.. Cas-des-surfaces-d-'énergie-potentielle-excitées, 1. Traitement par des méthodes basées sur la fonction d'onde, p.79

R. De-gruijl and «. Photocarcinogenesis, [33] Photocarcinogenesis: UVA vs UVB, Methods Enzymol, vol.319, pp.359-366, 2000.
DOI : 10.1016/S0076-6879(00)19035-4

H. N. Matsumura, Ananthaswamy, « Toxic effects of ultraviolet radiation on skin

D. Fasman, « Handbook of Biochemistry and Molecular Biology 3rd Edition, Nucleic Acids volume I, 1975.

P. Cadet and . Vigny, The photochemistry of nucleic acids, Bioorganic Photochemistry: Photochemistry and the Nucleic Acids, pp.1-272, 1990.

J. Cadet, E. Sage, and T. Douki, Ultraviolet radiation-mediated damage to cellular DNA, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.571, issue.1-2, pp.3-17, 2005.
DOI : 10.1016/j.mrfmmm.2004.09.012

«. Iupac, A glossary of terms used in chemical kinetics, including reaction dynamics, Pure & Appl. Chem, vol.68, pp.149-192, 1996.

J. Laidler, Rate controlling step: A necessary or useful concept?, Journal of Chemical Education, vol.65, issue.3, pp.250-254, 1988.
DOI : 10.1021/ed065p250

. Marcelin, Thèse intitulée « Contributions à la cinétique physico-chimique, 1914.

E. Tuckerman, molecular dynamics: basic concepts, current trends and novel applications, Journal of Physics: Condensed Matter, vol.14, issue.50, pp.1297-1335, 2002.
DOI : 10.1088/0953-8984/14/50/202

«. Eyring and . The, The Activated Complex in Chemical Reactions, The Journal of Chemical Physics, vol.3, issue.2, pp.107-115, 1935.
DOI : 10.1063/1.1749604

G. Evans and M. Polanyi, Some applications of the transition state method to the calculation of reaction velocities, especially in solution, Transactions of the Faraday Society, vol.31, pp.31-875, 1935.
DOI : 10.1039/tf9353100875

«. Eyring and . The, The Activated Complex and the Absolute Rate of Chemical Reactions., Chemical Reviews, vol.17, issue.1, pp.65-77, 1935.
DOI : 10.1021/cr60056a006

G. Truhlar, B. C. Garrett, and S. J. Klippenstein, Current Status of Transition-State Theory, The Journal of Physical Chemistry, vol.100, issue.31, pp.12771-12800, 1996.
DOI : 10.1021/jp953748q

«. Wigner, The transition state method », Trans. Faraday Soc, pp.29-41, 1938.

J. Laidler, Theories of chemical reaction rates », McGraw-Hill series in advanced chemistry, 1969.

D. R. Hartree, The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods, Proc. Cambridge Phil. Soc, pp.89-110, 1928.
DOI : 10.1017/S0305004100011919

R. Hartree, « The Wave Mechanics of an Atom with a Non-Coulomb Central Field

C. Slater, Atomic Shielding Constants, Atomic Shielding Constants, pp.57-64, 1929.
DOI : 10.1103/PhysRev.36.57

C. J. Roothaan, New Developments in Molecular Orbital Theory, Reviews of Modern Physics, vol.23, issue.2, pp.69-89, 1951.
DOI : 10.1103/RevModPhys.23.69

A. Pople and R. K. Nesbet, Self???Consistent Orbitals for Radicals, The Journal of Chemical Physics, vol.22, issue.3, pp.571-572, 1954.
DOI : 10.1063/1.1740120

F. Boys, Electronic Wave Functions. I. A General Method of Calculation for the Stationary States of Any Molecular System, Proc. R. Soc. London A, pp.542-554, 1950.
DOI : 10.1098/rspa.1950.0036

J. Hehre, J. A. Stewart, and J. A. , Self???Consistent Molecular???Orbital Methods. I. Use of Gaussian Expansions of Slater???Type Atomic Orbitals, The Journal of Chemical Physics, vol.51, issue.6, pp.2657-2664, 1969.
DOI : 10.1063/1.1672392

M. S. Møller and . Plesset, Note on an Approximation Treatment for Many-Electron Systems, Physical Review, vol.46, issue.7, pp.618-622, 1934.
DOI : 10.1103/PhysRev.46.618

D. Sherill and H. F. Schaefer, The Configuration Interaction Method: Advances in Highly Correlated Approaches, Adv. Quant. Chem, vol.34, pp.143-269, 1999.
DOI : 10.1016/S0065-3276(08)60532-8

«. Cizek, On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell???Type Expansion Using Quantum???Field Theoretical Methods, The Journal of Chemical Physics, vol.45, issue.11, pp.4256-4266, 1966.
DOI : 10.1063/1.1727484

W. Schmidt and M. S. Gordon, THE CONSTRUCTION AND INTERPRETATION OF MCSCF WAVEFUNCTIONS, Annual Review of Physical Chemistry, vol.49, issue.1, pp.233-266, 1998.
DOI : 10.1146/annurev.physchem.49.1.233

H. Thomas, « The calculation of atomic fields, Proc. Camb. Phil. Soc, pp.542-548, 1927.

«. Fermi, Un metodo statistice per la determinazione di alcune proprieta dell'atomo

«. A. Fermi, A Statistical Method for the Determination of Some Atomic Properties and the Application of this Method to the Theory of the Periodic System of Elements, Z. Phys, vol.48, pp.73-79, 1928.
DOI : 10.1016/B978-0-08-017819-6.50030-7

«. Fermi, Sulla deduzione statistica di alcune proprieta dell'atomo. Applicazione alla teoria del systema periodico degli elementi, Rend. Accad. Lincei, vol.7, pp.342-346, 1928.

W. Hohenberg and . Kohn, Inhomogeneous Electron Gas, Inhomogeneous electron gas, pp.864-871, 1964.
DOI : 10.1103/PhysRev.136.B864

L. J. Kohn and . Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, vol.140, issue.4A, pp.1133-1138, 1965.
DOI : 10.1103/PhysRev.140.A1133

F. Sousa, P. A. Fernandes, and M. J. Ramos, General Performance of Density Functionals, The Journal of Physical Chemistry A, vol.111, issue.42, pp.10439-10452, 2007.
DOI : 10.1021/jp0734474

E. Riley, B. T. Op-'t-holt, and K. M. Merz, Critical Assessment of the Performance of Density Functional Methods for Several Atomic and Molecular Properties, Journal of Chemical Theory and Computation, vol.3, issue.2, pp.407-433, 2007.
DOI : 10.1021/ct600185a

I. A. Burk, I. Koppel, O. Leito, and . Travnikova, Critical test of performance of B3LYP functional for prediction of gas-phase acidities and basicities, Chemical Physics Letters, vol.323, issue.5-6, pp.482-489, 2000.
DOI : 10.1016/S0009-2614(00)00566-2

D. G. Zhao and . Truhlar, Density Functionals for Noncovalent Interaction Energies of Biological Importance, Journal of Chemical Theory and Computation, vol.3, issue.1, pp.289-300, 2007.
DOI : 10.1021/ct6002719

A. Gonzalez-rivas and . Cedillo, Performance of density functional theory methods to describe intramolecular hydrogen shifts, Journal of Chemical Sciences, vol.362, issue.5, pp.555-560, 2005.
DOI : 10.1007/BF02708362

D. Guadarrama, J. Soto-castro, and . Rodriguez-otero, Performance of DFT hybrid functionals in the theoretical treatment of H-bonds: Analysis term-by-term, International Journal of Quantum Chemistry, vol.522, issue.2, pp.229-237, 2008.
DOI : 10.1002/qua.21442

E. Casida and . Recent, Advances in Density Functional Methods, Part I », World Scientific, pp.155-192

R. and E. K. Gross, Density Functional Theory of Time-Dependent Systems, Phys. Rev. Lett, vol.52, pp.977-1000, 1984.
DOI : 10.1007/978-1-4757-9975-0_7

T. Roux and . Simonson, Implicit solvent models, Implicit solvent models, pp.1-20, 1999.
DOI : 10.1016/S0301-4622(98)00226-9

M. Tomasi and . Persico, Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent, Chemical Reviews, vol.94, issue.7, pp.2027-2094, 1994.
DOI : 10.1021/cr00031a013

«. Onsager, Electric Moments of Molecules in Liquids, Journal of the American Chemical Society, vol.58, issue.8, pp.1486-1493, 1936.
DOI : 10.1021/ja01299a050

G. Kirkwood, Theory of Solutions of Molecules Containing Widely Separated Charges with Special Application to Zwitterions, The Journal of Chemical Physics, vol.2, issue.7, pp.351-361, 1934.
DOI : 10.1063/1.1749489

E. Miertus, E. J. Scrocco, and . Tomasi, « Electrostatic interaction of a solute with a continuum. A direct utilisation of ab initio molecular potentials for the prevision of solvent effects

J. Miertus and . Tomasi, Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes, Chemical Physics, vol.65, issue.2, pp.239-245, 1982.
DOI : 10.1016/0301-0104(82)85072-6

V. Cossi, R. Barone, E. J. Cammi, and . Tomasi, Ab initio study of solvated molecules: a new implementation of the polarizable continuum model, Chemical Physics Letters, vol.255, issue.4-6, pp.327-335, 1996.
DOI : 10.1016/0009-2614(96)00349-1

B. Cancès, J. Mennucci, and . Tomasi, A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics, The Journal of Chemical Physics, vol.107, issue.8, pp.3032-3041, 1997.
DOI : 10.1063/1.474659

M. Barone, E. J. Cossi, and . Tomasi, A new definition of cavities for the computation of solvation free energies by the polarizable continuum model, The Journal of Chemical Physics, vol.107, issue.8, pp.3210-3221, 1997.
DOI : 10.1063/1.474671

V. Cossi, B. Barone, J. Mennucci, and . Tomasi, Ab initio study of ionic solutions by a polarizable continuum dielectric model, Chemical Physics Letters, vol.286, issue.3-4, pp.253-260, 1998.
DOI : 10.1016/S0009-2614(98)00106-7

T. Fukui, H. Yonezawa, and . Shingu, A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons, The Journal of Chemical Physics, vol.20, issue.4, pp.722-725, 1952.
DOI : 10.1063/1.1700523

T. Fukui, C. Yonezawa, H. Nagata, and . Shingu, Molecular Orbital Theory of Orientation in Aromatic, Heteroaromatic, and Other Conjugated Molecules, J. Chem. Phys, vol.22, pp.1433-1442, 1954.
DOI : 10.1142/9789812795847_0002

«. Klopman and . Chemical, Chemical reactivity and the concept of charge- and frontier-controlled reactions, Journal of the American Chemical Society, vol.90, issue.2, pp.223-234, 1968.
DOI : 10.1021/ja01004a002

«. Salem and . Intermolecular, Intermolecular orbital theory of the interaction between conjugated systems. I. General theory, Journal of the American Chemical Society, vol.90, issue.3, pp.543-552, 1968.
DOI : 10.1021/ja01005a001

G. Parr and W. Yang, Density-Functional Theory of the Electronic Structure of Molecules, Annual Review of Physical Chemistry, vol.46, issue.1, pp.701-728, 1995.
DOI : 10.1146/annurev.pc.46.100195.003413

F. Geerlings, W. De-proft, and . Langenaeker, Conceptual Density Functional Theory, Conceptual Density Functional Theory, pp.1793-1873, 2003.
DOI : 10.1021/cr990029p

URL : https://hal.archives-ouvertes.fr/hal-01187515

«. Chermette and . Chemical, Chemical reactivity indexes in density functional theory, Journal of Computational Chemistry, vol.120, issue.1, pp.129-154, 1999.
DOI : 10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A

URL : https://hal.archives-ouvertes.fr/hal-00006867

S. Hammond, A Correlation of Reaction Rates, Journal of the American Chemical Society, vol.77, issue.2, pp.334-338, 1955.
DOI : 10.1021/ja01607a027

G. Pearson, Recent advances in the concept of hard and soft acids and bases, Journal of Chemical Education, vol.64, issue.7
DOI : 10.1021/ed064p561

G. Pearson, The principle of maximum hardness, Accounts of Chemical Research, vol.26, issue.5, pp.250-255, 1993.
DOI : 10.1021/ar00029a004

R. G. Zhou and . Parr, New measures of aromaticity: absolute hardness and relative hardness, Journal of the American Chemical Society, vol.111, issue.19, pp.7371-7379, 1989.
DOI : 10.1021/ja00201a014

G. Parr and P. K. Chattaraj, Principle of maximum hardness, Principle of Maximum Hardness, pp.1854-1855, 1991.
DOI : 10.1021/ja00005a072

G. Parr and J. L. Gazquez, Hardness functional, The Journal of Physical Chemistry, vol.97, issue.16, pp.3939-3940, 1993.
DOI : 10.1021/j100118a003

L. Gazquez, A. Martinez, and F. Mendez, Relationship between energy and hardness differences, Relationship between energy and hardness differences, pp.4059-4063, 1993.
DOI : 10.1021/j100118a021

A. Morell, A. Grand, and . Toro-labbé, Theoretical support for using the ??f(r) descriptor, Theoretical support for using the Delta f(r) descriptor », pp.342-346, 2006.
DOI : 10.1016/j.cplett.2006.05.003

W. Ayers, The physical basis of the hard/soft acid/base principle », Faraday Discussions, pp.161-190, 2007.

K. Chattaraj, H. Lee, R. G. Parr, and «. Hsab, HSAB principle, Journal of the American Chemical Society, vol.113, issue.5, pp.1855-1856, 1991.
DOI : 10.1021/ja00005a073

L. Gazquez, The Hard and Soft Acids and Bases Principle, The Journal of Physical Chemistry A, vol.101, issue.26, pp.4657-4659, 1997.
DOI : 10.1021/jp970643+

W. Ayers, An elementary derivation of the hard/soft-acid/base principle, The Journal of Chemical Physics, vol.122, issue.14, p.141102, 2005.
DOI : 10.1063/1.1897374

W. Ayers, R. G. Parr, and R. G. Pearson, Elucidating the hard/soft acid/base principle: A perspective based on half-reactions, The Journal of Chemical Physics, vol.124, issue.19, 2006.
DOI : 10.1063/1.2196882

L. and J. N. Evans, The Fukui Function: A Key Concept Linking Frontier Molecular Orbital Theory and the Hard-Soft-Acid-Base Principle, J. Am. Chem. Soc, vol.117, pp.7756-7759, 1995.

W. Ayers, J. S. Anderson, and L. J. Bartolotti, Perturbative perspectives on the chemical reaction prediction problem, Perturbative Perspectives on the Chemical Reaction Prediction Problem, pp.520-534, 2005.
DOI : 10.1002/qua.20307

«. Berkowitz, Density functional approach to frontier controlled reactions, Journal of the American Chemical Society, vol.109, issue.16, pp.4823-4825, 1987.
DOI : 10.1021/ja00250a012

J. Bartolotti and P. W. Ayers, An Example Where Orbital Relaxation Is an Important Contribution to the Fukui Function, The Journal of Physical Chemistry A, vol.109, issue.6, pp.1146-1151, 2005.
DOI : 10.1021/jp0462207

G. Parr, L. V. Szentpály, S. Liu, and . Electrophilicity, Electrophilicity Index, Journal of the American Chemical Society, vol.121, issue.9, pp.1922-1924, 1999.
DOI : 10.1021/ja983494x

K. Chattaraj, U. Sarkar, and D. R. Roy, Electrophilicity Index, Chemical Reviews, vol.106, issue.6, pp.2065-2091, 2006.
DOI : 10.1021/cr040109f

W. Ayers, J. S. Anderson, J. I. Rodriguez, and Z. , Jawed, « Indices for predicting the quality of leaving groups, Phys. Chem. Chem. Phys, vol.7, 1918.

K. Chattaraj, B. Maiti, U. Sarkar, and . Philicity, Philicity:?? A Unified Treatment of Chemical Reactivity and Selectivity, The Journal of Physical Chemistry A, vol.107, issue.25, pp.4973-4975, 2003.
DOI : 10.1021/jp034707u

«. Koopmans, Uber die zuordnung von wellen funktionen und eigenwerten zu den einzelnen elektronen eines atom », Physica, pp.104-113, 1934.

Y. and W. J. Mortier, « The Use of Global and Local Molecular Parameters for the Analysis of the Gas-Phase Basicity of Amines, J. Am. Chem. Soc, vol.108, pp.5708-5711, 1986.

K. Roy, S. Pal, and K. Hirao, On non-negativity of Fukui function indices, The Journal of Chemical Physics, vol.110, issue.17, pp.8236-8245, 1999.
DOI : 10.1063/1.478792

K. Roy, K. Hirao, and S. Pal, « On non-negativity of Fukui function indices II, J. Chem. Phys, vol.113, pp.1372-1379, 2000.

S. Bultinck, C. Fias, P. W. Van-alsenoy, R. Ayers, and . Carbó-dorca, Critical thoughts on computing atom condensed Fukui functions, Critical thoughts on computing atom condensed Fukui functions, p.34102, 2007.
DOI : 10.1063/1.2749518

«. Fukui, The path of chemical reactions - the IRC approach, Accounts of Chemical Research, vol.14, issue.12, pp.363-368, 1981.
DOI : 10.1021/ar00072a001

H. B. Gonzalez and . Schlegel, Reaction path following in mass-weighted internal coordinates, The Journal of Physical Chemistry, vol.94, issue.14, pp.5523-5527, 1990.
DOI : 10.1021/j100377a021

I. Cardenas-jiron and J. Lahsen, Hardness Profile and Activation Hardness for Rotational Isomerization Processes. 1. Application to Nitrous Acid and Hydrogen Persulfide, The Journal of Physical Chemistry, vol.99, issue.15, pp.5325-5330, 1995.
DOI : 10.1021/j100015a014

I. Cardenas-jiron and A. Toro-labbé, Hardness Profile and Activation Hardness for Rotational Isomerization Processes. 2. The Maximum Hardness Principle, The Journal of Physical Chemistry, vol.99, issue.34, pp.12730-12738, 1995.
DOI : 10.1021/j100034a008

I. Cardenas-jiron, S. Gutierrez-oliva, J. Melin, and A. Toro-labbé, Relations between Potential Energy, Electronic Chemical Potential, and Hardness Profiles, Relations between Potential Energy, Electronic Chemical Potential and Hardness Profiles, pp.4621-4627, 1997.
DOI : 10.1021/jp9638705

J. R. Gutiérrez-oliva and . Letelier, Energy, chemical potential and hardness profiles for the rotational isomerization of HOOH, HSOH and HSSH, Molecular Physics, vol.91, issue.1, pp.61-70, 1999.
DOI : 10.1016/0166-1280(94)80207-6

K. Chattaraj, S. Nath, A. B. Sannigrahi, and . Hardness, Hardness, Chemical Potential, and Valency Profiles of Molecules under Internal Rotations, The Journal of Physical Chemistry, vol.98, issue.37, pp.9143-9145, 1994.
DOI : 10.1021/j100088a009

S. Kar and . Scheiner, Hardness Profiles of Some 1,2-Hydrogen Shift Reactions, The Journal of Physical Chemistry, vol.99, issue.20, pp.8121-8124, 1995.
DOI : 10.1021/j100020a039

S. Kar, A. B. Scheiner, and . Sannigrahi, Hardness and Chemical Potential Profiles for Some Open-Shell HAB ??? HBA Type Reactions. Ab Initio and Density Functional Study, The Journal of Physical Chemistry A, vol.102, issue.29
DOI : 10.1021/jp9809888

E. Mineva, N. Sicilia, and . Russo, Density-Functional Approach to Hardness Evaluation and Its Use in the Study of the Maximum Hardness Principle, Journal of the American Chemical Society, vol.120, issue.35, pp.9053-9058, 1998.
DOI : 10.1021/ja974149v

N. Sicilia, T. Russo, and . Mineva, Correlation between Energy, Polarizability, and Hardness Profiles in the Isomerization Reaction of HNO and ClNO, The Journal of Physical Chemistry A, vol.105, issue.2, pp.442-450, 2001.
DOI : 10.1021/jp002350d

A. Sola and . Toro-labbé, The Hammond Postulate and the Principle of Maximum Hardness in Some Intramolecular Rearrangement Reactions, The Journal of Physical Chemistry A, vol.103, issue.44, pp.8847-8852, 1999.
DOI : 10.1021/jp990576e

K. Chattaraj, P. Fuentealba, B. Gomez, R. Contreras, and . Woodward, Woodward???Hoffmann Rule in the Light of the Principles of Maximum Hardness and Minimum Polarizability:?? DFT and Ab Initio SCF Studies, Journal of the American Chemical Society, vol.122, issue.2, pp.348-351, 2000.
DOI : 10.1021/ja992337a

K. Chattaraj, P. Fuentealba, P. Jaque, and A. Toro-labbé, Validity of the Minimum Polarizability Principle in Molecular Vibrations and Internal Rotations:?? An ab Initio SCF Study, Validity of the Minimum Polarizability Principle in Molecular Vibrations and Internal Rotations : Ab Initio SCF Studies, pp.9307-9312, 1999.
DOI : 10.1021/jp9918656

S. Noorizadeh and H. Maihami, A theoretical study on the regioselectivity of Diels???Alder reactions using electrophilicity index, Journal of Molecular Structure: THEOCHEM, vol.763, issue.1-3, pp.133-144, 2006.
DOI : 10.1016/j.theochem.2006.01.022

R. Elango, V. Parthasarathi, P. K. Subramanian, and . Chattaraj, Chemical reactivity patterns of [n]paracyclophanes, Chemical reactivity patterns of [n]paracyclophanes, pp.1-6, 2007.
DOI : 10.1016/j.theochem.2007.05.041

S. Noorizadeh, Minimum electrophilicity principle in photocycloaddition formation of oxetanes, Journal of Physical Organic Chemistry, vol.3, issue.7, pp.514-524, 2007.
DOI : 10.1002/poc.1193

«. Noorizadeh, Is there a minimum electrophilicity principle in chemical reactions? », Chin, J

S. Noorizadeh and E. Shakerzadeh, Minimum electrophilicity principle in Lewis acid???base complexes of boron trihalides, Journal of Molecular Structure: THEOCHEM, vol.868, issue.1-3, pp.22-26, 2008.
DOI : 10.1016/j.theochem.2008.07.033

P. K. Chamorro, P. Chattaraj, and . Fuentealba, Variation of the Electrophilicity Index along the Reaction Path, The Journal of Physical Chemistry A, vol.107, issue.36, pp.7068-7072, 2003.
DOI : 10.1021/jp035435y

V. Morell, A. Labet, H. Grand, and . Chermette, Minimum electrophilicity principle: an analysis based upon the variation of both chemical potential and absolute hardness, Physical Chemistry Chemical Physics, vol.25, issue.18
DOI : 10.1039/b818534d

«. Chaquin, . Absolute-electronegativity, and . Hardness, Absolute electronegativity and hardness: An analogy with classical electrostatics suggests an interpretation of the Parr ???electrophilicity index??? as a ???global energy index??? leading to the ???minimum electrophilicity principle???, Chemical Physics Letters, vol.458, issue.1-3, pp.231-234, 2008.
DOI : 10.1016/j.cplett.2008.04.087

. Toro-labbé, Characterization of Chemical Reactions from the Profiles of Energy, Chemical Potential, and Hardness, The Journal of Physical Chemistry A, vol.103, issue.22, pp.4398-4403, 1999.
DOI : 10.1021/jp984187g

S. Toro-labbé, J. S. Guttiérrez-oliva, P. Murray, and . Politzer, A new perspective on chemical and physical processes: the reaction force, Molecular Physics, vol.121, issue.19-22, pp.2619-2625, 2007.
DOI : 10.1021/jp062870u

A. Jaque and . Toro-labbé, Theoretical Study of the Double Proton Transfer in the CHX???XH??????CHX???XH (X = O, S) Complexes, Theoretical Study of the Double Proton Transfer in the CHX- XH?CHX-XH (X=O,S) Complexes, pp.995-1003, 2000.
DOI : 10.1021/jp993016o

A. Herrera and . Toro-labbé, The role of the reaction force to characterize local specific interactions that activate the intramolecular proton transfers in DNA basis, The Journal of Chemical Physics, vol.121, issue.15, pp.7096-7102, 2004.
DOI : 10.1063/1.1792091

C. Wong, J. A. Gonzalez, . Pople, I. Gaussian, and C. Wallingford, deoxyadenosine in DNA by liquid chromatography/mass spectroscopy », Free Radic, Biol. Med, vol.30, pp.774-784, 2001.

M. Jaruga, H. Birincioglu, M. Rodriguez, and . Dizdaroglu, Mass Spectrometric Assays for the Tandem Lesion 8,5???-Cyclo-2???-deoxyguanosine in Mammalian DNA, Biochemistry, vol.41, issue.11, pp.3703-3711, 2002.
DOI : 10.1021/bi016004d

B. Zhang and L. A. Eriksson, Theoretical study of the tandem cross-linkage lesion in DNA, Chemical Physics Letters, vol.417, issue.4-6, pp.303-308, 2006.
DOI : 10.1016/j.cplett.2005.10.020

C. Xerri, A. Morell, J. Grand, P. Cadet, V. Cimino et al., Radiation-induced formation of DNA intrastrand crosslinks between thymine and adenine bases: a theoretical approach, Organic & Biomolecular Chemistry, vol.124, issue.21, pp.3986-3992, 2006.
DOI : 10.1039/b609134b

A. Blancafort and . Migani, Modeling Thymine Photodimerizations in DNA:?? Mechanism and Correlation Diagrams, Journal of the American Chemical Society, vol.129, issue.47, pp.14540-14541, 2007.
DOI : 10.1021/ja074734o

G. Boggio-pasqua, L. V. Groenhof, H. Schäfer, M. A. Grubmüller, and . Robb, Ultrafast Deactivation Channel for Thymine Dimerization, Ultrafast Deactivation Channel for Thymine Dimerization, pp.10996-10997, 2007.
DOI : 10.1021/ja073628j

URL : http://hdl.handle.net/11858/00-001M-0000-0012-E2BD-F

J. Serrano-pérez, I. González-ramírez, P. B. Coto, M. Merchán, and L. Serrano-andrés, Theoretical Insight into the Intrinsic Ultrafast Formation of Cyclobutane Pyrimidine Dimers in UV-Irradiated DNA: Thymine versus Cytosine, Theoretical Insight into the Intrinsic Ultrafast Formation of Cyclobutane Pyrimidine Dimers in UV-Irradiated DNA: Thymine versus Cytosine, pp.14096-14098, 2008.
DOI : 10.1021/jp806794x

G. Levine, C. Ko, J. Quenneville, and T. J. Martínez, Conical intersections and double excitations in time-dependent density functional theory, Conical intersection and double excitations in time-dependant density functional theory, pp.1039-1051, 2006.
DOI : 10.1002/(SICI)1097-461X(1999)75:1<55::AID-QUA6>3.0.CO;2-K

L. Kopka, A. V. Fratini, and R. E. Dickerson, Reversible bending and helix geometry in a B- DNA dodecamer: CGCGAATTBRCGCG », Protein Data Bank, 1982.

J. Cadet, P. Vigny, and . Photochemistry, Photochemistry and the Nucleic Acids, pp.1-272, 1990.

C. Courdavault, M. Baudouin, B. Charveron, A. Canghilem, J. Favier et al., Repair of the three main types of bipyrimidine DNA photoproducts in human keratinocytes exposed to UVB and UVA radiations, DNA Repair, vol.4, issue.7, pp.836-844, 2005.
DOI : 10.1016/j.dnarep.2005.05.001

W. Hohenberg and . Kohn, Inhomogeneous Electron Gas, Inhomogeneous Electron Gas, pp.864-871, 1964.
DOI : 10.1103/PhysRev.136.B864

B. Gunnarson and . Lundquist, Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism, Physical Review B, vol.13, issue.10, pp.4274-4298, 1976.
DOI : 10.1103/PhysRevB.13.4274

R. Englisch, . Englisch, and . Hohenberg, Kohn theorem and non-v-representable densities », Physica A, pp.253-268, 1983.

A. K. Sengupta, M. T. Chandra, and . Nguyen, (n,??*) State of Carbonyl Compounds:?? Interpretation Using Local Softness, The Journal of Organic Chemistry, vol.62, issue.18, pp.6404-6406, 1997.
DOI : 10.1021/jo970353p

M. A. Mendez and «. A. Garcia-garibay, ChemInform Abstract: A Hard-Soft Acid-Base and DFT Analysis of Singlet-Triplet Gaps and the Addition of Singlet Carbenes to Alkenes., ChemInform, vol.64, issue.3, pp.7061-7066, 1999.
DOI : 10.1002/chin.200003053

P. Chamorro, M. Pérez, F. Duque, P. De-proft, and . Geerlings, Dual descriptors within the framework of spin-polarized density functional theory, The Journal of Chemical Physics, vol.129, issue.6, p.64117, 2008.
DOI : 10.1063/1.2965594

D. Proft, S. Fias, C. Van-alsenoy, and P. Geerlings, Spin-Polarized Conceptual Density Functional Theory Study of the Regioselectivity in the [2+2] Photocycloaddition of Enones to Substituted Alkenes, of [2+2] Photocycloaddition Reactions of Acrolein with Olefins, pp.6335-6343, 2005.
DOI : 10.1021/jp050773f

A. Galván, J. L. Vela, and . Gázquez, Chemical reactivity in spin-polarized density functional theory, The Journal of Physical Chemistry, vol.92, issue.22, pp.6470-6474, 1988.
DOI : 10.1021/j100333a056

R. Galván and . Vargas, Spin-potential in Kohn-Sham theory, The Journal of Physical Chemistry, vol.96, issue.4, pp.1625-1630, 1992.
DOI : 10.1021/j100183a026

M. Vargas and . Galván, On the Stability of Half-Filled Shells, The Journal of Physical Chemistry, vol.100, issue.35, pp.14651-14654, 1996.
DOI : 10.1021/jp9603086

M. Vargas, A. Galván, and . Vela, Singlet???Triplet Gaps and Spin Potentials, The Journal of Physical Chemistry A, vol.102, issue.18, pp.3134-3140, 1998.
DOI : 10.1021/jp972984t

K. Ghanty and S. K. Ghosh, Spin-Polarized Generalization of the Concepts of Electronegativity and Hardness and the Description of Chemical Binding, Journal of the American Chemical Society, vol.116, issue.9, pp.3943-3948, 1994.
DOI : 10.1021/ja00088a033

K. Chattaraj and A. Poddar, A Density Functional Treatment of Chemical Reactivity and the Associated Electronic Structure Principles in the Excited Electronic States, The Journal of Physical Chemistry A, vol.102, issue.48, pp.9944-9948, 1998.
DOI : 10.1021/jp982734s

K. Chattaraj and A. Poddar, Chemical Reactivity and Excited-State Density Functional Theory, The Journal of Physical Chemistry A, vol.103, issue.9, pp.1274-1275, 1999.
DOI : 10.1021/jp983821n

K. Chattarj and A. Poddar, Molecular Reactivity in the Ground and Excited Electronic States through Density-Dependent Local and Global Reactivity Parameters, The Journal of Physical Chemistry A, vol.103, issue.43, pp.8691-8699, 1999.
DOI : 10.1021/jp991214+

U. J. Petersilka, E. K. Grossman, and . Gross, Excitation Energies from Time-Dependent Density-Functional Theory, Physical Review Letters, vol.76, issue.8, pp.1212-1215, 1996.
DOI : 10.1103/PhysRevLett.76.1212

URL : http://arxiv.org/pdf/cond-mat/0001154v1.pdf

M. Deb and P. K. Chattaraj, Quantum fluid density functional theory of time-dependent phenomena: Ion-atom collisions, Chemical Physics Letters, vol.148, issue.6, pp.550-556, 1988.
DOI : 10.1016/0009-2614(88)80329-4

M. Deb and P. K. Chattaraj, « Density-functional and hydrodynamical approach to ion-atom collision through a new generalized nonlinear Schrödinger equation, Phys. Rev. A Int. J. Quantum. Chem, vol.39, issue.41, pp.1696-1713, 1989.

K. Dey and B. M. Deb, Time-dependent quantum fluid dynamics of the photoionization of the He atom under an intense laser field, International Journal of Quantum Chemistry, vol.24, issue.6, pp.707-732, 1995.
DOI : 10.1002/qua.560560608

K. Chattaraj and S. Sengupta, Dynamics of Chemical Reactivity Indices for a Many-Electron System in Its Ground and Excited States, The Journal of Physical Chemistry A, vol.101, issue.42, pp.7893-7900, 1997.
DOI : 10.1021/jp971408u

K. Chattaraj, S. Sengupta, and A. Poddar, Quantum fluid density functional theory of time-dependent processes, International Journal of Quantum Chemistry, vol.136, issue.3, pp.279-291, 1998.
DOI : 10.1002/(SICI)1097-461X(1998)69:3<279::AID-QUA7>3.0.CO;2-S

A. Lévy and . Nagy, Variational Density-Functional Theory for an Individual Excited State, Physical Review Letters, vol.83, issue.21, pp.4361-4364, 1999.
DOI : 10.1103/PhysRevLett.83.4361

F. Liu, R. G. De-proft, and . Parr, Simplified Models for Hardness Kernel and Calculations of Global Hardness, The Journal of Physical Chemistry A, vol.101, issue.37, pp.6991-6997, 1997.
DOI : 10.1021/jp971263r

W. Ayers, R. G. Parr-albrecht, and H. , A Theoretical Perspective on the Bond Length Rule of Grochala, Albrecht, and Hoffmann, The Journal of Physical Chemistry A, vol.104, issue.11, pp.2211-2220, 2000.
DOI : 10.1021/jp9935079

W. Ayers, C. Morell, F. De-proft, and P. Geerlings, Understanding the Woodward???Hoffmann Rules by Using Changes in Electron Density, Chemistry - A European Journal, vol.106, issue.29, pp.8240-8247, 2007.
DOI : 10.1002/chem.200700365