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Combinatorial Optimization (orchidée)

Sound features

• Spectral centroid (brightness) [McAdams+1995]

• Spectral spread (volume) [Chiasson2007]

• Resolved partials (harmonic tone)

• Time and noise features are not considered

• Preliminary tasks:

• Sound combinations features prediction functions

• Perceptual dissimilarity functions
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Consider a 5000 sample sound database. Consider an 11 instruments 
orchestra in which only 4 can play simultaneously a given 4-note chord. 
Thus:

Taking into account that:

Complete resolution methods cannot help here.

Metaheuristics are required.

• A big orchestra may contain around a hundred instruments;

• There might be around ten perceptual features;

• Instrument sound databases may hold hundred of thousands items;
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GA optimization: the orchidée algorithm

• Evolutionary algorithm (using a population of individuals)

• Each individual is represented by a set of genes (chromosome)

• Orchidée: integer tuple encoding (“orchestra” representation)

• Orchidée: user preferences guessing mechanism
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• Depending on this gesture all configurations may not be feasible
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attribute 2
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feature 2

feature K
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dynamics
playing styles
mute

• Modeling context with global constraints on attributes :

- “Between 8 et 12 instruments”

- “No more than 3 fortissimo”

- “At least two different pitches”

- “All strings play with a mute”

• Local search / soft constraints approach: Iteratively update a single 
configuration to minimize a set of cost functions
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3. There is a priority variable to change [Codognet2002]. Decision 
rule is based on a min-conflict heuristic.

4. In the current neighborhood choose the configuration that 
minimizes the global cost function (min-conflict).

3 neighborhood heuristics:

1 move heuristic:

1 cycle handling heuristic:

5. Handle cycles and local minima with a short term memory scheme 
(tabu list [Glover1997])
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solutions

Configurations comparing rules
1. Choose the more consistent configuration
2. Choose the configuration with highest fitness according to the current 

Chebychev norm
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• Sound target analysis (feature extraction)

• Constrained multiobjective orchestration search

• User interaction - Listening preferences inference mechanism

• Enhancing timbre exploration with multiple views of solution set

• Manual editing / Auto-repairing and auto-transforming procedures

• Currently used by composers at IRCAM

• Standalone application packaging in progress
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Prototype - Examples

More examples

• Car horn

• Tibetan horn

• No pre-recorded sound?

• Dynamic target

• Writing electronics
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• Local search symbolic constraint solver that addresses compositional 
context issues

• Collaborative strategy for combining both methods in a single search 
process that handles potentially conflicting objectives

• Operational orchestration prototype already used in real-world musical 
situations

49



Current limitations

Conclusions

50



Current limitations

• Instrumental knowledge

Conclusions

50



Current limitations

• Instrumental knowledge

• Timbre description

Conclusions

50



Current limitations

• Instrumental knowledge

• Timbre description

• No model for unisons

Conclusions

50



Current limitations

• Instrumental knowledge

• Timbre description

• No model for unisons

• Some playing styles cannot be handled

Conclusions

50



Current limitations

• Instrumental knowledge

• Timbre description

• No model for unisons

• Some playing styles cannot be handled

• Global constraints only

Conclusions

50



Anyway ...

51



Anyway ...

Speakings (Jonathan Harvey)
[2008] For orchestra and electronics

51



Anyway ...

Speakings (Jonathan Harvey)
[2008] For orchestra and electronics

Harmonic background line
(beginning of the 3rd part)

51



Anyway ...

Speakings (Jonathan Harvey)
[2008] For orchestra and electronics

Harmonic background line
(beginning of the 3rd part)

51



Anyway ...

Speakings (Jonathan Harvey)
[2008] For orchestra and electronics

Harmonic background line
(beginning of the 3rd part)

Orchestration :
- 22 ostinato repetitions
- Temporal evolution controlled
  by constraints

51



Anyway ...

Speakings (Jonathan Harvey)
[2008] For orchestra and electronics

Harmonic background line
(beginning of the 3rd part)

Orchestration :
- 22 ostinato repetitions
- Temporal evolution controlled
  by constraints

51



Anyway ...

Speakings (Jonathan Harvey)
[2008] For orchestra and electronics

Harmonic background line
(beginning of the 3rd part)

Orchestration :
- 22 ostinato repetitions
- Temporal evolution controlled
  by constraints

51



Anyway ...
Speakings (Jonathan Harvey) - Created August 19th, 2008 in Royal Albert Hall, 
London (BBC Scottish Orchestra, director Ilan Volkov)
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