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Preface

The core of this thesis mirrors my personal intellectual path, that of a computer
scientist who tentatively makes his first steps into an unknown, hard yet fascinating
discipline like linguistics. After having been initiated to the ingenuity and subtleties
of formal semantics and Binding Theory, I tackled the somewhat mechanical task of
encoding in the standard semantic framework for natural language the principles of
traditional Chomskian Binding Theory of the early 80’s. As the dissatisfaction with
the resulting system grew, I delved deeper into the competing approaches that have
been proposed since then. I discovered, in doing so, the extreme refinement attained
by the intellectual tools of linguists’ research and I tried to stretch my system in
order to cope with their conclusions. In the end, with the invaluable guide of
professors Denis Delfitto and Christian Retoré, I was able to transcend any ready-
made solution that 30 years of linguistic research handed me to devise, standing on
the shoulders of their gigantic insights, a unified computational framework which
is, I believe, not devoid of interest neither for the linguist nor for the computer
scientist.

I decided to preserve in my thesis the dynamic, trial-and-error structure of this
never-ending process that is the true substance of what these years of academic
research have taught me.
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Introduction

Le langage est source de malentendus.

Antoine de Saint-Exupery, Le Petit Prince, 1943.

Computational linguistics (CL for short) is one of the most ancient domains
of research in computer science, dating back to the first automatic translation
projects of the early fifties. It seems like as soon as computers, powerful yet numb
manipulators of symbols, were made available, they were used to tackle human
language, the most complex and elusive symbolic system found in nature. Noam
Chomsky, the founder of modern generative linguistics, is also known in the com-
puter science community as the inventor of the immensely influential “Chomsky
hierarchy” of the expressive power of (programming) languages. This is maybe the
most famous example, but by no means the only one, of how generative linguistics
and theoretical computer science are intermingled since their respective origins.

The term “computational linguistics” is somewhat ambiguous. In some contexts
it is used to indicate the set of concepts and techniques for automatic processing
of natural language: as such, it is considered a synonym for Natural Language
Processing (NLP for short). This definition is far from being universally accepted.
According to several researchers, CL stems from linguistics, with which it shares
the eminently theoretical and explicative (as opposed to applicative) goal to unveil
the principles and mechanisms that govern the human language faculty, conceived
in CL as a purely computational process. This entails that concepts and techniques
issued from computer science can be used to analyze it, such as logic, complexity
theory, computability theory, or artificial languages theory. NLP can do away
with explanations for how things actually are, as long as it devises algorithms that
efficiently mimic human ability to accomplish different tasks on natural language
texts, such as parsing, understanding, or extracting information.

The ambitious goal of the present work is to provide, by means of the enquiry
on a specific problem which has both deep theoretical implications and important
practical applications, an example of how it is possible to reconcile these two
supposedly opposite perspectives.



4 1 Introduction

1.1 Natural Language Understanding

During the last years, the need for language-based information retrieval and ex-
traction technologies has provided an important impetus for the development of
more and more sophisticated language processing systems. Most common appli-
cations (yet far from having attained full technological maturity) are spell check-
ing, information retrieval, speech recognition, web-page processing, (un)supervised
machine translation, automatic summarization or abstracting of technical texts,
and spoken-language dialogue agents. From a scientific point of view, the most
sophisticated tasks among them entail a deep level of linguistic knowledge and
formalization of human language, therefore they give rise to several linguistic,
mathematical, and computational challenges.

The formal approach to CL dominated the early stages of language processing
research mainly due to the influence of the seminal work by Chomsky and others
on formal language theory and generative syntax throughout the late fifties and
early sixties (see [9], [15]), and the work of many linguists and computer scientists
on parsing algorithms, initially top-down and bottom-up and then via dynamic
programming. More recently, this field witnessed a shift towards probabilistic,
knowledge-poor and data-driven methods: the availability of very large on-line
corpora has enabled statistical models of language at every level, from phonetics
to discourse. These approaches have been rewarded by relative success in specific
domains like (un)supervised text classification, some sub-tasks of data-mining, and
phonological analysis (for a comprehensive survey of statistical methods in natural
language processing, see [41], [32]).

Nevertheless, formal approaches to computational linguistics are recently ex-
periencing a renaissance due to multiple factors. In the field of logic applied to
natural language, formalisms like Kamp’s Discourse Representation Theory (or
DRT, see [33]), Barwise and Perry’s Situation Semantics (see [4]) report relative
successes in dealing with traditional limitations of the seminal work by Richard
Montague on the formalization of semantics for a fragment of a natural language
(see [44], [43], [62]). The availability of more powerful computational resources
makes possible practical implementations of algorithms stemming from formal
approaches, traditionally more computationally demanding than statistical ones.
Last but not least, intrinsic limitations of purely statistical approaches, which have
been made even more evident by large scale technological developments, urge for
a more fine-grained analysis of natural language texts.

It is our firm belief that human language is far too complex, structured, and
subtle a thing to rely only on purely statistical methods to unveil all the infor-
mation encoded in it. Although immensely successful and deservedly popular, in
our opinion statistical and heuristics-based approaches to NLP are quickly reach-
ing their theoretical ceiling1, in particular when it comes to issues involving non-
trivial semantic analysis of a text, like automatic summarization, natural language
database queries, natural language generation.

1 In aeronautics, this term refers to the highest altitude an aircraft can reach, which is
usually a function of weight and power of the aircraft, and temperature and density
of the air.
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Future ground-breaking developments of natural language processing technol-
ogy will have to deal in a non-trivial way with the elusive notion of the meaning of
a sentence, or, more generally, of a text, be it to support an intelligent question-
answering system, to generate grammatically correct and semantically meaningful
sentences in natural language from an abstract representation of their meaning,
to automatically synthesize an abstract of a technical text or to perform in-depth
information extraction. Solving such tasks implies being able to correlate the syn-
tactic structure and the meaning of a sentence in a systematic and computation-
ally efficient way. Heuristic and statistical approaches are perfectly suited for tasks
which do not involve a deep analysis of a text like automatic classification. But
the subtle intricacies of meaning, over which even a small change in the position
of words has potentially destructive effects, definitely lie out of their reach. Lo-
gicians, linguists, and semanticists have always acknowledged and wrestled with
such immense complexity. It is time for NLP technologies to take advantage of the
wealth of their work.

1.2 What this thesis is about

Let’s consider the following sentence:

(1) After the woman who met John yesterday saw him, she told Bill that she
was sure he would have trusted him like he trusted himself.

In every human language there are linguistic elements whose semantic content is
not mediated by other linguistic elements. In (1) it is the case of John, Bill, the
woman who met John. In every human language there are also other elements (usu-
ally referred to as “anaphoric”) whose semantic content entirely depends on other
linguistic elements. In (1) it is the case of she, him, he, himself. The computational
problem posed by such elements is to find the (most likely) linguistic element they
draw their semantic content from, usually referred to as their antecedent. This is a
tough task, if nothing else because in general it involves several different modules
of human language faculty: syntax, semantics, pragmatics, world knowledge and
commonsense. Still, it is something that a human speaker can usually accomplish
very quickly and reliably, on the basis of seemingly very precise rules. This problem
raises two questions:

• What are the inner computational mechanisms that rule human ability to cor-
rectly compute antecedents of anaphoric elements in a sentence?

• How is it possible to mimic reasonably well such a faculty by means of efficient
algorithms that work on real world natural language texts?

The view that we pursue in this thesis is that the answers to these two questions
are not completely unrelated, and that in chasing a solution to one, we might
stumble upon very good clues about the solution to the other.
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1.2.1 The anaphora resolution problem

This thesis deals with a particular instance of the syntax-semantics interface prob-
lem, commonly known as the anaphora resolution problem.

There is little agreement in the linguistics community on the precise defini-
tion of what anaphora are (sometimes we’ll use the English terms “anaphor” and
“anaphors” instead of this Latin plural word). We will stick to an operational
point of view in simply calling “anaphora” any situation in which a linguistic
object gets its meaning or denotation from another linguistic object previously
introduced. The object which “points back” is called an anaphor, and the entity
to which it refers is its antecedent. The process of determining the antecedent of
an anaphor is called anaphora resolution. So, in the following example:

(2) After the maid had killed the lord, she left the house

the pronoun she is the anaphor, and the maid is the antecedent. It is worth un-
derlining the fact that the antecedent is not the noun maid but the phrase the
maid.

We distinguish intrasentential anaphors (referring to an antecedent which is in
the same sentence as the anaphor) from intersentential anaphors (referring to an
antecedent which is in a different sentence from that of the anaphor). The focus of
this thesis will be on the former, as a linguistic phenomenon which in our opinion
lies at the very core of the interface between syntax and semantics. Furthermore,
a sound and robust approach to intrasentential anaphora is the stepping stone on
the way to a solution to the intersentential anaphora resolution problem.

Pronouns are omnipresent in every natural language text. Therefore, anaphora
resolution should be a key task in machine translation, text summarization, in-
formation extraction, question answering, to name only a few NLP applicative
domains. The approaches developed - traditional (from the purely syntactic ones
to the highly semantic and pragmatic ones), alternative (statistic, uncertainty-
reasoning etc.) or knowledge-poor - offer only approximate solutions.

After considerable initial research followed by years of relative silence in the
early 80s, anaphora resolution has attracted attention of many researchers during
the last 10 years and a great deal of successful work on the topic has been carried
out. Discourse-oriented theories and formalisms such as Discourse Representation
Theory and Centering Theory inspired new research on the computational treat-
ment of cross-sentential anaphora. The drive toward corpus-based robust NLP so-
lutions further stimulated interest in alternative and/or data-enriched approaches.
Application-driven research in areas like automatic abstracting, data-mining, and
information extraction, independently highlighted the importance of anaphora and
coreference resolution, boosting research in this area.

1.2.2 Binding Theory

Binding Theory is a fascinating and controversial domain of theoretical linguistics
that deals with the distribution and the denotation of a specific class of linguistic
elements called Determiner Phrases or DPs (to which pronoun belongs, among
others) occurring in a sentence. From a theoretical point of view, recovering the
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semantic content of a pronoun appears as a problem that has to do with the
meaning, i.e. semantics of human language; yet the distribution of pronouns in a
sentence, as well as the relationships between their denotations seems to be subject
to constraints which are essentially structural, or syntactic in nature. Binding
Theory lies at the very core of the debate on the syntax/semantics interface in
human languages.

Binding Theory was first formulated as a module of Government and Binding
Theory by Chomsky in [12], where he stated three syntactic principles that govern
the distribution of DPs in a sentence. Since then alternative interpretations to the
same empirical evidence have been proposed, as well as to the principles that rule
human judgements on this matter. The alternative approaches that we’re going
to take into consideration in the present work are Reinhart [50] and Reinhart and
Reuland [54]. They have highlighted the importance of keeping different levels of
linguistic competence clearly separated: what were formerly considered as syntactic
phenomena are sometimes identified as intrinsically semantic, or delegated to the
discourse theory level of description of human language. It seems like there’s a
trend in linguistic research on this subject that moves the burden of judgments on
distribution of anaphors from syntax to semantics. At the far semantic side of the
spectrum lies the very recent proposal by Philippe Schlenker [58], with which we
compare our approach in the final chapter.

1.3 The idea: an integrated view of Binding Theory

This thesis presents a computational treatment of Binding Theory which integrates
insights drawn from three among its most influential interpretations, proposed
throughout last 30 years of linguistic inquiry.

Our goal is to integrate into the current framework of computational seman-
tics the principles of Binding Theory. Research on how to systematically compute
semantic representations of a sentence in first-order predicate logic, stemmed from
the pioneering work of Richard Montague of the early 70’s, has reached a consider-
able level of sophistication. Our starting points are the formalisms and procedures
to compute in a bottom-up inductive fashion the predicate-argument structure of
a sentence on the basis of its syntactic analysis. We aim at enriching these algo-
rithms to incorporate in the output semantic representations the constraints over
Determiner Phrases induced by the principles of Binding Theory.

Our enquiry starts from the classical Chomskian formulation of the principles
of Binding Theory in the early 80’s (section 4.3). We implement the additional ap-
paratus needed to inductively compute and encode in the resulting semantic rep-
resentation the mandatory/forbidden coreferential relations induced by the princi-
ples. The cumbersome notation and the computational shortcomings of the direct
implementation of this approach are overcome by adopting the approach proposed
later in the 80’s by Tanya Reinhart (section 4.4). However, the direct implemen-
tation of this approach runs into some computationally intractable problems.

These problems are overcome in section 4.5, where we integrate into our sys-
tem the basic insights of Reinhart and Reuland’s “Reflexivity” interpretation. We
operate an original synthesis of the previous approaches, moving from the simple
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computational implementation of ready-made models issued from linguistics to-
wards an original computational treatment which subsumes their basic stipulations
under general computational principles. The result is a computational treatment
of Binding Theory which is both effective and linguistically well-grounded.

1.4 Structure of the thesis

This thesis is structured as follows. In Chapter 1 we introduce anaphora (or coref-
erence) resolution. This problem has both considerable applicative interest, and
deep theoretical implications. As an applicative task, it is the object of active re-
search (mostly by means of heuristic or statistical approaches) in the domain of
Natural Language Understanding, in particular to achieve in-depth semantic anal-
ysis both of single sentences and of larger texts. From a theoretical point of view,
this problem falls under the scope of Binding Theory, a whole branch of linguistics
devoted to identify the principles and to unravel the mechanisms of human lan-
guage faculty that rule the distribution and the denotation of Determiner Phrases
in a sentence.

In Chapter 2 we provide the basic notions of predicative (as opposed to lexical)
semantics of natural language which are necessary to understand the problem we
want to tackle and set it in the context of modern research in computational
semantics. We keep the syntactic and the semantic assumptions to a minimum in
order to achieve as much generality as possible in our approach.

Chapter 3 shortly presents three among the most influential approaches to
Binding Theory that have been proposed during last 30 years of research in gen-
erative linguistics. We also present the few cases of fruitful interaction of Binding
Theory with Natural Language Processing to devise algorithms for coreference
resolution, and with Computational Linguistics to address more theoretical issues
like computational complexity characterization of human language faculty.

Chapter 4 is the core of our research. The first step is a simple implementation
of the principles of traditional Binding Theory as it was first formulated by Chom-
sky in the early 80’s. Then we tackle the problem from a different perspective, one
inspired by the interpretation of Binding Theory first proposed by Tanya Rein-
hart in 1983. Both approaches present severe shortcomings that are overcome only
through an original synthesis of the two previous approaches with Reinhart and
Reuland’s 1993 Reflexivity approach. The result is an integrated computational
treatment of Binding Theory which combines insights drawn by two among the
most influential approaches and subsumes them by means of general computational
principles.

We devote Chapter 5 to the presentation of a very recent proposal of semantic
treatment of Binding Theory due to Philippe Schlenker. Although conceptually
very distant, our approaches come to comparable conclusions on several issues, and
we highlight advantages and shortcomings of each approach. We prove that our
system, like his, includes with no further assumption the principle of Denotational
Economy.



2

Computational Semantics Basics

“Hi” he said, lying.

Robert Maxwell

The whole objective of computational semantics might be summarized as the
answer to the following questions (quoted from [5]): what are the computational
processes involved in semantic construction? And how can we automate the process
of associating semantic representations with natural language expressions?

Computational semantics is concerned with computing the meaning of linguis-
tic objects such as sentences, text fragments, or even (parts of) dialogues. It is
the interdisciplinary field where semantics, the study of meaning and its linguis-
tic encoding, meets computational linguistics, the discipline that is concerned with
computation on linguistic objects. On one hand, it inherits concepts and techniques
that have been developed in the domain of formal semantics, the linguistic dis-
cipline that applies the methods of logic to the description of meaning. On the
other hand, this young discipline owes to computational linguistics the methods
and techniques for parsing sentences of a natural language, for the effective and
efficient representation of syntactic structures and logical forms, and for reasoning
with semantic information.

The beginnings of computational semantics can be traced back to the seminal
work of Richard Montague in formal semantics (see [44], [43] as well as [21] for
an updated introduction). His work can be considered as the first accomplished
effort to describe how the expressions of (a small fragment of) a natural language
can be associated with semantic representations in a logical language. The focus
of Montague’s semantic theory is on the relationship between predicates and argu-
ments in a sentence, or between categories and modifiers, and those set by variables
bound by quantifiers. Such problems, after more than thirty years of active study
in this domain, still lie at the very heart of any sound theory for natural language
semantics, and are still a domain of active debate.

In the following sections we shortly recall the basic concepts and terminol-
ogy for the computational semantic framework within which we will develop our
enquiry on the computational treatment of Binding Theory of chapters 3 and 4.
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2.1 From Surface Structure to Logical Forms

The generative tradition in linguistics that was initiated by the pioneering works
of Noam Chomsky in the 50’s (see [9], [15]) proposed a model for the relationships
between syntax and semantics of human languages that is summarized in a schema
which has become an icon of generative linguistics:

DS

SS

PF LF
DS and SS stand for “deep” and “surface” levels of syntactic representation

and can be thought of what we commonly refer to as the syntax : the set of rules
that allow a speaker to perceive a sentence in his/her own language as well-formed.
PF (phonological form) is a representation of the phonetic form of an expression;
LF (logical form) is a syntactic level of representation which functions as the
input to the semantic interpretation module. The three syntactic levels of DS, SS
and LF are related by so-called transformations. Transformations are movement
operations which move material from one position to another in the syntactic
structure of the sentence. The transformations from DS to SS take care of word
order relations between active and passive sentences, affirmative and interrogative
sentences, etc. SS corresponds to a level of representation that is more or less a
syntactically labelled version of what we see when we see a sentence. SS is the
input for both Phonological Form (PF) and Logical Form (LF), which implies
that it maps both on the actual phonological realization and on the input level to
semantic interpretation. The split between PF and LF suggests that any syntactic
movement which relates SS to LF is invisible to PF and as such is not phonetically
realized.

In the present work we are concerned with the SS and the LF levels of linguistic
representation, and on the mutual relationship between them. Syntactic objects
at SS will be the input data for algorithms which compute suitable semantic rep-
resentations for them at LF.

2.1.1 SS input: phrase-markers

We shortly sketch the basic assumptions on the syntactic representations of sen-
tences that will be used as the input to the semantic interpretation module. We
inherit concepts and terminology on syntax issued from the tradition of gener-
ative linguistics initiated by Chomsky according to its latest formulation in the
minimalist framework (see [14]).

Every word in the language belongs to a restricted set of grammatical cate-
gories, classes of expressions which share a common set of grammatical properties.
Phrases and sentences are formed by successive applications of merger operations:
two categories are merged together to form a new (phrasal) category. The resulting
structures can be represented in the form of tree diagrams, usually referred to as
phrase-markers or parse trees (we will use the two terms indifferently). Each of
their nodes represents a constituent, which is the basic syntactic unit out of which
the sentence is built. In this sense the tree representation of a phrase-marker
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provides a visual representation of the constituent structure of the correspond-
ing sentence. In the standard representation nodes carry labels which specify the
grammatical category of the corresponding constituent. Every constituent has a
head, which is the key word whose nature determines the properties of the overall
phrase). There are as many different constituents in any given phrase or sentence
structure as there are nodes carrying labels. By convention every constituent whose
head is a word of category X is labeled as XP. Every pair of nodes belonging to
the same phrase-marker is related by one of two different types of relation, either
dominance (i.e. the hierarchical ordering) or precedence (i.e. linear, left-to-right
ordering). What follows is an example of the syntactic structures that will be used
as input to our semantic computations (possibly stripped from the labels that
decorate the inner nodes1):

IP

DP

D

the

N

man

VP

V

took

DP

D

the

N

book
A common assumption is that the merger operation which leads to the forma-

tion of syntactic structures operates in a pairwise fashion to form larger categories
out of simpler constituents. The immediate consequence is that phrase-markers
in the present work will be always binary trees. Although not uncontroversial,
such an assumption is widely accepted by the linguistics community and repre-
sents one of the tenets of latest formulations of generative linguistics. Hereby, all
the phrase-markers occurring in the present work will be represented as binary
branching trees.

Our work will be mainly concerned with a particular kind of syntactic con-
stituents called Determiner Phrases (or DPs). Intuitively, they can be thought of
as the set of linguistic expressions that identify an entity in the domain of discourse:
examples are the king of France, John, he, him, the woman who married John, etc.
Binding Theory deals with the distribution and the mutual structural/denotational
relationships between DPs occurring in a sentence.

2.1.2 LF output: First Order Predicate Logic formulas

The focus of our work lies in devising algorithmic procedures to automatically
translate SS structures into suitable LF structures. LF is the syntactic level of
representation of a sentence that directly interfaces with the semantic interpreta-
tion module. This means that at LF nothing is stated about the true meaning of the
words involved, which is in general heavily context-dependent. What is commonly
referred to as the Logical Form of a sentence, which is the target semantic rep-
resentation we want to compute, is the representation of the context-independent

1 Label D stands for Determiner, N for Noun, V for Verb, DP for Determiner Phrase,
VP for Verb Phrase and IP for Inflectional Phrase, which is the category of sentences.
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Table 2.1. Logical Form as intermediate representation between syntax and KR systems

Syntactic Analysis Logical Form Knowledge Representation

IP

DP

John

VP

V

owns

DP

D

the

N

car

∃!x : car(x).own(john, x) own(John Smith, CA073)

component of meaning. In the present work the logical form of a sentence basi-
cally encodes the semantic relationships between words and phrases, that is their
predicate-argument structure. However partial, this component of meaning is ab-
solutely essential both for theoretical and applicative issues. Most of the research
into formal semantics exclusively concentrate on this component of meaning, while
any sound real-world language understanding system must be able to compute at
least parts of it for fragments of a human language. Such kind of structure can then
be fed to a contextual interpretation module which combines it with information
about the specific discourse domain and generates a suitable representation into
some Knowledge Representation language as illustrated by table 2.1.

The target language into which phrase-markers are going to be translated will
be First Order Predicate Calculus. It provides a flexible, well-understood and com-
putationally tractable approach to the representation of knowledge for a meaning
representation language and a sound computational basis for the verifiability, in-
ference and expressiveness requirements that are usually associated with the most
common real world tasks for computational semantics. All these features make first
order predicate logic formulas a reasonable and widespread choice for the semantic
representation of context-independent meaning of a sentence.

2.2 Formal Semantics Basics

2.2.1 Truth-Conditional Semantics

What is commonly referred to as “formal semantics” for natural language can be
simply seen as a way to associate predicate calculus formulas to a sentence, on the
basis of its syntactic analysis. In the tradition of what is known as ”the Fregean
program” (from the logician Gottlob Frege, whose work in the late nineteenth
century marked the beginning of both symbolic logic and formal semantics of
natural language), we adhere to the notion of truth-conditional semantics : knowing
the meaning of a sentence means knowing the conditions which make that sentence
true or false in some world. This is not the only possible approach to semantics for
natural language. To name just an example of an alternative view, representational
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semantics characterizes the meaning of a sentence as a translation into some kind
of internal mental representation of the world, and so it focusses on defining a
translation relationship between utterances and a putatively universal system of
mental representation (more on this philosophical debate can be found in [8]). In
a truth-conditional semantics perspective we will say, for example, that the Italian
sentence c’è una balena rosa nel parcheggio dell’Università is true if and only if
there is a pink whale in the parking lot of the University. The apparent banality
of such kind of claims hides a fundamental property that any formal theory of
meaning for human language must be able to capture: namely, that we understand
sentences (that is, we can say which set of conditions make those sentences true in
real world) that we have never heard before (like - most probably - the sentence just
quoted) out of the meaning of their parts on the basis of systematic computational
mechanisms.

2.2.2 Compositionality

If we adopt a truth-conditional perspective, we can say that human beings are
able to compute truth-conditions for sentences from the truth-conditions of their
parts. Every meaningful part of a sentence contributes in a systematic way to the
conditions that make that sentence true or false in real world. We adopt Partee’s
latest formulation in [47] of what is known as

Principle of Compositionality. The meaning of a compound expression is a
function of the meanings of its parts and of the syntactic rule by which they
are combined.

Compositionality principle lies at the very heart of the relation between syntax
and semantics. It is also the trait-d’union between natural language semantics
and computational semantics, and one of the basic assumptions of the project of
formalizing the notion of meaning for (fragments of) natural languages.

Frege made a strong claim on the basic mechanism of semantic composition:
he conjectured that it may always consist in the “saturation” of an unsaturated
meaning component. As we will made clear in next section, this boils down to stat-
ing that the only mechanism by which syntactic constituents semantically interact
with each other is functional application. This claim is known as Frege’s conjecture,
and even though modern formal semantics has departed quite significantly from
it in dealing with some semantic phenomena, it still remains one of the leading
ideas in computational semantics. Montague instead applied the compositionality
principle on a rule-to-rule basis, assuming that for each syntactic rule, specifying
how an expression can be built from simpler ones, the grammar contains a corre-
sponding semantic rule that says how the meaning of the expression depends on
the meaning of the parts.

It should be noted that Compositionality in its most general formulation does
not necessarily require a rule-to-rule correspondence between syntax and seman-
tics. The notion of part occurring in the principle is often understood as constituent
in the sense of a substructure that has a significance in a syntactic structural de-
scription in the sense specified in section 2.1.1, but this is often an unnecessary
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restricted interpretation. A grammar may define the set of well-formed expres-
sions of a language by means of derivation rules without attributing a structural
syntactic significance to the elements that are used in the rules.

Such a view is coherent with the actual trend in syntactic theories, both from
a linguistic and a formal point of view, towards lexicalization. This means that the
grammar of a language is completely defined by a lexicon which fully specifies the
behaviour of words (terminal symbols in the formal sense), while derivation (or
composition) rules are the same for any grammar. This idea is already present both
in the linguistic community (for example in Chomsky’s Minimalist Program [14],
latest reformulation of his immensely influential work on generative grammars),
and in the language theory area, where lexicalized grammar formalisms like Cat-
egorial Grammars (especially in their multimodal or Lambek variants, see [45]),
Combinatory Categorial Grammars (or CCGs, see [61]), Tree Adjoining Gram-
mars (or TAGs, see [31]) and Minimalist Grammars (or MGs, see [60], [40]) are
the subject of intense theoretical research and promising practical applications.

2.2.3 Denotations and Types

Semantics for a fragment of a human language consists of three components: an
inventory of denotations, a lexicon, and a set of composition rules.

Denotations can be things in real world, or digital representations of entities
in a knowledge representation system, in general entities belonging to a certain
domain of interest. Let D be the set of all entities that exist in the real world.
Possible denotations are: elements of D, that is the set of actual individuals (that
we use here as a synonym for entities); elements of {0, 1}, the set of truth values;
functions from D to {0, 1}; functions from D to functions from D to {0, 1}, etc.
Linguistic expressions are associated to such non-linguistic entities by means of an
interpretation function J K, which assigns an appropriate meaning or denotation
(from this point onward we will consider the two words as synonyms) to every
syntactic object. We say that α denotes JαK or, equivalently, that JαK is the de-
notation of α. Examples (1) shows some examples of denotations associated to
linguistic expressions by function J K:

(1) a. JMaryK = the real Mary in flesh and blood

b. JsleepsK = {x | x sleeps }

c. JstudentK = {x | x is a student }

d. JMary sleepsK =

{
1 if Mary sleeps
0 otherwise

In any compositional theory of meaning we want to be able to compute denota-
tions of complex expressions from denotations of their simpler parts: for example,
we want to describe rules to compute the denotation of (1-d) from the denotation
of (1-a) and of (1-b). So, the interpretation function J K must consist of two com-
ponents: (i) a lexicon which associates basic meanings to words (terminal nodes in
our syntactic trees) and (ii) a set of composition rules that describe how to derive
the meaning of compound expressions (non-terminal nodes) from the meanings
of their more basic components. We will get back to composition rules in section
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2.2.4, while in the rest of the present one we will examine more carefully the formal
machinery needed to associate denotations to words in a lexicon.

Example (1-a) shows that we assume that proper names denote individuals,
(1-d) that sentences denotes truth values, (1-b) and (1-c) that intransitive verbs
and nouns denote sets of individuals, and so their denotations can be identified
with the corresponding characteristic functions from set of individuals to truth
values. Those are denotation domains for, respectively, proper names, sentences,
intransitive verbs and common nouns. Just like expressions belong to a syntactic
category, they belong to a semantic type, according to what kind of denotation
domains they denote in. We will call De the denotation domain for entities, in-
dividuals and other objects, and we will say that the semantic type of a proper
name is e (reminiscent of “entity”). The denotation domain of sentences is the set
of truth values {0, 1}, and the corresponding semantic type is t (which stands for
“truth value”). But whatever language is, it is much more than just entities and
truth values. Recursive definitions 2.1 and 2.2 supply us with as many semantic
types, and their respective domains, as needed:

Definition 2.1. The set T of semantic types is the smallest set such that:

(i) e and t are types;
(ii) if τ1 and τ2 are types, then τ1 → τ2 is a type.

If α is an expression of type τ1 → τ2 and β an expression of type τ1, then the
result α(β) of functional application of α to β will be an expression of type τ2.

Definition 2.2. Denotation (or interpretation) domains for expressions whose
types belong to T are defined as follows:

(i) De, the set of entities or individuals, is the interpretation domain of type e;
(ii) Dt = {0, 1} is the interpretation domain of type t;
(iii) for any complex type τ1 → τ2, its interpretation domain is Dτ1→τ2

= Dτ1

τ2
, that

is, the set of all functions from Dτ1
to Dτ2

.

For expressions of complex types τ1 → τ2 we also say that they map elements
from Dτ1

onto an element of Dτ2
. A proper name like (1-a) denotes an individual,

and so it is of basic type e. The denotation of a sentence is a truth-value and so
it is of semantic type t. Intransitive verbs like (1-b) or a common noun like (1-c)
are of type e → t, i.e. they map an individual onto a truth value, and so they are
functions from individuals to truth values. The set of individuals characterized by
such a function is the set of all individuals that the function maps to 1. Table 2.2
provides some examples of the semantic type (and thus implicitly of the denotation
domains) of some natural language expressions.

Lambda (λ) calculus provides a useful notation to express the relation between
linguistic expressions and their denotations in a compact way. Generally, λ-terms
are constructed according to the following schema:

λα : γ . φ

We say that α is the argument variable, γ the domain condition and φ the value
description. The domain condition defines the domain of our function, and it does
so by placing a condition on possible values of α. In particular, we adopt the
following convention explicitly stated in [26]:



16 2 Computational Semantics Basics

Table 2.2. Types and Expressions

Type Kind of expression Examples

e Individual expression John, the dog, the king of France

e → t One-place first order predicate walks, loves Mary, student, dog

t Sentence John walks, John loves Mary

t → t Sentential modifier not

(e → t) → (e → t) Predicate modifier quickly, beautifully

e → e → t Two-place first-order relation loves, looks

(e → t) → t One-place second-order predicate every student, no woman

(e → t) → (e → t) → t Two-place second-order relation no, every, all

Definition 2.3 (λ-convention). We read λα : γ.φ as

(i) the function that maps every α such that γ to 1 iff φ holds, if φ is a sentence,
(ii) the function which maps every α such that γ to φ otherwise.

λα : γ.φ =

{
1 ⇔ φ if φ is a sentence
f : α → φ otherwise

So the lexical entry (2) for an intransitive verb, can be rewritten more concisely
as a λ-expression, in which case the denotation of smiles is characterized as the
(characteristic function of the) set of all individuals who smile, according to the
first case in definition 2.3.

(2)
JsmilesK = f : De → Dt such that ∀x ∈ De, f(x) = 1 iff x smiles

= λx ∈ De . x smiles

The lexical entry for a transitive verb in (3) can be written in the more compact
λ-notation too, but in that case the denotation of loves is a function (to be precise,
a function from individuals to functions from individuals to truth-values), and not
a set as in the previous example, as described in the second case of definition 2.3:

(3)
JlovesK = f : De → {g : De → {0, 1}} such that

∀(x, y) ∈ De × De, f(x)(y) = 1 iff y loves x.
= λx ∈ De . [λy ∈ De . y loves x]

Functional application, one of the main composition mechanisms of our computa-
tional semantics system, is encoded as the well-known operation of β-reduction of
λ-terms (see [3] for further details):

(λα.φ)β = φ[β/α]

where the second member of the previous equation stands for “the term φ where
all free2 occurrences of α have been replaced by β”. What follows shows the result
of applying a function to an argument by a stepwise β-reduction:

2 We use the word ’free’ in the logical sense, as a not-quantified variable.
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[λx ∈ De . λy ∈ De . y loves x](Mary)(John)
β

=⇒ [λy ∈ De . y loves Mary ](John)
β

=⇒ 1 iff John loves Mary

In this formal setting, Fregean “saturational” notion of meaning that we shortly
mentioned in section 2.2.2 takes a precise computational meaning. Atomic seman-
tic types e and t correspond to Frege’s saturated denotations; besides those basic
types there are various sorts of functions which correspond to Frege’s unsaturated
denotations. An intransitive verb has semantic type e → t and so it has an unsat-
urated place which must be filled by a individual of type e to yield a full sentence
of type t. Analogously, a transitive verb is given semantic type e → e → t and
so it has two un-saturated slots that must be filled to yield a complete sentence.
The typing machinery that our semantic model associates to expressions is not
only a useful tool to better understand the semantic nature of linguistic objects
we are dealing with, but also plays an important role in the computational process
of interpretation, as it will be made more clear in the following section.

2.2.4 Composition Rules

The set of semantic entries of a lexicon is one of the two basic components of
the interpretation function J K, the other being a mechanism to systematically
combine those basic meanings associated to words into more complex expressions,
that is, a set of composition rules. We assume that the input to function J K is a
phrase-structure like those presented in section 2.1.1. We adopt the two following
conditions on interpretations for phrase-tree structures, globally referred to as the
locality principle of interpretation:

Locality principle of interpretation: for any phrase-marker
(i) every syntactic constituent X has an interpretation;
(ii) in interpreting a constituent X, no other information can be used for com-

puting JXK than that associated with X’s daughters.

In [44] and [43], Richard Montague presents a system which defines semantic rules
for specific types of subtrees. This approach was challenged by Klein and Sag
in [35], in which they criticize the construction-specific method of classical Mon-
tague Grammar and propose (in a more genuinely Fregean spirit) typed functional
application as the only semantic composition rule. More recent developments in
the field of formal semantics (in particular see [26]) take a less radical approach
and identify a limited number of semantic composition rules, in which functional
application still plays a predominant role. We present some of the most common
composition rules that we will make use of throughout the rest of the present work.

Terminal Nodes (TN rule): if α is a terminal node, JαK is specified in the
lexicon.

JJohnKe = John
JcatKe→t = λx ∈ De . x is a cat
JsleepsKe→t = λx ∈ De . x sleeps
JlikesKe→e→t = λx ∈ De.λy ∈ De.y likes x
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An important exception to this rule is represented by pronouns and traces,
whose semantics is not provided by the lexicon but by the context of utterance.
We’ll devote section 2.2.5 to this important matter.

Non-branching Nodes (NN rule): if α is a non-branching node, and β is its
daughter node, then JαK = JβK. This amounts to state that labels in phrase-
markers play no role in the semantic interpretation process.
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Functional Application (FA rule): if α is a branching node and {β, γ} is the
set of α’s daughters, then

JαK = Jβ · γK =







JγK(JβK) if JβK is in the domain of JγK;
JβK(JγK) if JγK is in the domain of JβK;
undefined otherwise.
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(by NN) = JsleepsK(JAnnK)
(by TN) = (λx ∈ De.x sleeps)(Ann)

(by β-reduction) = 1 iff Ann sleeps

Note that FA rule does not specify the linear order of β and γ. Otherwise stated,
the semantic interpretation component can ignore certain features that syntactic
phrase structure trees are usually assumed to have. Just like syntactic category
labels (see TN rule), linear order is irrelevant for semantic interpretation. Accord-
ing to such a type-driven interpretation procedure, it’s the semantic type of the
sister constituents which determines the mode of semantic composition, rather
than their syntactic category and/or their linear order. So it’s the type informa-
tion that we introduced in definition 2.1, and that we can easily compute in a
simply typed λ-calculus based semantic formalism, which will guide the interpre-
tation algorithm, instead of additional information about syntactic category of the
components involved, or about the linear order.

The following example, which also illustrates the basic idea behind the treat-
ment of quantifiers in our semantic theory, elucidates the role of type-driven ap-
proach in the semantic interpretation process:
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IPt

DP(e→t)→t

N

nobody

VPe→t

V

speaks

IPt

DPe

N

Mary

VPe→t

V

speaks

JspeaksK = λx ∈ De . such that x speaks
JnobodyK = λf ∈ De→t . there is no x ∈ De such that f(x) = 1

In the second parse the functional category is the VP, in the first one that same VP
is the argument of functional category DP. What justifies this different composi-
tional behavior between the two sentences and drives the interpretation algorithm
for the whole expression is the type associated to the VP. In the first parse it fits
the argument slot for the type (e → t) → t DP, while it acts as a functor for the
DP in the second parse. We do not need to specify any side-condition to justify
the different treatment, because the semantic types of the constituents drive the
interpretation process.

2.2.5 Pronouns, Traces and Variables

The focus of this thesis is the computational treatment of Binding Theory, which
deals with sentences containing pronominal expressions like (4):

(4) John kissed her.

In order to interpret (4) we have to know what her denotes. Semantically, her
behaves like a free variable, that is, something which derives its content from the
context. Variables were introduced to “behave” like ordinary referring phrases, and
therefore to denote an individual, but only relative to the choice of a particular
assignment. This is the case of (4), where it’s the context in which the sentence
is uttered that provides the necessary information to recover the semantic content
of pronoun her.

In any syntactic theory issued from the generative tradition traces play an im-
portant role. Putting details aside, we can say that almost any syntactic theory
recognizes inside the sentence structure the presence of “movements”, that is oper-
ations by which a word or a constituent is moved from one position in a structure
to another to fulfill some kind of linguistic constraints. A trace is a phonetically
empty category left behind (as a result of movement) in each position out of which
a constituent moves. This movement does not come without consequences: a syn-
tactic dependency gets established between the trace and the moved constituent,
with important consequences for the semantic interpretation. An example of such
movements is the parse proposed in example (5) for the expression which John
admires, in which the final phonetic realization of relative clause results from the
movement of which from the object position in the fragment John admires it leav-
ing phonetically empty trace t in the original position.
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(5)

IP

DP

John

VP

V

admires

DP

it

⇒

CP

which IP

DP

John

VP

V

admires

DP

t

It is clear from example (5) that in order for the semantics of the sentence to work
we must assume that traces, just like proper nouns and pronouns, bear semantic
type e. Semantically, as it will be made clear in the rest of this section, traces
behave like bound variables.

To handle pronominal and movement constructions, we associate an index to
every pronoun and every trace, and we have to augment the interpretation function
J K with an assignment function g, that is, a function from the set of natural
numbers to individuals (the set of assignments is thus the set DN

e ). When an
expression contains a trace or a pronoun, the interpretation function J K can be
actually computed only with respect to an assignment g, and so it should be
written as J Kg. We add to the current set of interpretation principles the following
rule for interpreting traces and pronouns:

Traces and Pronouns (TP rule): if α is a pronoun or a trace, g is a variable
assignment, and i ∈ dom(g), then JαiKg = g(i).

(6) a. Jhe2K
[

1 → Sue

2 → Joe

]

=

[
1 → Sue
2 → Joe

]

(2) = Joe

b. Jt1K
[

1 → Sue

2 → Joe

]

=

[
1 → Sue
2 → Joe

]

(1) = Sue

The TP rule deals with pronouns and traces in exactly the same way: both are
type e syntactic elements which get their denotation from the context in which the
sentence is uttered. To lighten up the notation, we adopt the following convention:

JαKa =

{
a if α is a trace or a pronoun
JαK otherwise

So for example JtKmary = mary but JsleepsKmary = JsleepsK.
We have already said that the movement which led to the formation of the

constituent which John admires in (5) establishes a syntactic dependency between
the moved constituent and its trace. The next interpretation rule makes this de-
pendency explicit at the semantic level:

Predicate Abstraction (PA rule): if α is a branching node whose daughters
are a relative pronoun and β then JαK = λx ∈ De.JβKx

This rule has the effect of turning a trace (if it occurs in β) into a variable which is
bound by the λ operator at the semantic level. Example (7) presents an occurrence
of this rule at work:
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(7)

Jwhich John admires tK =

u
wwwwwwwwv

CP

which IP

John VP

admires t

}
��������~

(by PA) = λx.

u
wwwwv

IP

John VP

admires t

}
����~

x

(by FA) = λx.

u
v VP

admires t

}
~

x

(JJohnKx
)

(by TP + FA) = λx.[[JadmiresKx(JtKx)](John)]
(by TP) = λx.[[JadmiresK(x)](John)]
(by lexical entry) = λx.[[[λy.λz.z admires y](x)](John)]
(by β-reduction) = λx.[[λz.z admires x](John)]
(by β-reduction) = λx. John admires x

Predicate Abstraction rule provides an example of syncategorematic treatment for
the moved relative pronoun. Syncategorematic items do not bear a semantic de-
notation of their own, but their presence affects the calculation of the semantic
value for the next higher constituent. This kind of approach goes against the prin-
ciples of type-driven interpretation and more theoretically adequate treatments of
relative pronouns can be given.

2.2.6 Determiner Phrases

Binding Theory deals with the distribution and the semantic content of linguistic
elements known as Determiner Phrases. This class includes, among others, proper
names (John, Mary, etc.), pronouns (he, she, them, his, her, etc.), and so-called
definite descriptions (the woman who married Bill, the king of France, etc.). For
our purposes it is convenient to associate semantic type e to every DP, be it a
pronoun, a proper name, or a definite description. Intuitively, this amounts to say
that the denotation of a DP is an individual, or entity. Although an intuitive and
unharmful operative choice for our enquiry, this is not precise from the point of
view of formal semantics.

Quantificational expressions like every linguist, three students belong to the
syntactic class of Determiner Phrases too, but we have seen that they are given
semantic type (e → t) → t. That is, they do not denote individuals, but higher
order predicates, or properties of properties. As such, they seem to be intrinsically
different from type e entities. This superficial analysis, that assigns different se-
mantic types to elements belonging the same grammatical category of DPs, runs
into several problems. To name only one, in a sentence like John and three students
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came to the party it is not possible to assign a semantic type to an expression like
John and every student which coordinates seemingly different objects like an en-
tity (John) and a set of properties (every student). One of the major achievements
of Montague’s work [43] on the formalization of semantics for fragments of English
was the insight that proper names and definite descriptions can be seen as gen-
eralized quantifiers too, therefore providing a uniform semantic characterization
of all DPs as denoting type (e → t) → t objects. According to this view, the
denotation of proper name John is not a particular individual in the domain of
discourse, but the set of properties which are true for a particular individual. This
uniform treatment of DPs perfectly accounts for coordinated structures like John
and every student keeping the traditional semantic type t → t → t for conjunction
and. Formally:

JJohnK = λP.[P (john)]

JJohn walksK = [λP.[P (john)]](λx.walk(x)) = walk(john)

Jevery studentK = λP.[∀x.student(x) → P (x)]

JJohn and every studentK = λP.[P (john) ∧ [∀x.student(x) → P (x)]]

The same can be said for definite descriptions like the infamous the king of France,
for which we can adopt the traditional Russellian analysis:

Jthe kingK = λP.[∃x.[king(x) ∧ ∀y.[king(y) → y = x] ∧ P (x)]]

This homogenous treatment of DPs opens up other possibilities, namely a sound
treatment of intensionality, which is one of the strengths of Montague’s grammar.

However, for the purposes of our work, this sophisticated semantic analysis
of DPs does not have any meaningful advantage over the näıve view of DPs as
entities, not more than in everyday life the perception of the full range of radio
frequencies is more useful than the limited sensibility to visible light spectrum.
Therefore, we’ll assume that definite descriptions denote type e entities, and we’ll
stick to this assumption throughout the rest of the present work. The semantics
we’ll officially assume for the definite article the in particular will be as follows:

JtheK(e→t)→e = λf : ∃!x[f(x)].[ιy[f(y) = 1]]

where ∃!x[φ] abbreviates ∃x[φ(x) ∧ ∀y[φ(y) → x = y]] (i.e. there exists one and
only one x such that φ(x)), and ιx[φ] selects the unique x such that φ(x).

2.2.7 Quantifier Raising

Quantifier Raising (QR) will play a central role in the integrated computational
treatment of Binding Theory that we are going to present in chapter 4. We shortly
recall here the basic ideas that will be of interest to our computational purposes.

Quantifier Raising has been developed explicitly within frameworks that as-
sume that a semantic type is associated with each semantic expression. It was
originally introduced as a syntactic covert (i.e. without phonetic realization) move-
ment which restructures a phrase-marker in order to amend a semantic type mis-
match between its constituents. When, in a given phrase-marker τs, one of the DP
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constituents α is Quantifier Raised (or QR’d), α is moved to a higher position (or
landing-site) in the parse tree, it is replaced by a trace ti and it adjoins α to a dom-
inant node. In order to implement the syntactic dependency existing between the
trace and the moved constituent, the sister constituent of α is a lambda operator
coindexed with the trace ti. More formally:

QR : [IP . . . α . . . ] ⇒ [IP ′ αλi[IP . . . ti . . . ] ]

Example below shows the graphical notation for QR movement (inspired by [26])
that we will use throughout this chapter:

τs =

IP?

Johne VP?

offendede→e→t DP(e→t)→t

every linguist

QR
=⇒ τ ′

s =

IP′t

DP(e→t)→t

every linguist

e → t

λ1 IPt

Johne VP

offendede→e→t te1

In τs the quantificational DP every linguist is semantically translated as a
generalized quantifier, and as such it has type (e → t) → t: it’s a function from
predicates (functions from entities to truth values) to truth values. The transitive
verb offended is a two-place predicate, and thus it has type e → (e → t): it’s
a function from entities to functions from entities to truth values. Therefore, in
τs no functional application is possible between offended and every linguist. The
mismatch is amended in τ ′

s: the DP constituent is raised above the IP node, leaving
the trace t1, which is supposed to bear semantic type e. The node labeled with
λ1 in τ ′

s marks the introduction of an operator of lambda abstraction which binds
the variable associated to t1.

In the computational treatment of Binding Theory that we will present in
chapter 4, we are going to make use of Quantifier Raising in a new way, in addi-
tion to the traditional one as a syntactic tool to amend semantic type mismatch.
Although QR was first introduced to (covertly) move Quantificational Phrases
(that is, type (e → t) → t constituents), we license Quantifier Raising also for
type e DPs, namely pronouns and proper names. In doing so, we adhere both
to theoretical and computational convenience criterions. Reinhart in [50] provides
convincing evidence that also type e DP can undergo QR, basically to solve the
sloppy-strict identity puzzle for elliptic construals. Furthermore, it can be proved
that truth conditions of a sentence in which a type e DP has been quantifier-raised
are equivalent to those in which the DP is left in situ. As pointed out in [26], in
this situation it is difficult to see what could forbid the possibility that DPs of
type e undergo the same movements of DPs of type (e → t) → t.

Quantifier Raising is generally considered as the main operation of interest
in transformational derivations from Surface Structure to Logical Form, and to
apply optionally and freely to (particular types of) DPs. We instead adhere to the
idea of Danny Fox (see [20]) of Quantifier Raising as a “last resort” tool which is
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triggered on demand by specific computational pressure. Such driving forces may
be the need to amend a semantic type mismatch or, as it the case case of the
algorithms that we are going to present in chapter 4, to generate a bound-variable
reading between two Determiner Phrases.
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Binding Theory for Dummies

Go fuck yourself, Mr. Cheney!

A Katrina survivor,
quoted in The Washington Post, September 8th, 2005.

3.1 Introduction

Consider the following sentences:

(1) a. Ann blames herself
b. John admires him
c. *John admires John
d. John thinks that Ann admires him
e. *Ann claims that John blamed herself
f. The woman that married John likes him
g. Every professor thinks that he is underpaid
h. No woman admits that she is a bad driver

There is no doubt that herself in (1-a) refers to Ann; just like there is general
agreement that whoever him refers to in (1-b), this (male, singular) person cannot
be John. On the other hand it could very well be the case that him in (1-d) refers
to John, but that’s not the only option, especially if the sentence is uttered in a
context where John is not the only male individual, and the same holds for (1-f).
Everybody agrees that (1-e) is plain wrong, and that herself cannot refer neither
to Ann nor to John, although an English speaker feels that the reason why herself
cannot refer to the former is not the same why it cannot refer to the latter. But
who does he refer to in (1-g), and who does she to in (1-h)? And on the basis of
which principle, syntactic or semantic in nature, we perceive (1-c) as wrong, or at
least highly unlikely?

Binding Theory (BT for short) aims at describing the formal principles that
govern such kind of judgements. That is, not only judgements on the well- or
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ill-formedness of sentences which contain pronouns, but also on the relationship
between their denotations. Whether such judgements are syntactic or semantic in
nature is still a highly debated subject.

More technically, we can say that Binding Theory deals with the distribution
and the referential properties of Determiner Phrases (or DPs) occurring in a sen-
tence. We will see in the next sections how this characterization of BT is somewhat
imprecise, and how the interpretation of its objectives and principles has evolved
throughout last the 30 years of linguistic and semantic enquiry since its first formu-
lation in the seminal works of Chomsky [12] and Lasnik [38], [39] at the beginning
of the 80’s.

3.2 Coreferential Binding Theory

Nearly all approaches to Binding Theory in English partition the set of DPs into
three disjoint categories (we indicate between parentheses the traditional, although
not universally accepted, terminology due to the enormously influential work of
Chomsky [12] and the following generative tradition):

Reflexive pronouns and reciprocals (or anaphors): himself, herself, itself,
ourselves, themselves, each other, one another, etc.;

Non-reflexive pronouns (or pronominals): he, she, it, us, them, his, her, our,
him, them etc.;

Full-DPs (or r-expressions): John, the king of France, the man who married
Mary, a cat, every woman, etc.

Anaphors and pronouns can be identified on the basis of morphosyntactic criteria,
while we may negatively characterize full-DPs as every DP which is neither an
anaphor nor a pronoun. There is an important semantic difference between the first
two classes of DPs and the third one. A full-DP bears an independent semantic
content which is either directly provided by the lexicon, or computed from the
denotation of its constituents. Instead, semantic interpretation for pronouns and
anaphors depends on the denotation of other entities that belong to the sentence
in which they occur, or to the discourse context in which the sentence is uttered,
with which they are said to be coreferential. In order to compute the correct
interpretation for a sentence, a speaker must be able to recover their semantic
content, and BT aims at identifying the general principles that govern this process
commonly carried out very quickly by a human speaker.

3.2.1 Indexing, c-command, syntactic binding

Binding Theory was first formulated as a module of Government and Binding
Theory by Chomsky in [12] (see also [7] for an updated account on BT). It relies
on a syntactic device called coindexing, and on a structural relation between nodes
of the phrase-marker of a sentence called c-command.

In the original formulation indexing is the practice of denoting the interpreta-
tion relations existing among the DPs of a sentence by means of indexes, that is
integers attached to DPs. We adopt the following convention on DP indexing:
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• every anaphor, pronoun and definite DP bears an index;
• nothing else bears an index.

Sameness of reference or denotation between two DPs is encoded by coindexing,
that is by the two DPs carrying the same index. As a convention, we assume that
two DPs corefer if and only if they are coindexed.

(2) a. John1 thinks that Mary likes him1.
b. John2 thinks that Mary likes him1.

In (2-a) him is coindexed with John, and therefore they are supposed to have the
same denotation: on the basis of the convention just introduced, we can say that
for all i, JJohniK = JhimiK). In (2-b) John and him are contra-indexed, which
implies that their denotations are different: for all i, j, i 6= j ⇒ JJohniK 6= JhimjK.

If we consider indexes to be part of the syntax, certain configurations of indexes
associated to the DPs occurring in a sentence give rise to syntactically ill-formed
sentences. (Un)grammatical representations for these sentences will look like the
following ones:

(3) a. [ Zelda ]2 bores [ herself ]2
b. *[ Zelda ]1 bores [ herself ]2
c. [ She ]4 adores [ Zelda’s ]7 dog
d. *[ She ]4 adores [ Zelda’s ]4 dog
e. [ Zelda ]2 adores [ her ]2 dog
f. [ Zelda ]2 adores [ her ]7 dog

Indexes allow us to express in a concise way the basic phenomena which Binding
Theory accounts for. If we restrict our attention to the case of singular DPs,
two DPs in a given sentence can show one of three logically possible coreference
patterns:

(4) a. Obligatory coreference:
[ Zelda ]x bores [ herself ]y (x = y ⇒ JZeldaxK = JherselfyK)

b. Obligatory non-coreference:
[ She ]x adores [ Zelda’s ]y dog (x 6= y ⇒ JshexK 6= JZeldayK)

c. Optional coreference:
[ Zelda ]x adores [ her ]y dog

The key insight of Binding Theory is that the (un)availability of coreference be-
tween two DPs depends on (but may not be limited to) two factors:

• the morphological shape of the DPs
• the structural relation between the DPs

The effect of morphological features on blocking coreference between two DPs is
easily understood: in order for two DPs to have the same denotation, they must
have compatible agreement features (namely, gender and number). However, as
it is apparent from the contrast between (4-b) and (4-c), morphological features
are necessary but not sufficient to account for different patterns of coreferentiality.
This is why we focus our presentation on the structural relations that license or
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forbid coreference patterns between DPs, and most of our examples will involve
pairs of DPs with compatible agreement features.

The structural relation that the classical formulation of Binding Theory iden-
tifies as the key feature in licensing or forbidding coreference between DPs is
c-command between nodes of a phrase-marker. Given the phrase-marker τ for a
sentence, we say that a node n1 c-commands another node n2 in τ when n1 does
not dominate n2 and the first node dominating n1 also dominates n2:

Definition 3.1. Node A c-commands node B in a tree if and only if

(i) neither dominates the other;
(ii)every node that dominates A also dominates B.

More intuitively, we can say n1 c-commands n2 if either n2 is a sister of n1, or it’s
the descendant of a sister of n1.

(5)

A

B C

D E

In (5) B c-commands C, D and E; C c-commands B; D c-commands E; E c-
commands D; no other c-command relation exists.

Coindexing and c-command are the two notions on which the relation of syn-
tactic binding is grounded. Two DPs are said to be (syntactically) bound when
one c-commands the other and they are coindexed:

Definition 3.2. DP1 is a binder for (or binds) DP2 if and only if

(i) DP′ and DP′′ are coindexed;
(ii)DP′ c-commands DP′′.

Although the previous definition is universally referred to as “syntactic binding”,
it is actually a notion that lies at the frontier between syntax and semantics. On
the syntactic side, it requires a purely structural (and thus syntactic) relation
to hold between DP nodes of a phrase-marker; on the semantic side, it requires
sameness of denotations between them, encoded by coindexing, which is a formal
device which “imports” semantics into syntax.

τ1 =

IP

DP

John1

VP

V

admires

DP

himself1

τ2 =

IP

DP

Bill1’s teacher

VP

V

admires

DP

him1

In τ1 John c-commands and is coindexed with himself, therefore it binds it. In
τ2 Bill and him are coindexed but they’re not in a mutual relation of c-command,
therefore no binding occurs between them.
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3.2.2 Principles A, B, C

Traditional Binding Theory characterizes the configurations in which two DPs
occurring in a sentence can, must or must not be coreferential on the basis of
the notion of binding. Therefore, the core of BT consists of three principles that
describe as many configurations in which a DP can, must or must not be bound
within a sentence.

Principle A. A reflexive pronoun must be bound within its local domain.

(6) a. John1 hates himself1.
b. John1 thinks that Bill2 hates himself2.
c. *John1 thinks that Bill2 hates himself1.

Principle B: A non-reflexive pronoun must not be bound within its local domain.

(7) a. *John1 hates him1.
b. John1 hates him2.
c. *John1 thinks that Bill2 hates him2.
d. John1 thinks that Bill2 hates him1.

Principle C: A referential expression must not be bound.

(8) a. *John1 hates John1.
b. John1 hates John2.
c. He1 hates John2.
d. *He1 hates John1.
e. *He1 thinks that Bill2 hates John1.

3.2.3 On local domain

Principles A, B and C are three conditions that constrain the coreferential config-
urations for three disjoint classes of DPs. The general form of a principle is:

(9) A DP of class

{
must

must not

}

be coindexed with a c-commanding DP

within its local domain.

The class and the c-command status of a DP can be unambiguously established.
The notion of local domain of a DP is much more difficult to characterize and
deserves some further explanation.

As a first rough approximation, we define the local domain of a DP as the
smallest clause that it belongs to. For example, the local domain for the anaphor
or the pronoun occurring in (6-a), (7-a), (7-b), (8-a), (8-b), (8-c) and (8-d) is the
whole sentence; for (6-b), (6-c), (7-c), (7-d) and (8-e) it is the clause introduced
by complementizer that.

However, there are several examples in English that challenge this tentative
characterization of local domain of a DP. We are going to detail only one par-
ticularly meaningful class of them, namely the case of Exceptional Case Marking
constructions, that gives a fairly precise perception of the complexity of this sub-
ject.
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Exceptional Case Marking (ECM) constructions are introduced by specific
ECM-verbs (like believe, want) that take an infinitive complement (which is ba-
sically an embedded clause) whose subject is case-marked as objective by the
ECM-verb.

(10) a. John believes him to be wrong
b. Mary wants her to leave

Since we defined the local domain of a DP as the smallest clause that contains it,
in this situation we’re on a deadlock, since it seems like him in (10-a) and her in
(10-b) belong to two different clauses which only partially overlap. The following
schema from Büring [7] summarizes the contrast:

(11) a.

binding domain for SUBJe

︷ ︸︸ ︷

[SmSUBJm . . . V [SeSUBJe[V OBJ ]]
b. [SmSUBJm . . . V [SeSUBJe[V OBJ ]]

︸ ︷︷ ︸

binding domain for OBJ

The phenomenon is correctly captured by Binding Theory principles is we assume
as local domain the governing category for a DP:

Definition 3.3. The Governing Category for a DP is the smallest clausal category
which dominates:

• DP
• DP case assigner

Such a definition of local domain solves the puzzle of (11-a). The embedded object
OBJ receives its case from the embedded V, hence its governing category is the
embedded clause. Accordingly, the embedded object must be reflexive if coreferent
with the ECM-subject, but not if coreferent with the matrix subject. The ECM-
subject receives its case from the matrix verb, which means that the embedded
clause is not its Governing Category: it contains the ECM-subject but it does
not contain its case assigner. The smallest clausal category that fulfills the two
requirements in the definition of GC is the matrix clause, and coreference of the
ECM-subject with the matrix subject requires the former to be reflexive.

3.2.4 Summary on the coreferential approach

The classical perspective on Binding Theory presumes a tight correspondence be-
tween linguistic expressions and real world entities. Principles A, B and C define
conditions that a sentence must fulfill in order to be well-formed. Through indexes,
which encode semantic information in the syntax, such well-formedness syntactic
principles happen to constrain the denotation of the DPs occurring in a sentence,
thus ultimately interacting with the denotational level of representation. As we
will see in the following section, this view has been severely challenged both on
theoretical and empirical grounds by alternative interpretations that have been
given to the principles of BT.



3.3 Reinhart’s Bound-Variable Approach (1983) 31

3.3 Reinhart’s Bound-Variable Approach (1983)

Tanya Reinhart in [50] and [51] challenges the idea that Binding Theory rules
coreference relations among the DPs occurring in a sentence. She basically claims
that only one type of coreference relation is syntactically represented and directly
constrained by the principles of grammar, that is one that stems from the well-
known relation of variable binding in the sense of formal logic. Other coreference
conditions are not even represented at any syntactic level, and as such they can
be neither licensed nor forbidden on the basis of structural constraints. They are
subject instead, Reinhart argues, to an extragrammatical principle that states that
the coreferential interpretation is unavailable whenever the same meaning can be
conveyed by means of variable binding.

3.3.1 Semantic Binding vs. Coreference

As Daniel Büring puts it in [7], coreference is only one of two semantic concepts
that fall under the pre-theoretic concepts of binding, the other being variable bind-
ing. Thus the formal device of coindexing that we introduced in section 3.2.1
sometimes encodes sameness of reference and sometimes variable binding. It is
thus necessary to clearly keep these two notions separated. We illustrate this basic
difference with the help of the following examples:

(12) a. Coreference:

{
He1

John1

}

said that he1 was okay.

b. Variable binding: No woman2 doubts that she2 is okay.

The DPs in (12-a) display a coreferential behavior, in the sense that they both
refer to the same entity in the real world (i.e. they have the same denotation)
encoded by coindexing. This is not necessarily true: with a different indexing the
second occurrence of pronoun he may very well refer to some other singular male
individual previously introduced in the discourse domain. In particular, if John
and he have the same denotation, he can be replaced by John without affecting
the overall semantics of the sentence. This is actually the case: sentences John1

said that he1 was ok and John1 said that John1 was ok are semantically equivalent
(modulo a Principle C violation in the second sentence).

This is not the case for (12-b). By replacing she2 with no woman2 we get a
whole different meaning for the sentence. The fact is that no woman does not re-
fer at all to a specific individual, and thus the non-reflexive pronoun she a fortiori
cannot corefer with it. It turns out that there is a whole class of DPs (such as
Quantifier DPs and wh-phrases) which are not referential and thus cannot sup-
port coreference. A more thorough analysis shows that, within the c-commanding
domain of a Quantified DP with index n, pronouns bearing the index n are no
longer referring pronouns, but bound pronouns. Their behavior is entirely similar
to the behavior of a bound variable in a logical language: their value is no longer
determined by contextual assignment, but by the argument slot filled by the DP.
We adopt the following interpretation rule on the semantic treatment of Quanti-
fied DPs (issued from the systematization operated by Daniel Büring in [7] and
Heim and Kratzer in [26]):
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Index Transfer Rule:
For any Quantified Determiner Phrase QDP with index n, adjoin βn to QDP’s
sister constituent:

QDPn X ⇒
QDP X

βn X

The adjoined βn is called the binder prefix and the DP that minimally c-commands
it is called the semantic binder. The following rule implements the semantic inter-
pretation for binder prefixes:

Binder Prefix Interpretation Rule:

For any natural number n,
r

βn Y

zg

= λx.[JY Kg[n→x](x)]

The Interpretation Rule formalizes the intuition that βn’s sister constituent Y
must not be interpreted relative to the original assignment g, but to a modified
assignment g[n → x] where every occurrence of n has been replaced with x. The
index n of QDP does not encode coreference: it is a device to specify that any
pronoun indexed with n occurring in QDP’s c-command domain (its sister subtree)
must be interpreted as a bound variable. Since x is also the individual argument
to JY K, the overall effect is the binding of any pronoun bearing the index n in Y
by the argument slot of Y .

(13) [QDP Every woman ]
i

thinks that shei is ok

Every woman1
thinks

she1 is ok

⇒
Every woman

β1
thinks

she1 is ok

If we apply Binder Prefix Interpretation Rule to the second parse tree we get:

λx.[J thinks that x1 is ok Kg[x1→x](x)] = λx.[[λy.think(y,ok(x1))]
g[x1→x](x)]

= λx.[[λy.think(y,ok(x))](x)]

= λx.[think(x,ok(x))]

Jevery womanK = λQ[∀y.woman(y) → Q(y)]

Jevery woman thinks that she is okK = ∀y.woman(y) → think(y,ok(y))

which is the correct first order predicate logic representation of the meaning of the
sentence.

Note that if a pronoun is in the c-command domain of a QDP but it is not
coindexed with it, it will still be interpreted as a free pronoun. The Interpretation
Rule just introduced crucially relies on replacing every occurrence of the coindexed
pronoun with a bound variable: when the pronoun is not coindexed (e.g. in every
woman1 thinks that she2 is ok) it remains a free pronoun whose denotation is
independent from the QDP’s and which receives its value from the context.

On the basis of the formal apparatus just introduced to deal with QDPs we
introduce the notion of semantic binder :
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Definition 3.4. A binder prefix β semantically binds a DP α if and only if:

1. α and β are coindexed
2. β c-commands α
3. there is no binder prefix β′ which is c-commanded by β and meets (1) and (2)

It is worth stressing the difference between syntactic and semantic binding of a
pronoun:

IP

DP1

every driver

VP

defended himself1

IP

DP1

every driver
β1 IP

t1 VP

defended himself1

Pronoun himself is syntactically bound in both parse trees, but it’s semantically
bound only in the second structure. This entails that in the first parse tree himself
is interpreted as a free variable, whose semantic content is provided by a variable
assignment supplied by the utterance context; in the second parse tree the pronoun
is interpreted as a bound variable in the sense of predicate logic.

3.3.2 Principles A, B (and C) revisited

The distinction between coreference and semantic binding was introduced with the
help of QDPs, which show more clearly the features and implications of variable
binding. However, there’s no reason to prevent a type e DP from acting as a
semantic binder too. Consider the following example:

(14) a. she1 knows her1 rights
b. she [ β1 [ knows her1 rights ] ]
c. [λx.x knows x’s rights](x1)

By applying Index Transfer to (14-a) read as (14-b) we get the bound-variable
reading (14-c) as its semantic interpretation. Reinhart claims in [52] that all pro-
nouns can be interpreted as bound variables, regardless of whether the antecedent
is a quantified DP or not, subject to the bound anaphora condition.

Reinhart’s approach to Binding Theory is based on the notion of semantic
binding in opposition to syntactic binding issued from the coreferential approach:

Semantic Binding: a DP α semantically binds a DP β if and only if α is the
sister of a binder prefix γ for β.

In (14-a) personal pronoun she semantically binds her if we assume the semantic
reading in (14-b). It is apparent from this definition that if α binds β this entails
that α c-commands β. Therefore c-command is relevant for the syntactic conditions
under which λ-predicates can be formed compositionally, but has no independent
role in defining binding as in the coreferential approach.
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The conclusion drawn by Reinhart is thus the following: all Binding Principles,
and thus Binding Theory as a whole, regard semantic binding only. This is a direct
consequence of Reinhart’s hypothesis that only semantic binding is represented
in the syntax. Coreference is a phenomenon taken care of at a different level of
description, namely pragmatics or discourse theory. On the basis of this approach
Binding Theory principles must be revised in the following way:

Principle A:
A reflexive pronoun must be semantically bound within its local domain.

Principle B:
A non-reflexive pronoun must be semantically free in its local domain.

Some phenomena that were previously accounted for by Condition C effects in
coreferential Binding Theory are now subsumed by an interface principle that will
be introduced in the next section.

(15) a. John likes himself
b. [λx.like(x, x)](john)

(16) a. John likes him
b. like(john, x)

(17) a. John thinks that Bill hates him
b. [λx.think(x,hate(bill, x))](john)
c. think(john,hate(bill, x))

In (15-a) principle A forces semantic binding between John and himself : the re-
sult is the logical form (15-b), which entails a bound-variable reading between the
denotations of the two DPs. In (16-a) principle B blocks semantic binding between
John and him. This forbids [λx.like(x, x)](john) as a possible semantic interpre-
tation for the sentence. If him cannot but be interpreted as a free pronoun, the
correct logical form is (16-b). In (17-a) principle B states that no semantic binding
can occur between Bill and him, which belong to the same local domain, while
nothing forbids semantic binding between John and him, which belong to differ-
ent domains. Therefore both logical forms (17-b) and (17-c) are suitable semantic
interpretations for (17-a).

Note that in (16-b) and (17-c) nothing prevents x from being mapped into
john: semantic binding (and therefore BT as a whole, Reinhart argues) is basically
about relations between variables, while nothing is said about the relations between
their values. If this does not seem disturbing for (17-c), it has the somewhat
odd effect of licensing [like(john, x)]x→john = like(john, john) as a possible
interpretation for (16-b). This is exactly Reinhart’s point: there are contexts in
which such kind of assignment is perfectly legal. It is the case of so-called “Oscar
sentences”, that is conversational contexts like (18), in which it is perfectly possible
that she and her have the same denotation:

(18) A: Is this speaker Zelda?
B: How can you doubt it? She praises her to the sky. No competing can-

didate would do that.
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By providing an example of context in which such kind of assignment is perfectly
acceptable, Reinhart makes a point in favor of the thesis that there is no true
grammatical compelling reason to forbid coreference between a pronoun and a
DP which locally c-commands it, but only to forbid a bound-variable reading be-
tween them. This is precisely the kind of phenomena that Binding Theory actually
governs, while it has nothing to say about the semantic content of DPs.

3.3.3 Reinhart’s Rule I

If we adopt Reinhart’s approach to the principles of Binding Theory, nothing allows
us to distinguish between (19-b) and (19-c) below as a semantic interpretation of
(19-a):

(19) a. John thinks he is sick
b. [λx.think(x, sick(x))](john)
c. [think(john, sick(x))]x→john

Logical form (19-b) corresponds to the bound-variable reading, while (19-c) to the
coreferential one. They are truth-conditionally indistinguishable and as far as we
know they are perfectly equivalent. According to Reinhart, this is not true, but she
must introduce an extra-grammatical principle on the basis of which establishing
the difference:

Rule I (also known as the Coreference Rule):
A DP α cannot corefer with a DP β if an indistinguishable interpretation can
be generated by (indexing and moving β and) replacing α with a variable
bound by the trace of β.

Simply stated, if for a given sentence we can generate two semantic interpreta-
tions which are truth-conditionally equivalent, but such that one involves seman-
tic binding and another coreferential mechanism, the bound-variable reading must
be preferred. By introducing this rule, we are forced to choose (19-b) as the cor-
rect semantic reading for (19-a). This is motivated by Reinhart by means of some
kind of “economy” principle. Semantic binding is an internal, purely grammatical
device by which a human speaker can achieve coreferential effects. It is thus the
preferred option when a speaker is in a situation like (19-a) as a semantic device
to convey the intended meaning. The empirical evidence that forces Reinhart to
introduce Rule I is more evident if we consider the following cases:

(20) a. John likes him
b. *[λx.like(x, x)](john)
c. like(john, x)

(21) a. John likes himself
b. [λx.like(x, x)](john)

We already know that Principle B forbids (20-b) as a possible interpretation for
(20-a), while (20-c) is perfectly acceptable. Variable x being a free variable, there
is no constraint whatsoever on the value it may take: suppose that for a given
assignment g : x 7→ john. Coreference rule implicitly states that this is not an
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acceptable semantic reading for (20-a), thus forbidding such kind of assignment. In-
deed, logical forms [like(john, x)]x→john and [λx.like(x, x)](john) are perfectly
equivalent from a truth-conditional perspective. This means that Rule I kicks in
and selects reading (20-b) which involves semantic binding. But this binding con-
figuration corresponds to sentence (21-a). Otherwise stated, if a speaker wanted
to convey the meaning like(john, john), he would choose the surface structure
(21-a) instead of (20-a).

The coreference rule is used by Reinhart to eliminate an important part of BT,
that is Principle C, which is actually made superfluous. Consider the sentences:

(22) a. *he1 likes John1

b. *he1 likes John1’s mother

They must be considered as ill-formed because we could replace John by a variable
semantically bound by he, in accordance with Rule I:

(23) a. John1 likes himself1
b. John1 likes his1 mother

Sentences (23-a) and (23-b) have the same truth-conditions as the corresponding
(22-a) and (22-b), but they avoid coreference in favor of semantic binding by means
of the reflexive predicate and thus, by Rule I, they are chosen by a human speaker
and the alternative ones must be ruled out. The obviative phenomena formerly
explained by an additional syntactic principle are thus subsumed by the more
general “pragmatic” principle conveyed by Rule I.

3.3.4 Summary of Reinhart’s Approach

Reinhart’s bound-variable interpretation of the principles of Binding Theory ad-
vocates a view in which BT has nothing to say about the relationship between
linguistic expressions and real world entities like in the classical coreferential ap-
proach. Instead, Binding Theory governs a purely formal and “grammatical” prop-
erty like semantic binding between DPs. Otherwise stated only semantic binding
is represented in the syntax, and thus ruled by Binding Theory; coreference is a
whole different phenomenon which is out of the reach of syntax and that must be
dealt with at a pragmatic/discourse theory level of analysis. Although semantic
binding can have coreference effects as a by-product, they must be kept conceptu-
ally distinct from what Reinhart calls “accidental coreference” effects, which are
basically due to the context of utterance of the sentence and that therefore lie
out of reach of grammar principles. In the language of logic, we may say that BT
defines structural constraints on the variables occurring in a formula, but not on
the values that they may take by means of assignment functions.
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3.4 Reinhart and Reuland’s “Reflexivity” Approach (1993)

Tanya Reinhart and Eric Reuland propose in [54] and [53] another perspective on
the traditional tenets of Binding Theory. The basic evidence their approach ac-
counts for is that local anaphors allow logophoric use, that means (roughly stated)
that in particular contexts they are used as free variables. Their analysis acknowl-
edges that a distinction is needed between logophoric processes and structural
binding relations. In order to do that they distinguish three domains of anaphors:
local, medium-distance, and logophoric. Binding Theory, from the point of view
of Reinhart and Reuland, only deals with the first two.

This approach advocates a return to a somewhat traditional analysis in terms
of reflexivization, as a property of predicates. The basic idea is that a reflexive
pronoun is used in the object position when the verb expresses a reflexive relation.
The focus of the theory is therefore on the nature of the relation expressed by the
verb. The semantic shift initiated in [50] is carried to the extreme consequences:
the structural notion of c-command definitely loses the central role it bears in the
classical Chomskian formulation of Binding Theory, and the focus of the theory is
not on coreference or semantic binding phenomena anymore, but on the reflexive
nature of predicates. Principles A and B do not define anymore constraints on the
distribution or denotation of pronouns (although such constraints result as by-
products of the theory), but are reformulated as conditions on reflexive predicates
and the morphosyntactic features that mark them as such.

3.4.1 Problems with the standard binding conditions

Traditional Principles A and B rely on a distinction perceived as fundamental
between anaphors and pronouns. The basic assumption is that there is a per-
fect complementarity in distributions between these two classes of DPs, which is
highlighted by their traditional formulation:

Principle A: an anaphor is bound in its local domain.
Principle B: a pronoun is free in its local domain.

Otherwise stated, a pronoun is not allowed in an environment allowing an anaphor.
This is confirmed in examples like:

(24) a. Max criticized himself / *him.
b. Max speaks with himself / *him.

But this is contradicted by examples like:

(25) a. Max saw a gun next to him/himself.
b. Lucie saw a picture of her/herself.

The basic observation to be made here is that examples in (24) and (25) differ in
their argument structure. In (24) the anaphor and its antecedent are coarguments,
while in (25) they are not. Reinhart and Reuland generalize this observation by
stating that pronouns are disallowed only when the pronoun and its antecedents
are coarguments. The environments where a pronoun must be free are much more
restricted than the environments where an anaphor can be bound. The use of
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anaphors in contexts like (25) is an instance of their logophoric use: the neat
separation of such kind of phenomena, which are ruled at a discourse theory level,
from those which are governed at the grammatical level, and which only are the
subject of Binding Theory, is one of the major achievements of this new approach.

3.4.2 The Basic Database

Anaphoric expressions are divided into pronouns or anaphors. What sets the for-
mer apart from the latter is a property called Referential Independence (R). Pro-
nouns enjoy +R property (which they share with full-DPs) and thus can be used
demonstratively, referring to some entity in the real world. Anaphors are referen-
tially defective (-R property) and therefore can’t: binding is the procedure which
assigns the content necessary for their referential interpretation.

Anaphors are further divided into long-distance anaphors (SE-anaphors: Dutch
zich, Norwegian seg, Italian sé, etc.) and local anaphors (SELF-anaphors: English
himself, Dutch zichself, Italian se stesso etc.). Although structurally identical to
pronouns, SE-anaphors differ from them in that they lack full specification of so-
called θ-features like number, gender, person: this is taken as the property which
accounts for their defective, and thus anaphoric, nature which they share with
SELF-anaphors. However, the two kinds of anaphors have a different status as far
as it concerns their Reflexivizing function: SELF-anaphors have the property of
making reflexive (i.e. imposing the identity on two arguments of) the predicate
they apply to, which SE-anaphors do not have. Both types of anaphors admit a
logophoric use.

The map of the properties is summarized by Reinhart and Reuland in the
following schema:

SELF SE Pronouns
Reflexivizing function + − −
Referential independence − − +

The fundamental claim of Reinhart and Reuland is that reflexivizing and refer-
ential functions of DPs are governed by distinct modules of linguistic knowledge,
which together capture the full distribution of local anaphora. What matters in
binding conditions is actually related to the Reflexivizing property of expressions,
whereas all aspects of their distribution which are sensitive to the R property
fall under Chain Theory. Binding Theory focusses on the grammatical function of
anaphors, and thus or their reflexivizing status.
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3.4.3 Reflexivity

A predicate denotes a reflexive relation if and only if two of its arguments are
identical, like in:

(26) λx.P (. . . , x, . . . , x, . . .)

Predicates of the form (26) are called reflexive predicates. One of the tenets of
Reflexivity approach is the basic observation that only reflexive pronouns make
a transitive predicate reflexive when they occur in argument position (this is the
meaning of the property +R associated only to SELF anaphors in the table in
section 3.4.2).

(27) a. Luciei adores herselfi
b. Lucie’si joke about herselfi

In (27-a) herself occurs as one of the arguments of predicate adores, thus making
it reflexive. In (27-b) we assume that herself is an argument of a 2-places predicate
joke, the other place being saturated by the author of the joke, therefore making
it a reflexive predicate too.

Note that the definition of reflexive predicate is given in terms of identity
of variables (i.e. identity of positions in the grid structure, or signature of the
predicate) bound by the same lambda operator, not of values of the variables. We
have already met this important distinction in section 3.3. Identity of variables
is encoded in the signature of the predicate and establishes a necessary identity
between the arguments that occur in those positions. Identity of values may be
an accidental phenomenon, just like in the sentence she praises her to the sky of
example (18) the two pronouns may refer to the same entity in the real world,
but there’s no necessary identity condition for the two arguments encoded in the
structure of the predicate praises. The reflexivizing function of reflexive pronouns
operates at the level of the signature, or the predicate’s grid, by identifying two
positions (i.e. variables), and not only their values.

SELF-anaphors form reflexive predicates only when they occur in co-argument
positions with other DPs. The following sentences are examples of situations in
which SELF-anaphors do not form reflexive predicates:

(28) a. Lucie saw a picture of heri/herselfi in the paper
b. Maxi saw a snake near himi/himselfi

Neither in (28-a) nor in (28-b) the reflexive occurs in argument position for the
predicate saw : in (28-a) the anaphor is embedded in the unary predicate picture,
in (28-b) within the predicate near. We recall that the idea behind Reflexivity
approach is that binding conditions only govern the reflexive use of anaphors. In
(28-a) and (28-b) the anaphors fail to make the predicate reflexive and thus no
Binding Theory principle operates on either of them: that’s the reason why in such
contexts anaphors and pronouns are basically interchangeable (modulo agreement
features). This shift challenges the basic assumption of traditional Binding Theory
according to which distribution of SELF-anaphors is fully governed by condition
A, but it accounts for the large empirical evidence which proves that logophoric
anaphora is quite common also with SELF-anaphors.
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3.4.4 Reflexive Marking

Reinhart and Reuland’s Reflexivity approach to Binding Theory is founded on the
assumption that a universal property of natural language is that reflexivity of a
predicate must be explicitly licensed. A predicate is reflexive, i.e. it denotes the
relation in (26), only if it is marked as reflexive at a morphosyntactic level.

Predicates can be marked as reflexive intrinsically or extrinsically. Intrinsically
reflexive-marked predicates have their grid specified as reflexive in the lexicon and
they can be used only reflexively. Intrinsic reflexivity may or may not be mor-
phologically marked as such. Reinhart and Reuland claim that for example clitics
(Italian si, French se) must be considered as morphological markers of intrinsic
reflexivity instead of as SELF-anaphors. Neither in English nor in languages with
clitics are found pronouns which saturate an intrinsically reflexive predicate.

Extrinsically marked predicates are transitive predicates which get reflexive-
marked whenever a SELF-anaphor occurs at one of their grid positions. The main
difference with SE-anaphors is that the latter lack this reflexivizing function, as
already stated in section 3.4.2. This notion is generalized by the following defini-
tion:

Reflexive-marking
A predicate P is reflexive-marked if and only if either P is intrinsically reflexive
or one of P’s arguments is a SELF-anaphor.

In the following sentences the occurrence of a SELF-anaphor in argument position
marks the predicate as reflexive:

(29) a. Luciei adores herselfi
b. Lucie’si joke about herselfi

By focussing on the grammatical function of anaphors, the domains of anaphors
occurrence can be reduced to just two. The ancient notion of “local domain”
now corresponds to the domain of reflexivity, where a SELF-anaphor mandatorily
reflexivizes a predicate, and where both pronouns and SE-anaphors are excluded.
This is the domain of restated Principles A and B.

3.4.5 Conditions A and B

The revised versions of principles A and B proposed by Reinhart and Reuland
establish a bidirectional relation between reflexive marking and reflexivity of a
predicate.

Condition B: A reflexive predicate is reflexive-marked.

(30) a. *John1 likes him1.
b. John1 likes himself1.
c. *John1/*he1 likes John1.
d. John1 thinks that Mary likes him1.
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Coindexing between the two DPs in co-argument positions (i.e. they’re arguments
of the same predicate) in (30-a), (30-b) and (30-c) implies that criticize is a re-
flexive predicate in any of the three sentences. But only in (30-b) the presence of
a SELF-anaphor in argument position actually reflexive-marks it and thus makes
it compliant with the Condition B just introduced. The same holds for (30-c):
neither criticize is an intrinsically reflexive predicate, nor any of its arguments is
marked as a SELF-anaphor. So Condition B is not met and the sentence (with the
given indexing) rejected. In (30-d) no predicate is reflexive because the coindexed
DPs are arguments of different predicates: therefore Condition B does not apply
and the sentence with the given indexing is accepted.

It is important to highlight that this new perspective on Condition B makes no
use of configurational relations like binding, c-command, or argument hierarchy. It
is strictly a condition on reflexive predicates, regardless of their internal structure.

Pushing further the idea that Binding Theory governs predicate reflexivity
instead of semantic binding or coreference between DPs, Reinhart and Reuland
introduce a new condition which establishes a relationship between reflexivity and
reflexive-marking in the inverse direction:

Condition A: A reflexive-marked predicate is reflexive.

Condition A (a) states that a predicate which is reflexively marked must be
interpreted as reflexive and (b) it does not say anything about anaphors (SELF-
marked linguistic elements) which do not occur in an argument position and thus
that do not function as reflexive markers. Condition A is therefore twofold: on one
hand it governs the interpretation process of reflexively marked predicates, on the
other it “says nothing” about anaphors that do not occupy a co-argument position,
which therefore do not mark as reflexive a predicate and are made available to be
used deictically or logophorically. This is what enables Condition A to successfully
account for contrasts like the following:

(31) a. Max boasted that the queen invited Lucie and himself for a drink
b. *Max boasted that the queen invited himself for a drink

Classical Binding Theory struggled against such kind of evidence, in which an
anaphor appears to occur free in (31-a), while is blocked in (31-b), thus violating
the assumption that the use of SELF-anaphors was completely ruled by princi-
ple A. According to the Reflexivity approach, what discriminated the use of the
anaphor in (31-a) from the use in (31-b) is that in the latter the SELF-anaphor is
the argument of the predicate invited. Therefore it reflexive-marks the predicate,
which, according to Condition A, must be reflexive. But this entails a reading
in which the queen should be identified with himself, which is impossible due to
agreement features mismatch. By contrast in (31-a) the anaphor is embedded in
the argument of the predicate: the argument of invite is Lucie and himself which
is not a reflexive argument. So no reflexive-marking occurs for the predicate invite,
Condition A does not apply and the anaphor can occur free (i.e. logophorically).
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3.4.6 Syntactic and Semantic Predicates

The basic version of Conditions A and B in the Reflexivity approach is challenged
by contrasts like the following:

(32) a. The queen1 invited both Max and herself1 to our party.
b. *The queen1 invited both Max and her1 to our party.

The predicate in (32-a) is not reflexive-marked (the SELF-anaphor is embedded
into the argument Max and herself ), thus Condition A does not apply and the
SELF-anaphor herself is free to refer logophorically to the queen. In (32-b) the
sentence with the queen and her coindexed is not acceptable. There is no reflexive
marked predicate, so Condition A does not apply. As for Condition B (a reflexive
predicate must be reflexive-marked), in order to block this sentence we must find a
predicate which is reflexive and not reflexive-marked. This is not apparent at first
sight, but Reinhart and Reuland solve this puzzle by interpreting the sentence in
the following way:

(33) [λx.(invite(x,max) ∧ invite(x, x))](the queen)

In (32-a) one of the arguments of the new semantic predicate invite is appropri-
ately realized in the syntax as a SELF-anaphor; hence, the translation yielding a
reflexive predicate is allowed. But in (32-b) no argument is a SELF-anaphor in the
syntax, so the reflexive translation is disallowed and the derivation is filtered out.
Therefore, to capture cases like (32-b), Reinhart and Reuland are forced to stipu-
late a distinction between syntactic and semantic predicates. As we have just seen,
Condition B must be allowed to operate on semantic predicates, i.e. at the stage
of translating syntactic predicates into semantic ones: Condition B thus describes
a condition on semantic reflexivization. The same does not hold for condition A:

(34) a. Max1 said that the queen invited both Lucie and himself1 for tea.
b. The queen invited both Max and myself for tea.

If, as in the case of Condition B, Condition A was a condition on reflexive marked-
ness of semantic predicates, in both (34-a) and (34-b) the anaphors would mark
as reflexive the instance of the semantic predicate invite of which they occur as
arguments, thus incorrectly blocking them. It follows that Condition A is a condi-
tion on the syntactic marking of predicates, and thus operates at a syntactic level.
Reinhart and Reuland are thus forced to introduce a somewhat artificial distinc-
tion between syntactic and semantic predicates, and to adapt the formulation of
Conditions A and B to them:

Syntactic predicate: the syntactic predicate formed by a head P is (i) P, (ii) all
its syntactic arguments, and (iii) an external argument of P (the subject).

Semantic predicate: the semantic predicate formed by P is (i) P and (ii) all its
arguments at the relevant semantic level.

Conditions A and B are modified to take into account this fundamental distinction:

Condition A: a reflexive-marked syntactic predicate is reflexive
Condition B: a reflexive semantic predicate is reflexive-marked
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3.4.7 Chain Condition

In chapter 2 we have seen that if we assume a syntactic vision in which constituents
move from one position to another (e.g. in the case of Quantifier Raising), we also
make the assumption that they leave in the position out of which they move a
(phonetically empty) trace. In the recent generative tradition in syntax a moved
constituent and its trace are said to form a chain. More explicitly, a moved con-
stituent and its trace are two different links of a movement chain. The moved
constituent is said to be the head of the associated movement chain, and the trace
the foot of the chain. The general convention used in the literature is to mark the
binding relation between a trace and its antecedent by attaching identical indexes
to them. The definition given by Chomsky in [13] goes as follows:

Generalized chain definition:
C = (α1, . . . , αn) is a chain if and only if C is the maximal sequence such that
1. there is an index i such that for all j, 1 ≤ j ≤ n, αj carries that index;
2. for all j, 1 ≤ j < n, αj governs αj+1.

Simply stated, a chain is a sequence of constituents such that each link of the
chain c-commands the following one. Reinhart and Reuland introduce a condition
on chains to account for some hierarchical effects that cannot be explained by
Reflexivity conditions alone. In particular, since the particular view of Binding
Theory developed in Reflexivity acknowledges no role to c-command, there’s no
way to account for ill-formedness of a sentence like *himself likes John. In order
to account for such cases, the following condition is introduced:

General condition on A-chains
A maximal A-chain (α1, . . . , αn) contains exactly one link αi that is both +R
and case-marked.

We know from section 3.4.2 that an item which enjoys the +R property is a
referential element. With respect to the minimal database we’re considering here,
+R constituents are only full-DPs or non-reflexive pronouns used deictically. What
matters to our purpose of a computational treatment of Binding Theory is the fact
that Chain Condition accounts for some hierarchical effects previously taken care
of by c-command requirements. Consider the following examples:

(35) a. He1 criticized himself1
b. *Himself1 criticized him1

Both (35-a) and (35-b) equally fulfil both Condition A and Condition B. So there’s
no way to account for the ill-formedness of (35-b) by means of a violation of one
of the conditions. By definition the A-chain domain of a given DP is a subset of
its c-command domain. It follows that the Chain Condition imposes hierarchical
requirements on the relations of referential dependency within the A-chain. The
referentially independent (+R) element of the chain must be its head; that is, it
must c-command the referentially dependent (-R) element. In (35-a) this require-
ment is fulfilled, while in (35-b) it is not because the chain is headed by himself
(-R element) and tailed by him (+R element).
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3.4.8 Summary on Reflexivity approach

Conditions A and B taken together establish a correspondence between (semantic)
reflexivity and (morpho-)syntactic reflexive-markedness. The central notions that
found this approach to Binding Theory are those of argument and (marked) pred-
icate. Anaphors are interesting only in their reflexive-marking features, but only
when they occupy an argument position. Whenever they occur in a non-argument
position, their behavior is predicted not to differ significantly from the one of
another pronoun.

Classical binding theory was focussed on the strategic distinction between
reflexive pronouns, non-reflexive pronouns and full-DPs. This new perspective
stresses the role of argument positions, in which case an anaphor has the power to
license reflexivity for a predicate, but also states that Binding Theory has nothing
to say about anaphors occurring in non-argument positions, which are then free to
assume logophoric or deictic uses, as correctly predicted by this approach. What
the traditional view of BT struggled against due to empirical evidence of anaphors
not occurring in traditional bound-variable contexts is one of the strengths of this
approach.

3.5 On Reconstruction

3.5.1 Movement

Movement is the operation by which a linguistic constituent, or a set of features, is
moved from one position (base) in a phrase-structure structure to another (land-
ing site). Quantifier Raising of a Quantifier Phrase in object position in (36-a)
and (36-b), and Wh-movement in (36-c) and (36-d) are examples of movement
phenomena.

(36) a. John offended [QP every linguist]1
b. [QP every linguist ]

1
John offended t1

c. You can speak [DP which languages]1?
d. [DP Which languages]1 can you speak t1?

As shown in the examples above, a constituent which moves higher up in the
syntactic structure leaves behind in the position out of which it moves an empty
category, that is a trace of the previous constituent, which has exactly its same
grammatical features but no phonetic content. The moved constituent is said to
be the antecedent of its trace, and the antecedent of an empty trace is said to bind
the trace. Using the relevant terminology introduced in section 3.4.7, a moved
constituent and its trace together form a (movement) chain, and the moved con-
stituent and its empty trace are said to be two links of the relevant movement
chain. Just like in Binding Theory, the general convention used in the literature
on trace theory is to mark the binding relation between a trace and its antecedent
by attaching identical indexes to them.

We are not going to delve deeper into the details of trace theory: we’ll only say
that there is both theoretical and empirical evidence to support postulating the
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existence of such phonetically empty categories. What is more interesting to our
computational treatment of Binding Theory is that from a theory-internal point of
view, trace theory enables us to explain otherwise puzzling properties of movement
operations. The moved constituent always moves from a lower to a higher position
in any given structure, and never from a higher to a lower one. Trace theory,
together with the c-command condition on binding (see section 3.3.1), provides
a natural explanation for the fact that movement is always upwards. If a moved
constituent has to bind its trace, and if a bound constituent has to be c-commanded
by its antecedent, it follows that a moved constituent must always move into a
position where it c-commands (and thus it occurs higher up in the structure than)
its trace: hence, the movement must always be in the upwards direction.

Two classes of movements are identified. Passivization and raising are different
manifestations of a single argument-movement operation which has the effect of
moving a constituent from one argument position into another. Such kind of move-
ments globally go under the label of A-movements, because they involve movement
to an argument position. On a complementary fashion, operations which move
maximal projections into a non-subject position are instances of A-movements,
where the bar is given the typical linguistic interpretation of negation, meaning
that they involve movements to non-argument positions.

3.5.2 Movement and Reconstruction

The first idea that led to the introduction of the notion of overt movement was
that under particular circumstances a linguistic item is interpreted at a different
position than where it is overtly (i.e. phonetically) realized. This idea has been
challenged by evidence that proved, since the 1960s, that although some interpre-
tative properties of a moved constituents (like those having to do with predicate-
argument relations) are determined at the base position, other properties can be
determined at the landing site (in particular scope and variable binding, see [10]
for details). Under the pressure of such evidence the view of grammar architecture
evolved towards a perspective in which overt movement affects meaning as well as
sound. Quantifier Raising, as a movement operation invisible to phonology, was
proposed as an account for scopal ambiguities within this framework. Structures
involving movement were seen as feeding both the articulatory and the conceptual
system (both LF and PF in the generative terminology). In the articulatory system
the base position is not taken into account, while in the conceptual system both
base and landing site are taken into account, and the interpretative properties
appeared to be distributed between them.

A further step in the evolution of the notion of movement must be made to
account for the fact that it seems that the effects of movement on scope and
variable binding are not obligatorily present. It is now widely acknowledged that
in some cases the semantic effects of movement are “undone” in a process known
as scope reconstruction.

In order to account for facts related to scope reconstruction phenomena, two
distinct approaches have been proposed. The first assumes that scope reconstruc-
tion is the outcome of semantic procedures. Within this approach, interpretative
principles can deal with movement in at least two ways: one in which scope is
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determined in the base position, the other in which scope is determined at the
landing site. The second approach assumes that scope reconstruction is already
determined in the syntax, or, otherwise stated, that the structures of LF, that
serve as input to the semantic interpretation, determine whether or not there is
scope reconstruction.

Fox argues in [19] that scope reconstruction is syntactic. This approach, in
addition to having been proved linguistically sound, is also practically useful for
a real world natural language understanding system. Most probably, in any con-
text in which semantic computations are needed, most of available information
will be of a syntactic rather than semantic nature. In particular, this means that
scope reconstruction should be represented structurally, i.e. that there is syntactic
reconstruction and that Binding Theory applies at the level of Logical Form.

3.5.3 Semantic versus Syntactic Accounts of Scope Reconstruction

It is well known that scope can be significantly affected by overt movement. The
following sentences (taken from [19]) provide an example of such interaction:

(37) a. John seems to a teacher [t to be likely to solve every one of these
problems]

b. [Every one of these problems] seems to a teacher [t to be likely t to
be solved t by John].

In (37-b) the embedded quantificational object is overtly displaced, and the result
of this displacement allows it to receive wide scope relative to another scope-
bearing element (the existential quantifier a teacher). The overall effect is that two
readings are available for sentence (37-b): one in which there is a single teacher, and
another in which for every problem a different teacher thinks that it can be solved.
This second scope relation would have been impossible without overt movement,
as demonstrated in (37-a): in this case only one reading is available, that is the
one in which the existential quantifier has scope over the universal one (there is a
single teacher for every problem).

More interestingly to our computational purposes, the same point can be made
with respect to variable binding, which the following examples prove to be deeply
affected by movement phenomena:

(38) a. *The teacher is expected by his1 mother [ t to encourage every boy1]
b. Every boy1 is expected by his1 mother [ t to be encouraged by the

teacher].

In (38-a) the universal quantifier cannot bind a variable that is outside of its scope,
while (38-b) overt movement gives the quantifier wider scope and allows it to bind
the variable.

Experimental data prove that overt movement does not necessarily affect scope.
In the following constructions scope may be construed in the base position or in
any of the intermediate landing sites.

(39) a. [At least one soldier]1 seems to Napoleon [t1 to be likely to die in
every battle].
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b. [At least one soldier]1 seems to himself1 [t1 to be likely to die in every
battle].

c. [At least one soldier]1 seems to his1 commanders [t1 to be likely to
die in every battle].

(40) a. One soldier is expected by Napoleon [t to die in every battle].
b. One soldier1 is expected by his commander1 [t1 to die in every battle].

In the (a) sentences the universal quantifier in the embedded clause can take scope
over the matrix subject, because readings in which soldiers vary with the battles
appear to be compatible with those sentences. On the other hand another reading
is available, the one in which the matrix subject takes scope over the existen-
tial quantifier, thus giving rise to the implausible interpretation which asserts the
existence of a single soldier who is expected to die in every battle.

Such kind of ambiguity cannot be accounted for by the availability of long-
distance Quantifier Raising. The universal quantifier can move by QR over the
existential quantifier, and we could think that it’s the optionality of this move-
ment which is the cause of ambiguity, just like it happens in sentences (37-a) and
(37-b). But the very same argument could be used to account for ambiguity in the
(39-b) and (39-c) sentences too: however, those sentences are not ambiguous. Their
meaning is restricted to the implausible interpretation that results from assigning
wide scope to the existential quantifier, and thus that there is a single soldier who
dies in every battle.

While the hypothesis that QR is the source of ambiguity for (a) sentences
leaves this restriction for (b) and (c) sentences unexplained, the assumption that
scope reconstruction is the real phenomenon involved accounts for it straightfor-
wardly. Scope reconstruction would imply that the existentially quantified expres-
sion (one soldier, at least one soldier) can be interpreted back on t1 positions. But
in sentences (39-b) and (39-c), the existential quantifier must bind a variable in
a position outside its scope as determined by scope reconstruction, hence scope
reconstruction is not a viable option for them. This problem does not exist for the
(a) sentences, and thus we must assume that the interpretation with the universal
quantifier bearing scope over the existential of the (39-a) sentence stems from a
combination of scope reconstruction and short-distance QR, which make both of
the readings available. The matrix subject receives scope in the position of t and
the universal quantifier receives scope above this position (via QR).

Syntactic Accounts of Scope Reconstruction

If we adopt a syntactic approach to scope reconstruction, an ambiguous sentence
like (39-a) comes as already disambiguated at the stage of LF, that is, of the inter-
pretation process. In (41-a) the disambiguation is implemented with the Quantifier
Phrase (QP) being in its surface position and binding a variable in the trace po-
sition. Under the second disambiguation in (41-b), the QP is on the intermediate
trace position. The syntactic disambiguation procedures yields the following two
LF structures:

(41) a. [someone from New York]1 is very likely [t1 to win the lottery]
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b. (it) is very likely [[someone from New York] to win the lottery]

This syntactic reconstruction process can be implemented in several different ways
(like Quantifier Lowering from [42], and the copy theory of movement in [14]).
Beyond implementation details, the important idea is that all syntactic accounts
share the assumption that scope reconstruction involves an LF structure in which
the Quantifier Phrase is literally in the reconstructed position.

Semantic Accounts of Scope Reconstruction

Semantic approaches assume that syntactic reconstruction is not necessary for
scope reconstruction: they assume that there is a purely semantic mechanism that
yields the two interpretations of sentences such as (39-a) from a structure with no
syntactic reconstruction such as (41-a).

The semantic nature of such mechanisms is developed within frameworks that
assume that a semantic type is associated with each syntactic expression. Within
such frameworks, another assumption is that the sister of a moved constituent
is interpreted as a function that can be expressed with lambda abstraction over
a variable in the trace position (see our description of QR mechanism in section
2.2.7). Such a variable is assumed to range over individuals (and thus being inter-
preted as a variable of type e), or over generalized quantifiers (that is, as a variable
of type (e → t) → t). The two options are presented in the following sentences,
where x is supposed to range over individuals, and Q over generalized quantifiers:

(42) a. [Someone from New York] λx (is very likely [x to win the lottery])
b. [Someone from New York] λQ (is very likely [Q to win the lottery])

In (42-a) the variable x is of type e, and the sister of the moved QP is the result
of a lambda abstraction over the variable of the trace which yields a function from
individual to truth values (that is a predicate, semantic type e → t), and thus QP
(type (e → t) → t) takes its sister as its argument. The result is an interpretation
in which the existential quantifier (someone) has scope over the modal verb (to
be likely to). In (42-b) the sister of the quantifier is interpreted as a function from
generalized quantifiers to truth values (type ((e → t) → t) → t). In this case the
QP is the argument and its sister the functor, and the resulting interpretation is
one in which the modal verb has scope over the existential quantifier.

3.5.4 Principle C, Syntactic and Semantic Accounts

Danny Fox in [19] grounds his argument on the syntactic nature of scope recon-
struction on a careful use of Principle C from Binding Theory. In the hypothesis
that Condition C is sensitive to LF structures, if we consider the following scheme,
where linear precedence stands for the c-command relation:

(43) [QP . . . expression1 . . . ]
2

. . . pronoun1 . . . t2

we can formulate the following prediction:

(44) Scope reconstruction feeds Condition C : scope reconstruction should be
impossible in the structural configuration in (43).
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Reconstruction would imply the Quantifier Phrase to be semantically interpreted
in position t2, but in that case the r-expression will be bound by a pronoun, and
in the hypothesis that Condition C apply to LF structures, that would entail a
violation of Principle C of Binding Theory.

In order for this prediction to follow under the semantic account of scope
reconstruction, we’d be forced to assume that Condition C makes reference to the
semantic type of traces and that the LF structure in (43) is ruled out if and only
if the semantic type of the trace is (e → t) → t. On the other hand a syntactic
account of scope reconstruction does not ask for such kind of stipulation. Condition
C receives the definition based on constructions without movement. Under the
assumption that an interpretative principle such as Binding Theory is sensitive
to LF structures, (44) follows. Danny Fox in [19] provides substantial evidence
that prediction (44) holds: this advocates both for the syntactic account and the
assumption that Condition C applies at LF.

Further predictions can be drawn from statement (44). With respect to con-
figuration (43), QP is obliged to take scope over all of the scope-bearing elements
c-commanded by the pronoun. On the other hand, it is not obliged to take scope
over the scope-bearing elements that c-command the pronoun.

(45) Predictions made by (44)

a. In (46) QP must take scope over the scope-bearing element SB1.
b. In (47) QP need not take scope over the scope-bearing elementSB2.

(46) [QP . . . r-expression1 . . . ]2 . . . pronoun1 . . . SB1 . . . t2

(47) [QP . . . r-expression1 . . . ]2 . . . SB2 . . . pronoun1 . . . t2

The latter claim depends on the assumption, largely uncontroversial, that there is
a position for reconstruction between SB2 and pronoun1.

3.5.5 Reconstruction and Binding Theory

Reconstruction plays a central role in linguistic theory and displays important
interactions with binding issues that need to be addressed. In this section we show
that our integrated algorithmic approach interacts quite naturally with the current
view on scope reconstruction issues.

The bottom line of [19] is that Binding Theory only applies at the LF level. This
translate into an architectural principle of division of labor between the syntactic
and the semantic level that we would like to keep in our system. Fox’s conclusions
underpin with linguistic arguments this computational goal. He presents evidence
that the predictions of Condition C come out right only if we assume that this
condition (and thus of Binding Theory as a whole) applies to the structures that
are interpreted. In order to do that he needs to account for those cases in which
there seems to be evidence that Condition C applies at S-structure, like in the
following examples (taken from [19]):

(48) a. *You bought him1 every picture that John1 liked.
b. *He1 bought you every picture that John1 liked

(49) a. [ [ Which picture that John1 likes ] [ did you buy him1 t ] ]?
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b. [ [ Which picture that John1 likes ] [ did he1 buy you t ] ] ?

(50) a. [[Every picture that John1 liked] [I bought him1 t]].
b. [[Every picture that John1 liked] [he1 bought you t]].

We have already seen that in order to account for the semantics of sentences
with Quantifier Phrases in object position, we must postulate a covert movement,
that is Quantifier Raising of the QP. So, under classical assumptions about the
nature of covert QR, the LF structures of the sentences in (48) are those in (50).
With respect to condition C, these structures are identical to the S-structures rep-
resentations in (49). How does it come that different S-structures with equivalent
LF forms allow different coindexings, those in (48) being wrong and those in (49)
being correct? At first sight, if BT principles like condition C applied only at LF,
there would be no obvious way of accounting for the contrast without accepting
the hypothesis that BT applies at S-structures as well.

Chomsky provides a way of explaining the contrast without giving up to the
assumption that Condition C applies only at LF forms and not at S-structures as
well. He suggests that A movement always leaves a copy of the moved constituent,
and that this copy under certain circumstances yields a Condition C effect, even if
Condition C applies only at the output of the movement. So the true result of QR
for sentences in (48) is quite different from (50). In particular, it still has a copy of
the moved constituent at the position of the trace, and it is the r-expression within
this copy that yield a violation of condition C that makes the sentence incorrect.
So the true LF forms issued from QR for sentences in (48) are

(51) a. [[Every picture that John1 liked] [I bought him1 [every picture that
John1 liked]]].

b. [[Every picture that John1 liked] [he1 bought you [every picture that
John liked]]].

For sentences in (49) Chomsky claims that A movement applies prior to the in-
sertion of the relative clause that contains the r-expression. Therefore in (49) the
copy of the moved constituent does not yield a Condition C effect. So in the light
of Chomsky’s copy theory just presented, a possible derivation for sentence which
picture that John1 liked did you buy him t1 is:

(52) a. did you buy him1 [which picture]?
b. [[which picture] [did you buy him1 [which picture]]]?
c. [[which picture [that John1 liked]] [did you buy him1 [which picture]]]?

The difference between overt and covert movement under this proposal is related
not to their respective ordering relative to binding theory but to their respective
ordering relative to lexical insertion. Covert movement is never followed by lexical
insertion and therefore never appears to circumvent a Condition C violation.

There are cases of overt movement similar to the cases of covert movement in
that they are unable to circumvent a condition C violation like in the following
contrast:

(53) a. [ Which argument [AP that John1 made]] did he1 believe t?
b. *[ Which argument [CP that John1 is a genius ]] did he1 believe t?
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Chomsky accounts for this contrast on the basis of a distinction between the timing
of adjunct insertion, like in (53-a), and the timing of complement insertion, like
in (53-b). According to this distinction, complements, in contrast to adjuncts,
must be inserted prior to movement. From this follows that complements, such
as the italicized phrase in (53-b), in contrast to adjuncts, such as the relative
clause in (53-a), cannot condition C via overt A-movement. Basically, we adhere
to Chomsky’s proposal in [14] to account for the contrast without the assumption
that condition C applies at S-structure.

3.6 Computational Perspectives on Binding Theory

Binding Theory analyzes from a purely theoretical standpoint a class of problems
which has considerable applicative interest. The anaphora (or coreference) resolu-
tion problem (see section 1.2.1) is still one of the toughest and most strategic task
that modern natural language understanding systems must tackle. Oddly enough,
very little interaction has taken place between these two domains: the research
on computational approaches to coreference resolution is mostly committed to
knowledge-poor, statistical-heuristic approaches (which as such make very little
or no use of linguistic insights), and the Binding Theory community is mostly
forgetful of computational, not to mention applicative, issues.

In the present section we shortly review the main results stemmed from what
has been proved to be a fruitful interaction between these two domains. On one
hand the few “Binding Theory aware” algorithms for coreference resolution (sec-
tions 3.6.1, 3.6.2, 3.6.4) have proved to perform very well with respect to heuristic
approaches in spite of their relative simplicity. On the other hand mathematical
tools issued from theoretical research on computation such as combinatory and
complexity analysis (sections 3.6.5, 3.6.6) have shed new light on the traditional
issues of Binding Theory.

3.6.1 Hobbs’ Algorithm (1978)

One of the first (and best) methods to tackle the anaphora resolution problem from
a linguistically aware point of view is Hobbs’ algorithm (see [27], [28]). Strictly
speaking Hobbs’ algorithm does not deal with Binding Theory; however, it repre-
sents one of the first accomplished efforts made in the field of Natural Language
Processing to take seriously linguistics in designing effective algorithms to perform
anaphora resolution for real-world tasks. Hobbs’ algorithm is based on various syn-
tactic constraints on pronominalisation which are used to search a parse tree. The
search is done in an optimal order in such a way that the DP upon which it termi-
nates is regarded as the probable antecedent of the pronoun at which the algorithm
starts.

Hobbs’ algorithm searches parse trees looking for possible antecedents of a
pronoun. The overall architecture involves starting at the DP immediately dom-
inating the pronoun and then searching the tree in a specified order which tries
to maximizes chances of finding the correct antecedents, and looking for the first
match in gender and number. The algorithm operates as follows:
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1. begin at the DP immediately dominating the pronoun;
2. go up the tree to the first DP or IP encountered: call this node X , and the

path to reach it, p;
3. traverse all branches below node X and to left of path p in a left-to-right,

breadth-first fashion, proposing as the possible antecedent any DP node en-
countered which has a DP or IP between it and X ;

4. if X is the highest IP node in sentence, search previous trees, in order of re-
cency, left-to-right, breadth-first; when a DP node is encountered it is proposed
as an antecedent. If X is not the highest IP node in the sentence, continue to
step 5;

5. from node X , go up to first DP or IP node encountered, call this X , and the
path to it p;

6. if X is a DP node, and p does not pass through the Nominal Node that X
immediately dominates, propose X as the antecedent;

7. search below X , to left of p, left-to-right, breadth-first, proposing any DP
encountered as the antecedent;

8. if X is an IP node, search below X to right of p, left-to-right, breadth-first,
but not going through any DP or IP, proposing DP encountered;

9. Go to Step 4.

Intuitively, when a pronoun is encountered, the algorithm (step 2) moves up to the
nearest S or DP node (according to the rough approximation of “local domain” that
we anticipated in section 3.2.2) that dominates the pronoun and (step 3) searches
to the left of the pronoun for all DP nodes that are dominated by an intervening
DP node to propose as antecedents. The algorithm then (step 5) proceeds up
to the next DP or S node and (step 6) searches to the left of the pronoun for
any DP node to propose as antecedent. At this level, (step 7) a search is also
carried out to the right for DP nodes to be proposed as antecedents. This will
handle cases of backwards pronominalization. However, this portion of the search
is bounded; it does not seek antecedents below any DP or S nodes encountered
(step 8). The search for c-commanding antecedents and antecedents for backwards
pronominalization (step 9) continues in this fashion until the top S is reached. At
this point, (step 4) preceding utterances in the discourse are searched, going from
most recent to least recent. Each tree is searched in a left-to-right, breadth-first
manner for DPs to propose as antecedents.

In spite of its simplicity and the rough approximation of the traditional version
of Binding Theory, Hobbs reports an accuracy of 88.3% on one hundred examples
taken from three different texts.

3.6.2 Ingria and Stallard (1989)

In their 1989 paper [29], Ingria and Stallard present an algorithm for handling
bound anaphora, disjoint reference, and pronominal reference. Their approach is
inspired by the works of Lasnik [37] and the “indexing scheme” of Chomsky [11],
from which they draw the idea that syntax is responsible for assigning possi-
ble antecedents to anaphors (Principle A) and impossible antecedents to pronouns
(Principle B). The algorithm is augmented with Tables of Coreference as those
introduced by Jackendoff in [30]. The algorithm was implemented as part of a
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real-world language understanding system, the BBN Spoken Language System
(see [6]).

The algorithm applies to a completed parse tree issued from a standard genera-
tive analysis and traverses it in a left-to right, depth-first manner. The local domain
for the node being processed is defined as the most immediately dominating finite
clause (S or IP, according to different denotations in generative tradition) node or
DP node (when minimality has been induced by the presence of a possessive). With
respect to local domain “external” and “internal” nodes are defined: internal nodes
are dominated by the current minimal domain node; external nodes c-command
the current minimal domain node. The result of the core syntactic phase of the
algorithm is then passed to a semantic interpretation component: this includes a
first “structural semantics” phase (corresponding to the formal semantics intro-
duced in chapter 2) whose output is an expression in a higher-order intensional
logic; and then a “lexical semantics” phase whose output is a (possibly empty)
set of expressions of another higher-order intensional logic which implements a
knowledge representation language.

Essentially, the algorithm passes each node all the nodes by which it is c-
commanded. These nodes are subdivided into two sets, those that are internal to
the current minimal domain and those that are external. As each node is processed,
a subroutine is called that dispatches on the category of the node and performs any
actions that are appropriate. It is this subroutine that implements the pronominal
reference mechanism properly.

Ingria and Stallard algorithm differs from Hobbs’ under several important re-
spects. The latter handles both intra-sentential and extra-sentential pronominal
reference relations, while the former is only intended to handle intra-sentential
cases. Ingria and Stallard’s algorithm is based on a single-pass, depth-first, ex-
haustive traversal of the parse tree, while Hobbs’ first walks down the tree, then
up, and then back down and is not guaranteed to be exhaustive.

3.6.3 Lappin & Leass (1994)

One of the most advanced efforts to take advantage of linguistic insights to devise
an algorithm for coreference resolution is presented by Lappin and Leass in their
1994 paper [36]. Their Resolution of Anaphora Procedure (RAP) contains the
following main components:

• an intrasentential syntactic filter for ruling out anaphoric dependence of a
pronoun on a DP on syntactic grounds;

• a morphological filter for ruling out anaphoric dependence of a pronoun on an
DP due to non-agreement of person, number, or gender features;

• a procedure for identifying semantically empty pronouns;
• an anaphor binding algorithm for identifying the possible antecedent binder of

a lexical anaphor (reciprocal or reflexive pronoun) within the same sentence;
• a procedure for assigning values to several salience parameters (grammatical

role, parallelism of grammatical roles, frequency of mention, proximity, and
sentence recency) for a DP. This procedure employs a grammatical role hierar-
chy according to which the evaluation rules assign higher salience weights to (i)
subject over non-subject DPs, (ii) direct objects over other complements, (iii)
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arguments of a verb over adjuncts and objects of prepositional phrase (PP)
adjuncts of the verb, and (iv) head nouns over complements of head nouns;

• a procedure for identifying anaphorically linked DPs as an equivalence class
for which a global salience value is computed as the sum of the salience values
of its elements;

• a decision procedure for selecting the preferred element of a list of antecedent
candidates for a pronoun.

What is most interesting to our purposes are the syntactic filter and the
anaphor binding component.

The filter consists of six conditions for DP-pronoun non-coreference within a
sentence. The agreement features of an DP are its number, person, and gender
features. A phrase P is said to be in the argument domain of a phrase N if and
only if P and N are both arguments of the same head. P is said to be in the
adjunct domain of N if and only if N is an argument of a head H, P is the object of
a preposition PREP, and PREP is an adjunct of H. P is in the DP domain of N if
and only if N is the determiner of a noun Q and (i) P is an argument of Q, or (ii)
P is the object of a preposition PREP and PREP is an adjunct of Q. A phrase P
is contained in a phrase Q if and only if (i) P is either an argument or an adjunct
of Q, i.e., P is immediately contained in Q, or (ii) P is immediately contained in
some phrase R, and R is contained in Q.

Once introduced the basic terminology of Lappin and Leass algorithm, we can
state the six conditions of the syntactic filter. A pronoun P is non-coreferential
with a (non-reflexive or non-reciprocal) noun phrase N if any of the following
conditions hold:

1. P and N have incompatible agreement features;
2. P is in the argument domain of N;
3. P is in the adjunct domain of N;
4. P is an argument of a head H, N is not a pronoun, and N is contained in H;
5. P is in the DP domain of N;
6. P is a determiner of a noun Q, and N is contained in Q.

To implement the Anaphor Binding Algorithm the notion of higher argument
slot is introduced by the following hierarchy of argument slots: subj > agent > obj
> (iobj|pobj). Here subj is the surface subject slot, agent is the deep subject slot
of a verb heading a passive VP, obj is the direct object slot, iobj is the indirect
object slot, and pobj is the object of a PP complement of a verb, as in put DP on
DP. A noun phrase N is a possible antecedent binder for a lexical anaphor (i.e.,
reciprocal or reflexive pronoun) A if and only if N and A do not have incompatible
agreement features, and one of the following five conditions holds:

1. A is in the argument domain of N, and N fills a higher argument slot than A;
2. A is in the adjunct domain of N;
3. A is in the DP domain of N;
4. N is an argument of a verb V, there is a DP Q in the argument domain or

the adjunct domain of N such that Q has no noun determiner, and (i) A is an
argument of Q, or (ii) A is an argument of a preposition PREP and PREP is
an adjunct of Q.
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5. A is a determiner of a noun Q, and (i) Q is in the argument domain of N and
N fills a higher argument slot than Q, or (ii) Q is in the adjunct domain of N.

Salience weighting is accomplished using salience factors. A given salience fac-
tor is associated with one or more discourse referents. These discourse referents are
said to be in the factor’s scope. A weight is associated with each factor, reflecting
its relative contribution to the total salience of individual discourse referents. Ini-
tial weights are degraded as new sentences are processed in the text. All salience
factors that have been assigned prior to the appearance of the new sentence sen-
tence have their weights degraded by a factor of two. When the weight of a given
salience factor reaches zero, the factor is removed.

In [36], Lappin and Leass claim a performance of 86% of correctly identified
antecedents for the 360 pronouns occurring in a text and an average improvement
of 4% with respect to Hobbs’ algorithm.

3.6.4 Giorgi, Pianesi, Satta (1990)

Giorgi, Pianesi and Satta in [48] and [22] embark in an endeavor somewhat similar
to ours, that is to provide a computational account of BT. However, they stick
to the classical coreferential approach stemmed from Chomsky’s Government and
Binding Theory [12]. They provide two algorithms, each of which takes as input a
node corresponding to a DP in a phrase-marker and analyzes some specific relations
between the input node and each node in the parse tree which c-commands it up
to a certain specific domain. What is remarkable in their approach is a fairly
sophisticated notion of binding domain that they adopt. They define a binary
predicate domain on pairs of nodes in the parse tree which returns TRUE (i) if
the first node is the least constituent such that either all the θ−roles pertaining a
lexical head are realized, or all the grammatical functions pertaining to the same
lexical head are realized; (ii) if there is a node which is the lexical governor of the
second node whose father is not the same father of the first one.

They provide two algorithms to implement principle A and B which they prove
to be polynomial. Whereas previous works were mainly concerned with the compu-
tation of possible referents for all the DPs occurring in a sentence (and thus actual
indexings), they are faithful to the letter of BT principles, which only restrict the
search space for indexes selections, without actually providing them.

3.6.5 Fong’s Combinatorial Analysis (1990)

One of the first theoretical results issued from a genuinely computational perspec-
tive on Binding Theory was provided by the 1990 article of Sandiway Fong [18]. In
it he performs a combinatorial analysis of the basic tenets of the principles-and-
parameters framework of Chomsky [12]. In particular he addresses the issue of “free
indexation”, the idea that at an early stage of analysis, indexes are assigned freely
(i.e. randomly) to all Determiner Phrases occurring in a sentence. Once indexes
have been assigned, principles A, B or C kick in and rule out the interpretations
that do not meet them. One might wonder whether this, although inefficient and
inelegant, is nonetheless a viable computational strategy to generate all and only
correct indexings for a sentence.
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Fong proves that free indexation produces a number of indexings which is
exponential in the number of independent DPs in a phrase structure. This result
is achieved by a reduction to a well-known problem of combinatorial partitioning.
The basic observation is that the problem of free indexation can be expressed
as the problem of assigning 1, 2, . . . , n distinct indexes to n Determiner Phrases
in a sentence. The general problem of assigning m distinct indexes to n DPs is
isomorphic to the problem of partitioning n elements into m non-empty disjoint
sets: each partitioned subset represents a set of DPs with the same index.

We quote from [18] the following table which eloquently shows how the number
of indexings grows with the numbers of independent DPs:

DPs Indexings DPs Indexings

1 1 7 877
2 2 8 4140
3 5 9 21147
4 15 10 115975
5 52 11 678570
6 203 12 4123597

Any brute-force algorithm which computes all free indexation configurations to
later sieve the results through a module which checks each indexing to be “Binding
Theory compliant” clashes against this fundamental complexity issue: the number
of checks that should be performed quickly grows beyond control.

By pushing his analysis one step further, Fong traces the guidelines of the
approach we will be pursuing throughout chapter 4. He points out that although a
reliable parsing mechanism must be able to produce every possible indexing, it does
not necessarily follow that a parser must enumerate every indexing when parsing
a particular sentence. He actually devised a procedure that enables a parser to
shortcut such a blind enumeration procedure, and to produce fewer indexings via
an inductive, bottom-up approach which filters out impossible readings.

Analogously, the purpose of our algorithmic procedure integrated into compu-
tational semantics is to avoid the exhaustive exploration of the search space by
means of inductive computation of intermediate correct readings for smaller con-
stituents of a sentence. This would correspond to the “factoring” mechanism that
Fong points out at as a way to explore the search space of indexing in a controlled
fashion. As he points out, early elimination of ill-formed indexings depends cru-
cially on a parser’s ability to interleave binding principles with structure building,
which is precisely the basic structure of the algorithm presented in section 4.5.
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3.6.6 Ristad’s Complexity Analysis (1993)

An ambitious and controversial work on the complexity issues of the human lan-
guage faculty, and more specifically of anaphora resolution problem, is provided by
Ristad in [56]. His purpose is to characterize the properties of natural languages in
terms of complexity theory, and he proves his claim analyzing the anaphora resolu-
tion problem as a case study. His conclusion is that the problem of understanding
anaphora is NP-complete: it can be computed in nondeterministic polynomial time
and is also NP-hard, that is, as hard as the “hardest” problems in the class of prob-
lems solvable in nondeterministic polynomial time (see, e.g., [46] for a more formal
introduction to these concepts).

Ristad structures his arguments in five rounds of what he calls a “complexity
game”, which is a contest between a maximizer, who tries to make natural lan-
guages as complex as possible, and a minimizer, who seeks to reduce the complexity
as much as possible. In the first round, he provides an argument to demonstrate
the NP-hardness of any language whose anaphora are required to agree in features
such as number, gender, and so on with their antecedents. In the second round,
this argument is refuted by the minimizer, who claims that the standard theory of
how agreement works is wrong and proposes a new theory, under which anaphoric
agreement is now recognizable in deterministic polynomial time. In the third turn,
a new set of data leads to the central argument in the book, according to which the
anaphora problem is NP-hard after all. The facts crucial to this argument have to
do with obviation, that is violations of principles B or C as defined in section 3.2.
The maximizer goes on to the fourth round, in which he presents another body
of data (dealing with anaphora in elliptical structures) on the basis of which he
argues that the anaphora problem is PSPACE-hard (i.e., as hard as the “hardest”
problems in the class of problems solvable in deterministic polynomial space, a
class which contains the class of NP-complete problems). The minimizer replies,
in the fifth and final round, by arguing against the theory of ellipsis presupposed in
this argument and proposes another theory, under which the part of the anaphora
problem involving ellipsis is no more difficult than the part dealing with obviation
that was argued earlier to be merely NP-hard. The game thus ends with the result
that the English anaphora problem is NP-hard, but within the class of NP-hard
problems, that is to say, NP-complete.

Although not uncontroversial (his results have been severely questioned in [49]),
Ristad’s analysis represents a fascinating approach to the complexity issues of
anaphora resolution and thus on the computational treatment of Binding Theory.

3.7 Binding Theory and DRT

Binding Theory does not tell the end of the story about pronouns. Pronouns are
not only linguistic devices which refer to entities previously introduced within the
same sentence: they also strategically work as semantic glue among sentences in a
text which contains several of them. While the former case goes under the denomi-
nation of intrasentential anaphora, the latter is known as intersentential anaphora.
Pronouns are among the most important linguistic devices to pass information
from one sentence to another in a complex text. However, modelling semantics of
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intersententially anaphoric pronouns raises a number of important problems with
respect to the standard first order logic representations of sentences.

We have already seen in the previous sections of this chapter how the most
straightforward way to establish links between anaphoric pronouns and their an-
tecedents is to translate the pronouns as variables bound by their antecedents.
This approach does not work when the link crosses a sentence boundary, as in the
infamous example (54):

(54) A farmer1 owns a donkey2. He1 beats it2.

What we would like our logical representation language to allow is to interpret
the first sentence of this discourse as soon as it is uttered, and then later on,
while processing the second sentence, establish the links between the pronouns
and their intended antecedents. If we think of translating the indefinites by means
of existential quantifiers with scopes extending beyond the sentence level, and
then allow the variables for the pronouns to be captured by these quantifiers, we
only shift the problem. At some point the scope of a quantifier has to be closed,
but further on another pronoun may occur that has to be linked to the same
antecedent. The bound variable approach to anaphora also fails for cases where a
pronoun in the consequent of a conditional sentence is linked to an indefinite noun
phrase in the antecedent of the conditional, as in (55):

(55) If a farmer1 owns a donkey2, he1 beats it2.

A possible approach here would be to view (55) as a combination of the noun
phrases a farmer and a donkey with a structure containing the appropriate gaps
for antecedents and pronouns, like in (56). This is the approach of quantifying-in,
taken in traditional Montague grammar.

(56) If PRO1 man owns PRO2, PRO1 beats PRO2.

This approach does not work here, however. Quantifying-in the indefinite noun
phrases in (56), i.e. in a structure that has the conditional already in place, would
assign the wrong scope to the indefinites with respect to the conditional operator.

(57) Every man1 who owns a donkey2 beats it2.

In this case as well, quantifying-in does not allow one to generate the most likely
reading where the subject of the sentence has wide scope over the embedded in-
definite.

Discourse Representation Theory (DRT) aims at providing a brand new lan-
guage to formalize the meaning of pronouns (but not only) in such contexts. DRT
(originally formulated by Hans Kamp in 1981 and further developed in [33]) is a
formal semantic model of the processing of text in context which has applications
in discourse understanding. DRT stems from Montague’s model-theoretic seman-
tics and addresses in particular a number of difficulties of traditional approaches at
the level of the discourse, such as tense and aspect, as well as anaphora resolution.

The basic idea of the DRT approach is that a natural language discourse (a
sequence of sentences uttered by the same speaker) is interpreted in the context
of a representation structure. The result of the processing of a piece of discourse
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in the context of representation structure S is a new representation structure S0;
the new structure S0 can be viewed as an updated version of S.

The interpretation of indefinite noun phrases involves the introduction of dis-
course referents or reference markers for the entities that a piece of discourse
is about. Discourse referents are essentially free variables. Thus, indefinite noun
phrases are represented without using existential quantifiers and quantification is
taken care of by the larger context. It depends on this larger context whether
an indefinite noun phrase gets an existential reading or not. The life span of a
discourse referent depends on the way in which it was introduced. All “alive” ref-
erents may serve as antecedents for anaphors is subsequent discourse. Anaphoric
pronouns are represented as free variables linked to appropriate antecedent vari-
ables. Definite descriptions in their simplest use are treated in a way which is
similar to the treatment of anaphoric pronouns: definite noun phrases in their
anaphoric use are treated like indefinite noun phrases, i.e. they are translated as
free variables, but give rise to additional anaphoric links. The difference between
indefinite noun phrases on one hand and definite noun phrases and pronouns on
the other, is that indefinites introduce new variables, whereas the variables in-
troduced by definites and pronouns always are linked to an already established
context. In other words, the difference between definites (including pronouns) and
indefinites is that the former refer to entities that have been introduced before, i.e.
to familiar entities, while the latter do not. Quantifier determiners, i.e. determiners
of noun phrases which are neither definite nor indefinite, can bind more than one
variable. Specifically, they can bind a block of free variables some of which may
have been introduced by indefinites. Conditional operators can also bind blocks
of free variables. Not all variables introduced by indefinites are in the scope of a
quantifier or a conditional operator. Those which are not are existentially quan-
tified over by default. The processing of a piece of discourse is incremental. Each
next sentence to be processed is dealt with in the context of a structure which
results from processing the previous sentences. The processing rules decompose a
sentence, replacing the various parts by conditions to be added to the structure.

DRT is fundamentally neutral about the computational mechanisms through
which a pronoun refers to a particular entity in the discourse domain. It rather
provides a general framework within which the output of intra- and inter-sentential
anaphora resolution procedures contribute to the dynamically updated meaning of
a text. One of the main objectives of this thesis is to support the view that Binding
Theory only deals with a very specific subset of phenomena which are commonly
considered as anaphora resolution instances. We underpin this position through
computational arguments that advocate for a clear separation of tasks between
different layers of human language faculty. According to this approach, Binding
Theory (and therefore our algorithms) deals with the very basic and purely formal
mechanisms which rule bound-variable interpretations of pronouns. We believe it
is possible to fruitfully integrate our algorithmic procedure in order to filter out
as soon as possible clearly incorrect readings, but a more thorough analysis of the
interactions between our computational approach to Binding Theory and DRT
issues are left for further development.





4

Towards an Integrated Computational Approach
to Binding Theory

When I am working on a problem,
I never think about beauty.

But when I’m finished,
if the solution isn’t beautiful,

I know it’s wrong.

Buckminster Fuller, HOW, June 2003.

4.1 Introduction

Binding Theory has come a long way since its first formulation in the seminal
works by Chomsky and Lasnik of the early 80’s (see [12], [38], [39]). In the previous
chapter we sketched three of the most influential interpretations that have been
proposed for its principles, namely the classical coreferential interpretation (section
3.2), Reinhart’s bound variable interpretation (section 3.3), and Reinhart and
Reuland’s Reflexivity approach (section 3.4), which marks a major depart from the
traditional purely syntactic view of Binding Theory in favor of a more semantically
oriented one.

In the present chapter we are going to explore how different approaches to
Binding Theory issued from the last thirty years of linguistic enquiry may be
effectively integrated into a computational framework. Our purpose is to enrich
the current framework of computational semantics in order to inductively compute
semantic representations of a sentence which incorporate the principles of Binding
Theory.

Current approaches to formal semantics generally assume that the structures
that feed the semantic interpretation module already come with the correct indexes
associated to Determiner Phrases, where coindexing usually encodes sameness of
reference. The implicit assumption is that Binding Theory rules a syntactic phe-
nomenon, taken care of by a syntax module that generates structures suitable to
be semantically interpreted, whose indexes associated to DPs conform to the prin-
ciples of BT. Actually, very little is said about the computational procedure that
assigns those indexes to DPs.
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The original formulation of Binding Theory presents principles A, B and C
as syntactic conditions that indexed Determiner Phrases must fulfill in order for
the sentence in which they occur to be well-formed. Indexes are a formal device
halfway between syntax and semantics that was introduced to encode coreferential
relations between DPs in a sentence. Binding Theory principles are formulated in
terms of syntactic binding, that is c-command plus co-indexing. They basically act
as filters that discard every structure whose indexing violates any of A, B, or C
principles. However, Determiner Phrases that occur in a phrase-marker issued from
generative parsing of a sentence do not come with indexes associated. Principles
A, B and C provide a procedure to verify that a given indexing for a sentence is
BT-compliant, but they are not constructive: no effective procedure to associate
correct indexing to DPs in a sentence is provided. This is both a theoretically and a
practically challenging issue. How do human beings come to associate the correct
indexing (i.e. to establish the correct mutual denotational relationships) to the
DPs occurring in a sentence? And how can we devise a computational procedure
to mimic this process in order to obtain a semantic representation for the sentence
which encodes the additional information provided by the constraints of Binding
Theory?

One may think that some internal language module computes all the possible
combinations of indexes for the DPs and then filters out those which do not com-
ply with any of A, B or C condition. But we have already seen (see section 3.6.5)
that free indexation produces a number of indexings per phrase structure which is
exponential in the number of DPs (see [18], [56]). Any näıve algorithm which com-
putes free indexation for the DPs in a sentence and then filters the results through
a module which verifies whether every indexing meets BT constraints would have
to perform a number of checks exponential in the numbers of DPs. Such a funda-
mental result dismisses the brute-force combinatory approach as computationally
impracticable, in addition to be highly implausible from a psycholinguistic point
of view.

Our goal is to compute the correct (and only the correct) indexings for a
sentence in an inductive, bottom-up fashion that parallels the computation of
a semantic representation for a sentence according to the principles and methods
described in chapter 2. This would make it possible to filter out incorrect indexings
for fragments of a sentence at earlier stages of the semantic interpretation process.
By enabling the computational system to assign the correct indexings to smaller
fragments of sentences, such an approach opens the possibility to use some kind
of underspecified semantics (see for example [17]) to work with partial semantics
representations generated during the inductive process.

In this chapter we tackle the problem of integrating in a computational seman-
tics framework the mechanisms needed to encode the principles of Binding Theory
into the semantic representations computed of a sentence. Different interpreta-
tions that have been given to Binding Theory ask for different implementations
of such mechanisms. Quite ambitiously, we believe that, besides empirical linguis-
tic coverage, the notions of computational efficiency and algorithmic elegance can
act as useful guidelines in the development of formal semantics systems that in-
tegrate the principles of Binding Theory, and provide an interesting perspective
over one of the most actively debated topics in modern linguistics and formal se-
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mantics. Eventually, we propose an integrated approach that incorporates some
of the basic features of the approaches described into a framework which is both
computationally effective and linguistically well-grounded.

This chapter is structured in a dynamic, trial-and-error way that mirrors the
personal intellectual path that the author followed in departing from the first
tentative algorithmic translation of the coreferential approach to BT to reach
an original synthesis which integrates some of the major insights of theoretical
linguistics into a computationally sound system. We believe that this style of
exposition is effective in showing how computational shortcomings and algorithmic
inelegance of each approach can act as a drive to move towards a more sophisticated
linguistic perspective and, the other way round, how the need for computational
efficiency and elegance can provide some insights into the more theoretical issues
of Binding Theory, and ultimately linguistics as a whole.

In section 4.2 we introduce the basic notation and conventions we will use
throughout the chapter. We start our investigation by sketching in section 4.3 an
algorithm which implements the classical coreferential interpretation of Binding
Theory, and we address the problem of implementing the notion of mandatory
or forbidden coreferentiality within a computational framework. In section 4.4
we show how some computational shortcomings of the previous approach can be
overcome by implementing an interpretation of BT principles inspired by Rein-
hart 1983 [50]. These two approaches share a basic flaw: the notion of binding
domain remains elusive and potentially threatening from a computational point
of view. This comes as a consequence of the fact that at the current stage of de-
velopment Binding Theory hasn’t yet come up with an inductive, compositional
characterization for the notion of binding domain for a Determiner Phrase which
is satisfactory both from an empirical and a computational point of view. We over-
come this basic limitation in section 4.5, where we propose an integrated algorith-
mic approach to Binding Theory which merges features from Chomsky 1981 [11],
Reinhart 1983 [50], and Reinhart and Reuland 1993 [54]. We believe this to be
the first accomplished effort to integrate within a single coherent computational
framework some of the basic achievements and insights in Binding Theory issued
of the last 30 years of linguistics and formal semantics enquiry.

4.2 Basic Assumptions and Notation

The algorithms we present share some common basic elements: (a) the input is the
phrase-marker (or parse tree) of a sentence issued from a generative analysis; (b)
the phrase-marker can be possibly re-structured by cyclic applications of Quantifier
Raising over DP constituents triggered by specific structural conditions detected
during the interpretation process; (c) semantic representations are generated in
the traditional bottom-up fashion described in chapter 2, enriched with additional
formal machinery to encode in the final logical form the information collected
during step (b).

We assume that the input parse trees are binary branching. As already dis-
cussed in section 2.1.1, although most of the algorithmic apparatus we present can
be easily extended to other types of parse trees, we stick to this long-established as-
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sumption which still lies at the core of the most recent developments in generative
syntax (see [14]).

For a given sentence s, let τs be a generative parse tree for s and N =
{n1, n2, . . . , nq} be the set of nodes in τs, each corresponding to a different syntactic
constituent1. Let D ⊆ N be the set of nodes in τs which correspond to Determiner
Phrases (DPs), which is partitioned into three disjoint sets A, P and R, whose
members are the nodes corresponding to reflexive pronouns (or anaphors), (non-
reflexive) pronouns and full-DPs (or r-expressions) respectively. We assume that
we can always tell which of the sets A, P or R a node n ∈ D belongs to, and that
we have at our disposal the following functions and predicates:

Definition 4.1. A binary predicate local is defined on D×D such that local(ni, nj) =
TRUE iff nodes ni and nj correspond to two DP constituents which belong to the
same local domain.

Definition 4.2. A binary predicate agr is defined in D×D, such that agr(ni, nj) =
TRUE iff the agreement features of DP constituents corresponding to ni and nj

are mutually compatible.

Definition 4.3. A function dps(n) is defined from N to P (N ), which returns the
set of nodes corresponding to DP constituents within the constituent rooted in n.

Implementing function local is far from being trivial from a computational
point of view, and it virtually incorporates a large part of what Binding Theory
was originally considered to be about. For the time being we stick to a “black box”
approach and we do not delve deeper into the inner workings of this function to
concentrate on the overall structure of the algorithms.

Function dps(n) is easier to devise. Since the algorithms we present work in
a bottom-up fashion, we can think of collecting all the DPs encountered during
the bottom-up traversal of the subtree rooted in n (including n itself if it’s a DP
node) in a register which is always accessible to the computational system.

4.3 The Coreferential Approach

4.3.1 The coreferential interpretation of Binding Theory

The first algorithm we detail is inspired by the classical interpretation of Binding
Theory, as was first stated in the pioneering works of Chomsky and Lasnik, that
we presented in section 3.2 and that we shortly recall here. This interpretation
is based on the notion of coreferentiality, or sameness of reference. Anaphoric
elements such as non-demonstrative pronouns and reflexives are seen as linguistic
items that lack intrinsic denotation or reference. The antecedent is the linguistic
element from which the anaphor gets its reference, with which it is said to be
coreferential. The semantic notion of coreference between two DPs is encoded in

1 Where this does not generate confusion, we often blur the distinction between a node
in the parse tree and the corresponding syntactic constituent, e.g. we say that node n

is a Determiner Phrase.
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the syntax by means of coindexing: coreferential DPs carry the same index, and
DPs with the same index must have the same denotation.

The principles of Binding Theory in this interpretation are expressed as con-
ditions on the syntactic well-formedness of indexed sentences, in which two DPs
carrying the same index are supposed to have the same denotation. They focus
on the notion of syntactic binding between DPs, which occurs when two DPs in a
mutual relation of c-command are coindexed. Principle A, B and C rule the config-
urations in which different types of DPs must or must not be (syntactically) bound
in a well-formed sentence. Since c-command relations are given in the structure
of the phrase-marker that our algorithm takes as input, while coindexing is not,
Binding Principles ultimately translate into as many conditions that rule when
two DPs must or must not be coindexed, i.e. coreferential.

If we want to devise a computational procedure to infer all the correct indexings
for the DPs in a sentence, we have to reverse the direction of application of Binding
Theory principles. In a well-formed sentence Principles A, B and C must hold.
Each principle deals with one particular class of DPs: principle A with reflexive
pronouns, principle B with non-reflexive pronouns, principle C with full-DPs. That
means that for any given DP only one of the three principles (which translate into
as many constraints on its status - either bound or not -) applies. But by definition
if DP1 is bound by DP2, then DP1 must be c-commanded by and coindexed with
DP2. Therefore, if we can establish whether DP1 is c-commanded by DP2 or not,
we can tell which kind of constraint the applied principle imposes on the index
(and thus on the denotation) of DP1. The implication scheme is the following:

anaphor + local c-command
A

=⇒ mandatory coindexing

pronoun + local c-command
B

=⇒ forbidden coindexing

full-DP + c-command
C

=⇒ forbidden coindexing

In order for a sentence like John likes John to be correct, principle C (a full-DP
must not be bound) states that the first and the second occurrence of John, which
are in a c-command relation, must not be coindexed, and thus they necessarily re-
fer to two distinct individuals in the real world that happen to have the same name
but different semantic content. Otherwise stated, Johni likes Johnj is well-formed
for each pair (i, j) ∈ N×N such that i 6= j and therefore, since contra-indexing en-
codes denotational disjunction, JJohniK 6= JJohnjK . Analogously, in the sentence
John likes him, principle B (a pronoun must not be bound by another local DP)
forces John and him (the first DP c-commanding the second) to refer to distinct
entities in the real world. As in the previous case, Johni likes himj is considered
well-formed for each pair (i, j) such that i 6= j, that is JJohniK 6= JhimjK. On the
other hand principle A (a reflexive pronoun must be bound by a local DP) states
that John blames himself is well-formed if and only if John, which c-commands
himself, is also coindexed with it, that is i = j and therefore JJohniK = JhimselfjK.
The coreferential interpretation of Binding Theory advocates a tight correspon-
dence between linguistic entities and real world objects: principles A, B and C not
only govern the distribution of DPs within a sentence, but they also constrain the
way human beings refer to real world entities by means of in a human language.
If equal indexes encode sameness of denotation for two DPs, computing the cor-
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rect indexing(s) for the DPs that occur in a sentence amounts either to assign the
same denotation to coreferential DPs, or to compute conditions that forbid that
possibility, respectively.

According to the coreferential interpretation, principle A states that a reflexive
pronoun must take its reference within its local domain. That is, it establishes a
functional dependence between the reference of the reflexive pronoun and exactly
one of the DPs which belong to its local domain. This functional dependence
cannot but be some kind of identity function. If we consider the sentence

(1) Johni blames himselfj

we expect the semantic interpretation procedure to fail every time i 6= j. This
happens when there is no suitable antecedent for himself within its local domain,
either because there’s no c-commanding DP, or because there is one whose agree-
ment features are incompatible with those of himself. In this case we want the
interpretation procedure to fail, because the sentence is ill-formed and it must not
be possible to assign any truth value to it. When a suitable antecedent exists, the
two arguments of the predicate blames must end up referring to the same entity. In
the case of (1) the logical form that we want to get as the semantic interpretation
for the sentence is simply blame(john, john).

Principles B and C define conditions under which two distinct DPs must not
have the same reference. It is just natural to translate them into formal devices that
make the interpretation procedure fail whenever the denotations of the two DPs
are identical, according to a notion of identity that will depend on the semantic
domain into which syntax is mapped by interpretation. If we consider the sentence:

(2) Johni blames himj

we want to get a semantic representation which makes explicit the fact that John
and him must have different denotations, that is i 6= j. We may encode this
information in the resulting semantic representation of the sentence by enriching
the formalism of our object language. Each logical form thus will have the following
structure:

F (q1, . . . , qn)|(qi, qj), . . . (ql, qk)|

where the qis are type e entities that occur in F . The semantic interpretation of
such kind of formula is as follows:

JF (q1, . . . , qn)|(qi, qj), . . . (ql, qk)|K =







JF (q1, . . . , qn)K if(JqiK 6= JqjK) ∧ . . .
. . . ∧ (JqlK 6= JqkK)

undefined otherwise

Such kind of obviative constraints on the interpretation of a sentence seam-
lessly propagate throughout the basic operations of computational semantics like
functional application, lambda abstraction and conjunction. If we indicate with
CF the set of constraints associated to a given formula F , we posit:

A|CA| · B|CB| = A · B|CA ∪ CB|

A|CA| ∧ B|CB| = A ∧ B|CA ∪ CB|

λx.(A|CA|) = (λx.A)|CA|
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To sum it up, in order to implement in a computational framework this ap-
proach to Binding Theory, we have to enrich the process of semantic interpretation
in two ways. On one hand, we need to translate mandatory coreference induced by
principle A for two DPs into a formal mechanism that guarantees that the two DPs
get the same denotation at the semantic representation level. On the other hand,
to encode forbidden coreference conditions for two DPs induced by principles B
and C, we must enrich the semantic representation with suitable conditions that
make the interpretation fail whenever the two DPs get the same denotation.

4.3.2 Algorithm’s Outline

First step: computing F and M relations.

In the coreferential interpretation of Binding Theory, principle A has a positive, or
constructive, content. It states that a reflexive pronoun mandatorily gets the same
reference as another Determiner Phrase which c-commands it from the same local
domain. Principles B and C have an eminently negative, or obviative, character:
they define structural configurations that forbid sameness of reference between two
DPs which are in a c-command relation. In the case of principle B, the prohibition
is limited to DPs that c-command a pronoun within its local domain. Beyond the
border of the local domain, nothing is stated: a pronoun can corefer with any
other DP, either c-commanding it or not. For principle C the interdiction regards
full-DPs, and applies to any c-commanding DP, either within or outside the local
domain.

We need to define two basic relations between the Determiner Phrases, in order
to model the two situations that are ruled by the principles of BT according to the
coreferential interpretation: mandatory and forbidden coreference. We may think
that this kind of structural information is collected during a first preprocessing
phase for the parse tree, and it asks for additional semantic machinery to be
translated into genuine semantic representations during the interpretation process.

Definition 4.4. A binary predicate M (for ”mandatory”) is defined in D × D,
such that M(ni, nj) = TRUE iff:

• agr(ni, nj) = TRUE;
• ni c-commands nj;
• nj ∈ A;
• local(ni, nj) = TRUE.

Relation M holds between two nodes in a parse tree which correspond to a reflexive
pronoun and another DP which c-commands it, has compatible agreement features
and belongs to the same local domain. As such, they correspond to two DPs
constituents which, according to principle A, must have the same denotation.

Definition 4.5. A binary predicate F (for “forbidden”) is defined in D×D, such
that F (ni, nj) = TRUE iff:

• ni c-commands nj;
• one of the two following situations holds:
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– nj ∈ R;
– nj ∈ P and local(ni, nj) = TRUE;

Relation F holds between two nodes in the parse tree which correspond to a DP
which c-commands either a non-reflexive pronoun within its local domain, or a
full-DP. As such, coreference between the two DPs is forbidden by principle B or
C, respectively, and so their denotations are supposed to be different. Note that
the condition on agreement is no longer necessary: if the two DPs do not have
mutually compatible agreement features, a fortiori their denotations cannot be
equal.

Each node n in the parse tree τs comes with two sets associated, Mn ⊆ D×D
and Fn ⊆ D × D. They can be inductively computed as follows (we recall from
section 4.2 that dps(n) is the function that returns the set of nodes corresponding
to DPs occurring in the parse tree rooted at n):

• if n is a leaf, Mn = Fn = ∅;
• if n is a branching node, with n1 and n2 the two (immediate) daughters of n,

then:

1. if n1 ∈ D, for each ni ∈ dps(n2):
– if ni ∈ A and local(n1, ni) = TRUE, then add (n1, ni) to Mn;
– if ni ∈ P and local(n1, ni) = TRUE, then add (n1, ni) to Fn;
– if ni ∈ R, add (n1, ni) to Fn;

2. if n2 ∈ D, for each nj ∈ dps(n1):
– if nj ∈ A and local(n2, nj) = TRUE, then add (n2, nj) to Mn;
– if nj ∈ P and local(n2, nj) = FALSE, then add (n2, nj) to Fn;
– if nj ∈ R, add (n2, nj) to Fn.

Note that no assumption is made on the linear order of n1 and n2.

It can be easily verified that for each n in τs, with n1 and n2 its children nodes,
sets Fn and Mn contain pairs of nodes for which relations F and M respectively
get established when subtrees rooted at n1 and n2 merge into a tree rooted at
n. Agreement and locality are verified by definition, while c-command relation
is verified by construction: both point 1 and 2 take into account only (and all)
couples (ni, nj) where nj is either a sister or a descendant of a sister of ni, which
is one of the possible characterizations for the c-command relation, as seen in
the previous chapter. We can then think that the structures which are fed to the
semantic interpretation module look like the following parse trees for sentences
John blames himself and John blames him, after this first “pre-processing” phase:

IP
MIP = {(john, himself)},FIP = ∅

DP

John

VP

V

blames

DP

himself

IP
MIP = ∅,FIP = {(john, him)}

DP

John

VP

V

blames

DP

him
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From relations to denotations.

Information collected during the previous step into sets M and F is used to
enrich the interpretation procedure, that is the mapping from phrase-markers into
semantic representations in our object language. In order to do that, we are going
to add some sophistication to the inductive computational procedures described
in section 2.2 to take into account, when computing the semantics of a node n,
the information stored in sets Mn and Fn.

We adhere to the common practice in semantics of translating pronouns, ei-
ther reflexive or non-reflexive, as variables. We make sure by construction that each
pronoun encountered in our bottom-up interpretation procedure is translated as
a fresh new variable taken from an arbitrarily large supply: x1, x2, . . . , xn. This
simple stipulation wired into the algorithm guarantees that, unless otherwise ex-
plicitly specified, neither mandatory nor forbidden coreference is stated between
two DPs. This matches the fact that BT does not have anything to say about pairs
of DPs which are not in a c-command relation, while mandatory and forbidden
coreference must be stated explicitly. Relations M and F are the formal counter-
part of the intuitive idea that coreference must be stated or forbidden between
pairs of c-commanding DPs according to the principles of Binding Theory. The
interpretation procedure must be enriched to translate the information stored in
sets M and F into semantic representations.

By construction, set M contains pairs of DPs that must have the same deno-
tation as a consequence of Principle A. We implement this condition by means
of the well-known lambda calculus operation of simple substitution. For each pair
(ni, nj) ∈ M, we have by construction that nj ∈ A, so its semantic translation is
a variable, say JnjK = xj . Therefore the following translation rule is well defined:

Interpretation rule for M set.
Let n be a node in a parse tree τ , with Mn associated, and S the logical form
computed for n. If we assume JnjK = xj , we define:

Jn,MnK =
⋃

(ni,nj)∈Mn

{S[JniK/JnjK]} =
⋃

(ni,nj)∈Mn

{S[JniK/xj ]}

Stated informally, the interpretation of a node in the parse tree with its set M
associated is in general a set of semantic representations. Each element of the set
is the result of the substitution in the logical form S computed so far of each
occurrence of the variable corresponding to the anaphor with the denotation of
the DP that c-commands it. Note that the former semantic representation S does
not belong to the newly computed set. The assumption that each occurrence of a
pronoun is mapped into a new variable, prevents variable capture side effects and
the substitution is always “safe”.

(3) s: John blames himself.
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τs =

IP
MIP = {(John, himself)}

DP

John

VP

V

blames

DP

himself

⇒
JIP,MIP K = {blame(john, x1)[JJohnK/JhimselfK]}

= {blame(john, x1)[john/x1]}
= {blame(john, john)}

When the interpretation process gets to compute the semantic representation for
the IP node, S = blame(john, x1) has been computed as the corresponding logical
form by means of traditional semantic computations. Such kind of representation
is obviously incomplete and needs to be integrated with the information collected
during the preprocessing phase in MIP = {(John, himself)}. The application of
the interpretation rule for MIP leads to a singleton set which contains a formula
derived from S, in which the denotation of John has replaced every occurrence of
the variable corresponding to the anaphor himself.

Set F contains pairs of DPs that according to principle B or C cannot be bound:
since by construction they are in a c-command relation, they cannot be coindexed
and thus they are supposed to have different denotations. In interpreting a node
with a set F associated, we translate pairs in F into constraints in the formalism
we introduced in section 4.3.1:

Interpretation rule for F set.
Let n be a node is a parse tree τ , with Fn associated, and S the logical form
computed for n. We define:

Jn,FnK =
⋃

(ni,nj)∈Fn

{S|(JniK, JnjK)|}

(4) s: John blames him.

τs =

IP
FIP = {(John, him)}

DP

John

VP

V

blames

DP

him

⇒
JIP,FIP K = {blame(john, x1) | (JJohnK, JhimK) |}

= {blame(john, x1) | (john, x1) |}

In this case the preprocessing phase has computed a “forbidden coreference” rela-
tion induced by principle B between John and him, the latter being a non-reflexive
pronoun locally c-commanded by the former. The relation is translated into a new
semantic representation in which the logical form S = blame(john, x1), issued
from standard semantic computations, is enriched with a condition that makes the
computation fail whenever x1 takes as its value the logical constant john.
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Second step: computing semantics.

Traditional computational semantics methods that we presented in chapter 2 com-
pute a (unique) semantic representation for a node n in an inductive way: if n is
a leaf its semantics is directly provided by the lexicon for the lexical entry asso-
ciated; if n is a branching node, its semantics is computed through some basic
operations (e.g. functional application, boolean conjunction, lambda abstraction)
out of the semantic representations of its children nodes. As it is apparent from
the previous step of the interpretation process, a sentence with anaphoric relations
between its constituents in general allows multiple readings. Therefore, we need to
modify this framework to compute multiple semantic representations associated
to a given node, each of them corresponding to a different reading licensed by BT
principles for the anaphors and pronouns involved. In order to do so, for each node
n of the parse tree τs associated to a given sentence s, we compute a set Sn of
lambda terms corresponding to the possible semantic representations associated.
The information collected in sets Fn and Mn for each node enriches the semantic
interpretation procedure in a way that takes into account the coreferential relations
induced by principles A, B, and C according to the translation rules we introduced
in the previous section.

Semantic interpretation for a sentence s takes as input the parse tree τs whose
nodes are decorated with sets M and F . It outputs a set of semantic representa-
tions S inductively computed for a generic subtree rooted at node n as follows:

• if n is a leaf, then S = {S}, where S is the lambda term which describes the
semantics for the corresponding lexical entry as given in the lexicon;

• if n is a branching node, let n1 and n2 be its children, and S1 and S2 be the sets
of semantic representations associated to each of them. Then for each Si ∈ S1

and Sj ∈ S2, we initially set S =
⋃

i,j{Si · Sj}. For each S ∈ S, let Mn and
Fn be the sets associated to node n, then:
– S′ = S − {S} ∪ J(n,Mn)K;
– S′′ = S − {S} ∪ J(n,Fn)K.
Resulting semantics is given by S′ ∪ S′′.

Intuitively, for each semantic representation computed at a given stage of the in-
terpretation process, if during the preprocessing phase a set of M or F relations
between DPs occurring in the parse tree has been computed, we replace it with a
reading in which mandatory or forbidden coreference conditions have been imple-
mented through the translation rules introduced in the previous section.

4.3.3 Examples

(5) s = John blames himself τs =

IP
MIP = {(John, himself)}

John VP

blames himself
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Usual semantic computations described in chapter 2 yield the logical form blame(john, x1)
for node IP. However, set MIP computed during the pre-processing phase trig-
gers the application of the translation rule for sets M. The resulting semantics
according to the previous section is thus:

JτsK = J(IP,MIP )K = J(IP, {(John, himself)})K =

= {blame(john, x1)} − {blame(john, x1)} ∪ {blame(john, x1)[john/x1]} =

= blame(john, john)

(6) s = John blames him τs =

IP
FIP = {(John, him)}

John VP

blames him

Again, usual semantic computations generate the set of semantic representations
S = {blame(john, x1)} for node IP. In addition, pre-processing phase for the
phrase-marker τs yields FIP = {(John, him)}. According to the translation rule
for set F and the semantic interpretation procedure described in the previous
section the resulting semantics is:

JτsK = J(IP,FIP )K = J(IP, {(john, him)})K =

= {blame(john, x1)} − {blame(john, x1)} ∪ {blame(john, x1)|(JJohnK, JhimK)|} =

= {blame(john, x1)|(john, x1)|}

(7) He blames John. τs =

IP
FIP = {(he, John)}

He VP

blames John

The situation is similar to the previous one, except that the forbidden coreference
condition this time is triggered by an application of condition C.

JτsK = J(IP,FIP )K = J(IP, {(he, John)})K =

= {blame(x1, john)} − {blame(x1, john)} ∪ {blame(x1, john)|(JheK, JjohnK)|} =

= {blame(x1, john) | (x1, john) |}

(8) s = John thinks that he blames him. τs =

IP′

John VP

thinks IP
FIP = {(he, him)}

he VP

blames him



4.3 The Coreferential Approach 73

Since John c-commands the two pronouns he and him from outside their local do-
main, FIP is the only set of relations between DPs that is computed for this parse
tree, and John is free to corefer either with he or with him (but not with both of
them at the same time), or with neither of them. The algorithm computes the se-
mantic representation for the IP node analogously to what happens in example (6).
If we assume JheK = x2 and JhimK = x1: J(IP,FIP )K = {blame(x2, x1)|(x2, x1)|}.
When computation reaches node IP ′ it performs the usual operations getting the
semantic representation:

JτsK = JV P K(JJohnK) =

= [λx.think(x,blame(x2, x1)|(x2, x1)|)](john) =

= think(john,blame(x2, x1))|(x2, x1)|

In the final semantic representation, assignments x1 → john and x2 → john are
both allowed but mutually exclusive: the constraint on their semantic value makes
the interpretation fail whenever they’re mapped into the same object, as desired.

(9) Every linguist admires himself τs =

IP

every linguist

2 IP
MIP = {(t2, himself)}

t2 VP

admires himself

In order to correctly compute binding constraints for this sentence we make the
(quite strong) assumption that our algorithm already operates on a parse tree
which makes explicit the presence of a trace t2 which is semantically bound by the
quantificational DP every linguist. If we assume Jt2K = x2, the semantic represen-
tation for the fragment t2 admires himself is, as in example (5), admire(x2, x2).
Therefore, the semantic representation computed for the whole structure is:

Jevery linguistK(λx2.admire(x2, x2)) = [λP.∀x(linguist(x) → P (x))](λx2 .admire(x2, x2))

= ∀x.linguist(x) → admire(x, x)

If we had him instead of himself, the semantic representation computed by our
algorithm for the fragment t2 admires him would be admire(x2, x1)|(x2, x1)| and
the overall semantics for the sentence:

[λP.∀x(linguist(x) → P (x))](λx2 .admire(x2, x1)|(x2, x1)|) =

∀x(linguist(x) → admire(x, x1)|(x, x1)|)
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4.3.4 Observations

As a first stab at a computational treatment of Binding Theory, we somewhat me-
chanically translated the ideas of coreferential interpretation into an algorithmic
procedure which inductively computes suitable semantic representation. Our com-
mitment to the coreferential approach of the early formulations of Binding Theory,
which advocates a strong connection between the binding configurations and the
denotations of linguistic entities, forced us to enrich the logical language of the
final semantic representations with ad hoc machinery to deal with the obviative
character of Principles B and C.

We have introduced two binary predicates, M and F , to keep track of the
coreferential relations, induced by principles A, B and C, which hold between DPs
occurring in a sentence: that is, mandatory coreference and forbidden coreference,
respectively. It is apparent from its definition that F relation is very complicated,
defined as it is on several ad hoc cases, which make it inelegant and very little
intuitive. One gets the impression that we have tried to cover many heterogeneous
phenomena with a single relation: phenomena that should be dealt with by different
computation modules, we might suspect. The problem lies in forbidden coreference,
which may come from different sources: condition B and condition C, which models
very different phenomena. In a way this goes in the direction of much current
research in linguistics, which tend to draw a neat separation between condition C
and other conditions, the ultimate goal being condition C to disappear into some
kind of general architectural principle. This will be made even more explicit in the
next section.

Making “forbidden coreference” explicit forced us to invent a new formalism
to keep track of and provide a suitable interpretation to such binding configura-
tions. This sounds quite unnatural and cumbersome, both from a notational and
a computational point of view. We’ll see that the next approach we are going to
adopt drops this idea as a whole: there is no such a thing as forbidden coreference,
just like BT does not have anything to say about the relation between linguistic
entities and their reference in the real world.

The net result of this first tentative computational treatment of Binding Theory
according to its traditional interpretation is a somewhat heavy and unnatural
design for the algorithm, which could be taken as a clue that we’re mixing different
levels of organization within a single module. Computationally, there seems to
be a pressure to separate the task of Binding Theory from what other modules
(discourse theory) are supposed to do. We believe that the approach we present
in the next section goes in this direction.
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4.4.1 Reinhart’s interpretation of Binding Theory

The second algorithm we present is inspired by the interpretation of Binding The-
ory given by Tanya Reinhart in [50], which we detailed in section 3.3. According
to this interpretation, Binding Theory does not deal with coreference relations be-
tween linguistic entities in a sentence, i.e. whether two distinct DPs can, must or
must not refer to the same entity in the real world. Instead, Binding Theory only
rules the conditions under which is it possible, impossible or mandatory to give
a bound-variable semantic interpretation to two distinct Determiner Phrases, i.e.
to have semantic binding between them. Coreferential readings are a byproduct of
semantic binding, while the notion of forbidden coreference disappears in favor of a
more general economy principle that favors interpretations which involve semantic
binding over those which do not.

In section 3.3.1 we introduced the notion of semantic binding that we recall
here. A DP α semantically binds a DP β if and only if β and the trace of α are
semantically bound by the same variable binder, e.g. in (10) quantificational DP
every linguist semantically binds himself, as encoded by coindexation between the
pronoun and the trace:

(10) IP

every linguist
1 IP

t1 VP

praises himself1

The notion of semantic binding is central in the work of Reinhart [50] and was later
systematized by Heim and Kratzer in [26]. Two semantically bound DPs always
receive the same semantic interpretation, but this necessary coreferential effect
must be kept conceptually distinct from other accidental coreference phenomena
which are dealt with at pragmatic or discourse theory level. In a sentence like
John likes himself what principle A of Binding Theory actually tells us is that
himself and John must be semantically bound, that is they must be given a
bound-variable interpretation. Therefore the semantic representation computed
for (10) is [λx.like(x, x)](john) = like(john, john). Coreference between himself
and John is the byproduct of a purely formal property such as semantic binding,
instead of a principled correspondence between linguistic entities and real world
referents.

An important consequence of Reinhart’s interpretation is that principle B does
not forbid anymore sameness of reference between a non-reflexive pronoun and
another DP, for the simple reason that according to this approach Binding Theory
has nothing to say about the denotations of DPs in general. All that Principle B
states is that a pronoun cannot be semantically bound with another DP which
c-commands it within its local domain. Of course, that could very well happen
when the c-commander lies outside the local domain of the c-commandee.
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(11) a. John likes him.
b. John thinks that he likes Ann.

In (11-a), according to this alternative interpretation, principle B only forbids
a semantic interpretation where John and him are semantically bound. In the
language of formal semantics, this means that [λx.like(x, x)](john) cannot be
a semantic representation for (11-a). However, nothing prevents John and him
from referring to the same individual in the real world. Indeed, we can think of
conversational contexts in which this may be the case, like in the well known
(although not uncontroversial) “Oscar sentences” (see [50]):

(12) It is not true that nobody likes John. John likes him!

The existence of contexts like (12) in which a sentence like John likes him is
perfectly suitable to convey the intended meaning “John belongs to the set of
individuals who like John”, is considered by Reinhart as a proof that Binding
Theory is perfectly neutral with respect to the semantic content of DPs in gen-
eral, and non-reflexive pronouns in particular. Formally, this possibility is licensed
by assigning to the sentence the logical form like(john, x), where no semantic
binding occurs between John and the pronoun him. The pronoun him is mapped
as usual into a variable, which in the context of the sentence happens to be free.
As such, no further constraint on the value it may take is stated. The context, as
well as pragmatic or rhetoric factors, may very well map the free variable into any
semantic entity, in particular [like(john, x)]x→john = like(john, john), which
is the case of the last example. Coreferential relations are therefore a matter of
discourse-theoretical strategies that could constrain the assignment of values to
variables, and not the matter of Binding Theory, which only rules a very specific,
internally grammatical property such as semantic binding. To sum up, semantic
binding between two DPs implies sameness of reference; but lack of it in no case
implies different denotations.

The optional character of principle B for pronouns c-commanded from out-
side their local domain is shown in example (11-b), where it licenses a bound
variable reading between John and he. This means that we have a semantic
representation for (11-b) as [λx.think(x, like(x,ann))](john), in which he and
John are bound by the same variable binder, which coexists with the logical form
[λx.think(x, like(y,ann))](john) in which no semantic binding occurs between
John and he. An algorithmic implementation of Reinhart’s approach must be able
to generate both.

4.4.2 Reinhart’s Principle I

At first sight, Reinhart’s interpretation looks more attractive than the coreferential
one from a computational point of view. As pointed out in section 4.3.4, “forbidden
coreference” relation F asks for a case-by-case, ad hoc and eventually unnatural
definition that accounts for two different configurations in which two DPs are
supposed to have different semantic content. Furthermore, it asks for additional
formal machinery at the interpretation level to keep track of the supposedly distinct
denotations that must be assigned to DPs. Such algorithmic inelegance was taken
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as a clue that maybe a rethinking of the phenomena we tried to grasp was needed.
Now, in the light of Reinhart’s interpretation of BT principles, cumbersome F
relations between DPs disappear, turned into non-bound variable readings, which
are provided by default by an algorithm which introduces a new variable at each
occurrence of a pronoun or anaphor in the parse tree. A sentence like John likes him
will be simply translated as like(john, x), without additional machinery to encode
the fact that John and him must have different denotations. Some important
modifications of the algorithm are needed to account for optional or mandatory
bound-variable readings when principle B or principle A apply, respectively.

It is not surprising that giving up to the idea of encoding in the logical form
of a sentence constraints that are now considered as part of discourse strategies,
the overall algorithmic structure of a “BT computational module” gets simplified.
However, this superficial “unambitious” view of Reinhart’s interpretation hides a
major computationally challenging issue. As a matter of fact, a speaker who wants
to convey the information that John likes himself, will utter the sentence John
likes himself (where himself is translated into a bound variable later saturated by
John) instead of John likes him (where the pronoun him is a free variable which
can be mapped by the context into John). Consider the following logical forms:

(13) a. like(john, john)
b. [λx.like(x, x)](john)
c. [like(john, x)]x→john

When a speaker wants to convey (13-a), he privileges a syntactic form whose
direct semantic translation is (13-b) instead of one whose logical form is (13-c).
Reinhart must account for the fact that although truth-conditionally equivalent,
logical forms (13-b) and (13-c) are not interchangeable from the point of view the
speaker. Therefore, she must distinguish them on the basis of another criterion.
Reinhart’s solution is “rule I” (also known as the Coreference Rule): if a given
message can be conveyed by two minimally different logical forms of which one
involves variable binding where the other has coreference, then the variable binding
structure is always the preferred one. More formally:

Reinhart’s rule I.
A DP α cannot corefer with a DP β if an indistinguishable interpretation can
be generated by Quantifier Raising β and replacing α with a variable bound
by the trace of β.

Although conceptually neat, this principle is computationally ruinous. Indeed,
it implies being able to decide whether two distinct logical forms (conveyed mes-
sages corresponding to two different sentences) are truth-conditionally undistin-
guishable. That amounts to deciding whether they can be satisfied by the same sets
of variable assignments. This problem is an instance of the well-known problem
SAT2, which is known from computational complexity theory to be NP-complete

2 Satisfiability Problem(SAT) is the problem of finding a truth assignment that satisfies
a given collection of Boolean clauses. The input is a set V of variables and a collection
C = {C1, C2, . . . , Ck} of Boolean clauses over V . The output is a truth assignment
that satisfies every clause in C. The corresponding decision problem is to decide if
such a satisfying truth assignment exists.
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(see [46] for a modern account of this as well as other important complexity theory
results).

If computational intractability cannot be taken as an absolute criterion to re-
ject a linguistic theory like Reinhart’s, it severely undermines our undertaking
to provide a straightforward implementation of Reinhart’s interpretation of Bind-
ing Theory within a computational framework. However, Reinhart’s interpretation
marks an important departure from the previous approach and indirectly gives us
clues to overcome some of the basic flaws that we outlined in section 4.3.4. The
output of an hypothetical “Binding Theory module” is not anymore a set of ex-
otic semantic representations enriched with constraints on the denotations of their
DPs induced by the obviative effect of principles B and C, but a set of standard
logical forms that describe all the possible semantic readings compatible with the
sentence. Principle B and C will only act as criterions to exclude bound-variable
readings under certain configurations. The focus of the algorithm thus lies in de-
vising a mechanical procedure to generate such readings with the smallest number
of assumptions on the nature of DPs. The problem raised by the implementa-
tion of Rule I is put on hold until section 4.5.4, where we’ll provide a suitable
computational treatment of this issue.

4.4.3 Binding principles revisited

Principle B

According to Reinhart’s interpretation, principle B states that a non-reflexive pro-
noun cannot be semantically bound within its local domain. We can rephrase it
by stating that a non-reflexive pronoun must occur free within its local domain,
while it can occur either free or bound outside. This is the case of non-reflexive
pronoun he in the following example:

(14) a. John thinks that he likes Ann.
b. think(john, like(y,ann))
c. [λx.think(x, like(x,ann))](john)

τ1 =

IP

John VP

thinks IP

he1 VP

likes Ann

τ2 =

IP

John
1 IP

t1 VP

thinks IP

he1 VP

likes Ann

Logical form (14-b) results from the standard semantic interpretation procedure
applied to τ1. It corresponds to a reading in which the pronoun he is not bound,
neither within nor outside its local domain, as is the corresponding variable in
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the logical form. On the other hand (14-c) is another logical form compatible with
(14-a). It is the result of the interpretation of τ2, in which John has been Quantifier
Raised, and where its trace t1 and he1 are bound by the same lambda operator,
thus making John and he semantically bound. Accordingly, the variables which
correspond to their semantic interpretation occur bound (in the logical sense) in
(14-c). In particular, they are two occurrences of the same variable which are
bound by the same lambda operator: one which corresponds to the c-commanded
pronoun, and one occurring at the position corresponding to John in the phrase-
marker. In order to encode principle B in a computational framework, we must be
able to generate both readings for sentence (14-a).

Semantic representation (14-b) easily comes “for free” by introducing a fresh
new variable as the semantic interpretation of each occurrence of a pronoun, either
reflexive or not. If in no case in the logical form of a sentence there are two
occurrences of the same variable, semantic binding (which requires two occurrences
of the same variable to be bound by the same lambda operator) is by definition
impossible. This implements the obviative side of principle B, by generating by
default a logical form in which semantic binding is impossible for all mutual c-
commanding DPs in a sentence.

Generating (14-c) is more complicated: we need a semantic representation in
which the same variable occurs (a) at the position occupied by the c-commanded
pronoun and (b) at a position of the c-commander DP; besides, (c) both variables
must be bound by the same lambda operator. If we start from (14-b), we know
that by construction all variables occurring in the logical form are different. As we
will formally detail in section 4.4.5, we postulate that the only way to identify two
DPs which are in a relation of c-command is to apply a slightly modified version
of QR on the c-commander. This is part of our view (that we sketched at the
end of section 2.2.7) of QR as a last resort device that is not freely and optionally
available, but which is triggered under the pressure of specific circumstances: either
semantic type mismatch or (as in this case) by the need to generate a bound
variable reading between a pronoun and another DP in a c-commanding position.

We already know from the definition in section 4.4.1 that semantic binding at
the logical form level is a formal device that exclusively deals with variables (it
actually requires two occurrences of the same variable to be bound by the same
lambda operator). However, in generating a bound-variable reading for a sentence
like (14-a) we need to establish semantic binding between a full-DP (John, c-
commander) and a non-reflexive pronoun (he, c-commandee). Only the latter can
be directly mapped into a variable. QR is thus our last resort device to make a
variable appear in the position previously occupied by the full-DP. We intuitively
illustrate this procedure with the following schema:

α ...

. . . x . . .

QR
=⇒

α
λy y ...

. . . x . . .

Semantic binding can be then achieved by identifying variables x and y.
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Principle A

Principle A, rephrased in Reinhart’s interpretation, states that a reflexive pronoun
must be semantically bound within its local domain. We know from the definition
of semantic binding that this means that there must be another DP within the
same local domain such that the reflexive pronoun and the trace of the DP which
has been Quantifier Raised are bound by the same lambda operator. This is the
case of John and himself in the following example:

(15) a. John blames himself
b. *blame(john, x)
c. [λx.blame(x, x)](john)

τ1 =

IP

John VP

blames himself

τ2 =

IP

John
1 IP

t1 VP

blames himself1

In (15-c), issued from the semantic interpretation of τ2, the variable which rep-
resents the semantic translation of the reflexive predicate himself and the variable
corresponding to the trace left by John after QR are bound by the same lambda
operator: therefore principle A is met and (15-c) is a correct semantic reading for
(15-a). In (15-b) no semantic binding occurs between the two arguments of pred-
icate blames, therefore principle A is not met and (15-b) is not acceptable as the
logical form of (15-a).

As a corollary of Principle A we may say, blurring the distinction between
pronouns and variables, that no reflexive pronoun can occur free (that is, unbound)
within its local domain: *Ann thinks that John likes herself must be considered
ill-formed because herself is not bound within its local domain (and so is the
corresponding variable at logical form level), which is the clause John likes herself.

The status of reflexive pronouns appears to be twofold. On the one hand they
behave like pronouns as for semantic type and agreement features. On the other
hand, as stated by principle A, they must be bound within their local domain,
otherwise the sentence is ill-formed. This is a first important difference between
logical variables and natural language pronouns: the latter come in two different
forms, that is reflexive and non-reflexive. Such a distinction has no direct corre-
spondence in the domain of logical variables. In order to mark this fundamental
difference between reflexive and non-reflexive pronouns, we will adopt the con-
vention of mapping reflexive pronouns into “starred” variables x∗

1, x
∗
2, . . . , x

∗
n, and

non-reflexive ones into “normal” variables.
It is clear that we can compute reading (15-c) for sentence (15-a) via an appli-

cation of QR in exactly the same way we use QR to generate (14-c) as a logical
form for (14-a): the only difference is that in this case this is the only correct read-
ing we want to generate for the sentence. In (15-a) we are basically in the same
DP configuration of (14-c): a (reflexive) pronoun (himself ) is c-commanded by a
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full-DP (John) with which we want to generate a bound variable reading. Here
again QR is triggered by the need to (temporarily) replace the full-DP John with
a variable that can be identified with the variable corresponding to the reflexive
pronoun which get bound by the same lambda operator.

Principle C

Reinhart’s interpretation of Binding Theory gets rid of condition C, at least in
the explicit form of a third principle, partly because the shift from coreferentiality
to semantic binding makes acceptable (within particular contexts - see the dis-
cussion on Oscar sentences) a whole class of interpretations formerly forbidden,
partly because it’s subsumed by more general principles like Rule I. This entails an
important simplification of the formal apparatus we had to put in place to capture
the three principles in the previous approach. Consider the following example:

(16) a. John likes John
b. like(john, john)
c. *[λx.like(x, x)](john)

According to Reinhart’s interpretation of BT, principle C now simply states that
a full-DP cannot be semantically bound by another DP. That is, only (16-b)
is the correct semantic interpretation for (16-a), while (16-c), although truth-
conditionally equivalent to (16-b), is not. Once we adhere to the idea that BT
does not deal with coreference relations, we do not need additional machinery to
specify that in (16-a) the two occurrences of John must refer to distinct individuals
in the real world. This means that we do not have to restructure our parse tree
when a full-DP occurs in c-commanded position, and that makes for a significant
simplification of the application of QR. What is particularly interesting is that
this follows naturally from the use of QR we advocated so far, without any further
stipulation. Let’s make this point more precise.

The cases of semantic readings generated by the application of principle B and
principle A, like in (14-a) and (15-a) respectively, share an important point: in both
cases the c-commanded DP is a pronoun, reflexive in the case of applications of
principle A, non-reflexive in the case of principle B. Both reflexive and non-reflexive
pronouns are semantically translated into variables, and variables lie at the core
of the definition of semantic binding, which is the focus of Reinhart’s interpreta-
tion of Binding Theory. We have seen that whenever the semantic interpretation
detects a variable which is c-commanded by another DP, we want the algorithm
that implements this approach to BT to generate a bound variable reading be-
tween them. The only way to achieve that is through QR of the c-commanding
DP, which leaves a trace (semantically, a variable) in the position previously oc-
cupied by the DP. Therefore, in our computational system QR is a formal device
which is triggered by the need to identify two entities, the c-commanded pronoun
(semantically a variable) and the c-commanding DP. Since the latter in general is
not semantically a variable, QR kicks in to put a variable in its position without
losing the information encoded in the DP.

In the case of principle C we are in a different situation. By definition, the
c-commanded DP is neither an anaphor nor a pronoun, so its denotation is not a
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variable. We may ask why Quantifier Raising does not apply to the two occurrences
of John in (16-a), thus getting (16-c) as the logical form for the sentence. But the
fact is that there is no need for QR to apply here. Since the c-commanded DP
is not (semantically) a variable there is simply no reason why QR, which is our
device to generate semantic binding between variables gets triggered.

There is another configuration in which principle C must apply to exclude
bound variable reading:

(17) a. He likes John
b. like(x, john)
c. *[λx.like(x, x)](john)

Even though the context may license an interpretation in which he denotes John
(like in Oscar sentences), the correct semantic reading for (17-a) is (17-b) and
cannot be (17-c). We have said that it’s the presence of pronouns (semantically,
variables) that triggers the application of QR in order to generate semantic binding
between two c-commanding DP. In (17-a) we have a pronoun in a c-commanding
position, so one may think that this should trigger QR of the c-commanded John
in order to generate a bound variable reading. If we stick to the idea that QR gets
triggered to replace a DP with a variable, it seems like there’s no reason to forbid
such kind of operation in a configuration like (17-a):

(18)

IP

he VP

likes John

∗QR
=⇒

IP

John
1 IP

x VP

likes t1

However, we believe that this possibility is forbidden by a constraint naturally
imposed by the bottom-up structure of the procedure that we want to implement.
That is, QR over a given DP α can be applied when and only when the interpre-
tation procedure is processing α. Once the interpretation procedure has processed
a node in the phrase-marker, it cannot backtrack and “undo” what previously was
done by applying Quantifier Raising to a lower node in the tree. In (14-c) and
(15-c) this is exactly what happens: when we get to process the higher DP node
the interpretation algorithm detects a DP α which c-commands a variable, and
it immediately QR the current DP node α to generate a bound variable seman-
tic reading between the two DPs. In (17-a) John has already been semantically
processed when the algorithm reaches bottom-up he and detects a c-command
configuration between the two DPs. So the “QR cyclicity” constraint prevents the
algorithm to apply QR to John, and thus getting the incorrect semantic reading
(17-c). Principle C that previously required a cumbersome, ad hoc treatment, gets
very naturally absorbed into a general architectural principle of our interpreta-
tion algorithm. That said, the issue raised by Reinhart’s Rule I is still present:
in general, since the same semantic content can be conveyed via a bound-variable
interpretation, this latter should be privileged, and thus the expression John likes
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himself. We will overcome this basic flaw of the present implementation in section
4.5.

4.4.4 On pronouns, variables and binding

Embracing Reinhart’s alternative approach to Binding Theory, enriched with the
observations made in the previous section, opens up the possibility to get rid of
most of the cumbersome algorithmic apparatus introduced in section 4.3 to stick
to a closer correspondence between natural language semantics, even enriched with
the principles of Binding Theory, and lambda calculus. The very same notion of
semantic binding of a pronoun closely reminds of the notion of variable binding
in first order logic. We try to push this analogy as far as possible, and exploit it
to implement in a inductive way the principles of Binding Theory according to
Reinhart’s approach.

In section 4.4.3 we have seen that semantic binding is a matter or (free) vari-
ables getting bound by the same lambda operator. A free (that is, unbound) pro-
noun in syntax gets translated at the logical level into a (logically) free variable. In
lambda calculus, for any given lambda term τ , the set of free variables occurring in
τ is an ubiquitous notion, and something that can be easily computed inductively.
So, if we assume that each occurrence of a free variable in the lambda term that is
the semantic representation of a syntactic constituent C is the semantic transla-
tion of an unbound pronoun (or trace) occurring in C, we have a very convenient
way to inductively implement the revised principles of Binding Theory, getting rid
of the artificial relations F and M needed to implement the coreferential approach
in section 3.2.

We can think that each node n in the parse tree comes with a set FV(n) of
the variables that occur free in the lambda term that describes the semantics
representation of n. This set can be inductively computed as follows:

• if n is a leaf and JnK = c, where c is a constant, then FV(n) = ∅;
• if n is a leaf and JnK = xi for some variable xi, then FV(n) = {xi};
• if n = n1 · n2, then FV(n) = FV(n1) ∪ FV(n2)
• if n = λx.n1, then FV(n) = FV(n1) − {x}
• if n = n1 ∧ n2, then FV(n) = FV(n1) ∪ FV(n2)

From section 4.3.2, we know that, in processing in a bottom-up fashion a
phrase-marker, when a type e DP A (that is, an entity) semantically merges with
another constituent B, new c-command relations get established between A and
any other type e DP occurring in the phrase-marker rooted at B. This is the only
configuration in which new semantic readings can be generated. Let τA and τB be
the logical forms of A and B respectively. Since we assume τA to have semantic
type e, the only way to semantically combine it with another semantic term is as
an argument applied via functional application to a type e → T lambda term, with
T an arbitrary semantic type. So τB cannot but have type e → T . We claim that
all we need to generate all the semantic readings induced by the application of
Binding Principles (modulo local domain considerations), is to generate, for each
xi ∈ FV(τB), the corresponding semantic interpretation in which τA and xi are
bound by the same lambda operator. This approach presents several advantages:
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No need for F and M relations. As we have extensively discussed in the
previous section, QR must be triggered whenever a pronoun is c-commanded by
another type e DP. Pronouns correspond to variables, therefore this corresponds to
trigger QR for the c-commanding DP for each variable occurring in the set of free
variables of the functor. The set of free variables of a lambda term evolves dynam-
ically as the lambda term merges with others, therefore the set FV(n) keeps track
of the interesting entities with which to create bound variable readings without
additional machinery. Keeping track of how sets F and M associated to phrase-
markers evolve as two of them get merged required a computational overhead
which is not longer necessary. This is only more valid in the present approach
where QR basically restructures the phrase-marker, and so we need a natural way
to keep track of the changes in the c-command relations between DPs. Relations
M and F become unnecessary and obsolete in the present approach, replaced by
a single set of variables occurring free in the corresponding logical form.

Invisibility of bound entities. There’s a hidden, yet meaningful assumption
behind our choice of free variables as the only interesting c-commanded entities,
which happens to be both linguistically sound and computationally convenient.
Free variables correspond to unbound pronouns in the syntactic structure. This
means that, in a bottom-up processing perspective, once a pronoun (either reflex-
ive or not) gets bound by another DP, it is not available anymore to enter semantic
binding with another DP. This eliminates a lot of redundancy which was implicit in
the previous approach. Consider, for example, the following phrase-marker (where
we label each node with the set of free variables in the corresponding logical form
and we assume that JhimselfK = x∗

1):

τ =

IP′:∅

Bill:∅ VP:∅

thinks:∅ IP:∅

John:∅ VP:{x∗
1}

likes:∅ himself:{x∗
1}

Our bottom-up interpretation procedure computes a bound-variable reading be-
tween John and himself as the only correct one for the fragment John likes himself.
The set of free variables of the corresponding logical form [λx.like(x, x)](john) =
like(john, john) is empty (the formula is closed). So, when the interpretation
process reaches IP′ node, no interesting c-command relation is detected between
Bill and a DP occurring in the VP subtree. This is due to the fact that himself is
bound to John and cannot enter any semantic binding relation anymore. As soon
as himself gets bound in the inner clause, it literally ”disappears” from the scope
of Bill. In particular, if a reflexive pronoun occur free from outside its local domain,
and so a starred variable occurs in the FV(n) for a given node n which contains its
local domain, the sentence is ill-formed and the interpretation procedure fails. If
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the sentence is well-formed, and therefore meets Principle A, a reflexive pronoun
gets bound within its local domain, and then the corresponding variable won’t oc-
cur in the set of free variables that will be “visible” to a new DP that c-commands
it from outside its local domain. This is in accord with the principles of Binding
Theory and matches hygiene conditions for the substitution of variables in first
order formulae. The set of free variables associated to node IP faithfully reflects
this. In the coreferential approach, additional redundant relations F would have to
be computed between himself and any other DP c-commanding them until the end
of the computation, no matter how deeply embedded in the phrase-marker, and
would ultimately result in several redundant “forbidden coreference conditions” in
the final semantic representation. All this useless computational overhead grace-
fully disappears by adopting this approach. This was not the case for previous
approach, for which it was necessary to stipulate that a DP c-commanding a re-
flexive from outside its local domain didn’t perform any operation on it.

Natural implementation of Principle C. This approach smoothly imple-
ments the conclusions issued from the discussion in section 4.4.3 about principle
C. We know that full-DPs, when c-commanded, do not trigger any QR operation.
But this is exactly what happens if we limit our attention to free variables in τB

when it functionally applies to type e τA. Since a full-DP is never interpreted as
a variable this amounts to say that they become totally invisible to other DPs c-
commanding them because they’ll never enter the set FV(n). The only c-command
relations that are of interest to this refined interpretation process are those which
get established between a type e DP τA and each of the variables occurring in
FV(τB), that is the set of free pronouns, both reflexive or not, and traces.

From c-command to functional application. From the treatment of bind-
ing principles we have sketched so far, we get a new perspective on the nature
and role of the c-command relation. In the original formulation of Binding Theory
in the coreferential framework, c-command as a structural necessary condition for
binding comes as a stipulation. The treatment of Binding Principles that we have
sketched replaces such a stipulative structural approach with a more naturally
semantic one. C-command is not explicitly stated anymore as a condition on bind-
ing, but it simply derives from the overall structure of the algorithm. We’re not
looking for c-command relations anymore, at least explicitly, but for relations that
get established when a type e DP occurs as the argument of a predicate which
contains other “free entities”. This point will be further developed in section 4.5.

An important point where the correspondence between variables in logical for-
mulae and pronouns in natural language sentences falls short is given by the notion
of binding domain for the latter. There is no such a thing as a binding domain in
first order logical formulae (essentially, because logical binding is not a 2-places
relation as is semantic binding). For the time being we stick to the assumption
made in section 4.2 that we have a black box predicate local(τ, n1, n2) which re-
turns TRUE if nodes n1 and n2 belong to the same local domain in τ , and FALSE
otherwise.
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4.4.5 Algorithm’s Outline

The interpretation algorithm takes as input a generative parse tree τs associated
to a given sentence s. It returns a set S of semantic representations, each corre-
sponding to a possible reading for the sentence according to the interpretation of
Binding Theory principles given by Reinhart and detailed in sections 3.3 and 4.4.

The algorithm integrates the usual computations involved in the semantic inter-
pretation process that we presented in chapter 2. It inductively proceeds bottom-
up, by computing the logical form of a branching node n from the semantic repre-
sentations of its children nodes n1 and n2. Logical forms of the leaves are directly
provided in the lexicon for non-pronoun constituents. There are two basic steps at
the core of the new interpretation process:

• each occurrence of a pronoun in the phrase-marker is translated into a fresh new
variable; non-reflexive pronouns are translated as standard variables identified
by the usual letters xi, reflexive pronouns as “starred” variables x∗

k;
• as the semantic interpretation proceeds bottom-up, QR may be triggered to

generate a semantic binding between two type e DPs occurring in the phrase-
marker, therefore restructuring it.

From section 4.4.3 we know that the interpretation process generates bound vari-
able readings whenever it’s possible. In order to do that the algorithm starts by
assigning different variables to every occurrence of a pronoun (thus de facto mak-
ing any semantic binding impossible), and then when it detects a configuration
that asks for an application of principle A or principle B it generates a bound
variable reading by means of QR. Technical implementation details follow in the
next section.

Rearranging the parse tree

The core of the interpretation algorithm lies in additional semantic computations
that parallel the usual process of semantic interpretation as described in chapter
2. These computations are performed on the parse tree in correspondence to a
specific configuration, that is when a type e DP A is combined with a (n-ary)
predicate B. From a semantic point of view, that means that τe→T

B gets applied
by functional application to τe

A. Since τA is of type e it cannot but act as the
argument, and τB as the functor. New c-command relations between type e DP
constituents that get established at the stage can trigger a restructuring of the
parse tree by means of applications of Quantifier Raising (for an explanation of
why QR applies at this point, see our discussion in section 4.4.3).

When τB gets applied to τA by means of functional application, new c-command
relations get established between τA (which corresponds to the c-commanding DP)
and every variable occurring free in τB (corresponding to the c-commanded free
pronouns or still unbound traces). More explicitly, when we have Ae · Be→τ =
Ae · λxe.T (x)τ , for each z ∈ FV(B) = FV(T ) − {x}, we distinguish the following
situations:

1. z is a starred free variable, that is z = y∗
i and therefore B = λx.T (. . . , x, . . . , y∗

i , . . .).
Two further subcases are possible:
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a) local(τ, A, y∗
i ) = TRUE. We apply QR to A within the parse tree, and we

copy y∗
i in the position. Otherwise stated, we create a new parse tree in

which the term A · B is replaced in the following way:

A·B = [λx.T (. . . , x, . . . , y∗
i , . . .)](A)

QR
=⇒ [λy∗

i .[[λx.T (. . . , x, . . . , y∗
i , . . .)](y∗

i )]](A)

A is Quantifier Raised and it leaves a trace whose semantic interpretation
is a variable which is a copy of the free variable that triggered the QR, in
this case y∗

i . In the notation of phrase-markers3:

A λx.T (. . . , x, . . . , y∗
i , . . .)

QR
=⇒

A

i

y∗
i λx.T (. . . , x, . . . , y∗

i , . . .)

b) local(τ, A, y∗
i ) = FALSE. The computation fails.

2. z is a normal free variable, that is z = yj and B = λx.T (. . . , x, . . . , yj, . . .).
a) local(τ, A, yj) = TRUE. The algorithm does not do anything: principle B

forbids bound variable interpretation, and this is trivially implemented by
default different variables assigned to different pronouns (semantic binding
requires at least two variables occurring in a logical form to be equal, and
bound by the same lambda operator).

b) local(τ, A, yj) = FALSE. In addition to the default non-bound variable
reading provided by default by the algorithm we add a new reading in
which parse tree τ has been replaced by quantifier raising like in the pre-
vious case.

Let’s analyze each of the four cases in detail.
Case 1a corresponds to a configuration in which the type e DP A c-commands

a reflexive pronoun, whose semantic interpretation is the (for now) free variable
y∗

i , and they both belong to the same local domain. According to principle A,
in this configuration there must be semantic binding between τA and y∗

i . From
section 4.4.3, we know that to get this reading we have to replace the DP with a
variable, identify it with the variable corresponding to the c-commanded pronoun,
and bind both of them by means of the same lambda operator. The only way to
achieve that is by restructuring the parse tree via an application of QR over A. A
is QR’d to a higher position in the tree, leaving a trace which is mapped into the
variable y∗

i . The outcome of this operation is that the same variable now occurs
in two different positions within B, bound by the same lambda operator, which is
precisely the definition of semantic binding that we wanted to implement in this
case:

[λx.T (. . . , x, . . . , y∗
i , . . .)](A)

QR
=⇒ [λy∗

i .[[λx.T (. . . , x, . . . , y∗
i , . . .)](y∗

i )]](A) =

(β-reduction) = [λy∗
i .T (. . . , y∗

i , . . . , y∗
i , . . .)](A) =

(β-reduction) = T (. . . , A, . . . , A, . . .)

3 For sake of clarity and where this does not generate confusion, we often mix the
denotation of phrase-markers with the semantic representations of their nodes.
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In our system, QR is strictly a local movement: the landing site must necessarily
fall immediately before the boundary of the local clause. This assumption, not
uncontroversial in linguistics, is relatively well grounded from an empirical point
of view (see [57]).

Case 1b models the situation in which the type e DP A c-commands a reflexive
pronoun but they do not belong to the same local domain. From the discussion
of section 4.4.4, we know that if the starred variable y∗

i belongs to the set FV(B),
but A does not belong to the same local domain as the reflexive pronoun whose
interpretation is y∗

i , it means that y∗
i didn’t get bound within its local clause (we

recall that as soon as a pronoun gets bound its denotation disappears from the
set of free variables associated to the logical form of the phrase-marker). This is a
violation of principle A that makes the computation fail.

In 2a we have a type e DP A c-commanding a non-reflexive pronoun from
within the same local domain. According to principle B, there cannot be a bound-
variable reading between the two DPs. This is trivially implemented by the fact
that the algorithm assigns a fresh new variable to each occurrence of a pronoun.
Unless otherwise stated, no binding can occur between two distinct variables, and
the algorithm does not perform any special operation, the only correct reading
being the one without semantic binding between A and the non-reflexive pronoun.

In configuration 2b a type e DP c-commands a non-reflexive pronoun from
outside its local domain. In Reinhart’s interpretation of BT, principle B in this
case licenses both free and bound variable readings between the two DPs. The
former is provided by default by assigning a new variable to each occurrence of a
pronoun, as in case 2a. The latter is generated by means of the same QR mechanism
described in 1a.

4.4.6 Basic Examples

We provide some examples of how the algorithm works relatively to some basic
configurations. For didactic purposes, we explicitly decorate the nodes of the tree
with the corresponding semantic representations (although in general they are sets
of lambda terms instead of a single one) and with the set of free variables occurring
in the corresponding subtree.

(19) s: John likes himself

τs =

IP

John VP

likes himself

τj = john : ∅ τlh =

λx.like(x, x∗
1) : {x∗

1}

λyλx.like(x, y) : ∅ x∗
1 : {x∗

1}

Trees τj and τlh are the results of first stages of bottom-up computations, where
no c-command relation holds between type e nodes of the tree. In order to get the
full semantic representation of the sentence we have to compute τjlh = τj ·τlh. Tree
τj if of type e, so we are in the situation described in the previous section. Since
FV(τlh) = {x∗

1} and local(τjlh, john, x∗
1) = TRUE this is an example that must
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be dealt with by case 1a: therefore QR is triggered over john, leaving x∗
1 variable

as its trace.

τjlh =

like(john, john) : ∅

john : ∅ λx∗
1.like(x∗

1, x
∗
1) : ∅

1 like(x∗
1, x

∗
1) : {x∗

1}

x∗
1 : {x∗

1} λx.like(x, x∗
1) : {x∗

1}

λyλx.like(x, y) : ∅ x∗
1 : {x∗

1}

Tree τjlh is the result of the new definition of functional application between
trees τj and τbh. The fact that one of the two arguments is a DP triggers
the operation described in the previous section, which corresponds to a Quan-
tifier Raising for the DP John in the phrase-marker. The resulting logical form
[λx∗

1.like(x∗
1, x

∗
1)](john) = like(john, john) is the only acceptable for s.

(20) s: John likes him

τs =

IP

John VP

likes him

τj = john : ∅ τlh =

λx.like(x, x1) : {x1}

λyλx.like(x, y) : ∅ x1 : {x1}

In this case, in computing τjlh = τj · τlh the algorithm detects the situation de-
scribed at point 2a: local(τjlh, john, x1) = TRUE. According to principle B, no
semantic binding must be generated between John and him, so QR must be blocked
in the present configuration. The parse tree does not get rearranged and the se-
mantic interpretation process goes on the standard way:

τjlh =

like(john, x1) : {x1}

john : ∅ λx.like(x, x1) : {x1}

λyλx.like(x, y) : ∅ x1 : {x1}

The standard logical form like(john, x1) is then computed for the sentence.

(21) s: John thinks that he likes him.
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τs =

IP

John VP

thinks IP

he VP

likes him

τhlh =

like(x1, x2) : {x1, x2}

x2 : {x2} λx.like(x, x1) : {x1}

λyλx.like(x, y) : ∅ x1 : {x1}

As an application of principle B, the interpretation algorithm must guarantee
that no binding occurs between he and him. Besides this constraint, nothing is
stated so the interpretation algorithm generates semantic binding whenever possi-
ble: namely, between John and he, and between John and him. So we expect as the
output of the interpretation process three readings: one in which John binds he,
one in which John binds him, and one in which John binds neither of them. The
computation of parse tree τhlh for the fragment he likes him requires a functional
application step between the type e DP he and VP likes him, which falls under the
2a case, and as such it does not entail any binding between he and him. Without
loss of generality, we forget about intensional subtleties introduced by the opaque
context created by verb think and we assume that the semantics for the fragment
thinks that he likes him is given by τthlh:

τthlh =

λx.think(x, like(x2, x1)) : {x1, x2}

λSλx.think(x, S) : ∅ like(x2, x1) : {x1, x2}

x2 : {x2} λx.like(x, x1) : {x1}

λyλx.like(x, y) : ∅ x1 : {x1}

The semantic representation for s is given by τjthlh = τj · τthlh, where the type e
DP John gets combined by functional application with the VP thinks that he likes
him. In this case the DP John c-commands both elements of the set {x1, x2}, with
local(τjthlh, john, x2) = FALSE and local(τjthlh, john, x1) = FALSE. Accord-
ing to point 2b, for each of the free pronouns that occur in τthlh an additional
reading must be created in which John binds it, in addition to the default reading
in which no semantic binding occurs at all.
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τjthlh =

think(john, like(x2, x1)) : {x1, x2}

john : ∅ λx.think(x, like(x2, x1)) : {x1, x2}

λSλx.think(x, S) : ∅ like(x2, x1) : {x1, x2}

x2 : {x2} λx.like(x, x1) : {x1}

λyλx.like(x, y) : ∅ x1 : {x1}

The semantics for τjthlh is compatible with the situation in which John, he and
him can refer (although not necessarily) to three distinct individuals.

The algorithm generates an additional reading to account for optional bind-
ing between DP John and pronoun him, that is between john and x1. Since
local(τjthlh, john, x1) = FALSE, we are in a situation which falls under point
2b. This triggers QR for John, leaving x1 as a trace, resulting in τ ′

jthlh:

think(john, like(x2, john)) : {x2}

john : ∅ λx1.think(x1, like(x2, x1)) : {x2}

1 think(x1, like(x2, x1)) : {x1, x2}

x1 : {x1} λx.think(x, like(x2, x1)) : {x1, x2}

λSλx.think(x, S) : ∅ like(x2, x1) : {x1, x2}

x2 : {x2} λx.like(x, x1) : {x1}

λyλx.like(x, y) : ∅ x1 : {x1}

Parse tree τ ′
jthlh corresponds to a reading in which John and him are the same

individual, and that there is a (possibly) distinct singular male individual by whom
John thinks to be liked.

The last reading, in which John thinks to like someone else (male, singular), is
generated in an analogous way, always according to point 2b. The only thing that
changes is that QR leaves a variable which corresponds to he instead of him, that
is the trace left is x2 instead of x1, and the abstraction is made on that variable.
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think(john, like(john, x1)) : {x1}

john : ∅ λx2.think(x2, like(x2, x1)) : {x1}

2 think(x2, like(x2, x1)) : {x1, x2}

x2 : {x2} λx.think(x, like(x2, x1)) : {x1, x2}

λSλx.think(x, S) : ∅ like(x2, x1) : {x1, x2}

x2 : {x2} λx.like(x, x1) : {x1}

λyλx.like(x, y) : ∅ x1 : {x1}

As it is apparent from the example, in no case we can end up with a bound variable
reading between the two pronouns he and him, as expected.

One last variation is worth considering for this sentence schema, that is when
the sentence is John thinks that he likes himself. In this case we want to end up
with only two readings: one in which John thinks that he has the property of liking
himself, and another in which he believes that a (possibly distinct from him) male
singular individual has that same property. We easily verify that our algorithm
yields both desired readings, and only them.

(22) s: John thinks he likes himself

The computation generates in a bottom-up fashion the parse tree τhlhs for the
fragment he likes himself. When composing by functional application he and likes
himself it comes across a 1a case which triggers QR for he. The result is τhlhs:

τhlhs =

like(x2, x2) : {x2}

x2 : {x2} λx∗
1.like(x∗

1, x
∗
1) : ∅

1 like(x∗
1, x

∗
1) : {x∗

1}

x∗
1 : {x∗

1} λx.like(x, x∗
1) : {x∗

1}

λyλx.like(x, y) : ∅ x∗
1 : {x∗

1}
This is the only possible reading for the fragment he likes himself. So the seman-
tics for the VP thinks that he likes himself is τthlhs = λx.think(x, like(x2, x2)),
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with FV (τthlhs) = {x2}. The resulting semantic representation for the full sen-
tence comes from the functional application of DP John to VP thinks that he
likes himself. The algorithm detects a c-command relation between john and the
only free variable in τthlhs, that is x2. We have that local(τjthlhs, john, x2) =
FALSE, therefore we are in case 2b. This means that on one hand the algo-
rithms generate a logical form without semantic binding, which corresponds to
the simple functional application without QR, and that generates the logical form
think(john, like(x2, x2)) corresponding to τjthlhs:

τjthlhs =

think(john, like(x2, x2)) : {x2}

john : ∅ λx.think(x, like(x2, x2)) : {x2}

on the other hand the algorithm generates an additional reading in which semantic
binding occurs between john and x2, yielded by the following tree issued from QR:

τ ′
jthlhs =

think(john, like(john, john)) : ∅

john : ∅ λx2.think(x2, like(x2, x2)) : ∅

2 think(x2, like(x2, x2)) : {x2}

x2 : {x2} λx.think(x, like(x2, x2)) : {x2}

4.4.7 Observations

In switching from the coreferential interpretation of the principles of Binding The-
ory to Reinhart’s bound variable approach we gained some important insights,
both conceptual and computational.

The algorithm sketched in section 4.3 aims at encoding in the final semantic
representation for the sentence a set of constraints on the denotations of the en-
tities involved. Under many respects, it is a plain translation of the stipulations
of classical Binding Theory into an inductive computational framework. However,
the technical implementation showed some important shortcomings from an algo-
rithmic point of view. Such limits and complications were taken as clues that the
conceptual approach behind the algorithm was somewhat flawed.

By contrast, the semantic interpretation procedure just presented is driven by
the need to generate all possible readings of a sentence, in particular to recover
and explicit bound-variable readings between pairs of DPs that happen to be in
a c-command relation. We conjectured that the way by which the interpretation
algorithm generates such readings is a specific application of Quantifier Raising.
QR is in general triggered every time the algorithm detects an unbound pronoun
or trace c-commanded by another type e DP. We may say that its goal is to equate
variables and bind them by the same lambda operator. QR is the operation by
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which this effect is achieved. Such a general computational principle, together
with a computationally reasonable assumption of cyclicity naturally accounts for
dropping principle C.

The correspondence between pronouns and variables in lambda calculus has
proved to be a fruitful one. Not only free pronouns in a natural language sentence
seem to behave like free variables in a formula in a logical language; but the
behavior of semantically bound pronouns in the sense of Reinhart’s approach to
Binding Theory closely reminds of the behavior of bound variables in the sense of
standard logic. This is not trivial if we consider that the two notions of binding
have evolved independently within two domains that didn’t show any particular
connection up to the work of Montague and the birth of modern formal semantics
for natural language.

What is most interesting to us is that this correspondence seems much more
natural if we adopt Reinhart’s approach to Binding Theory. By giving up to a
vision in which Binding Principles rule the relationship between linguistic entities
and real world denotations to embrace one in which they rule an internal, purely
formal notion as semantic binding, we obtain a much more elegant computational
framework. The other way round, such kind of computational elegance justifies
on computational ground the idea that BT principles deal with the purely formal
property of semantic binding instead of mutual coreference relations between DPs
occurring in a sentence.

It must be said however that we apparently give up some information that the
coreferential approach seems to give us: at the present stage of implementation,
in this approach we can’t account anymore for the fact that, except for quite
exceptional contexts, when a human speaker utters the sentence John blames him,
he wants to convey the idea that John blames some male individual distinct from
himself. A computationally acceptable solution to this problem will be provided
in section 4.5.

Just like good software engineering is more about correctly devising smart
architectures for accomplishing a task, than about accomplishing the task in itself,
so we believe that Reinhart’s approach, and our computational implementation,
represent a progress in devising a computational model of an optimal division of
labor between different levels, or layers, of human language faculty.

In particular we believe that by pushing even further the connection between
pronouns and variables, and that between binding in syntax with binding in logic,
we can gain even better understanding and better algorithms. One notion that
stubbornly resists our inductive approach is the notion of binding domain. Lin-
guistic literature about Binding Theory still lacks a satisfactory definition of local
domain for a pronoun which both has empirical coverage and nice inductive def-
initions. If the connection with logics has been a good guide until now in giving
us a better algorithm and provide further evidence that Reinhart’s approach is a
better one with respect to the classical, coreferential one, it makes sense to ask
ourselves what is the notion that correspond to local domain in logic. The an-
swer, we believe, leads quite naturally to an implementation of Binding principles
which integrates some of the key intuitions of Chomsky 1981, Reinhart 1983, and
Reinhart and Reuland 1993, which is the object of next section.



4.5 An Integrated Approach to Binding Theory

In this section we depart from the somewhat mechanical task of faithfully imple-
menting different linguistic interpretations to Binding Theory, to move towards
integrating in a unified computational framework features drawn from each of
them, which are combined to overcome each other’s shortcomings. The result is an
original integrated algorithmic treatment of Binding Theory which is both com-
putationally viable and linguistically well-grounded, based as it is on the major
insights of last 30 years of linguistic enquiry on this matter.

Our computational approach is particularly indebted with two of the most
influential interpretations of Binding Theory. We owe to Reinhart’s approach of [50]
the divorce of binding principles from coreferentiality issues, and the idea that
the latter should be dealt with at a pragmatic/discourse theory level. From a
technical point of view, we inherit from our implementation of section 4.4 the idea
that the semantic interpretation algorithm must be modified to generate whenever
it’s possible bound-variable readings between pairs of type e DPs occurring in c-
command positions in a phrase-marker. The main difference with the previous
approach lies in the fact that the generation of such readings is “blind” to binding
domain boundaries.

In the previous sections we sketched two algorithmic approaches to integrate in
the semantic interpretation process the principles of Binding Theory. They were
directly inspired in one case (section 4.3) by the classic coreferential approach
of Chomsky and Lasnik, and in the other (section 4.4) by Reinhart’s “bound-
variable” interpretation. What they both lack is a neat computational treatment
of the notion of binding (or local) domain for a pronoun: in section 4.2 we made
the (strong) assumption that we can always tell by means of a binary predicate
local whether two pronouns occurring in the same parse tree belong to the same
local domain or not. We didn’t delve deeper into the technical details of the im-
plementation of such a decision procedure to concentrate on the formal machinery
to generate the final semantic representations. The problem is that we still lack a
satisfactory characterization of the notion of local domain which guarantees both
empirical coverage and a simple inductive characterization. Reinhart and Reu-
land of [53] and [54] allow us to (partially) overcome this basic flaw by replacing
the syntax-based, computationally unappealing notion of local domain with the
semantics-based criterion of co-argumentality (i.e. one in which the fact that two
DPs are the arguments of the same predicate plays a decisive role). By integrating
their main insights on structural constraints on the reflexive nature of predicates,
we are able to filter the unacceptable readings that might be generated during the
previous phase without resorting to any definition of binding domain.

Another important issue, raised by the implementation of Reinhart’s approach
in section 4.4, was left unaddressed. Reinhart’s “economy principle” encoded by
Rule I (see section 4.4.2) translates algorithmically into an instantiation of an
NP-complete problem of complexity theory. With the help of the insights that
come from Reinhart and Reuland’s approach we are able to address and solve this
problem in computationally tractable terms.
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4.5.1 Reinhart and Reuland’s “Reflexivity” approach

In their 1993 article “Reflexivity” [54], Reinhart and Reuland operate a major
shift in the interpretation of Binding Theory principles. They advocate a radi-
cally more semantic approach, grounded on the notions of reflexive predicate and
reflexive-marker. Their proposal amounts to a return to a more traditional view
of anaphora phenomena, according to which conditions A and B govern the well-
formedness of the interpretation of reflexive predicates in natural language, instead
of coreferentiality or semantic binding between DPs. We shortly recall here the ba-
sic definitions and conditions A and B, presented in greater detail in section 3.4:

Reflexive predicates. A predicate P is reflexive if and only if two of its argu-
ments are identical, as in λx.P (. . . , x, . . . , x, . . .).

Reflexive-markedness. A predicate P is reflexive-marked if and only if either
P is lexically reflexive or one of P ’s arguments is a SELF-anaphor.

(23) a. Johni admires himselfi
b. *Johni admires himi

The predicate admire in (23-a) is reflexive because two of its arguments are nec-
essarily identical, while clearly this is not the case for (23-b). The semantic struc-
ture of the predicate in (23-a) is indeed λx.admire(x, x), while for (23-b) it’s
λxλy.admire(y, x). In the former the variables corresponding to subject and ob-
ject arguments are identical, in the latter they are not. Note that nothing prevents
the values that will saturate variables at the interpretation phase from being iden-
tical, like in [[λxλy.admire(y, x)](john)](john) = admire(john, john).

On the basis of these two notions, Reinhart and Reuland redefine traditional
Binding Theory principles as the two following conditions:

Condition A. A reflexive-marked predicate is reflexive.
Condition B. A reflexive predicate is reflexive-marked.

The basic idea is that a universal property of natural language is that reflex-
ivity of a predicate must be explicitly licensed at the morphosyntactic level. A
predicate can be reflexive only if it is linguistically marked as such and the only
two available ways to mark reflexivity are marking the predicate’s head (which is
the case for intrinsically reflexive predicates like, for example, English verb wash in
its intransitive use), or marking one of the arguments by using a reflexive pronoun.
In (23-a) the predicate is reflexive and the presence of a reflexive pronoun as one
of its arguments marks it as reflexive. Both condition A and condition B are thus
met. In (23-b), on the contrary, the predicate is reflexive (coindexing here encodes
the fact that its two arguments are identical) but nothing in morphology or syn-
tax marks it as reflexive-marked. The violation of condition B therefore makes the
semantic interpretation fail.

For our computational purposes, what is particularly interesting is that this
new approach makes no use of configurational relations like c-command and bind-
ing domain. Binding conditions are expressed strictly as conditions on reflexive
predicates and their reflexive-markedness, regardless of their internal structure.
This remarkable change in perspective eliminates one of the major drawbacks of
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our previous approaches, that is the algorithmic implementation of the notion of
local domain for a Determiner Phrase.

Condition A in this new formulation establishes a correspondence that goes
from the syntactic level to the semantic one: any predicate marked as reflexive
at the syntactic level must translate into a semantically reflexive one, i.e. one in
which at least two of its arguments are identical and bound by the same lambda
operator.

Condition B works the other way round, from semantic to syntactic level: any
semantically reflexive predicate must derive from a reflexively marked syntactic
predicate. Such kind of constraint will be implemented twofold. On the one hand,
as in section 4.4.5, every occurrence of a pronoun in a sentence will be mapped
into a fresh new variable. This ensures that the predicates that are used during
the semantic computation of an arbitrary sentence are going to be considered by
default non-reflexive (since there are no two occurrences of the same variable) and
can be made reflexive only by an explicit mechanism triggered by condition A
(predicate marked as reflexive). On the other hand, we establish a well-formedness
criterion on the logical forms yielded by the semantic computation that prevents
our system from generating semantic representations in which predicates which
are not reflexive-marked in the syntax are used reflexively. Conditions A and B
together establish a bijection between reflexive predicates at the semantic level
and reflexive-marked predicates at the syntactic level.

We basically adhere to the idea of Baauw and Delfitto [2] to consider Principle
B as an interface filter that prohibits arity reduction in syntax. The idea is that
a relation (i.e. a two-place predicate) cannot be reduced to a property (i.e. a one-
place predicate) as a result of the operations performed within the computational
system underlying human language, or in the course of the interpretation process,
unless it is already marked as a property in the lexicon. A sentence like John
likes him cannot be interpreted as [λx.like(x, x)](john) since this interpretation
entails that the relation JlikesK = λxλy.like(y, x) would have been converted into
a property without explicit license at the morphosyntactic level by means of a
reflexive marker.

4.5.2 Additional apparatus

In order to implement a computational treatment of Binding Theory which inte-
grates the basic insights of Reinhart and Reuland’s approach, we need to slightly
enrich our logical language with some additional formal apparatus and suitable
interpretation constraints.

We distinguish in our logical language three kinds of variables: regular variables
xi, (reflexive-)marked variables x∗

j , and logophoric variables xσ
k . Non-reflexive pro-

nouns and reflexive pronouns can be identified as such on the basis of morphosyn-
tactic features: therefore, non-reflexive pronouns are immediately translated into
regular variables and reflexive pronouns into marked variables. The mark ’*’ can
be considered as a particular feature of the variable among others (like gender
and number) that we highlight because it plays a specific role in our semantic
computations. Logophors are seen in our approach as reflexive pronouns which
fail to mark as reflexive the predicate in which they occur (we’ll detail in sec-
tion 4.5.3 under which conditions this happens). Logophors are morphologically



98 4 Towards an Integrated Computational Approach to Binding Theory

indistinguishable from reflexives, so at first they will be translated into our logical
language as reflexive-marked variables. They are identified as logophors (and thus
turned into σ-marked variables) at a later stage of the interpretation procedure.

Every predicate P of our logical object language comes either in a normal
or a (reflexive-)marked version. Let P be a syntactic n-ary predicate and P its
logical form translation (i.e. such that JPK = λx1 . . . λxn.P (x1, . . . , xn)). If P is an
intrinsically reflexive predicate, or if one of its arguments is a reflexive pronoun,
its denotation gets marked as P ∗. Reflexive pronouns reflexive-mark any predicate
in which they occur as one of the arguments.

Reflexive-marking of a predicate by a reflexive-marked argument.
When a predicate P is applied to a reflexive-marked variable x∗

i , the variable
passes its mark to the predicate:

[λx.P (x1, . . . , x, . . . , xn)](x∗
i ) = P ∗(x1, . . . , xi, . . . , xn)

The reflexive mark of a predicate is a meta symbol that imposes the following
well-formedness constraints on the logical structure of a predicate:

Constraint 1: let P be a syntactic n-ary predicate; if

JPK = λx1 . . . λxn.P ∗(x1, . . . , xn)

then there exists a variable xi that occurs at least twice in the signature of the
predicate; that is there exists an i such that

JPK = λx1 . . . λxi . . . λxn.P ∗(x1, . . . , xi, . . . , xi, . . . , xn).

If no such i exists, the interpretation procedure fails.
Constraint 2: for no i do we have that

JPK = λx1 . . . λxi . . . λxn.P (x1, . . . , xi, . . . , xi, . . . , xn)

If such an i exists, the interpretation procedure fails.

Constraint 1 translates into our language, enriched with reflexive-marked predi-
cates and variables, Reflexivity’s Condition A, according to which every reflexive-
marked predicate must be reflexive. If a predicate is reflexive-marked at the mor-
phosyntactic level, its semantic counterpart must be a reflexive predicate; if it’s
not, the semantic computation fails. We will see in the following sections how this
constraint is verified by construction during the interpretation process of a sen-
tence. In short, for every n-ary predicate occurring in a sentence, we generate a
corresponding logical form in which two of its arguments are identical and bound
by the same lambda operator, thus making the predicate reflexive. For example,
as we will see in section 4.5.8, in processing the sentence John likes himself our in-
terpretation procedure will generate both the logical form [λx.like∗(x, x)](john)
and like∗(john, x). The former meets both Constraint 1 and Constraint 2 and is
accepted; the latter violates Constraint 1 and is therefore ruled out.

Constraint 2 implements Reflexivity’s Condition B: if a predicate is reflexive, it
must be reflexive-marked. If we consider the inverse implication, this is equivalent
to stating that in an unmarked predicate there are no pairs of identical arguments:
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if every reflexive predicate must be reflexive-marked in the syntax, no unmarked
predicates can be reflexive. If one is, the logical form must be considered ill-formed
and the interpretation procedure fails. Constraint 2 acts as a filter to rule out
reflexive logical forms which may be blindly generated out of non reflexive-marked
syntactic predicates. As will be made clear in section 4.5.7, for a sentence like
John likes him our algorithm blindly generates both [λx.like(x, x)](john) and
like(john, x) as its possible semantic translations. However, the first contains a
reflexive predicate which is not reflexive marked: therefore it does not comply with
Constraint 2 and it is discarded.

The mark on denotation of predicates is a simple device to keep track of where
the semantic predicate comes from (either from a reflexive-marked syntactic pred-
icate or not). A predicate which is not issued from a reflexively-marked syntactic
predicate cannot be reflexive, that is, the same variable cannot occur twice among
the arguments of a predicate. We are not aware of the existence of more than
3-place predicates either in syntax or semantics: this means that we can make the
assumption that the arity of the predicates we will be dealing with is at most 3.
Such kind of check can thus be easily performed in constant time.

4.5.3 Logophors

As we have anticipated in section 3.4, not every occurrence of a reflexive pronoun
yields reflexive-marking for the predicate in which they occur. When this does not
happen, we say that the reflexive pronoun is used as a logophor, and we explicitly
mark such a use of reflexive pronouns in our logical language. Logophors can be
seen as reflexive pronouns used as a special kind of DPs, which carry their own
interpretative features which are ruled by discourse theory or pragmatic criteria.

Our computational treatment of logophors is inspired by Reuland [55]. Infor-
mally stated, if in interpreting a reflexive pronoun α the regular semantic strategy
is blocked, the interpretation of α by directly accessing the knowledge base be-
comes available. This is what happens (i) when an anaphor is embedded in a larger
argument and does not occur as a direct argument of a predicate and (ii) when
α occurs as the only argument of a unary predicate. In Reuland’s words, in both
of these configurations “a chain between DP and an anaphor in the position of α
cannot be formed in principle. It follows that there is no way to encode a depen-
dency between α and a possible antecedent in the syntax. This opens the way for
a pronominal interpretation of α”.

We say that in such a configuration a reflexive-marked pronoun fails to
reflexive-mark the predicate it occurs within and in our system its logical form
is turned into a σ-variable. Such variables implement the logophoric use of reflex-
ive pronouns in our system. Actually, they’re not real variables since they cannot
be bound: as logophoric, they come with interpretation constraints on their own
that depend on the context of utterance of the sentence.

Logophoric use of reflexives.
When a reflexive-marked variable gets semantically combined in any other
contexts than as the argument of a n-ary predicate, with n ≥ 2, it’s turned
into a σ-variable: β = JαK · x∗

i = JαK · xσ
i
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4.5.4 On Rule I

The system we presented in section 4.4 was faced with a linguistic property that
it couldn’t account for in computational terms, namely that a sentence like John
likes him, when uttered in a normal context (and not a “pathological” one like Os-
car sentences), means that John likes some singular male individual different from
himself. By choosing to adhere to Reinhart’s view of Binding Principles as only gov-
erning semantic binding instead of imposing denotational constraints on DPs, we
implemented an inductive procedure that generates the logical form like(john, x)
as the only semantic representation for the sentence. However, we were left in the
dark about the efficient implementation of a computational criterion that favors
assignments for x such that x is not mapped into john. This is the kind of ev-
idence that Reinhart in [50] accounts for by introducing Rule I. In section 4.4.2
we have seen why her solution is not viable from a computational point of view,
and therefore this fundamental issue was put on hold in our implementation of
Reinhart’s approach in section 4.4. The computational system described in sec-
tion 4.3 explicitly forbade coreference within such contexts, but at the price of
a cumbersome additional apparatus for the semantic representations and several
computational redundancies.

Now the constraints on the well-formedness of predicates introduced in section
4.5.2 enable us to propose a solution which is both computationally feasible and
linguistically motivated, with some far-reaching consequences that we are going to
detail in the following sections.

Let’s consider the basic example quoted at the beginning of this section, to-
gether with two possible logical forms:

(24) a. John likes him.
b. [λx.like(x, x)](john)
c. like(john, x)

In example (39) we detail how the basic version of our algorithm generates
“blindly” both (24-b) and (24-c) as possible semantic representations for (24-a).
We stipulate that the two readings are generated in a specific order, namely, that
the bound-variable reading is generated first. This can be justified on the basis
of “economy” principles: semantic binding is an internal, purely formal device of
the computational system of human language, and as such one which is likely to
be less computationally demanding than the “coreferential module” which may be
responsible for the free variable reading (this is also the position endorsed by Reu-
land [55]). In the case of sentence (24-a), this means that (24-b) is generated first
by the algorithm. Since predicate like does not bear the reflexive mark, and two of
its arguments are identical variables, this logical form is deemed unacceptable on
the basis of principle B (i.e. a violation of Constraint 2 of section 4.5.2). We push
this unacceptability judgement a little further. By a single step of β-reduction we
get:

(25) [λx.like(x, x)](john)
β

=⇒ like(john, john)

Since the left-hand side of (25) has been found unacceptable as a semantic reading
for (24-a), it makes perfectly sense to infer the unacceptability of the right-hand
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side as well, which is obtained from (24-b) by means of an elementary operation
of lambda calculus (β-reduction in this case). We state the following rule:

Unacceptability of β-reduced logical forms.
Let s be a (fragment of a) sentence, α = JsK, and β the denotation of a
DP occurring in s. Let α′ the result of applying QR over β in α, that is
α′ = [λx.α(x)](β). If [λx.α(x)](β) is unacceptable as a logical form for s, α(β)
must be considered unacceptable as well.

The intuitive idea is that if, by applying Quantifier Raising over a DP occurring
in a given sentence, we end up generating a logical form α′ which does not comply
with Constraints 1 or 2 from section 4.5.2, such unacceptability judgement must
be extended to the logical form obtained from α′ via a single step of β-reduction.
Simply-typed lambda calculus (on which our elementary semantics is grounded)
being strongly normalizable (see [23]), we know that the β-reduction step always
terminate.

Furthermore, we assume that any unacceptable reading α′ generated during
the computation is stored in a working memory D that can be accessed by the
cognitive system at any time. This will be used to constrain possible assignment
functions applied to free variables in the correct logical form γ for the sentence.

Let’s get back to (24-a). Since the interpretation process has detected a viola-
tion of Constraint 2 for (24-b), the algorithm goes on with the alternative deriva-
tion, which leads to compute (24-c) as the possibly correct logical form. In (24-c)
predicate like is neither reflexive-marked nor reflexive, therefore no violation of
Reflexivity Condition A or B occurs and this logical form is accepted.

We’re now faced with the problem of explaining why any assignment g for
(24-c) such that g : x 7→ john must be considered as undesirable for (24-a), and
how to implement that in computational terms. The answer, we believe, lies in the
fact that like(john, john) is a logical form which has already been excluded as
a possible reading for (24-a) because it is the result of β-reduction applied to an
incorrect logical form, as shown in (25), and as such it is already stored in the set
D of “forbidden logical forms”. Any assignment g such that x 7→ john makes the
open formula (24-c) “precipitate” into like(john, john), which belongs to D =
{[λx.like(x, x)](john), like(john, john)} and therefore it is unacceptable. We
formalize our informal observations on the constraints for the assignment function
as follows:

Unacceptable assignments rule.
Let s be an expression with the set Ds of forbidden logical forms associated,
and α a logical form such that JsK = α. Then any assignment function g such
that αg ∈ Dg

s is not acceptable4.

Our approach is based on reasonable cognitive assumptions: the logical form in-
volving semantic binding must be generated first, and if a logical form is recognized
incorrect any other one derived from it by a single step of β-reduction is consid-
ered incorrect as well. This accounts for the restrictions on the assignment for free
variables: it wouldn’t make any linguistic sense to reject on the basis of “reflexivity

4 Quite intuitively, we indicate with Dg
s the set of logical forms βi = α

g

i for every αi ∈ Ds.
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issues” a logical form which is later accepted when an undistinguishable semantic
interpretation is achieved via coreference.

To be entirely faithful to the original insight of Tanya Reinhart, we should
also forbid any assignment that maps a free variable in the final logical form into
the same denotation that saturates a bound variable. Consider for example the
following sentence and one of the possible logical forms associated:

(26) a. John thinks that his father hates him
b. [λx.think(x,hate(father(x), x1))](john)

In (26-a) John and his father are seen as semantically bound, while him is a free
variable, and as such it can be mapped into any DP, John included. However, Rein-
hart’s argues that in this configuration him shouldn’t be allowed to corefer with
John: in the case the speaker wanted to convey the meaning that John thinks that
he not beloved by his father he would have privileged the bound-variable reading
for both pronouns. Although technical feasible, we believe that for the purpose
of our present treatment of pronouns, making explicit such kind of constraints
results in a for the moment unnecessary cumbersome representation and we leave
this task for a future implementation.

4.5.5 Principle C effects

The mechanism used to exclude the coreferential reading described in the previous
section can be applied in a more general way to derive obviative effects formerly
due to Principle C.

(27) a. He likes John
b. He thinks that Bill hates John

In the framework of traditional Binding Theory the application of principle C
prevents he from coreferring with John in both sentences. In the computational
implementation presented in section 4.3.2 we explicitly express forbidden corefer-
ence between the pronoun and the full-DP via obviation pairs. Having given up
the coreferential framework in section 4.4 to embrace one in which Binding Theory
only rules semantic binding, we are left with the problem of accounting for such
kind of empirical evidence without incurring in any computationally intractable
problem like those faced by Tanya Reinhart’s Rule I. The solution that we adopt
is an extension of the approach we sketched in the previous section. We formalize
what just said in the following principle:

Lexical obviation. In every configuration when QR can apply, but is discarded
on purely lexical grounds, the reading that would be obtained in the same
configuration if QR could apply, as well as all readings that can be derived
from it through a single step of β-reduction, must be considered unacceptable
as well.

In both (27-a) and (27-b) DPs he and John are in a position that makes seman-
tic binding available, except for the fact that their respective position is inverted:
using the classical configurational terminology, the pronoun is in a c-commanding
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position, while the full-DP is in a c-commanded position. We might say that they
are in a Σ∗ configuration, somewhat symmetric to the Σ configuration we previ-
ously introduced as the one which licenses Quantifier Raising and thus semantic
binding, but with the DP and the pronoun occupying inverse positions. Therefore
the lexical choice of the elements is incompatible with the application of Quantifier
Raising, and thus with semantic binding. In such a configuration the application of
the QR operation introduced in section 4.4.5 does not make sense. We recall that
such an operation was introduced to generate a bound-variable reading between a
c-commanding DP and a c-commanded pronoun. Since the c-commandee in this
case is a full-DP, and as such its semantic counterpart is not a variable, lambda
abstraction over something which is not a variable does not make any sense and
the semantic bound reading is ruled out.

τ = x1

λxλy.like(y, x) john

QR
=⇒ τ ′ =

x1

λ ?

john

λxλy.like(y, x) john

The fact is that the two DPs are in the typical configuration that licenses QR,
but the lexical choices made (the full-DP c-commanded by the pronoun instead of
the other way round) are incompatible with it and therefore with the possibility
of semantic binding between them. This must be taken as a clue that the speaker
wants to convey some form of obviation: not only semantic binding between the
c-commanding pronoun and the c-commanded DP is forbidden, but also every log-
ical form which is denotationally equivalent to it as well (according to the principle
of unacceptability of derived readings that we introduced in the previous section).
Therefore, from this particular configuration we can infer that the following se-
mantic representations (involving semantic binding between the pronoun and the
DP) for (27-a) and (27-b) respectively are forbidden:

(28) a. [λx.like(x, x)](john)
b. [λx.think(x, like(mary, x))](john)

Following the same line of thought adopted in the previous section, also logical
forms like(john, john) and think(john, like(mary, john)), derived via a single
β-reduction step from (28-a) and (28-b), must be rejected as semantic representa-
tions for (27-a) and (27-b) respectively. Using the terminology introduced in the
previous section, for (27-a) we have that

Da = {[λx.like(x, x)](john), like(john, john)}

while for (27-b) we have

Db = {[λx.think(x, like(mary, x))](john),think(john, like(mary, john))}

Since QR cannot be applied between he and John, the only logical forms gen-
erated for (27-a) and (27-b) are, respectively:
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(29) a. like(x, john)
b. think(x, like(mary, john))

that is, semantic readings in which he is mapped into a free variable. As such,
nothing in the logical language of lambda calculus prevents logical variable x
from being assigned the value john. However, the constraints induced by sets
D make such assignments incorrect, or at least mark them as unlikely. Indeed,
[like(x, john)]x→john = like(john, john) already belongs to Da, and the same
holds for [think(x, like(mary, john))]x→john = think(john, like(mary, john)),
which belongs to Db.

The interface condition that excluded semantic representations which were tra-
ditionally considered as entailing principle B violations now allows us to forbid,
or at least discourage in normal contexts, readings which were traditionally con-
sidered as entailing violations of principle C. Note that the Assignment Rule we
introduced in section 4.5.4 is perfectly compatible with a non-coreferential per-
spective which sees Binding Theory as controlling only the property of semantic
binding. Denotational constraints only appear at the level of assignment functions,
that is pragmatics/discourse theory level. Our computational treatment of this is-
sue accounts quite elegantly for the interaction between these two distinct levels
of language faculty, while keeping clearly separated the domains of influence for
each of them.

We have to underline how in the case of (27-a) the coreferential reading should
also be redundantly excluded on the basis of reflexivity issues: predicate like in
(28-a) is reflexive without being reflexive-marked. This inelegant redundancy may
be taken as a hint that it should be possible to provide a more unified treatment
of cases likes John likes him and he likes John. However, at the present stage of
development it is not yet clear to us how this might be achieved without losing
the possibility to account also for cases like (27-b).

4.5.6 On syntactic and semantic predicates

We believe our approach to “Rule I issues” to have some far-reaching consequences,
in particular regarding the distinction introduced by Reinhart and Reuland be-
tween syntactic and semantic predicates. We will show that our computational
treatment of reflexive pronouns together with our criterion about the unaccept-
ability of logical forms derived by incorrect semantic interpretations allow us to
get rid of this strongly stipulative assumption which is both linguistically doubtful
and computationally disturbing. In our system we are able to subsume and derive
it as a natural consequence of our new computational principles, together with
a reasonable modification of the rule about the unacceptability of derived logical
forms.

We have seen in section 3.4.6 that Reinhart and Reuland are forced by some
disturbing empirical evidence to postulate that condition A applies to syntactic
predicates, while condition B deals with semantic predicates. The problem with
condition B is exemplified by the need to account for the ungrammaticality of
example (32-b) from chapter 3 that we repeat here:

(30) *The queen1 invited both Max and her1 to our party.
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The problem is raised by the fact that Max and her do not mark reflexively the
predicate invited and so there is neither violation of Condition B nor violation of
Condition A, and yet the sentence is undoubtedly wrong (under the assumption
that her refers to the queen). The answer given by Reinhart and Reuland to this
puzzle is that the semantic translation of (30) is:

(31) the queen (λx (x invited Max ∧ x invited x))

and that condition B applies only at this (semantic) level. Indeed, in (31) the sec-
ond occurrence of invited is a reflexive predicate but it’s not linguistically marked
as reflexive. This violation of condition B accounts for the unacceptability of the
sentence.

Reinhart and Reuland’s solution is not entirely satisfactory from two points
of view. From a theoretical point of view they’re forced to introduce an ad hoc
stipulation about the domain of application of condition B, only to adapt the
theory to such recalcitrant examples. From a computational point of view it seems
very disturbing to have condition B “wait” to apply until we reach such a level of
semantic description, which is not commonly provided by any syntactic analysis of
a sentence. The ideas presented in the previous sections provide a natural approach
to this problem.

First a word on notation is in order. Consider the sentence:

(32) *John1 likes him1 and Max

We assume that him and Max are analyzed as a single plural argument of predicate
like. It is perfectly natural to force, although in an intuitively unharmful way,
the signature of predicate like to accept sets of entities as arguments5. Leaving
formal details aside, we give the following interpretation rules (where P is a unary
predicate, and Q and R binary predicates):

P ({x, y})
δ

=⇒ P (x) ∧ P (y)

Q({x, y}, z)
δ

=⇒ Q(x, z) ∧ Q(y, z)

R(x, {y, z})
δ

=⇒ R(x, y) ∧ R(x, z)

We indistinctively call the three occurrences of
δ

=⇒ the distributivity rule for logical
formulas.

As described in section 4.5.4, we assume that in interpreting (32) our algorithm
first generates the following logical form (which involves bound-variable reading):

(33) [λx.like(x, {x,max})](john)

There’s nothing in the sentence that could mark like as reflexive-marked, which is
not a reflexive predicate either: thus no violation of Condition A or B occurs at this
point. It comes natural to go on with the derivation by applying the distribution
rule over the elements of the set thus getting:

5 With an abuse of notation, when the argument of the predicate is a singleton for ease
of reading we drop the braces notation
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(34) [λx.[like(x, x) ∧ like(x,max)]](john)

The first occurrence of like is reflexive without being reflexive-marked. This viola-
tion of Condition B makes this side of the computation fail. If we apply β-reduction,
by an application of the unacceptability principle defined in section 4.5.4, we infer
that also like(john, john)∧like(john,max) is not an acceptable reading for the
sentence. We consider that the unacceptability judgement that we just reached for
(34) extends “backward” to (33) too. At this point the algorithm goes on with a
free variable reading, where no semantic binding occurs between John and him.
The result is:

(35) like(john, {x,max})
δ

=⇒ like(john, x) ∧ like(john,max)

Both sides of (35) meet constraint 1 and 2, therefore they’re acceptable as logical
forms for (32). If, as it is the case in (32), him is supposed to corefer with John, i.e.
if x 7→ john in (35), this clashes against the fact that the algorithmic procedure has
already deemed logical form like(john, john)∧like(john,max) as unacceptable
for the sentence.

We have just seen that in order to smoothly account for cases like (32), we
have to modify the rule about the unacceptability of derived logical forms first
given in section 4.5.4 in two (reasonable) ways: (i) we add distributive rule δ to
β−reduction as elementary lambda calculus operations; and (ii) we have to state
that unacceptability judgements extends backwards from the derived logical form
to the initial one. We state the following rule:

Unacceptability of derived logical forms via δ-rule.
Let α be a logical form for a given sentence s and α′ the result of the application
of distributive rule δ over α. If α′ is not acceptable as a semantic representation
for s, then α is not acceptable either.

Otherwise stated, if starting from a logical form α by means of the δ-conversion
rule just introduced we end up with a logical form α′ which does not comply either
with constraint 1 or 2, both α and α′ must be deemed unacceptable. This is not
a conceptually different approach from Reinhart and Reuland’s, but it naturally
follows from independent computational principles that already belong to our sys-
tem, instead of being stipulated through an artificial distinction between syntactic
and semantic predicates, which is not necessary in our system.

Furthermore, we can get rid of the complementary stipulation that Condition
A applies only to syntactic predicates. We recall that in [54] this stipulation is
introduced to account for the acceptability of sentences like the following:

(36) a. John1 likes himself1 and Max.

b. [λx.like(x, {x,max})](john)
δ

=⇒ [λx.[like(x, x)∧like(x,max)]](john)

As in the previous example, we assume that himself and Max is the composite
(and not reflexive-marked) argument of predicate likes which therefore does not
get marked as reflexive. Sentence (36-a) is translated by Reinhart and Reuland
as (36-b). But in the right-hand side of (36-b) we have a reflexive occurrence of
like which is not reflexive-marked. So if Condition A applied at the semantic
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level, this derivation would be incorrectly ruled out. But if we assume, as Reinhart
and Reuland do, that Condition A applies only at the syntactic level, predicate
likes is neither reflexive-marked nor reflexive, and the semantic interpretation is
acceptable. This is the reason which naturally justifies an effect which was achieved
by Reinhart and Reuland by the ad hoc stipulation that Condition A applies only
at syntactic predicates.

Our analysis of (36-a) does not need to invoke syntactic predicates. We know
from section 4.5.3 that if a starred variable does not pass its mark to the predicate,
it turns into a σ-variable (that is, it is considered to be used as a logophor).
Reflexive pronoun himself in (36-a), embedded in the complex argument himself
and Max, is in one of those configurations described in section 4.5.3 which make
impossible for it to reflexively mark the predicate. We know that σ-variables are not
free variables and as such they cannot get bound: therefore the reading involving
semantic binding between John and himself won’t be generated and the only
logical form issued by the application of our algorithm is:

(37) like(john, {xσ,max})
δ

=⇒ like(john, xσ) ∧ like(john,max)

In (37) no violation of Condition A occurs: we consider xσ to carry independent
interpretative features that are ruled by the logophoric use of reflexives and that
make it different both from a free and from a bound variable. This is compatible
with the view of Binding Theory that we pursue here, that is one which only rule
the use of free and bound variables; logophoric use of reflexive pronouns is ruled
by an entirely different module, and such kind of pronouns are not subject to usual
computational device of BT like Quantifier Raising.

4.5.7 Algorithm’s overview

The algorithm is a bottom-up process that inductively computes intermediate
representations of the input phrase-marker that can be interpreted by a mod-
ified version of the semantic interpretation procedure. For clarity purposes, we
present this process as structured into three successive steps: (i) restructuring of
the phrase-marker due to optional applications of QR, which in general yields a
set of derived phrase-markers; (ii) semantic interpretation for each of them, which
results in a set of logical forms; (iii) verification of reflexivity constraints for each
of the logical forms computed during phase (ii). However, as it will be made clear
later, nothing prevents these three steps to be performed in parallel over the set
of phrase-markers possibly generated, during a single bottom-up traversal of the
original phrase-marker.

Restructuring. Step (i) operates on the phrase-marker τs issued from a standard
generative syntactic analysis for a sentence s. It consists of a bottom-up traversal
of the phrase-marker which parallels the computation of standard semantics ac-
cording to the operations described in chapter 2. With respect to them, additional
operations are performed when a specific “merge” configuration is detected, which
result in one or more additional phrase-markers issued from the original one. We
inherit from the algorithm presented in section 4.4 the goal of the restructuring
procedure: to generate semantic binding between Determiner Phrases whenever
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this is possible. New semantic binding configurations get established whenever the
algorithm detects what we called a Σ−configuration: a type e DP α which gets
merged by means of functional application to a type e → T constituent C which
contains other type e DPs:

Σ =
αe Ce→T

. . . βe . . .

This specific configuration triggers the application of QR between α and all the
subsets of the set of DPs β occurring in the subtree C. This results in as many
new phrase-markers as the parts of the set of DPs β in C, each of which involving
semantic binding between α and β.

Semantic interpretation. Step (ii) performs standard semantic computations
on the phrase-markers issued from step (i), with the addition of a specific rule to
characterize the logophoric use of reflexive pronouns. The result is a set of logical
forms, one for each of the phrase-markers issued from step (i).

Reflexivity check. Step (iii) consists of a check on the well-formedness of the
semantic representations issued from step (ii). In section 4.5.2 we introduced two
constraints that logical forms enriched with reflexive-marks must fulfill in order
for them to be well-formed. The mechanical application of QR in step (i), blind to
former local domains, makes predicates reflexive in the sense of Reinhart and Reu-
land’s Reflexivity. This final check on the correspondence between reflexivity of
logical forms and reflexive-markedness of corresponding syntactic forms filters out
readings that might have been generated during step (i) and which do not comply
with Reflexivity’s Conditions A and B (Constraints 1 and 2 in our system).

Step 1: restructuring the phrase-marker

The input to this phase is the phrase-marker τs issued from a generative analysis
for a given sentence s. We map every pronoun occurring in the phrase-marker into
a fresh new variable x1, x2, . . . xn. The output of the restructuring phase is a set
T of phrase-markers τ ′

s which are inductively computed as follows for every node
α in τs:

1. if α is a leaf (i.e. a non-branching node), τ ′
s = α;

2. if α is a branching node, and β and γ are α’s daughters, then:
a) if β is a type e DP constituent, for each subset S ∈ P(dps(γ)) (i.e. for

each subset of the set of DPs occurring in γ) the algorithm performs the
following operations:
i. every element x1 . . . xn in S which is a free variable with compatible

agreement features with β is replaced with a fresh new variable xk,
and a new phrase-marker τ ′ is created in which β has been Quantifier
Raised, leaving a copy of xk in its trace position as follows:
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τ =

αT

βe γe→T

x1 . . . xi . . . xn

QR
=⇒ τ ′ =

αT

βe

λk

xk γe→T

xk . . . xk . . . xk

Phrase-marker τ ′ is thus added to the set T of restructured phrase-
markers.

ii. for every element σ in S which is not a variable and which has com-
patible agreement features with β, variable, τ ′ = α the semantic inter-
pretation of the following tree:

τf =

αT

σe γe→T

. . . σe . . .

is added to the set of forbidden readings for the sentence.
b) otherwise τ ′ = α (the phrase-marker is copied)

Intuitively, this is a bottom-up procedure which performs the usual semantic com-
putations described in chapter 2 over the original phrase-marker, until when it
detects a specific (Σ) configuration: a type e DP β which gets combined (i.e. se-
mantically merged) via functional application with another constituent γ which
contains other type e DPs.

The algorithm inherits from the one presented in section 4.4 the drive to gen-
erate bound variable readings whenever possible. Therefore (point 2(a)i) for each
subset of unbound pronouns x1, . . . , xn occurring in γ, an additional phrase-marker
is generated in which a bound-variable reading between β and x1, . . . , xn is created
by means of an application of Quantifier Raising. For any DP σ occurring in γ
which is not a variable (i.e. the DP corresponding to β c-commands a full-DP)
(point 2(a)ii), an additional one is created to generate a logical form that we want
to forbid.

Point (ii) deserves some further explanation. In section 4.5.5 we have discussed
how to implement in the present framework the effects of what was formerly known
as principle C. The idea is that since in this configuration QR is forbidden on
purely lexical grounds, this not only means that any logical form which involves
semantic binding between them is not correct, but also that the logical form that
would result from such semantic binding must be forbidden. Point (ii) describes
an immediate way to compute such a forbidden logical form. Indeed, since σ is not
a variable, the only possibility to have semantic binding between β and σ would
be to raise σ thus resulting in the logical form: [λJβK.Jα(β, σ)K](σ), which reduces
through a single step of β-reduction to Jα(σ, σ)K. The same result can be achieved
computationally by replacing β with σ in the corresponding parse tree, and the
result is τf .

Two features deserve to be highlighted in the present approach. First, the no-
tion of c-command has disappeared from our algorithm, paralleling the evolution
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that linguistic interpretations of Binding Theory went through during last decades.
What matters to our approach is not an abstract syntactic configuration occur-
ring between two DPs (like c-command is in the classical formulation of binding
theory), but the semantic merge occurring between a type e DP constituent and
another constituent which contains other type e DPs. Put in this perspective, the
notion of c-command is nothing more than an a posteriori syntactic description
of the result of a much more primitive operation performed at the level of seman-
tic interpretation: the syntactic shadow of a semantic operation. Secondly, this
procedure is totally blind to binding domains. As soon as a Σ-configuration is
detected, two things may happen: if variable-like expressions are detected in the
command-domain (point 2(a)i), the QR applies over each of them, generating as
many additional phrase-markers in which semantic binding occurs; when (point
2(a)ii) QR is blocked on purely lexical grounds (a simple switch of c-commander
and c-commandee would be enough to restore the conditions for QR to apply), the
semantic computation goes on as usual but a “forbidden logical form” is generated,
to implement the obviative effect that the speaker achieves by using a configura-
tion that makes QR impossible. In either case, the binding domain of the entities
involved plays no role in the computation.

QR is triggered for each DP occurring in the constituent, no matter if it is an
anaphor, a pronoun or a full-DP. Needless to say, the application of QR makes
sense if and only if the “copied” element is translated semantically into a variable,
as we will see during the phase of semantic interpretation, while “raising” of a
full-DP will result in an instance of Condition C effects.

Step 2: interpretation

The semantic interpretation procedure must be sightly modified to implement the
ideas sketched in section 4.5.2 on the reflexive marking of predicates and section
4.5.3 on the logophoric use of reflexive pronouns. For every phrase-marker τ ∈ T ,
and for every node α in τ :

1. if α is a leaf:
a) if α is a reflexive or a non-reflexive pronoun, it is mapped into a fresh new

variable; reflexive pronouns bear a reflexive mark;
b) otherwise, α is mapped into the semantic representation provided by the

lexicon;

he
blames himself

⇒ x2

λxλy.blame(y, x) x∗
1

2. if α is a branching node, in addition to the standard semantic computations
we described in chapter 2, we provide special semantic treatment for a config-
uration that play a special role in our system:

α = γ x∗
i

⇒







JαK = P ∗[xi/y] if JγK = λy.P (. . . , y, . . .)
and P is n-ary with n ≥ 2

JαK = JγK · xσ
i otherwise
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Although trivially implemented, point 1a is strategic for the overall interpretation
process. By introducing a fresh new variable at each occurrence of a pronoun
in a phrase marker, we generate by default the reading in which no semantic
binding occurs. Bound variable readings must be explicitly licensed under specific
configurations and get possibly filtered out by interface conditions in the next step.

Point 2 implements our treatment of reflexive marking of predicates (see sec-
tion 4.5.2) and the logophoric use of reflexives (see section 4.5.3). In the first
case the reflexive-marked pronoun occurs in an argument position for a predicate:
in such a configuration the reflexive mark is passed up to the predicate. In any
other configuration the reflexive pronoun occurs embedded into some other kind
of semantic constituent: it is the case, for example, of herself in a sentence like
the queen invited [Mary and herself ] to the party, or when the reflexive is the
argument of a unary predicate. We assume that in such kind of configuration it
basically loses its reflexive-marking power and gets marked as a reflexive pronoun
used logophorically (and thus it gets semantically translated into what we called
σ-variables).

Step 3: interface conditions on reflexivity

The last phase of our interpretation procedure can be thought of as an “interface
conditions check” that filters out unacceptable logical forms that were generated
during step 1 and 2. The application of QR over c-commanding DPs in a parse tree
generates semantic binding between DPs which are in a c-command relation. From
Step 1 we know that the restructuring phase applies QR blindly, independently on
the binding domain of the DP it applies to. Semantic binding occasionally entails
reflexive use for a predicate: if the corresponding predicate is reflexive-marked, the
logical form is acceptable, otherwise it gets rejected. Note that QR is basically
blind to the type of DPs it applies to: both reflexive and non-reflexive pronouns
can be copied in the trace position left behind by a DP which has been QR’d. The
only notable exception is represented by full-DPs. Since a lambda-operator cannot
bind a full-DP, QR does not apply in such a configuration. We already know that
during step 1 a “forbidden logical form” has been computed for this configuration,
which will be used to implement condition C effects in constraining the possible
assignments to free variables occurring in the final logical form.

4.5.8 Basic examples

(38) s: John likes himself

τs =

IP

John VP

likes himself

τlh =

λx.like∗(x, x1) : {x1}

λyλx.like(x, y) x∗
1 : {x∗

1}

τj = john : {john}

In τlh the reflexive himself marks as reflexive predicate likes, and this is translated
at this level of representation in the mark being passed from the variable x∗

1 to the
predicate like when likes is combined by functional application to himself.
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When the algorithm performs semantic merge between τj and τlh, it detects
a Σ−configuration: type e DP John merges with a constituent which contains a
type e DP (himself ) with compatible agreement features. We’re in the situation
described at point 2(a)i of the previous section. Accordingly, the algorithm per-
forms QR over John, copying in the position left by it the semantic representation
of himself, thus yielding:

τjlh =

like∗(john, john) : {john}

john : {john} λx1.like∗(x1, x1) : ∅

1 like∗(x1, x1) : {x1}

x1 : {x1} λx.like∗(x, x1) : {x1}

λyλx.like(x, y) x∗
1 : {x∗

1}

When this tree is interpreted at the semantic representation level, it normally yields
the logical form [λx1.like∗(x1, x1)](john) = like∗(john, john). The starred
predicate occurs with two identical arguments, condition 1 is thus satisfied and
this semantic representation is accepted.

The additional semantic reading generated is the one we get from standard
computations when QR does not apply, that is:

τ ′
jlh =

like∗(john, x1) : {john, x1}

john : {john} λx.like∗(x, x1) : {x1}

λyλx.like(x, y) : ∅ x∗
1 : {x∗

1}

The logical form generated being like∗(john, x1), the interface condition detects
a reflexive-marked predicate which is not used reflexively, and thus this logical
form is ruled out.

(39) s : John likes him

τs =

IP

John VP

likes him

τlh =

λx.like(x, x1) : {x1}

λyλx.like(x, y) : ∅ x1 : {x1}

τj = john : {john}

When τj and τlh get semantically merged, the algorithm detects a configuration
like the one described at point 2(a)i, because of feature agreement between John
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and him. Therefore, QR applies on John and copies the denotation of him in the
trace position left behind, thus yielding the following semantic representation:

τjlh =

like(john, john) : {john}

john : {john} λx1.like(x1, x1) : ∅

1 like(x1, x1) : {x1}

x1 : {x1} λx.like(x, x1) : {x1}

λyλx.like(x, y) : ∅ x1 : {x1}

At the interface, an occurrence of a non reflexive-marked predicate with two of
its argument identical (λx1.like(x1, x1)) is detected in τjlh. This is a violation of
constraint 2 from section 4.5.2, which forbids [λx1.like(x1, x1)](john) as logical
form corresponding to the sentence John likes him as well as like(john, john)
which is obtained by lambda reduction from it.

Since this interpretation fails, the algorithm goes on computing an alternative
semantic representation in which QR does not occur. The result is the following:

τjlh =

like(john, x1) : {john, x1}

john : {john} λx.like(x, x1) : {x1}

λyλx.like(x, y) : ∅ x1 : {x1}

This leads to the semantic representation of John likes him as like(john, x1),
where him is simply mapped into a free variable. Since this reading is always
subordinated to the failure of the bound variable one, we already know at this
stage of computation that like(john, john) has been recognized as a forbid-
den reading for this sentence. Thus, any assignment that maps x into john like
in [like(john, x)]x→john clashes against this previous computation. Otherwise
stated, the x is free in like(john, x) as long as the assignment does not pre-
cipitate the semantic representation into some forbidden logical form previously
computed.

(40) s : He likes John

τs =

IP

He VP

likes John

τlj =

λx.like(x, john) : {john}

λyλx.like(x, y) : ∅ john : {john}

τh = x1 : {x1}



114 4 Towards an Integrated Computational Approach to Binding Theory

When the algorithm tries to perform the semantic merge between τh and τlj it
detects the configuration described at point 2(a)i in previous section: he and John
have compatible agreement features, the former c-commands the latter whose se-
mantic interpretation is not a variable but a logical constant. QR of a non-variable
semantic element like the logical constant john does not make sense. The two
DPs are in a configuration that is similar to the Σ-configuration that in our sys-
tem licenses Quantifier Raising but their lexical features block this possibility. As
we have explained in section 4.5.5, not only semantic binding is forbidden (and
thus no QR occurs for this parse tree), but we need to forbid the logical form
that would result if such a semantic binding occurred. In this case such a logi-
cal form is [λx.like(x, x)](john), which reduces after a step of β-reduction into
like(john, john). Such a logical form can be mechanically generated by interpret-
ing the following tree, obtained by copying the denotation of the c-commanded
constituent in the position of the c-commanding, as described at point 2(a)ii of
the previous section:

τf =

like(john, john) : {john}

john : {john} λx.like(x, john) : {john}

λyλx.like(x, y) : ∅ john : {john}

The computation for the logical form of the sentence goes on without QR to
generate the following parse tree:

τhlj =

like(x1, john) : {john, x1}

x1 : {x1} λx.like(x, john) : {john}

λyλx.like(x, y) : ∅ john : {john}

Therefore the correct semantic interpretation for the sentence is like(x1, john),
for every assignment such that it is not the case that x → john. In this case indeed
the semantic representation coincides with Jτf K that we have already computed as
an incorrect semantic representation for the sentence.

(41) s: he likes him

τs =

IP

He VP

likes him

τlh =

λx.like(x, x1) : {x1}

λyλx.like(x, y) : ∅ x1 : {x1}

τh = x2 : {x2}

When τlh is combined with τh a configuration like the one described at point
2(a)i is detected: he and him have compatible agreement features, the former c-
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commands the latter whose semantic interpretation is a variable. Therefore QR
applies over he to get the following parse tree:

τhlh =

like(x2, x2) : {x2}

x2 : {x2} λx1.like(x1, x1) : ∅

1 like(x1, x1) : {x1}

x1 : {x1} λx.like(x, x1) : {x1}

λyλx.like(x, y) : ∅ x1 : {x1}

Actually this derivation contains the term λx1.like(x1, x1) which is a reflexive ar-
gument not reflexive-marked: the violation of Constraint 1 makes this derivations
unacceptable, and the corresponding semantic interpretation [λx1.like(x1, x1)](x2)
forbidden, as well as it’s β−reduction like(x2, x2). In this case it’s reasonable to
consider as forbidden readings all those which can be unified with like(x2, x2).

The computation for the logical form of the sentence goes on without QR to
generate the following parse tree:

τhlh =

like(x2, x1) : {x2, x1}

x2 : {x2} λx.like(x, x1) : {x1}

λyλx.like(x, y) : ∅ x1 : {x1}

Therefore like(x2, x1) is the correct semantic representation for the sentence.
Assignments like x2 → x1 or x2 → x1 are forbidden, as well as all those which
have the effect of making the two arguments equal because they’re all equivalent,
modulo unification, to logical form like(x2, x2) which has already been identified
as forbidden.

(42) s: John thinks that he likes himself.

For simplicity, we assume that the algorithm successfully computes the semantics
of the sentence he likes himself as the logical form like∗(x1, x1) (see example (38)).
Then the resulting semantics for the whole sentence is given by the functional
application between the logical forms corresponding to the fragments John and
thinks that he likes himself, that is τj and τthlhs respectively:

τj = john : ∅ τthlhs =

λx.think(x, like∗(x1, x1)) : {x1}

λSλx.think(x, S) : ∅ like∗(x1, x1) : {x1}
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When the semantic interpretation process gets to compute τj · τthlhs it is in the
configuration described at point 2(a)i. So one additional reading is generated by
means of QR (with x1 copied in the trace position), and the resulting semantics
is given by the following two logical form trees:

τjthlh =

think(john, like∗(x1, x1)) : {x1}

john : ∅ λx.think(x, like∗(x1, x1)) : {x1}

λSλx.think(x, S) : ∅ like∗(x1, x1) : {x1}

which corresponds to a reading in which John and he can be different individuals
and there’s no semantic binding between the corresponding linguistic entities, and
τ ′
jthlh:

think(john, like∗(john, john)) : {john}

john : {john} λx1.think(x1, like∗(x1, x1)) : ∅

1 think(x1, like∗(x1, x1)) : {x1}

x1 : {x1} λx.think(x, like∗(x1, x1)) : {x1}

λSλx.think(x, S) : ∅ like∗(x1, x1) : {x1}

in which john has been Quantifier Raised leaving x1 as its trace, getting the
reading in which John and he are semantically bound. As it can be easily verified,
in no case there is an occurrence of a marked predicate in which at least two of its
arguments are not identical.

(43) s: John thinks that he likes him

From example (40), we know that like(x2, x1) is the correct logical form for
the fragment he likes him, while like(x2, x2), modulo unification, is forbidden. So
in order to compute the semantic representation for the whole sentence it must
compute that functional application between τj and τthlh:

τj = john : ∅ τthlh =

λx.think(x, like(x2, x1)) : {x1, x2}

λSλx.think(x, S) : ∅ like(x2, x1) : {x1, x2}

QR is triggered for each element of the set {x1, x2} and two additional readings
τ ′
jthlh and τ ′′

jthlh are generated.
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τjthlh =

think(john, like(x2, x1)) : {x1, x2}

john : ∅ λx.think(x, like(x2, x1)) : {x1, x2}

λSλx.think(x, S) like(x2, x1) : {x1, x2}

The logical form of τjthlh corresponds to the reading in which no semantic binding
occurs between John, he and him.

τ ′
jthlh =

think(john, like(x2, john)) : {x2}

john : ∅ λx1.think(x1, like(x2, x1)) : {x2}

1 think(x1, like(x2, x1)) : {x1, x2}

x1 : {x1} λx.think(x, like(x2, x1)) : {x1, x2}

λSλx.think(x, S) : ∅ like(x2, x1) : {x1, x2}

The logical form of τ ′
jthlh, in which john has been Quantifier Raised and left x1

as its trace, corresponds to the reading in which semantic binding occurs between
John and him. There are no reflexive-marked predicates, and in no case a predicate
gets two identical arguments.

τ ′′
jthlh =

think(john, like(john, x1)) : {x1}

john : ∅ λx2.think(x2, like(x2, x1)) : {x1}

2 think(x2, like(x2, x1)) : {x1, x2}

x2 : {x2} λx.think(x, like(x2, x1)) : {x1, x2}

λSλx.think(x, S) : ∅ like(x2, x1) : {x1, x2}

The logical form of τ ′′
jthlh, in which john has been Quantifier Raised and left x2

as its trace, corresponds to the reading in which semantic binding occur between
John and he. There are no reflexive-marked predicates, and in no case a predicate
gets two identical arguments.
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4.5.9 Further linguistic data

The approach we presented in section 4.5.7 seamlessly extends to more complicated
cases than the few elementary ones presented in the previous section. Grounded
as it is on a very advanced interpretation for Binding Theory, it takes advantage
of the linguistic coverage attained. We present how our algorithm works in these
cases by highlighting only the main points of the analysis, the technical details
having already being presented in the previous section.

Control

In the generative tradition, the term control predicates denotes words like try,
want, promise, persuade, which take an infinitive complement with what is said to
be a (controlled) PRO subject. This is the case of a sentence like (44):

(44) John promised Mary [PRO to shave himself]

The generative analysis of such a sentence assumes that the apparently subject-
less bracketed infinitive clause contains an understood null subject, conventionally
indicated as PRO (from pronouns, of which it is considered to have much the
same grammatical and referential properties). PRO is an example of a null or
covert category, i.e. a category which has no overt phonetic form but a tangible
semantic content. The null PRO subject of the bracketed clause is said to be con-
trolled by the subject John of the “next highest” clause. PRO acts as a referential
pronoun that takes its reference from its controller, which must therefore be an-
other referential expression. Otherwise stated, control phenomena only constrain
assignment functions over independent linguistic entities. We ground our semantic
computations on such kind of syntactic analysis. Consider the following contrast:

(45) a. John promised Mary [PRO to shave himself]
b. * John promised Mary [PRO to shave herself]

For which we adopt the following syntactic analysis

IP

John VP

promised IP

Mary VP

to IP

PRO VP

shave himself
herself
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In compliance with our approach to control phenomena, we set JPROK = xcon,
to mark the special status of PRO as a pronoun which is neither free nor bound,
but directly gets its reference from the controlling subject. Therefore, possible
assignments to xcon only depend on the mechanism ruling control phenomena, on
which we do not make any assumption here.

When our bottom-up semantic computation performs the merge between PRO
and to shave himself, it finds itself in the configuration already seen in example
(38): the correct semantic reading generated for both the fragments PRO to shave
himself and PRO to shave herself is therefore [λx2.shave∗(x2, x2)](x

con). We as-
sume that the logical form of the predicate promise is λPλyλx.promise(x, y, P (x)).
Therefore, both (45-a) and (45-b) are predicted to have the logical form:

(46) [λx.promise(x,mary, [λx2.shave∗(x2, x2)](x
con))](john)

The mechanism that rules control resolution will assign to xcon the semantic con-
tent of the controlling subject John, thus resulting in

(47) [λx.promise(x,mary, [λx2.shave∗(x2, x2)](john))](john)

which correctly reduces to promise(john,mary, shave∗(john, john)) in the case
of (45-a), while for (45-b) it raises a agreement mismatch error between john and
x2 which is supposed to have feminine gender features.

Control is not limited to subjects: verbs like persuade or want are said to be
object-control predicates. The reason is immediately evident from the following
contrast, entirely symmetrical to the previous one:

(48) a. * John persuaded Mary [PRO to wash himself]
b. John persuaded Mary [PRO to wash herself]

for which we adopt the following analysis:

IP

John VP

persuaded IP

Mary VP

to IP

PRO VP

wash himself
herself

We assume that the object-control predicate persuade has the logical form
λPλyλx.persuade(x, y, P (y)). Therefore our semantic computations for (48-a)
and (48-b) are the same as for, respectively, (45-a) and (45-b). However, the com-
putation fails on (48-a) because this time it’s the object Mary that must saturate
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a position in the reflexive predicate wash himself with which it has incompatible
agreement features. This is not the case in (48-b), for which only the logical form
persuade(john,mary,wash∗(mary,mary)) is correctly computed.

Raising

It is interesting to analyze how our algorithm behaves with another set of linguistic
data represented by so-called raising predicates. Although superficially similar to
control predicates they are substantially different at a deeper level of analysis. The
analysis in this case is more complicated than in the case of control, in which the
standard assumption is that control only constrains assignments over independent
entities. The typical example of raising predicate is the verb to seem:

(49) a. It seems [that he understands her]
b. He seems [to understand her]

The puzzling evidence that the syntactic theory must account for is that the ital-
icized expression which functions as the subject of the bracketed clause in (49-a)
surfaces as the subject of the matrix clause in (49-b). The answer which is cur-
rently provided by generative approaches to syntax is that the italicized subject
originates as the subject of the complement clause and is then raised up to become
the matrix-clause subject by application of raising (not unlikely from what seen
in section 2.2.7), leaving behind an empty trace as the subject of the complement
clause. The subject and the trace are called the head and tail of a chain. Such a
phenomenon is therefore entirely different from what happens with control verbs:
in control phenomena, all the entities are independent and control only constrains
assignment functions, while in raising phenomena we have a DP which is a com-
posed object made of two linguistic elements, a head and a tail. Our semantic
computations must therefore rely on an entirely different syntactic analysis, in
particular one which involves raising and traces. Consider the following sentences:

(50) a. John seems to admire him
b. John seems to admire himself

The standard analysis which is proposed for such kind of sentences goes as follows:

IP

John I

seems IP

t I

to VP

admire him
himself

The standard explanation for the construction of the sentence is that John
has been generated in the trace position, and then is has undergone raising and
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reached the final position as the matrix subject. The DP is not simply John but a
binary object, a chain made of John and the trace t. Tail t cannot be considered
as a DP. If we adhere to the “copy theory” for traces, we suppose that in t there
is a copy of the semantic content of the head John. However, since the DP in this
case is the whole chain, trace t cannot be quantifier-raised when merged with the
fragment admire him/himself. If we assume that JtK = xch (where the special index
marks the fact that the semantic content of the trace is a copy of the semantic
content of the head of the chain), the only semantic representation computed for
the fragment seems t to admire himself is λx.seems(x,admire∗(xch, x1)). Being
xch a special kind of variable, somewhat underspecified for the time being, this
does not entail any violation of constraint 1 for the logical form.

On the contrary, when the head of the chain John is merged with the fragment
seems t to admire himself, Quantifier Raising applies, resulting in the logical form
[λx1.seems(x1,admire∗(xch, x1))](johnch).

Possessive DPs

Another interesting class of linguistic evidence that our approach can cope with is
represented by constructions with possessive DPs like in the following contrast:

(51) a. John1’s portrait of himself1 is interesting
b. *John1’s portrait of him1

We assume the following generative analysis:
IP

DP

John D′

D NP

portrait PP

of him
himself

VP

is interesting

If we assume that portrait is a three-places predicate, when our algorithm
gets to semantically merge DP John with the predicate portrait of him, it
detects a Σ-configuration that triggers the Quantifier Raising of John. Ulti-
mately, this leads to a semantic representation for the DP John’s portrait of
him as [λx1λx.portrait(x, x1, x1)](john). Since we have a reflexive occurrence
of a predicate which is not reflexive-marked in the syntax, this leads to an
error and this reading is ruled out, as well as the result of its β-reduction
λx.portrait(x, john, john). The computation goes on with the free variable
reading for pronoun him, yielding the logical form λx.portrait(x, john, x1). At
this point, any assignment such that x1 → john will raise an error because such a
reading has already previously computed as forbidden according to our unaccept-
ability of derived readings rule.
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On the contrary, when the personal pronoun is himself, the logical form com-
puted for DP John’s portrait of him is [λx1λx.portrait∗(x, x1, x1)](john), which
complies with reflexivity constraints and is therefore accepted.

4.5.10 Observations

In this section we presented an original computational treatment of Binding The-
ory which integrates the major insights of Reinhart [50] and Reinhart and Reu-
land [54].

The combination of features drawn from each of these theoretical approaches
to Binding Theory was not an intellectual game. At the end of section 4.4 we
had set a relatively simple machinery to generate all and only the correct logical
forms of a sentence, but we had no clue on how to implement Reinhart’s Rule I
(whose standard formulation involve an instance of an NP-complete problem like
SAT), and the issues of a suitable implementation of the notion of binding domain
were still unaddressed. From a purely methodological point of view, our algorithm
was for the large part an implementation of (binding) principles and stipulations
drawn from linguistics. We might say that the “information” flowed only in one
direction, from theoretical linguistics to computational linguistics.

In the present section we changed our perspective. While sticking to the original
intuition of Reinhart [50] that binding theory is about semantic binding (imple-
mented in section 4.4), by integrating insights taken from Reinhart and Reuland’s
Reflexivity we were able to provide an elegant treatment of Rule I issues. Our
solution independently leads to a “division of labor” between syntax, semantics
and pragmatics/discourse theory which naturally complies with the most recent
linguistic approaches to Binding Theory.

Like any other, our approach stands on some stipulations: there is a natural
“drive” for the interpretation process towards generating bound-variable readings
for a sentence; there are interface conditions on the reflexive nature of predicates
that block some of these configurations; such conditions can constrain the values
(i.e. the assignment functions) of free pronouns in a sentence on the basis of logical
forms that have been previously computed as unacceptable and which are stored
somewhere in the memory of the speaker. However, we believe that all stipula-
tions are quite natural, internally motivated instead of drawn from a set of rules
defined theoretically6. Furthermore, they allow for an elegant interpretation pro-
cess that can do away with binding domains, binding principles (in the traditional
formulation), and in which c-command is an epiphenomenon of more primitive
semantic operations. What was formerly an abstract structural condition is now

6 Eric Reuland (private communication) draws our attention to the fact that our stip-
ulated preference for bound-variable construals actually has experimental support. In
a recent eye-tracking experiment by Arnout Koornneef at Linguistics Department of
University of Utrecht it was found that under discourse conditions where a coreferent
construal was pragmatically favored, and a bound-variable construal was implausible,
but structurally possible, first a bound-variable construal was established followed by
back-tracking. This nice piece of evidence seems to support, once again, our claim that
algorithmic elegance can be a useful criterion to parallel, and sometimes anticipate,
experimental results in linguistics.
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naturally subsumed by the general structure of the algorithm and the bottom-up
compositional approach.

The interaction between computational and theoretical linguistics worked the
other way round: the set of principles and rules that we stated allow us to provide
a better treatment of phenomena that needed a strong stipulation by Reinhart
and Reuland (see section 4.5.6).





5

A Comparison with Schlenker’s Approach

5.1 Schlenker’s Fully Semantic Approach

Mainstream approaches to Binding Theory like Chomsky 1981, Reinhart 1983,
Reinhart and Reuland 1993 all share a syntactic core. Coreferential and Reinhart’s
interpretations of Binding Theory basically consider it as part of the syntax: syn-
tactic structures that would be interpretable by a semantic module are ruled out
on the basis of purely formal (i.e. syntactic) constraints. Syntactic structures come
equipped with indices associated to DPs whose intended semantics is to encode
coreference or semantic binding. Chomsky’s principles A, B and C are defined in
terms of configurational relations holding between such indexed DPs. There is no
semantic principle that forbids an interpretation of the sentence he1 likes him1 in
which he and him happen to have the same denotation. It is the violation of a
syntactic constraint (principle B) that rules out such a configuration, but ungram-
matical structures are assumed to be in principle interpretable by the semantic
component. Reinhart and Reuland’s Reflexivity approach marks the return to a
more semantics-based perspective on Binding Theory, but morphosyntax still plays
a central role via the notion of reflexive-markedness of a predicate. In any case,
there is no semantic impossibility to interpret ungrammatical sentences.

At the opposite end of the syntax-semantic spectrum lies the recent, fully se-
mantic approach proposed by Philippe Schlenker (see [59], [58]). In his system
syntactic well-formedness criterions for indexed structures are replaced by a se-
mantic apparatus in which denotational configurations are ruled out on the basis
of a single general principle of Non-Redundancy. Schlenker’s approach is based
on a cognitive metaphor: as a human speaker processes a sentence, he builds a
memory register of the entities involved. Reflexive pronouns, non-reflexive pro-
nouns, and full-DPs are processed as they occur in the sentence, and they modify
the memory register according to a small set of basic rules. A general principle
of Non-Redundancy must be satisfied: no object can occur twice in the memory
register. On the basis of these purely semantic rules, Schlenker accounts for a
wide range of phenomena without anything of the syntactic apparatus of familiar
Binding Theory.
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5.1.1 Schlenker’s system overview

Schlenker’s system is based on the idea of a memory register of the entities that
occur in a sentence. The memory register is a metaphor for some kind of cognitive
system which stores the denotations of the linguistic entities encountered while
processing a sentence. When a new Determiner Phrase is encountered, the state of
the register (described by a sequence of evaluation) is updated according to two
rules:

• when a full-DP (proper name, definite description, demonstrative pronoun) is
processed, its denotation is added at the end of the sequence of evaluation;

• when a non-demonstrative pronoun is processed, some element of the register
is moved to the end of the register.

The first rule may be interpreted as the basic cognitive mechanism of storing
in the last position of the memory register the most recent “cognitive file” corre-
sponding to an individual. The values of individual denoting terms are added to
the sequence of evaluation in an order that mirrors their hierarchy in the syntactic
structure. In a top-down procedure, this order reflects the c-command relations
that are found in the syntax, and this is the key to achieve a semantic reinterpre-
tation of standard syntactic conditions on binding.

The second rule implements the idea that anaphoric pronouns do not introduce
new “cognitive files” in the memory register, but they recover some previously
stored denotation, making it available as an argument for the next predicate that’s
going to be processed (displacement to the last position of the evaluation sequence).
Non-demonstrative pronouns come with negative indices associated, which indicate
how far from the end of the register their denotations are to be found. Therefore
he−1 evaluated under the sequence [john;mary;bill] denotes bill, he−2 denotes
mary, and he−3 denotes john. This notation is similar to de Bruijn-style notation
for lambda calculus, in which indices stand for the relative distance of the lambda
operator that binds them (see [3] for details). Demonstrative pronouns are assumed
to have positive indexes, and thus they do not recover their denotation from the
sequence of evaluation but from the overall context the sentence is uttered within.

A sentence is interpreted by evaluating its components with respect to the se-
quence of evaluation. Non-demonstrative pronouns recover their denotations via
the negative indexes that label them. The rules behind the construction of the
sequence of evaluation guarantee that when we process a predicate P there is a
mechanical procedure to recover its arguments from the evaluation sequence under
which the predicate is evaluated. If P is an intransitive (i.e. one-place) predicate,
the denotation of its only argument is to be found in the last position of the regis-
ter; if P is transitive (i.e. binary), the denotations of its subject and object are in
position -2 and -1 respectively. The truth value of a predicate P is always relative
to a specific evaluation sequence s. If we indicate with I a suitable semantic in-
terpretation function, the role of the sequence of evaluation in the interpretation
process is formalized by the following rule:
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Interpretation of predicates.
Let P be an n-place predicate, s a sequence of evaluation and sn the sequence
of the last n elements of s; then

JP Ks =







# if and only if one of the last n elements of s is #
or s violates Non-Redundancy

sn ∈ I(P ) otherwise

What follows is an example of a derivation in Schlenker’s system (all examples
are taken from [58] with minor notation changes). We indicate between square
brackets the current state of the evaluation sequence:

JJohn hates BillKs = 1 ⇔ JJohn hates BillK[s] = 1
⇔ Jhates BillK[s; j] = 1 [Step 1: John is processed]
⇔ JhatesK[s; j;b] = 1 [Step 2: Bill is processed]
⇔ (j,b) ∈ I(hate) [Step 3: hates is evaluated]

The subject and the object of the sentence are processed, and thus added to the
sequence of evaluation, in an order which reflects the order in which they occur in
the sentence. It is apparent that such order of introduction make c-commandees
appear in the sequence of evaluation closer to the end that c-commanders. The
last step in the evaluation process involves the interpretation of a binary predicate,
which recovers the last two elements of the sequence of evaluation, which correctly
happen to be the subject and the object of the predicate which must be interpreted.

Schlenker claims that on the basis of this simple formal semantic apparatus, a
single principle that rules out redundancy in the sequence of evaluation suffices to
account for most of the phenomena traditionally explained by traditional syntax-
based approaches to Binding Theory:

Non-redundancy principle.
No object may occur twice in the same sequence of evaluation.

The whole point of Schlenker proposal is to prove that such a general semantic (or
cognitive) principle alone, operating on the top of the simple semantic apparatus
just sketched, accounts for a large part of phenomena that traditional Binding
Theory deals with from a purely syntactic standpoint. Schlenker’s principles are
semantic in nature since they only deal with the way the sequence of evaluation are
constructed and which evaluation sequences are acceptable according to the Non-
Redundancy criterion. As a possible cognitive motivation for Non-Redundancy
as a primitive mechanism of human mind, Schlenker hypothesizes a new kind of
“economy principle” that states that a new cognitive file shouldn’t be created for
an object which is already stored in the memory of the speaker.
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5.1.2 Non-demonstrative pronouns

The mechanism by which non-demonstrative (i.e. anaphoric) pronouns modify
the sequence of evaluation asks for some additional technical apparatus. From the
cognitive point of view of Schlenker’s proposal, it’s immediate to see why anaphoric
pronouns neither leave the sequence of evaluation unchanged, nor they add new
elements to it. Given that the most intuitive use of a pronoun in a sentence is to
recover a previously introduced entity to access it as an argument of a predicate,
and that in Schlenker’s system arguments for predicates are consumed from the
end of the sequence backward, it comes natural to state that a non-demonstrative
pronoun moves a denotation already stored in the memory register and puts it
at the end of the sequence which describes its state. To identify which element
of the evaluation sequence must be displaced, non-demonstrative pronouns come
with negative indexes associated. A pronoun with index −i moves the denotation
i-th element of a sequence of evaluation s from its actual position to the end of s.
More formally:

Treatment of Non-Demonstrative Pronouns
If α is a pronoun with a negative index −i, Jα βKs = Jβ αKs = # if s
has fewer than i elements. Otherwise, for a possibly empty sequence s′ and
for some elements d1, . . . , di, s = [s′; di; . . . ; d1] and Jα βKs = Jβ αKs =
JβK[s′; #; di−1; . . . ; d1; di].

A moved object leaves a blank element # behind it in the evaluation sequence.
Such a technical device completes the technical implementation of the semantics
of anaphoric pronouns. Processing a non-demonstrative pronoun not only makes a
previously introduced denotation available as an argument for the next predicate,
but also makes it unavailable to other predicates (the interpretation of a predicate
with # as an argument is supposed to fail).

The treatment of non-demonstrative pronouns allow Schlenker’s system to ac-
count for some basic cases of Principles B violation effects. What follows is an
example of a derivation which fails not out of Non-Redundancy violation, but be-
cause the movement of the denotation induced by the anaphoric pronoun leaves a
blank space which is not filled by any other argument for the binary predicate:

JJohn likes him−1Ks = 1 ⇔ JJohn likes him−1K[s] = 1
⇔ Jlikes him−1K[s; j] = 1 [Step 1: John is processed]
⇔ JlikesK[s; #; j] = 1 [Step 2: him−1 is processed]
⇔ (#, j) ∈ I(like) [Step 3: likes is evaluated]

The last step, which entails that a predicate is evaluated with the # symbol as
one of its arguments, makes the interpretation procedure fail, as desired.
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5.1.3 Full-DPs and that-clauses

An additional rule is needed in Schlenker’s system to account for phenomena tra-
ditionally involving c-command outside a local domain.

Treatment of full-DPs and that-clauses
If α is a proper name, a definite description, a demonstrative pronoun or a
that -clause: Jα βKs = JβK[s; JαKs]

Informally, we can say that every time the interpretation procedure gets to process
an r-expression or a that -clause α, a local copy of the evaluation sequence is created,
under which α is evaluated, and the result is added to the initial sequence.

In the following example we abstract from technical details needed to deal with
the intensionality issues raised by the presence of the opaque context introduced by
the predicate claims to concentrate on the inner workings of the memory register:

JBill claims that he−1 runsKs = 1 ⇔ Jclaims that he−1 runsK[s;b] = 1

⇔ JclaimsK[s;b; p] = 1

with p = Jthat he−1 runsK[s;b]

= λw.Jhe−1 runsKw[s;b]

= λw.JrunsKw[s; #;b]

= λw.b ∈ Iw(run)

When the interpretation procedure gets to process the that -clause, the evalua-
tion sequence is [s;b]. The computation stops to process the that -clause, which is
evaluated under a copy of the same evaluation sequence, that is [s;b]. Non demon-
strative pronoun he−1 can therefore correctly access DP Bill previously introduced
in the main clause to be fed to predicate runs. The result p is then added to the
evaluation sequence for the main clause.

The rule we just introduced for that -clauses naturally accounts for the following
contrast, traditionally accounted for in terms of c-command accessibility:

(1) a. Bill’s teacher likes Bill
b. *Bill likes Bill’s teacher

If we assume (as it is the case in the large majority of contexts in which such
a sentence can be uttered) that the two occurrences of Bill refer to the same
individual, traditional Binding Theory would rule out (1-b) due to a violation of
principle C (the second occurrence of full-DP Bill is bound the first one). This is
not the case in (1-a), where no binding occurs because the first occurrence of Bill
is embedded into the DP constituent Bill’s teacher and thus does not c-command
the second one. Schlenker’s system accounts for this contrast on a purely semantic
ground.

In (1-a) the constituent Bill’s teacher is processed under an evaluation sequence
s which does not contain any other element: the result (the denotation t) is the
added to the evaluation sequence. Denotation t does not clash with the second
occurrence of Bill, so no redundancy violation occurs and the sentence is deemed
acceptable. Intuitively, the file which is stored in memory is about Bill’s teacher,
a whole different individual from Bill himself.
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JBill’s teacher likes BillKs = 1 ⇔ Jlikes BillK[s; p] = 1 (Bill’s teacher is processed)

with p = JBill’s teacherK[s] = JteacherK[s;b] = t

⇔ Jlikes BillK[s;t] = 1

⇔ JlikesK[s;t;b] = 1

⇔ (t,b) ∈ I(like) = 1

In (1-b) Bill’s teacher is processed under an evaluation sequence s which is not
empty like in the previous case, but which already contains the denotation of Bill.

JBill likes Bill’s teacherKs = 1 ⇔ Jlikes Bill’s teacherK[s;b] = 1 (Bill is processed)

⇔ JlikesK[s;b; p] = 1

with p = JBill’s teacherK[s;b] = JteacherK[s;b;b]

The sequence of evaluation for the full-DP Bill’s teacher is evaluated under an
extension of sequence [s;b] which has been created after the first occurrence of Bill
has been processed in the main clause. Therefore, it contains two occurrences of
the same entity, and this brings about a Non-Redundancy violation thus resulting
in an unacceptability judgement for the whole sentence.

5.1.4 Condition C effects

The combination of the Non-Redundancy principle and the machinery we have
described so far to interpret that -clauses and full-DPs allows Schlenker’s system to
account for a large number of cases that are dealt with by principle C of traditional
Binding Theory. The following example shows how Schlenker’s system deals with
basic occurrences of Principle C violations:

JJohn likes JohnKs = 1 ⇔ JJohn likes JohnK[s] = 1
⇔ Jlikes JohnK[s; j] = 1 [Step 1: John is processed]
⇔ JlikesK[s; j; j] = 1 [Step 2: John is processed]

Non-redundancy principle forbids two occurrences of the same denotation in a
sequence of evaluation, and thus the interpretation procedure fails as desired. We
would get the same effect in case the subject of the sentence was a demonstrative
pronouns like he1 such that Jhe1K = j.

In the classical formulation of Binding Theory, a sentence like he1 likes him1 is
ruled out by principle B because it displays a syntactic configuration which involves
the binding of a non-reflexive pronoun within its local domain. Schlenker’s system
justifies its unacceptability on the ground of purely semantic considerations. Since
both he and him are supposed to refer to the same object, the sequence of evalua-
tion will store two occurrences of the same denotation, which leads to a violation
of the Non-Redundancy principle.



5.1 Schlenker’s Fully Semantic Approach 131

5.1.5 Condition A effects

Reflexive pronouns yield local coreferential readings, which are forbidden out of
Non-Redundancy violations for non-reflexive pronouns. On the other hand, it is
apparent that reflexive pronouns do not actually introduce new entities into the
evaluation sequence. Therefore, reflexive pronouns need a different formal appa-
ratus, and Schlenker justifies their deviant behavior by considering them as arity-
reducer operators.

Treatment of reflexive pronouns
Let P be an n-place predicate, s a sequence of evaluation and s1 the last
element of s; then

Jself−P Ks =

{
# iff s = # or s violates Non-Redundancy
(s1, s1) ∈ I(P ) otherwise

What follows is an example of a derivation in Schlenker’s system involving
reflexive pronouns:

JBill hates himselfKs = 1 ⇔ JBill self-hateK[s] = 1
⇔ Jself-hateK[s;b] = 1
⇔ (b,b) ∈ I(hate)

In order to face typical problems of the arity-reducer approach, namely with
predicates which allow for more than one local antecedent, Schlenker integrates
this approach by considering reflexives likes himself as composed of two parts:

• him, which behaves like a non-demonstrative pronoun, and moves an element
of the sequence to its final position, leaving behind an empty cell. This has
also the advantage of making the displaced denotation unavailable for further
anaphoric usage, as required.

• self as an arity-reducing operator, which turns an n-place predicate into a
(n-1)-place predicate. In order to specify which position is reflexivized, the
notation SELFi/k is introduced, to indicate that the i-th and k-th position of
the predicate will be coreferential.

Therefore Schlenker proposes the following derivation for the sentence Ann intro-
duced Berenice to herself, where herself is supposed to refer to Ann:

JAnn [Berenice [SELF1/3-introduce her−2]Ks = 1 ⇔
⇔ JBerenice [SELF1/3-introduce her−2K[s;a] = 1 (Ann is processed)
⇔ JSELF1/3-introduce her−2K[s;a;b] = 1 (Berenice is processed)
⇔ JSELF1/3-introduceK[s; #;b;a] = 1 (her−2 is processed)
⇔ (a,b,a) ∈ I(introduce) (SELF1/3-introduce is evaluated)

As Schlenker himself points out, this analysis runs into some technical problems.
For example, a sentence like Ann introduced Berenice to herself−1, where herself is
supposed to corefer with Berenice would wrongly raise a semantic failure. Schlenker
must resort to a more sophisticated version of his system, involving temporal
anaphora, to cope with this problem.
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5.1.6 Quantification

Schlenker’s system faces a serious problem with respect to quantificational ex-
pressions. The problem is addressed by Schlenker himself and exemplified by the
sentence Ed thinks that every professor is underpaid. By following the standard as-
sumption that traces behave like non-demonstrative pronouns, the fragment every
professor is underpaid should be analyzed in Schlenker’s system as follows:

J[every professor] [t−1 is underpaid]K[s] = 1

⇔ ∀d.d ∈ I(professor), Jt−1is underpaidK[s;d] = 1

⇔ ∀d.d ∈ I(professor), Jis underpaidK[s; #;d] = 1

⇔ ∀d.d ∈ I(professor),underpaid(d) = 1

The problem is that if Non-Redundancy is checked with respect to each of
the many sequences that enter in the truth-conditions, it predicts that Ed thinks
that every professor is underpaid cannot mean that Ed thinks that every professor
including himself is underpaid. In fact, once that Ed has been processed at the
beginning of the interpretation process, it will occur in any sequence of evaluation
derived from the main one: in particular for d = JEdK = e, two occurrences of e

will appear in the evaluation sequence and Non-Redundancy condition is violated.
This means that the interpretation procedure fails under an interpretation in which
Ed thinks that he himself is underpaid.

Schlenker is forced to complicate his apparatus with an ad hoc stipulation to
deal with quantification to account for such situations. The additional machinery
implements the intuitive idea that the elements introduced by a quantifier do not
appear in the sequence of evaluation but in a quantificational sequence which is not
subject to Non-Redundancy. Its elements must be able to access the denotations
occurring in the main sequence, and this is made possible by traces which are
thus endorsed with a much different role from non-demonstrative pronouns. The
positive side of this complication of the formal apparatus is that is succeeds also
in accounting for Weak and Strong Crossover effects. This mechanism is based on
the two steps of Introduction and Cross-reference:

Introduction step: when a quantifier is evaluated with respect to a sequence of
evaluation s and a quantificational sequence q, it leaves s unchanged but turns
q into [q; d] for each object d that is quantified over;

Cross-reference step: when a trace indexed with the quantifier is processed, an
index i is introduced in the sequence of evaluation which indicates which cell
of the quantificational sequence must be retrieved.

This means that a quantificational statement like every professor is underpaid
would be analyzed as follows:

J[every professor] [t−1 is underpaid]K[s] = 1 ⇔
⇔ ∀x ∈ X satisfying JprofessorK[s][x = 1], Jt−1is underpaidK[s][x = 1]
⇔ ∀x ∈ X satisfying x ∈ I(professor), Jis underpaidK[s; 1][x = 1]
⇔ ∀x ∈ X satisfying x ∈ I(professor), ([s; 1]1), x ∈ I(underpaid)
⇔ ∀x ∈ X satisfying x ∈ I(professor), x ∈ I(underpaid)
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5.2 Truth-conditional and Denotational Economy

In section 3.3 we have seen how Reinhart resorts to introduce a notion of truth-
conditional economy to select configurations which involve semantic binding over
those which do not in any situation in which this does not change the truth con-
dition of the sentence.

The same principle of economy can be applied with respect to the problem of
locality of variable binding. Any theory in which binding is a non-transitive relation
between two expressions has to provide, in addition with a version of classical
Principle B, according to which two DPs cannot be bound locally, a principle that
requires local binding in certain configurations. Consider the following examples,
in which the arrows stand for binding relations between DPs:

(2) a. Bill claims that he hates him

b. Bill claims that he hates him

Binding configuration (2-a) is ruled out in traditional approaches to Binding
Theory by a violation of principle B, which forbids local binding between he and
him. However, as far as binding principles go, nothing forbids configuration (2-b),
since no local binding of non-reflexive pronouns occurs. An additional principle
known as “Locality of Variable Binding” must be introduced to block such con-
figuration. Intuitively, configuration (2-b) is ruled out because in it him is bound
non-locally by Bill even though local binding by he would yield the same seman-
tic result. Therefore a principle of local binding must ensure that if the semantic
content of the sentence is not affected, then local variable binding configurations
must be chosen over non-local ones.

In order to explain this effect, a notion of economy must be introduced. The
general idea is that local binding is more economical, and thus preferred, than
non-local binding. However, there are at least two ways to interpret the notion of
economy. Truth-conditional economy (see [50], [25], [20]) states that local binding
must be preferred unless non-local binding yield a logical form with different truth
conditions. By contrast, Kehler in [34] argues for a weaker, but more computa-
tionally appealing principle of denotational economy, which requires local binding
unless non-local binding yields a different denotation for the bound pronoun. More
precisely:

Truth-conditional economy: for any two DPs α and β, if α could bind β (i.e.
if α c-commands β, and β is not already bound in α’s c-command domain
already), α must bind β, unless this changes the truth conditions of the entire
sentence.

Denotational economy: for any two DPs α and β, if α could bind β (i.e. if α
c-commands β, and β is not already bound in α’s c-command domain already),
α must bind β, unless this changes the denotation of β.
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Schlenker proves that his system, without any further machinery, predicts that
denotational economy is always satisfied. Otherwise stated, denotational economy
does not come as an additional rule operating on top of a previous analysis to filter
out incorrect readings, but its effects naturally stem from the overall architecture of
his system. This can be easily verified by considering the analysis that Schlenker’s
system provides for the sentences in (2). Binding configurations in (2-a) and (2-b)
would translate in Schlenker’s notation as follows, respectively:

(3) a. Bill claims that he−1 hates him−1

b. Bill claims that he−1 hates him−2

For each of the two binding configurations, after he−1 has been processed the
evaluation sequence is [s; #;b]. So when him−1 is processed in (3-a), the evaluation
sequence turns into [s; #; #;b], and predicate hates is evaluated with # as one of
its arguments, thus making the evaluation fail. In (3-b), processing him−2 modifies
evaluation sequence into [s; #;b; #]: once again the predicate gets evaluated with
a # symbol in one of its argument positions. This confirms how the effects of
denotational economy are implicit in the general architecture of Schlenker’s system.

5.3 Comparison with Schlenker’s approach

The integrated computational approach we presented in chapter 4 and Schlenker’s
proposal move from very distant, and somewhat contradictory, starting points.
While the main guidelines for our treatment of Binding Theory are computational
efficiency and algorithmic elegance, Schlenker’s work stems from a purely specula-
tive intent to provide a new and psycholinguistically plausible explication of why
in Binding Theory things are the way they are. It is interesting to compare some
of the basic features of both approaches.

Denotational Economy

As pointed out in section 5.2, Schlenker proves that his system predicts that deno-
tational economy should always be satisfied. Otherwise stated, Kehler’s principle
does not need to be stipulated to rule out undesired binding configurations like
(2-b), but descends seamlessly from the overall architecture of Schlenker’s system.
By walking on Schlenker’s footprints, we can show that the very same property
holds in our system.

Let’s consider a sentence in which there are three coreferential expressions like
A . . . π1 . . . π2, where A is a DP which c-commands π1, π1 c-commands π2, and π1

and π2 are both non-reflexive pronouns. The corresponding phrase-marker has the
structure of τ :

τ =

A ...

π1 ...

. . . π2 . . .
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This is the configuration of a sentence like John1 claims that he1 believes that
he1 is smart. Denotational economy predicts that the configuration in which John
binds both the first and the second occurrence of he1 is not allowed. Our algorithm
generates two logical forms for the fragment he believes that he is smart, one which
does not involve semantic binding and one which does, which correspond to τ1 and
τ2 respectively. For the latter, coreference is a consequence of semantic binding, in
the former it can be achieved only in contexts such that Jπ1K = Jπ2K.

τ1 =
π1 ...

. . . π2 . . .

τ2 =

π1 2
π2 ...

. . . π2 . . .

If we assume Jπ1K = x1 and Jπ2K = x2, phrase-markers τ1 and τ2 correspond to
the logical forms believe(x1, smart(x2)) and [λx2.believe(x2, smart(x2))](x1),
respectively.

When τ1 is semantically merged with the DP constituent A, the algorithm
generates three possible logical forms: (i) one in which no semantic binding occurs
between the DPs; (ii) one in which, due to QR of A, A and π1 get semantically
bound; (iii) one in which, due to QR of A, A and π2 get semantically bound. They
correspond to phrase-markers τ3, τ4 and τ5, respectively:

τ3 =

A ...

π1 ...

. . . π2 . . .

τ4 =

A
1

π1 ...

π1 ...

. . . π2 . . .

τ5 =

A
2

π2 ...

π1 ...

. . . π2 . . .

Under the usual assumptions, the logical forms for τ1, τ2 and τ3 are, respectively:

(4) a. claim(john,believe(x1, smart(x2)))
b. [λx1.claim(x1,believe(x1, smart(x2)))](john)
c. [λx2.claim(x2,believe(x1, smart(x2)))](john)

None of the previous logical forms involve a configuration in which simultaneous
binding occur between A and π1 and π2.

When τ2 is merged with DP constituent A, only two logical forms are generated.
Lambda-abstraction over π2 makes it unavailable for further binding, and therefore
we get (i) a logical form in which there is no binding between A and π1 and (ii) a
logical form in which semantic binding occurs as a consequence of QR applied to
A; they correspond to τ6 and τ7, respectively:
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τ6 =

A ...

π1 2
π2 ...

. . . π2 . . .

τ7 =

A
1

π1 ...

π1 2
π2 ...

. . . π2 . . .

Tree-markers τ6 and τ7 correspond to the following logical forms, respectively:

(5) a. claim(john, [λx2.believe(x2, smart(x2))](x1)) →
→ claim(john,believe(x1, smart(x1)))

b. [λx1.claim(x1, [λx2.believe(x2, smart(x2))](x1))](john) →
→ [λx1.claim(x1,believe(x1, smart(x1)))](john) →
→ claim(john,believe(john, smart(john)))

Once again, no logical form generated involve simultaneous semantic binding by
A over both π1 and π2, as desired.

On the other hand if we consider a sentence like John claims that he hates him
the analysis provided for example (43) shows that no semantic binding occurs in
which John binds both he and him. Our system, just like Schlenker’s, does not need
any additional Locality of Variable Binding principle to rule out configurations like
(2-b).

From example (43) of section 4.5.8 we know that for the sentence John thinks
that he likes him our system generates three possible logical forms corresponding
to as many semantic readings:

(6) a. claim(john, like(x1, x2))

b. [λx1.claim(x1, like(x1, x2))](john)
β

=⇒ claim(john, like(john, x2))

c. [λx2.claim(x2, like(x1, x2))](john)
β

=⇒ claim(john, like(x1, john))

Furthermore, the system generates a constraint on the assignment function that
forbids any assignment that unifies the logical form corresponding to he likes him
with like(x, x). Therefore it is never then case that simultaneous binding occurs
between John and he and between John and him. Either John binds he or John
binds him: in either case, the constraint on the assignment function prevents the
two pronouns from getting the same denotation. This means that the effects of
the Locality of Variable Binding are automatically included in our system without
any further stipulation as it is the case for Schlenker’s system.

Psycholinguistic plausibility

Schlenker’s system presents a very straightforward and psycholinguistically plausi-
ble approach to Binding Theory. The notion of a memory register in which entities
are stored as they get processed by a human speaker, and which prevents him, on
the basis of an economy principle, from introducing the same entity more than
once is both intuitive and effective in accounting for several phenomena dealt with



5.3 Comparison with Schlenker’s approach 137

at a syntactic level by more traditional approaches to Binding Theory. Anaphoric
pronouns are seen as a linguistic device that allows a speaker to access previously
introduced entities whenever needed without violating this general principle of
cognitive economy. In doing so, Schlenker gets rid of most of the syntactic appara-
tus of traditional approaches to Binding Theory which deals with locality domains
and c-command. Locality issues are captured by the relatively mild stipulations
on the treatment of full-DPs and that-clauses that we presented in section 5.1.3.
The structural notion of c-command disappears in Schlenker’s system: c-command
bears no primitive role in his theory, being no more than an a posteriori config-
urational description of a genuinely semantic effect of the general architecture
of the system, issued from the level of embedding of a linguistic entity within a
constituent.

Although our integrated approach stems from a concern for computational ef-
ficiency and algorithmic elegance more than from psycholinguistic plausibility, we
come to somewhat similar conclusions in rejecting c-command as a primitive no-
tion. As in Schlenker’s system, c-command bears no role by itself, being subsumed
by the general inductive architecture of the system and by the overall semantic
perspective we assume on Binding Theory.

Quantification

Schlenker gets rid of all the syntactic apparatus of traditional approaches to Bind-
ing Theory by assuming a down-to-earth, intuitive approach to pronouns and
entities. However, his system falls short with respect to the very delicate issue of
quantificational expressions. By stripping semantic theory of all of its syntactic
apparatus, and thus giving up to the notion of binding as a whole, Schlenker faces
a problem in every situation in which semantic binding provides an elegant an
effective way to deal with the omnipresent phenomena of quantification. There-
fore he is forced to introduce admittedly heavy further stipulations and formal
machinery to deal with it. Our approach is totally transparent to quantification
issues. The central notion of our system always being semantic binding, we take
advantage of the major intuitions and achievements issued from Reinhart’s ap-
proach on this issue and we transparently integrate them into a computational
framework. No further machinery is needed beyond the usual assumptions on
covert movement of quantificational expressions which are common in formal se-
mantics. Our approach deals with traces in exactly the same way it deals with
non-reflexive pronouns. In the case of sentence Ed thinks that every professor is
underpaid, that causes so much trouble to Schlenker’s system, no problem arises
for ours. Given the semantic analysis as [Every professor][t1 is underpaid] (where
the quantificational DP has been Quantifier Raised leaving trace t1 in the original
position), the constituent [t1 is underpaid] will receive the usual semantic analysis
as λx.underpaid(x) (not differently from the sentence he is underpaid). Usual
semantic for quantificational DP will apply to get the final semantic representa-
tion as ∀x.[professor(x) → underpaid(x)] for the fragment every professor is
underpaid. When later on during the inductive process type e DP Ed gets merged
with every professor is underpaid, no new c-command configuration gets estab-
lished since the trace has already been abstracted over and therefore cannot enter
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a semantic binding relation with Ed anymore. Therefore our system does not incur
in any of the problems that force Schlenker to create additional formal machinery
to deal with quantificational expressions.

Coreference and binding

Another important consequence of Schlenker radical approach lies in the fact that
in the present theory the strict/sloppy distinction cannot be represented syntacti-
cally, because for any coreferential reading involving c-command there is a single
reading that can represent it. As Schlenker himself points out, in his system the
only possible way to analyze a sentence like John thinks that Mary likes him is
by associating index −2 to him, thus making it coreferential with John. In our
system, two readings are possible, and are actually generated by the algorithm,
namely the two following logical forms:

(7) a. [λx.think(x, like(mary, x))](john)
b. [think(john, like(mary, x))]

There is no constraint in (7-b) that prevents x from being mapped into john,
therefore getting a truth-conditionally equivalent reading to the sentence which
does not involve semantic binding. Otherwise stated, in our system there are still
two ways by which him might come to refer to John, either via a bound-variable
approach or via a coreferential reading of a free variable. Schlenker’s approach
makes only the first one available, while coreferential reading between John and
him is deemed impossible: if him has to be considered as a demonstrative pronoun
such that JhimK = john, then it would be evaluated under an evaluation sequence
that already contains john and thus the computation would fail because of a
Non-Redundancy violation.

In our approach the strict/sloppy contrast can still be represented syntactically,
due to the two different readings that are generated. Although Schlenker claims
that this shortcoming of his approach is not really such since the ambiguity theory
cannot account for all the empirical facts, it is a matter of fact that an approach
which saves most of current hypothesis about the strict/sloppy identity puzzle has
an empirical edge over one which does not.

Principles B and C

One of the most remarkable achievements of Schlenker’s approach is in our opinion
the very natural way by which it succeeds in unifying effects which were formerly
classified as Principle C or principle B violations, thus providing a convincing
common explanation of their common obviative character. Sentences like he1 likes
John1, John1 likes him1, John1 likes John1 all fail for the same reason, that is
resorting to linguistic expressions that introduce twice the same entity in the
memory register, thus entailing a violation of Non-Redundancy principle.

We consider our approach to be slightly less successful under this respect.
Traditional principle B violations effects are a consequence of the violation of
an interface filter which rules out reflexive readings for predicates which are not
reflexive-marked. In order to achieve principle C obviative effects instead we had
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to introduce an additional principle of “lexical obviation” in section 4.5.5. In some
contexts, this lead to some redundancy (see the observation at the end of section
4.5.5). However, we consider that our principle is motivated on empirical terms,
and, beyond intrinsic elegance, there are no compelling reasons to postulate a
common root for principle B and C obviative effects. On the other hand we consider
our additional machinery an acceptable price for a system which does not run into
the problems of Schlenker’s with respect to quantification.

Principle A and logophoricity

Schlenker must resort to the old idea of reflexive pronouns as arity-reducers op-
erators to account for principle A effects. Our approach is not entirely different,
although the reflexive nature of a predicate is a combined effect of Quantifier Rais-
ing blindly applied to DPs which get merged with constituents which contain other
DPs, and interface filters which rule out reflexive readings for predicate which are
not reflexive-marked. However, our general approach to reflexive pronouns allows
to account for logophoric use of anaphors as well, while Schlenker’s system at the
present stage of development does not address this issue.





6

Conclusions

We shall not cease from exploration
And the end of all our exploring

Will be to arrive where we started
And know the place for the first time.

T.S. Eliot, “Little Gidding” (the last of his Four Quartets)

In this thesis we moved from the simple algorithmic implementations of ready-
made linguistic approaches to Binding Theory towards an original integration of
insights drawn from three among its most influential interpretations. Moreover, in
an effort to overcome the limitations of each of them, we devised a computational
system which generates semantic representations of a sentence which comply with
the principles of Binding Theory without running into some computationally in-
tractable problems implicit in the theoretical models. In our approach, linguistic
stipulations are subsumed by computational and architectural principles. We prove
how our approach effectively accounts for phenomena that asked for somewhat odd
stipulations in the theoretical framework.

At the methodological level, algorithmic elegance proved to be a useful guide-
line to highlight strengths and shortcomings of different approaches to Binding
Theory. The algorithmic standpoint provides another criterion, in addition to em-
pirical coverage and cognitive plausibility, to evaluate different models issued from
linguistics. The fact that this criterion led us towards more and more refined lin-
guistic interpretations of the principles of Binding Theory, provides in our opinion
an a posteriori validation of the real progress achieved in this domain. We believe
that the path sketched in chapter 4, from off-the-shelf linguistic models towards
original computational systems, is an example of the fruitful two-way interaction
between linguistics and computer science that should be the main drive fueling
the endeavor of computational linguistics.

Although computational efficiency was not the main focus of this thesis (Ris-
tad’s [56] results on complexity issues for anaphora resolution presented in section
3.6.6 seem to cast a shadow over any future possible breakthrough on this matter),
the endeavor to eliminate the more blatantly NP-complete component from our
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system proved to be fruitful. The result is a computational system which derives
Reinhart’s [50] division of labor between semantic binding and coreference, the
latter being delegated to some extragrammatical criterion, which is not devoid
of sense from a cognitive point of view. Such vision of the general architecture
of language faculty emerges quite naturally, we believe, from the computational
assumptions over which our approach is founded, instead than from stipulations
exclusively made to cope with empirical data.

If it is true that “there is nothing more practical than a good theory” (Vladimir
Vapnik)1, by taking seriously the major insights of 30 years of linguistic enquiry
on Binding Theory and unifying them in a coherent computational framework,
we expect to achieve significant improvement in terms of empirical coverage over
systems that only rely upon heuristic algorithms. A computational implementation
of our algorithm is in order in the immediate future, possibly integrated with John
Hale’s minimalist parser (see [24], [1]).

Schlenker’s somewhat revolutionary paradigm provides another source of in-
spiration for further developments of our approach. As highlighted in chapter 5,
his idea of a memory register over which postulate an economy principle is both
intuitive and powerful. He actually achieves a perfectly homogeneous treatment
of principles B and C effects, while our approach display a somewhat disturbing
redundancy (see the observation at the end of section 4.5.5). This might be taken
as a clue that the idea of memory register might be integrated in our approach.
At the same time our approach is immune from the problems his runs into with
respect to quantification.

A further development is the integration of the present computational frame-
work in the larger context of discourse-related theories like DRT. Although DRT
is neutral with respect to the computational mechanisms that account for pronoun
resolution, it certainly raises some questions that lie within the scope of our in-
quiry. In our treatment of intrasentential anaphora we assumed that the output of
our computation are first order logic formulas. However, we have seen in section
3.7 that this language seems to fall short even in front of seemingly innocuous
sentences like every farmer who owns a donkey beats it, and our approach can’t
but share its flaws. DRT provides a new language to account for the correct se-
mantics of such sentences. We leave a thorough study of the interaction between
our computational approach to intrasentential anaphora and the language of DRS
as a promising line of future development.

Another important issue that deserves further exploration is the interaction
between our computational treatment of anaphora and ellipsis phenomena, like
that displayed in the sentence John loves his mother and Bill does too. Contrary
to Schlenker’s, our approach extensively generates all the possible bound-variable
readings for a sentence involving personal pronouns. Therefore, as pointed out by
Claire Gardent (private communication) it seems well-suited to be integrated with
higher-order unification approaches to ellipsis like in [16].

1 but “this is true much more in theory than in practice” (Christian Retoré, private
communication)
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