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THz detection and terahertz imagingTHz detection and terahertz imaging

© Dégardin

Civil application:
High voltage insulator under  discharge 

[ulis-ir website]

Research application
Cosmic Microwave background exploring

(Nobel price in physic 2006)

Other fields of applications:
Spectroscopy

Civil security, medical
Military application etc…
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(THz) Bolometric detectors(THz) Bolometric detectors
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Superconducting Hot Electron 
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detection:
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HP
Current bias & 

modulation

AC source

Suprasil
optical 

window

Lenses

Cryostat + Cryogenerator 
(300- 70 K)

Lock-in

signal

reference

Signal 
analysis

-
DSP, 
FFT,
scope 
etc..

cryogenic electronic
(Biasing, signal 

amplification,filtering)

Analog signal 
post-processing

Laser source
(THz)

Characterization of new generation THz detectors:Characterization of new generation THz detectors:
A CRUCIAL ROLE OF ELECTRONICSA CRUCIAL ROLE OF ELECTRONICS

THz cryogenic test bench

do the electronics follow up?
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blocks developed in the frame 
of PhD thesis



Research objectivesResearch objectives of PhD thesisof PhD thesis

Cryogenic integrated analog electronicanalog electronic for THz 
detection chain

New structures of fixed-gain CMOS differential differential 
amplifiersamplifiers compatible with bolometric detectors 
at room and cryogenic temperatures

High dynamic range signal processing: 
Developpement of frequencyfrequency filtersfilters with high 
attenuation rate
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II. II. 
Differential amplifier for cryogenic  Differential amplifier for cryogenic  

instrumentationinstrumentation
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SPECIFICATIONSSPECIFICATIONS
Wide temperature range CMOS differential amplifiers for:

i) Room temperature (semiconductor (semiconductor bolometersbolometers))
ii) Cryogenic temperatures (superconducting (superconducting bolometersbolometers –– high high TTCC))

Low noise Differential CMOS amplifier

Requirements:

40dB, accurate gain,
70K to 300K temperature range,
Differential gain BW: DC to several MHz,
Low noise operation,
Low power consumption 
High (> 100kΩ) input impedance,
Simple architecture.
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Low field surface mobility:

Threshold voltage:

Other effect: Kink effect, mobility degradation
electron freeze-out

MOS cryogenic modelingMOS cryogenic modeling
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analytical temperature model



Least Square empirical modelLeast Square empirical model

-1.40493V-0.9534V-0.9649VVTH[V]

72.43×10-621.63×10-620.67×10-6KP [A/V2]

P-MOS 100/10μm

Measured
77K

Measured
296K 

Simulation
296K
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Parameters based on LM fit (measurements and simulation 
SPICE-level 7) 
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Verification of model: different run
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DC BIAS, CONFIGURATIONDC BIAS, CONFIGURATION
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Single ended amplifiers [*]

[*] PhD thesis: F. Voisin, 2005, D. Prêle, 2006, L2E UPMC-P6 
. 

differential read-out amplifier in CMOS

adopted solution
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v⋅

IOIO v

Differential amplifiersDifferential amplifiers

Differential OADifferential OA

Low input impedance
High accuracy
Higher input referred noise

Instrumentation amplifierInstrumentation amplifier

High input impedance
Very high accuracy
Higher input referred noise
Low bandwidth
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Solution: feedbackSolution: feedback--free amplifier free amplifier 

☺ No resistors in the structure
simplification, reduced noise,

and Iq, silicon surface save 

☺ Absence of compensation
improves time characteristics (no 

stability problems) and allows to 
reach higher BW 

Linearity, distortion

Missing experiences and developed 
architectures in bipolar and CMOS

*

* Bolometer noise voltage is neglected
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Known structures Known structures –– low gainlow gain

Common source MOS amplifier OTA Amplifier differential fixed-gain amplifier

The expression of the gain follows a square-root law:

1 1
0

1 2 2/
OUT N

GS P

dV KP W LG
dV KP W L

= = − For 40 dB, the (W/L)1 /(W/L)2

as high as 10 000·KPP/KPN
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Adopted technique: low Adopted technique: low ggmm loadload
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Voltage gain fixed in the structure by the transconductance ratio
Voltage output is created by the voltage buffer

MOS diode
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Active loads



Proposed methodProposed method for decreasing 
the transconductance by means of

current scaling:current scaling:
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Inaccurate

accurate



II.1II.1
11stst folded folded cascodecascode

amplifieramplifier
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Folded Folded cascodecascode OTA: analysisOTA: analysis
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Proposed 1Proposed 1stst folded folded cascodecascode amplifier amplifier 
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Noise analysis of folded Noise analysis of folded cascodecascode
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Simulated input-referred noise voltage (both amplifiers)

A very low thermal noise is observed at 
cryogenic temperature (T = 77 K): 

vn,in = 1.5 nV/√Hz.
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MeasurementsMeasurements: : wide temperature resultswide temperature results

DC transfer characteristic at 290K Temperature function of voltage gain
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ResultsResults DC and AC characteristicsDC and AC characteristics

AC response and input noise (VDD=5V, IQ=2mA)
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Dispersion of voltage gain 
(A5_2 refers to chip 2)

39.78AVG

39.85A4

39.52A3

39.62A2

40.10A1

39.75A5_2

39.84A5

Gain [dB]Amplifier



11stst amplifier: amplifier: summarysummary

100µm

New amplifier architectureNew amplifier architecture for 
extreme temperature range

StateState--ofof--the art:the art: low noise and 
large BW operation (up to 1.7GHz 
GBW at Iq = 2.1mA 

Gain is fixed by means of 
geometric ratio: no variation no variation 
with temperaturewith temperature

Sufficient linearitySufficient linearity for small 
signals: DC characteristic ∝√ Vin

Layout in CMOS 0.35µm AMS process

V. Michal et al. “Fixed-gain CMOS differential amplifiers with no external feedback for a 
wide temperature range”, Cryogenic (2009), doi:10.1016/j.cryogenics.2008.12.014
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II.2 II.2 
22stst amplifier: linearization amplifier: linearization 

and temperature and temperature 
compensationcompensation
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2nd amplifier: new temperature 
compensation and linearization
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Based on cancelling the quadratic termscancelling the quadratic terms. . The node 
equation can be written:

The extraction of output voltage leads 
to (assuming β1 = β2, VTH1 = VTH2):
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Condition:Condition: ββ11==ββ22, , VVTH1TH1==VVTH2TH2: solution

in

B
AUX M

V =0

II =I -
2

Symmetric low-gm CMOS load 

Symmetrisation of the low gm linear 
load 

Single well
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Analysis of DC transferAnalysis of DC transfer
DC transfer function:

Gain is given by derivation:
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DC transfer characteristics
The voltage gain as the function ofThe voltage gain as the function of::

• √(W/L)D/(W/L)eff ratio,
• Technological parameters: √KPP, VTHP.
• Bias current IB and power supply voltage VDD.
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Temperature compensation principle:Temperature compensation principle:
current / voltage biasingcurrent / voltage biasing
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We replace the elements without 
temperature dependence by C:

Which leads to:
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MeasurementsMeasurements: w: wide temperature results ide temperature results 
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AC transfer @ 2.5V, 290 and 77 K
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22stst amplifier: amplifier: summarysummary

100µm

New amplifier architectureamplifier architecture for 
extreme temperature range

Wide linearlinear operation 
Temperature compensation

Low noise, wide BW achieved with 
low Iq (Up to 1GHz GBW1GHz GBW for 1.3mA 
quiscence current)

Highly Highly competitivitecompetitivite to bipolar 
amplifier, promising as compact 
block for VLSI integration

Layout in CMOS 0.35µm AMS process

V. Michal et al. “Fixed-gain CMOS differential amplifiers with no external feedback for a 
wide temperature range”, Cryogenic (2009), doi:10.1016/j.cryogenics.2008.12.014
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Comparison with industrial state of the Comparison with industrial state of the 
art                                  art                                  

Type 
 

Configuration 
 

GBW 
[MHz] 

SR 
[µV/s] 

VDD 
[V] 

Iq 
[mA] 

Input 
noise 

nV/√Hz 

Other 
 

AD8045 OA Bipolar 1000 1350 3.3 - 12 19  × 3 3  
LTC6401-20 Fixed gain 20dB+/-0,6dB Bipolar 1300 4500 2,85-3,5 50 × 3 2,1 Rin=200Ω 

LT1226 OA  Bipolar 1000 400 5-36 7 × 3 2,6 25dB stable
OPA699 OA Bipolar 1000 1400 5-12 22,5 × 3 4,1 12dB stable
OPA2354 OA CMOS 250 150 2,7-5,5 7,5 × 3 6,5  
INA2331 Instrumentation CMOS 50 5 2,5-5,5 0,5 46  
INA103 Instrumentation BIPOALR 80 15 9-25 9 1  

 

Key parameters of developed amplifiers

Industrial differential amplifiers (room temperature)
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MEASURED PARAMETERS TYPE I AMPLIFIER TYPE II AMPLIFIER 
Operating supply voltage 4.1 V to 5.5 V 3.6 V to 5.5 V 
Quiescent current 2.1 mA 1.3 mA1 
– 3 dB bandwidth (T = 290 K) 10 MHz (GBW=1GHZ) 4 MHz     at VDD = 5 V 
– 3 dB bandwidth (T = 77 K) 17 MHz (GBW=1.7GHZ) 10 MHz   at VDD = 5 V 
Input noise (T = 290 K) 5 nV/Hz½ 5 nV/Hz½ 
Input noise (T = 77 K) 2 nV/Hz½ 3 nV/Hz½ 
Gain G0  (T = 290 K) 39.85 dB 39.3 dB    at VDD = 5 V 
Δ Gain 270 K − 390 K – 0.12 dB – 0.5 dB   at VDD = 4 V 
Gain error (at T = 77 K) – 1.2 dB – 1.3 dB   at VDD = 4 V 
THD2 (Vout = 0.3 Vpp) 1 % 0.03 % 

 



III. III. 
High performances High performances 
analoganalog frequency frequency 

filtersfilters
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MotivationMotivation
Correct analoganalog processing close to the physical sensor is the best way 
to condition the signal
Noise is still based on the reduction of the spectrumreduction of the spectrum (Lock-in, FFT …)
Frequency filters: crucial blockcrucial block

Objectives:
• Optimization of the dynamic range (attenuation)
• Mastering of the topic, related work not presented in the thesis (goal-

lossy active filters [*], adaptive analog signal processing [**], microwave 
superconductor filters [***])

[*] V. Michal et al. “Active filters based on goal-directed lossy RLC prototypes ”, Speto int conference (2006)
[**] V. Michal et al. “The analog Filter Design and Interactive Analog signal Processing by PC” WSEAS (2005)
[***] V. Michal et al. “Superconducting NbN band-pass filter and Matching circuit for 30GHz RSFQ Data Converters “,  

IEEE conference Radioelek, 2009
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RealReal--world frequency filtersworld frequency filters
Non-ideal passive components:

F0,Q inaccuracy, higher order effects, can be compensated [*]

Non ideal active components
F0,Q inaccuracy, DC offset, attenuationattenuation

0dB/dec

-40dB/dec

0dB/dec

F0 fZ

0

40 log Zf
F

⎛ ⎞
− ⋅ ⎜ ⎟

⎝ ⎠

N
[dB]

20dB/dec triple zero

double zero

Effect of parasitic zeros in the AC response of frequency filter

Parasitic zeros can 
not be compensated 
by predistortion [**]
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[*]  Geffe, P. R., IEEE Trans., Vol. CAS-23, pp.45-55, 1976
[**] see: Stop-band limitations of the Sallen-Key low-pass filter”, AN Texas instrument, see also Schmid, H. 
Moschytz, G.S, Circuits and Systems, vol.1, 1998, p. 57-60.



Example: real Example: real SallenSallen--Key filterKey filter

-60
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102 103 104 105 106
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0 2 1 2

1 2
2Z

GBWf
R R C C
π

π
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LP Sallen-Key biquad [*]

[*] Sallen.R.P-Key.E.I., Circuit Theory. Vol. 7. 1955, p. 74-85.



Real Real SallenSallen--Key: compensationKey: compensation

Improved Type II Sallen-Key
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only Rout and C1 contribute to the 
frequency Higher attenuation
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III.1 III.1 
CCII CCII biquadraticbiquadratic

sectionsection
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Proposed sProposed solutionolution
Removal of the parasitic zeros ensureRemoval of the parasitic zeros ensure constant constant --40db roll40db roll--offoff

Division of the frequency band in two regions:
region up to f0, whereas the DC transfer and resonance gain is ensured by 
the active element
region stop-band, where the high attenuation is ensured by the passive RC 
filter

Design rules: Interruption of direct signal way,
Passive filters containing grounded capacitors

Adopted solution: topological transformation of circuits presented in [*]

[*] Liu, S-I., Tsao,H-W; Wu,J., Tsay, J-H. "Realizations of the single CCII biquads with high input 
impedance", IEEE Sympoisum on Circuits and Systems, 1991.
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New New biquadraticbiquadratic section CCIIsection CCII--
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CCII- low-pass biquadratic section with 
eliminated parasitic transfer zero
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Stop band behavior (single pole 
model of CCII):
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measured AC response of 10MHz 4th order LP filter 

V. Michal et al. “Low-pass Biquadratic Filters With High Suppression Rate ”, 
IET journal Electronics Letters, ELL-2009-0416.R1
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SummarySummary of of achievedachieved featuresfeatures
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2nd cascade 
FDNR LP 

1.5M 5M 10M 20M 50MF0:
The attenuation is only limited by 
signal leakage

Does not depend on the f0

Using low-performance 
voltage buffer is allowed

Direct connection to the DAC input

price and consumption are reduced
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Attenuation floor independent on the f0. 
comparison with lossy R-FDNR biquad [*]

[*] Martinek, P. , Proceeding of Radioelek, 2008



III.2 III.2 
High performances CCII current High performances CCII current 

conveyorconveyor
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Design of UltraDesign of Ultra--low Rlow Routout CCIICCII--
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CCII- with very low output resistance voltage buffer



Global performances: state of the artGlobal performances: state of the art

VDD +/- 2.5V
Quiescence current 11 mA 
Port X,Z voltage swing +/- 1.5 V 
Port X,Z driving capacity +/- 20 mA
Port Z DC impedance  ~7.5 MΩ 
Port X offset voltage 2.7 mV 
Port Z offset current 2.25 µA 
-3dB AC transfer Y→X ~110 MHz
Port X resistance  @  DC 2 Ω 
Port X impedance @ 1MHz 2.5 Ω 
Port X impedance @ 10MHz 8.5 Ω 
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Rout
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Measured

2Ω

280mΩ

2.5Ω

8.3Ω

100M

terminal 10kHz 1MHz 10kHz
z+ 2.1Ω 10Ω 89Ω 
z- 0.9Ω 8.2Ω 76kΩ 

 

Recently published results on UVC [*]:

[*] Minarcik,M., Vrba,K. ICN'07
Summary of achieved performances
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Experimental result: 1.5MHz LPFExperimental result: 1.5MHz LPF

5th order LP filter (Butterworth) using new CCII biquadraic section 
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5th ord. LP filter
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IV IV 
SummarySummary
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Summary: Summary: example of testexample of test facilityfacility
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Conclusion: scientific contributionConclusion: scientific contribution

frequency filters 48summaryCCIIBiquadratic sectionsAmplifier design 1st 2ndIntroduction

New generation of differential (instrumentation) amplifiers
Feedback-free architecture. State-of-the-art of the performances, competitives with 
the bipolar tehcology: High BW, low power consumption, low noise level 

Cryogenic instrumentation, innovants design approaches
Analytical thermal model of the MOS, hybrid voltage-current biasing method

Analog front-end circuits optimizing
New structures with improved behavior in stop-band, large extension of band-with

Fabricated circuits redady to use in the new generation THz detector test 
set-up

Perspectives: Integration of the electronic in the THz test-bench
Implementation of designed circuits in industrial applications



FrenchFrench
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Corrections..



Thank youThank you
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