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Preface

This thesis is the result of close to three years of research at the Laboratoire
d’Annecy-Le-Vieux de Physique Théorique, under supervision of Julien Lesgour-
gues, sometimes closely, sometimes distantly. My research in this time focussed on
a variety of topics. Even though these topics at first sight might seem unrelated,
they share one fundamental connection: cosmic perturbations.

Cosmic perturbations describe the fact that the universe is not filled by an
exactly homogeneous fluid. Matter is in galaxies and clusters, with voids between
them. The cosmos does not only show perturbations in the form of clustered
matter (large scale structure, LSS), it also shows perturbations in the photon fluid
that still fills the universe today, the cosmic microwave background (CMB). These
together are the cosmic perturbations.

The universe is expanding. It is likely that it has been expanding for quite a
while, even if we go all the way back to the point where all matter in the universe
was densely packed together to form a plasma with a high temperature, possibly
up to T ∼ 1015 GeV (T ∼ 1010 ◦C). And what happened before then? The quest
of cosmology is to understand the evolution of the universe, and to understand
this evolution back to ever earlier times. Even if there is an absolute zero of time
in our universe, i.e., a singularity in space time in which the spatial volume of our
universe was zero and the temperature of its contents infinite, the quest could
continue beyond that point, in order to find out how and inside what ‘space time’
that singularity was created in the first place.

As our knowledge is finite, we can only measure back in cosmic time up
to a finite distance. Beyond that point we can only fantasise. Therefore, any
description of the universe starts out at some level at which initial conditions are
defined. They can be drawn from a set of possible initial conditions. Or they can
be god-given, as some people like to have their minds eased. Some others prefer
to use drugs.1 Cosmologists tend to try to be modest, and describe our universe
as ‘not so special’. This implies that the universe could have had a range of initial
conditions, from which our present universe is just one not so special drawing.
But then the question is: how can one determine a measure for naturalness on a
set of initial conditions? The answer is: one cannot. We can guess, though. We
can guess within certain theoretical frameworks. Still, at some point something
has to be taken for granted and the question about it must be postponed to later
times, as asking questions beyond that point will lead to only a higher level at

1Some do both.
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which one has to take things for granted. If that is not satisfying, one must go to
an even higher level in the explanations and take some things for granted. In daily
life we take for granted that gravity, on human scales, describes an attractive
force between massive bodies. In theoretical physics, we take for granted that
everything is described by symmetries. And within that framework, we can define
what would be a natural range for, let us say, particle couplings.

This is where we get back to cosmic perturbations. Where did they come
from? What specified their initial conditions? If the universe started out at a
temperature of 1015 GeV, and if it were the true ‘start’ of the universe, then the
most likely state of the universe would be nice and smooth and homogeneous. If it
were not, then some information, some order in the chaos, would have been put in
by hand, which would make our universe special and not so modest.2 Remember
that the judgement about naturalness is a matter of taste. So if it were smooth
and homogeneous, the only spatial fluctuations in the density of energy would be
thermal of nature. With only thermal fluctuations, the universe would probably
have looked smooth and homogeneous today [160]. It is not. Matter is in galaxies
and clusters, with voids between them. The cosmos shows perturbations, beyond
thermal fluctuations at T ∼ 1015 GeV (back till that temperature of the universe,
temperature can be used as a time parameter).

There is more information in the cosmic perturbations than just the fact that
they exist. They show a certain correlation of perturbations on very large scales.
This implies that two opposite ends of the universe as far as we can observe it,
know about each other. The universe therefore seems older than one naively
might have expected. The cosmic perturbations give a plethora of information
about the universe, as they have a certain, not random, distribution. The shape
of this distribution tells us about the universe at its earliest stages, and about the
evolution of the universe between then and now.

This thesis consists of three parts. In the first part, we will briefly and roughly
go through the foundations of cosmic perturbations necessary for understanding
Parts II and III. I write roughly, as many books are and can be written about
cosmic perturbations, as it is a large and lively topic, evolving today, and in this
thesis we can only devote a part of the thesis to its introduction.

In Part II, we will consider new work on the initial conditions of the universe at
T ∼ 1015 GeV. These in fact are most likely not randomly chosen initial conditions,
but the natural consequence of inflation, as described in Part I. Part II focuses on a
certain class of constraints on inflation that can be obtained from the observations
of cosmic perturbations. We will show that numerical calculations shed new light
on the shape of the inflaton potential in Chapters 3 and 4, with the inflaton
being the particle that drives cosmic inflation. A thorough comparison of different

2In thermodynamics, we take for granted that entropy is ever increasing. If we would take
as an initial condition that the hot particles are randomly spread over a volume, and they are so
hot that we can ignore gravitational forces, then there are many more states with the particles
homogeneously spread over the volume, than there are states with the particles clumped together.
On top of that, all the states of lower entropy, with the particles in clumps, would be more likely
to evolve towards the homogeneous state of higher entropy than to another low-entropy state.
In all ways, the homogeneous distribution is the favoured state.
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methods is made in Chapter 5. The last chapter of Part II, Chapter 6, deals with
the inevitable choices that must be made when performing statistical analyses on
cosmic data, and shows that different choices will lead to different bounds on the
same parameters. This chapter is a nice example of a discussion about the taste
involved in determining a definition of naturalness. Part II represents scientific
work, published in Refs. [14, 103,149,150,265,267].

In Part III we will see two examples of the information cosmic perturbations can
give us about the evolution of the universe after T ∼ 1015 GeV. In Chapter 7 we
show that cosmic perturbations can be used to constrain the mass of neutrinos, by
means of their possible role in the evolution of the universe and its perturbations.
Finally, in Chapter 8 we show that cosmic perturbations can be used to rule out
certain theories trying to explain the apparent acceleration of the expansion of the
universe today. Part III represents scientific work published in Refs. [151,266].

Numerical simulations were performed on the MUST cluster at LAPP (CNRS
& Université de Savoie).
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Some of the foundations of

modern cosmology
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Chapter 1

The basics of inflation

In this chapter I will give an introduction to the physics of cosmic inflation. The
aim is to provide the reader with the level of understanding necessary to read
Part II. I will motivate cosmic inflation by going through the initial conditions that
are needed for the Hot Big Bang in order to lead to today’s observations. Then
I will overview different classes of inflationary models existing in the literature.
Most of this chapter is inspired on Refs. [66, 71,114,133,154,221].

1.1 Anisotropy, expansion and its implications

Today we observe a close to anisotropic, down to O(10−5), Cosmic Microwave
Background radiation (CMB). If we assume that we are not in a special place
in the universe (the Copernican Principle), this implies that the universe looks
about the same everywhere on large enough scales (the cosmological principle).
At the time of last scattering of the CMB-photons, the universe was therefore
close to anisotropic and homogeneous. Such a universe is well-described by the
Friedmann-Lemâıtre-Robertson-Walker metric,

ds2 = a(τ)2
(

−dτ2 +
dr2

1 −Kr2
+ dΩ2

)

, (1.1)

with conformal time τ . With a sufficiently large positive energy density, such a
spacetime is expanding, H ≡ a′

a2 > 0, with a′ = ∂τa.

Causality

In expanding spacetimes there is an upper limit on the comoving distance between
two points in space that are within each others past light cone at any given time,
even though physical distances go to zero for a → 0. The particle horizon is the
distance traveled by a photon from time zero on,

dH = a(τ)

∫ τ

0
dτ. (1.2)

3



1.1 Anisotropy and implications CHAPTER 1 THE BASICS OF INFLATION

In a purely matter dominated universe, this horizon is equal to twice the Hubble
radius, RH = H−1. In such a universe, the Hubble radius evolves as RH =

RH(t0)
(

a
a0

)3/2
.

So, the CMB looks about the same in any direction. But have all points on
the sphere, from which the photons last scattered towards us, ever been in causal
contact?

The temperature (or redshift) at which the photons decoupled from the plasma
is determined by the time at which the expansion time of the universe, H−1,
overtook the scattering rate of photons, at that time dominated by Thomson
scattering, ΓT = σTne. That is, when the typical distance between two scatters
is as large as the typical time it takes that same distance to grow by a factor of
two, the probability for a photon to scatter in that time is equal to a half. Beyond
that point in time, the probability for a photon to get scattered once more before
traveling to the observer goes to zero quickly. The Thomson scattering rate is
determined by the number density of free electrons, in its turn determined by the
baryon density and the ionisation fraction, itself determined by the baryon and
matter densities. Altogether two numbers determine the temperature of photon
decoupling: Ωb and Ωk

1, if we assume that the universe is as good as purely matter
dominated at that epoch. Today’s temperature of the CMB-spectrum is measured
by the FIRAS instrument on the COBE satellite, and is T0 = 2.725 ± 0.002
K [183, 184]. This means that for a typical value of Ωb ∼ 0.02, we have roughly
zdec = 1100.

This implies that at decoupling, the horizon was dH(τdec) ≃ 1101−3/2dH(τ0) ∼
O(10−5)dH(τ0). If we combine this with an estimate of the Hubble factor today,
by means of observing type Ia supernovae and calibrating by means of variable
Cepheids, H0 = 62.3 ± 6.3 [227], and we assume that today’s particle horizon
indeed corresponds to 2RH, then the horizon at decoupling corresponds to an
angle of roughly one degree on the last scattering surface we observe.

The horizon estimate used in the previous lines, is the maximum particle hori-
zon in a matter dominated universe. Is there any possibility that the big bang
happened longer ago, during the preceding radiation era? Let us define the big
bang as the moment when the particle horizon was zero. This is simply saying
that the first event in our past light cone happened at the big bang. This does not
necessarily mean that the scale factor had to be zero at the big bang. In a purely
matter dominated universe, the particle horizon is dH = a(τ)(τ − τBB). Then
the scale factor at the big bang (and thereby the temperature of the plasma,
by T ∝ a−1) can be written as a function of the particle horizon today, using
amat = (τ/τ0)

2, such that aBB = a0(1−dH0/
2

H0
). For a0 = 1 and with τBB = 0,

the conformal time at an infinite-temperature big bang, we retrieve dH = 2/H0.
For the moment, the subscript ‘0’ denotes any hypothetical ‘today’. This means
that in a matter dominated universe, the largest age and thereby the largest parti-
cle horizon the universe can possibly have, is limited by 2/H0. If before the matter
dominated epoch, there was an era of radiation domination starting form the big

1Ωk ≡ K
a2H2 = 1 − Ωtot

4



CHAPTER 1 THE BASICS OF INFLATION 1.1 Anisotropy and implications

bang on, and the matter-radiation equality occurred at a = aeq, the particle hori-

zon becomes dH0 = 2
H0

[

1 − 1
2

√

aeq

a0

(

1 + aBB
aeq

)]

. This means that the radiation

era cannot help to increase today’s maximal particle horizon, since even for a big
bang at infinite temperature (aBB = 0) we have at most dH0 = 2

H0
.

The answer to the question if the origins of CMB photons we observe in all
directions have ever been in causal contact, is ‘no, if the content of the universe
has always been dominated by matter or radiation’. Then why is the temperature
the same in all directions, up to one part in 105? Moreover, why is the deviation
from the average temperature not random, but why does it have a non-zero two-
point correlation over all angular scales? This is the horizon problem.

Flatness

The spatial curvature of the universe today is best constrained by the angular scale
of certain length scales at the decoupling of the CMB-photons. The temperature
of the CMB-photons has a non-zero two-point correlation function. The spectrum
of this two-point correlation function has peaks at wave number kn = nπ/rs, with
rs the sound horizon at the recombination of electrons and protons (and a small
fraction of ions), just before the decoupling of the photons. What follows is a
qualitative explanation.

The reason for the relation between the wave number of the peaks and the
sound horizon at recombination, is that the photon-baryon fluid oscillates in the
small gravitational potential fluctuations that are part of the initial conditions.
Consider fluctuations at only one wavelength. From the time at which the initial
conditions are set on, the fluid starts falling in the potential wells, up till the
moment where the pressure takes over and pushes the fluid out again. The fluid
bounces back to its initial state, and even passes beyond it, because the initial
conditions include a non-zero pressure, who’s distribution is related to the distri-
bution of energy density. Hence, there are two extrema at which an observer sees
a maximal enhancement of the correlation in the fluid: when the fluid is maximally
compressed in the wells (and there is maximal rarefaction on the potential hills)
and when the fluid experiences maximal rarefaction in the wells (and maximal
compression at the hills). In the intermittent state, corresponding to almost the
initial condition, there is still correlation, only it is not enhanced by the gravi-
tational compression. Now, the longest wavelength at which this enhancement
due to compression is at its maximum, corresponds to the maximum distance a
pressure wave (sound wave) can have traveled from the initial conditions until
recombination. This length obviously is the sound horizon. If you consider a wave
length larger than the sound horizon, you may still expect a compression in the
potential wells (and rarefaction on the hills), enhancing the correlation at that
scale. However, the compression and rarefaction will not be at their maximum
yet, as the information about the pressure (heating dense areas and cooling dilute
areas) has not traveled over the whole wavelength yet. The correlation will be
less enhanced. Indeed the first peak in the CMB is a smooth function, not a
step-function at exactly the sound horizon.

5



1.1 Anisotropy and implications CHAPTER 1 THE BASICS OF INFLATION

The angle θ at which the sound horizon is observed in the CMB, is roughly
set by θ = rs/DA(zdec), with DA the angular diameter distance,

DA(zdec) =
a0

zdec + 1

χk

H0a0

∫ zdec

0

dz
√

Ωrad(z + 1)4 + Ωm(z + 1)3 + ΩΛ + Ωk(z + 1)2
,

(1.3)

χk(r) =











r for k = 0
1√
k

sin
√
kr for k > 0

1√
−k

sinh
√
−kr for k < 0.

(1.4)

The sound speed until the time of decoupling is determined by the baryon density
and the photon density. The temperature of the CMB today is measured up to
high accuracy, leaving only the baryon density as an unknown parameter. The
baryon density at the same time sets the redshift to decoupling. The angular
diameter distance is mostly dependent on curvature k and H0, the Hubble factor
today. Here again, if one takes into account the local observations of H0, Ωk and
Ωb are left as the parameters determining the angular size of the first peak in the
CMB power spectrum.

Along the same lines of reasoning about the relation between the position of
the first peak and the sound horizon, the second and third peak in the CMB-
power spectrum are higher harmonics of the sound horizon. The second peak
corresponds to the wavelength of perturbations that have compressed and relaxed
exactly once, the third peak corresponds to the wavelength of perturbations that
have compressed, relaxed and compressed once again. Now, if the baryon den-
sity would be increased, this would increase the gravitational mass in a potential
well during its compressed phase in the oscillation. It looks like a forced oscilla-
tor, i.e., an oscillator with a constant force away from its (otherwise) equilibrium
position, such that excursions are not symmetric in different directions. Hence,
the compressions will have a higher density, but the rarefaction will be less pro-
nounced. Therefore, increasing the baryon density means amplifying the first and
third peaks (all odd peaks), and damping the second peak (and all other even
peaks). This dependence on the ratio of the amplitudes of the peaks makes Ωb

an easily constrained parameter.

Altogether, the current constraints on Ωb and Ωk from WMAP are [70, 134]
−0.0178 < Ωk < 0.00066 and Ωbh

2 = 0.02273 ± 0.062, with h ≡ H0/(100 km
s−1 Mpc−1), both at 95% confidence level (CL). It is important to realize that
these numbers were obtained under the ’Hubble prior’ of H0 = 72 ± 8 km s−1

Mpc−1 [82], taking the locally observed H0 to be equal to the global H0.

Now why is this whole story about the global curvature interesting? Let
Ω̂k(t) be the curvature content at any time t, and Ωk ≡ Ω̂k(t0). During matter
domination Ω̂k ∝ a = 1/(1 + z), such that if Ω̂k(t0) = O(10−2), this im-
plies Ω̂k(tdec) = O(10−5). During radiation domination Ω̂k ∝ a2. Then if we
take the matter-radiation equality to be at zeq ∼ 3200 and Teq = 75 eV (more
on this number later), and the radiation era to start out at a temperature of

6



CHAPTER 1 THE BASICS OF INFLATION 1.1 Anisotropy and implications

Treheating = 108 GeV (this number is based on theoretical constraints), we find

that Ω̂k(treheating) = O(10−36).

Unless Ω̂k = 0, there is no reason why Ω̂k(treheating) should be so close to
zero. This is the flatness problem.

A note on matter-radiation equality

Above we assumed zeq ∼ 3200. This number is determined by Ωγ and Ωm

today and the number of neutrino species.. The CMB-temperature is measured
up to high accuracy, such that Ωγh

2 can be considered a known practically fixed
number. Ωm is only poorly constrained by the CMB alone. What does constrain
Ωm more tightly, is to combine CMB observations with those of the matter power
spectrum, the two point correlation on the observed distribution of galaxies. If
one postulates a presence of a close to scale invariant super Hubble spectrum of
frozen energy perturbations, these perturbations will enter the Hubble horizon one
by one, and start evolving according to the contents of the observable universe.
During radiation domination, the amplitude of matter density perturbations grow
as δ ∝ ln a. On top of that, the density perturbations in the baryon component of
the matter have a shrinking component, which shrinks as δbaryon ∝ a−2. During
matter domination they grow as δ ∝ a. Hence, small scale modes that enter the
horizon during radiation equality, will grow as ∝ ln a until matter domination.
Modes that enter after the transition to matter domination, will only experience
the growth ∝ a. Therefore, the mode that enters at matter-radiation equality
marks a change in slope in the matter power spectrum. The larger Ωm today, the
later the equality will have taken place, hence the larger the scale that corresponds
to the horizon size at equality (the scale of change in slope). The knee in the
spectrum has been observed.

The CMB on its own also is capable of constraining Ωm, since the photon
decoupling takes place when the radiation density is not yet negligible. We will
see in the next chapter, that during matter domination, the linearly perturbed
gravitational potential remains constant. During radiation domination, it does
change. Depending on how close to matter-radiation equality the photon decou-
pling took place, the gravitational potentials will still be changing. If a photon
passes through a changing gravitational potential, is gains or looses energy if the
potential shallows of deepens. Hence, the CMB anisotropy contains a contribu-
tion due to this effect, the magnitude of which determines how long after the
matter-radiation equality the photon decoupling took place.

When one for example considers only SDSS Luminous Red Galaxies (LRG),
data release 4 (DR4) [255] and the WMAP 3yr data release, one finds that Ωmh

2 =
0.12± 0.005 and 68% CL (when a tilt of the primordial spectrum and its running
are allowed to vary) [255]. In such a case, zeq ≃ 2500. Note that this number
changes from data set to data set, and the strongest constraints are obtained by
combining sets. The number quoted here is more for illustrative purposes. The
time dependence of matter perturbations is reviewed more thoroughly in Chapter 2.
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1.2 Inflation to the rescue CHAPTER 1 THE BASICS OF INFLATION

The age of the universe

A problem closely related to the flatness problem is the oldness of the universe.
Qualitatively it is as follows. If initially Ωk had been of order unity, then if the
universe were closed, the universe would have recollapsed within less than a second
after the Planck time, or if the universe were open, its expansion would have
been curvature dominated rapidly, cooling the photons down to the observed
temperature of 2.726K within less than a second. Our solar system itself has an
age of probably O(1010) years. So, independent of the observed curvature in the
CMB-spectrum, the initial curvature must have been fine tuned already to let the
universe reach the age and temperature it has right now.

Cosmic relics

As the universe cools down continuously, when it is matter or radiation dominated,
spontaneous symmetry breakings may occur. Given the limited size of the Hubble
radius, this can lead to topological defects. The Hubble radius grows with time,
in a radiation or matter dominated universe. If we remember that the Hubble
radius at decoupling already had a size that we observe today under an angle of
about one degree, this means that for any theory predicting topological defects,
we should observe numerous topological defects. We do not observe any. But if
it is natural for these defects, or any other troublesome relic for that matter, to
occur at some temperature, some dynamical mechanism must have diluted the
relic density such that we should of the order of one defect per Hubble volume
today.

1.2 Inflation to the rescue

Curvature

The evolution of the curvature is set by Ω̂k ≡ k
a2H2 = 1−Ωtot. Ωtot is determined

by the energy content of the universe, by definition normalised to the critical energy
density for which the universe is exactly flat, k = 0. The dependence of the Hubble
factor on the scale factor, is given by the Friedmann equations,

H2 ≡
(

ȧ

a

)2

=
1

3
ρ+

Λ

3
, (1.5)

ä

a
= −4

3
(ρ+ 3p) +

Λ

3
, (1.6)

where ȧ ≡ ∂ta, with cosmic time t defined by dt = a dτ . Let us ignore the
cosmological constant Λ for now. Hence, if the universe is radiation dominated
and has a small curvature term, we have ρrad ∝ a−4, H ∝ a−2 and Ω̂k ∝ a2. If we
replace the radiation by non-relativistic matter, we have ρmat ∝ a−3, H ∝ a−3/2

and Ω̂k ∝ a. If the universe is curvature dominated, we have ρk ∝ a−2, H ∝ a−1

and Ω̂k ∝ constant. So, if we want to drive |Ωk| to zero dynamically, the universe
must have a content such that H ∝ an and ρ ∝ a2n, with n > −1.

8
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Horizon

If we restrict ourselves to a monotonically growing scale factor with time, and take

the ansatz ainf = aend

(

t
tend

)m
, with aend and tend denoting the scale factor and

time at the end of the epoch of which this scale factor is the proper description,
we find that the contribution of that epoch to the particle horizon today is,

dH,inf = a0

∫ aend

aini

da

a2H

=
tenda0

a
1
m
end

∫ aend

aini

a
1
m
−2da

=
tenda0

a
1
m
end

m

1 −m

(

a
1
m
−1

end − a
1
m
−1

ini

)

, (1.7)

using H ≡ ∂τ a
a2 ≡ ȧ

a and using cosmic time t, defined by dt = a dτ . In this
equation, tend will be defined as some combination of H0, a0, aeq and aend. For
m < 1, we find that

lim
m↑1

a
1
m
−1

end − a
1
m
−1

ini

1 −m
= log

aend

aini
. (1.8)

Hence, for m > 1, a configuration with m very close to one and aini very close to
zero, could solve the horizon problem. Taking m to be very close to one would
be fine tuning though. For m > 1, the particle horizon remains positive (since
aini < aend), and limaini→0 dH = ∞.

In our ansatz of a ∝ tm, we have H ∝ a−
1
m . If we want the same epoch to

drive spatial curvature to zero, we have 1
m < 1, such that the flatness problem

and the horizon problem can be solved simultaneously if m > 1. If m > 1, we
have ä > 0, in other words, the expansion accelerates. This explains the name of
this epoch: Inflation. Note that the condition of accelerated expansion can also
be written as −Ḣ/H2 < 1.

Relics

If two objects are more than the Hubble radius separated from each other, they
can not communicate from that moment on, unless the Hubble radius changes
significantly in the mean time. The reasoning for this looks like the reasoning about
the decoupling of photons, above. The Hubble radius corresponds to the time it
takes for the scale factor to double in size. Hence, if any form of information travels
along the distance that corresponds to the Hubble radius at a given moment, let
us call that distance L, the object that initially was at one Hubble radius from the
source of information (distance L), will be at a distance 2L from the source. The
information cannot get beyond half way between the two objects. Objects outside
each others particle horizon can never have communicated, objects more than the

9



1.2 Inflation to the rescue CHAPTER 1 THE BASICS OF INFLATION

Hubble radius removed from each other, cannot communicate at that moment.
During inflation, the comoving Hubble radius decreases. That is, RH/a = 1/aH,
and ∂t1/aH = −ä/ȧ2 < 0.

Let us consider topological defects. When these form, in most cases the
number of relics that forms is of the order of one per Hubble volume. This is
simply because in a spontaneous symmetry breaking, the maximum distance over
which a field can communicate and fall into the same non-symmetric state along
that distance, is set by the Hubble radius. If before inflation these defects formed,
and at the beginning of inflation the number of defects is one per Hubble radius,
then inflation will decrease the comoving Hubble volume such that the number
of defects per Hubble volume becomes much less than one. After inflation the
comoving Hubble radius grows again, such that today the number of defects can
again be of the order of one per Hubble volume, and the defects cannot dominate
the evolution of the universe, as is in agreement with observations.

Duration of inflation

Let us first consider the horizon problem. The largest scale at which we observe
correlations that indicate causal contact, is the distance to the last scattering
surface of the CMB photons. Let us make a rough estimate of the comoving
distance to the last-scattering surface. For now, we assume that the universe today
is matter dominated, and the last scattering took place during matter domination,

at a redshift of z ≃ 1100. During matter domination we have amat = a0

(

τ
τ0

)2
,

H =
2τ2

0
a0τ3 , such that τ0 = 2

H0
and τdec =

√

1
1100τ0. Then the comoving distance

to the last-scattering surface is set by ∆τ = τ0

(

1 −
√

1
1100

)

≃ τ0 = 2
H0

. This is

the distance from us, observers, to the surface. We see correlations in opposing
points, hence the distance over which points in space seem to have been in causal
contact is at least equal to 4

H0
. This means that the comoving particle horizon at

last scattering must be at least 4
H0

. As the comoving particle horizon grow with

τ , this implies that the comoving particle horizon today is about 4
H0

+ ∆τ ≃ 6
H0

.

If we want causal contact to have extended up to this comoving scale at
the beginning of inflation, this implies that the comoving Hubble radius at the
beginning of inflation was at least equal to today’s comoving particle horizon.
The decrease of the comoving Hubble radius during inflation must compensate
the growth of the comoving Hubble radius after inflation. Hence,

ainiHini =
H0

6

aendHend = aendH0

(

a0

aeq

) 3
2
(

aeq

aend

)2

aendHend

ainiHini
= 6

a2
eq

aend

(

a0

aeq

) 3
2

(1.9)
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The temperature of the CMB photons today is T0 = O(10−13) GeV. If the radi-
ation era started out at a temperature of 1015 GeV, we find that the scale factor
must grow by a factor,

log
aend

aini
= 62 + log

Tend

1015GeV
, (1.10)

for a typical value of aeq and if we assume that the Hubble parameter does not
change significantly during inflation, which is a reasonable assumption, as we will
see later on. Hence, in order to solve the horizon problem, inflation must last
at least for about 60 e-foldings, although this number depends on the reheating
temperature, the temperature at which the radiation era starts.

Concerning cosmic relics, the condition to prevent cosmic relic domination is
the same as the condition to solve the horizon problem: if one relic formed per
Hubble volume at the onset of inflation, a duration of inflation of 62+log Tend

1015GeV
e-foldings ensures us that today we will not observe more than one relic in our
Hubble volume.

Remember that Ω̂k ≡ k
a2H2 . At the beginning of inflation, Ω̂k cannot be too

large, otherwise inflation would never start. If Ω̂k = 1, it would stay so forever.
Hence, |Ω̂k|ini < 1 is a firm upper bound. This means that at the end of inflation,

|Ω̂k|end <
(

ainiHini
aendHend

)2
, such that today Ωk = |Ω̂k|end

(

aendHend
a0H0

)2
<
(

ainiHini
a0H0

)2
.

In order to match the observations, Ωk = O(10−2), this gives ainiHini <
H0
10 .

This upper bound adds the small difference of log 10/6 to the needed number
of e-foldings, such that is it fair to say that solving the horizon problem, the
relic problem and the flatness problem, all leads to the same minimal number of
e-foldings, set by the reheating temperature.

1.3 The simplest model of inflation

The definition of inflation is a period of accelerated expansion. The acceleration
is given by Eq. (1.6), which we repeat here,

ä

a
= −4

3
(ρ+ 3p) +

Λ

3
. (1.11)

Hence the expansion accelerates in the case of domination by a positive cosmo-
logical constant Λ (de Sitter inflation), or by a matter for which 3p < −ρ.

The simplest field that is capable of having negative pressure, is the scalar
field, with

ρ =
1

2
φ̇2 + V (φ), (1.12)

p =
1

2
φ̇2 − V (φ). (1.13)

As soon as the energy density of the scalar field is dominated by its potential
energy, or more exact, if V (φ) > φ̇2, we have p/ρ < −1/3.

11



1.3 The simplest model CHAPTER 1 THE BASICS OF INFLATION

The equation of motion of a scalar field in an FLRW spacetime is

φ̈+ 3Hφ̇+
dV (φ)

dφ
= 0. (1.14)

If we assume spatial flatness, which is a good approximation shortly after the onset
of inflation, the Friedmann equation becomes,

H2 =
1

3M2
P

(

1

2
φ̇2 + V (φ)

)

. (1.15)

Together these can be rewritten to,

φ̇ = −2M2
PH

′(φ), (1.16)

−V (φ)

2M4
P

= H ′(φ)2 − 3

2M2
P

H2(φ), (1.17)

if one assumes that φ changes monotonically in time, since a division by φ̇ appeared
in this derivation and φ could not be used as a time parameter if it were not
monotonic.

If φ rolls downhill, then ∂φV (φ)/φ̇ < 0. Hence 3Hφ̇ is a friction term, and
for any choice of initial conditions sufficiently remote from the minimum of the
potential, the scalar field has an attractor solution where φ̈ ∼ 0.

There is a plethora of inflationary models. To begin with, there is a large
range of single scalar-field potentials, some more motivated by particle physics
(super symmetry) than others. Then there is hybrid inflation, in which inflation
is driven by one scalar field, but ends in an interplay of the driving field and a
second scalar field. In multiple inflation, inflation is driven by possibly two or
more fields. There are modified gravity theories, in which the Einstein-Hilbert
action, describing General Relativity, is no longer the correct description at high
energies. String theory provides a zoo of scenarios that can drive inflation as well.
In this chapter, which is meant to support the first part of this thesis, the only
goal is to give a basic understanding of inflation. The different chapters following
this introduction, are about relating observables to constraints on inflation. The
ultimate goal is to perform a model selection, and let the data tell us which is
the true model of inflation. We will see however, that current data constrain the
shape of the potential, but do hardly discriminate between different models. The
focus will be on the best way to constrain the potential, and not necessarily on
the actual constraints. Therefore, as most of the mentioned models are capable
of explaining the observations, we will not discuss each of them separately, and
we suffice with the example of single-field inflation. In the next section, we will
discuss how to relate the observations to the shape of the potential, in the case
of a single scalar field.
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CHAPTER 1 THE BASICS OF INFLATION 1.4 Quantum fluctuations

1.4 Quantum fluctuations and the spectrum of primor-

dial perturbations

During inflation, the inflaton is the dominating energy content of the universe.
This means that fluctuations in the scalar field imply fluctuations in the met-
ric. This has some consequences. One consequence is that the fluctuations in
the scalar field cannot be computed as if the scalar field were in a homogeneous
background, but are computed taking into account the coupling to the Einstein
equations (through the stress-energy tensor). Another consequence is that the
mapping of small perturbations to a background coordinate system is not unique.
Perturbations are defined with respect to an average. This average is associated
to some background metric. The perturbed quantities are the physical quantities,
and a coordinate transformation will only change the mapping, but not the phys-
ical quantities. However, the coordinate transformation will change the definition
of the average background quantity, as the average is performed over equal-time
hypersurfaces, and time may be redefined by the coordinate transformation. One
can imagine that in one choice of coordinates there are no perturbations, and that
under a small coordinate transformation perturbations emerge. As there are four
dimensions in General Relativity, there are four coordinates to transform, hence
four degrees of freedom defining the gauge transformation. A 4 × 4 symmetric
tensor has ten degrees of freedom. As four of those can be set to zero by some
gauge transformation, only six physical degrees of freedom remain for the pertur-
bations in the metric. The safest is to perform calculations on gauge invariant
variables, which will correspond to the only physical degrees of freedom. The
derivation of gauge invariant perturbation variables is rather lengthy, so we only
quote the result here.

The six degrees of freedom in the metric can be split into two scalar, two vector
and two tensor degrees of freedom. The equations of motion for the vector degrees
of freedom only allow for decaying solutions. From generic initial conditions, we
do not expect the vector perturbations to be of different magnitude than the scalar
and tensor perturbations, hence we expect them to play no significant role, and
we will ignore them. The tensor perturbations are gauge invariant on their own.

Next we will closely follow Chapter 14 in Ref. [154], to come to the definition
of the gauge invariant scalar curvature perturbation. Let us start with the most
generic perturbation of the FLRW-metric,

ds2 = a2(τ)
[

−(1 + 2A)dτ2 −Bidτdx
i + [(1 + 2ψ)δij + 2Eij ]dx

idxj
]

. (1.18)

These perturbations contain 10 degrees of freedom. Those degrees can be de-
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composed in their scalar (S), vector (V ) and tensor (T ) contributions by,

A = AS , (1.19)

ψ = ψS (1.20)

BS
i = − iki

k
B, (1.21)

ES
ij =

(

−kikj

k2
+

1

3
δij

)

E, (1.22)

BV
i = BV

i , with kiB
V
i = 0, (1.23)

EV
ij = − i

2k
(kiEj + kjEi), (1.24)

ET
ij =

hT
ij

a2
. (1.25)

A gauge invariant quantity describing the scalar perturbations is then,

R = ψ −H
δφ

φ̇
, (1.26)

which is the comoving curvature perturbation, or the spatial curvature perturba-
tion on the hypersurface of constant time, R = ψcom. In a comoving slicing,
that is, in a gauge with δτ = 0, the spatial slicing is such that it is orthogonal
to the world lines of comoving (free falling) observers. For a comoving observer,
the expansion is isotropic (if we assume no vorticity), hence these observers do
not observe an energy flux. Thus, δτ = 0 implies δφcom = 0. Under any gauge
transformation that only affects the time variable, e.g. to change to a comoving
slicing, ψ → ψ + a′

a δτ and δφ → δφ + φ′δτ . Hence, to transform to comoving
slicing, from any gauge, we need δτ = δφ/φ′. Therefore, in any gauge, Eq. (1.26)
corresponds to the curvature perturbation on comoving hypersurfaces, and it is
gauge invariant.

In case of isotropy in some quantity χ, its two-point correlation function is a
function of distance,

〈χ(~x)χ∗(~x+ ~r)〉 = fχ(r), (1.27)

where 〈. . .〉 denotes averaging over ~x and r = |~r|. Substituting

χ(~x) →
∫

d3k
(2π)3

χk exp(i~k~x), we can define the power spectrum Pχ of the two-

point correlation function fχ by

fχ(r) =

∫

k2dk

2π2
e−ikr |χk|2

=

∫

d ln k Pχ(k)e−ikr, (1.28)

Pχ(k) =
k3

2π2
|χk|2 . (1.29)
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This is the classical definition. In the case of quantum fields, the definition of 〈. . .〉
changes to taking the expectation value 〈0| . . . |0〉, with |0〉 the vacuum state. If
the Fourier transform is appropriately written in terms of creation and annihilation
operators, the result is identical, with χk the mode function of field χ(~x).

The equation of motion for the scalar and tensor perturbations is,

µ′′S,T +

[

k2 −
z′′S,T

zS,T

]

µS,T = 0, (1.30)

with µS = 2zSR, µT ≡ zTh, zS ≡ a
√

2 − aa′′/a′2 and zT = a. Both tensor
degrees of freedom are represented by h, although in principle h should cary a
label defining both degrees of freedom. The power spectra of perturbations then
are given by,

PR =
k3

8π2

∣

∣

∣

∣

µS

zS

∣

∣

∣

∣

2

, (1.31)

Ph =
2k3

π2

∣

∣

∣

∣

µT

zT

∣

∣

∣

∣

2

, (1.32)

where both degrees of freedom in the tensor perturbations have been taken into
account. The initial conditions for Eq. (1.30) are,

lim
k/aH→∞

µS,T (τ) =
4
√
π

mP

e−ik(τ−τi)

√
2k

, (1.33)

which is the Bunch-Davies vacuum (see Appendix A). Very briefly, the past time
vacuum state is chosen at a time that the modes of comoving wavenumber k were
so deep in ultra violet, that the field was practically a massless field that did not
feel the expansion and seemingly observed a Minkowsky metric.

The equations of motion for the perturbations, Eq (1.30), can in most cases
not be solved analytically. We can however take a closer look and give rough
estimates of the evolution of the mode functions during inflation. The quantity
that dominates the oscillation frequency, is determined by the ratio k2zS,T /z

′′
S,T .

Let us first consider the tensors. If we come back to our earlier definition of
inflation, that ä > 0, and we stick to the postulate a ∝ tm, with m > 1, then
we have a(k/a − a′′/a2) = a(k/a − (aH2 + ä)). Now aH2 ∝ tm−1, which is a
growing function of time. Therefore, as k/a decreases in time and a′′/a2 increases
in time, for any k and a sufficiently long period of inflation, the equation of motion
will eventually be dominated by the term a′′/a. This implies that at early times

µ′′T + k2µT = 0, and at late times µ′′T − z′′T
zT
µT = 0. The late time solution implies

µT ∝ zT , such that at late times Ph ∝ constant.
For scalar perturbations, z′′S/zS ∝ t3m−2, which is also a growing function of

time. Therefore, the same reasoning goes for the scalar perturbations, that at late
time PR ∝ constant.

This rough estimate has important consequences. During inflation, quantum
fluctuations that occur at small scales, at which they have significant amplitude
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1.4 Quantum fluctuations CHAPTER 1 THE BASICS OF INFLATION

(the far ultra violet), get blown up to cosmological scales. Normally, quantum
fluctuations would decorrelate, such that at large scales the correlation is absent.
During inflation, the modes get stretched beyond the Hubble radius, where there
is no more communication along the size of the mode, and the decorrelation
stops. At that moment the modes freeze in to remain constant curvature and
tensor perturbations. This is the source for the primordial spectrum of density
perturbations, which shows a non-zero two point correlation function on scales
that are larger than the Hubble radius today.

Quantum to classical transition

So far, we learned that the scalar field during inflaton creates quantum fluctuations
on super-Hubble scales, that remain of constant amplitude in time. As they
are quantum fluctuations, they should be properly described in terms of the full
wave function of the universe. This implies that we could perform a diffraction
experiment [127], that would reveal the quantum nature of the perturbations in
the form of an interference spectrum that would not exist if the scalar field could
be described classically.

It may be helpful to make the analogy to a double-slit experiment with an
incident electron beam. On a detection screen behind the double slit, we would
observe an interference pattern, showing that the electron, once it passes the
double slit, is described by a coherent superposition of two states, namely the
state that went through slit A and the state that went through slit B. Because of
the coherence, i.e., both states are in phase, the states amplify and suppress the
amplitude of the wave-function of the electron on the detection screen, increasing
and decreasing the chance to detect the electron at a certain point on the screen.
In a classical description, the electron definitely passed either slit A or slit B,
but would not obey any interference pattern when hitting the detection screen.
Classically, 50% of the electrons passes through slit A, 50% passes through slit
B. The quantum and classical descriptions will agree, if the superposed states
loose their coherence. This could be caused for example by some state-dependent
interaction somewhere near the passage of the slit. The state that suffers the
interaction, will change of phase, for example simply by being delayed on its way
to the detection screen. In the case of a large number of electrons, the phase
difference averages out in such a way the on average there is no interference
pattern. Hence, if because of some interaction on the way, the coherence is lost,
the evolution of the beam of electrons is described by means of classic stochastic
variables: each electron has a 50% chance of passing through slit A, and a 50%
chance of passing through slit B. This is the process of decoherence.

If the scalar field remains a coherent superposition of states up till today, then
its state at some remote distance remains undetermined until the moment that
we make a measurement. That means it is not possible to classically describe
the evolution of matter perturbations, and we would need to evaluate the full
wave function of the universe in order to say anything about structure formation
between inflation and today. Clearly, structures are deterministically observed.

16



CHAPTER 1 THE BASICS OF INFLATION 1.4 Quantum fluctuations

They are observed as having grown from primordial perturbations that are de-
scribed by classical stochastic variables. The same goes for the anisotropies in the
CMB. Hence, somewhere the process of decoherence must have taken place, and
moreover, the quantum fluctuations must have translated to classical stochastic
variables. And in fact, so it happened.

A full explanation of the process of the quantum-to-classical transition of
the scalar field perturbations on super-Hubble scales, would be too detailed and
lengthy to put here. See for example Refs [127, 195, 209]. Even though we do
not give the proof of this transition here, we are on the safe side. If the scalar
perturbations would not go classical on super-Hubble scales during inflation, they
would still do so during reheating. The coherent modes of the scalar field would
interact with a zoo of particles. These interactions are most likely to be state
dependent, hence having the standard scenario of decoherence as a consequence.

Slow-Roll Approximation

The amplitude of a certain mode at the time it freezes in, is related to the Hubble
factor at the time of freeze in. In the line of the intuitive explanation above: if
the Hubble factor is larger, the Hubble radius is smaller, and the decohering stops
at an earlier stage, hence at a larger amplitude of the mode.

As mentioned before, the evolution of the scalar field and the perturbation
equations can usually not be solved analytically. In the following chapters the
focus will lay on numerical (as good as exact) calculations, compared to existing
analytical approximations. As the approximations do give insight in the dynam-
ics of inflation, I will briefly mention the results of the Slow-Roll approximation,
without derivations.

The Slow-Roll approximation consists in demanding that all derivatives of the
inflaton potential remain small during inflation. There are different choices of
parameters on the market, but here I will give the Hubble-flow parameterisation,
as in Ref. [145]. If we take the number of e-foldings, N = log a/aini, as a time
parameter, we can define,

ǫ0 ≡ H(Nini)

H(N)
, (1.34)

ǫn ≡ d ln ǫn−1

dN
, with n ≥ 1. (1.35)

In this case ǫ1 = − Ḣ
H2 , and by definition during inflation ǫ1 < 1. The Slow-Roll

approximation in this parameterisation consists in demanding ǫn ≪ 1, for all n.
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One can find relations between the scalar field potential V (φ) and ǫn,

H2 ≃ 8π

3m2
P

V, (1.36)

ǫ1 ≃ m2
P

16π

(

∂φV

V

)2

, (1.37)

ǫ2 ≃ m2
P

4π

[

(

∂φV

V

)2

−
∂2

φV

V

]

, (1.38)

ǫ2ǫ3 ≃ m4
P

32π2





∂3
φV ∂φV

V 2
− 3

∂2
φV

V

(

∂φV

V

)2

+ 2

(

∂2
φV

V

)4


 . (1.39)

Then to lowest order

PR0(k∗) =
H2

πǫ1m2
P

, (1.40)

Ph0(k∗) =
16H2

πm2
P

, (1.41)

where H and ǫ1 are evaluated at k∗ = aH, with k∗ a free to choose pivot scale.
To next order we have,

log
P(k)

P0(k∗)
= b0(ǫn) + b1(ǫn) log

k

k∗
+
b2(ǫn)

2
log2 k

k∗
+ . . . (1.42)

Here for scalar perturbations b1 = nS − 1 is the tilt of the spectrum, b2 = αS

is the running of the spectrum, and similarly for tensor perturbations b1 = nT ,
b2 = αT .

What can we observe?

Now that we have seen how the scalar potential relates to the curvature perturba-
tions, it is interesting to note that the absolute scale of inflation, H, can only be
determined if the amplitudes of both the scalar and the tensor perturbations are
observed. Up till today, the tensor spectrum has not been observed yet, although
the observations still allow for a non-zero tensor spectrum. By only observing the
scalar spectrum, we can constrain somewhat the shape of the inflaton potential,
but even the shape remains degenerate.

1.5 Reheating

After inflation ends, when the acceleration stops and the inflaton field’s energy is
no longer dominated by potential energy, the universe might look very empty and
cold, as everything diluted away. This picture seems far from the high temperature
of the beginning of the radiation era.
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CHAPTER 1 THE BASICS OF INFLATION 1.5 Reheating

We will give an intuitive explanation as in Ref. [154]. At the end of inflation,
the inflaton reaches the minimum of its potential. As the inflaton will have kinetic
energy, it will oscillate around this minimum. During these oscillations the inflaton
will decay into other particles, eventually into dark matter and standard-model
particles. At a first glance, one may wonder why the inflaton did not decay before
and stop inflation to early. Even if the inflaton is very unstable, that is, it has a
very short lifetime, the Hubble time during inflation, H−1

I , will be even shorter.
Hence, the chance per Hubble volume that the inflaton will decay before the end
of inflation is negligibly small. If inflation were the very first epoch in the life of
the universe, than the age of the universe is directly proportional to the Hubble
time, and the inflaton will have been too young to decay earlier.

When the inflaton is near the minimum of its potential, and this potential can

be approximated by V (φ) ∝ φ2, than the average energy density ρ̄ =
〈

φ̇2
〉

obeys

the equation,

˙̄ρ+ 3Hρ̄ = 0, (1.43)

which has the solution ρ̄ ∝ a−3, which means that the amplitude of the oscilla-
tions of the inflaton in its potential decreases. As during non-relativistic matter
domination, the Hubble time will increase, and this period lasts just until the
Hubble time meets the decay time of the inflaton.

In general there are two possibilities for the rate of the decay. The inflaton
either decays into bosons and fermions or into fermions alone. In the first case,
there is no mechanism that prevents the decay, and the inflaton will decay almost
instantaneously into bosons, which is often referred to as preheating. The bosons
will start interacting with each other and will soon thermalise the universe, the
process of reheating. If the inflaton decays into fermions only, Pauli’s exclusion
principle will provide a break on the decay-rate. The only implication is that
reheating will take more time to complete.

A whole lot more can be said about reheating, but for the rest of this thesis
it suffices to accept that a mechanism for reheating exists. If the mechanism of
reheating leaves any imprint in the shape of cosmic perturbations, it can only be
on scales close to or smaller than the Hubble radius at the time of reheating, which
is a scale that today is too small to observe. That reheating does not interfere
with the super Hubble perturbations can be understood as follows. In principle the
reheating temperature will be equal everywhere, as the inflaton rolled down the
same potential everywhere. But, as the inflaton suffered quantum fluctuations, it
will not reach the minimum everywhere at the same time. Hence, some regions will
have reheated slightly earlier than others, and started cooling down slightly earlier,
exactly in correspondence with the super Hubble energy perturbations. This is
exactly how the super-hubble quantum fluctuations are translated in temperature
correlations on super-hubble scales. Obviously, reheating can completely redefine
the sub-hubble perturbation spectrum, which however is a scale that is too small
to observe today.

This intuitive explanation is gauge dependent. We could give the same rea-
soning in a synchronous picture: the inflation will reach the minimum at the same

19
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time everywhere, but with a slightly different kinetic energy, or, in other words
with a difference in expansion history, hence a larger or smaller volume to fill with
the same amount of energy, in accordance with the super Hubble perturbations.

1.6 Difficulties for inflation

Until so far, it looks as if inflation is the perfect son in law. It does have its caveats
though. Let us briefly mention a few, following Ref. [28]. First of all, one can
argue that in order to fit the data, the parameters describing the inflaton potential
impose a strange relation between the different derivatives of the inflaton potential.
For example, if the amplitude of perturbations is O(10−5), then Eqs. (1.36–1.42)
show that only potentials with a specific relation between the different derivatives
of the potential, will provide the spectrum that is observed. In other words, if the
whole space of potentials would be equally natural, then the class of potentials
that provides the right spectrum is a fine-tuned subclass. This, however, is a
difficult discussion, as it is about what is natural and what is not. Does the
smooth spectrum have to be a natural outcome of any inflation model, or could
we have had a universe with any spectrum, and do we happen to be in the one
with a smooth spectrum resulting from that small corner of parameter space?

A more interesting problem, is the trans-planckian problem. Inflation blows
small scale quantum fluctuations up to large scale classically observable perturba-
tions. If inflation starts out early enough, and there is no empirical or theoretical
reason why this should not be the case, the same growth of scales is important
for length scales that initially are below the Planck length. This means that scales
about which we do not understand the physics at all, have their impact on ob-
servable scales. This could significantly alter the observations, yet we ignore this
effect so far.

A similar problem is the fact that the potential energy of the inflaton for many
models is of the order ∼ 1016 GeV. This scale is close to energy scales for which we
expect quantum-gravity effects to become relevant, such that it is unclear wether
we can stick to the simple effective Einstein-Hilbert action for gravity.

These problems have in common that they point out relations between inflation
and areas of physics that are unknown. This is for sure a potential caveat to keep
in mind, but they are not strong enough to rule out inflation. They simply mean
that inflation might be different from what we think, or it might be just what we
think it is.

Also, not all observations seem to agree with inflationary predictions. It has
been pointed out that the angular correlation in the CMB on large scales >60
degrees, resides inside our galaxy. If the source of this correlation is to be sought
in the galaxy, this means that the large angle correlation on cosmological scales is
absent [53]. This is in disagreement with generic predictions of inflation, in which
one expects correlations on all scales. An implication could be that inflation
started out just at the right moment, to last exactly enough e-folds such that we
observe no curvature, no cosmic relics, and just enough large scale correlations.
This remains to be investigated further, though.
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Chapter 2

From the primordial spectrum

to observations

In this chapter we will make the link from the inflationary perturbations to two
observables today: the power spectrum of the CMB and the power spectrum of
the large scale structure distribution. Also most of this chapter is inspired on
Refs. [66, 71,114,133,154,221].

2.1 The initial conditions from inflation

In Chapter 1 we saw that the map from an averaged background metric to the
perturbed physical metric suffers from a gauge dependence. Calculations are most
safely performed in gauge-invariant variables or in a specified gauge. I repeat here
the perturbed metric, (1.18),

ds2 = a2(τ)
[

−(1 + 2A)dτ2 −Bidτdx
i + [(1 + 2ψ)δij + 2Eij ]dx

idxj
]

. (2.1)

Let us focus on scalar perturbations. The two gauge-invariant quantities describing
scalar perturbations are the Bardeen potentials,[11], in Fourier-space,

Ψ = A− aHk−1σ − k−1σ′ (2.2)

Φ = −4k2

a2
(3)R+Hk−1σ, (2.3)

for Ω̂k ≃ 0 and with σ = k−1E′
T − B

2 , the scalar potential for the shear of the

hypersurface of constant time (the comoving hypersurface) and (3)R the Ricci
scalar in the three spatial dimensions, defined on the spatial part of the metric
gij. In the newtonian / longitudinal gauge, the Bardeen potentials correspond
to the newtonian potentials, ds2 = a(τ)2

[

−(1 + 2Ψ)dτ2 + (1 − 2Φ)δijdx
idxj

]

.
Besides, if anisotropic stress is absent, we have Φ = Ψ, which is the case for
adiabatic perturbations if neutrinos van be ignored. There is an important re-
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lation between the Bardeen potentials and the comoving curvature perturbation
R ≡ −4k2

a2
(3)Rcomoving,

−R =
2

3(1 + w)

[

Ψ +
Φ̇

aH

]

+ Φ. (2.4)

Here w ≡ P̄ /ρ̄, not necessarily a constant, from the unperturbed background
stress-energy tensor T00/a

2 = −ρη00, Tij/a
2 = Pηij , with the Minkowsky metric

ηµν . Hence, if Φ = Ψ and w and Φ are constant, R = constant × Ψ. This is the
case on super-hubble scales during radiation or matter domination. All observable
scales today were super-hubble at the end of inflation, hence the initial conditions
are conveniently set as a constant super-hubble spectrum at the end of inflation,
and the evolution in time of any mode in Ψ only becomes important close to
re-entering the Hubble radius. For example, on super-hubble scales we have,

PΨ =
4

9
PR, for k

aH ≪ 1, w =
1

3
, Radiation era, (2.5)

PΨ =
9

25
PR, for k

aH ≪ 1, w = 0, Matter era. (2.6)

(2.7)

2.2 The Bardeen equation

We gave the definition of the Bardeen potentials, but to derive their evolution,
we need to know the energy contents of the universe. To come to the one equa-
tion that describes the evolution of the gravitational potential, we first need to
define all matter perturbations. Remember that in a homogeneous isotropic back-
ground we have T ν

µ = diag(−ρ̄, P̄ , P̄ , P̄ ). The most general perturbations can be
parameterised as,

T 0
0 = −ρ̄(1 + δ), (2.8)

T 0
j = (ρ̄+ P̄ )(vj −Bj), (2.9)

T j
0 = −(ρ̄+ P̄ )vj , (2.10)

T i
j = P̄

[

(1 + πL)δi
j + Πi

j

]

. (2.11)

Here δ is the over density, πL is the isotropic pressure perturbation, vj represents
the energy flux which is the time like eigenvector of T ν

µ with eigenvalue ρ =
ρ̄(1 + δ), Bj is the previously defined metric perturbation, and Πi

j is the traceless
part of the stress tensor, called the anisotropic stress tensor, and can be further
decomposed as,

Πi
j = Πǫ

(S)i
j + Π(V )ǫ

(V )i
j + Π(T )ǫ

(T )i
j , (2.12)
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in its scalar, vector and tensor contributions. Here the ǫ(S,V,T ) are normal pro-
jection tensors representing the respective contributions. All Π(S,T,V ) are gauge
invariant by themselves. Other gauge invariant quantities are

V ≡ v − 1

k
ψ′, (2.13)

Ds ≡ δ + 3(1 + w)aH

(

ψ′

k2
− B

k

)

, (2.14)

D ≡ Ds + 3(1 + w)
aH

k
V, (2.15)

Dg ≡ Ds − 3(1 + w)Φ, (2.16)

V V ≡ vV − E′
V

k
, (2.17)

Ω ≡ V V −BV , (2.18)

σV = Ω − V V . (2.19)

Here we used vi = vǫSi + vV
i and BV

i = BV ǫVi . The Einstein equations describing
the metric perturbations contain a number of constraint equations and a number
of dynamical equations. Let us focus on the scalar part. The constraint equations
read,

4πGNa
2ρD = −(k2 − 3K)Φ, (2.20)

4πGNa
2(ρ+ P )V = k(aHΨ + Φ̇). (2.21)

The dynamical equations can be recast as the Bardeen equation, where energy
conservation has been used,

Φ′′+3aH(1 + c2s)Φ
′ +
[

3(c2s − w)a2H2 − (2 + 3w + 3c2s)K + c2sk
2
]

Φ (2.22)

=
8πGNa

2P

k2

[

aHΠ′ + {2(aH)′ + 3a2H2(1 − c2s/w)}Π − 1

3
k2Π + k2Γ

]

,

(2.23)

where Γ = πL − c2s
w δ is proportional to the entropy flux of the perturbations. As

mentioned before, Γ = 0 characterises adiabatic perturbations. The sound speed

cs is defined as cs = Ṗ
ρ̇ = P ′

ρ′ . Hence, for a pressureless matter, e.g. dust, we
have cs = w = 0, such that in a spatially flat and isotropic matter dominated era
we have

Φ′′ +
6

τ
Φ′ = 0, Matter era, (2.24)

with the general solution Φ = Φ0 + Φ1
τ5 . In other words, during the matter era,

the linear potential perturbations remain constant, with the decaying term rapidly
vanishing.

23



2.3 Matter power spectrum CHAPTER 2 OBSERVATIONS

5 10 15 20 25 30
x

0.05
0.10
0.15
0.20
0.25
0.30

j1HxL

x

10-4 0.001 0.01 0.1 1 10 100
x10-5

10-4

0.001

0.01

0.1

1

j1HxL

x

Figure 2.1: The evolution of the Bardeen potential during the radiation era, in arbitrary
dimensions, with the x = cskτ . A Hubble-radius sized mode corresponds to x ∼ 1.
Left: In Log-Log scale the absence of evolution on super-Hubble scales is visible. Left
and right: The potential oscillates on sub-Hubble scales, with an amplitude decreasing
∝ x−2 ∝ a(τ)−2 (purple dashed line).

In a pure and isotropic radiation fluid, we have w = 1
3 , hence c2s = w, and

Ψ′′ +
4

τ
Ψ′ +

k2

3
Ψ = 0, Radiation era, (2.25)

which has the general solution Ψ = 1
τ [C1j1(cskτ) + C2y1(cskτ)], with constants

C1,2 and the Bessel functions jn =
√

π
2xJn+

1
2
(x) and yn =

√

π
2xYn+

1
2
(x). For

super hubble scales, i.e. kτ ≪ 1, we have Ψ(cskτ) ≃ 1
3C1 +C2x

−3, such that for
all modes that were super hubble for sufficiently long times (which is the case for
observable length scales), we have Ψ = C1

x j1(x) = C1

(

x−3 sin(x) − x−2 cos(x)
)

,
where x = cskτ . Hence, also during radiation era, super-Hubble modes in the
Bardeen potentials remain constant, however on sub-Hubble scales they start os-
cillating and diluting as ∝ a−2, as is shown in Figure 2.1. These oscillations
are the acoustic oscillations of the radiation fluid, which are responsible for the
acoustic peaks we observe in the CMB power spectrum.

2.3 Matter power spectrum

In the previous chapter we briefly introduced the power spectrum. The reason
that we are interested in power spectra, is that they provide all the statistically
interesting information about distributions, of e.g. matter of photons. In a sense,
the power spectrum contains the information about the common origin of different
points on the sky. When considering the origin of the universe, one will always look
for similarities in different directions, or, correlations. The presence or absence of
the correlations tells about certain properties of the initial state that was or was
not shared by different regions. Let us continue to see how the power spectrum
of the matter perturbations comes about from the perturbed metric.

On scales that are much smaller than the Hubble radius, the perturbations of
the metric become very small in comparison with the perturbations in the stress-
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CHAPTER 2 OBSERVATIONS 2.4 Temperature anisotropies

energy tensor. This has the consequence that the difference between {D(.), V }
and {δ, v} becomes very small. In other words, the gauge dependence of energy
and velocity measures becomes negligible. This can also be seen by realising that
sub-Hubble means k/a > H in Eqs. (2.13–2.19). The implication is that on
sub-Hubble scales we can simply treat a(τ)2Ψ as the newtonian potential a(τ)2ψ.
Then Poisson’s equation relates the potential to an over-density,

∇2ψ = 4πGNδρ, (2.26)

or in momentum space

− k2

a(τ)2
ψ = 4πGNδρ. (2.27)

Let us focus on the time behaviour and write δρ = δρ/ρ and ρ ∝ ρ0a(τ)
−3, such

that we find δρ ∝ a(τ)ψ. Hence, Pρ ∝ a(τ)2PΨ ∝ a(τ)2PR. During radiation
era, the power spectrum on sub-Hubble scales decreases as Pρ ∝ a(τ)−2, and
during matter era grows as Pρ ∝ a(τ).

To make a translation to the matter power spectrum is slightly more compli-
cated. During the radiation era, Pρ describes the perturbations in the dominating
energy density component, the photons (and neutrinos). The evolution of the
non-relativistic matter is then determined by its behaviour in following the gravi-
tational potential set by the photons, who themselves are not self-gravitating, as
their pressure counteracts the gravity. It turns out that the perturbations in the
matter grow as δm ∝ ln a during radiation domination. During matter domination
they are the dominating energy, hence δm ∝ δρ ∝ a(τ)−2.

Modes that re-enter the Hubble radius during radiation era start growing ∝
ln a. Modes that enter during matter era, will only experience growth, the smaller
modes experiencing the growth earlier as they enter earlier. Along this reasoning,
the matter power spectrum must have a change in slope, corresponding to the
modes that re-entered the Hubble radius during the matter-to-radiation equality.
This is evident in Figure 2.2.

Note that in this reasoning we ignore the fact the the radiation-to-matter
transition is gradual, which does have consequences that cannot be ignored (e.g.,
for a period the matter perturbations will grow logarithmically). Still, this gives a
rough but good understanding of the matter power spectrum.

2.4 Temperature anisotropies

With the information at hand, we can already give an estimate of the temperature
anisotropies of the CMB. So far we focused on the gravitational evolution of
the universe, although in principle the quantities describing the evolution of the
radiation-matter mixture in the universe have been defined. Assuming that the
evolution is known, and that photons decouple from other matter instantaneously,
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Figure 2.2: Left: The matter power spectrum for different values of Ωmh
2, with h =

H0/(100 km s−1Mpc−1) = 0.7, with a scale invariant super Hubble spectrum. Right:
The best-fit curve for the ΛCDM model in a combined analysis with WMAP 5-yr data
and the SDSS LRG DR4 galaxy power spectrum, versus that observed spectrum. All
theoretical spectra are calculated using camb.

the energy change of a photon between decoupling and detection is defined by,

Ef

Ei

(S)

=
T0

Tdec

(

1 −
[

1
4D

(r)
g + V

(b)
j nj + Ψ + Φ

]f

i
+

∫ f

i

(

Ψ′ + Φ′) dτ

)

. (2.28)

Here D
(r)
g denotes the density perturbation in the radiation fluid, V

(b)
j denotes the

peculiar velocity of the baryonic matter component (emitter and observer), and
nj is the tangent to the photon geodesic at emission / detection. The superscript
(S) is to remind the reader that so far we only consider scalar contributions to
the anisotropy. If we translate this to the observed temperature anisotropy at our
position, we see that all final quantities are the same in all directions, except for

V
(b)
j nj , such that all final quantities only contribute to the monopole (hence are

absorbed in T0). The term V
(b)
j nj

∣

∣

∣

f
only contributes to the dipole caused by our

motion, and is in fact the largest contributor to the dipole. The observed tem-
perature anisotropy for the quadrupole and higher terms is therefore determined
by,

∆T (~n)

T

(S)

=
[

1
4D

(r)
g + V

(b)
j nj + Ψ + Φ

]

(tdec, ~xdec) +

∫ f

i

(

Ψ̇ + Φ̇
)

dt, (2.29)

where ~n denotes the direction from which the observer observes the photon (~n =
nj |f ).

If the initial conditions are adiabatic, such that Γ = 0 and if Φ = Ψ, the first
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part of the contribution translates into,

∆T (~n)

T

(S)
∣

∣

∣

∣

∣

OSW

≡
[

1
4D

(r)
g + V

(b)
j nj + Ψ + Φ

]

(tdec, ~xdec) (2.30)

=
1

3
Ψ(tdec, ~xdec) [ADIABATIC],

(2.31)

on large angular scales, where it is important to realise that the initial conditions
are described by adiabatic perturbations, but the evolution on sub-hubble scales
does not necessarily stay adiabatic. If the initial conditions are isocurvature, such
that Ψ = Φ = 0, the first part of the contribution translates into,

∆T (~n)

T

(S)
∣

∣

∣

∣

∣

OSW

= 2Ψ(tdec, ~xdec) [ISOCURVATURE], (2.32)

again on large angular scales. In these lines, OSW stands for the ordinary Sachs-
Wolfe effect, after the first people to derive it. The second term,

∆T (~n)

T

(S)
∣

∣

∣

∣

∣

ISW

≡
∫ f

i

(

Ψ̇ + Φ̇
)

dt, (2.33)

is the integrated Sachs-Wolfe effect (ISW). The ISW-effect describes the energy
gained or lost by a photon due to changing gravitational potentials on its path to
the observer. Simply put, if a potential shallows while the photon already entered,
the photon gained more energy by falling in than it will loose by climbing out
again. It is this effect that can give the CMB the power to distinguish between
universes with Dark Energy, massive neutrino’s or strong inhomogeneities, as we
will see in Part III of this thesis.

As mentioned before, vector perturbations only have decaying solutions and
usually can be safely ignored. Tensor perturbations decay on sub-Hubble scales,
but in super-Hubble scales are constant. Hence tensor perturbations do contribute
to the temperature anisotropy. Without going into further detail, we give their
resulting contribution here,

∆T (~n)

T

(T )

≡
∫ f

i
Ėijn

injdt. (2.34)

2.4.1 Some ignored but known effects

So far we have only considered the Einstein equations and the rough approximation
of describing everything as perfect fluids. We ignored the Boltzmann equations,
thereby not paying attention to the differences between photons and baryons and
dark matter particles. The difference in mean free path of photons and mean free
path of massive particles, leads to diffusion damping. Around decoupling, which is
not instantaneous in reality, the period during which the coupling between photons
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and baryons is not perfect induces damping of perturbations at a larger range of
scales, this is the Silk damping.

The Universe reionises at low redshift (z ∼ 6 − 10), after which point the
photons will interact again with matter, mostly leading to polarisation of the
photon fluid. Besides, CMB photons cross galaxies and interact with high-energy
electrons on these galaxies, the Sunyaev-Zel’dovich effect.

Besides polarisation, these effects go into too much detail to discuss in this
brief overview.

2.4.2 The power spectrum

The CMB in approximation left from a two-dimensional sphere at a distance
rdec from the observer. Its power spectrum is therefore best described in terms
of spherical harmonics, the spherical counterpart of the Fourier transformation,
taking into account the curvature on a sphere.

The power spectrum of an autocorrelation function for a quantity X is defined
in general as,

aX
lm ≡

∫ 2π

0
dφ

∫ π

0
dθ

X(θ, φ) − X̄

X̄
Ylm(θ, φ) (2.35)

CXX
l ≡ 1

2l + 1

m=l
∑

m=−1

∣

∣aX
lm

∣

∣

2
, (2.36)

with Ylm being the spherical harmonics, and we take
~n = (cosφ sin θ, sinφ sin θ, cos θ). The temperature-temperature correlation, tak-
ing into account the different damping effects, is shown in Figure 2.3.

2.5 CMB Polarisation

Although in this thesis we do not deal with the polarisation of the CMB, a future
detection of certain modes of polarisation would strongly narrow down the allowed
parameter space for inflation. We have seen that a detection of tensors is necessary
in order to determine the scale of inflation, in its turn crucial for selecting models.
If one could never measure this scale, one might argue that there is no more
use in continuing the investigation of inflation, as it would become a ‘theory
of everything’. Hence, even though there is no direct relation to the following
chapters, an introduction to CMB polarisation is inevitable for the motivation for
considering inflation on the whole.

As mentioned in Chapter 1, the scattering process that dominates the coupling
between photons and massive matter around the time of decoupling, is Thomson
scattering. The classical explanation of Thomson scattering is that an electron
is accelerated in the oscillating electric field of an incident electromagnetic wave.
The acceleration causes the electron in its turn to emit radiation, as the vibration
of the electron changes its electric field in an oscillating fashion. Speaking strictly
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Figure 2.3: The power spectrum of the temperature auto-correlation, in terms of multi-
poles l. The binned data is the five-year data release from WMAP (in red). The theoretical
spectrum represents a ΛCDM model, and is calculated using camb.

classically, the electric amplitude of the wave observed at some vector ~n from
the electron, is determined by the component of the electric amplitude of the
incident wave in the plane perpendicular to the vector describing the direction of
the outgoing wave. If the electric field in the incoming wave is orthogonal to the
plane of scattering, the outgoing wave will have the same electric field. This is
illustrated in Figure 2.4.

Let us turn this classical description into a quantum mechanical picture, albeit
still intuitive. Individual photons are described by an electric and a magnetic field,
oscillating perpendicular to each other, both perpendicular to the direction of
propagation of the photon. If the electron is non-relativistic (which is a condition
for Thomson scattering, otherwise we would need the more general description
of Compton scattering), the electron will not gain energy from the photon and
will scatter the photon in a somewhat random direction. If we remember the
classical picture of the electron vibrating along the oscillating electric field of the
photon, from Figure 2.4 we can understand that most photons will be scattered in
directions that preserve the direction of the electric field of the incoming photon.
Or, photons scattered in the direction of the observer will originally mostly have
had an electric component perpendicular to the plane of scattering.

Now we come to the point of polarisation of radiation, i.e., a correlation be-
tween the individual polarisations in a group of photons. We understand that only
photons with a polarisation perpendicular to the plane of scattering are scattered
towards the observer. If, from the point of view of the electron, photons come
from all directions with random polarisation, the observer will still see random
polarisation in the scattered photons. If the electron sees a dipole in the incoming
radiation, the observer will still see random polarisation, as photons from left and
right of the electron (imaging the dipole to be oriented as such) average each
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Figure 2.4: A two dimensional sketch of the change of electric field under a scattering on
an electron. The electric component of the outgoing wave ~Eout ∝ ~nout · ~Ein.
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Figure 2.5: After scattering, there will only be a correlation in the polarization of the
photons if the electron sees a quadrupole temperature anisotropy. Figure taken from
Ref. [14].
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other out when ending up in the beam towards the observer. If the electron ob-
serves a quadrupole, e.g., more photons coming in from top and bottom and less
from left and right, the observer will see a preferred polarisation in the photons,
namely a preference for polarisation perpendicular to the plane of scattering of
the photons that fell in from top and bottom on the electron. Hence, if there was
a temperature quadrupole in the photon fluid at the time of last scattering, we
will observe polarisation of the photon fluid today.

For the mathematical description of the polarisation we will closely follow
Ref. [14]. The polarisation anisotropy can be described by a 2×2 intensity matrix,
Iij(n̂), with n̂ a direction on the sky. The matrix Iij is defined with respect to
orthonormal vectors perpendicular to n̂.The linear polarisation is described by the
Stokes parameters Q = 1

4(I11 − I22), U = 1
2I12 cos ∆ and V = 1

2I12 sin ∆. Here
∆ denotes a phase difference between oscillations of the electric field along the
components ê1 and ê2. In nature we do not expect such a phase difference,
which would correspond to a circular polarisation component, so we continue with
∆ = 0. The temperature anisotropy in terms of Iij is T = 1

2(I11 + I22). The
temperature anisotropy describes the field strength of the radiation field, which
is independent of a rotation of the {ê1, ê2}-basis. Therefore we could describe
the temperature anisotropy in terms of a spin-0 spherical harmonics expansions
in Eq. (2.36). The parameters Q and U transform as tensors, hence must be
expanded using tensor spherical harmonics,

Q(n̂) ± iU(n̂) =
∞
∑

l=2

m=l
∑

m=−l

a(±2)
±2Ylm(n̂). (2.37)

The a(±2) can be linearly combined to a component that is invariant under a
parity transformation n̂→ n̂′ = −n̂ and a component that keeps the dependence:
elm = 1

2(a(2) + a(−2)) and blm = 1
2(a(2) − a(−2)), such that under n̂ → n̂′ = −n̂

we have elm → elm and blm → −blm. In this basis, the polarisation field takes
the form of two spin-0 expansions,

E(n̂) =
∑

l,m

elmYlm(n̂), (2.38)

B(n̂) =
∑

l,m

blmYlm(n̂), (2.39)

(2.40)

The field E(n̂) is curl-free, and the field B(n̂) is divergence free. Examples of the
E-mode and B-mode polarisation are given in Figure 2.6.

The notion of curl- or divergence-free modes has important consequences.
Remember that we decomposed the metric perturbations in curl-free modes and
divergence-free modes in order to distinguish between scalar, vector and tensor
contributions. Therefore, the B-modes can not be produced at first order by
scalar perturbations. Simply put, the scalar perturbations of the metric cannot
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E < 0 E > 0

B < 0 B > 0

Figure 2.6: The E-modes are curl-free, the B-modes are divergence free, but have a
‘handedness’. Figure taken from Ref. [14].

have a ‘handedness’, and therefore will not give observably correlated B-mode
polarisation beyond an expectable random noise. The other way around, tensor
perturbations in the metric will give both E- and B-mode polarisation.

As with temperature anisotropies, anisotropy in E-mode polarisation will con-
strain cosmological parameters because they give a direct look at the (local)
temperature quadrupole at decoupling, but they cannot break the degeneracy be-
tween scalar and tensor perturbations. B-modes can. That is why one of the
points of focus of near future CMB-experiments is to observe a non-zero B-mode
polarisation in the CMB. If this possible smoking gun of inflation would not exist,
one should ask wether inflation is worth considering at all. Of course, care has to
be taken of possible foregrounds of gravitational waves [83,84,96,135]

2.6 Non-Gaussianity

When discussing inflation in Chapter 1, we assumed that inflation could be de-
scribed by a single, free scalar field. We assumed that the initial conditions for the
quantum fluctuations were given by the Bunch-Davies vacuum in the far ultravi-
olet. From these assumptions it follows that the inflaton fluctuations are drawn
from a Gaussian distribution, and the linear perturbations in the gravitational po-
tential at the time of decoupling are still Gaussian. The following description is
along the lines of Ref. [134].

A lot of attention nowadays is being paid to the possibility of the cosmic
perturbations being slightly non-Gaussian. Although the rest of this thesis does
not deal with non-gaussianities, it is worth mentioning here just like polarisation
in the previous section, because a detection of non-gaussianity would have strong
consequences for inflation.

If perturbations in the inflaton field are strictly Gaussian, the perturbations
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in the gravitational potential at decoupling is correctly described by linear per-
turbation theory, Φ = ΦL. If it is not, its deviation from the linear theory is
parametrized by fNL,

Φ = ΦL + fNLΦ2
L. (2.41)

We already observe that Φ ∼ O(10−5), so corrections to the linear potential
are smaller then ΦL by a factor 10−5fNL. Observations today constrain fNL <
102, hence the corrections to the linear potential are less than 0.1%. Yet, from
higher order corrections to the potential from a free single scalar field, we expect
corrections only of order fNL ∼ O(10−2). Therefore, measuring fNL ∼ O(102)
would imply that either (a) the inflaton is not a single scalar field, or (b) the
relation between the inflaton φ and the curvature R is non-linear, or (c) the initial
conditions for the scalar-field quantum fluctuations are not properly described by
the Bunch-Davies vacuum.
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In this chapter, we will use two data sets of different observables at the same
time, to constrain the shape of the inflaton potential. We combine an observation
of the CMB from the third year data release of WMAP with the Luminous Red
Galaxy power spectrum from the fourth data release of SDSS. As explained in
chapters 1 and 2, the observed correlation functions of the CMB and the LSS are
directly related to the shape of the primordial power spectra PR and Ph, present
on super-Hubble scales at the beginning of the radiation era. The primordial
power spectrum in its turn, is directly related to the expansion history during
inflation, since there is a relation between the Hubble radius at a given moment
and the amplitude of the modes that exit the Hubble radius at that time. Previous
similar analyses in the literature, usually first found constraints on the parameters
describing the primordial power spectrum, and then theoretically inferred bounds
on the inflaton potential. In this chapter, we will not make that intermediate step:
we numerically calculate the theoretical observables today directly from a number
of parameters describing the inflaton potential, and compare those to the actually
observed quantities. By removing the intermediate step, we obtain more accurate
constraints on the inflaton potential than others did before us.

The parameters we use to describe the inflationary history are the lowest order
parameters in a Taylor expansion of the potential, (varying from two to four
derivatives of the potential with respect to the scalar field φ), hence describing
the potential as a Taylor expansion, and the initial velocity of the scalar field φ̇.
We take the value of the scalar field at which we perform the Taylor expansion to
be corresponding to the middle of the range in momentum space over which the
observed spectra extend.

In this study, we are only interested in how far we can constrain the inflaton
potential within the range of observable modes, and we shall not extrapolate
the inflaton potential all the way to the end of inflation, thereby minimising the
theoretical prior on the shape of the potential.

3.1 Introduction

Cosmological inflation is known to be a successful paradigm providing self-consistent
initial conditions to the standard cosmological scenario [99,112,161,163,228,244]
and explaining the generation of primordial cosmological perturbations [1,12,100,
111,162,226,243,245]. The distribution of Cosmic Microwave Background (CMB)
anisotropies, as observed for instance by the Wilkinson Microwave Anisotropy
Probe (WMAP) [113, 119, 198, 240], is compatible with the simplest class of in-
flationary models called single-field inflation.

The definition of single-field inflation is not unique: for instance, some authors
consider hybrid inflation [52, 88, 164, 165] as a multi-field model, since it involves
one scalar field in addition to the inflaton field (the role of the second field being
to trigger the end of inflation). In this work, we call single-field inflation any
model in which the observable primordial spectrum of scalar and tensor metric
perturbations can be computed using the equation of motion of a single field.
This definition does include usual models of hybrid inflation.
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The goal of this paper is to derive from up-to-date cosmological data some
constraints on the scalar potential V (φ) of single-field inflation. This question
has already been addressed in many interesting works since the publication of
WMAP 3-year results [40, 56, 64, 65, 73, 78, 129, 179, 201, 202, 220, 240] (see also
[49] for earlier results). Our approach is however different, since all these references
assume either that the slow-roll formalism can be applied (at first or second order),
or that the scalar potential can be extrapolated from the region directly constrained
by the data till the end of inflation. We want to relax these two restrictions
simultaneously, and to derive constraints on the observable part of the inflaton
potential under the only assumption that V (φ) is smooth enough for being Taylor-
expanded at some low order in the region of interest. In this respect, our work
is still not completely general and does not explore possible sharp features in
the inflaton potential (see e.g. [56, 179] for recent proposals). Throughout the
abundant literature on the inflaton potential reconstruction, the work following
the closest methodology to ours is the pre-WMAP paper of Grivell and Liddle [95].

The question of whether the slow-roll formalism can be safely employed or
not is intimately related to the magnitude of a possible running of the tilt in the
primordial spectrum of curvature perturbations. In order to clarify this point, lets
us first recall that the slow-roll formalism [158,225,249] consists in employing an-
alytical expressions for the primordial spectrum of curvature perturbations PR(k)
and gravitational waves Ph(k). Such expressions hold in the limit in which the
first and second logarithmic derivative of the Hubble parameter H with respect
to the e-fold number N ≡ ln a remain smaller than one throughout the ∆N ∼ 10
observable e-folds of inflation (i.e., over the period during which observable Fourier
modes cross the Hubble radius). Deep inside this limit, the primordial spectra are
given by

PR(k) ≃ − H2

πm2
P (d lnH/dN)

, Ph(k) ≃ −16H2

πm2
P

, (3.1)

where the right-hand sides are evaluated at Hubble crossing. The first-order ex-
pression of the scalar/tensor tilts nS,T and tilt runnings αS,T can be easily obtained
by taking the derivative of the above expressions, using the slow-roll approxima-
tion d/d ln k ≃ d/dN . The derivation of higher-order expressions is more involved
(see e.g. [39, 42,44,62,67,92,101,110,122,123,145,155,159,230,250,251]).

Current data clearly indicate that around the pivot scale at which the am-
plitudes, tilts and runnings are defined (usually, the median scale probed by the
data), the tensor-to-scalar ratio is small and the scalar tilt is close to one. This
is sufficient for proving that the two slow-roll conditions are well satisfied around
the middle of the observable e-fold range. However, depending on the inflaton
potential, higher derivatives dn lnH/dNn (with n ≥ 3) could be large near the
pivot scale, leading to a sizeable tilt running αS and eventually to a situation in
which slow-roll would hold only marginally at the beginning and/or at the end of
the observable e-fold range. This explains why the two issues of large |αS | and
slow-roll validity are closely related (as recently emphasised in [171]).

Since models with a large running imply that the two slow-roll conditions
become nearly saturated near the ends of the observable potential range, a naive
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Figure 3.1: Observable region of the inflaton potential allowed at the 95% C.L. by the
WMAP 3-year and Sloan Luminous Red Galaxy survey (SDSS-LRG) data, for a Taylor
expansion of the potential at order v = 2 (top), v = 3 (middle) or v = 4 (bottom),
in the vicinity of the pivot value φ∗. In all diagrams the potentials are normalised to
their value at the pivot scale φ∗. For clarity, in the right diagrams, the field is expressed
in units of |V∗/V ′

∗
| instead of mP , so all curves have by definition the same slope in

φ = φ∗. In practice, these plots show the superposition of 95% of the potentials from
our MCMC chains with the best likelihood (after removal of the burn-in phase). Each
potential is plotted in a range [φ1, φ2] corresponding to Hubble exit for modes in the range
[k1, k2]=[2 × 10−4, 0.1] Mpc−1 which is most constrained by the data. This corresponds
roughly to a history of 6.2 e-folds. We only show here potentials with a negative slope,
but their image under the φ −→ −φ symmetry are equivalent solutions. At first sight,
on the top left diagram, v = 2 potentials seem to have a non-zero third derivative, but
this impression comes only from the superposition of many lines with varying length and
slope.
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extrapolation would suggest that they cannot sustain inflation for much more
than the observable δN ∼ 10 e-folds. However, it is always conceptually easy to
extrapolate the potential in order to get the necessary 50 or 60 inflationary e-folds
after our observable universe has left the Hubble radius, or to obtain arbitrary long
inflation before that time. Potentials designed in that way might not have simple
analytical expressions. This should not be a major concern e.g. for physicists
trying to derive inflation from string theory, in which the landscape designed by
the multi-dimensional scalar potential can be very complicated, leading a priori
to any possible shape for the effective potential of the degree of freedom driving
inflation. However, it is clear that models inducing large running are not as simple
and minimalistic as those with negligible running. But since they are not excluded,
they should still be considered in conservative works such as the present one.

In section 3.2, we will follow a conventional approach and fit directly the
Taylor-expanded primordial spectra to the data. Like most other authors, we will
conclude that: (i) the data provides absolutely no indication for αS 6= 0, and (ii)
given the current precision of the data, a large running is nevertheless still allowed.
We will show that similar conclusions also apply to the running of the running βS .

In section 3.3, which contains our main original results, we will fit directly the
Taylor-expanded scalar potential of the inflaton to the data. Our reconstructed
potentials are displayed in Fig. 3.1. Unless we impose a “no-running theoretical
prior” (i.e., the prejudice that inflation is deep inside the slow-roll regime), our
potentials will freely explore the region in parameter space where the running (and
eventually the running of the running) are as large as found in section 3.2. So,
for self-consistency, we must forget about the slow-roll formalism and compute
the exact primordial spectra numerically (as Ref. [179] did for various specific ex-
pressions of the potentials). In a very nice work, Ref. [171] gave a few examples
of scalar potentials leading to the largest |αS | values allowed by the data, and
showed that even in these cases the second-order slow-roll formalism, although in-
accurate, remains a reasonable approximation. In the present systematic analysis,
which explores the full parameter space of smooth inflationary potentials, we will
see that this conclusion does not apply in all cases.

3.2 Fitting the primordial spectrum

Primordial spectrum parameterisation. The usual way of testing inflationary mod-
els without making too many assumptions on the inflaton potential is to fit some
smooth scalar/tensor primordial spectra, parametrized as a Taylor expansion of
lnP with respect to ln k,

ln
PR(k)

PR(k∗)
= (nS − 1) ln

k

k∗
+
αS

2
ln2 k

k∗
+
βS

6
ln3 k

k∗
..., (3.2)

and the same holds for Ph as a function of nT , αT and βT . In single-field
inflation, the coefficients of the scalar and tensor spectra are related through the
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Figure 3.2: Probability distribution of cosmological and inflationary parameters for the
models of section 3.2: p = 2 (green/light solid), p = 3 (black dashed), and the models
of section 3.3: v = 2 (magenta dot-dashed), v = 3 (blue dotted), v = 4 (red/dark
solid). For the runs of section 3.2, the free parameters (with flat priors) are the first
eight parameters; the corresponding probability for the potential parameters are derived
from second-order slow-roll formulae (involving V∗ to V ′′′

∗
, so the inferred value of V ′′′′

∗

remains undetermined). Instead, for the runs of section 3.3, the free parameters are the
first five and the last four; the amplitude parameter in the fifth plot is then defined as

ln
[

1010 128πV 3

∗

3V ′2
∗

m6

P

]

; the corresponding r, nS and αS are derived from the exact primordial

spectra. The data consists of the WMAP 3-year results [113,119,198,240] and the SDSS
LRG spectrum [255].
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Figure 3.3: Two-dimensional 68% and 95% confidence level contours based on WMAP
3-year and the SDSS LRG spectrum for the parameters describing the primordial spectra,
obtained directly from the MCMC in the case of models p = 2 (green) and p = 3 (black),
or derived form the exact spectra for models v = 2 (magenta), v = 3 (blue), v = 4 (red).

approximate self-consistency relation

d lnPh(k)

d ln k
≃ 1

8

Ph(k)

PR(k)
(3.3)

which follows trivially from Eq. (3.1) and becomes exact deep in the slow-roll
limit. The sensitivity of current data to gravitational waves is very low, with loose
constraints on the shape of Ph. So, even if the slow-roll formalism might become
inaccurate in some cases, the data can be fitted assuming that Eq. (3.3) is exact.
In other words, for practical purposes, we can safely use the hierarchy of relations
derived from Eq.(3.3),

nT = −r/8, αT = nT [nT − nS + 1], etc., (3.4)

where r ≡ Ph(k∗)/PR(k∗). So, if we decide to Taylor expand the scalar spectrum
with p independent coefficients, the total number of free inflationary parameters
in the problem is p+1, including the tensor-to-scalar amplitude ratio at the pivot
scale.

In principle, p should be chosen according to Occam’s razor: when increas-
ing p does not improve sufficiently the goodness-of-fit, it is time to stop. In a
Bayesian analysis, this question is addressed by the computation of the Bayesian
evidence [15, 140, 156, 157, 199, 200, 242, 260]. However, when the evidence does
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Parameter p = 2 p = 3 p = 4

Ωbh
2 0.0226 ± 0.001 0.022 ± 0.001 0.021 ± 0.001

Ωcdmh
2 0.109 ± 0.004 0.109 ± 0.004 0.109 ± 0.005

θ 1.041 ± 0.004 1.040 ± 0.004 1.041 ± 0.004
τ 0.08 ± 0.01 0.10 ± 0.02 0.10 ± 0.02

ln[1010Pk∗

R ] 3.08 ± 0.06 3.13 ± 0.07 3.13 ± 0.07
r < 0.13 < 0.3 < 0.3
nS 0.97 ± 0.02 1.00 ± 0.04 1.03 ± 0.05
αS 0 −0.07 ± 0.04 −0.07 ± 0.04
βS 0 0 −0.04 ± 0.04

− lnLmax 2688.3 2687.1 2686.5
E 1 1.2 1.4

Table 3.1: Bayesian 68% confidence limits for ΛCDM inflationary models with p = 2, 3, 4
coefficients in the logarithmic Taylor expansion of the scalar primordial spectrum. The
last lines show the maximum likelihood value and the Bayesian Evidence (relative to that
of p = 2). The data consists in the WMAP 3-year results [113, 119, 198, 240] and the
SDSS-LRG spectrum [255], as implemented in cosmomc [152].

not vary significantly as a function of p, the decision of stopping the expansion
remains a personal choice to some extent, and more conservative works should
consider higher p values.

The issue of varying p is important in two respects: first, one needs to know
how many independent informations the data is providing, i.e., how smooth/complicated
the inflaton potential needs to be (for addressing this issue, one could also perform
a principal component analysis [143]); second, it is useful to know whether the
bounds on a given cosmological/inflationary parameter θi are independent of p, or
subject to variations when p increases, due to the appearance of new parameter
degeneracies.

Results. In order to address these two points, we performed some global
parameter fits using the public code cosmomc [152], with p varying from two
(scalar amplitude and tilt) to four (including the tilt running, as well as the running
of the running). Our results are summarised in Table 3.1. The relative Bayesian
evidence of each model can be easily computed, since the models are nested inside
each other [260]. However, this calculation forces us to choose some explicit
Bayesian priors for αS and βS . Pushing inflation to its limits, we notice that
the second slow-roll parameter can in principle vary between plus and minus one,
so the scalar tilt could take any value between zero and two. Extreme runnings
could be observed in ad-hoc inflationary models such that during the observable
e-folds, corresponding to four decades in k space, nS evolves from 0 to 2 or
vice-versa. So, the αS prior can be chosen to be a top-hat centred on zero
with ∆αS = 4/ ln(104) ∼ 0.4. Similarly, extreme values of βS correspond to
nS passing through the sequence 0-2-0 or 2-0-2. This leads to a prior width
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∆βS = 16/ ln2(104) ∼ 0.2. With such priors, the Bayesian evidence E increases
by a factor

Ep=3

Ep=2
= [P(αS = 0)∆αs]

−1 = [2.1 × 0.4]−1 = 1.2 (3.5)

when αS is added, and again by

Ep=4

Ep=3
= [P(βS = 0)∆βs]

−1 = [6.2 × 0.2]−1 = 1.2 (3.6)

when βS is introduced. These numbers are too close to one for drawing definite
conclusions: the extra parameters are neither required, neither disfavoured by
Occam’s Razor.

Table 3.1 shows that adding αS has a small impact on the probability dis-
tribution of Ωbh

2, τ , r, PR(k∗) and nS , as found in previous works. However,
it is reassuring to note that adding βS leave all bounds perfectly stable, except
for a small shift to higher ns values. This suggests that including a few higher
derivatives beyond αS does not open new parameter degeneracies (this conclusion
would probably break if the number of free parameters becomes much larger).
Figs. 3.2, 3.3 show the likelihood distribution of each parameter as well as some
two-dimensional confidence regions for models p = 2 (green lines) and p = 3
(black lines).

Impact of small CMB multipoles. The smallest multipoles in the CMB temper-
ature and polarization maps are still controversial. In WMAP data (as well as in
previous COBE data), the temperature quadrupoles and octopoles are surprisingly
small, while their orientations seem to be correlated (between each other and with
the ecliptic plane). Many authors have been investigating possible foregrounds
or systematics which could affect these small multipoles (see e.g. [53–55, 229]
and references therein). So, it is legitimate to study whether the quadrupole and
octopole data have a significant impact on our bounds for the primordial spec-
trum parameters (a priori, these low temperature multipoles could be partially
responsible for the preferred negative value of the tilt).

We repeated the p = 3 analysis after cutting the temperature and polarization
data at l = 2, 3. We found that all probabilities are essentially unchanged, includ-
ing that for running (the mean value only moves from −0.67 to −0.66, which is
not significant given the precision of the runs). We conclude that our results are
independent of the robustness of low multipole data.1

Impact of extra CMB data. There are also discussions about a possible small
mismatch in the amplitude of the third acoustic peak probed on the one hand by
WMAP, and on the other hand by Boomerang [120] or other small-scale CMB
experiments. We repeated the p = 2 and p = 3 analysis including extra data

1This result is consistent with that of Ref. [49], which shows that evidence for running is more
related to anomalies around l ∼ 40.
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from Boomerang [120], ACBAR [141] and CBI [235]. The impact on inflationary
parameter is found to be very small, although in the p = 3 case the bound on r
gets weaker by 20% and the preferred value of αS goes down by the same amount
(i.e., the case for negative running becomes slightly stronger). Other bounds
are essentially unchanged. In what follows, we will not include these data sets
anymore.

Expectations for the inflaton potential. In the next section, we will directly fit
the inflaton potential V (φ), parametrized as a Taylor expansion near the value φ∗
corresponding to Hubble crossing for the pivot scale k∗. We expect that a global
fit with V (φ) expanded at order v will provide the same qualitative features as
the previous power spectrum fit of order p = v:

• order v = 2 (V ′′′ = 0) should be sufficient for explaining the data, and
will not lead to significant running or deviation from slow-roll. Indeed, the
smallness of r and |nS − 1| guarantees that the two slow-roll conditions are
well satisfied at least near φ∗. In addition, with V ′′′ = 0, they should remain
well satisfied on the edges of the spectrum, and no significant running can
be generated.

• order v ≥ 3 (V ′′′′ = 0) should not be required by the data, but remains
interesting since it will explore the possibility of large running and shift the
other parameter distributions as in the previous p = 3 case. The slow-roll
parameters could then become large near the edges, so it is necessary to
compute the spectra numerically rather than using any slow-roll approxima-
tion.

The results of the next section will confirm this expectation, and prove that order
v = 4 is necessary for exploring the full range of αs probed by the p = 3 run.

3.3 Fitting the scalar potential

Computing the power spectra numerically. In order to fit directly the inflaton
potential, we wrote a new cosmomc module which computes the scalar and tensor
primordial spectra exactly, for any given function V (φ − φ∗). This module can
be downloaded from the website http://wwwlapp.in2p3.fr/~lesgourgues/

inflation/, and easily implemented into cosmomc.
In its present form, our code is not designed for models with very strong

deviations from slow-roll. For such extreme models, a given function V (φ − φ∗)
would not lead to a unique set of primordial spectra PR(k), Ph(k): the result
would depend on the initial conditions in phase space. We decide to limit ourselves
to models such that throughout the observable range, the field remains close to
the attractor solution for which φ̇ is a unique function φ. In this case, a given
function V (φ − φ∗) does lead to unique primordial spectra, and we do not need
to introduce an extra parameter φ̇ini. Since the goal of this paper is to test
inflationary potentials leading to smooth primordial spectra, this restriction is

46

http://wwwlapp.in2p3.fr/~lesgourgues/inflation/
http://wwwlapp.in2p3.fr/~lesgourgues/inflation/


CHAPTER 3 PROBING V (φ) 3.3 Fitting the scalar potential

sufficient. In particular, it enables to explore models for which the running αS is
large, deviations from slow-roll are significant, and analytical derivations of the
spectra are inaccurate. However, our code cannot deal with the case in which
inflation starts just when our observable universe crosses the horizon (for which
φ̇ini would be a crucial extra free parameter).

In cosmomc, we fix once and for all the value of the pivot scale k∗ =
0.01 Mpc−1. Then, for each function V (φ − φ∗) passed by cosmomc, our
code computes the spectra PR(k), Ph(k) within the range [kmin, kmax] = [5 ×
10−6, 5] Mpc−1 needed by camb, imposing that aH = k∗ when φ = φ∗. So, the
code finds the attractor solution around φ = φ∗, computes H∗ and normalises the
scale factor so that a∗ = k∗/H∗. Then, each mode is integrated numerically for
k/aH varying between two adjustable ratios: here, 50 and 1/50. So, the earliest
(resp. latest) time considered in the code is that when kmin/aH = 50 (resp.
kmax/aH = 1/50), which in the attractor solution uniquely determines extreme
values of (φ − φ∗) according to some potential. In the code this is translated to
demanding that aH grows according to the aforementioned ratios: by 50k∗/kmin

before φ = φ∗, and by 50kmax/k∗ afterwards. Hence, one of the preliminary tasks
of the code is to find the earliest time. If by then, a unique attractor solution
for the background field cannot be found within a given accuracy (10% for φ̇ini),
the model is rejected. So, we implicitly assume that inflation starts at least a few
e-folds before the present Hubble scale exits the horizon. In addition, we impose
a positive, monotonic potential and an accelerating scale factor during the period
of interest. This prescription discards any models with a bump in the inflaton
potential or a short disruption of inflation, that could produce sharp features in
the power spectra.

As a result of the chosen method, the potential is slightly extrapolated be-
yond the observable window, in order to reach the mentioned conditions for the
beginning and ending of the numerical integration. Although this seems to be in
contradiction with the purpose of this paper, i.e. to probe only the observable
potential, this extrapolation cannot be avoided if we want to keep the number of
free parameters as small as possible. Note that the range of extrapolation is still
very small in comparison with an extrapolation over the full duration of inflation
after the observable modes have exited the Hubble radius.

In this approach we need not make any assumption about reheating and the
duration of the radiation era. As explained in Ref. [220], the evolution during
reheating determines the redshift z∗ at which presently observed perturbations
left the Hubble radius during inflation. Probing only the observable window of
perturbations, we are allowed to let the subsequent evolution of inflation and
reheating, hence the number of e-folds and thereby the redshift z∗, be unknown.

Parameterisation. The inflaton potential is Taylor expanded up to a fixed
order, and we let cosmomc probe different values for the derivatives of the in-
flaton potential at the pivot scale. Since Monte Carlo Markov Chains (MCMC)
converge faster if the probed parameters are nearly Gaussian distributed, in fact
we recombine to potential parameters in such a way as to probe nearly Gaussian
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Parameter v = 2 v = 3 v = 4

Ωbh
2 0.022 ± 0.001 0.022 ± 0.001 0.022 ± 0.001

Ωcdmh
2 0.109 ± 0.004 0.109 ± 0.004 0.109 ± 0.004

θ 1.041 ± 0.004 1.041 ± 0.004 1.040 ± 0.004
τ 0.08 ± 0.03 0.09 ± 0.03 0.10 ± 0.03

ln
[

128π1010V 3
∗

3V ′2
∗

m6
P

]

3.06 ± 0.06 3.07 ± 0.06 3.11 ± 0.08
(

V ′

∗

V∗

)2
m2

P < 0.4 < 0.4 < 0.8
V ′′

∗

V∗

m2
P 0.1 ± 0.5 −0.2 ± 0.6 0.4 ± 0.9

V ′′′

∗

V∗

V ′

∗

V∗

m4
P 0 8 ± 5 13 ± 11

V ′′′′

∗

V∗

(

V ′

∗

V∗

)2
m6

P 0 0 200 ± 150

− lnLmax 2688.3 2687.2 2687.2

Table 3.2: Bayesian 68% confidence limits for ΛCDM inflationary models with a Taylor
expansion of the inflaton potential at order v = 2, 3, 4 (with the primordial spectra com-
puted numerically). The last line shows the maximum likelihood value. The data consists
of the WMAP 3-year results [113, 119, 198, 240] and the SDSS LRG spectrum [255], as
implemented in cosmomc [152].

combinations. These combinations are inspired by the slow-roll expression of the
spectral parameters (PR(k∗), nS , αS and r) as a function of the potential. We

use an amplitude parameter 128π
3

V 3
∗

V ′2
∗

m6
P

, which is equal to PR(k∗) at leading order

in a slow-roll expansion. The other spectral parameters consist of linear combi-
nations of (V ′

∗/V∗)
2, V ′′

∗ /V , (V ′′′
∗ /V∗)(V

′
∗/V∗) and (V ′′′′

∗ /V∗)(V ′
∗/V∗)

2. Hence it
is most likely to find nearly Gaussian shapes for these products in stead of the
sole potential derivatives. For the actual expressions for the spectral parameters
in terms of the inflaton potential, we refer the reader e.g. to section IV of [145].

In order to compare the results for the runs with v = 2, 3, 4 with those of the
previous section, we calculate the spectral parameters of each model numerically.
The other way around, we also invert the slow-roll expansion in order to compare
the v = 2, 3, 4 and p = 2, 3 models in potential-derivative space. Defining ǫ0 ≡
H(NI)/H(N) and ǫn+1 ≡ d ln|ǫn|

dN , where N = ln a
ai

and Hi is some initial value
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of the Hubble factor, the inversion is given by

ǫ1 =
r

16
+
C1

16

(

r2

8
+ (nS − 1)r

)

+O
(

r3, (nS − 1)3 , α3
S

)

, (3.7)

ǫ2 = −(ns− 1) + C1αS − r

8
− r

8
(ns− 1)

(

C1 −
3

2

)

−
(r

8

)2
(C1 − 1) + O

(

r3, (nS − 1)3 , α3
S

)

, (3.8)

ǫ2ǫ3 =
1

8

(

r2

8
+ (nS − 1)r − 8αS

)

+O
(

r3, (nS − 1)3 , α3
S

)

, (3.9)

where C1 = γE+ln 2−2 ≃ −0.7296. The value of the potential and its derivatives
can be expressed exactly in terms of the slow-roll parameters, which are listed up
to the second derivative in [145]. The third derivative reads

V ′′′ =
12m2

pH
2√π

√
ǫ1

(

2ǫ21 −
3ǫ2ǫ1

2
+
ǫ2ǫ3
4

)

. (3.10)

The fourth derivative of the inflaton potential would be of a higher order in the
slow-roll expansion.

Results. The allowed ranges, parameter likelihoods and two-dimensional con-
tours from all our runs are summarised respectively in Table 3.2, Fig. 3.2 and
Figs. 3.3, 3.4. The allowed shape of primordial scalar and tensor spectra is shown
in Figs. 3.5.

First we ran a chain for the model at order v = 2. As expected, the results
confirm those obtained fitting the spectral parameters up to order p = 2, which can
be seen in Figs. 3.2 and 3.4 and the upper left chart in Fig. 3.3, by comparing the
magenta and green lines. This can be translated into the statement that fixing the
running of the tilt to zero is almost equivalent to fixing third and higher derivatives
of the potential to zero. The resulting bounds can be read from Table 3.2, and
the correlation between V ′

∗/V∗ and V ′′
∗ /V∗ is well accounted by the relation

m2
P

[

2.2

(

V ′
∗
V∗

)2

− V ′′
∗
V∗

]

= 0.6 ± 0.2 . (68%C.L.) (3.11)

Note that the numerically calculated running in the models with v = 2 is not
strictly zero but allows a very small region of nonzero running. Similarly, the
derived bounds from the models with p = 2 on the potential parameters allow
for very small regions of nonzero second and third derivative. This merely reflects
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Figure 3.4: Two-dimensional 68% and 95% confidence level contours based on WMAP
3-year and the SDSS LRG spectrum, for the parameters describing the inflaton potential,
obtained directly from the MCMC in the case of models v = 2 (magenta), v = 3 (blue),
v = 4 (red), or derived from second-order formulas for models p = 2 (green), p = 3
(black).
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Figure 3.5: The primordial spectrum for scalar perturbations (left) and tensor pertur-
bations (right) allowed at the 95% C.L. by WMAP 3-year and the SDSS LRG data, for
a Taylor expansion of the inflaton potential at order v = 2 (magenta/light), v = 3
(blue/dark) or v = 4 (red/medium). In practice, this plot shows the superposition of
95% of the spectra from our MCMC chains with the best likelihood (after removal of the
burn-in phase). All these spectra are computed numerically, rescaled to one at the pivot
value k∗, and displayed in the range which is most constrained by our data set. Note
that the shapes of the two spectra are related to each other: so, the tensor spectrum is
constrained through that of the scalar spectrum, and not directly by the data, which does
not have the required sensitivity.
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Figure 3.6: Precision test of the second-order slow-roll expansion for models allowed at
the 95% C.L. by WMAP 3-year and the SDSS LRG data, based on a Taylor expansion
of the inflaton potential at order v = 2 (magenta/light), v = 3 (blue/dark) or v = 4
(red/medium). For each model, we plot the spectral parameter r (top left), nS (top
right) and αS (bottom left) computed at the pivot scale with two methods: by deriving
the primordial spectrum computed numerically (horizontal axis), or with the second-order
slow-roll formalism. We checked that the scattering of the point away from the y=x axis
reflects inaccuracies in the second-order slow-roll formalism rather than in our code. The
bottom right plot shows the inaccuracy in the running as a function of V ′′′′

∗
V ′2

∗
/V 3

∗
for

the v = 4 model.
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the expansions in different parameterisations than an indication for running (or
nonzero higher derivatives of the potential).

Including a third derivative does allow for models to have a more significant
running, which is clearly visible Fig. 3.5. Yet, as seen in Figs. 3.2, 3.3 and 3.4,
the models with v = 3 (blue line) do not explore the full range of parameters
which is indicated by the models with p = 3 (black line), in particular for αS , and
do not show as much a sign of degeneracy between V ′′′

∗ V
′
∗/V

2
∗ and V ′2

∗ as the
derived potential derivatives from the models with p = 3, in Fig. 3.4. The relation
between V ′′ and V ′2 remains almost unchanged. Inversely, in Fig. 3.3 we see the
same effect in spectral parameter space.

The remaining discrepancy between models v = 3 and p = 3 led us to including
the fourth derivative of the inflaton potential as a free parameter, i.e. v = 4. The
resulting power spectra, shown in Fig. 3.5, show a larger negative running than in
the v = 3 case, even with significant running of the running on the largest scales.
In Fig. 3.2 we see that the model v = 4 (red line) does probe the same range of
runnings of the tilt as allowed in the model p = 3. Looking at two-dimensional
projections, we see that the p = 3 and v = 4 contours are closer to each other in
spectral parameter space (Fig. 3.3) than in potential parameter space (Fig. 3.4):
this reflects the inaccuracy of second-order slow-roll expressions, as explained in
the next paragraph. In the model v = 4 the range for the lower derivatives
of the potential is slightly larger than in the models with v < 4, which has its
repercussions embodied in slight degeneracies between the fourth derivative and
the lower derivatives.

Note that all figures containing information on the fourth derivative of the
potential contain only the model v = 4 (red line) and not those with p = 2 or
p = 3, since in the slow-roll approximation one would need to go to third order in
order to infer V ′′′′

∗ from the primordial spectrum.

Finally, it is worth pointing out that the results at all orders in both param-
eterisations still allow for a flat (Harrison-Zel’dovich) spectrum at the 95% C.L.,
or for a linear potential at the 68% C.L.

Precision of the slow-roll approximation. In Fig. 3.6 we show the discrepancy
between the numerical results for the spectral parameters (top left: r, top right:
nS , bottom left: αS) and those obtained using the slow-roll approximation up
to third order in the derivatives of the inflaton potential (second order in slow-
roll parameters for nS and αS , third order for r). The numerically calculated
parameters can in this context be treated as exact, since they do not involve any
approximation (within first-order cosmological perturbation theory), and remain
perfectly stable when we increase the precision parameters of our code. As r
naturally comes out at one order higher in the slow-roll expansion than nS and
αS , the top left plot (r) shows less discrepancy than do the plots for nS and αS .
However, for large r there is a clear deviation from slow-roll in the results with
v = 4 (red), up to ∼7%. In the plot for nS it is clearly seen that second order
slow roll is only accurate up to ∼ 3% for the run with v = 3 (blue region). This
discrepancy is important, since the data constrains nS with a standard deviation
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σ ∼ 2%. When a fourth derivative of the inflaton potential is included, second-
order slow roll becomes really inaccurate, with a typical error of 10% on nS , while
the running can be wrongfully estimated by as much as ∆αS = 0.1, i.e. three
standard deviations given the current data. In a future work, it would therefore
be useful to compute the next-order contributions to the running analytically (the
bottom right diagram shows the quasi-linear dependence of αS on the combination
V ′′′′
∗ V ′2

∗/V
3
∗ ).

3.4 Conclusions

In this work, we derived some constraints on the inflaton potential from up-to-date
CMB and LSS data. Our CMB data consists in the WMAP 3-year measurement
of the temperature and polarization power spectrum. We did include the first
(controversial) multipoles, after checking in section 3.2 that they do not have
a significant impact on the determination of the primordial spectrum tilt and
running. Our analysis differs from previous works for several reasons. First, we
directly fit the parameters describing the inflaton potential, instead of constraining
first the primordial spectra, and reconstructing the inflaton potential afterwards.
Second, we Taylor-expand the inflaton potential in the vicinity of the pivot scale at
a rather high order (up to v = 4), and see that such a high order is important e.g.
for exploring all the parameter space allowed by the data in terms of running of
the scalar spectrum tilt. Third, we compute the scalar and tensor spectra for each
model numerically, and find that for the models considered here this is important,
since the spectra derived from the second-order slow-roll formalism are inaccurate
by the same order as the observational constraints themselves.

However, the most important peculiarity of this work is our choice to focus only
on the observable region of the inflaton potential, not making any assumption on
the shape of the potential between the observable region and the minimum close
to which inflaton stops after approximately 50 e-folds (depending on the scale of
inflation). This choice has a crucial impact on the results. If we did extrapolate the
inflaton potential over 50 e-folds, keeping the same order in the Taylor expansion,
our models would be more severely constrained, since the requirement of 50 extra
e-folds would kill many of the allowed potentials presented here2. We are perfectly
aware of this, and wish to point out that this is one of two points of view, which
are both equally sensible.

From one point of view, if one works under the prejudice that the inflaton
potential should not be too complicated, then it is extremely relevant to consider
the global shape of the potential and to throw away all models which cannot
sustain 60 inflationary e-folds. Many papers use this approach, using sometimes
Monte Carlo methods in which the potential (or the Hubble flow H(N)) is Taylor
expanded over the 60 e-folds at high order.

2For instance, some limits on the potential derivatives were presented up to V ′′′ in [110] and
up to V ′′′′ in [39]. In these works, most of the constraints on high derivatives come from the
requirement of at least 50 inflationary e-folds with the extrapolated potential. Not surprisingly,
the resulting bounds are much stronger that ours.

54



CHAPTER 3 PROBING V (φ) 3.4 Conclusions

From another point of view, if one wants to address the question of what
is strictly allowed by the data, then even a high-order Taylor expansion of the
full potential sounds unsatisfactory for modelling all its possible variations during
such a long history as 60 e-folds (especially if one keeps in mind that some other
fields could then play a role: triggering a phase transition, inducing complicated
shapes as in the string-inspired landscape scenarios, etc.). On the contrary, in this
philosophy, one should only try to parametrize the inflaton potential in the range
probed by cosmological data, i.e. around six or seven e-folds. This is what we did
here, with a Taylor expansion up to fourth order.

The two approaches lead, of course, to radically different conclusions. For
instance, in the first method, one would conclude that during the observational
e-folds the inflaton must be deep in the slow-roll regime, since it is necessary to
sustain a number of e-folds which is an order of magnitude higher. The running
would then be very constrained [73]. In the second method, it is not a problem
to satisfy slow-roll only marginally on the edges of the observable range. Even if
ǫ1 grows dangerously close to one when cluster scales exit the Hubble radius, the
potential could become much flatter afterwards, and sustain any desired amount
of inflation.

Our main results for the inflaton potential reconstruction are summarised in
Figs. 3.1, 3.2, 3.4 and Table 3.2. We also showed up to what extent the slow-
roll formalism reveals to be inaccurate in the current context in Fig. 3.6. This
motivates possible future works concerning the next-order slow-roll expressions.

Following the same approach, this work could be improved by adding more
large-scale structure data e.g. from Lyman-α forests or weak lensing, which have
a good power for further constraining the primordial spectrum on smaller scales
than the SDSS LRG data. Here we choose to use a very restricted data set, in
order to derive rather conservative and robust results.

More generally, we point out that our cosmomc module for computing the
primordial spectra numerically can be used in different contexts, within cosmomc

or separately, and even (after minor modifications) for studying more complicated
models producing characteristic features in the primordial spectra. The module
was written in a user-friendly way and made publicly available on the website
http://wwwlapp.in2p3.fr/~lesgourgues/inflation/.
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The inflaton potential: probing

H(φ)
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In the previous chapter we gave constraints on the lowest derivates of the
inflaton potential for the case where the scalar field φ already reached its attractor
solution before the largest modes exit the horizon. The set of parameters {V (n)},
where V (n) ≡ ∂n

φV (φ)
∣

∣

∣

φ=φ∗

, then uniquely specified the evolution of the universe

during inflation. To be more general, one should allow φ̇ to be a free parameter
too. This would however introduce some degeneracies between parameters, taking
away constraining power on {V (n)}.

In this chapter, we will see that specifying {φ̇, V (n)}, is equivalent to specifying
some H(φ). Hence, if instead of Taylor expanding V (φ) and specifying φ̇, we
Taylor expand H(φ), we automatically specify a unique set {φ̇, V (φ)} by choosing
a combination of {H(n)}.

Again, we numerically calculate today’s observables directly from a given set
of {H(n)}, focusing only on the inflaton potential in the epoch during which the
modes that are observable today froze in. The advantage of this new choice of
parameters is that we obtain more general constraints on the inflaton potential.

4.1 Introduction

We derive new constraints on the Hubble function H(φ) and subsequently on the
inflationary potential V (φ) from WMAP 3-year data combined with the Sloan
Luminous Red Galaxy survey (SDSS-LRG), using a new methodology which ap-
pears to be more generic, conservative and model-independent than in most of
the recent literature, since it depends neither on the slow-roll approximation for
computing the primordial spectra, nor on any extrapolation scheme for the po-
tential beyond the observable e-fold range, nor on additional assumptions about
initial conditions for the inflaton velocity. This last feature represents the main
improvement of this work, and is made possible by the reconstruction of H(φ)
prior to V (φ). Our results only rely on the assumption that within the observable
range, corresponding to ∼ 10 e-folds, inflation is not interrupted and the function
H(φ) is smooth enough for being Taylor-expanded at order one, two or three. We
conclude that the variety of potentials allowed by the data is still large. However,
it is clear that the first two slow-roll parameters are really small while the validity
of the slow-roll expansion beyond them is not established.

Cosmic inflation was introduced as a simple and aesthetically elegant scenario
of the early Universe evolution which is capable of explaining its main proper-
ties observed at the present time [4, 99, 161, 163, 228, 244]. As a very impor-
tant byproduct it provides a successful mechanism for the quantum-gravitational
generation of primordial scalar (density) perturbations and gravitational waves
[1, 12, 100, 111, 191, 243, 245]. The Fourier power spectrum PR(k) of the former
ones is observed today in the cosmic microwave background (CMB) and the large
scale structure (LSS). Vice versa, at present the CMB and the LSS provide the
only quantifiable observables which can confirm or falsify inflationary predictions.
That is why matching concrete inflationary models to observations has become
one of the leading quests in cosmology.
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In the simplest class of inflationary models, inflation is driven by a single scalar
field φ (an inflaton) with some potential V (φ) which is minimally coupled to the
Einstein gravity. For these models, some new conservative bounds on V (φ) were
presented recently in [150]. Until then, most post-WMAP3 studies concerning
V (φ) relied on the slow-roll approximation in the calculation of perturbation power
spectra and their relation to values of φ during inflation [40, 64, 65, 73, 78, 129,
201, 202, 240], or made an extrapolation of V (φ) from the observable window
till the end of inflation [179, 211, 220] (a numerical integration of exact wave
equations for perturbations to obtain primordial power spectra was also permormed
in Refs. [56, 166, 171] for specific inflationary models). The extrapolation over
the full duration of inflation is more constraining than the data alone. Instead,
Ref. [150] focused only on the observable part of the potential to see up to what
extent current data really constrains inflation.

For this class of models, the evolution of a spatially flat Friedmann-Lemaitre-
Robertson-Walker (FLRW) universe can be described by [194,225]

φ̇ = −m
2
P

4π
H ′(φ) (4.1)

−32π2

m4
P

V (φ) =
[

H ′(φ)
]2 − 12π

m2
P

H2(φ). (4.2)

whenever φ̇ 6= 0 and not specifically during inflation (so H ′(φ) 6= 0, too). Here
H(φ(t)) ≡ ȧ/a, a(t) is the FLRW scale factor, a dot denotes the derivative
with respect to the cosmic time t, a prime with respect to an argument, and we
have set Gm2

P = ~ = c = 1. If V (φ) is considered as the defining quantity,
the initial conditions for generating the observable window are determined by
the set {φ̇ini, V (φ)}. In Ref. [150], the inflaton potential was parametrized as a
Taylor expansion up to some order, to see up to what extent the potential can
be constrained by pure observations. However, in order to reduce the number of
free parameters, φ̇ini was fixed for each model by demanding that the inflaton
follows its attractor solution just when the observable modes exit the horizon. In
practice this means that the results of Ref. [150] assumed that inflation started at
least a few e-folds before the observable modes left the horizon. These preceding
e-folds led to a slightly stronger bound on the potentials than the data itself could
actually give, although this extra constraining power stands in no proportion to
an extrapolation over the full duration of inflation.

Eqs. (4.1, 4.2) however show that when one considers H(φ) as the defining
quantity, all initial conditions are already uniquely set by H(φ). Moreover, the
slow-roll conditions which require, in particular, that the first term in the rhs
of Eq. (4.2) is much less than the last one need not be imposed ab initio. In
this Chapter we derive the bounds on H(φ) during observable inflation using
its Taylor expansion at various orders. We infer from this some constraints on
V (φ) under an even more conservative approach than in Ref. [150], since the
present method requires absolutely no extrapolation outside of the observable
region (either forward or backward in time). Our only restriction is to assume that
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observable cosmological perturbations originate from the quantum fluctuations of
a single inflaton field, which dynamics during observable inflation is compatible
with a smooth, featureless H(φ).

Method. We used the publicly available code cosmomc [152] to do a Monte
Carlo Markov Chain (MCMC) simulation. We added a new module (released
at http://wwwlapp.in2p3.fr/~valkenbu/inflationH/) which computes nu-
merically the primordial spectrum of scalar and tensor perturbations for each given
functionH(φ−φ∗), where φ∗ is an arbitrary pivot scale in field space. This module
is simpler than the one in Ref. [150], since the code never needs to find an attractor
solution of the form φ̇(φ). The comoving pivot wavenumber is fixed once and for
all to be k∗ = 0.01 Mpc−1, roughly in the middle of the observable range. Primor-
dial power spectra are computed in the range [kmin, kmax] = [5× 10−6, 5] Mpc−1

needed by camb, imposing that k∗ leaves the Hubble radius when φ = φ∗. In
practice, this just means that for each model the code normalises the scale factor
to the value a∗ = k∗/H∗ when φ = φ∗. Note that by mapping a window of
inflation to a window of observations today, our approach is independent of the
mechanism of reheating. The evolution of each scalar/tensor mode is given by

d2ξS,T

dη2
+

[

k2 − 1

zS,T

d2zS,T

dη2

]

ξS,T = 0 (4.3)

with η =
∫

dt/a(t) and zS = aφ̇/H for scalars, zT = a for tensors. The code
integrates this equation starting from the initial condition ξS,T = e−ikη/

√
2k when

k/aH = 50, and stops when the expression for the observed scalar/tensor power
spectrum freezes out in the long-wavelength regime. More precisely, the spectra
are given by

k3

2π2

|ξS |2
z2
S

→ PR ,
32k3

πm2
P

|ξT |2
z2
T

→ Ph , (4.4)

and integration stops when [d lnPR,h/d ln a] < 10−3. If for a given function
H(φ−φ∗) the product aH cannot grow enough for fulfilling the above conditions,
the model is rejected. In addition, we impose that aH grows monotonically, which
is equivalent to saying that inflation is not interrupted during the observable range.
If these conditions are satisfied, the power spectra are compared to observations.

We choose to parametrize H as a Taylor expansion with respect to φ − φ∗
up to a given order n varying between one and three (this choice of background
parameterisation is equivalent to that in Ref. [73], as long as no extrapolation is
made). Note that for n > 1 such an assumption excludes φ̇ and H ′ becoming
zero at some value φ = φ1 in the range involved since then H(φ) would acquire a
non-analytic part beginning from the term ∝ |φ−φ1|3/2 (with V (φ) being totally
analytic at this point) 1. As a cosmological background we used the standard
ΛCDM-model with the free parameters shown in Table 4.1.

Results for H(φ − φ∗). In Fig. 4.1 we show the probability distribution of
each parameter marginalized over the other parameters. The corresponding 68%

1The case of φ̇ becoming zero at the beginning or during inflation requires special considera-
tion, see [234,246] in this respect.
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Parameter n = 1 n = 2 n = 3

Ωbh
2 0.023 ± 0.001 0.023 ± 0.001 0.022 ± 0.001

Ωcdmh
2 0.109 ± 0.004 0.109 ± 0.004 0.110 ± 0.004

θ 1.042 ± 0.003 1.041 ± 0.004 1.040 ± 0.004
τ 0.08 ± 0.03 0.08 ± 0.03 0.09 ± 0.03

ln
[

4H4
∗

H′2
∗

m6
P

1010
]

3.07 ± 0.06 3.07 ± 0.06 3.09 ± 0.06
(

H′

∗

H∗

)2
m2

P 0.079 ± 0.031 0.072 ± 0.056 0.081 ± 0.067
H′′

∗

H∗

m2
P 0 −0.035 ± 0.199 −0.079 ± 0.247

H′′′

∗

H∗

H′

∗

H∗

m4
P 0 0 1.53 ± 1.23

− lnLmax 1781.7 1781.4 1780.1

Table 4.1: Bayesian 68% confidence limits for ΛCDM inflationary models with a Taylor
expansion of H(φ − φ∗) at order n = 1, 2, 3 (with the primordial spectra computed
numerically). The last line shows the maximum likelihood. The first four parameters
have standard definitions (see e.g. [150]).

confidence limits are displayed in Table 4.1, as well as the minimum of the effec-
tive χ2 for each model. This minimum does not decrease significantly when n
increases, which reflects the fact that current data are compatible with the sim-
plest spectra and potentials, but derivatives up to H ′′′ can be constrained with
good accuracy. Note that it would be very difficult to give bounds directly on the
set {H,H ′, H ′′, H ′′′, ...}: indeed, these parameters are strongly correlated by the
data, because physical effects in the power spectra depend on combinations of
them. For example, at the pivot scale, the scalar amplitude is mainly determined
by (H2

∗/H
′
∗)

2 and the tensor-to-scalar ratio r ≡ Ph/PR by (H ′
∗/H∗)2. The scalar

tilt nS further depends on H ′′
∗ /H∗, and the scalar running on H ′′′

∗ H
′
∗/H

2
∗ . The

Markov Chains can converge in a reasonable amount of time only if the basis of
parameters (receiving flat priors) consists in functions of each of the above quan-
tities, or linear combinations of them. However, we also show in the last plot of
Fig. 4.1 the distribution of H∗: this information is useful since the energy scale
of inflation is given by λ = (3H2

∗m
2
P /8π)1/4, but the displayed probability should

be interpreted with care since this parameter has a non-flat prior.
The run n = 1 is not very interesting. Indeed, imposing H ′′ and higher

derivatives to vanish leads to a one-to-one correspondence (at least in the slow-
roll limit) between the amplitude and the tilt of the scalar spectrum. This feature
is rather artificial and unmotivated. It explains anyway why the parameter H∗
has exceptionally a lower bound in the n = 1 case 2. Much more interesting is
the n = 2 case for which the tensor ratio, scalar amplitude and scalar tilt are
completely independent of each other, and the n = 3 case for which even the tilt
running has complete freedom. The runs for n = 2 and n = 3 nicely converged

2Both ln A (the scalar amplitude) and nS −1 (the scalar tilt deviation from one) are bounded
by the data. In the n = 1 case, these two quantities derive from H∗ and H ′

∗, which are hence
both constrained independently of each other.
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and constitute the main result of this work. Note also that the middle-right and
lower-right graphs in Fig. 1 are compatible with each other in the following sense:
though H ′∗ may not reach zero under our assumption, the quantity H ′∗/H∗ may
be arbitrarily small if H∗ is allowed to be arbitrarily small, too. Thus, for cases
n = 2, 3 when H∗ is not suppressed at zero argument, H ′ ∗/H∗ is not suppressed
there, too.

The probability distribution for combinations of H∗, H ′
∗ and H ′′

∗ are robust
in the sense that they do not change significantly when one extra free parameter
H ′′′

∗ is included: this indicates that they are directly constrained by the data.
We tried to include an additional parameter (H ′′′′

∗ /H∗)(H ′
∗/H∗)2m6

P , but then
our Markov Chains did not converge even after accumulating of the order of 105

samples. We conclude that current data do not have the sensitivity required to
constrain H(φ) beyond its third derivative and to establish the validity of the
slow-roll approximation beginning from this order. On the other hand, the first
two slow-roll parameters ǫ(φ) = H ′2m2

P /4πH
2 and η̃(φ) = H ′′m2

P /4πH are
really small over the observed range (tilde is used here to avoid mixing with the
conformal time η). The next parameter ξ ≡ 2λH = H ′′′H ′m4

P /(4π)2H2 is also
small, ∼ 0.01, though being of the order of ǫ and |η̃|, not ǫ2 or η̃2 as would follow
from the standard slow-roll expansion. This smallness explains why our results
for these parameters are similar to those obtained for the same background H(φ)
but using the slow-roll approximation to calculate the power spectra [202] (and
to those in [179], too) although some important differences exist.

Results for V (φ − φ∗). We further processed our n = 1, 2, 3 runs in order
to reconstruct the inflaton potential. For each run, we kept only 68% or 95%
of the models with the best likelihood, and computed the corresponding inflaton
potentials using Eq. (4.2). Note that the problem is fully symmetric under the
reflection (φ−φ∗) ↔ −(φ−φ∗). We choose to focus on one half of the solutions,
corresponding to φ̇ > 0 and hence V ′

∗ > 0. Our results are shown in Fig. 4.2. They
appear to be compatible with those of Ref. [150], although a detailed comparison is
difficult: first, the current method is more conservative, and second, a given order
in the Taylor-expansion of H(φ−φ∗) is not equivalent to another order in that of
V (φ−φ∗). Our results are also difficult to compare with those of Ref. [211], since
these authors choose to present their full allowed potentials extrapolated till the
end of inflation: in principle, our Fig. 4.2 can be seen as a zoom on the directly
constrained, small φ region in their Fig. 2.

Our results could give the wrong impression that all preferred potentials are
concave. This comes from the fact that in the representation of Fig. 4.2, many in-
teresting potentials are hidden, since they almost reduce to the point (V∗,∆φ) →
(0, 0). Indeed, as long as the tensor-to-scalar ratio is not bounded from below,
many low-energy inflationary models with very small H∗ and H ′

∗ (and hence tiny
variation of the inflaton field during the observable e-folds) are perfectly com-
patible with observations. It is straightforward to show that models leading to
nS < 1 and small r correspond to convex potentials (like e.g. new inflation with
V = V0 − λφn, or one-loop hybrid inflation with V = V0 + λ lnφ), while models
with same nS and larger r derive from concave potentials (like e.g. monomial
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inflation V = λφα). Current data favor nS < 1, and the upper bound on r is too
loose for differentiating between these two situations. So, our allowed potentials
can be split in two subsets: low-energy convex potentials and high-energy concave
potentials, as illustrated in Fig. 4.3, in which we rescaled all allowed potentials to
the same variation in V and φ. More generally, this large degeneracy in potential
reconstruction reflects the fact that an infinitely precise measurement of the scalar
spectrum PR would only constrain the function

PR(k) =
4H4

m4
PH

′2

∣

∣

∣

∣

k=aH

(4.5)

(in the slow-roll approximation). This is not sufficient for inferring the correspon-
dence between k and φ, and hence for a unique determination of H(φ) and V (φ).
It is necessary to measure also the tensor spectrum, equal to

Ph(k) =
16H2

πm2
P

∣

∣

∣

∣

k=aH

(4.6)

in the same approximation, in order to diminish this degeneracy (see the related
discussion in Ref. [49]). In the slow-roll approximation, the knowledge of Ph(k)
leads to the unambiguous determination of H(φ). However, the question how
unique the determination of H(φ) is, even from both PR(k) and Ph(k) in the
generic case beyond slow-roll, is still open because of the existence of many H(φ)
leading to the same perturbation spectra which may not be obtained from the
slow-roll expansion at all [247]. Still, since the difference of these additional
solutions from slow-roll ones is, in some sense, exponentially small for small slow-
roll parameters, their existence might appear not significant from the observational
point of view.
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Figure 4.1: Probability distribution for the eight independent parameters of the models
considered here, normalised to a common arbitrary value of Pmax. The ninth plot shows
a related parameter (with non-flat prior): namely, the value of the expansion rate when
the pivot scale leaves the horizon during inflation. Our three runs n = 1, 2, 3 correspond
respectively to the dashed red, dotted blue and solid black lines. The data consists of the
WMAP 3-year results [113, 119, 198, 240] and the SDSS LRG spectrum [255]. The first
four parameters have standard definitions (see e.g. [150]), and lnA is a shortcut notation
for the parameter defined in the fifth line of Table I.
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Figure 4.2: Allowed inflationary potentials V (φ−φ∗) inferred from each of our n = 1, 2, 3
runs. For each case, the light colour corresponds to models allowed at the 68% confidence
levels, and the dark colour to the 95% level. The inner (bluish) region is obtained for
n = 1, the intermediate (greenish) one for n = 2 and the outer (reddish) one for n = 3.
Each potential is plotted between the two values φ1 and φ2 corresponding to Hubble exit
for the limits of the observable range [k1, k2]=[2×10−4, 0.1] Mpc−1: so we only see here
the actual observable part of each potential. Note that this figure shows only one half of
the possible solutions: the other half is obtained by reflection around φ = φ∗.
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Figure 4.3: Allowed inflationary potentials V (φ − φ∗) with the same colour/shade code
as in Fig. 4.2, but a different choice of axes: each potential is now rescaled to the same
variation in V an φ space. This shows that many allowed potentials are actually convex.
The outer region still corresponds n = 3, the intermediate one to n = 2 and the inner
(quasi-linear) one to n = 1.
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In Chapters 3 and 4 we saw that numerical computations of the spectra led to
more accurate constraints on the functions V (φ) and H(φ). The focus was mainly
on qualitative constraints on the inflationary history. In this chapter, we will take
a closer look at the improvement of accuracy by choosing the numerical approach.
We will compare two different Slow-Roll methods to our numerical results, and
find that, as long as we do not extrapolate the inflationary history till the end of
inflation, the numerical approach is theoretically more consistent and hence gives
slightly tighter constraints on the parameters, than the analytical approximations
do. The difference lies therein that the analytical approaches have no simple way
of incorporating the condition that the modes that we observe actually freeze in.
In other words, the analytical approaches give a spectrum for almost any choice of
parameters, where some choices of parameters actually correspond to inflationary
histories that last too short to produce only even the observable modes (in CMB
and LSS). In our numerical code, which actually integrates the inflationary history
for each mode, from the time at which the mode was in the far ultra-violet, up
till the time at which the mode has frozen in for sure, we automatically reject a
choice of parameters if any mode fails to freeze in. Hence, what happens is that
we do not extrapolate the inflaton potential all the way till the end of inflation, but
we do have to demand that all observed modes really freeze in, thereby putting
slightly more stringent theoretical constraints on the shape of the potential.

5.1 Introduction

Cosmic inflation is the simplest and most robust paradigm capable of providing
self-consistent initial conditions to the Hot Big Bang scenario [4, 99, 161, 163,
228, 244], as well as a mechanism for the quantum-gravitational generation of
primordial scalar (density) perturbations and gravitational waves [1, 12, 100, 111,
191, 243, 245]. The Fourier power spectrum PR(k) of the former is observed
today in the cosmic microwave background (CMB) and the large scale structure
(LSS). Vice versa, at present the CMB and the LSS provide the only quantifiable
observables which can confirm or falsify inflationary predictions. That is why
matching concrete inflationary models to observations has become one of the
leading quests in cosmology.

In the standard inflationary picture, the amplitude of perturbations for a given
comoving Fourier mode k depends crucially on the dynamics of inflation around
the time of Hubble exit for this mode. Each Hubble exit time is conveniently
parameterised in terms of the number of e-folds N before inflation ends. The
relation between k and N depends very much on the overall energy scale of
inflation. The ensemble of modes observable in the CMB and in the quasi-linear
part of the LSS power spectra corresponds to a range ∆N ∼ 10 called “observable
inflation”. The total duration of inflation is a priori unlimited, but the number of
e-folds between the time at which the presently observable Universe became as
large as the Hubble radius and the end of inflation can only vary in the approximate
range 30 < N < 60, that will be called “relevant inflation” throughout this paper.

The literature on inflation constraints is plethoric. For simplicity, a majority of
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papers are restricted to the case in which inflation is driven by a single scalar field
φ (an inflaton) with a canonical kinetic term, some potential V (φ) and minimal
coupling to Einstein gravity (however, each of these assumptions can be relaxed
and has already been studied separately). Traditional works are based on the
definition of spectral parameters (amplitude, index, possibly running) for density
perturbations and gravitational waves. In a first step, these parameters are fitted
to the data; in a second step, one tries to infer the class of inflationary models
compatible with derived bounds on spectral parameters.

In the last years, many works have gone beyond this approach, recognising that
the introduction of spectral parameters puts already a strong theoretical prior on
the models, and is by no means a necessary step. It is more realistic and equally
efficient to fit directly to the data the (more fundamental) parameters governing
the dynamics of inflation and/or the inflaton potential. Within the main stream
(standard single field inflation), recently published analyses fall in two categories
which are both interesting and complementary: either one assumes a particular
model based on a definite form for the inflaton potential throughout relevant in-
flation, and derives constraints on the free parameters of this potential (top-down
approach); or one employs a generic parameterisation of the potential V (φ) or
another function governing inflationary dynamics, e.g. H(φ), and tries to recon-
struct this function from the data (bottom-up approach). The second approach
aims at avoiding theoretical priors as much as possible, and concentrating on what
the data exactly tells us, although no parameterisation can be completely general:
sharp features are usually excluded ab initio (obviously, all possible features cannot
be accounted for with a reasonable number of free parameters). Even within the
bottom-up approach, a distinction can be established between conservative anal-
yses reconstructing only the part of V (φ) corresponding to observable inflation;
and more aggressive analyses in which the potential (or the function H(φ)) is ex-
trapolated till the end of inflation, and subject to a prior on the minimum duration
of relevant inflation (e.g. N ≥ 30). This more aggressive method should imply
varying many more parameters, since in this case the parameterisation should be
accurate over 30 to 60 e-folds instead of just ∼ 10. The fact of extrapolating
is by itself an extra theoretical prior, since cosmological data tell us essentially
nothing about the era between observable inflation and Nucleosynthesis: the end
of inflation could be subject to multi-field dynamics, experience phase transitions,
be split into several non-contiguous short inflationary stages, etc.

Here we address only the most conservative approach, i.e., the reconstruction
of the inflationary dynamics during observable inflation, with a minimal number of
assumptions. After the publication of WMAP results, this approach was followed
in Refs. [73, 149, 150, 201, 202]. It was stressed in [73, 201, 202] and [149] that
the quantity primarily constrained by the data is H(φ): hence, this function is
the one which should be parameterised in some way and fitted to the data. The
knowledge of H(φ) uniquely defines the potential V (φ), and Ref. [149] presented
the collection of potentials V (φ) corresponding to the ensemble of functions H(φ)
allowed by current WMAP and SDSS LRG data. The results are still plagued by
degeneracies: since the energy scale of inflation is unknown, the data favours a
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parametric family of inflaton potentials rather than a precise shape within the
observable window. However, a lot of improvement is expected from the next
generation of CMB experiments, especially the planck satellite. The reconstruc-
tion of observable inflation will improve spectacularly if primordial gravitational
waves are observed by planck or another experiment, in the form of polarised
B-modes. This would fix the tensor-over-scalar ratio r, and hence the energy scale
of inflation. Even without B-modes, the Planck data would provide r-dependent
constraints on the inflation potential of unprecedented precision. In this perspec-
tive, it is worth comparing the details and merits of each reconstruction method.

Choosing to concentrate on the reconstruction of H(φ) during observable in-
flation does not fix the method entirely, in particular as far as the computation of
the primordial spectra is concerned. The authors of [73, 201, 202] employed ana-
lytic approximations of two different forms, while those of [149]1 wrote a module
appended to CAMB [153] and CosmoMC [152], which derives the numerical spec-
tra for each new set of inflationary parameters by numerically solving the exact
equations. It is interesting to study whether the difference between these meth-
ods is relevant given the precision of current and future data. Beyond the issue
of perturbations, different methods could also differ through different assump-
tions concerning the parameterisation of the background evolution, and the exact
number of e-folds during which this parameterisation is (explicitly or implicitly)
assumed to hold and be compatible with accelerated expansion. The goal of this
paper is to compare in details these different techniques, and to see how each
difference impacts the constraints obtained from current data. Although current
inflaton potential reconstructions are still dominated by degeneracies, a careful un-
derstanding will be necessary before applying these methods to the highly precise
data expected in the next years.

In the next section we will briefly review the theory of inflationary perturbations
and discuss the exact approach, as well as two commonly used approximative
methods for the calculation of the primordial perturbation spectra. In section 5.3,
we will present the results of an analysis of current data and demonstrate that
the bounds using the approximative methods with a näıve prior differ significantly
from the constraints inferred with the exact method. We will track down the cause
of these differences and compare the accuracy of the approximations in section
5.4 before we conclude in section 5.5.

5.2 Background and perturbations in single field infla-

tion

The observable spectra of density perturbations and gravitational waves are di-
rectly related to the evolution of the Hubble parameter H ≡ ȧ/a as a function of
φ in the neighbourhood of an arbitrary pivot value φ∗. The function H(φ − φ∗)

1Numerical spectrum computations were also employed in various complementary approaches
to the problem of constraining inflation, based on definite potentials [56, 166, 179, 220] or on a
frequentist analysis with extrapolation of the potential throughout relevant inflation [211].
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can in principle be reconstructed from the data without any need to assume an

explicit value of φ∗. Each H(φ − φ∗) defines a unique set
{

V (φ− φ∗), φ̇ini

}

through

− 32π2

M4
Pl

V (φ− φ∗) = [H ′(φ− φ∗)]
2 − 12π

M2
Pl
H2(φ− φ∗), (5.1)

φ̇ = −M2
Pl

4π H ′(φ− φ∗), (5.2)

whenever φ̇ 6= 0 2 (the prime denotes a derivative with respect to φ, and we have
set GM2

Pl = ~ = c = 1). In Ref. [149], the defining quantity H(φ − φ∗) was
Taylor-expanded up to the cubic term:

H(φ− φ∗) = H∗ +H ′
∗(φ− φ∗) +

1

2
H ′′

∗ (φ− φ∗)
2 +

1

6
H ′′′

∗ (φ− φ∗)
3 , (5.3)

which is equivalent to keeping the first three slow-roll parameters

ǫ =
M2

Pl
4π

[

H′

H

]2
, (5.4)

η =
M2

Pl
4π

H′′

H , (5.5)

ξ =
M4

Pl
16π2

H′H′′′

H2 , (5.6)

in the Hubble flow hierarchy [128,158], as in the slow-roll reconstruction approach
of Refs. [72, 73, 201, 202]. Note that the universe expansion remains accelerated
as long as ǫ < 1. For practical purposes, any parameterisation of H(φ) could be
used when fitting the data with a Bayesian MCMC analysis. Besides the issue of
priors on inflationary parameters, each parameterisation corresponds to a different
ensemble of possible inflationary models. One can wonder how much the final
results (i.e., the range of allowed potentials) depends on the parameterisation. In
the following analysis we will compare the results obtained by Taylor-expanding
either H(φ) or H2(φ) at the same order, using in both cases the same flat priors
on the first slow-roll parameters expressed at the pivot scale φ∗.

Once the ensemble of possible inflationary models has been specified, the
analysis still depends on the way to calculate the perturbation spectra in single-
field inflation, and on a theoretical prior on the duration of inflation. In this section
we will give a very brief summary of three different approaches used in Refs. [73,
149, 201, 202]. Keep in mind that throughout this paper, we are working under
the assumption of a minimal prior. In other words, we do not impose any lower

2Such a singularity is never reached as long as H(φ) is used as the defining quantity and has an
analytic expression over the range considered. As mentioned in Ref. [149], φ̇ = 0 can be reached
for a field value φ1 only if H has a non-analytical expression like (H − H1) ∝ (φ − φ1)

3/2 in
the vicinity of φ1. This cannot happen with the parameterisations used in this work (polynomial
expressions for either H(φ) or H2(φ)). In addition, reaching φ̇ = 0 would imply that the field
changes direction with an opposite sign for H ′, which is not compatible with the assumption of
a single-valued function H(φ).
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bounds on the number of e-folds of inflation, we only demand that the spectra
of a model can be calculated with the respective methods. So, besides possible
differences in the accuracy of the resulting spectra, the default implementation of
the three methods will also differ in the range of parameter values that would be
excluded straight away.

5.2.1 Exact spectra via mode equation

Given H as a function of φ during inflation, the spectrum of curvature perturba-
tions PR and gravitational waves PT can be calculated exactly by integrating the
scalar/tensor mode equation (see, e.g,. [192]):

d2ξS,T

dη2
+

[

k2 − 1

zS,T

d2zS,T

dη2

]

ξS,T = 0 (5.7)

with η =
∫

dt/a(t) and zS = aφ̇/H for scalars, zT = a for tensors. The evolution
of the background is determined by

φ̇ = −M
2
Pl

4π

dH

dφ
. (5.8)

The ξS,T are usually taken to be in the Bunch-Davies vacuum when they are
well within the horizon, and their evolution needs to be tracked until |ξS,T|/zS,T

converges to a constant value, in order to define the observable spectra:

k3

2π2

|ξS |2
z2
S

→ PR ,
32k3

πM2
Pl

|ξT |2
z2
T

→ PT . (5.9)

In principle, observable inflation could be interrupted for a very short amount
of time, resulting in characteristic features in the spectra. In the mainstream
approach, this situation is not considered for simplicity. Actually, the numerical
module used in Ref. [149] eliminates models violating ǫ ≤ 1 at any point dur-
ing the period of time the mode equation is integrated. More precisely, for any
wavenumber in the range [kmin, kmax] = [3 × 10−6, 1.2] Mpc−1 needed by CAMB

(the pivot scale being fixed at k∗ = 0.01 Mpc−1), the module integrates Eq. (5.7)
from the time at which k/aH = 50 and until [d lnPR,T /d ln a] < 10−3. If for
a given function H(φ − φ∗) the product aH does not grow monotonically by a
sufficient amount for fulfilling the above conditions, the model is rejected (we
recall that it is equivalent to impose that aH grows or that ǫ is greater than one).

The condition [d lnPR,T /d ln a] < 10−3 is motivated by our desire to obtain
a 0.1% accuracy in the power spectra. The error made on PR,T by stopping
the integration of perturbations at a finite time can be estimated analytically,
comparing the amplitude of the decaying mode to that of the non-decaying mode
for R or gravitational waves during inflation. The decaying over non-decaying
mode ratio evolves in a first approximation like a−1, i.e., like e−N . Hence, a few
lines of algebra show that the derivative [d lnP/d ln a] is a good approximation
for the relative error [∆P/P] produced by stopping integration at a finite time.
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Other parameters governing the precision of the power spectra calculation (like
the step of integration, the choice of the initial integration time for each mode,
etc.) where chosen in such way that the above source of error is the dominant
one.

The numerical evaluation of the spectrum involves solving equations (5.7) for
each value of k, but this does not increase the total running time of a Boltzmann
code like CAMB by a noticeable amount. Nevertheless, there exist a number of
approximations in the literature, which simplify the calculation considerably.

5.2.2 Approximation I

This method was employed in [201,202], and relies on the validity of the analytical
slow-roll approximations,

PR(k) ≃ [1−2(C1+1)ǫ+C1η]2

πǫ

(

H
MPl

)2
∣

∣

∣

∣

k=aH

, (5.10)

PT(k) ≃ [1 − (C1 + 1)ǫ]2 16
π

(

H
MPl

)2
∣

∣

∣

∣

k=aH

, (5.11)

with C1 = −2 + ln 2 + γ, where γ is the Euler-Mascheroni constant. These
equations were first derived in [251] and are accurate only to first order in the
slow-roll parameters, assuming additionally that ǫ and η are constant. Here, one
only needs to solve one differential equation to determine φ(k),

dφ

d ln k
= −MPl

2
√
π

√
ǫ

1 − ǫ
, (5.12)

assuming φ(k∗) = φ∗. Once φ(k) is known, the slow-roll parameters and hence
the spectrum can be evaluated for each value k. In this approach, the evolution of
Eq. (5.12) has to be followed throughout the observable range of wavelengths. If
ǫ ≥ 1, equation (??) will diverge, so models with ǫ > 1 within this range will have
to be excluded when using this method. If however, the inflationary condition
were violated just before or after this range, the model would not be ruled out,
and the resulting spectra would likely be inaccurate.

5.2.3 Approximation II

This method is based on the usual Taylor-expansion of the spectra in log-space
around a pivot scale k∗ (see e.g., [144,145]),

lnPR ≃ lnAS + (nS − 1) ln (k/k∗) + 1
2αS (ln (k/k∗))

2 , (5.13)

lnPT ≃ lnAT + nT ln (k/k∗) , (5.14)
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with the spectral indexes nS/T, and the running of the scalar tilt αS given by their
second-order slow-roll expressions

nS ≃ 1 + 2η − 4ǫ− 2(1 + C2)ǫ
2 − 1

2(3 − 5C2)ǫη + 1
2(3 − C2)ξ, (5.15)

αS ≃ − 1
1−ǫ

(

2ξ + 8ǫ2 − 10ǫη + 7C2−9
2 ǫξ + 3−C2

2 ηξ
)

, (5.16)

nT ≃ −2ǫ− (3 + C2)ǫ
2 + (1 + C2)ǫη, (5.17)

where C2 = 4(ln 2+γ)−5. The slow-roll parameters only need to be evaluated at
a field value φ∗, corresponding to the time when k∗ leaves the horizon. AS and AT

are calculated from equations (5.10) and (5.11), and the spectra follow directly.
One does not need to solve any differential equations here, so the numerical
implementation of this method is by far the simplest of the three. However, due
to the additional assumption on the shape of the spectrum, it becomes increasingly
inaccurate the further one goes away from the pivot scale.

Apart from that, in the spirit of choosing a minimal prior one would typically
rule out only those models that break the ǫ < 1 condition at the pivot scale, thus
allowing regions in parameter space in which inflation would break down even
within the observable range and making the prediction of the spectra for these
models extremely unreliable.

5.3 Constraints from current data

In this section we present the constraints on inflationary parameter space from a
selection of current observations, comprising CMB data from the WMAP [113,
198], Boomerang [120, 189, 206] and ACBAR [218] experiments, complemented
by the galaxy power spectrum constructed from the luminous red galaxy sample of
the Sloan Digital Sky Survey [255]. We analytically marginalise over the luminous
to dark matter bias b2 and the nonlinear correction parameter Qnl.

We consider a ΛCDM-model with eight free parameters, on which we impose
flat priors. Four of these parameters determine the initial perturbation spectra:
the scalar normalisation ln

[

1010AS

]

, and the first three slow-roll parameters: ǫ,
η and ξ, evaluated at the pivot scale k∗ = 0.01 Mpc−1. We emphasise once more
that the numerical computation of perturbations does not refer to any slow-roll
expansion, and remains self-consistent even when the field is not rolling very slowly.
The fact of varying parameters which coincide with the usual slow-roll parameters
is just a choice of prior in parameter space, which is particularly convenient for
two reasons: first, the posterior is well-behaved with respect to these parameters
and the convergence of the chains is achieved in a reasonable amount of time;
second, it facilitates comparison with other works. The remaining four parameters
are the baryon density ωb, the cold dark matter density ωdm, the ratio of sound
horizon to angular diameter distance at decoupling θs, and the optical depth
to reionisation τ . We use a modified version of the Markov-Chain-Monte-Carlo
code CosmoMC [152,153] to infer constraints on the free parameters of the model.
The inflation module was made publicly available by the authors of Ref. [149] at
http://wwwlapp.in2p3.fr/~valkenbu/inflationH/.
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Table 5.1: Minimal 95%-credible intervals for the slow-roll parameters in the H- and
H2-expansion schemes, using the exact method for calculating the spectra.

H H2

ǫ 0 → 0.028 0 → 0.023
η -0.035 → 0.046 -0.035 → 0.039
ξ -0.0026 → 0.028 -0.0053 → 0.027

5.3.1 Expansion in H vs. expansion in H2

We first check the impact of changing the parameterisation of H(φ) (i.e., the
precise ensemble of inflationary models considered) from a Taylor-expansion of
order 3 in H(φ) to the same expansion in H2(φ). In both cases, we used the
same priors on inflationary parameters: hence the difference only resides in the
fact that slightly different background evolutions can be achieved in both cases.
The differences are summarised in table 5.1 and turn out to be very minor. This
preliminary analysis shows that the parametric form assumed for H(φ) within
the observable window has a minor impact. Significant differences could only
be expected if the choice of parameterisation of H(φ) would allow much more
freedom in one case than in the other.

In the remaining part of the paper, we shall therefore stick to the Taylor-
expansion in H(φ) and perform three independent analyses, calculating the pri-
mordial spectrum either by exactly solving the mode equations, or using one of
the two approximations discussed in sections 5.2.2 and 5.2.3.

5.3.2 Approximations vs. exact spectra

Our results are presented in figures 5.1 and 5.2. We do not find any signifi-
cant differences in the posterior probabilities of τ , θs, ωb and ωdm. The four
parameters that determine the primordial spectra, however, are more sensitive to
the method used. Note that the exact method produces tighter bounds on the
slow-roll parameters, particularly on ξ.

This also has important consequences on the inferred values of derived phe-
nomenological parameters, such as the spectral index and its running. As can be
seen from table 5.2, the exact method yields significantly stronger constraints on
these two parameters.

5.4 Why the difference?

There are potentially two reasons for these observed discrepancies. The first
one is that the accuracy of the approximations could be insufficient within their
respective “allowed” parameter space and lead to a serious bias in the parameter
estimates. Note that the discrepancy occurs mostly in regions of parameter space
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Figure 5.1: This plot shows the one-dimensional marginalised posterior distributions for
the free parameters of the model. The black lines represent the results of the exact
solution of the mode equation, red lines are approximation I and purple (dashed) lines
correspond to approximation II.
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Figure 5.2: This plot shows the 68%- and 95% credible regions of the two-dimensional
marginalised posterior in the (ǫ, η)- (top left), (ǫ, ξ)- (top right), and (η, ξ)-planes (bot-
tom). The black lines denote the results of the exact solution of the mode equation, red
lines are approximation I and thin lines correspond to approximation II.
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Table 5.2: Minimal 95%-credible intervals for the spectral index and the running at a
scale of k∗ = 0.01 Mpc−1. Note that these are derived parameters and the results are
not independent of the choice of pivot scale.

exact approximation I approximation II

nS 0.959 → 1.049 0.960 → 1.078 0.960 → 1.087
αS −0.063 → 0.001 −0.084 → 0.009 −0.098 → 0.003

where ξ is large. The larger ξ, the more one would expect the accuracy of the
approximations to degrade. However, given that the approximations are expected
to be accurate to order ξ, i.e., not worse than ∼ 10%, an effect as large as the
one we observe seems rather unlikely.

The second reason is slightly more subtle: as we discussed in section 5.2,
the three methods differ in their implicit prior on the space of models. While
approximation II requires ǫ < 1 only at the pivot scale, approximation I needs
us to demand that this condition be fulfilled in the entire observable window of
∼ 10 e-folds, corresponding to Hubble exit for modes in the [kmin, kmax] range.
In the exact numerical approach, we require ǫ < 1 for the whole integration time,
which starts when aH/kmin = 1/50 instead of one, and ends when |ξS,T|/zS,T

freezes out, i.e., a few e-foldings after aH/k = 1, corresponding to an even more
restrictive prior.

It was pointed out in Refs. [73,172] that for models with large positive values
of ξ (> 0.05) and no higher derivatives, inflation tends to end within a few e-
foldings of the pivot scale leaving the horizon3. This is consistent with our results,
since the more restrictive priors lead to tighter bounds on ξ.

5.4.1 The prior issue

To verify that the differences actually stem from the choice of priors and not
from a lack of accuracy, we post-processed our Markov chains of the approximate
methods, discarding all models for which inflation is interrupted in the range of
wavelengths required for the exact calculation.

In a first step, we remove only those models for which the inflationary condition
is violated before the pivot scale leaves the horizon, when aH is in the range
[kmin/50, k∗]. These are models for which the assumption of the Bunch-Davies
vacuum initial condition is violated at least for the largest observable wavelengths.
Only a mere 0.02% of the models in the chains using approximation I, and 0.01%
for approximation II, fall victim to the cut4. This is probably connected to the

3If higher derivatives are present this conclusion can be weakened, see, e.g., [10, 171].
4Here, and in the following, we quote a weighted fraction of models, i.e., (

P

j wbad
j )/

P

i wi),

where wi are the statistical weights of the points in the Markov chains, and wbad
j are the weights

of the models killed by the prior.
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Table 5.3: Value of the slow-roll parameters at the pivot scale for the models referred to
as A and B in the text. The corresponding curvature spectra computed with each method
are shown in Figure 5.3.

model ǫ η ξ

A 1.1446 × 10−3 −4.1728 × 10−3 3.4911 × 10−2

B 2.6159 × 10−2 7.5254 × 10−2 3.3839 × 10−2

dislike of the data for models with large negative ξ, which is required if we want
inflation to start only just before the observable range.

Imposing the same additional prior as in the exact method (that inflation holds
till the time of freeze out for each mode), ∼ 20% of the approximation I points
and ∼ 34% of the approximation II points are removed. After weeding out the bad
models, the bounds of the approximations perfectly agree with the ones derived
using the exact method, their marginalised posteriors are virtually indistinguish-
able. This confirms our suspicion that the different priors are responsible for the
discrepancy between the methods.

5.4.2 Comparison of accuracy

Having seen that the prior plays a very important role, it is nonetheless interesting
to take a closer look at how the approximations compare to the exact method in
terms of accuracy.

In order to compare the accuracy of the three methods described previously,
we took the 95% best-fitting spectra obtained using approximations I and II and
for each model in the chains we again computed the curvature spectrum in either
of the approximations and numerically in order to compare. We searched for the
maximum discrepancy between the approximated spectrum (with method I or II)
and the numerical one, in each of the two ranges [kmin, k∗] and [k∗, kmax], with
kmin = 3× 10−6, k∗ = 0.01, kmax = 1.2, in units of 1/Mpc, corresponding to the
range of wavelengths the data are most sensitive to. Note that the spectrum for
a model can only be computed numerically if the model meets the prior condition
on the duration of inflation. Hence the comparison done here is for models that
are already preselected by that particular prior, whereas in the actual chains many
points exist that give a much larger discrepancy due to the different prior.

In Figure 5.3 we plot the most discrepant models in the [k∗, kmax] range, that
we call A (for approximation I) and B (for approximation II). The corresponding
slow-roll parameters evaluated at the pivot scale are given in Table 5.3. For
approximation II we find a maximum discrepancy in PR of 83% below k∗, and
19% above (model B). For I, the difference reduces to 33% below k∗ and 8%
above (model A). So, approximation I is doing better on both sides of the pivot
scale.

Indeed, it appears that approximation I captures the spectrum shape very
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Figure 5.3: Left: Curvature spectrum obtained from the exact numerical method
or from approximation I or II, for the most discrepant models in the range
k ∈ [3 × 10−6, 1.2] Mpc−1 selected among the 95% best-fitting spectra. Right: The
corresponding relative differences. The discrepancy is large only for scales close to kmin,
which have a relatively small statistical weight.
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well, but not its amplitude. This is not surprising since in I, the expression for
the amplitude is first-order in the slow-roll expansion. The next-order contribution
to this approximation should include the parameter ξ, with a positive coefficient.
Since the data allows large values of |ξ| only when ξ is positive, approximation I
yields a systematic underestimation of the amplitude. This approach could be
straightforwardly improved by computing the curvature amplitude at the next
order. In contrast, approximation II tends to give the wrong shape, but since it
includes one more order in the slow-roll expansion it can give a better estimate of
the amplitude for k not too far from k∗.

However, the main result of this section is that the difference between the
various spectra is very small, since a large discrepancy is only encountered on
scales close to kmin, which have a relatively small statistical weight in the process
of accepting or rejecting a model. For both approximations the error in the larger
part of the spectrum is of the order of 5%. Current data does not reach such good
sensitivity, especially if we keep in mind that for the largest k values the curvature
spectrum is mainly constrained by the SDSS data, which is always marginalised
over an unknown bias parameter. For the particular models shown here, the
difference in the effective χ2 obtained when fitting either the approximated or the
numerical spectrum to the data is |∆χ2

eff | = 6.7 for approximation I (model A) and
|∆χ2

eff | = 5.9 for approximation II (model B). One should keep in mind though,
that these are just the most extreme deviations, at the edge of allowed parameter
space. On average, the inaccuracies are too small to have a significant effect on
the inferred bounds. However, with future datasets one can expect the |∆χ2

eff | to
become even larger, possibly resulting in biased estimates. Hence, we recommend
using the exact numerical approach, since it does not make the analysis longer or
more difficult.

The conclusions reached in this section apply to a particular class of inflationary
models, namely those described by Eq. (5.3) with parameter ranges limited by
current WMAP and SDSS results. Allowing for more freedom in H(φ), one
would expect stronger deviations between the analytical and numerical approaches.
Conversely, imposing a constraint on the total number of e-folds for relevant
inflation, one would select models which are deeper within slow-roll and obtain
even smaller discrepancies. We have limited our discussion to the scalar spectrum,
since there is, at present, no evidence for anything but a subdominant tensor
contribution in the available data. This may of course change if a primordial
B-mode polarisation of the CMB is detected in the future.

5.5 Discussion

We have compared various alternative methods for putting constraints on the
observable window of inflationary dynamics, assuming single-field inflation with
a smooth behaviour. One could fear that the results would depend very much
on the way to compute the spectrum, or on the parameterisation of H(φ) (i.e.,
the ensemble of models considered). We point out that with current data these
differences are subdominant. The results are mainly affected by the exact prior on
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the background. By focusing on the allowed window, one hopes to be conservative
and to get results dictated by the data only; however these results are very sensitive
to the edges of the interval in field space over which accelerated expansion is
required. In other words, the upper bound on ξ is given by this constraint rather
than the shape of the perturbation spectrum. Current analyses agree with each
other, but only within a factor two, due to this difference. This dependence of the
final results on the choice of prior may sound worrisome, particularly if it is one’s
aim to keep the analysis as general as possible.

It seems as though the priors we initially chose to use with approximations I
and II are less restrictive, and would therefore lead to a more conservative result.
Unfortunately however, combining these methods with their respective priors on
the space of allowed models is fraught with a severe consistency problem. Both
priors allow models in regions of parameter space where the approximations are
known to break down, and yield results for the spectrum that cannot be trusted.
Approximation II, for instance, allows models in which inflation is interrupted
within the observable range. Such an event would lead to very distinct signatures,
like a cutoff, yet the approximation would still predict a smooth spectrum. It is
therefore sensible to expect that inflation lasted at least over the whole observable
range. But even that will not be sufficient: if inflation started only just before the
observable range, the assumption that the modes start out in the Bunch-Davies
vacuum can no longer be justified, and the approximations fail. If, on the other
hand, inflation ends just after the smallest observable scale leaves the horizon, the
corresponding mode will not have time to freeze out. In fact it would re-enter the
horizon right away, and there is no telling (without making further assumptions)
in what shape the spectrum would arrive at later times when it is relevant for the
determination of the CMB anisotropy spectra.

Hence, it is reasonable to demand a proper vacuum initial condition and a
freeze-out of the modes. One could in principle further limit the space of allowed
models by constraining the minimum number of e-folds before the end of inflation
to a certain number, usually taken to be ≥ 30. However, this would require a
daring extrapolation of our simple Taylor-expansion over a huge range of e-folds,
where even a tiny higher derivative of the Hubble parameter would eventually take
over. In this paper, therefore, we did not want to make any additional assumptions
about what happens after the freeze-out.

There are, however, two points at which the prior of the self-consistent nu-
merical approach is slightly arbitrary, corresponding to the two end points of the
interval over which we track the background dynamics. The first one is the large
scale end, determined by the time at which we choose the initial conditions for
the kmin. We picked kmin/50 as a starting point, but other choices may have
been equally good. Fortunately, the data conspire to make this choice have little
impact on the final results: only about 0.1% of the models in our chains generated
with the laxer prior can be rejected due to inflation starting “too late”.

The more critical issue is the small scale end of the interval. Its choice is
connected with the question when a mode can be considered to have frozen out,
which is set by the limiting value of [d lnPR,T /d ln a] at which we stop integrating.
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The final results for the posterior are mildly dependent on the choice of this limit,
which should eventually be chosen such that the resultant uncertainty in the
spectra is smaller than the sensitivity of the data. For this reason, we choose
here [d lnPR,T /d ln a] < 10−3, corresponding to a 0.1% accuracy in the power
spectra.

We would like to emphasise once again that the differences in the results
are not inherent to the approximations used, but rather due to the attempt to
implement them with a minimal prior. Our results also show that if one were to
impose a non-minimal prior on the number of e-foldings beyond the observable
range, the approximations would lead to the same results as the exact method.

In the future, we expect more robust constraints from high-precision exper-
iments, such as, e.g., the Planck satellite. In turn the difference between the
various methods for computing the spectra will become even more relevant. In
the light of our results, we recommend using the exact numerical approach for a
self-consistent analysis of inflationary dynamics.
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In this Chapter, we focus on one aspect of the more general analyses in the
previous Chapters: the absolute scale of inflation. As explained in Chapter 1, we
need a non-zero detection of tensor modes in order to be able to give a strict
lower bound on the scale of inflation. At present, this detection has not yet been
made. But, up to what extend can we already estimate the scale of inflation? In
the previous chapter it seemed that some nonzero value of Hinf is favoured, in
Fig. ??. In the following, we will show how with a lack of constraining observations,
the choices one inevitably has to make in statistics will influence the outcome of
an analysis. We show that, in the case of the scale of inflation, by choosing a
different parameterisation of the same physics, one can provoke a seeming lower
bound on the scale of inflation. The goal of this chapter is to explore a solution to
this uncertainty, the notion of Bayesian complexity, and show that this quantity
should be used in order to test up to what extent the outcome of an analysis is
dependent on the priors (parameterisation and parameter ranges) chosen.

6.1 Introduction

Shortly after its introduction [4, 99, 161, 163, 228, 244], inflation was found to
produce a nearly flat Gaussian spectrum of adiabatic density perturbations that
could have been the seeds of observed structure in the Universe [1, 12, 100, 111,
191, 243, 245]. The simplest model of inflation is that of a slowly rolling scalar
field [158,225,249], which naturally produces a close to flat primordial spectrum.
While the available observations are remarkably consistent with such a spectrum,
unfortunately one can obtain virtually any scalar spectrum by simply adjusting the
shape of the inflaton potential at early times, and therefore present results are
strongly suggestive, but not yet unimpeachable evidence that inflation actually
occurred.

There are other more generic predictions of inflation that could be subject to
testing, however. For example, a single rolling scalar field during inflation produces
perturbations that are very close to Gaussian. A detection of significant primordial
non-Gaussianity in the cosmic microwave background (CMB) could rule out simple
slow-roll inflation [271]. A second possibility is the fact that inflation generally
produces a spectrum of tensor perturbations, which could, among other effects,
produce an observable B-mode polarization in the CMB [124,233], albeit plagued
by uncertainties [180,190]. Note that tensor perturbations are not the only source
of B-mode polarization [8, 18, 63, 276], and noninflationary transitions can also
produce a similar background [121, 137]. Nevertheless, observation of both the
scalar spectrum and the tensor spectrum could at least test the predictions of
slow-roll (SR) inflation, through the consistency relation

nT = −r/8, αT = nT[nT − nS + 1], etc., (6.1)

where nT is the tilt of the tensor spectrum, r is the ratio of the amplitudes of the
tensor and scalar spectra, αT is the running of the tensor spectrum and nS is the
tilt of the scalar spectrum. A tensor spectrum has not been detected so far, and
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many future experiments have been proposed to search for a gravitational waves
signal from inflation [22,130,142,169,170,196,210,222,254,275].

With only observations that constrain the scalar spectrum, one might hope to
gain some information on the inflaton potential [50,51,263]. However the plethora
of different models of inflation make such a task difficult. Nevertheless, obtaining
any information one can on the potential using the observed scalar perturbations
could give information about the possibility of observing tensor perturbations. In
Ref. [168] the following relation between the change in value of the scalar field φ
and the tensor-to-scalar ratio r, holding deep inside the slow-roll approximation,
was pointed out,

1

mP

∆φ

∆N
≃
√

r

64π
, (6.2)

where N is the number of e-folds the Universe grows during the change ∆φ of
the scalar field. That is, when focusing on only a small part of the potential,
and not necessarily on the whole duration of inflation, ∆N can correspond to a
number much smaller than the total number of e-folds of inflation, N ∼ 60− 70.
Hence, relation (6.2) relates the flatness of the potential to the relative amplitude
of tensor perturbations. Throughout this work we use Gm2

P = ~ = c = 1.
As the only current probe of the mechanism of inflation is the observed spec-

trum of density perturbations in the Universe, Refs. [73, 103, 149, 150, 201, 202]
concentrated on reconstructing the inflaton potential only in the observational
range. It was found in Ref. [149] that in the observational range naturally
∆φ < mP and ∆N ∼ 22. This bound on ∆N comes from the condition that the
smallest observable modes actually freeze in [103]. The bound on ∆φ can then
be understood from Eq. (6.2) as the data prefer models with r smaller than at
most 0.4 (depending on the data used).

The reconstruction of the inflation potential gave a weak upper limit on r, fully
consistent with r = 0. More recently, however, at least one group has claimed
that recent data imply a nonzero lower limit on r [65].

Obviously it is important to clarify this situation, especially when the results
would have such great significance, and when a dedicated satellite mission to
probe for primordial B modes associated with a nonzero tensor signal, is being
considered.

In cases such as this, it is useful to take a Bayesian approach and to consider
how effective the data really are at constraining parameters. Thus, one must
consider not merely a posteriori probability estimations, but also the effect of
prior assumptions (see [200] for some discussion of this issue). If the results
depend crucially on the latter, then the parameter estimates one derives from the
data must be taken with a grain of salt.

The purpose of this paper is to explicitly explore precisely this question at the
current time, in order to help solidify expectations for future measurements of this
important and fundamental quantity arising from inflation. Specifically we first
explore to what extent the priors one assumes in the analysis affect the expected
value of r.
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One might argue that with little knowledge of the relevant physics, it is perhaps
pointless to argue strongly on behalf of one set of priors or another at this point.
It does make sense, however, to examine how robust the conclusions one draws
are, under different prior assumptions. (See also work to appear by Vaudrevange
and colleagues [26,270].) This work focuses on the effect of taking a flat prior on
the Hubble factor during inflation, and its derivatives with respect to the scalar
field value φ. We will show that a change of parameterisation, but not of physical
model, in this case can lead to significantly different bounds on parameters, some
of which may mildly hint at a larger value of r as well.

In this regard we note that in Ref. [65], a lower bound on the tensor-to-scalar
ratio has been found which one might be tempted to ascribe to a choice of prior.
An important difference between their result and ours however is that their lower
bound on the tensor-to-scalar ratio is caused by a theoretical prior: the models
they allow can only be consistent with today’s observed scalar amplitude and tilt
if the tensor-to-scalar ratio is significant. In the present work however, the prior
on allowed models is as broad as possible, a priori not ruling out any combination
of inflationary parameters.

Next, in order to explore the general significance of any derived lower bound
on r based on a choice of priors, we examine the Bayesian complexity parameter
associated with the current data. This gives a very useful tool to explore how
many free parameters the data can usefully constrain. As we demonstrate, for
many inflationary parameterisations, the data are currently simply not powerful
enough to add information beyond the prior, for all the parameters, explaining
the prior-dependence of estimates of r that we have found. Thus, we argue that
existing data at best provide a rough upper bound on r, rather than providing a
robust estimate of its posterior probability distribution.

In Sec. 6.2 we discuss the relation between different flat priors, and explain how
to translate posterior probability densities from one prior to another. In Sec. 6.3 we
apply a flat prior on the value of the Hubble parameter and its derivatives during
inflation, fit it to the data, and discuss the results for both prior dependence and
Bayesian complexity. We conclude in Sec. 6.4.

6.2 Priors and posteriors

When faced with the problem of estimating parameters from data, Bayesian infer-
ence enjoys a great popularity among cosmologists (see [261] for a recent review).
An essential ingredient of any Bayesian inference is the prior distribution, which
encodes our knowledge about these parameters before any data are taken. With
a suitable basis of parameter space {xi} chosen, it is often tacitly assumed that
the prior is flat – signifying our lack of information about this parameter in the
absence of data. In other words, the prior probability of an interval ∆xi to contain
the true value of the xi is taken to be constant over the entire domain of definition
of parameter space.

However, while in some problems there is a naturally preferred basis of pa-
rameter space, this need not always be the case, and an alternative, equally well
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motivated parameterisation {yi} may exist. It is straightforward to show that gen-
erally, a prior in basis {xi} does not correspond to the same prior in basis {yi}.
Labelling a prior A on {xi} by π

(A)
x , the corresponding prior on {yi} is given by

∫

π(A)
x dnx = 1

=

∫

π(A)
x

∣

∣

∣

∣

dxi

dyj

∣

∣

∣

∣

dny

≡ 1

Vy

∫

π(A)
y dny, (6.3)

π(A)
y (~y) ∝ π(A)

x (~x(~y))

∣

∣

∣

∣

dxi

dyj

∣

∣

∣

∣

, (6.4)

where Vy =
∫

dny. Hence a flat, non-informative prior in one basis does not
necessarily equal a non-informative prior in another, making the choice of basis
equivalent to the choice of prior, and by consequence, extending its influence
to the posterior and the inferred parameter constraints, unless the data become
informative enough. This problem was identified in [15, 17, 32] in the context of
isocurvature models; here we will argue that inflationary parameters, including
estimates of the tensor-to-scalar ratio, can also be affected.

6.2.1 Importance sampling

If from earlier analyses one knows that the bounds on parameters in set {xi} have
Gaussian-like shapes, and the sets {xi} and {yi} are nonlinearly related, one can
expect that correlations between parameters in set {yi} are of nontrivial shape.
In that case a Metropolis-Hastings algorithm, which is what we will use later
on, will have difficulty exploring parameter space properly within an acceptable
amount of time. A solution to this problem is importance sampling, which is the
act of picking points according to one posterior distribution, but transforming the
chance of accepting the point to another posterior distribution. In this way the
algorithm walks through parameter space according to directions in the ’easier-to-
explore’ {xi}-space, but performing the statistics as if working in {yi}-space. The
resulting chains will be distributed according to the prior chosen in {yi}-space.
Let A denote statistics with a flat prior on {xi}, and let B denote statistics with a
flat prior on {yi}. In the Metropolis-Hastings algorithm, the chance of accepting
a proposed step is directly related to the ratio of its posterior and the posterior
of the previous point. Hence a constant multiplicative factor in the posterior is
irrelevant, and we can neglect the volume term in Eq. (6.4). By consequence, any
constant prior corresponds to a flat prior, such that the conversion to be done is

π(B)
y (~y) =

∣

∣

∣

∣

dyi

dxj

∣

∣

∣

∣

π(A)
y (~y) = constant, (6.5)

P(B)(~y(~x)) =

∣

∣

∣

∣

dyi

dxj

∣

∣

∣

∣

P(A)(~x). (6.6)
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There are two distinct places in the analysis in which the correction for the prior
can be applied. One option, which we shall refer to as post-sampling, is to take
the converged chains of an analysis performed under prior (A), and multiply the
weight of each point in the chain by the Jacobian as in Eq. (6.6).

The advantage is that one can post-process readily available chains to present
a new prior, which takes practically no time. A possible drawback is that the
chains, that converged for an analysis under prior A, may have too few (or no)
points in the regions of parameter space important under prior B.

The second option is explicit importance sampling of the second distribution, in
which one, during the Monte-Carlo process, transforms the posterior of a point to
reflect the correct prior, by applying Eq. (6.6) before the decision about acceptance
of the point is taken. The advantage is that the convergence statistics will now
be performed for the correct probability density, hence important regions will have
enough points in the chains. A drawback is that the analysis has to be performed
from scratch, which can be time consuming.

6.2.2 Cosmological parameters

When constraining the parameters of ΛCDM cosmologies, it is a popular choice
to take flat priors on {Ωch

2,Ωbh
2, τ, θ} (the dark matter density, the baryon den-

sity, the optical depth to reionisation, and the ratio of sound horizon to angular
diameter distance at decoupling, respectively) and for the primordial power spec-
trum a flat prior on either {lnAS, nS, αS} (the amplitude, tilt, and running of the
spectrum) or {lnAS, ǫi}, with {ǫi} some basis of slow-roll (SR) parameters. In
the SR-basis of Hubble-flow parameters, the dynamics of inflation are hidden in
these parameters by

AS =
4H4

∗
H ′2∗ m

4
P

, (6.7)

ǫ =
m2

P

4π

(

H ′
∗

H∗

)2

, (6.8)

H∗ =
m2

P

2

√

πASǫ. (6.9)

where HInf = H∗, ‘∗’ denotes evaluation at the pivot scale, and ′ denotes deriva-
tion with respect to the field value of the inflaton. This means that in all these
analyses the posterior distribution of the derived parameter HInf is obtained with
a non-flat prior.

In Fig. 6.1 we show the Jacobian
∣

∣

∣

dxi
dyj

∣

∣

∣ =
4H′2

∗
m6

P
H6

∗

relating the coordinate
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Figure 6.1: The Jacobian
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∣for the coordinate transformation from set {xi} to set

{yi}. It is clear that a flat prior on set {xi} strongly favors small values for H∗ compared
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{yi} ≡
{

H∗
mP

, H ′
∗, H

′′
∗mP, H

′′′
∗ m

2
P

}

, (6.11)

corresponding up to a constant to the ratio π
(A)
y /π

(A)
x . A flat prior on set {yi}

(prior B) favors high values of H∗ when compared to a flat prior on set {xi} (prior
A).

Once the data come into play, the amplitude AS will essentially be fixed. Since
AS ∝ H2

∗/ǫ, higher values of H∗ will need to be offset by higher values of ǫ. In
the slow-roll regime, ǫ is related to the tensor-to-scalar ratio r by

r ≃ 16ǫ =
4m2

P

π

(

H ′

H

)2

, (6.12)

and hence we can expect prior B to prefer a larger tensor contribution, compared
to prior A. Equation (6.12) also shows that a flat prior on ǫ roughly corresponds
to a flat prior on r.
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6.3 Flat prior on HInf

In order to probe the scale of inflation, we numerically integrate the perturbation
equations of the inflaton in a background described by a Taylor-expansion ofH(φ),
as discussed in [149, 150], and constrain the free parameters using temperature
and polarization data from the five year data release of the Wilkinson Microwave
Anisotropy Probe (WMAP) satellite (WMAP5) [70], as well as the power spectrum
of luminous red galaxies from the Sloan Digital Sky Survey (SDSS-LRG) [255].
The parameter estimation is done using the Metropolis-Hastings algorithm, em-
ploying a modified version of the publicly available code CosmoMC [152] together
with our own module for inflationary perturbations (which is available for download
at http://wwwlapp.in2p3.fr/~valkenbu/inflationH/). The parameters de-
scribing the model are either {Ωch

2,Ωbh
2, τ, θ} + {xi} or {Ωch

2,Ωbh
2, τ, θ} +

{yi}. We include the calculation of tensor perturbations.

As a consequence of this exact numerical treatment of perturbations, we au-
tomatically impose a consistent inflationary prior (in the following this is referred
to as “inflationary consistency”). By numerically integrating the perturbation
equations until the actual freeze-in of all modes, this method requires inflation
to occur over the observable range, which constrains parameters more strongly
than a naive application of the SR-approximation. As pointed out in Ref. [103], a
naive implementation of the SR-approximation allows for inconsistent models, for
which small scale modes actually do not freeze in, even though the approximation
provides a spectrum. We make no prior assumption on the total length of inflation
other than the length needed to produce the observed power spectrum of pertur-
bations. That is, we remain conservative about the mechanism of inflation during
the unobserved epoch, between horizon exit of the smallest observable modes and
the end of inflation.

As a consistency check we performed both described methods, post-sampling
and importance sampling. In Fig. 6.2 we show the one dimensional marginalised
posterior distributions of the four cosmological parameters describing the physics
after inflation, comparing the analyses with prior A, the post-sampled chains from
prior A to prior B, and the chains with prior B (importance sampled). The post-
sampled and importance sampled analyses completely agree, which shows that the
chains that converged under prior A have enough samples in the typical set of the
posterior distribution under prior B. As should be expected, the four parameters
shown in Fig. 6.2 are not affected by the change in prior. In Fig. 6.3 we show
the posterior distributions of parameters describing the inflationary evolution. The

main change is in the posterior of the parameter
(

H′

H

)2
m2

P, which has a higher

preferred value under prior B than under prior A. This result is in agreement with
the expected effect, illustrated in Fig. 6.1.

The scale of inflation and the tensor-to-scalar ratio are shown in Fig. 6.4. Both
parameters, which are related, have a higher preferred value under prior B.

For illustration, in Fig. 6.4, we also show a post-sampled distribution with a
flat prior on {lnH∗, H ′

∗, H
′′
∗ , H

′′′
∗ }. Also this prior gives a higher value for H∗

and r than prior A does. Note that under both prior A and prior B, we find a
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Figure 6.2: The marginalized posterior distributions of cold dark matter density (Ωch
2),

the baryon density (Ωbh
2), the ratio of sound horizon to angular diameter distance at

decoupling (θ) and the optical depth to reionisation (τ), under prior A (red dashed line),
post-sampled from prior A to prior B (blue dotted line) and under prior B (black solid line).
The post-sampled distributions are hardly visible as they practically completely agree with
the importance sampled distributions.

Figure 6.3: The marginalized posterior distributions of the parameters describing the
evolution of the Universe during inflation, for the same analyses as in Fig. 6.2. Again the
post-sampled distribution (blue dotted line) is hardly visible due to its good agreement
with the importance sampled distribution (black solid line). The main change under the

transformation of priors is seen in the posterior of
(

H′

H

)2

m2
P, in agreement with the

prediction in Fig. 6.1.
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Figure 6.4: The marginalized posterior distributions for the scale of inflation, HInf , and
the scalar-to-tensor ratio, r, under prior A (red dashed line), under prior B (black solid
lide), post-sampled to a Jeffreys prior on H∗ (thin blue dotted line) and under a flat prior

on {As, ln ǫ,
H′′

∗

H∗

m2
P,

H′′′

∗
H′

∗

H2
∗

m4
P} (green dashed, close to zero for both figures). Prior B

corresponds to a flat prior on HInf , whereas prior A roughly corresponds to a flat prior
on r, as explained in the text. Prior B pushes both HInf and r up in value. Also shown
is the mean likelihood over each (8− 1)–dimensional parameter space for all values of H
and r (dashed-dotted, magenta).

Figure 6.5: Two dimensional marginalised posterior distributions for two illustrative cases,
comparing prior A (red dashed line), prior B (black solid) and a noninflationary analysis,
probing the four cosmological parameters plus the set {lnAS, nS, αS, r} describing the
primordial spectrum (blue dotted line). All inner contours correspond to 68% CL bounds,
all outer contours correspond to 95% CL bounds. Left: the curved correlation shape
between ∂φHInf and HInf illustrates the need for importance sampling when taking a flat
prior on these parameters. Right: both r and nS are pushed up by prior B.
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lower r than the combined analysis of the WMAP three year data and SDSS-LRG
in Ref. [255], which is due to our inflationary prior: integrating the modes until
actual freeze-in, means demanding inflation for about 22 e-folds, which forces the
inflaton potential to be relatively smooth. The smoothness of the potential pushes
ǫ down and thereby also r. Likewise the scalar tilt nS is pushed toward unity, as is
shown in Fig. 6.5 where the two dimensional parameter correlations are shown for
two illustrative cases, HInf versus ∂φH, and r versus nS. The former illustrates
the nonlinear correlation between the parameters HInf and ∂φH in the data. The
curved shape of the posterior probability contour indicates that it would take a
Metropolis-Hastings sampler a long time to random-walk from one lobe to another
if steps are only to be taken in either horizontal or vertical direction, or a linear
combination of both, in the plane of this plot. By using importance sampling,
steps are taken in correlated directions, significantly speeding up the process. The
latter shows both the effect of the inflationary prior, present in both analyses,
and the effect of going from prior A to prior B. In both analyses the value of ǫ is
relatively close to zero, however it is larger under prior B.

It is interesting to note that we also find an apparent lower bound on the
scale of inflation, even for a flat prior on H∗. In fact, this phenomenon is related
to our choice of prior on ǫ (or H ′

∗, under prior B). Let us illustrate the effect in
the example of prior A. The dislike of the data for a large tensor contribution
leads to an upper bound on ǫ due to Eq. (6.12). In order to reproduce the
observed amplitude of fluctuations, AS ∼ H2

∗/ǫ implies also an upper bound on
H∗. However, as a consequence of the flat prior on ǫ, extremely small values of
ǫ, while certainly allowed by the data, are assigned an exponentially suppressed
probability, with a preference for ǫ of the order of magnitude of its upper bound.
Since AS ∼ H2

∗/ǫ, we also have a suppression of small values of H∗, with a
peak slightly below the upper bound. If we instead take the prior to be flat on
the logarithm of ǫ (i.e., a Jeffreys prior on ǫ), we do not see such a suppression.
However, the results for the Jeffreys prior on ǫ must be interpreted with care as
they are highly dependent on the lower bound. For numerical reasons we took a
lower bound of ln ǫ > −57. Had we taken an even smaller lower bound, the lines
would be even closer to zero. A similar result can be anticipated for a flat prior
on lnH ′

∗ in the {yi} parameterisation. That this dependence on the lower bound
does not occur under the Jeffreys prior on H but a flat prior on H ′ is explained
by the same reasoning as the apparent lower bound on H.

In addition to the posteriors, Fig. 6.4 shows the mean likelihood over each
(8 − 1)–dimensional parameter space for all values of H and r. This is a prior-
independent quantity with no probabilistic information (i.e., it is not a probability
density). It serves as an approximation for the profile likelihood. The profile
likelihood is the best fit that can be achieved given a certain parameter value.
The discrepancy between the mean likelihood and the various posteriors indicates
that the various lower bounds in the posteriors are results of either volume effects
in the process of marginalization, the choice of prior, or a combination of both.
The mean likelihood shows that a good fit can even be achieved for very small
values of r and HInf . In fact the best fit we found lies at r = 4 × 10−2 and
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HInf = 4 × 10−6mP. This certainly does not coincide with the peaks of the
posteriors found for priors A and B.

In Fig. 6.5 we also compare derived parameters from the different analyses
with the bounds obtained on these parameters when using no inflationary prior
and simply fitting a primordial power spectrum,

P (k) = AS

(

k

k∗

)nS−1+ 1
2
αS ln k

k∗
+...

, (6.13)

and a consistent tensor spectrum, described by r and consistency relations be-
tween the tensor spectral tilt (nT) and the scalar parameters, to the same data.
Calculating {HInf , H

′
Inf} from {AS, nS, αS, r} is done using the relations given in

Ref. [150]. The curved shape of the correlation between H ′
Inf and HInf reflects

the need for importance sampling. The 95% confidence level (CL) contours under
prior A correspond to the 95% CL contours from the spectral fit for small values
of H ′

Inf , whereas the 95% CL contours under prior B correspond to the spectral
fit for large values of H ′

Inf . An important conclusion to draw here is that both
priors A and B allow most of parameter space that is allowed by the spectral fit,
which has no inflationary prior.

In the nS-r–plane, prior A clearly pushes r down with respect to merely per-
forming a spectral fit because of the demand that inflation lasts long enough to
produce the full observed spectrum under a flat prior on virtually the same param-
eters, whereas prior B pushes r up, in spite of the same condition on the duration
of inflation.

In the absence of clearly favoured theoretical models, the beauty of various
priors is, alas, largely in the eye of the beholder. Nevertheless we emphasise that
both priors A and B do not exceed the spectral limits but do probe practically
the whole range allowed without the requirement of persistent inflation. More
interestingly, the 68% CL contour for prior B actually yields a nonzero lower
bound for r. Marginalised over all parameters, the posterior of r gives, at 68%
CL, 0.061 < r < 0.243, however at 95% CL r is still consistent with zero. While
this may hint at a nonzero amplitude of tensor modes, our analysis underscores
the prior model dependence of this result and thus we do not put much stake in
it here. Nevertheless, it does suggest that future polarization searches for tensor
modes may have a better chance of detection than otherwise suggested.

Bayesian Complexity

When selecting models and priors, a quantity that can distinguish between models
is the Bayesian evidence, which rewards both the predictivity and the conciseness
of a model, and gives preference to the model with the best balance between the
two characteristics. When the Bayesian evidence cannot distinguish between two
models, a secondary quantity to make the comparison is the Bayesian complex-
ity [140,241],

Cb ≡ χ2 − χ2(θ̂), (6.14)
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Prior A Prior B {AS, nS, αS, r} {As, ln ǫ,
H′′

∗

H∗

m2
P,

H′′′

∗
H′

∗

H2
∗

m4
P}

Cb 6.98 ± 0.03 7.80 ± 0.03 7.76 ± 0.06 6.25 ± 0.8

Table 6.1: Bayesian complexity for different choices of prior. This number should be
compared to the number of free parameters, which is eight for all models considered here.

where the effective χ2 is defined as −2 lnL, with the likelihood L, and θ̂ denotes
the best fit point, and the overline denotes the mean over the posterior. The
Bayesian complexity measures the information gain when going from the prior to
the posterior, and can be interpreted as a measure of the number of parameters
the data can constrain in a model, or conversely the number of parameters a model
effectively needs to fit the data. Along the same lines, if the Bayesian complexity
is smaller than the actual number of free parameters of a model, this could be
taken as a sign that the model contains “unnecessary” degrees of freedom, i.e.,
parameters on which we do not gain information from the data.

Note that the Bayesian complexity itself contains no information about the
goodness of fit of a model, or the evidence of one model over another, but gives
an additional measure on the number of parameters in a model that is justified by
the data. Without an evidence calculation, the complexity can still be useful for
telling whether parameters are mostly bounded by either the data or the prior. In
this work we are interested in the question which priors (with the same underlying
model) constrain parameters beyond the constraining power of the data, and which
priors allow the data to give information on parameters.

The Bayesian evidence cannot be reliably calculated from the Markov-chain
Monte Carlo (MCMC) chains obtained doing the parameter estimation, as these
chains have a lack of information on the tails of the parameter distributions. An
elaborate analysis would be necessary, e.g. using nested sampling [193]. The
Bayesian complexity, however, can be readily calculated from the chains. In Ta-
ble 6.1, we show the Bayesian complexity for the same model under the different
priors.

For prior A we find a complexity of 6.98±0.03, for eight free parameters. This
indicates that the data do not give any information on one of the free parameters.

Most likely this is due to H′′′

∗
H′

∗

H2
∗

m4
P which is more tightly constrained by imposing

inflationary consistency than by the data, as explained in Ref. [103]. Compared
to prior A, prior B has more volume in regions constrained by the data, increasing
the amount of information gained and pushing up the complexity to 7.80 ± 0.03.

Compared to that, in the {As, ln ǫ,
H′′

∗

H∗

m2
P,

H′′′

∗
H′

∗

H2
∗

m4
P} basis the opposite happens,

as ǫ is pushed much closer to zero, such that the data give no new information on
this parameter, decreasing the complexity. For the “phenomenological” parameter
set {AS, nS, αS, r} with flat priors, no inflationary consistency is imposed. There-
fore, in this basis, αS has no theoretical prior constraints and can be constrained
by the data.
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An increase in the complexities under prior B and the phenomenological prior
compared to prior A should not be taken to mean that these prior choices are
superior. Indeed, in all cases the complexity value is less than 8, which is the
number of inflationary parameters under consideration. Rather, we take this as
an indication that the data is highly sensitive to the choice of parameterisation of
inflationary models, in particular the choice of prior distribution for r, and hence
the posterior probability densities reflect far more the choice of volume of prior
parameter space than the impact of the data.

6.4 Conclusion

Our paper makes explicit an important and well-known fact regarding the effort
to constrain cosmological parameters: the importance of prior assumptions in the
analysis must not be neglected. We have demonstrated in a variety of ways that
this situation is relevant to the current issue of a possible nonzero value of r
and expectations for future CMB missions. In the absence of clear theoretical
direction, it is important therefore to consider the divergence of results obtained
by presumably equally well motivated priors. We have demonstrated here how to
relate flat priors on different parameterisations of the same physics, and applied a
change of parameterisation to the reconstruction of the inflaton potential, choos-
ing a flat prior on the parameters that may be better motivated by the physics
of inflation, as opposed to parameters describing the observable quantities. The
main change, seen in Figs. 6.4 and 6.5, is an increase of the preferred value for
the tensor-to-scalar ratio r, moving from 0 < r < 0.18 to 0.061 < r < 0.243 at
68% CL We stress once again that this new preferred range does not imply that
the data now prefer a nonzero value of r, since at 95% CL r is consistent with
zero under all used priors. The fact that for certain choices of parameterisation
the complexity is less than the number of free parameters, eight, indicates that
the data is currently insufficient to fully constrain the models. Rather, our calcu-
lation of the complexity shows that for prior B, which gives the increased range
in r, the data are simply sensitive to more of the parameter volume. Thus we
consider the mean likelihood to be a more meaningful quantity here. In particular
information on the parameters r and HInf under prior B is primarily gained on the
upper bound.

As a result we emphasise that the mean likelihood for the parameters we
considered gives an indication of neither a nonzero scale of inflation nor a nonzero
tensor-to-scalar ratio. Nevertheless, the fact that one plausible parameterisation
of the data increases the posterior probability of these quantities to be nonzero,
suggests that from a Bayesian point of view the motivation for probing for tensor
modes may be slightly enhanced as a result of our analysis.
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In Part II, we used observations to constrain inflation and the spectrum of
primordial perturbations, already present at the beginning of the radiation era.
The CMB photons do not only carry information about the cosmic perturbations
up till the moment of decoupling (primary anisotropies), they also gain informa-
tion on their way to us (secondary anisotropies). The photons have interactions
with their surroundings, still after decoupling, albeit at a much lower level than
before decoupling (otherwise they would probably loose the information about the
primordial spectrum). One of the ways of interacting is purely gravitational of
origin. The CMB photons pass through gravitational potential wells and hills. If
such a well is constant in time, a photon exits the well at the same energy as at
which it entered. If the well however changes with time while the photon crosses
it, the photon will gain or loose energy, depending on whether the well shallowed
or steepened. When this process occurs at the same redshifts and scales as at
which we observe large scale structure, a correlation will appear between the large-
scale-structure power spectrum and the CMB power spectrum. This effect has
in fact been observed, and is used to constrain Dark Energy, since Dark Energy
will cause the gravitational potential on large scales too dilute. Dark Energy is
however not the only quantity that can change the growth of linear gravitational
potentials with respect to a pure CDM-universe.

Neutrinos play a particular role in the matter power spectrum as well. De-
pending on their mass, neutrinos will not participate in the gravitational infall of
matter on scales smaller than a typical scale. There is a simple relation between
this typical scale and the total mass of the neutrinos, as we will see in the follow-
ing. On the scales at which the neutrinos do not participate in the formation of
structure, the formation of structure will be slightly slower than if all mass would
be in dark matter and baryons. Hence, in momentum space, the matter power
spectrum will show a slight change in slope, which will start at the scale set by
the neutrino mass. Besides, as opposed to a pure CDM universe, the gravitational
potentials will not be exactly constant during matter domination. Hence, neutri-
nos of a certain mass, will induce a non-zero cross correlation between the CMB
and the LSS, in a scale dependent manner. It is the scale dependence that lets us
make the distinction between the effect of Dark Energy and the effect of the mass
of the neutrino. In the following, we will explore up to what extent the neutrino
mass could be constraint using this effect.

7.1 Introduction

As photons pass through a changing gravitational potential well, they experi-
ence a redshift or a blueshift, depending on whether the well grows or decays
respectively. Cosmic microwave background (CMB) photons can experience such
variations between the time of last scattering and their detection now. This effect
was first described by Sachs and Wolfe in 1967 [224], and hence is dubbed the
integrated Sachs-Wolfe effect (ISW). During a Cold Dark Matter (CDM) and/or
baryon dominated era, the gravitational potential distribution remains frozen, and
the ISW effect has no net effect on the blackbody temperature of CMB photons.
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This property is crucially related to the fact that non-relativistic matter (like CDM
and baryons) has a vanishing sound speed, and experiences gravitational cluster-
ing on all sub-Hubble scales after photon decoupling, as described by the Poisson
equation. In such a situation, the universal expansion and the gravitational con-
traction compensate each other in such a way as to maintain a static gravitational
potential. However, when the expansion rate is affected by any type of matter
with a non-vanishing sound speed, e.g. during Dark Energy (DE) domination,
the gravitational perturbations decay and the cosmic photon fluid experiences a
blue shift, acquiring extra temperature perturbations related to the intervening
pattern of matter perturbations. It was first proposed by Crittenden and Turok in
1995 [57] to cross correlate maps of temperature perturbations in the CMB with
those of matter over-densities in large scale structures (LSS), in order to measure
a possible acceleration of the universe’s expansion. However, the CMB and LSS
data available at that time were not good enough for such an ambitious goal, and
the first strong indication of a positive acceleration came in 1998 from the side
of type-Ia supernovae [204, 219]. Analyses of the first (2003) and second (2006)
data releases of the Wilkinson Microwave Anisotropy Probe (WMAP) [239, 240]
were the first to indicate the existence of Dark Energy independent of accelera-
tion, by means of the location of the second peak in the CMB power spectrum.
Simultaneously, a number of interesting papers presented the first detections of
the ISW effect by cross-correlating WMAP anisotropy maps with various LSS data
sets [3, 27, 35, 37, 80, 81, 91, 185, 197], now able to give an independent measure
for the acceleration of the expansion of the universe.

The domination of Dark Energy is not the only source of gravitational poten-
tial evolution and of a net ISW effect. On small cosmological scales, as soon as
matter perturbations exceed the linear regime, gravitational perturbations start
to grow and to redshift CMB photons. This effect, called the Rees-Sciama ef-
fect, has not been significantly detected until now [214]. CMB photons can also
be scattered by gravitational lensing [232] and by the Sunyaev-Zeldovich (SZ)
effect [253] (see [2, 3, 80] for detections in CMB-LSS cross-correlation analysis).
An other party expected to affect the evolution of gravitational perturbations –at
least by a small amount– is the background of massive neutrinos. Over thirty
years ago massive neutrinos were proposed as a Hot Dark Matter (HDM) candi-
date, and later ruled out as the dominant dark component, since HDM tends
to wash out small scale over-densities during structure formation [212]. Ob-
served neutrino oscillations however constrain neutrinos to have a mass [79,173].
In addition, the presence of a Cosmic Neutrino Background (CNB) is strongly
suggested on the one hand by the abundance of light elements produced dur-
ing primordial nucleosynthesis [60, 175, 248], and on the other hand by CMB
anisotropies [13,16,58,59,61,102,104,107,116,116,207,262]. Therefore, a small
fraction of HDM is expected to coexist with the dominant CDM component.
On small cosmological scales (for instance, cluster scale), the free-streaming of
massive neutrinos should induce a slow decay of gravitational and matter per-
turbations [25], acting during both matter and Dark Energy domination. This
effect depends on the total neutrino mass summed over all neutrino families,
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mν =
∑

imi, unlike laboratory experiments based on tritium decay or neutrino-
less double-beta decay, which probe different combinations: hence, a cosmological
determination of the total neutrino mass would bring complementary information
to the scheduled particle physics experiments [105, 146]. The free streaming of
massive neutrinos has not yet been detected [106], but there are good prospects
to do so in the future, since the smallest total neutrino mass allowed by data on
atmospheric neutrino oscillations (mν ≥

√

∆m2
atm ∼ 0.05 eV) implies at least a

5% suppression in the matter/gravitational small-scale power spectrum [105,146].
A positive detection –even in the case of minimal mass– could follow from the
analysis of future galaxy/cluster redshift surveys [109,147,273], weak lensing sur-
veys [108, 238], Lyman-α forest analysis, cluster counts [273], etc. The goal of
measuring the neutrino mass from cosmology is very ambitious since each of these
methods suffers from its own source of systematics (bias issues, modelling of non-
linear clustering, ...). Therefore, a robust detection could only be achieved by
comparing the results from various types of experiments.

The goal of this work is to describe a possible cosmological determination of
the absolute neutrino mass scale through the ISW effect induced by neutrino free-
streaming on CMB temperature maps, using as an observable the cross-correlation
function of galaxy-temperature maps. This possibility was investigated previously
by Ichikawa and Takahashi [117] (and suggested again recently in [126]). As
neutrinos slow down the growth of structure, we expect the blueshift caused by
an accelerated expansion to be more pronounced if neutrinos have a larger mass.
On the other hand, the distribution of matter inducing the late ISW effect is
smoother in case of free-streaming by massive neutrinos. These two antagonist
effects should in principle induce some mass-dependent variations in the galaxy-
temperature cross-correlation function.

In section 7.2 of this paper we give an outline of the theory of the ISW-effect
in the presence of a neutrino mass. In section 7.3, we use some mock data with
properties inspired from the Planck satellite, Dark Energy Survey (DES) and Large
Synoptic Survey Telescope (LSST) in order to show the potential impact of this
method in the future.

7.2 The galaxy-ISW correlation in the presence of neu-

trino mass

7.2.1 Definitions

The observed galaxy overdensity δG in a given direction n̂ is defined as

δG(n̂) =

∫

dz b(z)φG(z)δm(n̂, z), (7.1)

where z denotes redshift, b(z) is the redshift dependent bias function relating the
observed galaxy over-density to the total matter over-density, and φG(z) is the
galaxy selection function which can be chosen such that only galaxies within a
certain range of redshift are considered.
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The observed CMB temperature map

∆T (n̂) ≡ T (n̂) − T0

T0
(7.2)

results from various contributions, classified as primary or secondary anisotropies.
By definition, secondary anisotropies are induced after photon decoupling and can
be correlated to some extent with the surrounding large scale structure. The
ISW component is one of these terms, and can be obtained by integrating the
scalar metric perturbations (or just the Newtonian gravitational potential on sub-
Hubble scales) along each line-of-sight between the last scattering surface and the
observer. If the gravitational potential is written as a function of direction n̂ and
redshift z, the ISW term reads

∆ISW
T (n̂) = −2

∫ zdec

0
dz

dΦ

dz
(n̂, z). (7.3)

where zdec is the redshift at decoupling. Immediately after decoupling and before
full matter domination, the gravitational potential does vary with time: this is
known as the early ISW (eISW) effect, in contrast with the late ISW (lISW) in
which we are presently interested. The two maps ∆eISW

T , ∆lISW
T can be com-

puted separately by cutting the above integral in two pieces at some intermediate
redshift z∗ chosen during full matter domination, when the gravitational potential
is static. Note that in presence of massive neutrinos, the potential is never re-
ally static on small scales, so the quantity ∆lISW

T might not be uniquely defined.
Anyway, this question is not relevant in practice. The observable quantity is not
the late ISW auto-correlation function 〈∆lISW

T (n̂)∆lISW
T (n̂′)〉, but only its cross-

correlation with a given survey 〈∆lISW
T (n̂)δG(n̂′)〉. Then, the redshift distribution

φG(z) selects the range in which the ISW effect is being probed, and the choice
of z∗ becomes irrelevant provided that z∗ remains larger than the redshift of all
objects in the survey: φG(z∗) ≃ 0.

Assuming that the galaxy-temperature cross-correlation function arises solely
from the late ISW effect (i.e., assuming that other secondary anisotropies po-
tentially correlated with LSS can be separated or have a negligible amplitude,
which is a good assumption on the scales considered hereafter), we can relate the
galaxy-temperature correlation multipoles to the real-space correlation function
〈∆lISW

T (n̂)δG(n̂′)〉. In the Limber approximation (see Appendix B), one gets

CTG
l =

3ΩmH
2
0

(l+1/2)2
(7.4)

×
∫ z∗

0
dz b(z)φG(z)H(z)a(z)

[

∂z
P (k, z)

a(z)2

]

k=
l+1/2
r(z)

,

where r(z) is the conformal distance up to redshift z, H0 = 100h km/s/Mpc
is the Hubble parameter today, and the matter power spectrum is defined as
〈δm(~k, z)δm(~k′, z)〉 ≡ P (k, z) δ3(~k−~k′). Note that we used the Poisson equation

105



7.2 Galaxy-ISW correlation CHAPTER 7 ISW AND NEUTRINOS

in flat space in order to relate the gravitational potential Φ to the matter over-
density δm, and assumed a(0) = 1 by convention. Finally, the multipoles CTG

l

define the angular correlation function in a Legendre polynomial basis (pl),

wTG(θ) =
∑

l

2l + 1

4π
pl(cos θ)CTG

l . (7.5)

Eq.(7.4) is often written in a form which assumes that the matter power spectrum
is a separable function of wavenumber and redshift. This applies to the case of a
(flat) ΛCDM universe, for which one can write

P (k, z) = D(Λ; z)2a(z)2P (k, 0) (7.6)

with ∂zD = 0 during full matter domination and ∂zD > 0 during Λ domination.
Figure 7.1 (left) shows the evolution of D as a function of z for ΩΛ = 1−Ωm =
0.69. In the case of time-varying Dark Energy, the situation is qualitatively similar,
and D just depends on more free parameters than Λ. In the rest of this paper,
we will just write this function as D(z) for concision.

7.2.2 Effect of neutrino masses

In models with massive neutrinos, the spectrum is not a separable function any-
more (in other words, the linear growth factor is scale-dependent), and Eq.(7.4)
cannot be further simplified. However, in order to make analytical estimates of
the impact of neutrino masses on CTG

l , it is possible to use some approximate
solutions valid only on the largest and smallest wavelength (see [146] and [126]
for more details). First, for wavelengths larger than the maximum value of the
neutrino free-streaming scale, reached at the time of the transition to the non-
relativistic regime, the power spectrum P fν is completely unaffected by neutrino
masses, and identical to that in a massless neutrino model with the same cosmo-
logical parameters (in particular, the same Ωm and h) noted as P 0:

∀k < knr, P fν (k, z) = [D(z)a(z)]2P fν (k, 0)

with P fν (k, 0) = P 0(k, 0) . (7.7)

On the other hand, for wavelengths smaller than the the free-streaming scale today,
both the linear growth factor and the amplitude today are affected by neutrino
masses, approximately like:

∀k > kfs, P fν (k, z) ≃ [D(z)a(z)]2−
6
5
fνP fν (k, 0)

with P fν (k, 0) ≃ [1 − 8fν ]P
0(k, 0) , (7.8)

where fν = Ων/Ωm stands for the neutrino density today relative to the total
matter density (so Ωm includes baryons, hot and cold dark matter). Here D(z)
is always the same function, computed either for fν 6= 0 on large scales, or for
fν = 0 on any scale, with a common value of ΩΛ (or of Dark Energy parameters).
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The first approximation in Eqs. (7.8) is very accurate, as shown in Fig. 7.1 (left)
where we compare the precise linear growth factor obtained numerically with the
above solution. The second approximation is poorer, but more accurate ones can
be found e.g. in Refs. [126,146].

Assuming that the galaxy selection function is very peaked around a median
redshift zm, the multipole CGT

l probes mainly fluctuations around the scale k ∼
l/r(zm). If l is larger than kfs r(zm), CGT

l is affected by neutrino masses through
the term between brackets in Eq. (7.4). Using Eqs. (7.8), this term varies with
fν like:

∂z
P fν (k, z)

a(z)2
≃ [(1 + C(z)fν) (1 − 8fν)] ∂z

P 0(k, z)

a(z)2
, (7.9)

with C(z) =
3

5

(

1

1 + z

D

D′ − 1

)

.

For a typical Dark Energy model, the density fraction ΩDE becomes negligible for
z > 2 1, and hence the ratio D′/D is tiny. So, at hight redshift, the net effect of
the neutrino mass is to increase the integrand in CTG

l like:

∂z
P fν (k, z)

a(z)2
≃
[

3

5

fν(1 − 8fν)

1 + z

D

D′

]

∂z
P 0(k, z)

a(z)2
. (7.10)

This just reflects the fact that at high redshift, the ISW effect would be null on
all scales for fν = 0, while for fν > 0 it is still active on small scales. However,
for z < 2, D′/D becomes larger, and for typical values of ΩDE ∼ 0.7 there is
always a redshift below which C(z) is smaller than eight. Then, the term between
brackets in Eq. (7.9) is smaller than one, and the net effect of neutrino masses is
to decrease ∂z[P/a

2]. In Fig. 7.1 (right), we plot the function C(z) in the case
of a cosmological constant with ΩΛ = 0.69. We see that C ∼ 8 for z ∼ 2; so,
around this redshift and for l > kfs r(zm), the net effect of neutrino masses on
CGT

l changes of sign.

In summary, if zm is small, the expected effect of neutrino masses on the
cross-correlation multipoles CGT

l consists in a step-like suppression at large l’s,
qualitatively similar to that observed in the galaxy auto-correlation multipoles
CGG

l . However the suppression factor is smaller, since the lack of power in the
matter power spectrum caused by neutrino free-streaming is balanced by the excess
of ISW effect due to the behaviour of the linear growth factor in presence of
massive neutrinos. When zm increases, the boost related to the ISW effect is seen
more clearly, and ultimately, when zm is chosen before dark energy domination,
the net effect of neutrino masses is to increase CGT

l at large l.

In order to check and quantify these effects, we computed the cross-correlation
multipoles CTG

l (and also for comparison the auto-correlation multipoles CGG
l )

for two different cosmological models, sharing the same parameters Ωb = 0.053,

1in the case of “early Dark Energy” models, this statement can only be marginally true (see
e.g. in [68,69])
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Figure 7.1: (Left) Redshift evolution of the small-scale linear growth factor, defined here
as [P (k, z)/P (k, 0)]1/2/a(z) for k ∼ 10hMpc−1, and obtained numerically with camb

for ΩΛ = 0.69. The lower curve corresponds to fν = 0 and is exactly equal to the
quantity D(z) defined in Eq.(7.6). The upper, solid curve corresponds to fν = 0.1, and
is well approximated by the dotted curve, which corresponds to the first of Eqs.(7.8).
(Right) The function C(z), defined in Eqs.(7.9), computed here for ΩΛ = 0.69. Roughly
speaking, the effect of neutrino masses on CTG

l changes of sign when this function crosses
eighth.

Ωm = 0.31, ΩΛ = 0.69, h = 0.65, A ≡ ln[1010k3R2]k=0.01/Mpc = 3.16, ns =
0.95, but with two different values of the neutrino density fraction fν = Ων/Ωm,
equal to 0 or 0.1 (corresponding to three neutrino species sharing the same mass
mν = 0 or mν ≃ 0.41 eV). We adopted a galaxy selection function of the form

φG(z) =
3

2

z2

z3
0

exp

[

−
(

z

z0

) 3
2

]

, (7.11)

peaking near the median redshift zm ≡ 1.4z0. For illustrative purposes, we choose
the four values zm = 0.1, 1, 2, 3, although in practice it would be very challenging
to map δG(n̂) for z ≥ 2: presently, available data with a reasonable signal-to-noise
ratio range only from z ∼ 0.1 to z ∼ 1.5.

In Fig. 7.2 we plot the ratio of the multipoles CTG
l in the two models, com-

pared with the same ratio for CGG
l . The free-streaming of massive neutrinos is

responsible for the step-like suppression of CGG
l , like in the power spectrum P (k).

The value of zm controls the angle under which the free-streaming scale is seen in
the map δG(n̂), and hence the scale at which the suppression occurs in multipole
space. As expected from the previous discussion, the neutrino mass effect on CTG

l

is similar to that on CGG
l for small zm < 1, although the suppression factor is

slightly smaller, due to the excess of ISW effect in presence of massive neutrinos.
For zm ≥ 1, the amplification effect due to this excess has a clear and distinct
signature at l ≥ 100, and for zm ∼ 2 the ratio displayed in Fig. (7.2) has a dip
around l ∼ 150. Unfortunately, we will see in Sec. 7.2.3 that for l ≥ 100 this
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Figure 7.2: Ratio of the cross-correlation multipoles CTG
l and auto-correlation multipoles

CGG
l obtained for two cosmological models with neutrino density fractions equal to fν =

0.1 or 0, and the same value of other cosmological parameters (see the text for details).

effect is masked by primary CMB anisotropies, which play the role of white noise
for the present purpose.

In Fig. 7.3, we plot directly the multipoles CTG
l for the same two models.

The effect of neutrino masses is clearly visible for all l > 2 at zm = 0.1, while
for zm ≥ 1 it is necessary to reach l ≥ 20 in order to see a difference (since the
maximum free-streaming scale is seen under a smaller angle at higher redshift).
Remembering that the effect of neutrino masses on large l’s can be split in two
contributions, a matter power suppression and an excess of ISW, it is clear from
the previous discussion that the latter effect contributes at all redshifts, but its
most obvious manifestation is the fact that CTG

l increases with fν for large l’s.
However, we will see in Sec. 7.2.3 that only the region with l ≤ 100 can be probed
by observations: then, the neutrino-induced ISW effect is significant, but smaller
that the opposite suppression effect.

In Fig. 7.4, we plot the corresponding angular correlation functions wTG(θ).
In this representation, the fine-structure of the high-l multipole spectrum is by
construction averaged out, and it is not possible to see an amplification at high
zm and small θ. The suppression caused by neutrino masses is visible for zm = 0.1
at θ ≤ 15o, and for zm ≥ 1 at θ ≤ 2o.

In all these plots, we used only the linear perturbation theory. Doing so, the
angular cross-correlation functions depend on the matter power spectrum inside
the linear regime. To prove it, we compute again wTG(θ) from the non-linear
power spectrum obtained by applying halofit corrections [236] to the linear
one. The result, superimposed in Fig. 7.4, is indistinguishable from that of linear
theory. This shows that non-linear effects on the evolution of matter perturbations
has much less impact than that of adding a neutrino mass. This is also true for the
multipoles CTG

l , excepted for the smallest redshifts and highest l’s (for zm = 0.1,
non-linear effects become important for l > 100).
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Figure 7.3: Dimensionless cross-correlation spectrum in multipole space, l(l+1)CTG
l /2π,

for the same cosmological models as in Fig. 7.2 (i.e., with three neutrino species sharing
the same mass mν = 0 or mν ≃ 0.41 eV).

7.2.3 Detectability

For a set of full-sky CMB and LSS experiments measuring the temperature multi-
poles aT

lm (resp. galaxy-density multipoles aG
lm) with a noise spectrum NT

l (resp.
NG

l ), the cross-correlation spectrum CTG
l can be reconstructed from the estimator

C̃TG
l =

∑l
m=−l a

T∗
lma

G
lm

2l + 1
(7.12)

with a variance σTG
l given by

(σTG
l )2 =

(CTG
l )2 + (CTT

l +NTT
l )(CGG

l +NGG
l )

2l + 1
. (7.13)

Note that the estimator is not Gaussian, especially for small l’s: so, σTG
l is

only an estimate of the true (asymmetric) error bar on the reconstructed power
spectrum. If the cross-correlation map can be reconstructed only inside a fraction

fsky of the full sky, in first approximation σTG
l should be multiplied by f

−1/2
sky .

The variance is further reduced by
√

∆l in case of data binning with bin width
(∆l). Note that in this case the covariance matrix is no longer diagonal, but
nevertheless using a diagonal matrix under these approximations has been shown
to work well, compared to the exact treatment, if we choose an adequately large
binning [36]. In practice, for the multipole range in which we are interested,
the CMB noise spectrum NTT

l is much smaller than CTT
l for experiments like

WMAP and beyond, and can be safely neglected in the above expression. For a
LSS survey consisting in a catalogue of discrete objects (galaxies, clusters, etc.),
the noise spectrum is usually dominated by the shot noise contribution NGG

l ≃
1/N̄ , where N̄ represents the mean number of objects per steradian. The largest
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Figure 7.4: Angular cross-correlation function, multiplied by the average CMB temper-
ature and displayed in units of micro-Kelvins, for the same cosmological models as in
Figs. 7.2,7.3. We also plot the same functions including non-linear (NL) corrections to
the matter power spectrum: they are indistinguishable from the linear ones.

ongoing/future surveys (e.g. SDSS) should reach typically the order of 108 or
even 109.

In Fig. 7.5, we show the typical error bar that could be expected from a cross-
correlation map with coverage fsky = 0.65 (corresponding to the usual galactic cut
in CMB maps), using an ambitious LSS survey with surface density N̄ = 109st−1

in each redshift bin. We assumed b(z) ∼ 1 for simplicity. These assumptions
correspond essentially to the best measurement that could ever be done, since
for such a high surface density the variance of the estimator of a single multipole
product aT∗

lma
G
lm is not affected by instrumental noise, and reduces to

σTG
lm = CTG

l

√

1 +
CTT

l CGG
l

(CTG
l )2

. (7.14)

This expression can be interpreted as the product of the cosmic variance term CTG
l

times an enhancement factor depending on the correlation coefficient
(CTG

l )2/(CTT
l CGG

l ). At large l’s, the late ISW contribution to the total temper-
ature anisotropy becomes vanishingly small, and the primary anisotropy plays the
role of a large noise term, which cannot be removed. In this limit, the correlation
coefficient is much smaller than one, and the variance σTG

lm gets correspondingly
enhanced. Fig. 7.5 shows that the spectrum CTG

l can be reconstructed to some
extent only in the range l ≤ 100; beyond, one could only derive upper bounds.
Note that the error bar for each bin is roughly of the same order of magnitude as
the effect of neutrino masses when fν varies from 0 to 0.1. In Fig. 7.5, we also
show the error degradation when fsky is reduced to 0.25 and N̄ to 7 × 108st−1

in each redshift bin. Finally, in Fig. 7.6, we plot the corresponding error bars for
wTG(θ). Note that the synthetic error bars for wTG(θ) are correlated with each
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other, unlike those for CTG
l . On small angular scales θ ≤ 1 (where the effect of

neutrino masses is maximal) the 1σ error on wTG(θ) is of the order of 25%.

We conclude from these estimates that the temperature-galaxy correlation
power spectrum CTG

l is potentially sensitive to the neutrino mass in the observable
range 10 < l < 100, as well as the angular correlation function wTG(θ) for θ < 5o

at z = 0.5 or θ < 3o at z = 1. Unfortunately, the enhancement of the ISW effect
due to the impact of massive neutrinos on the linear growth factor is not directly
visible: it would require precise data at high l and high redshift, for which the
late ISW effect is masked by primordial anisotropies. The net effect of massive
neutrinos on the observable part of CTG

l and on wTG(θ) is a suppression, caused
by the usual free-streaming effect. However this effect is non-trivial in the sense
that CGG

l and CTG
l depend on fν through different relations, due to the fact that

the ISW term involves a time-derivative of the gravitational potential while the
galaxy over-density does not. Hence, the galaxy-temperature correlation spectrum
can bring some information on neutrino masses which is not already contained in
the sole galaxy auto-correlation spectrum. In the next section, we will quantify
this statement by performing a parameter extraction from mock data accounting
for future experiments.

7.3 An MCMC analysis of mock data

For a given data set consisting in various maps (i.e. multipoles aX
lm) covering a

fraction fsky of the full sky and assumed to obey Gaussian statistics, the likelihood
function L is often approximated as

L ∝ Πl

{

(detCth
l )−1/2 exp

[

−1

2
TraceCobs

l Cth
l

−1
]}(2l+1)fsky

. (7.15)

where Cobs
l is the data covariance matrix defined by [Cobs

l ]XY = 〈aX
lma

Y
lm〉, and

Cth
l the assumed theoretical covariance matrix for a given fit, which contains the

sum of each theoretical power spectrum CXY th
l and of the instrumental noise

power spectra NXY
l , estimated by modelling the experiment. Of course, the data

covariance matrix reconstructed from the observed maps is also composed of signal
and noise contributions. Simulating a future experimental data set amounts in
computing the noise spectra NXY

l , given some instrumental specifications, and
generating randomly some observed spectra CXY obs

l , given the theoretical spectra
CXY fid

l of the assumed fiducial model and the noise spectra NXY
l . However, for

the purpose of error forecast, it is sufficient to replace simply CXY obs
l by the sum

CXY fid
l + NXY

l : this just amounts in averaging over many possible mock data
sets for the same model, and does not change the reconstructed error on model
parameters [205].

For instance, if one wants to estimate future errors for a CMB experiment,
the maps to consider are temperature and E-polarization: X ∈ {T,E} (here,
for simplicity, we consider models with no gravitational waves and discard B-

112



CHAPTER 7 ISW AND NEUTRINOS 7.3 MCMC: mock data

10-10

10-9

10-8

10-7

 10  100  1000

l (
l+

1)
 C

lT
G

 / 
2π

l

zm=0.5

 10  100  1000

l

zm=1

 10  100  1000

l

zm=2

 10  100  1000

l

zm=3

Figure 7.5: 68% error forecast on the power spectrum CTG
l , which is displayed for the

same two cosmological models as in Figures 7.2, 7.3 (with fν = 0 or 0.1). The smallest
error boxes assumes a LSS survey with sky coverage fsky = 0.65 and surface density
N̄ = 109st−1 in each redshift bin. The binning in multipole space can be read from the
width of each box. The largest error boxes correspond to fsky0.25 and N̄ = 7× 108st−1.

polarization). The covariance matrices then read

Cobs
l =

(

CTTfid
l +NTT

l CTEfid
l

CTEfid
l CEEfid

l +NEE
l

)

, (7.16)

Cth
l =

(

CTT th
l +NTT

l CTEth
l

CTEth
l CEEth

l +NEE
l

)

. (7.17)

Should one consider the combination of CMB data with a future galaxy redshift
survey decomposed in N maps associated to N redshift bins, the matrices would
become 2 +N dimensional, with an extra block

[Cl]2+i,2+j = C
GiGj

l + δijN
GiGi
l , i = 1, ..., N, (7.18)

as well as non-diagonal coefficients [Cl]1,2+i = CTGi
l accounting for the late ISW

effect. Note that all non-diagonal coefficients have no noise term, since the noise
contributions in two different maps are expected to be statistically uncorrelated
at least at first order.
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Figure 7.6: 68% error forecast on the angular correlation function wTG, which is displayed
for the same two cosmological models as in Figures 7.2, 7.3 (with fν = 0 or 0.1). The error
bars assume a LSS survey with sky coverage fsky = 0.65 and surface density N̄ = 109st−1

in each redshift bin. The spacing between each error bar reflects the binning width chosen
in angular space.

Finally, the option which is most interesting in our context, is to assume that
the galaxy density auto-correlation maps are not known (or just not considered,
because they could be plagued by some systematic effects), and that CMB data are
only combined with the cross-correlation data, i.e. with N observed power spectra
spectra CTGiobs

l . This is exactly what is being done in the current literature, in
which authors try to get some new independent bounds on ΩΛ from CMB plus
CMB-LSS cross-correlation data, without employing LSS auto-correlation maps.
In the approximation of Gaussian-distributed CTGi

l with central value CTGith
l and

covariance given by

[Covl]ij ≡
〈(

CTGi
l − 〈CTGi

l 〉
)(

C
TGj

l − 〈CTGj

l 〉
)〉

=
CTGith

l C
TGjth
l + (CTT th

l +NTT
l )(C

GiGjth
l + δijN

GiGi
l )

(2l + 1)fsky
, (7.19)

the likelihood of the cross-correlation data reads

L ∝ Πl (det Covl)
−1/2 exp



−1

2

∑

ij

∆i
l [Covl]

−1
ij ∆j

l



 (7.20)

with ∆i
l ≡ CTGiobs

l − CTGith
l . The total likelihood is then the product of the

CMB and cross-correlation likelihoods.
In this section, we will focus on three ambitious future experiments: the Planck

satellite, to be launched in 2008, which is expected to make the ultimate mea-
surement of CMB temperature anisotropies, dominated by cosmic variance rather
than noise up to very high l; the Dark Energy Survey (DES); and the Large Syn-
optic Survey Telescope (LSST), designed primarily for a tomographic study of
cosmic shear, which would provide as a byproduct a very deep and wide galaxy
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redshift survey (close to ideal for the purpose of measuring the CMB-LSS cross-
correlation since NGiGi

l < CGiGi
l at least for multipoles l < 100). For Planck, we

computed the noise-noise spectra, NTT
l and NEE

l , like in Ref. [148], with nine
frequency channels. For the DES-like survey, we followed Ref. [208] and assumed
a total number of galaxies of 250 million in a 5000 square degree area on the sky
(or fsky = 0.13), with an approximate 1-σ error of 0.1 in photometric redshifts,
divided in four redhsift bins with mean redshifts zi ∈ {0.3, 0.6, 1, 1.3}, with the
same selection functions as in Ref. [208]. For LSST, we used the same modelling
as in [167], with a net galaxy angular number density of 80 per square arc-minute
and a coverage of fsky = 0.65. The galaxies are divided into six redshift bins with
mean redshifts zi ∈ {0.49, 1.14, 1.93, 2.74, 3.54, 4.35}. For each bin the selection
function, estimated bias bi and galaxy density ni are provided in [167] (Fig. 2,
Eq. (16) and Table I). The noise spectra NGiGi

l are then simply given by 1/ni.

We used the public code cosmomc [152] to do a Monte-Carlo Markov Chain
(MCMC) analysis, fitting the theoretical galaxy-temperature correlation to the
mock data. For this purpose, we have written a module which computes the
correlation multipoles following Eq. (7.4) and the likelihood of the mock data
given each model as described above.

We then ran our modified version of CosmoMC for a model with eight pa-
rameters: the usual six of minimal ΛCDM (baryon density Ωbh

2, dark matter
density Ωdmh

2, angular diameter of the sound horizon at last scattering θ, op-
tical depth to reionisation τ , primordial spectral index ns, primordial amplitude
log[1010As]) plus the total neutrino mass mν and the equation-of-state param-
eter w. Our fiducial model was close to the WMAP best-fitting model with
mν = 0 and w = −1. We considered three possible combinations of data: Planck
alone, Planck plus its cross-correlation with DES or LSST (but no information
on galaxy auto-correlations), and finally Planck plus LSST, using all information
and including the correlation. The probability of each parameter is displayed in
Fig. 7.7 for each of these four cases called respectively CMB (Planck), CMB+GT
(Planck+DES or Planck+LSST) and CMB+GT+GG (Planck+LSST).

Obviously the combination CMB+GT+GG does a much better job than
CMB+GT for constraining all parameters (and most spectacularly w and mν).
This is mainly due to the fact that the GT cross-correlation is partly screened
by primary temperature anisotropies, while the GG signal does not have such an
intrinsic noise contribution. We even try to repeat the CMB+GT+GG analysis
with all CGTi

l correlations set to zero, and found no noticeable difference, show-
ing that most sensitivity comes from GG rather than GT terms. However, the
comparison between CMB alone and CMB+GT is still interesting per se. In fact,
we are dealing here with an idealised situation, but in the future the GG auto-
correlation signal could appear to be plagued by various systematic effects. In
this case, independent information coming from the cross-correlation signal alone
might be a useful piece of evidence in favour of the preferred model. Also, if the
galaxy bias turns out to be very difficult to estimate with high enough accuracy,
one may adopt the point of view of using the GG signal to measure bias, and the
CMB+GT signal to estimate the best-fit parameters in some iterative scheme.
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In this prospective, it is interesting to note that the CMB+GT combination
from Planck and LSST increases significantly the sensitivity of Planck alone mainly
for Ωdmh

2 (by 30%), w (by 83%) and mν (by 38%). As a consequence, the
sensitivity to the related parameter ΩΛ increases by 76%. For our fiducial model
with mν = 0, the 95% confidence level upper bound on the total neutrino mass
shrinks from 0.77 eV to 0.54 eV (for another fiducial model with mν > 0 the
sensitivity can only be larger than that, see e.g. [147]). At this level of sensitivity,
the parameter mν is not correlated with ΩΛ or w, as can be checked by looking
at two-dimensional marginalised likelihood contours in Figure 7.8. We conclude
that the cross-correlation signal derived from Planck and LSST would have some
useful sensitivity to both neutrino masses and dark energy parameters. Instead, the
correlation between Planck and DES does not bring significant new information
with respect to Planck alone.

Ichikawa and Takahashi [117] performed a similar forecast for Planck and LSST
(with slightly different specifications), using a Fisher matrix analysis rather than
MCMC approach. They find a smaller sensitivity of the cross-correlation data to
neutrino mass than we do, possibly because of the various approximations entering
into the Fisher matrix approach.

7.4 Conclusions

We have studied here the possibility to use the cross-correlation between CMB
and galaxy density maps as a tool for constraining the neutrino mass. On one
hand massive neutrinos reduce the cross-correlation spectrum because their free-
streaming slows down structure formation; on the other hand, they enhance it
because of the behaviour of the linear growth in presence of massive neutrinos.
Using both analytic approximations and numerical computations, we showed that
in the observable range of scales and redshifts, the first effect dominates, but
the second one is not negligible. Hence the cross-correlation between CMB and
LSS maps could bring some independent information on neutrino masses. We
performed an error forecast analysis by fitting some mock data inspired from the
Planck satellite, Dark Energy Survey (DES) and Large Synoptic Survey Telescope
(LSST). For Planck and LSST, the inclusion of the cross-correlation data increases
the sensitivity to mν by 38%, w by 83% and Ωdmh

2 by 30% with respect to the
CMB data alone. With the fiducial model employed in this analysis (based on eight
free parameters) the standard deviation for the neutrino mass is equal to 0.38 eV
for Planck alone and 0.27 eV for Planck plus cross-correlation data. This is far
from being as spectacular as the sensitivity expected from the measurement of the
auto-correlation power spectrum of future galaxy/cluster redshift surveys or cosmic
shear experiments, for which the predicted standard deviation is closer to the level
of 0.02 eV, leading to a 2σ detection even in the case of the minimal mass scenario
allowed by current data on neutrino oscillations (see [146] for a review). However,
the method proposed here is independent and affected by different systematics.
So, it remains potentially interesting, but only if the neutrino mass is not much
smaller than mν ∼ 0.2 eV.
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Figure 7.7: Marginalised probability of cosmological parameters obtained by fitting some
mock data mimicking the properties of Planck, DES and LSST. The solid black curves
accounts for CMB only, the red dashed for CMB+GT with Planck+DES, the blue
dashed for CMB+GT with Planck+LSST, and the dotted blue for CMB+GT+GG with
Planck+LSST (these combinations are precisely defined in the text). In each of these
cases the cosmological model consists in ΛCDM (six parameter) plus an arbitrary total
neutrino mass mν and equation-of-state parameter w. So, only eight of the above nine
parameters are independent (as a consequence the prior for ΩΛ is non-flat). The mock
data is based on a fiducial model with mν = 0 and w = −1.
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Chapter 8

The Rees-Sciama effect:

apparent acceleration from

structure formation in trouble.
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We saw that secondary anisotropies can be used to constrain cosmological
parameters, such as Dark Energy and the neutrino mass. In this Chapter, we
will use the observed CMB power spectrum in order to put limits on a particular
class of cosmological models, simply by means of an absence of large secondary
anisotropies in the observed CMB.

Swiss-Cheese models try to explain the dimness of observed distant super-
novae as a consequence of large gravitational inhomogeneity of the universe, in
stead of invoking a cosmological constant of Dark Energy. The gravitational inho-
mogeneities can have a certain lensing effect, that causes the distant supernovae
to appear as if they were in a universe with an accelerated expansion, while the
actual expansion is not accelerating.

These strong gravitational inhomogeneities have a non-linear evolution, and
are not constant in time. As explained in the previous chapter, such time evolution
of the gravitational potential leaves an imprint on the CMB. We show that for
a large range of parameters describing these models, the Swiss-Cheese universe
exhibits such large secondary anisotropies that they can safely be ruled out.

8.1 Introduction

Ever since it was observed that distant supernovae (SN), of type Ia, appear dim-
mer than expected in a matter dominated spacetime [9, 219], when combined
with measurements of the local Hubble factor [82], cosmologists are led to the
conclusion that the recent expansion of the universe definitely accelerates. Ob-
servations of the Cosmic Microwave Background (CMB) prefer a large angular
diameter distance to z = zdec ∼ 1100, which in ΛCDM indicates a close to
spatially flat universe [134, 141, 182, 216, 237]. Given constraints on the matter
content of the universe, from CMB and Large Scale Structure, this is achieved
when a Cosmological Constant is present, given the assumption that the locally
observed Hubble factor is equal to the global Hubble factor. The amount of clus-
tering of galaxies is slowed down by accelerated expansion with respect to a pure
cold dark matter universe [74]. The latest addition to this impressive evidence are
the observed Baryon Acoustic Oscillations (BAO), which provide an observation
of one length scale at different redshifts, and thereby measure the expansion over
different times [76,203].

Presented as such, the evidence for acceleration is convincing, see Ref. [231]
though for critique. However, a number of assumptions needs to be made in
order to come to the conclusion that a Cosmological Constant or a form of Dark
Energy (DE) is there. If the locally observed Hubble factor cannot be extrapolated
to the global expansion rate, as is the case if, e.g., the observer lives in a large
void, the observed angular diameter distance of SN may be explained without
DE [5–7,20,38,43,45,46,85–87,89,115,118,176,186–188,256–259,268]. Spatial
flatness would in that case be achieved with a matter density equal to the critical
density, ΩM = 1, fitting the CMB [115]. A globally small Hubble constant is
needed in that case to explain the age of the universe [138]. The clustering of
galaxies can also be caused by a hot dark matter component, such as neutrino’s

120



CHAPTER 8 SWISS CHEESE AND RS 8.1 Introduction

with a mass of mν ∼ 0.5 eV [115]. The BAO data are obtained as interpreted
data, in the sense that one has to apply a fiducial cosmology to the data in order
to abstract the BAO. To our knowledge this has only been done assuming an
FLRW-universe, and it is unclear how the BAO would be affected by applying
different fiducial models.

There is an ongoing debate as to whether today’s universe is properly described
by a perturbed FLRW-metric, assuming large scale homogeneity and isotropy,
or not. See Refs. [21, 131] for explications why the usual argument, that the
universe today is everywhere described by a small Newtonian potential, may not
be sufficient to rule out the role of inhomogeneities. If the universe is properly
described by the FLRW-metric, then the evidence for DE is compelling. If it is
not, then we need to understand why we observe an apparent acceleration, which
is phenomenologically well described by ΛCDM. Many works have been devoted
to possibilities linking the apparent acceleration to structure formation and to a
departure from homogeneity of the Universe, none of them however convincing the
community that structure formation explains the observations without the need
for DE. See Refs. [33, 77,132,139,215] for reviews.

Here we will focus on one such proposition: the Swiss-Cheese Cosmology [21,
24, 29–31, 48, 90, 97, 98, 125, 136, 177, 178, 252, 269, 274]. The Swiss-Cheese Cos-
mology is described globally by an FLRW-metric, but locally contains holes (voids
surrounded by a mass shell) described by a Lemâıtre-Tolman-Bondi metric (LTB).
The holes match flawlessly to the FLRW-metric at the borders, and are mass
compensated in such a way that, from outside such a hole, the global effect of
a patch containing such a hole is as if it were FLRW (cheese), due to Birkhoff’s
theorem [75]. The Swiss-Cheese1 toy model is an exact solution to the Einstein
equations, hence does not suffer from averaging problems. Its goal is to approx-
imate today’s inhomogeneous universe in an exactly solvable manner, with most
of the matter in structures, separated by voids. Recently it was shown that if
curvature is a function of space, large local curvature at low redshift, as in this
model, is hardly constrained by observations [47].

The general idea of the Swiss-Cheese Cosmology is that photons travel through
holes and structures, where holes have a lensing effect such that distant super-
novae, observed through a number of holes, appear dimmer than in a homogeneous
EdS Universe. This effect has been explored in the literature and it was found:

• that if holes are perfectly aligned, a lensing effect can mimic a DE of about
ΩDE = 0.4,

• however, that averaged over many random distributions of holes, the effect
vanishes, given that the holes are spherical.

In this work, we will show that, besides the on average disappearing of the
lensing effect, the Swiss-Cheese Cosmology leaves a significant imprint on the
CMB. It has been claimed that the effect that the holes have on the redshift

1The author must express his doubts about the name ‘Swiss Cheese’. The name implies that
only swiss cheese contains holes, and at the same time that all swiss cheese contains holes.
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of photons is marginal in comparison with the redshift at which the distant su-
pernovae are observed. This reasoning does hold, but the effect is significant
when compared to the observed anisotropies in the CMB-temperature, which are
of the order O(10−5). For the first time we will show full sky CMB-maps in a
Swiss-Cheese Cosmology, for different realisations, each realization with a different
constant size of holes, rhl. When showing these maps, we neglect the primordial
power spectrum of the CMB-anisotropies, as the secondary anisotropies in most
of the cases are overwhelmingly larger. These anisotropies are due to the Rees-
Sciama [94, 181, 217] effect, a non-linear late integrated Sachs-Wolfe effect due
to structure formation.

At the same time, we will show full sky maps of the angular diameter distance,
dA, at a fixed redshift in each direction. We confirm the results of Ref. [269], that
averaged over all directions, the angular diameter distance will appear as if the
universe were exactly EdS, at least when the holes are spherical. This leads to the
conclusion that a Swiss-Cheese model that has predominantly holes with a radius
larger than 35 Mpc is ruled out, since it either cannot explain the supernovae in
every direction, or it will leave a significant Rees-Sciama imprint on the CMB that
is already ruled out by observations.

Our conclusion only applies to cosmologies in which the universe contains a
very large number of large voids. In principle a smaller number of large voids is
not ruled out by our analysis. In such a case, however, the voids would play no
role at all in explaining the distant supernovae, which is not part of the scope of
this paper.

We find that, in the density profile we consider, the maximal effect that the
structure can have of the luminosity-distance-redshift relation is only marginally
dependent on the size of the holes. This is a different conclusion than the one
drawn in Refs. [21, 29]. We will briefly address this difference.

The different dependence on the size of holes, for different choices of den-
sity profile, leaves the door open to an ‘Apollonian Gasket-like configuration’2, in
which the universe on average is FLRW, but locally is FLRW nowhere. In that
case, an observer would see through holes in all directions. The CMB, if the con-
figuration is such that all holes are sufficiently small, would be left in agreement
with established perturbation theory. The holes can not be spherical, though, as
the cancellation on average of the lensing effect [269] still applies to tiny holes
as well. Probing such a configuration goes beyond the scope of this work, as the
model would need significant changes: the holes must be typically smaller than
rhl ∼ 35 Mpc, they must not be spherical, and they must be such that in all direc-
tions the chance of looking through holes is higher than looking through cheese.
Altogether this poses serious difficulties for the Swiss-Cheese model. Besides, one
might question if such a configuration approaches nature in any way, and if the
effect remains significant with more natural density profiles.

In section 8.2 we will briefly overview the metric and related equations de-

2The Apollonian Gasket is a fractal, constructed by starting out with three tangent circles,
and subsequently filling areas between those circles with circles tangent to the previously drawn
circles. See Ref. [174], and figure 1 in [178].
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scribing the Swiss-Cheese cosmology and we will present the techniques used to
calculate the full-sky maps of temperature and angular diameter distance. In sec-
tion 8.3 we present the full-sky CMB in a Swiss-Cheese universe, for different
typical hole sizes. In section 8.4 we will discuss the overall effect of the Swiss
Cheese on distance measures. We conclude in section 8.5.

8.2 The Model

8.2.1 The metric and geodesics

The metric We define the Swiss-Cheese model identical to the model in Ref. [178].
In the Swiss-Cheese model, the metric is anywhere of the LTB form

ds2 = −dt2 +
Y ′2(r, t)
W 2(r)

dr2 + Y 2(r, t)dΩ2, (8.1)

where Y ′(r, t) ≡ ∂rY (r, t). We can choose the coordinate system such that the
universe is divided in equally sized cubic boxes, with sides of length 2rch, each
with the origin of its own coordinate system in the centre of that box. The
time coordinate t is scaled such that t0 = 0 corresponds to today, and t = −1
corresponds to the time of the Big Bang.

In the cheese, we recover the FLRW-metric by setting Ych(r, t) = rach(t) and
W 2

ch(r) = 1 − kr2. In the holes, the metric is determined by

Ẏhl(r, t) =

√

M(r)

3πYhl(r, t)
+ 2E(r), (8.2)

with initial conditions at time t̄ = −0.8,

W 2
hl(r) − 1 ≡ E(r) =

1

2
H2

FLRW(t̄)r2 − 1

6π

M(r)

r
, (8.3)

M(r) ≡4π

∫ r

0
ρ(u)Y 2

hl(u, t̄)Y
′
hl(u, t̄)du, (8.4)

ρ(r) =











Ae−
(r−rM)2

2σ2 + ǫ for r < rhl,

ρch for r > rhl,

(8.5)

Y (r, t̄) =r. (8.6)

In this setup, the free parameters are those describing the matter distribution
in the holes: the size of the spherical LTB-metric rhl, the minimum density ǫ,
the energy density scale A, the comoving radius at which the peak of the mass
distribution resides rM, the comoving width of the mass shell σ, and the FLRW-
energy density ρch. The mass distribution is constant in time, and a function of
comoving radius r only. In physical coordinates, however, mass will be moving
outwards to form a shell close to the border of the LTB-patch.
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The LTB-evolution is ‘switched on’ manually at time t̄ = −0.8, such that
at −1 < t < −0.8 spacetime is described by the homogeneous and isotropic
FLRW-metric everywhere. In this way, the energy density and the scale factor
are described by continuous functions of time everywhere. The spatial curvature
W (r), Eq. (8.3), however, appears instantaneously at time t = t̄. This disconti-
nuity plays no role in the quantities investigated here, henceforth it is taken for
granted in this toy model.

For the derivation of and motivation for the choices made above, we refer the
reader to Ref. [178].

Geodesic equations As a consequence of the spherical symmetry of each co-
ordinate patch, any geodesic will lay in a spatial plane. Hence, without loss of
generality, we can write the geodesic equations as four independent equations, as
in Refs. [30, 178],

dz

dλ
= − Ẏ ′(r, t)

Y ′(r, t)

(

(z + 1)2 −
c2φ

Y 2(r, t)

)

− c2φ
Ẏ (r, t)

Y 3(r, t)
, z(0) = 0, (8.7)

dt

dλ
= z + 1, t(0) = 0, (8.8)

dr

dλ
=

W (r)

Y ′(r, t)

√

(z + 1)2 −
c2φ

Y 2(r, t)
, r(0) = robs, (8.9)

dφ

dλ
=

cφ
Y 2(r, t)

, φ(0) =φobs, (8.10)

where robs and φobs define the location of the observer.

The constant cφ is defined by the physical angle between the photon geodesic
and a radial geodesic pointing (which itself has cφ = 0) towards the photon
geodesic. At any time in any point, the constant cφ satisfies the relation,

cosα = gi(y)xi(y)gij(y), (8.11)

cφ = (1 + z)Y (r, t) sinα, (8.12)

where ~g denotes the spatial direction of the geodesic at point y, and ~x denotes
the spatial part of a radial geodesic pointing to coordinate y.

8.2.2 Dimensions and configurations

We chose the parameters as in Ref. [178], being rch = rhl = 0.042κ, ǫ = 0.0025,
σ = rhl/10, rM = 0.037κ, A = 50.59 and ρFLRW = 25, with however a freedom
to chose the rescaling factor κ. For any κ, in physical dimensions these numbers
correspond to holes with a radius of 350κ Mpc, in cubes with sides of length
l = 2rch = 700κ Mpc, and 5/κ holes between the observer and t = −0.8 in
an optimal direction, as illustrated in figure 8.1. The cheese is chosen to be
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Quantity Notation Unit Value

mass density ρ(r, t), ρ̄(r, t) ρC0 9.2 × 10−30 g cm−3

time t, T , t̄, tBB, T0 (6πρC0)
−1/2 9.3 Gyr

comoving radial coordinate r (6πρC0)
−1/2 2857 Mpc

metric quantity Y (r, t) (6πρC0)
−1/2 2857 Mpc

expansion rate H(r, t) (6πρC0)
1/2 3

2H0, Obs

spatial curvature term W (r) 1 —

Table 8.1: The units used throughout this work, where c = 16πGN = 1. The present
critical density is ρC0 = 3H2

0, Obs/8π, with H0, Obs = 70 km s−1 Mpc−1. Table taken
from Ref. [178]

Figure 8.1: A two-dimensional illustration of the configuration of holes throughout the
cheese. Gray corresponds to the FLRW-metric, white corresponds to the LTB-metric. The
difference between the left and the right illustration is κleft = 2κright. Throughout this
work we will always have one size for all holes within each realisation of a Swiss-Cheese
universe.

spatially flat, with ΩM=1, i.e., EdS. We use units in which c = 16πGN = 1. The
translation from these dimensions to physical dimensions is given in Table 8.1.
Given the freedom to rescale, the choice of normalisation is arbitrary. Throughout
this work we will always have one size for all holes on a regular lattice within each
realisation of a Swiss-Cheese universe. Secondly, we will always place the observer
in the cheese, at a spot where two adjacent holes are closest to each other. There
is no particular reason to choose this location, other than for simplicity, and this
choice is not important for the conclusions.

8.2.3 Different methods for the angular diameter distance

The angular diameter distance, dA, is defined as the ratio of the size of an object
at some distance of an observer, and the angular diameter at which it is observed.
When, in the configuration of aligned bubbles, an observer is located in the cheese
at a point where two adjacent bubbles are closest to each other, and the observer
sees a source for which the geodesic connecting the observer and the centre of
the source is a straight line exactly through the centres of a number of bubbles,
the angular diameter distance to that source amounts to

d̃A(λ) =
Y (r(λ), t(λ)) sinφ(λ)

α
, (8.13)
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with α the small angle between the radial geodesic and a geodesic from an edge
of the source to the observer, the latter geodesic described by r(λ), t(λ) and
φ(λ) [178]. For small α this quantity is independent of α. In an actual (numerical)
calculation, one can integrate the geodesic equations for successively smaller alpha,
until the quantity d̃A converges to the same number along the geodesic.

Eq. (8.13) obviously only holds for the special case of the aforementioned
purely radial geodesic connecting source and observer. The same method could
be used in any direction, shooting two photons in almost but just not the same
direction. This method would be computationally expensive though, since for each
direction one has to reintegrate several times the geodesic equation, at very high
accuracy such that the relative error in the tiny displacement orthogonal to the
direction of the photon is small. The orthogonal displacement itself will already
be extremely small compared to the distance travelled along the geodesic, given
the small angle at which one shoots.

In stead, equations describing the exact beam size along the geodesic are, as
in [30],

dθ

dλ
= −2

3
ρ(r, t)

(

dt

dλ

)2

− θ2 − σ2 (8.14)

dσ

dλ
+ 2θσ =

2

3

(

dφ

dλ

)2

Y (r, t)2
(

ρ(r, t) − 3M(r)

4πY (r, t)3

)

(8.15)

1√
A

d2
√
A

dλ2
= −2

3
ρ(r, t)

(

dt

dλ

)2

− σ2. (8.16)

Here A denotes the beam size, θ is the beam expansion, defined through θ =
1

2A
dA
dλ , and σ denotes the beam shear. The beam stretching becomes θ ± σ

in two orthogonal directions. We refer the reader to Refs. [30, 223] for further
explanations. The angular diameter distance dA and the luminosity distance dL

to an observer at any point along a geodesic pointing from / to the observer then
become,

dA(λ) =

√

A(λ)

Ωsource
(8.17)

dL(λ) = (1 + z)2dA(λ), (8.18)

with Ωsource the solid angle at which the source is observed. The initial conditions
for a beam are,

d
√
A

dλ

∣

∣

∣

∣

∣

λ=0

=
√

Ωsource, (8.19)

√
A
∣

∣

∣

λ=0
= 0. (8.20)
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With these initial conditions, θ and σ are ill-defined at the initial conditions, as
limλ→0 θ = ∞. If we write ξ = Aσ, we find the only relevant equations,

dξ

dλ
=

2

3
A

(

dφ

dλ

)2

Y (r, t)2
(

ρ(r, t) − 3M(r)

4πY (r, t)3

)

(8.21)

d2
√
A

dλ2
= −2

3

√
A ρ(r, t)

(

dt

dλ

)2

− ξ2

A3/2
, (8.22)

with the extra initial condition ξ|λ=0 = 0, if we demand that σ is well behaved, i.e.
finite, at all times. With these equations, the calculation of the angular diameter
distance, and thereby the luminosity distance, amounts to simply including two
more equations in the (numerical) integration scheme. Since dL = (1 + z)2dA,
hereafter we will mainly focus on dA for simplicity.

We checked that both the intuitive, Eq. (8.13), and the exact, Eqs. (8.21, 8.22),
method agree in the case where both can be applied.

8.2.4 Using 2D geodesic equations in a 3D setup

The spatial plane in which the photon’s geodesic lays, is defined by the spatial
part of a radial geodesic and the spatial part of the photon’s geodesic. In the
practice of this calculation, a photon exits one coordinate patch (A) and enters
another patch (B) when one of its cartesian coordinated reaches rch. Let ~g denote
the spatial direction of the geodesic in cartesian coordinates, let ~xA

0 denote the
cartesian coordinates at which the geodesic entered patch A, and let v̂ ≡ ~v/|~v| for
any spatial vector ~v. In cartesian coordinates, the direction ~g is invariant under
translations, hence invariant under a transformation from one coordinate patch
to another. This simplification only holds because the transformation is done at
a point where spacetime is described by the spatially flat FLRW-metric. During
a time step of integration of the geodesic equation, corresponding to photons
leaving patch A, whilst moving in a plane spanned by the orthonormal vectors êA1

127



8.3 The CMB CHAPTER 8 SWISS CHEESE AND RS

êA1

êA2

φA
rA

~gA

êB1

êB2

φB

rB
~gB

Figure 8.2: A cartoon of a geodesic in two adjacent patches. The geodesic is always in a
plane in each patch, spanned by orthonormal vectors ê1 and ê2, both defined when entering
a patch. At the exact border of the coordinate patches we have in three-dimensional
cartesian coordinates ~gB(λcross) = ~gA(λcross).

and êA2 , the transformation at the border at time λcross is done as follows:

~gB(λcross) = ~gA(λcross), (8.23)

~xB
0 = ~xA

0 + ~eA1 rA cosφA + ~eA2 rA sinφA ±





0
0

2rch



 , (8.24)

êB1 = x̂B
0 , (8.25)

êB2 =
(êB1 · ĝB)êB1 − ĝB

|(êB1 · ĝB)êB1 − ĝB| , (8.26)

rB =
∣

∣~xB
0

∣

∣ , (8.27)

φB = 0, (8.28)

cosαB = gixi
Bg

B
ij , (8.29)

cBφ = (1 + z)Y (r, t) sinαB. (8.30)

where all quantities are evualated at λcross. The integration then continues in box
B with initial values rB and φB, defined in the plane spanned by the orthonormal
vectors êB1 and êB2 . In this example we assumed that it is the third cartesian
coordinate of vector ~g that hits the border of the patch. Figure 8.2 gives a visual
explanation of the relation of different vectors.
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Figure 8.3: Full-sky maps of secondary CMB-anisotropies induced by the Swiss-Cheese
structure, in Mollweide-projection. The quantity shown is T−T̄

T̄
. These temperature maps

would be observed in Swiss-Cheese universes with holes of size rhl = 3.5 Mpc (upper left
figure), rhl = 350 Mpc (upper right figure), rhl = 875 Mpc (lower left figure) and rhl =
1.75 Gpc (lower right figure). The cold spots correspond to photons that experienced a
large Rees-Sciama effect, hot spots correspond to photon’s that traveled through a non-
integer number of holes, and all ring-like structures are artefacts of the regular distribution
of holes in this configuration.

8.3 The CMB

8.3.1 Temperature maps and their power spectra

As the universe is described by the matter-dominated FLRW-metric at −1 <
t < t̄ = −0.8, photons obtain no anisotropies from the Swiss-Cheese structure
in that period. It suffices to integrate photon geodesics backwards in time from
today back to t = t̄, and then to compare redshift a photon has experienced
with the redshift experienced on average in all directions. This translates directly
to a relative temperature difference, as T ∝ a−1 ∝ 1 + z. Hence, shooting
photons in all directions and obtaining the redshift at time t̄ = −0.8 as a function
of direction, one obtains a temperature anisotropy map of the CMB with only
secondary anisotropies, caused solely by the Swiss-Cheese matter distribution.

We show full-sky CMB anisotropy maps for four different hole sizes in fig-
ure 8.3. The quantity shown is T−T̄

T̄
, where T̄ is an average over all directions.

In each direction, the photon departed at the same time t = t̄, towards us. The
hole sizes for these maps are rhl = 3.5 Mpc (top left), rhl = 350 Mpc (top right),
rhl = 875 Mpc (bottom left) and rhl = 1.75 Gpc (bottom right). The angular
power spectra, Cl’s, of the CMB-temperature anisotropy autocorrelation in dif-
ferent configurations are displayed in figure 8.4. They have been calculated using
the Healpix package [93]. The power spectra displayed are defined in general for
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Figure 8.4: The CTT
l of secondary anisotropies for different Swiss-Cheese cosmologies, in

bins of 5 multipoles. For comparison we plot the full CTT
l -spectrum in a standard ΛCDM

cosmology with Ωbaryon = 0.045, Ωcdm = 0.245, Ωk = 0, ΩDE = 0.71, h = 0.7 (red
solid line, unbinned). A Swiss-Cheese universe with holes of radius smaller than 35 Mpc,
potentially leaves the CMB unaltered with respect to the standard cosmological model.
Note the numerical limitations beyond the ankle at high l ∼ 100, as discussed in the text.

any quantity X as,

aX
lm ≡

∫ 2π

0
dφ

∫ π

0
dθ

X(θ, φ) − X̄

X̄
Ylm(θ, φ) (8.31)

CXX
l ≡ 1

2l + 1

m=l
∑

m=−1

∣

∣aX
lm

∣

∣

2
, (8.32)

with Ylm being the spherical harmonics.

8.3.2 Numerical limitations

Before discussing the power spectra, a note about numerical limitations needs to be
made. We can only consider the power spectra up to the multipoles as displayed,
because for even higher multipoles l, a much larger resolution in the maps would
be needed. Even higher resolution would be computationally expensive, up to the
point where numerical errors in the integration will dominate the anisotropy at
such small scales.

All spectra show an ankle at about the same multipole l ∼ 100. The spectrum
beyond this ankle cannot be trusted, as the ankle is already an aliasing artefact of
the resolution of choice. When the resolution is increased, the ankle goes down
and moves to higher l, for all five configurations displayed. The resolution chosen,
3 × 106 pixels per map, is at the limit of the computational resources at hand,
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with our code as is3.

8.3.3 Discussion

By eye one already sees, in figure 8.3, that the maximum temperature anisotropy
is much larger than the observed average CMB-temperature anisotropy, notably
for larger holes. The centre of each map points in the special direction of exactly
aligned holes. The cold spots are directions in which the photons travel through
an optimal (read largest) number of holes. These are in fact cold, and not hot,
spots because travelling through many holes, implies crossing many shells of in
falling matter as well. What is observed here is actually the Rees-Sciama effect.
The hot spots correspond to directions in which the photon at t = t̄ was in a
region that became a hole. I.e., the photon has not travelled through an integer
number of holes. When crossing an entire hole, a photon passes both regions in
which the matter, falling outwards to form a shell around the hole, falls against
the direction of photon and regions in which the matter falls in the same direction
as the photon. Any Rees-Sciama effect mostly cancels in that case. When the
photon is in the middle of a region that will become a hole when the matter
starts falling, the photon automatically will only experience the metric of matter
that falls in the direction of the photon path. In that hole, the cancellation will
not happen, hence the photon relatively gains energy. One might wonder wether
these hotspots are natural, and if it would not make more sense to constrain the
number of holes that a photon crosses to be integer, for −0.8 < t < 0. Firstly,
if the Swiss Cheese is a toy model for structure formation, then there is nothing
unnatural about the period when the matter perturbations undergo the transition
from linear to non-linear perturbations. In the linear regime, the potentials do
not change. But still, if the photon happens to cross such a potential well at the
time of transition, the photon will become part of a similar hot spot as in this toy
model. Secondly, the temperature deviation of the hot spots from the average
temperature is about the same as the deviation of the cold spots. It is likely that
removing the hot spots would only change the angular correlation by a factor of
two. This should be investigated though, keeping in mind that by eye one cannot
do much statistics on a picture. In this work we choose to stick to one well-defined
model.

In each map one also observes the same circular ring of average tempera-
ture, centred on the map. In the projection and orientation chosen, this ring
corresponds to the plane surrounding the observer in which the photons always
travelled through cheese only. This is a direct consequence of the regular dis-
tribution of holes chosen. Other observed lines, especially visible in the map of
smaller holes, are similarly artefacts of special directions in the regular distribution
of holes.

Let us consider the angular power spectra, Cl’s, of the autocorrelation for

3The calculations were performed on an MPI-grid. For the largest holes, the computation of
one map takes about one hour on 16 cpu’s. For the tiniest holes, the computation of a map
takes about 30 hours on 128 cpu’s.
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Figure 8.5: Left: The maximum luminosity distance (top) and the maximum angular
diameter distance (bottom) achievable as a function of redshift z, for Swiss-Cheese uni-
verses with five different hole sizes. These distances would be observed when looking
through a series of perfectly aligned holes. Note that the maximum lensing effect only
marginally changes with hole size. This indicates that the ratio between time spent in
’cheese’ and time spent in ’holes’ along the history of a photon path is the quantity that
defines the observed distances, as opposed to the physical size of the holes. Right: The
angular diameter distance as a function of redshift z, comparing the Swiss-Cheese model
with three different spatially flat FLRW-solutions.

these maps, in figure 8.4. The spectra are binned in bins of five multipoles. The
Swiss-Cheese spectra must be considered as additional secondary anisotropies in
the CMB, since the primary power spectrum has been ignored. For comparison
the power spectrum of the CMB, as it would be observed today in the standard
ΛCDM universe, is displayed. For holes of radius rhl = 35 Mpc, the secondary
anisotropies are of the same magnitude as the CMB observed today. This means
that a Swiss-Cheese universe with all holes smaller than 35 Mpc potentially leaves
the CMB as observed unaltered. For example, the secondary anisotropies for holes
of radius 3.5 Mpc are up to two orders of magnitude smaller than the observed
anisotropies. A decrease of the Rees-Sciama effect with decreasing hole-size was
also foreseen in Refs. [21, 178]. In a more realistic distribution of holes, the size
of holes is not a fixed number. In that case, probably a few holes larger than
rhl ∼ 35 Mpc amongst smaller holes, would leave an imprint on the CMB small
enough to agree with observations.

8.4 Angular diameter distance - redshift relation

8.4.1 The same maximum distance for all hole sizes up to 1.75

Gpc

In the right of figure 8.5, we repeat for illustration a comparison of dA(z) for
different FLRW-cosmologies and one particular Swiss-Cheese cosmology, similar
to Ref. [178]. Here we focus on the maximum deviation in dA with respect to an
FLRW-cosmology with Ωmatter = 1. At redshift z ∼ 1.92, in this Swiss-Cheese
cosmology dA corresponds to that in a flat FLRW-universe with ΩΛ = 0.4. In
Ref. [177] it was argued, however, that a good fit over the whole curve to a
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Figure 8.6: The full-sky maps of the angular diameter distance at z = 1.92 induced by
the Swiss-Cheese structure. The quantity shown is dA−d̄A

d̄A

. Again these are maps in

Swiss-Cheese universes with holes of size rhl = 3.5 Mpc (upper left figure), rhl = 350
Mpc (upper right figure), rhl = 875 Mpc (lower left figure) and rhl = 1.75 Gpc (lower
right figure). In contrast with the redshift maps, in the angular diameter distance, the
maximum anisotropy does not depend on the size of the holes.

cosmology with ΩΛ = 0.75, is actually achieved by a Swiss-Cheese universe with
five holes of radius 250 Mpc between the observer and t = t̄. Since we are dealing
with a toy model that probes the ability of structure formation to explain the
observed acceleration, we prefer to probe the maximum achievable effect at high
redshift, over finding the best out of a set of perhaps mediocre fits.

In the left of figure 8.5, the maximum dA is compared for all models. The
maximum dA for all models lies in the direction of perfectly aligned holes. In nature
such a direction is unlikely to exist, but a more natural distribution of holes goes
beyond our scope here. The maximum effect on dA is only marginally dependent
on the size of holes. This conclusion seems in contradiction with conclusions
drawn in Refs. [21, 29], which we address at the end of this section.

8.4.2 Distribution in different directions

In figure 8.6 we show a full sky map of the angular diameter distance at a fixed
redshift, namely the maximum redshift found in the temperature map of each
cosmology at t = t̄, which for each cosmology is close to z = 1.92. This means
that in most directions the redshift of a photon was slightly less at time t = t̄,
hence the integration was continued through cheese only up to the right redshift.
Interestingly, the maximum anisotropy in angular diameter distance is the same
for all models, which was illustrated in the left of figure 8.5.

In Ref. [269] it was already shown that, for holes of radius 350 Mpc, the
average dA corresponds to that of a cheese-only universe. In figure 8.7 we show
the angular power spectrum of the autocorrelation in the angular diameter map,
CdAdA

l . This figure illustrates that, even though the maximum effect of the Swiss
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Figure 8.8: Left: The distribution of redshift of photons in all directions, at fixed time.
Clearly, for smaller holes, the variance in redshift decreases. Right: The distribution of
angular diameter distance of photons in all directions, at fixed redshift. Again, for smaller
holes, the variance decreases.
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Figure 8.9: An ambiguity when speaking of the effect of the size of holes on dA. Left:
Two sketches of methods comparing hole sizes. The first method considers only distance
traveled through a hole, and compares dA at the exit of that hole to that of an cheese-only
photon. The second method considers one central void embedded in cheese, and compares
dA at the end of the same total comoving distance through a hole and cheese. Right:
Using the first comparison method we recover the behaviour that is found in Refs. [21,29],
∆dA ∝ r3hl (red, solid). Using the second method, we find a different behaviour which is
closer to ∆dA ∝ rhl (blue, dashed).

Cheese on dA is about the same for all hole sizes, the number of special directions
in which there is a high effect (or anti-effect), decreases with decreasing hole size.
The smaller the size of holes is, the smaller the standard deviations in dA will be.
This is also apparent in figure 8.8, where the distributions of redshift z and the
angular diameter dA are compared for Swiss-Cheese universes with two different
hole sizes. The standard deviation in redshift goes down from σ 1

1+z
= 2.6× 10−4

for rhl = 350 Mpc to σ 1
1+z

= 3.8×10−5 for rhl = 35 Mpc. Similarly for the angular

diameter distance, it goes down from σdA
= 1.3 × 10−2 to σdA

= 4.3 × 10−3.

8.4.3 Dependence on the size of holes

In Refs. [21, 29] it was found that the effect of one hole on dA, with respect to
a cheese-only passage, goes as ∆dA ≡ dhole

A − dcheese
A ∼ r3hl/R

3
H, with RH the

Hubble radius. Increasing the number of holes with Nhl ∼ RH/rhl, this would
mean that the maximum effect scales as dA,max ∼ r2hl/R

2
H. As total lensing effect

is crucial to the success of a Swiss-Cheese model, this contradictions deserves more
attention. The difference in size-dependence may be an artefact of the modelling.
However we find a difference at the analytical level, before even deciding which
model to take. Let us explain why we come to a different conclusion.

The calculations in Refs. [21, 29] consider one hole at a time, and one hole
only. The effect of several holes does however not grow linearly with the number
of holes. It may happen to do so for a particular modelling, but in general it
will not. In figure 8.9 we show the results of two different approaches. The first
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Figure 8.10: Left: A comparison of the d dA/dr along the trajectories of two photons.
Time increases from right to left, and the initial conditions are chosen such that an
observer today (at r = −0.21) sees a source through cheese only (red solid line) and
a source through one central hole, with rhl = 350 Mpc, centred between the observer
and t = t̄ (green dashed line). Both sources are observed at the same solid angle, which
translates to d dA/dr at the observer. They have however a different size, which translates
to d dA/dr at the source. That means that the source at r = 0.21 behind the hole must
have a larger area in order to be observed under the same solid angle, and hence has a
larger angular diameter distance. The key point in this figure is the difference in d dA/dr
at both sides of the hole. Right: ∆[d dA/dr] shows the suppressing effect the hole has on
the derivative of the area of the beam, causing the source to be observed under smaller
solid angle than a source of the same size seen through cheese only. Hence, once a photon
passes a hole, the lensing effect of the hole continues playing a role beyond the hole, by
having changed the initial conditions of the integration beyond the hole.

approach considers only one hole. If one starts an integration when entering a
hole, and stops when exiting the hole in order to compare dA with the value found
when travelling the same distance through cheese, we recover in fact the foreseen
effect of ∆dA ∝ r3hl. In the second approach, we consider a photon passing one
hole along a fixed distance, where all space outside the single hole is necessarily
cheese. In this case we do not find the same behaviour, but the size dependence
seems to be more like ∆dA ∝ rhl.

The reason for this discrepancy is that, after passing a void, the quantity
d
√

A
dr (see equations (8.20,8.22)) keeps a deviation from the same quantity for a

cheese-only photon, as shown in figure 8.10. Hence, if one were to consider the
part of the integration, starting only beyond the patch, the initial conditions for
the cheese-only photon and the photon that passed through the hole are different.

The quantity d
√

A
dλ can be interpreted as a measure of divergence / convergence

of the beam. Changing this quantity necessarily changes the final beam size,
even when no more holes are on the way. There is no reason to believe that this
quantity obtains no change from a hole, as ‘the magnification of the beam, is
proportional to the integrated column density along the beam’s path’ [269]. The
integration is performed over the past light cone of a photon. The photon spends
more time in the void of a hole than it does in the shell of a hole, therefore there
is no cancellation of the defocussing effect when leaving a hole. In fact, a closer
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look at Eqs. (8.7-8.10,8.21,8.22) for the special case of a radial photon, such that
cφ = ξ = 0, shows us,

d2
√
A

dr2
= −2

3

√
A
Y ′(r, t)2ρ(r, t)

W (r)2

+
d
√
A

dr

[

Y ′′(r, t)
Y ′(r, t)

− W ′(r)
W (r)

+
Ẏ ′(r, t)
W (r)

]

,

=
√
A F1(r, t) +

d
√
A

dr
F2(r, t). (8.33)

Here we used,

d2

dr2
=

(

dλ

dr

)2 d2

dλ2
+
d2λ

dr2
d

dλ
, (8.34)

in order to be able to unambiguously compare photons along different geodesics,
with different affine parameters λ but with the same coordinates r and t. Now let
us compare two photons, that entered a patch with the same initial conditions,
and let one of them see only cheese. At the exit of the hole, the difference in
d2

√
A

dr2 is,

∆

[

d2
√
A

dr2

]

= ∆
[√

A
]

F1(rhl, t) + ∆

[

d
√
A

dr

]

F2(rhl, t) (8.35)

where in we use the notation ∆[Q] = Qhole photon(rhl) −Qcheese photon(rhl).

First consider F1(rhl, t) and F2(rhl, t). These are functions of background
quantities only, evaluated at r = rhl where all background quantities are supposed
to continuously match from the hole to the cheese. Hence, these functions are the
same for all photons, no matter whether they saw a hole or cheese only, no matter

what initial conditions their beam had. By construction we have ∆
[√

A
]

6= 0,

since that is the whole purpose of the Swiss-Cheese structure. Therefore, beyond

the hole, one expects that at least either ∆
[

d
√

A
dr

]

6= 0 or ∆
[

d2
√

A
dr2

]

6= 0 if

∆
[√

A
]

6= 0, proving that the defocussing effect of the hole carries beyond the

hole.

The reader should keep in mind that the defocussing effect is of importance
when one considers the maximum effect one hole can have on dA, even beyond the
passage of that particular hole. Remember that we are considering the divergence
of a beam, after having passed a hole, which is the derivative of the angular
diameter distance. However, as it has been shown in Refs. [269] that the average
effect of one hole on the angular diameter distance disappears when averaged over
angles of incidence, it is likely that the average effect of one hole on the divergence
of the beam (which, as we just discussed, influences the angular diameter distance
beyond the hole) will also disappear on average.

137



8.5 Discussion and conclusion CHAPTER 8 SWISS CHEESE AND RS

A final remark to make here, is a reminder that we are dealing with a toy
model. The model is constructed manually and ideally. The defocussing by the
hole may be an artefact of the modelling, and may disappear in a more realistic
model. We showed that in idealised models it is most likely that the divergence of
a beam is altered by a hole, but this gives no guarantee for more realistic models.

8.5 Discussion and conclusion

For the first time we have performed a full sky simulation of the CMB in Swiss-
Cheese universes, in realisations with different hole sizes. We have shown that
if all holes have a radius larger than rhl = 35 Mpc, the Swiss-Cheese model can
be ruled out on basis of the observed CMB. One could try to change the density
profile of the holes, but in order to leave the CMB intact, that new profile would
necessarily be closer to FLRW, hence no longer reproducing the wanted angular
diameter distance effect.

Another option to try to save the model is to decrease the size of holes. We
find that for small holes, the maximum angular diameter effect remains the same
as for larger holes. However, the probability that special directions exist, in which
one sees through the centres of a series of perfectly aligned holes, decreases with
decreasing hole size, at least in the case of holes on a lattice, as in this work.

In Refs. [269,274] it was argued that (spherical) mass compensated holes in a
Swiss-Cheese universe cannot make the average angular diameter distance depart
from the EdS-case, when the observer is outside the hole. Not surprisingly, we
confirm this result. Moreover, we have shown that even though the average dA

does not change, the anisotropy in CMB-temperature due to the same hole does
in fact differ significantly from the EdS-case, which in principle should not depend
on the sphericalness of a hole, but on the mere fact that the observer sees both
through and past the side of the hole, inevitably leaving a Rees-Sciama imprint
on the CMB.

These findings together lead to the conclusion that the Swiss-Cheese universe,
as considered here, with mass compensated holes, all of them larger than rhl = 35
Mpc, spherical or not, is ruled out. Based on the findings in Ref. [269], and the
findings in this work with respect to the variance in dA in different directions that
decreases with decreasing hole size, also Swiss-Cheese universes with spherical
mass compensated holes of radius smaller than rhl = 35 Mpc are ruled out.

This conclusion applies to all Swiss-Cheese-like models in which the universe is
saturated with mass compensated voids, and that try to explain the angular diam-
eter distance at high redshift. We did not consider the case where our local Hubble
volume contains just a small number of voids, without being saturated with them.
Such a scenario remains interesting in order to explain anomalies in the CMB,
such as the cold spot [181]. However, such a scenario is in principle unrelated to
possible alternative explanations for the observed accelerated expansion.

We have shown that the maximum effect of holes on dA has weaker, if not zero,
dependence on the size of the holes than previously claimed in the literature, due
to the defocussing effect a hole has, which carries influence beyond the hole. We
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assessed the importance of taking into account this defocussing, when addressing
the effect of different hole sizes. This effect could be due to the modelling of
the density profile. The model dependence should be more carefully assessed,
before definitive conclusions can be drawn. It remains to be investigated as well,
what the effect would be of non-spherical holes, with a typical size rhl < 35 Mpc,
densely spread in such a manner that locally the universe is nowhere described
by the cheese metric, but globally remains FLRW. Another addition to subject to
research, is to see the effect of virialisation of the mass shells, which, as pointed
out in Ref. [21], may increase the effect on dA, and at the same time should
decrease the Rees-Sciama effect, hence decreasing the potential trouble with the
CMB.
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General Conclusion

The common thread in this thesis is the use of observed cosmic perturbations
to constrain theoretical models and parameters. The broad range of topics in
this thesis is only emblematic for the essentially infinite possibilities that cosmic
perturbations offer. The history of the universe is rich, and many effects play a
role in the development of cosmic perturbations, yet different epochs and different
effects have distinct imprints on the perturbations. By accurately mapping out
the cosmic perturbations, we can test and constrain different cosmological models
and their parameters.

In Part II, we explored constraints on the very early universe, in principle at
the youngest state we can possibly probe today, the epoch of inflation. If the
global Hubble factor for our Hubble volume is equal to the Hubble factor we
observe in our nearby volume, then the CMB tells us that the universe is as good
as spatially flat, as argued in Chapter 1. The spatial flatness and the observed
perturbations that once have to have been super-Hubble, offer strong support for
the paradigm of inflation. Taking inflation as a starting point, we constrained the
shape of the, today still hypothetical, inflaton potential more consistent and more
robust than before, in Chapters 3, 4 and 5. In Chapter 6, we emphasised that
more data is needed in order to constrain the absolute scale of inflation. As such,
this knowledge is not new, but we quantified the prior dependence of the scale of
inflation, as well as the constraining power of the data today.

In Part III, our focus shifted to the secondary anisotropies in the CMB. We
used the fact that the CMB anisotropy can gain a cross correlation with the large
scale structure, to constrain the mass of the neutrinos in Chapter 7. Present
data is not constraining enough to tighten the constraints on the neutrino mass
using this effect, and we found that future data can possibly constrain the neutrino
mass stricter without even taking into account the cross-correlation with the CMB.
Nonetheless, the effect remains important, as it can distinguish between the effect
of a genuine neutrino mass or an unknown effect that mimics neutrinos in the
power spectrum, but fails to mimic neutrinos in the integrated Sachs-Wolfe effect.
The effect represents an independent cross check.

Finally, in Chapter 8, we pointed out the importance of cosmic perturbations
when constructing radically different models of the universe. We showed that if the
lensing effect of voids and structures is the cause for the apparent acceleration of
the expansion of the universe, the CMB would exhibit large secondary anisotropies.
The absence of such anisotropies in the CMB, shows that at least the scenario

141



Conclusion

with large voids is ruled out.
Given the broad range of topics in this thesis, the finale is not just a single

answer. It is a list of conclusions, as summarised here. If there is, however, a
single conclusion we can draw from this bundle of topics, it is that its variety per
se is a proof that cosmic perturbations are of utmost importance in the quest to
understand the universe.
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Appendix A

Vacuum states

This appendix previously appeared as section 3.4 in Ref [264].

A.1 Vacuum in Minkowsky space

For any canonically quantised field in Minkowsky space, the vacuum state is the
state that is annihilated by any annihilation operator a~k

. That is,

a~k
|0〉 = 0. (A.1)

Let us for instance look at the massless scalar field in flat space, with the La-
grangian density,

L = 1
2η

µν∂νφ∂µφ, (A.2)

where ηµν is the Minkowski metric. The scalar field obeys the field equation,

∂2φ(η, k) = 0. (A.3)

One set of solutions is

u~k
(t, ~x) = ei

~k·~x−ikt (A.4)

u∗~k(t, ~x) = e−i~k·~x+ikt. (A.5)

The question then is, what combination of both solutions to choose as the
vacuum state. To answer that question, I will make use of the concept of Killing
vectors. For a given metric, a Killing vector points in a certain direction. For a
given path in spacetime, the component of this path, which points in the direction
of the Killing vector, is conserved. In other words, Killing vectors imply conserved
quantities associated with the motion of free particles [41].

The vacuum state of a field should be the ground state of that field. Since
the ground state is the state of lowest energy, the field will not evolve beyond that
state without external influences and with a time independent Hamiltonian. This
means that the ground state must be completely conserved in time. If the ground
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state is not directed along the time-like Killing vector, then the components not
directed along this vector will not be conserved in time. These extra components
would radiate away in some manner, leading to a lower energy state. This is in
contradiction with the definition of the ground state. If a state is directed along
a Killing vector, it is an eigenfunction of that vector.

In flat space, ∂t is the time-like Killing vector. To define the ground state, we
demand that

∂tφ(t,~k) = σφ(t,~k), (A.6)

with σ being any constant.

Now we find, that for the ground state I can choose solely either u~k
or u∗~k.

The functions u~k
and u∗~k are orthogonal, but also satisfy the equality

u∗−~k
(t, ~x) = u~k

(t, ~x). (A.7)

Hence, all k-modes of uk are covered when only one of both solutions is integrated
over all k.

The field φ(t, ~x) may be expanded as

φ(t, ~x) =
∑

~k

[

u~k
(t, ~x)a~k

+
(

u~k
(t, ~x)a~k

)†
]

=
∑

~k

ei
~k·~x
[

eikta~k
+ e−ikta†−~k

]

(A.8)

Here k =
∥

∥

∥

~k
∥

∥

∥. I have made the usual choice to define the modes (A.4) to have

positive frequency when

∂tu~k
(t, ~x) = −iku~k

(t, ~x), (A.9)

with k > 0.

A.2 Ambiguity in curved space

Now moving back to curved space, we can recognise that the positive frequency
choice is ambiguous in curved space. In flat space, ∂t is a Killing vector, and we
defined the positive frequency modes to be eigenfunctions of this Killing vector.
In an arbitrary curved spacetime, ∂t is not automatically a Killing vector, and
there may not be a time-like Killing vector at all. This means one cannot by
definition uniquely define a vacuum solution, in agreement with equation (A.6).
Hence different bases may be chosen in which to express the solutions to the field
equations. I.e., linear combinations of uk and u∗k can be used as a new basis.
In that case, the new solutions uk and u∗k can be expressed in terms of the old
solutions as

u~k
= α~k~k′

u~k′
+ β~k~k′

u∗~k′
. (A.10)
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Likewise the new creation and annihilation operators can now be expressed in
terms of the old ones as

a~k
= α~k~k′

a~k′
− β∗~k~k′

a†~k′
. (A.11)

Equations (A.10) and (A.11) are known as the Bogoliubov transformations [19,23].
With these new defined operators, a new vacuum is also defined, since

a~k

∣

∣0
〉

= 0. (A.12)

That this is not the same vacuum as |0〉 follows from

a~k
|0〉 = −β∗~k~k′

a†~k′
|0〉 = −β∗~k~k′

∣

∣1~k′

〉

6= 0. (A.13)

A vacuum in one frame, contains particles in another frame. The vacua of both
frames may not be conserved in time, as there may not be a timelike Killing
vector. Only when a timelike Killing-vector field exists, the positive frequency
modes (eigenfunctions of the timelike Killing vector with positive eigenvalues) can
be defined as in equation (A.9). Then the ground state is uniquely defined.

A.3 Conformal vacuum

Special cases exist for which one can define a vacuum state in curved space. Let
us for instance look at the massless conformally coupled scalar field, with the
Lagrangian density,

L = 1
2

√−g∂µφ∂µφ− 1

12

√−gRφ2, (A.14)

where R denotes the Ricci scalar. The scalar field obeys the field equation,

�φ(η, k) +
1

6
Rφ = 0. (A.15)

A conformal transformation of the metric is defined as,

gµν →g̃µν = Ω(x)2gµν . (A.16)

Under such a transformation the Ricci scalar transforms as,

R→R̃ = Ω(x)2R+ 6Ω(x)−3√−g�Ω(x), (A.17)

and the field equation transforms as

�φ(η, k) +
1

6
Rφ = 0 → (A.18)

�̃φ̃+
1

6
R̃φ̃ =0, (A.19)

= Ω(x)−3

[

� +
1

6
R

]

Ω(x)φ̃ =0, (A.20)
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such that φ̃ = Ω(x)−1φ and the field equation is invariant under conformal trans-
formations.

Now if we start in a FLRW-universe, with metric gµν = a(η)2ηµν , and choose
the conformal transformation such that Ω(x)2 = a(η)−2, we find in the conformal
coordinate system

�φ(η, k) +
1

6
Rφ = 0 → (A.21)

∂2φ̃ = 0, (A.22)

since for the Minkowsky metric we have R̃ = 0 and Γ̃ρ
µν = 0.

In general for conformal spacetimes we can always perform a conformal trans-
formation which takes us to the flat Minkowsky frame in which R̃ = 0 and
Γ̃ρ

µν = 0.

Equation (A.22) shows that the field equation for the conformally coupled
scalar reduces to that of a massless scalar in flat space, under a conformal trans-
formation. As a consequence the modes of the conformally coupled field contain
the flat space solution. We already know that in flat space we have the timelike
Killing vector ∂t̃, and have the well defined flat space vacuum state for the scalar
field.

In that way is is natural to choose the vacuum state in the conformal spacetime
in accordance with its flat space equivalent. We find that the vacuum state in the
FLRW-metric must be given by,

φvac = a(η)−1φ̃vac. (A.23)

In general we find that the Killing vector in flat spacetime is identified with
a conformal Killing vector in curved (conformal) spacetime. A conformal Killing
vector no longer implies a conserved quantity for any geodesic, but it still does
for null geodesics [272]. A massless field evolves along null geodesics. Therefore
the vacuum state in any frame can be defined to be the state that contains only
positive-frequency modes in the comoving frame. For example, a field component
ψ, not necessarily a scalar field, whose field equation under transformation (A.16)
transforms to

∂2 (a(η)ψ) = 0, (A.24)

has in the flat frame the solutions given in equation (A.4) and its complex conju-
gate. Hence, in conformally flat space, that is gµν = a(η)2ηµν , its vacuum state
can be written as

ψ(η, ~x) = a(η)−1
∑

k

ei
~k·~x
[

eikηa~k
+ e−ikta†−~k

]

. (A.25)

The behaviour of the field under transformation (A.16) is of course defined by
nature of the field, as it may be the component of a tensor or vector field.
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A.4 Bunch-Davies vacuum

Now let us move on to a less simple example, the minimally coupled massless
scalar field. The Lagrangian density is given by

L = 1
2

√−g∂µφ∂µφ. (A.26)

From this Lagrangian density we find the field equation,

�φ = 0. (A.27)

Apparently the minimally coupled massless scalar breaks conformal invariance.
If we quantise the field and transform to momentum space, the field equation

becomes,

[

∂2
0 +

2a(η)′

a(η)
∂0 + k2

]

φ~k
(η) = 0. (A.28)

Now in the special case of a quasi-de Sitter universe, with the metric

gµν = a(η)ηµν , with a(η) = −1
HIη , (A.29)

where HI is the Hubble constant during inflation and −∞ < η < −1/HI , the
field equation becomes,

[

∂2
0 − 2

η
∂0 + k2

]

a(η)φ~k
(η) = 0. (A.30)

The solution to this equation is given in terms of Hankel functions,

φk(η) =
a(η)−1

√
2k

[

α

(

1 − i

kη

)

e−ikη + β

(

1 +
i

kη

)

eikη

]

, (A.31)

where |α| − |β| = 1 satisfies the canonical commutation relations for this action.
For each mode with a comoving momentum ~k, there exists a time η such that

k/a(η)
ggH. In that case k/(HIa(η)) = kη ≫ 1. Hence for each a time exists when the
solution is effectively reduced to

φk(η) =
a(η)−1

√
2k

[

αe−ikη + βeikη
]

. (A.32)

If we compare this to the conformal vacuum, defined in the previous subsection in
equation (A.25), we see that the observer must effectively observe the conformal
vacuum. In that case the choice of parameters has to be α = 1 and β = 0. This
is what is called the Bunch-Davies vacuum[19, 34, 213]: a field reduces to the
conformal vacuum in the asymptotic limit (early time) of the spacetime.
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Appendix B

The Limber approximation

Let us consider some maps X(n̂) expanded in spherical harmonics

X (n̂) =
∞
∑

l=0

l
∑

−l

aX
lmYlm(n̂) (B.1)

with

aX
lm =

∫

d2nY ∗
lm(n̂)X(n̂). (B.2)

The two-point correlation function of any two statistically isotropic quantities X
and Y can be expressed in terms of the power spectrum in multipole space

CXY
l =

〈

aX
lma

Y ∗
lm

〉

, (B.3)

or in therms of the angular correlation function in a Legendre polynomial basis
(pl)

wXY (θ) =
∑

l

2l + 1

4π
pl(cos θ)CXY

l . (B.4)

In the frame of observations, a direction dependent quantity X(n̂) is usually a
quantity integrated over the line of sight, X(n̂) =

∫

drX(~x). The expression
for aX

lm, (B.2), can then easily be transformed to Fourier space. Subsequently
expanding the plain wave in spherical harmonics and applying the completeness
relation for spherical harmonics, one arrives at

aX
lm = (−i)l

∫

dr
d3k

2π2
X(~k)jl(kr)Y

∗
lm(k̂), (B.5)

whereX(~k) is the Fourier transform ofX(~x), jl(r) is the spherical Bessel function,
and k = |~k|. This expression can be simplified using Limbers approximation,
∫

dx f(x)jl(x) ≃
√

π
2l+1

∫

dx f(x)δ(l + 1
2 − x), leading to

aX
lm ≃ (−i)l

√

π

2l + 1

∫

dr

r

k2dΩk

2π2
X
(

k̂, k
)

Y ∗
lm(k̂), (B.6)

separating the ~k dependence of X in k̂ and k =
l+

1
2

r .

151



CHAPTER B THE LIMBER APPROXIMATION

152



Bibliography

[1] L. F. Abbott and M. B. Wise, Constraints on Generalized Inflationary Cosmologies, Nucl.
Phys. B244 (1984), 541–548. ↑38, 58, 68, 86

[2] N. Afshordi, Y.-T. Lin, D. Nagai, and A. J. R. Sanderson, Missing Thermal Energy of
the Intracluster Medium, Mon. Not. Roy. Astron. Soc. 378 (2007), 293–300, available at
astro-ph/0612700. ↑103

[3] N. Afshordi, Y.-S. Loh, and M. A. Strauss, Cross-Correlation of the Cosmic Microwave
Background with the 2MASS Galaxy Survey: Signatures of Dark Energy, Hot Gas, and
Point Sources, Phys. Rev. D69 (2004), 083524, available at astro-ph/0308260. ↑103

[4] A. J. Albrecht and P. J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively
Induced Symmetry Breaking, Phys. Rev. Lett. 48 (1982), 1220–1223. ↑58, 68, 86

[5] S. Alexander, T. Biswas, A. Notari, and D. Vaid, Local Void vs Dark Energy: Confrontation
with WMAP and Type Ia Supernovae (2007), available at 0712.0370. ↑120

[6] H. Alnes and M. Amarzguioui, The supernova Hubble diagram for off-center observers in a
spherically symmetric inhomogeneous universe, Phys. Rev. D75 (2007), 023506, available
at astro-ph/0610331. ↑120

[7] H. Alnes, M. Amarzguioui, and O. Gron, An inhomogeneous alternative to dark energy?,
Phys. Rev. D73 (2006), 083519, available at astro-ph/0512006. ↑120

[8] M. Amarie, C. Hirata, and U. Seljak, Detectability of tensor modes in the presence of
foregrounds, Phys. Rev. D72 (2005), 123006, available at astro-ph/0508293. ↑86

[9] P. Astier et al., The Supernova Legacy Survey: Measurement of ΩM , ΩLambda and w from
the First Year Data Set, Astron. Astrophys. 447 (2006), 31–48, available at astro-ph/

0510447. ↑120

[10] G. Ballesteros, J. A. Casas, and J. R. Espinosa, Running spectral index as a probe of physics
at high scales, JCAP 0603 (2006), 001, available at hep-ph/0601134. ↑78

[11] J. M. Bardeen, Gauge Invariant Cosmological Perturbations, Phys. Rev. D22 (1980), 1882–
1905. ↑21

[12] J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Spontaneous Creation of Almost Scale
- Free Density Perturbations in an Inflationary Universe, Phys. Rev. D28 (1983), 679. ↑38,
58, 68, 86

[13] V. Barger, J. P. Kneller, H.-S. Lee, D. Marfatia, and G. Steigman, Effective number of
neutrinos and baryon asymmetry from BBN and WMAP, Phys. Lett. B566 (2003), 8–18,
available at hep-ph/0305075. ↑103

[14] D. Baumann et al., CMBPol Mission Concept Study: Probing Inflation with CMB Polar-
ization (2008), available at 0811.3919. ↑xi, 30, 31, 32

[15] M. Beltran, J. Garcia-Bellido, J. Lesgourgues, A. R Liddle, and A. Slosar, Bayesian model
selection and isocurvature perturbations, Phys. Rev. D71 (2005), 063532, available at
astro-ph/0501477. ↑43, 89

[16] M. Beltran, J. Garcia-Bellido, J. Lesgourgues, and A. Riazuelo, Bounds on CDM and
neutrino isocurvature perturbations from CMB and LSS data, Phys. Rev. D70 (2004),
103530, available at astro-ph/0409326. ↑103

153

astro-ph/0612700
astro-ph/0308260
0712.0370
astro-ph/0610331
astro-ph/0512006
astro-ph/0508293
astro-ph/0510447
astro-ph/0510447
hep-ph/0601134
hep-ph/0305075
0811.3919
astro-ph/0501477
astro-ph/0409326


BIBLIOGRAPHY BIBLIOGRAPHY

[17] M. Beltran, J. Garcia-Bellido, J. Lesgourgues, and M. Viel, Squeezing the window on
isocurvature modes with the Lyman- alpha forest, Phys. Rev. D72 (2005), 103515, available
at astro-ph/0509209. ↑89

[18] F. Bernardeau, Lens distortion effects on CMB maps, Astron. Astrophys. 338 (1998), 767–
776, available at astro-ph/9802243. ↑86

[19] N. D. Birrell and P. C. W. Davies, Quantum fields in curved space, Cambridge University
Press, London, England, 1982. Cambridge, Uk: Univ. Pr. ( 1982) 340p. ↑147, 149

[20] T. Biswas, R. Mansouri, and A. Notari, Nonlinear Structure Formation and Apparent Ac-
celeration: an Investigation, JCAP 0712 (2007), 017, available at astro-ph/0606703.
↑120

[21] T. Biswas and A. Notari, Swiss-Cheese Inhomogeneous Cosmology & the Dark Energy
Problem, JCAP 0806 (2008), 021, available at astro-ph/0702555. ↑121, 122, 132, 133,
135, 139

[22] J. Bock et al., Task Force on Cosmic Microwave Background Research (2006), available
at astro-ph/0604101. ↑87

[23] N. N. Bogoliubov, Sov. Phys. JETP 7 (1958), 51. ↑147

[24] K. Bolejko, The Szekeres Swiss Cheese model and the CMB observations (2008), available
at 0804.1846. ↑121

[25] J. R. Bond, G. Efstathiou, and J. Silk, Massive neutrinos and the large-scale structure of
the universe, Phys. Rev. Lett. 45 (1980), 1980–1984. ↑103

[26] J. R. Bond, C. R. Contaldi, Z. Huang, L. Kofman, and P. M. Vaudrevange, Scanning
inflation. in preparation. ↑88

[27] S. Boughn and R. Crittenden, A correlation of the cosmic microwave sky with large scale
structure, Nature 427 (2004), 45–47, available at astro-ph/0305001. ↑103

[28] R. H. Brandenberger, Alternatives to Cosmological Inflation (2009), available at 0902.

4731. ↑20

[29] N. Brouzakis and N. Tetradis, Analytical Estimate of the Effect of Spherical Inhomo-
geneities on Luminosity Distance and Redshift, Phys. Lett. B665 (2008), 344–348, avail-
able at 0802.0859. ↑121, 122, 133, 135

[30] N. Brouzakis, N. Tetradis, and E. Tzavara, The Effect of Large-Scale Inhomogeneities on
the Luminosity Distance, JCAP 0702 (2007), 013, available at astro-ph/0612179. ↑121,
124, 126

[31] , Light Propagation and Large-Scale Inhomogeneities, JCAP 0804 (2008), 008,
available at astro-ph/0703586. ↑121

[32] M. Bucher, J. Dunkley, P. G. Ferreira, K. Moodley, and C. Skordis, The initial conditions
of the universe: how much isocurvature is allowed?, Phys. Rev. Lett. 93 (2004), 081301,
available at astro-ph/0401417. ↑89

[33] T. Buchert, Dark Energy from Structure - A Status Report, Gen. Rel. Grav. 40 (2008),
467–527, available at 0707.2153. ↑121

[34] T. S. Bunch and P. C. W. Davies, Quantum field theory in de sitter space: Renormalization
by point splitting, Proc. Roy. Soc. Lond. A360 (1978), 117–134. ↑149

[35] A. Cabre, E. Gaztanaga, M. Manera, P. Fosalba, and F. Castander, Cross-correlation of
WMAP 3rd year and the SDSS DR4 galaxy survey: new evidence for Dark Energy, Mon.
Not. Roy. Astron. Soc. Lett. 372 (2006), L23–L27, available at astro-ph/0603690. ↑103

[36] A. Cabre, P. Fosalba, E. Gaztanaga, and M. Manera, Error analysis in cross-correlation of
sky maps: application to the ISW detection (2007), available at astro-ph/0701393. ↑110

[37] A. Cabre, E. Gaztanaga, M. Manera, P. Fosalba, and F. Castander, Evidence for dark
energy: cross-correlating SDSS5 and WMAP3 (2006), available at astro-ph/0611046.
↑103

154

astro-ph/0509209
astro-ph/9802243
astro-ph/0606703
astro-ph/0702555
astro-ph/0604101
0804.1846
astro-ph/0305001
0902.4731
0902.4731
0802.0859
astro-ph/0612179
astro-ph/0703586
astro-ph/0401417
0707.2153
astro-ph/0603690
astro-ph/0701393
astro-ph/0611046


BIBLIOGRAPHY BIBLIOGRAPHY

[38] R. R. Caldwell and A. Stebbins, A Test of the Copernican Principle, Phys. Rev. Lett. 100

(2008), 191302, available at 0711.3459. ↑120

[39] C. Caprini, S. H. Hansen, and M. Kunz, Observational constraint on the fourth derivative
of the inflaton potential, Mon. Not. Roy. Astron. Soc. 339 (2003), 212–214, available at
hep-ph/0210095. ↑39, 54

[40] A. Cardoso, Constraining hybrid inflation models with WMAP three-year results, Phys.
Rev. D75 (2007), 027302, available at astro-ph/0610074. ↑39, 59

[41] S. M. Carroll, Lecture notes on general relativity (1997), available at gr-qc/9712019.
↑145

[42] R. Casadio, F. Finelli, A. Kamenshchik, M. Luzzi, and G. Venturi, Method of comparison
equations for cosmological perturbations, JCAP 0604 (2006), 011, available at gr-qc/

0603026. ↑39

[43] M.-N. Celerier, Do we really see a cosmological constant in the supernovae data ?, Astron.
Astrophys. 353 (2000), 63–71, available at astro-ph/9907206. ↑120

[44] J. Choe, J.-O. Gong, and E. D. Stewart, Second order general slow-roll power spectrum,
JCAP 0407 (2004), 012, available at hep-ph/0405155. ↑39

[45] D. J. H. Chung and A. E. Romano, Mapping Luminosity-Redshift Relationship to LTB
Cosmology, Phys. Rev. D74 (2006), 103507, available at astro-ph/0608403. ↑120

[46] T. Clifton, P. G. Ferreira, and K. Land, Living in a Void: Testing the Copernican Principle
with Distant Supernovae, Phys. Rev. Lett. 101 (2008), 131302, available at 0807.1443.
↑120

[47] T. Clifton, P. G. Ferreira, and J. Zuntz, What the small angle CMB really tells us about
the curvature of the Universe, JCAP 0907 (2009), 029, available at 0902.1313. ↑121

[48] T. Clifton and J. Zuntz, Hubble Diagram Dispersion From Large-Scale Structure (2009),
available at 0902.0726. ↑121

[49] J. M. Cline and L. Hoi, Inflationary potential reconstruction for a WMAP running power
spectrum, JCAP 0606 (2006), 007, available at astro-ph/0603403. ↑39, 45, 63

[50] E. J. Copeland, E. W. Kolb, A. R. Liddle, and J. E. Lidsey, Observing the inflaton potential,
Phys. Rev. Lett. 71 (1993), 219–222, available at hep-ph/9304228. ↑87

[51] , Reconstructing the inflation potential, in principle and in practice, Phys. Rev. D48

(1993), 2529–2547, available at hep-ph/9303288. ↑87

[52] E. J. Copeland, A. R. Liddle, D. H. Lyth, E. D. Stewart, and D. Wands, False vacuum
inflation with Einstein gravity, Phys. Rev. D49 (1994), 6410–6433, available at astro-ph/
9401011. ↑38

[53] C. Copi, D. Huterer, D. Schwarz, and G. Starkman, The Uncorrelated Universe: Statistical
Anisotropy and the Vanishing Angular Correlation Function in WMAP Years 1-3, Phys.
Rev. D75 (2007), 023507, available at astro-ph/0605135. ↑20, 45

[54] C. J. Copi, D. Huterer, D. J. Schwarz, and G. D. Starkman, On the large-angle anomalies
of the microwave sky, Mon. Not. Roy. Astron. Soc. 367 (2006), 79–102, available at
astro-ph/0508047. ↑45

[55] C. J. Copi, D. Huterer, D. J. Schwarz, and G. D. Starkman, No large-angle correlations on
the non-Galactic microwave sky (2008), available at 0808.3767. ↑45

[56] L. Covi, J. Hamann, A. Melchiorri, A. Slosar, and I. Sorbera, Inflation and WMAP three
year data: Features have a future!, Phys. Rev. D74 (2006), 083509, available at astro-ph/
0606452. ↑39, 59, 70

[57] R. G. Crittenden and N. Turok, Looking for Λ with the Rees-Sciama Effect, Phys. Rev.
Lett. 76 (1996), 575, available at astro-ph/9510072. ↑103

[58] P. Crotty, J. Garcia-Bellido, J. Lesgourgues, and A. Riazuelo, Bounds on isocurvature
perturbations from CMB and LSS data, Phys. Rev. Lett. 91 (2003), 171301, available at
astro-ph/0306286. ↑103

155

0711.3459
hep-ph/0210095
astro-ph/0610074
gr-qc/9712019
gr-qc/0603026
gr-qc/0603026
astro-ph/9907206
hep-ph/0405155
astro-ph/0608403
0807.1443
0902.1313
0902.0726
astro-ph/0603403
hep-ph/9304228
hep-ph/9303288
astro-ph/9401011
astro-ph/9401011
astro-ph/0605135
astro-ph/0508047
0808.3767
astro-ph/0606452
astro-ph/0606452
astro-ph/9510072
astro-ph/0306286


BIBLIOGRAPHY BIBLIOGRAPHY

[59] P. Crotty, J. Lesgourgues, and S. Pastor, Measuring the cosmological background of rel-
ativistic particles with WMAP, Phys. Rev. D67 (2003), 123005, available at astro-ph/

0302337. ↑103

[60] A. Cuoco et al., Present status of primordial nucleosynthesis after WMAP: results from
a new BBN code, Int. J. Mod. Phys. A19 (2004), 4431–4454, available at astro-ph/

0307213. ↑103

[61] F. de Bernardis, A. Melchiorri, L. Verde, and R. Jimenez, The Cosmic Neutrino Background
and the Age of the Universe, JCAP 0803 (2008), 020, available at 0707.4170. ↑103

[62] H. P. de Oliveira and C. A. Terrero-Escalante, Troubles for observing the inflaton potential,
JCAP 0601 (2006), 024, available at astro-ph/0511660. ↑39

[63] A. de Oliveira-Costa et al., The large-scale polarization of the microwave background and
foreground, Phys. Rev. D68 (2003), 083003, available at astro-ph/0212419. ↑86

[64] H. J. de Vega and N. G. Sanchez, Single field inflation models allowed and ruled out by
the three years WMAP data (2006), available at astro-ph/0604136. ↑39, 59

[65] C. Destri, H. J. de Vega, and N. G. Sanchez, MCMC analysis of WMAP3 and SDSS data
points to broken symmetry inflaton potentials and provides a lower bound on the tensor
to scalar ratio, Phys. Rev. D77 (2008), 043509, available at astro-ph/0703417. ↑39, 59,
87, 88

[66] S. Dodelson, Modern cosmology (S. Dodelson, ed.), 2003. ↑3, 21

[67] S. Dodelson and E. Stewart, Scale dependent spectral index in slow roll inflation, Phys.
Rev. D65 (2002), 101301, available at astro-ph/0109354. ↑39

[68] M. Doran, Speeding Up Cosmological Boltzmann Codes, JCAP 0506 (2005), 011, available
at astro-ph/0503277. ↑107

[69] M. Doran and G. Robbers, Early dark energy cosmologies, JCAP 0606 (2006), 026, avail-
able at astro-ph/0601544. ↑107

[70] J. Dunkley et al., Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations:
Likelihoods and Parameters from the WMAP data (2008), available at 0803.0586. ↑6, 92

[71] R. Durrer, The Cosmic Microwave Background (R. Durrer, ed.), 2008. ↑3, 21

[72] R. Easther and W. H. Kinney, Monte Carlo reconstruction of the inflationary potential,
Phys. Rev. D67 (2003), 043511, available at astro-ph/0210345. ↑71

[73] R. Easther and H. Peiris, Implications of a running spectral index for slow roll inflation,
JCAP 0609 (2006), 010, available at astro-ph/0604214. ↑39, 55, 59, 60, 69, 70, 71, 78,
87

[74] G. Efstathiou et al., Evidence for a non-zero Lambda and a low matter density from
a combined analysis of the 2dF Galaxy Redshift Survey and Cosmic Microwave Back-
ground Anisotropies, Mon. Not. Roy. Astron. Soc. 330 (2002), L29, available at astro-ph/
0109152. ↑120

[75] A. Einstein and E. G. Straus, The influence of the expansion of space on the gravitation
fields surrounding the individual stars, Rev. Mod. Phys. 17 (1945), 120–124. ↑121

[76] D. J. Eisenstein et al., Detection of the Baryon Acoustic Peak in the Large-Scale Correlation
Function of SDSS Luminous Red Galaxies, Astrophys. J. 633 (2005), 560–574, available
at astro-ph/0501171. ↑120

[77] G. F. R. Ellis and T. Buchert, The universe seen at different scales, Phys. Lett. A347

(2005), 38–46, available at gr-qc/0506106. ↑121

[78] F. Finelli, M. Rianna, and N. Mandolesi, Constraints on the Inflationary Expansion from
Three Year WMAP, small scale CMB anisotropies and Large Scale Structure Data Sets,
JCAP 0612 (2006), 006, available at astro-ph/0608277. ↑39, 59

[79] G. L. Fogli, E. Lisi, A. Marrone, and A. Palazzo, Global analysis of three-flavor neutrino
masses and mixings, Prog. Part. Nucl. Phys. 57 (2006), 742–795, available at hep-ph/

0506083. ↑103

156

astro-ph/0302337
astro-ph/0302337
astro-ph/0307213
astro-ph/0307213
0707.4170
astro-ph/0511660
astro-ph/0212419
astro-ph/0604136
astro-ph/0703417
astro-ph/0109354
astro-ph/0503277
astro-ph/0601544
0803.0586
astro-ph/0210345
astro-ph/0604214
astro-ph/0109152
astro-ph/0109152
astro-ph/0501171
gr-qc/0506106
astro-ph/0608277
hep-ph/0506083
hep-ph/0506083


BIBLIOGRAPHY BIBLIOGRAPHY

[80] P. Fosalba and E. Gaztanaga, Measurement of the gravitational potential evolution from
the cross-correlation between WMAP and the APM Galaxy survey, Mon. Not. Roy. Astron.
Soc. 350 (2004), L37–L41, available at astro-ph/0305468. ↑103

[81] P. Fosalba, E. Gaztanaga, and F. Castander, Detection of the ISW and SZ effects from
the CMB-Galaxy correlation, Astrophys. J. 597 (2003), L89–92, available at astro-ph/

0307249. ↑103

[82] W. L. Freedman et al., Final Results from the Hubble Space Telescope Key Project to
Measure the Hubble Constant, Astrophys. J. 553 (2001), 47–72, available at astro-ph/
0012376. ↑6, 120

[83] J. Garcia-Bellido and D. G. Figueroa, A stochastic background of gravitational waves from
hybrid preheating, Phys. Rev. Lett. 98 (2007), 061302, available at astro-ph/0701014.
↑32

[84] J. Garcia-Bellido, D. G. Figueroa, and A. Sastre, A Gravitational Wave Background from
Reheating after Hybrid Inflation, Phys. Rev. D77 (2008), 043517, available at 0707.0839.
↑32

[85] J. Garcia-Bellido and T. Haugboelle, Confronting Lemaitre-Tolman-Bondi models with
Observational Cosmology, JCAP 0804 (2008), 003, available at 0802.1523. ↑120

[86] , Looking the void in the eyes - the kSZ effect in LTB models, JCAP 0809 (2008),
016, available at 0807.1326. ↑120

[87] , The radial BAO scale and Cosmic Shear, a new observable for Inhomogeneous
Cosmologies (2008), available at 0810.4939. ↑120

[88] J. Garcia-Bellido and D. Wands, Metric perturbations in two-field inflation, Phys. Rev.
D53 (1996), 5437–5445, available at astro-ph/9511029. ↑38

[89] D. Garfinkle, Inhomogeneous spacetimes as a dark energy model, Class. Quant. Grav. 23

(2006), 4811–4818, available at gr-qc/0605088. ↑120

[90] S. Ghassemi, S. K. Moghaddam, and R. Mansouri, Lensing effects in inhomogeneous cos-
mological models (2009), available at 0901.0340. ↑121

[91] T. Giannantonio et al., A high redshift detection of the integrated Sachs-Wolfe effect,
Phys. Rev. D74 (2006), 063520, available at astro-ph/0607572. ↑103

[92] J.-O. Gong and E. D. Stewart, The density perturbation power spectrum to second-
order corrections in the slow-roll expansion, Phys. Lett. B510 (2001), 1–9, available at
astro-ph/0101225. ↑39

[93] K. M. Gorski et al., HEALPix – a Framework for High Resolution Discretization, and Fast
Analysis of Data Distributed on the Sphere, Astrophys. J. 622 (2005), 759–771, available
at astro-ph/0409513. ↑129

[94] B. R. Granett, M. C. Neyrinck, and I. Szapudi, Dark Energy Detected with Supervoids and
Superclusters (2008), available at 0805.2974. ↑122

[95] I. J. Grivell and A. R. Liddle, Inflaton potential reconstruction without slow-roll, Phys. Rev.
D61 (2000), 081301, available at astro-ph/9906327. ↑39

[96] C. Grojean and G. Servant, Gravitational Waves from Phase Transitions at the Electroweak
Scale and Beyond, Phys. Rev. D75 (2007), 043507, available at hep-ph/0607107. ↑32

[97] V. G. Gurzadyan and A. A. Kocharyan, Kolmogorov stochasticity parameter measuring the
randomness in Cosmic Microwave Background (2008), available at 0810.3289. ↑121

[98] , Porosity criterion for hyperbolic voids and the cosmic microwave background,
Astron. Astrophys. 493 (2009), L61, available at 0807.1239. ↑121

[99] A. H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness
Problems, Phys. Rev. D23 (1981), 347–356. ↑38, 58, 68, 86

[100] A. H. Guth and S. Y. Pi, Fluctuations in the New Inflationary Universe, Phys. Rev. Lett.
49 (1982), 1110–1113. ↑38, 58, 68, 86

157

astro-ph/0305468
astro-ph/0307249
astro-ph/0307249
astro-ph/0012376
astro-ph/0012376
astro-ph/0701014
0707.0839
0802.1523
0807.1326
0810.4939
astro-ph/9511029
gr-qc/0605088
0901.0340
astro-ph/0607572
astro-ph/0101225
astro-ph/0409513
0805.2974
astro-ph/9906327
hep-ph/0607107
0810.3289
0807.1239


BIBLIOGRAPHY BIBLIOGRAPHY

[101] S. Habib, A. Heinen, K. Heitmann, and G. Jungman, Inflationary perturbations and preci-
sion cosmology, Phys. Rev. D71 (2005), 043518, available at astro-ph/0501130. ↑39

[102] J. Hamann, S. Hannestad, G. G. Raffelt, and Y. Y. Y. Wong, Observational bounds on the
cosmic radiation density, JCAP 0708 (2007), 021, available at 0705.0440. ↑103

[103] J. Hamann, J. Lesgourgues, and W. Valkenburg, How to constrain inflationary parameter
space with minimal priors, JCAP 0804 (2008), 016, available at 0802.0505. ↑xi, 87, 92,
97

[104] S. Hannestad, New constraint on the cosmological background of relativistic particles,
JCAP 0601 (2006), 001, available at astro-ph/0510582. ↑103

[105] , Primordial Neutrinos, Ann. Rev. Nucl. Part. Sci. 56 (2006), 137–161, available
at hep-ph/0602058. ↑104

[106] , Global neutrino parameter estimation using Markov Chain Monte Carlo (2007),
available at 0710.1952. ↑104

[107] S. Hannestad and G. G. Raffelt, Neutrino masses and cosmic radiation density: Combined
analysis, JCAP 0611 (2006), 016, available at astro-ph/0607101. ↑103

[108] S. Hannestad, H. Tu, and Y. Y. Y. Wong, Measuring neutrino masses and dark energy
with weak lensing tomography, JCAP 0606 (2006), 025, available at astro-ph/0603019.
↑104

[109] S. Hannestad and Y. Y. Y. Wong, Neutrino mass from future high redshift galaxy sur-
veys: Sensitivity and detection threshold, JCAP 0707 (2007), 004, available at astro-ph/
0703031. ↑104

[110] S. H. Hansen and M. Kunz, Observational constraints on the inflaton potential, Mon. Not.
Roy. Astron. Soc. 336 (2002), 1007–1010, available at hep-ph/0109252. ↑39, 54

[111] S. W. Hawking, The Development of Irregularities in a Single Bubble Inflationary Universe,
Phys. Lett. B115 (1982), 295. ↑38, 58, 68, 86

[112] S. W. Hawking and I. G. Moss, Supercooled Phase Transitions in the Very Early Universe,
Phys. Lett. B110 (1982), 35. ↑38

[113] G. Hinshaw et al., Three-year Wilkinson Microwave Anisotropy Probe (WMAP) ob-
servations: Temperature analysis, Astrophys. J. Suppl. 170 (2007), 288, available at
astro-ph/0603451. ↑38, 42, 44, 48, 64, 74

[114] W. Hu, N. Sugiyama, and J. Silk, The Physics of microwave background anisotropies,
Nature 386 (1997), 37–43, available at astro-ph/9604166. ↑3, 21

[115] P. Hunt and S. Sarkar, Constraints on large scale voids from WMAP-5 and SDSS (2008),
available at 0807.4508. ↑120, 121

[116] K. Ichikawa, M. Kawasaki, and F. Takahashi, Constraint on the Effective Number of Neu-
trino Species from the WMAP and SDSS LRG Power Spectra, JCAP 0705 (2007), 007,
available at astro-ph/0611784. ↑103

[117] K. Ichikawa and T. Takahashi, On the determination of neutrino masses and dark energy
evolution from the cross-correlation of CMB and LSS, JCAP 0802 (2008), 017, available
at astro-ph/0510849. ↑104, 116

[118] H. Iguchi, T. Nakamura, and K.-i. Nakao, Is dark energy the only solution to the apparent
acceleration of the present universe?, Prog. Theor. Phys. 108 (2002), 809–818, available
at astro-ph/0112419. ↑120

[119] N. Jarosik et al., Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations:
Beam profiles, data processing, radiometer characterization and systematic error limits,
Astrophys. J. Suppl. 170 (2007), 263, available at astro-ph/0603452. ↑38, 42, 44, 48,
64

[120] W. C. Jones et al., A Measurement of the Angular Power Spectrum of the CMB Tem-
perature Anisotropy from the 2003 Flight of Boomerang, Astrophys. J. 647 (2006), 823,
available at astro-ph/0507494. ↑45, 46, 74

158

astro-ph/0501130
0705.0440
0802.0505
astro-ph/0510582
hep-ph/0602058
0710.1952
astro-ph/0607101
astro-ph/0603019
astro-ph/0703031
astro-ph/0703031
hep-ph/0109252
astro-ph/0603451
astro-ph/9604166
0807.4508
astro-ph/0611784
astro-ph/0510849
astro-ph/0112419
astro-ph/0603452
astro-ph/0507494


BIBLIOGRAPHY BIBLIOGRAPHY

[121] K. Jones-Smith, L. M. Krauss, and H. Mathur, A Nearly Scale Invariant Spectrum of Grav-
itational Radiation from Global Phase Transitions, Phys. Rev. Lett. 100 (2008), 131302,
available at 0712.0778. ↑86

[122] M. Joy, E. D. Stewart, J.-O. Gong, and H.-C. Lee, From the Spectrum to Inflation : An
Inverse Formula for the General Slow-Roll Spectrum, JCAP 0504 (2005), 012, available at
astro-ph/0501659. ↑39

[123] K. Kadota, S. Dodelson, W. Hu, and E. D. Stewart, Precision of inflaton potential recon-
struction from CMB using the general slow-roll approximation, Phys. Rev. D72 (2005),
023510, available at astro-ph/0505158. ↑39

[124] M. Kamionkowski, A. Kosowsky, and A. Stebbins, A probe of primordial gravity waves and
vorticity, Phys. Rev. Lett. 78 (1997), 2058–2061, available at astro-ph/9609132. ↑86

[125] R Kantowski, Corrections in the luminosity-redshift relations of the homogeneous fried-
mann models, Astrophys. J 155 (1969), 89. ↑121

[126] A. Kiakotou, O. Elgaroy, and O. Lahav, Neutrino Mass, Dark Energy, and the Linear Growth
Factor, Phys. Rev. D77 (2008), 063005, available at 0709.0253. ↑104, 106, 107

[127] C. Kiefer, J. Lesgourgues, D. Polarski, and A. A. Starobinsky, The coherence of primordial
fluctuations produced during inflation, Class. Quant. Grav. 15 (1998), L67–L72, available
at gr-qc/9806066. ↑16, 17

[128] W. H. Kinney, Inflation: Flow, fixed points and observables to arbitrary order in slow roll,
Phys. Rev. D66 (2002), 083508, available at astro-ph/0206032. ↑71

[129] W. H. Kinney, E. W. Kolb, A. Melchiorri, and A. Riotto, Inflation model constraints from
the Wilkinson microwave anisotropy probe three-year data, Phys. Rev. D74 (2006), 023502,
available at astro-ph/0605338. ↑39, 59

[130] A. Kogut et al., PAPPA: Primordial Anisotropy Polarization Pathfinder Array, New Astron.
Rev. 50 (2006), 1009–1014, available at astro-ph/0609546. ↑87

[131] E. W. Kolb, V. Marra, and S. Matarrese, On the description of our cosmological spacetime
as a perturbed conformal Newtonian metric and implications for the backreaction proposal
for the accelerating universe, Phys. Rev. D78 (2008), 103002, available at 0807.0401.
↑121

[132] , Cosmological background solutions and cosmological backreactions (2009), avail-
able at 0901.4566. ↑121

[133] E. W. Kolb and M. S. Turner, The Early universe, Front. Phys. 69 (1990), 1–547. ↑3, 21

[134] E. Komatsu et al., Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observa-
tions:Cosmological Interpretation, Astrophys. J. Suppl. 180 (2009), 330–376, available at
0803.0547. ↑6, 32, 120

[135] A. Kosowsky, M. S. Turner, and R. Watkins, Gravitational waves from first order cosmo-
logical phase transitions, Phys. Rev. Lett. 69 (1992), 2026–2029. ↑32

[136] H. Kozaki and K.-i. Nakao, Volume Expansion of Swiss-Cheese Universe, Phys. Rev. D66

(2002), 104008, available at gr-qc/0208091. ↑121

[137] L. M. Krauss, Gravitational waves from global phase transitions, Phys. Lett. B284 (1992),
229–233. ↑86

[138] L. M. Krauss and M. S. Turner, The cosmological constant is back, Gen. Rel. Grav. 27

(1995), 1137–1144, available at astro-ph/9504003. ↑120

[139] W. Kundt, Critical Thoughts on Cosmology (2009), available at 0902.3151. ↑121

[140] M. Kunz, R. Trotta, and D. Parkinson, Measuring the effective complexity of cosmological
models, Phys. Rev. D74 (2006), 023503, available at astro-ph/0602378. ↑43, 96

[141] C.-l. Kuo et al., High Resolution Observations of the CMB Power Spectrum with ACBAR,
Astrophys. J. 600 (2004), 32–51, available at astro-ph/0212289. ↑46, 120

159

0712.0778
astro-ph/0501659
astro-ph/0505158
astro-ph/9609132
0709.0253
gr-qc/9806066
astro-ph/0206032
astro-ph/0605338
astro-ph/0609546
0807.0401
0901.4566
0803.0547
gr-qc/0208091
astro-ph/9504003
0902.3151
astro-ph/0602378
astro-ph/0212289


BIBLIOGRAPHY BIBLIOGRAPHY

[142] C. R. Lawrence et al., Millimeter and Submillimeter Detectors for Astronomy II, Proceedings
of the SPIE 5498 (2004), 220–231. ↑87

[143] S. M. Leach, Measuring the primordial power spectrum: Principal component analysis of
the cosmic microwave background, Mon. Not. Roy. Astron. Soc. 372 (2006), 646–654,
available at astro-ph/0506390. ↑44

[144] S. M Leach and A. R Liddle, Constraining slow-roll inflation with WMAP and 2dF, Phys.
Rev. D68 (2003), 123508, available at astro-ph/0306305. ↑73

[145] S. M. Leach, A. R. Liddle, J. Martin, and D. J Schwarz, Cosmological parameter estimation
and the inflationary cosmology, Phys. Rev. D66 (2002), 023515, available at astro-ph/

0202094. ↑17, 39, 48, 49, 73

[146] J. Lesgourgues and S. Pastor, Massive neutrinos and cosmology, Phys. Rept. 429 (2006),
307–379, available at astro-ph/0603494. ↑104, 106, 107, 116

[147] J. Lesgourgues, S. Pastor, and L. Perotto, Probing neutrino masses with future galaxy
redshift surveys, Phys. Rev. D70 (2004), 045016, available at hep-ph/0403296. ↑104, 116

[148] J. Lesgourgues, L. Perotto, S. Pastor, and M. Piat, Probing neutrino masses with CMB
lensing extraction, Phys. Rev. D73 (2006), 045021, available at astro-ph/0511735. ↑115

[149] J. Lesgourgues, A. A. Starobinsky, and W. Valkenburg, What do WMAP and SDSS really
tell about inflation?, JCAP 0801 (2008), 010, available at 0710.1630. ↑xi, 69, 70, 71, 72,
74, 87, 92

[150] J. Lesgourgues and W. Valkenburg, New constraints on the observable inflaton potential
from WMAP and SDSS, Phys. Rev. D75 (2007), 123519, available at astro-ph/0703625.
↑xi, 59, 60, 61, 62, 64, 69, 87, 92, 96

[151] J. Lesgourgues, W. Valkenburg, and E. Gaztanaga, Constraining neutrino masses with the
ISW-galaxy correlation function, Phys. Rev. D77 (2008), 063505, available at 0710.5525.
↑xi

[152] A. Lewis and S. Bridle, Cosmological parameters from CMB and other data: a Monte-
Carlo approach, Phys. Rev. D66 (2002), 103511, available at astro-ph/0205436. ↑44,
48, 60, 70, 74, 92, 115

[153] A. Lewis, A. Challinor, and A. Lasenby, Efficient Computation of CMB anisotropies in
closed FRW models, Astrophys. J. 538 (2000), 473–476, available at astro-ph/9911177.
↑70, 74

[154] A. R. Liddle and D. H. Lyth, Cosmological Inflation and Large-Scale Structure (A. R.
Liddle and D. H. Lyth, eds.), 2000. ↑3, 13, 19, 21

[155] A. R Liddle, On the inflationary flow equations, Phys. Rev. D68 (2003), 103504, available
at astro-ph/0307286. ↑39

[156] , Information criteria for astrophysical model selection, Mon. Not. Roy. Astron. Soc.
Lett. 377 (2007), L74–L78, available at astro-ph/0701113. ↑43

[157] A. R. Liddle, P. Mukherjee, and D. Parkinson, Cosmological model selection, Astron. Geo-
phys. 47 (2006), 4.30–4.33, available at astro-ph/0608184. ↑43

[158] A. R. Liddle, P. Parsons, and J. D. Barrow, Formalizing the slow roll approximation in
inflation, Phys. Rev. D50 (1994), 7222–7232, available at astro-ph/9408015. ↑39, 71,
86

[159] J. E. Lidsey et al., Reconstructing the inflaton potential: An overview, Rev. Mod. Phys.
69 (1997), 373–410, available at astro-ph/9508078. ↑39

[160] E. Lifshitz, On the gravitational stability of the expanding universe, J. Phys.(USSR) 10

(1946), 116. ↑x

[161] A. D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon,
Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B108

(1982), 389–393. ↑38, 58, 68, 86

160

astro-ph/0506390
astro-ph/0306305
astro-ph/0202094
astro-ph/0202094
astro-ph/0603494
hep-ph/0403296
astro-ph/0511735
0710.1630
astro-ph/0703625
0710.5525
astro-ph/0205436
astro-ph/9911177
astro-ph/0307286
astro-ph/0701113
astro-ph/0608184
astro-ph/9408015
astro-ph/9508078


BIBLIOGRAPHY BIBLIOGRAPHY

[162] , Scalar Field Fluctuations in Expanding Universe and the New Inflationary Universe
Scenario, Phys. Lett. B116 (1982), 335. ↑38

[163] , Chaotic Inflation, Phys. Lett. B129 (1983), 177–181. ↑38, 58, 68, 86

[164] , Axions in inflationary cosmology, Phys. Lett. B259 (1991), 38–47. ↑38

[165] , Hybrid inflation, Phys. Rev. D49 (1994), 748–754, available at astro-ph/

9307002. ↑38

[166] L. Lorenz, J. Martin, and C. Ringeval, Brane inflation and the WMAP data: a Bayesian
analysis, JCAP 0804 (2008), 001, available at 0709.3758. ↑59, 70

[167] M. LoVerde, L. Hui, and E. Gaztanaga, Magnification-Temperature Correlation: the Dark
Side of ISW Measurements, Phys. Rev. D75 (2007), 043519, available at astro-ph/

0611539. ↑115

[168] D. H. Lyth, What would we learn by detecting a gravitational wave signal in the cosmic
microwave background anisotropy?, Phys. Rev. Lett. 78 (1997), 1861–1863, available at
hep-ph/9606387. ↑87

[169] C. J. MacTavish et al., Spider Optimization: Probing the Systematics of a Large Scale
B-Mode Experiment (2007), available at 0710.0375. ↑87

[170] B. Maffei et al., Proceedings of the workshop on dome c in toulouse, Proceedings of the
workshop on Dome C in Toulouse, EAS Publications Series 14 (2005), 251–256. ↑87

[171] A. Makarov, On the accuracy of slow-roll inflation given current observational constraints,
Phys. Rev. D72 (2005), 083517, available at astro-ph/0506326. ↑39, 41, 59, 78

[172] M. Malquarti, S. M. Leach, and A. R. Liddle, From the production of primordial
perturbations to the end of inflation, Phys. Rev. D69 (2004), 063505, available at
astro-ph/0310498. ↑78

[173] M. Maltoni, T. Schwetz, M. A. Tortola, and J. W. F. Valle, Status of global fits to neutrino
oscillations, New J. Phys. 6 (2004), 122, available at hep-ph/0405172. ↑103

[174] B B Mandelbrot, The fractal geometry of nature. ↑122

[175] G. Mangano, A. Melchiorri, O. Mena, G. Miele, and A. Slosar, Present bounds on the rela-
tivistic energy density in the Universe from cosmological observables, JCAP 0703 (2007),
006, available at astro-ph/0612150. ↑103

[176] R. Mansouri, Structured FRW universe leads to acceleration: A non- perturbative approach
(2005), available at astro-ph/0512605. ↑120

[177] V. Marra, E. W. Kolb, and S. Matarrese, Light-cone averages in a swiss-cheese universe,
Phys. Rev. D77 (2008), 023003, available at 0710.5505. ↑121, 132

[178] V. Marra, E. W. Kolb, S. Matarrese, and A. Riotto, On cosmological observables in a
swiss-cheese universe, Phys. Rev. D76 (2007), 123004, available at 0708.3622. ↑121, 122,
123, 124, 125, 126, 132

[179] J. Martin and C. Ringeval, Inflation after WMAP3: Confronting the slow-roll and exact
power spectra to CMB data, JCAP 0608 (2006), 009, available at astro-ph/0605367.
↑39, 41, 59, 62, 70

[180] P. Martineau and R. Brandenberger, A Back-reaction Induced Lower Bound on the Tensor-
to- Scalar Ratio (2007), available at 0709.2671. ↑86

[181] I. Masina and A. Notari, The Cold Spot as a Large Void: Rees-Sciama effect on CMB
Power Spectrum and Bispectrum, JCAP 0902 (2009), 019, available at 0808.1811. ↑122,
138

[182] B. S. Mason et al., The Anisotropy of the Microwave Background to l = 3500: Deep Field
Observations with the Cosmic Background Imager, Astrophys. J. 591 (2003), 540–555,
available at astro-ph/0205384. ↑120

[183] J. C. Mather et al., Measurement of the Cosmic Microwave Background spectrum by the
COBE FIRAS instrument, Astrophys. J. 420 (1994), 439–444. ↑4

161

astro-ph/9307002
astro-ph/9307002
0709.3758
astro-ph/0611539
astro-ph/0611539
hep-ph/9606387
0710.0375
astro-ph/0506326
astro-ph/0310498
hep-ph/0405172
astro-ph/0612150
astro-ph/0512605
0710.5505
0708.3622
astro-ph/0605367
0709.2671
0808.1811
astro-ph/0205384


BIBLIOGRAPHY BIBLIOGRAPHY

[184] J. C. Mather, D. J. Fixsen, R. A. Shafer, C. Mosier, and D. T. Wilkinson, Calibrator
Design for the COBE Far Infrared Absolute Spectrophotometer (FIRAS), Astrophys. J.
512 (1999), 511–520, available at astro-ph/9810373. ↑4

[185] J. D. McEwen, P. Vielva, M. P. Hobson, E. Martinez-Gonzalez, and A. N. Lasenby, De-
tection of the ISW effect and corresponding dark energy constraints made with direc-
tional spherical wavelets, Mon. Not. Roy. Astron. Soc. 373 (2007), 1211–1226, available
at astro-ph/0602398. ↑103

[186] J. W. Moffat, Cosmic Microwave Background, Accelerating Universe and Inhomogeneous
Cosmology, JCAP 0510 (2005), 012, available at astro-ph/0502110. ↑120

[187] , Large scale cosmological inhomogeneities, inflation and acceleration without dark
energy (2005), available at astro-ph/0504004. ↑120

[188] , Late-time inhomogeneity and acceleration without dark energy, JCAP 0605

(2006), 001, available at astro-ph/0505326. ↑120

[189] T. E. Montroy et al., A Measurement of the CMB Spectrum from the 2003 Flight of
BOOMERANG, Astrophys. J. 647 (2006), 813, available at astro-ph/0507514. ↑74

[190] M. J. Mortonson and W. Hu, Impact of reionization on CMB polarization tests of slow-
roll inflation, Phys. Rev. D77 (2008), 043506, available at 0710.4162. ↑86

[191] V. F. Mukhanov and G. V. Chibisov, Quantum Fluctuation and Nonsingular Universe. (In
Russian), JETP Lett. 33 (1981), 532–535. ↑58, 68, 86

[192] V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, Theory of cosmological per-
turbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part
3. Extensions, Phys. Rept. 215 (1992), 203–333. ↑72

[193] P. Mukherjee, D. Parkinson, and A. R. Liddle, A Nested Sampling Algorithm for Cosmolog-
ical Model Selection, Astrophys. J. 638 (2006), L51–L54, available at astro-ph/0508461.
↑97

[194] A. G. Muslimov, ON THE SCALAR FIELD DYNAMICS IN A SPATIALLY FLAT FRIED-
MAN UNIVERSE, Class. Quant. Grav. 7 (1990), 231–237. ↑59

[195] Y. Nambu, Quantum to classical transition of density fluctuations in the inflationary model,
Phys. Lett. B276 (1992), 11–17. ↑17

[196] P. Oxley et al., The EBEX Experiment, Proc. SPIE Int. Soc. Opt. Eng. 5543 (2004),
320–331, available at astro-ph/0501111. ↑87

[197] N. Padmanabhan et al., Correlating the CMB with Luminous Red Galaxies : The Integrated
Sachs-Wolfe Effect, Phys. Rev. D72 (2005), 043525, available at astro-ph/0410360. ↑103

[198] L. Page et al., Three year Wilkinson Microwave Anisotropy Probe (WMAP) observa-
tions: Polarization analysis, Astrophys. J. Suppl. 170 (2007), 335, available at astro-ph/
0603450. ↑38, 42, 44, 48, 64, 74

[199] C. Pahud, A. R Liddle, P. Mukherjee, and D. Parkinson, Model selection forecasts for
the spectral index from the Planck satellite, Phys. Rev. D73 (2006), 123524, available at
astro-ph/0605004. ↑43

[200] D. Parkinson, P. Mukherjee, and A. R Liddle, A Bayesian model selection analysis of
WMAP3, Phys. Rev. D73 (2006), 123523, available at astro-ph/0605003. ↑43, 87

[201] H. Peiris and R. Easther, Recovering the Inflationary Potential and Primordial Power Spec-
trum With a Slow Roll Prior: Methodology and Application to WMAP 3 Year Data, JCAP
0607 (2006), 002, available at astro-ph/0603587. ↑39, 59, 69, 70, 71, 73, 87

[202] , Slow Roll Reconstruction: Constraints on Inflation from the 3 Year WMAP
Dataset, JCAP 0610 (2006), 017, available at astro-ph/0609003. ↑39, 59, 62, 69, 70,
71, 73, 87

[203] W. J. Percival et al., Measuring the Baryon Acoustic Oscillation scale using the SDSS and
2dFGRS, Mon. Not. Roy. Astron. Soc. 381 (2007), 1053–1066, available at 0705.3323.
↑120

162

astro-ph/9810373
astro-ph/0602398
astro-ph/0502110
astro-ph/0504004
astro-ph/0505326
astro-ph/0507514
0710.4162
astro-ph/0508461
astro-ph/0501111
astro-ph/0410360
astro-ph/0603450
astro-ph/0603450
astro-ph/0605004
astro-ph/0605003
astro-ph/0603587
astro-ph/0609003
0705.3323


BIBLIOGRAPHY BIBLIOGRAPHY

[204] S. Perlmutter et al., Measurements of Omega and Lambda from 42 High-Redshift Super-
novae, Astrophys. J. 517 (1999), 565–586, available at astro-ph/9812133. ↑103

[205] L. Perotto, J. Lesgourgues, S. Hannestad, H. Tu, and Y. Y. Y. Wong, Probing cosmological
parameters with the CMB: Forecasts from full Monte Carlo simulations, JCAP 0610 (2006),
013, available at astro-ph/0606227. ↑112

[206] F. Piacentini et al., A measurement of the polarization-temperature angular cross power
spectrum of the Cosmic Microwave Background from the 2003 flight of BOOMERANG,
Astrophys. J. 647 (2006), 833, available at astro-ph/0507507. ↑74

[207] E. Pierpaoli, Constraints on the cosmic neutrino background, Mon. Not. Roy. Astron. Soc.
342 (2003), L63, available at astro-ph/0302465. ↑103

[208] L. Pogosian, P. S. Corasaniti, C. Stephan-Otto, R. Crittenden, and R. Nichol, Tracking
Dark Energy with the ISW effect: short and long- term predictions, Phys. Rev. D72 (2005),
103519, available at astro-ph/0506396. ↑115

[209] D. Polarski and A. A. Starobinsky, Semiclassicality and decoherence of cosmological per-
turbations, Class. Quant. Grav. 13 (1996), 377–392, available at gr-qc/9504030. ↑17

[210] G. Polenta et al., New Astronomy Review 51 (2007), 256. ↑87

[211] B. A. Powell and W. H. Kinney, Limits on primordial power spectrum resolution: An
inflationary flow analysis, JCAP 0708 (2007), 006, available at 0706.1982. ↑59, 62, 70

[212] J. R. Primack, Whatever happened to hot dark matter?, SLAC Beam Line 31N3 (2001),
50–57, available at astro-ph/0112336. ↑103

[213] T. Prokopec and W. Valkenburg, The cosmology of the nonsymmetric theory of gravitation,
Phys. Lett. B636 (2006), 1–4, available at astro-ph/0503289. ↑149

[214] N. Puchades, M. J. Fullana, J. V. Arnau, and D. Saez, On the Rees-Sciama effect: maps
and statistics, Mon. Not. Roy. Astron. Soc. 370 (2006), 1849–1858, available at astro-ph/
0605704. ↑103

[215] S. Rasanen, Accelerated expansion from structure formation, JCAP 0611 (2006), 003,
available at astro-ph/0607626. ↑121

[216] , Light propagation in statistically homogeneous and isotropic dust universes, JCAP
0902 (2009), 011, available at 0812.2872. ↑120

[217] M. J. Rees and D. W. Sciama, Large scale Density Inhomogeneities in the Universe, Nature
217 (1968), 511–516. ↑122

[218] C. L. Reichardt et al., High resolution CMB power spectrum from the complete ACBAR
data set (2008), available at 0801.1491. ↑74

[219] A. G. Riess et al., Observational Evidence from Supernovae for an Accelerating Universe
and a Cosmological Constant, Astron. J. 116 (1998), 1009–1038, available at astro-ph/
9805201. ↑103, 120

[220] C. Ringeval, The exact numerical treatment of inflationary models, Lect. Notes Phys. 738

(2008), 243–273, available at astro-ph/0703486. ↑39, 47, 59, 70

[221] A. Riotto, Inflation and the theory of cosmological perturbations (2002), available at
hep-ph/0210162. ↑3, 21

[222] J. E. Ruhl et al., The South Pole Telescope (2004), available at astro-ph/0411122. ↑87

[223] R. K. Sachs, Gravitational waves in general relativity. 6. The outgoing radiation condition,
Proc. Roy. Soc. Lond. A264 (1961), 309–338. ↑126

[224] R. K. Sachs and A. M. Wolfe, Perturbations of a cosmological model and angular variations
of the microwave background, Astrophys. J. 147 (1967), 73–90. ↑102

[225] D. S. Salopek and J. R. Bond, Nonlinear evolution of long wavelength metric fluctuations
in inflationary models, Phys. Rev. D42 (1990), 3936–3962. ↑39, 59, 86

[226] D. S. Salopek, J. R. Bond, and J. M. Bardeen, Designing Density Fluctuation Spectra in
Inflation, Phys. Rev. D40 (1989), 1753. ↑38

163

astro-ph/9812133
astro-ph/0606227
astro-ph/0507507
astro-ph/0302465
astro-ph/0506396
gr-qc/9504030
0706.1982
astro-ph/0112336
astro-ph/0503289
astro-ph/0605704
astro-ph/0605704
astro-ph/0607626
0812.2872
0801.1491
astro-ph/9805201
astro-ph/9805201
astro-ph/0703486
hep-ph/0210162
astro-ph/0411122


BIBLIOGRAPHY BIBLIOGRAPHY

[227] A. Sandage et al., The Hubble Constant: A Summary of the HST Program for the Lumi-
nosity Calibration of Type Ia Supernovae by Means of Cepheids, Astrophys. J. 653 (2006),
843–860, available at astro-ph/0603647. ↑4

[228] K. Sato, First Order Phase Transition of a Vacuum and Expansion of the Universe, Mon.
Not. Roy. Astron. Soc. 195 (1981), 467–479. ↑38, 58, 68, 86

[229] D. J. Schwarz, G. D. Starkman, D. Huterer, and C. J. Copi, Is the low-l microwave back-
ground cosmic?, Phys. Rev. Lett. 93 (2004), 221301, available at astro-ph/0403353.
↑45

[230] D. J. Schwarz, C. A. Terrero-Escalante, and A. A. Garcia, Higher order corrections to
primordial spectra from cosmological inflation, Phys. Lett. B517 (2001), 243–249, available
at astro-ph/0106020. ↑39

[231] M. Seikel and D. J Schwarz, How strong is the evidence for accelerated expansion?, JCAP
0802 (2008), 007, available at 0711.3180. ↑120

[232] U. Seljak and M. Zaldarriaga, Lensing-induced Cluster Signatures in the Cosmic Microwave
Background, Astrophys. J 538 (July 2000), 57–64, available at astro-ph/9907254. ↑103

[233] U. Seljak and M. Zaldarriaga, Signature of gravity waves in polarization of the microwave
background, Phys. Rev. Lett. 78 (1997), 2054–2057, available at astro-ph/9609169. ↑86

[234] O. Seto, J. Yokoyama, and H. Kodama, What happens when the inflaton stops during
inflation, Phys. Rev. D61 (2000), 103504, available at astro-ph/9911119. ↑60

[235] J. L. Sievers et al., Implications of the Cosmic Background Imager Polarization Data,
Astrophys. J. 660 (2007), 976–987, available at astro-ph/0509203. ↑46

[236] R. E. Smith et al., Stable clustering, the halo model and nonlinear cosmological power
spectra, Mon. Not. Roy. Astron. Soc. 341 (2003), 1311, available at astro-ph/0207664.
↑109

[237] G. F. Smoot et al., Structure in the COBE differential microwave radiometer first year
maps, Astrophys. J. 396 (1992), L1–L5. ↑120

[238] Y.-S. Song and L. Knox, Dark energy tomography (2003), available at astro-ph/0312175.
↑104

[239] D. N. Spergel et al., First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observa-
tions: Determination of Cosmological Parameters, Astrophys. J. Suppl. 148 (2003), 175,
available at astro-ph/0302209. ↑103

[240] , Wilkinson Microwave Anisotropy Probe (WMAP) three year results: Implications
for cosmology, Astrophys. J. Suppl. 170 (2007), 377, available at astro-ph/0603449.
↑38, 39, 42, 44, 48, 59, 64, 103

[241] D. J. Spiegelhalter, N. G. Best, B. P. Carlin, and A. van der Linde, Bayesian measures
of model complexity and fit, Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 64 (2002), no. 4, 583–639, available at http://www.blackwell-synergy.
com/doi/pdf/10.1111/1467-9868.00353. ↑96

[242] G. D Starkman, R. Trotta, and P. M Vaudrevange, Introducing doubt in Bayesian model
comparison (2008), available at 0811.2415. ↑43

[243] A. A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the
universe, JETP Lett. 30 (1979), 682–685. ↑38, 58, 68, 86

[244] , A new type of isotropic cosmological models without singularity, Phys. Lett. B91

(1980), 99–102. ↑38, 58, 68, 86

[245] , Dynamics of Phase Transition in the New Inflationary Universe Scenario and
Generation of Perturbations, Phys. Lett. B117 (1982), 175–178. ↑38, 58, 68, 86

[246] , Spectrum of initial perturbations in open and closed inflationary models (1996),
available at astro-ph/9603075. ↑60

164

astro-ph/0603647
astro-ph/0403353
astro-ph/0106020
0711.3180
astro-ph/9907254
astro-ph/9609169
astro-ph/9911119
astro-ph/0509203
astro-ph/0207664
astro-ph/0312175
astro-ph/0302209
astro-ph/0603449
http://www.blackwell-synergy.com/doi/pdf/10.1111/1467-9868.00353
http://www.blackwell-synergy.com/doi/pdf/10.1111/1467-9868.00353
0811.2415
astro-ph/9603075


BIBLIOGRAPHY BIBLIOGRAPHY

[247] , Inflaton field potential producing the exactly flat spectrum of adiabatic perturba-
tions, JETP Lett. 82 (2005), 169–173, available at astro-ph/0507193. ↑63

[248] G. Steigman, Primordial nucleosynthesis: Successes and challenges, Int. J. Mod. Phys. E15

(2006), 1–36, available at astro-ph/0511534. ↑103

[249] P. J. Steinhardt and M. S. Turner, A Prescription for Successful New Inflation, Phys. Rev.
D29 (1984), 2162–2171. ↑39, 86

[250] E. D. Stewart, The spectrum of density perturbations produced during inflation to leading
order in a general slow-roll approximation, Phys. Rev. D65 (2002), 103508, available at
astro-ph/0110322. ↑39

[251] E. D. Stewart and D. H. Lyth, A more accurate analytic calculation of the spectrum of
cosmological perturbations produced during inflation, Phys. Lett. B302 (1993), 171–175,
available at gr-qc/9302019. ↑39, 73

[252] N. Sugiura, K.-i. Nakao, D. Ida, N. Sakai, and H. Ishihara, How do nonlinear voids affect
light propagation?, Prog. Theor. Phys. 103 (2000), 73–89, available at astro-ph/9912414.
↑121

[253] R. A. Sunyaev and Y. B. Zeldovich, Distortions of the Background Radiation Spectrum,
Nature 223 (August 1969), 721–+. ↑103

[254] J. Tauber et al., Planck: The scientific programme (2006), available at astro-ph/0604069.
↑87

[255] M. Tegmark et al., Cosmological Constraints from the SDSS Luminous Red Galaxies, Phys.
Rev. D74 (2006), 123507, available at astro-ph/0608632. ↑7, 42, 44, 48, 64, 74, 92, 95

[256] K. Tomita, A Local Void and the Accelerating Universe, Mon. Not. Roy. Astron. Soc. 326

(2001), 287, available at astro-ph/0011484. ↑120

[257] , Analyses of Type Ia Supernova Data in Cosmological Models with a Local Void,
Prog. Theor. Phys. 106 (2001), 929–939, available at astro-ph/0104141. ↑120

[258] , Anisotropy of the Hubble Constant in a Cosmological Model with a Local Void on
Scales of 200 Mpc, Prog. Theor. Phys. 105 (2001), 419, available at astro-ph/0005031.
↑120

[259] , Dipole anisotropies of IRAS galaxies and the contribution of a large-scale local
void, Astrophys. J. 584 (2003), 580–584, available at astro-ph/0211137. ↑120

[260] R. Trotta, Applications of Bayesian model selection to cosmological parameters, Mon. Not.
Roy. Astron. Soc. 378 (2007), 72–82, available at astro-ph/0504022. ↑43, 44

[261] , Bayes in the sky: Bayesian inference and model selection in cosmology (2008),
available at 0803.4089. ↑88

[262] R. Trotta and A. Melchiorri, Indication for primordial anisotropies in the neutrino back-
ground from WMAP and SDSS, Phys. Rev. Lett. 95 (2005), 011305, available at
astro-ph/0412066. ↑103

[263] M. S. Turner, Recovering the inflationary potential, Phys. Rev. D48 (1993), 5539–5545,
available at astro-ph/9307035. ↑87

[264] W. Valkenburg, Nonsymmetric metric perturbations in cosmology, M.Sc. thesis (2006).
↑145

[265] , How much of the inflaton potential do we see?, PoS CARGESE2007 (2007), 018,
available at 0708.3849. ↑xi

[266] , Swiss Cheese and a Cheesy CMB, JCAP 0906 (2009), 010, available at 0902.

4698. ↑xi

[267] W. Valkenburg, L. M. Krauss, and J. Hamann, Effects of Prior Assumptions on Bayesian
Estimates of Inflation Parameters, and the expected Gravitational Waves Signal from In-
flation, Phys. Rev. D78 (2008), 063521, available at 0804.3390. ↑xi

165

astro-ph/0507193
astro-ph/0511534
astro-ph/0110322
gr-qc/9302019
astro-ph/9912414
astro-ph/0604069
astro-ph/0608632
astro-ph/0011484
astro-ph/0104141
astro-ph/0005031
astro-ph/0211137
astro-ph/0504022
0803.4089
astro-ph/0412066
astro-ph/9307035
0708.3849
0902.4698
0902.4698
0804.3390


BIBLIOGRAPHY

[268] R. A. Vanderveld, E. E. Flanagan, and I. Wasserman, Mimicking Dark Energy with
Lemaitre-Tolman-Bondi Models: Weak Central Singularities and Critical Points, Phys. Rev.
D74 (2006), 023506, available at astro-ph/0602476. ↑120

[269] , Luminosity distance in ’Swiss cheese’ cosmology with randomized voids: I. Single
void size, Phys. Rev. D78 (2008), 083511, available at 0808.1080. ↑121, 122, 133, 136,
137, 138

[270] P. M. Vaudrevange, Inflationary trajectories, Ph.D. Thesis, 2007. ↑88

[271] L. Verde, L.-M. Wang, A. Heavens, and M. Kamionkowski, Large-scale structure, the
cosmic microwave background, and primordial non-gaussianity, Mon. Not. Roy. Astron.
Soc. 313 (2000), L141–L147, available at astro-ph/9906301. ↑86

[272] R. M. Wald, General relativity, Chicago University Press, USA, 1984. ↑148

[273] S. Wang, Z. Haiman, W. Hu, J. Khoury, and M. May, Weighing neutrinos with galaxy
cluster surveys, Phys. Rev. Lett. 95 (2005), 011302, available at astro-ph/0505390. ↑104

[274] S Weinberg, Apparent luminosities in a locally inhomogeneous universe, Astrophys. J 208

(1976), L1–L3. ↑121, 138

[275] K. W. Yoon et al., The Robinson Gravitational Wave Background Telescope (BICEP): a
bolometric large angular scale CMB polarimeter (2006), available at astro-ph/0606278.
↑87

[276] M. Zaldarriaga and U. Seljak, Reconstructing projected matter density from cosmic mi-
crowave background, Phys. Rev. D59 (1999), 123507, available at astro-ph/9810257.
↑86

166

astro-ph/0602476
0808.1080
astro-ph/9906301
astro-ph/0505390
astro-ph/0606278
astro-ph/9810257


Samenvatting

Dit proefschrift geeft een invulling aan de vele mogelijkheden die er zijn om
kosmische storingen en theoretische modellen van het universum met elkaar te
vergelijken. Met kosmische storingen bedoelen we kleine afwijkingen van het
gemiddelde, in welke kosmologische quantiteit dan ook. Heden nemen wij kosmis-
che storingen waar op verscheidene manieren. De twee manieren die ter sprake
komen in dit proefschrift, zijn de anisotropie van kosmische achtergrondstraling
en de distributie van materie in het universum, in de vorm van sterrenstelsels en
clusters van sterrenstelsels.

Als het universum begon als een werkelijk homogeen en isotroop plasma van
materie en straling, zoals we die kennen op aarde, dan zou het universum vandaag
de dag nog steeds homogeen en isotroop zijn. In andere woorden, er zouden geen
kosmische storingen zijn. En toch nemen we ze waar. De vooralsnog meest plausi-
bele verklaring voor het bestaan en de oorsprong van deze storingen is het inflatie-
paradigma. In dit proefschrift demonstreren we nieuwe middelen om inflatie als
theorie te testen. We zijn voorgaande analytische benaderingen voorbij gestreefd,
en hebben de meest consistente, meest betrouwbare en meest onbevooroordeelde
grenzen op parameters met betrekking tot de potentiaal van het inflaton verkre-
gen.

Wanneer de kosmische storingen eenmaal bestaan, evolueren ze. De kosmische
achtergrondstraling heeft bij haar ontstaan een afdruk van de kosmische storingen
meegekregen, zoals deze geëvolueerd zijn tot op het moment van ontkoppeling
van de achtergrondstraling. Vanaf dat moment bewegen de achtergrondfotonen
vrijelijk door het universum, alhoewel ze nog steeds zwakjes interageren met de
kosmische storingen waar ze doorheen reizen. We hebben aangetoond hoe dit
secundaire effect gebruikt kan worden om de grenzen van de totale massa van de
neutrino aan te scherpen. We hebben ook aangetoond dat dit secundaire effect
een zwakheid aan het licht brengt van een bepaalde klasse van modellen, in welke
de inhomogenëıteit van het universum in verband wordt gebracht met de ogen-
schijnlijke versnelling van de uitdijing van het heelal: het Gatenkaasuniversum. In
dit proefschrift wordt het Gatenkaasuniversum uitgesloten in zijn huidige vorm.

Al met al zijn kosmische storingen een rijke bron van informatie over de fysica
van het universum.

Trefwoorden: Kosmologie, Kosmische Achtergrondstraling, Kosmische Struc-
tuur, Inflatie, Neutrinomassa, Donkere Energie, Inhomogene Universum



Summary

This thesis exemplifies the many possibilities that are to be explored, relating cosmic perturbations
to theoretical models of the universe. Today we observe cosmic perturbations in several ways.
The two ways that are under consideration in this thesis, are the temperature anisotropies in the
Cosmic Microwave Background (CMB) and distribution of matter in the universe, in the form of
galaxies and clusters of galaxies.

If the universe started out as a truly homogeneous and isotropic plasma of matter and
radiation, as we know it on earth, embedded in a space time described by general relativity, then
the universe would still be homogeneous and isotropic today. In other words, cosmic perturbations
would not exist. Yet we observe them. The, for now, most plausible explanation for the origin
of these perturbations is the paradigm of inflation. In this thesis we demonstrate new tools for
probing inflation. We have gone beyond previously developed analytical approximations, and
obtained the most consistent, most reliable and most unprejudiced constraints on the inflaton
potential to date.

Once the cosmic perturbations exist, their evolution continues. The CMB is created with
an imprint of the cosmic perturbations as they evolved up to the time of decoupling of the
CMB. Beyond that moment, the CMB photons freely travel through the universe, yet still weakly
interact with the perturbations they travel through. We have shown that this secondary effect
can be used to tighten constraints on the total mass of the neutrino. We have also shown that
this secondary effect points out a weakness of a class of cosmologies in which the inhomogeneity
of the universe is related to the apparent acceleration of the expansion of the universe: the
Swiss-Cheese universe. In this thesis, the Swiss-Cheese model is ruled out in its present form.

Altogether, cosmic perturbations are a rich source of information on the physics of the
universe.

Keywords: Cosmology, Cosmic Microwave Background, Large Scale Structure, Inflation,
Neutrino mass, Dark Energy, Inhomogeneous Universe

Resumé

Cette thèse illustre les nombreuses possibilités permettant de relier les perturbations cosmologiques
aux modèles théoriques décrivant l’univers. Aujourd’hui, nous observons ces perturbations cos-
mologiques sous des formes diverses. Les observations considérées dans cette thèse sont les
anisotropies du rayonnement de fond cosmologique (CMB) et la distribution de matière dans
l’univers (galaxies et amas de galaxies).

Si à un temps initial, l’univers consistait en un plasma homogène et isotrope de matière et de
radiation plongé dans un espace-temps décrit par la relativité générale, il serait toujours homogène
et isotrope aujourd’hui. Les perturbations cosmologiques n’existeraient pas. Cependant, nous
les observons. Le mécanisme de génération des perturbations actuellement considéré comme
le plus plausible repose sur le paradigme de l’inflation. Dans cette thèse, nous introduisons de
nouveaux outils pour tester l’inflation. Nous sommes allés au-delà des approximations analytiques
développées auparavant, et avons obtenu les contraintes sur le potentiel de l’inflaton les plus
cohérentes, robustes et génériques publiées a ce jour.

Une fois les perturbations cosmologiques engendrées, elles continuent d’évoluer. Le CMB
porte l’emprunte de ces perturbations telles qu’elles étaient au moment du découplage des pho-
tons. Par la suite, les photons ont voyagé librement à travers l’univers, en interagissant encore
gravitationnellement avec les fluctuations de matière qu’ils traversaient. Nous avons montré
que cet effet secondaire peut être utilisé pour améliorer les contraintes sur la masse totale des
neutrinos. Nous avons aussi montré qu’il est à l’origine de plusieurs problèmes pour une classe
de modèles cosmologiques dans lesquels les inhomogénéités de l’univers pourraient expliquer
l’accélération apparente de son expansion: le modèle d’univers à bulles (swiss-cheese universe).
Dans cette thèse, l’univers à bulle - tel qu’il a été définit dans la littérature - est infirmé.

En conclusion, les perturbations cosmologiques sont une source très riche d’informations sur
l’évolution physique de notre univers.

Mots clé: Cosmologie, Fond Diffus Cosmologique, Structures aux Grandes Echelles, Infla-
tion, masse du neutrino, Énergie Noire, Univers Inhomogène.
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