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Résumé Nous décrivons la conception et la construction d’une horloge atomique sur
une puce & atomes, visant une stabilité de quelques 10713 & 1s et une application en
tant qu’étalon secondaire. Cette horloge est basée sur la transition a deux photons
entre les sous-états hyperfins |1, —1) et [2,1) de I'état fondamental de 'atome 3"Rb.
Elle interroge cette transition en effectuant une spectroscopie de type Ramsey, soit sur
un nuage thermique d’atomes froids, soit sur un condensat de Bose-Einstein (BEC).
Contrairement aux horloges a fontaines, ce nuage est magnétiquement piégé sur une
puce a atomes.

Nous décrivons d’une part un modele théorique de la stabilité d’horloge, d’autre part
un montage expérimental dedié, capable de controler le champ magnétique a un niveau
relatif de 107 et doté d'une puce hybride, qui contient des conducteurs & courant continu
ainsi qu’'un guide d’onde pour acheminer la microonde d’interrogation.

Mots clés Horloge atomique compacte, puce a atomes, horloge a atomes piégés, étalon
secondaire, condensat de Bose—Einstein, courant ultra—stable

Abstract We describe the design and construction of an atomic clock on an atom chip,
intended as a secondary standard, with a stability in the range of few 107! at 1s. This
clock is based on a two-photon transition between the hyperfine states |[F' = 1,mp = —1)
and |2, 1) of the electronic ground state of the 8Rb atom. This transition is interrogated
using a Ramsey scheme, operating on either a cloud of thermal atoms or a Bose-Einstein
condensate. In contrast to atomic fountain clocks, this clock is magnetically trapped on
an atom chip.

We describe a theoretical model of the clock stability and the design and construction
of a dedicated apparatus. It is able to control the magnetic field at the relative 107°
level and features a hybrid atom chip, containing DC conductors as well as a microwave
transmission line for the clock interrogation.

Keywords Compact atomic clock, atom chip, trapped atom clock, secondary standard,
Bose-Einstein condensate, ultrastable current
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Introduction

This thesis lies at the intersection between two young and intense areas of research:
Atom chips and compact atomic clocks. Atom chips — magnetic traps created by micro-
fabricated conductors — have made it possible to perform state—of-the—art experiments
with ultracold atomic clouds in a compact setup. Even more, they have made it possible
to build highly integrated atom—optical devices, reminiscent of the microchips of mod-
ern microelectronics. Compact atomic clocks, in turn, have enabled the development
of satellite navigation systems and have therefore become commercially interesting de-
vices.

In this thesis, both of these developments merge: We describe the construction of a
novel atomic clock, which interrogates a hyperfine transition in magnetically trapped
Rubidium atoms. It uses the atom chip technology as a tool to achieve competitive
performance in a compact setup. In this way, it is the first atom chip experiment which
is aiming at an application beyond the proof-of-principle level.

Atom chips — Applications for ultracold atoms When Bose-Einstein condensation
was first observed in 1995 [1, 2], it must have seemed hardly realistic that the complex
underlying technology could ever find a use in portable applications. Today, 14 years
after this achievement, it is possible to write a thesis like the present one. This thesis,
too, deals with the construction of a BEC machine, but with a completely different focus.
The apparatus is compact and aims at a real-world application: a portable atomic clock.

Such experiments have become possible because of one major breakthrough, the ad-
vent of atom chip technology. The basic idea of this technology is to trap cold atoms
in microscopic magnetic traps, created by microfabricated conductors. After a first pro-
posal of 1995 [3], this idea has been pioneered in the late 1990s, when atoms were for
the first time guided [4, 5] and trapped [6] on microchips. Inspired by this success, the
term “atom chip” has been coined in [7] and BEC has been achieved in these traps in
2001 [8, 9].

This development has sparked a lot of creativity and has triggered a paradigm shift:
The idea of integration had come into the world of cold atoms. Consequently, the 2000s
have seen numerous theoretical proposals and experimental prototypes of new devices
using cold atom technology.

On the scientific side, atom chips have been used to confine quantum gases in regimes
that have been previously inaccessible. A remarkable example is the achievement of gases
with reduced dimensionality. Atom chips have been used to create highly anisotropic
traps, in which a quantum gas exhibits quasi-one—dimensional dynamics [10, 11, 12].
Another direction in basic research uses atom chips to couple cold atoms to solid—state
quantum systems like mechanical nano-resonators [13, 14].

Closer to an application are studies which use the cold atoms as a surface probe. Being
magnetically trapped, the cold cloud above the atom chip is inherently sensitive to
magnetic fields produced by the surface. This has been used to study noise [15, 16, 17, 18]
and static impurities [19, 18, 20] of the microfabricated conductors.

Maybe the most ambitious application is to use atom chips for quantum computing.
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Indeed, appropriate gates have been proposed [21, 22] and state sensitive detection of
single atoms can be realized [23, 24]. To date, the only missing step to meeting the
DiVincenzo criteria [25] with an atom chip seems to be the deterministic preparation of
single atoms, which is a subject of study in another experiment of our group.

Finally, the atom chip technology lends itself to two classical problems of metrology:
Inertial sensors and atomic clocks. On the inertial sensor side, several prototypes of
chip—based interferometers have been built over the last years [26, 27, 28], based on the
interference of external quantum states (“matter waves”). Work on the atomic clock side
has been less intense, but a proof-of-principle experiment has shown that a hyperfine
transition in a magnetically trapped cloud on on atom chip can indeed be used to build
a clock [29]. This thesis describes the first atom chip experiment which is intended to
yield a competitive atomic clock. In doing so, it can be seen as a contribution to two
active directions of research in the field of atomic clocks: the work towards compact
clocks and the work towards clocks operating on trapped particles.

Towards compact clocks and trapped particle clocks Considerable effort is spent
to improve the performance of compact secondary standard clocks, mostly because of
their application in satellite navigation. These compact clocks can be further divided
into several categories with a different bias towards either performance or compactness.
Today’s benchmark clocks in terms of compactness are miniaturized vapor cell clocks,
which perform laser spectroscopy on a room—temperature Alkali metal vapor. These
clocks, reaching a stability in the range of 107,/s, have been miniaturized to a volume
of 10mm? [30]. They are intended as an alternative to quartz oscillators in high—end
portable applications.

Today’s benchmark compact clocks in terms of performance are liter—sized clocks which
achieve a stability in the range of few 107!3,/s. These clocks are candidates for future
satellite navigation systems and it is these specifications which are the long—term goal
of the experiment described in this thesis. The best existing clocks with comparable
performance operate on a cloud of trapped ions [31] or a laser—cooled, but untrapped,
vapor of Alkali atoms [32].

At the same time, both primary and secondary standard clocks begin to exploit the
advanced trapping techniques which have been devised over the last decades. Today’s
best optical clocks are based on single trapped ions [33] or neutral atoms, which are
trapped in an optical lattice [34]. The latter technique contains a remarkable similarity
to the clock described in this thesis: To avoid that the trapping potential shifts the clock
transition, the lattice light is tuned to a “magic wavelength”, where its lightshift is equal
for both clock states. In much the same way, we tune the magnetic background field of
our trap to a “magic field”, where both atomic states see the same trapping potential
(see below).

Our clock transition It is evident that atom chip technology can provide a compact
setup to manipulate an atomic sample. It is less obvious why this sample could be used
as a clock medium: A hyperfine transition of a trapped atom is inevitably shifted by
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the magnetic field of the trap and the mean-field shift of the trapped atomic cloud.
Luckily, both shifts are strongly suppressed for one particular hyperfine transition: The
two—photon transition between the hyperfine states |1,—1) and [2,1) of 8"Rb. To first
order, both of these states have the same magnetic moment. Consequently, a magnetic
field shifts each of the states in the same way (so that both can be trapped and, more-
over, feel the same trapping potential). The transition between these states, however,
is independent of the magnetic field, since the shift is common-mode for both states.
Furthermore, the mean—field shift is small for this transition, since the inter— and intra—
species scattering properties of both states are nearly equal.

These properties have first been explored in a series of experiments in the group of
E. Cornell at Boulder. The first coherent transfer between two condensates of the clock
states has been achieved in 1998 [35]. The system has subsequently been used to study
demixing of a condensate [36] and has led to the discovery of spin waves [37, 38]. For
this thesis, the most relevant study is one of the latest of this series, [39]. It studies the
coherence of the system, which is found to be limited by dephasing due to variations
of the mentioned frequency shifts over the atomic cloud. Since these shifts are small,
coherence times of seconds can be obtained even in a magnetically trapped cloud.

For the work on atom chips, the potential of this result is twofold: Atoms in a long-lived
coherent superposition of internal states can be used to sense external sources of deco-
herence, which could arise from the proximity of the room—temperature chip surface.
On the other hand, the ability to prepare and manipulate a long-lived coherent system
in a compact setup opens up new possibilities for miniaturized metrology devices. Both
of these directions have been explored in our group. By a study along the former line
of thought, the chip surface was found not to influence the coherence, even at micron
distances. The same experiment has been run as a proof-of-principle atomic clock,
achieving a stability of 1.7-1071,/s [29]. In this thesis, we continue the latter approach,
by designing and constructing a dedicated setup, which will improve this figure by one
order of magnitude in the near future and by two orders of magnitude in the long term.
The resulting setup will also be an attractive starting point for a chip—based inertial
sensor, which could be implemented by spatially splitting the clock states between the
Ramsey pulses.

Structure of the thesis The following chapters will discuss the details of the design
and construction of the atomic clock on a chip. We have chosen a top—down structure,
going from the global view of the experimental goal to the technical details.

e Chapter 1 reviews the theory of atomic clocks in general and introduces clock
stability, the relevant figure of merit for a secondary standard like our clock. It
gives an outlook onto the state of the art for both primary and, in more detail,
secondary standards.

e The second key technology of this experiment are atom chips, which we discuss
in chapter 2. Here, we take an engineering viewpoint and discuss in detail the
theory of chip design. We show that a microtrap can be considered as composed
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of elementary two—dimensional fields rather than of wires, an approach which we
have found to provide a helpful intuition.

The theory of our clock is developed in 3. We review the descriptions of the in-
teraction of an atom with the magnetic trapping field, of collisions in the atomic
cloud and of the interaction of the atoms with the excitation pulses. We subse-
quently use these tools to develop a major result of this thesis: A prediction of the
stability of the atomic clock on a chip. Finally, we present a simple model of the
decoherence in our system, which predicts optimal parameters for the trap.

Chapter 4 presents the experimental setup. A particular focus is put onto the
control of the magnetic field, since this is a major challenge of this experiment.
We describe in detail the magnetic shielding and the coils producing the offset
fields.

The chip is such a central part of the experiment that it deserves a chapter of its
own, chapter 5. We describe our chip design in detail, with a special focus on the
integration of the microwave transmission line, which drives the excitation pulses.

We have invested a lot of effort into the electronics of the experiment, most no-
tably the necessary control of electric currents with low noise and a high temporal
stability. This work is presented in chapter 6. The main result of this work is the
development of a dedicated power supply, capable of sourcing a constant current
with both low noise and high temporal stability.

Chapter 7 presents the first result of our setup. We demonstrate its high stability,
by an analysis of the atomic lifetime and the fluctuations of the atom number. We
conclude by a documentation of the first observation of the BEC phase transition.
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1 Atomic clocks

1 Atomic clocks

To outsiders, the world of atomic clocks easily appears as a scientific ivory tower, keen
to beat records of esoteric quantities like stability and exactitude with no apparent
practical use. It is interesting to observe that the opposite is true and that clocks have
often found applications in completely different areas.

The oldest example for this statement is probably Harrison’s creative solution of the
longitude problem. In the 17th century, measuring the longitudinal position of a ship
was an unsolved problem (the latitude could be easily measured by a sextant). John
Harrison (1693-1776), a british woodworker, finally solved the problem by constructing
a precise clock, which was furthermore compact and robust enough to withstand the
harsh environment of a ship. With this tool, ships could tell their longitude simply by
measuring the time lag between local time and ship’s time. [40]

In a similar way, the first quartz clocks in the 1930s unexpectedly led to a remark-
able finding: That the earth’s rotation was irregular [41]. This observation abruptly
transformed clocks into geophysical instruments and ultimately led to a redefinition of
the second. In 1967, when the more precise atomic clocks had emerged, the second was
decoupled from astronomic quantities and defined as “la durée de 9192631770 périodes
de la radiation correspondant a la transition entre les deux niveaux hyperfins de [’état
fondamental de l’atome de césium 1337 [42].

Atomic clocks, too, have found unexpected applications in other areas of science.
Particularly spectacular examples are the observation of a signature of gravitational
waves in the timing drift of a pulsar’s radio—frequency pulses [43] or the search for a
drift of fundamental constants [44]. Their most visible application to date clearly is the
global positioning system (GPS), which is able to tell positions on earth with meter
precision — from the run—time delays of a set of compact atomic clocks on orbiting
satellites.

This thesis is a contribution to this latter field — the development of compact atomic
clocks. To describe it in detail later on, we will use the typical vocabulary and definitions
of atomic clocks, which we will introduce in this chapter. We discuss several categories
of clocks and introduce the mathematical tools used to characterize their behaviour. We
conclude the chapter by a survey of today’s benchmark atomic clocks, with a particular
focus on compact clocks.

Working principle An atomic clock measures time in much the same way as a ruler
measures length. It measures an unknown time interval by comparing it to a periodic
signal of known frequency. In this way, it performs in time what a ruler does in space by
comparing an unknown length to a periodic pattern of stripes with a fixed and known
spacing of one millimeter.

This approach to measure time consists essentially of two steps: The first is to generate
a periodic signal of a fixed frequency. This signal must be extremely stable, in a sense
which will be defined below, and its frequency must be very well known. This signal is
then used as a reference for time, which can be done, e.g. by counting its cycles. In this
work, we do not pay attention to this latter “clockwork”, the techniques to measure time
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using a given periodic signal. Instead, we focus on the first task, to generate a highly
stable periodic signal. An atomic clock generates this signal from an atomic transition,
which we will assume to take place between two atomic states |0) (ground state) and |1)
(excited state), separated by an energy fiw,,. A continuous, high—precision signal can be
generated from such a transition in several ways [45],[46]:

Active clocks In this kind of clock, the clock signal is generated directly by the radi-
ation of the atomic transition. The most widespread implementation of this kind is the
active hydrogen maser. This clock generates its output from a hyperfine transition in
the electronic groundstate of hydrogen, by pumping the sample into the excited state
and extracting the radiation of the transition by means of a resonant cavity.

Passive clocks In most of today’s clocks, the atomic transition does not directly gen-
erate the signal. Instead, it is generated by a “flywheel” or “local oscillator”, a contin-
uously running signal generator, which may be less stable than the atomic transition.
The frequency wyg, of this generator is repeatedly measured by “interrogating” an atomic
sample and subsequently corrected. This “interrogation” is performed by driving a spec-
troscopy on the atomic sample from the signal of the flywheel. This spectroscopy can
be performed in several ways:

e Continuous spectroscopy In this technique, the flywheel signal is applied con-
tinuously to the atomic sample. The feedback to the flywheel is generated by
monitoring some signature of the atomic resonance, e.g. the atomic absorption.
This technique is used in Rubidium vapor cell clocks and CPT clocks (see below).

e Rabi spectroscopy In this technique, the atomic sample is placed in the state |0)
and subsequently exposed to a pulse of the flywheel signal. During this pulse, Rabi
oscillations of a frequency €2 will develop between the two states of the transition,
so that the pulse drives the atomic system into a state cos(£2¢)|0)+sin(2¢)|1). Both
the duration of the pulse and the power of the flywheel signal are experimentally
controlled, such that Q¢ is a measure of the detuning between the flywheel and
the atomic resonance. The advantage of a pulsed interrogation is that preparation
phases can be inserted between two interrogations. In this way, the properties of
the atomic sample can be better controlled. In particular, it becomes possible to
use laser—cooled samples, which are prepared between two pulses and it becomes
possible to alter the configuration between subsequent measurements to evaluate
systematic effects.

This interrogation is used in some optical clocks [47].

e Ramsey spectroscopy This technique, too, is a pulsed scheme. Precisely, two
separated pulses are applied to the atomic sample: A first one prepares a coherent
superposition (|0) +4|1))/v/2. It follows a period Tx, during which the sample
evolves freely. During this time, the superposition picks up a phase ¢ = (wgy, —
wat)Tr, ending up in the state (|0) 4 ie®|1))/+/2. This phase is converted into a
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population imbalance by a second pulse. The final state is sin(¢/2)|0)+cos(¢/2)|1).
As for the Rabi spectroscopy, the population imbalance is used as a measure of
the detuning between the flywheel and the transition. This method presents an
advantage over the Rabi spectroscopy, since the sample can be isolated from most
external perturbations during the period of free evolution. In particular, this
greatly simplifies the interrogation of moving atoms, since the antennas or cavities
transfering the flywheel signal are not required to extend over all the range of the
atomic motion.

Independent of the way they work, atomic clocks can serve two major purposes: Primary
standards are built to “realize” the SI second. They produce a signal which matches
as closely as possible the frequency of the hyperfine transition of *3Cs, which is the
reference of the SI second [42]. Secondary standards are not neccessarily based on the
mentioned Cs transition. They are built to generate a highly stable signal. This signal
can only be linked to the SI second by calibrating the secondary standard against a
primary one.

1.1 Theory of atomic clocks
1.1.1 The Ramsey pulse sequence

Since it is this type of interrogation which we will use in our clock, we will describe it
in more detail here. We will use the notation of the previous paragraphs. We will not
assume a particular type of atomic transition, since the interrogation scheme is used for
a whole whealth of transitions. Examples are the microwave interrogation of a hyperfine
transition or the optical interrogation of an electric multipole transition.

The Bloch sphere picture To illustrate the following considerations, we will use the
Bloch sphere picture. This is a map from the space of pure states of an effective spin 1/2
system to the 3—-dimensional unit sphere. Each pure state can be written in the form

1) = cos (%) |0) + sin (%) e’|1).

The corresponding point on the Bloch sphere is the point on the unit sphere in R?, which
has the same polar angles.

x = sin(«) cos(f)
y = sin(«) sin(f)

z = cos(«)

Some examples of this map are presented in Fig. 1.
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Figure 1: Examples of state vectors and their corresponding images on the Bloch sphere.

Interaction between the atom and the flywheel signal An atom interacting with
the flywheel signal can be described by an interaction Hamiltonian:

A i W)

— R 1){1] + B £(£) cos(wnt + 0)([1)(0] + 0) (1] 2)
hQI Wy 0 — W t—0

:mat|1><1|+( F(E)(HH0 4 emionm >|1><0|+h.c.) 3)

Here, Q; quantifies the coupling between the atom and the flywheel signal. f(¢) is an
envelope function, describing the interrogation pulses. It takes values in the interval
0; 1].

This Hamiltonian is best viewed in an interaction—picture-like description, by trans-
forming the states and operators into a “co-rotating frame” by the unitary operator
Up(t) = exp(iwgwt|1)(1]) according to

V) = |¥) it = Uolth)
A — Ay = UyAU]
In particular, the interaction part of the Hamiltonian transforms to
Hiyny = UpH{U{

hQf(t) , .
= (%(ew + el(2wfwt+9))|1>im <O|int + hc)

In all the following, we will neglect the term e ®**=!+%)  This is the widely used rotating

wave approximation (RWA), which can be justified for Q7, A < wyy, with A = way — wpy.
Also, we will drop the labels |-), . and refer by |0) and |1) to the transformed atomic
states. With these assumptions, the full Hamiltonian in the co-rotating picture becomes

hQI

H = A+ =L £ (1) (€711(0] + h.c.) . (4)

This is an effective spin-1/2 Hamiltonian. Adding a total energy of —hA/2, it can be
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Figure 2: Evolution of the atomic state during an interrogation. In this example, the
interrogation is performed near resonance: A < 2

rewritten using the Pauli matrices &

H:gﬁé (5)
B Qrf(t) cos(6)
0= Q[f(t)Asin(H) (6)

In the special case that f is constant f(t) = f, Qs constant, too, and the solution of
this Schrodinger equation takes the simple form

[6(8)) = exp | —ih- 5 /2] [1:(0)) (7)

In the Bloch sphere picture, this corresponds to a rotation of the state [¢)(0)) by an
angle |Q[t around the axis €.

State evolution during the Ramsey interrogation The evolution of the atomic state

during the Ramsey interrogation can be understood from equation 7. Assuming 6 = 0,
the action of the Ramsey sequence on the atoms is expressed by the following operator

R = exp |:—Z—O-— — zAtp—} exp lzgzﬁ } exp {—z—a— — zAtpg—

22 2 22 2
A<Q T Oy qu T Oy
=" exp 22 5 | exP |4 exp | —i5

where tp = 7/(2€)) is the duration of a Ramsey pulse and ¢ = —ATEg.

Near resonance, where the interrogation is usually performed, the pulse sequence rotates
the atomic state in the following way:

In the limit of Atp < /2, the first pulse is adjusted such as to satisfy |Q[tp = 7/2.
and ©|&,. This pulse places the system in the superposition 1/v/2(]0) +|1)).
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Figure 3: Ramsey fringes in the time domain (left, for A = 27/[1s]) and the frequency
domain (right). In the frequency domain, the fringes have a period of 27 /Tg
and are modulated by an envelope function (the “Rabi pedestal” [45]) stem-
ming from the finite Rabi frequency €2 of the 7/2 pulses: For large detunings
A > Qy, the excitation pulses are not resonant any more, so |{1|[1)|? — 0.

During the period of free evolution T, the system rotates around the z—axis with the
angular velocity A. The superposition thus picks up a phase ¢ = —ATg, ending up in
the state 1/v/2(|0) 4 e™®|1)).

The second pulse rotates rotates the system by 7/2 around the z—axis. The resulting
final state is

—sin(¢/2)|0) + cos(¢/2)[1). (8)

Ramsey fringes The measurable result of a Ramsey sequence is an excitation probabil-
ity of the excited atomic state — i.e, experimentally, a population imbalance of the atomic
states. According to equation 8, this imbalance is an oscillating function of ¢ = —ATg.
For a fixed A, it is a measure of Tg, for a fixed Ty it is a measure of A. Experimentally,
either version can be realized and the result is refered to as Ramsey fringes in the time
and frequency domain, respectively. Plots of both situations are presented in Fig. 3.
In an atomic clock, Tg is always kept fixed, so that the Ramsey interrogation yields a
measure of the detuning A (Ramsey fringes in the frequency domain). To maximize the
sensitivity to A, the clock is operated on the slope of the central Ramsey fringe (figure
4). The maximum slope that can be obtained is

dp _E E_Qat

E‘max_ 2 - 2 Wat

(9)

where (), is the quality factor of the clock, the frequency of the clock divided by the
half width of the central Ramsey fringe.

At this point, two apparent paradoxa merit further comments:

To measure A, we have to keep Ty fixed. Since ¢ varies linearly with both Tk and
A, an error on Ti will translate into an equally large error on A. At first sight, this
seems impossible: How can we fix a time without having a precise clock, which to build
is the very goal of this endeavour? The paradox is resolved by considering that the
error of one interrogation is oy, /wat = oa/A - Afwy with o, denoting the error bar
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Figure 4: The central frequency-domain Ramsey fringe. Clocks are operated at the
point of highest slope, where the transisition probability is the most sensitive
to A. Here, a given error 0, on the measurement of the transition probability
translates into a minimal error oA on the frequency measurement.

on the clock interrogation. op is therefore suppressed by the factor A/w,, typically of
the order of 107!, Therefore it is possible to reach a relative error bar o, /wa, = 10713
with a moderate timing precision of o7, /Tr = 1073. Ty can therefore be controlled from
a clock having a performance largely inferior to the atomic clock.

Naively, one might argue by the time—frequency uncertainty principle that the error
bar on a frequency measurement taking a measurement time T cannot be lower than
1/Tg. For typical values (Tr = 1s, fu = 10%Hz), this would correspond to a relative
error bar of o, /w. = 107 However, the relative error bar of today’s benchmark
atomic clocks after a T = 1s integration time is only oy, /w., = 107! To solve this
paradox, we refer to figure 4. Indeed, the width of the central Ramsey fringe is 27 /Tk, as
predicted by the uncertainty argument. Clocks can beat this limit, since they measure
synchronously on multiple atoms.

1.1.2 Clock stability

Figures of merit of a clock The general idea behind all measures of the performance
of an atomic clock is to indicate how close its output signal matches the underlying
atomic transition. To quantify this performance, we recall that a passive atomic clock
repeatedly measures the frequency of a flywheel against the atomic transition and cor-
rects it accordingly. For a real clock, each of these measurements will be precise only
within a certain error bar, which includes the noise on the atomic transition, emerging
from the manipulation and detection of the atomic sample, as well as the noise of the
flywheel, which the atomic clock is about to measure and correct. Evidently, the cor-
rected flywheel signal matches the atomic transition only within the error bar of these
repeated clock measurements. Therefore, the performance of an atomic clock is quanti-
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fied by stating the error bar which the clock can put onto the frequency of the flywheel
after a certain period 7 of operation, the “integration time”.

In practice, there is a wealth of different figures of merit measuring different aspects
of this performance. For this work, three of them are particularly important:

1. Short—term stability: the error bar on the frequency measurement after a given,
short, integration time (typically 7 = 1s). For short integration times, the error
bar is typically limited by white noise contributions, which average out during
further integration. Short—term stability therefore is only the starting point of the
error bar, which diminishes during further integration (typically as 1/4/7) up to a
certain limit.

2. The ultimate error bar a given clock can put onto the frequency measurement after
an arbitrary long integration time.

3. Accuracy: The systematic error bar estimating the deviation of the measurement
2) from the frequency of the atomic transition of a single atom, isolated from all
external perturbations. In the case of primary standards, this quantity estimates
the possible deviation of the clock from the SI second, since here the frequency of
the unperturbed atomic transition is known by definition.

In the following, we will define these three quantities in more detail. For a more in—depth
overview, the reader is refered to [48, 40].

The Allan variance There exists a widespread procedure to estimate the error of the
frequency measurement after an integration time 7: The clock is run N times subse-
quently for a time 7. This yields a set of frequency measurements f;,i € {1,..., N}.
It is convenient to express them as normalized deviations from the atomic frequency by
the relation 7; = f;/fa — 1. The error of one of these measurements is estimated by
computing the Allan variance

oLl Y

= - . 1
2N yzl (O)

Note that this variance is in general different from the usual statistical variance 1/N Zij\il(gi—

7)%. They are equal for the special case that 7, is a white noise. The Allan variance
is prefered against the statistical variance, since it converges in the limit N — oo for
some common types of noise, whose statistical variances do not converge. An instructive
example is a monotonous drift of the clock, which has a finite Allan variance, whereas
its statistical variance diverges.

An Allan standard deviation can be defined as the square root of the Allan variance.
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Stability of a Ramsey interrogation To give a concrete example, we will now compute
the error of a Ramsey—type clock. We will assume the clock to perform one interrogation
in a cycle time Ty, which includes the time to prepare the atomic sample as well as the
time to perform the actual clock measurement. Each single interrogation of this kind
is a measurement of the flywheel frequency in units of the atomic transition frequency,
with an error bar which stems from two sources of noise (see figure 4):

e Noise on the measurement of the transition probability |(1[¢))|?, typically noise on
the detection of the atomic populations.

e Noise on the detuning A. Part of this noise is the noise of the flywheel, which the
atomic clock is about to measure and correct. The other contribution is noise on
the atomic transition due to the manipulation of the atomic sample (e.g. varying
Zeeman shifts from nearby coils).

We will assume both sources to contribute white noise of standard deviation o, and oa.
We convert o, into a frequency noise o, - dA/dp using equation 9. From eq. 10 and
the law of Gaussian error propagation, we obtain the Allan standard deviation after an

integration time 7
2 402 T
OA P C
=\/—5+t =5\ — 11
oy(7) \/ wi o omQAEV T (11)

The term under the first square root can be interpreted as the error of one clock inter-
rogation. Arising from white noise, this error decreases after N = 7/T¢ interrogations
by a factor 1/v/N.

In the best of today’s atomic clocks, the dominating source of noise is the quantum
projection noise [49]. This noise reflects the fact that the interrogation projects each
atom into either |0) or |1) even though the interrogation is performed at an intermediate
p with 0 < p < 1. For a clock interrogating N,; atoms, this creates a detection noise of
0, = 1/(2¢/Ny), so that the Allan variance of such an “ideal” clock becomes

1 Tc
oy () = 7@%—\/1\7_%\/; (12)

This noise is not a fundamental limit, though. It is surmountable by preparing the
atomic sample in an entangled “spin—squeezed state” [50, 51].

Allan variance as a filter It is helpful to formulate a continuum limit of equation
10. Therefore, one describes the relative frequency noise of the atomic clock as a time
dependent function y(t), including again the noise of the flywheel as well as noise on the
atomic transition. Equation 10 then becomes

T/2
=g fm g [ w0 (13)

where * denotes the convolution. h,(t) is the impulse response of the Allan variance. It
encodes the process of “taking averages of y over the intervals [t—7 : ¢] and [t : t+7] and
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Figure 5: Impulse response h.(t) of the Allan variance (left) and the square modulus
of its Fourier transform |H,(f)|? (right). In this example, we assume a clock
without dead time.

substracting them”, whose discrete equivalent is the term 1; — 3;_1 of equation 10. This
function is a full description of the clock cycle, including dead times (with h,(t) = 0) or
periods of reduced sensitivity of the clock. The restriction of this function to one clock
cycle (the interval [0 : T¢]) is known as the “sensitivity function” of the clock. A simple
example for a clock without dead time is depicted in figure 5.

Applying Parseval’s theorem, the average in equation 13 can be taken in the frequency
rather than the time domain:

wir) =5 [ s IHADP (14)

Here, H.(f) is the Fourier transform of the impulse response and Sy(f) is the one-sided
spectral density of the frequency noise. The Allan variance can be seen as the total
frequency noise transmitted by the filter H,(f).

Allan variance of different types of noise Noise is usually classified by its spectral
density. To this end, the spectral density S,(f) is expanded into a power series

o0

Sy(f) =D haf (15)

We note that each of these components can be equally described by a relative phase
noise S,(f) = 4n2h,f? with 8 = a — 2, since frequency is the derivative of phase. In
practice, one encounters only terms with low a:

a  type of noise
—2 random walk frequency noise
1 flicker frequency noise
0 white frequency noise
1
2

flicker phase noise
white phase noise
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Figure 6: Log—log plot of the Allan variance of an ideal clock (conceptual). Each con-
tribution to S,(f) dominates in a different region of 7, where it imprints a
characteristic slope p on the Allan variance.

For each of these idealized types of noise, its contribution to the Allan variance can
be calculated from equation 14. For an ideal clock (without dead time), it turns out
that each of these component contributes exactly one term to the power expansion of
the Allan variance 14.

ol(1) = Z a, . (16)

In particular, « = =2 mapstopu=1;, a=-1—-pu=0;, a=0—-p=-1; a=12
both map to p = —2. A linear drift y(t) = yo + Dt, which is strictly speaking not a
noise, can also be told from the Allan variance: It gives rise to a component of power
p = 2. The important conclusion is that the components of the frequency noise S, (f)
can be immediately read of from a log—log plot of the Allan variance, as is demonstrated
in figure 6.

Conclusion The Allan variance makes it possible to give an exact definition for the
figures of merit of paragraph 1.1.2.

Short-term stability is identified with a_;, which we have seen to arise from white
frequency noise. This contribution limits the clock stability at short timescales. It
averages out for longer integration times according to a 1/4/7 law.

The ultimate error bar the clock can provide on a frequency measurement is ag, the
level of the = 0 floor, which stems from frequency flicker noise. Strictly, this can
be considered an ultimate limit only if the random walk frequency noise and drifts are
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negligible. However, this is often the case for atomic clocks, and in particular for primary
standards.

Accuracy, the systematic error bar on the SI second, cannot be read off from figure 6.
It has to be estimated from complementary measurements, often by varying external
parameters like e.g. the electric background field or the temperature of the clock.

1.2 Today’s benchmark atomic clocks

Atomic fountain clocks Atomic fountain clocks use a hyperfine transition as their
frequency reference. The atomic sample consists of a freely falling cloud, which is laser—
cooled and then launched such that it passes twice through a microwave cavity, which
excites the transition. This clock has been proposed in the 1950s and been realized in
the early 1990s [52]. Today, it is this kind of clock, running on Cesium atoms, which
realizes the SI second. It has achieved a short—term stability of 1.6 - 107!,/s and has
been integrated down to 2 - 1071 [53], [54], [55].

Optical atomic clocks The frequency reference of these clocks is an optical transition.
The flywheel is a laser, which is locked to the resonance of an ultrastable cavity or — via
the frequency comb technology [56] — to a microwave frequency standard, to be stable
at short timescales. Basically, three species of this kind have been developed (see [47]
for a more in—depth overview):

e Untrapped atom clocks interrogate a sample of freely falling atoms. They use
a Ramsey—Bordé interrogation [57], a modified version of the Ramsey technique,
which eliminates the first—order Doppler shift. These clocks have achieved a short—
term stability of 3-107'°/s which has been integrated down to as low as 1-1071¢
[34].

e Ion clocks use a trapped ion as their atomic sample. They operate in the Lamb—
Dicke regime, where the recoil of an absorbed or emitted photon is transfered to
the whole trap instead of the motional degrees of freedom of the atom. Recently,
a short—term stability of 4 - 107'°/s has been reported, which integrates down to
5.2-10717 [33].

e Optical lattice clocks use an atomic sample, which is confined to an optical
lattice. In this way, they also reach the Lamb—Dicke regime, albeit for a larger
sample than ion clocks. Care has to be taken to choose a “magic wavelength”
of the lattice where the trapping light does not shift the atomic transition [58].
These clocks have reached a short-term stability of 3-1071%,/s, integrating down
to 110716 [34].

All these devices, fountain clocks as well as most optical clocks, are stationary se-
tups, filling a whole laboratory. As the next section will show, there exist interesting
applications, which need clocks of a comparable performance, but of a smaller size.
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Source positioning error [m]
Selective availability 24.0

Ionosphere delay 7.0

Troposphere delay 0.7

Clock and ephemeris error 3.6

Receiver noise 1.5

Multipath 1.2

Table 1: Error sources of the GPS signal, after [59], [60]. Selective availability was an
artificial error, introduced into the civilian C/A signal. It has been removed
since 2000. Multipath refers to stray signals, which are reflected on the ground
before hitting the reciever.

1.3 Global navigation satellite systems (GNSS)

Satellite navigation systems are arguably the most prominent application of today’s
atomic clocks, the most important one to date being no doubt the american global posi-
tioning system (GPS). Its “space segment” consists of a set of satellites, which are placed
in medium—earth orbit. The essential payload of each satellite is a set of atomic clocks,
Cesium beam or Rubidium vapor—cell clocks . Their time is continuously broadcast to
earth. This transmission is performed on different frequencies and with different encod-
ings. Only one encoding, the coarse/acquisition (C/A) code, is publicly documented.
This is transmitted on only one frequency. Another encoding, the precision/encrypted
(P/Y) code is transmitted on two different frequencies. The key for this code is dis-
tributed by the U.S. Air Force.

To determine a position, a user measures the delay of the clock signal of several satel-
lites, which is directly proportional to his distance to the satellites. The position is then
computed from these distance constraints by triangulation. Basically, the signal of three
satellites is sufficient to determine a three—dimensional position. This however implies
that time is known, more precisely that the user has a clock of a performance compara-
ble to the GPS clocks, which is furthermore synchronized to GPS time. This problem
can be surmounted by receiving the signal of at least four satellites and performing a
triangulation for the four variables position and time.

It is evident that the error on the clock signal of a satellite will contribute to the error
on the position measurement. However, an analysis of the error budget of the single—
frequency signal shows that this error is dwarfed by other sources, most notably the
delay in the Tonosphere (see table 1). However, this error varies with the frequency of
the signal. Therefore, it can be largely removed when the user has access to more than
one frequency. Using the two frequencies of the P(Y) code, the GPS signal has been
integrated down to a positioning error of the centimetre-level and the GPS time has
been transfered by this method with an uncertainty of 107'% after one day of integration
[61][62].

It is for this reason that GPS could indeed benefit from better clocks. Therefore,
defence and space agencies all over the world fund a number of developments in the field
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Figure 7: An atomic vapor cell clock as it is used in nowaday’s navigation satellites.
Light of one spectral line pumps an Alkali vapor into a dark state. A microwave
repumps the atoms, giving rise to an absorption peak of the probe light if it
is resonant.

improved compact clocks. This will be the subject of the next section.

1.4 Compact atomic clocks

Vapor cell clocks A whole family of clocks is based on hyperfine transitions of Alkali
metal atoms, typically Rubidium or Cesium. These transitions can be excited and
detected in a room—temperature atomic vapor cell in several ways:

Optical-microwave double resonance This clock performs a spectroscopy on a hy-
perfine transition by means of an optical-microwave double resonance (see figure 7 for
an illustration). A vapor cell containing the atomic sample is illuminated by a spectral
line, which drives an optical transition from only one of the two clock states |1) or |0)
(for the following, we will assume from |1)). It pumps the atomic vapor into the state
|0), which is dark. The vapor cell is placed into the field of a microwave cavity. This
microwave will repump the atoms into the state |1), if it is resonant with the atomic
transition. In this case, the atomic vapor will continuously scatter light from the probe
beam, which is detected as an absorption maximum by a photodiode. The probe light
is not required to be coherent, so that it can be produced by a filtered discharge lamp.
These lamps are more reliable than lasers and have favorable noise properties, which
renders them attractive for space applications. See [63] and [64] for an overview of these
clocks.

This type of clock is running on the GPS satellites [65]. Its current [66] and near—
future versions [67] specify a stability of o,(7) = 3 - 107'2y/s, which integrates down to
5-10714,

The first generation of GALILEO will carry Rubidium clocks of comparable perfor-
mance (4 - 107'%,/s stability and 3 - 107'*/s flicker floor)[68], the goal for future devel-
opment of these clocks is slightly higher, (1 -107'2y/s stability and 1 -107,/s flicker
floor) [69].
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Pulsed optically pumped (POP) clocks This clock can be understood as an improved
version of the double-resonance clock. They are based on the same hardware and differ
only in the interrogation scheme. Instead of performing a continuous spectroscopy, the
POP clock follows a pulsed scheme: It prepares the sample in the state |0) by optical
pumping and then performs a Ramsey interrogation driven from the microwave cavity.
The resulting population imbalance is detected either optically or by extracting the
free-induction—decay signal with the microwave cavity [70, 71]. Performing a Ramsey
interrogation on an atomic vapor is possible, since atoms in a vapor cell have a short but
non—zero coherence time of the order of 10ms [72]. With respect to double-resonance
clocks, the pulsed interrogation significantly reduces the sensitivity to lightshifts as well
as AM and FM noise of the interrogation light. For this reason, POP clocks have
improved the short-term stability to 1.2 x 107'2,/s. They have been integrated down to
3 x 1071 [70]. The latter value is limited by a continuous drift due to the cell, which is
a major concern for all kinds of vapor cell clocks.

Coherent population trapping (CPT) clocks These clocks, too, interrogate a hyper-
fine transition in an atomic vapor. However, they can perform the interrogation using
only optical photons, eliminating the need for a microwave cavity. To this end, the vapor
cell is illuminated by two phase-coherent laser beams, near-resonant with the transition
from an excited state |e) to the states |0) and |1) respectively. It can be shown that,
if the laser frequencies differ exactly by the transition frequency w1y, the atoms are
pumped into a dark state (|0) + €*|1))/+/2, which does not couple to the beams. This
phenomenon, known as coherent population trapping (CPT), is used in clocks in several
ways:

In CPT masers [73], the sample is placed in a microwave cavity and illuminated contin-
uously. The dark state has an oscillating magnetic dipole moment and, therefore, emits
radiation, which is extracted by the microwave cavity as in a conventional maser.

In continuous CPT clocks, the absorption of the beams across the cell is monitored [74].
The signature of CPT is a minimum of this absorption, occuring on resonance, where
the sample is pumped into the dark state. By locking the detuning between the lasers
to this minimum, the difference frequency of the lasers is locked to the frequency of the
atomic transition. It can therefore be used as a continuous clock signal.

Pulsed CPT clocks [75] employ a pulsed scheme, which is reminiscent of the Ramsey
scheme. A pulse of both lasers pumps the atoms into the dark state. This is equiv-
alent to the first 7/2—pulse of the Ramsey scheme, since the dark state is a coherent
superposition of |0) and |1). The lasers are then switched off during a period of free
evolution. As for the Ramsey scheme, the superposition picks up a phase during this
period, proportional to the detuning of the difference frequency of the lasers from the
atomic resonance. In the picture of the dressed CPT states, this transfers the atom into
a mix of the dark and the bright state. The population of the bright state is detected by
a second pulse of both lasers, which at the same time repumps the atoms into the dark
state. With this technique, a short—term stability of 7 x 107!3,/s has been achieved,
which integrates down to a few 10714, if a constant drift is removed [72].
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Figure 8: The HORACE clock: the cooling and the interrogation take place in the mi-
crowave cavity (copper block on top), which is part of a UHV chamber. The
laser light is coupled by multimode glass fibers (green cables), the microwave

is coupled by waveguides (rods connected to the cavity). Image courtesy of
F.X. Esnault.

Requiring only lasers, electronics and a vapor cell, CPT is an extremely promising candi-
date for chip—scale atomic clocks. Such clocks would be yet another order of magnitude
smaller than the liter—scale space clocks and might find an application in advanced
ground—based applications like the synchronisation of data transmission networks. At
the NIST, a clock has been built, whose “physics package” occupies less than a cm?®.

Stabilities of 4 x 107!,/s have been reported and integrated down to 6 x 10712 [30, 76].

Hydrogen Masers In addition to a Rubdium vapor cell clock, the first generation of
GALILEO staellites will also use a passive hydrogen maser. Its performance is superior
to the Rubdium vapor cell clocks, with a stability of < 10712,/s at short term and a
flicker floor at 7-107'° [68]. However, it is considerably bigger and heavier than a vapor
cell clock and consumes more power [68, 77].

Cold atom clocks (HORACE) A natural improvement on the previous clocks is to
use laser—cooled atoms. This is the key idea behind the HORACE project (figure 8),
which can be thought of as a simplified version of an atomic fountain clock. This clock
performs a Ramsey interrogation on an untrapped, laser—cooled atomic vapor, which
is placed under UHV inside a microwave cavity. The role of this cavity is twofold: It
creates the microwave excitation field as well as the optical molasses to perform the
laser—cooling. To perform the latter task, its inner faces are highly reflective in the
optical domain. When the interior of the cavity is illuminated with laser light, random
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reflections on these faces create a random light field. This light field contains a sufficient
component of optical molasses to laser—cool the atomic vapor. This clock has reached a
short—term stability of 2.2 x 10713,/s and has been integrated down to 4 x 10715 [32].
This performance has been measured in a ground—based clock. Here, interrogation times
are limited to the 10ms timescale, since the atoms fall freely during the interrogation
and hit the walls after this time. A better performance is expected in microgravity.

Compact ion clocks (LITE) This kind of clock is based on a hyperfine transition in
the electronic ground state of the "Hg* ion. A cloud of these ions is captured in a
linear multipole trap, where a microwave is coupled to the ions to perform a Ramsey or
Rabi interrogation. The resulting population inversion can be detected by flourescence
imaging driven from a Hg discharge lamp. This clock has two essential advantages:
Using trapped ions, it can achieve long interrogation times. Furthermore, the hyperfine
transition has a frequency of 40.507GHz, higher than the hyperfine transitions used in
atomic clocks. Typical shifts (e.g., the Zeeman—shift or the collisional shift) are of the
same absolute size than in other clocks, but the fractional frequency shofts are smaller.
A liter—size prototype of such a clock has been built at the NASA jet propulsion labo-
ratory (JPL). It has achieved a short—term stability of 1 — 2 x 107'3,/s and has been
integrated down to 1 x 107 [78, 79]. Laboratory-size clocks of this technology have
been integrated down to 3 x 10716,

Compact optical clocks Optical clocks have revolutionized the field of primary stan-
dards, so it is a natural idea to introduce their technology into the field of compact
clocks. Indeed, the NIST Ca clock has been advertised as a compact clock [80]. In a
compact setup, this clock has achieved a short—term stability of 3x 1071 /{/s, integrating
down to several 10716,

Atomic clocks for scientific space missions There are several clocks which have been
developed to be operated on the International Space Station, with the goal to test fun-
damental physics by precision measurements. These clocks differ significantly from the
compact clocks of the previous paragraphs: Each of them is a prototype, with an in-
tended work life of at most a few years. The most prominent example in our laboratory
is the PHARAO space clock [81]. It is best understood as an atomic fountain clock in
space: Atoms are captured and cooled in optical molasses and launched by the moving—
molasses technique. The moving atoms then undergo a Ramsey interrogation by crossing
two microwave cavities (a single one does not suffice in zero-g, since the atoms do not
fall back). At the end of their trajectory, they are detected by flourescence. In space,
this clock is predicted to reach a stability of 1.1-107!3/s, integrating down to less than
10716, At the moment, PHARAO is scheduled to fly on the ISS in 2010, as part of
the ACES mission. This mission will also contain a hydrogen maser and a bidirectional
microwave link to earth. In this way, it can be used as a time transfer tool to compare
distant clocks with a precision of 10717 after one week of integration.

Two similar projects are PARCS and RACE [82]. PARCS is an atomic Cs clock, similar
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to PHARAO, aiming at a stability of 7-107!,/s, integrating down to better than 107,
To our best knowledge, PARCS has been cancelled to make way for the NASA moon
landing program.

RACE is a fountain clock operating on Rubidium. It is a “juggling” design, in which a
new atomic sample is launched while the previous one is still flying through the spec-
troscopy zone. It features two independent spectroscopy zones (i.e, four Ramsey cavities)
and a double-MOT, one MOT to load the sample and another one to launch it into one
of the spectroscopy zones. Its goal is a stability of 3 - 107!5,/s, integrating down to
10717, Its main objective — besides the demonstration of these impressive figures — are
time distribution at the 10717 level and precision tests of general relativity.

Outlook We cannot cite publications about the clocks of tomorrow, but we can get a
glimpse of their performance from the calls for proposals of space agencies and from the
specifications researchers are willing to commit.

ESA call for proposals Foreseeing the demands on compact clocks of tomorrow, the
European Space Agency (ESA) has opened, or is about to open, several tenders: For
the next Galileo generation, new technologies like POP, CPT or cold atoms will be con-
sidered. A tender for the development of an optically pumped Cesium clock is already
open (“EBB Development of Caesium clock for space”, AO5579) and a more generic
tender, targeting several “innovative clock concepts” is likely to follow (“Development
of innovative atomic clock for satellite”, 07.1ET.12). The goal here is a factor of two
improvement in stability over the existing clocks.

In the long term, ESA seems to bet onto optical standards. In this field, two tenders
are intended: “Development of key optical clock technologies” (07.129.18) aims at the
construction of breadboard prototypes of the basic components of a space—proof opti-
cal clock. “Demonstration of optical clocks based on cryogenic resonators” (08.129.15)
demands the development of an optical clock, ready for ground applications and with
the potential for space applications. This clock shall be based on a cryogenic optical
resonator, which can be used either as a stand—alone clock or as a flywheel for other
clocks. It shall reach a stability of 7x 1074,/s, integrating down to 7x 10716 at 7 = 10%s.

Search for anomalous gravitation using atomic sensors (SAGAS) This project is
a candidate for a deep space mission between 2015-2025 [83] and has been proposed
to the European Space Agency in 2007. Its goal is to create a gravity map of the
outer solar system and to search for anomalous gravitation. Its payload would contain
two atomic clocks, an optical ion clock, optimized for long—term performance, and an
atomic accelerometer, based on a hyperfine transition, which can also be run as a clock.
The latter would use a molasses—cooled sample (similar to HORACE) and perform an
interferometric measurement based on Raman transitions. The mission proposal predicts
a performance of 10712 both for one-shot stability and accuracy.

The optical ion clock is predicted to deliver a 1 x 107!4,/s stability averaging down to
1 x 10717 at 10 days of integration. The accuracy is predicted to be below the latter
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Figure 9: The performance of today’s prototypes of compact clocks. All data is taken
from the references cited in the text.

level. This confirms that optical clocks are promising candidates for future compact
clocks. We note, however, that the cited mission proposal relies on an optical link to
earth. This is partly due to scientific reasons, but also because it is not sure whether
space—proof frequency combs will be available before the proposed launch date.

Conclusion A comparison of today’s compact clocks is presented in Fig. 9. As can
be seen, performances several orders of magnitude better than the current GNSS clocks
have already been achieved in the laboratory. With several satellite navigation systems
being built around the world, it is likely that clocks of this performance will fly in GNSS
applications in a few years.

Another conclusion is evident: Moving to better performance, compact atomic clocks
rely on more and more advanced technologies, like lasers or ultrahigh vacuum. It even
seems like some barriers (like, e.g. the notorious drift caused by vapor cells) can only
be broken by the use of more complicated technologies (ultrahigh vacuum in this case).
Making these technologies compact and reliable enough for space applications is a major
part of the work. In the field of primary standards, breaking a world record with a
laboratory—scale setup can be considered an accomplished mission. In contrast, it is at
most half of the work in the field of compact clocks. Therefore, we cannot yet tell from
figure 9, which of the cited laboratory setups will first make the race to a spaceborne
application. But we are looking forward to see it.

Coming back to this thesis, the conclusion we draw from figure 9 is the following:
There is considerable interest in building clocks with a stability in the low 10713,/s
range. And to get there, local oscillators, lasers and ultrahigh vacuum are completely
admissible tools. We will show in the following section, that, using these tools, a clock
based on the atom chip technology can play in this league. It is this insight which has
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motivated the present work.
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2 Atom chips

In this thesis, we present a novel type of compact clock, similar to the clocks described
in the previous section 1.4. It is based on an atom chip, an experimental tool which has
been developed over the last ten years. In this chapter, we will discuss the underlying
concept of atom chips, without refering to the specific application of our clock. We start
by an overview of the brief history of atom chips and an outline of the many possible
ways to create microtraps on a chip. We then focus on the most widespread type of
traps, magnetic traps created by microfabricated conductor structures and describe,
which conductor structures can create such traps. Here, we take the point of view of
[84] by describing a microtrap as being composed of elementary 2-dimensional traps. We
consider some practical limitations, most notably the trap depth and the adiabaticity
of the loading procedure, before we conclude by giving typical orders of magnitude for
these traps.

2.1 The History of atom chips

Traps for neutral particles have a long history. Magnetic traps for neutrons have been
proposed as early as 1961 [85] and have been realized in the late 70s [86]. It was only
with the advent of laser cooling in the 1980s that magnetic trapping of neutral atoms
was achieved [87]. This technique became the standard tool of the work towards Bose—
Einstein condensation and indeed the first BECs have been achieved in magnetic traps
1, 2].

The magnetic field of these early traps was produced by macroscopic current—carrying
coils, mounted at a distance of at least several centimeters from the trap. Such a
configuration is a natural choice, since it allows to mount the coils outside the ultrahigh
vacuum system. A simple scaling relation shows, however, that it is not the optimal
choice: The magnetic field at the distance r of a wire with dimensions w < r and
carrying a current I scales like I/r. Moreover, the steepness of a trap is characterized
by the magnetic gradient dB/0r, which scales as I/r?. Tt is therefore highly desirable
to place the conductors as close as possible to the trap they generate. This argument
was pointed out in 1995 [3], along with a proposal to drastically reduce r: The magnetic
trapping field could be produced by a microfabricated structure. On such an “atom
chip” the distance between the wire and the trap would be reduced by several orders
of magnitude from centimeter to micron distances. Of course, microstructures also
support less current than macroscopic coils. In practice, however, heat dissipation is
more efficient for smaller structures. It is therefore safe to assume that when scaling a
conductor structure down by a factor of £ < 1, the maximum current will decrease by
less than a factor of k2, such that the gradient B’ ~ I/r? will increase.

It turns out that this idea greatly enhances the flexibility of magnetic traps. To
produce a trap with a given stiffness, a microfabricated conductor layout requires much
less current than a macroscopic coil. Since this current flows typically through Ohmic
conductors, microtraps require less power than macroscopic setups. In this way, atom
chips make it possible to achieve Bose-Einstein condensation in a setup that is portable
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and autonomous [88; 89].

For a given current, in turn, a microtrap will produce a far tighter confinement than a
macroscopic coil. This is beneficial in several ways: The density of a trapped quantum
gas increases for increasing confinement. And a high density allows for a highly efficient
evaporative cooling. Indeed, a laser—cooled cloud can be cooled into a BEC in ~ 1s in a
microtrap, one order of magnitude faster than in a macroscopic trap [8]. Furthermore,
the higher confinement renders new trapping regimes accessible. An example for this
application are one—dimensional quantum gases. Here, a strong confinement is applied
along two directions of the trap, strong in the sense that a sufficiently cold quantum
gas in this trap only populates the fundamental level of the trap along these directions
(4 < hw,). For the remaining direction, the confinement is deliberately chosen weak.
The gas then exhibits quasi-one—dimensional dynamics along this weak direction. Atom
chips have been used for a number of studies in this regime [10, 11, 12].

High field gradients and curvatures, created by small structures, also imply that the
trapping field falls off rapidly around the trap center. This allows to place multiple
traps close to each other, with a separation on the scale of r. This, together with
the fact that the microfabricated conductor layouts are easily scalable, allows to create
highly complex trap layouts, a true “quantum lab on a chip” [90, 91, 92]. In spite of
their complexity, such traps can be constructed from elementary building blocks. This
high degree of integration is reminiscent of modern microelectronics.

Furthermore, a magnetic trap on an atom chip is inherently close to a surface. This
allows to study the interaction between a quantum gas and solid state systems, such as
room-temperature surfaces [18, 15, 16, 19, 20], superconducting surfaces [93, 94, 95] or
mechanical nanoresonators [13, 14].

This idea has been realized in the late 1990s, when atoms were for the first time guided
[4, 5] and trapped [6] in surface traps. The term “atom chip” finally was coined in [7].
In such traps, atoms have been cooled into BEC [8, 9] and Fermi degeneracy [96]. The
electromagnetic microtrap just described is without doubt the most widespread approach
to trap atoms on a chip. It is worth noting, however, that a number of complementary
methods have emerged over time:

Permanent magnetic potentials can be fabricated by writing microscale patterns onto
a ferromagnetic film. These patterns can be designed to form traps, which are tunable
by an external bias field. BEC has been achieved in these traps [97], [98].

Electrostatic potentials In spite of being neutral objects, atoms still have a non—
zero electric polarizability. Therefore, electric fields can be used to create potentials.
Microfabricated electrodes have been used to this end [99]. However, atoms are high-
field-seekers for electric fields, so a purely electrostatic trap is forbidden by Earnshaw’s
theorem.

TOP potentials In this technique, the atoms are subjected to a time-dependent po-
tential. At each instant in time, the potential is made such as to provide a confinement
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of frequency w;. However, this potential is varied with a frequency wrop > wi. It
can be shown that this “time-orbiting potential” (TOP) creates an effective potential
which is the time average of the varying potential. This concept originally emerged to
prevent Majorana losses in quadrupole traps [100]. However, it has recently been suc-
cessfully exploited in electromagnetic chip traps [101] and makes trap layouts like ring
traps accessible [102], [103], [104].

Dressed-state potentials Magnetic transitions in the atomic ground state — with a
frequency in the microwave or RF range — can be used to create or modify traps. There
are two variations of this technique: One approach is similar to optical dipole traps:
The atoms are subjected to a driving field with a position-dependent Rabi frequency
Q(7) which is detuned by A from the atomic transition. This induces on the atoms a

lightshift V (r) = hﬁ@rz [105], which acts as a potential.
The other approach involves two components: A near-resonant driving field acting on
a transition between two states |¢g) and |e) and a static (typically magnetic) trapping
field. The static trapping field shifts the states |e) and |g) in a different manner and
creates thus a position-dependent detuning A(7). The resulting dressed states are a
position-dependent mixture of |g) and |e). Since both states couple differently to the
static field, this mixture modifies the trap. A typical application consists in creating
a barrier inside a trap by mixing in an antitrapped state |e) at its center [106]. Two

variants of dressed state traps have been investigated on microchips:

e RF dressing Radio-frequency (RF) fields can be used to address transitions between
adjacent mp sublevels of the atomic ground state. This has been used to create
dressed-state potentials [106] [107].

e MW dressing Microwave (MW) fields can be used to address transitions between
different F' sublevels of the atomic ground state. Using the near-field of microfab-
ricated microwave guides, state-dependent potentials can be created. [22], [108].

Optical fields Finally, microfabricated optical structures, such as microlenses or mi-
crofabricated holograms, allow for the manipulation of optical fields. These fields can
be used to create optical microtraps [109] or other miniaturized optical elements like
micro-MOTs [110].

In the following, we will concentrate on the most widespread type of surface trap,
the electromagnetic atom chip, which confines atoms in the magnetic field of a current,
which circulates in a microfabricated wire.

2.2 Electromagnetic Atom Chips
2.2.1 Overview: How to trap an atom with a wire

Trapping principle To create the trapping potential, a magnetic trap exploits the fact
that atoms have a non-zero magnetic dipole moment. We will discuss this property in
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more detail in section 3. For the moment, we simply note that, at small magnetic fields,
this dipole moment depends only on the total atomic angular momentum, which, in the
electronic ground state, is labeled by the two quantum numbers F,mg. If an atom in
the |F,mp) state is immersed into a magnetic field of magnitude B, it experiences an
energy shift

AEgp(B) = gpmppup | B| (17)

where gr is the Landé g-factor. This formula is valid for magnetic fields much weaker
than the hyperfine splitting AEg < AFgps. The Landé g-factor for 8'Rb takes the
values g1 &~ —1/2, go &~ 1/2, which implies that there exist three low-field-seeking states
12,2),12,1) and |1, —1).

The important consequence of equation 17 is that a position—dependent magnetic
field B(Z) translates into a position—dependent potential V(%) seen by the atoms. In
particular, a trap corresponds to a local minimum of the magnetic field.

We will now discuss, which wire layouts can create magnetic traps. First, we discuss
how traps can be created in two dimensions. Subsequently, we show, how these 2D traps
can be assembled to form various traps in three dimensions.

Example: a trap created by a single wire The simplest surface trap is constructed
from a single wire and a homogeneous bias field as shown in figure 10. For a wire along
x and a bias field along y, the resulting field is independent of x. In each y—z—plane the
bias field cancels the field of the wire at a position ¥y = (y = 0,z = z) with

= — = mim -
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Since the bias field is homogeneous, it does not affect higher—order derivatives of the
wire field. In particular, the gradient of the resulting field is equal to the gradient of the
wire field, which, at Zy, has the value
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Therefore, the magnetic field can be expanded around 7, as
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In the y—2z plane the modulus of this field grows in every direction around Zzy. Conse-
quently, the line (0,0, zo) + Aéz, A € R is a minimum of the magnetic field. A sample of
low-field seeking atoms can be held in this minimum above the wire.

The 2D quadrupole minimum The type of minimum encountered in the previous
paragraph is the most basic building block of chip traps. Since we will frequently refer
to it in the following paragraphs, it is useful to introduce some symbols and definitions:
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Figure 10: The simplest possible chip trap: The field of a wire (left, current flowing out
of the paper plane) is superposed with a homogeneous field (middle) to form
a quadrupole minimum (right). A sample of low—field seeking atoms would
accumulate at the quadrupole minimum and float above the wire.

A 2D quadrupole minimum is a field configuration, where the magnetic field vanishes at
a point ¥y and and grows linearly around this point with the Jacobian matrix dB.

. dBy  dBy
B(#@)=dB - (¥ — %)) = (ddi ji)(:)?—fo) (18)
dy dz

The Maxwell equation rotB = 0 implies that the Jacobian matrix dB is symmetric and
can therefore be diagonalized. We will refer to the two resulting orthogonal eigenvectors
¢4 and é€_ as the “quadrupole axes” and to the corresponding eigenvalues 5’ and B’ as
“quadrupole gradients”. The quadrupole gradients must satisfy the condition B/, + B’ =
0, in order to fulfill the Maxwell equation divB = 0.

To give a concrete example, let us apply these definitions to the example of the previous
paragraph (figure 10). The two quadrupole axes of this 2D quadrupole are €, = €, + €,
rotated by 45° with respect to the z—axis. The quadrupole gradients are B!, = £B;,
In 3D-space, a 2D quadrupole field has a third distinguished axis: The axis of the
resulting trap (€, in the example of the previous paragraph). We will refer to this axis
as the “zero line” of the quadrupole.

In a way, the 2D quadrupole field can be seen as the most basic building block of chip
traps. Since we will frequently refer to it below, we will introduce the symbols depicted
in fig. 11.

Grouping wires to elementary trapping fields Generally, a chip design is more com-
plex than the wire trap presented above and contains multiple current—carrying wires
and a bias field of arbitrary magnitude and direction. However, to analyze the resulting
trap, it is helpful to split the complex layout and the bias field into multiple simple
components, each of which creates an elementary trap like the one above.
Mathematically, let us assume the atom chip to have N wires with wire ¢ carrying
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Figure 11: A 2D quadrupole field (a). The quadrupole axes are directed along y and z,
the quadrupole gradients are of equal size. A quadrupole minimum (b): We
will denote by this symbol a point, where a complex field locally looks like
(a). A 2D quadrupole field in a 3D space (c): The field depends only on y
and z. In each plane x =const, it looks like (a). As an abbreviation for this
field, we introduce the symbols (d) and (e). The arrows in (d) and (e) are
intended to visualize the fieldlines of (¢), as seen from the side when looking
down either the negative z—axis (d) or the negative y—axis (e). We introduce
the same symbols for a 2D quadrupole field with 45°-rotated axes (f-h). Note
that symbols (d,e,g,h) denote a field which extends over the entire 3D space.
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current I;. It creates the field

N

g(f) = Z gwire i(Iz'7 f) + go (19)

=1

To find and analyze the resulting traps, it is extremely convenient to choose M subsets of
the wires W; = {i1, 42, ...} and to split the bias field By = Z]Ail By j such that each subset

of wires together with its bias field éo,j creates a basic trap, typically a two—dimensional
quadrupole trap. Eq. 19 can then be written in the form

é(f) = Z Z Buire (@) + éo,j (20)

7=1 ’iEWj

which is a sum over traps instead of a sum over wires. The basic building blocks of atom
chips are elementary traps, rather than wires and currents. This idea was developed
along with the first magnetic surface trap [84]. In the following paragraphs, we will
first present a number of such elementary traps and then demonstrate this technique by
dissecting today’s most common trap layouts into their elementary trapping fields.

2.2.2 Elementary Circuits to create 2D quadrupole fields

Two—dimensional traps can be produced by different trap layouts as depicted in Fig. 12.
A similar overview can be found in [111].

We have already introduced the layout 12a), which is the simplest trap. It is formed
by adding a homogeneous bias field By along —y to the field created by a wire carrying
a current along x. The axes of the resulting 2D quadrupole field form an angle of 45°
with the z—axis.

A more complex layout is 12 b) [112]. Here, two wires carry parallel currents (which
we will assume to be equal and denote by I). A bias field By along y digs a trap into
their magnetic field in much the same way as for the single-wire trap of fig. 12 a). The
configuration can be operated in two regimes: By < By and By > B, separated by
a critical field By = pol /(27d).

For By = 0, a quadrupole forms in the middle between the two wires. For increasing
bias field, the quadrupole shifts up along z. At the same a second quadrupole forms far
from the wires, where the field asymptotically looks like layout 12 a). At the critical field
By = B, both quadrupoles coalesce, forming a hexapole minimum. For By > B,
two quadrupoles form, which move towards the wires on the left and right half of a
demicircle.

We note that this situation is symmetric. Applying a By of opposite sign would create
a rotation-symmetric version of the trap below the plane of the wires.

The layout of 12 ¢) allows to create a quadrupole field with axes parallel to the axes of
the coordinate system. Applying a bias field B, along the z—axis creates two quadrupole
traps on the z—axis. As in the layout 12 b), they approach each other when the bias
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a)

Figure 12: 2D trap layouts. Traps can be created by a single wire (a) or double-wire
configurations carrying parallel (b) or antiparallel currents (c). The blue
dash—dotted lines indicate the paths along which the quadrupole minima
move for increasing bias field.

field is increased until they coalesce for a critical field B;;. For fields By > B, two
quadrupoles form, approaching the two wires in the z = 0 plane.

As a rule of thumb, it is helpful to summarize figure 12 in the following way: A trap
can be created over any wire of a chip [12 a)] and between any pair of wires [12b) and
c)].

The configurations of fig. 12 create two essential building blocks, which we will fre-

quently refer to in the following: (1) 2D quadrupole fields with axes aligned along the
y and z-axes of the coordinate system (as in configuration 12 (c)). We will refer to
them as an “upright quadrupole”. (2) 2D quadrupole fields, whose axes form an angle
of 45° with the z—axis (such as 12 (a) or 12 (b) for By < Be). We will refer to them as
“45°-rotated quadrupoles”.
This angle is somewhat arbitrary, since it depends on the orientation of the bias field.
It turns out, however, that in most common trap layouts, the bias fields are chosen
as in fig. 12, such that the configurations 12 (a) and (b) create indeed 45°-rotated
quadrupoles. In the following, we will assume that these configuration always create
this kind of field.

2.2.3 Crossing 2D quadrupole fields in 3D

So far, we have considered only 2D traps. Of course, a real-world trap must be three—
dimensional. There is a straightforward way to achieve confinement in all three dimen-
sions in chip traps: To cross orthogonal 2D traps.
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Figure 13: The common chip trap layouts (column “experimental realization”) imple-
ment different layouts of figure 12. The resulting 2D quadrupole traps cross
and give rise to various 3D fields. The layouts drawn in blue rely additionally
on the hexapole component of the wire field to realize 3D confinement (see

below).
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In the previous paragraph, we have discussed several wire configurations to create two
types of traps: 2D quadrupoles with upright axes and 2D quadrupoles with 45° rotated
axes. Crossing these two types of traps gives rise to three elementary scenarios depicted
in Figure 13. In two of these scenarios, the resulting field provides confinement in all
three directions. In one scenario, the result is merely a tilted quadrupole. To close this
trap, additional higher—order field components are needed, which we will discuss below
(paragraph “hexapole contributions”).

In terms of chip layout, six possible orthogonal crossings can be assembled from the
three structures of fig. 12. We are aware of five of these structures being actually
used in experiments. By far the most widespread ones are the “dimple” (axa with the
definitions of fig. 12), the “Z” (a x b) and the “U” (ax c¢). Some experiments also use
the Q (bx ¢) and the square (cxc).

In the following three paragraphs, we will discuss the field which arises from these
quadrupole crossings. This is rather technical and provides no deeper insight than figure
13. If the idea is clear from this figure, we recommend to skip this part and proceed
immediately to the paragraph “hexapole contributions”

For all the following considerations, we will assume that the zero line of the lower

quadrupole lies in the z = O-plane and the upper one in the z = zy—plane. We will
denote the gradients of the lower /upper quadrupole by B; and B, respectively and 3D—
vectors by ¥ = (z,y, z).
We emphasize the fact that all the following calculations deal with the crossing of ideal
quadrupoles. They neglect higher-order multipole components, which are present in the
2D traps of Fig 12. The results are only valid in a region where both 2D trapping fields
are predominantly quadrupolar.

Upright x Upright The theoretically simplest scenario consists in crossing two 2D
quadrupoles with upright axes (first row in Fig. 13). The resulting field is

. - 0
B(Z) = B, 0 + B, —y
z zZ— 2
T 0 0
= B | 0 | + B; y | +B. 0
0 0 (z — %)
with
B, = —Bj; Bé = —B/; B, =B, + B
B/
! u

This field is a 3D quadrupole, whose axes are oriented along the axes of the coordinate
system. This technique is used to create the 3D quadrupole field for micro-MOTs [113].
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Upright x 45° rotated The second scenario consists in crossing two 2D quadrupoles,
one of which has 45° rotated axes in the x—z-plane, the other one having upright axes in
the y—z—plane (second row in Fig. 13). In this case, the exact expression of the resulting
field is not particularly instructive. It can be shown that a 3D quadrupole field forms
at the position

B/

x:zoﬁ; y=2=0
!

with gradients

1 1
By =S(B,+/ B2 +4BP);  By=B,;  By=(B,— /B +4B})

The “27-axis is the y—axis, the other axes lie in the x—z—plane, tilted against the z—axis

by an angle
(%)
o = arctan | —
B

This technique is widely used to create magnetic quadrupole traps and the quadrupole
fields for mirror-MOTs.

At first sight, one might be tempted to classify also the (2-trap as this type, which is
used in another experiment of our group [14]. However, this trap operates in a regime of
strong contribution of the hexapole component (see below), so that it creates a quadratic
minimum rather than a quadrupole.

45° rotated x 45° rotated The third scenario consists in crossing two 2D quadrupoles,
both of which have axes being 45° rotated with respect to the z—axis (as sketched in the
lowest row of fig. 13). The sum of their fields is

z 0
B(@)=B;| 0 | +B,| z— 2
x y

It is clear that this field is nonzero everywhere. It forms a 2D quadrupole with a constant
non—zero field perpendicular to the quadrupole axes. The quadrupole forms along the
line
BIQ
= —UZO
B? + BP?

The quadrupole axes are orthogonal to this line and rotated to the z—axis by 45°. Their

gradients are
BB

This situation is found in the famous Z and dimple layouts. We note as a conclusion from
the above reasoning that both the Z and dimple traps tilt in the z—y—plane. However, to
create confinement in all three directions, these layouts rely on higher-order multipole
contributions of the wire field. This mechanism will be the subject of the next paragraph.

Bjz + By = 0; z
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2.2.4 Hexapole contributions

It is not clear, how the layouts of the lowest row of figure 13 can provide confinement
in all three directions. The above reasoning cannot explain this, since we have only
discussed quadrupole contributions so far. We have not yet used the degree of freedom
of higher order field components. Indeed, it is these that are used to close the quadrupole
tube in the last row of figure 13 and the following paragraphs will discuss, how this is
done:

The 2D hexapole field To discuss higher-order multipole moments in chip traps we
will start again by considering the 2D situation. The lowest-order magnetic minimum
with vanishing first derivative is the 2D hexapole field [84]. In a coordinate system with
vectors @ = (z, z) it can be written as

2 _ 2
5] N 57/, r~—=z
Bhex(Z) = B ( 9 ) (21)
The only free parameters are the field curvature B” and the orientation of the hexapole
axis. For all further reasoning, we will assume the latter to be oriented along the x—axis.
If a homogeneous field B,é, is added, the hexapole field remains a minimum, centered
at the origin.

2D quadrupole 2D hexapole 3D loffe-Pritchard
trap

Figure 14: Superposing a 2D quadrupole field with an orthogonal 2D hexapole field
creates a maximally asymmetric 3D loffe-Pritchard trap.

Superposing a 2D quadrupole with the hexapole field We will now discuss, how
3D confinement is obtained by adding this 2D hexapole field to another 2D trap in the
orthogonal directions. Let us consider the situation of figure 14, where the field 21 is
crossed with a 2D quadrupole with upright axes (along z and y, gradient B’, its axis
coinciding with the z—axis). The resulting field reads as follows (B, being an arbitrary
homogeneous field along the quadrupole tube):

BJ: +B”<$2 - 22)
B(¥) = —B'y (22)
+B'z2 —2B"xz
Expanding the magnitude of the resulting field around the origin yields

12

2B,

B(Z) = By + B"(2% = 2°) + o (y* + 2%) (23)
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Figure 15: The dimple trap layout (a). Basically, each of the wires implements the
single—wire trap (figure 12 a), The two resulting 2D quadrupoles cross (last
line of figure 13) such that a tilted quadrupole tube forms above the wire
crossing. For small I, its tilt is negligible and the tube is closed by the
curvature of the field of the gray wire (b and c) in very much the same way
as is shown in figure 14.

This field has a minimum of nonzero field at the origin and, provided that B” <
B"”/(2B,), provides confinement in three directions. In every direction, the confinement
is harmonic. By equation 17, a harmonic magnetic field B = B"z?/2 with curvature B”
will create an equally harmonic potential V(x) = mw?z?/2 with trap frequency

B T TR 21
m

The numeric value is valid for 8 Rb in the trapped mp = 41 states.

The trap just discussed is a special case of the commonly used loffe—Pritchard trap.
This trap crosses a 2D quadrupole with a 3D hexapole field, which allows to tune the
field at the center and all three curvatures [84]. This is in contrast to the IP trap on a
chip, which crosses the quadrupole with a 2D hexapole field and where eq. 23 implies
that only two curvatures and the field at the center can be chosen freely.

Experimental realization of the 2D hexapole field Experimentally, hexapole com-
ponents are exploited in the 2, H, Z and dimple layouts. They are present in the field
of the longitudinally confining wires and can be used to close a quadrupole trap.

To see how this is done precisely, let us first consider the dimple trap as it is shown
in figure 15. It consists of two crossed wires along x and —y carrying currents I, and
I,, and two bias field By, and By, along x and y. To first order, this layout creates two
crossing 2D quadrupoles (as in the last row of figure 13). The resulting field is thus a 2—
dimensional quadrupole above the wire crossing, which is tilted in the z—y—plane Let us
assume that the currents are chosen such that the quadrupole field of I, is much weaker
than the quadrupole created by I,. The transverse confinement then arises basically
from I, and the quadrupole contribution of I, merely tilts the resulting 2D quadrupole
slightly in the z—y—plane.
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Figure 16: On the z-axis, the field of two parallel wires has a nonzero curvature
B" = d’B,/dz* (a). This is tantamount to saying that it has a nonzero
hexapole component on the z—axis (b). (d) shows the curvature B” on the
z—axis between the parallel wires, normalized to By = 6 (e) shows the
resulting trap frequency f, = w,/(27) for Rb in the trapped mp = +1
states, assuming d = Ilmm and [ = 1A.

This quadrupole is converted into a loffe-Pritchard trap by exploiting the hexapole
contribution of /. The field of I, on the z—axis is directed along x and of magnitude

I
B.(z) = _ Holy

onz

It therefore has a curvature (i.e., a hexapole component) of strength

2 2
_@Bs _ _d'Ba ol :4.106£.U—A (25)

B//
() dx? dz?  Amz3 m? (z/mm)3

and this hexapole component closes the quadrupole as has been demonstrated in figure
14.

The same mechanism is used in the Z and the H trap layouts. Here, the hexapole
contribution is created by two wires along y, carrying parallel currents (figure 16). On the
z—axis between the wires, their field has a nonzero curvature (i.e. a hexapole component)

of strength
T 22 (22 — 3d?)
B"(z) = 2
(Z) T <d2 +22)3 ( 6)
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Figure 17: Limiting case of strong transverse confinement. The wires along y imprint a
potential V(z) = grmppup| B, (x)| on the axis of the 2D quadrupole.

A plot of this field curvature, along with the resulting trap frequency, is presented in
figure 16 (c) and (d). The curvature has a maximum at z/d = /2 — 1. It crosses zero
at z/d = v/3 and becomes negative for z/d > V3. To form a stable trap in this latter
regime, a bias field along —x has to be applied. This reverses the sign of the curvature,
so that a stable trap can form. In this regime, the trap is effectively a dimple trap (see
below), since, for z > d, the two wires asymptotically look like a single wire carrying a
current 217.

Limit of strong transverse confinement A useful intuition for all traps of the lowest
row of figure 13 can be obtained by considering the case of a 2D quadrupole along =z,
floating at a height z, above several wires, all of which run along y and which create
a field B,. (Fig. 17). We will consider the limit that, at z = z, the gradient of the
2D quadrupole B!, is much stronger than all gradients of Ew, In particular, we assume
Bl > dBw7z/dx|($’Ovzo)‘v’x. In this case, the resulting field minimum will form on the

line (z, —By./B’, 2), but, because of the above condition, the tilt of the quadrupole is
negligible. The magnetic field at its center is thus the x—component of the field of the
crossing wires, creating a potential V' (x) = gpmpup|By+ By..(x)|. From an engineering
perspective, the wires are a useful tool to “dig dimples” and “place endcaps” on the
potential along x.

Nonperturbative situations The above reasoning relies on the expansion of the mag-
netic field into multipole contributions around the trap center. In regions far from the
trap, especially near conductors, the field can deviate significantly from this approxi-
mation. The most important example of such a situation is a dimple trap, with both
currents and bias fields being of the same size. In this case, the resulting trap is tilted
by 45° and higher-order contributions bend it towards the chip in a ring-like manner
[84].

During chip design, we numerically simulate the field generated by our chip.
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Figure 18: Trapping potential for the configuration of Fig 12 a), A current of I = 3A is
placed at z = 0 and the trap is created by a bias field of By = 8G. Gravity
acts like an additional gradient, which severely alters the shape of the trap
and reduces its depth.

2.2.5 Trap depth

The depth of a chip trap is the potential difference between the center of the trap and
the highest barrier of the total trapping potential. This total potential includes not
only the magnetic potential but also gravity. The latter significantly influences the trap
depth, as we will now illustrate for the single-wire trap of Fig. 12 a). The potential
energy landscape of this configuration is illustrated in fig. 18. In absence of gravity, the
“highest barrier” is at infinity and the trap depth AFE is defined by the bias field

8TRb clock states

AE = grmppupBy = 33uK - By /G

Gravity adds a potential gradient dV/dz = —mgz which counteracts the magnetic con-
finement, since the chip is typically mounted upside-down. In this case, the highest
barrier lies at a finite height z,,, where the gravitational gradient is just canceled by the
magnetic potential:

clock states I
“99 = \/ mFiiﬁnIZ#OI D clock st 800Mm\/ A (27)

dB clock states G
_ mg 87Rb 1:k tat 30— (28)

dz Zgg grmrUB cm
AE = grmrppB(zeg) — mg(zeg — 20) (29)

A quadrupole chip trap in presence of gravity is asymmetric, with gradients towards /
away from the chip of dV/dz = gpmppp|z — 249| dB/dz £ mgz.

The trap depth for a trap of given gradient grows with the current in the conductor.
This becomes clear from considering the scaling transformation I — A\2I, By — \B,.

47 2008



2 Atom chips

Under this transformation zy — Azg, but the gradient dB/dz|,, is kept constant. The
distance to the barrier grows linearly z,4 — 29 — A(24y — 20), as does the magnetic field at
the barrier B(z,5) — AB(z,4,). Due to equation 28 this amounts to a higher trap depth.

Experimentally, trap depth is a concern mostly for weak traps with gradients of the
order of the gravitational gradient. For these traps, a high—current conductor on the
backside of the chip can create a deeper trap than a conductor on the chip.

2.3 Optimal loading of chip traps

In chip traps, nearly all the experimental cycle can be performed by adiabatic ramps
between different traps. The only exception is the loading of the initial magnetic trap.
Typically, this trap is charged from a cloud coming from a compressed MOT (¢cMOT),
which has been further cooled by polarization gradient cooling (“optical molasses”).
This cloud, which is not in thermal equilibrium, is captured by “building around” the
initial chip trap. The cloud then thermalizes in the trap. The parameters of this initial
chip trap must be chosen such as to make this transfer as adiabatic as possible. In this
section, we will derive the optimal trap parameters for this task.

We will quantify adiabaticity by the increase of entropy of the cloud, between its value
S1 before the transfer and its value Sy in the initial trap. With this definition, the
optimal parameters for the initial chip trap are such that AS = S, — S; is minimized.
This criterion merits a comment: Strictly speaking, the relevant figure of merit would be
the phase space density nA® in the magnetic trap (with n being the number density and
A the thermal deBroglie-wavelength). This, however, is directly related to the entropy
per particle [114] by the relation

where v is a constant characterizing the trap potential (7 = 3/2 for a harmonic trap,
v = 3 for a spherical quadrupole trap). For reasons to be discussed in section 2.3, the
trap will always be adiabatically transformed to a final trap which is harmonic. The
initial trap’s v therefore does not influence the peak density of this final trap and the
adiabaticity of the loading process is fully characterized by the entropy % in the initial
magnetic trap.

1D case We will first study the 1D case of this problem for a harmonic trap and a
quadrupole trap.
Let the trap have a potential V(x, \) with some adjustable parameter A. Precisely, we
will parametrize the harmonic trap by V(z) = m(2w\)22?/2, X being the trap frequency.
The quadrupole trap will be parametrized by V(x) = A|z]|.
We will assume the initial cloud to be normally distributed, with a width ¢ in position
space and a temperature 7} in momentum space.

1 z? 1 p?

e 252 . e 2mkpT]

2mo V2mmkgT)

p1(z,p) =
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The validity of this assumption is not completely clear. At the center of a MOT, light
pressure is so high that the core of the cloud has a constant rather than normally
distributed density [115][116]. In the last phase of the compressed MOT, however, we
attenuate the repumper laser to reduce the light pressure, so that this effect should not
play a role and we will assume a normally distributed density, as has been done by
previous authors [105]. A cloud with this distribution has a total energy and entropy

= Fely S = E (2 + log (2rmkgTy) + log (27?02))

E
! 9 2

Building up the initial trapping potential V' (x) transfers to the cloud an energy

AE - / Z dp / Z dapy (. )V () (30)

After the transfer, the cloud thermalizes in the trap at a new temperature T5. In spite
of AE > 0, this temperature is not neccessarily higher than 7. The reason is that the
trapped gas has a different heat capacity than an untrapped gas.

This temperature is obtained by solving for 7T, the equation of energy conservation:

! dlog(Z>)
Ei+AE = Ey=—— 522
v 2T d(1/kgTy)
where Z, is the partition function
V() p?
Zy(\, Ty) = / e FBT2 kT2 dxdp
r

The entropy can be calculated by

So(A) = % + kplog(Zy(\, Tz))
and, subsequently, AS can be computed and minimized. The exact calculation is lengthy
and we will not present it in detail. We find that for a transfer into an optimum harmonic
trap
1 [k 1
"otV m oo

a result, which has also been obtained in [105]. For the transfer into an optimal
quadrupole trap, we find

kpT
T,=Ty,  AS>0; /\:\/gBl (31)

g

The salient conclusion is that the initial magnetic trap should be harmonic.
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3D case It is straightforward to extend this calculation to a 3D trap for the special
case that it is the linear sum of 1D traps and a density that factorizes into the different
axes

V(T) = Vo) + Vy(y) + Va(2)  p1(@) = pra(@) pry(y) p12(2)

In this case, the transfer is mode—matched, if it is mode—matched for each of the axes.
The general 3D case is more difficult and best optimized experimentally.

Experimental values Expressing the above criteria in experimental units, mode—matching
is achieved for a harmonic trap of

A/T7/10uK
w:50Hzﬂ

0/100um

and, for a quadrupole trap, an optimal (though not mode—matched) transfer is achieved

for
dB 87Rb clock states 38 G Tl/lO[LK

dz cm  0/100pm

Coming from the molasses, our atoms typically have a temperature of 10K and are
distributed in a cloud of ¢ = 200um in all three directions. Using the above criteria,
the transfer would be perfectly mode—-matched for a harmonic trap of w = 25Hz and
optimal (though not mode-matched) for a quadrupole trap of dB/dz = 19G/cm.

The latter is experimentally not achievable, since it is lower than the gravitational
gradient (equation 28).

2.4 Orders of magnitude

|1mm|

atomic
|
cl oud&

<

50umI |3_A> | —

y

LN H1  dimple  H2

Figure 19: The canonical trap layouts of an atom chip. Transverse confinement (along y
and z is created by a single-wire trap (green)). The resulting 2D quadrupole
tube is closed by the curvature of a dimple wire (middle) or an H/Z configu-
ration (H1 and H2). The numbers are order—-of-magnitude values of our chip
design.

rans-
verse

To conclude and to prepare the following chapter, we will give some orders of magni-
tude for the traps which can be realistically realized on atom chips.
As we have shown, chip traps can produce two types of magnetic trap: quadrupole and
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loffe—Pritchard traps. The usefulness of the former type is severely limited by an ef-
fect known as Majorana transitions: At the center of a quadrupole trap, the magnetic
field vanishes and its orientation changes sign on an infinitsimally small length scale.
An atom coming close to this center cannot adiabatically follow the orientation of the
magnetic field and can undergo a nonadiabatic transition to an untrapped state.

The same process is also possible in loffe-Pritchard traps. Here, however, the magnetic
field at the trap bottom By has a nonzero and adjustable value, which can be chosen
sufficiently high to suppress these transitions. By > 1G is a typical condition to lower
these losses below the rate of background collisions [117]. Therefore, all traps in our
experiment will be Toffe—Pritchard traps satisfying this criterion.

To give orders of magnitude for this type of trap, we recall that the canonical way
to produce a loffe-Pritchard trap on a chip is the one shown in figure 19: Transverse
confinement is created by a simple wire trap and the resulting 2D quadrupole is closed
to a loffe-Pritchard trap by the curvature of either a dimple wire or the H/Z layout.
Typically, the longitudinal confinement (along x in fig. 19) is chosen much weaker than
the transverse confinement (along y and z in fig. 19) w, < wy,w,. In this situation, eq.
23 implies that the transverse frequencies are nearly equal

2

Wy R w, = < 10kHz = wpax

0
where the inequality uses our typical experimental values (By = 1G, I = 3A in a wire of
width w = 50pm). The longitudinal confinement is created by the curvature B” of the
field of the dimple or H/Z wires. An order of magnitude for the maximum confinement
can be obtained from eqs. 25, 24. They state that the longitudinal confinement of a
dimple trap can reach up to w, = 1kHz (assuming that the trap can approach the wire
up to 50um).

The lowest possible trap frequencies are not limited by the layouts. To see this, we
refer to fig. 16 (d) and note that even lower frequencies can be reached by lowering the
current or increasing the spacing between the H/Z conductors. The lower limit of the
trap frequency rather arises from the physical size of the cloud. As a rule of thumb, we
do not want our clouds to exceed b5mm of length, which a cloud at 500nK would reach
for trap frequencies below

Wmin — 0.5Hz

This limit is also useful to avoid two other difficulties, which become exceedingly critical
in traps with sub-Hz frequencies: The time to adiabatically expand a cloud into a shallow
trap grows quickly for decreasing trap frequencies. Furthermore, a cloud in a sub-Hz
trap becomes exceedingly sensitive to vibrations, since the vibrational background is
typically larger at low frequencies.
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3 Theory of the atomic clock on a chip

This chapter can be seen as the synthesis of the two preceding ones: We discuss how a
competitive compact atomic clock can be constructed using the atom chip technology
and how its parameters must be chosen to achieve the best possible performance.

Naturally, atom chips have been considered as candidates for future compact atomic
clocks immediately after they had come into existence (see, for example [118], the “News
and Views” comment of R. Folman and J. Schmiedmayer on [8]). The implementation of
such a chip clock, however, is not straightforward, since a magnetic trap is an inherently
difficult environment for a clock medium. The magnetic trapping field and the mean—
field potential of the atomic cloud both shift the clock transition of an atom, when it is
immersed into the trap. If these shifts were constant, they would not be critical, at least
not for a clock which serves as a secondary standard. Variations of these shifts, however,
are critical. Variations in time directly transform into noise on the clock’s frequency.
Variations in space, in turn, lead to dephasing of the atomic sample, which limits the
possible interrogation time.

Luckily, there exists a pair of hyperfine states, for which both states are magneti-
cally trappable and all the mentioned shifts are sufficiently small [39]. This state pair
is formed by the hyperfine states |0) = |[F' = 1,mp = —1) and |1) = |2,1) of 5"Rb. The
magnetic moments of these states are equal to first order, so that they experience the
same magnetic trapping potential. Moreover, their transition frequency, which is pro-
portional to the energy difference between both states, is shifted by a magnetic field only
to second—order. The mean-field shift, which arises from collisions in the atomic cloud,
is also small for this state pair, since the inter— and intra—species scattering properties
for both states are nearly equal. The immediate consequence is that a superposition of
these states remains coherent for a long time, even in a magnetic trap. Indeed, coherence
times up to 2.5s have been measured for this system [39].

The first atom chip experiment using this state pair, [29], used it as a probe for external
sources of decoherence. In this experiment, the coherence between the states was found
not to be compromised by the nearby surface of the atom chip, with coherence times of
the order 2—3s even at micron distances from the chip. Running as a clock, the setup
immediately reached a stability of 1.7 x 1071,/s, allthough it had not been custom-built
for this application.

The clock which we describe in this thesis is an extension of this work, intended to
push this result into the commercially interesting 107!3/s range. A conceptual view is
presented in figure 20. It is proposed to work in the following way:

The interrogation is performed on a cloud of 8Rb, either a cold thermal cloud or a
condensate, which is held in a magnetic microtrap above an “atom chip”. Initially, the
sample will be prepared in the state |0). The clock transition is a two—photon transition
between this state and the state |1). To coherently control this transition, we will
couple a microwave and an RF signal to the chip, providing the two photons needed
to excite the transition. By exposing the atoms to two subsequent m/2—pulses of this
two—photon drive, we can perform a Ramsey interrogation of the mentioned transition
in the magnetic trap. To read out the resulting population imbalance, we will perform a
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Figure 20: Atomic clock on a chip (conceptual): Atoms are held in a magnetic micro-
trap. A hyperfine transition between two trapped states is interrogated by a
Ramsey scheme.

state—selective detection of the atomic clouds by absorption imaging on a CCD camera.
In this chapter, we will lay out in detail the theory of this atomic clock on a chip.

We start in section 3.1 by discussing the laws which govern the evolution of the atomic
cloud, for the case of a Bose—Einstein condensate and a thermal cloud. We then discuss
the details of the interaction of the atoms with the static magnetic trapping field, the
coupling to the excitation pulses and the collisions between atoms.

We subsequently make use of this theory in an analysis of the coherence time of an atom
in our trap (section 3.2). Here, we propose a simple model of decoherence, which leads
to a prediction of an optimum parameter set for a trap with a maximum coherence time.
Finally, we develop another major result of this thesis in section 3.3 by predicting the
stability budget of the proposed clock. Previous estimates [119][108] have taken into
account noise of the magnetic field and of the number of atoms. We extend them by
including phase and amplitude noise of the interrogation microwave as well as losses in
the cloud.

3.1 Description of the system
3.1.1 Overview: global Hamiltonian, description of a BEC and a thermal cloud

As the previous paragraph, this subsection will describe the clock cycle, but in a quan-
titative way. We first introduce a global Hamiltonian of the system, describing the trap,
interactions in the cloud and the excitation pulses. Afterwards, we discuss how the
atomic cloud, either a BEC or a thermal cloud, evolves under this Hamiltonian during
a clock cycle.

The global Hamiltonian Our system is most conviently described in the formalism
of second quantisation: Let 9] (Z) and 1, (Z) be creation and annihilation operators
creating or annihilating an atom in the internal state |a) (with « € {0,1}) at the
position Z. They shall satisfy the bosonic commutation rule

[Va(@), ¥}()] = 036(T — ). (32)
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3 Theory of the atomic clock on a chip

In this formalism, our system can be described by a global Hamiltonian [120, 121], which
describes the magnetic trap, the interactions in the atomic cloud and the excitation
pulses.

-H :-E[O + -E[int + -Hex =
) (I )
/ Zl/) ( + Va(@) + ahAm) Yo (T)+ (33)

2 Zaaﬁw (&) (F05()

/ d?”Z M) 4yt (@)

Each of the terms of this Hamiltonian will be discussed in a subsection of its own in the
following. For the present discussion, we only make the most essential comments:

Hyis a single—particle Hamiltonian describing the motion of each atom in the trapping
potential V,,(#). This trapping potential is state-dependent (index «) and slightly dif-
ferent for both clock states, due to the second—order Zeeman shift. We operate the clock
at parameters where the difference is small (V; — Vy < V,,). Neglecting this difference,
the potential for both clock states in our experiment is a three-dimensional harmonic
trap of the form

m w2x? + w? 2+wz,22 — mgz. 34
5 (Wa LY g

characterized by the three trap frequencies wy,w,,w,.
The term ahlg; accounts for the hyperfine splitting between the states |0) and |1).
We have adopted the convention that v, (7), 1] (Z) annihilate and create atoms in the
rotating frame of the interrogation microwave (see chapter 1, egs. (1) ff.). In this frame,
the hyperfine splitting is reduced to hAg; = A(w., — wiy), the detuning between the
flywheel signal and the atomic resonance.

ﬁim describes the elastic collisions of atoms in the trapped cloud. Elastic collisions
of cold bosonic atoms are commonly described by a contact potential Vi (% — &) =
47;:}2 agd(r — @) where the strength of the interaction is characterized by the s—wave
scattering length ag [122, 123, 124]. Hjy is the second—quantized version of this potential.
For our system, there are three possible types of elastic collisions, between pairs of atoms
in the respective internal states (]0), |0)), (|0), [1)) and (|1), |1)). This leads to three
contributions to ]:Imt, characterized by three scattering lengths agg, ag1 = a9 and aq;.

I:Iex, finally, describes the interaction of the atoms with the excitation pulses driven
from the flywheel. The excitation signal coherently transfers atoms between the states
|0) to |1) with a Rabi frequency Qg = 27, and this transfer is switched on in pulses,
which we describe by an envelope function f(t).

Va<f) =

Bose—Einstein condensate Let us now turn to the question how the atomic cloud
evolves under the Hamiltonian (33). This is most transparent for the case that the
cloud forms a Bose—Einstein condensate, which happens for sufficiently low temperatures
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3 Theory of the atomic clock on a chip

kpT < hwoN'3 with © = (w,w,w.)'/? being the harmonic mean of the trap frequencies.
In this paragraph, we assume this condition to be fulfilled and discuss the evolution of
a condensate over a cycle of our clock.

Generally, a BEC of our clock states is a two—component condensate, with each of
the clock states |0), |1) being described by a position— and time-dependent macroscopic
wavefunction 1)y, ¢1, which is related to the density of the cloud by n.(Z) = [ (T)[%. Tt
is instructive to express the wavefunctions in polar coordinates 1, = [1,|e*®>. This is
the hydrodynamic picture ([125], chapter 7.1.1) where the wavefunctions are interpreted
as two superfluid quantum liquids with amplitudes |, | and phases ¢,. This picture is
particularly suited for the study of our clock, since, as we shall see, the clock signal is
precisely the differential phase ¢; — ¢y.

The time evolution of these wavefunctions is goverened by the Hamiltonian (33), which
in this description turns into the coupled Gross—Pitaevski equations [122, 126]

, h2v? Arh? hQ

ihdylo = { 5+ Vo —— (aoolvnl” + a01|w1|2)] vo+ = f() (35)
_ h2v? A h? RO

thopy = [ o + Vi + hAg + 77Tn (a01W0‘2 + a11|w1‘2):| Py + 201f(t)¢0.

Before the first 7/2 pulse all atoms are prepared internally in the state |0) and ex-
ternally in some condensate wavefunction v so that 1y = 1,9, = 0. Typically, ¢ is a
Thomas—Fermi distribution [105]

Y(7) = max|(u — V(1)) /U, 02, (36)

with Uy = 4nh%agy/m and p being the chemical potential. This distribution is only an
approximation, which requires that Uyn > hw,, .. Our typical traps have densities in
the range (n) ~ 10'* — 10%cm™=3. This implies that the approximation is fulfilled for
trap frequencies w < 27 - 750Hz.

The first 7/2 pulse transfers this density coherently to the state |1). For a real and
spatially homogeneous Rabi frequency €2y the resulting wavefunctions read

o = —ithy = ¢/V2 (37)

with ¢ being the wavefunction of the condensate before the 7/2 pulse.

Between the /2 pulses both wavefunctions evolve freely. We will postpone the dis-
cussion of this evolution and first complete the review of the clock cycle by discussing
the effect of the second 7/2 pulse. This second pulse closes the interferometer and maps
the differential phase ¢; — ¢y to a measurable signal, the population inversion between
both clock states. To see this quantitatively, let us assume it to take place on a much
faster timescale than the evolution of ¥, and denote by t_ an instant just before and by
1, an instant just after this pulse. The pulse remixes both spin components, leading to

new wave funCtiOIlS
Yo _ L1 e\ (e
()= (1) () e
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3 Theory of the atomic clock on a chip

These new wavefunctions can be seen as an interference between the wavefunctions before
the pulse. Consequently, their amplitude contains information about the differential
phase (¢ — ¢g) before the pulse.

ol *(t4) = [(Ivo]? + [¥1]%)/2 + |bo| 41| sin(¢r — o)] (-)

This differential phase ¢ — g is the most essential result of a clock measurement. We will
now study, how this phase evolves between the two 7 /2 pulses. Basically, its evolution
is governed by eq. (35), which can be rephrased in the hydrodynamic picture as ([125],
eqs. 7.18,7.19)

O(|¢al)
ot
Opy h h2 Arh?

h
= ——V ’ (WJa\QV%)

R0 V2ol + 5 — (Vo) + Vo + aoo|to|” + aon |t [ 38
o = gm0l g (V00 + Vo T (awobol? +alnl?) (39
a hQ h 4: h2

! ilz‘zmwlw?ww%(wl) Vi Ao+ = (@l + i)

Immediately after the first 7/2 pulse, both wavefunctions are equal (eq. 37). We can
therefore assume || 7'V?[11| & o] 7' V2|1o] and (V¢y)? ~ (Vp)?, so that the differ-
ential phase ¢, — ¢ evolves at a rate

Wo1 = 8t(<;50 - ¢1)

= Ao + (Vi = Vo)/h + @(&11\%! — ago|vo|? + ao (|tho]* — [¢1 %))
=Ap+(Vi—VWo)/h+ @n((an — ago) + f(2a01 — a1 — ap)) (39)
=Ap+ (Vi —Vo)/h+ &Umf

= A(n + ow.

Here, we have introduced the density n = [1|* + [1/1]?, the population inversion f =
(|vo|* = |¥1]?)/n and dwys as an identifier for the mean—field shift.
Let us interpret this result: In the limit of equal wavefunctions considered here, the
cloud can be considered as being composed of stationary atoms, with a locally different
phase difference ¢, — ¢, which precesses at a locally different rate wy;. This rate contains
the clock signal Ay, but also a position—dependent clock shift dw, which arises from the
differential Zeeman shift (V; — V4)/h and the mean—field shift dwy,¢

Of course, we have to question the validity of the approximation made above. Stated
more precisely, it must read i/ (2m)| |11 |~V {11 |—|1o| P VE|1bo]| < dw and R/ (2m)|(Vd1)?—
(Vo)?| < dw. As stated above, it is well fulfilled immediately after the first Ramsey
pulse of our clock. It breaks down after some time, however, if the clock shift dw is
position—dependent. Then, the phase variation ¢; — ¢y grows locally different according
to eq. (39) and develops a gradient V(¢ — ¢g). This gradient drives a separation of
the atomic species, a process known as “demixing”. This can be understood from an
energy perspective: A non—vanishing clock shift dw means that the effective trapping
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3 Theory of the atomic clock on a chip

potential, including the mean—field shift, is different for both states, so it is energetically
favourable to separate them.

In previous studies on mixed condensates of our clock states [36, 126], the system
demixed on a timescale of < 100ms after the first 7/2 pulse. These studies, however,
have been conducted in a parameter region with a large clock shift dw. We will take
care to run our clock at parameters which lead to a minimum Jdw, in order to suppress
dephasing due to a varying clock shift. We estimate that demixing appears on a similar
or slightly longer timescale as dephasing, since the emergence of a spatially varying phase
is the precursor of a spatially varying density. By this argument, demixing should not
appear in a clock, since the interrogation time is neccessarily lower than the dephasing—
limited coherence time.

Thermal cloud of classical particles Let us now consider the case that the clock
is operated on a thermal cloud, whose temperature 7' is sufficiently high that \g, =
V2rh?[(mkpT) < ape = /h/(mw), but sufficiently low that kg7 < fuw,. In this
situation, an atom can be treated semiclassically, by describing its external degrees
of freedom as a classical particle with well-defined position and momentum (Z,p) and
treating the internal degrees of freedom as a quantum—mechanical two—level system. The
Hamiltonian (33) then has the following meaning: The term H, describes the oscillation
of this classical particle in the harmonic trapping potential V(7). Hey allows to prepare
the internal degree of freedom in an arbitrary coherent superposition of |0) and |1) and
we will show later (sec. 3.1.3) that this manipulation can be assumed not to affect the
classical motion. As for the condensate, the terms V; — Vi and H;,; lead to a position—
dependent “clock shift”, which renders the transition frequency position—dependent

wo1(T) = Ap1 + 0w (40)
— A(]l -+ (Vi — %)/h + 5wmf<n(f>7 f(f»

Here, dwy,¢ is the mean—field shift, arising from collisions of the atom with the surround-
ing cloud. It depends on the local density of the cloud n and the population inversion
f = (no —n1)/n by a relation, which we will derive in section 3.1.4

4dmh
Wt = %n((au —ago) + f(2a01 — a1 — aw)) (41)

The study of the phase accumulated by one atom is complicated by two facts: An atom
oscillates classically in the potential and therefore explores different regions with different
local clock shifts (41). Furthermore, the combined external and internal dynamics of the
atoms leads to an evolution in time of n and f. A number of models have been proposed
to quantitatively describe the effect of these dynamics on the atomic density, population
inversion and coherence [127, 121]. Here, we only summarize the evolution of n and f
for the case of our clock.

Immediately after the first 7/2 pulse, the atoms thermally populate the potential (34),
which results in a density

<

(&)
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3 Theory of the atomic clock on a chip

Internally, all atoms are prepared in a coherent superposition (|0) 4 ¢?[1))/v/2, so f=0.
As for the condensate, a spatially inhomogeneous clock shift dw can separate the two
hyperfine species. This can happen even for hdw < kgT', in a process known as “spin
waves” [119, 38, 127]. In such a spin wave, the populations ny and n; separate in an
oscillatory manner, leading to a position—dependent and oscillating f. This process is
only present when both the inhomogeneity of the clock shift and the density exceed a
critical amount [37]. For this reason, this effect will not play a role in our clock: As we
will discuss in the following sections, we will take care to operate the atomic clock at
parameters where dw is minimal, in order to minimize the dephasing caused by a varying
frequency shift. We will also operate it at lower densities than in [37], in order to reduce
noise produced by a fluctuating mean—field shift. Both choices should also suppress spin
waves.

3.1.2 Interaction with the trapping field

We now turn to a detailed discussion of each contribution to the Hamiltonian (33). We
start by the single—particle Hamiltonian

. h*v?
Hy= [ &’Z @) (- V(@) + ahAor ) ¢a(T).
: /V DI < V() + ahdor ) ()
Here, we will neither discuss the kinetic energy term —h?V?/[2m], nor the hyperfine
splitting Ay, but focus instead on the origin of the trapping potential V,,(Z). The origin
of this potential is the interaction of the atoms with the magnetic trapping field B(Z),
which we will now discuss in detail.

Eigenstates and —energies of an atom in a magnetic field A magnetic field couples to
an atom by the spins of the valence electron and the nucleus and the angular momentum
of the valence electron. This coupling competes with the mutual interactions between
these spins, which are independent of the magnetic field. Therefore, both the atomic
eigenstates and —energies are a function of the magnetic field, which we will discuss in
the following.

Both of our clock states belong to the 551/, ground state of 8"Rb. This state is
characterized by L = 0,J = S = 1/2,1 = 3/2, where S is the spin of the valence
electron, L is its angular momentum and I is the spin of the nucleus. The Hamiltonian
of this ground state is a sum of the hyperfine coupling (magnetic coupling between J
and 7) and the interaction with the magnetic field:

H=Hy+ Hg = A J - T+ M?B (ngz + glfz> -B (42)

Here, Ay is the hyperfine coupling parameter, g; is the coupling constant of the nucleus
and g; the coupling constant of the valence electron. All of them are constants of the
8"Rb atom. We have assumed the magnetic field to be oriented along the z-direction,
B = Be,.
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Figure 21: Left: Eigenenergies of the 8"Rb atom, calculated as a function of the mag-
netic field with the Breit-Rabi formula (eq. (43)). Red lines indicate the
magnetically trappable states. The numeric values for all coupling constants
have been taken from [129]. Right: frequency shifts of the |2,0) — |1,0) and
|2,1) — |1, —1) transitions as a function of the magnetic field. The arrows
indicate the “sweet spots”, where the frequency is to first order insensitive to
fluctuations of the magnetic field.

The eigenstates and eigenenergies of the Hamiltonian (42) are best understood by
considering the limiting regimes of dominating Hyg or dominating Hpg, which are char-
acterized by B and separated by a critical By = 2Ayns/(9s08) ~ 2kG.

If the magnetic coupling is small against the hyperfine splitting, B < By, the dominat-
ing term in equation (42) is Hyg, whose eigenstates are the eigenstates |F,mp) of the

total angular momentum F=J+ f, which can take the quantum numbers F' = 1,2,
mp=FF—-1,...,—F.
For increasing fields, these states adiabatically transform into the eigenstates of Hp,
which are the eigenstates |J,my, I, m) of the angular momenta of the electron and the
nucleus. Consequently, these states are the eigenstates of the system for B > Bj.

To determine the crossover between these regimes, the Hamiltonian (42) can be an-
alytically diagonalized, resulting in the Breit-Rabi—formula [128], which describes the
atomic eigenenergies as a function of the magnetic field. For the case of 8"Rb, it reads

Epmy (B) = gipsmeB + Ay (1+ mpx + 22)"? (43)

where © = (97 — 91)usB/(2Ans). The “+7 sign applies to the F' = 2 manifold and
the “—” sign to F' = 1 and the special case (mp = 2 and z > 1). We have labeled
the eigenenergies by the quantum numbers F,mpg, even though the |F,mg) states are
eigenstates of the atom only for small magnetic fields.

A plot of the resulting eigenenergies is presented in figure 21. In a typical atom
chip experiment, only the region of low fields is attainable. Here, four states are low—
field—seekers, which can be magnetically trapped: |2,2),(2,1),|1,—1) and |2,0). The
last one, however, depends too weakly on the magnetic field to be of any practical

use. These field-dependent eigenenergies are precisely the potential of our clock states
Vo(B) = Ej1,-1)(B), Vi(B) = Ej2,1)(B).
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Figure 22: Hyperfine states in presence of a low magnetic field. Magnetically trapped
states are drawn in red. The red arrows indicate the two—photon transition
addressing our clock state pair.

Zeeman shift of the transition frequency between different states The choice of
our state pair |0) = |1, —1) and |1) = |2,1) is motivated by the fact that there exists a
“sweet spot” at the “magic field” B,, = 3.23G, where the transition frequency between
the states is to first order insensitive to magnetic field fluctuations (see figure 22). In
the vicinity of this value, it varies quadratically,

Vi(B) — Vo(B)
2mh

with B, = 3.22892G, A fy = —4497.3Hz, 3 = 431.3596Hz/G? [39, 37]. Notice, however,
that only the difference frequency varies quadratically. Each individual state shifts
linearly by AF =~ Bug/2, rendering it magnetically trappable.

At low magnetic fields, the hyperfine structure contains one more sweet spot, for the
state pair |2,0)-|1,0) at By, 0—o = 0. Conventional microwave atomic clocks, such as Rb
fountain clocks, use this state pair and operate near this field. The 2nd-order Zeeman
shift for this state pair By_o = 575Hz/G? is slightly stronger than for our state pair.
This inconvenient is outweighed by the fact that the states are linked by a one—photon
transition and that a low magnetic field is experimentally easier to control.

Afiny-10) = = Afo+ 3(B = Bn)®. (44)

3.1.3 Interaction with the excitation pulses

We will now discuss in detail the last term H, of the Hamiltonian (33), which we will
express for the following discussion in first quantization

B (Z)
2

o= [ @73 2D 00 @@ = D f0) O+ he. (19

aFf

This subsection discusses two major topics: Firstly, the coherent coupling 2,9 between
our clock states |0) = |1, —1),|1) = |2,1) actually arises from a two—photon transition.
We couple a microwave and a RF photon to the atoms, which together link the two
clock states, resonantly enhanced by either the |2,0) or the |1,0) state. We review the
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Figure 23: Strengths of the magnetic dipole transitions in the 8"Rb ground state mani-
fold. B, o _ refers to the amplitude of the co-rotating +, 0, —component of
the B-field: B(t) = >, o) Be€e™" + h.c, where & are the unit vectors of
the spherical basis €1 = (€, + iéy)/ﬂ, €y = €,.

theory of two—photon transitions and compute the effective two—level coupling €2y.
Secondly, the coupling €219 is in general complex and position—dependent in both am-
plitude and phase, since the size of atomic cloud is comparable to the wavelength and
dimensions of the excitation field. We discuss the effect of such an inhomogeneous
excitation on the motional state of the atoms and the coherence of the atomic cloud.

Dipole matrix moments in the ground state manifold The hyperfine states of the
551 /2 ground state manifold are linked by magnetic dipole transitions, as can be seen
from the fact that the coupling Hamiltonian Hp of eq. (42)

ap =2 <g11+ gJJ) ~ B T (46)
h h

has non-vanishing matrix elements (F’, m/},|Hg|F,mg) between the low field atomic

eigenstates |F,mpg). To describe transitions between these states, we employ the theory

of section 1.1.1. To this end, we assume B(t) in eq. (46) to be time-harmonic B(t) =

Boe™! + h.c.. Writing out eq. (46) in the |F,my) basis and identifying the result with

equation (1), we obtain the Rabi frequency

BO (F',mp|J|F,mp) (47)

The matrix element (F’ ,m’F]ﬂF ,mp) can be calculated analytically analogous to the
calculation of the electric dipole matrix moment for optical transitions [129]. Alterna-

61 2008



3 Theory of the atomic clock on a chip

1) L —
Wil F=2
ffffffff i _
i)
Wos
F=1
0 — v ? ?
a) b)

Figure 24: Two photon—transition. Principle (a) and two possible implementations for
our state pair (b, dashed and full lines respectively). The intermediate state
can be chosen to be [2,0) or |1,0). For either case, the detuning A can be
chosen negative or positive, resulting in four different configurations.

tively, one can transform the the |F,mp) states to the basis |J,m , I, m;), where the
relevant matrix elements are known. The resulting values are presented in figure 23.

Two—photon transitions in a three—level system The theory of two—photon tran-
sitions in a three-level system is discussed in [130] and we will quote only the result
which is relevant for this work: Consider a three-level system |0), |i),|1) with energies
Ey =0, E;, E1, with one-photon transitions linking the state pairs (]0), |7)) and (i), ]1)).
In this system, Rabi oscillations can be driven between the states (|0),|1)), which do not
significantly populate the intermediate state |i). To this end, both one—photon transi-
tions are driven simultaneously by two fields with (Rabi) frequencies (€20, 21;), woi, wit,
detuned from the intermediate state |i) by A and the final state |1) by J. See figure 24a)
for an illustration. The resulting time evolution is that of a two—level system formed by
the states |0), |1) (egs. 22,23 of [130], all Rabi frequencies are assumed to be real)

0% 0% . .
\<1|z/;(t)>\2 = Qb;w 31n2(910t/2); \(O|w(t)>|2 =1- Q@m s1n2(5210t/2); \(z|z/;(t)>\2 ~ 0
10 10
(48)
with
Qiolh; , . 03—
Qr10 = 20A1 ) Q%o = Q%ﬂo + (5 - 510)2§ 510 - f (49)

The shift §}, can be identified with the AC Zeeman shift, induced on the state pair
|0), |1) by the driving fields.

To derive this result, a number of approximations are made: First, the rotating—wave
approximation is used, amounting to hA, hd, ko, h; < (Ey — E;), E;. The population
of state |i) is negligible only for Q2), 22, < A?. Furthermore, it is assumed that § < A.
The deduction in [130] is made for the case wy; = w;;. The extension to the general
case requires that each driving field addresses only one transition. With the above
approximations, this is fulfilled as far as wg; > w;; or wo; < wj.

For our state pair, there are four different implementations of this scheme. We can
choose either |1,0) or |2,0) as the intermediate state and freely choose the sign of A. The
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Figure 25: Couplings of the RF and microwave photons in the full manifold.

criteria for this choice are discussed in [131]: One has to avoid scattering into untrapped
states and interfering paths between the clock states. All experiments to date [131], [119],
[29] passed through the state |2,0) and used a detuning of —0.7MHz< A < 1.24MHz.

Lightshifts in the ’Rb hyperfine manifold In the 8’Rb ground state manifold, the RF
and microwave radiation couple to several transitions other than the intended transitions
|1,—1) — |2,0) and |2,0) — |2,1), as shown in fig. 25. All these couplings are off-
resonant as one-photon transitions. Also, they can be linked to only one resonant
two—photon transition involving the clock states. Therefore, the theory of the previous
paragraph remains valid for the levels |1,—1),(2,0),|2,1) and the remaining couplings
can be taken into account by perturbation theory. Each coupling from a clock state to a
non—clock state |m) then leads to a lightshift, which is derived in [130]. Quantitatively,
the lightshift on the clock transition caused by radiation of frequency w is given by
([130], rewritten in the approximation w — w;y <K wjo, w — wyj <K wy;V1)

=Y ey O (50)
01— - d(wso — w) - 4wy —w)

where s runs over all non—clock levels of the hyperfine manifold. This sum can be
interpreted as the sum of all shifts induced on the level 0 (first term) minus all shifts
induced on the level 1 (second term). Interestingly, the lightshift dy, of eq. 49 can be
identified as the ¢ = |2,0) term of this series. In our case, the full coupling Hamiltonian
can also be diagonlized exactly. See A for a derivation.

To obtain the relevant couplings for our experiment, we note that our excitation pulses
are o—polarized, containing an equal amount of o, and o_ polarization. This, with the
appropriate Clebsch—Gordan coefficients, leads to the couplings shown in Fig. 23. From
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these, we obtain the following lightshift of the two—photon transition

1 1 1 1 2 1
for = D (E HRTINSEYNS I ToY.N A)> + O (E BERTNEEY 4A)
(51)
A<Ap Q%/[W
TO4A

The salient conclusions are twofold: The RF photon is “lightshift neutral” and does
not shift the transition. The lightshift of the microwave photon mainly arises from
the coupling to the intermediate state. Eq. 51 assumes this state to be |2,0), but an
analogous calculation extends this result to the intermediate state |1,0).

To minimize the lightshift, the optimum choice consists in choosing Qrr as high as
possible. The limit here is the condition Qrp < A, to ensure a negligible population of
the intermediate state. A must be chosen as high as possible. Here, there is no physical
limit, but for the above theory to be valid, the rotating wave condition A < A must
be fulfilled.

Effect of the excitation on the motional atomic state The time evolution (48) is
that of an effective two—level system of the states |0),|1). It is possible to summarize
the RF and microwave coupling to one single coupling Hamiltonian (45) which leads to
the same time evolution:

o (@)

Q. .
Hex ’LOQlZ ‘
2

~
—

Here, we have allowed for a position—dependent coupling 21¢(Z), with 7 being the posi-
tion operator. Also, we allow for a complex 2,9, €21; to include the phase of the RF and
microwave fields. The detuning from the two—photon resonance is summarized to the
term Ag; = d — &), of (33).

In general, the excitation field €¢(%) can be position dependent in both amplitude
and phase. Exciting an atom with such a position—-dependent field can modify its ex-
ternal state of along with its internal state. It is this side effect which we will study
in the following paragraph. We will show that a magnetic trap on a chip can be made
sufficiently strong to confine the atoms in the Lamb—Dicke regime, where the absorption
of the microwave and RF photons does not change the motional atomic state.

Position—dependent phase Let us first consider the case that the microwave radiation
is delivered to the atoms by a propagating wave along the x—direction. In this case

QlO (i’) = Qoeiki

with k being the wave number of the microwave. The phase gradient of the RF radiation
can be neglected even if the RF photon is coupled from a propagating wave, since
krr < kpyw. The only contribution to the position—dependency of €219 then is the
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Probability of a sideband excitation

3 - -
10 A ®
treutlein04
i ® harber02
= 5 clock trap
v L |
5 10
o
(]
o
£
Q L |
10 — pstO'l%
- psbzl%
— p,,=10%
0 Il Il T
10 0 1 2 3
10 10 10 10 10

Trap Frequency [Hz]

Figure 26: Probability of a sideband excitation in a thermal cloud. The data points
“harber02” and “treutlein04” represent the parameters of [39] and [29], as-
suming the worst—case scenario that the microwave is a propagating wave,
propagating along the weakest trap axis. The precise amplitude and phase
profile of the freely propagating microwave is not known in these experiments.
The data point “clock trap” represents the ideal clock trap which we will de-
rive in section 3.2, with the interrogation being equally performed by a wave
propagating along the weakest trap axis.

phase gradient of the microwave. Typically, the atoms are confined in the x—direction
to a trap with frequency w,, so it is convienient to expressing z in terms of the ladder
operators @, a' of a harmonic oscillator with trap frequency w,:

hk2

- i at+a) 1<1 st A
Q10(2) = Qge'V 2mes ( RRORS o (1+in(a’ +a)).

Here, we have introduced the Lamb-Dicke parameter n = \/hk?/(2mw,) = Erecon/ (Fws).
In this configuration, sideband transitions (between different trap levels |m + 1), |m))
will be suppressed against carrier transitions by a ratio

[(m + 1[¢1 H|m) 0)* _
[{m[ (1| H[m)|0)?

(m + 1)n.

where |a)|) denots an atom in the external quantum state |a) and the internal quantum
state |3). During a m—pulse, the total probability for a sideband transition to the adjacent
states |m £ 1) is pg, = (2m + 1)n?. For a condensate (m = 0), the probability of such
an excitation is clearly negligible (n?> < 10™* even for a trap of w = 27 - 0.1 Hz). For
a thermal cloud (m = kpT/(hw,)), a plot of the excitation probability for our relevant
parameter space is presented in figure 26.
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Position—dependent amplitude We now turn to the discussion of a position—dependent
amplitude of the Rabi frequency. A variation of the amplitude, too, can transfer recoil
to the atom, as has been pointed out in [132]. In our experiment, the amplitude of the
Rabi frequency varies most, when the microwave photon is delivered from a standing
wave along the r—axis. Assuming the cloud to be placed at x = 0 in an antinode of such
a standing wave, the Rabi frequency reads

1 1
Quo(#) = Qo (1 — 51&%2) = (1 — 5172(&*2 +a? +a'a+ aa*))

The probability of a sideband excitation is thus of the order m?n*, suppressed for n < 1
to one higher power than for a phase gradient.

Effect of a non—negligible Lamb—Dicke parameter If the Lamb-Dicke parameter is
negligible, the 7 /2 pulses do not change the motional quantum state of the atoms, leading
to a Doppler—free interrogation. A non—negligible Lamb-Dicke parameter compromises
this in two ways:

If py, is non—negligible, but p3 < 1, a fraction 2py, of the contrast of the Ramsey fringes
is lost. This is due to the fact that a fraction 2pg, of the atoms changes their motional
state during one of the Ramsey pulses. For these atoms the two arms of the Ramsey
interferometer are not closed, so they do not contribute to the signal.

If even p?, is non—negligible, the Ramsey interferometer can be closed by a second-order
process, in which the atom changes its motional quantum number by +1 during the first
and F1 during the second 7/2 pulse. Such an atom contributes to the signal, but has
effectively interrogated a transition of frequency wp; + w,. In the worst case (when this
“wrong” transition leads the atom to the top of a Ramsey fringe), this process induces
an error Ay = p2 on the population inversion f = (Ny — Ny)/(N1 + No).

In our experiment, we have to limit the latter process to contribute a smaller error
than the shot-noise-limit oy = 1/ V/N =~ 1%. This amounts to ps, = 10%, which is also
an acceptable limit for the loss of fringe contrast by first—order sideband processes. If
the interrogation is performed with a propagating wave, it corresponds to the red line
in figure 26. For interrogation with a standing wave, even lower trapping frequencies
and/or higher temperatures can be used. In summary, the Lamb-Dicke regime for the
microwave photon can be easily reached in a chip trap, so we will assume the clock to
operate in this limit in all the following.

Semi—classical interpretation of the loss of fringe contrast As discussed, a phase or
amplitude gradient during the excitation can reduce the contrast of the Ramsey fringes.
This can be understood semi—classicaly by assuming that each atom of the cloud is ex-
cited by the first /2 pulse into a coherent superposition cos(6/2)|0)+e sin(/2)[1), with
a position—dependent (z) for a position—dependent amplitude or a position—-dependent
¢(r) in the case of a position—dependent phase of the excitation field. On the Bloch
sphere, the cloud is smeared out on either the equator, in the case of a position—
dependent phase, or a longitude, in the case of a position—dependent amplitude. Aver-
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Figure 27: Decoherence induced by a variation of the driving field in amplitude or phase.
The atomic state, averaged over the whole cloud, is in a partly classical
mixture, which reduces the contrast of the Ramsey fringes.

aged over the whole cloud, this reduces the length of the Bloch vector, which corresponds
to the contrast of the measurement. See figure 27 for an illustration.

Doppler effect, comparison with fountain cavities Performing a clock interrogation
on trapped atoms has one essential advantage: The interrogation is Doppler—free, if it
is performed at a negligible Lamb-Dicke parameter n < 1. To see this, one uses the
fact that in quantum mechanics, the Doppler effect can be interpreted as a consequence
of the recoil of the absorbed photon [133]. This is best seen for a two-level atom (with
levels |0), |1), separated by fw,;) which propagates as a plane wave and absorbes a
photon. This atom undergoes a transition between the two plane-wave states |k)|0) and
k+k,)|1), where k, = wph/ € is the recoil transmitted by the absorbed photon. To excite
this transition, the photon must have a frequency

1
Wph = Wat + ﬁ

(k+k)? k2 B v )
T — % = Wat (1 + ZCOSQ_I—O(kr))

where v is the velocity of the atom and 6 is the angle between this velocity and the
incident light wave. This relation corresponds exactly to the classical formula of the
Doppler effect. In a trap, this recoil is quantized, since the atom can change its external
state only between different trap levels. If, moreover, the trap is so stiff that n < 1,
the atom cannot change its motional state at all during the excitation. The recoil of
the photon is then transmitted to the trap as a whole and the interrogation becomes
Doppler—free [134].

This presents a huge advantage compared to clocks which operate on untrapped atoms.
In these clocks, a finite propagating wave ratio in the excitation zone immediately causes
a Doppler shift in the interrogation. As a consequence of this effect, the cavities of atomic
fountain clocks are carefully optimized to produce a maximally pure standing wave [135].
In this respect, the use of trapped atoms significantly simplifies the design. The details of
the excitation field are irrelevant, with the only constraint that the resulting Lamb—Dicke
parameter must not exceed the limits discussed in the previous paragraphs.
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3.1.4 Collisions in the atomic cloud

The atoms in the cloud interact. These interactions compromise the clock operation
in two ways: Elastic collisions give rise to a mean—field potential, the term H,e of the
Hamiltonian (33). As we have seen, this term leads to a position-dependent shift of the
clock frequency. Inelastic collisions lead to losses, which cause fluctuations, since they
render the mean—field shift time—dependent. In this subsection, we will discuss both of
these effects, but describe only the details which are relevant for our experiment. For a
more detailed discussion, the reader is refered to [125].

Inelastic collisions Phenomenologically, inelastic collisions are categorized by the way
they scale with the atomic density n. Precisely, the decay rate of the atomic density n,
is expanded into a power series in density

n
n—a = —Ya — Z’ya[mg — Z%{gvngnv +....
“ g By

The terms of this expansion can be interpreted as follows:

One—body losses, which are independent of the atomic density, are described by 7.
They limit the lifetime of each atom to the timescale v,'. Experimentally, such losses
arise mostly from collisions with the background gas of the vacuum.

Two—body losses arise from inelastic collisions between two atoms. Consequently,
they scale linearly with ng, which is proportional to the probability for an atom in state
« to hit an atom in state 5. These losses are the dominant loss process for our clock
states. Their rates have recently been measured in a condensate of these states [126] to
be

Yor = 0.780(19) x 107 ¥em?®/s; 11 = 1.194(19) x 10~ ¥cm? /s (52)

Yoo 18 negligible against these rates. Physically, these losses arise from two different
processes:

e Spin—exchange collisions: These losses have the same physical origin as the
elastic collisions described by Hiy: The repulsive core felt by two overlapping
atoms. The strength of this core depends on the spin of the valence electrons of
the colliding atoms (electrons with parallel spins will experience a stronger Fermi
repulsion). Such a collision can induce transitions between different |F, mg) states,
since the |F, mp) states are not eigenstates of the electron spin. It does, however,
conserve the total internal angular momentum F = F,+F, of the colliding atoms 1
and 2. Mostly, these transitions scatter atoms into untrapped states, so that they
amount to losses from the trap. For our clock states, there are several possible
reactions of this kind

2,1) +12,1) — [2,2) +[2,0) (53)
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e Dipolar relaxation: These losses arise from the magnetic dipole interaction
between the spins of the colliding atoms. This interaction does not conserve F , 1t
only conserves the total angular momentum L+F , Where L is the orbital angular
momentum of the colliding atoms (classically speaking: Their impact parameter).
In this way, two colliding atoms in an s—wave state (with orbital angular momentum
L=0) can be scattered into a d-wave state (L=2) and the angular momentum for
this process is taken from the internal angular momentum.

We are not aware of a measurement which would distinguish between these two mecha-
nisms. The loss rates (52) include both.

Three—body losses arise from inelastic collisions, where two atoms collide to form
a molecular bound state. These collisions involve a third atom taking up the excess
momentum and energy. Therefore, the rate of these collisions is proportional to n?, the
probability of atomic three-body—encounters. The rate constant for this process in the
|1, —1) state of 'Rb has been measured to be y11; = 4.3 x 107*’cm®/s for a thermal
cloud and ~y;;; = 5.8 x 1073%m5 /s for a condensate, differing by a factor of 3! because
of the bunching of the bosonic atoms in the thermal cloud [136].

Elastic collisions Elastic collisions arise from the isotropic interatomic potential cre-
ated by the van-der-Waals—-interaction at long distance and the repulsive core of the
overlapping electron shells for short distances. For collisions of cold bosonic atoms,
however, these details are irrelevant and the potential can be replaced by a contact
interaction, the term Hyy of the Hamiltonian (33).

oL / PE Y tas CLEHE) (@0 (@) (54)

«,=0,1

where the strength of the contact potential is characterized by the s—wave scattering
lengths a;;.

To compute the clock shifts arising from this potential, we will outline an analysis of
Kurt Gibble [137]. The basic idea is to consider a cloud of only two atoms, where all
shifts from the potential 54 can be computed explicitly.

Let us consider two identical bosonic atoms. Let |0), |1) be two accessible orthonormal
internal states and |¢), | ) two accessible orthonormal external states (with (Z|¢) = ¢(Z)
for some wavefunction ¢). Let |¢x) denote a distinguishable two-particle state |$)1]x)2.

With these conventions we can derive the possible two—particle states of the two—atom
system: In a thermal cloud, the atoms of a colliding pair are in different external states
and arbitrary internal states. Their two—particle state must therefore be a linear com-
bination of the symmetric states

) = (l¢x) +[x0))[00) / V2 (55)
6 = (ox) + [x)(|01) +[10)) / 2 (56)
u) = (lox) +[xo))I11) / V2 (57)
s) = (lox) — [x¢))(|01) — [10)) / 2 (58)
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We will refer to |t) as the “triplet state” and to |s) as the “singlet state” and denote the
total state vector by the linear combination ¢ = d|d) + t|t) + u|u) + s|s), obeying the
normalization condition |d|? + [¢|? + |u|® + |s|* = 1.

To compute the clock shift of the mean—field interaction, one has to compute the time
evolution of these states over one clock cycle. For the evolution stemming from the
Hamiltonian 54, one notes that all the states are eigenstates of the collision Hamilto-
nian 54. This is easily proven by expanding |¢)|a) and |x)|a) in the form |y)|a) =
[ @2 (2)Y](¥) and using the commutation relations (32) several times. For the time
evolution stemming from the excitation pulses, one assumes a generic coupling Hamilto-
nian Hy = 7€y /2|0)|1)(o|(0] + 7, /2|x)|1){x|(0] + H.C. with Rabi frequencies Q,, €2,
which are in general different for different external states. The resulting time evolution
reads

0 d = %t — A—\/gs — Agd
Ot = %u + g;;d + gt
10 = %u — %d — 20s
1 = %t + %S + Agu

with

Ag = (911 —900); 09 = (2901 — goo — 911); G = (g11 + Goo)/2
4h o o
g = aas [ PE@Pn()
Q = (Q+0Q)/2  AQ=(Q—Q)/2

By calculating the time evolution over a full Ramsey cycle, it can be shown that the
different terms lead to a clock shift of ([137], eq. 5)

Av = a9 + %9 cos(6) cos(Aby) sin(f;) sin(y) — 9 sin(2A0,) sin(Afs) cos(fy)  (59)
2r  Am Am
where 0, = Qt,. /2, Al = AQt. )5 are the pulse surfaces of the ath 7/2 pulse, t, /2 is the
duration of a 7/2 pulse and A is the amplitude of the Ramsey fringes (A = 2 if there is
no decoherence).

Let us now apply this theory to our experiment: Let us first assume that the Rabi
frequency is independent of the external state, A{2 = 0. In this case, the first two terms
of eq. (59) give a nonzero contribution. Assuming perfect fringes (A = 2) and expanding
to lowest order in 6, 85, one obtains

_Ag  dgng—my

Av (60)

C2r 2mmg 4 no
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with ny,ng being the densities of the |0) and |1) populations. In a cloud of N atoms,
the shift of one atom arises from the collisions with the other N — 1 atoms. Neglecting
collisions of more than two atoms, this shift is calculated by summing N —1 contributions
of eq. 60. The result is the frequency shift of one atom, immersed into a cloud of density
n, with a population inversion f = (ng — ny)/n

2h
Ay — En[(all —ago) + f - (2a01 — a11 — ago)] for a thermal cloud. (61)

This result has been experimentally verified on our clock transition [39]. Note, however,
that this same reference [39] errourneously states that the prefactor 2ag; — a3 — agg of
the term proportional to f depends on the coherence between the |0) and |1) parts of the
atomic wavefunction. This issue has been the subject of the “factor of 2 controversy”.
Meanwhile eq. 61 has been proven to be valid for coherent superpositions as well as
classical mixtures of |0) and |1), both experimentally [138] and theoretically [137].

The frequency shift for an atom in a condensate can be derived analogously by as-
suming both atoms to be in the same external state ¢. In contrast to the thermal case,
the singlet state then does exist, and the collisional shift of the states |d), [t), |u) is a
factor of two smaller. The final result is

Av = —nl(a1; — ag) + f - (2a01 — a11 — ago)] for a condensate. (62)
m

The results (61, 62) have been derived with the approximation that the Rabi frequency
does not depend on the external state (A2 = 0). The validity of this assumption remains
to be checked: We recall from section 3.1.3 that the Rabi frequency is homogeneous along
the y— and z—directions, where the atoms are confined in a strong trap, but varies in
phase or amplitude along the z— direction, where the trap is weak. Again, two cases
arise in this direction, depending on whether the microwave is coupled from a standing
or a propagating wave. In the case of a standing wave with wavevector k, the Rabi
frequency varies along x as

An atom in the Ith motional quantum state of the trap |l) will experience an average
Rabi frequency €; = (I|Q2(2)]l). The difference AQ of the Rabi frequency of two random
atoms will be of the order of AQ = (o — U, )/2 with ly, = kgT/[fw]. €, can be

computed from the virial theorem mw?x?/2 = kgT'/2, yielding
k*kgT
2mw?

(len] Q2(2)| 1) = Qo (1 —
With our numerical values k ~ 20mm, 7" = 500nK, w, = 27 - 0.5Hz, we obtain
AQ =0.1-€

The shift due to this variation should therefore be observable. It arises from the second
and third term of eq. 59. To see it, one would either have to operate the clock with a
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population imbalance, so that cos(f;) # 0 and the 2nd term is nonzero, or with a 2nd
Ramsey pulse, which is not a perfect 7/2 pulse. In this case, cos(fy) # 0, and the 3rd
term would be nonzero. In usual clock operation, where f = 0 and f, = /2, the shift
will not be visible.

Let us finally turn to the case that the microwave is coupled as a propagating wave. In

this case AQ) = 0, yielding no shift.

3.2 Coherence

We will now derive a first result from the above theory and estimate the coherence time of
a superposition of our clock states in a magnetically trapped cloud. This coherence time
is limited by dephasing, arising from the fact that the frequency shifts in a magnetically
trapped cloud are position—dependent. We will show in subsection 3.2.1 how this limits
the coherence time of the cloud. We will then study how the trap parameters must be
chosen to minimize this effect, treating first a trap in zero—g (subsection 3.2.2), then a
trap in presence of gravity (subsection 3.2.3).

3.2.1 Decoherence by dephasing

The dominant source of decoherence in our system is dephasing: As discussed above,
the transition frequency of an atom is shifted in the trap, mainly by the second—order
Zeeman shift and the mean-field shift induced by the surrounding atoms. Seen as a
clock, each atom advances or lags slightly against the average atom in the cloud. The
detection, however, does not measure with atomic resolution, and, averaged over the
cloud, this dephasing leads to a loss of contrast.

Decoherence in the density matrix and Bloch vector descriptions This is best
quantified in the density matrix formalism. Immediately after the first 7/2 pulse, each
atom is prepared in the state [p9) = (|0) + i|1))/V/2, corresponding to the following
density matrix of its internal states:

As a simple model, let us assume that the varying frequency shifts are normally dis-
tributed over the cloud, so that the detuning A = w,; — wyg, of each atom is described
by the distribution

_ (A-2g)?

2
20A

P(A) = Pbo€

During the Ramsey time, each atom accumulates a phase, evolving into the state
1 (A)) = (]0) +ie™*1))/+/2, with a statistically varying A for each atom. The density
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matrix is thus given by

>
Il

/ dA p(A) [ (A)) (W1 ()]
(A) ( e ) (63)
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In the Bloch sphere picture, this can be seen as a Bloch vector of length e oAt/ 2 je.,
shorter than the radius of the unit sphere, which turns around the z—axis of the sphere
with the angular velocity Ay.

Effect on the Ramsey fringes When the Ramsey cycle is closed at time ¢ by the
second /2 pulse, the resulting excitation probability reads

()P = 51+ €27 cos(A1))

In presence of decoherence, the Ramsey fringes decay with a time constant of 1/oa. As
in section 3.3.1, one can find an optimum Ramsey time Tk, maximizing the slope of the
central fringe. This results in the optimum quality factor

o—1/2
Qopt = Wat
OAT

achieved at a Ramsey time of
TR = O'zl

Computation of 0o The frequency spread o of a given trap can be easily calculated,
if the atoms are assumed to be static. In this case, the spread of the Zeeman and mean—
field shift over the equilibrium distribution of the atoms can be evaluated analytically
or numerically.

We will use this method extensively in the following, in spite of two concerns: A minor

concern is that the frequency shift might not be distributed normally as assumed above.
A major concern, however, is the assumption of static atoms. For a condensate, it can
be justified by eq. (39). Indeed, in a condensate, the phase evolves only locally, as long
as the spatial dynamics of the wavefunctions is negligible. This will be the case in our
clock, since the interrogation time must end before external dynamics (“demixing”) sets
in.
The situation is less clear for a thermal cloud, where the atoms move and collide during
the interrogation time. Here however, experiments show that motion and collisions tend
to improve the coherence time [39]. The spread calculated from static atoms can thus
be used as a worst—case estimate. Furthermore, we will show below, that the optimized
trap parameters calculated in this way agree fairly well with experimental data.
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Figure 28: Clock shifts in a magnetic trap (conceptual): The trapping potential as well
as the atomic density are position—dependent. Consequently, the Zeeman as
well as the mean—field shift vary with position. The curvature of the Zeeman
shift can be tuned by choosing the offset of the trap bottom from the magic
field B,,. By a proper choice of this offset, it can compensate the mean—field
shift.

3.2.2 Magpnetically trapped cloud in zero—g

We will now estimate the frequency spread o for a magnetically trapped thermal cloud
in absence of gravity. Basically, this presents a situation as in fig. 28. In this special
case, however, the calculation can be simplified using an idea sketched in figure 29:
We will express all relevant quantities — the Zeeman shift, the atomic density and the
mean—field shift — as functions of B, so that the spread can be computed analytically as
a one—dimensional integral. For the sake of convenience, we will shift the origin of B,
such that B = 0 corresponds to the bottom of the trap.

Definitions As discussed above, the frequency spread is caused by the position—dependent
Zeeman shift (eq. (44))

6Ap = (B — (B, — By))* = 3(B — AB)? (65)
and the position-dependent mean—field shift (assuming a symmetric population ng = n;)

Amh _m
5An = L(CLH — aoo)n = 4} noe€ ngTB. (66)
m

Our goal is to calculate the spread of the sum of these shifts 0A = 6Ag + dA,,
o3 = (3A7) — (34)* (67

where (-) denotes the average over the equilibrium single—particle density. This density,
too, depends only on B and can therefore be rewritten as a density over the variable B.

np(B) = n09<B)€7MBB/(2kBT) (68)
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Figure 29: Calculation of the frequency spread in absence of gravity: The Zeeman shift
varies quadratically with B. The mean—field shift in the trap is a pure function
of magnetic field, too, so the spread can be computed from a one—dimensional
integral. The compensation described in figure 28 reappears in this picture
in the following way: By choosing the background field of the trap, the cloud
can be placed in a well-defined region of the Zeeman parabola, such that the
sum of Zeeman and mean—field shift yields a modified (and, ideally, flattened)
profile of the net shift JA(B).
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where g(B)dB is the infinitesimal space available at a magnetic field B: g(B) = dV/dB
with V(B) = [, @*Z7O(B — B(Z)), © denoting the Heaviside step function. With these
definitions, the expectation value reads

() = [ dBua(B)£(B)/N.
0
Scale invariance of the harmonic trap For a harmonic trap, we obtain

o(B) = 25\ /"2 VB

@3\ m

It follows, that the single—particle density

3 3
21 [ LB _ kBB no from eq. (84) 1 UB - 42B_B /5
N —_ L= A/ B 2kgT — - 2kgT B 69
nB/ @3 m no € B \/ﬂ ]{?BT € B ( )

is independent of @ and N. It only depends on the temperature and the magnetic field
and is universal for all harmonic traps. From inspection of eqgs. (67), (65), (66), it follows
immediately that o depends only on the parameters 7', ng and AB. It does not depend
explicitly on the choice of the trap frequencies, they only enter implicitly via ng.

The same conclusion can be drawn from a different argument: Consider a scaling
transformation of space along one direction by a factor A, z; — z, = A\z;. Evidently,
such a scaling transformation will leave all shifts and averages invariant, if n and B are
rescaled such that n'(") = n(Z), B'(") = B(Z). Such a scaling transformation of space
can be implemented by transforming the trap parameters in the following way:

N —= AN  w—-w/A

In other words: Once we have found a trap with minimum frequency spread, we can
generate a continuum of equally “optimal” traps by applying transformations of this
kind. Experimentally, this transformation can be thought of as stretching or squeezing
the trap and then filling or emptying the new trap (changing N), such as to keep ng
invariant.

We note that this argument is equally valid for the multiplication of traps. Using M
identical traps increases the available volume ¢g(B) by a factor of M. Rescaling N by
1/M, one recovers the same expectation values and shifts as for a single trap.

There exists another, less evident, scaling relation: If the trap parameters are scaled
according to

T— X AB—MAB  ng— \ng

the frequency spread in the trap scales according to
oA — Nop.

It is therefore sufficient to calculate the spread for one specific T" and one specific set of
ws. The solution can be scaled to other values of 7" and w using the scaling relations.
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Figure 30: Coherence time in a harmonic trap in zero—g as a function of the peak density.
The temperature is T = 500nK. For each n0, AB is set to its optimum value,
where the Zeeman shift optimally compensates the mean—field shift for a
particular n0. (as discussed in figure 28)

Evaluation The resulting frequency spread is presented in figure 30. The data shown
has been calculated at T' = 500nK, choosing the optimum AB for each n0. With these
assumptions, the linewidth becomes a pure function of n0. Interestingly, there is an
optimum peak density, where the compensation works best. This optimum lies at

No,opt = 4 - 102%em ™3 AB,p, = 0.06G.

and produces a coherence time of > 1s. These parameters are well in the reach of chip
traps.

3.2.3 Magnetically trapped cloud in presence of gravity

The above reasoning does not include gravity. Including it severely changes the situation.
For a harmonic trap, gravity shifts the center of the trap away from the minimum of the
magnetic field by the “gravitational sag”

It has, however, no effect on the frequencies of the trap.

Analysis by a 3D Monte—Carlo model To estimate o in presence of gravity, we have
developed a Monte-Carlo model. It reads the parameters (w,w,,w,), AB,T,ny and
calculates the spread oa. To this end, it generates a cloud of N test atoms, which is
distributed according to the density of a thermal cloud in a harmonic trap in presence
of gravity. All shifts are then evaluated numerically for each atom and the spread o is
calculated by averging over the ensemble of the N test atoms. As the previous model,
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Figure 31: Comparison of our Monte—Carlo model (lower right graph) with the results
of [39]. The black data points of these graphs are experimental data, the
black line is a Monte-Carlo model similar to ours, but including motional
averaging. All data has been taken on thermal clouds of 7" = 480nK in a trap
of (wy,wy,w,) = 27(7, 230, 230), with peak densities of ng = 4-10"%cm™ (a),
no = 1.3-10%cm™? (b) and ny = 3.2-10%cm ™ (c). Note the difference of the
vertical scales between (a—c) and the data of our model (lower right graph).

it neglects motional and collisional averaging, resulting in a worst—case estimate of the
coherence time.

The choice of a Monte—Carlo model is rather a question of convenience. An analytic
treatment is possible even in presence of gravity and has actually been performed in
parallel with the Monte Carlo simulation [139] .

Comparison with experimental data To validate the model, we compared its result to
experimental results. In [39], coherence times of a magnetically trapped thermal cloud
of our clock states have been measured for several parameter sets and we reproduce
this data in figure 31. At a fixed temperature and peak density, the coherence time
attains a maximum at a specific value of the bias field. This is exactly the compensation
effect shown in figure 28. By tuning AB, the Zeeman shift can be tuned such as to
partly cancel the mean—field shift. The maximum coherence time attained decreases
with increasing peak density.
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Comparing our model to this data, the most evident observation is that, for all cases,
our model significantly underestimates the coherence time. This stems from the fact that
the model does not include motional and collisional averaging. However, it succeeds to
correctly capture all qualitative features, like the decrease of the maximum coherence
time for increasing densities and the shift of the optimal bias field to lower fields for
increasing densities. Quantitatively, this shift is slightly underestimated. Nevertheless,
we are confident that the model can at least give an indication of where in the parameter
space optimal parameters might hide.

Estimation of the optimal trap parameters We will now use the model to estimate
the optimal trap parameters and the resulting minimal linewidth. In presence of gravity,
the magnetic field and the density are given by

m
B = —(wiz? +wiy’ + wiz?)) (70)
KB
= g™ TR )22 (1)

As for the zero—g case, the analysis can be simplified by exploiting scaling relations
of the system. For the z— and y—directions, the scaling argument of the zero—g case can
be applied: The frequency spread is invariant under the transformation (transformed
variables being denoted by a prime)

w, =M, ng=ng 1T'=T AB =AB. (72)

This transformation can be understood as “stretching the trap by a factor A=!”, since
it follows from egs. (70),(71) that n’(A\ "'z, y, 2) = n(x,y, 2), B'(A\'z,y,2) = B(z,vy, 2).
Evidently, such a scaled version of the trap has the same frequency spread oa. The
scaling relation for the y—direction is completely analogous: w; = Aw,.

For w,, this argument does not apply any more, because of the gravity term linear in

z. There is, however, a more complicated scaling relation. A scaling of

Wo=w., /YN T'=XT  nj=Xny AB =\AB (73)
creates a A bigger trap with a A\? bigger spread

n'(x,y,\2) = Nn(x,y, 2); B'(z,y,\z) = AB(x,y, 2)

o\ = Noa.

The only relevant parameters are therefore ng, T and AB. Consequently, it is sufficient
to calculate the spread as a function of these variables for one specific choice of w,, w,, w..
The result can be extrapolated to all other traps using the scaling relations. A result of
such a calculation is presented in figure 32 The best coherence times are found in the
region of both low densities and temperatures. This region, however, is experimentally
unaccessible, since, for a given N, it corresponds to unrealistically low values of w,. The
best realistic coherence time is found at the lowest possible value for w,. To compute the
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Figure 32: Coherence times calculated by the Monte-Carlo algorithm for a trap of w, =
w, = 1kHz. As for the zero—g case, AB in each pixel is set to the value which
maximizes the coherence time. The region to the left of the black line, for
an atom number of N = 10°, corresponds to an unrealistically low trapping
frequency w, < 27 - 0.5Hz.

optimum trap parameters, we therefore assume w, = wyi, = 27-0.5Hz. Furthermore, we
assume w, = w,, as it is the case for a typical atom chip trap. Fixing the atom number
(in our case to N = 10°) then restricts the optimization to one line in the ng—T-plane for
a given w,. We have carried out such an optimization, ranging from w, = 27 - 100Hz to
w, = 27 - 2kHz and from ny = 10"em ™ to ng = 3.2 - 10¥cm 3. We find the parameters
of the optimum trap

w, =2 -450Hz T =260nK  ng=13-10%cm™®  AB =0.03G (74)

yielding a coherence time of
To = 1.7s (75)

3.2.4 Conclusion, Outlook

In summary, the coherence time is limited by dephasing due to the varying frequency
shifts over the cloud. This effect can be partly cancelled by mutually compensating
its two components, the second-order Zeeman shift and the mean—field shift. This
compensation, however, is hampered by the gravitational sag, which shifts the atomic
cloud away from the magnetic minimum and thus precludes an efficient compensation.
Consequently, coherence times in microgravity should be considerably better than in
presence of gravity.

In the following, we will discuss a number of aspects that could further influence the
coherence time.
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Spin echo techniques In nuclear magnetic resonance, inhomogeneities of the transition
frequency can lead to dephasing of the spins and loss of coherence. Here, a large portion
of the signal can be recovered by “refocusing” the dephased spins with “spin—echo”
techniques. The simplest of these techniques consists of a 7/2-m—m/2 sequence [140].
Its sensitivity to shifts changes sign after the intermediate 7 pulse. A constant shift of a
spin is thus cancelled over the whole sequence. In this way, all constant inhomogeneous
shifts are cancelled and cannot lead to dephasing any more.

In the case of our system, the application of this technique seems difficult, if not im-
possible: Most importantly, a straightforward application of a spin—echo sequence would
also cancel the clock signal, which is a constant shift. One might argue that spin—echo
could nevertheless be useful for other potential applications of our system, like e.g. a
quantum memory, but even then the shift experienced by an atom is not constant over
time, due to its motion and collisions in the trap. Indeed, it has been shown in [108]
that spin—echo in our system is not observable for interrogation times of the order of
seconds.

Anharmonic traps The above reasoning has been carried out for a harmonic trap, since
this kind of trap is the most straightforward to implement. Better coherence properties,
however, could be obtained with other types of trap. The ideal trap would be a box—like
trap, with a constant magnetic field and density at its interior, In such a trap, the clock
frequency would not vary over the cloud at all.

Interestingly, such “box traps” can be realized on atom chips [141]. Their trapping
potential rises with a higher than harmonic power (typically z?) along the weak trap-
ping direction. Along the strong directions, their potential remains harmonic. In these
directions, however, motional averaging could potentially suppress the shifts.

3.3 Stability budget

We will now turn the results of the previous sections into an estimation of the most
important figure of merit of our clock: Its stability. The goal we have in mind is to
estimate the potential of an “ideal” atom chip clock. Therefore, we will assume for each
parameter the best value that can be obtained with current technology, rather than the
value we estimate to reach in our first-generation experiment.

3.3.1 Contrast of the Ramsey fringes

The central idea of what limits the stability of a clock has already been shown in fig. 4.
We reprint it here as figure 33, since all calculations in this section will refer to it.

We recall from section 1 that a Ramsey-type atomic clock is limited by noise on the
excitation probability p as well as noise on the detuning A. Modeling both terms by
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Figure 33: The central frequency-domain Ramsey fringe. Clocks are operated at the
point of highest slope, where the transisition probability is the most sensitive
to A. Here, a given error o, on the measurement of the transition probability
translates into a minimal error oA on the frequency measurement.

white noise of standard deviation o, and oa, the clock stability reads (eq. (11))

2
O TC_ UA
= = 2
at

7T2Q

Here, A = w,; — wy, refers to the detuning, T is the cycle time. @, is the quality factor
of the atomic clock, related to the slope of the central Ramsey fringe by (eq. (9))

2wat dp
d A max

Qat =

To obtain dp/dA|n.x, we use a model describing the Ramsey fringes in presence of
particle losses and decoherence ([108], egs. 4.8, 4.5)

1
p(Tr) = ()" =  [(e7"#/™ + e7/™) 4 2e710/™ cos(AT)] (76)
1/1 1 1
Tc—§<7_—0+7_—1)+7_—¢ (77)

Here, 7, is the timescale of dephasing, which we have discussed in detail in the previous
subsection (3.2): the superposition (|0) + €*?|1))/+/2 decoheres into a classical mixture
on a timescale 7,, resulting in a loss of fringe contrast. In a real experiment, the fringe
contrast is further reduced by particle losses, described in (76) by attributing a lifetime
of 7; to the state |i),7 € {0,1}. Losses contribute to decoherence, since an atom in the
coherent superposition (|0) + €*|1))/v/2 can lose its [0)— or [1)-part in a loss. In this
case, it is lost from the trap with a classical probability of p = 0.5, but with an equal
probability the other part remains in the trap as an incoherent atom.
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For the following considerations, we will assume 75,77 > T4. In our experiment, the
lifetimes 719, 71 are limited by two—-body losses in the atomic cloud, and in an “ideal”
atom chip clock, the density could always be chosen so low that the above condition
would be fulfilled.

With this assumption, we obtain from eq. (76) the optimum Q-factor

Qwat7¢
Qopt = or (78)
achieved at an optimum Ramsey time of
Thopt = To

In the following, we will assume 7, = 2.5s, a value measured by several authors in
a typical magnetic trap [39, 29]. Note that this value is greater than the optimum
coherence time (75) predicted by our analysis of section 3.2. This analysis only presents a
worst—case estimate and needs to be calibrated against experimental data. We therefore
prefer to use the experimental value cited above. In this way, we obtain the optimal
values for the quality factor and the Ramsey time

Q=25-10"; Tr = 2.5s (79)

Using these values, we will now estimate the contributions o, and o to the single-shot
error bar oy one shot Of the frequency measurement.

3.3.2 Detection noise o,

Shot noise The excitation probability p is measured at the end of a clock cycle by
measuring N; and Ny and computing p = Ny /(N; + Np). Consequently, the error o,
is dominated by noise of the detection. It has been shown [49] that a proper design of
the detection system can achieve an error bar oy, < 1/4/N,, so that the noise o, is
dominated by the atomic shot noise, which contributes a white-noise of amplitude.

1
Op = ——
P 9/N

Its contribution to the clock stability is therefore

1 1
Oyon = —— = 1.3-1071.
. TQVN v/ N/(10%atoms)

(80)

Technical noise Following our philosophy of estimating the performance of an “ideal”
clock, we will not include technical detection noise in the stability budget. Nevertheless,
it will be helpful for the following analysis to quote a figure—of-merit of a typical detection
system used in an atom chip experiment. Such data is presented in sec. 3.6 of [108],
stating that

oy = 0.6V N (81)
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can be achieved in a setup comparable to ours. Strictly, this has been measured only
for one specific N = 2.5-103. However, the quoted noise is dominated by photonic shot
noise. In a straightforward extension (using a factor of k& more photons to detect a factor
of £ more atoms), this noise scales such that the above formula will remain valid for
higher values of N. We will therefore use it as a rule of thumb. However, we emphasize
the fact that this noise does not arise from any fundamental limit whatsoever. It merely
is the best figure of a “typical” carefully constructed imaging system we are aware of.
With more advanced schemes, e.g. optical cavities, atoms can be counted with an error
oy < 1.

3.3.3 Frequency noise o

Magnetic field noise 05 We recall from section 3.1.2 that a magnetic field B shifts
the clock frequency by (eq. (44))

Afiy—joy = Afo + B(B — B,)*

In the clock, the atomic cloud will be sufficiently cold to fulfill kT /(grmpup) < By with
Byé, being the magnetic field at the trap bottom. We can therefore assume that all atoms
experience approximately the field By, which we will expand into By = (Bm+AB+0p)é,.
Here, AB is a deliberately introduced offset from the magic field B,, and opg is a white
noise term, modelling fluctuations of the background field. To minimize the sensitivity
to fluctuations, a natural choice is to operate the trap at the magic field (AB = 0). In
this case, magnetic field noise shifts the atomic transition only to second order. However,
we will show in section 3.2, that a nonzero detuning AB = 0.03G may be favorable to
increase the coherence time of the cloud. For both scenarios, we estimate the field noise
to contribute to the single—shot error a term

2121 303
o, = M =9.0-10"" (05/mG)? for a clock operating at AB = 0
Wat
A7 BAB
o, = M —38- 10_12(03/mG) for a clock operating at AB = 0.03G
Wat

To keep these fluctuations below the shot noise level (eq. (80)), we have to control the
x—component of the magnetic field with a precision of

op < 1.2mG for a clock operating at AB =0
op < 35uG for a clock operating at AB = 0.03G

As we will discuss in section 4, our experiment is designed such as to reach the latter
target.
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Fluctuation of the atomic number density We recall from section 3.1.4 that the
mean—field of the atomic cloud shifts the clock transition by (eq. 61, 62)

Amh
Wo1 — Wol free = ——=do7 ((a11 = ago) + f(2a01 — ago — a11)) (82)
Amh
= Laon(—4.97 —0.27f) for a thermal cloud
m
1
Wo1 — Wol,free = 5(‘”01 - wOl,free)thermal (83)
Amh
= —agn(—2.49 — 0.14f) for a condensate
m

Fluctuations in both the atomic density n and the population inversion f translate
directly into a fluctuation of the clock frequency. In this paragraph, we will focus on
the former effect, a shift caused by fluctuations of n. Fluctuations of f will be treated
in following paragraphs. The dominant contribution to this shift are fluctuations of
the total atom number N. These fluctuations, however, can be largely corrected for
ex post. To this end, one computes the atomic density from the detection data of a clock
measurement, N1, Ny, and corrects the frequency measurement to compensate eq. (59).
(n) is computed from the relations

3/2
(n)y, = % = (No + Ny) (ﬁ) > for a thermal cloud
(84)

= 4 4 m 154 (Naymo
MBEC T 710 T Ty, o NG

Here, @ = (w,w,w,)"? is the harmonic mean of the trap frequencies and a is the scat-
tering length, which we will approximate by a ~ agy. Using such an ex post correction,
fluctuations of n are corrected up to the uncertainty o,. We will now discuss which
errors limit the extrapolation of these values.

2/5
) hiw for a BEC in the Thomas—Fermi limit

Contribution to 0, from the detection noise For a “typical” detection, a contribu-
tion to o, arises from the detection noise oy as given by eq. (81). Its contribution to
the stability is computed using eqs. (81), (59) and (84):

7y = T s = a) (o), T (55
_ 3 -3/2
=57 107" (27r 1LSOHZ> <5o§nK) V ﬁ thermal
7y = 0 a1y — o) () e (56)
- 6/5 ~1/10
— 8810712 (ﬁ) (ﬁ) BEC
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Figure 34: Two—body losses in our system: Losses appear in both clock states |0) and
|1), with the loss rate in state |1) being larger. Consequently, an incoherent
background population builds up in state |0). The coherent population is
further reduced by loss—induced decoherence, which is already included in
the coherence time assumed above.

Fluctuations due to particle loss Atoms can be lost in our system due to the un-
avoidable two—body losses. These losses can cause a fluctuating mean—field shift in two
ways:
Firstly, they limit the ex post correction described above. Even if the atom number is
perfectly measured at the end of the clock cycle, this measured N is the result of a Pois-
sonian process and consequently, the extrapolation of its past must contain a statistical
error. The uncertainty o, is then limited by this unknown evolution of N over the
clock cycle.
Secondly, the losses in our system are asymmetric: Atoms in state |1) are more likely to
decay than atoms in state |0). This leads to the emergence of an incoherent background
population in state |0), which causes a fluctuating shift on the remaining coherent pop-
ulation.

An illustration of these losses is presented in figure 34. Precisely, we will describe
them as in [108] by an exponential decay: N; = —v;N;,i € {0,1}. Assuming a balanced
population of the clock states Ny = Ny, the loss rates ~; are given by

Yo = 701901 (0) (n) /2 (87)
M = Y0967 (0) (1) /2 + 1187 (0) () /2
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Fluctuations due to symmetric particle loss Let us assume losses to be small (v, 71 <
s ). Then, during the interrogation, a total number of

Nsym = N(70 + VI)TR/Q

atoms is lost from the trap and this number fluctuates from shot to shot by y/Ngym.
This fluctuation cannot be corrected for ex post, since N is measured only at the end of

the clock cycle. Using the loss rates from [126], this fluctuation degrades the stability
by

Arhag Tr(2701 + 711) (n) 1/2
o= 220 a3, — )y, (20 2 (59
N O N2/ T NV TR\
—923.10° 1 ( ) LR thermal
10%atoms \27100Hz 500nK 255 erha
2mhay Tr(2901 +711) (n) 12
Oy = mwos (a11 — aoo) (1) g ( AN BEC (89)
_ 9/5 1/10 1/2
—43.101 (L) N Tr BEC
27w100Hz 104atoms 2.5s

We have normalized this number to the parameters of the norm trap (w = 27 - 100Hz,
N = 10%), even though the above approximation 7y, < Tx 1is not fulfilled for this
trap. Consequently, the result is valid only for condensates with a much lower density
than in our norm trap. A clock would have to operate at such a much lower density, in
order to supress this huge shift.

Fluctuations due to asymmetric particle loss Two colliding atoms in state |1) can
be lost by spin—exchange processes or dipolar relaxation. In this way, atoms in the
interrogation state (|0) + €*|1))/v/2 can lose their |1) part by collisions, which leads to
the emergence of an incoherent population in state |0). We note that spin—-exchange
scattering (but not dipolar relaxation) also leads to the emergence of a population in
12,2), but we will neglect this latter effect for two reasons: We are not aware of loss rate
measurements for state |1), which would include the ratio of spin—exchange to dipolar
relaxation. Furthermore, the population in |2,2) could be removed by repumping it to
an untrapped state, e.g. by a weak, continuous microwave radiation.

In contrast, this is not possible for the incoherent population in state |0). Also, this
population cannot be detected ex post, since it is indistinguishable from the clock signal.
To estimate the shift which this population induces on the remaining coherent atoms, we
will assume the losses to be small (7; — 79)Tr < 1. During the interrogation time, the
incoherent |0) population then grows to a mean number of Nygym = vllTRgﬁ)(O) (ny N/4
atoms, with a shot-noise-limited fluctuation of oy, ., = \/Nasym- The shift contributed
by these atoms is described by egs. 61, 62, with f = 1. With these assumptions, they
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degrade the clock stability by

—15- 10—14104 ;Zoms (27T1°50HZ>9/ ’ (500THK) o <2T_§S> v for a thermal cloud
oy = Zﬁ:ﬁ(—%oo + 2a01) (1) pec (Tmz—]gb)b%> " (91)
_97.10-1 (%)M (ﬁ) o <2T—§S> v for a BEC

Amplitude noise of the excitation pulses Noise on the amplitude of the 7/2 pulses
will affect the clock in two ways: A fluctuating pulse surface {2;¢, will lead to shot—to—
shot fluctuations of the population inversion (f in egs. 61, 62), leading to shot—to—shot
fluctuations of the mean—field shift. Furthermore, fluctuations on the Rabi frequencies
Qrp, Quw of the RF and microwave excitation fields lead to a fluctuating lightshift (Jo;
of eq. (51)).

To estimate the influence of the former effect, we calculate the effect of an error
os on eqgs. 61, 62. To this end, we expand f = cos(€2;t) around its intended value

f=0,Qrt =m/2 to obtain
- o0,

TTY,
Qrr and Quw enter symmetrically into eq. (49). We will therefore consider only the
error on {nw, assuming that oq,., = 0. The influence of oq,, can be estimated by
exchanging Qgrp and Qyw. The detuning of the microwave is precisely controlled, so
the main contribution to ogq,,, comes from fluctuations of the microwave power Py .
Using the relation oq,,, /Qvw = 0p,, /[2Pvuw] we obtain

o, = ‘:er (@11 + a0 — 2a00) Gy, § 70 (92)
= 411077 (1o4itvoms) (505111{) . (27r1gOHz>3 (UPMIVO/];MW> thermal
7y = T2 a4+ aan — 2001) () 5 2 (93)

Let us now turn to an estimate of the influence of the latter effect, shot—to—shot
fluctuations of the lightshifts created by the 7/2 pulses. We recall from section 3.1.3
that only the microwave photon creates a lightshift, of magnitude (eq: 51)

QRw
4A

do1 =
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To minimize the absolute value of this lightshift, we will place as much power as possible
into the RF photon. As discussed in section 3.1.3, this is limited by the conditions Qrp <
A, A < Ap and for the following reasoning we will assume the values A = Ap/10 =
27 - 200kHz, Qrp = A/10 = 2720kHz, which, with the assumption Q; = 27 - 1kHz,
implies Qyw = 20kHz.

Even though this choice minimizes the absolute value of the lightshift, shot—to—shot
fluctuations of the shift can still degrade the clock stability. To compute this shot—to—
shot fluctuation, we note that the lightshift is present only during the 7 /2 pulses and
we will discuss its effect only for the first one (the result being equally valid for the
second one). During this pulse, the coherence is gradually built up and the phase of the
superposition (cos 0]0)+€ sin §|1)) is sensitive to a shift &), according to d¢/dt = g(t)dy,
with the sensitivity function g, which, during the first 7/2 pulse varies as ¢(t) = sin(Qst)
[44]. The fluctuating lightshift then causes a phase uncertainty

801

Q

0'¢ = %O'(soltp =

Each 7 /2 pulse contributes this uncertainty, and both pulses are uncorrelated. Quadrat-
ically summing up both contributions and using eq. (49), we obtain their contribution
to the clock stability:
o = \/§UQMW —14.10°13 O-QMW/QMW
Y QuwTrwae 102 '

Noise of the local oscillator, Dick effect We recall from section 1 that an atomic clock
measures A = w,; —Wg,. Noise on the atomic transition is indistinguishable from noise on
the flywheel, and consequently, the latter also contributes to the stability budget. This
effect is particularly pronounced for clocks with a pulsed mode of operation, which take
repeated measurements separated by a cycle time T,. Due to an aliasing effect, they
are particularly sensitive to flywheel noise at integer multiples of the cycle frequency
fn=n/T.,n € N, a phenomenon known as the “Dick effect”.

To estimate the influence of this effect on our clock stability, we will follow the treat-
ment in [44]. We will assume that our clock takes a cycle time T¢ for one measurement,
composed of a loading time 77, and a measurement time T such that T, + Tr = T¢.
We will neglect the time tp spent with the excitation pulses, assuming that tp < Tg.
Evidently, noise of the flywheel will not affect the clock during the loading time. How-
ever, it has maximum impact during the Ramsey time. Again, this is best expressed by
the sensitivity function ¢, defined stepwise by

. 0 O0<t<Te—TR
9lt) = { I To-Tp<t<Te (94)

so that the evolution of the atomic phase can be written as d¢/dt = g(t)A(t). It can
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then be shown [142, 44] that the flywheel noise contributes to the clock stability by

[e’s) 2 1/2
gn W
O'y(T) =T 1/2 X [Z % S?,fl (nfc)] (95)
n=1
_ l fe —i2mnfot
9 =7 dtg(t)e (96)
¢Jo

Here, fo = 1/T¢ is the cycle frequency and S;W is the spectral density of the flywheel’s
frequency noise. A pulsed clock picks up noise at all integer multiples n fo of the cycle
frequency and converts it to a white frequency noise with an efficiency |g,,/go|*.

In our prototype experiment, the flywheel signal will be generated by a cryogenic
oscillator. Ultimately, the reference oscillator will be a highly-stable quartz. Let us
first consider the former case, that the interrogation signal is provided by a cryogenic
oscillator and upconverted to our clock frequency by a synthesis chain (see section 6). In
comparable setups [44], the dominant source of flywheel noise has been found to be the
noise of the synthesis chain, with the dominant contribution being flicker phase noise.
We will model it by the data of ([44], p.139),

Sp(f) =4.5-10"Hz 2 f (97)

Inserting this into eqs. (94), (96), (95), and summing over the first 400000 terms, we
obtain the contributions

o, (1) =34-107". /s for Tr = 2.58, T = 23s

o, (1) =1.6-10"". /s for Tp = 2.58,T¢c = 5s

Ultimately, the interrogation signal will be driven from an ultra-stable, but non—
cryogenic, quartz oscillator. To estimate the Dick effect in this case, we will use the data
of the reference oscillator of the PHARAO space clock ([81], data converted according
to [48])

1 1
S,(f) <24-107"Hzf ' +1.2-107% + 3. 10‘27Ef +1.9- 10—28Ff2
Z

Using the same procedure as for the cryogenic oscillator, we obtain the contributions

oy (1) =4.1-107 . /s for Ti = 2.55, To = 23
0,(r) = 12107 /& for T = 2.55, Tc: = bs
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3.3.4 Stability budget

We will now assemble the results of the previous paragraphs to a stability budget for our
clock. To this end, we suppose that all of the above errors are uncorrelated contributions
of white frequency noise, which add quadratically and scale with the integration time 7

as
Tc
O-y(T) = Oy,one shot T

We will consider two scenarios of the stability budget:
1. The prototype experiment of [29, 108], with (n) =4 -10"em™3, N = 10* atoms.

2. An improved version, similar to the proposal in [108], with the parameters

o (Wy,wy,w,) =2m(5,70,70)Hz

e 7' =500nK

e N = 10* atoms
o Tr=25s

o T =23s

and featuring the following technical improvements:
e an optimized detection — shot—noise limited for measurements of Ny, N7, and
better than the loss limit for measurements of Ny + NV
e ex post correction of the fluctuating mean-field shift
e control of the magnetic field to op = 35uG

We plan to reach these specifications in the first generation of the dedicated clock
experiment described in this thesis.

3. The improved version as above, with the following technical improvements

e an atom number of 10°

e a cycle time of T = 5s, while keeping a Ramsey time of T = 2.5s.

In all improved scenarios, we assume a control of the power of the excitation fields to the
relative 1073 level. The resulting budgets are presented in table 2. With respect to the
proof-of—principle experiment, one order of magnitude can be gained with straightfor-
ward improvements. The commercially interesting target of 107'3,/s could be reached
with substantial improvements on the loading procedure, which seem realistic in the
long term.

3.3.5 Outlook

Scaling behaviour It is interesting to ask whether there exist ideal parameters for
clock operation and the above formulae seem to give a clear answer: The key to a good
clock performance is a high number of atoms, in order to suppress the atomic shot noise.
A high atom number also increases all uncertainties related to the mean—field shift and
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proof  of improved long—term
principle version perspective
[29, 108]
+ mag. shield +more atoms
+ shot-noise +faster loading
lim. det.
+ shallow trap
detection noise 1.02-10712 1.3-10713 4.1-1074
magnetic field noise 3.2-10712 1.2-10716 1.2-10716
fluctuating
mean—field shift

e uncorrected oy 8.8-10713 - —

e sym. + asym. losses — 1.1-10716 1.1-107%
7/2 pulses, mf shift — 1.5-10717 1.5-10716
7/2 pulses, lightshift - 1.4-1071 1.4-107
Dick effect — 7.1-1071 3.4-10715
total single-shot noise 3.4-10712 1.4-10713 4.4-1071
cycle time 23s 23s DS
stability 1.7 6.8 1.0

Table 2: Stability budgets for three scenarios of the clock

10—11 \/57_—1/2

10—13\/57_—1/2

10718 /57172
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losses, but these errors can easily be reduced by choosing a higher temperature (which
makes it even easier to achieve high atom numbers).

This idea looks appealing, but must be stated with a clear caveat: It is not clear how
the coherence time scales with temperature and, as we have shown in the last subsection
3.2, there are good reasons why it could diminish for increasing temperature.

Thermal cloud vs. BEC Our setup is able to produce a BEC and one might well
ask whether a BEC could be a better clock medium than a thermal cloud. The above
formulae suggest that this is not the case, because of the huge two—body loss rate.
Even a BEC with only N = 10* in the “improved” trap of table 2 would have a mean
density of (n) = 1.2-1073cm ™3, resulting in a loss rate for the state [1) of v = 1.4s71.
Apart from limiting the interrogation time, such huge losses would give rise to equally
huge fluctuations of all mean—field induced shifts. Nonetheless, the ability to perform
Ramsey spectroscopy on a BEC will be an interesting tool, e.g. to precisely measure
the dependence of the mean—field shift on a population imbalance (the constant £ in a
mean-field shift of the kind dw = rkn (¢ + f£)).

Caveats and uncertainties in this budget A number of assumptions in the above
budget are subject to care: Firstly, there is the issue of a possible population of the
state |2,2). This state can be populated by atoms of state |2,1) undergoing a spin—
exchange collision. The state |2, 2) is equally trapped, so these atoms would accumulate
in the trap and lead to fluctuating shifts of an unknwon order of magnitude. We are
optimistic that this problem can be circumvented, e.g. by applying a continuous shield
of microwave radiation which pumps these atoms into an untrapped state. Secondly,
we have neglected background losses in the above budget, arguing that they could be
made negligible in an “ideal” clock by a careful construction of the vacuum system. In
a first—generation experiment, however, the vacuum lifetime can well be limited to the
order of seconds. This could reduce the possible interrogation time below the projected
2.5s. The stability, however, should remain of the same order of magnitude.

The most crucial unknown clearly is the coherence time of the system. This depends
strongly on the parameters of the trap [39] and is difficult to predict. Strictly speaking,
we cannot even be sure whether the projected 2.5s of coherence time can be reached in
the “improved” trap of table 2. On the other hand, there might exist parameter sets
leading to a greatly enhanced coherence time. This would potentially lead to an even
better stability, since, according to eqs. (11),(78), stability scales with 1/Tx. Clearly,
an experimentally validated model of the coherence in different traps is the missing link
to estimate the ultimate potential of a chip clock.

Scalability of the clock Being built on an atom chip, our clock is inherently scalable:
It would be easily possible to run several clocks in parallel, either by duplicating the
whole setup or by implementing multiple clocks on the same chip, and it is interesting
to ask whether such an approach could improve the performance of the clock.

The most evident way to parallelize the clock would be to operate multiple identical
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Figure 35: Technical shifts can be largely reduced by operating multiple clocks in par-
allel. Here, two clocks (red circles) operate at slightly different values of the
magnetic field. Each of them is first—order sensitive to fluctuations of the
magnetic field, albeit with different sign. A stable clock signal can be gener-
ated by taking the average of both clocks. At the same time, the difference
of their signals can be used to measure the magnetic field.

copies of the whole clock in parallel, each of them including all technical features to
produce and interrogate an atomic cloud on its own. Such an array of clocks would have
one significant advantage: It would not suffer from the dead time which occurs in our
clock during the preparation of a new atomic cloud. In an array of clocks, the dead time
of one clock could be bridged by another clock taking data at this same time. In this
way, the array as a whole could measure continuously, even if every single clock had a
nonzero dead time.

On a lower level, one could implement multiple clocks on one chip. In contrast to
the upper scenario, these micro—clocks would probably have to load and measure syn-
chronously, since otherwise the magnetic fields and light fields of a charging clock would
create shifts on a measuring clock nearby. Even with this constraint of synchronous
operation, however, parallelization could be beneficial in several ways. In the best case
it would be possible to charge each micro—clock from a magneto—optical trap of its own,
by creating multiple quadrupole minima in the same optical molasses field [143]. In this
way, M micro—clocks could provide a factor of M more atoms than a single clock, which
would reduce the atomic shot-noise by 1/v/M.

Furthermore, an array of micro—clocks could be used to reduce technical noise, in a way
that is illustrated in figure 35 for the case of two parallel clocks. Each of the micro—-
clocks could be run at slightly different parameters, for instance at magnetic field values
slightly higher or lower than the magic field. At these operating points, both micro—
clocks are first—order sensitive to shot-to—shot fluctuations of the magnetic field, albeit
with different sign. If the average of both micro—clocks is taken as the overall clock
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signal, this first—order dependence cancels. The resulting clock would be as stable as
one single clock operating at the magic field.

At the same time, however, the difference of both clock signals is a measure of the
magnetic background field. In this way, fluctuations of the background field could be
measured along with the clock signal without additional overhead and these measure-
ments could be used to correct shifts of even higher order. Similar configurations can
be conceived that are sensitive to other technical fluctuations like e.g. noise of the mi-
crowave pulses. Such an approach might significantly alleviate the demands on shielding
and the stability of the DC and RF current supplies.

Interestingly, this approach would be beneficial even if the micro—clocks were loaded
from a fixed number of atoms NV, produced, e.g., by a single MOT. This becomes clear
by considering the performance of a shot-noise-limited clock (eq. (12))

o,(1) = —1 &
! a 7.‘—Cgat\/N T

Splitting this clock into M micro—clocks with atom number N/M each, and defining
the overall clock signal as the average of all M clock signals, one recovers the same
stability as for a single clock with NV atoms. In this way, M micro—clocks could deliver
the same stability as a single clock, but their individual clock signals would add M — 1
new observables, which could be used to sense external noise.
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4 Experimental setup

To transform the ideal clock of the last section into reality, some technical preparations
are necessary: To fill an atom chip trap with atoms, the chip has to be mounted in
an ultrahigh vacuum chamber and the atoms must be pre—cooled by laser cooling tech-
niques. The requires an experimental setup comprising a laser system, an UHV chamber
and magnetic field coils, which has been devised in a similar fashion for multiple atom
chip experiments all over the world [84, 117, 144, 145]. Basically, our implementation
resembles closely these previous ones, and we sketch it in the subsections 4.2 to 4.4.2 of
this chapter. More place is devoted, however, to the technical features which we have
designed and constructed specifically for this particular setup. This is most notably
the magnetic shielding (subsection 4.5) and a study of the homogeneity of the magnetic
fields (subsection 4.6).

The design of the chip and the electronics are so crucial components that they will be
the subjects of dedicated later chapters (5, 6).

4.1 The components of our setup

MOT Detection
Pumpl
Pump2
Detection,

Pump1l Pumpl, Pump2
Pump2
Detection Homogeneous

1) I =
2 [> cold atoms \Blas field
CCD
O Vacuum C
45mm \ Rb

MoT dispenser MoT
Homogeneous Repump
Bias field
MoT 1) Chip containing 2) macroscopic
y DC conductors conductors
CCD

2) 1)

RF conductors
Microwave line

I

z

Figure 36: The components of our setup

The components of our experimental setup are depicted in Figure 36. From a physical
perspective, we have only few and well-controlled tools to produce, manipulate and
detect our atoms:

1. A dispenser to prepare a Rb vapor, and an ultrahigh vacuum (UHV) chamber to
isolate it from collisions with other gases

2. Laser beams to cool the atoms, pump them into certain internal states and detect
them

3. Static magnetic fields,
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Figure 37: An experimental cycle

a) a homogeneous bias field of arbitrary magnitude and direction produced by
three pairs of coils

b) the near—fields produced by the chip
c¢) the near—fields produced by the macroscopic conductors on the back side

4. A radio—frequency field, coupled to the atoms from one conductor on the chip

5. A microwave field, coupled to the atoms from an integrated transmission line on
the chip

6. CCD cameras, to destructively image the atoms with one of the detection beams

During an experimental cycle we use all these tools, as is shown in Figure 37. This
cycle is the standard one used in our group [117]. We start by collecting a large (107)
number of atoms from the ambient vapor in a mirror—-MOT. This MOT is subsequently
compressed by increasing the gradients of the magnetic quadrupole field. After a short
phase of molasses cooling, the cloud is cold enough to be captured by a magnetic trap.
The following magnetic trapping phase lasts ~ 3s, in which we compress the atoms,
perform evaporative cooling and finally the clock interrogation. At the end of the cycle,
the atoms are destructively imaged.

4.2 The vacuum system
4.2.1 The chamber

The chip is mounted on an ultrahigh (UHV) vacuum chamber® (Fig. 38). We use a
patented technology [146] to mount it. The chip itself is glued with Epotek 353ND glue
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Figure 38: The vacuum chamber

to a commercial Pyrex spectroscopy cell (Hellma), whose outer faces are antireflection-
coated for 780nm. This cell is glued to a glass-metal transition (Allectra 120S-CP-137-
F2). In our case this part is custom-made to be completely non—-magnetic. It consists
of a Pyrex tube on the glass side and on the metal side of a Copper tube mounted on
a CF40 flange of 316LN steel. This whole subassembly is pre-mounted and installed on
the vacuum chamber as a whole.

All other parts of the vacuum chamber are standard CF40 parts. We extend the
chip assembly by a 6-way and a 4-way cross (Allectra 413-CFX6-040 and 413-CFX4-040
respectively), providing us with seven CF40 ports to the chamber. We use them to install
an ion pump (Meca2000 PID 25, connected via a Meca2000 VUV40 valve), a Titanium
sublimation pump (Meca2000 PFT.3 mounted in an Allectra 413-CFX2-040-250 tube), a
valve to connect a turbomolecular pump. (Meca2000 VUV40), a Bayard-Alpert pressure
gauge (Leybold IE514), a window under the chip (Allectra 120-VPG-C40) and a 9-pin
SUB-D electric feedthrough (Allectra 210S-D09-CF40T). One remaining port is closed
by a flange. All components were joined using Allectra soft-type 411-CG40-W gaskets.

We mounted two Rubidium dispensers (SAES RB/NF/3.4/12 FT10+10) by spot-
welding them to a glmm insulated copper wire and connecting the wires with crimp
sockets to the SUB-D feedthrough. The stiffness of the wire suffices to keep the dispenser
in place, so no further mechanical support is neccessary.

In addition, we mounted a carbon ring in the port of the 4—way cross which connects
to the valve connecting the ion pump to the chamber. This should protect the pump
against the Rubidium vapor.
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4.2.2 Cleaning procedure

We cleaned all steel parts, including the valves and the electric feedthrough, by passing
them through two ultrasound baths, one “clean bath” in 99% quality acetone, preceeded
by one “used clean bath” in the remaining acetone of the last clean bath. We cleaned
the gaskets in a 9:1 mixture of Ethanol and HCl and thoroughly rinsed them in water
to remove the detergent.

4.2.3 Bakeout

We ran the system through two successive bakeouts, the first at a higher temperature
without the chip subassembly, the second at a lower temperature with the chip in place.
During both bakeouts, the system was pumped by a turbomolecular pump, which was
backed by a roughing pump.

The first bakeout was performed at a temperature of 200°C, lasted for seven weeks
and resulted in a pressure of 2.7 - 10~ °mbar. During this bakeout, we replaced the
chip subassembly by a flange. In this configuration, the chamber’s maximum tempera-
ture is 200°C, limited by the magnet of the ion pump. By temporarly removing it, the
maximum temperature can be raised to 220°C, limited by the electric feedthrough. We
raised the temperature to around 200°C. The exact temperature is slightly different for
different parts of the chamber, so we monitored the temperature at several points with
K-type thermocouples, taking care not to exceed the temperature limits of the different
parts. We switched on the ion pump after four weeks.

During the bakeout, we degassed the pressure gauge, the dispensers and the titanium
filaments of the Ti sublimation pump. We degassed the dispensers by progressively rais-
ing their current. Each time the current is raised, the vacuum pressure rises rapidly and
passes a peak. At high currents, this peak transforms into a continous increase of pres-
sure as the dispenser is activated and Rubidium is released. The highest current during
our degassing procedure was HA, applied for several minutes. In total, this degassing
procedure lasted several hours. It turned out later on, however, that the dispensers had
not been activated. We suggest for future bakeouts to add a degassing phase in which
they are subjected over several hours to a current of 4 — 4.5A.

The titanium filaments are degassed in an analogous manner, incrementing the current
in steps of 5A from 15A to 30A and waiting for the dirt peak to pass. We also per-
formed two steps at 35A and 38A. At these high currents, we apply repeated pulses of
one minute until the dirt peak has passed. During the first bakeout, we accidentally
exceeded these values, resulting in the filaments being burnt. We replaced them when
we installed the cell.

Generally, one should perform all degassing operations as early as possible and close the
valve to the ion pump during this time. After cooling down, we open the chamber under
an excess pressure of nitrogen and mount the cell subassembly.

The second bakeout was performed with the chip cell in place. It lasted five weeks at
a temperature of 110°C and resulted in a vacuum pressure of 2.3 - 10 %mbar.
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Figure 39: The laser beams. All beams address the Rb D, transition between the
states 5512 and 6P3/,. Three diode lasers are used to create all beams. The
shaded bar for the laser MOT /detection indicates the tuning range of this
laser.

With the chip in place, the temperature is limited by the ribbon cables connecting the
chip. To avoid temperature gradients, we constructed an oven around it by wrapping
oil-free aluminum foil and glass fiber wool around a scaffolding of laboratory posts.
The ion pump was switched on from the first day. We redegassed all elements except
the gauge during this bakeout following the same procedure as described above. After
the bakeout, we performed a leak check with a Helium leak tester and deteced no leak
higher than the 10~ ' mbar 1/s level.

4.3 The laser system

This section will be a brief one, since the laser system will be described in more detail in
the thesis of Clément Lacroute. The laser system is similar in concept to previous work
in our group [147], but uses the SYRTE design for each laser, to achieve an improved
compactness and stability.

In total, our laser system consists of two extended—cavity diode lasers (ECDL) and a
slave diode, which is injection—locked to one of the ECDLs. This setup produces the laser
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frequencies of Fig. 39. Some of these frequencies can be reached by the same physical
laser, by tuning the laser or by using an acoustooptic modulator. In the following, we
will refer to a “laser” as a beam addressing one of the transitions of Fig. 39, even though
this does not strictly correspond to one physical laser.

The orientation of the laser beams are given in Fig. 36. All lasers are expanded
into a Gaussian beam with diameter 20 = 13mm. Each laser can be shut quickly by an
acoustooptic modulator and slowly, but with a higher rejection, by a mechanical shutter.
The beam expanders along x and y can be shut seperately so that the Detection and the
pumping pulses are performed with light coming from either the x or the y direction. In
detail, the lasers perform the following tasks:

Cooling laser (MOT) This laser drives the cooling transition in the MOT, the com-
pressed MOT (cMOT) and the molasses. It is coupled to the atoms by four beam
expanders, in the classic “mirror-MOT” configuration ([84]). It is detuned from the
2-3 transition by Ayor = —2.50 during the MOT, where I' = 6MHz is the natural
linewidth of the transition. We increase the detuning to Aqior = —4I" during the last
4.5ms of the compressed MOT and the beginning of the molasses. During the molasses,
we gradually lower it to up to Apolasses = — 111

All cooling beams are circularly polarized. The sign of the polarization (o4 or o_)
is chosen such that counterpropagating beams always have the same helicity. Since
the quantisation axis of the atoms is defined by the magnetic field, they have opposite
polarizations with respect to the atoms. During the MOT, the magnetic quadrupole field
tunes the atoms towards resonance with the o, —-beam and away from resonance with the
o_—~beam, so that they are pumped towards and driven on the [551/2,2,2) — |6P5/2,3,3)
cycling transition. During the molasses, the magnetic field is shut down. The beams
create a field, which is linearly polarized everywhere, with a strong polarization gradient
[115].

The balance of the cooling beams’ intensities is optimized experimentally. Their over-
all power is optimized to be as intense as possible. We reached peak intensities of
1mW /cm? for the horizontal and 3.5mW /cm? for the 45° beams, enough to saturate the
atoms.

Detection The detection beam is generated by tuning the cooling laser into resonance
with the 2-3 transition. By changing the sign of the magnetic field, its polarization
can be chosen to be either o, or o_ with respect to the atomic quantization axis. We
use o, radiation to image atoms in the |2, 1) or |2,2) states, exciting the atoms on the
1551 /2,2,2) — |6P3/9,3,3) cycling transition. To image atoms in the |1, —1) state, we
first repump them into the F' = 2 manifold. We then choose the o_ configuration to
image them on the |551/2,2, —2) — [6P5)2,3, —3) cycling transition. To avoid losses
into dark states, we systematically apply the repumper laser (see below) during the
detection pulses. We always use absorption imaging as described in [105], [108]. We
adjust the laser power to be I & Ig,;/10, so that the atomic absorption is described by
the Lambert—Beer law [148]. The detection pulses have a typical duration of 300us.
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Figure 40: The mechanical structure

Repumper laser The cooling and detection light can off-resonantly excite the atoms
into the 6P/, F' = 2)-state, from which they can decay into the “dark” F' = 1 manifold,
which does not couple to the cooling beams [115] any more. The repumper laser excites
these atoms on the 1-2 transition and pumps them back into the F' = 2 manifold. This
laser always runs at a fixed frequency. It is coupled into a 45° MOT beam, so that its
polarization with respect to the atoms is not well defined. The intensity of this laser is
about 100pW /cm?.

Pump2 This laser runs on the 2-2 transition and is used to pump the atoms into a
well-defined internal state. We select its polarization to be either o, or o_ by apply-
ing a magnetic field along or opposite to its propagation direction. We use the o, —
configuration to pump the atoms into the state |2,2), which is magnetically trapped.
In this configuration, we avoid losses into dark states by applying the repumper laser
along with the pump laser. Using the laser in the o_—configuration pumps the atoms
into the magnetically untrapped state |2, —2). In practice, this state is not completely
dark, due to inevitable impurities of the polarization. Without a repump laser, this
will lead to the atoms eventually being pumped into the dark F' = 1 manifold. We use
this configuration to pump into the clock state |1, —1) In this case, the Pump2 laser
depopulates the F' = 2 manifold and the Pumpl laser pumps the resulting /' = 1 atoms
into |1, —1). The intensity of both beams is optimized experimentally.

Pumpl This laser runs on the 1 — 1 transition and is used to pump atoms inside the
F = 1 manifold into the state |1, —1) as described above. Its polarization is the same as
for the Pump?2 laser, such that both can be chosen to be o_—polarized with respect to
the atomic quantization axis at the same time.

4.4 The mechanics

The central part of the experiment is the vacuum chamber. It is mounted independently
from all other components. After the bakeout, the MOT beams, the shielding and the
coils are installed around the cell. All these peripheric components are mounted on a
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custom—made structure. The coils and the MOT beams are pre-aligned on a custom-
made platform which is transfered to the mounting structure as a whole. We refer
to this platform as “the optical hat”, since it fits around the cell like a hat. After
having mounted this assembly, the Mumetal shielding is assembled around the whole
setup in place. Even after the shield has been closed, the vacuum system is mechanically
decoupled from the periphery (coils, optics and shield), so that the former can be aligned
inside the latter at any time.

4.4.1 The structure

The vacuum mount The vacuum chamber is supported by the ion pump on one side
and by custom-made vacuum mounts on the other side. These custom-made mounts
fit around the arms of the vacuum crosses and are attached to the optical table with a
standard clamp. Three of them sit under the 6-way cross, a fourth one supports the Ti
sublimation pump.

The peripheric structure The mounting structure is based on a ring-shaped baseplate
which is fixed to the optical table with standard clamps. Three pillars emerge from
this plate. They are made from several Aluminum posts which are joined to each other
by M6 headless screws. Each pillar is joined to the baseplate by a height-adjustable
commercial post (Edmund Optics 20mm Dia. adjustable post holder, NT54-933). This
allows us to fine-tune the height and the inclination of the peripheric elements once they
are in place.

Both Mumetal shields are fixed to the mounting structure on their bottom plate, by
locking them between two Aluminum posts making up the pillars. The optical hat is
mounted on top of the pillars and fixed to them by screws.

To avoid vibrations of the cell with respect to the detection optics, we added an anti-
vibration clamp locking the cell to the mounting structure. This clamp consists of a ring
which fits around the flanges connecting the chip assembly to the 6-way cross. This ring
is screwed onto a circular plate which is locked between two Aluminum posts together
with the bottom plate of the inner Mumetal shield. Six M6 threads are tapped into
the clamp, arranged in a starlike layout. The clamp is fixed to the vacuum flange by
screws passing through these threads. Notice that this fixation can be performed once
the structure is aligned and that it is totally reversible.

Assembly and alignment of the peripheric structure The assembly starts by laying
out the baseplate and mounting the pillars. The bottom plates of the shields as well as
the anti-vibration clamp have to be inserted right from the start. At this moment, we
also feed some wires through the center hole of the shields, to be able to demagnetize
them in place.

Once the whole mounting structure is in place, the optical hat is installed around the
cell from above. To guide it during its descent, we screwed long (>50cm) M6 threaded
rods into the uppermost Aluminum rod, which fit through the corresponding holes of the
optical hat. We screwed wingnuts to these rods and placed the optical hat on them. It is
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then carefully lowered by rotating the wingnuts. To remove the wingnuts, we lower the
optical hat as much as possible and then support it by three laboratory lifting platforms.
In this state we remove the threaded rods and wingnuts and lower the hat for the last
centimeters using the platforms. Once it sits on the Aluminum rods, we screw it to
them. During this procedure, the position and orientation of the hat with respect to the
(fixed) chip cell is continuously observed. If neccessary, we correct it by displacing or
rotating the whole mounting structure on the optical table. To this end, we pull or push
the circular baseplate using improvised screw-and-clamp constructions on the optical
table.

After this critical step, the circular baseplate is fixed to the table using standard
clamps. The height and inclination of the optical table can still be fine-tuned using the
Edmund posts. Typically, these parameters are adjusted such as to have a re-injection
of the 45° beams from one fiber to the other (see below). Once a satisfying alignment
is achieved, the hat can optionally be locked to the vacuum chamber using the anti-
vibration clamp.

We install the imaging optics in their lens tube and fix them in their mounts. We
leave them fixed in their place when we close the shielding. The shields can be closed
around the lens tubes. The cameras are connected to the lens tubes on the outside of
the shields using Thorlabs SM1 series zoom housings.

4.4.2 The optical hat

As stated above, the optical hat is a subassembly which is pre-aligned separately and
fits around the chip cell as a whole. It contains all the optics required to shape the
MOT-beams, i.e., the beam expanders as well as the polarization optics. It also houses
the coils. Both faces of the hat are used to mount optical components, much in the same
way as in the space clock PHARAO [81]. This allows for a compact and mechanically
highly stable setup.

Layout Basically, the optical hat is a 20mm thick circular plate made of Fortal. Its
diameter is 350mm, leaving a 12mm space between the hat and the inner shield. On one
side of the shield, there is an additional 20mm deep slit to comfortably feed through the
optical fibers from the upper side to the lower side.

The coils reside in a rectangular 122mm by 102mm hole in the center of the hat. They
are attached to the hat by eight angle brackets, fixed to the y—coils on one side and to
the optical hat on the other side. Each y—coil is attached to two pairs of brackets, one
on the upper face and one on the lower face of the hat. The brackets are fabricated
from Armodur, a machineable plastic. This material was chosen to electrically isolate
the coils from the hat in order to avoid Eddy currents.

The optical components are mounted on both faces of the optical hat. The position
of each optical element is predefined and fixed by the layout of the drillings and threads
in the hat. The lower face holds the optics generating the 45° beams, whereas the upper
face holds the optics for the horizontal MOT beams, the pump and the detection beams.
Each beam emerges from a purpose defined beam expander fixed by a homebuilt mount.
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Its polarisation is then cleaned by a polarizing beamsplitter cube and finally converted
into circular polarization by a A/4 waveplate. All beams on the upper face are parallel
to the hat surface and point to a virtual point 3mm under the chip surface. The 45°
beams emerge parallel to the hat face and are tilted to their 45° angle by a mirror. They
point to the center of the chip. Their collimators and polarization-cleaning cubes are
mounted such as to make sure that the electric field vector of the light lies in the plane
of the mirror. This should minimize depolarization due to the mirror.

Nearly all mounts are custom-made in order to be completely amagnetic. The only
exceptions are the mounts of the A-waveplates and the mounts of the imaging optics.
The A-mounts have been taken from a stock of old mounts of unknown origin, but have
been tested to be amagnetic. For the imaging optics, we use standard Thorlabs 1”7 lens
tubes and their respective mounts. They are made from Aluminum, causing no magnetic
concerns.

Alignment When assembling the optical hat, we first mount and align the optics and
then insert the coils. For the alignment, we start with the lower face. We first align the
beams geometrically and then optimize the polarisations. The geometric alignment is
done by installing a “chip simulator” on the upper face. This is a mirror in the plane of
the chip. It allows us to validate the alignment of the beams by performing a re-injection,
i.e. coupling the light from one beam into the fiber of the opposite one. To optimize the
polarisation, we place a mirror behind the \/4—waveplate. We then optimize the angle
of the \/4—waveplate such that a maximum of power is reflected from the polarisation—
cleaning cube. We also fine-tune the orientation of the collimator by turning it around
its axis such as to optimally match the polarisation axis of the outgoing beam to the
axis of the cube. To verify this, we mecanically stress the fiber and turn the collimator
such that the resulting power fluctuations behind the cube are minimized.

The upper face is aligned in a similar way. To geometrically align the beams, we replace
the waveplates by circular apertures. The polarizations are optimized as described for
the lower face.

4.5 The Mumetal shield
4.5.1 Overview

The core of the experiment is shielded from magnetic stray fields by a two-layer Mumetal
enclosure (Fig. 42). It is composed of two shells of 2mm thick Mumetal. They are
cylindrically shaped with a (height, diameter) of (27.7, 37.8)cm and (36.7, 46.2)cm
respectively. Each shell is made of four pieces, a two-piece hull sitting on a two-piece
bottom plate. The shields are assembled around the vacuum chamber and fixed to each
other by M4 screws. The inner shell encloses the whole optical hat, which is made of
strictly non-magnetic components. The (potentially magnetic) vacuum flange between
the glass-metal transition and the 6-way cross sits between the inner and the outer shell.
All the shield has been manufactured by Mecamagnetic.
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Figure 42: The Mumetal shield.

The main goal when designing the Mumetal shield is to reach sufficient attenuation
of external fields. Constraints for the design are imposed by several parasitic effects:
The shielding must not be permanently magnetized, either by an external field or by
the coils, since this would create a remnant background magnetic field. The switching
behavior of the coils might be compromised by the shield in several ways: By its high
permeability it could increase the inductance of the coils, acting as an effective iron core.
Also, it creates a path for Eddy currents.

4.5.2 Attenuation factors

Specification Our requirements in terms of attenuation factors stem from the stability
analysis of the clock as it has been stated in section 3.3. We recall from this analysis
that for a stability of o,(7) = 1-1073\/s we require the rms fluctuation o5 to be

op < 0.6mG  for a clock working at the magic field (98)
op < 35uG  for a clock working at a detuning of AB = 0.03G (99)

The fluctuations of the background magnetic field are of the order of g = 10mG. This
translates into the follwing requirements for the shielding factors:

A > 17  for a clock working at the magic field
A >300 for a clock working at a detuning of AB = 0.03G

Strictly speaking, this requirement applies only to the direction along the trap axis,
which is the transverse direction of the shielding cylinder.
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‘ inner shield outer shield double-layer shield
A, 140 115 3948
Ay 159 130 6833

Table 3: Calculated shielding factors

We also emphasize that shielding the background fields is a neccessary, but not suffi-
cient condition to reach control of the magnetic fields at the required level. Additional
care must be taken to control all fields produced inside the shield, most notably the
fields produced by the coils and chip wires.

Analytical estimation There are analytical formulae to calculate the shielding factors
of a cylindrical shield [149, 150]. Let us consider a cylindrical shield of radius R and
length L, whose walls are made from Mumetal walls of thickness d with a relative
permeability of ju,. Its transverse shielding factor is [149]

pRd
A = ——.
"7 9oR

For the axial shielding factors, both references only give formulae for L/R > 2. Approx-
imating our geometry by L/R = 2, one obtains [150]

(100)

A, = 1.134,.

The shielding factors A;, A,of a multilayer shield are products of the shielding factors
of each layer (A;,, A,, denoting the transverse and axial shielding factors of the ith of n

shields respecl ivel y )
R 2
Ri—i—l

it (2)

If R; < R;y1, the shielding factor of a multi-layer shield is simply the product of the
shielding factors of the single shields. Formula 100 suggests to build the shield as small
as possible. In our case, the size of the inner shield is limited by the size of the optical
hat. The optimum radius of the outer shield follows from equations 100 and 101 to be
R, = v/3R; with R, and R; being the radius of the outer and inner shield, respectively.
Similarly, the optimum length would be Ly = 2L;. This choice would conflict with the
flanges of the vacuum chamber in the axial direction and pose severe constraints on the
detection optics in the transverse direction. Therefore, we opted for the more reasonable
diameter cited above. For our geometry, assuming pur = 3 - 10*, the analytic formulae
predict the shielding factors quoted in Table 3. This calculation justifies the investment
into a two-layer shield. One single layer would not be sufficient to reach the target stated
above.

n—1
A = A, J]A. (101)
=1

Aq
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‘ inner shield outer shield double-layer shield
A, 107+ 7 117+6 3400 + 300
Ay | 220+ 30 170 £ 20 10800 +£ 1400

Table 4: Measured shielding factors

Measurement We have measured the shielding factors of our shield. To measure the
transverse shielding factor, we placed the shield at the center of a Helmholtz setup of two
coils of dimensions 1.5 x 1.5m?. The field was measured with a fluxgate magnetometer.
The axial shielding factor was measured in the same way, except that the shield was
placed at the center of only one coil.

These measurements yield the shielding factors quoted in Table 4.5.2 The transverse
shielding factors are systematically higher than predicted. Most probably, our Mumetal
has a higher permeability than assumed above. In contrast, the axial shielding factors
are systematically lower than predicted. We speculate that this may be due to the
existence of two opposite feedthroughs on this axis.

4.5.3 Parasitic effects

Saturation effects Mumetal is a soft ferromagnetic material. It will be permanently
magnetized when it carries a flux density comparable or larger than its saturation flux
density Bs. For Mumetal, this parameter has the value Bg = 0.8T= 8kG. [151]. Hys-
teresis may play a role at smaller field strengths, too, however there is no corresponding
specification and full hysteresis loops for several fields are not available. This effect poses
a constraint for our design. We have to avoid that the shield is magnetized by either an
ambient field or by the field of the coils.

Saturation by external fields There exist analytical formulae to estimate the flux
density inside a Mumetal shield, when it is subjected to a homogeneous external field
[149]. The flux density in the walls of a long cylindrical shield (L > R), when it is
exposed to a homogeneous transverse field By is given by

By = 2B, (103)
d
This formula has an instructive interpretation: The shield picks up the magnetic flux
on twice its transverse cross section, ® = 4ByRL, and funnels it completely into its
walls of cross section A = 2dL. The literature cited above also gives an estimate for the
axial direction. As for the axial shielding factor, this formula is not applicable to our
geometry (L < 2R). Approximating L ~ 2R, it predicts a peak flux density of the same
order of magnitude as for the transverse case.
Applied to our outer shield, the above formula predicts that the shield will be saturated
by a homogeneous external field of

B, = 35C.
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Figure 43: Finite-Element simulation of the field distribution inside the Mumetal shield.
Shown is only the half cross section of the shield and the coils, since the
simulation is axially symmetric. The coils are supposed to have 61 windings
and to carry its maximum current of 10A. The right image is a zoom into the
most critical region of the shield, right under the lower z coil.

Realistic external fields are much smaller, of the order of magnitude of the terrestric
field, By = 0.5G. Saturation by external fields is thus uncritical.

Saturation by the coils The flux generated by our coils is partly carried by the shield
and might thus magnetize it. Presumably, this problem is most critical for the coils
along the z—axis, since they are mounted closer to the wall of the shield than any other
pair. We carried out a finite—element simulation for this pair to check whether its flux
might magnetize the shield. The simulation was based on a numerical model developed
by Tobias Schneider to design the shielding of the ENS double well experiment. It is
based on the magnetostatics model of COMSOL Multiphysics. It treats the shield and
the coil as axially symmetric objects, thus reducing the problem to a 2D simulation. The
geometry of the model was slightly modified to correspond to our coil. The permeability
of the Mumetal was assumed to be pr = 30000. The coils were simulated assuming the
parameters of our experiment, i.e. to have 61 windings and to carry their maximum
current, which is 10A.

The result of this simulation is shown in Fig. 43. As expected, the shield region
carrying the highest field lies right under the lower coil. However, even the highest value
of the magnetic field inside the shield is only &~ 200G, much smaller than the saturation
field Bg = 8kG of the Mumetal.

We have measured the hysteresis of the fabricated shield. Therefore, we installed the
inner shield with the coils inside. We then applied a magnetization cycle by ramping
the current of one pair of coils to its maximum value and back to zero. We performed
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\ X y Z
Remanence field ‘ 04 mG 0.8mG 0.7mG

Table 5: Measured remanence fields after a magnetization pulse of the coils. The field
at the center of the coils reaches typically 60G at the peak of a pulse.

this cycle several times, varying the sign of the current. We find that the background
magnetization inside the shield after one of these cycles changes by the values of table
D.

It is not completely clear to which extent this effect will limit our experiment. If this
hysteresis is reproducible over a large number of runs it should not disturb the clock
measurement, which applies the same sequence of magnetic fields for each interrogation.
Also, one might think about applying a demagnetization pulse before each experimental
cycle.

Inductivity of the coils The Mumetal shield might compromise the switching speed
of our coils by increasing their inductance. The order of magnitude of this effect can
be estimated by computing the inductance from the above finite—element simulation.
Integrating the magnetic energy density over the region enclosed by the shield, one
obtains an inductance of Liyne, = 500uH. Integrating the magnetic energy density over
the walls of the shield yields Ly.y = 18nH, which is much smaller. This effect should
thus be negligible

We also measured the inductance of the coils inside and outside the shield using a
Philips PM6304 RCL meter. We found no increase of the inductance within the error of
the measurement, which was ~ 10uH, compared to a typical coil inductance of ~ 1mH.

Eddy currents The Mumetal shield might also reduce the switching speed of the coils
by creating a path for Eddy currents. We experimentally checked for this effect by
mounting the coils inside the shield and placing a pickup coil at their center to measure
the change of the magnetic field when we switch them on or off. We find that the signal
on the pickup coil drops to less than 10% of its peak value in less than 3ms. This is
the same time as it takes the field to settle outside the shield, limited by the switching
speed of the power supply (Delta Elektronika SM030-10).

With the benefit of hindsight, we propose to measure this effect more precisely with
a vector analyzer, for instance with the Philips PM6304 RCL meter mentioned above.
An inductive coupling to the shield should change the complex impedance of the coils
at high frequencies, as becomes clear from the equivalent circuit of such a situation
(Fig. 44). This change in impedance could be used to measure Rg, which would in turn
quantitatively predict the bandwidth of the coils in the shield.

4.5.4 Conclusion

In summary, our shield exceeds our expectations in terms of shielding factors while it does
not significantly compromise the switching times of our coils. The only minor concern is
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Figure 44: Equivalent circuit of a coil driving Eddy currents in a shield. The coil induc-
tance is inductively coupled to the nonzero resistance Rg of the shield walls
by a mutual inductance M. In the equivalent circuit, this corresponds to a
virtual resistance short circuiting the coil at high frequencies

the hysteresis induced by operating the coils. With the benefit of hindsight, one might
have considered fabricating it from a less permeable material which is less susceptible to
saturation, e.g. PERMENORM [152]. However, to make a sound statement, one would
have to consider the full hysteresis loops of the respective material for several amplitudes
of the driving field, which is not readily available.

4.6 The coils

The chip cell is mounted between three orthogonal pairs of coils, which are wired in
Helmholtz configuration to produce a homogeneous field of arbitrary direction and mag-
nitude at the position of the atoms. Each coil is made from @1mm copper wire, which
is wound to a custom-made copper mount (Fig. 45). The mount is a copy with mi-
nor modifications of a design by Tilo Steinmetz, which is widely used in the LKB and
LMU/MPQ atom chip groups. It is designed such that all coils can be pre-assembled
and fit around the chip cell as a whole.

The design of the mount being fixed, the main design decision is the number of wind-
ings of coil. Additional constraints arise from two requirements of our experiment: We
require the bias field to be highly homogeneous, since inhomogenities might preclude us
from working with highly elongated clouds. In addition, we need a high temporal sta-
bility of the coils” positions and dimensions in order to avoid clock shifts from a drifting
magnetic field. We assessed the performance of the design with respect to both of these
constraints.

4.6.1 Winding numbers of the coils

‘ x xgradient y ygradient =z z gradient
winding number 88 7 60 9 61 8
field (QI=10A) [G] | 126 12 59 9 36 5

Table 6: Winding numbers of our coils and the resulting maximum fields. The two coils
of each pair have identical winding numbers.

112 2008



4 Experimental setup

Figure 45: The mount of the coils producing the bias fields.

Figure 46: Numerical model of the coils. The picture is taken along the same axis as
figure 45. Two imperfections create inhomogeneities: The coils deviate from
the Helmholtz shape and they are displaced against the chip plane
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The number of turns wound to each coil is chosen as low as possible, in order to
minimize the inductance of the coil. For the y and z coils, we chose them such that we
can produce the maximum required field with a reasonable current of 10A (see table
6). For the x coils we chose a winding number higher than required, so that we can
produce the background field of the clock interrogation with a low current and thus use
a more stable current supply. Inductance is not that critical for this pair, since it is
never switched on rapidly.

We wound two separate coils onto each support. This allows us to add fields which
may be driven from different power supplies. The smaller coil may also be used to add
a gradient to the field. Therefore, it is refered to as the “gradient coil”.

4.6.2 Spatial homogeneity of the coil field

The field of the coils contains inhomogeneities for several reasons: Firstly, the coils
are square and their typical width 2R and separation d deviate significantly from the
Helmholtz geometry R = d. Secondly, the coils are vertically displaced against the chip
plane (see fig. 46). Additional inhomogeneities can arise, when the coils are not aligned
perfectly. We will now study each of these effects.

Deviation from the Helmholtz shape Let us first estimate the inhomogeneity caused
by the fact that the coils deviate from the Helmholtz shape. This effect is most critical
for the clock trap, which might be distorted by inhomogeneities of the bias field. Keeping
in mind the trap frequencies (f,, f,, f.) = (0.5,450,450)Hz it is clear that this problem
will be most severe along the z-direction, where the trap is weakest.

The primary source of inhomogeneity in this direction is the curvature d;f;“ produced
by the x—coils. The z—coils do not contribute, since they are switched off during the
clock trap and the field of the y—coils is directed purely along y in the y = 0 plane for
symmetry reasons.

8;51 can be estimated by an analytic calculation. To this end, we model the x—coils by
two coaxial circular coils of radius R, separated by a distance d. Calculating their field
from the Biot-Savart law yields for the magnetic field at the center of the coil pair

piol R?
<R2 N (%l)2> 3/2°

We calculated this field for our experimental values R = 56/2mm,d = 58mm, [ =
N - 0.24A. This yields the following values for the curvature and the resulting trap
frequency

(104)

‘a}:O -

By(x=0) = 32G

d’B, kG
— 94>

dx? ) m?2
f, = 0.87Hz
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As a complementary approach, we conducted a numerical simulation. We modeled each
of our coils by a rectangle of wires which were assumed to be infinitely flat in one direction
and reproduced the width of our coils in the other one. All coils were simulated using
their physical dimensions. The simulation also models the chip wires at their physical
location. The simulation was carried out using a Mathematica toolbox developed in our
group.
Simulating all coils with the current values of the clock trap, we observe a harmonic
confinement in the longitudinal direction of frequency f, = 0.8Hz coming from the coils.
This agrees well with the analytic calculation, indicating that the non-Helmholtzian
geometry of the x—coils is indeed the primary source of inhomogeneity. We checked that
this inhomogeneity remains harmonic over the whole trap length of several millimeters.
In summary, the curvature of the coil field creates a small harmonic confinement
of ~ 0.8 Hz. To reach frequencies below this value, one would have to compensate
this curvature by an opposite curvature from the chip wires. However, this may prove
difficult, since the coil might not be perfectly aligned to the chip and compensation can
only be achieved if the curvatures of the chip and the coils are centered around the same
point on the z axis.

Displacement of the coils The coils are not perfectly aligned with respect to the chip.
There is a systematic misalignment, since in our design of the coils, the chip surface is
shifted by 7mm along the z-direction from the axis of the x—coils, which is in turn shifted
along the z-direction from the axis of the y—coils.

We checked for the influence of the systematic misalignment using the simulation men-
tioned above. We observe in this simulation that a cloud in a typical trap of (0.5, 1k, 1k)Hz
tilts by & 6° in the x-y-plane. We attribute this to the displacement of the chip, which
creates a nonzero gradient dB,/dz along the trap.

Misalighment Stochastic misalignments can cause additional inhomogeneities. Again,
this effect is most severe along the x—direction. In this direction, additional inhomo-
geneties can arise mainly in two ways:

If the chip is displaced from the center of the coils in the y—direction by Ay, the y—coils
will create a nonzero gradient 0B, /0z. From our numerical simulation, we estimate that,
when the coils generate a typical bias field of B, = 20G, a displacement of Ay = 0.1mm
will create a gradient of 0B, /0xr = 1G/m, which shifts the trap by Az = 0.3mm.

If the chip is tilted in the x-y-plane by an angle «, the curvature of the y—coils
d’B,/dy* is converted into a curvature d*B,/dz* = d*B,/dy*sin(«)?. However, from
our simulation, we measure the curvature of the y—coils for typical bias fields to be
d?B,/dy* = 10kG/m?, of the same order of magnitude as the curvature of the x—coils,
so this effect should not play a role.
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4.6.3 Temporal stability of the coil field

Even more critical for our experiment is the temporal stability of the coils. We recall
from Eq. 98 that changes in the magnetic field B, translate directly into frequency
shifts of our clock and that we require this field to be stable to at least 35uG (rel.
1075). Changes in the coil dimensions will create fluctuations of the magnetic field,
even if the current in the coils is perfectly controlled. The resulting requirement on the
stability of the coils’ dimensions can be estimated from Eq. 104 by taking the partial
derivatives 0B/0d and 0B/OR. Again, the effect is most critical for the x-coils, since the
background field of the clock trap is created by them. Inserting their actual dimensions
and currents, our required field stability translates into the following requirements

= = 6.7-107°

<2 = 41-10°

This corresponds to a o4, of the order of only hundred nanometers. The main con-
tribution to changes of the dimensions will presumably be the thermal expansion of the
support and the coil windings. Both are made from copper, which has a coefficient of
thermal expansion of 1.6 - 107°. To reach the above stability, we would have to stabilize
the temperature of our coils to within 0.2°, which seems feasible.
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5 The chip

5.1 The atomic clock chip
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Figure 47: The chip used in the experiment: It consists of two chips, the lower “base
chip” and the upper “science chip”, both of which contain conductors (left).
The base chip is fabricated from 0.8mm thick Aluminum Nitride (AIN), while
the science chip is fabricated from 0.25mm thick AIN. The chip is hybrid,
containing DC conductors (yellow) as well as a microwave guide (red). Both
chips are glued onto each other (right). Connections between the chips are
performed by bond wires. The Connection to the supplies is performed by
feeding ribbon cables through the holes visible on the photo, which are con-
nected with an electrically conductive epoxy to the gold conductors. The
microwave is connected by the Mini-SMP connectors visible on the corners
of the chip.

We will now describe in detail the chip, which is used in our experiment. It is depicted
in Figs. 47 and 48. It is a hybrid chip, containing DC conductors as well as a microwave
transmission line. All the experimental cycle takes place at the center of the chip. The
chip is able to prepare a cold cloud, a thermal cloud or a BEC, and to place it into
the near—field of the transmission line, where the magnetic field of the microwave can
induce hyperfine transitions. The philosophy of our chip design was the following: We
first designed the microwave transmission line, assuming our atoms could be held at any
place above the chip in the optimum clock trap. Afterwards, we designed the DC wires
around the transmission line. The following paragraphs will describe both components
in more detail.

5.1.1 The microwave transmission line

Our clock states |1, —1) and |2, 1) are linked by a two—photon transition with a transition
frequency close to the hyperfine splitting f = 6.835GHz [129]. To excite this transition,
we have to couple two photons to the atoms, one in the RF domain (f = 1-2MHz)
and another one in the microwave domain. Technically, the coupling of the former is
easy, since it can be coupled into any wire of the chip. This is not true for the latter.
Coupling the microwave photon to the chip requires a dedicated coupling structure, the
transmission line visible in fig. 47. It is this structure which we will describe in detail
in this section.
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Figure 48: The chip assembly. The chip as shown in Fig. 47 is glued onto a spectroscopy
cell. On the backside, we mount additional macroscopic conductors: A macro-
scopic U wire to create the quadrupole field for the MOT and a macroscopic
I wire to create the field for the compressed MOT and to support the initial
magnetic trap. The macroscopic U is custom made from copper and has a
thickness of 2mm. The macroscopic I is bent from @ = 0.5mm enamelled
copper wire.

As a preparing remark, we recall from section 3.1.3 that the trap confines the atoms
in the Lamb-Dicke regime for the RF and microwave photon. Consequently, the details
of the excitation field are much less critical than they would be e.g. for a fountain
clock. In particular, we do not have to take care to provide the excitation field as a
maximally pure standing wave. All former experiments on our clock transition have
exploited this observation to the fullest and used a freely propagating microwave to
create the excitation field [39],[29]. However, as we will discuss, this approach has
several drawbacks, so we decided to couple the microwave to the atoms by immersing
them into the near-field of a microwave transmission line integrated on the chip. Before
describing the details of this transmission line, we will spend the following paragraph to
sketch the theory of microwave guides. For a more in—depth overview, see [153]

Figure 49: Two typical waveguide structures. A hollow-core waveguide (left) supports
various TE and TM modes, but no TEM mode. In the coaxial cable (right),
the signal is carried by a TEM mode.
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Microwave guides It is known that the solution of Maxwell’s equations in isotropic
media are plane electromagnetic waves

E(#,t) = E)Re [exp[iwt - z’/%’f]} (105a)
B(7.t) = ByRe [exp[iwt - i%f]} (105b)
satisfying
w 1 EO

p == NGT Be c
A waveguide is a metallic or dielectric structure, of dimensions L > A = 27¢/w in
one direction (we assume direction z) and a,b < A or a,b &~ X in the other directions
(x,y). We will focus in the following part on metallic waveguides, assumed to be perfect
conductors, and assume the waveguide to be embedded into a homogeneous dielectric.
Two typical examples can be seen in Fig. 49 The waveguide imposes boundary conditions
on the electromagnetic field in the z— and y—directions. The waves will thus be modified
to a form

(
(

developing a profile Eo (x,y) in the transverse direction, which propagates along z with
a wave number ky,. In general, a given waveguide can give rise to several solutions
of the form 106a, 106b for a given w. A solution, completely determined by the set
{EO, éo, kywg}, is refered to as a “mode”. We note that ky, can be imaginary, resulting in

&

o =

&

t) = Ey(z,y)Re[exp™' "] (106a)
t) = By(z,y) Refexp™' "] (106b)

a damped mode, that cannot propagate. To classify a mode, Eo(x,y) and éo(x, y) are
decomposed into their components transverse and parallel to the propagation axis Fy =
Er + E.e.. Depending on the existence of E,, B, or both, the modes can be classified

into

e TE, TM and mixed modesif £, =0,B, #0, B, =0,E, #0 or E, #0,B, #
0, respectively. These modes are refered to as “transverse electric”, “transverse
magnetic” and “mixed” modes

¢ TEM modes, for which £, =0, B, = 0.

This classification is more than a mere label: The mechanism of propagation is funda-
mentally different for different types of waves.

TE, TM and mixed modes can be understood as standing waves, which develop
between the waveguide boundary conditions in the z—y—plane. If a > A/2 or b > \/2, the
transverse profile Eo(x, y) can be a standing wave, with a nonzero F, or B, component.
This standing wave is a superposition of waves, which propagate perpendicular to the
transmission line with wave vector +kr = n 27 /a &, + m2r /b €y, n,m € NU{0}. The

119 2008



5 The chip

air

gnd i gnd sig gnd sig gnd
sig
substrate
C gnd ) C gnd )
a) b) c) d)

Figure 50: Different layouts of microstructures supporting TEM modes. The stripline
(a), the microstrip line (b), the coplanar waveguide (c) and the slotline (d).

modulus of the total wavevector k = ET + k.e, is still fixed by the dispersion relation
of the medium k& = w/c. Consequently, the k, component is reduced with respect to its
free-space value.
2
Fog = k. = | = — k2
c?

It follows that a TE or TM mode can only propagate, if the frequency w exceeds a
certain cutoff frequency w > w. = ckr.

TEM modes cannot be understood in this way. They exist only in multi-conductor
guides and are the quasi-static version of a DC signal applied to the guide. They do
not exhibit a cutoff frequency, rather they exist for all w, even for DC. Their full wave
vector is directed along z and they propagate with the speed of light ¢ in the respective
medium: £k = w /c €,. They can develop in a structure with a,b < A.

Mathematically, they are described by inserting the Ansatz 106a with ky, = w/c into
Maxwell’s equations and applying the additional constraint £, = B, = 0. The result
are the following equations for the transverse field Er:

_ 1 -
HT = —gz X ET (107&)
n
= VT X ET (107b)
= VT . ET (107C)

where n = \/7 is the impedance of the medium and the solutions are subject to
the boundary condltlons imposed by the waveguide. HT is completely determined from
knowledge of ET ET in turn is given by the quasi-electrostatic problem 107b,;107c.

As stated above, TEM modes can even propagate in guides with dimensions a,b < .
This renders them an extremely powerful tool to conduct high—frequency signals on
microfabricated structures like PCB boards. A whole wealth of microfabricated guiding
structures has been developed for this purpose, the most common ones are depicted in
figure 50. The transmission line on our chip is of type 50 c)

Imperfections and quasi—-TEM modes The above reasoning assumes the waveguide
to be immersed into a homogeneous dielectric and the conductors to be perfect. In the
real-world implementations of fig. 50, the medium is composed of several regions of
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T s

Figure 51: Equivalent circuit of a transmission line. Capacitance, Inductance, series and
shunt resistance are modeled by their 1D densities C', L, R and G respectively.

substrate, air, and possibly other media. Furthermore, the conductors and the medium
exhibit a nonzero Ohmic resistance.

The former problem is mostly dealt with by modelling the different dielectrics by one
dielectric with an effective dielectric constant ([153] p. 401f.). In our case, we solve it
by a finite—element simulation of the electric field (see below).

Ohmic losses in the dielectric are usually small and can be calculated as a perturbation.
One first finds a solution to equation 107a and calculates the losses from the resulting
field Ep.

Ohmic losses in the conductors give rise to the skin effect. If the transmission line has a
conductivity o and carries a current alternating at a frequency w, this current will flow
only near the surface of the conductors, within a region of skin depth 6 = \/2/wuc. In
usual applications, the dimensions of the conductors are > §. The losses can then be
taken into account as a perturbation. One first calculates a solution to equation 107a,
assuming perfect conductors. Perfect conductors are field—free, so the magnetic field
is produced by surface currents, which can be calculated from the resulting Hr. They
translate into losses with the surface resistance Rg = (0d)™!.

We deal with the problem by a finite-element calculation (see below). For practical
purposes, we note that the skin depth in gold at the 8Rb frequency f = 6.8GHz is
d = 0.9um [108], much smaller than the size of our conductors.

As becomes clear from the definition of the conductivity j = UE, a nonzero conduc-
tivity, given a nonzero current density j,, gives rise to a nonvanishing field F,. Strictly
speaking, the resulting mode is not a pure TEM-mode any more. However, F, < Er
and all important characteristics of TEM-modes remain, so these modes are refered to
as “quasi-TEM modes”.

Equivalent circuit model An infinitesimal piece of transmission line of length dz can
be described by an equivalent circuit (figure 51). This “distributed parameter circuit”
models the capacitance between the conductors C'dz, the inductance of the conductors
Ldz, the series resistance of the conductors Rdz and the shunt resistance of the dielectric
Gdz. Here, C,L,R and G are 1D densities of capacitance, inductance and resistance.
In this model, it can be shown [153], [154] that an infinitely long line of these pieces
supports voltage waves
V(t, z) = VoRelexpliwt — vz]]

with the propagation constant

v=V(R+iwL)(G +iwC) (108)
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and corresponding current waves with

I(t,z) = %Re[exp[iwt —z]|

R+ 1wl
Z=\| 5% 1
G+ wC (109)

where the line impedance is

Design of the transmission line

Transmission line vs. freely propagating beam For our application, a transmission
line presents some clear advantages over a freely propagating microwave:

e The microwave power is focussed onto a much smaller cross section, of size a - b
instead of at least A\? for a freely propagating beam. This results in stronger
magnetic fields at the atoms’ position and thus a stronger coupling to the atoms.

e The exact profile By(z,y) of the excitation field can be controlled by the design.
This is not the case for a freely propagating wave, since it is impossible to take
into account all possible reflections on the apparatus. In particular, the temporal
stability of the near—field of the transmission line will presumably be higher than
for a propagating wave, whose reflections on the apparatus might drift over time.

There are in turn a number of challenges, which have to be addressed by the chip design.

e Being confined to the dimensions a, b, the near field of a transmission line is necces-
sarily inhomogeneous. The transmission line and / or the trap have to be chosen
such as to ensure a sufficiently homogeneous Rabi frequency over the cloud.

e The transmission line imposes constraints on the design of the DC conductors. In
particular, no DC conductor can cross the transmission line.

High—level design considerations From the various transmission line layouts of figure
50, the coplanar waveguide (CPW) is the most attractive choice to create a suitable
near—field to drive atomic transitions. It can be implemented in a geometry like figure
52 a): The CPW is placed on the uppermost layer of the chip, the closest possible to the
atomic cloud. Its near—field then extends into the space above the chip surface, where
the atomic cloud can be placed in a magnetic trap.

Compared to the stripline and microstrip line layouts of figure 50, the CPW has a
number of advantages. Its near—field extends symmetrically into the chip and into the
space above the chip surface. In contrast, layouts like the stripline or the microstrip
line concentrate the field inside the chip substrate, creating less field at the position of
the atoms. For the same reason, the CPW is easy to decouple from the DC wires of
the chip. In a CPW design, DC wires can be placed on a lower chip layer, which can
be kept free from microwave conductors. For layouts like the microstrip line, microwave
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Figure 52: Coupling of the atoms to the magnetic near—field of a coplanar waveguide.
The general situation is shown in a). Our design is shown in b). By applying
DC currents as shown in the figure, a trap can be created at h = d without
using external bias fields [155].

conductors would have to be placed on a lower chip layer, with higher chances to couple
into underlying DC wires or structures on the back side of the chip. Basically, all
these advantages also hold for the slotline (fig. 50 (d)). This type of line, however, is
prone to radiation losses (a voltage across the conductor gap creates dipole radiation).
Furthermore, the CPW geometry has the technical advantage that there exist standard
connectors terminating in a CPW.

Dimensions of the transmission line With the coarse geometry being fixed by the
preceding considerations, the remaining design decision is the choice of the dimensions
w, d and h (fig. 52).

An obvious choice would consist in choosing w and d the largest possible. This would
create a maximally homogeneous field, since, under a scaling transformation with pa-
rameter A, the gradient of the magnetic field scales with ~ A%, whereas the magnetic
field scales only with % It is clear, however, that d can be at most of the order of the
thickness of the chip. The near—field of the structure is also of the order of d and for
d larger than the chip thickness, the microwave could couple into structures on a lower
chip layer or onto structures on the backside of the chip.

To fix the precise dimension for d, we followed an idea sketched in fig. 52 b) and charac-
terized by h = d. In this scenario, a transversally confining trap can be created without
using using external bias fields, by passing DC currents of +17 and —I through the signal
and ground conductors, respectively. These currents could in principle be programmed
by connecting all three conductors in series to one current supply. In this configuration,
fluctuations of the current supply would affect only the trap frequencies, not the posi-
tion. We chose the dimensions such that we can create such a trap with transverse trap
frequencies up to f, = f, = 1kHz with a reasonable current (/ = 3A). This results in
choosing d = 175um.

We chose w = 50um for the width of the center conductor as well as for the ground
conductors. This value is the minimum possible value for the conductor to support the
maximum DC current (I = 3A) of our current supplies. The choice is motivated by the
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Figure 53: One—photon resonant Rabi—frequency (in units of Hz) of the microwave exci-
tation field for a total microwave power of 10dBm. The static field is assumed
to be directed along the transmission line. The translucent box around the
conductors indicates the dimensions of the dielectric mirror coating.

fact that we intend to pass a DC current along with the microwave in these conductors
to create the trap (see section “The DC conductors” below). Thin wires can create
stronger confinement, which is required for the evaporative cooling.

Finite—Element simulation of the resulting excitation field To compute the resulting
excitation field, we performed a finite—element simulation of the transmission line. To
this end, we used a framework developed by Philipp Treutlem with the software package
COMSOL (www.comsol.com). It computes the fields Er, Hr,j., E, of a quasi-TEM
mode in a plane perpendicular to the transmission line (assumed to be the z—y—plane in
the following). This plane may be composed of multiple domains with varying physical
properties (see fig. 53 for an example). All fields are assumed to be time-harmonic and
the calculation is performed in two steps:

e A magneto—quasistatic model (The “AC power electromagnetics” model) calcu-
lates the z—component of the electromagnetic vector potential A,(z,y), which
solves the equation

(iwo — w?eoe,) A, + V x (g ', 'V x A,) = JE. (110)

The model allows for domains of varying conductivity o, relative permittivity ¢,
permeability p, and external current density JZ. In particular, the simulation
includes the skin effect in domains of nonzero o. J¢ allows to select a specific
mode and to prevent the simulation from producing a zero solution. The boundary
conditions of the simulation box are chosen as 7 x H = 0, such as to ensure a zero
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Figure 54: Current density in the central conductor for a microwave power of 10dBm.
Due to the skin effect, the current flows mostly on the edges of the conductor.

net current on the CPW. Finally, the resulting A, is used to calculate é:r’, E. and
Jz-

e A 2D electrostatic simulation computes the electrostatic potential V', which solves
the equation
-V - (€&, VV) = 0. (111)

Again, multiple dielectrics of varying permittivity €, can be handled. The bound-
ary conditions of the simulation box are chosen as 7 - D = 0, such as to ensure
a zero net charge on the CPW. The boundary condition of the conductors are
Dirichlet boundary conditions, such as to guarantee a finite potential V' on the
surface of the signal line and a zero potential on the ground lines. The result V' is
subsequently used to generate Ep(z,y).

Both solutions are not normalized. To be a valid solution, they must be rescaled such
that current and voltage satisfy the line impedance U/I = Z. To obtain Z, all the
circuit parameters of figure 51 are calculated directly from the simulations, L and R
from the magneto—quasi-static model, C' and G from the electrostatic model. By means
of equations 109 and 108, these values also yield the impedance Z and the propagation
constant . The resulting Z is then used to correctly rescale the solutions.

Before turning to an analysis of the result of this simulation, we would like to point
out some minor caveats to keep in mind: In our simulation we excite the symmetric
TEM mode of the waveguide by choosing an appropriate external current density J¢
and voltage on the central conductor V. However, it is known that CPWs also exhibit
an antisymmetric mode, which can also propagate at our frequency. On a long trans-
mission line, only the symmetric mode is present, since the antisymmetric mode decays
by radiation losses [156]. For our chip, we cannot exclude that the antisymmetric mode
might be excited at perturbations like the connectors or the bond wires. Comparable
chips in our group in Munich have produced purely symmetric modes.
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In addition, our model cannot simulate TE or TM modes. We can safely neglect them,
since the dimensions of our waveguide are much smaller than the wavelength, so these
modes would appear at frequencies much higher than the frequencies of our clock exci-
tation.

Another caveat is that the simulation does not take into account DC magnetic fields.
Such fields will be present in the experiment, since we will operate the transmission line
in presence of the magnetic trap. We cannot exclude that a DC field could modify the
distribution of the microwave current, e.g. via the Hall effect.

Characteristic parameters of our transmission line The most immediate result of
this simulation are the propagation parameters of the transmission line. We compute
the following values for the impedance Z, the wavelength A and the loss factor [

Z = 801 (112)
A=17.4 mm
[ =13dB/m

A differs from its value in vacuum A = ¢/f = 44mm, due to the dielectric properties
of the AIN substrate. The propagation losses [ are mostly due to Ohmic losses in the
conductors. The pronounced skin effect raises the resistance of the transmission line to
R = 586/m at our clock frequency.

Rabi frequency in the microwave near—field Probably the most important result
of the simulation is the strength of the resulting driving field. To characterize it, we
compute from the simulation the resonant 1-photon Rabi-frequency of the transition
|1, —1) — |2,0) (see eq. 47 and fig. 23)

2971B

hQnw = 5

(2,009, 7+ 11, —1) Buw.+ = s Banw.s (113)

where Byw 4 is the modulus of the time-harmonic o, -polarised component of the mi-
crowave’s B field. For the current analysis, we assume the atomic quantisation axis to be
directed along the guide, so that Byw 4+ = \%|B}(az, y)|. Before applying equation 113,
we rescale B and j, of the magneto—quasistatic simulation such that the total current I
corresponds to a given microwave power P = ZI2. A result of such an analysis is shown
in Fig. 53.

For realistic microwave powers (P = 10dBm), the one-photon Rabi frequency at the
intended position of the atoms is about 27 - 50kHz. The order of magnitude agrees well
with an analytic estimate: The impedance of the line is computed to be 809 (see be-
low), so that 10dBm of microwave power correspond to a current of I = 11mA. Replacing
the waveguide by a thin conductor, we compute from these values a Rabi frequency of
Q) =27 - 120kHz at a height h = 175um over the conductor, which is of the same order
of magnitude as the finite element simulation.

We consider it realistic to operate the transmission line at 10dBm of microwave power,
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since the current density in the conductors (Fig. 54) remains well below the maximum
current density in gold for small conductors, 10'2A /m? [155].

To estimate the duration of the Ramsey pulses at this intensity, we recall that the Ram-
sey pulses drive a two—photon transition between the levels |1, —1) and |2, 1), enhanced
by the level |2,0). The microwave drives the transition |1, —1) — |2,0), the transition
|2,0) — |2, 1) is driven by a supplementary RF photon. The resonant two—photon Rabi
frequency of this transition is given by eq. 49

~ Ouw (7)Qre(7)

Qe (T) = NG (114)

We recall from section 3.3 that, in order to avoid lightshifts, we have to choose Qyw =
Qrp. Assuming A = 27 - 0.7MHz, the upper value of Qyw = 27 - 50kHz then leads to

Qop = 270+ 1.8 - 10371

With this frequency, the 7/2 pulses can be performed on a millisecond timescale.

Homogeneity of the excitation field Another requirement of our design is to provide a
maximally homogeneous excitation field. To assess the performance of the transmission
line in this respect, the relevant quantity is again the two—photon Rabi frequency (eq.
49)
2A(X)

This quantity should vary as little as possible over the atomic cloud. All its three
components, the resonant microwave (Qyw(Z)) and RF (Qrp(Z)) Rabi frequencies and
the intermediate—state detuning A(Z), vary with &, This variation has a longitudinal
component (along the transmission line) as well as a transverse component (in the plane
perpendicular to the transmission line). We will now estimate the typical variation of
each of these quantities over our atomic cloud.

A(Z) varies over the cloud, since the |1, —1) and |2, 1) levels experience a linear Zeeman
shift, while the intermediate state |2,0) is insensitive to the magnetic trapping field.
The atoms explore a typical field of B = 2kgT/up, which leads to a typical variation of
NG kBTT = 27 - 10kHz. where we have assumed a typical temperature of T' = 500nK.
Assuming the parameters of [39] (A = 27 - 0.7MHz), this contributes a variation of the
Rabi frequency of

(oo (T) = (115)

0Qse

QQ<I>

To compute the transverse variation of Qyw, we extract éMw(x, y) from the magneto—
quasistatic simulation. To compute the o;—polarized component By +(x,y), we com-

OA _9
=—=~14-10
A

pute its component orthogonal of the static trapping field Bs.

B o) = g Bt~ (Bt 2 )
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The resulting (yw is computed from equation 113. We compute its variation over the
cloud, weighted by the atomic density in a typical trap of (w,,w,) = 27 - (1k, 1k)Hz
floating at (z,y) = (0,175)um. This yields a value of

0Qse

Q2d>

_ Oomw
transverse

=1.6-1072

QMW transverse

The longitudinal variation of Qynw depends on the termination of the line (see below).
For a matched termination, the microwave is a propagating wave and its variation is
limited by losses along the transmission line. They can be computed from the simulation
by computing the propagation constant 7. For our case, we compute an attenuation of
13dB/m, leading to a variation over the length of our cloud o = 2.2mm of

0 _ Oouw

|onsttuding = =4-107%
ng:. longitudinal

QMW longitudinal

For a maximally unmatched termination (short circuit or open circuit), the microwave
forms a standing wave on the chip. Assuming the cloud to be placed in an antinode of
the current, we compute a variation of

=23.1072

0Qse 0Qnw ’
longitudinal

92(1) longitudinal QMW

The variation of {2gp is negligible. The RF photon will be coupled from a wire in a
distance d ~ 0.5mm from the atoms. Longitudinally, the current along the wire can be
assumed to be constant. Transversally, the variation due to the field gradient of the wire
is of the order o3/B = 0;/d = 2.2 - 1073, where o; = 1.1um is the transverse width of
our cloud.

In summary, when the interrogation is performed with a propagating wave, all contri-

butions to ogq,, /e are of the order of oa/A. This latter variation cannot be avoided,
but has not been a problem for the previous experiments [39] and [29]. We therefore
consider the field of our transmission line sufficiently homogeneous.
If the interrogation is performed by a standing wave, its standing wave profile becomes
the dominant source of inhomogeneity, but remains of the order of magnitude of the other
variations. According to the analysis of section 3, this interrogation will be preferable
when working with highly elongated clouds.

Tapers and connections The above considerations fix the dimensions at the center of
the stripline. We gradually change the dimensions over the chip to fit a standard Mini—
SMP connector at the end of the line (see fig. 47). Therefore, the impedance varies
over the length of this “taper”, from 502 at the connector to 802 at the center of the
transmission line. A third point of definite impedance is the bond connection between
the chips, where we took care that enough bond wires could be placed by choosing the
layout d = 300pum, w = 350pum. This results in an intermediate impedance Z = 632
at the bond wires, calculated by the tool txline For simplicity, we vary the dimensions
of the transmission line linearly between these points. There exist more sophisticated
designs, minimizing the reflection from the taper [157], [158].
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Figure 55: S—parameter measurement of the atomic clock chip. The transmission data
(right figure) includes cable losses of —4.5dB at our clock frequency.

We connect the transmission line with a high—curent bias T at each end, so that we
can add a DC current to the central conductor (see next paragraph). We have not
provided a separate DC access for each of the ground conductors. In the current version
of the chip, the ground conductors are connected by the footprint of the Mini-SMP
connector. A current programmed between the grounds of the connectors will always
flow in parallel through both ground lines. Meanwhile, integrated bias Ts on the chip
have been developed in our group at Munich. They could be used in a future chip to
provide a separate access to each of the ground lines.

In the microwave domain, the two bias T's provide us with an access to each end of the
transmission line. This allows us to flexibly choose the termination of the transmission
line: We can create a propagating wave by injecting the microwave from one side and
terminating the transmission line on the other side with a matched load. To perform
the interrogation with a standing wave, we could either terminate the transmission line

in an unmatched load (open or short circuit) or feed the microwave symmetrically from
both ends.

Measurements After fabrication, the chip was characterized by a two—port measure-
ment on a network analyzer. This measurement was performed on the completely glued
and bonded chip, but without the glass cell in place. The resulting data is shown in Fig.
55. Resonances are clearly visible in the reflection data. Most probably, they stem from
reflections at the bond wires. The transmission loss is —4.75dB over the whole chip, in
clear disagreement with the simulation and the design tools, which predicted a loss of
< 1dB. We are unable to account for these additional losses. If they were uniform over
the whole length of the transmission line, they would create an amplitude variation of
less than 2% over the atomic cloud, which would be acceptable.

Numeric values of the S—parameters at our clock frequency are given in table 7 It is
worth noting that the measured loss is significantly smaller for the isolated science chip
than for the fully assembled chip. One might be tempted to explain the additional losses
by losses in the connector or the bond wires. However it might as well be possible that
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S11 522 S12 521
CSC1 —245 —-248 —-1.92 —-194
C1 —-164 —21.2 —4.74 —4.76

Table 7: S—parameters at our clock frequency f = 6.835GHz. C1 values are measure-
ments of the fully assembled chip. CSC1 values are measurements of the science
chip only. All data shown has been corrected for cable losses.

the microwave couples into structures formed by the combined chip assembly.

The DC resistance of the central conductor of the transmission line was measured to
be R = 1.47). The peak DC current in this conductor attains I = 3A in an experimental
cycle, corresponding to a peak power of 13W. Dissipation of this power is not a problem,
since the peak power only lasts for 1-2 seconds, in an experimental cycle of typically 10s.
However, with the benefit of hindsight, we would choose a larger width of the conductors
in the outer areas of the transmission line. This would come at the expense of shorter
tapers and a steeper change of the dimensions inside the taper. However, the return
loss of our chip seems not to be limited by the tapers and reducing the resistance of the
central conductor would be a prerequisite to prepare for shorter experimental cycles.

Alternative approaches There is one essential shortcoming of our design of our trans-
mission line, the constraints imposed onto the layout of the DC conductors. Since no
wire can cross the transmission line, we are forced to move all orthogonal wires onto
the base chip. It would be possible, albeit with suppplementary development effort, to
surmount this problem:

One approach would consist in switching from the coplanar waveguide to a microstrip
line and to connect all crossing conductors with bias—tees. Such a line could be fabri-
cated by microfabricating gold conductors onto the upper face of the science chip and
metallizing the bottom face in order to form a groundplane. The bias-tees could be
fabricated on the chip, either from lumped circuit elements or from microfabricated
structures [159]. To prevent the microwave from propagating into the crossing struc-
tures, one would have to terminate the RF ports of the bias—tees by an open load and
make sure that no pair of the crossing structures can create a resonator.

Another approach might be to have the DC conductors cross the microstrip line, but to
selectively metallize the back side of the chip. In this way, only the microwave conductor
would see a groundplane. Due to their high inductance and low capacitance, the DC
conductors would create a higher impedance than the line impedance, preventing the
microwave from leaking into these ports.

A completely different approach might be to integrate a microwave patch antenna on
the chip [153]. Even though such a device would create a propagating wave, its near—field
might still be well enough controlled to perform the excitation.
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Figure 56: A way of having DC conductors cross a microwave microstrip line. The
microwave path is defined by a patterned metallization of the backside of the
chip, preventing propagation into the DC conductors.

5.1.2 The DC conductors

By connecting the transmission line with a bias-tee, we can pass a DC current in the
central conductor and use it to create confinement in two directions. To create confine-
ment along the direction of the transmission line, we have to add orthogonal conductors.
To design these, we have one severe constraint: No conductor can cross the transmission
line. Therefore, we placed all orthogonal conductors on the base chip (Fig. 57). To
maximize their field strength, gradient and curvature above the chip at the position of
the atoms, we chose the thickness of the science chip the thinnest possible. The thinnest
commercially available AIN substrate of sufficient planarity had a thickness of 250um.
Basically, all chip traps of an experimental cycle are driven from scO (which creates the
transverse confinement) and some combination of wires of bc-4 to bed (to create the
longitudinal confinement). This is a very flexible setup, allowing to create all kinds of
H and dimple configurations as shown in Fig. 17.

We will now turn to a detailed description of all traps involved in a cycle — both those
driven by the conductors on the chip and those driven by the macroscopic conductors
on the back side. We will describe them “in order of appearance”, walking through a
complete experimental cycle. We will use the same terms as in Figs. 47, 48 and 57.

The MOT The magneto—optical trap is driven by the macroscopic U. We typically
apply a current of 55A and a bias field such that 3D quadrupole with gradients (18,15,3)
G/cm forms 4mm above the chip surface. This procedure was first described in [160]
and has been copied numerous times since then. Our macroscopic U is also based
on the layout of this reference. We added the macroscopic I, which is embedded in
the macroscopic U. This might change the current distribution of the macroscopic U.
However, we never observed any problems suggesting that this might be the case.

The compressed MOT The quadrupole field of the compressed MOT is driven from
sc0 and the conductors be-2 and be2, carrying currents (Iseo, Ihe2, Ipe2) = (2.4, 3.4, —3.4)A.
We recall that the macroscopic I runs along the x—direction on the backside of the chip.
Its leads are far from the center of the chip and oriented along z, so it can create only
transverse confinement (in the y—z—plane). We create longitudinal confinement by means
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Figure 57: The core of the chip. The transmission line is drawn in red. Its central
conductor (sc0) can carry a DC current. All orthogonal structures are placed
on the base chip (bc-4 to bed, not all shown). The RF photon is coupled by
scl (green), (scd, sc-1 and sc-2) are a backup structure, as is sc2. Not shown
are the macroscopic conductors on the back side of the chip (Fig. 48). They
are aligned such that the macroscopic I lies parallel to scO on the backside of
the chip.
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of the wires be-2 and be2. We choose the bias fields such as to create a 3D quadrupole
of gradients (46,27,19) G/cm 1.2mm above the chip.

The transfer trap After the compressed MOT, we apply a phase of polarization gradi-
ent cooling on the compressed cloud. The goal of the initial magnetic trap — the transfer
trap — is to capture this cloud in a way that minimizes the resulting increase in entropy.
As we have calculated in section 2.3, this requires a weak confinement (ideally f = 25Hz
in all directions). There are two further constraints: The trap has to be sufficiently deep
to avoid loss of the hottest atoms. Typically, the cloud has a temperature of 10uK, so
we require a trap depth of at least ten times this value h = 100uK. Also, the trap should
form as far away from the chip as possible, since losses in the compressed MOT rise,
when it approaches the chip. As a rule of thumb, a transfer at a distance of 0.45mm to
the chip is feasible [8], but a distance of Imm is desirable.

In the longitudinal direction, the mentioned targets are easily reached by a dimple
trap. It follows from Eqgs. 25 and 24 that the mentioned trap frequency is reached by a
dimple trap with a dimple current of I = 3A at a height of d = 0.48mm over the chip
surface. The longitudinal depth of such a trap would be h = 265 K.

In the transverse directions, the situation is more difficult, since the gravitational
gradient reduces the trap depth. As discussed above, the depth of a chip trap of given
frequency or gradient can be increased by increasing the current in the conductor. Since
currents on the chip are limited, we added the macrocopic I wire on the back side of
the chip. Its center lies 1.5mm under the surface of the science chip. The transverse
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haensel01 [8]

(I =24, leo = 3A,
By - SG) [scO - 3A [mcI - 20A ImcI - 20A
7. [Hz] 220 130 60 63
h [1K] — 100 100 100
2o [pm] 450 925 460 1100
B, — 2 2 2

Table 8: Transfer traps in a classic experiment (haensel01) and on our chip (right three
columns). The scenarios of our chip have been optimized to provide the lowest
possible trapping frequency at h = 100uK, B, = 2G. We note that the scenario
haensel01 was used to trap atoms in the state |2,2), whereas our scenarios are
valid for the states |1,—1) and |2, 1)

confinement of our transfer trap is created by a current in sc0 or the macroscopic I (mecl),
or both, with a bias field B, to form the trap. To create a harmonic confinement, we add
a bias field B,. According to equation 23, this converts the field gradient B’ = dB,,/dz
to a field curvature d?B/dz* = B?/(2B,) In the limit that B, can be described by a
gradient B, = B, (2 — 2), B, defines the range in which the trap is harmonic. The trap
looks like a harmonic trap near the trap center in a region, where B,(z) < By(z). For
the region far from the trap center, where B, > B,, the potential becomes linear. The
atoms explore a region defined by their temperature. To constrain them to the harmonic
region, we require B, > kT /(9rmprup) = 0.3G.

To estimate the gain provided by the macroscopic I, we numerically optimized several
traps, driven either from sc0, from mcl, or both (Table 8). The improvement achieved
by the macroscopic I is evident, especially in view of the fact that the energy transfered
to the atoms by a mismatched trap (equation 30) rises with the square of the trap
frequency.

Another advantage is not not visible from table 8: The potential is only harmonic, if
B, can be described by a gradient B, = B, (2 — 2). Increasing the distance d from the
atoms to the trap—creating conductor reduces higher—order components of the wire field
By (z), which distort the harmonic potential.

Even with the macroscopic I, we cannot reach perfect mode—matching in the z—
direction for a transfer in the states |2,1) and |1,—1). We note, however, that we
can reach this for the state |2,2), if we relax the condition on h to h = 50uK.

An intriguing possiblity would be to perform the transfer with the macroscopic U.
However, in its actual configuration, it neccessarily creates a quadrupole trap. Transfer-
ing into a quadrupole trap would imply another transfer into a loffe trap near the chip,
so we did not pursue this direction.

The cooling trap To perform the evaporative cooling, we ramp from the initial trap
into a trap providing tighter confinement, the cooling trap. This increases the collision

rate of the cloud by a factor of @2, . /@2 |, where @ = (w,w,w,)'/? denotes the har-
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monic average of the trap frequencies. [117]. The requirement for this trap is thus to
provide a maximum @eyo. This amounts to maximizing all three trap frequencies.

Confinement in the transverse directions is created by passing a current in scO and
applying a bias field in the y—direction. Compared to the transfer trap, the trap fre-
quency is increased by lowering the current in the wire, increasing the bias field B, and
lowering the field B,. In this way, trap frequencies of several kHz are easily achieved.

In the longitudinal direction, confinement can be created either by creating a Ioffe-
Pritchard trap from bc-1 and bel or by creating a dimple from bcO. For the Ioffe—
Pritchard case, the maximum achievable trapping frequency can be read off from Fig.
16. Assuming a maximum current of Ip.; = I._1 = 3A and a trap height at the maximum
of fig. 16, one could achieve f, = 26Hz. Creating the confinement by a dimple from bc0,
the maximum frequency is given by equation 25. Assuming a trap at a height d = 50um,
i.e., 300pum away from the base chip wires, one could achieve a frequency of f, = 190Hz.
Condensates have been achieved in traps with far smaller longitudinal frequencies [§],
but a higher frequency would be desirable. Clearly, this limitation is the most severe
drawback of our double-layer chipdesign.

The clock trap As calculated above, we aim at performing the clock interrogation in
a trap with (fs, fy, f.) = (0.5,10%,10*)Hz. As in the previous traps, transverse con-
finement is created by scO and a bias field along y. We choose I = 3A, the maximum
current scO can support. The bias field is adjusted to B, = 34.5G, in order to reach the
mentioned trap frequency. The rationale of this choice is that a high current creates a
trap far from the chip, where corrugations of the conductors have little effect. With our
parameters, the trap should form at a height h = 175um over the chip. Previous stud-
ies ([19], [161]) indicate that at this height, the corrugations of the conductors would
create potential fluctuations of ~ 0.4uK, with a correlation length of the order of h.
The temperature of our cloud is of this order of magnitude, so the fragmentation of the
cloud may limit us to clouds with a length comparable to h. However, the fabrication
process of our chips is known to produce smoother wires than the process used in [19].
Therefore, we are optimistic not to be limited by corrugations.
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6 The Electronics

Constructing an atom chip experiment is just as much an electronic challenge as it is a
physical one and there are multiple reasons for this complexity.

First of all, electromagnetic chip traps rely on currents flowing through conductors on
the chip. Evidently, a chip trap can only be as well controlled as is the current that is its
source. This current must be well calibrated, to be able to quantitatively adjust the trap
parameters. In addition, drifts of the currents must be low on all timescales, in order to
reproducibly produce identical traps, between different experimental runs, over hours,
days and even months of operation. Finally, the currents must be as noiseless as possible.
Noise in a current on the chip translates directly into noise of some trap parameter. For
frequencies from Hz to several kHz, this parametrically heats the atoms (imagine a
trap filled with atoms hopping up and down at the powerline frequency!). For higher
frequencies this leads to losses into untrapped states. Here, a chip experiment is even
more challenging than a macroscopic BEC setup. In the latter, the traps are produced
from macroscopic coils, which, due to their high inductance, filter noise starting from
kHz frequencies. In contrast, the inductance of chip wires is low enough to transmit even
RF frequencies. In fact, this is one of their advantages, since it allows to create TOP
traps and adiabatic potentials on a chip (section 2). But, as we like to summarize it in
the lab, “along with great power come great responsabilities”, in this case to guarantee
a low noise level on all currents sent onto the chip.

Secondly, the whole setup is extremely sensitive to all kinds of electromagnetic per-
turbation. In part, this is a consequence of the problem just sketched. Noise can couple
onto the chip wires, either by electromagnetic pickup in the wire and its supply cable,
or by electric, magnetic or impedance coupling into the current driver electronics. Even
if all this pickup is avoided, e.g. by careful shielding of the cables, the atoms themselves
are still sensitive to RF and microwave fields, which can excite them into untrapped
states.

A third challenge is specific to our experiment: We need to control several magnetic
fields on the 10uG level (rel. 107°) to prevent fluctuating Zeeman shifts between different
clock interrogations. To attenuate external fields, we have designed the Mumetal shield
described in the last section. This, however, would be useless, if this performance were
spoilt by a less well controlled field produced inside the shield. Consequently, the chip
and coil currents driving these fields must also be controlled to the 107> level.

Finally, we recall from section 1 that a local oscillator (flywheel) signal is needed to
perform a clock interrogation. In our case, this signal comes from a cryogenic oscil-
lator and is upconverted to our clock frequency by a homebuilt synthesis chain. This
upconversion must not significantly degrade the low phase noise of the original signal.

This chapter will describe the various electronic components, which we have set up to
meet the special requirements of this experiment. To adress the issue of current stability
and noise of the field—generating currents, we have developed an ultra—stable, feedback—
regulated constant current source, which is documented in section 6.1. To generate the
local oscillator signal of the interrogation, we have implemented a microwave synthesis
chain, which is discussed in section 6.2.
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6.1 The current supply

We have developed a homebuilt low—noise, ultrastable unipolar constant current supply
to drive the currents in the chip and, possibly, the coils producing the bias field during the
clock interrogation. This source accepts an analog programming voltage and regulates
its output such that it sources a constant current proportional to this voltage. This
section will discuss its design and performance.

6.1.1 Specification

The required performance of our source derives from the calculations of the preceding
sections. In summary, we request the following specifications:

Specification Rationale

max. output current 3A chip design

Compliance voltage 6V 2€) charge

modulation bandwidth 100kHz switching time < 10us
relative rms noise in the < 107° avoid parametric heating
[10Hz-100kHz] bandwidth

Drift over 15 min. < 107 rel. magnetic field stability
Drift over 1s after a step from zero < 1075 rel. magnetic field stability

to maximum current.

Required feature Rationale

floating output drive currents in crossing wires

isolated programming input protect the control computer,
avoid ground loops

display of the output current visual ~ feedback to  detect
anomalies

integrated TTL-programmable suppresion of quiescent output

switch to short—circuit the output currents

manual programming input

The last two specifications (drift over 15min and 1s) merit further comments: As
discussed in 3.3, we require the relative shot—to—shot fluctuation of the magnetic field to
be < 107°. This fluctuation mainly stems from the thermal drift of the current supply
between two cycles. We will be able to insert a calibration cycle measuring the magnetic
field every 15min, so we can correct for fluctuations on longer timescales. However, for
this calibration to be valid, the magnetic field must converge to better than < 107°
during the 1s long clock interrogation, motivating the last specification.
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6.1.2 The circuit

The circuit of our current supply is presented in figures 58 and 59. It is based on the
design of the SYRTE laser diode drivers.

The core The core of the current source is presented in figure 59. The output is driven
from a high—power constant voltage power supply V+p. The output is connected in
series to a measurement resistance (Vishay VFP4Z), which continuously monitors the
output current. The voltage over the measurement resistance is buffered by a differential
amplifier (LT1128 and connecting 1k resistors) and converted into a current by R,. This
is possible, since the point G is a virtual ground, stabilized by the OP27. The resulting
current [, is proportional to the output current. It is matched against a programming
current /o, provided by the user. The difference of these currents is taken as the error
signal and minimized by the OP27. This OpAmp is wired as an integrator and controls
the output voltage via the IRF630, realizing an I-regulator for the output current.

Linearized around its operating point, the core implements the well known feedback
loop model of control theory, which is sketched in fig. 60. In this model, the output
current .S, is split into a sum of two contributions: An unknown “free” current Sy, as it
would flow without the feedback loop, and a correction current, injected by the feedback
loop such as to compensate the free current and adjust the total output current to a
user—defined value. Typically, the unknown “free” current Sy arises from noise coupling
into the output. To suppress this noise, the feedback loop, described by the two transfer
functions G and H, injects a correction current into the output, such that the total output
current S, is stable. It accomplishes this task by continuously monitoring the output
current, matching it against a reference current and correcting it if neccessary. The
continuous monitoring is described by the transfer function H. The resulting current
H - S, is then matched against the user reference R, generating the error signal ¢ =
R — H - S,. This signal is amplified by a transfer function GG to generate the correction
signal. It follows that the closed—loop output current is given by

1 GH
&“_1+GHSf+1+GH'

H 'R (116)

For a high loop gain |GH| > 1, the unknown current S is virtually suppressed and
replaced by the user—programmed current H 'R,

For our core, H comprises the measurement resistance and the LT1128 differential
amplifier with its circuitry. We obtain, assuming the LT1128 to be perfect,

H(z) = Ry /R..

The reference current R is the Laplace transform of ;.. G is realized by the OP27
integrator and the output circuitry. We obtain

1 i i

O 0+ R oC(Ru + i)
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Figure 59: The core of the current source (simplified).
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Figure 60: Model of the core. G is formed by the OP27 integrator and the circuitry of the
output branch. H is formed by the LT1128 differential amplifier. All letters
denote the Laplace-transformed currents at the respective point. They are
complex—valued functions of one complex argument.

A

where we have assumed the OP27 to be perfect and Rj; to be real. Furthermore, we have
neglected the contribution of the IRF630, since its small-signal resistance Rppr =&~ 0.25€)
is negligible against Ry, + Ry.

The periphery The current source is driven by two different power supplies. The
output branch is driven from a high—power supply V+p, as discussed above. This power
supply can optionally be regulated by a LD1084V regulator.

All low—power components, including the core, are driven from a homebuilt 24V power
supply. This supply is regulated to =18V or, optionally to a variable value. We will
refer to this supply voltage as the “core supply voltage”.

The grounds of both supplies are connected to each other, but disconnected from the
housing, so that they form a single floating ground.

The programming current I, is generated from a programming voltage by a 15k
resistor (Figure 58). The programming voltage in turn is taken either from the analog
input voltage provided by the user or from the manual input. The analog input voltage
can be either buffered by an INA134 line receiver or be connected directly to the 15k
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Figure 61: The housing of the current source. All power—carrying components are
mounted on separated heatsinks (right).

resistance. In the latter case, the ground of the current source will be locked to the
ground of the analog input voltage.

The manual input is based on an LT1236 voltage reference, which can be adjusted by a
potentiometer.

The output of the current source can be short—circuited by an ultra—low-resistance
MOSFET (IRF2804, Ro, = 2m ). This MOSFET is remote—controlled by a TTL input,
which is galvanically isolated by an optocoupler.

Do drive the display, we monitor the current with a second series resistance of R =
0.1€2, placed between V+p and the drain of the IRF630. The display is connected by a
10-pin ribbon connector and supplied by the core supply voltage.

The housing The current source is integrated into a 3U high and 28TE wide Schroff
rack module (reference Schroff 24811-488, see fig. 61). The power carrying components
(LD1084V, IRF630 and VEP4Z) are mounted outside the module on heatsinks. We use
two separated heatsinks, one for the LD1084V and the IRF630, and another one for the
VFP4Z, to isolate the latter from the heat of the former components. All heatsinks are
electrically connected to the module wall, to shield the components from electric stray
fields. The components are electrically isolated from the heatsinks.

The ground of the housing is connected to the ground of the circuit by a capacitor. As
we will discuss below, this greatly improved the electro-magnetic compatibility (EMC)
of the source.
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Figure 62: Step response of the current source. A step of the output current is pro-
grammed either by the analog input (a and b) or by suddenly opening (c)
or closing (d) the TTL-programmed short—circuit in the output. In all cases,
the current reacts on a timescale < 10us.

6.1.3 Bandwidth and switching times

The bandwidth of the feedback loop is estimated from equation 116. It is given by the
condition |GH| = 1, resulting in

Ry,

_ — 27 - 160kH
CR.(Rm + R1) " g

Whw

where we have assumed a 1€) load in the last step.

We have measured the switching behaviour of the source by running it on a constant
load of 12 and programming a step of the output current on a timescale much faster than
the estimated reaction time of the source. Such a step can be programmed in two ways:
Either the current is modulated via the analog input voltage or the current is set to a
constant value and the output is suddenly opened or closed using the TTL—controlled
short—circuit in the output. Measurements of both cases are presented in figure 62. In
both cases, the output current rises or falls on a timescale of ~ 5us. This is consistent
with a bandwidth of 27 - 160kHz and fast enough for all our experimental purposes.

6.1.4 Stability

Stability of the feedback loop Assuming perfect components, the stability of the
feedback loop can be assessed from equation 116. The criterion of stability is the Nyquist
criterion. In practice, this criterion is reduced to the rule of thumb that at the bandwidth
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limit (where |GH| = 1), the phase of the open—loop gain G H should keep a phase margin
of at least 45° to the point of in-phase coupling: —arg(GH) < 180° — 45°.

In our case arg(GH) = arg(—i/(wCRy)) — arg(Ry + Rr) = —90° — arg(Ra + Ryp).
Therefore, our source is stable for

arg(RM + RL(iwbw)) < 45°.

This criterion is most critical for an inductive load R;, = Ry + iwL. In this case, the
source is stable only if
Whw < (R0+RM)/L (117)

If the bandwidth is chosen higher than this criterion, the feedback loop will oscillate.
When we have to drive inductive loads, we limit the bandwidth by increasing C'. The
limitation stated by equation 117 is rather severe: To drive our coils (with Ry = 20, L =
ImH), the bandwidth would have to be limited to wp, = 27 - 500Hz.

Stability of the power transistor In a former prototype the power transistor in the
output branch was a BDX53C power Darlington instead of the IRF630. With this
prototype, we have observed a second type of instability. This instability showed up
as an oscillation of the output current at several MHz, a frequency clearly above the
bandwidth of the feedback loop. This oscillation could not be calmed by changing C,
confirming that the feedback loop was not involved. It occured mostly for small loads
connected by long cables.

The reason for this instability turned out to be the power transistor driving the out-
put. Certain darlington transistors (such as the BDX53C) can be prone to self-excited
oscillations. After replacing this transistor by the IRF630, we have not observed this
phenomenon any more.

6.1.5 Noise

The residual noise of our current source is presented in figure 63. This data has been
taken by passing the current of the source through a 1€) resistor and measuring the
voltage over the resistor with a SRS SR760 FFT spectrum analyzer. The input noise of
this analyzer is < 10nV/v/Hz [162]. The input is floating with a common-mode rejection
ratio of 90dB To generate a stable programming current, we used an LM399H precision
voltage reference, with an additional low—pass filter. This reference generates a constant
voltage of ~ 7V, programming our source to a 2.2A output current. We verified that the
noise of this reference was small against the measured noise of the current source. We
took four measurements, with and without using the INA134 buffer for the programming
voltage and with and without connecting the circuit ground to the ground of the housing.

Internal noise The whitenoise floor of Fig. 63 stems from noise sources in the circuit:
Johnson noise of the resistors and voltage and current noise of the OpAmps.

Noise generated in the output branch is not critical, since it is corrected by the feedback
loop. For our core, all noise generated between the output of the OP27 and the load
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Figure 63: Current noise density of our source. In all measurements, the source is pro-
grammed to a constant output current of I = 2.2A. For the “gnd” measure-
ments, the ground of the circuit is connected to the ground of the housing,
for the “fit” measurements, it is floating and connected to the housing only
by the capacitor C11. Two of the measurements were taken without buffer-
ing the analog input voltage by the INA134. The relative rms noise in the
[20Hz, 100kHz] bandwidth is Iyms gna/! = 2.5 - 1079 for the grounded and
Lms, a1t/I = 3.9 - 107° for the floating measurements, respectively. The huge
peak at 50Hz is a measurement artefact, due to the finite common-mode
rejection of the SR760 (see text).

ground can be neglected.

In contrast, the noise contributions of I, the LT1128, the OP27 and their respective
circuitry are critical. Every noise generated by these components can be expressed as a
noise contribution to the error signal € = Iy — I,,os, which translates into a current noise
on the output current by the factor H~! = R,/Ry;.

Therefore, an obvious choice is to choose Rj; as high and R as small as possible. The
smallest possible value for R is fixed by the capabilities of the LT1128. R, is limited
by power dissipation and the finite supply voltage V+p. Generally, R); can be chosen
larger for a current source with a lower maximum output current. Since the internal
noise of the core is practically independent of the output current, the absolute current
noise of a current source will be smaller for a smaller (maximum) output current. It is
for this reason that current noise is often quoted relative to the output current. However,
this does not imply that the relative noise be constant over the whole current range of
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one given current source.
We will now assess the internal noise of our core:

with the INA134 buffer If the programming voltage is buffered by the INA134, the
voltage noise of this buffer is the dominant source of noise. Its output noise floor is
specified to be 52nV/v/Hz, translating into a current noise density of 17nA/vHz. We
measure a white-noise-floor of 23nA/v/Hz. This agrees well, if the additional noise of
the core circuit (see below) is taken into account.

without the INA134 buffer In this case, the programming voltage is connected directly
to the 15k input resistance of the circuit, bypassing the INA134. Noise contributions
then arise from the following sources:

15k input resistance 1 pA/vHz
R, (5k) 1.8 pA/vVHz
OP27 current noise 0.4 pA/v/Hz
OP27 voltage noise 0.8 pA/vHz
LT1128 current noise 0.2 pA/vHz
LT1128 voltage noise 0.4 pA/v/Hz
LT1128 1k resistors 1.6 pA/\/E

Multiplied by the factor H~' = Rg/Rys, these contributions sum up to an out-
put current noise density of 14nA/ v/Hz, which corresponds well to our measurement
(16nA /+v/Hz).

At such a low noise level, the electronic shot noise of the current can become visible.
Assuming uncorrelated charge transport, this would predict an output noise level of
70nA/vHz [163]. However, the same reference also states that charge transport in
metallic conductors usually is not uncorrelated, explaining why we do not observe a
noise at this level.

Noise pickup, EMC At frequencies < 1kHz, the noise of the current source is domi-
nated by sharp peaks at multiples of the 50Hz powerline frequency. In the “gnd” spectra
of fig. 63, we observe both even and odd harmonics. This can hint towards the source
of the noise: Coupling through the power supply contains predominantly the even har-
monics (100Hz and multiples), since the supply voltage is rectified. In contrast, pickup
is mainly caused by radiation of the transformers in the power supplies. These are
placed before the rectifiers and consequently, their radiation contains predominantly the
odd harmonics. In our case, both types of harmonics are present, suggesting that the
coupling occurs as well by pickup as by coupling through the power supply.

The prominent feature at low frequencies is the huge peak at 50Hz in the “fit” spectra.
It is caused by a classic problem of electromagnetic compatibility, a parasitic coupling
capacitance between the primary and secondary winding of the power supply’s trans-
former ([164], illustration fig. 64). This capacitance couples some of the power line signal
onto the ground of the current source. From an external perspective, this problem shows
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Housing

Figure 64: The transformer of the power supply contains a parasitic coupling capacitance
between the primary and secondary loop which couples some of the 50Hz line
signal onto the ground of the secondary loop. In the current supply, a ground
loop (dotted line) can close at AC by a stray capacitance to the housing. The
resulting current on the ground network couples into the signal by impedance
coupling. We avoid this problem by filtering the ground of the power supply
by capacitor C11 or by connecting the ground of the power supply with the
ground of the circuit alltogether.

up as a common—mode fluctuation of the output against the lab ground. Basically, our
noise measurement is not sensitive to such a fluctuation, since the input of the SR760
spectrum analyzer is floating. There exist two ways, however, how such a common-mode
fluctuation can nontheless couple into in the measured signal:

Firstly, the input of the spectrum analyzer has a finite common-mode rejection. It does
not completely suppress common—mode fluctuations at its input, but partly converts
them to a visible differential signal. The efficiency of this conversion is known as the
“common-mode rejection ratio” and is quoted to be —90dB for our SR760 analyzer.
This figure agrees well with our measurement: The observed peak has an integrated
intensity of 2uVrms, corresponding to a 60mV fluctuation between the circuit and lab
grounds. Indeed, we measure an oscillation at 50Hz with this amplitude between both
grounds.

Secondly, the common—mode oscillation discussed above could be converted to noise of
the output by a mechanism presented in fig. 64. A ground loop can close at AC by a
stray capacitance to the housing, such that the common-mode signal sources a current
on the ground line of the circuit. This current can then couple into the output via
impedance coupling.

Therefore, it is desirable to keep the common-mode fluctuation as low as possible.
We have realized this by adding the capacitor C11 between the circuit ground and
the housing (figure 64). This capacitor filters the power supply ground. It effectively
connects the circuit ground to the lab ground at AC, while it can still float against the
lab ground at DC. Without this capacitor, the height of the 50Hz peak was 10A /v/Hz,
more than an order of magnitude larger than in the data of figure 63. Whenever possible,
however, we recommend to connect the circuit ground to the lab ground.
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6.1.6 Long—term stability

Long—term fluctuations of the output current arise from temperature drifts of the com-
ponents. As for the noise, all components in the output branch except the measurement
resistor are uncritical, since their fluctuations are corrected by the feedback loop. The
critical components — R,;, the OP27, the LT1128, the INA134 and their respective
circuitry — fluctuate on two different timescales:

On a timescale of minutes to hours, their fluctuation is due to fluctuations of the
ambient temperature. The ambient temperature inside the microclimate of the housing
fluctuates, as power dissipation in the IRF630 and Rj,; heats up the interior. We will
refer to them as the “temperature drift”.

On a timescale of seconds, the components fluctuate because of temperature changes
inside the components. These changes are due to changes of the power dissipated by
the component. A power change heats up the substrate of a component on a timescale
RcCe, where C¢ is the component’s heat capacity and R¢ is the heat resistance of the
component’s housing. On these timescales, the component’s heatsink can be assumed
to remain at constant temperature, since it equilibrates on the much longer timescale
RyCy, with Ry, Cy being the heat resistance and capacity of the heatsink. In par-
ticular, these drifts cannot be alleviated by choosing a better heatsink. Following the
convention of Vishay, we will refer to these fluctuations as the “power drift”.

We characterized both kind of fluctuations by driving the output current through a
4-terminal Vishay VFP4Z 1Q 5% load resistor and measuring the voltage over its sense
leads with a Keithley 2000/E 6-1/2 digit voltmeter. We generated the programming
current by an LM399H reference (temperature coefficient 1ppm/K). Again, this refer-
ence programs our source to a current of 2.2A, precluding us from taking data at the
maximum current (3A). The biggest concern of this measurement is the drift of the load
resistor. For the analysis of the temperature drift, we neglect it. It is mounted outside a
housing on a well-ventilated heatsink, so that its fluctuations will be small against the
fluctuations of the components in the housing. For the analysis of the power drift, we
can calibrate its influence (see below).

Temperature drift The current drift on the minute to hour timescale is presented in
figure 65. Over the first hour under load, the current drifts by 4 - 107°1. After this
phase, it stabilizes and remains stable to about 1-107°1. This drift is clearly correlated
with the warm—up of the heatsinks, as Rj; and the IRF630 dissipate power. We observe
that the temperature of the heatsinks rises by about 20K during such a run, while the
temperature in the housing rises by about 10K. For these temperature changes, the
components should fluctuate by the following values:

Ry, +40ppm

internal resistors +120ppm

opP27 +11ppm

LT1128 +4ppm =+ unspecified bias current drift
INA134 +10ppm typ., £100ppm max.
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Figure 65: Current drift after a step from 0 to 2.2A output current at ¢t = 0.

To compute the drift of the internal resistors, we have assumed the worst—case scenario
that each resistor has a drift of £2ppm/K and that the drift of all resistors is corellated
in the most unfortunate way (e.g. that the resistors of each pair of 1k resistors around
the LT1028 drift perfectly anticorellated). In practice, the temperture coefficients of the
resistors may be correlated, which would significantly reduce the drift. If all internal
resistors have the same temperature coefficients of resistance (TCR), the resulting total
TCR will cancel.

Our measurement (figure 65) agrees well with this calculation. The data without
the INA134 buffer shows a drift, which starts immediately at ¢ = 0. This indicates
that the dominant source of drift is indeed the VFP4Z measurement resistor, since the
other components will heat only later on. Enabling the buffer reduces the drift by the
same order of magnitude, suggesting that, for this particular source, the INA134 drifts
opposite to the other components. We confirmed this by locally heating it in a separate
measurement.

In total, the source meets our specification. We can always perform our experiment in
the heated steady state, by running the source on a dummy load before taking data. In
this state, the fluctuations are lower than the required 10ppm over 15min. In addition,
the low duty cycle of our experiment greatly reduces the effective dissipated power.

A major concern, however, is the reproducibility of these results for a series of current
sources. The component TCRs can vary in a given interval, so that the TCR of different
sources may vary considerably over one production batch. A last ressort would be to
include a ventilator on the heatsink. This would solve this problem with near certainty,
albeit at the price of acoustic noise.
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Figure 66: Current drift after a step from 0 to 2.2A output current at ¢ = 0. In all
measurements, the INA134 buffer was enabled.

Power drift We measured the power drift of the source with the same setup. Here,
however, the drift of the load resistor cannot be neglected, since its heatsink does not play
a role on short timescales. We calibrate its drift by performing two measurements: In
one measurement, the output current is switched on at ¢ = 0 by connecting the LM399H
reference to the analog programming input. In a second measurement, the LM399H is
continuously connected and we trigger the output current with the FET switch. For
negative times, we short—circuit the output with the FET switch and open it at ¢ = 0.
In this way, the measurement resistance dissipates a constant power, so that the drift
after ¢ = 0 stems only from the drift of the load resistor. The latter measurement can
then be used to correct the former for the drift of the load resistor. We verified that the
LM399H reference drifted on these timescales by less than 10ppm.

The result of such a measurement is shown in Fig. 66. We observe a drift of ~ 20ppm
over the first second under load, both for the load and the measurement resistance. This
corresponds to a wattage coefficient of resistance (WCR) of 4ppm/W. This drift is in
excellent agreement with the specification of the VFP4Z resistors, which indeed states
a max. WCR of +4ppm/W.

As for the temperature drift, we can operate the source in the steady state by running
it on a dummy load, e.g. the closed FET switch, before taking data. In the steady
state, the source drifts less than 10ppm over the 1s period of measurement. In contrast
to the temperature drift, however, this problem is intrinsic to the measurement resistor
and cannot be alleviated by a better heatsink. A solution would be to use a better
measurement resistor, but we are not aware of a better solution than the Vishay VFP4Z.
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Figure 67: Source resistance of our source for the experimentally relevant frequencies.

6.1.7 Source resistance

In the real world, noise can couple into the output branch of the current source. This is
modelled by a voltage source Viy in series with the load. Depending on the quality of the
current source, the noise will translate into a small but finite current Iy = Vy /Ry, with
R, being the small-signal source resistance of the current source. An ideal current source
would completely suppress this noise (cf. equation 116), corresponding to R = 00.

The source resistance of our source can be evaluated from equation 116. We note that,
in absence of the feedback loop, Viy would source a current Sy = Viv/(Ry + Rp) in the
output branch. In presence of the feedback loop, this current is partly suppressed. The
source resistance is computed from eq. 116 to be

1Ry
R = (Ry+ R 1+ :
( M L) ( WC(RM + RL)RS)

A plot of this source resistance is shown in figure 67. We speculate that the extremely
high source resistance at low frequencies might have been the motivation for prefering
an [-regulator over a P-regulator.

However, another imperfection must be taken into account. The absolute values of the
1k resistors around the L'T1128 can vary. In particular, resistor pairs of nominally equal
resistances might not be balanced. This compromises the common—mode-rejection of
the LT1128 differential amplifier. The finite common—mode gain couples some of the
noise into the feedback loop and thus into the output current. A tolerance of o on
the resistors will give rise to a common—mode gain of the order of ¢, yielding a source
resistance of R

Rem —*
o
Our resistors have o = 0.01%, yielding an upper limit for the source resistance of Ry, =
10kS2. This is still good enough to attenuate a Vy = 10mV noise to the pA level.
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However, the performance of figure 67 is significantly degraded. In particular, in presence
of these tolerances, the I-regulator does not present a sigificant advantage over a P—
regulator.

6.1.8 Conclusion

The current source clearly reaches our specifications in terms of noise. The specifications
in terms of drift are also reached, but still require the attention of the user, who has to
insert suitable pre-heat cycles into his protocol.

The biggest concern clearly is the low bandwidth on inductive loads. This problem

could be solved by switching the feedback gain G from an integrator to a proportional
gain, which has 90° more phase margin.
A minor concern is that, in order to reach our targets in terms of thermal drift, we had
to replace all critical resistors in the core by fairly expensive precision resistors having
a low TCR. This problem could be solved by choosing a simpler core, requiring less
resistors (or none at all). This would also resolve the problem of resistor tolerances and
thus increase the source resistance.

Concluding, we therefore recommend to change the core to a simpler design, such as
the ones proposed in [165] or [166]. The other components developed and selected for
this source — such as the display, the buffer, the housing or the measurement resistance
— could be conserved as they are. The change of the core would therefore present only
a minor effort, but possibly a huge gain.

6.2 The microwave chain
6.2.1 Architecture

The microwave pulses for the interrogation are produced by a homebuilt synthesis chain.
This chain receives as input the 100MHz reference signal of a cryogenic oscillator. It
produces a signal at the clock frequency (f = 6.834GHz), which is phase-locked to the
reference signal.

Basically, the chain implements the standard layout used in our lab [44]. Its block

diagram is presented in figure 68. The signal is generated by a dielectric resonator oscil-
lator (DRO). It runs at 6.434GHz, 400MHz below the clock frequency and is upmixed
to the clock frequency at the output. This is done to avoid that radiation from the DRO
could drive atomic transitions. The signal of the DRO drives the (saturated) LO input
of the output mixer. The output power comes from the IF input, which is driven by the
400MHz signal.
The DRO as well as the 400MHz signal are stabilized to the 100MHz reference signal.
The reference signal itself is buffered by a phase-locked quartz. This reduces its ampli-
tude noise and protects the distributed signal. To lock the DRO, we generate a comb
of multiples of 200MHz by an NLTL comb generator. The DRO is then locked to the
6.4GHz peak, with a 34MHz offset provided by a DDS synthesizer, which is also locked
to the reference signal.
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Figure 68: The microwave synthesis chain. The 100MHz reference signal drives a nonlin-
ear transmission line (NLTL) comb generator (center) and a DDS synthesizer
(left). A DRO is locked to 6.434GHz by mixing it with the 6.4GHz comb line
and the DDS output. The resulting signal is upshifted by 400MHz to pro-
duce the clock frequency (right). Unspecified splits are performed by power

splitters.
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Figure 69: Residual phase noise of a homemeade synthesis chain (data from [44]) com-
pared to a commercial microwave frequency synthesizer (Agilent E8257D PSG
with option UNX) and a phase-locked DRO (Miteq PLDRO). The phase
noise of the PLDRO is the total phase noise, including the phase noise of an
unknown low-noise reference.

The user has control over the frequency and the amplitude of the output signal. The
frequency can be changed by changing the offset frequency provided by the DDS; in ei-
ther discrete steps or continuous ramps. The amplitude can be controlled by controling
the power in the 400MHz RF line (right line in figure 68). This can be performed either
continuously by the voltage variable attenuator or in a discrete step by the RF switch.

6.2.2 Comparison to commercial solutions

The residual phase noise of a typical homebuilt synthesis chain is presented in figure 69.
It consists of a white—noise floor at —105dBc for high frequencies and a 1/f contribution
at low frequencies. Comparable performance is achieved only by high—end microwave
synthesizers (like the Agilent synthesizer cited in the figure, costing ~ 50kEUR). In
other experiments of our group, we use ready—made phase—locked DROs to generate
the microwave signal [108]. A specification of their residual phase noise is generally not
available. Instead, manufacturers specify the total phase noise of the DRO, when it is
locked to an unspecified “ultra—low—noise” reference. We estimate that this specification
comes close to the residual noise, since it is in the interest of the manufacturer to quote
the best figure possible. Judging from this specification, the performance of a phase—
locked DRO is considerably inferior to our chain.

In conclusion, a homebuilt chain is indeed the best solution for our task. In terms
of performance, as is clear from figure 69, and in terms of cost, having consumed only
~ 6KEUR of components and six manmonths of work.
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7 Experimental results

The implementation of the whole setup except the interrogation microwave has been
finished in the beginning of 2008 and led to the first observation of cold atoms in february
2008. Subsequently, besides work on the electronics and most notably the current source
of the previous chapter, we have optimized the laser cooling and the loading of the
magnetic trap. Since summer 2008, the evaporative cooling is in place and our work
has since been steered towards the production of the first condensate, which we have
obtained on 12/20/2008.

Even at this early stage, there are some experimental results, which we consider worth
mentioning in this thesis and which we will discuss in this chapter: We present lifetime
measurements in the magnetic trap, which indicate that the lifetime of the atoms is
limited by background collisions and not by noise of the driver electronics. Furthermore,
the experiment is found to be more stable than comparable setups. We quantify this
empiric observation by analysing the fluctuation of the atom number over a typical
experimental session of several hours. Finally, another subsection is devoted to the
achievement of Bose—Einstein condensation in our setup.

7.1 Experimental cycle

To date the experimental cycle has been optimized up to the evaporative cooling and it
is depicted in figure 70. The initial MOT is found to yield an atom number in excess

initial MOT

107 alogy cooling trap
T=1mk sy | TOF
initial magnetic trap (200,1k,1k) Hz '
A
cMOT / molasses ?_500 e&oms =1mK
107 atoms it

T=10uK

after -
evaporation
T < 1uK

Figure 70: A stroboscopic image of a typical experimental cycle. FEach phase of the
cycle is artificially shifted to the right. During a real sequence, the cloud
shifts only perpendicular to the chip. Atoms are collected in a magneto—
optical trap (MOT) and subsequently cooled by optical molasses. After this
preparation, they can be magnetically trapped. By applying an RF knife, we
cool the cloud down to sub-microkelvin temperatures, before we drop it from
the trap and destructively image it after a variable time of flight (TOF).

of 107. This compares well with other setups of our group and is an indication that
the performance of the macroscopic U has not been degraded by the implementation
of the macroscopic I. After molasses cooling, we transfer 8 - 10° of these atoms into the
magnetic trap. We subsequently compress the trap and apply evaporative cooling by
RF radiation. All traps behave as expected from the chip design. The trap frequencies
and the background fields correspond well to our design, if we correct for a fabrication
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artefact, namely that the film of glue between the base chip and science chip is thicker
than expected.

7.2 Loading and decay of a cloud

16000000 -
1800004  my
14000000 | “._____..- -\.\\.\
160000
12000000 " N
140000 oy
10000000
120000 -
L 8000000 " \ .
© 2 "\
Z 6000000+ 1000003 -’\\-‘_
4000000 -
2000000 80000
u
04 u
T T T T T T 1 T T T T T T
0 2 4 6 8 10 12 0 500 1000 1500 2000 2500
t(s) t(ms)

Figure 71: Loading of the initial MOT (left) and decay of a thermal cloud in a magnetic
trap (right). The fits have time constants of 4.8 +£0.2s (loading) and 2.8 +£0.1s
(decay). Both measurements have been carried out at a dispenser current
of Isisp = 3.95A. The lifetime in the magnetic trap has been measured in
a magnetic trap of frequencies (w,,wy,.) = 27(60,300)Hz after evaporative
cooling had reduced its temperature to 10uK.

The quality of the vacuum and the electronics can be estimated by a measurement
of the lifetime of the atoms. This can be performed in two ways, either by measuring
the time constant of the loading of the initial MOT or, more directly, by measuring the
decay of a trapped atomic cloud.

The former method is used in the left plot of figure 71. The loading of the MOT
follows an exponential function

N(t) = No(1 — e t/7)

where 7 is the lifetime of an atom in the MOT, which is limited by collisions with
the background gas. The dominant contribution of background particles comes from
the Rubdium dispenser. It releases several species of “dirt” particles, which cannot be
trapped by the MOT and reduce the atomic lifetime by collisions: 3’Rb atoms which are
too fast to be captured by the MOT, 8Rb and other chemical compounds. 7 therefore
depends on the dispenser current. For our typical experimental value lgs, = 3.95A, we
measure a lifetime of 7 = 4.8s.

A more direct access to the loss rate is provided by a measurement of the decay of
an atomic cloud in a magnetic trap. Ideally, the lifetime of an atom in a magnetic trap
is limited by collisions with the background gas. It can be shortened below this limit,
however, by inelastic collisions in the trap and losses due to magnetic field noise. In our
setup, we measure a value of 7 = 2.8s.
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The apparent disagreement between these values has also been observed in other
experiments. A straightforward explanation is that a MOT is more likely to recapture
an atom that has undergone a collision than is a magnetic trap. To make a sound
statement, one therefore has to compare this data to similar setups. Data of a nearly
identical setup is presented in [166]. For the same parameters, this data agrees with
ours to within 10%. We therefore conclude that losses in our setup are mainly limited
by collisions with the background gas.

Generally, we have observed that the lifetime increased over the first months of oper-
ation. Apparently, the dispenser is cleaned by use. Alternatively, the Rubidium might
gradually coat the walls of the cell, which otherwise act as a pump for freshly released
atoms.

7.3 Stability of the setup

9500000

9000000 1

8500000( b

8000000 1

Atom number [1]

7000000 1

650000%.0 0.5 1.0 15 2.0 2.5 3.0 3.5

Uptime [h]

Figure 72: Stability of our setup: We repeatedly load the initial magnetic trap. The
experiment runs autonomously for several hours and the atom number is
constant to within 3.2%. The run was terminated on purpose and could have
been continued for an even longer time.

Ultimately, when working as a clock, our setup will have to run quasi—continuously over
several hours our even days. Therefore, we have taken great care to construct it in the
most stable way possible: The master and repumper laser are mounted in temperature—
stabilized housings. All optical paths are short and the optical components are mounted
on short mounts, which are directly glued to the optical table. The chip—side optics is
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mounted in a rigid fashion (see section 4.4.2) and all power supplies have been chosen
to provide a long-term stability of at least relative 1072. This effort has clearly payed
off: The experiment is much more stable than comparable setups are reported to be.
To quantify this observation, we have measured the fluctuation of the atom number in
the initial magnetic trap over several hours, The resulting data is presented in figure 72.
The high stability is demonstrated already by the fact that we can run this experiment
for hours without any human intervention. Even more, however, the number of atoms
fluctuates very little, about 3.2% over the whole experimental session of fig. 72.

7.4 Bose—Einstein condensation

1 2 3 4
5 6 7 8

Figure 73: The BEC phase transition. All images are taken after a time of flight of
20ms. The final RF knife is subsequently lowered from image 1 to image 8.
The change from a thermal cloud to a sharp peak is clearly visible as is the
alignment of the coldest clouds along the vertical direction. The best shot
(7) contains a nearly pure condensate of 2 - 10* atoms.

By evaporative cooling, our setup is able to cool the trapped cloud below the BEC
phase transition. Absorption images of clouds above and below this transition are shown
in figure 73. Imaging the cloud after a long time of flight, we clearly observe the emer-
gence of a bimodal distribution. A dense core of condensed atoms emerges, which is
surrounded by a dilute cloud of thermal atoms (figure 74).

A second signature of BEC is the anisotropy of the cloud. After a long time of flight,
a thermal cloud has a spherical shape, reflecting its isotropic momentum distribution.
In contrast, the kinetic energy of a condensate is anisotropic, since it stems from the
quantum-mechanical zero—point motion of the ground state of the anisotropic trap. It
is higher for the strongly confining direction, along which the trapped cloud is smaller.
Consequently, the aspect ratio of a dropped condensate reverses during the time of flight.
Indeed, the condensates (e.g. figure 73, 7) are aligned along the vertical direction of the
absorption images, whereas the weak trap axis extends along the horizontal direction.
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Figure 74: Bimodal distribution near the BEC phase transition. Each plot presents a
profile of the optical density over a slice through the center of each of the
clouds of figure 73. Temperature decreases to the right and subsequent plots
are separated by an artificial offset of 0.3mm. The emergence of the central
peak and the reduction of the thermal wings is clearly visible.

157 2008



Conclusion and Outlook

A dedicated setup for clock measurements on a chip With this work, we have
delivered a BEC machine which is tailored to the specific needs of an atomic clock on an
atom chip. To get there, we have studied the relevant physical effects which influence
the clock transition of a magnetically trapped cloud of 8Rb atoms in our clock states.
These are most notably the Zeeman shift and the mean-field shift arising from cold
collisions in the cloud. We have estimated their influence on the clock stability and the
coherence time of the cloud. We conclude from this analysis that a clock stability of
few 10713,/s is a realistic goal for a chip clock, but that there exist critical experimental
parameters, which have to be controlled with high precision. Most notably, the best
coherence times seem to lie in a parameter region where the magnetic field would have
to be controlled to the level of several 10uG in order to reach a stability of 10713,/s.

This analysis has had direct implications for the design of the apparatus: We have
implemented a double-layer Mumetal shield and developed a dedicated current source
in order to reach these specifications. Furthermore, we have developed a dedicated atom
chip. Compared to the proof-of-principle experiment, we have added an integrated
microwave transmission line, to be able to produce well-controlled interrogation pulses
with little microwave power.

The resulting setup is now operational and has been demonstrated to work as expected.
The stable construction of the experiment pays off already now: The setup is able to
run for hours without any human intervention.

Future developments With BEC being an accomplished task, the next step of our
work clearly will be the implementation of the clock interrogation. The microwave
chain is nearly ready and the experiment is prepared to accept it without significant
modifications. Also, we are about to mount a second, low-noise, camera for the clock
measurements. The first clock interrogation seems very close.

More interesting is the question, where this experiment will be heading in the long

term. The straightforward objective is, of course, to achieve the best possible stability
figure. We have shown in section 3.3 that the setup as it is should be able to reach
a stability of the order of 1072,/s. To reach a better level, the number of atoms has
to be increased by one order of magnitude from the projected 10* to 10° and the cycle
time will have to be reduced to the order of several seconds. As things look today, this
will require an extension of the setup. We have started to explore several ways to load
more atoms in less time. An obvious way to do this would be a 2D-MOT [167]. This,
however, is a bulky device, a clear contradiction to our goal of building a compact setup.
Therefore, we focus on a different approach, to find a way to modulate the Rubidium
pressure in the vacuum chamber on a sub—second timescale.
We note, however, that there is the possibility of a lucky strike: We cannot yet exclude
that a coherence time of the order of seconds can be achieved even with a hot cloud.
If this was the case, we could afford to apply less evaporative cooling, which is a costly
process in terms of atom number. To give an example, we can produce clouds of 10°
atoms even in our current setup, if we allow for a temperature of 7' = 5uK.
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This hints towards a second topic which is likely to be one of the first goals of the
experiment: An analysis of the coherence time of the cloud as a function of the trap
parameters. This will allow to refine our rough model and to correctly treat the effect
of motional and collisional averaging. At the moment, a precise model for the coherence
time is the missing link to predict the optimal operating parameters and the ultimate
stability that can be reached by an atomic clock on a chip.

Let us assume that one of these approaches works — that the atom number can be
increased as expected or that we find favourable trap parameters, which enable us to
work with hotter atoms and/or to have a longer coherence time — so that the experiment
indeed reaches the projected stability of few 10713,/s. At this point, at most half of the
work can be considered to be done, the other half being the further miniaturization from
a breadboard-scale laboratory setup to a liter—sized, portable and ultimately commer-
cial device. A lot of this work has already been done by others: A number of groups
are pursueing research to miniaturize the essential components of our setup for similar
applications. Compact laser sources, capable of producing all the light for a MOT, have
already been developed for droptower experiments [89] and even spaceborne applications
(see, e.g. the PHARAO optical bench, [81]). These systems typically occupy the size
of a 19”7 rack, and further miniaturization seems possible. The situation is similar for
the vacuum system. The size of our current vacuum system is limited by the pumps.
However, comparable setups have already been run on smaller pumps [88, 81] or even
exclusively on getter pumps [31], so that the vacuum system including the cell could
probably be reduced to the liter scale.

It remains the chip-side optics and the components handling the magnetic field: The
beam expanding optics could be nearly removed by switching to a pyramide MOT con-
figuration [168], which requires only one beam. The cameras are a convenient but
dispensable feature, since all the relevant information for a clock measurement could
be equally obtained from photodiodes. The size of the offset coils could in principle be
reduced up to the size of a MOT beam, of the order of centimeters. With this improve-
ment, the magnetic shield could be reduced to the scale of ~ 10cm. Alternatively, the
shield could be replaced by an active compensation [169], which could in principle be
implemented directly on the chip. Ultimately, it could be made obsolete by multiple
parallelized clocks on the chip as outlined in section 3.3.5.

In summary, we are confident that a second or third generation of this clock can indeed
be of the size of several liters and we emphasize the fact that a lot of the technology for
this miniaturization is already available.

It is worth noting, moreover, that this experiment can also make qualitatively new
contributions beyond a mere hunt for the best stability in the smallest possible package.
An example is the possibility of parallelisation, which we have sketched in chapter 3. On
a future chip, multiple clocks could be implemented. They could then operate in parallel
and measure external parameters like fluctuations of the magnetic field along with the
clock measurement. Here, a chip clock is truly complementary to other compact clocks,
which cannot exploit the potential of such a highly integrated setup.

Another intriguing direction is to develop the experiment towards an atomic interfer-
ometer. This setup lends itself to this application, since the chip is able to manipulate
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external states with the flexible trapping potential as well as internal states with the
integrated microwave. With these tools, we could implement on the chip a Ramsey-
Bordé-like interferometer. Such an interferometer can be understood as a Ramsey—type
atomic clock, in which the two clock populations are spatially separated during the in-
terrogation time. Thereby, the clock signal becomes sensitive to potential gradients, e.g.
of the gravitational potential. On our chip, we could implement such a state—sensitive
splitting with the help of state—selective microwave potentials, in much the same way as
it has been proposed for an atomic phase gate in [22].

We conclude that the setup has a clear potential beyond the intended application of
a compact clock. This can also be told from the fact that the research on the |1, —1) —
|2,1) transition in trapped ®"Rb is pursued by a larger community of experiments. In
particular, we are aware of work in Munich (the group of Th. Hénsch and P. Treutlein),
Swinburne (the group of P. Hannaford and A. Sidorov) and Ambherst (in the group
of D.S. Hall). We have no doubt that our experiment can yield an important and
complementary contribution to this field, most notably because of its excellent control
of the magnetic background field, the ability to use microwave near—fields and the ability
to perform precision spectroscopy using the signal of the SYRTE frequency standards.
The preparation of these features may have consumed some time, but the result clearly
is a powerful tool.
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A Appendix

A Exact diagonalization of the coupling Hamiltonian

This appendix is a complement to section 3.1.3. Again, we derive the lightshift of the
RF and microwave coupling by taking into account the full coupling Hamiltonian. This
derivation, however, does not rely on perturbation theory. Instead, we present an exact
analytical solution.

The system We consider the electronic ground state of 8’Rb, labeling the states by
the usual quantum numbers F,mp. The clock transition is excited by a two-photon
drive, consisting of a microwave field with frequency wyw and an RF field with wrp,
both polarized to equal parts along o, and o_. These fields create the two—photon
coupling for the clock states, but also one—photon couplings between any pair of levels
with adjacent mp. The strength of these couplings can be read off from eq. 47 and
fig.23. All couplings involving the clock states are summarized in fig. 75.

The goal of the following paragraphs is to prove that these couplings indeed give rise to
two—photon Rabi flopping between the levels |1, —1) and |2, 1), with negligible population
of other states, and to calculate the Rabi frequency and lightshift.
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Figure 75: Couplings of the RF and microwave photons involving the clock states.

To treat all couplings exactly, we introduce three simplifications:
1. We adopt the theorist convention A =1

2. We map the eight-level system to the complex vector space C® in the following way:
|FF=1,mp = —1) is mapped to the canonical unit vector |0), |F' = 1,mr = 0) to
1), |[F=1mp=1)—12), |F=2mp=-2) = [3), ..., |[FF=2,mp =2) — |T).
By this convention, the coupling Hamiltonian can be visualized as an 8x8 matrix.

3. We rotate the system into the rotating frame of the two-photon transition: The
level |FF = 1,mp = —1) is defined to have zero energy. The remaining F' = 1
levels are rotated up by (mpg — 1) - wrr The energy of the F' = 2 levels is rotated
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down by wmw + (mp — 1) - wgrp. In this frame, the clock states |Fy,mp = —1)
and |F' = 2, mp = 1) are split by § and all adjacent mp sublevels are split by the
one-photon detuning A (see fig. 76).

Figure 76: Levels in the rotating frame

With these conventions, the coupling Hamiltonian takes the form

H, = (118)
0 Zf;g 0 \/gnMWe;l 0 Loyw 0 0
%\/% A—s§ %\/% 0 B ayw 0 LB aywe; 0
0 Z@g 2A — 25 0 0 Loywe; 0 VEomwe;
\/EQMWQ 0 0 3A — 6 L-Opp 0 0 0 -~
0 Bomw 0 Jeonp 2A =6 $ORF 0 0
TOmw 0 LQmwer $Orp A $Orp 0
0 B anwer 0 0 Lloge 5 Loge
0 0 \/gnget 0 0 0 L onr 25— A
0 Sng 0 0 0 iouw 0 0
Q Qr V3
251% AQ— é Q\R/g 0 TQMW 0 0 0
RF —
0 W 2A — 26 R 0 S 1 0 0 0 0
0 0 0 3A -2 =0 0 0 0
e G =H (119)
0 POuw 0 ZORr 24-0  3Qrr 0 0
1 Quw 0 0 0 1QrF A 1ORF 0
0 0 0 0 0 1OrF § T RF
0 0 0 0 0 0 LOrr 20-A

V6

The time-dependent terms e; = exp [2i(A + A — 0)t] result from couplings that are
detuned from resonance by at least Ap (like, e.g. the coupling [1,0) — [2,1)). We
will justify later that, due to this large detuning, they can be neglected in the step
(118)—(119). First, however, we turn to the analysis of the Hamiltonian 119: We
compute its eigenenergies and eigenstates and prove that these indeed describe two—
photon Rabi oscillations between the clock states. Throughout this derivation, we make
use of the approximations Qrr < A, Quw < A and compute all quantities to first order
in 1/A and to second order in Qrp, Qyw.

Eigenenergies, lightshift and Rabi frequency The secular equation of Hamiltonian
119 is an eighth—order polynomial. To solve it, one makes use of the fact that the
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eigenenergies are approximately known: Two eigenenergies will be close to zero, corre-
sponding to the dressed states emerging from the two clock states. Two others will be
approximately A, corresponding to the dressed states which emerge from the |1,0) and
|2,0) levels. By expanding the secular equation around these values, one can find the
precise eigenenergies, which are

_3Q§4W+QQRF_ v L — _45(75—3A)+Q%{F
12A 0 ST 12A '
This result contains the lightshift and the Rabi frequency of the two—photon transition.

The former is the difference of the eigenenergies in the limit of resonant drive 6 = 0 and
weak drive power Qrp, Quw << A. Numerically, we find

€vag,— =

QQ
evag_ — evag 4 = — 4MAW + O(1/A?)

which reproduces the result of perturbation theory, eq. 50.

In practice, the detuning d will be chosen such as to cancel this lightshift. In this
situation, the energy difference of the dressed clock states is precisely the two—photon
Rabi frequency, which is therefore
6:fQZMW/4A QMWQRF

B 2A

€vag,— — €vag 4+

again in agreement with perturbation theory.

The eigenenergies near A can be found in the same way:

02 Qw2 02 Qw2
evap 4 = A — MW  2tMWSERF = A — MW MW?=ERF

8A 2v/3A 8A 2v/3A
Eigenstates The eigenstates for the eigenvalues near zero energy are symmetric and
antisymmetric combinations of the clock states, augmented by terms of order 2/A

1

levo,) = E(1,0,0,0,0,0,1,0)T+(9(Q/A)
1

levo_) = E(1,0,0,0,0,0,—1,0)T+O(Q/A)

where () denotes either Qyw or Qgrg.
The eigenstates near A are symmetric and antisymmetric combinations of |1,0) and
|2,0). They are mixed by the two—photon transition |1,0) — |2, —1) — |2,0), which is
resonant with the two-photon drive.

1
levoy) = —=(0,1,0,0,0,1,0,0)" +O(Q/A)

-5

levo_) = —=(0,1,0,0,0,—1,0,0)" + O(Q/A)

S
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For exact expressions of the O(2/A) terms, we refer to the paragraph “Mathematica
code”.

This result proves that the drive indeed creates Rabi oscillations between |1, —1) and
|2, 1), with a population of other states of at most order 2/A.

Analysis of the rapidly rotating terms It remains to prove that the rapid time—
dependent terms containing e; = exp [2i(A + Ap — §)t] in the Hamiltonian 118 do not
contribute to the time evolution. This is best shown by computing the matrix elements
between the dressed clock states and the remaining bare states | F, mg) ¢ {|1,—1),|2,1)}.
Performing the calculation, one finds that all these matrix elements can be expressed in
the form

<eV0,+|Ht|FamF> :Ziaiefi
(evo,|Hy|F,mp) =), aef

<eV0,—|Ht|eV0,+> = ZZ ae;’

where x; € {1,2} and q; is a polynomial in Qrp, Quw, A satisfying |a;| < Quw.

All these couplings rotate at least with Ap. At the same time, the above analysis has
shown that the eigenenergies of the bare and dressed states are at most of order A. Since
A, Ouyw < Ap, the rotating terms cannot significantly contribute to the time evolution.
The dressed clock states |evo ), |evo ) are indeed decoupled from the remaining bare
states.

Mathematica code The explicit evaluation of the above procedure is best done using
a computer algebra system. In the language Mathematica, it can be performed using
the following code:

Q Q

0 0 0 fo Quw 0

Q 3Q

D —6+A Do 0 e 000
0 SE 204 2A 0 0 0 0

Q
| 0 0 0 —26+3A e 0 0 0 ;

0 Vhw 0 S §42A 2ZE 00

Q Q Q
50 0 0 N Ao=E 0
0 0 0 0 0 I
0 0 0 0 0 0 =BE 20— A

I

SecEq = Simplify[Det[H — SparseArray[Band[{1,1}] — A, {8,8}]]

—

(*expand around A = 0 to find the eigenenergies of the dressed clock states *)
Normal[Series[SecEq, {}, 0, 2}]//Simplify];

Sol0 = Solve[% == 0, \J;

eva0 = FullSimplify[Normal[Series[\/.Sol0, {A, oo, 1}]], Assumptions — § < 0]
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303 WOk 48(76-3A)+0%
12A ) 12A

(*calculation of the lightshift*)
Is = Normal[Series[evaO[[1]] — eva0[[2]]/.0 — 0,{A, 00, 1}]]
_ uw
1A
(*calculation of the Rabi frequency*)
eval = FullSimplify [Normal[Series[\/.S0l0/.6 — s, {A, oo, 1}]], Assumptions — {Qyw > 0, Qrp > 0}]
ye = FullSimplify[evaO[[1]] — eva0[[2]]]
OvwORE
24
(*expand around A = A to find the next pair of eigenenergies *)
Normal[Series[SecEq/.0 — 1s/.A — A+ d\, {dA\,0,2}]//Simplify];
SolA = Solve[% == 0,d\];
evaA = A + Normal [Simplify [Series [dA\/.SolA, {A, oo, 1}, {Quw, 0,2}, {QrF, 0, 2}]]]

o MW _ OuwORrF _ Rrw QMwORE
{A 2v/3A A sA T 2v/3A

(*eigenstates corresponding to the eigenvalues around E=0%)

Q Quw Q Q
v = (1) i} 3 O e+ S (- - o {
evoa={{1}, {~ e} {Sel (o), {ugue Bl [ Gy g

(*prove that these are indeed eigenstates™)

(Normal[Series[H.ev0s/.0 — 1s, {A, 0o, 1}]]—Normal[Series|eva0[[2]]xev0s, {A, 0o, 1}]])//FullSimplify
(Normal[Series[H.ev0a/.0 — 1s, {A, 00, 1}]]—Normal[Series[eva0[[1]]xev0a, {A, co, 1}]])//FullSimplify
{{0},{0}, {0}, {0}, {0}, {0}, {0}, {0} }

{{0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}}

9v/302 1y — 1680w Qrr —32V3Q3 1 |

(*eigenstates corresponding to the eigenvalues around E=A*) evAs = {{

576AQRF J
2708 W+ 72VBR2 1 Ore+96Q0w QF p+32VB08 —9VBO 1w+ 7208 1w Qrr+32v3oMw QR p+3208 1 {_ 1 }
1152v2A20 x5 ’ 19280, Tk
_Orp _ Oy .
6a 1o 12v/6A2 ’
ovAa = 4§ 9VBR 1680w One —32v30R 1 Quw (3Quw+8V3Qnr) 9302,y +T200 0w Qrr —32V30% ¢
- 576AQRk 13 3202, ’ 5T6AQRk g

_27Q§4W+72\/§Q§4WQRF—969MWQ§F+32\/§Q§F V3OS 1+ 7202 1w QrF —32V3Mw O p +3203 1 { } { QRF
1152v/2A2QRp ’ 192A0% ’ 3

(*prove that these states are indeed the eigenvectors corresponding to evAa and evAs*)
calc = Normal [Series [H.evAs/.0 — 1s, {A, 00,1}, {Qrr, 0,2}, {Quw, 0, 2}]];

ref = Normal [Series [evaA[[1]] * evAs/.0 — 18, {A, 00,1}, {Qrr, 0,2}, {Quw, 0, 2}]];
Simplify|calc — ref]

{{0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}}

calc = Normal [Series [H.evAa/.0 — 1s, {A, 00, 1}, {QrF, 0,2}, {Quw, 0, 2}]] ;

ref = Normal [Series [evaA[[2]] x evAa/.d — 1s, {A, 00, 1}, {Qrr, 0,2}, { 0w, 0, 2}]];

165 2008



A Appendix

Simplify|calc — ref]

{{0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}}
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