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Introduction

Depuis les travaux de Beilinson, Ginzburg et Soergel (voir [BGS96]), la dualité de Kos-
zul et la notion d'anneau de Koszul sont devenues des ingrédients essentiels en théorie de
Lie (voir par exemple [AJS94]). L'un des résultats principaux de la présente thèse est la
construction d'une �dualité de Koszul géométrique� reliant di�érentes catégories dérivées
de représentations de l'algèbre de Lie g d'un groupe algébrique semi-simple, connexe, sim-
plement connexe sur un corps algébriquement clos de caractéristique positive p, et l'étude
de ses propriétés. En particulier nous en déduisons que l'algèbre enveloppante restreinte de
g peut être munie d'une graduation de Koszul si p est su�samment grand, et nous donnons
des informations sur son anneau dual.

1 Contexte
1.1 Anneaux de Koszul

La notion d'anneau de Koszul a été dé�nie en 1970 par Priddy dans [Pri70]. Sauf men-
tion explicite, les anneaux considérés ne seront jamais supposés commutatifs. Un anneau
gradué

A =
⊕

i∈Z
Ai

est dit de Koszul s'il véri�e les propriétés suivantes :
1. Ai = 0 si i < 0 ;
2. A0 est un anneau semi-simple ;
3. Le A-module A0

∼= A/A>0 admet une résolution projective graduée

· · · → P 2 → P 1 → P 0 → A0 → 0

telle que, pour tout i ≥ 0, P i est engendré sur A par sa partie de degré i.
Les conditions 1 et 2 sont faciles à comprendre. Si elles sont véri�ées, en termes plus
concrets, la condition 3 implique que l'anneau A est engendré (comme A0-algèbre) par des
éléments de degré 1, que les relations entre ces générateurs sont engendrées en degré 2, que
les relations entre ces relations sont engendrées en degré 3, et ainsi de suite (les relations
d'ordre n sont engendrées en degré n + 1).
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L'exemple le plus simple d'anneau de Koszul (hors les anneaux semi-simples, concentrés
en degré 0) est celui de l'algèbre symétrique S(V ) d'un espace vectoriel V de dimension
�nie, placé en degré 1.

Si A est un anneau gradué en degrés positifs ou nuls, on peut considérer l'anneau gradué

E(A) :=
⊕

n≥0

Extn
A(A0, A0),

muni du produit de Yoneda, où les groupes Extn
A sont pris dans la catégorie des A-modules

(non gradués). Si A est un anneau de Koszul, tel que A1 est un A0-module de type �ni, alors
l'anneau A! := E(A)op est également un anneau de Koszul, appelé anneau dual. Notons
que sous ces hypothèses on a un isomorphisme canonique (A!)! ∼= A.

Par exemple, l'anneau dual de l'anneau de Koszul S(V ) est l'algèbre extérieure Λ(V ∗)
du dual V ∗ de V . Ici encore, V ∗ est placé en degré 1.

1.2 Les travaux de [BGS96]
Dans l'article [BGS96], les auteurs démontrent que chaque bloc de la catégorie O d'une

algèbre de Lie semi-simple complexe gC est �gouverné� par un anneau de Koszul, c'est-à-
dire est équivalent à la catégorie des modules non-gradués de type �ni sur un anneau de
Koszul. Dans le cas d'un bloc régulier, cet anneau est auto-dual, c'est-à-dire isomorphe à
son anneau dual. Dans le cas d'un bloc singulier, la catégorie des modules de type �ni (non
gradués) sur l'anneau dual est également équivalente à une sous-catégorie explicite de la
catégorie O.

La preuve de ce résultat est basée sur une description géométrique des blocs de la
catégorie O. Plus précisément, la théorie de la localisation due à Beilinson et Bernstein
donne des équivalences de catégories entre certaines catégories (abéliennes) de gC-modules
et certaines catégories de D-modules sur la variété des drapeaux BC associée à gC. Il
s'agit de la partie �algébrique� de la description. Ensuite vient une partie �topologique� :
la correspondance de Riemann-Hilbert identi�e ces catégories de D-modules à certaines
catégories de faisceaux pervers sur BC. Schématiquement, on a donc la description suivante :

gC-modules Localisation−−−−−−−→
(Algèbre)

{ D-modules
sur BC

}
Riemann-Hilbert−−−−−−−−−−→

(Topologie)

{
Faisceaux

pervers sur BC

}
.

1.3 Localisation en caractéristique positive
Dans les articles [BMR08] et [BMR06], Bezrukavnikov, Mirkovi¢ et Rumynin ont déve-

loppé un analogue de la description géométrique précédente en caractéristique positive. Plus
précisément, considérons l'algèbre de Lie g d'un groupe algébrique semi-simple, connexe,
simplement connexe G sur un corps algébriquement clos de caractéristique p. Dans cette
sous-partie, nous supposerons que p est supérieur au nombre de Coxeter h de G.

La première étape (algébrique) de leur construction consiste à démontrer que les ana-
logues des foncteurs considérés par Beilinson et Bernstein induisent des équivalences de
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catégories dérivées entre certaines catégories de g-modules et certaines catégories de D-
modules (cristallins) sur la variété des drapeaux B associée à G.

La correspondance de Riemann-Hilbert n'admet pas d'analogue en caractéristique po-
sitive dans ce contexte. En remplacement, les auteurs de [BMR08] utilisent des arguments
géométriques : la propriété d'Azumaya du faisceau d'algèbres d'opérateurs di�érentiels sur
une variété lisse en caractéristique positive permet de démontrer des équivalences de caté-
gories (abéliennes) entre les catégories de D-modules considérées et certaines catégories de
faisceaux cohérents sur la variété g̃(1), où l'exposant (1) désigne le décalage de Frobenius,
et où g̃ est la �résolution simultanée� de Grothendieck (un certain �bré vectoriel au-dessus
de B). Schématiquement, on a donc la description suivante :

g-modules Localisation dérivée−−−−−−−−−−−−→
(Algèbre)

{ D-modules
sur B

}
Azumaya−−−−−−−→

(Géométrie)

{
Faisceaux

cohérents sur g̃(1)

}
.

Nous renviendrons plus en détail sur cette théorie en 2.1 ci-dessous.

1.4 Koszulité de l'algèbre enveloppante restreinte
Gardons les notations de la sous-partie 1.3, et notons (Ug)0 l'algèbre enveloppante

restreinte de g. Dans l'article [AJS94], Andersen, Jantzen et Soergel démontrent que, pour
p su�samment grand (sans borne explicite), les blocs réguliers de (Ug)0 peuvent être munis
d'une graduation de Koszul.

Dans le chapitre III de cette thèse (voir 2.3 ci-dessous) nous obtenons en particulier
une nouvelle preuve de ce résultat comme corollaire de nos constructions. Nous donnons
également des informations sur l'anneau de Koszul dual, et nous étendons cette propriété
aux blocs singuliers.

2 Présentation des résultats
Ce mémoire se compose de quatre chapitres.

2.1 Rappels et calculs explicites
Dans le chapitre I, nous rappelons tout d'abord les résultats principaux des articles

[BMR08] et [BMR06]. Supposons comme ci-dessus que la caractéristique p est supérieure
au nombre de Coxeter de G. Soit T ⊂ G un tore maximal, et t son algèbre de Lie. Le
centre Z de l'algèbre enveloppante Ug de g est engendré par deux sous-algèbres : le centre
de Harish-Chandra ZHC et le centre de Frobenius ZFr. Un caractère de Z est donc donné
par une �paire compatible� (λ, χ) où λ ∈ t∗ (alors λ dé�nit un caractère de ZHC) et χ ∈ g∗

(alors χ dé�nit un caractère de ZFr).
Dans ce mémoire nous considérons uniquement1 le cas où λ est l'image d'un caractère

de T (que l'on note également λ) et où χ est nilpotent (et même χ = 0 la plupart du
1Notons qu'on peut toujours se ramener à ce cas si l'on accepte de considérer des groupes réductifs

plutôt que semi-simples, voir par exemple [Jan98, 7.4].
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temps). On note (Ug)λ := (Ug) ⊗ZHC
kλ, (Ug)χ := (Ug) ⊗ZFr

kχ les algèbres obtenues
par spécialisation. En particulier, (Ug)0 est l'algèbre enveloppante restreinte considérée en
1.4. On note également Modfg

(λ,χ)(Ug) la catégorie des Ug-modules de type �ni sur lesquels
Z agit avec un caractère généralisé (λ, χ), et on utilise des notations similaires pour les
catégories Modfg

χ ((Ug)λ), Modfg
λ ((Ug)χ).

Comme en 1.3, soit g̃ la résolution simultanée de Grothendieck, et soit Ñ ⊂ g̃ la
variété de Springer. On considère B comme la section nulle de Ñ et g̃. Alors si λ est un
caractère régulier, la théorie de la localisation en caractéristique positive donne notamment
des équivalences de catégories

εBλ : DbCohB(1)(Ñ (1)) ∼−→ DbModfg
0 ((Ug)λ) ;

γBλ : DbCohB(1)(g̃(1)) ∼−→ DbModfg
(λ,0)(Ug).

Ici, pour Y un sous-schéma fermé d'un schéma X, on a noté CohY (X) la catégorie des
faisceaux cohérents sur X supportés (ensemblistement) dans Y .

À la suite de ces rappels nous présentons des calculs explicites dans les cas où G = SL(2)
et G = SL(3) (obtenus en collaboration avec Roman Bezrukavnikov, et publiés dans un
appendice à [BMR08]). Plus précisément, dans ces deux cas nous déterminons les images in-
verses par l'équivalence εB0 des objets simples de la catégorie Modfg

0 ((Ug)0). Nous calculons
également des objets de la catégorie DbCoh(Ñ (1)) ayant le �comportement homologique�
d'objets projectifs de la catégorie Modfg

0 ((Ug)0) via εB0 . Notons que la catégorie abélienne
Modfg

0 ((Ug)0) ne possède aucun object projectif.
Les calculs dans le cas de G = SL(2) sont faciles, mais ils seront utiles car ils se géné-

ralisent pour déterminer certains objets dans le cas général (nous présentons et utilisons
cette généralisation dans le chapitre III). Dans le cas de G = SL(3), les calculs deviennent
plus di�ciles.

2.2 Action géométrique du groupe de tresses
Dans le chapitre II nous présentons une construction qui aura un rôle technique impor-

tant dans le chapitre III, mais qui a également un intérêt propre.
Notons B′

aff le groupe de tresses a�ne étendu associé à G. Pour presque toute carac-
téristique p (et en particulier si p = 0) nous construisons par des méthodes géométriques
une action2 du groupe B′

aff sur la catégorie DbCoh(g̃). Le groupe B′
aff a deux types de

générateurs : des éléments Tsα associés aux ré�exions simples du groupe de Weyl W de
G (pour un certain choix d'une base du système de racines associé), et des éléments θx

associés aux caractères de T . Pour cette action, l'élément θx agit par produit tensoriel avec
le �bré en droites sur g̃ associé naturellement à x.

Décrivons maintenant l'action des éléments Tsα , dans le cas où la caractéristique p est
très bonne (pour G). Dans ce cas, le groupe W agit de façon naturelle sur la restriction g̃rs

2Ici nous considérons la notion faible d'action d'un groupe sur une catégorie : une action d'un groupe A
sur une catégorie C est la donnée d'un morphisme de groupe de A vers le groupe des classes d'isomorphisme
d'auto-équivalences de C.
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de g̃ aux éléments réguliers semi-simples. Notons Sα l'adhérence dans g̃× g̃ du graphe de
sα sur g̃rs. Alors Tsα agit par convolution (ou transformée de Fourier-Mukai) avec le noyau
OSα .

Cette action se factorise également en une action de B′
aff sur la catégorie DbCoh(Ñ ).

Nous présentons deux preuves du fait que ces foncteurs donnent lieu à une action de
B′

aff . La première démontre le résultat dans le cas où G n'a pas de composante de type
G2 et p 6= 2 si G a une composante de type B, C ou F. Elle a été publiée dans [Ric08a].
La seconde preuve est valide pour tout groupe G, si la caractéristique p est très bonne3. Il
s'agit d'un travail en collaboration avec Roman Bezrukavnikov.

Cette action a plusieurs interprétations en théorie des représentations. Supposons tout
d'abord que la caractéristique p est positive, et supérieure au nombre de Coxeter de G.
Dans ce cas, Bezrukavnikov, Mirkovi¢ et Rumynin ont construit dans [BMR06] une action
du groupe de tresses B′

aff sur chacune des catégories DbModfg
(λ,χ)(Ug) pour λ régulier et χ

nilpotent. Via les équivalences γBλ et leurs analogues pour χ 6= 0, elles induisent des actions
de B′

aff sur diverses sous-catégories de DbCoh(g̃(1)). Nous démontrons que la décalée par
le Frobenius de l'action considérée ci-dessus sur DbCoh(g̃) se restreint en les actions de
[BMR06] sur toutes ces sous-catégories.

Supposons maintenant que le corps de base est C, et considérons l'action de B′
aff sur

DbCoh(Ñ ). Comme pour g̃, les générateurs θx et Tsα agissent par convolution, et les noyaux
associés sont des images directes de faisceaux sur le produit �bré Z := Ñ ×N Ñ , une sous-
variété fermée de Ñ × Ñ (appelée variété de Steinberg). Ici N est la variété nilpotente de
g, et le morphisme Ñ → N est la résolution de Springer. D'autre part, ces noyaux sont
naturellement G × C×-équivariants, où C× agit sur Z par dilatation dans les �bres de la
projection Z → B×B. L'action est donc dé�nie par un morphisme de groupes de B′

aff vers
le groupe des classes d'isomorphismes d'objets de la catégorie DbCohG×C×

Z (Ñ × Ñ ) (muni
du produit de convolution). Passant à la K-théorie, on obtient un morphisme de groupes
de B′

aff vers la K-théorie G×C×-équivariante de Z, qui est isomorphe (d'après Ginzburg et
Kazhdan-Lusztig, voir [CG97] ou [Lus98]) à l'algèbre de Hecke a�ne étendue H′aff associée
à G. Cette algèbre est un certain quotient de l'algèbre de groupe de B′

aff sur Z[v, v−1]. Nous
démontrons que le morphisme B′

aff → H′aff obtenu par cette construction est le morphisme
naturel. Cette action est donc une catégori�cation de l'isomorphisme KG×C×(Z) ∼= H′aff .

En�n, toujours dans le cas du corps C, cette action est liée à la construction géomé-
trique (due à Springer) des représentations du groupe W dans la cohomologie des �bres
de Springer.

2.3 Dualité de Koszul et Ug-modules
Le chapitre III présente les résultats principaux de cette thèse. Nous construisons une

�dualité de Koszul� qui relie, pour λ un caractère régulier de T , les catégories dérivées
3Rappelons que cette hypothèse exclut les groupes ayant une composante de type autre que A si p = 2,

de type E, F ou G si p = 3, de type G si p = 5, ou de type An−1 si p divise n.
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DbModfg
0 ((Ug)λ) et DbModfg

λ ((Ug)0), et montrons que cette dualité envoie les modules
simples sur les modules projectifs indécomposables. Nous utilisons ensuite cette propriété
pour reprouver, préciser et étendre certains résultats de [AJS94].

Cette approche fournit également des informations sur les images inverses de certains
Ug-modules simples ou projectifs par les équivalences εBλ et γBλ de 2.1.

Supposons que la caractéristique p est supérieure au nombre de Coxeter de G, et
soit λ un caractère dans l'alcôve fondamentale. Via l'équivalence εBλ de 2.1, la catégorie
DbModfg

0 ((Ug)λ) s'identi�e à une sous-catégorie de la catégorie DbCoh(Ñ (1)). En utilisant
des arguments géométriques, nous construisons :

(a) des catégories triangulées �graduées� Cgr et Dgr (c'est-à-dire, munies d'une auto-
équivalence notée 〈1〉), qui sont des �versions graduées� des catégories DbCoh(Ñ (1))
et DbModfg

λ ((Ug)0) respectivement (c'est-à-dire, on a des foncteurs �d'oubli de la
graduation�, For : Cgr → DbCoh(Ñ (1)) et For : Dgr → DbModfg

λ ((Ug)0) ;
(b) une équivalence κ : Cgr ∼−→ Dgr.
On obtient donc un diagramme

Cgr κ
∼ //

For
²²

Dgr

For
²²

DbModfg
0 ((Ug)λ) � � // DbCoh(Ñ (1)) DbModfg

λ ((Ug)0).

Notre résultat essentiel est alors que, pour p À 0, l'équivalence κ envoie les relevés
des objets simples de Modfg

0 ((Ug)λ) sur les relevés des objets projectifs de Modfg
λ ((Ug)0), à

un décalage près. Notons que la catégorie Modfg
λ ((Ug)0) est équivalente à la catégorie des

modules sur un certain quotient (Ug)λ̂
0 de l'algèbre enveloppante restreinte (Ug)0 (le bloc

associé à λ) ; elle contient donc des objets projectifs.
L'idée principale de la preuve est la suivante : en utilisant des foncteurs de transla-

tion, il su�t d'établir ce résultat pour les objets simples associés aux poids dans l'alcôve
fondamentale ; et on peut traiter explicitement ces objets en généralisant les calculs du
chapitre I pour SL(2) et SL(3). Dans l'étape de réduction à l'alcôve fondamentale, nous
utilisons la conjecture de Lusztig sur les caractères des G-modules simples ([Lus80b]). Cette
conjecture a été démontrée, grâce à des travaux de Kazhdan-Lusztig ([KL93a], [KL93b],
[KL94a], [KL94b], [Lus94]), Kashiwara-Tanisaki ([KT95], [KT96]) et Andersen-Jantzen-
Soergel ([AJS94]), lorsque la caractéristique p est su�samment grande, sans borne expli-
cite. Ceci explique notre restriction sur p.

De ce résultat découle en particuler l'existence d'une graduation de Koszul sur l'algèbre
(Ug)λ̂

0 , pour tout caractère λ régulier, sous les mêmes hypothèses que dans [AJS94], c'est-à-
dire pour p su�samment grand (voir la sous-partie 1.4). Nos méthodes sont très di�érentes
de celles utilisées dans l'article [AJS94], et fournissent également des informations sur
l'anneau dual, qu'on peut relier à la catégorie Mod0((Ug)λ).

En utilisant un �analogue parabolique� des constructions précédentes, nous démontrons
également que pour un poids µ singulier, le bloc (Ug)µ̂

0 de (Ug)0 associé à µ peut être muni
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d'une graduation de Koszul si p À 0. Dans ce cas aussi nous donnons des informations sur
l'anneau dual.

Il découle en particulier que, pour p su�samment grand, l'anneau (Ug)0 peut être muni
d'une graduation de Koszul. Notons que cette propriété a été conjecturée par Soergel (sous
l'hypothèse p > h) dans son exposé à l'I.C.M. de Zurich (voir [Soe94]).

2.4 Dualité de Koszul linéaire

Dans le chapitre IV nous présentons une version légèrement di�érente, et dans un
cadre plus général, d'un résultat intermédiaire du chapitre III, obtenue en collaboration
avec Ivan Mirkovi¢. Ce chapitre est indépendant des trois autres, et ne fait intervenir ni
groupe algébrique, ni algèbre de Lie.

La notion de dg-schéma a été introduite par Ciocan-Fontanine et Kapranov dans
[CFK01]. Pour nous, un dg-schéma sera la donnée d'une paire (X,AX), où X est un
schéma noethérien et AX est un faisceau de OX -dg-algèbres commutatives (au sens gra-
dué), quasi-cohérent comme OX -module, et concentré en degrés négatifs ou nuls. Un des
grands intérêts de cette notion est le fait que la catégorie dérivée des faisceaux de AX -
dg-modules ne dépend (à équivalence près) du choix de AX qu'à quasi-isomorphisme près.
Ceci permet de �dé�nir� l'intersection dérivée Y

R∩X Z de deux sous-schémas fermés Y et
Z d'un schéma X comme étant le dg-schéma

(X, OY
L⊗OX

OZ),

à quasi-isomorphisme près.
Considérons un schéma X noethérien, intègre, séparé et régulier. Soient E un �bré

vectoriel au-dessus de X, et F1, F2 ⊂ E des sous-�brés. Notons F⊥
1 , F⊥

2 les orthogonaux
de F1, F2, qui sont des sous-�brés du dual E∗ de E. Avec ces notations, nous établissons
une équivalence de catégories contravariante entre une �version graduée� de la catégorie
dérivée des dg-faisceaux cohérents sur F1

R∩E F2, et une �version graduée� de la catégorie
dérivée des dg-faisceaux cohérents sur F⊥

1

R∩E∗ F⊥
2 .

Cette dualité de Koszul linéaire généralise la dualité classique entre les modules sur l'al-
gèbre symétrique S(V ) d'un espace vectoriel V (de dimension �nie) et l'algèbre extérieure
Λ(V ∗) du dual V ∗. Plus précisément, nous remplaçons V par un complexe de faisceaux
localement libres de rang �ni, ayant deux termes non-nuls.

Plusieurs applications de cette construction en théorie des représentations seront pré-
sentées dans un travail ultérieur (voir la sous-partie 3.2 ci-dessous).

Notons que la construction des catégories Cgr, Dgr considérées en 2.3 est basée sur les
mêmes idées que celles développées dans ce chapitre. Cependant, la construction précise de
l'équivalence κ dans le chapitre III est légèrement di�érente des constructions du chapitre
IV (et donc n'en est pas un cas particulier).
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3 Perspectives
3.1 Action du groupe de tresses précisée

Conjecturalement, l'action du groupe B′
aff sur la catégorie DbCoh(g̃) (voir 2.2) admet

une description plus précise si p est très bon pour G.
Il existe une application canonique W ↪→ B′

aff , qui envoie un élément w ∈ W sur un
élément de B′

aff que nous noterons Tw. Pour tout w ∈ W , notons Zw l'adhérence dans
g̃ × g̃ du graphe de l'action de w sur g̃rs (voir 2.2). Alors Bezrukavnikov conjecture dans
[Bez06b] que l'élément Tw agit par convolution avec le noyau OZw ∈ DbCoh(g̃ × g̃). Cet
énoncé semble beaucoup plus di�cile à démontrer que la simple existence de l'action, dans
la mesure où les variétés Zw n'ont a priori aucune propriété de régularité. Par exemple,
un point essentiel (et non trivial) de la preuve de l'article [Ric08a] consiste à démontrer
que la variété Zv0 est normale (et Cohen-Macaulay) lorsque v0 est l'élément de plus grande
longueur dans le groupe de Weyl d'un sous-groupe parabolique de G de rang 2, de type
A2 ou B2. Dans le cas de B2, la variété Zv0 n'est pas Gorenstein.

Supposons que le corps de base est C. Il existe un morphisme naturel g̃ → g∗, et la
variété g̃×g∗ g̃ a même K-théorie que Z. La description conjecturale précédente de l'action
donnerait en particulier, pour chaque w ∈ W , un faisceau cohérent sur g̃ ×g∗ g̃ dont la
classe en K-théorie correspond, via l'isomorphisme KG×C×(g̃ ×g∗ g̃) ∼= KG×C×(Z) ∼= H′aff

(voir 2.2), à l'image de Tw dans H′aff .

Revenons au cas général. Notons B0 le sous-groupe de B′
aff engendré par les Tw, w ∈

W . Ce groupe est isomorphe au groupe de tresses associé à W . De la description plus
précise de l'action découlerait également, en utilisant un théorème de Deligne ([Del97]),
qu'on peut dé�nir une action au sens fort de B0 sur DbCoh(g̃), c'est-à-dire que pour tout
b ∈ B0 on peut choisir une auto-équivalence Fb de DbCoh(g̃) dans la classe d'isomorphisme
associée à b ci-dessus, et pour tous b, b′ ∈ B0 on peut choisir un isomorphisme de foncteurs
Fb ◦Fb′ ∼= Fbb′ , de telle sorte que ces données véri�ent certaines relations d'associativité. Il
serait alors intéressant d'étudier si cette propriété est vraie pour le groupe B′

aff tout entier.

3.2 Applications de la dualité de Koszul linéaire
Dans l'introduction du chapitre IV nous présentons deux applications de la dualité de

Koszul linéaire, qui seront démontrées dans un travail ultérieur.

Tout d'abord, considérons un groupe algébrique semi-simple, connexe et simplement
connexe G sur C, et utilisons les mêmes notations que ci-dessus. On a les sous-�brés
vectoriels F1 := Ñ × Ñ et F2 := ∆g∗ × (B × B) du �bré vectoriel constant E au-dessus
de B × B, de �bre g∗ × g∗. Ici ∆g∗ ⊂ g∗ × g∗ est la copie diagonale. Via la forme de
Killing, g s'identi�e naturellement à g∗, ce qui identi�e également E et E∗. Via cette
identi�cation, l'orthogonal F⊥

1 s'identi�e à g̃ × g̃. L'orthogonal F⊥
2 s'identi�e, lui, à la

copie anti-diagonale de g∗. Quitte à multiplier par −1 dans la deuxième copie de g∗, on
peut supposer que F⊥

2 = ∆g∗ × (B × B).
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Une version équivariante de la construction du chapitre IV donne donc une équivalence
entre des catégories de dg-faisceaux cohérent G× C×-équivariants sur

(Ñ × Ñ )
R∩(g∗×g∗)×(B×B) ∆g∗ × (B × B) et (g̃× g̃)

R∩(g∗×g∗)×(B×B) ∆g∗ × (B × B).

Notons que, à gauche, l'intersection non-dérivée est Z, et que, à droite, l'intersection non-
dérivée est g̃ ×g∗ g̃. On en déduit aisément que les deux catégories considérées ont des
groupes de Grothendieck isomorphes à KG×C×(Z) ∼= H′aff .

Cette équivalence sera l'ingrédient essentiel d'une réalisation géométrique de l'invo-
lution de Iwahori-Matsumoto, c'est-à-dire la construction géométrique d'une équivalence
entre les deux catégories ci-dessus telle que l'automorphisme induit en K-théorie est l'invo-
lution de Iwahori-Matsumoto. Notons qu'une réalisation géométrique avait été construite
par Evens et Mirkovi¢ pour l'involution de Iwahori-Matsumoto de l'algèbre de Hecke a�ne
étendue graduée, dans [EM97].

Pour la deuxième application, considérons un �bré quelconque E, et deux sous-�brés
F1, F2, sur le corps de base C. De même que ci-dessus, le groupe de Grothendieck des
catégories reliées par la dualité de Koszul linéaire est respectivement KC×(F1 ∩ F2) et
KC×(F⊥

1 ∩ F⊥
2 ). Dans les deux cas, C× agit par dilatation dans les �bres de E ou E∗. On

obtient donc un isomorphisme

KC×(F1 ∩ F2) ∼= KC×(F⊥
1 ∩ F⊥

2 ).

Cet isomorphisme est relié, via le caractère de Chern, à l'isomorphisme en homologie de
Borel-Moore

HBM
∗ (F1 ∩ F2) ∼= HBM

∗ (F⊥
1 ∩ F⊥

2 )

dé�ni par Kashiwara en utilisant une transformée de Fourier.

3.3 Koszulité de certaines algèbres associées aux slices de Slodowy
Bezrukavnikov dé�nit dans [Bez06b] une algèbre Aχ, associée à un élément nilpotent

χ ∈ g∗. Plus précisément, cette algèbre est associée au slice de Slodowy associé à χ. Il
demande dans [Bez06b, 2.26] si cette algèbre peut être munie d'une graduation de Koszul.

Dans le cas où χ est régulier, il est facile de voir que la réponse est positive. Le cas où
χ est sous-régulier peut également être traité par des méthodes spéci�ques, et la réponse
est encore positive. Le cas où χ = 0 est essentiellement traité dans le chapitre III. Mais le
problème reste ouvert dans les autres cas. Il pourrait peut-être être traité en comparant la
t-structure sur DbCoh(Ñ ) provenant de l'équivalence ε0B de 2.1 et la t-structure exotique sur
DbCohG(Ñ ) dé�nie par Bezrukavnikov dans [Bez06a], puis en se ramenant à une question
dans cette dernière catégorie.

3.4 Généralisation aux algèbres de Kac-Moody
Pour le corps de base C, la stratégie d'étude des g-modules (voir le diagramme en 1.2)

a été (partiellement) généralisée aux algèbres de Kac-Moody complexes par Kashiwara et
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Tanisaki (voir [Kas90], [KT90], [KT95], [KT96] ; voir également [KT98] pour une vue d'en-
semble de ces travaux). Suivant une suggestion de Vasserot, il serait intéressant d'étudier
la possibilité d'une généralisation de l'étude de [BMR08], [BMR06] au cas des algèbres de
Kac-Moody (ou au moins des algèbres a�nes) en caractéristique positive. Il semble raison-
nable d'espérer que la partie �algébrique� de la construction (c'est-à-dire la relation entre
g-modules et D-modules sur la variété des drapeaux) se généralise sans grand changement,
en adaptant les idées de Kashiwara et Tanisaki. Toutefois, trouver un équivalent de la
partie �géométrique� de la preuve (c'est-à-dire la relation entre D-modules sur la variété
des drapeaux et faisceaux cohérents sur g̃(1)) semble moins clair.

Il serait certainement nécessaire dans cette optique de développer l'étude des représen-
tations des algèbres de Kac-Moody en caractéristique positive, ce qui a été peu fait jusqu'à
présent (voir cependant les articles de Mathieu [Mat96] et [Mat03]).

En 2.2 nous avons expliqué que l'action du groupe B′
aff sur DbCoh(Ñ ) est une �ca-

tégori�cation� de l'isomorphisme H′aff
∼= KG×C×(Z). Vasserot a donné dans [Vas05] une

généralisation partielle de cet isomorphisme au cadre a�ne. Dans ce cadre,H′aff est rempla-
cée par l'algèbre de Cherednik (ou algèbre de Hecke doublement a�ne), et Z par une variété
de Steinberg a�ne Zaff (qui est de dimension in�nie). Plus précisément, il donne une géné-
ralisation de la construction géométrique des H′aff -modules simples, qui est elle-même une
conséquence de l'isomorphisme H′aff

∼= KG×C×(Z). Il serait également intéressant d'étu-
dier une possible �catégori�cation� de cette construction. Notons cependant que la �bonne�
dé�nition de la K-théorie de la variété Zaff , ou de la catégorie DbCoh(Zaff), n'est pas claire
dans ce cadre.

3.5 Liens avec les travaux de Premet
Pour �nir, il pourrait être fructueux de comparer les constructions des articles [BMR08],

[BMR06] aux travaux de Premet sur les représentations des algèbres de Lie en caractéris-
tique positive (voir par exemple [Pre02]). Son approche est basée sur l'étude d'algèbres qui
sont des �quanti�cations� des slices de Slodowy.

Remarque sur les références
Nous utiliserons la convention standard pour faire référence à un énoncé. C'est-à-dire,

à l'intérieur, disons, du chapitre III, la référence �Theorem 9.2.1� renvoie au théorème 9.2.1
de ce chapitre III, tandis que la référence �Theorem I.1.2.1� renvoie au théorème 1.2.1 du
chapitre I.



Chapter I

Localization in positive characteristic

In this chapter we review the localization theory in positive characteristic due to Bezrukav-
nikov, Mirkovi¢ and Rumynin (section 1). Then we perform some explicit computations
in the cases G = SL(2, k) (section 2) and G = SL(3, k) (section 3).

Section 3 is a joint work with Roman Bezrukavnikov. It was published as an appendix
to [BMR08]1.

1 Review of the results of [BMR08] and [BMR06]
1.1 Notation
Let k be an algebraically closed �eld of characteristic p. Most of the time (and in particular
in this chapter), p is assumed to be positive. However, sometimes in chapters II and IV it
can be 0.

Let R be a root system, and G be the corresponding connected, semi-simple, simply-
connected algebraic group over k. We denote by h the Coxeter number of G. Let B be
a Borel subgroup of G, T ⊂ B a maximal torus, U the unipotent radical of B, B+ the
Borel subgroup opposite to B, and U+ its unipotent radical. Let g, b, t, n, b+, n+ be their
respective Lie algebras. Let R+ ⊂ R be the positive roots, chosen as the roots in n+, and
Φ be the corresponding set of simple roots. As usual, we denote by ρ the half sum of the
positive roots.

We denote by Uα ⊂ G the image of the one-parameter subgroup attached to the root
α. Let B := G/B be the �ag variety of G, and Ñ := T ∗B be its cotangent bundle. We
have the geometric description

Ñ = {(X, gB) ∈ g∗ × B | X|g·b = 0}.
We will also consider the �extended cotangent bundle�

g̃ := {(X, gB) ∈ g∗ × B | X|g·n = 0}.
1Note however that the normalization of the splitting bundles here is di�erent from the one chosen in

the appendix to [BMR08].

11



12 CHAPTER I. LOCALIZATION IN POSITIVE CHARACTERISTIC

Let h denote the �abstract� Cartan subalgebra of g, isomorphic to b0/[b0, b0] for any Borel
subalgebra b0 of g. Then there is a natural morphism g̃ → h∗, which sends a pair (X, gB)
to X|g·b, an element of the dual of g · b/g · n ∼= h. The Lie algebras t and h are naturally
isomorphic, via the morphism t

∼−→ b/n ∼= h.
For each positive root α, we choose isomorphisms of algebraic groups uα : k ∼→ Uα

and u−α : k ∼→ U−α such that for all t ∈ T we have t · uα(x) · t−1 = uα(α(t)x) and
t · u−α(x) · t−1 = u−α(α(t)−1x), and such that these morphisms extend to a morphism of
algebraic groups ψα : SL(2, k) → G such that

ψα

(
1 x
0 1

)
= uα(x), ψα

(
1 0
x 1

)
= u−α(x).

We de�ne the elements

eα := d(uα)0(1), e−α := d(u−α)0(1), hα := [eα, e−α].

We denote by Y := ZR the root latice of R, and by X := X∗(T ) the weight lattice.
Let W be the Weyl group of (G,T ), Waff := W n Y be the a�ne Weyl group, and
W ′

aff := W n X be the extended a�ne Weyl group. They act naturally on X. We denote
by �•� the dot-action of W ′

aff on X, de�ned by w • λ = w(λ + ρ)− ρ.
For λ ∈ X a dominant weight, we denote by L(λ) the simple G-module with highest

weight λ, and by IndG
B(λ) the corresponding induced module. For a general λ ∈ X, we

denote by OB(λ) the line bundle on B naturally associated to λ (see e.g. [Jan03, I.5.8]).

If P ⊆ G is a parabolic subgroup containing B, p its Lie algebra, pu the nilpotent radical
of p, and P = G/P the corresponding �ag variety, we consider the following analogue of
the variety g̃:

g̃P := {(X, gP ) ∈ g∗ × P | X|g·pu = 0}.
In particular, g̃B = g̃. The quotient morphism πP : B → P induces a morphism

π̃P : g̃ → g̃P . (1.1.1)

In this situation, we also denote by WP ⊆ W the Weyl group of P .
If α ∈ Φ, and Pα is the minimal parabolic subgroup containing B associated to α, we

simplify the notation by setting g̃α := g̃G/Pα
, π̃α := π̃G/Pα

.
For χ ∈ g∗ nilpotent we de�ne Bχ, respectively Pχ, as the set-theoretical inverse image

of χ under g̃ → g∗, respectively g̃P → g∗, endowed with the reduced scheme structure.
The variety Bχ is isomorphic to the Springer �ber associated to χ.

If X is a scheme, and Y ⊂ X a closed subscheme, one says that an OX -module F is
supported on Y if Fx = 0 for x /∈ Y . If F is coherent, this is equivalent to requiring that the
ideal sheaf of Y in OX acts nilpotently on F . We write CohY (X) for the full subcategory
of the category Coh(X) of coherent sheaves on X whose objects are supported on Y .
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1.2 Localization theorem
From now on in this chapter we assume that p > h.

Let Z be the center of Ug, the enveloping algebra of g. The subalgebra of G-invariants,
ZHC := (Ug)G is central in Ug. This is the �Harish-Chandra part� of the center, which
is isomorphic to S(t)(W,•), the algebra of W -invariants in the symmetric algebra of t, for
the dot-action. The center Z also has an other part, the �Frobenius part� ZFr, which is
generated, as an algebra, by the elements Xp−X [p] for X ∈ g. It is isomorphic to S(g(1)),
the functions on the Frobenius twist of g∗. Under our assumption p > h, there is an
isomorphism (see e.g. [MR99])

ZHC ⊗ZFr∩ZHC
ZFr

∼→ Z.

Hence, a character of Z is given by a �compatible pair� (ν, χ) ∈ t∗ × g∗(1). For simplicity,
here we will only consider the case when χ is nilpotent, and ν ∈ t∗ is integral, i.e. in the
image of the natural map X → t∗ (such a pair is always �compatible�). If λ ∈ X, we still
denote by λ its image in t∗. We denote the corresponding specializations by

(Ug)λ := (Ug)⊗ZHC
kλ,

(Ug)χ := (Ug)⊗ZFr
kχ,

(Ug)λ
χ := (Ug)⊗Z k(λ,χ).

Let Modfg(Ug) be the abelian category of �nitely generated Ug-modules. If λ ∈ X and
χ ∈ g∗(1) is nilpotent, we denote by Modfg

(λ,χ)(Ug) the abelian category of �nitely generated
Ug-modules on which Z acts with generalized character (λ, χ). We de�ne similarly the
categories Modfg

χ ((Ug)λ), Modfg
λ ((Ug)χ), Modfg((Ug)λ

χ). We also denote by Modfg
λ (Ug) the

category of �nitely generated Ug-modules on which ZHC acts with generalized character λ.
Hence we have inclusions

Modfg
χ ((Ug)λ)

u�

''PPPPPPPPPPPP
Modfg

λ (Ug)
� _

²²
Modfg((Ug)λ

χ)
) 	

77nnnnnnnnnnnn

u�

''PPPPPPPPPPPP
Modfg

(λ,χ)(Ug) � � //
* 


77ppppppppppp

Modfg(Ug)

Modfg
λ ((Ug)χ)

) 	

77nnnnnnnnnnn

Recall that a weight λ ∈ X is called regular if, for any root α, 〈λ + ρ, α∨〉 /∈ pZ, i.e. if
λ is not on any re�ection hyperplane of Waff (for the dot-action). If µ ∈ X, we denote by
Stab(Waff ,•)(µ) the stabilizer of µ for the dot-action of Waff on X. Under our hypothesis
p > h, we have (pX) ∩Y = pY. It follows that Stab(Waff ,•)(µ) is also the stabilizer of µ for
the action of W ′

aff on X.
By the work of Bezrukavnikov, Mirkovi¢ and Rumynin, we have (see [BMR08, 5.3.1]

for (i), and [BMR06, 1.5.1.c, 1.5.2.b] for (ii)):
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Theorem 1.2.1. (i) Let λ ∈ X be regular, and χ ∈ g∗ be nilpotent. There exist equivalences
of categories

DbCohB(1)
χ

(g̃(1)) ∼= DbModfg
(λ,χ)(Ug), (1.2.2)

DbCohB(1)
χ

(Ñ (1)) ∼= DbModfg
χ ((Ug)λ). (1.2.3)

(ii) More generally, let µ ∈ X, and let P be a parabolic subgroup of G containing B
such that2 Stab(Waff ,•)(µ) = WP . Let P = G/P be the corresponding �ag variety. Then
there exists an equivalence of categories

DbCohP(1)
χ

(g̃(1)
P ) ∼= DbModfg

(µ,χ)(Ug).

Let us recall brie�y how equivalence (1.2.2) can be constructed. Here we use the
notation of [BMR08]. Consider the sheaf of algebras D̃ on B; it can also be considered
as a sheaf of algebras on g̃(1) ×h∗(1) h∗, and it is an Azumaya algebra on this space (see
[BMR08, 3.1.3]). Here the morphism h∗ → h∗(1) is the Artin-Schreier map (see [BMR08]).

We denote by Modc(D̃) the category of quasi-coherent, locally �nitely generated D̃-
modules (either on B, or on g̃(1)×h∗(1) h∗; this is equivalent). For ν ∈ t∗ ∼= h∗ we denote by
Modc

ν(D̃), resp. Modc
(ν,χ)(D̃), the full subcategory of Modc(D̃) whose objects are supported

on Ñ (1)×{ν} ⊂ g̃(1)×h∗(1) h
∗, respectively on B(1)

χ ×{ν} ⊂ g̃(1)×h∗(1) h
∗. If λ ∈ X is regular,

the functor RΓ : DbModc
λ(D̃) → DbModfg

λ (Ug) is an equivalence of categories. Its inverse is
the localization functor Lλ̂. These functors restrict to equivalences between DbModc

(λ,χ)(D̃)

and DbModfg
(λ,χ)(Ug) for any nilpotent χ ∈ g∗(1).

Next, the Azumaya algebra D̃ splits on the formal neighborhood of B(1)
χ × {λ} in

g̃(1)×h∗(1) h∗. Hence, the choice of a splitting bundle on this formal neighborhood yields an
equivalence of categories CohB(1)

χ ×{λ}(g̃
(1)×h∗(1) h

∗) ∼= Modc
(λ,χ)(D̃). Finally, as remarked in

[BMR06, 1.5.3.c], the projection g̃(1) ×h∗(1) h∗ → g̃(1) induces an isomorphism between the
formal neighborhood of B(1)

χ ×{λ} and the formal neighborhood of B(1)
χ . This isomorphism

induces an equivalence of categories CohB(1)
χ ×{λ}(g̃

(1) ×h∗(1) h∗) ∼= CohB(1)
χ

(g̃(1)).
These equivalences yield the desired equivalence (1.2.2).

We choose the normalizations of the splitting bundles as in [BMR06, 1.3.5], and denote
by

γB(λ,χ) : DbCohB(1)
χ

(g̃(1)) ∼−→ DbModfg
(λ,χ)(Ug)

the equivalence associated to a regular λ ∈ X and a nilpotent χ ∈ g∗(1). We also denote
by MB

(λ,χ) the splitting bundle associated to (λ, χ). Similarly, for λ, µ,P as in Theorem

2Equivalently, this means that µ is on the re�ection hyperplane corresponding to any simple root of
WP , but not on any hyperplane of a re�ection (simple or not) in Waff −WP .
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1.2.1, we denote by

εB(λ,χ) : DbCohB(1)
χ

(Ñ (1)) ∼−→ DbModfg
χ ((Ug)λ),

γP(µ,χ) : DbCohP(1)
χ

(g̃(1)
P ) ∼−→ DbModfg

(µ,χ)(Ug)

the equivalences obtained with the normalizations of [BMR06, 1.3.5].
If χ = 0, we simplify the notation by writing γBλ , εBλ , γPλ instead of γB(λ,0), εB(λ,0), γP(λ,0).

In this case B0 is just the zero-section of g̃, which we write B. We also writeMλ forMB
(λ,0).

If λ ∈ X is regular and ν ∈ X, then Modfg
(λ,χ)(Ug) and Modfg

(λ+pν,χ)(Ug) coincide. But
the equivalences γB(λ,χ) and γB(λ+pν,χ) di�er by a shift: γB(λ+pν,χ)(F) = γB(λ,χ)(Oeg(1)(ν)⊗Oeg(1)

F) for F in DbCohB(1)
χ

(g̃(1)).

1.3 Translation functors
Let us �x a nilpotent χ ∈ g∗(1). For λ, µ ∈ X, the translation functor

Tµ
λ : Modfg

(λ,χ)(Ug) → Modfg
(µ,χ)(Ug)

is de�ned in [BMR08, 6.1]. Let us recall the geometric counterparts of these functors. Let
P be a parabolic subgroup of G containing B and let P = G/P . By [BMR06, 2.2.5] we
have:

Proposition 1.3.1. Let λ ∈ X be regular, and let µ ∈ X be in the closure of the facet of
λ. Assume that Stab(Waff ,•)(µ) = WP (with the same notation as in Theorem 1.2.1(ii)).
There exist isomorphisms of functors

Tµ
λ ◦ γB(λ,χ)

∼= γP(µ,χ) ◦R(π̃P)∗ and T λ
µ ◦ γP(µ,χ)

∼= γB(λ,χ) ◦ L(π̃P)∗.

1.4 Sheaves on the zero-section
In this subsection we restrict to the case χ = 0, λ = 0 (hence λ is regular). By Theorem
1.2.1 we have equivalences of categories

εB0 : DbCohB(1)(Ñ (1)) ∼−→ DbModfg
0 ((Ug)λ),

γB0 : DbCohB(1)(g̃(1)) ∼−→ DbModfg
(0,0)(Ug).

Let i : Ñ (1) ↪→ g̃(1), j : B(1) ↪→ Ñ (1), k : B(1) ↪→ g̃(1) be the natural inclusions. Let
also Fr : B → B(1) be the Frobenius morphism. If G ∈ Coh(B(1)), then Fr∗G ∈ Coh(B) has
a natural structure of D0-module, coming from the action on OB. This is the action we
consider in the following lemma.

Lemma 1.4.1. For F ∈ Coh(B(1)) we have isomorphisms

εB0 (j∗F) ∼= RΓ
(B, Fr∗B(F(ρ))

)
, γB0 (k∗F) ∼= RΓ

(B,Fr∗B(F(ρ))
)
.
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Proof. We only prove the second isomorphism (the �rst one can be proved similarly). It
is well-known that (Ug)−ρ

0
∼= End|

(
L((p − 1)ρ)

)
. It follows, by the choice of the splitting

bundles (see [BMR06, 1.3.5]), that
k∗M0 ∼= Fr∗(OB(ρ))⊗Fr∗OB

(
L((p− 1)ρ)⊗| OB(1)

)
. (1.4.2)

Here the structure of (Ug)−ρ
0 -module on L((p − 1)ρ) gives an action of D−ρ on L((p −

1)ρ) ⊗| OB(1) , hence an action of D0 on Fr∗(OB(ρ)) ⊗Fr∗OB
(
L((p − 1)ρ) ⊗| OB(1)

)
. By

Andersen ([And80]) or Haboush ([Hab80]) there is an isomorphism
(
Fr∗(OB(−ρ))

)⊗OB(1)
OB(1)(ρ) ∼= L((p− 1)ρ)⊗| OB(1) . (1.4.3)

Here the left-hand side has a natural action of D−ρ, and the isomorphism is compatible
with the two D−ρ-module structures. From (1.4.2) and (1.4.3) we deduce an isomorphism

(k∗M0)⊗OB(1)
OB(1)(−ρ) ∼= Fr∗OB, (1.4.4)

where the structure of D0-module on the right-hand side comes from the natural action on
OB.

Using (1.4.4) and the projection formula, we deduce
γB0 (k∗F) ∼= RΓ

(
g̃(1),M0 ⊗Oeg(1)

k∗F
)

∼= RΓ
(B(1), (k∗M0)⊗OB(1)

F)

∼= RΓ
(B(1), (Fr∗OB)⊗OB(1)

(F(ρ))
)

∼= RΓ(B, Fr∗(F(ρ))).

This concludes the proof of the lemma.

2 The case G = SL(2,k)

In this section we perform explicit computations for G = SL(2, k). They will be generalized
in III.6.4 and III.7.2 below. Here p > 2.

2.1 Notation
We keep the notation of 1.1 and 1.2, with G = SL(2, k). Here X ∼= Z, the unique simple root
α corresponds to 2, and ρ corresponds to 1. Moreover there is a natural isomorphism B ∼= P1

such that OB(nρ) corresponds to OP1(n) for any n ∈ Z. We denote by j : B(1) ↪→ Ñ (1) the
inclusion of the zero-section.

Here we consider the weights λ = 0, χ = 0. Recall the equivalence of (1.2.3)

εB0 : DbCohB(1)(Ñ (1)) ∼−→ DbModfg
0 ((Ug)0).

By a theorem of Curtis ([Cur60]) and the description of Z in 1.2, the simple Ug-modules
in the category Modfg

(0,0)(Ug) are the restrictions of the simple G-modules L(λ) for λ a
restricted dominant weight in the orbit of 0 under the dot-action of W ′

aff . These weights
are 0 and p− 2.
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2.2 Simple modules
First, we compute the inverse images under εB0 of the simple modules in Modfg

0 ((Ug)0).

Proposition 2.2.1. The inverse images under εB0 of the simple modules in Modfg
0 ((Ug)0)

are the following:

0 j∗(O(P1)(1)(−1))
p− 2 j∗(O(P1)(1)(−2))[1]

Proof. By Lemma 1.4.1 we have εB0 (j∗O(P1)(1)(−1)) ∼= RΓ(P1,OP1) ∼= k, which proves the
�rst line. Similarly we have εB0 (j∗O(P1)(1)(−2)[1]) ∼= RΓ(P1,OP1(−p))[1]. By Serre duality
we deduce that εB0 (j∗O(P1)(1)(−2)[1]) ∼= Γ(P1,OP1(p− 2))∗ ∼= L(p− 2). This concludes the
proof.

2.3 Projective covers
The abelian category Modfg

0 ((Ug)0) does not contain any projective object. However,
some objects of DbCoh(Ñ (1)) �behave like� projective modules. If L is a simple object in
Modfg

0 ((Ug)0) and F ∈ DbCoh(Ñ (1)), we say that F represents the projective cover of L if

Extn
eN (1)(F , (εB0 )−1L) =

{
k if n = 0,
0 otherwise.

and if Ext∗eN (1)(F , (εB0 )−1M) = 0 for any simple object M of Modfg
0 ((Ug)0) not isomorphic

to L. Note that if F is such an object, then the completion of F to the formal neighborhood
of B(1) in Ñ (1) indeed corresponds, under the equivalence of [BMR06, 5.4.1], to a projective
module for the completion of (Ug)0 with respect to the image of the maximal ideal of ZFr

corresponding to the trivial character 0. See also III.6.4 below for other comments on these
objects.

In the next proposition we compute objects representing the projective covers of the
simple modules for G = SL(2,k) (in particular we show that such objects exist).

Proposition 2.3.1. The following objects of DbCoh(Ñ (1)) represent the projective covers
of the simple objects of Modfg

0 ((Ug)0):

0 O eN (1)(−1)
p− 2 O eN (1)

Proof. By adjunction we have

Extn
eN (1)

(O eN (1)(−1), j∗(O(P1)(1)(−1))
) ∼= Extn

(P1)(1)

(O(P1)(1)(−1),O(P1)(1)(−1)
)

∼=
{
k if n = 0,
0 otherwise.
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Similarly one checks that Extn
eN (1)

(O eN (1)(−1), j∗(O(P1)(1)(−2))[1]
)

= 0 for n ∈ Z, which
proves the claim for the weight 0.

Now, similarly, Extn
eN (1)

(O eN (1) , j∗(O(P1)(1)(−1))
)

= 0 for n ∈ Z, and

Extn
eN (1)

(O eN (1) , j∗(O(P1)(1)(−2))[1]
) ∼= Extn+1

(P1)(1)

(O(P1)(1) ,O(P1)(1)(−2)
)

∼=
{
k if n = 0,
0 otherwise.

This concludes the proof.

3 The case G = SL(3,k)

In this section, p > 3.

3.1 Notation
We keep the notation of 1.1, with G = SL(3, k), and denote by α1, α2 the simple roots of
G and ω1, ω2 the fundamental weights. Let si be the re�ection sαi ∈ W . We denote by
B(1) j−→ Ñ (1) p−→ B(1) the inclusion of the zero-section and the natural projection. There
are two natural maps3 πi : B → P2 mapping a �ag 0 ⊂ V1 ⊂ V2 ⊂ k3 to Vj , j = 1, 2. For
n ∈ Z and λ ∈ X we have isomorphisms:

π∗iOP2(n) ∼= OB(nωi) (i = 1, 2), Fr∗
(OB(1)(λ)

) ∼= OB(pλ).

Recall also the exact sequence (see [Har77, Theorem II.8.13]):

0 → Ω1
P2 → OP2(−1)⊕3 → OP2 → 0. (3.1.1)

As in section 2, we consider the case λ = 0, χ = 0. We have an equivalence (see (1.2.3))

εB0 : DbCohB(1)(Ñ (1)) ∼−→ DbModfg
0 ((Ug)0).

As is 2.1, the simple Ug-modules in the category Modfg
0 ((Ug)0) are the restrictions of the

simple G-modules L(λ) for λ a restricted dominant weight in the orbit of 0 under the
dot-action of W ′

aff . These weights are the following:

0, (p− 3)ω1, (p− 3)ω2, (p− 2)ω1 + ω2, ω1 + (p− 2)ω2, (p− 2)ρ.

3.2 Simple modules
First, we compute the inverse images under εB0 of the simple modules in Modfg

0 ((Ug)0).
3Here, for simplicity, we choose an identi�cation between the projective space of lines and of planes in

|3.
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Proposition 3.2.1. The inverse images under εB0 of the simple modules in Modfg
0 ((Ug)0)

are given by:

0 j∗(OB(1)(−ρ))
(p− 3)ω2 j∗

(OB(1)(−2ω1 − ω2)
)
[2]

(p− 3)ω1 j∗
(OB(1)(−ω1 − 2ω2)

)
[2]

(p− 2)ω1 + ω2 j∗
(
(π(1)

1 )∗Ω1
(P2)(1)

(−ω2)
)
[1]

ω1 + (p− 2)ω2 j∗
(
(π(1)

2 )∗Ω1
(P2)(1)

(−ω1)
)
[1]

(p− 2)ρ L

where L is the cone of the only (up to a constant) nonzero morphism j∗OB(1)(−ρ) →
j∗OB(1)(−2ρ)[3].

Proof. By Lemma 1.4.1, εB0 (j∗OB(1)(−ρ)) ∼= RΓ(B,OB) ∼= k. This settles the �rst line.
Similarly, εB0 (j∗OB(1)(−2ω1 − ω2)) ∼= RΓ(B,Fr∗(OB(1)(−ω1))) ∼= RΓ(B,OB(−pω1)).

But −pω1 = s1s2 • ((p − 3)ω2). Hence, by the Borel-Weil-Bott theorem (see [Jan03,
II.5.5]), εB0 (j∗OB(1)(−2ω1 − ω2)[2]) ∼= Γ(B,OB((p − 3)ω2)). By [Jan03, II.5.6], it follows
that εB0 (j∗OB(1)(−2ω1 − ω2)[2]) ∼= L((p− 3)ω2).

Similar computations give the third line.
Now we consider the fourth line. For simplicity we write π1 for (π1)(1). We have, again

by Lemma 1.4.1, εB0
(
j∗(π∗1(Ω

1
(P2)(1)

)(−ω2))[1]
) ∼= RΓ

(B, Fr∗(π∗1(Ω
1
(P2)(1)

)(ω1))
)
[1]. Using the

exact sequence (3.1.1) we obtain a distinguished triangle

RΓ(B,OB)⊕3 → RΓ(B,OB(pω1)) → εB0
(
j∗(π∗1(Ω

1
(P2)(1)

)(−ω2))[1]
)
.

Here the �rst arrow is the inclusion of G-modules L(ω1)(1) ↪→ IndG
B(pω1). Hence we obtain

εB0
(
j∗(π∗1(Ω

1
(P2)(1)

)(−ω2))[1]
) ∼= L((p− 2)ω1 + ω2). The claim for L(ω1 + (p− 2)ω2) follows

by applying the outer automorphism of sl(3).
Finally, the last irreducible module L((p − 2)ρ) is a quotient of the Weyl module(

IndG
B((p− 2)ρ)

)∗. More precisely, we have a short exact sequence

0 → k→ (
IndG

B((p− 2)ρ)
)∗ → L((p− 2)ρ) → 0.

Applying (εB0 )−1, and setting L := (εB0 )−1L((p− 2)ρ), we get a distinguished triangle

j∗OB(1)(−ρ) → j∗OB(1)(−2ρ)[3] → L,

where we used the fact that

εB0 (j∗OB(1)(−2ρ)) ∼= RΓ(B,OB(−pρ)) ∼=
(
IndG

B((p− 2)ρ)
)∗[−3]

by Lemma 1.4.1, Serre duality and Kempf's vanishing theorem ([Jan03, II.4.5]). Since
Hom(k,

(
IndG

B((p− 2)ρ)
)∗) is one dimensional, we see that the �rst arrow in this triangle

is the unique (up to a constant) non-zero map between the two objects.
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Remark 3.2.2. We have just shown, using equivalence εB0 , that

Ext3eN (j∗OB, j∗OB(−ρ))

is one dimensional (here, in fact, j should be replaced by the inclusion B ↪→ Ñ without
Frobenius twists). One can compute this Ext group more directly: using the Koszul
resolution of OB over SOB(TB) one can identify it with

H3(OB(−ρ))⊕H2(Ω1
B(−ρ))⊕H1(Ω2

B(−ρ))⊕H0(Ω3
B(−ρ)).

Here TB is the tangent sheaf to B. Clearly, H3(OB(−ρ)) and H0(Ω3
B(−ρ)) vanish. By a re-

sult of Kumar-Lauritzen-Thomsen (see [BK04, Theorem 5.2.9]), H1(Ω2
B(−ρ)) also vanish4,

while H2(Ω1
B(−ρ)) ∼= k: by Serre duality the last claim is equivalent to H1(TB(−ρ)) ∼= k,

which is checked below.

3.3 Projective covers
We de�ne the objects representing the projective covers as in 2.3.

Proposition 3.3.1. The following objects represent the projective covers of the simple
objects of Modfg

0 ((Ug)0):

0 P
(p− 3)ω2 p∗

(
((π(1)

2 )∗Ω1
(P2)(1)

)(ω2)
)

(p− 3)ω1 p∗
(
((π(1)

1 )∗Ω1
(P2)(1)

)(ω1)
)

(p− 2)ω1 + ω2 O eN (1)(−ω2)
ω1 + (p− 2)ω2 O eN (1)(−ω1)

(p− 2)ρ O eN (1)

where P is the non-trivial extension of O eN (1) by O eN (1)(−ρ) given by a non-zero element
in the one dimensional space H1(TB(−ρ)) ⊂ H1(O eN (−ρ)).

Proof. For simplicity, in this proof we do not write the Frobenius twist (1). It should appear
on every variety.

Let us begin with O eN . We have

Ext∗eN (O eN , j∗(OB(−ρ))) ∼= Ext∗B(OB,OB(−ρ)) ∼= H∗(B,OB(−ρ)) = 0

by adjunction and Borel-Weil-Bott theorem. Similar computations give the result for
j∗(OB(−2ω1 − ω2))[2] and j∗(OB(−ω1 − 2ω2))[2]. The sequence (3.1.1) implies that

Ext∗eN (O eN , j∗
(
π∗1Ω

1
P2(−ω2)

)
[1]) ∼= Ext∗B(OB, π∗1Ω

1
P2(−ω2)[1]) = 0.

4This can also be checked directly using the exact sequence 0 → OB(−α1 − 2α2)⊕OB(−2α1 − α2) →
Ω2
B → OB(−ρ) → 0.
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The computation for the �fth simple object is similar. Finally, using the distinguished
triangle from the de�nition of L and Serre duality we get Ext∗eN (O eN ,L) = k.

The cases of O eN (−ωi) (i = 1, 2) are similar.
Now let us consider p∗((π∗1Ω

1
P2)(ω1)). The exact sequence (3.1.1) implies

Ext∗eN (p∗(π∗1Ω
1
P2 ⊗OB OB(ω1), j∗OB(−ρ)) ∼= Ext∗B(π∗1Ω

1
P2(ω1),OB(−ρ)) = 0.

Here we have used that −2ω1−ω2 = w0 • (−ω1), and Borel-Weil-Bott theorem. The com-
putations for the second to �fth simples are similar. For L we use its de�ning triangle. We
have Ext∗B((π∗1Ω

1
P2)(ω1),OB(−ρ)) = 0, and in computing Ext∗B((π∗1Ω

1
P2)(ω1),OB(−2ρ)[3]),

two non-zero modules appear in degree 0:
(
H3(OB(−2ρ))

)⊕3 and IndG
B(ω1). The map

between these two modules is an isomorphism as in the proof of Proposition 3.2.1, hence
Ext∗eN (p∗((π∗1Ω

1
P2)(ω1)),L) = 0.

The computations for p∗((π∗2Ω
1
P2)(ω2)) are similar.

We claim that H1(TB(−ρ)) ∼= k. This follows by the Borel-Weil-Bott theorem from the
exact sequence

0 → OB(α1) → TB → π∗2(TP2) → 0,

and vanishing of RΓ(π∗2(TP2)(−ρ)) (see e.g. [Dem76]). Thus we have the line H1(TB(−ρ)) ⊂
H1(S(TB)(−ρ)) = Ext1eN (O eN ,O eN (−ρ)), which de�nes a triangle

O eN (−ρ) → P → O eN .

Standard calculations give the result for P and the �rst three irreducible modules. The
triangle de�ning P implies that we have Ext∗eN (P, j∗

(
π∗1Ω

1
P2(ω1)

)
[1]) = H∗(π∗1Ω

1
P2(ω1))[1].

Using (3.1.1), we have an exact sequence

0 → H0(π∗1Ω
1
P2(ω1)) → k3 → IndG

B(ω1) → H1(π∗1Ω
1
P2(ω1)) → 0

with invertible middle arrow (the other cohomology modules vanish). This proves the
desired vanishing.

Finally, let us show that Ext∗eN (P,L) = 0. First,

RHom eN (P, j∗OB(−ρ)) ∼= RΓ(OB) ∼= k,

and
RHom eN (P, j∗OB(−2ρ)[3]) ∼= RΓ(OB(−2ρ)[3]) ∼= k,

thus we only need to check that for nonzero morphisms

b : j∗OB(−ρ) → j∗OB(−2ρ)[3], φ : P → j∗OB(−ρ)

we have b ◦ φ 6= 0. It is clear from Remark 3.2.2 that b = j∗(β) ◦ δ, where δ : j∗OB(−ρ) →
j∗TB(−ρ)[1] is the shift by −ρ of the class of the extension 0 → j∗TB → O eN /J 2

B → j∗OB →
0, and β : TB(−ρ)[1] → OB(−2ρ)[3] is a non-zero morphism; here JB is the ideal sheaf of
the zero-section in Ñ .
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We claim that δ ◦ φ = j∗(γ) ◦ ψ, where ψ : P ³ j∗OB and γ : OB → TB(−ρ)[1]
are nonzero morphisms. This follows from the de�nition of P, which implies that P
has a quotient, which is an extension of j∗OB(−ρ) ⊕ j∗OB by j∗TB(−ρ), such that the
corresponding class in Ext1eN (j∗OB(−ρ), j∗(TB(−ρ))) equals δ, while the corresponding class
in Ext1eN (j∗OB, j∗(TB(−ρ))) is non-trivial and is an image under j∗ of an extension of
coherent sheaves on B.

It remains to show that the composition j∗β ◦ j∗γ ◦ ψ is nonzero. The composition
β ◦ γ ∈ Ext3B(OB,OB(−2ρ)) = H3(B,OB(−2ρ)) = k is nonzero, because it coincides with
the Serre duality pairing of nonzero elements β, γ in the two dual one-dimensional spaces
H1(TB(−ρ)), H2(T ∗B (−ρ)). Consequently, the composition j∗(β ◦ γ) ◦ ψ is also nonzero,
since under the isomorphism

Hom(P, j∗OB(−2ρ)[3]) ∼= Hom(j∗P,OB(−2ρ)[3]) ∼= Hom(OB(−ρ)⊕OB,OB(−2ρ)[3])

it corresponds to the composition of β ◦ γ and projection to the second summand.



Chapter II

Geometric braid group action

In this section we construct and study an action of the extended a�ne braid group B′
aff

on the categories DbCoh(g̃) and DbCoh(Ñ ). This result will be used in chapter III, but is
also interesting in its own right.

Sections 1 to 7 of this chapter were published in [Ric08a]. In section 8 we present an
alternate (and more general) proof of the main step of the construction.

Sections 1 and 8 are joint works with Roman Bezrukavnikov.

Introduction

0.1

Let G be, as in chapter I, a connected, semi-simple, simply-connected algebraic group
over an algebraically closed �eld k of characteristic p, and let g = Lie(G). In [BMR06],
Bezrukavnikov, Mirkovi¢ and Rumynin have constructed an action of the extended a�ne
braid group associated with G on the category DbCohB(1)

χ
(g̃(1)), when p is greater than the

Coxeter number h of G (here χ ∈ g∗ is nilpotent, and Bχ is the corresponding Springer
�ber). Their construction relies on deep results relating the modules over Ug (the envelop-
ing algebra of g), D-modules on the �ag variety of G, and coherent sheaves on g̃(1) (see
I.1.2).

In this chapter we show that this action can be de�ned geometrically, without any refer-
ence to Representation Theory. In particular, we obtain that the action can also be de�ned
for other characteristics, including 0. We also obtain that similar actions can be de�ned
on various other categories, such as DbCoh(g̃), DbCoh(Ñ ), DbCohG(g̃) or DbCohG(Ñ ).

For k = C, this action is related to Kazhdan-Lusztig's and Ginzburg's interpretation
of the equivariant K-theory of the Steinberg variety, and to Springer representations of the
Weyl group on the homology of Springer �bers.

23
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0.2
We use the notations of I.1.1 and I.1.2. The extended a�ne Weyl group W ′

aff := W n X
has a natural �length function� `, although it is not a Coxeter group in general (see 1.1).
The extended a�ne braid group B′

aff is by de�nition the group with presentation:

Generators: Tw (w ∈ W ′
aff);

Relations: TvTw = Tvw if `(vw) = `(v) + `(w).

This de�nition is similar to the �Iwahori-Matsumoto presentation� of the corresponding
Hecke algebra H′aff . If x ∈ X, write x = x1 − x2 with x1, x2 dominant weights. Then
θx := Tx1(Tx2)

−1 depends only on x. If α, β ∈ Φ, we denote by nα,β the order of sαsβ in
W . Our �rst step1 (see section 1), is a second presentation of B′

aff , which is an analogue of
the �Bernstein presentation� of H′aff . The idea of this presentation is due to Lusztig (see
e.g. [Lus89]). It is given by:

Generators: Tsα (α ∈ Φ), θx (x ∈ X);
Relations: (1) TsαTsβ

· · · = Tsβ
Tsα · · · (nα,β elements on each side);

(2) θxθy = θx+y;
(3) Tsαθx = θxTsα if 〈x, α∨〉 = 0;
(4) θx = Tsαθx−αTsα if 〈x, α∨〉 = 1.

Our main result is the construction of a weak2 action of B′
aff on the category DbCoh(g̃),

by convolution. Using the preceding presentation, to construct this action it is su�cient to
de�ne kernels associated to the generators Tsα and θx, and to check relations (1) to (4) for
these kernels. The kernel associated with Tsα is OSα for some closed subvariety Sα ⊂ g̃× g̃

(see subsection 2.3 for a precise de�nition), and the kernel associated with θx is ∆∗Oeg(x)
where ∆ : g̃ ↪→ g̃× g̃ is the diagonal embedding. Relations (2), (3) and (4) for these kernels
are easy to prove.

The most di�cult relations to prove are the ��nite braid relations�, i.e. relations (1).
We give two proofs of these relations.

For the �rst proof we have to assume that G has no factor of type G2 and that p 6= 2
if R is not simply-laced, and to perform a case-by-case analysis, depending on whether α
and β generate a root system of type A1 × A1, A2 or B2 (see sections 3 and 4). Our
proof involves the study of Demazure-like �resolutions�3 Z̃(s1,s2,··· ,sn) → Sw. Here w is
the element of W corresponding to the �nite braid relation under consideration4, Sw is a
subvariety of the product of g∗ with the G-orbit closure Xw ⊂ (G/B)× (G/B) associated
with w, and Z̃(s1,s2,··· ,sn) is a subvariety of the product of g∗ with the Demazure resolution

1After the paper [Ric08a] was submitted, Valerio Toledano Laredo pointed out to us that this presen-
tation is also proved in Macdonald's book [Mac03]. Our proof is di�erent.

2See subsection 2.2.
3These are not really resolutions of singularities, as the variety eZ(s1,s2,··· ,sn) is singular in general. But

we show that they share some properties with resolutions of singularities.
4I.e. w is the longest element of the Weyl group of the standard parabolic subgroup of G associated

with {α, β}.
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of Xw associated with the reduced decomposition w = s1s2 · · · sn. Moreover, the morphism
Z̃(s1,s2,··· ,sn) → Sw is induced by the morphism from the Demazure resolution to Xw.

The second proof of the relations is given in section 8. Here we do not make any
assumption on the group, but we assume that p is very good for G. The main ideas of this
second proof come from [Bez06a].

Finally, we obtain (see Theorem 2.3.2) that if either G has no factor of type G2 and
char(k) 6= 2 if R is not simply-laced, or if p is very good for G, there exists an action of
B′

aff on DbCoh(g̃) such that

(i) The action of θx is given by the convolution with kernel ∆∗Oeg(x);
(ii) The action of Tsα is given by the convolution with kernel OSα .

In sections 5 to 7 we study the compatibility of this action with the inclusion Ñ ↪→ g̃,
and with some representation-theoretic constructions.

First, in section 5 we show that one can similarly de�ne an action of B′
aff on the

category DbCoh(Ñ ), such that the following diagram is commutative for any b ∈ B′
aff ,

where i : Ñ ↪→ g̃ denotes the natural embedding:

DbCoh(Ñ )
i∗ //

b
²²

DbCoh(g̃)

b
²²

DbCoh(Ñ )
i∗ // DbCoh(g̃).

In section 6 we show that, for p > h, the action of B′
aff on DbCoh(g̃), or rather the

similar action on DbCoh(g̃(1)) (the supscript (1) denotes the Frobenius twist), extends the
action on DbCohB(1)

χ
(g̃(1)) considered in [BMR06]. Hence, as a consequence of our results

in section 5, the action by intertwining functors on DbModfg
(λ,χ)(Ug) of [BMR06] factors

through an action on DbModfg
χ ((Ug)λ) (see I.1.2 for notations).

Finally, in section 7 we explain the relation between our results for k = C and some
classical constructions. In particular, the action on DbCoh(Ñ ) gives a categorical frame-
work for Ginzburg's isomorphism between the equivariant K-theory of the Steinberg variety
and the extended a�ne Hecke algebra H′aff , and for Lusztig's construction of irreducible
H′aff -modules over C. Also, the induced action on the Grothendieck group of DbCohBχ(Ñ )
gives Springer representations of W on the homology of Bχ.

0.3
To �nish this introduction, let us say a few words on the importance of this braid group
action. First, its importance was emphasized in Bezrukavnikov's talk at ICM 2006: this
action �encodes� the exotic t-structure on DbCoh(g̃) and DbCoh(Ñ ). In positive charac-
teristic, this t-structure comes from the equivalence with representations of Ug. It also has
an interesting interpretation in characteristic zero (see [Bez06b] for details). In fact, our
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construction will be a step in the proof, by Bezrukavnikov and Mirkovi¢, of Lusztig's conjec-
ture relating irreducible Ug-modules to elements of the canonical basis in the Borel-Moore
homology of a Springer �ber ([Lus98], [Lus99]). Similar actions also appear in Gukov and
Witten's work on gauge theory and geometric Langlands program (see [GW06]), and in
Bridgeland's study of stability conditions on triangulated categories (see [Bez06b] for de-
tails on this point). Finally, we will use this construction to study a certain Koszul duality
for modular representations of g (see chapter III or [Ric08b]).

1 A Bernstein-type presentation of the braid group
1.1 Statement of the theorem
Let us introduce some notations concerning Weyl groups and braid groups. Recall the
notations of I.1.1. We denote by tx ∈ W ′

aff the translation corresponding to x ∈ X. Let
S := {sα, α ∈ Φ} be the usual set of generators of W . Let also Saff ⊂ Waff be the
usual set of generators of Waff ; that is, Saff contains S together with additional re�ections
corresponding to the highest coroot of each irreducible component of R. Then (W,S) and
(Waff , Saff) are Coxeter systems. We denote by ` their length function.

Let A0 = {λ ∈ X ⊗Z R | ∀α ∈ R+, 0 < 〈λ, α∨〉 < 1} be the fundamental alcove. If
Ω ⊂ W ′

aff is the stabilizer of A0 for the standard action on X⊗ZR, we have W ′
aff
∼= WaffoΩ.

We can use this isomorphism to extend ` to W ′
aff , setting `(ω) = 0 for ω ∈ Ω. Then, for

w ∈ W and x ∈ X ([IM65, prop. 1.23]):

`(w · tx) =
∑

α∈R+,

wα∈R+

|〈x, α∨〉| +
∑

α∈R+,

wα∈R−

|1 + 〈x, α∨〉|. (1.1.1)

Now, let us recall the de�nition of the braid group associated with a Coxeter group
H, with length `H . By de�nition, the braid group BH is the group with generators the
{Tv, v ∈ H} and relations Tuv = TuTv if `H(uv) = `H(u) + `H(v). In particular we have
the braid group B0 associated with W , and the a�ne braid group Baff associated with
Waff . The group W ′

aff is not a Coxeter group, but we have de�ned a length function ` on
it. Hence we can use the same recipe to de�ne the extended a�ne braid group B′

aff . There
are natural inclusions

B0 ⊂ Baff ⊂ B′
aff .

Moreover, there is a natural isomorphism B′
aff
∼= Baff o Ω.

There is a canonical section C : W ′
aff → B′

aff (which sends Waff into Baff and W
into B0) of the canonical morphism B′

aff → W ′
aff , de�ned by C(w) := Tw (this is not a

group morphism). From now on we will not use the notation Tw anymore, except when
w = sα ∈ S; moreover, in this case, we will simplify Tsα in Tα. We denote by nα,β the
order of sαsβ in W , for α, β ∈ Φ.

If λ and µ are dominant weights, `(tλtµ) = `(tλ) + `(tµ), see (1.1.1). Hence

C(tλtµ) = C(tλ)C(tµ). (1.1.2)
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Let x ∈ X. We write x = x1 − x2 with x1 and x2 dominant weights. Then we set
θx := C(tx1)C(tx2)

−1. This does not depend on the chosen decomposition, due to formula
(1.1.2). In this section we prove:

Theorem 1.1.3. B′
aff admits a presentation with generators {Tα, α ∈ Φ} ∪ {θx, x ∈ X}

and relations:

1. TαTβ · · · = TβTα · · · (nα,β elements on each side);

2. θxθy = θx+y;

3. Tαθx = θxTα if 〈x, α∨〉 = 0, i.e. sα(x) = x;

4. θx = Tαθx−αTα if 〈x, α∨〉 = 1, i.e. sα(x) = x− α.

This theorem is an analogue of the well known result of J. Bernstein concerning the
corresponding Hecke algebra. Relations 1 are called ��nite braid relations� in the sequel.

The facts that the elements Tα and θx generate B′
aff , and satisfy the relations of the

theorem, are proved in [Lus89, 2.7, 2.8]. We denote by B̂ the group with the given presen-
tation. There exists a (surjective5) morphism

ψ : B̂ ³ B′
aff .

To prove the theorem we construct an inverse φ to this morphism. To avoid confusion, in
this section we denote by T̂α and θ̂x the images of the generators in B̂. Hence we have
ψ(T̂α) = Tα, ψ(θ̂x) = θx.

1.2 A second �length function�
In this subsection we introduce a second �length function� on W ′

aff , denoted L, with values
in Z. Let H by the set of re�ection hyperplanes of Waff in X ⊗ R, and A be the set of
alcoves. Let C0 be the fundamental chamber, i.e.

C0 = {x ∈ X⊗ R | ∀α ∈ Φ, 〈x, α∨〉 ≥ 0}.

If H ∈ H , we denote by E+
H the half space de�ned by H that intersects all translates of

C0, and by E−
H the other half space. Then, following Jantzen and Lusztig (see [Lus80a])

we introduce the function d on A 2, de�ned by

d(A,B) = #{H ∈ H | A ⊂ E−
H and B ⊂ E+

H} − #{H ∈ H | A ⊂ E+
H and B ⊂ E−

H}.

It is clear from the de�nition that d(A,B) = −d(B,A). Moreover, d satis�es the following
formula for three alcoves A, B and C (see [Lus80a, 1.4.1]):

d(A,B) + d(B, C) + d(C, A) = 0. (1.2.1)
5We do not use this surjectivity in our proof, but rather re-prove it.
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Now we can de�ne the function L on W ′
aff by setting

L(w) := d(A0, w
−1A0)

(recall that A0 denotes the fundamental alcove). For w ∈ W we have L(w) = −`(w),
and for x ∈ X antidominant we have L(tx) = `(tx). Similarly, if x is dominant we have
L(tx) = −`(tx). Moreover,

|L(w)| ≤ `(w)

for any w ∈ W ′
aff (for all of this, use [Hum90, 4.5]).

Lemma 1.2.2. For any u,w ∈ W ′
aff , we have |L(wu) − L(u)| ≤ `(w). Moreover, for any

w ∈ W ′
aff there exists u ∈ W ′

aff such that L(wu)− L(u) = −`(w).

Proof. Using formula (1.2.1) we have

L(wu)− L(u) = d(A0, u
−1w−1A0)− d(A0, u

−1A0) = d(u−1A0, u
−1w−1A0).

Hence |L(wu)− L(u)| is at most the number of hyperplanes in H separating u−1A0 and
u−1w−1A0, which equals the number of hyperplanes separating A0 and w−1A0. This
number is precisely `(w−1) = `(w).

Let us now consider the second assertion. Let ξ be a point in A0. Let u ∈ W be such
that u−1(w−1(ξ) − ξ) is in w0C

0, where w0 is the longest element of W . Then it is clear
that d(u−1A0, u

−1w−1A0) = −`(w).

1.3 Computations in W ′
aff

In 1.1 we have de�ned a section C of the morphism B′
aff → W ′

aff . Now, let us de�ne another
section S : W ′

aff → B′
aff by setting S(wf · tx) := C(wf )θx for wf ∈ W and x ∈ X, where we

have used the isomorphism W ′
aff
∼= W nX. We will show that one can recover C from S.

Lemma 1.3.1. Let u,w ∈ W ′
aff be such that L(wu) = L(u)−`(w). Then we have S(wu) =

C(w)S(u).

Proof. First, let us remark that the hypothesis and the conclusion are invariant by replacing
u by utx for some x ∈ X. Hence we can assume that u ∈ W . We write w = wf tλ for some
λ ∈ X, wf ∈ W . Then

L(wu)− L(u) = d(u−1A0, u
−1w−1A0) = d(u−1A0, u

−1(wf )−1A0 − u−1(λ)).

As u and wf are in W , and as every hyperplane H between u−1A0 and u−1w−1A0 is
crossed in the direction E+

H Ã E−
H we must have the inequality 〈−u−1(λ), α∨〉 ≤ 1 for any

α ∈ R+, i.e. 〈u−1(λ), α∨〉 ≥ −1. Moreover, for any α ∈ R+ such that wfu(α) ∈ R+ we
have 〈u−1(λ), α∨〉 ≥ 0. Indeed, in this case u−1(wf )−1A0 is in E+

Hα
for Hα the re�ection

hyperplane of sα. Hence if 〈u−1(λ), α∨〉 were −1 then to go from u−1A0 to u−1w−1A0 we
would have to cross the hyperplane

H := {x ∈ X⊗Z R | 〈x, α∨〉 = 1}
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in the �wrong� direction (i.e. E−
H Ã E+

H).
Let us write u−1(λ) = µ1 − µ2 with µ1 and µ2 dominant weights. We have wu =

(wf )tλu = wfutu−1(λ). Hence wutµ2 = wfutµ1 . As µ1 is dominant and wfu ∈ W ,
`(wfutµ1) = `(wfu)+`(tµ1) (see (1.1.1)). Hence C(wfutµ1) = C(wfu)C(tµ1). We will now
prove that, also, `(wutµ2) = `(wu) + `(tµ2). It will follow that C(wutµ2) = C(wu)C(tµ2),
and �nally that S(wu) = C(wu).

So, let us prove that `(wutµ2) = `(wu) + `(tµ2). Using formula (1.1.1), we have

`(tµ2) =
∑

α∈R+

〈µ2, α
∨〉,

`(wu) =
∑

α∈R+

wf u(α)∈R+

|〈µ1 − µ2, α
∨〉| +

∑

α∈R+,

wf u(α)∈R−

|1 + 〈µ1 − µ2, α
∨〉|,

`(wutµ2) =
∑

α∈R+,

wf u(α)∈R+

〈µ1, α
∨〉 +

∑

α∈R+,

wf u(α)∈R−

(1 + 〈µ1, α
∨〉).

We know (see above) that for any α ∈ R+, 〈u−1(λ), α∨〉 ≥ −1, and, for any α ∈ R+ such
that wfu(α) ∈ R+, 〈u−1(λ), α∨〉 ≥ 0. The result easily follows.

Finally we have proved that S(wu) = C(wu). By hypothesis |L(wu)| = |L(u) −
`(w)| = `(u) + `(w) (because u is in W ). On the other hand we have the inequalities
|L(wu)| ≤ `(wu) ≤ `(w)+ `(u). We deduce that we must have `(wu) = `(w)+ `(u). Hence
C(wu) = C(w)C(u) = C(w)S(u). This concludes the proof.

1.4 Computations in B̂

The braid group B0 is well known to have a presentation with generators the Tα (α ∈ Φ)
and relations (1) of Theorem 1.1.3. Hence there exists a group morphism σ : B0 → B̂,
which sends Tα to T̂α. We de�ne C ′ := σ ◦ C|W : W → B̂. Then we can de�ne the lift

S′ : W ′
aff → B̂

by setting S′(wf tx) := C ′(wf )θ̂x for wf ∈ W , x ∈ X. The following diagram is commuta-
tive:

W ′
aff

S

""DD
DD

DD
DD

S′

~~}}
}}

}}
}}

B̂ ψ
// B′

aff

The next proposition is the key step in our proof of Theorem 1.1.3.

Proposition 1.4.1. Let w, u1, u2 ∈ W ′
aff such that L(wu1) = L(u1)− `(w) and L(wu2) =

L(u2)− `(w). Then
S′(wu1)(S′(u1))−1 = S′(wu2)(S′(u2))−1.
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Proof. We use induction on `(w). Assume we know the result for v and w, and that
`(vw) = `(v) + `(w). Let u1 and u2 be as in the proposition, for vw instead of w. For
i = 1, 2 we have L(vwui) ≥ L(wui) − `(v) ≥ L(ui) − `(w) − `(v) (by Lemma 1.2.2). As
the two extreme terms are equal by assumption, we must have L(vwui) = L(wui) − `(v)
and L(wui) = L(ui)− `(w). Applying the result for v, wu1, wu2 and w, u1, u2 we obtain
the result for vw, u1, u2. Hence we only have to prove the proposition for w of length
0 or 1. We also only have to prove it for ui ∈ W (use relation (2) and the de�nition of
S′). Without loss of generality we can assume R is irreducible (B̂ is the product of the
subgroups corresponding to each irreducible component of R).

(i) First, consider the easiest case w = s ∈ S. For i = 1, 2 we have by de�nition
d(u−1

i A0, u
−1
i sA0) = −1. Hence, if s = sα, u−1

i (α) ∈ R+. Then `(sui) = `(ui) + 1 (use
the criterion provided by [Hum90, 1.6, 1.7]). Hence S′(sui) = C ′(sui) = C ′(s)C ′(ui) =
S′(s)S′(ui). This proves the result in this case.

(ii) Next, assume w is in Saff − S. Then w = tγsγ for γ the highest short root of R.
We have to show that

S′(wu)(S′(u))−1 := C ′(sγu)θ̂−u−1(γ)C
′(u)−1

doesn't depend on the choice of u ∈ W such that d(u−1A0, u
−1sγA0 + u−1(γ)) = −1.

This condition amounts to requiring u−1(γ) ∈ R−. In particular, w0 �ts (recall that w0

denotes the longest element of W ). By descending induction on l(u), we will show that
C ′(sγu)θ̂−u−1(γ)C

′(u)−1 = C ′(sγw0)θ̂−w0(γ)C
′(w0)−1 for any u ∈ W such that u−1(γ) ∈

R−.
Assume u 6= w0. Then choose β ∈ Φ such that `(usβ) = `(u) + 1, i.e. u(β) ∈ R+.

Then β 6= −u−1(γ), hence sβu−1(γ) ∈ R−, so that we can apply the induction hypothesis
to usβ. Moreover,

C ′(sγusβ)θ̂−sβu−1(γ)C
′(usβ)−1 = C ′(sγusβ)θ̂−sβu−1(γ)(T̂β)−1C ′(u)−1.

As γ is a short root and a dominant weight, and u(β) is a positive root, 〈γ, u(β)∨〉 =
〈u−1(γ), β∨〉 is 0 or 1. First, assume it is 0. Then sβu−1(γ) = u−1(γ), and by relation (3)
we have θ̂−u−1(γ)T̂

−1
β = T̂−1

β θ̂−u−1(γ). Moreover, sγu(β) = u(β) ∈ R+, hence `(sγusβ) =
`(sγu) + 1, and then C ′(sγusβ) = C ′(sγu)T̂β . This concludes the proof in this case.

Now assume 〈γ, u(β)∨〉 = 1. Then sβu−1(γ) = u−1(γ) − β, and by relation (4) we
have θ̂−sβu−1(γ) = T̂β θ̂−u−1(γ)T̂β . Moreover, sγu(β) ∈ R− (as 〈u(β), γ∨〉 > 0), hence
`(sγusβ) = `(sγu)− 1. One concludes as before.

(iii) Finally, consider some w with `(w) = 0. Write w = wf tλ. Using formula (1.1.1)
we have 〈λ, α∨〉 = 0 if wf (α) ∈ R+, and 〈λ, α∨〉 = −1 if wf (α) ∈ R−. There is no
condition on u in this case. Hence we have to prove that S′(wu)(S′(u))−1 = S′(w) for
any u ∈ W . We will prove it by (ascending) induction on `(u). If u 6= Id, let β ∈ Φ
and v ∈ W be such that u = vsβ, with l(v) = l(u) − 1. Then v(β) ∈ R+. We have
S′(wu)(S′(u))−1 = C ′(wfvsβ)θ̂sβv−1(λ)(T̂β)−1C ′(v)−1.
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First, assume `(wfvsβ) = `(wfv) + 1, i.e. C ′(wfvsβ) = C ′(wfv)T̂β . Then wfv(β) ∈
R+. Hence 〈λ, v(β)∨〉 = 0 = 〈v−1(λ), β∨〉. Hence sβv−1(λ) = v−1(λ), and relation (3)
gives T̂β θ̂v−1(λ) = θ̂v−1(λ)T̂β . Then the result for u follows from the result for v.

Next, assume `(wfvsβ) = `(wfv)−1, i.e. C ′(wfvsβ) = C ′(wfv)(T̂β)−1. Then wfv(β) ∈
R−. Hence 〈v−1(λ), β∨〉 = −1. And the result for u follows from the result for v and
relation (4) applied to sβv−1(λ).

1.5 End of the proof
We de�ne a group morphism φ : B′

aff → B̂ by setting, for any w ∈ W ′
aff , φ(C(w)) =

S′(wu)(S′(u))−1 for some u ∈ W ′
aff such that L(wu) = L(u) − `(w) (such a u exists by

Lemma 1.2.2, and S′(wu)(S′(u))−1 does not depend on the choice of u, due to Proposition
1.4.1). We have already proved that these elements satisfy the relations of the de�nition
of B′

aff in the beginning of the proof of Proposition 1.4.1.
Recall that ψ : B̂ → B′

aff denotes the canonical morphism. It follows from Lemma
1.3.1 and the diagram at the beginning of subsection 1.4 that ψ ◦ φ = Id. If s ∈ S then
L(s) = −`(s), hence one may take u = 1. Thus φ◦ψ(T̂s) = φ(Ts) = T̂s. Similarly, if x ∈ X
is dominant then L(tx) = −`(tx). Hence φ ◦ ψ(θ̂x) = φ(θx) = φ(C(tx)) = θ̂x. As these
elements generate B̂ (use relation (2)), we conclude that φ ◦ ψ = Id. This concludes the
proof of Theorem 1.1.3.

2 Action of the braid group by convolution
2.1 Convolution
By a variety we mean a reduced, separated scheme of �nite type over k (in particular, we do
not assume it is irreducible). If X is a variety, we identify the derived category DbCoh(X)
with the full subcategory of DbQCoh(X) whose objects have coherent cohomology sheaves
([BGI71, II.2.2.2.1]; see also [Bor87, VI.2.11] for a sketch of a more elementary proof,
following P. Deligne).

If X is a scheme and i : Z ↪→ X a closed subscheme, for simplicity we sometimes write
OZ for i∗OZ . We will also sometimes write simply (−⊗X −) for (−⊗OX

−), and similarly
for the derived tensor product.

Let X, Y be varieties. We denote by pX : X × Y → X and pY : X × Y → Y the
projections. We de�ne the full subcategory

Db
propCoh(X × Y ) ⊂ DbCoh(X × Y )

as follows: an object of DbCoh(X × Y ) belongs to Db
propCoh(X × Y ) if its cohomology

sheaves are supported on a closed subscheme Z ⊂ X × Y such that the restrictions to Z
of pX and pY are proper. Any F ∈ Db

propCoh(X × Y ) gives rise to a functor

FF
X→Y :

{
DbCoh(X) → DbCoh(Y )

M 7→ R(pY )∗(F L⊗X×Y p∗XM)
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(use [Har66, II.2.2, II.4.3]). The assignment F 7→ FF
X→Y is functorial.

Let now X, Y and Z be varieties. We de�ne the convolution product

∗ : Db
propCoh(Y × Z)×Db

propCoh(X × Y ) → Db
propCoh(X × Z)

by the formula
G ∗ F := R(pX,Z)∗((pX,Y )∗F L⊗X×Y×Z (pY,Z)∗G),

where pX,Z , pX,Y , pY,Z are the natural projections from X×Y×Z. The following easy result
is classical. It can be proved using �at base change ([Har66, II.5.12]) and the projection
formula ([Har66, II.5.6]).

Lemma 2.1.1. Let F ∈ Db
propCoh(X × Y ), G ∈ Db

propCoh(Y × Z). Then

F G
Y→Z ◦ FF

X→Y
∼= FG∗F

X→Z .

In particular, if X = Y , the product ∗ endows Db
propCoh(X × X) with the structure

of a monoid, with identity ∆∗OX (where ∆ : X → X × X is the diagonal embedding).
Moreover, F

(−)
X→X is a morphism of monoids from this monoid to the monoid of triangulated

functors from DbCoh(X) to itself.
Assume now that X and Y are non-singular varieties (so that every coherent sheaf

has a �nite resolution by locally free sheaves of �nite type, see for instance [Har77, ex.
III.6.9]), and let f : X → Y be a proper morphism. Let Γf ⊂ X × Y be the graph of f
(a closed subscheme), and let Γ′f ⊂ Y ×X be the image of Γf under the �swap� morphism
X × Y → Y ×X. Then there exist natural isomorphisms of functors

Rf∗ ∼= F
OΓf

X→Y and Lf∗ ∼= F
OΓ′

f

Y→X .

Hence we have Lf∗ ◦Rf∗ ∼= F
OΓ′

f
∗OΓf

X→X , with

OΓ′f
∗ OΓf

∼= R(pX,X)∗(OΓf×X
L⊗X×Y×X OX×Γ′f

).

We also have Id ∼= F∆∗OX
X→X .

We denote by δX ⊂ X × Y ×X the closed subscheme which is the image of X under
x 7→ (x, f(x), x). The following result follows from classical results in the theory of Fourier-
Mukai transforms (see [C l03, 5.1], [KT07, 4.2]):

Lemma 2.1.2. The adjunction morphism Lf∗ ◦ Rf∗ → Id is induced by the following
morphism in Db

propCoh(X ×X):

R(pX,X)∗(OΓf×X
L⊗X×Y×X OX×Γ′f

) → R(pX,X)∗(O(Γf×X)∩(X×Γ′f ))
res−−→ R(pX,X)∗(OδX) ∼= ∆∗OX

where the second morphism is induced by restriction, and the �rst one by the natural mor-
phism OΓf×X

L⊗X×Y×XOX×Γ′f
→ OΓf×X ⊗X×Y×X OX×Γ′f

.
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We will also need the following Lemma:

Lemma 2.1.3. Let F ∈ Db
propCoh(X ×X). Then OΓf

∗ F ∼= R(Id× f)∗(F).

Proof. We denote by pi,j the natural projections from X × X × Y to X × X or X × Y ,
and by ∆ : X → X ×X the diagonal embedding. Then we have

OΓf
∗ F = R(p1,3)∗(p∗1,2F

L⊗X×X×Y p∗2,3OΓf
);

p∗2,3OΓf
∼= R(Id× Id× f)∗(Id×∆)∗OX×X .

Now, by the projection formula, OΓf
∗ F is isomorphic to

R(p1,3)∗R(Id× Id× f)∗(Id×∆)∗(L(Id×∆)∗L(Id× Id× f)∗(p1,2)∗F).

The result follows, since (p1,3) ◦ (Id× Id× f) ◦ (Id×∆) = (Id× f) and (p1,2) ◦ (Id× Id×
f) ◦ (Id×∆) = IdX×X .

2.2 Action of a group on a category
By an action of a group A on a category C we mean a weak action, i.e. a group morphism
from A to the isomorphism classes of auto-equivalences of the category C (see [BMR06],
[KT07]). We will not consider the problem of the compatibility of the isomorphisms of
functors corresponding to products of elements of A. If C = DbCoh(X) for a variety X,
to de�ne such an action it is su�cient to construct a morphism of monoids from A to the
monoid of isomorphism classes in Db

propCoh(X ×X), endowed with the product ∗.
We will be interested in the case A = B′

aff and X = g̃ or Ñ . Using the presentation of
B′

aff that we have given in Theorem 1.1.3, to construct the action we only have to de�ne the
kernels corresponding to the generators Tα and θx, and to show that they satisfy relations
(1) to (4) in Db

propCoh(X ×X), up to isomorphism.

2.3 Construction of kernels
Let α ∈ Φ be a simple root. In this subsection we construct the kernel for the action of
Tα. Here char(k) is arbitrary. First we recall the following well-known formulae for the
adjoint action of G on g, that can be checked in sl(2,k):





uα(x) · e−α = e−α + xhα − x2eα;
nαuα(x) · e−α = x2e−α − xhα − eα;

uα(x) · hα = hα − 2xeα.
(2.3.1)

Let us introduce some notation. If X
p→ B is a scheme over B (resp. if Y

q→ B × B is
a scheme over B ×B), and x, y ∈ X, we denote by OX(x) (resp. OY (x, y)) the line bundle
p∗OB(x) (resp. q∗(OB(x) £ OB(y))). If F ∈ DbCoh(X) (resp. DbCoh(Y )), we denote by
F(x) (resp. F(x, y)) the tensor product F ⊗OX

OX(x) (resp. F ⊗OY
OY (x, y)). We use

similar notation for schemes over B × B × B. If X
a→ Y is a scheme over Y , and if Z ⊂ Y
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is a locally closed subscheme, we write X|Z for the inverse image a−1(Z). Similarly, if F
is a sheaf on X, we write F|Z for the restriction of F to X|Z .

Recall the notations of I.1.1. Let us consider the scheme g̃×egα
g̃. It is reduced, and it

can be described as a variety induced from B to G. More precisely, de�ne

Rα := {(X, gB) ∈ g∗ × (Pα/B) | X|n+g·n = 0}.
We have a natural isomorphism

G×B Rα
∼= g̃×egα

g̃.

To study the variety Rα, we introduce some coordinates. On g∗ we use the coordinates
{eγ , γ ∈ R} ∪ {hβ, β ∈ Φ}. Consider the open covering Pα/B = (UαB/B) ∪ (nαUαB/B).
The morphism uα induces isomorphisms k ∼→ Uα

∼→ UαB/B and k ∼→ nαUα
∼→ nαUαB/B.

We will use the coordinate t on k. Then Rα|(UαB/B) is the set of (X, t) ∈ g∗× k such that
X vanishes on eγ for γ ∈ R− and on uα(t) · e−α = e−α + thα− t2eα (see (2.3.1)). Similarly,
Rα|(nαUαB/B) is the set of (X, t) ∈ g∗ × k such that X vanishes on eγ for γ ∈ R− and on
nαuα(t) · e−α = −eα − thα + t2e−α. These are a�ne varieties, with respective coordinate
rings

k[Rα|UαB/B] ∼= k[hβ, eγ , t, β ∈ Φ, γ ∈ R+]/(t(hα − teα))
k[Rα|nαUαB/B] ∼= k[hβ, eγ , t, β ∈ Φ, γ ∈ R+]/(eα + thα).

In particular, Rα has two irreducible components: one is

Dα := (g/n)∗ × (B/B) ⊂ g∗ × (Pα/B),

and the other one is Sα, the closure of the complement of Dα in Rα. It is a reduced
scheme, and we have the geometric description

Sα = {(X, gB) ∈ g∗ × (Pα/B) | X|n+g·n = 0 and X(hα) = 0 if gB = B}.
Hence g̃ ×egα

g̃ has two irreducible components: ∆eg := G ×B Dα, which is the diagonal
embedding of g̃, and Sα := G×B Sα. Geometrically,

Sα =
{

(X, gB, hB) ∈ g∗ × (B ×Pα B)
∣∣∣∣

X|g·n+h·n = 0
and X(g · hα) = 0 if gB = hB

}
.

This second component is a vector bundle over B×PαB, of rank dim(g/n)−1. In particular,
Sα is smooth.

Finally, let us de�ne the closed subscheme S′α of Ñ × Ñ by setting

S′α := Sα ∩ (Ñ × Ñ ).

We will see in section 5 that this intersection is a reduced scheme, hence a variety. S′α is
a�ne over B ×Pα B, and it is the induced variety of the subvariety S ′

α of g∗ × (Pα/B)
de�ned by

S ′
α = {(X, gB) ∈ g∗ × (Pα/B) | X|b+g·b = 0}.

The main result of this chapter is the following:



2. ACTION OF THE BRAID GROUP BY CONVOLUTION 35

Theorem 2.3.2. Assume either that G has no factor of type G2 and char(k) 6= 2 if R is
not simply-laced, or that p is very good for G. There exists an action of B′

aff on DbCoh(g̃)
(resp. DbCoh(Ñ )) for which

(i) The action of the element θx is given by the convolution with kernel ∆∗(Oeg(x))
(resp. ∆∗(O eN (x))) for x ∈ X, where ∆ is the diagonal embedding.

(ii) The action of the element Tα is given by the convolution with kernel OSα (resp.
OS′α) for α ∈ Φ.

Moreover, the action of (Tα)−1 is the convolution with kernel OSα(−ρ, ρ−α) (respecti-
vely OS′α(−ρ, ρ− α)).

These actions correspond under the functor i∗ : DbCoh(Ñ ) → DbCoh(g̃), where i :
Ñ ↪→ g̃ is the closed embedding.

The proof of this result occupies most of the rest of this chapter. It is clear that
the kernels ∆∗(Oeg(x)) (respectively ∆∗(O eN (x))) are invertible, and satisfy relation 2 of
Theorem 1.1.3. In subsection 2.4 we show that the kernelsOSα for α ∈ Φ are also invertible,
with inverse OSα(−ρ, ρ − α). Then, in subsection 2.5 we show that they satisfy relations
3 and 4 of Theorem 1.1.3.

In sections 3 and 4 we show that the kernels satisfy relations 1 of Theorem 1.1.3, under
the �rst assumptions. The relations under the second assumptions are proved later, in
section 8. In section 5 we explain how one can deduce the assertions concerning the action
on DbCoh(Ñ ).

2.4 Action of the inverse of the generators
In this subsection we �x a simple root α ∈ Φ. The following lemma is very easy, but useful.
This result also appears in [Lus98, 7.19].
Lemma 2.4.1. Let λ ∈ X, such that 〈λ, α∨〉 = 0. The line bundle OB×PαB(λ,−λ) is
trivial.

Proof. We have OB×PαB(λ,−λ) ∼= OB×PαB(λ, 0)⊗OB×PαB(0,−λ). Moreover, if p : B ×Pα

B → Pα denotes the natural morphism, OB×PαB(λ, 0) ∼= p∗OPα(λ) and OB×PαB(0,−λ) ∼=
p∗OPα(−λ) The result follows.

Let us remark in particular that if 〈λ, α∨〉 = 〈µ, α∨〉 then we have OB×PαB(λ, µ) ∼=
OB×PαB(µ, λ). We deduce that OB×PαB(−ρ, ρ − α) ∼= OB×PαB(ρ − α,−ρ), and that
OSα(−ρ, ρ− α) ∼= OSα(ρ− α,−ρ), OS′α(−ρ, ρ− α) ∼= OS′α(ρ− α,−ρ).

We will use several times the following result: any �nite collection of points of B is
contained in a B-translate of U+B/B. This follows easily from the fact that if gi ∈ G
(i = 1, . . . , n) then the intersection (

⋂n
i=1 giBU+)∩ (BU+) is not empty, as an intersection

of dense open sets.
Proposition 2.4.2. There exist isomorphisms in Db

propCoh(g̃× g̃):
OSα ∗

(OSα(−ρ, ρ− α)
) ∼= ∆∗Oeg ∼=

(OSα(−ρ, ρ− α)
) ∗ OSα .
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Proof. We have (p1,2)∗OSα
∼= OSα×eg and (p2,3)∗OSα

∼= Oeg×Sα
. First, let us show that the

tensor product
OSα×eg

L⊗eg3Oeg×Sα
(2.4.3)

is concentrated in degree 0. As each of these varieties over B3 is the induced variety (from
B to G) of its restriction to (B/B) × B2, we only have to consider the situation over
(B/B)×B2. By B-equivariance, we can even restrict to (B/B)× (U+B/B)2 ∼= (U+)2 (see
the remark above).

Let us choose coordinates on g̃3|(B/B)×(U+B/B)2 . We have isomorphisms g̃|U+B/B
∼−→

(b+)∗ × (U+B/B) (induced by restriction), and g̃|B/B
∼= (b+)∗. Hence on the �bers,

isomorphic to ((b+)∗)3, we choose coordinates e
(j)
γ , h(j)

β (γ ∈ R+, β ∈ Φ, j ∈ {1, 2, 3}) which
are copies of the elements of the basis of g de�ned in chapter I. The multiplication induces
an isomorphism U+

(α) × Uα
∼→ U+, where U+

(α) is the product of the Uγ for γ ∈ R+ − {α}
(this is the unipotent radical of the parabolic subgroup opposite to Pα). Hence, uα and
multiplication induce an isomorphism U+

(α) × k
∼→ U+. Using this, we choose coordinates

(u(j), t(j)) on U+, considered as the base of the j-th copy of g̃ (j = 2, 3).
Then (Sα× g̃)|(B/B)×(U+B/B)2 is de�ned in (g̃)3|(B/B)×(U+B/B)2 by the equations u(2) =

1, h
(1)
β = h

(2)
β (β ∈ Φ), e

(1)
γ = e

(2)
γ (γ ∈ R+) and h

(1)
α − t(2)e

(1)
α = 0 (see 2.3). It is

clear that these equations form a regular sequence in k[g̃3|(B/B)×(U+B/B)2 ]. Similarly,
(g̃ × Sα)|(B/B)×(U+B/B)2 is de�ned by the equations u(2) = u(3), h

(2)
β = h

(3)
β (β ∈ Φ),

e
(2)
γ = e

(3)
γ (γ ∈ R+) and u(3) · (h(3)

α − (t(2) + t(3))e(3)
α ) = 0. Now the union of these two

sequences is again a regular sequence, and de�nes a reduced scheme. Hence the derived
tensor product (2.4.3) is concentrated in degree 0, and equals the sheaf of functions on the
subvariety Vα := (Sα × g̃) ∩ (g̃× Sα) of g̃3. Now we compute

R(p1,3)∗(OVα(ρ− α,−ρ, 0)) and R(p1,3)∗(OVα(0,−ρ, ρ− α)). (2.4.4)

The following result will be proved later:

Lemma 2.4.5. The variety Vα has two irreducible components: V 1
α , which is the restric-

tion of Vα to the partial diagonal ∆1,3
B ⊂ B3, and V 2

α , which has the following geometric
description:

V 2
α = {(X, g1B, g2B, g3B) ∈ g∗ × (B ×Pα B ×Pα B) | X|g1·(n+sl(2,α)) = 0}.

Moreover, there exist exact sequences of sheaves

OV 1
α

↪→ OVα(ρ− α,−ρ, 0) ³ OV 2
α
(ρ− α,−ρ, 0);

OV 1
α

↪→ OVα(0,−ρ, ρ− α) ³ OV 2
α
(0,−ρ, ρ− α).

It follows that to compute the direct images (2.4.4) we only have to compute the
objects R(p1,3)∗(OV 1

α
), R(p1,3)∗(OV 2

α
(ρ − α,−ρ, 0)) and R(p1,3)∗(OV 2

α
(0,−ρ, ρ − α)). But

R(p1,3)∗(OV 2
α
(ρ − α,−ρ, 0)) = R(p1,3)∗(OV 2

α
(0,−ρ, ρ − α)) = 0 because p1,3 is a locally



2. ACTION OF THE BRAID GROUP BY CONVOLUTION 37

trivial �bration of �ber P1
| on V 2

α , and the sheaf on this �ber is OP1(−1). To conclude, we
only have to show that R(p1,3)∗(OV 1

α
) ∼= ∆∗Oeg.

By local triviality we only have to consider the morphism

q1,3 : Vα|(B/B)×(Pα/B)×(B/B) → (g/n)∗.

Then de�ne M := (sl(2, α)/(ke−α))∗, and choose a vector subspace M ′ ⊂ g/n such that
g/n ∼= M∗ ⊕M ′. Let E = {(D, x) ∈ P(M) ×M | x ∈ D} be the tautological line bundle
on P(M). Then the morphism q1,3 identi�es with the product of Id(M ′)∗ and the canonical
projection f : E → M . Hence we only have to show that Rf∗OE

∼= OM . As M is a�ne we
only have to consider the global sections; but the direct image of OE under the canonical
projection to P(M) is

⊕
m≥0OP(M)(m), whose global sections are S(M∗).

This completes the proof of Proposition 2.4.2, assuming Lemma 2.4.5.

Proof of Lemma 2.4.5. Consider the subvariety Vα of g∗ × (Pα/B)× (Pα/B):

Vα := {(X, gB, hB) ∈ g∗ × (Pα/B)× (Pα/B) | X|n+g·n+h·n = 0,

X(hα) = 0 if gB = B and X(g · hα) = 0 if gB = hB}.
We have an isomorphism Vα

∼= G×B Vα. On (Pα/B)2 we use the open covering (Pα/B)2 =
(UαB/B)2 ∪ (nαUαB/B)2 ∪ [(UαB/B) × (nαUαB/B)] ∪ [(nαUαB/B) × (UαB/B)]. Each
of these open sets is isomorphic to k2, via uα. We use the coordinates t(1) and t(2) on
(Pα/B)2, and {eγ , γ ∈ R, hβ, β ∈ Φ} on g∗. The change of coordinates on the intersection
(UαB/B) ∩ (nαUαB/B) is given by t 7→ −1

t (this can be checked in SL(2,k)).
The restriction Vα|(UαB/B)2 is de�ned in g∗ × k2 by the equations eγ = 0 (γ ∈ R−),

hα−t(1)eα = 0 and hα−(t(1)+t(2))eα = 0 (see the preceding proof). This last equation can
be replaced by t(2)eα = 0. Similarly, Vα|(nαUαB/B)2 is de�ned in g∗ × k2 by the equations
eγ = 0 (γ ∈ R−), eα + t(1)hα = 0 and hα = 0. Over (UαB/B)× (nαUαB/B), the equations
are eγ = 0 (γ ∈ R−), hα− t(1)eα = 0 and eα = 0. Finally, Vα|(nαUαB/B)×(UαB/B) is de�ned
by eγ = 0 (γ ∈ R−), eα + t(1)hα = 0 and t(2)hα = 0. These equations show that Vα has two
irreducible components: V 1

α , which is the restriction of Vα to (Pα/B)× (B/B) ⊂ (Pα/B)2,
and V 2

α , which has the following geometric description:

V 2
α = {(X, gB, hB) ∈ g∗ × (Pα/B)2 | X|n+sl(2,α) = 0}.

The varieties Vα, V 1
α and V 2

α are a�ne over (UαB/B)2, with respective rings of func-
tions k[eγ , hβ, t(i)]/(hα−t(1)eα, t(2)eα), k[eγ , hβ, t(i)]/(hα−t(1)eα, t(2)), k[eγ , hβ, t(i)]/(hα−
t(1)eα, eα). Hence the multiplication by eα and the natural quotient induce an exact se-
quence of sheaves

OV 1
α
|(UαB/B)2 ↪→ OVα |(UαB/B)2 ³ OV 2

α
|(UαB/B)2 .

Multiplication by hα induces a similar sequence on (nαUαB/B)× (UαB/B).
The element eα ∈ k[Vα|(UαB/B)2 ] goes to 0 when restricted to the open sets (nαUαB/B)2

or (UαB/B) × (nαUαB/B), and to −t(1)hα when restricted to (nαUαB/B) × (UαB/B).
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Hence the preceding exact sequences glue to give an exact sequence of (non B-equivariant)
sheaves

OV 1
α
⊗O(Pα/B)2

O(Pα/B)2(1, 0) ↪→ OVα ³ OV 2
α

where we have used the isomorphism Pα/B ∼= P1
|. Now consider the B-equivariant

structures. The second morphism in this sequence is obviously equivariant. We have
O(Pα/B)2(1, 0) = O(Pα/B)2(ρ, 0), and the �rst arrow of the exact sequence comes by de�ni-
tion from a B-equivariant morphism kB(α− ρ)⊗|OV 1

α
(ρ, 0) ↪→ OVα . Hence we obtain the

exact sequence of B-equivariant sheaves

kB(α− ρ)⊗| OV 1
α
(ρ, 0) ↪→ OVα ³ OV 2

α
.

Inducing from B to G, this gives the �rst exact sequence of the lemma. To prove the
second one, we observe that we also have an exact sequence

OV 1
α
(α− ρ, 0, ρ− α) ↪→ OVα(0,−ρ, ρ− α) ³ OV 2

α
(0,−ρ, ρ− α).

As V 1
α is supported on ∆1,3

B ⊂ B3, the �rst sheaf equals OV 1
α
.

Remark 2.4.6. In these two results, one can replace ρ by any λ ∈ X such that 〈λ, α∨〉 = 1.
This follows either from the proofs, or from Lemma 2.4.1.

2.5 First relations
In this subsection we show that the kernels of Theorem 2.3.2 for the action on DbCoh(g̃)
satisfy relations 3 and 4 of the presentation of B′

aff given by Theorem 1.1.3.
Let us consider relation 3. Let α ∈ Φ and x ∈ X be such that 〈x, α∨〉 = 0. We have to

show that OSα commutes with ∆∗Oeg(x). But

OSα ∗ (∆∗Oeg(x)) ∼= OSα(x, 0), (∆∗Oeg(x)) ∗ OSα
∼= OSα(0, x),

and OB×PαB(x, 0) = OB×PαB(0, x) by Lemma 2.4.1. Taking the inverse image to Sα, we
obtain the result.

Now, consider relation 4. Let α ∈ Φ and x ∈ X be such that 〈x, α∨〉 = 1. We have
to prove that ∆∗Oeg(x) ∼= OSα ∗ (∆∗Oeg(x − α)) ∗ OSα . Due to Proposition 2.4.2, this is
equivalent to proving

(∆∗Oeg(x)) ∗ (OSα(−ρ, ρ− α)) ∼= (OSα) ∗ (∆∗Oeg(x− α)).

We have OB×PαB(−ρ, x + ρ − α) ∼= OB×PαB(x − α, 0) by Lemma 2.4.1 again. The result
follows, since

(∆∗Oeg(x)) ∗ (OSα(−ρ, ρ− α)) ∼= OSα(−ρ, x + ρ− α),
(OSα) ∗ (∆∗Oeg(x− α)) ∼= OSα(x− α, 0).
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2.6 More notation
In this subsection we introduce notation concerning Schubert varieties and Demazure res-
olutions (following [BK04]).

If w ∈ W , we denote by Xw the corresponding Schubert variety. This is the closure
of BwB/B in B. Similarly, we denote by Xw the closure of the G-orbit of (B/B, wB/B)
in B × B, called G-Schubert variety. Its points are the pairs of Borel subgroups of G in
relative position at most w in the Bruhat order. It identi�es with G ×B Xw under the
isomorphism G×B B ∼= B × B.

For w = s1 · · · sn a reduced expression in W , let Z(s1, ··· ,sn) be the associated Demazure
resolution of the Schubert variety Xw (as de�ned in [BK04]). Let also Z(s1, ··· ,sn) be the
induction from B to G of this resolution, which is a resolution of Xw, and let Φ(s1, ··· ,sn) :
Z(s1, ··· ,sn) → Xw be the associated morphism. If sj is the re�ection associated with the
simple root αj ∈ Φ for any j = 1, . . . , n, and Pj := G/Pj for Pj the standard parabolic
subgroup of G of type {αj}, then we have an isomorphism Z(s1, ··· ,sn)

∼= B×P1B×P2 · · ·×Pn

B, and Φ(s1, ...,sn) identi�es with the restriction of the projection p1,n+1 : Bn+1 → B2. Let
Z̃(s1, ··· ,sn) be the intersection

(Sα1 × g̃n−1) ∩ (g̃× Sα2 × g̃n−2) ∩ · · · ∩ (g̃n−1 × Sαn),

a closed subscheme of g̃n+1. It is not clear to us what the properties of this scheme are in
general. We will show in the cases of interest to us that it is reduced and irreducible.

In the next two sections we prove the �nite braid relations, �rst in the case when the
simple roots α and β generate a root system of type A2, and then in the case when they
generate a system of type B2. The much easier case of a root system of type A1 ×A1 is
left to the reader.

3 Finite braid relations for type A2

Let α and β be simple roots generating a root system of type A2, i.e. such that 〈α, β∨〉 =
〈β, α∨〉 = −1. It is well-known (see e.g. [Spr98, 8.2.3]) that there exists c ∈ k× such that

∀x, y ∈ k, (uα(x), uβ(y)) = uα+β(cxy).

Here, �(−,−)� is the commutator in G. The following formulae for the adjoint action of G
on g follow easily:

uα(x) · eβ = eβ + cxeα+β, uα+β(x) · hβ = hβ − xeα+β,

uα(x) · hβ = hβ + xeα, uα+β(x) · e−β = e−β + (x/c)eα.

We also have [eα, eβ] = ceα+β . The corresponding formulae with α and β interchanged are
obtained by replacing c by −c. Note �nally that hα+β = hsα(β) = sα(hβ) = hα + hβ.

In this section we prove that

OSα ∗ OSβ
∗ OSα = R(p1,4)∗(OSα×eg2

L⊗eg4Oeg×Sβ×eg
L⊗eg4Oeg2×Sα

)
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is invariant under the exchange of α and β (where p1,4 : g̃4 → g̃2 is the natural projection).
In fact we compute this complex of sheaves explicitly.

3.1 Derived tensor product
Lemma 3.1.1. There exist isomorphisms

OSα×eg2

L⊗eg4Oeg×Sβ×eg
L⊗eg4Oeg2×Sα

∼= O eZ(sα,sβ,sα)
;

OSβ×eg2

L⊗eg4Oeg×Sα×eg
L⊗eg4Oeg2×Sβ

∼= O eZ(sβ,sα,sβ)
.

Moreover, the schemes Z̃(sα,sβ ,sα) and Z̃(sβ ,sα,sβ) are integral, i.e. reduced and irreducible.

Proof. We write the proof in the �rst case only, the second one being similar (replace c
by −c). As in the proof of Proposition 2.4.2, we only have to study the situation over
(B/B) × (U+B/B)3. Let us choose an order on R+ such that the last three roots are
α + β, β, α (in this order). Let Pα, Pβ , Pα,β be the standard parabolic subgroups of G
associated to {α}, {β} and {α, β}. We denote by U+

(α), U+
(β), U+

(α,β) the product of the
Uγ for γ ∈ R+ − {α}, γ ∈ R+ − {β}, γ ∈ R+ − {α, β, α + β} (these are the unipotent
radicals of the parabolic subgroups opposite to Pα, Pβ , Pα,β). We have an isomorphism
U+ ∼= ∏

γ∈R+ Uγ . Via this isomorphism, the restriction to U+B/B of the projections
G/B → G/Pα and G/B → G/Pα,β become the natural projections U+

(α) × Uα → U+
(α) and

U+
(α,β)×Uα+β×Uβ×Uα → U+

(α,β). The restriction of the projection G/B → G/Pβ becomes

{
U+

(α,β) × Uα+β × Uβ × Uα → U+
(β)
∼= U+

(α,β) × Uα+β × Uα

(u, uα+β(x), uβ(y), uα(z)) 7→ (u, uα+β(x− cyz), uα(z))
.

As in Proposition 2.4.2, as coordinates on g̃4|(B/B)×(U+B/B)3 we use u(j) ∈ U+
(α,β), x(j),

y(j), z(j) ∈ k on the base, and h
(j)
δ (δ ∈ Φ) and e

(j)
γ (γ ∈ R+) on the �ber of the j-th copy

of g̃ (we do not use the coordinates u(1), x(1), y(1) and z(1) because in the �rst copy of g̃

we only consider the �ber over B/B).
In these coordinates, (Sα× g̃2)|(B/B)×(U+B/B)3 ⊂ (g̃4)|(B/B)×(U+B/B)3 is de�ned by the

equations

(∗) u(2) = 1, x(2) = 0, y(2) = 0, h
(1)
δ = h

(2)
δ , e(1)

γ = e(2)
γ (δ ∈ Φ, γ ∈ R+)

and h(1)
α − z(2)e(1)

α = 0. (3.1.2)

Similarly, (g̃×Sβ×g̃)|(B/B)×(U+B/B)3 ⊂ (g̃4)|(B/B)×(U+B/B)3 is de�ned by the equations

(∗′)
{

u(3) = u(2), x(2) − cy(2)z(2) = x(3) − cy(3)z(3),

z(2) = z(3), h
(2)
δ = h

(3)
δ , e

(2)
γ = e

(3)
γ
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and u(2) · uα+β(x(2) − cy(2)z(2)) · uα(z(2)) · (h(2)
β − (y(2) + y(3))e(2)

β ) = 0, i.e.

u(2) · (h(2)
β + z(2)e(2)

α − (y(2) + y(3))e(2)
β − (x(2) + cy(3)z(2))e(2)

α+β

)
= 0. (3.1.3)

And �nally (g̃2 × Sα)|(B/B)×(U+B/B)3 ⊂ (g̃4)|(B/B)×(U+B/B)3 is de�ned by

(∗′′) u(3) = u(4), x(3) = x(4), y(3) = y(4), h
(3)
δ = h

(4)
δ , e(3)

γ = e(4)
γ

and u(3) · uα+β(x(3)) · uβ(y(3)) · (h(3)
α − (z(3) + z(4))e(3)

α ) = 0, i.e.

u(3) · (h(3)
α − (z(3) + z(4))e(3)

α + y(3)e
(3)
β + (−x(3) + cy(3)(z(3) + z(4)))e(3)

α+β

)
= 0. (3.1.4)

In each case, the given equations form a regular sequence in k[g̃4|(B/B)×(U+B/B)3 ]. Let
us prove that the union of these equations again forms a regular sequence. First, equations
(∗), (∗′) and (∗′′) allow us to identify all the coordinates in the �bers (we will thus remove
the superscript on them), and to eliminate the coordinates u(j), x(2), y(2), x(3), z(2), x(4),
y(3). Then equations (3.1.2), (3.1.3) allow to eliminate hα and hβ, while (3.1.4) becomes
−z(4)eα + y(4)eβ + cy(4)z(4)eα+β = 0, a non-zero equation in the remaining variables.
Hence the equations indeed form a regular sequence, and thus the derived tensor product
is concentrated in degree 0.

Moreover, the polynomial −z(4)eα + y(4)eβ + cy(4)z(4)eα+β is irreducible (it is of degree
1 in eα, and not divisible by z(4)). Hence it de�nes an integral scheme. Thus the restriction
of (Sα × g̃2) ∩ (g̃ × Sβ × g̃) ∩ (g̃2 × Sα) to (B/B) × (U+B/B) is integral. It follows that
the restriction of this scheme to any B-translate of (B/B) × (U+B/B) is also integral.
Hence (Sα × g̃2) ∩ (g̃ × Sβ × g̃) ∩ (g̃2 × Sα) is the union of some integral open sets, each
one intersecting each other one. Hence it is integral.

3.2 Determination of the image
Now we have to show that

R(p1,4)∗(O(Sα×eg2)∩(eg×Sβ×eg)∩(eg2×Sα)) = R(p1,4)∗(O eZ(sα,sβ,sα)
)

is invariant under the exchange of α and β. First, as the intersection we consider is
reduced, we can work with varieties instead of schemes. In this subsection we compute
the image of Z̃(sα,sβ ,sα) under p1,4, and observe that it is invariant under the exchange
of α and β (though the variety Z̃(sα,sβ ,sα) is of course not). Then we show (in 3.4) that
R(p1,4)∗(O eZ(sα,sβ,sα)

) is the sheaf of functions on this image.

So, let us consider p1,4(Z̃(sα,sβ ,sα)). It is a closed subvariety of g̃2. Indeed, we have the
following diagram, where all the injections are closed immersions:

Z̃(sα,sβ ,sα)
� � i // g∗ × B4

π

²²

� � j // (g∗)4 × B4

²²

g̃4

p1,4

²²

? _σoo

g∗ × B2 � � τ // (g∗)2 × B2 g̃2.? _
ξoo
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One has ji(Z̃(sα,sβ ,sα)) ⊆ σ(g̃4), and ξp1,4(Z̃(sα,sβ ,sα)) = τπi(Z̃(sα,sβ ,sα)). The morphism π
being proper, hence closed, the result follows.

Now we compute explicitly p1,4(Z̃(sα,sβ ,sα)) as a subset of g∗ ×B2, using the geometric
description of Sα and Sβ (see 2.3). By G-equivariance, we only have to calculate this image
over the points (B/B,wB/B) for w in the subgroup of W generated by sα and sβ . Recall
that the Demazure resolution Φ(sα,sβ ,sα) is an isomorphism over the complement of Xsα .
Hence if w = sa1

α sβsa2
α with ai ∈ {0, 1} then for X ∈ g∗ the point (X, B/B, wB/B) is in

the image if and only if (X,B/B, sa1
α B/B, sa1

α sβB/B, sa1
α sβsa2

α B/B) is in Z̃(sα,sβ ,sα). Using
the geometric description of Sα, one obtains the condition on X in cases (i) to (iv):

(i) Fiber over (B/B, sαsβsαB/B): X|n⊕|eα⊕|eβ⊕|eα+β
= 0.

(ii) Fiber over (B/B, sβsαB/B): X|n⊕|hα⊕|eβ⊕|eα+β
= 0.

(iii) Fiber over (B/B, sαsβB/B): X|n⊕|hβ⊕|eα⊕|eα+β
= 0 (observe that sαsβ · hα =

hsαsβ(α) = hβ).
(iv) Fiber over (B/B, sβB/B): X|n⊕|hα⊕|hβ⊕|eβ

= 0.

(v) Fiber over (B/B, sαB/B): here the �ber of Φ(sα,sβ ,sα) is isomorphic to P1
|, with

points the (B/B, gB/B, gB/B, sαB/B) for g ∈ Pα. First, if g ∈ sαB, the condition on X
for (X,B/B, gB/B, gB/B, sαB/B) to be in the intersection is X|n⊕|eα⊕|(sα·hα)⊕|(sα·hβ) =
0, i.e. X|n⊕|eα⊕|hα⊕|hβ

= 0. Then, if g /∈ sαB, we can assume g = uα(ε) for some ε ∈ k.
Then the corresponding condition on X is to vanish on n and on

hα − εeα, uα(ε) · hβ = hβ + εeα and eα.

Hence the condition is the same in the two cases. And �nally the condition on X for
(X, B/B, sβB/B) to be in p1,4(Z̃(sα,sβ ,sα)) is

X|n⊕|hα⊕|hβ⊕|eα
= 0.

(vi) Fiber over (B/B, B/B): the �ber of Φ(sα,sβ ,sα) over (B/B,B/B) is again P1
|, with

points the (B/B, gB/B, gB/B, B/B) for g ∈ Pα. Firstly, if g ∈ sαB/B, the corresponding
condition on X is X|n⊕|eα⊕|hα+β

= 0. Secondly, if g /∈ sαB, then we can assume g = uα(ε)
for some ε ∈ k. The condition on X is then to vanish on n, on hα− εeα and on uα(ε) ·hβ =
hβ + εeα. This is equivalent to vanishing on n, hα − εeα and hα + hβ = hα+β . Finally, the
condition on X for the point (X,B/B,B/B) to be in the image of Z̃(sα,sβ ,sα) under p1,4 is
that X|n⊕|hα+β

= 0, and that either X(eα) = 0, or X(hα − εeα) = 0 for some ε ∈ k. But
if X(eα) 6= 0 then X(hα − εeα) = 0 for ε = X(hα)/X(eα). So the condition on X is only

X|n⊕|hα+β
= 0.

These considerations show that p1,4(Z̃(sα,sβ ,sα)) is a closed subvariety of g∗ × B × B,
invariant under the exchange of α, β (the computations with α and β interchanged are the
same, replacing c by −c). We denote it by S{α,β}.

3.3 Normality of S{α,β}

Proposition 3.3.1. The variety S{α,β} is integral, normal and Cohen-Macaulay.



3. FINITE BRAID RELATIONS FOR TYPE A2 43

Proof. 6 First, S{α,β} is integral because it is the image of Z̃(sα,sβ ,sα), which is integral by
Lemma 3.1.1.

For the other properties, as usual, we only have to consider the situation over (B/B)×
(U+B/B). We keep the notation of the proof of Lemma 3.1.1, and de�ne γ := α + β.
Recall the isomorphism U+ ∼= U+

(α,β) × Uγ × Uβ × Uα (see the proof of Lemma 3.1.1). As
S{α,β} is supported over B ×G/Pα,β

B, in fact we only have to consider the situation over
(B/B)× (UγUβUαB/B) ∼= Uγ × Uβ × Uα.

Consider a point
u = uγ(xγ)uβ(xβ)uα(xα) ∈ UγUβUα,

with xγxβxα 6= 0 and xγ − cxαxβ 6= 0. It can also by written

uα(x)uβ(y)uα(z)

with xγ = cxy, xβ = y, xα = x + z (here xyz 6= 0). If X ∈ (g/n)∗, and (X, B/B, uB/B)
is in S{α,β}, then X must vanish on uα(x) · e−α = e−α + xhα − x2eα, hence on

hα − xeα. (3.3.2)

It must also vanish on uα(x)uβ(y) · e−β , hence on

hβ + xeα − yeβ − cxyeγ . (3.3.3)

Finally, it must vanish on uα(x)uβ(y)uα(z) · e−α, hence on

(x + z)hα − (x + z)2eα + yzeβ + cyz(x + z)eα+β.

Substracting (x + z) times equation (3.3.2), and dividing by z, we obtain that X must
vanish on

(x + z)eα − yeβ − cy(x + z)eγ . (3.3.4)

The sum of equations (3.3.2) and (3.3.3) becomes

hα + hβ − xβeβ − xγeγ . (3.3.5)

Multiplying (3.3.2) by cxβ = cy gives

cxβhα − xγeα. (3.3.6)

Equation (3.3.4) can be rewritten

xαeα − xβeβ − cxαxβeγ . (3.3.7)

Finally, adding cxα times (3.3.2) and cx times (3.3.4) gives

cxαhα − xγeβ − cxαxγeγ . (3.3.8)
6This proof is due to Patrick Polo.
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Let us denote by M the closed subscheme of Adim(g/n)+3 de�ned by equations (3.3.5) to
(3.3.8). Equation (3.3.5) allows to eliminate hβ; that is, setting e = xα, f = xβ , g = xγ ,
h = chα, i = eα, j = eβ and k = ceγ , we obtain that the coordinate ring of M is a
polynomial ring over A := k[e, f, g, h, i, j, k]/(F,G, H), where





F = fh− gi,
G = ei− fj − efk,
H = eh− gj − egk.

Lemma 3.3.9. A is integral, of dimension 5, Cohen-Macaulay and normal. Its singular
locus is de�ned by e = f = g = h = i = j = 0.

Proof. Let us consider j′ := j + ek. A is isomorphic to A′ ⊗ k[k], where

A′ := k[e, f, g, h, i, j′]/(fh− gi, ei− fj′, eh− gj′).

This ring is the algebra of functions on the variety of matrices
(

h i j′

g f e

)

of rank at most 1, which is the cone of the Segre embedding of P1 × P2. This variety is
well known to be integral, Cohen-Macaulay and normal, the vertex of the cone (de�ned by
e = f = g = h = i = j′ = 0) being its unique singularity (see e.g. [BV88, 2.8, 2.11]). The
lemma follows.

In particular, M is integral. It contains S{α,β}|(B/B)×(U+B/B) (the equations are sat-
is�ed on a dense open subset of S{α,β}|(B/B)×(U+B/B), hence everywhere), which has the
same dimension. Hence the two varieties coincide.

We deduce that S{α,β} is normal and Cohen-Macaulay. This �nishes the proof of
Proposition 3.3.1.

3.4 End of the proof
We denote by Ψ(sα,sβ ,sα) : Z̃(sα,sβ ,sα) → S{α,β} the morphism constructed above (it is the
restriction of p1,4), and similarly with α and β interchanged..

Proposition 3.4.1. We have

R(Ψ(sα,sβ ,sα))∗(O eZ(sα,sβ,sα)
) ∼= OS{α,β} ,

and similarly with α and β interchanged.

Proof. First we prove that Ri(Ψ(sα,sβ ,sα))∗(O eZ(sα,sβ,sα)
) = 0 for i ≥ 1. The argument for

this is adapted from [BK04, 3.2.1]. Since the �bers of Ψ(sα,sβ ,sα) are of dimension at most
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1, by [Har77, III.11.2] we have Ri(Ψ(sα,sβ ,sα))∗ = 0 for i ≥ 2. Hence we only have to prove
the equality R1(Ψ(sα,sβ ,sα))∗(O eZ(sα,sβ,sα)

) = 0. The following diagram commutes:

Z̃(sα,sβ ,sα)

Ψ(sα,sβ,sα)

²²

� � i // g∗ ×Z(sα,sβ ,sα)

Id×Φ(sα,sβ,sα)

²²
S{α,β} � � j // g∗ ×Xsαsβsα

where i and j are closed embeddings. Hence we only have to show the equality R1(Id ×
Φ(sα,sβ ,sα))∗(i∗O eZ(sα,sβ,sα)

) = 0. We have a surjection

Og∗×Z(sα,sβ,sα)
³ i∗O eZ(sα,sβ,sα)

.

As R2(Id× Φ(sα,sβ ,sα))∗ = 0 (for the same reason as above), we obtain a surjection

R1(Id× Φ(sα,sβ ,sα))∗(Og∗×Z(sα,sβ,sα)
) ³ R1(Id× Φ(sα,sβ ,sα))∗(i∗O eZ(sα,sβ,sα)

).

By the vanishing of higher direct images for Demazure resolutions (see e.g. [BK04, Theorem
3.3.4]), the object on the left hand side is zero. Hence R1(Id×Φ(sα,sβ ,sα))∗(i∗OZ(sα,sβ,sα)

) =
0, as claimed.

Since Ψ(sα,sβ ,sα) is proper and birational (because Φ(sα,sβ ,sα) is), and S{α,β} is normal
(by Proposition 3.3.1), one has (Ψ(sα,sβ ,sα))∗(O eZ(sα,sβ,sα)

) ∼= OS{α,β} by Zariski's Main
Theorem. This proves the result. The assertion with α and β interchanged is obtained
similarly.

With this proposition the proof of the �nite braid relation for the action on DbCoh(g̃)
(see Theorem 2.3.2) when α and β generate a root system of type A2 is complete.

4 Finite braid relations for type B2

Now we assume that α and β generate a root system of type B2. To �x notations, we
assume that α is short and β is long. Then 〈α, β∨〉 = −1, 〈β, α∨〉 = −2. There exist
structure constants c, d ∈ k× such that

∀x, y ∈ k, (uα(x), uβ(y)) = uα+β(cxy)u2α+β(dx2y)

(again, see [Spr98, 8.2.3]). Then, also,

∀x, y ∈ k, (uβ(x), uα(y)) = uα+β(−cxy)u2α+β(−dxy2).
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Easy calculations yield the following formulae for the adjoint action of G on g:

uα(x) · eβ = eβ + cxeα+β + dx2e2α+β, uα(x) · hβ = hβ + xeα,

uα(x) · eα+β = eα+β + 2d
cxe2α+β, uβ(x) · hα = hα + 2xeβ,

uβ(x) · eα = eα − cxeα+β, uα+β(x) · hα = hα,

uα+β(x) · eα = eα − 2d
cxe2α+β, uα+β(x) · hβ = hβ − xeα+β,

uα+β(x) · e−α = e−α − 2
cxeβ, u2α+β(x) · hα = hα − 2xe2α+β,

uα+β(x) · e−β = e−β + 1
cxeα − d

c2
x2e2α+β,

u2α+β(x) · e−α = e−α − 2c
d xeα+β.

We also have hα+β = hα + 2hβ , h2α+β = hα + hβ.

In this section we prove the �nite braid relation for the simple roots α and β. The
proof is very similar to the one in the previous section. We assume throughout the section
that char(k) 6= 2.

4.1 Derived tensor product
Lemma 4.1.1. There exist isomorphisms

OSα×eg3

L⊗eg5Oeg×Sβ×eg2

L⊗eg5Oeg2×Sα×eg
L⊗eg5Oeg3×Sβ

∼= O eZ(sα,sβ,sα,sβ)
;

OSβ×eg3

L⊗eg5Oeg×Sα×eg2

L⊗eg5Oeg2×Sβ×eg
L⊗eg5Oeg3×Sα

∼= O eZ(sβ,sα,sβ,sα)
.

Moreover, the varieties Z̃(sα,sβ ,sα,sβ) and Z̃(sβ ,sα,sβ ,sα) are integral.

Proof. As for Lemma 3.1.1, we prove the result in the �rst case only, by computation of
equations (the second case can be treated similarly). Let us choose an ordering of R+ such
that the last four roots are 2α+β, α+β, β, α (in this order). Let U+

(α), U+
(β), U+

(α,β) be the
product of the Uγ for γ ∈ R+−{α}, γ ∈ R+−{β}, γ ∈ R+−{α, β, α+β, 2α+β}. Under
the isomorphism U+ ∼= ∏

γ∈R+ Uγ , the restriction to U+ of the projections πα : B → Pα,
πβ : B → Pβ become the morphisms U+

(α) × Uα → U+
(α) and

{
U+

(α,β) × U2α+β × Uα+β × Uβ × Uα → U+
(α,β) × U2α+β × Uα+β × Uα

(u, u2α+β(x), uα+β(y), uβ(z), uα(t)) 7→ (u, u2α+β(x− dt2z), uα+β(y − czt), uα(t))
.

As coordinates we will use the u(j), x(j), y(j), z(j) and t(j) on the base (j = 2, . . . , 5), and
e
(j)
γ (γ ∈ R+), h

(j)
δ (δ ∈ Φ) in the �bers (j = 1, . . . , 5).

In these coordinates, (Sα× g̃3)|(B/B)×(U+B/B)4 ⊂ (g̃5)|(B/B)×(U+B/B)4 is de�ned by the
equations

(∗) u(2) = 1, x(2) = 0, y(2) = 0, z(2) = 0, e(1)
γ = e(2)

γ , h
(1)
δ = h

(2)
δ

for δ ∈ Φ, γ ∈ R+, and
h(1)

α − t(2)e(1)
α = 0. (4.1.2)
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Similarly, (g̃× Sβ × g̃2)|(B/B)×(U+B/B)4 ⊂ (g̃5)|(B/B)×(U+B/B)4 is de�ned by the equa-
tions

(∗′)
{

u(2) = u(3), x(2) − d(t(2))2z(2) = x(3) − d(t(3))2z(3), t(2) = t(3),

y(2) − cz(2)t(2) = y(3) − cz(3)t(3), e
(2)
γ = e

(3)
γ , h

(2)
δ = h

(3)
δ ,

and u(2)·u2α+β(x(2)−d(t(2))2z(2))·uα+β(y(2)−cz(2)t(2))·uα(t(2))·(h(2)
β −(z(2)+z(3))e(2)

β ) = 0,
i.e.

u(2) · (h(2)
β + t(2)e(2)

α − (z(2) + z(3))e(2)
β + (−y(2) − ct(2)z(3))e(2)

α+β

+ (−2
d

c
y(2)t(2) + d(t(2))2(z(2) − z(3)))e(2)

2α+β

)
= 0. (4.1.3)

Next, (g̃2 × Sα × g̃)|(B/B)×(U+B/B)4 ⊂ (g̃5)|(B/B)×(U+B/B)4 is de�ned by the equations

(∗′′)
{

u(3) = u(4), x(3) = x(4), y(3) = y(4),

z(3) = z(4), e
(3)
γ = e

(4)
γ , h

(3)
δ = h

(4)
δ ,

and u(3) · u2α+β(x(3)) · uα+β(y(3)) · uβ(z(3)) · (h(3)
α − (t(3) + t(4))e(3)

α ) = 0, i.e.

u(3) · (h(3)
α − (t(3) + t(4))e(3)

α + 2z(3)e
(3)
β + cz(3)(t(3) + t(4))e(3)

α+β

+ (−2x(3) + 2
d

c
y(3)(t(3) + t(4))e2α+β)

)
= 0. (4.1.4)

Finally, (g̃3 × Sβ)|(B/B)×(U+B/B)4 ⊂ (g̃5)|(B/B)×(U+B/B)4 is de�ned by the equations

(∗′′′)
{

u(4) = u(5), x(4) − d(t(4))2z(4) = x(5) − d(t(5))2z(5), t(4) = t(5),

y(4) − cz(4)t(4) = y(5) − cz(5)t(5), e
(4)
γ = e

(5)
γ , h

(4)
δ = h

(5)
δ ,

and u(4)·u2α+β(x(4)−d(t(4))2z(4))·uα+β(y(4)−cz(4)t(4))·uα(t(4))·(h(4)
β −(z(4)+z(5))e(4)

β ) = 0,
i.e.

u(4) · (h(4)
β + t(4)e(4)

α − (z(4) + z(5))e(4)
β + (−y(4) − ct(4)z(5))e(4)

α+β

+ (−2
d

c
y(4)t(4) + d(t(4))2(z(4) − z(5)))e(4)

2α+β

)
= 0. (4.1.5)

As in the proof of Lemma 3.1.1, we have to show that the union of these equations forms
a regular sequence. The equations (∗) to (∗′′′) allow us to eliminate the coordinates u(j),
x(2), y(2), z(2), x(3), y(3), t(3), x(4), y(4), z(4), x(5), y(5), t(5), and to identify the coordinates
in the �bers, which we will denote by eγ and hδ. Then, equations (4.1.2) and (4.1.3) allow
to eliminate hα and hβ . With these simpli�cations, equations (4.1.4) and (4.1.5) become

−t(4)eα + 2z(3)eβ + cz(3)(t(2) + t(4))eα+β + 2dz(3)t(2)t(4)e2α+β = 0, (4.1.6)
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(t(4) − t(2))eα − z(5)eβ − ct(4)z(5)eα+β

+ d(z(3)(t(2) − t(4))2 − (t(4))2z(5))e2α+β = 0. (4.1.7)

Let us denote by P the polynomial of (4.1.6), and by Q the polynomial of (4.1.7).
Then P and Q are irreducible and distinct. Hence they form a regular sequence in
k[z(3), z(5), t(2), t(4), eγ , γ ∈ R+, hδ, δ ∈ Φ − {α, β}]. This proves that the tensor prod-
uct we are considering is indeed concentrated in degree 0, and that the quotient ring
k[z(3), z(5), t(2), t(4), eγ , hδ]/(P, Q) is Cohen-Macaulay (see again [BH93, 2.1.3]). We prove
in the next lemma that this ring is an integral domain. We deduce, as in the case of A2,
that Z̃(sα,sβ ,sα,sβ) is an integral scheme.

Lemma 4.1.8. k[z(3), z(5), t(2), t(4), eγ , hδ]/(P, Q) is an integral domain.

Proof. First, let us prove that the closed subvariety N of kdim(g/n)+2 de�ned by P and
Q is irreducible. The restriction of this subvariety to the open set de�ned by t(4) 6= 0 is
irreducible (indeed, on this open set P gives eα as a polynomial in the other coordinates
and (t(4))−1, and replacing in Q we still obtain an irreducible polynomial). Similarly for
the intersections with the open set de�ned by z(3) 6= 0, and with the open set de�ned by
z(5) 6= 0. Now N is isomorphic to the closure of its intersection with the open set {t(4) 6=
0} ∪ {z(3) 6= 0} ∪ {z(5) 6= 0} (indeed, if t(4) = z(3) = 0, P is zero, and Q = −t(2)eα − z(5)eβ

is an irreducible polynomial, whose variety of zeros intersect the open set {z(5) 6= 0}).
This intersection is irreducible (it is the union of three irreducible open sets, each one
intersecting each other one). Hence N is irreducible.

Now we have to show that the ring k[z(3), z(5), t(2), t(4), eγ , hδ]/(P, Q) is reduced, i.e.
that it satis�es properties (R0) and (S1) (see [Mat80, p. 125]). As we have seen that
it is Cohen-Macaulay, and that the corresponding scheme is irreducible, we only have to
prove that it is regular at some point. But it is clearly regular at the point de�ned by
t(2) = t(4) = 1, z(3) = 0, z(5) = 1, eα = eβ = eα+β = e2α+β = 0 (consider the partial
di�erentials of P and Q with respect to eα and eβ).

4.2 Determination of the image
As in 3.2, we have to identify the images of Z̃(sα,sβ ,sα,sβ) and Z̃(sβ ,sα,sβ ,sα) under p1,5 : g̃5 →
g̃2 (these are closed subvarieties of g̃2), and observe that they coincide. We only indicate
the computations for the �rst case, the second one being similar. By G-equivariance we
only have to compute the �bers of this image over the points (B/B, wB/B) for w in the
subgroup of W generated by sα and sβ . In this case the Demazure resolution Φ(sα,sβ ,sα,sβ)

is an isomorphism over the complement of Xsαsβ
. This gives the condition on X ∈ g∗ for

the point (X,B/B,wB/B) to be in p1,5(Z̃(sα,sβ ,sα,sβ)) in cases (i) to (iv).
(i) Fiber over (B/B, sαsβsαsβB/B): X|n⊕|eα⊕|eβ⊕|eα+β⊕|e2α+β

= 0.

(ii) Fiber over (B/B, sαsβsαB/B): X|n⊕|eα⊕|eα+β⊕|e2α+β⊕|hβ
= 0.

(iii) Fiber over (B/B, sβsαsβB/B): X|n⊕|eβ⊕|eα+β⊕|e2α+β⊕|hα
= 0.

(iv) Fiber over (B/B, sβsαB/B): X|n⊕|eβ⊕|eα+β⊕|hα⊕|hβ
= 0.
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(v) Fiber over (B/B, sαsβB/B): the �ber of Φ(sα,sβ ,sα,sβ) is isomorphic to two copies
of P1

| with one common point. It contains, on the one hand, the points of the form
(B/B, sαB/B, sαgB/B, sαgB/B, sαsβB/B) for g ∈ Pβ and, on the other hand, the points
(B/B, gB/B, gB/B, sαB/B, sαsβB/B) for g ∈ Pα. One veri�es that the conditions on X
corresponding to each of these points are the same, namely

X|n⊕|eα⊕|e2α+β⊕|hα⊕|hβ
= 0.

(vi) Fiber over (B/B, sαB/B): the �ber of the Demazure resolution is formed by
the points (B/B, gB/B, gB/B, sαB/B, sαB/B) for g ∈ Pα and the points of the form
(B/B, sαB/B, sαgB/B, sαgB/B, sαB/B) for g ∈ Pβ . Let us compute the conditions
on X corresponding to the each of these points. First we consider a point of the form
(B/B, gB/B, gB/B, sαB/B, sαB/B) for some g ∈ Pα. If g ∈ sαB, the condition is to
vanish on n, eα, sα · hβ = hα + hβ and sα · hα = −hα, i.e. X|n⊕|eα⊕|hα⊕|hβ

= 0. If
g = uα(ε) for some ε ∈ k, then the condition is to vanish on hα− εeα, uα(ε) ·hβ = hβ + εeα,
eα and sα · hβ = hα + hβ , i.e. the same condition. Now, let us consider the points
(B/B, sαB/B, sαgB/B, sαgB/B, sαB/B) for g ∈ Pβ . If g ∈ sβB, then the condition is
to vanish on eα, e2α+β and sαsβ · hα = hα+β . If g = uβ(ε), the condition is to vanish on
eα, sα · (hβ − εeβ) and sαuβ(ε) · hα = sα · (hα + 2εeβ), i.e. on eα, sα · (hβ − εeβ) and
sα · (hα + 2hβ) = sα · hα+β = hα+β . As in 3.2 (vi), the condition on X for the point
(X, B/B, sαB/B) to be in the image of p1,5 is �nally

X|n⊕|eα⊕|hα+β
= 0.

(vii) Fiber over (B/B, sβB/B): Similarly, the condition is
X|n⊕|eβ⊕|h2α+β

= 0.

(viii) Fiber over (B/B, B/B): the �ber of the Demazure resolution is given on the
one hand by the (B/B, gB/B, gB/B, B/B, B/B) for g ∈ Pα and on the other hand by
the (B/B, B/B, gB/B, gB/B,B/B) for g ∈ Pβ . In the �rst case, if g ∈ B then the
corresponding condition of X is to vanish on n, hα and hβ. If g /∈ B, then the condition
is to vanish on n, eα, hα and hβ . The situation is similar in the second case. Hence the
condition on X for (X, B/B, B/B) to be in the image is

X|n⊕|hα⊕|hβ
= 0.

It follows from these computations and the similar ones with α and β interchanged
(computing p1,5(Z̃(sβ ,sα,sβ ,sα)) instead of p1,5(Z̃(sα,sβ ,sα,sβ)) amounts to replacing α by β,
β by α, α + β by β + 2α, and β + 2α by α + β) that the images under p1,5 of Z̃(sα,sβ ,sα,sβ)

and Z̃(sβ ,sα,sβ ,sα) coincide. We let S{α,β} be this image.

4.3 Normality of S{α,β}

Proposition 4.3.1. The variety S{α,β} is integral and normal.

Proof. 7 Let us de�ne γ := α+β, δ := 2α+β. As for type A2, we already know that S{α,β}
7This proof is a simpli�cation of an earlier one due to Patrick Polo.
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is integral, and we only have to consider the situation over (B/B)× (UδUγUβUαB/B). In
this proof we consider S{α,β} as the image of Z̃(sβ ,sα,sβ ,sα).

Let
u = uδ(xδ)uγ(xγ)uβ(xβ)uα(xα) ∈ UδUγUβUα,

with xαxβxγxδ 6= 0, xγxβ − d
c2

x2
γ 6= 0 and xαxγ − c

dxδ 6= 0. We have

u = uβ(t)uα(z)uβ(y)uα(x)

with xα = x+z, xβ = y+t, xγ = cyz, xδ = dyz2 (here xyzt 6= 0). Then if (X, B/B, uB/B)
is in S{α,β}, X must vanish on

hβ − teβ. (4.3.2)
It also vanishes on uβ(t)uα(z) · e−α, hence on hα + 2teβ − zeα + czteγ . Adding two times
(4.3.2), one obtains

hγ − zeα + czteγ . (4.3.3)
Further, X must vanish on uβ(t)uα(z)uβ(y) · e−β, hence on uβ(t)uα(z) · (hβ − yeβ). Sub-
stracting (4.3.2), one obtains

zeα − (y + t)eβ − cz(y + t)eγ − dyz2eδ. (4.3.4)

Finally, X vanishes on uβ(t)uα(z)uβ(y)uα(x) · e−α, hence on uβ(t)uα(z)uβ(y) · (hα− xeα).
Substracting uβ(t) · (hα − zeα), one obtains

−(x + z)eα + 2yeβ + c((y + t)(x + z) + yz)eγ + 2dyz(x + z)eδ. (4.3.5)

Let us transform our equations (4.3.2) to 4.3.5 to obtain equations in xα, xβ, xγ , xδ.
Substracting (4.3.5) from two times 4.3.2, one obtains

2hβ + xαeα − 2xβeβ − (cxαxβ + xγ)eγ − 2d

c
xαxγeδ. (4.3.6)

Similarly, adding (4.3.3) and (4.3.4), one obtains

hγ − xβeβ − xγeγ − xδeδ. (4.3.7)

Then, one veri�es that (x + z) times (4.3.4) plus z times (4.3.5), and 2y times (4.3.4) plus
v times (4.3.5) give respectively

(
2
c
xγ − xαxβ)eβ +

c

d
xδeγ + xαxδeδ, (4.3.8)

(
2
c
xγ − xαxβ)eα + xβ(cxαxβ − xγ)eγ +

2d

c
xγ(xαxβ − 1

c
xγ)eδ. (4.3.9)

Finally, xγ times (4.3.4) gives

c

d
xδeα − xβxγeβ − c2

d
xβxδeγ − xγxδeδ. (4.3.10)
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Equations (4.3.6) and 4.3.7 express hβ , hγ in terms of the other variables. We denote by
E, F and G the polynomials of (4.3.8), (4.3.9) and (4.3.10).

Now we can �nish the proof exactly as in the case of A2. In the next lemma we show
that the scheme de�ned by E, F and G is normal and integral. Moreover it contains
S{α,β}|(B/B)×(U+B/B) as a closed subvariety, and has the same dimension. Hence the two
varieties coincide.

Lemma 4.3.11. The ring

A := k[xα, xβ, xγ , xδ, eα, eβ, eγ , eδ]/(E,F, G)

is a normal domain.

Proof. Let us forget about the previous notations x, y, z and t. Now we de�ne x = xα,
y = −xβ , z = 2

cxγ − xαxβ, t = −xδ, f = 2
c (

c
deα − c2

d xβeγ − xγeδ), g = eβ, h = c
deγ + xαeδ,

i = eδ. Then we have A ∼= A′[i], where

A′ := k[x, y, z, t, f, g, h]/(zg − th, zf − (z − xy)h, y(z − xy)g − tf).

Let us �rst show that the closed subvariety of k7 corresponding to A′, denoted by M ,
is irreducible. The restriction of M to the open set {t 6= 0} is de�ned by the equations
h = zg/t and f = y(z−xy)g/t. Hence it is irreducible. Similarly for the open sets {z 6= 0}
and {f 6= 0}. These open sets intersect each other in M . Hence the restriction of M to
{t 6= 0} ∪ {z 6= 0} ∪ {f 6= 0} is also irreducible. As M is the closure of this restriction
(indeed, if z = t = 0, the condition (x, y, z, t, f, g, h) ∈ V does not depend on f), it is
irreducible.

Now we show that A is normal (hence also reduced). We will use the following lemma
(see [BV88, 16.24]):
Lemma 4.3.12. Let S be a noetherian ring, and y ∈ S which is not a zero divisor. Assume
that S/(y) is reduced and S[y−1] is normal. Then S is normal.

Let us apply the lemma to S = A′ and our element y. It is clear that y is not nilpotent
(it is not zero on M). Since M is irreducible, y is not a zero-divisor. Now A′/(y) is
isomorphic to

k[x, z, t, f, g, h]/I

where I = (zg − th, zf, ft). This ideal is the intersection of the prime ideals (z, t) and
(f, zg − th) of k[x, z, t, f, g, h], hence it is reduced.

Consider the ring A′[y−1]. Using the change of coordinates f ′ = f/(y2) and x′ =
−x + (z/y), it is isomorphic to

(
k[x′, z, t, f ′, g, h]/(zg − th, x′g − f ′t, zf ′ − hx′)

)
[y, y−1].

As in the proof of Lemma 3.3.9, this ring is normal. This concludes the proof of Lemma
4.3.11.

Remark 4.3.13. As in type A2, one can show that S{α,β} is Cohen-Macaulay. As our proof
is long and not needed here, we omit it.
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4.4 End of the proof
Now, exactly as in Proposition 3.4.1, one proves that

R(Ψ(sα,sβ ,sα,sβ))∗(O eZ(sα,sβ,sα,sβ)
) = OS{α,β} ,

and similarly with α and β interchanged. This �nishes the proof of the �nite braid relations
in type B2, hence also of the assertions of Theorem 2.3.2 concerning the action of B′

aff on
DbCoh(g̃), under the �rst assumptions.

In sections 5 to 7 we admit the theorem under the second assumptions (it will be proved
in section 8).

5 Restriction to Ñ
Now we will derive the assertions of Theorem 2.3.2 concerning the action of B′

aff on
DbCoh(Ñ ). We keep the notation and assumptions as before.

Let i : Ñ ↪→ g̃ denote the closed embedding. For α ∈ Φ, we recall that S′α :=
Sα ∩ (Ñ × Ñ ), and that Γi denotes the graph of i, a closed subvariety of Ñ × g̃. First,
relations (2), to (4) of Theorem 1.1.3 for the action on DbCoh(Ñ ) can be proved exactly
as for the action on DbCoh(g̃) (see 2.5). Now we prove relations (1).

Lemma 5.1. The tensor product O eN×eg
L⊗eg×egOSα is concentrated in degree 0, and is iso-

morphic to (i× i)∗OS′α.

Proof. As in the proof of Proposition 2.4.2, we only have to consider the situation over
(B/B)×(U+B/B) ∼= U+. We use the isomorphism U+ ∼= U+

(α)×Uα, and choose coordinates
u on U+

(α), t on Uα. On the �ber we use coordinates e
(j)
γ , h

(j)
δ (j = 1, 2).

Then (Ñ × g̃)|(B/B)×(U+B/B) is de�ned by the equations h
(1)
δ = 0 (δ ∈ Φ), and Sα by

e
(1)
γ = e

(2)
γ , h

(1)
δ = h

(2)
δ , u = 1 and h

(1)
α − te

(1)
α . The union of these equations forms a regular

sequence, which proves the result.

Remark 5.2. These computations show that S′α is reduced. It is not irreducible (see 7.1
for details).

Corollary 5.3. There exist isomorphisms in Db
propCoh(Ñ × g̃):

OΓi ∗ OS′α
∼= OSα ∗ OΓi ;

OΓi ∗ OS′α(ρ− α,−ρ) ∼= OSα(ρ− α,−ρ) ∗ OΓi .

Proof. We only prove the �rst isomorphism; the second one can be obtained similarly. It
follows from Lemma 2.1.3 that OΓi ∗ OS′α

∼= (Id eN × i)∗OS′α . Hence we only have to prove
that OSα ∗ OΓi

∼= (Id eN × i)∗OS′α .
Let pa,b denote the projections from Ñ ×g̃×g̃ to Ñ ×g̃ or g̃×g̃, and ∆ : Ñ → Ñ ×Ñ de-

note the diagonal embedding. Then by de�nition OSα ∗OΓi = R(p1,3)∗(p∗1,2OΓi

L⊗ p∗2,3OSα).
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But p∗1,2OΓi
∼= (Id eN × i × Ideg)∗(∆ × Ideg)∗O eN×eg. The result follows, using the projection

formula and the preceding lemma, which implies that L(i×Ideg)∗OSα
∼= (Id eN × i)∗OS′α .

Corollary 5.4. The �nite braid relations (i.e. relations 1 of Theorem 1.1.3) are satis�ed
by the kernels OS′α (α ∈ Φ).

Proof. First, let us prove an analogue of Proposition 2.4.2 for the kernels OS′α , i.e. that
we have

(†) OS′α ∗
(OS′α(ρ− α,−ρ)

) ∼= ∆∗O eN
∼=

(OS′α(ρ− α,−ρ)
) ∗ OS′α .

Multiplying the equality OSα ∗ (OSα(ρ−α,−ρ)) = ∆∗Oeg with OΓi on the right, and using
Lemma 2.1.3 and Corollary 5.3, one obtains

(Id eN × i)∗
(OS′α ∗

(OS′α(ρ− α,−ρ)
)) ∼= (Id eN × i)∗(∆∗O eN ).

It follows that the complex of sheaves OS′α ∗ (OS′α(ρ − α,−ρ)) has its cohomology con-
centrated in degree 0, i.e. is isomorphic to a coherent sheaf on Ñ × Ñ . Then, as
(Id eN × i)∗ : Coh(Ñ × Ñ ) → Coh(Ñ × g̃) has a left inverse (Id eN × i)∗, we deduce the
�rst isomorphism in (†). The second one can be proved similarly.

Now, let us prove that the braid relations are satis�ed. To �x notations, assume that α
and β are simple roots generating a root system of type A2 (the other cases can be treated
similarly). We have to prove that OS′α ∗ OS′β

∗ OS′α
∼= OS′β

∗ OS′α ∗ OS′β
. By (†), this is

equivalent to

OS′β
(ρ− β,−ρ) ∗ OS′α(ρ− α,−ρ) ∗ OS′β

(ρ− β,−ρ) ∗ OS′α ∗ OS′β
∗ OS′α

∼= ∆∗O eN .

But we know (see section 3) that

OSβ
(ρ− β,−ρ) ∗ OSα(ρ− α,−ρ) ∗ OSβ

(ρ− β,−ρ) ∗ OSα ∗ OSβ
∗ OSα

∼= ∆∗Oeg.

Hence we can use the same argument as in the �rst part of this proof.

Remark 5.5. The restriction of this action to Baff , for R of type A, was also considered in
[KT07]. There, it was proved to have some nice properties.

6 Relation to localization in positive characteristic
In this section we show that the action of B′

aff on DbCoh(g̃) we have constructed above,
or rather the similar action on DbCoh(g̃(1)) (for g̃(1) the Frobenius twist of g̃, see [BMR08,
1.1.1]), extends the action on DbCohB(1)

χ
(g̃(1)) constructed in [BMR06] using representation

theory of Lie algebras and D-modules in positive characteristic.
In 6.1 and 6.2, k is an arbitrary algebraically closed �eld. In 6.3 we assume char(k) > h

for h the Coxeter number of G. We use the same notation as above.
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6.1 The re�ection functors
Let us �x a simple root α ∈ Φ. In this subsection we study the functor L(π̃(1)

α )∗ ◦R(π̃(1)
α )∗.

To simplify notations, we forget about the Frobenius twists; the �twisted versions� of our
results can be proved similarly. In this subsection and the next one, char(k) is arbitrary.

We are in the situation of Lemma 2.1.2, with f being the morphism π̃α. So L(π̃α)∗ ◦
R(π̃α)∗ is the convolution functor with kernel

R(p13)∗(Oeg×egα
egα×eg

L⊗eg×egα×eg Oeg×egα×egα
eg).

The situation is particularly simple here, due to the following result:

Lemma 6.1.1. The derived tensor product Oeg×egα
egα×eg

L⊗eg×egα×eg Oeg×egα×egα
eg is concentrated

in degree 08. It equals the sheaf of functions on the intersection (g̃×egα
g̃α×g̃)∩(g̃×g̃α×egα

g̃).
Moreover, this intersection is reduced.

Proof. This proof is again similar to the proof of Proposition 2.4.2. For simplicity, in
this proof we write P for Pα. We can restrict to the situation over (B/B) × (U+P/P ) ×
(U+B/B) ∼= U+

(α)×U+. We use the isomorphisms g̃|U+B/B
∼= (b+)∗×U+ and g̃α|U+P/P

∼=
(b+ ⊕ ke−α)∗ × U+

(α) induced by restriction, and choose as usual coordinates e
(i)
γ , h

(i)
δ

(γ ∈ R+, δ ∈ Φ, i ∈ {1, 2, 3}) and e
(2)
−α in the �bers, u(2) and u(3) on U+

(α), and t on Uα.

The equations of the �rst subvariety are e
(1)
γ = e

(2)
γ , h

(1)
δ = h

(2)
δ , e

(2)
−α = 0 and u(2) = 1.

And the equations of the second variety are e
(2)
γ = e

(3)
γ , h

(2)
δ = h

(3)
δ , u(2) = u(3) and

u(2) · uα(t) · e(2)
−α = 0, i.e. u(2) · (e(2)

−α + th
(2)
α − t2e

(2)
α ) = 0.

It is clear that these equations form a regular sequence, and de�ne a reduced scheme.
This proves the lemma.

The morphism p1,3 restricts to an isomorphism from the intersection (g̃×egα
g̃α × g̃) ∩

(g̃× g̃α ×egα
g̃) to g̃×egα

g̃. Hence we obtain, using Lemma 2.1.2:

Proposition 6.1.2. There exists an isomorphism of functors

L(π̃α)∗ ◦R(π̃α)∗ ∼= F
Oeg×egα

eg
eg→eg

for the closed subvariety g̃×egα
g̃ ⊂ g̃× g̃.

Moreover, under this isomorphism, the adjunction morphism L(π̃α)∗ ◦R(π̃α)∗ → Id is
induced by the restriction map Oeg×egα

eg → ∆∗Oeg.

6.2 Intertwining functors
We have seen in 2.3 that g̃×egα

g̃ = G×B Rα, and that the B-variety Rα has two irreducible
components, Dα and Sα.

8As noticed by Michel Brion, this property is a general fact for morphisms between smooth varieties.
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Lemma 6.2.1. There exist exact sequences of B-equivariant quasi-coherent sheaves on
g∗ × Pα/B, where the surjections are restriction maps:

ODα ↪→ ORα ³ OSα ;
OSα(−ρ)⊗| kB(ρ− α) ↪→ ORα ³ ODα .

Proof. : We use the same notation as in 2.3. In particular, recall the equations of Rα, Sα,
Dα. On UαB/B, we have an exact sequence

k[hδ, eγ , t]/(t) ↪→ k[hδ, eγ , t]/(t(hα − teα)) ³ k[hδ, eγ , t]/(hα − teα)

where the �rst map is multiplication by (hα − teα). Under the change of coordinates
on (UαB/B) ∩ (nαUαB/B) (given by t 7→ −1

t ), hα − teα is sent to hα + 1
t eα, which

is 0 in k[Rα|(nαUαB/B)−{nαB/B}] ∼= k[hδ, eγ , t±1]/(eα + thα). Hence we can glue the
preceding exact sequence with the trivial exact sequence 0 ↪→ k[hδ, eγ , t]/(eα + thα) ³
k[hδ, eγ , t]/(eα + thα) to obtain an exact sequence of sheaves

ODα ↪→ ORα ³ OSα .

This sequence is obviously B-equivariant (the �rst map is non zero only over B/B, and hα

is B-invariant in our coordinate ring). This gives the �rst exact sequence of the lemma.
Similarly we have an exact sequence

k[hδ, eγ , t]/(hα − teα) ↪→ k[hδ, eγ , t]/(t(hα − teα)) ³ k[hδ, eγ , t]/(t)

where the �rst map is multiplication by t. To glue this exact sequence with the trivial one
on nαUαB/B:

k[hδ, eγ , t]/(eα + thα) ↪→ k[hδ, eγ , t]/(eα + thα) ³ 0

we have to tensor OSα with the inverse image of OPα/B(−ρ) ∼= OP1(−1) on Pα/B ∼= P1
|.

We obtain the exact sequence of quasi-coherent sheaves
OSα(−ρ) ↪→ ORα ³ ODα .

To understand the B-equivariant structure of the �rst morphism, we observe that to de�ne
a morphism OPα/B(−ρ) → OPα/B is equivalent to choosing a vector in Γ(Pα/B,OPα/B(ρ)).
This Pα-module has dimension two, with weights ρ and ρ− α. The line of weight ρ− α is
B-stable: choosing a non-zero vector in this line thus de�nes a morphism of B-equivariant
sheaves

OSα(−ρ)⊗| kB(ρ− α) → ORα ,

which yields the second exact sequence of the lemma.

Inducing these exact sequences from B to G, we obtain
Corollary 6.2.2. There exist exact sequences of quasi-coherent sheaves on g∗× (B×Pα B),
where the surjections are restriction maps:

O∆eg ↪→ Oeg×egα
eg ³ OSα ;

OSα(ρ− α,−ρ) ↪→ Oeg×egα
eg ³ O∆eg.

Remark 6.2.3. As in Proposition 2.4.2, ρ can be replaced by any λ ∈ X with 〈λ, α∨〉 = 1.
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6.3 The two actions of the braid group coincide
Assume again that p = char(k) > h. Recall the notation and results of I.1.2 and I.1.3. Let
us �x some λ ∈ X in the alcove C0 = {ν ∈ X⊗R | ∀β ∈ R+, 0 < 〈ν +ρ, β∨〉 < p}, and some
χ ∈ g∗ nilpotent. In this subsection we �nally prove that the �Frobenius twisted version�
of the action of B′

aff on DbCoh(g̃) considered in Theorem 2.3.2 extends the action of B′
aff

on DbCohB(1)
χ

(g̃(1)) coming from [BMR06, 2.1.6, 2.3.2], via equivalence γB(λ,χ) of (1.2.2) in
chapter I. More precisely, for b ∈ B′

aff we denote by

Jb : DbCoh(g̃(1)) → DbCoh(g̃(1)), respectively
Ib
(λ,χ) : DbModfg

(λ,χ)(Ug) → DbModfg
(λ,χ)(Ug)

the action of b coming from Theorem 2.3.2, respectively the action constructed in [BMR06,
2.1.4]9. The functor Jb restricts to an auto-equivalence of DbCohB(1)

χ
(g̃(1)), denoted simi-

larly. The main result of this subsection is the following:

Theorem 6.3.1. For any b ∈ B′
aff there exists an isomorphism of functors from the cate-

gory DbCohB(1)
χ

(g̃(1)) to itself:

Jb ∼= (γB(λ,χ))
−1 ◦ Ib

(λ,χ) ◦ γB(λ,χ).

Proof. It is enough to consider the generators Tα (denoted by s̃α in [BMR06]) and θx, for
α ∈ Φ and x ∈ X. First, �x some x ∈ X. It is proven in [BMR06, 2.3.3] that θx for
x ∈ X dominant acts (in the action of [BMR06]) by convolution with kernel ∆∗Oeg(1)(x).
It follows, by construction, that this result is true for any x ∈ X. Hence the two actions
coincide for b = θx.

The case of Tα is more delicate, and will occupy the rest of the proof. We �x α ∈ Φ.
We will construct an isomorphism of functors

(Iα
(λ,χ))

−1 ◦ γB(λ,χ)
∼= γB(λ,χ) ◦ F

O
S
(1)
α

(−ρ,ρ−α)

eg(1)→eg(1) . (6.3.2)

This is equivalent to the theorem for b = Tα, due to Proposition 2.4.2. Let us choose some
µα ∈ X, on the α-wall of C0 (and on no other wall). We de�ne the functor Rα := T λ

µα
◦Tµα

λ

(see [BMR06, 2.2.7]).
First, let us consider a single object F ∈ DbCohB(1)(g̃(1)). Now we prove that the

images of F under the two functors in (6.3.2) are isomorphic. Later we will prove that this
isomorphism comes from an isomorphism of functors.
Lemma 6.3.3. There exists an isomorphism in DbCohB(1)

χ
(g̃(1)):

(Iα
(λ,χ))

−1 ◦ γB(λ,χ)(F) ∼= γB(λ,χ) ◦ F
O

S
(1)
α

(−ρ,ρ−α)

eg(1)→eg(1) (F).

9This action depends on the choice of an isomorphism between the �local� extended a�ne braid group
and B′

aff . We take the isomorphism associated to the choice of the element λ ∈ W ′
aff • λ, as in [BMR06,

2.1.6].
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Proof of Lemma 6.3.3. By de�nition (see [BMR06, 2.2.4, 2.3.1]), there is an exact triangle

(Iα
(λ,χ))

−1 ◦ γB(λ,χ)(F) → Rα ◦ γB(λ,χ)(F) → γB(λ,χ)(F), (6.3.4)

where the second arrow is induced by adjunction. By Propositions I.1.3.1 and 6.1.2, there
exists an isomorphism Rα ◦ γB(λ,χ)(F) ∼= γB(λ,χ) ◦ F

O
(eg×egα

eg)(1)

eg(1)→eg(1) (F), and the second arrow of
triangle (6.3.4) identi�es with the morphism

γB(λ,χ) ◦ F
O

(eg×egα
g)(1)

eg(1)→eg(1) (F) → γB(λ,χ)(F)

induced by the restriction map O(eg×egαg)(1) → O∆eg(1) (recall that the convolution with
kernel O∆eg(1) is the identity). Now the result follows from the second exact sequence in
Corollary 6.2.2, using basic properties of triangulated categories.

Let q1, q2 : S
(1)
α → g̃(1) be the natural morphisms, induced by the projections p1, p2 :

g̃(1) × g̃(1) → g̃(1). Then, F
O

S
(1)
α

(−ρ,ρ−α)

eg(1)→eg(1) is isomorphic to the functor

F 7→ R(q2)∗(L(q1)∗F ⊗S
(1)
α
O

S
(1)
α

(−ρ, ρ− α))

(by the projection formula). We denote by X the completion of g̃(1) along the closed
subscheme B(1)

χ , and by Y the completion of S
(1)
α along the closed subscheme B(1)

χ ×P(1)
α,χ
B(1)

χ .
Then q1 and q2 induce morphisms of formal schemes q̂1, q̂2 : Y → X . We denote by
ιX : X → g̃(1) and ιY : Y → S

(1)
α the inclusion morphisms (which are �at). If F is in

Coh(g̃(1)), then (ιX )∗F is just the completion of F along B(1)
χ (see [Gro71, 10.8.8]), and

similarly for Y. Recall the vector bundles MB
(ν,χ) on X (for ν ∈ X regular) introduced in

I.1.2. Then by de�nition, for F in DbCohB(1)
χ

(g̃(1)),

γB(ν,χ)(F) ∼= RΓ(MB
(ν,χ) ⊗X (ιX )∗F).

Let us also remark that by [BMR06, 2.2.3(c)] and the choice of vector bundles we have a
functorial isomorphism

(Iα
(λ,χ))

−1 ◦ γB(λ,χ)
∼= γB(sα•λ,χ). (6.3.5)

Now let F ∈ DbCohB(1)
χ

(g̃(1)). For simplicity, we write (∗) for the object γB(λ,χ) ◦

F
O

S
(1)
α

(−ρ,ρ−α)

eg(1)→eg(1) (F). By de�nition and [Gro61b, 4.1.5], we have functorial isomorphisms

(∗) ∼= RΓ
(MB

(λ,χ) ⊗X (ιX )∗R(q2)∗(L(q1)∗F ⊗S
(1)
α
O

S
(1)
α

(−ρ, ρ− α))
)

∼= RΓ
(MB

(λ,χ) ⊗X R(q̂2)∗((ιY)∗L(q1)∗F ⊗Y OY(−ρ, ρ− α))
)
.

Now, as q1 ◦ ιY = ιX ◦ q̂1, we deduce that

(∗) ∼= RΓ
(MB

(λ,χ) ⊗X R(q̂2)∗(L(q̂1)∗(ιX )∗F ⊗Y OY(−ρ, ρ− α))
)
.
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By the projection formula applied to q̂2, we have then
(∗) ∼= RΓ ◦R(q̂2)∗

(
(q̂2)∗MB

(λ,χ) ⊗Y L(q̂1)∗(ιX )∗F ⊗Y OY(−ρ, ρ− α)
)

∼= RΓ ◦R(q̂1)∗
(
(q̂2)∗MB

(λ,χ) ⊗Y L(q̂1)∗(ιX )∗F ⊗Y OY(−ρ, ρ− α)
)
.

Finally, the projection formula applied to q̂1 gives

(∗) ∼= RΓ
(
(ιX )∗F L⊗XR(q̂1)∗((q̂2)∗MB

(λ,χ) ⊗Y OY(−ρ, ρ− α))
)
. (6.3.6)

It follows from (6.3.5) and (6.3.6) that it is enough, to prove isomorphism (6.3.2), to
construct an isomorphism

R(q̂1)∗
(
(q̂2)∗MB

(λ,χ) ⊗Y OY(−ρ, ρ− α)
) ∼= MB

(sα•λ,χ)

in the derived category of coherent sheaves on X . Let I be the ideal of de�nition of B(1)
χ

in g̃(1). By [Gro71, 10.11.3] and [Gro61b, 3.4.3], it is enough to show that for all n ≥ 1 we
have an isomorphism

(OX /In)
L⊗XR(q̂1)∗

(
(q̂2)∗MB

(λ,χ) ⊗Y OY(−ρ, ρ− α)
) ∼= (OX /In)

L⊗XMB
(sα•λ,χ).

Using isomorphisms (6.3.5) and (6.3.6), and the fact that RΓ is an equivalence of categories,
this isomorphism follows easily from Lemma 6.3.3 applied to OX /In.

Remark 6.3.7. In [Bez06b], Bezrukavnikov explains the importance of this action of B′
aff in

his plan of proof of Lusztig's conjecture concerning the representation theory of g. There,
the de�nition of Sα is di�erent from ours, but of course they are equivalent (i.e. they de�ne
the same subscheme of g̃ × g̃), see section 8. He also considers the action on DbCoh(Ñ )
(see [Bez06b, Theorem 2.1]), without giving a proof of its existence.

7 Relation to representation theory in characteristic zero
In this section we establish a connection between our constructions in the case k = C and
Ginzburg's description of the equivariant K-theory of the Steinberg variety. We also relate
them to Springer's action of the Weyl group on the homology of a Springer �ber.

In the whole section (except in Lemma 7.1.1) we take k = C.

7.1 Equivariant K-theory of the Steinberg variety
First we need a result analogous to Corollary 6.2.2, but for the action on DbCoh(Ñ ). It is
valid over any algebraically closed �eld k. Consider the variety S′α. Geometrically, it can
be described as:

S′α = {(X, g1B, g2B) ∈ g∗ × (B ×Pα B) | X|g1·b+g2·b = 0}.
It has two irreducible components. One is ∆Ñ , the diagonal embedding of Ñ , and the
other one is

Yα := {(X, g1B, g2B) ∈ g∗ × (B ×Pα B) | X|g1·pα
= 0},

which is a vector bundle on B ×Pα B, of rank dim(g/b)− 1.
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Lemma 7.1.1. There exist exact sequences of quasi-coherent sheaves, where the surjections
are restriction maps:

O
∆ eN ↪→ OS′α(ρ− α,−ρ) ³ OYα(ρ− α,−ρ);

OYα(ρ− α,−ρ) ↪→ OS′α ³ O
∆ eN .

Proof. The construction of the exact sequences is analogous to that in Lemma 6.2.1. Let
us introduce the following subvarieties of g∗ × (Pα/B):

D ′
α := (g/b)∗ × (B/B)

S ′
α := {(X, gB) ∈ g∗ × (Pα/B) | X|b+g·b = 0}

Yα := {(X, gB) ∈ g∗ × (Pα/B) | X|pα
= 0}.

Then we have isomorphisms ∆Ñ ∼= G ×B D ′
α, S′α ∼= G ×B S ′

α, Yα
∼= G ×B Yα. Let us

recall the equations of the varieties D ′
α, S ′

α, Yα. We use the a�ne covering (Pα/B) =
(UαB/B)∪(sαUαB/B), and the isomorphisms induced by uα, respectively by t 7→ nαuα(t):
k ∼= UαB/B, k ∼= sαUαB/B. As coordinates on g∗ we use the basis {eγ , γ ∈ R, hβ, β ∈ Φ}
of g. Then we can deduce from the computations in section 5 the equations de�ning
S ′

α|UαB/B, D ′
α|UαB/B and Yα|UαB/B as closed suvarieties of g∗ × k. Namely, these three

varieties are de�ned by the equations eγ (γ ∈ R−), hβ (β ∈ Φ) and, respectively, teα, t,
eα. Hence there are exact sequences

k[D ′
α|UαB/B] ↪→ k[S ′

α|UαB/B] ³ k[Yα|UαB/B],
k[Yα|UαB/B] ↪→ k[S ′

α|UαB/B] ³ k[D ′
α|UαB/B],

where the �rst maps are respectively the multiplication by eα and t.
Over sαUαB/B we have D ′

α|sαUαB/B = ∅, S ′
α|sαUαB/B = Yα|sαUαB/B. Under the

change of coordinates t is sent to −1
t , and eα to 0. Hence there are exact sequences of

quasi-coherent sheaves

OD ′α ↪→ OS ′
α

³ OYα , OYα ⊗OPα/B
OPα/B(−ρ) ↪→ OS ′

α
³ OD ′α .

Concerning the B-equivariant structure, we remark that the second exact sequence
was constructed just like in Lemma 6.2.1. Hence, as there we have an exact sequence of
B-equivariant sheaves

OYα(−ρ)⊗| kB(ρ− α) ↪→ OS ′
α

³ OD ′α .

Inducing from B to G we obtain the second exact sequence of the lemma. Concerning the
�rst exact sequence, its �rst arrow is given by the multiplication by eα, which has weight
α for the action of B. Hence the B-equivariant exact sequence reads

OD ′α ⊗| kB(α) ↪→ OS ′
α

³ OYα .

Inducing, we obtain O
∆ eN (α, 0) ↪→ OS′α ³ OYα . Now OB×PαB(−ρ, ρ) is trivial on the

diagonal. Hence we also have

O
∆ eN (α− ρ, ρ) ↪→ OS′α ³ OYα .
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Tensoring by the inverse image of OB×PαB(ρ − α,−ρ), we obtain the �rst exact sequence
of the lemma.

Let us de�ne a C×-action on Ñ , setting

t · (X, gB) := (t−2X, gB).

This action commutes with the natural action of G on Ñ . We denote by

〈1〉 : DbCohG×C×(Ñ ) → DbCohG×C×(Ñ )

the tensor product with the one-dimensional C×-module given by IdC× , and similarly for
any variety with a C×-action. Then the exact sequences of Lemma 7.1.1 have G × C×-
equivariant versions

O
∆ eN 〈2〉 ↪→ OS′α(ρ− α,−ρ) ³ OYα(ρ− α,−ρ); (7.1.2)

OYα(ρ− α,−ρ) ↪→ OS′α ³ O
∆ eN . (7.1.3)

If H is an algebraic group (over C) acting on a variety X, we denote by KH(X) the
H-equivariant K-theory of X. This is by de�nition the Grothendieck group of the category
CohH(X) of H-equivariant coherent sheaves on X, or of its derived category DbCohH(X).
We refer to [Lus98, section 6] for generalities on equivariant K-theory, and to [Bez00,
section 2] and [CG97, 5.1] for the main properties of derived categories of equivariant
coherent sheaves. If F is an object of DbCohH(X), we denote by [F ] its image in KH(X).

Let N be the variety of nilpotent elements in g∗. We have the Springer resolution
π : Ñ → N . We will be interested in the Steinberg variety

Z := Ñ ×N Ñ ,

and more precisely to the group KG×C×(Z). First, let us describe the ring structure on
this K-group. There is a natural closed embedding j : Z ↪→ Ñ 2. Let pa,b : Ñ 3 → Ñ 2

denote the projection to the a-th and b-th factors (1 ≤ a < b ≤ 3). If F and G are in
DbCohG×C×(Z), then R(p1,3)∗(p∗1,2(j∗F)

L⊗ eN 3 p∗2,3(j∗G)) is only in DbCohG×C×(Ñ 2), but
its cohomology is supported on Z. Hence the class [R(p1,3)∗(p∗1,2(j∗F)

L⊗ eN 3 p∗2,3(j∗G))] is
a well de�ned element of KG×C×(Z) (see [Bez00, 2. Lemma 3(b)], [Lus98, 6.2]). The ring
structure on KG×C×(Z) is then given by the product:

[F ] · [G] := [R(p1,3)∗(p∗1,2(j∗F)
L⊗ eN 3 p∗2,3(j∗G))].

Note that the unit for this product is [O
∆ eN ].

Let v be an indeterminate, and A := Z[v, v−1]. Let H′aff be the extended a�ne Hecke
algebra associated to R (over A). Using the Bernstein presentation (see e.g. [Lus98, 1.19])
one sees that H′aff is the quotient of A[B′

aff ], the group algebra of B′
aff over A, by the ideal

generated by the relations
(Tα + v−1)(Tα − v) = 0 (7.1.4)
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for α ∈ Φ. We let A act on KG×C×(Z) by setting v · [F ] := [F〈1〉]. The varieties Yα

and S′α are G × C×-stable subvarieties of Z, hence de�ne natural classes [OYα ], [OS′α ] in
KG×C×(Z). If x and y are in X, the line bundle OZ(x, y) (see 2.3 for the notation) is
naturally an object of CohG×C×(Z) (with trivial C×-action).

As an easy consequence of our results we obtain:
Proposition 7.1.5. The assignment

{
Tα 7→ −v−1[OYα(−ρ, ρ− α)]− v−1 = −v−1[OS′α ];
θx 7→ [O

∆ eN (x)]

extends to a morphism of A-algebras H′aff → KG×C×(Z).
Remark 7.1.6. This result is well known (see e.g. [Lus98, 7.25] or [CG97, 7.6.9]), and
this morphism is in fact an isomorphism, as proved in [Lus98, 8.6] or [CG97, 7.6.10]. The
construction of this morphism is one of the main steps of the proof of the isomorphism
H′aff

∼= KG×C×(Z) (both for the proof by Ginzburg, see [Gin87] or [CG97], and for the
alternate proof by Lusztig, see [Lus98]). These previous constructions are indirect, using an
action on a module to prove the fact that the image of the generators satisfy the relations
of H′aff . Using our constructions, one can give a direct proof of the relations in KG×C×(Z)
(using no K-theoretic result). Moreover, this proof gives a more concrete interpretation of
the image of the generators Tα; namely, this image is a multiple of the class of OS′α .

Proof. First, the equality
−v−1[OYα(−ρ, ρ− α)]− v−1 = −v−1[OS′α ] (7.1.7)

follows from the exact sequence (7.1.3). We have to check that the elements −v−1[OS′α ] for
α ∈ Φ and [O

∆ eN (x)] for x ∈ X satisfy relations 1 to 4 of Theorem 1.1.3, and the quadratic
relations (7.1.4).

Relation 2 are trivial, and relations 1 and 3 follow from the results of section 5. Now
the exact sequences of Lemma 2.4.5 admit the following C×-equivariant versions (where
the action on g̃ is the natural one, extending the action on Ñ ):

OV 1
α
〈2〉 ↪→ OVα(ρ− α,−ρ, 0) ³ OV 2

α
(ρ− α,−ρ, 0);

OV 1
α
〈2〉 ↪→ OVα(0,−ρ, ρ− α) ³ OV 2

α
(0,−ρ, ρ− α).

We deduce as in section 5 that −v−1[OS′α ] is invertible, and
(−v−1[OS′α ])−1 = −v−1[OS′α(ρ− α,−ρ)]. (7.1.8)

Then relation 4 is easy to prove (as in 2.5).
Finally, for the quadratic relations, consider the exact sequence (7.1.2). It yields

−v−1[OS′α(ρ− α,−ρ)] = −v−1[OYα(ρ− α,−ρ)]− v. (7.1.9)
Using relations (7.1.7) and (7.1.8), we deduce from (7.1.9) that

(−v−1[OS′α ])−1 = (−v−1[OS′α ]) + (v−1 − v).

This is equivalent to relation (7.1.4).
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It follows from these considerations that the natural action of H′aff on KG×C×(Ñ ) (see
[CG97, 7.6.6]) can be lifted to an action of B′

aff on the category DbCohG×C×(Ñ ).
Remark 7.1.10. Let χ ∈ g∗ be nilpotent, and let Bχ be the corresponding Springer �ber,
i.e. the inverse image of χ under g̃ → g∗ (see I.1.1). Let M be a closed subgroup of the
stabilizer of χ in G×C×, for the action de�ned by (g, z) ·χ = z−2g ·χ. Then M stabilizes
Bχ ⊂ Ñ . Our constructions yield an action of B′

aff on DbCohM (Ñ ), which stabilizes the
full subcategory DbCohM

Bχ
(Ñ ) of complexes whose cohomology sheaves are supported on

Bχ. The Grothendieck group of the category DbCohM
Bχ

(Ñ ) identi�es with KM (Bχ). The
same considerations as above show that the action of B′

aff induces an action of H′aff on
KM (Bχ). This is the action considered in [Lus02, 3.4]. In [Lus02], Lusztig explains the
importance of these modules in the construction of all the irreducible H′aff -modules over
C.

7.2 Springer's representations of W

Now we consider Springer's representations of the �nite Weyl group. More precisely we
follow Ginzburg's approach to this question in [Gin86] (see [CG97, chapter 3] for the same
arguments, in the framework of homology rather than K-theory).

As in 7.1, our constructions yield a Z-algebra morphism

Z[B0] → K(Z),

where K(Z) is the non-equivariant K-theory of the Steinberg variety Z, and B0 is the �nite
braid group (see 1.1 for the de�nition). The exact sequences of Lemma 7.1.1 show that for
α ∈ Φ the image of (Tα)2 in K(Z) is 1. Hence the previous morphism gives a morphism

Z[W ] → K(Z).

Following Ginzburg, we consider K(Z) as the Grothendieck group of the abelian category
CohZ(Ñ ×Ñ ), and denote by L(Z) the quotient by the subgroup generated by the elements
[F ] for F in CohZ(Ñ × Ñ ) such that dim(Supp(F)) < dim(Z). Composing the previous
morphism with the natural quotient K(Z) → L(Z) we obtain a morphism

Z[W ] → L(Z). (7.2.1)

The following proposition follows directly from our constructions and the de�nition of
specialization in K-theory as in [CG97, 5.3] (use the de�nition of S′α as the intersection
Sα ∩ (Ñ × Ñ )).

Proposition 7.2.2. The morphism (7.2.1) coincides with the isomorphism of [Gin86, 5.3]:
Z[W ] ∼−→ L(Z).

This isomorphism is the main step in Ginzburg's approach to Springer's construction
of the representations of W on the top homology of Springer �bers (see [CG97, 3.5-6]).
Choose a nilpotent χ ∈ g∗, and consider the Springer �ber Bχ (see 7.1). As noted above,
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the B′
aff -action on DbCoh(Ñ ) induces an action of B0 on K(Bχ) (this is the case M = 1 in

Remark 7.1.10), which factorizes through the �nite Weyl group W (for the same reason as
above). This in turn induces an action of W on L(Bχ), the quotient of K(Bχ) de�ned as
above for L(Z). By Grothendieck-Riemann-Roch, we have an isomorphism L(Bχ)⊗ZQ ∼=
Htop(Bχ,Q). Via this isomorphism, the action of W gives Springer's action on Htop(Bχ,Q)
(by Proposition 7.2.2 and [CG97, 3.5-6]).

8 Alternate proof of the �nite braid relations
In this section we assume that p is very good for G. We give a di�erent proof of the
�nite braid relations (relations 1 of Theorem 1.1.3), which is valid for any group G (and
p very good), and avoids case-by-case considerations. It is a joint work with Roman
Bezrukavnikov. This will complete the proof of Theorem 2.3.2.

As above (see 2.3), if λ ∈ X, and if X → B is a variety over B, we denote by OX(λ)
the inverse image of OB(λ). More generally, if P is a parabolic subgroup of G and V is
any �nite dimensional P -module, there exists a natural vector bundle LG/P (V ) on G/P
associated to V (see [Jan03, I.5.8]). If X → G/P is a variety over G/P , we denote by
LX(V ) the inverse image of LG/P (V ).

If B is a triangulated category, and A ⊂ B is a full triangulated subcategory, for
M,N ∈ B we write M ∼= N mod A if the images of M and N in the quotient category
B/A are isomorphic.

8.1 Line bundles on g̃

The methods of this section come from [Bez06a]. We use the same notation as above for
the convolution functors (see 2.1).

As p is very good, there exists a G-equivariant isomorphism g ∼= g∗. Under this
isomorphism, g̃ identi�es with the induced variety G×B b.

Now consider the projective morphism g̃ → g∗. Let greg ⊂ g denote the open set of
regular elements, and g∗reg ⊂ g∗ the image of greg under the isomorphism g ∼= g∗. Let g̃reg

be the inverse image of g∗reg under the morphism g̃ → g∗. There is a natural action of
W on g̃reg (see e.g. [Jan04]10). Moreover, for α ∈ Φ, Sα is the closure of the graph of
the action of sα (indeed, Sα contains this closure, and both varieties are irreducible of the
same dimension).

Let us consider the category DbCohG×Gm(g̃), where G acts on g̃ via the natural action
and Gm

∼= k× acts by dilatation along the �bers: for t ∈ k× and (X, gB) ∈ g̃ we put

t · (X, gB) = (t2X, gB).

10In fact, in [Jan04] the author proves that there is a W -action on egrs, the inverse image of regular
semi-simple elements in g∗. We could not �nd a reference for the construction of a W -action on the whole
of egreg. However, we will use only very easy facts on this action, which can be checked �by hand�. For
instance, one can use the previous description of Sα to de�ne the action of sα.
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For λ ∈ X, the linde bundle Oeg(λ) is an object of DbCohG×Gm(g̃) (with trivial Gm-action).
As in section 7, we denote by

〈1〉 : DbCohG×Gm(g̃) → DbCohG×Gm(g̃)

the shift functor, i.e. the tensor product with the 1-dimensional k×-module given by Id|× .
We denote by 〈j〉 the j-th power of 〈1〉, for j ∈ Z.

If A is any subset of X, we denote by DA the smallest strictly full triangulated subcat-
egory of DbCohG×Gm(g̃) containing the line bundles Oeg(λ) for λ ∈ A and stable under the
functor 〈1〉.

We denote by conv(λ) the intersection of X with the convex hull of W · λ, and by
conv0(λ) the complement of W · λ in conv(λ).

Lemma 8.1.1. Let α ∈ Φ.
(i) For any λ ∈ X, the functors F

OSα

eg→eg , F
OSα (−ρ,ρ−α)
eg→eg preserve the subcategory Dconv(λ).

(ii) Let λ ∈ X such that 〈λ, α∨〉 ≤ 0. Then

F
OSα

eg→eg (Oeg(λ)) ∼= Oeg(sαλ) 〈−2〉 mod Dconv0(λ).

(iii) Let λ ∈ X such that 〈λ, α∨〉 ≥ 0. Then

F
OSα (−ρ,ρ−α)
eg→eg (Oeg(λ)) ∼= Oeg(sαλ) mod Dconv0(λ).

Proof. As above, let Pα be the minimal standard parabolic subgroup of G associated to
{α}, and let Pα := G/Pα be the corresponding partial �ag variety. We have de�ned in
I.1.1 the variety g̃α. It is endowed with a natural G×Gm-action, such that the morphism
π̃α : g̃ → g̃α is G × Gm-equivariant. By Proposition 6.1.2 and Corollary 6.2.2, for any F
in DbCohG×Gm(g̃) there exist distinguished triangles

F〈−2〉 → L(π̃α)∗ ◦R(π̃α)∗F → F
OSα

eg→eg (F); (8.1.2)

F
OSα (−ρ,ρ−α)
eg→eg (F) → L(π̃α)∗ ◦R(π̃α)∗F → F . (8.1.3)

Let i : g̃ ↪→ g̃α ×Pα B be the natural inclusion. There exists an exact sequence

Oegα×PαB(−α)〈−2〉 ↪→ Oegα×PαB ³ i∗Oeg (8.1.4)

(because b ⊂ Lie(Pα) is de�ned by one equation, of weight (−α,−2) for G×Gm). Let also
p : g̃α ×Pα B → g̃α be the projection. Then π̃α = p ◦ i.

Using triangles (8.1.2) and (8.1.3), to prove (i) it is su�cient to prove that for any
λ ∈ X, L(π̃α)∗ ◦R(π̃α)∗Oeg(λ) is in Dconv(λ). The case 〈λ, α∨〉 = 0 is trivial. First, assume
that 〈λ, α∨〉 > 0. Tensoring (8.1.4) by Oegα×PαB(λ) we obtain an exact sequence

Oegα×PαB(λ− α)〈−2〉 ↪→ Oegα×PαB(λ) ³ i∗Oeg(λ).
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Then, applying the functor Rp∗ and using [Jan03, I.5.19, II.5.2] we obtain a distinguished
triangle

Legα
(IndPα

B (λ− α))〈−2〉 → Legα
(IndPα

B (λ)) → R(π̃α)∗Oeg(λ).

Applying the functor L(π̃α)∗ we obtain a triangle

Leg(IndPα
B (λ− α))〈−2〉 → Leg(IndPα

B (λ)) → L(π̃α)∗ ◦R(π̃α)∗Oeg(λ).

Now it is well known (see again [Jan03, II.5.2]) that the Pα-module IndPα
B (λ) has weights

λ, λ−α, · · · , sαλ. Hence Leg(IndPα
B (λ)) has a �ltration with subquotientsOeg(λ), Oeg(λ−α),

· · · , Oeg(sαλ). Similarly, Leg(IndPα
B (λ − α)) has a �ltration with subquotients Oeg(λ − α),

· · · , Oeg(sαλ + α). This proves (i) in this case, and also (iii).
Now assume 〈λ, α∨〉 < 0. Using similar arguments, there exists a distinguished triangle

L(π̃α)∗ ◦R(π̃α)∗Oeg(λ) → Leg(R1IndPα
B (λ− α))〈−2〉 → Leg(R1IndPα

B (λ)).

Moreover, Leg(R1IndPα
B (λ)) has a �ltration with subquotients Oeg(sαλ−α), · · · , Oeg(λ+α),

and Leg(R1IndPα
B (λ−α)) has a �ltration with subquotients Oeg(sαλ), · · · , Oeg(λ). As above,

this proves (i) in this case, and (ii).

Lemma 8.1.5. Let λ, µ ∈ X.
We have Ext∗DbCohG(eg)

(Oeg(λ),Oeg(µ)) = 0 unless λ− µ ∈ Z≥0R
+.

Similarly, for any i ∈ Z we have Ext∗DbCohG×Gm (eg)
(Oeg(λ),Oeg(µ)〈i〉) = 0 unless λ− µ ∈

Z≥0R
+.

Proof. This proof is generalization of that of [Bez06a, Lemma 5].
We give a proof only in the �rst case. Recall that DbCohG(g̃) is equivalent to the full

subcategory of DbQCohG(g̃) whose objects have coherent cohomology (see [Bez00, Corol-
lary 1]). Hence we can replace DbCohG(g̃) by DbQCohG(g̃) in the statement. Moreover,
for any i ∈ Z there is a natural isomorphism

Exti
DbQCohG(eg)

(Oeg(λ),Oeg(µ)) ∼= H i
(
R(ΓG)(Oeg(µ− λ))

)
, (8.1.6)

where ΓG denotes the functor which sends a G-equivariant quasi-coherent sheaf F to the
G-invariants in its global sections.

Recall also that, via the isomorphism g̃ ∼= G×B b, the restriction functor F 7→ F|{1}×b

induces an equivalence of categories

QCohG(g̃) ∼−→ QCohB(b)

(see e.g. [Bri03, section 2]). Moreover, the following diagram commutes, where ΓB is
de�ned as ΓG above:

QCohG(g̃)

∼
²²

ΓG

((RRRRRRRRRRRRRR

QCohB(b) ΓB
// Vect(k).
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It follows, using isomorphism (8.1.6), that for any i ∈ Z we have

Exti
DbQCohG(eg)

(Oeg(λ),Oeg(µ)) ∼= H i
(
R(ΓB)(Ob ⊗| kB(µ− λ))

)
. (8.1.7)

The functor ΓB is the composition of the functor

Γ(b,−) : QCohB(b) ∼−→ ModB(S(b∗)),

which is an equivalence of categories because b is a�ne, and the B-�xed points functor
IB : ModB(S(b∗)) → Vect(k). Hence, using isomorphism (8.1.7) we deduce that for any
i ∈ Z we have

Exti
DbQCohG(eg)

(Oeg(λ),Oeg(µ)) ∼= H i
(
R(IB)(S(b∗)⊗| kB(µ− λ))

)
. (8.1.8)

Now IB is the composition of the forgetful functor For : ModB(S(b∗)) → Rep(B) and
the B-�xed points functor JB : Rep(B) → Vect(k). Of course the functor For is exact, and
in the category ModB(S(b∗)) there are enough objects of the form IndB

{1}(M) ∼= M⊗|k[B],
for M a S(b∗)-module, whose images under For are acyclic for the functor JB. Hence for
any i ∈ Z we have

Exti
DbQCohG(eg)

(Oeg(λ),Oeg(µ)) ∼= H i
(
R(JB)(S(b∗)⊗| kB(µ− λ))

)
, (8.1.9)

where for simplicity we have omitted the functor For.
Finally, as B ∼= T nU , the functor JB is the composition of the U -�xed points functor

JU , followed by the T -�xed points functor JT (which is exact). Hence RJB ∼= JT ◦RJU ,
and we have to prove that

JT
(
R(JU )(S(b∗)⊗| kB(ν))

)
= 0 (8.1.10)

unless ν is a sum of negative roots. But R(JU )(S(b∗)⊗| kB(ν)) can be computed by the
Hochschild complex C(U, S(b∗)⊗| kB(ν)) (see [Jan03, I.4.16]). And the T -weights of this
complex are all in Z≥0R

+ (because all weights of S(b∗) and of k[U ] are in Z≥0R
+). Then

(8.1.10) easily follows.

Lemma 8.1.11. Let λ ∈ X, such that λ − ρ is dominant. Then Oeg(λ) is an ample line
bundle on g̃.

Proof. By de�nition g̃ is a closed subscheme of g∗ ×B. Hence it is su�cient to prove that
Og∗×B(λ) is ample. But OB(λ) is very ample on B (see [Jan03, II.8.5]). Hence Og∗×B(λ)
is also very ample.

8.2 Braid relations
Proposition 8.2.1. Let α, β ∈ Φ. For any λ ∈ X+ we have an isomorphism

F
OSα (−ρ,ρ−α)
eg→eg ◦ F

OSβ
(−ρ,ρ−β)

eg→eg ◦ · · · (Oeg(λ)
) ∼= F

OSβ
(−ρ,ρ−β)

eg→eg ◦ F
OSα (−ρ,ρ−α)
eg→eg ◦ · · · (Oeg(λ)

)
,

where the number of functors appearing on each side is the order of sαsβ in W .
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Proof. To �x notations, let us assume that α and β generate a sub-system of type A2

(the proof is similar in the other cases). By Proposition 2.4.2 we have an isomorphism of
functors (

F
OSα

eg→eg
)−1 ∼= F

OSα (−ρ,ρ−α)
eg→eg 〈2〉,

and similarly for β. Hence proving the proposition is equivalent to proving that

Eλ := F
OSα

eg→eg ◦ F
OSβ

eg→eg ◦ F
OSα

eg→eg ◦ F
OSβ

(−ρ,ρ−β)

eg→eg ◦ F
OSα (−ρ,ρ−α)
eg→eg ◦ F

OSβ
(−ρ,ρ−β)

eg→eg (Oeg(λ)) (8.2.2)

is isomorphic to Oeg(λ)〈−6〉. First, it follows from Lemma 8.1.1 that

Eλ
∼= Oeg(λ)〈−6〉 mod Dconv0(λ). (8.2.3)

For any full subcategory A of a category B, we denote by (A⊥)B the full subcategory of
B with objects the M such that HomB(A,M) = 0 for any A in A. By Lemma 8.1.5, Oeg(λ)
is in (D⊥conv0(λ))Dconv0(λ)∪{λ} . Hence, as all the functors involved preserve the subcategory
(D⊥conv0(λ))Dconv(λ)

(because their inverse preserves Dconv0(λ) by Lemma 8.1.1), also Eλ is
in (D⊥conv0(λ))Dconv0(λ)∪{λ} . (Observe that Eλ is in Dconv0(λ)∪{λ} by (8.2.3).) Now it follows
easily from [BK90, 1.5, 1.6] that the projection

(D⊥conv0(λ))Dconv0(λ)∪{λ} → Dconv0(λ)∪{λ}/Dconv0(λ)

is an equivalence of categories. Using again (8.2.3), we deduce that Eλ
∼= Oeg(λ)〈−6〉 in

DbCohG×Gm(g̃), as claimed.

Before the next corollary we introduce some notation. We denote by X+ ⊂ X the
dominant weights. If λ is a dominant weight, we write that a property is true for λ À 0 if
there exists a positive integer N such that the property is true for any weight λ such that
〈λ, α∨〉 ≥ N for any positive root α.

Corollary 8.2.4. The kernels OSα , α ∈ Φ, satisfy the �nite braid relations in the category
DbCohprop(g̃× g̃). In other words, for α, β ∈ Φ there exists an isomorphism

OSα ∗ OSβ
∗ · · · ∼= OSβ

∗ OSα ∗ · · · ,

where the number of terms on each side is the order of sαsβ in W .

Proof. To �x notations, let us assume that α and β generate a root system of type A2

(the other cases are similar). The kernels OSα , OSβ
are invertible (see Proposition 2.4.2),

hence we only have to prove that

OSα ∗ OSβ
∗ OSα ∗ (OSβ

)−1 ∗ (OSα)−1 ∗ (OSβ
)−1 ∼= O∆eg.

To simplify notations, let us denote byKα,β the object on the left hand side of this equation.
To prove the isomorphism it is su�cient, using Lemma 8.1.11, to prove that for λ, µ À 0
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we have R 6=0Γ(g̃ × g̃, Kα,β(λ, µ)) = 0 (this implies that Kα,β is concentrated in degree 0,
i.e. is a sheaf), and that there exist isomorphisms

Γ(g̃× g̃, Kα,β(λ, µ)) ∼= Γ(g̃× g̃, O∆eg(λ, µ)),

compatible with the natural action of
⊕

η,ν∈X+ Γ(g̃× g̃, Oeg×eg(η, ν)).
The object Kα,β is the kernel associated to the functor

Fα,β := F
OSα

eg→eg ◦ F
OSβ

eg→eg ◦ F
OSα

eg→eg ◦ (F
OSβ

eg→eg )−1 ◦ (FOSα

eg→eg )−1 ◦ (F
OSβ

eg→eg )−1.

We have seen in Proposition 8.2.1 that Fα,β �xes any line bundleOeg(λ) with λ ∈ X+. More-
over, for any λ, µ we have, by the projection formula, RΓ(g̃, F

Kα,β

eg→eg (Oeg(λ))⊗Oeg Oeg(µ)) ∼=
RΓ(g̃ × g̃, Kα,β(λ, µ)). It follows, using [Har77, III.5.2] and the fact that the morphism
g̃ → g∗ is projective, that for λ, µ À 0 we have R 6=0(g̃× g̃, Kα,β(λ, µ)) = 0 and, moreover,
there is an isomorphism Γ(g̃× g̃, Kα,β(λ, µ)) ∼= Γ(g̃, Oeg(λ + µ)) ∼= Γ(g̃× g̃, O∆eg(λ, µ)).

It remains to show that these isomorphisms can be chosen in a way compatible with
the action of

⊕
η,ν∈X+ Γ(g̃ × g̃, Oeg×eg(η, ν)). To prove this, observe that the isomorphism

F
Kα,β

eg→eg (Oeg(λ)) ∼= Oeg(λ) in DbCohG×Gm(g̃) proved in Proposition 8.2.1 is unique up to a
scalar, because

HomDbCohG×Gm (eg)(Oeg(λ), Oeg(λ)) ∼= Γ(g̃, Oeg)G×Gm = k.

Let us show that there is a canonical choice of this scalar. Let j : g̃reg ↪→ g̃ be the open
embedding, and let S0

α be the restriction of Sα to g̃reg × g̃reg. Then there is a canonical
isomorphism j∗ ◦ F

OSα

eg→eg
∼= F

O
S0

α

egreg→egreg
◦ j∗, and similarly for β and the inverse functors.

Moreover it is clear that there is a canonical isomorphism of endofunctors of DbCoh(g̃reg):

F
O

S0
α

egreg→egreg
◦ F

O
S0

β

egreg→egreg
◦ F

O
S0

α

egreg→egreg
◦ (F

O
S0

β

egreg→egreg
)−1 ◦ (F

O
S0

α

egreg→egreg
)−1 ◦ (F

O
S0

β

egreg→egreg
)−1 ∼= Id.

We choose the scalars above so that the corresponding isomorphism is compatible with
this canonical isomorphism. (Note that g̃reg ⊂ g̃ is an open subscheme of codimension
2; hence the restriction induces an isomorphism Γ(g̃, Oeg) ∼−→ Γ(g̃reg, Oegreg

).) Then the
compatibility of the actions of the algebra

⊕
η,ν∈X+ Γ(g̃× g̃, Oeg×eg(η, ν)) is clear.

It follows from this corollary that Theorem 2.3.2 is valid for any group G and very good
characteristic p. In particular, the results of section 5 are true in this generality, and those
of sections 6 and 7 are true in complete generality.



Chapter III

Koszul duality and Ug-modules

This chapter countains our main constructions. Using geometric methods we build, for
any regular λ ∈ X, a �Koszul-type� duality between the categories DbModfg

0 ((Ug)λ) and
DbModfg

λ ((Ug)0), and show that it sends simples to projectives. We also study a �parabolic
analogue� of these constructions, and apply our results to Koszulity of blocks of the re-
stricted enveloping algebra.

This chapter was prepublished in [Ric08b].

Introduction

0.1

Since [BGS96], Koszul duality has proved to be a very useful and powerful tool in Lie
theory. In [BGS96], Beilinson, Ginzburg and Soergel prove that every block of the category
O of a complex semi-simple Lie algebra is governed by a Koszul ring, whose dual ring
governs another subcategory of the category O. In this chapter we obtain, using completely
di�erent methods, counterparts of these results for modules over the Lie algebra g of a
connected, simply-connected, semi-simple algebraic group G over an algebraically closed
�eld k of su�ciently large positive characteristic. In particular we prove that every block
of the category of �nitely generated modules over the restricted enveloping algebra (Ug)0
is governed by a Koszul ring, whose dual ring is also related to the representation theory
of g.

The Koszulity of the regular blocks was already proved (under the same assumption
on k) by Andersen, Jantzen and Soergel in [AJS94]. The Koszulity for singular blocks, as
well as the information on the dual ring (in all cases) are new, however.

As in [BGS96] we use a geometric picture to prove Koszulity. Over C, the authors of
[BGS96] use categories of equivariant perverse sheaves on �ag varieties. Over k we use as
a �substitute� of this tool the localization theory in positive characteristic developed by
Bezrukavnikov, Mirkovi¢ and Rumynin.

69
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0.2
The base of our arguments is a geometric interpretation, due to Mirkovi¢, of the classical
Koszul duality between symmetric and exterior algebras.

For simplicity, let us �rst consider the case of a �nite dimensional vector space V . Usual
Koszul duality (see e.g. [BGG78], [BGS96], [GKM93]) relates modules (or dg-modules)
over the symmetric algebra S(V ) of V and modules (or dg-modules) over the exterior
algebra Λ(V ∗) of the dual vector space. Geometrically, S(V ) is the ring of functions on
the variety V ∗. As for Λ(V ∗), one observes that there exists a quasi-isomorphism of dg-
algebras Λ(V ∗) ∼= k L⊗S(V ∗) k, where Λ(V ∗) is equipped with the trivial di�erential, and the
grading such that V ∗ is in degre −1. Hence Λ(V ∗) is the ring of functions on the �derived
intersection�

{0} R∩V {0},
considered as a dg-scheme. An extension of the constructions of [GKM93] yields similarly,
if E is a vector bundle over a non-singular variety X and F ⊂ E is a sub-bundle, a
Koszul duality between a certain category of (dg)-sheaves on F and a certain category of
(dg)-sheaves on the derived intersection

F⊥ R∩E∗ X,

where E∗ is the dual vector bundle, F⊥ ⊂ E∗ is the orthogonal of F , and X is regarded
as the zero section of E∗ (see Theorem 2.3.11 for a precise statement).

0.3
Recall the notation of I.1.1. Here we assume that p = char(k) is bigger than the Coxeter
number h of G. Fix a weight λ ∈ X in the fundamental alcove, and denote similarly
the element of t∗ induced by λ. The results of Bezrukavnikov, Mirkovi¢ and Rumynin
reviewed in chapter I give geometric pictures for the derived categories DbModfg

(λ,0)(Ug)

and DbModfg
0 ((Ug)λ), as follows (see I.1.2):

DbCohB(1)(Ñ (1)) ∼= DbModfg
0 ((Ug)λ), (0.3.1)

DbCohB(1)(g̃(1)) ∼= DbModfg
(λ,0)(Ug). (0.3.2)

As a �rst step we derive from (0.3.2) a localization theorem for the category Modfg
λ ((Ug)0)

of restricted Ug-modules with generalized character λ. More precisely, we construct an
equivalence

DGCoh((g̃
R∩g∗×B B)(1)) ∼= DbModfg

λ ((Ug)0),

where g̃
R∩g∗×B B is the derived intersection of g̃ and the zero section B inside the trivial

vector bundle g∗ × B, and DGCoh((g̃
R∩g∗×B B)(1)) is the derived category of coherent dg-

sheaves on the Frobenius twist of this derived intersection.
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0.4
Under our assumptions on p there is an isomorphism of G-equivariant vector bundles
(g∗×B)∗ ∼= g∗×B. Under this isomorphism, g̃ identi�es with the orthogonal of Ñ ⊂ g∗×B.
Hence the Koszul duality of 0.2 yields a duality between certain dg-sheaves on Ñ (1)

and on the derived intersection (g̃
R∩g∗×B B)(1). Now observe that there is an inclusion

DbModfg
0 ((Ug)λ) ↪→ DbCoh(Ñ (1)), induced by equivalence (0.3.1). Using the results al-

luded to in 0.2, we obtain categories Cgr, Dgr, endowed with auto-equivalences denoted 〈1〉
(the internal shift), an equivalence κ : Cgr ∼−→ Dgr, and a diagram

Cgr

For
²²

κ
∼ // Dgr

For
²²

DbModfg
0 ((Ug)λ) � � // DbCoh(Ñ (1)) DbModfg

λ ((Ug)0).

Recall that, by a celebrated theorem of Curtis ([Cur60]) and by the decription of the
Harish-Chandra center ZHC (see I.1.2), the simple objects in the categories Modfg

0 ((Ug)λ)
and Modfg

λ ((Ug)0) are the (restrictions of the) simple G-modules L(µ) for µ ∈ X dominant
restricted, in the orbit of λ under the dot-action of the extended a�ne Weyl group W ′

aff .
The category Modfg

λ ((Ug)0) is the category of �nitely generated modules over the �nite
dimensional algebra (Ug)λ̂

0 (the block of (Ug)0 associated to λ). We denote by P (µ) the
projective cover of L(µ) in this category. The objects L(µ) can be lifted to the category
Cgr, uniquely up to the action of the shift 〈1〉. The same is true for the objects P (µ) and
the category Dgr.

Consider the element τ0 := tρ ·w0 ∈ W ′
aff , where tρ is the translation by ρ, and w0 is the

longest element of W . Then the key-point of our reasoning is the following (see Theorem
4.4.3 and subsection 8.1):

Assume p À 0. Then there exists a unique choice of the lifts
Lgr(µ) ∈ Cgr, P gr(µ) ∈ Dgr such that if w ∈ W ′

aff and w • λ is
dominant restricted, then κ(Lgr(w • λ)) ∼= P gr(τ0w • λ).

In other words, our �geometric� Koszul duality exchanges semi-simple and projective mod-
ules.

This result was supported by the calculations in small ranks of sections I.2 and I.3.

0.5
Our proof of this key-point relies on the study of �geometric counterparts� of the re�ection
functors R

gr
δ : Dgr → Dgr (here δ is an a�ne simple root), which send (lifts of) projective

modules to (lifts of) projective modules. We identify the �Koszul dual� (i.e. the conjugate
by κ) of these functors, which are related to some functors S

gr
δ which send (lifts of) some

semi-simple modules to (lifts of) semi-simple modules (see Theorem 8.2.1). Then we only
have to check our key-point when `(w) = 0, which can be done directly (and explicitely).
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To prove the �semi-simplicity� of the functors S
gr
δ we use Lusztig's conjecture on the

characters of simple G-modules, see [Lus80b] (or rather an equivalent formulation of this
conjecture due to Andersen, see [And86]). Recall that, by the previously cited work of
Andersen-Jantzen-Soergel ([AJS94]), combined with works of Kazhdan-Lusztig ([KL93a],
[KL93b], [KL94a], [KL94b], [Lus94]) and Kashiwara-Tanisaki ([KT95], [KT96]), (see also
[ABG04] or [Fie07] for other approaches), this conjecture is true for p su�ciently large
(with no explicit bound). This explains our restriction on p.

Let us remark that related ideas (in particular, a contruction of graded versions of trans-
lation functors) were considered by Stroppel in [Str03] for the category O in characteristic
0. However, our techniques are completely di�erent.

0.6
We derive from the key-point of 0.4 the Koszulity of regular blocks of (Ug)0. For this we
use a general criterion for a graded ring to be Morita equivalent to a Koszul ring, proved
in Theorem 9.2.1. More precisely we obtain the following result (see Theorem 9.5.1):

There exists a (unique) grading on the block (Ug)λ̂
0 which makes it

a Koszul ring. The Koszul dual ring controls the category Modfg
0 ((Ug)λ).

Hence, from a �geometric� Koszul duality between the dg-schemes Ñ (1) and (g̃
R∩g∗×B B)(1)

we derive an �algebraic� Koszul duality between the abelian categories Modfg
0 ((Ug)λ) and

Modfg
λ ((Ug)0).

0.7
Finally we consider a �parabolic analogue� of our geometric duality, where B is replaced
by a partial �ag variety P. We prove a version of our restricted localization theorem for
singular weights (see Theorem 3.3.15). Then we derive from our key-point (see 0.4) a
version of it for this �parabolic� duality, and we deduce Koszulity of singular blocks of
(Ug)0 (see Theorem 10.3.1). In this case the Koszul dual ring is related to a quotient of
Ug introduced in [BMR08, �1.10].

In particular, it follows that, for p À 0, the ring (Ug)0 can be endowed with a (unique)
Koszul grading, i.e. a grading which makes it a Koszul ring (see Corollary 10.3.2). This
fact was conjectured (for all p > h) by Soergel in [Soe94].

0.8
Another interest of our key-point of 0.4 is that it gives information on the complexes of
coherent sheaves corresponding to simple and projective Ug-modules under equivalences
(0.3.1) and (0.3.2). (The question of computing these objects was raised in [BMR06,
1.5.1].) Namely, the objects corresponding to indecomposable projectives and to simples
are related by the simple geometric construction of 0.2. Our proof also provides a way to
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�generate� these objects. Namely, to compute them it su�ces to apply explicit functors
to explicit sheaves, and to take direct factors. In practice these computations are very
di�cult, however.

0.9 Organization of the chapter

In section 1 we develop the necessary background on derived categories of sheaves of dg-
modules over sheaves of dg-algebras, extending results of [BL94] and [Spa88]. We also
introduce some notions related to dg-schemes (in the sense of [CFK01]).

In section 2 we give a geometric version of Koszul duality (due to Mirkovi¢), and study
how this duality behaves under proper �at base change, and with respect to sub-bundles.

In section 3 we prove a localization theorem for restricted Ug-modules, as an extension
of the results of [BMR08], [BMR06].

In section 4 we state a version of our key-point. Sections 5 to 8 are devoted to the
proof of this theorem.

In section 5 we introduce some useful tools for our study, in particular some braid group
actions, using the main result of chapter II.

In section 6 we study the projective (Ug)λ̂
0 -modules and their geometric counterparts,

and their behaviour under the re�ection functors. Here and below, λ ∈ X is a regular
integral character.

Similarly, in section 7 we study the simple restricted (Ug)λ-modules and their geometric
counterparts, and their behaviour under the �semi-simple� functors Sδ.

In section 8 we �nally prove that the �geometric� Koszul duality exchanges the inde-
composable projective (Ug)λ̂

0 -modules and the simple restricted (Ug)λ-modules.
In section 9 we derive the fact that there is an �algebraic� Koszul duality relating

(Ug)λ̂
0 -modules and (Ug)λ-modules with generalized trivial Frobenius character.
Finally, in section 10 we extend some of our results to singular characters. In particular

we prove Koszulity of singular blocks of (Ug)0.

1 Sheaves of dg-algebras and dg-modules
In this section we extend results on dg-algebras and ringed spaces (see [BL94] and [Spa88])
to the case of a sheaf of dg-algebras on a ringed space. Most of these extensions are
straightforward, but certain results require some special care, especially concerning the
existence of resolutions. We �x a commutative ringed space (X,OX), and write simply ⊗
for ⊗OX

.

1.1 De�nitions

Let A =
⊕

p∈ZAp be a sheaf of Z-graded OX -algebras on X. Denote by µA : A⊗A → A
the multiplication map.
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De�nition 1.1.1. A is a sheaf of dg-algebras if it is provided with an endomorphism of
OX -modules dA : A → A, of degree 1, such that dA ◦ dA = 0, and satisfying the following
formula on Ap ⊗A, for any p ∈ Z:

dA ◦ µA = µA ◦ (dA ⊗ IdA) + (−1)pµA ◦ (IdAp ⊗ dA).

A morphism of sheaves of dg-algebras φ : A → B is a morphism of sheaves of graded
algebras commuting with the di�erentials.

A sheaf of dg-modules over A (in short: A-dg-module) is a sheaf of graded left A-
modules F on X, provided with an endomorphism of OX -modules dF : F → F , of degree
1, such that dF ◦ dF = 0, and satisfying the following formula on Ap ⊗ F , for any p ∈ Z,
where αF : A⊗F → F is the action map:

dF ◦ αF = αF ◦ (dA ⊗ IdF ) + (−1)pαF ◦ (IdAp ⊗ dF ).

If F and G are sheaves of dg-modules over A, a morphism of sheaves of dg-modules
φ : F → G is a morphism of sheaves of graded A-modules commuting with the di�erentials.

We will always consider OX as a sheaf of dg-algebras concentrated in degree 0, provided
with the zero di�erential. In the rest of this section we �x a sheaf of dg-algebras A.

We denote by C(X,A) (or sometimes simply C(A)) the category of sheaves of dg-
modules over A. The translation functor [1] : C(X,A) → C(X,A) is de�ned as usual to be
the auto-equivalence of C(X,A) given by:

(F [1])p = Fp+1, dF [1] = −dF ,

and the A-module structure is twisted as follows: on Ap ⊗F [1],

αF [1] = (−1)pαF .

Again as usual, two morphisms φ, ψ : F → G in C(X,A) are said to be homotopic if
there exists a morphism of graded A-modules h : F → G[−1] (not necessarily commuting
with the di�erentials) such that

φ− ψ = h ◦ dF + dG ◦ h.

We de�ne then the homotopy category H(X,A) whose objects are those of C(X,A), and
whose morphisms are obtained by quotienting the morphisms in C(X,A) by the homotopy
relation.

If φ : F → G is a morphism in C(X,A) or H(X,A), we de�ne its cone to be the graded
A-module Cone(φ) := G ⊕ F [1], provided with the di�erential given in degree n by the
matrix (

dn
G φn+1

0 dn
F [1]

)
.
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We de�ne an exact triangle in H(X,A) to be a triangle isomorphic to a triangle of the
form

F φ−→ G −→ Cone(φ) −→ F [1].

Provided with these exact triangles and the translation functor [1] de�ned above, H(X,A)
has a structure of a triangulated category.

If F is an object of C(X,A) or H(X,A), we de�ne its cohomology to be the graded
sheaf of OX -modules H(F) = Ker(dF )/Im(dF ). A dg-module F is said to be acyclic
if H(F) = 0. A morphism φ : F → G in C(X,A) or H(X,A) is said to be a quasi-
isomorphism if it induces an isomorphism H(φ) : H(F) ∼−→ H(G). This is equivalent to
the property that Cone(φ) is acyclic. Finally we de�ne the derived category D(X,A) to
be the localization of H(X,A) with respect to quasi-isomorphisms. It inherits a structure
of a triangulated category from H(X,A).

We de�ne similarly the category Cr(X,A) of sheaves of right A-dg-modules, its homo-
topy categoryHr(X,A) and its derived category Dr(X,A). We de�ne the opposite sheaf of
dg-algebras Aop which equals A as a sheaf of OX -dg-modules, and where the multiplication
is given on (Aop)p ⊗ (Aop)q by the composition

Ap ⊗Aq ∼−→ Aq ⊗Ap µA−−→ Ap+q

a⊗ b 7→ (−1)pqb⊗ a
.

As usual there is a natural equivalence of categories

Cr(X,A) ∼−→ C(X,Aop) (1.1.2)

sending the object F ∈ Cr(A) to the object of C(Aop) which equals F as an OX -dg-module,
and where the action of (Aop)p on Fq is given by

(Aop)p ⊗F = Ap ⊗Fq ∼−→ Fq ⊗Ap αF−−→ Fp+q

a⊗ f 7→ (−1)pqf ⊗ a
.

A sheaf of dg-algebras A is said to be graded-commutative if the identity map Id : A →
Aop is an isomorphism of sheaves of dg-algebras. In this case (1.1.2) gives an equivalence
of categories C(X,A) ∼= Cr(X,A).

1.2 Hom, Tens and (co)induction
Let F and G be objects of C(X,A). We de�ne the sheaf of OX -dg-modules

HomA(F ,G)

having, as degree p component, the OX -module of local homomorphisms of graded A-
modules F → G[p] (not necessarily commuting with the di�erentials), and provided with
the di�erential given by

d(φ) = dG ◦ φ− (−1)pφ ◦ dF (1.2.1)
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if φ ∈ (HomA(F ,G))p. This construction de�nes a bifunctor

HomA(−,−) : C(X,A)op × C(X,A) → C(X,OX).

One easily checks that HomA(−,−) preserves homotopies, and thus de�nes a bifunctor

HomA(−,−) : H(X,A)op ×H(X,A) → H(X,OX).

In case A is graded-commutative, this even de�nes naturally a bifunctor

HomA(−,−) : H(X,A)op ×H(X,A) → H(X,A).

We also de�ne the functor HomA(−,−), from C(X,A)op × C(X,A) to the category of
complexes of abelian groups, by putting

(HomA(F ,G))i := Γ(X, (HomA(F ,G))i),

the di�erential being that of (1.2.1). As usual, the group HomC(X,A)(F ,G) is the kernel of
the di�erential d0 on (HomA(F ,G))0, and HomH(X,A)(F ,G) ∼= H0(HomA(F ,G)).

Let F be an object of Cr(X,A), and let G be an object of C(X,A). We de�ne the sheaf
of OX -dg-modules F ⊗A G, graded in the natural way, and having the di�erential given on
local sections of Fp ⊗A G by

d(f ⊗ g) = d(f)⊗ g + (−1)pf ⊗ d(g).

This construction de�nes a bifunctor

(−⊗A −) : Cr(X,A)× C(X,A) → C(X,OX).

One easily checks that (−⊗A −) preserves homotopies, and thus de�nes a bifunctor

(−⊗A −) : Hr(X,A)×H(X,A) → H(X,OX).

As usual the tensor product is associative.

Let us de�ne the induction functor in the usual way:

Ind :
{ C(X,OX) → C(X,A)

F 7→ A⊗OX
F .

This functor is a left adjoint to the forgetful functor For : C(X,A) → C(X,OX). More
precisely, for F in C(X,OX) and G in C(X,A), we have a functorial isomorphism of OX -
dg-modules:

HomA(Ind(F),G) ∼= HomOX
(F , For(G)), (1.2.2)

and thus, taking the global sections and then the kernels of d0, one obtains:

HomC(X,A)(Ind(F),G) ∼= HomC(X,OX)(F ,G).



1. SHEAVES OF DG-ALGEBRAS AND DG-MODULES 77

The functor Ind also induces a functor H(X,OX) → H(X,A), which is left adjoint to the
forgetful functor H(X,A) → H(X,OX). For later use, let us remark that the adjunction
morphism Ind(F) → F is surjective for F ∈ C(X,A).

Now we de�ne the coinduction functor

Coind :
{ C(X,OX) → C(X,A)

G 7→ HomOX
(A,G)

(and similarly for the homotopy categories) where the grading and di�erential are de�ned
as in (1.2.1), and the action of A is given on local sections by

(α · φ)(γ) = (−1)deg(α) deg(φ)+deg(α) deg(γ)φ(γα).

Let us show that the functor Coind is a right adjoint to the forgetful functor C(X,A) →
C(X,OX). Let F be anA-dg-module, and G be anOX -dg-module. We de�ne the morphism

φ : HomOX
(F ,G) → HomA(F , Coind(G))

by the following formula, where λ, resp. f , resp. α is a local section of HomOX
(F ,G),

resp. F , resp. A: φ(λ)(f)(α) = (−1)deg(α) deg(f)λ(αf). We also de�ne the morphism:

ψ : HomA(F , Coind(G)) → HomOX
(F ,G)

by the formula ψ(µ)(f) = µ(f)(1A). The proof of the next lemma is a straightforward
computation, left to the reader.

Lemma 1.2.3. φ and ψ are inverse isomorphisms of OX-dg-modules. In particular, they
induce isomorphisms of complexes of abelian groups, respectively of abelian groups:

HomOX
(F ,G) ∼= HomA(F , Coind(G)),

HomC(X,OX)(F ,G) ∼= HomC(X,A)(F , Coind(G)),
HomH(X,OX)(F ,G) ∼= HomH(X,A)(F ,Coind(G)).

For later use, let us remark that the adjunction morphism G → Coind(G) is injective,
for G ∈ C(X,A).

1.3 Existence of K-�at and K-injective resolutions
To ensure the existence of the derived functors of the usual functors, we have to show that
there are enough objects in the category C(A) having nice properties. For this we follow
Spaltenstein's approach ([Spa88]).

De�nition 1.3.1. Let F be an object of C(A). We say that F is K-injective if one of the
following equivalent properties holds:

(i) For every object G of C(A), HomH(A)(G,F) = HomD(A)(G,F);
(ii) For every object G of C(A) such that H(G) = 0, H(HomA(G,F)) = 0.
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In (ii), H(HomA(G,F)) is the cohomology as a complex of abelian groups. For a proof
of the equivalence of these conditions, see [BL94, 10.12.2.2].

We will also consider the analogue of a �at resolution.

De�nition 1.3.2. An object F of C(A) is said to be K-�at if for every object G of Cr(A)
such that H(G) = 0, we have H(G ⊗A F) = 0.

Easy applications of the basic properties of induction and coinduction functors give the
following two lemmas:

Lemma 1.3.3. If F is a K-�at OX-dg-module, then Ind(F) is a K-�at A-dg-module. If
G is a K-injective OX-dg-module, then Coind(G) is a K-injective A-dg-module.

Lemma 1.3.4. Assume A is K-�at as an OX-dg-module. Then every K-injective A-dg-
module is also K-injective as an OX-dg-module. Similarly, every K-�at A-dg-module is
also K-�at as an OX-dg-module.

Let us prove that there exist enough K-�at modules in C(X,A). The case A = OX is
treated in [Spa88], and will be the base of our proofs.

If M is a complex of sheaves, we denote by Z(M) the graded sheaf Ker(dM).

Theorem 1.3.5. For every sheaf of A-dg-modules F , there exists a K-�at sheaf of A-dg-
modules P and a quasi-isomorphism P qis−→ F .

Proof. First, let us consider F as an OX -dg-module. By [Spa88, 5.6], there exists a K-�at
OX -dg-module Q0 and a surjective quasi-isomorphism of OX -dg-modules Q0 ³ F . Thus
there exists a surjective morphism of A-dg-modules

P0 := Ind(Q0) ³ Ind(F) ³ F ,

and the A-dg-module P0 is K-�at, by Lemma 1.3.3. The induced morphism Z(P0) → Z(F)
is also surjective. This follows from the fact that the morphism Z(Q0) → Z(F) is surjective,
because Q0 → F is a surjective quasi-isomorphism.

Doing the same construction for the kernel of the morphism P0 → F , and repeating,
we obtain an exact sequence of A-dg-modules

· · · → P1 → P0 → F → 0

where each Pp is K-�at, and such that the induced sequence

· · · → Z(P1) → Z(P0) → Z(F) → 0

is also exact. Now we take the A-dg-module P := Tot⊕(· · · → P1 → P0 → 0 → · · · ), where
Pp is in horizontal degree −p. It is K-�at, as the direct limit of the K-�at A-dg-modules
P≤p := Tot⊕(· · · → 0 → Pp → · · · → P0 → 0 → · · · ) (see [Spa88, 5.4.(c)]). Now we
prove that the natural morphism P → F is a quasi-isomorphism, i.e. that the complex
X := Tot⊕(· · · → P1 → P0 → F → 0 → · · · ), where F is in horizontal degree 1, is acyclic.
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The argument for this is borrowed from [Kel94, 3.3], [Kel00]. We put P−1 := F , and
Pp = 0 if p < −1. Consider, for m ≥ 1, the double complex of OX -modules Xm de�ned by
(Xm)i,j = 0 if j /∈ [−m,m], (Xm)i,j = (P−i)j if j ∈ [−m,m− 1], and (Xm)i,m = Z(P−i)m.
Then X is the direct limit of the complexes Tot⊕(Xm), which are acyclic because they
admit a �nite �ltration with acyclic subquotients. Hence X is acyclic.

We will also need the following result, which is borrowed from [Spa88, 5.7]:

Lemma 1.3.6. If P in C(A) is K-�at and acyclic, then for any F in Cr(A) the OX-dg-
module F ⊗A P is acyclic.

Proof. LetQ be a K-�at left resolution of F (in Cr(A) ∼= C(Aop)). Since P is K-�at, F⊗AP
is quasi-isomorphic to Q⊗A P, which is acyclic since Q is K-�at and P acyclic.

From now on in this section we make the following assumptions:

(†) All our topological spaces are noetherian of �nite dimension.
(††) All our dg-algebras are concentrated in non-positive degrees.

These assumptions are needed for our proofs and su�cient for our applications, but we
hope they are not essential. In order to construct resolutions by K-injective A-dg-modules,
we begin with the case of bounded below dg-modules.

Lemma 1.3.7. For every bounded-below A-dg-module F , there exists a quasi-isomorphism
of A-dg-modules F qis−→ I, where I is a K-injective A-dg-module, bounded below with the
same bound as F and such that Ip is a �abby sheaf for every p ∈ Z.

Proof. Let us �rst consider F as a sheaf of OX -dg-modules. As it is bounded below,
there exists a bounded below OX -dg-module J0 (with the same bound as F), all of whose
components are injective OX -modules, and an injective morphism φ : F ↪→ J0. Then J0 is
a K-injectiveOX -dg-module by [Spa88, 1.2, 2.2.(c), 2.5]. By Lemma 1.3.3, I0 := Coind(J0)
is a K-injective A-dg-module, and one obtains an injective morphism of A-dg-modules

F ↪→ Coind(F) ↪→ I0.

This module is bounded below, again with the same bound (because A is non-positively
graded), and its graded components are �abby (use the classical fact that if E and G
are OX -modules, with G injective, then HomOX

(E ,G) is �abby, see [KS90, II.2.4.6.(vii)],
and the fact that a product of �abby sheaves is �abby). Let X0 denote the cokernel of
this morphism. We have an exact sequence of A-dg-modules 0 → F i−→ I0

p−→ X0 → 0.
Repeating the same construction for X0, and then again and again, we obtain an exact
sequence of A-dg-modules (bounded below with the same bound for all the modules)

0 → F → I0 → I1 → I2 → · · ·

where each Ip is K-injective and has �abby components.
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Let us consider the double complex de�ned by

N pq :=
{ Iq

p if p ≥ 0
0 otherwise

and de�ne the A-dg-module I := Tot⊕(N ). This module is the inverse limit of the A-
dg-modules Kp := Tot⊕(· · · → 0 → I0 → · · · → Ip → 0 → · · · ) for p ≥ 0 (all the direct
sums involved are �nite, hence commute with inverse limits). For each p ≥ 0, Kp is a
K-injective A-dg-module (because it has a �nite �ltration with K-injective subquotients).
Moreover, the morphisms Kp+1 → Kp are surjective, and split as morphisms of graded
A-modules. Hence this inverse system is �special� in the sense of [Spa88, 2.1]. We deduce
that I is a K-injective A-dg-module (use [Spa88, 2.3, 2.4]). This module also has �abby
components (because a �nite sum of �abby sheaves is �abby). Now we only have to show
that the natural morphism F → I is a quasi-isomorphism, i.e. that the OX -dg-module
Tot⊕(· · · → 0 → F → I0 → I1 → I2 → · · · ) is acyclic.

It su�ces to show that for any x ∈ X the complex Tot⊕(. . . → 0 → Fx → (I0)x →
(I1)x → (I2)x → . . .) is acyclic. This follows easily from the usual spectral sequence of a
�rst quadrant double complex.

Now we can treat the general case. Recall the classical de�nition of the truncation
functors: if M is a complex of objects of an abelian category, for every n ∈ Z we de�ne
the complex

τ≥nM := (· · · → 0 → Mn/(Im dn−1) → Mn+1 → · · · ).
The natural morphism M → τ≥nM induces an isomorphism on cohomology groups Hm for
m ≥ n, and Hm(τ≥nM) = 0 for m < n. For any n we have a surjection τ≥nM → τ≥n+1M ,
whose kernel is quasi-isomorphic to Hn(M)[−n]. Because of our assumption (††), this
de�nition is still meaningful (and has the same properties) for A-dg-modules.

Theorem 1.3.8. For every A-dg-module F , there exists a quasi-isomorphism of A-dg-
modules F qis−→ I where I is a K-injective A-dg-module.

Proof. Using the preceding lemma, the construction of [Spa88, 3.7] generalizes: there exists
an inverse system of morphisms of A-dg-modules

fn : τ≥−nF qis−→ In

where fn is a quasi-isomorphism, In is a K-injective A-dg-module with Ip
n = 0 for p < −n

and Ip
n �abby for p ≥ −n, and, furthermore, the morphisms In+1 → In are surjective and

split as morphisms of graded A-modules. Then, as in the proof of the previous lemma,
lim←−In is K-injective. As F ∼= lim←− τ≥−nF , it remains only to prove that f := lim←− fn is
a quasi-isomorphism. For this we can follow the arguments of [Spa88, 3.13]. Indeed,
using Grothendieck's vanishing theorem ([Har77, III.2.7]), condition 3.12.(1) of [Spa88] is
satis�ed with B = Mod(OX), and dx = dim(X) for any x ∈ X. Moreover, in the proof of
[Spa88, 3.13], the fact that the In are K-injective over OX is not really needed. In fact,
we only need to know that, for every n, the kernel Kn of the morphism In → In−1 is a
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resolution of H−n(F)[n] which is acyclic for the functors Γ(U,−) for every open U ⊂ X.
In our case, Kn is a �abby resolution of H−n(F)[n] (see the construction of [Spa88, 3.7],
and the �abbiness result in Lemma 1.3.7). Hence f is indeed a quasi-isomorphism.

1.4 Derived functors
In this section we construct the derived functors of HomA(−,−) and (− ⊗A −). Our
reference for derived functors is [Del73, 1.2] (see also [Kel96, sections 13-15] for details).

Let (X,OX) and (Y,OY ) be commutative ringed spaces, and let A (resp. B) be a
dg-algebra on X (resp. Y ). Consider a triangulated functor F : H(A) → H(B). Following
Deligne, one says that the right derived functor RF is de�ned at an object F ∈ H(A) if
F has a right resolution X which is F -split1 on the right, i.e. every right resolution Y of
X has itself a right resolution Z such that F induces a quasi-isomorphism between F (X )
and F (Z) (see [Kel96, section 14]). Similarly, left derived functors are de�ned at objects
which are F -split on the left.

Let us remark that a K-injective A-dg-module is F -split on the right for any such
functor (this follows e.g. from condition (i) in de�nition 1.3.1). Hence, under assumptions
(†), (††), right derived functors are de�ned on the whole category D(A), by Theorem 1.3.8.

Let Ab denote the category of abelian groups, H(Ab) its homotopy category of com-
plexes, and D(Ab) its derived category. Let us �rst consider the bifunctor

HomA(−,−) : H(A)op ×H(A) → H(Ab).

Fix an object F of H(A)op. Then we de�ne the functor RHomA(F ,−) : D(A) → D(Ab)
as the right derived functor of HomA(F ,−) : H(A) → H(Ab) in the sense of Deligne. It
is de�ned on the whole category D(A) by Theorem 1.3.8. Now for each object G of D(A),
the functor RHomA(−,G) : H(A)op → D(Ab) sends quasi-isomorphisms to isomorphisms,
hence factorizes to a functor D(A)op → D(Ab), again denoted RHomA(−,G). Thus, the
derived bifunctor

RHomA(−,−) : D(A)op ×D(A) → D(Ab)

is well de�ned.
Now we consider the bifunctor

(−⊗A −) : Hr(A)×H(A) → H(OX).

As above, for each F inHr(A), by Theorem 1.3.5 and Lemma 1.3.6 there are enough objects
split on the left (e.g. K-�at dg-modules) for the functor (F ⊗A −) : H(A) → H(OX).
Hence, its left derived functor (F L⊗A−) : D(A) → D(OX) is well de�ned. And thus the
derived bifunctor

(−L⊗A−) : Dr(A)×D(A) → D(OX)

is well de�ned.
1Spaltenstein uses the term �unfolded�, see [Spa88, p. 123].
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1.5 Direct and inverse image functors
As above, let (Y,OY ) be a second ringed space, and B a sheaf of dg-algebras on it (we call
such a pair a dg-ringed space). A morphism of dg-ringed spaces f : (X,A) → (Y,B) is a
morphism f0 : (X,OX) → (Y,OY ) of ringed spaces, together with a morphism of sheaves
of dg-algebras f∗0B → A (where f∗0B is the usual inverse image of B, which has a natural
structure of a sheaf of dg-algebras on X).

We have a natural direct image functor

f∗ : C(X,A) → C(Y,B)

and its right derived functor

Rf∗ : D(X,A) → D(Y,B).

It can be computed by means of right K-injective resolutions (see the beginning of 1.4).
Similarly, there is a natural inverse image functor

f∗ :
{ C(Y,B) → C(X,A)

F 7→ A⊗f∗0B f∗0F
.

Its left derived functor
Lf∗ : D(Y,B) → D(X,A)

is de�ned on the whole of D(A), and can be computed by means of left K-�at resolutions
(because f∗0 sends K-�at B-dg-modules to K-�at f∗0B-dg-modules).

The following de�nition is adapted from [Spa88, 5.11]:

De�nition 1.5.1. The A-dg-module F is said to be weakly K-injective if HomA(G,F) is
acyclic for any acyclic K-�at A-dg-module G.

It is clear from this de�nition that a K-injective dg-module is weakly K-injective. The
following lemma is a more general (but weaker) version of Lemma 1.3.4.

Lemma 1.5.2. Let F be a weakly K-injective A-dg-module. Then f∗F is a weakly K-
injective B-dg-module. In particular, a weakly K-injective A-dg-module is also weakly K-
injective when considered as an OX-dg-module.

Proof. Let G be an acyclic, K-�at B-dg-module. By standard adjunction,

HomB(G, f∗F) ∼= Homf∗0B(f∗0G,F) ∼= HomA(f∗G,F).

Now f∗G is a K-�at A-dg-module, and is acyclic by Lemma 1.3.6. The result follows. The
second statement follows from the �rst one, applied to the natural morphism (X,A) →
(X,OX) given by the inclusion OX ↪→ A.

Let For : D(X,A) → D(X,OX) and For : D(Y,B) → D(Y,OY ) denote the forgetful
functors. Let R(f0)∗ : D(X,OX) → D(Y,OY ) be the right derived functor of the morphism
of dg-ringed spaces f0 : (X,OX) → (Y,OY ).
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Corollary 1.5.3. (i) The following diagram is commutative:

D(X,A)
Rf∗ //

For
²²

D(Y,B)

For
²²

D(X,OX)
R(f0)∗ // D(Y,OY ).

(ii) If (Z, C) is a third dg-ringed space, g : (Y,B) → (Z, C) a morphism of dg-ringed
spaces, the natural morphism of functors R(g ◦ f)∗ → Rg∗ ◦Rf∗ is an isomorphism.

Proof. (i) The commutativity of the diagram is clear from the second sentence in Lemma
1.5.2, and [Spa88, 6.7] (which says, in particular, that R(f0)∗ can be computed using a
weakly K-injective resolution).

(ii) If F is a weakly K-injective A-dg-module which is acyclic, then F is also acyclic
and weakly K-injective as an OX -dg-module (by Lemma 1.5.2). Hence f∗F = (f0)∗F is
also acyclic (see [Spa88, 5.16]). It follows that weakly K-injective dg-modules are split for
direct image functors. Then the result follows from classical facts on the composition of
derived functors (see [Kel96, 14.2]).

Similarly to part (ii) of the preceding corollary, one has:

Proposition 1.5.4. If g : (Y,B) → (Z, C) is a second morphism of dg-ringed spaces, then
there exists an isomorphism of functors L(g ◦ f)∗ ∼= Lf∗ ◦ Lg∗.

Proof. This easily follows from the fact that g∗ sends K-�at C-dg-modules to K-�at B-dg-
modules, using again [Kel96, 14.2].

De�nition 1.5.5. The morphism f : (X,A) → (Y,B) is a quasi-isomorphism if X = Y ,
f0 = Id, and the associated morphism φ : B → A induces an isomorphism on cohomology.

The following result is an immediate extension of [BL94, Theorem 10.12.5.1]. It says
that the category D(X,A) depends on A only up to quasi-isomorphism (of course, it
depends on X only up to isomorphism).

Proposition 1.5.6. Let f : (X,A) → (X,B) be a quasi-isomorphism. Then

Rf∗ : D(X,A) → D(X,B) and Lf∗ : D(X,B) → D(X,A)

are equivalences of categories, quasi-inverse to each other.

Proof. In our situation the functor f∗ : C(X,A) → C(X,B) is just the restriction of scalars.
In particular it takes quasi-isomorphisms to quasi-isomorphisms, hence Rf∗ : D(X,A) →
D(X,B) is also the restriction of scalars. The functor Lf∗ is the derived tensor product
AL⊗B−. There are natural morphisms of functors Id → Rf∗ ◦ Lf∗ and Lf∗ ◦ Rf∗ → Id
(these morphisms come from adjunction, as we will see in the next subsection, but we do
not need it here). Let us show that they are isomorphisms.
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Let G be a B-dg-module, which we can assume to be K-�at. Then the morphism
G → Rf∗(Lf∗G) ∼= A ⊗B G can be represented by φ ⊗ Id : B ⊗B G → A ⊗B G which is a
quasi-isomorphism (because G is K-�at).

Let F be an A-dg-module, and let p : P → F be a left K-�at resolution of F viewed
as a B-dg-module. Then the natural morphism A⊗B P ∼= (Lf∗ ◦ Rf∗)F → F is a quasi-
isomorphism, because it �ts into the following commutative diagram, where the two other
maps are quasi-isomorphisms:

B ⊗B P ∼= P
φ⊗Id

wwooooooooooo
p

%%LLLLLLLLLLL

A⊗B P // F .

This concludes the proof.

1.6 Adjunction
Let f : (X,A) → (Y,B) be a morphism of dg-ringed spaces. In this subsection we show
that Rf∗ and Lf∗ are adjoint functors. This proof is again adapted from [Spa88].

Following [Spa88, 5.0], we denote by P(X) the class of dg-modules F in C(X,OX)
which are bounded above, and such that for each i ∈ Z, F i is a direct sum of sheaves
of the form OU⊂X (the extension by zero of OX |U to X) for U open in X. We denote2
by P−→(X) the smallest full subcategory of C(X,OX) containing P(X) and such that for
any direct system (Fn)n≥0 of objects of P−→(X) such that the morphisms Fn → Fn+1 are
injective and split as morphisms of graded A-modules, the object lim−→Fn is in P−→(X). The
objects in P−→(X) are K-�at (as in [Spa88, 5.5]).

Lemma 1.6.1. Let F be a K-�at A-dg-module, and G a weakly K-injective, acyclic A-dg-
module. Then the complex of abelian groups HomA(F ,G) is acyclic.

Proof. By Lemma 1.5.2, G is also weakly K-injective as an OX -dg-module. Consider the
class Q of objects E of C(X,A) such that HomA(E ,G) is acyclic. By [Spa88, 5.20] and
(1.2.2), Q contains the class C of objects of the form Ind(M) for M∈ P−→(X). Now, using
the same proof as that of Theorem 1.3.5, there exists a direct system (P≤n)n≥0 of A-dg-
modules such that each P≤n has a �nite �ltration which subquotients in C and such that
the morphisms P≤n → P≤n+1 are injective and split as morphisms of graded A-modules,
and a quasi-isomorphism P := lim−→P≤n → F . Using again [Spa88, 2.3, 2.4], P is in Q. As G
is weakly K-injective, and F and P are K-�at, the morphism HomA(F ,G) → HomA(P,G)
is a quasi-isomorphism. The result follows.

Theorem 1.6.2. For F ∈ D(Y,B) and G ∈ D(X,A), there exists a functorial isomorphism

RHomA(Lf∗F ,G) ∼= RHomB(F , Rf∗G).
2This subcategory is a priori smaller than the one considered in [Spa88, 2.9], which allows more general

direct limits, but it will be su�cient for us.
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In particular, the functors Lf∗ and Rf∗ are adjoint.

Proof. We can assume F is K-�at and G is K-injective (by Theorems 1.3.5 and 1.3.8).
Then f∗G is weakly K-injective by Lemma 1.5.2, and isomorphic to Rf∗G. Hence the
result follows from the classical adjunction in C(X,A) and C(Y,B) since, by Lemma 1.6.1,
one can compute RHomB(−,−) using a K-�at resolution of the �rst argument and a weakly
K-injective resolution of the second argument.

Remark 1.6.3. The adjunction also follows from the general result [Kel96, 13.6].

1.7 The Gm-equivariant case
In this subsection we show how one can adapt the preceding constructions to the case when
A is equipped with a second grading, which we call the �internal grading�. More precisely, in
addition to the assumptions of 1.1, we assume we are given a decomposition A ∼= ⊕n∈ZAn

as an OX -dg-module such that, for every n,m in Z, µA(An ⊗Am) ⊂ An+m. We call such
a data a Gm-equivariant dg-algebra (in short: Gm-dg-algebra). Geometrically, if we equip
the topological space X with a trivial Gm-action, such a grading indeed corresponds to
a Gm-equivariant structure. In what follows, OX will be considered as a Gm-equivariant
dg-algebra concentrated in degree 0 for both gradings.

To avoid confusion, the �rst grading of A will be called the �cohomological grading�.
When a homogeneous element of A has cohomological degree i and internal degree j, we
also say that it has bidegree (i, j).

We keep the assumptions (†) and (††) of 1.3. In particular, in this subsection all Gm-
equivariant dg-algebras are assumed to be non-positively graded for the cohomological
grading.

We de�ne as above the notion of Gm-equivariant A-dg-module (in short: Gm-A-dg-
module). This is a sheaf of bigraded A-modules F =

⊕
n,m∈ZFn

m, equipped with a dif-
ferential dF of bidegree (1, 0) satisfying the natural compatibility condition. In a similar
way we de�ne morphisms between dg-modules, and the categories CGm(X,A), HGm(X,A),
DGm(X,A). We also have natural bifunctors HomA,Gm(−,−) and (−⊗A,Gm −) de�ned as
follows. If F , resp. G, is a right, resp. left, Gm-equivariant A-dg-module, then F ⊗A,Gm G
is isomorphic to F ⊗A G, with its natural bigrading. And if F and G are Gm-equivariant
left A-dg-modules, then HomA,Gm(F ,G) is the complex of Z-graded abelian groups whose
(p, q) term consists of the morphisms of A-modules (not necessarily commuting with the
di�erential) mapping F i

j inside Gi+p
j+q.

We also de�ne the notions of Gm-equivariant K-injective (respectively Gm-equivariant
K-�at) A-dg-modules, replacing the bifunctor HomA(−,−) by HomA,Gm(−,−) (respec-
tively (−⊗A −) by (−⊗A,Gm −)). If A = OX , then a Gm-equivariant dg-module is just a
direct sum of OX -dg-modules indexed by Z.

Lemma 1.7.1. A Gm-equivariant OX-dg-module G is Gm-equivariant K-injective (resp.
K-�at) if and only if each of its internal graded components Gm is K-injective (resp. K-�at).
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Proof. We only give a proof for the K-injective case (the K-�at case is similar and eas-
ier). Let F be another Gm-equivariant OX -dg-module. Then HomOX ,Gm(F ,G) is a
complex of graded abelian groups. It is exact if and only if each of its graded compo-
nents is. Hence for any m ∈ Z we have to consider the complex with n-th component∏

i,j HomMod(OX)(F i
j ,Gi+n

j+m). This complex is the product (for j ∈ Z) of the complexes
with n-th component

∏
i HomMod(OX)(F i

j ,Gi+n
j+m), i.e. HomOX

(F q
j ,G q

j+m). As the product
is exact on abelian groups, our complex HomOX ,Gm(F ,G) is exact if and only if for any m
and j in Z the complex HomOX

(F q
j ,G q

j+m) is exact. The result follows.

It follows from this lemma that there are enough K-injective and K-�at objects in
CGm(X,OX). Then the proofs of Theorems 1.3.5 and 1.3.8 generalize, thus there are
enough K-injective and K-�at objects in CGm(X,A) for any A (to generalize these proofs,
one has to replace the induction and coinduction functors by Gm-equivariant analogues).
Hence one can construct the derived bifunctors RHomA,Gm(−,−) and (−L⊗A,Gm−).

Let For : CGm(X,A) → C(X,A) denote the forgetful functor, sending F to the dg-
module with n-th component

⊕
m∈ZFn

m.
Lemma 1.7.2. For every Gm-equivariant A-dg-module F , there exists a Gm-equivariant
K-�at A-dg-module P and a Gm-equivariant quasi-isomorphism P → F such that the
image For(P) → For(F) is a K-�at resolution in C(X,A).

Proof. This lemma follows from the fact that for the dg-algebra OX , the image under For
of a Gm-equivariant K-�at dg-module is a K-�at dg-module (by Lemma 1.7.1 and the
fact that a direct sum of K-�at modules is K-�at), and the construction of a resolution
given in the proof of Theorem 1.3.5, which is parallel for the Gm-equivariant and the non
Gm-equivariant case.

It follows from this lemma that the bifunctors (−L⊗A,Gm−) and (−L⊗A−) correspond un-
der the forgetful functors. Hence from now on we will denote both bifunctors by (−L⊗A−).

Now we consider direct and inverse image functors. Let (Y,B) be a second Gm-
equivariant dg-ringed space, and f : (X,A) → (Y,B) a Gm-equivariant morphism of
dg-ringed spaces. There are natural functors

(fGm)∗ : CGm(X,A) → CGm(Y,B) and (fGm)∗ : CGm(Y,B) → CGm(X,A)

and their derived functors

R(fGm)∗ : DGm(X,A) → DGm(Y,B) and L(fGm)∗ : DGm(Y,B) → DGm(X,A).

These functors are adjoint (the same proof as in the non Gm-equivariant case works). It
follows from Lemma 1.7.2 that the following diagram is commutative:

DGm(Y,B)
L(fGm )∗ //

For
²²

DGm(X,A)

For
²²

D(Y,B)
Lf∗ // D(X,A).
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In order to prove the similar result for R(fGm)∗, we need some preparation.
First, consider the case of the dg-algebra OX . Recall the notation of 1.6.

De�nition 1.7.3. F ∈ C(X,OX) is said to be K-limp if HomOX
(G,F) is acyclic for every

acyclic complex S in P(X).

Note that this notion (also considered in [Spa88, 5.11]) is weaker than weak K-injecti-
vity.

As X is assumed to be noetherian, a direct sum of �abby sheaves on X is �abby ([Har77,
III.2.8] or [God64, 3.10]). Moreover, for every open U ⊂ X the functor Γ(U,−) commutes
with in�nite direct sums ([Har77, III.2.9] or [God64, 3.10.1]). If F is a bounded below
OX -dg-module, RΓ(U,F) can be computed using a �abby resolution. Hence the functor
RΓ(U,−) commutes with in�nite direct sums in the case of a family of OX -dg-modules
which are uniformly bounded below. Now we will generalize this fact.

Lemma 1.7.4. A direct sum of K-limp OX-dg-modules is K-limp.

Proof. Let (Fj)j∈J be K-limp OX -dg-modules. Let
⊕

j∈J Fj → I be a K-injective resolu-
tion, constructed as in [Spa88, 3.7, 3.13]. Using [Spa88, 5.17], it will be su�cient to prove
that for every open U ⊂ X, the morphism Γ(U,

⊕
j∈J Fj) =

⊕
j∈J Γ(U,Fj) → Γ(U, I) is

a quasi-isomorphism. We �x an open U , and m ∈ Z. We have I ∼= lim←−n
In where In is a

K-injective resolution of τ≥−n(
⊕

j∈J Fj) ∼=
⊕

j∈J τ≥−nFj . Then for N su�ciently large,
we have an isomorphism Hm(Γ(U, I)) ∼= Hm(Γ(U, IN )) (see the proof of [Spa88, 3.13]).
But Hm(Γ(U, IN )) ∼= RmΓ(U,

⊕
j∈J τ≥−NFj). Using the remark before the lemma, the

latter is isomorphic to
⊕

j∈J RmΓ(U, τ≥−NFj). For the same reason, for N su�ciently
large (uniformly in j) we have RmΓ(U, τ≥−NFj) ∼= RmΓ(U,Fj). We conclude using the
fact that, as Fj is K-limp, by [Spa88, 6.4] we have RmΓ(U,Fj) ∼= Hm(Γ(U,Fj)).

Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. We may also consider it as
a morphism of Gm-equivariant dg-ringed spaces (with trivial Gm-action on OX and OY ).

Corollary 1.7.5. For every family of objects (Fi)i∈I of C(X,OX) we have Rf∗(
⊕

i∈I Fi) ∼=⊕
i∈I Rf∗(Fi). In particular, the following diagram is commutative:

DGm(X,OX)
R(fGm )∗ //

For
²²

DGm(Y,OY )

For
²²

D(X,OX)
Rf∗ // D(Y,OY ).

Proof. The isomorphism follows from the facts that f∗ commutes with direct sums (because
X is noetherian), that Rf∗ can be computed by means of K-limp resolutions ([Spa88, 6.7]),
and Lemma 1.7.4.

Then the commutativity of the diagram follows from this isomorphism and the obvious
isomorphism For ◦ R(fGm)∗(F) ∼= ⊕

n∈ZRf∗(Fn) for a Gm-equivariant OX -dg-module F
with decomposition F =

⊕
n∈ZFn.
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Let f : (X,A) → (Y,B) be a morphism of Gm-equivariant dg-ringed spaces.

Corollary 1.7.6. The following diagrams are commutative:

DGm(X,A)
R(fGm )∗ //

For
²²

DGm(Y,B)

For
²²

DGm(X,OX)
R(f0,Gm )∗ // DGm(Y,OY ),

and
DGm(X,A)

R(fGm )∗ //

For
²²

DGm(Y,B)

For
²²

D(X,A)
Rf∗ // D(Y,B).

Proof. The commutativity of the second diagram follows from the commutativity of the
�rst one and corollaries 1.5.3 and 1.7.5. Hence we only have to prove that the �rst di-
agram is commutative. Now consider a Gm-equivariant K-injective A-dg-module F . By
an analogue of Lemma 1.5.2, F is weakly K-injective as a Gm-equivariant OX -dg-module.
Hence each of its graded components is weakly K-injective as an OX -dg-module (see the
proof of Lemma 1.7.1). The result follows, since one can compute R(f0,Gm)∗ using K-limp
resolutions of each components.

Proofs similar to those of subsection 1.5 show that if g : (Y,B) → (Z, C) is a second
morphism of Gm-equivariant dg-algebras, one has isomorphisms

R((g ◦ f)Gm)∗ ∼= R(gGm)∗ ◦R(fGm)∗, (1.7.7)
L((g ◦ f)Gm)∗ ∼= L(fGm)∗ ◦ L(gGm)∗. (1.7.8)

Remark 1.7.9. One of the motivations for introducing Gm-equivariant dg-modules comes
from the following situation, that we will encounter later in section 2. Let X be a variety,
and F a locally free OX -module. Consider the dg-algebra A = SOX

(F), the symmetric
algebra of F over OX , with trivial di�erential and the grading such that F is in degree
2. This dg-algebra is not concentrated in non-positive degrees, hence we cannot apply
the constructions of subsections 1.3 to 1.6. Now, let us consider A as a Gm-equivariant
dg-algebra, with F in bidegree (2,−2). Let B denote the Gm-equivariant dg-algebra which
is also isomorphic to SOX

(F) as a sheaf of algebras, with trivial di�erential, and with F
in bidegree (0,−2). Then the �regrading� functor

ξ : DGm(A) → DGm(B)

de�ned by ξ(M)i
j := Mi−j

j is an equivalence of categories. Using this equivalence and
the fact that B is concentrated in non-positive degrees, all the constructions and results
obtained in 1.7 can be transfered to the Gm-equivariant dg-algebra A.
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1.8 Dg-schemes and dg-sheaves
In this section we de�ne dg-schemes and dg-sheaves over them. Our reference is [CFK01,
section 2], but we modify some de�nitions according to our purposes.
De�nition 1.8.1. A dg-scheme is a dg-ringed space X = (X0,O q

X) where X0 is an
ordinary scheme and O q

X is a sheaf of non-positively graded, graded-commutative dg-
algebras on X0, such that each Oi

X is a quasi-coherent OX0-module (the structure of
OX0-module being given by the action of the image of OX0 inside O0

X).
Amorphism of dg-schemes f : X → Y is a morphism of dg-ringed spaces f : (X,O q

X) →
(Y,O q

Y ) (see 1.5).

Let us �x a dg-scheme X.
De�nition 1.8.2. (i) A quasi-coherent dg-sheaf on X is a sheaf F of O q

X -dg-modules on
X0 such that each H i(F) is a quasi-coherent OX0-module. We denote by DGSh(X) the
full subcategory3 of D(X,O q

X) whose objects are quasi-coherent dg-sheaves.
(ii) A coherent dg-sheaf on X is a quasi-coherent dg-sheaf F on X whose cohomol-

ogy H(F) is locally �nitely generated over the sheaf of algebras H(O q
X). We denote by

DGCoh(X) the full subcategory of D(X,O q
X) whose objects are coherent dg-sheaves.

Remark 1.8.3. (i) If X is an ordinary scheme (i.e. if O0
X = OX0 and Oi

X = 0 for i 6= 0)
which is quasi-compact and separated, then the category DGSh(X) is equivalent to the
(unbounded) derived category of the abelian category QCoh(X) of quasi-coherent sheaves
on X (see [BN93, 5.5]). If moreover X is noetherian, then the category DGCoh(X) is
equivalent to the bounded derived category of the abelian category Coh(X) of coherent
sheaves on X (see [BGI71, II.2.2.2.1]; see also [Bor87, VI.2.B] for a sketch of a more
elementary proof, following J. Bernstein and P. Deligne).

(ii) If f : X → Y is a morphism of dg-schemes, then it induces functors Rf∗ :
D(X0,O q

X) → D(Y 0,O q
Y ) and Lf∗ : D(Y 0,O q

Y ) → D(X0,O q
X). It is not clear in gen-

eral if these functors restrict to functors between DGSh(X) and DGSh(Y), or between
DGCoh(X) and DGCoh(Y ). In practice, it will always be the case in this chapter. We
will prove it in each particular case.

The following lemma follows immediately from Corollary 1.5.3 and Proposition 1.5.4
(see also Proposition 1.5.6).
Lemma 1.8.4. Let f : X → Y and g : Y → Z be morphisms of dg-schemes, with f a
quasi-isomorphism (then X0 = Y 0, and f0 = Id). The following diagrams are commutative.

D(X,O q
X)

Rf∗
∼ //

R(g◦f)∗ ''NNNNNNNNNNN
D(Y,O q

Y )

Rg∗xxppppppppppp

D(Z,O q
Z),

3It is not clear from this de�nition that this subcategory is a triangulated subcategory. In fact it turns
out that it is the case under some reasonable conditions. In this chapter we essentially consider coherent
dg-sheaves over bounded dg-algebras, hence this point will not be a problem.
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D(Y,O q
Y )

Lf∗

∼ //

Lg∗ &&NNNNNNNNNNN
D(X,O q

X)

L(g◦f)∗wwppppppppppp

D(Z,O q
Z).

In particular, if the functors Rg∗ and Lg∗ restrict to functors between the categories
DGSh(Y) and DGSh(Z) (or between DGCoh(Y ) and DGCoh(Z)), then the functors R(g ◦
f)∗ and L(g ◦f)∗ also restrict to functors between DGSh(X) and DGSh(Z) (or DGCoh(X)
and DGCoh(Z)), and conversely.

This result allows one to replace a given dg-scheme by a quasi-isomorphic one when
convenient. Of course, given g : Y → Z we may as well replace Z by a quasi-isomorphic
dg-scheme Z ′. Hence we will consider dg-schemes only up to quasi-isomorphism.

As a typical example, we de�ne the derived intersection of two closed subschemes.
Consider a scheme X, and two closed subschemes Y and Z. Let us denote by i : Y → X

and j : Z → X the closed embeddings. Consider the sheaf of dg-algebras i∗OY
L⊗OX

j∗OZ

on X. It is de�ned up to quasi-isomorphism: if AY → i∗OY , respectively AZ → j∗OZ are
quasi-isomorphisms of non-positively graded, graded-commutative sheaves of dg-algebras
on X, with AY and AZ quasi-coherent and K-�at over OX , then i∗OY

L⊗OX
j∗OZ is quasi-

isomorphic to AY ⊗OX
j∗OZ , or to i∗OY ⊗OX

AZ , or to AY ⊗OX
AZ .

De�nition 1.8.5. The right derived intersection of Y and Z in X is the dg-scheme

Y
R∩X Z := (X, i∗OY

L⊗OX
j∗OZ),

de�ned up to quasi-isomorphism.

Remark 1.8.6. Let us keep the notation as above. The sheaf of dg-algebras AY ⊗OX
j∗OZ

is isomorphic to the sheaf of dg-algebras j∗(j∗AY ). Hence the direct image functor j∗ :
C(Z, j∗AY ) → C(X,AY ⊗OX

j∗OZ) is an equivalence of categories. As a consequence, by
abuse of notation we will often identify the dg-schemes (Z, j∗AY ) and Y

R∩X Z.

2 Linear Koszul duality
Usual Koszul duality (see e.g. [BGG78], [BGS96], [GKM93]) relates modules over the
symmetric algebra S(V ) of a �nite dimensional vector space V to modules over the exterior
algebra Λ(V ∗) of the dual vector space. In this section we give a relative version of this
duality, and a geometric interpretation in terms of derived intersections (due to I. Mirkovi¢).

2.1 Reminder on Koszul duality
We �x a scheme (X,OX). Let F be a locally free sheaf of �nite rank over X. We denote
by

S := SOX
(F∨)
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the symmetric algebra of F∨ := HomOX
(F ,OX) over OX . We consider it as a sheaf of

dg-algebras with trivial di�erential, and with the grading such that F∨ is in degree 2.
Similarly, we denote by

T := ΛOX
(F)

the exterior algebra of F over OX , considered as a sheaf of dg-algebras with trivial di�er-
ential, and the grading such that F is in degree −1. For the categories of dg-modules over
these dg-algebras, we use the notation of section 1.

Let C+(S) be the full subcategory of C(S) whose objects are bounded below S-dg-
modules. We de�ne similarly C+(T ). We denote by H+(S), H+(T ), D+(S) and D+(T )
the homotopy and derived categories obtained by the usual procedures (see section 1).

Following [GKM93], we de�ne the functor

A : C+(S) → C+(T )

by setting A (M) := HomOX
(T ,M) ∼= T ∨⊗OX

M, where the T -module structure is given
by the formula

(t · φ)(s) = (−1)deg(t)(deg(t)+1)/2φ(ts)

and the di�erential is de�ned as the sum of d1 and d2, where

d1(φ)(t) = (−1)deg(t)dM (φ(t)), (2.1.1)

and d2 is de�ned as follows. Consider the canonical morphism OX → HomOX
(F ,F) ∼=

F ⊗OX
F∨. Then d2 is the opposite of the composition

T ∨ ⊗OX
M→ T ∨ ⊗OX

F ⊗OX
F∨ ⊗OX

M β⊗αF−−−−→ T ∨ ⊗OX
M

where αF is the given action F∨ ⊗OX
M → M and β is the (right) action of F on T ∨

which is the transpose of left multiplication. If t is a local section of T in a neighborhood
of x, with {yi, i ∈ I} a basis of Fx as OX,x-module and {y∗i , i ∈ I} the dual basis of (F∨)x,
we have

d2(φ)(t) = −
∑

i

y∗i φ(yit). (2.1.2)

Using formulas (2.1.1) and (2.1.2), one easily veri�es that d1 +d2 is a di�erential, and that
A (M) is a T -dg-module.

We also de�ne the functor
B : C+(T ) → C+(S)

by setting B(N ) := S ⊗OX
N , where the S-module structure is by left multiplication on

S and the di�erential is the sum d3 + d4, where

d3(s⊗ n) = s⊗ dN (n) (2.1.3)

and d4 is the composition S ⊗OX
N → S ⊗OX

F∨ ⊗OX
F ⊗OX

N → S ⊗OX
N . With the

same notation as above, we have

d4(s⊗m) =
∑

i

sy∗i ⊗ yin. (2.1.4)
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Using formulas (2.1.3) and (2.1.4), one again veri�es that d3 +d4 is a di�erential, and that
B(N ) is a S-dg-module.

Taking the stalks at a point and using spectral sequence arguments (see [GKM93, 9.1]),
one proves that A and B send quasi-isomorphisms to quasi-isomorphisms, and hence de�ne
functors

A : D+(S) → D+(T ) and B : D+(T ) → D+(S).

Theorem 2.1.5. The functors A and B are equivalences of categories between D+(S)
and D+(T ), quasi-inverse to each other.

To prove this theorem, one constructs morphisms of functors Id → A ◦B and B◦A →
Id as in [GKM93, section 16]. To prove that they are isomorphisms, it su�ces to look at
the stalks at a point x. Then the same proof as that of [GKM93] works.

2.2 Restriction to certain subcategories

Now we assume that X is a non-singular algebraic variety over an algebraically closed �eld
k. If A is a dg-algebra on X, we denote by Dqc(A), resp. Dqc,fg(A) the full subcategory
of D(A) consisting of dg-modules whose cohomology is quasi-coherent as an OX -module,
resp. whose total cohomology is quasi-coherent over OX and locally �nitely generated
over the sheaf of algebras H(A). Similarly we de�ne D+,qc(A), D+,qc,fg(A), and bigraded
analogues. Let F , S and T be as in 2.1.

Lemma 2.2.1. The equivalences A and B restrict to equivalences between D+,qc(S) and
D+,qc(T ).

Proof. We only have to prove that A and B map these subcategories one into each other.
But this is clear from the existence of the spectral sequences (of sheaves) analogous to the
ones of [GKM93, 9.1].

Lemma 2.2.2. The equivalences A and B restrict further to equivalences between the
categories D+,qc,fg(S) and D+,qc,fg(T ).

Proof. We only have to prove that A maps D+,qc,fg(S) into D+,qc,fg(T ), and that B maps
D+,qc,fg(T ) into D+,qc,fg(S). Let us �rst consider B. Let M be an object of D+,qc,fg(T ).
By the previous lemma, B(M) ∈ D+,qc(S), and we have to prove that for any x ∈ X, the
Sx-dg-module B(M)x has �nitely generated cohomology. But H(Mx) is �nitely generated
over OX,x (because it is �nitely generated over Tx, which is itself �nitely generated as an
OX,x-module). Thus, the E1-term of the spectral sequence analogous to [GKM93, 9.1.4] is
�nitely generated over Sx. The result follows since Sx is a noetherian ring.

Concerning A , again taking stalks, one can use the arguments of [GKM93, 16.7] (since
X is non-singular, OX,x has �nite homological dimension, which allows to generalize the
proof).
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The inclusion C+(T ) → C(T ) induces a functor D+,qc,fg(T ) → Dqc,fg(T ). If n ∈ Z and
M is a T -dg-module, we denote by τ≥nM the T -dg-module given by

· · · → 0 →Mn/Im(dn−1) →Mn+1 → · · ·
Observe that this is meaningful because T is concentrated in non-positive degrees.
Lemma 2.2.3. The natural functor D+,qc,fg(T ) → Dqc,fg(T ) is an equivalence of cate-
gories.

Proof. We only have to prove that for every T -dg-module N whose cohomology is locally
�nitely generated, there exists a bounded below T -dg-module N ′ and a quasi-isomorphism
N qis−→ N ′. Now the cohomology of N is bounded. If H i(N ) = 0 for i < n, we may take
N ′ = τ≥nN .

Remark 2.2.4. We cannot use such an argument for S, and we do not know if the natural
functor D+,qc,fg(S) → Dqc,fg(S) is an equivalence4.

Combining Lemmas 2.2.2 and 2.2.3, one obtains an equivalence of categories

D+,qc,fg(X,S) ∼= Dqc,fg(X, T ). (2.2.5)

Now we give a geometric interpretation of this equivalence.

2.3 Linear Koszul Duality
We consider the following situation: E is a vector bundle over X (of �nite rank), and
F ⊂ E is a sub-bundle. We denote by p : E → X the natural projection. Let E and F
be the sheaves of sections of E and F (these are locally free OX -modules of �nite rank).
Let E∗ be the vector bundle dual to E, let F⊥ ⊂ E∗ be the orthogonal of F (a sub-bundle
of E∗), and let q : E∗ → X be the projection. We de�ne an action of Gm on E and F ,
letting t ∈ k× act by multiplication by t2 on the �bers. This induces an action on E∗

and F⊥, where t ∈ k× acts by multiplication by t−2 on the �bers. Now, until the end of
this section, we denote by S and T the following Gm-equivariant dg-algebras with trivial
di�erentials:

S := SOX
(F∨) with F∨ in bidegree (2,−2)

T := ΛOX
(F) with F in bidegree (−1, 2).

Then, �rst, bigraded analogues of the previous constructions (see in particular (2.2.5))
yield an equivalence of categories

D+,qc,fg
Gm

(X,S) ∼= Dqc,fg
Gm

(X, T ), (2.3.1)

where D+
Gm

(X,S) is the localization with respect to quasi-isomorphisms of the homotopy
category of the category C+

Gm
(X,S) of Gm-equivariant S-dg-modules which are bounded

below for the cohomological degree (uniformly in the internal degree), and D+,qc,fg
Gm

(X,S),
Dqc,fg
Gm

(X, T ) are de�ned as in 2.2.
4One easily sees that this is the case if e.g. X = Spec(|).
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Lemma 2.3.2. There exists a natural equivalence of categories

DbCoh(E) ∼= Dqc,fg(X, SOX
(E∨)), (2.3.3)

where SOX
(E∨) is considered as a dg-algebra concentrated in degree 0, with trivial di�er-

ential.
Similarly, if SOX

(E∨) is regarded as a Gm-equivariant dg-algebra with trivial di�erential
and E∨ in bidegree (0,−2), there exists a natural equivalence of categories

DbCohGm(E) ∼= Dqc,fg
Gm

(X,SOX
(E∨)). (2.3.4)

Similar results hold for F , E∗, F⊥.

Proof. We only give the proof of (2.3.3), the proof of (2.3.4) being similar. We denote
by QCoh(X,SOX

(E∨)) the category of modules over the sheaf of algebras SOX
(E∨) which

are quasi-coherent over OX , and by Coh(X, SOX
(E∨)) the full subcategory of the category

QCoh(X, SOX
(E∨)) whose objects are locally �nitely generated over SOX

(E∨). As p is
an a�ne morphism, the direct image functor p∗ induces equivalences of categories (see
[Gro61a, 1.4.3]):

QCoh(E) ∼−→ QCoh(X,SOX
(E∨)),

Coh(E) ∼−→ Coh(X,SOX
(E∨)).

(2.3.5)

Using arguments similar to those of [Bor87, VI.2.11], DbCoh(X,SOX
(E∨)) identi�es with

the full subcategory of DbQCoh(X, SOX
(E∨)) whose objects have their cohomology sheaves

in Coh(X, SOX
(E∨)). Now, a theorem of Bernstein (see [Bor87, VI.2.10]) ensures that

DbQCoh(X,SOX
(E∨)) is equivalent to the full subcategory of DbMod(X, SOX

(E∨)) (the
bounded derived category of the category of all sheaves of SOX

(E∨)-modules) whose ob-
jects have quasi-coherent cohomology. Combined with (2.3.5), this gives that DbCoh(E)
is equivalent to the full subcategory of DbMod(X, SOX

(E∨)) whose objects have their co-
homology in Coh(X, SOX

(E∨)). Finally, using truncation functors, this latter subcategory
identi�es with the category Dqc,fg(X, SOX

(E∨)), where SOX
(E∨) is considered as a dg-

algebra concentrated in degree 0, with trivial di�erential.

Recall that we have de�ned above, before (2.3.1), the bigraded dg-algebra S. Let us
also introduce the following Gm-dg-algebra with trivial di�erential:

R := SOX
(F∨) with F∨ in bidegree (0,−2).

We have equivalences of categories (�regrading�):

ξ : CGm(X,S) ∼−→ CGm(X,R), ξ : DGm(X,S) ∼−→ DGm(X,R)

sending the S-dg-module M to the R-dg-module de�ned by ξ(M)i
j := M i−j

j (with the
same action of SOX

(F∨), and the same di�erential). The composition of the inclusion
D+,qc,fg
Gm

(X,S) → Dqc,fg
Gm

(X,S) and of ξ gives a functor D+,qc,fg
Gm

(X,S) → Dqc,fg
Gm

(X,R).
Hence, using the analogue for F of equivalence 2.3.4, we obtain a functor

D+,qc,fg
Gm

(X,S) → DbCohGm(F ). (2.3.6)
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For this reason, we consider the categoryD+,qc,fg
Gm

(X,S) as a �graded version� of the category
DbCoh(F ), and denote it

DGCohgr(F ) := D+,qc,fg
Gm

(X,S). (2.3.7)

Note that there exists a natural forgetful functor

For : DGCohgr(F ) → DbCoh(F ), (2.3.8)

the composition of (2.3.6) with the forgetful functor from DbCohGm(F ) to DbCoh(F ) or,
equivalently, the composition

D+,qc,fg
Gm

(X,S) → Dqc,fg
Gm

(X,S) ∼= Dqc,fg
Gm

(X,R) → Dqc,fg(X,R) ∼= DbCoh(F )

(the last equivalence is (2.3.3) applied to F ).
Now, consider the dg-scheme F⊥ R∩E∗ X. As a module over q∗OE∗ ∼= SOX

(E), q∗OF⊥

is isomorphic to the quotient SOX
(E)/(F · SOX

(E)). Hence it has a Koszul resolution

SOX
(E)⊗OX

ΛOX
(F)

qis−→ SOX
(E)/(F · SOX

(E)),

where the generators of ΛOX
(F) are in degree −1. Using Remark 1.8.6, we deduce an

equivalence of categories

DGCoh(F⊥ R∩E∗ X) ∼= Dqc,fg(X, T ).

We are also interested in the �graded version�

DGCohgr(F⊥ R∩E∗ X) := Dqc,fg
Gm

(X, T ). (2.3.9)

By de�nition we have a natural forgetful functor

For : DGCohgr(F⊥ R∩E∗ X) → DGCoh(F⊥ R∩E∗ X). (2.3.10)

Finally, with notations (2.3.7) and (2.3.9), equivalence (2.3.1) gives the following result:
Theorem 2.3.11. There exists an equivalence of categories, called linear Koszul duality,

DGCohgr(F ) ∼= DGCohgr(F⊥ R∩E∗ X).

Remark 2.3.12. Finally we have the following diagram:

DGCohgr(F ) oo ∼
2.3.11

//

(2.3.8) For

²²

DGCohgr(F⊥ R∩E∗ X)

(2.3.10)For
²²

DbCoh(F ) DGCoh(F⊥ R∩E∗ X).

In sections 8 and 9 we will use this �correspondence�, in the case X = (G/B)(1), E =
(g∗ ×G/B)(1), F = Ñ (1) (see 3.1 for the notation), to relate certain simple restricted Ug-
modules to certain indecomposable projective modules (see the discussion after Proposition
3.3.14 for details).
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2.4 Linear Koszul duality and base change
Let X and Y be two non-singular varieties, and π : X → Y a �at and proper morphism
between them. Let E be a vector bundle over Y , and F ⊂ E a sub-bundle. Let E and F be
their respective sheaves of sections. We will also consider the vector bundles EX := E×Y X
and FX := F ×Y X over X. Their sheaves of sections are respectively π∗E and π∗F (see
[Gro61a, 1.7.11]). We denote by πF : FX → F the morphism induced by π. We consider
the following Gm-equivariant dg-algebras with trivial di�erential:

SY := SOY
(F∨), SX := SOX

(π∗F∨), with F∨ in bidegree (2,−2);
RY := SOY

(F∨), RX := SOX
(π∗F∨), with F∨ in bidegree (0,−2);

TY := ΛOY
(F), TX := ΛOX

(π∗F), with F in bidegree (−1, 2).

In this situation we have two Koszul dualities (see 2.3.11):

κY : DGCohgr(F ) ∼−→ DGCohgr(F⊥ R∩E∗ Y ),

κX : DGCohgr(FX) ∼−→ DGCohgr(F⊥
X

R∩E∗X X).

In this subsection we construct functors �tting in the following diagram:

DGCohgr(FX)
R(π̃Gm )∗ //

κXo
²²

DGCohgr(F )
L(π̃Gm )∗

oo

κYo
²²

DGCohgr(F⊥
X

R∩E∗X X)
R(π̂Gm )∗ //

DGCohgr(F⊥ R∩E∗ Y ),
L(π̂Gm )∗

oo

and prove some compatibility results.
First, consider the categories on the right hand side of equivalences κY , κX . Recall

that, by de�nition,

DGCohgr(F⊥ R∩E∗ Y ) ∼= Dqc,fg
Gm

(Y, TY ), (2.4.1)

DGCohgr(F⊥
X

R∩E∗X X) ∼= Dqc,fg
Gm

(X, TX). (2.4.2)
The morphism π induces a morphism of Gm-equivariant dg-ringed spaces

π̂ : (X, TX) → (Y, TY ).

In subsection 1.7 we have constructed functors
R(π̂Gm)∗ : DGm(X, TX) → DGm(Y, TY ),
L(π̂Gm)∗ : DGm(Y, TY ) → DGm(X, TX).

As π∗(TY ) ∼= TX , π̂∗ identi�es with π∗, and similarly for the Gm-analogues, i.e. the
following diagram is commutative, where the vertical arrows are the forgetful functors:

CGm(Y, TY )

For
²²

(π̂Gm )∗ // CGm(X, TX)

For
²²

CGm(Y,OY )
(πGm )∗ // CGm(X,OX).
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As (πGm)∗ is exact (because π is �at), (π̂Gm)∗ also is, and the corresponding diagram
of derived categories and derived functors is also commutative. As ΛOY

(F) is a locally
�nitely generated module over OY , a ΛOY

(F)-module is locally �nitely generated if and
only if it is locally �nitely generated over OY . The same is true for ΛOX

(π∗F). We deduce
that L(π̂Gm)∗ restricts to a functor from DGCohgr(F⊥ R∩E∗ Y ) to DGCohgr(F⊥

X

R∩E∗X X),
via equivalences (2.4.1) and (2.4.2). Similarly, the functor L(π̂)∗ restricts to a functor
DGCoh(F⊥ R∩E∗ Y ) → DGCoh(F⊥

X

R∩E∗X X), and the following diagram is commutative:

DGCohgr(F⊥ R∩E∗ Y )

For

²²

L(π̂Gm )∗ // DGCohgr(F⊥
X

R∩E∗X X)

For
²²

DGCoh(F⊥ R∩E∗ Y )
L(π̂)∗ // DGCoh(F⊥

X

R∩E∗X X).

We have seen in 1.7 that the following diagram is commutative:

DGm(X, TX)

For
²²

R(π̂Gm )∗ // DGm(Y, TY )

For
²²

D(X, TX)

For
²²

R(π̂)∗ // D(Y, TY )

For
²²

D(X,OX)
Rπ∗ // D(Y,OY ).

As π is proper, we deduce as above that the functors R(π̂)∗ and R(π̂Gm)∗ restrict to
functors between the full subcategories whose objects have quasi-coherent, locally �nitely
generated cohomology (use [Har66, II.2.2]). Moreover, the following diagram commutes
(using equivalences (2.4.1) and (2.4.2)):

DGCohgr(F⊥
X

R∩E∗X X)

For
²²

R(π̂Gm )∗ // DGCohgr(F⊥ R∩E∗ Y )

For

²²

DGCoh(F⊥
X

R∩E∗X X)
R(π̂)∗ // DGCoh(F⊥ R∩E∗ Y ).

As a step towards the categories DGCohgr(F ) and DGCohgr(FX), we now study the
categories Dqc,fg

Gm
(X,SX) and Dqc,fg

Gm
(Y,SY ). The morphism π induces a morphism of Gm-

equivariant dg-ringed spaces
π̃ : (X,SX) → (Y,SY ).

The Gm-equivariant dg-algebras SX and SY are not non-positively graded. But we have
seen in Remark 1.7.9 that the following derived functors are well de�ned:

R(π̃Gm)∗ : DGm(X,SX) → DGm(Y,SY ),
L(π̃Gm)∗ : DGm(Y,SY ) → DGm(X,SX).
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As above, we will show that these functors restrict to functors between the full subcategories
whose objects have quasi-coherent, locally �nitely generated cohomology, and that the
natural diagrams commute.

As π∗SY
∼= SX , the functor (π̃Gm)∗ is exact, and corresponds to π∗ : D(Y,OY ) →

D(X,OX) under the forgetful functor. Hence it restricts to a functor Dqc,fg
Gm

(Y,SY ) →
Dqc,fg
Gm

(X,SX). Moreover, the following diagram is clearly commutative (see (2.3.4) for the
second vertical arrows):

Dqc,fg
Gm

(Y,SY )
L(π̃Gm )∗ //

ξY o
²²

Dqc,fg
Gm

(X,SX)

ξXo
²²

Dqc,fg
Gm

(Y,RY )
OO
o

²²

Dqc,fg
Gm

(X,RX)
OO
o

²²
DbCohGm(F )

For
²²

DbCohGm(FX)

For
²²

DbCoh(F )
L(πF )∗ // DbCoh(FX).

(2.4.3)

Now, consider the functor R(π̃Gm)∗. If F is in the category Dqc,fg
Gm

(X,SX), then ξX(F)
is in Dqc,fg

Gm
(X,RX), and For ◦ ξX(F) in Dqc,fg(X,RX) ∼= DbCoh(FX) (this equivalence is

an analogue of (2.3.3)). Hence, as πF is proper, R(πF )∗ ◦For◦ ξX(F) is in DbCoh(F ). But
this object coincides by construction with the object For ◦ ξY ◦ R(π̃Gm)∗F of D(Y,RY ).
Hence R(π̃Gm)∗F belongs to the subcategory Dqc,fg

Gm
(Y,SY ) of DGm(Y,SY ). This proves

that R(π̃Gm)∗ restricts to a functor between Dqc,fg
Gm

(X,SX) and Dqc,fg
Gm

(Y,SY ), and also that
the analogue of diagram (2.4.3) for R(π̃Gm)∗ and R(πF )∗ commutes.

Now we extend these results to the categories of bounded below Gm-dg-modules.

Lemma 2.4.4. The functors

(π̃+
Gm

)∗ : C+
Gm

(X,SX) → C+
Gm

(Y,SY ),

(π̃+
Gm

)∗ : C+
Gm

(Y,SY ) → C+
Gm

(X,SX)

admit a right, respectively left, derived functor. Moreover the following diagrams are com-
mutative:

D+
Gm

(X,SX)

²²

R(π̃+
Gm )∗

// D+
Gm

(Y,SY )

²²
DGm(X,SX)

R(π̃Gm )∗ // DGm(Y,SY ),
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D+
Gm

(Y,SY )

²²

L(π̃+
Gm )∗

// D+
Gm

(X,SX)

²²
DGm(Y,SY )

L(π̃Gm )∗ // DGm(X,SX).

Proof. The case of the inverse image functor is easy, and left to the reader (use the fact
that π∗ is exact). Consider the direct image functor (π̃+

Gm
)∗. We have to show that

this functor admits a right derived functor in the sense of Deligne ([Del73, 1.2]). But each
objectM∈ C+

Gm
(SOX

(π∗F∨)) admits a right resolution I ∈ C+
Gm

(SOX
(π∗F∨)) all of whose

components Ii
j are �abby (as sheaves on X). Indeed, consider for each i the Godement

resolution (see [God64, II.4.3]) of the component
⊕

j Mi
j . This de�nes a (Gm-equivariant)

double complex with a (Gm-equivariant) action of SOX
(π∗F∨), all of whose components

are �abby; taking the associated total complex gives the desired resolution. This dg-module
I is (π̃+

Gm
)∗-split on the right, hence the right derived functor is de�ned at M.

By construction the following diagram is commutative, where For is the forgetful func-
tor:

D+
Gm

(X,SX)
R(π̃+

Gm )∗
//

For

²²

D+
Gm

(Y,SY )

For

²²
DGm(X,OX)

Rπ∗ // DGm(Y,OY ).

The commutativity of the diagram in the lemma follows (using Corollary 1.7.6).

Using the results preceding this lemma, we deduce:

Corollary 2.4.5. The functors R(π̃+
Gm

)∗ and L(π̃+
Gm

)∗ restrict to the subcategories whose
objects have quasi-coherent, locally �nitely generated cohomology. Moreover, recalling def-
initions (2.3.7), (2.3.8), the following diagrams commute:

DGCohgr(FX)

For
²²

R(π̃+
Gm )∗

// DGCohgr(F )

For
²²

DbCoh(FX)
R(πF )∗ // DbCoh(F ),

and

DGCohgr(F )

For
²²

L(π̃+
Gm )∗

// DGCohgr(FX)

For
²²

DbCoh(F )
L(πF )∗ // DbCoh(FX).

Because of these results, we will not write the superscript �+� on the functors associated
to π̃ anymore. Now we study the compatibility of our functors.
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Proposition 2.4.6. Consider the following diagram:

DGCohgr(FX)
R(π̃Gm )∗ //

κXo
²²

DGCohgr(F )
L(π̃Gm )∗

oo

κYo
²²

DGCohgr(F⊥
X

R∩E∗X X)
R(π̂Gm )∗ //

DGCohgr(F⊥ R∩E∗ Y ).
L(π̂Gm )∗

oo

We have isomorphisms of functors
{

R(π̂Gm)∗ ◦ κX
∼= κY ◦R(π̃Gm)∗,

L(π̂Gm)∗ ◦ κY
∼= κX ◦ L(π̃Gm)∗.

Proof. The second isomorphism is easy, and left to the reader. The �rst one can be
proved just like [Har66, II.5.6]. More precisely, let M be an object of DGCohgr(FX), with
�abby components. Then κY ◦ R(π̃Gm)∗(M) ∼= T ∨Y ⊗OY

π∗M. Next, by the projection
formula (see e.g. [Har77, ex. II.5.1]), (TY )∨ ⊗OY

π∗M ∼= π∗(T ∨X ⊗OX
M). Finally, as

Rπ∗ = For◦R(π̂Gm)∗, one has a natural morphism π∗(T ∨X⊗OX
M) → R(π̂Gm)∗(T ∨X⊗OX

M).
This de�nes a morphism of functors κY ◦R(π̃Gm)∗ → R(π̂Gm)∗ ◦κX . To show that it is an
isomorphism, as the question is local over Y , we can assume F is free. Then the result is
clear.

2.5 Linear Koszul duality and sub-bundles
Now we consider the following situation: F1 ⊂ F2 ⊂ E are �ber bundles over the non-
singular variety X. Let F1 and F2 be the sheaves of sections of F1, F2. We de�ne as above
the Gm-equivariant dg-algebras with trivial di�erential:

S1 := SOX
(F∨1 ), S2 := SOX

(F∨2 ), with F∨i in bidegree (2,−2),
R1 := SOX

(F∨1 ), R2 := SOX
(F∨2 ), with F∨i in bidegree (0,−2),

T1 := ΛOX
(F1), T2 := ΛOX

(F2), with Fi in bidegree (−1, 2).

We have two Koszul dualities (see Theorem 2.3.11)

κ1 : DGCohgr(F1)
∼−→ DGCohgr(F⊥

1

R∩E∗ X),
κ2 : DGCohgr(F2)

∼−→ DGCohgr(F⊥
2

R∩E∗ X).

The inclusion f : F1 → F2 induces an injection F1 ↪→ F2, and a surjection F∨2 ³ F∨1 . Let
g : (X, T2) → (X, T1)

be the natural morphism of Gm-equivariant dg-ringed spaces. Our goal and strategy are
the same as in 2.4.

Let us �rst consider the categories DGCohgr(F⊥
i

R∩E∗ X). We have functors

R(gGm)∗ : DGm(X, T2) → DGm(X, T1),
L(gGm)∗ : DGm(X, T1) → DGm(X, T2).
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The functor R(gGm)∗ is the �restriction of scalars� functor, and L(gGm)∗ is the functor
M 7→ ΛOX

(F2)⊗ΛOX
(F1)M. Both are induced by exact functors on the abelian categories.

It is clear that they preserve the conditions �qc, fg�, and induce (see (2.3.9)) functors
between the categories DGCohgr(F⊥

1

R∩E∗ X) and DGCohgr(F⊥
2

R∩E∗ X), and similarly for
the non Gm-equivariant versions. Moreover, the following diagrams commute:

DGCohgr(F⊥
2

R∩E∗ X)

For
²²

R(gGm )∗ // DGCohgr(F⊥
1

R∩E∗ X)

For
²²

DGCoh(F⊥
2

R∩E∗ X)
Rg∗ // DGCoh(F⊥

1

R∩E∗ X),

DGCohgr(F⊥
1

R∩E∗ X)

For
²²

L(gGm )∗ // DGCohgr(F⊥
2

R∩E∗ X)

For
²²

DGCoh(F⊥
1

R∩E∗ X)
Lg∗ // DGCoh(F⊥

2

R∩E∗ X).

Now, as a step towards the categories DGCohgr(Fi), let us consider the categories
Dqc,fg
Gm

(X,Si) (i = 1, 2). We have a morphism of Gm-equivariant dg-ringed spaces

f̃ : (X,S1) → (X,S2)

and functors R(f̃Gm)∗ and L(f̃Gm)∗ (see again Remark 1.7.9). The functor R(f̃Gm)∗ is
again the restriction of scalars. As S2 → S1 is surjective, it restricts to the subcategories
whose objects have quasi-coherent, locally �nitely generated cohomology. Moreover, the
following diagram, analogous to (2.4.3), is commutative:

Dqc,fg
Gm

(X,S1)
R(f̃Gm )∗ //

oξ1
²²

Dqc,fg
Gm

(X,S2)

ξ2o
²²

Dqc,fg
Gm

(X,R1)
OO
o

²²

Dqc,fg
Gm

(X,S2)
OO
o

²²
DbCohGm(F1)

For
²²

DbCohGm(F2)

For
²²

DbCoh(F1)
Rf∗ // DbCoh(F2).

(2.5.1)

Consider the functor L(f̃Gm)∗. It is given by M 7→ S1
L⊗S2M. Arguments entirely similar

to the ones used for the functor R(π̃Gm)∗ in 2.4 show that L(f̃Gm)∗ induces a functor from
Dqc,fg
Gm

(X,S2) to Dqc,fg
Gm

(X,S1), and that the diagram analogous to (2.5.1) commutes.
Let us extend these considerations to the categories of bounded below Gm-dg-modules.
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Lemma 2.5.2. The functors

(f̃+
Gm

)∗ : C+
Gm

(X,S1) → C+
Gm

(X,S2),

(f̃+
Gm

)∗ : C+
Gm

(X,S2) → C+
Gm

(X,S1)

admit a right, respectively left, derived functor. Moreover, the following diagrams are
commutative:

D+
Gm

(X,S1)
R(f̃+

Gm )∗
//

²²

D+
Gm

(X,S2)

²²
DGm(X,S1)

R(f̃Gm )∗ // DGm(X,S2),

D+
Gm

(X,S2)

²²

L(f̃+
Gm )∗

// D+
Gm

(X,S1)

²²
DGm(X,S2)

L(f̃Gm )∗ // DGm(X,S1).

Proof. The case of the direct image functor is easy, and left to the reader. We de�ne
F := F1 ⊕ F2, and denote by S the Gm-equivariant dg-algebra S := SOX

(F∨), with
trivial di�erential and F∨ in bidegree (2,−2). Recall that (f̃+

Gm
)∗ is the tensor product

M 7→ S1⊗S2M. In this tensor product S1 is considered as a S1-S2-bimodule. As everything
here is commutative, we can consider it as a module over S1⊗OX

S2
∼= S. Now the natural

morphism S → S1 is induced by the transpose of the diagonal embedding F1 ↪→ F1 ⊕F2.
Thus, if we denote by G the orthogonal of the image of F1 in this embedding, we have a
(bounded below) Koszul resolution

S ⊗OX
ΛOX

(G)
qis−→ S1.

The �rst dg-module is K-�at over S, which is itself K-�at over S2. Hence it is also K-
�at over S2. Thus the tensor product with this dg-module de�nes a functor L(f̃+

Gm
)∗ :

D+
Gm

(X,S2) → D+
Gm

(X,S1). With this description, the commutativity of the corresponding
diagram is obvious.

Exactly as for Corollary 2.4.5, we deduce:

Corollary 2.5.3. The functors R(f̃+
Gm

)∗ and L(f̃+
Gm

)∗ restrict to the subcategories whose
objects have quasi-coherent, locally �nitely generated cohomology. Moreover, the following
diagrams are commutative:

DGCohgr(F1)

For
²²

R(f̃+
Gm )∗

// DGCohgr(F2)

For
²²

DbCoh(F1)
Rf∗ // DbCoh(F2)
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and

DGCohgr(F2)

For
²²

L(f̃+
Gm )∗

// DGCohgr(F1)

For
²²

DbCoh(F2)
Lf∗ // DbCoh(F1).

As above, because of these results we will not write the superscript �+� on the functors
associated to f anymore. Now we study the compatibility of these functors. Before that,
let us make some remarks. From now on we assume that F1 and F2 are of constant rank,
denoted by n1 and n2. We de�ne Li := Λni

OX
(Fi) for i = 1, 2. These are line bundles on

X. One has isomorphisms ψi : Ti → T ∨i ⊗OX
Li[ni], induced by the morphisms

{
Λj
OX

(Fi)⊗OX
Λni−j
OX

(Fi) → Li

t⊗ u 7→ (−1)j(j+1)/2t ∧ u.

Under this isomorphism the action of Ti on itself by left multiplication corresponds to the
action on the dual de�ned as in 2.1, i.e. we have ψi(st)(u) = (−1)deg(s)(deg(s)+1)/2ψi(t)(su).
We denote by 〈1〉 the shift in the Gm-grading de�ned by (M〈1〉)n = Mn−1, and by 〈j〉
its j-th power. This functor corresponds to the tensor product with the one-dimensional
Gm-module corresponding to IdGm . Taking the Gm-structure into account, ψi becomes an
isomorphism Ti

∼= T ∨i ⊗OX
Li[ni]〈2ni〉.

Proposition 2.5.4. Consider the diagram

DGCohgr(F1)
R(f̃Gm )∗ //

κ1o
²²

DGCohgr(F2)
L(f̃Gm )∗

oo

κ2o
²²

DGCohgr(F⊥
1

R∩E∗ X)
L(gGm )∗ //

DGCohgr(F⊥
2

R∩E∗ X).
R(gGm )∗

oo

We have isomorphisms of functors
{

κ1 ◦ L(f̃Gm)∗ ∼= R(gGm)∗ ◦ κ2,

κ2 ◦R(f̃Gm)∗ ∼= (L(gGm)∗ ◦ κ1)⊗OX
L1 ⊗OX

L−1
2 [n1 − n2]〈2n1 − 2n2〉.

Proof. Let us begin with the �rst isomorphism. More precisely, we will construct an
isomorphism of functors L(f̃Gm)∗ ◦ (κ2)−1 ∼= (κ1)−1 ◦ R(gGm)∗. Recall the notation F :=
F1 ⊕ F2, S := SOX

(F∨) and G introduced in the proof of Lemma 2.5.2. Let N be an
object of DGCohgr(F⊥

2

R∩E∗ X), which can be assumed to be bounded below (see Lemma
2.2.3). Then (κ1)−1 ◦R(gGm)∗(N ) ∼= S1⊗OX

N , where N is considered as a T1-dg-module.
On the other hand,

L(f̃Gm)∗ ◦ (κ2)−1(N ) ∼= L(f̃Gm)∗(S2 ⊗OX
N )

∼= (S ⊗OX
Λ(G))⊗S2 (S2 ⊗OX

N )
∼= (S ⊗OX

Λ(G))⊗OX
N .
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Hence there is a natural morphism of functors
L(f̃Gm)∗ ◦ (κ2)−1 → (κ1)−1 ◦R(g̃Gm)∗,

induced by the morphism S ⊗OX
Λ(G) → S1. We want to prove that it is an isomorphism.

Using the exact sequence of dg-modules
0 → Im(dN ) → N → N/Im(dN ) → 0

we can assume, in addition to the fact that N is bounded below, that its di�erential is triv-
ial (the dg-modules Im(dN ) and N/Im(dN ) may not have quasi-coherent, locally �nitely
generated cohomology, but from now on in this proof we will not need any assumption on
the cohomology of the dg-module).

Set P := S ⊗OX
Λ(G). It is a K-�at OX -dg-module, as well as S1, and P → S1 is a

quasi-isomorphism. We want to prove that the morphism P ⊗OX
N → S1 ⊗OX

N is a
quasi-isomorphism, too. The di�erential on P ⊗OX

N , respectively on S1 ⊗OX
N , is the

sum of the di�erential of P, respectively of S1, and the Koszul di�erential dkoszul (recall
that the di�erential of S1 is trivial). We consider P ⊗OX

N as the total complex of the
double complex whose (p, q)-term is Pq+2p ⊗OX

N−p, with �rst di�erential dkoszul, and
second di�erential dP ⊗ Id. The �rst grading of this double complex is bounded above
(because N is bounded below), hence the associated �rst spectral sequence converges (see
[God64]). The same is true for S1⊗OX

N (in this case the second di�erential of the double
complex is trivial). Hence we can forget the Koszul di�erential in these two complexes.
Then the result follows from Lemma 1.3.6. This �nishes the proof of the �rst isomorphism.

Let us now prove the second isomorphism. Let M be an object of DGCohgr(F1).
We have κ2 ◦ R(f̃Gm)∗(M) ∼= T ∨2 ⊗OX

M (in the right hand side, M is considered as a
S2-dg-module). Using the remarks before the statement of the proposition, one has an
isomorphism of T2-dg-modules

T ∨2 ⊗OX
M∼= (T2 ⊗OX

M)⊗OX
L−1

2 [−n2]〈−2n2〉.
On the other hand, we have L(gGm)∗ ◦ κ1(M) ∼= T2 ⊗T1 (T ∨1 ⊗OX

M), which, using the
same remarks, is isomorphic to the dg-module T2 ⊗OX

M ⊗OX
L−1

1 [−n1]〈−2n1〉. This
concludes the proof (one easily veri�es that the di�erentials and the T2-module structures
are compatible).

3 Localization for restricted g-modules
In this section we prove localization theorems for restricted Ug-modules (see in particular
Theorem 3.3.3).

3.1 Introduction
We use the same notation as in I.1.1. In particular, k is an algebraically closed �eld of
characteristic p. In the rest of this chapter we assume that

p > h.
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We denote by
C0 := {λ ∈ X | ∀α ∈ R+, 0 < 〈λ + ρ, α∨〉 < p}

the set of integral weights in the fundamental alcove (which contains 0).
We will apply the results of section 2 on linear Koszul duality in the following situation.

The base scheme X will be B(1), the Frobenius twist of the �ag variety of G (see e.g.
[BMR08, 1.1.1] for Frobenius twists). The vector bundle will be E = (g∗ × B)(1), and the
sub-bundle will be Ñ (1) ⊂ (g∗ × B)(1). Let TB(1) denote the tangent bundle to B(1). Its
dual T ∨B(1) is the sheaf of sections of the vector bundle Ñ (1) over B(1).

Under our hypothesis p > h, there exists a G-equivariant isomorphism g∗ ∼= g, which
induces an isomorphism E ∼= E∗. Under this isomorphism, (Ñ (1))⊥ identi�es with g̃(1).
We thus obtain by Theorem 2.3.11 a Koszul duality

κB : DGCohgr(Ñ (1)) ∼−→ DGCohgr((g̃
R∩g∗×B B)(1)). (3.1.1)

This equivalence is given by the following formula, for M in DGCohgr(Ñ (1)):

κB(M) = (Λ(T ∨B(1)))∨ ⊗OB(1)
M.

We have an isomorphism Λtop(T ∨B(1)) ∼= OB(1)(−2ρ). Hence, with the notation before Propo-
sition 2.5.4 we have

(Λ(T ∨B(1)))∨ ∼= Λ(T ∨B(1))⊗OB(1)(2ρ)[−N ]〈−2N〉,

where N = rk(T ∨B(1)) = #R+. It follows that for M in DGCohgr(Ñ (1)) we have

κB(M) = Λ(T ∨B(1))⊗M⊗OB(1)(2ρ)[−N ]〈−2N〉. (3.1.2)

In section 2 (see e.g. equation (2.3.9)) we have used the realization

DGCoh((g̃
R∩g∗×B B)(1)) ∼= Dqc,fg(B(1), ΛOB(1)

(T ∨B(1))) (3.1.3)

where ΛOB(1)
(T ∨B(1)) is considered as a dg-algebra with trivial di�erential, and T ∨B(1) in degree

−1. Let i : g̃(1) ↪→ (g∗ × B)(1) and j : B(1) ↪→ (g∗ × B)(1) denote the closed embeddings.
The realization (3.1.3) was constructed using a resolution of i∗Oeg(1) over O(g∗×B)(1) . We
can obtain another realization using a resolution of j∗OB(1) over O(g∗×B)(1) , in particular
the Koszul resolution

O(g∗×B)(1) ⊗| Λ(g(1))
qis−→ j∗OB(1) .

Using Remark 1.8.6 we deduce:
Proposition 3.1.4. There exists an equivalence of triangulated categories

DGCoh((g̃
R∩g∗×B B)(1)) ∼= Dqc,fg(g̃(1), Oeg(1) ⊗| Λ(g(1)))

where Oeg(1) ⊗| Λ(g(1)) is a dg-algebra with the generators of Λ(g(1)) in degree −1, equipped
with a Koszul di�erential.

From now on we will mainly use this realization of DGCoh((g̃
R∩g∗×B B)(1)).
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3.2 An equivalence of derived categories
In this subsection we prove an equivalence of derived categories that will be needed later.
Recall the notations qc and fg introduced in subsection 2.2.

Let X be a variety, and let Y be a sheaf of dg-algebras on X which is non-positively
graded and quasi-coherent as an OX -module. We also consider the sheaf of algebras A =
Y0. We have the coinduction functor, de�ned in 1.2:

Coind :
{ C(X, OX) → C(X, Y)

F 7→ HomOX
(Y,F).

Let Z be a closed subscheme of X. We denote by Dqc
Z (X, Y) the full subcategory of

Dqc(X, Y) whose objects have their cohomology supported on Z (and similarly with qc
replaced by qc, fg).

Lemma 3.2.1. Let F be a Y-dg-module which is quasi-coherent, supported on Z, and
bounded below. There exists a K-injective Y-dg-module I, which is quasi-coherent and
supported on Z, and a quasi-isomorphism F qis−→ I.

Proof. Let us �rst consider F as a complex of OX -modules. There exists a complex J0

of injective OX -modules, bounded below with the same bound as F and an injection of
complexes of OX -modules F ↪→ J0 such that for any n ∈ Z, J n

0 is quasi-coherent and
supported on Z (see [Har66, II.7.18 and its proof]). By adjunction, this morphism induces
an injection of Y-dg-modules

F ↪→ Coind(F) ↪→ I0 := Coind(J0).

Moreover, I0 is still bounded below with the same bound as F , and its components are
quasi-coherent and supported on Z. The OX -dg-module J0 is K-injective (as a bounded
below complex of injective OX -modules). Hence, by adjunction again, the Y-dg-module
I0 is K-injective.

Applying the same arguments to the cokernel of the morphism F ↪→ I0, and repeating,
we obtain an exact sequence of Y-dg-modules

F ↪→ I0 → I1 → I2 → · · ·
where each Ij is K-injective, bounded below with a uniform bound, and its components
are quasi-coherent and supported on Z. Now, as in the proof of Lemma 1.3.7, one proves
that the natural morphism

F → I := Tot⊕(· · · 0 → I0 → I1 → · · · )
is a quasi-isomorphism, and that I is a K-injective Y-dg-module.

Lemma 3.2.2. Let F be an object of Dqc
Z (X, Y), whose cohomology is bounded. There

exists a K-injective Y-dg-module G, which is quasi-coherent over OX and supported on Z,
and a quasi-isomorphism F qis−→ G.
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Proof. Let us introduce a notation, to be used only in this proof. If F is a Y-dg-module
with bounded cohomology, we de�ne

l(F) := max{i ∈ Z | H i(F) 6= 0} −min{i ∈ Z | H i(F) 6= 0}

if H(F) 6= 0, and l(F) = −1 otherwise. We prove the lemma by induction on l(F).
If l(F) = −1, the result is obvious. Now let n ≥ 0, and assume the result is true

for any dg-module G with l(G) < n. Let F be a Y-dg-module with l(F) = n. Let j be
the lowest integer such that Hj(F) 6= 0. Using a truncation functor, we can assume that
Fk = 0 for k < j. Then ker(dj

F ) = Hj(F) is, by assumption, quasi-coherent and supported
on Z. Let K denote the complex concentrated in degree j, with Kj = ker(dj

F ). Then K
is a sub-Y-dg-module of F . By Lemma 3.2.1, there exists a K-injective Y-dg-module I1,
quasi-coherent and supported on Z, and a quasi-isomorphism i1 : K qis−→ I1. Let G be the
cokernel of the injection K ↪→ F . Then l(G) < l(F). Hence, by induction, there exists a
K-injective Y-dg-module I2, quasi-coherent and supported on Z, and a quasi-isomorphism
i2 : G qis−→ I2.

There exists a natural morphism G[−1] → K in D(X,Y), hence also a morphism
I2[−1] → I1 (since I2, resp. I1, is isomorphic to G, resp. K, in D(X,Y)). By K-injectivity
(see De�nition 1.3.1), one can represent this morphism by an actual morphism of Y-dg-
modules f : I2[−1] → I1 (unique up to homotopy). Let I3 be the cone of f . Then I3

is K-injective, quasi-coherent and supported on Z. We claim that there exists a quasi-
isomorphism F qis−→ I3. Indeed, in D(X, Y) we have the following diagram, where the lines
are distinguished triangles:

G[−1]

i2[−1]
²²

// K //

i1
²²

F

²²Â
Â
Â

I2[−1] // I1
// I3.

The morphisms i2[−1] and i1 can be completed to a morphism of triangles, yielding a
morphism i3 : F → I3 in D(X, Y). By K-injectivity of I3, i3 can be realized as an actual
morphism of Y-dg-modules. Using the cohomology long exact sequence associated to a
distinguished triangle and the �ve-lemma, i3 is a quasi-isomorphism. This �nishes the
induction step, and the proof of the lemma.

From now on we assume in addition:

Y is coherent as an OX -module.

In particular, as A is coherent over OX , an A-module quasi-coherent over OX is locally
�nitely generated over A if and only if it is coherent over OX . The same applies for A
replaced by H(Y), the cohomology of Y.
Lemma 3.2.3. Every Y-dg-module F which is bounded, quasi-coherent over OX , and
whose cohomology is coherent over OX is the inductive limit of coherent sub-Y-dg-modules
which are quasi-isomorphic to F under the inclusion map.
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Proof. Our proof is similar to that of [Bor87, VI.2.11.(a)]. First, F is the inductive limit
of coherent sub-dg-modules (this follows easily from the case of OX -modules), hence it is
su�cient to show that given a coherent sub-dg-module K of F , there exists a coherent
sub-dg-module G of F , containing K and quasi-isomorphic to F under the inclusion map.

This is proved by a simple (descending) induction. Let j ∈ Z, and assume that we
have found a subcomplex Gj of

⊕
i≥j F i, coherent over OX , containing

⊕
i≥j Ki, such that

Gj → F is a quasi-isomorphism in degrees greater than j and that Gj
j ∩ ker(dj

F ) → Hj(F)
is surjective, and stable under Y (i.e. if g ∈ Gi

j and y ∈ Yk, and if i + k ≥ j, then
y · g ∈ Gi+k

j ). Then we choose a sub-A-module N j−1 of F j−1 containing Kj−1, coherent
over OX , whose image under dj−1

F is Gj
j ∩ Im(dj−1

F ). Without altering these conditions,
we can add a coherent sub-module of cocycles so that the new sub-module N j−1 contains
representatives of all the elements of Hj−1(F). We can also assume that N j−1 contains
all the sections of the form y · g for y ∈ Y i and g ∈ Gk

j with i + k = j − 1. Then we de�ne
Gj−1 by

Gk
j−1 =

{ Gk
j if k ≥ j,

N j−1 if k = j − 1.

For j small enough, Gj is the desired sub-dg-module.

We denote by Cqc,fg
Z (X, Y) the category of Y-dg-modules which are coherent over OX

(this is equivalent to being quasi-coherent over OX and locally �nitely generated over
Y), and supported on Z. We denote by D(Cqc,fg

Z (X, Y)
)
the localization with respect to

quasi-isomorphisms of the homotopy category of Cqc,fg
Z (X, Y).

Proposition 3.2.4. The functor

ι : D(Cqc,fg
Z (X, Y)

) → Dqc,fg
Z (X, Y)

induced by the inclusion Cqc,fg
Z (X, Y) ↪→ C(X, Y) is an equivalence of categories.

Proof. This proof is again similar to the one in [Bor87, VI.2.11]. It follows easily from
Lemmas 3.2.2 and 3.2.3, using truncation functors, that ι is essentially surjective.

Now, let us prove that it is full. Let F and G be objects of Cqc,fg
Z (X, Y). In particular,

F and G are bounded. A morphism φ : ι(F) → ι(G) in Dqc,fg
Z (X, Y) is represented by a

diagram
ι(F) α−→ N β←− ι(G)

where β is a quasi-isomorphism. Using Lemma 3.2.2 and truncation functors, one can
assume that N is bounded, quasi-coherent, and supported on Z. By Lemma 3.2.3, there
exists a coherent sub-dg-module N ′ of N (supported on Z), containing α(F) and β(G),
and quasi-isomorphic to N under the inclusion map. Then φ is represented by

ι(F) α−→ N ′ β←− ι(G),

which is the image of a morphism in D(Cqc,fg
Z (X, Y)

)
. Hence ι is full.
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Finally we prove that ι is faithful. If a morphism f : F → G in Cqc,fg
Z (X, Y) is such that

ι(f) = 0, then there exists N in Dqc,fg
Z (X, Y), which can again be assumed to be bounded,

quasi-coherent and supported on Z, and a quasi-isomorphism of Y-dg-modules g : G → N
such that g◦f is homotopic to zero. This homotopy is given by a morphism h : F → N [−1].
By Lemma 3.2.3, there exists a coherent sub-dg-module N ′ of N containing g(G) and
h(F)[1], and quasi-isomorphic to N under the inclusion. Replacing N by N ′, this proves
that f = 0 in D(Cqc,fg

Z (X, Y)
)
. The proof of the proposition is complete.

3.3 Localization with a �xed Frobenius central character
Recall the notation and results of I.1.2. In [BMR08] and [BMR06] the authors give geo-
metric counterparts for the derived categories of Ug-modules with a generalized Frobenius
central character, and a �xed or generalized Harish-Chandra central character (see The-
orem I.1.2.1). The relation between the Koszul duality (3.1.1) and representation theory
is based on Theorem 3.3.3, which gives a geometric picture for the derived category of
Ug-modules with a generalized (integral, regular) Harish-Chandra central character and a
�xed trivial Frobenius central character.

Let us consider the derived intersection (g̃
R∩g∗×B B)(1). As seen in Proposition 3.1.4, we

have an equivalence of categories

DGCoh((g̃
R∩g∗×B B)(1)) ∼= Dqc,fg(g̃(1), Oeg(1) ⊗| Λ(g(1))). (3.3.1)

Let Kg denote the Koszul complex S(g(1)) ⊗| Λ(g(1)), which is quasi-isomorphic to
the trivial S(g(1))-module k0. Here S(g(1)) is in degree 0, and the generators of Λ(g(1))
are in degree −1. By Poincaré-Birkho�-Witt theorem, the enveloping algebra Ug is free
(hence �at) over ZFr

∼= S(g(1)). Hence, if we consider Ug as a sheaf of dg-algebras on
Spec(k), concentrated in degree 0, with trivial di�erential, there is a quasi-isomorphism of
dg-algebras

Ug⊗ZFr
Kg

∼−→ Ug⊗ZFr
k0,

and hence an equivalence of categories (see Proposition 1.5.6):

DMod((Ug)0) ∼= D(Spec(k), Ug⊗ZFr
Kg).

Restricting to the subcategories of objects with �nitely generated cohomology, we obtain
an equivalence:

DbModfg((Ug)0) ∼= Dfg(Spec(k), Ug⊗ZFr
Kg). (3.3.2)

Here we have used that, as (Ug)0 is noetherian, the functor

DbModfg((Ug)0) → Dfg(Spec(k), (Ug)0)

is an equivalence. In the rest of this subsection, we write Ug⊗| Λ(g(1)) for the dg-algebra
Ug⊗ZFr

Kg.
Then we have the following result, which completes Theorem I.1.2.1(i) for χ = 0:
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Theorem 3.3.3. Let λ ∈ X be regular. There exists an equivalence of triangulated cate-
gories

γ̂Bλ : DGCoh((g̃
R∩g∗×B B)(1)) ∼−→ DbModfg

λ ((Ug)0).

The proof of the theorem will occupy the rest of this subsection. We begin with several
lemmas.

First, we have seen in the remarks following Theorem I.1.2.1 that the projection
g̃(1)×h∗(1) h

∗ → g̃(1) induces an isomorphism between the formal neighborhood of B(1)×{λ}
and the formal neighborhood of B(1). We denote these formal neighborhoods by B̂(1). To
simplify notations, in this subsection we denote the variety g̃(1) ×h∗(1) h∗ by X. Then we
have:

Lemma 3.3.4. The natural functor

Dqc,fg(g̃(1), Oeg(1) ⊗| Λ(g(1))) → Dqc,fg

B(1)×{λ}(X, OX ⊗| Λ(g(1)))

is an equivalence of categories.

Proof. First, we observe that any object of Dqc,fg(g̃(1), Oeg(1)⊗|Λ(g(1))) has its cohomology
supported on B(1) (because H0(Oeg(1) ⊗| Λ(g(1))) = OB(1)). Hence, by Proposition 3.2.4,
the category Dqc,fg(g̃(1), Oeg(1) ⊗| Λ(g(1))) is equivalent to D(Cqc,fg

B(1) (g̃(1), Oeg(1) ⊗| Λ(g(1)))
)
.

Now, as the formal neighborhoods of B(1) in g̃(1) and of B(1)×{λ} in X are isomorphic,
the category Cqc,fg

B(1) (g̃(1), Oeg(1) ⊗| Λ(g(1))) is equivalent to Cqc,fg

B(1)×{λ}(X, OX ⊗| Λ(g(1))).
Finally, using Proposition 3.2.4 again, we obtain the result.

We can consider Ug as a sheaf of algebras either on the point Spec(k), or on Spec(Z) ∼=
g∗(1) ×h∗(1)/W h∗/(W, •). It follows easily from Proposition 3.2.4 that the category

Dqc,fg(g∗(1) ×h∗(1)/W h∗/(W, •), Ug⊗| Λ(g(1)))

is equivalent to Dfg(Spec(k), Ug⊗|Λ(g(1))). We denote this category simply by Dfg(Ug⊗|
Λ(g(1))). We also denote by Dfg

λ (Ug⊗| Λ(g(1))) the full subcategory of Dfg(Ug⊗| Λ(g(1)))
whose objects are the dg-modules M such that Ug acts on H(M) with generalized char-
acter (λ, 0). It also follows from Proposition 3.2.4 that this category is equivalent to the
localization of the homotopy category of �nitely generated Ug ⊗| Λ(g(1))-dg-modules on
which Ug acts with generalized character (λ, 0). We also use the same notation and results
for Ug instead of Ug⊗| Λ(g(1)).

The following result follows easily from these de�nitions, using [BMR08, 1.3.7].

Lemma 3.3.5. Equivalence (3.3.2) restricts to an equivalence of categories

DbModfg
λ ((Ug)0) ∼= Dfg

λ (Ug⊗| Λ(g(1))).
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Next, let us recall some results concerning dg-algebras. Let A be a dg-algebra (i.e. a
sheaf of dg-algebras on Spec(k)). We use the same notation as in section 1, except that we
omit �Spec(k)� in the notation for categories. An A-dg-module M is said to be K-projective
if for any acyclic A-dg-module N , the complex of vector spaces HomA(M, N) is acyclic.
By the results of [BL94, section 10], every A-dg-module has a left K-projective resolution.
As in subsection 1.4, we deduce:

Lemma 3.3.6. Any triangulated functor from C(A) to a triangulated category has a left
derived functor in the sense of Deligne, which can be computed by means of K-projective
resolutions.

Proof of Theorem 3.3.3. We will show that the equivalences constructed in [BMR08] are
�compatible with the tensor product with Kg�.

First step: Let us prove the following equivalence of categories:

Dqc,fg

B(1)×{λ}(X, OX ⊗| Λ(g(1))) ∼= Dqc,fg

B(1)×{λ}(X, D̃ ⊗| Λ(g(1))). (3.3.7)

It will follow from the results of [BMR08] coupled with Proposition 3.2.4, which allows us
to consider nice abelian categories rather than derived categories with conditions on the
cohomology.

As in [BMR08] we de�ne the functors

F :

{
Cqc,fg

B(1)×{λ}(X, OX ⊗| Λ(g(1))) → Cqc,fg

B(1)×{λ}(X, D̃ ⊗| Λ(g(1)))
F 7→ Mλ ⊗OdB(1)

F ,

G :

{
Cqc,fg

B(1)×{λ}(X, D̃ ⊗| Λ(g(1))) → Cqc,fg

B(1)×{λ}(X, OX ⊗| Λ(g(1)))
G 7→ Hom eD(Mλ,G)

.

These functors are exact. There are natural morphisms of functors F ◦ G → Id and
Id → G ◦ F . These functors and morphisms of functors coincide with the ones considered
in [BMR08, 5.1.1] under the forgetful functors

Cqc,fg

B(1)×{λ}(X, OX ⊗| Λ(g(1))) → Cqc,fg

B(1)×{λ}(X, OX) ∼= CbCohB(1)×{λ}(X)

Cqc,fg

B(1)×{λ}(X, D̃ ⊗| Λ(g(1))) → Cqc,fg

B(1)×{λ}(X, D̃) ∼= CbModc
(λ,0)(D̃).

Hence, by [BMR08, 5.1.1], the morphisms of functors F ◦ G → Id and Id → G ◦ F are
isomorphisms, and F and G are equivalences of categories. They induce equivalences of
the derived categories (3.3.7) (here we use Proposition 3.2.4).

Thus, combining (3.3.1), Lemma 3.3.4 and (3.3.7), we have obtained:

DGCoh((g̃
R∩g∗×B B)(1)) ∼= Dqc,fg

B(1)×{λ}(X, D̃ ⊗| Λ(g(1))). (3.3.8)

Second step: Now we construct an equivalence of categories

Dqc,fg

B(1)×{λ}(X, D̃ ⊗| Λ(g(1))) ∼= Dfg
λ (Ug⊗| Λ(g(1))). (3.3.9)
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By the projection formula ([Har77, II.Ex.5.1]), we have
Γ(D̃ ⊗| Λ(g(1))) ∼= Γ(D̃)⊗| Λ(g(1)) ∼= Ũ ⊗| Λ(g(1))

where Ũ := Ug⊗ZHC
S(h) (see [BMR08, 3.4.1] for the second isomorphism). The dg-algebra

Ũ ⊗| Λ(g(1)) contains Ug ⊗| Λ(g(1)) as a sub-dg-algebra. Hence (see 1.5) there exists a
functor

RΓ : D(X, D̃ ⊗| Λ(g(1))) → D(Spec(k), Ug⊗| Λ(g(1))).

Moreover, the following diagram is commutative (see Corollary 1.5.3):

D(X, D̃ ⊗| Λ(g(1)))
RΓ //

For
²²

D(Spec(k), Ug⊗| Λ(g(1)))

For

²²
D(X, D̃)

RΓ // D(Spec(k), Ug).

(3.3.10)

Recall the notation introduced before Lemma 3.3.5. By Proposition 3.2.4 again, the
functor DbModc

(λ,0)(D̃) → Dqc,fg

B(1)×{λ}(X, D̃) is an equivalence of categories. If F is an
object of the subcategory Dqc,fg

B(1)×{λ}(X, D̃⊗|Λ(g(1))), then For(F) is in Dqc,fg

B(1)×{λ}(X, D̃) ∼=
DbModc

(λ,0)(D̃). Hence, by [BMR08, 3.1.9], RΓ(For(F)) is in the subcategory Dfg
λ (Ug).

Using diagram (3.3.10), we deduce that RΓ(F) is in Dfg
λ (Ug ⊗| Λ(g(1))). Hence we have

proved that RΓ induces a functor
RΓ : Dqc,fg

B(1)×{λ}(X, D̃ ⊗| Λ(g(1))) → Dfg
λ (Ug⊗| Λ(g(1))).

Moreover, the following diagram is commutative:

Dqc,fg

B(1)×{λ}(X, D̃ ⊗| Λ(g(1))) RΓ //

For
²²

Dfg
λ (Ug⊗| Λ(g(1)))

For

²²

DbModc
(λ,0)(D̃) RΓ // DbModfg

(λ,0)(Ug).

(3.3.11)

Now we construct an adjoint for this functor. First, consider

LocK :

{
C(Spec(k), Ug⊗| Λ(g(1))) → C(X, D̃ ⊗| Λ(g(1)))

M 7→ D̃ ⊗Ug M
.

Using Lemma 3.3.6, this functor admits a left derived functor
LK : D(Spec(k), Ug⊗| Λ(g(1))) → D(X, D̃ ⊗| Λ(g(1)))

(which can be computed by means of K-projective resolutions). The following diagram is
commutative:

D(Spec(k), Ug⊗| Λ(g(1)))
LK //

For

²²

D(X, D̃ ⊗| Λ(g(1)))

For
²²

D(Spec(k), Ug)
eDL⊗Ug− // D(X, D̃)

(3.3.12)
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where the bottom arrow is the usual derived tensor product. Indeed, both derived functors
can be computed using K-projective resolutions, and every K-projective Ug ⊗| Λ(g(1))-
dg-module restricts to a K-projective complex of Ug-modules. (This follows from Lemma
1.2.3 and the fact that coinduction from Ug to Ug⊗| Λ(g(1)) sends acyclic dg-modules to
acyclic dg-modules, as Ug⊗| Λ(g(1)) is K-projective over Ug.)

As Ug is noetherian, the natural morphism DbModfg(Ug) → Dfg(Ug) is an equivalence
of categories. Using this and diagram (3.3.12) we deduce (as above) that LK induces a
functor

LK : Dfg(Ug⊗| Λ(g(1))) → Dqc,fg(X, D̃ ⊗| Λ(g(1))).

Moreover, for any object M of Dfg
λ (Ug ⊗| Λ(g(1))) there is a canonical decomposition

LK(M) ∼= ⊕
µ∈W•λ Lλ→µ

K (M) with Lλ→µ
K (M) in Dqc,fg

B(1)×{µ}(X, D̃⊗|Λ(g(1))). Indeed, using
Proposition 3.2.4, we have such a direct sum decomposition as a complex of D̃-modules
(as in [BMR08, 3.3.1]). As the actions of Λ(g(1)) and S(h) ⊂ D̃ commute, each summand
is in fact a sub-D̃ ⊗| Λ(g(1))-dg-module.

Now we de�ne LbλK := Lλ→λ
K . Then by construction we have a commutative diagram

Dfg
λ (Ug⊗| Λ(g(1)))

LbλK //

For

²²

Dqc,fg

B(1)×{λ}(X, D̃ ⊗| Λ(g(1)))

For
²²

DbModfg
(λ,0)(Ug) Lbλ // DbModc

(λ,0)(D̃)

(3.3.13)

where Lbλ is the functor de�ned in [BMR08, 3.3.1].
As in [BMR08, 3.3.2] one proves that the functors LbλK and RΓ form an adjoint pair.

Hence there are adjunction morphisms Id → RΓ ◦ LbλK and LbλK ◦RΓ → Id, which coincide,
under the natural forgetful functors, with the adjunction morphisms Id → RΓ ◦ Lbλ and
Lbλ ◦ RΓ → Id of [BMR08]. In [BMR08, 3.6] the authors prove that the latter morphisms
are isomorphisms. Hence the former morphisms also are isomorphisms. This concludes the
proof of (3.3.9).

Recalling Lemma 3.3.5, we have proved equivalences:

DGCoh((g̃
R∩g∗×B B)(1))

(3.3.8)∼= Dqc,fg

B(1)×{λ}(X, D̃ ⊗| Λ(g(1)))
(3.3.9)∼= Dfg

λ (Ug⊗| Λ(g(1)))
3.3.5∼= DbModfg

λ ((Ug)0).

This concludes the proof of Theorem 3.3.3.

Let p : (g̃
R∩g∗×B B)(1) → g̃(1) be the natural morphism of dg-schemes. It can be realized

as the natural morphism of dg-ringed spaces

(g̃(1), Oeg(1) ⊗| Λ(g(1))) → (g̃(1), Oeg(1)).



114 CHAPTER III. KOSZUL DUALITY AND UG-MODULES

The following proposition is clear from our constructions (see in particular diagrams
(3.3.11) and (3.3.13)):
Proposition 3.3.14. The following diagram is commutative, where the functor Incl is
induced by the inclusion Modfg

λ ((Ug)0) ↪→ Modfg
(λ,0)(Ug):

DGCoh((g̃
R∩g∗×B B)(1))

Rp∗ //

o bγBλ
²²

DbCohB(1)(g̃(1))

γBλo
²²

DbModfg
λ ((Ug)0)

Incl // DbModfg
(λ,0)(Ug).

Recall the Koszul duality κB of (3.1.1). The situation is the following, where λ ∈ X is
regular:

(∗) DGCohgr(Ñ (1))
∼
κB

//

(2.3.8)For

²²

DGCohgr((g̃
R∩g∗×B B)(1))

For(2.3.10)
²²

DbCohB(1)(Ñ (1)) � � //
OO

o Ch. I, (1.2.3)
²²

DbCoh(Ñ (1)) DGCoh((g̃
R∩g∗×B B)(1))
OO

o3.3.3
²²

DbModfg
0 ((Ug)λ) DbModfg

λ ((Ug)0)

Hence we have constructed some �correspondence� between Ug-modules with �xed
trivial Frobenius character and generalized Harish-Chandra character λ (on the right
hand side), and Ug-modules with generalized trivial Frobenius character and �xed Harish-
Chandra character λ (on the left hand side). One of the main results of this chapter is that,
under the assumption that p is large enough so that Lusztig's conjecture from [Lus80b] is
true (see 0.5), �indecomposable projective modules correspond to simple modules� under
this correspondence (see Theorem 4.4.3 below for a precise statement).

To �nish this subsection, let us remark that entirely similar arguments give the following
more general theorem:
Theorem 3.3.15. Let µ,P be as in (ii) of Theorem I.1.2.1. There exists an equivalence
of triangulated categories

γ̂Pµ : DGCoh((g̃P
R∩g∗×P P)(1)) ∼−→ DbModfg

µ ((Ug)0)

making the following diagram commutative, where Incl is induced by the inclusion of cat-
egories Modfg

µ ((Ug)0) ↪→ Modfg
(µ,0)(Ug), and pP : (g̃P

R∩g∗×P P)(1) → g̃
(1)
P is the natural

morphism of dg-schemes:

DGCoh((g̃P
R∩g∗×P P)(1))

R(pP )∗ //

o bγPµ
²²

DbCohP(1)(g̃(1)
P )

γPµo
²²

DbModfg
µ ((Ug)0)

Incl // DbModfg
(µ,0)(Ug).
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4 Simples correspond to projective covers under κB

In this section we state the result which will be the key of our arguments, Theorem 4.4.3.
Before that, we prove several technical results needed for this statement.

4.1 Restricted dominant weights
Consider the element τ0 := tρ ·w0 of W ′

aff . Recall the formula for the length of an element
of W ′

aff : for w ∈ W and x ∈ X we have (see [IM65, 1.23]):

`(w · tx) =
∑

α∈R+,

wα∈R+

|〈x, α∨〉|+
∑

α∈R+,

wα∈R−

|1 + 〈x, α∨〉|. (4.1.1)

In particular, we obtain `(τ0) =
∑

α∈R+(〈ρ, α∨〉 − 1).
Let us de�ne

W 0 := {w ∈ W ′
aff | w • C0 contains a restricted dominant weight}.

If λ ∈ C0, W 0 is also the set of w ∈ W ′
aff such that w•λ is restricted dominant. It is a �nite

set, in bijection with W , under our assumption p > h (see e.g. the proof of Proposition
4.1.2 below).

Proposition 4.1.2. The map w 7→ τ0w is an involution of W 0. Moreover, if w ∈ W 0 we
have `(τ0w) = `(τ0)− `(w).

Proof. It is immediate from the de�nition that (τ0)2 = 1. Hence to prove the �rst assertion
it is su�cient to prove that if w ∈ W 0 then τ0w ∈ W 0. As remarked above, we have
W 0 := {w ∈ W ′

aff | w • 0 is restricted dominant}. Write w = tλ · v with λ ∈ X and v ∈ W .
Then w•0 = v(ρ)+pλ−ρ. Hence if α ∈ Φ we have 〈w•0, α∨〉 = 〈ρ, (v−1α)∨〉+p〈λ, α∨〉−1.
As p > h, we have |〈ρ, (v−1α)∨〉| < p. Hence, w • 0 dominant restricted implies:

〈λ, α∨〉 =
{

0 if v−1α ∈ R+;
1 if v−1α ∈ R−.

(4.1.3)

In both cases, 〈w • 0, α∨〉 ∈ {0, 1, · · · , p− 2}.
Now τ0w • 0 = w0(w • 0 + ρ) + (p − 1)ρ = w0(w • 0) + (p − 2)ρ. Hence if α ∈ Φ,

〈τ0w • 0, α∨〉 = 〈w • 0, (w0α)∨〉 + (p − 2). We have w0α ∈ −Φ, hence, by the previous
remark, 〈w • 0, (w0α)∨〉 ∈ {−p + 2, · · · , 0}. Thus τ0w ∈ W 0, and the �rst assertion of the
proposition follows.

Let us compute `(τ0w). We have τ0w = w0v · tv−1(λ−ρ). Hence, by (4.1.1),

`(τ0w) =
∑

α∈R+,

w0vα∈R+

|〈v−1(λ− ρ), α∨〉|+
∑

α∈R+,

w0vα∈R−

|1 + 〈v−1(λ− ρ), α∨〉|

=
∑

α∈R+,

vα∈R−

|〈λ− ρ, (vα)∨〉|+
∑

α∈R+,

vα∈R+

|1 + 〈λ− ρ, (vα)∨〉|.
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It follows from (4.1.3) that for α ∈ Φ we have 0 ≤ 〈λ, α∨〉 ≤ 〈ρ, α∨〉. Hence the same is
true for any α ∈ R+. Moreover, if v−1α ∈ R+ then the second inequality is strict, and if
v−1α ∈ R− then the �rst one is strict. Hence

`(τ0w) =
∑

α∈R+,

vα∈R−

〈λ− ρ, (vα)∨〉+
∑

α∈R+,

vα∈R+

(−1 + 〈ρ− λ, (vα)∨〉)

=
∑

β∈R+

〈ρ, β∨〉+
∑

α∈R+,

vα∈R−

〈λ, (vα)∨〉

−
∑

α∈R+,

vα∈R+

〈λ, (vα)∨〉 −#{α ∈ R+ | vα ∈ R+}.

We deduce that

`(τ0w) = `(τ0) +
∑

α∈R+,

vα∈R−

〈λ, (vα)∨〉

−
∑

α∈R+,

vα∈R+

〈λ, (vα)∨〉+ #{α ∈ R+ | vα ∈ R−}

= `(τ0)−
∑

α∈R+,

vα∈R−

|1 + 〈λ, (vα)∨〉| −
∑

α∈R+,

vα∈R+

|〈λ, (vα)∨〉|

= `(τ0)− `(w).

Here the second equality uses the fact that if α ∈ R+ and vα ∈ R− then 〈λ, (vα)∨〉+1 ≤ 0,
and the third one uses the equality w = tλ ·v = v ·tv−1λ and formula (4.1.1). This concludes
the proof.

4.2 Coherent sheaves and dg-sheaves on Ñ (1)

As in subsections 2.3 and 3.1, let us consider the following Gm-dg-algebras on B(1), with
trivial di�erential:

S := SOB(1)
(TB(1)) with TB(1) in bidegree (2,−2),

R := SOB(1)
(TB(1)) with TB(1) in bidegree (0,−2),

where TB(1) is the tangent bundle to B(1). We have a �regrading� functor

ξ : DGm(B(1), S) ∼−→ DGm(B(1), R),

de�ned by ξ(M)i
j = M i−j

j . We also have an equivalence of categories (see (2.3.4)):

φ : Dqc,fg
Gm

(B(1), R) ∼−→ DbCohGm(Ñ (1)).

As in (2.3.6) we consider the functor

η : DGCohgr(Ñ (1)) → DbCohGm(Ñ (1))
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de�ned as the composition

DGCohgr(Ñ (1)) := D+,qc,fg
Gm

(B(1), S) → Dqc,fg
Gm

(B(1), S)
ξ−→ Dqc,fg

Gm
(B(1), R)

φ−→ DbCohGm(Ñ (1)).

Lemma 4.2.1. There exists a fully faithful triangulated functor

ζ : DbCohGm

B(1)(Ñ (1)) → DGCohgr(Ñ (1))

such that η ◦ ζ is the inclusion DbCohGm

B(1)(Ñ (1)) ↪→ DbCohGm(Ñ (1)) (see [BMR08, 3.1.7]).

Proof. In this proof we consider DbCohGm

B(1)(Ñ (1)) as the localization of the homotopy cat-
egory of the category CbCohGm

B(1)(Ñ (1)) of bounded complexes of Gm-equivariant coherent
sheaves on Ñ (1), supported on the zero-section. In particular, any object in this category
is bounded for both gradings (the cohomological one and the internal one).

Consider the functor

ζ : CbCohGm

B(1)(Ñ (1)) → DGCohgr(Ñ (1))

sending the complex M to the dg-module de�ned by ζ(M)i
j := M i+j

j . This functor sends
quasi-isomorphisms to isomorphisms. Hence it induces a functor ζ : DbCohGm

B(1)(Ñ (1)) →
DGCohgr(Ñ (1)). It is clear that the functor η ◦ ζ is isomorphic to the inclusion of the full
subcategory DbCohGm

B(1)(Ñ (1)) inside DbCohGm(Ñ (1)). Hence ζ is faithful. Now we show
that it is full.

Let M and N be two objects of DbCohGm

B(1)(Ñ (1)). A morphism f : ζ(M) → ζ(N) in
DGCohgr(Ñ (1)) can be represented by a diagram

ζ(M)
qis←− P −→ ζ(N)

with P an object of DGCohgr(Ñ (1)). Let us �x a positive integer a such that Mj = Nj = 0
for |j| ≥ a. We de�ne the object P [1] of DGCohgr(Ñ (1)) by (P [1])j = Pj if j < a,
(P [1])j = 0 if j ≥ a. This is a sub-dg-module of P (because S is concentrated in non-
positive internal degrees). Moreover, the inclusion P [1] ↪→ P is a quasi-isomorphism. Next
we de�ne the sub-dg-module P [2] of P [1] by (P [2])j = (P [1])j if j ≤ −a, (P [2])j = 0 if
j > −a, and we denote by P [3] the quotient P [1]/P [2]. The morphism P [1] → P [3] is again
a quasi-isomorphism. Moreover, we have the diagram

P
qis

{{ww
ww

ww
ww

w

##FF
FF

FF
FF

F

ζ(M) P [1]
qisoo //

qis

²²

qis

OO

ζ(N)

P [3]

qis

ccFFFFFFFF

<<xxxxxxxx
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because the morphisms P [1] → ζ(M) and P [1] → ζ(N) factorize through P [3]. Hence,
replacing P by P [3], we can assume that P is bounded for the internal grading.

Consider now the object Q := ξ(P ) of CGm(B(1), R). It is bounded for the internal grad-
ing, bounded below for the cohomological grading, and its cohomology is bounded. Using a
truncation functor (which is possible sinceR is concentrated in non-positive degrees), there
exists an object Q[1] of CGm(B(1), R), bounded for both gradings, and a quasi-isomorphism
Q[1] qis−→ Q. Then, consider the object P [4] := ξ−1(Q[1]) of CGm(B(1), S). It is bounded
for both gradings, and there is a quasi-isomorphism P [4] qis−→ P . Thus we can assume P is
bounded for both gradings.

Consider now the morphism

φ−1η(f) : φ−1M → φ−1N

in Dqc,fg
Gm

(B(1), R). As DbCohGm

B(1)(Ñ (1)) is a full subcategory of DbCohGm(Ñ (1)), there
exists a diagram in CGm(B(1), R):

φ−1η(P )
qis

yytttttttttt

%%JJJJJJJJJ

φ−1M Q[2]
qisoo //

qis

²²

qis

OO

φ−1N

φ−1Q[3]

qis

eeJJJJJJJJJJ

99ttttttttt

where Q[2] is an object of Dqc,fg
Gm

(B(1), R), and Q[3] is a bounded complex of Gm-equivariant
coherent sheaves on Ñ (1), supported on the zero section. Now, using arguments similar to
those used above, we can assume Q[2] is bounded for the internal grading, and bounded
below for the cohomological one. It easily follows that f is equal to the image under ζ of
the morphism de�ned by the diagram M

qis←− Q[3] → N .

4.3 Translation functors

The translation functors for Ug-modules are de�ned in [BMR08, 6.1]. In this subsection
we prove, in particular cases su�cient for our purposes, that these translation functors (for
Ug-modules) coincide (on G-modules) with the usual translation functors de�ned e.g. in
[Jan03, II.7]. We denote by Tµ

λ the translation functors de�ned in [BMR08], and by T̂µ
λ the

ones de�ned in [Jan03]. We also denote by Modfd
λ (G) the category of �nite dimensional

G-modules in the block of λ, for λ ∈ X.
We de�ne

C0 := {ν ∈ X | ∀α ∈ R+, 0 ≤ 〈ν + ρ, α∨〉 ≤ p}.
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Lemma 4.3.1. Let λ, µ ∈ C0. Consider the following diagram:

Modfd
λ (G)

T̂ µ
λ //

For
²²

Modfd
µ (G)

T̂ λ
µ

oo

For
²²

Modfg
(λ,0)(Ug)

T µ
λ // Modfg

(µ,0)(Ug).
T λ

µ

oo

If µ is in the closure of the facet of λ, then For ◦ T̂µ
λ
∼= Tµ

λ ◦ For. If λ is regular, and µ

is on exactly one wall of C0, then For ◦ T̂ λ
µ
∼= T λ

µ ◦ For.

Proof. We only prove the �rst isomorphism (the second one can be obtained similarly).
Both translation functors are constructed by tensoring with a module (the same for both
functors), and then taking a direct summand. A priori the direct summand corresponding
to T̂µ

λ is smaller than the one corresponding to Tµ
λ . Hence there exists a natural morphism

of functors For◦ T̂µ
λ → Tµ

λ ◦For. As these functors are exact, and as the category Modfd
λ (G)

is generated by the induced modules IndG
B(w •λ) for w ∈ Waff and w •λ dominant we only

have to prove the result for these modules. But the images under our functors of these
modules are explicitly known (see [Jan03, II.7.11 and II.7.12] and [BMR06, 2.2.3]), and
they indeed coincide.

From now on, for simplicity we do not write the functors �For�. It follows from this
lemma that the usual rules for computing the images of simple or induced modules under
translation functors (see [Jan03, II.7]) generalize. For instance, if µ is in the closure of the
facet of λ (both in C0), then

Tµ
λ IndG

B(w • λ) = IndG
B(w • µ)

for any w ∈ W ′
aff . If moreover w • λ is dominant and restricted, then

Tµ
λ L(w • λ) =





L(w • µ) if w • µ is in the upper closure
of the facet of w • λ;

0 otherwise.
(4.3.2)

To �nish this subsection, let us remark that, as the tensor product of two restricted
Ug-modules is again restricted, for λ, µ in X the functor Tµ

λ : Modfg
(λ,0)(Ug) → Modfg

(µ,0)(Ug)
induces a functor denoted similarly:

Tµ
λ : Modfg

λ ((Ug)0) → Modfg
µ ((Ug)0).

4.4 Objects corresponding to simple and projective modules
Let λ ∈ C0 be arbitrary. Recall that, by a theorem of Curtis (see [Cur60]), a complete
system of (non isomorphic) simple (Ug)0-modules is given by the restriction to (Ug)0 of
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the simple G-modules L(ν) for ν ∈ X restricted and dominant. The simple objects in
the category Modfg

0 ((Ug)λ) (or similarly in the category Modfg
λ ((Ug)0)), i.e. the simple

(Ug)0-modules with Harish-Chandra central character λ are the L(w • λ), for w ∈ W ′
aff

such that w • λ is restricted and dominant, i.e. for w ∈ W 0 (see subsection 4.1).
Recall the equivalence εBλ of (1.2.3) in chapter I. For w ∈ W 0 we de�ne

Lw := (εBλ )−1L(w • λ) ∈ DbCohB(1)(Ñ (1)) (4.4.1)

This object does not depend on the choice of λ ∈ C0. Indeed, let µ be another weight in
C0. By [BMR08, 6.1.2.(a)], for any F ∈ DbCohB(1)(g̃(1)) we have

Tµ
λ γBλ (F) ∼= RΓ

(OB(µ− λ)⊗OB (Mλ ⊗Oeg(1)
F)

)

(in this formula, Mλ ⊗Oeg(1)
F is considered as a sheaf of D̃-modules on B). By our choice

of splitting bundles (see [BMR06, 1.3.5]), we have Mµ = OB(µ− λ)⊗OB Mλ, hence

Tµ
λ ◦ γBλ (F) ∼= γBµ (F).

Similarly, Tµ
λ restricts to a functor Modfg

0 ((Ug)λ) → Modfg
0 ((Ug)µ), and for an object

F ∈ DbCohB(1)(Ñ (1)) we have
Tµ

λ ◦ εBλ (F) ∼= εBµ(F).

Hence if Lw is de�ned using the weight λ, we have εBµ(Lw) ∼= Tµ
λ ◦ εBλ (Lw) ∼= Tµ

λ L(w • λ) ∼=
L(w • µ), which proves the claim. Here the last isomorphism follows from (4.3.2).

Consider now the category Modfg
λ ((Ug)0). The algebra (Ug)0 is �nite dimensional.

Hence, if Zλ
HC denotes the image in (Ug)0 of the maximal ideal of ZHC

∼= S(h)(W,•) corre-
sponding to the character induced by λ, the sequence of ideals of (Ug)0

〈Zλ
HC〉 ⊃ 〈Zλ

HC〉2 ⊃ 〈Zλ
HC〉3 ⊃ . . .

stabilizes. Thus, for n su�ciently large, the category Modfg
λ ((Ug)0) is equivalent to the

category of �nitely generated modules over (Ug)0/〈Zλ
HC〉n. We denote this algebra by

((Ug)0)λ̂, or simply (Ug)λ̂
0 .

As seen above, the simple (Ug)λ̂
0 -modules are the L(w • λ) for w ∈ W 0. We denote by

P (w • λ) the projective cover of L(w • λ) in the category of (Ug)λ̂
0 -modules. Recall the

equivalence γ̂Bλ of Theorem 3.3.3. For w ∈ W 0 we de�ne

Pw := (γ̂Bλ )−1P (w • λ) ∈ DGCoh((g̃
R∩g∗×B B)(1)). (4.4.2)

As above, this object does not depend on the choice of λ ∈ C0.
Our key-result states that the objects Lw and Pw correspond under the linear Koszul du-

ality κB of (3.1.1). More precisely, consider the forgetful functor For : DbCohGm

B(1)(Ñ (1)) →
DbCohB(1)(Ñ (1)). If G ∈ DbCohB(1)(Ñ (1)), we say that an object F of DbCohGm

B(1)(Ñ (1))
is a lift of G if For(F) ∼= G. We use the same terminology for objects in the categories
DGCohgr((g̃

R∩g∗×B B)(1)) and DGCoh((g̃
R∩g∗×B B)(1)). In section 8 we will prove the fol-

lowing result.



5. BRAID GROUP ACTIONS AND TRANSLATION FUNCTORS 121

Theorem 4.4.3. Assume p > h is large enough so that Lusztig's conjecture is true5.
There is a unique choice of lifts Pgr

v ∈ DGCohgr((g̃
R∩g∗×B B)(1)) of Pv, resp. Lgr

v ∈
DbCohGm

B(1)(Ñ (1)) of Lv (v ∈ W 0), such that for all w ∈ W 0 we have in DGCohgr(Ñ (1)):

κ−1
B Pgr

τ0w
∼= ζ(Lgr

w )⊗OB(1)
OB(1)(−ρ).

The unicity statement in this theorem is not di�cult to prove (see 8.1). The existence is
much more complex. To prove it we will need several tools, which we introduce in sections
5, 6 and 7.

As explained above, this statement does not depend on the choice of a weight λ ∈ C0.
From now on, for simplicity we mainly restrict to the case λ = 0.

5 Braid group actions and translation functors
In this section we introduce important technical tools for our study: the (geometric) braid
group actions and the geometric counterparts of the translation functors.

5.1 Braid group actions
In this subsection we recall the main results of chapter II. Denote by Φaff the set which
contains Φ and additional symbols for each element of Saff−S. If α0 ∈ Φaff−Φ, we denote
by sα0 the corresponding element of Saff − S. The elements of Φaff − Φ are called a�ne
simple roots, and the ones of Φ �nite simple roots.

We use the same notation as in chapter II for the extended a�ne braid group B′
aff

(see II.1.1), the convolution functors (see II.2.1), and the varieties Sα and S′α (see II.2.3).
In Theorem II.2.3.2 we have proved that there exists an action of B′

aff on DbCoh(g̃(1))
(respectively DbCoh(Ñ (1))) for which:

(i) For x ∈ X, the action of θx is given by the convolution with kernel ∆∗(Oeg(1)(x))
(respectively ∆∗(O eN (1)(x))), where ∆ is the diagonal embedding;

(ii) For α ∈ Φ, the action of Tα is given by the convolution with kernel O
S

(1)
α

(respec-
tively OS′α(1)). The action of (Tα)−1 is the convolution with kernel O

S
(1)
α

(−ρ, ρ − α)
(respectively OS′α(1)(−ρ, ρ− α)).

Moreover, the actions on DbCoh(Ñ (1)) and DbCoh(g̃(1)) correspond under the direct
image functor i∗ : DbCoh(Ñ (1)) → DbCoh(g̃(1)) where i is the closed embedding Ñ (1) ↪→
g̃(1).

In [BMR06] the authors have constructed an action of B′
aff on DbModfg

(0,0)(Ug) (see
II.6.3); for b ∈ B′

aff , let us denote by

Ib : DbModfg
(0,0)(Ug) → DbModfg

(0,0)(Ug)

5See 0.5 for comments.
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the corresponding action. On the other hand, let us denote by

Jb : DbCoh(g̃(1)) → DbCoh(g̃(1)),
resp. Kb : DbCoh(Ñ (1)) → DbCoh(Ñ (1)),

the actions of b given by Theorem II.2.3.2. We have proved in subsection II.6.3 that for
any b ∈ B′

aff the following diagram is commutative:

DbCohB(1)(g̃(1))
Jb //

γB0 o
²²

DbCohB(1)(g̃(1))

γB0o
²²

DbModfg
(0,0)(Ug)

Ib // DbModfg
(0,0)(Ug).

(5.1.1)

Let us point out that our notations are not exactly the same as in subsection II.6.3.

5.2 Graded versions of the actions
Let us de�ne actions of Gm

∼= k× on g̃(1) and Ñ (1), by setting

t · (X, gB) = (t−2 ·X, gB), resp. t · (X, gB) = (t2 ·X, gB) (5.2.1)

for t ∈ k× and (X, gB) in g̃(1), respectively Ñ (1). Note that the action on Ñ (1) is not
the restriction of the action on g̃(1), but rather the dual action. This is consistent with
the constructions of subsection 3.1. Recall also that the action of k on g∗(1) is twisted: if
Fr : g∗ → g∗(1) denotes the Frobenius morphism, and if t ∈ k, then we have t · Fr(X) =
Fr(t1/pX). As in subsection 2.5, we denote by 〈1〉 the shift in the grading given by the
tensor product with the one-dimensional Gm-module given by IdGm . An easy extension of
the constructions of chapter II yields:
Proposition 5.2.2. There exists an action of B′

aff on the category DbCohGm(g̃(1)) (resp.
DbCohGm(Ñ (1))) for which:

(i) For x ∈ X, the action of θx is given by the convolution with kernel ∆∗Oeg(1)(x)
(respectively ∆∗O eN (1)(x)), where ∆ is the diagonal embedding;

(ii) For α ∈ Φ, the action of Tα is given by the convolution with kernel O
S

(1)
α
〈−1〉

(respectively OS′α(1)〈1〉). Moreover, the action of (Tα)−1 is the convolution with kernel
O

S
(1)
α

(−ρ, ρ− α)〈−1〉 (respectively OS′α(1)(−ρ, ρ− α)〈1〉).

Proof. Here we only consider g̃(1) (the proof for Ñ (1) is similar). All we have to do is
to observe that the varieties Sα are Gm-stable subvarieties of g̃ × g̃, and that all the
constructions and proofs of chapter II respect the Gm-equivariant structure. The only
subtlety concerns the proof of Proposition II.2.4.2 (see also section II.8). In this proof, the
Gm-equivariant version of the exact sequenceOV 1

α
↪→ OVα(ρ−α,−ρ, 0) ³ OV 2

α
(ρ−α,−ρ, 0)

is
OV 1

α
〈2〉 ↪→ OVα(ρ− α,−ρ, 0) ³ OV 2

α
(ρ− α,−ρ, 0).

The rest of the proof works similarly.
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Now we consider the dg-scheme (g̃
R∩g∗×B B)(1). Recall the notation for categories of

dg-modules in section 1. By de�nition (see equation (2.3.9)),

DGCohgr((g̃
R∩g∗×B B)(1)) ∼= Dqc,fg

Gm
(B(1), ΛOB(1)

(T ∨B(1))).

This realization was constructed using the resolution

(S(g(1))⊗| OB(1))⊗OB(1)
ΛOB(1)

(T ∨B(1))
qis−→ π∗Oeg(1) ,

where π : g̃(1) → B(1) denotes the projection to the base. Consider also the Koszul
resolution

(S(g(1))⊗| OB(1))⊗| Λ(g(1))
qis−→ OB(1) .

There exist quasi-isomorphisms of dg-algebras on B(1):
(
ΛOB(1)

(T ∨B(1))⊗OB(1)
(S(g(1))⊗| OB(1))

)⊗S(g(1))⊗|OB(1)

(
(S(g(1))⊗| OB(1))⊗| Λ(g(1))

)

qis−→ (
ΛOB(1)

(T ∨B(1))⊗OB(1)
(S(g(1))⊗| OB(1))

)⊗S(g(1))⊗|OB(1)
OB(1)

∼= ΛOB(1)
(T ∨B(1))

and
(
ΛOB(1)

(T ∨B(1))⊗OB(1)
(S(g(1))⊗| OB(1))

)⊗S(g(1))⊗|OB(1)

(
(S(g(1))⊗| OB(1))⊗| Λ(g(1))

)

qis−→ π∗Oeg(1) ⊗S(g(1))⊗|OB(1)

(
(S(g(1))⊗| OB(1))⊗| Λ(g(1))

) ∼= π∗Oeg(1) ⊗| Λ(g(1)).

Using Proposition 1.5.6, and a Gm-equivariant analogue, we deduce:
Lemma 5.2.3. There exist equivalences of categories

DGCohgr((g̃
R∩g∗×B B)(1)) ∼= Dqc,fg

Gm
(B(1), (π∗Oeg(1))⊗| Λ(g(1))),

DGCoh((g̃
R∩g∗×B B)(1)) ∼= Dqc,fg(B(1), (π∗Oeg(1))⊗| Λ(g(1))),

where (π∗Oeg(1))⊗|Λ(g(1)) is considered as a dg-algebra equipped with a Koszul di�erential,
with π∗Oeg(1) in cohomological degree 0 and g(1) in cohomological degree −1. In the �rst
equivalence, the internal grading on π∗Oeg(1) is induced by the Gm-action (5.2.1), and g(1)

is in bidegree (−1, 2).

Recall that p : (g̃
R∩g∗×B B)(1) → g̃(1) denotes the natural morphism of dg-schemes.

Proposition 5.2.4. There exist actions of B′
aff on the categories DGCoh((g̃

R∩g∗×B B)(1))

and DGCohgr((g̃
R∩g∗×B B)(1)) such that the functors

DGCohgr((g̃
R∩g∗×B B)(1))

For //

R(pGm)∗
²²

DGCoh((g̃
R∩g∗×B B)(1))

Rp∗
²²

DbCohGm(g̃(1)) For // DbCoh(g̃(1))

commute with the action of B′
aff .
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Proof. We give the proof for the category DGCoh((g̃
R∩g∗×B B)(1)) (the Gm-equivariant

case is similar). As above, let π : g̃(1) → B(1) be the natural morphism. We denote by
pi : g̃(1) × g̃(1) → g̃(1), qi : B(1) × B(1) → B(1) the natural projections (i = 1, 2). Recall
that π is a�ne, hence the functor π∗ is an equivalence of categories between Coh(g̃(1)) and
Coh(B(1), π∗Oeg(1)) (see [Gro61a, 1.4.3]; see also Lemma 2.3.2 and its proof).

If F is in DbCoh(g̃(1)), by [Gro61a, 1.5.7.1] we have

(π × π)∗(p∗1F) ∼=
(
(π × π)∗Oeg(1)×eg(1)

)⊗q∗1π∗Oeg(1)
q∗1π∗F .

Using [Gro61a, 1.4.8.1], it follows that if α ∈ Φ,

(π × π)∗(p∗1F
L⊗Oeg(1)×eg(1)

O
S

(1)
α

) ∼=
(
(π × π)∗OS

(1)
α

) L⊗q∗1π∗Oeg(1)
q∗1π∗F .

Hence, �nally,

π∗F
O

S
(1)
α

eg(1)→eg(1)(F) ∼= R(q2)∗(π × π)∗(p∗1F
L⊗Oeg(1)×eg(1)

O
S

(1)
α

)
∼= R(q2)∗((π × π)∗OS

(1)
α

L⊗q∗1π∗Oeg(1)
q∗1π∗F).

(5.2.5)

Moreover, these isomorphisms are functorial. In this formula, (π × π)∗OS
(1)
α

is considered
as a right q∗1π∗Oeg(1)-module, and a left q∗2π∗Oeg(1)-module. Formula (5.2.5) has a natural
dg-version, which will give the de�nition of the action of Tα.

We de�ne the action of B′
aff using the equivalences of categories of Lemma 5.2.3. It is

enough (as in Theorem II.2.3.2 and Proposition 5.2.2) to de�ne the action of the generators
θx (x ∈ X) and Tα (α ∈ Φ), and to prove that they satisfy the relations of Theorem II.1.1.3.

First, if x ∈ X the action of θx is de�ned as the tensor product with the line bundle
OB(1)(x). Let α ∈ Φ. Consider the functor

{
C(B(1), π∗Oeg(1) ⊗| Λ(g(1))) → C(B(1) × B(1), q∗2(π∗Oeg(1) ⊗| Λ(g(1))))

G 7→ (
(π × π)∗OS

(1)
α

)⊗q∗1π∗Oeg(1)
q∗1G

where (π× π)∗OS
(1)
α

is considered as a bimodule, as above. This functor has a left derived
functor (which can be computed using left K-�at resolutions), denoted by

G 7→ (π × π)∗OS
(1)
α

L⊗q∗1π∗Oeg(1)
q∗1G.

Let
q̃2 : C(B(1) × B(1), q∗2(π∗Oeg(1) ⊗| Λ(g(1)))) → C(B(1), π∗Oeg(1) ⊗| Λ(g(1)))

be the natural morphism, induced by q2. Then we de�ne the action of Tα as the functor

Fα : G 7→ R(q̃2)∗
(
(π × π)∗OS

(1)
α

L⊗q∗1π∗Oeg(1)
q∗1G

)
.
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Easy arguments show that this functor indeed restricts to the subcategories of dg-modules
with quasi-coherent, locally �nitely generated cohomology. Moreover, the following dia-
gram commutes:

DGCoh((g̃
R∩g∗×B B)(1))

Fα //

Rp∗
²²

DGCoh((g̃
R∩g∗×B B)(1))

Rp∗
²²

DbCoh(g̃(1))
JTα // DbCoh(g̃(1))

(see the remarks at the beginning of this proof, and use the fact that a K-�at π∗Oeg(1) ⊗|
Λ(g(1))-dg-module is also K-�at over π∗Oeg(1)).

With these de�nitions, it follows easily from the results of chapter II that the actions
of the Tα's and the θx's satisfy the relations of the de�nition of B′

aff .

For b ∈ B′
aff , we let

JGm
b : DbCohGm(g̃(1)) → DbCohGm(g̃(1)),

KGm
b : DbCohGm(Ñ (1)) → DbCohGm(Ñ (1)),

Jdg
b : DGCoh((g̃

R∩g∗×B B)(1)) → DGCoh((g̃
R∩g∗×B B)(1)),

Jdg,gr
b : DGCohgr((g̃

R∩g∗×B B)(1)) → DGCohgr((g̃
R∩g∗×B B)(1))

denote the action of b given by Propositions 5.2.2 and 5.2.4.
It follows6 in particular from Proposition 5.2.4 that the B′

aff -action on DbModfg
(0,0)(Ug)

factorizes through an action on DbModfg
0 ((Ug)0), which corresponds to the action on the

category DGCoh((g̃
R∩g∗×B B)(1)) via the equivalence γ̂B0 of Theorem 3.3.3. We denote by

Ires
b : DbModfg

0 ((Ug)0) → DbModfg
0 ((Ug)0)

the action of b ∈ B′
aff .

5.3 Some exact sequences
In this subsection we recall some exact sequences constructed in chapter II. Consider the
subvariety S′α ⊂ Ñ × Ñ . Geometrically, it can be described as:

S′α = {(X, g1B, g2B) ∈ g∗ × B ×Pα B | X|g1·b+g2·b = 0}.

It has two irreducible components. One is ∆Ñ , the diagonal embedding of Ñ , and the
other one is

Yα := {(X, g1B, g2B) ∈ g∗ × (B ×Pα B) | X|g1·pα
= 0},

which is a vector bundle on B ×Pα B, of rank dim(g/b)− 1.
6Of course, the �rst assertion can also be proved directly.
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Recall the morphism π̃α : g̃ → g̃α (see (1.1.1) in chapter I). There exist exact sequences
of quasi-coherent sheaves on g̃×g̃, resp. Ñ ×Ñ (see Corollary II.6.2.2 and Lemma II.7.1.1):

O∆eg ↪→ Oeg×egα
eg ³ OSα , (5.3.1)

OSα(ρ− α,−ρ) ↪→ Oeg×egα
eg ³ O∆eg, (5.3.2)

O
∆ eN ↪→ OS′α(ρ− α,−ρ) ³ OYα(ρ− α,−ρ), (5.3.3)

OYα(ρ− α,−ρ) ↪→ OS′α ³ O
∆ eN . (5.3.4)

The exact sequences (5.3.2) and (5.3.4) areGm-equivariant. The exact sequences (5.3.1)
and (5.3.3) admit the Gm-equivariant analogues

O∆eg〈2〉 ↪→ Oeg×egα
eg ³ OSα , (5.3.5)

O
∆ eN 〈−2〉 ↪→ OS′α(ρ− α,−ρ) ³ OYα(ρ− α,−ρ). (5.3.6)

Remark 5.3.7. We have OB×PαB(ρ− α,−ρ) ∼= OB×PαB(−ρ, ρ− α) (see subsection II.2.4).
Hence we can exchange −ρ and ρ− α in these exact sequences.

5.4 Geometric counterparts of the translation functors
Let us recall the geometric interpretation of the translation functors given in [BMR06] (see
subsection I.1.3). Let P be a parabolic subgroup of G containing B and let P = G/P .
Recall the morphism π̃P of (1.1.1) in chapter I. Let λ and µ be as in Proposition I.1.3.1.
The morphism π̃P : g̃ → g̃P induces a morphism of dg-schemes

π̂P : (g̃
R∩g∗×B B)(1) → (g̃P

R∩g∗×P P)(1). (5.4.1)

This morphism can be realized in two equivalent ways: either as the morphism of dg-
ringed spaces (g̃(1), Oeg(1) ⊗| Λ(g(1))) → (g̃(1)

P , Oeg(1)
P
⊗| Λ(g(1))), or as the morphism of

dg-ringed spaces (B(1), ΛOB(1)
(T ∨B(1))) → (P(1), ΛOP(1)

(T ∨P(1))). Easy arguments show that
R(π̂P)∗ and L(π̂P)∗ restrict to functors between the categories DGCoh((g̃

R∩g∗×B B)(1)) and
DGCoh((g̃P

R∩g∗×P P)(1)), with usual compatibility conditions.
Recall the equivalences of Theorems 3.3.3 and 3.3.15. A proof entirely similar to that

of [BMR06, 2.2.5] gives also:

Proposition 5.4.2. Let λ, µ, P,P be as in Proposition I.1.3.1. There exist isomorphisms
of functors

Tµ
λ ◦ γ̂Bλ ∼= γ̂Pµ ◦R(π̂P)∗ and T λ

µ ◦ γ̂Pµ ∼= γ̂Bλ ◦ L(π̂P)∗.

If P = Pα for a �nite simple root α ∈ Φ, we simplify the notation and set π̂α := π̂Pα .

5.5 Some results from representation theory
One of our main tools will be the re�ection functors, de�ned in the following way.
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De�nition 5.5.1. Let δ ∈ Φaff . Let us choose a weight µδ ∈ X which is on the δ-wall of
C0, and not on any other wall. Then the re�ection functor Rδ is de�ned as the composition

Rδ := T 0
µδ
◦ Tµδ

0 .

This functor does not depend on the choice of µδ by [BMR06, 2.2.7]. It is an auto-adjoint
endofunctor of Modfg

(0,0)(Ug), which stabilizes the subcategory Modfg
0 ((Ug)0). Note that

these notations are compatible with those of II.6.3.

In this subsection we recall some classical results describing the action of the re�ection
functors on simple and projective modules.

Recall that it has been proved that Lusztig's conjecture on the characters of simple
G-modules ([Lus80b]) is satis�ed for p large enough, with no explicit bound (see 0.5 for
details). From now on we make the following assumption:

(#) p is large enough so that Lusztig's conjecture is satis�ed.

This restriction is needed only to apply Theorem 5.5.3(i) below.
Let δ ∈ Φaff . Consider a simple (Ug)0-module L(w•0) (w ∈ W 0), where wsδ •0 > w•0

(see subsection 4.4). There are natural morphisms, induced by adjunction,

L(w • 0)
φw

δ−−→ RδL(w • 0)
ψw

δ−−→ L(w • 0).

It is known (see [Jan03, II.7.20]) that φw
δ is injective, and that ψw

δ is surjective. Let us
consider the Ug-module

Qδ(w) := Ker(ψw
δ )/Im(φw

δ ). (5.5.2)
Point (i) of the following theorem is a consequence of a conjecture by Andersen ([And86]),
which is known to be equivalent to Lusztig's conjecture on the characters of simple G-
modules (see [And86], [Jan03, II.C]). Hence it is true under our hypothesis (#).

Theorem 5.5.3. (i) Let δ ∈ Φaff . Let w ∈ W 0 such that w • 0 < wsδ • 0. Then Qδ(w) is
a semi-simple Ug-module.

(ii) The simple factors of Qδ(w) as a Ug-module are of the form L(x • 0) for some
x ∈ W 0 satisfying `(x) < `(wsδ); plus L(wsδ • 0) with multiplicity one if wsδ ∈ W 0.

Proof of (ii). By [Jan03, II.7.19-20] and the strong linkage principle (see [Jan03, II.6.13]),
we know that the simple factors of Qδ(w) as a G-module are L(wsδ • 0) with multiplicity
one, and some L(x•0) with x ∈ Waff−{w,wsδ}, such that x•0 is dominant and x•0 ↑ wsδ•0
(with the notation of [Jan03, II.6.4]). By [Jan03, II.6.6], we know that such an x sati�es
`(x) < `(wsδ).

Some of these simple G-modules may not be simple as Ug-modules if x • 0 is not
restricted. But if λ = λ1 + pλ2 for λ1 ∈ X restricted dominant and λ2 ∈ X dominant, then
by Steinberg's theorem ([Jan03, II.3.17]), as Ug-modules we have L(λ) ∼= L(λ1)⊕ dim(L(λ2)).
To conclude the proof, one observes that if v • 0 and ν 6= 0 are dominant, then `(tνv) >
`(v).
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The following proposition is �dual�, in some sense, to point (ii) of Theorem 5.5.3. Recall
the modules P (w • 0) (w ∈ W 0) de�ned in subsection 4.4.

Proposition 5.5.4. Let w ∈ W 0, and δ ∈ Φaff such that wsδ ∈ W 0 and wsδ • 0 < w • 0.
Then RδP (w•0) is a direct sum of P (wsδ•0) and some P (v•0) with v ∈ W 0, `(v) > `(wsδ).

Proof. The fact that Rδ is exact and self-adjoint implies that RδP (w • 0) is a projective
(Ug)0̂0-module, hence a direct sum of some P (v•0) for v ∈ W 0. The multiplicity of P (v•0)
is the dimension of

Homg(RδP (w • 0), L(v • 0)) ∼= Homg(P (w • 0), RδL(v • 0)).

Hence Homg(RδP (w•0), L(v•0)) = 0 if vsδ •0 < v•0 (in particular for v = w), by (4.3.2).
Assume now that vsδ • 0 > v • 0. Recall the de�nition of Qδ(v) in (5.5.2). The exact

sequences

Qδ(v) ↪→ (RδL(v • 0))/L(v • 0) ³ L(v • 0),

L(v • 0) ↪→ RδL(v • 0) ³ (RδL(v • 0))/L(v • 0)

induce an isomorphism (recall that v 6= w):

Homg(P (w • 0), RδL(v • 0)) ∼= Homg(P (w • 0), Qδ(v)).

We know (see Theorem 5.5.3) that Qδ(v) is semi-simple, that L(vsδ • 0) appears with
multiplicity 1 in this module if vsδ•0 is restricted, and that all the other simple components
have their highest weight of the form x • 0 for x ∈ W 0 with `(x) < `(vsδ). Hence if
Homg(P (w • 0), Qδ(v)) 6= 0 and v 6= wsδ, then `(w) < `(vsδ) = l(v) + 1. As `(wsδ) =
`(w)−1, we obtain `(v) > `(wsδ). For v = wsδ we have Homg(P (w•0), Qδ(wsδ)) = k.

5.6 Reminder on graded algebras
We �nish this section with a few facts concerning �nite dimensional graded rings, to be
used later.

Consider a Z-graded k-algebra A. Let Mod(A), resp. Modgr(A), denote the category
of A-modules, respectively of graded A-modules. Let also Modfg,gr(A), resp. Modfg(A)
denote the category of �nitely generated graded A-modules, resp. �nitely generated A-
modules. As in 2.5, we denote by

〈j〉 : Modfg,gr(A) → Modfg,gr(A)

the shift in the grading given by (M〈j〉)n = Mn−j . Let

For : Modgr(A) → Mod(A)

be the forgetful functor. Following [GG82], we call gradable the A-modules in the essential
image of this functor.



5. BRAID GROUP ACTIONS AND TRANSLATION FUNCTORS 129

If M is in Mod(A), we denote by rad(M) the radical of M , i.e. the intersection of all
maximal submodules in M (see e.g. [CR81, chapter 5]). Similarly, we denote by soc(M)
the socle of M , i.e. the sum of all simple submodules of M .

In the following theorem, points (i) to (iv) are proved in [GG82, 3.2, 3.4, 3.5, 4.1].
Point (v) follows easily from the isomorphism

HomMod(A)(For(M), For(N)) ∼=
⊕

i∈Z
HomModgr(A)(M,N〈i〉)

for M and N in Modfg,gr(A).
Theorem 5.6.1. Assume dim|(A) < ∞.

(i) If M ∈ Modfg,gr(A), then M is indecomposable in Modfg,gr(A) i� For(M) is inde-
composable in Modfg(A).

(ii) Simple and projective modules in Modfg(A) are gradable.
(iii) If M ∈ Modfg,gr(A), then soc(For(M)) and rad(For(M)) are homogeneous sub-

modules.
(iv) If M, N ∈ Modfg,gr(A) are indecomposable and non-zero and if For(M) ∼= For(N),

then there exists a unique j ∈ Z such that M ∼= N〈j〉 in Modfg,gr(A).
(v) If M ∈ Modfg,gr(A), then M is projective in Modfg,gr(A) i� For(M) is projective

in Modfg(A).

The following results can be proved exactly as in the non-graded case (see also [AJS94,
E.6] for a proof in a more general context):
Proposition 5.6.2. Assume dim|(A) < ∞.

(i) If M ∈ Modfg,gr(A), then M is indecomposable in Modfg,gr(A) i� the algebra
HomModfg,gr(A)(M,M) is local.

(ii) The Krull-Schmidt theorem holds in Modfg,gr(A).

These results can be used to deduce information on the structure of a graded A-module
M when we know the structure of For(M). More precisely, assume dim|(A) < ∞, and let
M be in Modfg,gr(A). Let

M = M1 ⊕M2 ⊕ · · · ⊕Mn

be the decomposition of M as a sum of indecomposable submodules in the category
Modfg,gr(A) (i.e. as a graded A-module). Then we have

For(M) = For(M1)⊕ · · · ⊕ For(Mn) (5.6.3)

in Mod(A). Moreover, by Theorem 5.6.1(i), for all j the A-module For(Mj) is indecompos-
able. Hence (5.6.3) is the decomposition of For(M) as a sum of indecomposable submodules
(which is unique, up to isomorphism and permutation, by the Krull-Schmidt theorem). So
the Mj 's are lifts of the indecomposable direct summands of For(M).

For later reference, let us spell out the following consequence of Theorem 5.6.1, which
is implicit in [GG82] (and can also be proved directly).
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Corollary 5.6.4. Assume dim|(A) < ∞. Let M be in Modfg,gr(A).
(i) M is simple in Modfg,gr(A) i� For(M) is simple in Mod(A).
(ii) M is semi-simple in the category Modfg,gr(A) i� For(M) is a semi-simple A-module.

Proof. (i) It is clear that if For(M) is a simple A-module, then M is simple in Modfg,gr(A).
Assume now that M is simple in Modfg,gr(A). Then soc(M) ⊂ M is a non-zero graded
submodule by Theorem 5.6.1(iii). Hence soc(M) = M , and M is a semi-simple A-module.
As it is also indecomposable by Theorem 5.6.1(i), it is simple.

(ii) It follows from (i) that if M is semi-simple in the category Modfg,gr(A), then For(M)
is a semi-simple A-module. Now assume For(M) is a semi-simple A-module. Choose a
decomposition as a sum of indecomposable graded submodules M = M1 ⊕ · · · ⊕Mn. By
the remark before the corollary, For(M) = For(M1)⊕ · · · ⊕ For(Mn) is the decomposition
of M as a sum of indecomposable submodules in Mod(A). Hence each For(Mi) is simple.
By (i), it follows that Mi is simple in Modfg,gr(A). This concludes the proof.

6 Projective (Ug)0-modules
In this section we study in more details the right hand side of diagram (∗) after Proposition
3.3.14.

6.1 Geometric re�ection functors
From now on, to simplify the notations we assume that G is quasi-simple, i.e. that R is
irreducible.

We have de�ned the re�ection functors in De�nition 5.5.1. Let α ∈ Φ be a �nite
simple root. Recall the de�nition of the morphism π̂α in (5.4.1). By Proposition 5.4.2 the
following diagram is commutative

DGCoh((g̃
R∩g∗×B B)(1))

bγB0o
²²

L(bπα)∗◦R(bπα)∗ // DGCoh((g̃
R∩g∗×B B)(1))

bγB0o
²²

DbMod0((Ug)0)
Rα // DbMod0((Ug)0).

(6.1.1)

For this reason, we denote by Rα the functor

L(π̂α)∗ ◦R(π̂α)∗ : DGCoh((g̃
R∩g∗×B B)(1)) → DGCoh((g̃

R∩g∗×B B)(1)).

Now we want to make such a construction for the a�ne simple root α0. For simplicity,
sometimes we write s0 for the corresponding simple re�ection, instead of sα0 . We will use
the following lemma. Recall the lift C : W ′

aff → B′
aff of the natural projection (see II.1.1).

Lemma 6.1.2. In B′
aff , consider the lift C(s0) of the a�ne simple re�ection s0 ∈ W ′

aff .
There exists β ∈ Φ and b0 ∈ B′

aff such that
C(s0) = b0 · C(sβ) · (b0)−1.
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Proof. First, assume G is not of type G2, F4 or E8. Then X/Y 6= 0, hence there exists
ω ∈ W ′

aff with `(ω) = 0, but ω 6= 1. Then ω ·s0 ·ω−1 is a simple re�ection sβ for some β ∈ Φ.
As lengths add in this relation, we have also C(s0) = b0 · C(sβ) · (b0)−1 for b0 = C(ω).

Now assume7 G is of type G2, F4 or E8. Then there exists a simple root β such that
the braid relation between s0 and sβ is of length 3. Then we have C(sβ)C(s0)C(sβ) =
C(s0)C(sβ)C(s0), hence

C(s0) = C(sβ)C(s0)C(sβ)C(s0)−1C(sβ)−1.

Hence we can take b0 = C(sβ)C(s0).

In the rest of this chapter, we �x such a β and such a b0.

Corollary 6.1.3. Keep the notation of Lemma 6.1.2. For any M ∈ DbModfg
(0,0)(Ug), resp.

M ∈ DbModfg
0 ((Ug)0), there exists an isomorphism8

Rα0(M) ∼= Ib0 ◦Rβ ◦ I(b0)−1(M), resp. Rα0(M) ∼= Ires
b0 ◦Rβ ◦ Ires

(b0)−1(M).

Proof. We only prove the �rst isomorphism, the second one can be proved similarly. First,
Lemma 6.1.2 implies that IC(s0)

∼= Ib0 ◦ IC(sβ) ◦ I(b0)−1 . By de�nition of the B′
aff -action,

for any N ∈ DbModfg
(0,0)(Ug) there is an exact triangle N → RβN → IC(sβ)N . Hence, for

M ∈ DbModfg
(0,0)(Ug) there is an exact triangle

M → Ib0 ◦Rβ ◦ I(b0)−1(M) → Ib0 ◦ IC(sβ) ◦ I(b0)−1(M) ∼= IC(s0)(M).

On the other hand, again by de�nition there is an exact triangle M → Rα0M → IC(s0)M .
Identifying these two triangles we deduce the isomorphism of the corollary.

For this reason we de�ne the functor

Rα0 : DGCoh((g̃
R∩g∗×B B)(1)) → DGCoh((g̃

R∩g∗×B B)(1))

as follows:
Rα0 := Jdg

b0
◦ L(π̂β)∗ ◦R(π̂β)∗ ◦ Jdg

(b0)−1

(see 5.2 for the notation). With this de�nition, by Corollary 6.1.3, the diagram analogous
to (6.1.1) is commutative, at least on every object.

6.2 Dg versions of the re�ection functors

Let α ∈ Φ. The dg-ringed spaces (B(1), ΛOB(1)
(T ∨B(1))) and (P(1)

α , ΛO
P(1)

α

(T ∨P(1)
α

)) are nat-
urally Gm-equivariant (see 1.7), and π̂α is also Gm-equivariant. Easy arguments show

7More generally, this second proof works if G is not of type Cn, n ≥ 2.
8It is not clear from our proof whether or not these isomorphisms are functorial. However, this can be

checked easily if G is not of type G2, F4 or E8.
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that the functors R(π̂α,Gm)∗ and L(π̂α,Gm)∗ restrict to functors between the categories
DGCohgr((g̃

R∩g∗×B B)(1)) and DGCohgr((g̃α
R∩g∗×Pα Pα)(1)), with usual compatibility con-

ditions. Equivalently, these dg-schemes and morphism can be realized using the �rst equiv-
alence of Lemma 5.2.3 (and an analogue for Pα). We de�ne

Rgr
α := L(π̂α,Gm)∗ ◦R(π̂α,Gm)∗.

This is an endofunctor of DGCohgr((g̃
R∩g∗×B B)(1)).

For the a�ne simple root α0 we de�ne similarly, with the notation of Lemma 6.1.2,

Rgr
α0

:= Jdg,gr
b0

◦ L(π̂β,Gm)∗ ◦R(π̂β,Gm)∗ ◦ Jdg,gr
(b0)−1 . (6.2.1)

With these de�nitions, for any δ ∈ Φaff the following diagram commutes:

DGCohgr((g̃
R∩g∗×B B)(1))

For
²²

R
gr
δ // DGCohgr((g̃

R∩g∗×B B)(1))

For
²²

DGCoh((g̃
R∩g∗×B B)(1))

Rδ // DGCoh((g̃
R∩g∗×B B)(1)).

(6.2.2)

To conclude this subsection, for later use we study the relation between the functor
Rα for α ∈ Φ and the action of the braid group. Consider the following diagram of
Gm-equivariant dg-schemes:

(
(g̃×egα

g̃)
R∩g∗×(B×B) (B × B)

)(1)

q1ttjjjjjjjjjjjjjjjj

q2 **TTTTTTTTTTTTTTTT

(
g̃

R∩g∗×B B
)(1)

bπα

**TTTTTTTTTTTTTTTT

(
g̃

R∩g∗×B B
)(1)

.

bπα

ttjjjjjjjjjjjjjjjj

(
g̃α

R∩g∗×Pα Pα

)(1)

Here we consider the realization of the dg-schemes given by the �rst equivalence of Lemma
5.2.3 (and analogues for the other dg-schemes). We want to construct an isomorphism of
endofunctors of DGCohgr((g̃

R∩g∗×B B)(1)):

L(π̂α,Gm)∗ ◦R(π̂α,Gm)∗ ∼= R(q2,Gm)∗ ◦ L(q1,Gm)∗. (6.2.3)

There is a natural adjunction morphism Id → R(q1,Gm)∗ ◦L(q1,Gm)∗. Applying the functor
R(π̂α,Gm)∗ to this morphism, and using the equality π̂α ◦ q1 = π̂α ◦ q2, one obtains a mor-
phism R(π̂α,Gm)∗ → R(π̂α,Gm)∗ ◦R(q2,Gm)∗ ◦ L(q1,Gm)∗. Now, applying again adjunction,
one obtains the desired morphism

L(π̂α,Gm)∗ ◦R(π̂α,Gm)∗ → R(q2,Gm)∗ ◦ L(q1,Gm)∗.
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Under the functor DGCohgr((g̃
R∩g∗×B B)(1))

R(pGm )∗−−−−−→ DbCohGm(g̃(1)) For−−→ DbCoh(g̃(1)),
this morphism corresponds to the isomorphism considered in Proposition II.6.1.2. Hence
it is also an isomorphism (recall that R(pGm)∗ is a forgetful functor).

Recall the shift functor 〈1〉 de�ned in subsection 2.5 (see also 5.2). The following lemma
follows immediately from isomorphism (6.2.3) and the exact sequence of Gm-equivariant
sheaves (5.3.5).

Lemma 6.2.4. There exists a distinguished triangle of functors

Id〈1〉 → Rgr
α 〈−1〉 → Jdg,gr

Tα
.

6.3 Gradings
As in subsection 3.3, for simplicity we denote the variety g̃(1) ×h∗(1) h∗ by X in this sub-
section. Recall the algebra Ũ := Ug⊗ZHC

S(h), also considered in 3.3. By [BMR08, 3.4.1]
we have

RiΓ(X, D̃) ∼=
{

Ũ if i = 0,
0 otherwise.

Let Ũ 0̂
0̂
denote the completion of Ũ with respect to the maximal ideal of its center Z⊗ZHC

S(h) generated by h and g(1). Let also (Ug)0̂
0̂
denote the completion of Ug with respect to the

maximal ideal of Z corresponding to the character (0, 0). The projection h∗ → h∗/(W, •)
induces an isomorphism Ũ 0̂

0̂
∼= (Ug)0̂

0̂
. Recall that we have de�ned the algebra (Ug)0̂0 in

subsection 4.4.
As in subsection 3.3 we let B̂(1) denote the formal neighborhood of B(1) × {0} in

g̃(1) ×h∗(1) h∗. Applying [Gro61b, 4.1.5] to the proper morphism

g̃(1) ×h∗(1) h∗ → g∗(1) ×h∗(1)/W h∗,

and using the fact that g∗(1) ×h∗(1)/W h∗ is a�ne, we obtain isomorphisms

RiΓ(B̂(1), D̃|dB(1)
) ∼=

{
(Ug)0̂

0̂
if i = 0,

0 otherwise. (6.3.1)

Recall also the isomorphism of sheaves of algebras on B̂(1) (see subsection I.1.2)

D̃|dB(1)
∼= EndOdB(1)

(M0). (6.3.2)

Let Z+
Fr denote the maximal ideal of ZFr associated to the character 0. There is a

surjection
(Ug)0̂

0̂
³ (Ug)0̂

0̂
/〈Z+

Fr〉 ∼= (Ug)0̂0.

Hence the algebra (Ug)0̂0 is a quotient of (Ug)0̂
0̂
∼= Γ(B̂(1), EndOdB(1)

(M0)).
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Let Y be a noetherian scheme and Z ⊂ Y be a closed subscheme, with corresponding
ideal IZ ⊂ OY . Let Ẑ be the formal neighborhood of Z in Y (a formal scheme). Assume Ẑ
is endowed with a Gm-action. If F is a coherent sheaf on Ẑ, a structure of Gm-equivariant
coherent sheaf on F is the data, for any n, of a structure of Gm-equivariant coherent sheaf
on F/(In

Z · F) (as a coherent sheaf on the n-th in�nitesimal neighborhood of Z in Y ), all
these structures being compatible. Let us recall the following result, due to V. Vologodsky
(see the second appendix in the preprint version of [BFG06]):
Lemma 6.3.3. Let f : Y → Z be a proper morphism of k-schemes. Let z be a point in Z,
and Yẑ be the formal neighborhood of f−1(z) in Y . Let E be a vector bundle on Yẑ, such
that Ext1(E , E) = 0. If Yẑ is endowed with a Gm-action, then this action can be lifted to
E, i.e. there exists a Gm-equivariant structure on E.

Now we consider B̂(1) as the formal neighborhood of the zero-section in g̃(1). We have
de�ned a Gm-action on g̃(1) in (5.2.1). This action stabilizes the zero-section, hence induces
an action on B̂(1). We can apply Lemma 6.3.3 to the splitting bundle M0, the vanishing
hypothesis following from (6.3.1) and (6.3.2). Hence we obtain a Gm-equivariant structure
on M0, and a structure of a Gm-equivariant sheaf of algebras on D̃|dB(1)

.

Applying Γ(B̂(1),−), we obtain a Gm-equivariant algebra structure on (Ug)0̂
0̂
, which

is compatible with the Gm-structure on g∗(1) induced by the action on g̃(1). Taking
the quotient (by a homogeneous ideal), we obtain a grading on the algebra (Ug)0̂0. Let
Modfg,gr

0 ((Ug)0) denote the category of �nitely generated graded modules over this graded
algebra.

The following theorem is a �graded version� of Theorem 3.3.3:
Theorem 6.3.4. There exists a fully faithful triangulated functor

γ̃B0 : DGCohgr((g̃
R∩g∗×B B)(1)) → DbModfg,gr

0 ((Ug)0),

commuting with the internal shifts 〈1〉, and such that the following diagram commutes:

DGCohgr((g̃
R∩g∗×B B)(1))

eγB0 //

For
²²

DbModfg,gr
0 ((Ug)0)

For

²²

DGCoh((g̃
R∩g∗×B B)(1))

bγB0 // DbModfg
0 ((Ug)0).

This theorem would be easy to prove if we had a Gm-equivariant structure on the whole
of D̃ and Ug (the proof of Theorem 3.3.3 would generalize in a straightforward manner,
and we would even obtain an equivalence of categories). Unfortunately we only have such
a structure on some completions of these algebras, and this subtlety complicates the proof.
As it is long and as the details are not needed, we postpone the proof of Theorem 6.3.4 to
the end of this section (see 6.6 and 6.7).
Remark 6.3.5. Arguing as in the proof of Proposition 7.2.3 below, one can prove that the
functor γ̃B0 is essentially surjective, hence an equivalence (see Remark 7.2.4 for the �dual�
statement).
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6.4 Complexes representing a projective module
The abelian category Modfg

(0,0)(Ug) does not have any projective object (because of the as-
sumption that the center acts with a generalized character on these modules). Nevertheless,
in the category DbCoh(g̃(1)) one can de�ne the notion of a complex of sheaves �represent-
ing a projective module�. For F ,G ∈ DbCoh(g̃(1)), we write simply Homeg(1)(F ,G) for
HomDbCoh(eg(1))(F ,G). The following de�nition was already considered (in a special case)
in I.2.3.

De�nition 6.4.1. Let λ ∈ X be regular. An object M of DbCoh(g̃(1)) is said to represent
a projective module under γBλ if

Homeg(1)(M, (γBλ )−1N [i]) = 0

for any N ∈ Modfg
(λ,0)(Ug) and i 6= 0.

Let µ ∈ X be a restricted dominant weight in the orbit of λ under W ′
aff . An object

M of DbCoh(g̃(1)) is said to represent the projective cover of L(µ) under γBλ if for any
ν ∈ W ′

aff • λ restricted and dominant and i ∈ Z,

Homeg(1)(M, (γBλ )−1L(ν)[i]) =
{
k if ν = µ and i = 0,
0 otherwise.

Recall from subsection 4.1 the element τ0 = tρ · w0 ∈ W 0 ⊂ W ′
aff .

Lemma 6.4.2. Let λ ∈ C0, and v ∈ W 0. Then T−ρ
λ L(v • λ) 6= 0 i� v = τ0. Moreover,

T−ρ
λ L(τ0 • λ) = L(τ0 • (−ρ)) = L((p− 1)ρ).

Proof. Using the rule given by (4.3.2) to compute T−ρ
λ L(v •λ), we only have to prove that

v • (−ρ) is in the upper closure of v •C0 if and only if v = τ0. Write v = tν ·w with ν ∈ X,
w ∈ W . Then one easily checks that v • (−ρ) is in the upper closure of v •C0 if and only if
w = w0. The result follows since, under the assumption that v • λ is dominant restricted,
ν is uniquely determined by w (see equation (4.1.3)).

Proposition 6.4.3. Let λ ∈ C0, and w ∈ W . The object Oeg(1) represents the projective
cover of L(τ0 • λ) under γBw•λ.

Proof. Consider the functor T−ρ
λ = T

w•(−ρ)
w•λ = T−ρ

w•λ. By Proposition I.1.3.1 applied to the
weights w • λ and −ρ, with P = G/G = {pt}, we have

T−ρ
w•λ ◦ γBw•λ ∼= γ

{pt}
−ρ ◦RΓ(g̃(1),−). (6.4.4)

Moreover, Homeg(1)(Oeg(1) ,−) ∼= H0(RΓ(g̃(1),−)). Now the result follows from (6.4.4) and
Lemma 6.4.2, using the fact that γ

{pt}
−ρ (k) = L((p − 1)ρ). (The latter fact can be proved

either by looking at the de�nition of the splitting bundles, see [BMR06, 1.3.5], or by
remarking that L((p− 1)ρ) is the only simple module in Modfg

(−ρ,0)(Ug).)
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Corollary 6.4.5. Let λ ∈ (W ′
aff • 0) ∩ C0. Write λ = ω • 0 for ω = w · tµ ∈ W ′

aff (µ ∈ X,
w ∈ W ). Then Oeg(1)(µ) represents the projective cover of L(τ0 • λ) under γB0 .

Proof. By hypothesis, λ = ω•0 = w•(pµ). Hence w−1•λ = pµ. By Proposition 6.4.3, Oeg(1)

represents the projective cover of L(τ0•λ) under γBw−1•λ = γBpµ. But for F ∈ DbCohB(1)(g̃(1))
we have γBpµ(F) = γB0 (F ⊗Oeg(1)

Oeg(1)(µ)) (see I.1.2). The result follows.

Recall that we have de�ned the objects P (w • 0), Pw in subsection 4.4. Consider the
natural morphism of dg-schemes p : (g̃

R∩g∗×B B)(1) → g̃(1). By adjunction, it is clear that if
M∈ DbCoh(g̃(1)) represents a projective module under γB0 , then γ̂B0 (Lp∗M) is a projective
(Ug)0̂0-module. In particular, with the notation of Corollary 6.4.5, we have

O
(eg R∩g∗×B B)(1)

(µ) ∼= Pτ0ω. (6.4.6)

6.5 Graded projective (Ug)0-modules
Recall the results of subsection 5.6. Using Theorem 5.6.1 (ii) and (iv), the projective
modules P (w•0) can be lifted to graded modules (uniquely, up to a shift). In this subsection
we �x an arbitrary choice of a lift for each P (w • 0), and denote it by P gr(w • 0). Recall
the fully faithful functor

γ̃B0 : DGCohgr((g̃
R∩g∗×B B)(1)) → DbModfg,gr

0 ((Ug)0)

of Theorem 6.3.4.
Proposition 6.5.1. For all w ∈ W 0, P gr(w • 0) is in the essential image of the functor
γ̃B0 .

Proof. We prove the result by descending induction on `(w). By Proposition 4.1.2, the
elements w ∈ W 0 such that `(w) is maximal are of the form w = τ0ω, for ω ∈ W ′

aff

such that `(ω) = 0. In this case, by (6.4.6) we have Pτ0ω
∼= O

(eg R∩g∗×B B)(1)
(µ) (with the

notation of Corollary 6.4.5). It is clear that O
(eg R∩g∗×B B)(1)

(µ) can be considered as an

object of DGCohgr((g̃
R∩g∗×B B)(1)). By Theorem 5.6.1(iv) and the commutative diagram

in Theorem 6.3.4, the image of this object under γ̃B0 is isomorphic to P gr(τ0ω • 0), up to a
shift. As γ̃B0 commutes with the internal shift, this proves the result when `(w) = `(τ0).

Now let n be a non-negative integer such that n < `(τ0), and assume the result is true
for all v ∈ W 0 such that `(v) > n. Let w ∈ W 0 be such that `(w) = n. Let δ ∈ Φaff be
such that wsδ ∈ W 0 and wsδ • 0 > w • 0, i.e. `(wsδ) > `(w). By induction, there exists
Pgr in DGCohgr((g̃

R∩g∗×B B)(1)) such that γ̃B0 (Pgr) ∼= P gr(wsδ • 0). Then consider

γ̃B0 (Rgr
δ Pgr).

By construction, using diagrams (6.1.1) and (6.2.2), the image of this object under the
forgetful functor

For : DbModfg,gr
0 ((Ug)0) → DbModfg

0 ((Ug)0)
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is RδP (wsδ • 0). In particular γ̃B0 (Rgr
δ Pgr) is concentrated in degree 0, i.e. is a graded

(Ug)0̂0-module. By Proposition 5.5.4, RδP (wsδ • 0) is a direct sum of P (w • 0) and some
P (v • 0) with v ∈ W 0 such that `(v) > `(w). Hence, using the remark before Corollary
5.6.4, γ̃B0 (Rgr

δ Pgr) ∼= P gr(w • 0)〈i〉 ⊕ Qgr for some i ∈ Z, where Qgr is a direct sum of
graded modules of the form P gr(v • 0)〈j〉 with j ∈ Z and v ∈ W 0 such that `(v) > `(w).
By induction hypothesis, there exists an object Qgr in DGCohgr((g̃

R∩g∗×B B)(1)) such that
Qgr ∼= γ̃B0 (Qgr). Then we have

γ̃B0 (Rgr
δ Pgr) ∼= γ̃B0 (Qgr)⊕ P gr(w • 0)〈i〉.

As γ̃B0 is fully faithful, the natural injection γ̃B0 (Qgr) ↪→ γ̃B0 (Rgr
δ Pgr) comes from a morphism

Qgr → R
gr
δ Pgr in DGCohgr((g̃

R∩g∗×B B)(1)). Let X gr be the cone of this morphism. Then,
by usual properties of triangulated categories, there exists an isomorphism

γ̃B0 (X gr〈−i〉) ∼= P gr(w • 0).

This concludes the proof of the induction step, and of the proposition.

6.6 Some generalities on Gm-equivariant quasi-coherent dg-modules
In the next two subsections we prove Theorem 6.3.4. We begin with some general results
on Gm-equivariant quasi-coherent dg-modules.

Let us consider a noetherian scheme A, and a non-positively graded, Gm-equivariant
dg-algebra A on A (as in 1.7). Assume also that A is locally �nitely generated as an OA-
algebra. Let Dqc

Gm
(A, A), respectively Dqc,fg

Gm
(A, A), be the full subcategory of DGm(A, A)

whose objects have their cohomology quasi-coherent over OA, resp. quasi-coherent over
OA and locally �nitely generated over H(A). Let also Cqc

Gm
(A, A) be the category of Gm-

equivariant dg-modules which are quasi-coherent over OA, and let D(Cqc
Gm

(A, A)
)
be the

corresponding derived category (the localization of the homotopy category of Cqc
Gm

(A, A)).
Let Dfg

(Cqc
Gm

(A, A)
)
be the full subcategory of D(Cqc

Gm
(A, A)

)
whose objects have their

cohomology locally �nitely generated over H(A).
A proof entirely similar to that of Lemma 3.2.2 (here we do not consider any condition

on the support) (see also Lemma 1.7.1) shows that if F is an object of Dqc
Gm

(A, A) whose
cohomology is bounded, there exists a Gm-equivariant K-injective A-dg-module I and a
quasi-isomorphism F → I, where I is quasi-coherent over OA. We deduce the following:

Lemma 6.6.1. Assume A is bounded for the cohomological grading. There exists an
equivalence of categories

Dfg
(Cqc
Gm

(A, A)
) ∼= Dqc,fg

Gm
(A, A).

Now, let Y be a noetherian scheme equipped with a (possibly non trivial) Gm-action.
In the rest of this subsection we consider two di�erent situations, denoted (a) and (b).

Situation (a) is the following. Let Y be a dg-algebra on Y (non-positively graded).
We have not de�ned Gm-equivariant dg-algebras and dg-modules in this case. But assume
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that Y is coherent as an OY -module, and that each Yp is equipped with a Gm-equivariant
structure (as a coherent OY -module), such that the multiplication and the di�erential are
Gm-equivariant.

Then we can consider the notion of an OY -quasi-coherent, Gm-equivariant dg-module
over Y. We denote by Cqc

Gm
(Y, Y) the corresponding category, and by Cqc,fg

Gm
(Y, Y) the

full subcategory of dg-modules locally �nitely generated over Y. We denote the corre-
sponding derived categories by D(Cqc

Gm
(Y, Y)

)
and D(Cqc,fg

Gm
(Y, Y)

)
. We also denote by

Dfg
(Cqc
Gm

(Y, Y)
)
the full subcategory of D(Cqc

Gm
(Y, Y)

)
whose objects have locally �nitely

generated cohomology.
Consider a closed Gm-subscheme Z ⊂ Y . Denote by Dfg

Z

(Cqc
Gm

(Y, Y)
)
the full sub-

category of Dfg
(Cqc
Gm

(Y, Y)
)
whose objects have their cohomology supported on Z. We

also consider the category Cqc,Gm

Z (Y, Y) of Gm-equivariant, quasi-coherent Y-dg-modules
supported on Z, its subcategory Cqc,fg,Gm

Z (Y, Y), the derived categories D(Cqc,Gm

Z (Y, Y)
)
,

D(Cqc,fg,Gm

Z (Y, Y)
)
, and the full subcategory Dfg

(Cqc,Gm

Z (Y, Y)
)
of D(Cqc,Gm

Z (Y, Y)
)
of ob-

jects having locally �nitely generated cohomology.

Now we consider situation (b). As above, let Z ⊂ Y be a closed Gm-subscheme. Let Ŷ
be a coherent sheaf of dg-algebras on the formal neighborhood Ẑ of Z in Y , endowed with
a Gm-equivariant structure. Hence, if IZ is the de�ning ideal of Z in Y , we have a Gm-
equivariant structure on the quotient Ŷ/(In

Z · Ŷ) for any n > 0, and all these structures are
compatible. Then we can de�ne the abelian category Cqc,Gm

Z (Y, Ŷ) whose objects are quasi-
coherent, Gm-equivariant OY -dg-modules supported on Z, endowed with a compatible
action of Ŷ (by de�nition such an object is a direct limit of dg-modules over some quotients
Ŷ/(In

Z · Ŷ) for n À 0). We use the same notation as above for the categories of locally
�nitely generated dg-modules, and for the derived categories.

Observe that situation (b) is a particular case of situation (a) (taking Ŷ to be a the
restriction of Y to Ẑ). The notations are compatible.

Recall the construction of resolutions by injective Gm-equivariant quasi-coherent shea-
ves on Y (see e.g. [Bez00]): if F is an injective object of QCoh(Y ), then Av(F) := a∗p∗Y F is
injective in QCohGm(Y ), where a and pY : Gm×Y → Y are the action and the projection,
respectively. It follows from this construction, using the non-equivariant case (see [BMR06,
3.1.7]), that any Gm-equivariant quasi-coherent sheaf on Y which is supported on Z can
be embedded into an injective Gm-equivariant quasi-coherent sheaf supported on Z.

Using these remarks, arguments similar to those of the proof of Proposition 3.2.4 (here
the situation is easier, because we only consider quasi-coherent dg-modules) give:

Lemma 6.6.2. (i) Assume we are in situation (b). Then there exists an equivalence of
categories

D(Cqc,fg,Gm

Z (Y, Ŷ)
) ∼= Dfg

(Cqc,Gm

Z (Y, Ŷ)
)
.

(ii) Assume we are in situation (a). Then there exists an equivalence of categories

D(Cqc,fg,Gm

Z (Y, Y)
) ∼= Dfg

Z

(Cqc
Gm

(Y, Y)
)
.
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As in subsection 2.5, we denote by 〈1〉 the shift in the internal grading (i.e. the tensor
product with the 1-dimensional Gm-module given by IdGm).

Lemma 6.6.3. (i) Assume we are in situation (a). Let F ,G be objects of Dfg
(Cqc
Gm

(Y, Y)
)
.

There exists an isomorphism
⊕

m∈Z
HomDfg

(
Cqc
Gm(Y,Y)

)(F ,G〈m〉) ∼= HomDqc,fg(Y,Y)(For F ,For G),

where For is the forgetful functor.
(ii) Assume we are in situation (b). Let F ,G be objects of Dfg

(Cqc,Gm

Z (Y, Ŷ)
)
. There

exists an isomorphism
⊕

m∈Z
HomDfg

(
Cqc,Gm

Z (Y, bY)
)(F ,G〈m〉) ∼= HomDfg

(
Cqc

Z (Y, bY)
)(For F ,For G),

where For is the forgetful functor, and the category on the right hand side has the obvious
de�nition.

Proof. (i) Using an open a�ne covering, we can assume Y is a�ne, hence consider cat-
egories of modules over a dg-algebra rather than sheaves of dg-modules over sheaves of
dg-algebras (see Proposition 3.2.4 for the category Dqc,fg(Y, Y)). By Lemma 6.6.2(ii), we
can assume G is �nitely generated. Using a truncation functor, we can assume F is bounded
above. Using the remarks before Lemma 3.3.6 and the construction of K-projective reso-
lutions as in [BL94, 10.12], we can even assume that Fp is �nitely generated over Y0 for
any p, that for all m ∈ Z we have

HomDfg
(
Cqc
Gm (Y,Y)

)(F ,G〈m〉) ∼= HomHfg
(
Cqc
Gm (Y,Y)

)(F ,G〈m〉)

(where H denotes the homotopy category), and �nally that

HomDqc,fg(Y,Y)(For F , For G) ∼= HomHqc,fg(Y,Y)(For F , For G).

The result follows, since it is clear that

HomHqc,fg(Y,Y)(For F , For G) ∼=
⊕
m

HomHfg
(
Cqc
Gm (Y,Y)

)(F ,G〈m〉).

Now, let us deduce (ii) from (i). First, by Lemma 6.6.2(i) we can assume F and G are
locally �nitely generated. Let us prove that for any m ∈ Z the morphism

HomDfg
(
Cqc,Gm

Z (Y, bY)
)(F ,G〈m〉) → HomDfg

(
Cqc

Z (Y, bY)
)(For F , For G) (6.6.4)

is injective. It is su�cient to prove that if f : F → G is a morphism of Gm-equivariant
dg-modules such that For(f) = 0 in Dfg

(Cqc
Z (Y, Ŷ)

)
, then f = 0 in Dfg

(Cqc,Gm

Z (Y, Ŷ)
)
. By

standard properties of localizations of triangulated categories, and using a non-equivariant
analogue of Lemma 6.6.2(i), there exists P in Cqc,fg

Z (Y, Ŷ) and a quasi-isomorphism G qis−→ P
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whose composition with f is homotopic to 0. The dg-modules F , G and P live on a certain
in�nitesimal neighborhood Z [i] of Z in Y . Applying the injectivity statement in (i) to the
scheme Z [i], endowed with the dg-algebra Ŷ|Z[i] , and to the morphism induced by f , we
obtain that we can choose P and the quasi-isomorphism G → P to be Gm-equivariant.
This proves the injectivity of (6.6.4).

The injectivity of the morphism in the statement of the lemma follows from the in-
jectivity of (6.6.4), using the fact that the mutliplicative group Gm acts naturally on
the vector space HomDfg

(
Cqc

Z (Y, bY)
)(For F ,For G), and that for this action the image of

HomDfg
(
Cqc,Gm

Z (Y, bY)
)(F ,G〈m〉) has weight m.

The surjectivity can be proved by similar methods.

6.7 Proof of Theorem 6.3.4
We have seen in Lemma 5.2.3 that there exists an equivalence of categories

DGCohgr((g̃
R∩g∗×B B)(1)) ∼= Dqc,fg

Gm
(B(1), π∗Oeg(1) ⊗| Λ(g(1))) (6.7.1)

where the internal grading on π∗Oeg(1) is induced by the action of Gm de�ned in (5.2.1),
and g(1) is in bidegree (−1, 2).

In this section we consider B̂(1) as the formal neighborhood of the zero section in g̃(1).
We have seen in 6.3 that the completion D̃|dB(1)

, considered as a coherent sheaf of rings

on B̂(1) ⊂ g̃(1), is endowed with a Gm-equivariant structure, compatible with that of g̃(1).
Hence we can consider the category

Dfg
(Cqc,Gm

B(1) (g̃(1), D̃|dB(1)
⊗| Λ(g(1)))

)

as in 6.6 (situation (b)). Now we have:

Lemma 6.7.2. There exists an equivalence of categories

Dqc,fg
Gm

(B(1), π∗Oeg(1) ⊗| Λ(g(1))) ∼= Dfg
(Cqc,Gm

B(1) (g̃(1), D̃|dB(1)
⊗| Λ(g(1)))

)
.

Proof. By Lemma 6.6.1, there exists an equivalence of categories

Dqc,fg
Gm

(B(1), π∗Oeg(1) ⊗| Λ(g(1))) ∼= Dfg
(Cqc
Gm

(B(1), π∗Oeg(1) ⊗| Λ(g(1)))
)
.

As π is a�ne, the functor π∗ induces an equivalence of categories

Cqc
Gm

(g̃(1), Oeg(1) ⊗| Λ(g(1))) → Cqc
Gm

(B(1), π∗Oeg(1) ⊗| Λ(g(1))).

Thus, composing the inverse of this equivalence with the previous one, we obtain an equiv-
alence

Dqc,fg
Gm

(B(1), π∗Oeg(1) ⊗| Λ(g(1))) ∼= Dfg
(Cqc
Gm

(g̃(1), Oeg(1) ⊗| Λ(g(1)))
)
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Now, using the fact that any object of Cqc
Gm

(g̃(1), Oeg(1) ⊗| Λ(g(1))) has its cohomology
supported on B(1), we obtain by Lemma 6.6.2(ii) an equivalence

Dfg
(Cqc
Gm

(g̃(1), Oeg(1) ⊗| Λ(g(1)))
) ∼= D(Cqc,fg,Gm

B(1) (g̃(1), Oeg(1) ⊗| Λ(g(1)))
)
.

Then, using Gm-equivariant analogues of the functors F and G of the proof of Theorem
3.3.3, we obtain an equivalence

Cqc,fg,Gm

B(1) (g̃(1), Oeg(1) ⊗| Λ(g(1))) ∼= Cqc,fg,Gm

B(1) (g̃(1), D̃|dB(1)
⊗| Λ(g(1))).

The equivalence of the lemma follows from all these equivalences, and again Lemma
6.6.2(i).

We have seen in 6.3 that the completion (Ug)0̂
0̂
, i.e. the restriction of the sheaf of

algebras Ug on Spec(Z) to the formal neighborhood of (0, 0), considered as a sheaf of
algebras on the formal neighborhood9 {̂0} of {0} in g∗(1), is endowed with a Gm-equivariant
structure, compatible with that of g∗(1). Hence we are again in situation (b) of 6.6. We
simplify the notation for the categories of sheaves of Ug-modules, and denote e.g. by
Cfg,Gm

(0,0) (Ug⊗| Λ(g(1))) the category Cqc,fg,Gm

{0} (g∗(1), Ug|d{0} ⊗| Λ(g(1))). By Lemma 6.6.2(i)
we have an equivalence of categories

D(Cfg,Gm

(0,0) (Ug⊗| Λ(g(1)))
) ∼= Dfg

(CGm

(0,0)(Ug⊗| Λ(g(1)))
)
. (6.7.3)

Recall the remarks before Lemma 3.3.5. Let us consider the following forgetful functors
(of the internal grading):

For : Dfg
(CGm

(0,0)(Ug⊗| Λ(g(1)))
) → Dfg

0 (Ug⊗| Λ(g(1))),

For : Dfg
(Cqc,Gm

B(1) (g̃(1), D̃|dB(1)
⊗| Λ(g(1)))

) → Dfg
(Cqc

B(1)(g̃
(1), D̃|dB(1)

⊗| Λ(g(1)))
)
.

Clearly, the category Dfg
(Cqc

B(1)(g̃(1), D̃|dB(1)
⊗| Λ(g(1)))

)
is equivalent to the triangulated

category Dqc,fg

B(1)×{0}(X, D̃ ⊗| Λ(g(1))) (see e.g. Proposition 3.2.4). Here X = g̃(1) ×h∗(1) h∗,
as in subsection 3.3.

By Lemma 6.6.3(ii) we have:
Lemma 6.7.4. (i) For M,N in Dfg

(CGm

(0,0)(Ug⊗| Λ(g(1)))
)
there is an isomorphism

⊕

m∈Z
HomDfg

(
CGm
(0,0)

(Ug⊗|Λ(g(1)))
)(M, N〈m〉) ∼= HomDfg

0 (Ug⊗|Λ(g(1)))
(For M, For N).

(ii) For F ,G in Dfg
(Cqc,Gm

B(1) (g̃(1), D̃|dB(1)
⊗| Λ(g(1)))

)
there is an isomorphism

⊕

m∈Z
HomDfg

(
Cqc,Gm
B(1)

(eg(1), eD
|dB(1)

⊗|Λ(g(1)))
)(F ,G〈m〉)

∼= HomDqc,fg

B(1)×{0}
(X, eD⊗|Λ(g(1)))

(For F ,For G).

9This formal neighborhood is also isomorphic to the formal neiborhood of {(0, 0)} in Spec(Z) ∼=
g∗(1) ×h∗(1)/W h∗/(W, •). We will not distinguish these two formal neighborhoods.
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Corollary 6.7.5. There exists a fully faithful functor

RΓGm : Dfg
(Cqc,Gm

B(1) (g̃(1), D̃|dB(1)
⊗| Λ(g(1)))

) → Dfg
(CGm

(0,0)(Ug⊗| Λ(g(1)))
)
.

Proof. Let us denote by C+,qc,Gm

B(1) (g̃(1), D̃|dB(1)
⊗|Λ(g(1))) the full subcategory of the category

Cqc,Gm

B(1) (g̃(1), D̃|dB(1)
⊗| Λ(g(1))) consisting of bounded below objects. It is clear from the

de�nition (using a truncation functor) that, with obvious notation, we have an equivalence
of categories

Dfg
(C+,qc,Gm

B(1) (g̃(1), D̃|dB(1)
⊗| Λ(g(1)))

) ∼= Dfg
(Cqc,Gm

B(1) (g̃(1), D̃|dB(1)
⊗| Λ(g(1)))

)
.

We denote by Γ+ the functor

C+,qc,Gm

B(1) (g̃(1), D̃|dB(1)
⊗| Λ(g(1))) → CGm

(0,0)(Ug⊗| Λ(g(1)))

induced by the global sections functor Γ(g̃(1),−). Let us �rst show that the derived
functor RΓ+ (in the sense of Deligne) is de�ned everywhere, i.e. that every object of
C+,qc,Gm

B(1) (g̃(1), D̃|dB(1)
⊗| Λ(g(1))) has a right resolution which is split on the right (see 1.4).

Every object F of C+,qc,Gm

B(1) (g̃(1), D̃|dB(1)
⊗| Λ(g(1))) has a resolution F qis−→ I where

I is in C+,qc,Gm

B(1) (g̃(1), D̃|dB(1)
⊗| Λ(g(1))), and each Ip (p ∈ Z) is acyclic for the functor

Γ(g̃(1),−) : QCoh(g̃(1)) → Vect(k). Indeed, let g̃(1) =
⋃n

α=1 Xα be an a�ne open covering
such that each Xα is Gm-stable (e.g. the inverse image of an a�ne open covering of B(1)).
For each α, let jα : Xα ↪→ X be the inclusion. Then there is an inclusion

F ↪→
n⊕

α=1

(jα)∗(jα)∗F .

Doing the same construction for the cokernel of this inclusion, repeating, and �nally taking
a total complex, as e.g. in the proof of Lemma 1.3.7, one obtains the resolution I. Such a
resolution is clearly split on the right for the functor Γ+.

By this construction, it is clear that the following diagram is commutative, where the
vertical arrows are the natural forgetful functors, and the bottom horizontal arrow is the
functor considered in (3.3.10):

D(C+,qc,Gm

B(1) (g̃(1), D̃|dB(1)
⊗| Λ(g(1)))

)
RΓ+

//

For
²²

D(CGm

(0,0)(Ug⊗| Λ(g(1)))
)

For
²²

D(X, D̃ ⊗| Λ(g(1)))
RΓ // D(Spec(k), Ug⊗| Λ(g(1))).

It follows from this diagram and the results just below (3.3.10) that the functor RΓ+

restricts to a functor

RΓGm : Dfg
(C+,qc,Gm

B(1) (g̃(1), D̃|dB(1)
⊗| Λ(g(1)))

) → Dfg
(CGm

(0,0)(Ug⊗| Λ(g(1)))
)
,
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which corresponds to the functor
RΓ : Dqc,fg

B(1)×{0}(X, D̃ ⊗| Λ(g(1))) → Dfg
0 (Ug⊗| Λ(g(1)))

of (3.3.11) under the natural forgetful functors. We have proved in the course of the
proof of Theorem 3.3.3 that the latter functor is fully faithful (and even an equivalence
of categories, but this is not needed here). It follows easily, using Lemma 6.7.4, that the
functor RΓGm is also fully faithful. This concludes the proof of Corollary 6.7.5.

Thus, using equivalence (6.7.1), Lemma 6.7.2, Corollary 6.7.5 and equivalence (6.7.3),
we obtain a fully faithful functor

DGCohgr((g̃
R∩g∗×B B)(1)) → D(Cfg,Gm

(0,0) (Ug⊗| Λ(g(1)))
)
.

Hence to �nish the proof of Theorem 6.3.4 we �nally only have to prove the following
lemma.
Lemma 6.7.6. There exists an equivalence of categories

D(Cfg,Gm

(0,0) (Ug⊗| Λ(g(1)))
) ∼= DbModfg,gr

0 ((Ug)0).

Proof. The natural morphism

Ug⊗| Λ(g(1)) ³ (Ug)0 ³ (Ug)0̂0
induces a functor (restriction of scalars):

Ψ : DbModfg,gr
0 ((Ug)0) → D(Cfg,Gm

(0,0) (Ug⊗| Λ(g(1)))
)
.

This functor corresponds to the functor considered in (3.3.2) under the natural forgetful
functors. We deduce, as in the proof of Corollary 6.7.5, that Ψ is fully faithful.

Now we prove that it is essentially surjective. More precisely, we prove that every
object M of D(Cfg,Gm

(0,0) (Ug⊗| Λ(g(1)))
)
is in the essential image of Ψ by induction on l(M)

where, as in the proof of Lemma 3.2.2, l(M) = −1 if M ∼= 0 and, for M 6= 0,
l(M) := max{i ∈ Z | H i(M) 6= 0} −min{i ∈ Z | H i(M) 6= 0}.

The result is clear if l(M) = −1. If l(M) = 0, then M is quasi-isomorphic to a Ug ⊗|
Λ(g(1))-dg-module N concentrated in one cohomological degree. It follows easily from the
de�nitions that N is a restricted Ug-module. Hence it is in the image of Ψ.

Now let n > 0, and assume that any N with l(N) < n is in the image of Ψ. Let M such
that l(M) = n, and let j be the lowest integer such that Hj(M) 6= 0. We can assume that
Mk = 0 for k < j. Let M ′ := ker(dj

M ), considered as a complex concentrated in degree
j, and M ′′ := Coker(M ′ → M). We have l(M ′) = 0, hence M ′ is in the image of Ψ. Let
P ′ be such that M ′ = Ψ(P ′). By induction, there exists P ′′ in DbModfg,gr

0 ((Ug)0) such
that Ψ(P ′′) ∼= M ′′. As Ψ is fully faithful, the natural morphism M ′′ → M ′[1] comes from
a morphism P ′′ → P ′[1] in DbModfg,gr

0 ((Ug)0). Then if P is the cone of this morphism,
standard properties of triangulated categories ensure that M ∼= Ψ(P [−1]). This �nishes
the proof of Lemma 6.7.6.

The proof of Theorem 6.3.4 is now complete.
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7 Simple (Ug)0-modules
In this section we study in more details the left hand side of diagram (∗) after Proposition
3.3.14.

7.1 The �semi-simple� functors Sδ

Let α ∈ Φ be a �nite simple root. Recall the subvariety Yα ⊂ Ñ ×Ñ de�ned in subsection
5.3 (see also subsection II.7.1). We denote by Sα the convolution functor

F
O

Y
(1)
α

(−ρ,ρ−α)

eN (1)→ eN (1)
: DbCoh(Ñ (1)) → DbCoh(Ñ (1)).

Now let α0 ∈ Φaff −Φ. Recall the notation β, b0 of Lemma 6.1.2, and the notation for the
B′

aff -actions in subsection 5.1. We de�ne

Sα0 := Kb0 ◦Sβ ◦K(b0)−1 .

These functors stabilize the subcategory DbCohB(1)(Ñ (1)). They will be related in 8.2 to
the re�ection functors of 6.1.

For all δ ∈ Φaff we have an exact triangle of endofunctors of DbCoh(Ñ (1)):

Sδ → KC(sδ) → Id. (7.1.1)

For δ ∈ Φ, this follows from the exact sequence (5.3.4), using the fact that C(sδ) = Tδ.
For δ = α0, this is the conjugate of the corresponding triangle for β, using the relation
C(s0) = b0C(sβ)(b0)−1.

We give a representation-theoretic interpretation of these functors in Proposition 7.1.2.
Recall the equivalence

εB0 : DbCohB(1)(Ñ (1)) ∼−→ DbModfg
0 ((Ug)0)

of equation (1.2.3) in chapter I. We have de�ned the objects Lw in subsection 4.4.

Proposition 7.1.2. Let w ∈ W 0, and δ ∈ Φaff be such that wsδ • 0 > w • 0. Recall the
(Ug)00-module Qδ(w) de�ned in (5.5.2). We have

SδLw
∼= (εB0 )−1(Qδ(w)).

Proof. The exact triangle of functors (7.1.1) induces an exact triangle in DbCohB(1)(Ñ (1)):

Sδ(Lw) → KC(sδ)(Lw) → Lw. (7.1.3)

Let i : Ñ ↪→ g̃ be the inclusion. Then we have i∗ ◦KC(sδ)
∼= JC(sδ) ◦ i∗ (see subsection 5.1).

Hence triangle (7.1.3) induces an exact triangle

γB0 ◦ i∗ ◦Sδ(Lw) → γB0 ◦ JC(sδ) ◦ i∗(Lw) → γB0 ◦ i∗(Lw). (7.1.4)
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By construction we have an isomorphism of functors γB0 ◦i∗ ∼= Incl◦εB0 , where Incl is induced
by the inclusion Modfg

0 ((Ug)0) ↪→ Modfg
(0,0)(Ug). In particular, L(w•0) ∼= γB0 ◦i∗(Lw). Also,

using diagram (5.1.1), we have

γB0 ◦ JC(sδ) ◦ i∗(Lw) ∼= IC(sδ) ◦ γB0 ◦ i∗(Lw) ∼= IC(sδ)(L(w • 0)).

Hence triangle (7.1.4) induces an exact triangle

Incl ◦ εB0 ◦Sδ(Lw) → IC(sδ)(L(w • 0)) → L(w • 0). (7.1.5)

Now by de�nition (see [BMR06, 2.3]), IC(sδ)(L(w • 0)) is the cone of the natural mor-
phism L(w •0) → RδL(w •0). This morphism is the morphism φw

δ of subsection 5.5, hence
IC(sδ)(L(w • 0)) ∼= Coker(φw

δ ). Moreover, under this identi�cation, the second morphism
in (7.1.5) is induced by ψw

δ (again with the notation of 5.5). Hence triangle (7.1.5) induces
an isomorphism Incl ◦ εB0 ◦Sδ(Lw) ∼= Qδ(w). It follows that εB0 ◦Sδ(Lw) has cohomology
only in degree 0. As the restriction of Incl to objects having cohomology only in degree 0
is fully faithful, the result follows.

To �nish this subsection, let us remark that for all δ ∈ Φaff there is a natural functor

SGm
δ : DbCohGm(Ñ (1)) → DbCohGm(Ñ (1))

such that the following diagram commutes:

DbCohGm(Ñ (1))
SGmδ //

For
²²

DbCohGm(Ñ (1))

For
²²

DbCoh(Ñ (1))
Sδ // DbCoh(Ñ (1)),

(7.1.6)

namely the graded convolution with kernel O
Y

(1)
δ

(−ρ, ρ−δ) (with its natural Gm-structure)
if δ ∈ Φ, or the conjugate of the convolution with kernel O

Y
(1)
β

(−ρ, ρ−β) by Kgr
b0

if δ = α0.

7.2 Graded (Ug)0-modules
As in subsection 6.3, we have (see [BMR06, 3.4.1]):

(Ug)0 ∼= RΓ(Ñ (1), D̃| eN (1)×{0}).

We have de�ned an action of Gm on Ñ (1) in 6.3 (note that it is not the restriction of the
action on g̃(1), but its composition with t 7→ t−1). The same arguments as in 6.3 show
that there exists a Gm-equivariant structure on the algebra (Ug)0

0̂
(the completion of (Ug)0

with respect to the image of the augmentation ideal of ZFr corresponding to the character
0 ∈ g∗(1)), compatible with the Gm-structure on g∗(1) induced by the action on Ñ (1). We
denote by Modfg,gr

0 ((Ug)0) the category of graded (Ug)0-modules with trivial generalized
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Frobenius central character (these modules are modules over the quotient of (Ug)0 by a
power of the ideal generated by g(1); this quotient is a graded algebra, hence we can speak
of graded modules). Arguments similar to (and easier than) the ones of subsection 6.7
prove the following theorem, which is a �graded version� of equivalence (1.2.3) in Theorem
I.1.2.1(i):

Theorem 7.2.1. There exists a fully faithful functor

ε̃B0 : DbCohGm

B(1)(Ñ (1)) → DbModfg,gr
0 ((Ug)0),

commuting with the internal shifts 〈1〉, and such that the following diagram commutes:

DbCohGm

B(1)(Ñ (1))
eεB0 //

For
²²

DbModfg,gr
0 ((Ug)0)

For
²²

DbCohB(1)(Ñ (1))
εB0 // DbModfg

0 ((Ug)0).

Now, consider the category Modfg
0 ((Ug)0). Using again Theorem 5.6.1, each simple

module L(w•0) (for w ∈ W 0) can be lifted to a graded module Lgr(w•0) in Modfg,gr
0 ((Ug)0)

(uniquely, up to isomorphism and to internal shift). Here the algebra (Ug)0
0̂
is not �nite

dimensional, but it acts on simple modules through (Ug)00, which is �nite dimensional,
hence we can still apply Theorem 5.6.1. In this subsection we �x an arbitrary choice for
these lifts.

Recall that we denote by i : Ñ (1) ↪→ g̃(1) the natural inclusion. Let also j : B(1) ↪→ Ñ (1),
k : B(1) ↪→ g̃(1) be the inclusions of the zero-sections. Recall Lemma I.1.4.1. We deduce
the following corollary, which generalizes some of the computations of sections I.2 and I.3.

Corollary 7.2.2. Let ω ∈ W ′
aff such that `(ω) = 0. Write ω = w · tµ (µ ∈ X, w ∈ W ).

Then we have
j∗OB(1)(−ρ + µ)[`(w)] ∼= Lω.

Proof. By Lemma I.1.4.1,

εB0 (j∗OB(1)(−ρ + µ)) ∼= RΓ(B,OB(pµ)).

By hypothesis, ω • 0 = w • (pµ). Hence w−1 • (ω • 0) = pµ. Using Borel-Weil-Bott theorem
([Jan03, II.5.5-6]), we deduce

εB0 (j∗OB(1)(−ρ + µ)[`(w)]) ∼= IndG
B(ω • 0) ∼= L(ω • 0).

This concludes the proof.

Proposition 7.2.3. For all w ∈ W 0, Lgr(w • 0) is in the essential image of the functor
ε̃B0 .
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Proof. This proof is similar to that of Proposition 6.5.1. We use an ascending induction on
`(w). For `(w) = 0, by Corollary 7.2.2 we have Lw

∼= j∗OB(1)(−ρ+µ)[`(v)] where w = v ·tµ
(v ∈ W , µ ∈ X). Clearly, j∗OB(1)(−ρ + µ) has a structure of a Gm-equivariant coherent
sheaf, hence can be considered as an object of DbCohGm

B(1)(Ñ (1)). By Theorem 5.6.1, the
image of this object under ε̃B0 is isomorphic to Lgr(w • 0), up to a shift. As the functor ε̃B0
commutes with the internal shifts, the result follows when `(w) = 0.

Now assume the result is true when `(w) < n, and let w ∈ W 0 such that `(w) = n.
Let δ ∈ Φaff be such that wsδ ∈ W 0 and `(wsδ) < `(w). By induction there exists
Lgr in DbCohGm

B(1)(Ñ (1)) such that ε̃B0 (Lgr) ∼= Lgr(wsδ • 0). Then, by diagram (7.1.6) and
Proposition 7.1.2, the image under the forgetful functor

For : DbModfg,gr
0 ((Ug)0) → DbModfg

0 ((Ug)0)

of the object ε̃B0 (SGm
δ Lgr) is Qδ(wsδ). By Theorem 5.5.3, we have Qδ(wsδ) ∼= L(w •0)⊕N

where N is a direct sum of modules of the form Lgr(v • 0) with `(v) < `(w). Hence, by
Corollary 5.6.4(ii) and its proof, we have ε̃B0 (SGm

δ Lgr) ∼= Lgr(w•0)〈i〉⊕Ngr for some i ∈ Z,
where Ngr is a direct sum of modules of the form L(v • 0)〈j〉 with `(v) < `(w), j ∈ Z. By
induction hypothesis, Ngr is in the essential image of ε̃B0 . We conclude as in the proof of
Proposition 6.5.1 that Lgr(w • 0) is also in this image.

Remark 7.2.4. It follows easily from Proposition 7.2.3 that the functor ε̃B0 is essentially
surjective. Hence it is an equivalence of categories.

7.3 Dg versions of the functors Sδ

Let α ∈ Φ be a �nite simple root. Let Pα be the parabolic subgroup of G containing B
associated to {α}, let pα be its Lie algebra, and let Pα = G/Pα be the associated partial
�ag variety. We de�ne the variety

Ñα := T ∗Pα = {(X, gPα) ∈ g∗ ×Pα | X|g·pα
= 0}. (7.3.1)

There exists a natural injection
jα : (Ñα ×Pα B)(1) ↪→ Ñ (1).

We also denote by
ρα : (Ñα ×Pα B)(1) → Ñ (1)

α

the morphism de�ned by base change.
Consider the following diagram:

(Ñα ×Pα B)× eNα
(Ñα ×Pα B)

p1uukkkkkkkkkkkkkkk

p2 ))SSSSSSSSSSSSSSS

Ñα ×Pα B
ρα

))TTTTTTTTTTTTTTTTTTTlL
jα

{{vvv
vv

vv
vv

v
Ñα ×Pα B

ρα

uujjjjjjjjjjjjjjjjjjj r�
jα

$$HHH
HHH

HHH
H

Ñ Ñα Ñ .
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Here to save space we have omitted the Frobenius twists. The �at base change theorem (see
[Har77, II.5.12]) implies that we have an isomorphism of functors from DbCoh((Ñα ×Pα

B)(1)) to itself:
L(ρα)∗ ◦R(ρα)∗ ∼= R(p2)∗ ◦ L(p1)∗. (7.3.2)

Moreover, the variety (Ñα ×Pα B) × eNα
(Ñα ×Pα B) is isomorphic to the subvariety Yα of

Ñ × Ñ . For λ ∈ X, we denote by Shiftλ the tensor product with O eN (1)(λ). Then we have

Shift−ρ ◦Sα ◦ Shiftρ
∼= Shift−ρ ◦ F

O
Y

(1)
α

(−ρ,ρ−α)

eN (1)→ eN (1)
◦ Shiftρ

∼= Shift−α ◦ F
O

Y
(1)
α

eN (1)→ eN (1)

∼= Shift−α ◦ (R(jα)∗ ◦R(p2)∗ ◦ L(p1)∗ ◦ L(jα)∗)
∼= Shift−α ◦ (R(jα)∗ ◦ L(ρα)∗ ◦R(ρα)∗ ◦ L(jα)∗).

Here the last isomorphism is given by (7.3.2). Now recall the constructions of section 2.
In Corollary 2.5.3 we have constructed functors associated to jα:

R(j̃αGm
)∗ : DGCohgr((Ñα ×Pα B)(1)) → DGCohgr(Ñ (1)),

L(j̃αGm
)∗ : DGCohgr(Ñ (1)) → DGCohgr((Ñα ×Pα B)(1)).

Similarly, in Corollary 2.4.5 we have constructed functors associated to ρα:
R(ρ̃αGm

)∗ : DGCohgr((Ñα ×Pα B)(1)) → DGCohgr(Ñ (1)
α ),

L(ρ̃αGm
)∗ : DGCohgr(Ñ (1)

α ) → DGCohgr((Ñα ×Pα B)(1)).

We de�ne the functor
Sgr

α : DGCohgr(Ñ (1)) → DGCohgr(Ñ (1)),

which sends the object M to

OB(1)(ρ− α)⊗OB(1)

(
R(j̃αGm

)∗ ◦ L(ρ̃αGm
)∗

◦R(ρ̃αGm
)∗ ◦ L(j̃αGm

)∗(M⊗OB(1)
OB(1)(−ρ))

)
.

Using Corollaries 2.4.5 and 2.5.3, and the isomorphism above, the following diagram is
commutative:

DGCohgr(Ñ (1))

For
²²

S
gr
α // DGCohgr(Ñ (1))

For
²²

DbCoh(Ñ (1))
Sα // DbCoh(Ñ (1)).

The following diagrams also commute, where η and ζ are the functors de�ned in 4.2:

DGCohgr(Ñ (1))

η

²²

S
gr
α // DGCohgr(Ñ (1))

η

²²

DbCohGm(Ñ (1))
SGmα // DbCohGm(Ñ (1)),

(7.3.3)
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DbCohGm

B(1)(Ñ (1))

ζ
²²

SGmα // DbCohGm

B(1)(Ñ (1))

ζ
²²

DGCohgr(Ñ (1))
S

gr
α // DGCohgr(Ñ (1)).

(7.3.4)

Indeed, the commutation of the �rst diagram follows from the de�nitions and Lemmas
2.4.4 and 2.5.2, and the commutation of the second one follows from the commutation of
the �rst one.

Now, let us de�ne an action of B′
aff on DGCohgr(Ñ (1)). Recall the Koszul duality κB

de�ned in (3.1.1). For b ∈ B′
aff we de�ne

Kgr
b : DGCohgr(Ñ (1)) → DGCohgr(Ñ (1))

by the formula
Kgr

b := Shiftρ ◦ κ−1
B ◦ Jgr

b ◦ κB ◦ Shift−ρ.

Here, Shiftλ denotes the shift by OB(1)(λ).
Consider the a�ne simple root α0 ∈ Φaff − Φ. Recall the notation b0, β from Lemma

6.1.2. Then we de�ne the functor

Sgr
α0

:= Kgr
b0
◦S

gr
β ◦Kgr

(b0)−1 . (7.3.5)

It is not clear from this de�nition that the diagrams analogous to (7.3.3) and (7.3.4) are
commutative. We will consider this issue in 8.3.

8 Proof of Theorem 4.4.3
In this section we prove the key-result of our reasoning, namely Theorem 4.4.3.

8.1 Alternative statement of the theorem
First, let us state a version of Theorem 4.4.3 in representation-theoretic terms.

Recall the Koszul duality equivalence of (3.1.1):

κB : DGCohgr(Ñ (1)) ∼−→ DGCohgr((g̃
R∩g∗×B B)(1)).

Recall that the functor γ̃B0 of Theorem 6.3.4 is fully faithful, and that its essential image
contains the lifts of the projective modules P (v • 0) for v ∈ W 0 (see Proposition 6.5.1).
Hence, for any choice of a lift P gr(v • 0) of P (v • 0) as a graded (Ug)0̂0-module (this
choice is unique up to isomorphism and internal shift), there exists an object10 Pgr

v of
DGCohgr((g̃

R∩g∗×B B)(1)), unique up to isomorphism, such that

P gr(v • 0) ∼= γ̃B0 (Pgr
v ).

10As observed in subsection 4.4, this object does not depend on the choice λ = 0. For this reason, 0 does
not appear in the notation.
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The same applies to the functor ε̃B0 of Theorem 7.2.1, replacing the projective modules
by the simple modules L(v • 0) (see Proposition 7.2.3).

Theorem 4.4.3 is clearly equivalent to the following statement, which we will refer to
as statement (‡). This is the statement we will prove in 8.4.

Assume p > h is large enough so that Lusztig's conjecture is true.
There is a unique choice of the lifts P gr(v • 0), Lgr(v • 0) (v ∈ W 0) such that, if

Pgr
v , resp. Lgr

v is the object of DGCohgr((g̃
R∩g∗×B B)(1)), resp. DbCohGm

B(1)(Ñ (1)), such that
P gr(v • 0) ∼= γ̃B0 (Pgr

v ), resp. Lgr(v • 0) ∼= ε̃B0 (Lgr
v ), for all w ∈ W 0 we have in the category

DGCohgr(Ñ (1)):
κ−1
B Pgr

τ0w
∼= ζ(Lgr

w )⊗OB(1)
OB(1)(−ρ). (8.1.1)

Let us remark that the functors γ̃B0 (of Theorem 6.3.4), ε̃B0 (of Theorem 7.2.1) and κB
commute with the shifts in both the cohomological and the internal grading, by de�nition.
The functor ζ (of Lemma 4.2.1) commutes with the shift in the cohomological grading,
but not in the internal one. More precisely, for F in the category DbCohGm

B(1)(Ñ (1)) and
j ∈ Z one has ζ(F〈j〉) = ζ(F)[j]〈j〉. The unicity in Theorem 4.4.3 follows easily from
these remarks, using the fact that each lift P gr(v • 0) and Lgr(v • 0) (v ∈ W 0) is de�ned
up to a shift 〈j〉 (j ∈ Z).

The proof of the existence statement in Theorem 4.4.3 will occupy the rest of this
section.

8.2 Koszul dual of the re�ection functors

Our proof of statement (‡) (hence also of Theorem 4.4.3) is based on the following result,
which shows that the re�ection functor R

gr
δ (δ ∈ Φaff) is conjugate to the semi-simple

functor S
gr
δ under Koszul duality, up to some shifts.

Theorem 8.2.1. For all δ ∈ Φaff we have an isomorphism of endofunctors of the category
DGCohgr(Ñ (1)):

(κB)−1 ◦R
gr
δ ◦ κB ∼= Shift−ρ ◦S

gr
δ ◦ Shiftρ [1]〈2〉.

Proof. By de�nition of the functors R
gr
α0 (see equation (6.2.1)) and S

gr
α0 (see equation

(7.3.5)), it is enough to prove the isomorphism for δ ∈ Φ. From now on we write α instead
of δ. We will derive the theorem from the general results of subsections 2.4 and 2.5.

First, consider the inclusion of vector bundles

jα : (Ñα ×Pα B)(1) ↪→ Ñ (1).

We apply to this inclusion the constructions of 2.5, with X = B(1), E = (g∗ ×B)(1) ∼= E∗,
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F1 = (Ñα ×Pα B)(1), F2 = Ñ (1). Then we have

F⊥
1 = (g̃α ×Pα B)(1), F⊥

2 = g̃(1),

n1 = rk(F1) = dim(g/b)− 1, n2 = rk(F2) = dim(g/b),

L1 = Λn1(F1) = OB(1)(−2ρ + α), L2 = Λn2(F2) = OB(1)(−2ρ).

We denote by

π̂α,1 :
(
g̃

R∩g∗×B B
)(1) → (

(g̃α ×Pα B)
R∩g∗×B B

)(1)

the morphism of dg-schemes induced by the inclusion g̃(1) ↪→ (g̃α×PαB)(1). We also denote
by

κB : DGCohgr(Ñ (1)) ∼−→ DGCohgr((g̃
R∩g∗×B B)(1)),

κα : DGCohgr((Ñα ×Pα B)(1)) ∼−→ DGCohgr(((g̃α ×Pα B)
R∩g∗×B B)(1))

the Koszul duality equivalences (see Theorem 2.3.11). Consider the diagram:

DGCohgr(Ñ (1))

κBo
²²

L(fjαGm )∗
// DGCohgr((Ñα ×Pα B)(1))

καo
²²

R(fjαGm )∗
oo

DGCohgr((g̃
R∩g∗×B B)(1))

R(dπα,1Gm )∗
//
DGCohgr(((g̃α ×Pα B)

R∩g∗×B B)(1))
L(dπα,1Gm )∗

oo

where the functors are de�ned as in 2.5. Applying Proposition 2.5.4, one obtains isomor-
phisms of functors

{
κα ◦ L(j̃αGm

)∗ ∼= R(π̂α,1Gm
)∗ ◦ κB,

κB ◦R(j̃αGm
)∗ ∼=

(
L(π̂α,1Gm

)∗ ◦ κα
)⊗OB(1)

OB(1)(α)[−1]〈−2〉. (8.2.2)

Now, consider the base change

ρα : (Ñα ×Pα B)(1) → Ñ (1)
α .

We apply the constructions of 2.4 to this base change, with X = B(1), Y = (Pα)(1),
E = (g∗ ×Pα)(1), F = Ñ (1)

α . We denote by

π̂α,2 :
(
(g̃α ×Pα B)

R∩g∗×B B
)(1) → (

g̃α
R∩g∗×Pα Pα

)(1)

the morphism of dg-schemes induced by the base change g̃α ×Pα B → g̃α. We have the
Koszul duality equivalences

κα : DGCohgr((Ñα ×Pα B)(1)) ∼−→ DGCohgr(((g̃α ×Pα B)
R∩g∗×B B)(1)),
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already used above, and

κα : DGCohgr(Ñ (1)
α ) ∼−→ DGCohgr((g̃α

R∩g∗×Pα Pα)(1)).

Consider the diagram

DGCohgr((Ñα ×Pα B)(1))

o κα

²²

R(fραGm )∗ //
DGCohgr(Ñ (1)

α )

o κα

²²

L(fραGm )∗
oo

DGCohgr(((g̃α ×Pα B)
R∩g∗×B B)(1))

R(dπα,2Gm )∗
//
DGCohgr((g̃α

R∩g∗×Pα Pα)(1))
L(dπα,2Gm )∗

oo

where the functors are de�ned as in 2.4. Applying Proposition 2.4.6, one obtains isomor-
phisms of functors {

R(π̂α,2Gm
)∗ ◦ κα ∼= κα ◦R(ρ̃αGm

)∗,
κα ◦ L(ρ̃αGm

)∗ ∼= L(π̂α,2Gm
)∗ ◦ κα.

(8.2.3)

Consider the morphism π̂α. The composition g̃ ↪→ g̃α ×Pα B ³ g̃α coincides with the
morphism π̃α. Hence we have π̂α = π̂α,2 ◦ π̂α,1. It follows that R(π̂α,Gm)∗ ∼= R(π̂α,2Gm

)∗ ◦
R(π̂α,1Gm

)∗ and L(π̂α,Gm)∗ ∼= L(π̂α,1Gm
)∗ ◦ L(π̂α,2Gm

)∗ (see isomorphisms (1.7.7) and
(1.7.8)). Hence formulas (8.2.2) and (8.2.3) allow us to compute (κB)−1 ◦ R

gr
α ◦ κB =

(κB)−1 ◦ L(π̂α,Gm)∗ ◦R(π̂α,Gm)∗ ◦ κB. Namely, we obtain isomorphisms

R(π̂αGm
)∗ ◦ κB ∼= κα ◦R(ρ̃αGm

)∗ ◦ L(j̃αGm
)∗

and

(κB)−1 ◦ L(π̂αGm
)∗ ∼=

(
R(j̃αGm

)∗ ◦ L(ρ̃αGm
)∗ ◦ (κα)−1

)⊗OB(1)
OB(1)(−α)[1]〈2〉.

Hence, �nally,

(κB)−1 ◦Rgr
α ◦ κB ∼=(

R(j̃αGm
)∗ ◦ L(ρ̃αGm

)∗ ◦R(ρ̃αGm
)∗ ◦ L(j̃αGm

)∗
)⊗OB(1)

OB(1)(−α)[1]〈2〉.
Comparing this with the de�nition of S

gr
α in subsection 7.3, one obtains the result.

8.3 Action of the braid group on DGCohgr(Ñ (1))

Recall that we have de�ned in subsection 5.2, respectively 7.3, an action of the group B′
aff

on the category DbCohGm(Ñ (1)), respectively DGCohgr(Ñ (1)). Consider the diagram:

DGCohgr(Ñ (1))

η

²²

Kgr
b // DGCohgr(Ñ (1))

η

²²

DbCohGm(Ñ (1))
KGmb // DbCohGm(Ñ (1))

where η is the functor de�ned in subsection 4.2 (see also equation (2.3.6)).
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Lemma 8.3.1. For any M∈ DGCohgr(Ñ (1)), there exists an isomorphism11

η ◦Kgr
b (M) ∼= KGm

b ◦ η(M).

Proof. It is su�cient to prove the isomorphism on a set of generators of B′
aff . For b = θx

(x ∈ X), the result follows from the fact that the Koszul duality κB commutes with the
twist by a line bundle on B(1). Hence we only have to prove it for b = Tα for α ∈ Φ. Let
us �x such an α. Recall the distinguished triangle of functors of Lemma 6.2.4. It induces
a triangle

Id〈1〉 → Shiftρ ◦ (κB)−1 ◦Rgr
α ◦ κB ◦ Shift−ρ〈−1〉 → Kgr

Tα
.

Using the isomorphism provided by Theorem 8.2.1, we obtain a triangle

Id〈1〉 → Sgr
α [1]〈1〉 → Kgr

Tα
.

For any M in DGCohgr(Ñ (1)) we thus have a distinguished triangle

η(M)[−1]〈1〉 → η ◦Sgr
α (M)〈1〉 → η ◦Kgr

Tα
(M) (8.3.2)

(observe that η(F〈j〉) = η(F)[−j]〈j〉). By diagram (7.3.3) we have η ◦S
gr
α = SGm

α ◦ η.
Now the exact sequence of Gm-equivariant sheaves (5.3.4) induces a distinguished tri-

angle of functors
SGm

α 〈1〉 → KGm
Tα

→ Id〈1〉. (8.3.3)
Identifying triangle (8.3.2) with triangle (8.3.3) applied to η(M), one obtains the isomor-
phisms for b = Tα.

Remark 8.3.4. It follows in particular from this lemma that the diagrams (7.3.3) and (7.3.4),
with α replaced by α0, are commutative on objects, i.e. for any M in DGCohgr(Ñ (1))
there exists an isomorphism η ◦ S

gr
α0(M) ∼= SGm

α0
◦ η(M), and similarly for the second

diagram.

8.4 End of the proof of Theorem 4.4.3
In this subsection we �nally give a proof of the existence statement in (‡) (see 8.1), by
induction on `(w).

To begin induction, let us consider some w ∈ W 0 with `(w) = 0. Write w = v · tµ. We
have seen in Corollary 7.2.2 that Lw

∼= j∗OB(1)(−ρ + µ)[`(v)]. Let us set

Lgr
w := j∗OB(1)(−ρ + µ)[`(v)]〈N − `(v)〉,

where N = #R+, and j∗OB(1) is endowed with its natural (trivial) Gm-equivariant struc-
ture. It is clear that Lgr(w • 0) := ε̃B0 (Lgr

w ) is a lift of L(w • 0) as a graded module (see the
proof of Proposition 7.2.3). As in subsection 3.1 we denote by TB(1) the tangent sheaf of

11It is not clear from our proof whether or not these isomorphisms yield an isomorphism of functors.
This is not important for our arguments, hence we will not consider this issue.
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B(1). By de�nition of Koszul duality (see equation (3.1.2)) and the remarks on shifts at
the end of subsection 8.1 we have

κB
(
ζ(Lgr

w )⊗OB(1)(−ρ)
) ∼= κB

(OB(1)(−2ρ + µ)[N ]〈N − `(v)〉)
∼= Λ(T ∨B(1))⊗OB(1)

OB(1)(µ)〈−N − `(v)〉.

We set
Pgr

τ0w := Λ(T ∨B(1))⊗OB(1)
OB(1)(µ)〈−N − `(v)〉.

It follows from (6.4.6) that P gr(τ0w • 0) := γ̃B0 (Pgr
τ0w) is a lift of P (τ0w • 0) as a graded

module (see also the proof of Proposition 6.5.1). Moreover, isomorphism (8.1.1) is true by
de�nition. This concludes the proof in the case `(w) = 0.

Now, consider some w ∈ W 0, and assume the result is known for all v ∈ W 0 with
`(v) < `(w). For all such v, the lifts Lgr(v • 0) of L(v • 0) and P gr(τ0v • 0) of P (τ0v • 0)
are �xed such that, if Lgr

v , respectively Pgr
τ0v is the object (unique up to isomorphism)

of DbCohGm

B(1)(Ñ (1)), respectively DGCohgr((g̃
R∩g∗×B B)(1)), such that ε̃B0 (Lgr

v ) = Lgr(v • 0),
respectively γ̃B0 (Pgr

τ0v) ∼= P gr(τ0v•0), isomorphism (8.1.1) is satis�ed. Choose some δ ∈ Φaff

such that, for s = sδ, one has ws ∈ W 0 and ws•0 < w •0, i.e. `(ws) < `(w). In particular
we have

κB
(
ζ(Lgr

ws)⊗OB(1)(−ρ)
) ∼= Pgr

τ0ws.

Applying R
gr
δ and using Theorem 8.2.1, it follows that

κB(Sgr
δ ◦ ζ(Lgr

ws)⊗OB(1)(−ρ))[1]〈1〉 ∼= R
gr
δ Pgr

τ0ws〈−1〉. (8.4.1)

As in the proof of Proposition 6.5.1, the image under the forgetful functor For :
DbModfg,gr

0 ((Ug)0) → DbModfg
0 ((Ug)0) of γ̃B0 (Rgr

δ Pgr
τ0ws) is RδP (τ0ws • 0). Hence there

exists a lift P gr(τ0w • 0) of P (τ0w • 0), and graded �nite dimensional vector spaces Vτ0v

(v ∈ W 0, `(v) < `(w)) such that

γ̃B0 (Rgr
δ Pgr

τ0ws)〈−1〉 ∼= P gr(τ0w • 0)⊕ ( ⊕

v∈W0

`(v)<`(w)

P gr(τ0v • 0)⊗| Vτ0v

)
(8.4.2)

(see again the proof of Proposition 6.5.1).
Now let us consider the left hand side of equation (8.4.1). By diagram (7.3.4) and

Remark 8.3.4 we have S
gr
δ ◦ ζ(Lgr

ws) ∼= ζ ◦ SGm
δ (Lgr

ws). As in the proof of Proposition
7.2.3, the image of ε̃B0 (SGm

δ Lgr
ws) under the forgetful functor For : DbModfg,gr

0 ((Ug)0) →
DbModfg

0 ((Ug)0) is the module Qδ(ws). Hence, again as in the proof of Proposition 7.2.3,
there is a lift Lgr(w • 0) of L(w • 0) as a graded module, an object Qgr of DbCohGm

B(1)(Ñ (1)),
and an isomorphism

ε̃B0 (SGm
δ Lgr

ws) ∼= Lgr(w • 0)〈−1〉 ⊕ ε̃B0 (Qgr).

Let Lgr
w be the object of DbCohGm

B(1)(Ñ (1)) such that ε̃B0 (Lgr
w ) = Lgr(w • 0). Then, as ε̃B0 is

fully faithful, Lgr
w is a direct factor of SGm

δ Lgr
ws〈1〉. Hence, using the remarks on the shifts
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at the end of subsection 8.1, κB(ζ(Lgr
w )⊗OB(1)

OB(1)(−ρ)) is a direct factor of the left hand
side of equation (8.4.1), thus also of its right hand right.

Let us de�ne
Pgr

τ0w := κB(ζ(Lgr
w )⊗OB(1)

OB(1)(−ρ)). (8.4.3)
To conclude the proof of the induction step, it is enough to prove that

γ̃B0 (Pgr
τ0w) ∼= P gr(τ0w • 0). (8.4.4)

By de�nition, Pgr
τ0w is a direct factor of the object appearing in equation (8.4.1). Hence

γ̃B0 (Pgr
τ0w) is a direct factor of the object appearing in (8.4.2). In particular, it is concen-

trated in cohomological degree 0, i.e. it is a graded (Ug)0̂0-module. Let us show that it
is indecomposable. By Proposition 5.6.2(i), it is enough to show that its endomorphism
algebra is local. This algebra is isomorphic to

EndDbModfg,gr
0 ((Ug)0)

(γ̃B0 (Pgr
τ0w)) ∼= End

DGCohgr((eg R∩g∗×B B)(1))
(Pgr

τ0w)

∼= EndDbCohGm
B(1)

( eN (1))
(Lgr

w )

∼= EndDbModfg,gr
0 ((Ug)0)

(Lgr(w • 0))

∼= k

Here the �rst isomorphism follows from the fact that γ̃B0 is fully faithful. The second one
follows from de�nition (8.4.3), and the fact that κB and ζ are fully faithful. The third
isomorphism follows from the de�nition of Lgr

w and the fact that ε̃B0 is fully faithful. It
follows that γ̃B0 (Pgr

τ0w) is an indecomposable graded (Ug)0̂0-module.
By the Krull-Schmidt theorem (see Proposition 5.6.2(ii)), we deduce that γ̃B0 (Pgr

τ0w) is
one of the indecomposable summands appearing in the right hand side of (8.4.2). Hence,
to conclude the proof of (8.4.4) it is enough to prove that there cannot exist some i ∈ Z
and some v ∈ W 0 with `(v) < `(w) such that

γ̃B0 (Pgr
τ0w) ∼= P gr(τ0v • 0)〈i〉.

Let us assume that there exist such an i and such a v. By induction hypothesis we
have P gr(τ0v • 0)〈i〉 ∼= γ̃B0 (Pgr

τ0v〈i〉), and

Pgr
τ0v〈i〉 ∼= κB(ζ(Lgr

v )⊗OB(1)
OB(1)(−ρ))〈i〉.

Hence, as γ̃B0 , κB and ζ are fully faithful, by de�nition (8.4.3) we have

Lgr
w
∼= Lgr

v [−i]〈i〉.

Applying ε̃B0 one obtains
Lgr(w • 0) ∼= Lgr(v • 0)[−i]〈i〉,

which is a contradiction as v 6= w.
This concludes the proof of (‡), hence also of Theorem 4.4.3.
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8.5 Remark on other alcoves

In Theorem 4.4.3, the objects Lw, respectively Pw, correspond to simple, respectively
projective, modules for any choice of a weight λ ∈ C0, i.e. they are the simple, respec-
tively projective, objects for the t-structure on the category DbCohB(1)(Ñ (1)), respectively
DGCoh((g̃

R∩g∗×B B)(1)), assigned to the fundamental alcove (see [Bez06b, 2.1.5] for details
on this point of view). We could also consider the simple, respectively projective, objects
for the t-structure assigned to another alcove C1, i.e. the objects which are sent by the
equivalence εBλ , respectively γ̂Bλ , to the simple, respectively projective, modules, for any
λ ∈ C1 ∩ X. The di�erent t-structures are related by the braid group action, which com-
mutes with κB (see Lemma 8.3.1). Hence a statement similar to Theorem 4.4.3 is true for
any alcove.

More precisely, let C be the intersection of an alcove with X. Let y ∈ Waff be the unique
element such that C = y • C0. Then there exist unique objects Ly

w ∈ DbCohB(1)(Ñ (1)),
Py

w ∈ DGCoh((g̃
R∩g∗×B B)(1)) (w ∈ W 0) such that for any λ ∈ C and w ∈ W 0 we have

{
εBλ (Ly

w) ∼= L(w • (y−1 • λ))
γ̂Bλ (Py

w) ∼= P (w • (y−1 • λ))
. (8.5.1)

(Observe that, in this formula, y−1 • λ ∈ C0.) Indeed, there is an element y ∈ B′
aff such

that γBλ ∼= γBy−1•λ ◦ Jy for any λ ∈ C (see [Bez06b] and [BMR06, section 2] for details).
Here y is not unique, but the functor Jy is clearly unique (up to isomorphism). Then, if we
set Ly

w := K−1
y (Lw) and Py

w := (Jdg
y )−1(Pw), one easily checks that isomorphisms (8.5.1)

are satis�ed.
Also, if we de�ne Ly,gr

w := (KGm
y )−1(Lgr

w ) and Py,gr
w := (Jdg,gr

y )−1(Pgr
w ), these objects are

lifts of the Ly
w's and Py

w's, and we have isomorphisms κ−1
B Py,gr

τ0w
∼= ζ(Ly,gr

w )⊗OB(1)
OB(1)(−ρ)

for all w ∈ W 0. (The isomorphisms follow from the fact that κB and ζ commute with the
braid group action, see Lemma 8.3.1.)

Similarly, for any λ ∈ C there are �graded versions� of the functors εBλ , γ̂Bλ , with
properties similar to those of ε̃B0 , γ̃B0 , and statements similar to statement (‡) of subsection
8.1.

9 Application to Koszulity of the regular blocks of (Ug)0

In this section we derive from Theorem 4.4.3 (or rather from the equivalent statement
(‡) of 8.1) that, for λ ∈ C0, the category Modfg

0 ((Ug)λ) is �controlled� by a Koszul ring,
whose Koszul dual controls the category Modfg

λ ((Ug)0). These results can be considered
as counterparts in positive characteristic of the results in [Soe90] and [BGS96]. They also
extend some results of [AJS94, section 18].

We deduce this property from a general criterion for a graded ring to be Morita equiv-
alent to a Koszul ring, proved in 9.2.
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9.1 More results on graded algebras
Let A by a Z-graded ring. Recall the notation of 5.6. Following [NvO82, A.I.7], if M
is in Modgr(A), we de�ne the graded radical radgr(M) of M to be the intersection of all
maximal graded submodules of M . With this de�nition, radgr has all the usual properties
of the radical (see [NvO82, A.I.7.4]). In particular, if A is considered as an A-module via
left multiplication, radgr(A) is a graded two-sided ideal of A, and

radgr(A) =
⋂

X simple
graded A-module

Ann(X). (9.1.1)

From now on in this section we restrict to the following case. Let V be a graded �nite
dimensional k-vector space, concentrated in positive degrees. Let S(V ) be the symmetric
algebra of V . It is naturally a graded k-algebra, concentrated in non-negative degrees. We
assume that A is a graded S(V )-algebra, which is �nitely generated as a S(V )-module.
Note in particular that the grading of A is bounded below.

Let us de�ne the �nite dimensional graded k-algebra A := A/(V · A). By Theorem
5.6.1(ii) and Corollary 5.6.4(i), the simple A-modules are exactly the images of the simple
graded A-modules under the forgetful functor. Comparing (9.1.1) with [CR81, 5.5], we
deduce that

rad(A) = radgr(A). (9.1.2)

A proof entirely similar to that of [CR81, 5.22] yields the following result.

Proposition 9.1.3. (i) The morphism A → A induces an isomorphism of graded rings
A/radgr(A) ∼= A/radgr(A).

(ii) For k À 0, (radgr(A))k ⊆ V ·A.

We denote by HomA,Z(M, N) the morphisms in the abelian category Modgr(A), and
by Exti

A,Z(M, N) the corresponding extension groups. By [AJS94, E.6] we also have:

Lemma 9.1.4. (i) Let M ∈ Modfg,gr(A). If M is indecomposable in Modfg,gr(A), then
EndA,Z(M) is a local algebra.

(ii) The Krull-Schmidt theorem holds in Modfg,gr(A).

If L is a simple graded A-module, then V ·L = 0. Indeed, V ·L is a graded submodule
of L and, as L is bounded below and V is in positive degrees, we cannot have L = V · L.
Hence the simple graded A-modules are the simple graded A-modules.

Let L1, . . . , Ln be representatives of the simple non-graded A-modules, and, for i =
1 . . . r, let Lgr

i be a lift of Li as a graded A-module (it exists by Theorem 5.6.1(ii)). Us-
ing Corollary 5.6.4(i) and Theorem 5.6.1(iv), the Li〈j〉 are representatives of the simple
graded A-modules, hence also of the simple graded A-modules. As the ring A/rad(A)
is semi-simple (see e.g. [CR81, 5.19]), using (9.1.2), Proposition 9.1.3(i) and Corollary
5.6.4(ii), every graded A/radgr(A)-module is semi-simple in Modfg,gr(A/radgr(A)). Using
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also Lemma 9.1.4, every object of Modfg,gr(A) has a projective cover. For i = 1 . . . r, let
P gr

i be a projective cover of Lgr
i . We have

Lgr
i = P gr

i /radgr(P gr
i ). (9.1.5)

We will �nally need the following result. For M in Modgr(A) and i ≥ 0, we de�ne
radgr,i(M) by induction, setting radgr,0(M) = M , and radgr,i(M) = radgr(radgr,i−1(M)) if
i ≥ 1.

Lemma 9.1.6. Let M be an object of Modfg,gr(A).
(i) radgr(M) = radgr(A) ·M .
(ii)

⋂
i≥0 radgr,i(M) = {0}.

Proof. The proof of (i) is similar to that of [CR81, 5.29]. As A is noetherian we deduce,
by induction on i, that radgr,i(M) = (radgr(A))i ·M for i ≥ 0. By (ii) of Proposition 9.1.3,
for k À 0 we have (radgr(A))k ⊂ V · A. Hence

⋂
i≥0 radgr,i(M) ⊆ ⋂

i≥0(V
i ·M). As M is

�nitely generated over A, it is bounded below. As V is concentrated in positive degrees,
we deduce that

⋂
i≥0 V i ·M = {0}. This proves (ii).

9.2 A Koszulity criterion
Recall that a Koszul ring A =

⊕
n≥0 An is a non-negatively graded ring such that A0 is

a semi-simple ring and the graded left A-module A0
∼= A/A>0 admits a graded projective

resolution
· · · → P 2 → P 1 → P 0 → A0 → 0

such that P i is generated by its degree i part, for all i. We refer to [BGS96] for generalities
on such rings. If A is a Koszul ring, then its dual Koszul ring is the graded ring12

A! :=
(⊕

n≥0

Extn
A(A0, A0)

)op

(here the Ext-groups are taken in the category of non-graded A-modules). If A1 is an
A0-module of �nite type, then A! is also a Koszul ring.

If A is a (non graded) ring, one says that A admits a Koszul grading if it can be endowed
with a grading which makes it a Koszul ring. If A is artinian, this grading is unique (up
to automorphism) if it exists (see [BGS96, 2.5.2]).

Theorem 9.2.1. Let A, Li, Lgr
i be as in subsection 9.1. Assume one can choose the lifts

Lgr
i such that for i, j = 1, . . . , r,

Extn
A,Z(L

gr
i , Lgr

j 〈m〉) = 0 unless n = m. (9.2.2)

Then there exists a Koszul ring B which is Morita equivalent to A (as a graded ring).
12A Koszul ring is in particular a quadratic ring, and the dual Koszul ring is also the dual quadratic

ring. The de�nition chosen here in easier to state, although it is less concrete.



9. APPLICATION TO KOSZULITY OF THE REGULAR BLOCKS OF (UG)0 159

If L =
⊕n

i=1 Li, the ring B! is isomorphic to
(⊕

n≥0

Extn
A(L,L)

)op

The proof will occupy the rest of this subsection. Assume that the lifts Lgr
i can be

chosen so that (9.2.2) is satis�ed, and let P gr
i be the projective cover of Lgr

i . We begin
with the following lemma.

Lemma 9.2.3. For n ≥ 0 and i = 1 . . . r,

radgr,n(P gr
i )/radgr,n+1(P gr

i )

is a direct sum of simple modules of the form Lgr
j 〈n〉 (j ∈ {1, . . . , r}).

Proof. We prove the result by induction on n ≥ 0. It is clear for n = 0, by (9.1.5). Let
n ≥ 1, and assume it is true for n− 1. The graded A-module radgr,n(P gr

i )/radgr,n+1(P gr
i )

factorizes through an A/radgr(A)-module. Using the remarks before (9.1.5) we deduce
that it is semi-simple, hence a direct sum of modules Lgr

j 〈m〉 (j ∈ {1, . . . , r}, m ∈ Z). The
multiplicity of Lgr

j 〈m〉 is the dimension of HomA,Z(radgr,n(P gr
i )/radgr,n+1(P gr

i ), Lgr
j 〈m〉).

By usual properties of radgr, we have

HomA,Z(radgr,n(P gr
i )/radgr,n+1(P gr

i ), Lgr
j 〈m〉) ∼= HomA,Z(radgr,n(P gr

i ), Lgr
j 〈m〉).

Hence we only have to prove that:

HomA,Z(radgr,n(P gr
i ), Lgr

j 〈m〉) = 0 unless m = n.

Consider the exact sequence

0 → radgr,n(P gr
i ) → radgr,n−1(P gr

i ) → radgr,n−1(P gr
i )/radgr,n(P gr

i ) → 0.

For j ∈ {1, . . . , r} and m ∈ Z, it induces an exact sequence

0 → HomA,Z(radgr,n−1(P gr
i )/radgr,n(P gr

i ), Lgr
j 〈m〉)

λ−→ HomA,Z(radgr,n−1(P gr
i ), Lgr

j 〈m〉) → HomA,Z(radgr,n(P gr
i ), Lgr

j 〈m〉)
µ−→ Ext1A,Z(radgr,n−1(P gr

i )/radgr,n(P gr
i ), Lgr

j 〈m〉).

By usual properties of radgr, the morphism λ is an isomorphism. Hence µ is injective.
Moreover, using induction and property (9.2.2), we have

Ext1A,Z(radgr,n−1(P gr
i )/radgr,n(P gr

i ), Lgr
j 〈m〉) = 0 unless m = n.

This �nishes the proof.



160 CHAPTER III. KOSZUL DUALITY AND UG-MODULES

We de�ne P gr :=
⊕r

i=1 P gr
i . Let B be the algebra

B := HomA(P gr, P gr)op.

As P gr is �nitely generated, B is naturally graded, with n-th component

Bn := HomA,Z(P gr〈n〉, P gr) ∼= HomA,Z(P gr, P gr〈−n〉).
Now we prove, as a corollary of Lemma 9.2.3:

Corollary 9.2.4. The algebra B is non-negatively graded.

Proof. We have to prove that HomA,Z(P gr, P gr〈n〉) = 0 unless n ≤ 0. So, let n ∈ Z, and
let f : P gr → P gr〈n〉 be a non-zero morphism. By Lemma 9.1.6(ii), the set

I := {i ≥ 0 | f(P gr) ⊆ radgr,i(P gr〈n〉)}
is bounded above. Let i = max(I). Then f induces a non-zero morphism g : P gr →(
radgr,i(P gr)/radgr,i+1(P gr)

)〈n〉. By Lemma 9.2.3, radgr,i(P gr)/radgr,i+1(P gr) is a direct
sum of modules of the form Lgr

j 〈i〉. As g is non-zero, we must have n = −i. This proves
the result.

The algebra B is �nitely generated as a S(V )-module, hence noetherian (even as a non-
graded ring). If M is in Modfg,gr(A), then HomA(P gr, M) is naturally a graded B-module
(for all of this, see [AJS94, E.3]). By [AJS94, E.4] we have:

Proposition 9.2.5. The functor
{

Modfg,gr(A) → Modfg,gr(B)
M 7→ HomA(P gr,M)

is an equivalence of abelian categories.

Let us denote by Sgr
i the image of Lgr

i under this equivalence. The graded B-module Sgr
i

is simple, concentrated in degree 0, and one-dimensional over k. Applying the equivalence
of Proposition 9.2.5 to property (9.2.2), one obtains:

Extn
B,Z(S

gr
i , Sgr

j 〈m〉) = 0 unless n = m. (9.2.6)

Lemma 9.2.7. The (non-graded) ring B0 is semi-simple.

Proof. Let Si be the image of Sgr
i under For : Modgr(B) → Mod(B). Using Corollary

9.2.4, the Si are representatives of the simple B0-modules. Hence it is su�cient to prove
that for i, j = 1 . . . r we have Ext1B0

(Si, Sj) = 0. But if

0 → Sj → M → Si → 0 (9.2.8)

is a non-split B0-extension, we can consider M as a graded B-module concentrated in
degree 0, where B acts via the quotient B/B>0

∼= B0. Then (9.2.8) yields a non-split
graded B-extension of Sgr

i by Sgr
j , contradicting (9.2.6).
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Proposition 9.2.9. B is a Koszul ring.

Proof. This follows from [BGS96, 2.1.3], using Corollary 9.2.4, Lemma 9.2.7 and property
(9.2.6).

To conclude the proof of Theorem 9.2.1, we only have to compute B!. The graded
B-module B0 is a direct sum of the simple modules Sgr

i , and for i = 1 . . . n, the module
Sgr

i occurs with multiplicity dim|(HomB,Z(B0, S
gr
i )) = dim|(S

gr
i ) = 1. Hence

(B!)op =
⊕

n

Extn
B(B0, B0) ∼=

⊕
n,m

Extn
B,Z(

⊕

i

Sgr
i ,

⊕

i

Sgr
i 〈m〉).

Using the equivalence of Proposition 9.2.5, we deduce

(B!)op ∼=
⊕
n,m

Extn
A,Z(

⊕

i

Lgr
i ,

⊕

i

Lgr
i 〈m〉) ∼=

⊕
n

Extn
A(L,L).

9.3 First consequences of Theorem 4.4.3
We �rst consider the case λ = 0. We return to the setting of statement (‡) (see subsection
8.1), and choose the lifts Pgr

w , P gr(w • 0) and Lgr
v , Lgr(v • 0) as in the statement. Let

v, w ∈ W 0, and i, j ∈ Z. We have a series of isomorphisms:

HomDbModfg,gr
0 ((Ug)0)

(
Lgr(v • 0), Lgr(w • 0)[i]〈j〉)

∼= Hom
DGCohgr( eN (1))

(
ζ(Lgr

v ), ζ(Lgr
w )[i + j]〈j〉)

∼= Hom
DGCohgr( eN (1))

(
ζ(Lgr

v )⊗OB(1)(−ρ),
ζ(Lgr

w )⊗OB(1)(−ρ)[i + j]〈j〉)

∼= Hom
DGCohgr((eg R∩B)(1))

(
κB(ζ(Lgr

v )⊗OB(1)(−ρ)),

κB(ζ(Lgr
w )⊗OB(1)(−ρ))[i + j]〈j〉)

∼= Hom
DGCohgr((eg R∩B)(1))

(Pgr
τ0v,Pgr

τ0w[i + j]〈j〉)

∼= HomDbModfg,gr
0 ((Ug)0)

(
P gr(τ0v • 0), P gr(τ0w • 0)[i + j]〈j〉).

The �rst of these isomorphisms follows from Theorem 7.2.1 and Lemma 4.2.1. The second
one is easy. The third isomorphism follows from the fact that κB is an equivalence (Theorem
2.3.11). The fourth one follows from (8.1.1). Finally, the �fth isomorphism follows from
Theorem 6.3.4.

As the objects P gr(−) are projective, from these isomorphisms we deduce:

Proposition 9.3.1. Keep the assumptions of Theorem 4.4.3. Let v, w ∈ W 0, and i, j ∈ Z.
We have

HomDbModfg,gr
0 ((Ug)0)

(Lgr(v • 0), Lgr(w • 0)[i]〈j〉) = 0 unless i = −j.
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Using the isomorphisms
⊕

i≥0

Exti
(Ug)0(L(v • 0), L(w • 0)) ∼=

⊕

i,j∈Z
HomDbModfg,gr

0 ((Ug)0)
(Lgr(v • 0), Lgr(w • 0)[i]〈j〉)

and

Hom(Ug)0(P (v • 0), P (w • 0)) ∼=
⊕

j∈Z
HomDbModfg,gr

0 ((Ug)0
(P gr(v • 0), P gr(w • 0)〈j〉),

we also deduce the following:

Proposition 9.3.2. Keep the assumptions of Theorem 4.4.3.
(i) Let v, w ∈ W 0. There exists an isomorphism

⊕

i≥0

Exti
(Ug)0(L(v • 0), L(w • 0)) ∼= Hom(Ug)0(P (τ0v • 0), P (τ0w • 0)).

(ii) Let L :=
⊕

w∈W 0 L(w•0) and P :=
⊕

w∈W 0 P (w•0). There exists an isomorphism
of algebras ⊕

i≥0

Exti
(Ug)0(L,L) ∼= End(Ug)0(P ).

9.4 The ring A eN

Recall the vector bundle M0 on the formal neighborhood of B(1) in g̃(1) de�ned in sub-
section I.1.2 (here we use the identi�cation of this formal neighborhood with the formal
neighborhood of B(1) × {0} in g̃(1) ×h∗(1) h∗). Let M0

0 be the restriction of M0 to the
formal neighborhood of B(1) in Ñ (1). This is the splitting bundle involved in the de�nition
of equivalence εB0 .

In [BM] (see also [Bez06b]), the authors prove the following:

Theorem 9.4.1. There exists a vector bundleM eN on Ñ (1), whose restriction to the formal
neighborhood of B(1) is isomorphic to M0

0. Moreover, this vector bundle can be endowed
with a Gm-equivariant structure, compatible with the action de�ned in (5.2.1).

Let us consider the algebra

A eN := Γ(Ñ (1), EndOfN (1)
(M eN )).

This a S(g(1))-algebra, �nitely generated as a S(g(1))-module (because the natural mor-
phism Ñ (1) → g∗(1) is proper). For any S(g(1))-algebra A, we denote by Modfg

0 (A) the
category of �nitely generated A-modules, on which the image of g(1) acts nilpotently. By
de�nition we have an equivalence of categories

Modfg
0 (A eN ) ∼= Modfg

0 ((Ug)0). (9.4.2)
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9.5 Koszulity of regular blocks of (Ug)0

One of the main results of this chapter is the following:

Theorem 9.5.1. Assume p > h is large enough so that Lusztig's conjecture is true, and
let λ ∈ X be regular.

There exists a Koszul ring BB, which is naturally a S(g(1))-algebra, and equivalences of
categories

Modfg
0 (BB) ∼= Modfg

0 ((Ug)λ),

Modfg((BB)!) ∼= Modfg
λ ((Ug)0).

In particular, the ring (Ug)λ̂
0 can be endowed with a Koszul grading.

Remark 9.5.2. The fact that the category Modfg
λ ((Ug)0) is equivalent to the category of

(non-graded) modules over a Koszul ring was proved in [AJS94, 18.21]. Their proof relies
on an explicit computation of the Poincaré polynomial of (Ug)λ̂

0 . The fact that the dual
Koszul ring �controls� the category Modfg

0 ((Ug)λ) is new, however.

Proof of Theorem 9.5.1. Let us consider the �rst statement. As C0 is a fundamental do-
main for the action of Waff on the set of regular integral weights, we can assume λ ∈ C0.
Then, as the category Modfg

λ ((Ug)0) (and, similarly, Modfg
0 ((Ug)λ)) does not depend, up

to equivalence, on the choice of λ ∈ C0 (use translation functors), we can assume λ = 0.
By Theorem 9.4.1, the algebra A eN can be endowed with a grading. Let A+

eN be A eN with
the grading provided by this theorem. We de�ne the category Modfg,gr

0 (A+
eN ) as above. The

choice of the Gm-equivariant structure in subsection 7.2 was arbitrary. From now on we
choose as this structure the restriction of the Gm-equivariant structure of Theorem 9.4.1.
Then we have by de�nition an equivalence

Modfg,gr
0 (A+

eN ) ∼= Modfg,gr
0 ((Ug)0). (9.5.3)

Now, let A−eN be A eN with the opposite grading, de�ned by (A−eN )n := (A+
eN )−n. This

algebra is a �nite S(g(1))-algebra, where g(1) is in degree 2. There is a natural equivalence
of categories

Modgr(A+
eN ) ∼= Modgr(A−eN ) (9.5.4)

sending a graded module to the module with the opposite grading. Hence, using equivalence
(9.5.3) together with Proposition 9.3.1, the assumptions of Theorem 9.2.1 are satis�ed by
the graded ring A−eN . It follows that there exists a Koszul ring BB, Morita equivalent to
A−eN . By construction, using equivalence (9.4.2), the �rst equivalence of the theorem is
satis�ed.

Again by Theorem 9.2.1 and equivalence (9.4.2), with the notation of Proposition 9.3.2,
the dual ring (BB)! is isomorphic to

(⊕
n

Extn
(Ug)0(L,L)

)op
.
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(Here we have also used [BMR08, 3.1.7] to identify the Ext groups in the di�erent cate-
gories.) By Proposition 9.3.2(ii), this ring is isomorphic (as a non-graded ring) to the ring
(End(Ug)0(P ))op, which is Morita equivalent to (Ug)0̂0. This gives the second equivalence.

Finally, the second assertion of the theorem follows from the second equivalence (and
the fact that B!

B is Koszul), using [AJS94, F.3].

10 Parabolic analogues: Koszulity of singular blocks of (Ug)0

In this section we extend the main results of sections 8 and 9 to the case of a singular
weight.

10.1 Review of some results of [BMR06]
Let P ⊂ G be a standard parabolic subgroup, and P := G/P be the associated �ag variety.
Let p be the Lie algebra of P , let ρP be the half sum of the positive roots of the Levi of P ,
and let NP := dim(P). Recall the variety g̃P introduced in subsection I.1.2. Let us also
consider the variety

ÑP := T ∗P = {(X, gP ) ∈ g∗ × P | X|g·p = 0}.
We have already considered this variety in (7.3.1) in the special case P = Pα. Under the
isomorphism g ∼= g∗, g̃P identi�es with the orthogonal of ÑP in g∗ × P. Hence we have a
Koszul duality (see Theorem 2.3.11):

κP : DGCohgr(Ñ (1)
P ) ∼−→ DGCohgr((g̃P

R∩g∗×P P)(1)).

In this subsection we give a representation-theoretic interpretation of both of these
categories. First, choose a weight µ ∈ X, on the re�ection hyperplanes corresponding to
the parabolic P , and not on any other re�ection hyperlane (for Waff). A particular case of
Theorem 3.3.15 gives an equivalence of categories

γ̂Pµ : DGCoh((g̃P
R∩g∗×P P)(1)) ∼−→ DbModfg

µ ((Ug)0).

The representation-theoretic interpretation of DGCohgr(Ñ (1)
P ) is given by the results of

[BMR06, 1.10]. Let XP be the sublattice of X consisting of the λ ∈ X such that 〈λ, α∨〉 = 0
for any root α of the Levi of P . For λ ∈ XP , let Dλ

P := OP(λ) ⊗OP DP ⊗OP OP(−λ) be
the sheaf of twisted di�erential operators on P (as in loc. cit .). Let λ be a regular weight
in XP . We will assume13 that

RiΓ(Dλ
P) = 0 for i > 0. (10.1.1)

Then we de�ne
Uλ
P := Γ(Dλ

P).
13This condition is satis�ed in particular if char(|) is greater than an explicitly computable bound

depending on G and λ (see [BMR06, 1.10.9(ii)]).
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We denote by Modfg
0 (Uλ

P) the category of �nitely generated Uλ
P -modules on which

the central subalgebra Γ(Ñ (1)
P ,O eN (1)

P
) (the image of the center of Dλ

P) acts with trivial
generalized character. By [BMR06, 1.10.4] we have:

Theorem 10.1.2. Assume (10.1.1) is satis�ed. There exists an equivalence of categories

DbCohP(1)(Ñ (1)
P ) ∼−→ DbModfg

0 (Uλ
P).

This theorem gives a representation-theoretic interpretation for DGCohgr(Ñ (1)
P ). As in

Theorem I.1.2.1, the equivalence of Theorem 10.1.2 depends on the choice of a splitting
bundle. We choose it as in [BMR06, 1.10.3], and denote by ΥP

λ the equivalence associated
to λ. Let us remark that for P = B we have Uλ

B = (Ug)λ, but ΥB
λ = εBλ−pρ (see [BMR06,

1.10.5], and compare e.g. with the proof of Lemma I.1.4.1). We deduce (see the formula
at the end of I.1.2):

ΥB
λ (F) = εBλ (F ⊗Oeg(1)

Oeg(1)(−ρ)). (10.1.3)

There is a natural morphism of algebras φλ
P : (Ug)λ → Uλ

P , coming from the action of
G on P (see [BMR06, 1.10.7]). We denote by (φλ

P)∗ : DbModfg
0 (Uλ

P) → DbModfg
0 ((Ug)λ)

the corresponding �restriction� functor. Consider the diagram

Ñ ÑP ×P B? _
jPoo ρP // // ÑP ,

where jP is the natural embedding, and ρP is induced by the projection πP : B → P. Then
by [BMR06, 1.10.7] the following holds:

Proposition 10.1.4. The following diagram is commutative:

DbCohP(1)(Ñ (1)
P )

ΥPλ
∼ //

(jP )∗(ρP )∗

²²

DbModfg
0 (Uλ

P)

(φλ
P )∗

²²

DbCohB(1)(Ñ (1))
ΥBλ
∼ // DbModfg

0 ((Ug)λ).

10.2 Koszul duality for singular blocks
We choose λ and µ as in subsection 10.1, and assume moreover that µ is in the closure of
the alcove of λ. Let y ∈ Waff be the unique element such that λ0 := y−1 • λ ∈ C0. Then
µ0 := y−1 • µ ∈ C0.

For simplicity, in what follows we make the following assumption14:

φλ
P is surjective. (10.2.1)

14In [BMR06, 1.10.9] it is proved that this assumption is satis�ed when char(|) is greater than an
explicit bound depending on G and λ and, moreover, a su�cient condition is given for this to be satis�ed
in arbitrary characteristic. The latter condition is satis�ed if G = SL(n, |) (see [Hum95, 5.5] and [Don90]
or [MvdK92]) or if P = P{α} for a short simple root α (see [BK04, 5.3]).
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It follows from this fact that if L is a simple Uλ
P -module then (φλ

P)∗L is a simple (Ug)λ-
module. Hence, if L has trivial central character, then (φλ

P)∗L ∼= L(w • λ0) for a unique
w ∈ W 0 (see subsection 4.4). In this case, by de�nition we set L = LP(w •λ0). We denote
by Iλ the set of w ∈ W 0 such that LP(w • λ0) is de�ned.

Let W 0
µ ⊂ W 0 by the subset of elements w ∈ W 0 such that w • µ0 is in the upper

closure of w • C0. As in subsection 4.4, Modfg
µ ((Ug)0) is the category of �nitely generated

modules over the algebra (Ug)µ̂
0 (the block of (Ug)0 associated to µ). The simple objects

in this category are the image of the simple G-modules L(w • µ0) for w ∈ W 0
µ . We denote

by P (w • µ0) the projective cover of L(w • µ0).
It is not clear a priori how to determine Iλ in general; this will be part of Theorem

10.2.4 below. However, let us remark already that

#Iλ = #W 0
µ . (10.2.2)

Indeed, the left hand side is the rank of the Grothendieck group K0(Modfg
0 (Uλ

P)), which
is isomorphic, by Theorem 10.1.2, to K0(CohP(1)(Ñ (1)

P )) ∼= K(P), while the right hand
side is the rank of K0(Modfg

µ ((Ug)0)), which is isomorphic to K0(Modfg
(0,µ)(Ug)), hence, by

Theorem I.1.2.1, to K0(CohP(1)(g̃(1)
P )) ∼= K(P).

As in subsection 6.3, the algebra (Ug)µ̂
0 can be endowed with a grading, and there exists

a fully faithful triangulated functor commuting with internal shifts

γ̃Pµ : DGCohgr((g̃P
R∩g∗×P P)(1)) → DbModfg,gr

µ ((Ug)0),

such that the following diagram commutes:

DGCohgr((g̃P
R∩g∗×P P)(1))

eγPµ //

For
²²

DbModfg,gr
µ ((Ug)0)

For
²²

DGCoh((g̃P
R∩g∗×P P)(1))

bγPµ
∼ // DbModfg

µ ((Ug)0).

One can lift the projective modules P (w • µ0) to graded (Ug)µ̂
0 -modules (uniquely, up to a

shift; see Theorem 5.6.1). Moreover, we have:

Lemma 10.2.3. The functor γ̃Pµ is an equivalence of categories. In particular, the lifts of
the projective modules P (w • µ0) (w ∈ W 0

µ) are in the essential image of γ̃Pµ .

Proof. It is enough to prove that the lifts of the simple (Ug)µ̂
0 -modules are in the essential

image of γ̃Pµ .
Let ν ∈ y • C0, and let ν0 = y−1 • ν. The simple (Ug)µ̂

0 -modules are in the essential
image of the translation functor Tµ

ν : Modfg
ν ((Ug)0) → Modfg

µ ((Ug)0). More precisely, for
w ∈ W 0

µ we have L(w • µ0) = Tµ
ν L(w • ν0). Moreover, by Proposition 5.4.2, we have an
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isomorphism of functors γ̂Pµ ◦R(π̂P)∗ ∼= Tµ
ν ◦ γ̂Bν . The functor R(π̂P)∗ has a natural graded

version, the functor

R(π̂P,Gm)∗ : DGCohgr((g̃
R∩g∗×B B)(1)) → DGCohgr((g̃P

R∩g∗×P P)(1)).

The functor γ̂Bν has a �graded version� γ̃Bν (see subsection 8.5) which, by Remark 6.3.5,
is an equivalence of categories. If, for w ∈ W 0

µ , Mw is the inverse image under γ̃Bν of a
lift of L(w • ν0), then one easily checks that R(π̂P,Gm)∗Mw is sent by γ̃Pµ to a lift of the
simple module L(w • µ0) ∈ Modfg

µ ((Ug)0). This concludes the proof.

Similarly, as in subsection 7.2, the completion of the algebra Uλ
P with respect to the

trivial central character can be endowed with a Gm-equivariant structure, and there exists
a fully faithful functor commuting with internal shifts

Υ̃P
λ : DbCohGm

P(1)(Ñ (1)
P ) → DbModfg,gr

0 (Uλ
P),

such that the following diagram commutes:

DbCohGm

P(1)(Ñ (1)
P )

eΥPλ //

For
²²

DbModfg,gr
0 (Uλ

P)

For

²²

DbCohP(1)(Ñ (1)
P )

ΥPλ
∼ // DbModfg

0 (Uλ
P).

The simple objects in the category Modfg
0 (Uλ

P) are the LP(w • λ0) for w ∈ Iλ. They can
be lifted to graded modules (uniquely, up to a shift). We will prove below that the lifts
of the simple modules are in the essential image of Υ̃P

λ . In particular, this functor is an
equivalence.

Finally, as in subsection 4.2, there exists a fully faithful functor

ζP : DbCohGm

P(1)(Ñ (1)
P ) → DGCohgr(Ñ (1)

P )

with the same properties as ζ.
The following theorem is a �parabolic analogue� of Theorem 4.4.3.

Theorem 10.2.4. Assume p > h is large enough so that Lusztig's conjecture is true.
Assume moreover that (10.1.1) and (10.2.1) are satis�ed.

(i) We have Iλ = τ0W
0
µ , and the lifts of the simple modules are in the essential image

of Υ̃P
λ .

(ii) There is a unique choice of the lifts15 P gr(v • µ0) (v ∈ W 0
µ), Lgr

P (u • λ0) (u ∈ Iλ)
such that, if Qy,gr

P,v , resp. Ly,gr
P,u is the object of DGCohgr((g̃P

R∩g∗×P P)(1)), respectively
DbCohGm

P(1)(Ñ (1)
P ), such that P gr(v • µ0) ∼= γ̃Pµ (Qy,gr

P,v ), respectively Lgr
P (u • λ0) ∼= Υ̃P

λ (Ly,gr
P,u),

for all w ∈ W 0
µ we have in DGCohgr(Ñ (1)

P ):

κ−1
P Qy,gr

P,w
∼= ζP(Ly,gr

P,τ0w)⊗OP(1)
OP(1)(2ρP − 2ρ). (10.2.5)

15A priori, these lifts depend on the choice of λ, µ, i.e. on y, although it does not appear in the notation.
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Proof. We prove (i) and (ii) simultaneously. We choose the objects Py,gr
w , Ly,gr

w (w ∈ W 0)
as in subsection 8.5 (hence as in Theorem 4.4.3 if y = 1). Here, to avoid confusion, we
change the notation Py,gr

w in Qy,gr
w . As for Theorem 4.4.3, the unicity statement is easy to

prove, and we concentrate on the existence of the lifts.
As above (and in subsection I.1.1), let π̃P : g̃ → g̃P be the natural morphism. It induces

a morphism of dg-schemes (see (5.4.1))

π̂P : (g̃
R∩g∗×B B)(1) → (g̃P

R∩g∗×P P)(1).

By Proposition 5.4.2, we have an isomorphism of functors

T λ
µ ◦ γ̂Pµ ∼= γ̂Bλ ◦ L(π̂P)∗. (10.2.6)

By adjunction, and using equation (4.3.2), we have for w ∈ W 0
µ :

T λ
µ P (w • µ0) ∼= P (w • λ0). (10.2.7)

The functor L(π̂P)∗ has a natural graded version, the functor

L(π̂P,Gm)∗ : DGCohgr((g̃P
R∩g∗×P P)(1)) → DGCohgr((g̃

R∩g∗×B B)(1)).

For w ∈ W 0
µ , we de�ne P gr(w •µ0) as the unique lift of P (w •µ0) such that, if Qy,gr

P,w is the
object of DGCohgr((g̃P

R∩g∗×P P)(1)) such that P gr(w • µ0) ∼= γ̃Pµ (Qy,gr
P,w) (such an object

exists by Lemma 10.2.3), we have

Qy,gr
w 〈N −NP〉 ∼= L(π̂P,Gm)∗Qy,gr

P,w. (10.2.8)

Such a lift exists thanks to isomorphisms (10.2.6) and (10.2.7).
The morphisms jP and ρP induce functors

(jP,Gm)∗ : DbCohGm

B(1)((ÑP ×P B)(1)) → DbCohGm

B(1)(Ñ (1)),

(ρP,Gm)∗ : DbCohGm

P(1)(Ñ (1)
P ) → DbCohGm

B(1)((ÑP ×P B)(1)).

Consider the following factorization of π̃P :

g̃
� � eπP,1 // g̃P ×P B

eπP,2 // // g̃P ,

where π̃P,2 is induced by the projection πP . These morphisms induce

π̂P,1 : (g̃
R∩g∗×B B)(1) → ((g̃P ×P B)

R∩g∗×B B)(1),

π̂P,2 : ((g̃P ×P B)
R∩g∗×B B)(1) → (g̃P

R∩g∗×P P)(1).

Then we have
L(π̂P,Gm)∗ ∼= L(π̂P,1,Gm)∗ ◦ L(π̂P,2,Gm)∗.
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Using this equality and the results of subsections 2.4 and 2.5, one can identify the Koszul
dual (with respect to κB, κP) of the functor L(π̂P,Gm)∗. Namely, a proof similar to that
of Theorem 8.2.1 gives an isomorphism

(κB)−1 ◦ L(π̂P,Gm)∗ ◦ κP ∼=
(
R(j̃PGm

)∗ ◦ L(ρ̃PGm
)∗

)⊗B(1) OB(1)(−2ρP )[N −NP ]〈2(N −NP)〉, (10.2.9)

where the functors R(j̃PGm
)∗ and L(ρ̃PGm

)∗ are de�ned as in 2.4 and 2.5.
Now we have introduced all the tools needed for the proof of Theorem 10.2.4. Let

w ∈ W 0
µ . Consider the object

Fw :=
(
κ−1
P Qy,gr

P,w

)⊗OP(1)
OP(1)(2ρ− 2ρP )

of DGCohgr(Ñ (1)
P ). By equation (10.2.9) we have

(
R(j̃PGm

)∗ ◦ L(ρ̃PGm
)∗

)
(Fw) ∼=

(κB)−1 ◦ L(π̂P,Gm)∗(Qy,gr
P,w ⊗P(1) OP(1)(2ρ− 2ρP ))

⊗B(1) OB(1)(2ρP )[NP −N ]〈2(NP −N)〉.

Using de�nition (10.2.8) we deduce
(
R(j̃PGm

)∗ ◦ L(ρ̃PGm
)∗

)
(Fw) ∼= (κB)−1(Qy,gr

w )⊗B(1) OB(1)(2ρ)[NP −N ]〈NP −N〉.

Finally, by (8.1.1) (or its analogue in subsection 8.5 if y 6= 1) we have
(
R(j̃PGm

)∗ ◦ L(ρ̃PGm
)∗

)
(Fw) ∼= ζ(Ly,gr

τ0w〈NP −N〉)⊗B(1) OB(1)(ρ).

We deduce easily that there exists an object Gw inDbCohGm

P(1)(Ñ (1)
P ) such that Fw

∼= ζP(Gw).
Moreover, this object satis�es

(jP,Gm)∗(ρP,Gm)∗Gw
∼= Ly,gr

τ0w ⊗ eN (1) O eN (1)(ρ)〈NP −N〉. (10.2.10)

Consider now Υ̃P
λ (Gw). This is an object of DbModfg,gr

0 (Uλ
P). It follows from equation

(10.2.10), Proposition 10.1.4 and equation (10.1.3) that its image under the composition

DbModfg,gr
0 (Uλ

P) For−−→ DbModfg
0 (Uλ

P)
(φλ
P )∗−−−→ DbModfg

0 ((Ug)λ)

is the simple module L(τ0w • λ0). Hence τ0w ∈ Iλ, and a lift (hence all of them) of
LP(τ0w • λ0) is in the essential image of Υ̃P

λ . If we set Lgr
P (τ0w • λ0) := Υ̃P

λ (Gw) and
Ly,gr
P,τ0w := Gw, then isomorphism (10.2.5) is clearly true in this case.
In particular, we have proved that τ0W

0
µ ⊆ Iλ. As these two sets have the same

cardinality (see equation (10.2.2)), we deduce that they coincide. This �nishes the proof
of Theorem 10.2.4.
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10.3 Koszulity of singular blocks of (Ug)0

The following theorem follows from Theorem 10.2.4, exactly as Theorem 9.5.1 follows from
Theorem 4.4.3.
Theorem 10.3.1. Let λ, µ be as in subsection 10.2, and keep the assumptions of Theorem
10.2.4. There exists a Koszul ring BP , which is naturally a Γ(Ñ (1)

P ,O eN (1)
P

)-algebra, and
equivalences of categories

Modfg
0 (BP) ∼= Modfg

0 (Uλ
P)

Modfg((BP)!) ∼= Modfg
µ ((Ug)0).

In particular, the ring (Ug)µ̂
0 can be endowed with a Koszul grading.

For any ν ∈ X, there exists a weight µ in the orbit W ′
aff • ν, a standard parabolic

subgroup P , and a weight λ which satisfy the hypotheses of Theorem 10.3.1 (see e.g.
[BMR06, 1.5.2]). Hence the ring (Ug)ν̂

0 = (Ug)µ̂
0 can be endowed with a Koszul grading for

p À 0. As there are �nitely many blocks, all the blocks of (Ug)0 can be endowed with a
Koszul grading if p À 0. Finally, by [AJS94, F.4] (in fact the implication we use is trivial)
we deduce:
Corollary 10.3.2. For p À 0, the algebra (Ug)0 can be endowed with a Koszul grading.

10.4 Remark on the choice of λ

Let p > h. Fix a parabolic subgroup P ⊃ B, and let I ⊂ Φ be the corresponding set
of simple roots. In subsection 10.2, we have chosen λ such that the closure of its alcove
contains a weight µ of singularity P , i.e. an integral weight in a facet which is open in
HP := {ν ∈ X ⊗Z R | ∀α ∈ I, 〈ν + ρ, α∨〉 = 0}. It is not clear a priori that any regular
weight λ ∈ XP satis�es this assumption. But it is indeed the case.

Let us check this fact. We can assume that G is quasi simple, i.e. R is irreducible. Let
A0 denote the fundamental alcove, and let w ∈ W ′

aff be such that A = w • A0. What we
have to prove is that A ∩HP contains an integral weight in an open facet of HP , or that
A0 ∩ (w−1 •HP ) contains an integral weight in an open facet of w−1 •HP .

Write w = tνv, with ν ∈ X and v ∈ W . Let λ0 ∈ C0 be such that λ = w • λ0. If α ∈ I
we have

0 = 〈λ, α∨〉 = 〈λ0 + ρ, v−1α∨〉 − 1 + p〈ν, α∨〉.
By de�nition of C0 we have |〈λ0 + ρ, v−1α∨〉| < p. Hence either (i) 〈ν, α∨〉 = 0 and
〈λ0 + ρ, v−1α∨〉 = 1 (in this case v−1α has to be a simple root), or (ii) 〈ν, α∨〉 = 1 and
〈λ0 +ρ, v−1α∨〉 = 1−p (in this case v−1α has to be the opposite of the highest short root).
It follows that A0 ∩ w−1 •HP is the closure of the facet of A0 de�ned by the simple roots
appearing in (i) (if there are any) and the a�ne simple root (if case (ii) occurs). This facet
contains integral weights because it is the image under w of an open facet in HP . This
concludes the proof of the claim.

Hence Theorem 10.3.1 gives a Koszul duality for all algebras Uλ
P .



Chapter IV

Linear Koszul duality in a general
setting

In this chapter we give a �linear Koszul duality� result, in the spirit of Theorem III.2.3.11,
but in a more general context. Let us point out, however, that Theorem III.2.3.11 is not
a particular case of the main result of this chapter. In particular, the equivalence we
construct here is contravariant, while the equivalence of Theorem III.2.3.11 is covariant.

The setting we use for (quasi-)coherent dg-sheaves on dg-schemes is di�erent from the
one of chapter III. In particular in this chapter every sheaf on a scheme is quasi-coherent.
Hence we will not write the superscript �qc� for the corresponding categories.

This chapter is a joint work with Ivan Mirkovi¢. It was prepublished in [MR08].

Introduction
0.1

Koszul duality is an algebraic formalism of Fourier transform which is often deep and
mysterious in applications. For instance, Bezrukavnikov has noticed that it exchanges
monodromy and the Chern class � the same as mirror duality, while the work of Beilin-
son, Ginzburg and Soergel ([BGS96]) has made Koszul duality an essential ingredient of
representation theory.

The case of linear Koszul duality studied here has a simple geometric content which
appears in a number of applications. For two vector subbundles F1, F2 of a vector bundle E
(over a noetherian, integral, separated, regular base scheme), linear Koszul duality provides
a (contravariant) equivalence of derived categories of Gm-equivariant coherent sheaves on
the di�erential graded scheme F1

R∩E F2 obtained as derived intersection of subbundles
inside a vector bundle, and the corresponding object F⊥

1

R∩E∗ F⊥
2 inside the dual vector

bundle.
The origin of the linear duality observation is Kashiwara's isomorphism of Borel-Moore

171
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homology groups
H∗(F1 ∩E F2) ∼= H∗(F⊥

1 ∩E∗ F⊥
2 )

given by a Fourier transform for constructible sheaves. The Iwahori-Matsumoto involution
for graded a�ne Hecke algebras has been realized as Kashiwara's Fourier isomorphism in
equivariant Borel-Moore homology ([EM97]). The standard a�ne Hecke algebras have
analogous realization in K-theory (the K-homology) and this suggested that Kashiwara's
isomorphism lifts to K-homology, but natural isomorphisms of K-homology groups should
come from equivalences of triangulated categories of coherent sheaves.

0.2
Let us describe more precisely the content of this chapter. We start in section 1 with
generalities on sheaves on dg-schemes. In section 2 we construct the relevant Koszul type
complexes, in section 3 we prove the equivalence of categories, and in section 4 we give the
geometric interpretation of this duality. The idea is that the statement is a particular case
of the standard Koszul duality in the generality of dg-vector bundles. However, because of
convergence problems for spectral sequences, we are able to make sense of this duality only
for the dg-vector bundles with at most 2 non-zero terms. Furthermore, the constructions
would simplify if we were not interested in applications in positive characteristic, as in
characterististic zero one could think of the Kosul complex of a vector bundle V as the
symmetric algebra of the acyclic complex V Id−→ V (where the �rst term is in degree −1,
and the second one in degree 0).

0.3
In a sequel to [MR08] we will show that the linear Koszul duality in K-homology is indeed
a quantization of Kashiwara's Fourier isomorphism � the two are related by the Chern
character. We will also verify that the linear Koszul duality in equivariant K-homology
gives a geometric realization of the Iwahori-Matsumoto involution on (extended) a�ne
Hecke algebras. This concerns one typical use of linear Koszul duality. Consider a partial
�ag variety P of a group G (either a reductive algebraic group in very good characteristic
or a loop group1), and a subgroup K that acts on P with countably many orbits. Let g, k
be the Lie algebras, choose E to be the trivial bundle P × g∗, F1 the cotangent subbundle
T ∗P and F2 = P × k⊥. Now F1

R∩E F2 is a di�erential graded version of the Lagrangian
ΛK ⊂ T ∗P, the union of all conormals to K-orbits in P, and F⊥

1

R∩E∗ F⊥
2 is the stabilizer

dg-scheme for the action of the Lie algebra k on P. If K is the Borel subgroup then
F⊥

1

R∩E∗ F⊥
2 is homotopic to F1

R∩E F2 and linear Koszul duality provides an involution on
the K-group of equivariant coherent sheaves on ΛK .

Let us conclude by proposing some further applications of linear Koszul duality. The
above application to Iwahori-Matsumoto involutions should extend to its generalization,

1Let us point out that the application to loop groups would require an extension of our constructions
to the case of in�nite dimensional varieties, or ind-schemes, which is not proved here.



1. GENERALITIES ON SHEAVES OF DG-ALGEBRAS AND DG-SCHEMES 173

the Aubert involution on irreducible representations of p-adic groups ([Aub95]). Linear
duality should be an ingredient in a geometric realization (proposed in [BFM05]) of the
Cherednik Fourier transform (essentially an involution on the Cherednik Hecke algebra), in
the Grojnowski-Garland realization of Cherednik Hecke algebras as equivariant K-groups
of Steinberg varieties for a�ne �ag varieties (see [Vas05]). The appearence of linear Koszul
duality for conormals to Bruhat cells should be a classical limit of the Beilinson-Ginzburg-
Soergel Koszul duality for the mixed category O ([BGS96]), as mixed Hodge modules come
with a deformation (by Hodge �ltration), to a coherent sheaf on the characteristic variety.

1 Generalities on sheaves of dg-algebras and dg-schemes
In this section X is any noetherian scheme satisfying the following assumption2:

(∗) for any coherent sheaf F on X, there exists a locally free
sheaf of �nite rank E and a surjection E ³ F .

We introduce basic de�nitions concerning dg-schemes and quasi-coherent dg-sheaves, main-
ly following [CFK01] and [Ric08b] (i.e. chapter III).

1.1 De�nitions
Recall the de�nitions of sheaves of OX -dg-algebras and dg-modules given in III.1.1.
De�nition 1.1.1. A dg-scheme is a pair X = (X,A) where X is a noetherian scheme
satisfying (∗), and A is a non-positively graded, graded-commutative OX -dg-algebra such
that Ai is a quasi-coherent OX -module for any i ∈ Z≤0.
De�nition 1.1.2. Let X = (X,A) be a dg-scheme.

(i) A quasi-coherent dg-sheaf F on X is anA-dg-module such that F i is a quasi-coherent
OX -module for any i ∈ Z.

(ii) A coherent dg-sheaf F on X is a quasi-coherent dg-sheaf whose cohomology H(F)
is a locally �nitely generated sheaf of H(A)-modules.

We denote by C(X), or C(X,A), the category of quasi-coherent dg-sheaves on the dg-
scheme X, and by D(X), or D(X,A), the associated derived category (i.e. the localization
of the homotopy category of C(X) with respect to quasi-isomorphisms).

Similarly, we denote by Cc(X) or Cc(X,A), Dc(X) or Dc(X,A), the full subcategories
whose objects are the coherent dg-sheaves.

If X is an ordinary scheme, i.e. if A = OX , then we have equivalences

D(X) ∼= DQCoh(X), Dc(X) ∼= DbCoh(X).

Let us stress that these de�nitions and notations are di�erent from the ones used in
chapter III or [Ric08b] (in loc. cit ., we only require the cohomology of F to be quasi-
coherent). This de�nition will be more suited to our purposes here. Moreover, these

2See e.g. the remarks before [CFK01, Lemma 2.3.4] for comments on this assumption.
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two de�nitions coincide under reasonable assumptions. For the categories of coherent dg-
sheaves in all the cases we consider here, this can be deduced from Proposition III.3.2.4.

1.2 K-�at resolutions
Let us �x a dg-scheme X = (X,A). If F and G are A-dg-modules, we de�ne as usual
the tensor product F ⊗A G (see III.1.2). It has a natural structure of an A-dg-module
(here A is graded-commutative, hence we do not have to distinguish between left and right
dg-modules, see III.1.1).

Recall the de�nition of a K-�at dg-module (see [Spa88]):

De�nition 1.2.1. An A-dg-module F is said to be K-�at if for every A-dg-module G such
that H(G) = 0, we have H(G ⊗A F) = 0.

Using [Spa88, 3.4, 5.4.(c)] and assumption (∗), one easily proves the following lemma.

Lemma 1.2.2. Let F be a quasi-coherent OX-dg-module. There exist a quasi-coherent,
K-�at OX-dg-module P and a surjective quasi-isomorphism P qis−→ F .

Then, using the induction functor F 7→ A ⊗OX
F , the following proposition can be

proved exactly as Theorem III.1.3.5.

Proposition 1.2.3. Let F be a quasi-coherent dg-sheaf on X. There exist a quasi-coherent
dg-sheaf P on X, K-�at as an A-dg-module, and a quasi-isomorphism P qis−→ F .

1.3 Invariance under quasi-isomorphisms
In this subsection we prove that the categories D(X), Dc(X) depend on A only up to
quasi-isomorphism.

Let X be a noetherian scheme satisfying (∗), and let X = (X,A) and X′ = (X,B)
be two dg-schemes with base scheme X. Let φ : A → B be a morphism of sheaves of
OX -dg-algebras. There is a natural functor

φ∗ : C(X′) → C(X)

(restriction of scalars), which induces a functor

Rφ∗ : D(X′) → D(X).

Similarly, there is a natural functor

φ∗ :
{ C(X) → C(X′)

F 7→ B ⊗A F .

We refer to [Del73] or [Kel96] for generalities on localization of triangulated categories
and derived functors (in the sense of Deligne). The following lemma is borrowed from
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[Spa88, 5.7] (see also Lemma III.1.3.6), and implies that K-�at A-dg-modules are split on
the left for the functor φ∗. Using Proposition 1.2.3, it follows that φ∗ admits a left derived
functor

Lφ∗ : D(X) → D(X′).

Lemma 1.3.1. Let F be an object of C(X,A) which is acyclic ( i.e. H(F) = 0) and K-�at
as an A-dg-module. Then B ⊗A F is acyclic.

The following result is an immediate extension of [BL94, 10.12.5.1] (see also Proposition
III.1.5.6).

Proposition 1.3.2. (i) Assume φ : A → B is a quasi-isomorphism. Then the functors
Lφ∗, Rφ∗ are quasi-inverse equivalences of categories

D(X) ∼= D(X′).

(ii) These equivalences restrict to equivalences

Dc(X) ∼= Dc(X′).

Proof : Statement (i) can be proved as in [BL94, 10.12.5.1] or Proposition III.1.5.6.
Then, clearly, for G in D(X′) we have G ∈ Dc(X′) i� Rφ∗G ∈ Dc(X). Point (ii) follows.

1.4 Derived intersection
Using Proposition 1.3.2, one can consider dg-schemes �up to quasi-isomorphism�, i.e. iden-
tify the dg-schemes (X,A) and (X,B) whenever A and B are quasi-isomorphic.

As a typical example, we de�ne the derived intersection of two closed subschemes.
Consider a scheme X, and two closed subschemes Y and Z. Let us denote by i : Y ↪→ X

and j : Z ↪→ X the closed embeddings. Consider the sheaf of dg-algebras i∗OY
L⊗OX

j∗OZ

on X. It is well de�ned up to quasi-isomorphism: if AY → i∗OY , respectively AZ → j∗OZ

are quasi-isomorphisms of non-positively graded, graded-commutative sheaves of OX -dg-
algebras3, with AY and AZ quasi-coherent and K-�at over OX , then i∗OY

L⊗OX
j∗OZ is

quasi-isomorphic to AY ⊗OX
j∗OZ , or to i∗OY ⊗OX

AZ , or to AY ⊗OX
AZ .

De�nition 1.4.1. The right derived intersection of Y and Z in X is the dg-scheme

Y
R∩X Z := (X, i∗OY

L⊗OX
j∗OZ),

de�ned up to quasi-isomorphism.

To be really precise, only the derived categories D(Y
R∩X Z), Dc(Y

R∩X Z) are well de-
�ned (up to equivalence). This is all we will use here.

3See e.g. [CFK01, 2.6.1] for a proof of the existence of such resolutions.
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2 Generalized Koszul complexes
In this section we introduce the dg-algebras we are interested in, and de�ne our Koszul
complexes.

2.1 Notation and de�nitions
From now on X is a noetherian, integral, separated, regular scheme of dimension d. Observe
that X satis�es condition (∗) by [Har77, III.Ex.6.8]. We will consider Gm-equivariant dg-
algebras on X, i.e. sheaves of OX -algebras A, endowed with a Z2-grading

A =
⊕

i,j∈Z
Ai

j

and an OX -linear di�erential dA : A → A, of bidegree (1, 0), i.e. such that dA(Ai
j) ⊆ Ai+1

j ,
and satisfying

dA(a · b) = dA(a) · b + (−1)ia · dA(b)

for a ∈ Ai
j , b ∈ A. The basic example is OX , endowed with the trivial grading (i.e. it is

concentrated in bidegree (0, 0)) and the trivial di�erential.
A Gm-equivariant dg-module over A is a sheaf M of Z2-graded A-modules endowed

with a di�erential dM of bidegree (1, 0) satisfying

dM(a ·m) = dA(a) ·m + (−1)ia · dM(m)

for a ∈ Ai
j , m ∈M.

We will only consider quasi-coherent (Gm-equivariant) OX -dg-algebras. If A is such
a dg-algebra, we denote by Cgr(A) the category of quasi-coherent Gm-equivariant A-dg-
modules, i.e. Gm-equivariant A-dg-modules M such that Mi

j is OX -quasi-coherent for
any indices i, j.

If M is a Gm-equivariant A-dg-module, and m is a local section of Mi
j , we write

|m| = i. This integer is called the cohomological degree of m, while j is called its internal
degree. We can de�ne two shifts in Cgr(A): [n], shifting the cohomological degree, and 〈m〉,
shifting the internal degree. More precisely we set

(M[n]〈m〉)i
j = Mi+n

j−m.

Beware that in our conventions 〈1〉 is a �homological� shift, i.e. it shifts the internal degrees
to the right. Also, we use the same conventions as in [BL94, �10] or III.1.1 concerning the
shift [1], i.e. the di�erential of M[1] is opposite to the di�erential of M.

If M and N are two Gm-equivariant OX -dg-modules, there is a natural structure of
Gm-equivariant OX -dg-module on the tensor product M⊗OX

N , with di�erential de�ned
on homogeneous local sections by

dM⊗N (m⊗ n) = dM(m)⊗ n + (−1)|m|m⊗ dN (n).
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IfM is a Gm-equivariant OX -dg-module, we de�ne the Gm-equivariant OX -dg-module
M∨ as the graded dual of M, i.e. the dg-module with (i, j)-component

(M∨)i
j := HomOX

(M−i
−j ,OX),

and with di�erential de�ned by dM∨(f) = −(−1)|f |f ◦ dM for f ∈ M∨ homogeneous. If
M and N are two Gm-equivariant OX -dg-modules, there is a natural morphism de�ned
(on homogeneous local sections) by

{ M∨ ⊗OX
N∨ → (M⊗OX

N )∨

f ⊗ g 7→ (
m⊗ n 7→ (−1)|m|·|g|f(m) · g(n)

) , (2.1.1)

which is an isomorphism e.g. if the homogeneous components of M, N and M⊗OX
N

are locally free of �nite rank. If M is a Gm-equivariant OX -dg-module such that Mi
j is

locally-free of �nite rank for any i, j, then there is an isomorphism
{ M ∼−→ (M∨)∨

m 7→ (
f 7→ (−1)|f |·|m|f(m)

) . (2.1.2)

Let us recall the de�nition of the truncation functors. If M is a Gm-equivariant OX -
dg-module and if n ∈ Z, we de�ne the Gm-equivariant OX -dg-module τ≥n(M) by

τ≥n(M)i
j :=





0 if i < n

Mn
j /dM(Mn−1

j ) if i = n

Mi
j if i > n

,

with the di�erential induced by dM. There is a natural morphism M → τ≥n(M). Simi-
larly, we de�ne the Gm-equivariant OX -dg-module τ≤n(M) by

τ≤n(M) := Ker
(M→ τ≥n+1(M)

)
.

Observe that if A is a Gm-equivariant dg-algebra with Ai
j = 0 for i > 0, and if M is a

Gm-equivariant A-dg-module, then τ≥n(M) and τ≤n(M) are again Gm-equivariant A-dg-
modules.

IfM is a Gm-equivariant OX -dg-module, we denote by Sym(M) the graded-symmetric
algebra of M over OX (i.e. the quotient of the tensor algebra of M by the relations
m ⊗ n = (−1)|m|·|n|n ⊗ m), considered as a Gm-equivariant dg-algebra with di�erential
induced by dM. Similarly, if F is any OX -module, we denote by SOX

(F), or simply S(F),
the symmetric algebra of F .

Let us consider two locally free sheaves of �nite rank V and W on X, and a morphism
of sheaves f : V → W. Let V∨ := HomOX

(V,OX) and W∨ := HomOX
(W,OX) be the

dual locally free sheaves, and f∨ : W∨ → V∨ be the morphism induced by f . Let us
consider the Gm-equivariant OX -dg-modules (or complexes of graded OX -modules)

X :=
(· · · → 0 → V f−→W → 0 → · · · ),
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where V is in bidegree (−1, 2) and W is in bidegree (0, 2), and

Y :=
(· · · → 0 →W∨ −f∨−−−→ V∨ → 0 → · · · ),

where W∨ is in bidegree (−1,−2) and V∨ is in bidegree (0,−2).
In sections 2 and 3 we will consider the following Gm-equivariant dg-algebras:

T := Sym(X ),
R := Sym(Y),
S := Sym(Y[−2]).

For example, the generators of T are in bidegrees (−1, 2) and (0, 2), and the generators of
S are in bidegrees (1,−2) and (2,−2).

If M is a Gm-equivariant S-dg-module, the dual M∨ has a natural structure of a S-
dg-module, constructed as follows. The grading and the di�erential are de�ned as above,
and the S-action is de�ned by

(s · f)(m) = (−1)|s|·|f |f(s ·m),

for homogeneous local sections s of S and f of M∨.
If N is a T -dg-module, respectively a R-dg-module, the same formulas de�ne on N∨

a structure of a T -dg-module, respectively a R-dg-module.

2.2 Reminder on the spectral sequence of a double complex

Let us recall a few facts on the spectral sequence of a double complex. Let (Cp,q)p,q∈Z be
a double complex (in any abelian category), with di�erentials d′ (of bidegree (1, 0)) and d′′

(of bidegree (0, 1)). Let Tot(C) be the total complex of C, i.e. the complex with n-term

Tot(C)n =
⊕

p+q=n

Cp,q,

and with di�erential d′ + d′′. The following result is proved e.g. in [God64, I.4].

Proposition 2.2.1. Assume one of the following conditions is satis�ed:

1. There exists N ∈ Z such that Cp,q = 0 for p > N .

2. There exists N ∈ Z such that Cp,q = 0 for q < N .

Then there is a converging spectral sequence

Ep,q
1 = Hq(Cp,∗, d′′) ⇒ Hp+q(Tot(C)).
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2.3 Reminder on Koszul complexes
Let A be a commutative ring, and V be a free A-module of �nite rank. Let V ∨ =
HomA(V,A) be the dual A-module, and consider the natural morphism

i : A → HomA(V, V ) ∼= V ∨ ⊗A V,

sending 1A to IdV . Let us �rst consider the bigraded algebras Λ(V [−1]〈−2〉), the exterior
algebra of V placed in bidegree (1,−2), and S(V ∨〈2〉), the symmetric algebra of V ∨ placed
in bidegree (0, 2). The algebra Λ(V [−1]〈−2〉) acts on the dual (Λ(V [−1]〈−2〉))∨ via

(t · f)(s) = (−1)|t|·|f |f(ts),

where t, s are homogeneous elements of Λ(V [−1]〈−2〉), and f is an homogeneous element
of (Λ(V [−1]〈−2〉))∨.

Consider the usual Koszul complex

Koszul1(V ) := S(V ∨〈2〉)⊗A (Λ(V [−1]〈−2〉))∨, (2.3.1)

where the di�erential is the composition of the morphism
{

S(V ∨)⊗A (Λ(V ))∨ → S(V ∨)⊗A (Λ(V ))∨

s⊗ t 7→ (−1)|s|s⊗ t

followed by the morphism induced by i

S(V ∨)⊗A (Λ(V ))∨ → S(V ∨)⊗A V ∨ ⊗A V ⊗A (Λ(V ))∨

and �nally followed by the morphism

S(V ∨)⊗A V ∨ ⊗A V ⊗A (Λ(V ))∨ → S(V ∨)⊗A (Λ(V ))∨

induced by the action of V ∨ ⊂ S(V ∨) on S(V ∨) by right multiplication and the action of
V ⊂ Λ(V ) on (Λ(V ))∨ described above. It is well-known (see e.g. [BGG78], [BGS96]) that
this complex has cohomology only in degree 0, and more precisely that

H(Koszul1(V )) = A.

The complex Koszul1(V ) is a bounded complex of projective graded A-modules (here
we consider A as a graded ring concentrated in degree 0). We can take its dual

Koszul2(V ) := (Koszul1(V ))∨ ∼= Λ(V [−1]〈−2〉)⊗A (S(V ∨〈2〉))∨. (2.3.2)

Again we have
H(Koszul2(V )) = A.

Now, let us consider the bigraded algebras Λ(V [1]〈−2〉), with generators in bidegree
(−1,−2), and S(V [−2]〈2〉), with generators in bidegree (2, 2). We have a third Koszul
complex

Koszul3(V ) := S(V ∨[−2]〈2〉)⊗A (Λ(V [1]〈−2〉))∨, (2.3.3)
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which may be de�ned as the bigraded module whose (i, j)-component is (Koszul3(V ))i
j :=

(Koszul1(V ))i−j
j , and with di�erential induced by that of Koszul1(V ). As above we have

H(Koszul3(V )) = A.

We can �nally play the same game with the complex Koszul2(V ) and obtain the com-
plex

Koszul4(V ) ∼= Λ(V [1]〈−2〉)⊗A (S(V ∨[−2]〈2〉))∨ (2.3.4)

de�ned by (Koszul4(V ))i
j = (Koszul2(V ))i−j

j . Again we have

H(Koszul4(V )) = A.

2.4 Two functors
For any quasi-coherent Gm-equivariant dg-algebra A we de�ne the category C↘gr (A) of Gm-
equivariant A-dg-modules M such that Mi

j is a coherent OX -module for any indices i, j,
and such that there exist integers N1, N2 such that Mi

j = 0 for i ≤ N1 or i + j ≥ N2.
Here the symbol “ ↘ ” indicates the region in the plane with coordinates (i, j) where the
components Mi

j can be non-zero, as shown in the �gure below.
Similarly, we de�ne the categories C↙gr (A), C↗gr (A), C↖gr (A) of Gm-equivariant A-dg-

modules M such that the Mi
j 's are coherent and satisfy the following conditions:

C↙gr (A) : Mi
j = 0 if i À 0 or i− j ¿ 0,

C↗gr (A) : Mi
j = 0 if i ¿ 0 or i− j À 0,

C↖gr (A) : Mi
j = 0 if i À 0 or i + j ¿ 0.

C↗grC↖gr

C↘grC↙gr

i

j
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In this subsection we de�ne two contravariant functors

A : C↘gr (S) → C↖gr (T ), B : C↖gr (T ) → C↘gr (S).

First, let us construct A . If M is a S-dg-module, we have de�ned in 2.1 the S-dg-module
M∨. Let M∈ C↘gr (S). As a bigraded OX -module we set

A (M) = T ⊗OX
M∨,

endowed with a T -action by left multiplication on the �rst factor. The di�erential on
A (M) is the sum of four terms. The �rst one is d1 := dT ⊗ IdM∨ , and the second one is
d2 := IdT ⊗dM∨ . Here the tensor product is taken in the graded sense, i.e. for homogeneous
local sections t and f of T andM∨ respectively we have d2(t⊗f) = (−1)|t|t⊗dM∨(f). The
third and fourth terms are �Koszul-type� di�erentials. Consider �rst the natural morphism
i : OX → EndOX

(V) ∼= V ⊗OX
V∨. Then d3 is the composition of

{ T ⊗OX
M∨ → T ⊗OX

M∨

t⊗ f 7→ (−1)|t|t⊗ f

followed by the morphism induced by i

T ⊗OX
M∨ → T ⊗OX

V ⊗OX
V∨ ⊗OX

M∨

and �nally followed by the morphism

T ⊗OX
V ⊗OX

V∨ ⊗OX
M∨ → T ⊗OX

M∨

induced by the right multiplication of V ⊂ T on T , and the left action of V∨ ⊂ S on M∨.
The di�erential d4 is de�ned entirely similarly, replacing V by W.

Let us choose a point x ∈ X. Then Vx, Wx are free OX,x-modules of �nite rank. Let
{vα} be a basis of Vx, and {wβ} be a basis of Wx. Let {v∗α}, {w∗β} be the dual bases of
(V∨)x and (W∨)x, respectively. Then the morphism induced by d3 +d4 on Tx⊗OX,x

(M∨)x

can be written

(d3 + d4)(t⊗ f) = (−1)|t|
(∑

α

tvα ⊗ v∗α · f +
∑

β

twβ ⊗ w∗β · f
)

(2.4.1)

for homogeneous local sections t of T and f of M∨.
Using formula (2.4.1), one easily checks the relations

(d1 + d2)2 = 0, (d3 + d4)2 = 0. (2.4.2)

Further calculations prove the following formula:

(d1 + d2) ◦ (d3 + d4) + (d3 + d4) ◦ (d1 + d2) = 0. (2.4.3)

It follows from formulas (2.4.2) and (2.4.3) that dA (M) := d1 + d2 + d3 + d4 is indeed a
di�erential. Finally, one easily checks that A (M) is a T -dg-module, and that it is an
object of the category C↖gr (T ). Hence the (contravariant) functor

A : C↘gr (S) → C↖gr (T )
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is well de�ned.
Now we de�ne a functor B in the reverse direction, using similar formulas. Namely if

N is a T -dg-module, we have de�ned above the T -dg-module N∨. If N ∈ C↖gr (T ), as a
bigraded OX -module, we set

B(N ) = S ⊗OX
N∨,

and we endow it with the S-action by left multiplication on the �rst factor. The di�erential
is again a sum of four terms. The �rst two are d1 := dS ⊗ IdN∨ and d2 := IdS ⊗ dN∨ . The
third one, denoted d3, is de�ned as above as the composition of

{ S ⊗OX
N∨ → S ⊗OX

N∨

s⊗ g 7→ (−1)|s|s⊗ g

followed by the morphism induced by i′ : OX → V∨ ⊗OX
V

S ⊗OX
N∨ → S ⊗OX

V∨ ⊗OX
V ⊗OX

N∨

and �nally followed by the morphism

S ⊗OX
V∨ ⊗OX

V ⊗OX
N∨ → S ⊗OX

N∨

induced by the right multiplication of V∨ ⊂ S on S, and the left action of V ⊂ T on
N∨. The di�erential d4 is de�ned similarly, replacing V by W. As above, one checks that
dB(N ) := d1 + d2 + d3 + d4 is a di�erential, which turns B(N ) into a S-dg-module, and
even an object of C↘gr (S). For this �nal claim we use the fact that if Sk

l 6= 0, then k+ l ≤ 0.
As above, this proves that the (contravariant) functor

B : C↖gr (T ) → C↘gr (S)

is well de�ned.

2.5 First generalized Koszul complex
Consider the object

K(1) := B(T ) ∈ C↘gr (S).

It is concentrated in non-negative cohomological degrees, and in non-positive internal de-
grees.

Lemma 2.5.1. The natural morphism K(1) → OX (projection on the (0, 0)-component) is
a quasi-isomorphism of Gm-equivariant S-dg-modules.

Proof. It is su�cient to prove that the localization of this morphism at any x ∈ X is a
quasi-isomorphism. We have isomorphisms

(K(1))x
∼= (Sx)⊗OX,x

T ∨x
∼=

⊕

i,j,k,l

Λi(W∨
x )⊗OX,x

Sj(V∨x )⊗OX,x
(Λk(Vx))∨ ⊗OX,x

(Sl(Wx))∨,
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where the symbol “∨ ” denotes the dual OX,x-module, and where the term Λi(W∨
x )⊗OX,x

Sj(V∨x )⊗OX,x
(Λk(Vx))∨⊗OX,x

(Sl(Wx))∨ is in cohomological degree i + 2j + k. The di�er-
ential on (K(1))x is the sum of four terms: d1, induced by the di�erential of Sx; d2, induced
by the di�erential of T ∨x ; and d3 and d4, the Koszul di�erentials. The e�ect of these terms
on the indices i, j, k, l may be described as follows:

d1 :
{

i 7→ i− 1
j 7→ j + 1

, d2 :
{

k 7→ k + 1
l 7→ l − 1

, d3 :
{

j 7→ j + 1
k 7→ k − 1

, d4

{
i 7→ i + 1
l 7→ l − 1

.

Disregarding the internal grading, (K(1))x is the total complex of the double complex
(Cp,q)p,q∈Z whose (p, q)-term is

Cp,q :=
⊕

p=j+k,
q=i+j

Λi(W∨
x )⊗OX,x

Sj(V∨x )⊗OX,x
(Λk(Vx))∨ ⊗OX,x

(Sl(Wx))∨,

and whose di�erentials are d′ = d1 + d2, d′′ = d3 + d4. We have Cp,q = 0 if q < 0, hence
by Proposition 2.2.1 there is a converging spectral sequence

Ep,q
1 = Hq(Cp,∗, d′′) ⇒ Hp+q((K(1))x).

It follows that, to prove the lemma, we only have to prove that the cohomology of Sx⊗OX,x

T ∨x with respect to the di�erential d3 + d4 is OX,x in degree 0, and 0 in other degrees.
But this complex is the tensor product of the Koszul complexes Koszul3(Vx) (with the
internal grading opposite to that in (2.3.3)) and Koszul2(W∨

x ) of (2.3.2), both living in
non-negative degrees. We have seen that these complexes have cohomology OX,x, and their
components are free (hence �at). The result follows, using Künneth formula.

2.6 Second generalized Koszul complex
Consider now the object

K(2) := A (S) ∈ C↖gr (T ).

It is concentrated in non-positive cohomological degrees, and in non-negative internal de-
grees. As in 2.5, we are going to prove:

Lemma 2.6.1. The natural morphism K(2) → OX (projection on the (0, 0)-component) is
a quasi-isomorphism of Gm-equivariant T -dg-modules.

Proof. The arguments for this proof are completely similar to those of Lemma 2.5.1. Here
the double complex to consider has (p, q)-term

Cp,q :=
⊕

p=−i−l,
q=−k−l

Λi(Vx)⊗OX,x
Sj(Wx)⊗OX,x

(Λk(W∨
x ))∨ ⊗OX,x

(Sl(V∨x ))∨

and di�erentials d′ = d1 + d2, d′′ = d3 + d4. We have Cp,q = 0 for p > 0.
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3 Algebraic duality
In this section we prove our Koszul duality between S- and T -dg-modules.

3.1 Resolutions
First we need to prove the existence of some resolutions.

Proposition 3.1.1. (i) Let M be an object of C↘gr (S). There exist an object P of C↘gr (S)
such that, for all indices i and j, P i

j is OX-locally free of �nite rank, and a quasi-
isomorphism of S-dg-modules P qis−→M.

(ii) Let N be an object of C↖gr (T ). There exist an object Q of C↖gr (T ) such that, for
all indices i and j, Qi

j is OX-locally free of �nite rank, and a quasi-isomorphism of T -dg-
modules Q qis−→ N .

Proof. We give a proof only for point (i). The proof of (ii) is similar4. LetM be an object
of C↘gr (S). Let N1 and N2 be integers such that Mi

j = 0 for i < N1 or i + j > N2. First
we consider M as a Gm-equivariant OX -dg-module. Then, for each j ≤ N2 −N1, Mj is
a complex of coherent OX -modules, with non-zero terms only in the interval [N1, N2 − j]
(and Mj = 0 otherwise). Using a standard procedure (see e.g. [Har66, I.4.6] and [Har77,
III.Ex.6.9]), there exists a complex Lj of locally free OX -modules of �nite rank, with non-
zero terms only in the interval [N1, N2 − j], and a surjective morphism of OX -dg-modules
Lj ³ Mj . Then L :=

⊕
j Lj is an object of C↘gr (OX), and there is a surjective morphism

of Gm-equivariant OX -dg-modules L ³ M. Then P(1) := S ⊗OX
L, endowed with the

natural di�erential and the natural action of S, is an object of C↘gr (S), and there is a
surjective morphism of Gm-equivariant S-dg-modules

P(1) ³ M.

Taking the kernel of this morphism, and repeating the procedure, we obtain objects
P(i) (i = 1, · · · , d) of C↘gr (S), (recall that d = dim(X)) whose homogeneous components
are locally free of �nite rank over OX , and an exact sequence of S-dg-modules

P(d) → P(d−1) → · · · → P(1) →M→ 0.

We de�ne P(d+1) := ker(P(d) → P(d−1)). Then, for any indices i, j, the exact sequence

0 → (P(d+1))i
j → · · · → (P(1))i

j →Mi
j → 0

is a resolution of the OX -coherent sheaf Mi
j , the terms (P(k))i

j being locally free of �nite
rank for k = 1, · · · , d. It follows that (P(d+1))i

j is also locally free of �nite rank over OX

(see again [Har77, III.Ex.6.9]).
4One could also use the �regrading trick� of 3.5 below to show that these two statements are equivalent.
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Finally we take

P := Tot
(
0 → P(d+1) → P(d) → · · · → P(1) → 0

)
.

It is naturally an object of C↘gr (S), and an easy spectral sequence argument shows that the
natural morphism P →M is a quasi-isomorphism of S-dg-modules.

3.2 Derived functors
Let us introduce some notation. If A is any quasi-coherent Gm-equivariant dg-algebra, we
denote by H∗gr(A) the homotopy category of the category C∗gr(A), where ∗ =↗,↖,↙,↘.
The objects of H∗gr(A) are the same as those of C∗gr(A), and the morphisms in H∗gr(A) are
the quotient of the morphisms in C∗gr(A) by the homotopy relation. These categories are
naturally triangulated. We denote by D∗gr(A), the localization of H∗gr(A) with respect to
quasi-isomorphisms.

As a corollary of Proposition 3.1.1, we obtain the following result.

Corollary 3.2.1. The functors A and B admit derived functors (in the sense of Deligne)

A : D↘gr (S) → D↖gr (T ), B : D↖gr (T ) → D↘gr (S).

Remark 3.2.2. The functor A is the left derived functor of A if we consider it as a
covariant functor C↘gr (S) → C↖gr (T )opp, or the right derived functor of A if we consider it
as a covariant functor C↘gr (S)opp → C↖gr (T ).

Proof. Case of the functor A . To �x notations, in this proof we consider A as a covariant
functor C↘gr (S) → C↖gr (T )opp. To prove that A admits a left derived functor, it is enough
to prove that there are enough objects split on the left5 for A in the category C↘gr (S)
(see [Del73] or [Kel96]). To prove the latter fact, using Proposition 3.1.1(i), it is enough
to prove that if f : P → Q is a quasi-isomorphism between two objects of C↘gr (S) whose
homogeneous components are OX -locally free of �nite rank, then the induced morphism

A (f) : A (P) → A (Q)

is again a quasi-isomorphism. Taking cones, this amounts to proving that if P is an acyclic
object of C↘gr (S) whose homogeneous components are OX -locally free of �nite rank, then
A (P) is again acyclic.

So, let P be such a Gm-equivariant S-dg-module. For each index j, the complex of
OX -modules Pj is acyclic, bounded, and all its components are locally free of �nite rank.
It follows that P∨ is also acyclic. Let x be a point of X, and let us prove that A (P)x is

5Recall (see e.g. III.1.4) that an objectM of C↘gr (S) is split on the left for A if for any quasi-isomorphism
M′ qis−−→ M, there exists an object M′′ of C↘gr (S) and a quasi-isomorphism M′′ qis−−→ M′ such that the
induced morphism A (M′′) → A (M) is again a quasi-isomorphism.
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acyclic. We use the same notations as in 2.4. In particular, dA (P) is the sum of four terms
d1, d2, d3 and d4. We have an isomorphism

A (P)x
∼=

⊕

i,j,k,l

Λi(Vx)⊗OX,x
Sj(Wx)⊗OX,x

(P∨x )k
l ,

where the term Λi(Vx) ⊗OX,x
Sj(Wx) ⊗OX,x

(P∨x )k
l is in cohomological degree k − i. The

e�ect of the di�erentials on the indices i, j, k, l may be described as

d1 :
{

i 7→ i− 1
j 7→ j + 1

, d2 : k 7→ k + 1, d3 :





i 7→ i + 1
k 7→ k + 2
l 7→ l − 2

, d4 :





j 7→ j + 1
k 7→ k + 1
l 7→ l − 2

.

Hence, disregarding the internal grading, A (P)x is the total complex of the double
complex with (p, q)-term

Cp,q :=
⊕

p=−i−j−l,
q=k+l+j

Λi(Vx)⊗OX,x
Sj(Wx)⊗OX,x

(P∨x )k
l ,

with di�erentials d′ = d3 + d4 and d′′ = d1 + d2. By de�nition, P is in C↘gr (S), hence
(P∨)k

l = 0 for k + l ¿ 0. Hence Cp,q = 0 for q ¿ 0. By Proposition 2.2.1, it follows that
there is a converging spectral sequence

Ep,q
1 = Hq(Cp,∗, d′′) ⇒ Hp+q(A (P)x).

Hence we can forget about the di�erentials d3 and d4, i.e. it is su�cient to prove that the
tensor product of OX,x-dg-modules

Tx ⊗OX,x
P∨x

is acyclic. We have seen above that P∨x is acyclic, and Tx is a bounded complex of �at OX,x-
modules. Hence Tx ⊗OX,x

P∨x is indeed acyclic, which �nishes the proof of the existence of
the derived functor

A : D↘gr (S) → D↖gr (T ).

Case of the functor B. The proof for the functor B is very similar. If Q is a Gm-
equivariant T -dg-module as in Proposition 3.1.1(ii) which is acyclic, and x ∈ X, then we
have

B(Q)x =
⊕

i,j,k,l

Λi(W∨
x )⊗OX,x

Sj(V∨x )⊗OX,x
(Q∨x )k

l ,

where the term Λi(W∨
x ) ⊗OX,x

Sj(V∨x ) ⊗OX,x
(Q∨x )k

l is in cohomological degree i + 2j + k.
Again Q∨ is acyclic, and dB(N ) is the sum of four terms d1, d2, d3 and d4, whose e�ect on
the indices i, j, k, l may be described as

d1 :
{

i 7→ i− 1
j 7→ j + 1

, d2 : k 7→ k + 1, d3 :





j 7→ j + 1
k 7→ k − 1
l 7→ l + 2

, d4 :
{

i 7→ i + 1
l 7→ l + 2

.
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Hence, disregarding the internal grading, B(Q)x is the total complex of the double complex
with (p, q)-term

Dp,q :=
⊕

p=i+j,
q=k+j

Λi(W∨
x )⊗OX,x

Sj(V∨x )⊗OX,x
(Q∨x )k

l ,

and with di�erentials d′ = d3 + d4, d′′ = d1 + d2. We know that (Q∨x )k
l = 0 if k ¿ 0, hence

Dp,q = 0 for p ¿ 0. By Proposition 2.2.1, it follows that there is a converging spectral
sequence

Ep,q
1 = Hq(Dp,∗, d′′) ⇒ Hp+q(B(Q)x).

Hence it is su�cient to prove that the tensor product of OX,x-dg-modules
Sx ⊗OX,x

Q∨x
is acyclic.

The (Gm-equivariant) OX,x-dg-module Sx has a �nite �ltration with subquotients �nite
numbers of copies of S(V∨x ). Hence it is enough to prove that S(V∨x ) ⊗OX,x

Q∨x is acyclic.
But S(V∨x ), as a (Gm-equivariant) OX,x-dg-module, is a direct sum of �at OX,x-modules
(placed in di�erent degrees), hence the latter fact is clear.

3.3 Morphisms of functors
In this subsection we construct some morphisms of functors. We will prove in the next
subsection that they are isomorphisms, which implies that A and B are equivalences of
categories.
Proposition 3.3.1. There exist natural morphisms of functors

B ◦A → IdD↘gr (S)
, A ◦B → IdD↖gr (T )

.

Proof. Let us give the details for the �rst morphism. The construction of the second one is
similar. It is su�cient to construct this morphism for any A-dg-module P as in Proposition
3.1.1(i). In this case A (P) is isomorphic to the image of A (P) in the derived category.
As A (P) has also OX -locally free homogeneous components, B ◦A (P) is isomorphic to
the image of B ◦A (P) in the derived category. We will de�ne a morphism in C↘gr (S)

B ◦A (P) → P. (3.3.2)

First we begin with the following lemma, which can be checked by direct computation,
using the isomorphisms (2.1.1) and (2.1.2).
Lemma 3.3.3. As a bigraded OX-module, (A (P))∨ is naturally isomorphic to T ∨⊗OX

P.
Under this isomorphism, locally around a point x ∈ X, with the notation of (2.4.1), the
di�erential becomes

d(A (P))∨(f ⊗ p) = d(f)⊗ p + (−1)|f |f ⊗ d(p)

− (−1)|f |
(∑

α

f · vα ⊗ v∗α · p +
∑

β

f · wβ ⊗ w∗β · p
)
,
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where we set (f · t)(t′) = f(t · t′) for f ∈ T ∨ and t, t′ ∈ T .
Under the isomorphism of Lemma 3.3.3, we have as bigraded OX -modules

B ◦A (P) ∼= S ⊗OX
T ∨ ⊗OX

P.

We de�ne the morphism of bigraded OX -modules
{ S ⊗OX

T ∨ ⊗OX
P → P

s⊗ f ⊗ p 7→ f(1T ) · s · p .

This morphism clearly commutes with the S-actions. Moreover, using Lemma 3.3.3, one
easily checks that it also commutes with the di�erentials, hence de�nes the desired mor-
phism (3.3.2).

3.4 Equivalences
Theorem 3.4.1. The functors A , B are equivalences of categories, quasi-inverse to each
other.

Proof. First step: isomorphism B ◦A
∼−→ Id. In Proposition 3.3.1, we have constructed a

morphism of functors B ◦A → Id. In this �rst step we prove that it is an isomorphism.
Let P be an object of C↘gr (S) as in Proposition 3.1.1(i). We have seen in 3.3 that B ◦A (P)
is isomorphic to the image of B ◦A (P) in the derived category. By Proposition 3.1.1(i),
it is thus enough to prove that the induced morphism

φ : B ◦A (P) → P

is a quasi-isomorphism. Let us construct a section (over OX) for this morphism. As a
bigraded OX -module we have B ◦ A (P) ∼= S ⊗OX

T ∨ ⊗OX
P. Let εT ∈ T ∨ be the unit

section in (T ∨)00 = OX . Now consider the morphism

ψ :
{ P → B ◦A (P)

p 7→ 1S ⊗ εT ⊗ p
.

One easily checks that it is a morphism of Gm-equivariant OX -dg-modules (but of course
not of S-dg-modules), and that

φ ◦ ψ = IdP .

Hence it is enough to prove that ψ is a quasi-isomorphism.
As a bigraded OX -module, we have, with the notation of 2.5,

B ◦A (P) ∼= K(1) ⊗OX
P ∼=

⊕

i,j,k,l

(K(1))i
k ⊗OX

Pj
l ,

where the term (K(1))i
k⊗OX

Pj
l is in cohomological degree i+j. Remark that here the non-

zero terms occur only when k is even. By Lemma 3.3.3, the di�erential on B ◦A (P) is the
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sum of four terms. The �rst one is d1 := dK(1) ⊗ IdP . The second one is d2 := IdK(1) ⊗ dP .
The third one is the �Koszul type" di�erential coming from the left action of V∨ ⊂ S on P
and the right action of V ⊂ T on K(1). Finally d4 is the similar �Koszul-type" di�erential
coming from the actions of W∨ and W. The e�ect of these di�erentials on the indices
i, j, k, l can be described as follows:

d1 : i → i + 1, d2 : j 7→ j + 1, d3 :





i 7→ i− 1
j 7→ j + 2
k 7→ k + 2
l 7→ l − 2

, d4 :





j 7→ j + 1
k 7→ k + 2
l 7→ l − 2

.

Moreover, one easily checks the following relations:

(d1 + d4)2 = 0, (d2 + d3)2 = 0.

Hence, disregarding the internal grading, B ◦ A (P) is the total complex of the double
complex with (p, q)-term

Cp,q :=
⊕

p=j+l+k/2,
q=i−l−k/2

(K(1))i
k ⊗OX

Pj
l ,

and with di�erentials d′ = d2 + d3 and d′′ = d1 + d4. We know that Pj
l = 0 for j + l À 0,

and that (K(1))i
k = 0 if k > 0. Hence Cp,q = 0 for p À 0. It follows, by Proposition 2.2.1,

that there is a converging spectral sequence

Ep,q
1 = Hq(Cp,∗, d′′) ⇒ Hp+q(B ◦A (P)).

Disregarding the internal grading, P is also the total complex of a double complex, de�ned
by

(C ′)p,q := Pp+q
−q

and the di�erentials d′ = dP , d′′ = 0. Here also (C ′)p,q = 0 for p À 0, hence the
corresponding spectral sequence converges. Moreover, ψ is induced by a morphism of
double complexes C ′ → C. It follows that it is enough to prove that the morphism
induced by ψ from P, endowed with the zero di�erential, to K(1) ⊗OX

P, endowed with
the di�erential d1 + d4, is a quasi-isomorphism.

The latter dg-module is again the total complex of the double complex with (p, q)-term

Dp,q :=
⊕

k,l

(K(1))q
k ⊗OX

Pp
l ,

and di�erentials d′ = d4, d′′ = d1. And P (with the trivial di�erential) is also the total
complex of the double complex de�ned by

(D′)p,q =

{ ⊕
l Pp

l if q = 0,

0 otherwise,
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and with two trivial di�erentials. Again ψ is induced by a morphism of double complexes,
and we have Dp,q = (D′)p,q = 0 for q < 0. We conclude that the associated spectral
sequences converge. As H(K1) = OX (see Lemma 2.5.1) and P is a bounded above
complex of �at OX -modules, we �nally conclude that ψ is a quasi-isomorphism.

Second step: isomorphism A ◦B
∼−→ Id. The proofs in this second step are very similar

to those of the �rst step. By Proposition 3.3.1 there is a natural morphism A ◦B → Id,
and we prove that it is an isomorphism. As above, it is enough to prove that, for Q an
object of C↖gr (T ) as in Proposition 3.1.1(ii), the induced morphism of T -dg-modules

φ : A ◦B(Q) → Q
is a quasi-isomorphism. Also as above one can construct a section

ψ : Q → A ◦B(Q)

of φ as a morphism of Gm-equivariant OX -dg-modules, and it is enough to prove that ψ
is a quasi-isomorphism.

Here we have as bigraded OX -modules, with the notation of 2.6,

A ◦B(Q) ∼= K(2) ⊗OX
Q ∼=

⊕

i,j,k,l

(K(2))i
k ⊗OX

Qj
l ,

where (K(2))i
k ⊗OX

Qj
l is in cohomological degree i + j (and k is even if the term is non-

zero). Again the di�erential is the sum of four terms d1 := dK(2) ⊗ IdQ, d2 = IdK(2) ⊗ dQ,
d3 the Koszul di�erential induced by the action of V and V∨, and d4 the Koszul di�erential
induced by the action ofW andW∨. The e�ect of these di�erentials on the indices i, j, k, l
can be described as follows:

d1 : i → i + 1, d2 : j 7→ j + 1, d3 :





i 7→ i + 2
j 7→ j − 1
k 7→ k − 2
l 7→ l + 2

, d4 :





i 7→ i + 1
k 7→ k − 2
l 7→ l + 2

.

One has
(d1 + d2)2 = 0, (d3 + d4)2 = 0.

Hence, disregarding the internal grading, A ◦ B(Q) is the total complex of the double
complex with (p, q)-term

Cp,q :=
⊕

p=−l−3k/2,
q=i+j+l+3k/2

(K(2))i
k ⊗OX

Qj
l ,

and with di�erentials d′ = d3 + d4, d′′ = d1 + d2. We know that Qj
l = 0 if j + l ¿ 0.

Moreover, one checks easily that (K(2))i
k = 0 if i + 3k/2 ¿ 0. Hence Cp,q = 0 if q ¿ 0. It

follows, by Proposition 2.2.1, that there is a converging spectral sequence

Ep,q
1 = Hq(Cp,∗, d′′) ⇒ Hp+q(A ◦B(Q)).
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Similarly, disregarding the internal grading, Q is the total complex of a double complex C ′,
and ψ is induced by a morphism of double complexes C ′ → C. Hence it is enough to prove
that the morphism induced by ψ from Q to K(2) ⊗OX

Q, endowed with the di�erential
d1 + d2, is a quasi-isomorphism.

Once more, this follows from a spectral sequence argument, using the property that
H(K(2)) = OX (see Lemma 2.6.1).

3.5 Regrading
In this subsection we introduce a �regrading� functor. This functor will play a technical
role in 3.6, and a more crucial role later in the geometric interpretation of the equivalence.

Consider the functor
ξ : Cgr(S) → Cgr(R)

which sends the S-dg-module M to the R-dg-module with (i, j)-component ξ(M)i
j :=

Mi−j
j , the di�erential and the R-action on ξ(M) being induced by the di�erential and

the S-action on M. This functor is clearly an equivalence of categories, and it induces
equivalences, still denoted ξ,

C↘gr (S) ∼−→ C↙gr (R), D↘gr (S) ∼−→ D↙gr (R).

3.6 Categories with �niteness conditions
In the rest of this section we prove that the equivalences A and B restrict to equivalences
between subcategories of dg-modules whose cohomology is locally �nitely generated. This
will eventually allow us to get rid of the technical conditions �↖� and �↘�.

Let us introduce some more notation. If A is a quasi-coherent Gm-equivariant dg-
algebra, and if ∗ =↖,↙,↘,↗, we denote by C∗,fggr (A), respectively D∗,fggr (A), the full
subcategory of C∗gr(A), respectively D∗gr(A), whose objects are the dg-modules M such
that H(M) is a locally �nitely generated H(A)-module.

We also denote by CFGgr(A) the full subcategory of Cgr(A) whose objects are the locally
�nitely generated Gm-equivariant A-dg-modules, and by DFGgr(A) the localization of the
homotopy category of CFGgr(A) with respect to quasi-isomorphisms. Finally we denote by
Dfg

gr(A) the full subcategory of Dgr(A) whose objects are the Gm-equivariant dg-modules
M such that H(M) is locally �nitely generated over H(A).

We are going to prove that, in the cases we are interested in, several of these categories
coincide. Observe in particular that there are inclusions

CFGgr(R) ↪→ C↙,fg
gr (R), CFGgr(S) ↪→ C↘,fg

gr (S), CFGgr(T ) ↪→ C↖,fg
gr (T ),

which induce functors between the corresponding derived categories.

Lemma 3.6.1. (i) The induced functors

DFGgr(R) → D↙,fg
gr (R), DFGgr(S) → D↘,fg

gr (S), DFGgr(T ) → D↖,fg
gr (T )
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are equivalences of categories.
(ii) Similarly, the natural functors

DFGgr(R) → Dfg
gr(R), DFGgr(S) → Dfg

gr(S), DFGgr(T ) → Dfg
gr(T )

are equivalences of categories.

Proof. Our proof of this lemma is very similar to that of [Bor87, VI.2.11] (see also Propo-
sition III.3.2.4). We give the details of the proof of (ii). Statement (i) can be treated
similarly.

Using the �regrading trick� of 3.5, the cases of S and R are equivalent. Similarly, using
the change of the internal grading to the opposite one, we see that the cases of R and T
are equivalent. Hence it is su�cient to consider the Gm-equivariant dg-algebra T .

Remark that the algebra T , as well as its cohomology H(T ), is �nitely generated
as a S(W)-module. Hence a T -dg-module N is locally �nitely generated, respectively has
locally �nitely generated cohomology, i� N , respectively H(N ), is locally �nitely generated
over S(W).
Lemma 3.6.2. Let N be an object of Cgr(T ), with locally �nitely generated cohomology,
whose cohomological grading is bounded. Then N is the inductive limit of quasi-coherent
sub-T -dg-modules which are locally �nitely generated, and which are quasi-isomorphic to
N under inclusion.

Proof of Lemma 3.6.2. The internal grading has no importance in this statement, hence
we will forget about it in the proof. The dg-module N is clearly an inductive limit of
locally �nitely generated quasi-coherent sub-T -dg-modules. Hence it is su�cient to show
that given a locally �nitely generated quasi-coherent sub-dg-module F of N , there exists
a locally �nitely generated quasi-coherent sub-dg-module G of N , containing F and quasi-
isomorphic to N under the inclusion map.

This is proved by a simple (descending) induction. Let j ∈ Z. Assume that we have
found a subcomplex G(j) of

⊕
i≥j N i, quasi-coherent over OX , locally �nitely generated

over S(W), containing
⊕

i≥j F i, stable under T (i.e. if g ∈ Gi
(j) and t ∈ T k, and if i+k ≥ j,

then t · g ∈ Gi+k
(j) ), such that G(j) ↪→ N is a quasi-isomorphism in cohomological degrees

greater than j and that Gj
(j) ∩ ker(dj

N ) → Hj(N ) is surjective. Then we choose a locally
�nitely generated sub-S(W)-module Hj−1 of N j−1 containing F j−1, quasi-coherent over
OX , whose image under dj−1

N is Gj
(j)∩ Im(dj−1

N ). Without altering these conditions, we can
add a sub-module of cocycles so that the new sub-module Hj−1 contains representatives
of all the elements of Hj−1(N ). We can also assume that N j−1 contains all the sections
of the form t · g for t ∈ T i and g ∈ Gk

(j) with i + k = j − 1. Then we de�ne G(j−1) by

Gk
(j−1) =

{ Gk
(j) if k ≥ j,

Hj−1 if k = j − 1.

For j small enough, G(j) is the sought-for sub-dg-module.
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Let us denote by
ι : DFGgr(T ) → Dfg

gr(T )

the functor under consideration. Let N be an object of Dfg
gr(T ). Then the cohomology

H(N ) is bounded for the cohomological grading (because it is locally �nitely generated
over H(T ), which is bounded). Hence, using truncation functors (see 2.1), N is isomorphic
to a T -dg-module whose cohomological grading is bounded. Using Lemma 3.6.2, it follows
that N is in the essential image of ι. Hence ι is essentially surjective.

Now, let us prove that it is full. Let N1 and N2 be objects of CFGgr(T ). In particular,
N1 and N2 have bounded cohomological grading. A morphism φ : ι(N1) → ι(N2) in
Dfg

gr(T ) is represented by a diagram

ι(N1)
α−→ F β←− ι(N2)

where β is a quasi-isomorphism. Using truncation functors, one can assume that F has
bounded cohomological grading. By Lemma 3.6.2, there exists a locally �nitely generated
sub-T -dg-module F ′ of F , containing α(N1) and β(N2), and quasi-isomorphic to F under
the inclusion map. Then φ is also represented by

ι(N1)
α−→ F ′ β←− ι(N2),

which is the image of a morphism in DFGgr(T ). Hence ι is full.
Finally we prove that ι is faithful. If a morphism f : N1 → N2 in CFGgr(T ) is such

that ι(f) = 0, then there exist an object F of Dfg
gr(T ), which can again be assumed to

be bounded, and a quasi-isomorphism of T -dg-modules g : N2 → F such that g ◦ f is
homotopic to zero. This homotopy is given by a morphism h : N1 → F [−1]. Again by
Lemma 3.6.2, there exists a locally �nitely generated sub-T -dg-module F ′ of F containing
g(N2) and h(N1)[1], and quasi-isomorphic to F under inclusion. Replacing F by F ′, this
proves that f = 0 in DFGgr(T ). The proof of Lemma 3.6.1 is complete.

3.7 Restriction of the equivalences to locally �nitely generated dg-mo-
dules

Proposition 3.7.1. The functors A , B restrict to equivalences of categories

D↘,fg
gr (S) ∼= D↖,fg

gr (T ).

Proof. It is su�cient to prove that the functors A , B send dg-modules with locally �nitely
generated cohomology to dg-modules with locally �nitely generated cohomology.

First step: functor B. First, let us consider B. By Lemma 3.6.1, it su�ces to prove
that if N is a locally �nitely generated T -module, then B(N ) has locally �nitely generated
cohomology. We begin with the following lemma.
Lemma 3.7.2. Let N be a locally �nitely generated Gm-equivariant T -dg-module. There
exist an object Q of CFGgr(T ), which is locally free of �nite rank over S(W) ⊂ T , and a
quasi-isomorphism Q qis−→ N .
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Proof of Lemma 3.7.2. The arguments in this proof are very close to those in the proof
of Proposition 3.1.1. There exists a Gm-equivariant sub-OX -dg-module G ⊂ N , which is
coherent as an OX -module, and which generates N as a S-dg-module. There exists also
a Gm-equivariant OX -dg-module F , which is locally free of �nite rank as an OX -module,
and a surjection F ³ G. We set

Q(1) := T ⊗OX
F ,

endowed with its natural structure of Gm-equivariant T -dg-module. Then we have a
surjection of T -dg-modules

Q(1) ³ N ,

and Q(1) is locally free over S(W).
Let n be the rank of W over OX . Taking the kernel of our morphism Q(1) → N ,

and repeating the argument, we obtain locally �nitely generated T -dg-modules Q(j), j =
1, · · · , n + d, which are locally free of �nite rank over S(W), and an exact sequence of
T -dg-modules

Q(n+d) → Q(d+n−1) → · · · → Q(1) → N → 0.

All these objects are complexes of coherent S(W)-modules, hence we can consider them as
complexes of coherent sheaves on W ∗, the vector bundle on X with sheaf of sections W∨.
The scheme W ∗ is noetherian, integral, separated and regular of dimension d + n. Hence
Q(n+d+1) := Ker(Q(n+d) → Q(n+d−1)) is also locally free over S(W). Then

Q := Tot(0 → Q(n+d+1) → · · · → Q(1) → 0)

is a resolution of N as in the lemma.

Now let Q qis−→ N be a resolution as in Lemma 3.7.2. In particular Q is locally free
over OX , hence B(N ) is isomorphic to the image of B(Q) in the derived category. Hence
it is enough to prove that B(Q) has locally �nitely generated cohomology, and even to
prove that this cohomology is locally �nitely generated over S(V∨). Let x ∈ X. The
object B(Q)x was described in 3.2. We use the same notations as in this subsection.
Disregarding the internal grading, B(Q)x is also the total complex of the double complex
with (p, q)-term

Cp,q :=
⊕
p=j,

q=i+k+j

Λi(W∨
x )⊗OX,x

Sj(V∨x )⊗OX,x
(Q∨x )k

l ,

and with di�erentials d′ = d1+d3, d′′ = d2+d4. By hypothesis, (Q∨)k
l = 0 for k ¿ 0, hence

Cp,q = 0 for q ¿ 0. Hence by Proposition 2.2.1 there is a converging spectral sequence

Ep,q
1 = H(Cp,∗, d′′) ⇒ Hp+q(B(Q)x).

It follows that it is su�cient to prove that the cohomology of S ⊗OX
Q∨, endowed with

the di�erential d2 + d4, is locally �nitely generated over S(V∨). This complex is again the
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total complex of the double complex with (p, q)-term

Dp,q :=
⊕

p=2j+k,
q=i

Λi(W∨
x )⊗OX,x

Sj(V∨x )⊗OX,x
(Q∨x )k

l ,

and with di�erentials d′ = d2, d′′ = d3. The spectral sequence of this double complex
again converges, hence we can forget about d2. Then S ⊗OX

Q∨, endowed with the di�er-
ential d3, is locally the tensor product of S(V∨) with a �nite number of Koszul complexes
Koszul2(W∨

x ) of (2.3.2). The result follows.

Second step: functor A . The proof for the functor A is entirely similar. In this case,
with the notation of 3.2, we can consider the double complex with (p, q)-term

Cp,q :=
⊕

p=k−2i−j,
q=i+j

Λi(W∨
x )⊗OX,x

Sj(V∨x )⊗OX,x
(P∨x )k

l ,

and di�erentials d′ = d1+d2, d′′ = d3+d4. Here Cp,q = 0 for q < 0, hence the corresponding
spectral sequence converges, and we can forget about d1 and d2. Then we can consider the
double complex

Dp,q :=
⊕

p=k−2i,
q=i

Λi(W∨
x )⊗OX,x

Sj(V∨x )⊗OX,x
(P∨x )k

l ,

with di�erentials d′ = d4 and d′′ = d3. And we �nish the proof as above.

Finally, combining Proposition 3.7.1, Lemma 3.6.1 and the �regrading trick� of 3.5 we
obtain the following theorem, which is the main result of this section.

Theorem 3.7.3. There exists a contravariant equivalence of triangulated categories

κ : Dfg
gr(T ) ∼−→ Dfg

gr(R)

satisfying κ(M[n]〈m〉) = κ(M)[−n + m]〈m〉.

4 Linear Koszul duality
In this section we give a geometric interpretation of Theorem 3.7.3.

4.1 Intersections of vector bundles
Let us consider as above a noetherian, integral, separated, regular scheme X, and a vector
bundle E over X. Let F1, F2 ⊂ E be sub-vector bundles. Let E∗ be the vector bundle dual
to E, and let F⊥

1 , F⊥
2 ⊂ E∗ be the orthogonal to F1, respectively F2. We will be interested

in the dg-schemes
F1

R∩E F2 and F⊥
1

R∩E∗ F⊥
2 .
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Let E ,F1,F2 be the sheaves of local sections of E, F1, F2. Then the sheaves of local
sections of E∗, F⊥

1 , F⊥
2 are, respectively, E∨, F⊥1 and F⊥2 (here we consider the orthogonals

inside E∨). Let us denote by X the OX -dg-module
X :=

(
0 → F⊥1 → F∨2 → 0

)
,

where F⊥1 is in degree −1, F∨2 is in degree 0, and the non-trivial di�erential is the compo-
sition of the natural morphisms F⊥1 ↪→ E∨ ³ F∨2 , and by Y the OX -dg-module

Y :=
(
0 → F2 → E/F1 → 0

)
,

where F2 is in degree −1, E/F1 is in degree 0, and the non-trivial di�erential is the opposite
of the composition of the natural morphisms F2 ↪→ E ³ E/F1.
Lemma 4.1.1. There exist equivalences of categories

D(F1
R∩E F2) ∼= D(X, Sym(X )), D(F⊥

1

R∩E∗ F⊥
2 ) ∼= D(X, Sym(Y)).

Proof. We need only prove the �rst equivalence (the second one is similar: replace E by E∗,
F1 by F⊥

2 , F2 by F⊥
1 ). Let A be any graded-commutative, non-positively graded, quasi-

coherent dg-algebra on E, quasi-isomorphic to OF1

L⊗OE
OF2 (see 1.4). Let π : E → X be

the natural projection. Then it is well-known (see e.g. [Gro61a, 1.4.3]) that the functor π∗
induces equivalences of categories

C(E,A) ∼= C(X, π∗A), D(E,A) ∼= D(X, π∗A).

Moreover, the data of A is equivalent to the data of the π∗OE-dg-algebra π∗A, which is
quasi-isomorphic to π∗OF1

L⊗π∗OE
π∗OF2 .

Now there are natural isomorphisms π∗OE
∼= SOX

(E∨), π∗OFi
∼= SOX

(F∨i ) (i = 1, 2).
Consider the Koszul resolution

Sym
(
0 → F⊥1 → E∨ → 0

) qis−→ S(F∨1 ) ∼= S(E∨)/(F⊥1 · S(E∨)),

where F⊥1 is in degree −1, E∨ is in degree 0, and the di�erential is the natural inclusion.
This is a �at dg-algebra resolution of S(F∨1 ) over S(E∨). If we tensor this resolution
with S(F∨2 ) (over S(E∨)) we obtain that the dg-algebra Sym(X ) is quasi-isomorphic to
π∗OF1

L⊗π∗OE
π∗OF2 . Hence we can take π∗A = Sym(X ). This �nishes the proof of the

lemma.

4.2 Linear Koszul duality
One can also consider X as a Gm-equivariant OX -dg-module, where F⊥1 and F∨2 are in
internal degree 2. Then, similarly, Y is Gm-equivariant (with generators in internal degree
−2). Geometrically, this corresponds to considering a Gm-action on E, where t ∈ k× acts
by multiplication by t−2 along the �bers. We will use the notations

Dc
Gm

(F1
R∩E F2) := Dfg

gr(X, Sym(X )),

Dc
Gm

(F⊥
1

R∩E∗ F⊥
2 ) := Dfg

gr(X, Sym(Y)).

Then Theorem 3.7.3 gives, in this situation:
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Theorem 4.2.1. There exists a contravariant equivalence of triangulated categories, called
linear Koszul duality,

κ : Dc
Gm

(F1
R∩E F2)

∼−→ Dc
Gm

(F⊥
1

R∩E∗ F⊥
2 )

satisfying κ(M[n]〈m〉) = κ(M)[−n + m]〈m〉.

4.3 Equivariant version of the duality
Finally, let us consider an algebraic group G acting on X (algebraically). Assume that E
is a G-equivariant vector bundle, and that F1 and F2 are G-equivariant subbundles. Then,
with the same notations as above, X is a complex of G-equivariant coherent sheaves on X.
Let us denote by

Dc
G×Gm

(F1
R∩E F2)

the derived category of G×Gm-equivariant quasi-coherent Sym(X )-dg-modules on X (i.e.
Gm-equivariant dg-modules as above, endowed with a structure of G-equivariant quasi-
coherent OX -module compatible with all other structures) with locally �nitely generated
cohomology, and similarly for Dc

G×Gm
(F⊥

1

R∩E∗ F⊥
2 ). Then our constructions easily extend

to give the following result.

Theorem 4.3.1. There exists a contravariant equivalence of categories

κ : Dc
G×Gm

(F1
R∩E F2)

∼−→ Dc
G×Gm

(F⊥
1

R∩E∗ F⊥
2 )

satisfying κ(M[n]〈m〉) = κ(M)[−n + m]〈m〉.
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