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Introduction

Depuis les travaux de Beilinson, Ginzburg et Soergel (voir [BGS96]), la dualité de Kos-
zul et la notion d’anneau de Koszul sont devenues des ingrédients essentiels en théorie de
Lie (voir par exemple [AJS94]). L’un des résultats principaux de la présente thése est la
construction d’une “dualité de Koszul géométrique” reliant différentes catégories dérivées
de représentations de l'algébre de Lie g d’un groupe algébrique semi-simple, connexe, sim-
plement connexe sur un corps algébriquement clos de caractéristique positive p, et I’étude
de ses propriétés. En particulier nous en déduisons que ’algébre enveloppante restreinte de
¢ peut étre munie d’une graduation de Koszul si p est suffisamment grand, et nous donnons
des informations sur son anneau dual.

1 Contexte

1.1 Anneaux de Koszul

La notion d’anneau de Koszul a été définie en 1970 par Priddy dans [Pri70]. Sauf men-
tion explicite, les anneaux considérés ne seront jamais supposés commutatifs. Un anneau

gradué
A=A
i€Z
est dit de Koszul s'il vérifie les propriétés suivantes :
1. A;,=0s1i<0;
2. Ag est un anneau semi-simple ;

3. Le A-module Ay = A/A~( admet une résolution projective graduée
-—>P2—>P1—>PO—>A0—>O

telle que, pour tout i > 0, P’ est engendré sur A par sa partie de degré 1.

Les conditions 1 et 2 sont faciles & comprendre. Si elles sont vérifiées, en termes plus
concrets, la condition 3 implique que I'anneau A est engendré (comme Ap-algébre) par des
éléments de degré 1, que les relations entre ces générateurs sont engendrées en degré 2, que
les relations entre ces relations sont engendrées en degré 3, et ainsi de suite (les relations
d’ordre n sont engendrées en degré n + 1).
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L’exemple le plus simple d’anneau de Koszul (hors les anneaux semi-simples, concentrés
en degré 0) est celui de l'algébre symétrique S(V') d’un espace vectoriel V' de dimension
finie, placé en degré 1.

Si A est un anneau gradué en degrés positifs ou nuls, on peut considérer ’anneau gradué

E(A) = @ Ext}(Ao, Ao),

n>0

muni du produit de Yoneda, ot les groupes Exty sont pris dans la catégorie des A-modules
(non gradués). Si A est un anneau de Koszul, tel que A est un Ag-module de type fini, alors
lanneau A' 1= E(A)°P est également un anneau de Koszul, appelé anneau dual. Notons
que sous ces hypothéses on a un isomorphisme canonique (A')' = A.

Par exemple, 'anneau dual de anneau de Koszul S(V') est 1’algébre extérieure A(V™)
du dual V* de V. Ici encore, V* est placé en degré 1.

1.2 Les travaux de [BGS96]

Dans l'article [BGS96], les auteurs démontrent que chaque bloc de la catégorie O d'une
algébre de Lie semi-simple complexe gc est “gouverné” par un anneau de Koszul, c’est-a-
dire est équivalent a la catégorie des modules non-gradués de type fini sur un anneau de
Koszul. Dans le cas d’un bloc régulier, cet anneau est auto-dual, c’est-a-dire isomorphe a
son anneau dual. Dans le cas d’un bloc singulier, la catégorie des modules de type fini (non
gradués) sur 'anneau dual est également équivalente & une sous-catégorie explicite de la
catégorie O.

La preuve de ce résultat est basée sur une description géométrique des blocs de la
catégorie O. Plus précisément, la théorie de la localisation due & Beilinson et Bernstein
donne des équivalences de catégories entre certaines catégories (abéliennes) de gc-modules
et certaines catégories de D-modules sur la variété des drapeaux B¢ associée a gc. Il
s’agit de la partie “algébrique” de la description. Ensuite vient une partie “topologique” :
la correspondance de Riemann-Hilbert identifie ces catégories de D-modules & certaines
catégories de faisceaux pervers sur Be. Schématiquement, on a donc la description suivante :

Localisation D-modules Riemann-Hilbert Faisceaux
gc-modules ————— _ .

(Algeébre) sur Bc (Topologie) pervers sur B¢

1.3 Localisation en caractéristique positive

Dans les articles [BMROS8| et [BMRO06], Bezrukavnikov, Mirkovi¢ et Rumynin ont déve-
loppé un analogue de la description géométrique précédente en caractéristique positive. Plus
précisément, considérons l'algébre de Lie g d'un groupe algébrique semi-simple, connexe,
simplement connexe G sur un corps algébriquement clos de caractéristique p. Dans cette
sous-partie, nous supposerons que p est supérieur au nombre de Coxeter h de G.

La premiére étape (algébrique) de leur construction consiste a démontrer que les ana-
logues des foncteurs considérés par Beilinson et Bernstein induisent des équivalences de
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catégories dérivées entre certaines catégories de g-modules et certaines catégories de D-
modules (cristallins) sur la variété des drapeaux B associée a G.

La correspondance de Riemann-Hilbert n’admet pas d’analogue en caractéristique po-
sitive dans ce contexte. En remplacement, les auteurs de [BMROS8] utilisent des arguments
géométriques : la propriété d’Azumaya du faisceau d’algébres d’opérateurs différentiels sur
une variété lisse en caractéristique positive permet de démontrer des équivalences de caté-
gories (abéliennes) entre les catégories de D-modules considérées et certaines catégories de
faisceaux cohérents sur la varietée gt ou 'exposant () désigne le décalage de Frobenius,
et ot g est la “résolution simultanée” de Grothendieck (un certain fibré vectoriel au-dessus
de B). Schématiquement, on a donc la description suivante :

Localisation dérivée D-modules Azumaya Faisceaux
g-modules ST i ~1) (-
(Algebre) sur B (Géométrie) cohérents sur g

Nous renviendrons plus en détail sur cette théorie en 2.1 ci-dessous.

1.4 Koszulité de P’algébre enveloppante restreinte

Gardons les notations de la sous-partie 1.3, et notons (Ug)p l'algébre enveloppante
restreinte de g. Dans Uarticle [AJS94], Andersen, Jantzen et Soergel démontrent que, pour
p suffisamment grand (sans borne explicite), les blocs réguliers de (Ug)o peuvent étre munis
d’une graduation de Koszul.

Dans le chapitre IIT de cette thése (voir 2.3 ci-dessous) nous obtenons en particulier
une nouvelle preuve de ce résultat comme corollaire de nos constructions. Nous donnons
également des informations sur 'anneau de Koszul dual, et nous étendons cette propriété
aux blocs singuliers.

2 Présentation des résultats

Ce mémoire se compose de quatre chapitres.

2.1 Rappels et calculs explicites

Dans le chapitre I, nous rappelons tout d’abord les résultats principaux des articles
[BMROS8] et [BMRO6]. Supposons comme ci-dessus que la caractéristique p est supérieure
au nombre de Coxeter de G. Soit T' C G un tore maximal, et t son algébre de Lie. Le
centre 3 de l'algébre enveloppante Ug de g est engendré par deux sous-algébres : le centre
de Harish-Chandra 3uc et le centre de Frobenius 3p.. Un caractére de 3 est donc donné
par une “paire compatible” (A, x) ot A € t* (alors A définit un caractére de 3puc) et x € g*
(alors x définit un caractére de 3py).

Dans ce mémoire nous considérons uniquement! le cas ot A est I'image d’un caractére
de T (que I'on note également \) et ot x est nilpotent (et méme x = 0 la plupart du

!Notons qu’on peut toujours se ramener i ce cas si I’on accepte de considérer des groupes réductifs
plutot que semi-simples, voir par exemple [Jan98, 7.4].
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temps). On note (Ug)* := (UF) Rz, kn, UQ)y = (Ug) @z, ky les algebres obtenues

par spécialisation. En particulier, (Ug)g est I’algébre enveloppante restreinte considérée en

1.4. On note également Mod%\ ) (Ug) la catégorie des Ug-modules de type fini sur lesquels

3 agit avec un caractére généralisé (A, x), et on utilise des notations similaires pour les
p : f fi

catégories Mod8((Ug)*), Mod 2 ((Ug),).

Comme en 1.3, soit g la résolution simultanée de Grothendieck, et soit Ncila
variété de Springer. On considére B comme la section nulle de N et g. Alors si A est un
caractére régulier, la théorie de la localisation en caractéristique positive donne notamment
des équivalences de catégories

. DCohgn, (V) = DModff((Ug)?) :
VB D'Cohyn (™) = DbMod%\O)(L{g).

Ici, pour Y un sous-schéma fermé d’un schéma X, on a noté Cohy (X) la catégorie des
faisceaux cohérents sur X supportés (ensemblistement) dans Y.

A la suite de ces rappels nous présentons des calculs explicites dans les cas ott G = SL(2)
et G = SL(3) (obtenus en collaboration avec Roman Bezrukavnikov, et publiés dans un
appendice & [BMRO08]). Plus précisément, dans ces deux cas nous déterminons les images in-
verses par I'équivalence €5 des objets simples de la catégorie Mod(f)g((u 9)"). Nous calculons
également des objets de la catégorie DbCoh(/\7 (1)) ayant le “comportement homologique”
d’objets projectifs de la catégorie Mod[f)g((Ug)O) via €5. Notons que la catégorie abélienne
Modgg((L{g)O) ne posséde aucun object projectif.

Les calculs dans le cas de G = SL(2) sont faciles, mais ils seront utiles car ils se géné-
ralisent pour déterminer certains objets dans le cas général (nous présentons et utilisons
cette généralisation dans le chapitre III). Dans le cas de G = SL(3), les calculs deviennent
plus difficiles.

2.2 Action géométrique du groupe de tresses

Dans le chapitre II nous présentons une construction qui aura un réle technique impor-
tant dans le chapitre I1I, mais qui a également un intérét propre.

Notons Blg le groupe de tresses affine étendu associé & G. Pour presque toute carac-
téristique p (et en particulier si p = 0) nous construisons par des méthodes géométriques
une action? du groupe Blg sur la catégorie D°Coh(g). Le groupe Blg a deux types de
générateurs : des éléments T, associés aux réflexions simples du groupe de Weyl W de
G (pour un certain choix d’une base du systéme de racines associé), et des éléments 0,
associés aux caractéres de T'. Pour cette action, ’élément 6, agit par produit tensoriel avec
le fibré en droites sur g associé naturellement a x.

Décrivons maintenant 1’action des éléments T , dans le cas ot la caractéristique p est
trés bonne (pour G). Dans ce cas, le groupe W agit de fagon naturelle sur la restriction g

%Ici nous considérons la notion faible d’action d’un groupe sur une catégorie : une action d’un groupe A
sur une catégorie C est la donnée d’un morphisme de groupe de A vers le groupe des classes d’isomorphisme
d’auto-équivalences de C.
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de g aux éléments réguliers semi-simples. Notons S, I’adhérence dans g x g du graphe de
Sq sur grs. Alors T, agit par convolution (ou transformée de Fourier-Mukai) avec le noyau
Og, .

Cette action se factorise également en une action de Blg sur la catégorie DbCoh(./\N/ ).

Nous présentons deux preuves du fait que ces foncteurs donnent lieu & une action de
Blg. La premiére démontre le résultat dans le cas ou G' n’a pas de composante de type
G2 et p # 2 si G a une composante de type B, C ou F. Elle a été publiée dans [Ric08a].
La seconde preuve est valide pour tout groupe G, si la caractéristique p est trés bonne?. Tl
s’agit d’un travail en collaboration avec Roman Bezrukavnikov.

Cette action a plusieurs interprétations en théorie des représentations. Supposons tout
d’abord que la caractéristique p est positive, et supérieure au nombre de Coxeter de G.
Dans ce cas, Bezrukavnikov, Mirkovi¢ et Rumynin ont construit dans [BMRO06| une action
du groupe de tresses Blg sur chacune des catégories DbModaX) (Ug) pour A régulier et x

nilpotent. Via les équivalences vf et leurs analogues pour x # 0, elles induisent des actions
de B! sur diverses sous-catégories de DbCoh(ﬁ(l)). Nous démontrons que la décalée par
le Frobenius de P’action considérée ci-dessus sur D’Coh(g) se restreint en les actions de
[BMRO6] sur toutes ces sous-catégories.

Supposons maintenant que le corps de base est C, et considérons l'action de By sur
DbCoh(J\~/ ). Comme pour g, les générateurs 6, et Ty, agissent par convolution, et les noyaux
associés sont des images directes de faisceaux sur le produit fibré Z := N x N, une sous-
variété fermée de ./(/'5 N (appelée variété de Steinberg). Ici N est la variété nilpotente de
g, et le morphisme N' — N est la résolution de Springer. D’autre part, ces noyaux sont
naturellement G x C*-équivariants, on C* agit sur Z par dilatation dans les fibres de la
projection Z — B x B. L’action est donc définie par un morphisme de groupes de B4 vers

le groupe des classes d’isomorphismes d’objets de la catégorie DbCohgXCX (J\~/ x N ) (muni
du produit de convolution). Passant a la K-théorie, on obtient un morphisme de groupes
de B! vers la K-théorie G x C*-équivariante de Z, qui est isomorphe (d’apres Ginzburg et
Kazhdan-Lusztig, voir [CG97] ou [Lus98]) a l'algebre de Hecke affine étendue H. g4 associce
a4 G. Cette algébre est un certain quotient de I’algebre de groupe de Bl sur Z[v, v !]. Nous
démontrons que le morphisme Bl g — H.g obtenu par cette construction est le morphisme

~ !

naturel. Cette action est donc une catégorification de I'isomorphisme KGxC* (Z2) = Hg.

Enfin, toujours dans le cas du corps C, cette action est liée a la construction géomé-
trique (due & Springer) des représentations du groupe W dans la cohomologie des fibres
de Springer.

2.3 Dualité de Koszul et U/ g-modules

Le chapitre III présente les résultats principaux de cette thése. Nous construisons une
“dualité de Koszul” qui relie, pour A un caractére régulier de T, les catégories dérivées

3Rappelons que cette hypothése exclut les groupes ayant une composante de type autre que A si p = 2,
de type E, F ou G si p = 3, de type G si p =5, ou de type A,_1 si p divise n.
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DbModgg((Ug)’\) et DbModE\g((Ug)o), et montrons que cette dualité envoie les modules
simples sur les modules projectifs indécomposables. Nous utilisons ensuite cette propriété
pour reprouver, préciser et étendre certains résultats de [AJS94].

Cette approche fournit également des informations sur les images inverses de certains
Ug-modules simples ou projectifs par les équivalences Ef et vf\g de 2.1.

Supposons que la caractéristique p est supérieure au nombre de Coxeter de G, et
soit A un caractére dans 'alcove fondamentale. Via 1’équivalence ef de 2.1, la catégorie
DbModgg((Z/{ g)*) s’identifie & une sous-catégorie de la catégorie D’Coh(N1). En utilisant
des arguments géométriques, nous construisons :

(a) des catégories triangulées “graduées” C8" et D& (c’est-a-dire, munies d’une auto-
équivalence notée (1)), qui sont des “versions graduées” des catégories D?Coh(N1))
et DbModf\g((Z/lg)o) respectivement (c’est-a-dire, on a des foncteurs “d’oubli de la
graduation”, For : C& — D*Coh(N' (D) et For : D& — DbModig((Ug)o) ;

(b) une équivalence k : C& = D",

On obtient donc un diagramme

cer = Der
Forl lFor
D'Mod®((Ug)»)— DPCoh(N D) D'Mod® ((Ug)o).

Notre résultat essentiel est alors que, pour p > 0, ’équivalence k envoie les relevés
des objets simples de Modgg((Z/{g)/\) sur les relevés des objets projectifs de Modig((Z/{g)o), a

un décalage prés. Notons que la catégorie Modig((u g)o) est équivalente & la catégorie des

modules sur un certain quotient (g)y de I'algébre enveloppante restreinte (Ug)o (le bloc
associé a \) ; elle contient donc des objets projectifs.

L’idée principale de la preuve est la suivante : en utilisant des foncteurs de transla-
tion, il suffit d’établir ce résultat pour les objets simples associés aux poids dans l'alcéve
fondamentale ; et on peut traiter explicitement ces objets en généralisant les calculs du
chapitre T pour SL(2) et SL(3). Dans I’étape de réduction a l'alcove fondamentale, nous
utilisons la conjecture de Lusztig sur les caractéres des G-modules simples (|[Lus80b]). Cette
conjecture a été démontrée, grace a des travaux de Kazhdan-Lusztig ([KL93a|, [KL93b],
|KL94a|, [KL94b|, |Lus94|), Kashiwara-Tanisaki (|[KT95|, [KT96]) et Andersen-Jantzen-
Soergel (J[AJS94]), lorsque la caractéristique p est suffisamment grande, sans borne expli-
cite. Ceci explique notre restriction sur p.

De ce résultat découle en particuler I'existence d’une graduation de Koszul sur 'algebre
(Ug)}, pour tout caractére A régulier, sous les mémes hypothéses que dans [AJS94], c’est-a-
dire pour p suffisamment grand (voir la sous-partie 1.4). Nos méthodes sont trés différentes
de celles utilisées dans 'article [AJS94], et fournissent également des informations sur
'anneau dual, qu’on peut relier a la catégorie Modo((Ug)™).

En utilisant un “analogue parabolique” des constructions précédentes, nous démontrons
également que pour un poids u singulier, le bloc (Ug)ly de (Ug)o associé & p peut étre muni
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d’une graduation de Koszul si p > 0. Dans ce cas aussi nous donnons des informations sur
I’anneau dual.

11 découle en particulier que, pour p suffisamment grand, ’anneau (Ug)o peut étre muni
d’une graduation de Koszul. Notons que cette propriété a été conjecturée par Soergel (sous
I’hypothése p > h) dans son exposé a 'I.C.M. de Zurich (voir [Soe94]).

2.4 Dualité de Koszul linéaire

Dans le chapitre IV nous présentons une version légérement différente, et dans un
cadre plus général, d’'un résultat intermédiaire du chapitre III, obtenue en collaboration
avec Ivan Mirkovié. Ce chapitre est indépendant des trois autres, et ne fait intervenir ni
groupe algébrique, ni algébre de Lie.

La notion de dg-schéma a été introduite par Ciocan-Fontanine et Kapranov dans
[CFKO1|. Pour nous, un dg-schéma sera la donnée d’une paire (X, Ax), ou X est un
schéma noethérien et Ax est un faisceau de Ox-dg-algébres commutatives (au sens gra-
dué), quasi-cohérent comme Ox-module, et concentré en degrés négatifs ou nuls. Un des
grands intéréts de cette notion est le fait que la catégorie dérivée des faisceaux de Ax-
dg-modules ne dépend (& équivalence prés) du choix de Ax qu’a quasi-isomorphisme preés.
Ceci permet de “définir” 'intersection dérivée Yr}%X Z de deux sous-schémas fermés Y et
Z d’un schéma X comme étant le dg-schéma

(X, Oy éox 0z),

& quasi-isomorphisme prés.

Considérons un schéma X noethérien, intégre, séparé et régulier. Soient E un fibré
vectoriel au-dessus de X, et I}, [, C E des sous-fibrés. Notons Fi-, Fi- les orthogonaux
de F1, F5, qui sont des sous-fibrés du dual E* de E. Avec ces notations, nous établissons
une équivalence de catégories contravariante entre une “version graduée” de la catégorie
dérivée des dg-faisceaux cohérents sur F FEW g F5, et une “version graduée” de la catégorie
dérivée des dg-faisceaux cohérents sur Fj- A Fi.

Cette dualité de Koszul linéaire généralise la dualité classique entre les modules sur ’al-
gébre symetrique S(V') d’un espace vectoriel V' (de dimension finie) et I’algébre extérieure
A(V*) du dual V*. Plus précisément, nous remplagons V par un complexe de faisceaux
localement libres de rang fini, ayant deux termes non-nuls.

Plusieurs applications de cette construction en théorie des représentations seront pré-
sentées dans un travail ultérieur (voir la sous-partie 3.2 ci-dessous).

Notons que la construction des catégories C8", D8 considérées en 2.3 est basée sur les
mémes idées que celles développées dans ce chapitre. Cependant, la construction précise de
I’équivalence k dans le chapitre II1 est 1égérement différente des constructions du chapitre
IV (et donc n’en est pas un cas particulier).
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3 Perspectives

3.1 Action du groupe de tresses précisée

Conjecturalement, 1’action du groupe B'g sur la catégorie D’Coh(g) (voir 2.2) admet
une description plus précise si p est trés bon pour G.

Il existe une application canonique W < Blg. qui envoie un élément w € W sur un
élément de Bgﬁf que nous noterons T,,. Pour tout w € W, notons Z,, ’adhérence dans
g x g du graphe de Paction de w sur gys (voir 2.2). Alors Bezrukavnikov conjecture dans
[Bez06b] que I’élément T, agit par convolution avec le noyau Oz, € D’Coh(g x g). Cet
énoncé semble beaucoup plus difficile & démontrer que la simple existence de 1’action, dans
la mesure ol les variétés Z,, n'ont a priori aucune propriété de régularité. Par exemple,
un point essentiel (et non trivial) de la preuve de l'article [Ric08a| consiste a démontrer
que la variété Z,, est normale (et Cohen-Macaulay) lorsque vg est I’élément de plus grande
longueur dans le groupe de Weyl d’un sous-groupe parabolique de G de rang 2, de type
A5 ou Bs. Dans le cas de Bo, la variété Z,, n’est pas Gorenstein.

Supposons que le corps de base est C. Il existe un morphisme naturel g — g*, et la
variété g Xg+ g a méme K-théorie que Z. La description conjecturale précédente de laction
donnerait en particulier, pour chaque w € W, un faisceau cohérent sur g xg- g dont la
classe en K-théorie correspond, via isomorphisme K&*C™ (g x g« g) = KG*C"(Z) = H!,
(voir 2.2), a I'image de Ty, dans Hg.

Revenons au cas général. Notons By le sous-groupe de B! engendré par les Ty, w €
W. Ce groupe est isomorphe au groupe de tresses associé & W. De la description plus
précise de 'action découlerait également, en utilisant un théoréme de Deligne (|Del97]),
quon peut définir une action au sens fort de By sur D*Coh(g), c’est-a-dire que pour tout
b € By on peut choisir une auto-équivalence Fj, de D?Coh(g) dans la classe d’isomorphisme
associée a b ci-dessus, et pour tous b, b’ € By on peut choisir un isomorphisme de foncteurs
Fyo Fy = Fyy, de telle sorte que ces données vérifient certaines relations d’associativité. I1
serait alors intéressant d’étudier si cette propriété est vraie pour le groupe B!y tout entier.

3.2 Applications de la dualité de Koszul linéaire

Dans l'introduction du chapitre IV nous présentons deux applications de la dualité de
Koszul linéaire, qui seront démontrées dans un travail ultérieur.

Tout d’abord, considérons un groupe algébrique semi-simple, connexe et simplement
connexe G sur C, et utilisons les mémes notations que ci-dessus. On a les sous-fibrés
vectoriels Fy := N x N et Fy := Ag* x (B x B) du fibré vectoriel constant E au-dessus
de B x B, de fibre g* x g*. Ici Ag* C g* x g* est la copie diagonale. Via la forme de
Killing, g s’identifie naturellement & g*, ce qui identifie également F et E*. Via cette
identification, 'orthogonal Fi- s’identifie a g x g. L’orthogonal F3- s’identifie, lui, & la
copie anti-diagonale de g*. Quitte & multiplier par —1 dans la deuxiéme copie de g*, on
peut supposer que Fy- = Ag* x (B x B).
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Une version équivariante de la construction du chapitre IV donne donc une équivalence
entre des catégories de dg-faisceaux cohérent G x C*-équivariants sur

(/\7 X N) ﬁ(g*xg*)x(BxB) Ag" x (BxB) et (gxg) %(g*xg*)x(BxB) Ag® x (B x B).

Notons que, & gauche, l'intersection non-dérivée est Z, et que, a droite, I'intersection non-
dérivée est g Xg+ g. On en déduit aisément que les deux catégories considérées ont des

~ /

groupes de Grothendieck isomorphes a K¢*C* (Z) = H/ .

Cette équivalence sera l'ingrédient essentiel d’une réalisation géométrique de l'invo-
lution de Iwahori-Matsumoto, c’est-a-dire la construction géométrique d’une équivalence
entre les deux catégories ci-dessus telle que "'automorphisme induit en K-théorie est I'invo-
lution de Iwahori-Matsumoto. Notons qu’une réalisation géométrique avait été construite
par Evens et Mirkovi¢ pour I'involution de Iwahori-Matsumoto de I’algébre de Hecke affine
étendue graduée, dans [EM9T7].

Pour la deuxiéme application, considérons un fibré quelconque F, et deux sous-fibrés
Fy, Fs, sur le corps de base C. De méme que ci-dessus, le groupe de Grothendieck des
catégories reliées par la dualité de Koszul linéaire est respectivement K€ (F) N F) et
KC*(F* N F3"). Dans les deux cas, C* agit par dilatation dans les fibres de E ou F*. On

obtient donc un isomorphisme
K (F n R) = K (F n FH.

Cet isomorphisme est relié, via le caractére de Chern, & l'isomorphisme en homologie de
Borel-Moore
HMEF N B) = HPM(EF N Fy)

défini par Kashiwara en utilisant une transformée de Fourier.

3.3 Koszulité de certaines algébres associées aux slices de Slodowy

Bezrukavnikov définit dans [Bez06b| une algebre A,, associée a un élément nilpotent
X € g*. Plus précisément, cette algébre est associée au slice de Slodowy associé a x. Il
demande dans |[Bez06b, 2.26] si cette algébre peut étre munie d'une graduation de Koszul.

Dans le cas ol x est régulier, il est facile de voir que la réponse est positive. Le cas ou
X est sous-régulier peut également étre traité par des méthodes spécifiques, et la réponse
est encore positive. Le cas ou xy = 0 est essentiellement traité dans le chapitre ITI. Mais le
probleéme reste ouvert dans les autres cas. Il pourrait peut-étre étre traité en comparant la
t-structure sur D*Coh(N) provenant de ’équivalence e de 2.1 et la t-structure ezotique sur
DPCoh®(N) définie par Bezrukavnikov dans [Bez06a], puis en se ramenant & une question
dans cette derniére catégorie.

3.4 Généralisation aux algébres de Kac-Moody

Pour le corps de base C, la stratégie d’étude des g-modules (voir le diagramme en 1.2)
a été (partiellement) généralisée aux algébres de Kac-Moody complexes par Kashiwara et
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Tanisaki (voir [Kas90], [KT90], [KT95], [KT96|; voir également [KT98] pour une vue d’en-
semble de ces travaux). Suivant une suggestion de Vasserot, il serait intéressant d’étudier
la possibilité d’une généralisation de 1’étude de [BMROS|, [BMRO6| au cas des algebres de
Kac-Moody (ou au moins des algébres affines) en caractéristique positive. Il semble raison-
nable d’espérer que la partie “algébrique” de la construction (c’est-a-dire la relation entre
g-modules et D-modules sur la variété des drapeaux) se généralise sans grand changement,
en adaptant les idées de Kashiwara et Tanisaki. Toutefois, trouver un équivalent de la
partie “géométrique” de la preuve (c’est-a-dire la relation entre D-modules sur la variété
des drapeaux et faisceaux cohérents sur ﬁ(l)) semble moins clair.

Il serait certainement nécessaire dans cette optique de développer I'étude des représen-
tations des algébres de Kac-Moody en caractéristique positive, ce qui a été peu fait jusqu’a
présent (voir cependant les articles de Mathieu [Mat96] et [Mat03]).

En 2.2 nous avons expliqué que I’action du groupe Blg sur DbCoh(/\Nf ) est une “ca-
tégorification” de 1'isomorphisme H.g = KG*C(Z). Vasserot a donné dans [Vas05] une
généralisation partielle de cet isomorphisme au cadre affine. Dans ce cadre, H. g est rempla-
cée par l'algébre de Cherednik (ou algébre de Hecke doublement affine), et Z par une variété
de Steinberg affine Z,g (qui est de dimension infinie). Plus précisément, il donne une géneé-
ralisation de la construction géométrique des H. g-modules simples, qui est elle-méme une
conséquence de I'isomorphisme H g = K GXC*(Z). 11 serait également intéressant d’étu-
dier une possible “catégorification” de cette construction. Notons cependant que la “bonne”
définition de la K-théorie de la variété Zug, ou de la catégorie D?Coh(Z,g), n’est pas claire
dans ce cadre.

3.5 Liens avec les travaux de Premet

Pour finir, il pourrait étre fructueux de comparer les constructions des articles [BMRO0S],
[BMRO6| aux travaux de Premet sur les représentations des algébres de Lie en caractéris-
tique positive (voir par exemple [Pre02]). Son approche est basée sur ’étude d’algebres qui
sont des “quantifications” des slices de Slodowy.

Remarque sur les références

Nous utiliserons la convention standard pour faire référence & un énoncé. C’est-a-dire,
a l'intérieur, disons, du chapitre 111, la référence “Theorem 9.2.1” renvoie au théoréme 9.2.1
de ce chapitre III, tandis que la référence “Theorem 1.1.2.1”7 renvoie au théoréme 1.2.1 du
chapitre I.



Chapter 1

Localization in positive characteristic

In this chapter we review the localization theory in positive characteristic due to Bezrukav-
nikov, Mirkovi¢ and Rumynin (section 1). Then we perform some explicit computations
in the cases G = SL(2,k) (section 2) and G = SL(3,k) (section 3).

Section 3 is a joint work with Roman Bezrukavnikov. It was published as an appendix

to [BMROS]'.

1 Review of the results of [BMRO08] and [BMRO6]

1.1 Notation

Let k be an algebraically closed field of characteristic p. Most of the time (and in particular
in this chapter), p is assumed to be positive. However, sometimes in chapters IT and TV it
can be 0.

Let R be a root system, and G be the corresponding connected, semi-simple, simply-
connected algebraic group over k. We denote by h the Coxeter number of G. Let B be
a Borel subgroup of G, T C B a maximal torus, U the unipotent radical of B, BT the
Borel subgroup opposite to B, and U™ its unipotent radical. Let g, b, t, n, b™, nt be their
respective Lie algebras. Let RT™ C R be the positive roots, chosen as the roots in n™, and
® be the corresponding set of simple roots. As usual, we denote by p the half sum of the
positive roots.

We denote by U, C G the image of the one-parameter subgroup attached to the root
a. Let B := G/B be the flag variety of G, and N = T*B be its cotangent bundle. We
have the geometric description

N ={(X,gB) € ¢* x B| X|,p = 0}.
We will also consider the “extended cotangent bundle”

5 = {(XagB) € g* x B | X\g-n = 0}

!Note however that the normalization of the splitting bundles here is different from the one chosen in
the appendix to [BMRAOS].

11
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Let b denote the “abstract” Cartan subalgebra of g, isomorphic to bg/[bo, by for any Borel
subalgebra by of g. Then there is a natural morphism g — b*, which sends a pair (X, gB)
to X|g.p, an element of the dual of g-b/g-n = h. The Lie algebras t and b are naturally
isomorphic, via the morphism t — b/n = §.

For each positive root o, we choose isomorphisms of algebraic groups uq : k — Uy,
and u_o : k = U_, such that for all t € T we have t - uy(z) - t71 = uqo(a(t)r) and
t-u_q(z) t71 = u_q(a(t)~tz), and such that these morphisms extend to a morphism of
algebraic groups v, : SL(2,k) — G such that

¢a<(1) f)zua(x), %(i (1)>=u_a(x).

We define the elements
eq = d(ua)o(l), e_q:=d(u_un)o(1), hae:=[eq,e—_al-

We denote by Y := ZR the root latice of R, and by X := X*(T") the weight lattice.
Let W be the Weyl group of (G,T), Wag := W X Y be the affine Weyl group, and
1¢ = W x X be the extended affine Weyl group. They act naturally on X. We denote
by “e” the dot-action of W/ on X, defined by w ¢ A = w(\ + p) — p.
For A € X a dominant weight, we denote by L(\) the simple G-module with highest
weight , and by Ind%()\) the corresponding induced module. For a general A € X, we
denote by Og(A) the line bundle on B naturally associated to A (see e.g. [Jan03, 1.5.8]).

If P C G is a parabolic subgroup containing B, p its Lie algebra, p" the nilpotent radical
of p, and P = G/P the corresponding flag variety, we consider the following analogue of
the variety g:

gp = {(X,gP) € g" x P | Xjgpn = 0}.
In particular, gg = g. The quotient morphism 7p : B — P induces a morphism

™ ig — gp. (1.1.1)

In this situation, we also denote by Wp C W the Weyl group of P.

If « € &, and P, is the minimal parabolic subgroup containing B associated to «, we
simplify the notation by setting go := 8¢/p,, Ta = Ta/p. -

For x € g” nilpotent we define By, respectively Py, as the set-theoretical inverse image
of x under g — g*, respectively gp — g*, endowed with the reduced scheme structure.
The variety B, is isomorphic to the Springer fiber associated to x.

If X is a scheme, and Y C X a closed subscheme, one says that an Ox-module F is
supported on Y if F, = 0 for x ¢ Y. If F is coherent, this is equivalent to requiring that the
ideal sheaf of Y in Ox acts nilpotently on F. We write Cohy (X) for the full subcategory
of the category Coh(X) of coherent sheaves on X whose objects are supported on Y.
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1.2 Localization theorem

From now on in this chapter we assume that p > h.

Let 3 be the center of Ug, the enveloping algebra of g. The subalgebra of G-invariants,
3uc = (Ug)® is central in Ug. This is the “Harish-Chandra part” of the center, which
is isomorphic to S(t)(W"), the algebra of W-invariants in the symmetric algebra of t, for
the dot-action. The center 3 also has an other part, the “Frobenius part” 3w, which is
generated, as an algebra, by the elements X? — X[ for X € g. It is isomorphic to S(g(l)),
the functions on the Frobenius twist of g*. Under our assumption p > h, there is an
isomorphism (see e.g. [MR99])

3HC Ozp,NZye IFr — 3

Hence, a character of 3 is given by a “compatible pair” (v, x) € t* x g*(1). For simplicity,
here we will only consider the case when x is nilpotent, and v € t* is integral, i.e. in the
image of the natural map X — t* (such a pair is always “compatible”). If A € X we still
denote by A its image in t*. We denote the corresponding specializations by

(Ug)* = (UG) @z, ki,
Ug)y = (Ug) @z, ky,
(Ug)y == (Ug) @z Kk y)-

Let Mod®®(U4g) be the abelian category of finitely generated Ug-modules. If A € X and
x € g* is nilpotent, we denote by Mod()\ )(Z/lg) the abelian category of finitely generated
Ug-modules on which 3 acts with generalized character (A, x). We define similarly the
categories Mod%((b[g))‘), Modig’((l/lg)x), Modfg((blg);). We also denote by Modf/\g(Z/{g) the
category of finitely generated Ug-modules on which 3¢ acts with generalized character A.
Hence we have inclusions

Mod¥((Ug)*) Modif(ug;)
Mod'8((Ug)} Modax) (Ug)— Mod'(Ug)

Recall that a weight A € X is called regular if, for any root a, (A + p,aV) & pZ, i.e. if
A is not on any reflection hyperplane of W,g (for the dot-action). If u € X, we denote by
Stab(w,..e) (1) the stabilizer of y for the dot-action of Wag on X. Under our hypothesis
p > h, we have (pX) NY = pY. It follows that Staby,, ¢ (1) is also the stabilizer of u for
the action of W/ on X.

By the work of Bezrukavnikov, Mirkovi¢ and Rumynin, we have (see [BMRO08, 5.3.1]
for (i), and [BMRO6, 1.5.1.c, 1.5.2.b] for (ii)):
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Theorem 1.2.1. (i) Let A € X be regular, and x € g* be nilpotent. There exist equivalences
of categories

DbCohBS)(E(l)) ~ D'Modf ,,Us), (1.2.2)
DbCohBS)(/\/'(l)) =~ D'Mod®®((Ug)*). (1.2.3)

(ii) More generally, let p € X, and let P be a parabolic subgroup of G containing B
such that? Staby. . «)(1) = Wp. Let P = G/P be the corresponding flag variety. Then
there exists an equivalence of categories

~(1 ~ i
DbCohPS)(g%)) = D'Mod , (Ug).

Let us recall briefly how equivalence (1.2.2) can be constructed. Here we use the

notation of [BMRO8|. Consider the sheaf of algebras D on B; it can also be considered
as a sheaf of algebras on g Xp+1 b*, and it is an Azumaya algebra on this space (see

[BMROS, 3.1.3]). Here the morphism b* — h*() is the Artin-Schreier map (see [BMROS]).

We denote by Modc(ﬁ) the category of quasi-coherent, locally finitely generated D-
modules (either on B, or on g(* Xp+1) b*; this is equivalent). For v € t* = h* we denote by

Mod¢ (D), resp. Mod(,, (D), the full subcategory of Mod®(D) whose objects are supported

on N x {v} c g X1 b*, respectively on BS) x {v} € g™ xp.q)b*. If A € Xis regular,
the functor RT : D*Mod$ (D) — Dl’Modig (Ug) is an equivalence of categories. Its inverse is
the localization functor £*. These functors restrict to equivalences between DbModax) (75)

and D"Mod®
(Ax

Next, the Azumaya algebra D splits on the formal neighborhood of BS) x {A} in
g Xp«1) . Hence, the choice of a splitting bundle on this formal neighborhood yields an

)(Z/{g) for any nilpotent y € g*().

equivalence of categories Coh (WM X ey b*) = Modf, y(D). Finally, as remarked in

BY x {7}
[BMRO6, 1.5.3.c], the projection g(") x;.1) h* — g») induces an isomorphism between the
formal neighborhood of BS) x {A} and the formal neighborhood of BS). This isomorphism
induces an equivalence of categories COhB(l)X{)\} (8 xpq) b*) = Coh ) (gM).

X X

These equivalences yield the desired equivalence (1.2.2).

We choose the normalizations of the splitting bundles as in [BMRO06, 1.3.5], and denote
by
~ ~ f
Yo : DbCohBQ) (g") = D'Modf ,,Usg)
the equivalence associated to a regular A € X and a nilpotent x € g*). We also denote
by /\/lf’:\ ) the splitting bundle associated to (A, x). Similarly, for A, u, P as in Theorem

2Equivalently, this means that p is on the reflection hyperplane corresponding to any simple root of
Wp, but not on any hyperplane of a reflection (simple or not) in Wag — Wp.



1. REVIEW OF THE RESULTS OF [BMR08] AND [BMRO06/ 15

1.2.1, we denote by
(W) = D'Mod¥ ((Ug)Y),

P DbCohP><<1> (ﬁ%)) = DbMOdiiX) (Ug)

the equivalences obtained with the normalizations of [BMR06, 1.3.5].
If x = 0, we simplify the notation by writing fyf, 61/\3, ’yZ\D instead of 'yg\ 0y 68 0y 78 0)-

In this case By is just the zero-section of g, which we write B. We also write M?> for ./\/lg 0)-
: i i ..
If A € X is regular and v € X, then Mod(%\’x) (Ug) and MOd(%\eru,x) (Ug) coincide. But

the equivalences 75\»() and 78+pu,x) differ by a shift: 'yg\erV’X) (F) = 7(8)\7X)(Og(1) (v) ®0 1)

F) for F in D*Coh,) (gM).
X

1.3 Translation functors
Let us fix a nilpotent x € g*(). For A\, u € X, the translation functor

T{ : Mod§  (Ug) — Mod (% | (Ug)

is defined in [BMROS, 6.1|. Let us recall the geometric counterparts of these functors. Let
P be a parabolic subgroup of G containing B and let P = G/P. By [BMRO06, 2.2.5] we
have:

Proposition 1.3.1. Let A € X be regular, and let p € X be in the closure of the facet of
A. Assume that Stabgy, . ¢\ () = Wp (with the same notation as in Theorem 1.2.1(ii)).
There exist isomorphisms of functors

Iyo 7é\,x) = 7ZZ,X) o R(7p)s and Tﬁ ° 7@«) = 7é\,x) o L(mp)".

1.4 Sheaves on the zero-section

In this subsection we restrict to the case x = 0, A = 0 (hence A is regular). By Theorem
1.2.1 we have equivalences of categories

€8 - DPCoh ) (N ) = DPMod B ((Ug)),

78 : D*Cohy (1) = DbModﬁgm Ug).

Let i : N < g, 5 BM — J\~/(1), k: B — g be the natural inclusions. Let
also Fr : B — B be the Frobenius morphism. If G € Coh(BM"), then Fr*G € Coh(B) has
a natural structure of D°-module, coming from the action on Og. This is the action we
consider in the following lemma.

Lemma 1.4.1. For F € Coh(B") we have isomorphisms

€6 (j+F) = RU (B, Frz(F(p))), 6 (keF) = RT(B, Frg(F(p)))-
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Proof. We only prove the second isomorphism (the first one can be proved similarly). It
is well-known that (Ug),” = End| (L((p — 1)p)). It follows, by the choice of the splitting
bundles (see [BMRO06, 1.3.5]), that

k* M 2 Fr,(0p(p)) @05 (L((p — 1)p) @] Oga)). (1.4.2)

Here the structure of (Ug),”-module on L((p — 1)p) gives an action of D" on L((p —
1)p) ®1 Ogay, hence an action of D° on Fr.(Og(p)) @m,0s (L((p — 1)p) ®] Ogwy). By
Andersen ([And80]) or Haboush (|Hab80]) there is an isomorphism

(Fr(OB(=p))) ®o, ) Opm(p) = L((p — 1)p) @) Oga). (1.4.3)

Here the left-hand side has a natural action of D™, and the isomorphism is compatible
with the two D~P-module structures. From (1.4.2) and (1.4.3) we deduce an isomorphism

(E*M°) @0, ) Oy (=p) = Fr.Op, (1.4.4)

where the structure of D’-module on the right-hand side comes from the natural action on
Os.
Using (1.4.4) and the projection formula, we deduce

7 (kF) = RE(V, M @0, k. F)

R (BW, (k" M°) @0, F)

~ RI(BY, (Fr.0p) ®0 o (F()
RL(B, Fr*(F(p)))-

This concludes the proof of the lemma. O

~

>~

2 The case G = SL(2,k)

In this section we perform explicit computations for G = SL(2, k). They will be generalized
in I11.6.4 and II1.7.2 below. Here p > 2.

2.1 Notation

We keep the notation of 1.1 and 1.2, with G = SL(2,k). Here X 2 Z, the unique simple root
a corresponds to 2, and p corresponds to 1. Moreover there is a natural isomorphism B = P!
such that Op(np) corresponds to Opi(n) for any n € Z. We denote by j : BL — N the
inclusion of the zero-section.

Here we consider the weights A = 0, x = 0. Recall the equivalence of (1.2.3)
€8 - DPCoh ) (NM) = D'Mod®((Ug)°).
By a theorem of Curtis (|[Cur60]|) and the description of 3 in 1.2, the simple U g-modules

in the category Mod% 0) (Ug) are the restrictions of the simple G-modules L(\) for A a

restricted dominant weight in the orbit of 0 under the dot-action of W/;. These weights
are 0 and p — 2.
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2.2 Simple modules
First, we compute the inverse images under €5 of the simple modules in Modgg((u 9)?).

Proposition 2.2.1. The inverse images under 663 of the simple modules in Modgg((Ug)O)
are the following:

0 j*(o(pl)(l)(_l))
p—2 j*(o(pl)(l) (=2))[1]

Proof. By Lemma 1.4.1 we have eg(j*O( Hw(=1)) = RI(P, Op1) &
first line. Similarly we have €5 (5, O enm (=2)[1]) = RIT(P!, Op1(—p))[1]. By Serre duality
-2).

we deduce that € (]*O(Pl)(l)( 2)[1]) 2 T(PY, Op1(p — 2))* = L(p This concludes the
proof. O

k, which proves the
I

2.3 Projective covers

The abelian category Modgg((Ug)o) does not contain any projective object. However,
some objects of DbCoh(N(l)) “behave like” projective modules. If L is a simple object in
Modgg((Ug)O) and F € DPCoh(N' W), we say that F represents the projective cover of L if

k ifn=0
n By—1 _ )
EXtﬁ(l)(j:’ (€)™ L) = { 0 otherwise.

and if Extjg(l) (F, (eB)=1M) = 0 for any simple object M of Modgg((l/{g)o) not isomorphic
to L. Note that if F is such an object, then the completion of F to the formal neighborhood
of BV in NO indeed corresponds, under the equivalence of [BMR06, 5.4.1], to a projective
module for the completion of (Ug)? with respect to the image of the maximal ideal of 3,
corresponding to the trivial character 0. See also I11.6.4 below for other comments on these

objects.

In the next proposition we compute objects representing the projective covers of the
simple modules for G = SL(2,k) (in particular we show that such objects exist).

Proposition 2.3.1. The following objects of DbCoh(./V(l)) represent the projective covers
of the simple objects of Modgg((lxlg)o):

0 | Ogn(-1)
P — 2 Oﬁ(l)

Proof. By adjunction we have

Extie (O (=1), 5+ (Opnyn (=1))) = Extipn ) (Oprya) (=1), Opry (1))

~ ) k ifn=0,
1 0 otherwise.
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Similarly one checks that Ext'e (Oﬁ(n(—l),j*(O(Pl)(l)(—2))[1]) = 0 for n € Z, which
proves the claim for the weight 0.
Now, similarly, Ext%(l) (Oﬁ(l),j*(O(Pl)(l)(—l))) =0 forn € Z, and

Extlg ) (O g +(Opryo (~2)) 1)) = Ext{ S, (Oprym, Oppryn (~2))

k if n=0,
0 otherwise.

o~

This concludes the proof. O

3 The case G = SL(3,k)

In this section, p > 3.

3.1 Notation

We keep the notation of 1.1, with G = SL(3,k), and denote by aq, ay the simple roots of
G and wi,wy the fundamental weights. Let s; be the reflection s,, € W. We denote by

BW L, O 2, B the inclusion of the zero-section and the natural projection. There
are two natural maps® 7; : B — P? mapping a flag 0 C Vi € Vo C k3 to Vi, 7 =1,2. For
n € Z and X € X we have isomorphisms:

7 Ops(n) = Op(nw) (1= 1,2), B (Ogin () = Os(pA).
Recall also the exact sequence (see [Har77, Theorem I1.8.13|):
0 — Qbs — Op2(—1)" — Op2 — 0. (3.1.1)
As in section 2, we consider the case A = 0, x = 0. We have an equivalence (see (1.2.3))
€8 : D’ Cohygay (N D) = DPMod®((Ug)?).

As is 2.1, the simple Ug-modules in the category Modgg((lxlg)o) are the restrictions of the
simple G-modules L(\) for A a restricted dominant weight in the orbit of 0 under the
dot-action of W/;. These weights are the following:

0, (p—3)wi, (p—3)wa, (p—2)wi +w2, w1+ (p—2)wa, (p—2)p.

3.2 Simple modules

First, we compute the inverse images under €5 of the simple modules in Modgg (Ug)Y).

3Here, for simplicity, we choose an identification between the projective space of lines and of planes in

IS
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Proposition 3.2.1. The inverse images under €5 of the simple modules in Modgg((Ug)O)
are given by:

0 j*(OB(l)(_p))
(p— 3w 5 (Opa) (—2w1 — w2))[2]
(p—3)w1 35 (O (w1 — 2w2)) 2]
(p—2)w1 +wy J*((ﬂ p2)<1> 2)) [1]
Wi+ (p—2ws | je((x))0 by (=) [1]

(p—2)p

where L is the cone of the only (up to a constant) nonzero morphism j.Oga)(—p) —
7+Opa) (—2p)[3].

Proof. By Lemma 1.4.1, €5(j.Opz) (—p)) = RI(B,Op) = k. This settles the first line.

Similarly, €5(j.0p0)(—2w1 — w2)) = RI'(B,Fr*(Oga(—w1))) = RI(B, Op(—pwi)).
But —pw; = s1s2 @ ((p — 3)wz). Hence, by the Borel-Weil-Bott theorem (see [Jan03,
11.5.5]), €5(j.Opa) (—2w1 — w2)[2]) = T'(B, Op((p — 3)w2)). By [Jan03, 11.5.6], it follows
that 6OB(j*OB(1) (—2w; — WQ)[2]) >~ L((p — 3)w2).

Similar computations give the third line.

Now we consider the fourth line. For simplicity we write mr; for (7). We have, again
by Lemma 1.4.1, eOB(j*(wl(ng)(l))(—wz))[u) ~ RI'(B, Fr*(m (Q%PQ)(U)( 1)))[1]. Using the

exact sequence (3.1.1) we obtain a distinguished triangle
RI(B,05)* — RU(B,Os(per)) — €& (o (w1 (Qhpay ) (—w2) [1]):

Here the first arrow is the inclusion of G-modules L(w;)") < Ind%(pw;). Hence we obtain

5 (j*(ﬂf(Qépz)m)(—wz))[l]) > L((p — 2)w1 + wa). The claim for L(wy + (p — 2)ws) follows

by applying the outer automorphism of s[(3).

Finally, the last irreducible module L((p — 2)p) is a quotient of the Weyl module
(Indg((p —2) p))* More precisely, we have a short exact sequence

0—k — (IndF((p—2)p))" — L((p — 2)p) — 0.
Applying (¢§)7!, and setting £ := (5) " L((p — 2)p), we get a distinguished triangle
7+O0pay (=p) = 3:O0pa)(=2p)[3] — L,
where we used the fact that
€6 (j+Op0) (—2p)) = R (B, Op(—pp)) = (IndF((p — 2)p))"[-3]

by Lemma 1.4.1, Serre duality and Kempf’s vanishing theorem ([Jan03, 11.4.5]). Since
Hom(k, (Indg((p - 2)p))*) is one dimensional, we see that the first arrow in this triangle
is the unique (up to a constant) non-zero map between the two objects. O
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Remark 3.2.2. We have just shown, using equivalence 60'8 , that
Ext’% (505, j+O5(—p))

is one dimensional (here, in fact, j should be replaced by the inclusion B — N without
Frobenius twists). One can compute this Ext group more directly: using the Koszul
resolution of Op over Sp,(75) one can identify it with

H*(Op(~p)) ® H*(Qp(—p)) @ H' (Q5(—p)) & H"(Qp(—p)).

Here 7p is the tangent sheaf to B. Clearly, H3(Og(—p)) and H°(Q%(—p)) vanish. By a re-
sult of Kumar-Lauritzen-Thomsen (see [BK04, Theorem 5.2.9]), H'(Q%(—p)) also vanish*,
while H?(Q5(—p)) = k: by Serre duality the last claim is equivalent to H'(7g(—p)) 2k,
which is checked below.

3.3 Projective covers

We define the objects representing the projective covers as in 2.3.

Proposition 3.3.1. The following objects represent the projective covers of the simple
objects of Mod'®((Ug)°):

0 P
(p—=3)wz | p*(((75) Qo)) (w2))
(p—=3)w1 | P (7)) Qo)) (1))

(p—2)wi + wo O (—ws2)
w1+ (p — 2)ws O (—wi)
(p—2)p Ogw

where P is the non-trivial extension of Ogq) by Oﬁm(—p) given by a non-zero element
in the one dimensional space H'(Ts(—p)) C H' (O g(—p)).

Proof. For simplicity, in this proof we do not write the Frobenius twist (). Tt should appear
on every variety.
Let us begin with O ¢. We have

Extle (O, j«(OB(=p))) = Exts(Op, Os(—p)) = H*(B, Op(—p)) = 0

by adjunction and Borel-Weil-Bott theorem. Similar computations give the result for
J«(0p(—2w1 — w2))[2] and j.«(Op(—w1 — 2w3))[2]. The sequence (3.1.1) implies that

Extjg(Oﬁ,j* (Trfﬁllgg(—wg)) [1]) = Extz(Op, Wfﬁllag(—wg)[l]) =0.

“This can also be checked directly using the exact sequence 0 — Op(—a1 — 202) ® Op(—201 — az) —
Qf — Os(—p) — 0.
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The computation for the fifth simple object is similar. Finally, using the distinguished
triangle from the definition of £ and Serre duality we get Extj‘@,(o e L) =k

The cases of O ¢(—w;) (i = 1,2) are similar.
Now let us consider p*((m;€Qp2)(w1)). The exact sequence (3.1.1) implies

Ext'e(p" (7] Qp2 @0y OB(w1), j:05(—p)) = Exti(m]Qps (w1), O(—p)) = 0.

Here we have used that —2w; —ws = wy @ (—w1), and Borel-Weil-Bott theorem. The com-
putations for the second to fifth simples are similar. For £ we use its defining triangle. We
have Extg((m7Qb2)(w1), O(—p)) = 0, and in computing Exti((75Qh: ) (w1), Os(—2p)[3]),
two non-zero modules appear in degree 0: (I—I?’((’)B(—Qp)))693 and Ind%(w1). The map
between these two modules is an isomorphism as in the proof of Proposition 3.2.1, hence

Ext%(p*((ﬁ@éz)(wl)), L)=0.
The computations for p* (75, )(w2)) are similar.

We claim that H'(75(—p)) = k. This follows by the Borel-Weil-Bott theorem from the
exact sequence
0 — Op(a1) — T — 75 (Tp2) — 0,

and vanishing of R (73 (Zp2)(—p)) (see e.g. [Dem76]). Thus we have the line H!(75(—p)) C
HY(S(75)(—p)) = Extjl@,((’)ﬁ, O g(—p)), which defines a triangle
Og(=p) =P — Op.

Standard calculations give the result for P and the first three irreducible modules. The
triangle defining P implies that we have Extj@,(P,j* (775 (w1)) [1]) = H* (77 Qs (w1))[1].
Using (3.1.1), we have an exact sequence

0 — HO(miQha(w1)) — K — df(w1) — H' (w1} Qpa(w1)) — 0

with invertible middle arrow (the other cohomology modules vanish). This proves the
desired vanishing.

Finally, let us show that Extjg,(P, L) = 0. First,
RHom ¢ (P, j.Op(—p)) = RT(Op) =k,

and
RHom (P, j.O0p(—2p)[3]) = RI'(Op(—2p)[3]) =k,

thus we only need to check that for nonzero morphisms
b:jxOp(=p) = j=O05(=2p)[3], ¢ :P — j.Os(-p)

we have bo ¢ # 0. It is clear from Remark 3.2.2 that b = j.(3) o §, where ¢ : 5.0p(—p) —
J«T5(—p)[1] is the shift by —p of the class of the extension 0 — j.Ts — O g /T — j«Op —
0, and 3 : 7g(—p)[1] — Or(—2p)[3] is a non-zero morphism; here Jp is the ideal sheaf of

the zero-section in N.
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We claim that 6 o ¢ = j.(7y) o ¥, where ¥ : P — 5.0 and v : Op — Tg(—p)[1]
are nonzero morphisms. This follows from the definition of P, which implies that P
has a quotient, which is an extension of j.Op(—p) @ j.Op by j.Tp(—p), such that the
corresponding class in Extjlg( J«O0B(—=p), 7. (T(—p))) equals ¢, while the corresponding class
in Ext}g(j*(’)g,j*(’l}g(—p))) is non-trivial and is an image under j, of an extension of
coherent sheaves on B.

It remains to show that the composition 7.0 o j«y o ¥ is nonzero. The composition
Boy € Ext}(0p,05(—2p)) = H3(B,05(—2p)) = k is nonzero, because it coincides with
the Serre duality pairing of nonzero elements 3, v in the two dual one-dimensional spaces
HY(Ts(—p)), H*(TZ(—p)). Consequently, the composition j.(3 o) o9 is also nonzero,
since under the isomorphism

Hom(P, j.Op(—2p)[3]) = Hom(j*P, Op(—2p)[3]) = Hom(Op(—p) © Op, Op(—2p)[3])

it corresponds to the composition of § oy and projection to the second summand. [



Chapter 11

Geometric braid group action

In this section we construct and study an action of the extended affine braid group Blg
on the categories D’Coh(§) and D*Coh(N). This result will be used in chapter III, but is
also interesting in its own right.

Sections 1 to 7 of this chapter were published in [Ric08a|. In section 8 we present an
alternate (and more general) proof of the main step of the construction.

Sections 1 and 8 are joint works with Roman Bezrukavnikov.

Introduction

0.1

Let G be, as in chapter I, a connected, semi-simple, simply-connected algebraic group
over an algebraically closed field k of characteristic p, and let g = Lie(G). In [BMRO06],
Bezrukavnikov, Mirkovi¢ and Rumynin have constructed an action of the extended affine
braid group associated with G on the category DbCohBS) (")), when p is greater than the

Coxeter number h of G (here x € g* is nilpotent, and B, is the corresponding Springer
fiber). Their construction relies on deep results relating the modules over Ug (the envelop-
ing algebra of g), D-modules on the flag variety of G, and coherent sheaves on g (see
[.1.2).

In this chapter we show that this action can be defined geometrically, without any refer-
ence to Representation Theory. In particular, we obtain that the action can also be defined
for other characteristics, including 0. We also obtain that similar actions can be defined
on various other categories, such as D*Coh(g), D*Coh(N), D*Coh%(g) or D*Coh®(N).

For k = C, this action is related to Kazhdan-Lusztig’s and Ginzburg’s interpretation
of the equivariant K-theory of the Steinberg variety, and to Springer representations of the
Weyl group on the homology of Springer fibers.

23
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0.2

We use the notations of I.1.1 and 1.1.2. The extended affine Weyl group W)z :== W x X
has a natural “length function” ¢, although it is not a Coxeter group in general (see 1.1).
The extended affine braid group Blg is by definition the group with presentation:

Generators: Ty, (w e Wls);
Relations: T, Ty = Ty if L(vw) = £(v) + £(w).

This definition is similar to the “Iwahori-Matsumoto presentation” of the corresponding
Hecke algebra H;ﬂ. If x € X, write x = 1 — z2 with z1, £2 dominant weights. Then
0p = Ty, (Ty,) " depends only on z. If a, 3 € ®, we denote by Na,3 the order of 5,55 in
W. Our first step® (see section 1), is a second presentation of B! 4, which is an analogue of
the “Bernstein presentation” of H,g. The idea of this presentation is due to Lusztig (see
e.g. |Lus89]). It is given by:

Generators: Ts, (€ @), 0, (z €
Relations: (1) T, Ts, -+ = Ts;Ts, - -+ (na,p elements on each side);

(2)
(3) T, 0. = 0, T, if (x,a") = 0;
(4) 0, = Ts,, 00T, if (x,aV) = 1.

Our main result is the construction of a weak? action of Blg on the category D’Coh(g),
by convolution. Using the preceding presentation, to construct this action it is sufficient to
define kernels associated to the generators Ts, and 6., and to check relations (1) to (4) for
these kernels. The kernel associated with Ty, is Og, for some closed subvariety S, C g X g
(see subsection 2.3 for a precise definition), and the kernel associated with 6, is A,Og(7)
where A : g < g x g is the diagonal embedding. Relations (2), (3) and (4) for these kernels
are easy to prove.

The most difficult relations to prove are the “finite braid relations”, i.e. relations (1).
We give two proofs of these relations.

For the first proof we have to assume that G has no factor of type Go and that p # 2
if R is not simply-laced, and to perform a case-by-case analysis, depending on whether «
and 3 generate a root system of type Aj x Ay, Ay or By (see sections 3 and 4). Our
proof involves the study of Demazure-like “resolutions” Z(s1 50, ,80) — Sw. Here w is
the element of W corresponding to the finite braid relation under consideration?, S,, is a
subvariety of the product of g* with the G-orbit closure &, C (G/B) x (G/B) associated

with w, and Z(y, s, ... 5,) 15 a subvariety of the product of g* with the Demazure resolution

! After the paper [Ric08a] was submitted, Valerio Toledano Laredo pointed out to us that this presen-
tation is also proved in Macdonald’s book [Mac03]. Our proof is different.

?See subsection 2.2.

3These are not really resolutions of singularities, as the variety £, s,,... s,.) is singular in general. But
we show that they share some properties with resolutions of singularities.

“ILe. w is the longest element of the Weyl group of the standard parabolic subgroup of G associated
with {a, 8}.
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of X, associated with the reduced decomposition w = s12 - - - s,,. Moreover, the morphism
2(517527... sn) — Sw is induced by the morphism from the Demazure resolution to &,.

The second proof of the relations is given in section 8. Here we do not make any
assumption on the group, but we assume that p is very good for G. The main ideas of this
second proof come from [Bez06a].

Finally, we obtain (see Theorem 2.3.2) that if either G has no factor of type Go and
char(k) # 2 if R is not simply-laced, or if p is very good for G, there exists an action of
B! on D’Coh(g) such that

(i) The action of 0, is given by the convolution with kernel A,Og(x);
(ii) The action of Ts, is given by the convolution with kernel Og,, .

In sections 5 to 7 we study the compatibility of this action with the inclusion N < g,
and with some representation-theoretic constructions.

First, in section 5 we show that one can similarly define an action of Blg on the
category DbCoh(./\~/ ), such that the following diagram is commutative for any b € Blg,
where i : N < g denotes the natural embedding:

DPCoh(A) — > DPCoh(g)

; lb

DPCoh(N') —== DCoh(g).

In section 6 we show that, for p > h, the action of Blg on DYCoh(g), or rather the
similar action on D*Coh(gM) (the supscript () denotes the Frobenius twist), extends the
action on DbCohB(l)(ﬁ(l)) considered in [BMRO06]. Hence, as a consequence of our results

X

in section 5, the action by intertwining functors on DbMod%\ 9 (Ug) of [BMRO6] factors
through an action on DbModig((L{g))‘) (see 1.1.2 for notations).

Finally, in section 7 we explain the relation between our results for k = C and some
classical constructions. In particular, the action on D’Coh(N) gives a categorical frame-
work for Ginzburg’s isomorphism between the equivariant K-theory of the Steinberg variety
and the extended affine Hecke algebra H.g, and for Lusztig’s construction of irreducible
H! g-modules over C. Also, the induced action on the Grothendieck group of DbCohBX (/\7 )
gives Springer representations of W on the homology of B,.

0.3

To finish this introduction, let us say a few words on the importance of this braid group
action. First, its importance was emphasized in Bezrukavnikov’s talk at ICM 2006: this
action “encodes” the ezotic t-structure on D’Coh(g) and D’Coh(N). In positive charac-
teristic, this t-structure comes from the equivalence with representations of Ug. It also has
an interesting interpretation in characteristic zero (see [Bez06b| for details). In fact, our
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construction will be a step in the proof, by Bezrukavnikov and Mirkovi¢, of Lusztig’s conjec-
ture relating irreducible U/ g-modules to elements of the canonical basis in the Borel-Moore
homology of a Springer fiber ([Lus98], [Lus99]). Similar actions also appear in Gukov and
Witten’s work on gauge theory and geometric Langlands program (see [GW06]), and in
Bridgeland’s study of stability conditions on triangulated categories (see [Bez06b] for de-
tails on this point). Finally, we will use this construction to study a certain Koszul duality
for modular representations of g (see chapter III or [RicO8b]).

1 A Bernstein-type presentation of the braid group

1.1 Statement of the theorem

Let us introduce some notations concerning Weyl groups and braid groups. Recall the
notations of I.1.1. We denote by t, € W]y the translation corresponding to € X. Let
S = {84, a € ®} be the usual set of generators of W. Let also Sax C Wag be the
usual set of generators of Wg; that is, Sag contains S together with additional reflections
corresponding to the highest coroot of each irreducible component of R. Then (W, S) and
(Wat, Sat) are Coxeter systems. We denote by ¢ their length function.

Let Ag = {A € X®zR | Va € R",0 < (\,a¥) < 1} be the fundamental alcove. If
QO C W;ff is the stabilizer of Ag for the standard action on X®z R, we have W;ff = Wag X €.
We can use this isomorphism to extend ¢ to W/, setting £(w) = 0 for w € Q. Then, for
w € W and z € X ([IM65, prop. 1.23]):

Uwty) = Y [z,a) + D 1+ (x,a") (1.1.1)

a€RT, a€eRt,
wa€RT waER™

Now, let us recall the definition of the braid group associated with a Coxeter group
H, with length ¢r. By definition, the braid group By is the group with generators the
{Ty, v € H} and relations Ty, = T, T}, if £ (uv) = Ly (u) + £ (v). In particular we have
the braid group By associated with W, and the affine braid group B,g associated with
Wag. The group W/ is not a Coxeter group, but we have defined a length function ¢ on
it. Hence we can use the same recipe to define the extended affine braid group B.g. There
are natural inclusions

By C Bagt C Blg.

Moreover, there is a natural isomorphism B;H =~ B.g X €.

There is a canonical section C : W;ﬂf — B;ff (which sends W,g into B.g and W
into Bp) of the canonical morphism Blg — W4, defined by C(w) := T,, (this is not a
group morphism). From now on we will not use the notation 7, anymore, except when
w = 8, € S; moreover, in this case, we will simplify 7§, in T,,. We denote by n, g the
order of sos5 in W, for o, 8 € ®.

If A and g are dominant weights, £(txt,) = £(ty) + £(t,), see (1.1.1). Hence

C(tat,) = C(ta)C (%) (1.1.2)



1. A BERNSTEIN-TYPE PRESENTATION OF THE BRAID GROUP 27

Let z € X. We write + = z; — z9 with 21 and x5 dominant weights. Then we set
0y := C(ty; )CO(ts,)~!. This does not depend on the chosen decomposition, due to formula
(1.1.2). In this section we prove:

Theorem 1.1.3. Blg; admits a presentation with generators {T,, o € ®} U {0,, = € X}
and relations:

1. T Tg- - =TT -+ (nap elements on each side);
2. 040, = O,y;

3. Tl = 0, T, if (x,a¥) =0, ie. so(v) =25

4. 0p =To0, Ty if (z,0V) =1, 1. sqo(x) =2 — .

This theorem is an analogue of the well known result of J. Bernstein concerning the
corresponding Hecke algebra. Relations 1 are called “finite braid relations” in the sequel.

The facts that the elements T, and 6, generate Blg, and satisfy the relations of the

theorem, are proved in [Lus89, 2.7, 2.8]. We denote by B the group with the given presen-
tation. There exists a (surjective®) morphism

VB~ By

To prove the theorem we construct an inverse ¢ to this morphism. To avoid confusion, in
this section we denote by T, and 6, the images of the generators in B. Hence we have

W(To) = Ta, ¥(02) =
1.2 A second “length function”

In this subsection we introduce a second “length function” on W/g, denoted L, with values
in Z. Let S by the set of reflection hyperplanes of W,g in X ® R, and &/ be the set of
alcoves. Let C? be the fundamental chamber, i.e.

C'={reX®R|Vacd, (x,a) >0}

If H € 5, we denote by E; the half space defined by H that intersects all translates of
C% and by Ej the other half space. Then, following Jantzen and Lusztig (see [Lus80a])
we introduce the function d on &/?, defined by

d(A,B)=#{H € # | ACE;and BCE};} — #{H € #|ACE}, and BC Ex}.

It is clear from the definition that d(A, B) = —d(B, A). Moreover, d satisfies the following
formula for three alcoves A, B and C (see [Lus80a, 1.4.1]):

d(A, B) + d(B,C) + d(C, A) = 0. (1.2.1)

SWe do not use this surjectivity in our proof, but rather re-prove it.



28 CHAPTER 11. GEOMETRIC BRAID GROUP ACTION

Now we can define the function L on W4 by setting
L(w) := d(Ag, w1 Ap)

(recall that Ay denotes the fundamental alcove). For w € W we have L(w) = —{(w),
and for z € X antidominant we have L(t;) = {(t;). Similarly, if = is dominant we have
L(ty) = —{(ty). Moreover,

| L(w)] < £(w)

for any w € W/ (for all of this, use [Hum90, 4.5]).

Lemma 1.2.2. For any u,w € W, we have |L(wu) — L(u)| < £(w). Moreover, for any
w € W there exists w € W such that L(wu) — L(u) = —0(w).

Proof. Using formula (1.2.1) we have
L(wu) — L(u) = d(Ag,u tw™tAg) — d(Ag, v Ag) = d(u™tAg, v tw ™ Ap).

Hence |L(wu) — L(u)| is at most the number of hyperplanes in # separating u~!Ag and
u w1 Ay, which equals the number of hyperplanes separating Ay and w~'A4y. This
number is precisely £(w 1) = £(w).

Let us now consider the second assertion. Let & be a point in Ag. Let u € W be such

that u=H(w™(€) — €) is in woeCP, where wy is the longest element of W. Then it is clear
that d(u~tAg,u w1 Ag) = —L(w). O

1.3 Computations in W/

In 1.1 we have defined a section C of the morphism Blg — W/;. Now, let us define another
section S : W!g — Bl by setting S(wy - t) := C(wy)b, for wy € W and x € X, where we
have used the isomorphism W/; = W x X. We will show that one can recover C' from S.

Lemma 1.3.1. Let u,w € W/ be such that L(wu) = L(u)—£0(w). Then we have S(wu) =
C(w)S(u).

Proof. First, let us remark that the hypothesis and the conclusion are invariant by replacing
u by ut, for some x € X. Hence we can assume that v € W. We write w = wyt) for some
Ae X, wyp € W. Then

L(wu) — L(u) = d(u' Ag,u'w ™ Ag) = d(u™" Ag,u™H(wy) "t Ag — u™H(N).

As u and wy are in W, and as every hyperplane H between u~ !4y and utw™1 Ay is
crossed in the direction E}; ~ E; we must have the inequality (—u~!()\),a") <1 for any
a € R, ie. (u”1(N\),a") > —1. Moreover, for any o € R" such that wyu(a) € RT we
have (u=!()\),a¥) > 0. Indeed, in this case u™!(wy) "1 A4 is in E}'}a for H, the reflection
hyperplane of s,. Hence if (u=1(\),a") were —1 then to go from u~*Ag to u~ w1 Ay we
would have to cross the hyperplane

H:={zeX®zR | (z,a") =1}
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in the “wrong” direction (i.e. Ej; ~ E}).

Let us write u='(\) = p1 — p2 with 1 and s dominant weights. We have wu =
(wp)trxu = wyputy,-1(yy. Hence wuty, = wyputy,. As py is dominant and wyu € W,
U wyputy,) = Lwpu)+L(ty,) (see (1.1.1)). Hence C(wyuty,) = C(wsu)C(t,, ). We will now
prove that, also, {(wut,,) = (wu) + €(t,,). It will follow that C(wut,,) = C(wu)C(tu,),
and finally that S(wu) = C(wu).

So, let us prove that £(wut,,) = (wu) + £(t,,). Using formula (1.1.1), we have

E(tw) = Z <M27av>a

a€ERT
Lwu) = > N —po,a’) + D 14 (= pz, )],
aceRT aceRt,
wfu(a)€R+ ’quu(u)ER_
Cwuty,) = > (pe’) + > (14 (p1,a)).
a€RT, a€R™T,
wfu(a)eR“' wfu(a)ER_

We know (see above) that for any o € RY, (u=1()\),a") > —1, and, for any a € R* such
that wru(a) € RY, (u=t(\),a") > 0. The result easily follows.
Finally we have proved that S(wu) = C(wu). By hypothesis |L(wu)| = |L(u) —
l(w)| = L(u) + ¢(w) (because u is in W). On the other hand we have the inequalities
|L(wu)| < l(wu) < l(w)+¢(u). We deduce that we must have {(wu) = ¢(w)+£(u). Hence
C(wu) = C(w)C(u) = C(w)S(u). This concludes the proof. O

A/-\

1.4 Computations in B

The braid group By is well known to have a presentation with generators the T, (o € @)
and relations (1) of Theorem 1.1.3. Hence there exists a group morphism o : By — B
which sends T}, to T. We define €' := ¢ o C|y : W — B. Then we can define the lift

S W,H—>B

by setting S'(wyty) = C”(wf)éx for wy € W, x € X. The following diagram is commuta-
tive:

The next proposition is the key step in our proof of Theorem 1.1.3.

Proposition 1.4.1. Let w,u1,up € Wl such that L(wuy) = L(uy) — {(w) and L(wug) =
L(ug) — l(w). Then
S (wur)(8'(ur)) ™ = 8" (wuz) (S (uz)) ™
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Proof. We use induction on ¢(w). Assume we know the result for v and w, and that
l(vw) = £(v) + ¢(w). Let u; and uz be as in the proposition, for vw instead of w. For
i = 1,2 we have L(vwu;) > L(wu;) — £(v) > L(u;) — f(w) — £(v) (by Lemma 1.2.2). As
the two extreme terms are equal by assumption, we must have L(vwu;) = L(wu;) — £(v)
and L(wu;) = L(u;) — ¢(w). Applying the result for v, wui, wuz and w, u;, uz we obtain
the result for vw, wy, us. Hence we only have to prove the proposition for w of length
0 or 1. We also only have to prove it for u; € W (use relation (2) and the definition of
S’). Without loss of generality we can assume R is irreducible (E is the product of the
subgroups corresponding to each irreducible component of R).

(i) First, consider the easiest case w = s € S. For i = 1,2 we have by definition
d(u; ' Ag,u; 'sAg) = —1. Hence, if s = 84, u; *(a) € RT. Then £(su;) = £(u;) + 1 (use

the criterion provided by [Hum90, 1.6, 1.7]). Hence S'(su;) = C'(su;) = C'(s)C"(w;) =
S’(5)S'(u;). This proves the result in this case.

(ii) Next, assume w is in Spg — S. Then w = t,s, for v the highest short root of R.
We have to show that

S’ (wu) (S (w) ™ 1= C'(syu)0_y-1(,)C" (u)

doesn’t depend on the choice of u € W such that d(u=tAg,u=ts,4g +u~l(y)) = —1.
This condition amounts to requiring v~ (y) € R™. In particular, wq fits (recall that wp
denotes the longest element of W). By descending induction on [(u), we will show that
C’(svu)é,u_%wC”(u)_l = C'(s4w0)0 C'(wo)™! for any u € W such that u='(y) €
R~

Assume u # wg. Then choose 3 € ® such that (usg) = l(u) + 1, i.e. u(B) € RT.
Then 3 # —u~1(7), hence 55u_1(7) € R, so that we can apply the induction hypothesis
to usg. Moreover,

—wo ()

C'(syusp)0_g 010 C' (usp) ™" = C'(syusp)0_g 1) (Tp) ' C(u) .

As v is a short root and a dominant weight, and u(3) is a positive root, (v, u(3)")
(u™t(v),8Y) is 0 or 1. First, assume it is 0. Then sgu~'(y) = u~!(y), and by relation (3
we have é,uqugl = Tﬁflé,uqm. Moreover, syu(8) = u(3) € R™, hence {(syusg)
{(syu) + 1, and then C'(syusg) = C’'(syu)T. This concludes the proof in this case.

Now assume {7,u(8)V) = 1. Then sgu~!(y) = u~!(y) — 3, and by relation (4) we
have é_sﬁu—l(,y) = T@é_uq(v)ff’g. Moreover, s u(3) € R~ (as (u(3),7") > 0), hence
U(syusg) = £(syu) — 1. One concludes as before.

~—

(iii) Finally, consider some w with ¢(w) = 0. Write w = wyty. Using formula (1.1.1)
we have (A\,aY) = 0 if wg(a) € RT, and (\,a¥) = —1 if wg(a) € R™. There is no
condition on u in this case. Hence we have to prove that S'(wu)(S'(u))~! = S'(w) for
any v € W. We will prove it by (ascending) induction on ¢(u). If u # Id, let g € ®
and v € W be such that u = vsg, with I[(v) = l(u) — 1. Then v(8) € Rt. We have
() (8'()) " = ' (ugus)ly 1000 (T5) 1O 0)
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First, assume £(wyvsg) = L(wsv) + 1, ie. C'(wpvsg) = C'(wyv)Tp. Then wpv(fB) €
R*. Hence (\,v(3)¥) =0 = (v"}(\),3Y). Hence sgv~1(A) = v~1()), and relation (3)
gives T@évq()\) = év_l()\)f’ﬁ. Then the result for u follows from the result for v.

Next, assume £(wvsg) = ((wpv)—1, ie. C'(wyvsg) = C'(wpv)(T) . Then wpv(B) €
R~. Hence (v71()\),3Y) = —1. And the result for u follows from the result for v and
relation (4) applied to sgv=t()). O

1.5 End of the proof

We define a group morphism ¢ : Blg — B by setting, for any w € W/g, ¢(C(w)) =
S’ (wu)(S"(u)) ! for some u € W/ such that L(wu) = L(u) — €(w) (such a u exists by
Lemma 1.2.2, and S’(wu) (S’ (u))~! does not depend on the choice of u, due to Proposition
1.4.1). We have already proved that these elements satisfy the relations of the definition
of Blg in the beginning of the proof of Proposition 1.4.1.

Recall that ¥ : B — B! denotes the canonical morphism. It follows from Lemma
1.3.1 and the diagram at the beginning of subsection 1.4 that ¢ o ¢ = Id. If s € S then
L(s) = —{(s), hence one may take u = 1. Thus ¢ot)(Ts) = ¢(Ts) = Tj. Similarly, if z € X
is dominant then L(t;) = —{(t;). Hence ¢ o V() = ¢(0,) = ¢(C(ty)) = O,. As these

elements generate B (use relation (2)), we conclude that ¢ o1 = Id. This concludes the
proof of Theorem 1.1.3.

2 Action of the braid group by convolution

2.1 Convolution

By a wvariety we mean a reduced, separated scheme of finite type over k (in particular, we do
not assume it is irreducible). If X is a variety, we identify the derived category D*Coh(X)
with the full subcategory of D*QCoh(X) whose objects have coherent cohomology sheaves
(IBGI71, 11.2.2.2.1]; see also [Bor87, VI.2.11] for a sketch of a more elementary proof,
following P. Deligne).

If X is a scheme and i : Z — X a closed subscheme, for simplicity we sometimes write
Oy for i,Oz. We will also sometimes write simply (— ®x —) for (— ®o, —), and similarly
for the derived tensor product.

Let X,Y be varieties. We denote by px : X XY — X and py : X XY — Y the
projections. We define the full subcategory

DY, Coh(X xY) C D°Coh(X xY)

prop

as follows: an object of D’Coh(X x Y) belongs to D5, Coh(X x Y) if its cohomology
sheaves are supported on a closed subscheme Z C X x Y such that the restrictions to Z

of px and py are proper. Any F € D2 Coh(X x Y) gives rise to a functor

prop
P { DPCoh(X) — DPCoh(Y)
X—=Y -

M = R(py)«(F Sxxy piM)
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(use [Har66, 11.2.2, 11.4.3]). The assignment F — F{ - is functorial.
Let now X, Y and Z be varieties. We define the convolution product

%0 Db, Coh(Y x Z) x DY, Coh(X x Y) — Df,, ,Coh(X x Z)

by the formula
L *
G*F = R(px,z)+((pxy)*"F @xxvyxz (pv,2)*G),

where px 7, px,v, Py,z are the natural projections from X xY x Z. The following easy result
is classical. It can be proved using flat base change ([Har66, 11.5.12]) and the projection
formula ([Har66, 11.5.6]).

Lemma 2.1.1. Let F € Dgrop

Coh(X xY), G €D, Coh(Y x Z). Then

prop
g F ~ 7GxF
Fy_zoFx_y =FXT,.

In particular, if X =Y, the product * endows DgropCoh(X x X) with the structure
of a monoid, with identity A,Ox (where A : X — X x X is the diagonal embedding).
Moreover, F' )((__), y 1s a morphism of monoids from this monoid to the monoid of triangulated
functors from D’Coh(X) to itself.

Assume now that X and Y are non-singular varieties (so that every coherent sheaf
has a finite resolution by locally free sheaves of finite type, see for instance [Har77, ex.
I11.6.9]), and let f : X — Y be a proper morphism. Let I'y C X x Y be the graph of f
(a closed subscheme), and let I, C'Y' x X be the image of I'f under the “swap” morphism
X xY — Y x X. Then there exist natural isomorphisms of functors

Opr
Rf.=F., and Lf*=F, I

Orr *Orf
Hence we have Lf* o Rf, = FX_{X °, with

L
O, * Or, = R(px,x)+(Orpxx @xxyxx OXxF},)-

We also have Id = F )%:O)?.

We denote by 6X C X xY x X the closed subscheme which is the image of X under
x — (x, f(z),x). The following result follows from classical results in the theory of Fourier-
Mukai transforms (see [Cal03, 5.1|, [KT07, 4.2]):

Lemma 2.1.2. The adjunction morphism Lf* o Rf., — 1d is induced by the following
morphism in DY, Coh(X x X):

prop

L
R(px.x)«(Or;xx @xxyxx Oxxr)) = B(px x)«(Or xx)n(xxr)))

res

- R(pX,X)*(O(SX) = A*OX

where the second morphism is induced by restriction, and the first one by the natural mor-

. L
phism Or;xx @xxy x xOxxr;, = Orpxx @xxyxx Oxxr/-
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We will also need the following Lemma:

Lemma 2.1.3. Let F € Db

propCON(X x X). Then Or, * F = R(Id x f)«(F).

Proof. We denote by p; ; the natural projections from X x X xY to X x X or X x Y,
and by A: X — X x X the diagonal embedding. Then we have

L
Or, *F = R(p13)«(pT2F @xxxxy P230r,);
p§’3(/)rf = R(Id x Id x f)*(Id X A)*OXX)(.

Now, by the projection formula, Op, * F is isomorphic to
R(p13)«R(Id x Id x f)(Id x A)(L(Id x A)*L(Id x Id x f)*(p1.2)*F).

The result follows, since (p1,3) o (Id x Id x f) o (Id x A) = (Id x f) and (p12) o (Id x Id x
f)o(IdXA):IdXX)(. OJ

2.2 Action of a group on a category

By an action of a group A on a category C we mean a weak action, i.e. a group morphism
from A to the isomorphism classes of auto-equivalences of the category C (see [BMRO6],
[KT07]). We will not consider the problem of the compatibility of the isomorphisms of
functors corresponding to products of elements of A. If C = D’Coh(X) for a variety X,
to define such an action it is sufficient to construct a morphism of monoids from A to the

monoid of isomorphism classes in DgropCoh(X x X)), endowed with the product .

We will be interested in the case A = Blg and X =g or N. Using the presentation of
B! that we have given in Theorem 1.1.3, to construct the action we only have to define the
kernels corresponding to the generators T, and 6, and to show that they satisfy relations
(1) to (4) in DfyepCoh(X x X), up to isomorphism.

2.3 Comnstruction of kernels

Let a € ® be a simple root. In this subsection we construct the kernel for the action of
T,. Here char(k) is arbitrary. First we recall the following well-known formulae for the
adjoint action of G on g, that can be checked in s[(2, k):

ua(x) “eq =€ gt Thy — x2€a§
Nata(T) - e_q = 22e_o — The — €4 (2.3.1)
Ua(Z) - ha = ho — 2x€4,.

Let us introduce some notation. If X 2 B is a scheme over B (resp. if Y - B x B is
a scheme over B x B), and x,y € X, we denote by Ox (z) (resp. Oy (x,y)) the line bundle
p*Op() (resp. ¢*(Op(z) X Op(y))). If F € D’Coh(X) (resp. D’Coh(Y)), we denote by
F(x) (resp. F(z,y)) the tensor product F ®p, Ox(z) (resp. F ®@o, Oy (z,y)). We use
similar notation for schemes over B x B x B. If X 5 Y is a scheme over Y, and if Z C Y
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is a locally closed subscheme, we write X|z for the inverse image a='(Z). Similarly, if F
is a sheaf on X, we write F|z for the restriction of F to X|z.

Recall the notations of I.1.1. Let us consider the scheme g xg_ @. It is reduced, and it
can be described as a variety induced from B to G. More precisely, define

Ko ={(X,9B) € ¢ x (Pu/B) | Xjnrgn =0}
We have a natural isomorphism
GxBP#,~73 Xg, 8-

To study the variety Z,, we introduce some coordinates. On g* we use the coordinates
{ey,7 € R} U {hg, 3 € ®}. Consider the open covering P,/B = (UyB/B) U (n U, B/B).
The morphism u, induces isomorphisms k — U, — UsB/B and k S ngUy = noUsB/B.
We will use the coordinate ¢ on k. Then %, |, B/B) is the set of (X,t) € g* x k such that
X vanishes on ey for v € R~ and on uq(t) - e_q = e_q +the —t2eq (see (2.3.1)). Similarly,
RKo|(nav.B/B) 18 the set of (X,t) € g* x k such that X vanishes on e, for v € R™ and on
NaUa(t) - e—q = —eq — the + t?e_,. These are affine varieties, with respective coordinate
rings

k[Zalv,.B/B] = klhg, ey,t,8€ ,7 € RT]/(t(ha — tea))

kK[ Zaln,v. /8] = klhs, ey,t, 0 € @,y € RT]/(eq + tha).

In particular, %, has two irreducible components: one is
Do := (g/n)" x (B/B) C g" x (Fa/B),

and the other one is .%,, the closure of the complement of %, in %,. It is a reduced
scheme, and we have the geometric description

Fn={(X,gB) € g* X (Pa/B) | Xjnsgn =0 and X(hy) = 0 if gB = B}.

Hence g xg, @ has two irreducible components: Ag := G x® 2, which is the diagonal
embedding of g, and S, := G xB .7,. Geometrically,

" Xignenn =0
Sa:{(X,gB,hB)eg x (B xp, B) arlfin;?(;-ha):Oingth }

This second component is a vector bundle over Bxp_ B, of rank dim(g/n)—1. In particular,
S, is smooth.

Finally, let us define the closed subscheme S/, of N x N by setting
S = S0 N (N x N).

We will see in section 5 that this intersection is a reduced scheme, hence a variety. S, is
affine over B xp, B, and it is the induced variety of the subvariety .7, of g* x (P,/B)
defined by

y(; ={(X,9B) € g" x (Pa/B) | X|b+g~b = 0}.

The main result of this chapter is the following:
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Theorem 2.3.2. Assume either that G has no factor of type Go and char(k) # 2 if R is
not simply-laced, or that p is very good for G. There exists an action of Bl on DCoh(g)

(resp. D*Coh(N)) for which

(i) The action of the element 0, is given by the convolution with kernel A.(Og(x))
(resp. Ax(Og(x))) for v € X, where A is the diagonal embedding.

(ii) The action of the element T, is given by the convolution with kernel Og, (resp.
Og:) for a € ®.

Moreover, the action of (T,) ™! is the convolution with kernel Og, (—p, p— ) (respecti-
vely Og (—p,p — @)).
_ These actions correspond under the functor iy : DbCoh(J\~/) — DCoh(g), where i :
N < g is the closed embedding.

The proof of this result occupies most of the rest of this chapter. It is clear that
the kernels A, (Og(x)) (respectively A«(Oe(x))) are invertible, and satisfy relation 2 of
Theorem 1.1.3. In subsection 2.4 we show that the kernels Og,, for a € ® are also invertible,
with inverse Og, (—p, p — «). Then, in subsection 2.5 we show that they satisfy relations
3 and 4 of Theorem 1.1.3.

In sections 3 and 4 we show that the kernels satisfy relations 1 of Theorem 1.1.3, under
the first assumptions. The relations under the second assumptions are proved later, in
section 8. In section 5 we explain how one can deduce the assertions concerning the action

on D’Coh(N).

2.4 Action of the inverse of the generators

In this subsection we fix a simple root a € ®. The following lemma is very easy, but useful.
This result also appears in [Lus98, 7.19].

Lemma 2.4.1. Let A € X, such that (\,a") = 0. The line bundle Opx,_p(A, =) is
trivial.

Proof. We have Opx,_5(\, —A) = Opxp, 8(N,0) @ Opxp_ 5(0, —A). Moreover, if p : B xp,
B — P, denotes the natural morphism, Opx,_5(A,0) = p*Op, (A) and Opx,_ 5(0, =) =
p*Op,(—A) The result follows. O

Let us remark in particular that if (A, o) = (i, a") then we have Opx,_ 5(A, 1) =
OBxp, B(1,A).  We deduce that Opxp 5(—p,p — @) = Opxp 5(p — a,—p), and that
Os.(=p,p = @) = Os,(p — a,=p), Og;,(—=p,p — @) = Og,(p — a, =p).

We will use several times the following result: any finite collection of points of B is
contained in a B-translate of Ut B/B. This follows easily from the fact that if g; € G
(i =1,...,n) then the intersection (), ¢; BUT)N(BU™") is not empty, as an intersection
of dense open sets.

Proposition 2.4.2. There esist isomorphisms in D5, Coh(g x §)-

Os,, * (0s,(=p,p — @) = A0 = (Os,(—p,p — a)) * Og,.
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Proof. We have (p12)*Os, = Og,_ g and (p2,3)*Os, = Ogyg,,- First, let us show that the
tensor product

L
OSan ®g3OgXSa (243)

is concentrated in degree 0. As each of these varieties over B2 is the induced variety (from
B to G) of its restriction to (B/B) x B2, we only have to consider the situation over
(B/B) x B%. By B-equivariance, we can even restrict to (B/B) x (UTB/B)?* = (U1)? (see
the remark above).

Let us choose coordinates on §3|(B/B)X(U+B/B)2. We have isomorphisms §IU+B/B =
(b%)* x (UTB/B) (induced by restriction), and g/g;p = (b")*. Hence on the fibers,
isomorphic to ((b¥)*)3, we choose coordinates egj), h(ﬁj) (ye RT,B3€®,j€{1,2,3}) which
are copies of the elements of the basis of g defined in chapter I. The multiplication induces
an isomorphism U(J;) x Uy, = U™t where U('g) is the product of the U, for v € RT — {a}
(this is the unipotent radical of the parabolic subgroup opposite to P,). Hence, u, and
multiplication induce an isomorphism U, (Z ) X k = U*. Using this, we choose coordinates
(u),t0)) on U+, considered as the base of the j-th copy of g (j = 2,3).

Then (S, XE)‘(B/B)X(U*B/B)Q is defined in (5)3‘(B/B)><(U+B/B)2 by the equations ul
1, h/(gl) = hg) (B e @), egl) = eg) (y € RT) and P — 1@l = o (see 2.3). It is
clear that these equations form a regular sequence in k[g*| 5 /B)x(U+B/B)2)- Similarly,
(8 x Sa)l(B/B)x(U+B/B)? is defined by the equations u@ = u®), hg) = h(ﬁg) (6 € P),
eg,z) = 6%3) (y € RY) and u® . (hg)’) — (t® + t(?’))eg’)) = 0. Now the union of these two
sequences is again a regular sequence, and defines a reduced scheme. Hence the derived

tensor product (2.4.3) is concentrated in degree 0, and equals the sheaf of functions on the
subvariety Vi, := (So X §) N (g x S,) of g°. Now we compute

2)

R(pl,B)*(OVa (P - a, =, O)) and R(p173)*(OVa (07 PP — a)) (2'4'4)

The following result will be proved later:

Lemma 2.4.5. The variety V,, has two irreducible components: V.1, which is the restric-

o

tion of V, to the partial diagonal Alg’g C B3, and V2, which has the following geometric
description:

Vo ={(X,91B.92B,93B) € g" x (B xp, B xp, B) | Xgy-(ntsl2,a)) = 0}
Moreover, there exist exact sequences of sheaves

Oyi = Oy, (p — a,—p,0) = Oyz2(p — a, —p,0);
OVO} — OVa (07 PP Oé) - OV2(07 —P, P — Oé).

It follows that to compute the direct images (2.4.4) we only have to compute the
objects R(p1,3)«(Ov1), R(p1,3)«(Oyz(p — a, —p,0)) and R(p1,3)«(Oy2(0, —p,p — @)). But
R(p1,3)*(0\/§ (p -, =p, 0)) = R(p1,3>*(0v3 <O7 —PP — Oé)) = 0 because P13 is a locally
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trivial fibration of fiber IF’} on V2, and the sheaf on this fiber is Op1(—1). To conclude, we
only have to show that R(p1,3)«(Oy1) = A,Og.
By local triviality we only have to consider the morphism

*

013 Val(B/B)x(Pa/B)x(B/B) — (8/1)

Then define M := (sl(2,a)/(ke_4))*, and choose a vector subspace M’ C g/n such that
g/m=2M*ad M. Let E={(D,z) € P(M)x M | z € D} be the tautological line bundle
on P(M). Then the morphism ¢ 3 identifies with the product of Id(psr)+ and the canonical
projection f : E— M. Hence we only have to show that Rf,Or = Opr. As M is affine we
only have to consider the global sections; but the direct image of O under the canonical
projection to P(M) is €B,,>0 Op(ar)(m), whose global sections are S(M™).

This completes the proof of Proposition 2.4.2, assuming Lemma 2.4.5. 0

Proof of Lemma 2.4.5. Consider the subvariety 7, of g* x (Py/B) X (Ps/B):

7/04 = {(XagB’hB) € g* X (Pa/B) X (POC/B) | X\n+g-n+h-n = 0’
X(ho) =01if gB =B and X(g-ho) =0 if gB = hB}.

We have an isomorphism V,, = G xB¥,. On (P,/B)? we use the open covering (P, /B)? =
(UaB/B)? U (naUaB/B)? U [(UyB/B) x (naUaB/B)] U [(naUsB/B) x (UyB/B)]. Each
of these open sets is isomorphic to k2, via ua. We use the coordinates t1) and ¢t on
(Pa/B)?, and {e,,7y € R,hg, 3 € ®} on g*. The change of coordinates on the intersection
(UaB/B) N (naUaB/B) is given by ¢ — —1 (this can be checked in SL(2,k)).

The restriction 74|, /p)2 is defined in g* x k? by the equations e, = 0 (y € R7),
ha—tWeq = 0 and hq — (tH +t3)e, = 0 (see the preceding proof). This last equation can
be replaced by tPe, = 0. Similarly, Yaltmav.B/B)? 15 defined in g* x k? by the equations
ey =0(y€R7), eqa+tWhy =0and hy = 0. Over (UyB/B) x (noUaB/B), the equations
areey, =0 (y € R7), ha — tWey =0 and ey = 0. Finally, YaltmavaB/B)x (U.B/B) 15 defined
by ey =0 (7 € R7), eq +tWhy = 0 and tPh, = 0. These equations show that ¥, has two
irreducible components: ¥, which is the restriction of ¥, to (P,/B) x (B/B) C (P./B)?,
and 7.2, which has the following geometric description:

72 ={(X,gB,hB) € g" x (Pa/B)? | Xjnisi(za) = 0}-

The varieties %, 7.} and ¥ are affine over (U,B/B)?, with respective rings of func-
tions ke, hg, 1]/ (ha —tWeq, tPey), kley, hg, tD]/(ha —tWeq, tP)), kley, hg, D]/ (ha—
tWey, eq). Hence the multiplication by e, and the natural quotient induce an exact se-
quence of sheaves

Oyilw.s/B)2 = Onlw.s B> = Ov2lw.n/B)?>

Multiplication by hq induces a similar sequence on (naUsB/B) x (UyB/B).
The element e, € k[7a|(w, B/B)2] goes to 0 when restricted to the open sets (noUsB/B)?
or (UyB/B) x (nqUaB/B), and to —t(Mh,, when restricted to (naUsB/B) x (UsB/B).
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Hence the preceding exact sequences glue to give an exact sequence of (non B-equivariant)
sheaves

Oy1 ®o Op./B)2(1,0) = Oy, — Oy

(Pa/B)?

~

where we have used the isomorphism P,/B = IF’l. Now consider the B-equivariant
structures. The second morphism in this sequence is obviously equivariant. We have
Op./B)2(1,0) = O(p, /B)2(p;0), and the first arrow of the exact sequence comes by defini-
tion from a B-equivariant morphism kg (a — p) @ Oy1(p,0) — Oy, . Hence we obtain the
exact sequence of B-equivariant sheaves

kp(a = p) ®) Oy (p,0) = Oy, — Oy,

Inducing from B to G, this gives the first exact sequence of the lemma. To prove the
second one, we observe that we also have an exact sequence

OVO} (Ck - 9707P - Oé) — OVa<O7 —P P — Oé) - OVE(Ov -0 P — Ot).
As V! is supported on AEB C B3, the first sheaf equals Oya. O

Remark 2.4.6. In these two results, one can replace p by any A € X such that (\,a¥) = 1.
This follows either from the proofs, or from Lemma 2.4.1.

2.5 First relations

In this subsection we show that the kernels of Theorem 2.3.2 for the action on D’Coh(g)
satisfy relations 3 and 4 of the presentation of Blg given by Theorem 1.1.3.

Let us consider relation 3. Let a € ® and = € X be such that (z,a") = 0. We have to
show that Og, commutes with A,Og(x). But

Os, * (A:0g(7)) = Og, (2,0),  (AsOg(x)) * Os, = Os, (0, z),

and Opgxp, 5(7,0) = Opxp_ 5(0,7) by Lemma 2.4.1. Taking the inverse image to Sy, we
obtain the result.

Now, consider relation 4. Let @ € ® and x € X be such that (z,a¥) = 1. We have
to prove that A.Og(z) = Og, * (AxOg(z — a)) * Og,. Due to Proposition 2.4.2, this is
equivalent to proving

(A:Og(x)) * (Os,(=p, p — @) = (Os,,) * (AuOg (2 — @)).

We have Opxp,_ 5(—p,x +p — a) = Opx,, 5(r — a,0) by Lemma 2.4.1 again. The result
follows, since

(AxOg(2)) * (05, (—p, p — @) = Os,(—p, v+ p — ),
(05’@) * (A*Og(w - a)) = OSa (Jf -G, 0)'
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2.6 More notation

In this subsection we introduce notation concerning Schubert varieties and Demazure res-
olutions (following [BK04]).

If w € W, we denote by X,, the corresponding Schubert variety. This is the closure
of BwB/B in B. Similarly, we denote by X, the closure of the G-orbit of (B/B,wB/B)
in B x B, called G-Schubert variety. Its points are the pairs of Borel subgroups of G in
relative position at most w in the Bruhat order. It identifies with G xZ X, under the
isomorphism G xZ B = B x B.

For w = s; - -+ s, areduced expression in W, let Z,, .. ;) be the associated Demazure
resolution of the Schubert variety X, (as defined in [BKO04]). Let also Z, ... ) be the
induction from B to G of this resolution, which is a resolution of X, and let @, . 5.y :
Z(s1, - sn) — Xw be the associated morphism. If s; is the reflection associated with the
simple root a; € ® for any j = 1,...,n, and P; := G/P; for P; the standard parabolic
subgroup of G of type {a;}, then we have an isomorphism Z(,, ... ;) = Bxp Bxp, - xp,
B, and @y, . ,) identifies with the restriction of the projection p1 541 : Bt — B2, Let
2

s1, - ,sn) D€ the intersection

(Say X" )N (@ X Sa, xg2)N---N(E" L xS,,),
a closed subscheme of g"t!. It is not clear to us what the properties of this scheme are in
general. We will show in the cases of interest to us that it is reduced and irreducible.

In the next two sections we prove the finite braid relations, first in the case when the
simple roots a and 3 generate a root system of type Ao, and then in the case when they
generate a system of type Ba. The much easier case of a root system of type A; x Aj is
left to the reader.

3 Finite braid relations for type A,

Let a and 3 be simple roots generating a root system of type Ag, i.e. such that (o, ) =
(B,a") = —1. Tt is well-known (see e.g. [Spr98, 8.2.3|) that there exists ¢ € k™ such that

Ve,y €k (ual(2), up(y)) = vayp(cry).

Here, “(—, —)” is the commutator in G. The following formulae for the adjoint action of G
on g follow easily:
ua(T) - eg = eg + cxeqts,  Uatp(T) - hg = hg — xeqqs,
ua () - hg = hg + xeq, Uat8(x) - e_g =e_g+ (x/c)eq.
We also have [eq, €3] = ceqt3. The corresponding formulae with o and 3 interchanged are
obtained by replacing ¢ by —c. Note finally that hay s = hs,(8) = Sa(hg) = ha + hg.
In this section we prove that

L L
Osa * Ogﬁ * Osa = R(p1’4)*(05a x g2 ®Q4Og><5g><g ®g4092><5a)
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is invariant under the exchange of a and 3 (where p; 4 : g* — 92 is the natural projection).
In fact we compute this complex of sheaves explicitly.

3.1 Derived tensor product

Lemma 3.1.1. There exist tsomorphisms

L L
Os.xg> gt Ogssxg ©giOgrxsa = O

L L
Os;xg> Dgt Ogxsaxg Vgt Og2xs; = O

Moreover, the schemes E‘E(SMSB’SQ) and Z~( ) are integral, i.e. reduced and irreducible.

83,5a,53
Proof. We write the proof in the first case only, the second one being similar (replace ¢
by —c). As in the proof of Proposition 2.4.2, we only have to study the situation over
(B/B) x (UTB/B)3. Let us choose an order on R* such that the last three roots are
a + 3,8, (in this order). Let P,, Pg, P, be the standard parabolic subgroups of G
associated to {a}, {#} and {a,3}. We denote by U(J;), U(E), U(Eﬂ) the product of the
U, for v € Rt —{a}, v € R" — {8}, v € R — {a, B, + (3} (these are the unipotent
radicals of the parabolic subgroups opposite to Py, P, P, ). We have an isomorphism
U+t = H,YGRJr U,. Via this isomorphism, the restriction to UTB/B of the projections
G/B — G/P, and G/B — G/P, g become the natural projections UJ;) X Uy — UJ;) and

( (
U(';ﬂ) XUntpxUgxUy — U&ﬁ). The restriction of the projection G/B — G/Pg becomes

X Ua+ﬁ X Ua

+ + ~ 77t
{ Utwp) X Ua+p x Us xUa = U = U g
(U, Uasp(x),ug(y), ua(2)) — (U, Uuaqs(T — cyz),ua(z))

As in Proposition 2.4.2, as coordinates on §4|(B/B)X(U+B/B)3 we use uld) e U(';’B), 20,

yY), 20 € k on the base, and hgj) (6 € ) and eﬁ,j) (v € RT) on the fiber of the j-th copy
of g (we do not use the coordinates u®, 2 4D and 2 because in the first copy of g
we only consider the fiber over B/B).

In these coordinates, (S, X EQ)|(B/B)X(U+B/B)3 C @4)|(B/B)x(U+B/B)3 is defined by the
equations

(%) u? =1, 2 =0, y®@ =0, B = bl V) =@ (5 € B,y € RY)
and AL — 2@l = 0. (3.1.2)

Similarly, (gx.S3xg) ’(B/B)X(UJrB/B)S c (g ’(B/B)X(U+B/B)3 is defined by the equations
) { u® = 4@ 2@ — ¢y @) = 6) — ¢y3) )

2@ = 23) plB = p8) B — )
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and u® 15z — cy@2?) uy (2?)) . (h}f) — (@ + y<3>)e<;>) =0, de.

u? . (h(;) + 2@ — (4@ 4 y(S))eg) (2@ ¢ Cy(g)Z(Z))ng)rg) —o. (3.1.3)

And finally (8% X Sa)|(8/Byx(U+B/B)* C (8")|(B/B)x(U+B/B)3 is defined by
(+") u® =@, 20 = g@ @) =y B — pH B — )

and u® - ugy 5(@®) - ug(y®) - (W) = (20 + 2D)eld) = 0, ice.

u® . (hg’) — (2® + 2®)el® + y(?’)e(ﬁg) + (—2® + @ (2 + 2(4)))6&3_,')_5> =0. (3.1.4)

In each case, the given equations form a regular sequence in k[§4](B/B)X(U+B/B)3]. Let
us prove that the union of these equations again forms a regular sequence. First, equations
(%), (¥) and (%”) allow us to identify all the coordinates in the fibers (we will thus remove
the superscript on them), and to eliminate the coordinates uD, 2@ @ G @) (D)
y). Then equations (3.1.2), (3.1.3) allow to eliminate h, and hg, while (3.1.4) becomes
—zWe, + y(4)eg + cy(4)z(4)ea+g = 0, a non-zero equation in the remaining variables.
Hence the equations indeed form a regular sequence, and thus the derived tensor product
is concentrated in degree 0.

Moreover, the polynomial —z®e, + y(4)eg + cy® (%) ea+p is irreducible (it is of degree
1in ey, and not divisible by 2(4)). Hence it defines an integral scheme. Thus the restriction
of (Sa x 8%) N (g x Sg xg) N (g% x S,) to (B/B) x (UTB/B) is integral. It follows that
the restriction of this scheme to any B-translate of (B/B) x (UTB/B) is also integral.
Hence (S, x 82) N (g x S5 x g) N (g2 x S,) is the union of some integral open sets, each
one intersecting each other one. Hence it is integral. U

3.2 Determination of the image
Now we have to show that

R(p174)* (O(Sa x82)N(8x Sz x8)N(g> xSa)) = R(p174)* (02(

sassg5a)

is invariant under the exchange of o and (. First, as the intersection we consider is
reduced, we can work with varieties instead of schemes. In this subsection we compute

the image of Z, , 5.50) under pi1 4, and observe that it is invariant under the exchange

of a and 3 (though the variety Z, s, s,) is of course not). Then we show (in 3.4) that
R(p174)*((’)2< ) is the sheaf of functions on this image.

asS3sSa

So, let us consider p1,4(§(8a75ﬁ75a)). It is a closed subvariety of g°. Indeed, we have the
following diagram, where all the injections are closed immersions:

- ;o ; . N
Z(sa,sﬁ,sa)c—l>g w BALs (g9)t x Bt <2 g

-

g* % 82( T <g*)2 % 52 ’ ¢ )'52.
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One has ji(g(smsﬂ,sa)) C o(g?), and §p174(§(sa,35,sa)) = TWi(ZN(SmsB’sQ)). The morphism 7
being proper, hence closed, the result follows.

Now we compute explicitly p1,4(Z(smSB7sa)) as a subset of g* x B2, using the geometric
description of S, and Sg (see 2.3). By G-equivariance, we only have to calculate this image
over the points (B/B,wB/B) for w in the subgroup of W generated by s, and sz. Recall
that the Demazure resolution ®(s, s, s,) s an isomorphism over the complement of X, .
Hence if w = s%'sgs%? with a; € {0,1} then for X € g* the point (X, B/B,wB/B) is in
the image if and only if (X, B/B, sg! B/ B, s¢! s3gB/ B, s3'spsq? B/ B) isin 2, s, s,)- Using
the geometric description of Sy, one obtains the condition on X in cases (i) to (iv):

(i) Fiber over (B/B, sasgsaB/B): Xinglea®les®lears = 0-

(ii) Fiber over (B/B,sgsoaB/B): X|n@|ha@|€5@|€&+ﬁ =0.

(iii) Fiber over (B/B,sas53B/B): Xinghsoleadleass = O (observe that sasg - ha =
hsaS;a(a) = hﬁ)'

(iv) Fiber over (B/B, sgB/B): X\nealhaEBlhﬁEBleﬁ =0.

(v) Fiber over (B/B,saB/B): here the fiber of ®(,, s, s,) is isomorphic to ]P’%, with
points the (B/B,gB/B,gB/B, soB/B) for g € P,. First, if g € soB, the condition on X
for (X, B/B,gB/B,gB/B,s,B/B) to be in the intersection is X|na|eca®](sa-ha)®](sa-hg) =
0, i.e. Xjnaleadlhaalhy = 0- Then, if g ¢ 54 B, we can assume g = uq(€) for some € € k.
Then the corresponding condition on X is to vanish on n and on

hoa —€eq, ua(€)-hg=hg+ee, and eq.

Hence the condition is the same in the two cases. And finally the condition on X for
(X, B/B, SﬁB/B) to be In p1,4(Z(5a75675a)) 18

Xnolha®lhsdlea = 0-

(vi) Fiber over (B/B, B/B): the fiber of ®(y, , s,) over (B/B, B/B) is again P, with
points the (B/B,gB/B,gB/B, B/B) for g € P,. Firstly, if g € s,B/B, the corresponding
condition on X is Xjng|eaa|h,, s = 0. Secondly, if g ¢ s B, then we can assume g = uq(€)
for some € € k. The condition on X is then to vanish on n, on hy —€e, and on uq(€) - hg =
hg + €eq. This is equivalent to vanishing on n, hq — €eq and ho + hg = ho4g. Finally, the
condition on X for the point (X, B/B, B/B) to be in the image of 2(5a75675a) under pq 4 is
that Xjngyn,., = 0, and that either X(eq) = 0, or X (ha — €eq) = 0 for some € € k. But

if X(eq) # 0 then X (ho —€eq) = 0 for € = X (hq)/X (ea). So the condition on X is only
Xln@lhorFﬁ =0.

These considerations show that p1,4(§(smsﬂ,sa)) is a closed subvariety of g* x B x B,
invariant under the exchange of a, 5 (the computations with o and (3 interchanged are the
same, replacing ¢ by —c). We denote it by Si, g3
3.3 Normality of S,

Proposition 3.3.1. The variety Sy, gy is integral, normal and Cohen-Macaulay.
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Proof.% First, S{a,p) 18 integral because it is the image of Z(,, s, s,), Which is integral by
Lemma 3.1.1.

For the other properties, as usual, we only have to consider the situation over (B/B) x
(UTB/B). We keep the notation of the proof of Lemma 3.1.1, and define v := a + 3.

Recall the isomorphism U™ U(Z gy X Uy xUg x Uy (see the proof of Lemma 3.1.1). As

Sta,py 18 supported over B xg/p, , B, in fact we only have to consider the situation over
(B/B) x (U,UgUaB/B) 2 Uy x Ug x U,
Consider a point
u = ty(2y)ug(zs)ua(za) € UyUgla,

with 257, # 0 and z, — cxorg # 0. It can also by written
Ua (7)up(y)ua(z)

with z, = czy, 23 =y, o = x + 2z (here zyz # 0). If X € (g/n)*, and (X, B/B,uB/B)
is in Sy4 gy, then X must vanish on Ua(T) - e_q = e_q + The — 22€,, hence on

ha — xeq. (3.3.2)
It must also vanish on us(z)ug(y) - e—g, hence on
hg + xeq — yeg — caye,. (3.3.3)
Finally, it must vanish on uo(z)ug(y)ua(2) - e—q, hence on
(2 + 2)ha — (T + 2)%eq + yzes + cyz(x + 2)eqy -

Substracting (x + z) times equation (3.3.2), and dividing by z, we obtain that X must
vanish on
(x + 2)eq —yeg — cy(z + 2)e,. (3.3.4)

The sum of equations (3.3.2) and (3.3.3) becomes
ha + hg — xgeg — €. (3.3.5)
Multiplying (3.3.2) by cxg = cy gives
cxgha — Teq. (3.3.6)
Equation (3.3.4) can be rewritten
Tala — TRER — CLQLRE. (3.3.7)
Finally, adding cz, times (3.3.2) and cz times (3.3.4) gives

cxaha — Ty€8 — CTAT~ €. (3.3.8)

SThis proof is due to Patrick Polo.
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Let us denote by M the closed subscheme of AM™(O/MW+3 defined by equations (3.3.5) to
(3.3.8). Equation (3.3.5) allows to eliminate hg; that is, setting e = zq, f = 23, g = -,
h = cha, © = eq, j = eg and k = ce,, we obtain that the coordinate ring of M is a
polynomial ring over A :=Kle, f, g, h,1,J, k]/(F,G, H), where

G = ei— fj—efk,
H = eh—gj—egk.

Lemma 3.3.9. A is integral, of dimension 5, Cohen-Macaulay and normal. Its singular
locus is defined bye=f=g=h=i=75=0.

Proof. Let us consider j' := j + ek. A is isomorphic to A’ ® k[k], where

A/ = k[evag7h7i7j/]/(fh _gi76i - fj/7€h _g]/)

This ring is the algebra of functions on the variety of matrices

(577)

g [ e

of rank at most 1, which is the cone of the Segre embedding of P! x P2. This variety is
well known to be integral, Cohen-Macaulay and normal, the vertex of the cone (defined by

e=f=g=h=1i=j =0) being its unique singularity (see e.g. [BV88, 2.8, 2.11]). The
lemma follows. O

In particular, M is integral. It contains S{a,ﬁ}|(B/B)x(U+B/B) (the equations are sat-
isfied on a dense open subset of S{a,5}|(B/B)X(U+B/B), hence everywhere), which has the
same dimension. Hence the two varieties coincide.

We deduce that Sy, gy is normal and Cohen-Macaulay. This finishes the proof of
Proposition 3.3.1. O

3.4 End of the proof

We denote by \I/(Smsg’sa) : Z~(sa,55,sa) — Sfa,py the morphism constructed above (it is the
restriction of py4), and similarly with « and ( interchanged..

Proposition 3.4.1. We hagve

R(‘lj(sa,Sg,sn))*(O ) = OS{&,ﬁ}’

2<5ay55y5a>

and similarly with o and B interchanged.

Proof. First we prove that Ri(\IJ(‘(),CUSM),&))*((93< )) = 0 for ¢ > 1. The argument for
50(,5/8,5(1

this is adapted from [BK04, 3.2.1]. Since the fibers of ¥ are of dimension at most

5&75[3’7504)
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1, by [Har77, I111.11.2] we have Ri(\If(smsﬁ,sa))* = 0 for i > 2. Hence we only have to prove
the equality Rl(\If(smSﬁ,sa))*((’)g( )) = 0. The following diagram commutes:

asS3sSa

Z( (; g* X Z(SOH

Sousﬂ,sa) 357504)

\Il(sa,sﬁ,sa)l J/Id@(mv%»w

S{avﬁ}% g* X XSD‘SBSO‘

where i and j are closed embeddings. Hence we only have to show the equality R!(Id x

®(5a7857sa))*(i*ngysﬁ’sa)) = 0. We have a surjection

Og* XZ(&LSL},S(J) - Z*O

g(sa,b‘ﬁ,sa) ’

As R?(Id x D (s,,55,50) )« = 0 (for the same reason as above), we obtain a surjection

Rl(Id X q)(smsB,sa))*(Og*XZ(sa,sﬁ,sa)) - Rl (Id X (I)(S""Sﬁvs‘l))*(i*og(sa,sﬁ,sa))'

By the vanishing of higher direct images for Demazure resolutions (see e.g. [BK04, Theorem
3.3.4]), the object on the left hand side is zero. Hence R*(Id x <I>(sd,sﬁ,sa))*(i*og(%sﬁm)) =
0, as claimed.

Since (s, s5.5,) 18 proper and birational (because @
(by Proposition 3.3.1), one has (\Il(sa7567sa))*((’)g(

saspsa) 19); and Sty gy is normal

)) & Osy, 5 by Zariski’s Main
58-S ’

Theorem. This proves the result. The assertion with a and 3 interchanged is obtained
similarly. O

With this proposition the proof of the finite braid relation for the action on D*Coh(g)
(see Theorem 2.3.2) when « and (3 generate a root system of type Ao is complete.
4 Finite braid relations for type B,
Now we assume that o and 3 generate a root system of type Ba. To fix notations, we

assume that « is short and 8 is long. Then (o, 8Y) = —1, (3,a¥) = —2. There exist
structure constants ¢, d € k* such that

Yo,y €k, (ua(z), up(y)) = tasrs(cry)uzarp(dzy)

(again, see [Spr98, 8.2.3]). Then, also,

Vr, (7S k, (Ug(.f), ua(y)> = uoHrﬂ(_cxy)uQaJrﬁ(_dxyz)-
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Easy calculations yield the following formulae for the adjoint action of G on g:

U () - eg = eg + creqats + driesn g, U (z) - hg = hg + zeq,

Ua () - eatp = €atp + 2%:1:62a+5, ug(x) - ha = ha + 2xeg,

ug(x) - eq = eq — CTeqy g, Uat8(x) - ho = haq,

Uat8(T) - eq = €eq — 2%:L‘62a+5, Ua+s(2) - hg = hg — zeqay g,
U+ 8(T) - €—q =€_q — %xeg, U20+3() - ha = hq — 2xe244 3,

1 d, .2
Uayp(T) e_g=e_g+ ;Ten — ZT 201,

2
Uga43(T) - e_q = €_oq — TTeats.

We also have hoig = ho + 2hg, haq1g = ha + hg.
In this section we prove the finite braid relation for the simple roots a and 3. The

proof is very similar to the one in the previous section. We assume throughout the section
that char(k) # 2.

4.1 Derived tensor product

Lemma 4.1.1. There exist isomorphisms

L L L
Os.xg® ©g* g5y x> Cg*Og2xsoxg Do Ogoxsy = Og i

L L L
OSBXQIS ®QSOQXSQX§2 ®g5092><35><g ®§50§3><Sa = 02(56 )

Moreover, the varieties Z (s, s5 sq.55) 008 Z(s5.5,,55,54) 7€ integral.

Proof. As for Lemma 3.1.1, we prove the result in the first case only, by computation of
equations (the second case can be treated similarly). Let us choose an ordering of R* such

that the last four roots are 2a+ 3, a+ 3, 3, v (in this order). Let U(J;), U(E), U(J; 5 be the

product of the Uy for v € Rt —{a}, vy € RT — {8}, v € R" —{«, B, a+ (3,2a+ 8}. Under
the isomorphism U™+ = H%RJr U,, the restriction to U™ of the projections mq : B — P,
w3 : B — Pg become the morphisms U(Jgé) X Uy — U(Jgé) and

U(—;,ﬂ) XU2a+5XUa+5XUgXUa — U(—;”g)XU2a+ﬁXUa+ﬁXUa '
(U, uza+p(2), uarp(y), up(2) ualt)) = (u,uzasp(® — dt?2), uats(y — c2t), ua(t))

As coordinates we will use the v, z0), y() 20) and tU) on the base (j = 2,...,5), and
eg,j) (y € RT), h((;j) (0 € @) in the fibers (j =1,...,5).

In these coordinates, (Sq X 53)\(B/B)><(U+B/B)4 - (55)\(B/B)X(U+B/B)4 is defined by the
equations

() u® = 1, z? = 0, y(2) =0, 22 = 0, egl) = eg), hgl) = h((;Q)

ford € ®, ve R", and
Al — @) = 0. (4.1.2)
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Similarly, (g x S5 X §°)|(8/B)xW+B/B)* € (8°)(B/B)x(U+B/B)* is defined by the equa-
tions

/ u® = u®), 2 q@)2,2) = £(3) _ g(13)2,0) 42) = 4@,
(+) Y@ — @12 = ) — (343 D) = ¥, n? = hf;’)),

and u® uye5(2®@ —d(t®)2:®)ug, 5 (5@ fc,z(z)t(z)).ua(t@)).(hg) — (2@ 423)ePy =
i.e.

u® - (D 4 D@ — (: 4 e 4 (—y® _ )]

+ (=225 4 qe@y2(,® _ 2O ) =0, (413)
C

Next, (g2 x Sq x 9lB/ByxW+B/B)* C (§S)|(B/B)x(U+B/B)4 is defined by the equations

(+") 5 _ L) B _ @ 56 _ @

— .4 B _, _
- Y AR 6

{ u® = y@, 26) = p@) 3 = @
(
z

and u® - uze5(2®) gt s(y®) - ug(=:®) - (B = (D) + 1)) =0, ice.
u® . (AY) — (1D 4 tD)e® 4 20D 4 2B (¢34 @) )6513#

+ (=22 + 2§y<3> (t®) + tW)eger5)) = 0. (4.1.4)
C

Finally, (53 X Sﬂ)|(B/B)><(U+B/B)4 - (55)|(B/B)><(U+B/B)4 is defined by the equations

. u® = u®) 2@ g®)2,0) = 56) _ g(13)2,6) 4(4) = 46),
(") Y@ — cz@t@ = 4 _ 200 B = BB = p®)

and u® wgq 4 g(2® —d(t@)22®)uy 5 (y@ _62(4)75(4)).%@(4)).(h(ﬁ‘*) _(2(4)+Z(5))e(ﬁ4)) -0,
i.e.

u® - (D 4t D — (0 4 el 4 (g _ @)

+ (—ng(4)t(4) + D)2z — 2Ol ) =0, (4.15)

Asin the proof of Lemma 3.1.1, we have to show that the union of these equations forms

a regular sequence. The equations (x) to (+/) allow us to eliminate the coordinates ul),
2@ y@ 2@ @) G B3 2 D) @) 20) 6 ¢5) and to identify the coordinates
in the fibers, which we will denote by e, and hs. Then, equations (4.1.2) and (4.1.3) allow
to eliminate h, and hg. With these simplifications, equations (4.1.4) and (4.1.5) become

—tWeg + 22(3)% + 23?4 t(4))ea+g + 2dz(3)t(2)t(4)62a+5 =0, (4.1.6)
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(tW — t@)e, — 20eg — ctW 2O, 4
+d(z® P — )2 - (t(4))22(5))€2a+5 =0. (4.1.7)

Let us denote by P the polynomial of (4.1.6), and by @ the polynomial of (4.1.7).
Then P and @ are irreducible and distinct. Hence they form a regular sequence in
k[z(3),2(5),t(2),t(4),ev,7 € R",hs,0 € ® — {a,3}]. This proves that the tensor prod-
uct we are considering is indeed concentrated in degree 0, and that the quotient ring
k[2(3), 200 +2) W) e hs]/(P,Q) is Cohen-Macaulay (see again [BH93, 2.1.3]). We prove
in the next lemma that this ring is an integral domain. We deduce, as in the case of As,

that Z~( is an integral scheme. O

50,58,5a,53)
Lemma 4.1.8. k[z(3),2(5),t(2),t(4),ev,h(;]/(P, Q) is an integral domain.

Proof. First, let us prove that the closed subvariety N of kdm(@/M+2 defined by P and
Q is irreducible. The restriction of this subvariety to the open set defined by ¢ # 0 is
irreducible (indeed, on this open set P gives e, as a polynomial in the other coordinates
and (t®)~1 and replacing in Q we still obtain an irreducible polynomial). Similarly for
the intersections with the open set defined by 2(® #£ 0, and with the open set defined by
2) £ 0. Now N is isomorphic to the closure of its intersection with the open set {t(4) =+
0} U {2®) # 0} U {2 # 0} (indeed, if t*) = 203 = 0, P is zero, and Q = —tPe, — 20)ep
is an irreducible polynomial, whose variety of zeros intersect the open set {2(5) # 0}).
This intersection is irreducible (it is the union of three irreducible open sets, each one
intersecting each other one). Hence N is irreducible.

Now we have to show that the ring k[2(3), 20) ¢(2) 1) ¢ hs]/(P,Q) is reduced, i.e.
that it satisfies properties (Rp) and (S1) (see [Mat80, p. 125]). As we have seen that
it is Cohen-Macaulay, and that the corresponding scheme is irreducible, we only have to
prove that it is regular at some point. But it is clearly regular at the point defined by
t@ =@ =1, 20 =0, 200 =1, e, = €g = €qt+3 = €2q+3 = 0 (consider the partial
differentials of P and @ with respect to e, and eg). ]

4.2 Determination of the image

Asin 3.2, we have to identify the images of Z(s, s; s50,55) 09 Z(s5,50,55.50)
g2 (these are closed subvarieties of g?), and observe that they coincide. We only indicate
the computations for the first case, the second one being similar. By G-equivariance we
only have to compute the fibers of this image over the points (B/B,wB/B) for w in the
subgroup of W generated by s, and sg. In this case the Demazure resolution DR (s0,55,50.55)
is an isomorphism over the complement of X;,s,. This gives the condition on X € g* for

the point (X, B/B,wB/B) to be in p1,5(2(sa,55,sa,sﬁ))
(i) Fiber over (B/B, sasgsas3B/B): X‘ﬂ@lea@|€ﬂ@|€a+[3@|620+ﬁ =0.

under py 5 : g° —

in cases (i) to (iv).

(ii) Fiber over (B/B, sqas5358/B): Xln@lea@|€a+g@|62a+g@lhﬁ =0.
(iii) Fiber over (B/B, sgsasgB/B): Xinales®leass®lezars®lha = 0-
(iv) Fiber over (B/B, sgsaB/B): Xineleselears®lha®lhs = 0-
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v) Fiber over (B/B, sqas3B/B): the fiber of ® is isomorphic to two copies
( ) B (Sas8355a,583) p b
of IP)} with one common point. It contains, on the one hand, the points of the form
B/B,sqB/B,sqgB/B,sqagB/B,sqs3B/B) for g € P3 and, on the other hand, the points
( g g 5 g € Pp and, , the p
(B/B,gB/B,gB/B,soB/B,sqsgB/B) for g € P,. One verifies that the conditions on X
corresponding to each of these points are the same, namely

Xinolea®lesas s®lha®lhy = 0-

(vi) Fiber over (B/B,sqaB/B): the fiber of the Demazure resolution is formed by
the points (B/B,gB/B,gB/B,sqaB/B,sqaB/B) for ¢ € P, and the points of the form
(B/B,saB/B,s09B/B,sqgB/B,sqB/B) for g € Pz. Let us compute the conditions
on X corresponding to the each of these points. First we consider a point of the form
(B/B,gB/B,gB/B,sqB/B,sqB/B) for some g € P,. If g € s,B, the condition is to
vanish on n, €q, Sa - hg = ha + hg and sq - ha = —ha, t.6. Xpngleaolhawlny = 0. I
g = uq(€) for some € € k, then the condition is to vanish on hy —€eq, ua(€) -hg = hg+eeq,
eq and sq - hg = ho + hg, i.e. the same condition. Now, let us consider the points
(B/B,saB/B,s0gB/B,sagB/B,saB/B) for g € Pg. It g € sgB, then the condition is
to vanish on eq, €20+8 and sqasg - ha = hatp. If g = ug(e), the condition is to vanish on
€a, Sa - (hg — €eg) and squg(e) - ha = S - (ha + 2€€g), i.e. on e, sq - (hg — eeg) and
Sa - (ha +2hg) = 54 - hatp = hat+p. As in 3.2 (vi), the condition on X for the point
(X, B/B, sqB/B) to be in the image of p; 5 is finally

Xneleadlhars =0
(vii) Fiber over (B/B, sgB/B): Similarly, the condition is
Xneles@lhzars = -

(viii) Fiber over (B/B,B/B): the fiber of the Demazure resolution is given on the
one hand by the (B/B,gB/B,gB/B,B/B,B/B) for g € P, and on the other hand by
the (B/B,B/B,gB/B,gB/B,B/B) for g € Pg. In the first case, if g € B then the
corresponding condition of X is to vanish on n, hy and hg. If g ¢ B, then the condition

is to vanish on n, e,, ho and hg. The situation is similar in the second case. Hence the
condition on X for (X, B/B, B/B) to be in the image is

Xinolhaothg = 0

It follows from these computations and the similar ones with a and 3 interchanged

(computing p1,5(§(55,sa,sﬁ,sa)) instead of p1,5(§(5a75575a756)) amounts to replacing a by £,

B by a, o+ B by B+ 2, and 5+ 2a by o+ 3) that the images under py 5 of g(sm
and 2(5[175(115/675(1) coincide. We let Sy, g be this image.

583,5a,58)

4.3 Normality of S,
Proposition 4.3.1. The variety S, gy is integral and normal.

Proof.” Let us define v := a+ 3, § := 2a+ 3. As for type Ay, we already know that S{a,8}

"This proof is a simplification of an earlier one due to Patrick Polo.
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is integral, and we only have to consider the situation over (B/B) x (U;U,UgU,B/B). In

this proof we consider Sy, g} as the image of Z
Let

58,50,58,5a) "

u = us(5)uy (2 up(2p)ta(a) € UsUyUpUa,

with xq2g2 25 # 0, TyT3 — c%l% # 0 and wowy — G5 # 0. We have

u = ug(t)ua(2)up(y)ua(z)

with 24 = z+2, 5 = y+t, ., = cyz, x5 = dyz* (here zyzt # 0). Then if (X, B/B,uB/B)
is in Sy, gy, X must vanish on
hg — teg. (4.3.2)

It also vanishes on ug(t)uq(2) - e—q, hence on hy + 2teg — zeq + czte,. Adding two times
(4.3.2), one obtains
hy — zeq + czte,. (4.3.3)

Further, X must vanish on ug(t)ua(2)ug(y) - e—g, hence on ug(t)uq(z) - (hg — yeg). Sub-
stracting (4.3.2), one obtains

zeq — (Y +t)es — c2(y + t)ey — dyz’es. (4.3.4)

Finally, X vanishes on ug(t)ua(2)ug(y)ua(x) - e—q, hence on ug(t)ua(2)ug(y) - (ha — xeq).
Substracting ug(t) - (ha — zeq), one obtains

—(z 4+ 2)eqa +2yeg + c((y + t)(x + 2) + y2)ey, + 2dyz(x + 2)es. (4.3.5)

Let us transform our equations (4.3.2) to 4.3.5 to obtain equations in zq, 3, T~, Ts.
Substracting (4.3.5) from two times 4.3.2, one obtains

2d

2hg + xqeq — 2xge3 — (cxorp + Ty)ey — ~ TalyCs. (4.3.6)
Similarly, adding (4.3.3) and (4.3.4), one obtains
hy — xgeg — xyey — T5€5. (4.3.7)

Then, one verifies that (x + z) times (4.3.4) plus z times (4.3.5), and 2y times (4.3.4) plus
v times (4.3.5) give respectively

2 c
(Ezlc7 — Zaxg)es + P + T s€s, (4.3.8)
2 2d 1
(Ealt7 — Zaxg)eq + x8(crarp — Ty)ey + ?xv(xaxg — ECBV)%' (4.3.9)

Finally, z times (4.3.4) gives

2
gzv(;ea — T3Te8 — %l’gl‘gefy — Ty T5€5. (4.3.10)
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Equations (4.3.6) and 4.3.7 express hg, h, in terms of the other variables. We denote by
E, F and G the polynomials of (4.3.8), (4.3.9) and (4.3.10).

Now we can finish the proof exactly as in the case of Ay. In the next lemma we show
that the scheme defined by E, F' and G is normal and integral. Moreover it contains
Sta.pyl(B/B)x(U+B/B) @ a closed subvariety, and has the same dimension. Hence the two
varieties coincide. O

Lemma 4.3.11. The ring
A =k[zq, 23, Ty, Ts, €a, €8, €, €5]/ (B, F, Q)

1s a normal domain.

Proof. Let us forget about the previous notations &Y, and t. Now we define x = x4,
y=—xg, 2= %xV —zorg, t = —x5, [ = %(gea — Sxge, —1x,65), g = eg, h = ey +xae5,
i = es. Then we have A = A'[i], where

Al =K[z,y,2,t, f,9,h] /(29 — th, 2 — (z — zy)h, y(z — zy)g — tf).

Let us first show that the closed subvariety of k7 corresponding to A’, denoted by M,
is irreducible. The restriction of M to the open set {t # 0} is defined by the equations
h = zg/t and f = y(z —zy)g/t. Hence it is irreducible. Similarly for the open sets {z # 0}
and {f # 0}. These open sets intersect each other in M. Hence the restriction of M to
{t #0} U {z # 0} U{f # 0} is also irreducible. As M is the closure of this restriction
(indeed, if z = t = 0, the condition (x,y, z,t, f,g,h) € V does not depend on f), it is
irreducible.

Now we show that A is normal (hence also reduced). We will use the following lemma
(see |BV8S, 16.24)):

Lemma 4.3.12. Let S be a noetherian ring, and y € S which is not a zero divisor. Assume
that S/(y) is reduced and S[y~'] is normal. Then S is normal.

Let us apply the lemma to S = A’ and our element y. It is clear that y is not nilpotent
(it is not zero on M). Since M is irreducible, y is not a zero-divisor. Now A’/(y) is
isomorphic to
k[z,z,t, f,g,h]/1

where I = (zg — th,zf, ft). This ideal is the intersection of the prime ideals (z,t¢) and
(f,zg —th) of k[z, 2, ¢, f, g, h], hence it is reduced.

Consider the ring A’[y~!]. Using the change of coordinates f' = f/(y?) and 2’ =
—x + (2/y), it is isomorphic to

(kl2', 2,t, f', g, h]/(zg — th,a'g — f't,2f — ha'))[y,y~"].

As in the proof of Lemma 3.3.9, this ring is normal. This concludes the proof of Lemma
4.3.11. O

Remark 4.3.13. As in type Ag, one can show that Sy, gy is Cohen-Macaulay. As our proof
is long and not needed here, we omit it.
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4.4 End of the proof
Now, exactly as in Proposition 3.4.1, one proves that

R(\D(sa,Sﬁ,sa,Sg))*(O ) = OS{O&,B}’

g@a&'ﬁﬁaﬁg)

and similarly with o and 8 interchanged. This finishes the proof of the finite braid relations
in type Bs, hence also of the assertions of Theorem 2.3.2 concerning the action of Blg on
DPCoh(g), under the first assumptions.

In sections 5 to 7 we admit the theorem under the second assumptions (it will be proved
in section 8).

5 Restriction to N

Now we will derive the assertions of Theorem 2.3.2 concerning the action of Blg on
DPCoh(N). We keep the notation and assumptions as before.

Let i : N' < g denote the closed embedding. For o € ®, we recall that Sj, :=
Sa N (N x N), and that I'; denotes the graph of i, a closed subvariety of N x g. First,
relations (2), to (4) of Theorem 1.1.3 for the action on D*Coh(N) can be proved exactly
as for the action on D’Coh(g) (see 2.5). Now we prove relations (1).

Lemma 5.1. The tensor product Oﬁxgégxgosa s concentrated in degree 0, and is iso-
morphic to (i X 1)+Og .

Proof. As in the proof of Proposition 2.4.2, we only have to consider the situation over

(B/B)x(UTB/B) = U*. We use the isomorphism U™ 2 U(J;) XUy, and choose coordinates

U on U('(;), t on U,. On the fiber we use coordinates egj), h((;j) (j=1,2).
Then (./\7 x 8)|(B/B)x(+B/B) 18 defined by the equations hgl) =0 (6 € @), and S, by
es,l) = 6(72), hgl) = h?) ,u=1and h((xl) —te&l). The union of these equations forms a regular

sequence, which proves the result. ]

Remark 5.2. These computations show that S/, is reduced. It is not irreducible (see 7.1
for details).

Corollary 5.3. There exist isomorphisms in DgrOpCoh(J\N/' X g):

Opi*(’)g{l = OSQ*OFI-;
Or, *Og,(p—a,—p) = Os,(p—a,—p)*Or,.

Proof. We only prove the first isomorphism; the second one can be obtained similarly. It

~

follows from Lemma 2.1.3 that Or, x Og; = (Idjgr x 1)xOg . Hence we only have to prove
that Osa * OF«; = (Idﬁ— X Z)*OS&

Let p,» denote the projections from NxgxgtoNxgor gxg, and A : N — N xN de-
note the diagonal embedding. Then by definition Og, *Or, = R(p1,3)«(p] 2Or; & p530s,)-
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But pi 2O0r, = (Idg x i x Idg)«(A X Idg)*Oﬁxg. The result follows, using the projection
formula and the preceding lemma, which implies that L(i x Idg)*Os, = (Id ¢ X 1).Og,. [

Corollary 5.4. The finite braid relations (i.e. relations 1 of Theorem 1.1.3) are satisfied
by the kernels Og: (o € ).

Proof. First, let us prove an analogue of Proposition 2.4.2 for the kernels Og , i.e. that
we have

(1) Osy, * (Osy,(p— o, =p)) = A0 g = (O, (p — o, —p)) * Ogy,.

Multiplying the equality Os, * (Os, (p — a, —p)) = A,Oq with Or, on the right, and using
Lemma 2.1.3 and Corollary 5.3, one obtains

(Idﬁ X Zﬁ(@g& * (Osa(p —Q, —p))) = (Idﬁ X Z)*(A*Oﬁ)

It follows that the complex of sheaves Og: * (Ogr (p — a, —p)) has its cohomology con-

centrated in degree 0, i.e. is isomorphic to a coherent sheaf on N x N. Then, as
(Idg x i)« : Coh(N x N) — Coh(N x g) has a left inverse (Idg x i)*, we deduce the
first isomorphism in (). The second one can be proved similarly.

Now, let us prove that the braid relations are satisfied. To fix notations, assume that «
and [ are simple roots generating a root system of type Ay (the other cases can be treated
similarly). We have to prove that Ogr * OS& * Ogr = (9% * Ogr % (’)%. By (), this is
equivalent to

Ogy,(p = B,=p) * Osy,(p — @, =p) ¥ Ogy (p = B, =p) * Oy, * Ogy, * Ogy, = A0
But we know (see section 3) that

Osy(p— B, —p) x Os,(p =, —p) * Og(p — B, —p) x Og, x Og,y x Og,, = A, Op.
Hence we can use the same argument as in the first part of this proof. O

Remark 5.5. The restriction of this action to Bag, for R of type A, was also considered in
[KT07]. There, it was proved to have some nice properties.

6 Relation to localization in positive characteristic

In this section we show that the action of Bl on DbCoh(g) we have constructed above,
or rather the similar action on D*Coh(g™") (for g™ the Frobenius twist of g, see [BMROS,
1.1.1]), extends the action on DbCOhB(l) (M) constructed in [BMRO6] using representation
theory of Lie algebras and D—modulesx in positive characteristic.

In 6.1 and 6.2, k is an arbitrary algebraically closed field. In 6.3 we assume char(k) > h
for h the Coxeter number of G. We use the same notation as above.
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6.1 The reflection functors

Let us fix a simple root o € ®. In this subsection we study the functor L(%’&l))* o R(%&l))*.
To simplify notations, we forget about the Frobenius twists; the “twisted versions” of our
results can be proved similarly. In this subsection and the next one, char(k) is arbitrary.

We are in the situation of Lemma 2.1.2, with f being the morphism 7,. So L(74)* o
R(74)« is the convolution functor with kernel

L
R(p13>*(0gxgaga xg ©gxga xg nggaxgag)-
The situation is particularly simple here, due to the following result:

Lemma 6.1.1. The derived tensor product nggagan é@gxgaxg nggaxgag is concentrated

in degree 0°. It equals the sheaf of functions on the intersection (%g, 8aX8)N(FXFaXg, 0)-
Moreover, this intersection is reduced.

Proof. This proof is again similar to the proof of Proposition 2.4.2. For simplicity, in
this proof we write P for P,. We can restrict to the situation over (B/B) x (UTP/P) x
(UTB/B) = U(J(;) x U*. We use the isomorphisms g|y+ g/ = (b1)* x U and galp+p/p =
(b @ ke_q)* X U(Z ) induced by restriction, and choose as usual coordinates ef(yi), h((;i)
(yeERT,6€®,ie{1,2,3}) and e(_2(l in the fibers, ©® and u®® on U(J;), and ¢ on U,.

The equations of the first subvariety are 6%1) = eg), h((sl) = h((52)7 e? = 0and u® = 1.

—a

And the equations of the second variety are egz) = 6&3)7 h<(52) = hg?))’ u® = ul® and
u® ug(t)-e® =0, ie. u® - (e?) +th2) — 2e?) = 0.

It is clear that these equations form a regular sequence, and define a reduced scheme.
This proves the lemma. [

The morphism p; 3 restricts to an isomorphism from the intersection (g xg, ga X §) N
(8 X ga ¥g, 8) to g Xg, @ Hence we obtain, using Lemma 2.1.2:

Proposition 6.1.2. There exists an isomorphism of functors

O
L(7a)" 0 R(Ta). = F,

8%g, 8
—8

for the closed subvariety g xg, g C @ X g.

Moreover, under this isomorphism, the adjunction morphism L(Ty)* o R(Tq)« — 1d is
induced by the restriction map ngg g — AsOg.
6.2 Intertwining functors

We have seen in 2.3 that g xq g = G x® Z,, and that the B-variety %, has two irreducible
components, ¥, and .%,.

8 As noticed by Michel Brion, this property is a general fact for morphisms between smooth varieties.
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Lemma 6.2.1. There exist exact sequences of B-equivariant quasi-coherent sheaves on
¢g* x P, /B, where the surjections are restriction maps:

Og,

[e3

Og,(—p) @1 kp(p — ) = Oz, - Og,.

— Oz, - O04,;

Proof. : We use the same notation as in 2.3. In particular, recall the equations of %, S,
PDo. On U, B/ B, we have an exact sequence

Klhs, e, 8]/ (8) = Klhg, ey, 1]/ (t(ha — tea)) = Klhs, ey, ]/ (ha — tec)

where the first map is multiplication by (hs — tes). Under the change of coordinates
on (UyB/B) N (nqUaB/B) (given by t — —%), ho — teq is sent to hg + ea, which
is 0 in k[%Za|(n,v.B/B)—{naB/B}) = k[hs, ey,t1]/(ea + the). Hence we can glue the
preceding exact sequence with the trivial exact sequence 0 — klhs, e, t]/(eq + thy) —
klhs, ey, t]/(eqa + tha) to obtain an exact sequence of sheaves

O@ — Op,za - Oya.

(e}

This sequence is obviously B-equivariant (the first map is non zero only over B/B, and h,
is B-invariant in our coordinate ring). This gives the first exact sequence of the lemma.

Similarly we have an exact sequence
Klhs, €, 1)/ (e — tea) < Klhs, e, 11/ (t(he — tea) — klhs, e, 11/ (1)
where the first map is multiplication by ¢. To glue this exact sequence with the trivial one

on naUyB/B:

kihs, ey, t]/(ea + tha) — klhs, ey, t]/(ea + tha) — 0
we have to tensor O, with the inverse image of Op, /p(—p) = Op1(—1) on P,/B = IP’%.
We obtain the exact sequence of quasi-coherent sheaves

Oz, (—p) = Oz, - Og,.

To understand the B-equivariant structure of the first morphism, we observe that to define
a morphism Op_/g(—p) — Op, /B is equivalent to choosing a vector in I'(Po/B, Op, /5(p))-
This P,-module has dimension two, with weights p and p — «. The line of weight p — « is
B-stable: choosing a non-zero vector in this line thus defines a morphism of B-equivariant
sheaves

Og,.(=p) @1 kp(p — @) — Oz,,

which yields the second exact sequence of the lemma. O

Inducing these exact sequences from B to GG, we obtain

Corollary 6.2.2. There ezist exact sequences of quasi-coherent sheaves on g* x (B xp, B),
where the surjections are restriction maps:

OAg - nggag - Og,;
Os,.(p—a,—p) — nggag — Opg-

Remark 6.2.3. As in Proposition 2.4.2, p can be replaced by any A € X with (\, ") = 1.
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6.3 The two actions of the braid group coincide

Assume again that p = char(k) > h. Recall the notation and results of 1.1.2 and 1.1.3. Let
us fix some A € X in the alcove 6p = {vr € X@R | V3 € RT,0 < (v+p, ") < p}, and some
X € g* nilpotent. In this subsection we finally prove that the “Frobenius twisted version”
of the action of Blg on D’Coh(g) considered in Theorem 2.3.2 extends the action of B¢
on DbCOhBS)(fgv(l)) coming from [BMRO6, 2.1.6, 2.3.2|, via equivalence V(BA,x) of (1.2.2) in

chapter I. More precisely, for b € Blgz we denote by
Jb: DPCoh(gM)) — DPCoh(g™M), respectively
b . b f b f
Iny:D MOd(%\x) (Ug) — D Mod(g/\»() (Ug)

the action of b coming from Theorem 2.3.2, respectively the action constructed in [BMR06,
2.1.4]°. The functor J® restricts to an auto-equivalence of DbCohBu)(ﬁ(l)), denoted simi-
X

larly. The main result of this subsection is the following:

Theorem 6.3.1. For any b € Bl there exists an isomorphism of functors from the cate-
gory DbCohBu)(a(l)) to itself:
X

Jb

1

(75\»0)71 © Il()k,x) © 7(BA,X)'

Proof. 1t is enough to consider the generators Ty, (denoted by s, in [BMRO06]) and 6, for
a € & and v € X. First, fix some z € X. It is proven in [BMRO06, 2.3.3] that 6, for
z € X dominant acts (in the action of [BMRO6]) by convolution with kernel A.Ogn)(z).
It follows, by construction, that this result is true for any z € X. Hence the two actions
coincide for b = 0,.

The case of T}, is more delicate, and will occupy the rest of the proof. We fix a € ®.
We will construct an isomorphism of functors

Os(l)(—P,P—a)

°T000 = Y00 © Fgn g (6.3.2)

(T x)
This is equivalent to the theorem for b = T, due to Proposition 2.4.2. Let us choose some
to € X, on the a-wall of %) (and on no other wall). We define the functor R, := Tﬁ\a o T}
(see [BMRO6, 2.2.7]).
First, let us consider a single object F € DbCohBu)(ﬁ(l)). Now we prove that the
images of F under the two functors in (6.3.2) are isomorphic. Later we will prove that this
isomorphism comes from an isomorphism of functors.

Lemma 6.3.3. There exists an isomorphism in DbCohB(l)(ﬁ(l)):
X

N . N O _y(=pp—a)
(I80) " 21000 F) =80 © Fyorgo

9This action depends on the choice of an isomorphism between the “local” extended affine braid group
and Blg. We take the isomorphism associated to the choice of the element A € W.g @ A, as in [BMRO6,
2.1.6].
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Proof of Lemma 6.3.3. By definition (see [BMRO06, 2.2.4, 2.3.1]), there is an exact triangle

(I50) " 0700 (F) = Ra 090 0 (F) = 260 F), (6.3.4)
where the second arrow is induced by adjunction. By Propositions 1.1.3.1 and 6.1.2, there

o &8
exists an isomorphism R, o ’75\»() (F) = fy(B)Hx) o F \9%e®

o) gD (F), and the second arrow of

triangle (6.3.4) identifies with the morphism

@
B (8%g,9M B
T © Fgu)Hggu) (F) — Yx) (F)

induced by the restriction map O(gxg gm OAgu) (recall that the convolution with

kernel O Agn) 18 the identity). Now the result follows from the second exact sequence in
Corollary 6.2.2, using basic properties of triangulated categories. O

Let q1,q2 : S&l) — ﬁ(l) be the natural morphisms, induced by the projections py, ps :

g(l) X g(l) — g(l) Then, Fg(ls;:g(l)

F o R(@2)-(L(0)"F &g Ogon(—p.p — )

is isomorphic to the functor

(by the projection formula). We denote by X the completion of g along the closed
subscheme BS), and by Y the completion of S&l) along the closed subscheme 83((1) X 1) BS).
Then ¢; and ¢o induce morphisms of formal schemes ¢1,¢2 : Y — X. We denote by
ix X =W and 1y 1 Y — S8 the inclusion morphisms (which are flat). If F is in
Coh(g("), then (1x)*F is just the completion of F along BS) (see [GroT71, 10.8.8]), and
similarly for ). Recall the vector bundles ./\/lgx) on X (for v € X regular) introduced in

I.1.2. Then by definition, for F in D*Coh ) (g),
X

ygx) (F) = RF(ME,’X) Qx (L) F).

Let us also remark that by [BMRO6, 2.2.3(c)| and the choice of vector bundles we have a
functorial isomorphism
— B ~ B
( ?)\,X)) o f)/(/\,X) = /Y(SQQA,X)' (635)
Now let F € DbCohBu)(ﬁ(l)). For simplicity, we write (%) for the object 75\ 0 °
% :

Osg) (=p,p—a)

o) g (F). By definition and [Gro61b, 4.1.5], we have functorial isomorphisms

1

(*) RL (M?A,X) @x (L) R(g2)«(L(q)*F ®S&1) 05&1) (—p,p— a)))

RT (MG, ) ®x R(%)«((1p)* L(@1)* F @y Oy(=p, p — @))).

12

Now, as q1 oty = tx o q1, we deduce that

() = RD(ME ) ®x R(B)«(L(@1)" (ta)*F @y Op(—p,p — ))).
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By the projection formula applied to ¢2, we have then

(¥) = RIoR($@)«((3)"Mp ) @y L(@1)* (tx)* F @y Oy(—p,p — a))
> RI o R(q1)«((@)* M, ,) ®y L(@)* (ta)*F @y Oy(—p,p — ).

Finally, the projection formula applied to ¢ gives
x L ~ A~ ¥
() = RT((ta)* FOxR(Q)«(R) MB ) ©y Oy(—p, p — a))). (6.3.6)

It follows from (6.3.5) and (6.3.6) that it is enough, to prove isomorphism (6.3.2), to
construct an isomorphism

R(G). (@) MB, ) @y Oy(—p.p— ) = ME_,
(1)

in the derived category of coherent sheaves on X'. Let 7 be the ideal of definition of By
in g1, By [Gro71, 10.11.3] and [Gro61b, 3.4.3], it is enough to show that for all n > 1 we
have an isomorphism
L ~ A~ % ~ L
(Ox /T R(@1)+ (@) MP, ) @y Op(=p,p — @) = (Ox/T")Ex MG, o -
Using isomorphisms (6.3.5) and (6.3.6), and the fact that RI is an equivalence of categories,
this isomorphism follows easily from Lemma 6.3.3 applied to Ox /Z"™. O

Remark 6.3.7. In [Bez06b], Bezrukavnikov explains the importance of this action of B in
his plan of proof of Lusztig’s conjecture concerning the representation theory of g. There,
the definition of S, is different from ours, but of course they are equivalent (i.e. they define
the same subscheme of § X @), see section 8. He also considers the action on D’Coh(N)
(see [Bez06b, Theorem 2.1]), without giving a proof of its existence.

7 Relation to representation theory in characteristic zero

In this section we establish a connection between our constructions in the case k = C and
Ginzburg’s description of the equivariant K-theory of the Steinberg variety. We also relate
them to Springer’s action of the Weyl group on the homology of a Springer fiber.

In the whole section (except in Lemma 7.1.1) we take k = C.

7.1 Equivariant K-theory of the Steinberg variety

First we need a result analogous to Corollary 6.2.2, but for the action on DbCOh(Jv ). It is
valid over any algebraically closed field k. Consider the variety S.,. Geometrically, it can
be described as:

S, ={(X,01B,92B) € g" x (B xp, B) | X|g,.b4g,b = 0}.

It has two irreducible components. One is AN , the diagonal embedding of N , and the
other one is
Yo :={(X,91B,92B) € g* x (B xp, B) | X|g,.p, = 0},

which is a vector bundle on B xp, B, of rank dim(g/b) — 1.
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Lemma 7.1.1. There ezist exact sequences of quasi-coherent sheaves, where the surjections
are restriction maps:

Opg = Os,(p—a,—p) = Oy, (p—a,—p);
Oy, (p—a,—p) = Og;, = N2

Proof. The construction of the exact sequences is analogous to that in Lemma 6.2.1. Let
us introduce the following subvarieties of g* x (P,/B):

4, = (9/6)" x (B/B)
= A{(X,gB) € ¢" X (Pa/B) | Xpsg = 0}
%= {(X,gB) € ¢" x (Pa/B) | X}p, = 0}.

Then we have isomorphisms AN = G xB 2/, 8/, = G xB .7 Y, =~ G xB #,. Let us
recall the equations of the varieties 7., .71, %,. We use the affine covering (P,/B) =
(UyB/B)U(sqUsB/B), and the isomorphisms induced by u, respectively by t — nquq(t):
k=U,B/B, k= s,U,B/B. As coordinates on g* we use the basis {e,,y € R, hg, 3 € ¢}
of g. Then we can deduce from the computations in section 5 the equations defining
ZalvaB/B: Palvu.p/p and Z |y, p/p as closed suvarieties of g* x k. Namely, these three
varieties are defined by the equations e, (v € R™), hg (8 € ®) and, respectively, teq, t,
eq- Hence there are exact sequences

k[Z4|v.B/B] = kK[Solv.B/B] = kK[%alu, B/Bl:
k[%alv,B/8] = k[Zalu.B/B] = K[Z4lv.B/B]:

where the first maps are respectively the multiplication by e, and ¢.

Over s,UaB/B we have %, |s,.v.B/B = 0, LalsovaB/B = Zals.v.p/p- Under the
1

change of coordinates ¢ is sent to —,

quasi-coherent sheaves

and e, to 0. Hence there are exact sequences of

Og;, — Oz = On,, Oun, Q0p, ;5 Opr,ya(—=p) = Og1 — Ogy,.

Concerning the B-equivariant structure, we remark that the second exact sequence
was constructed just like in Lemma 6.2.1. Hence, as there we have an exact sequence of
B-equivariant sheaves

Oz, (—p) @ kp(p — a) = Oy — Ogy.

Inducing from B to G we obtain the second exact sequence of the lemma. Concerning the
first exact sequence, its first arrow is given by the multiplication by e,, which has weight
a for the action of B. Hence the B-equivariant exact sequence reads

O@A ] kp(a) — Oy{; — Ogy, .

Inducing, we obtain O, e(a,0) — Og; — Oy,. Now Opxp, s(—p,p) is trivial on the
diagonal. Hence we also have

Opgla—=p,p) = Og, — Oy,.
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Tensoring by the inverse image of Opx,_5(p — @, —p), we obtain the first exact sequence
of the lemma. O

Let us define a C*-action on N, setting
t-(X,gB) = (t2X,¢B).
This action commutes with the natural action of G on . We denote by
(1) : D’ Coh®*C* (N) — DPCoh®*C™ (N)

the tensor product with the one-dimensional C*-module given by Idcx, and similarly for
any variety with a C*-action. Then the exact sequences of Lemma 7.1.1 have G x C*-
equivariant versions

Ore(2) = Os1 (p— a,—p) = Oy, (p — a, —p);
Oy, (p—a,—p) — Os(g - OAJ@"

If H is an algebraic group (over C) acting on a variety X, we denote by K (X) the
H-equivariant K-theory of X. This is by definition the Grothendieck group of the category
Coh (X) of H-equivariant coherent sheaves on X, or of its derived category D*Coh* (X).
We refer to [Lus98, section 6] for generalities on equivariant K-theory, and to [Bez00,
section 2| and [CG97, 5.1| for the main properties of derived categories of equivariant
coherent sheaves. If F is an object of D?Coh® (X), we denote by [F] its image in K (X).

Let N be the variety of nilpotent elements in g*. We have the Springer resolution
7 : N — N. We will be interested in the Steinberg variety

Z::./\N/’XNJV,

and more precisely to the group K¢*C*(Z). First, let us describe the ring structure on
this K-group. There is a natural closed embedding j : Z — N?. Let pop : N3 — N2
denote the projection to the a-th and b-th factors (1 < a < b < 3). If F and G are in

DPCoh®*C"(Z), then R(p13)«(p} 2(juF) © gs Ph5(j<G)) is only in DPCoh®*C (N2), but
its cohomology is supported on Z. Hence the class [R(p1,3)«(p] o(j«F) @L@ﬁg p33(5+G))] is

a well defined element of K&*€*(Z) (see [Bez00, 2. Lemma 3(b)], [Lus98, 6.2]). The ring
structure on K¢*C*(Z) is then given by the product:

[F] - [G] := [R(p1,3)(9} 2(juF) @ gy 03 5(3G))].

Note that the unit for this product is [0 e]-

Let v be an indeterminate, and A := Z[v,v™1]. Let H.g4 be the extended affine Hecke
algebra associated to R (over A). Using the Bernstein presentation (see e.g. [Lus98, 1.19])
one sees that Hlg is the quotient of A[Bg], the group algebra of Blg over A, by the ideal

generated by the relations
(T + v ) (T —v) =0 (7.1.4)
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for a € ®. We let A act on KG*C*(Z) by setting v - [F] := [F(1)]. The varieties Y,
and S}, are G’ x C*-stable subvarieties of Z, hence define natural classes [Oy,], [Os:] in
KG&*C*(Z). If 2 and y are in X, the line bundle Oz(x,y) (see 2.3 for the notation) is
naturally an object of Coh®*C”™ (Z) (with trivial C*-action).

As an easy consequence of our results we obtain:

Proposition 7.1.5. The assignment

{ To — —v Oy, (—pp—a)—vt= —”_I[OS&}?

extends to a morphism of A-algebras H. g — KG*C* (7).

Remark 7.1.6. This result is well known (see e.g. [Lus98, 7.25] or [CG97, 7.6.9]), and
this morphism is in fact an isomorphism, as proved in [Lus98, 8.6] or [CG97, 7.6.10]. The
construction of this morphism is one of the main steps of the proof of the isomorphism

e = K<C"(Z) (both for the proof by Ginzburg, see [Gin87| or [CG97], and for the
alternate proof by Lusztig, see [Lus98]). These previous constructions are indirect, using an
action on a module to prove the fact that the image of the generators satisfy the relations
of H! . Using our constructions, one can give a direct proof of the relations in K GxC*(7)
(using no K-theoretic result). Moreover, this proof gives a more concrete interpretation of
the image of the generators Ty,; namely, this image is a multiple of the class of Og; .

Proof. First, the equality
0 Oy, (=p,p—a)] —0v™! = —v"Og, | (7.1.7)

follows from the exact sequence (7.1.3). We have to check that the elements —vil[C’)gra] for
a € ® and [0, g(z)] for x € X satisfy relations 1 to 4 of Theorem 1.1.3, and the quadratic
relations (7.1.4).

Relation 2 are trivial, and relations 1 and 3 follow from the results of section 5. Now
the exact sequences of Lemma 2.4.5 admit the following C*-equivariant versions (where
the action on g is the natural one, extending the action on N):

Oy1(2) <= Oy, (p — o, —p,0) - Oyz2(p — a, =p, 0);
Oy1(2) = Oy, (0, —p,p — @) > Oy2(0,—p,p — a).
We deduce as in section 5 that —v~[Og ] is invertible, and
(=07 Og ) = =0 Os, (p — @, —p)]. (7.1.8)
Then relation 4 is easy to prove (as in 2.5).
Finally, for the quadratic relations, consider the exact sequence (7.1.2). It yields

v Og,(p = a, =p)] = =0 Oy, (p — @, =p)] — v, (7.1.9)
Using relations (7.1.7) and (7.1.8), we deduce from (7.1.9) that
(—0 O ) 7 = (v Og,])) + (v —w).
This is equivalent to relation (7.1.4). O
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Tt follows from these considerations that the natural action of H.q on K&*C” (N) (see
|CG97, 7.6.6]) can be lifted to an action of Blg on the category D?Coh®*C™ (A).

Remark 7.1.10. Let x € g* be nilpotent, and let B, be the corresponding Springer fiber,
i.e. the inverse image of y under g — g* (see 1.1.1). Let M be a closed subgroup of the
stabilizer of x in G x C*, for the action defined by (g,2) - x = Z_2gv' X- Then M stabilizes
B, C N. Our constructions yield an action of B’g on D*Coh™ (N), which stabilizes the

full subcategory DbCoh%< (./\7 ) of complexes whose cohomology sheaves are supported on

B,. The Grothendieck group of the category DbCohg{( (N) identifies with KM (By). The
same considerations as above show that the action of Blg induces an action of H.g on
KM(B,). This is the action considered in [Lus02, 3.4]. In [Lus02|, Lusztig explains the
importance of these modules in the construction of all the irreducible H,g-modules over

C.

7.2 Springer’s representations of W

Now we consider Springer’s representations of the finite Weyl group. More precisely we
follow Ginzburg’s approach to this question in [Gin86] (see [CG97, chapter 3| for the same
arguments, in the framework of homology rather than K-theory).

As in 7.1, our constructions yield a Z-algebra morphism

where K (Z) is the non-equivariant K-theory of the Steinberg variety Z, and By is the finite
braid group (see 1.1 for the definition). The exact sequences of Lemma 7.1.1 show that for
o € ® the image of (T,)? in K(Z) is 1. Hence the previous morphism gives a morphism

ZW] — K(2).

Following Ginzburg, we consider K(Z) as the Grothendieck group of the abelian category
Cohz (N xN), and denote by L(Z) the quotient by the subgroup generated by the elements
[F] for F in Cohz(N x N) such that dim(Supp(F)) < dim(Z). Composing the previous
morphism with the natural quotient K(Z) — L(Z) we obtain a morphism

ZIW] — L(Z). (7.2.1)

The following proposition follows directly from our constructions and the definition of
specialization in K-theory as in [CG97, 5.3] (use the definition of S, as the intersection

So N (N x N)).

Proposition 7.2.2. The morphism (7.2.1) coincides with the isomorphism of [Gin86, 5.3]:
ZIW] = L(Z).

This isomorphism is the main step in Ginzburg’s approach to Springer’s construction
of the representations of W on the top homology of Springer fibers (see [CG97, 3.5-6]).
Choose a nilpotent x € g*, and consider the Springer fiber B, (see 7.1). As noted above,
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the B!g-action on DPCoh(N) induces an action of By on K(By) (this is the case M = 11in
Remark 7.1.10), which factorizes through the finite Weyl group W (for the same reason as
above). This in turn induces an action of W on L(By), the quotient of K(B,) defined as
above for L(Z). By Grothendieck-Riemann-Roch, we have an isomorphism L(By) ®z Q =
H™P(B,, Q). Via this isomorphism, the action of W gives Springer’s action on H*P(B5,, Q)
(by Proposition 7.2.2 and [CG97, 3.5-6]).

8 Alternate proof of the finite braid relations

In this section we assume that p is very good for G. We give a different proof of the
finite braid relations (relations 1 of Theorem 1.1.3), which is valid for any group G (and
p very good), and avoids case-by-case considerations. It is a joint work with Roman
Bezrukavnikov. This will complete the proof of Theorem 2.3.2.

As above (see 2.3), if A € X, and if X — B is a variety over B, we denote by Ox(\)
the inverse image of Og(\). More generally, if P is a parabolic subgroup of G and V is
any finite dimensional P-module, there exists a natural vector bundle Lg,/p(V) on G/P
associated to V' (see [Jan03, 1.5.8]). If X — G/P is a variety over G/P, we denote by
Lx (V) the inverse image of Lg/p(V).

If # is a triangulated category, and &/ C £ is a full triangulated subcategory, for
M, N € # we write M = N mod & if the images of M and N in the quotient category
P/l are isomorphic.

8.1 Line bundles on g

The methods of this section come from [Bez06a]. We use the same notation as above for
the convolution functors (see 2.1).

As p is very good, there exists a G-equivariant isomorphism g = g*. Under this
isomorphism, g identifies with the induced variety G x5 b.

Now consider the projective morphism g — g*. Let greg C g denote the open set of
regular elements, and gy, C g* the image of greg under the isomorphism g = g*. Let Greg
be the inverse image of gi,, under the morphism g — g*. There is a natural action of
W on greg (see e.g. [Jan04]!%). Moreover, for o € ®, S, is the closure of the graph of
the action of s, (indeed, S, contains this closure, and both varieties are irreducible of the
same dimension).

Let us consider the category D?Coh®*®m (g), where G acts on g via the natural action
and Gy, =2 k* acts by dilatation along the fibers: for ¢t € k* and (X, ¢gB) € g we put

t-(X,gB) = (t*X,¢B).

0Tn fact, in [Jan04] the author proves that there is a W-action on s, the inverse image of regular
semi-simple elements in g*. We could not find a reference for the construction of a W-action on the whole
of 8ree. However, we will use only very easy facts on this action, which can be checked “by hand”. For
instance, one can use the previous description of S, to define the action of sq.
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For A € X, the linde bundle Og()) is an object of DPCoh®*Cm (g) (with trivial Gmy-action).
As in section 7, we denote by

(1) : D" Coh®*®m (g) — D’ Coh“*Cm (g)

the shift functor, i.e. the tensor product with the 1-dimensional k*-module given by Idx.
We denote by (j) the j-th power of (1), for j € Z.

If A is any subset of X, we denote by D4 the smallest strictly full triangulated subcat-
egory of DCoh“*®m(g) containing the line bundles Og(A) for A € A and stable under the
functor (1).

We denote by conv()) the intersection of X with the convex hull of W - A, and by
conv’(\) the complement of W - X in conv()\).

Lemma 8.1.1. Let o € .

(i) For any \ € X, the functors FOSQ Fgo_fg(fp’pfa) preserve the subcategory Deony(n)-

(ii) Let A € X such that (\,a") § 0. Then

O [
gjg (Og()\)) = OQ(SO)‘) <_2> mod Dconvo( A):
(iii) Let A € X such that (A\,a") > 0. Then

Fg 557" (0g(N)) = Og(sa))  mod Deguyoga.
Proof. As above, let P, be the minimal standard parabolic subgroup of G associated to
{a}, and let P, := G/P, be the corresponding partial flag variety. We have defined in
I.1.1 the variety g,. It is endowed with a natural G X Gy-action, such that the morphism
Ta : 8 — 8o i8 G X Gu-equivariant. By Proposition 6.1.2 and Corollary 6.2.2, for any F
in DbCthXGm( ) there exist distinguished triangles

F(=2) = L(Fa) 0 R(Fa)uF — Fy s (F); (8.1.2)
F:jg(—pm—oc)(]-‘) — L(7a)* o R(Ta)«F — F. (8.1.3)

Let i : g < go Xp, B be the natural inclusion. There exists an exact sequence
Oga XpaB(_a)<_2> — OgaxpaB - 7;*(99 (814)

(because b C Lie(P,) is defined by one equation, of weight (—a, —2) for G X Gy, ). Let also
D ga Xp, B — ga be the projection. Then 7, = p 0.

Using triangles (8.1.2) and (8.1.3), to prove (i) it is sufficient to prove that for any
A€ X, L(Ta)* 0 R(Ta)+Og(A) is in Deny(n)- The case (A, a¥) = 0 is trivial. First, assume
that (A, V) > 0. Tensoring (8.1.4) by Og,, xp, 5(A) we obtain an exact sequence

Ogxip, BA = @)(=2) — O, B(A) = ixOg(N).
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Then, applying the functor Rp, and using [Jan03, 1.5.19, I1.5.2] we obtain a distinguished
triangle
Lg, (IndLr (A — @))(=2) — Lg,(Ind*(N) — R(Fa)<Og(N).

Applying the functor L(7,)* we obtain a triangle
Lo(Indf (A — a))(=2) — Lg(Indp*(N)) — L(Fa)® 0 R(Fa)Og(N).

Now it is well known (see again [Jan03, I1.5.2]) that the P,-module Indgo‘ (M) has weights
A, A—a, -+, sqA. Hence .Cg(Indgo‘ (A)) has a filtration with subquotients Og()), Og(A—a),
-+, Og(saA). Similarly, Eg(Indg‘“(}\ — a)) has a filtration with subquotients Og(A — ),
-+, Og(saA + a). This proves (i) in this case, and also (iii).
Now assume (A, ") < 0. Using similar arguments, there exists a distinguished triangle

L(%a)* 0 R(70):0g(N) — Lg(R'Indf* (A —a))(—2) — Lg(R'Indf ().

Moreover, Eg(Rllndga (A)) has a filtration with subquotients Og(saX — ), -+, Og(A + ),
and Eg(Rllndga (A—a)) has a filtration with subquotients Og(saA), - -+, Og(A). As above,
this proves (i) in this case, and (ii). O

Lemma 8.1.5. Let A\, u € X,

We have Ext%bcohc(g)(og(/\), Og(1)) = 0 unless A — pp € ZxoR™.
Similarly, for any i € Z we have EXt%bCthXGm(g)(Og()\)’ Og(12)(i)) = 0 unless A — p €
ZsoR*.

Proof. This proof is generalization of that of [Bez06a, Lemma 5|.

We give a proof only in the first case. Recall that D*Coh®(g) is equivalent to the full
subcategory of D*QCoh(g) whose objects have coherent cohomology (see [Bez00, Corol-
lary 1]). Hence we can replace D’Coh%(g) by D’QCoh®(g) in the statement. Moreover,
for any ¢ € Z there is a natural isomorphism

EXt;)chth(g)(Og()‘)v Og(11)) = H' (R(I'9)(Og(1n — N))), (8.1.6)

where I'C denotes the functor which sends a G-equivariant quasi-coherent sheaf F to the
G-invariants in its global sections.

Recall also that, via the isomorphism g = G x? b, the restriction functor F — Fliyxb
induces an equivalence of categories

QCoh%(g) = QCoh?(b)

(see e.g. [Bri03, section 2|). Moreover, the following diagram commutes, where I'P is
defined as I'“ above:

QCoh®(g)

TR

QCoh?(p) — =
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It follows, using isomorphism (8.1.6), that for any i € Z we have

Ext 0 conc g) (Qa(N) Ogl1) = H' (R(IF)(Op @) kp(u = A)).- (8.1.7)

The functor I'? is the composition of the functor
['(b, —) : QCoh®(b) = Mod?(S(6*)),

which is an equivalence of categories because b is affine, and the B-fixed points functor
I8 : Mod®?(S(b*)) — Vect(k). Hence, using isomorphism (8.1.7) we deduce that for any
1 € 7 we have

EXtiDchth(g)(Og(A)v Og(1)) = H'(R(IP)(S(6*) @) kp(p — N))). (8.1.8)

Now IP is the composition of the forgetful functor For : Mod?(S(b*)) — Rep(B) and
the B-fixed points functor JZ : Rep(B) — Vect(k). Of course the functor For is exact, and
in the category Mod®?(S(b*)) there are enough objects of the form Indﬁ}(M) = M e k[B],

for M a S(b*)-module, whose images under For are acyclic for the functor JZ. Hence for
any ¢ € Z we have

Exthy e (Oa(M): Oglh)) = H' (R(I)(S(E%) @) kan — N). (5.19)

where for simplicity we have omitted the functor For.

Finally, as B = T x U, the functor J? is the composition of the U-fixed points functor
JY, followed by the T-fixed points functor J7 (which is exact). Hence RJEZ = JT o RJY,
and we have to prove that

JE(R(IV)(S(6*) @1 kp(v))) =0 (8.1.10)

unless v is a sum of negative roots. But R(JY)(S(b*) ®| kp(v)) can be computed by the
Hochschild complex C(U, S(b*) ®| kp(v)) (see [Jan03, 1.4.16]). And the T-weights of this
complex are all in Z>oR" (because all weights of S(b*) and of k[U] are in Z>oR"). Then
(8.1.10) easily follows. O

Lemma 8.1.11. Let A € X, such that A\ — p is dominant. Then Og(\) is an ample line
bundle on g.

Proof. By definition g is a closed subscheme of g* x B. Hence it is sufficient to prove that
Og+xp(A) is ample. But Op(A) is very ample on B (see [Jan03, 11.8.5]). Hence Og«x5(A)
is also very ample. O

8.2 Braid relations

Proposition 8.2.1. Let o, 3 € ®. For any A\ € X* we have an isomorphism

1

Os. (—p,p—a Os,(=p:p—D) Os,(=p,p—D5) Os,, (—pp—a
ngg( " )OFQHS O”'(Og()‘)) Fgﬂg Ongg( "’ )O'”(Og()‘))a

where the number of functors appearing on each side is the order of sqs3 in W.
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Proof. To fix notations, let us assume that a and (3 generate a sub-system of type Ay
(the proof is similar in the other cases). By Proposition 2.4.2 we have an isomorphism of
functors

Osa\~1 ~y 705, (—p,p—a)
(ngg) = ngg (2),

and similarly for 8. Hence proving the proposition is equivalent to proving that

Ey:=F %o FU%8 o pO5a o p05007PP0) | pOsa(cpip=a) 085 (=Pe=0)

9—8 ° 9—g ° g—8 ° %99 °g—g (Og(V) (8.22)

is isomorphic to Og(A){—6). First, it follows from Lemma 8.1.1 that

By = Og()\)<—6> mod DCOHVO()\). (8.2.3)

For any full subcategory A of a category B, we denote by (A')z the full subcategory of
B with objects the M such that Homp(A4, M) = 0 for any A in A. By Lemma 8.1.5, Og())

is in (Di)nvo(/\))Dconvo IRE Hence, as all the functors involved preserve the subcategory
(D(inv()()\))@wnv(x) (because their inverse preserves Deonyo(y) by Lemma 8.1.1), also E) is
in (D(le)nVO()\))/DconvO()\)u{k}' (Observe that Ey is in Deonyo(ayugay by (8.2.3).) Now it follows

easily from [BK90, 1.5, 1.6] that the projection

(Di_onvo(A))Dconvo(A)U{A} - Dconvo(/\)u{)\}/Dconvo()\)

is an equivalence of categories. Using again (8.2.3), we deduce that E) = Og(A)(—6) in
DPCoh®*Cm(g), as claimed. O

Before the next corollary we introduce some notation. We denote by XT C X the
dominant weights. If A is a dominant weight, we write that a property is true for A > 0 if
there exists a positive integer N such that the property is true for any weight A such that
(\,aV) > N for any positive root a.

Corollary 8.2.4. The kernels Og,,, a € ®, satisfy the finite braid relations in the category
D Cohprop (g X §). In other words, for o, 3 € ® there exists an isomorphism

Osa*OSﬁ*-“ = OSQ*OSQ*"' s
where the number of terms on each side is the order of sqasg in W.

Proof. To fix notations, let us assume that « and (8 generate a root system of type Ag
(the other cases are similar). The kernels Os,,, Og, are invertible (see Proposition 2.4.2),
hence we only have to prove that

Os, * Os, * Os, * (0s,) " % (0g,) 7! % (Og,) 7! = Opg.

To simplify notations, let us denote by K, 3 the object on the left hand side of this equation.
To prove the isomorphism it is sufficient, using Lemma 8.1.11, to prove that for A\, u > 0
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we have R7T'(g x g, Ka (A, 1)) = 0 (this implies that K, g is concentrated in degree 0,
i.e. is a sheaf), and that there exist isomorphisms

I'(g x 8, Kap(Ap) =T(gx 8, Ong(h p)),

compatible with the natural action of €, ,ex+ I'(8 % 8, Ogyxg(n:7)).
The object Ky g is the kernel associated to the functor

(@]
) "lo (F%) Vo (F, 2

. 10s4 -1
Faﬁ = F 8—8 g_>g) .

Og @) Og
F B F Sa F B
8—9 © g—8 © O(

9—8 9—8

We have seen in Proposition 8.2.1 that Fy, 3 fixes any line bundle Og(A) with A € X*. More-
over, for any A, we have, by the projection formula, RT'(g, Fglcj’gﬁ (Og(N) ®0q Og(i)) =
RI(g x g, Kopg(A p)). It follows, using [Har77, I11.5.2] and the fact that the morphism
g — g* is projective, that for A, u > 0 we have R7%(g x g, K, (A, 1)) = 0 and, moreover,
there is an isomorphism T'(g x g, Ka,g(A, 1)) =T (g, Og(A+ 1)) ZT(g x g, Opg(A, ).
It remains to show that these isomorphisms can be chosen in a way compatible with
the action of P, ,ex+ I'(8 X 8, Ogxg(1,7)). To prove this, observe that the isomorphism

Fg’C_‘f’g’B((’)g()\)) =~ Og()) in DPCoh®*Cm (g) proved in Proposition 8.2.1 is unique up to a
scalar, because

Hompy o 6x6m g) (Og(A), Og(A)) = T'(g, 0g)“"Cm = k.

Let us show that there is a canonical choice of this scalar. Let j : greg <= g be the open
embedding, and let SO be the restriction of S, t0 Greg X Greg- Then there is a canonical

. . . o Os0 . . .
isomorphism j* o Fg _5:5 ~ Fg S: Brex © j*, and similarly for 8 and the inverse functors.
reg reg

Moreover it is clear that there is a canonical isomorphism of endofunctors of DbCoh(ﬁreg):

959 sy 7088 ( s )Lo( ©s8 ) o( 7% )7t = 1d
Breg —0Breg Breg —0Breg Breg —6reg Breg —Breg Breg —6reg Breg —Breg - ’

We choose the scalars above so that the corresponding isomorphism is compatible with
this canonical isomorphism. (Note that gree C g is an open subscheme of codimension
2; hence the restriction induces an isomorphism I'(g, Og) — I'(greg, Og,.,).) Then the
compatibility of the actions of the algebra €D, ,cx+ I'(8 x 8, Ogyxg(n, 7)) is clear. O

It follows from this corollary that Theorem 2.3.2 is valid for any group G and very good
characteristic p. In particular, the results of section 5 are true in this generality, and those
of sections 6 and 7 are true in complete generality.



Chapter 111

Koszul duality and {/g-modules

This chapter countains our main constructions. Using geometric methods we build, for
any regular A € X, a “Koszul-type” duality between the categories DbMod(f)g((Z/{g))‘) and
DbModig((Ug)o), and show that it sends simples to projectives. We also study a “parabolic
analogue” of these constructions, and apply our results to Koszulity of blocks of the re-
stricted enveloping algebra.

This chapter was prepublished in [Ric08b].

Introduction

0.1

Since [BGS96], Koszul duality has proved to be a very useful and powerful tool in Lie
theory. In [BGS96], Beilinson, Ginzburg and Soergel prove that every block of the category
O of a complex semi-simple Lie algebra is governed by a Koszul ring, whose dual ring
governs another subcategory of the category O. In this chapter we obtain, using completely
different methods, counterparts of these results for modules over the Lie algebra g of a
connected, simply-connected, semi-simple algebraic group G over an algebraically closed
field k of sufficiently large positive characteristic. In particular we prove that every block
of the category of finitely generated modules over the restricted enveloping algebra (Ug)o
is governed by a Koszul ring, whose dual ring is also related to the representation theory
of g.

The Koszulity of the regular blocks was already proved (under the same assumption
on k) by Andersen, Jantzen and Soergel in [AJS94]. The Koszulity for singular blocks, as
well as the information on the dual ring (in all cases) are new, however.

As in [BGS96] we use a geometric picture to prove Koszulity. Over C, the authors of
[BGS96] use categories of equivariant perverse sheaves on flag varieties. Over k we use as
a “substitute” of this tool the localization theory in positive characteristic developed by
Bezrukavnikov, Mirkovi¢ and Rumynin.

69
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0.2

The base of our arguments is a geometric interpretation, due to Mirkovié¢, of the classical
Koszul duality between symmetric and exterior algebras.

For simplicity, let us first consider the case of a finite dimensional vector space V. Usual
Koszul duality (see e.g. [BGGT8|, [BGS96|, [GKM93]) relates modules (or dg-modules)
over the symmetric algebra S(V) of V and modules (or dg-modules) over the exterior
algebra A(V*) of the dual vector space. Geometrically, S(V') is the ring of functions on
the variety V*. As for A(V*), one observes that there exists a quasi-isomorphism of dg-
algebras A(V*) 2k QLQS(V*) k, where A(V*) is equipped with the trivial differential, and the
grading such that V* is in degre —1. Hence A(V™*) is the ring of functions on the “derived
intersection”

{0} v {0},

considered as a dg-scheme. An extension of the constructions of [GKM93| yields similarly,
if E is a vector bundle over a non-singular variety X and F' C FE is a sub-bundle, a
Koszul duality between a certain category of (dg)-sheaves on F' and a certain category of
(dg)-sheaves on the derived intersection

F g X,

where E* is the dual vector bundle, FX C E* is the orthogonal of F, and X is regarded
as the zero section of E* (see Theorem 2.3.11 for a precise statement).

0.3

Recall the notation of I.1.1. Here we assume that p = char(k) is bigger than the Coxeter
number h of G. Fix a weight A € X in the fundamental alcove, and denote similarly
the element of t* induced by A. The results of Bezrukavnikov, Mirkovi¢ and Rumynin
reviewed in chapter I give geometric pictures for the derived categories DbMod%\’O) (Uyg)

and DbModgg((L{g)A), as follows (see 1.1.2):

DPCohgay (V) = D'Mod®((Ug)), (0.3.1)
D"Cohyy (@) = D'Mod(§ o (Us). (0.3.2)

As a first step we derive from (0.3.2) a localization theorem for the category Modgg((u 9)o)
of restricted Ug-modules with generalized character A. More precisely, we construct an
equivalence

DGCoh((g g5 B)M) = D'Mod™®((Ug)o),

where ﬁﬁg*x B B is the derived intersection of g and the zero section B inside the trivial

vector bundle g* x B, and DGCoh((g fB]g*X[g B)M) is the derived category of coherent dg-
sheaves on the Frobenius twist of this derived intersection.
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0.4

Under our assumptions on p there is an isomorphism of G-equivariant vector bundles
(g* x B)* = g* x B. Under this isomorphism, g identifies with the orthogonal of N' C g* xB.
Hence the Koszul duality of 0.2 yields a duality between certain dg-sheaves on N )
and on the derived intersection (ﬁ%g*xg B)(l). Now observe that there is an inclusion
DbModgg((Z/{g))‘) < DPCoh(NM), induced by equivalence (0.3.1). Using the results al-
luded to in 0.2, we obtain categories C#', D&"  endowed with auto-equivalences denoted (1)
(the internal shift), an equivalence x : C& = D& and a diagram

K

cer = per
Fori iFor
D'Mod®((Ug)») = DPCoh(N D) D"Mod'E((Ug)o)-

Recall that, by a celebrated theorem of Curtis (|[Cur60]) and by the decription of the
Harish-Chandra center 3¢ (see 1.1.2), the simple objects in the categories Mod(f)g((lxlg))‘)
and Modf\g((Z/{g)o) are the (restrictions of the) simple G-modules L(u) for p € X dominant
restricted, in the orbit of A under the dot-action of the extended affine Weyl group Wg.
The category MOdf\g((Z/{ g)o) is the category of finitely generated modules over the finite

dimensional algebra (Ug)y (the block of (Ug)o associated to A). We denote by P(u) the
projective cover of L(u) in this category. The objects L(u) can be lifted to the category
C#&", uniquely up to the action of the shift (1). The same is true for the objects P(u) and
the category D*.

Consider the element 79 := t,-wy € W.g, where t, is the translation by p, and wy is the

longest element of W. Then the key-point of our reasoning is the following (see Theorem
4.4.3 and subsection 8.1):

Assume p > 0. Then there exists a unique choice of the lifts
L& (p) € C&, P& (u) € D& such that if w € Wz and we X is
dominant restricted, then x(L8" (w e \)) = P8 (ow e \).

In other words, our “geometric” Koszul duality exchanges semi-simple and projective mod-
ules.

This result was supported by the calculations in small ranks of sections 1.2 and [.3.

0.5

Our proof of this key-point relies on the study of “geometric counterparts” of the reflection
functors R : D8 — D' (here 6 is an affine simple root), which send (lifts of) projective
modules to (lifts of ) projective modules. We identify the “Koszul dual” (i.e. the conjugate
by k) of these functors, which are related to some functors &% which send (lifts of) some
semi-simple modules to (lifts of) semi-simple modules (see Theorem 8.2.1). Then we only
have to check our key-point when ¢(w) = 0, which can be done directly (and explicitely).
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To prove the “semi-simplicity” of the functors 6? we use Lusztig’s conjecture on the
characters of simple G-modules, see [Lus80b| (or rather an equivalent formulation of this
conjecture due to Andersen, see [And86|). Recall that, by the previously cited work of
Andersen-Jantzen-Soergel (|[AJS94|), combined with works of Kazhdan-Lusztig (|KL93a],
[KL93b|, [KL94a|, [KL94b|, [Lus94|) and Kashiwara-Tanisaki ([KT95], [KT96]), (see also
[ABGO4] or [Fie07] for other approaches), this conjecture is true for p sufficiently large
(with no explicit bound). This explains our restriction on p.

Let us remark that related ideas (in particular, a contruction of graded versions of trans-
lation functors) were considered by Stroppel in [Str03] for the category O in characteristic
0. However, our techniques are completely different.

0.6

We derive from the key-point of 0.4 the Koszulity of regular blocks of (i/g)p. For this we
use a general criterion for a graded ring to be Morita equivalent to a Koszul ring, proved
in Theorem 9.2.1. More precisely we obtain the following result (see Theorem 9.5.1):

There exists a (unique) grading on the block (U g)é which makes it
a Koszul ring. The Koszul dual ring controls the category Modgg((u a)).

Hence, from a “geometric” Koszul duality between the dg-schemes N and (g %g*x B B)(l)
we derive an “algebraic” Koszul duality between the abelian categories Modgg((u g))) and
Mod$¥ ((g)o).

0.7

Finally we consider a “parabolic analogue” of our geometric duality, where B is replaced
by a partial flag variety P. We prove a version of our restricted localization theorem for
singular weights (see Theorem 3.3.15). Then we derive from our key-point (see 0.4) a
version of it for this “parabolic” duality, and we deduce Koszulity of singular blocks of
(Ug)o (see Theorem 10.3.1). In this case the Koszul dual ring is related to a quotient of
Ug introduced in [BMROS, §1.10].

In particular, it follows that, for p > 0, the ring (Ug)o can be endowed with a (unique)
Koszul grading, i.e. a grading which makes it a Koszul ring (see Corollary 10.3.2). This
fact was conjectured (for all p > h) by Soergel in [Soe94].

0.8

Another interest of our key-point of 0.4 is that it gives information on the complexes of
coherent sheaves corresponding to simple and projective Ug-modules under equivalences
(0.3.1) and (0.3.2). (The question of computing these objects was raised in [BMRO6,
1.5.1].) Namely, the objects corresponding to indecomposable projectives and to simples
are related by the simple geometric construction of 0.2. Our proof also provides a way to
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“generate” these objects. Namely, to compute them it suffices to apply explicit functors
to explicit sheaves, and to take direct factors. In practice these computations are very
difficult, however.

0.9 Organization of the chapter

In section 1 we develop the necessary background on derived categories of sheaves of dg-
modules over sheaves of dg-algebras, extending results of [BL94| and [Spa88]. We also
introduce some notions related to dg-schemes (in the sense of [CFKO01]).

In section 2 we give a geometric version of Koszul duality (due to Mirkovi¢), and study
how this duality behaves under proper flat base change, and with respect to sub-bundles.

In section 3 we prove a localization theorem for restricted /g-modules, as an extension
of the results of [BMROS§|, [BMROG|.

In section 4 we state a version of our key-point. Sections 5 to 8 are devoted to the
proof of this theorem.

In section 5 we introduce some useful tools for our study, in particular some braid group
actions, using the main result of chapter II.

In section 6 we study the projective (U g)é‘—modules and their geometric counterparts,
and their behaviour under the reflection functors. Here and below, A € X is a regular
integral character.

Similarly, in section 7 we study the simple restricted ({g)*-modules and their geometric
counterparts, and their behaviour under the “semi-simple” functors Gy.

In section 8 we finally prove that the “geometric” Koszul duality exchanges the inde-
composable projective (Ug)y-modules and the simple restricted (¢/g)*-modules.

In section 9 we derive the fact that there is an “algebraic” Koszul duality relating
(Ug)}-modules and (Ug)*-modules with generalized trivial Frobenius character.

Finally, in section 10 we extend some of our results to singular characters. In particular
we prove Koszulity of singular blocks of (Ug)o.

1 Sheaves of dg-algebras and dg-modules

In this section we extend results on dg-algebras and ringed spaces (see [BL94| and [Spa88])
to the case of a sheaf of dg-algebras on a ringed space. Most of these extensions are
straightforward, but certain results require some special care, especially concerning the
existence of resolutions. We fix a commutative ringed space (X, Ox), and write simply ®
for ROy -

1.1 Definitions

Let A = P,z A" be a sheaf of Z-graded Ox-algebras on X. Denote by ppa: A®A— A
the multiplication map.
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Definition 1.1.1. A is a sheaf of dg-algebras if it is provided with an endomorphism of
Ox-modules d4 : A — A, of degree 1, such that d4 o d4 = 0, and satisfying the following
formula on AP ® A, for any p € Z:

daopa=pac(da®@Ida)+ (—1)Ppao (Ida @ da).

A morphism of sheaves of dg-algebras ¢ : A — B is a morphism of sheaves of graded
algebras commuting with the differentials.

A sheaf of dg-modules over A (in short: A-dg-module) is a sheaf of graded left A-
modules F on X, provided with an endomorphism of Ox-modules dr : F — F, of degree
1, such that dr o dx = 0, and satisfying the following formula on AP ® F, for any p € Z,
where ar : A® F — F is the action map:

droar =aro (d.A & Id]:) + (—l)pa]: o (IdAp ® d]:)

If 7 and G are sheaves of dg-modules over A, a morphism of sheaves of dg-modules
¢ : F — G is a morphism of sheaves of graded A-modules commuting with the differentials.

We will always consider Ox as a sheaf of dg-algebras concentrated in degree 0, provided
with the zero differential. In the rest of this section we fix a sheaf of dg-algebras A.

We denote by C(X,.A) (or sometimes simply C(A)) the category of sheaves of dg-
modules over A. The translation functor [1] : C(X, A) — C(X, A) is defined as usual to be
the auto-equivalence of C(X,.A) given by:

(FI)P = FPTY, dep) = —dg,
and the A-module structure is twisted as follows: on AP @ F[1],
arp) = (1) ar.

Again as usual, two morphisms ¢,v : F — G in C(X,.A) are said to be homotopic if
there exists a morphism of graded A-modules h : F — G[—1] (not necessarily commuting
with the differentials) such that

¢—t=hodr+dgoh.

We define then the homotopy category H(X,.A) whose objects are those of C(X,.A), and
whose morphisms are obtained by quotienting the morphisms in C(X,.A) by the homotopy
relation.

If ¢ : F — G is a morphism in C(X,.A) or H(X, A), we define its cone to be the graded
A-module Cone(¢) := G & F|[1], provided with the differential given in degree n by the

matrix
< dg ¢! >
0 drp



1. SHEAVES OF DG-ALGEBRAS AND DG-MODULES 75

We define an exact triangle in H(X,.A) to be a triangle isomorphic to a triangle of the
form

FLg— Cone(¢) — F[1].

Provided with these exact triangles and the translation functor [1] defined above, H(X, A)
has a structure of a triangulated category.

If F is an object of C(X,.A) or H(X,.A), we define its cohomology to be the graded
sheaf of Ox-modules H(F) = Ker(dr)/Im(dr). A dg-module F is said to be acyclic
if H(F) = 0. A morphism ¢ : F — G in C(X,A) or H(X,A) is said to be a quasi-
isomorphism if it induces an isomorphism H(¢) : H(F) = H(G). This is equivalent to
the property that Cone(¢) is acyclic. Finally we define the derived category D(X,.A) to
be the localization of H(X,.A) with respect to quasi-isomorphisms. It inherits a structure
of a triangulated category from H(X,.A).

We define similarly the category C"(X,.A) of sheaves of right A-dg-modules, its homo-
topy category H" (X, A) and its derived category D" (X, .A4). We define the opposite sheaf of
dg-algebras A°P which equals A as a sheaf of Ox-dg-modules, and where the multiplication
is given on (A°P)P ® (A°P)? by the composition

AP A1 = Al Ar £A ppta
a®b +— (-1)Pbh®a '
As usual there is a natural equivalence of categories

C(X, A) = C(X, A%) (1.1.2)

sending the object F € C"(A) to the object of C(A°P) which equals F as an Ox-dg-module,
and where the action of (A°P)P on F? is given by

(APPRF = AP@F1 =  FigAr 25, Fr
a®f = (-)Mf®a '

A sheaf of dg-algebras A is said to be graded-commutative if the identity map Id : A —
A°P is an isomorphism of sheaves of dg-algebras. In this case (1.1.2) gives an equivalence
of categories C(X,A) = C"(X, A).

1.2 Hom, Tens and (co)induction

Let F and G be objects of C(X,.A). We define the sheaf of Ox-dg-modules
Homa(F,G)

having, as degree p component, the Ox-module of local homomorphisms of graded A-
modules F — G[p] (not necessarily commuting with the differentials), and provided with
the differential given by

d(¢) =dgo¢p— (—1)Ppods (1.2.1)
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if ¢ € (Hom(F,G))P. This construction defines a bifunctor
Homa(—,—) : C(X, A)P x C(X,A) — C(X,Ox).
One easily checks that Hom 4(—, —) preserves homotopies, and thus defines a bifunctor
Hom4(—, —) : H(X, AP x H(X, A) — H(X,Ox).
In case A is graded-commutative, this even defines naturally a bifunctor
Homa(—,—) : H(X, A)P x H(X, A) — H(X, A).

We also define the functor Hom 4(—, —), from C(X,.A4)°? x C(X, .A) to the category of
complexes of abelian groups, by putting

(Hom 4(F, )" := I'(X, (Hom(F,G))"),

the differential being that of (1.2.1). As usual, the group Home(x 4)(F,G) is the kernel of
the differential d° on (Hom4(F,G))°, and Homyy(x 4)(F,G) = H’(Homu(F,G)).

Let F be an object of C" (X, A), and let G be an object of C(X,.A4). We define the sheaf
of Ox-dg-modules F ® 4G, graded in the natural way, and having the differential given on
local sections of FP ® 4 G by

d(f ® g) =d(f) @ g+ (=1)"f @ d(g).
This construction defines a bifunctor
(—®4—):C"(X,A) xC(X,A) — C(X,Ox).
One easily checks that (— ® 4 —) preserves homotopies, and thus defines a bifunctor
(—®@4—):H'(X,A) x H(X, A) — H(X,Ox).
As usual the tensor product is associative.

Let us define the induction functor in the usual way:

Ind : { pa — A®o, F.

This functor is a left adjoint to the forgetful functor For : C(X, A) — C(X,Ox). More
precisely, for F in C(X,Ox) and G in C(X,.A), we have a functorial isomorphism of Ox-
dg-modules:

Hom A(Ind(F),G) = Homo, (F,For(G)), (1.2.2)

and thus, taking the global sections and then the kernels of d°, one obtains:

HomC(XA) (Ind(]:), g) = Homc(X@X)(]:, Q)
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The functor Ind also induces a functor H(X, Ox) — H(X,.A), which is left adjoint to the
forgetful functor H(X,.A) — H(X,Ox). For later use, let us remark that the adjunction
morphism Ind(F) — F is surjective for F € C(X, A).

Now we define the coinduction functor

C(X,0x) — C(X,A)

Coind : { g — HOT)’L(’)X (A7 g)

(and similarly for the homotopy categories) where the grading and differential are defined
as in (1.2.1), and the action of A is given on local sections by

(- ¢)(7y) = (—1)des(@) deg(9)+degla) deg(v) (1),

Let us show that the functor Coind is a right adjoint to the forgetful functor C(X,.A) —
C(X,0Ox). Let F be an A-dg-module, and G be an Ox-dg-module. We define the morphism

¢ : Homo, (F,G) — Hom 4(F, Coind(G))

by the following formula, where A, resp. f, resp. « is a local section of Homo, (F,G),
resp. F, resp. A: ¢(\)(f)(a) = (—1)dee(@deelN) x(a f). We also define the morphism:

Y : Hom 4(F, Coind(G)) — Homo, (F,G)

by the formula ¥(u)(f) = u(f)(14). The proof of the next lemma is a straightforward
computation, left to the reader.

Lemma 1.2.3. ¢ and ¥ are inverse isomorphisms of Ox-dg-modules. In particular, they
induce isomorphisms of complezes of abelian groups, respectively of abelian groups:

Homo, (F,G) = Hom4(F, Coind(G)),
Home(x,04)(F,G) & Home(x, 4)(F, Coind(G)),
Homyy(x,0,)(F,G) = Homyx 4)(F, Coind(G)).

For later use, let us remark that the adjunction morphism G — Coind(G) is injective,

for G € C(X, A).

1.3 Existence of K-flat and K-injective resolutions

To ensure the existence of the derived functors of the usual functors, we have to show that
there are enough objects in the category C(A) having nice properties. For this we follow
Spaltenstein’s approach (|Spa88]).

Definition 1.3.1. Let F be an object of C(A). We say that F is K-injective if one of the
following equivalent properties holds:

(i) For every object G of C(A), Homyy(4)(G, F) = Homp(4)(G, F);
(ii) For every object G of C(A) such that H(G) = 0, H(Hom4(G,F)) = 0.
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In (ii), H(Hom4(G,F)) is the cohomology as a complex of abelian groups. For a proof
of the equivalence of these conditions, see [BL94, 10.12.2.2].

We will also consider the analogue of a flat resolution.

Definition 1.3.2. An object F of C(A) is said to be K-flat if for every object G of C"(A)
such that H(G) = 0, we have H(G ® 4 F) = 0.

Easy applications of the basic properties of induction and coinduction functors give the
following two lemmas:

Lemma 1.3.3. If F is a K-flat Ox-dg-module, then Ind(F) is a K-flat A-dg-module. If
G is a K-injective Ox-dg-module, then Coind(G) is a K-injective A-dg-module.

Lemma 1.3.4. Assume A is K-flat as an Ox-dg-module. Then every K-injective A-dg-
module is also K-injective as an Ox-dg-module. Similarly, every K-flat A-dg-module is
also K-flat as an Ox-dg-module.

Let us prove that there exist enough K-flat modules in C(X,.A). The case A = Ox is
treated in [Spa88|, and will be the base of our proofs.

If M is a complex of sheaves, we denote by Z(M) the graded sheaf Ker(da,).
Theorem 1.3.5. For every sheaf of .A—dg—modules F, there exists o K-flat sheaf of A-dg-

modules P and a quasi-isomorphism P = F.

Proof. First, let us consider F as an Ox-dg-module. By [Spa88, 5.6], there exists a K-flat
Ox-dg-module Qq and a surjective quasi-isomorphism of Ox-dg-modules Qg — F. Thus
there exists a surjective morphism of A-dg-modules

Po :=Ind(Qp) - Ind(F) — F,

and the A-dg-module Py is K-flat, by Lemma 1.3.3. The induced morphism Z(Py) — Z(F)
is also surjective. This follows from the fact that the morphism Z(Qg) — Z(F) is surjective,
because Qp — F is a surjective quasi-isomorphism.

Doing the same construction for the kernel of the morphism Py — F, and repeating,
we obtain an exact sequence of A-dg-modules

=P —=Py—=F—=0
where each P, is K-flat, and such that the induced sequence
o — Z(P1) — Z(Py) — Z(F) — 0

is also exact. Now we take the A-dg-module P := Tot®(--- — Py — Py — 0 — - --), where
P, is in horizontal degree —p. It is K-flat, as the direct limit of the K-flat .A-dg-modules
P<p = Tot?(-+ - 0 — Py, — -+ — Py — 0 — ---) (see [Spa88, 5.4.(c)]). Now we
prove that the natural morphism P — F is a quasi-isomorphism, ¢.e. that the complex
X :=Tot®(--- =Py - Py —F —0— ---), where F is in horizontal degree 1, is acyclic.
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The argument for this is borrowed from [Kel94, 3.3], [Kel00]. We put P_; := F, and
Pp = 0if p < —1. Consider, for m > 1, the double complex of Ox-modules X, defined by
(X)) = 0if j & [-m,m], (Xn)™ = (P_;) if j € [-m,m — 1], and (X,,,)"™ = Z(P_;)™.
Then X is the direct limit of the complexes Tot®(X;,), which are acyclic because they
admit a finite filtration with acyclic subquotients. Hence X is acyclic. O

We will also need the following result, which is borrowed from [Spa88, 5.7|:

Lemma 1.3.6. If P in C(A) is K-flat and acyclic, then for any F in C"(A) the Ox-dg-
module F @4 P s acyclic.

Proof. Let Q be a K-flat left resolution of F (in C"(A) = C(A°P)). Since P is K-flat, FQAP
is quasi-isomorphic to Q ® 4 P, which is acyclic since Q is K-flat and P acyclic. O

From now on in this section we make the following assumptions:

(f)  All our topological spaces are noetherian of finite dimension.
(t1) All our dg-algebras are concentrated in non-positive degrees.

These assumptions are needed for our proofs and sufficient for our applications, but we
hope they are not essential. In order to construct resolutions by K-injective A-dg-modules,
we begin with the case of bounded below dg-modules.

Lemma 1.3.7. For every bounded-below A-dg-module F, there exists a quasi-isomorphism

of A-dg-modules F s, Z, where T is a K-injective A-dg-module, bounded below with the
same bound as F and such that IP is a flabby sheaf for every p € Z.

Proof. Let us first consider F as a sheaf of Ox-dg-modules. As it is bounded below,
there exists a bounded below Ox-dg-module Jp (with the same bound as F), all of whose
components are injective O x-modules, and an injective morphism ¢ : F — Jy. Then Jp is
a K-injective Ox-dg-module by [Spa88, 1.2, 2.2.(c), 2.5]. By Lemma 1.3.3, Zy := Coind(Jp)
is a K-injective A-dg-module, and one obtains an injective morphism of A-dg-modules

F — Coind(F) — Zy.

This module is bounded below, again with the same bound (because A is non-positively
graded), and its graded components are flabby (use the classical fact that if £ and G
are Ox-modules, with G injective, then Homo, (£,G) is flabby, see [KS90, 11.2.4.6.(vii)],
and the fact that a product of flabby sheaves is flabby). Let Xp denote the cokernel of

this morphism. We have an exact sequence of A-dg-modules 0 — F AR o & Xy — 0.
Repeating the same construction for &p, and then again and again, we obtain an exact
sequence of A-dg-modules (bounded below with the same bound for all the modules)

O0—-F—-Zo—T11 1y — ---

where each Z,, is K-injective and has flabby components.



80 CHAPTER 11I. KOSZUL DUALITY AND U&-MODULES

Let us consider the double complex defined by

_ [T ifp=0
NH '_{ 0 otherwise
and define the A-dg-module Z := Tot®(N). This module is the inverse limit of the .A-
dg-modules K, := Tot¥(--- -0 —Zyp — -+ - I, = 0 — ---) for p > 0 (all the direct
sums involved are finite, hence commute with inverse limits). For each p > 0, K, is a
K-injective A-dg-module (because it has a finite filtration with K-injective subquotients).
Moreover, the morphisms K,1 — K, are surjective, and split as morphisms of graded
A-modules. Hence this inverse system is “special” in the sense of [Spa88, 2.1]. We deduce
that Z is a K-injective A-dg-module (use [Spa88, 2.3, 2.4]). This module also has flabby
components (because a finite sum of flabby sheaves is flabby). Now we only have to show
that the natural morphism F — Z is a quasi-isomorphism, i.e. that the Ox-dg-module
Tot®(-++ =0 — F — Ty —I1 — Iy — --+) is acyclic.
It suffices to show that for any z € X the complex Tot?(... — 0 — F, — (Zo)s —
(ZT1)e — (I2)g — . ..) is acyclic. This follows easily from the usual spectral sequence of a
first quadrant double complex. O

Now we can treat the general case. Recall the classical definition of the truncation
functors: if M is a complex of objects of an abelian category, for every n € Z we define

the complex
TonM = (--+ — 0 — M"/(Im dn—l) ML ).

The natural morphism M — 7>, M induces an isomorphism on cohomology groups H" for
m > n, and H™ (17>, M) = 0 for m < n. For any n we have a surjection 7>, M — T>p41M,
whose kernel is quasi-isomorphic to H"(M)[—n|. Because of our assumption (), this
definition is still meaningful (and has the same properties) for A-dg-modules.

Theorem 1.3.8. For every A-dg-module F, there exists a quasi-isomorphism of A-dg-
modules F 25 T where T is a K-injective A-dg-module.

Proof. Using the preceding lemma, the construction of [Spa88, 3.7] generalizes: there exists
an inverse system of morphisms of .A-dg-modules

qis
fnim>pF — 1,

where f,, is a quasi-isomorphism, Z,, is a K-injective A-dg-module with Z5 = 0 for p < —n
and Z5 flabby for p > —n, and, furthermore, the morphisms Z,, 41 — Z,, are surjective and
split as morphisms of graded A-modules. Then, as in the proof of the previous lemma,
lim7, is K-injective. As F = lim7>_,F, it remains only to prove that f := lim f, is
a quasi-isomorphism. For this we can follow the arguments of [Spa88, 3.13|. Indeed,
using Grothendieck’s vanishing theorem ([Har77, I11.2.7]), condition 3.12.(1) of [Spa88] is
satisfied with B = Mod(Ox), and d, = dim(X) for any € X. Moreover, in the proof of
[Spa88, 3.13], the fact that the Z,, are K-injective over Ox is not really needed. In fact,
we only need to know that, for every n, the kernel KC,, of the morphism Z,, — 7,1 is a
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resolution of H™"(F)[n] which is acyclic for the functors I'(U, —) for every open U C X.
In our case, K, is a flabby resolution of H™"(F)[n| (see the construction of [Spa88, 3.7],
and the flabbiness result in Lemma 1.3.7). Hence f is indeed a quasi-isomorphism. O

1.4 Derived functors

In this section we construct the derived functors of Homy(—,—) and (— ®4 —). Our
reference for derived functors is [Del73, 1.2] (see also [Kel96, sections 13-15] for details).

Let (X,0x) and (Y,Oy) be commutative ringed spaces, and let A (resp. B) be a
dg-algebra on X (resp. Y). Consider a triangulated functor F : H(A) — H(B). Following
Deligne, one says that the right derived functor RF is defined at an object F € H(A) if
F has a right resolution X which is F-split' on the right, i.e. every right resolution ) of
X has itself a right resolution Z such that F' induces a quasi-isomorphism between F'(X)
and F(Z) (see [Kel96, section 14]). Similarly, left derived functors are defined at objects
which are F-split on the left.

Let us remark that a K-injective A-dg-module is F-split on the right for any such
functor (this follows e.g. from condition (i) in definition 1.3.1). Hence, under assumptions
(1), (11), right derived functors are defined on the whole category D(A), by Theorem 1.3.8.

Let Ab denote the category of abelian groups, H(Ab) its homotopy category of com-
plexes, and D(Ab) its derived category. Let us first consider the bifunctor

Hom(—, —) : H(A)®P x H(A) — H(AD).

Fix an object F of H(A)°P. Then we define the functor RHom 4(F, —) : D(A) — D(Ab)
as the right derived functor of Homy4(F, —) : H(A) — H(Ab) in the sense of Deligne. It
is defined on the whole category D(A) by Theorem 1.3.8. Now for each object G of D(A),
the functor RHom4(—,G) : H(A)°? — D(Ab) sends quasi-isomorphisms to isomorphisms,
hence factorizes to a functor D(A)°? — D(Ab), again denoted RHom4(—,G). Thus, the
derived bifunctor

RHom 4(—,—) : D(A)°® x D(A) — D(Ab)

is well defined.
Now we consider the bifunctor

(= ®a—): H'(A) x H(A) — H(Ox).

As above, for each F in H"(.A), by Theorem 1.3.5 and Lemma 1.3.6 there are enough objects
split on the left (e.g. K-flat dg-modules) for the functor (F @4 —) : H(A) — H(Ox).

Hence, its left derived functor (]-'é)A—) : D(A) — D(Ox) is well defined. And thus the
derived bifunctor

(—&4—) : D"(A) x D(A) — D(Ox)
is well defined.

!Spaltenstein uses the term “unfolded”, see [Spa88, p. 123].
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1.5 Direct and inverse image functors

As above, let (Y, Oy) be a second ringed space, and B a sheaf of dg-algebras on it (we call
such a pair a dg-ringed space). A morphism of dg-ringed spaces f : (X, A) — (Y,B) is a
morphism fy : (X,O0x) — (Y, Oy) of ringed spaces, together with a morphism of sheaves
of dg-algebras fiB — A (where f;B is the usual inverse image of B, which has a natural
structure of a sheaf of dg-algebras on X).

We have a natural direct image functor
f« 1 C(X, A) —C(Y,B)
and its right derived functor
Rf.:D(X,A) — D(,B).

It can be computed by means of right K-injective resolutions (see the beginning of 1.4).
Similarly, there is a natural inverse image functor
p (OB~ cxA
’ F — A® 1B f()k F
Its left derived functor
Lf*:D(Y,B) - D(X,A)
is defined on the whole of D(A), and can be computed by means of left K-flat resolutions
(because f; sends K-flat B-dg-modules to K-flat fjB-dg-modules).
The following definition is adapted from [Spa88, 5.11]:

Definition 1.5.1. The A-dg-module F is said to be weakly K-injective if Hom4(G, F) is
acyclic for any acyclic K-flat A-dg-module G.

It is clear from this definition that a K-injective dg-module is weakly K-injective. The
following lemma is a more general (but weaker) version of Lemma 1.3.4.

Lemma 1.5.2. Let F be a weakly K-injective A-dg-module. Then f.F is a weakly K-
injective B-dg-module. In particular, a weakly K-injective A-dg-module is also weakly K-
injective when considered as an Ox-dg-module.

Proof. Let G be an acyclic, K-flat B-dg-module. By standard adjunction,
Homp(G, f+F) = Homs(f5G, F) = Homa(f*G, F).

Now f*G is a K-flat A-dg-module, and is acyclic by Lemma 1.3.6. The result follows. The
second statement follows from the first one, applied to the natural morphism (X, A4) —
(X, Ox) given by the inclusion Ox — A. O

Let For : D(X,A) — D(X,0x) and For : D(Y,B) — D(Y,Oy) denote the forgetful
functors. Let R(fo)« : D(X, Ox) — D(Y, Oy ) be the right derived functor of the morphism
of dg-ringed spaces fy: (X,0x) — (Y, Oy).
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Corollary 1.5.3. (i) The following diagram is commutative:

Rf*

D(X, A) D(Y,B)
Forl \LFor
D(X,0x) —22 . D(y,0y).

(ii) If (Z,C) is a third dg-ringed space, g : (Y,B) — (Z,C) a morphism of dg-ringed
spaces, the natural morphism of functors R(go f)« — Rgs o Rfs is an isomorphism.

Proof. (i) The commutativity of the diagram is clear from the second sentence in Lemma
1.5.2, and [Spa88, 6.7] (which says, in particular, that R(fp)« can be computed using a
weakly K-injective resolution).

(ii) If F is a weakly K-injective A-dg-module which is acyclic, then F is also acyclic
and weakly K-injective as an Ox-dg-module (by Lemma 1.5.2). Hence f.F = (fo)+F is
also acyclic (see [Spa88, 5.16]). It follows that weakly K-injective dg-modules are split for
direct image functors. Then the result follows from classical facts on the composition of
derived functors (see [Kel96, 14.2]). O

Similarly to part (ii) of the preceding corollary, one has:

Proposition 1.5.4. If g: (Y,B) — (Z,C) is a second morphism of dg-ringed spaces, then
there exists an isomorphism of functors L(go f)* = Lf* o Lg*.

Proof. This easily follows from the fact that ¢g* sends K-flat C-dg-modules to K-flat B-dg-
modules, using again [Kel96, 14.2]. O

Definition 1.5.5. The morphism f : (X, A) — (Y, B) is a quasi-isomorphism if X =Y,
fo =1d, and the associated morphism ¢ : B — A induces an isomorphism on cohomology.

The following result is an immediate extension of [BL94, Theorem 10.12.5.1]. It says
that the category D(X,.A) depends on A only up to quasi-isomorphism (of course, it
depends on X only up to isomorphism).

Proposition 1.5.6. Let f: (X, A) — (X, B) be a quasi-isomorphism. Then
Rf.:D(X,A) - D(X,B) and Lf*:D(X,B)— DX, A
are equivalences of categories, quasi-inverse to each other.

Proof. In our situation the functor fi : C(X,A) — C(X, B) is just the restriction of scalars.
In particular it takes quasi-isomorphisms to quasi-isomorphisms, hence Rf, : D(X, A) —
D(X, B) is also the restriction of scalars. The functor Lf* is the derived tensor product
AGLE)B—. There are natural morphisms of functors Id — Rf. o Lf* and Lf* o Rf, — Id
(these morphisms come from adjunction, as we will see in the next subsection, but we do
not need it here). Let us show that they are isomorphisms.
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Let G be a B-dg-module, which we can assume to be K-flat. Then the morphism
G — Rf«.(Lf*G) 2 A®p G can be represented by ¢ ® Id : By G — A ®p G which is a
quasi-isomorphism (because G is K-flat).

Let F be an A-dg-module, and let p : P — F be a left K-flat resolution of F viewed
as a B-dg-module. Then the natural morphism A®g P = (Lf* o Rf,)F — F is a quasi-
isomorphism, because it fits into the following commutative diagram, where the two other
maps are quasi-isomorphisms:

BopP =P

AP F.

This concludes the proof. [

1.6 Adjunction

Let f: (X, A) — (Y,B) be a morphism of dg-ringed spaces. In this subsection we show
that Rf. and Lf* are adjoint functors. This proof is again adapted from [Spa88|.
Following [Spa88, 5.0], we denote by PB(X) the class of dg-modules F in C(X,Ox)
which are bounded above, and such that for each i € Z, F* is a direct sum of sheaves
of the form Opycx (the extension by zero of Ox|y to X) for U open in X. We denote?
by 2]_3>(X) the smallest full subcategory of C(X,Ox) containing PB(X) and such that for

any direct system (F,)n,>0 of objects of P(X) such that the morphisms F,, — F 41 are
= —
injective and split as morphisms of graded A-modules, the object lim F,, is in P (X). The
— —
objects in P (X) are K-flat (as in [Spa88, 5.5]).
—

Lemma 1.6.1. Let F be a K-flat A-dg-module, and G a weakly K-injective, acyclic A-dg-
module. Then the complex of abelian groups Hom4(F,G) is acyclic.

Proof. By Lemma 1.5.2, G is also weakly K-injective as an Ox-dg-module. Consider the
class 9 of objects £ of C(X,.A) such that Hom4(€,G) is acyclic. By [Spa88, 5.20| and
(1.2.2), 9 contains the class € of objects of the form Ind(M) for M € g(X) Now, using
the same proof as that of Theorem 1.3.5, there exists a direct system (P<p)n>0 of A-dg-
modules such that each P<,, has a finite filtration which subquotients in € and such that
the morphisms P<,, — P<p4+1 are injective and split as morphisms of graded .4-modules,
and a quasi-isomorphism P := lim P<,, — F. Using again [Spa88, 2.3, 2.4], Pisin Q. As G
is weakly K-injective, and F and P are K-flat, the morphism Hom 4(F,G) — Hom4 (P, G)
is a quasi-isomorphism. The result follows. O

Theorem 1.6.2. For F € D(Y,B) and G € D(X, A), there exists a functorial isomorphism
RHomu(Lf*F,G) = RHomg(F, Rf.G).

>This subcategory is a priori smaller than the one considered in [Spa88, 2.9], which allows more general
direct limits, but it will be sufficient for us.
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In particular, the functors Lf* and Rf. are adjoint.

Proof. We can assume F is K-flat and G is K-injective (by Theorems 1.3.5 and 1.3.8).
Then f.G is weakly K-injective by Lemma 1.5.2, and isomorphic to Rf.G. Hence the
result follows from the classical adjunction in C(X,.A) and C(Y, B) since, by Lemma 1.6.1,
one can compute RHomp(—, —) using a K-flat resolution of the first argument and a weakly
K-injective resolution of the second argument. O

Remark 1.6.3. The adjunction also follows from the general result [Kel96, 13.6].

1.7 The G,-equivariant case

In this subsection we show how one can adapt the preceding constructions to the case when
A is equipped with a second grading, which we call the “internal grading”. More precisely, in
addition to the assumptions of 1.1, we assume we are given a decomposition A = &,z A,
as an Ox-dg-module such that, for every n,m in Z, pa(A, @ An) C Aptm- We call such
a data a Gm-equivariant dg-algebra (in short: Gp-dg-algebra). Geometrically, if we equip
the topological space X with a trivial Gy-action, such a grading indeed corresponds to
a Gp-equivariant structure. In what follows, Ox will be considered as a Gy-equivariant
dg-algebra concentrated in degree 0 for both gradings.

To avoid confusion, the first grading of A will be called the “cohomological grading”.
When a homogeneous element of A has cohomological degree ¢ and internal degree j, we
also say that it has bidegree (i, j).

We keep the assumptions (1) and (11) of 1.3. In particular, in this subsection all Gy,-
equivariant dg-algebras are assumed to be non-positively graded for the cohomological
grading.

We define as above the notion of Guy-equivariant A-dg-module (in short: Guy-A-dg-
module). This is a sheaf of bigraded A-modules F = €D, ,,cz F., equipped with a dif-
ferential dr of bidegree (1,0) satisfying the natural compatibility condition. In a similar
way we define morphisms between dg-modules, and the categories Cg,, (X, A), Heg,, (X, .A),
Dg,, (X, A). We also have natural bifunctors Hom 4, (—, —) and (— ®4,6,, —) defined as
follows. If F, resp. G, is a right, resp. left, Gm-equivariant A-dg-module, then F ® 4 6,, ¢
is isomorphic to F ® 4 G, with its natural bigrading. And if F and G are G-equivariant
left A-dg-modules, then Hom 4 g, (F, ) is the complex of Z-graded abelian groups whose
(p,q) term consists of the morphisms of A-modules (not necessarily commuting with the
differential) mapping .7-";-' inside Q’;IZ.

We also define the notions of Gm-equivariant K-injective (respectively Gm-equivariant
K-flat) A-dg-modules, replacing the bifunctor Hom4(—, —) by Hom4 g, (—,—) (respec-
tively (—®4 —) by (— ®A4.6, —))- If A= Ox, then a Gm-equivariant dg-module is just a
direct sum of Ox-dg-modules indexed by Z.

Lemma 1.7.1. A Gy -equivariant Ox-dg-module G is Gm-equivariant K-injective (resp.
K-flat) if and only if each of its internal graded components Gy, is K-injective (resp. K-flat).
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Proof. We only give a proof for the K-injective case (the K-flat case is similar and eas-
ier). Let F be another Gm-equivariant Ox-dg-module. Then Homoe, g,..(F,G) is a
complex of graded abelian groups. It is exact if and only if each of its graded compo-
nents is. Hence for any m € Z we have to consider the complex with n-th component
Hi,j HomNIOd(@X)(F;,Q;f;L). This complex is the product (for j € Z) of the complexes
with n-th component []; HomMod(OX)(]:]’:, g;i’;n), i.e. Homop (}"jf, J+m) As the product
is exact on abelian groups, our complex Homp, g, (F,§G) is exact if and only if for any m

and j in Z the complex Homoy (F7,G;,,,) is exact. The result follows. O

It follows from this lemma that there are enough K-injective and K-flat objects in
C6,(X,0x). Then the proofs of Theorems 1.3.5 and 1.3.8 generalize, thus there are
enough K-injective and K-flat objects in Cg,, (X, .A) for any A (to generalize these proofs,
one has to replace the induction and coinduction functors by Gm-equivariant analogues).
Hence one can construct the derived bifunctors RHom 4 g, (—, —) and (—é) AGm—)-

Let For : Cg,, (X, A) — C(X,.A) denote the forgetful functor, sending F to the dg-
module with n-th component @, F/-

Lemma 1.7.2. For every Gum-equivariant A-dg-module F, there exists a Guy-equivariant
K-flat A-dg-module P and a Gum-equivariant quasi-isomorphism P — F such that the
image For(P) — For(F) is a K-flat resolution in C(X,A).

Proof. This lemma follows from the fact that for the dg-algebra Ox, the image under For
of a Gm-equivariant K-flat dg-module is a K-flat dg-module (by Lemma 1.7.1 and the
fact that a direct sum of K-flat modules is K-flat), and the construction of a resolution
given in the proof of Theorem 1.3.5, which is parallel for the Gy-equivariant and the non
Gm-equivariant case. O

It follows from this lemma that the bifunctors (—(ELQ AGm—) and (—é A—) correspond un-

der the forgetful functors. Hence from now on we will denote both bifunctors by (—QLQ A—).

Now we consider direct and inverse image functors. Let (Y,B) be a second G-
equivariant dg-ringed space, and f : (X, A) — (Y,B) a Gmy-equivariant morphism of
dg-ringed spaces. There are natural functors

(fGm)x 1 Com (X, A) = Co,,, (Y, B) and (fc,,)" : Co, (Y, B) — Ca,, (X, A)
and their derived functors
R(fom)+ : Dm(X, A) — Dg,, (Y, B) and L(fe,,)" : Do, (Y,B) — Dg,, (X, A).

These functors are adjoint (the same proof as in the non Gy-equivariant case works). It
follows from Lemma 1.7.2 that the following diagram is commutative:

L(fem)*

lFor lFor
Lf*
D(Y, B) D(X, A).
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In order to prove the similar result for R(fg,,)«, we need some preparation.
First, consider the case of the dg-algebra Ox. Recall the notation of 1.6.

Definition 1.7.3. F € C(X, Ox) is said to be K-limp if Home, (G, F) is acyclic for every
acyclic complex S in P(X).

Note that this notion (also considered in [Spa88, 5.11]) is weaker than weak K-injecti-
vity.

As X is assumed to be noetherian, a direct sum of flabby sheaves on X is flabby (|Har77,
I11.2.8] or [God64, 3.10]). Moreover, for every open U C X the functor I'(U, —) commutes
with infinite direct sums ([Har77, 111.2.9] or [God64, 3.10.1]). If F is a bounded below
Ox-dg-module, RI'(U,F) can be computed using a flabby resolution. Hence the functor
RT'(U,—) commutes with infinite direct sums in the case of a family of Ox-dg-modules
which are uniformly bounded below. Now we will generalize this fact.

Lemma 1.7.4. A direct sum of K-limp Ox-dg-modules is K-limp.

Proof. Let (Fj)jes be K-limp Ox-dg-modules. Let €;c; F; — Z be a K-injective resolu-
tion, constructed as in [Spa88, 3.7, 3.13]. Using [Spa88, 5.17|, it will be sufficient to prove
that for every open U C X, the morphism I'(U, ;¢ ; Fj) = D,c, (U, F;) — LU, T) is
a quasi-isomorphism. We fix an open U, and m € Z. We have 7 = h£1n T, where 7, is a
K-injective resolution of 7>_n(@,;c; Fj) = Djcs 7>-nF;. Then for N sufficiently large,
we have an isomorphism H™(I'(U,Z)) = H™(I'(U,Zn)) (see the proof of [Spa88, 3.13|).
But H™(I'(U,In)) = R™I'(U,@,c; 7>-~NF;). Using the remark before the lemma, the
latter is isomorphic to €P;c; R"I'(U,7>_nF;). For the same reason, for N sufficiently
large (uniformly in j) we have R™I'(U,m>_nF;) = R™I'(U, ;). We conclude using the
fact that, as Fj is K-limp, by [Spa88, 6.4] we have R"T'(U, F;) = H™(I'(U, F;)). O

Let f: (X,0x) — (Y, Oy) be a morphism of ringed spaces. We may also consider it as
a morphism of Gy-equivariant dg-ringed spaces (with trivial Gp-action on Ox and Oy).

Corollary 1.7.5. For every family of objects (F;)ier of C(X, Ox) we have Rf.(P,c; Fi) =
Dicr Rf«(Fi). In particular, the following diagram is commutative:

Dg,, (X, Ox) 2 Dg,, (Y, Oy)
iFor lFor
D(X,0x) — = D(Y,0y).

Proof. The isomorphism follows from the facts that f, commutes with direct sums (because
X is noetherian), that Rf, can be computed by means of K-limp resolutions ([Spa88, 6.7]),
and Lemma 1.7.4.

Then the commutativity of the diagram follows from this isomorphism and the obvious
isomorphism For o R(fg,,)«(F) = ,,cz Rf«(Fn) for a Gm-equivariant Ox-dg-module F
with decomposition F = @,z Fa- O
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Let f: (X, A) — (Y,B) be a morphism of G-equivariant dg-ringed spaces.
Corollary 1.7.6. The following diagrams are commutative:

R(fom)«

Do, (X, A) Do, (Y, B)
Do (X, 0x) —Loom)_p (v, 0),
and
Do, (X, A) —em) _pe (v, B)
DX, A — " Dp,B).

Proof. The commutativity of the second diagram follows from the commutativity of the
first one and corollaries 1.5.3 and 1.7.5. Hence we only have to prove that the first di-
agram is commutative. Now consider a Gpy-equivariant K-injective A-dg-module F. By
an analogue of Lemma 1.5.2, F is weakly K-injective as a Gy-equivariant Ox-dg-module.
Hence each of its graded components is weakly K-injective as an Ox-dg-module (see the
proof of Lemma 1.7.1). The result follows, since one can compute R(fo G, )« using K-limp
resolutions of each components. ]

Proofs similar to those of subsection 1.5 show that if g : (Y,B) — (Z,C) is a second
morphism of Gy-equivariant dg-algebras, one has isomorphisms

R((g0 flom)s = R(9om)s© R(fom)s (L.7.7)
L((go flem)” = L(fom) o L(gem)™ (1.7.8)

Remark 1.7.9. One of the motivations for introducing Gm-equivariant dg-modules comes
from the following situation, that we will encounter later in section 2. Let X be a variety,
and F a locally free Ox-module. Consider the dg-algebra A = Sp, (F), the symmetric
algebra of F over Ox, with trivial differential and the grading such that F is in degree
2. This dg-algebra is not concentrated in non-positive degrees, hence we cannot apply
the constructions of subsections 1.3 to 1.6. Now, let us consider A as a Gpy-equivariant
dg-algebra, with F in bidegree (2, —2). Let B denote the Gy-equivariant dg-algebra which
is also isomorphic to So, (F) as a sheaf of algebras, with trivial differential, and with F
in bidegree (0, —2). Then the “regrading” functor

¢ : Dg,,(A) — Dg,,(B)

defined by & (/\/l); = /\/l;-_j is an equivalence of categories. Using this equivalence and

the fact that B is concentrated in non-positive degrees, all the constructions and results
obtained in 1.7 can be transfered to the Gm-equivariant dg-algebra A.
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1.8 Dg-schemes and dg-sheaves

In this section we define dg-schemes and dg-sheaves over them. Our reference is [CFKO01,
section 2|, but we modify some definitions according to our purposes.

Definition 1.8.1. A dg-scheme is a dg-ringed space X = (X% O%) where X° is an
ordinary scheme and OY is a sheaf of non-positively graded, graded-commutative dg-
algebras on X°, such that each (’)g( is a quasi-coherent Oyo-module (the structure of
O xo-module being given by the action of the image of Oxo inside O%).

A morphism of dg-schemes f : X — Y is a morphism of dg-ringed spaces f : (X,0%) —
(Y,05) (see 1.5).

Let us fix a dg-scheme X.

Definition 1.8.2. (i) A quasi-coherent dg-sheaf on X is a sheaf F of O%-dg-modules on
XY such that each H'(F) is a quasi-coherent Oxo-module. We denote by DGSh(X) the
full subcategory® of D(X, O%) whose objects are quasi-coherent dg-sheaves.

(ii) A coherent dg-sheaf on X is a quasi-coherent dg-sheaf F on X whose cohomol-
ogy H(F) is locally finitely generated over the sheaf of algebras H(OY). We denote by
DGCoh(X) the full subcategory of D(X, O%) whose objects are coherent dg-sheaves.

Remark 1.8.3. (i) If X is an ordinary scheme (i.e. if O% = Oxo and O% = 0 for i # 0)
which is quasi-compact and separated, then the category DGSh(X) is equivalent to the
(unbounded) derived category of the abelian category QCoh(X) of quasi-coherent sheaves
on X (see [BN93, 5.5]). If moreover X is noetherian, then the category DGCoh(X) is
equivalent to the bounded derived category of the abelian category Coh(X) of coherent
sheaves on X (see [BGI71, 11.2.2.2.1; see also [Bor87, VIL.2.B| for a sketch of a more
elementary proof, following J. Bernstein and P. Deligne).

(ii) If f : X — Y is a morphism of dg-schemes, then it induces functors Rf. :
D(XY,0%) — DY 05) and Lf* : D(Y?,05) — D(X? O%). It is not clear in gen-
eral if these functors restrict to functors between DGSh(X) and DGSh(Y), or between

DGCoh(X) and DGCoh(Y). In practice, it will always be the case in this chapter. We
will prove it in each particular case.

The following lemma follows immediately from Corollary 1.5.3 and Proposition 1.5.4
(see also Proposition 1.5.6).

Lemma 1.8.4. Let f : X — Y and g : Y — Z be morphisms of dg-schemes, with f a
quasi-isomorphism (then X° = Y°, and fo = 1d). The following diagrams are commutative.

D(X,0%) ik

m Rg.

D(Z,0%),

D(Y,Oy)

%It is not clear from this definition that this subcategory is a triangulated subcategory. In fact it turns
out that it is the case under some reasonable conditions. In this chapter we essentially consider coherent
dg-sheaves over bounded dg-algebras, hence this point will not be a problem.
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D(Y,03) =i D(X,0%)
Lg* m
D(Z,05).

In particular, if the functors Rg. and Lg* restrict to functors between the categories
DGSh(Y) and DGSh(Z) (or between DGCoh(Y') and DGCoh(Z)), then the functors R(go
)« and L(go f)* also restrict to functors between DGSh(X) and DGSh(Z) (or DGCoh(X)
and DGCoh(Z)), and conversely.

This result allows one to replace a given dg-scheme by a quasi-isomorphic one when
convenient. Of course, given g : Y — Z we may as well replace Z by a quasi-isomorphic
dg-scheme Z'. Hence we will consider dg-schemes only up to quasi-isomorphism.

As a typical example, we define the derived intersection of two closed subschemes.
Consider a scheme X, and two closed subschemes Y and Z. Let us denote by ¢ : ¥ — X

and j : Z — X the closed embeddings. Consider the sheaf of dg-algebras i.Oy é’(’)x 70z
on X. It is defined up to quasi-isomorphism: if Ay — 7.0y, respectively Az — 7.0z are
quasi-isomorphisms of non-positively graded, graded-commutative sheaves of dg-algebras

on X, with Ay and Az quasi-coherent and K-flat over Ox, then 7, Oy éox 7Oz is quasi-
isomorphic to Ay ®o, j«Oz, or to i.O0y ®o, Az, or to Ay o, Az.

Definition 1.8.5. The right derived intersection of Y and Z in X is the dg-scheme
R . L .
YNx Z:= (X, 1. Oy Koy j*OZ),

defined up to quasi-isomorphism.

Remark 1.8.6. Let us keep the notation as above. The sheaf of dg-algebras Ay ®o, j«Oz
is isomorphic to the sheaf of dg-algebras j.(j*Ay). Hence the direct image functor j, :
C(Z,5* Ay) — C(X, Ay ®o, 7+Oz) is an equivalence of categories. As a consequence, by

abuse of notation we will often identify the dg-schemes (Z, 7*Ay) and Y (}%X Z.

2 Linear Koszul duality

Usual Koszul duality (see e.g. [BGGT8|, [BGS96], |[GKM93|) relates modules over the
symmetric algebra S(V') of a finite dimensional vector space V' to modules over the exterior
algebra A(V*) of the dual vector space. In this section we give a relative version of this
duality, and a geometric interpretation in terms of derived intersections (due to I. Mirkovic).

2.1 Reminder on Koszul duality

We fix a scheme (X, Ox). Let F be a locally free sheaf of finite rank over X. We denote
by
S = So(FY)
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the symmetric algebra of FV := Homo, (F,Ox) over Ox. We consider it as a sheaf of
dg-algebras with trivial differential, and with the grading such that F" is in degree 2.

Similarly, we denote by
T := Ao (F)

the exterior algebra of F over Ox, considered as a sheaf of dg-algebras with trivial differ-
ential, and the grading such that F is in degree —1. For the categories of dg-modules over
these dg-algebras, we use the notation of section 1.

Let CT(S) be the full subcategory of C(S) whose objects are bounded below S-dg-
modules. We define similarly C*(7). We denote by H*(S), H"(7), DT(S) and D (7T)
the homotopy and derived categories obtained by the usual procedures (see section 1).

Following [GKM93|, we define the functor
o CH(S) — CH(T)

by setting o7 (M) := Homo (T, M) = TV ®0, M, where the T-module structure is given
by the formula
(t-d)(s) = (—1)des®(desl)+1)/2 4 q)

and the differential is defined as the sum of d; and do, where

di()(t) = (=1) W du(o(t)), (2.1.1)

and dg is defined as follows. Consider the canonical morphism Ox — Homo, (F,F) =
F ®o, FY. Then ds is the opposite of the composition

TV @0, M — TV @0, F @0, F' 00, M 2225 TV 90 M

where ar is the given action FY ®p, M — M and 3 is the (right) action of F on 7
which is the transpose of left multiplication. If ¢ is a local section of 7 in a neighborhood
of z, with {y;,i € I'} a basis of F, as Ox -module and {y},i € I'} the dual basis of (FV),,
we have

da()(t) = — Z v d(yit). (2.1.2)

Using formulas (2.1.1) and (2.1.2), one easily verifies that d; + ds is a differential, and that
/(M) is a T-dg-module.
We also define the functor
B:CT(T)—CT(S)
by setting B(N) := S ®o, N, where the S-module structure is by left multiplication on
S and the differential is the sum ds + d4, where
d3(s®@n) =s®dy(n) (2.1.3)

and dy is the composition S ®o, N — S ®0, F¥ @0y F @0y N — S Qo N. With the
same notation as above, we have

di(s ®@m) = Z sy; @ yin. (2.1.4)
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Using formulas (2.1.3) and (2.1.4), one again verifies that d3 + d4 is a differential, and that
PB(N) is a S-dg-module.

Taking the stalks at a point and using spectral sequence arguments (see [GKM93, 9.1]),
one proves that & and & send quasi-isomorphisms to quasi-isomorphisms, and hence define
functors

o :DNS) —DYNT) and %B:D"(T)— DH(S).

Theorem 2.1.5. The functors &/ and % are equivalences of categories between DT (S)
and DY (T), quasi-inverse to each other.

To prove this theorem, one constructs morphisms of functors Id — & 0% and Bo/ —
Id as in [GKM93, section 16]. To prove that they are isomorphisms, it suffices to look at
the stalks at a point . Then the same proof as that of [GKM93] works.

2.2 Restriction to certain subcategories

Now we assume that X is a non-singular algebraic variety over an algebraically closed field
k. If A is a dg-algebra on X, we denote by DI(A), resp. DIE(A) the full subcategory
of D(A) cousisting of dg-modules whose cohomology is quasi-coherent as an Ox-module,
resp. whose total cohomology is quasi-coherent over Ox and locally finitely generated
over the sheaf of algebras H(A). Similarly we define DT A), DH9%f8( A), and bigraded
analogues. Let F, § and 7 be as in 2.1.

Lemma 2.2.1. The equivalences &/ and & restrict to equivalences between DT9°(S) and
DHac(T).

Proof. We only have to prove that & and % map these subcategories one into each other.
But this is clear from the existence of the spectral sequences (of sheaves) analogous to the
ones of [GKM93, 9.1]. O

Lemma 2.2.2. The equivalences o/ and 9B restrict further to equivalences between the
categories D+vqcvfg(3) and D+1qc7fg(7),

Proof. We only have to prove that .« maps DT9%%(S) into DT (7)), and that & maps
DA% (T) into DT9%%(S). Let us first consider %. Let M be an object of DT4% (7).
By the previous lemma, (M) € D™9°(S), and we have to prove that for any x € X, the
S;-dg-module Z(M), has finitely generated cohomology. But H (M) is finitely generated
over Ox , (because it is finitely generated over 7, which is itself finitely generated as an
Ox z-module). Thus, the Fi-term of the spectral sequence analogous to [GKM93, 9.1.4] is
finitely generated over S;. The result follows since S, is a noetherian ring.

Concerning &7, again taking stalks, one can use the arguments of [GKM93, 16.7] (since

X is non-singular, Ox , has finite homological dimension, which allows to generalize the
proof). O
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The inclusion C*(7) — C(T) induces a functor D98 (T) — DISBE(T). If n € Z and
M is a T-dg-module, we denote by 7>, M the 7-dg-module given by

- =0 —= M/ Im(d" ) - M ..
Observe that this is meaningful because 7 is concentrated in non-positive degrees.

Lemma 2.2.3. The natural functor DT (T) — DIE(T) is an equivalence of cate-
gories.

Proof. We only have to prove that for every 7-dg-module N whose cohomology is locally
finitely generated, there exists a bounded below 7-dg-module N’ and a quasi-isomorphism

N 2 A7 Now the cohomology of A is bounded. If H*(N) = 0 for i < n, we may take
N/ = TZTLN D

Remark 2.2.4. We cannot use such an argument for S, and we do not know if the natural
functor DH918(S) — DIE(S) is an equivalence?.

Combining Lemmas 2.2.2 and 2.2.3, one obtains an equivalence of categories
pHacle(x §) = pacis( X, T). (2.2.5)

Now we give a geometric interpretation of this equivalence.

2.3 Linear Koszul Duality

We consider the following situation: E is a vector bundle over X (of finite rank), and
F C FE is a sub-bundle. We denote by p : E — X the natural projection. Let £ and F
be the sheaves of sections of F and F' (these are locally free Ox-modules of finite rank).
Let E* be the vector bundle dual to E, let F- C E* be the orthogonal of F' (a sub-bundle
of E*), and let ¢ : E* — X be the projection. We define an action of Gy, on E and F,
letting ¢ € k* act by multiplication by #* on the fibers. This induces an action on E*
and F, where t € kX acts by multiplication by t~2 on the fibers. Now, until the end of
this section, we denote by S and 7 the following Gm-equivariant dg-algebras with trivial
differentials:

S = S0 (FY) with FV in bidegree (2, —2)

T := Ao (F) with F in bidegree (—1,2).

Then, first, bigraded analogues of the previous constructions (see in particular (2.2.5))

yield an equivalence of categories

Dg;gcfga, S) = Dgifg(x, T), (2.3.1)

where ng (X,S) is the localization with respect to quasi-isomorphisms of the homotopy
category of the category Cgm (X,S) of Gy-equivariant S-dg-modules which are bounded

below for the cohomological degree (uniformly in the internal degree), and Dg:c’fg(X ,S),
Dg‘ifg(X, 7)) are defined as in 2.2.

*One easily sees that this is the case if e.g. X = Spec(]).
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Lemma 2.3.2. There exists a natural equivalence of categories
DPCoh(E) = DX, Sp, (EY)), (2.3.3)

where So, (EY) is considered as a dg-algebra concentrated in degree 0, with trivial differ-
ential.

Similarly, if So, (EV) is regarded as a Gm-equivariant dg-algebra with trivial differential
and £V in bidegree (0, —2), there exists a natural equivalence of categories

DPCoh®m (E) = DE(X, S, (EY)). (2.3.4)
Similar results hold for F, E*, F-.

Proof. We only give the proof of (2.3.3), the proof of (2.3.4) being similar. We denote
by QCoh(X, So, (£Y)) the category of modules over the sheaf of algebras S, (£¥) which
are quasi-coherent over Ox, and by Coh(X, S, (£)) the full subcategory of the category
QCoh(X, So, (£Y)) whose objects are locally finitely generated over So, (EY). As p is
an affine morphism, the direct image functor p. induces equivalences of categories (see
|Gro6la, 1.4.3]):

QCoh(E) — QCoh(X,So,(EY)),

Coh(E) — Coh(X,So,(EY)).

Using arguments similar to those of [Bor87, VI.2.11], D°Coh(X, So, (£V)) identifies with
the full subcategory of D*’QCoh(X, So, (£Y)) whose objects have their cohomology sheaves
in Coh(X, So,(£Y)). Now, a theorem of Bernstein (see [Bor87, V1.2.10]) ensures that
DP*QCoh(X, So, (EY)) is equivalent to the full subcategory of D*Mod(X, So, (£Y)) (the
bounded derived category of the category of all sheaves of So, (£Y)-modules) whose ob-
jects have quasi-coherent cohomology. Combined with (2.3.5), this gives that D’Coh(F)
is equivalent to the full subcategory of D*Mod (X, So, (€V)) whose objects have their co-
homology in Coh(X, So, (€Y)). Finally, using truncation functors, this latter subcategory
identifies with the category DI8(X, Sp, (£Y)), where So, (£Y) is considered as a dg-
algebra concentrated in degree 0, with trivial differential. O

(2.3.5)

Recall that we have defined above, before (2.3.1), the bigraded dg-algebra S. Let us
also introduce the following Guy,-dg-algebra with trivial differential:

R = So, (FY) with F in bidegree (0, —2).
We have equivalences of categories (“regrading”):
€:C6,,(X,8) = Co,(X,R), €:Dg,(X,S) = Dg,,(X,R)

sending the S-dg-module M to the R-dg-module defined by f(M)z = M;}j (with the
same action of Sp, (FV), and the same differential). The composition of the inclusion
Déﬁc’fg(X,S) — D(Glcrfg(X,S) and of & gives a functor Dg:c’fg(X, S) — Dg;fg(X, R).
Hence, using the analogue for F' of equivalence 2.3.4, we obtain a functor

D& (X, S) — DPCoh®m (F). (2.3.6)
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For this reason, we consider the category Dgﬁc’fg(X ,S) as a“graded version” of the category
DCoh(F), and denote it

DGCoh#' (F) := DLI¥(X, S). (2.3.7)
Note that there exists a natural forgetful functor
For : DGCoh® (F) — DCoh(F), (2.3.8)

the composition of (2.3.6) with the forgetful functor from D*Coh®™(F) to D’Coh(F) or,
equivalently, the composition

DEIB(X,S) — DEE(X,S) = DE¥(X, R) — DIE(X, R) = D'Coh(F)
(the last equivalence is (2.3.3) applied to F').

Now, consider the dg-scheme F* Ap+ X. As a module over ¢:O0p+ = S0, (€), ¢+Op1
is isomorphic to the quotient So, (£)/(F - So, (£)). Hence it has a Koszul resolution

Sox (€) ®ox Moy (F) 55 S0, (€)/(F - Sox (€)).

where the generators of Ap, (F) are in degree —1. Using Remark 1.8.6, we deduce an
equivalence of categories

DGCoh(F* g X) = DI X, T).
We are also interested in the “graded version”
DGCoh® (F* Aip- X) := DEB(X, T). (2.3.9)
By definition we have a natural forgetful functor
For : DGCoh® (FL g+ X) — DGCoh(FL g+ X). (2.3.10)
Finally, with notations (2.3.7) and (2.3.9), equivalence (2.3.1) gives the following result:
Theorem 2.3.11. There exists an equivalence of categories, called linear Koszul duality,
DGCoh® (F) = DGCoh® (F* Aig- X).
Remark 2.3.12. Finally we have the following diagram:
DGCoh® (F) <— == DGCoh# (F* fi5- X)
(2.3.8) | For Fori(z.?,.w)
DCoh(F) DGCoh(FL (g X).

In sections 8 and 9 we will use this “correspondence”, in the case X = (G/B)V, E =
(g x G/B)M, F = N (see 3.1 for the notation), to relate certain simple restricted Ug-
modules to certain indecomposable projective modules (see the discussion after Proposition
3.3.14 for details).
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2.4 Linear Koszul duality and base change

Let X and Y be two non-singular varieties, and 7 : X — Y a flat and proper morphism
between them. Let E be a vector bundle over Y, and F' C E a sub-bundle. Let £ and F be
their respective sheaves of sections. We will also consider the vector bundles Ex := Exy X
and Fx := F xy X over X. Their sheaves of sections are respectively 7*& and 7*F (see
|Gro6la, 1.7.11]). We denote by 7 : Fx — F the morphism induced by m. We consider
the following Gy-equivariant dg-algebras with trivial differential:

Sy = 8o, (FY), Sx:=So,(m*FY), with FV in bidegree (2, —2);

Ry = Soy (FY), Rx :=So,(m*FV), with FV in bidegree (0, —2);

Ty = Ao, (F), Tx:=ANo,(r*F), with F in bidegree (—1,2).

In this situation we have two Koszul dualities (see 2.3.11):
ky : DGCoh®(F) =5 DGCoh# (FLAgY),
kx : DGCob®(Fy) = DGCoh®(Fg Apy X).

In this subsection we construct functors fitting in the following diagram:

R(ﬁ' m)*
DGCoh (Fy) i DGCoh (F)
L(7om)*
ZlﬁX Zl"iY
R R(ﬁ-Gm)* R
DGCoh® (Fi Mgz X) <————= DGCoh® (FX Np-Y),
TI'Gm

and prove some compatibility results.
First, consider the categories on the right hand side of equivalences Ky, xkx. Recall
that, by definition,

DGCoh® (FL Aip- V) = DL (Y, Ty), (2.4.1)
DGCoh# (Fy (g, X) = DEE(X, Ty). (2.4.2)

The morphism 7 induces a morphism of Gy-equivariant dg-ringed spaces
7 (X, Tx) — (Y, Ty).
In subsection 1.7 we have constructed functors

R(7Gm )+ : Dom (X, Tx) — Da,, (Y, Ty ),
L(76m)" : Do (Y, Ty) — Da,, (X, Tx).

As (Ty) = Tx, " identifies with 7%, and similarly for the Gpy-analogues, i.e. the
following diagram is commutative, where the vertical arrows are the forgetful functors:

(Fom)”

Com (Y, Ty) Com (X, Tx)
Forl \LFor
Co (Y, 0y) — ") _ e (X, 0y).
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As (mg,,)* is exact (because 7 is flat), (7g,,)* also is, and the corresponding diagram

of derived categories and derived functors is also commutative. As Ao, (F) is a locally
finitely generated module over Oy, a Ap, (F)-module is locally finitely generated if and
only if it is locally finitely generated over Oy. The same is true for Ap, (7*F). We deduce
that L(#g, )* restricts to a functor from DGCoh8 (F* Ap- Y) to DGCoh®" (F5 (I%E;( X),
via equivalences (2.4.1) and (2.4.2). Similarly, the functor L(7)* restricts to a functor

DGCoh(F+ A Y) — DGCoh(F5 %Eg} X), and the following diagram is commutative:

L(7Gm)"

DGCoh® (FL Ap-Y) DGCoh® (Fi Mgy, X)

For l \L For

L(#)*
DGCoh(F* fig-Y) DGCoh(Fy Ny, X).

We have seen in 1.7 that the following diagram is commutative:

Do (X, Tx) —m) _pe (v, Ty)
DX, Tx) —— D pv,Ty)
D(X,0x) — T~ D(Y,0y).

As 7 is proper, we deduce as above that the functors R(7). and R(7g,, )« restrict to
functors between the full subcategories whose objects have quasi-coherent, locally finitely
generated cohomology (use [Har66, 11.2.2]). Moreover, the following diagram commutes
(using equivalences (2.4.1) and (2.4.2)):

R(7tGm )+

DGCoh® (Fi Mgy, X) DGCoh® (F+ fig. Y)

For i J/ For

DGCoh(Fs (g X) DGCoh(F* (g Y).

As a step towards the categories DGCoh® (F') and DGCoh®"(Fx ), we now study the
categories D%leg(X ,Sx) and Dg‘fg(Y, Sy ). The morphism 7 induces a morphism of Gy,-
equivariant dg-ringed spaces

7 (X,Sx) — (Y, Sy).

The Gm-equivariant dg-algebras Sx and Sy are not non-positively graded. But we have
seen in Remark 1.7.9 that the following derived functors are well defined:

L(7Gm)* : Do, (Y, Sy) — Dg,, (X, Sx).
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As above, we will show that these functors restrict to functors between the full subcategories
whose objects have quasi-coherent, locally finitely generated cohomology, and that the
natural diagrams commute.

As 78y = Sx, the functor (7g,,)* is exact, and corresponds to 7* : D(Y,Oy) —
D(X,Ox) under the forgetful functor. Hence it restricts to a functor Dgcrfg(Y, Sy) —

Dg:lfg(X ,Sx). Moreover, the following diagram is clearly commutative (see (2.3.4) for the
second vertical arrows):

DLE(Y, Sy) —reml paele(x ) (2.4.3)
&y | 1 ex
DEE(Y, Ry) DX, Ry)
! 2
DPCoh®m(F) DPCoh®™ (Fy)
For For
L(zp)*

DYCoh(F) DPCoh(Fy).

Now, consider the functor R(7g,,)«. If F isin the category Dgcn’fg(X, Sx), then &x (F)
is in Dg‘ifg(X, Rx), and For o £x(F) in DIfB(X, Rx) = DPCoh(Fyx) (this equivalence is
an analogue of (2.3.3)). Hence, as 7 is proper, R(7p). o Foro&x (F) is in D’Coh(F). But
this object coincides by construction with the object For o &y o R(7g,,)«F of D(Y,Ry).
Hence R(7g,,)«F belongs to the subcategory Dgcjg(Y, Sy) of Dg,, (Y,Sy). This proves

that R(7g,, )« restricts to a functor between Dg‘;fg(X, Sx) and D%‘;fg(Y, Sy), and also that
the analogue of diagram (2.4.3) for R(7g,,)« and R(7p). commutes.

Now we extend these results to the categories of bounded below Guy-dg-modules.

Lemma 2.4.4. The functors

(7 )s 1 CE (X, Sx) — €L (V. Sy),

m

(ﬁgm)* : cgm(Y, Sy) — cgm(X, Sx)

admit a right, respectively left, derived functor. Moreover the following diagrams are com-
mutative:
R(7E )

D¢ (X,Sx) Tem)- DE_(Y,Sy)

\L R(ﬁ-Gm)* l

DGm (X, SX) DGm (Y7 8Y)7
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L(zE )
D (Y, Sy) e D (X, Sx)
|
De,. (Y, Sy) ° De,. (X, Sx).

Proof. The case of the inverse image functor is easy, and left to the reader (use the fact
that 7* is exact). Consider the direct image functor (ﬁgm)*. We have to show that
this functor admits a right derived functor in the sense of Deligne ([Del73, 1.2]). But each
object M € C¢_(Soy (7*F")) admits a right resolution Z € C{_(So (7*F")) all of whose
components I; are flabby (as sheaves on X). Indeed, consider for each i the Godement
resolution (see [God64, 11.4.3]) of the component P, M; This defines a (Gm-equivariant)
double complex with a (Gm-equivariant) action of So, (7*F"), all of whose components
are flabby; taking the associated total complex gives the desired resolution. This dg-module
Tis (ﬁgm)*—split on the right, hence the right derived functor is defined at M.

By construction the following diagram is commutative, where For is the forgetful func-
tor:

D¢ (X, Sx) 1) D (Y, Sy)
D, (X, 0x) — =~ Dg, (Y, Oy).
The commutativity of the diagram in the lemma follows (using Corollary 1.7.6). O

Using the results preceding this lemma, we deduce:

Corollary 2.4.5. The functors R(frgm)* and L(ﬁgm)* restrict to the subcategories whose
objects have quasi-coherent, locally finitely generated cohomology. Moreover, recalling def-
initions (2.3.7), (2.3.8), the following diagrams commute:

R(E_ )

DGCoh® (Fy) DGCoh# (F)
Forl iFor
b R(mF)~ b
DbCoh(Fy) DPCoh(F),
and
7 )*
DGCoh# (F) m’ . DGCoh® (Fy)
Fori lFor
b L(mr)” b
DbCoh(F) DPCoh(Fy).

Because of these results, we will not write the superscript “+” on the functors associated
to 7 anymore. Now we study the compatibility of our functors.



100 CHAPTER 11I. KOSZUL DUALITY AND U&-MODULES

Proposition 2.4.6. Consider the following diagram:

R(7Gpm )+
DGCoh® (Fy) i DGCoh® (F)
L(Gm)”
Zlﬁx Zlﬁy
R R(erm)* R
DGCoh® (Fg Mgy X) T DGCoh® (F+ Mg« Y).
7T(_‘,m

We have isomorphisms of functors

{ R(TGu )+ © KX

L(7g,,)" o ky

Ky o R(TG,, )«
kx o L(7g,,)*

e

Proof. The second isomorphism is easy, and left to the reader. The first one can be
proved just like [Har66, I11.5.6]. More precisely, let M be an object of DGCoh®"(Fy ), with
flabby components. Then ry o R(7g,,)«(M) = Ty @0, mM. Next, by the projection
formula (see e.g. [Har77, ex. IL5.1]), (ZTy)Y ®0, mM = m(T{ ®0, M). Finally, as
Rm, = ForoR(#g,, )+, one has a natural morphism (7 ® 0, M) — R(7c,, )«(Ty @0 M).
This defines a morphism of functors ky o R(7g,, )« — R(fig,, )« o kx. To show that it is an
isomorphism, as the question is local over Y, we can assume F is free. Then the result is
clear. O

2.5 Linear Koszul duality and sub-bundles

Now we consider the following situation: Fy C F» C E are fiber bundles over the non-
singular variety X. Let F1 and F2 be the sheaves of sections of F7, F». We define as above
the Gy-equivariant dg-algebras with trivial differential:

S1:=So (FY), S2:=S80,(Fy), with F in bidegree (2, —2),

7

Ri:= Soy(FY), Ra:=Soy(Fy), with 7’ in bidegree (0, —2),

1

T :=Aoy(Fr1), To:=Ao(F2), with F;in bidegree (—1,2).
We have two Koszul dualities (see Theorem 2.3.11)
k1: DGCoh® (F)) = DGCoh® (Fit fig X),
Ky : DGCoh®(Fy) = DGCoh® (Fy fg» X).
The inclusion f : Fy — F5 induces an injection F; < Fa, and a surjection Fy — F)/. Let
9: (X, T2) = (X,Th)

be the natural morphism of Gpy-equivariant dg-ringed spaces. Our goal and strategy are
the same as in 2.4.

Let us first consider the categories DGCoh8" (F;- Ap- X ). We have functors
R(96m )+ : Dom (X, T2) = De, (X, T1),
L(96,m)" : Dg,, (X, T1) — Da,, (X, T2).
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The functor R(gg,,)« is the “restriction of scalars” functor, and L(gg,,)* is the functor

M= Ao, (F2) ONoy (F1) M. Both are induced by exact functors on the abelian categories.
It is clear that they preserve the conditions “qc,fg”, and induce (see (2.3.9)) functors
between the categories DGCoh®" ( Fi- A X) and DGCoh®" (Fj- A X), and similarly for
the non Gpy-equivariant versions. Moreover, the following diagrams commute:

Gm)*

DGCoh® (F3- A« X) DGCoh® (Fi- fig- X)

For \L l For

R *
DGCoh(Ey g X) > DGCoh(Fi- (g X),

L(gem)*

DGCoh® (Fit - X) DGCoh® (Fit fig- X)

For l l For
L

DGCoh(F{ fg- X) DGCoh(Fs- fig- X).

Now, as a step towards the categories DGCoh® (F;), let us consider the categories
Dg‘;fg (X,Si) (i =1,2). We have a morphism of Gp-equivariant dg-ringed spaces

f(X,8) — (X,82)

and functors R(fg,,)« and L(fc,,)* (see again Remark 1.7.9). The functor R(fg, )« is
again the restriction of scalars. As So — §j is surjective, it restricts to the subcategories
whose objects have quasi-coherent, locally finitely generated cohomology. Moreover, the
following diagram, analogous to (2.4.3), is commutative:

R(fom)«

DEE(X,81) DE¥(X, S) (2.5.1)
& U] &2
DEE(X, Ry) DEE(X, S)
1§ !
DPCoh®m (FY) DPCoh®m (Fy)
For For
b Rfs b
D COh(Fl) D COh(Fg)

Consider the functor L(fg,,)*. It is given by M — S QL§>52./\/1. Arguments entirely similar
to the ones used for the functor R(7g,, )« in 2.4 show that L(fg,,)* induces a functor from
Dgcrfg(X, S2) to ngfg(X, S1), and that the diagram analogous to (2.5.1) commutes.

Let us extend these considerations to the categories of bounded below Gu-dg-modules.
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Lemma 2.5.2. The functors

(& )i CE(X,81) = CE_(X, ),
(f& ) :¢d (X,8) —Cd (X,8)

admit a right, respectively left, derived functor. Moreover, the following diagrams are
commutative:

R(fd )«

D¢ (X, S1) D¢ (X, Ss)
De,, (X, 8)) —— De,, (X, Ss),
L(fE )

D (X, Sy) D (X, 81)
i L(f- m)* l
De,. (X, S2) © De,. (X, 81).

Proof. The case of the direct image functor is easy, and left to the reader. We define
F := F1 & Fs, and denote by S the Gp-equivariant dg-algebra S := So, (FY), with
trivial differential and FV in bidegree (2,—2). Recall that (férm)* is the tensor product
M — 51®s, M. In this tensor product S; is considered as a S1-Sz-bimodule. As everything
here is commutative, we can consider it as a module over §1 ®p, S2 = S. Now the natural
morphism & — &7 is induced by the transpose of the diagonal embedding F; — F; & Fo.
Thus, if we denote by G the orthogonal of the image of F; in this embedding, we have a
(bounded below) Koszul resolution

S®o, Ao, (G) 55 8.

The first dg-module is K-flat over S, which is itself K-flat over S;. Hence it is also K-
flat over So. Thus the tensor product with this dg-module defines a functor L( férm)* :
ng (X,82) — ng (X, S1). With this description, the commutativity of the corresponding
diagram is obvious. O

Exactly as for Corollary 2.4.5, we deduce:

Corollary 2.5.3. The functors R(fgm)* and L(fgm)* restrict to the subcategories whose
objects have quasi-coherent, locally finitely generated cohomology. Moreover, the following
diagrams are commutative:

R(f& )«
DGCoh® (Fy) DGCoh® (Fy)

Forl lFor

DECoh(Fy) —2 = DbCoh(Fy)
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and
L(fE )
DGCoh® (F) DGCoh® ()
Fori iFor
b Lf b
D COh(Fg) D COh(Fl).

As above, because of these results we will not write the superscript “+” on the functors
associated to f anymore. Now we study the compatibility of these functors. Before that,
let us make some remarks. From now on we assume that F; and F» are of constant rank,
denoted by n1 and na. We define £; := Ay, (F;) for i = 1,2. These are line bundles on
X. One has isomorphisms v; : 7, — 7, ®0, Li[ni], induced by the morphisms

AL (F)@ox NG (F) = L
t@u = (=172 A,

Under this isomorphism the action of 7; on itself by left multiplication corresponds to the
action on the dual defined as in 2.1, i.e. we have 1);(st)(u) = (—1)de8()(dea(5)+1)/24), (1) (su).
We denote by (1) the shift in the Gy-grading defined by (M (1)), = M,_1, and by (j)
its j-th power. This functor corresponds to the tensor product with the one-dimensional
Gm-module corresponding to Idg,,. Taking the Gy,-structure into account, 1; becomes an
isomorphism 7; = T.Y Qo Li[ni](2n;).

Proposition 2.5.4. Consider the diagram

R(fom)«
DGCoh®* (F}) : DGCoh* (F)
l L(fem)* l
Ul k1 L K2
" L(gem)* R
DGCoh® (Fi- N+ X) DGCoh® (F3- Mg+ X).
9Gm ) *

We have isomorphisms of functors

{ Kio© L(fiGm)*
k20 R(fou)s

Proof. Let us begin with the first isomorphism. More precisely, we will construct an
isomorphism of functors L(fg, )* o (k2)™' = (k1) ! o R(gs,, )« Recall the notation F :=
Fi1 & F, S := So,(FY) and G introduced in the proof of Lemma 2.5.2. Let N be an

object of DGCoh®" (Fy- A X), which can be assumed to be bounded below (see Lemma
2.2.3). Then (k1) o R(gs,,)«(N) = S ®0, N, where N is considered as a 73-dg-module.
On the other hand,

L(fom)* o (k2) 7' (N)

R(gGy )+ © K2,
(L(g6m)* © k1) ®0yx L1 ®0y L3 [n1 — na](2n1 — 2na).

11

L(fe,)*(S2 ®ox N)
(8 ®ox A<g)) ®S, (82 ®ox N)
(8§ ®ox A(G)) ®ox N

i1 11



104 CHAPTER 11I. KOSZUL DUALITY AND U&-MODULES

Hence there is a natural morphism of functors

L(fom)* 0 (k2) ™" = (1) 7" 0 R(Jom):

induced by the morphism S ®o, A(G) — Si. We want to prove that it is an isomorphism.
Using the exact sequence of dg-modules

0 — Im(dy) = N — N /Im(dp) — 0

we can assume, in addition to the fact that A/ is bounded below, that its differential is triv-
ial (the dg-modules Im(dar) and N /Im(dy) may not have quasi-coherent, locally finitely
generated cohomology, but from now on in this proof we will not need any assumption on
the cohomology of the dg-module).

Set P =S ®o, A(G). Tt is a K-flat Ox-dg-module, as well as S, and P — S; is a
quasi-isomorphism. We want to prove that the morphism P ®op, N — 81 ®o, N is a
quasi-isomorphism, too. The differential on P ®p, N, respectively on S; ®p, N, is the
sum of the differential of P, respectively of S1, and the Koszul differential dyoszu (recall
that the differential of S is trivial). We consider P ®¢, N as the total complex of the
double complex whose (p,q)-term is PIt?P ®p, NP, with first differential dioszu, and
second differential dp ® Id. The first grading of this double complex is bounded above
(because N is bounded below), hence the associated first spectral sequence converges (see
[God64]). The same is true for S; ®o, N (in this case the second differential of the double
complex is trivial). Hence we can forget the Koszul differential in these two complexes.
Then the result follows from Lemma 1.3.6. This finishes the proof of the first isomorphism.

Let us now prove the second isomorphism. Let M be an object of DGCoh® (FYy).
We have k9 0 R(fg,,)«(M) = T,/ @0, M (in the right hand side, M is considered as a
Sa-dg-module). Using the remarks before the statement of the proposition, one has an
isomorphism of 73-dg-modules

T @0y M = (Ta @0, M) @0y L' [—n2](—2n5).

On the other hand, we have L(gg,,)* o k1(M) = T @7, (T, Qo M), which, using the
same remarks, is isomorphic to the dg-module 73 ®p, M ®o, Efl[—n1]<—2n1>. This
concludes the proof (one easily verifies that the differentials and the 7o-module structures
are compatible). O

3 Localization for restricted g-modules

In this section we prove localization theorems for restricted Ug-modules (see in particular
Theorem 3.3.3).

3.1 Introduction

We use the same notation as in [.1.1. In particular, k is an algebraically closed field of
characteristic p. In the rest of this chapter we assume that

p > h.
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We denote by
Co={AeX|VaeR", 0< (A+p,a”)<p}
the set of integral weights in the fundamental alcove (which contains 0).

We will apply the results of section 2 on linear Koszul duality in the following situation.
The base scheme X will be B1), the Frobenius twist of the flag variety of G (see e.g.
[BMROS8, 1.1.1] for Frobenius twists). The vector bundle will be £ = (g* x B)D)| and the
sub-bundle will be N < (g* x B)()). Let Tz denote the tangent bundle to BM. Tts
dual Tl;/m is the sheaf of sections of the vector bundle NV over B,

Under our hypothesis p > h, there exists a G-equivariant isomorphism g* = g, which
induces an isomorphism E = E*. Under this isomorphism, (N())L identifies with g(\).
We thus obtain by Theorem 2.3.11 a Koszul duality

k5 : DGCoh® (V) = DGCoh® (g5 B)™M). (3.1.1)
This equivalence is given by the following formula, for M in DGCoh®" (/\7 M)
ka(M) = (A(Tyn))¥ o) M.

We have an isomorphism AP (7Y

B<1>) = O (—2p). Hence, with the notation before Propo-
sition 2.5.4 we have

(AZ50)" = M) © Oy (2p)[-NJ(=2N),

where N = rk(7.¥,,) = #R ™. Tt follows that for M in DGCoh® (N 1)) we have

B1)
k(M) = MTg0)) ® M ® Opa) (20)[-N](—2N). (3.1.2)

In section 2 (see e.g. equation (2.3.9)) we have used the realization
~ R c
DGCoh((§ Mg x5 B)V) = DBBY, Ao, (T3) (3.1:3)

B(1) (Tlg/(l)
—1. Let i : g — (g* x B)® and j : BY < (g* x B)(M) denote the closed embeddings.
The realization (3.1.3) was constructed using a resolution of i*Ogu) over O(g*xB)(1>~ We
can obtain another realization using a resolution of j.Opu) over O(g*x B)Y(Ds in particular

the Koszul resolution

where Ao ) is considered as a dg-algebra with trivial differential, and ’Z;gv(l) in degree

Og=xn)m O Ag") 5 5.0g0).
Using Remark 1.8.6 we deduce:

Proposition 3.1.4. There exists an equivalence of triangulated categories
DGCoh((@Ng-x5 B)V) = DG, 0y @) A(gM))

where Og(1) | A(g(l)) is a dg-algebra with the generators of A(g(l)) in degree —1, equipped
with a Koszul differential.

From now on we will mainly use this realization of DGCoh((g rBig*Xg B)W).
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3.2 An equivalence of derived categories

In this subsection we prove an equivalence of derived categories that will be needed later.
Recall the notations qc and fg introduced in subsection 2.2.

Let X be a variety, and let ) be a sheaf of dg-algebras on X which is non-positively
graded and quasi-coherent as an Ox-module. We also consider the sheaf of algebras A =
VY. We have the coinduction functor, defined in 1.2:

C(X, Ox) - C<X, y)

Coind : { F —  Homo, (V,F).

Let Z be a closed subscheme of X. We denote by D¥ (X, Y) the full subcategory of
DY°(X, Y) whose objects have their cohomology supported on Z (and similarly with qc
replaced by qc, fg).

Lemma 3.2.1. Let F be a Y-dg-module which is quasi-coherent, supported on Z, and
bounded below. There exists a K-injective Y-dg-module I, which is quasi-coherent and

supported on Z, and a quasi-isomorphism F 27

Proof. Let us first consider F as a complex of Ox-modules. There exists a complex Jy
of injective Ox-modules, bounded below with the same bound as F and an injection of
complexes of Ox-modules F — Jy such that for any n € Z, Jj* is quasi-coherent and
supported on Z (see [Har66, I1.7.18 and its proof]). By adjunction, this morphism induces
an injection of YV-dg-modules

F — Coind(F) — Zp := Coind(Jp).

Moreover, Zy is still bounded below with the same bound as F, and its components are
quasi-coherent and supported on Z. The Ox-dg-module Jy is K-injective (as a bounded
below complex of injective Ox-modules). Hence, by adjunction again, the )-dg-module
1y is K-injective.

Applying the same arguments to the cokernel of the morphism F < Zj, and repeating,
we obtain an exact sequence of YV-dg-modules

f‘—):z'0—>:z'1—>:z,.2—>---

where each Z; is K-injective, bounded below with a uniform bound, and its components
are quasi-coherent and supported on Z. Now, as in the proof of Lemma 1.3.7, one proves
that the natural morphism

‘7:—>I::Tot@(-~0—>20_>11_>...)
is a quasi-isomorphism, and that Z is a K-injective }-dg-module. ]

Lemma 3.2.2. Let F be an object of DF (X, V), whose cohomology is bounded. There
exists a K-injective Y-dg-module G, which is quasi-coherent over Ox and supported on Z,

.. . qis
and a quasi-isomorphism F — G.
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Proof. Let us introduce a notation, to be used only in this proof. If F is a Y-dg-module
with bounded cohomology, we define

I(F) :=max{i € Z | H(F) # 0} —min{i € Z | H'(F) # 0}

if H(F) #0, and I(F) = —1 otherwise. We prove the lemma by induction on [(F).

If [(F) = —1, the result is obvious. Now let n > 0, and assume the result is true
for any dg-module G with [(G) < n. Let F be a Y-dg-module with [(F) = n. Let j be
the lowest integer such that H J(F) # 0. Using a truncation functor, we can assume that
FF =0for k < j. Then ker(dif) = HI(F) is, by assumption, quasi-coherent and supported
on Z. Let K denote the complex concentrated in degree j, with K7 = ker(djf). Then K
is a sub-Y-dg-module of F. By Lemma 3.2.1, there exists a K-injective Y-dg-module 7y,

quasi-coherent and supported on Z, and a quasi-isomorphism i1 : K 2L 71. Let G be the
cokernel of the injection K — F. Then [(G) < I(F). Hence, by induction, there exists a
K-injective Y-dg-module Zy, quasi-coherent and supported on Z, and a quasi-isomorphism
i0:G s, Is.

There exists a natural morphism G[—1] — K in D(X,)), hence also a morphism
TIs]—1] — Z; (since Iy, resp. Iy, is isomorphic to G, resp. K, in D(X,))). By K-injectivity
(see Definition 1.3.1), one can represent this morphism by an actual morphism of Y-dg-
modules f : Zo[—1] — Z; (unique up to homotopy). Let Z3 be the cone of f. Then Z3
is K-injective, quasi-coherent and supported on Z. We claim that there exists a quasi-

isomorphism F g, Z3. Indeed, in D(X, )) we have the following diagram, where the lines
are distinguished triangles:
G- ——> K ——>F

|
J{h[l} lil I
\

Ll-1] —11 —=Ts.

The morphisms i3[—1] and ¢; can be completed to a morphism of triangles; yielding a
morphism i3 : F — Z3 in D(X, V). By K-injectivity of Z3, i3 can be realized as an actual
morphism of Y-dg-modules. Using the cohomology long exact sequence associated to a
distinguished triangle and the five-lemma, i3 is a quasi-isomorphism. This finishes the
induction step, and the proof of the lemma. O

From now on we assume in addition:
Y is coherent as an Ox-module.

In particular, as A is coherent over Ox, an A-module quasi-coherent over Ox is locally
finitely generated over A if and only if it is coherent over Ox. The same applies for A
replaced by H(Y), the cohomology of V.

Lemma 3.2.3. FEvery Y-dg-module F which is bounded, quasi-coherent over Ox, and
whose cohomology is coherent over Ox is the inductive limit of coherent sub-Y-dg-modules
which are quasi-isomorphic to F under the inclusion map.
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Proof. Our proof is similar to that of [Bor87, VI.2.11.(a)|. First, F is the inductive limit
of coherent sub-dg-modules (this follows easily from the case of Ox-modules), hence it is
sufficient to show that given a coherent sub-dg-module K of F, there exists a coherent
sub-dg-module G of F, containing X and quasi-isomorphic to F under the inclusion map.

This is proved by a simple (descending) induction. Let j € Z, and assume that we
have found a subcomplex G; of @), F*, coherent over Ox, containing P, ; £*, such that

G; — F is a quasi-isomorphism in degrees greater than j and that ij N ker(d‘;) — HI(F)
is surjective, and stable under Y (i.e. if g € g;'. and y € V¥, and if i + k > j, then
Yy-g € g;’*"?). Then we choose a sub-.A-module N7~ of F/~1 containing X7~!, coherent

over Ox, whose image under dé_fl is gjf N Im(d?l). Without altering these conditions,

i>j (2]

we can add a coherent sub-module of cocycles so that the new sub-module N7~ contains
representatives of all the elements of H/~(F). We can also assume that N7~! contains
all the sections of the form y - g for y € Y and g € Q;»“ with ¢ +k = 7 — 1. Then we define
Gj-1 by
ot { G itk >,
TN k=51

For j small enough, G; is the desired sub-dg-module. O

We denote by C%C’fg(X , V) the category of Y-dg-modules which are coherent over Ox
(this is equivalent to being quasi-coherent over Ox and locally finitely generated over
V), and supported on Z. We denote by D(C%C’fg(X, y)) the localization with respect to

quasi-isomorphisms of the homotopy category of C%C’fg(X , )).

Proposition 3.2.4. The functor
L D(CEE(X, V) — DIE(X, V)
induced by the inclusion C%C’fg(X, V) — C(X, DY) is an equivalence of categories.

Proof. This proof is again similar to the one in [Bor87, VI.2.11|. It follows easily from
Lemmas 3.2.2 and 3.2.3, using truncation functors, that ¢ is essentially surjective.

Now, let us prove that it is full. Let F and G be objects of C%C’fg(X, V). In particular,
F and G are bounded. A morphism ¢ : ((F) — «(G) in DE8(X, V) is represented by a
diagram

uF) SN L ug)

where 3 is a quasi-isomorphism. Using Lemma 3.2.2 and truncation functors, one can
assume that N is bounded, quasi-coherent, and supported on Z. By Lemma 3.2.3, there

exists a coherent sub-dg-module N’ of N (supported on Z), containing «(F) and £(G),
and quasi-isomorphic to N under the inclusion map. Then ¢ is represented by

(F) SN L uG),

which is the image of a morphism in D(C%C’fg(X, Y)). Hence ¢ is full.



3. LOCALIZATION FOR RESTRICTED &-MODULES 109

Finally we prove that ¢ is faithful. If a morphism f : F — G in C%C’fg(X, V) is such that
t(f) = 0, then there exists N in D%C’fg(X, Y), which can again be assumed to be bounded,
quasi-coherent and supported on Z, and a quasi-isomorphism of Y-dg-modules g : G — N
such that go f is homotopic to zero. This homotopy is given by a morphism h : F — N[—1].
By Lemma 3.2.3, there exists a coherent sub-dg-module N’ of A containing g(G) and
h(F)[1], and quasi-isomorphic to N under the inclusion. Replacing N by N’ this proves
that f =0 in D(C%C’fg(X, y)) The proof of the proposition is complete. O

3.3 Localization with a fixed Frobenius central character

Recall the notation and results of [.1.2. In [BMRO8] and [BMRO6] the authors give geo-
metric counterparts for the derived categories of Ug-modules with a generalized Frobenius
central character, and a fixed or generalized Harish-Chandra central character (see The-
orem 1.1.2.1). The relation between the Koszul duality (3.1.1) and representation theory
is based on Theorem 3.3.3, which gives a geometric picture for the derived category of
Ug-modules with a generalized (integral, regular) Harish-Chandra central character and a
fized trivial Frobenius central character.

Let us consider the derived intersection (g r%g*xg B)M. As seen in Proposition 3.1.4, we
have an equivalence of categories

DGCoh((@ g x5 B)V) = DIEEGD, Oguy @1 A(g™h)). (3.3.1)

Let Ky denote the Koszul complex S(giV) @) A(g(V)), which is quasi-isomorphic to
the trivial S(g("))-module ko. Here S(gM)) is in degree 0, and the generators of A(g™))
are in degree —1. By Poincaré-Birkhoff-Witt theorem, the enveloping algebra Ug is free
(hence flat) over 3 = S(g(V)). Hence, if we consider Ug as a sheaf of dg-algebras on
Spec(k), concentrated in degree 0, with trivial differential, there is a quasi-isomorphism of
dg-algebras

Ug @z, Kg — Ug @2z, ko,

and hence an equivalence of categories (see Proposition 1.5.6):
DMod((Ug)o) = D(Spec(k), Ug Sz, Ko).

Restricting to the subcategories of objects with finitely generated cohomology, we obtain
an equivalence:

D*Mod®((Ug)o) = D®(Spec(k), Ug @z, Kq). (3.3.2)
Here we have used that, as (Ug)o is noetherian, the functor
D"Mod"((Ug)o) — D™®(Spec(k), (Ug)o)

is an equivalence. In the rest of this subsection, we write Ug ®) A(g(l)) for the dg-algebra
Z/{g ®ZFr Kg

Then we have the following result, which completes Theorem 1.1.2.1(i) for x = 0:
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Theorem 3.3.3. Let A € X be reqular. There exists an equivalence of triangulated cate-
gories

78 DGCoh((§ g x5 B)) = D*Mod™®((Ug)o).

The proof of the theorem will occupy the rest of this subsection. We begin with several
lemmas.

First, we have seen in the remarks following Theorem I1.1.2.1 that the projection
g Xpey h* — g induces an isomorphism between the formal neighborhood of B x {\}

—

and the formal neighborhood of B(Y). We denote these formal neighborhoods by B(1). To
simplify notations, in this subsection we denote the variety g(*) Xp=) b* by X. Then we
have:

Lemma 3.3.4. The natural functor

DfE(gh, Ogn @y Aa™)) — DEIE (X, Ox 1 Ae™)

is an equivalence of categories.

Proof. First, we observe that any object of D& (g(1), Og) ® A(g™M)) has its cohomology
supported on B (because H0(0g<1) ®) A(gM)) = Oiay). Hence, by Proposition 3.2.4,

the category D& (g1, Og1) @] A(g™M)) is equivalent to D(Cgf’lf)g(ﬁ(l), Og) ®] A(g(l)))).

Now, as the formal neighborhoods of B in g and of B x {\} in X are isomorphic,

the category Cgf;f)g(ﬁ(l), Og1) ®) A(g™M)) is equivalent to Cg,f’lf)gx{/\}(X, Ox @1 A(g)).

Finally, using Proposition 3.2.4 again, we obtain the result. O
We can consider Ug as a sheaf of algebras either on the point Spec(k), or on Spec(3) =
g Xpey w07/ (W, @). Tt follows easily from Proposition 3.2.4 that the category

DX D iy 07/ (We ), Ug @y Alg™))

is equivalent to D8(Spec(k), Ug®| A(gM))). We denote this category simply by D®(Ug®,
A(gM)). We also denote by Df\g(?/{g @) A(gM)) the full subcategory of D (Ug @) A(gM))
whose objects are the dg-modules M such that Ug acts on H (M) with generalized char-
acter (A,0). It also follows from Proposition 3.2.4 that this category is equivalent to the
localization of the homotopy category of finitely generated Ug ®) A(g™M)-dg-modules on
which Ug acts with generalized character (A,0). We also use the same notation and results
for Ug instead of Ug ®) A(g(l)).
The following result follows easily from these definitions, using [BMRO0S8, 1.3.7].

Lemma 3.3.5. Fquivalence (3.3.2) restricts to an equivalence of categories

D*Mod¥((Ug)o) = DEUg ) Alg™M)).
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Next, let us recall some results concerning dg-algebras. Let A be a dg-algebra (i.e. a
sheaf of dg-algebras on Spec(k)). We use the same notation as in section 1, except that we
omit “Spec(k)” in the notation for categories. An A-dg-module M is said to be K-projective
if for any acyclic A-dg-module N, the complex of vector spaces Homy (M, N) is acyclic.
By the results of [BL94, section 10|, every A-dg-module has a left K-projective resolution.
As in subsection 1.4, we deduce:

Lemma 3.3.6. Any triangulated functor from C(A) to a triangulated category has a left
derived functor in the sense of Deligne, which can be computed by means of K-projective
resolutions.

Proof of Theorem 3.3.3. We will show that the equivalences constructed in [BMROS§| are
“compatible with the tensor product with Ky

First step: Let us prove the following equivalence of categories:

Do (X, Ox @) A(gM)) = DIl (X Do) A(gV)). (3.3.7)

It will follow from the results of [BMROS8| coupled with Proposition 3.2.4, which allows us
to consider nice abelian categories rather than derived categories with conditions on the
cohomology.

As in [BMROS8| we define the functors

7. Cg(:if)gX{A}(X7 Ox ®) A(g(l))) - C?g?if)gx{)\}(X, D D A(g(l)))
F — MA ®OB‘(:!) F )
c,f D c,f;
a Cg(l)gx{/\} (X, D ®) A(g(l))) N C?S(l)gx{)\}(X’ Ox ®) A(g(l)))
= Homp(/\/l/\,g)

These functors are exact. There are natural morphisms of functors F o G — Id and
Id — G o F. These functors and morphisms of functors coincide with the ones considered
in [BMROS, 5.1.1] under the forgetful functors

cu® (X, Ox @ AaD)) — €% (X, Ox) = C"Cohpga) . y(X)

BM x{\} BM x{\}
c,fi s c,fi N~ c ~
Caepy (X D@ AgW)) — i, (X D)= C"Mod(, (D).

Hence, by [BMRO0S8, 5.1.1], the morphisms of functors F o G — Id and Id — G o F are
isomorphisms, and F' and G are equivalences of categories. They induce equivalences of
the derived categories (3.3.7) (here we use Proposition 3.2.4).

Thus, combining (3.3.1), Lemma 3.3.4 and (3.3.7), we have obtained:

DGCoh((g g x5 B)Y) = Dg;ggx{k}(x,zS@, AlgMy). (3.3.8)

Second step: Now we construct an equivalence of categories

DI g (X D@y AY) = DY Ug o) A™M)). (3.3.9)
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By the projection formula ([Har77, ILEx.5.1]), we have
(D@ A(gV)) =2 T(D) @) A(gW) = U @ A(gM)

where U := UIR7,.5(h) (see [BMROS, 3.4.1] for the second isomorphism). The dg-algebra
U @) A(g) contains Ug @ A(gM)) as a sub-dg-algebra. Hence (see 1.5) there exists a
functor

RI: D(X, D@y Ag™)) — D(Spec(k), Ug @y Ag™)).

Moreover, the following diagram is commutative (see Corollary 1.5.3):

D(X, D ®y AgD)) —=D(Spec(k), Ug @) A(gh)) (3.3.10)
Forl/ lFor
D(X, D) il D(Spec(k), Ug).

Recall the notation introduced before Lemma 3.3.5. By Proposition 3.2.4 again, the
functor DbMod‘(:/\,O) (D) — DI%8 (X, D) is an equivalence of categories. If F is an

B x {2}
object of the subcategory Dgz’lf)gx{/\}(X, Dy A(g!)), then For(F) is in Dgg’lf)gx{)\}(X, D) =

DbModEA’O)(ﬁ). Hence, by [BMRO0S8, 3.1.9], RT'(For(F)) is in the subcategory Dig(l/{g).
Using diagram (3.3.10), we deduce that RI'(F) is in Df\g(Z/{g @1 A(gV)). Hence we have
proved that RI' induces a functor

R : DIE (X Doy Ae!)) — D Ua @) Agh)).

Moreover, the following diagram is commutative:

DEE oy 0 Doy Ae™) 5 DEUg ) Aa)) (3.3.11)

Forl lFor

c ~ RT" f
D’Mod, (D) DbMod&O) Ug).

Now we construct an adjoint for this functor. First, consider

Lo f epecti), g AY)) — (X, Doy Ag))
K Iy . B g M

Using Lemma 3.3.6, this functor admits a left derived functor
Lx - D(Spec(k), Ug @1 Ag')) — DX, Dy Ag™)

(which can be computed by means of K-projective resolutions). The following diagram is
commutative:

L ~
D(Spec(k), Ug @) A(gV)) —>D(X, D @y A(g)) (3.3.12)
Forl lFor
Brig— _

D(Spec(k), Ug) D(X, D)



3. LOCALIZATION FOR RESTRICTED &-MODULES 113

where the bottom arrow is the usual derived tensor product. Indeed, both derived functors
can be computed using K-projective resolutions, and every K-projective Ug ®| A(gM)-
dg-module restricts to a K-projective complex of Ug-modules. (This follows from Lemma
1.2.3 and the fact that coinduction from Ug to Ug @ A(g(!)) sends acyclic dg-modules to
acyclic dg-modules, as Ug ® A(gM) is K-projective over Ug.)

As Ug is noetherian, the natural morphism D*Mod® (U/g) — D' (Ug) is an equivalence
of categories. Using this and diagram (3.3.12) we deduce (as above) that Lx induces a
functor

L DEUg @) AY)) — DEE(X, Doy Ah).

Moreover, for any object M of Dig(Ug @) A(g™)) there is a canonical decomposition

Lx(M) =@, e L (M) with L37(M) in DIE e D@ A(gM)). Indeed, using

Proposition 3.2.4, we have such a direct sum decomposition as a complex of D-modules
(as in [BMROS, 3.3.1]). As the actions of A(g™M) and S(h) C D commute, each summand
is in fact a sub-D @) A(gM))-dg-module.

Now we define L'?{ := L3, Then by construction we have a commutative diagram

8 . .
DEUg @) A(gV)) —= Dt 1 (X, D@y Al™M)) (3.3.13)
Forl iFor
D'Mod' . (Ug) o DPMods, (D)
(,0)\18 (1,0)

where £ is the functor defined in [BMROS, 3.3.1].

As in [BMROS, 3.3.2| one proves that the functors L'?{ and RI" form an adjoint pair.
Hence there are adjunction morphisms Id — RI' o 5% and [,!?{ o RI' — 1Id, which coincide,

under the natural forgetful functors, with the adjunction morphisms Id — RI o X and

LYo RT — 1d of [BMRO8|]. In [BMRO8, 3.6] the authors prove that the latter morphisms
are isomorphisms. Hence the former morphisms also are isomorphisms. This concludes the
proof of (3.3.9).

Recalling Lemma 3.3.5, we have proved equivalences:

x B35 o .
DGCoh(@llg s B)V) = D, (X, Doy Aa)
(339
= DiUg®) Ag))
3.3.5 "
~  D’Mod¢((Ug)o).
This concludes the proof of Theorem 3.3.3. O

Let p: (g ﬁg*xg B)(l) — ﬁ(l) be the natural morphism of dg-schemes. It can be realized
as the natural morphism of dg-ringed spaces

(5(1)7 Og(l) ®| A(g(l))> - (5(1)7 Og(U)'
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The following proposition is clear from our constructions (see in particular diagrams
(3.3.11) and (3.3.13)):

Proposition 3.3.14. The following diagram is commutative, where the functor Incl is
induced by the inclusion Modgig((l/{g)g) < Mod® (Ug):

(A0)
Rps ~
DGCoh((§ fig x5 B)V) = D Cohy (g1)
zlbf ZJJVf
D'Mod®((Ug)g) ——— DbMOd%\,O) (Ug).

Recall the Koszul duality xp of (3.1.1). The situation is the following, where A € X is
regular:

(+) DGCob (M) =2 DGCoh#' (G g w5 B) V)
Forl(2.3.8) (2.3.10)lF0r
D Coh gy (N ) DPCoh(ND) DGCoh((g g5 B)™M)
zICh. I, (1.2.3) 3.3.312
D*Mod™((Ug)*) D*Mod ¥ ((Ug)o)

Hence we have constructed some “correspondence” between Ug-modules with fixed
trivial Frobenius character and generalized Harish-Chandra character A (on the right
hand side), and U g-modules with generalized trivial Frobenius character and fixed Harish-
Chandra character A (on the left hand side). One of the main results of this chapter is that,
under the assumption that p is large enough so that Lusztig’s conjecture from [Lus80b] is
true (see 0.5), “indecomposable projective modules correspond to simple modules” under
this correspondence (see Theorem 4.4.3 below for a precise statement).

To finish this subsection, let us remark that entirely similar arguments give the following
more general theorem:

Theorem 3.3.15. Let p, P be as in (ii) of Theorem 1.1.2.1. There exists an equivalence
of triangulated categories

7ir : DGCo((gp M- xp P)M) = D*Modi#(Ug)o)

making the following diagram commutative, where Incl is induced by the inclusion of cat-
egories Modﬁg((b{g)o) — Modﬁi 0)(2/{9), and pp : (gp ﬁg*xp P - ﬁg) is the natural

morphism of dg-schemes:

R(pp)«

DGCol((§p g xp P) V) DPCohpay (35)

zlbﬁ Zlﬁ

Incl f
DbMong((Ug)D) DbMod(i’o) (Ug).




4. SIMPLES CORRESPOND TO PROJECTIVE COVERS UNDER kp 115

4 Simples correspond to projective covers under kg

In this section we state the result which will be the key of our arguments, Theorem 4.4.3.
Before that, we prove several technical results needed for this statement.

4.1 Restricted dominant weights

Consider the element 79 := £, - wp of W;H. Recall the formula for the length of an element
of W/s: for w € W and x € X we have (see [IM65, 1.23|):

lw-tz)= Y Nz, o)+ Y 1+ (x,a")]. (4.1.1)
acRt, acRt,
waERT waER™

In particular, we obtain £(10) = Y cp+ ((p,a") —1).
Let us define

W= {w € W.s | we Cy contains a restricted dominant weight}.

If A € Cy, W is also the set of w € W/ such that we ) is restricted dominant. It is a finite
set, in bijection with W, under our assumption p > h (see e.g. the proof of Proposition
4.1.2 below).

Proposition 4.1.2. The map w — Tow is an involution of WO. Moreover, if w € W° we
have (Tow) = €(19) — L(w).

Proof. Tt is immediate from the definition that (79)? = 1. Hence to prove the first assertion
it is sufficient to prove that if w € W0 then row € W°. As remarked above, we have
W= {we W/ | weO0 is restricted dominant}. Write w =t - v with A € X and v € W.
Then we0 = v(p)+pA—p. Hence if @ € ® we have (we0,a") = (p, (v a)V)+p(\, o) —1.

As p > h, we have |(p, (v"1a)¥)| < p. Hence, w @ 0 dominant restricted implies:

w0 ifviae RT;
A >_{ 1 ifv-laeR. (4.1.3)

In both cases, (w e 0,a") € {0,1,--- ,p —2}.

Now 7ow @ 0 = wo(w ¢ 0+ p) + (p — 1)p = wo(w e 0) + (p — 2)p. Hence if a € P,
(rTow @ 0,a") = (w e 0, (wpa)V) + (p — 2). We have woae € —®, hence, by the previous
remark, (w e 0, (woa)V) € {—p +2,---,0}. Thus 7ow € WP, and the first assertion of the
proposition follows.

Let us compute £(tow). We have mow = wov - t,~1(x_,). Hence, by (4.1.1),

Urow) = Y [ A =p)a)l+ Y L+ (A =p)aY)

a€RT, a€RT,
wova€RT wovaER™
= > A =p @)+ D 1L+ A= p, (va)Y).

aeRT, acRt,
va€ER™ va€Rt
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It follows from (4.1.3) that for a € ® we have 0 < (\,a") < (p,a"). Hence the same is
true for any o € RT. Moreover, if v"!a € R then the second inequality is strict, and if
~la € R~ then the first one is strict. Hence

Urow) = > (A=pwa))+ Y (=14 {p=A (va)"))

a€eRT, a€RT,
va€ER™ va€RT
= > B+ DY A (wa)Y)
BeERT a€RT,
va€ER™
—Z —#{a € R" |va € RT}.
a€RT,
vaER"’

We deduce that
Urow) = Lmo)+ D> (A (va)Y)

a€eRt,
va€ER™
—Z Wi #{a € Rt |vace R}
a€RT,
va€RT
= L) = D T+ @a)) = Y 1A (va)Y)|
aceRt, a€RT,
va€ER™ va€RT
= (1) — l(w).
Here the second equality uses the fact that if « € RT and va € R~ then (\, (va)¥)+1 <0,
and the third one uses the equality w = t)-v = v-t,-1) and formula (4.1.1). This concludes
the proof. O

4.2 Coherent sheaves and dg-sheaves on NO®

As in subsections 2.3 and 3.1, let us consider the following Gy,-dg-algebras on B, with
trivial differential:

S =80, (Tpn)) with Tga) in bidegree (2, —2),
R := SOB(U (7Tgay) with Tgq) in bidegree (0, —2),

where 730 is the tangent bundle to BM . We have a “regrading” functor
§: Do, (BY, 8) = De, (BY, R),
defined by f(M); = M;ij. We also have an equivalence of categories (see (2.3.4)):
¢ : DEE(BY, R) = DPCohCm(NW).
As in (2.3.6) we consider the functor

1 : DGCoh® (NM) — DPCoh®m (N W)
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defined as the composition
DGCoh#" (N W) .= DLl s) — DB, S)
L pElE(EM, R) L DOConCm(AM).
Lemma 4.2.1. There exists a fully faithful triangulated functor

¢ : D*CohSm (V) — DGCoh#" (V1)

such that no ¢ is the inclusion DbCoh;‘% (ND) < DPCoh®m (N D) (see [BMRO8, 3.1.7]).

Proof. In this proof we consider DbCohgzﬁ') (/\7 (1)) as the localization of the homotopy cat-

egory of the category CPCoh®m (N M) of bounded complexes of Gy-equivariant coherent
g ) B

sheaves on N/ (M), supported on the zero-section. In particular, any object in this category
is bounded for both gradings (the cohomological one and the internal one).

Comnsider the functor

¢ : C’Cohgm (N)) — DGCoh® (N )

sending the complex M to the dg-module defined by ((M ); = M;Jrj . This functor sends

quasi-isomorphisms to isomorphisms. Hence it induces a functor ( : DbCohga’) (/\7 My —
DGCohgr(/\N/(l)). It is clear that the functor no ¢ is isomorphic to the inclusion of the full
subcategory D’Coh®™ (N M) inside DPCoh®m (AN (M), Hence ¢ is faithful. Now we show

B1)
that it is full.

Let M and N be two objects of DbCOhga‘) (NM). A morphism f : (M) — ¢((N) in

DGCoh® (VM) can be represented by a diagram
C(M) <= P — ((N)

with P an object of DGCoh® (N (1), Let us fix a positive integer a such that M;=N;=0
for |j| > a. We define the object P of DGCoh# (N D) by (P, = Pjif j < a,
(Py; = 0if j > a. This is a sub-dg-module of P (because S is concentrated in non-
positive internal degrees). Moreover, the inclusion P < P ig a quasi-isomorphism. Next
we define the sub-dg-module PPl of P by (P[Q})j = (Pm)j if j < —a, (Pm)j = 0 if
j > —a, and we denote by PPl the quotient P[l]/Pm. The morphism P — PBl ig again
a quasi-isomorphism. Moreover, we have the diagram

P
qis
qis
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because the morphisms P — ¢(M) and PN — ((N) factorize through PP, Hence,
replacing P by P!, we can assume that P is bounded for the internal grading.

Consider now the object Q := &(P) of Cg,.. (B!, R). It is bounded for the internal grad-
ing, bounded below for the cohomological grading, and its cohomology is bounded. Using a
truncation functor (which is possible since R is concentrated in non-positive degrees), there
exists an object QU of CGm(B(l), R), bounded for both gradings, and a quasi-isomorphism
QM X Q. Then, consider the object PH := ¢~ 1(QM) of Cg,. (B, S). It is bounded

for both gradings, and there is a quasi-isomorphism P %, p Thus we can assume P is
bounded for both gradings.

Consider now the morphism
¢ 'n(f):¢7'M — ¢ 'N

in Dg‘;fg(B(l), R). As DbCohgg’l‘) (ND) is a full subcategory of D?Coh®m (A1), there

exists a diagram in Cg_ (B, R):

¢~ 'n(P)
qis Tqis\
(bflM ais Q[2] (ble
qis lqis/
¢~ QM

where Q12 is an object of Dgcjg(B(l), R), and QP is a bounded complex of Gy-equivariant
coherent sheaves on A/ (1) supported on the zero section. Now, using arguments similar to
those used above, we can assume Qm is bounded for the internal grading, and bounded
below for the cohomological one. It easily follows that f is equal to the image under ¢ of

the morphism defined by the diagram M 2> QB — N. 0

4.3 Translation functors

The translation functors for U g-modules are defined in [BMROS8, 6.1]. In this subsection
we prove, in particular cases sufficient for our purposes, that these translation functors (for
Ug-modules) coincide (on G-modules) with the usual translation functors defined e.g. in
[Jan03, I1.7]. We denote by T¥' the translation functors defined in [BMROS], and by T%' the
ones defined in [Jan03]. We also denote by Mod!d(G) the category of finite dimensional
G-modules in the block of A, for A € X.

We define

Co:={reX|VaeR", 0<(v+p,a’)<p}
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Lemma 4.3.1. Let \,u € Cy. Consider the following diagram.:

f
Ty

Modf(G) =——=Mod}}(G)

A
T3

For For
TH

fg A fg
Mod(/\,o) (Ug) %7 MOd(,u,O) (Ug).

w

If 1 is in the closure of the facet of A, then For o T)’f = T{ oFor. If A is regular, and p
is on ezactly one wall of Co, then For o Tﬁ = Tﬁ o For.

Proof. We only prove the first isomorphism (the second one can be obtained similarly).
Both translation functors are constructed by tensoring with a module (the same for both
functors), and then taking a direct summand. A priori the direct summand corresponding
to T)‘f is smaller than the one corresponding to T f\‘ . Hence there exists a natural morphism
of functors ForoT)‘f — T{' oFor. As these functors are exact, and as the category Modg\d(G)
is generated by the induced modules Ind%(w e \) for w € W,y and w e A dominant we only
have to prove the result for these modules. But the images under our functors of these
modules are explicitly known (see [Jan03, I1.7.11 and I1.7.12| and [BMRO06, 2.2.3]), and
they indeed coincide. O

From now on, for simplicity we do not write the functors “For”. It follows from this
lemma that the usual rules for computing the images of simple or induced modules under
translation functors (see [Jan03, I1.7]) generalize. For instance, if 41 is in the closure of the
facet of A (both in Cy), then

T IndG(w e A) = Ind (w e )
for any w € W/g. If moreover w e X is dominant and restricted, then

L(w e p) if wepuisin the upper closure
TV L(we \) = of the facet of w e \; (4.3.2)
0 otherwise.

To finish this subsection, let us remark that, as the tensor product of two restricted
Ug-modules is again restricted, for A, 1 in X the functor T} : Mod%\ o) Ug) — Modﬁi 0)(Ug)
induces a functor denoted similarly:

T : Mod¥((Ug)o) — Mod((Ug)o).

4.4 Objects corresponding to simple and projective modules

Let A € Cy be arbitrary. Recall that, by a theorem of Curtis (see [Cur60]), a complete
system of (non isomorphic) simple (Ug)op-modules is given by the restriction to (Ug)o of
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the simple G-modules L(v) for v € X restricted and dominant. The simple objects in
the category Modgg((b{g)’\) (or similarly in the category Modig((Ug)o)), i.e. the simple
(Ug)o-modules with Harish-Chandra central character A are the L(w e \), for w € Wi,
such that w e X is restricted and dominant, i.e. for w € W9 (see subsection 4.1).

Recall the equivalence €5 of (1.2.3) in chapter I. For w € W° we define
Ly = () L(we)) €D Cohym(NW) (4.4.1)

This object does not depend on the choice of A € Cy. Indeed, let u be another weight in
Co. By [BMRO8, 6.1.2.(a)|, for any F € DbCoth(ﬁ(l)) we have

T)lffy/[\g(f) = RF(OB(/‘ =) ®og (MA ®Og(1) ‘7:))

(in this formula, M* ®0g(1) F is considered as a sheaf of D-modules on B). By our choice
of splitting bundles (see [BMRO06, 1.3.5]), we have M* = Op(p — A) ®0, M?, hence

T{ o R (F) = 5 (F).

Similarly, T{" restricts to a functor Mod((Ug)") — ModE((Ug)*), and for an object
F e DbCohB(1>(/\7(1)) we have

Ty o B (F) = ef(}").
Hence if £y, is defined using the weight X, we have €5 (Ly,) = T} 0 €5 (Ly,) = T{'L(w o \) =
L(w e p), which proves the claim. Here the last isomorphism follows from (4.3.2).

Consider now the category Modf\g((l/lg)g). The algebra (Ug)o is finite dimensional.
Hence, if 3%0 denotes the image in (Ug)o of the maximal ideal of 3pc = S(h)W*) corre-
sponding to the character induced by A, the sequence of ideals of (Ug)o

(3tic) 2 (3ic)? O (Bic)® 2 .-
stabilizes. Thus, for n sufficiently large, the category Modf\g((Z/{g)o) is equivalent to the
category of finitely generated modules over (Ug)o/(3c)". We denote this algebra by
((Ug)o)?, or simply Ug)y-
As seen above, the simple (L{g)é—modules are the L(w e \) for w € WO We denote by

P(w e )\) the projective cover of L(w e \) in the category of (Ug)j-modules. Recall the
equivalence ‘y\f\g of Theorem 3.3.3. For w € W° we define

Puw = (F2) ' P(we )) € DGCoh((ggxs5B)M). (4.4.2)
As above, this object does not depend on the choice of A € Cyp.

Our key-result states that the objects £, and Py, correspond under the linear Koszul du-
ality kg of (3.1.1). More precisely, consider the forgetful functor For : DbCohgf‘l‘> N —
DbCOhB(l)(N’(l)). If g e DbCohB<1>(ﬁ(1)), we say that an object F of DbCohg("l‘) (ND)
is a lift of G if For(F) = G. We use the same terminology for objects in the categories

DGCohgr((EFB\g*XB B)M) and DGCoh((g rﬁwg*xg B)M). In section 8 we will prove the fol-
lowing result.
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Theorem 4.4.3. Assume p > h is large enough so that Lusztig’s conjecture is true>.
There is a unique choice of lifts P§ € DGCohgr((ﬁﬁg*XB BYD) of Py, resp. LY €

DbCohgf‘l‘> (NDY of L, (v e WO), such that for all w € WO we have in DGCoh#" (N 1):

kg PE, = (L) ®0,q) Opm (—p).

The unicity statement in this theorem is not difficult to prove (see 8.1). The existence is
much more complex. To prove it we will need several tools, which we introduce in sections

5,6 and 7.

As explained above, this statement does not depend on the choice of a weight A € Cp.
From now on, for simplicity we mainly restrict to the case A = 0.

5 Braid group actions and translation functors

In this section we introduce important technical tools for our study: the (geometric) braid
group actions and the geometric counterparts of the translation functors.

5.1 Braid group actions

In this subsection we recall the main results of chapter II. Denote by ®,¢ the set which
contains ® and additional symbols for each element of Sy —.S. If ag € $a5 — P, we denote
by Sa, the corresponding element of Syg — S. The elements of ®,4 — ® are called affine
simple roots, and the ones of ® finite simple roots.

We use the same notation as in chapter II for the extended affine braid group Blg
(see I1.1.1), the convolution functors (see I1.2.1), and the varieties S, and S/, (see 11.2.3).
TIn Theorem I1.2.3.2 we have proved that there exists an action of Blg on D*Coh(gV))

(respectively DPCoh(N ™)) for which:

(i) For z € X, the action of ¢, is given by the convolution with kernel A,(Ogn)(z))
respectively Ay (O e1y(x))), where A is the diagonal embedding;

£ 8 g

(ii) For o € @, the action of T, is given by the convolution with kernel O e (respec-
tively Og, 1)). The action of (T,)~ ' is the convolution with kernel Oson(=p,p — @)
(respectively Og o) (—p, p — a)).

Moreover, the actions on DbCoh(/\Nf M) and D*Coh(g(")) correspond under the direct

image functor i, : D*Coh(N M) — DPCoh(gM)) where i is the closed embedding N1
ey
g\t

In [BMRO6] the authors have constructed an action of Blg on D(’Mod% 0) (Ug) (see
11.6.3); for b € Blg, let us denote by

I, : D'Mod(® , (Ug) — D*Mod? , (Us)

5See 0.5 for comments.
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the corresponding action. On the other hand, let us denote by

Jy, : D*Coh(g")) — DPCoh(gM),
resp. K, : ’Dbcoh(/\/’(l)) N DbCOh(N(l)),

the actions of b given by Theorem I1.2.3.2. We have proved in subsection I[1.6.3 that for
any b € Bl the following diagram is commutative:

Iy

DPCohyn) (g1) DPCohyy (g1)) (5.1.1)

Végl? ?i%‘?

I
D'Mod§ , (Ug) "> D'Modf o (Us).

Let us point out that our notations are not exactly the same as in subsection 11.6.3.

5.2 Graded versions of the actions
Let us define actions of Gy, = k* on g(M) and /\N/'(l)7 by setting
t-(X,gB)=(t"% X,gB), resp. t-(X,gB)=(t* X,gB) (5.2.1)

for t € k* and (X, ¢B) in g\, respectively N® | Note that the action on N is not
the restriction of the action on ﬁ(l), but rather the dual action. This is consistent with
the constructions of subsection 3.1. Recall also that the action of k on g*(!) is twisted: if
Fr : g* — g*() denotes the Frobenius morphism, and if ¢ € k, then we have ¢ - Fr(X) =
Fr(t'/?X). As in subsection 2.5, we denote by (1) the shift in the grading given by the
tensor product with the one-dimensional Gy,-module given by Idg,,. An easy extension of
the constructions of chapter II yields:

Proposition 5.2.2. There exists an action of Blg on the category D’ Coh®=(g(V)) (resp.
DPCoh®m (N W)Y for which:

(i) For z € X, the action of 0, is given by the convolution with kernel A.Ogu)(x)
(respectively A*(’)ﬁ(l)(x)), where A is the diagonal embedding;

(ii) For o € ®, the action of Ty, is given by the convolution with kernel OS(1)<_1>
(respectively Og, 1)(1)). Moreover, the action of (T)~' is the convolution with kernel
(95&1) (=p,p — a){=1) (respectively Og, 1)(—p, p — a)(1)).

Proof. Here we only consider g(!) (the proof for NO g similar). All we have to do is
to observe that the varieties S, are Gmpy-stable subvarieties of g x g, and that all the
constructions and proofs of chapter II respect the Gp-equivariant structure. The only
subtlety concerns the proof of Proposition 11.2.4.2 (see also section I1.8). In this proof, the
Gm-equivariant version of the exact sequence Oy1 — Oy, (p—a, —p,0) = Oy2(p—a, —p,0)

18
OVO} <2> — OVa(p -, —=p, 0) - OVO?(:O -, —=p, 0)

The rest of the proof works similarly. O
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Now we consider the dg-scheme (g FBWg*X 5 B)M. Recall the notation for categories of
dg-modules in section 1. By definition (see equation (2.3.9)),

T ~R ~Y c,
DGCoh# ((§Ng x5 B)) = DEEBM), Ao, (Tam))-

This realization was constructed using the resolution
qis
(S(g(l)) @ 08(1)) ®OB(1> AOB(1> (T[;/(l)) - ’/T*Og(l)a

where 7 : g — BWM denotes the projection to the base. Consider also the Koszul
resolution

(S(a') @) Opw) @1 Alg) == Ogo.
There exist quasi-isomorphisms of dg-algebras on B(1):
(AOB(U (Tl;/(l)) ®OB(1) (S(g(l)) A 08(1))) ®S(g(1))®|(95(1) ((S(g(l)) g 08(1)) @ A(g(l)))
== (Ao, (Tam) ®o, (S(eM) @1 Op)) Ds(g)2y0,0) Q80 = Aoy (Tgw)

and

(Ao, (T50) ®o,, (SM) ®) Oz)) D5(g1),0,1y ((S(a™) @) Ogy) @) Alg))
-, T Og1) B5(g1)2,0,,1) (™) ®) Opay) @) Alg)) = mOg0) @) Alg™V).
Using Proposition 1.5.6, and a Gy-equivariant analogue, we deduce:
Lemma 5.2.3. There exist equivalences of categories
DGCob® ((@g-x5B)V) = DEEBY, (m.0qm) 1 Ag™)),
DGCoh((@ Mg x5 B)V) = DEBY, (m,0gm) @ Ag™),

where (77*(’)@(1)) ®| A(g(l)) is considered as a dg-algebra equipped with a Koszul differential,
with W*Og(l) in cohomological degree 0 and gV in cohomological degree —1. In the first

equivalence, the internal grading on F*Og(1) is induced by the Gm-action (5.2.1), and g(l)
is in bidegree (—1,2).

Recall that p: (g f}%g*xlg B)M — gM denotes the natural morphism of dg-schemes.

Proposition 5.2.4. There exist actions of Blg on the categories DGCoh((’jr%g*XB B)M)
and DGCohgr((afBig*XB BY) such that the functors

DGCoh# (g (ge w5 B)D) ——=—> DGCoh((§ g x5 B)V)
R(me)*\L iRp*
DV CohCm (D) for DbCoh(gV)

commute with the action of Blg.
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Proof. We give the proof for the category DGCoh((ﬁr}%g*XB B)M) (the Gp-equivariant
case is similar). As above, let 7 : 3 — B be the natural morphism. We denote by
pi - g x g — g g - BY x B — B the natural projections (i = 1,2). Recall
that « is affine, hence the functor 7, is an equivalence of categories between Coh(ﬁ(l)) and
Coh(BW, W*Og(l)) (see [Gro6la, 1.4.3]; see also Lemma 2.3.2 and its proof).

If F is in D*Coh(g™)), by [Gro6la, 1.5.7.1] we have
(m x T (pP1F) = (1 X 1)xOg01) xgn)) Dgim.0y 1) 41T

Using [Gro6la, 1.4.8.1], it follows that if o € ®,

L L
(7 X T(PIFD0, ) 1) Og) = (7 X 120 41)) Dyt 0 1) AT
Hence, finally,

Oy L
7T*Fg(ls)a_,g(l)<‘7:) = R(g2)«(m X 71')*(pglﬂj'-@@g(nXg(1)Og(@)

‘ (5.2.5)
= R(g2)«((m x 1):00)Qgim,0, 1) €17 F)-

Moreover, these isomorphisms are functorial. In this formula, (7 x w)*OSm is considered
as a right ¢jm.Ogn)-module, and a left ¢3m Ogn)-module. Formula (5.2.5) has a natural
dg-version, which will give the definition of the action of 7.

We define the action of B/g using the equivalences of categories of Lemma 5.2.3. Tt is
enough (as in Theorem II.2.3.2 and Proposition 5.2.2) to define the action of the generators
0z (x € X) and T, (o € @), and to prove that they satisfy the relations of Theorem I1.1.1.3.

First, if € X the action of 6, is defined as the tensor product with the line bundle
Opa)(x). Let o € ®. Consider the functor

C(BW, m.0qm) @1 A(gV))) — C(BY x BW, g5(r.0qm @1 AlgM)))
g — ((7T X W)*OSS)) ®qi‘7r*(')g(1) qu

where (7 x 7).0 o) is considered as a bimodule, as above. This functor has a left derived
functor (which can be computed using left K-flat resolutions), denoted by

L *
G (mx 7T>*Osél)®qi‘7r*0g(1)Q1g.

Let
@ : C(BY x BY, g5(m,.0q0) @) A(gM))) — C(BY, 7,040y @1 A(g™M))

be the natural morphism, induced by g2. Then we define the action of T, as the functor

~ L .
Fo:G— R(Q2)*((7T x W)*Osél)(@q{m@g(l)%g)-
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Easy arguments show that this functor indeed restricts to the subcategories of dg-modules
with quasi-coherent, locally finitely generated cohomology. Moreover, the following dia-
gram commutes:

DGCoh((gNgx5B)™M) *—— DGCoh((§ g x5 B)V)
Rp*l iRp*
J
DPCoh(g™) = DPCoh(gM)

(see the remarks at the beginning of this proof, and use the fact that a K-flat m.0g0) @)
A(g™M)-dg-module is also K-flat over T Og(1))-

With these definitions, it follows easily from the results of chapter II that the actions
of the T,,’s and the 0,’s satisty the relations of the definition of B;ﬁ‘. O

For b € Blg, we let
J8m . DOCohCm(g1)) —  DPCohCm(gh),
Ko™ : DPCoh®= (N W) —  DPCoh®m (N W),
Jy% : DGCoh((§g x5 B)V) — DGCoh((dMg-x5B8)™M),
JIBE . DGCoh® ((§ g x5 B)Y) — DGCoh# ((gNg x5 B)™M)
denote the action of b given by Propositions 5.2.2 and 5.2.4.
It follows® in particular from Proposition 5.2.4 that the B/ g-action on DbModE%’O) (Ug)

factorizes through an action on DbModgg((Ug)g), which corresponds to the action on the
category DGCoh((g r%g*xg B)(M) via the equivalence 5 of Theorem 3.3.3. We denote by

I} : D'Mod®((Ug)o) — D"ModE((Ug)o)

the action of b € Blg.

5.3 Some exact sequences

In this subsection we recall some exact sequences constructed in chapter II. Consider the
subvariety S/, C N'x N. Geometrically, it can be described as:

ng = {(X7ngagQB) € g* x B X P, B | X|g1-b+gg~b = 0}

It has two irreducible components. One is AN , the diagonal embedding of N , and the
other one is
Ya = {(Xang7gQB> € g* X (B X Py B) ‘ X|g1-pa = O}a

which is a vector bundle on B xp, B, of rank dim(g/b) — 1.

50f course, the first assertion can also be proved directly.
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Recall the morphism 7, : § — ga (see (1.1.1) in chapter I). There exist exact sequences
of quasi-coherent sheaves on gx g, resp. N'xN (see Corollary I11.6.2.2 and Lemma I1.7.1.1):

Ong = Ogxg.g = Osas (5.3.1)
Os,(p—a,—p) — Ogxq.8 ~ One (5.3.2)
Ope = Ost,(p—a,—p) = Oy, (p — a,—p), (5.3.3)
Oya (p — Q, —p) — OS& - OA/?" (5.3.4)

The exact sequences (5.3.2) and (5.3.4) are Gy-equivariant. The exact sequences (5.3.1)
and (5.3.3) admit the Gm-equivariant analogues

OAg<2> - nggag - Og,,
Ope(—2) = Og,(p— a,—p) = Oy, (p— a,—p).

Remark 5.3.7. We have Opx,_5(p — o, —p) = Opxp B(—p,p — @) (see subsection 11.2.4).
Hence we can exchange —p and p — a in these exact sequences.

5.4 Geometric counterparts of the translation functors

Let us recall the geometric interpretation of the translation functors given in [BMRO6] (see
subsection 1.1.3). Let P be a parabolic subgroup of G containing B and let P = G/P.
Recall the morphism 7p of (1.1.1) in chapter I. Let A and p be as in Proposition I.1.3.1.
The morphism 7p : g — gp induces a morphism of dg-schemes

7p : (309 x5 B)Y = @p Ogerp P)L. (5.4.1)

This morphism can be realized in two equivalent ways: either as the morphism of dg-

ringed spaces (g!, Og) Q) A(gM)) — (~§31), Og(l) ®) A(gM)), or as the morphism of
P

dg-ringed spaces (BW, Ao, (T50))) — (P, Ao, (T30
R(7p). and L(7p)* restrict to functors between the categories DGCoh((g FWQWB B)1) and
DGCoh((gp rgwg*xp P)D), with usual compatibility conditions.

Recall the equivalences of Theorems 3.3.3 and 3.3.15. A proof entirely similar to that
of [BMRO06, 2.2.5] gives also:

)). Easy arguments show that

Proposition 5.4.2. Let A\, pu, P,’P be as in Proposition 1.1.3.1. There exist isomorphisms
of functors
T 0% =3 o R(7p). and T, 07, =% o L(7p)".

If P =P, for a finite simple root o € ®, we simplify the notation and set 7y, := Tp, .

5.5 Some results from representation theory

One of our main tools will be the reflection functors, defined in the following way.
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Peﬁnition 5.5.1. Let § € . Let us choose a weight ps € X which is on the d-wall of
Cp, and not on any other wall. Then the reflection functor Ry is defined as the composition

Rs := T;g(; o Ty,

This functor does not depend on the choice of ps by [BMR06, 2.2.7]. It is an auto-adjoint
endofunctor of Modi% 0) (Ug), which stabilizes the subcategory Modgg((?/{g)o). Note that
these notations are compatible with those of 11.6.3.

In this subsection we recall some classical results describing the action of the reflection
functors on simple and projective modules.

Recall that it has been proved that Lusztig’s conjecture on the characters of simple
G-modules ([Lus80b]) is satisfied for p large enough, with no explicit bound (see 0.5 for
details). From now on we make the following assumption:

(#) p is large enough so that Lusztig’s conjecture is satisfied.

This restriction is needed only to apply Theorem 5.5.3(i) below.

Let § € ®,¢. Consider a simple (Ug)o-module L(we0) (w € W?), where wsse0 > we0
(see subsection 4.4). There are natural morphisms, induced by adjunction,

L(w e0) %, RsL(w e0) LN L(w e0).

It is known (see [Jan03, 11.7.20]) that ¢§ is injective, and that ¢§" is surjective. Let us
consider the U g-module

Qs(w) = Ker(yy") /Tm (7). (5.5.2)

Point (i) of the following theorem is a consequence of a conjecture by Andersen ([And86]),
which is known to be equivalent to Lusztig’s conjecture on the characters of simple G-
modules (see [And86], [Jan03, II.C]). Hence it is true under our hypothesis (#).

Theorem 5.5.3. (i) Let 6 € ®uq. Let w € WO such that w e 0 < wss @ 0. Then Qs(w) is
a semi-simple Ug-module.

(ii) The simple factors of Qs(w) as a Ug-module are of the form L(x e 0) for some
x € WO satisfying £(x) < £(wss); plus L(wss @ 0) with multiplicity one if wss € WV.

Proof of (ii). By [Jan03, I1.7.19-20] and the strong linkage principle (see [Jan03, 11.6.13]),
we know that the simple factors of Qs5(w) as a G-module are L(wss @ 0) with multiplicity
one, and some L(xe0) with x € Wog—{w, wss}, such that ze0 is dominant and xe0 T wsse0
(with the notation of [Jan03, 11.6.4]). By [Jan03, I1.6.6], we know that such an z satifies
(z) < L(wsg).

Some of these simple G-modules may not be simple as Ug-modules if x e 0 is not
restricted. But if A = A1 + pAs for A1 € X restricted dominant and A2 € X dominant, then
by Steinberg’s theorem ([Jan03, I11.3.17]), as Ug-modules we have L(\) 2 L(\;)®dim(L(2)),
To conclude the proof, one observes that if v € 0 and v # 0 are dominant, then £(t,v) >
0(v). O
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The following proposition is “dual”, in some sense, to point (ii) of Theorem 5.5.3. Recall
the modules P(w e 0) (w € WY) defined in subsection 4.4.

Proposition 5.5.4. Let w € WO, and 6 € ®.q such that wss € W9 and wss e 0 < w e 0.
Then RsP(we0) is a direct sum of P(wsse0) and some P(ve0) withv € W0, £(v) > £(wss).

Proof. The fact that Rs is exact and self-adjoint implies that RsP(w e 0) is a projective
(Ug)J-module, hence a direct sum of some P(ve0) for v € W°. The multiplicity of P(ve0)
is the dimension of

Homg(RsP(w 0), L(ve0)) = Homg(P(w e 0), RsL(v 0)).

Hence Homg(RsP(we0), L(ve0)) = 0if vsse0 < ve0 (in particular for v = w), by (4.3.2).
Assume now that vss ¢ 0 > v e 0. Recall the definition of Qs(v) in (5.5.2). The exact
sequences

Qs5() — (RsL(ve0))/L(ve0) — L(ve0),
L(ve0) — RsL(ve0)— (RsL(ve0))/L(ve0)

induce an isomorphism (recall that v # w):
Homg(P(w ¢ 0), RsL(v @ 0)) =2 Homg(P(w e 0), Q5(v)).

We know (see Theorem 5.5.3) that Qs(v) is semi-simple, that L(vss @ 0) appears with
multiplicity 1 in this module if vss;e0 is restricted, and that all the other simple components
have their highest weight of the form z e 0 for x € W° with £(z) < f(vss). Hence if
Homg(P(w ¢ 0),Q5(v)) # 0 and v # wss, then {(w) < L(vss) = l(v) + 1. As l(wss) =
¢(w) —1, we obtain £(v) > £(ws;). For v = wss we have Homg(P(we0), Qs(ws;)) =k. O

5.6 Reminder on graded algebras

We finish this section with a few facts concerning finite dimensional graded rings, to be
used later.

Consider a Z-graded k-algebra A. Let Mod(A), resp. Mod®"(A), denote the category
of A-modules, respectively of graded A-modules. Let also Mod™®2"(A), resp. Mod®(A)
denote the category of finitely generated graded A-modules, resp. finitely generated A-
modules. As in 2.5, we denote by

(j) : Mod™®8"(A) — Mod®&*(A)
the shift in the grading given by (M (j))n = M, —;. Let
For : Mod®'(A) — Mod(A)

be the forgetful functor. Following [GG82], we call gradable the A-modules in the essential
image of this functor.
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If M is in Mod(A), we denote by rad(M) the radical of M, i.e. the intersection of all
maximal submodules in M (see e.g. [CR81, chapter 5]). Similarly, we denote by soc(M)
the socle of M, i.e. the sum of all simple submodules of M.

In the following theorem, points (i) to (iv) are proved in [GG82, 3.2, 3.4, 3.5, 4.1].
Point (v) follows easily from the isomorphism

Homyoq(4) (For(M), For(N)) = €D Homyoqer (1) (M, N (i)
1€Z
for M and N in Mod™®2"(A).
Theorem 5.6.1. Assume dim|(A) < oco.

(i) If M € Mod®& (A), then M is indecomposable in Mod™®8* (A) iff For(M) is inde-
composable in Mod'(A).

(ii) Simple and projective modules in Mod™®(A) are gradable.

(iii) If M € Mod™®2"(A), then soc(For(M)) and rad(For(M)) are homogeneous sub-
modules.

(iv) If M, N € Mod®# (A) are indecomposable and non-zero and if For(M) = For(N),
then there exists a unique j € Z such that M = N(j) in Mod®#"(A).

(v) If M € Mod™®8*(A), then M is projective in Mod™®®"(A) iff For(M) is projective
in Mod'8(A).

The following results can be proved exactly as in the non-graded case (see also [AJS94,
E.6] for a proof in a more general context):

Proposition 5.6.2. Assume dim|(A) < oo.

(i) If M € Mod®& (A), then M is indecomposable in Mod'®®(A) iff the algebra
Homy o gte.er  4) (M, M) is local.

(ii) The Krull-Schmidt theorem holds in Mod'®#"(A).

These results can be used to deduce information on the structure of a graded A-module
M when we know the structure of For(M). More precisely, assume dim|(A) < oo, and let
M be in Mod™®&"(A). Let
M=MOM&---BM,

be the decomposition of M as a sum of indecomposable submodules in the category
Mod®#"(A) (i.e. as a graded A-module). Then we have

For(M) = For(M;) @ - - - ® For(M,) (5.6.3)

in Mod(A). Moreover, by Theorem 5.6.1(i), for all j the A-module For(M;) is indecompos-
able. Hence (5.6.3) is the decomposition of For(M) as a sum of indecomposable submodules
(which is unique, up to isomorphism and permutation, by the Krull-Schmidt theorem). So
the M;’s are lifts of the indecomposable direct summands of For(M).

For later reference, let us spell out the following consequence of Theorem 5.6.1, which
is implicit in [GG82| (and can also be proved directly).
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Corollary 5.6.4. Assume dim)(A) < oo. Let M be in Mod™®8"(A).
(1) M s simple in Mod™®8 (A) iff For(M) is simple in Mod(A).
(ii) M is semi-simple in the category Mod™®e" (A) iff For(M) is a semi-simple A-module.

Proof. (i) It is clear that if For(M) is a simple A-module, then M is simple in Mod®#*(A).
Assume now that M is simple in Mod®# (A). Then soc(M) C M is a non-zero graded
submodule by Theorem 5.6.1(iii). Hence soc(M) = M, and M is a semi-simple A-module.
As it is also indecomposable by Theorem 5.6.1(i), it is simple.

(ii) It follows from (i) that if M is semi-simple in the category Mod™®2"(A), then For(M)
is a semi-simple A-module. Now assume For(M) is a semi-simple A-module. Choose a
decomposition as a sum of indecomposable graded submodules M = M; & --- & M,,. By
the remark before the corollary, For(M) = For(M;) & - - - & For(M,,) is the decomposition
of M as a sum of indecomposable submodules in Mod(A). Hence each For(M;) is simple.
By (i), it follows that M; is simple in Mod®& (A). This concludes the proof. O

6 Projective (Ug);-modules

In this section we study in more details the right hand side of diagram (x) after Proposition
3.3.14.

6.1 Geometric reflection functors

From now on, to simplify the notations we assume that G is quasi-simple, i.e. that R is
irreducible.

We have defined the reflection functors in Definition 5.5.1. Let a € ® be a finite
simple root. Recall the definition of the morphism 7, in (5.4.1). By Proposition 5.4.2 the
following diagram is commutative

L(ba)*oR(Ba )

DGCoh((@ Ng-x5 B)V) DGCoh((§ g x5 B)D) (6.1.1)
Rq
D"Modo((Ug)o) D"Mod,((Ug)o).

For this reason, we denote by R, the functor
L(74)* 0 R(F)s : DGCoh((Ngex B)M) — DGCoh((§ g x5 B)M).

Now we want to make such a construction for the affine simple root ag. For simplicity,
sometimes we write so for the corresponding simple reflection, instead of so,. We will use
the following lemma. Recall the lift C' : W) — Blg of the natural projection (see I1.1.1).

Lemma 6.1.2. In Blg, consider the lift C(so) of the affine simple reflection so € W.g.
There exists f € ® and by € Blg such that

C(S()) =bg - C(Sg) . (bo)fl.
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Proof. First, assume G is not of type Ga, F4 or Eg. Then X/Y # 0, hence there exists
w € W!g with £(w) = 0, but w # 1. Then w-sg-w™ ! is a simple reflection s for some 3 € .
As lengths add in this relation, we have also C(so) = b - C(sg) - (bg) ™! for by = C(w).

Now assume’ G is of type Ga, F4 or Eg. Then there exists a simple root 3 such that
the braid relation between sg and sg is of length 3. Then we have C(sg)C(s0)C(sg) =
C(s0)C(s3)C(s0), hence

C(s0) = C(s5)C(50)C(s5)C(s0) 'C(s5) 7"
Hence we can take by = C(s3)C(s0). O

In the rest of this chapter, we fix such a 8 and such a by.

Corollary 6.1.3. Keep the notation of Lemma 6.1.2. For any M € DbMod% 0) (Ug), resp.
M e DbMong((Ug)g), there exists an isomorphism®

Rao(M) =1y, 0 Rg o Lipgy-1(M),  resp. Roo(M) = Iy% o Rg o Iip 1 (M).

Proof. We only prove the first isomorphism, the second one can be proved similarly. First,
Lemma 6.1.2 implies that Io(sy) = Ip, 0 Io(sy) © Lpg)-1. By definition of the B! -action,

for any N € DbMod% 0) (Ug) there is an exact triangle N — RgN — IC(SB)N- Hence, for

M e DbMod% 0) (Ug) there is an exact triangle

M — I, 0 Rg o L) -1 (M) — Iy, 0 Lesy) © Lipg)-1 (M) = Io(se) (M).

On the other hand, again by definition there is an exact triangle M — R, M — Lo, M.
Identifying these two triangles we deduce the isomorphism of the corollary. O

For this reason we define the functor
Ry : DGCoh((§ Ng- x5 B)Y) — DGCoh((g Nge x5 B)Y)

as follows:

d ~ \k =~ d
Rag = Jy2 0 L(7p)" o R(Tg)x 0 J(bgo)_1

(see 5.2 for the notation). With this definition, by Corollary 6.1.3, the diagram analogous
to (6.1.1) is commutative, at least on every object.

6.2 Dg versions of the reflection functors

Let a € ®. The dg-ringed spaces (B, Ao, (Tgny)) and ( W Ao o (T)))) are nat-
Pa

P
urally Guy-equivariant (see 1.7), and 7, is also Guy-equivariant. Easy arguments show

"More generally, this second proof works if G is not of type Cn, n > 2.
81t is not clear from our proof whether or not these isomorphisms are functorial. However, this can be
checked easily if G is not of type G2, F4 or Eg.
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that the functors R(Ta G )+ and L(Ta,G,,)" restrict to functors between the categories

DGCoh® ((g r%g*xg B)M) and DGCoh® ((ga (}%g*xpa Po) D), with usual compatibility con-
ditions. Equivalently, these dg-schemes and morphism can be realized using the first equiv-
alence of Lemma 5.2.3 (and an analogue for P,). We define

RE = L(Ta,6m)" © R(Ta,Gm)s

This is an endofunctor of DGCoh®" ((g %g*xB B)(l)),
For the affine simple root g we define similarly, with the notation of Lemma 6.1.2,

RE = T8 0 L(F3.6,)" © R(Fp G )s 0 T, (6.2.1)

With these definitions, for any § € ®,g the following diagram commutes:

Rgr
DGCoh# ((§ Mg+ x5 B)(D) —=> DGCoh® ((§ Ag- x5 B)L) (6.2.2)

Forl iFor

R
DGCoh((§ g x5 B)D) —>= DGCoh((@ g x5 B)V).

To conclude this subsection, for later use we study the relation between the functor
Rao for a € & and the action of the braid group. Consider the following diagram of
Gm-equivariant dg-schemes:

g xga mg X (BxB) (B X B))
R

(9 Ng*xB B) gmg*xB B)( )

/
\
(ga Ng*xPa Pa )

Here we consider the realization of the dg-schemes given by the first equivalence of Lemma
5.2.3 (and analogues for the other dg-schemes). We want to construct an isomorphism of

endofunctors of DGCoh® ((g ﬁg*xg B)(l)):
L(Ra6m)" © R(Fa6m)s = R(q2,6m)+© L(q1,6,,)* (6.2.3)

There is a natural adjunction morphism Id — R(q1.6,,)+°L(¢1.6m)*- Applying the functor
R(T,Gm )+ to this morphism, and using the equality T, 0 g1 = T4 0 g2, one obtains a mor-
phism R(Ta,6m)s — RB(Ta,Gm )+ © R(62,6m)+ © L(¢1,6,,)"- Now, applying again adjunction,
one obtains the desired morphism

L(%Q,Gm)* o R(%Oﬁem)* - R<q27Gm)* o L(qLGm)*



6. PROJECTIVE (U®),-MODULES 133

R(me)* For
_

Under the functor DGCoh® (g g5 B)™M) DPCoh®m (g)) == DPCoh(gM),
this morphism corresponds to the isomorphism considered in Proposition I11.6.1.2. Hence
it is also an isomorphism (recall that R(pg,, )« is a forgetful functor).

Recall the shift functor (1) defined in subsection 2.5 (see also 5.2). The following lemma
follows immediately from isomorphism (6.2.3) and the exact sequence of Guy-equivariant
sheaves (5.3.5).

Lemma 6.2.4. There exists o distinguished triangle of functors

Id(1) — RE(~1) — J32e".

6.3 Gradings

As in subsection 3.3, for simplicity we denote the variety g(*) Xp«y b by X in this sub-

section. Recall the algebra U := Ug @z, S(h), also considered in 3.3. By [BMROS, 3.4.1]
we have

U ifi=0,

T(X,D) =
RT(X,D) {O otherwise.

Let ﬁg denote the completion of U with respect to the maximal ideal of its center 3 ®z,,

S(h) generated by h and g(V). Let also (Ug)g denote the completion of Ug with respect to the
maximal ideal of 3 corresponding to the character (0,0). The projection h* — bh*/(W,e)

~

induces an isomorphism (7(? = U g)g. Recall that we have defined the algebra (Ug)] in
subsection 4.4. -

As in subsection 3.3 we let B(1) denote the formal neighborhood of BM x {0} in
g Xp= h*. Applying [Gro61b, 4.1.5] to the proper morphism

ﬁ(l) Xpey B — 9*(1) X () /W h*

and using the fact that gt Xy (1) /7 h* is affine, we obtain isomorphisms

0 otherwise.

RT(B0,B o) = { (Ug) ifi =0, (6.3.1)

—

Recall also the isomorphism of sheaves of algebras on B(1) (see subsection 1.1.2)

15“9) = Endo o (MO). (6.3.2)

Let BE denote the maximal ideal of 3g associated to the character 0. There is a
surjection

Ug)? — U9/ (31) = Ug)).

Hence the algebra (Ug)g is a quotient of (Ug)g = F(@,Endogﬁ) (M9)).
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Let Y be a noetherian scheme and Z C Y be a closed subscheme, with corresponding
ideal Zz C Oy. Let Z be the formal neighborhood of Z in Y (a formal scheme). Assume Z
is endowed with a Gy-action. If F is a coherent sheaf on Z a structure of Gy,-equivariant
coherent sheaf on F is the data, for any n, of a structure of Gy-equivariant coherent sheaf
on F/(Z7} - F) (as a coherent sheaf on the n-th infinitesimal neighborhood of Z in Y'), all
these structures being compatible. Let us recall the following result, due to V. Vologodsky
(see the second appendix in the preprint version of [BFGO06]):

Lemma 6.3.3. Let f : Y — Z be a proper morphism of k-schemes. Let z be a point in Z,
and Y; be the formal neighborhood of f~(2) in Y. Let £ be a vector bundle on Ys, such
that Ext'(£,£) = 0. If Y; is endowed with a Gmy-action, then this action can be lifted to
E, i.e. there exists a Gy -equivariant structure on €.

Now we consider B(1) as the formal neighborhood of the zero-section in g"). We have
defined a G-action on g(!) in (5.2.1). This action stabilizes the zero-section, hence induces

an action on B(1). We can apply Lemma 6.3.3 to the splitting bundle MY, the vanishing
hypothesis following from (6.3.1) and (6.3.2). Hence we obtain a Gy-equivariant structure
on M?, and a structure of a Guy-equivariant sheaf of algebras on D| e

Applying I'(BM, —), we obtain a Gp-equivariant algebra structure on (Ug) , which

is compatible with the Gp-structure on g**) induced by the action on gV). Taking
the quotient (by a homogeneous ideal), we obtain a grading on the algebra (Ug)). Let
Mod(f)g’gr((u g)o) denote the category of finitely generated graded modules over this graded
algebra.

The following theorem is a “graded version” of Theorem 3.3.3:

Theorem 6.3.4. There exists a fully faithful triangulated functor
7B - DACOb® ((§ (g x5 B)Y) — D'ModE* ((g)o),

commuting with the internal shifts (1), and such that the following diagram commutes:

DGCoh# ((§ g- x5 B)D) D'Mod{E#" ((Ug)o)

Forl lFor
B

DGCoh((§ g x5 B)M) D*Modgy (Ug)o).

‘This theorem would be easy to prove if we had a Gm-equivariant structure on the whole
of D and Ug (the proof of Theorem 3.3.3 would generalize in a straightforward manner,
and we would even obtain an equivalence of categories). Unfortunately we only have such
a structure on some completions of these algebras, and this subtlety complicates the proof.
As it is long and as the details are not needed, we postpone the proof of Theorem 6.3.4 to
the end of this section (see 6.6 and 6.7).

Remark 6.3.5. Arguing as in the proof of Proposition 7.2.3 below, one can prove that the
functor 7%)3 is essentially surjective, hence an equivalence (see Remark 7.2.4 for the “dual”
statement).
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6.4 Complexes representing a projective module

The abelian category Mod% 0)(?/{ g) does not have any projective object (because of the as-

sumption that the center acts with a generalized character on these modules). Nevertheless,
in the category DbCoh(ﬁ(l)) one can define the notion of a complex of sheaves “represent-
ing a projective module”. For F,G € DPCoh(g!)), we write simply Homg) (F,G) for
Hompycon(g)(F+ G)- The following definition was already considered (in a special case)
in 1.2.3.

Definition 6.4.1. Let A € X be regular. An object M of D*Coh(g(!)) is said to represent
a projective module under ’yf if

Homg(l) (Mv (’7){3)_1]\7[2]) =0

for any N € MOd%\,O) (Ug) and i # 0.

Let 1 € X be a restricted dominant weight in the orbit of A under W/;. An object
M of D*Coh(g™M) is said to represent the projective cover of L(p) under v8 if for any
v € Wy o X restricted and dominant and ¢ € Z,

k ifv=pandi=0,
0 otherwise.

Homga (M, (1) L()[i]) = {

Recall from subsection 4.1 the element 79 = ¢, - wp € wo c W;H.

Lemma 6.4.2. Let A € Cy, and v € W°. Then T, "L(ve\) # 0 iff v=r1y. Moreover,
T,"L(ro e \) = L(ro ® (—p)) = L((p — 1)p).

Proof. Using the rule given by (4.3.2) to compute T, "L(v e )), we only have to prove that
v e (—p) is in the upper closure of ve Cy if and only if v = 79. Write v = ¢, - w with v € X|
w € W. Then one easily checks that ve (—p) is in the upper closure of v e Cj if and only if
w = wp. The result follows since, under the assumption that v e A is dominant restricted,
v is uniquely determined by w (see equation (4.1.3)). O

Proposition 6.4.3. Let A € Cy, and w € W. The object Og<1> represents the projective
cover of L(to @ \) under 75, .

Proof. Consider the functor T, ” = TP — By Proposition 1.1.3.1 applied to the

we weN’

weights w e A and —p, with P = G/G = {pt}, we have

T,h 0780 =~ o RTGEW, -). (6.4.4)

wel

Moreover, Homg()(Og1), —) = HO(RI'(g™M, —)). Now the result follows from (6.4.4) and

Lemma 6.4.2, using the fact that fyﬁ:)t} (k) = L((p — 1)p). (The latter fact can be proved
either by looking at the definition of the splitting bundles, see [BMRO06, 1.3.5], or by

remarking that L((p — 1)p) is the only simple module in Modﬁg_mo) (Ug).) O
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Corollary 6.4.5. Let A € (W.; ¢0)NCy. Write \=w o0 forw=w-t, € Wi (neX,
w € W). Then Ogn)(1) represents the projective cover of L(mo ® A) under 8.

Proof. By hypothesis, A\ = we0 = we(pu). Hence w~ e\ = pu. By Proposition 6.4.3, Og)
represents the projective cover of L(7pe)) under /5, = wau. But for F € D?Cohg) (g!))
we have ’ypBu(}") =18(F ®0,01) Og) (1)) (see 1.1.2). The result follows. O

Recall that we have defined the objects P(w e 0), P, in subsection 4.4. Consider the
natural morphism of dg-schemes p : (g r’%g* <B B)(l) — g By adjunction, it is clear that if
M € DPCoh(g(V) represents a projective module under 78, then 35 (Lp* M) is a projective
(L{g)g—module. In particular, with the notation of Corollary 6.4.5, we have

(gﬁg*xw)u)(“) = Prow- (6.4.6)

6.5 Graded projective (Ug)o-modules

Recall the results of subsection 5.6. Using Theorem 5.6.1 (ii) and (iv), the projective
modules P(we0) can be lifted to graded modules (uniquely, up to a shift). In this subsection
we fix an arbitrary choice of a lift for each P(w e 0), and denote it by P&"(w e 0). Recall
the fully faithful functor

76 : DGCob® ((§ g x5 B)Y) — D'Modf*'((Ug)o)
of Theorem 6.3.4.

Proposition 6.5.1. For all w € W°, P& (w e 0) is in the essential image of the functor
7 -
Proof. We prove the result by descending induction on ¢(w). By Proposition 4.1.2, the

elements w € WO such that ¢(w) is maximal are of the form w = 7w, for w € W/
such that ¢(w) = 0. In this case, by (6.4.6) we have Pr, = O(gﬁ B)<1>(’u) (with the
g*xB

notation of Corollary 6.4.5). It is clear that O & (1) can be considered as an
(gmg*xBB)(l)

object of DGCoh®"((g ﬁg*xg B)M). By Theorem 5.6.1(iv) and the commutative diagram
in Theorem 6.3.4, the image of this object under 75 is isomorphic to P& (row ¢ 0), up to a
shift. As 75 commutes with the internal shift, this proves the result when £(w) = (7).

Now let n be a non-negative integer such that n < ¢(79), and assume the result is true
for all v € WY such that £(v) > n. Let w € WY be such that £(w) = n. Let § € @, be
such that wss € WY and wss ¢ 0 > w e 0, i.e. £(wss) > ¢(w). By induction, there exists

Pe in DGCoh® ((g erg*Xg B)M) such that 75 (Pe") = P& (ws; e 0). Then consider
EOEP).
By construction, using diagrams (6.1.1) and (6.2.2), the image of this object under the

forgetful functor . ;
For : D’Mod#®" ((Ug)o) — D"ModE((Ug)o)
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is RsP(wss ¢ 0). In particular 75 (R P#) is concentrated in degree 0, i.e. is a graded
(Ug)g—module. By Proposition 5.5.4, RsP(wss e 0) is a direct sum of P(w e 0) and some
P(v #0) with v € W9 such that ¢(v) > ¢(w). Hence, using the remark before Corollary
5.6.4, 75 (RTPE) = P (w e 0)(i) & Q% for some i € Z, where Q% is a direct sum of
graded modules of the form P& (v e 0)(j) with j € Z and v € W such that £(v) > £(w).
By induction hypothesis, there exists an object Q8" in DGCoh® ((g r'%g*xg B)M) such that
Q% = 35(Q%). Then we have

0 (RFPE) = 35(Q%) @ P¥(w e 0)(i).

As 78 is fully faithful, the natural injection 75 Q") — 75 (R Pe") comes from a morphism

Qg — ME'Pe in DGCoh®((g %g*xg B)M). Let X% be the cone of this morphism. Then,
by usual properties of triangulated categories, there exists an isomorphism

(X5 (i) = PF(we0).

This concludes the proof of the induction step, and of the proposition. O

6.6 Some generalities on G,,-equivariant quasi-coherent dg-modules

In the next two subsections we prove Theorem 6.3.4. We begin with some general results
on Gm-equivariant quasi-coherent dg-modules.

Let us consider a noetherian scheme A, and a non-positively graded, Gmy-equivariant
dg-algebra A on A (as in 1.7). Assume also that A is locally finitely generated as an O4-
algebra. Let DE (A, A), respectively Dg:fg (A, A), be the full subcategory of Dg,, (4, A)
whose objects have their cohomology quasi-coherent over O4, resp. quasi-coherent over
O4 and locally finitely generated over H(A). Let also Cgil(A, A) be the category of G-
equivariant dg-modules which are quasi-coherent over O4, and let D(Cgcm (A, A)) be the
corresponding derived category (the localization of the homotopy category of C&. (4, A)).
Let Df® (Cgcm (A, A)) be the full subcategory of D(Cng(A, A)) whose objects have their
cohomology locally finitely generated over H(A).

A proof entirely similar to that of Lemma 3.2.2 (here we do not consider any condition
on the support) (see also Lemma 1.7.1) shows that if F is an object of D& (A, A) whose
cohomology is bounded, there exists a Gpy-equivariant K-injective A-dg-module Z and a
quasi-isomorphism F — Z, where 7 is quasi-coherent over O 4. We deduce the following:

Lemma 6.6.1. Assume A is bounded for the cohomological grading. There exists an
equivalence of categories

DE(CE (A, A) = Dngg(A, A).

Now, let Y be a noetherian scheme equipped with a (possibly non trivial) Gpy-action.
In the rest of this subsection we consider two different situations, denoted (a) and (b).

Situation (a) is the following. Let ) be a dg-algebra on Y (non-positively graded).
We have not defined Gp-equivariant dg-algebras and dg-modules in this case. But assume
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that ) is coherent as an Oy-module, and that each )P is equipped with a Gy,-equivariant
structure (as a coherent Oy-module), such that the multiplication and the differential are
Gm-equivariant.

Then we can consider the notion of an Oy-quasi-coherent, Gy-equivariant dg-module
over ). We denote by Cg‘; (Y, V) the corresponding category, and by Cgi’lfg(Y, V) the
full subcategory of dg-modules locally finitely generated over ). We denote the corre-
sponding derived categories by D(Cg‘;(Y, Y)) and D(Cgﬁfg (Y, Y)). We also denote by
Dfe (Cg;(Y, Y)) the full subcategory of D(Cng(Y, Y)) whose objects have locally finitely
generated cohomology.

Consider a closed Gy-subscheme Z C Y. Denote by DfZg (€& (Y, ))) the full sub-
category of Df# (Cg‘; (Y, )))) whose objects have their cohomology supported on Z. We
also consider the category C%C’Gm(Y, V) of Gy-equivariant, quasi-coherent Y-dg-modules
supported on Z, its subcategory C%C’fg’Gm(Y, V), the derived categories D(C%C’Gm Y, ),
D(CI®Cm (v, V), and the full subcategory D (CEC™ (Y, V) of D(CEC™ (Y, V) of ob-
jects having locally finitely generated cohomology.

Now we consider situation (b). As above, let Z C Y be a closed Gp,-subscheme. Let y
be a coherent sheaf of dg-algebras on the formal neighborhood Z of Z in Y, endowed with
a Gmy-equivariant structure. Hence, if 77 is the defining ideal of Z in Y, we have a G-
equivariant structure on the quotient ) /(% - JAJ) for any n > 0, and all these structures are
compatible. Then we can define the abelian category C%C’Gm (Y, )A}) whose objects are quasi-
coherent, Gy-equivariant Oy-dg-modules supported on Z, endowed with a compatible
action of J) (by definition such an object is a direct limit of dg-modules over some quotients
:)A)/(Ig . )7) for n > 0). We use the same notation as above for the categories of locally
finitely generated dg-modules, and for the derived categories.

Observe that situation (b) is a particular case of situation (a) (taking Y to be a the
restriction of ) to Z). The notations are compatible.

Recall the construction of resolutions by injective Gy-equivariant quasi-coherent shea-
veson Y (see e.g. [Bez00]): if F is an injective object of QCoh(Y'), then Av(F) := a.pj F is
injective in QCoh®™ (Y), where a and py : Gy XY — Y are the action and the projection,
respectively. It follows from this construction, using the non-equivariant case (see [BMR06,
3.1.7]), that any Gm-equivariant quasi-coherent sheaf on Y which is supported on Z can
be embedded into an injective Gy -equivariant quasi-coherent sheaf supported on Z.

Using these remarks, arguments similar to those of the proof of Proposition 3.2.4 (here
the situation is easier, because we only consider quasi-coherent dg-modules) give:

Lemma 6.6.2. (i) Assume we are in situation (b). Then there exists an equivalence of
categories

D(eyon(y, 9) = DE(ELOm (Y, I)).

(ii) Assume we are in situation (a). Then there exists an equivalence of categories

D(CE O (v, V) = DE(CE (Y, ).
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As in subsection 2.5, we denote by (1) the shift in the internal grading (i.e. the tensor
product with the 1-dimensional Gy-module given by Idg,,).

Lemma 6.6.3. (i) Assume we are in situation (a). Let F,G be objects of D8 (Cg; Y, ))).
There exists an isomorphism

692 Homeg(ngn(Y,J/)) (F,G(m)) = Hompac sy, y)(For F,For G),
me

where For is the forgetful functor.
(ii) Assume we are in situation (b). Let F,G be objects of D@ (C%C’Gm(Y, Y)). There
exists an tsomorphism

GBZ Hom, (caeomy, ) (F,G(m)) = Hom_ (. ) (For F,For G),
me

where For is the forgetful functor, and the category on the right hand side has the obvious
definition.

Proof. (i) Using an open affine covering, we can assume Y is affine, hence consider cat-
egories of modules over a dg-algebra rather than sheaves of dg-modules over sheaves of
dg-algebras (see Proposition 3.2.4 for the category D98(Y, )))). By Lemma 6.6.2(ii), we
can assume G is finitely generated. Using a truncation functor, we can assume F is bounded
above. Using the remarks before Lemma 3.3.6 and the construction of K-projective reso-
lutions as in [BL94, 10.12], we can even assume that FP? is finitely generated over J° for
any p, that for all m € Z we have

Hom )(}",g<m>) = Hom )(]:,Q(m>)

D' (g, (V.9) s (g, (v, )

(where H denotes the homotopy category), and finally that
Hompac ey, y) (For F, For G) = Homyac sy, y) (For F, For G).

The result follows, since it is clear that

Homgyac ey, y) (For F,For G) = @ HomHfg (Cgc v, y)) (F,G(m)).

Now, let us deduce (ii) from (i). First, by Lemma 6.6.2(i) we can assume F and G are
locally finitely generated. Let us prove that for any m € Z the morphism

Hom )(F7g(m>) — Hom )(For F,For G) (6.6.4)

ng (CqZC,Gm (1/7 y) ng (CqZC(Y, ?)

is injective. It is sufficient to prove that if f : F — G is a morphism of Gm—equi\variant
dg-modules such that For(f) = 0 in D®(CX (Y, )), then f =0 in D' (C%C’Gm (Y,Y)). By
standard properties of localizations of triangulated categories, and using a non-equivariant

analogue of Lemma 6.6.2(1), there exists P in C%C’fg(Y, V) and a quasi-isomorphism G @, p
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whose composition with f is homotopic to 0. The dg-modules F, G and P live on a certain
infinitesimal neighborhood Zl! of Z in Y. Applying the injectivity statement in (i) to the
scheme Z [i]7 endowed with the dg-algebra JA)] 711, and to the morphism induced by f, we
obtain that we can choose P and the quasi-isomorphism G — P to be Gp-equivariant.
This proves the injectivity of (6.6.4).

The injectivity of the morphism in the statement of the lemma follows from the in-
jectivity of (6.6.4), using the fact that the mutliplicative group Gy, acts naturally on
the vector space Homng (CqZC(Y,?)) (For F,For G), and that for this action the image of

Hom )(}", G(m)) has weight m.

Dis (c3°m (v, B)
The surjectivity can be proved by similar methods. O
6.7 Proof of Theorem 6.3.4

We have seen in Lemma 5.2.3 that there exists an equivalence of categories
DGCoh® (§fig-s B)1) = DEEBD, m.0qn &y A"))  (6.7.1)

where the internal grading on m,Ogq) is induced by the action of Gm defined in (5.2.1),
and g(! is in bidegree (—1,2).

In this section we consider B() as the formal neighborhood of the zero section in g,
We have seen in 6.3 that the completion D‘ ey considered as a coherent sheaf of rings

—

on BO ¢ g is endowed with a Gy-equivariant structure, compatible with that of g(b).
Hence we can consider the category

DE(CarS™ (@Y, Dy, @1 Aa™))

as in 6.6 (situation (b)). Now we have:
Lemma 6.7.2. There exists an equivalence of categories

DEFBY, 7, 0q0) @1 M) = DE(CES™ GV, D gy @1 Ala)),
Proof. By Lemma 6.6.1, there exists an equivalence of categories

Dgl;i;‘fg([g(l)7 W*Og(l) 2 A(g(l))) o ng;(cgcrn<l5’(1)7 m(’)gu) 3 A(g(l)))).
As  is affine, the functor 7, induces an equivalence of categories

Cgi,(a(l), Og) ® A(g(l))) — Cg;(B(l), Oy ® A(g(l))),

Thus, composing the inverse of this equivalence with the previous one, we obtain an equiv-
alence

DEEBY, mOqm @) Ag)) = D¥(cE @Y, O @) Aa™")))
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Now, using the fact that any object of ch (g™ ; Oy @1 Ag (1)) has its cohomology

supported on B, we obtain by Lemma 6.6.2(11) an equivalence
= ~ f8,Gm [~
DE(CE,, @, Og @1 AMg™)) = DCFEm (@Y, Oy @1 Aa™))-
Then, using Gp-equivariant analogues of the functors F' and G of the proof of Theorem
3.3.3, we obtain an equivalence

Cair o @Y, Ogw @y Ag™)) = @Y, D @1 Ae™)).

The equivalence of the lemma follows from all these equivalences, and again Lemma
6.6.2(1). O

We have seen in 6.3 that the completion (Ug)g, i.e. the restriction of the sheaf of
algebras Ug on Spec(3) to the formal neighborhood of (0,0), considered as a sheaf of
algebras on the formal neighborhood? @ of {0} in g*(), is endowed with a Gp-equivariant
structure, compatible with that of g*(). Hence we are again in situation (b) of 6.6. We
simplify the notation for the categories of sheaves of Ug-modules, and denote e.g. by
Cﬁg’G)m(Ug @) A(g™M)) the category C?g}fg’em( M Ug @ © A(g™M)). By Lemma 6.6.2(i)

we have an equivalence of categories

D(C(f%:g)m(Ug @] A(g(l)))) o ng(C(Gm)(Ug®| Alg ( )))) (6.7.3)

Recall the remarks before Lemma 3.3.5. Let us consider the following forgetful functors

(of the internal grading):

For : ng(C?m><Ug®|A< ) - Df%fg@.A( ).

f] ¢,Gm f, C ~
For : D% (CRio™ (@, D g @1 Aa™)) — D¥(Ci, @, Dy @1 A ™))
Clearly, the category Dg(CB(l)( ‘g@ @y Ag" )))) is equivalent to the triangulated
category D?;(lf)gx{o} (X, D @y A(g! ))) (see e.g. Proposition 3.2.4). Here X = g") x,. ) b,

as in subsection 3.3.
By Lemma 6.6.3(ii) we have:

Lemma 6.7.4. (i) For M,N in ng(CGm)(Ug ®) AgV))) there is an isomorphism

(0,0
@ Homng Om

M, N = Hom For M,For N).
s (00)(Ug®|/\(g(1))))( , N(m)) Y or M,For N)
m

Dég(ug®.A(g<1>>)(

(ii) For F,G in D'® (Cg,?l?m( (1) |é<:j) @y A(g! )))) there is an isomorphism

@ Homeg (cqc Gm(g( ) @B‘é)®|A(g(1)))) (F,G{m))

meZ

= Hompac.ss For F,For G).

(1) ><{O}( §®|A(g ))<

®This formal neighborhood is also isomorphic to the formal neiborhood of {(0,0)} in Spec(Z) =2
g™ Xps (1) sy N7/ (W, @). We will not distinguish these two formal neighborhoods.
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Corollary 6.7.5. There exists o fully faithful functor

RTG,, : DE(CET™ @Y. D g @1 A@™")) — DE(CGy Ug @1 Ag™)).

Proof. Let us denote by Cg(’f)c’Gm (g, 5|5@) ®| A(g™)) the full subcategory of the category

Cg{f“‘(ﬁ(l),qg@‘) @1 A(g)) consisting of bounded below objects. Tt is clear from the

definition (using a truncation functor) that, with obvious notation, we have an equivalence
of categories

DS (e om @, B gy 21 A6?) = DS G, D gy @1 Aa)).

We denote by I'"™ the functor

’ 7Gl'l'l = ~ m

Coiy (@Y, Dy @1 Aa'") — €y U @y Aa™))

induced by the global sections functor I'(g("), —). Let us first show that the derived

functor RT'F (in the sense of Deligne) is defined everywhere, i.e. that every object of

C;;(’f‘)c’e“‘ (g, D\B@ @1 A(g™M)) has a right resolution which is split on the right (see 1.4).
B

7 is in Cg(’f‘)c’em(a(l)’ 25“5@) @1 A(gM)), and each IP (p € Z) is acyclic for the functor

T, —) : QCoh(gM) — Vect(k). Indeed, let g = [J’_, X, be an affine open covering
such that each X, is Gy-stable (e.g. the inverse image of an affine open covering of B(l)).
For each «, let j, : Xo < X be the inclusion. Then there is an inclusion

Every object F of C1:A%Cm (g, ﬁlﬂ) ®) A(g")) has a resolution F 9, 7 where

n

F = @ (Jo)x(Ja)* F.

a=1

Doing the same construction for the cokernel of this inclusion, repeating, and finally taking
a total complex, as e.g. in the proof of Lemma 1.3.7, one obtains the resolution Z. Such a
resolution is clearly split on the right for the functor I'".

By this construction, it is clear that the following diagram is commutative, where the
vertical arrows are the natural forgetful functors, and the bottom horizontal arrow is the
functor considered in (3.3.10):

B (0,0

For i l For

D(X, D) AgV)) > D(Spec(k), Ug @) AlgD)).

D(Cyi (@), D g, @1 Ale™M)) — - D(CGr s @1 Aa)))

It follows from this diagram and the results just below (3.3.10) that the functor RT'"
restricts to a functor

AT, : DE(Com (@1, D gy @y AeV)) — DE(CEm Ua @) Aa™)),
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which corresponds to the functor

RD: DR (X, Doy Ag) — DEUa e Ag™))

of (3.3.11) under the natural forgetful functors. We have proved in the course of the
proof of Theorem 3.3.3 that the latter functor is fully faithful (and even an equivalence

of categories, but this is not needed here). It follows easily, using Lemma 6.7.4, that the
functor RI'g,, is also fully faithful. This concludes the proof of Corollary 6.7.5. O

Thus, using equivalence (6.7.1), Lemma 6.7.2, Corollary 6.7.5 and equivalence (6.7.3),
we obtain a fully faithful functor

DGCob# (g5 B)) — D(CES™Us @) Aa™))).

Hence to finish the proof of Theorem 6.3.4 we finally only have to prove the following
lemma.

Lemma 6.7.6. There exists an equivalence of categories

D(CES™ Ug ) Ae))) = D'ModE* ((Ug)o).

Proof. The natural morphism
Ug @1 A(g") — U)o — Us)s
induces a functor (restriction of scalars):

U : D'ModF® (Ug)o) — D(CEo™ U @) As™M))).

This functor corresponds to the functor considered in (3.3.2) under the natural forgetful
functors. We deduce, as in the proof of Corollary 6.7.5, that VU is fully faithful.

Now we prove that it is essentially surjective. More precisely, we prove that every

object M of D(C{g:gm (Ug @) A(g))) is in the essential image of ¥ by induction on (M)

where, as in the proof of Lemma 3.2.2, [(M) = —1 if M =0 and, for M # 0,
I(M) :=max{i € Z | H (M) # 0} —min{i € Z | H'(M) # 0}.

The result is clear if (M) = —1. If (M) = 0, then M is quasi-isomorphic to a Ug ®
A(g(l))—dg—module N concentrated in one cohomological degree. It follows easily from the
definitions that N is a restricted Ug-module. Hence it is in the image of .

Now let n > 0, and assume that any N with {(/NV) < n is in the image of U. Let M such
that /(M) = n, and let j be the lowest integer such that H7(M) # 0. We can assume that
MF =0 for k < j. Let M’ := ker(d),), considered as a complex concentrated in degree
j, and M" := Coker(M’ — M). We have [(M') = 0, hence M’ is in the image of ¥. Let
P’ be such that M’ = ¥(P'). By induction, there exists P in D’Mod&# ((Ug)o) such
that W(P") =2 M”. As W is fully faithful, the natural morphism M"” — M'[1] comes from
a morphism P” — P'[1] in DbModgg’gr((Z/{g)o). Then if P is the cone of this morphism,
standard properties of triangulated categories ensure that M = W(P[—1]). This finishes
the proof of Lemma 6.7.6. O

The proof of Theorem 6.3.4 is now complete.
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7 Simple (Ug)’-modules

In this section we study in more details the left hand side of diagram (*) after Proposition
3.3.14.

7.1 The “semi-simple” functors S;

Let a € @ be a finite simple root. Recall the subvariety Y, C N x N defined in subsection
5.3 (see also subsection 11.7.1). We denote by &, the convolution functor

O, (=p.p=a)
&0 g0

Now let ay € @56 — ®. Recall the notation (3, by of Lemma 6.1.2, and the notation for the
B! g-actions in subsection 5.1. We define

- DPCoh(N ) — DPCoh(N(W).

Sap = Ky 0 Sp 0 Kpy-1-

These functors stabilize the subcategory DbCohB<1) (J\~/(1)). They will be related in 8.2 to
the reflection functors of 6.1.

For all § € ®,5 we have an exact triangle of endofunctors of D*Coh(N™):
65 — KC(55) — Id. (711)

For § € ®, this follows from the exact sequence (5.3.4), using the fact that C(ss) = T5.
For § = «y, this is the conjugate of the corresponding triangle for 3, using the relation
C(sy) = boC(sp)(bo) "

We give a representation-theoretic interpretation of these functors in Proposition 7.1.2.
Recall the equivalence

€8 : D’ Cohyy (N) = DPModE((Ug)°)
of equation (1.2.3) in chapter I. We have defined the objects £,, in subsection 4.4.

Proposition 7.1.2. Let w € W°, and § € ®ag be such that wss 0 > w e 0. Recall the
(Ug)y-module Qs(w) defined in (5.5.2). We have

SsLw = (e5) " (Qs(w)).
Proof. The exact triangle of functors (7.1.1) induces an exact triangle in D°Coh ) (J\~/' M):

Gs(Lw) — Kess) (Lw) = L. (7.1.3)

Leti: N < g be the inclusion. Then we have i, 0 K¢(s,) = J(s5) 0 ix (see subsection 5.1).
Hence triangle (7.1.3) induces an exact triangle

VB oiyo0Bs5(Lw) — 5 o Je(ss) © (L) — V8 oi(Ly). (7.1.4)
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By construction we have an isomorphism of functors '70 0y = ImcloeO , where Incl is induced

by the inclusion Modf)g((lxlg)o) — MOdi%,o) (Ug). In particular, L(we0) = 180i,(L,). Also,

using diagram (5.1.1), we have
% 0 Ic(ss) @i (L) = To(sy) 076 ©ix(Lw) = Tg(sy)(L(w @ 0)).
Hence triangle (7.1.4) induces an exact triangle

Inclo €5 0 G5(Ly) — Io(ss)(L(w 0 0)) — L(w e 0). (7.1.5)

Now by definition (see [BMRO06, 2.3]), I (s,)(L(w ©0)) is the cone of the natural mor-
phism L(we0) — Rs;L(we0). This morphism is the morphism ¢§ of subsection 5.5, hence
Io(ss)(L(w 0 0)) = Coker(¢y'). Moreover, under this identification, the second morphism
in (7.1.5) is induced by w(; (again with the notation of 5.5). Hence triangle (7.1.5) induces
an isomorphism Inclo €5 0 G4(Ly,) = Qs(w). It follows that €5 o G5(L,,) has cohomology
only in degree 0. As the restriction of Incl to objects having cohomology only in degree 0
is fully faithful, the result follows. O

To finish this subsection, let us remark that for all § € ®,¢ there is a natural functor
&Sm : DPCoh®m (N W) — DPConCm (N D)

such that the following diagram commutes:

- SSm -
DPCoh®m (VD) : DbCoh®= (N (D) (7.1.6)
\LFor iFor
DPCoh(N D) d DPCoh(N D),

namely the graded convolution with kernel Oy 1) (—p, p—9) (with its natural Gm-structure)
6
if § € @, or the conjugate of the convolution with kernel OY(I) (=p,p—0) by K%; if 0 = ay.
]

7.2 Graded (Ug)’-modules

As in subsection 6.3, we have (see [BMRO06, 3.4.1]):

Ug)" = RONW.D gy o):

We have defined an action of Gy on N in 6.3 (note that it is not the restriction of the
action on g, but its composition with ¢ — t=1). The same arguments as in 6.3 show
that there exists a Gy-equivariant structure on the algebra (U g) (the completion of (Ug)°
with respect to the image of the augmentation ideal of 3 correspondmg to the character
0e g*(l)) compatible with the Gp,-structure on g *(1) induced by the action on NO
denote by Modfg B'((Ug)?) the category of graded (Ug)®-modules with trivial generahzed
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Frobenius central character (these modules are modules over the quotient of (Ug)? by a
power of the ideal generated by g this quotient is a graded algebra, hence we can speak
of graded modules). Arguments similar to (and easier than) the ones of subsection 6.7
prove the following theorem, which is a “graded version” of equivalence (1.2.3) in Theorem
1.1.2.1(i):

Theorem 7.2.1. There exists a fully faithful functor

& : D'Col®m (WD) — D'ModfF= ((Ug)"),

commuting with the internal shifts (1), and such that the following diagram commutes:

&

DPCohrm (V) D'Mod® ((Ug)°)
lFor iFor
o~ ég f
DPCoh gy (VD) D"Modg ((Ug)°).

Now, consider the category Mod(f)g((lxl 9)?). Using again Theorem 5.6.1, each simple
module L(we0) (for w € W?) can be lifted to a graded module L& (we0) in Modgg’gr((l/{g)o)
(uniquely, up to isomorphism and to internal shift). Here the algebra (U g)g is not finite
dimensional, but it acts on simple modules through (Ug)g, which is finite dimensional,
hence we can still apply Theorem 5.6.1. In this subsection we fix an arbitrary choice for
these lifts.

Recall that we denote by ¢ : NO < ﬁ(l) the natural inclusion. Let also j : BY — /\7(1),
k: B — g be the inclusions of the zero-sections. Recall Lemma I.1.4.1. We deduce
the following corollary, which generalizes some of the computations of sections 1.2 and 1.3.

Corollary 7.2.2. Let w € Wl such that {(w) = 0. Writew =w-t, (neX, we W)
Then we have

3+Opmy (—=p + w)[l(w)] = Lo
Proof. By Lemma 1.1.4.1,
€6 (j«Op (—p+ 1)) = RI(B, Og(pp)).

By hypothesis, we0 = w e (pu). Hence w' e (we0) = pu. Using Borel-Weil-Bott theorem
([Jan03, 11.5.5-6]), we deduce

€6 (j+Op (—=p + @) [f(w)]) = IndF(we0) = L(we0).
This concludes the proof. O

Proposition 7.2.3. For all w € W°, L& (w ¢ 0) is in the essential image of the functor

=B
€0 -
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Proof. This proof is similar to that of Proposition 6.5.1. We use an ascending induction on
{(w). For £(w) = 0, by Corollary 7.2.2 we have L, = j,.Ogu) (—p+p)[¢(v)] where w = v-t,
(ve W, ueX). Clearly, 7.0p0) (—p + 1) has a structure of a Gm-equivariant coherent
sheaf, hence can be considered as an object of DbCohg(‘ﬁ‘) (/\Nf(l)). By Theorem 5.6.1, the
image of this object under Eg is isomorphic to L& (w e 0), up to a shift. As the functor Eg
commutes with the internal shifts, the result follows when ¢(w) = 0.

Now assume the result is true when £(w) < n, and let w € WO such that £(w) = n.
Let § € @.¢ be such that wss € W° and (wss) < f(w). By induction there exists
L8 in DbCohg(‘i‘) (N such that €5(L£8") = L& (wss ® 0). Then, by diagram (7.1.6) and
Proposition 7.1.2, the image under the forgetful functor

For : D"Mod®* ((Ug)?) — D'Mod((Ug)")

of the object E?(G(;Gmﬁgr) is Qs(wss). By Theorem 5.5.3, we have Qs(wss) = L(we0)® N
where N is a direct sum of modules of the form L& (v e 0) with ¢(v) < ¢(w). Hence, by
Corollary 5.6.4(ii) and its proof, we have Eﬁ(@?mﬁgr) = [ (we0)(i) & N for some i € Z,
where N8 is a direct sum of modules of the form L(v e 0)(j) with ¢(v) < ¢(w), j € Z. By
induction hypothesis, N& is in the essential image of €5. We conclude as in the proof of
Proposition 6.5.1 that L8 (w e 0) is also in this image. O

Remark 7.2.4. Tt follows easily from Proposition 7.2.3 that the functor E%g is essentially
surjective. Hence it is an equivalence of categories.

7.3 Dg versions of the functors S;

Let o € @ be a finite simple root. Let P, be the parabolic subgroup of G containing B
associated to {a}, let p, be its Lie algebra, and let P, = G/P, be the associated partial
flag variety. We define the variety

No == T"Po = {(X,9Ps) € 8" % Pa | Xjgp, = O}. (7.3.1)
There exists a natural injection

ot Ny xp, BYD — N/

We also denote by » -
pa : (No xp, B)Y — NV

the morphism defined by base change.
Consider the following diagram:

(N xp, B) X . (N, xp, B)
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Here to save space we have omitted the Frobenius twists. The flat base change theorem (see
[Har77, 11.5.12]) implies that we have an isomorphism of functors from DPCoh((N, Xp,,
B)M) to itself:

L(pa)* © R(pa)* = R(pQ)* o L(pl)*- (732)

Moreover, the variety (Ny xp, B) X e, (N, xp, B) is isomorphic to the subvariety Ya of
N x N. For A € X, we denote by Shifty the tensor product with Og)(A). Then we have

O, (=pp=a)
Shift_, o &, o Shift, = Shift_,o F_ °

) o Shift,

s O,
=~ Shift_, o Fﬁ(l)_)ﬁ(l)

> Shift_q o (R(ja)« © B(p2)s o L(p1)* o L(ja)*)
2 Shift_q 0 (R(ja)x © L(pa)* © R(pa)« © L(ja)*).

Here the last isomorphism is given by (7.3.2). Now recall the constructions of section 2.
In Corollary 2.5.3 we have constructed functors associated to jq:

R(jug,, )+ : DGCOh® (N, xp, B)I) — DGCoh& (NW),
L(jag,,)" : DGCoh®(NM) — DGCoh® (N, xp, B)D).
Similarly, in Corollary 2.4.5 we have constructed functors associated to pq:
R(Pag,. )+ : DGCoh® (N, xp, B)M) — DGCoh# (VDY)
L(pag,.)" : DGCoh# (NV) — DGCoh® (N, xp, B)M).
We define the functor
&% : DGCoh® (V) — DGCoh#" (N M),
which sends the object M to

Oy (p— @) @0,y (Rljag,)= © L(Pacy,)”
0 R(Pac,, )+ © L(jac,,) (M ®0,1) O (—p)))-

Using Corollaries 2.4.5 and 2.5.3, and the isomorphism above, the following diagram is

commutative:
~ gl' ~
DGCoh® (N () = DGCoh® (N M)

For J{ \L For

DbCon(A D) Sa DCoh(N D).

The following diagrams also commute, where n and ¢ are the functors defined in 4.2:

ar
Sa

DGCoh#" (N M) DGCoh®" (N M) (7.3.3)
~ SGm ~
DPCohCm (N (1) : DPCohCm (N (D),
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~ ng ~
DPCohgm (V) DPCohgm (V1) (7.3.4)
{ {
~ gr ~
DGCoh® (N (M) . DGCoh® (N ().

Indeed, the commutation of the first diagram follows from the definitions and Lemmas
2.4.4 and 2.5.2, and the commutation of the second one follows from the commutation of
the first one.

Now, let us define an action of B on DGCoh® (NM). Recall the Koszul duality #z
defined in (3.1.1). For b € Bl4 we define

K& : DGCoh® (VM) — DGCoh# (N D)

by the formula
K%r := Shift, o Iigl o J%r o kp o Shift_,.
Here, Shifty denotes the shift by Oz (A).

Consider the affine simple root ag € @5 — . Recall the notation bg, 8 from Lemma
6.1.2. Then we define the functor

6%}; = K%g o 6? oK%

- (7.3.5)

It is not clear from this definition that the diagrams analogous to (7.3.3) and (7.3.4) are
commutative. We will consider this issue in 8.3.

8 Proof of Theorem 4.4.3

In this section we prove the key-result of our reasoning, namely Theorem 4.4.3.

8.1 Alternative statement of the theorem

First, let us state a version of Theorem 4.4.3 in representation-theoretic terms.
Recall the Koszul duality equivalence of (3.1.1):

KB : DGCOhgr(/\N/’(I)) = DGCOhgr((ﬁﬁg*xB B)(l))'

Recall that the functor 7763 of Theorem 6.3.4 is fully faithful, and that its essential image
contains the lifts of the projective modules P(v o 0) for v € W (see Proposition 6.5.1).
Hence, for any choice of a lift P& (v @ 0) of P(v e 0) as a graded (Ug))-module (this
choice is unique up to isomorphism and internal shift), there exists an object!® P& of

DGCoh® ((g %g*xg B)Y), unique up to isomorphism, such that

P (v e 0) 235 (PF).

10 As observed in subsection 4.4, this object does not depend on the choice A = 0. For this reason, 0 does
not appear in the notation.
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The same applies to the functor Ejg of Theorem 7.2.1, replacing the projective modules
by the simple modules L(v  0) (see Proposition 7.2.3).

Theorem 4.4.3 is clearly equivalent to the following statement, which we will refer to
as statement (f). This is the statement we will prove in 8.4.

Assume p > h is large enough so that Lusztig’s conjecture is true.

There is a unique choice of the lifts P& (v ¢ 0), L¥(v @ 0) (v € WO such that, if
PS5, resp. L3 is the object of DGCohgr((ﬁﬁg x5 B)M), resp. DbCth(“;‘) (N D), such that
Pe (v e 0) 2 AB(PE), resp. L& (ve0) = eB(LE), for all w € WO we have in the category
DGCoh®" (N M)

K5IPE, = C(LE) @0, ) O (=) (5.1.1)

Let us remark that the functors 7§ (of Theorem 6.3.4), €5 (of Theorem 7.2.1) and kg
commute with the shifts in both the cohomological and the internal grading, by definition.
The functor ¢ (of Lemma 4.2.1) commutes with the shift in the cohomological grading,
but not in the internal one. More precisely, for F in the category DbCthm (N and
Jj € Z one has ((F(j)) = ((F)[j]{4). The unicity in Theorem 4.4.3 follows easi]y from
these remarks, using the fact that each lift P (v e 0) and L& (v @ 0) (v € WY) is defined
up to a shift (j) (j € Z).

The proof of the existence statement in Theorem 4.4.3 will occupy the rest of this
section.

8.2 Koszul dual of the reflection functors

Our proof of statement () (hence also of Theorem 4.4.3) is based on the following result,
which shows that the reflection functor R (6 € Pa) is conjugate to the semi-simple
functor 6? under Koszul duality, up to some shifts.

Theorem 8.2.1. For all 6 € @5 we have an isomorphism of endofunctors of the category
DGCoh& (N M):

(k) "' oMY ok = Shift_, o &5 o Shift, [1](2).
Proof. By definition of the functors R, (see equation (6.2.1)) and &%, (see equation

(7.3.5)), it is enough to prove the isomorphism for § € ®. From now on we write « instead
of §. We will derive the theorem from the general results of subsections 2.4 and 2.5.

First, consider the inclusion of vector bundles
(N Xp, B) — N

We apply to this inclusion the constructions of 2.5, with X = B, E = (g* x B)(l) = T
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F = (/\7a xp, B)V, Fy = N Then we have

Fi* = (8 xp, BV, F3 =31,
ni =rk(F1) = dim(g/b) — 1, ng = rk(Fz) = dim(g/b),
L= A" (F) = Ogoy (<2p+ ), Lo = A™(Fy) = O (—2p).

We denote by
Fai (305 B)" = ((@a xp, B) figexs B)"

the morphism of dg-schemes induced by the inclusion gl — (8a X, B)(l). We also denote
by

ki : DGCoh®" (M) = DGCoh® ((§ g x5 B)™M),
K : DGCoh® (N, xp, B)V) = DGCoh# (((§a xp, B) (gexsB)Y)

the Koszul duality equivalences (see Theorem 2.3.11). Consider the diagram:

N L(Kopm)* _
DGCoh® (N M) DGCoh® (N, xp, B)1V)
i R(K ) l
| KB U kY
. R(nhg, )« .
DGCoh® ((gNgx5B)M) DGCoh® (((ga xp, B) Ng-x5B)M)
L(mhg,,)*

where the functors are defined as in 2.5. Applying Proposition 2.5.4, one obtains isomor-
phisms of functors

{ K20 L(jag,,)"

KB o R(]Zzem)*

R(ﬁGm)* o HB?
(L(Taig,,)* 0 £%) ®o, ) Opwm (a)[-1](~2).

(8.2.2)

I

Now, consider the base change
pa : (N xp, B)H — N,

We apply the constructions of 2.4 to this base change, with X = B(l), Y = (77a)(1)7
E = (g" x Po)®, F = NV We denote by

7oz ¢ (Ga xp B) Ogexs B)Y = (8o Ngexp, Pa)

the morphism of dg-schemes induced by the base change go Xp, B — go. We have the
Koszul duality equivalences

K : DGCoh® (N, xp, B)M) = DGCoh® (((§a X2, B) Agexs B)V),
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already used above, and
Ko : DGCoh® (N{Y) = DGCoh® (g Mg+ x 2, Pa) ).

Consider the diagram

~ Ry .
DGCoh® (N x5, B)V) DGCoh# (M)
L(#g,,)"
Zina zlna
R(mhe, )

DGCoh® (((Fa xp, B) Ngexs B)MV) - DGCOh# ((§a g x Py Pa) V)

*
YG].‘I'l

where the functors are defined as in 2.4. Applying Proposition 2.4.6, one obtains isomor-
phisms of functors

(8.2.3)

I

£ o L(Pac,,)”

Consider the morphism 7,. The composition g < g, Xp, B — go coincides with the
morphism 7,. Hence we have o = Ta,2 0 Ta 1. It follows that R(Ta,6m)s = R(Ta2g, )x ©
R(Taig, )+ and L(Tam)" = L(Taig )" © L(Tazg, )" (see isomorphisms (1.7.7) and
(1.7.8)). Hence formulas (8.2.2) and (8.2.3) allow us to compute (kg)~' o RE o kg =

(kB) ™' 0 L(Ta.Gum)* © R(Ta.Gp )+ © k. Namely, we obtain isomorphisms

R(Ta2g, )« 0K = Koo R(pagy, )+
L(@Gm)* 0 Kg-

R(TaGu)+© KB = Ko © R(Pag,,)s © Lljac,)"
and
(k)" 0 L(Tag,)" = (R(jagy)x © L(Pac,,)” © (ka)™') @0, Opm (—a)[1](2).
Hence, finally,
(k5) " oM o hp =
(R(jaGum)+ © L(Pacy,)" © R(Pac,)« © L{jac,)") ®0,q) Opm (—a)[1](2).

Comparing this with the definition of &% in subsection 7.3, one obtains the result. O

8.3 Action of the braid group on DGCohgr(./V(l))

Recall that we have defined in subsection 5.2, respectively 7.3, an action of the group Bl
on the category D*Coh®m (N M), respectively DGCoh® (N M), Consider the diagram:

ar

DGCoh# (N () - DGCoh& (V1)
_ Kom .
DPCohCm (N (D) DPCohCm (N (D)

where 7 is the functor defined in subsection 4.2 (see also equation (2.3.6)).



8. PROOF OF THEOREM 4.4.3 153

Lemma 8.3.1. For any M € DGCoh® (N (D), there ewists an isomorphism!!
no K& (M) = KE™ on(M).

Proof. Tt is sufficient to prove the isomorphism on a set of generators of Blg;. For b = 6,
(x € X), the result follows from the fact that the Koszul duality k3 commutes with the
twist by a line bundle on B(Y). Hence we only have to prove it for b = T, for a € ®. Let
us fix such an a. Recall the distinguished triangle of functors of Lemma 6.2.4. It induces
a triangle

Id(1) — Shift, o (k) ' o RE o kp o Shift_,(—1) — K5 .

Using the isomorphism provided by Theorem 8.2.1, we obtain a triangle
Id(1) — SF[1]{1) — K7, .
For any M in DGCoh® (N(1) we thus have a distinguished triangle
n(M)[=1){1) — 0o SE(M)(1) — no KE (M) (8.3.2)

(observe that n(F(j)) = n(F)[—4]{j)). By diagram (7.3.3) we have no &% = GCm o).
Now the exact sequence of Gpy-equivariant sheaves (5.3.4) induces a distinguished tri-

angle of functors
GSm(1) — K™ — 1d(1). (8.3.3)

Identifying triangle (8.3.2) with triangle (8.3.3) applied to n(M), one obtains the isomor-
phisms for b = T,. O

Remark 8.3.4. Tt follows in particular from this lemma that the diagrams (7.3.3) and (7.3.4),
with a replaced by ag, are commutative on objects, i.e. for any M in DGCoh& (NM)
there exists an isomorphism 7 o &§, (M) = &%m o n(M), and similarly for the second
diagram.

8.4 End of the proof of Theorem 4.4.3

In this subsection we finally give a proof of the existence statement in (I) (see 8.1), by
induction on £(w).

To begin induction, let us consider some w € WY with £(w) = 0. Write w = v -t,. We
have seen in Corollary 7.2.2 that L, = j.Opa)(—p + p)[€(v)]. Let us set

LY = jxOpay (—p + w)[E(0) (N — £(v)),

where N = #R*, and j.Opgq) is endowed with its natural (trivial) Gm-equivariant struc-
ture. It is clear that L& (w e 0) := e5(L%)) is a lift of L(w ¢ 0) as a graded module (see the
proof of Proposition 7.2.3). As in subsection 3.1 we denote by 7z the tangent sheaf of

"1t is not clear from our proof whether or not these isomorphisms yield an isomorphism of functors.
This is not important for our arguments, hence we will not consider this issue.
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B By definition of Koszul duality (see equation (3.1.2)) and the remarks on shifts at
the end of subsection 8.1 we have

k5 (C(LE) ® Ogay(—p)) k8(Opm) (—2p + 1) [N|(N — £(v)))

MTg0) ®0,, O (1){(=N — £(v)).

I

I

We set

Phw = MT50)) @04, Opw (1){=N = (v)).

It follows from (6.4.6) that P& (row  0) := 75 (PE,) is a lift of P(row e 0) as a graded
module (see also the proof of Proposition 6.5.1). Moreover, isomorphism (8.1.1) is true by
definition. This concludes the proof in the case {(w) = 0.

Now, consider some w € WP, and assume the result is known for all v € W° with
£(v) < £(w). For all such v, the lifts L& (v @ 0) of L(v e 0) and P8 (1gv @ 0) of P(rov e 0)

are fixed such that, if L', respectively Pg, is the object (unique up to isomorphism)
of DbCohg(”l‘) (N (1)), respectively DGCoh® ((g r}%g*xg B)), such that €5(L") = L& (v e 0),
respectively 75 (P5y) = P& (1ove0), isomorphism (8.1.1) is satisfied. Choose some § € @5

such that, for s = s;, one has ws € W° and wse0 < we0, i.e. £(ws) < £(w). In particular
we have

KRB (C(ﬁirs) ® 08(1) (_p)) = ,P%fws
Applying RE" and using Theorem 8.2.1, it follows that

kB(6F o C(LE) ® Ogny (—p))[L(1) = RFPE,(-1). (8.4.1)

As in the proof of Proposition 6.5.1, the image under the forgetful functor For :
D'Mod[E# ((Ug)o) — D'Mod2((Ug)o) of FB(RTPE,s) is RsP(rows ¢ 0). Hence there
exists a lift P& (rpw ¢ 0) of P(1ow e 0), and graded finite dimensional vector spaces Vi,
(ve WY £(v) < (w)) such that

FSREPE,)(-1) = PE(row e 0) & ( @ P& (190 0 0) @ Vo) (8.4.2)

vew?0
L(v)<l(w)

(see again the proof of Proposition 6.5.1).

Now let us consider the left hand side of equation (8.4.1). By diagram (7.3.4) and
Remark 8.3.4 we have 6§r o ((LTs) 2 Co 666‘“ (L55). As in the proof of Proposition
7.2.3, the image of e5(&5™ L) under the forgetful functor For : DbModgg’gr((Ug)O) —
DbModgg((L{g)O) is the module Qs(ws). Hence, again as in the proof of Proposition 7.2.3,
there is a lift L& (w e 0) of L(w e0) as a graded module, an object Q8" of DbCohgg‘) (N,
and an isomorphism

&G (S5mLE,) = L (we 0){~1) & e (Q%).

Let L5 be the object of DbCohB(1>(./\/(1)) such that €5(L%) = L& (w ¢ 0). Then, as € is
fully faithful, £% is a direct factor of 6?“‘/5%2(1) Hence, using the remarks on the shifts
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at the end of subsection 8.1, kg( (L) ®0,q) Opm (—p)) is a direct factor of the left hand
side of equation (8.4.1), thus also of its right hand right.
Let us define

Pgorw = RB(C(EED ®OB<1) 08(1)<_p))- (843)
To conclude the proof of the induction step, it is enough to prove that
7 (PE,) = P& (rqwe0). (8.4.4)

By definition, P&, is a direct factor of the object appearing in equation (8.4.1). Hence
8 (P5.,) is a direct factor of the object appearing in (8.4.2). In particular, it is concen-
trated in cohomological degree 0, i.e. it is a graded (Ug))-module. Let us show that it
is indecomposable. By Proposition 5.6.2(i), it is enough to show that its endomorphism
algebra is local. This algebra is isomorphic to

Endpyoae (ug),) (0 (Prow)) = End (PE)

=~ End

DGCoh#" ((g figs x5 B)(1))
Gm L8
'DbCohBu)(,/?'(l))( w)

~ End (L (w e 0))

DPMod®#* ((Ug)°)
= k

Here the first isomorphism follows from the fact that %3 is fully faithful. The second one
follows from definition (8.4.3), and the fact that kg and ¢ are fully faithful. The third
isomorphism follows from the definition of L% and the fact that Eg is fully faithful. Tt
follows that 75 (Pfw) is an indecomposable graded (Ug)3-module.

By the Krull-Schmidt theorem (see Proposition 5.6.2(ii)), we deduce that 75§ (Pg.,) is
one of the indecomposable summands appearing in the right hand side of (8.4.2). Hence,
to conclude the proof of (8.4.4) it is enough to prove that there cannot exist some ¢ € Z
and some v € WY with £(v) < £(w) such that

o (&) = P¥ (v e 0)(i).

Let us assume that there exist such an ¢ and such a v. By induction hypothesis we
have P& (rov @ 0)(i) = 75 (P8, (i), and

PELG) = rs(C(LE) B0, ) Oger(—p)i).
Hence, as 75, rp and ¢ are fully faithful, by definition (8.4.3) we have
Ly = LT[

Applying E? one obtains
L& (we0) = L& (ve0)[—il(i),

which is a contradiction as v # w.
This concludes the proof of (1), hence also of Theorem 4.4.3.
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8.5 Remark on other alcoves

In Theorem 4.4.3, the objects L, respectively P,,, correspond to simple, respectively
projective, modules for any choice of a weight A € Co, i.e. they are the simple, respec-
tively projective, objects for the ¢-structure on the category DbCOhB(l) N (1)), respectively

DGCoh((g rEwg*Xg B)M), assigned to the fundamental alcove (see [Bez06b, 2.1.5] for details
on this point of view). We could also consider the simple, respectively projective, objects
for the t-structure assigned to another alcove C1, i.e. the objects which are sent by the
equivalence ef , respectively ‘y\f , to the simple, respectively projective, modules, for any
A € C1 NX. The different t-structures are related by the braid group action, which com-
mutes with k5 (see Lemma 8.3.1). Hence a statement similar to Theorem 4.4.3 is true for

any alcove.

More precisely, let C be the intersection of an alcove with X. Let y € Wag be the unique
element such that C = y e Cy. Then there exist unique objects £}, € DbCOhB(l) (/\/(1)),

Pi, € DGCOh((Eﬁg*XB B)YD) (w e WO such that for any A € C and w € W we have

Lwe (y~te)))

Plws (y-1 o \)) (8.5.1)

——
S
=
2R
1R

(Observe that, in this formula, y~' e A € Cp.) Indeed, there is an element § € B! such
that 7§ = ’7571./\ o Jy for any A € C (see |Bez06b] and [BMRO6, section 2| for details).
Here 7 is not unique, but the functor Jy is clearly unique (up to isomorphism). Then, if we
set LY, := Ky_l(ﬁw) and Py, := (Jgg)fl(Pw), one easily checks that isomorphisms (8.5.1)
are satisfied.

Also, if we define £3%" := (Kg’m)_l(ﬁir) and Pi®" = (Jgg’gr)_l( %), these objects are
lifts of the £%’s and Pi,’s, and we have isomorphisms /{5173%‘%5 o (E%’gr)@)os(l) Ogm (—p)
for all w € WY, (The isomorphisms follow from the fact that g and ( commute with the
braid group action, see Lemma 8.3.1.)

Similarly, for any A € C there are “graded versions” of the functors ef\g, ;;/1\37 with
properties similar to those of Eﬁ, ;753 , and statements similar to statement (I) of subsection
8.1.

9 Application to Koszulity of the regular blocks of (Ug)

In this section we derive from Theorem 4.4.3 (or rather from the equivalent statement
(1) of 8.1) that, for A € Cj, the category Modgg((Z/{g)’\) is “controlled” by a Koszul ring,
whose Koszul dual controls the category Modg\g((l/{g)o). These results can be considered
as counterparts in positive characteristic of the results in [Soe90] and [BGS96]. They also
extend some results of [AJS94, section 18|.

We deduce this property from a general criterion for a graded ring to be Morita equiv-
alent to a Koszul ring, proved in 9.2.
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9.1 More results on graded algebras

Let A by a Z-graded ring. Recall the notation of 5.6. Following [NvO82, A.L7|, if M
is in Mod®"(A), we define the graded radical rad® (M) of M to be the intersection of all
maximal graded submodules of M. With this definition, rad®" has all the usual properties
of the radical (see [NvO82, A.1.7.4]). In particular, if A is considered as an A-module via
left multiplication, rad®'(A) is a graded two-sided ideal of A, and

rad®’(A) = (| Am(X). (9.1.1)

X simple
graded A-module

From now on in this section we restrict to the following case. Let V be a graded finite
dimensional k-vector space, concentrated in positive degrees. Let S(V') be the symmetric
algebra of V. It is naturally a graded k-algebra, concentrated in non-negative degrees. We
assume that A is a graded S(V)-algebra, which is finitely generated as a S(V')-module.
Note in particular that the grading of A is bounded below.

Let us define the finite dimensional graded k-algebra A := A/(V - A). By Theorem
5.6.1(ii) and Corollary 5.6.4(i), the simple A-modules are exactly the images of the simple
graded A-modules under the forgetful functor. Comparing (9.1.1) with [CR81, 5.5], we
deduce that

rad(A4) = rad®"(A). (9.1.2)
A proof entirely similar to that of [CR81, 5.22| yields the following result.

Proposition 9.1.3. (i) The morphism A — A induces an isomorphism of graded rings
A/rad® (A) = A/rad® (4).

(ii) For k>0, (rad® (A)* C V- A.

We denote by Homa z(M, N) the morphisms in the abelian category Mod®'(4), and
by Ext!y 7(M, N) the corresponding extension groups. By [AJS94, E.6] we also have:

Lemma 9.1.4. (i) Let M € Mod'®®"(A). If M is indecomposable in Mod'®#"(A), then
Enda z(M) is a local algebra.

(ii) The Krull-Schmidt theorem holds in Mod'®#"(A).

If L is a simple graded A-module, then V - L = 0. Indeed, V - L is a graded submodule
of L and, as L is bounded below and V is in positive degrees, we cannot have L =V - L.
Hence the simple graded A-modules are the simple graded A-modules.

Let L1,..., L, be representatives of the simple non-graded A-modules, and, for i =
L...r, let L% be a lift of L; as a graded A-module (it exists by Theorem 5.6.1(ii)). Us-
ing Corollary 5.6.4(i) and Theorem 5.6.1(iv), the L;(j) are representatives of the simple
graded A-modules, hence also of the simple graded A-modules. As the ring A/rad(A)
is semi-simple (see e.g. [CR81, 5.19]), using (9.1.2), Proposition 9.1.3(i) and Corollary
5.6.4(ii), every graded A/rad®*(A)-module is semi-simple in Mod®&*(A/rad®"(A)). Using
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also Lemma 9.1.4, every object of Mod®8 (A) has a projective cover. For i = 1...7, let
P# be a projective cover of L§". We have

L8 = P Jrad®"(PF). (9.1.5)

We will finally need the following result. For M in Mod®'(A) and i > 0, we define
rad®"*(M) by induction, setting rad®"*(M) = M, and rad®*(M) = rad® (rad®™*~1 (M)) if
1> 1.

Lemma 9.1.6. Let M be an object of Mod™®2"(A).
(i) rad® (M) = rad®'(A) - M.
(ii) ;5 rad®™* (M) = {0}.

Proof. The proof of (i) is similar to that of [CR81, 5.29]. As A is noetherian we deduce,
by induction on i, that rad®(M) = (rad® (A))*- M for i > 0. By (ii) of Proposition 9.1.3,
for k> 0 we have (rad®" (A))* C V- A. Hence [;5qrad®" (M) C (;5q(V? - M). As M is
finitely generated over A, it is bounded below. As V is concentrated in positive degrees,
we deduce that ();so V?+- M = {0}. This proves (ii). O

9.2 A Koszulity criterion

Recall that a Koszul ring A = €D,>o An is a non-negatively graded ring such that Ao is
a semi-simple ring and the graded left A-module Ay = A/A~( admits a graded projective

resolution
--—>P2—>P1—>PO—>A0—>0

such that P’ is generated by its degree i part, for all i. We refer to [BGS96] for generalities
on such rings. If A is a Koszul ring, then its dual Koszul ring is the graded ring'?

A= (€D Ext%i(Ao, Ag))*
n>0

(here the Ext-groups are taken in the category of non-graded A-modules). If A; is an
Ag-module of finite type, then A' is also a Koszul ring.

If Ais a (non graded) ring, one says that A admits a Koszul grading if it can be endowed
with a grading which makes it a Koszul ring. If A is artinian, this grading is unique (up
to automorphism) if it exists (see [BGS96, 2.5.2|).

Theorem 9.2.1. Let A, L;, L% be as in subsection 9.1. Assume one can choose the lifts
LS such that fori,j=1,...,r,

Ext’ Z(L¥, L§r<m>) =0 unlessn=m. (9.2.2)

Then there exists a Koszul ring B which is Morita equivalent to A (as a graded ring).

12A Koszul ring is in particular a quadratic ring, and the dual Koszul ring is also the dual quadratic
ring. The definition chosen here in easier to state, although it is less concrete.
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If L = @?:1 L;, the ring B! is tsomorphic to

(D Exti(L,L))™

n>0

The proof will occupy the rest of this subsection. Assume that the lifts L' can be
chosen so that (9.2.2) is satisfied, and let P®" be the projective cover of L¥. We begin
with the following lemma.

Lemma 9.2.3. Forn>0andi=1...r,
rads"" (P frads" "t (PEY)
is a direct sum of simple modules of the form L§r<n> (Je{1,...,7}).
Proof. We prove the result by induction on n > 0. It is clear for n = 0, by (9.1.5). Let
n > 1, and assume it is true for n — 1. The graded A-module rad®""(P#")/rads"" 1 (P8")

factorizes through an A/rad®'(A)-module. Using the remarks before (9.1.5) we deduce
that it is semi-simple, hence a direct sum of modules L?r(m> (e{1,...,r}, m € Z). The

multiplicity of L& (m) is the dimension of Homy z(rad®""(P}") /radgr’"H(Pigr),ng.r<m>).
By usual properties of rad®", we have
Hom 2 (rad®"" (PE") /xad® L (PE"), L& (m)) & Hom z(rad®" (PF), L (m)).
Hence we only have to prove that:
Hom z(rad®™" (PF"), LY (m)) = 0 unless m = n.
Consider the exact sequence
0 — rad®""(P?") — rad®""1(P) — rad®"" 1(P?") /rad®""(P) — 0.
For j € {1,...,7r} and m € Z, it induces an exact sequence
0 — Hom 4 z(rad®"" 1 (PE") /rad®"" (P?"), L% (m))

2, Homy z(rad®"" = (PE"), L€ (m)) — Hom 1 2 (rad®"" (%), L% (m))

£, Bxt) 5 (rad® " (PE) /rad (PE), ¥ (m)).

By usual properties of rad®, the morphism A is an isomorphism. Hence p is injective.
Moreover, using induction and property (9.2.2), we have

EXt}&Z(radgr’n_l(Pigr)/radgr’n(Pigr)a L§r<m>) =0 unless m=n.

This finishes the proof. O
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We define P#" := @;_, P*". Let B be the algebra
B := Hom 4 (P®", P&")°P,
As P®" is finitely generated, B is naturally graded, with n-th component
By, :== Homy z(P® (n), P®") = Homu z(P®", P (—n)).
Now we prove, as a corollary of Lemma 9.2.3:

Corollary 9.2.4. The algebra B is non-negatively graded.

Proof. We have to prove that Hom g z(P5", P#(n)) = 0 unless n < 0. So, let n € Z, and
let f: P8 — P& (n) be a non-zero morphism. By Lemma 9.1.6(ii), the set

I:={i>0] f(P¥) Crad®"(P¥(n))}

is bounded above. Let ¢ = max(I). Then f induces a non-zero morphism g : P8 —
(rad®™(P&Y) /rad®™ 1 (P#)) (n). By Lemma 9.2.3, rads"'(Pe) /rad®""t!(Per) is a direct
sum of modules of the form L?r@'). As g is non-zero, we must have n = —i. This proves
the result. O

The algebra B is finitely generated as a S(V')-module, hence noetherian (even as a non-
graded ring). If M is in Mod®#"(A), then Hom (P, M) is naturally a graded B-module
(for all of this, see [AJS94, E.3]). By [AJS94, E.4| we have:

Proposition 9.2.5. The functor

Mod®#"(4) —  Mod®#"(B)
M —  Homy (P, M)

15 an equivalence of abelian categories.

Let us denote by S the image of L# under this equivalence. The graded B-module S¢'
is simple, concentrated in degree 0, and one-dimensional over k. Applying the equivalence
of Proposition 9.2.5 to property (9.2.2), one obtains:

Extlg 7(S7, S5 (m)) =0 unless n = m. (9.2.6)

Lemma 9.2.7. The (non-graded) ring By is semi-simple.
Proof. Let S; be the image of S under For : Mod® (B) — Mod(B). Using Corollary

9.2.4, the S; are representatives of the simple Bg-modules. Hence it is sufficient to prove
that for 4,7 = 1...7 we have Extjlg0 (Si,5;) = 0. But if

0—5 —-M-—S5—0 (9.2.8)

is a non-split Bp-extension, we can consider M as a graded B-module concentrated in
degree 0, where B acts via the quotient B/Bsg = By. Then (9.2.8) yields a non-split
graded B-extension of S} by S¥', contradicting (9.2.6). O
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Proposition 9.2.9. B is o Koszul ring.

Proof. This follows from [BGS96, 2.1.3], using Corollary 9.2.4, Lemma 9.2.7 and property
(9.2.6). 0

To conclude the proof of Theorem 9.2.1, we only have to compute B'. The graded
B-module By is a direct sum of the simple modules S¥', and for ¢ = 1...n, the module
S# occurs with multiplicity dimj(Homp z(By, S¢')) = dim(S§') = 1. Hence

(B")? = @PExt(Bo, Bo) = P Exth (P S¥, P s (m

Using the equivalence of Proposition 9.2.5, we deduce

v = PE DI DI m) = PEx(LL).

9.3 First consequences of Theorem 4.4.3

We first consider the case A = 0. We return to the setting of statement (1) (see subsection
8.1), and choose the lifts P, P& (w @ 0) and L§', L8 (v @ 0) as in the statement. Let
v,we WY and i,j € Z. We have a series of isomorphisms:

(Lgr(v ) L& (w 0 0)[i)(3))
), C(LE)[i + 71(5))
) ® 03(1)( P,
(L%

H(’meModfg & ((Ug)0)

|
=
]
=)
g
o)
8
S
ki
2
’R
=

= Hom ol o, (BCEE) © Oy (<),
kB(C(LE) ® O (—p))[i + 51(7))
= M pGcons (g By )(PT‘)”’ Powli +)(5))

I

HomeMOdgg,gr((ug)o) (P& (rov @ 0), P& (Tow @ 0)[i + 5](j))-

The first of these isomorphisms follows from Theorem 7.2.1 and Lemma 4.2.1. The second
one is easy. The third isomorphism follows from the fact that x5 is an equivalence (Theorem
2.3.11). The fourth one follows from (8.1.1). Finally, the fifth isomorphism follows from
Theorem 6.3.4.

As the objects P8"(—) are projective, from these isomorphisms we deduce:

Proposition 9.3.1. Keep the assumptions of Theorem 4.4.3. Let v,w € W°, and i,j € Z.
We have

Hom L& (ve0), L8 (we0)[i](j)) =0 unlessi=—j.

Db ModfE&" ((Ug)°) (
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Using the isomorphisms

@ EXt(Z/{g)O (ve0),L(we0)) = @ HomeModgg,gr((ug)o)(Lgr(v 0 0), L& (w ¢ 0)[i](5))
>0 1,j€L

and

Hom g, (P(ve0), P(we0)) = @ HomeModgg,gr((ug)o (P8 (v e0), P& (we0)(j)),
jez

we also deduce the following:

Proposition 9.3.2. Keep the assumptions of Theorem 4.4.3.
(i) Let v,w € WO. There exists an isomorphism

@ Ext’&ug)o (L(ve0), L(we0)) = Homgyg),(P(move0), P(row e0)).

120

(ii) Let L := @, cppo L(w0) and P := P, ,cyyo P(we0). There exists an isomorphism
of algebras

P Extiygo(L, L) = Endg,(P).
1>0

9.4 The ring Ag

Recall the vector bundle M° on the formal neighborhood of B in g defined in sub-
section 1.1.2 (here We use the identification of this formal neighborhood with the formal
neighborhood of BM) x {O} in g(l) Xpen) ). Let MY be the restriction of MY to the

formal neighborhood of B! in N®. This is the splitting bundle involved in the definition
of equivalence 663 .

In [BM] (see also |[Bez06b]), the authors prove the following:

Theorem 9.4.1. There exists a vector bundle M g on ./V(l), whose restriction to the formal
neighborhood of BY is isomorphic to M8, Moreover, this vector bundle can be endowed
with a Gm-equivariant structure, compatible with the action defined in (5.2.1).

Let us consider the algebra
A/@’ = F(N(1)75ndoﬁ<1) (Mﬁ—))

This a S(g(!)-algebra, finitely generated as a S(g(!))-module (because the natural mor-
phism NO - g is proper). For any S(g(V)-algebra A, we denote by Modgg(A) the
category of finitely generated A-modules, on which the image of g(!) acts nilpotently. By
definition we have an equivalence of categories

Modgf(Ag) = Modg((Ug)°). (9.4.2)
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9.5 Koszulity of regular blocks of (U/g)

One of the main results of this chapter is the following:

Theorem 9.5.1. Assume p > h is large enough so that Lusztig’s conjecture is true, and
let A € X be regular.

There exists a Koszul ring Bg, which is naturally a S(g(l))—algebm, and equivalences of
categories

Mod®(Bg) = Mod®((Ug)"),
Mod®((Bg)) = Mod®®((Ug)o).

In particular, the ring (Ug)é‘ can be endowed with a Koszul grading.

Remark 9.5.2. The fact that the category Modgg((Z/lg)o) is equivalent to the category of
(non-graded) modules over a Koszul ring was proved in [AJS94, 18.21]. Their proof relies
on an explicit computation of the Poincaré polynomial of (Z/Ig)é‘. The fact that the dual
Koszul ring “controls” the category Modgg ((Ug)*) is new, however.

Proof of Theorem 9.5.1. Let us consider the first statement. As Cj is a fundamental do-
main for the action of Wyg on the set of regular integral weights, we can assume A € Cj.
Then, as the category Modig((u g)o) (and, similarly, Modgg((u g)")) does not depend, up
to equivalence, on the choice of A € C (use translation functors), we can assume A\ = 0.

By Theorem 9.4.1, the algebra A ¢ can be endowed with a grading. Let Ajé, be A ¢ with

the grading provided by this theorem. We define the category Modgg’gr(A}) as above. The
choice of the Gy,-equivariant structure in subsection 7.2 was arbitrary. From now on we
choose as this structure the restriction of the Gy-equivariant structure of Theorem 9.4.1.
Then we have by definition an equivalence

Mod(## (A4%) = Mod™ ((Ug)°). (9:5.3)

Now, let A/_g be Ag with the opposite grading, defined by (A/_g)n = (A})_n. This
algebra is a finite S(g(l))—algebra, where g(!) is in degree 2. There is a natural equivalence

of categories

griA+y o~ gr( A—
Mod®"(A+) = Mod®"(AL) (9.5.4)

sending a graded module to the module with the opposite grading. Hence, using equivalence
(9.5.3) together with Proposition 9.3.1, the assumptions of Theorem 9.2.1 are satisfied by
the graded ring A;@,. It follows that there exists a Koszul ring Bp, Morita equivalent to
A~,. By construction, using equivalence (9.4.2), the first equivalence of the theorem is
satisfied.

Again by Theorem 9.2.1 and equivalence (9.4.2), with the notation of Proposition 9.3.2,
the dual ring (Bg)' is isomorphic to

(D Extiygo(L,L))™.
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(Here we have also used [BMROS, 3.1.7] to identify the Ext groups in the different cate-
gories.) By Proposition 9.3.2(ii), this ring is isomorphic (as a non-graded ring) to the ring
(End g, (P))°P, which is Morita equivalent to (g)g. This gives the second equivalence.

Finally, the second assertion of the theorem follows from the second equivalence (and
the fact that Bj; is Koszul), using [AJS94, F.3]. O

10 Parabolic analogues: Koszulity of singular blocks of (Ug)

In this section we extend the main results of sections 8 and 9 to the case of a singular
weight.

10.1 Review of some results of [BMRO6]

Let P C G be a standard parabolic subgroup, and P := G/P be the associated flag variety.
Let p be the Lie algebra of P, let pp be the half sum of the positive roots of the Levi of P,
and let Np := dim(P). Recall the variety gp introduced in subsection 1.1.2. Let us also
consider the variety

Np :=T"P = {(X,gP) € g* x P | X;p = 0}.

We have already considered this variety in (7.3.1) in the special case P = P,. Under the
isomorphism g = g*, gp identifies with the orthogonal of Np in g* x P. Hence we have a
Koszul duality (see Theorem 2.3.11):

kp : DGCoh® (NS)) 2 DGCoh® ((Gp Mgsxp P) V).

In this subsection we give a representation-theoretic interpretation of both of these
categories. First, choose a weight p € X, on the reflection hyperplanes corresponding to
the parabolic P, and not on any other reflection hyperlane (for Wyg). A particular case of
Theorem 3.3.15 gives an equivalence of categories

A% - DGCoh((gp g+ xp P)V) = D'Mod®((Ug)o).

The representation-theoretic interpretation of DGCoh®" (N;(Dl)) is given by the results of
[BMRO6, 1.10|. Let Xp be the sublattice of X consisting of the A € X such that (A, ") =0
for any root « of the Levi of P. For A € Xp, let D := Op()\) ®o, Dp R0, Op(—A) be
the sheaf of twisted differential operators on P (as in loc. cit.). Let A be a reqular weight
in Xp. We will assume!'? that

RT(®3) =0 fori>0. (10.1.1)

Then we define
U := T (D).

!3This condition is satisfied in particular if char(]) is greater than an explicitly computable bound
depending on G and X (see [BMRO06, 1.10.9(ii)]).
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We denote by Modgg(U%) the category of finitely generated U{-}.—modules on which

the central subalgebra F(./\~/'7()1),Oﬁ(1)) (
P

generalized character. By [BMRO06, 1.10.4] we have:

the image of the center of @;‘)) acts with trivial

Theorem 10.1.2. Assume (10.1.1) is satisfied. There exists an equivalence of categories
D' Cohpy (V) = DPMod®(U3).

This theorem gives a representation-theoretic interpretation for DGCOhgr(/%(;l)). Asin
Theorem 1.1.2.1, the equivalence of Theorem 10.1.2 depends on the choice of a splitting
bundle. We choose it as in [BMR06, 1.10.3|, and denote by TZ\) the equivalence associated
to A. Let us remark that for P = B we have Up = (Ug)*, but Y5 = effpp (see [BMROS,
1.10.5], and compare e.g. with the proof of Lemma 1.1.4.1). We deduce (see the formula
at the end of 1.1.2):

Tf(‘;r) = ff(F ®Og(1) Og(l)(_p)>' (10.1.3)

There is a natural morphism of algebras ¢ : (Ug)* — U3, coming from the action of
G on P (see [BMRO6, 1.10.7]). We denote by (¢)* : D'ModE(U3) — D*ModE((Ug)*)
the corresponding “restriction” functor. Consider the diagram
N <]L)/\pr xp B ﬁ»ﬁpu

where jp is the natural embedding, and pp is induced by the projection 7p : B — P. Then
by [BMRO06, 1.10.7] the following holds:

Proposition 10.1.4. The following diagram is commutative:

~ 1P
DPCohp) (NS 2 DPModE (U3)
<jp>*(pp>*l l(%)*
B

A

Db Cohygoy (N1)) ——=—— DPMod®((Ug)?).

10.2 Koszul duality for singular blocks

We choose A and p as in subsection 10.1, and assume moreover that p is in the closure of
the alcove of A. Let y € W,g be the unique element such that Ao := 3! e A € Cy. Then
Mo = y_l LIS Co.

For simplicity, in what follows we make the following assumption'?:

¢ is surjective. (10.2.1)

"In [BMRO6, 1.10.9] it is proved that this assumption is satisfied when char(]) is greater than an
explicit bound depending on G and A and, moreover, a sufficient condition is given for this to be satisfied
in arbitrary characteristic. The latter condition is satisfied if G = SL(n, |) (see [Hum95, 5.5] and [Don90]
or [MvdK92]) or if P = P,y for a short simple root « (see [BK04, 5.3]).
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It follows from this fact that if L is a simple Up-module then (¢3)*L is a simple (Ug)*-
module. Hence, if L has trivial central character, then (¢3)*L = L(w e \g) for a unique
w € WY (see subsection 4.4). In this case, by definition we set L = Lp(w e \g). We denote
by I the set of w € W0 such that Lp(w e \g) is defined.

Let WE C WY by the subset of elements w € WP such that w e ug is in the upper
closure of w e Cy. As in subsection 4.4, Modzg((blg)o) is the category of finitely generated

modules over the algebra (Z/lg)g (the block of (Ug)o associated to p). The simple objects
in this category are the image of the simple G-modules L(w e 1) for w € WB. We denote
by P(w e pg) the projective cover of L(w e pg).

It is not clear a priori how to determine Iy in general; this will be part of Theorem
10.2.4 below. However, let us remark already that

#I = #W,. (10.2.2)

Indeed, the left hand side is the rank of the Grothendieck group K O(MOdgg (U3)), which
is isomorphic, by Theorem 10.1.2, to K°(Cohpq) (J\N/S))) =~ K(P), while the right hand
side is the rank of KO(Modg’r((Ug)o)), which is isomorphic to KO(Modfg (Ug)), hence, by

(0,2)
Theorem 1.1.2.1, to KO(Cohp(l)(Eg))) = K(P).

As in subsection 6.3, the algebra (Ug)} can be endowed with a grading, and there exists
a fully faithful triangulated functor commuting with internal shifts

R

T : DGCoh® ((gp Ng=xp P)V) — D*Mod 5# (Ug)o),

such that the following diagram commutes:

P

€
DGCoh® ((§p Nge xp P) 1)) ———— D’Mod &' ((Ug)o)

Forl lFor
P

n

DGCoh((@p Fgsxp P)V) = DPMod;#((Ug)o)-

One can lift the projective modules P(w e pg) to graded (Ug)g—modules (uniquely, up to a
shift; see Theorem 5.6.1). Moreover, we have:

Lemma 10.2.3. The functor ?Zf 18 an equivalence of categories. In particular, the lifts of
the projective modules P(w o pg) (w € WS} are in the essential image of 72;

Proof. Tt is enough to prove that the lifts of the simple (U g)g—modules are in the essential
image of 775

Let v € y o Cy, and let vy = y~' @ v. The simple (Z/Ig)g—modules are in the essential
image of the translation functor T% : Mod®((Ug)e) — Modig((b{g)o). More precisely, for
w € W/? we have L(w e ug) = T}'L(w e 119). Moreover, by Proposition 5.4.2, we have an
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isomorphism of functors ﬁf o R(Tp)s = T} o5, The functor R(7Tp). has a natural graded
version, the functor

R(7p G, )» : DGCoh® (3 g x5 B)1) — DGCoh® ((dp Ng-xp P)V).

The functor 72 has a “graded version” 75 (see subsection 8.5) which, by Remark 6.3.5,
is an equivalence of categories. If, for w € WS , M., is the inverse image under 75 of a
lift of L(w e 1p), then one easily checks that R(7p g,,)«My is sent by ﬁf to a lift of the
simple module L(w e 1) € MOng((ug)o). This concludes the proof. O

Similarly, as in subsection 7.2, the completion of the algebra Uf;‘. with respect to the
trivial central character can be endowed with a Gy,-equivariant structure, and there exists
a fully faithful functor commuting with internal shifts

v Gm (A1 fg,
1% : DPCohSp (V) — DPModE® (UR),
such that the following diagram commutes:

~ €T
D' CohSr) (M) = DIModEE (U))

lFor \LFor
P

A

DbCohp) (NY)) ———=— DPModE (UR).

The simple objects in the category Modgg(U%) are the Lp(w e \g) for w € I\. They can
be lifted to graded modules (uniquely, up to a shift). We will prove below that the lifts

of the simple modules are in the essential image of Tf In particular, this functor is an
equivalence.

Finally, as in subsection 4.2, there exists a fully faithful functor

¢p - D*Coh®m (NS)) — DGCoh® ()

with the same properties as (.

The following theorem is a “parabolic analogue” of Theorem 4.4.3.
Theorem 10.2.4. Assume p > h is large enough so that Lusztig’s conjecture is true.
Assume moreover that (10.1.1) and (10.2.1) are satisfied.

(i) We have I = T()WB, and the lifts of the simple modules are in the essential 1mage
of Tf

(ii) There is a unique choice of the lifts'> P& (v e ug) (v € WS}, LY (ueX) (uely)
such that, if Qz;;’gvr, resp. E%if is the object of DGCoh® ((gp r%g*x'p 77)(1)), respectively
DbCohg{'{) (J\~/7(31)), such that P& (v e g) = iﬁ(Q%f), respectively L (u e Xg) = Tz\)(ﬁ%i),
for all w € WS we have in DGCohgr(./%(Dl)):

1437;1 Q%i = P(‘C%,gfow) ®OP(1) Op)(2pp — 2p). (10.2.5)

15 A priori, these lifts depend on the choice of A, s, i.e. on y, although it does not appear in the notation.
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Proof. We prove (i) and (ii) simultaneously. We choose the objects P&*", L4% (w € W)

as in subsection 8.5 (hence as in Theorem 4.4.3 if y = 1). Here, to avoid confusion, we

change the notation Pi®" in Q%®". As for Theorem 4.4.3, the unicity statement is easy to

prove, and we concentrate on the existence of the lifts.

As above (and in subsection I.1.1), let p : g — gp be the natural morphism. It induces
a morphism of dg-schemes (see (5.4.1))

~ ~ R ~ R
7 (@0 x5 B)Y — (@p Ngexp P,
By Proposition 5.4.2, we have an isomorphism of functors
T)odr = A% o L(7p)*. (10.2.6)
By adjunction, and using equation (4.3.2), we have for w € WB:
TyP(wepp) = P(we ). (10.2.7)
The functor L(7p)* has a natural graded version, the functor
~ ® . gri~ R (1) gri( & (1)
L(7pG,)" : DGCoh® ((gp Ng=xp P)'") — DGCoh® ((gNg-xpB)'").

For w € WS, we define P& (w e 19) as the unique lift of P(w e 1) such that, if Q%i is the

object of DGCoh®" ((gp rBw'g*Xp P)1) such that P& (w e o) = 77 (Q%%) (such an object
exists by Lemma 10.2.3), we have

QUE(N — Np) = L(7pgc,,) Q%% (10.2.8)

Such a lift exists thanks to isomorphisms (10.2.6) and (10.2.7).
The morphisms jp and pp induce functors

(JP.Gm )+ : DPCohCm ((/\7‘73 Xp B)(l)) . DPCohCm (/\7(1))7

B B
(PP.Gm)" : D*CobCrm (NS)) — DPCohSm (Np xp B)V).

Consider the following factorization of mp:

~ BP1 ep2
g——gp xp B—>gp,

where 7p 5 is induced by the projection mp. These morphisms induce
#p1: @BV — (@ xp B) g-unB)Y,
. - R ~ R
Tp2: ((gp Xp B) Ng*x B)(l) — (gpNgxP P)(l)-

Then we have
L(Tpem)" = LTp1cm) © L(Tp26m)"
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Using this equality and the results of subsections 2.4 and 2.5, one can identify the Koszul
dual (with respect to kg, kp) of the functor L(7pg,,)". Namely, a proof similar to that
of Theorem 8.2.1 gives an isomorphism

(k5) ' o L(TpG,,)* 0 rp =
(R(jpu)= © L(pPe,,)") @pm Oy (—20p)[N — Np](2(N — Np)), (10.2.9)

where the functors R(%Gm)* and L(ppg, )* are defined as in 2.4 and 2.5.

Now we have introduced all the tools needed for the proof of Theorem 10.2.4. Let
w € WB. Consider the object

Fu = (kp' QB%) ®o_ ) Opm (20 — 2pp)
of DGCohgr(/\Z()l)). By equation (10.2.9) we have

(RGpon)s 0 LFpen)") (Fu) =
(kB) "o L(%P,Gm)*(g%if) Rpa) Opa)(2p — 2pp))
®pm) Opn) (2pp)[Np — N|(2(Np — N)).

Using definition (10.2.8) we deduce

(RGP« © L(PPG,,)") (Fuw) = (r5) " (Q4F) @50) Opm (20)[Np — NJ(Np — N).

Finally, by (8.1.1) (or its analogue in subsection 8.5 if y # 1) we have
(R(3Peu)» © L(pPe,)") (Fu) =2 ((LLE(Np — N)) @0) Oga (p).

We deduce easily that there exists an object G, in DbCohg'{l‘> (/\77(91)) such that F, = (p(Gy).
Moreover, this object satisfies

(7. Gu)<(PP.6w) G = L4E © g0y Oy () (Np — N). (10.2.10)

Consider now T}’(gw) This is an object of DbMod(f)g’gr(Uf‘,). It follows from equation
(10.2.10), Proposition 10.1.4 and equation (10.1.3) that its image under the composition

(63)"

o, DPModB(U) ~2 DPMod((Ug))

fg,gr
D°Mod&® (UR)
is the simple module L(mow @ Ag). Hence row € I, and a lift (hence all of them) of
Lp(tow ® o) is in the essential image of Y. If we set L% (row @ Ag) := Y¥(Gy) and

L3, = Guw, then isomorphism (10.2.5) is clearly true in this case.

In particular, we have proved that T()WB C I,. As these two sets have the same
cardinality (see equation (10.2.2)), we deduce that they coincide. This finishes the proof
of Theorem 10.2.4. O
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10.3 Koszulity of singular blocks of (Ug)o

The following theorem follows from Theorem 10.2.4, exactly as Theorem 9.5.1 follows from
Theorem 4.4.3.

Theorem 10.3.1. Let A\, u be as in subsection 10.2, and keep the assumptions of Theorem
10.2.4. There exists a Koszul ring Bp, which is naturally a F(J\G(,l),(?ﬁ(l))—algebm, and
P

equivalences of categories
Modf¥(Bp) = ModE(U3)
Mod®®((Bp)') = Mod((Ug)o).

In particular, the ring (Ug)g can be endowed with a Koszul grading.

For any v € X, there exists a weight u in the orbit W); e v, a standard parabolic
subgroup P, and a weight A which satisfy the hypotheses of Theorem 10.3.1 (see e.qg.
[BMRO6, 1.5.2]). Hence the ring (Ug)s = (Z/{g)g can be endowed with a Koszul grading for
p > 0. As there are finitely many blocks, all the blocks of (U/g)p can be endowed with a
Koszul grading if p > 0. Finally, by [AJS94, F.4] (in fact the implication we use is trivial)
we deduce:

Corollary 10.3.2. For p > 0, the algebra (Ug)o can be endowed with a Koszul grading.

10.4 Remark on the choice of A\

Let p > h. Fix a parabolic subgroup P D B, and let I C ® be the corresponding set
of simple roots. In subsection 10.2, we have chosen A such that the closure of its alcove
contains a weight p of singularity P, i.e. an integral weight in a facet which is open in
Hp ={v e X®@zR |Va eI, (v+p,a’) =0} It is not clear a priori that any regular
weight A € Xp satisfies this assumption. But it is indeed the case.

Let us check this fact. We can assume that G is quasi simple, i.e. R is irreducible. Let
Ap denote the fundamental alcove, and let w € W/g be such that A = w e Ag. What we
have to prove is that AN Hp contains an integral weight in an open facet of Hp, or that
Ay N (w_1 e Hp) contains an integral weight in an open facet of w! e Hp.

Write w = t,v, with v € X and v € W. Let A\g € Cy be such that \=we \g. f a €
we have

0=(M\a") =N+ pv ) =14+ pv,a").

By definition of Cy we have [(A\g + p,v"!a¥)| < p. Hence either (i) (v,aV) = 0 and
(Mo + p,v7taV) =1 (in this case v"'a has to be a simple root), or (ii) (v,a") = 1 and
(Ao+p,v7aY) = 1—p (in this case v~ has to be the opposite of the highest short root).
It follows that Ag Nw~' e Hp is the closure of the facet of Ay defined by the simple roots
appearing in (i) (if there are any) and the affine simple root (if case (ii) occurs). This facet
contains integral weights because it is the image under w of an open facet in Hp. This
concludes the proof of the claim.

Hence Theorem 10.3.1 gives a Koszul duality for all algebras U{}.



Chapter IV

Linear Koszul duality in a general
setting

In this chapter we give a “linear Koszul duality” result, in the spirit of Theorem I11.2.3.11,
but in a more general context. Let us point out, however, that Theorem [11.2.3.11 is not
a particular case of the main result of this chapter. In particular, the equivalence we
construct here is contravariant, while the equivalence of Theorem I11.2.3.11 is covariant.

The setting we use for (quasi-)coherent dg-sheaves on dg-schemes is different from the
one of chapter III. In particular in this chapter every sheaf on a scheme is quasi-coherent.
Hence we will not write the superscript “qc” for the corresponding categories.

This chapter is a joint work with Ivan Mirkovié. It was prepublished in [MROS|.

Introduction

0.1

Koszul duality is an algebraic formalism of Fourier transform which is often deep and
mysterious in applications. For instance, Bezrukavnikov has noticed that it exchanges
monodromy and the Chern class — the same as mirror duality, while the work of Beilin-
son, Ginzburg and Soergel ([BGS96]) has made Koszul duality an essential ingredient of
representation theory.

The case of linear Koszul duality studied here has a simple geometric content which
appears in a number of applications. For two vector subbundles F1, F5 of a vector bundle £
(over a noetherian, integral, separated, regular base scheme), linear Koszul duality provides
a (contravariant) equivalence of derived categories of Gy-equivariant coherent sheaves on

the differential graded scheme F} FBW'E Fy obtained as derived intersection of subbundles

inside a vector bundle, and the corresponding object Fi- A g+ F3 inside the dual vector
bundle.

The origin of the linear duality observation is Kashiwara’s isomorphism of Borel-Moore

171
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homology groups
Ho(F1 Np Fy) = Ho(F Np- Fy)

given by a Fourier transform for constructible sheaves. The Iwahori-Matsumoto involution
for graded affine Hecke algebras has been realized as Kashiwara’s Fourier isomorphism in
equivariant Borel-Moore homology ([EM97]|). The standard affine Hecke algebras have
analogous realization in K-theory (the K-homology) and this suggested that Kashiwara’s
isomorphism lifts to K-homology, but natural isomorphisms of K-homology groups should
come from equivalences of triangulated categories of coherent sheaves.

0.2

Let us describe more precisely the content of this chapter. We start in section 1 with
generalities on sheaves on dg-schemes. In section 2 we construct the relevant Koszul type
complexes, in section 3 we prove the equivalence of categories, and in section 4 we give the
geometric interpretation of this duality. The idea is that the statement is a particular case
of the standard Koszul duality in the generality of dg-vector bundles. However, because of
convergence problems for spectral sequences, we are able to make sense of this duality only
for the dg-vector bundles with at most 2 non-zero terms. Furthermore, the constructions
would simplify if we were not interested in applications in positive characteristic, as in
characterististic zero one could think of the Kosul complex of a vector bundle V as the

symmetric algebra of the acyclic complex V My (where the first term is in degree —1,
and the second one in degree 0).

0.3

In a sequel to [MRO8] we will show that the linear Koszul duality in K-homology is indeed
a quantization of Kashiwara’s Fourier isomorphism — the two are related by the Chern
character. We will also verify that the linear Koszul duality in equivariant K-homology
gives a geometric realization of the Iwahori-Matsumoto involution on (extended) affine
Hecke algebras. This concerns one typical use of linear Koszul duality. Consider a partial
flag variety P of a group G (either a reductive algebraic group in very good characteristic
or a loop group'), and a subgroup K that acts on P with countably many orbits. Let g, ¢
be the Lie algebras, choose E to be the trivial bundle P x g*, F} the cotangent subbundle
T*P and F» = P x ¢+, Now I} 5E F5 is a differential graded version of the Lagrangian

Ay C T*P, the union of all conormals to K-orbits in P, and Fj- A Fi is the stabilizer
dg-scheme for the action of the Lie algebra € on P. If K is the Borel subgroup then

F1L % E* F2L is homotopic to F FW g F5 and linear Koszul duality provides an involution on
the K-group of equivariant coherent sheaves on Ag.

Let us conclude by proposing some further applications of linear Koszul duality. The
above application to Iwahori-Matsumoto involutions should extend to its generalization,

'Let us point out that the application to loop groups would require an extension of our constructions
to the case of infinite dimensional varieties, or ind-schemes, which is not proved here.
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the Aubert involution on irreducible representations of p-adic groups (JAub95]). Linear
duality should be an ingredient in a geometric realization (proposed in [BFMO05]) of the
Cherednik Fourier transform (essentially an involution on the Cherednik Hecke algebra), in
the Grojnowski-Garland realization of Cherednik Hecke algebras as equivariant K-groups
of Steinberg varieties for affine flag varieties (see [Vas05]). The appearence of linear Koszul
duality for conormals to Bruhat cells should be a classical limit of the Beilinson-Ginzburg-
Soergel Koszul duality for the mixed category O (|BGS96|), as mixed Hodge modules come
with a deformation (by Hodge filtration), to a coherent sheaf on the characteristic variety.

1 Generalities on sheaves of dg-algebras and dg-schemes

In this section X is any noetherian scheme satisfying the following assumption?:

(%)

for any coherent sheaf F on X, there exists a locally free
sheaf of finite rank £ and a surjection & — F.

We introduce basic definitions concerning dg-schemes and quasi-coherent dg-sheaves, main-
ly following [CFKO1] and [RicO8b]| (i.e. chapter III).

1.1 Definitions

Recall the definitions of sheaves of Ox-dg-algebras and dg-modules given in III.1.1.

Definition 1.1.1. A dg-scheme is a pair X = (X,.4) where X is a noetherian scheme
satisfying (x), and A is a non-positively graded, graded-commutative Ox-dg-algebra such
that A* is a quasi-coherent Ox-module for any @ € Z<.

Definition 1.1.2. Let X = (X, .A) be a dg-scheme.

(i) A quasi-coherent dg-sheaf F on X is an .A-dg-module such that F7 is a quasi-coherent
Ox-module for any i € Z.

(ii) A coherent dg-sheaf F on X is a quasi-coherent dg-sheaf whose cohomology H(F)
is a locally finitely generated sheaf of H(.A)-modules.

We denote by C(X), or C(X,.A), the category of quasi-coherent dg-sheaves on the dg-
scheme X, and by D(X), or D(X,.A), the associated derived category (i.e. the localization
of the homotopy category of C(X) with respect to quasi-isomorphisms).

Similarly, we denote by C°(X) or C°(X,A), D°(X) or D°(X,.A), the full subcategories
whose objects are the coherent dg-sheaves.

If X is an ordinary scheme, i.e. if A = Ox, then we have equivalences

D(X) =2 DQCoh(X), D(X) = D’Coh(X).
Let us stress that these definitions and notations are different from the ones used in

chapter III or [Ric08b] (in loc. cit., we only require the cohomology of F to be quasi-
coherent). This definition will be more suited to our purposes here. Moreover, these

%See e.g. the remarks before [CFKO01, Lemma 2.3.4] for comments on this assumption.
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two definitions coincide under reasonable assumptions. For the categories of coherent dg-
sheaves in all the cases we consider here, this can be deduced from Proposition I11.3.2.4.

1.2 K-flat resolutions

Let us fix a dg-scheme X = (X, A). If F and G are A-dg-modules, we define as usual
the tensor product F ®4 G (see II1.1.2). It has a natural structure of an A-dg-module
(here A is graded-commutative, hence we do not have to distinguish between left and right
dg-modules, see II1.1.1).

Recall the definition of a K-flat dg-module (see [Spa88|):

Definition 1.2.1. An A-dg-module F is said to be K-flat if for every A-dg-module G such
that H(G) = 0, we have H(G ®4 F) = 0.

Using [Spa88, 3.4, 5.4.(c)| and assumption (x), one easily proves the following lemma.

Lemma 1.2.2. Let F be a quasi-coherent Ox-dg-module. There exist a quasi-coherent,

K-flat Ox-dg-module P and a surjective quasi-isomorphism P @, F

Then, using the induction functor F — A ®p, F, the following proposition can be
proved exactly as Theorem II1.1.3.5.

Proposition 1.2.3. Let F be a quasi-coherent dg-sheaf on X. There exist a quasi-coherent

dg-sheaf P on X, K-flat as an A-dg-module, and a quasi-isomorphism P & F

1.3 Invariance under quasi-isomorphisms

In this subsection we prove that the categories D(X), D°(X) depend on A only up to
quasi-isomorphism.

Let X be a noetherian scheme satisfying (x), and let X = (X, A) and X' = (X, B)
be two dg-schemes with base scheme X. Let ¢ : A — B be a morphism of sheaves of
Ox-dg-algebras. There is a natural functor

6" : C(X') = C(X)
(restriction of scalars), which induces a functor
R¢* : D(X') — D(X).
Similarly, there is a natural functor

X)) - (X))
¢*{ F +— BuF-

We refer to [Del73] or [Kel96] for generalities on localization of triangulated categories
and derived functors (in the sense of Deligne). The following lemma is borrowed from
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[Spa88, 5.7 (see also Lemma I11.1.3.6), and implies that K-flat A-dg-modules are split on
the left for the functor ¢.. Using Proposition 1.2.3, it follows that ¢, admits a left derived
functor

Lo, : D(X) — D(X').

Lemma 1.3.1. Let F be an object of C(X, A) which is acyclic (i.e. H(F) =0) and K-flat
as an A-dg-module. Then B ®4 F is acyclic.

The following result is an immediate extension of [BL94, 10.12.5.1] (see also Proposition
[1.1.5.6).

Proposition 1.3.2. (i) Assume ¢ : A — B is a quasi-isomorphism. Then the functors
L., Ro* are quasi-inverse equivalences of categories

(ii) These equivalences restrict to equivalences
D¢(X) = DYX).

Proof: Statement (i) can be proved as in [BL94, 10.12.5.1] or Proposition III.1.5.6.
Then, clearly, for G in D(X’) we have G € D(X) iff R¢*G € D(X). Point (ii) follows. [

1.4 Derived intersection

Using Proposition 1.3.2, one can consider dg-schemes “up to quasi-isomorphism”, i.e. iden-
tify the dg-schemes (X, .A) and (X, B) whenever A and B are quasi-isomorphic.

As a typical example, we define the derived intersection of two closed subschemes.
Consider a scheme X, and two closed subschemes Y and Z. Let us denote by ¢ : ¥ — X

and j : Z — X the closed embeddings. Consider the sheaf of dg-algebras i*(’)yGLiJoXj*OZ
on X. It is well defined up to quasi-isomorphism: if Ay — i,.Oy, respectively Az — 7.0z
are quasi-isomorphisms of non-positively graded, graded-commutative sheaves of Ox-dg-

algebras?, with Ay and Az quasi-coherent and K-flat over Ox, then i*OyéLi)oXj*OZ is
quasi-isomorphic to Ay ®o, j«Oz, or to i.Oy ®o, Az, or to Ay ®o, Az.

Definition 1.4.1. The right derived intersection of Y and Z in X is the dg-scheme
R . L .
Yx Z = (X, i.0y Roy j+O0z),
defined up to quasi-isomorphism.

To be really precise, only the derived categories D(Y Ax Z ), DY Ax Z ) are well de-
fined (up to equivalence). This is all we will use here.

3See e.g. [CFKO1, 2.6.1] for a proof of the existence of such resolutions.
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2 Generalized Koszul complexes

In this section we introduce the dg-algebras we are interested in, and define our Koszul
complexes.

2.1 Notation and definitions

From now on X is a noetherian, integral, separated, regular scheme of dimension d. Observe
that X satisfies condition (x) by [Har77, I[I1.Ex.6.8]. We will consider Gpy-equivariant dg-
algebras on X, i.e. sheaves of Ox-algebras A, endowed with a Z?-grading

A= DA

i.j€EZ

and an Ox-linear differential d4 : A — A, of bidegree (1,0), i.e. such that dA(Aé) C Aé-“,
and satisfying '
da(a-b) =da(a) b+ (=1)'a-da(b)

for a € A;, b € A. The basic example is Ox, endowed with the trivial grading (i.e. it is
concentrated in bidegree (0,0)) and the trivial differential.

A Guy-equivariant dg-module over A is a sheaf M of Z?-graded A-modules endowed
with a differential daq of bidegree (1,0) satisfying

dp(a-m) = da(a)-m+ (=1)'a- dp(m)

foraE.Aé,mGM.

We will only consider quasi-coherent (Gp-equivariant) Ox-dg-algebras. If A is such
a dg-algebra, we denote by Cgr(A) the category of quasi-coherent Gm-equivariant A-dg-
modules, i.e. Gp-equivariant A-dg-modules M such that ./\/l; is Ox-quasi-coherent for
any indices ¢, j.

If M is a Gup-equivariant A-dg-module, and m is a local section of Mé», we write
|m| = i. This integer is called the cohomological degree of m, while j is called its internal
degree. We can define two shifts in Cgr(A): [n], shifting the cohomological degree, and (m),
shifting the internal degree. More precisely we set

(M[n)(m)); = M.

Beware that in our conventions (1) is a “homological” shift, i.e. it shifts the internal degrees
to the right. Also, we use the same conventions as in [BL94, §10] or III.1.1 concerning the
shift [1], i.e. the differential of M[1] is opposite to the differential of M.

If M and N are two Gy-equivariant Ox-dg-modules, there is a natural structure of
Gm-equivariant Ox-dg-module on the tensor product M ®o, N, with differential defined
on homogeneous local sections by

dpen(m@n) = dap(m) @ n+ (=1)"m @ dyr(n).
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If M is a Gyy-equivariant O x-dg-module, we define the Gy-equivariant O x-dg-module
MY as the graded dual of M, i.e. the dg-module with (4, j)-component

(Mv); = Homo, (./\/l:;, Ox),

and with differential defined by dagv (f) = —(=1)/If o dpq for f € MY homogeneous. If
M and N are two Gp-equivariant Ox-dg-modules, there is a natural morphism defined
(on homogeneous local sections) by

v Voo v
{ MY @0, N (Mo, N) (2.11)

feg = (m@n e (=1 (m) - g(n))

which is an isomorphism e.g. if the homogeneous components of M, N and M ®p, N
are locally free of finite rank. If M is a Gm-equivariant Ox-dg-module such that M is
locally-free of finite rank for any 4, j, then there is an isomorphism

{ M = (M) (2.1.2)

moe (f e (S )

Let us recall the definition of the truncation functors. If M is a Gy-equivariant Ox-
dg-module and if n € Z, we define the Gm-equivariant Ox-dg-module 7>,(M) by

0 ifi<n
mea(M)j i= | MG/ MG i =n
./\/lj ifi>n

with the differential induced by daq. There is a natural morphism M — 7>, (M). Simi-
larly, we define the Gm-equivariant Ox-dg-module 7<, (M) by

T<n(M) := Ker (M — T>p41(M)).

Observe that if A is a Gy-equivariant dg-algebra with Aév =0 for ¢ > 0, and if M is a
Gm-equivariant A-dg-module, then 7>,(M) and 7<, (M) are again Gp-equivariant A-dg-
modules.

If M is a Gy-equivariant O x-dg-module, we denote by Sym(M) the graded-symmetric
algebra of M over Ox (i.e. the quotient of the tensor algebra of M by the relations
m@n = (—1)m"y @ m), considered as a Gp-equivariant dg-algebra with differential
induced by dq. Similarly, if F is any Ox-module, we denote by So, (F), or simply S(F),
the symmetric algebra of F.

Let us counsider two locally free sheaves of finite rank ¥V and W on X, and a morphism
of sheaves f : V — W. Let VY := Homo, (V,0x) and WY := Homo, (W, Ox) be the
dual locally free sheaves, and fY : WY — VY be the morphism induced by f. Let us
consider the Gpy-equivariant Ox-dg-modules (or complexes of graded Ox-modules)

Xo=(-—=0-viwoo--),
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where V is in bidegree (—1,2) and W is in bidegree (0,2), and

Y= (..._>0_>WVi>VV_>0_>...)’

where WV is in bidegree (—1,—2) and VV is in bidegree (0, —2).
In sections 2 and 3 we will consider the following Gm-equivariant dg-algebras:

7 := Sym(X),
R = Sym(}),
S = Sym(Y[-2]).

For example, the generators of 7 are in bidegrees (—1,2) and (0, 2), and the generators of
S are in bidegrees (1, —2) and (2, —2).

If M is a Gp-equivariant S-dg-module, the dual M" has a natural structure of a S-
dg-module, constructed as follows. The grading and the differential are defined as above,
and the S-action is defined by

(s- f)(m) = (=) (s -m),

for homogeneous local sections s of S and f of MV.

If N is a 7-dg-module, respectively a R-dg-module, the same formulas define on N
a structure of a 7-dg-module, respectively a R-dg-module.

2.2 Reminder on the spectral sequence of a double complex

Let us recall a few facts on the spectral sequence of a double complex. Let (CP9), ,cz be
a double complex (in any abelian category), with differentials d’ (of bidegree (1,0)) and d”
(of bidegree (0,1)). Let Tot(C) be the total complex of C| i.e. the complex with n-term

Tot(C)" = @5 P,

p+g=n
and with differential d’ + d”. The following result is proved e.g. in [God64, 1.4].
Proposition 2.2.1. Assume one of the following conditions is satisfied:
1. There exists N € Z such that CP? =0 for p > N.
2. There exists N € Z such that CP?1 =0 for ¢ < N.
Then there is a converging spectral sequence

EPY = HY(CP*,d") = HPT9(Tot(C)).
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2.3 Reminder on Koszul complexes

Let A be a commutative ring, and V be a free A-module of finite rank. Let VV =
Homy (V, A) be the dual A-module, and consider the natural morphism

i:A— Homa(V,V)2VY®4V,

sending 14 to Idy. Let us first consider the bigraded algebras A(V[—1](—2)), the exterior
algebra of V placed in bidegree (1, —2), and S(VV(2)), the symmetric algebra of V¥ placed
in bidegree (0,2). The algebra A(V[—1](—2)) acts on the dual (A(V[—1](—2)))Y via

(t- F)(s) = (=) g (ts),

where ¢, s are homogeneous elements of A(V[—1](—2)), and f is an homogeneous element
of (A(V[-1](=2)))".
Consider the usual Koszul complex
Koszuly (V) := S(VY(2)) ®4 (A(V][-1](-2)))", (2.3.1)

where the differential is the composition of the morphism

{S(VV>®A (A(V))Y — S(VY)@a (A(V))Y
st — (-1)bls @ ¢

followed by the morphism induced by i

S(VY)@a (A(V))Y = S(VY)@a VY ®aV @4 (A(V))"
and finally followed by the morphism

S(VY)@a VY @aV@a(AV)) —S(VY)@a (A(V))"

induced by the action of VvV C S(VV) on S(VV) by right multiplication and the action of
V C A(V) on (A(V))Y described above. It is well-known (see e.g. [BGGTS8|, [BGS96]) that

this complex has cohomology only in degree 0, and more precisely that
H(Koszul; (V)) = A.

The complex Koszul; (V') is a bounded complex of projective graded A-modules (here
we consider A as a graded ring concentrated in degree 0). We can take its dual

Koszuly(V) := (Koszuly (V)Y =2 A(V[-1){(—2)) ®a (S(VY{2)))". (2.3.2)

Again we have
H(Koszula(V)) = A.

Now, let us consider the bigraded algebras A(V[1](—2)), with generators in bidegree
(—1,-2), and S(V[—2](2)), with generators in bidegree (2,2). We have a third Koszul
complex

Koszulz(V) := S(VY[-2](2)) @4 (A(V[1]{=2)))", (2.3.3)
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which may be defined as the bigraded module whose (i, j)-component is (Koszulg(V))é- =

(Koszull(V))é_j , and with differential induced by that of Koszuly (V). As above we have

H(Koszulz(V)) = A.

We can finally play the same game with the complex Koszuly(V') and obtain the com-

plex
Koszuly (V) =2 A(V[1]{(=2)) @4 (S(VY[-2](2)))Y (2.3.4)

defined by (Koszul4(V))§- = (Koszulg(V))j_j. Again we have

H(Koszuly(V)) = A.

2.4 Two functors

For any quasi-coherent Gy -equivariant dg-algebra A we define the category C&‘(A) of G-
equivariant A-dg-modules M such that ./\/l; is a coherent Ox-module for any indices ¢, j,
and such that there exist integers Ny, Na such that M; =0for7: < Njyori+j> No.
Here the symbol “ ™, ” indicates the region in the plane with coordinates (i, j) where the
components M; can be non-zero, as shown in the figure below.

Similarly, we define the categories Cg/r (A), Cg/r (A), ;(A) of Gm-equivariant A-dg-
modules M such that the /\/l;-’s are coherent and satisfy the following conditions:

Cg/r(A): /\/lé»:0ifi>>00ri—j<<07
C&(A): Mi=0ifi<0ori—j>0,
Cor(A): ML=0ifi>00ri+j<0.

J
Co> Cq
{
Ce Cor
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In this subsection we define two conéravariant functors
A 1 Cx(8) > C(T), B :Cp(T) — Cx(S).

First, let us construct «7. If M is a S-dg-module, we have defined in 2.1 the S-dg-module
MY, Let M € Cg\r(S)_ As a bigraded Ox-module we set

A (M) =T R0, M,

endowed with a 7-action by left multiplication on the first factor. The differential on
/(M) is the sum of four terms. The first one is d; := d7 ® Idpqv, and the second one is
do := IdT®d v . Here the tensor product is taken in the graded sense, i.e. for homogeneous
local sections t and f of 7 and MY respectively we have do(t® f) = (=1)Ht@d g (f). The
third and fourth terms are “Koszul-type” differentials. Consider first the natural morphism
i:0x — Endo, (V) =2V ®o, VY. Then ds is the composition of

T Qo MY — T ®o, MY
{ t® f = (=Dt e f
followed by the morphism induced by ¢
T 00y MY =T @0, Vo, VY @0, MY
and finally followed by the morphism
T R0y V @0y VY @0y MY =T @0, M

induced by the right multiplication of V C 7 on 7, and the left action of V¥ C S on MV.
The differential d4 is defined entirely similarly, replacing V by W.

Let us choose a point € X. Then V,, W, are free Ox ,-modules of finite rank. Let
{va} be a basis of Vy, and {wg} be a basis of Wy. Let {v3}, {wj} be the dual bases of
(VY)e and (WY),, respectively. Then the morphism induced by d3+dy on 7T, ®0o ., (MY),
can be written

(ds+d)(t® f) = (DO twa@vl - f+ ) twg@ws - f) (2.4.1)
a B

for homogeneous local sections t of 7 and f of M.

Using formula (2.4.1), one easily checks the relations
(dy +do)* =0, (d3+dys)?*=0. (2.4.2)
Further calculations prove the following formula:
(di 4+ d2) o (ds+ds)+ (d3s+dy) o (di +d2) = 0. (2.4.3)

It follows from formulas (2.4.2) and (2.4.3) that d(aq) := di + d2 + d3 + dy is indeed a
differential. Finally, one easily checks that «/(M) is a 7-dg-module, and that it is an
object of the category Cg\r(T ). Hence the (contravariant) functor

o C(S) — C(T)
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is well defined.

Now we define a functor Z in the reverse direction, using similar formulas. Namely if
N is a T-dg-module, we have defined above the 7-dg-module N'V. If N € Cg\r(T), as a
bigraded Ox-module, we set
BN) =80, NV,

and we endow it with the S-action by left multiplication on the first factor. The differential
is again a sum of four terms. The first two are d; := ds ® Idarv and da := Ids ® dpyrv. The
third one, denoted ds, is defined as above as the composition of

S®@XNV — S®0XNV
5®g — (-)blseg

followed by the morphism induced by ¢’ : Ox — VY ®0, V
S®oy NV = S®0, VY Qo V@0, NV
and finally followed by the morphism
S®oy VY @0y V R0y NV = S®0, NV

induced by the right multiplication of V¥ C § on S, and the left action of V C 7 on
NV. The differential d4 is defined similarly, replacing V by W. As above, one checks that
dg(ny = di + da + d3 + dy is a differential, which turns Z(N) into a S-dg-module, and

even an object of Cg\r(S). For this final claim we use the fact that if Slk # 0, then k+1 < 0.
As above, this proves that the (contravariant) functor

B Cp(T) — C(S)

is well defined.

2.5 First generalized Koszul complex

Consider the object
KW = B(T) € Cpx(S).

It is concentrated in non-negative cohomological degrees, and in non-positive internal de-
grees.

Lemma 2.5.1. The natural morphism KY) — Ox (projection on the (0,0)-component) is

a quasi-isomorphism of Gy -equivariant S-dg-modules.

Proof. 1t is sufficient to prove that the localization of this morphism at any z € X is a
quasi-isomorphism. We have isomorphisms

(K(l))x = (Sx) ®OX,90 Ipv

= P AW oy, SV ®ox, (V) @ox, (8'(W:)Y,
1,7,k,1
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where the symbol “V” denotes the dual Ox ;-module, and where the term A*(W)) ROy .o
ST(VY) ®ox.. (N*(Ve))Y ®oy., (S'(W,))Y is in cohomological degree i+ 2j + k. The differ-
ential on (K(l))x is the sum of four terms: di, induced by the differential of S;; d2, induced
by the differential of 7,”; and d3 and d4, the Koszul differentials. The effect of these terms
on the indices i, j, k, I may be described as follows:

du - i — i—1 &b - E — k+1 da - j = j+1 d T — 141
PV o= 410200 - =1 7B k= k=11~ 11

Disregarding the internal grading, (X)), is the total complex of the double complex
P.q i
S )
(CP1),, oz whose (p, q)-term is

o= P AW @ox, S (VY) ®ox, (A (V)Y @0y, (S V)Y,

p=j+k,
q=i+j

and whose differentials are d’ = dy + da, d’ = d3 + dy. We have CP7 = 0 if ¢ < 0, hence
by Proposition 2.2.1 there is a converging spectral sequence

Bt = HO(CP,d") = HPH((KO),).

It follows that, to prove the lemma, we only have to prove that the cohomology of S, ®oy ,
T, with respect to the differential ds + dy is Ox . in degree 0, and 0 in other degrees.
But this complex is the tensor product of the Koszul complexes Koszul3(V,) (with the
internal grading opposite to that in (2.3.3)) and Koszulo(W)) of (2.3.2), both living in
non-negative degrees. We have seen that these complexes have cohomology Ox ;, and their
components are free (hence flat). The result follows, using Kiinneth formula. O

2.6 Second generalized Koszul complex

Consider now the object
K® = o/ (S) € Cpp(T).
It is concentrated in non-positive cohomological degrees, and in non-negative internal de-

grees. As in 2.5, we are going to prove:

Lemma 2.6.1. The natural morphism K® — Ox (projection on the (0,0)-component) is
a quasi-isomorphism of Gy-equivariant T -dg-modules.

Proof. The arguments for this proof are completely similar to those of Lemma 2.5.1. Here
the double complex to consider has (p, ¢)-term

= P NV) B0y, W) B0y, (AW)))Y ®oy, (8'(V)))Y

p=—1i—l,
q=—k—1

and differentials d’' = dy + ds, d” = d3 + dy. We have CP7 = 0 for p > 0. O
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3 Algebraic duality

In this section we prove our Koszul duality between S- and 7-dg-modules.

3.1 Resolutions
First we need to prove the existence of some resolutions.

Proposition 3.1.1. (i) Let M be an object of Cg\r—‘(S). There exist an object P of Cg\r—‘(S)
such that, for all indices i and j, 73} 1s Ox-locally free of finite rank, and a quasi-

isomorphism of S-dg-modules P M.

(ii) Let N be an object of Cg\r(T). There exist an object Q of Cg\r(T) such that, for

all indices © and 7, Q;- 18 Ox-locally free of finite rank, and a quasi-isomorphism of T -dg-
modules Q = N .
Proof. We give a proof only for point (i). The proof of (ii) is similar*. Let M be an object
of Cg\r(S). Let N and Ns be integers such that ./\/l; =0for i< Nyori+j> Ny First
we consider M as a Gm-equivariant Ox-dg-module. Then, for each j < Ny — Ny, M; is
a complex of coherent Ox-modules, with non-zero terms only in the interval [N1, No — j]
(and M; = 0 otherwise). Using a standard procedure (see e.g. [Har66, 1.4.6] and [Har77,
IT1.Ex.6.9]), there exists a complex L; of locally free Ox-modules of finite rank, with non-
zero terms only in the interval [N1, No — j], and a surjective morphism of Ox-dg-modules
L;j — M;. Then L :=€P; L; is an object of Cg\r((’)x), and there is a surjective morphism
of Gm-equivariant Ox-dg-modules £L — M. Then Pl =S ®oy L, endowed with the
natural differential and the natural action of S, is an object of Cg\f‘(S), and there is a
surjective morphism of Gy -equivariant S-dg-modules

PO - M.

Taking the kernel of this morphism, and repeating the procedure, we obtain objects
PO (i =1,---,d) of Cg\r(S), (recall that d = dim(X)) whose homogeneous components
are locally free of finite rank over Oy, and an exact sequence of S-dg-modules

pld) _, pld-1) _, .. ,p0) , M 0.
We define P+ := ker(P@ — P@=1) Then, for any indices 7, j, the exact sequence

0— (p(d+1));’, NN (P(l))é R /\/l; 0

is a resolution of the Ox-coherent sheaf M;, the terms (P(k))é- being locally free of finite
rank for kK = 1,--- ,d. It follows that (P(dﬂ)); is also locally free of finite rank over Ox
(see again [Har77, II1.Ex.6.9]).

“One could also use the “regrading trick” of 3.5 below to show that these two statements are equivalent.
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Finally we take
P = TOt(O L pldth) L pd ..., pd) O),

It is naturally an object of Cg\]r (8), and an easy spectral sequence argument shows that the
natural morphism P — M is a quasi-isomorphism of S-dg-modules. O

3.2 Derived functors

Let us introduce some notation. If A is any quasi-coherent Gy-equivariant dg-algebra, we
denote by Hg, (A) the homotopy category of the category Cg, (A), where x =7, N\, ./, \..
The objects of Hg,(A) are the same as those of Cg,(A), and the morphisms in Hg, (A) are
the quotient of the morphisms in Cgr(.A) by the homotopy relation. These categories are
naturally triangulated. We denote by Dg,(A), the localization of Hg, (A) with respect to
quasi-isomorphisms.

As a corollary of Proposition 3.1.1, we obtain the following result.

Corollary 3.2.1. The functors o/ and % admit derived functors (in the sense of Deligne)
T Dy(S) = Dp(T),  B:Dp(T) — Dy(S).

Remark 3.2.2. The functor <7 is the left derived functor of &7 if we consider it as a
covariant functor Cg\r"(S ) — Cg\r(T)Opp, or the right derived functor of & if we consider it
as a covariant functor Cg\r(S)‘)pp — Cg\r(T).

Proof. Case of the functor o/ . To fix notations, in this proof we consider &7 as a covariant
functor Cg\r (S) — Cg\r(’T )°PP_ To prove that <7 admits a left derived functor, it is enough
to prove that there are enough objects split on the left’ for &7 in the category Cg\r (S)
(see [Del73] or [Kel96]). To prove the latter fact, using Proposition 3.1.1(i), it is enough
to prove that if f: P — Q is a quasi-isomorphism between two objects of CQ‘(S) whose
homogeneous components are Ox-locally free of finite rank, then the induced morphism

A(f): 4 (P) — #(Q)

is again a quasi-isomorphism. Taking cones, this amounts to proving that if P is an acyclic
object of Cg\r(S) whose homogeneous components are Ox-locally free of finite rank, then
</ (P) is again acyclic.

So, let P be such a Gu-equivariant S-dg-module. For each index j, the complex of
Ox-modules P; is acyclic, bounded, and all its components are locally free of finite rank.
It follows that PV is also acyclic. Let z be a point of X, and let us prove that o7 (P), is

"Recall (see e.g. I11.1.4) that an object M of Cg\r (8S) is split on the left for & if for any quasi-isomorphism

M L% M, there exists an object M” of Cox(S) and a quasi-isomorphism M 95, M’ such that the
induced morphism .« (M") — & (M) is again a quasi-isomorphism.
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acyclic. We use the same notations as in 2.4. In particular, d/(p) is the sum of four terms
dy, dg, d3 and d4. We have an isomorphism

A (P)s = @ N(Va) @0y, T (We) ®oy., (P},

i,5,k,l

where the term A(V;) ®o,, ST (We) ®0y., (P))F is in cohomological degree k —i. The
effect of the differentials on the indices 4, j, k, ! may be described as

i - i1 ERdCR jo= g+l
dll{ s a1 do:k—k+1, ds: kK — k+2 , dy: kE — k4+1
J J I — [—2 I — [—2

Hence, disregarding the internal grading, </ (P), is the total complex of the double
complex with (p, g)-term

oPt = @ AZ(VJC) QOx 4 s’ Wz) ®0x 4 (/Pg\c/)f?
Pamhrins
with differentials d’ = d3 + dy and d” = dy + ds. By definition, P is in CQ‘(S), hence
(PV)f =0 for k+1< 0. Hence CP4 = 0 for ¢ < 0. By Proposition 2.2.1, it follows that
there is a converging spectral sequence

P = H(OP*,d") = HPY9(e/ (P),).

Hence we can forget about the differentials d3 and dy, i.e. it is sufficient to prove that the
tensor product of Ox ,-dg-modules

is acyclic. We have seen above that P is acyclic, and 7, is a bounded complex of flat O X2~
modules. Hence 7, ®oy , P, is indeed acyclic, which finishes the proof of the existence of
the derived functor o

o : Dy (S) — D (7).

Case of the functor $. The proof for the functor & is very similar. If Q is a G-
equivariant 7-dg-module as in Proposition 3.1.1(ii) which is acyclic, and = € X, then we
have

B(Q: = P NWY) @0y, 8(VY) o, (I

i7j7k7l
where the term A'(W)Y) ®o,, S7(VY) ®o,, ()} is in cohomological degree i + 2j + k.
Again QV is acyclic, and dg(n) is the sum of four terms dy, d2, d3 and d4, whose effect on
the indices 1, j, k,l may be described as
j+1 . .
oy { i = 1+1

. . jo—
1
@:{? -l L dy ks k41, di:d kB o E—1

A I o 1+2 Lo 142
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Hence, disregarding the internal grading, #(Q) is the total complex of the double complex
with (p, ¢)-term

D= P NWY) @0y, S VY) @ox., (Q))F,

p=i+j,
q=k+j

and with differentials d’ = d3 + dy, d” = dy + do. We know that (Qg)f =01if k <« 0, hence
DP9 = 0 for p < 0. By Proposition 2.2.1, it follows that there is a converging spectral

sequence
EP? = HY(DP*,d") = H'*(B(Q).).

Hence it is sufficient to prove that the tensor product of Ox ;-dg-modules

is acyclic.

The (Gm-equivariant) Ox ,-dg-module S, has a finite filtration with subquotients finite
numbers of copies of S(V,/). Hence it is enough to prove that S(V)) ®o,, QJ is acyclic.
But S(VY), as a (Gm-equivariant) Oy ;-dg-module, is a direct sum of flat Ox z-modules
(placed in different degrees), hence the latter fact is clear. O

3.3 Morphisms of functors

In this subsection we construct some morphisms of functors. We will prove in the next
subsection that they are isomorphisms, which implies that o7 and £ are equivalences of
categories.

Proposition 3.3.1. There ezist natural morphisms of functors

Boo —1d o o B —1d

Dypx(S)’ Doy (T)

Proof. Let us give the details for the first morphism. The construction of the second one is
similar. Tt is sufficient to construct this morphism for any A-dg-module P as in Proposition
3.1.1(i). In this case </ (P) is isomorphic to the image of &/ (P) in the derived category.
As @/ (P) has also Ox-locally free homogeneous components, % o &/ (P) is isomorphic to
the image of Z o o/ (P) in the derived category. We will define a morphism in Cg\r (S)

HBod(P)—P. (3.3.2)

First we begin with the following lemma, which can be checked by direct computation,
using the isomorphisms (2.1.1) and (2.1.2).

Lemma 3.3.3. As a bigraded Ox-module, (<7 (P))Y is naturally isomorphic to TV @0, P.
Under this isomorphism, locally around a point x € X, with the notation of (2.4.1), the
differential becomes

diypyv (f @p) =d(f) @p+ (- f @ d(p)
— OO frva® o p+ > fruws@whp),
a £
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where we set (f-t)(t') = f(t-t') for feT"V and t,t' €T.

Under the isomorphism of Lemma 3.3.3, we have as bigraded Ox-modules
Bod(P)2S®o, TW oy P.
We define the morphism of bigraded Ox-modules

{ S®o,y TV Q@0 P — P
s@f®p = f(lr)-s-p °

This morphism clearly commutes with the S-actions. Moreover, using Lemma 3.3.3, one
easily checks that it also commutes with the differentials, hence defines the desired mor-
phism (3.3.2). O

3.4 Equivalences

Theorem 3.4.1. The functors o/, B are equivalences of categories, quasi-inverse to each
other.

Proof. First step: isomorphism % o </ ~ 1d. In Proposition 3.3.1, we have constructed a
morphism of functors % o &/ — Id. In this first step we prove that it is an isomorphism.
Let P be an object of Cg\r (S) as in Proposition 3.1.1(i). We have seen in 3.3 that Bo ./ (P)
is isomorphic to the image of & o &7 (P) in the derived category. By Proposition 3.1.1(i),
it is thus enough to prove that the induced morphism

¢:Bod(P)—P

is a quasi-isomorphism. Let us construct a section (over Ox) for this morphism. As a
bigraded O x-module we have B o &/ (P) 2 S ®o, 7" ®o, P. Let e € TV be the unit
section in (7)Y = Ox. Now consider the morphism

p:{ P = Zod(P)
lp — 1ls®er@p

One easily checks that it is a morphism of Gy-equivariant O x-dg-modules (but of course
not of S-dg-modules), and that

¢potp=Idp.
Hence it is enough to prove that ¢ is a quasi-isomorphism.
As a bigraded Ox-module, we have, with the notation of 2.5,

Bodd(P)=KW ®oy P = @ (kWi ®oy Plj,
©,5,k,l

where the term (K(l))z R0 Plj is in cohomological degree i+ j. Remark that here the non-
zero terms occur only when k is even. By Lemma 3.3.3, the differential on %o .o7(P) is the
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sum of four terms. The first one is dy := dj-q) ® Idp. The second one is dp := Idx1) ® dp.
The third one is the “Koszul type" differential coming from the left action of V¥ C S on P
and the right action of V € 7 on K. Finally d4 is the similar “Koszul-type" differential
coming from the actions of WY and W. The effect of these differentials on the indices
1,7, k,l can be described as follows:

1—1

7 =
. } j = j+1
di:i—1+1, dy:j—j+1, ds: ‘]1 : ‘;ig , dy k — k+2
I - [-2
I - 1-2

Moreover, one easily checks the following relations:
(dy +dy)*> =0,  (d2+d3)?*=0.

Hence, disregarding the internal grading, % o </ (P) is the total complex of the double
complex with (p, ¢)-term

cri= P (KD),®o, P,

p=j+I+k/2,
q=i—l—k/2

and with differentials d’ = dy + d3 and d” = d; + ds. We know that Plj =0for j+1>0,
and that (K(M)E = 0 if & > 0. Hence OP4 = 0 for p > 0. It follows, by Proposition 2.2.1,
that there is a converging spectral sequence

EPT = HY(CP,d") = HYY (B o o (P)).

Disregarding the internal grading, P is also the total complex of a double complex, defined
by
(CHP1 .= Pﬁ;q

and the differentials d' = dp, d” = 0. Here also (C')»? = 0 for p > 0, hence the
corresponding spectral sequence converges. Moreover, ¥ is induced by a morphism of
double complexes C' — C. Tt follows that it is enough to prove that the morphism
induced by 1 from P, endowed with the zero differential, to L) ®oy P, endowed with
the differential di 4 dy, is a quasi-isomorphism.

The latter dg-module is again the total complex of the double complex with (p, g)-term

DPY = @(K(l))z R0y PZ‘D,
k.l

and differentials d’ = dy4, d’ = d;. And P (with the trivial differential) is also the total
complex of the double complex defined by

(D)1 = { &P ifq=0,

N 0 otherwise,
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and with two trivial differentials. Again ¢ is induced by a morphism of double complexes,
and we have DP? = (D')P?7 = 0 for ¢ < 0. We conclude that the associated spectral
sequences converge. As H(K;) = Ox (see Lemma 2.5.1) and P is a bounded above
complex of flat Ox-modules, we finally conclude that 1 is a quasi-isomorphism.

Second step: isomorphism o/ o %8 = 1d. The proofs in this second step are very similar
to those of the first step. By Proposition 3.3.1 there is a natural morphism &/ 0 £ — Id,
and we prove that it is an isomorphism. As above, it is enough to prove that, for Q an
object of Cgr}(T) as in Proposition 3.1.1(ii), the induced morphism of 7-dg-modules

¢ oRB(Q)— Q
is a quasi-isomorphism. Also as above one can construct a section
V:Q— o 0 RB(Q)
of ¢ as a morphism of G-equivariant Ox-dg-modules, and it is enough to prove that ¥
is a quasi-isomorphism.
Here we have as bigraded Ox-modules, with the notation of 2.6,

o 0 B(Q) =K w0, 0= ) (K?)i @0, 9,
i,7,k,l

where (K®)i @0, Q{ is in cohomological degree i + j (and k is even if the term is non-
zero). Again the differential is the sum of four terms di := dy2) ® Idg, do = Idy(2) ® do,
d3 the Koszul differential induced by the action of V and VY, and d4 the Koszul differential
induced by the action of W and WV. The effect of these differentials on the indices 4, j, k,
can be described as follows:

! : ?t? i e i1
di:i—i+l, do:jrj+1, ds: Z} — ‘;_2, di:d k — k-2 .
I - [4+2 Lo 142

One has
(d1 + d2)2 =0, (dg + d4)2 =0.

Hence, disregarding the internal grading, < o #(Q) is the total complex of the double
complex with (p, ¢)-term

. 2)\é J

crii= P (KD) 2oy 9,
p=—1-3k/2,
g=i+j+1+3k/2

and with differentials d’ = d3 + dy, d” = dy + do. We know that Q{ =0ifj+ixO.
Moreover, one checks easily that (K®)i =0 if i + 3k/2 < 0. Hence OP4 =0 if ¢ < 0. It
follows, by Proposition 2.2.1, that there is a converging spectral sequence

EP = HI(CP*,d") = HPY(of 0 B(Q)).
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Similarly, disregarding the internal grading, Q is the total complex of a double complex C’,
and v is induced by a morphism of double complexes C' — C. Hence it is enough to prove
that the morphism induced by % from Q to K@ ®oy Q, endowed with the differential
dy + da, is a quasi-isomorphism.

Once more, this follows from a spectral sequence argument, using the property that
H(K®) = Ox (see Lemma 2.6.1). O

3.5 Regrading

In this subsection we introduce a “regrading” functor. This functor will play a technical
role in 3.6, and a more crucial role later in the geometric interpretation of the equivalence.

Consider the functor
£:Car(S) = Cu(R)
which sends the S-dg-module M to the R-dg-module with (4, j)-component 5(/\/1); =

./\/l;_j , the differential and the R-action on (M) being induced by the differential and
the S-action on M. This functor is clearly an equivalence of categories, and it induces
equivalences, still denoted &,

Cox(S) =5 C4(R), Dp(S) = DL (R).

3.6 Categories with finiteness conditions

In the rest of this section we prove that the equivalences &7 and 2 restrict to equivalences
between subcategories of dg-modules whose cohomology is locally finitely generated. This
will eventually allow us to get rid of the technical conditions “\” and “\”.

Let us introduce some more notation. If A is a quasi-coherent Gp-equivariant dg-
algebra, and if * =N/, \,, /", we denote by Cgffg(A), respectively Dg}fg(.A), the full
subcategory of Cg,(A), respectively Dy, (A), whose objects are the dg-modules M such
that H(M) is a locally finitely generated H(.A)-module.

We also denote by CFGgr(A) the full subcategory of Cgr(A) whose objects are the locally
finitely generated Gm-equivariant A-dg-modules, and by DF Gy, (A) the localization of the
homotopy category of CFGgr(A) with respect to quasi-isomorphisms. Finally we denote by

DE(A) the full subcategory of Dg:(A) whose objects are the Gm-equivariant dg-modules
M such that H(M) is locally finitely generated over H(A).

We are going to prove that, in the cases we are interested in, several of these categories
coincide. Observe in particular that there are inclusions

CFGe(R) = Cx™(R),  CFGu(S) = C™(S),  CFGu(T) — C™(T),
which induce functors between the corresponding derived categories.
Lemma 3.6.1. (i) The induced functors

nggr(R) - ’Dé,fg(R)’ nggr(8> - Dg}”fg(s)’ nggr(T) — 'Dg\rfg(,]')
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are equivalences of categories.

(i) Similarly, the natural functors
DFGy(R) — DE(R), DFGyu(S) — DE(S), DFGe(T) — DE(T)
are equivalences of categories.

Proof. Our proof of this lemma is very similar to that of [Bor87, VI1.2.11] (see also Propo-
sition I11.3.2.4). We give the details of the proof of (ii). Statement (i) can be treated
similarly.

Using the “regrading trick” of 3.5, the cases of S and R are equivalent. Similarly, using
the change of the internal grading to the opposite one, we see that the cases of R and 7
are equivalent. Hence it is sufficient to consider the Gy-equivariant dg-algebra 7.

Remark that the algebra 7, as well as its cohomology H(7), is finitely generated
as a S(W)-module. Hence a 7-dg-module N is locally finitely generated, respectively has
locally finitely generated cohomology, iff N, respectively H(N), is locally finitely generated
over S(W).

Lemma 3.6.2. Let N be an object of Car(T), with locally finitely generated cohomology,
whose cohomological grading is bounded. Then N is the inductive limit of quasi-coherent
sub-T -dg-modules which are locally finitely generated, and which are quasi-isomorphic to
N under inclusion.

Proof of Lemma 3.6.2. The internal grading has no importance in this statement, hence
we will forget about it in the proof. The dg-module N is clearly an inductive limit of
locally finitely generated quasi-coherent sub-7-dg-modules. Hence it is sufficient to show
that given a locally finitely generated quasi-coherent sub-dg-module F of N, there exists
a locally finitely generated quasi-coherent sub-dg-module G of N, containing F and quasi-
isomorphic to A under the inclusion map.

This is proved by a simple (descending) induction. Let j € Z. Assume that we have
found a subcomplex G;) of @iz j N, quasi-coherent over Oy, locally finitely generated
over S(W), containing @iZj Fi, stable under T (i.e. if g € Q(ij) andt € T andifi+k > j,
then t-g € g(ij)k), such that G(;) < N is a quasi-isomorphism in cohomological degrees
greater than j and that g{j) N ker(dj\/) — HJ(N) is surjective. Then we choose a locally

finitely generated sub-S(W)-module H/~! of NV~ containing F/~!, quasi-coherent over
Ox, whose image under dﬂ\fl is ggj) ﬂIm(dﬂ\;l). Without altering these conditions, we can

add a sub-module of cocycles so that the new sub-module 7/~ contains representatives
of all the elements of H/~*(N). We can also assume that N7~! contains all the sections
of the form t-gfort € T" and g € Qé“j) with ¢+ k = j — 1. Then we define G(;_1) by

k . .
Qk. _ g(]) if k> 7,
(=1) HITL it k=g —1.

For j small enough, G(; is the sought-for sub-dg-module. O
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Let us denote by
L DFGer(T) — DE(T)

the functor under consideration. Let N be an object of Dgf);gr(’f). Then the cohomology
H(N) is bounded for the cohomological grading (because it is locally finitely generated
over H(T), which is bounded). Hence, using truncation functors (see 2.1), N is isomorphic
to a 7-dg-module whose cohomological grading is bounded. Using Lemma 3.6.2, it follows
that N is in the essential image of . Hence ¢ is essentially surjective.

Now, let us prove that it is full. Let N7 and N3 be objects of CFGer(T). In particular,
N1 and Ny have bounded cohomological grading. A morphism ¢ : t(N7) — ¢(N2) in
Dg%(’]') is represented by a diagram

(N S F L)

where 3 is a quasi-isomorphism. Using truncation functors, one can assume that F has
bounded cohomological grading. By Lemma 3.6.2, there exists a locally finitely generated
sub-7-dg-module F’ of F, containing a(N7) and 3(N2), and quasi-isomorphic to F under
the inclusion map. Then ¢ is also represented by

WMD) S F L (),

which is the image of a morphism in DF Gy (7). Hence ¢ is full.

Finally we prove that ¢ is faithful. If a morphism f : N7 — N in CFG,(7T) is such
that ¢(f) = 0, then there exist an object F of nggr(T), which can again be assumed to
be bounded, and a quasi-isomorphism of 7-dg-modules g : Mo — F such that g o f is
homotopic to zero. This homotopy is given by a morphism h : N7 — F[—1]. Again by
Lemma 3.6.2, there exists a locally finitely generated sub-7-dg-module F’ of F containing
g(N32) and h(N1)[1], and quasi-isomorphic to F under inclusion. Replacing F by F’, this
proves that f = 0in DF G, (7). The proof of Lemma 3.6.1 is complete. O

3.7 Restriction of the equivalences to locally finitely generated dg-mo-
dules

Proposition 3.7.1. The functors o/, 2B restrict to equivalences of categories
Dyr(S) = Dy 8(T).
Proof. It is sufficient to prove that the functors &, % send dg-modules with locally finitely

generated cohomology to dg-modules with locally finitely generated cohomology.

First step: functor 2. First, let us consider 4. By Lemma 3.6.1, it suflices to prove
that if A is a locally finitely generated 7-module, then Z(N) has locally finitely generated
cohomology. We begin with the following lemma.

Lemma 3.7.2. Let N be a locally finitely generated Gm-equivariant T -dg-module. There
ezist an object Q of CFGgr(T), which is locally free of finite rank over S(W) C T, and a

.. . qis
quasi-isomorphism Q — N
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Proof of Lemma 3.7.2. The arguments in this proof are very close to those in the proof
of Proposition 3.1.1. There exists a Gpy-equivariant sub-Ox-dg-module G C N, which is
coherent as an Ox-module, and which generates N as a S-dg-module. There exists also
a Gm-equivariant Ox-dg-module F, which is locally free of finite rank as an Ox-module,
and a surjection F — G. We set

Q(l) = T®0X F,

endowed with its natural structure of Guy-equivariant 7-dg-module. Then we have a
surjection of 7-dg-modules

Q(l) - N,

and QW is locally free over S(W).

Let n be the rank of W over Ox. Taking the kernel of our morphism o — W,
and repeating the argument, we obtain locally finitely generated 7-dg-modules QU), j =
1,--+,n + d, which are locally free of finite rank over S(W), and an exact sequence of
T-dg-modules

gntd) _, gldtn=1) ., o) , A/ 0.

All these objects are complexes of coherent S(W)-modules, hence we can consider them as
complexes of coherent sheaves on W*, the vector bundle on X with sheaf of sections WYV.
The scheme W* is noetherian, integral, separated and regular of dimension d + n. Hence
QUntd+l) .= Ker(Qntd) — Q(n+d=1)) ig also locally free over S(W). Then

Q := Tot(0 — QU+l ..., o) _ )

is a resolution of A/ as in the lemma. O

Now let @ 25 A be a resolution as in Lemma 3.7.2. In particular Q is locally free
over Oy, hence Z(N) is isomorphic to the image of %(Q) in the derived category. Hence
it is enough to prove that Z(Q) has locally finitely generated cohomology, and even to
prove that this cohomology is locally finitely generated over S(VY). Let x € X. The
object #(Q), was described in 3.2. We use the same notations as in this subsection.
Disregarding the internal grading, #(Q), is also the total complex of the double complex
with (p, ¢)-term

cri= P NWY)@ox, STVY) @ox., (QF,
q:pijc)ﬂ'

and with differentials d’ = d; +ds, d” = da+d4. By hypothesis, (QV)F = 0 for k < 0, hence
CP4 =0 for ¢ < 0. Hence by Proposition 2.2.1 there is a converging spectral sequence

EPT = H(CP",d") = H"'(B(Q),).

It follows that it is sufficient to prove that the cohomology of S ®n, QV, endowed with
the differential ds + dy, is locally finitely generated over S(V¥). This complex is again the
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total complex of the double complex with (p, ¢)-term

Drii= B NWY) @ox, SVY) @ox., (Q))F,

p=2j+k,
q=1

and with differentials d’ = dy, d’ = d3. The spectral sequence of this double complex
again converges, hence we can forget about da. Then S ®0p, @Y, endowed with the differ-
ential d3, is locally the tensor product of S(VY) with a finite number of Koszul complexes
Koszula(W)) of (2.3.2). The result follows.

Second step: functor /. The proof for the functor .27 is entirely similar. In this case,
with the notation of 3.2, we can consider the double complex with (p, ¢)-term

cri= @ NW) oy, W) wo., (P,
p=k—2i—j,

q=i+j

and differentials d’ = dy+ds, d’ = d3+d4. Here CP7 = 0 for ¢ < 0, hence the corresponding
spectral sequence converges, and we can forget about d; and do. Then we can consider the
double complex

Dri= B NWY)®ox, V) ©ox. (P
p=k—21,
q=1

with differentials d’ = ds and d’ = d3. And we finish the proof as above. O

Finally, combining Proposition 3.7.1, Lemma 3.6.1 and the “regrading trick” of 3.5 we
obtain the following theorem, which is the main result of this section.

Theorem 3.7.3. There exists a contravariant equivalence of triangulated categories
K DE(T) = DE(R)

satisfying K(M[n](m)) = k(M)[—n + m](m).

4 Linear Koszul duality

In this section we give a geometric interpretation of Theorem 3.7.3.

4.1 Intersections of vector bundles

Let us consider as above a noetherian, integral, separated, regular scheme X, and a vector
bundle E over X. Let Fy, F5 C E be sub-vector bundles. Let E* be the vector bundle dual
to F, and let Fj-, F5- C E* be the orthogonal to Fy, respectively Fp. We will be interested
in the dg-schemes

Flr%EFQ and Fllr]%E* FQJ'
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Let &, F1,F5 be the sheaves of local sections of E, F7, F5. Then the sheaves of local
sections of E*, Fi-, F3- are, respectively, £V, Fi- and F3 (here we consider the orthogonals
inside £Y). Let us denote by X the Ox-dg-module

X = (OﬂffﬂfQVHO),
where Fi- is in degree —1, Fy is in degree 0, and the non-trivial differential is the compo-
sition of the natural morphisms Fi- < & — F/, and by Y the Ox-dg-module
YV:i=(0—F —E&/F —0),

where F; is in degree —1, £/F7 is in degree 0, and the non-trivial differential is the opposite
of the composition of the natural morphisms Fo» — & — £/ F7.

Lemma 4.1.1. There exist equivalences of categories

D(F Ap F2) 2 D(X,Sym(X)),  D(Fi g F3) = D(X, Sym(D)).
Proof. We need only prove the first equivalence (the second one is similar: replace E by E*,
F by F2i7 F> by FIL) Let A be any graded-commutative, non-positively graded, quasi-

coherent dg-algebra on E| quasi-isomorphic to Op, é}oE Op, (see 1.4). Let m: E — X be
the natural projection. Then it is well-known (see e.g. [Gro61la, 1.4.3]) that the functor m,
induces equivalences of categories

C(E,A)=C(X,m.A), DE,A =DX,m.A).
Moreover, the data of A is equivalent to the data of the 7m,.Opg-dg-algebra m..A, which is
quasi-isomorphic to m.Op, ém@E TOF,.
Now there are natural isomorphisms m.Op = Sp (£Y), mOFr = So, (FY) (i = 1,2).
Consider the Koszul resolution
Sym(0 — Fit — € —0) T S(FY) = S(€)/(Fi - S(EY)),

where Fi- is in degree —1, £V is in degree 0, and the differential is the natural inclusion.
This is a flat dg-algebra resolution of S(F)’) over S(EY). If we tensor this resolution
with S(Fy) (over S(EY)) we obtain that the dg-algebra Sym(X) is quasi-isomorphic to
m.Op, (§L§,T*(9E 7+Op,. Hence we can take m,.A = Sym(X’). This finishes the proof of the
lemma. O

4.2 Linear Koszul duality

One can also consider X as a Guy-equivariant Oy-dg-module, where Fi- and Fy are in
internal degree 2. Then, similarly, ) is Gy-equivariant (with generators in internal degree
—2). Geometrically, this corresponds to considering a Gmy-action on E| where ¢t € k* acts
by multiplication by ¢t =2 along the fibers. We will use the notations

Dg, (FifpF) = DE(X,Sym(X)),
Dg, (Fi- (g Ff) == DE(X,Sym())).

Then Theorem 3.7.3 gives, in this situation:



4. LINEAR KOSZUL DUALITY 197

Theorem 4.2.1. There exists a contravariant equivalence of triangulated categories, called
linear Koszul duality,

k:Dg (Fif\gF) = D& (Fi-fig Fy)

satisfying K(M[n](m)) = k(M)[—n + m](m).

4.3 Equivariant version of the duality

Finally, let us consider an algebraic group G acting on X (algebraically). Assume that E
is a G-equivariant vector bundle, and that F} and F5 are G-equivariant subbundles. Then,
with the same notations as above, X is a complex of G-equivariant coherent sheaves on X.
Let us denote by

R
DGy, (F1 Mg F2)

the derived category of G x Gm-equivariant quasi-coherent Sym(X)-dg-modules on X (i.e.
Gm-equivariant dg-modules as above, endowed with a structure of G-equivariant quasi-
coherent Ox-module compatible with all other structures) with locally finitely generated

cohomology, and similarly for Dngm(FlL A Ex FQL) Then our constructions easily extend
to give the following result.

Theorem 4.3.1. There exists a contravariant equivalence of categories
C R ~ C 1R 1
K DGxGen (F1NE F2) — Dgye,, (FT Ne+ Fy7)

satisfying K(M[n](m)) = k(M)[—n + m](m).
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