





### Computational Approach of Musical Orchestration

Constrained Multiobjective Optimization of Sound Combinations in Large Instrument Sample Databases

December 16th, 2008

**Grégoire Carpentier - Ph.D. Defense** IRCAM - Music Representation Group

Supervisors: Gérard Assayag (IRCAM) & Emmanuel Saint-James (LIP6)

1. Computer-Aided Composition / Orchestration

- 1. Computer-Aided Composition / Orchestration
- 2. Stating the Orchestration Problem

- 1. Computer-Aided Composition / Orchestration
- 2. Stating the Orchestration Problem
- 3. Combinatorial Optimization Problem (the *orchidée* algorithm)

- 1. Computer-Aided Composition / Orchestration
- 2. Stating the Orchestration Problem
- 3. Combinatorial Optimization Problem (the *orchidée* algorithm)
- 4. Constraint Solving Problem (the *cdcsolver* algorithm)

- 1. Computer-Aided Composition / Orchestration
- 2. Stating the Orchestration Problem
- 3. Combinatorial Optimization Problem (the *orchidée* algorithm)
- 4. Constraint Solving Problem (the *cdcsolver* algorithm)
- 5. Prototype of Orchestration Tool Musical Examples

- 1. Computer-Aided Composition / Orchestration
- 2. Stating the Orchestration Problem
- 3. Combinatorial Optimization Problem (the *orchidée* algorithm)
- 4. Constraint Solving Problem (the *cdcsolver* algorithm)
- 5. Prototype of Orchestration Tool Musical Examples
- 6. Conclusions and Future Work

- 1. Computer-Aided Composition / Orchestration
- 2. Stating the Orchestration Problem
- 3. Combinatorial Optimization Problem (the *orchidée* algorithm)
- 4. Constraint Solving Problem (the *cdcsolver* algorithm)
- 5. Prototype of Orchestration Tool Musical Examples
- 6. Conclusions and Future Work

Formalizing of musical structures

- Formalizing of musical structures
- Formalizing processes

- Formalizing of musical structures
- Formalizing processes
- Tackling different aspects of musical writing:

- Formalizing of musical structures
- Formalizing processes
- Tackling different aspects of musical writing:
  - Durations, rythm

- Formalizing of musical structures
- Formalizing processes
- Tackling different aspects of musical writing:
  - ✓ Durations, rythm
  - Pitches, melody, harmony

- Formalizing of musical structures
- Formalizing processes
- Tackling different aspects of musical writing:
  - ✓ Durations, rythm
  - Pitches, melody, harmony
  - Time representations

- Formalizing of musical structures
- Formalizing processes
- Tackling different aspects of musical writing:
  - ✓ Durations, rythm
  - Pitches, melody, harmony
  - Time representations
  - ☑ Spatialization

- Formalizing of musical structures
- Formalizing processes
- Tackling different aspects of musical writing:
  - ✓ Durations, rythm
  - Pitches, melody, harmony
  - Time representations
  - Spatialization
  - Sound synthesis

- Formalizing of musical structures
- Formalizing processes
- Tackling different aspects of musical writing:
  - Durations, rythm
  - Pitches, melody, harmony
  - Time representations
  - Spatialization
  - Sound synthesis
  - Instrumental timbre ?

## **Orchestration - timbre**



# Orchestration: projection



# Orchestration: projection



Sound world (timbre)

Sound world (timbre)





Personal knowledge

Personal knowledge
 Necessarily restricted

8

- Personal knowledge
- Orchestration Treatises
  - [Berlioz1855]
  - [Koechlin1943]
  - [Piston1955]
  - [Rimski-Korsakov1912†]

Necessarily restricted

- Personal knowledge
- Orchestration Treatises
  - [Berlioz1855]
  - [Koechlin1943]
  - [Piston1955]
  - [Rimski-Korsakov1912†]

Necessarily restricted

Obviously outdated

Obviously outdated

# **Orchestration in practice**

- Personal knowledge
   Necessarily restricted
- Orchestration Treatises
  - [Berlioz1855]
  - [Koechlin1943]
  - [Piston1955]
  - [Rimski-Korsakov1912†]
- Current computer orchestration tools
  - [Psenicka2003]
  - [Rose&Hetrick2005]
  - [Hummel2005]

---

- Personal knowledge Necessarily restricted **Orchestration Treatises** [Berlioz1855] [Koechlin1943] Obviously outdated [Piston1955] [Rimski-Korsakov1912†] Current computer orchestration tools
- - [Psenicka2003] Monoobjective approach of timbre [Rose&Hetrick2005] [Hummel2005]

- Current computer orchestration tools
  - [Psenicka2003]
     [Rose&Hetrick2005]
     [Hummel2005]

    Monoobjective approach of timbre Do not handle combinatorial issues

- 1. Computer-Aided Composition / Orchestration
- 2. Stating the Orchestration Problem
- 3. Combinatorial Optimization Problem (the *orchidée* algorithm)
- 4. Constraint Solving Problem (the *cdcsolver* algorithm)
- 5. Prototype of Orchestration Tool Musical Examples
- 6. Conclusions and Future Work

How can I use an orchestra to reproduce a timbre target within a given compositional context?

How can I use an orchestra to reproduce a timbre target within a given compositional context?

How can I find an instrument sound combination that:

How can I use an orchestra to reproduce a timbre target within a given compositional context?

How can I find an instrument sound combination that:

- Best matches a given target sound?

How can I use an orchestra to reproduce a timbre target within a given compositional context?

How can I find an instrument sound combination that:

- Best matches a given target sound?
- Fits writing constraints specified by the composer?

How can I use an orchestra to reproduce a timbre target within a given compositional context?

How can I find an instrument sound combination that:

- Best matches a given target sound?
- Fits writing constraints specified by the composer?

In computer terms:

How can I use an orchestra to reproduce a timbre target within a given compositional context?

How can I find an instrument sound combination that:

- Best matches a given target sound?
- Fits writing constraints specified by the composer?

#### In computer terms:

 A combinatorial optimization problem defined on a timbre description scheme

How can I use an orchestra to reproduce a timbre target within a given compositional context?

How can I find an instrument sound combination that:

- Best matches a given target sound?
- Fits writing constraints specified by the composer?

#### In computer terms:

- A combinatorial optimization problem defined on a timbre description scheme
- A constraint solving problem on the variables of musical writing

- Combinatorial optimization problem: the *orchidée* algorithm

- Combinatorial optimization problem: the *orchidée* algorithm
- Constraint solving problem: the *cdcsolver* algorithm

- Combinatorial optimization problem: the *orchidée* algorithm
- Constraint solving problem: the *cdcsolver* algorithm
- Collaboration between the two methods

- Combinatorial optimization problem: the *orchidée* algorithm
- Constraint solving problem: the *cdcsolver* algorithm
- Collaboration between the two methods

target context

- Combinatorial optimization problem: the *orchidée* algorithm
- Constraint solving problem: the *cdcsolver* algorithm
- Collaboration between the two methods



- Combinatorial optimization problem: the orchidée algorithm
- Constraint solving problem: the *cdcsolver* algorithm
- Collaboration between the two methods



- Combinatorial optimization problem: the orchidée algorithm
- Constraint solving problem: the *cdcsolver* algorithm
- Collaboration between the two methods



### **Contents**

- 1. Computer-Aided Composition / Orchestration
- 2. Stating the Orchestration Problem
- 3. Combinatorial Optimization Problem (the *orchidée* algorithm)
- 4. Constraint Solving Problem (the *cdcsolver* algorithm)
- 5. Prototype of Orchestration Tool Musical Examples
- 6. Conclusions and Future Work

• Timbre perception is <u>multidimensional</u>

• Timbre perception is <u>multidimensional</u>

- Timbre perception is <u>multidimensional</u>
- Correlation between perceptual dimensions and sound features [McAdams+1995] [Peeters2004]:

- Timbre perception is <u>multidimensional</u>
- Correlation between perceptual dimensions and sound features [McAdams+1995] [Peeters2004]:
  - Spectral centroid <=> brightness

- Timbre perception is <u>multidimensional</u>
- Correlation between perceptual dimensions and sound features [McAdams+1995] [Peeters2004]:
  - Spectral centroid <=> brightness
  - Attack time <=> percussive / sustained sounds

- Timbre perception is <u>multidimensional</u>
- Correlation between perceptual dimensions and sound features [McAdams+1995] [Peeters2004]:
  - Spectral centroid <=> brightness
  - Attack time <=> percussive / sustained sounds



- Timbre perception is <u>multidimensional</u>
- Correlation between perceptual dimensions and sound features [McAdams+1995] [Peeters2004]:
  - Spectral centroid <=> brightness
  - Attack time <=> percussive / sustained sounds



- Timbre perception is <u>multidimensional</u>
- Correlation between perceptual dimensions and sound features [McAdams+1995] [Peeters2004]:
  - Spectral centroid <=> brightness
  - Attack time <=> percussive / sustained sounds



• <u>Hypothesis</u>: Sound combination feature set can be predicted from the values of components features

• <u>Hypothesis</u>: Sound combination feature set can be predicted from the values of components features



• <u>Hypothesis</u>: Sound combination feature set can be predicted from the values of components features







S





• <u>Hypothesis</u>: Sound combination feature set can be predicted from the values of components features





• <u>Hypothesis</u>: Sound combination feature set can be predicted from the values of components features



 Hypothesis: Sound combination feature set can be predicted from the values of components features



### **Sound features**

- Spectral centroid (brightness) [McAdams+1995]
- Spectral spread (volume) [Chiasson2007]
- Resolved partials (harmonic tone)
- Time and noise features are not considered
- Preliminary tasks:
  - Sound combinations features prediction functions
  - Perceptual dissimilarity functions  $\{D_T^k(\mathcal{S}) \mid k = 1, ..., K\}$

# Multiobjective approach

# Multiobjective approach

 Relative importance of perceptual dimensions cannot be known without prior information on listening preferences

### Multiobjective approach

- Relative importance of perceptual dimensions cannot be known without prior information on listening preferences
- Multiobjective optimization: Jointly minimize  $\{D_T^k(\mathcal{S}) \mid k = 1, ..., K\}$

### Multiobjective approach

- Relative importance of perceptual dimensions cannot be known without prior information on listening preferences
- Multiobjective optimization: Jointly minimize  $\{D_T^k(\mathcal{S}) \mid k = 1, ..., K\}$
- Pareto dominance:  $x \leq y \Leftrightarrow \forall k, x_k \leq y_k$



#### Multiobjective approach

- Relative importance of perceptual dimensions cannot be known without prior information on listening preferences
- Multiobjective optimization: Jointly minimize  $\{D_T^k(\mathcal{S}) \mid k = 1, ..., K\}$
- Pareto dominance:  $S_1 \leq S_2 \Leftrightarrow \forall k, \ D_T^k(S_1) \leq D_T^k(S_2)$





### Multiobjective approach

- Relative importance of perceptual dimensions cannot be known without prior information on listening preferences
- Multiobjective optimization: Jointly minimize  $\{D_T^k(\mathcal{S}) \mid k = 1, ..., K\}$
- Pareto dominance:  $S_1 \leq S_2 \Leftrightarrow \forall k, \ D_T^k(S_1) \leq D_T^k(S_2)$





<u>Set</u> of optimal solutions (implicitly corresponding to different listening preferences)

• Orchestra composed of  ${\mathcal I}$  instruments:  ${\mathcal I}$  variables problem

- Orchestra composed of  ${\mathcal I}$  instruments:  ${\mathcal I}$  variables problem
- Domain of each variable:  $\bar{E}_i = E_i \cup \{e\}$

- Orchestra composed of  ${\mathcal I}$  instruments:  ${\mathcal I}$  variables problem
- Domain of each variable:  $\bar{E}_i = E_i \cup \{e\}$
- Problem:

$$\begin{cases}
\min_{\mathcal{S}} D_{\mathcal{T}}^{k}(\mathcal{S}) = D_{\mathcal{T}}^{k}(i_{1}, \dots, i_{\mathcal{I}}), k \in \{1, \dots, K\} \\
\text{s.t. } \mathcal{S} \in \{\bar{E}_{1} \times \dots \times \bar{E}_{\mathcal{I}}\}
\end{cases}$$
(P)

Consider a 5000 sample sound database. Consider an 11 instruments orchestra in which only 4 can play simultaneously a given 4-note chord. Thus:

Consider a 5000 sample sound database. Consider an 11 instruments orchestra in which only 4 can play simultaneously a given 4-note chord. Thus:

There are around a billon a feasible combinations

Consider a 5000 sample sound database. Consider an 11 instruments orchestra in which only 4 can play simultaneously a given 4-note chord. Thus:

- There are around a billon a feasible combinations
- Computing their features takes around 20 minutes with 3 perceptual dimensions

Consider a 5000 sample sound database. Consider an 11 instruments orchestra in which only 4 can play simultaneously a given 4-note chord. Thus:

- There are around a billon a feasible combinations
- Computing their features takes around 20 minutes with 3 perceptual dimensions

Taking into account that:

Consider a 5000 sample sound database. Consider an 11 instruments orchestra in which only 4 can play simultaneously a given 4-note chord. Thus:

- There are around a billon a feasible combinations
- Computing their features takes around 20 minutes with 3 perceptual dimensions

Taking into account that:

A big orchestra may contain around a hundred instruments;

Consider a 5000 sample sound database. Consider an 11 instruments orchestra in which only 4 can play simultaneously a given 4-note chord. Thus:

- There are around a billon a feasible combinations
- Computing their features takes around 20 minutes with 3 perceptual dimensions

Taking into account that:

- A big orchestra may contain around a hundred instruments;
- There might be around ten perceptual features;

Consider a 5000 sample sound database. Consider an 11 instruments orchestra in which only 4 can play simultaneously a given 4-note chord. Thus:

- There are around a billon a feasible combinations
- Computing their features takes around 20 minutes with 3 perceptual dimensions

Taking into account that:

- A big orchestra may contain around a hundred instruments;
- There might be around ten perceptual features;
- Instrument sound databases may hold hundred of thousands items;

Consider a 5000 sample sound database. Consider an 11 instruments orchestra in which only 4 can play simultaneously a given 4-note chord. Thus:

- There are around a billon a feasible combinations
- Computing their features takes around 20 minutes with 3 perceptual dimensions

Taking into account that:

- A big orchestra may contain around a hundred instruments;
- There might be around ten perceptual features;
- Instrument sound databases may hold hundred of thousands items;

Complete resolution methods cannot help here. Metaheuristics are required.

Evolutionary algorithm (using a population of individuals)

- Evolutionary algorithm (using a population of individuals)
- Each individual is represented by a set of genes (chromosome)

- Evolutionary algorithm (using a population of individuals)
- Each individual is represented by a set of genes (chromosome)
- Orchidée: integer tuple encoding ("orchestra" representation)

- Evolutionary algorithm (using a population of individuals)
- Each individual is represented by a set of genes (chromosome)
- *Orchidée*: integer tuple encoding ("orchestra" representation)



- Evolutionary algorithm (using a population of individuals)
- Each individual is represented by a set of genes (chromosome)
- Orchidée: integer tuple encoding ("orchestra" representation)



• Orchidée: user preferences guessing mechanism

Initial population































#### Goals:

- Convergence towards Pareto front
- Diversity along the Pareto front



# User preferences (1)

# User preferences (1)

orchidée

# User preferences (1)











• Weighted Chebychev norm [Jaszkiewicz2002]:

$$||x||_{\lambda} = \max_{k} |\lambda_k| x_k|$$

Weighted Chebychev norm [Jaszkiewicz2002]:

$$\|x\|_{\lambda} = \max_{k} \lambda_{k} |x_{k}|$$
 soit:  $\|\mathcal{S}\|_{\lambda} = \max_{k} \lambda_{k} D_{\mathcal{T}}^{k}(\mathcal{S})$ 

Weighted Chebychev norm [Jaszkiewicz2002]:

$$\|x\|_{\lambda} = \max_{k} \lambda_{k} |x_{k}|$$
 soit:  $\|\mathcal{S}\|_{\lambda} = \max_{k} \lambda_{k} D_{T}^{k}(\mathcal{S})$ 



Weighted Chebychev norm [Jaszkiewicz2002]:

$$\|x\|_{\lambda} = \max_{k} \lambda_{k} |x_{k}|$$
 soit:  $\|\mathcal{S}\|_{\lambda} = \max_{k} \lambda_{k} D_{T}^{k}(\mathcal{S})$ 





Each efficient solution corresponds to a weight set



Fundamental property [Steuer1986]:

$$\mathcal{S}^* \in \mathcal{P}^* \Leftrightarrow \exists \lambda, \ \mathcal{S}^* = \underset{\mathcal{S}}{\operatorname{argmin}} \ \|\mathcal{S}\|_{\lambda}$$

Each efficient solution corresponds to a weight set



Fundamental property [Steuer1986]:

$$\mathcal{S}^* \in \mathcal{P}^* \Leftrightarrow \exists \lambda, \ \mathcal{S}^* = \underset{\mathcal{S}}{\operatorname{argmin}} \ \|\mathcal{S}\|_{\lambda}$$

$$\lambda_k = \frac{\prod_{j \neq k} x_j}{\sum_{i=1}^K \prod_{j \neq i} x_j}, \ k = 1, ..., K$$

Each efficient solution corresponds to a weight set



Fundamental property [Steuer1986]:

$$\mathcal{S}^* \in \mathcal{P}^* \Leftrightarrow \exists \lambda, \ \mathcal{S}^* = \underset{\mathcal{S}}{\operatorname{argmin}} \ \|\mathcal{S}\|_{\lambda}$$

$$\lambda_k = \frac{\prod_{j \neq k} x_j}{\sum_{i=1}^K \prod_{j \neq i} x_j}, \ k = 1, ..., K$$

Each efficient solution corresponds to a weight set



Fundamental property [Steuer1986]:

$$\mathcal{S}^* \in \mathcal{P}^* \Leftrightarrow \exists \lambda, \ \mathcal{S}^* = \underset{\mathcal{S}}{\operatorname{argmin}} \ \|\mathcal{S}\|_{\lambda}$$

$$\lambda_k = \frac{\prod_{j \neq k} x_j}{\sum_{i=1}^K \prod_{j \neq i} x_j}, \ k = 1, ..., K$$

Each efficient solution corresponds to a weight set



Fundamental property [Steuer1986]:

$$\mathcal{S}^* \in \mathcal{P}^* \Leftrightarrow \exists \lambda, \ \mathcal{S}^* = \underset{\mathcal{S}}{\operatorname{argmin}} \ \|\mathcal{S}\|_{\lambda}$$

$$\lambda_k = \frac{\prod_{j \neq k} x_j}{\sum_{i=1}^K \prod_{j \neq i} x_j}, \ k = 1, ..., K$$

Each efficient solution corresponds to a weight set



Fundamental property [Steuer1986]:

$$\mathcal{S}^* \in \mathcal{P}^* \Leftrightarrow \exists \lambda, \ \mathcal{S}^* = \underset{\mathcal{S}}{\operatorname{argmin}} \ \|\mathcal{S}\|_{\lambda}$$

$$\lambda_k = \frac{\prod_{j \neq k} x_j}{\sum_{i=1}^K \prod_{j \neq i} x_j}, \ k = 1, ..., K$$

Each efficient solution corresponds to a weight set



Fundamental property [Steuer1986]:

$$\mathcal{S}^* \in \mathcal{P}^* \Leftrightarrow \exists \lambda, \ \mathcal{S}^* = \underset{\mathcal{S}}{\operatorname{argmin}} \ \|\mathcal{S}\|_{\lambda}$$

$$\lambda_k = \frac{\prod_{j \neq k} x_j}{\sum_{i=1}^K \prod_{j \neq i} x_j}, \ k = 1, ..., K$$

Each efficient solution corresponds to a weight set



Fundamental property [Steuer1986]:

$$\mathcal{S}^* \in \mathcal{P}^* \Leftrightarrow \exists \lambda, \ \mathcal{S}^* = \underset{\mathcal{S}}{\operatorname{argmin}} \ \|\mathcal{S}\|_{\lambda}$$

Computing weights from criteria [Carpentier2008]:

$$\lambda_k = \frac{\prod_{j \neq k} x_j}{\sum_{i=1}^K \prod_{j \neq i} x_j}, \ k = 1, ..., K$$

Orchidée computes configurations fitness thanks to a Chebychev norm

Each efficient solution corresponds to a weight set



Fundamental property [Steuer1986]:

$$\mathcal{S}^* \in \mathcal{P}^* \Leftrightarrow \exists \lambda, \ \mathcal{S}^* = \underset{\mathcal{S}}{\operatorname{argmin}} \ \|\mathcal{S}\|_{\lambda}$$

$$\lambda_k = \frac{\prod_{j \neq k} x_j}{\sum_{i=1}^K \prod_{j \neq i} x_j}, k = 1, ..., K$$

- Orchidée computes configurations fitness thanks to a Chebychev norm
- When preferences are unknown weights are randomly drawn at each generation (multiobjective optimization)

Each efficient solution corresponds to a weight set



Fundamental property [Steuer1986]:

$$\mathcal{S}^* \in \mathcal{P}^* \Leftrightarrow \exists \lambda, \ \mathcal{S}^* = \underset{\mathcal{S}}{\operatorname{argmin}} \ \|\mathcal{S}\|_{\lambda}$$

$$\lambda_k = \frac{\prod_{j \neq k} x_j}{\sum_{i=1}^K \prod_{j \neq i} x_j}, k = 1, ..., K$$

- Orchidée computes configurations fitness thanks to a Chebychev norm
- When preferences are unknown weights are randomly drawn at each generation (multiobjective optimization)
- When preferences are known weights are fixed (monoobjective optimization)

#### **Contents**

- 1. Computer-Aided Composition / Orchestration
- 2. Stating the Orchestration Problem
- 3. Combinatorial Optimization Problem (the *orchidée* algorithm)
- 4. Constraint Solving Problem (the *cdcsolver* algorithm)
- 5. Prototype of Orchestration Tool Musical Examples
- 6. Conclusions and Future Work

Any musical material comes within a musical gesture

- Any musical material comes within a musical gesture
- Depending on this gesture all configurations may not be feasible

- Any musical material comes within a musical gesture
- Depending on this gesture all configurations may not be feasible



- Any musical material comes within a musical gesture
- Depending on this gesture all configurations may not be feasible



- Any musical material comes within a musical gesture
- Depending on this gesture all configurations may not be feasible



- Any musical material comes within a musical gesture
- Depending on this gesture all configurations may not be feasible



Modeling context with global constraints on attributes :

- Any musical material comes within a musical gesture
- Depending on this gesture all configurations may not be feasible



- Modeling context with global constraints on attributes :
  - "Between 8 et 12 instruments"

- Any musical material comes within a musical gesture
- Depending on this gesture all configurations may not be feasible



- Modeling context with global constraints on attributes :
  - "Between 8 et 12 instruments"
  - "No more than 3 fortissimo"

- Any musical material comes within a musical gesture
- Depending on this gesture all configurations may not be feasible



- Modeling context with global constraints on attributes :
  - "Between 8 et 12 instruments"
  - "No more than 3 fortissimo"
  - "At least two different pitches"

- Any musical material comes within a musical gesture
- Depending on this gesture all configurations may not be feasible



- Modeling context with global constraints on attributes :
  - "Between 8 et 12 instruments"
  - "No more than 3 fortissimo"
  - "At least two different pitches"
  - "All strings play with a mute"

- Any musical material comes within a musical gesture
- Depending on this gesture all configurations may not be feasible



- Modeling context with global constraints on attributes :
  - "Between 8 et 12 instruments"
  - "No more than 3 fortissimo"
  - "At least two different pitches"
  - "All strings play with a mute"
- Local search / soft constraints approach: Iteratively update a single configuration to minimize a set of cost functions

# **Design / Conflict?**

## **Design / Conflict?**

• <u>Design constraints</u>: Anything *required* in the orchestration

#### **Design / Conflict?**

- Design constraints: Anything *required* in the orchestration
- Conflict constraints: Anything to avoid in the orchestration

# **Design / Conflict?**

- Design constraints: Anything *required* in the orchestration
- Conflict constraints: Anything to avoid in the orchestration

• Design constraints may be satisfied by *instantiating free* variables

## **Design / Conflict?**

- Design constraints: Anything required in the orchestration
- Conflict constraints: Anything to avoid in the orchestration

- Design constraints may be satisfied by *instantiating free* variables
- Conflict constraints may be satisfied by freeing instantiated variables

3 neighborhood heuristics:

#### 3 neighborhood heuristics:

1. If a *conflict* constraint is violated, first update an <u>instantiated</u> <u>variable.</u>

#### 3 neighborhood heuristics:

- 1. If a *conflict* constraint is violated, first update an <u>instantiated</u> <u>variable.</u>
- 2. If a design constraint is violated, first update a free variable.

#### 3 neighborhood heuristics:

- 1. If a conflict constraint is violated, first update an <u>instantiated</u> <u>variable.</u>
- 2. If a design constraint is violated, first update a free variable.
- 3. There is a priority variable to change [Codognet2002]. Decision rule is based on a *min-conflict* heuristic.

#### 3 neighborhood heuristics:

- 1. If a conflict constraint is violated, first update an <u>instantiated</u> <u>variable.</u>
- 2. If a design constraint is violated, first update a free variable.
- 3. There is a priority variable to change [Codognet2002]. Decision rule is based on a *min-conflict* heuristic.

#### 1 move heuristic:

#### 3 neighborhood heuristics:

- 1. If a conflict constraint is violated, first update an <u>instantiated</u> <u>variable.</u>
- 2. If a design constraint is violated, first update a free variable.
- 3. There is a priority variable to change [Codognet2002]. Decision rule is based on a *min-conflict* heuristic.

#### 1 move heuristic:

4. In the current neighborhood choose the configuration that minimizes the global cost function (min-conflict).

#### 3 neighborhood heuristics:

- 1. If a conflict constraint is violated, first update an <u>instantiated</u> <u>variable.</u>
- 2. If a design constraint is violated, first update a free variable.
- 3. There is a priority variable to change [Codognet2002]. Decision rule is based on a *min-conflict* heuristic.

#### 1 move heuristic:

4. In the current neighborhood choose the configuration that minimizes the global cost function (min-conflict).

#### 1 cycle handling heuristic:

#### 3 neighborhood heuristics:

- 1. If a *conflict* constraint is violated, first update an <u>instantiated</u> <u>variable.</u>
- 2. If a design constraint is violated, first update a free variable.
- 3. There is a priority variable to change [Codognet2002]. Decision rule is based on a *min-conflict* heuristic.

#### 1 move heuristic:

4. In the current neighborhood choose the configuration that minimizes the global cost function (min-conflict).

#### 1 cycle handling heuristic:

5. Handle cycles and local minima with a short term memory scheme (tabu list [Glover1997])

Genetic algorithms are not well suited for constrained problems

- Genetic algorithms are not well suited for constrained problems
- Repairing every inconsistent configuration is inefficient

- Genetic algorithms are not well suited for constrained problems
- Repairing every inconsistent configuration is inefficient









Configurations comparing rules



#### Configurations comparing rules

1. Choose the more consistent configuration



#### Configurations comparing rules

- 1. Choose the more consistent configuration
- 2. Choose the configuration with highest fitness according to the current Chebychev norm

#### **Contents**

- 1. Computer-Aided Composition / Orchestration
- 2. Stating the Orchestration Problem
- 3. Combinatorial Optimization Problem (the *orchidée* algorithm)
- 4. Constraint Solving Problem (the *cdcsolver* algorithm)
- 5. Prototype of Orchestration Tool Musical Examples
- 6. Conclusions and Future Work

- MATLAB code
- OpenSoundControl (OSC) interface [Wright&al.2003]
- Communicates with OpenMusic and Max/MSP

- MATLAB code
- OpenSoundControl (OSC) interface [Wright&al.2003]
- Communicates with OpenMusic and Max/MSP
- Sound target analysis (feature extraction)
- Constrained multiobjective orchestration search
- User interaction Listening preferences inference mechanism
- Enhancing timbre exploration with multiple views of solution set
- Manual editing / Auto-repairing and auto-transforming procedures

- MATLAB code
- OpenSoundControl (OSC) interface [Wright&al.2003]
- Communicates with OpenMusic and Max/MSP
- Sound target analysis (feature extraction)
- Constrained multiobjective orchestration search
- User interaction Listening preferences inference mechanism
- Enhancing timbre exploration with multiple views of solution set
- Manual editing / Auto-repairing and auto-transforming procedures
- Currently used by composers at IRCAM
- Standalone application packaging in progress

### Demo



# More examples

- Car horn
- Tibetan horn
- No pre-recorded sound?
- Dynamic target
- Writing electronics

#### **Contents**

- 1. Computer-Aided Composition / Orchestration
- 2. Stating the Orchestration Problem
- 3. Combinatorial Optimization Problem (the *orchidée* algorithm)
- 4. Constraint Solving Problem (the *cdcsolver* algorithm)
- 5. Prototype of Orchestration Tool Musical Examples
- 6. Conclusions and Future Work

 Multiobjective combinatorial optimization model for the discovery of efficient solutions that approach a timbre target with a combination of instrument sounds

- Multiobjective combinatorial optimization model for the discovery of efficient solutions that approach a timbre target with a combination of instrument sounds
- Local search symbolic constraint solver that addresses compositional context issues

- Multiobjective combinatorial optimization model for the discovery of efficient solutions that approach a timbre target with a combination of instrument sounds
- Local search symbolic constraint solver that addresses compositional context issues
- Collaborative strategy for combining both methods in a single search process that handles potentially conflicting objectives

- Multiobjective combinatorial optimization model for the discovery of efficient solutions that approach a timbre target with a combination of instrument sounds
- Local search symbolic constraint solver that addresses compositional context issues
- Collaborative strategy for combining both methods in a single search process that handles potentially conflicting objectives
- Operational orchestration prototype already used in real-world musical situations

### **Current limitations**

### **Current limitations**

Instrumental knowledge

## **Current limitations**

- Instrumental knowledge
- Timbre description

## **Current limitations**

- Instrumental knowledge
- Timbre description
- No model for unisons

## **Current limitations**

- Instrumental knowledge
- Timbre description
- No model for unisons
- Some playing styles cannot be handled

## **Current limitations**

- Instrumental knowledge
- Timbre description
- No model for unisons
- Some playing styles cannot be handled
- Global constraints only

Speakings (Jonathan Harvey)

### Speakings (Jonathan Harvey)

[2008] For orchestra and electronics

Harmonic background line (beginning of the 3rd part)



### Speakings (Jonathan Harvey)

[2008] For orchestra and electronics

Harmonic background line (beginning of the 3rd part)



### Speakings (Jonathan Harvey)

[2008] For orchestra and electronics

Harmonic background line (beginning of the 3rd part)



#### Orchestration:

- 22 ostinato repetitions
- Temporal evolution controlled by constraints

### Speakings (Jonathan Harvey)

[2008] For orchestra and electronics

Harmonic background line (beginning of the 3rd part)



#### Orchestration:

- 22 ostinato repetitions
- Temporal evolution controlled by constraints



### Speakings (Jonathan Harvey)

[2008] For orchestra and electronics

Harmonic background line (beginning of the 3rd part)



#### Orchestration:

- 22 ostinato repetitions
- Temporal evolution controlled by constraints



Speakings (Jonathan Harvey) - Created August 19th, 2008 in Royal Albert Hall, London (BBC Scottish Orchestra, director Ilan Volkov)



Automatic criteria inference for high dimension problems

- Automatic criteria inference for high dimension problems
- Automatic constraint inference from target analysis

- Automatic criteria inference for high dimension problems
- Automatic constraint inference from target analysis
- Attack / sustain mechanisms

- Automatic criteria inference for high dimension problems
- Automatic constraint inference from target analysis
- Attack / sustain mechanisms
- Emergence (and disappearance)

- Automatic criteria inference for high dimension problems
- Automatic constraint inference from target analysis
- Attack / sustain mechanisms
- Emergence (and disappearance)
- Temporal model for "segmented" targets

- Automatic criteria inference for high dimension problems
- Automatic constraint inference from target analysis
- Attack / sustain mechanisms
- Emergence (and disappearance)
- Temporal model for "segmented" targets
- Temporal model for "articulated" targets

thank you