

Design of CMOS analog integrated circuits as readout electronics for high- $T_{\rm C}$ superconductor and semiconductor terahertz bolometric sensors

Vratislav Michal

Supervisors:

Prof. Alain Kreisler, Laboratoire de Génie Electrique de Paris-Supélec, UPMC-P6 **Assoc. Prof. Jiří Sedláček**, DTEEE - Brno University of Technology

Paris, June 10th 2009

THz detection and terahertz imaging

Civil application: High voltage insulator under discharge [ulis-ir website]

Other fields of applications:

Spectroscopy Civil security, medical Military application etc...

Research application

Cosmic Microwave background exploring (Nobel price in physic 2006)

Characterization of new generation THz detectors: A CRUCIAL ROLE OF ELECTRONICS

Research objectives of PhD thesis

6

- Cryogenic integrated analog electronic for THz detection chain
- New structures of fixed-gain CMOS differential amplifiers compatible with bolometric detectors at room and cryogenic temperatures
- High dynamic range signal processing: Developpement of frequency filters with high attenuation rate

11. Differential amplifier for cryogenic instrumentation

CCII

summary

7

summary

SPECIFICATIONS

Wide temperature range CMOS differential amplifiers for:

- *i*) Room temperature (semiconductor bolometers)
- ii) Cryogenic temperatures (superconducting bolometers high $T_{\rm c}$)

Low noise Differential CMOS amplifier

Requirements:

- 40dB, accurate gain,
- 70K to 300K temperature range,
- Differential gain BW: DC to several MHz,
- Low noise operation,
- Low power consumption
- High (> 100k Ω) input impedance,
- Simple architecture.

summary

MOS cryogenic modeling

Measured I-V characteristics for a PMOS 400/8µm

[measurements provided in CEA-INAC laboratory in Grenoble]

→ Low field surface mobility:

$$\mu(T) = \mu(T_0) \left(\frac{T}{T_0}\right)^{-x}$$

Threshold voltage:

$$V_{TH}(T) = V_{TH}(T_0) \left[1 + \alpha_{THX} \cdot (T - T_0) \right]$$

CCII

→ analytical temperature model

$$I_{D} = \frac{KP}{2} \left(\frac{T}{T_{0}}\right)^{-x} \frac{W}{L} \cdot \left[V_{GS} - V_{TH}(T_{0})\left[1 + \alpha_{THX}\left(T - T_{0}\right)\right]\right]^{2}$$

Other effect: Kink effect, mobility degradation
 electron freeze-out

CCII

Least Square empirical model

→ LM fit of $y_i = b \cdot (x_i - a)^2$:

$$R^{2} \equiv \sum_{i=0}^{n} \left[y_{i} - f\left(x_{1,i}, x_{2,i} \dots x_{m,i}, a_{1}, a_{2} \dots a_{m}\right) \right]^{2} \rightarrow \min \Longrightarrow \frac{\partial R^{2}}{a_{1,2,\dots m}} = 0$$

Parameters based on LM fit (measurements and simulation SPICE-level 7)

TRANSISTOR	Simulation 296K	Measured 296K	Measured 77K	
P-MOS 100/10µm				
KP [A/V ²]	20.67×10-6	21.63×10-6	72.43×10-6	
V _{TH} [V]	-0.9649V	-0.9534V	-1.40493V	

	x	A _{THX}	\mathbf{V}_{TH} shift
<u>РМОS 100µm/10µm</u>	0.90	-2.163 mK ⁻¹	-2.06 mV/K

analytical temperature model

$$I_D = \frac{KP}{2} \left(\frac{T}{T_0}\right)^{-x} \frac{W}{L} \cdot \left[V_{GS} - V_{TH}(T_0) \left[1 + \alpha_{THX} \left(T - T_0\right)\right]\right]^2$$

DC BIAS, CONFIGURATION

Single ended amplifiers [*]

[*] PhD thesis: F. Voisin, 2005, D. Prêle, 2006, L2E UPMC-P6

Solution: feedback-free amplifier

* Bolometer noise voltage is neglected No resistors in the structure → simplification, reduced noise, and Iq, silicon surface save

Absence of compensation

→ improves time characteristics (no stability problems) and allows to reach higher BW

Linearity, distortion (\mathcal{R})

Missing experiences and developed \bigotimes architectures in bipolar and CMOS

Common source MOS amplifier

OTA Amplifier differential fixed-gain amplifier

The expression of the gain follows a square-root law:

$$G_{0} = \frac{dV_{OUT}}{dV_{GS1}} = -\sqrt{\frac{KP_{N}}{KP_{P}}}\sqrt{\frac{W_{1}/L_{1}}{W_{2}/L_{2}}}$$

For 40 dB, the $(W/L)_1 / (W/L)_2$ as high as 10 000 · KP_P / KP_N

CCII

Proposed low g_m composite transistor

Folded cascode OTA: analysis

→ DC characteristic:

$$I_{D1} = \frac{1}{8} \cdot \left(\sqrt{4 \cdot I_B - KP \cdot \frac{W_D}{L_D} \cdot \Delta V_{GS}^2} + \sqrt{KP \cdot \frac{W_D}{L_D}} \cdot \Delta V_{GS} \right)^2$$

 $\rightarrow g_{\rm m}$:

$$g_{mDiff} = \frac{dI_{D1}}{d\Delta V_{GS}} \bigg|_{\Delta V_{GS}=0} = \frac{1}{2} \cdot \sqrt{KP_{P} \cdot \frac{W_{D}}{L_{D}} \cdot I_{B}}$$

For required input voltage range, the stage behaves as quasi-linear current source

18

summary

11/ 11/

Proposed 1st folded cascode amplifier

Gain is the slope of DC transfer characteristic:

$$G_{0} = \frac{dV_{out}}{d\Delta V_{GS}}\Big|_{\Delta V_{GS}=0} = \frac{1}{2}\sqrt{\frac{L_{eff}}{W_{eff}} \cdot \frac{W_{D}}{L_{D}}} \cdot \sqrt{\frac{I_{B}}{2 \cdot I_{L(\Delta V_{GS}=0)}}}, \quad \text{where:} \quad \frac{W_{eff}}{L_{eff}} = \frac{\frac{W_{2}}{L_{2}} \cdot \frac{W_{4}}{L_{4}}}{\frac{W_{3}}{L_{3}} \cdot \frac{W_{5}}{L_{5}}}$$

Noise analysis of folded cascode

The equivalent input noise:

$$\overline{e}_{in}^{2} = \frac{\overline{e}_{OUT}^{2}}{G^{2}} = \frac{8}{3} k_{B} T \left(\frac{1}{2} \cdot \frac{1}{g_{mdiff}} + \frac{1}{4} \cdot \frac{g_{m7}}{g_{mdiff}^{2}} + \frac{g_{m4}}{g_{mdiff}^{2}} \right)$$

A very low thermal noise is observed at cryogenic temperature (T = 77 K): *v*_{n,in} = 1.5 *nVl*√*Hz.*

CCII

Small signal equivalent circuit.

Simulated input-referred noise voltage (both amplifiers)

DC transfer characteristic at 290K

Temperature function of voltage gain

Results DC and AC characteristics

Amplifier	Gain [dB]
<u>A</u> 5	<u>39.84</u>
A _{5_2}	39.75
A_1	40.10
A ₂	39.62
A ₃	39.52
A ₄	39.85
AVG	39.78

<u>Dispersion</u> of voltage gain (A5_2 refers to chip 2)

AC response and input noise (V_{DD} =5V, I_Q =2mA)

23

1st amplifier: summary

- New amplifier architecture for extreme temperature range
- State-of-the art: low noise and large BW operation (up to 1.7GHz GBW at lq = 2.1mA
- Gain is fixed by means of geometric ratio: no variation with temperature
- Sufficient linearity for small signals: DC characteristic ∝√ Vin

Layout in CMOS 0.35µm AMS process

V. Michal et al. "*Fixed-gain CMOS differential amplifiers with no external feedback for a wide temperature range*", Cryogenic (2009), <u>doi:10.1016/j.cryogenics.2008.12.014</u>

CCII

II.2 2st amplifier: linearization and temperature compensation

2nd

2nd amplifier: new temperature compensation and linearization

Based on cancelling the quadratic terms. The node equation can be written:

$$\frac{\beta_1}{2} \left(V - V_{TH1} \right)^2 = \frac{\beta_2}{2} \left(V_{DD} - V - \left| V_{TH2} \right| \right)^2 + I_0$$

The extraction of output voltage leads to (assuming $\beta_1 = \beta_2$, $V_{TH1} = V_{TH2}$):

$$V = \frac{V_{DD}}{2} + \frac{I_0}{\beta (V_{DD} - 2 \cdot |V_{TH}|)}$$

	КР	V _{TH}	V _{DD}	I_B	W_D/L_D	Weff/Leff
$S_{x_i}^{G,}$	$-\frac{1}{2}$	$\frac{2 \cdot V_{\rm THP}}{V_{\rm DD} - 2 \cdot V_{\rm THP}}$	$-\frac{V_{DD}}{V_{DD}-2\cdot V_{THP}}$	$\frac{1}{2}$	$\frac{1}{2}$	-1

Measurements: wide temperature results

29

2nd

2st amplifier: summary

- New amplifier architecture for extreme temperature range
- Wide linear operation
 Temperature compensation
- Low noise, wide BW achieved with low Iq (Up to 1GHz GBW for 1.3mA quiscence current)
- Highly competitivite to bipolar amplifier, promising as compact block for VLSI integration

Layout in CMOS 0.35µm AMS process

V. Michal et al. *"Fixed-gain CMOS differential amplifiers with no external feedback for a wide temperature range"*, Cryogenic (2009), <u>doi:10.1016/j.cryogenics.2008.12.014</u>

Comparison with industrial state of the

art

Key parameters of developed amplifiers

	MEASURED PARAMETERS	TYPE <i>I</i> AMPLIFIER	TYPE <i>II</i> AMPLIFIER
	Operating supply voltage	4.1 V to 5.5 V	3.6 V to 5.5 V
\rightarrow	Quiescent current	2.1 mA	1.3 mA^4
\rightarrow	-3 dB bandwidth (T = 290 K)	10 MHz (GBW=1GHZ)	4 MHz at $V_{DD} = 5 V$
Š	-3 dP bandwidth (T = 77 K)	17 MHz (GBW=1.7GHZ)	10 MHz at V _{BD} = 5 V
	Input noise $(T = 290 \text{ K})$	5 nV/Hz^2	$5 \text{ nV/Hz}^{1/2}$
	Input noise $(T = 77 \text{ K})$	$2 \text{ nV/Hz}^{\frac{1}{2}}$	$3 \text{ nV/Hz}^{1/2}$
	Gain G_0 (T = 290 K)	39.85 dB	39.3 dB at $V_{DD} = 5 V$
	Δ Gain 270 K – 390 K	– 0.12 dB	-0.5 dB at $V_{DD} = 4 \text{ V}$
	Gain error (at T = 77 K)	– 1.2 dB	-1.3 dB at V _{DD} = 4 V
	$THD^2 (V_{out} = 0.3 V_{pp})$	1 %	0.03 %

Industrial differential amplifiers (room temperature)

Туре	Configuration	GBW [MHz]	SR [µV/s]	VDD [V]	lq [mA]	Input noise nV/√Hz	Other
AD8045	OA Bipolar	1000	1350	3.3 - 12	19 × 3	3	
LTC6401-20	Fixed gain 20dB+/-0,6dB Bipolar	1300	4500	2,85-3,5	50 × 3	2,1	R _{in} =200Ω
LT1226	OA Bipolar	1000	400	5-36	7 × 3	2,6	25dB stable
OPA699	OA Bipolar	1000	1400	5-12	22,5 × 3	4,1	12dB stable
OPA2354	OA CMOS	250	150	2,7-5,5	7,5 × 3	6,5	
INA2331	Instrumentation CMOS	50	5	2,5-5,5	0,5	46	
INA103	Instrumentation BIPOALR	80	15	9-25	9	1	

Effect of parasitic zeros in the AC response of frequency filter

F₀

[*] Geffe, P. R., IEEE Trans., Vol. CAS-23, pp.45-55, 1976

f-

[**] see: *Stop-band limitations of the Sallen-Key low-pass filter*", AN Texas instrument, see also Schmid, H. Moschytz, G.S, Circuits and Systems, vol.1, 1998, p. 57-60.

Example: real Sallen-Key filter

parasitic transfer zeros in the stopband

[*] Sallen.R.P-Key.E.I., Circuit Theory. Vol. 7. 1955, p. 74-85.

New biquadratic section CCII-

measured AC response of 10MHz 4th order LP filter

40

V. Michal et al. "*Low-pass Biquadratic Filters With High Suppression Rate*", IET journal Electronics Letters, ELL-2009-0416.R1

Summary of achieved features

Attenuation floor independent on the f_0 . comparison with lossy R-FDNR biquad [*]

- The attenuation is only limited by signal leakage
- Does not depend on the f₀
- Using low-performance voltage buffer is allowed
- Direct connection to the DAC input
- price and consumption are reduced

[*] Martinek, P., Proceeding of Radioelek, 2008

Introduc	on	Amplifier design 1 st 2 nd	frequency filters	Biquadratic sections	CCII	summary	42
			III.	2			
		High per	formanc	es CCII cu	urre	ent	
			conve	eyor			

Global performances: state of the art

Summary of achieved performances

Experimental result: 1.5MHz LPF

1M

10M

100M

1G

f[Hz] →

-100

100k

summary

Conclusion: scientific contribution

New generation of differential (instrumentation) amplifiers

Feedback-free architecture. State-of-the-art of the performances, competitives with the bipolar tehcology: High BW, low power consumption, low noise level

Cryogenic instrumentation, innovants design approaches

Analytical thermal model of the MOS, hybrid voltage-current biasing method

Analog front-end circuits optimizing

New structures with improved behavior in stop-band, large extension of band-with

Fabricated circuits redady to use in the new generation THz detector test set-up

Perspectives: Integration of the electronic in the THz test-bench

Implementation of designed circuits in industrial applications

Int	roduction	Amplifier design 1 st 2 nd	frequency filters	Biquadratic sections	CCII	summary	49
			_				
			Frenc	h			
	C						
	Corr	ections					

CCII

Thank you

This research project has been supported by a Marie Curie Early Stage Research Training Fellowship of the European Community's Sixth Framework Program under contract number MEST-CT-2005-020692, and by the Grant Agency of the Czech Republic under Grant 102/03/1181.

