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Introduction

The study of two-dimensional languages is a research topic which recently
acquainted some interest in different fields of mathematics and computer
science.
Since 1967, there has been an attempt to extend results and techniques used
on string (one-dimensional) languages to two-dimensional case, defining the
two-dimensional languages or picture languages. Starting from a finite al-
phabet Σ, we call pictures, or two-dimensional words over Σ, the elements
of Σ∗∗ =

⋃
n,m(Σn)m, where we identify an element p = p1 . . . pm of (Σn)m

with the matrix p = (qij) of size m× n. We call picture language over Σ any
subset L ⊆ Σ∗∗.
One of the most interesting and simple class of picture languages, in practice
the two-dimensional counterpart of string regular languages, is that of tiling-
system recognizable languages. This thesis is dedicated to the study of some
theoretical, algebraic and combinatorial properties of such languages.
There are several reasons to determine an analogy between tiling-system
recognizable languages and regular string languages. As a matter of fact,
the various known characterizations of tiling system recognizable languages
are very similar to the classic characterizations of regular languages: they
are the languages recognized by particular finite state automata, the on-
line tesselation automata; or the languages coinciding with certain regular
expressions; or also definable by existential second order formulas.

The characterization that we will use in the thesis is that one proposed by
Giammarresi and Restivo in [33]. It is based on the fact that recognizable
string languages can be characterized in terms of local string languages and
alphabetic projections. The same idea is applied to the two dimensional
languages:

1. it is given the definition of local languages over an alphabet Σ and it is
added the symbol #. A language L ⊆ Σ∗∗ is said local if there exist a
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set Θ of pictures over Σ∪{#} of size 2×2 such that L consists exactly
of pictures p such that all the sub-blocks of size 2 × 2 of p̂ (obtained
surrounding p with #) are in Θ. In this case we say L = L(Θ).

2. A language L ⊆ Σ∗∗ is said tiling-system recognizable if there exists
a local language L′ over Γ and a projection π : Γ −→ Σ such that
π(L′) = L.

The studies have pointed out also some differences between the classes of
regular string languages and tiling system recognizable languages. To begin
with, there are some closure properties in one-dimensional case, which do not
hold in two-dimensional case, for instance the family of regular string lan-
guages is closed under complementation instead the family of tiling system
recognizable languages, that we denote by REC, has not this property. Sub-
sequently, there have been some works ([2, 16, 47]) dedicated to the study of
the class REC ∪ co-REC of recognizable languages or such that their com-
plements are recognizable, and the class UREC of picture languages that
admits an unambiguous tiling system, [2] (that is the languages of pictures
which have a unique counter-image in the local language). In those works it
was proved a strict inclusion among the classes REC ∪ co-REC, REC and
UREC, precisely we have: U-REC ⊂ REC ⊂ REC ∪ co-REC. Moreover,
in [47], Matz describes a technique for showing that a picture language is
non-recognizable; in this paper, he gives a necessary condition satisfied by
tiling recognizable picture languages and he poses the problem of finding a
non-recognizable picture language for which his technique for proving the
non-recognizability fails.

In this thesis we investigate the possibility of using two-dimensional lan-
guages to recognize particular classes of discrete objects, especially poly-
ominoes. The connection could be interesting since polyominoes are simple
and important discrete structures that appear in several problems related to
theoretical computer science and discrete mathematics; moreover the study
of polyominoes has proved a fertile topic of research. We recall that in the
Cartesian plane Z×Z a cell is a unit square; a polyomino is a finite connected
union of cells. Polyominoes are firstly studied by Golomb, [36] and divulged
by Gardner, [29]. They are related to many problems as enumeration ([7]),
tiling ([37, 35]) and discrete tomography.
In order to simplify these problems, several classes of polyominoes have been
defined, using the notions of convexity and directed growth.
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Since polyominoes can be naturally represented by pictures languages, it is
natural to ask if the several classes of polyominoes are tiling recognizable or
not.
Reinhardt in [54] proves that the picture language which represents the class
of the polyominoes is tiling recognizable. Moreover, as we will see later
in details, also the classes of convex, column-convex, parallelogram, and
directed-convex polyominoes can be recognized by tiling system recognizable
languages [24, 25]. Later, in order to study the borderline between recogniz-
ability and non recognizability (by a tiling system) in the theory of picture
language, other authors ([60]) face the problem by studying the family of
L-convex polyominoes and some closed families strictly related both to the
tomographical characterization of L-convexity and to the recognizable family
of all polyominoes. They proved that the family of L-convex polyominoes sat-
isfies the necessary condition given by Matz for the recognizability and they
conjectured that the family of L-convex polyominoes is non-recognizable.

Another field of research in which two-dimensional languages recently took
relevance, is that one of DNA computation. The DNA computing using self
assembling of DNA oligo-nuceotides is a very active domain and the transfer
of concepts from theoretical computer science to nano structure is a challenge
in order to construct biomolecular machines [23, 61]. The works in this field
have shown how information and algorithms can be encoded in biochemical
systems and some efficiency problems deserve interest, for example what
kinds of shapes and patterns can be assembled using a small number of tiles,
or how quickly they can be assembled. Of late, several works pointed out the
connection between particular classes of two-dimensional languages and the
DNA computation. More precisely, it seems possible to construct with DNA
some pictures, or better some two dimensional languages.
In [27], the authors show an algorithm to translate a tiling system in a set
of Wang tiles (Wang tiles are a set of squares in which each edge of each tile
is colored; matching colored edges are aligned to tile the plane). In [61] it is
shown how to construct with DNA an assembling of Wang tiles.
In our thesis, we use these results with the aim to show that the discrete
objects, which can be recognized by tiling systems recognizable languages,
can be constructed with DNA.

Another aspect we have treated in the thesis is the study of the algebraic
structure of local languages. These languages form a lattice with the inclusion

5



relation. To simplify the subject we divided the problem in easier problems:
first we studied the algebraic structure limiting the alphabet of the local
languages to one symbol, then we passed to the alphabet of two symbols and
finally we extended the results to the general case, i.e. to the local languages
over an alphabet of n symbols.

Moreover, we have deepened some classic computability problems which have
been solved for string languages, but have not been yet considered for the
two-dimensional case. As usual in that field, we care about the decidabil-
ity/indecidability of some problems regarding local languages and tiling sys-
tem recognizable languages. For instance, we consider the emptiness prob-
lem. Such a problem asks to establish if a language is empty; this problem
is decidable for regular string languages, but it is not for local languages
(and consequently for tiling system recognizable languages). In the thesis we
show that this problem is even Σ0

1-complete, and we place in the arithmetical
hierarchy the other common problems.

Overview of the thesis

Chapter 1 contains preliminaries on two-dimensional languages, we give a
brief review of the main results and the different characterizations of tiling
system recognizable languages which play the central role in the thesis. In
Chapter 2 we describe the algebraic structure of the families of local lan-
guages. We show that this structure is a lattice with respect to the inclusion
and we investigate the properties of the lattice. In Chapter 3 we deal with
computational problems, studying their decidability. Moreover we give the
position, in the arithmetical hierarchy, of the classical problems on string lan-
guages now turned to two-dimensional languages. In Chapter 4, after some
basic definitions concerning polyominoes, we deal with the recognizability of
several classes of polyominoes by tiling system recognizable languages. In
particular we give the tiling systems for languages representing some classes
of convex polyominoes, as the h-convex or parallelogram. Moreover we in-
vestigate the recognizability of L-convex polyominoes. Finally, Chapter 5 is
devoted to the application of tiling system recognizable languages to DNA
computation. We give the idea about the construction with DNA of some
classes of polyominoes (i.e. the class of parallelogram polyominoes), get
through to the family of REC.
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Chapter 1

Two-dimensional languages

This chapter contains the basic definitions and notations about two-dimensional
languages. In particular we give the definitions of the most important classes
of two-dimensional languages used in our work (that are the local languages
and the tiling system recognizable languages) and their different characteri-
zations (for all the details see [6, 19, 40, 43, 59, 31, 32, 33]).

We recall that for all set X it is defined X∗ =
⋃

n∈ω Xn, where ω is the set
of natural numbers. Given an alphabet (that is a finite non empty set) Σ,
the elements of Σ∗ are words (or strings) over Σ. If u ∈ Σ∗ is a word, then
we say length of u the minimum n such that u ∈ Σn. On Σ∗ it is possible to
define the binary operation concatenation, so that Σ∗ with the concatenation
is a monoid with identity λ, the string of length 0 or empty string. We say
that any subset L ⊆ Σ∗ is a language over Σ.

In [33] the authors extend these notions to the bidimensional case. We apply
the same notations to the rest of the thesis.

Definition 1 Let Σ be a finite alphabet, a two-dimensional string, or pic-
ture, over Σ, is a rectangular array of elements of Σ.

p =

p11 . . . p1n

. .

. .

. .
pm1 . . . pmn

.

The set of all the pictures over Σ is denoted by Σ∗∗. A two-dimensional
language over Σ is a subset of Σ∗∗.
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Definition 2 Let p ∈ Σ∗∗ we denote by p̂ the picture obtained by surround-
ing p with a special symbol ]. (That is p̂ is a word of (Σ ∪ {]})∗∗)

p̂ =

] ] . . . ] ]
] p11 . . . p1n ]
] . ]
] . ]
] . ]
] pm1 . . . pmn ]
] ] . . . ] ]

.

Definition 3 Let p be a picture with m rows and n columns, we say p has
size (m,n). A block (or subpicture) of p is a submatrix of p, formally it is
a picture p′ such that if p′ has size (m′, n′), then m′ ≤ m,n′ ≤ n and there
exist h, k ∈ N such that

k ≤ n− n′, h ≤ m−m′

and
∀ 0 ≤ i ≤ m′, 0 ≤ j ≤ n′ p′(i, j) = p(i + h, j + k).

Let p ∈ Σ∗∗ has size (m,n), h ≤ m and k ≤ n,we denote by Bh,k(p) the set
of all possible blocks of p that have size (h, k).

Example 1 Given Σ = {0, 1}, consider the following picture p over Σ:

p =
0 1 0
0 0 1
1 1 0

;

and

p̂ =

] ] ] ] ]
] 0 1 0 ]
] 0 0 1 ]
] 1 1 0 ]
] ] ] ] ]

.

We give some examples of subpictures of p:

a =
1 0
0 1
1 0

, b =
0 0
1 1

, c =
0 1 0
0 0 1

8



where a ∈ B3,2(p), b ∈ B2,2(p) and c ∈ B2,3(p). But

d =
0 0 0
1 1 1

is not a subpicture of p.

Now we can introduce two partial operations between pictures.

Definition 4 The row concatenation between p and q (p ª q) is a partial
operation, which is defined if p and q have the same number of columns. In
this case we have:

pª q =

p11 . . . p1n

. .
. .

. .
pm1 . . . pmn

q11 . . . q1n′

. .
. .

. .
qm′1 . . . qm′n′

.

Analogously we can define the column concatenation between p and q if they
have the same number of rows (and it is denoted by p: q).

We can extend the definitions of concatenation above introduced, as in the
unidimensional case, to pictures languages.

Definition 5 Let L1, L2 be two-dimensional languages over an alphabet Σ.
The row concatenation between L1 and L2 (denoted by L1 ª L2) is defined
as follows:

L1 ª L2 = {pª q | p ∈ L1 e q ∈ L2}.
Similarly we define the column concatenation between L1 and L2 (denoted
by L1 : L2).

We can also define the transitive closure of the concatenation operations by
iterating the operations (the analogous of the Kleene star operation).
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Definition 6 Let L be a two-dimensional language. The row closure of L
(denoted by L∗ª) is defined as:

L∗ª =
⋃
i≥0

Liª

where L0ª = λ, L1ª = L, Lnª = Lª L(n−1)ª.
Analogously we have the column closure of L (denoted by L∗:).

1.1 Local Languages

Now we introduce a class of picture languages, called the local languages.

Definition 7 Let Σ be a finite alphabet, a two-dimensional language L ⊆
Σ∗∗ is local if there exists a finite set Θ, of blocks of size (2, 2), which we call
a set of tiles, over Σ ∪ {]}, such that

L = {p ∈ Γ∗∗|B2,2(p̂) ⊆ Θ}.

In this case we write L = L(Θ) and we say that Θ is a rapresentation by tiles
of the local language L = L(Θ).

We give two examples of local languages which will be recalled later in the
thesis.

Example 2 Given Σ = {a, b, c}, consider the following set of tiles Θ over Σ:

Θ =





] ]
] a

,
] ]
a a

,
] ]
a ]

,
] a
] b

,

] b
] b

,
] b
] c

,
] c
] ]

,
a a
b b

,

a ]
b ]

,
c ]
] ]

,
b ]
c ]

,
b b
c c

,

c c
] ]





.
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This set Θ is a representation by tiles of the two-dimensional language of
pictures with three rows over Σ, where the first row contains only the symbol
a, the second the symbol b and the third the symbol c. An example of picture
of L(Θ) is:

p =
a a a a
b b b b
c c c c

Example 3 Given Σ = {0, 1} and

Θ =





] ]
] 0

,
] ]
1 0

,
] ]
0 1

,
] ]
0 ]

,

] ]
] 1

,
] ]
1 ]

,
] 0
] 1

,
] 1
] 0

,

] 1
] ]

,
] 0
] ]

,
0 ]
1 ]

,
1 ]
0 ]

,

1 0
0 1

,
0 1
1 0

,
0 1
] ]

,
0 ]
] ]

1 0
] ]

,
1 ]
] ]





.

This set of tiles is a representation by tiles of the two-dimensional language
of the pictures with 0 and 1 arranged as the black and white of a chessboard.
Consider:

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

.

This picture is in L(Θ).

We recall that in the unidimensional case the local string languages are de-
fined in analogous way, through 1× 2 tiles. Informally, a (string) language is
local if it contains strings such that each substring of length 2 is contained
in a certain set of 1 × 2 tiles. The local (string) languages are a subclass
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of regular languages as known for the literature and showed in the following
lemma (Lemma 1), for which we give a simple direct proof.
Notation. Let us use the following notations:

- by writing [a,we mean the set of two tiles
{

] ]
] a

,
] a
] ]

}
;

the meaning of a] is similar;

- by writing ab, we mean the set of two tiles
{

] ]
a b

,
a b
] ]

}
.

Lemma 1 Each string languages is regular.

Proof. Let L = L(Θ). Consider the following nondeterministic finite state
automaton with three states, q, q0, q1 and state transition function δ:

• q is the initial state; add a transition δ(q, i) = qi if and only if [i ⊆ Θ;

• qi is an accepting state if and only if i] ⊆ Θ

• add a transition δ(qi, j) = qj if and only if ij ⊆ Θ.

It is easy to see that the automaton M accepts the language L.

1.2 Tiling System recognizable languages

In this paragraph we introduce a new class of picture languages, the class of
tiling system recognizable languages.

Definition 8 Let p ∈ Σ∗∗ be a picture with size (m,n), Γ a finite alphabet
and π : Σ → Γ a surjective function. The projection of p by π is the picture
p′ ∈ Γ∗∗ such that p′(i, j) = π(p(i, j)), for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Definition 9 Let L ⊆ Σ∗∗ be a two-dimensional language, Γ a finite alpha-
bet. The projection of L by π : Σ → Γ is the language

L′ = {p′ ∈ Γ∗∗|p′ = π(p)∀p ∈ L} ⊆ Γ∗∗.
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Definition 10 A tiling system (briefly TS) is a 4-tuple T = (Σ, Γ, Θ, π),
where Σ, Γ are finite alphabets, Θ is a finite set of tiles over Γ ∪ {]} and
π : Γ → Σ a projection.

Definition 11 We say that a tiling system T recognizes a language L ⊆ Σ∗∗

if there exists a projection π : Γ → Σ and a finite set of tiles Θ over Γ, where
L′ = L(Θ), such that L = π(L′). In this case we write L = L(T ). We say
L(Θ) is an underlying language for L(T ).
A language L ⊆ Σ∗∗ is tiling system ricognizable (briefly TS-ricognizable) if
there exists a tiling system T = (Σ, Γ, Θ, π) such that L = L(T ).

Example 4 We give an example of a tiling system recognizable language.
Consider the set of tiles Θ of Example 3 and the projection π : {0, 1} → {a}
that maps the symbols 0, 1 in a (π(0) = π(1) = a). Then the tiling system
T = 〈{a}, {0, 1}, Θ, π〉 recognizes the language of all square pictures over
{a}.

Theorem 1 Each local language is a tiling system recognizable language.

Proof. Let L(Θ) be a local language. That language is a tiling system
recognizable language, it suffices to consider Σ = Γ, L(Θ) as underlying lan-
guage, the identity as projection: π : Σ → Σ. So we have T = (Σ, Γ, L(Θ), π)
with L(Θ) = L(T ). Thus the thesis follows.

Corollary 1 The family of local languages is contained strictly into the fam-
ily of tiling system recognizable languages.

In order to show the validity of the corollary we give an example of a local
language that is not a tiling system recognizable language.

Example 5 We recall the local language L(Θ) showed in Example 2. Let
Γ = {1}, π : Σ → Γ be the projection given by: π(a) = π(b) = π(c) = 1;
consider T = (Σ, Γ, L(Θ), π) then we have that the language of only three
rows is tiling system recognizable. Observe that L(T ) is not local. To prove
this assertion, let us proceed by contradiction, and suppose that there exists
a set of tiles Θ′ such that L(T ) = L(Θ′). Then we can obtain the word

p =
1 1 1 1
1 1 1 1
1 1 1 1
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which belongs to L(Θ′) and the word

p′ =
1 1 1 1
1 1 1 1

which also belongs to L(Θ′) too: B2,2(p
′) = B2,2(p) ⊆ Θ′. But p′ does not

belong to the language L(T ), which is a contradiction.

Later in the thesis, we will use the following definition and lemma:

Definition 12 Let Θ be a finite set of tiles, we say Θ is irredundant if it
contains tiles which are used at least one time in a word of the language
L(Θ).

Lemma 2 Let Θ1 and Θ2 be two finite set of tiles, if Θ1 ⊆ Θ2 then L(Θ1) ⊆
L(Θ2). If Θ1 and Θ2 are irredundant then also the viceversa is true.

Proof.

(⇒) Let Θ1 ⊆ Θ2, p ∈ L(Θ1) then B2,2(p̂) ⊆ Θ1 ⊆ Θ2 and so p ∈ L(Θ2).

(⇐) Let Θ1, Θ2 be irredundant sets and L(Θ1) ⊆ L(Θ2). If t ∈ Θ1 then
there exists p ∈ L(Θ1), which belongs also to L(Θ2) then t ∈ Θ2.

Now we give an example of an irredundant set of tiles and of a redundant
one.

Example 6 Recall the set Θ of the Example 3, Θ is irredundant. Consider
the set Θ′ obtained adding to Θ the tile:

0 0
0 0

this tile does not match with any other tile in Θ, then it will not used in any
word of L(Θ′). Then Θ′ is redundant. Observe that the two languages L(Θ)
and L(Θ′) coincide.

We recall that in the unidimensional case the family of languages recognized
by finite-state automata coincides with the one defined by means of regu-
lar expressions (Kleene’s theorem), with the one defined in terms of second
order formulas (Buchi’s theorem) and with the one generated by particular
grammars. In the following subsections we show that there is an equivalent
situation for two dimensional case.
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1.3 Logic Formulas and Local Languages

In this section we propose a different characterization for the classes of two-
dimensional languages just introduced; a characterization through logic for-
mulas. For a start we give some basic definitions and we show how to repre-
sent a local language by means of logic formulas.

1.3.1 First Order Sentences

Definition 13 Let Σ be a finite alphabet, and p be a a picture of Σ∗∗ of size
(m,n). We can represent p as follows:

p = (dom(p), S1, S2, (Pa)a∈Σ)

where

• dom(p) = {1, 2, . . . ,m}×{1, 2, . . . , n}, is the set of the positions where
the elements of p lay;

• S1 and S2 are the successor relations for the components of the points
belonging to dom(p), that is:

(i, j)S1(i + 1, j) and (i, j)S2(i, j + 1) for 1 6 i < m, 1 6 j < n;

• Pa = {(i, j)|p(i, j) = a}, a ∈ Σ is the set of the points of dom(p) which
are labeled with a.

We can muddle symbols of predicates with the interpretation relations, so
that the atomic formulas are of the kind xS1y, xS2y, Pa(x), and are nat-
urally interpreted as follows: xS1y, xS2y, x ∈ Pa, respectively with S2, S2

(the successor relations just introduced) and Pa. The formulas are con-
structed starting from the atomic ones and using the Boolean connectives
¬,∧,∨,→,↔ and the quantifiers ∃ and ∀. A sentence is a formula without
free variables.
If ϕ(x1, x2, . . . , xn) is a formula with at maximum x1, x2, . . . , xn free variables,
p ∈ Σ∗∗ is a picture and q2, q2 . . . , qn are elements of dom(p), then we write

(p, q1, . . . , qn) |= ϕ(x1, . . . , xn)

if p satisfies ϕ with the natural interpretation above, where xi is interpreted
by qi. If ϕ is a sentence, we write p |= ϕ. The language L(ϕ) defined by a
sentence ϕ is the set of all pictures p ∈ Σ∗∗ such that p |= ϕ.
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Definition 14 Let L a two-dimensional language, L is first order definible
if there exists a sentence ϕ which contains only first order quantifiers such
that L = L(ϕ).

Now we can describe particular positions (that is particular elements of
dom(p)) in a picture by first order formulas,. A position into the higher
row, x = (1, j) con 1 6 j 6 n, is described by:

ϕt(x) = ¬∃y yS1x.

Analogously we can define the positions into the lower row by

ϕb(x) = ¬∃y xS1y.

ϕr(x) = ¬∃y xS2y

defines the positions into the rightmost column and

ϕl(x) = ¬∃y yS2x

the positions into the leftmost column. Now it is clear the meaning of ϕtr,
ϕtl, ϕbr, ϕbl. For example:

ϕtr = ϕt ∧ ϕr.

We give some examples of first order sentences that define local linguages.

Example 7 Let L(Θ) be the local language given by the set of tiles over the
alphabet Σ = {0, 1}:

Θ =





] ]
1 ]

,
] ]
] 1

,
1 ]
] ]

,
] 1
] ]

,
] ]
] 0

,

] ]
0 ]

,
] 0
] ]

,
0 ]
] ]

,
] ]
1 0

,
] ]
0 1

,

0 1
] ]

,
1 0
] ]

,
0 0
] ]

,
1 1
] ]

,
] ]
0 0

,

] ]
1 1





.
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The pictures p ∈ L(Θ), will be of the kind:

] ] ] ] ] ] ] ]
] 1 1 0 0 1 0 ]
] ] ] ] ] ] ] ]

.

It is easy to see that we have exactly the language of only one row

L(Θ) = {p of only one row and p ∈ {0, 1}∗}.

The first order sentence ϕ = ∀xϕt(x) defines L(Θ). By this sentence we say
that all the position in each picture that satisfies ϕ, are that ones of the first
row, consequently there is only one row, thus L(Θ) is:

L(Θ) = L(ϕ) = {p ∈ Σ∗∗|p |= ϕ}.

Analogously we could use ϕb instead of ϕt. Moreover we can use ϕr or ϕl to
mean the languages of only one column.

Remark 1 The language of the square pictures over Σ of only one symbol is
not local, moreover we can not describe this language by a first order sentence;
see [33].

1.3.2 Logic Formulas for Local Languages

In this subsection we will determine first order sentences in order to define
local languages. The same result is obtained in [32], using a different ar-
gumentation. Moreover we will show that it will be sufficient to use only
universal quantifiers.
Consider

B(u, v, x, y) := xS1u ∧ yS1v ∧ vS2u ∧ yS2x.

Intuitively four positions into a picture satisfy B(u, v, x, y) if and only if they
constitute a block of size (2, 2).
Formally:

Theorem 2 Let p ∈ Σ∗∗, then (p, q1, q2, q3, q4) |= B(u, v, x, y) if and only if
(q1, q2, q3, q4) constitute a tile.
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Proof. (p, q1, q2, q3, q4) satisfies B(u, v, x, y) if and only if

q3S1q1 ∧ q4S1q2 ∧ q2S2q1 ∧ q4S2q3;

this is true if and only if (q1, q2, q3, q4) constitutes a tile:

q1 q2

q3 q4

Theorem 3 Let Θ be a finite set of tiles, and t a tile:

t =
a b
c d

.

Consider the formula:

ta,b,c,d(u, v, x, y) := Pa(u) ∧ Pb(v) ∧ Pc(x) ∧ Pd(y),

and the sentence:

ϕ = ∀u∀v∀x∀y[B(u, v, x, y) →
∨
t∈Θ

ta,b,c,d(u, v, x, y)].

Then L(Θ) = L(ϕ).

Proof. p ∈ L(Θ) if and only if all tiles which belong to p̂ are in Θ, that
is if and only if all tiles in p̂ satisfy the sentence ϕ, if and only if p |= ϕ this
holds if and only if p ∈ L(ϕ).

Example 8 We show the first order sentence which defines the language
L(Θ) over Σ = {0, 1}, of square words which have 1 in the main diagonal
and 0 in the other positions.
First of all the set of tiles Θ for the language L(Θ) is the following:

Θ =





] ]
] 1

,
] ]
1 0

,
] ]
0 0

,
] ]
0 ]

,

] 1
] 0

,
] 0
] 0

,
] 0
] ]

,
0 0
] ]

,

0 1
] ]

,
1 ]
] ]

,
0 ]
0 ]

,
0 ]
1 ]

,

1 0
0 1

,
0 0
1 0

,
0 1
0 0

,
0 0
0 0




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Then the first order sentence for L(Θ) is:

∀u∀v∀x∀y[B(u, v, x, y) → (t],],],1(u, v, x, y) ∨ t],],1,0(u, v, x, y)

∨t],],0,0(u, v, x, y) ∨ t],],0,](u, v, x, y) ∨ t],1,],0(u, v, x, y)

∨t],0,],0(u, v, x, y) ∨ t],0,],](u, v, x, y) ∨ t0,0,],](u, v, x, y)

∨t0,1,],](u, v, x, y) ∨ t1,],],](u, v, x, y) ∨ t0,],0,](u, v, x, y)

∨t0,],1,](u, v, x, y) ∨ t1,0,1,0(u, v, x, y) ∨ t0,0,1,0(u, v, x, y)

∨t0,1,0,0(u, v, x, y) ∨ t0,0,0,0(u, v, x, y)]

We found a simply way to define all the local languages: starting from a
set of tiles, we found a first order sentence of only four universal quantifiers
which allows us to axiomatize the local language generated.

1.3.3 Existential Second Order Formulas

In the previous subsection we observed that is possible identify a picture
p ∈ Σ∗∗ with the structure

p = (dom(p), S1, S2, (Pa)a∈Σ).

Moreover the properties of the two-dimensional pictures can be described by
first order logic formulas and existential second order formulas using first
order variables x, y, z, x1, x2, . . ., for the elements of dom(p), that is for po-
sitions, and second order variables X,Y, Z,X1, X2, . . ., for sets of positions.
In other words, variables are interpreted as subsets of dom(p).

Definition 15 A two-dimensional languages L is second order definable, if
there exists a second order sentence ϕ, such that L = L(ϕ).

Definition 16 A two-dimensional languages L is existential second order
definable, if there exists a sentence of the kind:

ϕ = ∃X1∃X2 . . . ∃Xnψ(X1X2 . . . Xn)

such that L = L(ϕ), where ψ contains only first order quantifiers.

Example 9 Now we verify that the language of square words over a given
alphabet is existential second order definable. It suffices to describe a set of
positions which (1) contains the left-upper corner; (2) is closed for diagonal
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successor (that is, we can move from the position (i, j) to the position (i +
1, j + 1)); and (3) we don’t reach the lower border or the righter border,
except the right-lower corner. An existential second order which defines the
three conditions is:

∃X(∃x(ϕtl(x) ∧X(x))∧
∀x∀y∀z((X(x) ∧ xS1y ∧ yS2z) → X(z))∧

∀x((ϕb(x) ∨ ϕr(x)) → (¬X(x) ∨ ϕbr(x)).

1.4 Regular Expressions

The basic operations between two-dimensional words that we have defined
in the first paragraph can be used to obtain larger family of two-dimensional
languages starting from elementary languages. Using those operations we
are then able to give a new characterization for local languages and tiling
system recognizable languages.

Definition 17 Given an alphabet Σ, we say that the empty language ∅, and
each language { a }, where a ∈ Σ, are atomic languages over Σ.

Remark 2 We denote by R the following set of operations:

R = {ª,:, ∗ª, ∗:,∪,∩,C }.

The elements of R are called regular operations.

Definition 18 A language over Σ is regular if it is obtained from atomic
languages by applying a finite sequences of regular operations.

Informally, a regular expression is a formula which specifies how a certain
language is obtained from atomic languages by regular operations.

Definition 19 A regular expression RE over an alphabet Σ is recursively
defined as:

• ∅ and all symbols a ∈ Σ are regular expressions;

• if α, β are regular expressions, then
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– (α) ∪ (β)

– (α) ∩ (β)

– C(α)

– (α)ª (β)

– (α): (β)

– (α)∗ª

– (α)∗:

are regular expressions.

Each regular expression over Σ denotes a two-dimensional language. Using
standard notations:

• ∅ denotes the empty language,

• a denotes the language with the only word {a},
• (α) ∪ (β) denotes the union of the languages which are denoted by α

and β,

• (α) ∪ (β) denotes their intersection,

• (α) ª (β) and (α) : (β) denote their row and column concatenation
respectively,

• (α)∗ª, (α∗:) denote the row and column closure of the language denoted
by α respectively,

• finally (α)C denotes its complement.

Definition 20 A two-dimensional language L ⊆ Σ∗∗ is regular if it can be
represented by a regular expression over Σ.

Example 10 Consider Σ = {0, 1}, the regular expression:

E = (((0ª 1)∗ª): ((1ª 0)∗ª))∗:

denotes the language of the chess words with an odd number of rows. For
example the following word belong sto E:

0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0

.
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1.5 On-line Tesselation Automata

In literature there have been depicted different kinds of automata to rec-
ognize two-dimensional languages [43, 41, 42]. In this section we describe
a particular model of cellular automata introduced in [6] which recognizes
the tiling system recognizable languages. Informally an on-line tesselation
automata is a finite sequence of cells, or better, an array where a “wave of
transition” passes in diagonal over the array. Each cell changes its state de-
pending on the state of the two neighbor cells, the upper and the leftmost,
respectively. Formally:

Definition 21 A two-dimensional non deterministic (deterministic) on-line
tesselation automata denoted by 2OTA (2DOTA), is defined by A = (Σ, Q, I, F, δ)
where:

• Σ is the alphabet in input;

• Q is a finite set of states;

• I ⊆ Q (I = {i} ⊆ Q) is the set of initial states;

• F ⊆ Q is the set of final states (or accepting states);

• δ : Q×Q× Σ → 2Q (δ : Q×Q× Σ → Q) is the transition function

(see also [33]).

The automata A runs over a picture p ∈ Σ∗∗ associating a state (in Q) to
each position (i, j) in p. This state is given by the transition function δ and
it depends to the other states already associated with the positions (i− 1, j)
and (i, j − 1) and to the symbol p(i, j).
At the zero step, an initial state q0 is associated with each position in the
first row and column of p̂. The computation consists of l1(p)+ l2(p)−1 steps
(where l1(p), l2(p) mean the number of rows and column of p respectively).
At the following step the automata reads p(1, 1) and the state δ(q0, q0, p(1, 1))
is associated with the position (1, 1). At the second step the states are simul-
taneously associated to the positions (1, 2) e (2, 1), and so on, the automata
passes to the next diagonal. At the k step, the states are simultaneously
associated with the position (i, j) such that i + j − 1 = k.
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Definition 22 A 2OTA A recognizes a picture p ∈ Σ∗∗ if there exists a
computation of A over p such that the state associated with the position
(l1(p), l2(p)) is a final state.

We notice that a 2OTA is reduced to a standard automata over strings when
we restrict the computation to pictures of one row.
To summarize the results depicted in the previous subsections we have the
following theorem of characterization:

Theorem 4 For a language L the following are equivalent:

1. L is tiling system recognizable;

2. L can be obtained from atomic languages by applying a finite number of
times the regular operations (excluding the complementation) and the
projection;

3. L = L(ϕ) for an existential second order formula;

4. L is recognized by a 2OTA.

Proof. See [33, Theorem 8.7].

1.5.1 Grammars

In literature different systems for generating pictures using grammars have
been presented ([46, 48, 49]), with the attempt of generalize the grammars
of the unidimensional case for formal string languages. Among the most
recently defined grammars, we recall the tile rewriting grammar of ([21]).
Informally, in tile rewriting grammars, a rewriting rule changes a homoge-
neous rectangular picture into an isometric one, tiled with specified tiles.
Derivation and language generation with tiling rewriting grammar rules are
similar to context-free grammars. Anyway there is not a grammar that ex-
actly generalizes the “unidimensional” context free grammars. The model,
proposed by Crespi Reghizzi et al., has greater generative capacity than the
tiling systems, at yet any models of grammars have the same generative power
as tiling systems. Thus, differently to regular languages in one dimension,
there is not a characterization for tiling system recognizable languages.
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Chapter 2

Local languages and algebraic
structures

In this chapter we study the algebraic structure of local languages and tiling
system recognizable languages. We observe that it is possible to define,
over these two families of languages an order relation (and consequently the
two operations meet and join) so that we have a lattice of languages. Our
principal purpose is to study the main features of this lattice in particular
the distributivity, the modularity etc. The problem appears rather complex,
so we start to study the simplest case, i.e. we consider the lattice of the
local languages defined over an alphabet of only one symbol (Loc1). Easily
we observe that in this case the lattice is distributive. Then we consider
the lattice of local languages defined over an alphabet of two symbols (Loc2)
and we extend the results to the languages over alphabets of more than two
symbols. We also consider the characterization of atoms and co-atoms of
the lattice and the join-irreducible elements. Finally we restrict the research
to the unidimensional case, i.e. we examine the lattice of the horizontal
dominoes which is a proper sub-lattice of Loc2. In this case we give a complete
characterization of atoms and co-atoms.

Notation We will use two double brackets ‖p ‖ to denote the set of tiles we
can extract from the picture p within brackets (of course, surrounded by ]).
For instance if for a, b, c, d ∈ Σ we write

∥∥∥∥
a b
c b

∥∥∥∥
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then the corresponding set of tiles is

Θ =





] ]
] a

,
] ]
b ]

,
b ]
] ]

,
] c
] ]

,
] a
] c

,

b ]
b ]

,
] ]
a b

,
c b
] ]

,
a b
c b





.

We also often use the notation L(p) = L(‖p ‖).

Example 11 An example of local language is given by the set of “chessboard”
pictures (i.e. pictures with alternating 0’s and 1’s in each row and column)
over the alphabet Σ = {0, 1}, with 0 on each corner, henceforth named Ls.
Consider the following set of tiles Θs:

Θs =

∥∥∥∥∥∥

0 1 0
1 0 1
0 1 0

∥∥∥∥∥∥
.

It is easy to see that Ls = L(Θs).

We now define a lattice over the set of local languages on an alphabet of
fixed size. Therefore we also need to recall some definitions and theorems
from lattice theory. For more details on lattice theory we refer the reader to
[1] and [57].

Definition 23 A lattice is a partially ordered set L = 〈L,≤〉 such that every
pair of elements x, y ∈ P has greatest lower bound (or inf, or meet) denoted
by x ∧ y, and lowest upper bound (or sup, or join) denoted by x ∨ y.

It is well known that a lattice on a universe L can be equivalently given
either by specifying its partial order relation ≤, or by specifying its binary
operations ∧ and ∨. Indeed, for every pair of elements a, b ∈ L, one has

a ≤ b ⇔ a = a ∧ b ⇔ b = a ∨ b.

It is therefore just a matter of convenience whether one sees a lattice as an
ordered structure, or an algebraic structure, or both.
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Definition 24 In a lattice L = 〈L,∧,∨〉, an element b ∈ L is meet-irreducible
if b = x∧ y implies b = x or b = y for all x, y ∈ L. Dually, an element b ∈ L
is join-irreducible if b = x ∨ y implies b = x or b = y for all x, y ∈ L.

Definition 25 In a lattice L = 〈L,≤〉, an element b ∈ L is a (minimal)
cover of a, if a < b and there is no c such that a < c < b. We write a ≺ b to
denote that b is a cover of a. If L has least element 0, then an element a ∈ L
is said to be an atom if 0 ≺ a. Dually, in a lattice with greatest element 1,
a coatom is an element a such that a ≺ 1.

Definition 26 Let L = 〈L,∧,∨,≤〉 be a lattice. Then

1. L is distributive if for all a, b, c ∈ L, it satisfies:

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c);

2. L is modular if for all a, b, c ∈ L it satisfies:

a ≤ c ⇒ a ∨ (b ∧ c) = (a ∨ b) ∧ c;

3. L is semimodular if for all a, b ∈ L, it satisfies:

a ∧ b ≺ a ⇒ b ≺ a ∨ b.

Theorem 5 Let L be a lattice. Then

• L is nondistributive if and only if L has a sublattice isomorphic to N5

or M5 (see Figure 2.1);

• L is nonmodular if and only if L has a sublattice isomorphic to N5.

It is known that a modular lattice is also semimodular, see e.g. [1]. Thus
the following strict implications hold:

distributive ⇒ modular ⇒ semimodular.

Definition 27 A partially ordered set 〈P,≤〉 satisfies the Jordan-Dedekind
condition if it has only finite chains and, for all pair of elements x, y ∈ P ,
such that x ≤ y, all maximal chains between x and y have the same length.
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Figure 2.1: The two nondistributive lattices N5 and M5, rispettivamente.

The following result is almost immediate, see for instance [1, Proposition 2.1].

Theorem 6 Let 〈P,≤〉 be a partially ordered set with only finite chains and
with least element 0. P satisfies the Jordan-Dedekind condition if and only
if one can define a function (called the rank function) ρ : P → N (mapping
each element x ∈ P into the rank of x), such that

- ρ(0) = 0;

- if y covers x then ρ(y) = ρ(x) + 1.

It is known that a semimodular lattice without infinite chains satisfies the
Jordan-Dedekind condition, see for instance [1, Lemma 2.26]. Thus, if a lat-
tice without infinite chains is semimodular then all maximal chains between
the same two elements have the same length.

2.1 The lattice Locn

Without loss of generality, for every n ≥ 1, we may fix the alphabet Σ =
{0, 1, ..., n− 1} and confine our investigation to the poset Loc∗n = 〈Loc∗n,⊆〉
of local languages on Σ.

Definition 28 If Θ is a set of tiles such that for each t ∈ Θ there exists a
picture p ∈ L(Θ) such that t ∈ B2,2(p̂), then we say that Θ is an irredundant
set of tiles. A set of tiles is redundant if it is not irredundant.

For instance ‖p ‖ is irredundant, for every picture p.
Unless otherwise specified, from this moment on when we are given a set
of tiles Θ we will always assume that Θ is irredundant. The problem of
recognizing whether a set of tiles is irredundant is in general undecidable,
[?].
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Example 12 The following set Θ of tiles is redundant, since the last tile in
the list can not be combined with any other tile in Θ.

Θ =





] ]
] 0

,
] ]
0 ]

,
1 ]
] ]

,
] 1
] ]

,
] 0
] 1

,

0 ]
1 ]

,
] ]
0 0

,
1 1
] ]

,
0 0
1 1

,
1 0
0 1





.

However the set Θ \
{

1 0
0 1

}
is irredundant.

Theorem 7 For every n ≥ 1, Loc∗n = 〈Loc∗n,⊆〉 is a finite lattice with
operations of meet and join given by, respectively,

L(Θ1) ∧ L(Θ2) = L(Θ1) ∩ L(Θ2)(= L(Θ1 ∩Θ2))

L(Θ1) ∨ L(Θ2) = L(Θ1 ∪Θ2).

(We remark once more that Θ1 and Θ2 are assumed to be irredundant.)

Proof. It is a simple calculation to check that

L(Θ1) ∩ L(Θ2) = L(Θ1 ∩Θ2).

To show the statement about ∨, first notice that L(Θ1∪Θ2) is an upper bound
of L(Θ1) and L(Θ2). On the other hand, suppose that L(Θ1), L(Θ2) ⊆ L(Θ),
and let t ∈ Θ1 ∪ Θ2. Whether t ∈ Θ1 or t ∈ Θ2, by irredundancy, we have
that t is a 2× 2 subtile of a picture v in L(Θ1) or in L(Θ2); hence v ∈ L(Θ),
and thus t ∈ Θ. This shows that Θ1 ∪Θ2 ⊆ Θ, hence L(Θ1 ∪Θ2) ⊆ L(Θ).

Remark 3 If Θ1, Θ2 are sets of tiles then L(Θ1) ∨ L(Θ2) ⊇ L(Θ1) ∪ L(Θ2),
but equality need not hold, as shown by the following counterexample. Con-
sider the following two sets of tiles:

Θ1 =
∥∥ 0 1

∥∥ , Θ2 =
∥∥ 1 0

∥∥ .

It is clear that the picture p = 0 1 0 belongs to L(Θ1 ∪ Θ2) but not to
L(Θ1) ∪ L(Θ2).
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Remark 4 In the rest of the paper we will only consider sets of tiles which

do not contain the tile
] ]
] ]

, hence restricting ourselves to local languages

that do not contain the empty picture . We use the symbol ΘTot to denote

the set of all possible tiles over {0, 1}, minus the tile
] ]
] ]

. Notice that

ΘTot =
{ ‖p‖ : p ∈ {0, 1} − { }}

. Let Locn denote the local languages
on Σ = {0, . . . , n − 1} that do not contain the empty picture, i.e. Locn =
L(ΘTot). Clearly Locn = 〈Locn,∧,∨,⊆〉 is a sublattice of Loc∗n. Since we
are interested in the lattice theoretic structure of local languages, restriction
to Locn amounts to no loss of generality, by the following theorem:

Theorem 8 Loc∗n ' Locn×2, where 2 is the two-element bounded lattice,
and the symbol ' denotes lattice theoretic isomorphism.

Finally we point out that, for any m < n, the lattice Locm can be viewed
(under inclusion) as an ideal of Locn.

2.1.1 The simplest case: the lattice Loc1

We exemplify the notions so far introduced, by facing the simple case of the
lattice Loc1 relative to the class of local languages restricted to the alphabet
Σ of only one symbol, say Σ = {0}.
The local languages we can construct over the alphabet {0} are only six,
including the empty language: See Figure 2.2. More precisely, the five
nonempty languages are:

• L0 = L( ‖0‖ ): the language constituted by the only 1× 1 picture 0 ;

• Lr0 = L(
∥∥ 0 0

∥∥ ): the language constituted by the pictures of only
one row of 0’s;

• Lc0 = L(

∥∥∥∥
0
0

∥∥∥∥ ): the language constituted by the pictures of only one

column of 0’s;

• Lr0 ∨ Lc0the language that is the join of the two previous languages,
i.e. the language consisting only of rows or columns of 0’s;

• 0∗∗: the language constituted by all possible pictures of 0’s.
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0
∗∗

∅

L0

Lr0Lc0

Lc0 ∨ Lr0

Figure 2.2: The lattice Loc1.

We observe that the lattice Loc1 is isomorphic to the free distributive lattice
with 0, 1 on two generators.

2.1.2 The general case

We have seen that Loc1 is distributive. The situation changes radically, if one
considers lattices of local languages on alphabets with at least two symbols.

Theorem 9 If n ≥ 2 then Locn contains the following sublattices:

(i) a sublattice isomorphic to N5;

(ii) a sublattice isomorphic to M5.

Hence Locn is not semimodular,

Proof. The proof is for Loc2, and can be extended to Locn since Loc2 is a
sublattice of Locn.

(i) Consider the following languages:

L0 = L(‖0‖) =
{

0
}

, L01 =
{

0 1
}

, L10 =
{

1 0
}

.

It is easy to see that L01 and L10 are atoms. Obviously L01 is a cover of
∅ = L01 ∧ L10 but L01 ∨ L10 is not a cover of L10. For example the language
L0 ∨L10 is such that L10 ⊂ L0 ∨L10 ⊂ L01 ∨L10, where inclusions are strict.
See also Figure 2.3 (a).
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∅

L01

L01 ∨ L10

L0 ∨ L10

L10

∅

LΘ4

LΘ1
LΘ2

LΘ3

Figure 2.3: (a) Sublattice isomorphic to N5; (b) Sublattice isomorphic to
M5.

(ii) Consider the sets of tiles:

Θ = ΘTot\
{

0 0
0 0

}
; Θ1 =

∥∥∥∥∥∥

1 0 0 0
0 0 0 1
0 1 0 1

∥∥∥∥∥∥
; Θ2 =

∥∥∥∥∥∥

0 0 0 1
1 0 0 0
1 0 1 0

∥∥∥∥∥∥
;

and the local language L(Θ) ∧ (L(Θ1) ∨ L(Θ2)) = L(Θ3).
Direct inspection shows:

• L(Θ1) ∧ L(Θ2) = L(Θ1) ∧ L(Θ3) = L(Θ2) ∧ L(Θ3) = ∅.
• L(Θ1) ∨ L(Θ2) = L(Θ1) ∨ L(Θ3) = L(Θ2) ∨ L(Θ3).

Let Θ4 be such that L(Θ4) = L(Θ1) ∨ L(Θ2). Then Loc2 contains the sub-
lattice depicted in Figure 2.3 (b).

Notice that the embeddings of N5 and M5 given above, preserve 0 as well.

2.1.3 Meet-irreducible elements and coatoms in Locn

We now consider the set of meet-irreducible elements of the lattice Locn. In
Loc1 all elements except for L0 are meet-irreducible, as can be easily seen
from Figure 2.2. So in the rest of this section we confine ourselves to the
case n ≥ 2.

Notation. Extending the definition given in Remark 4, let

Θn
Tot =

{ ‖p‖ : p ∈ {0, . . . , n− 1}∗∗ − { }}
.

We will usually write ΘTot instead of Θn
Tot, when the alphabet is clearly

understood from the context.

We have:
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Theorem 10 Let n ≥ 2 and L = L(Θ) ∈ Locn. The following are equiva-
lent:

(1) L is a coatom;

(2) Θ = ΘTot \ { t }, with t ∈ ΘTot;

(3) L is meet-irreducible.

Proof. Let us start proving that (1) and (2) are equivalent. If Θ =
ΘTot \ { t } then clearly Θ is irredundant, and L(Θ) is a coatom. The converse
is trivial.

Clearly, (1) implies (3). So we only have to prove that (3) implies (1).
Suppose now that L = L(Θ) with at least two different tiles t1, t2 ∈ ΘTot\Θ.
Let us prove the following useful statement:

Claim There are two pictures u(t1) and u(t2) such that t1 ∈ ‖u(t1) ‖, t2 ∈
‖u(t2) ‖, and:

‖u(t1) ‖ ∩ ‖u(t2) ‖ = ∅.
Once Claim has been proved we have that:

L ⊂ L(Θ) ∨ L(u(t1)) = L (Θ ∪ ‖u(t1) ‖) ⊂ L (ΘTot) ,

L ⊂ L(Θ) ∨ L(u(t2)) = L (Θ ∪ ‖u(t2) ‖) ⊂ L (ΘTot) .

Notice that all the inclusions are strict. Moreover, since ‖u(t1) ‖ and ‖u(t2) ‖
are disjoint sets, it follows that:

(L(Θ) ∨ L (u(t1)) ∧ ( L(Θ) ∨ L (u(t2)) ) = L(Θ),

which concludes our proof, since this shows that L(Θ) is meet-reducible.

The proof of Claim is indeed a mere (long) exercise, based on considering all
possible cases of the two tiles t1 and t2. Let d1 (resp. d2) be the number of
occurrences of the symbol ] in t1 (resp. t2). Without loss of generality we
examine the six cases where d1 ≥ d2:

1. d1 = 0, d2 = 0;

2. d1 = 2, d2 = 0, 2;

3. d1 = 3, d2 = 0, 2, 3.
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Since the study of each of these cases is quite simple, we only consider the
first one of them, which is also the most complex, leaving the others to the
reader.

Let us assume that t1 =
x y
v z

, and t2 =
x′ y′

v′ z′
with x, x′, y, y′, v, v′, z, z′ ∈

{0, . . . , n− 1}. We set

u(t1) =

] ] ] ]
] x y ]
] v z ]
] ] ] ]

,

while to determine a suitable u(t2) we must study separately the following
cases:

(a) x 6= x′, y 6= y′, z 6= z′, and v 6= v′. In this case we easily set:

u(t2) =

] ] ] ]
] x′ y′ ]
] v′ z′ ]
] ] ] ]

.

(b) x = x′, y 6= y′, z 6= z′, and v 6= v′ (and similarly we can treat all the
cases where t1 and t2 have only one common element). In this case we

have that t2 =
x y
v z

, where

w =

{
1 if w = 0,

0 if w 6= 0.

Here we can set:

u(t2) =

] ] ] ]
] x y ]
] x y ]
] v z ]
] ] ] ]

.

The reader can check that ‖u(t1) ‖ and ‖u(t2) ‖ have no tiles in common.
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(c) x = x′, y = y′, z 6= z′, and v 6= v′ (and similarly we can treat all the

cases where t1 and t2 have an equal row or column), i.e. t2 =
x y
v z

.

Setting

u(t2) =

] ] ] ]
] x y ]
] x y ]
] v z ]
] ] ] ]

,

we can easily see that ‖u(t1) ‖ and ‖u(t2) ‖ have no tiles in common.

(d) x = x′, z = z′, y 6= y′, and v 6= v′ (and similarly y = y′, v = v′, x 6= x′,

and z 6= z′), i.e. t2 =
x y
v z

. Setting

u(t2) =

] ] ] ]
] x y ]
] x y ]
] v z ]
] v z ]
] ] ] ]

,

we see that ‖u(t1) ‖ and ‖u(t2) ‖ have no tiles in common.

(e) x = x′, y = y′, v = v′, and z 6= z′ (and similarly we can treat all
the cases where t1 and t2 differ in only one element). Here we have

t2 =
x y
v z

. We set:

u(t2) =

] ] ] ] ] ]
] x y y y ]
] x x y z ]
] v v z z ]
] ] ] ] ] ]

.

The picture u(t2) is made of 20 tiles; it is possible to check that they
are all different from the 9 tiles of u(t1).

34



2.1.4 Join-irreducible elements

We now turn our attention to join-irreducible elements of Locn.
Let v be a picture over Σ = {0, 1, . . . , n−1}. We can consider the set of tiles
‖v‖ and the respective local language L(v).

Theorem 11 A local language L = L(Θ) ∈ Locn is join-irreducible if and
only if there exists v ∈ Σ∗∗ such that L = L(v) and there are no pictures
u1, . . . , un such that

• the ‖ui ‖ are pairwise different;

• ‖u1 ‖ ∪ . . . ∪ ‖un ‖ = ‖v ‖.
Proof. (=⇒) Let L be join-irreducible. Suppose that such a v does not
exist, and let L = L(Θ) for some irredundant Θ. Then for each tile in Θ
there is a picture that contains it. Then we can write: Θ = ‖u1 ‖∪· · ·∪‖un ‖
and we obtain L(Θ) = L(u1)∨· · ·∨L(un). Thus L(Θ) is not join-irreducible.

The right-to-left implication follows easily from the definition of a join-
irreducible element.

Let us remark that it is not sufficient to require that L = L(v) to state that
L is join-irreducible, as shown in the following example.

Example 13 (In Loc2) Consider the sets of tiles:

Θ =

∥∥∥∥
0 1 0 0 0
0 0 0 1 0

∥∥∥∥ ; Θ1 =

∥∥∥∥
0 1 0
0 0 0

∥∥∥∥ ; Θ2 =

∥∥∥∥
0 0 0
0 1 0

∥∥∥∥ .

We have: Θ = Θ1 ∪ Θ2 and then L(Θ) = L(Θ1) ∨ L(Θ2) so L(Θ) is not
join-irreducible. According to Theorem 11, the following pictures witness
join-reducibility of L(Θ):

u1 =
0 1 0
0 0 0

; u2 =
0 0 0
0 1 0

.

As a neat consequence of Theorem 11 we have that if L ∈ Locn is an atom,
then there exists v ∈ Σ∗∗ such that L = L(v). On the other hand, if L is
a coatom then L is not join-irreducible: in fact we can not write a coatom
L(Θ) as L(v), since in Θ there are at least 7 “corner” tiles, whereas in every
picture there are exactly 4 “corner” tiles.
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2.2 Some undecidable problems

The previous section shows that the meet-irreducible elements (equivalently,
the coatoms) of Locn have an easy characterization, from which one can
immediately deduce that the property of being meet-irreducible (or equiva-
lently, a coatom) is decidable.

Corollary 2 Given n and a set Θ of tiles on {0, . . . , n− 1}, one can decide
whether L(Θ) is meet-irreducible (equivalently, a coatom).

Proof. Trivial, by Theorem 10.

Quite surprisingly we show in this section that this is true neither of the
join-irreducible elements, nor of the atoms: in fact that the property of being
join-irreducible, and the property of being an atom are undecidable.
We deal here with sets of tiles that need not be irredundant. In [24], several
undecidable problems concerning local languages are studied. For instance,
we recall that the following problems are undecidable:

• the equality problem: “Is L(Θ) = L(Θ′)?”, where Θ, Θ′ are given sets
of tiles. (Once again, we remark that here Θ and Θ′ are not supposed
to be irredundant to begin with, otherwise the problem is decidable,
since in the case of irredundant sets of tiles we have that L(Θ) = L(Θ′)
if and only if Θ = Θ′);

• the irredundancy problem: “Is Θ irredundant?” where Θ is a given set
of tiles;

• the infinity problem: “Is L(Θ) infinite?”, where Θ is a given set of tiles.

We are now going to point out some additional undecidable problems which
relate more directly to the lattice theoretic structure of local languages.

Theorem 12 Suppose that Θ, Θ′ are given sets of tiles on a common alpha-
bet, say, of n symbols. The problems of ascertaining, given Θ, Θ′ and m ≥ n
whether:

1. L(Θ) is an atom in Locm,

2. L(Θ) is a cover of L(Θ′) in Locm,
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3. L(Θ) is join-irreducible in Locm,

are undecidable.

Proof. We will show below that for every Turing machine M one can
effectively find a set of tiles ΘM on some alphabet, such that

1. L(M) 6= ∅ if and only if L(ΘM) 6= ∅;
2. L(ΘM) is either empty or a singleton.

This is enough to show the claim. Indeed, consider any atom L(Θ0) over the
alphabet {0}. Without loss of generality we may assume that the character
0 does not appear in any tile of ΘM . Then

1. L(M) 6= ∅ if and only if L(ΘM) is an atom;

2. L(M) 6= ∅ if and only if L(Θ0 ∪ΘM) is a cover of L(Θ0);

3. L(M) 6= ∅ if and only if L(Θ0 ∪ΘM) is join-reducible.

Therefore the claim follows by observing that the problem “L(M) 6= ∅” is
undecidable, see for instance [45, Theorem 6.3.1(d)].
It is now left to show how we can build ΘM starting from M . Let us consider
deterministic Turing machines working on an alphabet Σ. Our model of
Turing machines follows closely that of [45], with some minor notational
variants. Instructions are quadruples qaXr, where q, r are states, a ∈ Σ ∪
{B}, and X ∈ Σ∪{B, L,R}, with the standard meaning. M accepts a string
u ∈ Σ∗ with a unique halting state h. The initial state is denoted by q0. We
may assume that q0 6= h. As in [45] we also assume that the tape used by
the machine has a leftmost cell. A configuration is a quadruple (v, q, a, w)
which represents that the machine is in state q; a is the content of the cell
currently scanned; v ∈ (Σ ∪ {B})∗ is the content of the tape to the left of
this cell; w ∈ (Σ ∪ {B})∗ is the content of the tape to the right of this cell,
with the understanding that all remaining cells contains B. A representative
configuration (v, q, a, w) is one in which w does not end with B. We often
write below (v, q, a, w) as vqaw; if a = B, and w ∈ {B}∗, then we may simply
write vq.
Following [33, Theorem 9.1], a halting computation of a Turing machine M
can be coded by a two-dimensional picture in the following way. Suppose that
a halting computation consists of a sequence of configurations c1, c2, . . . , cn,
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where c1 = q0u and cn = vhw. We can imagine that all ci’s have the same
length: if not, let

l = max{li : 1 ≤ i ≤ n}
where li is the length of ci, and let

ĉi = ciB
l−li .

Thus the ĉi’s have the same length. Further, let Σ = {a : a ∈ Σ} be a copy
of the alphabet Σ (with Σ ∩ Σ = ∅), let B be a copy of B, and for a word
v ∈ (Σ ∪ {B})∗, let v be the corresponding copy of u over the alphabet Σ.
For every i, if ĉi = vqw then let γi = vqw. The computation can thus be
coded by p, where

p =

γ1

...
γn

.

p can be viewed as a picture of the local language given by a suitable set
of tiles Θ(M), whose tiles mirror the instructions of M used to bring the
machine from one configuration to the next one. For instance the instruction
paLq is coded, among others, by the tiles

s p
q s

,
p a
s a

where s ∈ Σ ∪ {B}. The details of the construction of Θ(M) can be found
in [?]. One has:

L(M) 6= ∅ ⇔ L(Θ(M)) 6= ∅.
We now show how, given a Turing machine M , one can effectively construct
the desired Turing machine M̃ . First of all note that starting from M one can
effectively find a Turing machine M ′ (with, say, initial state q′0 and halting
state h′) on the same alphabet, such that L(M ′) ⊆ {e} (where e denotes the
empty string) and

L(M) 6= ∅ ⇔ M ′ halts on e.

For this, simply consider a Turing machine M ′ such that on input u, M ′

does not halt if u 6= e; and M ′ on e halts if and only if there is a string v
such that M halts on v. One would be tempted to take ΘM = Θ(M ′), but
unfortunately although M ′ can perform at most one halting computation,
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nothing guarantees that if M ′ halts on e then there is only one picture cor-
responding to this accepting computation. Indeed, suppose for instance that
p is a picture that codes a halting computation of M ′ and the last column of
p consists only of symbols s ∈ Σ ∪ {B}. Then due to the presence in Θ(M ′)
of the tiles

a b
c d

,
] ]
a ]

,
a ]
] ]

,
a ]
b ]

with a, b, c,∈ Σ∪{B}, one would be able to conclude that p ·h p′ ∈ L(Θ(M ′),
where p′ is any picture of (Σ ∪ {B})∗∗ of the same vertical dimension as p,
and p ·h p′ denotes the picture obtained by horizontally concatenating p and
p′. In order to avoid this, we effectively build from M ′ a machine M̃ , with
q̃0, h̃ respectively as initial state and accepting state, working on an alphabet
Σ∪{Ω}, where Ω is an extra symbol, such that L(M̃) = L(M ′) and with the
following additional features:

1. M̃ is not restarting, i.e. there are no instruction of the form qaXq̃0;

2. if M̃ halts on e, then this halting computation consists of a sequence of
representative configurations c̃1, . . . , c̃k with c̃1 = q̃0 and c̃k = zh̃, and
the length of c̃k is greater than the length of any other c̃i.

In this case if p ∈ L(Θ(M̃)) then the upper left tile of p̂ is necessarily
] ]
] q̃0

,

and since M̃ is nonrestarting there is in in L(Θ(M̃)) no additional horizontal
concatenation p′ ·h p, nor is there any vertical concatenation p′ ·v p (meaning
that p′ has the same horizontal dimension as p and is vertically concatenated

on top of p.) Similarly the lower right tile is necessarily
h̃ ]
] ]

: again,

since the last configuration is of the form wh̃ and is greater than any other
c̃i, no horizontal concatenation, nor any vertical concatenation can produce
additional pictures in L(Θ(M̃)).
The machine M̃ has the same states as M ′, plus an additional state qR

and a new accepting state h̃. The instructions are as follows: replace every
instruction qaBr of M ′, a 6= B, with the instruction qaΩr; replace every
instruction qBXr of M ′ with qΩXr; add the instructions h′ΩΩqR, qRaRqR

(with a 6= B), qRBBh̃; keep all other instructions of M ′. (The idea is that
M̃ on e outputs the same string as M ′, but with Ω replacing all intermediate
occurrences of B in the output string, and then moves to the rightmost blank
cell.)
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It is now easy to see that ΘM = Θ(M̃) is a set of tiles with the desired
properties.

Even if we have provided in Section 2.1.4 a characterization of the join-
irreducible elements, it is not surprising that the property of being join-
irreducible is undecidable. The point is that the given characterization does
not allow us to decide whether or not a given set of tiles determines a join-
irreducible element, in other words the property, for a given set of tiles Θ, of
being of the form L(Θ) = L(v) for some picture v, is itself undecidable.

2.3 The lattice Loc2

Let us study in more detail Loc2. The observations made in this section can
easily be extended, mutatis mutandis, to Locn.
From an algorithmic point of view, the lattices Locn are difficult objects to
deal with. Indeed, for every Θ ∈ Θn

Tot, let rΘ be the least number such that
there is a picture in L(Θ), if any, of dimensions v, h ≤ rΘ; otherwise let
rΘ = 0, and define f(n) = maxΘ∈Θn

Tot
rΘ.

We recall from [24]:

Lemma 3 The function f is not computable. In fact f is not dominated
by any computable function, i.e. for every computable function g there exist
infinitely many n such that f(n) > g(n).

This implies that that the cardinality of Locn increases extremely fast, which
makes a computer-based investigation of these lattices even for low n very
problematic. This motivates our direct (not computer-based) investigation
of Loc2, which is carried out in this section.

2.3.1 Chains

In this section we show that in Loc2 there exist two maximal chains c1 and
c2 of different lengths.

The chain c1. We build c1 according to the following procedure: we start
up with L := L(ΘTot); at each step of the execution of the algorithm, given
L = L(Θ) we look for Θ′ ⊂ Θ (obtained from Θ by deleting one or two tiles)
so that L is a cover of L(Θ′), and we assign L := L(Θ′).
In detail: Consider the set ΘTot:
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1. One by one we erase the corner tiles containing the symbol 1 , start-

ing e.g. from the tile
] ]
] 1

, and proceeding in any order. We ob-

tain in this way the languages (each one a cover of the following one)
L1, L2, L3, L4: Notice that L4 contains all the pictures with 0 in each
corner.

2. Next we erase one by one in succession the tiles

] ]
1 1

,
1 1
] ]

,
] 1
] 1

,
1 ]
1 ]

obtaining in succession, languages L5, L6, L7, L8: Notice that L8 con-
tains all the pictures such that no consecutive occurrences of 1 can be
found in the border.

3. Next we start erasing two tiles at a time. First we erase the border
tiles

] ]
1 0

,
] ]
0 1

obtaining the language L9. Observe that if we simply remove the first
one, then the other one is not used in any picture, hence the set is redun-
dant. We continue by erasing, one by one, the remaining pairs of border
tiles containing both 0 and 1, obtaining the languages L10, L11, L12. No-
tice that L12 contains pictures consisting of only the symbol 0 in the
borders, thus L12 is “isomorphic” to LΘTot

.

4. Next we erase one by one in succession the tiles:

1 0
0 1

,
0 1
1 0

,
0 1
1 1

,
1 1
0 1

,
1 0
1 1

,
1 1
1 0

,

obtaining the languages L13, L14, L15, L16, L17, L18.

5. We continue by erasing first the tile
1 1
1 1

, and then, one by one, the

two sets of two tiles
{

1 1
0 0

,
0 0
1 1

}
,

{
1 0
1 0

,
0 1
0 1

}
,
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obtaining the languages L19, L20, L21: notice that L21 consists exactly
of pictures of only 0’s, together with the picture

p =
0 0 0
0 1 0
0 0 0

.

6. We eliminate p by erasing the set of tiles

{
0 0
0 1

,
0 0
1 0

,
0 1
0 0

,
1 0
0 0

}

obtaining the language L22 consisting of pictures of only 0’s.

7. We erase
0 0
0 0

, obtaining L23 = Lc0 ∨ Lr0.

8. We erase the set of two vertical border tiles containing two 0’s, obtain-
ing the language L24 = Lr0.

9. We erase the set of two horizontal border tiles containing two 0’s, ob-
taining the language

L25 =
{

0
}

.

10. Finally, let L26 = ∅.

Together with L(ΘTot) the previous languages constitute a maximal chain of
length 27.

The chain c2. Recall the atom L(Θ3) of Example 14 and recall that ΘTot

has 39 elements. The set Θ3 has 17 tiles, so there exists a maximal chain
containing L(Θ3) that has at most 39− 17 + 1 + 1 = 24 6= 27 elements.

2.4 The lattice Loch
2

A bidimensional language is called a string language if its elements are of
size 1 × n, i.e. they consist of only one row. In this section we describe the
lattice of local string languages over the alphabet Σ = {0, 1}. To simplify
matters, we directly regard pictures of string languages as strings.
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In general, given an alphabet Γ let Loch
Γ be the family of local string languages

over Γ (minus ). Let us now specialize to the alphabet {0, 1}. The class

of local string languages over this alphabet will be denoted by Loch
2 .

The following results are immediate.

Lemma 4 Loch
2 = 〈Loch

2 ,∧,∨,⊆〉, where ∧ and ∨ are given by restriction,
is a sublattice, in fact an ideal, of Loc2.

Lemma 5 The atoms of Loch
2 are exactly the following 4 languages:

• the languages: L0 =
{

0
}

and L1 =
{

1
}

• the languages: L01 =
{

0 1
}

and L10 =
{

1 0
}

.

Remark 5 The coatoms are obtained in the following way: let Θh
Tot be the

set of all possible horizontal tiles minus the tile
] ]
] ]

, i.e. the set of tiles

that can be used to form string pictures. Notice that by erasing from Θh
Tot only

one tile we obtain a redundant set of tiles; on the other hand, we do get an
irredundant set of tiles if we erase an upper border tile and the correspondent
lower border tile (i.e. a pair of the form

] ]
i j

,
i j
] ]

where i, j ∈ {0, 1}, or a pair of the form

] ]
] i

,
] i
] ]

with i ∈ {0, 1}, or the corresponding pair of right corner border tiles).
It is easy to see that the languages which we obtain by erasing such a pair
are all the coatoms.

Notation. Henceforth, for elements of Loch
2 let us employ the notation that

we use for the proof of Lemma 1 and the following

- by writing \t1, . . . , tk we mean the language provided by the set of tiles
obtained by deleting from Θh

Tot the tiles t1, . . . , tk;
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Using the example given in Remark 3 we are able to state the following

Theorem 13 The lattice Loch
2 is not semimodular.

Notwithstanding the fact that Loch
2 is not semimodular, we have that the

Jordan- Dedekind condition holds, i.e. all the chains of Loch
2 have the same

length. To see this, we describe below, by direct inspection, the rank function
for Loch

2 . (Except when the language is an atom, we describe each language
below by indicating a set of tiles originating the language: in fact we will
write t1, . . . , tk for {t1, . . . , tk}; for languages of rank > 2 we use the notation
\t1, . . . , tk introduced earlier. )

1. rank 0: ∅;
2. rank 1 (4 elements): the four atoms already described

{
1 0

}
,
{

1
}
,{

0
}
,
{

0 1;
}

;

3. rank 2 (15 elements): [1, 11, 10, 0]; [1, 10, 0], 1]; [1, 10, 01, 0]; [1, 10, 01, 1];
[1, 10, 00, 0]; [1, 11, 1]; [0, 01, 11, 1]; [0, 01, 0], 1]; [0, 00, 0]; [0, 01, 10, 0];
[0, 00, 01, 1]; [0, [1, 0], 1]; [0, [1, 10, 0]; [1, [0, 01, 1].

Notice that [1, 10, 0], 1] =
{

1
} ∨ {

1 0
}
; [0, 01, 0], 1] =

{
0

} ∨{
0 1

}
; [0, [1, 0], 1] =

{
0

}∨{
1

}
; [0, [1, 10, 0] =

{
0

}∨{
1 0

}
;

[1, [0, 01, 1] =
{

1
} ∨ {

0 1
}
.

4. rank 3 (26 tiles):\[0, 00, 01, \[0, 00, 11, \[0, 00, 0], \[0, 00, 1], \[0, 01, 11,
\[0, 01, 1], \[0, 11, 0], \[0, 11, 1], \[1, 00, 10, \[1, 00, 11, \[1, 00, 0], \[1, 00, 1],
\[1, 10, 11, \[1, 10, 0], \[1, 11, 0], \[1, 11, 1], \00, 01, 10, \00, 01, 11, \00, 01, 1],
\00, 10, 11, \00, 10, 0], \00, 11, 0], \00, 11, 1], \01, 10, 11, \01, 11, 1], \10, 11, 0];

5. rank 4 (22 elements): \[0, 00, \[0, 01, \[0, 11, \[0, 0], \[0, 1], \[1, 00,
\[1, 10, \[1, 11, \[1, 0], \[1, 1], \00, 11, \00, 10, \00, 11, \00, 0], \00, 1],
\01, 10, \01, 11, \01, 1], \10, 11, \10, 0], \11, 0], \11, 1].

Notice that \00, 11 =
{

0 1
} ∨ {

1 0
}
.

6. rank 5 (8 elements): these are the coatoms (see Remark 5) \[0, \[1,
\00, \01, \10, \11, \0], \1];

7. rank 6: L(Θh
Tot).
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In total, Loch
2 has 77 elements. By the description of the rank function given

above we have:

Corollary 3 The rank function rank : Loch
2 → N satisfies:

rank(L(Θ)) =





number of tiles of Θ
2

− 2 if 01 ⊆ Θ or 10 ⊆ Θ
number of tiles of Θ

2
− 1 otherwise and Θ 6= ∅

0 if Θ = ∅.
(Once again, we assume that each Θ is irredundant.)

2.5 Further Works and Open Problems

We have left open many questions about the lattices Locn, and in particular
about Loc2. In this section we list some of the problems which we believe
of particular interest. For simplicity, we mostly state our problems for Loc2.
On the other hand it is felt that a solution in the case n = 2 should easily
extend to the general case of n ≥ 2.

Atoms. Despite the undecidability result stated in Theorem 12, 1., we can
give several examples of atoms in Loc2.

Example 14 The reader can easily verify that the following languages are
atoms:

1. the singleton languages L0, L01, L10 introduced in the proof of Theo-
rem 9, and the singleton language L1 =

{
1

}
;

2. the languages L(Θ1), L(Θ2), L(Θ3), where

Θ1 =

∥∥∥∥
0 0 1
1 0 0

∥∥∥∥ , Θ2 =

∥∥∥∥∥∥∥∥

1 0 0 0
0 0 1 0
0 1 0 0
1 0 0 1

∥∥∥∥∥∥∥∥
, Θ3 =

∥∥∥∥∥∥

1 0 1 0
0 1 1 0
1 1 1 1

∥∥∥∥∥∥
.

All the atoms of the example, except for L(Θ3), are finite, and moreover
made up only of one picture. The atom L(Θ3) is instead infinite.
These simple considerations leave open many questions.

Problem 1 Is every finite atom of Loc2 a singleton?

Problem 2 Give a useful characterization of the atoms of Loc2.
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Complements. Other interesting questions concern complements. We re-
call that in a lattice with maximum element 1 and minimum element 0, we
say that b is a complement of a if a ∨ b = 1 and a ∧ b = 0.
For example, let Ls be the language of all chessboard pictures with 0 in each
corner, introduced in Example 11. The local language represented by the set
of tiles below is a complement of Ls.

Θ =

∥∥∥∥∥∥∥∥∥∥∥∥

1 1 1 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 1
1 0 1 1 1 1
1 1 0 0 1 1

∥∥∥∥∥∥∥∥∥∥∥∥

It is sufficient to add the corner tile
0 ]
] ]

to Θ to obtain a different com-

plement of Ls.
One can easily prove that if L = L(Θ), and Θ contains n ≤ 7 corner tiles,
then L has (at least) a complement. Using such a condition we can state
that all the local languages of the form L = L(v) have complements; hence
all join-irreducible elements have complements.
Actually, all elements of Loc2 we happened to consider have more than one
complement. We have not as yet found examples of elements without com-
plements or with exactly one complement.

Problem 3 If L is an element of Loc2, then does there exist in Loc2 a
complement of L? If it exists, when is it unique?

On the other hand, in Loch
2 not all elements have complements, for instance

the coatom La = L(\00) does not have any complement.

The lattice of symmetric elements. Let L(Θ) be a local language, and
define the transpose language L(Θ)T of L(Θ) as L(Θ)T = L(ΘT ), where

t =
x y
z t

, tT =
x z
y t

and ΘT = {tT : t ∈ Θ}.
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We say that a local language L(Θ) is symmetric if L(Θ) = L(Θ)T . It is easy
to see that a local language L(Θ) is symmetric if and only if Θ = ΘT .
For instance, the local language of the square pictures with 1 in one diagonal
and 0 on all the other entries is a symmetric language.
The set Sn of the symmetric local languages on {0, . . . , n−1}, is a sublattice
of Locn. Moreover it is easy to see that for all L ∈ Locn \ Sn there exists a

language L̃ such that L ∨ L̃ ∈ Sn and L ∧ L̃ ∈ Sn. (Just take L̃ = LT ).
We feel that a careful investigation of Sn would give us also information on
the lattice Locn. We limit ourselves here to the following observation.
In Sn a language L is a coatom if and only if there exists some tile t ∈ ΘTot

such that

L =

{
L(ΘTot \ {t}) if t = tT ,

L(Θ \ {t, tT} otherwise.

For example the languages: L(ΘTot \ t1), where t1 =
1 1
1 1

and L(ΘTot \

{t2, t3}), where t2 =
0 1
0 0

, t3 =
0 0
1 0

, are coatoms.

Problem 4 Study the sublattice Sn.
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Chapter 3

Two-dimensional languages and
computability

We already said that one of the object of our study is to find the analogies
or differences between string and picture languages, and when it is possible
to generalize the results known for the unidimensional case to the twodi-
mensional one. Now we analyze the situation in computability theory. In
literature it is well known the arithmetical complexity of several problems
concerning with string languages. Let us recall for example one of the most
famous, the emptiness problem; such a problem asks when a language is
empty and it is decidable for regular languages. In this chapter, the aim is
to formulate the main problems, already acquainted in the unidimensional
case, for the local and tiling system recognizable languages, and to classify
their complexity in the arithmetical hierarchy.
For the terminology and notions we refer to [56].

We recall some basic definitions.

Definition 29 Given two sets A,B we say that A is m-reducible to B (no-
tation: A ≤m B) if A = f−1[B] for some computable function f . A Σ0

n-set
A is a set for which there exists a computable relation R(x, y1, . . . , yn) such
that

A = {x|∃y1∀y2 . . . R(x, y1, . . . , yn)}
i.e. membership in A can be described by a computable relation prefixed
by n alternating quantifiers starting with an existential quantifier. We also
write A ∈ Σ0

n to denote that A is a Σ0
n-set.
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Equivalently, one could give the following inductive definition: A ∈ Σ0
0 if and

only if A is computable; and for n ≥ 1 A ∈ Σ0
n if and only if A is computably

enumerable in some B ∈ Σ0
n−1.

A Π0
n-set is just a set A whose complement is a Σ0

n-set.

Definition 30 A set A is said to be Σ0
n-complete (Π0

n-complete) if A ∈ Σ0
n

(A ∈ Π0
n) and for every B ∈ Σ0

n (B ∈ Π0
n) one has B ≤m A.

The previous notions and terminology naturally extend to sets that can be
encoded by natural numbers, this making possible to talk, in general, about
Σ0

n-complete (Π0
n-complete) problems, and so on.

Giammarresi and Restivo, [33], show how to code computations of Turing
machines into local languages. For later reference we briefly review some of
the details of this coding.
We will consider here deterministic Turing machines on alphabet Ξ, for which
acceptance is defined only via a fixed terminal state qf .

Definition 31 A configuration is a sequence of the form uqv, where q is
a state, u, v ∈ (Ξ ∪ {B})∗ (B being the usual symbol denoting that the
content of the tape cell is empty) are the strings of minimal length such that
u contains all occurrences of the symbols different from B present on the tape
to the left of the head of M , and v contains all occurrences of the symbols
different from B present on the tape to the right of the head of M , including
the head.

Definition 32 Given a Turing machine M , a successful computation of M
on a word w is a sequence c = c1, . . . , ck of instantaneous configurations such
that c1 = q0w (q0 being the initial state), ck is a terminal configuration, i.e.
of the form uqfv, and for all 1 ≤ i < k, ci+1 follows legally from ci according
to the instructions of M .

While performing a successful computation, M uses a finite portion of tape
consisting of, say, n cells, so that each configuration ci may be viewed as a
substring of a string γi ∈ B∗ciB

∗ of length n + 1, and in fact identified with
γi. For reasons that will become clear later, let us encode a configuration
c = uqv by the string uqv′ where v′ is the image of v under the morphism
induced by a fixed bijection of the alphabet Ξ ∪ {B} onto a copy Ξ′ ∪ {B′}.
The computation may thus be viewed as a picture of dimension (k, n+1) on
the alphabet Ξ∪ {B} ∪QM ∪Ξ′ ∪ {B′}, where QM is the set of states of M .
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It is rather straightforward to construct a set of tiles ΘM on this alphabet
such that M accepts a string w if and only if there is a picture p ∈ L(ΘM)
which represents a computation, as described earlier. The crucial point is in
choosing the tiles that contain the state symbols so as to faithfully represent
the instructions of M . Thus for instance an instruction pabLq (where a, b ∈
Ξ ∪ {B}, p, q ∈ QM , and L instructs to move “left”) is represented by the

tiles
s p

q s′
,

p a′

s′ b′
for every s ∈ Ξ ∪ {B}. One then needs tiles to insure

that the first row of a picture must represent an initial configuration, and the
last row must represent a terminal configuration. The trick of considering
uqv′ instead of just uqv is motivated by the fact that in this way we can
easily limit the language of ΘM to pictures in which each row has only one
occurrence of a state symbol (see [33] for more details).
The Emptyness Problem for tiling recognizable languages asks for an effective
procedure to decide, given a tiling system T , whether the corresponding
language L(T ) is empty or not, in other words if the set NEmptyTS = {T :
L(T ) 6= ∅} is decidable. The corresponding problem for local languages is
given by NEmptyLOC = {Θ : L(Θ) 6= ∅}. Using the above coding M 7→
ΘM , Giammarresi and Restivo, [33], show that NEmptyTS, NEmptyLOC are
undecidable. In fact:

Theorem 14 NEmptyTS, NEmptyLOC are Σ0
1-complete.

Proof. Since NEmptyLOC ≤m NEmptyTS (where the symbol ≤m denotes
many-one reducibility), it is enough to show that NEmptyTS is Σ0

1, i.e. recur-
sively enumerable, and NEmptyLOC is Σ0

1-hard. The former claim is trivial.
The latter claim follows from observing that for every Turing machine M ,

L(M) 6= ∅ ⇔ L(ΘM) 6= ∅,
and {M : L(M) 6= ∅} is Σ0

1-hard, as is well known.

An easy comment on the above proof is in order. For every n ≥ 1, let Tn

denote the family of all sets of tiles on the alphabet {0, 1, . . . , n}. We can
assume that each set of tiles Θ lies in some Tn. For every Θ ∈ Tn, let rΘ be
the least number such that there is a picture in L(Θ), if any, of dimensions
v, h ≤ rΘ; otherwise let rΘ = 0. Finally let f(n) = maxΘ∈Tn rΘ.

Corollary 4 The function f is not computable. In fact f is not dominated
by any computable function, i.e. for every computable function g there exist
infinitely many n such that f(n) > g(n).
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Proof. Immediate, as otherwise, one could decide NEmptyLOC by the
following procedure (which works at least for cofinitely many n): given Θ
find the least n such that Θ ∈ Tn and search for a picture p ∈ L(Θ) of
dimensions h, v such that h, v ≤ g(n). The Equality Problem asks for an
effective procedure to decide, given tiling systems T1, T2, whether the cor-
responding languages L(T1) and L(T2) are equal, in other words if the set
EqTS = {(T1, T2) : L(T1) = L(T2)} is decidable. The Equality Problem for
local languages is defined accordingly, and asks if the set EqLOC = {(Θ1, Θ2) :
L(Θ1) = L(Θ2)} is decidable.

Theorem 15 EqTS and EqLOC are Π0
1-complete.

Proof. As

(T1, T2) ∈ EqTS ⇔ (∀p)[p ∈ L(T1) ⇔ p ∈ L(T2)]

and since each L(T ) is decidable, it follows that EqTS is Π0
1. On the other

hand let Θ0 be any set of tiles with empty local language. Then, in the
notation of the proof of Theorem 14,

L(M) = ∅ ⇔ (Θ0, ΘM) ∈ EqLOC ,

showing that {M : L(M) = ∅} ≤m EqLOC , and thus EqLOC is Π0
1-hard since

so is the former set. The claims thus follow, since EqLOC ≤m EqTS.

The Infinity Problem asks whether the set InfTS = {T : L(T ) infinite} is
decidable. Again we will classify the complexity of this set, via a proof which
in fact shows how to reduce Inf = {M : L(M) infinite}, the Infinity Problem
for Turing machines (a well known Π0

2-complete problem, see e.g. [56, p. 66])
to the problem InfLOC = {Θ : L(Θ) infinite}. We begin with observing that
InfTS is Π0

2, as

T ∈ InfTS ⇔ (∀n)(∃p)[p ∈ L(T ) and vp + hp > n].

Unfortunately the coding M 7→ ΘM used in the previous proofs does not
suffice to show that Inf ≤m InfLOC , as it is easy to see that if p ∈ L(ΘM)
and p codes a computation then all pictures p′ obtained expanding p to the
left or to the right with columns of symbols B (or B′) lie in L(ΘM) as well.
To classify the complexity of the Infinity Problem, we thus turn to Linear
Bounded Automata. We recall that a Linear Bounded Automaton (LBA) is
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a Turing machine which never exceeds the portion of tape that is delimited
by the initial configuration. Thus if M is a deterministic LBA, then for
each word w ∈ L(M) we may assume that to the computation of M on w
corresponds exactly a word in L(ΘM) (with ΘM containing tiles forcing every
picture p to have its leftmost column filled with A, and its rightmost column
filled with Ω, i. e. the tiles

] ]
] A

,
] ]
Ω ]

,
] A
] A

,
Ω ]
Ω ]

,
] A
] ]

,
Ω ]
] ]

where A and Ω are extra symbols that delimit the portion of tape used by
the machine during its computation).
For the proof of the following theorems and corollary we refer to [?].

Theorem 16 InfTS and InfLOC are Π0
2-complete.

Let now Infv
LOC = {Θ : (∀w)(∃p)[p ∈ L(Θ) and vp > w]}. (The reader should

also guess what Infv
TS, Infh

LOC , Infh
TS are). Then

Corollary 5 Infv
LOC, Infv

TS, Infh
LOC, Infh

TS are Π0
2-complete.

There are however interesting problems connected with infinite languages
that are decidable. For instance, if we define:

Inffin,v
LOC = {(Θ, n) : L(Θ) has infinitely many pictures p with hp ≤ n}

and Infh,fin
LOC as its “horizontal” version, then we have the following:

Theorem 17 The set Inffin,v
LOC , Infh,fin

LOC , and the corresponding tiling systems
versions, are decidable.

The following observation breaks the symmetry so far noticed between local
languages and tiling recognizable languages in relation to decidability/undecidability
questions. It is shown in [33] that AllTS = {T : L(T ) = Σ∗∗} (where
Σ is the alphabet of T ) is undecidable, in fact Π0

1-complete, being {M :
L(M) 6= ∅} ≤m AllTS. As L(Θ) = Σ∗∗ if and only if the set of tiles Θ
contains all tiles (except the useless ones, in which the symbol # is mis-
placed) one easily sees that the set AllLOC = {Θ : L(Θ) = Σ∗∗} is decid-
able. A related consideration is the following. Given any set of tiles Θ,
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there exists a minimal set of tiles Θm ⊆ Θ such that L(Θm) = L(Θ), where
Θm = {t ∈ Θ : (∃p ∈ L(Θ))[t ∈ B2,2(p̂)]}. Although it is trivial to find Θm

if L(Θ) = Σ∗∗, there is no effective procedure that allows to find Θm, given
input Θ, even if one requires of such a procedure to work only for those sets
Θ for which L(Θ) = ∅, as L(M) = ∅ if and only if L(Θm

M) = ∅.
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Chapter 4

Tiling recognizability of various
classes of polyominoes

As already disclosed in the Introduction, a research topic which recently ac-
quired some relevance is that one of tiling recognizability of polyominoes. We
notice that in fact, a polyomino can be naturally represented by a picture of
a two-dimensional language. In addition, Reinhardt in [54], proved that the
picture language that represents the class of the polyominoes is tiling recog-
nizable. We limit the problem of recognizability to several classes of convex
polyominoes, so our aim is to depict the recognizable languages for these
classes of polyominoes. First of all we look for tiling system recognizable
languages for the classes of convex polyominoes, Ferrer diagrams polyomi-
noes, parallelogram polyominoes, directed polyominoes and column-convex
polyominoes, moreover we provide a set of tiles for each languages and prove
that convexity constrains can be formulated by means of local properties
of the boundary of the polyomino. Then we pay attention to the class of
L-convex polyominoes, which, differently from the other classes of convex
polyominoes, are not defined by a “local” property on the boundary. In his
Ph.D. thesis, [60], R.Vaglica conjectured that this class of polyominoes is
not tiling system recognizable, we are not able to determine a tiling system
for this class, but we prove that L-convex polyominoes can be recognized by
union of tiling systems recognizable languages.
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4.1 Polyominoes

In the plane Z×Z a cell is a unit square, and a polyomino is a finite connected
union of cells having no cut point. Polyominoes are defined up to translations.
A column (row) of a polyomino is the intersection between the polyomino
and an infinite strip of cells whose centers lie on a vertical (horizontal) line.

(a) (b) (c)

Figure 4.1: (a) column-convex polyomino; (b) a convex polyomino; (c) a
directed (not convex) polyomino.

(b) (c) (d)(a)

Figure 4.2: (a) A Ferrers diagram; (c) A parallelogram polyomino; (c) A
stack polyomino; (d) A directed-convex polyomino.

In order to simplify many problems which are still open on the class of
polyominoes, several subclasses were defined by combining two notions: the
geometrical notion of convexity, and the notion of directed growth, which
comes from statistical physics. A polyomino is said to be column-convex
[row-convex] when its intersection with any vertical [horizontal] line is convex
(Fig. 5.2 (a)). A polyomino is convex if it is both column and row convex
(Fig. 5.2 (b)). A polyomino P is said to be directed when every cell of P
can be reached from a distinguished cell (usually the leftmost at the lowest
ordinate), by a path which is contained in P and only uses north and east
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unit steps (Fig.5.2 (c)). Figure (Fig.4.2 (d)) depicts a polyomino that is both
directed and convex. Moreover we can define three types of directed and
convex polyominoes, i.e. the Ferrers diagrams (Fig.4.2 (a)), the parallelogram
polyominoes (Fig.4.2 (b)), and the stack polyominoes (Fig.4.2 (c)). As Figure
4.2 shows, each of these three subsets can be characterized, in the set of
convex polyominoes, by the fact that two or three vertices of the minimal
bounding rectangle of the polyomino must also belong to the polyomino itself.

In a polyomino a path is a self-avoiding sequence of unitary steps of four types:
north N = (0, 1), south S = (0,−1), east E = (1, 0), and west W = (−1, 0).
We say that a path is monotone if it is made with steps of only two types.
The authors of [14] observed that convex polyominoes have the property
that every pair of cells is connected by a monotone path entirely contained
in the polyomino. In this way each convex polyomino is characterized by
a parameter k that represents the minimal number of changes of direction
in these paths. More precisely, a convex polyomino is called k-convex if,
for every pair of its cells, there is at least a monotone path with at most k
changes of direction that connects them. When the value of k is 1 we have
the so called L-convex polyominoes, where this terminology is motivated by
the L-shape of the path that connects any two cells (see Figure 4.3).

(b)(a)

Figure 4.3: (a) an L-convex polyomino, and a monotone path with a single
change of direction joining two of its cells; (b) a convex but not L-convex
polyomino: the two highlighted cells cannot be connected by a path with
only one change of direction.

This class of polyominoes has been successively considered by several points
of view: in [15] it is shown that L-convex polyominoes are a well-ordering
according to the sub-picture order, in [12] the authors have investigated some
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tomographical aspects of this family, and have discovered that L-convex poly-
ominoes are uniquely determined by their horizontal and vertical projections.
Finally, in [13] it is proved that the number fn of L-convex polyominoes hav-
ing semi-perimeter equal to n + 2 satisfies the recurrence relation:

fn = 4fn−1 − 2fn−2, n ≥ 3, (4.1)

with f0 = 1, f1 = 2, f2 = 7. Successively [11] the authors have studied the
problem of enumerating L-convex polyominoes by the area, and provided a
coding of L-convex polyominoes in terms of words of a regular language.

4.2 Polyominoes and tiling systems

As the reader can easily argue, the class of all the two-dimensional words
representing a polyomino is not a local language; indeed to form all the
possible shapes of polyominoes we need that the set of tiles coincides with
all the (2, 2) pictures of {0, 1}∗∗. But such set of tiles trivially allows also
pictures that do not represent polyominoes.
On the contrary we have the tiling recognizability of the family of poly-
ominoes, as Reinhardt proves in [54]. This result however does not tell us
anything about the tiling recognizability of several classes of convex poly-
ominoes.
Let us consider the following two-dimensional languages on the alphabet
{0, 1}: C (resp. F , S, P , D, V) is the class of pictures that represent convex
polyominoes (resp. Ferrer diagrams, stack polyominoes, parallelogram poly-
ominoes, directed-convex polyominoes, column-convex polyominoes). We
will first prove that C is a tiling recognizable language, and, as a consequence,
that F is a local language and that S, P , D, and V are tiling recognizable
languages.
Let P be a convex polyomino, R(P ) be its minimal bounding rectangle; we
start by observing that four disjoint (possibly empty) sets of unit cells in
R(P )\P are easily individuated, each of them located at one of the four
vertices of R(P ). Let us call these sets A, B, C, and D (see Fig. 4.4 (a)).
An easy check reveals that

Proposition 1 P is convex iff for each cell (i, j) of R(P ) it holds

- if (i, j) ∈ A then both (i− 1, j) ∈ A and (i, j − 1) ∈ A;
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- if (i, j) ∈ B then both (i− 1, j) ∈ B and (i, j + 1) ∈ B;

- if (i, j) ∈ C then both (i + 1, j) ∈ C and (i, j − 1) ∈ C;

- if (i, j) ∈ D then both (i + 1, j) ∈ D and (i, j + 1) ∈ D

To each convex polyomino we associate a picture obtained by representing
with a 1 every cell belonging to the polyomino, and with the symbol a (resp.
b, c, d) every each cell in A (resp. B, C, D), as depicted in Fig. 4.4 (b). Let
LC be the language of these rectangles over the alphabet {1, a, b, c, d}.

1
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1
1 1

1
1
1 1

1
1
1 1

1
1
1 1

1
1
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(b)(a)

A B

C D

b

dc 1
c 1 1 1

# #
a
a a a

# #
#

#

Figure 4.4: (a) A convex polyomino P individuates four disjoint sets of cells
in R(P )\P ; (b) The representation of P as a word of LC .

Let us now consider the following sets of tiles:

θR =





# #
# #

,
# #
# 1

,
# #
1 #

,
# 1
# #

,
1 #
# #

,

# #
1 1

,
1 1
# #

,
# 1
# 1

,
1 #
1 #

,
1 1
1 1





,

θA =





a a

a a
,

# #
# a

,
# #
a a

,
# a

# a
,

# #
a 1

,

# a

# 1
,

a a

a 1
,

a 1
a 1

,
a a

1 1
,

a 1
1 1





,
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θB =





b b

b b
,

# #
b #

,
# #
b b

,
b #
b #

,
# #
1 b

,

b #
1 #

,
b b

1 b
,

1 b

1 b
,

b b

1 1
,

1 b

1 1





,

θC =





c c

c c
,

# c

# #
,

c c

# #
,

# c

# c
,

c 1
# #

,

# 1
# c

,
c 1
c c

,
c 1
c 1

,
1 1
c c

,
1 1
c 1





,

θD =





d d

d d
,

d #
# #

,
d #
d #

,
d d

# #
,

1 d

# #
,

1 #
d #

,
1 d

d d
,

1 d

1 d
,

1 1
d d

,
1 1
1 d





.

It is easy to prove that the sets θA, θB, θC , and θD realize the conditions of
Proposition 1 with respect to the cells of A, B, C, and D, respectively, and
so, together with θR which characterizes the internal part of P , they allow
the following:

Theorem 18 LC is a local language over the alphabet ΣC = {1, a, b, c, d},
and LC = L (θR ∪ θA ∪ θB ∪ θC ∪ θD) .

Proof.

• (⊆) Immediate.

• (⊇) let P ∈ θR ∪ θA ∪ θB ∪ θC ∪ θD. We prove that, for each cell
(i, j) ∈ R(P ), if (i, j) ∈ A, then both (i − 1, j) ∈ A and (i, j − 1) ∈
A. Let us proceed by contradiction assuming that there exists a cell
(i0, j0) ∈ R(P ) such that (i0, j0) 6∈ A and (i0− 1, j0) ∈ A (if we assume
that (i0, j0 − 1) ∈ A a similar reasoning holds). Since P ∈ L(θA...),
then there exist a tile

uu ∈ θR ∪ θA ∪ θB ∪ θC ∪ θD

such that X 6= a, and X,Y, Z ∈ {1, a, b, c}, a contradiction.
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A similar reasoning can be used to prove that, for each cell (i, j) ∈ R(P ),

- if (i, j) ∈ B, then both (i− 1, j) ∈ B and (i, j + 1) ∈ B;

- if (i, j) ∈ C, then both (i + 1, j) ∈ C and (i, j − 1) ∈ C;

- if (i, j) ∈ D, then both (i + 1, j) ∈ D and (i, j + 1) ∈ D,

and, using Proposition 1, the thesis.

Now, defining the projection πC : ΣC → {0, 1}, such that πC(a) = πC(b) =
πC(c) = πC(d) = 0, πC(1) = 1, we have that πC (LC) = C. Therefore C is
tiling recognizable.
In a similar way we can prove the other statements.
Let LF = L (θR ∪ θB); since easily we have that LF = F , then F is a local
language. Furthermore, let us consider the following local languages:

• LS = L (θR ∪ θA ∪ θB), over ΣS = {1, a, b};
• LP = L (θR ∪ θA ∪ θD), over ΣP = {1, a, d};
• LD = L (θR ∪ θA ∪ θB ∪ θD) , over ΣD = {1, a, b, d},

and the projections:

• πS : ΣS → {0, 1}, such that πS(a) = πS(b) = 0, πS(1) = 1;

• πP : ΣP → {0, 1}, such that πP (a) = πP (d) = 0, πP (1) = 1;

• πD : ΣD → {0, 1}, such that πD(a) = πD(b) = πD(d) = 0, πD(1) = 1,

we finally have that:

• πS (LS) = S, thus S is tiling recognizable;

• πP (LP ) = P, thus P is tiling recognizable;

• πD (LD) = D, thus D is tiling recognizable.
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# # # # # # # # # #

# # # # # # # # # #
#
#
#
#
#
#

#
#
#
#
#
#

a a 1 b b 1 b b
1 a 1 1 b 1 b b
1 1 1 1 b 1 1 1
1 1 c 1 1 1 d 1
c 1 c 1 d 1 d 1
c c c 1 d d d 1

(a) (b)

A B

C D

Figure 4.5: (a) A column-convex polyomino P individuates four disjoint sets
of cells in R(P )\P ; (b) The representation of P as a word of LV .

The proof that V is tiling recognizable resembles the previous proofs. Let P
be a column-convex polyomino, and R(P ) its minimal bounding rectangle;
two disjoint (possibly empty) sets of unit cells in R(P )\P can now be easily
individuated: one comprehends the cells above P , and the other comprehends
the cells below P . Each of these two zones is further divided into two sets:
the leftmost set of the upper [resp. lower] zone is still indicated by A [resp.
C], and its remaining part by B [resp. D], as shown in Fig. 4.5 (a). Let us
now consider the language LV of rectangles over the alphabet {1, a, b, c, d}
obtained representing each convex polyomino as follows: a cell belonging to
the polyomino is coded by 1, each cell in A (resp. B, C, D) is coded by a
(resp. b, c, d), as depicted in Fig. 4.5 (b).

Proposition 2 LV is a local language, i.e. LV = L (θR ∪ θ′A ∪ θ′B ∪ θ′C ∪ θ′D),
where

θ′A = θA ∪
{

a a

1 a
,

1 a

1 a
,

1 a

1 1

}
,

θ′B = θB ∪
{

# #
b 1

,
b b

b 1
,

b 1
b 1

,
b 1
1 1

}
,

θ′C = θC ∪
{

1 c

c c
,

1 c

1 c
,

1 1
1 c

}
,

θ′D = θD ∪
{

d 1
# #

,
d 1
d d

,
d 1
d 1

,
1 d

1 1

}
.

Finally, we have that πV (LV ) = V , where πV is a projection from {1, a, b, c, d}
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to {0, 1} defined as: πV (a) = πV (b) = πV (b) = πV (b) = 0, πV (1) = 1. Thus
V is tiling recognizable.

4.3 Construction of L-convex polyominoes us-

ing tiling system

Let us focus our attention on the two dimensional language LConv on the
alphabet {0, 1}, which represents the class of L-convex polyominoes. After
recalling their characterization in terms of maximal rectangles given in [14],
we proceed in studying the tiling recognizability of LConv.
By abuse of notation, for any two polyominoes P and P ′ we will write P ⊆ P ′

to mean that P is geometrically included in P ′. A rectangle, that we denote
by [x, y], with x, y ∈ N \ {0}, is a rectangular polyomino with x columns and
y rows. We say [x, y] to be maximal in P if

∀ [x′, y′], [x, y] ⊆ [x′, y′] ⊆ P ⇒ [x, y] = [x′, y′].

Two rectangles [x, y] and [x′y′] have crossing intersection if their intersection
is a rectangle whose basis is the smallest of the two bases and whose height
is the smallest of the two heights (see Fig. 4.6), i.e.

[x, y] ∩ [x′, y′] = [min(x, x′),min(y, y′)] .

(c)(a) (b)

Figure 4.6: The two couples of rectangles in (a) and (b) have crossing inter-
section, while the couple in (c) does not.

The following theorem gives an useful characterization of L-convex polyomi-
noes in terms of maximal rectangles [14].
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Theorem 19 A convex polyomino P is L-convex iff every pair of its maximal
rectangles has crossing intersection (see Fig. 4.7).

(−1,−1) (0,−1)

(0,−2)

(−1,0)(−1,0)(−2,0)(−3,0)

(−1,−1)

a a a a
aa

a
a

c c
c c c c d d

d d
d

b
bb

bb
(−1,2)

(0,3)

(−1,2) (0,2) (1,2)

(−2,1) (−1,1) (−1,1) (0,1) (1,1) (2,1) (2,1)

(−2,1) (−1,1) (−1,1) (0,1) (1,1) (2,1) (2,1)

(2,0)(2,0)(1,0)

(1,−1)

(0,0)

Figure 4.7: The L-convex polyomino in Fig. 4.3 (a), and its coding by means
of a picture in Γ4; the zone O has been highlighted. The polyomino is the
union of four maximal rectangles having crossing intersection.

Let Lk
Conv be the class of (pictures representing) L-convex polyominoes having

at most k maximal rectangles. Clearly it holds
⋃

k≥1 Lk
Conv = LConv. Our

aim is to prove that, for each k ≥ 2, Lk
Conv is tiling recognizable (when k = 1

the assumption trivially holds).
Let us enrich the alphabet used for convex polyominoes and define

Γk = {(x, y) | x, y ∈ Z, |x|, |y| < k} ∪ {a, b, c, d},

in order to represent each cell of a L-convex polyomino by means of a couple
of integers in Γk, and each cell in A (resp. B, C, and D), by means of the
symbol a (resp. b, c, and d), (get the idea from Fig. 4.7).
For each 0 ≤ x1, y1, i, j ≤ k− 1, and −k + 1 ≤ x2, y2 ≤ 0, let us consider the
following (redundant) sets of tiles:

θk
A =





# #
# a

,
# #
a a

,
# a

# a
,

# #
a (0, y1 + 1)

,
# a

# (x2 − 1, 0)
,

(x2 − i, y1 + j) (x2, y1 + j)
(x2 − i, y1) (x2, y1)





,
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θk
B =





# #
b #

,
# #
b b

,
b #
b #

,
# #

(0, y1 + 1) b
,

b #
(x1 + 1, 0) #

,

(x1, y1 + j) (x1 + i, y1 + j)
(x1, y1) (x1 + i, y1)





,

θk
B =





# c

# #
,

c c

# #
,

# c

# c
,

c (0, y2 − 1)
# #

,
# (x2 − 1, 0)
# c

,

(x2 − i, y2) (x2, y2)
(x2 − i, y2 − j) (x2, y2 − j)





,

θk
B =





d #
# #

,
d d

# #
,

d #
d #

,
(0, y2 − 1) d

# #
,

(x1 + 1, 0) #
d #

,

(x1, y2) (x1 + i, y2)
(x1, y2 − j) (x1 + i, y2 − j)





,

θk
R =





# #
# (x2, y1)

,
# #

(x2 − i, y1) (x2, y1)
,

# #
(x1, y1) (x1 + i, y1)

,
# #

(x1, y1) #
,

# (x2, y2)
# #

,
(x2 − i, y2) (x2, y2)

# #
,

(x1, y2) (x1 + i, y2)
# #

,
(x1, y2) #

# #
,

# (x2, y1 + j)
# (x2, y1)

,
# (x2, y2)
# (x2, y2 − j)

,
(x1, y1 + j) #

(x1, y1) #
,

(x1, y2) #
(x1, y2 − j) #

,

(x2 − i, y1 + j) (x2, y1 + j)
(x2 − i, y1) (x2, y1)

,
(x1, y1 + j) (x1 + i, y1 + j)

(x1, y1) (x1 + i, y1)
,

(x2 − i, y2) (x2, y2)
(x2 − i, y2 − j) (x2, y2 − j)

,
(x1, y2) (x1 + i, y2)

(x1, y2 − j) (x1 + i, y2 − j)





,

with the following constraints:
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- if the element (x, y) belongs to a tile in θk
A (resp. θk

B, θk
C , and θk

D), with
|x|+ |y| ≥ k, then (x, y) is replaced by a (resp. b, c, and d);

- each tile in θk
A (resp. θk

B, θk
C , and θk

D) contains at least one element a (resp.
b, c, and d);

- the elements (x, y) of the tiles in θk
R satisfy |x|+ |y| < k.

Remark 6 Let ϕ : Γk → ΓC be the projection such that ϕ((x, y)) = 1,
ϕ(a) = a, ϕ(b) = b, ϕ(c) = c, and ϕ(d) = d. It holds that

ϕ(θk
A) = θA, ϕ(θk

B) = θB, ϕ(θk
C) = θC , ϕ(θk

D) = θD, and ϕ(θk
R) = θR,

where the sets θA, θB, θC, θD, and θR have been considered in the previous
section.

By definition of tiling system, it follows that each element of

Lk
Conv = L

(
θk

A ∪ θk
B ∪ θk

C ∪ θk
D ∪ θk

R

)

can be mapped into a convex polyomino, i.e. Lk
Conv ⊂ LC , for each k ≥ 1.

Remark 7 Let 1 ≤ h ≤ k, and let γ : Γk → Γk−h be the projection such that
γ(a) = a, γ(b) = b, γ(c) = c, γ(d) = d, and

γ ( (x, y) ) =





(x, y), if |x|+ |y| < k − h;
a, if − x + y ≥ k − h;
b, if x + y ≥ k − h;
c, if − x− y ≥ k − h;
d, if x− y ≥ k − h.

It holds that

ϕ(θk
A) = θk−h

A , ϕ(θk
B) = θk−h

B , ϕ(θk
C) = θk−h

C , ϕ(θk
D) = θk−h

D , and ϕ(θk
R) = θk−h

R .

As an immediate consequence of Remark 7, it holds Lk−h
Conv ⊂ Lk

Conv. In
practice the projection ϕ works on each set θk

A (resp. B, C, D) leaving
unaltered the tiles which are also tiles of θk−h

X , and setting all the others
equal to a (resp. b, c, d).

The following example will clarify the construction of the sets of tiles:
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Example 15 Let us set k = 2. We explicitly describe the sets θ2
A, we par-

tially list θ2
R (allowing redundances), and we leave θ2

B, θ2
C , and θ2

D as a simple
exercise:

θ2
A =





# #
# a

,
# #
a a

,
# a

# a
,

# #
a (0, 1)

,
# #
a (−1, 0)

,

a (0, 1)
(−1, 0) (0, 0)

,
a (0, 1)
a (0, 1)

,
a a

(−1, 0) (−1, 0)
,

a a

a a





,

θ2
R =





# #
# (−1, 0)

,
# #
# (0, 0)

,
# #

(−1, 0) (−1, 0)
,

# #
(−1, 0) (0, 0)

,

# #
(0, 0) (0, 0)

,
# #

(0, 0) (1, 0)
,

# #
(1, 0) (1, 0)

, . . . ,

(0, 0) (0, 0)
(0, 0) (0, 0)

,
(0, 1) (0, 1)
(0, 0) (0, 0)

,
(−1, 0) (0, 0)
(−1, 0) (0, 0)

,
(0, 1) (0, 1)
(0, 1) (0, 1)

,

(−1, 0) (−1, 0)
(−1, 0) (−1, 0)

,
(0, 0) (0, 0)
(0, 0) (0, 0)

,
(1, 0) (1, 0)
(0, 0) (0, 0)

,
(0, 0) (0, 1)
(0, 0) (0, 1)

,

(0, 1) (0, 1)
(0, 1) (0, 1)

,
(1, 0) (1, 0)
(1, 0) (1, 0)

,
(0, 0) (0, 0)
(0, 0) (0, 0)

, . . .





,

We have finally collected all the tools for proving the main result of this
section:

Theorem 20 For each k ≥ 2, the language Lk
Conv is tiling recognizable.

Proof.
Let us define the tiling system T =

({0, 1}, Γk, θ
k, π

)
, with

θk = θk
A ∪ θk

B ∪ θk
C ∪ θk

D ∪ θk
R,

and π : Γk → {0, 1}, such that π(a) = π(b) = π(c) = π(d) = 0, and, for each
couple (x, y) ∈ Γk, π((x, y)) = 1.

The thesis is achieved after proving:
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a) if P is a L-convex containing at most k maximal rectangles, then there
exists an element in L(θk) which represents it;

b) each element of L(θk) represents a L-convex polyomino;

c) each element of L(θk) represents a L-convex polyomino having k maximal
rectangles at most.

a) By Remark 7, we assume the polyomino P to contain k maximal rect-
angles, and we describe how to represent it by means of a picture on
Γk. Let r0 < r1 < · · · < rk−1 be the maximal rectangles of P ordered
according to the length of the basis.

To each cell of rh∩rh+1∩· · ·∩rh′ , we associate the element (x, y) ∈ Γk,
such that |x| = h and |y| = k − 1 − h′. The signs of x and y are
determined by the position of the cell with respect to the central zone
O = r0 ∩ r1 ∩ · · · ∩ rk−1, i.e. the sign of x (resp. y) is positive if and
only if the cell is on the right of (resp. above) O.

Finally, to each cell in the zone A (resp. B, C, and D) we associate
the symbol a (resp. b, c, and d). Figure 4.7 shows the correspondence
between a polyomino having four maximal rectangles and a picture on
Γ4.

The check that each picture representing a L-convex polyomino with k
maximal rectangles belongs to L(θk) is immediate.

b) Remark 6 assures that each set of cells P represented by a pictures of
L(θk) is a convex polyomino. To prove the L-convexity of P we choose
any two of its cells and we show the existence of a path connecting
them having at most one change of direction. Let p be the picture
on Γk representing P ; the definition of θk allows us to achieve the L-
convexity by simply proving that, for any two couples (x, y) and (x′, y′)
in p, if |x|+ |y′| ≥ k then |x′|+ |y| < k. The constraints |x|+ |y| < k,
and |x′|+ |y′| < k directly lead to the thesis.

c) For any fixed k, we prove that no picture on Γk represents a L-convex
polyomino having more than k maximal rectangles.

This result is achieved in two steps:
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i) we show that the value x (resp. y) of all the elements (x, y) in
each row (resp. column) of a picture on Γk is constant, while the
sequence of the values of the y (resp. x) weakly increases;

ii) we use i) to show that if two elements (x1, y1) or (x2, y2) are such
that |x1| = |x2| or |y1| = |y2|, then they belong to the same
maximal rectangles.

The claim i) directly follows from the definition of the tiles of θk, i.e. for
each element (x, y), its left and right (resp. north and south) neighbors
in each tile share the same first (resp. second) component, while the
second (resp. first) component weakly increases from left to right (resp.
from south to north). We call index of a row (resp. column) the number
x (resp. y) which is common to all its elements.

The claim ii) needs a little bit more attention: by definition, each time
two consecutive maximal rectangles r and r′ intersect, there exist at
least a 2×2 square having one cell in R(P )\P , one in r\r′, one in r′\r,
and the fourth one in r∩ r′. By looking at the tiles of θk, this situation
is represented by one among the tiles (see the left part of Fig.4.8):

a (x, y + j)
(x− i, y) (x, y)

,
(x, y + j) b

(x, y) (x + i, y)
,

(x− i, y) (x, y)
c (x, y − j)

,
(x, y) (x + i, y)

(x, y − j) d
,

with i, j > 0. So, each time two maximal rectangles intersect both
the row and the column indexes change. Let us consider two elements
(x1, y1) and (x2, y2) such that |x1| = |x2| (if |y1| = |y2| a similar reason-
ing holds).

By i), there exist four north and south extremal elements (x1, y
up
1 )

(x1, y
low
1 ), (x2, y

up
2 ), and (x2, y

low
2 ), such that the first two elements lie

in the same column of (x1, y1), and the last two elements lie in the same
column of (x2, y2) (see the right part of Fig.4.8).

Let us proceed by contradiction and assume that yup
1 6= yup

2 (resp.
ydown

1 6= ydown
2 ). By i), the rows where (x1, y

up
1 ) and (x2, y

up
2 ) (resp.

(x1, y
down
1 ) and (x2, y

down
2 )) lie are different. Let us assume w.l.g. that
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b b

b

d
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ddcccc
cc

a
a
a a

aaaa

Figure 4.8: A graphical explanation of the proof of part c), Theorem 20 on
the picture of Figure 4.7; on the right part the elements (x1, y1) and (x2, y2)
are in red, while (x1, y

up
1 ), (x2, y

up
2 ) are in blue.

yup
1 < yup

2 . Each element in the intersection of the columns having index
x1 and the rows having index yup

2 has value (x1, y
up
2 ) (by definition of

θk, since |x1| + |yup
2 | < k), and one between the values a and b (since

(x1, y
up
1 ) is a north extremal point), and this is absurd.

So the only possibility is that yup
1 = yup

2 and ydown
1 = ydown

2 , and the
claim ii) holds.

From ii), it follows that the symbols of Γk are not sufficient to represent
a L-convex polyomino having more than k maximal rectangles, and the
proof of c) is complete.

We would like to point out that the Theorem 20 does not imply that the
class LConv is tiling recognizable unless we admit that the tiling system can
have an infinite alphabet Γ =

⋃
k≥1 Γk. Therefore the problem of establishing

if the class of L-convex polyominoes is tiling recognizable is not solved yet.
(we can recall, to this end, the conjecture of Vaglica [60] that this class is
not recognizable.)
However, as we observed in the introduction, the statement of Theorem 20
is rather interesting since, while L-convexity is a global property of the poly-
omino, we are able to represent it by means of a set of local properties (i.e.
the tiling system). A further effort should be made to check if other classes
of polyominoes considered in literature, in particular those not defined by
means of convexity constrains, can be represented by means of pictures of a
tiling system.
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Chapter 5

Two-dimensional languages and
DNA-computation

The results that we have exposed in the previous chapter can be applied
to bioinformatics, through the use of labeled Wang tiles, which derive from
Wang tiles, see Figure 5.1. Wang tiles were introduced in [62, 63] and later
studied in [22] in relation to problems concerning the tiling of the infinite
Euclidean plane. Labeled Wang tiles were introduced in [27] in matter of
recognizability of picture languages. Very recently Wang tiles are used for
image generation (i.e. [18]) and DNA computing, as in [23, 61] where the
authors, using labeled Wang tiles, show how information and algorithms
can be encoded in biochemical systems. Essentially, E. Winfree constructs
DNA “pictures”, where the pictures are legal aggregations of labeled Wang
tiles. Moreover in [27], S. Varricchio et al. wrote an algorithm to transform
tiling systems into labeled Wang tiles. Our aim is to combine the works of
Varricchio and Winfree and then to present a method to construct various
classes of convex polyominoes using DNA Wang tiles. In particular, we
focus on the classes of directed polyominoes and parallelogram polyominoes.
Using this approach polyominoes can be viewed as a brick for investigating
different machines that send a planar signal and compute on the plane using
self assembling of DNA oligo-nuceotides.

70



x fed

cba

(a) (b) (c)

Figure 5.1: a) A Wang Tiles; b) A Labeled Wang Tiles; c) A small portion
of the plane with a valid tiling.

5.1 Algorithm to transform Tiling Systems

into labeled Wang Tiles

Now we recall some results that link Wang tiles and tiling systems. First of
all we recall that a Wang Tile is a square in which each edge is assigned a
color (or symbol) and a labeled Wang tile is a Wang tile in which the interior
is assigned a symbol.

We represent a labeled Wang tile by:
α

β x γ

δ

where α, β, γ, δ are symbols

representing colors for the edges, and x is the symbol for the label.
Given a set of Wang tiles, a valid tiling requires all shared edges between tiles to
have matching colors.
Let T = 〈Σ,Γ, Θ, π〉 be a tiling system, we consider five subsets of tiles over the set
of tiles Θ: ΘN the tiles of the northern border, ΘE the tiles of the eastern border,
ΘS the tiles of the southern border, ΘW the tiles of the western border, ΘC the
corner tiles and ΘI the set of the remaining tiles (the tiles of the interior).
Before giving the algorithm we observe the following facts:

1. If we are given a picture, obviously we want to represent it exactly how it
appears both with the tiling system and the labeled Wang tiles, then its
dimension (i.e. the number of its columns and rows) must be the same in
both the representations. While this can be a trivial observation, it will be
useful in the following.

2. The notation that we will use for the labeled Wang tiles can deceive because
we will use more than one symbol to mean only one. But we will specify
when it will happen.
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3. We must take care to the projection π. This projection maps the alphabet
Σ (i.e. the alphabet of L(Θ)) in Γ (i.e. the alphabet of L(T )) in such a way
that a word p ∈ L(Θ) is mapped into p′ ∈ L(T ); more precisely the symbol
in position (i, j) in p′ is the image by π of the symbol in the position (i, j) in
p. Thus we insert a label in the labeled Wang tile, at position (i, j), which
is the image through π of the symbol in the position (i, j) in p (that is the
symbol at position (i, j) in p′).

Algorithm to transform tiling systems to labeled Wang tiles

The algorithm performs in the following three steps.

• First we consider ΘN , these tiles are of the kind
# #
a b

; for each of them

we construct the labeled Wang tile

BN

#
a

π(b) #
b

ab

.

With BN we mean that we are on the northern border, with #
a

we

mean one symbol, and the same holds for #
b

and for ab (as specified

in the observations above).

• Concerning the set of tiles ΘW , it contains tiles of the kind
# a

# b
.

We replace them by

#a

BW
π(b) a

b

#b

.

• For the corner tile west-north
# #
# a

∈ ΘI we have the labeled Wang

tile

BN

BW
π(a) #

a

#a

.

We can notice that the label of the labeled Wang tiles is given by the projection
of the symbol which is placed on the rightmost position of the label of the south
edge, and on the lowest position of the label of the east edge of the labeled Wang
tile.
As we say in the previous observations we can not repeat the easy mechanism that
we used to translate ΘN ,ΘW ,ΘI also to translate the remaining subsets of tiles.
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In fact, if we do this we will construct a picture with one row and one column more
than the corresponding two-dimensional picture of the tiling system. To solve this
trouble we use a trick to contract the two southern rows into a unique row and
the two eastern columns into one column.

• For the subset ΘS we must translate a pair of tiles of the tiling system in one
labeled Wang tile, precisely the first component of the pair is a tile of ΘS

and the second one a tile that matches with the row on its north, in order to
contract the two southern rows. So, for each tile of ΘS we translate the pair

(
a b

# #
,

c d

a b

)
with the labeled Wang tile

cd

c
a
#

π(b)
d
b
#

BS

.

• For the tiles of the eastern border we repeat an analogous of the previ-
ous reasoning in order to contract the two eastern columns: the generic

pair of tiles

(
a #
b #

,
c a

d b

)
is translated with the labeled Wang

tile

ca#

c
d

π(b) BE

db#

.

• For the N-E corner tile the pair

(
# #
a #

,
# #
b a

)
is translated

into the labeled Wang tile

BN

#
b

π(a) BE

ba#

.

• For the S-W corner tile the pair

(
# a

# #
,

# b

# a

)
is translated

into the labeled Wang tile

#b

BW π(a)
b
a
#

BS

.

• For the E-S corner tile, the tiles
a #
# #

,
c b

d a
,

d a

# #
,

b #
a #
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are translated into the labeled Wang tile

cb#

c
d
#

π(b) BE

BS

.

• In ΘI we have the tiles of the kind
a b

c d
that we translate with the

labeled Wang tile

ab

a
c

π(d) b
d

cd

.

Performing the translation we have obtained all the labeled Wang tiles necessary
to represent the local language L(Θ) recognized by the tiling system T . Finally,
we must take care of the projection π. We recall that π maps the alphabet Σ, that
is the alphabet of L(Θ) and of the label of the labeled Wang tiles, in Γ. Then
we must replace the labels of the labeled Wang tiles with the respective images
through π we have completed the translation.
The reader can find the proof of the correctedness and validity of the algorithm in
[27]. In the next section we make a slight improvement to the previously defined
procedure, by adding a class Wlambda, in order to control the transformation in
labeled Wang tiles of the empty polyomino and of polyominoes of sizes 1× n and
m× 1.

5.2 Convex polyominoes constructed on la-

beled Wang tiles

We already proved that many classes of convex polyominoes can be encoded as
pictures of tiling recognizable two-dimensional languages. In particular we showed
the coding for the class of convex polyominoes.

We are now able to encode Tc using the algorithm presented in the previous section,
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and then give the set of labeled Wang tiles that represents the language Lc.

Wλ =





BN

BW BE

BS

BN

BW 1 BE

#1#

#1#

BW 1 BE

#1#

#1#

BW 1 BE

BS

BN

BW 1
#
1
#

BS

BN

#
1
#

1
#
1
#

BS

BN

#
1
#

1 BE

BS





,

WR =





BN

BW
1

BE

BS

BN

BW 1 #
1

#1

BN

#
1

1 BE

11#

BN

#
1

1 #
1

11

#1

BW 1 1
1

#1

#1

Bw 1
1
1
#

BS

11

1
1
#

1
1
1
#

BS

11#

1
1
#

1 BE

BS

11#

1
1

1 BE

11#

11

1
1

1 1
1

11





,

WA =





aa

a
a

0 a
a

aa

BN

BW 0 #
a

#a

BN

#
a

0 #
a

aa

#a

BW 0 a
a

#a

BN

#
a

0 #
1

a1

#a

BW 1 a
1

#1

aa

a
a

0 a
1

a1

a1

a
a

1 1
1

a1

aa

a
1

1 a
1

11

a1

a
1

1 1
1

11





,
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WB =





bb

b
b

0 b
b

bb

BN

#
b

0 BE

bb#

BN

#
1

0 BE

1b#

;
1b#

1
1

0 BE

1b#

bb#

b
1

0 BE

1b#

BN

#
1

0 #
b

1b

bb#

b
1

1 BE

11#

1b#

1
1

1 BE

11#

bb

b
1

0 b
b

1b

1b

1
1

0 b
b

1b

bb

b
1

0 b
1

11

bb#

b
b

1 BE

bb#

BN

#
b

0 #
b

bb

1b

1
1

1 b
1

11





,

WC =





cc

c
c

0 c
c

cc

#c

BW 0
c
c
#

BS

c1

c
c
#

0
1
c
#

BS

11

1
c
#

0
1
c
#

BS

#c

BW 0 c
c

#c

11

1
c
#

1
1
1
#

BS

c1

c
c
#

1
1
1
#

BS

#1

BW 0
1
c
#

BS

#1

BW 0 1
c

#c

c1

c
c

0 1
c

cc

c1

c
c

1 1
1

c1

11

1
c

0 1
c

cc

11

1
c

1 1
1

c1

cc

c
c
#

0
c
c
#

BS





,
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WD =





dd

d
d

0 d
d

dd

1d#

1
d
#

0 BE

BS

1d#

1
d

0 BE

dd#

11#

1
d
#

0 BE

BS

11#

1
1
#

0 BE

BS

dd#

d
d
#

0 BE

BS

dd#

d
d

0 BE

dd#

11#

1
1

0 BE

1d#

11

1
d
#

0
1
d
#

BS

1d

1
d
#

0
d
d
#

BS

dd

d
d
#

0
d
d
#

BS

11

1
1
#

0
1
d
#

BS

1d

1
1
#

0
d
d
#

BS

1d

1
d

0 d
d

dd

1d

1
1

0 d
d

1d

11

1
d

0 1
d

dd

11

1
1

0 1
d

1d

;
11#

1
d

0 BE

dd#

1d#

1
1

0 BE

1d#





.

To summarize, convex polyominoes are generated on the plane using the set
of labeled Wang tiles WConv = Wλ ∪WR ∪WA ∪WB ∪WC ∪WD where:

i. Wλ generates rectangles of dimensions 0, 1× n and m× 1;

ii. WR generates the other rectangles;

iii. WA generates the upper right side of the exterior of the polyomino (side
A in the picture Fig. 4.4), WB the upper left side, WC the lower right
side and WD the lower left side.
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5.3 Example of Parallelogram polyomino on

labeled Wang tiles

A refinement of the algorithm we have proposed is the encoding of parallel-
ogram polyominoes using labeled Wang tiles. The utility of such encoding
is for instance to simulate a planar signal. So, let us denote by LP the
recognizable two-dimensional language that represents parallelogram poly-
ominoes. Then –applying again our algorithm– we can translate LP into a
set WP of labeled Wang tiles. More explicitly this set of Wang tiles is given
by WP = Wλ ∪ WR ∪ WA ∪ WC , where Wλ, WR, WA, and WC have been
defined in the previous section.

Just to give an example, we show a parallelogram polyomino, the two-
dimensional word coming from LP , its projection by π (where π(a) = π(c) =
0, π(1) = 1) and its encoding by means of labeled Wang tiles.

Figure 5.2: A directed (parallelogram) polyomino

# # # # # #
# a a a 1 #
# a a 1 1 #
# a a 1 c #
# a 1 1 c #
# 1 1 c c #
# # # # # #

−→π

# # # # # #
# 0 0 0 1 #
# 0 0 1 1 #
# 0 0 1 0 #
# 0 1 1 0 #
# 1 1 0 0 #
# # # # # #

Figure 5.3: The two dimensional word that represents the polyomino in
Figure 5.2, and its projection by π.

Similarly, using labeled Wang tiles, we can construct the following families
of convex polyominoes:

• directed convex polyominoes, using the set WDC = Wλ ∪WR ∪WA ∪
WB ∪WC ;
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BN BN BN BN

BW 0 #
0

#
0

0 #
0

#
0

0 #
0

#
0

1 BE

#0 00 00 01#

#0 00 00 01#

BW 0 0
0

0
0

0 0
0

0
0

1 0
1

0
1

1 BE

#0 00 01 11#

#0 00 01 11#

BW 0 0
0

0
0

0 0
0

0
0

1 1
1

1
1

0 #
0

#0 00 01 10#

#0 00 01 10#

BW 0 0
0

0
0

1 0
1

0
1

1 1
1

1
1

0 BE

#0 01 11 10#

#0 01 11 10#

BW 1
0
1
#

0
1
#

1
1
1
#

1
1
#

0
1
0
#

1
0
#

0 BE

BS BS BS BS

Figure 5.4: The encoding by labeled Wang tiles of the polyomino in Fig-
ure 5.2.
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• Ferrers diagrams, using the set WF = Wλ ∪WR ∪WB

• stack polyominoes the set WS = Wλ ∪WR ∪WA ∪WB.

5.4 Form labeled Wang tiles to DNA Wang

tiles

Using the construction of Barish, Rothemund and Winfree [3], we have a
method to transform the set of labeled Wang tiles into the set of DNA Wang
tiles. In fact, we are able to construct a nano structure carrying a bit (0
or 1) according to the exterior of the polyomino (labeled by 0) or the inte-
rior of the polyomino (labeled by 1). Following the construction, we could
construct the set of DNA Wang tiles associated with convex polyominoes,
parallelogram polyominoes, directed-convex polyominoes, stack polyominoes
or Ferres diagrams.
The next step consists in the real construction of the nano structures in solu-
tion. In particular, it will be interesting to investigate the typical shape of a
convex polyomino constructed using DNA tiles according to the temperature
or the concentration in solution of different tiles.

To end this study, an interesting further problem is to construct a strand in
order to control the perimeter of the polyomino generated by DNA Wang
tiles. In each step of the construction, each picture is surrounded by the
symbol #. In the last set of tiles, this symbol appears in the Wang tiles of
the border. Nevertheless, we also use the symbols BN , BE, BS and BW for
coding the border when we pass to DNA tiles.
Actually, it is sufficient to use 7 symbols (the 4 symbols BN , BE, BS, BW ,
plus 3 others) to construct a DNA strand to impose the size of the polyomino.
The goal of this last construction is to force the size of the polyomino. This
DNA strand begins with BS, then in the corner we have BWS, then m times
BW , then BWN , then n times BN , then BNE and at the end BE. This strand
imposes that the constructed polyomino has perimeter equal to 2m + 2n.

Of course, such a construction gives only by a theoretical point of view a
convex polyomino with given perimeter, since in the real situation there can
be errors in the self-assembling. In some future work it would be interesting
to study in solution the average number of errors concerning the perimeter
of the polyomino generated using DNA tiles.
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Figure 5.5: Strand that controls the perimeter of the convex polyomino.
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