
HAL Id: tel-00414514
https://theses.hal.science/tel-00414514

Submitted on 9 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

De la mobilité à la sécurité des réseaux
Claude Castelluccia

To cite this version:
Claude Castelluccia. De la mobilité à la sécurité des réseaux. Réseaux et télécommunications [cs.NI].
Institut National Polytechnique de Grenoble - INPG, 2008. �tel-00414514�

https://theses.hal.science/tel-00414514
https://hal.archives-ouvertes.fr

MEMOIRE

De la Mobilité à la Sécurité des Réseaux

présenté dans le cadre de l’école doctorale MSTII pour l’obtention

de l’Habilitation à Diriger des Recherches
de l’Institut Polytechnique de Grenoble (INPG)

Claude Castelluccia

présenté et soutenu publiquement le 10 Septembre 2008

devant le jury composé de

Andrzej Duda . Président

Luigi Mancini . Rapporteur

Refik Molva . Rapporteur

Stephane Ubeda . Rapporteur

http://www.univ-metz.fr

2

Table des matières

1 Introduction 7
1.1 Structure du document . 7
1.2 Déjà 12 ans... ! . 7

2 Sécurité des réseaux de capteurs 11
2.1 Introduction . 11
2.2 Réseaux de Capteurs . 11
2.3 Établissement de liens sécurisés . 14

2.3.1 Le protocole Orangina : bien secouer avant utilisation ! [20, 25] 14
2.3.2 RoK : Un protocole d’échange de clés pour réseaux de capteurs [9] 16

2.4 Sécurisation des données agrégées . 18
2.4.1 Agrégation de données chiffrées [21, 24, 26, 11] 19
2.4.2 Intégrité des données agrégées [6, 27] . 21

2.5 Virus et Vers Informatiques pour les réseaux de capteurs [35] 22
2.6 Conclusions . 23

3 Sécurité des systèmes RFID 25
3.1 Introduction . 25

3.1.1 Les technologies RFID . 25
3.1.2 Sécurité des systèmes RFID . 26

3.2 Identification Secrète des Etiquettes . 27
3.2.1 Les Etiquettes Brouilleuses (Noisy Tags) [13] 27
3.2.2 Identification Probabiliste [23] . 28

3.3 Conclusions . 30

4 Conclusions et Perspectives 31

A Sécurité des réseaux ad-hoc mobiles (MANET) 37

B Agrégation de données chiffrées 53

C Le protocole Orangina 85

D Identification Privée des étiquettes RFID 101

E Les Identifiants Cryptographiques 115

F Authentification Secrète 147

3

4 TABLE DES MATIÈRES

Table des figures

2.1 Berkeley Mote . 12
2.2 Déploiement de capteurs par hélicopter . 13
2.3 Protocoles d’échange de clés STU. 15
2.4 Ratio de liens compromis avec attaquant permanent 17
2.5 Ratio de liens compromis avec attaquant temporaire. 17
2.6 Agrégation dans réseau de capteurs . 18
2.7 Agrégation Sécurisée . 19

3.1 Système RFID : étiquettes, lecteur et base de données 25
3.2 Traçabilité Malveillante : Illustration . 27
3.3 Noisy Tag Protocol : Le lecteur diffuse un Nonce. Le tag T répond avec le bit secret.

Le noisy tag répond avec un bit qui est le bit de point faible de md5(nonce|ki). . 28

5

6 TABLE DES FIGURES

Chapitre 1

Introduction

1.1 Structure du document

L’écriture d’une habilitation à diriger des recherches est l’occasion de faire le bilan des activités
réalisées et des résultats de recherches obtenus depuis la thèse. Il permet également de prendre
du recul afin d’apprécier l’évolution des thématiques abordées et l’impact des résultats. C’est
probablement le principal intêret, voire le seul, de cet exercice.

Étant donné qu’il est très difficile de résumer en quelques dizaines de pages les résultats de 12
ans de recherches, j’ai décidé de concentrer ce rapport sur mes activités les plus récentes, c’est à
dire sur la sécurité des systèmes sans fil embarqués.

La suite de ce chapitre présente l’évolution de mes travaux de recherches depuis l’obtention de
mon doctorat en 1996. Les deux chapitres suivants présentent, plus en détail, mes activités dans
le domaine de la sécurité des systèmes embarqués et plus particulièrement des réseaux de capteurs
et systèmes RFID. Le dernier chapitre conclut et présente quelques perspectives de recherche. Les
annexes contiennent les publications que je considère les plus importantes et dont je suis le plus
fier.

1.2 Déjà 12 ans... !

De la mobilité IPv6 à la sécurité IPv6...

Mes premiers travaux à l’INRIA Grenoble ont porté sur les protocoles de gestion de la mobilité
dans l’Internet. Un séjour de quelques mois au sein de l’équipe MosquitoNet de l’université de
Stanford m’a permis de travailler sur la gestion des interfaces multiples sur les mobiles. J’y ai
développé, en collaboration avec professeur Mary Baker et Xinhua Zhao, une solution efficace,
basée sur le protocole Mobile IP, qui permet à un terminal mobile de se connecter simultanément
à plusieurs réseaux sans fil de différent types (GSM, 802.11, Bluetooth,...). Un mobile peut alors
augmenter son débit ou choisir le réseau le mieux adapté à ses besoins [46, 47]. De retour à Greno-
ble, je me suis intéressé à la gestion de la mobilité dans l’Internet de demain (IPv6) et développé
une solution hiérarchique. Ce protocole a ensuite été standardisé à l’IETF, en collaboration avec
des chercheurs d’Ericsson Labs, sous le nom de HMIPv6 (Hierarchical Mobile IPv6) et a donné
lieu au RFC4140 [43]. J’ai également développé, avec Pars Mutaf (mon troisième thésard), des
protocoles de pagination pour l’Internet qui ont conduit à plusieurs publications et drafts Internet
[42, 41, 36]. Je me suis parallèlement interessé à la gestion de la mobilité des routeurs embarqués.
Ces travaux, en collaboration avec Thierry Ernst (mon premier thésard), ont donné naissance
au groupe de travail NEMO de l’IETF (présidé par Thierry Ernst) et à plusieurs drafts Internet
[31, 32, 30]. L’arrivée de Imad Aad (mon deuxième thésard) fut l’occasion de mettre en place une
activité sur les réseaux locaux sans fil 802.11 et d’étudier le problème de la qualité de service dans
ces réseaux. Nous avons alors proposés plusieurs extensions de qualité de service pour les réseaux

7

8 CHAPITRE 1. INTRODUCTION

802.11 qui ont été publié, entre autre, à Infocom [4, 5, 2, 1].
L’installation de SunLabs Europe en face de l’INRIA à Montbonnot et la rencontre avec Gabriel

Montenegro constitua un tournant important dans l’évolution de mes travaux. C’est à ce moment
que j’ai commencé à m’intéresser très sérieusement aux problèmes de sécurité dans les réseaux. Ce
thème, qui me passionne, est aujourd’hui au coeur de mes travaux de recherche.

Mes premiers résultats dans le domaine de la sécurité fut le développement, en collaboration
avec Gabriel Montenegro, des adresses IPv6 cryptographiques, connues sous le nom de SUCV
(Statistically Unique and Cryptographically Verifiable addresses) [38, 10, 37]. Ces adresses ont la
propriété d’être vérifiables : tout propriétaire d’une adresse IPv6 cryptographique peut effective-
ment prouver qu’elle lui appartient. Cette vérification est peu coûteuse en ressource et ne repose
sur aucun service externe, telle qu’une infrastructure à clefs publiques. Cette solution passe donc
très bien à l’échelle et supporte les clients mobiles. Elles peuvent, entre autre, être utilisées pour
sécuriser les protocoles de gestion de la mobilité tel Mobile IPv6 [14], sécuriser les communications
de groupe [17], éviter le vol d’adresse (IPv6 spoofing) ou simplifier la mise en place de tunnels de
chiffrement opportuniste [18]. Les adresses SUCV ont fortement inspiré et ont été à l’origine des
adresses CGA (Cryptographically Generated Addresses) qui ont été standardisé à l’IETF.

De la sécurité IPv6 à la sécurité des réseaux Adhoc Mobiles (MANET)....

Mon aventure dans le domaine de la sécurité s’est ensuite concentré sur la sécurité des réseaux
mobiles adhoc (MANET) tout d’abord en collaboration avec Gabriel Montenegro, puis en col-
laboration avec Professeur Gene Tsudik dans le cadre de ma visite à l’université de Californie,
Irvine de juillet 2003 à juillet 2005. Nous avons montré avec Gabriel que les adresses SUCV pou-
vaient être très utiles pour sécuriser les protocoles de routage dans les réseaux MANET [16]. Un
réseau MANET est un réseau constitué de machines mobiles qui n’est pas forcément connecté à
l’Internet. Chaque noeud est à la fois un terminal et un routeur, et relaie les paquets pour les
autres membres du réseau. Étant donné qu’un MANET n’est pas connecté à l’Internet, il est très
difficile de les sécuriser. Un des problèmes les plus difficiles est celui de l’admission d’un nouveau
membre. Comment autoriser un nouveau noeud à rejoindre le réseau si on ne peut pas utiliser un
serveur d’autorisation ? Nous avons alors développé avec Gene Tsudik et ses étudiants un proto-
cole d’admission complètement distribué. Dans ce protocole, un noeud est autorisé à rejoindre un
réseau si au moins k des n noeuds du réseau (ou k est un paramètre configurable) donnent un avis
favorable sous la forme d’un jeton. En combinant ces k jetons, avec l’aide d’un protocole cryp-
tographique, ce noeud pourra générer son certificat, qui sera vérifiable par les autres membres et
lui permettra d’établir des clefs avec chacun d’entre eux. Cette solution, complètement distribuée
et autonome, est très peu coûteuse en terme d’énergie et de calcul. Elle est également robuste aux
attaques de type déni de service [29]. Ces résultats ont ensuite été complémentés par des travaux
sur la protection de la vie privée dans les réseaux MANET. Nous avons développé avec Imad Aad,
maintenant chercheur chez NTTDocomo, des algorithmes de routage et de codage qui permettent
d’éviter que les communications soient traçables sur un réseau MANET par un attaquant qui a
accès à plusieurs noeuds du réseau ou qui peut, tout simplement, écouter les messages échangés
entre les noeuds. Avec nos solutions, non seulement un attaquant ne peut pas écouter les messages
échangés, car ils sont chiffrés, mais il ne peut pas identifier les noeuds qui communiquent [3].

De la sécurité des réseaux adhoc mobiles à la sécurité des réseaux de
capteurs...

Mes travaux sur les réseaux MANETs se sont ensuite peu à peu réorientés sur la sécurité des
réseaux de capteurs. Bien que les réseaux MANET et de capteurs soient tous les deux des réseaux
ad-hoc multi-sauts et peuvent parâıtre similaires, ils ont en fait des caractéristiques très différentes.
Un réseau de capteurs est typiquement plus grand qu’un réseau MANET : il peut contenir plusieurs
centaines, voire plusieurs milliers de noeuds. De plus, un réseau de capteurs est généralement sous
le contrôle d’une seule entité. Par conséquence, les problèmes de type ”établissement de confiance”
sont généralement moins importants. Par ailleurs, les modèles de communication sont différents

1.2. DÉJÀ 12 ANS... ! 9

dans ces deux types de réseaux. Dans les réseaux MANET, chaque noeud peut potentiellement
communiquer avec tous les autres noeuds du réseau. Dans les réseaux de capteurs, un capteur
communique géneralement avec une station de base, appelée communément puits, vers lequel il
envoie ses mesures. Les communications noeud-à-noeud sont moins fréquentes. De même dans un
réseau de capteurs, les noeuds sont rarement mobiles, alors que la mobilité est une caractéristique
intrasèque des réseaux MANET. Finalement, les réseaux de capteurs sont caractérisés par des
ressources de calcul et surtout d’énergie très limitées. Le défi scientifique le plus important dans
les réseaux de capteurs est de développer des protocoles (entre autre de sécurité) qui optimisent
ses ressources. Les algorithmes de cryptographie à clef publique y sont souvent proscrits alors
qu’ils sont communément utilisés dans les MANETs. Pour résumer, dans les réseaux MANET
la problématique vient du fait que les noeuds ne se connaissent pas à priori, et donc ne se font
pas confiance, et que le réseau n’est pas forcément connecter à l’Internet. L’utilisation de services
tiers, tel qu’une infrastructure à clef publique, n’est donc pas toujours possible. Dans les réseaux de
capteurs, les noeuds se font à priori confiance, mais ils ont des ressources très limitées et peuvent
être facilement compromis.

Nos travaux sur la sécurisation des réseaux de capteurs ont porté sur différents aspects. J’ai
tout d’abord travaillé avec mes collègues de l’Université de Californie sur l’agrégation des données
chiffrées. Ce travail a donné naissance au premier algorithme d’agrégation sécurisée de données
chiffrées pour réseaux de capteurs [21, 24]. J’ai ensuite développé ce concept avec Aldar Cran
(mon premier post-doctorant) et Claudio Soriente, doctorant à l’université de Californie, dans le
cadre du projet Européen UbiSec&Sens [26, 11, 45, 27, 6]. J’ai également étudié, avec Pars Mutaf
(mon troisième thésard), Aurélien Francillon (mon quatrième thésard) et Angelo Spognardi (mon
deuxième post-doctorant), les problèmes d’échange de clefs, de génération de nombres aléatoires
[9, 34, 20]. Finallement, nous avons récemment travaillé sur la sécurité des capteurs et avons
développé le premier virus/vers pour ce type d’environnement [35]. Ces travaux et résultats sont
décrits plus en détail dans le chapitre 2 de ce document.

De la sécurité des réseaux de capteurs à la sécurité des systèmes RFID

Des capteurs aux étiquettes radio-fréquence RFID, il n’y a qu’un petit pas à franchir. Une
étiquette RFID permet d’identifier à distance des objets, des animaux ou des personnes. Doté
d’une puce contenant jusqu’à 512 bits de mémoire et d’une antenne réagissant aux ondes radio,
une étiquette RFID permet en effet de communiquer à distance les informations qu’elle contient,
généralement un identifiant.

Bien que les problèmes de recherche liés à la sécurisation des systèmes RFID peuvent, dans un
premier temps, sembler similaires à ceux des réseaux de capteurs, ils sont en fait très différents.
Ces différences viennent essentiellement du fait, que contrairement aux capteurs, les étiquettes
sont mobiles et inertes (c’est à dire ne possède aucune source interne d’énergie). De plus les
communications dans les systèmes RFID sont point-à-point, c’est à dire entre l’étiquette et le
lecteur, et sont par nature asymétrique (l’étiquette a des capacités très limitées, mais le lecteur
est un vrai ordinateur). Finalement, les problèmatiques de sécurité sont différentes. Alors que
l’authenticité, l’intégrité et la confidentialité sont les services qui suscitent le plus d’intêret dans
les réseaux de capteurs, la protection de la vie privée est la problématique la plus importante des
systèmes RFID. En effet, une étiquette RFID renvoit toujours la même valeur aux lecteurs qui
l’interrogent : la valeur de son identifiant. Pour des raisons de passage à l’échelle et de performance,
cet identifiant est rarement chiffré et la légitimité du lecteur n’est jamais vérifiée. En disposant
des lecteurs à plusieurs endroits, le suivi de l’étiquette, et par conséquent de son porteur, devient
une réalité. Ce risque a poussé des consommateurs à boycotter les produits Benetton et Wallmart
qui souhaitaient équiper certains de leurs produits d’étiquettes RFID.

Mes travaux se sont essentiellement portés sur le problème d’identification secrète des étiquettes
très bon marché. Notre objectif était de concevoir des mécanismes et protocoles qui permettent de
rendre la traçabilité de ces étiquettes plus difficile, tout en utilisant des étiquettes EPC standards.

J’ai proposé deux solutions : les étiquettes brouilleuses (noisy tags) et une solution statistique,
appelé ProbId. La première solution, développée avec Gildas Avoine de l’EPFL, permet une identi-

10 CHAPITRE 1. INTRODUCTION

fication secrète des étiquettes en environnements surveillés (banques, entreprises, aeroports,...) et
protège contre des attaquants passifs [13]. La deuxième solution, développé avec Mate Soos (mon
cinquième thésard), est plus générique et protège les étiquettes également dans tous les environ-
nements ouverts [23, 44]. Elle est cependant un peu plus onéreuse car, bien que ne nécessitant
aucun calcul, elle utilise une zone mémoire ROM de quelques centaines de bits.

Ces deux solutions sont présentées en détails dans le chapitre 3.

Et un peu de cryptographie...

Mon séjour à l’Université de Californie en 2003 et 2004 a aussi été l’occasion de faire une
escapade dans le domaine de la cryptographie en travaillant avec les professeurs Jarecki et Tsudik
sur des améliorations du protocole SSL [22], de nouveaux algorithmes d’agrégation d’acquitte-
ments [15] et de “secret handshake” (accord secret) [7, 8]. Nous avons développé de nouvelles
constructions cryptographiques qui permettent à deux entités de prouver qu’ils appartiennent à
la même organisation sans la dévoiler. Ce type de construction peut, par exemple, être utile à des
agents des services secrets qui souhaiteraient s’identifier sans révéler leur affiliation à des mem-
bres extérieurs à leur organisation. Les protocoles qui utilisent des certificats standards sont, bien
entendu, mal adaptés, car la vérification des certificats n’est pas secrète et peut être effectué par
tout le monde. Avec notre solution, si le protocole se termine correctement alors les deux entités
ont la certitude qu’ils appartiennent à la même organisation. Une entité malicieuse qui écouterait
l’échange n’obtiendrait aucune information. Si le protocole échoue, les entités peuvent en con-
clure qu’il n’appartiennent pas à la même organisation et ne sont pas en mesure d’identifier leur
organisation d’appartenance respective.

Nous avons également développé des algorithmes d’agrégation d’acquittement pour les com-
munications de groupe. Lorsqu’une source émet une donnée à un groupe et souhaite s’assurer
qu’elle est bien reçue par tous les membres, chaque récepteur doit répondre avec un acquittement.
Ces acquittements peuvent créer le problème bien connu d’implosion à la source, qui doit alors
traiter un nombre important de messages. Pour résoudre ce problème, il est souvent recommandé
d’agréger les acquittements dans le réseau. Cependant, si les acquittements sont agrégés la source
ne peut plus vérifier cryptographiquement l’identité des noeuds qui ont reçus la donnée, car les
codes d’authentification ne sont pas agrégeables [27]. En d’autres termes, un noeud intermédaire
peut tromper la source en prétendant que certains membres, qui n’ont pas reçu la donnée, l’ont
acquittée. Nous avons alors développé un protocole qui permet de résoudre ce problème de façon
efficace [15].

Bien que la cryptographie ne soit clairement pas au coeur de mes activités de recherche, cette
escapade fut très enrichissante et très instructive. Elle m’a permis de constater les différences de
language et d’esprit qui existent entre les chercheurs du domaine des réseaux et ceux du domaine
de la cryptographie. Cet expérience fut très utile car un chercheur qui travaille dans le domaine
de la sécurité informatique doit, sans forcément contribuer à ce domaine, absolument comprendre
la cryptographie. Faute de quoi, il peut faire de mauvaises d’hypothèses et réaliser des erreurs
grossières.

Chapitre 2

Sécurité des réseaux de capteurs

2.1 Introduction

Les progrès réalisés ces dernières décennies dans les domaines de la microélectronique, de la
micromécanique, et des technologies de communication sans fil, ont permis de produire à un coût
raisonnable des composants de quelques millimètres cubes de volume. De ce fait, un nouveau do-
maine de recherche s’est créé afin d’offrir des solutions économiquement intéressantes et facilement
déployables pour la surveillance à distance et le traitement des données dans les environnements
complexes et distribués : les réseaux de capteurs sans fil. Les réseaux de capteurs sans fil sont
constitués de noeuds déployés en grand nombre en vue de collecter et transmettre des données
environnementales vers un ou plusieurs points de collecte d’une manière autonome.

Ces réseaux ont un intérêt particulier pour les applications militaires, environnementales, do-
motiques, médicales, et bien sûr les applications liées à la surveillance des infrastructures cri-
tiques. Ces applications ont souvent besoin d’un niveau de sécurité élevé. Or, de part de leurs
caractéristiques (absence d’infrastructure, contrainte d’énergie, topologie dynamique, nombre im-
portant de capteurs, sécurité physique limitée, capacité réduite des noeuds,...), la sécurisation des
réseaux de capteurs est à la source, aujourd’hui, de beaucoup de défis scientifiques et techniques.

2.2 Réseaux de Capteurs

Un réseau de capteurs est composé de centaines ou de milliers d’ordinateurs minuscules. Ces
appareils, appelés en anglais motes, sont alimentés par des piles et sont typiquement déployés
de façon aléatoire dans des environnements souvent ouverts. Ces capteurs font généralement des
mesures périodiques et envoient les données collectées à un dispositif plus puissant, le puits, qui
les traite en calculant par exemple leur maximum, moyenne ou médiane.

Les noeuds qui composent un réseau de capteurs sans fil sont petits et par conséquent ont des
ressources de calcul, de stockage, de communication et d’énergie très limitées. L’architecture de
système d’un noeud de capteur sans fil est composée de quatre éléments : (i) Un sous-système de
calcul composé d’un microprocesseur ou d’un microcontrôleur, (ii) un sous-système de commu-
nication composé d’une radio de courte portée (iii) un sous-système de mesure qui lie le noeud
avec le monde physique, et (iv) un sous-système d’alimentation d’énergie, qui loge la pile et le
convertisseur DC-DC, et qui alimente le reste du noeud.

Les applications potentielles des réseaux de capteurs sont les applications militaires et les appli-
cations de surveillance de l’environnement (monitoring). Par exemple, ils peuvent être utilisés pour
la détection de feux dans des grandes zones forestières, l’observation d’environnements naturels
(pollution, inondation, etc.), suivi d’écosystèmes (surveillance d’oiseaux, croissance des plantes,
etc.), contrôle militaire (télésurveillance de champs de bataille, détection d’ennemis, etc.), analy-
ses biomédicales et surveillance médicale (détection de cancer, rétine artificielle, taux de glucose,
diabètes, etc.). Un des intêrets des réseaux de capteurs est qu’ils peuvent être déployés dans des

11

12 CHAPITRE 2. SÉCURITÉ DES RÉSEAUX DE CAPTEURS

Fig. 2.1 – Berkeley Mote

endroits difficiles d’accès. Ils peuvent, par exemple, être jetés d’un hélicoptère, comme illustré par
la Figure 2.2.

Les réseaux de capteurs ont aussi beaucoup d’applications dans le domaine de la santé. Ils peu-
vent, par exemple, être utilisés pour surveiller à distance des patients. Dans ce cas, ils permettent
non seulement d’améliorer la qualité de vie des malades, qui peuvent rester chez eux, mais aussi
intervenir le plus rapidement possible si les mesures effectuées par les capteurs sont anormales. A
titre d’exemple, Intel travaille sur un projet de recherche dans le but est d’assister les personnes
agées. Dans ce projet, chaque objet de la maison (tasses, assiettes, chaises,...) est équipé d’un
micro-capteur et enregistre les activités quotidiennes de l’occupant. Les capteurs envoient ensuite
les données à un système centralisé qui permet alors à un infirmier de contrôler en permanence et
à distance les activités de l’occupant.

Toutes ses applications ont des contraintes de sécurité très différentes. Cependant, dans la
plupart d’entre elles, l’intégrité et l’authenticité des données doivent être fournies pour s’assurer
que des noeuds non-autorisés ne puissent pas injecter des données dans le réseau. Le chiffrement
des données est souvent requis pour des applications sensibles telles que les applications militaires
ou les applications médicales.

Dans ce document, nous nous intéressons essentiellement à la sécurisation du réseau (c’est à
dire de l’insfrastructure). Il faut cependant noter que sécuriser le réseau est nécessaire mais pas
suffisant. En effet, un attaquant peut, dans certains cas, facilement modifier l’environnement et
injecter des données erronées. Par exemple, dans le cas d’un réseau utilisé pour la détection de
feux dans une forêt, un attaquant peut chauffer plusieurs capteurs avec un briquet et générer un
fausse alerte. Par conséquent, le réseau doit aussi utiliser des tests de plausibilité qui permettent
de vérifier que les mesures obtenues sont cohérentes. Ces tests sont généralement réalisés par le
puits (sink).

La sécurisation des réseaux de capteurs est un problème difficile pour les raisons suivantes :

1. Capacités limitées :

Les ressources de calcul et de mémoire des noeuds sont relativement faibles. Par exemple,
les noeuds capteurs de type ”mote” sont composés d’un micro-controleur 8-bits 4MHz, 40
KOctets de mémoire et une radio avec un débit d’environ 10 kbps. Même les noeuds de
moyenne gamme, comme UCLA/ROCKWELL’S WINS, ont un processeur StrongARM 1100

2.2. RÉSEAUX DE CAPTEURS 13

Fig. 2.2 – Déploiement de capteurs par hélicopter

avec une mémoire flash de 1 MO, une mémoire RAM de 128 KO et une radio de 100 Kbps.
Non seulement les capacités des noeuds sont faibles, mais en plus ils sont alimentés par
des piles et par conséquent ont une durée de vie limitée. L’énergie limitée des capteurs
est probablement la caractéristique la plus pénalisante. Le plus grand des défis dans le
domaine des réseaux de capteurs reste de concevoir des protocoles, entre autre de sécurité,
qui minimisent l’énergie afin de maximiser la durée de vie du réseau. En d’autres termes,
l’énergie est sans aucun doute la ressource qui convient de gérer avec la plus grande attention.

Les solutions de sécurité qui existent aujourd’hui ne sont pas utilisables car elles sont souvent
trop coûteuses en terme de ressource. Par exemple, l’utilisation de la cryptographie à clés
publiques est souvent proscrite de ce type d’environnement. De nouveaux algorithmes et
protocoles de sécurité sont nécessaires.

2. Agrégation des données : Il a été montré dans plusieurs publications scientifiques que la
transmission d’un bit est équivalent, en terme d’énergie, à l’execution d’environ 1000 instruc-
tions. Cette valeur augmente avec la portée de la radio. Plus le capteur devra transmettre
loin, et par conséquent augmenter sa puissance d’émission, plus il va consommer de l’énergie,
et par conséquent réduire sa durée de vie. Il convient donc de réduire en compressant ou en
agrégeant les données lors de leur routage.

Les techniques d’agrégation des données, c’est à dire de traitement des données par le réseau,
permettent de réduire le nombre de messages (et de bits transmis sur les liens sans-fil) et par
conséquent réduire la consommation en énergie. Par exemple, si un réseau est déployé pour
mesurer la température et que le puits n’est interessé que par la moyenne des températures,
un noeud intermédiaire pourra additionner les valeurs reçues de ses enfants et envoyer le
résultat à son père. Le puits recevra alors qu’un seul message, contenant la somme des
données au lieu de n messages (ou n est le nombre de capteurs).

Ces techniques d’agrégation sont souvent utilisées. Elles sont cependant difficiles à mettre
en oeuvre lorsque les données sont chiffrées car le traitement des données devient alors très
délicat.

3. Echelle et dynamicité : Les réseaux de capteurs contiennent souvent un nombre de noeuds
très important. Ces réseaux sont souvent peu stables et très dynamiques : les capteurs, qui

14 CHAPITRE 2. SÉCURITÉ DES RÉSEAUX DE CAPTEURS

ont consommé leur pile, disparaissent et de nouveaux noeuds doivent être déployés pour
assurer une certaine connectivité.

4. Protection physique faible : Les capteurs sont souvent déployés dans des environnements
non-protégés (montagnes, forêts, champs de bataille,...). Par conséquent, ils peuvent facile-
ment être interceptés et corrompus. De plus, à cause de leur faible coût, ils utilisent rarement
des composants électroniques anti-corruption (tamper-resistant devices).

2.3 Établissement de liens sécurisés

Cette section présente certaines de nos contributions sur l’établissement de liens sécurisés dans
les réseaux de capteurs. Nous considérons, plus particulièrement, le problème d’échange de clés.

Cette section est composée de deux parties qui diffèrent par le type de réseaux et capteurs
utilisés. La première partie concerne les capteurs dont les clés peuvent être installées avant
déploiement. C’est souvent le cas pour les applications domotiques, lorsque, par exemple, un
utilisateur souhaite configurer une clé entre un appareil (lampe, prise,...) et sa télé-commande. Le
défi, ici, est de proposer une solution qui soit facile d’utilisation pour un utilisateur inexpérimenté,
peu coûteux en ressource, et qui ne nécessite pas d’appareillage particulier. Nous présentons notre
solution “Shake Them Up !” (STU). La deuxième partie partie traite du problème d’échange de
clés lorsque les noeuds sont déployés aléatoirement. Chaque noeud doit établir une clé secrète
avec chacun de ces voisins. Ce problème est difficile sachant que l’utilisation de la cryptographie
à clé publique n’est pas possible. Nous présentons le protocole “RoK”, une solution qui améliore
la sécurité de la solution d’Eschanauer et Gligor, qui est aujourd’hui le standard de-facto [33].

2.3.1 Le protocole Orangina : bien secouer avant utilisation ! [20, 25]

Dans beaucoup d’applications de réseaux de capteurs, il est nécessaire de configurer les noeuds
avec des clés secrètes avant leur déploiement. Cette phase de “pairing” n’est pas triviale car les
noeuds de capteurs n’ont généralement pas d’interface qui permet cette configuration. Les solutions
existantes ne sont pas satisfaisantes car elles nécessitent soit d’utiliser du matériel coûteux et
mobile (cage de faraday), des interfaces qui n’existent pas sur les capteurs (écran et/ou clavier),
l’utilisation de cryptographie à clé publique (trop coûteux pour les capteurs) ou des liens de
communication qui sont difficilement exploitables (canal infra-rouge ou contact électrique).

L’objectif de ce travail consistait à développer un nouveau protocole d’échange de clés qui
ne possède pas les faiblesses des solutions existantes. Plus spécifiquement, la nouvelle solution
devait : (1) être facile d’utilisation, (2) avoir un coût en terme de ressource (mémoire, CPU,
batterie) très faible et (3) ne pas utiliser des composants matériels additionnels (cage de faraday,
nouvelle interface radio,...).

Nous avons développé un nouveau protocole, appelé STU (Shake Them Up !), qui répond à
toutes ses contraintes. Ce résultat a fait l’objet d’une publication à la conférence ACM Mobisys.
Cette solution, très originale et innovante, eut un certain succès dans notre communauté scien-
tifique. Elle est aujourd’hui utilisée et référencée par de nombreux projets de recherche.

L’idée de base de ce protocole est décrit comme suit : Deux noeuds A et B communiquant
sur un canal qui fournit l’anonymat des sources peuvent s’échanger un bit secret en utilisant
l’algorithme suivant :

– A et B s’échangent le bit secret “1” si A envoie le message 01 ou B envoie le message 10.
– A et B s’échangent le bit secret “0” si A envoie le message 10 ou B envoie le message 01.
Toute autre noeud C qui écoute l’échange ne peut pas identifier le bit échangé. En effet, comme

le canal assure l’anonymat des sources, C ne peut pas identifier la source du message. S’il entend
le message 01, étant donné qu’il ne sait pas si ce message a été envoyé par A ou B, il ne peut pas
savoir si le bit secret est 0 ou 1 ! En revanche, A (resp. B) peut identifier la source du message :
s’il n’a pas envoyé le message...il a forcément été envoyé par B.

En généralisant ce protocole à n échanges, A et B peuvent s’échanger une clé secrète de n bits.
Figure 2.3 illustre notre protocole. Le protocole est initié par un message start émis par un des

2.3. ÉTABLISSEMENT DE LIENS SÉCURISÉS 15

1
0
0
1
1
0
0
1

1
0
0
1
1
0
0
1

src:A dst:B

src:A dst:B

round 0

SECRET KEY

round 1

src:B dst:A

src:A dst:B

src:B dst:A

src:B dst:A

src:A dst:B

round 2

round 3

round 4

round 5

round 6

round 7

hash(A|B|key)

hash(B|A|key)

src:B dst:A

terminal A terminal B
Start (k)

Start

Fig. 2.3 – Protocoles d’échange de clés STU.

participants. Ensuite, le protocole est divisé en k période de temps, ou k est la taille de la clé.
A chaque période de temps, le noeud A (resp. B) initie une temporisation. Si la temporisation
arrive à écheance avant la réception d’un message de B, il envoie un message contenant la valeur
01 (resp. 10) s’il veut transmettre le bit secret 0 (resp. 1) ou la valeur 10 s’il veut transmettre le
bit secret 1 (resp. 0). Au bout des k périodes, A et B partagent une clé secrète key (10011001
dans l’exemple de la figure). Chacun calcule alors la valeur h(A|B|key), ou h(.) est un fonction
de hachage comme SHA1, et s’échange cette valeur. Ils peuvent alors s’assurer qu’ils ont tous les
deux obtenus la même clé.

Le protocole suivant fait l’hypothèse que le canal assure l’anonymat des sources. Cette propriété
est possible sur un lien sans-fil sous certaines conditions :

1. L’analyse temporelle, et notamment la couche d’accès au médium (Medium Access Con-
trol) ne doit pas fournir d’information sur la source d’un paquet. Cette propriété n’est pas
assurée avec les systèmes TDMA (Time Division Multiplexing Access) car, avec ces proto-
coles, chaque source doit émettre uniquement durant des intervals préalablement attribués.
Ces intervals d’émission peuvent donc être utilisés pour identifier la source. Par contre, les
protocoles de type CSMA (Collision Sense Multiplexing Access) assurent cette propriété,
car les sources accèdent au canal de façon aléatoire. Le protocole STU ne fonctionne donc
qu’avec des systèmes utilisant CSMA (Collision Sensing Multiple Access), comme 802.11.

2. L’analyse spatiale ne doit fournir aucune information sur la source. Cette propriété est
difficile à assurer en pratique car les ondes radio s’atténuent de façon inversement propor-
tionnelle au carré de la distance. Par conséquence, la puissance de réception d’un message
fournit beaucoup d’information sur la localisation d’un noeud. Pour résoudre ce problème,
nous proposons qu’un utilisateur qui souhaite établir une clé entre deux noeuds A et B,
rapproche et secoue A et B pendant l’exécution du protocole STU décrit précédemment. En
secouant A et B, et en faisant l’hypothèse que ces 2 noeuds soient de même type et émettent
à la même puissance, les puissances de réception des messages de A et B s’égalisent et ne
fournissent aucune information sur la source des messages.

16 CHAPITRE 2. SÉCURITÉ DES RÉSEAUX DE CAPTEURS

L’article scientifique STU décrit notre protocole en détail [25]. Il présente une analyse théorique
de la sécurité et quelques résultats expérimentaux. Il met également en évidence certaines attaques
possibles et présente les contre-mesures à utiliser. Finalement, il décrit une extension du protocole
STU qui permet l’établissement d’une clé de groupe entre plusieurs noeuds d’un réseau.

2.3.2 RoK : Un protocole d’échange de clés pour réseaux de capteurs
[9]

Le travail précédent a traité le problème de l’établissement de clés secrètes entre noeuds avant
leur déploiement. Cependant, dans certaines applications, l’établissement des clés doivent se faire
une fois que les capteurs sont déployés. C’est le cas lorsque qu’un grand nombre de capteurs est
déployé de façon aléatoire, par exemple à partir d’un hélicoptère. Dans ce type de scénario, chaque
noeud doit établir une clé secrète avec chacun de ses voisins. Ses voisins n’étant pas connus avant
le déploiement, ces échanges de clés doivent avoir lieu sur le terrain. Ce problème serait trivial
à résoudre si l’utilisation des protocoles utilisant la cryptographie à clé publique était possible.
Les noeuds pourraient alors s’échanger leur certificat, un composant de type Diffie Hellman et
calculer une clé secrète. Malheureusement, l’utilisation d’algorithme utilisant la cryptographie à
clé publique est trop coûteuse et ne peut être utilisée dans ce type d’environnement.

Pour résoudre ce problème, Eschenauer et Gligor ont proposé, en 2002, un protocole probabiliste
qui est devenu le standard de-facto [33]. Ce protocole, qui est relativement simple, opère comme
suit :

1. L’administrateur du réseau génère un tableau de l nombres aléatoires, indexés de 1 à l.

2. Chaque noeud est ensuite configuré avec un sous-ensemble m de clés choisies aléatoirement
parmi les l clés précédentes.

3. Lorsque deux noeuds, A et B, veulent établir une clé secrète, ils s’échangent les indexes de
leurs clés. Ils utilisent ensuite les clés qu’ils ont en commun pour générer un secret (par
exemple en les hachant en utilisant un fonction de hachage comme SHA1).

Ce protocole est probabiliste car il est toujours possible qu’un noeud, autre que A et B, ait
également été configuré avec les clés que A et B possèdent en commun. Ce noeud pourra alors
calculer le secret que A et B viennent d’établir. Cependant Eschanauer et Gligor ont montré que
cette probabilité peut être faible si les paramètres l et m sont choisis avec précaution.

Nous avons montré que, bien que ce protocole soit efficace, la sécurité qu’il fournit se dégrade
rapidement avec le temps. En effet, chaque fois qu’un noeud est compromis, ses clés sont révélées.
En fil du temps, et en faisant l’hypothèse que l’attaquant compromet continuellement des noeuds,
une grande partie des clés du système sera connu de l’attaquant. L’attaquant peut, alors, calculer
les clès établis entre les noeuds et lire le contenu des messages échangés ou insérer des messages
érronés. Dans beaucoup d’applications, de nouveaux noeuds devront être ajouter au fil du temps
pour remplacer ceux qui ont consommé leurs piles. La probabilité que les clés de ces nouveaux
noeuds soient connues par l’attaquant augmente avec le temps.

Pour résoudre ce problème nous avons proposé RoK, une extension du protocole précédent.
Cette extension améliore considérablement la sécurité du protocole initiale. Plus spécifiquement,
avec RoK, le réseau s’auto-guérit lorsque que l’attaque est temporaire (c’est à dire compromet les
noeuds uniquement pendant une période de temps, puis disparâıt). En d’autre termes, l’état de
réseau redevient sain lorsque l’attaquant disparâıt. Par ailleurs, l’état du réseau se stabilise lorsque
l’attaquant est permanent (c’est à dire compromet des noeuds continuellement sans s’arrêter).

Les figures 2.4 et 2.5 montrent les résultats de quelques simulations (pour plus de détails sur
ces simulations, le lecteur pourra lire l’article RoK [9], inclut dans ce document). La figure 2.4
montre la proportion de liens compromis en fonction du temps (c’est à dire en fonction du nombre
de noeuds compromis) pour un attaquant permanent. Les différentes courbes correspondent aux
résultats obtenus avec le protocole standard et le protocole RoK, pour différents nombres de com-
promissions par période de temps. Ces résultats montrent que la sécurité du protocole standard se
dégrade avec le temps et qu’au bout d’un certain nombre de périodes de temps (variable en fonc-
tion de l’aggressivité de l’attaquants), tous les liens du réseau sont compromis ! En comparaison,

2.3. ÉTABLISSEMENT DE LIENS SÉCURISÉS 17

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
R

at
io

 A
ct

iv
e-

C
om

pr
om

is
ed

 /
A

ct
iv

e
ch

an
ne

ls
Time: Generations (1 Generation = 10 rounds)

 SETTINGS

 Nodes
 Pool Size
 Key Ring

400
10000
250

Corruption rate
1 node /round (RKP)
1 node /round (RoK)
3 nodes/round (RKP)
3 nodes/round (RoK)
5 nodes/round (RKP)
5 nodes/round (RoK)

Fig. 2.4 – Ratio de liens compromis avec attaquant permanent

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

R
at

io
 A

ct
iv

e-
C

om
pr

om
is

ed
 /

A
ct

iv
e

ch
an

ne
ls

Time: Generations (1 Generation = 10 rounds)

 SETTINGS

 Nodes
 Pool Size
 Key Ring

400
10000
250

adversary activity

Corruption rate
1 node /round (RKP)
1 node /round (RoK)
3 nodes/round (RKP)
3 nodes/round (RoK)
5 nodes/round (RKP)
5 nodes/round (RoK)

Fig. 2.5 – Ratio de liens compromis avec attaquant temporaire.

avec le protocole RoK, le pourcentage de liens compromis converge vers une valeur comprise entre
10% et 40%.

La figure 2.5 montre la proportion de liens compromis en fonction du temps pour un attaquant
temporaire. Dans nos simulations, l’attaquant est présent entre les périodes 5 et 15, puis dis-
parâıt. Les différentes courbes correspondent aux résultats obtenus avec le protocole standard et
le protocole RoK, pour différents nombres de compromissions par période de temps. Ces résultats
montrent que la sécurite du protocole standard se dégrade avec le temps et qu’au bout d’un cer-
tain nombre de périodes de temps (variable en fonction de l’aggressivité de l’attaquants), tous les
liens du réseau sont compromis ! En revanche, avec RoK, le pourcentage de liens compromis aug-
mente entre 10% et 40%, mais converge ensuite vers 0 lorsque l’attaquant disparâıt. Ces résultats
illustrent bien la propriété d’auto-guérisson du protocole RoK.

L’idée principale du protocole RoK est de limiter la durée de vie des clés secrètes contenus
dans le tableau et de faire évoluer les clés du système en fonction du temps. Ce choix est motivé
par l’observation que la durée de vie d’un capteur est limitée et que par conséquent ses clés n’ont
pas besoin d’être permanentes.

Une solution näıve serait que le système change les clés de son tableau à chaque période. A
une période donnée T , un noeud pourrait échanger des secrets avec ses voisins et ensuite effacer
les clefs de configuration de sa mémoire. Par conséquent, si ce noeud est compromis plus tard, ses
clefs ne pourront pas être utilisées. En d’autres termes, l’attaquant serait condammé à être très
rapide et compromettre les noeuds dès leur déploiement. Cette solution, bien qu’efficace en terme
de sécurité, a un gros inconvénient : un noeud déployé à la période T + 1, ne peut pas configurer
de secret avec les noeuds déployés pendant les périodes précédentes ! Elle a donc peu d’intêret en
pratique.

RoK résout ce problème en attribuant à chaque noeud w ∗ m clés, ou w est la durée de vie
moyenne d’un capteur. Si un noeud est déployé à la période T , il sera configuré avec m clés

18 CHAPITRE 2. SÉCURITÉ DES RÉSEAUX DE CAPTEURS

base
station67°

64°
69°

71°
68°

f (67°, …, 68°)Aggregator

Fig. 2.6 – Agrégation dans réseau de capteurs

de la période T , m clés de la période T + 1,..., et m clés de la période T + w. Ainsi ce noeud
pourra échanger un secret avec des noeuds de sa génération, mais aussi des noeuds des génération
T + 1, T + 2,...,T + w. Un des inconvénients de cette approche est qu’elle augmente le nombre
de clés que chaque noeud doit stocker par un facteur de w. Pour résoudre ce problème, nous
avons développer une nouvelle construction à base de condensés, SHA1 par exemple, doublement
chainés. Cette solution permet de réduire le coût mémoire de w ∗m à 2 ∗m, c’est à dire un coût
constant. L’article [Cast07d] présente le protocole RoK en détail. Il analyse également sa sécurité
analytiquement et par simulation.

2.4 Sécurisation des données agrégées

Les réseaux de capteurs sont des réseaux ad-hoc composés de dispositifs minuscules qui ont des
capacités de calcul, mémoire et énergie très limitées. Etant donné que la transmission des données
est l’opération la plus coûteuse en terme d’énergie, il est essentiel, pour optimiser la durée de vie
du réseau, de réduire le nombre de bits envoyés et relayés par les noeuds intermédiaires.

Une approche répandue consiste à agréger les données lors de leur acheminement vers le puits
- le noeud qui collecte et traite l’ensemble de données.

Prenons l’exemple d’un réseau qui est déployé pour mesurer la température moyenne dans une
zone géographique donnée. Ce réseau est structuré comme un arbre ou les feuilles et les noeuds
intermédiaires sont les capteurs et la racine est le puit. Chaque capteur envoie périodiquement ses
données vers le puits. Chaque message est relayé noeud par noeud du capteur vers le puits. Par
conséquent, si le réseau est constitué de n noeuds, le puits recevra à chaque période de mesure n
messages !

Pour réduire le nombre de messages et de bits transmits, chaque noeud intermédiaire peut
additionner les données (températures) reçues de ces fils, ajouter la valeur de sa mesure, et envoyer
le résultat à son père. Le puits recevra alors un seul message qui contiendra la somme des messages
au lieu de n messages (voir Figure 2.6). Il pourra alors diviser cette somme par n et obtenir la
moyenne de la température. Si les valeurs mesurées par chaque capteur sont codées sur m bits,
le puits recevra log2(n) + m bits au lieu de n + m bits. Le gain en bande passante est alors de
(log2(n) + m)/(n + m).

2.4. SÉCURISATION DES DONNÉES AGRÉGÉES 19

E(k1,67) E(k2,68)

k1

k2

CS=E(k1,67)+E(k2,68)

Dec(f(k1,k2),CS)=m1+m2!

Fig. 2.7 – Agrégation Sécurisée

2.4.1 Agrégation de données chiffrées [21, 24, 26, 11]

L’agrégation des données est relativement triviale, mais devient problématique lorsque l’on
veut y ajouter de la sécurité et plus particulièrement de la confidentialité (chiffrement). Dans
certaines applications, il est essentiel de s’assurer que les informations qui sont transmises sur le
réseau ne puissent être interceptées et lues par des personnes non-autorisées. Elles doivent donc
être chiffrées. Mais le chiffrement et l’agrégation sont deux concepts qui ne vont pas très bien
ensemble.

Il y a bien entendu deux solutions simples (mais näıves) à ce problème. La première consiste
à configurer tous les noeuds du réseau avec une clé de groupe. Chaque noeud chiffre alors ses
données avec cette clé en utilisant un algorithme de chiffrement symétrique standard, comme AES
ou RC5, et envoie le résultat à son père. Ce noeud déchiffre alors tous les messages reçus de ces
enfants, les ajoute, ajoute sa mesure, chiffre le résultat avec la clé de groupe et envoie le message
chiffré à son père. Les messages sont ainsi relayés et agrégés de noeud en noeud jusqu’au puits. Le
puits peut alors déchiffrer le message et retrouver la somme des données. Cette solution a plusieurs
inconvénients : (1) Elle est peu sûre car il suffit de compromettre un seul noeud pour découvrir
la clé de groupe et déchiffrer l’ensemble des messages. (2) Elle est peu efficace car chaque noeud
doit déchiffrer plusieurs messages et en chiffrer un.

Une deuxième solution consiste à utiliser, au lieu d’une clé de groupe, une clé différente lien
par lien. En d’autres termes, dans cette solution, chaque noeud établit une clé secrète avec chacun
de ses voisins. Il déchiffre alors les données reçues de ses fils, les agrège, puis chiffre le résultat
avec la clé qu’elle possède avec son père. Cette solution est meilleure, en terme de sécurité, que la
précédente car la compromission d’un noeud ne révèle que les clés utilisées par ce noeud et non une
clé globale. Cependant elle a les inconvénients suivants : (1) La compromission d’un noeud près
du puits permet d’obtenir un agrégat qui est significatif car chaque noeud a accès aux données
agrégées envoyées par ses fils. (2) Elle nécessite l’établissement de clé entre chaque noeud voisin,
ce qui n’est pas trivial. (3) Comme la solution précédente, elle est relativement coûteuse.

Une solution de bout-en-bout serait préférable car la compromission d’un noeud ne fournirait
aucune information sur l’aggrégat ou les données envoyées par les autres noeuds du système.
La solution idéale serait d’avoir une solution ou chaque noeud chiffrerait ses données avec une
clé qu’il partagerait avec le puits et avec laquelle les noeuds intermédiaires manipuleraient des
données chiffrées sans jamais accéder aux données en clair (voir Figure 2.7). Pour arriver à ce
résultat, nous avons besoin d’un fonction de chiffrement homomorphique par l’addition, c’est un

20 CHAPITRE 2. SÉCURITÉ DES RÉSEAUX DE CAPTEURS

fonction de chiffrement enc() qui posséde la propriété suivante :

enc(k1, m1)⊗ enc(k2, m2) = Enc(f(k1, k2), m1 + m2)

En d’autres termes, la somme des données en clair m1 + m2, peut être obtenus en déchiffrant
avec un clé qui est dépend de k1 et k2, le résultat de ⊗, une fonction à définir, sur les messages
chiffrés m1 et m2. Avec une telle fonction de chiffrement, il suffirait alors que chaque noeud
exécute la fonction ⊗ en utilisant comme paramètres d’entrée, les valeurs chiffrées de ses fils. Le
puits pourrait alors obtenir la somme des données en déchiffrant le message qu’il reçoit avec une
clé qui dépendrait de l’ensemble des clés qu’il partage avec les noeuds.

Nous avons proposé une fonction de chiffrement qui posséde cette propriété et qui, en plus, est
très performante et bien adaptée aux réseaux de capteurs. Nous avons montré qu’en remplaçant
dans un chiffrement par flot (stream-cipher) le ou-exclusif xor par une addition modulaire (+)
nous obtenons une algorithme de chiffrement qui est homomorphique par l’addition et dont le
sécurité est prouvable. Cette fonction est décrite dans le tableau 2.4.1.

Additively Homomorphic Encryption Scheme

Encryption :

1. Represent message m as integer m ∈ [0, M − 1] where
M is large integer.

2. Let k be a randomly generated keystream, where k ∈
[0, M − 1]

3. Compute c = Enc(m, k, M) = m + k (mod M)

Decryption :

1. Dec(c, k, M) = c− k (mod M)

Addition of Ciphertexts :

1. Let c1 = Enc(m1, k1, M) and c2 = Enc(m2, k2, M)

2. For k = k1 + k2, Dec(c1 + c2, k, M) = m1 + m2

Etant donné que l’addition est une opération commutative, la fonction décrite précédemment
est homomorphique par l’addition. En effet, si c1 = Enc(m1, k1, M) et c2 = Enc(m2, k2, M) alors
c1+c2 = Enc(m1+m2, k1+k2, M). Si n messages chiffrés sont ajoutés, alors M doit être plus grand
que

∑n

i=1 mi. En effet, si M est plus petit que
∑n

i=1 mi, le résultat du déchiffrement donnerait
une valeur m′ inférieure à M et plusieurs valeurs de m1 +m2 seraient alors possibles. En pratique,
si p = max(mi) alors M doit être égale à M = 2⌈log2(p∗n)⌉.

L’article scientifique [24] présente notre solution en détails. Il présente également des résultats
de performance et la preuve de sécurité de cette nouvelle construction. L’agrégation de données
chiffrées est considérée comme un problème scientifique très difficile. Non seulement, nous avons
montré qu’il existait une solution, mais nous avons également développé une solution efficace, sûre
et peu coûteuse en calcul et mémoire. Cette solution utilise uniquement des additions modulaires
et est, par conséquent, très bien adaptée aux réseaux de capteurs. Elle constitue, aujourd’hui, la
seule solution pratique à ce problème.

Un inconvénient de cette solution est que le puits doit connâıtre, pour calculer correctement
la clé de déchiffrement, les identités de tous les noeuds qui ont participé à l’agrégat. En d’autres
termes, les capteurs qui ont participé doivent envoyer leurs identités. La transmission de ces
identifiants peut avoir un coût non négligeable lorsque le réseau est peu stable et que le nombre
de capteurs qui participent est très variable. Nous avons développé une optimisation qui permet
de réduire le nombre de bits utilisés par l’émission des identifiants [11]. Cette optimisation peut
réduire le coût de transmission des identifiants par un facteur pouvant aller jusqu’à 15.

2.4. SÉCURISATION DES DONNÉES AGRÉGÉES 21

2.4.2 Intégrité des données agrégées [6, 27]

La section précédente a considéré le problème de l’agrégation des données chiffrées. Cette
section traite du problème, au moins aussi difficile, de l’integrité des données agrégés. Les données
sont agrégées lors de leur acheminement vers le puits. Mais comment le puits peut-il avoir la
certitude que l’agrégat qu’il a reçu a été généré à partir de données légitimes (c’est à dire émis par
des capteurs autorisés) ? Ce problème est difficile car le puits, bien évidemment, ne reçoit pas les
valeurs individuelles et que, comme nous l’avons démontré [27], les étiquettes d’authentification
(les tags MAC) ne sont agrégables. Perrig et al. ont récemment proposé une solution utilisant des
arbres de Merkle. Cependant cette solution nécessite au moins 3 échanges de messages et est donc
coûteuse en terme de bande passante et énergie. De plus, elle nécessite que le réseau soit stable
entre les différents échanges de messages, ce qui est une hypothèse peu réaliste pour les réseaux
de capteurs.

L’objectif principal de nos travaux de recherche était ici de proposer une solution qui : (1)
permette au puits de vérifier l’intégrité de l’agrégat en un seul échange de message, (2) autorise
le chiffrement des données et (3) soit efficace en terme de bande passante et de consommation
d’énergie. Nous avons alors développé un nouveau protocole d’agrégation, ABBA, qui non seule-
ment satisfait les conditions précédentes, mais permet d’étendre l’agrégation des données à d’autres
opérations que l’addition.

Notre solution utilise un approche de type “bins and balls” : l’espace possible des valeurs
mesurées est divisé en n cases. Chaque case correspond à un interval de valeurs. Si, par exemple,
les capteurs mesurent des températures qui peuvent varier entre [−100,+100], et que n = 10,
alors la première case correspond aux valeurs comprises dans l’interval [−100,−80], la deuxième
[−81,−60], etc. Lorsqu’un capteur effectue une mesure t, au lieu d’envoyer cette valeur au puits,
il incrémente la case correspondante à la valeur t. Par exemple, si t = 25, il incrémente la case
correspondant à l’interval [20, 40]. Chaque case est ensuite chiffrée en utilisant la fonction homo-
morphique décrite précédemment, et l’ensemble est envoyé à son père. Le père ajoute les messages
qu’il reçoit de ses fils, case par case, incrémente la case correspondant à sa mesure, chiffre le tout
et envoie le résultat à son père. Lorsque le puits reçoit l’agrégat, il peut déchiffrer chaque case et
ainsi retrouver la valeur de chacune d’entre elles. Le puits reçoit alors une distribution des valeurs
mesurées par les capteurs.

Ce nouveau protocole permet d’assurer la confidentialité et permet au puits d’obtenir suffisam-
ment d’information pour calculer un grand nombre d’agrégats (moyenne, median, min/max,...).
Mais comment fournit-elle l’intégrité des données ?

Note que lorsque le puits récupère l’ensemble des cases, il peut s’assurer que la somme de leur
valeur est égale à n. Si cette valeur est différente de n, alors l’agrégat a été modifié : un attaquant
a ajouté ou soustrait des valeurs à certaines cases ! Un attaquant intelligent pourrait soustraire
p à un ensemble de cases et ajouter p à d’autres cases pour modifier la distribution de l’agrégat.
Dans ce cas, la somme de la valeur des cases serait égale à n. Cependant, nous avons montré par
nos travaux, que si l’attaquant est trop agressif, c’est à dire qu’il utilise un grand p, la probabilité
qu’une des cases ait une valeur inférieure à zéro (valeur incohérente) est importante. L’attaquant
qui ne connait pas les valeurs des cases (car elles sont chiffrées) travaille à “l’aveugle”. Le puit,
lui, pourra alors détecter la modification. La sécurité fournit par notre solution est probabiliste :
un attaquant aura une probabilité non-négligeable de réussir son attaque s’il ne pas trop agressif.
Cependant l’impact de son attaque sera négligeable dans ce cas. Si l’attaquant veut modifier la
distribution de façon significative, par exemple en déplacant la moyenne de quelques unités, la
probabilité que son attaque aboutisse devient alors très faible.

Les résultats de ce travail sont décrits dans un article qui a été publié à WiOpt 2008 [6]. Cet
article détaille notre protocole et analyse sa sécurité de façon analytique. Il présente également
quelques résultats de simulation.

22 CHAPITRE 2. SÉCURITÉ DES RÉSEAUX DE CAPTEURS

2.5 Virus et Vers Informatiques pour les réseaux de cap-
teurs [35]

Les réseaux de capteurs se développant et faisant partie des infrastructures critiques, il est tout
à fait naturel de penser à la menace que posent les virus et vers sur ces nouveaux réseaux.

Dans l’Internet, un attaquant peut compromettre des machines en exploitant des vulnérabilités,
résultant souvent d’un dépassement d’un buffer en mémoire. Un capteur étant un micro-ordinateur,
possédant un CPU, de la mémoire, des Entrées/Sorties, à priori, tout peut nous faire penser que
ces types d’attaque y sont transposables. Cependant, les capteurs ont plusieurs caractéristiques
qui rendent leur compromission à distance par un virus très délicat :

- Les mémoires “programmes” et “données” sont souvent physiquement séparées (mémoire
FLASH pour le programme, et mémoire SRAM pour les données et la pile) et utilisent
des espaces d’adressage différents. Il est alors souvent impossible d’éxécuter du code qui
serait inséré dans la pile, comme c’est souvent le cas dans les attaques qui exploitent un
dépassement de buffer pour écraser la pile (Stack-based buffer overflow).

- Le code application est souvent protégé en écriture. Un attaquant ne peut pas modifier les
programmes présents en mémoire.

- La taille des paquets que peut recevoir un capteur est très limitée (typiquement 28 octets),
ce qui rend l’injection de code “utile” difficile.

Les techniques qu’utilisent les vers pour compromettre une machine sur Internet, ne peuvent
donc pas être utilisées directement sur les capteurs. Nous avons cependant montré, en concevant
un des premiers virus/vers pour capteurs de type Micaz/TinyOS, que la conception de virus, bien
que difficile, n’est pas impossible.

Nous avons utilisé, pour arriver à notre objectif, deux propriétés que possèdent souvent le
réseaux de capteurs :

- un réseau de capteurs est très souvent homogène, c’est à dire composé de dispositifs similaires,
configurés avec les mêmes composants. La configuration mémoire de tous les capteurs est
donc souvent identique. En compromettant un noeud, un attaquant peut facilement identifier
le code présent en mémoire de l’ensemble des noeuds du réseau.

- Chaque capteur doit souvent être reconfigurable à distance après déploiement, au cas ou un
bug doit être corrigé ou un autre programme doit être chargé en mémoire. Cette reconfigu-
ration est souvent réalisée par un logiciel (par exemple Deluge sous TinyOS), préalablement
installé sur le capteur, qui copie le nouveau programme de la mémoire RAM externe vers la
mémoire exécutable.

Le virus que nous avons conçu opére comme suit :

– une vulnerabilité dans le programme est exploitée en envoyant un paquet, formaté de façon
adéquate, qui écrit, par un dépassement de buffer, dans la pile. Ce dépassement de buffer
est utilisé pour exécuter une série de groupes d’instructions qui vont copier un octet du pa-
quet vers une zone mémoire inutilisée. Plus spécifiquement, le premier groupe d’instructions
configure les registres (en utilisant les données qui sont dans la pile et qui ont éte écrasés
par le paquet lors du dépassement de la pile), qui vont permettre au deuxième groupe d’in-
structions de copier l’octet qui se trouve dans le paquet vers la position en mémoire qui aura
été choisie. Le paquet doit être convenablement formatté afin de contenir les adresses des
intructions à exécuter et les valeurs des registres à configurer.

– Le paquet précédent permet de copier un octet envoyé sur la mémoire donnée du capteur.
En envoyant plusieurs paquets de ce type, nous pouvons créer une fausse pile en mémoire.
Cette fausse pile sera écrite dans une zone mémoire qui n’est pas utilisée par le propramme
car elle est localisée au delà des zones data et bss et en dessous de la valeur maximum de la
pile. De plus cette zone mémoire n’est pas effacée lors d’un reboot. Cette fausse pile contient
des données qui permettent de configurer les registres utilisés par les instructions appelées
lors de l’étape suivante, ainsi que le code malveillant que l’on veut insérer dans le capteur.

– Une fois la fausse pile insérée en memoire, il suffit alors d’envoyer un dernier paquet qui, en
exploitant la même vulnérabilité, va : (1) exécuter un groupe d’instructions qui redirige le

2.6. CONCLUSIONS 23

pointeur de pile (stack pointeur) vers la fausse pile, (2) lancer un groupe d’instructions qui
configure les registres pour le dernier groupe, qui (3) copie le code malicieux en mémoire
exécutable.

– Un dernier paquet peut alors lancer l’exécution du code malicieux.
Il faut noter qu’après chaque étape, le capteur est rebooté en retournant à l’adresse exécutable

0. Le code malicieux peut lui-même lancer la même attaque sur les voisins du capteur compromis
et transformer le virus en vers. Les détails de ce travail sont décrits dans un article qui est en cours
de soumission [35].

2.6 Conclusions

La sécurité des réseaux de capteurs a été un de nos plus importants domaines de recherche ces
dernieres années. Nos contributions sont à la fois théoriques, avec le développement de nouveaux
algorithmes de chiffrement et de génération de nombres aléatoires, et pratiques, avec la conception
de nouveaux protocoles d’échange de clés et de virus/vers.

Toutes nos résultats sont implantés sous TinyOS et intégrés dans une librairie qui est développée
dans la cadre du projet Européen UbiSec&Sens. Cette librairie a pour objectif d’aider les développeurs
à sécuriser leurs applications.

Aujourd’hui les réseaux de capteurs sont essentiellement déployés dans des laboratoires à des
fins de recherche. Des déploiements commerciaux devraient cependant voir le jour prochainement.
Ce domaine de recherche devrait alors se développer considérablement, d’autant plus qu’il reste
encore beaucoup de problèmes scientifiques à résoudre. Par exemple, dans beaucoup d’applications,
il est nécessaire que le puits connaisse la localisation géographique des noeuds du réseau. Les
protocoles de localisation qui existent ne garantissent pas une localisation correcte en présence d’un
attaquant actif. La sécurisation des protocoles de localisation est un sujet de recherche très difficile
qui mérite réflexion et sur lequel nous planifions de travailler. D’autres sujets importants sont la
détection d’intrusion, la sécurisation des systèmes d’exploitation, la sécurisation des protocoles de
mise à jour de code, etc.

24 CHAPITRE 2. SÉCURITÉ DES RÉSEAUX DE CAPTEURS

Chapitre 3

Sécurité des systèmes RFID

3.1 Introduction

3.1.1 Les technologies RFID

L’identification par radio fréquence, connue sous le nom de RFID (Radio Frequency Identifica-
tion) est devenue aujourd’hui une technologie incontournable. Cette technologie, qui permet d’i-
dentifier et parfois authentifier un objet à distance, est devenue omniprésente. Elle est utilisée pour
la traçablité dans les châınes logistiques (en remplacement des codes barres), dans les passeports
électroniques, les systèmes de paiement à carte sans fil, les badges d’accès, les clés des voitures.
Elle est également utilisée, dans certains cas, pour identifier des personnes (RFID implantable) ou
des animaux.

Un système RFID est constitué de 3 éléments : une étiquette, un lecteur et une base de donnée
(voir figure 3.1).

Fig. 3.1 – Système RFID : étiquettes, lecteur et base de données

L’étiquette est un petit circuit électronique, équipé d’une antenne, qui stocke en mémoire un
ensemble de données (typiquement un ou plusieurs identifiants). Elle répond à une requête émise
par un lecteur en diffusant son identifiant. Le lecteur transmet, en temps réels ou en différé selon
l’application, cet identifiant à la base de donnée pour traitement. La base de donnée peut alors
identifier l’objet ou la personne associée à l’étiquette.

Il existe une large variété d’étiquettes possédant des caractéristiques très différentes. Certaines
sont très bon marché, minuscules et ne sont dotées que d’une petite mémoire, d’autres sont plus
onéreuses et possèdent des capacités de calcul importantes. Certaines étiquettes, comme celles
utilisées dans les passeports électroniques, peuvent même effectuer des opérations complexes et

25

26 CHAPITRE 3. SÉCURITÉ DES SYSTÈMES RFID

coûteuses, tel que des opérations de cryptographie à clé publique. Les étiquettes sont généralement
classées en deux catégories : les étiquettes actives et les étiquettes passives. Les étiquettes actives
possèdent une source d’énergie interne (généralement une pile). Ces étiquettes sont onéreuses et
volumineuses. Elles sont généralement utilisées pour les applications qui nécessitent des capacités
de calcul ou de transmission importantes.

Les étiquettes passives ne possèdent aucune source d’énergie et sont alimentées par le champ
électromagnétique émis par le lecteur. L’antenne de l’étiquette capte certaines fréquences qui lui
fournissent suffisamment d’énergie pour lui permettre d’émettre à son tour son identifiant. Ils ont
une portée de communication plus faible que les étiquettes actives : quelques centimètres pour les
étiquettes fonctionnant en basse (125kHz) ou haute fréquence (13,56 MHz), et quelques mètres en
ultra haute fréquence (900 MHz).

Les étiquettes passives les plus utilisées aujourd’hui sont les étiquettes EPC (Code Produit Elec-
tronique). Elles sont très peu onéreuses (quelques centimes) et ne sont dotées que d’une mémoire
accessible en lecture, qui contient un identifiant unique de 128 bits. Elles peuvent dans certains cas
effectuer des opérations reposant sur de la logique cablée. Les étiquettes EPC sont essentiellement
utilisées dans les châınes logistiques, et particulier dans la grande distribution.

3.1.2 Sécurité des systèmes RFID

De façon générale, les applications RFID peuvent être classées en deux grandes catégories :
les applications dont l’objectif est d’améliorer la sécurité (badges d’accès de tout type, cartes
de paiement) et les applications dont l’objectif principale est d’identifier/tracer des objets ou des
personnes (logistique, suivi/surveillance d’animaux,...). Ces deux types d’applications ont des con-
traintes de sécurité très différentes. Dans le premier cas, l’étiquette RFID est utilisée comme un
moyen d’authentification : l’étiquette doit non seulement s’identifier, c’est à dire réveler son iden-
tité, mais aussi la prouver au lecteur. L’identification est, dans ce cas, insuffisante, car un attaquant
pourrait simplement écouter l’identifiant, puis le rejouer plus tard pour usurper l’étiquette.

Il existe aujourd’hui deux types d’authentication : l’ authentification faible et l’authentification
forte. Les mécanismes d’authentification faible sont relativement peu sûres : une étiquette répond
à une requête d’un lecteur en envoyant son identifiant public accompagné d’un secret, uniquement
connu de l’étiquette et de sa base de donnée. Il suffit alors à un attaquant d’écouter un échange
pour apprendre le secret et le rejouer par la suite. Les systèmes RFID ne peuvent apporter un
niveau de sécurité acceptable uniquement si un mécanisme d’authentification forte est utilisé. Dans
les systèmes à authentification forte, chaque noeud est configuré avec une clé secrète, qu’il utilise
pour répondre à un défi (challenge). Cette réponse est soit une signature du défi, son chiffrement
avec la clé secrète ou sa valeur hachée (en utilisant une fonction de hachage concaténé avec la
clé par exemple). Dans ce cas, étant donné que la réponse varie en fonction du défi, il devient
difficile pour un attaquant de générer la réponse correcte sans connâıtre le secret. Le mécanisme
d’authentification nécessite donc des fonctions cryptographiques (chiffrement, signature, hachage).
Par conséquent, les étiquettes qui fournissent cette fonctionalité sont généralement plus onéreuses
que les étiquettes de type EPC, qui ont pour unique objectif d’identifier des objets.

Pour les étiquettes à très bas coût, de type EPC, le problème de sécurité le plus délicat est
le problème de la traçabilité malveillante. En effet, étant donné qu’une étiquette répond toujours
avec son identifiant, et que cet identifiant ne change pas, elle peut être utilisée pour tracer un
objet ou une personne. Si cette étiquette est attachée à une chemise, elle peut fournir beaucoup
d’information sur les activités du porteur de la chemise (voir figure 3.2). Ce problème est moins
important avec les étiquettes haut de gamme, qui peuvent, par exemple, chiffrer leur identifiant
avant de l’envoyer. Il est très délicat avec les étiquettes EPC qui possède des capacités de calcul
très faibles.

Le problème de la traçabilité malveillante est crucial. Les systèmes RFID pourront difficilement
être déployés si ce problème n’est pas résolu. Benetton et Wallmart en ont fait les frais lorsque
des défenseurs des libertés individuelles, ont appelé à boycotter ces deux marques qui voulaient
équiper leurs produits d’étiquettes RFID EPC.

3.2. IDENTIFICATION SECRÈTE DES ETIQUETTES 27

Fig. 3.2 – Traçabilité Malveillante : Illustration

3.2 Identification Secrète des Etiquettes

Nos travaux se sont essentiellement portés sur le problème d’identification secrète des étiquettes.
Notre objectif était de concevoir des mécanismes et protocoles qui permettent de rendre la traçabilité
de ces étiquettes plus difficile, tout en utilisant des étiquettes EPC standards.

Nous avons proposé deux solutions : les étiquettes brouilleuses (noisy tags) et une solution,
appelée ProbId. La première solution, très efficace en terme de calcul et mémoire, permet une iden-
tification secrète des étiquettes dans environnements surveillés (banques, entreprises, aéroports,...)
et protègent contre des attaquants passifs. La deuxième solution est plus générique et protège les
étiquettes contre les attaques passives et actives. Elle est cependant un peu plus onéreuse car,
bien que ne nécessitant que très peu de calcul, elle utilise une zone mémoire ROM de quelques
centaines de bits.

Ces deux solutions sont résumées dans le reste de ce chapitre.

3.2.1 Les Etiquettes Brouilleuses (Noisy Tags) [13]

La solution basée sur les étiquettes brouilleuses permet à un lecteur et à une étiquette d’échanger
un secret sans utiliser de fonctions cryptographiques. Ce secret peut être ensuite utilisé pour chiffrer
l’identifiant (en faisant un ou exclusif -xor- du secret et de l’identifiant).

L’idée de base de ce protocole est la suivante : une entité A peut envoyer un secret à une autre
entité B, si B brouille le canal de transmission pendant la transmission. B pourra alors supprimer
le bruit, qu’il a généré, du signal de réception et retrouver le secret. Tout autre noeud qui écoute
la transmission n’entendra que du bruit car il ne pourra pas différencier le bruit généré par B du
secret transmit par A.

Notre proposition utilise cette idée et l’applique aux étiquettes RFID. Elle utilise des étiquettes
brouilleuses qui sont déployées dans l’environnement du lecteur (au guichet d’un banque, dans un
aéroport,...) et qui générent le bruit sur le canal de transmission. Ces étiquettes sont des étiquettes
EPC qui implémentent un fonction de hachage (MD5, par exemple). Chacune de ces étiquettes,
EBi, est configurée avec une clé secrète, ki, partagée avec le lecteur.

Description du Protocole NTP (Noisy Tag Protocol) : Le protocole de base, lorsqu’une
étiquette T passe devant le lecteur, fonctionne comme suit (voir figure 3.3) :

- Le lecteur envoie un requête qui contient une valeur aléatoire, Nonce.

28 CHAPITRE 3. SÉCURITÉ DES SYSTÈMES RFID

- L’étiquette T répond avec un bit secret (ce bit peut être aléatoire ou peut appartenir à un
clé stockée préalablement en mémoire).

- Chaque étiquette brouilleuse, EBi, répond avec un bit, bi, qui est calculé à partir d’un
fonction de hachage h(.), la valeur Nonce et le secret ki. Par exemple, bi peut correspondre
au bit de poids faible du résultat de h(ki|Nonce).

- Le lecteur reçoit donc 1 bit de chacune des étiquettes brouilleuses et le bit secret émis par le
étiquette T . Comme il connâıt, les clés kj et la valeur Nonce, il peut calculer les bits envoyés
par chaque étiquette brouilleuse, et identifier le bit envoyé par le tag T .

En répétant ce protocole n fois, l’étiquette T peut transmettre un secret de n bits au lecteur.
Un espion, qui écoute sur le canal radio, entend un ensemble de bits. Mais ne connaissant pas les
clés k, il ne peut pas identifier les bits envoyés par les étiquettes brouilleuses et retrouver le bit
secret.

L’hypothèse sous-jacente à ce protocole est qu’un espion ne peut pas identifier la source de bits
en utilisant, par exemple, la puissance de transmission. Cette hypothèse est validée en utilisant
un nombre important d’étiquettes brouilleuses.

Tag

Noisy Tag

Nonce

Tag

Noisy Tag

“1”

“0”

Fig. 3.3 – Noisy Tag Protocol : Le lecteur diffuse un Nonce. Le tag T répond avec le bit secret.
Le noisy tag répond avec un bit qui est le bit de point faible de md5(nonce|ki).

Discussions L’article scientifique [cast06a] présente trois variantes de ce protocole de façon plus
détaillée. La solution que nous proposons permet à une étiquette d’envoyer un secret à un lecteur.
Elle est très bien adaptée aux étiquettes bon marché, tel les EPCs, car ne nécessite aucune
opération sur les étiquettes. Seules les étiquettes brouilleuses doivent implanter une fonction de
hachage.

Une des limitations de cette solution est qu’un attaquant peut disposer ces propres étiquettes
brouilleuses et interroger l’étiquette T avec un lecteur. L’étiquette T , n’authentifiant pas le lecteur,
repondra alors à cette requête en envoyant son secret et son identifiant. L’attaquant pourra alors
identifier l’étiquette. Notre solution est donc plutôt adaptée aux environnements surveillés (mag-
asins, banques, aéroports, bus, ...) dans lesquels la présence d’un attaquant actif est détectable.

En résumé, notre protocole est sûre contre un attaquant passif (espion) et contre un attaquant
actif dans un environnement surveillé. Dans les environnements ouverts, elle peut être associée à
la solution “tag blocker” de RSA qui brouille les identifiants émis par les étiquettes. Avec cette
solution, aucun lecteur ne peut identifier les étiquettes qui se trouvent sous la protection du “tag
blocker”. L’utilisateur pourra alors désactiver le “tag blocker” dans les environnements surveillés
s’il le juge nécessaire.

3.2.2 Identification Probabiliste [23]

Le protocole ProbIP (Probabilistic Identification protocol) propose une nouvelle approche au
problème de l’identification secrète des étiquettes RFID. Comme la solution précédente, ProbIP ne
nécessite aucun calcul de la part des étiquettes et est, par conséquent, bien adaptée aux étiquettes
de type EPC.

3.2. IDENTIFICATION SECRÈTE DES ETIQUETTES 29

La différence avec la solution précédente est qu’elle ne fait aucune hypothèse sur les propriétés
physiques des étiquettes et est sûre aussi bien contre les attaques passives que les attaques actives.
Sa sécurité repose sur un problème NP-complet.

Avec ProbIP , chaque étiquette Ti est configurée avec une clé secrète de longueur K, ki. Cette
clé est utilisée comme un vecteur de bits, où ki[1] est le premier bit, ki[1] le deuxième bit, etc...
Le lecteur (ou le serveur de base de données), R, est, lui, configuré avec la clé des n étiquettes du
systèmes.

Description du Protocole : Le protocole, entre l’étiquette Tj , et le lecteur R, opère comme
suit :

1. R initialises une identification en diffisant un message HELLO.

2. A la réception de ce message HELLO, Tj répond avec P paquets et un message FINISHED, où
P is un paramètre du système. Un paquet est une liste de 2L valeurs, a1, b1, a2, b2 . . . , aL, bL,
où ai est un index aléatoire, choisi entre 1 et K, et bi sont des bits aléatoires qui satisfont
l’équation :

L
∑

i=1

kj [ai]⊕ bi = L/2 (3.1)

3. A la réception de chaque paquet, R calcule le résultat de l’équation 3.1 avec les clés de tous
les étiquettes qu’il a en mémoire. Les étiquettes dont la clé qui satisfont l’équation, font alors
partis des candidats potentiels. Chaque paquet réduit la liste des candidats potentiels. Au
bout de P paquets, un seul candidat reste : il s’agit de l’étiquette à identifier.

Illustration : Prenons un exemple pour illustrer notre protocole. Considérons un système qui
utilise les paramètres suivants : L = 4, K = 6 et n = 4. T1 est configuré avec la clé k1 =011001,
T2 avec la clé k2 =100101, T3 avec la clé k3 =011110 et finalement T4 avec k4 =001110.

Faisons l’hypothèse que l’étiquette à identifier est T2. Le protocole opère comme suit (voir
figure 3.2.2).

1. R diffuse un message HELLO.

2. T2 envoie deux paquets et le message FINISHED. Le premier paquet est défini par [1 2 5
6], pour lequel l’équation 3.1 avec k2 est (1 ⊕ 1) + (0 ⊕ 0) + (0 ⊕ 1) + (1 ⊕ 0) = 2 = L/2 .
Le deuxième paquet est défini par [2 3 4 5] pour lequel l’équation 3.1 avec la clé k2 est
(0⊕ 1) + (0⊕ 0) + (1⊕ 0) + (0⊕ 0) = 2 = L/2 . Nous utilisons la notation suivante : āi si
bi = 1 et ai si bi = 0

3. A la réception du premier paquet, le lecteur calcule pour chaque des 4 étiquettes l’équation
3.1. Le résultat de cette équation est 4 pour T1, 2 pour T2, 2 pour T3 et 1 pour T4. Les deux
seuls candidats sont donc T2 et T3.

4. A la réception du second paquet, le lecteur calcule pour T2 et T3 l’équation 3.1. Le résultat
de cette équation est 2 pour T2 et 3 pour T3. Le seul candidat restant est alors T2, l’étiquette
à identifier.

30 CHAPITRE 3. SÉCURITÉ DES SYSTÈMES RFID

Discussions : Ce protocole permet à un lecteur autorisé d’identifier une étiquette de façon secrète.
En d’autres termes, un espion qui écoute les échanges entre une étiquette et un lecteur ne peut
pas identifier, ou mieux encore lier deux itérations du protocole entre eux, s’il ne possède pas la
clé de l’étiquette.

Plus spécifiquement, nous avons montré que la sécurité de ce protocole peut-être ramener à
résoudre un problème NP-complet (L/2-in-L LSAT). La seule solution pour résoudre ce problème
est d’utiliser un résolveur LPBC (Linear Pseudo-Boolean Constraint). Nous avons utilisé un tel
résolveur et avons évaluer le nombre d’échanges étiquette-lecteur qu’un espion doit écouter pour
pouvoir retrouver la clé secrète de l’étiquette en un temps raisonnable. Les résulats complets sont
présentés dans notre article scientifique [23].

La seule solution prouvée sûre qui existe aujourd’hui repose sur l’utilisation de pseudonymes :
chaque étiquette est équipée de m identifiants pseudonymes et répond à chaque requête en utilisant
un identifiant différent. En écoutant, m itérations de ce protocole, un espion peut collecter la liste
des pseudonymes et écouter les futures identifications de cette étiquettes. Si un système RFID
supporte n = 107 étiquettes, et que chaque étiquette est configurée avec 15 identifiants, une
mémoire de taille 15 ∗ ⌈log2(107 ∗ 15)⌉ = 420 bits est nécessaire. Dans ce cas, la sécurité d’une
l’étiquette est complétement inexistante au bout de 16 itérations du protocole entre l’étiquette et
le lecteur. Avec les mêmes paramètres, ProbIP fournit une sécurité plus forte : un espion qui a
écouté 16 itérations du protocole doit, en plus, effectuer des calculs très complexes (dont la temps
d’éxécution a été évalué à 1.46e28 seconds sur un machine avec un processeur Pentium-D de 3
GHz) pour retrouver la clé de l’étiquette. Comme montré dans notre article, il existe un compromis
entre le nombre de calculs et le nombre d’itérations à écouter : plus l’espion posséde d’itérations
du protocole, plus facile il lui sera de calculer la clé secrète.

3.3 Conclusions

Par nos travaux, nous avons montré qu’il était possible d’améliorer la sécurité des étiquettes
EPC sans les modifier. Cependant nous devons constaté que nos solutions ne sont pas infaillibles.
Un attaquant obstiné et possédant un certain budget pourra certainement arriver à ces fins. Avec
le protocole NTP (Noisy Tag), un attaquant équipé d’un système d’écoute élaboré pourra peut-
être identifier les sources des messages et identifier ceux émis par les étiquettes brouilleuses. Il
pourra alors retrouver le secret échangé. Avec le protocole ProbIP , un attaquant obstiné pourra,
en écoutant suffisamment d’itérations, arriver à ces fins.

Ces travaux ont permi d’explorer les limites des solutions qui n’utilisent aucune fonction cryp-
tographique. Il semble qu’il est difficile (peut-être impossible) d’arriver à une solution aussi sûre
que les solutions cryptographiques. Cependant des solutions à bas-coût, telle ProbIP, sont appro-
priées pour des étiquettes EPC qui sont attachées à des objets dont la durée de vie est limitée
(bouteilles de lait, savons,...) ou dont le nombre d’interactions avec un lecteur peut être limité et
controllé. Par ailleurs, la sécurité de la solution ProbIP est tout à faite satisfaisante, si les clés
des étiquettes peuvent changées périodiquement (par exemple tous les 1000 identifications).

Nos travaux de recherche continuent et nous ne désespéront pas de trouver des solutions qui
fournissent une sécurité équivalente aux solutions qui utilisent des fonctions cryptographiques.
L’avenir nous le dira...

Chapitre 4

Conclusions et Perspectives

Pour conclure ce mémoire je présente quelques axes de recherche que je souhaite développer
dans les quatre années à venir.

La sécurité de l’Internet des choses

Mes travaux de recherche dans le domaine des systèmes sans-fil ont, jusqu’à présent, principale-
ment porté sur la sécurité des systèmes sans fil autonomes, c’est à dire non connectés à l’Internet.
J’ai étudié la sécurité des réseaux ad-hoc mobiles, des réseaux de capteurs et des systèmes RFID
en faisant l’hypothèse qu’ils n’étaient pas forcément connectés à l’Internet. Cependant, il est fort à
penser que tous ces appareils seront un jour ou l’autre connecté à l’Internet et seront accessibles à
distance. Cette “Internet des choses” permettra de développer de nouvelles applications qui seront
à la base de nouveaux problèmes de sécurité.

Un utilisateur de l’internet pourra accéder à distance à des capteurs ou lire des étiquettes
RFID. Il pourra alors régler à distance la température de sa maison, ou vérifier, en temps réel,
l’état d’enneigement avant une randonnée. Les personnes agées ou malades pourront être équipées
de capteurs médicaux et être surveillées à distance par des médecins, infirmiers ou des proches.

Cet Internet des choses qui constitue incontestable un progrès doit toutefois être développé
et mis en place avec précaution. En effet, toutes ces nouvelles capacités de surveillance peuvent
être abusées par un utilisateur malveillant pour suivre les activités et mouvements des porteurs
de ces capteurs à leur insu. Tout capteur, même anodin, peut fournir beaucoup d’information à
un adversaire. Il a été montré que des capteurs de température installés dans une pièce peuvent
être utilisés pour déterminer à distance si la pièce est occupée ou pas. De même, de plus en plus
d’appareils médicaux, tels que défribillateurs ou pace-makers, sont équipés d’interface sans fil avant
de pouvoir être configuré par un médecin sans intervention chirurgicale. Ces nouveaux appareils
peuvent être abusés par un utilisateur mal-intensionné afin de lire des informations confidentielles
ou pire encore dérégler l’appareil médical [12] !

Il convient donc d’étudier avec précaution les problèmes de sécurité et de protection de la vie
privée généré par cet Internet de capteurs. Noter que sécuriser les liens de suffit pas. Dans certain
cas, le fait de détecter une communication sans fil peut révéler beaucoup d’information. Il peut,
par exemple, réveler qu’un utilisateur est porteur d’un appareil médical ce qui peut être une infor-
mation utile pour un employeur ou un assureur. Il convient donc de concevoir des communications
invisibles qui ne soient détectables uniquement par des récepteurs autorisés. Tout un programme...

La sécurité de l’Internet de demain

L’Internet est victime de son succès. Bien qu’il soit encore très opérationnel, il est de plus en
plus admis dans la communauté scientifique que l’Internet d’aujourd’hui a atteint ses limites et
qu’il faudra bientôt le remplacer ou en tout cas le faire évoluer très fortement. L’idée de l’Internet

31

32 CHAPITRE 4. CONCLUSIONS ET PERSPECTIVES

du future est donc lancée et génère déjà beaucoup de travaux, discussions, débats et polémiques.
Certains chercheurs prônent une refonte complète des mécanismes et architecture de l’Internet.
Ce sont les partisans de l’approche “Clean Slate” (ardoise propre). D’autres chercheurs, plus
raisonnables à mon avis, prône un évolution de l’Internet et l’intégration de nouveaux mécanismes
qui permettent de résoudre les limitations actuelles, sans remettre en cause les protocoles de base.

D’ailleurs quelles sont les limitations de l’Internet aujourd’hui ? Différentes limitations existent
mais la plus importante, aujourd’hui, semble être la sécurité, ou plus particulièrement le manque de
sécurité de l’Internet. L’Internet a été conçu, il y a une trentaine d’année par l’armée américaine,
comme un réseau fermé. L’objectif principal était de concevoir un réseau qui reste opérationnel
même si plusieurs routeurs s’arrêtaient de fonctionner, par exemple à la suite d’un bombardement.
Les attaques internes n’étaient pas vraiment prises en compte car l’accès au réseau était alors très
controllé et uniquement quelques priviligiés pouvaient l’utiliser.

La situation est différente aujourd’hui. Presque tout le monde est connecté à l’Internet et les
ennemis sont parmi nous. En d’autres termes, les attaquants sont maintenant internes. L’Inter-
net n’est pas adapté à ces nouvelles attaques et nécessite d’être adapté/amélioré. Je souhaiterai
contribuer à cette réflexion et contribuer à cette évolution de l’Internet.

Un des problèmes qui existent pour atteindre cet objectif est de comprendre comment l’Internet
est exploité par les cyber-déliquants et comment prévenir ces attaques. Les cyber-délinquants sont
très créatifs, très dynamiques et de plus en plus compétents. Alors qu’il y a seulement quelques
années, les attaques étaient essentiellement menées par des adolescents en manque de reconnais-
sance qui exécutaient des scripts récupérés sur l’Internet, elles sont aujourd’hui lancées par des
professionnelles dont l’objectif est pécunier. Les attaques deviennent de plus en plus complexes,
structurées, variées et ciblées. Les cyber-délinquants utilisent des techniques très élaborés et à la
pointe de la technologie (voire de la recherche), tel que les systèmes Pair-à-Pair, les rootkits ou le
DNS fast-fluxing, pour améliorer la fiabilité de leurs attaques et dissimuler leurs actions.

Nos travaux sur les robots de machines compromises (les botnets) ont montré l’ampleur du
phénomème. Un botnet est un réseau de machines qui ont été compromises et qui sont sous le
contrôle d’un cyber-délinquant. Ces machines ont souvent un comportement normal car tout est
fait pour qu’une machine compromise reste opérationnelle le plus longtemps. Nous avons réussi à
infiltrer le botnet Storm et montré qu’il était constitué de 6000 à 7000 machines actives, prêtes à
lancer à tout moment des attaques (envoi de pourriels, attaque de déni de service) sur l’ordre de
leur mâıtre.

Une vrai économie souterraine, très bien structurée, s’est crée. Certains personnes trouvent
des failles dans des logicielles, qu’ils revendent à d’autres personnes qui les utilisent pour créer
des exploits. Ces exploits sont ensuite vendus à des cyber-déliquants qui les utilisent pour com-
promettre des machines afin créer des botnets. Ces botnets sont ensuite “loués” pour envoyer des
pourriels ou récupérer des informations secrètes (tels que des mots de passe, numéro de compte
bancaires,...) qui sont elles-même revendues.

Mon objectif est, dans un premier temps, de comprendre les mécanismes et rouages utilisés par
les cyber-délinquants afin de contribuer aux travaux sur l’architecture de l’Internet du future. Il
est probable que les problèmes de cyber-sécurité ne pourront être résolus par des solutions tech-
niques. Il faudra certainement adopter une approche pluridisciplinaire qui combine des solutions
techniques, légales et économiques.

Bibliographie

[1] I. Aad and C. Castelluccia. Introducing service differentiation into IEEE. In Proceedings of
the Fifth IEEE Symposium on Computers and Communications, 2000.

[2] I. Aad and C. Castelluccia. Enhancing IEEE 802.11 performance in congested environments.
Annales des télécommunications, 2003.

[3] I. Aad, C. Castelluccia, and J.P. Hubaux. Packet coding for strong anonymity in ad hoc
networks. In IEEE SECURECOMM 2006., 2006.

[4] Imad Aad and Claude Castelluccia. Differentiation mechanisms for IEEE 802.11. In INFO-
COM, pages 209–218, 2001.

[5] Imad Aad and Claude Castelluccia. Remarks on per-flow differentiation in IEEE 802.11. In
European Wireless 2002, 2002.

[6] Castelluccia and C. Soriente. ABBA : A balls and bins approach to secure aggregation in
WSNs. In Sixth International Symposium on Modeling and Optimization in Mobile, Ad Hoc,
and Wireless Networks (WiOpt’08), Berlin, Germany, 2008.

[7] C. Castelluccia, S. Jarecki, and G. Tsudik. Secret handshakes from CA-oblivious encryption.
In In Advances in Cryptology - ASIACRYPT 2004, 2004.

[8] C. Castelluccia, S. Jarecki, and G. Tsudik. Secret handshakes from CA-oblivious encryption
(short paper). In ACM Symposium on Principles of Distributed Computing (PODC), 2004.

[9] C. Castelluccia and A. Spognardi. ROK : A robust key pre-distribution protocol for multi-
stage wireless sensor networks. In IEEE SECURECOMM, September 2007.

[10] Claude Castelluccia. Cryptographically generated addresses for constrained devices. Kluwer
Wireless Personal Communications special issue on Wireless Security for Next Generation
Communications, 29(3-4), 2004.

[11] Claude Castelluccia. Securing very dynamic groups and data aggregation in wireless sensor
networks. In IEEE International Conference on Mobile Ad-hoc and Sensor Networks (MASS
2007), Pisa, Italy, October 2007.

[12] Claude Castelluccia. Des cardiaques victimes d’attaques informatiques. La Recherche, May
2008.

[13] Claude Castelluccia and Gildas Avoine. Noisy tags : A pretty good key exchange protocol
for RFID tags. In Josep Domingo-Ferrer, Joachim Posegga, and Daniel Schreckling, editors,
CARDIS, volume 3928 of Lecture Notes in Computer Science, pages 289–299, Tarragona,
Spain, April 2006. IFIP, Springer-Verlag.

[14] Claude Castelluccia, Francis Dupont, and Gabriel Montenegro. A simple privacy extension
for mobile ipv6. In MWCN, pages 239–249, 2004.

[15] Claude Castelluccia, Stanislaw Jarecki, Jihye Kim, and Gene Tsudik. Secure acknowledgment
aggregation and multisignatures with limited robustness. Computer Networks, 50(10) :1639–
1652, 2006.

[16] Claude Castelluccia and Gabriel Montenegro. Protecting AODV against impersonation at-
tacks. ACM SIGMOBILE Mobile Computing and Communications Review (MC2R), 2002.

33

34 BIBLIOGRAPHIE

[17] Claude Castelluccia and Gabriel Montenegro. Securing group management in IPv6 with
cryptographically generated addresses. In ISCC ’03 : Proceedings of the Eighth IEEE Inter-
national Symposium on Computers and Communications, Washington, DC, USA, 2003. IEEE
Computer Society.

[18] Claude Castelluccia, Gabriel Montenegro, Julien Laganier, and Christoph Neumann. Hinder-
ing eavesdropping via IPv6 opportunistic encryption. In ESORICS, volume 3193 of Lecture
Notes in Computer Science, pages 309–321. Springer, 2004.

[19] Claude Castelluccia and Pars Mutaf. Hash-based dynamic source routing. In IFIP Network-
ing, volume 3042 of Lecture Notes in Computer Science, pages 1012–1023. Springer, 2004.

[20] Claude Castelluccia and Pars Mutaf. Shake them up ! : a movement-based pairing protocol
for cpu-constrained devices. In Proceedings of the 3rd ACM conference on Mobile systems,
applications, and services, pages 51–64, New York, NY, USA, 2005. ACM Press.

[21] Claude Castelluccia, Einar Mykletun, and Gene Tsudik. Efficient aggregation of encryption
data in wireless sensor networks. In IEEE MOBIQUITOUS, 2005.

[22] Claude Castelluccia, Einar Mykletun, and Gene Tsudik. Improving secure server performance
by re-balancing ssl/tls handshakes. In ASIACCS ’06 : Proceedings of the 2006 ACM Sympo-
sium on Information, computer and communications security, pages 26–34, New York, NY,
USA, 2006. ACM Press.

[23] Claude Castelluccia and Mate Soos. Secret shuffling : A novel approach to rfid private iden-
tification. In Conference on RFID Security (RFIDSec07), 2007.

[24] C.Castelluccia, A. Chan, E.Meykletun, and G.Tsudik. Efficient and provably secure aggre-
gation of encrypted data in wireless sensor networks. ACM Transaction on Sensor Networks
(ToSN), 2008.

[25] C.Castelluccia, P.Mutaf, and G.Tsudik. Mouvement-based secure pairing protocols for cpu-
contrained. Submitted to ToSN (Transactions on Sensor Networks), 2008.

[26] Aldar Chan and Claude Castelluccia. On the security of concealed data aggregation. In Eu-
ropean Symposium On Research in Computer Security (ESORICS 2007), Dresden, Germany,
September 2007.

[27] Aldar Chan and Claude Castelluccia. On the (im)possibility of aggregate message authenti-
cation code. In IEEE International Symposium on Information Theory (ISIT 2008), Ontario,
Canada, July 2008.

[28] Castelluccia Claude, Saxena Nitesh, and Yi Jeong. Self-configurable key pre-distribution in
mobile ad-hoc network. In IFIP Networking 2005, 2005.

[29] Castelluccia Claude, Saxena Nitesh, and Yi Jeong. Robust self-keying mobile ad hoc networks.
Elsevier Computer Networks, 51(4), 2007.

[30] T. Ernst, L. Bellier, and C.Castelluccia. Mobile Networks Support in Mobile IPv6, July 2000.
IETF Internet Draft.

[31] T. Ernst, C. Castelluccia, and H. Lach. Extending mobile IPv6 with multicast to support
mobile networks in IPv6. In 1st European Conference on Universal Multiservice Networks
(ECUMN), 1999.

[32] T. Ernst, C. Castelluccia, and H. Lach. Les réseaux mobiles dans IPv6. In 13ème congrès
DNAC (De Nouvelles Architectures pour les Communications), 1999.

[33] L. Eschenauer and V. Gligor. A key management scheme for distributed sensor networks,
2002.

[34] A. Francillon and C. Castelluccia. Tinyrng, a cryptographic random number generator for
wireless sensor network nodes. In 5th Intl. Symposium on Modeling and Optimization in
Mobile, Ad Hoc, and Wireless Networks, IEEE WiOpt 2007, 2007.

[35] A. Francillon and C. Castelluccia. How to 0wn a wireless sensor network in your spare time.
In submitted to publication, 2008.

BIBLIOGRAPHIE 35

[36] J. Kempf and C.Castelluccia. Requirements and Functional Architecture for an IP Host
Alerting Protocol, August 2001. IETF Request For Comments, RFC 3154.

[37] G. Montenegro and C. Castelluccia. SUCV Identifiers and Addresses. IETF Internet Draft,
2002.

[38] Gabriel Montenegro and Claude Castelluccia. Crytographically-based identifiers (CBID) :
Concepts and applications. ACM Transaction on Information and System Security (TISSEC),
7(1), 2004.

[39] P. Mutaf and C. Castelluccia. A hash-based paging and location update procedure. In
Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt’03), 2003.

[40] P. Mutaf and C. Castelluccia. (in)security of the paging channel in a wireless internet. In
IEEE Workshop on Applications and Services in Wireless Networks, 2003.

[41] Pars Mutaf and Claude Castelluccia. Compact neighbor discovery : a bandwidth defense
through bandwidth optimization. In INFOCOM, pages 2711–2719. IEEE, 2005.

[42] Pars Mutaf and Claude Castelluccia. Hash-based paging and location update using bloom
filters. ACM/Kluwer Journal on Mobile Networks and Applications (MONET), 10(2), 2005.

[43] H. Soliman, C.Castelluccia, K. Elmalky, and L.Bellier. Hierarchical Mobile IPv6 Mobility
Management (HMIPv6), August 2005. IETF Request For Comments, RFC 4140.

[44] Mate Soos and Claude Castelluccia. Noisy secret shuffling. In Submitted to Publication, 2008.

[45] S.Peter, D.Westhoff, and C.Castelluccia. A survey on the encryption of convergecast-
traffic with in-network processing. IEEE Transactions on Dependable and Secure Computing
(TDSC), 2008.

[46] Xinhua Zhao, Claude Castelluccia, and Mary Baker. Flexible network support for mobility.
In ACM International Conference on Mobile Computing and Networking (MOBICOM), 1998.

[47] Xinhua Zhao, Claude Castelluccia, and Mary Baker. Flexible network support for mobile
hosts. Mobile Networks and Applications, 6(2) :137–149, 2001.

36 BIBLIOGRAPHIE

Annexe A

Sécurité des réseaux ad-hoc
mobiles (MANET)

Cette annexe contient un article qui a été publié dans la revue Elsevier Computer Networks,
Volume 51, Issue 4, March 2007, Pages 1169-1182, March 2007.

Cet article présente deux protocoles d’échange de clés qui sont complétement décentralisés
et autonomes. Ces protocoles sont basés sur des algorithmes de partage de secret à seuil. Nous
évaluons, dans cet article, leur performance et leur sécurité respective.

37

38 ANNEXE A. SÉCURITÉ DES RÉSEAUX AD-HOC MOBILES (MANET)

Robust self-keying mobile ad hoc networks q

Claude Castelluccia a,1, Nitesh Saxena b, Jeong Hyun Yi c,*,1

a INRIA, France
b Computer Science Department, University of California, Irvine, United States

c Networking Technology Lab, Samsung Advanced Institute of Technology, Republic of Korea

Received 30 April 2006; received in revised form 26 June 2006; accepted 12 July 2006

Available online 15 August 2006

Responsible Editor: X.S. Shen

Abstract

Pairwise key establishment in mobile ad hoc networks allows any pair of nodes to agree upon a shared key. This is an
important security service needed to secure routing protocols, and in general to facilitate secure communication among the
nodes of the network.

We present two self-keying mechanisms for pairwise key establishment in mobile ad hoc networks which do not require
any centralized support. The mechanisms are built using the well-known technique of threshold secret sharing, and are
robust and secure against a collusion of up to a certain number of nodes. We evaluate and compare the performance
of both the mechanisms in terms of the node admission and pairwise key establishment.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Mobile ad hoc networks; Security; Key management

1. Introduction

Mobile ad hoc networks (MANETs) are, by their
very nature, vulnerable to many types of attacks.
The security of MANETs is often predicated on
the availability of efficient key management tech-
niques. However, the usual features of: (1) lack of

a centralized authority and (2) dynamic nature of
MANETs, represent major obstacles to providing
secure, effective and efficient key management.
What further complicates the issue is that, in many
applications (such as secure routing [9,8,21]) crypto-
graphic keys need to be established prior to commu-
nication. As a result, standard key exchange
solutions, e.g., Station-to-Station protocol [17], are
not appropriate since: (1) they require the nodes
to interact and (2) they rely on some form of a Pub-
lic Key Infrastructure (PKI) which is not usually
available in MANETs. Related to the latter is the
underlying use of public key cryptography which
is too expensive for some mobile devices.

1389-1286/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.comnet.2006.07.009

q A preliminary version of this paper appeared in [6].
* Corresponding author. Tel.: +82 10 2481 0826.
E-mail addresses: claude.castelluccia@inrialpes.fr (C. Castel-

luccia), nitesh@ics.uci.edu (N. Saxena), jeong.yi@samsung.com

(J.H. Yi).
1 This work has been done while at UC Irvine, United States.

Computer Networks 51 (2007) 1169–1182

www.elsevier.com/locate/comnet

39

Contributions: This paper proposes two efficient,
fully distributed and secure key management mech-
anisms for MANETs. The so called self-keying

mechanisms allow nodes in a MANET to establish
pairwise keys without communicating and without
the need of a PKI. The first mechanism, called
matrix based self-keying (MSK), results from the
blending of two well-known techniques: Blom’s
key pre-distribution [2,13] and threshold secret shar-
ing [25], and the second mechanism, referred to as
polynomial based self-keying (PSK), employs thres-
hold secret sharing using a polynomial. In both
MSK and PSK, a node joins a MANET by receiving
a secret token from t different nodes, where t is a
security parameter. The schemes are auto-configura-
ble in the sense that there is no centralized sup-
port required and a node becomes a member only
if it is approved by at least t member nodes. Once
a node becomes member, it can compute a secret
key with any other member without interaction.
The proposed schemes are secure against collusion
of up to a certain number (t � 1) of compromised
nodes.

The contribution of this paper is not limited to
just the design of secure and efficient key distribu-
tion schemes. We also demonstrate our claims of
efficiency via extensive analysis and experiments.
The schemes have been implemented and tested in
a real MANET setting and their performance is
compared and analyzed in detail.

Organization: The rest of this paper is organized
as follows: Section 2 overviews the related work. Sec-
tion 3 provides some background on necessary cryp-
tographic building blocks. Sections 5 and 6 present
our self-keying mechanisms MSK and PSK respec-
tively. We discuss some security and other relevant
issues of the proposed schemes in Section 7. Finally,
in Section 8, we describe the implementation and the
performance of our schemes.

2. Related work

Key distribution can be easily achieved if we
assume the existence of a PKI. However, this
assumption is not realistic in many MANET envi-
ronments. Zhou and Haas [26] proposed to distrib-
ute a Certification Authority (CA) service among
several nodes of the network. Although attractive,
this idea is not applicable to MANETs. Their
approach is hierarchical: only selected nodes can
serve as part of the certification authority and thus
take part in admission decisions. Moreover, contact-

ing the distributed CA nodes in a MANET setting
is difficult since such nodes might be many hops
away.

In a related result, Kong et al. [12] developed an
interesting Threshold-RSA (TS-RSA) scheme spe-
cifically geared for MANETs. Unfortunately, as
pointed out in [19,11], TS-RSA is neither verifi-
able nor secure. An alternative Threshold-DSA
(TS-DSA) scheme [19] provides verifiability and,
hence, tolerates malicious insiders. However, TS-
DSA requires 2t � 1 signers to issue certificates, is
heavily interactive and thus become quite inefficient
in MANET settings. Moreover, all these solutions
require a pair of nodes to perform key exchange
protocol to establish shared keys.

Recently, Zhu et al. [27] proposed a pairwise key
distribution scheme based on the combination of
probabilistic key sharing and threshold secret shar-
ing. However, it is assumed that the nodes are
pre-configured with some secrets before deployment
which is not realistic in a typical MANET environ-
ment. Furthermore, two nodes need to communi-
cate over several distinct paths to establish a
shared key. In contrast, we do not assume any such
pre-configuration and do not require nodes to com-
municate when establishing a secret key.

Ćapkun et al. proposed a security association
establishment protocol that makes use of the mobil-
ity of users [5]. Two nodes establish a security asso-
ciation when they are near each other, by using
secure channels. As a node moves around, it estab-
lishes more and more security associations. When a
node needs to establish a secret with another node,
there are two possibilities: (1) they already have a
security association, or (2) they have no security
association and must use the help of ‘‘friends’’ to
establish one. Despite the simplicity and elegance
of this approach, it is mainly geared for highly
mobile MANETs. Furthermore, key derivation
among two nodes that do not have a prior security
association requires some communication, which is
not always practical or even possible.

More closely related results [7,14] present key pre-
distribution schemes based on the schemes by Blom
[2] and Blundo et al. [3], respectively. These schemes,
unlike the one we propose in this paper, are designed
for sensor networks and require a trusted centralized
authority for key distribution. Similarly, the trivial
solution that consists of configuring each node with
pairwise keys, i.e., where a node stores n � 1 keys,
one each it shares with every other node, is not
appropriate in MANETs, since (1) this requires a

1170 C. Castelluccia et al. / Computer Networks 51 (2007) 1169–1182

40 ANNEXE A. SÉCURITÉ DES RÉSEAUX AD-HOC MOBILES (MANET)

centralized trusted party to compute and distribute
the pairwise keys and (2) every time a new node joins
the network, all the current nodes need to be
updated. This is clearly not acceptable in a dynamic
and volatile environment, like a MANET.

3. Building blocks

This section describes the main techniques used
in our proposal, namely threshold secret sharing
and Blom key pre-distribution schemes.

Following is the notation used in the rest of this
paper:

3.1. Threshold secret sharing

A (t,n) threshold cryptography allows n parties to
share the ability to perform a cryptographic opera-
tion in a way that any t parties can perform this oper-
ation jointly, whereas no coalition of up to t � 1
parties can do so. We use Shamir’s secret sharing
scheme [25] which is based on polynomial interpola-
tion. To distribute shares among n users, a trusted
dealer TD chooses a large prime q, and selects a poly-
nomial f(x) = S + a1x + � � � + at�1x

t�1 over Zq of
degree t � 1 such that f(0) = S, where S is the group
secret. The TD computes each user’s share ssi such
that ssi = f(idi) (mod q), and securely transfers ssi to
userMi. Then, anygroupof tmemberswhohave their
shares can recover the secret using the Lagrange
interpolation formula: f ð0Þ ¼

Pt

i¼1ssi lið0Þ ðmod qÞ,
where liðxÞ ¼

Qt

j¼1;j 6¼i

x�idj

id i�idj
ðmod qÞ. To enable the

verification of the secret shares, TD publishes a com-
mitment to the polynomial as in Verifiable Secret

Sharing (VSS) [24]. VSS setup involves a large prime
p such that q divides p � 1 and a generator g which is
an element of Z

�
p of order q. TD computes Wi

(i = 0, . . . , t � 1), called the witness, such that
W i ¼ gai ðmod pÞ and publishes these Wi’s in some
public domain (e.g., a directory server). On receiving

the secret share ssi fromMi,Mj verifies the correctness

of ssi by checking gssi ¼
Qt�1

k¼0ðW kÞ
idk

i ðmod pÞ.

3.2. Blom’s key pre-distribution

Blom proposed a key pre-distribution scheme
that allows any pair of users in a group to compute
a pairwise key without communicating [2]. This
scheme is secure unless k users collude (the parame-
ter k will be defined later). If less than k users
collude, then it is proven that the system is
completely secure i.e., the colluding nodes cannot
compute any pairwise keys other than their own.
However, if k or more users collude, the whole
group is compromised and the colluding users can
compute the pairwise keys of all other members.

In Blom’s proposal, a trusted dealer TD

computes a k · N matrix B over Zq, where N is
the maximum size of the group, q is a prime, and
q > N.

One example of such a matrix is a Vandermonde
matrix whose element bij = (gj)i (mod q) as seen
below, where g is the primitive element of Z�

q.

B ¼ bij ¼ ðgjÞ
i

ðmod qÞ
� �

for i; j ¼ 1; . . . ; k:

Note that this construction requires that Nk < /

(q) i.e., Nk < q � 1.
Since B is a Vandermonde matrix, it can be

shown that any k columns are linearly independent
when g,g2,g3, . . . ,gN are all distinct [15]. The TD

then creates a random k · k symmetric matrix D

over Zq, and computes an N · k matrix
A = (DB)T, where T indicates a transposition of
the matrix.

The matrix B is published while the matrix D is
kept secret by the TD. Since D is symmetric, the
key matrix K = AB is also symmetric

K ¼ ðDBÞ
T
B ¼ BTDTB ¼ BTDB ¼ ðABÞ

T
¼ KT

:

This shows that K is also a symmetric matrix.
We assume that each user, Mi, is defined by an

identifier, idi, such that 0 < i < N. The TD then
sends, over a secret channel, to each user Mi, the

Mi member i.e., network node i

t node admission threshold
k number of private keys that Mi must

store
N maximum size of network nodes
NID network identity
idi crypto-based identifier of Mi

Kij secret key shared between Mi and Mj

ri(A) row of matrix A for Mi

ssi(x) secret share of value x for Mi

pssijðxÞ partial secret share of x for Mi by Mj

SLi sponsor list for Mi to reconstruct
a secret

H(x) hash value on input x
Ek(x) encryption with a key k on input x
MAC(k,x) message authentication code with

key k on input x

C. Castelluccia et al. / Computer Networks 51 (2007) 1169–1182 1171

41

ith row of the matrix A, denoted as ri(A), i.e.,
ri(A) = [aij] for j = 1, . . . ,k.

A user Mi can then compute its key with user Mj

as follows: ½K ij ¼
Pk

b¼1aib � bbj�, where bbj is the ele-
ment of B at row b and column j.

This key can be computed without communica-
tion since bbj = (gj)b (mod q). Similarly, user Mj

can then compute its key with user Mi as follows:
½K ji ¼

Pk

b¼1ajb � bbi�. Since K is symmetric we have
Kij = Kji, i.e., users Mi and Mj share a secret
key. Note that each node does not have to store
the whole matrix B only if he knows the public para-
meter g.

Since each pairwise key is represented by an ele-
ment in Zq, q must be selected as the smallest prime
number larger than 2l, where l is the size in bits of
the pairwise keys, for example 64.

4. Generic self-keying mechanism

A self-keying mechanism for mobile ad hoc net-
works consists of various steps. We summarize these
steps for a generic mechanism as follows:

1. Bootstrapping: The network is bootstrapped by
either one single founding member or a set of
founding members. The founding member(s) ini-
tialize the network by computing the private and
corresponding public parameters. The private
parameters are secret shared among the founding
member(s) in such a way that any set of t mem-
bers can reconstruct these parameters. The share
of the private parameters possessed by each
member is referred to as its secret credential.

2. Member admission: A prospective member Mnew

who wishes to join the network must be issued
its secret credential by the existing member nodes
(see Fig. 1).Mnew initiates the admission protocol
by sending a JOIN_REQ message to the network.
A member node, that receives this JOIN_REQ
message and approves the admission of Mnew,
replies, over a secure channel (refer to Section
7), with a partial secret credential (derived from
its secret credential) forMnew. OnceMnew receives
partial secret credentials from at least t different
nodes, it uses them to compute it secret credential.

3. Robustness via verifiability and traceability: A
malicious node can easily launch a denial-of-ser-
vice (DoS) attack toward a candidate node by
inserting incorrect secret shares. This attack
would actually deny or disrupt the service to
legitimate nodes. To deal with this important

problem a node must be able to verify the validity
of its reconstructed secret credential before using
them. This is what we call verifiability in the rest
of the paper.Also, when the node detects that its
secret credential is not valid, it must be able to
trace the bogus shares in order to replace them
and/or revoke the malicious participants. This
functionality is provided by the traceability pro-
cedures. Note that verifying the shares’ origin,
for example via signatures, is not enough to pro-
vide traceability since it does not protect against
compromised nodes that would signed correctly
but send bogus shares. Instead, traceability must
allow to verify the validity of the shares them-
selves.Note that verifiability is always required.
Traceability is only necessary when a node
detects (from the verifiability service) that its
reconstructed secrets are not valid.

4. Secret key computation: Each node can use its
secret credential and/or the public parameters
of the network to compute pairwise keys with
other nodes. This allows nodes to securely com-
municate with other.

5. MSK: matrix based self-keying

In this section we describe the MSK scheme,
which is based on Blom’s key pre-distribution
described in Section 3.2.

5.1. Bootstrapping

In MSK scheme, a network can be boot-
strapped (i.e., initialized) by one node (centralized

M5M4

M7M6

quorum of

t members

M1

M2

M3

Mnew

1. JOIN_REQ (broadcast)

2. JOIN_CMT (m unicasts)

3. SHARE_REQ (t unicasts)

4. SHARE_RLY (t unicasts)

M9M8

Fig. 1. Abstract Admission Protocol.

1172 C. Castelluccia et al. / Computer Networks 51 (2007) 1169–1182

42 ANNEXE A. SÉCURITÉ DES RÉSEAUX AD-HOC MOBILES (MANET)

bootstrapping) or a set of t or more nodes (distrib-
uted bootstrapping).

Centralized bootstrapping. The centralized boot-
strapping proceeds as follows. First, a founding
member FM generates the network parameters,
namely N, k, t, q, p, g, and the matrices D = [dij]
and B = [bij], where N is the maximum numbers of
nodes in the network, (k,q,p,g) are the security
parameters, B is k · N public matrix such that
bij = (gj)i (mod q) for i, j 2 [1,k], and D is k · k sym-
metric matrix of secrets.

Next, the FM publishes (N,k, t,q,p,g,B) in some
public directory, but keeps D secret. It then com-
putes the matrix A such that A = (DB)T and sends
a share of the whole matrix A to each node.

To compute the share ssv(D) for member Mv, FM
selects polynomials for each element dij of k · k

matrix D. Each polynomial is defined as follows;
fd ijðxÞ ¼

Pt�1
a¼0d

ðaÞ
ij � xa ðmod qÞ such that dð0Þij ¼ d ij.

The share of matrix D is made up of shares of its ele-
ments ssv(dij). In other words, ssvðDÞ ¼ ½ssvðd ijÞ� ¼
½fd ijðvÞ� for i, j = 1, . . . ,k.

As for rv(A) such that rv(A) = [avj] for j = 1, . . . ,k,
each element of rv(A) is simply computed by FM

since it knows the secret matrix D. That is,
avj ¼

Pk

b¼1djb � bbv ðmod qÞ. Then FM distributes
ssv(D) and rv(A) to each Mv.

In addition,FM computes VSSwitness (whichwill
be used in the traceability procedures defined in
Section 5.3.2), W

ðaÞ
ij , as follows: W

ðaÞ
ij ¼ g

d
ðaÞ
ij ðmod pÞ

for i, j 2 [1,k], a 2 [0, t � 1].
Distributed bootstrapping. The network can alter-

natively be bootstrapped by a set of t founding
members. The secret matrix D can be generated in
fully distributed manner. Note that in the central-
ized mode, single FM is similar to a trusted third
party and is, therefore, a single point of failure. In
this proposal, a group of members (the founding
members in our scenario) collectively compute
shares corresponding to Shamir secret sharing of a
random value without a centralized trusted dealer.
This procedure is so-called Joint Secret Sharing

(JSS) [22]. The main idea here is that the polynomi-
als for each element dij of matrix D are constructed
among t founding members themselves such that

fd ijðxÞ ¼ fd ij½1�ðxÞ þ fd ij½2�ðxÞ þ � � � þ fd ij½t�ðxÞ;

where fd ij ½k�ðxÞ is the polynomial of each founding
member FMk over Zq for k = 1, . . . , t.

The detailed procedures are as follows. It is
assumed that allFM’s of the network have previously
agreed on the systemparameters (N,k, t,q,p,g,B). To

compute ssv(D), each FMk chooses at random a poly-
nomial fd ij½k�ðxÞ 2 Zq of degree (t � 1) such that

fd ij ½k�ðxÞ ¼
Pt�1

a¼0d
ðaÞ
ij½k�x

a ðmod qÞ for k,v = 1, . . . , t,
where d

ðaÞ
ij½k� is a random secret that FMk selects. Then,

FMk computes FMv’s share ŝsðkÞv ðd ijÞ ¼ fd ij ½k�ðvÞ for
FMv (v 2 [1, t]), and securely sends it to FMv (in par-
ticular FMk keeps ŝs

ðkÞ
k). Note that the share values

should be transmitted over the secure channel. Upon
receiving ŝsðkÞv ðd ijÞ, FMv computes its share ssv(dij) of
the secret dij as the sum of all shares received:
ssvðd ijÞ ¼

Pt

a¼1ŝs
ðaÞ
v ðd ijÞ.

Next, as for rv(A) = [avj] for j = 1, . . . ,k, each
FMk computes a

ðkÞ
vj for FMv such that a

ðkÞ
vj ¼

Pk

b¼1sskðdjbÞ � lkð0Þ � bbv and securely sends it to
FMv. Then, each FMv gets its own avj by summing
up all akvj’s, since avj ¼

Pt

k¼1a
k
vj ¼

Pt

k¼1

Pk

b¼1ssk
ðdjbÞ � lkð0Þ �bbv ¼

Pk

b¼1djb � bbv.
Finally, FMk computes VSS witness W

ðaÞ
ij½k� of its

own polynomial fd ij ½k�ðxÞ such that W
ðaÞ
ij½k� ¼ g

d
ðaÞ

ij½k�

ðmod pÞ and send it to each FMv. Then, FMv

obtains the witness W
ðaÞ
ij of fd ijðxÞ as follows:

W
ðaÞ
ij ¼

Qt

k¼1W
ðaÞ
ij½k� ðmod pÞ. We note that this is

actually combined with the procedure for comput-
ing ssv(D) as above.

5.2. Member admission

In order to join the network, a prospective node
Mg must collect at least t shares of matrix A’s row g

from the current member nodes and a valid share of
the whole matrix D. Fig. 2 shows the protocol mes-
sage flow for the member admission process.2

1. Mg sends to at least t current member nodes Mm’s
(m 2 [1,n]) a signed JOIN_REQ message which
contains his identity idg and his public Diffie-
Hellman (DH) component yg ð¼ gxg ðmod pÞÞ.
The details about how idg is generated and veri-
fied are discussed in Section 7.

2. After verifying the signed JOIN_REQ, the mem-
ber nodes who wish to participate in the admis-
sion process of Mg reply with a signed message
containing their respective values idm and ym.

3. Mg selects t sponsors Ml(l 2 Rm, jlj = t), com-
putes a secret keyDHKglwith each of them, forms
a sponsor list SLg which contains the id’s of the t

2 In order to secure the protocol against common replay attacks

[17], we note that it is necessary to include timestamps, nonces

and protocol message identifiers. However, in order to keep our

description simple, we omit these values.

C. Castelluccia et al. / Computer Networks 51 (2007) 1169–1182 1173

43

selected sponsors, and replies with an authenti-
cated acknowledgment message to each of them.

4. Each sponsoring node (Ml) on receiving msg3,
computes the secret key DHKgl and replies with
row g of it share of the matrix A, ssl(rg(A)).
The elements of ssl(rg(A)) are computed as
sslðrgðagjÞÞ ¼

Pk

b¼1sslðdjbÞ � bbg ðmod qÞ, for j =
1, . . . ,k. This message is encrypted with DHKgl.
Each (Ml) also responds with the shuffled par-
tial share of matrix D, pssglðDÞ, such that
pssglðDÞ ¼ ½pssglðd ijÞ� ¼ ½sslðd ijÞ � llðidgÞ� ðmod qÞ
for i, j = 1, . . . ,k. This message is also encrypted
using DHKgl. Note that the Lagrange coefficients
ll(idg) are publicly known, and therefore, Mg can
derive ssl(dij) from pssglðd ijÞ. This can be pre-
vented using the shuffling technique proposed in
[12] by adding extra random value Rij to each
share. These Rij’s are secret values and must
sum up to zero by construction. They must be
securely shared among the t sponsoring nodes.

5. Mg decrypts the messages it receives from the dif-
ferent nodes and calculates his own rg(A) by add-
ing up all ssl(rg(A))’s as follows: rgðAÞ ¼

Pt

l¼1ssl
ðrgðAÞÞ � llð0Þ ¼ ½

Pt

l¼1sslðrgðagjÞÞ� llð0Þ� ðmod qÞ
for j ¼ 1; . . . ; k. Mg also calculates his own share
of the matrix D, ssg(D), by adding up the partial
share values such that ssgðDÞ ¼

Pt

l¼1pss
g
lðDÞ ¼

½
Pt

l¼1pss
g
lðd ijÞ� ðmod qÞ for i, j = 1, . . . ,k.

5.3. Robustness via verifiability and traceability

At the end of the admission protocol, the joining
node Mg obtains its rg(A) and ssg(D) from the quo-
rum of t member nodes. Before using rg(A) and
ssg(D) for key computation or future admission,
the node must verify if they are correctly computed
since there might be a malicious responder who par-
ticipated in this admission process and detect them
in the process. We therefore propose following
verifiability and traceability mechanisms.

5.3.1. Verifiability

The VSS technique presented in Section 3.1 will
be a useful tool for the verifiability. However, we
claim that the verifiability must be a very inexpen-

sive operation since it will be performed frequently
(whenever a node joins a network). The proposed
mechanism to verify the validity of rg(A) is as
follows:

1. When an existing member node Ml sends the

shares to the node Mg it also sends a well-known

message, such as ‘‘Welcome to network NID’’

encrypted with the pairwise key shared between

Ml and Mg (since the Ml knows the node identi-

fier idg, it can compute the pairwise key Klg). This

will be part of step (4) in Fig. 2.

2. After Mg reconstructs its systems secrets rg(A), it

can then try to decrypt one of the welcome mes-

sages received from the member nodes and verify

whether rg(A) is correctly computed.

Additionally, Mg must verify the validity of the
reconstructed secret share ssg(D). If ssg(D) is correct,
it can be used for future admission of other nodes.
One easy way for Mg to verify the validity of ssg(D)
is to try to use it to reconstruct its row of the matrix
A (i.e., rg(A)) as follows:

Let us say that rg(A) was computed from the

shares ssa(rg(A)), ssb(rg(A)), ssc(rg(A)) that it

received from Ma, Mb and Mc (for t = 3). Mg

can then compute r0gðAÞ from the shares ssa(rg(A)),

ssb(rg(A)) and ssg(rg(A)) (that can easily be com-

puted from ssg(D)). If r0gðAÞ is equal to rg(A) then

the share ssg(D) is correct – otherwise it must be

rejected.

5.3.2. Traceability

The verifiability procedures previously described
allow a node to verify the validity of the secret
(which is the row of the matrix A and a share of
the whole matrix D) that it reconstructed from t

shares. However, the above procedure cannot be
used to identify the bogus shares, in case the verifi-
cation procedure fails (i.e., detects that the recon-
structed secrets are invalid).

In this section, we present two different traceabil-
ity procedures. The first – external attack traceabil-

ity – traces external malicious nodes, i.e., malicious

Fig. 2. MSK Admission Protocol.

1174 C. Castelluccia et al. / Computer Networks 51 (2007) 1169–1182

44 ANNEXE A. SÉCURITÉ DES RÉSEAUX AD-HOC MOBILES (MANET)

nodes that are not part of the MANET and just try
to attack the network by sending bogus shares to
new member. The second – internal attack traceabil-

ity – is useful to detect attacks coming from current
legitimate member nodes that either turn malicious
or get compromised.

Both procedures use the previously described VSS
technique in some innovative ways. Since the inter-
nal traceability procedure is quite costly, we recom-
mend to use the external attack traceability first
and use the internal attack traceability procedure
only if the first one turns out to be unsuccessful.

External attack traceability

With this procedure, a node Mg, instead of veri-
fying individual element of a share (row or matrix),
verifies the sum of the elements of the share. As a
result, instead of applying the VSS technique k or
k2 times, we only apply it once. This, of course,
improves performance considerably.

More specifically, Mg verifies the validity of the
share ssl(rg(A)) and pssglðDÞ using the VSS tech-
nique defined in Section 5.1, as follows:

Mg first computes rsslðrgðAÞÞ by summing up all

elements of ssl(rg(A)); i.e., rsslðrgðAÞÞ ¼
Pk

i¼1ssl

ðagiÞ ðmod qÞ. Since W
ðaÞ
C ¼

Qk

i¼1

Qk

j¼1ðW
ðaÞ
ij Þ

bjg is
pre-computable, the validity of rsslðrgðAÞÞ can be veri-
fied by checking the following equality:

grsslðrgðAÞÞ9
Y

t�1

a¼0

½W
ðaÞ
C �id

a
l ðmod pÞ;

where W
ðaÞ
C ¼

Y

k

i¼1

Y

k

j¼1

ðW
ðaÞ
ij Þ

bjg ðmod pÞ:

Proof. Since sslðagiÞ ¼
Pk

j¼1sslðd ijÞ � bjg, sslðd ijÞ ¼

fd ijðidlÞ ¼
Pt�1

a¼0d
ðaÞ
ij � idal ðmod qÞ, and W

ðaÞ
C ¼

Qk
i¼1

Qk
j¼1ðW

ðaÞ
ij Þbjg for a = 0, . . . , t � 1,

grsslðrgðAÞÞ ¼
Y

t�1

a¼0

½W
ðaÞ
C �

idal

¼
Y

t�1

a¼0

Y

k

i¼1

Y

k

j¼1

ðW
ðaÞ
ij Þ

bjg

" #idal

¼
Y

t�1

a¼0

Y

k

i¼1

Y

k

j¼1

ðgd
ðaÞ
ij Þ

bjg

" #idal

¼ g

P

t�1

a¼0

P

k

i¼1

P

k

j¼1

d
ðaÞ
ij

�bjgð Þ�idal

¼ g

P

k

i¼1

P

k

j¼1

P

t�1

a¼0

d
ðaÞ
ij

�idal

� �

�bjg

¼ g

P

k

i¼1

P

k

j¼1

sslðd ijÞ�bjg

¼ g

P

k

i¼1

sslðagiÞ

ðmod pÞ: �

Similarly, given the precomputed W
ðaÞ
D ¼

Qk

i¼1
Qk

j¼1W
ðaÞ
ij , a node can verify the validity of a partial

of the matrix D, pssglðDÞ, after computing rpss
g
lðDÞ

¼
Pk

i¼1

Pk

j¼1pss
g
lðd ijÞ ðmod qÞ, as follows:

g
r
pss

g
lðDÞ9

Y

t�1

a¼0

½W
ðaÞ
D �

idal�llðidgÞ ðmod pÞ;

where W
ðaÞ
D ¼

Y

k

i¼1

Y

k

j¼1

W
ðaÞ
ij ðmod pÞ:

Proof. Since pssglðd ijÞ ¼ sslðd ijÞ � llðidgÞ, sslðd ijÞ ¼

fd ijðidlÞ ¼
Pt�1

a¼0d
ðaÞ
ij � idal ðmod qÞ, and W

ðaÞ
D ¼

Qk
i¼1

Qk
j¼1W

ðaÞ
ij for a = 0, . . . , t � 1,

g
r
pss

g
lðDÞ ¼

Y

t�1

a¼0

½W
ðaÞ
D �

idal �llðidgÞ

¼
Y

t�1

a¼0

Y

k

i¼1

Y

k

j¼1

W
ðaÞ
ij

" #idal �llðidgÞ

¼

"

g

P

t�1

a¼0

P

k

i¼1

P

k

j¼1

d
ðaÞ
ij

#

idal �llðidgÞ

¼ g

P

k

i¼1

P

k

j¼1

P

t�1

a¼0

d
ðaÞ
ij

�idal

� �

�llðidgÞ

¼ g

P

k

i¼1

P

k

j¼1

sslðd ijÞllðidgÞ

¼ g

P

k

i¼1

P

k

j¼1

pss
g
lðd ijÞ

ðmod pÞ: �

If the above verification fails, Mg concludes that
Ml is not a legitimate member node. Otherwise, the
malicious node is a group member and thus the fol-
lowing procedure must be used.

Internal attack traceability

If a malicious insider (Mm), who has valid ssm(D),
modifies a value in ssm(D) so that the sum of ssm(D)
remains unchanged (say, ss0mðDÞ such that

Pk

i¼1

Pk

j¼1

ss0mðd ijÞ ¼
Pk

i¼1

Pk

j¼1ssmðd ijÞ), the external attack

traceability procedure does not work. In order

C. Castelluccia et al. / Computer Networks 51 (2007) 1169–1182 1175

45

to protect against such an internal attack, VSS must
be applied individually to each of elements
of pssl(rg(A)) and/or ssglðDÞ. Since W

ðaÞ
I ¼

Qk

i¼1

ðW
ðaÞ
ij Þ

bjg is pre-computable, internal traceability is
provided by checking that

gsslðagiÞ ¼
Y

t�1

a¼0

½W
ðaÞ
I �

idal and

gpss
g
lðd ijÞ ¼

Y

t�1

a¼0

½W
ðaÞ
ij �

idalllðidgÞ ðmod pÞ

where W
ðaÞ
I ¼

Y

k

i¼1

ðW
ðaÞ
ij Þ

bjg ðmod pÞ; i; j 2 ½1; k�:

Obviously, these tracing mechanisms for an inter-
nal attack are more expensive than the external ones.
However, we argue that tracing is an infrequent phe-
nomenon, as an attacker knows that if it performs an
internal attack, it will be detected in the process.

5.4. Secret key computation

When a node, Mi, reconstructs its private row of
matrix A, ri(A) = [ai1, . . . ,aik], he can compute a
secret key, Ki j, with any other node, Mj, of the net-
work as follows:

Since aij ¼
Pk

a¼1dja � bai and dij = dji,

K ij ¼
X

k

b¼1

aibbbj ¼
X

k

b¼1

X

k

a¼1

dbabaibbj

¼
X

k

a¼1

X

k

b¼1

dabbbjbai ¼
X

k

a¼1

ajabai ¼ K ji:

Note that these keys do not have to be computed
in advance but can be computed on-the-fly. The
security of this key establishment procedure is
unconditional, i.e, it is not based on any security
assumption. Refer to [3] for the security arguments.

6. PSK: polynomial based self-keying

The various steps of the PSK scheme, which is
based on polynomial secret sharing, are described
in following subsections.

6.1. Bootstrapping

Centralized bootstrapping. The centralized boot-
strapping works exactly as described in Section 3.1.

Distributed bootstrapping. A group of t or more
founding members employ JSS [22] to collectively
compute shares corresponding to Shamir secret
sharing of a random value.

6.2. Member admission

In order to join the network, a prospective node
Mg must collect at least t partial shares from exist-
ing nodes to be able to compute its secret share.
Fig. 3 shows the protocol message flow for the
member admission process.

1–3. Steps 1–3 are exactly the same as in the MSK

admission protocol described in Section 5.2.
4. Each sponsoringnode (Ml) on receivingmsg3,

computes the secret key DHKgl and replies
with the shuffled partial share [12], pssl(g),
such that pssl(g) = ssl Æ ll(idg) (mod q). This
message is encrypted using DHKgl.

5. Mg decrypts the messages it receives from the
different nodes and calculates his own secret
share ssg, by adding up the partial share
values such that ssg ¼

Pt

l¼1psslðgÞ.

6.3. Robustness via verifiability and traceability

Mg can easily validate the acquired secret share
by checking if gssg ¼

Qt�1
k¼0ðW kÞ

idkg ðmod pÞ from the
public commitment values. In case this verification
fails, Mg can trace the node(s) which sent the fake
shares by checking the validity of each of pssl(g)
values. This can achieved by verifying if gpsslðgÞ ¼
½
Qt�1

k¼0ðW kÞ
idkl �llðidgÞ ðmod pÞ.

6.4. Secret key computation

Any pair of nodes Mi and Mj can establish
shared keys using their respective secret shares ssi,
ssj and the public VSS information as described in
Section 3.1. Mi computes gssj ¼

Qt�1
k¼0ðW kÞ

idk
j

ðmod pÞ from the public commitment values, and
exponentiate it to its own share ssi to get a key
K ij ¼ ðgssjÞssi ðmod pÞ. Similarly, Mj computes
gssi ¼

Qt�1
k¼0ðW kÞ

idk
i ðmod pÞ and exponentiate it to

its own share ssj to get a key K ji ¼ ðgssiÞ
ssj

ðmod pÞ. Since, Kij = Kji = K, Mi and Mj have a
shared secret and they can use H(K) as a symmetric
key (where H() is a hash function such as MD5 or
SHA-1) to secure their subsequent communication.

Note that the above key establishment mecha-
nism is different from standard Diffie-Hellman key
exchange protocol. In the latter, the secret expo-
nents used by the parties are independently gener-
ated, while in the former, the secret exponents (or
the secret shares) are related by being points on a
polynomial and any set of t of these exponents

1176 C. Castelluccia et al. / Computer Networks 51 (2007) 1169–1182

46 ANNEXE A. SÉCURITÉ DES RÉSEAUX AD-HOC MOBILES (MANET)

determine the rest. It is not obvious whether such a
usage of related exponents in the key establishment
remains secure.

We show, in the theorem to follow, that indeed
the proposed key establishment procedure using
related exponents remains secure. Basically, we
show that our scheme remains secure under the
Computational Diffie-Hellman (CDH) assumption3

in the random oracle model (ROM) [1]. In other
words, an adversary who corrupts atmost t � 1
nodes, cannot distinguish a key KIJ for some uncor-
rupted user pair (MI,MJ) from random even if he
learns all other session keys Kij for (i, j) 5 (I,J), as
long as the CDH assumption holds and when hash
function is modeled as an ideal random oracle. This
is the standard notion for the security of a key
establishment protocol and is adopted from [4].

Theorem 1 (security of PSK secret key computa-
tion). Under the CDH Assumption in ROM, there

exists no probabilistic polynomial time adversary A,

which on inputs of secret keys of t corrupted users,

and shared keys Kij between every user pair except

KIJ {(i, j) 5 (I, J)}, is able to distinguish with a non-

negligible probability KIJ from a random value.

Proof. We prove the above claim by contradiction,
i.e, we prove that if a polynomial time adversarial
algorithm A, which on inputs of secret keys of t cor-
rupted users, and shared keys Kij between every user
pair except KIJ {(i, j) 5 (I,J)}, is able to distinguish
with a non-negligible probability KIJ from a random
value, then there exists a polynomial time algorithm
B, which is able to break the CDH assumption in
the random oracle model.

In order to construct the algorithm B which
breaks the CDH assumption, we first construct a
polynomial time algorithm C, which breaks the
Square Computational Diffie-Hellman (SCDH)4

assumption. The algorithm C runs on input of an
SCDH instance y = gx (mod p), and would translate
the adversarial algorithm A into outputting
gx

2
ðmod pÞ.
Without loss of generality, we first assume that

the adversary A corrupts t � 1 players denoted by
M1,M2, . . . ,Mt�1. Now, the algorithm C runs as
follows:

As in the simulation of Feldman’s VSS, C picks
x1,x2, . . . ,xt�1 values corresponding to the secret
keys of corrupted users, uniformly at random from
Zq. It then sets xi = F(idi), and employs appropriate
Lagrange interpolation coefficients in the exponent
to compute the public witnesses gA1

; . . . ; gAt�1

ðmod pÞ, where F(z) = x + A1z + � � � + At�1z
t�1

(mod q).
Corresponding to the shared keys Kij between

every user pair, C picks a random value Rij, and
runs the algorithm A on x1, . . . ,xt�1 and Ri,j values.
Note that the values x1, . . . ,xt�1 and the witnesses
have an identical distribution to an actual run of the
Feldman’s secret sharing protocol, and therefore A
cannot see the difference between C’s inputs and
actual protocol run. Also, since the Kij values for
(i, j)5 (I,J) are obtained by hashing gxixj , the only
way A can tell the difference, except with negligible
probability, between Ki,j and Ri,j for (i, j) 5 (I,J), is
by querying the random oracle on at least one
appropriate gxixj value. If A does tell the difference,
then C records R ¼ gxixj , and use the following
equations to compute gx

2
,

x ¼
X

t�1

k¼1

xkl
i
k þ xil

i
i ðmod qÞ;

x ¼
X

t�1

k¼1

xkl
j

k þ xjl
j
j ðmod qÞ

(lik denotes the Lagrange coefficient lGk ð0Þ, where
G = {1, . . . , t � 1, i}).

Multiplying above two equations, we get

x2 ¼
X

t�1

k¼1

xkl
i
k

 !

X

t�1

k¼1

xkl
j

k

 !

þ xixjl
i
il
j
j ðmod qÞ:

Fig. 3. PSK Admission Protocol.

3 CDH assumption: In a cyclic group generated by g 2 Z�
p of

order q, for a; b 2 Z
�
q, given (g,ga (mod p),gb (mod p)), it is hard

to compute gab (mod p).
4 SCDH assumption: In a cyclic group generated by g 2 Z�

p of

order q, for a 2 Z
�
q, given (g,ga (mod p)), it is hard to compute

ga
2
ðmod pÞ.

C. Castelluccia et al. / Computer Networks 51 (2007) 1169–1182 1177

47

This implies,

gx
2

¼ g

P

t�1

k¼1

xkl
i
k

� �

P

t�1

k¼1

xkl
j

k

� �

R
li
i
l
j

j ðmod pÞ:

If A does not tell the difference between Ki,j and
Ri,j for (i, j)5 (I,J), then it must tell the difference
between KI,J and RI,J. However, as above, this is
only possible, except with negligible probability, if
A queries gxI xJ to the random oracle. Them C
records this value (say K) and computes gx

2
similarly

as above, using the following equation:

gx
2

¼ g

P

t�1

k¼1

xkl
I
k

� �

P

t�1

k¼1

xkl
J
k

� �

K lI
I
lJ
J ðmod pÞ:

Now, we will use C to construct B to break a
CDH instance (gu,gv). This is very simple as out-
lined in [16]: B runs C on input gu, then on gv,
and finally on gu+v = gugv, and receives gu

2
; gv

2
;

gðuþvÞ2 , respectively. Now, since (u + v)2 = u2 +
v2 + 2uv (mod q), B can easily compute guv from
the outputs of C.

Clearly, Pr(B) = Pr(C)3, where Pr(B), Pr(C),
denote the probabilities of success of B and C
respectively. h

7. Discussion

7.1. Identifier configuration

In the MSK and PSK schemes, the identifier idi
of each node Mi must be unique and verifiable.
Otherwise, a malicious node could use the identifier
of some other node and get its secret from the mem-
ber nodes during the admission process.

For unique and unforgeable id assignment, we
propose to use a solution based on Crypto-Based

ID (CBID) [18]: The idi is chosen by the node itself
from an ephemeral public/private key pair. More
specifically, the node computes idi as follows: idi =
H64(yijNID), where yi is Mi’s temporary DH public
key in our schemes, NID is the network identifier
and H64(Æ) a 64-bit long hash function. When a node
contacts the member nodes for admission, it sends
its identifier idi together with its ephemeral public
key yi and signs a challenge sent by the member
node. Upon reception of the signature, the member
node can verify that the idi actually belongs to the
requesting node (by verifying the signature and that
the idi) was generated as H64(yijNID). Note that the
yi does not need to be certified and therefore no PKI
is required. The identifier is verifiable because a node

that does not know the private key, associated with
the public key used to generate an id, cannot claim
to own it. Furthermore since id is computed from a
hash function, collision probability between two
nodes is very low. As a result, the identifier are
statistically unique. Note that this solution requires
that N = 264. However, as we will see this has no
effect on the performance or scalability of our
proposal.

7.2. Secure channel establishment

In the proposed admission protocols, the chan-
nels between the node requesting admission and
each of the member nodes must be authenticated
and encrypted. It has to be authenticated because
each member node must be sure that it is sending
the shares to the correct node (i.e., the node that
claims to own the identifier). Otherwise, the member
node could send the shares to an impersonating
node. Similarly, the joining node also needs to
authenticate the member nodes. The channel has to
be private because otherwise a malicious node that
eavesdrops on the shares sent to a node could recon-
struct the node’s secret and impersonate it.

Establishing an authenticated and private chan-
nel usually requires the use of certificates, which
bind identities to public keys, and an access to a
PKI. However, PKI is not always available in
MANET environments. Fortunately in our case,
what is really needed is a way to bind an identifier
to a public key, where the identifier is a number that
identifies one row of the matrix A. This binding is
actually provided by CBID, described previously.
As a result, certificates and PKI are not required.
Therefore, the public keys (yi’s) that are sent in mes-
sage 1 and 2 of the protocols described in Sections
5.2 and 6.2 do not need to be certified.

7.3. Parameters selection

The security of the MSK scheme relies on two
security parameters t and k, whereas the PSK

scheme depends only on t. k and t denote the num-
ber of collusions needed to break these schemes.
These parameters should be selected carefully. In
particular, it is suggested to set k = t. However,
more generally, k should be at least t in the hierar-
chical MANET settings where only a subset of
nodes possesses the ability to admit new nodes.
For the evaluation of our schemes (as described in
the next section) we set kP t.

1178 C. Castelluccia et al. / Computer Networks 51 (2007) 1169–1182

48 ANNEXE A. SÉCURITÉ DES RÉSEAUX AD-HOC MOBILES (MANET)

8. Performance evaluation

We implemented both MSK and PSK protocols
and evaluated them in a real MANET environment
in terms of node admission and pairwise key com-
putation costs.

8.1. Experimental setup

The MSK and PSK protocol suites are imple-
mented on top of the OpenSSL library [20]. They
are written in C for Linux, and consists of about
10,000 lines of code for each. The source code is
available at [23].

For the experimental setup, we used a total of five
laptops; four laptops with a Pentium-3 800 MHz
CPU and 256MB memory and one laptop with a
Mobile Pentium 1.8 GHz CPU and 512MBmemory.
Each device ran Linux 2.4 and was equipped with a
802.11b wireless card configured in ad-hoc mode.
Specifically, for measuring the admission cost, four
laptops with same computing power were used to
configure the existing member nodes and the high-
end laptop was used for the joining node. In our
experiments, each node (except the joining node)
was emulated by a daemon and each machine was
running up to three daemons. The measurements
were performed with the different threshold values
t and k for MSK. The size of the parameters q was
set to 160 bits and p to 512 or 1024 bits.

8.2. Admission cost

To evaluate the admission cost, we measured the
total processing time between the sending of the
JOIN_REQ by the prospective node and the receiv-
ing (plus verification) of acquired credentials (i.e.,
rg(A) and ssg(D) in MSK and ssg in PSK). The
resulting measurements include the average compu-
tation time of the basic operations, the communica-
tion costs such as packet encoding and decoding
time, the network delay, and so on.

Fig. 4 shows the average admission time for the
joining node for different values of the threshold t.
For the MSK testing, k was set to 3, 5, 7 and 9.
(In the figure, k is denoted by L.)

As observed from the graphs, the cost for a node
to join the network with PSK is cheaper than that of
MSK. This difference in the costs between MSK and
PSK is even higher for higher threshold values. The
reason is quite intuitive:MSK requires more compu-
tation and bandwidth than PSK. More specifically,

the MSK scheme requires O(k2t) multiplications

and O(k2) exponentiations whereas PSK requires
only O(t2) multiplications and O(1) exponentiations.
For the bandwidth costs, refer to Table 1.

This table shows that the PSK scheme is very effi-
cient in terms of bandwidth. This is an important
property for MANET systems which consist of bat-
tery-operated devices, because wireless transmission
is considered as the most energy consuming
operation.5

8.3. Traceability cost

As described in Sections 5.3 and 6.3, the trace-
ability procedures are used to identify the cheating
or misbehaving nodes during the admission proto-
cols. This section evaluates the performance of these
procedures.

Fig. 5 displays the cost of both the internal and
external attack traceability procedures. As for the
external attack traceability, denoted as MSK_EXT,
the cost is slightly expensive than PSK since some
expensive operations are pre-computable in the lat-
ter. In details, the computation complexity for both
MSK_EXT and PSK is the same; i.e., O(t). The cost
of the internal traceability procedure with MSK,
denoted as MSK_INT, depends on the value of k

as well as t. As a result, this cost increases when k

gets larger. The complexity of the MSK internal
attack traceability procedure is O(k2t) exponentia-
tions with modulus p. However, we expect these
procedures to be executed very infrequently only
when the external traceability fails.

8.4. Key computation cost

Table 2 compares the cost of computing a pair-
wise key in our schemes. The results show that
MSK performs significantly better than a PSK pro-
tocol. The achieved gains with k = 9 range from 10
(t = 1) to 13 (t = 9), and from 305 to 307 for 512-bit
and 1024-bit p, respectively. In other words, MSK is
10–307 times faster than PSK when establishing a
shared secret key.

These results were actually expected because in
MSK the pairwise computation requires only O(k)
modular multiplications where the modulus size is
160 bits. In contrast, PSK requires O(t) expensive

5 It has been shown that sending one bit of data is roughly

equivalent to adding 1000 32-bit numbers [19].

C. Castelluccia et al. / Computer Networks 51 (2007) 1169–1182 1179

49

modular exponentiations with a modulus size of 512
or 1024 bits.

9. Conclusion

We presented distributed solutions to the key pre-
distribution problem in MANETs. Our self-keying
solutions, MSK and PSK, are based on the secret
sharing techniques and are secure against collusive
attacks by a certain threshold of nodes. The solu-
tions allow any pair of nodes in the network to estab-
lish shared keys without communication, as opposed
to the standard Diffie-Hellman key exchange proto-
cols. We implemented the MSK and PSK schemes
and evaluated them in real MANET setting. Our
analysis show that MSK fares better than PSK as
far as the pairwise key establishment costs are con-
cerned. However, in terms of the node admission
costs, the latter outperforms the former. Based on

0

 0.5

1

 1.5

2

 2.5

3

 3.5

4

987654321

A
v
e

ra
g

e
 P

ro
c
e

s
s
in

g
 T

im
e

 (
in

 s
e

c
o

n
d

s
)

Admission Threshold (T)

0

 0.5

1

 1.5

2

 2.5

3

 3.5

4

 4.5

987654321

A
v
e

ra
g

e
 P

ro
c
e

s
s
in

g
 T

im
e

 (
in

 s
e

c
o

n
d

s
)

Admission Threshold (T)

MSK(L=9)

MSK(L=7)

MSK(L=5)

MSK(L=3)
PSK

MSK(L=9)

MSK(L=7)

MSK(L=5)

MSK(L=3)
PSK

Fig. 4. Admission cost (a): jpj = 512 and (b) jpj = 1024.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

987654321

A
ve

ra
g
e
 P

ro
ce

ss
in

g
 T

im
e
 (

in
 s

e
co

n
d
s)

Admission Threshold (T)

 0

 0.5

 1

 1.5

 2

 2.5

987654321

A
ve

ra
g
e
 P

ro
ce

ss
in

g
 T

im
e
 (

in
 s

e
co

n
d
s)

Admission Threshold (T)

MSK_INT (L=9)

MSK_INT (L=7)

MSK_INT (L=5)

MSK_INT (L=3)

PSK

MSK_EXT

MSK_INT (L=9)

MSK_INT (L=7)

MSK_INT (L=5)

MSK_INT (L=3)

PSK

MSK_EXT

Fig. 5. Traceability cost: (a) jpj = 512 and (b) jpj = 1024.

Table 1

Bandwidth comparison

MSK PSK

Admission O(ktjqj) + O(k2jqj) O(tjqj)

Shuffling O(k2t2jqj) O(t2jqj)

Table 2

Key computation cost (in ms, P4-3.0 GHz, 1 GB memory)

t MSK (kP t) PSK

k = 3 k = 5 k = 7 k = 9 jpj = 512 jpj = 1024

1 0.0371 0.0301 0.0430 0.0550 0.574 17.780

2 0.0398 0.0415 0.0506 0.0570 0.683 18.150

3 0.0436 0.0424 0.0568 0.0564 0.713 18.180

4 – 0.0365 0.0595 0.0655 0.663 18.220

5 – 0.0431 0.0565 0.0629 0.753 18.370

6 – – 0.0628 0.0563 0.772 18.450

7 – – 0.0562 0.0629 0.782 18.570

8 – – – 0.0644 0.851 18.540

9 – – – 0.0637 0.871 19.120

1180 C. Castelluccia et al. / Computer Networks 51 (2007) 1169–1182

50 ANNEXE A. SÉCURITÉ DES RÉSEAUX AD-HOC MOBILES (MANET)

this analysis, we conclude that the MSK scheme is
well-suited for MANET applications where node
admission is not a frequent operation, whereas the
PSK scheme is more applicable for highly dynamic
MANETs consisting of mobile devices with reason-
ably high computation power.

References

[1] M. Bellare, P. Rogaway, Random oracles are practical: a

paradigm for designing efficient protocols, in: ACM Con-

ference on Computer and Communications Security, 1993,

pp. 62–73.

[2] R. Blom, An optimal class of symmetric key generation

systems, in: EUROCRYPT’84, LNCS, IACR, 1984.

[3] C. Blundo, A.D. Santis, A. Herzberg, S. Kutten, U. Vaccaro,

and M. Yung, perfectly-secure key distribution for dynamic

conferences, in: Advances in Cryptology – CRYPTO’92,

1992, pp. 471–486.

[4] R. Canetti, H. Krawczyk, Analysis of key-exchange proto-

cols and their use for building secure channels, in: EURO-

CRYPT’01, Springer-Verlag, 2001, pp. 453–474.

[5] S. Capkun, J.-P. Hubaux, L. Buttyan, Mobility helps

security in ad hoc networks, in: 4th ACM International

Symposium on Mobile Ad Hoc Networking and Computing

(MobiHoc’03), 2003, pp. 46–56.

[6] C. Castelluccia, N. Saxena, J.H. Yi, Self-configurable key

pre-distribution in mobile ad hoc networks, in: IFIP

Networking Conference, May 2005, pp. 1083–1095.

[7] W. Du, J. Deng, Y.S. Han, P.K. Varshney, A pairwise key

pre-distribution scheme for wireless sensor networks, in:

Jajodia et al. [10], pp. 42–51.

[8] Y.-C. Hu, D.B. Johnson, A. Perrig, Sead: secure efficient

distance vector routing in mobile wireless ad hoc networks,

in: Fourth IEEE Workshop on Mobile Computing Systems

and Applications (WMCSA’02), June 2002, pp. 3–13.

[9] Y.-C. Hu, A. Perrig, D.B. Johnson, Ariadne: a secure on-

demand routing protocol for ad hoc networks, in: Proceed-

ings of the Eighth Annual International Conference on

Mobile Computing and Networking, MobiCom 2002.

[10] S. Jajodia, V. Atluri, T. Jaeger (Eds.), Proceedings of the

10th ACM Conference on Computer and Communications

Security, CCS 2003, Washington, DC, USA, 27–30 October

2003, ACM, 2003.

[11] S. Jarecki, N. Saxena, J.H. Yi, An attack on the proactive

RSA signature scheme in the URSA ad hoc network access

control protocol, in: ACMWorkshop on Security of Ad Hoc

and Sensor Networks (SASN), October 2004, pp. 1–9.

[12] J. Kong, P. Zerfos, H. Luo, S. Lu, L. Zhang, Providing

robust and ubiquitous security support for MANET, in:

IEEE 9th International Conference on Network Protocols

(ICNP), 2001.

[13] T. Leighton, S. Micali, Secret-key agreement without public-

key cryptography, in: CRYPTO’93, 1993.

[14] D. Liu, P. Ning, Establishing pairwise keys in distributed

sensor networks, in Jajodia et al. [10], pp. 52–61.

[15] F.J. MacWilliams, N. Sloane, The Theory of Error-Correct-

ing Codes, North Holland, Amsterdam, 1997.

[16] U.M. Maurer, S. Wolf, Diffie-Hellman oracles, in:

CRYPTO’96, LNCS, vol. 1109, 1996, pp. 268–282.

[17] A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook

of Applied Cryptography, CRC Press Series on Discrete

Mathematics and Its Applications, 1997, ISBN 0-8493-8523-

7.

[18] G. Montenegro, C. Castelluccia, Crypto-based identifiers

(cbids): concepts and applications, ACMTISSEC7 (1) (2004).

[19] M. Narasimha, G. Tsudik, J.H. Yi, On the utility of

distributed cryptography in P2P and MANETs: the case of

membership control, in: IEEE International Conference on

Network Protocol (ICNP), November 2003, pp. 336–345.

[20] OpenSSL Project, http://www.openssl.org/.

[21] P. Papadimitratos, Z. Haas, Secure Routing for Mobile Ad

Hoc Networks, 2002.

[22] T.P. Pedersen, A threshold cryptosystem without a trusted

party, in: D. Davies (Ed.), EUROCRYPT’91, IACR, 1991,

LNCS, vol. 547, pp. 552–526.

[23] Peer Group Admission Control Project. Available from:

<http://sconce.ics.uci.edu/gac>.

[24] P. Feldman, A practical scheme for non-interactive verifiable

secret sharing, in: 28th Symposium on Foundations of

Computer Science (FOCS), 1987, pp. 427–437.

[25] A. Shamir, How to share a secret, Commun. ACM 22 (11)

(1979) 612–613.

[26] L. Zhou, Z.J. Haas, Securing ad hoc networks, IEEE

Network Mag. 13 (6) (1999) 24–30.

[27] S. Zhu, S. Xu, S. Setia, S. Jajodia, Establishing pair-wise

keys for secure communication in ad hoc networks: a

probabilistic approach, in: IEEE International Conference

on Network Protocol (ICNP), November 2003.

Claude Castelluccia is a senior research

scientist at INRIA, France. He received

an engineering degree from the Univer-

site de Technologie de Compiegne (90),

France, a Master of Science in EE from

Florida Atlantic University (92) and a

Ph.D. in Computer Science from INRIA

(96). He was a post-doctoral fellow at

Stanford University in 1997 and a visit-

ing researcher at University of California

Irvine from 2003 to 2005. His research

interests are in network security, applied cryptography, mobile/

wireless networking. wireless sensor networks and RFID.

Nitesh Saxena is an assistant professor in

the department of Computer and Infor-

mation Science at Polytechnic Univer-

sity, starting Fall 2006. He obtained his

Ph.D. in Information and Computer

Science from University of California,

Irvine, in summer 2006. He holds an

M.S. degree in Computer Science from

UC Santa Barbara, and a Bachelor’s

degree in Mathematics and Computing

from Indian Institute of Technology,

Kharagpur, India. Nitesh’s research spans all areas of informa-

tion security with core emphasis on network and distributed

system security and applied cryptography. Nitesh’s Ph.D. dis-

sertation entitled ‘‘Decentralized Security Services’’ has been

nominated for the ACM Dissertation Award for the year 2006.

C. Castelluccia et al. / Computer Networks 51 (2007) 1169–1182 1181

51

Jeong Hyun Yi is a principal researcher

in Samsung Advanced Institute of

Technology (SAIT). He received his

Ph.D. in Information and Computer

Science with his advisor, Dr. Gene Tsu-

dik, from University of California, Irvine

in 2005. He received his M.S. and B.S. in

Computer Science at Soongsil Univer-

sity, Korea in 1995 and 1993, respec-

tively. He was a senior researcher at

Electronics and Telecommunication

Research Institute (ETRI), Korea from 1995 to 2001 and a guest

researcher at National Institute of Standards and Technology

(NIST), MD, USA from 2000 to 2001. His research interests are

in network security, applied cryptography, ubiquitous comput-

ing, RFID and wireless sensor networks.

1182 C. Castelluccia et al. / Computer Networks 51 (2007) 1169–1182

52 ANNEXE A. SÉCURITÉ DES RÉSEAUX AD-HOC MOBILES (MANET)

Annexe B

Agrégation de données chiffrées

Cette annexe contient un article qui a été accepté pour publication dans la revue ACM Trans-
actions on Sensor Networks (ToSN). Une version préliminaire a également été publiée dans la
conférence ACM Mobiquitous (International Conference on Mobile and Ubiquitous Systems :
Computing, Networking and Services) en 2005.

Cet article présente un nouveau algorithme de chiffrement homomorphique par l’addition, c’est
à dire qui permet l’addition de données chiffrées. Il présente également un protocole d’agrégation
des données chiffrées pour les réseaux de capteurs. Ce protocole est très peu coûteux en terme de
calcul et est, par conséquent, très bien adapté aux réseaux de capteurs. L’article présente également
une preuve de la sécurité de ce protocole.

53

54 ANNEXE B. AGRÉGATION DE DONNÉES CHIFFRÉES

Efficient and Provably Secure Aggregation of Encrypted

Data in Wireless Sensor Networks

CLAUDE CASTELLUCCIA

INRIA

ALDAR C-F. CHAN

National University of Singapore

EINAR MYKLETUN, GENE TSUDIK

University of California, Irvine

Wireless sensor networks (WSNs) are multi-hop networks composed of tiny devices with lim-
ited computation and energy capacities. For such devices, data transmission is a very energy-
consuming operation. It thus becomes essential to the lifetime of a WSN to minimize the number
of bits sent by each device. One well-known approach is to aggregate sensor data (e.g., by adding)
along the path from sensors to the sink. Aggregation becomes especially challenging if end-to-end
privacy between sensors and the sink or aggregate integrity is required. In this paper, we propose

a simple and provably secure encryption scheme that allows efficient (additive) aggregation of
encrypted data. Only one modular addition is necessary for ciphertext aggregation. The secu-
rity of the scheme is based on the indistinguishability property of a pseudorandom function, a
standard cryptographic primitive. We show that aggregation based on this scheme can be used
to efficiently compute statistical values such as mean, variance and standard deviation of sensed
data, while achieving significant bandwidth gain. To protect the integrity of data incorporated in
an aggregate, we also give an end-to-end aggregate authentication scheme which is secure against
outsider-only attacks based on the indistinguishability property of a pseudorandom function.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]:
General—Security and Protection; C.2.1 [Computer-Communication Networks]:
Network Architecture and Design—Wireless Sensor Networks

General Terms: Security, Design

Additional Key Words and Phrases: Wireless Sensor Networks, Secure Data Aggregation, Stream
Ciphers, Privacy, Authentication

Some of our preliminary results were originally published in [Castelluccia et al. 2005]. The present paper

represents a reworked and extended version of [Castelluccia et al. 2005]. Major new components include the
security analysis and the technique for authentication of encrypted aggregated data.
Part of this work was done while Claude Castelluccia was visiting at the University of California, Irvine
Author’s address:
Claude Castelluccia, INRIA, Zirst - 655 avenue de l’Europe, 38334 Saint Ismier Cedex, France. Email:
Claude.Castelluccia@inria.fr
Aldar C-F. Chan, Department of Computer Science, School of Computing, National University of Singapore,
Singapore 117543. Email: aldar@graduate.hku.hk
Einar Mykletun, Gene Tsudik, Computer Science Department, School of Information and Computer Science,
University of California, Irvine. Email: {mykletun, gts}@ics.uci.edu

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use pro-
vided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 20YY ACM 0730-0301/20YY/0100-0001 $5.00

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY, Pages 1–0??.

55

2 ·

1. INTRODUCTION

Wireless sensor networks (WSNs) are becoming increasingly popular in many spheres of life.
Application domains include monitoring of the environment (such as temperature, humidity and
seismic activity) as well as numerous other ecological, law enforcement and military settings.

Regardless of the application, most WSNs have two notable properties in common: (1)
the network’s overall goal is typically to reach a collective conclusion regarding the outside
environment, which requires detection and coordination at the sensor level, and (2) WSNs act
under severe technological constraints: individual sensors have severely limited computation,
communication and power (battery) resources and need to operate in settings with great spatial
and temporal variability

At the same time, WSNs are often deployed in public or otherwise untrusted and even hostile
environments, which prompts a number of security issues. These include the usual topics, e.g.,
key management, privacy, access control, authentication and DoS-resistance, among others.
What exacerbates and distinguishes security issues in WSNs is the need to miniaturize all
security services so as to minimize security-induced overhead. In other words, if security is
a necessary hindrance in other (e.g., wired or MANET) types of networks, it is much more
so in WSNs. For example, public key cryptography is typically ruled out1 as are relatively
heavy-weight conventional encryption methods.

Security in WSNs is a popular research topic and many advances have been reported on in
recent years. Most prior work has focused on ultra-efficient key management, authentication,
routing and DoS resistance [Eschenauer and Gligor 2000; Zhu et al. 2004; Karlof and Wagner
2003; Wood and Stankovic 2002]. An overview of security related issues and services required
for WSNs is provided by Perrig, et al. in [Perrig et al. 2004].

On the other hand, a lot of attention has been devoted to communication efficiency issues.
Since data transmission is a very energy-consuming operation, in order to maximize sensor
lifetime, it is essential to minimize the sheer number of bits sent by each sensor device. One
natural and well-known approach involves aggregating sensor data as it propagates along the
path from the sensors to the so-called sink – a node that collects sensed data. Of course, aggre-
gating data is not quite equivalent to collecting individual sensor readings. In some applications,
e.g., perimeter control, aggregation is not applicable since only individual sensor readings are of
interest. However, many WSN scenarios that monitor an entire micro-environment (e.g., tem-
perature or seismic activity) do not require information from individual sensors but, instead,
put more emphasis on statistical quantities, such as mean, median and variance.

End-to-end privacy and aggregate integrity/authenticity are the two major security goals of
a secure WSN. Regardless of information leakage due to the correlation among sensor measure-
ments, end-to-end privacy ensures that nobody other than the sink could learn considerable
information about the final aggregate even if he might control any subset of sensor nodes. Infor-
mally speaking, aggregate authentication provides assurance that the final aggregate does not
deviate too far away from what can be achieved at the sink when all sensor nodes act honestly
and nobody has tampered the data en route, or the deviation will be detected at the sink.

Although simple and well-understood, aggregation becomes problematic if end-to-end pri-
vacy between sensors and the sink is required. If we assume that all sensors are trusted, sensors
could encrypt data on a hop-by-hop basis. For an intermediate sensor (i.e., one that receives

1While many sensor devices could have sufficient computation power to perform operations in public key cryptog-
raphy, transmitting a ciphertext (from public-key cryptography) could be overwhelming to most sensor devices.
Note that typical ciphertext size in a practical public-key cryptosystem is about 1024 bits or more.

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

56 ANNEXE B. AGRÉGATION DE DONNÉES CHIFFRÉES

· 3

and forwards data), this would entail: 1) sharing a key with each neighboring sensor, 2) de-
crypting encrypted messages received from each child, 3) aggregating all received values, and
4) encrypting the result for transmission to its father. Though viable, this approach is fairly
expensive and complicated, the former because of having to decrypt each received value before
aggregation and the latter due to the overhead imposed by key management. Furthermore,
hop-by-hop encryption assumes that all sensors are trusted with the authenticity and privacy
of other sensors’ data. This assumption may be altogether unrealistic in some setting, whereas,
in others, trust can be partial, i.e., intermediate nodes are trusted with only authenticity or
only privacy.

Alternatively, if a single global key was used by all sensors, by subverting a single sensor
node the adversary could learn measured values of any and all nodes in the network. Since
only the sink should gain an overview of WSN measurements, this approach is not attractive.
Nevertheless, we do not rule out using a single global key for message authentication (of the
aggregate), which is another challenging security goal in WSNs. In fact, aggregate authentica-
tion against outsider-only attacks might be the best one can achieve for end-to-end integrity in
the WSN scenario. In other words, additive aggregate authentication secure against malicious
insiders might not be achievable without using leverage like outlier detection or range checking.
These techniques have to be based on a stronger assumption that the statistical distribution
of measurements is known (partially or completely) beforehand; note that they are essentially
data/aggregate plausibility checks [Wagner 2004]. When an attacker can inject a contribution
of arbitrary value into an additive aggregate through compromised insiders, he can actually
manipulate the final aggregate by any amount of deviation he likes without being detected.

Contributions: In this paper, we focus on efficient, bandwidth-conserving privacy in WSNs.
More specifically, we blend inexpensive encryption techniques with simple aggregation methods
to achieve very efficient aggregation of encrypted data. To assess the practicality of proposed
techniques, we evaluate them and present very encouraging results which clearly demonstrate
appreciable bandwidth conservation and small overhead stemming from both encryption and ag-
gregation operations. We also provide a security argument of the proposed encryption scheme.
More specifically, we prove that the proposed scheme achieves semantic security if the encryp-
tion keys are generated by a good pseudorandom function family. With a view to supporting
aggregate integrity, we also extend the proposed encryption scheme to provide end-to-end ag-
gregate authentication which is provably secure against outsider-only attacks.

Organization: In the next section we discuss some background and the assumptions about
our system model. Then, Section 3 describes the problem statement along with the security
model. Next, Section 4 describes our homomorphic encryption scheme, followed by Section 5
which describes how to utilize this encryption scheme in a WSN. We give a security proof of
the proposed scheme in Section 6. Performance is analyzed and results are discussed in Section
7. The aggregate authentication scheme and its security analysis is given in Section 8. Related
work is summarized in Section 9 and Section 10 concludes this paper.

2. BACKGROUND

In this section we describe the key features of, and assumptions about, the network and provide
an overview of aggregation techniques.

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

57

4 ·

2.1 Wireless Sensor Networks (WSNs)

A WSN is a multi-hop network composed of a multitude of tiny devices with limited com-
putation and energy capacities. One commonly cited WSN application is monitoring the en-
vironment. This may include sensing motion, measuring temperature, humidity, etc. Data
monitored by the sensors is sent to a sink (usually a more powerful device), that is responsible
for collecting the information.

The multi-hop nature of a WSN implies that sensors are also used in the network infrastruc-
ture, i.e., not just sending their own data and receiving direct instructions but also forwarding
data for other sensors. When sensors are deployed, a delivery tree is often built from the sink to
all sensors. Packets sent by a sensor are forwarded to the sink by the sensors along the delivery
tree.

Sensor nodes come in various shapes and forms, however, they are generally assumed to be
resource-limited with respect to computation power, storage, memory and, especially, battery
life. A popular example is the Berkeley mote [Madden et al. 2002]. One common sensor feature
is the disproportionately high cost of transmitting information as compared to performing local
computation. For example, a Berkeley mote spends approximately the same amount of energy
to compute 800 instructions as it does in sending a single bit of data [Madden et al. 2002]. It
thus becomes essential to reduce the number of bits forwarded by intermediate nodes, in order
to extend the entire network’s lifetime. The sink node acts as a bridge between the WSN and
the outside world. It is typically a relatively powerful device, such as a laptop computer.

2.2 Aggregation in WSN

Aggregation techniques are used to reduce the amount of data communicated within a WSN
and thus conserves battery power. Periodically, as measurements are recorded by individual
sensors, they need to be collected and processed to produce data representative of the entire
WSN, such as average and/or variance of the temperature or humidity within an area. One
natural approach is for sensors to send their values to certain special nodes, i.e., aggregating
nodes. Each aggregating node then condenses the data prior to sending it on. In terms of
bandwidth and energy consumption, aggregation is beneficial as long as the aggregation process
is not too CPU-intensive.

The aggregating nodes can either be special (more powerful) nodes or regular sensors nodes.
In this paper, we assume that all nodes are potential aggregating nodes and that data gets
aggregated as they propagate towards the sink. In this setting, since sensors have very limited
capabilities, aggregation must be simple and not involve any expensive or complex computa-
tions. Ideally, it would require only a few simple arithmetic operations, such as additions or
multiplications.2.

We note that aggregation requires all sensors to send their data to the sink within the same
sampling period. This either requires the sensors to have (at least loosely) synchronized clocks
or the ability to respond to explicit queries issued by the sink.

One natural and common way to aggregate data is to simply add up values as they are
forwarded towards the sink. Of course, this type of aggregation is useful when the sink is only
interested in certain statistical measurements, e.g., the mean or variance of all measured data.
As noted in Section 1, some WSN applications require all sensor data and therefore can not
benefit from aggregation techniques. Similarly, applications requiring boundary values, e.g.,

2This is indeed what we achieve in this work.

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

58 ANNEXE B. AGRÉGATION DE DONNÉES CHIFFRÉES

· 5

min and/or max, are obviously not a good match for additive aggregation.
With additive aggregation, each sensor sums all values, xi, it receives from its k children (in

the sink-rooted spanning tree) and forwards the sum to its parent. Eventually, the sink obtains
the sum of all values sent by all n sensors. By dividing the sum by n, i.e., the total numbers of
sensors, it computes the average of all measured data.

This simple aggregation is very efficient since each aggregating node only performs k arith-
metic additions3. It is also robust since there is no requirement for all sensors to participate as
long as the sink gets the total number of sensors that actually provided a measurement.

Additive aggregation can be also used to compute the variance, standard deviation and any
other moments on the measured data. For example, in case of variance, each aggregating node
not only computes the sum, S =

∑k
i=1 xi, of the individual values sent by its k children, but

also the sum of their squares: V =
∑k

i=1 x2
i . Eventually, the sink obtains two values: the sum

of the actual samples which it can use to compute the mean and the sum of the squares which
it can use to compute the variance:

V ar = E(x2)− E(x)2; where
E(x2) = (

∑n
i=1 x2

i)/n and E(x) = (
∑n

i=1 xi)/n

3. GOALS AND SECURITY MODEL

To provide data privacy, our goal is to prevent an attacker from gaining any information about
sensor data beside what can be inferred by the measurements done directly by the attacker.
We define the privacy goal by the standard notion of semantic security in this work.

An attacker is assumed to be global, i.e., able to monitor any location in the network or
even the entire WSN. Furthermore, we assume the attacker is able to read the internal state
of some sensors. The attacker is also supposed to be able to corrupt a subset of sensor nodes.
We assume the attacker can launch chosen plaintext attacks only. That is, the attacker is
able to obtain the ciphertext of any plaintext of his choice. In the real situation, this means
the attacker could manipulate the sensing environment and obtain the desired ciphertext by
eavesdropping.

In light of our requirement for end-to-end privacy between the sensors and the sink, additive
aggregation, although otherwise simple, becomes problematic. This is largely because popular
block and stream ciphers, such as AES [NIST 2001] or RC5 [Rivest 1995], are not additively
homomorphic. In other words, the summation of encrypted values does not allow for the
retrieval of the sum of the plaintext values.

To minimize trust assumptions, we assume that each of the n sensors shares a distinct long-
term key with the sink, called the encryption key. This key is originally derived, using a
pseudo-random function (PRF), from the master secret, which is only known to the sink. We
denote the sink’s master secret as K and the long-term sensor/sink shared key as eki, where
the subscript 0 < i ≤ n uniquely identifies a particular sensor. This way, the sink only needs
to store a single master secret and all long-term keys can be recomputed as needed.

As opposed to encryption, authentication schemes that allow for aggregation seem to be very
difficult, and perhaps impossible, to design. It should be noted that the problem of aggregate
authentication considered in this paper is different from the problem considered in aggregate
signatures [Boneh et al. 2003]; more precisely, the latter should be called aggregatable signa-

3We assume that an aggregating node has its own measurement to contribute; thus k additions are needed.

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

59

6 ·

tures instead. In aggregate authentication, it is the messages themselves being aggregated and
hence the original messages are not available for verification, whereas, in aggregate signatures,
the signatures for different messages are aggregated and all the signed messages have to be dis-
tinct and available to the verification algorithm in order to verify the validity of an aggregate
signature. Consequently, it is fair to say there could be no secure aggregate authentication
scheme (which is existentially unforgeable against chosen message attacks) in the literature. As
explained in [Wagner 2004], other techniques are likely needed to verify the plausibility of the
resulting aggregate and to increase the aggregation resiliency.

In WSNs, providing end-to-end aggregate authentication seems to be difficult since messages
lose their entropies through aggregation, rendering it difficult to verify the validity of a given
aggregate. But it is still possible to prevent unauthorized nodes from injecting fake packets in
the networks. That is, groupwise message authentication can be achieved in which only nodes
knowing a common group key can contribute to an aggregate and produce valid authentication
tags that would pass a prescribed verification test at the sink. Note that the scheme would
be vulnerable to compromised nodes. We give an end-to-end message authentication scheme
providing such access control assuming outsider-only attacks.

4. ADDITIVELY AGGREGATE ENCRYPTION

Encrypted data aggregation or aggregate encryption is sometimes called concealed data aggre-
gation (CDA), a term coined by Westhoff et. al. [Westhoff et al. 2006]. Appendix A gives an
abstract description of CDA showing the desired functionalities.

In this section we describe the notion of homomorphic encryption and provide an example.
Our notion is a generalized version of the widely used one for homomorphic encryption — we
allow the homomorphism be under different keys while the homomorphism in common notions is
usually under the same key. We then proceed to present our additively homomorphic encryption
scheme whose security analysis is given in Section 6 and Appendix B. The encryption technique
is very well-suited for privacy-preserving additive aggregation. For the sake of clarity, in Section
4.2, we will first describe a basic scheme assuming the encryption keys are randomly picked in
each session (which is the same scheme as given in our earlier work [Castelluccia et al. 2005]);
the header part is also excluded in the discussion. Then we will give a concrete construction
in which the session keys and the encryption keys are derived using a pseudorandom function
family. The concrete construction can be proved to be semantically secure in the CDA model
[Chan and Castelluccia 2007], the details of which are given in Appendix A. Compared to our
earlier work [Castelluccia et al. 2005], this paper provides the details of a concrete construction
using a pseudorandom function in Section 4.3, with the security requirements on the used
components specified.

Our scheme can be considered as a practical, tailored modification of the Vernam cipher
[Vernam 1926], the well-known one-time pad, to allow plaintext addition to be done in the
ciphertext domain. Basically, there are two modifications. First, the exclusive-OR operation is
replaced by an addition operation. By choosing a proper modulus, multiplicative aggregation
is also possible.4 Second, instead of uniformly picking a key at random from the key space,
the key is generated by a certain deterministic algorithm (with an unknown seed) such as a
pseudorandom function [Goldreich 2001]; this modification is actually the same as that in a

4Our construction can achieve either additive or multiplicative aggregation but not both at the same time.
Besides, multiplication aggregation seems to bear no advantage as the size of a multiplicative aggregate is the
same as the sum of the size of its inputs.

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

60 ANNEXE B. AGRÉGATION DE DONNÉES CHIFFRÉES

· 7

stream cipher. As a result, the information-theoretic security (which requires the key be at
least as long as the plaintext) in the Vernam cipher is replaced with a security guarantee in the
computational-complexity theoretic setting in our construction.

4.1 Homomorphic Encryption

A homomorphic encryption scheme allows arithmetic operations to be performed on cipher-
texts. One example is a multiplicatively homomorphic scheme, whereby the multiplication of
two ciphertexts followed by a decryption operation yields the same result as, say, the mul-
tiplication of the two corresponding plaintext values. Homomorphic encryption schemes are
especially useful in scenarios where someone who does not have decryption keys needs to per-
form arithmetic operations on a set of ciphertexts. A more formal description of homomorphic
encryptions schemes is as follows.

Let Enc() denote a probabilistic encryption scheme. Let M be the message space and C the
ciphertext space such that M is a group under operation ⊕ and Enc() is a ⊕-homomorphic
encryption scheme if for any instance Enc() of the encryption scheme, given c1 = Enck1

(m1)
and c2 = Enck2

(m2) for some m1, m2 ∈ M , there exists an efficient algorithm which can
generate from c1 and c2 a valid ciphertext c3 ∈ C for some key k3 such that

c3 = Enck3
(m1 ⊕m2)

In other words, decrypting c3 with k3 would yield m1 ⊕m2. In this paper, we mainly consider
additive homomorphism, i.e. ⊕ is the + operation. We do not restrict k1, k2, k3 to be the same
despite that they are usually equal in common homomorphic encryption schemes. Since k3

could be different from k1, k2, some identifying information, say, denoted by hdr, needs to be
attached to a ciphertext to indicate which keys are required to decrypt the ciphertext.

A good example is the RSA cryptosystem[Rivest et al. 1978] which is multiplicatively homo-
morphic under a single key. The RSA encryption function is Enc(m) = me = c (mod n) and
the corresponding decryption function is Dec(c) = cd = m (mod n) where n is a product of two
suitably large primes (p and q), e and d are encryption and decryption exponents, respectively,
such that e ∗ d = 1 (mod (p− 1)(q − 1)).

Given two RSA ciphertexts c1 and c2, corresponding to respective plaintexts m1 and m2,
it is easy to see that c1c2 ≡ me

1m
e
2 ≡ (m1m2)

e (mod n). Hence, one can easily compute the
multiplication of the ciphertexts (c1c2) to obtain the ciphertext corresponding to the plaintext
m = m1m2 (mod n). Note that c1, c2 and the resulting ciphertext after multiplication are all
under the same decryption key d and no hdr is thus needed.

4.2 Basic Encryption Scheme using Random Keys

We now introduce a simple additively homomorphic encryption technique. The main idea of
our scheme is to replace the xor (Exclusive-OR) operation typically found in stream ciphers
with modular addition (+). For the sake of clarity, the inclusion of hdr (the information to
identify decryption keys) and pseudorandom functions is deferred to the discussion in Section
4.3. The basic scheme is as follows.

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

61

8 ·

Basic Additively Homomorphic Encryption Scheme

Encryption:

(1) Represent message m as an integer m ∈ [0, M−1] where M is the modulus
of arithmetics.

(2) Let k be a randomly generated keystream, where k ∈ [0, M − 1].

(3) Compute c = Enck(m) = m + k mod M .

Decryption:

(1) Deck(c) = c− k mod M .

Addition of Ciphertexts:

(1) Let c1 = Enck1
(m1) and c2 = Enck2

(m2).

(2) The aggregated ciphertext is: cl = c1 + c2 mod M = Enck(m1 + m2)
where k = k1 + k2 mod M .

The correctness of the aggregation is assured if M is sufficiently large. The explanation
is as follows: c1 = m1 + k1 mod M and c2 = m2 + k2 mod M , then cl = c1 + c2 mod M =
(m1+m2)+(k1+k2) mod M = Enck1+k2

(m1+m2). For k = k1+k2, Deck(cl) = cl−k mod M =
(m1 + m2) + (k1 + k2)− (k1 + k2) mod M = m1 + m2 mod M .

We assume that 0 ≤ m < M . Note that if n different ciphers ci are added together, then
M must be larger than

∑n

i=1 mi, otherwise correctness is not provided. In fact if
∑n

i=1 mi

is larger than M , decryption will result in a value m′ that is smaller than M . In practice, if
t = maxi{mi}, then M should be selected as M = 2⌈log2(t∗n)⌉. That is, the required length of
M should be at least the sum of the length of t and the length of n.

Note that this basic scheme is only for illustration purposes and is not the actual construction.
Since the encryption key k is assumed to be randomly picked (as in the one-time pad) by the
sensor node in each reporting session, a secure channel has to be maintained at all time between
each sensor node and the sink. In the actual construction (given in Section 4.3), such a secure
channel is not required.

4.3 Encryption Scheme using Keys generated by a Pseudorandom Function Family

The main difference between the actual construction and the basic encryption scheme is that the
encryption keys in each session are now generated by a pseudorandom function instead of being
randomly picked. Two components are used in the constructions, namely, a pseudorandom
function f and a length-matching hash function h. Their details are as follows.

4.3.1 Pseudorandom Functions. A pseudorandom function is used for deriving secret keys.
For details on pseudorandom functions, [Goldreich 2001] has a comprehensive description. Let
F = {Fλ}λ∈N be a pseudorandom function family where Fλ = {fs : {0, 1}λ → {0, 1}λ}s∈{0,1}λ

is a collection of functions indexed by a key s ∈ {0, 1}λ. Loosely speaking, given a function fs

from a pseudorandom function ensemble with unknown key s, any PPT distinguishing procedure
allowed to get the values of fs(·) at (polynomially many) arguments of its choice should not be
able to tell (with non-negligible advantage in λ) whether the answer of a new query is supplied
by fs or randomly picked from {0, 1}λ.

Most provably secure pseudorandom functions such as [Naor et al. 2002] are based on the
hardness of some number-theoretic problems. However, these constructions are usually com-

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

62 ANNEXE B. AGRÉGATION DE DONNÉES CHIFFRÉES

· 9

putationally expensive for sensor nodes. Instead, key derivation in practice is usually based
on functions with conjectured or assumed pseudorandomness, that is, pseudorandomness or
unpredictability is inherently assumed in the construction rather than proven to follow from
the hardness of some computational problems. One typical example is the use of cryptographic
hash functions for key derivation such as [Perrig et al. 2001]. Even HMAC [Bellare et al. 1996]
and OMAC [Iwata and Kurosawa 2003] are constructed based on assumed pseudorandomness,
with the former assuming the underlying hash function in the construction has a certain pseu-
dorandomness property and the latter assuming the block cipher in use is a pseudorandom
permutation.

The proposed additive aggregate encryption scheme in this paper does not pose a restriction
on which type of pseudorandom functions should be used. A conjectured pseudorandom func-
tion can be used for the sake of efficiency. The security guarantee provided by the proposed
construction holds as long as the underlying pseudorandom function has the widely defined
property of pseudorandomness or indistinguishability. If such an indistinguishability property
no longer holds or is broken for the pseudorandom function in use, we can simply replace it with
a better pseudorandom function (with its indistinguishability property yet to be broken) for the
proposed aggregate encryption to remain secure. It should be emphasized that the mentioned
indistinguishability or pseudorandomness property is also an inherent requirement on the hash
function to be used as a key derivation function [Perrig et al. 2001; Bellare et al. 1996] which
is also used in the IPSec standard. That is, if a given hash is not suitable for the proposed
aggregate encryption scheme due to its weakness, the same weakness would also undermine the
security foundation of these key derivation functions.

4.3.2 Length-matching Hash Function. The length-matching hash function h : {0, 1}λ →
{0, 1}l matches the length of the output of the pseudorandom function f to the modulus size
of M , that is, M is assumed to be l bits long. The purpose of h is to shorten a long bit-string
rather than to produce a fingerprint of a message; hence, unlike cryptographic hash functions,
h is not required to be collision resistant. The only requirement on h is: {t ← {0, 1}λ : h(t)}
has a uniform distribution over {0, 1}l. That is, by uniformly picking an input from the domain
of h, the resulting output distribution is uniform over the range of h.

This requirement is pretty loose and many compression maps from {0, 1}λ to {0, 1}l work.
For instance, h can be implemented by truncating the output of the pseudorandom function
and taking the least significant l bits as output. The sufficiency of this requirement on h is
based on the assumption that an ideal pseudorandom function is used. For such a function,
without knowledge of the seed key, it is unpredictable whether an output bit is 0 or 1 for
all input. In practice, key derivation is usually based on conjectured pseudorandom functions
with unproven pseudorandomness; for example, a collision resistant hash function is commonly
used for deriving secret keys from a seed [Perrig et al. 2001; Bellare et al. 1996]. Hence, it
might be the case that, for some input to these conjectured pseudorandom functions, there
is a higher chance (greater than 1

2) to predict some output bit successfully. To tolerate the
imperfectness of conjectured pseudorandom functions, if l|λ, a better construction could be as
follows: truncate the output of the pseudorandom function into smaller strings of length l and
then take exclusive-OR on all these strings and use it as the output of h.

Assume there is a sink and n nodes in the system. In the following description, f is a
pseudorandom function for key stream generation and h is a length-matching hash function.
The details of the proposed aggregate encryption scheme are as follows.

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

63

10 ·

Additively Homomorphic Encryption Scheme using a Pseudorandom Function Family

Assume the modulus is M .

Key Generation:

(1) Randomly pick K ∈ {0, 1}λ and set it as the decryption key for the sink.

(2) For each i ∈ [1, n], set the encryption key for node i as eki = fK(i).

Encryption:

(1) Given an encryption key eki, a plaintext data mi and a nonce r, output ci =
Enceki

(mi) = mi + h(feki
(r)) mod M .

(2) Set the header hdri = {i}.

(3) Output (hdri, ci) as the ciphertext.

Decryption:

(1) Given the ciphertext (hdr, c) of an aggregate and a nonce r used in the encryption,
generate eki = fK(i),∀i ∈ hdr.

(2) Compute x = DecK(c) = (c −
∑

i∈hdr
h(feki

(r))) mod M (where K =
∑

i∈hdr
h(feki

(r))), and output the plaintext aggregate x.

Addition of Ciphertexts:

(1) Given two CDA ciphertexts (hdri, ci) and (hdrj , cj), compute cl = (ci+cj) mod M

(2) Set hdrl = hdri ∪ hdrj .

(3) Output (hdrl, cl).

The keystream for a node is now generated from its secret key eki and a unique message ID
or nonce r. No randomness in the nonce is needed. This secret key is pre-computed and shared
between the node and the sink, while the nonce can either be included in the query from the
sink or derived from the time period in which the node is sending its values in (assuming some
form of synchronization).

5. AGGREGATION OF ENCRYPTED DATA

As previously noted, efficient aggregation in WSNs becomes very challenging when end-to-end
privacy of data is required. One solution is to disregard aggregation altogether in favor of
privacy, i.e., for sensor nodes to forward to their parents their own encrypted measurements,
as well as measurements received from their children. The sink, upon receiving as many data
packets as there are responding sensors, proceeds to decrypt all ciphertexts and sums them up
in order to compute the desired statistical measurements. We term this approach as No-Agg.
This approach has two obvious disadvantages. First, because all packets are forwarded towards
the sink, a lot of bandwidth (and hence power) is consumed. Second, as illustrated later in
Section 7.2, there is an extreme imbalance between sensors in terms of the amount of data
communicated. Sensors closer to the sink send and receive up to several orders of magnitude
more bits than those on the periphery of the spanning tree.

A second approach, that does not achieve end-to-end privacy but does aggregate data, is a
hop-by-hop (HBH) encryption method, which is also used for comparison between aggregation
methods in [Girao et al. 2004]. In HBH all nodes create pair-wise keys with their parents and
children during a boot strapping phase. When answering a query, nodes decrypt any packets

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

64 ANNEXE B. AGRÉGATION DE DONNÉES CHIFFRÉES

· 11

sent to them, aggregate this data together with their own before re-encrypting the aggregated
result and forwarding this to their parent. This approach is obviously more bandwidth efficient
than No-Agg, as no packet is sent twice. However, there is an associated cost involved with the
decryption and encryption performed at every non-leaf node in the WSN which increases their
energy consumption (see [Girao et al. 2004]). More importantly, from a privacy perspective,
the HBH scheme leaves nodes vulnerable to attacks because their aggregated data will appear
in plaintext (i.e., no end-to-end privacy). Especially nodes closer to the sink become attractive
targets for an attacker, as their aggregated values represent a large portion of the data in the
WSN.

We instead propose an end-to-end privacy preserving aggregation approach (denoted as AGG)
in which each sensor encrypts their sensed data using the encryption scheme presented in Section
4.3. Since this scheme is additively homomorphic, values can be added (aggregated) as they
are forwarded towards the sink. The sink can then retrieve from the aggregate it receives the
sum of the samples and derive certain statistical data. AGG retains the positive qualities of
both the No-Agg (end-to-end privacy) and HBH (energy efficient) solutions. Note that a piece
of identifying information is needed for each ciphertext in No-Agg to allow the sink to decide
which key to use for decrypting a particular ciphertext in the list of received ciphertexts. This
identifying information has roughly the same size as hdr in AGG.

5.1 Computing Statistical Data

In this section, we show how the new additively homomorphic encryption scheme can be used
to aggregate encrypted data such that the sink can still compute the average and variance.
Since multiple moduli may be used for different instances of the aggregate encryption scheme
in the following discussion, the modulus used for encryption and decryption will be explicitly
specified in the notation for clarity. For example, Enck(x; M) means encrypting x using key k
with public parameter M (the modulus).

5.1.1 Computing the Average. When using our scheme, each sensor encrypts its data xi to
obtain cxi

= Encki
(xi; M). M needs to be chosen large enough to prevent an overflow so it

is set as M = n ∗ t, where t is the range of possible measurement values and n is the number
sensor nodes. Each ciphertext cxi

is therefore log(M) = log(t) + log(n) bits long.
The sensor then forwards cxi

along with the key identifying information hdrxi
to its par-

ent, who aggregates all the cxj
’s of its k children by simply adding them up (this addition is

performed modulo M). The resulting value is then forwarded. The sink ends up with value
Cx =

∑n

i=1 cxi
mod M associated with hdr which indicates the key set {k1, ..., ki, ..., kn}. It

can then compute Sx = DecK(Cx; M) = Cx −K mod M , where K =
∑n

i=1 ki, and derive the
average as follows: Avg = Sx/n.

5.1.2 Computing the Variance. As mentioned previously, our scheme can also be used to
derive the variance of the measured data. Two moduli will be used, M for the sum of values
and M ′ for the sum of squares.

In this case, each sensor i must compute yi = x2
i , where xi is the measured sample, and

encrypts yi to obtain cyi
= Enck′

i
(yi; M

′). It must also encrypt xi as explained in the previous

section. M ′ needs to be chosen large enough to prevent an overflow so it is set to M ′ = n ∗ t2.
Each ciphertext cyi

is therefore log(M ′) = 2 ∗ log(t) + log(n) bits long. The sensor forwards
cyi

, together with cxi
, to its parent. The size of the resulting data is 3 ∗ log(t)+2 ∗ log(n). The

parent aggregates all the cyj
of its k children by simply adding them up. It also aggregates,

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

65

12 ·

separately, the cxj
, as explained in the previous section. The two resulting values are then

forwarded. The sink ends up with values Cx and Cy =
∑n

i=1 cyi
mod M . Cx is used to

compute the average Av. Cy is used to compute the variance as follows: The sink computes
Vx = DecK′(Cy ; M ′) = Cy −K ′ mod M ′, where K ′ =

∑n
i=1 k′

i. The variance is then equal to
Vx/n−Av2.

5.2 Robustness

s
i+1
 s
i+2
 s
i+k

Sink

...

s
j+1
 s
j+2
 s
j+k

...
s
m+1
 s
m+k

...
...

...

Fig. 1. Multi-level WSN model with nodes of degree k

An important consequence of using our proposed encryption scheme for aggregation in WSNs
is that the sink node needs to be aware of the encryptors id’s such that it can regenerate the
correct keystream for decryption purposes.

Because WSNs are not always reliable, it cannot be expected that all nodes reply to all
requests. Therefore there needs to be a mechanism for communicating the id’s of the non-
responding nodes to the base station. The simplest approach, and the one we used in our
evaluation, is for the sensors to append their respective node id’s to their messages5.

6. SECURITY ANALYSIS

We use the CDA security model in [Chan and Castelluccia 2007] to analyze the concrete con-
struction in Section 4. For completeness, the security model is given in Appendix A. As usual,
the adversary is assumed to be probabilistic polynomial time (PPT) in the security model.
In the model, the adversary can choose to compromise a subset of nodes and obtain all the
secret information of these nodes. With oracle access, he can also obtain from any of the un-
compromised nodes the ciphertext of any plaintext he chooses. The security goal is that the
adversary cannot extract in polynomial time any information about the plaintext from a given
ciphertext. This is the well known notion of semantic security [Goldwasser and Micali 1984].
Formally defined, the security model is described as a game in Appendix A.

5Depending on the number of nodes that respond to a query, it could be more efficient to communicate the id’s
of nodes that successfully reported values

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

66 ANNEXE B. AGRÉGATION DE DONNÉES CHIFFRÉES

· 13

The concrete construction in Section 4.3 can be shown to achieve semantic security or indis-
tinguishability against chosen plaintext attacks (IND-CPA), an equivalent notion of semantic
security [Goldwasser and Micali 1984], if the underlying key generation function is from a
pseudorandom function family. The security can be summarized by the following theorem.

Theorem 1. The concrete construction is semantically secure against any collusion with at
most (n− 1) compromised nodes (where n is the total number of nodes), assuming Fλ = {fs :
{0, 1}λ → {0, 1}λ}s∈{0,1}λ is a pseudorandom function and h : {0, 1}λ → {0, 1}l satisfies the

requirement that {t← {0, 1}λ : h(t)} has a uniform distribution over {0, 1}l.

Proof Sketch: Detailed proof is given in Appendix B. The basic idea is that we assume there
exists a PPT adversary which can break the semantic security of the proposed encryption
scheme, and then we show how this adversary can be used to break the indistinguishability
property of the underlying pseudorandom function. By a contrapositive argument, we can
say that if the pseudorandom function has the described indistinguishability property briefly
described in Section 4.3, then the proposed encryption is semantically secure.6

Note the standard security goal for encryption is indistinguishability against chosen ciphertext
attacks in which the adversary is allowed to obtain the plaintext of any ciphertext of his choice
[Naor and Yung 1990; Katz and Yung 2006]. If a stateful decryption mechanism is assumed,
that is, the decryption algorithm keeps track of all the nonces previously used, our scheme
could also be proved to be secure against chosen ciphertext attacks. But the resulting scheme
might be inefficient. Nevertheless, it could still be practical since in usual situation only the
sink would perform decryption. Since the aggregation functionality allows ciphertexts to be
modified in some way without invalidating them, achieving chosen ciphertext security (more
specifically, indistinguishability against adaptive chosen ciphertext attacks (IND-CCA2)) with
a stateless decryption mechanism may be impossible in this scenario.

7. OVERHEAD ANALYSIS

In this section, we compare the bandwidth of our proposed AGG protocol with the No-Agg
(forwarding data packets) and HBH (hop-by-hop encryption and aggregation) approaches, as
described in section 5. The overall bandwidth in the WSN and the number of bits sent by
individual nodes are measured for different WSN tree like topologies. Below we describe the
specific network model that we use in our measurements. The comparisons will be made for
the two following cases: (1) the sink is only interested in the average value and (2) the sink is
interested in the average and variance values.

7.1 Network Model

We envision a multi-level network tree in which there exist numerous sensor nodes and only
one sink node. To simplify the model, we assume a balanced k-ary tree, as depicted in figure
1. Let t denote the range of possible measurement values collected by a sensor (i.e., if a sensor
can measure temperatures between 0 and 99 Fahrenheit, then t = 100).

We will analyze the communication bandwidth in the proposed WSN model from two per-
spectives: (1) the number of bits sent per node at different levels in a 3-ary tree and (2) the
total number of bits transmitted throughout the WSN for 3-ary trees of various height. These

6Formal details of the indistinguishability property of the pseudorandom function can be found in Appendix B.

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

67

14 ·

measurements will be carried out for the three models that we are considering, namely No-Agg,
HBH and AGG.

Next we describe how to calculate the number of bits (header and payload) sent per node for
each of these schemes. We choose the packet format used in TinyOS [Karlof et al. 2004] which
is the operating system running on the Berkeley motes that we envision as the sensor platform.
The packet header is 56 bits and the maximum supported data payload is 232 bits.

For the No-Agg scheme, a node only needs log(t) bits to encode its sensed data. In addition,
all internal nodes need to forward the packets sent to them by their children, and the number
of packets received grows exponentially (in k) as we move higher in the tree (i.e. closer to the
sink).

In the HBH approach, the number of bits sent depends upon the node’s level in the WSN
tree. Leaf nodes only send log(t) bits (same as in No-Agg), while nodes higher up in the tree
will have aggregated data and therefore need to send more bits. Additionally, when the variance
is also requested, the aggregating nodes need to keep track of this value separately, and use
approximately log(n′t) bits to encode the value, where n′ is the number of nodes aggregated so
far.

With our AGG scheme, the number of bits sent by a node depends on the size of the modulus
M used in the additive encryption scheme. Its size can be computed as the maximum possible
aggregate value, which in this model turns out to be M = n∗t, i.e. all sensors measure the largest
possible reading. Therefore, when encoding the average, each node uses log(M) = log(t)+log(n)
bits. When the variance is also desired, a node needs to send the ciphertext corresponding to
x2. This requires an extra log(n ∗ t2) = 2 ∗ log(t) + log(n) bits. Additionally, an aggregator
needs to append to the aggregate the id’s of its children that did not reply to the query. These
id’s have to be propagated up to the sink along with the aggregate.

7.2 Numerical Results

In this section, we compare the performance of the No-Agg, HBH and AGG according to the
following two criteria: (1) The forwarding cost per node i.e. the number of bits forwarded by
node at each level of the delivery tree. (2) The overall bandwidth gain achieved by HBH and
AGG over the No-Agg scheme.

Levels Num Nodes A (0%) A (10%) A (30%) AV (0%) AV (10%) AV (30%) HBH-A HBH-AV No-Agg

1 3 75 950 2700 100 975 2725 73 97 68859

2 9 75 366 950 100 392 975 72 94 22932

3 27 75 172 366 100 197 392 70 91 7623

4 81 75 107 172 100 132 197 68 87 2520

5 243 75 85 108 100 111 132 67 84 819

6 729 75 78 85 100 103 110 65 81 252

7 2187 75 75 75 100 100 100 63 63 63

Table I. Number of bits sent per node for each level in a 3-tree of depth 7, where the measured value range of

27.

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

68 ANNEXE B. AGRÉGATION DE DONNÉES CHIFFRÉES

· 15

Forwarding Cost per node (fairness). Table I shows the number of bits sent per node at
each level in a 3-degree tree of height7 7 when t = 128 (the network is for example monitoring
temperatures that range between 0 and 127 degrees).

For the No-Agg approach it becomes obvious from the results that there is a widely differing
data communication load amongst sensors at different levels (nodes at level 7 send 3 orders of
magnitude less data than those at level 1). Because the nodes closer to the sink have to send
such significantly larger amounts of data than their descendants, they use up their batteries
and die sooner. Should a level of nodes in the tree stop functioning, then the whole WSN
stops functioning as well. Therefore, nodes would have to either be swapped around manually
or replaced upon failure, both tasks being quite impractical when considering the number of
nodes at the various levels.

The table shows a steady increase of bits per node for the HBH approach, both for the
average (HBH-A) as well as the average and variance data (HBH-AV). Notice the relatively
dramatic increase in bits transmitted between nodes at level 7 and 6 for HBH-AV. This is due
to that the leaf nodes need not send a ciphertext representing x2 (needed for the computation of
the variance), where x represent their measured value, as it can be computed by their parents.
Because packets are not forwarded as in No-Agg, we observe a significant reduction in bits sent
per node at all non-leaf levels.

For the AGG we considered three scenarios: (1) all the nodes reply8, (2) 90% of the nodes
reply9 and (3) 70% of the nodes reply10).

In the first scenario, there is a constant number of bits sent by each node at each level in the
tree. However, this number of bits is larger than even the maximum for any HBH approach,
due to the size of the modulus M . As previously explained, the number of bits sent by the
leaves is larger with the aggregation methods (AGG-A: 56+ log(t)+ log(n) = 75 bits, AGG-AV:
56 + 3 ∗ log(t)+ 2 ∗ log(n) = 100 bits) than when no aggregation is used (56 + log(t) = 63 bits).
However, aggregation distributes the load evenly over all nodes, regardless of their distance to
the sink. We believe this to be an attractive property in WSNs. In the second and the third
scenarios, the number of bits processed by each node gets larger the closer it gets is to the sink.
This is the result of appending the id’s of the non-responding children to the aggregate. As we
move up the tree the list of non-responding nodes increases. If we assume that x% of the total
nodes do not participate, an aggregator A must append to the aggregated message, the id of
x% of all its children (i.e of all the nodes in the subtree rooted at A). If, for example, A is at
level 3 and x = 30, there are 34 = 81 children and A has to append 81 ∗ 0.3 i.e. 25 ids. The
total size of the aggregated message is then 63 + 25 ∗ 12 = 366 bits as shown in the table I.

Bandwidth Gain. Table II displays the bandwidth transmission gain of the HBH and AGG
schemes over the No-Agg scheme using a 3-degree WSNs of various heights. We consider
the gains when (1) only the average is computed and (2) both the average and variance are

7The sink is at level 0 in the tree
8Referred to in the tables as A(0%) when only the average is computed and as AV (0%) when the average and
variance are computed.
9Referred in the table as A(10%) when only the average is computed and as AV (10%) when the average and
variance are computed.
10Referred in the table as A(30%) when only the average is computed and as AV (30%) when the average and
variance are computed.

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

69

16 ·

Levels Num Nodes A (0%) A (10%) A (30%) HBH-A AV(0) AV(10) AV(30) HBH-AV

3 40 2.42 2.39 2.34 2.58 1.89 1.87 1.84 2.24

4 121 3.20 3.13 3.01 3.50 2.46 2.40 2.37 3.02

5 364 3.96 3.82 3.6 4.46 3.03 2.98 2.84 3.84

7 3280 5.46 5.13 4.58 6.41 4.1 3.9 3.6 5.52

8 9841 6.22 5.72 4.95 7.39 4.59 4.3 3.85 6.37

Table II. WSN bandwidth performance gain of the AGG and HBH schemes when aggregating the (1) Average

and (2) Average and Variance for a 3-tree and t = 27 = 128.

computed 11. These gains are obtained by computing the total bandwidth costs, CHBH , CAGG

and CNo−Agg, by adding, for each of these schemes, the total number of bits forwarded by
each node of the network. The bandwidth gain of HBH and AGG are respectively defined as
CNo−Agg/CHBH and CNo−Agg/CAGG.

For example, in a 3-tree of height 5, there are 364 nodes, and when only computing the
average value, AGG-A achieves a factor of 3.96 speedup over No-Agg, i.e. approximately 4
times less bits are sent across the network. As expected, HBH-A and HBH-AV have better
performance than both AGG-A and AGG-AV, respectively, although they both outperform
No-Agg. The biggest draw for using AGG over HBH is that of end-to-end privacy. With
HBH , it is enough for an attacker to compromise one node close to the sink to gain a large
picture of the aggregated data in the WSN. This is because each node in HBH stores the secret
key needed for decryption (and encryption), leaving them vulnerable. On the other hand, nodes
in AGG do not store sensitive key material and the only data an attacker can learn is a single
sensor’s individual reading.

The results shown in this section are very encouraging since they confirm that aggregation is
a useful technique for reducing the total bandwidth usage and can therefore extend the overall
lifetime of the network.

7.3 Computational Costs

This section discusses the computation costs of the proposed scheme and the issues related
to implementation. Let tadd and tmulti respectively denote the cost of an addition and a
multiplication operation in mod M . Note that the cost of performing a subtraction is also tadd.
Let tprf and th denote the costs of evaluating an instance of a certain pseudorandom function
and a length-matching hash function respectively. Let tce and tcd denote the costs of running
one encryption and one decryption of a particular cipher used in the hop-by-hop approach. The
overall computation costs for the proposed protocols are depicted below, assuming L reporting
nodes, i.e. |hdr| = L. For the aggregation operation, the calculations assume each aggregation
involves only two inputs. The computation costs are summarized by the following table.

The aggregate encryption scheme places all the decryption computation tasks at the sink
while the hop-by-hop scheme distributes the decryption cost over all the aggregating nodes in
the network. Hence, a sensor device may need to perform more computation than the sink
in the hop-by-hop approach. Since the sink is usually a more powerful device, the aggregate
encryption approach could be preferable in the WSN scenario.

In the aggregate encryption scheme, each node only needs to perform one evaluation of

11We remind the reader of that in the No-Agg scheme, no extra values need to be sent when the variance needs
to be computed.

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

70 ANNEXE B. AGRÉGATION DE DONNÉES CHIFFRÉES

· 17

Hop-by-hop Encryption (HBH) Aggregate Encryption (AGG)

Encryption tce tprf + th + tadd

Decryption tcd 2L · tprf + L · th + L · tadd

Aggregation (per 2 inputs) 2 · tcd + tce + tadd tadd

Table III. A comparison of computation costs.

the underlying pseudorandom function and one evaluation of the length-matching hash and
one addition mod M for encryption and one addition for aggregation. Aggregation is pretty
efficient in the aggregate encryption scheme. If the hash is implemented by bit truncation,
the computation cost is negligible compared to that of an addition operation. If the hash is
implemented by truncation combined with exclusive-OR, the computation cost is of the same
order as the cost of an addition operation. We could thus say the cost of evaluating h can be
neglected in the calculation of the overall computation cost of encryption without much loss
of accuracy. As a result, the cost for encryption is dominated by the cost of evaluating one
instance of the pseudorandom function.

As mentioned in Section 4.3, a collision resistant hash can be used in place of a number-theory
based pseudorandom function for key derivation if its assumed pseudorandomness is acceptable
for an application. [Perrig et al. 2001] shows an example of such usage in sensor networks and
demonstrates its feasibility in terms of computation complexity. Hence, the computation cost
of the proposed aggregate encryption scheme should be reasonable for most WSN applications.

8. AGGREGATE AUTHENTICATION AGAINST OUTSIDER-ONLY ATTACKS

While the aggregate encryption given in this paper could provide good end-to-end privacy, like
any data aggregation over plaintexts such as [Madden et al. 2002], it is vulnerable to false data
injection attacks. In its current form, even an external attacker can add an arbitrary value as
his contribution to an aggregate ciphertext in the encryption scheme in Section 4.3.

The aggregate encryption scheme is complementary to most authentication techniques in the
literature including [Chan et al. 2006; Yang et al. 2006; Przydatek et al. 2003; Hu and Evans
2003]; hence, these techniques can be added as plug-ins to the proposed aggregate encryption.
It should be noted that all these techniques are not end-to-end, namely, some kind of call-backs
to the aggregating nodes (after the sink receives the aggregate) are necessary. This section
provides an end-to-end alternative to aggregate authentication but it can only guard against an
external attacker without knowledge of a secret group key; the existence of any compromised
nodes would imply a total breath of security.

A general application scenario in which such an aggregate authentication scheme would be
useful is as follows: Suppose during the deployment of a sensor network, physical captures of
nodes are not possible, say, the network is deployed in an inaccessible area (such as an accident
scene inside a nuclear reactor or a bush fire scene) or not unattended (for instance, guarded by
a team for under-sea terrain surveying). But part of the communication over the network (say
close to the sink or collecting point) can be eavesdropped or manipulated without going inside
the scene during its deployment. The proposed aggregate authentication scheme can provide
sufficient integrity protection during deployment since no compromised node can be assumed.
However, after the task is complete, the sensor devices may be disposed of on the spot due to
the difficulty of recalling. An adversary might then be able to obtain some of the sensor devices
(say, after a long enough period of time since a nuclear accident). Combined with previously

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

71

18 ·

recorded messages eavesdropped from the network, the adversary might be able to recover part
or even all of the previously protected communication. Hence, a stronger privacy protection
scheme is needed. Under-sea terrain surveying and resource exploration could be examples
of this scenario.12 In summary, a scheme providing strong privacy with integrity protection
against outsider-only attacks could find applications in scenarios where physical captures of
sensor devices are not possible during deployment but could be achievable after deployment.

In [Chan and Castelluccia 2008], the notion of aggregate message authentication codes
(AMAC) is proposed as a natural extension of one-to-one message authentication codes (MAC)
and it is shown that no scheme can be designed to achieve such a notion. Since the proposed
notion is not a contrived one, it could be fair to say no scheme may be constructed to provide
end-to-end aggregate integrity against chosen message attacks in the presence of compromised
nodes.

Even with call-backs, say in [Chan et al. 2006], the only guarantee provided so far is that an
adversary cannot manipulate an aggregation result by an amount beyond what can be achieved
through data injection at the compromised nodes unless prior knowledge of the statistical
distribution of the data is utilized for outlier detection at the sink. In the context of additive
aggregation without requesting each sensor to provide a range proof on its contribution, the
impact of a compromised node in [Chan et al. 2006] (regarding manipulation of an aggregation
result) is essentially the same as its counterpart in our proposed aggregate authentication
scheme. Indeed, range proving requires prior knowledge of the statistical distribution of data.

When there is no compromised node, our scheme assures that no data can be injected into
an aggregate without being detected. The basic idea of our scheme is to add to each node’s
data a keyed, aggregatable checksum the computation of which requires the knowledge of a
shared group key. Without knowledge of the group key, it would be a difficult task for an
external attacker to compute a valid checksum for any modified data. It should be noted that
compromising any one of the nodes (and hence the group key) would cause a complete security
breach of the authentication scheme. Nevertheless, this could be the best one can achieve for
end-to-end aggregate authentication.

8.1 Details of the Protocol

The details of the aggregate authentication protocol are as follows.

12Suppose there are two conflicting, neighboring countries, A and B, with overlapping Exclusive Economic Zone
(EEZ). They both claim possession of a certain under-sea oil field. Country A, which is more technologically
advanced, sends out an exploration sensor network to measure the under-sea terrain and related data to prepare
for oil exploitation in the near future. Country B is supposed not to be able to make such exploration but wants
to eavesdrop the data collected by country A for its own exploitation. In order to protect its own interests,
country A would wish to ensure long-term privacy of the measured exploration data since an exploitation project
may last for a decade or so. Since an exploration team is usually close to the deployed sensor network in usual
practice and the sensor devices (deep under sea) are inaccessible, so no physical capture of sensor devices can be
assumed. Authentication against outsider-only attacks is thus sufficient when the network is not unattended.
However, once the exploration job is completed, the sensor devices will be left unattended due to the high cost
of recalling or post-deployment guarding. As the network stops operating, some devices may be drifted by sea
waves and current and floats up to the surface. These devices may then be captured by country B. Privacy
against compromised nodes is therefore deemed as needed.

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

72 ANNEXE B. AGRÉGATION DE DONNÉES CHIFFRÉES

· 19

Combined Encryption and Aggregate Authentication Scheme

Key Distribution:

Each sensor node i is given 3 secret keys (ki, k
′
i, k). They can be generated from three

independent master keys using a pseudorandom function as in the basic scheme. The sink
keeps all the three master keys. ki and k′

i correspond to the encryption key eki in the
basic scheme. Each node should receive a distinct pair of (ki, k

′
i) while getting a common

group key k.

Encryption + Checksum Computation:
Let M be the modulus of the arithmetics. For an arbitrary reporting epoch r.

(1) Each node i generates the session keys (k
(r)
i , k

(r)′

i , k(r)) from its secret keys (ki, k
′
i, k)

using a pseudorandom function and the length-matching hash function as in the basic

scheme. (i.e. k
(r)
i = h(fki

(Nr)), k
(r)′

i = h(fk′

i
(Nr)), and k(r) = h(fk(Nr)) where f(·)

is the pseudorandom function used, h(·) is the length-matching hash function and Nr

is the nonce used for epoch r.)

(2) For a plaintext message mi ∈ [0, M − 1], encrypt mi using k
(r)
i to obtain the

ciphertext xi = mi + k
(r)
i mod M .

(3) Compute the checksum: yi = mi · k
(r) + k

(r)′

i mod M .

(4) The ciphertext and checksum is: (hdr, xi, yi) where hdr = {i}.

Decryption + Verification:

(1) Given a ciphertext (hdr, x, y), generate the session keys (k
(r)
i , k

(r)′

i , k(r)) for each
i ∈ hdr.

(2) Compute m = x−
∑

i∈hdr
k

(r)
i mod M . m is the decrypted plaintext.

(3) Check y
?
=

∑

i∈hdr
k

(r)′

i + k(r) ·m mod M . If yes, set b = 1, otherwise, set b = 0.

(4) Return (m, b). Note that b = 0 indicates a verification failure.

Addition of Ciphertexts: Given two ciphertexts (hdri, xi, yi) and (hdrj , xj , yj),

(1) Compute hdrl = hdri ∪ hdrj .

(2) Compute xl = xi + xj mod M .

(3) Compute yl = yi + yj mod M .

(4) The aggregated ciphertext is: (hdrl, xl, yl).

The final aggregated ciphertext (hdr, x, y) received at the sink can be expressed as two
equations:

{

x = K
(r)
1 + m

y = K
(r)
2 + K(r) ·m

(1)

where m is the final aggregate of the plaintext data and K
(r)
1 , K

(r)
2 , K(r) are two sums of node

keys and the common group key (for epoch r) given by the following expressions:

K
(r)
1 =

∑

i∈hdr

k
(r)
i , K

(r)
2 =

∑

i∈hdr

k
(r)′

i , and K(r) = k(r).

Equation (1) can be viewed as a set of constraint equations (for a particular hdr) that a

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

73

20 ·

correct pair (x, y) should satisfy. For each epoch, hdr is part of the input to the verification

process to define the coefficients K
(r)
1 , K

(r)
2 , K(r) of the constraint equations in (1); hdr uniquely

specifies a subset of nodes whose data are supposed to have been incorporated in (x, y).
If (x, y) has not been tampered with, the plaintext aggregate m extracted from the first

constraint equation in (1) should satisfy the second constraint equation in (1); m is a correct
aggregate of the data contributed by the nodes in hdr when they all act honestly. The goal of
an external adversary is thus to find a different valid pair (x′, y′) for the same hdr such that

{

x′ = K
(r)
1 + m′

y′ = K
(r)
2 + K(r) ·m′

for some m′ 6= m and m′ is not necessarily known by the adversary. Note that the coefficients

K
(r)
1 , K

(r)
2 , K(r) have to be the same as that in the equations for (x, y) for a successful forgery.

Without knowledge of K(r), the probability for any PPT adversary to find such a valid pair
(x′, y′) for the given hdr should be negligibly small. The proposed protocol guarantees with
high probability that, for an epoch r, any pair (x, y) which passes the verification test for a
given hdr has to allow the recovery of a correct aggregate whose contributions can only come
from nodes in hdr with knowledge of K(r) (with exactly one contribution from each node in
hdr).

In any epoch, by passively observing transmissions from honest nodes in a network, an
adversary without knowledge of K(r) can still create multiple tuples of the form (hdr, x, y),
each with a distinct hdr, to pass the verification test of Equation (1). This can be achieved by
simply aggregating valid ciphertext-checksum pairs eavesdropped in the transmissions of the
honest nodes. However, it should be noted that, for each hdr, there is at most one such tuple
and the corresponding pair of (x, y) is indeed a correct ciphertext-checksum pair for hdr in the
sense that this pair of (x, y), upon verification, can recover an aggregate m the contributions of
which only originate from the honest nodes specified in hdr, that is, m =

∑

i∈hdr mi where mi is
the measurement of node i. In other words, in the set C of ciphertext-checksum pairs obtained
by combining eavesdropped pairs through the aggregation functionality, if a pair (x, y) ∈ C
passes the verification equations in (1) for hdr, any pair (x′, y′) ∈ C which can satisfy the
same set of equations (i.e. with the same set of coefficients) has to be equal to (x, y). Hence,
any external attacker without knowledge of K(r) still cannot inject its data into an aggregate
ciphertext pair (x, y) which satisfies the constraint equations in (1) even though he may be
able to create such a pair from the ciphertext-checksum pairs obtained from eavesdropping the
transmissions of honest nodes; neither can the attacker modify an existing valid pair of (x, y)
to pass the verification test for the same hdr but produce a different aggregate output except
with a negligibly small probability.13

It is thus fair to say the best that an external adversary without knowledge of K(r) can
achieve in breaking the proposed scheme is essentially limited to excluding the contributions of
some honest nodes from being incorporated into an aggregate. Such exclusion would usually
have slight impact in the calculation of mean and variance unless the exclusion makes up a
pretty large fraction of nodes in which case it would make the sink suspect the occurrence of a
possible attack. It should be emphasized that, to achieve so with impact, the adversary must
be capable to intercept and modify a considerable portion of the transmissions in the entire
network, which is normally hard for an attacker to achieve.

13An adversary may be able to obtain another valid (x, y) pair but it is valid only for a different hdr.

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

74 ANNEXE B. AGRÉGATION DE DONNÉES CHIFFRÉES

· 21

8.2 Security Analysis

Recall that the goal of the proposed extension of aggregate authentication is to guard against
any external attackers (without knowledge of the keys) from injecting data into an aggregate.
The security of the proposed scheme is summarized by the following theorem.

Theorem 2. Given a genuine ciphertext-checksum pair (x, y) corresponding to an aggregate m
which incorporates data from a group of nodes specified by hdr and all other communication
transcripts between nodes, the probability of successfully forging a valid pair (x′, y′) 6= (x, y) for
some m′ 6= m to pass the verification test of the aggregate authentication scheme for the same
hdr is negligible for any external PPT (Probabilistic Poly-Time) adversary without knowing
K, assuming the encryption keys and the group key are generated by a pseudorandom function
based on different seed keys.

Proof: Assume the pseudorandom function has some indistinguishability property as usual. We
prove by contradiction, showing that a PPT adversary which can forge a valid pair (x′, y′) can
also break the indistinguishability property of the underlying pseudorandom function. We show
the reduction14 in two steps: first, we show that a forging algorithm to find (x′, y′) can be used
as a sub-routine to solve a newly defined problem called “Under-determined Equation Set with
Pseudorandom Unknowns (UESPU)”; then we show that the UESPU problem is computation-
ally hard if the underlying pseudorandom function has the usual indistinguishability property.
The UESPU problem is defined as follows:

Under-determined Equation Set with Pseudorandom Unknowns (UESPU) Problem — Suppose

K1, K2, K are independent random seeds. Let K
(r)
1 , K

(r)
2 and K(r) denote the hashed outputs

of a pseudorandom function f at input r corresponding to seed keys K1, K2 and K.15 Given

a 3-tuple (m, x, y) where x = K
(r)
1 + m and y = K

(r)
2 + K(r) ·m, find (K

(r)
1 , K

(r)
2 , K(r)) while

allowed to evaluate the pseudorandom function at any input r′ 6= r.16

Without loss of generality, in the UESPU problem, each of K
(r)
1 , K

(r)
2 and K(r) is treated

as a single hashed output of f . In the proposed aggregate authentication, they are the sums
of hashed outputs of f . If they are represented as the sums of hashed output of f instead, the
modified problem would remain hard if f is a pseudorandom function.

Solving the UESPU problem using a forger of (x′, y′).
Suppose there exists a PPT adversaryA which can forge a valid pair (x′, y′) at an epoch with

nonce r with non-negligible probability pf . Using A as a subroutine, we can construct another

algorithm A′ to find (K
(r)
1 , K

(r)
2 , K(r)) from (m, x, y) with probability pf in any instance of the

14The reduction of the problem of breaking the indistinguishability of the pseudorandom function to the problem
of forging a valid (x′, y′) pair.
15That is, K

(r)
1 = h(fK1

(r)), K
(r)
2 = h(fK2

(r)), and K(r) = h(fK(r)) where h is the length-matching hash
function.
16The UESPU problem is typically hard if f is a pseudorandom function. More formally defined, given that
l is the key length of the pseudorandom function f and h is a length-matching hash function, the following
probability is negligible in l for any PPT algorithm A.

Pr







K1 ← {0, 1}l; K2 ← {0, 1}l;K ← {0, 1}l; r ← {0, 1}l;

K
(r)
1 = h(fK1

(r)); K
(r)
2 = h(fK2

(r)); K(r) = h(fK(r));

m← ZM ; x = K
(r)
1 + m; y = K

(r)
2 + K(r) ·m

: Af (m, x, y) = (K
(r)
1 , K

(r)
2 , K(r))







ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

75

22 ·

UESPU problem. Note that A′ should be able to answer queries from A for any r′ 6= r by
passing the queries to its challenger.

The construction of A′ is as follows: Give A the pair (x, y). When A returns a pair (x′, y′) 6=

(x, y), we can determine K
(r)
1 , K

(r)
2 , K(r) from the resulting set of equations. The explanation

is as follows:
Note that

x = K
(r)
1 + m

y = K
(r)
2 + K(r) ·m.

So we have two equations and 3 unknowns. If (x′, y′) is a valid forgery, then it must satisfy the

following two equations (with the same K
(r)
1 , K

(r)
2 and K(r)) in order to pass the verification

test:

x′ = K
(r)
1 + m′

y′ = K
(r)
2 + K(r) ·m′

for some unknown value m′ 6= m.
The pair (x′, y′) adds in two new equations and one unknown m′. Since (x′, y′) 6= (x, y)

and m′ 6= m, it can be assured that the four equations are independent. Hence, there are four

independent equations and four unknowns in total and it should be easy to solve for K
(r)
1 , K

(r)
2 ,

K(r) (a contradiction to the UESPU assumption). The probability of solving the problem in
the UESPU assumption is hence pf .

Suppose there are n reporting nodes. The communication transcripts can be simulated easily
by randomly picking (n−1) random pairs of ciphertext-checksum (xi, yi) and subtracting them
from (x, y) to obtain the n-th pair. Since A does not have any knowledge about the node keys,
real pairs of (xi, yi) should look random to A. Hence, A could not distinguish its view in the
simulation and that in the real attack. On the other hand, it could be concluded that knowing
(xi, yi) without knowing the node keys would not help in creating a valid forgery. In the above

discussion, we treat K
(r)
1 , K

(r)
2 , K(r) as a single output of a pseudorandom function for the

sake of clarity and easy comprehension; more precisely, in the aggregate authentication scheme,
each one of them is the sum of outputs of a pseudorandom function seeded with distinct keys
(one from each sensor node). Nonetheless, the above arguments and conclusion apply to both
cases.

A distinguisher for the pseudorandom function using an algorithm which solves
the UESPU problem.

The UESPU problem is hard if K
(r)
1 , K

(r)
2 , K(r) are generated by a pseudorandom function.

Obviously, m and x can uniquely determine K
(r)
1 . But the equation y = K

(r)
2 + K(r) ·m has

two unknowns, which cannot be uniquely determined. It could be shown that if there exists an

algorithm A′ solving in poly-time K
(r)
2 and K(r) from m and y, then the indistinguishability

property of the underlying pseudorandom function is broken.
The idea is as follows: assume the seed key for generating K(r) is unknown but the seed key

for generating K
(r)
2 is known. That is, we can generate K

(r′)
2 for any r′. When a challenge K(r)

is received, we have to determine whether it is randomly picked from a uniform distribution or

generated by the pseudorandom function with an unknown seed key. We generate K
(r)
2 from

the known seed key. Then we pass y = K
(r)
2 + K(r) ·m to A′. If the solution from A′ does not

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

76 ANNEXE B. AGRÉGATION DE DONNÉES CHIFFRÉES

· 23

match the generated K
(r)
2 , we reply that K(r) is randomly picked, otherwise, it is generated

from the pseudorandom function. If A′ has non-negligible probability of breaking the UESPU
assumption, the above construction would also has a non-negligible advantage of breaking the
indistinguishability property of the underlying pseudorandom function. Note that all queries
from A′ could be answered by sending queries to the challenger and running the pseudorandom
function with the known key.

8.3 Additional Overheads

The aggregate authentication extension leads to additional costs in both communication and
computation. For the communication cost, the length of each ciphertext is now increased by |M |
(where M is the modulus of the arithmetics in use). This is the size of the added checksum. For
the computation cost, the notations of Section 7.3 are used. The additional computation costs
needed for checksum generation and verification are summarized as follows. In the calculation
of verification cost, the cost of a comparison operation in mod M is assumed similar to the cost
of an addition operation in mod M .

Additional Computation Costs
Checksum Generation 2 · tprf + 2 · th + tadd + tmulti

Checksum Verification (2L + 1) · tprf + (L + 1) · th + (L + 1) · tadd + tmulti

Table IV. Additional computation costs of the extension of aggregate authentication (assuming L is the number
of nodes contributing to an aggregate).

9. RELATED WORK

The problem of aggregating encrypted data in WSNs was partially explored in [Girao et al.
2004]. In this paper, the authors propose to use an additive and multiplicative homomorphic
encryption scheme to allows aggregation of encrypted data. While this work is very interesting,
it has several important limitations. Firstly, it is not clear how secure the encryption scheme
really is. Secondly, as acknowledged by the authors, the encryption and aggregation opera-
tions are very expensive and therefore require quite powerful sensors. Finally, in the proposed
scheme, the encryption expands the packet size significantly. Given all these drawbacks, it
is questionable whether aggregation is still beneficial. In contrast, our encryption scheme is
proven to be secure and is very efficient. Encryption and aggregation only requires a small
number of single-precision additions. Furthermore, our encryption scheme only expands packet
sizes by a small number of bits. As a result, it is well adapted to WSNs consisting of very
resource constrained sensors.

In [Hu and Evans 2003], Hu and Evans propose a protocol to securely aggregate data. The
paper presents a way to aggregate MACs (message authentication code) of individuals packets
such that the sink can eventually detects non-authorized inputs. This problem is actually
complementary to the problem of aggregating encrypted data, we are considering in this paper.
The proposed solution introduces significant bandwidth overhead per packet. Furthermore, it
requires the sink to broadcast n keys, where n is the number of nodes in the network, at each
sampling period. This makes the proposed scheme non-practical.

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

77

24 ·

Although not related to data privacy, in [Przydatek et al. 2003] Przydatek, et al. present
efficient mechanism for detecting forged aggregation values (min, max, median, average and
count). In their setting, a trusted outside user can query the WSN. The authors then look into
how to reduce the trust placed in the sink node (base station) while ensuring correctness of the
query response. Another work by Wagner [Wagner 2004] examines security of aggregation in
WSNs, describing attacks against existing aggregation schemes before providing a framework
in which to evaluate such a scheme’s security.

10. CONCLUSION

This paper proposes a new homomorphic encryption scheme that allows intermediate sensors
(aggregators) to aggregate the encrypted data of their children without having to decrypt them.
As a result, even if an aggregator gets compromised, the attacker won’t be able to eavesdrop on
the data and aggregate, resulting in much stronger privacy than an aggregation scheme relying
on by hop-by-hop encryption.

We show that if the key streams used in our scheme are derived using a pseudorandom
function, our scheme can achieve semantic security against any collusion of size less than the
total number of nodes.

We evaluate the performance of our scheme. We show, as expected, that our scheme is
slightly less bandwidth efficient than the hop-by-hop aggregation scheme described previously.
However it provides a much stronger level of security. The privacy protection provided by
our scheme is in fact comparable to the privacy protection provided by a scheme that would
use end-to-end encryption and no aggregation (i.e. the aggregation is performed at the base
station). We show that our scheme is not only much more bandwidth-efficient than such an
approach, but it also distributes the communication load more evenly amongst the network
nodes, resulting in an extended longevity of the WSN.

Finally, we extend our scheme to provide end-to-end aggregate authentication. Without
knowledge of a group key, an external attacker has negligible probability of tampering the
aggregate without being detected in the extension.

In conclusion, we give efficient, provably secure solutions to provide end-to-end privacy and
authenticity (with reasonably good security assurance) for WSNs while en-route aggregation is
supported. The presented scheme only supports mean and variance computation. However, we
shown in [Castelluccia and Soriente 2008] that our construction could be used as a building block
for other aggregation schemes to support more functions (such as medium, mode, range,...).

REFERENCES

Bellare, M., Canetti, R., and Krawczyk, H. 1996. Keying hash functions for message authentication. In
Advances in Cryptology — CRYPTO 1996, Springer-Verlag LNCS vol. 1109. 1–15.

Boneh, D., Gentry, C., Lynn, B., and Shacham, H. 2003. Aggregate and verifiably encrypted signatures
from bilinear maps. In Advances in Cryptology — EUROCRYPT 2003, Springer-Verlag LNCS vol. 2656.
416–432.

Castelluccia, C., Mykletun, E., and Tsudik, G. 2005. Efficient aggregation of encrypted data in wireless
sensor networks. In the Proceedings of MobiQuitous’05. 1–9.

Castelluccia, C. and Soriente, C. 2008. ABBA: Secure aggregation in wsns - a bins and balls approach.
6th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOpt).

Chan, A. C.-F. and Castelluccia, C. 2007. On the privacy of concealed data aggregation. In ESORICS
2007, Springer-Verlag LNCS vol. 4734. 390–405.

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

78 ANNEXE B. AGRÉGATION DE DONNÉES CHIFFRÉES

· 25

Chan, A. C.-F. and Castelluccia, C. 2008. On the (im)possibility of aggregate message authentication codes.

ePrint Archive, Report 2008-. http://.

Chan, H., Perrig, A., and Song, D. 2006. Secure hierarchical in-network aggregation in sensor networks. In
ACM Conference on Computer and Communication Security (CCS 06). 278–287.

Eschenauer, L. and Gligor, V. D. 2000. A key management scheme for distributed sensor networks. ACM
CCS , 41–47.

Girao, J., Westhoff, D., and Schneider, M. 2004. CDA: Concealed data aggregation in wireless sensor
networks. ACM WiSe 2004 .

Goldreich, O. 2001. Foundations of Cryptography: Part 1. Cambridge University Press.

Goldwasser, S. and Micali, S. 1984. Probabilistic encryption. Journal of Computer and System Sci-
ences 28, 2, 270–299.

Goldwasser, S., Micali, S., and Rivest, R. 1988. A secure signature scheme secure against adaptive chosen-
message attacks. SIAM Journal on Computing 17, 2, 281–308.

Hu, L. and Evans, D. 2003. Secure aggregation for wireless networks. Workshop on Security and Assurance
in Ad hoc Networks.

Iwata, T. and Kurosawa, K. 2003. OMAC: One-key CBC MAC. In Fast Software Encryption (FSE 2003),
Springer-Verlag LNCS vol. 2887. 129–153.

Karlof, C., Sastry, N., and Wagner, D. 2004. Tinysec: a link layer security architecture for wireless sensor
networks. Embedded Networked Sensor Systems, 162–175.

Karlof, C. and Wagner, D. 2003. Secure routing in wireless sensor networks: Attacks and countermeasures.
Workshop on Sensor Network Protocols and Applications.

Katz, J. and Yung, M. 2006. Characterization of security notions for probabilistic private-key encryption.
Journal of Cryptology 19, 1, 67–95.

Madden, S. R., Franklin, M. J., Hellerstein, J. M., and Hong, W. 2002. TAG: a Tiny AGgregation service
for ad-hoc sensor networks. Fith Annual Symposium on Operating Systems Design and Implementation, 131–
146.

Naor, M., Reingold, O., and Rosen, A. 2002. Pseudorandom functions and factoring. SIAM Journal on
Computing 31, 5, 1383–1404.

Naor, M. and Yung, M. 1990. Public-key cryptosystems provably secure against chosen-ciphertext attacks.

In ACM Symposium on Theory of Computing (STOC 1990). 427–437.

NIST. 2001. Advanced encryption standard. NIST (National Institute of Standards and Technology) FIPS
PUB 197 .

Perrig, A., Stankovic, J., and Wagner, D. 2004. Security in wireless sensor networks. Communications of
the ACM 47, 53–57.

Perrig, A., Szewczyk, R., Wen, V., Culler, D., and Tygar, D. 2001. SPINS: Security protocols for sensor
networks. In the Proceedings of ACM MOBICOM 2001. 189–199.

Przydatek, B., Song, D., and Perrig, A. 2003. SIA: Secure information aggregation in sensor networks.
ACM SENSYS , 255–265.

Rivest, R. L. 1995. The RC5 encryption algorithm. Dr. Dobb’s Journal 1008.

Rivest, R. L., Shamir, A., and Adleman, L. M. 1978. A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems. Communications of the ACM 21, 120–126.

Vernam, G. S. 1926. Cipher printing telegraph systems for secret wire and radio telegraphic communications.
Journal of the American Institute of Electrical Engineers 45, 105–115. See also US patent #1,310,719.

Wagner, D. 2004. Resilient aggregation in sensor networks. Workshop on Security of Ad Hoc and Sensor
Networks.

Westhoff, D., Girao, J., and Acharya, M. 2006. Concealed data aggregation for reverse multicast traf-
fic in sensor networks: Encryption, key distribution, and routing adaption. IEEE Transactions on Mobile
Computing 5, 10, 1417–1431.

Wood, A. D. and Stankovic, J. A. 2002. Denial of service in sensor networks. IEEE Computer 35, 54–62.

Yang, Y., Wang, X., Zhu, S., and Cao, G. 2006. SDAP: A secure hop-by-hop data aggregation protocol for
sensor networks. In the Proceedings of ACM Internation Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc) 2006.

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

79

26 ·

Zhu, S., Setia, S., Jajodia, S., and Ning, P. 2004. An interleaved hop-by-hop authentication scheme for

filtering false data in sensor networks. IEEE Symposium on Security and Privacy .

Appendix A: Semantic Security of Concealed Data Aggregation (CDA) [Chan and Castelluccia 2007]

Notation

We follow the notations for algorithms and probabilistic experiments that originate in [Gold-
wasser et al. 1988]. A detailed exposition can be found there. We denote by z ← A(x, y, . . .)
the experiment of running probabilistic algorithm A on inputs x, y . . ., generating output z. We
denote by {A(x, y, . . .)} the probability distribution induced by the output of A. The notations
x← D and x ∈R D are equivalent and mean randomly picking a sample x from the probability
distribution D; if no probability function is specified for D, we assume x is uniformly picked
from the sample space. We denote by N the set of non-negative integers. As usual, PPT denote
probabilistic polynomial time. An empty set is always denoted by φ.

CDA Syntax

A typical CDA scheme includes a sink R and a set U of n source nodes (which are usually
sensor nodes) where U = {si : 1 ≤ i ≤ n}. Denote the set of source identities by ID; in the
simplest case, ID = [1, n]. In the following discussion, hdr ⊆ ID is a header indicating the
source nodes contributing to an encrypted aggregate. A source node i has the encryption key
eki while the sink keeps the decryption key dk from which all eki’s can be computed. Given a
security parameter λ, a CDA scheme consists of the following polynomial time algorithms.

Key Generation (KG). Let KG(1λ, n) → (dk, ek1, ek2, . . . , ekn) be a probabilistic algorithm.
Then, eki (with 1 ≤ i ≤ n) is the encryption key assigned to source node si and dk is the
corresponding decryption key given to the sink R.

Encryption (E). Eeki
(mi)→ (hdri, ci) is a probabilistic encryption algorithm taking a plain-

text mi and an encryption key eki as input to generate a ciphertext ci and a header hdri ⊂ ID.
Here hdri indicates the identity of the source node performing the encryption; if the identity
is i, then hdri = {i}. Sometimes the encryption function is denoted by Eeki

(mi; r) to explicitly
show by a string r the random coins used in the encryption process.

Decryption (D). Given an encrypted aggregate c and its header hdr ⊆ ID (which indicates
the source nodes included in the aggregation), Ddk(hdr, c)→ m/ ⊥ is a deterministic algorithm
which takes the decryption key dk, hdr and c as inputs and returns the plaintext aggregate m
or possibly ⊥ if c is an invalid ciphertext.

Aggregation (Agg). With a specified aggregation function f such as additive aggregation
considered in this paper, Aggf (hdri, hdrj , ci, cj) → (hdrl, cl) aggregates two encrypted aggre-
gates ci and cj with headers hdri and hdrj respectively (where hdri ∩ hdrj = φ) to create
a combined aggregate cl and a new header hdrl = hdri ∪ hdrj . Suppose ci and cj are the
ciphertexts for plaintext aggregates mi and mj respectively. The output cl is the cipher-
text for the aggregate f(mi, mj), namely, Ddk(hdrl, cl) → f(mi, mj). This paper considers
f(mi + mj) = mi + mj mod M . Note that the aggregation algorithm does not need the decryp-
tion key dk or any of the encryption keys eki as input; it is a public algorithm.

It is intentional to include the description of the header hdr in the security model to make it
as general as possible (to cover schemes requiring headers in their operations). hdr is needed
in some schemes to identify the set of decryption keys required to decrypt a certain ciphertext.

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

80 ANNEXE B. AGRÉGATION DE DONNÉES CHIFFRÉES

· 27

Nonetheless, generating headers or including headers as input to algorithms should not be
treated as a requirement in the actual construction or implementation of CDA algorithms. For
constructions which do not need headers, all hdr’s can simply be treated as the empty set φ in
the security model.

The Notion of Semantic Security

Only one type of oracle queries (adversary interaction with the system) is allowed in the security
model, namely, the encryption oracle OE . The details are as follows:

Encryption Oracle OE(i, m, r).. For fixed encryption and decryption keys, on input an en-
cryption query 〈i, m, r〉, the encryption oracle retrieves si’s encryption key eki and runs the
encryption algorithm on m and replies with the ciphertext Eeki

(m) and its header hdr. The
random coins or nonce r is part of the query input to OE .

The encryption oracle is needed in the security model since the encryption algorithm uses
private keys.

To define security (more specifically, indistinguishability) against chosen plaintext attacks
(IND-CPA), we use the following game played between a challenger and an adversary, assuming
there is a set U of n source nodes. If no PPT adversary, even in collusion with at most t
compromised nodes, can win the game with non-negligible advantage (as defined below), we
say the CDA scheme is t-secure. The adversary is allowed to freely choose parameters n and t.

Definition 3. A CDA scheme is t-secure (indistinguishable) against adaptive chosen plaintext
attacks if the advantage of winning the following game is negligible in the security parameter λ
for all PPT adversaries.

Collusion Choice. The adversary chooses to corrupt t source nodes. Denote the set of these
t corrupted nodes and the set of their identities by S′ and I ′ respectively.

Setup. The challenger runs the key generation algorithm KG to generate a decryption key dk
and n encryption keys {eki : 1 ≤ i ≤ n}, and gives the subset of t encryption keys {ekj : sj ∈
S′} to the adversary but keeps the decryption key dk and the other (n − t) encryption keys
{ekj : sj ∈ U\S′}.

Query 1. The adversary can issue to the challenger one type of queries:
- Encryption Query 〈ij , mj , rj〉. The challenger responds with Eeij

(mj) using random coins

rj . The adversary is allowed to choose and submit his choices of random coins for encryption
queries.

Challenge. Once the adversary decides that the first query phase is over, it selects a subset
S of d source nodes (whose identities are in the set I) such that |S\S′| > 0, and outputs two
different sets of plaintexts M0 = {m0k : k ∈ I} and M1 = {m1k : k ∈ I} to be challenged. The
only constraint is that the two resulting plaintext aggregates x0 and x1 are not equal where
x0 = f(. . . , m0k, . . .) and x1 = f(. . . , m1k, . . .).

The challenger flips a coin b ∈ {0, 1} to select between x0 and x1. The challenger then en-
crypts each mbk ∈Mb with ekk and aggregates the resulting ciphertexts in the set {Eekk

(mbk) :
k ∈ I} to form the ciphertext C of the aggregate, that is, C = E{ekk:k∈I}(xb), and gives C
to the adversary. The challenger chooses and passes the nonce to the adversary. The global
random coins should be chosen different from those used in the Query 1 phase and no query
on them should be allowed in the Query 2 phase.

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

81

28 ·

Query 2. The adversary is allowed to make more queries as previously done in Query 1 phase.

Guess. Finally, the adversary outputs a guess b′ ∈ {0, 1} for b.

Result. The adversary wins the game if b′ = b. The advantage of the adversary is defined as:
AdvA =

∣

∣Pr[b′ = b]− 1
2

∣

∣.

Note that in CDA what the adversary is interested in is the information about the final
aggregate. Consequently, in the above game, the adversary is asked to distinguish between the
ciphertexts of two different aggregates x0 and x1 as the challenge, rather than to distinguish
the two sets of plaintexts M0 and M1. Allowing the adversary to choose the two sets M0, M1

is to give him more flexibility in launching attacks.

Appendix B: Proof of Theorem 1

Proof: For the sake of clarity, we first prove the security of a version without using the hash
function h. Then we show why the proof also works for the hashed version. The reduction
is based on the indistinguishability property of a pseudorandom function which is stated as
follows:

Indistinguishability Property of a Pseudorandom Function.
Assume f is taken from a pseudorandom function. Then for a fixed input argument x

and an unknown, randomly picked key K, the following two distributions are computationally
indistinguishable provided that polynomially many evaluations of fK(·) have been queried:

{y = fK(x) : y}, {y← {0, 1}λ : y}.

That is, the output fK(x) is computationally indistinguishable from a randomly picked number
from {0, 1}λ to any PPT distinguisher who has knowledge of the input argument x and a
set of polynomially many 2-tuples (xi, fK(xi)) where xi 6= x. More formally, for any PPT
distinguisher D,

|Pr[y = fK(x) : D(x, y) = 1]− Pr[y ← {0, 1}λ : D(x, y) = 1]| < ε(λ)

where ε(λ) is a negligible function in λ.

Proof for the Non-hashed Scheme.
Without loss of generality, we prove the security of a modified version of the construction

in which each encryption key is uniformly picked from {0, 1}λ, compared with keys generated
by a pseudorandom function in the actual scheme. We then provide a justification why the
inference applies to the actual implementation.

Suppose there exists a PPT adversary D which can break the semantic security of the scheme
with non-negligible advantage AdvCMT

D . We show in the following how D can be used to
construct an algorithm D′ which can distinguish the above distributions with non-negligible
advantage. Assume the key K in question is unknown to D′.

Algorithm D′

Setup. Allow the adversary D to choose any n− 1 sources to corrupt. Randomly pick n− 1
encryption keys eki ∈R {0, 1}λ and pass them to the adversary. Assume node n is uncorrupted.
The encryption key for node n is taken to be K, the key of the pseudorandom function D′ is
being challenged with.

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

82 ANNEXE B. AGRÉGATION DE DONNÉES CHIFFRÉES

· 29

Query. Upon receiving an encryption query 〈ij , mj , rj〉 with nonce rj , return cj = (fekij
(rj)+

mj) mod M if ij 6= n. Otherwise, pass rj to query the pseudorandom function to get back
fK(rj) and reply with cj = (fK(rj) + mj) mod M .

Challenge. In the challenge phase, receive from D two sets of plaintext messages M0 =
{m01, m02, . . . , m0n} and M1 = {m11, m12, . . . , m1n}.

Randomly pick a number w and output it to the pseudorandom function challenger to ask
for a challenge. Note w is the nonce used for CDA encryption in the challenge for D. The
pseudorandom function challenger flips a coin b ∈ {0, 1} and returns tb, which is fK(w) when
b = 0 and randomly picked from {0, 1}λ when b = 1. These two cases corresponds to the two
distributions discussed above.

Randomly flip a coin d ∈ {0, 1}, and return the challenge ciphertext cd to D where cd =
∑n

i=1 mdi +
∑n−1

i=1 feki
(w) + tb.

Guess. D returns its guess b′. Return b′′ which is 0 when b′ = d and 1 otherwise.

Obviously, if D is PPT, then D′ is also PPT. Denoting the expression
∑n

i=1 mdi+
∑n−1

i=1 feki
(w)

by Xd, the challenge passed to D can be expressed as cd = Xd + tb. When b = 0, tb = fK(w);
when b = 1, tb is a randomly picked number from {0, 1}λ. In the following discussion, we denote
the output of D on input cd by D(cd). The probability of success for D′ to distinguish between
fK(w) and a random number is:

PrPRF
D′ [Success] = Pr[b′′ = b]

= 1
2{Pr[b′′ = 0|b = 0] + Pr[b′′ = 1|b = 1]}

= 1
4{Pr[b′′ = 0|b = 0, d = 0] + Pr[b′′ = 0|b = 0, d = 1]

+Pr[b′′ = 1|b = 1, d = 0] + Pr[b′′ = 1|b = 1, d = 1]}
= 1

4{Pr[D(t0 + X0) = 0] + Pr[D(t0 + X1) = 1]
+Pr[D(t1 + X0) = 0] + Pr[D(t1 + X1) = 1]}

= 1
4{Pr[D(t0 + X0) = 0] + Pr[D(t0 + X1) = 1]

+1− Pr[D(t1 + X0) = 1] + Pr[D(t1 + X1) = 1]}
= 1

4{2PrCMT
D [Success] + 1− (Pr[D(t1 + X0) = 1]− Pr[D(t1 + X1) = 1])}.

Note that t0 + X0 and t0 + X1 are valid ciphertexts for the two challenges plaintext sets M0

and M1 respectively. In the last step, we make use of the fact that the probability of success
for D to break the semantic security of the scheme is given by:

PrCMT
D [Success] = 1

2Pr[D(t0 + X0) = 0] + 1
2Pr[D(t0 + X1) = 1].

Rearranging terms, we have

4PrPRF
D′ [Success] + Pr[D(t1 + X0) = 1]− Pr[D(t1 + X1) = 1] = 2PrCMT

D [Success] + 1

4(PrPRF
D′ [Success]− 1

2) + Pr[D(t1 + X0) = 1]
−Pr[D(t1 + X1) = 1]

= 2(PrCMT
D [Success]− 1

2).

Taking absolute value on both sides and substitute AdvPRF
D′ = |PrPRF

D′ [Success] − 1
2 | and

AdvCMT
D = |PrCMT

D [Success]− 1
2 |, we have

2AdvPRF
D′ +

1

2
|Pr[D(t1 + X0) = 1]− Pr[D(t1 + X1) = 1]| ≥ AdvCMT

D .

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

83

30 ·

Since t1 is a randomly picked number, {t1 + X0} and {t1 + X1} are identically distributed.
That is, for any PPT algorithm D, Pr[D(t1 + X0) = 1] = Pr[D(t1 + X1) = 1]. Hence,

2AdvPRF
D′ (λ) ≥ AdvCMT

D (λ).

Note also that:
∣

∣ Pr[x← {0, 1}λ; y = fK(x) : D′(y) = 1]− Pr[y ← {0, 1}λ : D′(y) = 1]
∣

∣ > 2AdvPRF
D′ (λ).

If AdvCMT
D is non-negligible in λ, then so is AdvPRF

D′ . As a result, if D can break the semantic
security of the scheme with non-negligible advantage, D′ could distinguish between the out-
put of pseudorandom function f and a random number. Equivalently, |Pr[x ← {0, 1}λ; y =
fK(x) : D′(y) = 1] − Pr[y ← {0, 1}λ : D′(y) = 1]| is non-negligible (a contradiction to the
indistinguishability property of a pseudorandom function).

The above security argument applies to the actual implementation since the view of the
adversary D in the above simulation is in essence the same as that in the actual scheme. For
each one of the n − 1 corrupted node, the encryption key is fK′(i) (1 ≤ i ≤ n − 1) for
some randomly picked master key K ′. By the property of pseudorandom function, fK′(i) is
indistinguishable from a randomly picked key (as used in the above simulation game) for all PPT
distinguisher algorithms. For the uncorrupted node, its output for encryption is now ffK′ (n)(x)
instead of fK(x) (with randomly picked K) as used in the above simulation game. It can be
shown by a contrapositive argument that, for fixed n, the two distributions are computationally
indistinguishable, that is,

{

K ′ ← {0, 1}λ; x← {0, 1}λ : ffK′(n)(x)
} c
≡

{

K ← {0, 1}λ; x← {0, 1}λ : fK(x)
}

.

The argument is as follows: Assume f is a pseudorandom function. That is, A = {K ′ ←
{0, 1}λ : fK′(n)} is indistinguishable from B = {K ← {0, 1}λ : K} for all PPT distinguishers.
If there exists a PPT distinguisher D which can distinguish between X = {K ′ ← {0, 1}λ; x←
{0, 1}λ : ffK′(n)(x)} and Y = {K ← {0, 1}λ; x← {0, 1}λ : fK(x)}, we can use D to distinguish
between A and B. The idea is when we receive a challenge s which could be from A or B, we
send fs(x) as a challenge for D. If s belongs to A, fs(x) belongs to X , and if s belongs to B,
fs(x) belongs to Y . We could thus distinguish X from Y (a contradiction).

Security of the Hashed Version.
Only a few modifications to the security proof above are needed in order to prove the security

of the hashed variant.
First, in the algorithm D′, all ciphertexts are now generated using the hashed values of the

pseudorandom function outputs or replies from the challenger of D′. With such changes, we
now denote the expression

∑n

i=1 mdi +
∑n−1

i=1 h(feki
(w)) by Xd. Of course, the modulus size

would be l instead of λ.
Second, the challenge passed to D would be: cd = Xd + h(tb). Then the derivation for the

advantage expressions is essentially the same as that for the non-hashed scheme.
Third, the security proof of the non-hashed scheme relies on the fact that {t1 ← {0, 1}λ :

t1 + X0} and {t1 ← {0, 1}λ : t1 + X1} are identical distribution. On the contrary, to prove the
security of hashed scheme, we need the following distributions to be identical:

{t1 ← {0, 1}λ : h(t1) + X0}, {t1 ← {0, 1}λ : h(t1) + X1}.

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

84 ANNEXE B. AGRÉGATION DE DONNÉES CHIFFRÉES

· 31

If h fulfills the requirement mentioned above, then {t1 ← {0, 1}λ : h(t1)} is the uniform
distribution over {0, 1}l. Consequently, the above two distributions are identical. This thus
concludes the proof that hashed scheme is semantically secure.

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY.

Annexe C

Le protocole Orangina

Cette annexe contient l’article “Shake Them Up !” qui a été présenté à la conférence ACM/Usenix
International Conference on Mobile Systems, Applications, and Services (Mobisys), en 2005.

Il présente un nouveau protocole d’échange de clés entre deux appareils. Ce protocole n’utilise
aucune fonction cryptographique et est, donc, très bien adapté aux capteurs.

85

86 ANNEXE C. LE PROTOCOLE ORANGINA

Shake Them Up!
A movement-based pairing protocol for CPU-constrained devices

Claude Castelluccia
INRIA and University of California, Irvine

claude.castelluccia@inria.fr

Pars Mutaf
INRIA

pars.mutaf@inria.fr

Abstract

This paper presents a new pairing protocol that allows
two CPU-constrained wireless devices Alice and Bob
to establish a shared secret at a very low cost. To our
knowledge, this is the first software pairing scheme that
does not rely on expensive public-key cryptography, out-
of-band channels (such as a keyboard or a display) or
specific hardware, making it inexpensive and suitable for
CPU-constrained devices such as sensors.

In the described protocol, Alice can send the secret
bit 1 to Bob by broadcasting an (empty) packet with the
source field set to Alice. Similarly, Alice can send the
secret bit 0 to Bob by broadcasting an (empty) packet
with the source field set to Bob. Only Bob can identify
the real source of the packet (since it did not send it, the
source is Alice), and can recover the secret bit (1 if the
source is set to Alice or 0 otherwise). An eavesdropper
cannot retrieve the secret bit since it cannot figure out
whether the packet was actually sent by Alice or Bob.
By randomly generating� such packets Alice and Bob
can agree on an� -bit secret key.

Our scheme requires that the devices being paired, Al-
ice and Bob, are shaken during the key exchange pro-
tocol. This is to guarantee that an eavesdropper cannot
identify the packets sent by Alice from those sent by Bob
using data from the RSSI (Received Signal Strength In-
dicator) registers available in commercial wireless cards.
The proposed protocol works with off-the-shelf 802.11
wireless cards and is secure against eavesdropping at-
tacks that use power analysis. It requires, however, some
firmware changes to protect against attacks that attempt
to identify the source of packets from their transmission
frequency.

1 Introduction

The current trend in consumer electronics is to embed
a short-range wireless transmitter and a microprocessor

in almost everything. The main motivation is to facil-
itate communication and cooperation amongst wireless
devices in order to reduce their size/cost and increase
their functionality. In this context, each device can be
seen as a peripheral of the others. For example, a user
can use the display and the keyboard of a PDA to access
his cellular phone or personal server [21]. Similarly, he
can use a cellular phone or PDA to retrieve temperature
data sensed by a local sensor [19].

The main security challenge is to securely associate
the devices together. For example, when a device re-
ceives data from a sensor, it needs to make sure that the
data is received from the sensor it has selected and not
from an impostor. Furthermore, integrity and privacy are
often very important too.

The process of securely associating two wireless de-
vices is often referred to aspairing. This process allows
two devices, communicating over a short-range radio, to
exchange a secret key. This key can then be used to au-
thenticate or encrypt subsequent communication. It is
important to notice that the key exchanged in a pairing
protocol does not need to be authenticated since the iden-
tities (often provided by certificates) do not matter in this
context. A user who is pairing two devices together only
needs assurance that a key was exchanged between the
devices he/she has selected (for example, the two devices
he/she is holding in his/her hands).

In summary, a pairing protocol is composed of two
separate sub-protocols:

1. Key exchange sub-protocol: this protocol is run be-
tween the two wireless devices and results in a se-
cret key shared between the two devices.

2. Pairing validation sub-protocol: this protocol is ex-
ecuted between the two wireless devices and the
user. Its goal is to guarantee (with some large
enough probability) to the user that a key was ex-
changed between the two devices he/she actually
wished to pair.

87

Motivations and design constraints: The motivation
of this work is to design a pairing protocol for CPU-
constrained devices, such as sensors. Designing pair-
ing protocols for such environment is very challenging
because sensors have limited CPU and memory. Also,
because of their low costs, most of them cannot rely on
tamper resistant components. The consequence of the
limited computing and storage capabilities is that modu-
lar arithmetic is difficult and therefore, asymmetric cryp-
tography cannot be used. In particular, standard Diffie-
Hellman (DH)[6] key exchange protocols are excluded.
Even low exponent RSA[18] techniques that allow en-
cryption cost to be minimized are prohibitive when sen-
sors are involved. Our goal is to design a pairing protocol
that meets these constraints.

More specifically, we aim at designing a protocol that
doesnot use public key cryptography and does not rely
on some preconfigured information. Furthermore, the
designed protocol must not increase the complexity and
the cost of the sensors by requiring additional hardware
(a display, an I/O interface or an out-of-band channel,
such as an infrared one). Finally, it should not require
exotic wireless technologies, but instead work with cur-
rent wireless networking standards such as 802.11 or
802.15.4 (an emerging Wireless PAN technology, de-
signed for low power sensors). The proposed protocol
must be secure against passive and active attacks. In
other words, it must not allow active or passive attack-
ers to learn the key exchanged between two paired de-
vices. It must provide protection against Man-in-the-
Middle (MitM) attacks that attempt to impersonate one
or both of the devices during key agreement. It must
also provide some protection against Denial-of-Service
(DoS) attacks, i.e. prevent attackers from disrupting the
pairing protocol and exhausting the devices’ resources,
such as their battery.
Contributions: We present a novel secure pairing tech-
nique based on a key agreement protocol that does
not depend on CPU-intensive operations. Two CPU-
constrained wireless devices

�
and ✁ can establish a

shared secret over an anonymous broadcast channel. An
anonymous channel is a channel on which an eavesdrop-
per can read the packets that are exchanged but is unable
to identify the source. Using such a channel,

�
can send

the secret bit 1 (resp. 0) to✁ by broadcasting an (empty)
packet with the source field set to

�
(resp. ✁). Only ✁

can identify the real source of the packet (since it did not
send it, the source is

�
), and can recover the secret bit (1

if the source is set to
�

or 0 otherwise). An eavesdrop-
per cannot retrieve the secret bit since it cannot figure out
whether the packet was actually sent by

�
or ✁ . By ran-

domly generating� such packets
�

and ✁ can agree on
an � -bit secret key.

The protocol is secure if and only if the packets of
�

and ✁ cannot be distinguished by an eavesdropper. On
a wireless channel, this property is difficult to achieve
through protocol design since an eavesdropper can mea-
sure the signal strength of each packet and may be able to
determine the real source of each packet. Therefore, we
propose that during key agreement, the user(s) be very
close to each other and shake their devices (i.e. randomly
turn and move one around the other) in order to random-
ize the reception power of their packets by a potential
eavesdropper and make power analysis very difficult.
Organization: The paper is structured as follows: Sec-
tion 2 presents the related work. Section 3 presents the
basic ideas of our scheme. Section 4 describes our pro-
posal in detail. Section 5 presents experimental results
and analysis. Section 6 presents a discussion. Finally,
Section 7 concludes the paper.

2 Related work

2.1 Secure pairing

The problem of secure pairing of wireless devices has
been tackled by several researchers. The proposedkey-
exchange solutions can be classified into the four main
categories described in this section.

All of the approaches that we review below require
some additional mechanism forpairing validation (ex-
cept the last two ones). The only solution proposed in
the literature so far is to provide the user with some ev-
idence that both devices computed the same secret key.
For example, the devices can both display a hash of the
secret key [7]. These solutions are not always practical
since they require devices with a display and/or a key-
board.

2.1.1 Public-key cryptography based solutions

These solutions rely on public-key based key exchange
protocols such as Diffie-Hellman or RSA [7, 10, 11]. In
Diffie-Hellman based schemes, devices exchange their
Diffie-Hellman components and derive a key from them.
In RSA-based schemes, one of the devices selects a se-
cret key and encrypts it under the other device’s public
key. The main problem of these solutions is performance.
They require that devices perform CPU-intensive opera-
tions such as exponentiation, which are prohibitive for
CPU-constrained devices.

2.1.2 PIN-based schemes

In Bluetooth, two wireless devices derive a shared key
from a public random value, the addresses of each device
and a secret PIN number. The PIN number is provided to
each device by the user via an out-of-band channel, such

88 ANNEXE C. LE PROTOCOLE ORANGINA

as a keyboard. While this solution is computationally
efficient, it requires thatboth devices be equipped with
some kind of physical user interface. As a result, this
solution cannot be used to pair devices lacking physical
interfaces, such as sensors.

2.1.3 Physical contact or imprinting

In [19], Stajano and Anderson propose a solution, called
imprinting, based on physical contact. Two devices get
paired by linking them together with an electrical contact
that transfers the bits of a shared secret. No cryptography
is involved, since the secret is transmitted in plain-text.
Furthermore, the key validation phase is not necessary
since there is no ambiguity about the devices that are in-
volved in the binding (i.e. MitM attacks are impossible).

While this solution is interesting, it requires each de-
vice to have some additional hardware to perform the
electrical contact. Similarly, it might be possible to trans-
mit a secret key through an infrared channel to a nearby
node. Infrared transmissions require absolute line-of-
sight links, making it more difficult for third-party inter-
ception. Nevertheless, in both cases, i.e. physical contact
or infrared transmission, the complexity and the cost of
the devices would increase� . This violates one of our de-
sign requirements, that the pairing protocol should not
require extra equipment. We wish to achieve key agree-
ment through the actual communication channel.

2.1.4 Using a Faraday cage

Alternatively, the two devices can be put in aFaraday
cage where the secret key is transmitted in plain-text. A
Faraday cage is an electrical apparatus designed to pre-
vent the passage of electromagnetic waves, either con-
taining them in or excluding them from its interior space.
Consequently, an eavesdropper could not hear the secret
key. An idealized Faraday cage is a hollow electrical
conductor such as an empty sphere or box. Practical
Faraday cages can be made of a conducting mesh instead
of a solid conductor. However, this reduces the cage’s
effectiveness as an RF shield. In our case, the paired de-
vices are small and hence can be enclosed in a conduct-
ing box. However, this solution is probably impractical
for the general case; a conducting box is not always avail-
able. Users cannot possibly foresee when and where they
will need secure pairing (and clearly we cannot recom-
mend a user to carry a metal box with her all the time).

Similarly to a Faraday cage, a cable could be used for
secret key transmission, instead of wireless link. How-
ever, users typically do not have cables available when
they need to communicate, and requiring it will be a con-
siderable impediment to secure communication.

One of our design requirements is to develop a proto-
col that does not require extra hardware/equipment. So-
lutions based on using a Faraday cage or cable clearly
violate this constraint.

2.2 Other shaking-based schemes

As we will describe in detail, “Shake Them Up!” se-
curity depends onshaking two devices. “Smart-Its
Friends”[12], although not related to key agreement nor
security, is based on a similar user-device interaction.
The authors propose that sensors be equipped with a two-
axis accelerometer. When a user takes two devices in one
hand and shakes them, the devices generate and broad-
cast similar movement data. If the difference is below a
specified threshold, then the two devices recognize each
other as friends and a dedicated connection is established
between them. In another related work, “Are you with
me?”[15], the authors propose using accelerometers to
determine if two devices are carried by the same person.

In “Shake Them Up!”, the shaking process has a com-
pletely different role (and no accelerometers are used in
this paper). Devices are shaken/rotated for randomizing
the signal power of the messages received by a potential
eavesdropper.

3 Basic ideas

This section describes the main ideas of our scheme. We
first describe how two devices, communicating over an
anonymous channel, can exchange a secret key without
CPU-expensive computation. We then define formally
what we mean by “anonymous channels” and describe
how they can be implemented in practice.

3.1 Pairing over anonymous channels

This section describes a new technique that allows two
parties to securely exchange a secret over an anonymous
channel while preventing eavesdroppers from determin-
ing its value (or actually any of its bits). By anonymous
channel, we mean a broadcast channel that hides the ori-
gin of the messages. On an anonymous channel, a pas-
sive wiretapper can read the messages that are broadcast,
but is unable to identify the source. Anonymous channels
require a property that we callSource Indistinguishabil-
ity. This property is defined and discussed in Section 3.2.

Our key exchange protocol was inspired from the pro-
tocol proposed by Alpern and Schneider in [3]. In this
paper, the author presents a protocol that allows two par-
ties to agree on a secret key on channels for which an
eavesdropper cannot tell “who” broadcasts each mes-
sage. The technique is called “Key exchange using key-
less cryptography”, or “Keyless key agreement”.

89

For users Alice (
�

) and Bob (✁) to agree on a� -bit
key

�✂✁☎✄✝✆
�✟✞ , each first chooses its own random 2n-bit

string: ✠ ✁ ✆☛✡ ✞✌☞ ✠ ✁ ✆ ✍ ✞✌☞✏✎✑✎✒✎✒☞ ✠ ✁ ✆ ✍ �✟✞✠ ✄✝✆✑✡ ✞✓☞ ✠ ✄✝✆ ✍ ✞✓☞✔✎✒✎✑✎✒☞ ✠ ✄✝✆ ✍ �✟✞
User

�
then broadcasts

✍
� anonymous messages (with-

out sender identifier), one for each bit in
✠ ✁

. Simi-
larly, user ✁ broadcasts

✍
� anonymous messages (with-

out sender identifier), one for each bit in
✠ ✄

. The secret
key is then defined by the bits

✠ ✁✕✆ ✖ ✞ sent by
�

such that✠ ✁✗✆ ✖ ✞✙✘✚ ✠ ✄✝✆ ✖ ✞ . Note that there are on the average�

such bits. The salient property of the protocol is that the
message content is not hidden. All messages are acces-
sible to potential eavesdroppers, which however cannot
determine the origin of each message. As a result, they
are unable to identify the packets sent by

�
and there-

fore identify the correct bits. Since
�

knows her bits, she
can easily identify the bits sent by✁ . Similarly since✁
knows his bits, he can easily identify the bits sent by

�
.

Note that the packets transmitted by
�

and by ✁ must
be interleaved. Otherwise it might be easy for an eaves-
dropper to identify the bits sent by the same source from
a timing analysis.

✠ ✁✕✆☛✡ ✞ and
✠ ✄✛✆✑✡ ✞ should be sent first,

followed by
✠ ✁✕✆ ✍ ✞ and

✠ ✄✝✆ ✍ ✞ , the transmission order of
each pair being randomized, and so on.

The protocol presented by Alpern and Schneider re-
quires the broadcast of✜ � messages for

�
and ✁ to agree

on an n-bit secret key. We propose an optimization that
reduces the number of broadcast messages to� . The
overview of our protocol is the following (a more de-
tailed description is presented in Section 4):

1.
�

selects n/2 random bits✠ ✁✕✆☛✡ ✞✌☞ ✠ ✁✕✆ ✍ ✞✓☞✔✎✒✎✑✎✒☞ ✠ ✁✕✆ �✣✢ ✍ ✞
2. ✁ selects n/2 random bits✠ ✄ ✆✑✡ ✞✓☞ ✠ ✄ ✆ ✍ ✞✓☞✔✎✒✎✑✎✒☞ ✠ ✄ ✆ �✣✢ ✍ ✞
3.

�
builds n/2 messages✤ ✁ ✆✑✡ ✞✓☞ ✤ ✁ ✆ ✍ ✞✌☞✏✎✑✎✒✎✑☞ ✤ ✁ ✆ �✣✢ ✍ ✞ ,

where the source identifier of✤ ✁ ✆ ✖ ✞ is either set to�
if
✠ ✁ ✆ ✖ ✞ ✚ ✡

or set to✁ if
✠ ✁ ✆ ✖ ✞ ✚✦✥ .

4. ✁ builds n/2 messages✤ ✄✝✆✑✡ ✞✓☞ ✤ ✄✝✆ ✍ ✞✓☞✔✎✒✎✑✎✒☞ ✤ ✄✧✆ �✣✢ ✍ ✞ ,
where the source identifier of✤ ✄✛✆ ✖ ✞ is either set to

✁ if
✠ ✄✛✆ ✖ ✞ ✚ ✡

or set to
�

if
✠ ✄✛✆ ✖ ✞ ✚✦✥ .

-
�

and ✁ send their messages synchronously but in
a random order. In other words, the first messages
of

�
and ✁ are sent (in a random order), followed

by the second messages (in a random order), and so
on. In total,� messages are sent.

- For each message that
�

(resp. ✁) receives, it
checks whether the source identifier is set correctly

(note that only
�

and ✁ can perform this verifica-
tion) and sets

�✂✁☎✄✝✆ ★ ✞ to 1 if the source is correct or
to 0 otherwise.

3.2 Source indistinguishability: definition
and requirements

The described key exchange protocol requires thesource
indistinguishability property. In other words, if two par-
ties,

�
and ✁ , run the previously described key exchange

protocol, an eavesdropper should not be able to distin-
guish the packets sent by

�
from the packets sent by✁ .

Failing to achieve this property actually leads to an inse-
cure protocol, since the eavesdropper could then recover
some (if not all) bits of the exchanged key.

This notion of source indistinguishability is very sim-
ilar to the notion of ciphertext indistinguishability in en-
cryption schemes [8]. The basic idea behind indistin-
guishability of an encryption scheme is to consider an ad-
versary (not in possession of the secret key) who chooses
two messages,✤ � and ✤✪✩ , of the same length. Then one
of the messages is encrypted and the ciphertext is given
to the adversary. The encrypted scheme is considered
secure if the adversary cannot tell which of the two mes-
sages was encrypted.

We definesource indistinguishability in a similar way
as follows: a communication scheme between two par-
ties

�
and ✁ is source indistinguishable if for a given

packet✫ , emitted by
�

or ✁ , an eavesdropper cannot tell
whether the packet was sent by

�
or ✁ . More formally,

the difference between the probability that the packet was
sent by

�
and the probability that the packet was sent by

✁ should be very small:

✫✭✬ ✆ ✮✰✯✲✱ ✬✴✳✶✵✸✷✹✫✻✺ ✚ � ✞✽✼ ✫✭✬ ✆ ✮✰✯✲✱ ✬✲✳✔✵✾✷✹✫✻✺ ✚ ✁ ✞✣✿❁❀
In practice, source indistinguishability requires the

communication to betemporally and spatially indistin-
guishable. In the following sections, we discuss these
requirements in detail✩ .
3.2.1 Temporal indistinguishability

Given two parties
�

and ✁ communicating together, an
eavesdropper should not be able, usingtiming analysis,
to identify the packets emitted from

�
from those emit-

ted from ✁ with a probability larger than
✡ ✢ ✍ . Further-

more, the eavesdropper should not be able to group pack-
ets emitted by the same source.

It is clear from the previous definition that a commu-
nication system that uses a TDMA (Time Division Mul-
tiplexing Access) based MAC (Medium Access Control)
protocol cannot provide temporal indistinguishability. In
a TDMA-based system, each terminal is given one or
several time slots and can transmit only during one of

90 ANNEXE C. LE PROTOCOLE ORANGINA

its slots. As a result, it is very easy for any eavesdropper
to identify the packets transmitted by a source or at least
identify the packets sent by the same source.

Random access MAC protocols, such as CSMA
(Carrier Sense Multiple Access) are more appropriate.
CSMA protocols such as Ethernet or wireless Ethernet,
multiple nodes are allowed to use the same channel in
a random fashion. Before transmitting data a node lis-
tens to the channel. If the channel is busy then it waits
for a random time and then listens again. If the chan-
nel is not busy, then it transmits its packet. In CSMA,
collisions may happen when two terminals transmit si-
multaneously. CSMA/CD (Collision Detection) enables
devices to detect a collision. After detecting a collision,
a device waits a random time period and then attempts to
re-transmit its message. With a CSMA-based system, the
order of the packets sent by the different users can easily
be randomized. This feature is crucial for the security
of our approach. In this case, it will be very difficult for
an eavesdropper to use timing information to identify the
source.

3.2.2 Spatial indistinguishability

Given two parties
�

and ✁ communicating together, an
eavesdropper should not be able, usingspatial analysis
(or signal strength analysis), to distinguish the packets
emitted by

�
from those emitted by✁ with a probability

larger than
✡ ✢ ✍

. In other words, the eavesdropper should
not be able to detect the packets’ source from their re-
ception power.

This property is very difficult to achieve in practice
since waves attenuate according to thefree space prop-
agation law and the eavesdropper can easily identify the
location of the transmitter from the reception power of a
received packet, i.e. frompower analysis. More specifi-
cally, according to free space propagation law, the recep-
tion power �✂✁ of a packet transmitted with power�✂✄ by
a transmitter that is located at a distance☎ is defined as:
� ✁ ✚✝✆✟✞✡✠☛✞✡✠☛☞✍✌✎✑✏ , where ✒ ✄ is the antenna gain of the
transmitter, ✒ ✁ is the antenna gain of the receiver and�

is a constant that depends on the signal frequency (or
wavelength). If the receiver knows� ✄ and the gain, it can
easily estimate☎ . An eavesdropper listening to a com-
munication between two parties

�
and ✁ can also use

the reception power to identify the source of the packets
with a probability larger than

✡ ✢ ✍
.

Let’s assume that
�

and ✁ use the same type of an-
tenna (i.e. they have the same gain) and let’s define★ ✚ ✒✓✄✔✒✕✁ �

. If
�

and ✁ transmit their packets
with a power uniformly distributed between

✆ �✂✄✗✖✑�✘✄☛✙✛✚ ✞
then

�
receives the packets from✁ with a power uni-

formly distributed between
✆✢✜ ✆✣✞✎✑✏ ✖ ✜✥✤ ✆✟✞✧✦✂★✪✩✎✑✏ ✞ . Similarly,

✁ receives the packets from
�

with a power uniformly

distributed between
✆✢✜ ✆✣✞✎ ✏ ✖ ✜✥✤ ✆ ✞ ✦✂★✪✩✎ ✏ ✞ . If the eavesdrop-

per is listening with a large antenna (i.e.✒✬✫✁ is large s.t.★ ✫ ✚ ✒ ✄ ✒✕✫✁ �✮✭ ★
) and it is closer to

�
than to ✁ (i.e.

☎ ✁✰✯ ☎ ✄
), then:

1. the power of
�

’s packets received by the
eavesdropper is uniformly distributed between✆✱✜✗✲ ✆✟✞✎ ✏ ✳ ✖ ✜✗✲✴✤ ✆✟✞✧✦✂★✪✩✎ ✏ ✳ ✞ and,

2. the power of ✁ ’s packets received by the
eavesdropper is uniformly distributed between✆ ✜✗✲ ✆ ✞✎ ✏ ✵ ✖ ✜✗✲✴✤ ✆✟✞✧✦✂★✪✩✎ ✏ ✵ ✞ .

Therefore the eavesdropper can identify all the packets
received with a power between

✆ ✜✶✲ ✆✣✞✎ ✏ ✵ ✖ ✜✶✲ ✆✣✞✎ ✏ ✳ ✞ as belong-
ing to ✁ and all the packets received with power between✆ ✜✗✲✴✤ ✆✟✞✷✦☛★✪✩✎ ✏ ✵ ✖ ✜✗✲✴✤ ✆✟✞✧✦✂★✪✩✎ ✏ ✳ ✞ as belonging to

�
. The scheme can

only be secure if one of the two following conditions is
met:

1. Condition 1: ☎ ✁ ✚ ☎ ✄
. The scheme is secure be-

cause the power of the packets sent by A is statisti-
cally indistinguishable from the power of the pack-
ets sent by B. If☎ ✁ ✘✚ ☎ ✄

, the eavesdropper can
identify some of the bits of the secret key. The num-
ber of bits that can be identified depends of the val-
ues of ☎ ✁

and ☎ ✄
. If ☎ ✄✸✭ ✷✧� ✄ ✙ ★✆✟✞ ✺ �✺✹ ✩ ☎ ✁

, the
eavesdropper can guess the source of all the packets
exchanged between

�
and ✁ and therefore all bits

of the secret key. If☎ ✁ ✿ ☎ ✄ ✿ ✷✻�✘✄✍✙ ★✆✣✞ ✺ �✺✹ ✩ ☎ ✁
,

the eavesdropper can guess the source of some per-
centage of the packets. This percentage depends
on the difference between☎ ✁

and ☎ ✄
. Note that if

the eavesdropper can monitor at several locations,
and receive the same packets with different recep-
tion powers, it will be even easier for her to identify
the source of the packets.

2. Condition 2:
�

and ✁ move during the pairing
phase such that☎ ✁

and ☎ ✄
(and therefore their re-

spective powers) are statistically indistinguishable.

4 Movement-based pairing

This section describes a new protocol that can be used
to pair two devices

�
and ✁ securely and without using

expensive public-key cryptographic protocols. Our key
agreement protocol is based on the combination of the
two following: we first optimize Alpern and Schneider’s
keyless key agreement protocol and adapt it to an ad hoc
configuration. Secondly, we show that the protocol can
be secured against power analysis by shaking the two de-
vices around each other. We show that it is secure against
DoS (Denial-of-Service) and MitM (Man-in-the-Middle)
attacks.

91

1
0
0
1
1
0
0
1

1
0
0
1
1
0
0
1

src:A dst:B

src:A dst:B

round 0

SECRET KEY

round 1

src:B dst:A

src:A dst:B

src:B dst:A

src:B dst:A

src:A dst:B

round 2

round 3

round 4

round 5

round 6

round 7

hash(A|B|key)

hash(B|A|key)

src:B dst:A

terminal A terminal B
Start (k)

Start

Figure 1: Key agreement protocol for movement-based
pairing.

4.1 Key agreement

In our pairing protocol, key agreement is performed us-
ing the protocol described in Figure 1. This protocol is
an optimization of the approach proposed by Alpern and
Schneider [3]. The number of messages per secret bit is
reduced (1 instead of 4), making the protocol more en-
ergy efficient.

The protocol starts by a START message transmitted
by one of the two parties, either

�
or ✁ . This message

contains the value
★

which is the size of the key, and
the address of the packet’s source. Upon reception of
this message, the other party replies with another START
message that contains its address. This exchange allows
each device to learn the other party’s address and the size
of the desired shared key. It should be triggered by the
user, for example, pushing a button on both devices.

At each round
✖
, either

�
or ✁ (with equal probabil-

ity) broadcasts an empty packet at time�✂✁ , where �✄✁ is
randomly selected in the interval

✆ ✖✆☎ ✖✏✷ ✖ ✙ ✡ ✺ ☎ ✞ , and
☎

is a constant. Secret bits are represented by the correct or
inversed placement of source and destination addresses.
If the sender and recipient addresses are correct, the ter-
minals

�
and ✁ presume a secret bit TRUE (1), other-

wise they presume FALSE (0). For example, in Figure
1, the first message is sent by

�
. The source address is

set to
�

and the destination address is set to✁ . Since the
packet was actually sent by

�
, the resulting bit (the first

bit) of the secret key is then set to 1 by
�

and ✁ . Note
that an eavesdropper cannot identify the real source of
the packet and therefore cannot retrieve the value of the
exchanged secret bit. Each packet identifies one bit of
the secret key. At the end of the

★
rounds,

�
and ✁ share

a
★
-bit long secret key. Therefore, if a 60-bit long key is

required, the protocol should contain 60 rounds, i.e. 60
packets.

The protocol is terminated by two messages, that are
used to validate the exchanged key. The message sent by�

contains the value✝ ✚✟✞ ✝ ✮ ✞ ✷ �✡✠
✁
✠ ★ ✵☞☛ ✺ , where

★ ✵☞☛
is the exchanged key. The message sent by✁ contains
the value✌ ✚✍✞ ✝ ✮ ✞ ✷ ✁

✠ �✡✠ ★ ✵☞☛ ✺ . The order of these two
messages is also random. When✁ receives the value✝ ,
it can verify that

�
has the same key. Similarly,

�
can

verify, upon reception of✌ , that ✁ computed the correct
key.

4.2 Achieving spatial indistinguishability:
Shake them up!

As described in Section 4, the previous scheme is secure
only if the source of the packets are indistinguishable.

Time indistinguishability is provided by randomizing
the order of transmission of packets sent by

�
and ✁ ,

as described in the previous section. An eavesdropper
can therefore not guess who is going to transmit next.
Also, we are using CSMA-based wireless systems, such
as 802.11, to guarantee that the access to the channel is
also random and does not reveal any information about
the source.

As explained previously,spatial indistinguishability is
more difficult to achieve. We propose to achieve this
property with user assistance. The user(s) should shake
(i.e. move and turn) the devices during key agreement in
order to equalize the average signal strength of the two
devices measured by a potential eavesdropper.

The required movements depend on the type of an-
tennas used. For truly omni-directional antennas, an-
tenna orientation will not reveal any signal strength dif-
ference between two devices. In these cases, it will be
sufficient to take both devices and turn them, one around
the other, in order to equalize the effect of distance (be-
tween each terminal and the eavesdropper) on the signal
strength measurements performed by an eavesdropper. If
the antennas are not truly omni-directional, randomizing
the distance will not be enough to achieve spatial indis-
tinguishability. Different orientation of the devices may
reveal a serious signal level difference. In order to avoid
this problem, during key agreement the two devices must
be randomly turned to different directions (in our exper-
imentations we used commodity 802.11 cards which are
not omni-directional. Section 5 contains more details on
this issue).

92 ANNEXE C. LE PROTOCOLE ORANGINA

Clearly, in both cases, having small and lightweight
devices (e.g. sensors or small PDAs) will reduce the user
burden for key agreement. The user can take one device
in each of his hands and randomly move them one around
the other according to the horizontal and vertical axes. If
the devices are very small, he can take both of them in
one hand and shake his arm, like he would do with an
orange juice bottle.

The security of the proposed scheme depends on the
quality of the movement. Users of our scheme should
be aware that it is their responsibility and in their best
interest to move the devices properly during the pairing
phase. Movement-based operations or “protocols” are
quite frequent and accepted in our everyday lives. For
example, orange juice or shaving cream bottles are uni-
versally shaken prior to use. This is now a well-known
and quite a natural protocol. Furthermore it is commonly
accepted that it is the responsibility and in the interest of
the consumer to perform this shaking operation properly.

4.3 Protection against MitM and DoS at-
tacks

4.3.1 Protection against MitM attacks

Defeating a MitM (Man-in-the-Middle) attack requires
assurance for a terminal

�
that a secret key is really be-

ing exchanged with the intended terminal✁ and not an
impostor’s device. This is the goal of thePairing Valida-
tion protocol, as described in Section 1.

In our case, this problem is reduced to the follow-
ing issue: “how do the two devices reliably determine
each other’s address in the presence of many other de-
vices?” As explained in Section 2.2, the smart-its friends
scheme solves this problem. However this solution may
be considered costly and impractical since it requires
extra hardware, namely an accelerometer. Certificates
could also be used for authenticating the START mes-
sages. However, our goal in this paper is to avoid CPU-
expensive operations such as exponentiations or signa-
ture verifications.

In our case,� ✬ ✯✂✁☎✄ ✤ ✄ � ☛ (and hence high signal level of
START messages) is used for authentication. In “Shake
Them Up!”, the pairing protocol is triggered by the user
by, for example, pushing a button on the devices. At this
point, the devices will start to generate START messages
at a specified rate. The user will bring the two devices
near to each other (possibly resulting in antenna contact).
The devices will receive each other’s START message
with a high signal level, starting the “Shake Them Up!”
procedure. Experience with 802.11 cards has shown that
a very high signal level can be obtained when two cards
touch each other, and a distance about 1 or 2 cm quickly
results in a much lower signal level. Using a signal level

threshold e.g. 0 or 1 dBm, this device association pro-
tocol can be implemented. In our case, the higher the
specified rate of START messages, the faster the devices
can detect each other with high signal level (when the
user finds the correct positioning). Let✆ be the period
of broadcast START messages. While initiating the pair-
ing process, if the user missed a START message (i.e.
it was received at a lower signal level than the specified
threshold), the user must wait another✆ time units. Con-
sequently,✆ must be low, e.g. for example 1 second, to
allow the user to easily and quickly start the pairing pro-
cess. Once the two devices obtain each other’s address
correctly, MitM attacks will be impossible.

A distant impostor may attempt to foil this technique
by increasing its transmission range. However this attack
is easily detectable since the victim will receive several
START messages at a rate higher than✆ .

One of the devices, say device✁ , may be down and
an attacker may profit from this situation to imperson-
ate ✁ . This attack can be prevented if each device has a
status LED which indicates whether it is active or down.
Even a sensor device (with no display) is likely to have
such a LED. Furthermore, if the devices

�
and ✁ are

shaken together (i.e. the user holds the two devices in
one hand and shakes his hand),

�
should receive the mes-

sages coming from✁ with constant signal power. Most
likely, the signal power of the different messages sent
by the attacker will be different (since the attacker is not
shaken together with

�
and therefore does not follow the

same mobility pattern). In this scenario, this attack can
easily be detected by

�
.

4.3.2 Protection against DoS attacks

We can differentiate between two kinds of DoS (Denial-
of-Service) attacks on a key agreement protocol. In the
first one an attacker may exploit the key agreement pro-
tocol to force a victim to perform computationally ex-
pensive operations, with the goal of draining its battery
or preventing it from performing useful work. Unlike
public-key cryptography-based schemes, our protocol is
not based on CPU-intensive operations and therefore im-
mune against such DoS attacks. Another DoS attack may
consist of sabotaging the key agreement, i.e. making it
impossible for the two parties to agree on a same secret
key.

In our basic scheme, it is easy for an attacker to insert
a bogus packet with source address

�
and destination

address✁ (or vice versa) and perform what we call a
key poisoning attack. Such a packet inserted by a third
party would generate different secret bits at the terminals�

and ✁ . The attacker can insert an arbitrary number of
bogus packets, and make it impossible for

�
and ✁ to

agree on a secret key.

93

0
0

0

1 1
0 0

sqn=1 src:A dst:B

sqn=1 src:B dst:A

sqn=2 src:A dst:B

sqn=2 src:B dst:A

1
1

1

0 1
1

sqn=3 src:B dst:A

sqn=3 src:B dst:A
11 1

00

SECRET KEY

1

0

0
0

0

1

sqn=0 src:A dst:B

sqn=0 src:A dst:B

round 0

round 1

round 2

round 3

hash(A|B|key)

hash(B|A|key)

Start (k)
Start

terminal A terminal B

Figure 2: A protocol that resists what we call akey poi-
soning DoS attack. When this protocol is used for key
agreement, an active attacker cannot poison (i.e. corrupt)
the secret key by inserting bogus messages with the ad-
dresses of

�
and ✁ (see text for details). This protection

is obtained at the cost of two messages per secret bit.

The protocol depicted in Figure 2 defeats the key poi-
soning attack. In this protocol, each secret bit is con-
structed using one packet from

�
and another from✁ ,

i.e. both terminals contribute to the construction of each
secret bit. Each secret bit is given a sequence number
(which also corresponds to the round number). In order
to generate the secret bit

✄
the two terminals generate a

packet with correct or flipped address positions, in ran-
dom order (i.e. the probability that the first packet

✄
will

be transmitted by
�

is 0.5). The outcome of the two
packets

✄
are combined by taking their sum (mod 2), or

exclusive OR. The result is the secret bit
✄
.

In order to alterate the secret bit
✄
, an attacking node

can insert
✁

packets with the same sequence number. In
this case both sides will record

✁ ✙ ✍
bits with the same

sequence number, but only two of them will be the same
at both sides. Let�☞✝ �

☞✏✎✑✎✒✎✑☞ ✝✂✁ ✦ ✩☎✄ and � ✌ �
☞✔✎✒✎✒✎✑☞ ✌✆✁ ✦ ✩✝✄ the

set of bits (with the same sequence number) that the ter-
minals

�
and ✁ have recorded. Then we have

✝ �✟✞✡✠☛✠☞✠✌✞ ✝ ✁ ✦ ✩ ✚ ✌ �✟✞✍✠☞✠☛✠✝✞ ✌ ✁ ✦ ✩
if

✁
is even, and

✌ � ✞✍✠☞✠☞✠✌✞ ✝✂✁ ✦ ✩ ✘✚ ✌ � ✞✡✠☛✠☞✠✝✞ ✌✆✁ ✦ ✩
if

✁
is odd.

Key poisoning can be defeated by taking the sum (mod
2) of the bits with the sequence number

✄
, as usual (ex-

cept that in normal operation
✁ ✚ ✥). Note that if the

attacker inserted an odd number
✁

of packets, the termi-
nal

�
must invert the resulting secret bit

✄
. This protocol

requires twice as many messages as the basic protocol.
However, this protocol is only necessary when the user
believes that his devices are under DoS attack. Other-
wise, the basic scheme should be used.

This protocol fails, however, when
�

and ✁ do not re-
ceive the same messages. This might happen when some
of the messages are lost. We therefore suggest that

�
and

✁ append to each of their messages a hash of all the pre-
vious messages they have seen since the beginning of the
protocol. As a result, if one or several messages are lost,�

and ✁ can detect it immediately (instead of waiting
until the end of the protocol and comparing a hash of the
derived keys).

5 Experimentations and analysis

In this section, we analyze, by experimentations, the se-
curity of the proposed pairing scheme. More specifically,
we show that signal power analysis cannot be used by an
attacker to retrieve the key exchanged between two de-
vices that use our pairing protocol. We also evaluate the
energy cost of our protocol and show that although it re-
quires several messages, it is much more energy-efficient
than a Diffie-Hellman based pairing protocol.

5.1 Setup and methodology

We built a testbed with lightweight laptops equipped
with a PCMCIA Lucent IEEE 802.11 Wavelan card op-
erating at 2.457GHz (802.11 channel 10) and 2Mbps bit
rate and in ad hoc mode. Our cards support RSSI (Re-
ceived Signal Strength Indicator) and allow us to visu-
alize and evaluate the power of received packets. Our
signal level cryptanalyzer is built upon Linux wireless
tools✎ , and in particulariwspy that allows to get per node
link quality. The

✄✑✏✛✮ � ☛ command takes as argument a
MAC address✒ , and outputs the received signal and
noise levels of packets whose source address is✒ .

Figure 3 depicts a typical measurement that can be car-
ried out by any user using the

✄✓✏ � ✮ ☛ tool and a simple
sampling script. Note that

✄✑✏✛✮ � ☛ also outputs the noise
level which is about -96dBm in our environment.

The received signal strength depends on at least 4 dis-
tinct factors:

1. Transmission power: Packets are transmitted at our
cards’ default value which is 15 dBm✔ .

2. Distance between the source and the signal level an-
alyzer.

3. The relative angle between the source and the sig-
nal level analyzer: the cards that we use are not

94 ANNEXE C. LE PROTOCOLE ORANGINA

-100

-90

-80

-70

-60

-50

-40

-30

-20

 0 50 100 150 200

M
ea

su
re

d
si

gn
al

 a
nd

 n
oi

se
 le

ve
ls

 (
dB

m
)

Sample

signal level
noise level

Figure 3: A typical
✄✑✏✛✮ � ☛ output. In this example,

the “iwspied” terminal is stationary while the first� 100
samples are taken and then it moves to a location that
is closer to the signal level analyzer machine. The dis-
tance between the two cards is easily determined by sig-
nal strength analysis.

omni-directional and the received signal level de-
pends heavily on the relative angle of the two cards.

4. Relative position of the terminals (or, cards): when
the two terminals are very close, they may become
obstacles for each other. For example, terminal

�

may be in front of terminal✁ . In this case, packets
from

�
are received at a higher signal level (even if

the above factors had no impact on the signal level
difference).

During each experiment, referred as ‘scenario’, Eve
(eavesdropper, or cryptanalyzer) measures the signal
strength of the packets sent by Alice (terminal

�
) and

Bob (terminal✁) during key agreement. Many different
experiments were carried out. We only provide the most
representative ones that we consider generic and applica-
ble to almost all situations because they perfectly reflect
the points (2) and (3) listed above. Our first scenario,
denotedscenario1, is illustrated in Figure 4-a. In this
scenario Alice and Bob are close to each other (within
0.5 meter) and make two kinds of movements in order to
equalize their average signal strength captured by Eve:

✁ We use commodity wireless Ethernet cards and they
are not omnidirectional. Thus, in order to confuse
Eve, Alice and Bob must turn their laptop in ran-
domly changing directions (at a reasonable speed).
The process requires reasonable effort from the user
and takes around 16 seconds for agreeing upon an
80-bit secret key. The details of movement speed
and its effect on security will be discussed later.

✁ Alice and Bob move their devices one around an-
other with a reasonable effort, i.e randomly and at a
moderate speed. This helps Alice and Bob to hide
their relative distance between their cards and a po-
tential eavesdropper that may be located anywhere.

In scenario1, we consider a pessimistic passive attack
where Eve’s wireless Ethernet card (the white arrow) is
directly oriented to Alice and Bob and situated only 2.2
meters away. This allows Eve to make relatively accu-
rate signal level measurements. In practice, Alice and
Bob would probably notice the presence of a third per-
son during key agreement, and look for another place
where eavesdroppers cannot approach them. However, in
some situations such countermeasures may not be practi-
cal. This scenario attempts to capture the cases where the
presence of a third person cannot be avoided. Note also
that an eavesdropper may have installed hidden signal
level cryptanalyzers at strategical points. Thus, the ab-
sence of a third person, does not necessarily imply a se-
cure environment. For example, the eavesdropper might
be behind a thin wall or partition (e.g. a cubicle wall),
and not visible to Alice and Bob. In this scenario Alice
and Bob respect the key agreement requirements, hence
the key will be secure as we will show below.

In scenario2 (Figure 4-b), we demonstrate an inappro-
priate usage of our protocol that we would like to dis-
advise. In this scenario Alice and Bob are not close to
each other. They both move their laptop randomly in
every possible direction, but they are always far from
each other and their location does not change during key
agreement. Eve profits from the distance between Alice
and Bob, and directs her card to Alice. Consequently,
Alice’s packets are received at a higher signal level than
that of Bob, rendering the secret key weak.

The scenario3 (Figure 4-c) is even less secure and
firmly disadvised. Alice is 4 times closer to Eve than
Bob. Eve is located between the two terminals and profits
from the situation by directing her wireless Ethernet card
to Alice. Although Alice and Bob’s cards are perfectly
turned in random directions, Eve can easily differentiate
between their packets. As a result, the key is extremely
weak.

5.2 Signal power analysis

The signal level cryptanalysis results for the above three
scenarii are shown in Figure 5.

In scenario1, we observe that Alice and Bob’s pack-
ets are mixed and not easily distinguishable by Eve
(the reader may imagine that Eve’s vision has only one
color regardless of the sender’s ID). The only informa-
tion available to Eve will be the absolute value of sig-
nal level difference between two packets captured during

95

1.5m

1.5m

Eve

Alice and Bob

0.5 m

(a) scenario1

1.5m

1.5m

EveAlice

Bob

(b) scenario2

0.5mAlice Bob2m
Eve

(c) scenario3

Figure 4: Experimentation scenarii.

-70

-60

-50

-40

-30

-20

 0 10 20 30 40 50 60 70 80

S
ig

na
l l

ev
el

 (
dB

m
)

Round

terminal A
terminal B

(a) scenario1

-70

-60

-50

-40

-30

-20

 0 10 20 30 40 50 60 70 80

S
ig

na
l l

ev
el

 (
dB

m
)

Round

terminal A
terminal B

(b) scenario2

-70

-60

-50

-40

-30

-20

 0 10 20 30 40 50 60 70 80

S
ig

na
l l

ev
el

 (
dB

m
)

Round

terminal A
terminal B

(c) scenario3

Figure 5: Received signal level of terminal
�

(Alice)
and terminal✁ (Bob) during key agreement. The reader
may imagine that Eve’s vision has only one color (i.e. all
packets are black).

96 ANNEXE C. LE PROTOCOLE ORANGINA

each round (1 packet from Alice, 1 packet from Bob). In
Figure 6 we provide a frequency diagram of these sig-
nal level differences. It should be noted that, when plot-
ting these histograms we have profited from additional
information that is not available to Eve: the sign of the
observed differences (i.e. (+) when Alice’s packet is re-
ceived with greater signal level than that of Bob, and (-)
otherwise). These histograms were plotted using 1000
samples (i.e. rounds) in order to provide accurate re-
sults that correspond to the average case (for a given sce-
nario). For our data collection purposes, Alice and Bob
performed the required laptop movements for a much
longer time than needed in practice:�

� ✎ ✁ minutes for
each experiment (in our experiments Alice and Bob gen-
erated 0.2 packets per second, as we will explain later).
The histogram that corresponds to scenario1 is centered
on � 0 and roughly symmetric. Consequently, we conjec-
ture that Alice and Bob’s packets cannot be distinguished
using signal strength analysis.

In practice, the results look satisfactory in scenario2.
There is no well defined technique (at least to our knowl-
edge at time of writing) that will allow to clearly distin-
guish Alice’s and Bob’s packets. Note for example that,
above the line -50dBm all packets are Alice’s packets.
Similarly, below the line -35dBm, we have only Bob’s
packets. However, unlike the reader, this information is
not provided to Eve.

On the other hand, the resulting key is clearly insecure
in theory. As shown in Figure 5-b the signal level dif-
ferences are important: the histogram is centered at 7.34
dBm. Although it is unknown to the attacker, this differ-
ence is considerable (making us uncomfortable) and re-
flects very well the fact that Eve’s wireless Ethernet card
is directed to Alice. Thus, we base our conclusion on
the theoretical security of the protocol and disadvise the
type of scenario where Alice and Bob are ‘not’ close to
each other. The security of the secret key in this scenario
could be improved by adding more rounds, however this
would lead to a very inefficient key agreement. We rec-
ommend that Alice and Bob be as close to each other as
possible (in addition to turning their devices in random
directions).

In the final scenario, scenario3, the situation is clearly
worse. The resulting key is not only ‘theoretically’
breakable as shown by the frequency diagram (centered
at 14.92 dBm), but also breakable in practice. Figure
5-c reveals what we call a “break point” which is situ-
ated around -41dBm. There is a visible gap at that point
where Alice and Bob’s packets are clearly separated.

5.3 Energy consumption considerations

In this section, we compare the power consumption of
our scheme with the power consumption of a Diffie-

 0

 10

 20

 30

 40

 50

 60

 70

 80

-40 -30 -20 -10 0 10 20 30 40

F
re

qu
en

cy

Signal strength difference (dBm)

scenario1
scenario2
scenario3

Figure 6: Frequency diagrams for signal level difference.
In scenario1, the spatial indistinguishability requirement
is satisfied. The histogram is centered on zero and sym-
metric. Thus, in this paper it is conjectured that an eaves-
dropper cannot distinguish the source of the packets re-
garding signal level difference (in scenario1).

Hellman based pairing. For the purpose of this compar-
ison, we assume that the two devices being paired are
sensors using TinyOS and that the size of the generated
shared key is 72 bits.

With our scheme, each device must receive and send
36 packets. Considering that a TinyOS packet that has a
header size of 7 bytes [13], each device must send and
receive 2016 bits (

�✄✂✆☎✞✝✟☎✡✠
) (as explained in Section

4, in our basic protocol, packets do not have to con-
tain any payload). However transmitting one bit con-
sumes about as much power as executing 800-1000 in-
structions [9, 13]. Receiving one bit consumes about half
as much power as sending one bit. As a result, our proto-
col consumes as much energy as the execution of about✍ ✎ ✠ ✍ ☎ ✡ ✥☞☛ instructions (

✍ ✥ ✡ ✂✌☎✎✍ ✥ ✥ ✙ ✍ ✥ ✡ ✂✏☎ ✜ ✁ ✥).

In comparison, with a Diffie-Hellman based pairing
protocol, each device needs to exchange their Diffie-
Hellman public component (i.e.✑ ✁ , where

✁
is the de-

vice’s private key). A security equivalent to 72 bits re-
quires to select a modulus of 1024 bits and an exponent
of 130 bits [14]. As a result, the device’s Diffie-Hellman
public component is 1024-bit long. Since the maximum
number of payload bits in a TinyOS packet is 232, each
device must send (and receive) 5 packets. Therefore, the
total number of bits sent and received is 1304 bits: 4
packets containing 232 bits and 1 packet containing 96
bits. This consumes as much energy as the execution of✡ ✎ ✠✒✂✓☎ ✡ ✥✄☛ instructions (

✡ � ✥ ✜ ☎✔✍ ✥ ✥ ✙ ✡ � ✥ ✜ ☎ ✜ ✁ ✥). Upon
reception of the other party’s public component, each de-
vice has to exponentiate it with its Diffie-Hellman private
key. Exponentiating using the Montgomery algorithm re-

97

quires
� ☎ ✁ ☎ ✷ ✁ ✙ ✡ ✺ ☎ ✷ �✟✙ ✡ ✺ single-precision multiplica-

tions, where
✁
is the size of the modulus and� the size of

the exponent [16]. With
✁ ✚ ✡ ✥ ✍ ✜ and � ✚ ✡ � ✥ , each de-

vice must perform✜ ✎ ✡✲✍ ☎ ✡ ✥✄✂ single-precision multipli-
cations. In conclusion, the total power consumed by each
device is therefore equivalent to the power consumed by
the execution of

✡ ✎ ✠✒✂✟☎ ✡ ✥☞☛ ✙ ✜ ✎ ✡✲✍ ☎ ✡ ✥✄✂ instructions.
This cost is about100 times larger than the cost of our
scheme.

The bandwidth cost of the Diffie-Hellman based solu-
tion could be significantly decreased with Elliptic Curve
Cryptography. In fact, the security of a 1024-bit Diffie-
Hellman key exchange is equivalent to the security of a
135-bit Elliptic Curve Diffie-Hellman (EC-DH) key ex-
change [14]. Therefore only one packet would be nec-
essary to be exchanged by the two devices. This would
reduce the energy cost due to communication by 5. How-
ever, as shown in [5], EC-DH key derivation cost is even
more expensive than regular DH key derivation. There-
fore the total energy cost would still be much higher than
the cost of our scheme.

6 Discussion

In this section, we present a discussion of more sophis-
ticated attacks that the “Shake Them Up!” strategy may
face.

6.1 RF analysis attacks on reference clocks

How secure is our protocol against a well equipped at-
tacker? An attacker may use more sophisticated equip-
ment, and conduct much more rigorous cryptanalysis.
Using an RF test equipment, for example, it is possible
to snoop the packets and record their signal shape. By
studying the signal shape of each packet, additional in-
formation may be discovered and help distinguish one of
the device’s packets from the other. Although the sig-
nal amplitude should not reveal anything more than an
RSSI measurement, signal-frequency may reveal a drift
between the participants’ reference clock implementa-
tion.

By current practice, a quartz crystal or crystal clock
oscillator stabilizes the carrier and baseband frequencies
in an RF transceiver. In order to ensure frequency lock
between two devices, and avoid serious phase noise, a
tight-stability reference clock is necessary. Nevertheless,
a reference clock implementation is never perfect. A ran-
dom clock drift is generally unavoidable, due to practi-
cal difficulties found at the hardware level. Typically,
an error of up to☎ 25ppm (parts per million) is toler-
ated. This tolerance includes the initial calibration toler-
ance at

✍ ✁✄✆ C, frequency changes over operating temper-
ature, power and load fluctuations, and aging[17]. For

example, at 2.4GHz carrier frequency, a frequency off-
set of up to ✩✞✝ ✔✠✟ �☛✡

☞
✟ ✩ ✟ ✩✍✌

�✎✡✑✏
✚ 120kHz would be tolerated.

[4] reports 250kHz of central frequency accuracy toler-
ance. The main reason for clock drift is aging. I.e. the
clock drift is mostly stable in short-term (except in case
of shock, or abrupt temperature changes), but logarith-
mically increases in time[20, 1]. A clock drift from☎ ✡
to ☎ ✁ ppm/year can be incurred depending on the crystal
used [2].

Consequently, during “Shake Them Up!”, device
�

may always transmit at a central frequency✒ ✁ while the
device ✁ transmits at✒ ✄ , where ✒ ✁ ✚ ✒ ✄ ✙ ❀ . A third
party equipped with an RF analyzer can then retrieve the
secret key by correlating the packets with the same cen-
tral frequency. A frequency shift of several kHz is unfor-
tunately too large to be compensated with theDoppler
effect made by separately shaking the devices. A shaking
speed of☎ 10m/s would only make a Doppler effect be-
tween ☎ 50Hz (at 2.4GHz) which probably cannot coun-
terbalance the error❀ .

A possible defense against this attack consists of
adding a deliberate and random frequency offset so that
✒ ✁ and ✒ ✄ span over similar frequency ranges. This so-
lution however requires firmware changes, making it a
longer-term solution. Let the frequency offset tolerance
be ☎ ✚ and ✒ ✁ ✿ ✒ ✄ (i.e. ✒ ✁ and ✒ ✄ are within the range✆ ✒ ✼ ✚ ✖✍✒ ✙ ✚ ✞) and both devices add a deliberate ran-
dom frequency shift� to each packet. The devices will
have a frequency range between

✆ ✒ ✁ ✼ �✗✖✑✒ ✁ ✙ � ✞ and✆ ✒ ✄ ✼ �✗✖✑✒ ✄ ✙ � ✞ respectively. Assuming that an eaves-
dropper, Eve, knows✒ ✁ and ✒ ✄ , then she can deduce
that the packets transmitted with a frequency larger than
✒ ✁ ✙ � originate from✁ , and the packets transmitted with
a frequency smaller than✒ ✄ ✼ � originate from

�
.

However, the packets received within range
✆ ✒ ✄ ✼

�✗✖✍✒ ✁ ✙ � ✞ are emitted by
�

or ✁ with the same proba-
bility. This is illustrated in Figure 7. Let

★
be the number

of packets emitted by each device. It can be shown that,✜✩ ✄ ☎ ✷✓✒ ✁ ✼ ✒ ✄ ✙ ✍ � ✺ packets of
�

(and ✁) will have a
central frequency between

✆ ✒ ✄ ✼ �✗✖✑✒ ✁ ✙ � ✞ . If we wish
to use an 80-bit secret key, at least 40 packets of

�
and

40 packets of✁ must be in this frequency range. This
condition is satisfied if:

✜✩ ✄ ☎ ✷✔✒ ✁ ✼ ✒ ✄ ✙ ✍ � ✺ ✭ ✜ ✥ , i.e.

★ ✭ ✜ ✥ ☎ ✍ �
✒ ✁ ✼ ✒ ✄ ✙ ✍ �

where � ✭ ✚ (recall that
✍ ✚ is the maximum frequency

shift between two devices). In the worse scenario,✒ ✁ ✚
✒ ✼ ✚ and ✒ ✄ ✚ ✒ ✙ ✚ , i.e. ✒ ✁ ✼ ✒ ✄ ✚ ✼ ✍ ☎ ✚ and★ ✭ ✜ ✥ ☎ � ✢ ✷ � ✼ ✚ ✺ . If � is set to

✍ ☎ ✚ , then
★

can be set
to 80. To summarize, by setting� to

✍ ☎ ✚ and
★

to 80
(instead of 40 in the basic scheme), the generated secret
is secure for any value of✒ ✁ and ✒ ✄ in

✆ ✒ ✼ ✚ ✖✍✒✔✙✰✚ ✞ .

98 ANNEXE C. LE PROTOCOLE ORANGINA

�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�

✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂

✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄

☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎

fA fB

fA2t+ −fB

✆✁✆✁✆
✆✁✆✁✆
✆✁✆✁✆
✆✁✆✁✆
✆✁✆✁✆
✆✁✆✁✆
✆✁✆✁✆
✆✁✆✁✆
✆✁✆✁✆
✆✁✆✁✆
✆✁✆✁✆

✝✁✝✁✝
✝✁✝✁✝
✝✁✝✁✝
✝✁✝✁✝
✝✁✝✁✝
✝✁✝✁✝
✝✁✝✁✝
✝✁✝✁✝
✝✁✝✁✝
✝✁✝✁✝
✝✁✝✁✝

t t

t t

Figure 7: A technique for hiding the clock drift between
two devices. In the region where the central radio fre-
quencies of each device overlap, the packets of

�
and ✁

are indistinguishable.

6.2 Camera-assisted packet captures

Another type of attack that “Shake Them Up!” may be
exposed to is a video camera assisted attack. Using a sig-
nal level analyzer that is synchronized with a video cam-
era, an attacker may correlate different device locations
and their respective signal power during the shaking pro-
cess. Users may employ different strategies against this
threat such as hiding the sensor devices with their hand
(provided that the devices are small).

Hiding the devices has also the additional benefits that
it protects our scheme against eavesdroppers with unidi-
rectional antennas. Since the location of the sensors are
hidden, an eavesdropper cannot aim an antenna at one of
the sensors for identifying its packets.

7 Conclusion

In this paper we presented a novel secure pairing scheme
for CPU-constrained devices without a need for special
hardware or interfaces. Using an existing communica-
tion channel such as 802.11 or 802.15.4, two devices that
are close to each other can agree on a secret key using
an algorithm that does not depend on CPU-intensive op-
erations. On the other hand, user assistance is required
for shaking the devices during key agreement in order to
preserve key secrecy.

One alternative could consist of randomly varying the
signal level (in software) during key agreement. How-
ever, this solution is not secure because an eavesdropper
may aim an unidirectional antenna at one device, iden-
tify its packets and therefore retrieve the secret key. Fur-
thermore we have discovered by experimentations that if
the two devices are not shaken, one of them can mask

the signal of the other one and attenuate its transmis-
sion power significantly. Consequently, the packets from
each device are received at a different signal level, and
the secret key can easily be retrieved. Shaking solves
all these problems. It seems to be the only solution that
can address all kinds of RSSI-based signal level anal-
ysis threats that our key agreement protocol may face.
The proposed protocol works with off-the-shelf 802.11
wireless cards and is secure against eavesdropping at-
tacks that use power analysis. It requires, however, some
firmware changes to protect against attacks that attempt
to identify the source of packets from their transmission
frequency.

One limitation of our scheme is that it is specific to
random media access technologies. For example, it is
not suitable for TDMA-based protocols and, therefore,
cannot be used with Bluetooth devices. Our scheme re-
quires CSMA-based systems, such as 802.11 or 802.15.4
(an emerging Wireless PAN technology, designed for low
power sensors). Another noticeable limitation is that it
requires that the transmission power of both devices be
similar. This was the case with the 802.11 devices that
we used for our experimentations. However, for some
wireless technologies, a power control protocol might be
required to adjust the transmission power accordingly.

Objects with microprocessors and wireless
transceivers surround us. Today’s users are more
and more technology and security-aware. Almost all
users today learned that a system access password
should contain non-alphanumeric characters. We have
learned (or are forced to learn) how to handle computer
viruses. Technology and information security have
become part of our everyday lives. Thus, we believe that
future users can also learn thattwo small devices must
be shaken well before secure use. This is actually a very
common protocol that we already execute everyday.
For example, orange juice or shaving cream bottles are
universally shaken/moved before usage. This is now a
well-known and quite a natural “protocol”. Furthermore
it is commonly accepted that it is the responsibility and
in the interest of the consumers to perform this shaking
operation properly. Similarly, in our case by shaking the
devices well, the user can make sure that the two devices
are paired securely.

Acknowledgement
We would like thank Roy Want, Gene Tsudik and the

anonymous reviewers for their excellent remarks that
helped us improve this paper.

References

[1] Fundamentals of Quartz Oscillators. HP Applica-

99

tion Note 200-2.

[2] http://www.telluriantech.com. Specialty Crystals,
Quartz Crystals.

[3] A LPERN, B., AND SCHNEIDER, F. Key exchange
using ”Keyless Cryptography”.Information pro-
cessing letters 16, 2 (February 1983), 79–82.

[4] CHAYAT , N. 802.11a PHY
Overview. Slides available at:
http://www.nwest.nist.gov/mtg3/papers/chayat.pdf.

[5] DAI , W. Speed benchmarks for
various ciphers and hash functions.
URL:http://www.eskimo.com/� weidai/.

[6] D IFFIE, W., AND HELLMAN , M. New directions
in cryptography.IEEE Transactions on Information
Theory IT-22, 6 (1976), 644–654.

[7] GEHRMANN, C., AND NYBERG, K. Enhance-
ments to bluetooth baseband security. InNord-
sec’01 (Kopenhagen, Denmark, November 2001).

[8] GOLDWASSER, S., AND BELLARE,
M. Lectures notes in cryptography.
URL:http://www.cs.ucsd.edu/users
/mihir/papers/gb.html.

[9] H ILL , J., SZEWCZYK, R., WOO, A., HOLLAR ,
S., CULLER, D. E.,AND PISTER, K. S. J. System
architecture directions for networked sensors. In
Architectural Support for Programming Languages
and Operating Systems (2000), pp. 93–104.

[10] HOEPMAN, J.-H. Ephemeral pairing
in anonymous networks. Available at:
http://www.cs.kun.nl/� jhh/publications/anon-
pairing.pdf.

[11] HOEPMAN, J.-H. The ephemeral pairing prob-
lem. In8th Int. Conf. Financial Cryptography (Key
West, Florida, February 9-12 2004), pp. 212–226.

[12] HOLMQUIST ET AL, L. A. Smart-Its Friends: A
Technique for Users to Easily Establish Connec-
tions between Smart Artefacts. InUbicomp 2001
(Atlanta, Georgia, September 30, October 2 2001).

[13] KARLOF, C., SASTRY, N., AND WAGNER, D.
Tinysec: A link layer security architecture for wire-
less sensor networks. InSecond ACM Conference
on Embedded Networked Sensor Systems (SenSys
2004) (November 2004).

[14] LENSTRA, A. K., AND VERHEUL, E. R. Selecting
cryptographic key sizes.Journal of Cryptology: the
journal of the International Association for Crypto-
logic Research 14, 4 (2001), 255–293.

[15] LESTER, J., HANNAFORD, B., AND G., B. ”Are
You with Me? - Using Accelerometers to Deter-
mine If Two Devices Are Carried by the Same Per-
son”. InPervasive 2004 (Vienna, Austria, April 21-
23 2004).

[16] MENEZES, A. J., VAN OORSCHOT, P. C., AND

VANSTONE, S. A. Handbook of applied cryptog-
raphy. CRC Press series on discrete mathematics
and its applications. 1997. ISBN 0-8493-8523-7.

[17] OGILVIE , B. Clock Solutions for WiFi (IEEE
802.11). Saronix(tm) application note, 2003.

[18] RIVEST, R., SHAMIR , A., AND ADLEMAN , L. A
method for obtaining digital signatures and public-
key cryptosystems.Coomunications of the ACM 21
(1978), 120–126.

[19] STAJANO, F., AND ANDERSON, R. The resurrect-
ing duckling: Security issues for ad-hoc wireless
networks. InProceedings of the 7th International
Workshop on Security Protocols (1999), pp. 172–
194.

[20] V IG, J., AND BALLATO , A. Frequency Control
Devices. Reprinted from Ultrasonic Instruments
and Devices, Academic Press, 1999.

[21] WANT, R., AND PERING, T. New Horizons for
Mobile Computing. InFirst IEEE International
Conference on Pervasive Computing and Commu-
nication (PerCom’03) (Dallas, Texas), pp. 3–8.

Notes�

Since infrared channels require line-of-sight links, theycannot be
effi ciently used for the actual communication between the sensors.

✁

We assume that packets do not carry information that can help
identify the source address. Thus we concentrate our effortson tem-
poral and spatial indistinguishability problems.

✂

Available at: http://www.hpl.hp.com/personal/JeanTourrilhes
✄

Note that the spatial indistinguishability property requires that the
two devices set the same transmission power. We observed thatalmost
all vendors set it to 15 dBm. Otherwise, the devices should modify their
transmission power to a specifi ed value and keep it constant during key
agreement.

100 ANNEXE C. LE PROTOCOLE ORANGINA

Annexe D

Identification Privée des
étiquettes RFID

Cette annexe contient un article qui a été publié dans la conférence RFIDSec, Malaga, Espagne,
Mars 2007.

Cet article présente un nouveau protocole d’identification ProbIP (Probabilistic Identification
protocol). Il propose une nouvelle approche au problème de l’identification secrète des étiquettes
RFID. ProbIP ne nécessite très peu de calcul de la part des étiquettes et est, par conséquent,
bien adaptée aux étiquettes de type EPC. Sa sécurité repose sur un problème NP-complet.

101

102 ANNEXE D. IDENTIFICATION PRIVÉE DES ÉTIQUETTES RFID

Secret Shuffling: A Novel Approach to RFID
Private Identification

Claude Castelluccia and Mate Soos

INRIA, 655 avenue de l’Europe, Montbonnot, France
{claude.castelluccia, mate.soos}@inrialpes.fr

Abstract. This paper considers the problem of private identification of
very small and inexpensive tags. It describes a novel scheme that does not
require any computation from the tag. The proposed scheme relies on an
NP-complete problem and as such is proven to be difficult to breach. We
show that our solution outperforms existing computation-free schemes
such as the pseudonym-rotation scheme proposal by Juels et al.[1].

1 Introduction

An RFID (Radio-Frequency Identification) tag is an extremely small electronic
device that can – within a short range – wirelessly communicate with a reader.
There are various types of RFID tags, ranging from very powerful to very weak
devices. This paper focuses on tags with very limited computation capabilities,
such as EPC tags. These devices are powered by the reader’s electromagnetic
field, and so need no battery and subsequently no recharging. EPC RFID tags
carry interesting possibilities for the end users: they could be used to return
faulty items to shops without keeping receipts, or even help intelligent washing
machines that know what kind of clothes are inside them. However, with these
possibilities comes a price: the possibler loss of privacy. For example, anybody
possessing a reader could read any passersby’s tags, which can potentially reveal
even the brand of his or her socks. Similarly, tracking of people would also become
possible. These possibilities scare off potential adoption as was the case with the
boycott of Benetton where the garment maker was forced to take off RFID tags
from their clothes.

Contributions This paper considers the problem of private identification of
very small and inexpensive tags that cannot perform any cryptographic op-
erations. Our proposal is a probabilistic identification protocol (ProbIP) that
does not require any computation from the tag. Our scheme resembles Juels’
pseudonym-rotation scheme as presented in [1], but increases its security signif-
icantly. The presented scheme is an identification scheme. As such, it does not
address authentication, and so can not be used to authenticate a tag. It simply
serves to correctly identify a tag if no active attacker is present. Privacy of the
tag is preserved to some extent even if an active attacker is present.

103

Organization This paper is structured as follows: Section 2 presents briefly
the related work. Section 3 describes our identification protocol and Section 4
provides a security analysis of our protocol.

2 Related work

Existing solutions to the RFID private identification problem can be categorized
as follows: hash-lock based systems, solutions based on special tags and ultra-
lightweight crypto-primitives.

Hash-lock based systems have been studied deeply, interesting papers in this
category include a tree-type approach from Molnar et al. [2], an optimization of
key-trees by Buttyan et al. [3], a synchronization-type approach from Ohkubo
et al. [4] and a mixed approach from Lu, Han et al. [5]. Although these schemes
offer relatively good security, they all suffer from the same problem: the need of
a secure one-way hash function on the tag.

Some solutions use special tags, that usually have a relatively good processing
power, to supervise and control all communication between the regular RFID
tags and the reader. The RFID blocker tag by Juels, Rivest and Szydlo in [6]
is an example of such a solution. This avenue of research has the advantage of
providing very strong privacy but requires that an intelligent device be present
at all times when a tag is being queried.

Ultra-lightweight crypto-primitives are an interesting avenue in RFID secu-
rity research. In this category are papers such as Vajda and Buttyan’s paper
[7] that has been studied by Li et al. in [8], and a tiny implementation of AES
by Feldhofer et al. in [9]. Also in this category, is the paper that gave us the
most inspiration, written by Juels and Weis [10], that introduced HB+, a novel
lightweight authentication protocol. We believe this avenue of research has the
potential to provide the best solution to the proposed problems.

3 Probabilistic Identification Protocol (ProbIP)

In this section, we introduce our Probabilistic Identification Protocol (ProbIP).
In ProbIP, each tag Tj is configured with a unique K-bit long random secret
key, kj . The key is used as a bit-vector, with kj [1] being the first bit, kj [2] being
the second, etc. The reader, R, stores all the keys that are assigned to each of
the n tags.

3.1 Protocol description

The protocol, between tag Tj , and the reader R, is as follows:

1. R initiates an identification by broadcasting a HELLO message.
2. Upon reception of a HELLO message, Tj replies with P packets and a FINISHED

message, where P is a system parameter that will be defined in the following
section. A packet is a list of 2L values, a1, b1, a2, b2 . . . , aL, bL, where ai is a

104 ANNEXE D. IDENTIFICATION PRIVÉE DES ÉTIQUETTES RFID

random index from the key ai
r
← [1,K] that is never repeated in the same

packet, and bi is a random bit bi
r
← {0, 1} that satisfy the following equation:

L
∑

i=1

kj [ai]⊕ bi = L/2 (1)

Since addition is commutative, as long as the pairs ai, bi for all i are not
changed, the order of the pairs can change. We will note these pairs in the
following fashion: āi if bi = 1 and ai if bi = 0.

3. Upon reception, R computes the result of eq. (1) for each packet for every
tag’s key in a relatively fast fashion. The key(s) that fits all the packets is
suspected to have been used to send the packets.

3.2 An example

Let’s consider, to illustrate our protocol, a system that uses the following artifi-
cially small system parameters, L = 4, K = 6 and n = 4. In this example, T1 is
configured with the key k1 =011001, T2 with the key k2 =100101, T3 with the
key k3 =011110 and finally T4 with k4 =001110.

Let’s assume that the tag the reader is trying to identify is T2. An example
protocol run between R and T2 is the following:

In a step-by-step fashion, the following happens during this protocol run:

1. R broadcasts a HELLO message.

2. Tag T2 sends two packets and the FINISHED message. The first packet is
defined by [1 2 5 6], for which the eq. (1) wrt. k2 is (1 ⊕ 1) + (0 ⊕ 0) +
(0⊕ 1)+ (1⊕ 0) = 2 = L/2 . The second packet is defined by [2 3 4 5] for
which the eq. (1) wrt. k2 is (0⊕ 1) + (0⊕ 0) + (1⊕ 0) + (0⊕ 0) = 2 = L/2 .

3. Upon reception of the first packet, the reader computes for each of the 4 tags
the eq. (1). R gets that for T1 it is 4, for T2 it is 2, for T3 it is 2 and for T4 it
is 1. The reader, therefore, keeps only tags T2 and T3 as possible candidates.

4. Upon reception of the second packet, the reader computes for tags T2 and
T3 the eq. (1). R gets that for T2 it is 2 and for T3 it is 3. At this point, tag
T2 has been successfully identified by R.

105

3.3 Minimum number of packets needed by the reader

Here, we compute the minimum amount of packets needed by R to correctly
identify a tag. Since the protocol is probabilistic, there will always be a non-zero
probability fp that the number of packets sent will not be enough. However, this
probability can be arbitrary adjusted between 0 < fp < 1.

The total number of packets possible for all keys is

(

2K
L

)

, as ai comes from

a set of size K and bi comes from a set of size 2, whereas for a given key, the

number of possible packets is only

(

K
L/2

) (

K − L/2
L/2

)

since eq. (1) must hold

and indices cannot be repeated in a packet. The ratio of these two numbers

R =

(

K
L/2

) (

K − L/2
L/2

)

(

2K
L

) (2)

is the probability that a random packet is valid for a random tag. As an example,
for K = 400, L = 10, R ≈ 0.232 .

Given n tags, the false positive probability, fp, that p packets generated by
a given tag match another tag’s key can be calculated as fp = n ∗ Rp . The
number of packets sent from the tag to the reader should then be

P =

⌈

log(1/n ∗ fp)

log(R)

⌉

(3)

which is, for the example parameters of L = 10, fp = 0.1 and n = 107,
P = ⌈12.62⌉ = 13. If these packets do not suffice (which has a low chance
of happening), repeated identification attempts will be carried out by the reader
until it finds the correct tag.

3.4 Parameters

The parameter K must be at least ⌈log2(n)⌉ bits, but as the security of the
system will rely on the condition that n ≪ 2K , the larger this parameter is,
the more secure the system. Also, K should be at least an order of magnitude
larger than L. The parameter L must be such that L/2 is a whole number. When
deciding the parameters, the number of bits sent in one identification

B = P ∗ L ∗ (⌈log2(K)⌉+ 1) (4)

which is also the minimum amount of random bits that need to be generated
during an identification, must be kept in mind. The parameters L,K and n
all influence this number. As an example, for K = 400, L = 10 and n = 107,
B = 1300 bits. It is important to note that sending this information is just a
fraction of a second given a 52.969 kb/s label-to-interrogator link in Class 1 EPC
tags [11].

106 ANNEXE D. IDENTIFICATION PRIVÉE DES ÉTIQUETTES RFID

3.5 Algorithm used by the reader

This section describes the algorithm used by the reader or a set of back-end
servers, to identify the tag using the packets it sent. It is assumed that R knows
the keys k1 . . . kn of all the tags in the system. These keys are stored not in
their natural order kj [1], kj [2], . . . kj [K] for all Tj ∈ {T1, . . . , Tn}, but in their
column-like order k1[i], k2[i], . . . kn[i] for all i ∈ [1,K]. These K columns we will
call Col1, . . . , ColK . Naturally, storing these columns needs exactly the same
amount of memory as simply storing the keys, i.e. n ∗K bits.

At each protocol instance, the following is executed by R:

1. R fills with zeros a temporary n-long byte-vector temp. This will store the
result of the eq. (1), for each tag. A byte is sufficient for any L < 1.5 ∗ 256 .

2. Upon reception of a packet, R performs the following algorithm for each
of the packets’ L pairs (ai, bi): For each tag Tj in the system, temp[j] is
incremented by one if Colai

[j]⊕ bi = 1 . Iteration through the temp and the
Colai

can be parallel, so for a given index, on average n+8n bits of memory
need to be read and 8n/2 bits of memory written.

3. Once all pairs in the packet have been considered, all tags Tj for which
temp[j] = L/2 could have sent the packet.

4. Steps 2-3 are repeated for all packets with different temps, i.e. temp1 for
packet no. 1, temp2 for packet no 2, etc.

5. The identified tag is the tag Tj for which tempi[j] = L/2 for all i ∈ [1, P] .

The proposed algorithm identifies a tag by looking through, on average, P ∗
L ∗ (n + 8n) bits of memory and, by writing P ∗L ∗ 8n/2 bits of memory space,
while doing L ∗ n comparisons and L ∗ n/2 incrementation per packet, plus
P ∗ n comparisons for evaluating all the packets’ results in step 5, which gives
P ∗ L ∗ (n + n/2) + P ∗ n processing steps in total. For instance, if L = 10,K =
400, n = 107 then the overall memory requirement is 400∗107 +13∗8∗107 bits=
630MB and the overall processing requirement is 13∗10∗ (1.5∗107)+13∗107 ≈
2.08e9 processing steps. Parallelization of this algorithm is relatively simple,
and can bring down both the memory and processing requirement of individual
computers.

Note that an adversary does not know the configured set of keys, and would
need to run this algorithm with n = 2K and so ≈ 1.63e113 GB of memory would
be needed for the same parameters (L = 10,K = 400). The processing need
would increase to similar proportions.

4 Security analysis of ProbIP

In this section we will evaluate the security of our scheme using the “strong
privacy” model proposed by Juels and Weis in [12]. In our scheme, tags’ keys
are completely independent of each other thus the corruption of one tag does not
affect the security of the rest of the system. Therefore, it is useless for adversary

107

A to use the the SetKey procedure to change the key of tags. It is also useless
for A to examine any other tags than the ones it will pick, i.e. TA and TB . In
our scheme, ReaderInit is a simple fixed HELLO message, so it need not be
executed by A at all. Therefore, in view of our protocol, the privacy experiment
of the model can be refined to what is present in Fig. 1.

Experiment Exppriv
A,S [K, n, xA + xB + xC]:

Setup:

(1) Generate keys (k1, . . . , kn) uniquely and randomly with GenKey

(2) Initialize R with keys (k1, . . . , kn)
(3) Set each Ti’s key ki with a SetKey call

Phase 1 (Learning):

(4) Let A perform xA TagInit calls with TA and let it record the received packets
into the set XA

(5) LetA perform xB TagInit calls with TB and let it record the received packets
into the set XB

Phase 2 (Challenge):

(6) Let TC
r
← {TA, TB}

(7) Let A perform xC TagInit calls with TC and let it record the received packets
into the set XC

(8) Let A perform calculations on the recorded packets in order to make an
educated guess whether TC = TA or TC = TB .

Exp succeeds if A guessed TC correctly

Fig. 1. The privacy experiment as proposed by Juels and Weis in [12], refined to the
specifics of our protocol

In order to find out how the experiment can be optimized by the adversary
and how he should choose the parameters xA, xB and xC , we will first ana-
lyze what a packet is. Then we propose an algorithm to perform the attack,
and finally, we will experimentally show what is the resistance of our proposed
protocol for certain parameter combinations.

4.1 A closer look at the packets

Looking at the packets in a more mathematical way, they describe an L/2-
in-L LSAT problem. In L/2-in-L LSAT, like in LSAT, the input instance is
a collection of clauses, where each clause consists of exactly L literals, where
each literal is either a variable or its negation. The L/2-in-L LSAT problem is

108 ANNEXE D. IDENTIFICATION PRIVÉE DES ÉTIQUETTES RFID

to determine whether there exists a truth assignment to the variables so that
each clause has exactly L/2 true literals. This problem is NP-complete if L > 2
as indicated by Schaefer’s dichotomy theorem [13]. Thus, if an attacker, given
enough packets, wants to solve for k, if L > 2, he would have to solve an NP-
complete problem.

Similarly, a packet can also be looked at as an L-long Linear Pseudo-Boolean
Constraint (LPBC) as the original eq. (1) implied.

4.2 Algorithm used by the attacker

In light of what the true nature of a packet is, the way for an attacker to attack
our scheme in the given model is to execute an LPBC solver on XC ∪XA, and
examine the output of the solver. If the result is unsatisfiable (UNSAT), then
surely TC 6= TA (consequently, TC = TB), since TA only sends packets that have
a solution, kA. However, if the result is satisfiable (SAT), TC can be either of
the tags. But, if the attacker knows that he has gathered enough packets that
had TC 6= TA the result would surely have been UNSAT, then he knows that
TC = TA. If he cannot gather this amount of packets in XA and XC , then he
will almost always get the result SAT, which he cannot use. Therefore there is
no need for him to gather packets from more than one of the tags in the learning
phase, and it does not matter which one he picks. We decided to pick TA.

While keeping the above argument in mind, one could reason in the following
way about NP-hard problems:

1. They are hard to solve exactly but can in certain cases be approximated
easily. While this is true, it does not help the attacker in any way. If the
attacker can find an approximate solution to the set of constraints defined
by XA∪XB , that does not tell anything about whether TC = TA or TC 6= TA.

2. They are hard to solve in the worst case, but easy to solve most of their
instances. This is true, and we will deal with this later, where we show that
the problem generated by the tag is exactly what is suggested in [14] and
which is known to be hard.

LPBC solver used We tried two of the most respected LPBC solvers, Minisat
[15] and Toolbar [16], and a less known one, Galena [17]. Each one had its own
distinct advantage. Galena was designed to solve exactly these kinds of problems,
Toolbar had a large user-base and thus good support, while Minisat was the best
performing in many SAT competitions. Minisat had multiple advantages over
the competition: since it was a pure SAT solver, it could use the well-established
DPLL algorithm as described by Davis, Putnam et al. in [18], and could also
benefit from “learning” as first shown by Schulz et al. in [19], and improved by
Marques Silva et al. in [20]. Galena adapted these techniques to solving LPBC
problems, but it could not use the well-established literature of how to implement
them in a way that is fast.

109

The fastest solver by far (and also, the most modifiable), was Minisat. It
was the winner of multiple SAT-competitions in 2005 and came the first in the
2006 SAT-race, and so gave a good foundation to base our results on. One would
expect that the speed slowdown of using the LPB constraints of the type in eq.
(1) converted into regular CNF formulas is significant. However, as was shown
by the version of Minisat called “Minisat+” this method is faster than directly
tackling the original LPB-constraint problem: Minisat was much better than its
rivals in the LPB-part of the SAT competition in 2006.

In order to use Minisat, we needed to convert each packet to a set of CNF
clauses. We thus used a conversion that made from e.g the packet of [1 2 5 9]

the following CNF clauses:

(1 ∨ 2̄ ∨ 5) ∧ (1̄ ∨ 2 ∨ 5̄) ∧ (2̄ ∨ 5 ∨ 9) ∧ (2 ∨ 5̄ ∨ 9̄) ∧ . . .

i.e. all L/2 + 1 combinations in their original and their negated form. These
formulas simply mean that any L/2 + 1 literals that have the same value is
forbidden. We used this conversion because the conversion algorithm included
in Minisat+ converted the problem in such a way that it was slower than using
the conversion given above.

Minimum number of packets needed by the attacker Let’s assume that
TA 6= TC . The attacker first needs to know how should he distribute the number
of ReaderInit calls he has between TA and TC in order to have the highest
possibility of finding out that TA 6= TC . We will now calculate this ratio and
deduce equation for the minimum amount of packets needed.

xA packets from TA reduces the number of possible keys by a factor of RxA ,
the remaining set of possible keys we call SA . xC packets from TC also reduces
the number of possible keys by a factor of RxC , the remaining set of possible
keys we call SC . Intuitively, the union of these packets will leave the attacker
with

PC = |SA ∩ SC | = max

{

max(2K ∗RxA , 1) ∗ (2K ∗RxC)
max(2K ∗RxC , 1) ∗ (2K ∗RxA)

(5)

number of possible key combinations. This equation tells two things. Firstly, the
intersection is the smallest if xA = xC . Secondly, in case TA 6= TC , the closer
PC is to 0, the higher the possibility of the attacker to find that the constraints
XA∪XC is UNSAT. As an example, if PC = 0.1 then he has a 90% chance that
he will find out that the resulting constraints are UNSAT (thus TA 6= TC) and
if he finds that XA ∪XC is SAT, then he can be 90% sure that indeed TA = TC .

Therefore, if the attacker wishes to attain a 90% chance ratio of finding out
which tag is TC then he needs

Patt =

⌈

log(1/2K ∗ 0.1)

log(R)

⌉

(6)

packets equally distributed between xA and xB . As an example, if K = 400 and
L = 10, then Patt = ⌈191.62⌉ = 192. If n = 107 and consequently, P = 13, this

110 ANNEXE D. IDENTIFICATION PRIVÉE DES ÉTIQUETTES RFID

is ⌈Patt/P ⌉ = 15 identifications in total, i.e. 8 identifications for both TA and
TC . It is interesting to observe that the equations (6) and (3) completely match
if fp = 0.1 and n = 2K i.e. the search space of the reader is not restricted to the
configured set of keys.

The threshold phenomenon As it is hypothesized by Cheeseman et al. in
[14] and further explained by B. Smith in [21], all NP-hard problems exhibit a
so-called phase-transition, which states that given a randomly generated NP-
hard CSP(Constraint Satisfaction Problem), there is always a point where it is
the hardest to solve the generated problem, and this corresponds exactly to the
point where there is a transition from SAT to UNSAT. From this point on, the
difficulty of finding a solution decreases at an exponential rate, along with the
possibility of having any solution at all.

This phenomenon plays a crucial part in the security evaluation of our pro-
tocol: as the possibility of UNSAT increases if TA 6= TC , the hardness of finding
this out increases as well. The peak of the difficulty of finding out UNSAT is
then at the minimum amount of packets the attacker needs (i.e near Patt) to
find that the CPS defined by the packets is indeed UNSAT. If more packets are
known by the attacker, this difficulty decreases at an exponential rate in relation
to the extra number of packets gathered.

Precisely calculating the phase-transition and its corresponding graph is very
hard for a given CSP: even for such a widely studied problem as k-SAT, since
its inception in 1991 with the influential paper of Cheeseman et al. [14] it has
taken more than 10 years to prove that the threshold for k-SAT is 2k log 2−O(k)
[22]. So, instead of mathematically calculating the threshold and its correspond-
ing graph, we will experimentally show it using Minisat, and extrapolating the
results, deduce the protocol’s resistance to attacks.

An example threshold plot is present in Fig. 2. In this particular instance
of the protocol the parameters were such that Patt ≈ 36 and TA = TC so that
the Hamming distance of solution given by the satisfiability solver approached
0 as the number of packets given to it approached Patt. The phase-transition is
clearly between no. of packets 30 and 36.

4.3 Results

In calculating the resistance to attacks, we used the parameter L =10. Knowing
that it is hardest to solve at Patt, we gave our simulated attacker multiple number
of Patt packets to evaluate the computation speed-up it can achieve if given more
packets. All experiments were performed with a 3GHz Pentium-D machine with
2 GB of memory. The plot for 64, 192, 576 times Patt is in Fig. 3.

The scale on the time axis is logarithmic, since the time to break the system
increases exponentially as the key-length is increased. This is a consequence of
using an NP-hard problem to base the security of the protocol on. The breaking
times for different values of Patt, n and K are shown in Table 1.

The results clearly show that there is a trade-off between the number of
packets collected and the hardness of breaking the system privacy (i.e. winning

111

 0
 1
 2
 3
 4
 5
 6

T
im

e
to

 fi
nd

so
lu

tio
n

(s
)

 0

 30

 10 20 30 40 50 60 70 80 90 100H
am

m
in

g
di

s-
ta

nc
e

fr
om

 k

Number of packets

Fig. 2. The threshold phenomenon illustrated. Top part of the plot shows the time to
find a solution versus information given, the bottom part shows the Hamming distance
of the solution found from the key of the tag

 0.1

 1

 10

 100

 20 40 60 80 100 120 140 160 180

T
im

e
ne

ed
ed

 to
 b

re
ak

th
e

an
on

ym
ity

 (
s)

Keylength

64*Patt
192*Patt
576*Patt

Fig. 3. Time to break the anonymity versus the keylength for different overinfo rates
(i.e. the number of times Patt packets was given to the attacker)

the privacy experiment). The more packets an attacker can collect, the easier it
is for him to break the system.

4.4 Analysis

The results clearly show that there is a trade-off between the number of pack-
ets collected and the hardness of breaking the system privacy (i.e. winning the
privacy experiment). The more packets an attacker can collect, the easier it is
for him to break the system. This interesting property is a direct result of the
threshold phenomenon.

An interesting property of our scheme is that n is not directly present any-
where in the results. This is because the only help a greater n gives to the
attacker is that the number of packets per identification, P , will be greater, and
so Patt number of packets will be attainable by less TagInit queries.

112 ANNEXE D. IDENTIFICATION PRIVÉE DES ÉTIQUETTES RFID

packets/K 100 200 400 1000

1∗Patt 1.47e2 s 3.17e11 s 1.46e28 s 1.46e78 s
3∗Patt 3.33e1 s 7.41e5 s 3.67e14 s 4.49e40 s
9∗Patt 6.31e0 s 4.54e3 s 2.35e9 s 3.27e26 s

27∗Patt 4.27e0 s 6.37e2 s 1.42e7 s 1.57e20 s
64∗Patt 4.02e0 s 4.87e2 s 7.15e6 s 2.27e19 s

192∗Patt 5.34e0 s 7.31e1 s 1.37e4 s 9.01e10 s
576∗Patt 1.00e1 s 7.28e1 s 3.86e3 s 5.74e8 s

Table 1. This table shows the trade-off in time and calculations that are possible in
terms of the overinfo rate (i.e. the number of times Patt packets was given to the
attacker). Larger keysizes make the attacker’s job more difficult - he will either need
to do much more calculations or gather much more packets than with smaller keysizes.

Our scheme, unlike the usual cryptographic schemes, is simple to analyze.
The detailed examination of the problem that leads to the results shows that
any algorithm that can break the privacy of the proposed protocol significantly
faster than the presented one is a technological breakthrough.

Comparison with other schemes The presented scheme is targeted for very
simple RFID tags with no computational capabilities. Therefore, it is not meant
to compete with schemes that use cryptographic functions such as a secure hash.
As such, our scheme should be compared to schemes such as the pseudonym-
rotation scheme, proposed in [1], where each tag is configured with a short list of
random identifiers called pseudonyms. In this scheme, each time a tag is queried,
it emits the next pseudonym in the list, cycling to the beginning when the list
is exhausted. With this scheme, if n = 107 a tag that contains 15 pseudonyms
which corresponds to a memory size of 15 ∗ ⌈log2(107 ∗ 15)⌉ = 420 bits, loses
its privacy after 16 requests by the attacker. Note that this is exactly the same
as our protocol with parameters K = 420, L = 10, ⌈Patt/P ⌉ = 16, with the
exception that in our protocol, the attacker needs not only to record the sent
information, but also to execute a difficult computation to win the privacy ex-
periment. In other words, our protocol gives the same amount of information
during one protocol run as the pseudonym-rotation scheme, but in a coded way.
As such, for an attacker to break our scheme in a reasonable amount of time, he
needs to collect much more information than would be necessary from a purely
information theoretic point of view.

References

1. Juels, A.: Minimalist cryptography for low-cost RFID tags. In: SCN 2004
2. Molnar, D., Soppera, A., Wagner, D.: A scalable, delegatable pseudonym protocol

enabling ownership transfer of RFID tags. In: SAC 2005
3. Buttyán, L., Holczer, T., Vajda, I.: Optimal key-trees for tree-based private au-

thentication. In: PET 2006

113

4. Ohkubo, M., Suzuki, K., Kinoshita, S.: Efficient hash-chain based RFID privacy
protection scheme. In: Ubicomp 2004, Workshop Privacy: Current Status and
Future Directions

5. Lu, L., Liu, Y., Hu, L., Han, J., Ni, L.: A dynamic key-updating private authen-
tication protocol for RFID systems. In: PerCom 2007

6. Juels, A., Rivest, R., Szydlo, M.: The blocker tag: Selective blocking of RFID tags
for consumer privacy. In: ACM CCS 2003

7. Vajda, I., Buttyán, L.: Lightweight authentication protocols for low-cost RFID
tags. In: Ubicomp 2003

8. Li, T., Wang, G.: Security analysis of two ultra-lightweight RFID authentication
protocols. In: IFIP SEC 2007

9. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: Aes implementation on a grain of
sand. In: Information Security, IEEE (2005) 13–20

10. Juels, A., Weis, S.: Authenticating pervasive devices with human protocols. In:
CRYPTO’05

11. EPCglobal: 13.56 mhz ism band class 1 radio frequency identification tag interface
specification (2003). Technical report, Auto-ID cetner, MIT

12. Juels, A., Weis, S.: Defining strong privacy for RFID. Cryptology ePrint Archive,
Report 2006/137 (2006)

13. Schaefer, T.J.: The complexity of satisfiability problems. In: STOC ’78
14. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are.

In: IJCAI-91
15. Een, N., Soorensson, N.: An extensible sat-solver [ver 1.2]. Theory and Applications

of Satisfiability Testing 2919/2004
16. Bouveret, S., Heras, F., de Givry, S., Larrosa, J., Sanchez, M., Schiex, T.: Toolbar:

a state-of-the-art platform for wcsp (2004)
17. Chai, D., Kuehlmann, A.: A fast pseudo-boolean constraint solver. In: IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 2003.
305–317

18. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3) (1960) 201–215

19. Schulz, M.H., Auth, E.: Improved deterministic test pattern generation with appli-
cations to redundancy identification. IEEE Transactions on computer-aided design
8(7) (July 1989) 811–816

20. Silva, J.P.M., Sakallah, K.A.: Graspa new search algorithm for satisfiability. In:
ICCAD ’96

21. Smith, B.: The phase transition in constraint satisfaction problems: A CLoser look
at the mushy region. In: Proceedings ECAI’94. (1994)

22. Achlioptas, D., Peres, Y.: The threshold for random k-sat is 2ˆ k(ln 2 - o(k)). In:
STOC ’03

114 ANNEXE D. IDENTIFICATION PRIVÉE DES ÉTIQUETTES RFID

Annexe E

Les Identifiants Cryptographiques

Cette annexe contient un article qui a été publié dans la revue ACM Transactions on Infor-
mation and System Security (TISSEC), Volume 7, Numéro 1, pages 97-127 en Février 2004. Il
présente les concepts des addresses et identifiants cryptographiques. Ces adresses et identifiants
sont cryptographiquement vérifiables. Cette propriété permet de résoudre plusieurs problèmes de
sécurité, allant du vol d’adresse IP à la sécurité des groupes.

115

116 ANNEXE E. LES IDENTIFIANTS CRYPTOGRAPHIQUES

Crypto-Based Identifiers (CBIDs):
Concepts and Applications

GABRIEL MONTENEGRO
Sun Labs, Europe, France
and
CLAUDE CASTELLUCCIA
INRIA Rhône-Alpes, France

This paper addresses the identifier ownership problem. It does so by using characteristics of Statis-
tical Uniqueness and Cryptographic Verifiability (SUCV) of certain entities which this document
calls SUCV Identifiers and Addresses, or, alternatively, Crypto-based Identifiers. Their character-
istics allow them to severely limit certain classes of denial-of-service attacks and hijacking attacks.
SUCV addresses are particularly applicable to solve the address ownership problem that hinders
mechanisms like Binding Updates in Mobile IPv6.

Categories and Subject Descriptors: C.2.0 [Computer Systems Organization]: Computer-
Communication Networks—General security and protection (e.g., firewalls)

General Terms: Security, Verification

Additional Key Words and Phrases: Security, mobile IPv6, address ownership, group management,
authorization, opportunistic encryption

1. INTRODUCTION

This paper addresses the identifier ownership problem [Nikander 2001] by us-
ing characteristics of Statistical Uniqueness and Cryptographic Verifiability
(SUCV) of certain entities which this document calls SUCV Identifiers (SUCV
IDs) or, alternatively, Crypto-based Identifiers (CBIDs). This paper also pro-
poses using these SUCV characteristics in related entities called SUCV ad-
dresses in order to severely limit certain classes of denial-of-service (DOS)
attacks and hijacking attacks. SUCV addresses can solve the address owner-

ship problem that hinders mechanisms like Binding Updates (BUs) in Mobile
IPv6. We first examine this problem and our proposed solution in some depth.

A preliminary version of portions of this material appeared in G. Montenegro and C. Castelluccia,
“Statistically Unique and Cryptographically Verifiable (SUCV) Identifiers and Addresses,” Pro-
ceedings of the 2002 Network and Distributed System Security Conference (NDSS02), San Diego,
February 2002.
Authors’ addresses: G. Montenegro, Sun Labs, Europe, 180 Avenue de l’Europe, ZIRST de
Montbonnot, 38344 Saint Ismier cedex, France; email: gab@sun.com; C. Castelluccia, INRIA Rhône-
Alpes, 655, avenue de l’Europe, 38330 Montbonnot, France; email: claude.castelluccia@inrialpes.fr.
Permission to make digital/hard copy of all or part of this material without fee for personal or
classroom use provided that the copies are not made or distributed for profit or commercial advan-
tage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice
is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists requires prior specific permission and/or a fee.
C© 2004 ACM 1094-9224/04/0200-0097 $5.00

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004, Pages 97–127.

117

98 • G. Montenegro and C. Castelluccia

Subsequently, we explain other applications of the same concept. In particu-
lar, we explain a powerful construct obtained by adding the expressiveness of
authorization certificates to unforgeable CBID identities.

This paper is structured as follows. Section 2 defines the address ownership

problem. Section 3 presents the notation used throughout this paper. Section 4
gives an overview of our proposal. Section 5 presents SUCV identifiers and ad-
dresses, and how to generate them. Section 6 describes SUCV Protocol (sucvP),
the protocol that is used by a mobile node to prove ownership of its addresses to
its correspondent nodes and to generate session keys. Section 7 presents an ex-
tension to sucvP for constrained devices (PDAs, sensors, phones, etc.). Section 8
explains how to provide data confidentiality and location privacy with sucvP.
Section 9 presents a security analysis of our proposal. Section 10 presents other
applications of the SUCV properties of CBIDs and of their use as an authoriza-
tion mechanism. Section 11 presents a human-friendly protocol to bootstrap-
ping CBIDs as an alternative to existing mechanisms. Section 12 compares our
scheme with related work. Finally Section 13 concludes.

2. PROBLEM STATEMENT: THE NEED FOR PROOF OF
ADDRESS OWNERSHIP

Nikander [2001] argues that there is a fundamental problem in handling oper-
ations like BUs in Mobile IP for IPv6 [Johnson et al. 2003], source routing, and
so on, that allows hosts to modify how other hosts route packets to a certain des-
tination. The problem is that these operations can be misused by rogue nodes
to redirect traffic away from its legitimate destination. Authentication does not
solve this problem. Even if a node unequivocally identifies itself, this has no
bearing on its rights to modify how packets to any given address are routed.
This is true even if its packets currently seem to emanate from the address in
question. This last point is obvious if one considers DHCP leased addresses. It
is imperative not to allow any node to redirect traffic for a DHCP address for
which it held a valid lease previously. This would allow it to hijack traffic meant
for the current valid user of the address in question. Hence, protection against
hijacking of valid addresses requires cryptographic authorization for operations
that modify routing (BUs, source routing, etc.). One way to achieve authoriza-
tion is by showing that the requesting node owns the address for which routing
information is being altered. Quoting from Nikander [2001]: “Currently there
exists no specified mechanism for proving address ownership in Internet-wide
scale.”

3. NOTATION

This section presents the notation used throughout this paper.

—prf: Pseudo-random function. SUCV mandates the use of the HMAC-SHA-1
construct of the keyed hash function HMAC [Krawczyk et al. 1997], which
produces 160 bits of output. Input key is assumed to also be 160 bits.

—prfT: Pseudo-random function whose output is truncated by taking the T
leftmost bits of the output. In SUCV, HMAC-SHA1 is used, so prf96, for

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

118 ANNEXE E. LES IDENTIFIANTS CRYPTOGRAPHIQUES

CBIDs: Concepts and Applications • 99

example, would be the keyed hash function HMAC-SHA1-96 [Madson and
Glenn 1998].

—hash: Cryptographic hash function, SHA-1 [NIST 1995] for SUCV.

—hashT: Cryptographic hash function whose output is truncated by taking the
T leftmost bits of the output.

—SUCV: Statistical uniqueness and cryptographic verifiability, the property
exhibited by the identifiers and addresses which are the subject of this study.
We also use SUCV to refer to the resultant mechanism as a whole.

—sucvP: The protocol developed here, whose objectives are proof of address
ownership and session key generation.

—sucvID: 128-bit identifier obtained as the keyed hash output of the hash of
the public key, using an imprint value as the input key.

—sucvHID: 64-bit SUCV identifier used instead of the interface identifier,
and combined with the routing prefix to form an autoconfigured IPv6 ad-
dress [Hinden and Deering 2003]. Obtained as the keyed hash output of the
hash of the public key, using an imprint value as the input key.

—CBID: Crypto-based ID. This general term denotes any entity that has the
SUCV property: either a pure ID (SUCV ID) or an address (SUCV address).

—MIPv6: Mobile IPv6 [Johnson et al. 2003].

—MN, HA, CN, BU, BA, and CoA: Abbreviations of mobile node, home agent,
correspondent node, binding update, binding acknowledgement, and care-of
address, respectively, as defined by MIPv6 [Johnson et al. 2003].

4. PROPOSAL OVERVIEW

We assume that we have a network in which the nodes inherently distrust
each other, and in which a global or centralized Public Key Infrastructure
(PKI) or Key Distribution Center (KDC) is not available. The goal is to arrive
at some fundamental assumptions about trust on top of which one can build
some useful peer-to-peer communication using opportunistic security. But in
such a network, is there a default rule we can follow safely? We posit this
is it:

Default Trust Rule. Redirect operations are allowed only with addresses
that are securely bound to the requesting entity.

The above rule constitutes the only rule that operates by default, allowing
any other more dangerous operation only if authorized by strong cryptographic
mechanisms. In the absence of a trusted third party, how does a principal prove
ownership of its identity to a peer? Notice that usual owner verification relies
on a third party to provide this function. In our proposal, the principal self-
generates a private/public key pair. However, it is much more practical for
protocols to use fixed length identifiers (representations of identities). Because
of this, we do not use the public key itself as the identifier. Instead, the principal
uses material obtained via a prf of the public key as its identity (or as part
of its address), and proves its ownership by signing it with its private key.
The recipient verifies the signature, and, consequently, the ownership of the

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

119

100 • G. Montenegro and C. Castelluccia

identity. These considerations lead to the following fundamental assumption
with respect to the above Default Trust Rule:

Refined Default Trust Rule. It is safe to allow entities that have the SUCV
property to affect routing via redirect operations.

5. SUCV IDENTIFIERS AND ADDRESSES

In MIPv6, a node starts using its home address, and issues BUs as it moves.
Handling these BUs securely is the issue. It is never evident to the CN that
whoever was using an address actually owns it. At the very most, the MN can
prove that at some point it was using a certain address, but it cannot prove
ownership. Ignoring this subtle distinction leads to DOS and hijacking attacks.

5.1 SUCV Identifiers

The idea is to use identifiers that have a strong cryptographic binding with
their public components (of their private–public keys). This is exactly the pur-
pose that certificates have. Let us call them SUCV IDs. Because of this, once
a CN obtains information about one of these identifiers, it has a strong crypto-
graphic assurance about which entity created it. Not only that, it knows that
this identifier is owned and used exclusively by one node: its peer in the current
exchange.

Using identifiers that satisfy the SUCV conditions outlined above, it is pos-
sible to gain the tremendous advantage that other nodes can safely believe the
node when it claims ownership of that identifier. Hence they can safely heed its
redirects when it says that it is now available at some different CoA (and later
at another).

What should one use: pure identifiers with no routing significance or ad-
dresses? With pure identifiers, routing information must be included some-
where else in the packet. This takes up extra space in the packet via home
address options, routing headers, or tunneling headers.

A major advantage of using an address is that the data traffic need not
carry extra information in the packet to guarantee proper delivery by routing.
Because of this it is useful to create addresses that are both routable and satisfy
the SUCV property: SUCV addresses.

5.2 SUCV Addresses

In IPv6, addresses that satisfy the SUCV property may be obtained as follows
(as it turns out, this is very similar to, and was predated by O’Shea and Roe
[2001]):

—use the top 64 bits from your routing prefix (as in Narten and Draves [2001])

—define the bottom 64 bits as an SUCV ID (called the sucvHID). Use these 64
bits instead of the interface identifier in IPv6 [Hinden and Deering 2003].

The resultant 128-bit field is an identifier that is also routable, avoiding the
need to take extra space in the packet by sending routing options. Notice that
even after moving, it is possible to reuse the sucvHID portion of the address

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

120 ANNEXE E. LES IDENTIFIANTS CRYPTOGRAPHIQUES

CBIDs: Concepts and Applications • 101

with the new network prefix at the new location. Thus it is possible to reuse
the HID with different CoAs.

Nevertheless, by snooping on BUs, it is possible for an attacker to learn the
original network prefix used by the home address. This tells an eavesdropper
where this home address began to be used, and to which network it belongs,
potentially important information.

On the other hand, if you use a pure SUCV ID (without any routing signifi-
cance), then your packets will always need extra information somewhere else
to assure they are routed properly. Eavesdroppers may still know where that
identity is at any particular point in time. Nevertheless, from the point of view
of privacy this is a tangible improvement over always including a valid 64-bit
prefix, as this divulges information about an identity’s topological connectivity
or under what prefix a given identity began to be used (see Section 8).

5.3 Generating SUCV Identifiers and Addresses

Identifiers and addresses for use with SUCV are generated as follows:

sucvID = hmac-sha-1-128(sha1(imprint), sha1(PK)),

sucvHID = hmac-sha-1-64(sha1(imprint), sha1(PK)),

where:

— imprint: The imprint is a 64-bit field. It could be a quantity that depends on
the MNs location or something created by the MN itself (e.g., a random value).
The objective is to use the imprint to limit certain types of brute-force attacks
(see Section 9.1 by limiting their applicability, or by forcing interaction with
the MN).

—PK: The public key (possible types of public keys include DSA, RSA, Elliptic
Curves, etc.).

Note that according to Hinden and Deering [2003], the leftmost three bits
of the sucvID can be used to unequivocally distinguish them from IPv6 ad-
dresses. Accordingly, we assume only 125 bits may be used. Additionally, bit 6
of the sucvHID (the universal/local bit) has to be set to zero to indicate that the
sucvHID is not guaranteed to be globally unique. Bit 7 (the individual/group
bit) must also be set to zero.

6. SUCV PROTOCOL (SUCVP) OVERVIEW

The following illustrative protocol, sucvP, is meant as an example of how the
SUCV property can be used to secure what amount to routing redirects in IPv6,
that is, Mobile IPv6 route optimization BUs. Accordingly, sucvP is run between
an MN and an arbitrary CN.

It is used

—by the MN to prove ownership of its home address and optionally of its CoA,

—to establish an IPsec ESP security association (Skey, Lifetime, SPI) between
the MN and the CN that will be used to secure MIPv6 BUs, and,

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

121

102 • G. Montenegro and C. Castelluccia

—optionally, by the CN to prove ownership of its identifier or address (only if
the CN itself uses an SUCV identifier or address).

The obtained security association (SA) could also be used for any other
application of ESP. However, in the basic sucvP exchange, only the MN per-
forms proof of ownership. Section 9.3.2 outlines the dangers this implies. Ac-
cordingly, general ESP usage should be limited to the extended sucvP ex-
change in which, in addition to the MN, the CN also uses SUCV for proof of
ownership.

As for the choice of using AH or ESP to protect the BUs, we chose the latter.
Given the benefits of integrity and data origin authentication inherent in the
proof of ownership, we believe there is no added value in using AH to protect
the IP headers of BUs once a SA has been established. This and the heated
debate on the future of AH convinced us to use ESP.

sucvP is functionally independent of MIPv6, and is, in fact, a separate pro-
tocol. Proof of ownership in sucvP provides the authorization for the MIPv6
BUs, but the authentication is provided by IPsec ESP. These are two separate
steps, which could run serially. For example, the sucvP step could be carried
out over UDP (as our initial experimental implementation does), after which
the ESP-authenticated BU could be sent.

However, for efficiency reasons, sucvP messages might contain MIPv6 BUs
(along with sucvP3).

For sucvP to set up an IPsec SA (including an SPI) just in time to process
an ESP header and its encapsulated BU, the sucvP payload is carried as an
IP protocol number (currently unassigned). Furthermore, it must precede the
ESP payload used to authenticate the BU.

6.1 Goals and Constraints

This design allows sucvP to satisfy these two objectives:

—not affect existing IPsec implementations more than absolutely necessary;

—support efficient BU processing by reducing as much as possible the number
of round trips.

Furthermore, we assume there is no piggybacking with the BU, so no further
payload follows.

sucvP has been designed based on the following considerations:

(1) the protocol should not rely on a third party (i.e., a global PKI, central KDC,
etc.), although it could use one if available;

(2) not all nodes need to use SUCV addresses, only those that wish their BUs
to be heeded (mobile nodes);

(3) not all nodes need to verify the validity of SUCV addresses, only those
CNs that accept and handle BUs from MNs (these CNs must use SUCV as
explained below to safely populate their binding caches);

(4) sucvP packets are exchanged directly between the mobile node and its cor-
respondent nodes. They are not routed through the Home agent because
the mobile node might be homeless or the home agent might be out of order

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

122 ANNEXE E. LES IDENTIFIANTS CRYPTOGRAPHIQUES

CBIDs: Concepts and Applications • 103

for a certain period of time. The implications for this decision are explored
in Section 9.3.3.

6.2 Packet Exchanges

The proposed protocol that a mobile host uses to send a BU to its CN is the
following:

—sucvP1: The MN sends a sucvP1 message (just to initiate the exchange) to
its correspondent node. This message contains a Nonce, N1. This packet may
contain a MIP HomeAddress Option containing the MNs home address. The
CN might sometimes need the home address to decide whether it wants to
pursue the protocol exchange or not. The source address of the packet is the
MNs current CoA. Additionally, SUCV supports a very simple negotiation
mechanism that works as follows: Optionally, the MN can express its desire
to use certain Diffie-Hellman (DH) groups (for the ephemeral DH exchange),
as well as algorithms for ESP authentication and for ESP encryption.

—sucvP2: The CN replies with a sucvP2 message that contains the following:
N1, Client puzzle request, DH value (g y mod p), Session Key lifetime. The
CN may respond to any optional parameter negotiation included by the MN
in sucvP1, by choosing those algorithms it wishes to support.

In order to defend against sucvP1 storms, a host might use the same DH
value for a period of time. The sucvP2 contains a client puzzle to prevent
DOS attacks [Aura et al. 2001]. Along these line, the CN may wish to ignore
the optional negotiation of parameters initiated by the MN in sucvP1. In this
case, the default algorithms (see Section 6.4) must be used by both parties.

When the MN receives sucvP2, it verifies that the nonce N1 is the same
as what was sent in sucvP1. It then solves the puzzle. At this stage of the
protocol, the MN:

(1) generates a DH value (g x mod p) and derives from it and the DH received
from the CN the session keys (see Section 6.3).

(2) computes skey espauth (the ESP session key used to authenticate the
MIPv6 BUs—see Section 6.3) lifetime as the minimum of the lifetime
value suggested by the CN and its lifetime value.

(3) builds an IPsec SA. If ESP is used subsequently in the packet to secure
a BU, the MN must use a fixed SPI assigned from the range 1 to 255
(currently unassigned).

(4) sends a sucvP3 packet. Note that this message is sent directly from the
MNs CoA to the CN.

—sucvP3: A sucvP3 message contains the following fields: N1, Puzzle reply,
Public key, and imprint; it has used to generate its HID, a DH value, the
skey espauth lifetime, and an SPI for the CN to use when sending BAs (se-
cured via ESP) to the MN; this message must be signed by the MN with its
private key (the public key is used to generate the HID).

Note that this sucvP3 might be followed by an ESP header authenticating
an encapsulated BU. The authentication is performed using the SA available
inline within this sucvP3 packet.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

123

104 • G. Montenegro and C. Castelluccia

When the CN receives the sucvP3, it first checks for a valid Puzzle reply.
It verifies the signature using the included Public key, and then verifies that
this Public key and imprint produce the sucvHID used as part of the sender’s
address (as per Section 5.3. The CN can then conclude that the MN owns its
the Home and CoA addresses.

At this point, the CN makes a note of this Public key and HID.
The CN can then compute the session keys (using the ephemeral DH value

as described in Section 6.3). From the fixed SPI, the CN learns that the SA
material is all inline in sucvP3. It proceeds to build an IPsec SA and processes
this ESP header. In preparation for subsequent ESP processing of BUs, it
computes an SPI and sends it in sucvP4. After this point, and thanks to this
SPI, IPsec usage reverts to normal, that is, future BUs can be secured via
ESP, unaccompanied by any inline sucvP material.

—sucvP4: In sucvP4, the CN sends an SPI. The MN will use this SPI in asso-
ciation with ESP in order to authenticate subsequent BUs. The CN authen-
ticates sucvP4 with HMAC-SHA1 using the Session key (Skey sucv) derived
previously. Additionally, a CN that uses an SUCV address could sign sucvP4
instead. This possibility is explored below in Section 8.

A CN may include a BA along with sucvP4, and if so, it must use ESP for
authentication. The SPI used is that communicated by the MN in sucvP3.
When the MN receives a sucvP4, it must make note of the SPI corresponding
to the CN.

As long as the MN uses the same HID interface identifier for its CoA, it does
not have to prove the CoA ownership and BU authentication is enough.

Proving the CoA ownership can be very useful to prevent a malicious host
from bombing a victim with packets by using the victim’s address as CoA. For
example, with “regular” Mobile IPv6, a host can initiate a large stream trans-
mission from a server and then send a BU with the victim’s address as CoA to
the server. As a result, the stream will bombard the victim. If a host can prove
that it owns its CoA, and that therefore it is not using another node’s address
as CoA, this attack can be avoided. However, this does not protect against a
related attack in which the objective is not to bombard a particular host, but
any given network prefix or link.

If for any reason the MN configures its CoA with a new interface identifier,
it must restart the whole protocol sequence.

6.3 Deriving the Session Keys

We need to generate keying material and keys for the sucvP itself and for use
with ESP.

skeymat = prf(hash(gxy mod p), N1|imprint),

where N1 is the nonce used in sucvP1 and sucvP2.

6.3.1 SUCV Session Key.

skey sucv = prf(skeymat, gxy mod p|N1|imprint|0).

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

124 ANNEXE E. LES IDENTIFIANTS CRYPTOGRAPHIQUES

CBIDs: Concepts and Applications • 105

Used with sucvP4 for authentication, and optionally with sucvP5 (see
Section 8) for both authentication and encryption.

6.3.2 Key for use with ESP.

skeymat espauth = prf(skeymat, skey sucv|gxy mod p|N1|imprint|1).

Used to authenticate BUs unaccompanied by SUCV packets (once sucvP is
completed) as well as other applications of ESP (subject to the warning at the
beginning of Section 6).

Note that whereas skey sucv is the actual key used by the sucvP, skey-
mat espauth is keying material used to derive the real key for use with ESP,
that is, skey espauth in an algorithm-specific manner.

6.4 Default Algorithms

The following algorithms are supported in our SUCV implementation:

—RSA for signing sucvP3.

—DH Oakley Group 1 [Orman 1998] for the ephemeral DH exchange.

—SHA-1 as the integrity algorithm.

—HMAC-SHA-1-96 [Madson and Glenn 1998] for ESP authentication.

—AES-128-CBC for sucvP5 and ESP encryption.

7. EXTENSION FOR CONSTRAINED DEVICES

In our sucvP protocol, a MN must:

(1) generate a DSA public/private key pair;

(2) sign the sucvP3 message;

(3) perform a DH exponentiation to derive the Skey.

All these operations are very computatively expensive especially if the MN
is a constrained device (i.e., a PDA or a sensor with limited memory, battery,
or CPU) [Modadugu et al. 2000]. Elliptic curve cryptographic algorithms might
be more efficient but still too expensive to execute for a constrained device.

In this section, we propose an extension to our scheme for this type of con-
strained devices. Our goal is to off-load most of the expensive cryptographic
operations of a MN to its HA. We assume that the MN and HA share a secret
key, possibly obtained via imprinting [Stajano and Anderson 1999], and that
the MN trusts its HA.

The proposed extension operates as follows:

(1) the HA generates the DSA keys (public and private keys) and sends the
public Key to the MN via the secured channel.

(2) the SUCV id and HID is generated by the MN itself by choosing a k and
computing sucvHID = prf64(hash(publicKey), k).

(3) when a MN wants to initiate a sucvP exchange with CN, it sends a
SUCV request messages, that contains the CN address and the k value,
to its HA (authenticated with the shared key). The HA then initiates a

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

125

106 • G. Montenegro and C. Castelluccia

sucvP exchange with the CN. The HA then proves that it knows the private
key corresponding to the public by signing the exchanged messages (sucvP
has to be slightly modified here) and generates a session key, SKey using
DH algorithm.

(4) The HA then sends the Skey to the MN via the secure channel.

(5) The MN can then send authentication BUs to the CN using the SKey.

With this extension all the expensive cryptographic operations are offloaded
to the home agent but the session key that is used to authenticated the MIPv6
BU (Skey) is only known to the MN, its HA and the CN. A malicious host that
wants to redirect a MNs traffic needs either to discover the HA–MN secret key
or to find a public key/private key pair and a k′ such that

sucvHID = prf64(hash(public), k′).

Both are very difficult to achieve.

8. PRIVACY CONSIDERATIONS

A normal sucvP exchange consists of sucvP1 through sucvP3, and a subsequent
sucvP4 authenticated using the session key. This basic protocol does not allow
any hijacking attacks, so it already fulfills the security requirements for pro-
tecting BUs in MIPv6 as defined by the Mobile IP working group [Mankin et al.
2001].

8.1 Support for Random Addresses

A first concern regarding privacy is how to use random addresses as defined
in RFC3041 [Narten and Draves 2001] in a mobile environment. The issue
here is that, whereas these addresses hide a node’s permanent identifier (per-
haps derived from IEEE addresses), the node cannot prove address owner-
ship of them so it cannot safely send BUs. This means that an MN cannot
use RFC3041 addresses with route optimization. SUCV addresses are indis-
tinguishable from those defined in RFC3041, with the added benefit that an
MN can use them in a route optimized fashion. The basic sucvP outlined
above in Section 6 already handles this case. The only consideration is that
nodes interested in being anonymous may want to use ephemeral SUCV iden-
tifiers (as opposed to more permanent or longer-lived SUCV IDs) for this
purpose.

Furthermore, if nodes wish to have higher protection against attackers than
what is afforded by 63 bits in the sucvAddr, they can use an sucvID. The protocol
exchange is the same, but since an sucvID is a pure identifier, as shown below,
routing information must be included somewhere else in the packet, via home
address options and routing headers (alternatively, tunneling headers could
be used as well). This poses no difficulty if the MN operates as a client, always
initiating contact with the CN, but would otherwise require mechanisms beyond
the scope of this paper.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

126 ANNEXE E. LES IDENTIFIANTS CRYPTOGRAPHIQUES

CBIDs: Concepts and Applications • 107

8.2 Support for Confidentiality

8.2.1 Confidentiality. If confidentiality is a concern, there is the possibility
of an intruder in the middle gaining knowledge of the session keys, as explained
in Section 9. In fact, sucvP prevents an intruder from impersonating a mobile
node but not from impersonating a correspondent node. As a result, a MN
might think that it is talking with its CN, whereas it is actually talking with
an intruder. The MN may wish to make sure it is indeed talking to a given
CN, whose address it has previously obtained (via, e.g., a DNS search, or a
preconfigured list). If in addition to the MN, the CN also uses an SUCV address
this problem can be prevented. We suggest that a CN uses a SUCV address when
confidentiality is an issue and that the CN sign sucvP4 to prove its address
ownership. By doing so, both MN and CN have the assurance that they are
talking to each other and not to an intruder.

8.2.2 Location Privacy. In Mobile IPv6:

—each packet (BU and data) sent by a MN contains a HomeAddress option
that reveals the MNs home address;

—each packet sent to a MN contains a routing header with the MNs home
address.

As a result it is very easy for any host in the network to track the location
of a MN by snooping its packets. If location privacy is an issue, a MN can use
an ephemeral home address sucvADDRephem instead of its actual one and only
reveal its actual home address sucvADDR to its CN (see [Castelluccia and
Dupont 2001] for more details). Packets (BU and data) sent over the network
then use the ephemeral home address sucvADDRephem.

This privacy extension can actually be applied to our proposal. The MN
will need an ephemeral SUCV identity sucvIDephem, and defer revealing its
more permanent SUCV identity sucvID after the CN has proven ownership of
its address. This is accomplished roughly via the following extended protocol
sequence:

—sucvP1: as usual

—sucvP2: the CN adds a bit to advertise its SUCV capabilities

—sucvP3: the MN proves ownership of its sucvADDRephem (derived from an
ephemeral public–private key). At this point, the MN derives session keys
but is not yet sure it is sharing them with the CN itself.

—sucvP4: the CN proves ownership of its SUCV address by signing sucvP4
with its private key, at which point the MN knows the session keys have not
been compromised by an intermediary.

—sucvP5: the MN uses the session key obtained above to send an encrypted
payload revealing its actual SUCV Home Address sucvADDR. sucvP5 must
be signed with the key used to generate the sucvADDR in order to prove its
ownership.

Notice that if the MN wishes to use the stronger mode, it can do so by using an
sucvIDephem and sucvID instead of sucvADDRephem and sucvAddr, respectively.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

127

108 • G. Montenegro and C. Castelluccia

As in the discussion above, this provides for more protection against attackers,
with the proviso that, in practice, the MN may be limited to being a client.
That is, it must initiate communication with the CN, because it is now using
nonroutable entities (SUCV IDs versus SUCV Addresses).

9. SECURITY ANALYSIS

9.1 Hash ID Size Considerations

In SUCV addresses, one of the lower 64 bits is reserved as the local/universal
bit (the u bit), so only 63 bits are actually usable as a hash.

Suppose the hash function produces an n-bit long output. If we are trying to
find some input which will produce some target output value y , then since each
output is equally likely we expect to have to try 2(n−1) possible input values on
average.

On the other hand, if we are worried about naturally occurring SUCV address
duplications, then by the birthday paradox we would expect that after trying
1.2 × 2n/2 possible input values we would have a 50% probability of collision
[Menezes et al. 1997].

So if n = 63, you need a population of 1.2 × 231.5, that is, 3.64 × 109 nodes
on average before any two produce duplicate addresses. This is acceptable es-
pecially if you consider that this collision is actually harmful only if the two
hosts (that collide) are in the same site (i.e., they have the same 64-bit prefix),
and have the same correspondent nodes. This is very unlikely. Additionally,
assuming the collision is not deliberate the duplicate address detection (DAD)
will detect it.

If an attacker wishes to impersonate a given SUCV address, it must attempt
262 (i.e., approximately 4.8 × 1018) tries to find a public key that hashes to this
SUCV address. If the attacker can do 1 million hashes per second it will need
142,235 years. If the attacker can hash 1 billion hashes per second it will still
need 142 years.

If we use SUCV Addresses as suggested in RFC3041 (perhaps renewing them
as often as once every 24 h), an attacker would then have to hash 5.3 × 1013

hashes/second in order to be able to find a public key that hashes to the sucvHID
of a given host.

Note that the previous analysis only considers the cost of computing the hash
of the public key. Additionally, an attacker must also generate a valid (public,
private) key pair. This is a significantly more expensive operation.

This would still leave open the possibility of brute-force attacks [Van
Oorschot and Wiener 1994]. In this scenario, a bad guy, BG, could generate
a huge table of PKs and their corresponding HIDs, assuming any fixed imprint.
It could then look for matching real IP addresses. By doing so it would identify a
victim for a hijacking attack. BG can send a BU to any CN without a binding en-
try for the victim’s address (e.g., by targeting nonmobile fixed hosts as victims).

In general, such attacks are possible with hash functions, but not with
keyed hash functions because they require interacting with the legitimate

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

128 ANNEXE E. LES IDENTIFIANTS CRYPTOGRAPHIQUES

CBIDs: Concepts and Applications • 109

user [Bellare et al. 1996]. Notice that normal usage of keyed hash functions
requires an authenticated secret, which we do not have. Nevertheless, we can
still limit exposure by creating the HID (or ID) using (in addition to the Public
key) some key or known state that is established in advance of the sucvP in-
teraction itself, and which will force interaction with the MN. This is the role
of the imprint, sent by the MN to the CN in sucvP. Since the imprint is not au-
thenticated, the CN could verify it independently of sucvP, perhaps by checking
directly with the MN by routing it via the HA. True, the imprint is not a se-
cret as expected for HMAC use, but it serves to severely limit which entities
can launch the attack to only those entities with this privileged location, and
within this time period. As another possibility, the imprint may instead be a
quantity which the CN knows about the MN, and which the CN can verify
independently using a separate subsystem (DNS, routing fabric, etc.). In this
case, the attack is limited to only those nodes for which the imprint is also
a valid quantity. Tying the HID in this manner may have undesirable con-
sequences with regards to privacy and location independence (e.g., homeless
operation).

Alternatively, one could always use sucvIDs (in which case the brute-force
attacks would be nearly impossible).

Even for HIDs, actually carrying out such brute-force attacks remains highly
unlikely in practice, and we claim our scheme remains secure even without
requiring any of the above counter-measures.

9.2 Key Size Considerations

There are three ways that an attacker could break the MIPv6 security protocol
presented in the paper:

(1) If an attacker find a DSA public/private key pair that hashes to the MN’s
sucvID, it can run a sucvP exchange with a CN and impersonate the MN.
This can be achieved by a brute-force attack. The attacker tries several
public keys as input to the hash function used to generate the sucvID. The
difficulty of this attack depends on the size of the sucvID and is at least
as hard as breaking a symmetric key algorithm that uses the same key
size as the sucvID size (actually this is more difficult because the attacker
must also generate valid public/private key pairs before performing the
hash function).

(2) If an attacker can find the public/private key pair that is used to generate
the sucvId and sign sucvP3, an attacker can impersonate a MN in sucvP.
Breaking a DSA system depends on the DSA modulus and subgroup.

(3) If an attacker can retrieve the generated session key it can send fake BUs
on behalf of the MN and redirect its traffic. An attacker has two ways of
retrieving the session key: (1) generate it from the DH values exchanged
between the MN and the CN, or (2) perform a brute-force attack on the
session key itself. The difficulty of these attacks depends respectively on
the DH modulus size and the session Key size.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

129

110 • G. Montenegro and C. Castelluccia

A security system is consistent if all the components of the security chain
provide the same security levels and none of them is a weak link.

Most of the security parameters used in our proposal (DH modulus size,
Session key size, DSA subgroup) can be adjusted. The only fixed parameter is
the SUCV identifier itself. It is either 63 bits long (i.e., we use an sucvHID) or
125 bits long (if using an sucvID itself).

If we use sucvHIDs, the security of our proposal depends on these 63 bits.
Accordingly, the symmetric key strength should not be less, not would we gain
much by it being significantly stronger. In light of Orman and Hoffman [2004],
Oakley group 1 is about enough for this application (although there are other
more conservative views [Lenstra and Verheul 1999]).

However, if we use suvcIDs, we will need a symmetric key strength of almost
128 bits (125 bits) of output from our prf. Notice that 96 bits symmetric keys
are generally considered safe for another 20 years or so. However, if we want
to keep up with the strength afforded by the sucvID itself, we would need to
use other MODP groups [Kivinen and Kojo 2003]. For example, MODP group 5
with exponents of 1563 bits should be enough to derive 90 bit symmetric keys.
MODP group 6 with 2048 bits should be used to produce 100 bit symmetric
keys.

9.3 Intruder-in-the-Middle Attacks

As described in Section 6, a mobile node and its correspondent node derive a
shared (symmetric) key to authenticate the MIPv6 BUs sent by the MN.

The MN and its CN derive the shared key using DH algorithm.

—The CN chooses a random secret y and sends g y mod p to the MN (in the
DH value field of sucvP2)

—The MN chooses a random secret x and sends g x mod p to its CN (in the DH
value field sucvP3)

The session key shared by the MN and its CN is then a hash digest of
gxy mod p (g and p are known by the MN and CN).

9.3.1 Summary of the Attack. DH is known to be vulnerable to the intruder-

in-the-middle attack on unauthenticated DH key agreement:

CN −→ g y −→ Intruder −→ g yi −→ MN

CN ←− g xi ←− Intruder ←− g x ←− MN

The intruder intercepts g y sent by the CN and sends g yi to the MN. The in-
truder also intercepts g x sent by the MN and sends g xi to the CN. As a result,
MN shares the key gxyi with the intruder (it actually thinks that it is sharing
this key with its CN). The CN shares the key g

xiy with the intruder (it actu-
ally thinks that it is sharing this key with the MN). The Intruder can then
impersonate the MN and the CN.

In our protocol, the MN signs sucvP3 (with contains g x). As a result, the in-
truder cannot modify nor replace this message. This only thing that the intruder

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

130 ANNEXE E. LES IDENTIFIANTS CRYPTOGRAPHIQUES

CBIDs: Concepts and Applications • 111

could do is the following attack:

sucvP1: CN ←− HID′
←− Intruder ←− HID ←− MN

sucvP2: CN −→ g y −→ Intruder −→ g yi −→ MN

sucvP3: CN ←− g xi ←− Intruder ←− g x ←− MN

In sucvP1, MN sends its HID by virtue of sending from its address (the HID
is just the bottom 64 bits in the address). The intruder could replace this HID
by another value, say HIDi, without affecting return routability, as long as the
prefix remains the same. In sucvP2, the CN sends its DH value g y , which is
replaced by the intruder for g yi . In sucvP3, the MN sends its g x . Notice that
the intruder can replace it by another g xi as long as this g x

i is used to create
HIDi.

9.3.2 Risks. The keys created are derived from gxyi (between the MN and
the intruder) and gyxi (between the intruder and the CN).

So the intruder cannot pass itself off as MN (assuming it is computationally
unfeasible to find another private–public pair that generates the same HID).
It can, however, pass itself off as MNi, where this is the address formed from
HIDi. This means that it is not possible for an intruder to hijack an existing
communication between MN and CN. But if the intruder is present at the very
beginning of the communication, and if it sits on the path it could supplant
MN. In so doing it could obtain knowledge of any session keys derived for this
communication.

If the session supported encryption, the endpoints might be led to believe
in the privacy of their conversation, oblivious to the fact that the intruder
could snoop. For example, suppose an MN established an sucvP session with an
CN. Subsequently, and using this optimized path, an application (e.g., telnet)
started. If a security policy database required all such application traffic to be
encrypted, a misconfigured system might leverage the existing sucvP session
and use ESP for confidentiality. This would result in the intermediary being
privy to all the application traffic.

Because of this, sucvP session keys must not be used for anything more than
securing BUs. In other words, IPsec traffic selectors in the SPD must limit use
of SAs obtained via sucvP for the sole purpose of securing BUs. In order to avoid
any potential misapplication of these SA’s BUs must not be piggybacked.

Not heeding the above guidelines may result in the aforementioned snooping
attack. Nevertheless, the attacker would have to remain on the path forever.
This interception is possible because of the nonauthenticated nature of the
example. Of course, if the exchange is authenticated, perhaps as contemplated
by default by HIP [Moskowitz 2001, 2003, 2004], this would not be possible.
Even if this interception is possible, once the intruder ceases to be on the path
between MN and CN there is nothing further it can do. In other words, the use
of unauthenticated SUCV entities does not add any risk to those that currently
exist. Even unauthenticated SUCV, eliminates the possibility of on the path
redirection of traffic. Notice that with current MIPv6, “off the path” (as well as
“on the path”) redirection of traffic is possible.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

131

112 • G. Montenegro and C. Castelluccia

In some case, a MN might request to its CN to acknowledge the reception of
the BU. The intruder could actually fool the MN by sending an acknowledge-
ment with the CN address as source address (note that the intruder could also
authenticate this acknowledgment, since it knows the key used by the MN,
gxy). This might confuse the MN that has received an acknowledgement but
keeps receiving the packets from the CN via its home agent (note that the same
problem exists also will current Mobile IPv6 specification)!

One solution to these problems is for the CN to use an SUCV address and to
sign sucvP2 (the message that contains the DH value). Then, the intruder will
not be able to substitute g y by g yi .

Of course, the intruder can hinder successful completion of the sucvP, thus
preventing the CN from heeding the MN’s BU using route optimization to the
MN. In effect, this is a DOS attack against route optimization, and it leads to
service degradation not disruption.

The previous security analysis shows that the protocol described in Section 6
prevents any intruders from redirecting the traffic addressed to a mobile host’s
home address and consequently provides the minimal Mobile IP security re-
quirement [Mankin et al. 2001].

9.3.3 Should sucvP Involve the Home Agent?. This section examines two
ways of involving the home agent in the sucvP protocol to secure BUs:

(1) Using a home address option, and

(2) Introducing a home test.

These issues are examined in more detail elsewhere [Nikander et al. 2003a,
2003b] so here we will summarize briefly.

First, what if we assume sucvP1 was carried with a home address option,
and then sucvP2 traveled via the home agent? At this point, the home agent
can check that the validity of this MNi (corresponding to HIDi), its current
care-of address, and so on. In this case, none of the above snooping would be
possible. In order to further mitigate the sucvP2 packet from being redirected,
the MN must check upon its reception that it was sent tunneled by its home
agent. Home address options can be misused to setup distributed DOS attacks
whereby these options are sent to numerous hosts prompting them all to re-
spond to the same address. Even if CNs exercise caution when sending their
sucvP2 packets as instructed via a home address option, the nature of DDOS
attacks is such that any given CN may not send more than a few sucvP2s to
the same home address region (same prefix), the collection of thousands of such
responses may be sufficient to clog a target network. In short, unauthenticated
home address options can be used to launch reflection attacks.

Another way to involve the home agent is to perform the so-called home

test [Johnson et al. 2003]. Not doing so allows a residual vulnerability known
as a home flooding attack. The attacker creates an SUCV address with the
prefix from a target link. It visits the target link at one point, initiates a packet
exchange with a CN, and subsequently uses sucvP to create a binding entry at
the CN (it may be possible, though unlikely for the MN to create the binding
entry with a CN as part of the initial packet exchange). Once this binding entry

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

132 ANNEXE E. LES IDENTIFIANTS CRYPTOGRAPHIQUES

CBIDs: Concepts and Applications • 113

is in place, the malicious MN causes a large packet stream to be sent from
the CN. Once the binding entry disappears at the CN (either through natural
expiration or by the MNs deleting it, this voluminous packet stream becomes
a DOS attack on the target link.

The above analysis shows the pros and cons of using the home address op-
tion. Whereas unauthenticated home address options should not be heeded,
a real deployable protocol should protect against the home flooding attack by
carrying out both a home test as well as a care-of test. Nevertheless, for illus-
trative purposes we have decided to show a more simplified protocol in sucvP by
exchanging packets directly between the MN and the CN. At any rate, it seems
that an SUCV-based route optimization scheme would only need to carry out
the home test once (so the CN can verify that this is, in fact, a node authorized to
be a MN within the link in question). Once this is resolved, subsequent BUs to
the same CN would not necessarily have to repeat the home test, proceeding
along the lines of the sucvP protocol we have described.

9.4 DOS Attacks

DOS attacks that exhaust a host resource (memory and computational re-
sources) are a major security threat on the Internet. In the section we study
the behaviors of the protocol described in Section 6 against DOS attacks.

—sucvP1 storm: Malicious hosts could try to attack a host by sending a storm
of sucvP1 messages. We prevent this potential attack as follows:

(1) when receiving a sucvP1, a host does not create any state and replies
with a constant message (sucvP2) that contains a client puzzle [Aura
et al. 2001].

(2) An host only creates state if it receives a valid puzzle reply to its puzzle
request (in sucvP3).

—sucvP2 storm: Malicious host could try to attack a host by sending a storm
of sucvP2 messages. We prevent this attack by inserting a nonce, N1, in
the sucvP1. If a host receives a sucvP2 with a nonce N1 that is not equal
to the nonce N1 that it has set in the initial sucvP1, this sucvP2 must be
rejected.

Note that an intruder (between the MN and its CN) could intercept the
sucvP1 and reply to the MN with a fake sucvP2 containing a valid N1 and
an intentionally difficult puzzle request. The MN would then spend a lot of
CPU and power computing the puzzle reply. This attack can be avoided if the
MN had a mean to authenticate the address used by its CN. One solution is
that the CN uses a SUCV address and signs sucvP2.

Instead of this heavy alternative, we suggest that a MN simply reject any
sucvP2 messages that contain an overly complex client puzzle request. Of
course, the MN itself defines the complexity threshold of the puzzle request
as a function of its processing power.

As a result, the attack that consists of sending complex puzzles (in sucvP2)
to a MN, in order to exhaust its computing resources, will not be success-
ful, because the MN will drop the sucvP2. The MN service will be degraded

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

133

114 • G. Montenegro and C. Castelluccia

(because its incoming packets will then be routed through its home agent)
but not disrupted.

—sucvP3 storm: Malicious hosts could try to attack a host by sending a storm
of sucvP3 messages. We prevent this attack by using a client puzzle. A host
accepts a sucvP3 message only after verifying that the puzzle reply (contained
in the sucvP3) is valid.

10. OTHER APPLICATIONS

The previous sections have explained in some detail how the SUCV proper-
ties can be used for one particular application: Mobile IPv6. Nevertheless,
there are many other applications of such properties and of CBIDs in securing
IPv6 networking, as well as in other areas such as peer-to-peer or application
level security. This section discusses briefly several of these other applications.
Other applications which are not discussed include securing neighbor discov-
ery [Arkko et al. 2002; Aura 2004; Montenegro et al. 2003], opportunistic en-
cryption [Castelluccia and Montenegro 2002a] and securing internet storage
facilities [Bassi et al. 2003], for example.

10.1 Securing Identities in Ad Hoc and Peer-to-Peer Networks

Ad hoc or peer-to-peer networks (called impromptu networks henceforth) pose
many problems with respect to securing their highly dynamic structures. A
naive approach assumes any given node can trust all other nodes in the im-
promptu network for any type of operation (e.g., engaging in some cooperative
and perhaps confidential activity). We improve on previous efforts to secure
group authorization (including membership) by employing CBIDs for node and
group identification, and then use these in authorization certificates. These al-
low groups (or nodes) to authorize nodes (or other groups). We have employed
a similar approach for Multicast and Anycast group membership security in
IPv6 [Castelluccia and Montenegro 2003].

Our approach enables highly flexible and robust impromptu security services
in an inherently distributed fashion. Previous work on securing impromptu
networks has assumed the existence of a traditional PKI, of some web of trust
or of some mechanism to distribute keys and shared secrets. We believe these
assumptions are unrealistic in impromptu networks.

10.1.1 Secure Node Identity. First of all, we must start by defining an ad-
dressing model. Previous efforts for ad hoc networks conclude that since there
is no aggregation to the degree possible with regular fixed networks, addressing
can be more flexible. Thus, we propose to use CBIDs, that is, pure identifiers,
with no topological meaning.

A node autoconfigures its (crypto-based) identifier (CBID) as explained
above. Given the secure correspondence between identity and public key, the
latter can be communicated by the node itself to its peers or group managers.
This simplifies key management, since no third parties need to be involved ei-
ther in creating or distributing the public keys. However, the node can prove
ownership of the CBID by signing packets with the corresponding private key.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

134 ANNEXE E. LES IDENTIFIANTS CRYPTOGRAPHIQUES

CBIDs: Concepts and Applications • 115

Any other node can verify the signature without relying on any centralized
security service such as a PKI or KDC.

These characteristics (1) make CBIDs a very scalable naming system, well
adapted to ad hoc environments, and (2) provide an autoconfigurable and solid
foundation for nodes to engage in verifiable exchanges with each other.

10.1.2 Dynamic and Secure Node Authentication. The first application of
the above is to protect basic exchanges between two peers or nodes in a net-
work from malicious intermediate hosts. For example, in on-demand ad hoc
routing protocols (e.g. [Perkins et al. 2002, 2003]), nodes discover each other
by exchanging “route request” and “route reply” messages. We have shown how
CBID can protect this basic exchange from impersonation attacks [Castelluccia
and Montenegro 2002b]. Similar work has been done for the JXTA open-source
peer-to-peer protocol [JXTA n.d.] by extending its “PeerID” definition to accom-
modate crypto-based PeerIDs [Crypto-ID JXTA n.d.].

10.2 Dynamic and Secure Group Membership

Beyond securing identities, the SUCV properties of CBIDs lend themselves
to an even more powerful construct by using them as issuers of authoriza-
tions whose beneficiaries (or subjects) are other CBIDs. Such mechanism al-
lows us to complement the Default Trust Rule 4 with explicit and secure au-
thorizations. These can be expressed via authorization certificates, similar to
how they are used to Secure Group Management for IPv6 [Castelluccia and
Montenegro 2003]. The expressiveness of authorization certificates and the
self-authenticating nature of CBIDs enable a decentralized and highly dynamic
group management facility.

Authorization certificates have the following form:

Cert = (group, node, delegation, tag, validity)

In the above, group is a group CBID for the entire impromptu network, or
for a subset of it. Appropriately, the certificate is signed with the private key
that corresponds to it.

Here, node is the CBID of the beneficiary of this authorization, that is, the
node that is authorized by the group to join it or perform certain services on its
behalf.

delegation is a Boolean (in, e.g., SPKI [Ellison et al. 1999] or KeyNote2 [Blaze
et al. 1999]) that specifies whether or not the group has allowed the node to
further delegate the permission expressed in the next field.

tag is the authorization to be a member of the signing group, or to perform
certain services as authorized by the group.

This is an example of how a single node A with CBID of A CBID could start
an ad hoc network (really a group within a perhaps already physically existing
ad hoc network) by following these steps:

—A creates the group public and private key pair: G PK and G SK.

—A creates the group identifier: G CBID = hash(G PK).

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

135

116 • G. Montenegro and C. Castelluccia

—A as the group controller issues a certificate to allow itself into the group:

(G CBID, A CBID, true, “groupMembership”, someDuration)

—A as the group controller admits another node (e.g., B) into the group by
issuing the corresponding certificate:

(G CBID, B CBID, false, “groupMembership”, someDuration)

Now, either A or B can prove to other nodes that they are legitimate members
of the group by

(1) sending a message which includes their certificate, and,

(2) signing it with their private key (A SK or B SK, respectively).

11. USER-FRIENDLY PUBLIC KEY EXCHANGE

Even though the use of SUCV identifiers and addresses solves the identifier
or address ownership problem, it is also important to be able to tie a first
identity known from some context to an identity used in the SUCV context.
Typically, this is done via a public key infrastructure, in which a distinguished

name constitutes the first identity, as vouched for by some certificate authority.
This has the drawbacks that (1) one must trust that the certificate authority
has not made a mistake (perhaps unknowingly because of a collision in the
distinguished name or due to some foul play somewhere in the process), and (2)
it is hard to reconcile such a rigid approach with impromptu, ad hoc styles of
computing. For example, two users that know each other personally should be
able to reap the benefits of this knowledge in order to bootstrap some network-
level security between their personal devices.

Let us suppose Alice knows Bob (they are friends, colleagues, etc.). Further-
more, they both have trusted and exclusively personal devices: Alice has A and
Bob, B. Furthermore, the devices have mutual reachability by virtue of being
in the same network. Since human beings are notoriously inadequate for data
transfer, it is not practical for Bob to either display or dictate his certificate (or
raw Public Key) to Alice, in order for her to enter this long and unwieldy string
of bits.

Humans are quite adept, however, at certain types of pattern recognition. The
basic idea is to use humans for what they are good at: (1) pattern recognition
and (2) authenticating (recognizing) other humans (e.g., via auditive or visual
information); while leveraging computers for what they are good at: exchanging
data at high speeds over a network.

In the past, a similar approach has been taken assuming the devices have
a bitmapped display [Perrig and Song 1999]. However, in order to permit boot-
strapping of security information in as many cases as possible, it is important
to not rely on bit-mapped graphics and to reduce the display requirements to
a minimum. Accordingly we have chosen to use a human-friendly rendering
based on the One-Time Password (OTP) dictionary [Haller and Metz 1996].
This dictionary includes 2048 (211) simple English words. Depending on its po-
sition within the dictionary, each such word can replace 11 bits in a bit string.
Once translated into a sequence of OTP words, such a sentence can be readily
displayed or read.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

136 ANNEXE E. LES IDENTIFIANTS CRYPTOGRAPHIQUES

CBIDs: Concepts and Applications • 117

A summary of our approach [Bailly 2002] follows:
Alice recognizes Bob using an authentic (but not necessarily secret) alternate

channel. This channel could be the audiovisual contact they have by virtue of
being one in front of the other, or a phone line which can allow Alice to recognize
Bob’s voice, or perhaps even an email channel which has been deemed for other
reasons and previous usage to be authentic. Alice wishes to use this alternate
authentic channel she shares with Bob in order to bootstrap a secure channel
between their devices. Alice makes her device A create a very simple message
meant to elicit Bob’s device B to respond with its CBID (i.e., either its SUCV
ID or its SUCV Address, whichever may be applicable): B CBID. Notice that in
order to avoid DOS attacks, Bob’s device is not necessarily enabled at all times
to respond to such solicitations. This could happen as a result of Alice asking
Bob to enter into such an exchange with her.

Alice’s device A then sends the request to the network. Since A ignores
B CBID (learning it is the whole point of the exchange), it uses broadcast,
multicast or any other means to reach B without explicitly addressing it. In its
simplest form, the protocol is asymmetric: Alice authenticates Bob’s device. It
can be modified with symmetry in mind, or it can simply be rerun in the other
direction. At the end, the entities have all that is required in order to then boot-
strap a secure channel by running the sucvP protocol as shown previously 6.
Nevertheless, a symmetric protocol is useful as it allows for Bob to be an em-
bedded device (e.g., a wireless access point in a public location) as explained
below.

The following exchange happens on the channel available between the
devices:

—A: In its simplest form, the protocol starts by A broadcasting a request for
CBIDs.

A −→ Broadcast : RequestCBID

If Alice includes her own public key (or certificate) used it used to derive
A CBID, the protocol can be rendered symmetric by Bob’s authenticating
Alice’s device later on.

Of course, if Bob is an embedded device, the simple variant in which it
responds to requests works best.

Another potential addition is a nonce, if Alice wants to guarantee freshness
in Bob’s subsequent reply.

Presumably, the source address of this packet is equivalent to A CBID. For
example, in IPv6, it would be either an SUCV identifier or address, whereas
in JXTA it would be the crypto-based PeerID.

—B: B responds to the originating address by sending the public key (or cer-
tificate) it used to generate B CBID.

B −→ A : ReplyCBID, Public Key of B

B does not have to explicitly include B CBID as it is easily calculated from
the material included in the message. B may, however, optionally sign the

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

137

118 • G. Montenegro and C. Castelluccia

message, perhaps including any nonce that A may have included in its re-
quest message. This would provide assurance to A that the message is fresh
and not a replay of a previous message. However, in its simplest form, B is
communicating a static data (its public key), so this may be overkill.

Notice that potentially many devices (not just Bob’s) may hear the request
and respond to it.

—A: If a signature is included A verifies it, at which point it knows for sure
that the message was sent by a node whose public key is as included in the
message.

It translates B CBID into a user-friendly sequence of OTP words known
as a sentence. A minimum of, say, eight words would be enough as it provides
at least 88 bits of the hash of the public key. The device then makes this OTP
sentence available to its user Alice.

This part of the exchange happens in the authentic (but not secret) channel
between Alice and Bob:

—At this point, Alice has Bob’s sentence which consists of, say, at least eight
words. The last step is carried out in the Alice asks Bob for his sentence and
verifies that it exactly matches what her device A received via the network
(i.e., the device channel). If it matches, Alice has succeeded in authenticating
the data as coming from B, Bob’s device. She can now effect the encapsulation
of such knowledge by the creation of a corresponding certificate in her device
A. Similarly, Alice and Bob can check the sentence derived from A CBID Bob
thus reversing the protocol.

—If Bob is an embedded device, the sentence representation of its B CBID could
be constantly on display. The device would simply respond on the network
channel to requests and users would then check that the sentence represen-
tations matched.

12. RELATED WORK

CAM [O’Shea and Roe 2001] presents a solution to the Mobile IPv6 security
problem that is very similar to our proposal. When we first submitted our work
to the IETF in April 2001, we were unaware of this work. CAM also uses IPv6
addresses derived from cryptographic keys to solve the MIPv6 address owner-
ship problem. The main differences between CAM and SUCV are:

—CAM relies on signatures to authenticate BUs. In SUCV, a signature is only
used by the sucvP protocol to prove address ownership. A session key is
derived between the MN and its CN, after which the BUs are authenticated
using IPsec.

—CAM requires that the CN and MN have a synchronized clock to protect
against replay attacks. We believe that this is a strong assumption that is
not always practical. SUCV uses a puzzle mechanism to protect against such
attacks.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

138 ANNEXE E. LES IDENTIFIANTS CRYPTOGRAPHIQUES

CBIDs: Concepts and Applications • 119

—CAM only uses addresses derived from cryptographic keys. In addition,
SUCV defines the concept of an SUCV identifier that is longer (128 bits)
and therefore more secure. As explained previously, an SUCV identifier may
be used as a nonroutable Home Address when the mobile node is the client
(i.e., when it initiates the communication), or when routing information for
this identifier is otherwise obtainable.

—In addition to proposing a mechanism to solve the address ownership prob-
lem, SUCV also provides provide data and location privacy.

—Digital signatures are very expensive operations that cannot be performed
on small mobile devices such as PDA or sensors. SUCV proposes an extension
for constrained devices that off-load all of the expensive computations (sig-
nature, DH exponentiation, and session key generation) to the home agent,
while still providing end-to-end security (see Section 7).

—CAM uses a hash to derive what we call the sucvHID. We use a prf-based
mechanism.

The BAKE proposal [Nikander and Perkins 2002] presents a solution to the
Mobile IPv6 security and key distribution problems. As compared to SUCV,
BAKE is lighter in terms of computational overhead, but weaker security-wise.
In fact, BAKE only requires a few hash operations but is subject to man-in-the-
middle attacks if the attacker resides along the path between the CN and the
MN’s home agent. The BAKE protocol uses three messages. The first one is a
trigger sent by the MN. The CN replies with a second message that contains a
cryptographic token. This message is sent to the MN via its HA. Upon reception
of the message, the MN sends a third message to the CN that contains another
cryptographic token. The generated key is derived from the two tokens. As a
result, only an intruder that can hear messages 2 and 3 could reconstruct the
session key. Also, since message 2 is sent via the home agent, the CN has rea-
sonable assurance that the home address belongs to the MN. Being lightweight
and easily deployable, BAKE has its benefits. Nevertheless believe that ulti-
mately a more secure solution must be adopted. An intruder that is close to
the CN (e.g., on the same wireless link) can hear all three messages and be a
potential attacker.

13. CONCLUSION

We propose a protocol for a mobile node to prove the ownership of its addresses
and to authenticate the BU that it sends to its CN. This protocol was made
part of Mobile IPv6 for deployment reasons. However, the address ownership
problem is more general than Mobile IPv6 and other protocols and applications
might need this functionality. The sucvP protocol, in fact, can be used by all
protocols and applications above it. Communicating hosts can use it to prove
to each other that they own their respective addresses. They can further use
it to derive shared keys that can be used by the hosts’ protocols and applica-
tions. This protocol provides mutual ownership proof (i.e., proves the address
ownership of both hosts) and/or unilateral ownership proof (i.e., proves only

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

139

120 • G. Montenegro and C. Castelluccia

the address ownership of one of the hosts). We have also shown how the addi-
tion of expressive authorization certificates results in a decentralized and very
dynamic authorization mechanism that is a powerful new tool in networking
security.

APPENDIX

Implementation Considerations: sucvP Protocol Specification and Packet Formats

This section presents some of the design choices made in our sucvP prototype
implementation.

sucvP uses a very simple negotiation. First of all, hopefully no negotiation
of cryptographic parameters is necessary, as the defaults should be widely ap-
plicable. Any departure from the default is proposed by the initiator using TLV
encoding and either accepted (and used) or rejected by the responder.

Furthermore, sucvP deals with cryptographic suites, similar to TLS and
JFK [Aiello and Bellovin 2002] usage.

The initial set of algorithms that MUST be supported is shown below

Suite Identifier
SUCV RSA WITH ESP AES 128 CBC HMAC SHA1 {0×00,0×01}
SUCV RSA WITH ESP 3DES CBC HMAC SHA1 {0×00,0×02}
SUCV RSA WITH ESP NULL HMAC SHA1 {0×00,0×03}

Notice that SUCV only supports RSA certificates, ESP headers, and SHA1.
These are repeated in the names of the suites above for clarity, not to imply
that departures are allowed (to DSS, AH, or MD5, for example).

The default suite that requires no negotiation is

SUCV RSA WITH ESP AES 128 CBC HMAC SHA1

This suite has been assigned an identifier, but the identifier will never be used
in an SUCV payload because fixed payloads are enough to support the default
case. sucvP does not allow individualized negotiation for transform types 1
(encryption algorithm), 2 (pseudo-random function), 3 (authentication type),
and 4 (integrity algorithm). By using the above default suite, SUCV mandates
the following: AES 128 CBC for encryption, HMAC SHA1 for pseudo-random
function, RSA for authentication type and SHA1 for integrity algorithm.

It does, however, allow for negotiation on DH group (IKEv2’s transform
type 5). In doing so it reuses the numbering used in IKEv2 [Kaufman 2004].
The mandatory group for DH exchange is group 5 (1536 bit MODP) and RSA
signature uses exponent 65,537.

Packet Formats

sucvP is an IPv6 protocol, identified by protocol number (sucvP TBD by IANA)
in the Next Header field of the immediately preceding header.

The Next Header field identifies the next protocol in the IPv6 daisy-chain
header as per normal IPv6 usage.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

140 ANNEXE E. LES IDENTIFIANTS CRYPTOGRAPHIQUES

CBIDs: Concepts and Applications • 121

The Version field for this version of sucvP MUST always contain the num-
ber 1.

The Length field indicates the length in bytes of the whole sucvP header,
including any possible options.

The Checksum is the 16-bit 1’s complement of the 1’s complement sum of
the entire sucvP message starting with the Next Header field (see below),
prepended with a ”pseudo-header” of IPv6 header fields, as specified in
Section 8.1 of Deering and Hinden [1998]. The Next Header value used in the
pseudo-header is (sucvP TBD).

For computing the checksum, the checksum field is set to zero.
The Packet Type is defined to be {packet number|sequence type}; the packet

number is related to the relative position within the exchange, while the se-
quence type is related to the sort of SUCV exchange we wish to perform.
For example, an sucvP3 packet used to establish initiator’s proof of owner-
ship without privacy considerations would be labeled with the packet type
{0 × 03|0 × 01}. It would be labeled {0 × 03|0 × 02} if it is used to estab-
lish mutual proof of ownership or to avoid disclosure of identity. On the
other hand, an sucvP1 packet would always be labeled {0 × 01|0 × 01}, as
there is only one type of p1 in both exchange types {initiator|responder|
privacy}.

Common Header Format

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Next Header | Version | Length |

+-+

| Packet Type | Checksum |

+-+

| Initiator Nonce |

+-+

| Depends of SUCV Packet Type...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

Cookie Puzzle Request Format

Level of Difficulty is k
Responder’s Nonce is Nr

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Level of Difficulty |

+-+

| Responder’s Nonce |

+-+

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

141

122 • G. Montenegro and C. Castelluccia

Cookie Puzzle Reply Format

Initiator’s Nonce is Ni
Puzzle’s Solution is an integer X which satisfies the property :

+------------------------------------+

| |

| hash(Ni|Nr)=000....000......... |

| ___ ___/ |

| \/ |

| k leftmost bits |

| |

| ________ ________/ |

| \/ |

| 160 bits of SHA1 output |

| |

+------------------------------------+

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Initiator’s Nonce |

+-+

| Puzzle’s Solution |

+-+

P1 Packet Format

Type 0 × 0101
P1 is just the common packet format without additional fields, although a

vendor-specific or application-specific options field is possible.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Options ...

+-+-+-+-+-

P2 Packet Format

Type 0 × 0201

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Session Key Lifetime |

+-+

| |

+ Cookie Puzzle Request +

| |

+-+

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

142 ANNEXE E. LES IDENTIFIANTS CRYPTOGRAPHIQUES

CBIDs: Concepts and Applications • 123

| |

+ Public DH Value +

/ (1536 bits at least) /

/ /

+ +

| |

+-+

| Options ...

+-+-+-+-+-

P3 Packet Format

Type 0 × 0301

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Session Key Lifetime |

+-+

| |

+ Cookie Puzzle Request +

| |

+-+

| Security Protocol Index |

+-+

| |

+ Imprint (64 bits) +

| |

+-+

| |

+ Public DH Value +

/ (1536 bits at least) /

/ /

+ +

| |

+-+

| |

+ RSA Public Key +

/ (1536 bits at least) /

/ /

+ +

| |

+-+

| |

+ RSA Signature +

/ (1536 bits at least) /

/ /

+ +

| |

+-+

| Options ...

+-+-+-+-+-

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

143

124 • G. Montenegro and C. Castelluccia

P4 Packet Format

Type 0 × 0401 (to be used to prove only initiator’s ownership)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Security Protocol Index |

+-+

| |

+ +

| Authenticator (HMAC) |

+ +

| |

+-+

Type 0 × 0402 (to be used to prove responder’s address ownership)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Security Protocol Index |

+-+

| |

+ Imprint (64 bits) +

| |

+-+

| |

+ RSA Public Key +

/ (1536 bits at least) /

/ /

+ +

| |

+-+

| |

+ RSA Signature +

/ (1536 bits at least) /

/ /

+ +

| |

+-+

| Options ...

+-+-+-+-+-

P5 Packet Format

Type 0 × 0502 (to be used to protect disclosure of initiator’s identity)
Note that this packet must be protected within an ESP payload, to avoid

disclosure of initiator identity (Public Key).

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

144 ANNEXE E. LES IDENTIFIANTS CRYPTOGRAPHIQUES

CBIDs: Concepts and Applications • 125

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| |

+ Imprint (64 bits) +

| |

+-+

| |

+ RSA Public Key +

/ (1536 bits at least) /

/ /

+ +

| |

+-+

| |

+ RSA Signature +

/ (1536 bits at least) /

/ /

+ +

| |

+-+

| Options ...

+-+-+-+-+-

ACKNOWLEDGMENTS

The authors appreciate the helpful comments received from the following indi-
viduals: Erik Nordmark, Alberto Escudero, Lars Henrik Petander, Imad Aad,
Pars Mutaf, Damien Bailly and the anonymous reviewers. Special thanks to
Julien Laganier who helped us with the packet formats.

REFERENCES

AIELLO, W., BELLOVIN, S. M., BLAZE M., CANETTI, R., IOANNIDIS, J., KEROMYTIS, A. D., AND REINGOLD, O.
2002. Just Fast Keying (JFK). IETF, draft-ietf-ipsec-jfk-04.txt, work in progress.

ARKKO, J., AURA, T., KEMPF, J., MANTYLA, V.-M., NIKANDER, P., AND ROE, M. 2002. Securing IPv6
neighbor discovery and router discovery. In Proceedings of the 2002 ACM Workshop on Wireless

Security (WiSe). ACM Press, Atlanta, GA, USA, 77–86.
AURA, T. 2004. Cryptographically Generated Addresses (CGA). IETF, draft-ietf-send-cga-05.txt,

work in progress.
AURA, T., NIKANDER, P., AND LEIWO, J. 2001. DOS-resistant authentication with client puzzles. In

Proceedings of the Security Protocols Workshop 2000. Cambridge, UK, April 2000. Lecture Notes
in Computer Science, vol. 2133. Springer, Berlin, 170–181.

BAILLY, D. 2002. Cbjx: Crypto-based jxta (an internship report) 6, 3 (July 2004), 108–
109.

BASSI, A., BECK, M., LAGANIER, J., AND PAOLLINI, G. 2003. Towards an ipv6-based security frame-
work for distributed storage resources. In CMS 2003 Seventh IFIP TC-6 TC-11 Conference on

Communications and Multimedia Security.
BELLARE, M., CANETTI, R., AND KRAWCZYK, H. 1996. Message authentication using hash functions—

the HMAC construction. RSA CryptoBytes 2, 1.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

145

126 • G. Montenegro and C. Castelluccia

BLAZE, M., FEIGENBAUM, J., IOANNIDIS, J., AND KEROMYTIS, A. 1999. The KeyNote Trust-Management

System Version 2. IETF, RFC2704.
CASTELLUCCIA, C. AND DUPONT, F. 2001. A Simple Privacy Extension for Mobile IPv6. IETF, draft-

castelluccia-mobileip-privacy-00.txt, work in progress.
CASTELLUCCIA, C. AND MONTENEGRO, G. 2002a. Ipv6 Opportunistic Encryption. INRIA Technical

Report Number 4568.
CASTELLUCCIA, C. AND MONTENEGRO, G. 2002b. Protecting AODVng against impersonation attacks.

ACM Mobile Computing and Communications Review 6, 3 (July), 2002.
CASTELLUCCIA, C. AND MONTENEGRO, G. 2003. Securing group management in ipv6 with crypto-

graphically generated addresses. In The Eighth IEEE Symposium on Computers and Communi-

cations (ISCC’2003).
Crypto-ID JXTA. Crypto-id jxta (http://crypto-id.jxta.org/).
DEERING, S. AND HINDEN, R. 1998. Internet Protocol, Version 6 (IPv6) Specification. IETF, RFC2460.
ELLISON, C. ET AL. 1999. SPKI Certificate Theory. IETF, RFC 2693.
HALLER, S. AND METZ, C. 1996. A One-Time Password System. IETF, RFC 1938.
HINDEN, B. AND DEERING, S. 2003. IP Version6 Addressing Architecture. IETF, RFC3513.
JOHNSON, D., PERKINS, C., AND ARKKO, J. 2003. Mobile IP for IPv6. IETF, draft-ietf-mobileip-ipv6-24

(RFC XXX).
JXTA. Project JXTA. Available at www.jxta.org.
KAUFMAN, C. 2004. Internet Key Exchange (IKEv2) Protocol. IETF, draft-ietf-ipsec-ikev2-12.txt,

work in progress.
KIVINEN, T. AND KOJO, M. 2003. More Modular Exponential (MODP) Diffie-Hellman Groups

for Internet Key Exchange (IKE). IETF, RFC3526. http://www.join.uni-muenster.de/drafts/draft-
nikander-mobileip-v6-ro-sec-00.

KRAWCZYK, H., BELLARE, M., AND CANETTI, R. 1997. HMAC: Keyed- Hashing for Message Authenti-

cation. IETF, RFC2104.
LENSTRA, A. AND VERHEUL, E. 1999. Selecting Cryptographic Key Sizes. Available at
http://citeseer.nj.nec.com/lenstra99selecting.html.

MADSON, C. AND GLENN, R. 1998. The Use of HMAC-SHA-1-96 Within ESP and AH. IETF,
RFC2404.

MANKIN, A., PATIL, B., HARKINS, D., NORDMARK, E., NIKANDER, P., ROBERTS, P., AND NARTEN, T. 2001.
Threat Models Introduced by Mobile IPv6 and Requirements for Security in Mobile IPv6. IETF,
draft-ietf-mobileip-mipv6-scrty-reqts-02.txt, work in progress.

MENEZES, A., VAN OORSCHOT, P., AND VANSTONE, S. 1997. Handbook of Applied Cryptography. CRC
Press, Boca Raton, FL.

MODADUGU, N., BONEH, D., AND KIM, M. 2000. Generating RSA keys on a handheld using an
untrusted server. In RSA Data Security Conference and Expo, 2000.

MONTENEGRO, G., LAGANIER, J., AND CASTELLUCCIA, C. 2003. Cryptographically Generated Addresses

(CGA). IETF, draft-montenegro-send-cga-rr-01, work in progress.
MOSKOWITZ, B. 2001. HIP Implementation. IETF, draft-moskowitz-hip-impl-01.txt, work in

progress.
MOSKOWITZ, B. 2003. HIP Architecture. IETF, draft-ietf-moskowitz-hip-arch-05.txt, work in

progress.
MOSKOWITZ, R., NIKANDER, P., JOKELA, P., AND HENDERSON, T. 2004. Host Identity Protocol. IETF,

draft-moskowitz-hip-09.txt.
NARTEN, T. AND DRAVES, R. 2001. Privacy Extensions for Stateless Address Autoconfiguration in

IPv6. IETF, RFC3041.
NIKANDER, P. 2001. An Address Ownership Problem in IPv6. IETF, draft-nikander-ipng-address-

ownership-00.txt, work in progress.
NIKANDER, P., ARKKO, J., AURA, T., AND MONTENEGRO, G. 2003a. Mobile ip version 6 (mipv6) route

optimization security design. In IEEE Vehicular Technology Conference.
NIKANDER, P., ARKKO, J., AURA, T., MONTENEGRO, G., AND NORDMARK, E. 2003b. Mobile IP version

6 (MIPv6) Route Optimization Security Design. IETF, draft-nikander-mobileip-v6-ro-sec-02.txt,
work in progress.

NIKANDER, P. AND PERKINS, C. 2002. Binding Authentication Key Establishment Protocol for Mobile

IPv6 (BAKE). IETF, draft-perkins-bake-02.txt, work in progress.

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

146 ANNEXE E. LES IDENTIFIANTS CRYPTOGRAPHIQUES

CBIDs: Concepts and Applications • 127

NIST 1995. NIST, FIPS PUB 180-1: Secure Hash Standard. NIST. Available at http://www.itl.
nist.gov/fipspubs/fip180-1.htm.

ORMAN, H. 1998. The OAKLEY Key Determination Protocol. IETF, RFC2412.
ORMAN, H. AND HOFFMAN, P. 2004. Determining Strengths For Public Keys Used For Exchanging

Symmetric Keys. IETF, draft-orman-public-key-lengths-08.txt, work in progress.
O’SHEA, G. AND ROE, M. 2001. Child-proof Authentication for MIPv6 (CAM). ACM Computer

Communications Review 31, 2 (Apr.), 4–8.
PERKINS, C., BELDING-ROYER, E., AND DAS, S. 2002. Ad Hoc On Demand Distance Vector (AODV)

Routing for IP version 6. IETF, draft-perkins-aodv6-02.txt, work in progress.
PERKINS, C., BELDING-ROYER, E., AND DAS, S. 2003. Ad Hoc On Demand Distance Vector (AODV)

Routing. IETF, RFC 3461.
PERRIG, A. AND SONG, D. 1999. Hash visualization: a new technique to improve real-world security.

In International Workshop on Cryptographic Techniques and E-Commerce (CrypTEC ’99). 131–
138.

STAJANO, F. AND ANDERSON, R. 1999. The resurrecting duckling: Security issues for ad-hoc wireless
networks. In 7th International Workshop on Security Protocols. Cambridge, UK.

VAN OORSCHOT, P. AND WIENER, M. 1994. Parallel collision search with applications to hash func-
tions and discrete logarithms. In Second ACM Conference on Computer and Communications

Security.

Received December 2002; revised November 2003; accepted December 2003

ACM Transactions on Information and System Security, Vol. 7, No. 1, February 2004.

Annexe F

Authentification Secrète

Cette annexe contient un article qui a été publié dans la conférence ASIACRYPT 2004 : 10th
International Conference on the Theory and Application of Cryptology and Information Security,
volume 3329. Springer-Verlag GmbH, Decembre 2004.

Il présente un nouveau protocole qui permet à deux entités de prouver qu’ils appartiennent à
la même organisation sans la dévoiler. Ce type de construction peut, par exemple, être utile à des
agents des services secrets qui souhaiteraient s’identifier sans révéler leur affiliation à des membres
extérieurs à leur organisation.

147

148 ANNEXE F. AUTHENTIFICATION SECRÈTE

Secret Handshakes from CA-Oblivious Encryption

Claude Castelluccia, Stanis law Jarecki and Gene Tsudik
School of Information and Computer Science,

UC Irvine, CA 92697, USA
{ccastell,stasio,gts}@ics.uci.edu

Abstract

Secret handshake protocols were recently introduced [1] to allow members of the same group
to authenticate each other secretly, in the sense that someone who is not a group member cannot
tell, by engaging some party in the handshake protocol, whether that party is a member of this
group. On the other hand, any two parties who are members of the same group will recognize
each other as members. Thus, a secret handshake protocol can be used in any scenario where
group members need to identify each other without revealing their group affiliations to outsiders.

The work of [1] constructed a secret handshake protocol secure under the Bilinear Diffie-
Hellman (BDH) assumption in the Random Oracle Model (ROM). We show how to build secret
handshake protocols secure under more standard cryptographic assumptions, using a novel tool
of CA-oblivious public key encryption, which is an encryption scheme s.t. neither the public key
nor the ciphertext reveal any information about the Certification Authority (CA) which certified
the public key. We construct CA-oblivious encryptions and handshake schemes based (in ROM)
on either the Computational Diffie-Hellman or the RSA assumption.
keywords: secret handshake, authentication, privacy, anonymity, encryption

1 Introduction

Problem Exposition. A secret handshake scheme, introduced by Balfanz et al. [1], allows two
members of the same group to identify each other secretly, in the sense that each party reveals his/her
affiliation to the other only if the other party is also a group member. For example, a CIA agent
Alice might want to authenticate herself to Bob, but only if Bob is also a CIA agent. Moreover, if
Bob is not a CIA agent, the protocol should not help Bob in determining whether Alice is a CIA
agent or not. This secrecy property can be extended to ensure that group members’s affiliations are
revealed only to members who hold specific roles in the group. For example, Alice might want to
authenticate herself as a CIA agent with security level one if and only if Bob is a CIA agent with
security clearance two, and vice versa.

In other words, if A is a member of group Ga with role ra and B is a member of Gb with role rb,
a secret handshake scheme guarantees the following [1]:

• A and B authenticate each other if and only if Ga = Gb.
1

• If Ga 6= Gb then the only thing that either party learns is the sole fact that Ga 6= Gb.

• A can choose not to reveal anything about herself unless B is a member with particular role
rb (and vice versa).2

• An eavesdropper or a man in the middle learn nothing from the protocol.

1However, as noted by [1], a handshake protocol cannot be fair in the sense that if Ga = Gb then one party is going
to learn about it first and could abort the protocol and thus withold their group affiliation from the counterparty.

2To simplify the presentation, we will ignore roles for most of the paper. However, as we show in appendix C.1,
they can be easily handled by our schemes.

1

149

As observed in [1], secret handshakes seem to require new cryptographic protocols since they
can not be easily obtained from existing tools in the “cryptographic toolbox”. For example,3 group
signatures [2, 3] might appear to be an attractive building block for secret handshakes. However,
they offer anonymity and unlinkability of group members’ signatures, not secrecy of membership
itself. In the interactive variant of group signatures, called identity escrow [4], one party can prove
to another its membership in a group in an anonymous fashion. However, what turns out to be
quite difficult is the seemingly simple issue of two parties proving group membership to each other
simultaneously, in such a way that one party never reveals its group membership to another unless
the former is also a member of the same group.

Secret Handshake Scheme as a “CA-oblivious PKI”. To be usable in practice, a secret
handshake scheme must provide efficient revocation of any group member by the Group Authority
(GA) which administers the group. To support this functionality we will consider secret handshake
schemes which look very much like PKI’s (Public Key Infrastructures), where the role of a group
authority corresponds to that of a Certification Authority (CA) in a PKI.4 Namely, to become a
member of a group a party needs the GA to issue a certificate on an ID bitstring which the CA
agrees to assign to this party. The certificate must include a CA-specific trapdoor which corresponds
to this ID.5 To revoke some party, the CA puts that party’s ID on a revocation list. To perform a
handshake, two parties first exchange their ID’s, and then proceed only if the ID of the other party
is not on the revocation list of their CA. Since the secret handshake protocol must hide one’s group
affiliation from outsiders, the IDs will be random strings picked from the same domain by all the
CA’s.6

In this setting, constructing a secret handshake scheme amounts to solving the following protocol
problem: For a given CA, Alice wants to prove to Bob that she posseses a trapdoor tA issued by this
CA on her IDA, but only if Bob posseses a trapdoor tB issued by the same CA on his IDB (and vice
versa). Moreover, the protocol must be “CA-oblivious” in the sense that if a cheating Bob is not in
the group administered by a given CA, and hence does not hold a CA-specific trapdoor tB associated
with IDB , then his interaction with Alice must not help him in guessing if Alice belongs to this group
or not. (And vice versa for an honest Bob and a cheating Alice.) While this protocol problem can be
solved in principle with general 2-party secure computation techniques, the issue remains whether it
can be solved with a practical protocol, at a cost comparable to standard authentication protocols.

Existing solution based on bilinear maps. The secret handshake protocol of [1] is based on
bilinear maps, which can be constructed using Weil pairings on elliptic curves [5, 6]. The protocol of
[1] builds on the non-interactive key-agreement scheme of [7], and works as follows. As in the identity
based encryption scheme of [8], A and B can compute each other’s public keys from each other’s
ID’s and from the public parameters associated with the CA. If Alice is a group member, she can use
her trapdoor tA corresponding to PKA to non-interactively compute a session key from (tA, PKB).
Similarly, if Bob is a group member he can compute the same session key from (tB , PKA). The two
parties can then verify if they computed the same key via a standard MAC-based challenge-response
protocol. Under the Bilinear Diffie-Hellman (BDH) assumption, it is easy to show (in the Random
Oracle Model) that an attacker who does not hold the correct trapdoor cannot compute the session

3See [1] for a discussion of the unsuitability of other seemingly related constructs. See also Related Work below.
4The SH scheme of [1] also falls in this category.
5For example, in an identity based encryption scheme, the trapdoor is a secret key corresponding to the public key

which can be recovered from ID and the public parameters associated with the CA. In a standard PKI system, this
correspondence has an added level of indirection: The trapdoor t is a secret key corresponding to the public key PK

which is in turn bound to the ID string by a signature of CA on the (ID|PK) pair.
6Optionally, to make protocol runs executed by the same party unlinkable, Balfanz et al. [1] propose that a single

ID and its certificate could be used in only one instance of the handshake protocol. The CA would then issue multiple
(ID,certificate) pairs to each member.

2

150 ANNEXE F. AUTHENTIFICATION SECRÈTE

key. Moroever, the MAC-based challenge response confirmation protocol has the needed property
that without the knowledge of the key, one learns nothing from the counterparty’s responses.

Thus, the “CA-obliviousness” property of the protocol of [1] follows from two properties of cryp-
tosystems built on bilinear maps: (1) that the receiver’s public key can be recovered by the sender
from the receiver’s ID, and thus the receiver does not need to send any information revealing his CA
affiliation to the sender, and (2) knowing their public keys, the two parties can establish a session
key non-interactively, and thus they again do not reveal any CA-specific information. Given that
the first property relies on identity based encryption, and that the only practical IBE known so far
is based on bilinear maps [8],7 it seems that BDH is indeed needed for secret handshakes.

Our contributions. In this paper we show that efficient secret handshake (SH) schemes can be
built using weaker and more standard assumptions than the BDH, namely the Computational Diffie
Hellman (CDH) and the RSA assumptions, in the so-called Random Oracle Model (ROM).

First, we generalize the IBE-based secret handshake solution described above by showing that
an efficient four-rounds secret handshake protocol can be built using any PKI-enabled encryption
with the additional property of CA-obliviousness. We define the notion of (chosen-plaintext secure)
PKI-enabled encryption, which generalizes both the Identity Based Encryption schemes, and the
standard encryption schemes used in the context of a PKI system like X.509. We define the CA-
obliviousness property for a PKI-enabled encryption, which says that both the public-key-related
information which the receiver provides to the sender, and the ciphertext sent from the sender to
the receiver, do not reveal which CA issued the receiver’s certificate. We then show that every CA-
oblivious PKI-enabled encryption leads to a four-round secret handshake protocol whose cost is one
decryption and one encryption for each party.

Next, we combine ElGamal encryption and Schnorr signatures to construct a practical CA-
oblivious PKI-enabled encryption secure under the CDH assumption (in ROM), which thus leads to
secret handshakes secure under CDH. We also note that the recent “oblivious envelope” construction
of [10], which is secure under the RSA assumption (in ROM), can be seen as a secure PKI-enabled
encryption, and that with some minor changes it can also be made CA-oblivious and can thus be
used to build an RSA-based SH scheme.

Both SH schemes constructed in this manner take four rounds, compared to three rounds in the
SH scheme of [1]. However, we show that our CDH-based construction can be simplified to run in
three rounds. Moreover, its computational cost is roughly three to five times lower than that of
the BDH-based SH scheme of [1].

Finally, we show that our SH schemes handle roles just as easily as the SH of [1]. We also show
that our CDH-based SH schemes can support “blinded” issuance of the member certificates in the
sense that the CA does not learn the trapdoors included in the certificate, and thus, in contrast to
the BDH-based SH scheme of [1], the CA cannot impersonate that member.

Related Work. As described in [1], existing anonymity tools such as anonymous credentials, group
signatures, matchmaking protocols, or accumulators, have different goals than secret handshakes, and
it is indeed unclear how to achieve a secret handshake scheme from any of them. However, the recent
work of [10] proposes a notion of “oblivious signature-based envelopes”, which is closely related to
the secret handshake problem. In fact, the oblivious envelope notion they define is equivalent to
a PKI-enabled encryption with half of our CA-obliviousness property. Namely, they only require
that the identity of the CA is not revealed by the receiver-related information the sender needs to
encrypt, while we also require the ciphertext produced by the sender to hide the identity of the CA.

7The IBE scheme of [9], whose security rests on the quadratic residuosity decisional assumption, needs one modular
group element to encode a single bit of the plaintext. Moreover, we do not know how to establish a shared session key
in a CA-oblivious way using this IBE scheme.

3

151

The one-sided CA-obliviousness turns out to be enough for the application considered in [10], in
which two parties in a regular PKI system announce to each other the cleartexts of their public key
certificates, which include the identities of the CA’s which signed them, but do not want to reveal to
one another the CA’s signatures on their certificates unless the other party posseses the corresponding
signature too. They thus offer a lower level of secrecy protection than a secret handshake would,
since, in their protocol a party announces what CA issued its certificate, and they only want to hide
the signature which proves the possession of this certificate. Nevertheless, the RSA-based encryption
scheme given in [10] can be modified to provide the CA-obliviousness in both directions, and thus
by our general transformation, it leads to an RSA-based Sescret Handshake scheme.

Organization. In section 2 we revise the definitions of an SH scheme [1], restricting them to “PKI-
like” SH schemes we consider here. In section 3 we define the notion of a PKI-enabled encryption, and
the CA-obliviousness property of such encryption. In section 4 we give a general construction of an
SH scheme from any CA-oblivious encryption. In section 5 we construct a CA-oblivious encryption
secure under CDH in ROM, and we show how to adapt the RSA-based encryption of [10] to make it
CA-oblivious. In appendix B we show how to simplify the CDH-based SH scheme so that it is about
3 to 5 times more efficient than the BDH-based SH scheme of [1]. In appendix C we show how to
support roles and blinded issuing of CA certificates.

2 Secret Handshake Definition

We adapt the definition of a secure Secret Handshake [SH] scheme from [1] to what we call “PKI-
like” SH schemes. Our definitions might potentially restrict the notion of a Handshake Scheme, but
both the SH schemes of [1] and ours fall into this category. An SH scheme is a tuple of probabilistic
algorithms Setup, CreateGroup, AddMember, and Handshake s.t.

• Setup is an algorithm executed publicly on the high-enough security parameter k, to generate
the public parameters params common to all subsequently generated groups.

• CreateGroup is a key generation algorithm executed by a GA, which, on input of params, outputs
the group public key G, and the GA’s private key tG.

• AddMember is a protocol executed between a group member and the GA on GA’s input tG and
shared inputs: params, G, and the bitstring ID (called a pseudonym in [1]) of size regulated by
params. The group member’s private output is the trapdoor t produced by GA for the above
ID.

• Handshake is the authentication protocol, i.e. the SH protocol itself, executed between players
A,B on public input IDA, IDB , and params. The private input of A is (tA, GA) and the private
input of B is (tB, GB). The output of the protocol for either party is either a reject or accept.

We note that AddMember can be executed multiple times for the same group member, resulting
in multiple (ID, t) authentication tokens for that member. We also note that in all the SH schemes
discussed here the output of the Handshake protocol can be extended to include an authenticated
session key along with the “accept” decision.

2.1 Basic Security Properties

A secure SH scheme must be complete, impersonator resistant, and detector resistant:8

8Once we restrict the notion of SH Schemes to the PKI-like SH schemes, the security properties defined originally
in [1] can be stated in a simpler way. Specifically, their properties of impersonator resistance and impersonator tracing

are subsumed by our impersonator resistance, and their detector resistance and tracing is subsumed by what we call
detector resistance.

4

152 ANNEXE F. AUTHENTIFICATION SECRÈTE

Completeness. If two honest memebers A,B of the same group engage in Handshake with valid
trapdoors tA, tB generated for their ID strings IDA, IDB and for the same group GA = GB , then
both parties output “accept” at the end of the protocol.

Impersonator Resistance. Intuitively, the impersonator resistance property is violated if an
honest party V who is a member of group G authenticates an adversary A as a group member, even
though the A is not a member of G. Formally, we say that an SH scheme is impersonator resistant
if every polynomially bounded adversary A has negligible probability of winning in the following
game, for any string IDV which models the ID string of the victim in the impersonation attack:

1. The Setup and the CreateGroup algorithms are executed: params ← Setup(1k), (G, tG) ←
CreateGroup(params).

2. A, on input (G, IDV), invokes the AddMember algorithm on any number of group members
IDi of his choice. (The GA’s inputs are IDi’s, G, and tG.)

3. A announces a new IDA string, different from all the IDi’s above. (This models a situation
where the IDi’s belong to group members who are malicious but who might be revoked.)

4. A interacts with the honest player V in the Handshake protocol, on common inputs (IDA, IDV),
and on V ’s private inputs G and tV , where tV ← AddMember((G, IDV), tG).

We say that A wins if V outputs “accept” in the above Handshake instance.
We note that stronger versions of the impersonator resistance property are possible. For ex-

ample, the attacker can be allowed to ask for trapdoors on additional IDi 6= IDA strings during
the Handshake protocol against the intended victim V . Also, the attacker can be allowed to have
several attempts against V and be able to ask for additional trapdoors after each attempt, before he
announces that he is ready for the true challenge. We adopt the simpler definition here to reduce
the level of formalism, although the schemes we propose remain secure under these stronger notions
as well.

Detector Resistance. Intuitively, an adversary A violates the detector resistance property if it
can decide whether some honest party V is a member of some group G, even though A is not a
member of G. Formally, we say that an SH scheme is detector resistant if there exists a probabilistic
polynomial-time algorithm SIM , s.t. any polynomially bounded adversary A cannot distinguish
between the following two games with the probability which is non-negligibly higher than 1/2, for
any target ID string IDV :

1-3. Steps 1-3 proceed as in the definition of Impersonator Resistance, i.e. on input IDV and a
randomly generated G, A querries GA on adaptively chosen IDi’s and announces some challenge
string IDA, IDA 6= IDi for all i.

4-1. In game 1, A interacts with an algorithm for the honest player V in the Handshake protocol, on
common inputs (IDA, IDV), and on V ’s private inputs G and tV = AddMember((G, IDV), tG).

4-2. In game 2, A interacts with the SIM algorithm on common inputs (IDA, IDV). (Note that
SIM has no private inputs.)

5. A can query GA on additional strings IDi 6= IDA.

6. A outputs “1” or “2”, making a judgment about which game he participated in.

Again, stronger notions of the detector resistance are possible. However, we adopt this relatively
simple definition in order to reduce the level of formalism.

5

153

2.2 Other Security Properties

Authenticated Key Exchange. In practice one would like to extend the notion of a secret hand-
shake from mere authentication, where participants’ outputs are binary decisions “accept”/”reject”,
to authenticated key exchange, where parties output instead either “reject” or an identifier of an
authenticated session and a session key. Our SH schemes, just like the original SH protocol of [1]
are in fact easily extendible to AKE protocols. (Formal arguments of AKE security would require
extending the AKE formalism of [11, 12], which is beyond the scope of this paper.)

Group-Affiliation Secrecy against Eavesdroppers. Our schemes also protect secrecy of par-
ticipants’ group affiliations against eavesdroppers, even if the eavesdropper is a malicious member of
the same group. An observer of our SH protocols does not even learn if the participants belong to
the same group or not. We do not formally define security against eavesdroppers, because it is very
similar to the security against active attackers which we do define, the impersonator and detector
resistance. Moreover, if the protocol participants first establish a secure anonymous session, e.g.
using SSL or IKE, and then run the SH protocol over it, the resulting protocol is trivially secure
against eavesdroppers.

Unlinkability. A potentially desirable property identified by Balfanz et al. [1], is unlinkability,
which extends privacy protection for group members by requiring that instances of the handshake
protocol performed by the same party cannot be efficiently linked. This can be achieved trivially
(but inefficiently) by issuing to each group member a list of one-time certificates, each issued on a
randomly chosen ID, to be discarded after a single use. Unfortunately, an honest member’s supply
of one-time certificates can be depleted by an active attacker who initiates the handshake protocol
enough times. Indeed, while one can run our SH schemes using multiple certifciates to offer some
heuristic protections against linking, contructing an efficient and perfectly unlinkable SH scheme
remains an open problem.

3 PKI-enabled encryption

We define the notion of PKI-enabled encryption, which models the use of standard encryption in
the context of a PKI system, and also generalizes Identity Based Encryption. We define one-way
security for PKI-enabled encryption, adapting a standard (although weak) notion of one-way security
of encryption to our context, and we define a novel CA-obliviousness property for such schemes.

A PKI-enabled encryption is defined by the following algorithms:

• Initialize is run on a high-enough security parameter, k, to generate the public parameters
params common to all subsequently generated Certification Authorities (CAs).

• CAInit is a key generation algorithm executed by a CA. It takes as inputs the system parameters
params and returns the public key G and the private key tG of the CA.

• Certify is a protocol executed between a CA and a user who needs to be certified by this CA. It
takes CA’s private input tG, and public inputs G (assume that G encodes params) and string
ID which identifies the user, and returns trapdoor t and certificate ω as the user’s outputs.

• Recover is an algorithm used by a sender, a party who wants to send an encrypted message to
a user identified by some string ID, to recover that user’s public key. It takes as inputs G, ID,
and ω, and outputs a public key PK.

• Encrypt is the actual encryption algorithm which takes inputs message m and the public key
PK (assume that PK encodes params and G), and outputs a ciphertext c.

6

154 ANNEXE F. AUTHENTIFICATION SECRÈTE

• Decrypt is the decryption algorithm which takes as inputs the ciphertext c and the trapdoor t
(as well as possibly params, G, ID, and ω, all of which can be encoded in t), and returns m.

The above algorithms must satisfy the obvious correctness property that the decryption procedure
always inverts encryption correctly.

It is easy to see (see Appendix A) that this notion of encryption indeed models both regular
encryption schemes in the PKI context as well as the Identity Based encryption schemes.

One-Way Security. We define the security of PKI-enabled encryption only in the relatively weak
sense of so-called one-way security, namely that the attacker who does not own a trapdoor for some
public key cannot decrypt an encryption of a random message. This is a weaker notion than the
standard semantic security for an encryption, but we adopt it here because (1) it simplifies the
definition of security, (2) one-way security is all we need in our construction of a secure SH scheme,
and (3) in the Random Oracle Model, it is always possible to convert a one-way secure encryption
into a semantically secure encryption, or even a CCA-secure encryption using the method of Fujisaki
and Okamoto [13].

The definition of security for PKI-enabled encryption is very simliar to the definition of security
of an IBE scheme: We say that a PKI-enabled encryption scheme is One-Way (OW) secure on
message space M under Chosen-Plaintext Attack (CPA), if every polynomially-bounded adversary
A has only negligible probability of winning the following game:

1. The Initialize and CAInit algorithms are run, and the resulting public key G is given to A.

2. A repeatedly triggers the Certify protocol under the public key G, on ID strings IDi of A’s
choice. In each instance A receives (ti, ωi) from the CA.

3. A announces a pair (IDA, ω), where IDA 6= IDi for all IDi’s querried above.

4. A receives c = EncryptPK(m) for a random message m ∈M and PK = Recover(G, IDA, ω).

5. A is allowed to trigger the Certify algorithm on new IDi 6= IDA strings of his choice, getting
additional (ti, ωi) pairs from the CA.

6. A outputs a message m′.

We say that A wins in the above game if m = m′.

CA-Obliviousness. Informally, PKI-enabled encryption is CA-oblivious if (1) the receiver’s mes-
sage to the sender, i.e., the pair (ID,ω), hides the identity of the CA which certified this ID; and
(2) the sender’s messages to the receiver, i.e., ciphertexts, do not leak any information about the
CA which the sender assumed in computing the receiver’s public key. Consequentely, in a standard
exchange of messages between the receiver and the sender, neither party can guess which CA is
assumed by the other one. Formally, we call a PKI-enabled encryption scheme CA-oblivious under
two conditions:

(I) It is receiver CA-oblivious, i.e., if there exists a probabilistic polynomial-time algorithm SIM(R),
s.t. no polynomially-bounded adversary A can distinguish between the following two games with
probability non-negligibly higher than 1/2, for any target ID string IDR:

1. The Initialize and CAInit algorithms are executed, and the resulting parameters params and the
public key G is given to A.

2. A can trigger the Certify protocol on any number of IDi’s.

7

155

3-1. In game 1, A gets (IDR, ωR), where ωR is output by the Certify protocol on G and IDR.

3-2. In game 2, A gets (IDR, r) where r = SIM(R)(params).

4. A can trigger the Certify protocol some more on any IDi 6= IDR.

5. A outputs “1” or “2”, making a judgment about which game he participated in.

(II) It is sender CA-oblivious, i.e., if there exists a probabilistic polynomial-time algorithm SIM(S)

s.t. no polynomially-bounded adversary A can distinguish between the following two games, with
probability non-negligibly higher than 1/2:

1. The Initialize and CAInit algorithms are executed, and the resulting parameters params and the
public key G is given to A.

2. A can trigger the Certify protocol any number of times, for public key G and group members
IDi’s of A’s choice.

3. A announces pair (IDR, ωR) on which he wants to be tested, where IDR 6= IDi for all i.

4-1. In game 1, A gets c = EncryptPKR
(m) for random m ∈M and PKR = Recover(G, IDR, ωR).

4-2. In game 2, A gets c = SIM(S)(params).

5. A can query GA on some more IDi’s s.t. ∀i, IDi 6= IDR.

5. A outputs “1” or “2”, making a judgment about which game he participated in.

4 Secret Handshakes from CA-Oblivious Encryption

We show how to built a secure SH scheme using CA-oblivious PKI-enabled encryption. Given
a CA-oblivious one-way secure PKI-enabled encryption scheme (Initialize, CAInit, Certify, Recover,
Encrypt, Decrypt), and a hash function H : {0, 1}∗ → {0, 1}k modeled as a random oracle, we specify
a secret handshake scheme as follows: Algorithms Setup, CreateGroup, and AddMember, are simply
set to Initialize, CAInit, and Certify, respectively, while algorithm Handshake proceeds as follows. A’s
inputs are (IDa, ωa, ta) and B’s inputs are (IDb, ωb, tb).

9

1. SH-1 (A←− B): IDb, ωb

A does the following:

a) obtains PKb = Recover(G, IDb, ωb)

b) picks ra ←M and cha ← {0, 1}
k

c) computes Ca = EncryptPKb
(ra)

2. SH-2 (A −→ B): IDa, ωa, Ca, cha

B does the following:

a) obtains PKa = Recover(G, IDa, ωa)

b) obtains ra = Decrypttb(Ca)

c) picks rb ←M and chb ← {0, 1}
k

d) computes Cb = EncryptPKa
(rb)

e) computes respb = H(ra, rb, cha)

9Group member’s trapdoor on string ID in this SH scheme is a pair (ω, t) produced by the Certify protocol. We
can also assume that (IDa, IDb) are public inputs.

8

156 ANNEXE F. AUTHENTIFICATION SECRÈTE

3. SH-3 (A←− B): Cb, respb, chb

A does the following:

a) obtains rb = Decryptta(Cb)

b) if respb 6= H(ra, rb, cha), outputs FAIL; otherwise outputs ACCEPT.

c) computes respa = H(ra, rb, chb)

4. SH-4 (A −→ B): respa

B does the following:

a) if respa 6= H(ra, rb, chb), outputs FAIL; otherwise outputs ACCEPT.

We note that the above protocol can be easily turned into an Authenticated Key Exchange (AKE)
protocol (secure in the ROM model) if the two parties compute their authenticated session key as
K = H(ra, rb).

Theorem 1 If the PKI-enabled encryption is CA-oblivious and One-Way (Chosen-Plaintext Attack)
Secure, the above construction yields a Secret Handshake scheme secure in the Random Oracle Model
(ROM).

Proof of Impersonator Resistance (sketch): Assume that A violates with non-negligible prob-
ability ǫ the impersonator resistance property against some honest member V identified by IDV .
Assume that A plays the role of A and V plays the role of B (the other case is easier because B has
to speak first). Therefore with prob. ǫ, A sends a valid respa = H(ra, rb, chb) response to B. In the
ROM model, that can happen with non-negligible probability only if A querries the oracle for H(·)
on the input (ra, rb, chb) s.t., in particular, rb was the value picked by V and sent to A in the form
of a ciphertext Cb = EncryptPKa

(rb) for PKa = Recover(G, IDa, ωa), where (IDa, ωa) are sent by A
in its first message to V . Therefore, in ROM, we can use A to create a break A ′ against the one-way
security of the encryption scheme:

On input G, A′ passes the public key G to A. When A can makes a querry IDi, so does A′,
passing back (ti, ωi) to A. When A announces that he is ready for the impersonation challenge
against V , A′ passes as his encryption challenge the pair (IDa, ωa) sent by A in his first message
to V . On encryption challenge c = EncryptPKa

(m) where m is chosen at random in M, A′ passes
the same challenge as its response Cb = c to A, together with a random challenge value chb and
respb picked at random. The only way A can tell between this communication and a conversation
with an honest V is by querying H on (ra, rb, cha) for rb = Decryptta(Cb) = m. Otherwise, as we
argued above, he queries H on (ra, rb, chb) with probability almost ǫ. In either case, since A can
make only polynomially-many queries to H, A′ can pick one such query at random, and A′ will have
a non-negligible chance of outputing rb = m. Thus A′ breaks the one-wayness of the encryption
scheme. ✷

Proof of Detector Resistance (sketch): We will show a simulator SIM s.t. if A distinguishes
between interactions with SIM and interactions with a group member, we can break the one-way
security of the encryption scheme. Assume again that the adversary A plays the role of A and V
plays the role of B. Assume that the underlying encryption scheme is CA-oblivious, and therefore
there exist simulators SIM(S) and SIM(R) which satisfy the two CA-obliviousness criteria. We
define a simulator SIM , running on input (IDA, IDV , params), as follows: (1) To simulate V ’s first
message SH-1, SIM sends IDb = IDV together with ωb = SIM(R)(params), (2) To simulate B’s
second message SH-3, SIM sends respb and chb picked at random, and Cb = SIM(S)(params).

If A can distinguish a conversation with such SIM from a conversation with a true group member
V , then by a standard hybrid argument, since the SIM(S) and SIM(R) simulators produce messages

9

157

which are indistinguishable from the messages of an honest B, it must be that A distinguishes ran-
dom values respb chosen by SIM from values respb = H(ra, rb, cha) computed by a real player. But
this can happen only if A makes an oracle query on the triple (ra, rb, cha), in which case we can
use A, exactly in the same manner as we did in the proof of impersonator resistance, to attack the
one-way security of the underlying encryption scheme. ✷

5 CA-Oblivious Encryption Schemes: Constructions

We show two constructions for CA-oblivious PKI-enabled encryption schemes, based on the CDH
and RSA assumptions, respectively, all in the Random Oracle Model. The CDH-based scheme is
novel, while the RSA-based scheme is a simple modification of the RSA-based encryption envelope
proposed in [10]. By theorem 1, both constructions lead to secret handshake schemes secure under
the respective assumptions.10

5.1 CDH-based encryption scheme

• Initialize picks the standard discrete logarithm parameters (p, q, g) of security k, i.e., primes p, q
of size polynomial in k, s.t. g is a generator of a subgroup in Z

∗
p of order q. Initialize also defines

hash functions H : {0, 1}∗ → Zq and H ′ : {0, 1}∗ → {0, 1}k . (Both hash functions are modeled
as random oracles, but we note that H ′ is not essential in this construction and can be easily
removed.)

• CAInit picks random private key x ∈ Zq and public key y = gxmodp.

• In Certify on public inputs (y, ID), the CA computes the Schnorr signature on string ID under
the key y [14], i.e., a pair (ω, t) ∈ (Z∗p, Zq) s.t. gt = ωyH(ω,ID) mod p. The user’s outputs
are the trapdoor t and the certificate ω. The signature is computed as ω = gr mod p and
t = r + xH(ω, ID) mod q, for random r← Zq.

• Recover(y, ID, ω) outputs PK = ωyH(ω,ID) mod p.

• EncryptPK(m) is an ElGamal encryption of message m ∈ {0, 1}k under the public key PK: It
outputs a ciphertext [c1, c2] = [gr mod p,m⊕H ′(PKr mod p)], for random r ∈ Zq.

• Decrypt is an ElGamal decryption, outputing m = c2 ⊕H ′(ct
1 mod p).

Theorem 2 The above encryption scheme is CA-oblivious and One-Way (CPA) Secure under the
CDH assumption in the Random Oracle Model.

Proof of One-Way Security (sketch): Assume that an adversary A breaks one-wayness of this
encryption scheme. Then A receives n Schnorr signatures (ti, wi) on IDi’s of his choice. Then A
sends some tuple (ID,w) for ID 6= IDi for all the above IDi’s. If A breaks one-wayness then it
must be computing ct

1modp where gt = ωyH(ω,ID) mod p.
Therefore, if A succeeds, then she can exponentiate a random element c1 to t. Hence, what we

need to argue that, even though A receives n signatures (ti, wi) on her IDi’s, she cannot produce a
new pair (ID,w) s.t. she can exponentiate a random elements c1 to exponent t where gt = w∗yh(t,ID).
Now, this is very similar to proving the chosen message attack security of the underlying Schnorr
signature scheme, where one argues that, after receiving n signatures, A cannot produce a new triple

10We point out that the Identity Based Encryption scheme of [8] is also a CA-oblivious PKI-based encryption scheme,
and therefore our general SH construction applied to that encryption scheme leads to another Weil-pairing based SH
scheme.

10

158 ANNEXE F. AUTHENTIFICATION SECRÈTE

(ID, t, w) s.t. gt = w ∗ yh(w,ID). Hence, our proof is very similar to the forking-lemma proof for
Schnorr signature security in [15]. However, here we reduce the successful attack not to computing
discrete logarithm, but to breaking the CDH assumption by computing mx on input y = gx and a
random value m.

To reduce A’s ability to succeed in this protocol to computing mx on the Diffie-Hellman challenge
(g, gx,m), we first simulate, as in the proof of Schnorr signature security, the signatures (ti, wi) thatA
gets on her IDi’s, by taking random ti, ci, computing ωi = gti∗y−ci modp, and assigning H(IDi, wi) to
ci. Since the verification equation is satisfied and ti, ci are picked at random, this is indistinguishable
from receiving real signatures. As in the forking lemma argument of [15], we can argue that if A’s
probability of success is ǫ, the probability that A executed twice in a row succeeds in both executions
and sends the same (ID,w) pair in both of them, is at least ǫ2/qh where qh is the number of queries A
makes to the hash function H (see [15]). The forking lemma used in the security proof of the Schnorr
signature scheme shows that if two conversations with an adversary produce triples (ID, t, w) and
(ID, t̂, w), where in first conversation H(ID, r) = c and in the second H(ID, r) = ĉ for some random

c, ĉ, then x = DLg(y) can be computed as x = (s−ŝ)/(c−ĉ) mod q, because gt = w∗yc and gt̂ = w∗yt̂.

By the same forking lemma applied to our case, adversary A produces two exponentiations mt and mt̂,
instead of forgeries t, t̂, but still we have that x = DLg(y) = (t−t̂)/(c−ĉ). Therefore, with probability

ǫ2/qh we can break the CDH challenge and compute mx = m(t−t̂)/(c−ĉ) = (mt/mt̂)1/(c−ĉ) mod p.
Note that if the success probability ǫ is higher than negligible, and if A∗ is an efficient algorithm

and hence the number of queries qh is polynomial, then the probability of CDH break ǫ2/qh is non-
negligible as well. ✷

Proof of CA Obliviousness: It is easy to see that w and the ciphertext C = [c1, c2] does not reveal
any information about the CA i.e., that the proposed CDH-based encryption is CA-oblivious. Since
ω = gr for random r, ω is independent from CA’s public key y, and hence the scheme is receiver
CA-oblivious. Ciphertext C = [c1, c2] on a random message m is also independent from the group
key y, because c1 = gr for random r and c2 is computed by xoring H ′(PKr) with the random m. ✷

5.2 RSA-based encryption scheme

• Initialize defines k′ polynomial in the security parameter k and two hash functions H : {0, 1}∗ →
{0, 1}2k′

and H ′ : {0, 1}∗ → {0, 1}k .

• CAInit picks e = 3 and an RSA modulus n = pq for |p| = |q| = k ′, with additional restriction
22k′

< n < 22k′+1. The private RSA key is d = e−1 mod φ(n).

• Certify computes the RSA signature on ID under the key (d, n), i.e., s = H(ID)d mod n. It
then picks t ← Zn and computes ω = s ∗ (H(ID))t mod n. For CA-obliviousness, if ω > 22k′

then another t is chosen at random and ω is recomputed, until ω ≤ 22k′

.

• Recover outputs PK = ωe/H(ID) mod n.

• Encrypt is an ElGamal encryption of k-bit message m under the public key PK modulo n. The
sender picks t ∈ Zn and computes the ciphertext [c1, c2] = [(he)r mod n,m⊕H ′(PKr mod n)],
where h = H(ID). Again, for CA obliviousness, if c1 > 22k′

then another r is chosen at random
and ciphertext is recomputed, until c1 ≤ 22k′

.

• Decrypt returns m = c2 ⊕H ′(ct
1 mod n).

Theorem 3 The above encryption scheme is CA-oblivious and One-Way (CPA) Secure under the
RSA assumption in the Random Oracle Model.

11

159

Proof of One-Way Security: When H ′ is modelled as a random oracle, then an attack against
one-wayness of this encryption scheme means that there exists a polynomially bounded adversary
A s.t. A gets valid pairs (ti, wi) on IDi’s of his choice from the CA, announces a pair (w, ID), s.t.
IDi 6= ID, and then the challenger randomly picks r ← Zn, and sends c1 = (he)r and some c2 to
A, where h = H(ID)modn. The adversary can then receive additional (ti, wi) pairs on IDi’s of his
choice, but finally A must make a query PK r = (we/h)r mod n to H, because otherwise, in ROM,
he has a negligible chance of outputing the correct decryption of [c1, c2].

Given an attacker A that wins the above game with probability ǫ, we can construct another
attacker B that can successfully forge the RSA signature H(ID)dmodn with probability ǫ′, where
|ǫ− ǫ′| is negligible. B does the following: (1) B computes H(ID), picks a randon value z in Zn and
sends h(1+ez) to A. Note that h(1+z) = h(ed+ez) = he(d+z). A returns r = w ∗ e(d+z) ∗ h−(d+z). B can
then computes hd = w ∗ e(d+z) ∗ hz/r.
B succeeds in forging an RSA signature iff A wins the above game. This happens with probability

ǫ′. What A receives from the Challenger in the first game is the distributed family {her|r ∈ Zn}.
What A receives from B in the second game is the distributed family {he(d+z)|z ∈ Zn}. Since these
two distribution families are statistically indistinguishable, |ǫ− ǫ′| is negligible. ✷

Proof of CA Obliviousness: It is easy to see that w and the ciphertext C = [c1, c2] does not
reveal any information about the CA modulus n. If fact since w is choosen such that its value is
always smaller than 22k′

, the distribution families defined by w for two different values of n, n1 and
n2, are statistically indistinguishable. The same argument can be used for c1 and c2. ✷

References

[1] D. Balfanz, G. Durfee, N. Shankar, D.K. Smetters, J. Staddon, and H.C. Wong, “Secret hand-
shakes from pairing-based key agreements,” in IEEE Symposium on Security and Privacy, 2003.

[2] D. Chaum and E. Van Heyst, “Group signatures,” in Advances in Cryptography - EURO-
CRYPT’91, Springer-Verlag, Ed., 1991, vol. 547, pp. 257–265.

[3] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik, “A practical and provably secure coalition-
resistant group signature scheme,” in CRYPTO’2000, 2000.

[4] J. Kilian and E. Petrank, “Identity escrow,” in Advances in Cryptography - CRYPT0 1998,
Santa Barbara, CA, August 1998.

[5] A. Joux, “The weil and tate pairings as building blocks for public key cryptosystems,” in
Proceedings of the 5th International Symposium on Algorithmic Number Theory, 2002.

[6] Martin Gagne, “Applications of bilinear maps in cryptography,” M.S. thesis, University of
Waterloo, 2002.

[7] R. Sakai, K. Ohgishi, and M. Kasahara, “Cryptosystems based on pairing,” in Symposium in
Cryptography and Information Security, Okinawa, Japan, January 2000.

[8] D. Boneh and M. Franklin, “Identity based encryption from weil pairing,” in Advances in
Cryptography - CRYPT0 2001, Santa Barbara, CA, August 2001.

[9] C. Cocks, “An identity based encryption scheme based on quadratic residues,” in Eighth IMA
International Conference on Cryptography and Coding, Decembre 2001.

12

160 ANNEXE F. AUTHENTIFICATION SECRÈTE

[10] N. Li, W. Du, and D. Boneh, “Oblivious signature-based enevelope,” in Proceedings of 22nd
ACM Symposium on Principles of Distributed Computing (PODC 2003), Boston, Massachusetts,
July 13-16 2003.

[11] R. Canetti and H. Krawczyk, “Universally composable notions of key exchange and secure
channels,” in Advances in Cryptology - EUROCRYPT 2002, 2002.

[12] Shoup V., “On formal models for secure key exchange,” Tech. Rep. RZ3120, IBM, April 1999.

[13] E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and symmetric encryption
schemes,” in Advances in Cryptology-CRYPTO’99, August 1999, pp. 537–554.

[14] C. Schnorr, “Efficient identification and signatures for smart cards,” in Advances in Cryptogra-
phy - CRYPT0 1989, Santa Barbara, CA, August 1989.

[15] D. Pointcheval and J. Stern, “Security proofs for signatures,” in Eurocrypt’96, 1996, pp. 387 –
398.

[16] P. Barreto, H. Kim, B. Lynn, and M. Scott, “Efficient algorithms for pairing-based cryptosys-
tems,” in Advances in Cryptography - CRYPT0 2002, Santa Barbara, CA, August 2002.

A PKI-enabled encryption generalizes both standard PKI and IBE

The notion of the PKI-enabled encryption generalizes both the standard use of encryption in the PKI
context and the Identity Based Encryption schemes. An IBE scheme can be seen as a special case
of PKI-enabled encryption where certificates ω computed in the Certify protocol are empty strings.
Therefore, a given user’s public key PK is computable solely from G (CA’s public key) and ID (the
user’s identity).

Similarly, if we want to model the standard PKI setting, the Initialize procedure would simply
output as params its input 1k. This output sets the minimal security parameter to be used by any
CA participating in this PKI system. The CAInit generates the standard public/private signature
keypair (CA, tCA) of the CA. The Certify procedure generates a private/public keypair (Pr, PK) for
the user, and outputs the user’s trapdoor t = Pr and a certificate ω = (PK, sigCA[PK, ID]), which
binds the user’s ID to his public key. Then Recover(CA, ID,ω) outputs PK if the signature in ω
verifies under public key CA on message [PK, ID]. Otherwise Recover outputs null. Encryption and
decryption proceed in a standard way.

B More Efficient CDH-based Secret Handshake

This section presents a secure extension of the CDH-based SH scheme presented above that uses
“CA-oblivious Diffie-Hellman Key Agreement” instead of “CA-oblivious Diffie-Hellman encryption”.

This extension improves efficiency so that the scheme has only 3 rounds (instead of 4) and requires
only one (multi)exponentiation per player. This results in a SH scheme which has the same number
of rounds but requires at least 3 times computationnally more efficient than the BDH-based SH
scheme of [1]. In fact as shown in [16], for the same level of security, a Weil pairing computation is
about 5 to 6 times more expensive than a modular exponentation computation, i.e. at least 3 times
more expensive than a modular multi-exponentation.

The faster secret handshake protocol is as follows:

1. Initialize picks the standard discrete logarithm parameters (p, q, g) of security k, i.e., primes p, q
of size polynomial in k, s.t. g is a generator of a subgroup in Z

∗
p prime order q. Initialize also

defines hash functions H : {0, 1}∗ → Zq and H ′ : {0, 1}∗ → {0, 1}k .

13

161

2. CAInit picks random private key x ∈ Zq and public key y = gxmodp.

3. In Certify on public inputs (y, ID), the CA computes the Schnorr signature of ID under the
key y [14], i.e., the signature on ID is a pair (ω, t) ∈ (Z∗p, Zq) s.t. gt = ω ∗ yH(ω,ID)modp. The
user’s outputs are the trapdoor t and the certificate ω.

4. Recover(y, ID, ω) outputs PK = ω ∗ yH(ω,ID)modp. The message space M = {0, 1}k.

5. The Handshake protocol:

The secret handshake protocol between Alice on inputs tA, (wA, IDA), and y, and Bob on
inputs tB, (wB , IDB), and y, proceeds as follows:

(a) msg1 (A −→ B): wA, IDA,N1

B computes MA = wAyh(wA,IDA) (from Recover) and KB = M tB
A mod p, computes vB =

mac(KB , τ) where τ = (wB ||IDB ||N2||msg1)

(b) msg2 (B −→ A): wB , IDB ,N2, vB

A computes MB = wByh(wB,IDB) and KA = M tA
B mod p, vA = mac(KA, τ ′) where τ ′ =

(msg1||msg2), and accepts the authentication protocol if vB = mac(KA, τ).

(c) msg3 (A −→ B): vA

B accepts the authentication protocol if vA = mac(KB , τ ′)

We show that the above scheme achieves the detector resistance and impersonator resistance
properties under the CDH assumption in the Random Oracle Model, and therefore we have:

Theorem 4 In the Random Oracle Model, under the CDH assumption, the above secret handshake
protocol is secure.

Intuitively, we show that to remain secure a malicious party A would have to use a wA which
was not issued by the CA. We argue that in this case, the ability of A to authenticate itself (in

the Random Oracle Model) is equivalent to his ability to compute the Diffie-Hellman key K = M
t∗
A

B

where tA is defined by gt∗
A = Recover(w∗A, y) and MB = Recover(wB , y). We then show that his ability

to compute such exponentiation is equivalent to solving a computational Diffie-Hellman challenge
and computing zx on input g, y, z, where y = gx.

Interestingly, the proof of the secrecy property is very similar to the proof of security. The ability
of an adversary A, who does not have a valid group member certificate under the group key y, to tell
if its participant in the secret handshake protocol is a member of the group under this public key, is
equivalent to A being able himself to compute the proper authentication tag tag = H(K, τ), after
sending some value w∗A which is again not issued by the CA. But in the Random Oracle Model this
is again equivalent to A’s ability to compute the Diffie-Hellman key K as above. Hence the same
proof as the one in the Appendix for theorem 4 shows that existance of such adversary is equivalent
to breaking the computational Diffie Hellman problem.
Proof Assume that an adversary A receives n authentication tokens (ti, wi) from a group of ma-
licious colluding group members {Ai}. This is equivalent to A receving n modified-Schnorr (mes-
sage,signature) pairs (IDi, (ti, wi)). Suppose that A successfully authenticates in the secret hand-
shake protocol to some honest party B. If A sends one of the received legimitate certificates (wi, IDi)
to B in the authentication protocol, the CA will immediately identify this certificate. Suppose then
that A sends some (w, ID) different from any of the received certificates. We show that in that case,
under the CDH assumption, the probability that A the authentication protocol is negligible. The
reason is that if A passes the authentication protocol then he must compute the right authentication
tag value v = h(K, τ) where K = M t∗t′ modp, where t′ is the Diffie-Hellman secret held by B, and

14

162 ANNEXE F. AUTHENTIFICATION SECRÈTE

M = gtmodp is defined as Recover((w, ID), y) = wyh(w,ID)modp. In the Random Oracle Model of
analysis, computing such value is possible, except for negligible guessing probability, only by quer-
ing the hash function on the correctly computed argument K. Therefore, in the ROM model, an
adversary A who succeeds in this protocol must also output K = M t′ = gt∗t′ as a query to the hash
function. Note that A receives information about t′ in the form of B’s certificate w′, ID′) which
defines t′ because it defines M ′ = Recover((w′, ID′), y) where M ′ = gt′ . In other words, A commits
himself to t by sending M = gt (in the form of values (w, ID)), receives a random M ′ (in the form
of values (w′, ID′)), and outputs K = M ′t.

Therefore, if A succeeds then he can exponentiate a random element M ′ to value t committed
to in M . Hence, what we need to argue in the proof of traceability is that even though A receives
n (message,signature) pairs (mi, (wi, ti)) he cannot produce a new element (t,m) s.t. he can expo-
nentiate random elements M ′ to exponent t where gt = M = wyh(w,m). Now, this is very similar
to proving the chosen message attack security of the underlying modified-Schnorr signature scheme,
where one argues that, after receiving n (message,signature) pairs, A cannot produce a new triple
(t, w,m) s.t. gt = wyh(w,m). The proof is very similar to the forking-lemma proof for Schnorr signa-
ture security in [15], but here we reduce the successfull attack not to computing discrete logarithm,
but to breaking the CDH assumption by computing M ′x on input y = gx and a random value M ′.
(We will later on with the fact that our A does not get M ′ as such, but in the form of w′,m′. For
now assume that A receives from B a random value M ′ in the authentication protocol.)

To reduceA’s ability to succeed in this protocol to computing M ′x on the Diffie-Hellman challenge
(g, y,M ′), we first simulate, as in the proof of Schnorr signature security, the signatures (ti, wi,mi)
that A gets by taking random ti, mi, ci, computing wi = gti ∗ y−ci modp, and assigning h(wi,mi)
to ci. Since the verification equation is satisfied and ci is picked at random, this is indistinguishable
from receiving random (message,signature) pairs. As in the forking lemma argument of [15], we can
argue that if A’s probability of success is ǫ, the probability that A executed twice in a row succeed
in both executions and he sends the same C = (w,m) certificate in both of them, is at least ǫ2/qh

where qh is the number of queries A makes to the hash function h (see [15] for the argument). The
signature-scheme security argument shows that if with probability at least ǫ2/qh, two conversations
with A produce triples (m, t,w) and (m, t̂, w), where in first conversation h(m,w) = c and in the
second h(m,w) = ĉ for some random c, ĉ, then x = DLg(y) can be computed as x = (t− ŝ)/(c − ĉ)

because gs = wyc and gt̂ = wyĉ, and therefore y = g(t−t̂)/(c−ĉ). Here, however, by the same forking
lemma A does not produce two forgeries t and t̂, but two exponentiations K = M ′t and K̂ = M ′t̂,
but still we have that x = DLg(y) = (t− t̂)/(c− ĉ) because here again wea have that M = gt = wyc

and M̂ = gt̂ = wyĉ. Therefore, with probability ǫ2/qh we break the CDH challenge and compute

M ′x as (K/K̂)1/(c−ĉ) = (M ′t−t̂)1/(c−ĉ).
Note that if the success probability ǫ is higher than negligible, and if A is an efficient algorithm

and hence the number of queries qh is polynomial, then the probability of CDH break ǫ2/qh is
non-negligible as well.

Finally, we have to deal with the fact that A does not compute K = M ′t on any random M ′

he is given, but on M ′ = w′yh(m′,w′) where (m′, w′) is sent to A by B. Therefore the reduction
from CDH is slightly different but still succesful: For example, we can still break a CDH input
challenge g, y, w′ and compute w′x by running the above simulation twice, using the same values
m′, w′ in the two simulations, but different values for h(m′, w′): c′ and ĉ′. From the first succesful
simulation we get M ′x = w′xyxc′ (because a conversation with A can be used to recover α = M ′x

in the same way as argued above), and from the second we get α̂ = M̂ ′x = w′xyxĉ′. Therefore
αĉ′/α̂c′ = w′xĉ′/w′xc′ = (w′x)(ĉ

′−c′), and hence we can break CDH and output w′x by exponentiating
the above entity to 1/(ĉ′ − c′). ✷

15

163

C Achieving Additional Security Properties

This section presents a few simple enhancements of the above SH schemes. We show that our SH
schemes handle roles just as easily as the SH of [1]. We show that our CDH-based SH schemes can
support “blinded” issuance of the member certificates in the sense that the CA does not learn the
trapdoors included in the certificate, and thus the CA cannot impersonate that member.

C.1 Roles

Our schemes can easily be extended to handle group member roles (as in the SH scheme of [1]), in
a way that a member can choose not to reveal anything about herself unless the other party is a
member with a particular role r (and vice versa). This functionality can be provided by modifiying
the AddMember and Recover procedures as follows:

- AddMember: takes as inputs params, G, t G and an arbritary string ID ∈ {0, 1}∗ and returns
(t, ω) where t is a trapdoor and ω is a public parameter. (t, ω) are constructed using the string
ID|r (instead of ID as in the original procedure), where r is the role that the CA is assigning
to the user.

- Recover: takes as input params, G, ID and ω (provided by another user B). It outputs a
public key PK using as input ID|r (instead of ID as in the original Recover procedure), where
r is the role that A chooses to have a secret hanshake with.

C.2 Trapdoor Secrecy

Note that in the RSA-based solution, the trapdoor can be computed by the user as part of AddMember
and does not have to be known to the CA.

In the CDH-based solution, however, the trapdoor t is computed by the CA. As a result, the
CA can impersonate the user or eavesdrop on his communications. Would that be problematic,
AddMember can easily be modified to blind the trapdoor as follows:
AddMember: takes as inputs params, G, t G (only known to the CA), b = gδ, where δ is a secret
only known by the user, and an arbitrary string ID ∈ {0, 1}∗. The CA computes w = gk ∗ b, where
k is a random value in Zp−1, and t′ = k + H(ID|w) ∗ tG. The user then computes his trapdoor
t = t′ + δ (note that (t, ω) is a valid ElGamal signature of ID).

16

	Introduction
	Structure du document
	Déjà 12 ans...!

	Sécurité des réseaux de capteurs
	Introduction
	Réseaux de Capteurs
	Établissement de liens sécurisés
	Le protocole Orangina: bien secouer avant utilisation! mobisys05,STU08
	RoK: Un protocole d'échange de clés pour réseaux de capteurs Securecom07

	Sécurisation des données agrégées
	Agrégation de données chiffrées mobiq05,ToSN08,Esorics07,MASS07
	Intégrité des données agrégées abba,ISIT08

	Virus et Vers Informatiques pour les réseaux de capteurs CCS08
	Conclusions

	Sécurité des systèmes RFID
	Introduction
	Les technologies RFID
	Sécurité des systèmes RFID

	Identification Secrète des Etiquettes
	Les Etiquettes Brouilleuses (Noisy Tags) Cardis06
	Identification Probabiliste RfidSec07

	Conclusions

	Conclusions et Perspectives
	Sécurité des réseaux ad-hoc mobiles (MANET)
	Agrégation de données chiffrées
	Le protocole Orangina
	Identification Privée des étiquettes RFID
	Les Identifiants Cryptographiques
	Authentification Secrète

