δkl,

∑

k

(Um
k V

n
k + V m

k Un
k ) = 0,

∑

m

(Um
k V

m∗
l + V m∗

k Um
l ) = 0, (2.28)whih translate into the following relationship between ρ̂ and κ̂

ρ̂ ρ̂− κ̂ κ̂∗ = ρ̂. (2.29)This expression generalizes the ondition that the density matrix of a Slater deter-minant (vanishing pairing limit of the above) is idempotent, i.e. ρ̂ρ̂ = ρ̂.Let us now onsider the properties of the anonial basis. From the struture of
U and V matries, we an see that

ρkl = v2
kδlk, κkl = ukvkδlk. (2.30)These expressions allow for an e�ient onstrution of loal and quasi-loal densities,as well as a simple expression for the partile number (expressed here for a singlespeies, sums and the trae being understood aordingly),

N = 〈Φ0|
∑

k

ĉ†kĉk|Φ0〉 = Tr(ρ̂) =
∑

k

v2
k. (2.31)They imply, moreover, that in the anonial basis the Bogolyubov q.p. vauumtakes the BCS form. Additional properties of this ase are disussed in hapter 5.Time-reversal symmetryThe Bogolyubov transformation involves a pairwise oupling of single-partile states.For eah quasi-partile β̂k, the states |l〉 and |l〉 are taken in two di�erent halves ofthe basis. The distintion is made aording to symmetries of the interation whihprodues pair ondensation and quantum numbers of the Cooper pair. Pairing be-tween partiles of the same speies, being the most important and readily observableform ourring in nulei, involves pairs having total spin and angular momentumzero. Aordingly, paired states are related by time-reversal symmetry [And59℄. Theorresponding operator is antiunitary [Mes58℄. Its ation on a single-partile wavefuntion expressed in oordinate (r), spin (σ = ±1/2) and isospin (q = ±1/2) spaeyields

(T̂ ϕ)(rσq) = (−1)1/2−σϕ∗(rσq), (2.32)with σ ≡ −σ. Moreover the property T̂ 2 = −1 holds in the spae of states with oddpartile number, while T̂ 2 = 1 when applied on states with even partile-numberparity. For a time-reversal-invariant state, i.e. if T̂ |Φ0〉 = |Φ0〉, the time-reversed
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2.2. ENERGY DENSITY FUNCTIONAL FORMALISM 25state of eah anonial (basis) state an be found in the same basis, whih gives aformal de�nition to the orrespondene k → k. It is easy to show that
T̂ |k〉 = ηk|k〉, T̂ |k〉 = −η∗k|k〉, (2.33)with |ηk| = 1. We an then hoose the states |k〉 and |k〉 so that ηk = 1 and, byonvention, store the state |k〉 in the �rst half of the basis, i.e. |k〉 = |ǩ〉. This fullyspei�es the two halves through ηǩ = 1 and ηk̂ = −1.It may then be interesting to de�ne an anomalous density matrix ρ̃ [Dob84℄,

ρ̃kl = ηlκkl, (2.34)whih is Hermitian for time-reversal-invariant systems. In partiular, this anomalousdensity an be expressed in oordinate spae, where it has a nonvanishing loal(diagonal) omponent. The orresponding loal anomalous density ours naturallyin loal pairing density funtionals for spin-singlet pairing.Time-reversal symmetry requires the pairwise symmetry between quasipartiles,i.e. Uk = Uk, V k = −V k. The resulting vauum is a sum of Slater determinantshaving di�erent, but all even, partile numbers. It also implies that time-reversalpartner states have the same oupany. Suh a many-body state an thus onlydesribe nulei with even partile numbers. Odd-mass and odd-odd nulei requireto break this symmetry by reating one or two (unrelated) quasipartiles on top ofthe fully paired vauum. Suh an operation amounts to replaing the orresponding
β̂k operator in the set de�ning |Φ0〉 (through β̂k|Φ0〉 = 0 ) by β̂†

k, de�ning a newvauum. The latter is said bloked sine the ontributions of the (β̂k, β̂k) q.p. pairto the pair tensor then vanish.From the de�nition of β̂k and β̂†
k, Eq. (2.22), we see that this operation amountsto exhanging

Uk ↔ V k∗, V k ↔ Uk∗. (2.35)The variations of ρ̂ and κ̂ orresponding to a one-q.p. addition an be dedued fromtheir de�nitions. In partiular, the variation of the partile number is given by
δN =

∑

l

(
Uk

l U
k∗
l − V k∗

l V k
l

)
, (2.36)whih is not, in general, an integer number: in order to obtain this way a reasonablewavefuntion or density matrix for the intended odd nuleus, a readjustment has tobe made to the partile number of the underlying fully-paired vauum.Hartree-Fok-Bogolyubov equationsThe Hartree-Fok-Bogolyubov method [Rin00℄ uses the Bogolyubov quasipartilevauum as a variational ansatz for the wavefuntion of a super�uid system. Con-sidering a system ruled by a Hamiltonian ontaining a kineti term and two-bodyinteration,

Ĥ = T̂ + V̂ =
∑

kl

tklĉ
†
kĉl +

1

4

∑

klmn

vklmnĉ
†
kĉ

†
l ĉnĉm, (2.37)
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26 CHAPTER 2. OVERVIEW OF NUCLEAR STRUCTURE THEORYwhere vklmn is the antisymmetrized interation matrix element
vklmn = 〈kl|V̂ |mn〉 − 〈kl|V̂ |nm〉. (2.38)The energy of a on�guration |Φ〉 reads

E [Φ] = 〈Φ|Ĥ|Φ〉 =
∑

kl

tklρlk +
1

2

∑

klmn

vklmn

(
ρmkρnl +

1

2
κ∗klκmn

)
, (2.39)where we take advantage of the antisymmetry of v. The fat that the q.p. vauuminludes two-body orrelations is exhibited by the additional κ∗κ term extendingthe fatorization of the two-body density matrix 〈ĉ†kĉ

†
l ĉnĉm〉 pertaining to a normalSlater determinant.The HFB approximation for the ground state wave funtion an be obtained byapplying the Ritz variational priniple. As already mentioned, however, the Bo-golyubov transformation yields a state whih mixes wave funtions having di�erentpartile numbers. It is possible, however, to onserve the average partile number byapplying a onstraint by introduing Lagrange parameters relative to neutron andproton numbers. The variational proedure an then be applied to the expetationvalue of the modi�ed Hamiltonian,

Ĥ = Ĥ − Λ̂ = Ĥ − λnN̂ − λpẐ, (2.40)(2.41)where N̂ and Ẑ are the neutron and proton number operators, respetively. Theexpetation value of Ĥ orresponds to the shifted energy
E [Φ] = 〈Φ|Ĥ|Φ〉 = E − λnN − λpZ, (2.42)This formulation applies, naturally, when no mixing of the two speies is onsidered.The quantities λn and λp an be formally de�ned as

λn =
δE
δN

, λp =
δE
δZ

, (2.43)whih exhibit their role as hemial potentials, and the fat that the HFB/BCSformalism is initially intended to desribe systems large enough to be amenable toa statistial treatment or oupled to an external reservoir of partiles.Minimizing the shifted energy Eq. (2.42) with respet to quasipartile degrees offreedom yields the equations
(
h− λ ∆
−∆∗ −h∗ + λ

)(
Uk

V k

)
= Ek

(
Uk

V k

) (2.44)whih involves the partile-hole mean �eld h and the partile-partile or pairing �eld
∆, expressed as matries between single-partile basis states,

hkm = tkm +
∑

ln

vklmnρnl, ∆kl = −1

2

∑

mn

vklmnκmn. (2.45)In the above expression, λ is a diagonal matrix in isospin spae, having diagonalmatrix elements λn between neutron states and λp between proton states. The



2.2. ENERGY DENSITY FUNCTIONAL FORMALISM 27solution of the above equations an be obtained by iterating until self-onsisteny isreahed.The ket |Φ0〉 being the state whih yields minimal energy E = E0, the modi�edHamiltonian an be rewritten, by expressing partile operators through quasipartileones and normal-ordering, as [Rin00℄
Ĥ = E0 +

∑

k

Ek β̂
†
kβ̂k + Ĥint, (2.46)where Ĥint is the residual interation between quasipartiles, whih is negleted atthe present mean-�eld level. It is a sum of produts of four β̂ or β̂† operators, eah ofthese produts being normal-ordered with respet to the Bogolyubov q.p. vauum

|Φ0〉. As a result, it is easy to hek that its expetation values in |Φ0〉 and theelementary exited states β̂†
k|Φ0〉 vanishes. The shifted energy of a one-q.p. state isthus

Ek = 〈Φ0|β̂kĤβ̂
†
k|Φ0〉 = E0 + Ek. (2.47)The non-shifted energy an be reovered by adding bak the ontribution of theonstraining term, whih yields

Ek = 〈Φ0|β̂kĤβ̂
†
k|Φ0〉 = E0 + Ek + λq

∑

l

(
Uk

l U
k∗
l − V k∗

l V k
l

)
, (2.48)

λq being the hemial potential of the speies relevant to quasipartile k, with q = nor p.As mentioned in setion 2.2.1, the one-q.p. state does not have an integer,odd partile number as is pratially required. To obtain the latter, the hemialpotential has to be adjusted aordingly. As a �rst-order approximation, though,one an onsider that the resulting energy is Ek ≃ E0 +Ek ± λq, depending whetherthe q.p. k is hole-like (−) or partile-like (+).2.2.2 Density funtional theoryThe eletron gas present in solids and moleules is another example of a orrelatedfermion system. It was demonstrated by Hohenberg and Kohn that the wave fun-tion of this system, hene all its properties, ould be expressed as a funtional of theloal eletron density [Hoh64℄. In partiular, the energy of the orrelated eletrongas an be expressed as a funtional of the density, this funtional being universal,i.e. valid for all eletron numbers and external (ioni) potentials the eletrons ouldbe plaed in. The density and energy of the ground state an thus be obtained byminimizing the energy funtional with respet to the density (taken in the manifoldof densities generated from a sensible many-body state).This result, known as the Hohenberg-Kohn variational priniple, was �rst in-tended at semilassial implementations. However, the most suessful embodimentof this priniple was proposed by Kohn and Sham [Koh65℄, who suggested generatingthe density from an auxiliary Slater determinant. The method was later extendedto involve the non-loal density matrix [Gil75℄ as well as spin and urrent densities.It was also shown that superondutivity ould be taken into aount by inludinga dependene on the anomalous density in the funtional [Oli88, Kur99℄. The most
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28 CHAPTER 2. OVERVIEW OF NUCLEAR STRUCTURE THEORYgeneral formulation of density funtional theory (DFT) was proposed by Valiev andFernando [Val97℄, who showed that one ould build a funtional of any family ofobservables orresponding to Hermitian operators.We restrit this short disussion to one-body operators, making the distintionbetween partile-hole and partile-partile ones. Following the extended Hohenberg-Kohn proedure, the energy funtional of a super�uid system an thus be formallyde�ned as
E [ρ̂, κ̂, κ̂∗] = F [Q,P, P ∗] = min

Φ→Q,P
〈Φ|Ĥint + V̂ext|Φ〉 (2.49)where we make the distintion between the intrinsi Hamiltonian Ĥint and an ex-ternal potential V̂ext, and Φ → Q,P means that the searh is performed over trialwave funtions Φ whih yield the spei�ed input normal and anomalous densities,de�ned through the operators

Q̂(x) =
∑

kl

q(x)kl ĉ
†
kĉl, (2.50)

P̂ (x) =
1

2

∑

kl

(
p(x)kl ĉ

†
kĉ

†
l + p(x)∗kl ĉlĉk

)
, (2.51)

q(x) and p(x) being Hermitian and skew-symmetri matries, respetively, while xis a set of oordinates and indies neessary to speify eah density. We then have
Q(x) = Tr

(
Q̂(x)ρ̂

)
=
∑

kl

q(x)klρlk, (2.52)
P (x) = Tr

(
P̂ (x)κ̂

)
=
∑

kl

p(x)klκlk. (2.53)The funtional of Eq. (2.49) is universal in the sense that it is valid for all partilenumbers and external potentials of the form V̂ext = v · Q̂ + w · P̂ , v and w beingfuntions of x and · the salar produt de�ned by v · Q̂ =
∫
dx v(x)Q̂(x).In the original formulation of DFT, Q(x) is the loal partile density. It istempting to generalize this in order to extrat more information from the auxiliarystate and potentially improve the preditive power of the funtional more e�ientlythat with a re-summation of all missing e�ets in the loal funtional. In addition,a broader range of observables an be ontrained this way. However, it should bestressed that in priniple, no Kohn-Sham approah an depend on the full densitymatrix, as it is guaranteed that the latter, being a projetor, an not be mathedwith the exat density matrix of a orrelated state (the ase being less lear for thegeneralized density matrix whih appears with pairing).Given the exat funtional of Eq. (2.49), the ground state energy and densitiesan be obtained as

E0 = min
ρ,κ,κ∗

E [ρ, κ, κ∗] (2.54)
= min

Q,P,P ∗

F [Q,P, P ∗]. (2.55)Several remarks are in order onerning the transposition of suh a formalismto nulear struture as is urrently envisioned. The �rst onern to be raised is
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2.2. ENERGY DENSITY FUNCTIONAL FORMALISM 29related to symmetries of the underlying Hamiltonian. Indeed, any relevant Ĥ mustommute with operator suh as total A-body linear and angular momentum, andpartile numbers. A nuleus being a self-bound system, ontrary to the eletron gasin a solid, it has to be onsidered isolated, without any external potential atingon it. Its wave funtion then fatorizes into a enter-of-mass part and an intrinsipart, and the density orresponding to the ground state in the laboratory frame is,trivially, a onstant [Kre01℄.The intrinsi density, on the other hand, is an A-body operator. However, asshown by Engel for a model system, [Eng07℄ a useful approximate Kohn-Sham fun-tional of the intrinsi density an be built. Formally adding an external potentialterm ating only on the enter of mass, in order to obtain a loalized state amenableto a DFT desription has also been proposed [Gir07, Gir08a℄. The ase of rotationis more ompliated, due to the oupling between olletive and intrinsi motionas well as the di�ulty to properly de�ne angular oordinates, to the point that itwas suggested to work only with spherially-symmetri states and densities [Gir08b℄.Also, the pair tensor is non-zero only for states mixing di�erent partile numbers.The �exat� pair density should thus be de�ned from transition matrix elementsbetween A and A± 2 states, or before projeting onto good partile numbers in anaurate perturbative sheme.Moreover, sine DFT makes no diret referene to the system's wave funtionwhatsoever (the Kohn-Sham Slater determinant should not be taken as suh), ex-pliit restoration of broken symmetries fails to �nd a plae in its framework. Moregenerally, pratial appliations of Eq. (2.49) require to build a funtional of therelevant densities Q and P able to inlude all orrelations. This implies missing theexpliit desription of olletive e�ets suh as shape oexistene, whih is known tobe essential for understanding the struture and spetrosopy of many nulei, suhas 72,74Kr [Kor04, Ben06b℄, 100Zr [Woh86, Ma89a, Ska93℄ or neutron-de�ient leadisotopes [Dug03, Ben04℄.No extension of DFT, in the form of a Hohenberg-Kohn existene theorem, ableto provide a �rm formal ground to alulations �beyond the mean �eld� has beenproposed yet. The de�nition of the EDF method proeeds by analogy with the self-onsistent mean �eld method, performed with a density-dependent interation, andits extensions suh as the generator oordinate method (GCM) and the random-phase approximation (RPA).2.2.3 Single- and multi-referene EDF methodsThe single-referene (SR) EDF method uses a Bogolyubov quasipartile vauumas a referene state to generate the density matrix ρ and pair tensor κ enteringthe expression for the energy funtional, the densities Q and P being in priniplemathed with their values in the nuleus's rest frame. The approah onsisting inwriting down the funtional and �xing its parameters diretly has been attemptedon several oasions [Neg72, Fay98, Fay00, Per04, Bal07b, Kor08℄. Herafter we shalladopt the more onventional sheme where the funtional is expressed as the result ofnormal and anomalous ontrations of distint e�etive, density-dependent vertiesfor the partile-hole (p-h) and partile-partile (p-p) hannels, whih orrespond,respetively, to ouplings of Q-densities only, and ouplings involving P -densities.
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30 CHAPTER 2. OVERVIEW OF NUCLEAR STRUCTURE THEORYThe following general expression for the energy funtional results,
E [ρ̂, κ̂, κ̂∗] =

∑

kl

tklρlk +
1

2

∑

klmn

vρρ
klmn[ρ̂]ρmkρnl +

1

4

∑

klmn

vκκ
klmn[ρ̂]κ∗klκmn (2.56)where tkl is the kineti Hamiltonian (with an e�etive orretion for spurious enter-of-mass motion, see Ref. [Ben03b℄), and vρρ[ρ̂] and vκκ[ρ̂] are e�etive, medium-dependent partile-hole and partile-partile interations, respetively (regulariza-tion subtleties may atually arise in the de�nition of the partile-partile funtional,setion 2.4).Initially, both are devised to math as lose as possible the physial ontent of ane�etive interation based on the re-summation of (lasses of) diagrams in perturba-tion theory. The trial state ould then be understood as an unperturbed state usedas a starting point for the perturbative expansion. This is less lear in the ase ofa DFT-oriented interpretation, however, and the rather simple e�etive interationsused up to now lak prominent harateristis of mirosopi ones suh as energydependene, or �nite range and non-loality, whih makes a diret link between oneand the other rather di�ult. As a side note, notie that perturbation theory pro-vides the energy of a system as a funtional of the Green funtion (restrited to thesingle-partile G for two-body interations) [Noz63℄ of whih DFT ould be formallyseen as a speial ase.If vρρ = vκκ and the orresponding interation matrix elements are antisym-metri with respet to interhanging the two partiles or holes, the above energyredues to the standard HFB expression. Nonetheless, perturbative approahes tosuper�uidity indiate that the e�etive verties in the two hannels should be dif-ferent (see hapter 5). Moreover, the antisymmetry of the partile-hole interationis often broken, either for pratial or physial reasons, as this may enable to ad-just useful degrees of freedom in the parametrization of the funtional. Typialexamples are the independent adjustment of isosalar and isovetor spin-orbit terms[Rei95, Rei99℄, or the use of Landau parameters to �x independently the spin-isospinterms of the funtional [Ben02, Zdu05℄.Minimizing Eq. (2.56) yields HFB-like equations, Eq. (2.44), with the potentials

h and ∆ rede�ned as
hkl =

δE
δρlk

, ∆kl =
δE
δκ∗lk

. (2.57)Again, these expressions redue to the HFB potentials, Eq. (2.45), when the energyof Eq. (2.56) orresponds to the HFB energy. In general, additional rearrangementterms arise in Eq. (2.57) from the funtional derivation of the interations themselveswith respet to the density. This will be of some importane in the disussion ofsingle-partile energies below.Multi-referene (MR) EDF alulations extend SR ones by allowing to mix di�er-ent referene states (usually obtained from separate SR-EDF alulations). Again,this requires to attribute a ertain meaning to the wave funtions obtained from theSR-EDF alulations. Just as the wave funtion used in SR-EDF is the same asin the HFB method, The MR-EDF ansatz is inspired by the generator oordinatemethod (GCM) [Rin00℄,
|Φ0〉 =

∫
daf(a)|Φa

0〉 (2.58)
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2.2. ENERGY DENSITY FUNCTIONAL FORMALISM 31where |Φa
0〉 is a Bogolyubov quasipartile vauum obtained by a onstrained alula-tion (for on�guration mixing) or by a group transformation (for symmetry restora-tion), a being a (set of) olletive oordinate(s) and/or order parameters pertainingto the breaking of given symmetries. The mixing is implemented by the weightfuntion f(a), whih is given by a group transformation in the ase of symmetryrestoration, otherwise it is a solution of the Hill-Wheeler equation [Hil53, Rin00℄

∫
db
[
H(a, b) − EMR

ν I(a, b)
]
fν(b) = 0, (2.59)where EMR

ν is the energy of the mixed state desribed by fν , I is the overlap kernel
I(a, b) ≡ 〈Φa

0|Φb
0〉, (2.60)and H the �Hamiltonian� kernel, whih, one more, redues in the Hamiltonian(HFB/GCM) ase to the non-diagonal matrix element

H(a, b) ≡ 〈Φa
0|Ĥ|Φb

0〉. (2.61)When working with a generalized energy funtional, H is rede�ned as
H(a, b) = E [ρ̂ab, κ̂ab, κ̂

ab
], (2.62)where the densities obtained in the q.p. vauum have been replaed by the followingtransition densities,

ρab
kl ≡ 〈Φa

0|ĉ†l ĉk|Φb
0〉

〈Φa
0|Φb

0〉
, κab

kl ≡ 〈Φa
0|ĉlĉk|Φb

0〉
〈Φa

0|Φb
0〉

, κab
kl ≡ 〈Φa

0|ĉ†kĉ
†
l |Φb

0〉
〈Φa

0|Φb
0〉

. (2.63)One last time, this hoie is onsistent with the speial HFB/GCM ase. In themost omplete and involved appliations to nulear struture, a is a set of oordi-nates orresponding to the gauge angles relative to partile-number symmetry, Eulerangles and deformation oordinates, the weight funtion fa being partly determinedby symmetries and partly by the Hill-Wheeler equation. Symmetry restoration andon�guration mixing are thus performed simultaneously [Mey95℄, yielding a multi-dimensional problem [Ben08℄. The full variational problem would require simulta-neous optimization of fa and of the states |Φa
0〉. In pratie, |Φa

0〉 is optimized withrespet to the MR energy funtional only when fa is known a priori, whih leads tothe variation-after-projetion (VAP) approah used in the ase of partile-numberrestoration [She00, Sto07℄.A major di�ulty arises, though, in the above de�nitions: the transition densitiesdiverge for orthogonal states. While this is not a onern in the Hamiltonian ase[Ang01b℄, sine the orresponding ontributions to the energy anel out, the generalEDF kernel H will indeed diverge. A well-understood ase where this an happenis partile-number projetion of a wave funtion where a single-partile level rossesthe hemial potential [Dob07℄. The terms responsible for this divergene have beenreently identi�ed as those ontributing to self-interation and self-pairing, and aorretion sheme derived [La08℄. This orretion remains limited, however, tolow-order polynomial density dependenes in the e�etive interations.The straight generalization of the Hamiltonian �mean �eld and beyond� pitureto a density-funtional-inspired one is thus rather triky. In this work, we shall notperform MR-EDF alulations, yet our results will be analyzed, whenever possible,with the underlying physis in mind.
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32 CHAPTER 2. OVERVIEW OF NUCLEAR STRUCTURE THEORYEDF and single-partile energiesIn Kohn-Sham DFT, single-partile (or quasipartile) energies obtained from theauxiliary potentials (ĥ, ∆̂) have a priori no partiular meaning. However, theprospet of obtaining single-partile spetra from suh alulations is of great in-terest. This has been studied in semiondutors, where, for example, it wouldallow to extrat band gaps [Sha85℄. A proper determination of s.p. energies asde�ned from Green funtions, however, involves solving a modi�ed Dyson equation[Sha85, Bha05℄, i.e. going bak to perturbation theory.On the other hand, provided one an build a funtional whih is valid not onlyfor the ground state, but also for a su�ient number of exited ones, elementaryexitations beome a starting point for the general disussion of the exitation spe-trum [Gor96℄. A �rst step in this diretion is the ontrol of the e�etive mass, henethe density of s.p. states, through non-loal terms [Bha05℄. Exited state energiesan then be alulated by applying a onstraint or adding quasipartile exitations,whih is a rigorous approah when the alulations are performed self-onsistently.Physial single-partile energies are thus mass di�erenes between the ground stateof the A-nuleon system, and ground or exited states in A± 1-nuleon ones.In the very end, nothing prevents us from trying to adjust parameters of thefuntional to math s.p. energies in addition to other observables. If eigenenergiesof the EDF potentials are used, are must be taken to make an expliit link withself-onsistent mass di�erenes. For quasi-partiles added on top of spherial nulei,a small rearrangement ontribution an be expeted in the SR framework [Rut98,Zal08℄.Further omments are in order, though, onerning the mirosopi de�nition ofs.p. energies and their alulation in a MR-EDF sheme. Nulear single-partile en-ergies an be measured by stripping and pikup reations. Suh experiments usuallyyield a non-trivial spetrum where s.p. levels are fragmented due to orrelations,i.e. measured states are not pure, single quasipartiles but result from the ouplingof the q.p. to other degrees of freedom.This is ommonly disussed in the framework of the interating shell modelas a oupling of several elementary exitations. In suh a piture [Cau05℄, whihamounts to deomposing the Hamiltonian into an e�etive single-partile (monopole)part and a residual interation ating in a redued model spae, the single-partileenergy an be reovered from the spetrum using spetrosopi fators. A similare�et is obtained when performing partile-vibration oupling [Ber80, Lit06℄ usingthe (quasipartile) random phase approximation [Bla77, Sev02℄ for the olletivevibrations. In these ases, the oupling to olletive modes fragments the single-partile strength (measured in terms of spetrosopi fators, or spetral funtions,Eqs. (2.8) and (2.9)) and yields a lowest fragment with an energy lowered omparedto the initial s.p.e. (thus loser to the Fermi level), whih translates into a denserspetrum and higher e�etive mass.Suh a partile-vibration oupling sheme an be understood as an approxi-mation of the full MR-EDF alulation of the odd nuleus, whih we take as anidealized standard. Indeed, RPA, or in its EDF-based embodiment, linearized time-dependent EDF [Ben03b℄, an be onsidered as a low-amplitude-motion limit of aMR-EDF formalism [Jan64, Sev06℄.The EDF method thus has the potential to give a faithful aount of single-partile motion, subjet to the ondition that all relevant olletive degrees of free-
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2.2. ENERGY DENSITY FUNCTIONAL FORMALISM 33dom are taken into aount by symmetry restoration and on�guration mixing. Thislearly remains to be implemented in full-�edged form and on a systemati footing.Single-partile energies and mass di�erenesIn order to alulate a mass di�erene between two adjaent nulei (of masses Aand A ± 1), we have to reate a quasipartile on top of the A-body ground state(possibly with a partile number adjusted to obtain the right number of partilesin the one-q.p. state, see Eq. (2.48) and hapter 5), then resume self-onsistentminimization. Further, it should be ultimately possible to perform a full MR-EDFalulation of the odd system.In order to understand the workings of the SR-EDF method in this respet, letus express the energy of a the system following the addition of a single quasipartile(without any self-onsistent rearrangement of the nuleus) with an expansion up toseond order in the orresponding variation of the density matrix and pair tensor:
E [ρ̂+ δρ̂, κ̂+ δκ̂, κ̂∗ + δκ̂∗] = E [ρ̂, κ̂, κ̂∗]

+ hklδρkl +
1

2
(∆klδκ

∗
lk + ∆∗

klδκlk)

+
1

2
vphklmnδρmkδρnl +

1

2
vppklmnδκ

∗
klδκmn

+
1

4
δρlk

[
δE

δρlkδκ∗nm

δκ∗nm +
δE

δρlkδκnm

δκnm

]

+ . . . (2.64)The �rst line in Eq. (2.64) is the fully paired ground state energy, while the seondline orresponds to the quasipartile energy, as in the HFB ase, Eq. (2.48). Thethird line involves the partile-hole and partile-partile residual interations,
vphklmn =

δE
δρmkδρnl

, vppklmn =
δE

δκ∗klδκmn

. (2.65)In the strit HFB ase, these are (up to a fator) the antisymmetrized interationHamiltonian, i.e. vph = v, vpp = v/2. In this ase the third line vanishes, sine
vklmnδρmkδρnl +

1

2
vklmnδκ

∗
klδκmn

=
1

2
vklmn [δρmkδρnl − δρmlδρnk + δκ∗klδκmn] = 0, (2.66)as an be veri�ed by writing down the density variations in terms of quasipartile

U and V vetors. In the general EDF ase, the verties are di�erent, density-dependent (whih introdues non-antisymmetri rearrangement terms, whih allowthe (A+1)th partile to modify the interation energy of the A ore partiles by alter-ing the density on whih the interations depend) and may be non-antisymmetrized.The anellation of seond-order terms does not our anymore. The energy of aone-q.p. state thus ontains a self-interation ontribution (diret terms not an-elled by exhange ones) and a self-pairing one [La08℄. The latter orresponds toterms of the form vκκ
kkkk

, whih an be interpreted as the sattering of a pair ofpartiles onto the same state, whih gives a spurious pairing energy ontributionsine it is not anelled by the opposite partile-hole term arising in strit HFB. As



34 CHAPTER 2. OVERVIEW OF NUCLEAR STRUCTURE THEORYthere is some freedom in the distribution of non-anelled terms between the twoontributions, we may refer to their sum as quasipartile self-interation (QSI). Thesame argument an be put forward for the fourth line, i.e. rearrangement termsof the partile-partile interation, whih vanish in the Hamiltonian ase and fordensity-independent pairing interations. These an, in any ase, be expeted to besmall.Also, not inluded in the above expressions and disussion is the variation of theenter-of-mass orretion with mass number A [Zal08℄, whih results in a slight andsystemati variation of single-partile level spaings.Self-onsistent minimization of the energy will thus yield an energy lower thanEq. (2.64), but the position of the resulting minimal energy with respet to thestarting one an not be inferred a priori. The fat that QSI ours in part due todi�erent partile-partile and partile-hole interations is puzzling, as the latter isrequired by diagrammati analysis. One may wonder whether suh a self-pairinge�et may be found in the latter method, and if it is the ase, what kind of physismay be ontained therein. This question unfortunately belongs to the list of onernstoo involved to be addressed in this manusript.Although self-interation ontributions to one-quasipartile state energies arenon-vanishing, they are, qualitatively, e�ets of order 1/A ompared to bare q.p.energies generated by the interation with all nuleons. Depending on the situation,this will have to be ompared with the magnitude of the e�ets under investigation.2.3 Skyrme energy density funtionalThe usual ansatz for the Skyrme e�etive interation [Cha97, Cha98℄ leads to anenergy density funtional whih an be written as the sum of a kineti term, theSkyrme potential energy funtional that models the e�etive strong interation inthe partile-hole hannel, a pairing energy funtional orresponding to a density-dependent ontat pairing interation, the Coulomb energy funtional (alulatedusing the Slater approximation [Sla51℄) and orretion terms to approximately re-move the exitation energy from spurious motion aused by broken symmetries[Ben03b℄,
E = Ekin + ESkyrme + ECoulomb + Epairing + Eorr . (2.67)In this setion we fous on the partile-hole part of the funtional onsisting ofall the terms mentioned above exept the pairing part, whih will be the subjet ofthe next setion.2.3.1 Quasi-loal energy density funtionalThroughout this work, we will use an e�etive Skyrme energy funtional that or-responds to an antisymmetrized density-dependent two-body vertex in the partile-hole hannel of the strong interation, that an be deomposed into a entral, spin-orbit and tensor ontribution

vSkyrme = v + vt + vLS . (2.68)Other hoies for the writing of the Skyrme energy funtional are possible and havebeen made in the literature, whih might a�et the form of the e�etive interation,
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2.3. SKYRME ENERGY DENSITY FUNCTIONAL 35its interpretation and the results obtained from it. We will ome bak to that insetion 4.2.2 below.The Skyrme energy density funtional is a funtional of loal densities and ur-rents
ESkyrme =

∫
d3r HSkyrme(r) , (2.69)whih has many tehnial advantages ompared to �nite-range fores suh as theGogny fore. All exhange terms have the same struture as the diret terms, whihgreatly redues the number of neessary integrations during a alulation.Loal densities and urrentsThe general density matrix, expressed in oordinate, spin and isospin variables,reads

ρ(rσq, r′σ′q′) = 〈ĉ†r′σ′q′ ĉrσq〉. (2.70)Throughout this manusript we will assume that we have pure proton and neutronstates, exept for the alulation of the residual interation, in appendix C.3, wherethe general framework leads to more ompat formulae. The formal EDF frameworkfor the general ase inluding proton-neutron mixing is disussed in Ref. [Per04℄. Asof now, let us onsider that the matrix an be written independently for neutronsand protons,
ρ(rσq, r′σ′q′) = ρq(rσ, r

′σ′) δqq′, (2.71)and separate the spin part [Dob00℄
ρq(rσ, r

′σ′) = 〈ĉ†r′σ′q ĉrσq〉 = 1
2
ρq(r, r

′)δσσ′ + 1
2
sq(r, r

′) · 〈σ′|σ̂|σ〉 (2.72)where
ρq(r, r

′) =
∑

σ

ρq(rσ, r
′σ), sq(r, r

′) =
∑

σσ′

ρq(rσ, r
′σ′) 〈σ′|σ̂|σ〉 . (2.73)The Skyrme energy funtional up to seond order in derivatives that we will intro-due below an be expressed in terms of seven loal densities and urrents [Per04℄that are de�ned as

ρq(r) = ρq(r, r
′)
∣∣
r=r′

sq(r) = sq(r, r
′)
∣∣
r=r′

τq(r) = ∇ · ∇′ ρq(r, r
′)
∣∣
r=r′

Tq,µ(r) = ∇ · ∇′ sq,µ(r, r
′)
∣∣
r=r′

jq(r) = − i
2
(∇ − ∇

′) ρq(r, r
′)
∣∣
r=r′

Jq,µν(r) = − i
2
(∇µ −∇′

µ) sq,ν(r, r
′)
∣∣
r=r′

Fq,µ(r) = 1
2

z∑

ν=x

(
∇µ∇′

ν + ∇′
µ∇ν

)
sq,ν(r, r

′)
∣∣
r=r′

(2.74)whih are the density ρq(r), the kineti density τq(r), the urrent (vetor) density
jq(r), the spin (pseudovetor) density sq(r), the spin kineti (pseudovetor) den-sity Tq(r), the spin-urrent (pseudotensor) density Jq,µν(r), and the tensor-kineti

http://link.aps.org/abstract/PRC/v69/e014316
http://dx.doi.org/10.1103/PhysRevC.62.014310
http://link.aps.org/abstract/PRC/v69/e014316


36 CHAPTER 2. OVERVIEW OF NUCLEAR STRUCTURE THEORY(pseudovetor) density Fq(r). The densities ρq(r), τq(r) and Jq,µν(r) are time-even,while sq(r), Tq(r), jq(r) and Fq(r) are time-odd. For a detailed disussion of theirsymmetries see Ref. [Dob00℄. There are other loal densities up to seond orderin derivatives that an be onstruted, but when onstruting an energy funtionalthey either annot be ombined with others to terms with proper symmetries orthey lead to terms that are not independent from the others [Dob96a℄.The Cartesian spin-urrent pseudotensor density Jµν an be deomposed intopseudosalar, (anti-symmetri) vetor and (symmetri) traeless pseudotensor parts,all of whih have well-de�ned transformation properties under rotations
Jµν(r) = 1

3
δµν J

(0)(r) + 1
2

z∑

κ=x

ǫµνκ J
(1)
κ (r) + J (2)

µν (r) , (2.75)where δµν is the Kroneker symbol and ǫµνκ the Levi-Civita tensor. The pseu-dosalar, vetor and pseudotensor parts expressed in terms of the Cartesian tensorare given by
J (0)(r) =

z∑

µ=x

Jµµ(r) , (2.76)
J (1)

κ (r) =
z∑

µ,ν=x

ǫκµν Jµν(r) ,

J (2)
µν (r) = 1

2
[Jµν(r) + Jνµ(r)] − 1

3
δµν

z∑

κ=x

Jκκ(r) .The vetor spin urrent density J(1)(r) ≡ J(r) is often alled spin-orbit urrent,as it enters the spin-orbit energy density. Some authors, though, all J(r) spindensity, whih is ambiguous when disussing the omplete energy density funtionalinluding terms that ontain the time-odd s(r).For the formal disussion of the physial ontent of the Skyrme energy funtionalit is of advantage to reouple the proton and neutron densities to isosalar andisovetor densities, for example
ρ0(r) = ρn(r) + ρp(r) , ρ1(r) = ρn(r) − ρp(r) (2.77)and similarly for all other ones. As we assume pure proton and neutron states, onlythe Tz = 0 omponent of the isovetor density is non-zero, whih we have exploitedto drop the index Tz from the isovetor densities ρ1Tz(r), et.Skyrme's entral foreIn eah part of this work, we will use di�erent parametrizations of the density-dependent entral Skyrme interation. The number of density-dependent terms willbe hosen as one or two depending on spei� requirements. The most general (forour purpose) entral Skyrme interation reads
v̂(R, r) = t0 (1 + x0P̂σ) δ(r)

+ 1
6
t3 (1 + x3P̂σ) ργ(R) δ(r)

+ 1
6
t6 (1 + x6P̂σ) ργ′

(R) δ(r)

+ 1
2
t1 (1 + x1P̂σ)

[
k̂′2 δ(r) + δ(r) k̂2

]

+ t2 (1 + x2P̂σ) k̂′ · δ(r) k̂ (2.78)
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2.3. SKYRME ENERGY DENSITY FUNCTIONAL 37where we use the shorthand notation
r = r1 − r2 , R = 1

2
(r1 + r2) , (2.79)while k̂ is the usual operator for relative momenta

k̂ = − i
2
(∇̂1 − ∇̂2) (2.80)and k̂′ its omplex onjugate ating on the left. Finally, P̂σ is the spin exhangeoperator that ontrols the relative strength of the S = 0 and S = 1 hannels for agiven term in the two-body interation

P̂σ = 1
2
(1 + σ̂1 · σ̂2) . (2.81)As said above, we restrit ourselves to a parametrization of the Skyrme energyfuntional as obtained from the average value of an e�etive two-body vertex inthe referene quasipartile vauum. We deompose the isosalar and isovetor partsof the resulting energy density funtional H into a part H,even

t that is omposedentirely of time-even densities and urrents, and a part Hc,odd
t that ontains termswhih are bilinear in time-odd densities and urrents and vanishes in intrinsiallytime-reversal invariant systems

H(r) =
∑

t=0,1

[
H,even

t (r) + H,odd
t (r)

]
. (2.82)Both H,even

t and H,odd
t are of ourse onstruted suh that they are time-even; theyare given by [Eng75, Per04℄

H,even
t = Aρ

t [ρ0] ρ
2
t + A∆ρ

t ρt∆ρt + Aτ
t ρtτt − AT

t

z∑

µ,ν=x

Jt,µνJt,µν ,

H,odd
t = As

t [ρ0] s
2
t −Aτ

t j2t + A∆s
t st · ∆st + AT

t st · Tt , (2.83)where Aρ
t [ρ0] and As

t [ρ0] are density dependent oupling onstants that depend onthe total (isosalar) density. The detailed relations between the oupling onstantsof the funtional and the entral Skyrme fore are given in appendix A. The notationre�ets that two pairs of terms inH,even
t andH,odd

t are onneted by the requirementof loal gauge invariane of the Skyrme energy funtional [Dob95a℄.Zero-range spin-orbit foreThe spin-orbit fore used with most standard Skyrme interations
v̂LS(r) = iW0 (σ̂1 + σ̂2) · k̂′ × δ(r) k̂ (2.84)is a speial ase of the one proposed by Bell and Skyrme [Bel56, Sky58b℄. As above,the orresponding energy funtional [Eng75, Per04℄ an be separated into a time-even and a time-odd term

HLS(r) =
∑

t=0,1

[
HLS,even

t (r) + HLS,odd
t (r)

] (2.85)where
HLS,even

t = A∇·J
t ρt∇ · Jt, HLS,odd

t = A∇·J
t st · ∇ × jt (2.86)whih share the same oupling onstant as, again, both terms are linked by the loalgauge invariane of the energy funtional. The relation between the A∇·J

t and theone oupling onstant of the two-body spin-orbit fore W0 is given in appendix A.
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38 CHAPTER 2. OVERVIEW OF NUCLEAR STRUCTURE THEORYSkyrme's tensor foreAlthough rather unommon in the Skyrme parametrizations published so far, thetensor fore has been the subjet of renewed attention, and will be the main topiof hapter 4.By onvention, the tensor operator in the tensor fore is onstruted using theunit vetors in the diretion of the relative oordinate er = r/|r| and subtrating
σ̂1 · σ̂2

Ŝ12 = 3(σ̂1 · er)(σ̂2 · er) − σ̂1 · σ̂2 , (2.87)suh that its mean value vanishes for a relative S state, whih deouples the entraland tensor hannels of the interation. The operator Ŝ12 ommutes with the totalspin [Ŝ12, Ŝ
2] = 0, therefore it does not mix partial waves with di�erent spin, i.e. spinsinglet and spin triplet states. In partiular, it does not at in spin singlet states atall, as Ŝ12P̂S=0 = 0 (see setion 13.6 of Ref. [Nil95℄). As a onsequene, there is nopoint in multiplying a tensor fore with an exhange operator (1+xtP̂σ) as done forthe entral fore, as this will only lead to an overall resaling of its strength.The derivation of the general energy funtional from a zero-range two-body ten-sor fore is disussed in detail in Refs. [Flo75, Per04℄. We repeat here the detailsrelevant for our disussion, starting from the two zero-range tensor fores proposedby Skyrme [Sky56, Sky58a℄
v̂t(r) = 1

2
te

{[
3 (σ̂1 · k′) (σ̂2 · k̂′) − (σ̂1 · σ̂2) k̂′2 ] δ(r)

+ δ(r)
[
3 (σ̂1 · k̂) (σ̂2 · k̂) − (σ̂1 · σ̂2) k̂2

]}

+to

[
3 (σ̂1 · k̂′) δ(r) (σ̂2 · k̂) − (σ1 · σ2) k̂′ · δ(r) k̂

] (2.88)where r, k̂ and k̂′ are de�ned as above, Eqs. (2.79) and (2.80). The orrespondingenergy density funtional an again be deomposed in a time-even and a time-oddpart
Ht(r) =

∑

t=0,1

[
Ht,even

t (r) + Ht,odd
t (r)

] (2.89)with [Per04℄
Ht,even

t = −BT
t

z∑

µ,ν=x

Jt,µνJt,µν − 1
2
BF

t

( z∑

µ=x

Jt,µµ

)2

− 1
2
BF

t

z∑

µ,ν=x

Jt,µνJt,νµ

Ht,odd
t = BT

t st · Tt +BF
t st · Ft +B∆s

t st · ∆st +B∇s
t (∇ · st)

2 , (2.90)where we already used the loal gauge invariane of the energy funtional [Per04℄ forthe expressions of the oupling onstants. The atual expressions for the ouplingonstants expressed in terms of the two oupling onstants te and to of the tensorfores are given in appendix A.The �even� term proportional to te in the two-body tensor fore (2.88) mixesrelative S and D waves, while the �odd� term proportional to to mixes relative
P and F waves. Thus, due to the fat that both at in spin-triplet states only,antisymmetrization implies that the former ats in isospin-singlet states (and heneontributes to the neutron-proton interation only) and the latter in isospin-triplet
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2.3. SKYRME ENERGY DENSITY FUNCTIONAL 39states (ontributing both to the like-partile and neutron-proton interations). Theentral and spin-orbit interations as we use them, however, do not ontain D or
F wave interations. From this point of view, one might suspet a mismath whenombining the various interation terms. From the point of view of the energyfuntional (2.90), however, all ontributions from the zero-range tensor fore are ofthe same seond order in derivatives as the ontributions from the non-loal part ofthe entral Skyrme fore (2.83) and from the spin-orbit fore (2.86).In the time-even part of the energy funtional Ht,even

t , there appear three dif-ferent ombinations of the Cartesian omponents of the spin urrent tensor. Theterm proportional to BT
t ontains the symmetri ombination JµνJµν as it alreadyappeared in the energy funtional from the entral Skyrme interation (2.83), whilethe term proportional to BF

t ontains two di�erent terms, namely the antisymmetriombination JµνJνµ and the square of the trae of Jνµ.Combining entral and tensor interationsThe Skyrme energy funtional representing entral, tensor, and spin-orbit intera-tions is given by
ESkyrme = E + ELS + Et

=

∫
d3r

∑

t=0,1

{
Cρ

t [ρ0] ρ
2
t + Cτ

t (ρtτt − j2t ) + C∆ρ
t ρt∆ρt

+ Cs
t [ρ0] s

2
t + C∇s

t (∇ · st)
2 + C∆s

t st · ∆st

+ CT
t

(
st ·Tt −

z∑

µ,ν=x

Jt,µνJt,µν

)

+ CF
t

[
st · Ft − 1

2

( z∑

µ=x

Jt,µµ

)2

− 1
2

z∑

µ,ν=x

Jt,µνJt,νµ

]

+ C∇·J
t (ρt∇ · Jt + st · ∇ × jt)

}
. (2.91)This funtional ontains all possible bilinear terms up to seond order in the deriva-tives that an be onstruted from loal densities and that are invariant under spatialand time inversion, rotations, and loal gauge transformations [Per04℄.Some of the oupling onstants are ompletely de�ned by the standard entralSkyrme fore, i.e. Cρ

t = Aρ
t , Cs

t = As
t , Cτ

t = Aτ
t , and C∆ρ

t = A∆ρ
t , two by thespin-orbit fore, C∇J

t = A∇J
t , others by the tensor fore, CF

t = BF
t and C∇s

t = B∇s
t ,while some are the sum of oupling onstants from both entral and tensor fores,

CT
t = AT

t +BT
t , and C∆s

t = A∆s
t +B∆s

t .The three terms bilinear in Jµν an be reoupled into terms bilinear in its pseu-dosalar, vetor, and pseudotensor omponents J (0), J (1), and J (2), Eq. (2.76), whihis preferred by some authors [Per04℄
z∑

µ,ν=x

Jt,µνJt,µν = 1
3

(
J

(0)
t

)2
+ 1

2
J2

t +

z∑

µ,ν=x

J
(2)
t,µνJ

(2)
t,µν (2.92)

1
2

[( z∑

µ=x

Jt,µµ

)2

+

z∑

µ,ν=x

Jt,µνJt,νµ

]
= 2

3

(
J

(0)
t

)2 − 1
4
J2

t + 1
2

z∑

µ,ν=x

J
(2)
t,µνJ

(2)
t,µν . (2.93)
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40 CHAPTER 2. OVERVIEW OF NUCLEAR STRUCTURE THEORYAfter ombining (2.91) with the kineti, Coulomb, pairing and other ontributionsfrom (2.67), the mean-�eld equations are obtained by standard funtional deriva-tive tehniques from the total energy funtional, see setion 2.2, appendix C.3 andRefs. [Ben03b, Per04℄.The omplete Skyrme energy funtional (2.91) has quite ompliated a struture,and in the most general ase leads to seven distint mean �elds in the single-partileHamiltonian [Per04℄. In the present manusript, we enfore spherial symmetrywhih removes all time-odd densities and all but one out of the nine omponents ofthe spin-urrent tensor Jµν as will be outlined in setion 4.2.1.2.3.2 Skyrme energy funtional in spherial symmetryFor the rest of this manusript, we will onentrate on spherial nulei, enforingspherial symmetry of the (A)-body wave funtions. As a onsequene, the anonialsingle-partile wave funtions ϕi an be labeled by ji, ℓi and mi. The index ni labelsthe di�erent states with same ji and ℓi. The funtions ϕi separate into a radial part
ui(r) and an angular and spin part, represented by a tensor spherial harmoni Ωjℓm

ϕnjℓm(r) =
unjℓ(r)

r
Ωjℓm(r̂), (2.94)

Ωjℓm(r̂) =
∑

mℓσ

〈ℓmℓsσ|jm〉 Y ℓ
ml

(θ, φ) |sσ〉,with s ≡ 1/2. Spherial symmetry also enfores that all magneti substates of ϕnjℓmhave the same oupation probability v2
njℓm ≡ v2

njℓ for all −j ≤ m ≤ j. For a statispherial state, all time-odd densities are zero sq(r) = Tq(r) = jq(r) = Fq(r) = 0,as are the orresponding mean �elds in the single-partile Hamiltonian.Altogether, the Skyrme part of the energy density funtional in spherial nuleiis redued to
HSkyrme =

∑

t=0,1

{
Cρ

t [ρ0] ρ
2
t + C∆ρ

t ρt∆ρt

+ Cτ
t ρtτt + 1

2
CJ

t J2
t + C∇·J

t ρt∇ · Jt

}
, (2.95)where we have introdued an e�etive oupling onstant CJ

t of the J2
t tensor termsat spheriity.2.4 Loal pairing funtionalFor our EDF to be fully de�ned, we need to speify its essential pairing part. Inthis setion we fous on loal pairing funtionals formally generated from zero-rangee�etive pairing interations, and spei� issues assoiated with them. A di�erentkind of pairing funtional will be presented in hapter 5.Let us write down the oordinate-spae expression of the pair density matrix,

ρ̃(r1, σ1, q; r2, σ2, q) = (−)1/2+σ2〈ĉr2σ2q ĉr1σ1q〉, (2.96)as well as the loal pair density,
ρ̃q(r) =

∑

σ

ρ̃(r, σ, q; r, σ, q) =
∑

σ

(−)1/2+σκ(r, σ, q; r, σ, q). (2.97)
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2.4. LOCAL PAIRING FUNCTIONAL 41The pairing funtional ommonly used in onjuntion with the Skyrme-interation-derived partile-hole funtional an be formally derived as the partile-partile on-tration of a loal, zero-range density-dependent delta interation (DDDI),
vpairq (r) = Vpair

q

(
1 − c

ρ0

ρsat) 1 − Pσ

2
δ(r), (2.98)whih is here de�ned by a strength Vpair

q and a parameter c whih determines thedensity dependene and hene the loalization of the pairing �eld, in the volume ofthe nuleus (for c = 0) or at the surfae (c = 1) [JD01℄. The orresponding pairingfuntional reads
Epair[ρ̃, ρ̃∗] =

∫
d3r C ρ̃

q ρ̃
∗
q ρ̃q (2.99)where the oupling onstant is density-dependent and given as

C ρ̃
q =

Vpair
q

4

(
1 − c

ρ0

ρsat) . (2.100)Unfortunately, suh a theory diverges. Indeed, the pairing �eld derived fromsuh a funtional is loal,
∆(r1σ2q; r2σ2q) = Ũq(r1) δ(r1 − r2) (−)1/2+σ2δσ1σ2

,

Ũq(r) =
δE

δρ̃∗q(r)
= 2Cpair

q (r) ρ̃q(r1) (2.101)whih means that matrix elements of ∆, i.e. pairing gaps are essentially independentfrom the momentum or energy of single-partile states.It is useful at this point to make use of the BCS gap equation in in�nite matter,whih is further disussed in hapter 5.
∆q(k) = −

∫ k
0

k′2dk′

2π3
Vpair

q

∆q(k
′)

2
√
ε2

k′ + ∆q(k′)2
. (2.102)It follows immediately that ∆q(k

′) is in fat a onstant. With εk = ~2k2/2m, thisexpression diverges linearly when k → ∞.Summing over quasipartiles with non-bounded q.p. energy yields a pair densitywhih diverges as 1/|r1 − r2| for r1 − r2 → 0 [Bru99, Bul02a℄, making the pairingenergy unde�ned [Dob96b℄. It is thus neessary to regularize ρ̃, as well as all den-sities. This an be ahieved by substrating the ontributions to the density andpair tensor of states lying outside of a pairing window de�ned as an energy intervalin the single-partile (HF), anonial or quasipartile spetrum. A trunation ofsingle-partile bases is neessary for pratial appliations whatever the funtionalused, however for a loal pairing funtional no onvergene of observables is obtainedwith respet of this trunation, whih has to be de�ned as a part of the model.As an example and to be more spei�, let us give the expressions for the asewhere the uto� is implemented in the quasipartile basis,
ρkl = 〈Φ0|ĉ†l ĉk|Φ0〉 =

∑

m

fm V m∗
k V m

l ,

κkl = 〈Φ0|ĉlĉk|Φ0〉 =
∑

m

f ′
m V m∗

k Um
l , (2.103)
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42 CHAPTER 2. OVERVIEW OF NUCLEAR STRUCTURE THEORYwhere fm and f ′
m are equal to one at the Fermi level, and put to zero for statesoutside a given energy window (whih has an upper bound only for fk, and mayalso have a lower one for f ′

m). In pratie, a smooth uto� is implemented, whihalleviates onvergene issues due to transitions of q.p. states in and out of thewindow during iterations:
fm =

1

1 + exp[(εm − ε+ )/εd] , f ′
m = fm

1

1 + exp[−(εm + ε− )/εd] , (2.104)where εk is the single-partile equivalent energy of quasipartile k [Ben05℄, εc theuto� energy and εd a di�useness parameter, typially of the order of 1 MeV.Thus, the funtional atually used involves not the strit loal pair density, buta regularized one, the other densities (inluding in the partile-hole hannel) beingreplaed by their regularized ounterparts as well. Suh a pairing funtional isnot, stritly speaking, the expetation value of the e�etive interations given thusfar, whih serves only as a formal intermediate. In addition to the parameters ofEq. (2.98), the funtional needs a uto� energy to be fully de�ned. Moreover, thestrength parameter has to be adjusted onsistently with the uto�, whih underlinesthe fat that ε± is not only a numerial parameter, but an integral part of the model.As shown by Matsuo [Mat06℄, the energy uto� employed in a loal pairingfuntional plays a role similar to the range of a �nite-range interation with respetto the struture of the non-loal pair density, and an be adjusted so as to ontrolthe latter rather preisely. The value of ε+ that was found appropriate in thisrespet was of the order of 50 MeV. The fat that a (regularized) loal funtionalan desribe nulear pairing with a satisfatory auray omes from the fat that thespatial extension of the Cooper pair wave funtion (de�ned, up to a normalizationfator, as the non-loal part of ρ̃) is typially larger than the range of the underlyinginteration, implying that the spatial dependene of the latter is not resolved.The loal or non-loal pair density, however, is not an observable, and the fatthat an additional parameter is introdued may seem unsatisfatory. To addressthis issue, Bulga and Yu [Bul02b℄ introdued a method to regularize the pair den-sity and obtain a uto�-independent funtional (for su�iently large uto�s). Thedivergene in the pair density is of ultraviolet harater, aused by the aumulationof ontributions from high-momentum ontinuum states, for whih a loal densityapproximation is reasonable. One an indeed obtain an aurate analytial expres-sion for the divergent part of the pair density at eah point r and for eah speies
q by studying a uniform gas subjet to a potential Uq(r), a pairing �eld Ũq(r), ane�etive mass m∗

q(r) and a hemial potential λq. The regularized pair density thenreads
ρ̃regq = ρ̃q + Ũq Y (kFq, k), (2.105)where the funtion Y (kFq, k) is given by

Y (kFq, k) =
m∗

qk
2π2~2

[
1 − kFq

2kLn(kFq + k
kFq − k)] , (2.106)whih involves the position-dependent quantities m∗

q , kFq and k, de�ned by
~2k2

Fq

2m∗
q

+ Uq = λq,
~2k
2m∗

q

+ Uq = ε+ . (2.107)
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2.4. LOCAL PAIRING FUNCTIONAL 43Here, we onsider only an upper bound for the pairing window, with ε− = −∞. Theloal e�etive Fermi momentum kFq may be an imaginary number where λq < Uq,but it is easy to hek that Y stays real in that ase. The regularized densityis independent from ε+ when the latter is taken su�iently large. One requires,moreover, that observables omputed with the regularized funtional are also uto�-independent. Being losely linked with odd-even mass di�erenes, the pairing �eld
Ũ is suh a quantity. The pairing funtional being quadrati in ρ̃, we must thenhave

Ũq =
δE
δρ̃∗q

= gqρ̃
reg
q (2.108)

gq being a position/density-dependent but uto�-independent quantity. One mayrewrite the above as
Ũq = gregq ρ̃q,

1

gregq
=

1

gq
− Y (kFq, k). (2.109)We �nally rewrite the pairing energy funtional as

Epair[ρ̃, ρ̃∗] =

∫
d3r Ũq ρ̃

∗
q =

∫
d3r gregq ρ̃∗q ρ̃q

=

∫
d3r gq ρ̃

∗
q ρ̃regq (2.110)

=

∫
d3r C ρ̃

q ρ̃
reg∗
q ρ̃regq , C ρ̃

q =
g2

q

gregq
= gq[1 − gqY (kFq, k)].We see that the pairing energy is not uto�-independent; in fat, it is a divergentquantity. However, it is not an observable. The total energy, in turn, is uto�-independent thanks to a anellation between the divergent ontributions of thepairing and kineti energies (inluding e�etive-mass terms), whih behave similarlyfor large k [Bul02a℄.
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Chapter 3New Constraints for the NulearEnergy Density FuntionalThe auray and preditive power of EDF models needed for unknown regions ofthe nulear hart still leave a lot of room for improvement. The phenomenologialnature of Skyrme funtionals makes their ability to faithfully predit observables orphenomena not linked with those used for their onstrution quite weak. Indeed,the limited number of adjustable parameters (ompared to the wealth of nulear ob-servables to be mathed) turns �tting a Skyrme funtional into an overonstrainedproblem (whih, of ourse, does not prevent some parts of it from being underon-strained).As a diret onsequene, many properties of existing parametrizations are biasedto the �tting proedure and the limited analytial form of the Skyrme interation,rather than to physial reasoning. A well-known example is the equation of state(EOS) of Pure Neutron Matter (PNM), whih is sometimes subjet to a pathologialollapse at high density when not expliitly onstrained. This is problemati insofaras one of the major hallenges of ontemporary nulear theory is to predit propertiesof very isospin-asymmetri nulear systems, i.e. neutron rih nulei and matter inneutron stars. Experimental data being unavailable in this domain of isospin, onehas started relying on ab-initio theoretial results to onstrain isovetor propertiesof the funtional. It has led to the onstrution of the �Salay-Lyon� SLy series ofparametrizations [Cha97, Cha98℄ by �tting (among other quantities) a theoretialequation of state of neutron matter.Isovetor features of the nulear EOS are ruial for a good understandingof neutron stars, exoti nulear ollisions produed at radioative beam failitiesand to desribe the struture of exoti nulei. For instane, the density depen-dene of the volume symmetry energy determines the proton fration in β equi-librium in neutron stars, whih ultimately drives the ooling rate and neutrinoemission [Lat04℄. The high-density part of the symmetry energy, whih happensto be strongly model dependent, also in�uenes signi�antly the isospin di�usion inheavy-ion ollisions [Che05℄. Finally, the low-density part of the symmetry energyis orrelated with the size of neutron skins in �nite nulei [Typ01℄.Beyond global isospin-dependent properties of the EOS, the isovetor part ofnuleon-dependent quantities may in�uene the behavior of the above mentionedsystems. Thus, ollision observables depend on the momentum dependene of themean-�eld, in partiular on its isovetor omponent [Li04a, Li04b℄. Also, some45

http://www.sciencedirect.com/science/article/B6TVB-3SPXRRX-31/2/0fd25cefa0483e4bc19f3fca8f951d2b
http://www.sciencedirect.com/science/article/B6TVB-3VXH608-K/2/4ed3d61fb51d91f7225238f32f5455b5
http://dx.doi.org/10.1126/science.1090720
http://dx.doi.org/10.1103/PhysRevLett.94.032701
http://dx.doi.org/10.1103/PhysRevC.64.027302
http://dx.doi.org/10.1103/PhysRevC.69.064602
http://dx.doi.org/10.1103/PhysRevC.69.011603


46 CHAPTER 3. NEW CONSTRAINTS FOR THE NUCLEAR EDFproperties of neutron stars require a preise knowledge of isosalar and isovetornuleon e�etive masses [Bet90, Far01℄. The latter, whih drives the splitting ofneutron and proton e�etive masses with neutron/proton asymmetry, will serve asa starting point for the study presented in this hapter. Indeed, a lot of e�orts hasreently been devoted to the mirosopi haraterization of neutron and protone�etive masses in in�nite Asymmetri Nulear Matter (ANM) [Bom91, Kub97,Zuo99, Gre01, Hof01, Liu02, Riz04, Ma04, Dal05a, Sat06℄. Either in ANM or innulei, the two speies aquire di�erent e�etive masses. This property is quanti�edby the di�erene ∆m∗(I) = m∗
n(I) −m∗

p(I), where I = (ρn − ρp)/(ρn + ρp) is theisospin asymmetry while ρn and ρp denote neutron and proton densities, respetively.Note that the di�erent e�etive masses m∗ disussed in the following always referin fat to the ratio m∗/m, where m is the bare nuleon mass. The latter is taken tobe the same for neutrons and protons.This e�etive-mass splitting, though, is only one of a wealth of quantities whihan be subjet to omparison between ab-initio preditions and EDF models. Inthis hapter we present results of a lassial yet long unused test: the separation ofin�nite Symmetri Nulear Matter (SNM) potential energy per partile into spin-isospin hannels.We shall also pay partiular attention to ontrolling instabilities (i.e. non-physial spontaneous breaking of spin, isospin and/or spatial symmetries), and or-relate ∆m∗(I) with vetor properties of the funtional. We thus investigate thebehavior of the latter with respet to the breaking of time-reversal invariane andthe onset of spin polarization, looking for an overall onsisteny hek of its spin-isospin ontent. Indeed, suh properties will beome more and more important asone attempts to use full-�edged Skyrme funtionals to study odd-mass nulei, alu-late rotational properties through self-onsistent ranking alulations, or use moregeneral dynamial methods [Ben02℄.This hapter is organized as follows: in setion 3.1 we present the set of Skyrmeparametrizations used and examine basi properties of nulear matter and �nitenulei. From then on, in setion 3.2 we perform a more detailed study of the spin-isospin ontent of the funtionals and of their stability against �nite-size spin andisospin perturbations using response funtions in the random-phase approximation(RPA).3.1 Constraining the isovetor e�etive massAs mentioned in setion 2.1, the nuleon e�etive mass m∗ is a key property hara-terizing the propagation of (quasi)nuleons through the nulear medium [Jeu76℄. Itis a reminder of the non-loality and energy dependene of the nuleon self-energy
Σ(k, ω), themselves originating from the �nite range and non-loality in time andspae of the in-medium e�etive nuleon-nuleon interation. Mean-�eld-like theo-ries of �nite nulei or in�nite matter rely on a quasipartile approximation, and thusinlude only a limited part of the e�ets assoiated with the energy dependene of
Σ(k, ω), while negleting fragmentation of the spetrosopi strength. In this on-text, either mirosopi [Bal99℄ or making use of phenomenologial interations orfuntionals [Ben03b℄, EDF methods do not orrespond to a naive Hartree-Fok the-ory and always amount to renormalizing a ertain lass of orrelations into thee�etive vertex. However, the energy dependene of the self-energy arising from the

http://dx.doi.org/10.1103/RevModPhys.62.801
http://dx.doi.org/10.1016/S0375-9474(01)01136-8
http://dx.doi.org/10.1103/PhysRevC.44.1892
http://dx.doi.org/10.1016/S0370-2693(97)00306-7
http://dx.doi.org/10.1103/PhysRevC.60.024605
http://dx.doi.org/10.1103/PhysRevC.64.045203
http://dx.doi.org/10.1103/PhysRevC.64.034314
http://dx.doi.org/10.1103/PhysRevC.65.045201
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.057
http://dx.doi.org/10.1016/j.physletb.2004.11.004
http://dx.doi.org/10.1103/PhysRevLett.95.022302
http://dx.doi.org/10.1103/PhysRevC.74.011301
http://dx.doi.org/10.1103/PhysRevC.65.054322
http://dx.doi.org/10.1016/0370-1573(76)90017-X
http://dx.doi.org/10.1103/RevModPhys.75.121


3.1. CONSTRAINING THE ISOVECTOR EFFECTIVE MASS 47orrelations only in�uenes the position of the quasi-partile peak energy.Let us reall that our approah of the nulear EDF method is to aim, ultimately,at building funtionals whih reprodue desired observables at the multi-referenelevel (MR-EDF), i.e. �beyond the mean �eld�. We thus have to �leave room� fororretions arising from orrelations added on top of the single-referene (SR) al-ulations whih we use as an exploration tool.Thus, the e�etive mass adjusted at the pure mean-�eld level is not expetedto generate single-partile spetra mathing exatly experimental data extratedthrough binding energy di�erenes from neighboring odd-mass nulei. In partiu-lar, the oupling of single-partile motion to surfae vibrations in losed-shell nuleiis known to inrease the density of states at the Fermi surfae and thus the ef-fetive mass [Ber80, Lit06, Gor03℄. An isosalar e�etive mass m∗
s lying in theinterval 0.7/0.8 in SNM, is able to aount for a good reprodution of both isosalarquadrupole giant resonanes data in doubly losed-shell nulei [Liu76℄ and of single-partile spetra in neighboring ones provided partile-vibration oupling has beenproperly inluded. When the latter oupling is taken into aount, the e�etivemass beomes greater than one for states near the Fermi surfae. Certainly, a lotremains to be done to understand these features mirosopially in more involvedases [Cha06b℄. This is not only true for mid-shell nulei where the oupling to bothrotational and vibrational states an be important, but also for exoti nulei wherethe oupling to the ontinuum beomes ruial and where shape oexistene and/orlarge amplitude motion appear more systematially.In very exoti systems, the isovetor behavior of m∗

p and m∗
n should play an im-portant role. However, so far, no experimental data from �nite nulei has alloweda determination of the e�etive mass splitting as a funtion of neutron rihness.In this ontext, ab-initio alulations of ANM are of great help. Non-relativistiBruekner-Hartree-Fok (BHF) alulations, with or without three-body fore, and,with or without rearrangement terms in the self-energy, predited ∆m∗(I) to besuh that m∗

n ≥ m∗
p in neutron-rih matter, that is, for I ≥ 0. Suh a onlusion wasalso reahed by alulating the energy dependene of the symmetry potential (theLane potential [Lan62℄) within a phenomenologial formalism [Li04a℄. The latterresult was on�rmed by mirosopi Dira-Bruekner-Hartree-Fok (DBHF) alu-lations [Sam05℄. The situation regarding the predition of the e�etive mass splittingwas omplexi�ed due to an apparent ontradition between results obtained fromBHF [Bom91, Zuo99℄ and DBHF alulations [Hof01℄. However, the situation was�nally lari�ed in Refs. [Ma04, Dal05a℄ where the importane of the energy depen-dene of the self-energy and the need to ompare the non-relativisti e�etive masswith the vetor e�etive mass in the relativisti framework [Jam89℄ were pointedout.Thus, the sign of the splitting is rather solidly predited. However, its amplitudeis subjet to a muh greater unertainty. Starting from that observation, the goal ofthe present setion is to study the impat of the e�etive-mass splitting on propertiesof exoti nulei predited by Skyrme-EDF alulations. As far as the e�etive-mass splitting is onerned, one expets onsequenes onto struture properties ofneutron-rih nulei. As a relatively large asymmetry may be neessary to reveal thein�uene of the splitting, data from nulei not yet studied experimentally shouldprovide ruial information in that respet. As the e�etive mass governs the densityof states at the Fermi surfae (together with the spin-orbit and the tensor fores),
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48 CHAPTER 3. NEW CONSTRAINTS FOR THE NUCLEAR EDFthe amplitude of the splitting may in�uene properties suh as masses and singlepartile properties of exoti nulei, the evolution of isotopi shifts aross neutron-rihlosed-shell nulei or shell orretions in superheavy nulei around the (N = 184, Z =
120) island of stability [Ben99a, Kru00, Ben01, Ber01℄. Also, neutron and protonorrelations beyond the mean-�eld should develop rather di�erently depending onthe diretion and amplitude of the e�etive-mass splitting. This ould be true forstati and dynamial pairing orrelations as well as for the oupling to vibrationaland rotational states. Finally, the e�etive mass splitting should leave its �ngerprintonto the harateristis of isovetor vibrational states of di�erent sorts in neutron-rih nulei [Paa05℄.3.1.1 Fitting protoolTrying to keep a oherene, throughout this work, in the way we onstrut Skyrmefuntionals, we take the �tting protool used to de�ne the SLy funtionals [Cha97,Cha98℄ as a basis for the present Study. Also, we pay attention to the fat that anyimproved or omplexi�ed funtional inludes all features validated by the SLy ones.We presently take the SLy5 parametrization as a starting point. Thus, the two-body part of the enter of mass orretion is omitted whereas the J2 terms are fullykept. The spin-orbit term is the standard one, with a single parameter adjusted onthe splitting of the 3p neutron level in 208Pb.Within this general sheme, we have built a series of three new Skyrme interationparametrizations, denoted hereafter f−, f0 and f+. The departures from the SLyprotool onsidered presently are (i) a better ontrol of spin-isospin instabilities viaLandau parameters (ii) the use of two density-dependent zero-range terms [Co04℄(iii) a onstraint on the isovetor e�etive mass, suh that, in neutron-rih systems,
m∗

n < m∗
p for f−, m∗

n = m∗
p for f0 and m∗

n > m∗
p for f+.With two density dependent terms, the ompressibility and the isosalar e�etivemass are no longer bound together and an be hosen independently. However, thisis not diretly used here and an isosalar e�etive mass ofm∗

s = 0.7, lose to the SLy5value, is hosen for the three parametrizations f−, f0, f+. The additional freedombrought about by the seond density-dependent term is only used to adjust moreeasily the high-density part of the PNM EOS (see below). In the end, the onlyparameter subjet to variation between f−, f0 and f+ is the isovetor e�etive mass
m∗

v whih, m∗
s being onstant, drives the splitting ∆m∗(I).In the present work, we use the SLy5 interation as a referene, and inlude aomparison with the LNS parametrization [Cao06℄ whih was also built to maththe splitting of e�etive masses and the neutron matter EOS predited by BHFalulations. The SkP interation [Dob84℄, initially built for the study of pairinge�ets, will be used for a speial purpose in the disussion about instabilities.3.1.2 Elementary properties of studied funtionalsAs we fous on the behavior of e�etive masses m∗

q with isospin asymmetry, we reallthat these quantities are related to the dependene of the energy density funtional,

http://dx.doi.org/10.1103/PhysRevC.60.034304
http://dx.doi.org/10.1103/PhysRevC.61.034313
http://dx.doi.org/10.1016/S0370-2693(01)00863-2
http://dx.doi.org/10.1016/S0375-9474(01)00524-3
http://dx.doi.org/10.1016/j.physletb.2004.12.011
http://www.sciencedirect.com/science/article/B6TVB-3SPXRRX-31/2/0fd25cefa0483e4bc19f3fca8f951d2b
http://www.sciencedirect.com/science/article/B6TVB-3VXH608-K/2/4ed3d61fb51d91f7225238f32f5455b5
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.015
http://dx.doi.org/10.1103/PhysRevC.73.014313
http://www.sciencedirect.com/science/article/B6TVB-4731NN0-11T/2/d9f42856b29824907083e10f3f4929c4


3.1. CONSTRAINING THE ISOVECTOR EFFECTIVE MASS 49Table 3.1: In�nite nulear matter properties of the Skyrme funtionals quoted inthe text. The quantities ρsat and E/A denote the density and energy perpartile at saturation in SNM. The symmetry energy and the ompress-ibility (for symmetri matter) are respetively 32 MeV and 230 MeV forSLy5 and all fx parametrizations. In the ase where m∗
s ∼ 0.7, κs ∼ 0.43,so we have ∆m∗ > 0 if κv & 0.43.Parametrization ρsat E/A m∗

s κv m∗
v ∆m∗SLy5 0.161 -15.987 0.697 0.25 0.800 -0.182

f− 0.162 -16.029 0.700 0.15 0.870 -0.284
f0 0.162 -16.035 0.700 0.43 0.700 0.001
f+ 0.162 -16.036 0.700 0.60 0.625 0.170LNS 0.175 -15.320 0.825 0.38 0.727 0.227SkP 0.170 -16.590 1.030 0.32 0.760 0.418Eqs. C.29�C.32, on kineti densities τq, as
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) (3.1)where ρ0 is the salar-isosalar density and q = +1,−1 respetively for neutrons andprotons. The splitting of e�etive masses, quanti�ed by
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−
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, (3.2)is governed by the isosalar and isovetor e�etive masses
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m

m∗
v

= 1 + 2m
~2 (Cτ

0 − Cτ
1 ) ρ0 ≡ 1 + κv. (3.4)We use the usual onvention for the isovetor e�etive mass, whih stems fromits de�nition through the enhanement fator κv of the Thomas-Reihe-Kuhn sumrule [Boh79℄. However, m∗

v and κv are not isovetor quantities in the sense ofisovetor ouplings of the funtional.In the following, we shall disuss the value of ∆m∗(I) at I = 1, whih we note
∆m∗ in the following, for the sake of brevity. We have

∆m∗

m
=

2(κv − κs)

(1 + κs)2 − (κv − κs)2
, (3.5)suh that ∆m∗ > 0 for κv > κs, or equivalently m∗

v < m∗
s , or Cτ

1 < 0.Bulk properties of fx parametrizations are displayed in Table 3.1. We note that,while the position of the saturation point varies little between our parametrizations
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50 CHAPTER 3. NEW CONSTRAINTS FOR THE NUCLEAR EDF(SLy5 and fx), this onsisteny is lost in the ase of LNS and SkP. These propertiesdepend on the observables used in the �tting proedure. In the ase of LNS, thesaturation point relates to an Extended Bruekner-Hartree-Fok (EBHF) alula-tion [Zuo99℄, prediting values of (E/A)sat and ρsat whih are larger than empirialones. A similar but lesser trend is observed for SkP. In this ase it seems to be orre-lated with the hoie of e�etive masses and their interplay with other parameters ofthe interation. Indeed, binding energies omputed with SkP ompare satisfatorilywith experimental ones, while LNS su�ers in this respet from the lak of readjust-ment of the saturation point on nulear data. As it has been shown in Ref. [Ber05℄,nulear binding energies are highly sensitive to the hoie of the energy at satura-tion, whih is therefore onstrained to a very tight interval if one wants to reproduesuh quantities. This onstraint is espeially tight ompared to the unertainty ofab-initio preditions. Despite the �t of surfae properties (C∆ρ
0 parameter) on a setof nulear data, the auray of binding energies predited by LNS is of the orderof 5%, to be ompared with less than 1% for SLy5.3.1.3 Properties of the nulear matter EOSIt is interesting to note that SLy parametrizations were �tted to PNM EOS withthe idea of improving isospin properties of the funtionals. One onsequene wasto generate funtionals with ∆m∗ < 0, in opposition to ab-initio preditions. Onthe other hand, older funtionals suh as SIII [Bei75a℄ and SkM∗ [Bar82b℄, whihwere not �tted to PNM, had ∆m∗ > 0. The same exat situation happens forthe Gogny interation [Cha06a℄. Thus, improving global isovetor properties (EOS)seems to deteriorate those related to single-partile states (m∗
v) with urrently usedfuntionals. This an be better understood by examining the expressions for SNMand PNM EOS:
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0 . (3.7)If Cρ

t (ρ0) oe�ients only ontain one low power of the density (∝ ρ
1/6
0 ), thelatter in�uenes low-density parts of the EOS more than high-density ones. Thee�etive mass term then determines the high-density part of the EOS. In SNM,this translates into the well-known relation between m∗

s and the inompressibility
K∞ [Cha97, Cha98℄. In the ase of PNM, the EOS above ρsat is then mostly �xed bythe term proportional to Cτ

0 + Cτ
1 in Eq. (3.7), and any attempt to use the densitydependene to ounterat its e�ets, results in a very strong onstraint on the latter.This in turn degrades the behavior of the funtional at and below saturation densityand the �t to properties of �nite nulei. We reall at this point that the ondition

∆m∗ > 0 orresponds to Cτ
1 < 0, whih drives the high-density PNM EOS downand explains why usual Skyrme funtionals predit either a ollapse of the PNMEOS if ∆m∗ > 0, or, like the SLy funtionals �tted to PNM EOS, the wrong signof the e�etive mass splitting in neutron rih matter.
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Figure 3.1: SNM and PNM EOS as given by Skyrme funtionals presently dis-ussed (see text), ompared with VCS results by Akmal et al. [Akm98℄(×: PNM, +: SNM).If Cρ
t (ρ0) oe�ients ontain an additional density dependene with a higherpower, the previous disussion does not apply: using two density-dependent termsin the funtional (∝ ρ

1/3
0 ; ρ

2/3
0 ) [Co04℄ allowed us to onstrut (f−, f0, f+) witha good �t to PNM EOS, a free hoie of e�etive masses and satisfatory nulearproperties.The previous disussion already shows the type of problems and informationarising from our attempt to improve on the �tting protool of SLy funtionals byusing more inputs from ab-initio alulations. Now, Fig. 3.1 shows SNM and PNMEOS as obtained from (f−, f0, f+, SLy5) and as predited by Variational ChainSummation (VCS) methods [Akm98℄. At this point, one an see that the fourparametrizations (f−, f0, f+, SLy5) reprodue both mirosopi EOS with the sameauray. However, it remains to be seen whether or not this translates into identialglobal spin-isospin properties and into similar nulear struture properties.3.1.4 E�ets on properties of nuleiWe now study the e�ets of the variation of the isovetor e�etive mass on seletedproperties of spherial nulei. We start with HF single-partile energies, then bindingenergies, ending with a short sum-rule based analysis of isovetor giant resonanes.For omputations of open-shell nulei, we use, in the partile-partile hannel, aloal funtional with a density dependent form fator (mixed surfae and volume,i.e. c = 1/2 in Eq. (2.98)). The loal HFB equations are renormalized following theproedure developed by Bulga and Yu.The strength V0 is adjusted to the mean pairing gaps of six semi-magi nulei(neutron gaps in 120Sn, 198Pb, 212Pb and proton gaps in 92Mo, 144Sm and 212Rn). In
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Figure 3.2: Single-partile energies [MeV℄ in 132Sn and 208Pb omputed with indi-ated interations. Thik lines indiate the Fermi level εF .this proedure we ompute theoretial spetral gaps de�ned as
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]
, (3.8)

∆kk being a pairing �eld matrix element between anonial states and uk, vk the or-responding quasipartile amplitudes, and adjust eah of them upon an experimentalgap extrated through a �ve point di�erene formula from masses of neighboringnulei, as suggested in Ref. [Dug01b℄.Single-partile energiesE�etive masses are known to ontrol the average density of single-partile states.It is thus interesting to hek to what extent suh statement applies to neutron-rih nulei when varying m∗
v. In this part of the study, we are mainly interested inevaluating the hange in the single-partile energies generated by the funtional fordi�erent splittings and not diretly by a omparison with experimental results.Single-partile energies in 132Sn and 208Pb are plotted on Fig. 3.2. The generaltrend followed by neutron states with inreasing ∆m∗ (from f− to f+) orrespondsto an inrease of the density of neutron states: they tend to ome loser to theFermi energy εF; notable exeptions being both neutron 1i levels in 208Pb. Theopposite behavior is observed in proton levels, whih spread away from εF withinreasing ∆m∗ (exept for the proton 1h11/2 level). However, these trends are rathermarginal, whih an be linked with the moderate bulk asymmetry of these nulei(I = (N − Z)/A = 0.24 for 132Sn and 0.21 for 208Pb). This moderate asymmetrymeans that the isovetor term in the de�nition of the e�etive mass (Eq. (3.1)) isweakly probed.Let us therefore examine similar spetra for more neutron-rih nulei, i.e. 78Ni(I = 0.28, experimentally observed [Hos05℄) and 156Sn (I = 0.36). The nuleus 156Snis used as an example of an extremely asymmetri system, even beyond the reahof planned radioative beam failities [sp206℄. We observe on the rightmost panelof Fig. 3.3 that the e�et of ∆m∗ on proton single-partile energies at Z = 50 ismore pronouned in 156Sn than it was in 132Sn. The modi�ation of level densitiesappears quite learly in 78Ni also, while neutron levels around εF in 156Sn are shiftedin a slightly more disordered way.High-ℓ/low-n orbitals (n, ℓ being respetively the prinipal and orbital quantumnumbers) are in fat more sensitive to variations of the spin-orbit �eld than to ∆m∗
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Figure 3.3: Same as Fig. 3.2 in 78Ni and 156Sn.beause of their spatial loalization near the surfae of the nuleus. The spin-orbit�eld is modi�ed between funtionals by the interplay between J2-term oe�ientsand e�etive mass parameters, sine these both depend on the same non-loal termsof the Skyrme interation [Dob06℄. The spin-orbit interation (ρ∇ · J terms in theEDF), whih is subjet to a slight readjustment, does a�et the spetra as well.We observed, overall, a marginal inrease of the spin-orbit �eld strength when goingfrom f− to f+. This implies that while the global e�et of modifying the level densityis quite learly observed when we alter the e�etive mass parameters, details of thespetrosopy are at least as sensitive to the terms onneted to the spin-orbit �eld.Pairing gapsAs an example, neutron spetral gaps are plotted on Fig. 3.4 for Sn and Pb series,up to the drip line, against experimental gaps extrated through �ve-point massformulas [Dug01a, Dug01b℄. The slight hange in the level density translates into amodi�ation of the pairing gaps: a higher neutron e�etive mass (f+) orrespondsto a denser spetrum and higher gaps. The e�et, whih inreases with asymmetry,remains however very small, beause of the limited alteration of single-partile levelsseen on Figs. 3.2 and 3.3.In the end, the e�et is negligible and would be overwhelmed by any othermodi�ation of the partile-hole part of the funtional. For example, variations inthe detailed level sheme, ould alter the shape of gaps. The pairing funtionalitself is a subjet of urrent debate regarding its density dependene, regularizationsheme and �nite-range orretions, while the hoie of observables to be ompared(de�nition of theoretial an experimental gaps) an be improved. Most of theseissues will be addressed in the following of this manusript.Binding energiesLet us now study the e�et of the aforementioned variation of level densities andpairing gaps on binding energies. On Fig. 3.5 we show the binding energy residuals
Eth −Eexp for Sn and Pb isotopes and N = 50 and N = 82 isotones. The evolutionof Eth −Eexp along suh hains is usually plagued by an underbinding of open-shellnulei with respet to losed-shell ones whih translates into an arh shape of E-residual urves. Although the variation of m∗

v seems to impat the arhes, again, thee�et is negligible ompared to the absolute value of deviations from experiment,exept in the N = 82 series where open-shell nulei tend to be more underbound in
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Figure 3.4: Neutron spetral gaps omputed in Sn (bottom) and Pb (top) hainswith parametrizations f−, f0, f+, as a funtion of asymmetry. Experi-mental ∆(5) gaps extrated from masses [Aud03℄ are plotted with errorbars.the ase of f+.Isovetor giant resonanesThe isovetor e�etive mass is usually de�ned from the energy-weighted sum rule m1(the Thomas-Reihe-Kuhn sum rule [Boh79℄) of the isovetor giant dipole resonane(IVGDR):
m1(E1 ; T = 1) =

~2

2m

NZ

A
(1 + κv) =

~2

2m

NZ

A

m

m∗
v

, (3.9)whih exhibits its link with the strength distribution of isovetor olletive modes.We perform here a shemati overview of dynamial properties of f−, f0, f+ by meansof results derived in Ref. [Col95℄. Thanks to RPA sum rules similar to Eq. (3.9),it is possible to �t an aurate parametrization of the energy E1 = m1/m−1 ofisovetor giant resonanes in a given nuleus as a funtion of Skyrme parameters.Results for GDR (L = 1) and isovetor giant monopole (IVGMR, L = 0) modes in
208Pb are shown in Table 3.2, ompared to experimental energies (respetively fromRefs. [Rit93℄ and [Ere86℄ and orreted, as suggested in [Col95℄, for the shift dueto the spreading of the strength by damping e�ets: 2 MeV for GMR, 1 MeV forGDR).While f− predits both energies lower than experimental ones, values for f0 and
f+ are ompatible with experiment for the L = 0 mode, and only f+ approahes theexperimental value for the L = 1 mode. This suggests that values of κv orrespond-ing to a positive value of ∆m∗ (equal to, or higher than 0.43 in our ase) betterdesribe isovetor dynamis than lower values.As a summary, the e�et of the splitting of neutron and proton e�etive masseswith isospin asymmetry on single-partile energies, pairing gaps and binding en-
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Figure 3.5: Binding energy residuals omputed with interations f−, f0 and f+ forsemi-magi series of nulei, as indiated.
Table 3.2: E1 energies of 208Pb isovetor giant resonanes omputed thanks to asum-rule parametrization (see text), ompared to experimental energyentroids. Experimental unertainties are as indiated. We infer from�gures in Ref. [Col95℄ the auray of theoretial energies omputed withthe �ts in that referene, with respet to full RPA alulations, to be ofthe order of 1 MeV.

κv E1(L = 0, T = 1) E1(L = 1, T = 1)

f− 0.15 24.55 12.68
f0 0.43 26.43 13.60
f+ 0.60 27.25 14.01exp. entroid 26.3 ± 1.1 14.3 ± 0.1
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56 CHAPTER 3. NEW CONSTRAINTS FOR THE NUCLEAR EDFergies, is notieable and onsistent, yet limited and thus hardly meaningful whenompared to the overall (in)auray of the preditions made by the urrent nulearEDF. In fat, the main reason for not seeing a dramati modi�ation of EDF pre-ditions when altering ∆m∗ is the limited amount of strongly asymmetri nulearmatter at high enough density in the ground state of nulei with realisti isospin asalready suggested in [Gor03℄. This makes the e�et of the isovetor e�etive massrather marginal. Giant isovetor resonanes are ertainly more fruitful to seek foran e�et of a modi�ation of ∆m∗. Indeed, a sum-rule-based analysis of isovetorolletive modes allows a slightly more lear-ut onlusion, with a tendeny to favor
∆m∗ & 0. The onlusion of the phenomenologial study done in this setion is that,while no observable listed here strongly ask for ∆m∗ > 0, there is no reason to omitthis onstraint in future funtionals, sine, as already stated, ab-initio preditionsfor the sign of ∆m∗ are solid. There remains to hek the intrinsi onsisteny ofthe funtional in terms of other ab-initio inputs and stability riteria, whih, as willbe disussed below, we have found to be a onern.3.2 Further study of in�nite matter3.2.1 Separation of the EOS into (S, T ) hannelsIn this setion, we disuss the ontributions to the potential energy of SNM fromthe four two-body spin-isospin (S, T ) hannels. We ompare our results with thosepredited by BHF alulations [Bal06℄ using the Argonne v18 [Wir95℄ two-bodyinteration and a three-body fore onstruted from meson exhange theory [Gra89,Lej00℄.Using projetors on spin singlet and triplet states, respetively

P̂S=0 =
1

2
(1 − P̂σ), P̂S=1 =

1

2
(1 + P̂σ), (3.10)where P̂σ is the spin-exhange operator, and similar expressions for isospin projetors

P̂T using the isospin exhange operator P̂τ , yields the potential energy in eah (S, T )hannel
EST

pot =
1

2

∑

kl

〈
kl
∣∣∣V P̂SP̂T

∣∣∣ kl
〉
ρkkρll, (3.11)where the sum on k, l runs over all HF single-partile eigenstates whereas ρkk des-ignates the diagonal one-body density matrix. The notation |kl〉 denotes a non-normalized but antisymmetrized two-body state. In order to ompare di�erentmany-body approahes (ab-initio or EDF), we use the �potential energy� whihrefers to the total binding energy from whih is subtrated the kineti energy of thenon-interating partile system.Note that due to the zero-range harater of the Skyrme interation, togetherwith at most seond-order derivative terms, only L = 0, 1 partial waves our ex-pliitly whereas higher partial waves ontribute to the ab-initio EOS. We �nd, for
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(
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)2/3

ρ
5/3
0 , (3.15)where (ti, xi) are oe�ients of the Skyrme interation as de�ned in Eq. (2.78).The oe�ients ourring in Eqs. (3.12)�(3.15) stem from the antisymmetrizationondition (−)L+S+T = −1, the relative angular momentum L being even for t0i and

t1 (k2) terms and odd for t2 (k′ ·k) terms. The expression of the potential energy inhannels (S, T ) = (0, 0) and (1, 1) is very simple sine only the t2 term ontributes.Fore vs. funtionalPrevious statements, however, apply only to the ase where the EDF is omputed asthe expetation value of an (antisymmetrized) e�etive interation. In the more gen-eral ase, it is still possible to de�ne (S, T ) hannels starting from any Hartree-likefuntional. Indeed, the funtional an always be expressed in terms of an e�etivenon-antisymmetrized vertex and one an still plug a projetor in the alulation ofits matrix elements. In the pure funtional ase, there is however no more learde�nition of partial waves, and spin-isospin hannels emerge from the balane be-tween oe�ients of (iso)salar/(iso)vetor ouplings (see appendix B for the formalde�nition).As long as there are not enough inputs to onstrain all degrees of freedom of ageneral funtional, the e�etive-interation approah remains as an aeptable path,and hene shall be used in the following.ResultsResults are plotted against BHF preditions on Fig. 3.6. First, one an observe thatresults are rather sattered. Seond, the main soure of binding, from (S, T ) = (0, 1)and (1, 0) hannels, is not well desribed and the detailed saturation mehanism isnot aptured. It is lear that, even though all four funtionals reprodue perfetlyPNM and SNM EOS, they do not have the same spin-isospin ontent, and that thelatter is in general rather poor. Thus, �tting the global EOS is an important elementbut it does not mean that spin-isospin properties of the funtional are �xed oneand for all. One needs to do more and �tting ab-initio preditions of E(S,T )
pot seemsto be a good idea in the near future. However, one needs to make sure that thetheoretial unertainty of the data used is smaller than the expeted auray of the
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Figure 3.6: Energy per partile in eah (S, T ) hannel for SNM, as a funtion ofdensity. Crosses refer to the BHF alulations [Bal06℄.�t to them. This alls for preditions from other ab-initio methods using the sametwo-body plus three-body Hamiltonian. Then, those ab-initio alulations shouldbe repeated using di�erent sets of two-body plus three-body Hamiltonians in orderto provide a theoretial error bar on those preditions.The most obvious disrepany appears in hannels (0, 0) and (1, 1) where Skyrmeand BHF data have opposite signs above saturation density. The SLy5 parameter setshows a partiular behavior in hannel (1, 1) due to the hoie of x2 = −1 to preventferromagneti instabilities in PNM. Note that in the Skyrme funtional, these twohannels ontain ontributions, of the density-independent P -wave term only. Theupper-right panel of Fig. 3.6 points out the tendeny of Skyrme parametrizations tobe attrative in polarized PNM, and hene to ause a ollapse of its EOS at highdensity. At lower densities, BHF data show a distintive behavior, being slightlyattrative below ρsat and repulsive above. This feature annot be mathed by thestandard Skyrme funtional whih exhibits a monotonous behavior as a funtion ofdensity in this hannel, regardless of the value of (t2, x2).It is also worth notiing that the failure in hannel (1, 1) beomes more and moreprominent as one makes ∆m∗ loser to the ab-initio preditions (parametrization
f+). The e�etive masses being governed by the momentum-dependent terms ofthe interation, it is not a surprise that the modi�ation of the former impatshannels (0, 0) and (1, 1). What hanges in the oe�ients entering Eqs. (3.12-3.15) stems only from the variation of m∗

v and the assoiated rearrangement ofparameters in the funtional, most notably the C∆ρ
0,1 oe�ients losely related tosurfae and surfae-symmetry energies. The relatively tight requirements on the



3.2. FURTHER STUDY OF INFINITE MATTER 59latter imply that the four parameters of the non-loal terms in the standard Skyrmeenergy funtional would be dramatially overonstrained if we were to add the (S, T )-hannel deomposition in the �tting data.In the end, the rather poor properties of the funtional in hannels (0, 0) and
(1, 1), the degradation of the latter as the e�etive mass splitting is improved, theidea of using ab-initio (S, T ) ontributions in the �t, all, at least, for a re�nementof the odd-L term in the sense either of a density dependene or of a higher-orderderivative term. The latter being prone to numerial instabilities and interpreta-tion problems, a density-dependent k′ · k term remains as one of the next poten-tial enhanements to be brought to the Skyrme EDF (density-dependent derivativeterms have been onsidered already, but with a fous on even-L terms of the form
t4(k

2 + k′2)ρβ
0 [Far97℄).Phenomenologial onstraints on gradient terms are mainly related to the surfaeof nulei, i.e. low-density regions. One an expet that, to �rst order, BHF data inhannel (S, T ) = (1, 1) an be mathed with an extended funtional while retaininga good agreement with other (experimental) data. It is less lear in hannel (0, 0)but further exploration of the extended parameter spae may bring Skyrme andBHF data in better agreement.3.2.2 RPA linear response funtions and the diagnosis of in-stabilities1We attempt here to study general stability onditions of SNM with respet to �nite-size density, spin, isospin and spin-isospin perturbations. Our basi ingredient isthe RPA response funtion [Fet71℄ derived analytially by Garia-Reio et al. inRef. [GR92℄ for the entral part of the Skyrme interation. Reent work was doneto inorporate the e�et of the spin-orbit part, whih was found to be quite neg-ligible [Mar06℄, and will be omitted in the present work. One starts by de�ning aone-body perturbing operator

Q(α) = e−iωt
∑

a

eiq·ra Θ(α)
a , (3.16)where a indexes partiles in the system. The one-body spin-isospin operators Θ

(α)
aare de�ned as

Θss
a = 1a, Θvs

a = σ̂a, Θsv
a = τ̂a, Θvv

a = σ̂aτ̂a, (3.17)where we use the denomination of (iso-)salar (s) and (iso-)vetor (v) hannels in or-der to distinguish the partile-hole spin-isospin hannels from the two-body-oupled(partile-partile) (S, T ) hannels disussed in the previous setion. In Eq. (3.17)and the following, the �rst (seond) subsripts denotes the spin (isospin). We then1This hapter is an adapted and orreted version of Ref. [Les06℄. Indeed, an an error was madein the derivation of the RPA residual interation, whih, when orreted, yields an additionalontribution to the terms disussed. The magnitude of this ontribution (and its variation) issmaller than the one disussed but not ompletely negligible. The quantitative results are modi�edin a way whih does not a�et the validity of the method proposed for diagnosing �nite-sizeinstabilities. Details of the disussion have been updated aordingly.

http://dx.doi.org/10.1016/S0375-9474(96)00453-8
http://dx.doi.org/10.1016/S0003-4916(05)80003-X
http://dx.doi.org/10.1103/PhysRevC.74.015805
http://link.aps.org/abstract/PRC/v74/e044315


60 CHAPTER 3. NEW CONSTRAINTS FOR THE NUCLEAR EDFstudy the response to eah type of perturbation separately through the responsefuntions
Π(α)(ω,q) =

1

Ω

∑

ν

|〈ν|Q(α)|0〉|2
(

1

ω −Eν0 + iη
− 1

ω + Eν0 − iη

)
, (3.18)at the RPA level, where Ω stands for a normalization volume and |ν〉 is an exitedstate of the system, Eν0 being the orresponding exitation energy. Sine the entralresidual interation does not ouple the hannels de�ned through Eq. (3.17) in SNM,we an indeed onsider eah hannel separately.The response funtion Π(α) an be seen as the propagator of the olletive per-turbation, or polarization propagator, i.e. the positions of its poles in the (q, ω)plane yield the dispersion relation of the mode. In this formalism, the onset of anunstable mode is marked by the ourrene of a pole in Π(α) at ω = 0, orrespondingto zero exitation energy. Suh a pole marks the transition between stable (with ouronvention, Π(α) < 0) and unstable (Π(α) > 0) domains. Unstable modes of in�nitewavelength (q = 0) are those traditionally disussed in terms of Landau parameters.A pole at �nite q haraterizes a system whih is unstable with respet to the ap-pearane of a spatial osillation of a given type (density, spin, isospin or spin-isospin)with a given wavelength λ = 2π/q. In unstable domains, an imaginary-energy modeappears.The evaluation of response funtions alls for the residual interation V̂ ph, de�nedas the seond-order funtional derivative of the energy with respet to the densitymatrix. Its momentum-spae matrix elements an be written, using total momentumonservation, as [GR92℄:

V̂ ph(q1,q2,q) = 〈q1 q2 + q| V̂ ph |q1 + q q2〉,
= Ŵ1(q) + Ŵ2(q) (q1 − q2)

2, (3.19)with
Ŵ1(q) =

1

4
[ W ss

1 (q) +W vs
1 (q) σ̂1 · σ̂2 +W sv

1 (q) τ̂1 ◦ τ̂2
+ W vv

1 (q) σ̂1 · σ̂2 τ̂1 ◦ τ̂2 ], (3.20)and a similar expression for Ŵ2. We �nd, as an expression for W1 funtions (seealso appendix C.3),
W ss

1 (q)

4
= 2Cρ,0

0 + Cρ,γ
0 (γ + 2)(γ + 1)ργ

0 + Cρ,γ′

0 (γ′ + 2)(γ′ + 1)ργ′

0

−
[
2C∆ρ

0 +
1

2
Cτ

0

]
q2, (3.21)

W vs
1 (q)

4
= 2Cs,0

0 + 2Cs,γ
0 ργ

0 + 2Cs,γ′

0 ργ′

0 −
[
2C∆s

0 +
1

2
CsT

0

]
q2, (3.22)

W sv
1 (q)

4
= 2Cρ,0

1 + 2Cρ,γ
1 ργ

0 + 2Cρ,γ′

1 ργ′

0 −
[
2C∆ρ

1 +
1

2
Cτ

1

]
q2, (3.23)

W vv
1 (q)

4
= 2Cs,0

1 + 2Cs,γ
1 ργ

0 + 2Cs,γ′

1 ργ′

0 −
[
2C∆s

1 +
1

2
CsT

1

]
q2, (3.24)
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3.2. FURTHER STUDY OF INFINITE MATTER 61where we split the density-dependent oupling onstants Cρ
t (ρ0) and Cs

t (ρ0) followingthe model Cρ
t (ρ0) = Cρ,0

t + Cρ,γ
t ργ

0 + Cρ,γ′

t ργ′

0 , and for W2 funtions,
W ss

2 (q)

4
= Cτ

0 ,
W vs

2 (q)

4
= CsT

0 ,

W sv
2 (q)

4
= Cτ

1 ,
W vv

2 (q)

4
= CsT

1 . (3.25)Given the above expression for the residual interation, one an alulate the re-sponse funtion, whih reads
Π(α)(ω,q) = 4Π0


 1 −W

(α)
1 Π0 − 2W

(α)
2 k2

F

(
q2 − ν2

1 − m∗k3

F

3π2 W
(α)
2

)
Π0

+ 2W
(α)
2 k2

F(2q2 Π0 − Π2) (3.26)
+ (W

(α)
2 k2

F)2

(
Π2

2 − Π0Π4 + 4q2ν2Π2
0 −

2m∗kF

3π2
q2Π0

) 

−1

,where q = q/2kF, ν = ωm∗
s/qkF and Π0,2,4 are generalized Lindhard funtions, seeRef. [GR92℄.As already said, the limit q → 0 orresponds to perturbations of in�nite wave-length, keeping the system homogeneous. In this limit, the residual interation isuniquely determined by Landau parameters Fl, F

′
l , Gl, G

′
l, with l = 0, 1, and wellknown stability onditions are obtained under the form [Mig67℄:

1 +
Xl

2l + 1
> 0, (3.27)whereXl represents any of the Landau parameters. We have used this riterion in the�t of our parametrizations fx, ensuring that no spin or spin-isospin instability wouldour below 2ρsat. We observe that, from the point of view of Landau parameters,the most ritial hannel is the vetor-isovetor one, with assoiated instabilities atdensities as low as 2ρsat (see the upper-right panel of Fig. 3.9). This behavior islinked to the attrative harater of the funtional in hannel (S, T ) = (1, 1) whihgives rise to a ollapse of spin-polarized PNM, and aordingly, a vanishing spin-isospin symmetry energy. Therefore, better reproduing the deomposition into

(S, T ) hannels of EOS obtained from ab-initio methods is not only a matter ofmirosopi motivation, but also a neessity to avoid unwanted instabilities.Beyond in�nite-wavelength instabilities, we also aim at demonstrating that amore general treatment is needed to fully desribe and ontrol unstable modes whiharise in the Skyrme EDF framework. Thus, ontributions to the residual interationoming from funtional terms of the form ρ∆ρ are zero for q = 0, whereas suhterms drive �nite-size instabilities.Indeed, we have observed that existing (SkP) or new parametrizations builtwith a high value of κv in order to reprodue the mirosopi splitting of e�etivemasses, tend to spatially separate protons from neutrons in spherial mean-�eldalulations, where enough iterations lead to states with strongly osillating densitiesand a diverging energy. Following a preliminary phenomenologial reasoning, weould relate this e�et to the C∆ρ
1 ρ1 ∆ρ1 term in the funtional, as this term an

http://dx.doi.org/10.1016/S0003-4916(05)80003-X


62 CHAPTER 3. NEW CONSTRAINTS FOR THE NUCLEAR EDFTable 3.3: Values of the e�etive mass splitting (in nuleon mass units), and Cτ
1 and

C∆ρ
1 oe�ient, in MeV fm5.

f− SLy5 f0 f+ LNS SkP
∆m∗ -0.284 -0.182 0.001 0.170 0.227 0.418
Cτ

1 22.9 23.8 -0.2 -22.0 -19.5 -41.9
C∆ρ

1 5.4 16.7 21.4 29.4 33.75 35.0energetially favor strong osillations of the isovetor density ρ1 whih arise in thease of suh a spatial n-p separation.Moreover, Eqs. (3.21-3.25) show that suh a term an yield an attrative ontri-bution to the residual interation in the ase of a short-wavelength (high q) pertur-bation. We found empirially that parameter sets for whih this instability arises areharaterized by a high value of C∆ρ
1 , that is C∆ρ

1 & 30. However, the term propor-tional to q2 in the expression for the residual interation ontains ontributions fromboth the isovetor gradient and e�etive mass (Cτ
1 ) terms, indiating that ∆m∗ mayalso have a diret e�et on the phenomenon, whih is less intuitive. As seen fromTable 3.3, these parameters are strongly orrelated together and with the e�etivemass splitting ∆m∗ in suh a way that for more positive splitting orresponds tomore negative Cτ

1 (whih follows from the de�nition of e�etive masses, Eq. (3.1))and more positive C∆ρ
1 . Given the weighting of both ontributions to the residualinteration, we see that it is the attrative (and destabilizing) one from the gradientterm whih dominates. The e�et of the isovetor e�etive mass alone, when goingtowards mirosopi values, is a stabilizing one, and the sole rearrangement of theisovetor gradient term is the ause of the fat that a positive splitting, as requiredby ab-initio preditions, tends to favor instabilities.Whereas with our �tting protool we were unable to provide both a fully on-verged (and hene physially meaningful) and learly unstable funtional to illustratethe previous statements, we found that ertain funtionals available in the litera-ture present the aforementioned behavior. For example, onvergene problems havearisen (and have already been pointed out in another study [Ter07℄) for the SkP pa-rameter set [Dob84℄. The nature of the instabilities disussed here is illustrated onthe left panels of Fig. 3.7, where neutron and proton densities are plotted at variousstages of exeution of a self-onsistent iterative proedure with SkP in 56Ni. We seethat strong, opposing osillations of neutron and proton densities are formed, andsteadily inrease with iterations. Suh a behavior happens after a seemingly on-verged situation for whih the relative energy variation is small but almost onstantover a large number of iterations and the evolution of the energy is monotonous.The study of the linear response funtion in the salar-isovetor hannel allowsus to provide a more quantitative ground to the previous observation. By plottingritial densities (lowest density ρ of ourrene of a pole in Π(α)(ω = 0, q)) for agiven q on Fig. 3.8, we see that these ritial densities an be lower for q ≈ 2.5 to

3 fm−1 than for q = 0, reahing down to about 0.22 fm−3, whih is quite near to thesaturation density. This is the ase for SkP and LNS, with SkP having also lowerritial densities at lower values of q. Aordingly, SkP is the most prone to a lakof onvergene in HF alulations.

http://dx.doi.org/10.1103/PhysRevC.76.044320
http://www.sciencedirect.com/science/article/B6TVB-4731NN0-11T/2/d9f42856b29824907083e10f3f4929c4


3.2. FURTHER STUDY OF INFINITE MATTER 63

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 0  1  2  3  4  5

ρ n
(r

) 
[f

m
-3

]

r [fm]

56Ni, n

SLy5
SkP/400 
SkP/600 
SkP/650 
SkP/690 

 0  1  2  3  4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

ρ p
(r

) 
[f

m
-3

]

r [fm]

40Ca, n

SLy5
LNS/400
LNS/600
LNS/650
LNS/700

0.00

0.05

0.10

0.15

0.20

0.25

0.30

ρ n
(r

) 
[f

m
-3

]

56Ni, p
0.00

0.05

0.10

0.15

0.20

0.25

0.30

ρ p
(r

) 
[f

m
-3

]

40Ca, p

Figure 3.7: Neutron and proton densities in entral regions of 56Ni (left panels)and 40Ca (right panels) plotted for a fully onverged omputation usingthe SLy5 interation (solid line; relative variation of energy betweeniterations less than 10−14) and along a series of iterations done with SkP(for 56Ni) and LNS (for 40Ca). The number of iterations orresponding toeah urve is indiated in key. In both ases the ollapse happens after aseemingly onverged situation (∼ 10−9 relative energy variation, steadyover a large number of iterations indiating a nearly linear evolution ofthe energy), whih an be mistaken for an energy minimum if too loosea onvergene riterion is used.
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3.2. FURTHER STUDY OF INFINITE MATTER 65through response funtions onstitutes an aurate tool. The ritial density (and itsproximity to ρsat, keeping in mind that values whih yield instabilities in alulationsof �nite nulei have been here seen to reah 0.22 fm−3) appears as a good measureof the gravity of the problems one might enounter in �nite nulei. Although theatual ourrene of instabilities is subjet to details of the numerial treatment, itis now lear that their origin an be traed bak to the hoie of parameters in thefuntional itself.Nevertheless, even if a funtional does not display lear instabilities but onlyspurious soft olletive modes, onvergene di�ulties shall arise in SR-EDF al-ulations while suh a mode will translate into a non-physial low-lying spetrumin a multi-referene framework. This an then yield exessive orrelation energiesif one systematially inludes orrelations in the ground state e.g. in (Q)RPA orGCM-based methods. One should thus make sure that no spurious (even remotely)soft mode ours at saturation density in order to prevent suh problems.Having demonstrated the importane of �nite-size instabilities, let us go bakto disussing our original set of funtionals and perform a generalization to otherspin-isospin hannels.Critial densities are plotted on Fig. 3.9 for the four hannels de�ned in Eq. (3.17).The upper-left panel shows that, while no unstable mode ours at q = 0 thanks to�tting PNM EOS to relatively high density, salar-isovetor instabilities may hap-pen little above ρsat for q ≈ 2.5 to 3 fm−1. In addition, there is a lear trend forlowering the ritial density when ∆m∗ is inreased, in agreement with the prelimi-nary phenomenologial reasoning on C∆ρ
1 . The fat that ritial densities for SLy5lie in the lower range of values obtained with our new parametrizations, despite thenegative value of ∆m∗ it exhibits, must then be attributed to the slightly di�erent�tting protool involving a single density-dependent term.Spin hannels have been taken are of during the �t thanks to Landau param-eters, whih desribe the residual interation at q = 0. The result an be seen onthe right panels of Fig. 3.9, where the ritial densities of instability are plotted forspin-�ip modes (isosalar and isovetor). As previously stated, the most dangerous

q = 0 instability is found in the vetor-isovetor hannel. By looking at the upper-right panel of Fig. 3.9 one an see that the ritial density is however inreased athigher q for our parameter sets.An even more prominent �nite-size e�et an be observed in the isosalar spin-�ip hannel (lower-right panel of Fig. 3.9) where, while no instability ours at q = 0as in the ase of most Skyrme funtionals, �nite-size instabilities our at densitieslower than observed in the salar-isovetor hannel for pathologial parametrizations.These instabilities are linked to the C∆s
0 s0 · ∆s0 term whih makes the vetor-isosalar Vp−h attrative at large q whereas it is repulsive at q = 0. Values of

C∆s
0 , indeed, are as high as 45.85 and 47.32 for SLy5 and f−, respetively. As aonsequene, one an expet divergenes in alulations of odd or rotating nuleiwith the latter funtionals if the aforementioned terms are inluded. In this ase,though, inreasing ∆m∗ pushes the ritial density farther from ρsat: f0 and f+funtionals are thus the only ones to be free from instabilities near ρsat, f0 being onthe edge of the dangerous region and f+ well above.The previous disussion is valid if the full time-odd funtional is taken into a-ount. This must be stressed sine s0 · ∆s0 terms, whih drive the most ritial,�nite-size instabilities, have never been inluded in self-onsistent mean �eld alu-



66 CHAPTER 3. NEW CONSTRAINTS FOR THE NUCLEAR EDF

0.00

0.16

0.32

0.48

0.64

 0  1  2  3  4

s.
-i

so
s.

 ρ
c 

[f
m

-3
]

q [fm-1]

s.-isos.

f-
f0
f+

SLy5

 0  1  2  3  4
0.00

0.16

0.32

0.48

0.64

v.
-i

so
s.

 ρ
c 

[f
m

-3
]

q [fm-1]

v.-isos.

0.00

0.16

0.32

0.48

0.64

s.
-i

so
v.

 ρ
c 

[f
m

-3
]

s.-isov.

0.00

0.16

0.32

0.48

0.64

v.
-i

so
v.

 ρ
c 

[f
m

-3
]

v.-isov.

Figure 3.9: Same as Fig. 3.8, for all spin-isospin hannels. The lower-left panel showsthe region of spinodal instabilities below ρsat. The domain of q overedin this ase determines the size of strutures formed, while the regionbetween 0.1 and 0.16 fm−1 appears as metastable.lations employing the SLy series of parametrizations. However, RPA alulations areommonly performed by omputing the residual interation matries diretly fromthe antisymmetrized interation (plus rearrangement terms), whih amounts to im-pliitly inluding the ontribution to Vp−h from all terms in the funtional [Ter05a℄.The latter �ndings �nalize the piture of a ompetition between spin and isospininstabilities. All in all, the strong interplay between the various quantities linked tothe four parameters of the non-loal terms in the Skyrme interation does not seemto allow for a fully satisfatory ompromise between stability riteria and ab-initioonstraints on ∆m∗. Again, we see that the non-loal part of the Skyrme interationis too simplisti to ontrol all relevant properties. An extension with density- andmomentum-dependent terms, allowing the �ne-tuning of the funtional at variousdensities, ombined with the formal heks advoated in this paper, ould prove tosigni�antly improve the preditive power of Skyrme EDF.3.3 SummaryWe have built a series of Skyrme energy density funtionals to study the e�etof a variation of the splitting of neutron and proton e�etive masses with isospinasymmetry on properties of this EDF model. Thanks to the use of a seond density-dependent term in the underlying e�etive interation, we ould over a wide rangeof e�etive mass splittings (∆m∗) with a satisfatory �t to nulear properties. In-deed, nulear observable predited by our funtionals f−, f0 and f+ show a remark-
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3.3. SUMMARY 67able similarity, pointing out that spetra, pairing gaps and masses of bound nuleiare weakly sensitive to ∆m∗, mostly due to their relatively low isospin asymme-try. Although observable were a�eted in a notieable and onsistent way, no learimprovement was seen when altering ∆m∗ either way.Beyond this phenomenologial study, we have ompared the splitting of the equa-tion of state of symmetri in�nite matter into spin-isospin hannels provided by ourfuntionals and by ab-initio Bruekner-Hartree-Fok alulations. Suh a ompar-ison showed an obvious disrepany in (S, T ) = (0, 0) and (1, 1) hannels, whereenergies predited by Skyrme funtionals and by BHF alulations have oppositesigns. The inonsisteny in hannel (S, T ) = (1, 1), where the Skyrme funtional isattrative, translates into a ollapse of polarized neutron matter EOS, related to theonset of spin-isospin instabilities at quite low density (2ρsat). In this hannel, ab-initio preditions annot be mathed (in the Skyrme e�etive-interation approah)without an extension of the P-wave term. We also identi�ed �nite-size isospin in-stabilities aused by strong isovetor gradient terms, whih prevent the onvergeneof SR-EDF alulations. We were able to provide a �rm and quantitative basis tothese observations through an analysis of �nite-size instabilities by use of RPA linearresponse funtions in SNM. The latter showed that �nite-size e�ets in the analysisof instabilities tend to always dominate.The present study leads us to propose the systemati inlusion of onsistenyheks with ab-initio preditions of spin-isospin properties in the onstrution of ourfuture funtionals, as well as a systemati diagnosis of �nite-size instabilities.Whereas e�etive masses are key parameters in the disussion of nulear single-partile spetra, the latter are determined by the partile-hole potential derived fromthe whole p-h funtional. Most notably, spin-orbit splittings, an essential feature ofnulear struture, are another example of quantity to investigate and ontrol in thequest for better preditive power. This is the subjet of the next hapter.
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Chapter 4Tensor Part of the Skyrme EnergyDensity Funtional
4.1 IntrodutionThe strong nulear spin-orbit interation in nulei is responsible for the observedmagi numbers in heavy nulei [GM48, Hax49, Fee49, GM49℄. While a simple spin-orbit interation allows for the qualitative desription of the global features of shellstruture, the available data suggest that single-partile energies evolve with neutronand proton number in a manner that annot be related to the geometrial growthof the single-partile potential with N and Z. Many anomalies of shell struturehave been identi�ed that do not �t into simple experimental systematis, and thathallenge any global model of nulear struture.The evolution of shell struture with N and Z as a feature of self-onsistentmean-�eld models has been known for long. To quote the pioneering study of shellstruture in a self-onsistent model performed by Beiner et al. [Bei75b℄, the �moststriking e�et is the appearane of N = 16, 34 and 56 as neutron magi numbersfor unstable nulei, together with a weakening of the shell losure at N = 20 and28�. Various mehanisms that modify the appearane of gaps in the single-partilespetra have been disussed in detail in the literature. The two most prominentones that were worked out by Dobazewski et al. in Ref. [Dob94℄, however, playmainly a role for weakly-bound exoti nulei far from stability, as they are diretly orindiretly related to the physis of loosely bound single-partile states, namely thatthe enhanement of the di�useness of neutron density distribution redues the spin-orbit oupling in neutron-rih nulei on the one hand, and the interation betweenbound orbitals and the ontinuum results in a quenhing of shell e�ets in light andmedium systems on the other hand. The former e�et was also extensively disussedin the framework of relativisti models by Lalazissis et al. [Lal98a, Lal98b℄, whilethe latter triggered a number of studies that disussed the potential relevane of thisso-alled �Bogolyubov enhaned shell quenhing� to explain the abundane patternfrom the astrophysial r-proess of nuleosynthesis [Che95, Dob95b, Pea96, Pfe97℄.These two e�ets take plae in neutron-rih nulei. In proton-rih nulei, theCoulomb barrier suppresses both the di�useness of the proton density and the ou-pling of bound proton states to the ontinuum. But the Coulomb interation itselfan also modify the shell struture: for super-heavy nulei, it begins to destabi-lize the nuleus as a whole. Mean-�eld models predit that it ampli�es the shell69
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70 CHAPTER 4. TENSOR PART OF THE SKYRME FUNCTIONALosillations of the densities for inomplete �lled osillator shells, whih leads tostrong variations of the density pro�le that feed bak onto the single-partile spe-tra [De99, Ben99b℄.Interestingly, most theoretial papers about the evolution of shell struture fromthe last deade have speulated about new e�ets that mainly a�et neutron shellsin nulei far from stability in the antiipation of the rare-isotope physis that mightbeome aessible with the next generation of experimental failities. The knownanomalies, some of whih have been known for a long time, and many more havebeen identi�ed reently, onern also proton shells and already appear su�ientlylose to stability that �exoti phenomena an be ruled out for their explanation� inmost ases, to paraphrase the authors of Ref. [Lan03℄. By ontrast, this suggests thatthere exists a mehanism that indues a strong evolution of single-partile spetraalready in stable nulei that has been overlooked for long.There is a prominent ingredient of the nuleon-nuleon interation that has beenignored for deades in virtually all global nulear struture models for medium andheavy nulei, be it marosopi-mirosopi approahes or self-onsistent mean-�eldmethods. It is only very reently, that the systemati disrepanies between modelpreditions and experiment have triggered a renaissane of the tensor fore in thedesription of �nite medium- and heavy-mass nulei.The tensor fore is a ruial and neessary ingredient of the bare nuleon-nuleoninteration [Wir95, Ma01℄, and onsequently is ontained in all ab-initio approahesthat are available for light, mainly p-shell nulei [Pie01b, Nav03℄. One of the �rstexperimental signatures of the tensor fore was the small, but �nite quadrupole mo-ment of the deuteron. In a boson-exhange piture of the bare nuleon-nuleon in-teration, the tensor fore originates from the exhange of pseudosalar pions, whihhave both entral and tensor ouplings, see for example setion 2.3 in Ref. [Eis72℄or appendix 13A of Ref. [Nil95℄. In a nulear many-body system, the bare tensorfore indues a strong orrelation between the spatial and spin orientations in thetwo-body density matrix. For two nuleons with parallel spins, the tensor foreenergetially favors the on�guration where the distane vetor is aligned with thespins, while for anti-parallel spins the tensor fore prefers when the distane vetoris perpendiular to the spins, see the disussion of Fig. 13 in Ref. [Nef03℄ and ofFig. 3 in Ref. [Rot04℄. The authors of these papers also demonstrate very nielythe well-known fat [Bet68, Neg70℄ that in an approah that starts from the barenuleon-nuleon interation, nulei are not bound without taking into aount thetwo-body orrelations indued by the tensor fore.In a perturbation-theory interpretation of the EDF sheme, most of the e�et ofthe bare tensor fore on the binding energy is integrated out through the renormaliza-tion of the oupling onstants assoiated with a entral e�etive vertex, in a similarfashion as the tensor part of the bare interation is renormalized into the entralone when going from the bare nuleon-nuleon fore to a Bruekner G matrix. Thetensor terms of the EDF relate to a residual tensor vertex, in terms of many-bodyperturbation theory, that gives nothing but a orretion to the spin-orbit splittings,whih for light p-shell nulei might be of the same order as the ontribution from thegenuine spin-orbit fore. The interplay of spin-orbit and tensor fores in the mean�eld of medium and heavy nulei was explored in Refs. [Sh76, Goo78, Zhe91℄, wherethe partiular role of spin-unsaturated shells was pointed out.Despite the quite reent harater of the emphasis seen in the literature on the
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4.1. INTRODUCTION 71tensor part of nulear EDF models, the e�etive zero-range non-loal interation pro-posed by Skyrme in 1956 [Sky56, Sky58a, Bel56, Sky58b℄ already ontained a zero-range tensor fore. The �rst appliations of Skyrme's interation in self-onsistentmean-�eld models that beame available around 1970, however, negleted the tensorfore, and the simpli�ed e�etive Skyrme interation used in the seminal paper byVautherin and Brink [Vau72℄ soon beame the standard Skyrme interation that wasused in most appliations ever sine. Until very reently, there was only very littleexploratory work on Skyrme's tensor fore. In their early study, Stanu, Brink andFloard [Sta77℄, who added the tensor fore perturbatively to the SIII parametriza-tion, pointed out that some spin-orbit splittings in magi nulei an be improvedwith a tensor fore. A omplete �t inluding the terms from the tensor fore thatontribute in spherial nulei was attempted by Tondeur [Ton83℄, with the relevantoupling onstants of the spin-orbit and tensor terms adjusted to seleted spin-orbitsplittings in 16O, 48Ca and 208Pb. Another omplete �t of a generalized Skyrmeinteration inluding a tensor fore was performed by Liu et al. [Liu91℄, but the au-thors did not investigate the e�et of the tensor fore in detail, nor was the resultingparametrization ever used in the literature thereafter.Similarly, the seminal paper by Gogny [Gog75b℄ on the evaluation of matrixelements of a �nite-range fore of Gaussian shape in an harmoni osillator basisontains the expressions for a �nite-range tensor fore, whih, however, was omit-ted in the parametrizations of Gogny's fore adjusted by the Bruyères-le-Châtelgroup [De80℄. It were Onishi and Negele [Oni78℄ who �rst published an e�etiveinteration that ombined a Gaussian two-body entral fore, a �nite-range tensorfore with a zero-range spin-orbit fore and a zero-range non-loal three-body fore,whih, however, also fell into oblivion.The role of the tensor fore is slightly di�erent in Skyrme and Gogny intera-tions. In the Gogny fore, the ontributions from the entral and tensor parts remainexpliitly distint, although, of ourse, this does not prevent a ertain entanglementof their physial e�ets. In the ontext of Skyrme's funtional, however, the ontri-bution of a zero-range tensor fore to the spherial mean-�eld state of an even-evennuleus has exatly the same form as a partiular exhange term from the non-loalpart of the entral Skyrme fore.Thus, one must always keep in mind that both the entral and tensor part of thee�etive vertex ontribute to the J2
t �tensor� terms of the funtional, as they will bereferred to in this hapter.In the ontext of relativisti mean-�eld models, the equivalent of the non-relat-ivisti tensor fore appears as the exhange term of e�etive �elds with the quantumnumbers of the pion, whih by onstrution do not appear in the standard relativistiHartree models. Only relativisti Hartree-Fok models ontain this tensor fore, withthe �rst preditive parametrizations beoming available reently [Lon06℄.We also mention that there is a large body of work on the tensor fore in the inter-ating shell model, see Ref. [Fay97℄ for a review, that onentrates on a ompletelydi�erent aspet of the tensor fore, namely its unique ontribution to exitationswith unnatural parity.The reent interest in the e�et of the tensor fore in the ontext of self-onsistentmean �eld models was triggered by the observed evolution of single-partile levelsof one nuleon speies in dependene of the number of the other nuleon speies.Otsuka et al. [Ots05℄ proposed that at least part of the e�et is aused by the proton-
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72 CHAPTER 4. TENSOR PART OF THE SKYRME FUNCTIONALneutron tensor fore from pion exhange. Many groups attempt now to explainknown, but so far unresolved, anomalies of shell struture in terms of a tensor fore.A partiularly popular playground is the relative shift of the proton 1g7/2 and 1h11/2levels in tin isotopes, whih is interpreted as the redution of the spin-orbit splittingsof both levels with their respetive partners with inreasing neutron number [Sh04℄.Otsuka et al. [Ots06℄ added a Gaussian tensor fore, adjusted on the long-rangepart of a one-pion+ρ exhange potential, to a standard Gogny fore. After a on-sistent readjustment of the parameters of its entral and spin-orbit parts, they wereable to explain oherently the anomalous relative evolution of some single-partilelevels without, however, being able to desribe their absolute distane in energy.Dobazewski [Dob06℄ pointed out that a perturbatively added tensor interationwith suitably hosen oupling onstants in the Skyrme energy density funtional doesnot only modify the evolution of shell struture, but does also improve the desrip-tion of nulear masses around magi nulei. Then, onentrating of single-partileenergies, Zalewski et al. [Zal08℄ adjusted the tensor and spin-orbit parameters ofthe Skyrme EDF on spin-orbit splittings in the Ca-Ni region, negleting somewhatthe reprodution of binding energies, whih will be disussed in this study. Ko-rtelainen et al. [Kor08℄ performed a singular-value deomposition analysis of the�t to single-partile energies of a general quasi-loal funtional, impliitly inlud-ing the degrees of freedom assoiated with the tensor in an interation-derived EDF.Brown et al. [Bro06a℄ �tted a Skyrme interation with added zero-range tensor forewith emphasis on the reprodution of single-partile spetra. While the authors ap-preiated the qualitatively orretly desribed evolution of relative level distanes,they pointed out that the ombination of zero-range spin-orbit and tensor foresdoes not and an not orretly desribe the ℓ-dependene of spin-orbit splittings.Colò et al. [Col07℄, and Brink et al. [Bri07℄ added Skyrme's tensor fore perturba-tively to the existing standard parametrization SLy5 [Cha97, Cha98℄, and to theSIII [Bei75b℄ one, respetively. They investigated some single-partile energy dif-ferenes: the 1h11/2 and 1g7/2 proton states in tin isotopes as well as 1i13/2 and
1h9/2 neutron states in N = 82 isotones and proposed similar parameters as inRef. [Bro06a℄. The e�et of the tensor fore on the entroid of the GT giant reso-nane was also estimated by Colò et al. using a sum-rule approah and found to besubstantial. Long et al. [Lon08℄, demonstrated that the tensor fore that emergesnaturally in relativisti Hartree-Fok also improves the relative shifts of the proton
1g7/2 and 1h11/2 levels in tin isotopes.Many studies on the tensor fore published so far aim at an optimal singleparametrization, that establishes a best �t to either the underlying bare tensorfore [Ots06, Bro06a℄ or empirial data [Ton83, Dob06, Col07℄. The published re-sults, as well as our �rst exploratory studies, however, suggest that adding a tensorfore to the existing mean-�eld models gives only a loal improvement of the relativehange of ertain single-partile energies, but not neessarily a global improvementof single-partile spetra or other observables. In the framework of the Skyrme EDF,there is also the already mentioned ambiguity that the ontribution from the tensorfore to spherial nulei has the same struture as a term from the entral fore. Inview of this situation, we will pursue a di�erent strategy and investigate the e�etof the tensor terms on a multitude of observables in nulei though a set of Skyrmeinterations with systematially varied oupling onstants of the tensor terms.The present study was motivated by the �nding that the performane of the
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4.2. THE FITS 73existing Skyrme-type e�etive interations for masses and spetrosopi propertiesis limited by systemati de�ienies of the single-partile spetra [Ben06a, Ben03a,Ben06b, Cha06℄ that seem to be impossible to remove within the standard Skyrmeinteration. The details of single-partile spetra were so far somewhat outsidethe fous of self-onsistent mean-�eld methods, on the one hand as they do notorrespond diretly to empirial single-partile energies (we will ome bak to thatbelow), and on the other hand beause many of the observables that are usuallyalulated with self-onsistent mean-�eld methods are not very sensitive to the exatplaement of single-partile levels. By ontrast, there is an enormous body of workthat examines the in�nite and semi-in�nite nulear matter properties of the e�etiveinterations that are the analog of liquid-drop and droplet parameters in great detail.The reason is, of ourse, that the global trends over the whole hart of nulei haveto be understood before one an look into details. The last few years have seen aninreasing demand on preditive power. Moreover, beyond-mean-�eld approahesof the projeted generator oordinate method (GCM), or Bohr-Hamiltonian type,have beome widely used tools to analyze and predit spetrosopi properties inmedium and heavy nulei, employing either Gogny or Skyrme interations. Theunderlying single-partile spetra thus now deserve more attention, as many of thespetrosopi properties of interest turn out to be extremely sensitive to even subtledetails of the single-partile spetra. As the tensor fore is the most obvious missingpiee in all standard mean-�eld interations, it is the natural starting point for thesystemati investigation of possible generalizations with the ultimate goal to improvethe preditive power of the interations for spetrosopy.In the present hapter, we will desribe the �t of the parametrizations, analyzethe role of the tensor terms for single-partile spetra, then masses and radii ofspherial even-even nulei.4.2 The �ts4.2.1 Properties of tensor terms in spherial symmetryAs disussed in setion 2.3, in time-reversal-invariant systems, only the J2 termsof the funtional generated by the tensor fore remains. Furthermore, enforingspherial symmetry greatly simpli�es the spin-urrent tensor, Eq. (2.76), as boththe pseudosalar and pseudotensor parts of Jµν vanish. From the vetor spin-orbiturrent, only the radial omponent is non-zero, whih is given by [Vau72℄
Jq(r) =

1

4πr3

∑

n,j,ℓ

(2j + 1) v2
njℓ

[
j(j + 1) − ℓ(ℓ+ 1) − 3

4

]
u2

njℓ(r) (4.1)so that there is only one out of the nine omponents of the spin-urrent tensor densitythat ontributes in spherial nulei. Unlike the total density ρ and the kineti density
τ , that are bulk properties of the nuleus and grow with the size of the nuleus, thespin-orbit urrent is a shell e�et that shows strong �utuations. Assume the twoshells with same n and ℓ whih are split by the spin-orbit interation, one oupledwith the spin to j = ℓ + 1

2
, the other to j = ℓ − 1

2
. It is easy to verify that theirontributions to Jq(r) are equal but of opposite signs suh that they anel when(i) both shells are ompletely �lled and (ii) their radial wave funtions are idential
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74 CHAPTER 4. TENSOR PART OF THE SKYRME FUNCTIONAL
ψn,ℓ+1/2,ℓ = ψn,ℓ−1/2,ℓ. Although the latter ondition is never exatly ful�lled, thisdemonstrates that the spin-orbit urrent is not a bulk property, but a shell e�etthat strongly �utuates with N and Z. It nearly vanishes in so-alled spin-saturatednulei, where all spin-orbit partners are either ompletely oupied or empty, and itmight be quite large when only the j = ℓ+1/2 level out of one or even several pairsof spin-orbit partners is �lled.In spherial symmetry, the ontribution to the energy funtional of the J2 termsis

Ht =
∑

t=0,1

1
2
CJ

t J2
t =

∑

t=0,1

(
−1

2
CT

t + 1
4
CF

t

)
J2

t . (4.2)The e�etive oupling onstants an be separated bak into ontributions from thenon-loal entral and tensor fores
CJ

t = AJ
t +BJ

t (4.3)whih are given by
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8
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1
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− 1
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(
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)

AJ
1 = 1

16
t1 − 1

16
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BJ
0 = 5

16
(te + 3to) = 5

48
(T + 3U)

BJ
1 = 5

16
(to − te) = 5

48
(U − T ) , (4.4)where we also give the expressions using the notation T = 3te and U = 3to employedin [Flo75, Sta77, Col07℄.For the following disussion it will be also illuminating to reouple this expressionto a representation that uses proton and neutron densities, where we use the notationintrodued in Ref. [Sta77℄

Ht = 1
2
α (J2

n + J2
p) + β Jn · Jp , (4.5)with

α = CJ
0 + CJ

1 , β = CJ
0 − CJ

1 ,

CJ
0 = 1

2
(α + β) , CJ

1 = 1
2
(α− β) . (4.6)The proton-neutron oupling onstants α = αC +αT and β = βC + βT an again beseparated into ontributions from entral and tensor fores

αC = 1
8
(t1 − t2) − 1

8
(t1x1 + t2x2) ,

βC = −1
8
(t1x1 + t2x2) ,

αT = 5
4
to = 5

12
U ,

βT = 5
8
(te + to) = 5

24
(T + U) . (4.7)As ould be expeted, the isospin-singlet tensor fore ontributes only to the proton-neutron term, while the isospin-triplet tensor fore ontributes to both.The spin-orbit potential of the neutrons is given by

Wn(r) =
δE

δJn(r)
· er =

W0

2

(
2∇ρn + ∇ρp) + α Jn + β Jp . (4.8)
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4.2. THE FITS 75The expression for the protons is obtained exhanging the indies for protons andneutrons. In spherial symmetry, the tensor fore gives a ontribution to the spin-orbit potential, but does not alter the struture of the spin-orbit terms in the single-partile Hamiltonian as suh. This will be di�erent in the ase of deformed mean�elds [Per04, Ben09℄.The dependene of the spin-orbit potentialWq(r) on the spin-orbit urrent Jq(r)through the tensor terms is the soure of a potential instability. When the spin-orbitsplitting beomes larger than the splitting of the entroids of single-partile stateswith di�erent orbital angular momentum ℓ, the reordering of levels might inreasethe number of spin-unsaturated levels, whih inreases the spin-orbit urrent Jn andfeeds bak on the spin-orbit potential by inreasing it even further, whih ultimatelyleads to an unphysial shell struture.4.2.2 A brief history of tensor terms in the entral Skyrmeenergy funtionalFor the interpretation of the parametrizations we will desribe below it is impor-tant to point out that within our hoie of the e�etive Skyrme interation as anantisymmetrized vertex the two oupling onstants of the ontribution from theentral fore to HT , Eq. (4.2), either represented through AJ
0 , AJ

1 or through αC ,
βC , are not independent from the oupling onstants Aτ

0, Aτ
1 , A∆ρ

0 , and A∆ρ
1 , thatappear in Eq. (2.95). Through the expressions given in appendix A, all six of themare determined by the four oupling onstants t1, x1, t2, and x2 from the entralSkyrme fore, Eq. (2.78). As a onsequene, a tensor fore is absolutely neessaryto deouple the values of the CJ

t from those of the Cτ
t and C∆ρ

t , whih determinethe isosalar and isovetor e�etive masses and give the dominant ontribution tothe surfae and surfae asymmetry oe�ients, respetively.This interpretation of the Skyrme interation is, however, far from being om-mon pratie and a soure of onfusion and potential inonsistenies in the lit-erature. Many authors have used parametrizations of the entral and spin-orbitSkyrme energy funtional with oupling onstants that in one way or the other donot exatly orrespond to the funtional obtained from Eqns. (2.78) and (2.84),whih, depending on the point of view, an be seen as an approximation to ora generalization of the original Skyrme interation. As the most popular mod-i�ation onerns the tensor terms, a few omments on the subjet are in or-der. Again, the pratie goes bak to the seminal paper by Vautherin and Brink[Vau72℄, who state that �the ontribution of this term to [the spin-orbit poten-tial℄ is quite small. Sine it is di�ult to inlude suh a term in the ase ofdeformed nulei, it has been negleted�. This hoie was further motivated bythe interpretation of the e�etive Skyrme interation as a density-matrix expan-sion (DME) [Neg70, Neg72, Neg75, Cam78℄. All early parametrizations as SI andSII [Vau72℄, SIII-SVI [Bei75b℄, SkM [Kri80℄ and SkM∗ [Bar82a℄ followed this exam-ple and did not ontain the J2 terms. Beiner et al. [Bei75b℄ weakened the ase for J2terms further by pointing out that they might lead to unphysial single-partile spe-tra. During the 1980s and later, however, it beame more popular to inlude them,for example in SkP [Dob84℄, the parametrizations T1-T9 by Tondeur et al. [Ton84℄,Eσ and Zσ by Friedrih and Reinhard [Fri86℄. Some of the reent parametrizationsome in pairs, where variants without and with J2 terms are �tted within the same
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76 CHAPTER 4. TENSOR PART OF THE SKYRME FUNCTIONAL�t protool, for example (SLy4, SLy5) and (SLy6, SLy7) in Ref. [Cha98℄, or (SkO,SkO') in Ref. [Rei99℄.Interestingly, all but one parametrization of the entral Skyrme interation foundin the literature set the oupling onstants of the J2 terms either to their Skyrmefore value (A.1) or stritly to zero. The exeption is Ref. [Ton83℄ by Tondeur,where an independent �t of the oupling onstants of the J2 terms was attempted,making expliit referene to a DME interpretation of the energy funtional.Setting the oupling onstants of a term to zero when one does not know howto adjust its parameters is of ourse an aeptable pratise when permitted bythe hosen framework. For Skyrme interations �tted without the J2 terms, thesituation beomes onfusing when one looks at deformed nulei and any situationthat breaks time-reversal invariane. First of all, Galilean invariane of the energyfuntional ditates that the oupling onstant of the s · T terms is also set to zero,as already indiated by the presentation of the energy funtional in Eq. (2.91).Seond, using a DME interpretation of the Skyrme energy funtional in one plae,but the interrelations from the two-body Skyrme fore in all others is not entirelysatisfatory. Many authors who drop the J2 terms rarely show sruples to keepmost of the time-odd terms in the Skyrme energy funtional (2.91) with ouplingonstants As
t and A∆s

t from (A.1), although they are not at all onstrained in theommon �t protools employing properties of even-even nulei and spin-saturatednulear matter. For a list of exeptions see Set. II.A.2.d of Ref. [Ben03b℄. Analternative is to set up a hierarhy of terms, as it was attempted by Bonhe, Floardand Heenen in their mean-�eld and beyond odes, whih set A∆s
t = 0 in additionto the oupling onstant of the J2 terms, as all three terms have in ommon thatthey ouple two Pauli matries with two derivatives in di�erent manners, see thefootnote on page 129 of [Bon87℄.There are also inonsistent appliations of parametrizations without J2 − s · Tterms to be found in the literature. For example, almost all appliations of Skyrmeinterations to the Landau parameters gℓ and g′ℓ and the properties of polarizednulear matter, inlude the ontribution from the s · T terms, although it shouldbe dropped for parametrizations �tted without J2 terms. Similarly, most RPA andQRPA odes inlude them for simpliity, see the disussion in Refs. [Eng99, Ben02,Ter05b℄.As it is relevant for the subjet of the present paper, we also mention another gen-eralization of the Skyrme interation that invokes the interpretation of the Skyrmeenergy funtional in a DME framework. The spin-orbit fore (2.84) �xes the isospinmix of the orresponding terms in the Skyrme energy funtional (2.91) suh that

A∇J
0 = 3A∇J

1 (A.2). There are a few parametrizations as MSkA [Sha95℄, SkI3 andSkI4 [Rei95℄, SkO and SkO' [Rei99℄ and SLy10 [Cha98℄ that liberate the isospindegree of freedom in the spin-orbit funtional. A DME interpretation of the energyfuntional is mandatory for this generalization. It is motivated by the better per-formane of standard relativisti mean-�eld models for the kink of the harge radiiin Pb isotopes. Note that the standard RMF models are e�etive Hartree theo-ries without exhange terms, and that the standard Lagrangians have very limitedisovetor degrees of freedom [Ben03b℄, both of whih suppress a strong isospin de-pendene of the spin-orbit interation. It is interesting to note that the existing �tsof Skyrme energy funtionals with generalized spin-orbit interation do not improvespin-orbit splittings [Ben99b℄.
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4.2. THE FITS 774.2.3 General remarksIn order to study the e�et of the J2 terms, we have built a set of 36 e�etive intera-tions that systematially over the region of oupling onstants CJ
0 and CJ

1 that, in apreliminary exploration of this parameter spae, gave a reasonable desription of �-nite nulei in onnetion with the standard entral and spin-orbit Skyrme fores. Atvariane with the perturbative approah used in Refs. [Sta77, Col07℄, eah of theseparametrizations has been �tted separately, following a proedure nearly identialto that used for the onstrution of the SLy parametrizations [Cha97, Cha98℄, aswell as that used in the preeding hapter, so that we an keep the onnetion be-tween the new �ts with parametrizations that have been applied to a large varietyof observables and phenomena.The region of e�etive oupling onstants (CJ
0 , C

J
1 ) of the J2 terms ating inspherial nulei, as de�ned in Eq. (2.95), that we will explore, is shown in Fig. 4.1.The parametrizations are labeled TIJ , where indies I and J refer to the proton-neutron (β) and like-partile (α) oupling onstants in Eq. (4.5) suh that

α = 60 (J − 2) MeV fm5,

β = 60 (I − 2) MeV fm5. (4.9)The orresponding values of CJ
t an be obtained through Eq. (4.6) or from Fig. 4.1.On the one hand, we over the positions of the most popular existing parametriza-tions of the Skyrme interation that take the J2 terms from the entral fore intoaount, whih are SLy5 [Cha98℄, SkP [Dob84℄, Zσ [Fri86℄, T6 [Ton84℄, SkO' [Rei99℄and BSk9 [Gor05b℄. On the other hand, among reent parametrizations inluding atensor term, i.e. Skxta [Bro06a℄, Skxtb [Bro06a, Bro07℄ as well as those publishedby Colò et al. [Col07℄ and Brink and Stanu [Bri07℄, most fall in a region of negative

CJ
1 and vanishing CJ

0 , that is to the lower left of Fig. 4.1. Parametrizations of thisregion, whih also inludes a part of the triangle advoated in the perturbative studyof Stanu et al. [Sta77℄, gave unsatisfatory results for many observables. Moreover,when attempting to �t parametrizations with large negative oupling onstants, wesometimes obtained unrealisti single-partile spetra or even ran into the insta-bilities already mentioned. Parametrizations further to the lower and upper rightalso have unrealisti deformations properties. The ontribution from the J2 termsvanishes for T22, whih will serve as the referene point. For the parametrizationsT2J , only the proton-proton and neutron-neutron terms in Ht are non-zero (β = 0),while for the parametrizations TI2, only the proton-neutron term in Ht ontributes(α = 0). Note that the earlier parametrizations T6 and Zσ have a pure like-partile
J2 terms as a onsequene of the onstraint x1 = x2 = 0 employed for both (andmost other early parametrizations of Skyrme's interation).4.2.4 The �t protool and proedureThe list of observables used to onstrut the ost funtion χ2 minimized during the�t (see Eq. (4.1) in Ref. [Cha97℄) reads as follows: binding energies and harge radiiof 40Ca, 48Ca, 56Ni, 90Zr, 132Sn and 208Pb; the binding energy of 100Sn; the spin-orbit splitting of the neutron 3p state in 208Pb; the empirial energy per partileand density at the saturation point of symmetri nulear matter; and �nally, theequation of state of neutron matter as predited by Wiringa et al. [Wir88℄.
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Figure 4.1: Values of CJ
0 and CJ

1 for our set of parametrizations (irles). Diag-onal lines indiate α = CJ
0 + CJ

1 = 0 (pure neutron-proton oupling)and β = CJ
0 − CJ

1 = 0 (pure like-partile oupling). Values for las-sial parameter sets are also indiated (dots), with SLy4 representingall parametrizations for whih J2 terms have been omitted in the �t.Reent parametrizations with tensor terms are indiated by squares.



4.2. THE FITS 79Furthermore, some properties of in�nite nulear matter are onstrained throughanalyti relations between oupling onstants in the same manner as they were inRefs. [Cha97, Cha98℄: the inompressibility modulus K∞ is kept at 230 MeV, whilethe volume symmetry energy oe�ient aτ is set to 32 MeV. The isovetor e�etivemass, expressed through the Thomas-Reihe-Kuhn sum rule enhanement fator κv,is taken suh that κv = 0.25.When using a single density-dependent term in the entral Skyrme fore (2.78),the isosalar e�etive mass m∗
s annot be hosen independently from the inom-pressibility modulus for a given exponent γ of ρ0. We follow here the presriptionused for the SLy parametrizations [Cha97, Cha98℄ and use γ = 1/6, whih leadsto an isosalar e�etive mass lose to 0.7 in units of the bare nuleon mass for allTIJ parametrizations. Using suh a protool we annot, ontrary to the protoolused in hapter 3, reprodue the isovetor e�etive mass onsistent with reent ab-initio preditions. Regarding the present exploratory study of the tensor terms thisis not a ritial limitation, in partiular as the in�uene of this quantity on statiproperties of �nite nulei, as found previously, turns out to be small.There are three modi�ations of the �t protool ompared to [Cha97, Cha98℄.The obvious one is that the values for CJ

0 and CJ
1 are �xed beforehand as the pa-rameters that will later on label and lassify the �ts. The seond is that we haveadded the binding energies of 90Zr and 100Sn to the set of data. Indeed, we ob-served that the latter nuleus is usually signi�antly overbound when not inludedin the �t, as an be seen on the upper-left panel of Fig. 3.5. The third is that wehave dropped the onstraint x2 = −1 that was imposed on the SLy parametriza-tions [Cha97, Cha98℄ to ensure the stability of in�nite homogeneous neutron matteragainst a transition into a ferromagneti state. On the one hand, this stability ri-terion is ompletely determined by the oupling onstants of the time-odd termsin the energy funtional [Ben02℄, that we do not want to onstrain here, aeptingthat the parametrizations might be of limited use beyond the present study. On theother hand, the tensor fore brings many new ontributions to the energy per parti-le of polarized nulear matter that lead to a muh more omplex stability riterion.The entire disussion onerning the stability with respet to spin polarization inthe presene of a tensor fore shall not be inluded in this work, as we expet thataddressing �nite-size instabilities will be neessary, and the orresponding response-funtion formalism has not been derived yet, to our best knowledge. It also has tobe stressed that the atual stability riterion, as all properties of the time-odd partof the Skyrme energy funtional, depends on the hoies made for the interpretationof its oupling onstants, i.e. antisymmetrized vertex or density funtional [Ben02℄.The properties of the �nite nulei entering the �t are omputed using a Slater de-terminant without taking pairing into aount. The ost funtion χ2 was minimizedusing a simulated annealing algorithm. The annealing shedule was an exponen-tial one, with a harateristi time of 200 iterations (also referred to as �simulatedquenhing�) Thus, assuming a reasonably smooth ost funtion, we strive to ob-tain satisfatory onvergene to its absolute minimum in a single run, allowing asystemati and straightforward prodution of a large series of fores. The ouplingonstants for all 36 parametrizations an be found in Table A.1.Figure 4.2 displays the value of χ2 after minimization as a funtion of the re-oupled oupling onstants α and β. The �rst striking feature is the existene of a�valley� at β = 0, i.e. a pure like-partile tensor term ∼ (J2

n + J2
p). The abrupt rise
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Figure 4.2: Values of the ost funtion χ2 as de�ned in the �t proedure, for the setof parametrizations TIJ . The label �T11� indiates the position of thisparametrization in the (α,β)-plane as obtained from Eqs. (4.9). Contourlines are drawn at χ2 = 11, 12, 15, 20, 25, and 30. The minimum valueis found for T21 (χ2 = 10.05), the maximum for T61 (χ2 = 37.11).of χ2 around this value an be attributed to the term depending on nulear bindingenergies, as sharp variations of energy residuals an be seen between neighboringmagi nulei with funtionals of the T6J series (β = 240). For example, 48Ca and
90Zr tend to be signi�antly overbound in this ase. We will ome bak later todisussing the impliations for the quality of the funtionals.4.2.5 General properties of the �tsThe oupling onstants of the energy funtional for spherial nulei (2.95) obtainedfor T22 are very similar to those of SLy4, exept for a slight readjustment omingfrom the inlusion of the binding energies of 90Zr and 100Sn in the �t as well asthe abandoned onstraint on x2. With its value of −0.945, the x2 obtained for T22still stays lose to the value −1 enfored for SLy4, whih on�rms that this is nottoo severe a onstraint for parametrizations without e�etive J2 terms at spheriity.Inreasing the e�etive tensor term oupling onstants CJ

t , however, the values for
x2 start to deviate strongly from the region around −1, whih is to a large extentdue to the feedbak from the ontribution of the J2 terms to the surfae and surfaesymmetry energy oe�ients in the presene of onstraints on isosalar and isovetore�etive masses, all of whih also depend on x2.From the onstrained oupling onstants CJ

0 and CJ
1 , the respetive ontributions

BJ
0 and BJ

1 from the tensor fore an be dedued afterwards using the expressionsgiven in setion 2.3.2. Their values, shown in Fig. 4.3, are less regularly distributed,whih is a onsequene of the non-linear interdependene of all oupling onstants.Still, a general trend an be observed, suh that all parametrizations are shiftedtowards the �south-west� ompared to Fig. 4.1. In turn, this indiates that theontribution from the entral Skyrme fore always stays in the small region outlinedby SkP, SLy5, Zσ, et in Fig. 4.1, with values that range between 28 and 104 MeV fm5for AJ
0 and between 38 to 62 MeV fm5 for AJ

1 , respetively. This justi�es a posteriorito use the tensor fore as a motivation to deouple the J2
t terms from the entral part
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W0 = 195.3 MeV fm5 for T66, see Fig. 4.4. This variation is of ourse orrelated tothe strength of the tensor fore. As already shown, the tensor fore has the tendenyto redue the spin-orbit splittings in spin-unsaturated nulei. To maintain a givenspin-orbit splitting in suh a nuleus, the spin-orbit oupling onstant W0 has to beinreased.4.3 Results and disussionThe alulations presented below inlude open-shell nulei treated in the Hartree-Fok-Bogolyubov (HFB) framework. In the partile-partile hannel, we use a zero-range interation with a mixed surfae/volume form fator. The HFB equations wereregularized with a uto� at 60 MeV in the quasipartile equivalent spetrum (seeRef. [Ben05℄ and setion 2.4). The pairing strength was adjusted in 120Sn withthe partile-hole mean �eld alulated using the parameter set T33. The resultingstrength was kept at the same value for all parametrizations, whih is justi�ed bythe fat that the e�etive mass parameters are the same. Moreover, we thus avoidinluding, in the adjustment of the pairing strength, loal e�ets linked with hangesin details of the single-partile spetrum.4.3.1 Spin-orbit urrents and potentialsAs a �rst step in the analysis of the role of the tensor terms and their interplaywith the spin-orbit interation in spherial nulei, we analyze the spin-orbit urrent
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86 CHAPTER 4. TENSOR PART OF THE SKYRME FUNCTIONALfrom the spin-orbit fore, the total neutron spin-orbit potential for neutrons in Niisotopes is shown on the left panel of Fig. 4.7. For the parametrization T44 usedhere (and most others in the sample of parametrizations used in this study) thedominating ontributions from the spin-orbit and tensor fores to the spin-orbitpotential are of opposite sign. For Ni isotopes, Jp is always quite large, while Jnvaries as shown in Fig. 4.5. Notably, both are peaked inside of the surfae. Whenexamining the ombined ontribution from the spin-orbit and tensor fores to thespin-orbit potential (4.8), one must keep in mind that they are peaked at di�erentradii. Moreover, the variation of tensor-term oupling onstants among a set ofparametrizations implies a rearrangement of the spin-orbit term strength, as will bedisussed later. As a onsequene, taking into aount the tensor fore modi�es thewidth and loalization of the spin-orbit potentialWq(r) muh more than it modi�esits depth through the variation of the spin-orbit urrents.Our observations also on�rm the �nding of Otsuka et al. [Ots06℄ that the spin-orbit splittings might be more strongly modi�ed by the tensor fore than they areby neutron skins in neutron-rih nulei through the redution of the gradient of thedensity.The right panel of Figure 4.7 shows the spin-orbit potential of the protons for thehain of Ni isotopes. Here, the ontribution from the spin-orbit fore has a largerontribution oming from the gradient of the proton density that just grows with themass number, without being subjet to varying shell �utuations. The same holdsfor the proton ontribution from the tensor terms. Only the neutron ontributionfrom the tensor terms varies rapidly, proportional to Jn displayed in Fig. 4.5, whihhas a very limited e�et on the total spin-orbit potential, though.With that, we an examine how the tensor terms a�et the evolution of single-partile spetra. To that end, Fig. 4.8 shows the single-partile energies of protonsand neutrons along the hain of Ni isotopes for the parametrization T22 with vanish-ing ombined tensor terms, whih will serve as a referene, and for the parametriza-tion T44 with proton-neutron and like-partile tensor terms of equal strength. Forthe latter, the variation of the neutron spin-orbit urrent with N in�uenes bothneutron and proton single-partile spetra. The e�et of the tensor terms is subtle,but learly visible: for T22, the major hange of the single-partile energies is theirompression with inreasing mass number, while for T44 the level distanes osillateon top of this bakground orrelated to the neutron shell and sub-shell losures at
N = 20, 28, 40 and 50. As shown above, the neutron spin-orbit urrent vanishesfor N = 20, where it onsequently has no e�et on the spin-orbit potentials andsplittings. By ontrast, the neutron spin-orbit urrent is large for N = 28 and 50,where its ontribution to the spin-orbit potential redues the splittings from thespin-orbit fore.The strong variation of the spin-orbit urrent with nuleon numbers is typialfor light nulei up to about mass 100. For heavier nulei, its variation beomes muhsmaller. This is exempli�ed in Fig. 4.9 for the neutron spin-orbit urrent in the hainof Pb isotopes. There remain the fast �utuations at small radii whih we alreadysaw for the Ni isotopes and that re�et the subsequent �lling of low-ℓ levels withmany nodes, but whih have a very limited impat on the spin-orbit splittings whenfed into the spin-orbit potential. The dominating peak of the spin-orbit urrent,just beneath the surfae shows only small �utuations, as the overlapping spin-orbitsplittings of levels with di�erent ℓ never give rise to a spin-saturated on�guration

http://link.aps.org/abstract/PRL/v97/e162501
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Figure 4.9: Radial omponent of the Neutron spin-orbit urrent for the hain of Pbisotopes plotted in the same manner as in Fig. 4.5.in heavy nulei.Note that both the spin-orbit urrent J and the spin-orbit potential are exatlyzero at r = 0 as they are vetors with negative parity.4.3.2 Single-partile energiesAs a next step, we analyze the modi�ations that the presene of J2 terms bringsto single-partile energies in detail. Before we do so, let us reall that we ulti-mately expet our funtional to be used in a multi-referene EDF framework, whihhas impliations on the omparison between single-partile energies obtained at thesingle-referene level and experimental mass di�erenes whih will be used in thissetion. In essene, single-partile spetra of nulei su�iently magi and robustwith respet to olletive motion are expeted to see their density renormalized byorrelations, with an inrease of the e�etive mass. Care should be taken not toinlude data too strongly a�eted by deformation of the odd nuleus, or the frag-mentation of spetrosopi strength due to partile-vibration oupling.It should be kept in mind that the obvious, oarse disrepanies between thealulated spetra of ǫµ and the empirial single-partile energies are often largerthan the unertainties oming from the missing orrelations, as long as one observessome elementary preautions. We took are to ensure that the states used in theanalysis below were one-quasipartile states weakly oupled to ore phonons. First,we heked that the even-even nuleus of interest ould be desribed as spherial,indiated by a su�iently high-lying 2+ state. Seond, we avoided all levels whihwere obviously orrelated with the energies of 2+ states in the adjaent semi-magiseries, as this indiates strong oupling with ore exitations. Finally, we arefullyexamined states, lying above the 2+ energy and/or twie the pairing gap of adja-ent semi-magi nulei, in order to eliminate those more aurately desribed as anelementary ore exitation oupled to one or more quasipartiles, whih generally ap-pear as a multiplet of states. We did not attempt to use energy entroids alulatedwith use of spetrosopi fators, as these are not systematially available. Indeed,



88 CHAPTER 4. TENSOR PART OF THE SKYRME FUNCTIONALour requirement is that if some olletivity is present, it should be similar amongall nulei onsidered, in order to be easily subtrated out. Empirial single-partilelevels shown below are determined from the lowest states having given quantumnumbers in an odd-mass nuleus.Spin-orbit splittingsThe primary e�et one expets from a tensor term is that it a�ets spin-orbit split-tings by altering the strength of the spin-orbit �eld in spin-unsaturated nulei, a-ording to Eq. (4.8). One should remember, though, that the spin-orbit ouplingitself is readjusted for eah pair of oupling onstants CJ
0 , and CJ

1 . The e�et of thisreadjustment is generally opposite to that of the variation of the isosalar tensorterm oupling onstant. It should thus be stressed that the e�ets desribed resultfrom the balane between the variation of tensor and spin-orbit terms, whih formost of our parametrizations pull into opposite diretions.Common wisdom states that the energy spaing between levels that are bothabove or both below the magi gap are not muh a�eted by orrelations, even whentheir absolute energy hanges; hene it is ommon pratie to onfront only the spin-orbit splittings between pairs of partile or hole states with alulated single-partileenergies from the spherial mean �eld. The left panel of Fig. 4.10 shows the relativeerror of single-partile splitting of suh levels for doubly-magi nulei throughoutthe hart of nulei. The alulated values are typially 20 to 60 % larger than theexperimental ones, with the exeption of 16O, where the splittings of the neutronand proton 1p states are aeptably reprodued at least for the parametrizationsT22, T24 and T42, i.e. those with the weakest tensor terms in the sample.It is noteworthy that the alulated splittings depend muh more sensitively onthe tensor terms for light nulei with spin-saturated shells (protons and neutrons in
16O, protons in 90Zr) than for the heavy doubly-magi 132Sn and 208Pb, whih arequite robust against a variation of the tensor terms. The reason will beome learbelow.Connetion between tensor and spin-orbit termsThe �nding that our parametrizations systematially overestimate the spin-orbitsplittings deserves an explanation. It was earlier already noted that all standardSkyrme interations, inluding the SLy parametrizations that share our �t pro-tool, have an unresolved trend that overestimates spin-orbit splittings in heavynulei [Ben99b, Ben03b, LQ00℄. Adding the tensor terms, however, further deteri-orates the overall desription of spin-orbit splittings, instead of improving it. It ispartiularly disturbing that the spin-orbit splitting of the 3p level in 208Pb that wasused to onstrain W0 in the �t is overestimated by 30 to 40%, whih is larger thanthe relative tolerane of 20% inluded in the �t protool. In fat, it turns out thatthe oupling onstant W0 of the spin-orbit fore is more tightly onstrained by thebinding energies of light nulei than by this or any other spin-orbit splitting. Inthe HF approah used during the �t, the struture of 40Ca, 48Ca, and 56Ni di�ersby the oupation of the neutron and proton 1f7/2 levels. First, we have to notethat the terms in the energy funtional that ontain the spin-orbit urrent play animportant role for the energy di�erene between 40Ca and 56Ni. The ombined on-tribution from the tensor and spin-orbit terms varies from a near-zero value in the

http://dx.doi.org/10.1103/PhysRevC.60.034304
http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1103/PhysRevC.61.064321


4.3. RESULTS AND DISCUSSION 89spin-saturated 40Ca to about −60 MeV in 56Ni for all our parametrizations, whihis a large fration of the −142 MeV di�erene in total binding energy between bothnulei. The Z = 40 subshell and Z = 50 shell are another example of abrupt varia-tion of the spin-orbit urrent with the �lling of the 1g9/2 level, whih strongly a�etsthe relative binding energy of N = 50 isotones 90Zr and 100Sn. Seond, the �t tophenomenologial data an take advantage of the large relative variation of theseterms to mok up missing physis in the energy funtional that should ontribute tothe energy di�erene, but that is absent in it. The onsequene will be a spuriousinrease of the spin-orbit and tensor term oupling onstants. The resulting energyfuntional will orretly desribe the mass di�erene, but not the physis of thespin-orbit and tensor terms.In order to test the above interpretation, we performed a re�t of seleted TIJparametrizations without taking into aount the masses of 40Ca, 48Ca, 56Ni and 90Zrin the �t proedure. In the resulting parametrizations, the spin-orbit oe�ient W0is typially 20 % lower than in the original ones. As a onsequene, the empirialvalue for the spin-orbit splitting of the neutron 3p level in 208Pb is met well withintolerane, at the prie of binding energy residuals in light nulei being unaeptablylarge, i.e. 56Ni being underbound by 5 MeV while 40Ca and 90Zr are overbound byup to 10 MeV. While the global trend of the spin-orbit splittings shown in Fig. 4.10is enormously improved with these �ts, in partiular for heavy nulei, the overallagreement of the single-partile spetra with experiment is not, so that we had todisard these parametrizations. This �nding hints at a deeply rooted de�ienyof the Skyrme energy funtional. The spin-orbit and, when present, tensor termsindeed do simulate missing physis of the energy funtional at the prie of unrealistispin-orbit splittings. This also hints why perturbative studies, as those performedin [Sta77, Col07℄ give muh more promising results than what we will �nd belowwith our omplete re�ts. We will disuss mass residuals in more detail in Set. 4.3.3below.During the �t, the masses of light nulei do not only ompromise the spin-orbit splittings, they also establish a orrelation between W0 and CJ
0 in all ourparametrizations. The ombined spin-orbit and spin-urrent energy of a given spher-ial nuleus (N,Z) is given by (keeping only the isosalar part sine we shall fouson the N = Z nulei 40Ca and 56Ni)

Espin
0 (N,Z) = C∇J

0 I∇J
0 (N,Z) + CJ

0 IJ
0 (N,Z) (4.10)with

I∇J
0 (N,Z) =

∫
d3r ρ0∇ · J0, IJ

0 (N,Z) =

∫
d3r J2

0 . (4.11)The di�erene of Espin
0 between 56Ni and 40Ca

Espin
0

(
56Ni)−Espin

0

(
40Ca) = ∆Espin (4.12)turns out to be fairly independent from the parametrization. Averaged over all 36parametrizations TIJ used here, ∆Espin has a value of−58.991 MeV with a standarddeviation as small as 3.202 MeV, or 5.4%.The integrals in Eqs. (4.11) are fairly independent from the atual parametriza-tion. For a rough estimate, we an replae them in Eq. (4.10) by their average

http://www.sciencedirect.com/science/article/B6TVN-486T324-28/2/cff836369d16bc1cfe44972964a4d537
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Figure 4.10: Left panel: relative error of the spin-orbit splittings in doubly-maginulei for ℓ ≤ 2 levels. Right panel: Spin-orbit splittings of high-ℓlevels in magi nulei, orresponding to s.p.e. di�erenes aross theFermi energy. The alulated values are less robust against orrelatione�ets than those shown on the left panel and have to be interpretedwith aution (see text).
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4.3. RESULTS AND DISCUSSION 91values. Plugged into Eq. (4.12) this yields
C∇J

0 =
∆Espin − CJ

0 〈IJ
0 (56Ni) − IJ

0 (40Ca)〉
〈I∇J

0 (56Ni) − I∇J
0 (40Ca)〉 . (4.13)Figure 4.11 ompares the values of C∇J

0 as obtained through (4.13) with the valuesfor the atual parametrizations. The estimate works very well, whih demonstratesthat C∇J
0 = −3

4
W0 and CJ

0 are indeed orrelated and annot be varied independentlywithin a high quality �t of the energy funtional (2.95). As the ombined strengthof the spin-orbit and tensor terms in the energy funtional is mainly determined bythe mass di�erene of the two N = Z nulei 40Ca and 56Ni, the spin-orbit ouplingonstant W0 depends more or less linearly on the isosalar tensor oupling onstant
CJ

0 , while for all pratial purposes it is independent from the isovetor one, see alsoFig. 4.4 above.Splitting of high-ℓ states and the role of the radial form fatorAs stated above, it is ommon pratie to onfront only the spin-orbit splittings be-tween pairs of partile or hole states with alulated single-partile energies from thespherial mean �eld. The spin-orbit splitting of intruder states is rarely examined.The right panel of Fig. 4.10 displays the relative deviation of the spin-orbit splittingsof the intruder states with ℓ ≥ 3 that span aross major shell losures and are thusgiven by the energy di�erene of a partile and a hole state. These splittings arenot �safe�, i.e. they an be expeted to be strongly dereased by polarization andorrelation e�ets [Rut98, Ber80, Lit06℄. To leave room for this e�et, a mean-�eldalulation should overestimate the empirial spin-orbit splittings. We observe, how-ever, that mean-�eld alulations done here give values that are quite lose to theexperimental ones, or even smaller for parametrizations with large positive isosalartensor oupling (f. the evolution from T22 to T66).This means that the spin-orbit splittings are not too large in general, as mightbe onluded from Fig. 4.10, but that there is a wrong trend of the splittings with ℓwith the strength of the spin-orbit potential establishing a ompromise between thein-shell splittings of small ℓ orbits that are too large and the aross-shell splittingsof the intruders that are tentatively too small. In fat, the levels in the right panelof Fig. 4.10 obviously have in ommon that their radial wave funtions do not havenodes, while the levels on the left panel have one or two nodes, with the notableexeption of the 1p levels in 16O, for whih we also �nd smaller deviations of thespin-orbit splittings than for the other ℓ ≤ 2 levels.Underestimating the spin-orbit splittings of intruder levels has immediate andobvious onsequenes for the performane of an e�etive interation, as this losesthe magi gaps in the single-partile spetra and ompromises the preditions fordoubly-magi nulei, as we will demonstrate in detail below. By ontrast, the spin-orbit splittings of the low-ℓ states within the major shells have no obvious diretimpat on bulk properties. Their deviation from empirial data is less dramati,as the typial bulk observables disussed with mean-�eld approahes are not verysensitive to them. It is only in appliations to spetrosopy that their de�ieniesbeome evident. It is noteworthy that the parametrization T22 without e�etivetensor terms at spheriity provides a reasonable ompromise between the tentativelyunderestimated splittings of the intruder levels and the tentatively overestimated

http://www.sciencedirect.com/science/article/B6TVB-3TC1VWR-5/2/e01f1d5798ebd759408df952d850d58d
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Figure 4.12: Neutron spin-orbit potential (top) and the radial wave funtion ofseleted orbitals (bottom) in 132Sn.splittings of the levels within major shells, both shown in Fig. 4.10 above, while forparametrizations with tensor terms this balane is lost.There learly is a proton-neutron staggering in Fig. 4.10, suh that alulatedproton splittings are relatively smaller than the neutron ones. The e�et appearsboth when omparing proton and neutron levels with di�erent ℓ in the same nuleus,and when omparing proton and neutron levels with the same ℓ in the same ordi�erent nulei (see the 1h levels in 132Sn and 208Pb). The staggering for the intruderlevels is even ampli�ed for parametrizations with large proton-neutron tensor term,as T62, T64 or T66. The e�et is partiularly prominent for the heavy 132Sn and
208Pb with a large proton-to-neutron ratio N/Z, whih might hint at unresolvedisospin dependene of the spin-orbit interation, although alternative explanationsthat involve how single-partile states in di�erent shells should interat throughtensor and spin-orbit fores are possible as well, see also the next paragraph.Note that also the spin-orbit splittings of the low-ℓ levels shown in Fig. 4.10exhibit a staggering, whih is of smaller amplitude, though. It has been pointedout by Skalski [Ska01℄, that an exat treatment of the Coulomb exhange term(ompared to the Slater approximation used here and nearly all existing literature)does indeed slightly inrease the spin-orbit splittings of protons aross major shells.This e�et might give a lue to the staggering observed for the N = Z nuleus 56Ni,but the magnitude of the e�et reported in Ref. [Ska01℄ is too small to explain thelarge staggering we �nd for the heavier N 6= Z nulei.Next, we use the example of 132Sn to demonstrate why the spin-orbit splittingsof nodeless high-ℓ states are more sensitive to the tensor terms than low-ℓ stateswith one or several nodes, see Fig. 4.12. The lower panel shows the neutron spin-orbit potential in 132Sn for four di�erent parametrizations, while the upper panelshows seleted radial single-partile wave funtions. The ν 1h11/2 and π 1g9/2 levelsgive the main ontribution to the neutron and proton spin-orbit urrents in thisnuleus, and onsequently to the tensor ontribution to the spin-orbit potential.Indeed, the largest di�erenes between the spin-orbit potentials from the hosen
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1h states are peaked. This region orresponds to the inner �ank of the spin-orbitpotential well, while the outer �ank is muh less a�eted. While the 1g and 1hwave funtions are peaked at the inner �ank, the 2d orbitals have their node in thisregion. Consequently, the splittings of the 1g and 1h levels are strongly modi�ed bythe tensor terms, while those of the 2d orbitals are quite insensitive.As a rule of thumb, the tensor ontribution to the spin-orbit potential in doubly-magi nulei omes mainly from the nodeless intruder states, whih, when present,in turn mainly a�et their own spin-orbit splittings, leaving the splittings of thelow-ℓ states with one or more nodes nearly unhanged for reasons of geometrialoverlap.We note in passing that the slightly di�erent radial wave funtions of the 2d or-bitals demonstrate niely that their ontribution to the spin-orbit urrent, Eq. (4.1),annot ompletely anel.In fat, when regarding more spei�ally the evolution of the spin-orbit potentialbetween the parametrizations T22 and T66, it is striking that for T66 it is essentiallynarrowed and its minimum slightly pushed towards larger radii, while its depthremains unaltered. Realling that T66 shows a pathologial behavior of too weakspin-orbit splitting of the intruder states, it appears that a orret ℓ-dependeneof spin-orbit splittings might require to modify the radial dependene of the spin-orbit potential suh that it beomes wider towards smaller radii. This unalled-formodi�ation of the shape of the spin-orbit �eld has previously been put forwardby Brown et al. [Bro06a℄ as an argument for a negative like-partile J2 ouplingonstant α. However, as will be disussed in paragraph 4.3.2 below, the evolutionof single-partile levels along isotopi hains alls for α > 0, see also [Bro06a℄.Single-partile spetra of doubly-magi nuleiAfter we have examined the preditions for spin-orbit splittings, we will now turn tothe overall quality of the single-partile spetra of doubly-magi nulei. Figure 4.13shows the single-partile spetrum of 132Sn. It is evident that as a onsequeneof the underestimated spin-orbit splittings of the intruder levels that we disussedin the last setion, the spetrum is deteriorated for large positive isosalar tensor

http://dx.doi.org/10.1103/PhysRevC.74.061303
http://dx.doi.org/10.1103/PhysRevC.74.061303


94 CHAPTER 4. TENSOR PART OF THE SKYRME FUNCTIONAL
-10

-8

-6

-4

-2

 0
ε i

 [
M

eV
]

208Pb, ν  (a)
1i centroid

Exp. T22

126

T42 T62 T24 T44 T64 T26 T46 T66

13/2+
3/2-
5/2-
1/2-

9/2+
11/2+
15/2-
5/2+
1/2+

3p3/2

2f5/2

1i13/2

3p1/2

2g9/2

1i11/2

3d5/2

4s1/2

1j15/2

2g7/2

3d3/2

-12

-10

-8

-6

-4

-2

 0

ε i
 [

M
eV

]

208Pb, π  (b)
1h centroid

Exp. T22

82

T42 T62 T24 T44 T64 T26 T46 T66

5/2+
11/2-
3/2+
1/2+

9/2-
7/2-

2d5/2

2d3/2

3s1/2

1h11/2

1h9/2

2f7/2

1i13/2

2f5/2

Figure 4.14: Same as Fig. 4.13 for 208Pb.term oupling onstants CJ
0 (see T66), as, for example, a derease of the spin-orbit splitting of the neutron 1h shell pushes the 1h11/2 further up, losing the

N = 82 gap. As a onsequene, the presene of the tensor terms annot remove theproblem shared by all standard mean-�eld methods that always wrongly put theneutron 1h11/2 level above the 2d3/2 and 3s1/2 levels [Ben03b℄, whih ompromisesthe desription of the entire mass region. For the same reason, the proton spetrumof 132Sn also exludes interations with large positive CJ
0 , whih redues the Z = 50gap between the 1g levels to unaeptable small values.Figure 4.13 also shows the energy entroids of the ν 1h and π 1g levels, de�nedas

εentqnℓ =
ℓ+ 1

2ℓ+ 1
εqnℓ,j=ℓ+1/2 +

ℓ

2ℓ+ 1
εqnℓ,j=ℓ−1/2 . (4.14)The position of the entroid is fairly independent from the parametrization. Assum-ing that the alulated energy of the entroid of an intruder state is more robustagainst orretions from ore polarization and partile-vibration oupling that itsspin-orbit splitting, we see that the ν 1h entroid is learly too high in energy byabout 1 MeV. In ombination with its tentatively too small spin-orbit splitting,see Fig. 4.10, this o�ers an explanation for the notorious wrong positioning of the

ν 1h11/2, 2d3/2 and 3s1/2 levels in 132Sn [Ben03b℄. The near-degeneray of the ν 2d3/2and 3s1/2 levels is always well reprodued, while the 1h11/2 omes out muh too high.As the 1h11/2 is the last oupied neutron level, self-onsisteny puts it lose to theFermi energy, whih, in turn, pushes the 2d3/2 and 3s1/2 levels down in the spetrum.The overall situation is similar for 208Pb, see Fig. 4.14. Again, the high-ℓ intruderstates move too lose to the Z = 82 and N = 126 gaps for large positive CJ
0 . Thee�et is less obvious than for 132Sn as the intruders and their spin-orbit partnersare further away from the gaps. Still, the level ordering and the size of the Z = 82gap beome unaeptable for parametrizations with large tensor oupling onstants.For strong tensor term oupling onstants (both like-partile and proton-neutron),a Z = 92 gap opens in the single-partile spetrum of the protons that is alsofrequently predited by relativisti mean-�eld models [Rut98, Ben99b℄ but absentin experiment [Hau01℄.The single-partile spetra for the light doubly magi nulei 40Ca (Fig. 4.15),

48Ca (Fig. 4.16), 56Ni (Fig. 4.17), 68Ni (Fig. 4.18) and 90Zr (Fig. 4.19), all havein ommon that the relative impat of the J2 terms on the ordering and relativedistane of single-partile levels is even stronger than for the heavy nulei disussedabove. But not all of the strong dependene on the oupling onstants of the J2terms that we see in the �gures is due to the atual ontribution of the tensor
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http://www.sciencedirect.com/science/article/B6TVB-3TC1VWR-5/2/e01f1d5798ebd759408df952d850d58d
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Figure 4.15: Same as Fig. 4.13 for 40Ca.
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Figure 4.16: Same as Fig. 4.13 for 48Ca.terms to the spin-orbit potential. This is most obvious for 40Ca, where protonsand neutrons are spin-saturated so that the J2 terms do not ontribute to the spin-orbit potentials. Still, inreasing their oupling onstants inreases the spin-orbitsplittings, whih manifests the readjustment of the spin-orbit fore to a given set of
CJ

0 and CJ
1 (see Fig. 4.4). The evolution of the spin-orbit splittings in 40Ca visiblein Fig. 4.15 is the bakground whih we have to keep in mind when disussing theimpat of the tensor terms on nulei with non-vanishing spin-orbit urrents. Notethat the spin-orbit oupling onstant W0 is orrelated with isosalar tensor ouplingonstant CJ
0 , suh that the single-partile spetra obtained with T24 and T42 arevery similar, as they are for T26, T44 and T62.For 48Ca, Fig. 4.16, the protons are still spin-saturated with vanishing protonspin-orbit urrent Jp, while for neutrons we have a large Jn. Depending on the natureof the tensor terms in the energy funtional � i.e. like-partile or proton-neutron ora mixture of both � the spin-orbit urrent will either ontribute to the spin-orbitpotential of the neutrons or that of the protons or both, see Eq. (4.8). For theparametrizations with dominating like-partile J2 term, for example T24 and T26,the situation for the protons is the same as for 40Ca: there is no ontribution from thetensor terms to the proton spin-orbit splittings, but ompared to T22 the proton Z =

20 gap is redued through the readjustment of the spin-orbit fore, leading to valuesthat are too small. For the same parametrizations, the large ontribution from Jn to
Wn opens up the N = 20 gap to values that are tentatively too large, as it reduesthe neutron spin-orbit splittings and thereby ompensates, even overompensates,the e�et from the readjustment of the spin-orbit fore. At the same time the
N = 28 gap is redued. The opposite e�et is seen for parametrizations with largeproton-neutron tensor term, for example T42 or T62. For those, the proton spin-
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Figure 4.17: Same as Fig. 4.13 for 56Ni.
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Figure 4.18: Same as Fig. 4.13 for 68Ni.orbit splitting is redued, opening up the Z = 20 gap ompared to T22, whilethe neutron spin-orbit splittings are inreased by the bakground e�et from thereadjusted spin-orbit fore.For 56Ni, Fig. 4.17, we have large Jn and Jp. In this N = Z nuleus, the like-partile or proton-neutron parts of the tensor terms annot be distinguished. Thespetra depend only on the overall oupling onstant of the isosalar tensor term
CJ

0 , on the one hand diretly through the ontribution of the tensor terms to thespin-orbit potentials, and on the other hand through the bakground readjustmentof W0 that is orrelated to CJ
0 as well. As already mentioned, results for T24 andT42 are very similar, as they are for T26, T44 and T62. All parametrizations have inommon that the proton and neutron gaps at 28 are too small. The variation of thesingle-partile spetra among the parametrizations is smaller than for 40Ca, mainlybeause the tensor terms ompensate the bakground drift from the readjustmentof W0.The slightly neutron-rih 68Ni ombines a spin-saturated sub-shell losureN = 40that gives a vanishing neutron spin-orbit urrent with the magi Z = 28 that givesa strong proton spin-orbit urrent. The variation of the single-partile spetra independene of the oupling onstants of the tensor terms is similar to those of 48Ca,with the roles of protons and neutrons exhanged.The nuleus 90Zr ombines the spin-saturated proton sub-shell losure Z = 40with the major neutron shell losure N = 50. The high degeneray of the oupied

ν 1g9/2 level leads to a very strong neutron spin-orbit urrent, while the protonspin-orbit urrent is zero. Even in the absene of a tensor term ontributing to theirspin-orbit potential for parametrizations with pure like-partile tensor terms, theproton single-partile spetra are dramatially hanged by the feedbak e�et from
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Figure 4.19: Same as Fig. 4.13 for 90Zr.the readjusted spin-orbit fore; see the evolution from T22 to T26. The π 1g9/2 omesdown, and loses the Z = 40 sub-shell gap. For parametrizations with pure proton-neutron tensor term, one has the opposite e�et, this time beause the ontributionfrom the tensor terms overompensates the bakground e�et from the spin-orbitfore. The e�et of the tensor terms on the neutron spin-orbit splittings is lessdramati, but still might be sizable.We have to point out that the alulations displayed in Fig. 4.19 were per-formed without taking pairing into aount, as the HFB sheme breaks down in theweak pairing regime of doubly magi nulei. For some extreme (and unrealisti)parametrizations, however, the gaps disappear whih, in turn, would lead to strongpairing orrelations if the alulations were performed within the HFB sheme. Thishappens, for example, for neutrons in 90Zr when using T26 and T46. Interestingly,the pairing orrelations for neutrons break the spin saturation, whih leads to asubstantial neutron spin-orbit urrent Jn. As these parametrizations use values ofthe like-partile oupling onstant signi�antly larger than the neutron-proton one,
Jn feeds bak onto the neutron spin-orbit potential only, Eq. (4.8). As the orre-sponding oupling onstant α is positive for T26 and T46, the ontribution fromthe tensor terms redues the spin-orbit splittings, in partiular those of the 1g9/2and 1f5/2. As a result, this ounterats the redution of the N = 40 gap preditedby T26 and T46 in alulations without pairing. Moreover, if pairing sets in, therelevant quantities to be ompared to odd-even mass di�erenes are quasipartileenergies, instead of HF single-partile ones. A ontribution from the pairing gapthus supplements the shell gap. Suh a strong redution of a gap aross the Fermilevel is thus unlikely to be observed.Evolution along isotopi hains: np ouplingIn the preeding setions, we have analyzed harateristis of the single-partile spe-tra for isolated doubly-magi nulei. We found that larger tensor terms do not leadto an overall improvement of the single-partile spetra. However, we also arguedthat it might be essentially due to de�ienies of the entral (and possibly spin-orbit)interations and that it should not be used to disard the tensor terms as suh. Inany ase, the results gathered so far on single-partile spetra of doubly-magi nu-lei do not permit to narrow down a region of meaningful oupling onstants of thetensor terms. The analysis must be omplemented by looking at other observables.A better suited observable is provided by the evolution of spin-orbit splittings alongan isotopi or isotoni hain, whih ideally re�ets the nuleon-number-dependent
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4.3. RESULTS AND DISCUSSION 99ontribution from the J2 terms to the spin-orbit potentials. Unfortunately, safe ex-perimental data for the evolution of spin-orbit partners are sare; hene, one hasto ontent oneself to the evolution of the energy distane of levels with di�erent ℓ,assuming that the e�et is primarily aused by the evolution of the spin-orbit split-tings of eah level with its respetive partner. A popular playground for suh studiesis the hain of Sn isotopes, where two suh pairs of levels have gained attention; the
π 2d5/2 and π 1g7/2 on the one hand, and the π 1g7/2 and π 1h11/2 on the otherhand. The left panel of Figure 4.20 shows these two sets of results for a seletion ofour parametrizations.Experimentally, the 2d5/2 and 1g7/2 levels ross between N = 70 and 72, suhthat the 2d5/2 provides the ground state of light odd-A Sb isotopes, and 1g7/2 thatof the heavy ones, see for example Ref. [She05℄. The rossing as suh is preditedby many mean-�eld interations and most of the parametrizations of the Skyrmeinteration we use here. It has also been studied in detail with the standard Gognyfore (without any tensor term) using elaborate bloking alulations of the odd-Anulei [Por05℄. The rossing, however, is never predited at the right neutron num-ber, see Fig. 4.20. As we have learned above, we should not assume that the absolutedistane of the two levels will be orretly desribed by any of our parametrizations(as the entroids of the ℓ shells will not have the proper distane and the spin-orbitsplittings have a wrong ℓ dependene within a given shell). Hene, the neutronnumber where the rossing takes plae annot and should not be used as a qualityriterion. What does haraterize the tensor terms is the bend of the urves inFig. 4.20, as ideally it re�ets how the spin-orbit splittings of both levels hange inthe presene of the tensor terms. Similar aution has to be exerised in the analy-sis of the unusual relative evolution of the proton 1g7/2 and 1h11/2 levels that wasbrought to attention by Shie�er et al. [Sh04℄. Their spaing has been investigatedin terms of the tensor fore before [Ots05, Ots06, Bro06a, Col07℄. Again, we payattention to the qualitative nature of the bend without fousing too muh on thepreise value by whih the splitting hanges when going from N ≈ 58 to N = 82.Indeed, the mathing of the lowest proton fragment with quantum number 1h11/2seen experimentally with the orresponding empirial single-partile energy is unsafebeause of the frationization of the strength as disussed in Ref. [Bro06a℄.For both pairs of levels, the evolution of their distane an be attributed to thetensor oupling between the proton levels and neutrons �lling the 1h11/2 level belowthe N = 82 gap. Unfortunately, this introdues an additional soure of unertainty:as an be seen in Fig. 4.13, the ordering of the neutron levels in 132Sn is not properlyreprodued by any of our parametrizations, with the 1h11/2 level being preditedabove the 2d3/2 level, while it is the other way round in experiment. This meansthat in the alulations, the ontribution from the 1h11/2 level to the neutron spin-orbit urrent builds up at larger N than what an be expeted in experiment. As aonsequene, the predition for the relative evolution of the levels might be shiftedby up to four mass units to the right ompared to experiment for both pairs of levelswe examine here.In the end, the trend of both splittings is best reprodued when using a positivevalue of the neutron-proton Jn · Jp oupling onstant β suh that the �lling of theneutron 1h11/2 shell dereases the spin-orbit splittings of the proton shells. Theparametrizations from the T4J and T6J series indeed do reprodue the bend ofempirial data, with, however, a lear shift in the neutron number where it ours,
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100 CHAPTER 4. TENSOR PART OF THE SKYRME FUNCTIONALas expeted from the previous disussion. A value of β = 120 MeV fm5, whihorresponds to the series of T4J parametrizations, mathes its magnitude best (seefor example T44).A similar analysis an be performed for the proton 1f5/2 and 2p3/2 levels in thehain of Ni isotopes, see the right panel of Fig. 4.20. This ase is interesting asno distintive feature an be observed in the empirial spetra, yet the standardparametrizations without tensor terms like T22 do not reprodue them. In fat, tokeep the 1f5/2 and 2p3/2 at a onstant distane, two ompeting e�ets have to anel.First, the inreasing di�useness of the neutron density with inreasing neutron num-ber diminishes the proton spin-orbit splittings through its redued gradient in theexpression for the proton spin-orbit potential when going from N = 32 to N = 40.Seond, the �lling of the neutron 1f5/2 state redues the neutron spin-orbit urrentwhih in turn inreases the proton spin-orbit splittings for interations with sizableproton-neutron tensor ontribution to the proton spin-orbit potential when goingfrom N = 32 to N = 40. The former e�et an be learly seen for parametrizationsT2J with vanishing proton-neutron tensor term, β = 0. Again, parametrizations ofthe T4J series seem to be the most appropriate to desribe the evolution of theselevels.The evolution of single-partile levels is the tool of hoie to determine the signand magnitude of the proton-neutron tensor oupling onstant. The value whih wefavor, as a result of our semi-qualitative analysis is β = 120 MeV fm5. This value isonly slightly larger than the value of 94 to 96 MeV fm5 advoated by Brown et al.in Ref. [Bro06a℄, whih was adjusted to theoretial level shifts in the hain of tinisotopes obtained from a G-matrix interation. We an onsider this as a reasonableagreement.Let us defer the disussion of this value to the end of this setion and study inthe next paragraph the like-partile tensor-term oupling onstant α.Evolution along isotopi hains: nn ouplingIn order to narrow down an empirial value for the neutron-neutron tensor ouplingonstant, the ideal observable would be the evolution of neutron single-partile levelsalong an isotopi hain. Unfortunately, these are only aessible at the respetiveshell losures. We shall therefore ompare neutron single-partile spetra of pairs ofdoubly-magi nulei belonging to the same isotopi hain. Again, the neessity toextrat pure single-partile e�ets alls for preautions. We hoose pairs of partileor hole levels whih are lose enough in energy that their absolute spaing is notmuh a�eted by partile-vibration oupling. Of ourse, one also has to be arefulif both states appear at relatively high exitation energy in the neighboring oddisotope beause the frationization of their strength ould again interfere with theanalysis. In the following, we hoose pairs of orbitals whih are as safe as possible.To remove the unertainties from the de�ienies of the entral and spin-orbitparts of the e�etive interation that we have identi�ed above, we will look ata double di�erene, where, �rst, we onstrut the energy di�erene between theneutron 1d3/2 and 2s1/2 levels separately for 40Ca and 48Ca, and then ompare thevalue of this di�erene in both nulei
δCa =

(
ε

48Ca
1d3/2

− ε
48Ca
2s1/2

)
−
(
ε

40Ca
1d3/2

− ε
40Ca
2s1/2

)
. (4.15)

http://dx.doi.org/10.1103/PhysRevC.74.061303


4.3. RESULTS AND DISCUSSION 101

-2.0

-1.5

-1.0

-0.5

0.0

0.5

-60  0  60  120  180  240

δN
i  [

M
eV

]

α [MeV fm5]

exp.

-3

-2

-1

0

δC
a  [

M
eV

]

exp.

β = 0
β = 120
β = 240

Figure 4.21: Shift of the distane between the neutron 1d3/2 and 2s1/2 levels whengoing from 40Ca to 48Ca, Eq. (4.15) (top) and of the neutron 1f5/2 and
2p1/2 levels when going from 56Ni and 68Ni, Eq. (4.16) (bottom).Assuming that the problems from the entral and spin-orbit fores disussed inSets. 4.3.2 and 4.3.2 have the same e�et in both nulei, they will anel out in δCa.The interesting feature of this pair of states is that they are separated by morethan 2 MeV in 40Ca, while they are nearly degenerate in 48Ca, see Figs. 4.15 and 4.16.Suh a shift an only be reprodued with a positive (140-180 MeV fm5) value of α,whih dereases the splitting of the neutron 1d shell when the neutron 1f7/2 level is�lled.A similar analysis an be performed for the 1f5/2 and 2p1/2 neutron states in theNi isotopes 56Ni and 68Ni
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. (4.16)Going from 56Ni to 68Ni, the neutron 1f5/2 level omes further down in energythan the 2p1/2 level for parametrizations without tensor terms (T22), see Figs. 4.17and 4.18. The reason for this trend is the geometrial growth of the nuleus, whihon the one hand lowers the entroid of the 1f levels in the widening potentialwell, and on the other hand pushes the spin-orbit �eld to larger radii, whih hasopposite e�ets on the splittings of 2p and 1f states. The like-partile tensor termsan ompensate this trend through a redution of the spin-orbit splitting of the 1flevels. The observed downward shift by 0.3 MeV an be reovered with a value of αaround 120 MeV fm5, see Fig. 4.21.It is also gratifying to see that the analysis of Ca and Ni isotopes suggests nearlythe same value for the like-partile tensor term oupling onstant α.



102 CHAPTER 4. TENSOR PART OF THE SKYRME FUNCTIONAL4.3.3 Binding energiesOur ultimate goal, although far beyond the sope of the present paper, is the on-strution of a universal nulear energy density funtional that simultaneously de-sribes bulk properties like masses and radii, giant resonanes, and low-energy spe-trosopy, suh as quasipartile on�gurations and olletive rotational and vibra-tional states. To rosshek how our �ndings on single-partile spetra and spin-orbitsplittings translate into bulk properties, we will now analyze the evolution of massresiduals and harge radii along isotopi and isotoni hains. It has been repeatedlynoted in the literature that the mass residuals from mean-�eld alulations showharateristi arhes [Dob84, Fri86, Cha98, Pat99, Ben03b, Lun03, Dob04, Ben06a℄,where heavy mid-shell nulei are usually underbound ompared to the doubly magiones that are loated at the bottom of deep ravines. For light nulei, the patternsare often less obvious. Part of this e�et an be explained and removed takinglarge-amplitude orrelations from olletive shape degrees of freedom into aountthrough suitable beyond-mean-�eld methods. In turn, this means that the massresiduals should leave room for the extra binding of mid-shell nulei from orrela-tions. However, it turns out that for typial e�etive interations the amplitude ofthe arhes is larger than what is brought by orrelations [Ben06a℄. Furthermore,this e�et seems not to be of the same size for isotopi and isotoni hains, whihaltogether hints at de�ienies of the urrent e�etive interations.Reently, Dobazewski pointed out [Dob06℄ that the strongly �utuating on-tribution brought by the J2 terms to the total binding energy ould remove atleast some of the ravines found in the mass residuals around magi numbers. Thehypothesis was motivated by alulations that evaluate the tensor terms either per-turbatively, or self-onsistently, using in this ase an existing standard parametriza-tion without tensor terms for the rest of the energy funtional. Our set of re�ttedparametrizations with varied oupling onstants of the tensor terms gives us a toolto hek how muh of the argument persists to a full �t.Semi-magi hainsFigure 4.22 displays binding energy residuals along various isotopi and isotonihains of semi-magi nulei for a seletion of our parametrizations: T22 is the refer-ene with vanishing J2 terms at spheriity; T24 has a substantial like-partile ou-pling onstant α and vanishing proton-neutron oupling onstant β, whih is similarto most of the published parametrizations whih take the J2 terms from the en-tral Skyrme fore into aount; T42 and T62 are parametrizations with substantialproton-neutron oupling onstant β and vanishing like-partile oupling onstant;T44 has a mixture of like-partile and proton-neutron tensor terms that is lose towhat we found preferable for the evolution of spin-orbit splittings above; and T46 isa parametrization that gives the best root-mean-square residual of binding energiesfor spherial nulei, as we will see below. Finally, T66 is a parametrization withlarge and equal proton-neutron and like-partile tensor-term oupling onstants.Tensor terms have opposite e�ets in light and heavy nulei: The urves obtainedwith T22, the parametrization without J2 term ontribution at spheriity, are rel-atively �at for the light isotopi and isotoni hains, but show very pronounedarhes with an amplitude of 5 or even more MeV for the heavy Sn and Pb isotopihains. By ontrast, the most striking e�et of the J2 terms is that they indue
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Figure 4.23: Evolution of spin-orbit urrent (J2
t ) energy (bottom panels, zero byonstrution for T22) and spin-orbit energy (top panels) with neutronnumber N in the hain of Ca isotopes (Z = 20, left) and Sn isotopes(Z = 50, right).large �utuations of the mass residuals in light nulei, while they �atten the urvesin the heavy ones.The strong variation between the parameter sets for light nulei are of oursethe diret onsequene of the strong variation of the spin-orbit urrent J that entersthe spin-orbit and tensor terms when going bak and forth between nulei where theon�guration of at least one nuleon speies is spin-saturated. The variations seenare a result of the modi�ations of tensor-term oupling onstants and the assoi-ated readjustment of the spin-orbit strength W0. For example, 48Ca is overboundwith respet to 40Ca and 56Ni for parametrizations with a proton-neutron ouplingonstant β > 0, while the like-partile oupling onstant α has a more limited ef-fet. Sine only the neutron ore is spin-unsaturated in this nuleus, this must beattributed to the inrease in the readjusted spin-orbit strength W0 (orrelated with

CJ
0 = 1

2
(α+β)) whih dominates when β is inreased and α kept at zero, and oun-terbalanes the e�et of α when the latter varies. See the parameter sets T62 andT66 in Figures 4.22 and 4.23. The large overbinding of nulei around 90Zr (Z = 40,

N = 50) for parametrizations with large proton-neutron tensor oupling onstanthas the same origin. For a given parametrization and a given nuleus, the energygain from the spin-orbit term seems to be almost always larger than the energy lossfrom the J2 one, see Fig. 4.23 for Ca and Sn isotopes. Of ourse, other terms inthe energy funtional ompensate for a part of the gain from the spin-orbit term,but the overall trends of the mass residuals suggest that the spin-orbit energy has a



4.3. RESULTS AND DISCUSSION 105muh larger ontribution to the di�erenes between the parametrizations visible inFig. 4.22 than the J2 terms.We have to note that the spin-orbit urrent does not ompletely vanish for thenominally proton and neutron spin-saturated 40Ca for parametrizations with largeoupling onstants of the J2 terms. For those, the gap at 20 is strongly (and non-physially) redued, see Fig. 4.15. The small gap at 20 does not suppress pairingorrelations anymore in our HFB approah. The resulting sattering of partilesfrom the sd shell to the fp shell breaks the spin-saturation, suh that there is a�nite, in some ases quite sizable, ontribution from the spin-orbit term to the totalbinding energy. Owing to the ompensation between all ontributions, the totalenergy gain ompared to a HF alulation without pairing is usually small and restson the order of 200 keV for the parametrizations shown in Fig. 4.22.It is also important to note that some of the light hains in Fig. 4.22 are su�-iently lose to or even ross the N = Z line that they are subjet to the Wignerenergy, whih still laks a satisfying explanation, not to mention a desription inthe framework of mean-�eld methods [Sat97℄. The Wigner energy is not takeninto aount in our �ts, while it turned out to be a ruial ingredient of anyHFB [Ton00, Sam02, Gor03℄ or other mass formula. In fat, as shown in Fig. 14 ofRef. [Ben06a℄, the missing Wigner energy learly stiks out from the mass residualsfor SLy4 (whih is very similar to T22) when they are plotted for isobari hains.This loal trend around N = Z is, however, overlaed with a global trend with massnumber, suh that the missing Wigner energy annot be spotted anymore whenlooking at the mass residuals for the isotopi hain of Ca isotopes, similar to what isseen for T22 in Fig. 4.22. Within our �t protool, the orrelation between the massesof 40Ca, 48Ca and 56Ni, that is brought by the spin-orbit fore (see Set. 4.3.2) doesnot tolerate a orretion for the Wigner energy for standard entral and spin-orbitSkyrme fores, as this will lead to an unaeptable underbinding of 48Ca. This,however, might hange when the J2 terms are added. Indeed, Fig. 4.22 suggeststhat adding a phenomenologial Wigner term around 40Ca and 56Ni to a parameterset like T44, whih is onsistent with the evolution of single-partile levels, would�atten the urves for the mass residuals in the Ca, Ni and N = 28 hains. Themass residuals for the hain of oxygen isotopes that are not shown here would beimproved in a similar manner. However, extreme aution should be exerised beforejumping to premature onlusions, as the spin-orbit splittings and level distanes inlight nulei are far from realisti for all our parametrizations; as a onsequene it isdi�ult to judge if the room we �nd for the Wigner energy is fortuitous or indeed afeature of well-tuned J2 terms. Note that the HFB mass formulas that do inludea orretion for the Wigner energy side-by-side with the J2 terms from the entralSkyrme fore give satisfying mass residuals for light nulei [Ton00, Sam02, Gor03℄,but have nulear matter properties that are quite di�erent from ours; f. BSk1 andBSk6 with SLy4 in Table I of Ref. [Rei06℄. Our onstraints on the empirial nulearmatter properties (same as those on SLy4) that are absent in these HFB mass �tsmight be the deeper reason for this on�it.Large tensor-term oupling onstants straighten the arhes in the mass residualsin the heavy Sn and Pb isotopi hains, but the improvements are not ompletelysatisfatory. Large, ombined proton-neutron and like-partile oupling onstantstend to transform the arh for the tin isotopi hain into a an s-shaped urve, whihis not very realisti from the standpoint of expeted orretions through olletive
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Figure 4.24: Two-neutron separation energy along the hain of isotopes (Z = 50).e�ets. It an again be assumed that the de�ienies of the single-partile spetrapointed out in Fig. 4.13 are responsible, where the ν 1h11/2 and π 1g9/2 are plaedtoo high above the rest of the single-partile spetra in heavy Sn isotopes. ForPb isotopes, large values of the tensor terms tend to overbind the neutron-de�ientisotopes. It is noteworthy that the tensor terms seem to not muh a�et the massresiduals of the heavy Pb isotopes above N = 126, whih are on the �ank of a verydeep ravine that beomes visible when going towards heavier elements, f. the SLy4results in Ref. [Ben06a℄.It has been often noted that e�etive interations that give a similar satisfyingdesription of masses lose to the valley of stability give diverging preditions whenextrapolated to exoti nulei. The standard example is the two-neutron separationenergy S2n(N,Z) = E(N,Z − 2) − E(N,Z) for the hain of Sn isotopes. Resultsobtained with a subset of our parametrizations are shown in Fig. 4.24. It is note-worthy that the di�erenes for neutron-rih nulei beyond N = 82 are not largerthan those for the isotopes loser to stability. Around the valley of stability, inreas-ing the oupling onstants of tensor terms, in partiular the like-partile ones, tiltsthe urve, pushing it up for light isotopes and pulling it down it for heavy ones,whih re�ets of ourse the position of the ν 1h11/2 level that is pushed into the
N = 82 gap, see Fig. 4.13. For the neutron-rih isotopes, small di�erenes appeararound N = 90, whih re�ets the hange of level struture above the ν 2f7/2 leveland at the drip line, but they are muh smaller than the di�erenes seen betweenparametrizations obtained with di�erent �t protools, see Fig. 5 of Ref. [Ben03b℄.SystematisIn the preeding setion we showed how the J2 terms in the energy funtional modifythe trends of mass residuals along isotopi and isotoni hains, in partiular theamplitude of the arhes between doubly-magi nulei. In this setion, we want toexamine how this translates into quality riteria for the overall performane of theparametrizations for masses.Figure 4.25 displays the root-mean-square deviation of the mass residuals for allour 36 parametrizations, evaluated for a set of 134 nulei predited to have spherialmean-�eld ground states when alulated with the parametrizations SLy4 [Ben06a℄.

http://link.aps.org/abstract/PRC/v73/e034322
http://dx.doi.org/10.1103/RevModPhys.75.121
http://link.aps.org/abstract/PRC/v73/e034322


4.3. RESULTS AND DISCUSSION 107

-60060120180240

-60 
0 
60 
120 

180 
240 

 1.5
 2

 2.5
 3

 3.5
 4

 4.5

∆Erms [MeV]
(T11)

β [MeV fm5]α [MeV fm5]

∆Erms [MeV]

Figure 4.25: Root-mean-square deviation from experiment of the binding energiesof a set of 134 spherial nulei, for eah of the fores TIJ , vs. α and β(The �(T11)� label indiates the position of this parametrization in the(α, β)-plane). Contour lines at ∆Erms = 2.0, 2.25, 2.5, 3.0, 3.5, 4.0 MeV.The minimal value is found for T46 (∆Erms = 1.96 MeV).One observes a lear minimum around T46, i.e. (α, β) = (240, 120), with (Eth −
Eexp)r.m.s. = 1.96 MeV, ompared with 3.44 MeV for T22 (α = β = 0). We foundeven slightly better values with even more repulsive isosalar and isovetor ouplingonstants, but the single-partile spetra of these interations turn out to be quiteunrealisti, f. Set. 4.3.2. This already demonstrates that in the presene of the J2terms a good �t of masses does not neessarily lead to satisfatory single-partilespetra.Figure 4.26 demonstrates how the distribution of the mass residuals Eth − Eexpa�ets the evolution of their r.m.s. value for a subset of 9 parametrizations. ForT22 (α = β = 0), the distribution is entered at positive mass residuals, with onlyvery few nulei being overbound. Inreasing β to 120 MeV fm5 (T42) or even 240MeV fm5 (T62) shifts the median of the distribution to smaller values, whih yieldsmore and more overbound nulei. For large values of β, the distribution spreads outmore, whih diminishes the improvement from entering the distribution loser tozero. For given β, inreasing α mainly shifts the median of the distribution withoutspreading out its overall shape, whih is preferable to optimize the r.m.s. value.These onsiderations, however, have to be taken with aution. As said above,we aim at a model where ertain orrelations beyond the mean-�eld are treatedexpliitly, whih asks for a distribution of mean-�eld mass residuals with an asym-metri distribution towards positive mass residuals, and a width that is similar tothe di�erene between the maximum and minimum orrelation energies to be found.



108 CHAPTER 4. TENSOR PART OF THE SKYRME FUNCTIONAL

 0

 5

 10

 15

 20

 25

-10 -8 -6 -4 -2  0  2  4  6  8  10
Eth - Eexp [MeV]

T62
T64
T66

 0

 5

 10

 15

 20

 25

%
 n

uc
le

i

T42
T44
T46

 0

 5

 10

 15

 20

 25
T22
T24
T26

Figure 4.26: Distribution of deviations from experiment of the binding energies of aset of 134 spherial nulei (1 MeV bins) for a subset of parametrizations.Eah panel orresponds to a given value of β (from top to bottom:
β = 0, 120, 240 MeV fm5).



4.3. RESULTS AND DISCUSSION 1094.3.4 RadiiThe evolution of nulear harge radii along isotopi hains re�ets how the mean�eld of the protons hanges when neutrons are added in the system. In the simplistiliquid-drop model, it just follows the geometrial growth of the nuleus ∼ A1/3, butdata show that there are many loal deviations from this global trend. On the onehand, radii are of ourse subjet to orrelations beyond the mean �eld [Rei79, Gir82,Bon91, Hee93, Ben06a℄ On the other hand, they are also sensitive to the detailed shellstruture, whih, in turn, might be in�uened by tensor terms. We will onentratehere on two anomalies of the evolution of harge radii, both of whih are not muhin�uened by olletive orrelations beyond the mean-�eld (at least in alulationswith the Skyrme interation SLy4) [Ben06a℄: that the root-mean-square (r.m.s.)harge radius of 48Ca is almost the same as the one of the lighter 40Ca or possiblyslightly smaller, and the kink in the isotopi shifts of mean-square (m.s.) hargeradii in the Pb isotopes, where Pb isotopes above 208Pb are larger than what ouldbe expeted from liquid-drop systematis. In both ases it is plausible that shelle�ets are the determining fator, although alternative explanations that involvepairing e�ets have been put forward for the latter ase as well [Taj93a, Fay00℄.Charge radii have been alulated with the approximation used in Ref. [Cha97℄1and derived from Ref. [Ber72℄
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〈σ · ℓ〉i , (4.17)where the mean-square (m.s.) radius of the point-proton distribution 〈r2〉p is or-reted by three terms: the �rst two estimate the e�ets of the intrinsi hargedistribution of the free proton and neutron (with m.s. radii r2
p and r2

n) and the thirdadds a orretion from the magneti moments of the nuleons. Sine we will onsiderthe shift of harge radii for di�erent isotopes of the same series, the atual valueof r2
p anels out. For the seond orretion term, whih is independent from theinteration, we take r2

n = −0.117 fm2 [Ben03b℄. Finally, the magneti orretionan only depend weakly on the details of the interation through the oupationfators v2
i when non-magi nulei are onsidered. The same expressions had beenused during the �t of our parametrizations.We begin with the Ca isotopes. Most parametrizations of Skyrme's interationare not able to reprodue that the harge radius of 48Ca has about the same sizeas that of 40Ca, see Fig. 11 in Ref. [Ben03b℄. The middle panel of Fig. 4.27 showsthe di�erene of the m.s. radii of 48Ca and 40Ca in dependene of the tensor termoupling onstants α and β. First, this di�erene is almost independent of α, thestrength of the like-partile tensor terms. Seond, it is strongly orrelated with β, thestrength of the proton-neutron tensor term, with large positive values of β bringingthe di�erene of radii into the domain of experimentally aeptable values [Ott89℄or even below, with a best math obtained for β = 80 MeV fm5. This e�et an beexplained by looking at the proton single-partile spetra of 40Ca (Fig. 4.15) and

48Ca (Fig. 4.16). Indeed, one observes that a positive neutron-proton tensor ouplingonstant dereases the strength of the proton spin-orbit �eld in 48Ca, whih in turn1There is a typographial error in Eq. (4.2) in Ref. [Cha97℄, that was opied to Eq. (110) inRef. [Ben03b℄: the ~/mc fator should be squared, as is trivially found by dimensional analysisand on�rmed by Ref. [Ber72℄.
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4.3. RESULTS AND DISCUSSION 111lowers the π 1d3/2 level in 48Ca (ompare the parametrizations TIJ in Fig. 4.16with inreasing I for given J). As a onsequene, the m.s. radius of this statedereases as it sinks deeper into the potential well of 48Ca. At the same time, thislevel is pushed up in 40Ca, whih slightly inreases the ontribution of this stateto the harge m.s. radius of this nuleus. This e�et is demonstrated in the toppanel of Fig. 4.27, whih displays the degeneray-weighted and normalized hangeof the m.s. radii of proton hole states between 40Ca and 48Ca as a funtion of theproton-neutron tensor term oupling onstant β for fores with a like-partile tensorterm oupling onstant α = 120 MeV fm5. Indeed, the dereasing ontribution fromthe π1d3/2 state to the m.s. radius signi�antly dereases the isotopi shift betweenboth Ca isotopes. It has to be noted that the m.s. value of the harge radii of 40Caand 48Ca are almost independent of alpha and that their absolute values are notreprodued for any of our parametrizations.The latter study demonstrates the orrelation between the isotopi shift of m.s.harge radius between 40Ca and 48Ca and the absolute single-partile energy ofthe proton 1d3/2 state. This level an be moved around within the single-partilespetrum with the J2 terms. However, the agreement of the alulated single-partileenergy of the proton 1d3/2 state in both nulei with experiment is not neessarilyimproved for the parametrizations that reprodue the isotopi shift of the m.s. hargeradius. Furthermore, a good reprodution of the isotopi shift does not guaranteethat the absolute values of the harge radii are well reprodued, see the bottom panelin Fig. 4.27. In fat, they are predited too large for all of our parametrizations,whih again points to de�ienies of the entral �eld. Altogether, this suggests thatin spite of its sensitivity to the oupling onstants of the J2 terms, the isotopi shiftof m.s. harge radius between 40Ca and 48Ca should not be used to onstrain thembefore one has gained su�ient ontrol over the entral interation.A few further words of aution are in plae. The harge radii of all light nu-lei are signi�antly inreased by dynamial quadrupole orrelations, see Fig. 23 ofRef. [Ben06a℄. Correlations beyond the stati self-onsistent mean �eld are also atthe origin of the arh of the ms harge radii between 40Ca and 48Ca that is neitherreprodued by any pure mean-�eld model, see again Fig. 11 in Ref. [Ben03b℄, norby the beyond-mean-�eld alulations with SLy4 of Ref. [Ben06a℄, while the shellmodel allows for a satisfatory desription [Cau01℄.Many explanations have been put forward to explain the kink in the isotopishifts of Pb radii. As it qualitatively appears in relativisti mean-�eld models, butnot in non-relativisti ones using the standard spin-orbit interation (2.84), it hasbeen used as a motivation to generalize the isospin mix of the standard spin-orbitenergy density funtional, Eq. (2.86), to simulate the isospin dependene of therelativisti Hartree models [Sha95, Rei95℄. The resulting parametrizations are notompletely satisfatory, as the prie for the improvement of the radii is a furtherdeterioration of spin-orbit splittings [Ben99b℄, while the relativisti mean �eld givesa satisfatory desription of both. Some standard Skyrme interations that take thetensor terms from the entral Skyrme fore into aount also give a kink, but it isby far too small to reprodue the experimental values [Cha98℄.Plotting the m.s. radii along the hain of Pb isotopes as a funtion of N , theslopes are nearly linear when looking separately at the isotopes below and above
208Pb. We will onentrate on the hange in the slope at 208Pb that is brought bythe tensor terms, whih an be quanti�ed through the seond �nite di�erene of the
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∆2〈r2h〉(208Pb) = 1

2

[
r2h(206Pb) − 2 r2h(208Pb) + r2h(210Pb)

]
. (4.18)There are two on�iting values to be found in the literature, either 46.4 ± 1.4 fm2[Ott89℄ and the signi�antly larger 59±3 fm2 [Ang04℄. Figure 4.28 shows the hangeof slope around 208Pb as de�ned through Eq. (4.18) as a funtion of the like-partiletensor oupling onstant α and for three di�erent values of β. It is striking to see thatthis quantity is almost independent of the neutron-proton tensor oupling onstant

β, so the hange is mainly indued by the tensor interation between partiles of thesame kind. It has been noted before that the kink in the isotopi shift of the hargeradii in Pb isotopes is orrelated to the single-partile spetrum of neutrons above
N = 126, in partiular the position of the 1i11/2 level. (This has to be ontrastedwith the Ca isotopi hain disussed above, where the di�erene of harge radiibetween 40Ca and 48Ca appears to be partiularly sensitive to the single-partilespetrum of the protons.) The loser the 1i11/2 level is to the 2g9/2 level that is �lledabove N = 126, the more the 1i11/2 beomes oupied through pairing orrelations.Through the shape of its radial wave funtion, the partial �lling of the nodeless 1i11/2inreases the neutron radius faster than �lling only the 2g9/2, and in partiular fasterthan for the isotopes below N = 126. As the protons follow the density distributionof the neutrons, the harge radius grows rapidly beyond N = 126. This o�ersan explanation why the kink inreases with the like-partile tensor term ouplingonstant α: for large values of the weight α of the neutron spin-orbit urrent in theneutron spin-orbit potential, Eq. (4.8), the spin-orbit splitting of the ν 1i levels isredued suh that the 1i11/2 approahes the 2g9/2 level in 208Pb, see Fig. 4.14.While the kink is learly sensitive to the tensor terms, they annot be responsi-ble for the entire e�et, as even for extreme parametrizations that give unrealistisingle-partile spetra the alulated kink hardly reahes about three quarters of itsexperimental value.



4.4. SUMMARY AND CONCLUSIONS 1134.4 Summary and onlusionsIn this hapter, we have reported a systemati study of the e�ets of the J2 (tensor)terms in the Skyrme energy funtional for spherial nulei. The aim of the presentstudy was not to obtain a unique best �t of the Skyrme energy funtional with tensorterms, but to analyze the impat of the tensor terms on a large variety of observablesin alulations at a pure SR-EDF level and to identify, if possible, observables thatare partiularly, even uniquely, sensitive to the J2 terms. To reah our goal, we havebuilt, using a protool very similar to that of the SLy parametrizations, a set of 36parametrizations that over the two-dimensional parameter spae of the ouplingonstants of the J2
t terms that does not give obviously unphysial preditions fora wide variety of observables we have looked at. The parametrizations were �ttedindependently on the same set of data, in order to keep an agreement with thephysis assoiated with the latter.As a result of our study, we have obtained a long list of potential de�ienies ofthe Skyrme energy funtional, most of whih an be expeted to be related to theproperties of the entral and spin-orbit interations used. In fat, these de�ieniesbeome more obvious the moment one adds a tensor fore, as it appears that thepresene of a tensor fore unbalanes a deliate ompromise within various terms ofthe Skyrme interation that permits to get the global trend of gross features of theshell struture right.Our onlusions, however, have to be taken with a grain of salt. On the one hand,some might depend on the �t protool; and on the other hand, we have to stress that(within the framework of our study � and all others available so far using mean-�eldmethods) the omparison between alulated and empirial single-partile energiesis not straightforward and without the risk of being misled.However, without even looking at single-partile spetra, we �nd that a strongrearrangement of the spin-orbit terms ours, linked with a strong onstraint omingfrom the �t to the masses of Ca and Ni nulei. The latter, again, appears to bemodel-dependent and linked with the spei�ities of the entral and spin-orbit terms.The rearrangement of the spin-orbit strength with the isosalar tensor ouplingmeans that single-partile spetra of spin-saturated nulei are strongly a�eted bythe latter, whih an lead to unrealisti situations.Besides, the partiular onstraints used in our protool, foused on doubly-maginulei, favor parametrizations with a vanishing neutron-proton tensor oupling β.By ontrast, the mass residuals of a test set of 134 spherial even-even nulei areminimized for interations with large α (like-partile) and β ouplings. Finally,tensor terms were shown to have an in�uene, through single-partile level shifts,on the di�erene of harge radii between 40Ca and 48Ca. The orresponding spe-tra, however, are not fully satisfatory, whih is another example of inompatibleonstraints.Conerning the global properties of the spin-orbit urrent J and its ontribution,through the tensor terms, to the spin-orbit potential, we have shown that it wasdominated, in spin-unsaturated nulei, by single intruder orbitals, whih implies aspei� loalization in regions just below the nulear surfae, slightly di�erent fromthe loalization of the spin-orbit ontribution to the spin-orbit �eld.The main motivation to add J2 terms is of ourse to improve the single-partilespetra. All observations and onlusions onerning those have to be taken with



114 CHAPTER 4. TENSOR PART OF THE SKYRME FUNCTIONALare, however, due to the aveat already mentioned and repeated. When lookingat the single-partile spetra in doubly-magi nulei (or semi-magi nulei om-bined with a strong subshell losure of the other speies) we �nd that, as a onse-quene of the loalization of the spin urrent density, state-dependent modi�ationsof spin-orbit splittings our when varying tensor parameters, due to the ouplingof nodeless intruder states to themselves being maximized. The addition of tensorterms thus modi�es the dependene with prinipal and/or orbital quantum numberof spin-orbit splittings in disagreement with experimental input, as shown alreadyin Ref. [Bro06a℄. The isospin dependene of spin-orbit splittings, moreover, hasbeen found to be a�eted by the spei� loalization of the spin-orbit �eld in anon-physial and model-dependent way. In addition, the disussion of splittingsstemming from the omparison of theoretial and experimental spetra of heavy nu-lei is impeded by the position of spin-orbit doublet entroids, whih lie tentativelytoo high ompared to levels of the nearest shells. This is unambiguously a defet ofthe entral potential and orresponding part of the funtional.The prinipal e�et of the tensor terms, that most of the reent studies onen-trate on, is the evolution of spin-orbit splittings with N and Z. Unfortunately, thereare no data for the splittings themselves, suh that one relies on data for the evolu-tion of the distane of two levels with di�erent ℓ. The omparison is ompromisedby the global de�ienies of single-partile spetra listed above.Still, a areful omparison of alulations and experiment suggests that the evo-lution of the proton 1h11/2, 1g7/2 and 2d5/2 levels in the hain of Sn isotopes andthat of the proton 1f5/2 and 2p3/2 levels in Ni isotopes all for a positive proton-neutron tensor oupling onstant β with a value around 120 MeV fm5, onsistentwith the �ndings of Refs. [Bro06a, Col07, Bri07℄. Meanwhile, The evolution of theneutron 1d3/2 and 2s1/2 levels between 40Ca and 48Ca alls for a like-partile tensoroupling onstant α with a similar value around 120 MeV fm5. This it at varianeto the �ndings of the aforementioned papers, but in qualitative agreement with theparametrization skxta of Brown et al. [Bro06a℄ for whih the tensor terms were de-rived from a mirosopi interation but disregarded thereafter beause of its poordesription of spin-orbit splittings. We expet this mismath to be alleviated if theposition of doublet entroids is kept under ontrol.This partiular study is only a limited ontribution to the improvement of theSkyrme energy density funtional. Also, it does not exhaust the range of studiesto be performed in order to understand the role of tensor terms in this model.The study of deformation properties of seleted parametrizations TIJ , for example,should allow to distinguish between the e�ets of entral and tensor ontributionsto J2 terms, whih are no longer idential when breaking spherial symmetry. Thiswork will be published in the near future [Ben09℄.Moreover, the in�uene of the terms depending on time-odd densities and ur-rents in the omplete energy funtional (2.91) on nulear matter and �nite nulei(rotational bands et) is under investigation as well. The existing stability riteriaof polarized matter have to be generalized as the tensor fore introdues new uniqueterms, for example in the Landau parameters [Hae82℄.It is evident that improvements of the entral and spin-orbit parts of the energydensity funtional are neessary, whih will require a generalization of its analytialform. This on�rms and extends the onlusions of hapter 3. Furthermore, asystemati implementation of MR-EDF alulations will be needed, so as to assess
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4.4. SUMMARY AND CONCLUSIONS 115not only the variation of single-partile spetra, but also the e�et of orrelationson the ensuing odd-nuleus exitation spetrum. Partile-vibration oupling in therandom-phase approximation should thus be an invaluable tool.These omments lose the �rst part of this manusript. As we have in mindthe properties and, unfortunately, limitations of the partile-hole part of the nulearEDF derived from a Skyrme e�etive interation, let us shift the disussion to thepartile-partile part.
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Chapter 5Ab-Initio Desription of NulearPairing
5.1 Pairing and super�uidity in many-fermion sys-temsThe struture and dynami properties of a nuleus greatly depends on the parityof its neutron and proton numbers. It was realized soon that an empirial massformula had to take into aount an additional binding energy ontribution for nuleiwith even N or Z, ompared to those with odd N or Z, of the order of 12A−1/2MeV [Boh98℄. Moreover, exitation spetra of even-even nulei show a distint gapbetween the ground and �rst exited states, a feature absent in nulei with an odd
N or Z. These observations were explained by Bohr, Mottelson and Pines [Boh58℄,who made the link between them and the pair ondensation mehanism, whih hadbeen put forward as a model for eletroni superondutivity by Bardeen, Cooperand Shrie�er (BCS) [Bar57a, Bar57b℄, then for the super�uidity of Helium-3.In BCS theory, fermion pair ondensation is explained by an attrative intera-tion between partiles at the Fermi surfae of an otherwise non-interating gas. Inthis sense, it remains within the mean-�eld sheme, and an be formulated withina density funtional theory formalism [Oli88℄. A more fundamental and general ap-proah to pair ondensation has sine been derived within the framework of many-body perturbation theory [Noz63, Abr63℄.Generally speaking, pair ondensation onsists in the appearane of a two-bodybound state in the medium. Besides, the possibility, for arbitrarily weak attrativeinterations, to form a two-eletron bound state (so-alled �Cooper pair�) near theFermi surfae of an eletron gas, [Coo56℄, was fundamental in the derivation ofthe BCS formalism [Bar57a℄. In an in�nite system, suh a bound state will belearly distint from the ontinuum of sattering states orresponding to elementaryexitations, whih is the origin of a gap in the elementary exitation spetrum. Inother words, building an exitation �rst requires breaking a pair into independentpartiles before exiting one of them. This is the main ause of the spei� propertiesof super�uid/superonduting media. 117
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118 CHAPTER 5. AB-INITIO DESCRIPTION OF NUCLEAR PAIRING5.1.1 BCS theoryThe BCS ansatz for the wave funtion of a system of fermions ondensed into a su-per�uid phase onsists of a oherent superposition of Slater determinants di�eringby the addition of pairs of partiles or holes, reated in pairs of single-partile basisstates. States in a suh a pair belong to two di�erent �halves� of the basis, and areassoiated aording to symmetries of the system and properties of the interation.The quantum numbers upon whih the distintion between single-partile states ismade are related to those of the Cooper pair. In the ase of spin-singlet, or S = 0pairing, S being here the total spin of the Cooper pair, states assoiated in theBCS wave funtion are related by time-reversal symmetry [And59℄ whih, e.g. inin�nite systems, assoiates the state |kσ〉, k being the momentum and σ the spin ofthe partile, to |-k-σ〉. This is the onventional hoie in BCS theory, appropriatefor most superondutors, low-density neutron matter and the desription of same-speies nuleon pairing, in the 1S0 state, whih is the dominant proess in nulei.In the spin-triplet ase, a similar role seems to be played by parity [And84℄, whihtransforms |kσ〉 into |-kσ〉. This spin-triplet pairing ours in exoti, high-TC su-perondutors [Gor85℄, neutron-proton pairing in symmetri nulear matter as wellas high-density neutron matter where neutron pairs form in the 3P − F2 state.Hereafter we shall deal with spin-singlet (S = 0), isospin-triplet (T = 1, like-partile) nulear pairing, yet the expressions put forward will usually stay as generalas possible.In a �rst step, we shall work with an arbitrary single-partile basis |k〉. We notewith a ˇ sign (|ǩ〉) single-partile states belonging to the �rst half and with a ˆ sign(|l̂〉) s.p. states belonging to the seond half. The state assoiated with |ǩ〉 in a pairoperator is written |k〉, omitting the ˇ sine no ambiguity should our. The samepriniple applies for |l̂〉. States without a ˇ or ˆ symbol an belong to either half ofthe basis. We will mostly work with reation/annihilation operators orrespondingto the single-partile states, i.e. |k〉 = ĉ†k|−〉, where |−〉 is the bare vauum.The BCS wavefuntion an be expressed as
|Φ0〉 =

∏

ǩ

(u2
ǩ
+ v2

ǩ
ĉ†
ǩ
ĉ†
k
)|−〉. (5.1)Bogolyubov [Bog58℄ and Valatin [Val58℄ introdued the anonial transformation(whih transforms the initial fermion operators into quasipartile operators onserv-ing the fermioni antiommutation rules)

α̂k = ukĉk − vkĉ
†
k

(5.2)
ĉk = ukα̂k + vkα̂

†
k

(5.3)with uk = uk, vk = −vk. The new quasipartile basis de�nes the BCS state as aquasipartile vauum with αk|Φ0〉 = 0 for all k. One an hek that for the state
|Φ0〉 to be normalized, one must have

u2
k + v2

k = 1. (5.4)Another important property is the probability that a (pair of) s.p. state(s) is ou-pied, i.e. the diagonal density matrix element 〈 Φ0

∣∣∣ĉ†kĉk
∣∣∣Φ0

〉
= v2

k. Summing v2
kover all s.p. states thus yields the partile number.
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5.1. PAIRING AND SUPERFLUIDITY IN MANY-FERMION SYSTEMS 119The energy of the system is de�ned as the funtional of uk and vk parameters[Bar57a℄
E0 ≡ Es.p. + Epair, (5.5)

Es.p. ≡
∑

k

εkv
2
k, (5.6)

Epair ≡ 1

4

∑

kl

vkkll ukvk ulvl, (5.7)where Es.p. is the sum of single-partile energies εk of the partiles, and Epair is thepairing energy orresponding to the anomalous ontrations of the pairing intera-tion [Rin00℄.The energy Epair is nonzero only for a state whih breaks partile-number on-servation. The wave funtion Eq. (5.1), indeed, does not onserve partile number,whih is harateristi of a �nite-order perturbative treatment of pair ondensation.In order to determine the parameters uk and vk , we should minimize E . However,sine we no longer work in a manifold of Slater-determinant eigenstates of the par-tile number operator N̂ , we have to apply a onstraint, at least, on the averagepartile number. This is done through the use of a Lagrange multiplier, de�ning thequantities
E0 ≡ E0 − λN = E s.p. + Epair, (5.8)

Es.p. =
∑

k

εkv
2
k − λ

∑

k

v2
k =

∑

k

εkv
2
k, (5.9)

εk ≡ εk − λ, (5.10)
λ ≡ ∂E

∂N

∣∣∣∣
N=N0

, (5.11)
εk is thus the single-partile energy measured from the hemial potential λ, whihis set so as to ensure the onservation of the average partile number at its targetvalue N0.Minimizing E yields the equation

2 ε̃kukvk + ∆k(v
2
k − u2

k) = 0, (5.12)with
ε̃k ≡ 1

2
(εk + εk), ∆k ≡ −1

2

∑

l

vkkll ulvl, (5.13)where ε̃k is a s.p. energy averaged over partner states (whose energies an be di�erentin the most general ase), whereas ∆k is the gap parameter. Eqs. (5.12) and (5.4)allow one to determine uk and vk as
v2

k =
1

2

(
1 − ε̃k

Ek

)
, u2

k =
1

2

(
1 +

ε̃k

Ek

)
, (5.14)where Ek ≡

√
ε̃2

k + ∆2
k is the quasipartile energy. Indeed, in the ase where εk = εk,one an show that |Φ0〉 is the ground state of the single-(quasi)partile Hamiltonian[Noz63℄
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} (5.15)
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120 CHAPTER 5. AB-INITIO DESCRIPTION OF NUCLEAR PAIRINGwith energy E0. One then has, for one-quasipartile states, the property
ĤBCS |Φk〉 ≡ ĤBCS α̂k|Φ0〉 = E0 + Ek |Φk〉. (5.16)By plugging bak Eq. (5.14) into the de�nition of ∆k, Eq. (5.13) one obtains theBCS gap equation

∆k = −1

2

∑

l

vkkll

∆l

El

, (5.17)whih an be solved by self-onsistent iterations to obtain all other quantities pre-sented in this setion.Quasipartile energies Ek =
√
ε̃2

k + ∆2
k, in the ase of nonvanishing pairing gap

∆k, are themselves nonzero even for states whose energy is in the viinity of thehemial potential λ. This is at the origin of a staggering of binding energies betweennulei with odd and even partile number in an isotope or isotone hain. Indeed,whereas the BCS wave funtion, Eq. (5.1) is not an eigenstate of the partile numberoperator, it only has omponents with even partile numbers. Thus, a system withan odd number of partiles shall be better desribed as a one-quasipartile state
α†

k|Φ0〉 whih exhibits an exess energy with respet to the even-number paritystate it is built upon.The quasipartile operator α†
k annihilates the partile in state |k〉 and reatesone in state |k〉, with orresponding amplitudes, respetively, vk and uk. The orre-sponding variation of partile number equals u2

k − v2
k. Adding bak the onstrainingterm λN to the Hamiltonian ĤBCS, one obtains the energy of the one-quasipartilestate

Ek = E0 + Ek + λ(u2
k − v2

k), (5.18)i.e. the energy gained is equal to Ek only if the quasipartile |k〉 orresponds toa s.p. level whose energy is equal to the hemial potential λ. The quasipartileenergy orresponds to the pairing gap ∆k in the same onditions.It should be noted, though, that this perturbative sheme for the desription ofan odd-partile-number-state is inaurate. Indeed, reating a single quasipartilebreaks the symmetry between the two halves of the basis (time-reversal symmetryin nulear 1S0, T = 1 pairing) sine α̂k and α̂k are distint operators. This isnegligible for in�nite systems, but for �nite nulei this symmetry breaking lifts thedegeneray of pairs of s.p. states. Whereas in the theory of superondutors it isgenerally believed that exat time-reversal symmetry is neessary for the onset of
S = 0 pairing (the large number of partiles making a single non-paired partileirrelevant), in nulei the addition of a single quasipartile is a signi�ant but weakenough perturbation to allow pairing to be maintained. However, the desription ofsuh a system has to use the full time-reversal-symmetry-breaking HFB sheme, i.e.the variation of the s.p. states on top of whih the BCS state is built. Expressionsfor the latter and the gap equation then hold in the anonial basis.5.1.2 Experimental evidene and observablesFermion pairing auses the appearane of a ondensed phase having properties verydi�erent from those of a non-interating gas. In in�nite matter, as the bound state



5.1. PAIRING AND SUPERFLUIDITY IN MANY-FERMION SYSTEMS 121is learly separated from the ontinuum of free elementary exitations, exited statesbreaking the symmetries of the ground state require a �nite energy to be reahed.This makes the super�uid irrotational (states with non-vanishing angular momen-tum are pushed to higher energies) and prevents dissipation in hydrodynami �ows.In atomi nulei, manifestations of pairing mainly onsist of spins of even andodd nulei, energy gaps in the spetra of even-even nulei, moments of inertia lowerthan their rigid-body ounterparts, and odd-even staggering of binding energies.The ground state of even-even nulei an be desribed as a fully-paired vauum,i.e. all partiles partiipate to forming pairs. The neessity for this behavior waspointed as early as 1950 by Goeppert Mayer [GM50a, GM50b℄ as an explanation, inthe ontext of the shell model, for the spin 0 observed in these nulei. Moreover, thelatter exhibit an exitation spetrum where no exitation of an individual haraterexists below an energy of several hundred keV to several MeV. Thus, low-lying statesin suh a nuleus have a highly olletive harater, i.e. orrespond to the reouplingof a large number of quasipartile exitations. As a result, the lowest exited states ofa spherial even-even nuleus is most often a 2+ quadrupole-vibrational state, whilelow-energy exitation spetrum of a deformed one is dominated by a rotational band.To the ontrary, low-lying quasipartile struture, assoiated with exitations of thesingle non-paired partile, is visible in nulei with odd N and/or Z at energy salesof 100 keV.Moments of inertia extrated from low-energy rotational spetra were immedi-ately notied as being lower than those expeted from a supposedly rigid rotatingquantum system [Boh55, Ald56℄. Only later was the link made with a possible su-per�uid behavior of the nuleons [Boh58℄. Another signi�ant e�et assoiated withpair ondensation is the possibility to break pairs, yielding a higher moment of iner-tia. Whereas at low angular momentum broken-pair states lie higher in energy thanthe fully-paired quasipartile vauum, their higher moment of inertia means thatthey gain energy more slowly with angular momentum. This implies that energy vs.angular momentum urves for rotational bands orresponding to these di�erent on-�gurations will eventually ross [Joh71℄. Another way to interpret the phenomenonis by studying the oupling of nuleon spins to the rotation of the nulear refereneframe via the Coriolis e�et [Mot60℄. A distint signature of this phenomenon is thebakbending e�et [Ste72℄.More reently, the advent of radioative ion beam failities, together with thedevelopment of supernova simulations in omputational nulear astrophysis, hasshifted the fous of nulear-struture researh to neutron- and proton-rih nulei.Suh nulei present partiular hallenges to many-body theory due to the low neu-tron (or proton) separation energy, whih implies the existene of low-lying exi-tations of nuleons to ontinuum, sattering states. Preautions onerning thedisretization of the ontinuum have to be taken when omputing suh systems, seeRefs. [Dob84, Ben99, Dob96b℄. One prominent e�et ourring at the drip lines isthe presene of halos. Following the disovery of this phenomenon in 11Li [Tan85b℄,halos have been observed in several other light nulei [Tan85a, Tan88, Rii94℄. Inmedium-mass and heavy ones, though, no experimental evidene exists of the pres-ene of halos, and theory has to rely on the EDF method. Pairing is espeially im-portant in this ase, as it hinders the appearane of a halo by modifying the asymp-toti behavior of the density [Ben00℄. Reent studies performed in single-referene[Rot07, Rot07b℄ and multi-referene [Sh08℄ EDF frameworks indeed on�rm that
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122 CHAPTER 5. AB-INITIO DESCRIPTION OF NUCLEAR PAIRINGthe appearane of a halo is sensitive to details of the pairing sheme used, as areother properties of nulei at the neutron drip line.Finally, the most prominent signature of pairing is the large odd-even staggering(OES) of nulear masses: odd nulei are found to have an energy systematiallyhigher than the mean energies of the neighboring even nulei, i.e. they lie on di�erentsmooth E vs. N (Z) urves [Hei32℄. As a measure of this e�et, the quantities
∆(3)

n (N,Z) =
(−1)N

2
[E(N − 1, Z) − 2E(N,Z) + E(N + 1, Z)] , (5.19)and ∆

(3)
p , obtained by exhanging the roles of N and Z, are most often used. Theyhave positive values for both odd and even N (Z). In a BCS-like quasipartilepiture, the exess energy found in an odd nuleus orresponds to the energy of thequasipartile reated in order to obtain a one-q.p. (�bloked�) odd-number-paritystate.Eq. (5.19) is the di�erene between separation energies of onseutive nulei. In aself-onsistent mean-�eld/EDF sheme without pairing, due to Koopmans' theorem[Koo34℄, it measures the spaing of single-partile levels, i.e. (in the ase of neutrons)

∆
(3)
n,HF(N,Z) =

(−1)N

2

[
ε(N+1) − ε(N)

]
, (5.20)where ε(N) is the energy of the single-partile level on whih the N th neutron isadded. Due to the twofold degeneray of single-partile states in even-even nuleiwhose ground state is invariant under time reversal, one-neutron separation energiesalulated at the HF level (i.e., more generally, without pairing) for a N-neutronnuleus (even N) and its N + 1 neighbor are almost idential, while separationenergies for N + 1 and N + 2 are usually di�erent, exept in the ase of a largespherial j-shell degeneray. Thus, ∆

(3)
n (N,Z) with even N may ontain a signi�-ant ontribution from the splitting of single-partile energies, whih may explain asigni�ant part of the odd-even staggering of ∆(3)(N,Z) itself. Satuªa, Dobazewskiet al. [Sat98, Dob01℄ used this result to propose restriting oneself to ∆

(3)
n (N,Z)alulated at odd N values (hereafter alled ∆

(3)odd) in the disussion of pairing.However, the twofold degeneray of single-partile levels, and the equality be-tween ε(N+1) and ε(N) for even N , is not exat. Indeed, time-reversal symmetrybreaking aused by the addition of a single nuleon lifts this degeneray in the oddnuleus, resulting in a rearrangement (or �polarization�) of the nuleus, whih is anulear embodiment of the Jahn-Teller e�et [Jah37℄. Although the deformationdegree of freedom is mostly bloked due to pairing itself [Sat98℄, limiting the magni-tude of the Jahn-Teller ontribution to the OES, ore polarization an derease theenergy of the bloked on�guration. This polarization brings a negative ontributionto the OES that Rutz et al. estimated at up to 30 % of the �bare� gap in relativistiHartree (RH) models [Rut99℄.Duguet et al. revisited the interpretation of the struture of an odd nuleus interms of a fully paired BCS/HFB vauum (with an even number parity and an oddaverage partile number) on top of whih a quasipartile orresponding to a s.p.orbital lying lose to the hemial potential was reated [Dug01a℄. Starting fromthe alulation of suh HFBE (for HFB-Even) states and fully self-onsistent HFBbloking alulations, an analysis of di�erent measures of the pairing gap was made
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5.1. PAIRING AND SUPERFLUIDITY IN MANY-FERMION SYSTEMS 123[Dug01b℄, i.e. a omparison of ∆
(3)
n (N,Z) and

∆(5)
n (N,Z) = −(−1)N

8

[
E(N − 2, Z) − 4E(N − 1, Z)

+ 6E(N,Z) − 4E(N + 1, Z) + E(N + 2, Z)
]
, (5.21)whih is an average of ∆(3) over a nuleus and its neighbors. They deomposedmass-di�erene formulae as

∆(n) = ∆
(n)HFBE + ELQP + Epol. (5.22)where ∆

(n)HFBE ontains the (n − 1)th-order derivative of the �smooth� part of theenergy urve orresponding to fully paired, even-number-parity vaua. The latterhas been veri�ed as being signi�ant for n = 3, whih orresponds to a urvature dueto non-linear terms in the mass formula suh as, prinipally, the symmetry energy,whereas it vanished almost ompletely for n = 5. The urvature ontribution ∆
(n)HFBEis generally observed to derease with mass and, ontrary to the HF ontribution tothe OES, it has a sizeable value in spherial nulei. ELQP is a Lowest QuasiPartileenergy averaged over one or more neighboring nulei. This is the quantity that weare attempting to extrat sine the main ontribution to its value, for well-pairednulei, is the HFB pairing gap (diagonal pairing �eld matrix element) ∆k. Finally,

Epol. is the (similarly averaged) polarization energy, i.e. the di�erene betweenthe energy of the odd nuleus alulated in a fully self-onsistent bloking sheme,and the perturbative value obtained by adding the quasipartile energy to the HFBEground state energy. It was found that, whereas ∆(5) was the most aurate measureof the sum of pairing and polarization ontributions, a anellation ourred between
Epol. and ∆

(3)HFBE terms in ∆
(3)odd, whih on�rms it as a good measure of pure pairinge�ets.In the Jahn-Teller mehanism, a system is expeted to lower its energy on-sequently to lifting the degeneray of its ground state. In the HFB method, theunderlying variational priniple ould be expeted to make an odd nuleus al-ulated in self-onsistent bloking follow this sheme. Therefore, Epol. should benegative, whih is the ase in the work by Rutz et al. [Rut99℄ but not in those bySatuªa et al. [Sat98℄ and Duguet et al. [Dug01b℄. One possible reason for this isthe self-interation present in an energy density funtional when the latter is notstritly built as the HFB expetation value of a Hamiltonian, or expliitly orretedfor self-interation [Per81℄. Despite the inlusion of time-odd omponents of thefuntional, quasipartile self-interation, i.e. self-interation and self-pairing terms[La08℄ an be present and break the link between quasipartile energies resultingfrom the HFBE alulation and the true energy of the one-quasipartile state asalulated expliitly through the funtional (see Eq. (2.64) and aompanying dis-ussion). As of this work's writing there is no more aurate hek of the magnitudeof this e�et, though, whih might be required if one expets to fully understandthe preise in�uene of pairing in the nulear EDF.Beyond these qualitative onsiderations, performing yet another analysis of thelink between nulear masses and pairing gaps is beyond the sope of the present work.We shall thus use the rather onsensual measure ∆

(3)odd when performing omparisonswith experiment. On last remark may be required, i.e. that this quantity should notbe used near shell losures (N,Z±2) for the omparison with a SR-EDF alulation,sine dynamial pairing e�ets may play a signi�ant role.
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124 CHAPTER 5. AB-INITIO DESCRIPTION OF NUCLEAR PAIRING5.1.3 Trends in pairing gapsSeveral studies have dealt with the mass- and isospin-dependene of pairing gaps. Asalready mentioned, the A-dependene of both proton and neutron gaps was identi�edearly [Boh98℄ as a dereasing funtion. The question of the relative importane ofneutron and proton gaps and their dependene with respet to partile numbers ofthe two speies was �rst investigated by �tting simple analyti funtions of (N,Z)without expliit knowledge of the quantal struture of nulei. It was observed thatneutron and proton gaps were similar for light nulei, while proton gaps were slightlylarger than neutron ones in heavy nulei, espeially in the atinide region [Boh98,Nem62℄. As for the neutron-exess dependene, simple analyti �ts yielded gapsdereasing with (N − Z)/A for both speies [Vog84, Mad88℄. Later on, Möller andNix [Möl92℄ performed an analysis of gaps aross the mass table using a mirosopi-marosopi approah. Pairing was treated in the BCS and BCS-Lipkin-Nogamishemes, with a pairing strength parametrized through an �e�etive-interation gap�,the onnetion between the latter being made through a alulation performed ona shemati s.p. spetrum with shell orretions smoothed out. Thus, quantale�ets due to (sub-)shell struture and variations of the latter with deformationwere substrated. It was found that no expliit neutron-exess dependene wasneeded in the e�etive interation to reprodue trends observed in the data.Proton and neutron ∆
(3)odd values extrated from Ref. [Aud03℄ are plotted onFig. 5.1. We only show mass di�erenes entered on nulei with an even number ofpartiles for the speies not under onsideration, in order to avoid inluding in thedata odd-odd nulei where the oupling between the non-paired proton and neutronmay impede the disussion.As was noted in Ref. [Vog84℄, neutron-exess dependene appears most learly inthe region of 50 < Z < 82 and 82 < N < 126. The lowest gaps in this region ourin nulei situated in the middle of neutron and proton shells, whih orresponds tothe limit of known nulei on the neutron-rih side. As was suggested already inRef. [Nem62℄, these nulei are well-deformed and exhibit a low level density at theFermi level due to the presene of deformed shell losures, resulting in a redutionof pairing. Suh an e�et is learly visible in a systemati alulation suh as [Hil06,Hil07℄, and ould be hinted by the resent-shaped distribution of higher gaps aroundthe middle of major neutron and proton shells on Fig. 5.1.Thus, the variation of pairing gaps with neutron exess observed more reently inthe Hafnium (Z = 72) and Tungsten (Z = 74) hains [Lit05℄ ould be attributablemainly to loal shell e�ets. In this ase, work on improving models whih fail toreprodue this variation would bene�t from onentrating on single-partile spe-trosopy and deformation properties. Also, it would explain why attempts at liquid-drop or LDA-based desription of gaps aross the mass table [Jen86℄ fail in thisregion.5.1.4 Mirosopi theoryNulei and nulear matter are highly orrelated quantum systems. However usefulfor the qualitative understanding of nulear pairing and as the basis for pairing-enabled density funtional theory, the BCS gap equation is not a rigorous startingpoint for the ab-initio desription of super�uidity. Suh a desription has been theaim of many studies performed in the ontext of nulear or neutron matter [Dea03℄.
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Figure 5.1: Experimental gaps extrated from the mass table [Aud03℄ by a three-point �nite di�erene formula (∆(3)
q , Eq. (5.19)) entered on nulei withan odd number of the onsidered speies and an even number of theother speies. Top panel: neutron gaps, bottom panel: proton gaps.
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126 CHAPTER 5. AB-INITIO DESCRIPTION OF NUCLEAR PAIRINGResults obtained are interesting not only as a theoretial input for nulear modelsapplied to �nite nulei, but also as the sole means of studying the nature of matterin the rust of neutron stars.Indeed, super�uidity plays a key role in these ompat stars, as suggested earlyby Migdal [Mig60℄. Pulsar glithes ould be related to the pinning of vorties tonulei in the super�uid neutron matter of their rust [Avo07℄. Pairing also has asigni�ant impat on the spei� heat of the rust of neutron stars, whih a�ets itsooling rate [Mon07℄. In deeper and denser regions, protons ould beome super�uidand thus superonduting, whih has strong impliations for magneti properties,while neutrons would form pairs in the anisotropi 3P − F2 state [Bal98℄.The self-onsistent mirosopi desription of super�uidity in nulear matter hasbeen attempted using orrelated basis funtion, or Monte-Carlo methods [Cha04,Fab05, Gan08℄. However, the most useful method to understand how pairing isbuilt into the orrelated ground state is probaby to inlude orrelations step bystep through perturbation theory (or a Bruekner-Goldstone reast thereof). Con-ventional many-body perturbation theory (MBPT) [Hug57, Fet71℄ breaks down forsuper�uid nulear systems, as the onset of pairing is approximately related to diver-genes ourring at the Fermi level in the G-matrix [Eme59℄, and exatly orrespondsto a similar singularity appearing in the Feynman-Galitskii T-matrix [Eme60℄, to-gether with the divergene of Weinberg eigenvalues [Ram07℄, whih marks the tran-sition to a nonperturbative regime. The same results were obtained in a �nite-temperature formalism [Alm96℄. Indeed, phase transitions suh as the onset ofpairing are not amenable to a perturbative expansion [Noz63℄. We thus have torede�ne the starting point and work with pair ondensation inorporated at everylevel.Suh a theory an be built as an extension to MBPT, as proposed by Nambu andGorkov [Gor58, Nam60℄, through the de�nition of anomalous propagators [Sh64,Abr63℄.We suppose the system is ruled by a Hamiltonian Ĥ = T̂ + V̂ − λN̂ , where T̂groups all one-body terms (kineti term and external potential) and V̂ is a two-bodyinteration, while a hemial potential λ, as in the BCS sheme, is used to onservethe average partile number.Following [Noz63℄, we make use of the generalized two-body propagators
F1(k;ω) =

ε0
k + ω + Σ(k;−ω)

D(k;ω)
, (5.23)

F2(k;ω) =
∆(k;ω)

D(k;ω)
, (5.24)

D(k;ω) = [ε0
k

+ ω + Σ(k;−ω)][ε0k − ω + Σ(k;ω)] + ∆(k, ω)2, (5.25)with ε0
k = ε0

k − λ, and ε0
k is the s.p. energy determined by the one-body T̂ (for anin�nite system, the appropriate representation is |k〉 = |kσ〉, and ε0

k = ~2k2/(2m),
k being the s.p. momentum).

F1 orresponds to the normal propagator, while F2 is de�ned through an anoma-lous ontration. Σ(k;ω) is the (proper) self-energy entering the Dyson equation (forthe sake of simpliity, we onsider Σ to be diagonal in the hosen representation, as isthe ase in the plane wave basis for in�nite systems). It sums all diagrams whih areirreduible by utting a single one-partile propagator line. A standard approxima-
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5.1. PAIRING AND SUPERFLUIDITY IN MANY-FERMION SYSTEMS 127tion used in nulear matter is to use for Σ(k;ω) the �rst-order diagram involving theBruekner G-matrix, yielding the Bruekner-Hartree-Fok (BHF) approximation.
∆(k, ω), on the other hand, is an anomalous self-energy obtained by solvingthe generalized Bethe-Salpeter equation, whih desribes the sattering of a pair ofpartiles, involving generalized propagators. The latter yields, as an equation for ∆,
∆(k;ω) =

∫
dω′

2π

∑

l

I(kkω; llω′) F2(l;ω
′) (5.26)

=

∫
dω′

2π

∑

l

I(kkω; llω′) ∆(l, ω′)

[ε0
l
+ ω′ + Σ(l;−ω′)][ε0

l − ω′ + Σ(l;ω′)] + ∆(l, ω′)2
,(5.27)where the interation kernel I(kkω; llω′) is the sum of diagrams whih are irreduibleby utting a pair of single-partile lines [Bog58, Noz63, Hen64, Mig67, Bal90, Elg96℄.Thus, diagrams entering the Bruekner G-matrix or the T-matrix beyond �rst orderin V are forbidden in I, as they are already generated by the Bethe-Salpeter sat-tering equation itself: this would lead to double ounting. Inluding anyway suhe�etive verties in the pairing hannel [Amu85, Bal90, Wam93℄ yields markedlyinreased pairing gaps, ompared to using the bare NN potential. The lowest-orderontribution to I(kkω; llω′) is thus the bare interation matrix element Vllkk. In thisase I, as well as the anomalous self-energy ∆, are energy-independent. At follow-ing orders, we start to sum polarization diagrams orresponding to the partile-holeindued interation, i.e. the many-body proess of two partiles interating via theexhange of medium �utuations [Hei00, She03℄.Many-body e�ets do impat the anomalous self-energy ∆ even if the bare inter-ation is taken as a pairing interation kernel. Eq. (5.27) involves a non-trivial energyintegral, whih is the manifestation of the potential presene of e�ets beyond thequasipartile piture. The omplex values and energy-dependene of Σ(k, ω) indi-ate that quasipartile exitations have a �nite lifetime, i.e. they are not eigenstatesof the Hamiltonian. It also signals the depletion of the Fermi sea on top of whihpairing takes plae.Elementary exitation energies are given by the poles of the propagator, whihour at ω = ±Ek, with

Ek = 1
2
[Σ(k, Ek) − Σ(k,−Ek)]

+
{
[ε0

k + 1
2
(Σ(k, Ek) + Σ(k,−Ek))]

2 + ∆(k, Ek)
2
}1/2

, (5.28)where we keep the energy-dependene of ∆ for the sake of generality. We see thatthe energy dependene modi�es the BCS expression for the quasipartile energy,whih is, however, reovered for an ω-independent self-energy (on�rming the roleof ∆(k;Ek) as the pairing gap). In the ase of vanishing pairing (or for states farfrom the Fermi level where Σ(k, Ek) ≫ ∆(k, Ek)) we have Ek = |εk|, where εk is theon-shell single-partile energy. For simpliity, we will skip imaginary parts in thefollowing. We thus have
εk = ε0

k + Σ(k, εk). (5.29)Its expliit energy integral makes Eq. (5.27) quite impratial. Due to the non-trivial struture of the self-energies, an analytial redution an only be ahieved
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128 CHAPTER 5. AB-INITIO DESCRIPTION OF NUCLEAR PAIRINGby performing some approximation of the latter. An e�ient hoie is the poleapproximation [Bal00a, Bal01, Bal02, Bal07℄. It onsists, �rst, in negleting theimaginary part of Σ(k, ω), whih is reasonable for states lying next to the Fermi leveland dominating the integrand of the gap equation. Then, the generalized propagatorentering Eq. (5.27) is replaed by its pole part. One obtains
∆(k) = −

∑

l

Vkkll zs(l) ∆(l)

2
√

(εsl)2 + ∆(l)2
, (5.30)where εsl is the symmetrized e�etive single-partile energy

εsk = ε0
k + 1

2
[Σ(k, Ek) + Σ(k,−Ek)], (5.31)and zs(k) is the residue of 1/D(k;ω) at eah of its (symmetri) poles. Near theFermi level and in the ∆ = 0 limit (in nulear matter we have ∆ ≃ 3 MeV forkineti energies of the order of 50 MeV), zs(k) an be identi�ed with the normal-phase z-fator. A further approximation relies on the assumption of a smooth energydependene of the self-energy. One then obtains the expression [Bal02, Bal07,Lom01℄

∆̃(k) = −
∑

l

z(k) Vkkll z(l) ∆̃(l)

2

√
ε2

l + ∆̃(l)2

, (5.32)whih involves, this time, the on-shell s.p. energy εk and a renormalized gap ∆̃(k) =
z(k)∆(k). Similar expressions have been obtained in the self-onsistent Green'sfuntion approah involving T-matrix-derived self-energies [Mut05, Boz99, Boz03℄.To �rst order in ω in the expression of Σ(k;ω), the symmetrized single-partileenergy an be approximated as

εsk ≃ ε0
k + Σ(k, ω = 0) + O(E2

k). (5.33)Next to the Fermi level the self-energy an be expeted to vary su�iently smoothlybetween −Ek and Ek for this approximation to hold. We thus see that Eq. (5.30) in-volves a single-partile spetrum whih does not take into aount dispersive e�ets.The orresponding e�etive (Landau) mass is the pure k-mass m̃. On the other hand,the on-shell presription for the s.p. energies in Eq. (5.32) implies that both energy-and momentum-dependene are taken into aount, whih the additional z-fatorompensates for. Indeed, z(k) < 1 at the Fermi level, while energy dependene in-reases the density of the s.p. spetrum, yielding an e-mass higher than the k-mass.It is interesting to mention some results in the ultraweak-oupling regime, where ananalytial expression for the Fermi-level gap an be obtained [Bal01, Bal02℄:
∆(kF) = 8

mEF
m̃(kF) exp

[
− m

π2n0I(kF)m̃(kF)z(kF)

]
, (5.34)where EF is the Fermi kineti energy, m̃(kF) is the k-mass at the Fermi level, n0 isthe Fermi gas level density, and I(kF) is the typial interation kernel matrix elementbetween states lying at the Fermi level. Beause of the propertym∗(k) = m̃(k)/z(k),we see that in this limit, Eqs. (5.30) and (5.32) are indeed equivalent: the pairinggap is determined by the quantity I(kF)m̃(kF)z(kF) = I(kF)m∗(kF)z(kF)2.
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5.2. AB-INITIO INPUT FOR THE PAIRING EDF 1295.2 Ab-initio input for the pairing part of the nu-lear energy density funtionalIn this work, we aim at ahieving a �rst step leading towards two distint goals.First, we expet to improve our understanding, in terms of the relative importaneof di�erent diagrams in the pairing interation kernel I(kkω; llω′), of the mirosopiorigin of pairing between idential nuleons in nulei. This requires to go beyondextrapolations of results obtained in nulear matter and implement a method to per-form alulations of �nite nulei, building the pairing gaps (i.e. HFB pairing �eld)expliitly from the bare interation, either at �rst order or inluding higher-order di-agrams. Suh alulations have been attempted, the bare interation being inludedto �rst order, for a slab of nulear matter [Bal00b, Bal03, Pan06, Pan07℄, howeverself-energy e�ets were negleted. The few studies performed in a �nite nuleus untilnow tend to show that the bare interation alone an only aount for a fration ofexperimental pairing gaps [Bar04, Bar05℄, and that indued interations due to ou-pling of individual motion with olletive modes [Bar99, Ter02, Gio02℄ an explainthe remainder [Bar04, Gor05a, Pas08a℄. Due to the omplexity of the alulationsinvolved in the above mentioned works, only a single nuleus (120Sn) ould be stud-ied. We thus hope to bring additional information into the disussion by performinga more systemati study of gaps obtained with the �rst-order ontribution of thebare NN potential to I, thanks to the method explained below. We shall treat theNN ontribution as fully as possible, inluding the Coulomb interation, however wewill not treat the three-nuleon interation at this point. We will not, either, extendthis work to inorporating higher-order ontributions, owing to the omplexity of�rst hoosing then implementing a sound method to do so. We hope, ultimately,to treat indued interations e.g. by inluding the exhange of phonons alulatedin the RPA approximation using the residual interation dedued from the SkyrmeEDF. Of ourse, deriving the residual interation from the bare NN potential wouldbe the most onsistent approah, and might beome possible in the future usinglow-momentum interations.Seond, we expet to produe a pairing funtional yielding trustworthy pre-ditions in regions of the mass table where pairing-related experimental data areunavailable. Indeed, existing loal pairing funtionals employed in self-onsistentnulear struture alulations are haraterized by a number of parameters (strengthfator, pairing ative window/regularization sheme, density dependene) whih arenot all well onstrained by available data. In fat, models whih yield onsistentpreditions near the valley of stability an exhibit very di�erent behaviors whenextrapolated towards the neutron drip-line [Dug05℄. These di�erenes our despitethe fat that, exept for reent works [Mar07, Mar08℄, isovetor-density dependeneof pairing funtionals has not been employed.For this purpose, we shall perform alulations with our mirosopi model arossthe mass table, inluding regions far from the valley of stability. As will be detailedbelow, our method is, for now and within reasonable omputing time and storagerequirements, restrited to alulations in spherial symmetry. The results thus gen-erated will provide a referene for omparison with other models useable in moregeneral ases suh as loal pairing funtionals. Note however that we do not nees-sarily expet, at this point, to obtain a good agreement with available experimentaldata.
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130 CHAPTER 5. AB-INITIO DESCRIPTION OF NUCLEAR PAIRINGOur approah to building HFB equations relies on devising a separable represen-tation of the NN interation. This separable interation an then be used to build apairing funtional having some of the simplifying properties of a loal one, allowingfor the e�ient onstrution and diagonalization of the HFB matrix. As a startingpoint, we use the Vlow k low-momentum NN interation, whih, as will be disussedbelow and in setion 5.3.2, lends itself well to separable approximations.5.2.1 The Vlow k low-momentum NN interationSeveral models exist for the nuleon-nuleon (NN) interation. The most reent ones,either representing a mix of one-boson exhange parts and semi-phenomenologialshort-range terms [Wir95, Ma01℄, or onsistently built from hiral e�etive �eldtheory (EFT) [Ent03, Epe05℄, ahieve an aurate desription of available satteringdata for energies reahing up to 350 MeV in the laboratory frame. These modelsare learly di�erent in terms of their matrix elements. However, it was shown thata universal NN interation ould be obtained by applying to either of several reentNN potentials a renormalization group (RG) transformation eliminating high-energydegrees of freedom [Bog01, Bog03a, Bog03b℄.A NN interation is thus obtained, alled Vlow k , whih ouples only states ofrelative motion below a ertain uto� momentum, or renormalization sale Λ, whileonserving two-body observables in the low-energy domain [Bog07b℄ thanks to thesale-invariane enfored for the sattering T -matrix. In partiular, it does notpresent the high-energy/short-range repulsion harateristi of the hard ore intraditional NN potentials, whih makes it suitable for ab-initio nulear struturealulations in redued model spaes via variational [Nog04, Bog06a℄ shell model[Bog02℄, no-ore shell model [Bog08a℄ or oupled luster [Hag07℄ methods. Also,the RG transformation yields a NN interation whih, below a ertain value of Λ,is perturbative, i.e. a perturbative expansion in terms of interation verties of thetwo-body sattering amplitude [Bog06b℄ or many-body ground state [Bog05℄ on-verges term-after-term, whereas only the formal re-summation of in�nite series (suhas the Bruekner G-matrix) yields a de�nite result when using the starting high-momentum potential. This feature is important as it allows to ontrol the aurayof suh perturbative expansions through power ounting as is done in hiral EFT.The Vlow k approah, therefore, opens new ways of studying nulear struture.This, however, omes at a prie. First, the interation resulting from the RG trans-formation annot be represented as a loal potential anymore: it is a set of numerialmatrix elements with signi�ant non-loality. Seond, while two-body observablesare onserved, it is not true of higher-partile-number operators, and onservation of
A-body physis requires, stritly speaking, the introdution of up to A-body inter-ations. In pratie, the importane of interations involving higher body numbersis expeted to inrease slowly when running Λ down. Although low-momentumthree-body fores generated from NN+NNN Hamiltonians through RG equationsare urrently unavailable, it is expeted that they will show marked resemblanewith NNN fores from hiral EFT [Nog04, Bog05℄. Work towards obtaining a om-plete Vlow k NN+NNN Hamiltonian is urrently underway [Bog07a, Bog08b℄.The RG equation for the Vlow k matrix elements is obtained by introduing auto� Λ in the Lippmann-Shwinger equation and running it down while onservingthe half-o�-shell T-matrix (making Vlow k energy-independent) or the fully o�-shell
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5.2. AB-INITIO INPUT FOR THE PAIRING EDF 131one (yielding an energy-dependent Vlow k , whih an be rendered energy-independentby onverting energy- to momentum-dependene and hermitizing). The uto� anatually be applied in a smooth manner, yielding an interation with ontinuousmatrix elements in the k, k′-plane. Possible uto� funtions are [Bog07℄
fsharp(k2) ≡ Θ(Λ2 − k2), (5.35)
fnexp(k2) ≡ exp

[
−
(
k2

Λ2

)n]
, (5.36)

f ǫFD(k2) ≡ 1

1 + exp
(

k2−Λ2

ǫ2

)
,

(5.37)respetively alled �sharp�, �exponential� and �Fermi-Dira� regulators. We thenhave
Tlow k(k, k′;E) = f(k2)T (k, k′;E)f(k′2), (5.38)i.e. the T-matrix is onserved exatly for the sharp uto�, and approximately, upto a fator orresponding to the regulating funtion used, for smooth ones.5.2.2 Separable representation and �nite nuleiIn atomi nulei, Cooper pairs are expeted to form prinipally between nuleonsof the same speies and in the S = 0, L = 0 state of relative motion. It is aninteresting feature of NN sattering physis that the two-nuleon system exhibitsin this hannel (1S0) a virtual, quasi-bound state at low energy, whih translatesinto large attrative phase shifts and, orrespondingly, a large negative satteringlength. Sattering theory [Bro76℄ tells us that the T-matrix orresponding to suh asystem is dominated by a single pole at the energy of the virtual state, whih meansthat it is, to a good approximation, separable of rank one lose to this energy. Apotential desribing the two-body sattering problem in this energy range may thushave the same struture, i.e. V (k, k′) = λ g(k) g(k′) [Hai84℄. Suh a potential,however, annot desribe NN sattering beyond an energy Elab = 250 MeV due tothe inversion of the sign of phase shifts (and hene of diagonal T-matrix elements)at this point. Nevertheless, this property ould be used by Duguet [Dug04℄, whobuilt a low-momentum approximation to the Argonne v18 potential having similarproperties with respet to pairing in in�nite nulear matter. The form of this inter-ation was a simple one, and further approximations were proposed in order to makenulear struture alulations feasible. In this work, we aim at extending the workof Ref. [Dug04℄, both by building aurate separable representations of the Vlow k NNinteration and by using them to ompute nulear properties at the HFB level with-out further assumptions regarding the form of the pairing interation/funtional.Even beyond a rank-one approximation, it is a general feature of low-momentumpotentials that they an be more easily approximated by separable forms. This anbe understood by studying Weinberg eigenvalues, i.e. solutions ηi of the equation

V̂ G0(E) |ψi〉 = ηi |ψi〉, (5.39)where V̂ is the two-body potential, G0(E) the free two-partile propagator and |ψi〉the orresponding eigenstate. When RG evolution is applied to a NN potential,
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132 CHAPTER 5. AB-INITIO DESCRIPTION OF NUCLEAR PAIRINGrunning down the uto� Λ drives more and more eigenvalues lose to zero, resultingin fewer ones retaining a signi�ant ontribution. The potential not only beomesperturbative, but it an also, then, be approximated through a separable expressionof lower and lower rank [Bog06b℄.An interation ating solely in the 1S0 hannel an be deomposed as
V̂

1S0 = V̂ SP̂S=0, (5.40)where V̂ S is the spatial part ating in the L = 0 state of relative motion and P̂S=0is the spin-singlet projetor de�ned as
PS =

1 + (−1)S P̂σ

2
, (5.41)

P̂σ being the spin-exhange operator. Momentum- and oordinate-spae matrixelements of the spatial part an be expressed, respetively, as
〈k1k2|V̂ S|k3k4〉 = V1S0

(k12, k34) (2π)3δ(K12 − K34), (5.42)
〈r1r2|V̂ S|r3r4〉 = V1S0

(s12, s34) δ(R12 − R34). (5.43)The enter-of-mass (CoM)/relative oordinates are de�ned as: sij = ri − rj , Rij =
(ri + rj)/2, kij = (ki − kj)/2 and Kij = ki + kj . This interation has, in general,a �nite-range and a �nite non-loality. It is true of any �nite-range interationwhen one isolates a single partial wave, whether or not one starts with a non-loalinteration suh as Vlow k . The separable approximation to the matrix elementsenters the de�nition of V1S0

funtions,
V1S0

(k, k′) =
∑

αβ

gα(k) λαβ gβ(k′), (5.44)
V1S0

(s, s′) =
∑

αβ

Gα(s) λαβ Gβ(s′), (5.45)where 1 ≤ α, β ≤ M , M is the rank of the interation, and gα(k) and Gα(s) areinteration form fators in momentum and oordinate spae, respetively; λαβ is astrength matrix.The two representations are linked by the following relation between momentum-and oordinate-spae form fators:
Gα(s) =

∫
d3k

(2π)3
e−ik·s gα(k) =

1

2π2s

∫
kdk sin(ks) gα(k). (5.46)Given four states ı̌̂ǩl̂ belonging to a single-partile basis, with ı̌ and ǩ taken inthe �rst half and ̂ and l̂ in the seond half of the basis, as de�ned by the Bogolyubovtransform of the system's referene state, one an express the orresponding matrixelement of the interation as

(v
1S0

sep )ı̌̂ǩl̂ =

∫∫
d3R12d

3R34

∑

αβ

[∫
d3s12 Gα(s12) Ψ∗

ı̌̂(r1, r2)

]

× λαβ δ(R12 − R34)

[∫
d3s34 Gβ(s34) Ψǩl̂(r3, r4)

] (5.47)
(v

1S0

sep )ı̌̂ǩl̂ =

∫
d3R

∑

αβ

Ψ̆α∗
ı̌̂ (R) λαβ Ψ̆β

ǩl̂
(R), (5.48)
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5.2. AB-INITIO INPUT FOR THE PAIRING EDF 133with
Ψ̆α

ı̌̂(R) ≡
∫
d3s Gα(s)Ψı̌̂(R + s/2,R− s/2) (5.49)

=

∫
d3s Gα(s)

∑

σ

(−)s−σ ϕı̌(R + s/2, σ) ϕ̂(R − s/2, σ), (5.50)where Ψı̌̂ is the spin-singlet part of the two-body produt wave funtion (see ap-pendix F.1). At �rst order in the interation, the pairing energy an be written
Epair =

1

4

∑

ı̌̂ǩl̂

(v
1S0

sep )ı̌̂ǩl̂ κı̌̂ κǩl̂ =
1

4

∫
d3R

∑

αβ

λαβ χ̆
∗
α(R) χ̆β(R), (5.51)where κı̌̂ is the pair tensor and the e�etive pair densities χ̆α are de�ned as

χ̆α(R) = −
∑

ı̌̂

Ψ̆α
ı̌̂(R) κı̌̂, (5.52)The key point in the above expression is that the pairing energy an be written asa funtional of pair densities whih are loal in the sense that they depend on onespatial oordinate only. All the range and non-loality of the interation, whihwere ontained in the Gα(s) funtions, are now hidden in the densities de�nedby Eq. (5.52). The elements of the strength matrix λαβ play the role of ouplingonstants of the funtional. E�etive pair densities an also be expressed startingfrom the non-loal spin-singlet pair density

χ̆α(R) =

∫
d3s Gα(s)ρ̃(R, s), (5.53)

ρ̃(R, s) ≡ −
∑

ı̌̂

Ψı̌̂(R + s/2,R− s/2)κı̌̂, (5.54)whih exhibits the non-loality of our funtional.Matrix elements of the pairing �eld ∆ in the hosen basis an be obtained viafuntional di�erentiation, yielding
∆ı̌̂ =

∑

α

∫
d3R Ψ̆α∗

ı̌̂ (R) ∆̆α(R), (5.55)where we use loal intermediate quantities (or e�etive �elds) to fully represent thepairing �eld,
∆̆α(R) ≡ −1

2

∑

β

λαβ χ̆β(R). (5.56)This form of a pairing funtional allows to build the HFB equations, expressed inthe hosen basis representation, with a omputational burden similar to the ase ofa loal funtional. Although the expression Eq. (5.51) still does not allow to worke�iently in an expliit oordinate-spae representation, the alulation of pairingmatrix elements is onsiderably faster using Eq. (5.55) (O(n2), n being the typialnumber of s.p. basis states in a blok of the pair tensor κı̌̂) than when using thematrix elements of the interation diretly (O(n4)).



134 CHAPTER 5. AB-INITIO DESCRIPTION OF NUCLEAR PAIRINGTwo di�ulties arise, though, in addition to the workings of a basis-representationSkyrme-HFB ode. Indeed, in order to ahieve the O(n2) saling of omputationalost, we have to alulate and store the Ψ̆α
ı̌̂(R) funtions for all pairs of basis statespotentially oupled by the pairing �eld given the symmetries hosen for the repre-sentation. Storage requirements are thus larger than in the ase of a loal pairingfuntional. The seond, formal, di�ulty is to design and implement a enter-of-mass/relative oordinate separation for use in Eq. (5.50). This is trivial whenworking in Cartesian oordinates, but storage and time requirements imply, at leastin a �rst step, to work in spherial symmetry.The details of the method we use, being non-essential for the physial disussion,are exposed in appendix F.5.3 A Separable Representation of the NN foreBefore performing alulations, as desribed in the previous hapter, employing the

Vlow k interation in the pairing hannel, we have to devise a separable representationof it. Several tehniques have been proposed for building separable approximationsof loal or other potentials [Wei63, Ern73, Hai84, Bal86, Bal87℄. Most fous onreproduing the low-energy physis of the interation, suh as the M lowest-energypoles of the T-matrix in the ase of the Gamow separable approximation [Bal86℄, bydiagonalizing an operator derived from the interation, in some ases adding weighton a partiular region of the momentum spae. Suh is the ase of the Weinbergproedure, whih, by diagonalizing V G0(E), G0(E) being here the free two-partilepropagator in the vauum, yields a good approximation mainly around the hosenenergy E (although in pratie, the range of auray of the approximation is moreextended, at least for Vlow k [Bog06b℄). In our ase, the fous on low-energy degreesof freedom is already taken are of by the Vlow k proedure. In partiular, the matrixelements of Vlow k are of �nite support beause of the RG uto�. Provided they arealso smooth enough, this guarantees the existene of an aurate, �nite separableexpansion in the whole (k, k′)-plane. Moreover, any analyti property of a givensheme would probably be lost in the proess of devising a parametrization of thenumerially-obtained separable representation.Therefore, the �rst step of our method for produing a separable approximationof Vlow k is even simpler: we diagonalized the potential itself, i.e. its 1S0 matrixelements. Let us note that a similar approah was followed in Ref. [Bal98℄ for use inin�nite matter. We then �tted analyti formulae to the eigenvetors, yielding a �rstseparable representation whih was improved by re�tting all its parameters, �rst onthe original Vlow k matrix elements, then on half-on-shell T-matrix values alulatedwith the latter.5.3.1 Parametrization and �t proedureWhen hoosing the form of the funtions gα(k) entering the separable form, the basipriniple was to keep the �t as �linear� as possible in order to have a (ost/merit)funtion lose to a quadrati form with respet to the parameters. We also had toensure the possibility to perform the Bessel-Fourier transform of the momentum-spae form fators to their oordinate-spae equivalent analytially. Several families
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5.3. A SEPARABLE REPRESENTATION OF THE NN FORCE 135of form fators were tested, orresponding in eah ase to a master funtion de-termining the range of the orresponding interation term (through the only rangeparameter) multiplied by a linear ombination of power funtions whih modulatethe shape of the master funtion. The most onvenient master funtion was foundto be a Gaussian. The form fators gα(k) thus read
gα(k) =

[
m∑

i=0

xαi

(
a2

αk
2

2

)ni
]

exp

(
−a

2
αk

2

2

)
. (5.57)Here the exponents ni take integer values in the range 0 . . . 10. Due to the redun-dany between the overall magnitude of gα(k) and the oupling onstants λαβ, it isneessary to normalize one of them. Here the gα(k)'s were normalized by setting ineah ase one of the x's to 1 (typially the one orresponding to the lowest order

ni, or the largest one if it is signi�antly larger). The orresponding term is thenlabelled with i = 0.The parameters of the fore (labeled V�t in the following) were adjusted byminimizing a hi-square-like quantity, built with toleranes whih re�et the desiredauray of the �t to the various quantities involved rather than true unertainties.We strive to keep as muh of the physis ontained in the raw data while obtaininga neessarily imperfet parametrization.The proedure we used was stepwise. In a �rst step the matrix Vlow k(ki, kj)was diagonalized, yielding a set of normalized numerial form fators gdiagα (ki) andorresponding oupling onstants λdiagα . Only the form-fator/oupling pairs withthe largest |λdiagα | were kept, and analytial expressions, Eq. (5.57), were �tted onthe values of orresponding gdiagα (ki). This preliminary �t involved a systematisearh of the optimal range aα and oe�ients xn determined by performing a linearleast-squares �t for a number of values of the range and all possible ombinations ofexponents n, taken as a �xed number Nn of values piked between 0 and nmax (seebelow for atual values). The best parametrization of gα(k) was kept and re�ttedwith respet to all its parameters using a standard minimization algorithm.In a seond step, raw matrix elements were onstrained by minimizing, withrespet to all ontinuous parameters of the fore, the quantity
χ2

V =
2

Nk(Nk + 1)

∑

i≥j

(V�t(ki, kj) − Vlow k(ki, kj))
2

σV (ki, kj)2
, (5.58)where i, j are indies referring to points on a lattie in the (k, k′)-plane, with ki = i δkwhile Nk is the number of points in the k or k′ diretion (taken the same for both).

V�t(k, k′) was omputed thanks to Eqs. (5.44) and (5.57). The toleranes σ werede�ned as
σV (ki, kj) = σ∆V (ki, kj) × 1 + ν

κ + ν

[
1 + (κ− 1)

∣∣∣∣
ki − kj

ki + kj

∣∣∣∣
ν] (5.59)where κ and ν are parameters whih ontrol the relative weighting of diagonal ando�-diagonal matrix elements (κ: ratio between toleranes of the most-o�-diagonaland diagonal points, ν: power law aording to whih σ varies. The formula herekeeps the average value along the k − k′ diretion at σ∆V ), while the σ∆ are given
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σ∆V (ki, kj) =





σmed +
σmax − σmed

∆Vmax ∆V (ki, kj), ∆V (ki, kj) > 0

σmed +
σmin − σmed

∆Vmin ∆V (ki, kj), ∆V (ki, kj) < 0
(5.60)where σmin, σmed and σmax are toleranes a�eted to the points (averaged over the

k − k′ diretion) having resp. the lowest(∆Vmin), zero and highest (∆Vmax) values ofthe quantity
∆V (ki, kj) = 4Vlow k(ki, kj) (5.61)

−Vlow k(ki+1, kj) − Vlow k(ki, kj+1) − Vlow k(ki−1, kj) − Vlow k(ki, kj−1),whih is simply a �nite-di�erene expression for a Laplaian of the funtion V (k, k′),and expresses the loal �urvature� of the matrix elements. This has been devisedto allow for a lower weighting of regions where Vlow k matrix elements have a highlyangular behavior, whih our analytial expressions for the matrix elements V�t(k, k′)annot aurately math. Suh an inreased tolerane in this region allows to �sa-ri�e� them and avoid propagation of the error made there to neighboring regionswhere a muh more aurate �t is possible.As a third step, starting from the previous solution, we minimized the quantity
χ2

V + χ2
T , where

χ2
T =

1

N ′
k(N

′
k + 1)

∑

ij

(
T�t(k′i, k′j;Ek′

j
) − Tlow k(k

′
i, k

′
j;Ek′

j
)
)2

σT (k′i, k
′
j)

, (5.62)
T�t(k′i, k′j;Ek′

j
) being the half-on-shell T -matrix in the 1S0 hannel alulated withour model separable interation, while Tlow k(k

′
i, k

′
j) are the orresponding valuesobtained from the original Vlow k potential [Rot08a℄, and

σT (k′i, k
′
j) =

σ0
T

k′i + k′j
× 1 + ν ′

κ′ + ν ′

[
1 + (κ′ − 1)

∣∣∣∣
k′i − k′j
k′i + k′j

∣∣∣∣
ν′
]
. (5.63)Again we apply a weighting sheme whih onstraints diagonal matrix elements,diretly related in this ase to phase shifts, more than o�-diagonal ones. The

1/(k′i + k′j) fator make the toleranes on the diagonal T-matrix elements orre-spond to approximately onstant toleranes on phase shifts, sine the latter satisfy
T (k, k;Ek) = k cot(δ(k)).We thus have a simple onstraint better onneted with the physis of the in-teration and whih ensures that not only the matrix elements of our fore maththose of Vlow k loally, but that an optimum �t of the funtion V�t(k, k′) to the wholeset of data is ahieved. Indeed, physial observables, in general, integrate the e�etof matrix elements over a signi�ant portion of the (k, k′) plane, espeially phaseshifts, whih are known to be losely related to pairing gaps.In our proedure, the result of step three turned out to be a slight readjustment ofthe result obtained at step two, thus giving us on�dene that we attained a globallyoptimal solution. Moreover, while after step two we generally had χ2

T ≫ χ2
V , stepthree yielded a signi�ant redution of χ2

T , with only a slightly inreased χ2
V , whihshows that a purely loal onstraint on V (k, k′) misses important degrees of freedomin the set of matrix elements.



5.3. A SEPARABLE REPRESENTATION OF THE NN FORCE 1375.3.2 FitsWe performed �ts on a range of Vlow k interations built from either the Argonne v18[Wir95℄ or the CD-Bonn [Ma01℄ potential. The hoie of whih interations wereparametrized stems from requirements of our study: First, we built representationsof Vlow k /Argonne, for Λ = 1.8 and 2.5 fm−1 , in both the neutron-neutron andproton-proton hannels. In the latter ase, we swithed o� the eletromagneti partof the interation in order to study the e�et of harge symmetry breaking in thehadroni part. Seond, we built a set of representations of Vlow k for higher valuesof Λ, in order to study the Λ-dependene of pairing at the HFB level. In this ase,we had to use the CD-Bonn potential as an input due to numerial instabilitiesobserved in the RG evolution of the Argonne potential. All these �ts were based onthe neutron-neutron hannel of the interation.The uto� funtion f(k2) was hosen, in eah ase, as a ompromise betweenthe neessity to have a uto� sharp enough to onserve the T-matrix aurately andthe requirement that it be smooth enough to allow for the reprodution of matrixelements near Λ with an analyti funtion. We thus used a Fermi-Dira funtionwith ǫ = 0.5 fm−1 for the lowest uto� value (Λ = 1.8 fm−1 ) and an exponentialone in the other ases.Finally, we performed a separable parametrization of the 1S0 nn matrix elementsof the Argonne v18 potential. Yielding a rank-9 representation, it lies arguably atthe edge of the apaities of our method. Nonetheless, this makes it useable insystemati alulations using our HFB ode. On the other hand, the CD-Bonnpotential ould not be aurately reprodued with a separable form.The parameters used in the �t proedure were hosen so as to fous on diagonalmatrix elements and phase shifts. We used the values κ = ν = 2, κ′ = 3, ν ′ = 2,
σ0

T = 10−2, whih translates into a tolerane on phase shifts of around 0.3◦.We investigated the use of both a diagonal and non-diagonal oupling matrix
λαβ in the �nal re�t. The minimization algorithm tends to favor large o�-diagonalouplings and similar form fators. In the rank-2 ase, by diagonalizing the λαβmatrix produed by suh a �t, one observes that the form fators orresponding toits eigenvetors are the sum and the di�erene of the similar-looking form fatorswhih di�er by just slightly di�erent ranges. Suh a di�erene, in the limit offuntions that are idential up to a range parameter, orresponds to (η ≪ 1)

f(a(1 + η)x) − f(x) ≃ ηax
df

dx
, (5.64)or in the ase of a simple Gaussian,

exp

(
−(a(1 + η)x)2

2

)
− exp

(
−(ax)2

2

)
≃ −η(ax)2 exp

(
−(ax)2

2

)
, (5.65)i.e. the optimization ode tries to build a form fator with a higher order in k. Thepurpose of this obviously lies in the reprodution of the quite abrupt variations of

Vlow k matrix elements near the uto�. However, suh a sheme seems quite arti�ialand, moreover, one faes the problem that the large o�-diagonal ouplings are notwell de�ned � it seems impossible to get a �rm onvergene as the λαβ 's keep growingalbeit for only a slight redution of χ2. Thus, we preferred using only diagonalouplings, at the expense of a slightly worse desription of the data near the uto�,

http://link.aps.org/abstract/PRC/v51/p38
http://link.aps.org/abstract/PRC/v63/e024001
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VNN Λ Cut. funtion M Nn Par. nmax σmin,med,max χ2

V χ2
V +TAV18, nn 1.8 FD ǫ = 0.5 2 6 14 6 3, 3, 80 0.10 2.41AV18, nn 2.5 exp. n = 6 3 6 21 10 3, 3, 3 0.26 3.02AV18, pp 1.8 FD ǫ = 0.5 2 6 14 6 3, 3, 80 0.10 1.85AV18, pp 2.5 exp. n = 6 3 6 21 10 3, 3, 3 0.27 2.93CD-B, nn 1.8 FD ǫ = 0.5 2 6 14 6 3, 3, 80 0.10 1.77CD-B, nn 2.5 exp. n = 6 3 5 18 10 3, 3, 3 0.20 2.20CD-B, nn 3.0 exp. n = 6 5 4 25 10 3, 3, 3 0.22 0.66CD-B, nn 4.0 exp. n = 6 5 4 25 10 3, 3, 3 0.22 0.42CD-B, nn 8.0 exp. n = 6 6 5 36 10 3, 3, 3 0.55 1.21CD-B, nn 15.0 exp. n = 6 7 5 42 10 3, 3, 3 0.70 9.55AV18, nn � � 9 5 54 10 3, 3, 3 0.44 1.26Table 5.1: Fitting parameters and resulting χ2 values. VNN: starting bare potential(AV18: Argonne v18, CD-B: CD-Bonn). Λ: RG uto�, in fm−1 . Cuto�:uto� funtion in RG equation (Eqs. (5.37) and (5.37)). M : rank ofthe separable representation. Nn: number of values of the exponent

n of (a2
α k2)/2 in eah form fator, Eq. (5.57). Par.: total number ofparameters. nmax: maximum value of exponent n. σmin,med,max: toleraneparameters for potential matrix elements in Eq. (5.60), χ2

V : residual erroron potential matrix elements, Eq. (5.58), χ2
V +T : total residual error onpotential, Eq. (5.58) and T-matrix, Eq. (5.62).but allowing for a redued number of parameters (1 less for rank-2, 3 less for rank-3,et.).Fores we used as input for �tting, as well as parameters de�ning the formof separable representations we built are summarized in Table 5.1, together withresulting values of χ2

V and χ2
T . The omplete set of parameters resulting from the�ts and de�ning these separable representations is given in appendix E.The rank and number of terms in the form fators of the separable fore, whihde�ne the number and type of parameters, were adjusted to obtain a �nal χ2

V + χ2
Tvalue of order unity with as low a number of parameters as possible. This ouldbe ahieved in all ases exept for Λ = 15 fm−1 Vlow k /CD-Bonn, whih will seemore limited use than the other representations anyway. As expeted, though, therank neessary for an aurate reprodution of potential matrix elements and of theT-matrix grows steadily with the uto�. In the ase of Argonne v18, the number ofparameters in our separable form (54) is larger than in the initial fore (48). Thishas to be attributed to the pratial onstraints on the analyti form taken by ourinteration. Sine the latter is not onneted to the form of the original potential,our parameter set ontains information orresponding to the expression of v18 inaddition to its parameters.Fig. 5.2 displays phase shifts alulated with our potential parametrizations.The uto� is learly visible in the ollapse of δ(k) at high k. Below Λ, all ourfores predit similar values despite originating from di�erent hard-ore potentials,whih only signals that the latter have been �tted to the same data. It is worthpointing out, here, that the shape of the smooth uto� implies that the ollapseours slightly below Λ. Charge-symmetry breaking (left panel) brings only a smallorretion to the phase shifts by making the interation marginally less attrative.



5.3. A SEPARABLE REPRESENTATION OF THE NN FORCE 139
-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

 0  0.5  1  1.5  2  2.5  3

δ1
S 0

(k
) 

[d
eg

.]

k [fm-1]

AV18, Λ=1.8, nn
Λ=2.5, nn

AV18, Λ=1.8, pp
Λ=2.5, pp

AV18 nn, exact

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

 0  0.5  1  1.5  2  2.5  3

δ1
S 0

(k
) 

[d
eg

.]

k [fm-1]

CD-Bonn, Λ=1.8
Λ=2.5
Λ=3.0
Λ=4.0
Λ=8.0

Λ=15.0
AV18 fit

AV18 exact

Figure 5.2: Phase shifts alulated from our separable potentials. Left panel: nnand pp Vlow k potentials generated from Argonne v18. Right panel: nn
Vlow k potentials generated from CD-Bonn and separable representationof Argonne v18.
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Figure 5.3: BCS in�nite-matter pairing gaps alulated with a kineti spetrum fromour separable representations of Vlow k /CD-Bonn potentials and bareArgonne v18. Left panel: Fermi level gaps. Right panel: momentum-dependent gaps at kF = 1.2 fm−1 .Pairing gaps alulated at the BCS level for a kineti spetrum are shown onFig. 5.3. Whereas gaps alulated at the Fermi level (left panel) are idential to eahother, up to �tting errors and a slight Λ-dependene (whih is known to derease gapswith lower Λ), momentum-dependent gaps (right panel) exhibit markedly di�erentstrutures at high momenta. For Vlow k /CD-Bonn interations, the repulsive oredevelops between Λ = 1.8 and 8.0 fm−1 , where gaps are almost idential to thease Λ = 15.0 fm−1 , signalling a saturation of the RG evolution of this potential.Although we were not able to produe a separable representation of CD-Bonn, thispotential, one evolved to this range of uto�s an be treated with our separationmethod and an be expeted to be very lose to the original potential. The Argonnepotential appears to be even more repulsive at momenta larger than 2 fm−1 . Wethus have at hand, with the parametrizations used in the right panel of Fig. 5.3, arange of potentials of various �hardness�, whih will be useful for the study of thee�et of their high-momentum matrix elements.We have thus built a set of separable parametrizations of the Vlow k interationas well as the Argonne v18 potential. These parametrizations will now allow us to



140 CHAPTER 5. AB-INITIO DESCRIPTION OF NUCLEAR PAIRINGperform systemati EDF alulations with the bare NN interation in the pairinghannel. To obtain a full NN potential, though, there remains to treat the eletro-magneti interation, whih had to be swithed o� when treating the proton-protonhannel, whereas it is, obviously, non-negligible in this ase.5.3.3 Separable approximation of the Coulomb interationThe eletromagneti potential between protons is dominated by the Coulomb fore,i.e. the eletri part of the one-photon exhange potential. We take the protonharge distribution as pointlike. Momentum-spae matrix elements of the latter inthe S-wave read [Bro76℄
VCoul,ℓ=0(k, k

′) =
4πe2

2kk′
ln

∣∣∣∣
k + k′

k − k′

∣∣∣∣ , (5.66)where e is the eletromagneti unit harge (in MeV fm). They diverge at k = k′,whih forbids separable expansions. One an devise, though, a separable expansionof an approximate Coulomb potential restrited to a �nite range, by setting (in usualnotations)
V aCoul(r) =

{
e2/r for r ≤ a
0 for r > a

, (5.67)
a being a range parameter. Provided a is hosen larger than the diameter of the �nitenuleus, this range trunation should yield a satisfatory approximation for use inthe proton-proton pairing hannel, as the non-loal part of the pair density quiklyvanishes when a partile is outside of the nuleus and, thus, no matrix element ofthe pairing tensor probes the part of the potential that has been put to zero. In anin�nite system, the above approximation should be useful provided a is made muhlarger than the oherene length, whih requires the latter to be �nite, and better,not too large.The S-wave part of the above potential an be alulated through its de�nition

V aCoul,ℓ=0(k, k
′) ≡ 4π

∫ a

0

r2dr j0(kr)
e2

r
j0(k

′r), (5.68)
= 4π

e2

2kk′
[Ci(a(k − k′)) − ln(a(k − k′))

−Ci(a(k + k′)) + ln(a(k + k′))
]
, (5.69)

jn being a spherial Bessel funtion and Ci a osine-integral funtion. The aboveexpression has a separable expansion1:
V aCoul,ℓ=0(k, k

′) = 4πe2a2
∞∑

n=0

(2n+ 1) j2
n

(
ak

2

)
j2
n

(
ak′

2

)
. (5.70)This orresponds to our usual separable form with the de�nitions (α = n+ 1)

λαβ = δαβ (2α− 1) e2a2, (5.71)
gα(k) =

√
4π j2

α−1

(
ak

2

)
. (5.72)1Numerially tested, proof pending.
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Figure 5.4: Left panel: S-wave matrix elements of the separable Coulomb potentialwith a = 10 fm, NCoul = 10. Right panel: Di�erene between the ex-at range-trunated Coulomb potential and the latter �nite separableexpression.Trunating the sum in Eq. (5.70) to the �rst NCoul terms yields a separablepotential reproduing the physis of the Coulomb interation, whih an be addedto the hadroni terms and poses no hallenge for its implementation in the methodoutlined in setion 5.2.2.S-wave matrix elements of suh a potential with a = 10 fm and NCoul = 10 areplotted on Fig. 5.4, along with matrix elements substrated through trunation ofthe sum in Eq. (5.70). It is striking that, one the singularity at k = k′ has beenregularized by disarding the long-range part, the largest matrix elements ournear k = k′ = 0. The sum-trunation error only involves matrix elements atingbetween high-momentum states, whih are small anyway (notie the di�erent salesbetween panels of Fig. 5.4, and reall that hadroni matrix elements are typiallyof the order of hundreds of MeV.fm3.) Bessel funtions jn(x) having, for su�ientlylarge n, signi�ant values only for x & n, one an guarantee that negleted termsonly ontribute to matrix elements at k, k′ & 2n/a, whih evaluates to 2 fm−1 for
n = a/fm (this is di�erent from the deimation of high-momentum matrix elementsperformed by the Vlow k RG evolution, whih a�ets regions with k or k′ greater than
Λ). The assumptions leading to this approximate form of the Coulomb potentialin the S-wave are thus well motivated. They are, moreover, easily ontrollable byvarying trunation parameters.
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Chapter 6NN Pairing: Bare Fore at FirstOrderIn this hapter we present the results of the alulations performed with the fun-tional presented in setion 5.2, the representation of the bare NN vertex at the originof the pairing part of the funtional being desribed in setion 5.3.The method of solving the HFB-like equations that we use is e�ient enoughto perform systemati alulations of large sets of spherial nulei aross the masstable on single-CPU systems. We take advantage of this feature to investigate trendswith mass, isospin and major single-partile shells, beyond the �loal� omparisonswhih an be made with a single alulation. Indeed, it is lear that in most nulei,the single-partile spetrum determined by the e�etive s.p. potentials, themselvesderived from the partile-hole part of the funtional, only mathes gross features ofexperimental s.p. energies (see hapter 4). Sine pairing-related observables dependon the level density next to the Fermi energy, notably on the magnitude of a sub-shell gap if present, a diret omparison with experimental data in a single nuleusan be prone to a model-dependent bias. However, we expet suh issues to be lessritial when omputing a su�iently large and dispersed set of nulei, sine then,besides loal �utuations of pairing gaps, global trends shall depend on the averagedensity of single-partile energies only.Results presented in this setion have been obtained by performing HFB alu-lations in spherial symmetry with the funtional SLy4 [Cha98℄ in the partile-holehannel. For our purpose, the essential feature of the latter is its isosalar e�etivemass, m∗/m = 0.7 at saturation density, whih is entirely generated by the nonlo-ality of the partile-hole potential and thus orresponds to a k-mass. This valueis onsistent with k-mass values obtained from BHF alulations [Jeu76, Dal05b℄at the Fermi level in symmetri nulear matter at saturation density. The Skyrmee�etive mass, ontrary to the mirosopi ase, is momentum-independent, i.e. thenon-loality of the potential ats on the whole spetrum, whereas it is physiallymeaningful only around the Fermi level. This implies that only the spetrum loseto the Fermi level should be probed in a sheme building orrelations on top of theindependent-partile piture, whih is one of the harateristis of the Skyrme fun-tional whih on�ne it to low-energy physis. As a result, the Vlow k NN interationis well suited for the appliation we envision.The HFB equations were disretized on a set of spherial Bessel funtions (seeappendix G), whih allows for an e�ient treatment of separable �nite-range and143

http://www.sciencedirect.com/science/article/B6TVB-3VXH608-K/2/4ed3d61fb51d91f7225238f32f5455b5
http://dx.doi.org/10.1016/0370-1573(76)90017-X
http://link.aps.org/abstract/PRC/v72/e065803
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Figure 6.1: Lowest Canonial State (LCS) gaps and Lowest QuasiPartile energies.Top panel: neutron gaps, bottom panel: proton gaps.non-loal potentials in the pairing hannel (see appendix F).6.1 First resultsOne of the questions we would like to address is the proportion of the total pairinggap whih is due to the �rst-order ontribution (�diret term�) of the nuleon-nuleoninteration.We use, as a measure of experimental pairing gaps, the quantity ∆
(3)
q (N,Z),Eq. (5.19), with odd values of the partile number of the speies in onsideration. Asis reviewed in some detail in hapter 5, this gives a good estimate of the pure pairingontribution to odd-even staggering, i.e. the lowest quasipartile energy. This energyis itself approximately equal, in the ase of strong pairing and tightly-spaed single-partile levels (whih redues the s.p.e. ontribution εk to the quasipartile energy)to the pairing gap ∆k, where k orresponds to the index of the lowest quasipartile.For eah nuleus and eah nuleon speies, we all ELQP the lowest quasipartileenergy and ∆LCS the pairing potential matrix element of the anonial state withthe lowest quasipartile energy. We use the anonial basis in this ase, sine wefound the usual way to ompute the quasipartile pairing gap [Ben05℄ to yield,on some oasions, dubious values. Although this reminds somewhat of a BCSapproximation, we should stress that the values presented below ome from fullHFB alulations.Fig. 6.1 displays values of ELQP and ∆LCS omputed with the neutron-neutronpart (used in both neutron and proton pairing hannels) of the separable Vlow k with

Λ = 1.8 fm−1, built starting from the Argonne v18 potential. This is the softestharge-symmetri pairing interation of our set. The omputations were performedfor all major magi isotopi and isotoni hains, between proton and neutron driplines. In this ase, the HFB equations were solved in a box of 24 fm radius, with amesh step of 0.3 fm and a momentum ut-o� in the Bessel s.p. basis kut = 4.0 fm−1,

http://www.sciencedirect.com/science/article/B6TJ5-4G24XK6-1/2/8b4c3242e0201a862f312ee1324a3298


6.1. FIRST RESULTS 145whih desribes single-partile states up to about 300 MeV.The evolution of lowest-quasipartile energies and LCS gaps show harateristipatterns around magi nulei, where ∆LCS ollapses due to the depletion of thespetrum around the Fermi level while ELQP rises to a value orresponding to halfthe single-partile shell gap. Equality (approximately) of the two quantities indiatesthat the hemial potential lies in a densely-paked set of s.p. levels, whih minimizesthe εk ontribution to ELQP. This is the ase where a stati SR-EDF desription isthe safest.As expeted from the expression of a BCS quasipartile energy, we have ∆LCS <
ELQP for most nulei. Notable exeptions are the neutron-rih sides of tin and leadhains, where an inversion ours. This is a signature of the mixing of di�erents.p. orbitals by the HFB pairing �eld, whih allows to lower the �rst quasipartileenergy below the orresponding anonial quasipartile-equivalent energy, whih isallowed beause of the larger variational spae explored by HFB equations omparedto the BCS gap equation. The fat that this signature mainly ours in regionsapproahing the neutron drip line on�rms the importane of solving the full HFBproblem for nulei where the hemial potential lies just beneath the satteringontinuum [Dob84℄.Fig. 6.1 also shows experimental values of the gaps, where available. The methodwe have hosen to extrat the latter yields data with a general behavior similar tothat of ∆LCS, whih allows for a meaningful omparison . Around shell losures,though, theoretial gaps inrease more slowly away from magi partile numbersthan data, resulting in lower theoretial gaps in these regions. It is known thatpartile-number projetion, or an approximate variant thereof suh as the Lipkin-Nogami method, inrease gaps near shell losures. We an thus blame the pairingsheme on this inauray. Although the exat shape of the gap urves does notmath the data perfetly, the magnitude of theoretial and experimental pairing gapsis learly similar in the ase of neutrons. Calium and nikel hains are espeiallywell reprodued, probably owing to the simpliity of the underlying single-partilespetrum. Tin and lead hains, on the other hand, exhibit features in the datawhih are absent from the alulation. A depletion of gaps around N = 65 in tin,for example, suggests the existene of a sub-shell losure not predited as large bySLy4. In lead isotopes, the derease before N = 126 is steeper in the alulated gaps,whih suggests a level density whih is too high in the orresponding sub-shell. Thelatter is onsistent with the ν1i13/2 level lying too high in the s.p. spetrum (seehapter 4). Again, exept these loal defets, whih an be rather diretly relatedto the s.p. struture produed by the funtional SLy4, the global magnitude of thetheoretial neutron pairing gaps mathes that of the experimental ones very well.The ase of protons is di�erent. We see a general over-estimation of proton gapsby the alulation performed with a harge-symmetri pairing funtional. In fat,alulated proton gaps are, in the heaviest isotoni hains, higher than neutron gapsalulated in neighboring magi isotopi hains, with values standing above 1.5 MeVfor protons and between 1 and 1.5 MeV for neutrons. It is known that proton gapsare similar in magnitude, or marginally larger, than neutron ones in heavy nulei[Nem62℄, yet the di�erene observed here learly overestimates the one present inexperimental data.Given that our pairing funtional is harge-symmetri, the harge asymmetryobserved in the results may be traed bak to the intrinsi properties of the un-

http://www.sciencedirect.com/science/article/B6TVB-4731NN0-11T/2/d9f42856b29824907083e10f3f4929c4
http://www.sciencedirect.com/science/article/B73DR-470W9JG-RN/1/a320669528fbc11ad7e1417d9025f477


146 CHAPTER 6. NN PAIRING: BARE FORCE AT FIRST ORDERderlying NN vertex. Heavy nulei globally exhibit a neutron exess. Save for athin neutron skin, the spatial extension of neutron and proton distributions in thesenulei are similar, whih implies that proton densities are lower than neutron ones.Consequently, the e�etive Fermi momentum is also lower for protons than neu-trons, or, more aurately, momentum-spae density distributions orresponding tostates lose to the hemial potential are peaked at lower momenta. As a result, theproton pairing tensor probes more attrative matrix elements of the NN interationthan the neutron one, whih potentially explains the observed di�erene. The samee�et an be invoked for the neutron-exess-dependene of gaps: neutron ∆LCS val-ues derease notieably with N for all four hains present on Fig. 6.1, due to theinrease of the neutron density and e�etive Fermi momentum with N . Proton gapsexhibit a less marked derease with Z, the di�erene being probably attributable tothe entrifugal e�et due to the urvature of the partile-hole Coulomb �eld.Agreement with experiment of alulated neutron and proton gaps is very un-even. We an thus question the validity of using an harge-symmetri pairing fun-tional in our approah. Improving the latter aspet is the matter of the followingsetion.6.2 Charge symmetry and Coulomb interationCharge-symmetry breaking (CSB) in the nuleon-nuleon interation has two dis-tint origins: the most obvious one is the eletromagneti interation, whih pro-dues the prinipal ontribution to CSB as the Coulomb interation between protons.However, the term CSB is usually used to refer to the hadroni part of the NN in-teration, whih breaks this symmetry in a more subtle way, being just slightly lessattrative between protons than between neutrons.We have performed four sets of alulations of the same nulei as in the previoussetion. Keeping the funtional SLy4 in the partile-hole hannel, we used di�erentpotentials in the partile-partile hannel: (i) a harge-symmetri separable Vlow k ,generated starting from the neutron-neutron part of the Argonne v18 potential, with
Λ = 2.5 fm−1, (ii) a CSB separable potential with neutron-neutron and hadroniproton-proton terms generated separately from the orresponding matrix elementsof Vlow k built with the same parameters, (iii) A separable Vlow k potential whih isharge-symmetri exept for the addition of a separable trunated Coulomb term(with 16 terms and a trunation range a = 16 fm; see setion 5.3.3), (iv) A sepa-rable Vlow k potential inorporating both nulear CSB and Coulomb. Disretizationparameters were otherwise kept from the previous alulation.Our method for dealing with the eletromagneti part of the proton-proton in-teration onsists in replaing it with a separable expansion of the 1S0 part of arange-trunated Coulomb potential. Several approximations are thus involved.First, we neglet the �nite size of the proton, whih modi�es the short-range partof the eletromagneti potential. Although, due to the relatively small extension ofthe nuleon Cooper pair wave funtion, the e�et ould be expeted to be largerthan in the ase of the Hartree term in the partile-hole hannel, this only a�etsthe innermost 1 fm and an thus be onsidered a higher-order orretion. The sameomments apply to the negleted higher-order quantum �eld theory and nuleonstruture e�ets (suh as magneti moments) beyond simple one-photon exhange.Seond, negleting higher partial waves is potentially worse for a long-range
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Figure 6.2: LCS gaps with harge-symmetri Vlow k , harge-symmetry breaking(CSB) inluded in the nulear part of the interation and the Coulombinteration inluded (see key). The neutron-neutron pairing vertex isthe same in all ases, the orresponding urve is given for referene.interation than a short-range one. Indeed, the oordinate-spae pair tensor doesontain suh omponents, due to the �nite size of the nuleus and despite the use ofa pure 1S0 pairing interation, and these omponents are peaked at larger relativeseparations than the S-wave one. We do not expet this onern to be essentialfor the following disussion, but it would have to be heked more aurately if oneaimed at high preision results.Third, we take the eletromagneti part into aount by adding an approximateCoulomb potential diretly to the Vlow k interation without taking into aount themodi�ation of the former through the RG evolution. As explained in setion 5.3.3,the Coulomb interation is most important for its long-range part, whih yields largematrix elements for very low momenta. Its ontribution to matrix elements beyond
k = 2 fm−1 is minimal and an be expeted not to alter the RG evolution and theresulting Vlow k potential. Moreover, the matrix elements remaining beyond the RGuto� are negligible for all pratial purposes.Fourth, we use the separable approximation desribed in setion 5.3.3. Theauray of this approximation is the easiest to assess by performing a benhmarkalulation with higher values of the orresponding parameters (trunation range
a and number of terms NCoul). With respet to the latter, we have heked thatdiagonal pairing matrix elements were onverged to better than 100 eV.Pairing gaps resulting from alulations with funtionals (i)-(iv) are displayedon Fig. 6.2. The global e�et of CSB and the Coulomb interation of proton gapsan be assessed quikly, sine, as we ould have expeted, they are learly of verydi�erent magnitudes. Whereas hadroni CSB only produes a slight shift of gapurves, Coulomb dereases ∆LCS values by 20 to 30% of their original value. Inthis ase, the magnitude of proton gaps is either well reprodued (N = 28 hain,
N = 50 hain above Zironium, proton-rih end of N = 82) or slightly overestimated(N = 50 below Zironium, N = 82 next to the 50Sn shell losure and N = 126).



148 CHAPTER 6. NN PAIRING: BARE FORCE AT FIRST ORDERThe global agreement is omparable to the one oberved for neutron gaps. In N=50isotones, the relative magnitude of gaps below and above Z = 40 is not aptured.This hints that level spaings predited by SLy4 in this region are inappropriate,the position of the 1g9/2 state being too high.We are aware of only one other systemati HFB alulation inluding the Coulombinteration in the proton pairing hannel. It was performed by the Madrid group[Ang01a℄ with the Gogny D1 and D1S e�etive interations, in a triaxial harmoni-osillator basis. Although no expliit study has been made of pairing gaps in thiswork, it was found that pairing energies were redued by 30 to as muh as 60% (forsemi-magi 90Zr) when inluding the Coulomb pairing term self-onsistently in thevariational proedure. Lowest two-quasiproton energies, whih are the most relevantquantities of this work to be diretly ompared to pairing gaps, were redued, in thesame onditions, by 20 to 30% (see Fig. 1 and Tables 1 and 2 in Ref. [Ang01a℄). Themagnitude of the redution of proton pairing observed in our results thus on�rmsobservations of this previous work.The apparent value of proton gaps would thus be explained by our study asthe result of the anellation of the e�ets of the hadroni omponent of the NNinteration, whih is more attrative at the Fermi level, in heavier nulei, in thease of protons than it is for neutrons, and the eletromagneti part, whih, beingstritly repulsive, yields lower pairing gaps when taken into aount.This redution of pairing gaps due to the Coulomb interation is large enoughfor its CSB e�et to be systematially taken into onsideration in HFB alulations.In partiular, it fully validates using distint values of neutron and proton pairingparameters (i.e. isospin dependene) in empirial models based on loal pairingfuntionals [Gor06℄.6.3 E�et of Vlow k renormalization saleThe results we have presented to this point indiate that the magnitude of proton andneutron pairing gaps in the set of spherial nulei in onsideration an be explainedby the interation of nuleons at lowest order in the bare NN potential. This is atvariane with results obtained previously through HFB alulations in 120Sn usingthe SLy4 funtional together with the Argonne v14 potential in the neutron partile-partile hannel. In a �rst work, Barrano et al. [Bar04℄ obtained a pairing gapof a. 700 keV. It was onluded that the bare NN interation ould not explainthe magnitude of the experimental pairing gap, whih is lose to 1.3 MeV in thisnuleus.However, it should �rst be noted that this HFB alulation was performed using aset of single-partile orbitals and energies produed by a modi�ed SLy4 parametriza-tion of the Skyrme EDF (see referene/note 17 in Ref. [Bar04℄). The redution ofthe spin-orbit strength parameter by 15% redues spin-orbit splittings by, roughly,the same ratio. More spei�ally, it signi�antly redues the s.o. splitting of the
ν1h shell in 120Sn, whih results in the (experimentally spurious) gap between the
ν3s1/2 and ν2d3/2 levels on the one hand, and the ν1h11/2 level on the other hand,to be inreased by 1 MeV. This reates, in fat, an important sub-shell losure inthe neutron spetrum of the nuleus, whih results in a partial suppression of pair-ing. Restoring the original SLy4 EDF yields a ∆LCS gap slightly larger than 1 MeV[Pas08a, Pas08b℄. In our alulation, with the Argonne v14 potential replaed with
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http://dx.doi.org/10.1140/epja/i2003-10185-0
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6.3. EFFECT OF VLOW K RENORMALIZATION SCALE 149a Vlow k one evolved to a low renormalization sale Λ = 1.8 or 2.5 fm−1 we on-sistently �nd ∆LCS ≃ 1.45 MeV. There remains, thus, to explain the di�erene ofroughly 30 % seen between our alulation performed with Vlow k and those using ahard-ore potential.In order to investigate this issue on a more systemati footing, we have re-peated the previous alulations with Vlow k interations evolved to higher Λ val-ues. Hadroni harge-symmetry breaking was negleted, being largely irrelevant forthe present disussion, while the Coulomb interation was inluded in all ases inthe proton pairing hannel. These interations, sine they ouple low-energy de-grees of freedom to higher-energy ones, require a larger basis to ahieve onvergeneof the HFB equations in terms of the trunation of the latter. Barrano et al.[Bar04℄ used a HF basis ut o� at a s.p. energy of 800 MeV, whih orresponds,approximately, to kut = 6 fm−1 in the representation we use. We performed alu-lations with Vlow k potentials generated from CD-Bonn [Ma01℄ with RG sales upto 8.0 fm−1, using bases trunated at kut values equal to 4 fm−1 for Λ < 3 fm−1 or
Λ + 1.0 fm−1 for Λ > 3 fm−1 .For another alulation, performed with our separable approximation to theArgonne v18 potential, kut was set to 12 fm−1 , whih yields s.p. state energiesreahing 3.9 GeV. Indeed, in benhmark alulations of 120Sn, we observed a ratherslow onvergene of gaps with kut, with a value of ∆LCS varying by 76 keV between
kut = 6 and 8 fm−1 . We �nally obtained a LCS neutron gap of 925 keV in 120Sn,whih is about 100 keV smaller than results from Refs. [Pas08a, Pas08b℄.To save omputing time, we redued the basis size for high-Λ fores by usingsmaller boxes, heking that no sizeable e�et on the alulated gaps ourred nearthe valley of stability. The box radius Rbox was thus redued from 24 fm (CD-Bonn,
Λ = 1.8 fm−1 ) to 18 fm (CD-Bonn, Λ = 8.0 fm−1 ) and down to 15 fm for Argonne
v18. Total CPU time for the alulation of the set of 176 nulei presented in the�gures of this hapter amounts to around 10 hours for the softest fores, up to 100hours for Argonne v18 on a desktop omputer.Values of ∆LCS obtained with the set of pairing funtionals desribed above areplotted on Fig. 6.3. While the urves for Λ = 1.8, 2.5 and 3.0 fm−1 sit essentiallyon top of eah other, gaps alulated for Λ = 4.0 fm−1 are slightly lower, while the
Vlow k /CD-Bonn at Λ = 8.0 fm−1 and v18 interations yield gaps redued, respe-tively, by a. 10-20% and 30% with respet to the latter, indeed below experimental
∆

(3)odd data. The latter values apply to mid-shell nulei with strong pairing, whilegaps are depleted even more at sub-shell losures.Fig. 6.4 displays loal and non-loal values of the neutron spin-singlet pair densityin 120Sn. The long-range behavior of this quantity has been analyzed in [Pil07℄,we shall thus fous on the short-range part. First, the loal, or zero-range part(top-left panel) is strongly depleted when inreasing Λ, i.e. going from softer toharder-ore interations. In the Argonne v18 ase, the loal pair density is almostompletely suppressed. This suppression is, relatively to alulations employing low-
Λ interations, muh stronger than the one observed for pairing matrix elements.In fat, an aurate understanding of the situation requires to look at non-loalomponents, also plotted on Fig. 6.4. The quantity ρ̃(R, s) is, up to a normalizationfator, the spin-singlet part of the Cooper pair wave funtion. Its s = 0 omponents,i.e. the loal part usually inluded in loal pairing funtionals, are thus linked withthe probability amplitude of observing the paired nuleons in ontat. It is therefore
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Figure 6.3: LCS gaps obtained with Vlow k interations obtained from the CD-Bonnpotential at various RG sales Λ and our separable representation of theArgonne v18 potential.
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Figure 6.5: Neutron-neutron pairing gaps obtained at the Fermi level with the sep-arable Vlow k /CD-Bonn interations at indiated RG uto�s, as well asthe Argonne V18 potential, and a s.p. spetrum produed by the SLy4Skyrme EDF in SNM.no surprise that a hard-ore interation suppresses this amplitude.The struture of the non-loal part obtained with the various Vlow k interationsused di�ers mostly in the short-range region (s < 1 fm), where the gradual inreaseof Λ results in a depletion of ρ̃(R, s), inluding in the Λ < 3 fm−1 domain where gapsare Λ-independent. The long-range part is essentially una�eted for Λ < 4 fm−1 ,whereas in the ase of the hardest potentials, there also appears a redution of ρ̃(R, s)in this region. Realling the similar behavior of pairing gaps, one an onlude thattheir evolution with the �hardness� of the pairing interation is orrelated to thee�et seen on the long-range part of the non-loal pair density. It appears that ata ertain point in the RG evolution, short-range physis integrated out by the RGequations interferes with long-range, low-energy physis, to whih the observableswe are interested in belong.Given that the RG equations onserve two-body observables, this e�et must bespei� to the alulation we arried out and the underlying assumptions. We haveseen that at the BCS level, no signi�ant Λ-dependene ourred when using a free-partile spetrum. However, the ase is di�erent when self-energy e�ets are takeninto aount. Results displayed on Fig. 6.5 were obtained by performing a BCSalulation with the pairing interations used on this setion and a single-partilespetrum obtained from the SLy4 EDF in symmetri nulear matter. We reall thatthis spetrum is determined by a onstant e�etive mass given by
m∗
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=
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~2
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0 ρ0

]−1

, ρ0 =
2k3

F

3π2
, (6.1)and independent from the partile's momentum. Thus, m∗/m dereases from 1in the vauum down to 0.7 at saturation density. With inreasing kF , values of

∆(kF , kF ) are lowered more and more, for the Λ = 8.0 fm−1 Vlow k and Argonne v18,



152 CHAPTER 6. NN PAIRING: BARE FORCE AT FIRST ORDERwhen ompared to low-Λ Vlow k potentials. The amplitude of this redution, takenat kF ∼ 1.1 fm−1 i.e. slightly below saturation density, orresponds for eah of theseinterations to the amplitude observed in nulei. The CD-Bonn interation evolvedto Λ = 15 fm−1 yields results very similar to the one with Λ = 8 fm−1 , on�rmingthat (reverse) RG evolution saturates at these uto�s, whih indiates that theseinterations an be expeted to yield results omparable to the bare CD-Bonn.The only parameter whih hanges between Fig. 5.3 and Fig. 6.5 is the e�etivemass driving the s.p. spetrum. The observed redution of pairing gaps mustthus originate from the ombination of this modi�ation and the RG evolution ofthe potential eliminating high-momentum omponents. Indeed, whereas the RGevolution produes interations yielding the same low-momentum gaps as a solutionof the BCS gap equation solved with a kineti spetrum, it is not the ase with a lowe�etive mass whih redues the density of states in the high-momentum setor of thes.p. spetrum, thus reduing their ontribution to the pair density. Stated anotherway, the quasipartile energy Ek entering the ∆k/Ek fator inreases, reduing theontribution of eah state to the gap-equation integrand. With suh a spetrum,the repulsive matrix elements oupling low- and high-momentum states, whih aremultiplied by negative gaps in the BCS gap equation, and thus give a positiveontribution to the Fermi-level gap, see their ontribution redued.E�etive masses extrated from self-energies alulated at the (Dira-)Bruekner-Hartree-Fok level with hard-ore interations suh as CD-Bonn or Argonne v18 de-pend on the partile momentum. As seen, for example, from Fig. 3 in Ref. [Dal05b℄,they are atually larger at high k than at the Fermi level. It is thus possible thatthe pairing gaps alulated with hard-ore interations and SLy4 in nulei underes-timate values stemming from a more mirosopi alulation (yet to be performedas of today) due to the trivial e�etive mass haraterizing the Skyrme EDF. Theseresults, as well as those of the Milan group onerning pairing gaps alulated withthe bare Argonne v14, should thus be taken with aution if one expets onsistenywith ab-initio theory.It is not sure, yet, to what extent the low-Λ potentials are devoid of spuriouse�ets from the negleted momentum and energy-dependene of self-energies, how-ever they are potentially less a�eted by the e�etive-mass approximation due toworking in a smaller model spae where the spetrum density is reasonably underontrol. As stated at the beginning of this hapter, the quasi-loal Skyrme fun-tional allows to desribe low-energy degrees of freedom and should not be expetedto be preditive outside of this domain. We thus have more on�dene in the resultsobtained with the Vlow k potentials, where a ertain onsisteny between resolutionsales of the p-h and p-p funtionals an be expeted, than those stemming fromhard-ore ones. Beyond this qualitative argument, and short of a omplete ab-initioalulation of self-energies in the �nite nulear medium, a thorough investigationwould involve quantitatively validating in in�nite matter the string of approxima-tions leading to our alulation. This proedure is urrently underway [Heb08℄, butbeyond the present work.6.4 Summary and outlookThe fat that the bare NN interation, used in the pairing hannel of a SR-EDFalulation, yields pairing gaps so lose to values extrated from experimental masses

http://link.aps.org/abstract/PRC/v72/e065803


6.4. SUMMARY AND OUTLOOK 153omes as a surprise, sine it was expeted from earlier works that e�ets beyond this�rst-order approximation to the pairing interation kernel would yield signi�antontributions. At the present point it an not be ompletely exluded that thisresults from a anellation of negleted e�ets, whose individual magnitude is hardto assess. Nevertheless, already at �rst order, a �rm result that we have obtainedis the signi�ane of the redution of proton gaps due to the Coulomb interation,whih is overall onsistent with previous works [Ang01a℄.Beyond that, several ingredients, in priniple, are missing in this alulation.First, our alulations are based on quasipartile and e�etive-mass approxima-tions. The implied re-summation of self-energy e�ets in the non-loality of thefuntional is not quantitatively under ontrol. As already mentioned, this will beheked in detail.Seond, olletive vibrations, in �nite nulei, are expeted to enter as an attra-tive indued-interation ontribution due to the presene of surfae modes [Gio02℄,whih is the opposite of their e�et in in�nite matter where spin �utuations dom-inate and bring a repulsive ontribution [Gor05a℄. To provide a lear piture ofe�ets beyond the �rst order, a alulation should be made involving the desrip-tion of olletive modes using the same interation as the one inluded at �rst order.Indeed, just as in the �rst-order ase, a dependene on the renormalization salemay be enountered in this ase. Suh a alulation would be muh more involvedthan the ones presented here, or even those of Refs. [Bar04, Pas08a℄ whih employquite a shemati model for the desription of phonons.Also, the three-nuleon fore yields repulsive pairing matrix elements when in-luded in the gap equation in nulear matter. Its e�et beomes sizeable prinipallyfor proton pairing in highly isospin-asymmetri matter [Bal07℄, whih may translateinto a orretion to proton gaps in nulei near the neutron drip-line. Inluding it inour sheme is potentially ahievable, by devising a separable representation of an in-medium vertex. The latter should sum a two-body interation and a three-body oneaveraged over the third partile, alulated in in�nite matter. The density-dependentseparable representation would then be used with a loal density approximation forthe e�etive three-body part.Finally, we have only onsidered the 1S0 hannel of the interation. While thisrelative-motion state is learly the main omponent of the Cooper pair wave funtion,the deoupling between partial waves whih ours in in�nite matter may not beas omplete in �nite systems, resulting in the admixture of higher partial-waveomponents to the pair density. Suh omponents, through the orresponding matrixelements of the interation, whih have been negleted here, will yield a ontributionto the pairing energy and gaps. Inluding these omponents in our framework is partof our plans for the future.As already stated, systemati alulations are desirable in studies of pairing dueto the sensitivity of the latter to non-ontrolled details of single-partile spetra.The present work has been limited, due to tehnial onstraints linked with theuse of a non-loal interation, to spherial nulei. However, it would be interestingto investigate the interplay between pairing and deformation in suh a mirosopisheme and aross the nulear hart, in order to see, for example, if the distributionof gaps mentioned in setion 5.1.2 an be reprodued. This would require a modelof the NN interation tratable in deformed alulations, either as a loal pairingfuntional or the parametrization of a Brink-Boeker-type potential whih ould be

http://www.sciencedirect.com/science/article/B6TVB-42815YP-B/1/907d633219fe4bee730fff5047152e5 3
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http://arxiv.org/abs/0801.1385
http://link.aps.org/abstract/PRC/v75/e025802


154 CHAPTER 6. NN PAIRING: BARE FORCE AT FIRST ORDERused as an input to a Gogny-HFB ode. Work along the lines of the latter ase isin progress, the main di�ulty being the non-loality of the interation [Rot08b℄.Whereas we have foused on pairing gaps in this study, being mainly onernedby the origin of nulear pairing and by providing a benhmark for the onstrutionof future pairing funtionals, other observables of interest will be studied in the nearfuture, starting with a omparison of binding energies obtained with various pairingshemes. Quasipartile spetra will be heked for state-dependent e�ets linkedwith the range of the interation, among others.Above all, we intend to undertake a systemati omparison of loal and quasi-loal pairing funtionals. The range in mass and isospin of the nulei for whihwe were able to perform ab-initio alulations and produe theoretial pseudo-datawill be a key asset in devising a non-empirial, but loal pairing funtionals. Thefat that our results are ompatible with experiment allows to expet diret �ts ofsuh funtionals, or a derivation through density-matrix expansion, to yield pair-ing models with more sound preditive power than urrent empirial ones. Again,this does not prevent us from heking the exat origin of this agreement by moresophistiated alulations.



Chapter 7ConlusionNulear energy density funtional models based on Skyrme e�etive interations andquasi-loal funtionals are undergoing a deep revision. We have partiipated in thisproess, aiming at a better onnetion with urrent knowledge of experimental data,mirosopi interations and ab-initio alulations. Our envisioned long-term goalis an improvement of the preditive power of this model and the onstrution of afuntional aurately desribing all known and relevant nulear observables whilehaving a solid formal, experimental and theoretial motivation, making it reliablein extrapolations to exoti nulear systems. In this work we have studied severalpaths to an improved preditive power and given some new (or revised) onstraintsto be used in the onstrution of future density-funtional parametrizations.Although partiular attention has been paid in the last deade to the propertiesof nulear energy density funtional models with respet to isospin, the spin-isospinstruture of loal nulear funtionals is not yet fully under ontrol when deriving thelatter from a Skyrme e�etive interation. We have shown, moreover, that variousaspets of this problem, namely the spin-isospin ontent of the nulear matter equa-tion of state and the behavior of nuleon e�etive masses with isospin, ould not beput in agreement with preditions of ab-initio many-body theory at the same time.This points to de�ienies of a �fty-year-old model whih, despite having known on-siderable suess in several aspets of nulear struture, remains rather shemati.We also have pointed out the neessity to fully understand and ontrol the stabilityof the funtional, i.e. its very ability to yield preditions at all ! We take this asan example of the amount of attention whih must be paid to details of e�etivemodels. However, we also showed the potential of using methods generally employeda posteriori, with the intent to obtain physial preditions, in the onstrution andanalysis of a funtional. Suh is the ase of RPA response funtions, whih give ane�ient, if not straightforward way, to ensure the onsisteny of ground states andexitation spetra of nulei.The inauraies observed in the individual and olletive spetrosopy preditedby SR- or MR-EDF alulations using Skyrme funtionals have been largely at-tributed to the lak of a tensor interation in the underlying interation, or equiv-alently to the lak of attention paid to the quadrati spin-urrent ouplings of thefuntional. By performing a systemati exploration of the orresponding parameterspae, inluding a systemati re�t of the funtional to basi physial onstraints, wehave emphasized the role of the �tensor terms� and devised onstraints for them.We found again that the Skyrme energy funtional was limited in terms of the on-155



156 CHAPTER 7. CONCLUSIONtrol it allowed on the observables under onsideration, suh as spin-orbit splittingsand binding energies of magi alium and nikel isotopes, or single-partile spetraand their evolution along isotopi hains. It was found that the various onstraintson Skyrme EDF parametrizations ould not be simultaneously satis�ed with theavailable parameters.Therefore, our approah onsisted in disentangling as muh as possible the e�etof the tensor terms from other parameters and �nding the most model-independentpossible onstraint. Admittedly, the result was non-optimal with respet to even sim-ple riteria. We onluded that new terms and parameters had to be found to on-trol the position of spin-orbit doublet entroids, the state- and isospin-dependeneof spin-orbit splittings, to name a few.The fat that the Skyrme funtional has to be extended and generalized to be-ome really preditive starts to be routinely mentioned in researh papers. Thequestion then beomes, what term to add ? In an sheme based on an e�etiveinteration, adding density-dependene to non-loal terms, inluding the term pro-portional to t2 ating in the P -wave, would allow to deouple spin-isospin propertiesfrom the equation of state and e�etive mass parameters, while onserving anti-symmetry of the nulear part of the funtional. An extended spin-orbit part of thefuntional also seems neessary to gain ontrol over spin-orbit splittings.It is likely, however, that systemati investigations will develop. Investigating therelevane of the parameters of an extended funtional with respet to the reprodu-tion of available data, aided by rigorous analysis tehniques suh as singular valuedeomposition [Kor08℄ seems promising. So does density matrix expansion appliedto an e�etive vertex dedued from low-momentum interations [Neg72, Bog08℄.The pairing part added to quasi-loal partile-hole nulear funtionals has beenlargely phenomenologial until now. We showed that low-momentum nuleon-nuleoninterations, as well as any fore amenable to a separable approximation, ould beused in an e�ient way in the pairing hannel of Skyrme-EDF alulations. Wethus performed, for the �rst time, systemati alulations of pairing gaps using thebare nuleon-nuleon fore as a pairing interation, also exhibiting the importaneof the Coulomb interation. The results ame surprisingly lose to experiment for a�rst step. A more thorough study of self-energy e�ets, partial waves di�erent from
1S0 and the three-body fore will either show that these ontributions anel out ordemonstrate that yet another ingredient is missing. One will then have to inludemany-body e�ets in the pairing interation itself, in a sheme to be de�ned.There remains to study other observables, suh as masses and density distribu-tions, and to use the large amount of theoretial data generated to build a miro-sopi loal or quasi-loal pairing funtional. The latter shall be essential for reliablyalulating properties of deformed and odd nulei far from the valley of stability.Note however that as long as one keeps spherial symmetry, our method is aboutas e�ient as a loal pairing funtional, whih might allow to envision MR-EDFalulations for the study of pair vibrations or pair transfer reations.Looking bak at this manusript, the work presented therein may seem un-�nished. Indeed, we have started exploring di�erent diretions leading to an in-reased preditive power for nulear energy density funtionals. We have utilizedphenomenology, and systemati omparison with data, but also mirosopi inputs.These aspets are both essential. A preditive funtional �rst has to reprodueknown observables before allowing for extrapolation into unharted territory. On

http://dx.doi.org/10.1103/PhysRevC.77.064307
http://dx.doi.org/10.1103/PhysRevC.5.1472


157the other hand, reliable extrapolations an hardly be ahieved without a �rm on-netion of the model with underlying physis. Only by ombining these aspets anwe expet to build a truly universal nulear energy density funtional.



158 CHAPTER 7. CONCLUSION



Appendix

159





Appendix ACoupling onstants of the Skyrmeenergy funtionalThe oupling onstants of the entral Skyrme energy density funtional in terms ofthe parameters of the entral Skyrme fore are given by
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t2 . (A.1)The oupling onstants of the spin-orbit energy density funtional in terms of theparameters of the spin-orbit fore are given by
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W0 . (A.2)The oupling onstants of the tensor energy density funtional in terms of the pa-rameters of Skyrme's tensor fore are given by (Table I in [Per04℄)
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162 APPENDIX A. COUPLING CONSTANTS OF THE SKYRME EDFTable A.1: Values of the Skyrme-interation parameters for �ts performed and usedin this manusript. Omitted values are zero.
Name t0 t1 t2 t3 t6

x0 x1 x2 x3 x6

W0 T U γ γ′f− -1847.562 477.387 -495.987 14003.89 -4302.160.821426 -0.393945 -0.971838 1.792787 2.622989133.187 1/3 2/3f0 -1849.082 477.277 -412.825 14035.19 -4331.240.824349 -0.137469 -0.915580 1.780474 3.295755129.190 1/3 2/3f+ -1849.486 478.078 -324.437 14050.84 -4351.540.826648 0.085961 -0.821841 1.770010 3.932000127.855 1/3 2/3T11 -2484.690 480.674 -522.233 13785.810.734532 -0.357956 -0.981127 1.195657103.738 86.322 -114.259 1/6T12 -2482.571 480.605 -523.692 13762.340.741577 -0.357895 -0.984520 1.208913112.506 38.788 -66.072 1/6T13 -2481.315 480.343 -531.133 13749.160.741208 -0.346965 -0.989822 1.209875120.411 -6.946 -17.241 1/6T14 -2479.458 479.870 -530.397 13732.470.744308 -0.348138 -0.990900 1.215762128.506 -55.122 30.824 1/6T15 -2482.479 478.923 -317.302 13764.910.733926 -0.677015 -0.813783 1.196671136.554 -166.980 57.775 1/6T16 -2485.640 481.672 -316.779 13791.070.736004 -0.680207 -0.805749 1.198185144.925 -215.394 104.916 1/6T21 -2486.267 484.633 -445.880 13807.350.721464 -0.480492 -0.924422 1.173067115.277 158.983 -123.119 1/6T22 -2484.397 484.495 -471.454 13786.970.730120 -0.442635 -0.944655 1.188194123.225 118.685 -72.504 1/6T23 -2483.501 484.291 -440.089 13776.290.732464 -0.492071 -0.924856 1.193100131.435 61.309 -27.567 1/6T24 -2482.931 484.346 -433.185 13768.560.729639 -0.503889 -0.921044 1.190192139.272 11.246 19.739 1/6



163Table A.1: Skyrme interation parameters (ontinued).Name t0 t1 t2 t3 t6
x0 x1 x2 x3 x6

W0 T U γ γ′T25 -2480.434 485.519 -478.822 13735.270.754456 -0.439566 -0.956135 1.231884147.887 -23.126 72.006 1/6T26 -2476.673 484.490 -482.591 13699.040.767612 -0.434554 -0.962725 1.254753156.146 -69.885 120.698 1/6T31 -2486.963 490.158 -418.307 13808.780.724547 -0.532406 -0.894940 1.178613126.989 246.186 -127.507 1/6T32 -2486.155 489.073 -438.565 13804.970.712439 -0.499144 -0.912063 1.160360133.590 204.352 -77.176 1/6T33 -2486.688 489.683 -405.609 13804.200.728149 -0.551901 -0.885872 1.184753142.019 146.435 -32.623 1/6T34 -2485.496 488.412 -351.129 13799.050.716858 -0.632712 -0.829737 1.167295149.734 82.186 10.278 1/6T35 -2483.136 490.586 -377.114 13762.060.740390 -0.601400 -0.863924 1.208476158.994 41.846 60.306 1/6T36 -2478.946 488.365 -427.188 13729.530.752195 -0.522097 -0.912891 1.227180166.212 9.055 113.945 1/6T41 -2492.261 494.721 -262.766 13874.450.689383 -0.767147 -0.653878 1.117874138.146 294.978 -144.519 1/6T42 -2492.153 494.635 -251.272 13869.060.690625 -0.785802 -0.630399 1.121129145.089 243.562 -97.619 1/6T42 -2492.150 494.635 -251.272 13869.060.690625 -0.785802 -0.630399 1.121129145.089 243.562 -97.619 1/6T42 -2492.150 494.635 -251.272 13869.060.690625 -0.785802 -0.630399 1.121129145.089 243.562 -97.619 1/6T43 -2490.275 494.608 -255.534 13847.120.698702 -0.781655 -0.646302 1.135795153.103 196.868 -49.160 1/6T44 -2485.670 494.477 -337.961 13794.750.721557 -0.661848 -0.803184 1.175908161.367 173.661 7.174 1/6



164 APPENDIX A. COUPLING CONSTANTS OF THE SKYRME EDFTable A.1: Skyrme interation parameters (ontinued).Name t0 t1 t2 t3 t6
x0 x1 x2 x3 x6

W0 T U γ γ′T45 -2485.014 492.671 -304.046 13793.280.727016 -0.710368 -0.755428 1.182969168.213 115.642 52.299 1/6T46 -2484.405 495.225 -356.435 13769.070.735176 -0.639443 -0.833399 1.201318176.279 83.204 104.873 1/6T51 -2492.672 500.414 -272.332 13871.380.691985 -0.760015 -0.663662 1.123486148.934 393.316 -145.233 1/6T52 -2494.783 499.204 -141.125 13886.860.692186 -0.955937 -0.126512 1.123414155.371 306.098 -109.968 1/6T53 -2486.978 499.333 -363.964 13807.830.719761 -0.627515 -0.823595 1.171935163.931 324.972 -39.688 1/6T54 -2489.087 497.774 -248.404 13829.430.710724 -0.797929 -0.625993 1.156397170.383 242.449 -2.787 1/6T55 -2487.084 497.823 -227.658 13815.230.711011 -0.829103 -0.567634 1.157022179.006 188.196 43.100 1/6T56 -2484.179 497.603 -258.182 13775.240.725926 -0.788228 -0.661928 1.185298185.960 149.446 94.289 1/6T61 -2494.625 501.033 -125.512 13895.880.683145 -0.977518 0.040183 1.107100156.389 445.173 -160.136 1/6T62 -2495.048 499.981 -197.374 13901.240.690739 -0.868510 -0.431559 1.117413162.688 418.830 -104.641 1/6T63 -2492.495 500.627 -121.265 13875.170.680914 -0.985108 0.076440 1.105776171.897 347.945 -64.433 1/6T64 -2487.323 501.096 -284.539 13818.030.705320 -0.746420 -0.694782 1.148322180.135 348.930 -0.197 1/6T65 -2489.413 497.528 -194.992 13841.040.699857 -0.875605 -0.446926 1.137559183.698 274.403 39.899 1/6T66 -2485.363 500.799 -228.479 13794.560.715164 -0.832653 -0.566420 1.165944195.349 236.170 90.314 1/6



Appendix BSeparation of the energy intospin-isospin hannelsWhen the EDF is de�ned as the expetation value of an e�etive Hamiltonian,separating it into spin-isospin hannels is straightforward, as in Eq. (3.11). However,one an extend this de�nition to the ase of any Hartree-like funtional: let us startby realling that in the ase of the Skyrme fore, the diret and exhange terms havethe same analytial struture; one thus usually uses the expressions
Epot =

1

2

∑

kl

〈
kl
∣∣∣V̂Skyrme

∣∣∣ kl
〉
ρkk ρll, (B.1)

∣∣kl
〉

= |kl 〉 − |lk 〉 = (1 − P̂rP̂σP̂τ ) |kl 〉 , (B.2)where the last expression uses the position, spin and isospin exhange operators tode�ne an antisymmetrized and non-normalized two-body state. One then writesdown the antisymmetrized form of the Skyrme interation and the EDF by usingthe de�nition of densities entering Eqs. (C.29)-(C.32).Leaving the antisymmetrized Hamiltonian framework, it is always possible tode�ne the potential part of the funtional as the diret term of the expetationvalue of a ertain operator, as in
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ρkk ρll, (B.3)realling that V̂EDF = V̂Skyrme(1−P̂rP̂σP̂τ ) in the Hamiltonian ase. One then de�nesthe energy per hannel as

EST
EDF =

∑

kl

〈
kl
∣∣∣VEDF P̂SP̂T

∣∣∣ kl
〉
ρkk ρll, (B.4)whih, with the de�nitions (C.29)-(C.32) for oupling onstants, yields (retaining165



166APPENDIX B. SEPARATION OF THE ENERGY INTO (S, T ) CHANNELSonly terms ating in in�nite matter)
EST
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Appendix CPartile-Hole Potentials andResidual Interation from aQuasi-Loal FuntionalIn this appendix we derive the expression of the partile-hole e�etive potential andresidual interation arising from a quasi-loal energy density funtional. We presentthe results in a way whih allows them to be diretly put to use in the formula forthe response funtion of Ref. [GR92℄.C.1 PrinipleOur starting point is a funtional of the normal density matrix. Anomalous termsgiving a pairing �eld and partile-partile residual interation will not be onsideredhere. This funtional reads
E [ρ] = F [Q[ρ̂]] , Q(x) = Tr

(
Q̂(x)ρ̂

)
=
∑

ij

q(x)ijρji, (C.1)where Q(x) plays the role of one or several �densities� as they are usually alled inthe Skyrme EDF, x representing the set of oordinates and disrete indies nees-sary to fully de�ne eah density operator/value. The ρji then are matrix elementsof the density matrix expressed in any omplete representation inluding spae, spinand isospin degrees of freedom, while Q̂(x) is a family of loal one-body operatorsde�ning the densities, themselves independent from ρ̂, and q(x)ij their matrix ele-ments. For example, a funtional of the loal density an be reovered by makingthe substitutions (omitting spin and isospin for simpliity)
x → r (C.2)
ρij → ρ(x,x′) (C.3)

q(x)ij → δ(r − x) δ(r− x′) (C.4)
Q(x) → ρ(r) (C.5)The e�etive potential entering the HF/Kohn-Sham equations an be derived as

hij =
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ĥ =

∑∫

x
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∂Q(x)

Q̂(x), (C.7)167
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168 APPENDIX C. P-H POTENTIALS AND RESIDUAL INTERACTIONwhile the partile-hole residual interation is given by the seond funtional deriva-tive. Similarly, we an write
V ph

ijkl =
δ2F

δρki δρlj

=
∑∫

xy

∂2F
∂Q(x) ∂Q(y)

q(x)ik q(y)jl

V̂ ph =
∑∫

xy

∂2F
∂Q(x) ∂Q(y)

Q̂(x)(1) Q̂(y)(2), (C.8)where we use the notation Q̂(1) or Q̂(2) to indiate that the one-body operator atson the �rst or the seond interating partile, respetively.C.2 De�nitionsIn order to derive the e�etive potentials and residual interation from a Skyrme-like EDF, it is useful to rewrite the densities aording to Eq. (C.1), working inoordinate spae. We thus reall the expression of the non-loal density matrix
ρ̂(xσq,x′σ′q′) =

∑

k

ϕ∗
k(x

′σ′q′)ϕk(xσq)v
2
k, (C.9)where ϕk is a anonial wave funtion and v2

k its oupation probability. Althoughthe rede�nition of densities below may look umbersome, it allows for a systematiand straightforward derivation of the �elds and residual interation orrespondingto any quasi-loal funtional.We use in the following the operators ∇ and ∇
′ (derivation with respet to,respetively, x and x′), σσ′σ and τq′q (Pauli matries ating in spin and isospinspae).Let us start by de�ning the time-even and isosalar densities,

ρ0(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r− x) δ(x′ − x) δq′q δσ′σ ρ̂(xσq,x′σ′q′), (C.10)
τ0(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r− x) δ(x′ − x) δq′q δσ′σ ∇
′ · ∇ρ̂(xσq,x′σ′q′), (C.11)

J0(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r− x) δ(x′ − x) δq′q
1

2i
(∇′ − ∇) ⊗ σσ′σ ρ̂(xσq,x

′σ′q′),(C.12)
J0(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r− x) δ(x′ − x) δq′q (−i∇) × σσ′σ ρ̂(xσq,x
′σ′q′),(C.13)

J being the rank-one part of the tensor J.



C.2. DEFINITIONS 169Time-even isovetor densities, similarly, read
ρ1(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r− x) δ(x′ − x) τq′q δσ′σ ρ̂(xσq,x′σ′q′), (C.14)
τ1(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r− x) δ(x′ − x) τq′q δσ′σ ∇
′ · ∇ρ̂(xσq,x′σ′q′), (C.15)

J1(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r− x) δ(x′ − x) τq′q
1

2i
(∇′ − ∇) ⊗ σσ′σ ρ̂(xσq,x

′σ′q′),(C.16)
J1(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r− x) δ(x′ − x) τq′q (−i∇) × σσ′σ ρ̂(xσq,x
′σ′q′),(C.17)while time-odd isosalar,

s0(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r− x) δ(x′ − x) δq′q σσ′σ ρ̂(xσq,x′σ′q′), (C.18)
T0(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r− x) δ(x′ − x) δq′q σσ′σ ∇
′ · ∇ρ̂(xσq,x′σ′q′),(C.19)

j0(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r− x) δ(x′ − x) δq′q δσ′σ
1

2i
(∇′ − ∇)ρ̂(xσq,x′σ′q′),(C.20)and time-odd isovetor densities,

s1(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r − x) δ(x′ − x) τq′q σσ′σ ρ̂(xσq,x′σ′q′), (C.21)
T1(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r − x) δ(x′ − x) τq′q σσ′σ ∇
′ · ∇ρ̂(xσq,x′σ′q′),(C.22)

j1(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r − x) δ(x′ − x) τq′q δσ′σ
1

2i
(∇′ − ∇)ρ̂(xσq,x′σ′q′),(C.23)an be subjet to the same treatment.



170 APPENDIX C. P-H POTENTIALS AND RESIDUAL INTERACTIONIt is equally useful to reexpress the following derivatives of densities
∆ρ0(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r − x) δ(x′ − x) δq′q δσ′σ

(∇′2 + 2∇′ · ∇ + ∇
2)ρ̂(xσq,x′σ′q′), (C.24)

∇ · J0(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r − x) δ(x′ − x) δq′q δσ′σ

∇
′ · (−i∇ × σσ′σ )ρ̂(xσq,x′σ′q′), (C.25)

∇ · s0(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r − x) δ(x′ − x) δq′q (∇′ + ∇) · σσ′σ ρ̂(xσq,x
′σ′q′)

∇ × j0(r) =

∫
d3xd3x′

∑

σσ′qq′

δ(r − x) δ(x′ − x) δq′q δσ′σ (−i)∇′ × ∇ρ̂(xσq,x′σ′q′).(C.26)The orresponding expressions for ∆ρ1, ∆s0, ∆s1, ∇ · J1, ∇ · s1 and ∇× j1 an bededued from the above immediately, by a simple replaement of spin and isospinoperators.Let us reall the general form of the energy density (omitting Coulomb and tensorterms)
E =

∫
d3r

(
~2

2m
τ0 + HSkyrme

)
, (C.27)

HSkyrme = Heven
0 + Heven

1 + Hodd
0 + Hodd

1 , (C.28)with
Heven

0 = Cρ
0ρ

2
0 + C∆ρ

0 ρ0∆ρ0 + Cτ
0ρ0τ0 + CJ

0 J
2
0 + C∇J

0 ρ0∇ · J0, (C.29)
Heven

1 = Cρ
1ρ

2
1 + C∆ρ

1 ρ1 ◦ ∆ρ1 + Cτ
1ρ1 ◦ τ1 + CJ

1 J
2
1 + C∇J

1 ρ1 ◦ ∇ · J1, (C.30)
Hodd

0 = Cs
0s

2
0 + C∆s

0 s0 · ∆s0 + CsT
0 s0 · T0 + C∇s

0 (∇ · s0)
2 + Cj

0j
2
0 + C∇j

0 s0 · (∇ × j0),(C.31)
Hodd

1 = Cs
1s

2
1 + C∆s

1 s1 · ◦∆s1 + CsT
1 s1 · ◦T1 + C∇s

1 (∇ · s1)
2 + Cj

1j
2
1 + C∇j

1 s1 · ◦(∇ × j1).(C.32)Let us also reall the onstraints imposed between oupling onstants due to time-reversal invariane
Cj

T = −Cτ
T , CJ

T = −CsT
T , C∇j

T = C∇J
T . (C.33)We shall hereafter restrit density-depene to stritly loal terms. A singledensity-dependent term will be onsidered, the generalization to two suh termsbeing straightforward.

Cρ
T = Cρ,0

T + Cρ,γ
T ργ

0 , Cs
T = Cs,0

T + Cs,γ
T ργ

0 (C.34)C.3 Potential and Residual InterationThe oordinate-spin-isospin-spae matrix element of the partile-hole residual inter-ation is de�ned by:
〈x′

aq
′
aσ

′
ax

′
bq

′
bσ

′
b|V̂ ph|xaqaσaxbqbσb〉 =

δ2E
δρ(xbσbqb,x′

bσ
′
bq

′
b)δρ(xaσaqa,x′

aσ
′
aq

′
a)
. (C.35)



C.3. POTENTIAL AND RESIDUAL INTERACTION 171In the following formulae for the e�etive potential terms, an identity operator
δ(x′−x) δq′q δσ′σ is implied, exept when spin and/or isospin operators are present,in whih ase they should replae the one in the latter expression. If gradientoperators are present, δ(x′−x) should be plaed left of ∇ (whih ats on the right)and right of ∇

′ (whih ats on the left).In the orresponding expressions for the residual interation, we use the sub-sripts a and b to denote operators ating in the spae of the �rst and seondinterating partile, respetively. This onvention has been hosen so as not tobe onfused with subsripts orresponding to spatial or isospin-spae omponents.Similarly, an operator δ(x′
a − xa)δ(x

′
b − xb)δ(xa − xb) δq′aqaδq′bqb

δσ′

aσaδσ′

bσb
is impliedin eah term of the residual interation, with spin and isospin parts being replaedby those present in the spei� expressions, and the δ-funtions being inserted sogradient operators at to the left (∇′

a,b) or right (∇a,b) before them.Due to the length of the expressions involved, the e�etive potentials and residualinteration shall be broken down into terms denoted aording to the terms of thefuntional they stem from. In any ase, the omplete expressions for ĥ and V̂ ph anbe reovered by adding all the h- and V -terms, respetively, written down below.C.3.1 Loal, density-dependent terms
ĥρ

0 = Cρ,0
0 2ρ0 + Cρ,γ

0 (γ + 2) ργ+1
0 (C.36)

V̂ ρ
0 |ab = 2Cρ,0

0 + Cρ,γ
0 (γ + 2) (γ + 1) ργ

0

ĥρ
1 = (Cρ,0

1 + Cρ,γ
1 ργ

0)2ρ1 ◦ τ̂ + Cρ,γ
1 γργ−1

0 ρ2
1 (C.37)

V̂ ρ
1 |ab = (Cρ,0

1 + Cρ,γ
1 ργ

0)2τ̂a ◦ τ̂b + Cρ,γ
1

(
2γργ−1

0 ρ1 ◦ (τ̂a + τ̂b) + γ (γ − 1) ργ−2
0 ρ2

1

)

ĥs
0 = (Cs,0

0 + Cs,γ
0 ργ

0)2s0 · σ̂ + Cs,γ
0 γργ−1

0 s2
0 (C.38)

V̂ s
0 |ab = (Cs,0

0 + Cs,γ
0 ργ

0)2σ̂a · σ̂b + Cs,γ
0

(
2γργ−1

0 s0 · (σ̂a + σ̂b) + γ (γ − 1) ργ−2
0 s2

0

)

ĥs
1 = (Cs,0

1 + Cs,γ
1 ργ

0)2s1 · σ̂ ◦ τ̂ + Cs,γ
1 γργ−1

0 s2
1 (C.39)

V̂ s
1 |ab = (Cs,0

1 + Cs,γ
1 ργ

0)2σ̂a · σ̂bτ̂a ◦ τ̂b
+Cs,γ

1

(
2γργ−1

0 s1 · ◦(σ̂aτ̂a + σ̂bτ̂b) + γ (γ − 1) ργ−2
0 s2

1

)C.3.2 Non-loal (e�etive-mass and urrent) termsTerms of the form Cτ
T (ρT τT − j2T ), CsT

T (sT ·TT − J2
T )

ĥρτ−j2

0 = Cτ
0

(
ρ0∇

′ · ∇ + τ0 − j0 ·
1

i
(∇′ − ∇)

) (C.40)
V̂ ρτ−j2

0 |ab = Cτ
0

(
∇

′
a · ∇a + ∇

′
b · ∇b +

1

2
(∇′

a − ∇a) · (∇′
b − ∇b)

)
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ĥρτ−j2

1 = Cτ
1

(
ρ1∇

′ · ∇τ̂ + τ1 ◦ τ̂ − j1 ·
1

i
(∇′ − ∇)τ̂

) (C.41)
V̂ ρτ−j2

1 |ab = Cτ
1 τ̂a ◦ τ̂b

(
∇

′
a · ∇a + ∇

′
b · ∇b +

1

2
(∇′

a − ∇a) · (∇′
b − ∇b)

)

ĥsT−J2

0 = CsT
0

(
∇

′ · ∇s0 · σ̂ + T0 · σ̂ − 1

i
(∇′ − ∇) · J0 · σ̂

) (C.42)
V̂ sT−J2

0 |ab = CsT
0 σ̂a · σ̂b

(
∇

′
a · ∇a + ∇

′
b · ∇b +

1

2
(∇′

a − ∇a) · (∇′
b − ∇b)

)

ĥsT−J2

1 = CsT
1

(
∇

′ · ∇s1 · σ̂ ◦ τ̂ + T1 · σ̂ ◦ τ̂ − 1

i
(∇′ − ∇) · J1 · σ̂ ◦ τ̂

) (C.43)
V̂ sT−J2

1 |ab = CsT
1 σ̂a · σ̂b τ̂a ◦ τ̂b

(
∇

′
a · ∇a + ∇

′
b · ∇b +

1

2
(∇′

a − ∇a) · (∇′
b − ∇b)

)Terms of the form C∆ρ
T ρT ∆ρT

ĥ∆ρ
0 = C∆ρ

0

(
∆ρ0 + ρ0(∇

′2 + 2∇′ · ∇ + ∇
2)
) (C.44)

V̂ ∆ρ
0 |ab = C∆ρ

0

(
(∇′2

a + 2∇′
a · ∇a + ∇

2
a) + (∇′2

b + 2∇′
b · ∇b + ∇

2
b)
)

ĥ∆ρ
1 = C∆ρ

1

(
∆ρ1 ◦ τ̂ + τ̂ ◦ ρ1(∇

′2 + 2∇′ · ∇ + ∇
2)
) (C.45)

V̂ ∆ρ
1 |ab = C∆ρ

1 τ̂a ◦ τ̂b
(
(∇′2

a + 2∇′
a · ∇a + ∇

2
a) + (∇′2

b + 2∇′
b · ∇b + ∇

2
b)
)

ĥ∆s
0 = C∆s

0

(
∆s0 · σ̂ + σ̂ · s0(∇

′2 + 2∇′ · ∇ + ∇
2)
) (C.46)

V̂ ∆s
0 |ab = C∆s

0 σ̂a · σ̂b

(
(∇′2

a + 2∇′
a · ∇a + ∇

2
a) + (∇′2

b + 2∇′
b · ∇b + ∇

2
b)
)

ĥ∆s
1 = C∆s

1

(
∆s1 · σ̂ ◦ τ̂ + σ̂ · τ̂ ◦ s1(∇

′2 + 2∇′ · ∇ + ∇
2)
) (C.47)

V̂ ∆s
1 |ab = C∆s

0 σ̂a · σ̂b τ̂a ◦ τ̂b
(
(∇′2

a + 2∇′
a · ∇a + ∇

2
a) + (∇′2

b + 2∇′
b · ∇b + ∇

2
b)
)C.4 In�nite matterC.4.1 Parameterization of the residual interationIn a translation-invariant system, one an replae gradient operators by the momentaof s.p. states

pa = −i∇a, p′
a = i∇′

a, (C.48)



C.4. INFINITE MATTER 173and introdue relative momenta of the interating partiles, in the inoming (right)and outgoing (left) states,
k =

1

2
(pa − pb), k′ =

1

2
(p′

a − p′
b), (C.49)while the inoming and outgoing total momenta, in turn, read

K = pa + pb, K′ = p′
a + p′

b. (C.50)One an also de�ne the diret and exhange transferred momenta
q = k′ − k, q′ = k′ + k. (C.51)In an in�nite, translation-invariant system, the residual interation onserves to-tal momentum. In the ase of our funtional it is also independent from it (i.e. thereis no non-loality with respet to the enter-of-mass oordinate). It is thus enoughto use three quantities to express the momentum-dependene of the interation. Onean use the notation
p′

a = q1 + q, p′
b = q2, (C.52)

pa = q1, pb = q2 + q, (C.53)where the exhange transferred momentum is q′ = q1 − q2.The various terms of the interation an be regrouped aording to their spatialpart on the one hand, and their spin-isospin struture on the other hand. One anthen de�ne four hannels orresponding to the operators
Ôss

ab = 1, Ôsv
ab = τ̂a ◦ τ̂b, Ôvs

ab = σ̂a · σ̂b, Ôvv
ab = σ̂a · σ̂b τ̂a ◦ τ̂b. (C.54)For the spatial part, we group the loal, e�etive mass/urrent, and pseudo-�nite-range terms

V̂ ρ = V̂ ρ
0 + V̂ ρ

1 + V̂ s
0 + V̂ s

1 , (C.55)
V̂ τ = V̂ ρτ−j2

0 + V̂ ρτ−j2

1 + V̂ sT−J2

0 + V̂ sT−J2

1 , (C.56)
V̂ ∆ρ = V̂ ∆ρ

0 + V̂ ∆ρ
1 + V̂ ∆s

0 + V̂ ∆s
1 . (C.57)Let us �rst re-label the oupling onstants in order to use a ompat and generalnotation:

Cρ,0
ss = Cρ,0

0 , Cρ,0
vs = Cs,0

0 , Cρ,0
sv = Cρ,0

1 , Cρ,0
vv = Cs,0

1 ,
Cρ,γ

ss = Cρ,γ
0 , Cρ,γ

vs = Cs,γ
0 , Cρ,γ

sv = Cρ,γ
1 , Cρ,γ

vv = Cs,γ
1 ,

Cτ
ss = Cτ

0 , Cτ
vs = CsT

0 , Cτ
sv = Cτ

1 , Cτ
vv = CsT

1 ,

C∆ρ
ss = C∆ρ

0 , C∆ρ
vs = C∆s

0 , C∆ρ
sv = C∆ρ

1 , C∆ρ
vv = C∆s

1 .

(C.58)Eah of the above ontributions an be deomposed aording to
V̂ ρ = 2Cρ,0

ss + Cρ,γ
ss (γ + 2) (γ + 1) ργ

0 +
∑

(α)6=ss

2Ô(α)
ab (Cρ,0

(α) + Cρ,γ
(α)ρ

γ
0) (C.59)for the entral part and rearrangement terms,

V̂ τ =
∑

(α)

Cτ
(α)Ô

(α)
ab

[
p′

a · pa + p′
b · pb −

1

2
(p′

a + pa) · (p′
b + pb)

]

=
∑

(α)

Cτ
(α)Ô

(α)
ab

[
(q1 + q) · q1 + q2 · (q2 + q) − 1

2
(2q1 + q) · (2q2 + q)

]

=
∑

(α)

Cτ
(α)Ô

(α)
ab

[
(q1 − q2)

2 − 1

2
q2

] (C.60)



174 APPENDIX C. P-H POTENTIALS AND RESIDUAL INTERACTIONfor the non-loal part, where the dependene on the exhange transferred momentum
q′ = q1 − q2 arising from the di�erential non-loality of the funtional is pointedout, with an additional ontribution to the q-dependene, and

V̂ ∆ρ =
∑

(α)

C∆ρ
(α)Ô

(α)
ab

(
(∇′2

a + 2∇′
a · ∇a + ∇

2
a) + (∇′2

b + 2∇′
b · ∇b + ∇

2
b)
)
,

=
∑

(α)

C∆ρ
(α)Ô

(α)
ab

(
(−p′2

a + 2p′
a · pa − p2

a) + (−p′2
b + 2p′

b · pb − p2
b)
)
,

=
∑

(α)

C∆ρ
(α)Ô

(α)
ab

(
− (q1 + q)2 + 2(q1 + q) · q1 − q2

1

− q2
2 + 2q2 · (q2 + q) − (q2 + q)2

)
,

=
∑

(α)

−2C∆ρ
(α)Ô

(α)
ab q2, (C.61)for the pseudo-�nite-range part, where the q-dependene, i.e. the range of V̂ ph islinked to the gradient terms.We �nally write V̂ ph following Ref. [GR92℄

V̂ ph =
∑

(α)

1

4
Ô(α)

ab

(
W

(α)
1 (q) +W

(α)
2 (q)(q1 − q2)

2
)
, (C.62)with the W funtions de�ned as

W ss
1 (q)

4
= 2Cρ,0

ss + Cρ,γ
ss (γ + 2) (γ + 1) ργ

0 −
[
2C∆ρ

ss +
1

2
Cτ

ss

]
q2, (C.63)

W
(α) 6=ss
1 (q)

4
= 2Cρ,0

(α) + 2Cρ,γ
(α)ρ

γ
0 −

[
2C∆ρ

(α) +
1

2
Cτ

(α)

]
q2, (C.64)

W
(α)
2 (q)

4
= Cτ

(α), (C.65)whih generalizes the expression for the residual interation obtained in Ref. [GR92℄.The same expressions are found when replaing the oupling onstants by the or-responding ombinations of parameters of the Skyrme interation.
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Appendix DFormal aspets of separableinterations
D.1 PotentialsLet us onsider an arbitrary nuleon-nuleon potential expressed through a set ofoordinate-/momentum-spae operators VST . The exat expression of the wholepotential involves projetors on spin and isospin spae. For example, in eah isospinhannel VT , we an write

V̂T = P̂S=0V̂0TT3
+ P̂S=1V̂1TT3

(D.1)where P̂S=0 = 1
4
(1 − σ̂1 · σ̂2), P̂S=1 = 1

4
(3 + σ̂1 · σ̂2) are the usual spin projetors,while the index T refers to the total isospin and T3 the third isospin omponentof the pair (T3 = −1, 0,+1 resp. for pp, np, nn). For potentials breaking hargeinvariane and harge symmetry, one then has to onsider the nn, pp and np isospinhannels separately.In the following we use the usual onvention for unnormalized plane waves whihare subjet to the following ontinuum orthonormality relations:

∫
d3r eik·r e−ik′·r = (2π)3 δ3(k − k′), (D.2)

∫
d3k

(2π)3
eik·r e−ik·r′ = δ3(r − r′). (D.3)In suh a momentum representation, it is useful to extrat the enter-of-mass motionfrom the matrix elements suh that

〈k1k2|V̂ST |k′
1k

′
2〉 ≡ 〈k|V̂ST |k′〉(2π)3 δ3(K −K′) (D.4)where k = 1

2
(k1−k2) is the relative momentum of outgoing partiles and K = k1+k2is the enter-of-mass momentum of the outgoing pair, with similar expressions forthe inoming momenta k′ and K′. 175



176 APPENDIX D. FORMAL ASPECTS OF SEPARABLE INTERACTIONSD.1.1 Partial-wave expansionOne an perform a partial-wave expansion of the matrix elements by �rst expandingthe plane waves,
eik·r = 4π

∑

ℓm

iℓ Y ℓ∗
m (k̂) Y ℓ

m(r̂) jℓ(kr), (D.5)
|k〉 = 4π

∑

ℓm

iℓ Y ℓ∗
m (k̂) |kℓm〉, (D.6)where k the norm and k̂ the unit vetor (whih we use to refer to the angularoordinates) of k, and |kℓm〉 is a spherial wave,

〈r|kℓm〉 = jℓ(kr) Y
ℓ
m(r̂), (D.7)whih is in turn unnormalized so that

〈kℓm|k′ℓ′m′〉 =

∫
d3r Y ℓ∗

m (r̂) jℓ(kr)Y
ℓ′

m′(r̂) jℓ′(k
′r), (D.8)

= δℓℓ′δmm′

∫
r2dr jℓ(kr)jℓ(kr) = δℓℓ′δmm′

π

2kk′
δ(k − k′). (D.9)The general expansion of the relative-momentum matrix element thus reads:

〈k|V̂ST |k′〉 = (4π)2
∑

ℓℓ′mm′

iℓ
′−ℓY ℓ

m(k̂)Y ℓ′∗
m′ (k̂′)〈kℓm|V̂ST |k′ℓ′m′〉. (D.10)In the absene of a tensor fore (or simply if S = 0), VST does not ouple partialwaves with ℓ 6= ℓ′, and is independent from the projetion of angular momentum,i.e.

〈kℓm|V̂ST |k′ℓ′m′〉 = 〈kℓ|V̂ST |k′ℓ〉 δℓ′ℓ δm′m (D.11)thus
〈k|V̂ST |k′〉 = (4π)2

∑

ℓm

Y ℓ
m(k̂)Y ℓ∗

m (k̂′)〈kℓ|V̂ST |k′ℓ〉 (D.12)
= 4π

∑

ℓ

(2ℓ+ 1)Pℓ(cos θ)〈kℓ|V̂ST |k′ℓ〉 (D.13)where θ is the angle between k̂ and k̂′.For solving the two-body problem expliitly in momentum spae, e.g. omputingthe deuteron bound state, one should work with normalized spherial waves, i.e.
|kℓm〉N ≡

√
2/π|kℓm〉. One then has

N〈kℓ|V̂ST |k′ℓ〉N =
2

π
〈kℓ|V̂ST |k′ℓ〉 (D.14)The way we will write our separable interation for subsequent use in HFBodes implies dropping all prefators in Eq. (D.13), obtaining an expression for thepotential matrix elements diretly related to funtions VℓST (k, k′):

〈k|V̂ST |k′〉 ≡
∑

ℓ

VℓST (k, k′)Pℓ(cos θ) (D.15)One thus has:
VℓST (k, k′) = 4π(2ℓ+ 1) 〈kℓ|V̂ST |k′ℓ〉 (D.16)

= 2π2(2ℓ+ 1) N〈kℓ|V̂ST |k′ℓ〉N (D.17)



D.2. PHASE SHIFTS 177D.1.2 Two-partile sattering and the Lippmann-ShwingerequationIn disussing the sattering of a pair of partiles, it is ustomary (sine useful) torephrase the Shrödinger equation in terms of an integral equation for an amplitudematrix in momentum spae whih then holds all information about observables suhas ross-setions. We have, in operator form,
T̂ = V̂ + V̂ Ĝ0T̂ , (D.18)

Ĝ0 being the free partile pair propagator expressed, in terms of the free Hamiltonian
Ĥ0 = ~2k2

m
, as Ĝ0 = (E − Ĥ0)

−1 (One uses the redued mass µ of the NN pair,
2µ = m). Plugging losure relations in, one gets
〈k|T̂ST (E)|k′〉 =

m

~2
〈k|V̂ST |k′〉 + P

∫
d3k′′

(2π)3

〈k|V̂ST |k′′〉 〈k′′|T̂ST (E)|k′〉
E −E(k′′)

, (D.19)where E(k′′) = ~2k′′2/m is the energy assoiated with the intermediate state withmomentum k′′ and P indiates a prinipal value integral. Plugging the expansion ofEq. (D.10) (assuming no oupling between partial waves) into the above expressionyields a set of unoupled equations for eah value of ℓ,
〈kℓ|T̂ST (E)|k′ℓ〉 =

m

~2
〈kℓ|V̂ST |k′ℓ〉

+
2

π
P
∫
k′′2dk′′

〈kℓ|V̂ST |k′′ℓ〉 〈k′′ℓ|T̂ST (E)|k′ℓ〉
E −Ek′′

. (D.20)The sattering phase shift in eah partial wave is given by
〈kℓ|T̂ST (Ek)|kℓ〉 = − tan(δℓST )/k (D.21)whih implies that T should be expressed in fm, and justi�es the ~2/m fator inEqs. (D.19-D.20) sine V is in MeV fm3. If V is expressed in fm, the fator beforethe Born term should be dropped and E and Ek′′ replaed by just k2

0 and k′′2.Assuming that the NN interation an be expressed as a sum of unoupled termsating eah in one partial wave, as in
〈k|V̂ST |k′〉 ≡

∑

ℓ

VℓST (k, k′)Pℓ(cos(k,k′)) (D.22)we would like as a �rst step to represent V0(k, k
′) as a sum of separable terms:

VℓST (k, k′) =
∑

αβ

gα(k) λαβ gβ(k′) (D.23)where the g(k)'s are form fators. In the following setions ℓST ≡ 001 as we fouson the T = 1, 1S0 hannel.D.2 Phase shiftsPlugging the separable form of our potential in the LS equation yields
〈kℓ|T̂ST (E)|k′ℓ〉 =

m

4π~2

∑

αβ

gα(k)λαβgβ(k′)

+
1

2π2
P
∫
k′′2dk′′

gα(k)λαβgβ(k′) 〈k′′ℓ|T̂ST (E)|k′ℓ〉
E − E(k′′)

. (D.24)



178 APPENDIX D. FORMAL ASPECTS OF SEPARABLE INTERACTIONSIt is quite easy to see that the solution has the form
〈kℓ|T̂ST (E)|k′ℓ〉 ≡

∑

αβ

gα(k)ταβ(E)gβ(k′). (D.25)We thus have
∑

αβ

gα(k)ταβ(E)gβ(k′) =
m

4π~2

∑

αβ

gα(k)λαβgβ(k′) +
1

2π2

∑

αβγδ

P
∫
k′′2dk′′

× gα(k)λαγgγ(k
′′) gδ(k

′′)τδβ(E)gβ(k′)

E −E(k′′)
, (D.26)whih, assuming the linear independene of our form fators, leads to an equationfor the ouplings between form fators in the T -matrix,

ταβ(E) =
m

4π~2
λαβ +

1

2π2

∑

γδ

λαγP
∫
k′′2dk′′

gγ(k
′′) gδ(k

′′)

E − E(k′′)
τδβ(E), (D.27)

τ(E) =
m

4π~2
[1 − λG(E)]−1 λ, (D.28)where the matrix G(E) orresponds to

Gαβ(E) ≡ 1

2π2
P
∫
k2dk

gα(k) gβ(k)

E − E(k)
. (D.29)The LS equation is thus redued to some integrals and a (small) matrix inversion.The phase shifts an then be omputed the usual way from the fully-on-shell T -matrix.D.3 Gap equation in in�nite matterThe pairing problem treated at the BCS appoximation, i.e. inluding the bare po-tential in the partile-partile hannel, and using a kineti single-partile spetrum,is haraterized by the standard gap equation

∆(k) = −
∫

d3k′

(2π)3
〈k|V̂ |k′〉∆(k′)

2Ek′

, (D.30)where Ek =
√

(εk − λ)2 + ∆2
k, εk being the single-partile energy and λ the hemialpotential. We'll take λ = εkF, whih modi�es the dependene between kF and thedensity, albeit too little to be relevant for our qualitative use of the gap equation.Again, we plug our separable potential in, whih selets the 1S0 partial wave andmakes all quantities independent from angular oordinates,

∆(k) = − 1

2π2

∫
k′2dk′ V001(k, k

′)
∆(k′)

2Ek′

(D.31)
= −

∑

αβ

gα(k)λαβ
1

2π2

∫
k′2dk′ gβ(k

′)
∆(k′)

2Ek′

, (D.32)whih shows, examining the k-dependene of the gap, that it an be written as
∆(k) ≡

∑

α

∆0
α gα(k), (D.33)



D.3. GAP EQUATION IN INFINITE MATTER 179where the ∆0's beome the new unknowns of the problem. They obey a rewrittengap equation whih involves the pair densities χ̆α,
∆0

α = −1

2

∑

β

λαβ χ̆β (D.34)
χ̆β =

1

2π2

∫
k′2dk′ gβ(k′)

∆(k′)

Ek′

, (D.35)whih orrespond to the same quantities written in oordinate spae for the spher-ial HFB ase. The solution of the BCS gap equation an then be found by start-ing from some initial values of the ∆0's, then iterating Eqs. (D.35), (D.33) and(D.34) until onvergene is reahed. Note that as is, this proedure will diverge fornon-perturbative interations [Ram07℄. The latter referene thus uses an elaborateproedure to solve the gap equation, whih amounts to separating the potential ma-trix elements into a separable term and a residual one whih vanishes at the Fermilevel. The resulting equations an be solved diretly. However, we found that asimple damping fator modifying the self-onsistent equations was enough to obtainonvergene.

http://www.sciencedirect.com/science/article/B6TVB-4PYYTP8-1/1/ecc64f88da0f3d6e113d85ce5f8c06ed
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Appendix EParameters of separable interationsThe parameters of the separable interations used in hapter 5 are given below, inTable E.1. For eah interation, a header spei�es the starting (hard) interation,isospin hannel, uto� funtion (see Eq. (5.37)), uto� value (in fm−1), rankM of theseparable representation and number of termsm in eah form fator. See Eqs. (5.44)and (5.57) and aompanying disussion for the meaning of the parameters and�t proedure. The atual separable parameterizations use diagonal ouplings, i.e.
λαβ = λαδαβ.
Table E.1: Parameters de�ning the separable operator representations of thehadroni parts of Vlow k and Argonne v18 nuleon-nuleon interationsused in this work.
α aα λα n0 n1 (n5) n2 n3 n4[fm℄ [MeV fm3℄ xα1 (xα5) xα2 xα3 xα4Argonne v18, nn, exponential (n = 6), Λ = 2.5, M = 3, m = 51 1.7400 -983.79 0 1 2 4 90.41483 0.23365 0.0077974 -3.6629 10−6102.8335 10−72 1.6631 0.15436 0 6 7 8 9-0.71971 0.37599 -0.083656 0.007436710-2.2078 10−43 1.8234 -354.78 1 0 3 8 9-0.033729 0.17602 6.7379 10−6 -7.1010 10−6103.7713 10−7

181



182 APPENDIX E. PARAMETERS OF SEPARABLE INTERACTIONSTable E.1: Parameters de�ning the separable operator representations of intera-tions (ontinued).Argonne v18, pp, exponential (n = 6), Λ = 2.5, M = 3, m = 51 1.7415 -978.26 0 1 2 4 90.41681 0.23341 0.0075925 -3.7560 10−6102.9035 10−72 1.6680 0.15743 0 6 7 8 9-0.73884 0.38570 -0.085207 0.007519710-2.2182 10−43 1.8264 -347.42 1 0 3 8 9-0.042636 0.17591 4.9746 10−6 -6.8307 10−6103.6046 10−7CD-Bonn, nn, Fermi-Dira (ǫ = 0.5), Λ = 1.8, M = 2, m = 51 2.1847 -799.96 0 1 3 4 50.91829 0.47722 -0.19001 0.0491026-0.00331852 2.5000 -177.29 0 1 3 4 5-0.21869 0.21610 -0.19555 0.0352506-0.0024611CD-Bonn, nn, exponential (n = 6), Λ = 2.5, M = 3, m = 41 1.7214 -930.12 0 1 2 5 70.25068 0.22550 .0022877 -5.7267 10−52 1.7881 32.091 1 0 4 9 100.0071364 0.13522 5.4076 10−5 -4.0494 10−63 1.7278 -580.64 1 0 3 9 100.26980 0.13974 -2.8858 10−6 2.3252 10−7CD-Bonn, nn, exponential (n = 6), Λ = 3.0, M = 4, m = 41 1.0908 -431.50 0 1 2 3 40.35315 0.59492 -0.37945 0.0277752 1.1184 3235.3 3 1 2 0 417.596 -1.9937 0.28038 -8.46433 1.2473 -1371.1 1 0 2 3 4-0.52693 -0.66651 0.22395 -0.0102294 1.3007 -1948.6 2 1 0 3 4-1.7907 -0.45939 -0.16783 -0.086305



183Table E.1: Parameters de�ning the separable operator representations of intera-tions (ontinued).CD-Bonn, nn, exponential (n = 6), Λ = 4.0, M = 4, m = 41 0.78980 698.80 0 1 2 3 4-0.96576 0.87481 -1.9379 0.199102 0.83339 2885.2 1 0 2 3 4-0.030759 -1.9616 2.6650 -0.161143 1.7570 -91.515 1 0 2 3 4-1.4831 0.068112 0.067679 -0.00937294 0.89377 -5792.0 2 1 0 3 4-0.57060 -0.086000 -1.0777 -0.079829CD-Bonn, nn, exponential (n = 6), Λ = 8.0, M = 6, m = 41 0.63814 619.02 1 0 3 7 90.51263 0.36902 4.6330 10−4 -4.5753 10−62 0.68468 -823.15 0 1 2 3 7-0.65990 0.062127 -0.054548 -3.3780 10−63 0.58589 0.43824 2 3 8 9 10-1.7986 -0.011990 0.0021446 -9.3238 10−54 0.60762 -0.026378 6 7 8 9 10-0.95561 0.25908 -0.027532 9.3569 10−45 0.94121 -1059.3 1 0 2 3 4-0.32739 -0.41297 0.14277 -0.0320346 1.58513 -401.24 1 0 2 9 10-0.43268 -0.31717 -5.6151 10−6 7.6408 10−7Argonne v18, nn, M = 9, m = 31 0.61544 -503.86 0 1 4 10-1.9502 -0.052278 1.5580 10−82 0.62603 169.58 0 1 3 72.8735 0.90026 7.5516 10−43 0.28021 63.333 2 1 0 61.9134 0.90423 -0.00109054 0.20451 6.0742 3 2 1 82.1766 1.9611 4.8087 10−55 0.94442 -1131.1 1 0 2 10-0.29080 -0.30625 8.5078 10−86 0.32235 2.3871 3 2 1 10-1.0497 0.0083717 -4.2195 10−67 1.5158 -451.08 1 0 2 10-0.41003 -0.37097 1.2622 10−78 0.20000 33.447 2 4 6 10-0.037752 -0.0044057 -5.5173 10−79 0.75360 -0.99053 2 3 4 100.27823 2.6542 1.7662 10−5
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Appendix FSeparable Fore in SpherialSymmetryIn this Appendix, we give the expressions atually used in the numerial implemen-tation of the Hartree-Fok-Bogolyubov equations in spherial symmetry.F.1 General expression of interation matrix ele-mentsLet us start from a general interation ating in the 1S0 hannel :
V̂

1S0 = V̂ SP̂S=0, (F.1)where V̂ S is the spatial part ating in the L = 0 state of relative motion and P̂S=0is the spin singlet projetor stemming from the de�nition
P̂S =

1 + (−1)S P̂σ

2
, (F.2)(F.3)

P̂σ being the spin-exhange operator. First, we express the non-antisymmetrizedmatrix elements in oordinate spae.
v

1S0

ijkl = 〈ij|V̂ 1S0 |kl〉 (F.4)
= 〈ij|P̂ †

S=0V̂
SP̂S=0|kl〉 (F.5)

=

∫
d3r1,2,3,4 〈ij|P̂ †

S=0|r1r2〉〈r1r2|V̂ S|r3r4〉〈r3r4|P̂S=0|kl〉, (F.6)where |ij〉, |r1r2〉, et. are two-partile diret produt states, non-antisymmetrizedand normalized. |i〉 is a state from the single-partile basis we will be working with,to be de�ned later. The index i inludes all spae, spin and isospin oordinates.Basis funtions are notably onsidered the same for neutrons and protons, whihshall eventually be treated separately.The spin-singlet part of the two-body wave funtion an be expressed as :
P̂S=0|ij〉 =

∑

σ1σ2

∑

q1q2

∫
d3r1d

3r2

× ϕi(r1σ1q1) ϕj(r2σ2q2) |r1r2〉 |q1q2〉P̂S=0|σ1σ2〉, (F.7)185



186 APPENDIX F. SEPARABLE FORCE IN SPHERICAL SYMMETRYwith the spin part redued through
∑

σ1σ2

ϕi(r1σ1q1) ϕj(r2σ2q2) P̂S=0|σ1σ2〉

=
∑

σ1σ2

ϕi(r1σ1q1) ϕj(r2σ2q2)
1

2
(|σ1σ2〉 − |σ2σ1〉) , (F.8)

=
∑

σ

ϕi(r1σq1) ϕj(r2σq2)
1

2
(|σσ〉 − |σσ〉) , (F.9)

=
∑

σ

ϕi(r1σq1) ϕj(r2σq2)
1

2
(−)s−σ (| ↑↓〉 − | ↓↑〉) , (F.10)

=
∑

σ

(−)s−σ ϕi(r1σq1) ϕj(r2σq2)
1√
2
|00〉. (F.11)We get the expression for the matrix element of Eq. (F.4) :

〈ij|V̂ 1S0 |kl〉 =

∫
d3r1,2,3,4

∑

q1q2

∑

σ1

(−)s−σ1 ϕ∗
i (r1σ1q1) ϕ

∗
j (r2σ1q2)

×
∑

q3q4

∑

σ3

(−)s−σ3 ϕk(r3σ3q3) ϕl(r4σ3q4)

× 1

2
〈r1r2|V̂ S|r3r4〉 〈q1q2|q3q4〉, (F.12)The antisymmetrized matrix element (ontaining both diret and exhange terms),whih shall be written

v
1S0

ijkl = v
1S0

ijkl
= 〈ij|V̂

1S0

|kl〉, (F.13)
= 〈ij|V̂ 1S0(1 − PrP̂σP̂τ )kl〉, (F.14)
= v

1S0

ijkl − v
1S0

ijlk = v
1S0

ijkl − v
1S0

jikl, (F.15)(the last equality holds for a Hermitian interation) reads
v

1S0

ijkl = 〈ij|V̂ 1S0(1 + P̂σ)|kl〉, (F.16)
=

∫
d3r1,2,3,4

∑

q1q2

∑

σ1

(−)s−σ1 ϕ∗
i (r1σ1q1) ϕ

∗
j (r2σ1q2)

×
∑

q3q4

∑

σ3

(−)s−σ3 ϕk(r3σ3q3) ϕl(r4σ3q4)

× 1

2
〈r1r2|V̂ S|r3r4〉 〈q1q2|1 + P̂τ |q3q4〉. (F.17)In the ase of isospin-pure states, we an omit isospin indies where they areontained in the single-partile states i, j, k, l. We obtain :

v
1S0

ijkl = 〈ij|V̂ 1S0(1 + P̂σ)|kl〉, (F.18)
=

∫
d3r1,2,3,4 Ψ∗

ij(r1, r2)
1

2
〈r1r2|V̂ S|r3r4〉Ψkl(r3, r4)

× (δqiqk
δqjql

+ δqiql
δqjqk

), (F.19)



F.2. COMPUTATION OF THE PAIRING FIELD 187where we introdue the spin-singlet part of the two-body wavefuntion (non-normalized) :
Ψij(r1, r2) =

∑

σ

(−)s−σ ϕi(r1σ) ϕj(r2σ). (F.20)The latter guarantees the antisymmetry of the matrix element in Eq. (F.18): if weexhange the spin variables,
Ψji(r1, r2) =

∑

σ

(−)s−σ ϕj(r1σ) ϕi(r2σ), (F.21)
= −

∑

σ

(−)s−σ ϕi(r2σ) ϕj(r1σ), (F.22)we get the opposite of the original wavefuntion where the oordinates have beenexhanged. If the spatial part of the interation is symmetri w.r.t. this exhange(it then selets even-parity states of relative motion), the matrix element is indeedantisymmetri.In the ase of idential-partile pairing, q1 = q2 = q3 = q4 and the isospin partof the antisymmetrized matrix element redues to a fator 2. We then have :
V̂

1S0

ijkl =

∫
d3r1,2,3,4 Ψ∗

ij(r1, r2) 〈r1r2|V̂ S|r3r4〉 Ψkl(r3, r4), (F.23)where the spin-singlet two-body wave funtions take are of the spin part and ex-hange term.F.2 Computation of the pairing �eldF.2.1 General tehnial aspetsIn spherial symmetry, single-partile basis funtions are labelled by quantum num-bers n, ℓ, j,m:
ϕnℓjm(r, σ) =

unℓj(r)

r
〈ℓmℓsσ|jm〉Y ℓ

mℓ
(r̂) (F.24)The e�etive potentials are rotationally invariant: ∆̆ (see Eq. (5.56)) only dependson the radial oordinate in use. This isotropy stems from that of the density matrix:states labelled with the same value of quantum numbers n, ℓ, j (and di�erent valuesof the projetion m) are degenerate, have idential oupanies and have the sameradial dependane. It is thus possible to perform analytial presummations over mwhenever appliable, espeially in the alulation of χ̆.F.2.2 Center-of-mass/relative oordinate separationThe alulation of pairing matrix elements with a non-loal separable vertex requiresto perform the transformation of the two-body produt wave funtion from the setof oordinates (r1, r2) orresponding to the interating partiles to the set (R, s),where R = 1

2
(r1 + r2) is the enter-of-mass (COM) oordinate and s = r1 − r2is the separation vetor. Whereas this is immediate in Cartesian oordinates, ina spherial oordinate system or basis, some algebra is involved to obtain usefulexpressions. There are standard tehniques to ahieve this in a harmoni osillator



188 APPENDIX F. SEPARABLE FORCE IN SPHERICAL SYMMETRYbasis, most based on Brody-Moshinsky oe�ients [Mos59℄. However, sine one ofthe purposes of this work is to provide a desription of pairing up to the drip-lines,we used a basis more suited to the treatment of ontinuum e�ets. Thus, we usedthe oordinate separation method of Sawaguri and Toboman [Saw67℄:
φℓm(αra + βrb) =

∑

l′λ′

Al′λ′

l (ra, rb)
∑

m′µ′

1√
4π
C lm

l′m′λ′µ′Y l′

m′(r̂a)Y
λ′

µ′ (r̂b) (F.25)
Al′λ′

l (ra, rb) = 8 il
′−λ′−ℓ

∫
k2dk jl′(αkra)jλ′(βkrb)

∫
r2dr jℓ(kr)φℓ(r) (F.26)(this expression is readily obtained by rewriting the wave funtion φ(r) as the diret-then-reverse Fourier transform (FT) of itself, replaing r = αra + βrb in the reverseFT part, then replaing the three exponentials by their spherial expansion andintegrating over angular oordinates). Using this expression, we �nd

Ψn1ℓjm,n2ℓjm(R, s) =
∑

mℓσ

(−)s−σ〈ℓmℓsσ|jm〉〈ℓmℓsσ|jm〉

×
∑

l′
1
l′
2
λ′

1
λ′

2

A
l′
1
λ′

1

n1ℓj(R, s)A
l′
2
λ′

2

n2ℓj(R, s)

× 1

4π

∑

m′

1
m′

2
µ′

1
µ′

2

Cℓmℓ

l′
1
m′

1
λ′

1
µ′

1

Cℓmℓ

l′
2
m′

2
λ′

2
µ′

2

×Y l′
1

m′

1

(R̂)Y
l′
2

m′

2

(R̂)Y
λ′

1

µ′

1

(ŝ)Y
λ′

2

µ′

2

(−ŝ), (F.27)with
Al′λ′

nlj (R, s) = 8 il
′−λ′−l

∫
kdk jl′(kR)jλ′

(
ks

2

)
ǔnlj(k) (F.28)

ǔnlj(k) = k

∫
rdr jℓ(kr)unℓj(r) (F.29)Multiplying by the separable-interation form fator Gα(s) and integrating over syields

Ψ̆α
n1ℓjm,n2ℓjm(R) =

∑

mℓσ

(−)s−σ〈ℓmℓsσ|jm〉〈ℓmℓsσ|jm〉

×
∑

l′
1
l′
2
λ′

∫
s2ds Gα(s)A

l′
1
λ′

n1ℓj(R, s)A
l′
2
λ′

n2ℓj(R, s)

× 1

4π

∑

m′µ′

Cℓmℓ

l′
1
m′λ′µ′C

ℓmℓ

l′
2
m′λ′µ′(−)λ′+µ′

×Y l′
1

m′(R̂)Y
l′
2

m′(R̂), (F.30)where the integration with respet to the angular oordinates yields the spherialharmoni oupling oe�ients.F.2.3 Pair densitiesPair densities χ̆α an be expressed as (Eq. (5.52))
χ̆α(R) =

∑

n1,2ℓ1,2j1,2m1,2

Ψ̆α
n1ℓ1j1m1,n2ℓ1j1m2

(R) κn1ℓ1j1m1,n2ℓ1j1m2
. (F.31)

http://dx.doi.org/10.1016/0029-5582(59)90143-9
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F.2. COMPUTATION OF THE PAIRING FIELD 189In spherial systems, the pair tensor κ takes the simpli�ed form
κn1ℓ1j1m1,n2ℓ1j1m2

= κn1,n2;ℓ1j1 (−)ℓ−j−m δℓ1ℓ2 δj1j2 δm1m2
, (F.32)where (−)ℓ−j−m is the phase ηℓjm aquired by state |nℓjm〉 under a time-reversaltransformation, whih determines the splitting in two parts of the single-partilebasis, suh that̆

χα(R) =
∑

ℓj

∑

n1n2

κn1,n2;ℓj

∑

m

(−)ℓ−j−mΨ̆α
n1ℓjm,n2ℓjm(R) (F.33)Due to the spherial degeneray of single-partile states and the spei� struture of

κ, the summation with respet to m an be separated and performed analytially.It is thus bene�ial to de�ne the funtion
Ψ̆

α

n1ℓj,n2ℓj(R) =
∑

m

(−)ℓ−j−mΨ̆α
n1ℓjm,n2ℓjm(R). (F.34)In order to express this funtion, let us �rst give the result of the redution of itsalgebrai fator:

∑

mmℓσm′µ′

(−)ℓ−j−m+s−σ〈ℓmℓsσ|jm〉〈ℓmℓsσ|jm〉

× Cℓmℓ

l′
1
m′λ′µ′C

ℓmℓ

l′
2
m′λ′µ′(−)λ′+µ′

Y
l′
1

m′(R̂) Y
l′
2

m′(R̂)

= −2j + 1

4π

(2l′1 + 1)(2λ′ + 1)

2ℓ+ 1
〈l′10λ′0|ℓ0〉2δl′1l′

2
(−)λ′

, (F.35)whih yields
Ψ̆

α

n1ℓj,n2ℓj(R) = −2j + 1

(4π)2

×
∑

l′λ′

∫
s2ds Gα(s)Al′λ′

n1ℓj(R, s)A
l′λ′

n2ℓj(R, s)

×(−)λ′ (2l′ + 1)(2λ′ + 1)

2ℓ+ 1
〈l′0λ′0|ℓ0〉2 (F.36)one this redution has been made, it is possible to rewrite the radial integral withrespet to s:

(−1)l′−λ′−ℓ 1

4π

∫
s2e

− s2

4α2Al′λ′

n1ℓj(R, s)A
l′λ′

n2ℓj(R, s) (F.37)
=

16

π

∫
k1dk1 jl′(k1R) ǔn1ℓj(k1)

∫
k2dk2 jl′(k2R) ǔn1ℓj(k2)

×
∫
s2 Gα(s) jλ′

(
k1s

2

)
jλ′

(
k2s

2

) (F.38)
=

∫
k1dk1 ǔn1ℓj(k1)

∫
k2dk2 ǔn2ℓj(k2) ψ̌

α,l′λ′

(k1, k2;R), (F.39)



190 APPENDIX F. SEPARABLE FORCE IN SPHERICAL SYMMETRYwhere we introdue the representation-independent funtions (mind the small ψ)
ψ̌α,l′λ′

(k1, k2;R) =
16

π
jl′(k1R) jl′(k2R)

×
∫
s2 Gα(s) jλ′

(
k1s

2

)
jλ′

(
k2s

2

)
, (F.40)

ψ̌
α

ℓ (k1, k2;R) =
∑

l′λ′

ψ̌α,l′λ′

(k1, k2;R)

× (−)ℓ−l′ (2l
′ + 1)(2λ′ + 1)

2ℓ+ 1
〈l′0λ′0|ℓ0〉2. (F.41)Using the latter funtion one an �nally write

Ψ̆
α

n1ℓj,n2ℓj(R) = −2j + 1

4π

∫
k1dk1 k2dk2 ψ̌

α

ℓ (k1, k2;R) ǔn1ℓj(k1) ǔn1ℓj(k2). (F.42)F.2.4 Pairing �eldsMatrix elements of the pairing �elds are obtained through (Eq. (5.55))
∆n1ℓjm,n2ℓjm =

∑

α

∫
d3R Ψ̆α

n1ℓjm,n2ℓjm(R) ∆̆α(R) (F.43)
=

∑

α

∫
R2dR dR̂ Ψ̆α

n1ℓjm,n2ℓjm(R) ∆̆α(R), (F.44)an expression where the angular integral with respet to the diretion R̂ allows oneto redue the sums involving projetion indies, viz.
∑

mℓσm′µ′

(−)s−σ〈ℓmℓsσ|jm〉〈ℓmℓsσ|jm〉

× Cℓmℓ

l′
1
m′λ′µ′C

ℓmℓ

l′
2
m′λ′µ′

(−)λ′+µ′

∫
dR̂ Y

l′
1

m′(R̂) Y
l′
2

m′(R̂)

= −(−)ℓ−j−m (2l′1 + 1)(2λ′ + 1)

2ℓ+ 1
〈l′0λ′0|ℓ0〉2δl′

1
l′
2
(−)λ′

. (F.45)Given this expression, one obtains
∆n1ℓjm,n2ℓjm = −(−)ℓ−j−m 1

4π

∑

α

×
∑

l′λ′

∫
R2dR

∫
s2ds Gα(s)Al′λ′

n1ℓj(R, s)A
l′λ′

n2ℓj(R, s)∆̆α(R)

×(−)λ′ (2l′ + 1)(2λ′ + 1)

2ℓ+ 1
〈l′0λ′0|l0〉2. (F.46)It is then useful to use the representation-independent funtions (F.39), yielding

∆n1ℓjm,n2ℓjm = −(−)ℓ−j−m

∫
R2dR ∆̆α(R) (F.47)

×
∫
k1dk1 k2dk2 ψ̌α,ℓ(k1, k2;R) ǔn1ℓj(k1) ǔn2ℓj(k2),



F.3. EVALUATION OF BESSEL-FORM FACTOR INTEGRALS 191Eq. (F.42) allows one to work with any basis for whih one an ompute ǔ(k)funtions. A partiularly simple and e�ient hoie is to use a basis of spherialBessel funtions, in this ase we have ǔniℓj(k) ∝ δ(k − ki) and the double integralbeomes trivial. See appendix G.F.3 Evaluation of Bessel-form fator integralsThe formulae given above for ψ̌ and Ψ̆ funtions involve an integral of the produtof two Bessel funtions, an interation form fator and a s2 weight.
Iα

λ′

1
λ′

2

(k1, k2) ≡
∫
s2 Gα(s) jλ′

1

(
k1s

2

)
jλ′

2

(
k2s

2

)
. (F.48)This setion deals with the evaluation of this integral for a number of given formfators g(k) and their inverse Fourier transforms G(s) (see Eq. (5.46)).F.3.1 Simple Gaussian form fatorFor g(k) = e−a2k2, the inverse Fourier transform yields

G(s) = 1
(4πa2)3/2

e−
s2

4a2 (F.49)In the ase where λ′1 = λ′2 ≡ λ′, the integral (F.48) an be evaluated using ananalytial expression (F.70), yielding :
Iα

λ′λ′(k1, k2) =
1

4π
exp

(
−a

2(k2
1 + k2

2)

4

)
bλ′

(
−a

2k1k2)

2

)
, (F.50)where bλ′ is a modi�ed spherial Bessel funtion of the �rst kind, Eq. (F.71). If

λ1 6= λ2, one should use the more general method desribed below.F.3.2 Gaussian × polynomial form fatorIn �ts of an operator representation of the Vlow k interation, we found the followingform of form fators to be the most useful one:
gα(k) =

[
∑

n

xαn

(
a2

αk
2

2

)n
]

exp

(
−a

2
αk

2

2

)
. (F.51)where aα is a range parameter, while the xαn's ontrol the way the shape of theGaussian funtion is modulated by powers of k2. The inverse Fourier transformreads

Gα(s) =
1

(2π)3/2a3

[
∑

n

xαn

(
−1

2

)n (a
s

)He2n+1

(s
a

)]
exp

(
− s2

2a2
α

)
, (F.52)where He2n+1 is a �probabilist's� Hermite polynomial [Abr64℄. The integral in Eq.(F.48) an be evaluated by Gauss-Hermite integration [Pre92℄, whih is based onthe formula

∫ ∞

−∞
f(x)e−x2

=

N∑

i=1

wi f(xi) (F.53)



192 APPENDIX F. SEPARABLE FORCE IN SPHERICAL SYMMETRYwhere the xi are the roots of HN(x), the (more ommon) �physiist's� Hermitepolynomial1. To apply the formula above, one needs to perform the hange ofvariable x = s
aα

√
2
, whih depends on the range aα. For the sake of performane,one should use a single variable for all form fators, as the Bessel funtions have tobe evaluated for eah integration point : di�erent sets of si stemming from eah setof xi would multiply an important ontribution to the CPU time by the number ofform fators. It is advisable to simply re-express Gα(s) as

Gα(s) =
1

(2π)3/2a3

[
∑

n

xαn

(
−1

2

)n (aα

s

)He2n+1

(
s

aα

)]

× exp

[
−
(

1

2a2
α

− 1

2a2max) s2

]
exp

(
− s2

2a2max) , (F.54)where amax = maxα(aα), and use the variable x = s
amax√2

. The sign of the argmentof the �rst exponential guarantees that it is a well-behaved funtion whih poses noproblem with the quadrature sheme.F.3.3 Coulomb expansion form fatorThe separable representation for a trunated Coulomb potential involves the formfator gα(k) =
√

4π j2
α(ak

2
). The inverse Fourier transform yields

Gα(s) =
1√
πa2

{
1
s
Pα

(
1 − 2( s

a
)2
) for s ≤ a

0 for s > a
, (F.55)where Pα is the Legendre polynomial of order α. The integral to be alulated isthus :

Iα
λ′

1
λ′

2

(k1, k2) =
1√
πa2

∫ a

0

s Pα

(
1 − 2( s

a
)2
)
jλ′

1

(
k1s

2

)
jλ′

2

(
k2s

2

)
. (F.56)There is no useful analytial expression for this integral, but it an be evaluatede�iently by using a Gauss-Legendre integration sheme [Pre92℄.F.4 Some useful expressionsSpherial harmonisWe de�ne spherial-harmoni oupling oe�ients

CLM
l1m1l2m2

=

√
(2l1 + 1)(2l2 + 1)

(2L+ 1)
〈l10l20|L0〉〈l1m1l2m2|LM〉, (F.57)whih thus follow :

CLM
l1m1l2m2

= (−)m2C l1m1

LMl2m2
, (F.58)

= (−)m1C l2m2

l1m1LM , (F.59)
= (−)l1+l2−LCLM

l1m1l2m2
, (F.60)1We shall use only the points xi > 0 to alulate the integral from 0 to ∞. One an show thatthis remains a valid Gauss quadrature sheme, whih is equivalent to the Gauss-Laguerre one witha hange of variable u = x2.
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∑

m1m2

CLM
l1m1l2m2

CL′M ′

l1m1l2m2
=

(2l1 + 1)(2l2 + 1)

(2L+ 1)
〈l10l20|L0〉2δLL′δMM ′. (F.61)the later expression involves the oe�ient 〈l10l20|L0〉, whih is non-vanishing onlyin the ase of even l1 + l2 + L.The following expressions hold:

∫
dr̂ Y l1

m1
(r̂)Y l2

m2
(r̂)Y L∗

M (r̂) =
1√
4π
CLM

l1m1l2m2
(F.62)

Y l∗
m (r̂) = (−)m Y l

m(r̂) (F.63)
Y l

m(−r̂) = (−)l Y l
m(r̂) (F.64)∫

dr̂ Y l
m(r̂)Y l′∗

m′ (r̂) = δll′δmm′ (F.65)
∑

m

Y l
m(r̂)Y l∗

m (r̂′) =
2l + 1

4π
Pl(cos θ) (F.66)

∑

lm

Y l
m(r̂)Y l∗

m (r̂′) = δ(r̂ − r̂′) (F.67)where Pl is the lth-order Legendre polynomial, θ the angle between r̂ and r̂′; for
r̂ = r̂′, Pl(cosθ) = Pl(1) = 1.Spherial Bessel funtionsThe normalization ondition for spherial Bessels over a �nite interval reads

∫ 1

0

t2dt jl(ait)jl(ajt) = δij
1

2
[j′l(ai)]

2, (F.68)where ai is the ith zero of jl. Additionally, the following integral relations are useful:
∫ ∞

0

r2dr jl(kr)jl(k
′r) =

π

2kk′
δ(k − k′) (F.69)

∫ ∞

0

x2dx e−c2x2

jl(ax)jl(bx) =

√
π

4c3
e
−a2+b2

4c2 bl

(
ab

2c2

) (F.70)where
bl(x) = i−ljl(ix) =

√
π

2x
I
l+

1
2
(x) (F.71)is the modi�ed spherial Bessel funtion of the �rst kind.
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Appendix GSpherial Bessel Funtion BasisIn the spherial alulations performed in this work, we use a basis of single-partilestates relying on spherial Bessel funtions, whih orrespond to the radial part offree spherial waves. Labelled jℓ(kr), these funtions are the solutions (non-divergentat r = 0) of [
1

r2

d

dr

(
r2 d

dr

)
+

(
k2 − ℓ(ℓ+ 1)

r2

)]
jℓ(kr) = 0. (G.1)Considering an in�nite spherially-symmetri square well (a �box�) of radius Rbox,one an build the sequene of its eigenstates. They are given by Eq. (G.1) withthe boundary ondition jℓ(kRbox) = 0, whih produes a disrete spetrum for eahvalue of ℓ. Let us all ki,ℓ, i = 1 . . . Nℓ the solutions of the above in the interval

[0, kut]. In the ase ℓ = 0, j0(kr) = sin(kr)/kr and ki,0 = i(π/Rbox).Atual basis funtions are de�ned in the diret produt of three-dimensional oor-dinate spae and spin spae, and should be normalized. First in a spin-independentase, one an hek that suh a basis an be taken as
φi,ℓmℓ

(r) =

√
2

R3box 1

|j′ℓ(ki,ℓRbox)| jℓ(ki,ℓr)Y
ℓ
mℓ

(r̂), (G.2)where j′ℓ is the derivative of jℓ with respet to its argument. Next we apply spin-orbitoupling to the latter, yielding
ϕi,ℓjm(r, σ) = 〈ℓmℓsσ|jm〉 φi,ℓmℓ

(r), (G.3)
= 〈ℓmℓsσ|jm〉 ui,ℓ(r)

r
Y ℓ

mℓ
(r̂), (G.4)

ui,ℓ(r) =

{ √
2

R3box r
|j′ℓ(ki,ℓRbox)| jℓ(ki,ℓr) for r < Rbox

0 for r ≥ Rbox (G.5)Spherial Bessel funtions our naturally in the oordinate separation methodsummarized by Eq. (F.42), whih an be simpli�ed when using the basis above. Letus onsider the de�nition of ǔ funtions (Eq. (F.29), with adapted notation)
ǔi,ℓ(k) = k

∫ ∞

0

rdr jℓ(kr) ui,ℓ(r), (G.6)Replaing ui,ℓ(r) with Eq. (G.5) yields
ǔi,ℓ(k) =

√
2

R3box 1

|j′ℓ(ki,ℓRbox)|k ∫ Rbox
0

r2dr jℓ(kr) jℓ(ki,ℓr), (G.7)195



196 APPENDIX G. SPHERICAL BESSEL FUNCTION BASISwhih an be evaluated, albeit into a non-trivial funtion. However, it is possible toahieve onsiderable simpli�ation by performing the above integral with an in�niteupper bound. This amounts to ontinuing the wave funtion u(r) beyond the limitsof the box. The spherial expansion for the two-body wave funtion will thus ontainomponents orresponding to partiles outside of the box. Nevertheless, sine wework with �nite-range interations, we are only interested in omponents with aninterpartile separation less than this range. Consequently, spurious omponents anonly be expeted to have an e�et near the box boundary. The pair tensor, in turn,an be expeted to have non-vanishing omponents only in regions of signi�antdensity in the nuleus, whih means the e�etive pairing �elds themselves vanishoutside of the nuleus. This approximation thus seems reasonable, only having tobe on�rmed by heking the independene of results with respet to the box radius,as should always be heked anyway.Using the normalization ondition in the ontinuum, Eq. (F.69), to evaluateEq. (G.7), yields
ǔi,ℓ(k) =

π√
2R3box 1

ki,ℓ|j′ℓ(ki,ℓRbox)| δ(k − ki,ℓ). (G.8)Redued two-body basis funtions then read
Ψ̆i1ℓj,i2ℓj(R) = −(2j + 1)

4π

π2

2R3box 1

|j′ℓ(ki1,ℓRbox) j′ℓ(ki2,ℓRbox)| ψ̌α

ℓ (ki1,ℓ, ki2,ℓ;R),(G.9)realling the expression for ψ̌α

ℓ (F.41)
ψ̌

α

ℓ (k1, k2;R) =
16

π

∑

ℓ′λ′

(−)ℓ−ℓ′ (2ℓ
′ + 1)(2λ′ + 1)

2ℓ+ 1
〈ℓ′0λ′0|ℓ0〉2 jℓ′(k1R) jℓ′(k2R)

×
∫
s2 Gα(s) jλ′

(
k1s

2

)
jλ′

(
k2s

2

) (G.10)The funtion Ψ̆ an thus be expressed as
Ψ̆i1ℓj,i2ℓj(R) = −(2j + 1)

4π

8π

R3box 1

|j′ℓ(ki1,ℓRbox) j′ℓ(ki2,ℓRbox)|
×
∑

l′λ′

(−)ℓ−ℓ′ (2ℓ
′ + 1)(2λ′ + 1)

2ℓ+ 1
〈ℓ′0λ′0|ℓ0〉2 jℓ′(ki1,ℓR) jℓ′(ki2,ℓR)

×
∫
s2 Gα(s) jλ′

(
ki1,ℓs

2

)
jλ′

(
ki2,ℓs

2

)
. (G.11)The integral an be evaluated with the methods exposed in appendix F.3, whihompletes the set of equations we need to work with a separable, �nite-ranged andnon-loal fore in the partile-partile hannel of HFB equations.
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Contraintes mirosopiques et au-delà du hamp moyen pour une nou-velle génération de fontionnelles de la densité nuléairesLa struture nuléaire onnaît une véritable renaissane liée au développementdes faiseaux d'ions radioatifs (tels les faiseaux SPIRAL 1 et 2 au GANIL). Lesméthodes de hamp moyen et/ou de fontionnelle de la densité sont parmi les outilsles plus généraux et les mieux adaptés pour étudier les noyaux qui sont produitsauprès de tels instruments. Le but du travail présenté est de montrer ommentles fontionnelles existantes peuvent être améliorées a�n d'avoir un meilleur pouvoirpréditif dans les régions enore peu explorées de la arte des noyaux. Il est en parti-ulier proposé de mieux modéliser la dépendane en isospin de l'interation e�etive,et l'intérêt d'y ajouter un ouplage de type tensoriel est étudié. Nous mesuronségalement l'apport de aluls au-delà de l'approximation du hamp moyen lors dela onstrution de la fontionnelle. Finalement, nous tentons d'établir le lien avel'interation nue entre nuléons pour la desription de l'appariement, partiipantainsi au développement d'une fontionnelle non-empirique.
Mirosopi and Beyond-Mean-Field Constraints for a New Genera-tion of Nulear Energy Density FuntionalsNulear struture is subjet to a major renewal linked with the development of ra-dioative ion beams (suh as the SPIRAL 1 and 2 beams at GANIL). Mean-�eld anddensity-funtional methods are among the best suited for studying nulei produedat suh failities. The present work aims at demonstrating how existing funtionalsan be improved so as to exhibit a better preditive power in little-explored regionsof the nulear hart. We propose a better desription of the isospin-dependene ofthe e�etive interation, and examine the relevane of adding a tensor oupling. Wealso show how a new generation of funtionals an be better onstrained by onsid-ering results obtained beyond the mean-�eld approximation. Finally, we attemptestablishing a link with the bare nuleon-nuleon potential for the desription ofpairing, thus partiipating in the onstrution of a non-empirial funtional.
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