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THÈSE DE DOCTORAT

présentée en vue de l’obtention du grade de

Docteur de l’Université de Savoie
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Introduction

The theory of the λ-calculus was introduced by Church in two subsequent papers
(cf. Church [5], Church [6]). His work was part of the vast efforts aiming to give
a theoretical foundation for logic and mathematics at the end of the nineteenth
and in the beginning of the twentieth century. The λ-calculus was invented for two
main purposes: to develop a general theory of functions and to extend this theory
with logical notions providing a foundation for logic and mathematics. After the
appearance of Gödel’s papers (see Gödel [23]) it turned out that the foundational
issues have their limits (Church [7]), but the calculus has still proved to be a good
tool from the computational point of view: it is strong enough to describe all
mechanically computable functions (cf. Turing [63]) in spite of the fact that it
has a very simple syntax. Therefore it has become a model for later programming
languages.

Shortly after Church’s papers, also in the spirit of these foundational investiga-
tions, in 1935 Gentzen has published a proof of the consistency of arithmetic ([21],
[22]), which naturally, by Gödel’s results, cannot be formalized in first order Peano
arithmetic. In these papers Gentzen presented two formalizations of logic, on one
hand the sequent calculus and on the other hand the natural deduction, which have
been the key tools for investigating logics ever since. Gentzen’s method was based
on normalizing proofs in sequent calculus with cut eliminations. It was not known
until Prawitz (cf. [50]) how to define normal proofs in natural deduction and how
to construct them. And it turned out even more later, though some preliminary
results were known (see e.g. Curry and Feys [10], de Bruijn [4]), that there is a
close connection between the calculus introduced by Church and the formulation
of logic invented by Gentzen. In his paper ([31]) Howard described a direct re-
lation between proofs for intuitionistic predicate logic in natural deduction style
and terms of typed λ-calculus, with normalization steps of proofs given by Prawitz
corresponding to reductions in typed λ-calculus. The correspondence presented in
Howard [31] has came to be known as the Curry-Howard isomorphism.

Parallel to this a new concept called continuations emerged from the 1960s (cf.
Reynolds [54], Fischer [19], Wadsworth and Strachey [60]). It proved to be an ef-
ficient tool for defining the denotational semantics of numerous control facilities.
The first syntactic description of control-like devices appeared owing to the work of
Felleisen et al. [18], where the CPS-translation was also extended to a λ-calculus
with control operators such as C and A. In their semantical analysis of the CPS-
translation [40], Meyer and Wand has associated a typing with the translation, this
established a connection with implicational propositional logic. This connection
was further expanded by Griffin, who gave typing rules for a λ-calculus with C and
A and proved the termination of evaluations of such terms w.r.t. call-by-value β-
conversion and conversion rules for C and A. The remarkable observation in Griffin’s
work was the discovery that the control operator C can be given a type ¬¬A→ A for
some A, though in the cost of sacrificing the expectation for a program of producing
evidence for a formula in the sense of the Brouwer-Heyting-Kolmogorov- (BHK-)
interpretation established for intuitionistic predicate logic (cf. [3], [8], [31]). This
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drawback was eliminated by Murthy in [41], he amalgamated a method of trans-
forming classical proofs into constructive ones, known as Friedman’s A-translation
(see [20]), with Griffin’s typing of the λ-terms formulated with control operators. He
augments a programming language construction equivalent to Heyting-arithmetic
with the control operator C, thus obtaining a typed-calculus containing a rule for
double-negation elimination. He shows for the resulting calculus that it is a suitable
interpretation for Peano-arithmetic: type-soundness is preserved w.r.t a specific re-
duction strategy and a well-known property of PA (cf. [34]) is retained: it provides
evidence for proofs of Π0

2-sentences in the sense of the BHK-interpretation.
These investigations highlighted the possibility of finding logical calculi which, by

the Curry-Howard isomorphism, can provide direct computational interpretations
for classical logic. Several calculi have been invented for this purpose.

The λµ-calculus presented by Parigot in [45] finds its origin in the so called Free
Deduction (FD) [48]. The calculus of Free Deduction is a calculus of multiple con-
clusions, moreover, in its formulation, Parigot resolves the deterministic nature of
intuitionistic natural deduction: unlike in the case of intuitionistic natural deduc-
tion, when eliminating an appearance of a cut in FD, there can be several choices
of picking out the subdeductions to be transformed. This is expressed by Parigot
by saying that FD is symmetric in the sense of having left and right inputs at the
same time, while natural deduction only has left inputs. He obtains the λµ-calculus
in [45] by restricting the system of FD to left inputs only. Furthermore, the role of
indicating which one is the active formula in a deduction rule is solved by the intro-
duction of a new kind of variables, the so called µ-variables. They mark formulas
which are not active at the moment but the current continuation can be passed over
to them. Besides the usual β-reduction he introduces a new reduction rule called
the µ-rule corresponding to structural cut eliminations made necessary by the oc-
currence of new forms of cuts due to the rule in connection with the µ-variables,
which can be corresponded to the classical absurdity rule. In addition, some more
simplification rules are introduced. The result is a calculus, the λµ-calculus, which
is closely related to classical natural deduction by the Curry-Howard isomorphism
and which can be considered as the classical extension of Krivine’s second order
λ-calculus called AF2 (cf. Krivine [35]). In particular, Felleisen’s control operator
C can be expressed in this calculus.

The µ′-rule is the symmetric counterpart of the µ-rule. The reason for its intro-
duction is the following. The λµ-calculus possesses many nice properties habitual in
the case of the λ-calculus: subject reduction property, confluence and strong normal-
ization. However, a property important from computer science point of view is not
present: the unicity of the representation of data is lost. In typed λ-calculus, if N is
the type of the integers, any normal term of type N is of the form n = λxλf(f)nx
for some natural number n, that is, equal to the n-th Church-integer. This is no
more true here: we can find normal terms of type N other than Church-integers
(see Parigot [46], Nour [42]). Parigot noticed in [46] that the addition of the µ′-rule
can solve this problem. This is achieved, however, at the cost of losing confluence
and, when additional simplification rules are present, even the strong normalization
property disappears. This is examined in detail in Chapter 1 of the present work.

Another calculus expressing classical meaning and showing much resemblance
to Parigot’s λµ-calculus is the λ△-calculus of Rehof and Sørensen (cf. [53]). They
define reduction rules very similar to those of the λµ-calculus, but in a calculus only
having one set of variables. This yields that the simplification rule corresponding to
the ρ-rule of the λµ-calculus is defined in a rather circumstantial way, which results
that the problem of unicity of the representation of data, being present concerning
λ△ also, cannot be solved as elegantly as in the case of the λµ-calculus by defining
simply the symmetric counterpart of the reduction rule in λ△ corresponding to the
µ-reduction.
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In [36] Krivine gives a method for expressing terms of type ¬¬A → A in the
λ-calculus. He adds a constant c of type ∀X(¬¬X → X) to the language of AF2

together with its head-reduction rule. Krivine’s method resembles the ones of Griffin
and Murthy in two ways: first, terms for classical proofs will be usual λ-terms
possibly with c inside, since classical proofs can be obtained from intuitionistic
proofs supplemented with the axiom ∀X(¬¬X → X). Secondly, the reduction-
rules of the λc-calculus are defined in a call-by-name manner, only head-reduction
sequences are allowed, which prevents of utilizing the calculus for modelling the
reductions in the proofs of the classical formulas corresponding to the terms by
reductions of the terms themselves. Instead, Krivine applies the λc-calculus for
proving a result of the simulation of call-by-value with call-by-name via the so-
called storage operators (see Krivine [37] and [38]). This gives another way of
calculating the value of a classical integer (cf. Nour [42]).

Curien and Herbelin introduced the λµµ̃-calculus (cf. [11]), which was designed
to establish a correspondence, via the Curry-Howard isomorphism, between reduc-
tions in proofs written in classical Gentzen-style sequent calculus and simplifications
of terms of a logical calculus. The λµµ̃-calculus possesses a rather strong symmetry:
it has right-hand side and left-hand side terms (also referred to as environments).
The strong normalization of λµµ̃ was shown by Polonovski ([49]). David and Nour
gave an arithmetical proof of this result (cf. [14]).

The calculus defined by Wadler (cf. [64]) is very similar to the λµµ̃-calculus of
Curien and Herbelin. The Wadler-calculus was also designed to provide an extension
of the Curry-Howard-isomorphism between the calculus and classical Gentzen-style
sequent calculus. Moreover, it has a clear notion of duality, making it possible
to establish a convenient correspondence between call-by-name and call-by-value
evaluations (see also [65], [17]).

The λSym-calculus presented by Berardi and Barbanera ([1]) differs in some
respect from the ones discussed above. Namely, it has an involutive negation and
¬A is not derived from A as A → ⊥. As atomic types they have negated and
unnegated types, and they apply ∧ and ∨ for connectors instead of →. Hence, in
defining negation, they rather make use of the natural symmetry of classical logic
expressed by the de Morgan laws.

The present work is concerned with proof theoretical properties, more exactly
mostly with normalization and standardization properties, of the propositional parts
of some of the calculi mentioned above. As a common feature of the investigations
continued in the sequel we note that all the proofs presented in this work are arith-
metical, that is, they can be formalized in first order Peano-arithmetic.
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The λµ-calculus

The λµ-calculus was introduced by Parigot in [45]. There are two kinds of variables:
{x, y, z, . . .} denote λ-variables and {α, β, γ, . . .} denote µ-variables, respectively. In
the formation of terms named terms and unnamed terms are distinguished. Basi-
cally, a named term arises by the application of a µ-variable to an unnamed term,
moreover, a µ-operator must always be followed by a named term.

Definition 1 The term formation rules are:

T := Tu ∪ Tn,

where

Tu := x | µαTn | λxTu | (Tu Tu), Tn := (α Tu).

The calculus examined by us is the simply typed one. The types are built from
atomic formulas (or, in other words, atomic types) with the connector →. In the
definition below Γ denotes a (possibly empty) context, that is, a set of declarations
of the form x : A (resp. α : ¬A) for a λ-variable x (resp. a µ-variable α) and type A
such that a λ-variable x (resp. a µ-variable α) occurs at most once in an expression
x : A (resp. α : A) of Γ.

Definition 2 The typing rules are:

Γ, x : A ⊢ x : A
ax

Γ, x : A ⊢ M : B

Γ ⊢ λxM : A→ B
→i

Γ ⊢ M : A→ B Γ ⊢ N : A

Γ ⊢ (M N) : B
→e

Γ, α : ¬A, β : ¬B ⊢ M : B

Γ, β : ¬B ⊢ µα(β M) : A
µ

We will say that M is typable with A, if there is a set of declarations Γ such
that Γ ⊢ M : A holds.

Definition 3 The reduction rules are as follows:

- The β-reduction is:
(λxM N) →β M [x := N ].

- The µ-reduction rule is

(µαM N) →µ µαM [α : =rN ],

where M [α : =rN ] is obtained from M by replacing every subterm in M of
the form (α U) by (α (U N)).

- The ρ-reduction is
(α µβM) →ρ M [β := α],

where M [β := α] is obtained by exchanging in M every free occurrence of β
for α.
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- And finally the θ-reduction is

µα(α M) →θ M,

provided α is not free in M .

As it is customary, by a reduction step we mean the closure of the reduction
relation compatible with respect to the term formation rules. In general, as it will
be defined in Chapter 1, → denotes the compatible closure of a reduction relation,
or that of the union of some set of relations, while by ։ we mean the reflexive,
transitive closure of →. Observe that in the calculus there are two different kinds of
substitutions: M [x := N ] is a substitution for a λ-variable, or λ-substitution, while
M [α =r N ] is a substitution for a µ-variable, or µ-substitution. Unless otherwise
stated, by substitutions we mean the usual capture avoiding substitutions.

Remark 4 We regard the λµ-calculus as the calculus defined above, together with
the β- and µ-rules. However, as an abuse of notation, we may also call some
extended versions of the calculus the λµ-calculus. If ambiguity should occur, we
indicate explicitly the reduction rules considered besides the β- and the µ-rules.

The proof-theoretical meaning of the reduction rules

Explanation 5 The reductions of terms correspond to reductions in the proofs in
the following sense.

- The β-rule serves for eliminating a →i followed by a →e.

- The µ-reduction: Assume µα(β M) corresponds to a proof of A → B and N
corresponds to a proof of A yielding together, as (µα(β M) N), a proof of B.
Then µα(β M)[α :=r N ] corresponds to a proof of B in the following way.
Every step in the deduction where a µ-rule is used to obtain µγ(α U) : C
for some U : A → B with α : ¬(A → B) is exchanged for a µ-rule with
(U [α =r N ] N) : B and α : ¬B to obtain a proof of µγ(α (U [α =r N ] N)) : C.

- The ρ-reduction: Assume µα(β M) corresponds to a proof of A, where the last
rule applied was a µ-rule, and suppose β : ¬B. Let M = µγM1. This implies
γ : ¬B. Now, µαM1[γ := β] corresponds to a proof of A as follows. Every
step in the deduction where a µ-rule is used to obtain µδ(γ U) : C for some
U : B with γ : ¬B is substituted with µ-rule with U [γ := β] : B and β : ¬B to
obtain a deduction of µδ(β U [γ := β]) : C.

- The θ-reduction: Assume µα(α M) corresponds to a proof of A assuming
α : ¬A, and α : ¬A is not free in M . Then the last rule applied must have
been a µ-rule with M : A and α : ¬A. But α is not free in M , thus we also
have a deduction of Γ ⊢ M : A for some Γ such that α : ¬A /∈ Γ.

Figures 1 and 2 give an account of the correspondences described above.

Main theoretical properties of the λµ-calculus

- Church-Rosser property

Let → denote one of the relations →β ,→µ,→ρ,→θ. Let ։ be the reflexive,
transitive closure of →. Then we have:

Theorem 6 Let M1, M2 and M3 be λµ-terms such that M1 ։ M2 and
M1 ։M3. Then there exists an M4 for which M2 ։M4 and M3 ։M4.
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A proof of the above assertion can be found in Parigot [45], in Py [51] or in
Rozière [56]. In Py [51] the question is expounded to a greater extent together
with the results belonging to the theme.

- Type preservation property

Proposition 7 Let M , N and A, Γ be such that Γ ⊢ M : A and M ։ N .
Then Γ ⊢ N : A.

The property can be verified by double induction on the length of the reduction
sequence M ։ N and the complexity of M .

- Subformula property

Let Γ be a context, A be a type. Let A∗ = B if A = ¬B for some B,
otherwise let A∗ = A. We write Γ∗ = {A∗ | x : A ∈ Γ}. Intuitively, we say
that a formula A occurs in a derivation Π if there is a sequent Γ ⊢ M : B of
Π such that either A = B or there exists a declaration in Γ the type belonging
to which is A.

Proposition 8 Let M , A, Γ be such that

Γ ⊢ M : A, (∗)

and let Π be a derivation of (∗). If M is in λµ-normal form, then every
type occurring in Π is either a type occurring in Γ, or a subformula of a type
occurring in Γ∗, or a subformula of A.

The proof of this property can be found in De Groote [29], though stated in
a slightly different form.

- Strong normalization

Theorem 9 Let M be a term typable with some type A. Then every reduc-
tion sequence starting from M is finite.

There are several proofs of this result in the literature. Consider, for example,
Parigot [47], David and Nour [12]. In [29] de Groote proves the strong normal-
ization of the simply typed λµ-calculus extended with terms of conjunctive
and disjunctive types, respectively. He does not consider the ρ- and θ-rules in
his calculus.

The λµµ′-calculus

The λµµ′-calculus arises from the λµ-calculus by adding to the set of reduction
rules the symmetric analogue of the µ-rule, called the µ′-rule.

Definition 10 The µ′-reduction is the rule

(M µαN) →µ′ µαN [α : =lM ],

where N [α : =lM ] is obtained from N by replacing every subterm in N of the form
(α U) by (α (M U)).

9



Parigot defined the λµµ′-calculus in [46] because of the following reasons. Though
the λµ-calculus is confluent, enjoys the subject reduction property and strongly nor-
malizes, it has the drawback that the uniqueness of the representation of data is
lost. In λ-calculus it is true, that any term of type N = ∀X(X → ((X → X) → X))
(which is the propositional trace of the usual type of integers) is β-equivalent to a
Church integer. In λµ-calculus this is no more true. The admittance of the µ′-rule
in the system solves the problem, and even the subject reduction property is re-
tained, at least for the simply typed calculus. However, confluence is destroyed. In
Nour [42] a detailed exposition is given about the possibilities of finding the values
of classical integers in the λµ-calculus. Figure 3 shows two simple terms demon-
strating the non-confluence of λµµ′. As for the terminology, the same stipulation
should be valid as in Remark 4.

The proof-theoretical meaning of the µ′-rule

We can also establish a correspondence between the reductions of terms by means
of the µ′-rule and the reductions in the proofs.

Explanation 11 Assume µα(β N) corresponds to a proof of A and M corresponds
to a proof of A → B yielding together as (M µα(β N)) a proof of B. Then
µα(β N)[α :=l M ] corresponds to a proof of B in the following way. Every step in
the deduction where a µ-rule is used to obtain µγ(α U) : C for some U : A with
α : ¬A is exchanged for a µ-rule with (M U [α =l M ]) : B and α : ¬B to obtain a
proof of µγ(α (M U [α =l M ])) : C.

Figure 4 illustrates this correspondence.

The λµ-calculus in de Groote-style

In [28] de Groote has proposed a new version of the λµ-calculus by modifying its
syntax. Namely, in the construction of terms the distinction between named and
unnamed terms has disappeared and the term forming rules became more flexible:
a µ-operator can be followed now by any kind of term (in the untyped version), not
necessarily by a term beginning with a µ-variable. Thus the term formation rules
are:

Definition 12

T := x | λxT | µαT | (α T ) | (T T )

A new type called ⊥ is introduced. The types are built from atomic formulas
(or atomic types) with the constant symbol ⊥ and the connector →. The typing
rules and the reduction rules remain the same except for the following modification.
The µ-rule is replaced by the new rules ⊥e and ⊥i. Let Γ denote a context, a set of
declarations of the form x : A (resp. α : ¬A) for a λ-variable x (resp. a µ-variable
α) and type A such that a λ-variable x (resp. a µ-variable α) occurs at most once
in a context x : A (resp. α : ¬A) of Γ. The new typing rules of the de Groote-style
λµ-calculus are as follows.

Definition 13

Γ, α : ¬A ⊢ M : ⊥

Γ ⊢ µαM : A
⊥e

Γ, α : ¬A ⊢ M : A

Γ, α : ¬A ⊢ (α M) : ⊥
⊥i

The reduction rules are the same as in the Parigot-style λµ- and λµµ′-calculi,
adjusted to the new syntax of the terms.
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The justification of the new presentation

There can arise the question what was the reason behind the modification of the
syntax of the λµ-calculus. In Parigot [45] the following example for a deduction of
¬¬A→ A is given.

α : ¬A, γ : ¬⊥, y : ¬¬A ⊢ y : ¬¬A

α : ¬A, β : ¬⊥, γ : ¬⊥, x : A, y : ¬¬A ⊢ x : A

α : ¬A, γ : ¬⊥, x : A, y : ¬¬A ⊢ µβ(α x) : ⊥

α : ¬A, γ : ¬⊥, y : ¬¬A ⊢ λxµβ(α x) : ¬A

α : ¬A, γ : ¬⊥, y : ¬¬A ⊢ (y λxµβ(α x)) : ⊥

γ : ¬⊥, y : ¬¬A ⊢ µα(γ (y λxµβ(α x))) : A

γ : ¬⊥ ⊢ λyµα(γ (y λxµβ(α x))) : ¬¬A→ A

The disadvantage of this proof is that the declaration γ : ¬⊥ does not disappear
from the context, owing to which the variable γ remains free in the term representing
the proof. This situation seems to be rather unsatisfactory, since the term obtained
is intended to be the code of a proof of a closed formula. The reason behind this
phenomenon is the fact that the formation of unnamed terms beginning with a µ is
closely connected with that of named terms.

In the de Groote-style formulation this proof can be written as follows.

α : ¬A, y : ¬¬A ⊢ y : ¬¬A

α : ¬A, x : A, y : ¬¬A ⊢ x : A

α : ¬A, x : A, y : ¬¬A ⊢ (α x) : ⊥

α : ¬A, y : ¬¬A ⊢ λx(α x) : ¬A

α : ¬A, y : ¬¬A ⊢ (y λx(α x)) : ⊥

y : ¬¬A ⊢ µα(y λx(α x)) : A

⊢ λyµα(y λx(α x)) : ¬¬A→ A

The λµµ̃-calculus

The λµµ̃-calculus was introduced by Curien and Herbelin (cf. [30] and [11]). We
examine here the calculus defined in [11], which is a simply typed one. The λµµ̃-
calculus was invented for representing proofs in classical Gentzen-style sequent cal-
culus: under the Curry-Howard correspondence a version of Gentzen-style sequent
calculus is obtained as a system of simple types for the λµµ̃-calculus. Moreover, the
system presents a clear duality between call-by-value and call-by-name evaluations.

Besides the notions of contexts and terms there is an other syntactic category
called commands. The set of commands are denoted by p below, the other two sets
constitute the sets of terms.

Definition 14 The set of commands, terms and contexts:

p ::= ⌊t, e⌋
t ::= x | λxt | µap
e ::= a | (t.e) | µ̃xp

In the sequel, we use the terminology right-term for a term and left-term for
a context. The types are built from atomic formulas (or, in other words, atomic
types) with the connectors →. The typing system is a sequent calculus based on
judgements of the following form:

p : (Γ ⊢ △) Γ ⊢ t : A | △ Γ | e : A ⊢ △,

11



where Γ (resp. △) is a set of declarations of the form x : A (resp. a : A), x (resp.
a) denoting a t-variable (resp. an e-variable) and A representing a type, such that
x (resp. a) occurs at most once in an expression of Γ (△) of the form x : A (resp.
a : A).

Definition 15 The typing rules are as follows:

Γ, x : A ⊢ x : A | △ Γ | a : A ⊢ a : A,△

Γ, x : A ⊢ t : B | △

Γ ⊢ λxt : A→ B | △

Γ ⊢ t : A | △ Γ | e : B ⊢ △

Γ | (t.e) : A→ B ⊢ △

Γ ⊢ t : A | △ Γ | e : A ⊢ △

⌊t, e⌋ : (Γ ⊢ △)

p : (Γ ⊢ a : A,△)

Γ ⊢ µap : A | △

p : (Γ, x : A ⊢ △)

Γ | µ̃xp : A ⊢ △

Definition 16 The reduction rules of the calculus:

- ⌊λxt, (t′.e)⌋ → λ ⌊t′, µ̃x ⌊t, e⌋⌋

- ⌊µap, e⌋ → µ p[a := e]

- ⌊t, µ̃xp⌋ → µ̃ p[x := t]

- µa⌊t, a⌋ → sl
t if a 6∈ Fv(t)

- µ̃x⌊x, e⌋ → sr
e if x 6∈ Fv(e)

The reduction rules of the calculus are corresponded to reductions on the proofs
on the logical side. Figure 5 illustrates the correspondences between the reductions
of the terms and reductions in the proofs concerning the β- and sl-rules. Figure 6
deals with the µ-rule together with the more interesting steps of the transformation
of a proof represented by the term ⌊µap, e⌋ into a proof represented by the term
p[a := e].

Main theoretical properties of the λµµ̃-calculus

- Type-preservation property

Proposition 17 Let t, t′ (or e, e′ or p, p′, resp.) and Γ, △ be such that
Γ ⊢ p : A | △ (or Γ | e : A ⊢ △ or p : (Γ ⊢ △), resp.) and t ։ t′ (or
e։ e′ or p։ p′). Then Γ ⊢ t′ : A | △ (or Γ | e′ : A ⊢ △ or p′ : (Γ ⊢ △),
resp.).

The property can be verified by double induction on the length of the reduction
sequence t։ t′ (or e։ e′ or p։ p′) and the complexity of t (or e or p, resp.).

- Subformula property

12



Proposition 18 Let t (or e or p, resp.), A, Γ, △ be such that

Γ ⊢ t : A | △

(or Γ | e : A ⊢ △ or p : (Γ ⊢ △), resp.), and let Π be a derivation
of the sequent under discussion. If t (resp. e) is in λµµ̃-normal form, then
every type occurring in Π is a subformula of a type occurring in Γ ∪△, or a
subformula of A. In the case of p we have if p is in λµµ̃-normal form, then
every type occurring in Π is a subformula of a type in Γ ∪△.

The proof can be accomplished in a way similar to the one applied in the case
of the λµ-calculus (cf. de Groote [29]).

- Strong normalization property

Theorem 19 1. Let t (resp. e) be a right-term (resp. a left-term) typable
with some type A. Then every reduction sequence starting from t (resp.
e) is finite.

2. Let p = 〈t, e〉 be a command such that t and e are typable with some type
A. Then every reduction sequence starting from p is finite.

The proof of this property can be found in Polonovski [49], as well as in David
and Nour [15], where an arithmetical proof is presented.

The λ
Sym
Prop

-calculus

The λSym -calculus defined by Berardi and Barbanera in [1] differs a bit in its
approach from the calculi presented so far. It makes full use of the duality in
classical logic, by this reason it has a negation ”built-in”, that is, it contains an
involutive negation such that ¬A is not defined as A → ⊥ with some type ⊥.
Instead, each type has its natural negated type as each formula of classical logic has
its dual as its negated formula. We are going to consider here only the propositional

part of the calculus, denoted by λ
Sym
Prop , since all the other calculi treated by us in

this work are concerned with propositional logic.
The set of types of our system are built from two sets of base types: A =

{a, b, . . .} (atomic types) and A⊥ = {a⊥, b⊥, . . .} (negated atomic types).

Definition 20 1. The set of m-types is defined by the following grammar:

A := α | α⊥ | A ∧A | A ∨A,

where α ranges over A and α⊥ over A⊥.
2. The set of types is defined by the following grammar:

C := A | ⊥.

In effect, Definition 20 yields that the set of m-types does not contain the absur-
dity proposition ⊥ as a proper subtype. We also prevent ⊥ to be used as assumption
in a derivation, that is we do not have variables of type ⊥ in the calculus. It can
be checked that none of these conditions is a restriction at all, the proof of the

strong normalization of the λ
Sym
Prop -calculus in Chapter 3 also works without these

stipulations.
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Definition 21 We define the negation of an m-type as follows:
1.(α)⊥ = α⊥ 2.(α⊥)⊥ = α
3.(A ∧B)⊥ = A⊥ ∨B⊥ 4.(A ∨B)⊥ = A⊥ ∧B⊥.

In this way we get a calculus with involutive negation.

Lemma 22 (A⊥)⊥ = A.

Proof By induction on A, using Definition 21. �

The terms of λ
Sym
Prop together with their typing rules are defined as follows. In

the definition below the type of a variable must be an m-type. Γ denotes a context.

Definition 23 The typing rules are:

var) Γ, x : A ⊢ x : A

〈 , 〉)
Γ ⊢ P1 : A Γ ⊢ P2 : A

Γ ⊢ 〈P1, P2〉 : A1 ∧A2
σi)

Γ ⊢ Pi : Ai

Γ ⊢ σi
A1,A2 (Pi) : A1 ∨A2

(i = 1, 2)

λ)
Γ, x : A ⊢ P : ⊥

Γ ⊢ λxP : A⊥
⋆)

Γ ⊢ P1 : A⊥ Γ ⊢ P2 : A

Γ ⊢ (P1 ⋆ P2) : ⊥

The λ
Sym
Prop reduction rules are enumerated below.

Definition 24 The reduction rules of the calculus:

{
β) (λxP ⋆ Q) →β P [x := Q]
β⊥) (Q ⋆ λxP ) →β⊥ P [x := Q]

{
η) λx(P ⋆ x) →η P (1)
η⊥) λx(x ⋆ P ) →η⊥ P (1)

{
π) (〈P1, P2〉 ⋆ σi(Qi)) →π (Pi ⋆ Qi) (i = 1, 2)
π⊥) (σi(Qi) ⋆ 〈P1, P2〉) →π⊥ (Qi ⋆ Pi) (i = 1, 2)

Triv) E[P ] →Triv P (2)

(1) if x /∈ FV (P ).
(2) if E[−] is a context with type ⊥ and E[−] 6= [−], then P has type ⊥ and E[−]
does not bind any free variables in P .

The correspondences between the reductions in the proofs and the reductions of
the terms are similar to the ones already detailed in respect of the calculi treated
before. Figure 7 illustrates some of them.

Main theoretical properties of the λ
Sym
Prop

-calculus

- Type-preservation property

Proposition 25 Let P , Q and A, Γ be such that Γ ⊢ P : A and P ։ Q.
Then Γ ⊢ Q : A.

The property can be verified by double induction on the length of the reduction
sequence P ։ Q and the complexity of P .

- Subformula property
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Proposition 26 Let P , A, Γ be such that

Γ ⊢ P : A, (∗)

and let Π be a derivation of (∗). If P is in λ
Sym
Prop-normal form, then every

type occurring in Π is a subformula of a type occurring in Γ, or a subformula
of A.

The proof is analogous to that of the λµ-calculus (see de Groote [29]).

- Strong normalization

Theorem 27 Let P be a term typable with some type A. Then every reduc-
tion sequence starting from P is finite.

Berardi and Barbanera proved this result for the λSym -calculus, which is an

extension of the λ
Sym
Prop -calculus equivalent to first-order Peano-arithmetic.

The proof of this result in Berardi-Barbanera [1] is based on reducibility
candidates, but the definition of the interpretation of a type relies on non-
arithmetical fixed-point constructions. In Chapter 3 we give an arithmetical

proof for the strong normalization of the λ
Sym
Prop -calculus.

An outline of the present work

The general structure of the document is as follows.

- In Chapter 1 we examine the normalization properties of the λµµ′-calculus
supplied with the ρ- and θ-rules. We implement these investigations both for
the Parigot-style and for the de Groote-style (or, in other words, the extended)
versions of the λµµ′-calculus. More exactly, we establish first that the Parigot-
style λµµ′ρθ-calculus is strongly normalizing. We achieve this by showing that
the ρ- and θ-rules can be strongly postponed with respect to the other rules.
From this the assertion follows by a result of David and Nour ([14]) stating
the strong normalization of the de Groote-style λµµ′-calculus. After this we
continue with the investigations of the de Groote-style λµµ′-calculus. We
present a short proof of the strong normalization of the untyped de Groote-
style µµ′-calculus. The proof is based on a norm strictly decreasing on certain
reduction sequences. It turns out, however, that the de Groote-style µµ′-
calculus extended with the ρ-rule is not strongly normalizing. Namely, we give
a simple counterexample for the strong normalization of the µµ′ρ-calculus. In
the second half of the chapter we are concerned with establishing the weak
normalization of the µµ′ρ-calculus and then we apply this result to the typed
case, that is, we prove weak normalization for the λµµ′ρ-calculus. As an easy
consequence we obtain then the weak normalization of the λµµ′ρθ-calculus
as well. The proofs of the weak normalizations are entirely constructive,
they consist of explicitly defining normalizing algorithms and proving that
these algorithms really have the required properties. Finally, we formulate a
standardization theorem for the λµµ′ρθ-calculus. In the concluding remarks
we give a brief account of the normalization properties of the calculi obtained
by adding some other simplification rules, like the ε- or the ν-rules, to the
µµ′- or λµµ′-calculi.
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- Chapter 2 is devoted to finding a bound for the lengths of the reduction
sequences in the λµρθ-calculus. The proof is based on a result of Xi (cf.
[66]) concerning the lengths of the reduction sequences in the simply typed
λ-calculus. The argument relies on the facts that in the λµI-calculus the
length of a reduction sequence is less than that of its standardization and
we can establish a bound for the length of a standard reduction sequence in
λµI. Then the result is extended for the general case as well. As a side-
issue, during the proof we obtain a demonstration for the standardization in
the λµρθ-calculus, together with a bound for the length of the standardized
reduction sequence in terms of some properties concerning the original one.

- In Chapter 3 we give an arithmetical proof for the strong normalization of

the λ
Sym
Prop -calculus defined by Berardi and Barbanera ([1]). The proof is an

adaptation of the method applied for the λµµ′- and for the λµµ̃-calculi by
David and Nour in [14] and in [15], respectively.

- In Chapter 4 the connection between the λ
Sym
Prop -calculus and the λµµ̃∗-calculus,

which is an extension of the λµµ̃-calculus defined in Chapter 4, is studied. In
the literature there already exist results about the connections between the
λµ- and the λµµ̃-calculus (cf. [11], [55]). We give a method how to simulate

the λ
Sym
Prop -calculus in the λµµ̃∗-calculus and vice versa. In the concluding

remarks we give a proof of the strong normalization of the λµµ̃∗-calculus by
making use of the method applied in David and Nour [15] for the λµµ̃-calculus.
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...
Γ, x : A ⊢ M : B

Γ ⊢ λx.M : A→ B

...

Γ ⊢ N : Aβ-reduction:  
Γ ⊢ (λx.M N) : B

...

Γ ⊢ M [x := N ] : B

...

Γ, α : ¬(A→ B), β : ¬C ⊢ M : C

Γ, β : ¬C ⊢ µα(β M) : A→ B

...

Γ, β : ¬C ⊢ N : A
µ-reduction:  

Γ, β : ¬C ⊢ (µα(β M) N) : B

...

Γ, α : ¬B, β : ¬C ⊢ M [α :=r N ] : C
, provided α 6= β.

Γ, β : ¬C ⊢ µα(β M [α :=r N ]) : B

...

Γ, α : ¬(A→ B) ⊢ M : A→ B

Γ ⊢ µα(α M) : A→ B

...

Γ, α : ¬(A→ B) ⊢ N : A
 

Γ ⊢ (µα(α M) N) : B

...

Γ, α : ¬B ⊢ M [α :=r N ] : A→ B

...
Γ, α : ¬B ⊢ N : B

, when α = β.
Γ, α : ¬B ⊢ (M [α :=r N ] N) : B

Γ ⊢ µα(α (M [α :=r N ] N)) : B

...

Γ, γ : ¬C,α : ¬(A→ B) ⊢ U : A→ B
locally:  

Γ, α : ¬(A→ B) ⊢ µγ(α U) : C

...

Γ, γ : ¬C,α : ¬B ⊢ U [α :=r N ] : A→ B

...

Γ, γ : ¬C,α : ¬B ⊢ N : A

Γ, γ : ¬C,α : ¬B ⊢ (U [α :=r N ] N) : B

Γ, α : ¬B ⊢ µγ(α (U [α :=r N ] N)) : C

Figure 1: The reductions in the proofs corresponding to the β- and µ-rules of the λµ-
calculus
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...
Γ, α : ¬A, β : ¬B ⊢ µγM : B

ρ-reduction:  
Γ ⊢ µα(β µγM) : A

...

Γ ⊢ µαM [γ := β]

...
Γ, δ : ¬C, γ : ¬B ⊢ U : B

locally:  
Γ ⊢ µδ(γ U) : C

...

Γ, δ : ¬C, β : ¬B ⊢ U [γ := β] : B

Γ, β : ¬B ⊢ µδU [γ := β] : C

...
Γ, α : ¬A ⊢ M : A

θ-reduction:  
Γ ⊢ µα(α M) : A

...

Γ ⊢ M : A ,

where α /∈ Fv(M).

Figure 2: The reductions in the proofs corresponding to the ρ- and θ-rules of the λµ-
calculus

(µα1(α2 x) µβ1(β2 y))
µ

//

µ′

��

µα1(α2 x)

µβ1(β2 y)

and

(λxz µα(β y))
β

//

µ′

��

z

µα(β y)

Figure 3: The λµµ′-calculus is not confluent
...

Γ, β : ¬C ⊢ M : A→ B

...
Γ, α : ¬A, β : ¬C ⊢ N : C

Γ, β : ¬C ⊢ µα(β N) : A
µ′-reduction:  

Γ, β : ¬C ⊢ (M µα(β N)) : B

...

Γ, α : ¬B, β : ¬C ⊢ N [α :=l M ] : C
, provided α 6= β.

Γ, β : ¬C ⊢ µα(β N [α :=l M ]) : B

...
Γ, α : ¬A ⊢ M : A→ B

...

Γ, α : ¬A ⊢ N : A

Γ ⊢ µα(α N) : A
 

Γ ⊢ (M µα(α N)) : B

...

Γ, α : ¬B ⊢ M : A→ B

...

Γ, α : ¬B ⊢ N [α :=l M ] : A
, when α = β.

Γ, α : ¬B ⊢ (M N [α :=l M ]) : B

Γ ⊢ µα(α (M N [α :=l M ])) : B

...
Γ, γ : ¬C,α : ¬A ⊢ U : A

locally:  
Γ, α : ¬A ⊢ µγ(α U) : C

...
Γ, γ : ¬C,α : ¬B ⊢ M : A→ B

...

Γ, γ : ¬C,α : ¬B ⊢ U [α :=l M ] : A

Γ, γ : ¬C,α : ¬B ⊢ (M U [α :=l M ]) : B

Γ, α : ¬B ⊢ µγ(α (M U [α :=l M ])) : C

Figure 4: The reductions in the proofs corresponding to the µ′-rule
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...

Γ, x : A ⊢ t : B | △

Γ ⊢ λxt : A→ B | △

...

Γ ⊢ s : A | △

...

Γ | e : B ⊢ △

Γ | (s.e) : A→ B ⊢ △
β-reduction:  

⌊λxt, (s.e)⌋ : (Γ ⊢ △)

...

Γ ⊢ s : A | △

...

Γ ∪ {x : A} ⊢ t : B | △

...

Γ ∪ {x : A} | e : B ⊢ △

⌊t, e⌋ : (Γ ∪ {x : A} ⊢ △)

Γ | µ̃x⌊t, e⌋ : A ⊢ △

⌊s, µ̃x⌊t, e⌋⌋ : (Γ ⊢ △)

...

Γ ⊢ t : A | △ ∪ {a : A} Γ | a : A ⊢ △ ∪ {a : A}

⌊t, a⌋ : (Γ ⊢ △ ∪ {a : A})
sl-reduction:  

Γ ⊢ µa⌊t, a⌋ | △

...

Γ ⊢ t : A | △ ,

where a /∈ Fv(t).

Figure 5: The reductions of proofs corresponding to the β- and sl-rules in the λµµ̃-calculus
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...

p : (Γ ⊢ △ ∪ {α : A})

Γ ⊢ µap : A | △

...

Γ | e : A ⊢ △
µ-reduction:  

⌊µap, e⌋ : (Γ ⊢ △)

...

p[a := e] : (Γ ⊢ △)

The more interesting steps required in the transformation:

...

Γ′ ⊢ t′ : A | △′ Γ′ | a : A ⊢ △′

 
⌊t′, a⌋ : (Γ′ ⊢ △′)

...

Γ′ ⊢ t′[a := e] : A | △′

...

Γ′ | e : A ⊢ △′

⌊t′[a := e], e⌋ : (Γ′ ⊢ △′)

...

Γ′ ⊢ t′ : B | △′ Γ′ | a : A ⊢ △′

 
Γ′ | (t′.a) : B → A ⊢ △′

...

Γ′ ⊢ t′[a := e] : B | △′

...

Γ′ | e : A ⊢ △′

,
Γ′ | (t′[a := e].e) : B → A ⊢ △′

where, in both cases, △′ ⊇ △∪ {a : A}.

Figure 6: The reductions in the proofs corresponding to the µ-rule of the λµµ̃-calculus
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...

Γ, x : A ⊢ P : ⊥

Γ ⊢ λxP : A⊥

...
Γ ⊢ Q : A

β-reduction:  
Γ ⊢ (λxP ⋆ Q) : ⊥

...

Γ ⊢ P [x := Q] : ⊥

...

Γ, x : A ⊢ P : A⊥

...
Γ, x : A ⊢ x : A

Γ, x : A ⊢ (P ⋆ x) : ⊥
η-reduction:  

Γ ⊢ λx(P ⋆ x) : A⊥

...

Γ ⊢ P : A⊥ ,

where x /∈ Fv(P ).

...
Γ ⊢ P1 : A1

...
Γ ⊢ P2 : A2

Γ ⊢ 〈P1, P2〉 : A1 ∧A2

...

Γ ⊢ Q1 : A⊥

1

Γ ⊢ σ1(Q1) : A⊥

1 ∨A⊥

2

π-reduction:  
Γ ⊢ (〈P1, P2〉 ⋆ σ1(Q1)) : ⊥

...
Γ ⊢ P1 : A1

...

Γ ⊢ Q1 : A⊥

1

Γ ⊢ (P1 ⋆ Q1) : ⊥

Figure 7: The reductions in the proofs in respect of the β-, η- and π-rules of the λ
Sym
Prop

-

calculus
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Chapter 1

Normalization properties of

the λµµ′-calculus

Before turning our attention to the main subject of the present chapter we list some
of the basic definitions and notation which will be used in the sequel. Most of the
definitions are taken from Klop [32].

Definition 28 An Abstract Reduction System (ARS) is a pair A = {Σ, (→i)i∈I},
where Σ is a set and (→i)i∈I is a set of binary relations defined on Σ. The relations
(→i)i∈I are called reduction relations.

Remark 29 The sets we are concerned are sets of terms of some calculi. In every
case it is supposed that a reduction relation → is compatible with the term formation
rules.

Definition 30 Let → be a reduction relation. Then ։ is its reflexive, transitive,
→+ is its transitive, →= is its reflexive closure. →n (n ≥ 0) denotes the n-step
reduction (the n-th product relation obtained from →). Moreover, if →1, →2 are
reductions, then →1,2 means the union of the two reductions as relations.

Remark 31 Let A = {Σ, (→i)i∈I} be an ARS. In the definitions below we denote
by → the union of the set of reductions (→i)i∈I .

Definition 32 Let A = {Σ, (→i)i∈I} be an ARS. Then a ∈ Σ is in normal form,
if there is no b ∈ Σ such that a→ b. In notation: a ∈ NF . Further, a has a normal
form, if there is a b in normal form for which a ։ b. In this case, the reduction
sequence starting from a and yielding a b ∈ NF is called a normalizing reduction
sequence for a.

Definition 33 The reduction relation → on an ARS A is weakly normalizing, if
every a has a normal form. In this case we also say that A is weakly normalizing
(in notation: A is WN).

Definition 34 Let A be an ARS. We say that an element a ∈ A strongly normal-
izes (a ∈ SN), if every reduction sequence starting from a is finite. A is strongly
normalizing (A is SN), if, for every a ∈ A, a ∈ SN .

Definition 35 An ARS A is finitely branching, if, for all a, the set of one-step
reducts of a, {b | a→ b}, is finite.

Remark 36 If we have a finitely branching A, then, by König-lemma, Definition
34 is equivalent to saying that the length of each reduction sequence starting from a
is bounded uniformly by some number n.
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Thus, the following definition makes sense:

Definition 37 Suppose A is SN , let a ∈ A. Then η(a) denotes the length of the
longest reduction sequence starting from a.

Definition 38 A reduction relation is confluent (or Church-Rosser), if it is self-
commuting. That is, for every a, b, c ∈ Σ there is a d such that a ։ b and a ։ c
imply b։ d and c։ d.

Definition 39 Let A be an ARS. The relation →2 in A can be postponed w.r.t.
→1 if, for every a, b ∈ Σ, a։1,2 b implies a։1 c։2 b for some c.

Definition 40 Let A be an ARS. The relation →2 in A can be strongly postponed
w.r.t. →1 if for every a, b ∈ Σ such that a ։1,2 b and the reduction sequence
contains at least one →1-reduction we have a→+

1 c։2 b for some c.

1.1 The Parigot-style λµµ′-calculus

1.1.1 The θ-rule can be postponed

In the sequel, we are concerned with the untyped µµ′ρ- and the simply typed
λµµ′ρ- and λµµ′ρθ-calculi. In the first subsection of the chapter we examine the
Parigot-style formulation and in the second one the de Groote-style formulation of
the calculi. As for the basic definitions and notations we refer to the introduction.
We prove in this subsection that the θ-rule can be postponed w.r.t. the β-, µ-
and µ′-rules. Though, the proof is implemented in the Parigot-style λµ-calculus, it
remains valid in the de Groote-style calculus as well. Prior to this, we present some
more definitions frequently used later on.

Definition 41 The complexity of a term is defined inductively as follows.

1. cxty(x) = 1,

2. cxty((α M)) = cxty(M) + 1,

3. cxty(λxM) = cxty(M) + 1,

4. cxty(µαM) = cxty(M) + 1,

5. cxty((M N)) = cxty(M) + cxty(N) + 1.

The complexity of a term in the de Groote-style λµµ′-calculus is understood in
an analogous way, with the necessary notational changes.

Notation 42 1. We use the notation N ≤ M (or M ≥ N) if N is a subterm
of M , and the notation N < M (or M > N) if N is a subterm of M other
than M .

2. By ηc(M) we denote the lexicographically ordered pair 〈η(M), cxty(M)〉 for a
term M .

Definition 43 Let M , N be terms. N ≺M (or M ≻ N) will denote the fact that
there is an M ′ such that M ։ M ′ ≥ N holds and either M →+ M ′ or M > N is
valid. � will be the reflexive closure of ≺.

Remark 44 1. ≺ and � are transitive. Moreover, N � M iff there is an M ′

such that M ։M ′ ≥ N .
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2. N ≺M implies ηc(N) < ηc(M).

Having settled the necessary terminology we prove that the ρ- and the θ-rules
can be strongly postponed w.r.t. the β-, µ- and µ′-rules. More precisely we show
something more:

Theorem 45 Let M , N be such that M ։βµµ′ρθ N and the reduction sequence
contains at least one β- or µ- or µ′-reduction. Then there is a P for which

M →+
βµµ′ P ։ρθ N.

We prove the theorem in two steps. First we establish that the θ-reduction can
be strongly postponed w.r.t. all of the rules β, µ, µ′, ρ, then we show that the ρ-rule
can be strongly postponed w.r.t. the remaining three rules.

Definition 46 Let →µ0 and →µ′

0
be defined as follows:

(µαM N) →µ0
µαM [α :=r N ], if α occurs at most once in M

(M µαN) →µ′

0
µαN [α :=l M ], if α occurs at most once in N.

Lemma 47 Assume M →θ P →β N . Then either we have a Q such that

M →β Q։θ N,

or there are R, Q for which

M →µ0
R→β Q→θ N.

Proof By induction on cxty(M). Let us only treat the case M = (M1 M2).

1. M1 →θ M
′
1. The only nontrivial case is M ′

1 = λxM3 and M1 = µα(α M ′
1).

Now we obtain

M = (µα(α λxM3) M2) →µ0
µα(α (λxM3 M2))

→β µα(α M3[x := M2]) →θ M3[x := M2].

2. M2 →θ M ′
2. Analogous to the above one. The only difference is the case

M1 = λxM3, N = M3[x := M ′
2]. Then, with Q = M3[x := M2], we have

M →β Q։θ N .

The remaining cases follow easily from the induction hypothesis. �

Lemma 48 Let M →θ P →µ N . Then either

M →µ Q։θ N

for some Q or there are R, Q such that

M →µ0 R→µ Q→θ N.

Proof By induction on cxty(M). Let M = (M1 M2).

1. M1 = µα(α M ′
1) →θ M ′

1. The only interesting case is M ′
1 = µβM3. Let

Q = (µβM3 M2), then, applying α /∈M ′
1, we have

M = (µα(α µβM3) M2) →µ0
µα(α (µβM3 M2))

→µ µα(α µβM3[β :=r M2]) →θ µβM3[β :=r M2].

2. M2 = µα(α M ′
2) →θ M

′
2. Analogously. The only difference is M1 = µβM3,

N = µβM3[β :=r M
′
2], where with Q = µβM3[β :=r M2] we obtain M →µ

Q→∗
θ N .

The remaining cases can be verified easily. �
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Lemma 49 Let M →θ P →µ0 N . Then either

M →µ0
Q→θ N

for some Q or there are R, Q such that

M →µ0
R→µ0

Q→θ N.

Proof The proof proceeds as that of Lemma 48 with the necessary changes im-
plemented. �

Lemma 50 Let M →θ P →µ′ N . Then either

M →µ′ Q։θ N

for some Q or there are R, Q such that

M →µ′

0
R→µ′ Q→θ N.

Proof Similar to the proof of Lemma 48. �

Lemma 51 Let M →θ P →µ′

0
N . Then either we have

M →µ′

0
Q→θ N

for some Q or there are R, Q such that

M →µ′

0
R→µ′

0
Q→θ N.

Proof Analogous to that of Lemma 48. �

Lemma 52 Let M →θ P →ρ N . Then we have a Q such that

M →ρ Q→θ N.

Proof An obvious induction on cxty(M). The only interesting case is M =
µα(α M1) →θ M1 →ρ M2, but then M = µα(α M1) →ρ µα(α M2) →θ M2 is
true. �

Lemma 53 Let M →n
θ P →µ0

N (resp. M →n
θ P →µ′

0
N). Then there is a Q

such that
M ։µ0 Q→n

θ N (resp. M ։µ′

0
Q→n

θ N).

Proof Follows from Lemma 49 by induction on n. �

Lemma 54 Let M ։θ P →βµµ′ρ N . Then there is a Q such that

M →+
βµµ′ρ Q։θ N.

Proof Let us suppose first M →n
θ P →µ N . The proof proceeds by induction on

n. We may assume n ≥ 1, that is, M →n−1
θ U →θ P holds for some U . By Lemma

48 we have either U →µ R։θ N or U →µ0 R→µ V →θ N . In the former case the
induction hypothesis applies to M →n−1

θ U →µ R. In the latter case by Lemma
53 there exists an S such that M ։µ0

S →n−1
θ R is true, and we can apply the

induction hypothesis again to S →n−1
θ R→µ V .

The case for P →µ′ N is analogous.
The proof for P →β N is similar to that for P →µ N , and, finally, the case P →ρ N
is straightforward by Lemma 52. �
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Theorem 55 Let M ։θ P ։βµµ′ρ N such that the reduction sequence P ։βµµ′ρ

N is not empty. Then there is a Q for which

M →+
βµµ′ρ Q։θ N.

Proof By Lemma 54. �

Remark 56 The above proof, thus Theorem 55, is valid in the de Groote-style
λµµ′-calculus as well.

1.1.2 The ρ-rule can be postponed

In this subsection we show that the ρ-reduction can be strongly postponed w.r.t.
the β-, µ- and µ′-reductions in the Parigot-style λµµ′-calculus. The proofs of this
subsection can be found in Py [51] as well. The presentation there, however, may
differ in some places from the one applied here. We also outline the proofs here so
that the material is self contained.

Theorem 57 Let M ։ρ P ։βµµ′ N such that the reduction sequence P ։βµµ′ N
is not empty. Then there is a Q for which

M →+
βµµ′ Q։ρ N.

Lemma 58 Let M →ρ P →β N . Then we have a Q such that

M →β Q։ρ N.

Proof By induction on cxty(M). Let us only treat the case M = (M1 M2).

1. M1 →ρ M ′
1. The only nontrivial case is M ′

1 = λxM3. Then either M1 =
(α µβM4) →ρ M

′
1 = M4[β := α] or M1 = λxM4 and M4 →ρ M3. The first

case is impossible, since then M4 = (γ M ′
4) for some M ′

4, and in the second
case (λxM4 M2) →β M4[x := M2] →ρ M3[x := M2], which gives the result.

2. M2 →ρ M ′
2. Analogous to the above one. The only difference is the case

M1 = λxM3, N = M3[x := M ′
2]. Then, with Q = M3[x := M2], M →β Q։ρ

N .

The remaining cases follow easily from the induction hypothesis. �

Lemma 59 Let M , M ′, N be given such that M →ρ M
′ and α /∈ Fv(N). Then

either M [α :=r N ] →ρ M ′[α :=r N ] (resp. M [α :=l N ] →ρ M ′[α :=l N ]) or
M [α :=r N ] →µ P →ρ M

′[α :=r N ] (resp. M [α :=l N ] →µ′ P →ρ M
′[α :=l N ])

for some P .

Proof By induction on cxty(M). The only interesting case is M = (γ µβM1).

1. γ = α. Then

(α µβM1)[α :=r N ] = (α (µβM1[α :=r N ] N))

→µ (α µβM1[α :=r N ][β :=r N ])

→ρ M1[α :=r N ][β :=r N ][β := α]

= M1[β := α][α :=r N ].

2. γ 6= α. In this case (γ µβM1)[α :=r N ] = (γ µβM1[α :=r N ]) →ρ M1[β :=
γ][α :=r N ].

�
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Lemma 60 Let M →ρ P →µ N . Then there exists a Q for which

M →µ Q։ρ N.

Proof By induction on cxty(M). Assume M = (M1 M2).

1. M1 →ρ M
′
1. The only interesting case is M ′

1 = µγM4. In this case the only
possibility is M1 = µγM3, M3 →ρ M4. This is the point where we have made
use of the fact we are in the realm of the Parigot-style λµµ′-calculus. By
Lemma 59 we have

µγM3 M2 →µ µγM3[γ :=r M2]

։µ Q →ρ µγM4[γ :=r M2]

for some Q.

2. M = (M1 M2), M2 →ρ M
′
2. Similar to the above one. The only additional

case is M1 = µαM3, N = µαM3[α :=r M
′
2]. Then, with Q = µαM3[α :=r

M2], M →µ Q։ρ N holds.

The other cases can be verified easily. �

Lemma 61 Let M →ρ P →µ′ N . Then there exists a Q for which

M →µ′ Q։ρ N.

Proof Analogous to the above one. �

Lemma 62 Let M ։ρ P →β N . Then there exists a Q for which

M →β Q։ρ N.

Proof Let M →n
ρ P →β N . The proof goes by induction on n using Lemma

58. �

Lemma 63 Let M ։ρ P →µ N (resp. M ։ρ P →µ′ N). Then there is a Q such
that

M →µ Q։ρ N (resp. M →µ′ Q։ρ N).

Proof Let M →n
ρ P →µ N . The statement follows from Lemmas 60 and 61 by

induction on n. �

We obtain Theorem 57 as a consequence of Lemmas 62 and 63. Theorems 55
and 57 together yield Theorem 45.

1.1.3 The Parigot-style λµµ′-calculus strongly normalizes

Theorem 64 The Parigot-style λµµ′-calculus with the ρ- and θ-rules is strongly
normalizing.

Proof It is proved in David and Nour [14] that the de Groote-style λµµ′-calculus
is strongly normalizing. Since the Parigot-style λµµ′-calculus is contained in the
de Groote-style one, we have the strong normalization of the Parigot-style λµµ′-
calculus as well. Let M be a λµ-term, let ηβµµ′(M) denote the length of the longest
βµµ′-reduction sequence starting from M . We prove by induction on ηβµµ′(M) that
M has no infinite βµµ′ρθ-reduction sequence. Let M be a term, assume we have
an infinite βµµ′ρθ-reduction sequence σ starting from M . Since this cannot consist
entirely of ρ- and θ-reductions, we may suppose σ begins withM ։ρθ M

′ →βµµ′ M ′′

for someM ′ andM ′′. By Theorem 45 we have anN such thatM ։+
βµµ′ N ։ρθ M

′′.
This means N would have an infinite βµµ′ρθ-reduction sequence, contradicting the
induction hypothesis. �
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1.2 The de Groote-style λµµ′-calculus

In respect of normalization properties the de Groote-style λµµ′-calculus manifests
a somewhat different behaviour than the version treated in the previous section.

We state first the following theorem:

Theorem 65 The de Groote-style λµµ′-calculus without the ρ-rule is strongly nor-
malizing.

Proof For the proof see David and Nour [14]. �

The proof in David and Nour [14] is arithmetical in the sense that it can be
formalized in Peano arithmetic. In fact, proofs for the strong normalization of the

λµµ̃- and λ
Sym
Prop -calculi, which turned out in the meantime to be equivalent with

the extended λµµ′-calculus (cf. Rocheteau [55] for the equivalence of λµµ̃ and λµµ′,

and Chapter 5 in this work for the equivalence of λµµ̃ and λ
Sym
Prop), were already

known. Polonovski has proved that λµµ̃ is strongly normalizing (Polonovski [49]),

Berardi and Barbanera proved the same for λ
Sym
Prop , but none of these proofs were

arithmetical, that is, they could not be formalized in first order Peano arithmetic.
Thus, the proof in David and Nour [14] can be considered as the first arithmetical
proof of the strong normalization of a symmetric logical calculus which can be
related to classical logic. Proceeding in this direction all proofs in the present work
are arithmetical.

The proof of Theorem 65 consists of two parts: proving first that the untyped
µµ′-calculus is strongly normalizing, the demonstration of the strong normalization
of the typed case can be regarded as an extension of the result for the untyped
one. Keeping this method in mind, in the following investigations we also treat
the untyped and typed cases separately. In the sequel, unless otherwise stated,
by referring to an instance of the µµ′- or the λµµ′-calculi we understand the de
Groote-style versions of the calculi.

First, we present a proof of the strong normalization of the µµ′-calculus, proba-
bly somewhat simpler than the one given in David and Nour [14]. It seems to be an
appealing task to find a proof for the strong normalization of the typed case along
the same lines.

1.2.1 A strong normalization proof for the µµ′-calculus

Let us consider now the untyped de Groote-style µµ′-calculus. Its set of terms is
defined by the following grammar.

T := x | µα.T | (α T ) | (T T ).

Let us call the elements of the T above µ-terms. The reduction rules of the
calculus are the µ- and the µ′-rules.

Lemma 66 Let (M N)։ µαP . Then either M ։ µαM1, M1[α :=r N ]։ P or
N ։ µαN1, N1[α :=l M ]։ P .

Proof By induction on the length of the reduction (M N)։ µαP . �

Notation 67 A simultaneous substitution of the form σ = [α1 :=s1 N1, . . . , αk :=sk

Nk], where si ∈ {l, r} (1 ≤ i ≤ k), is called a µ-substitution.

Lemma 68 Let M be a term, σ be a µ-substitution. If Mσ ։ µαP for some P ,
then there exists a Q such that M ։ µαQ and Qσ ։ P .
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Proof By induction on cxty(M). The only possibilities are M = µαM1 and
M = (M1 M2). The former case is trivial, in the latter we have (M1σ M2σ)։ µαP .
By Lemma 66 either M1σ ։ µαN1, N1[α :=r M2σ] ։ P or M2σ ։ µαN2,
N2[α :=l M1σ] ։ P . Suppose the former case holds. By the induction hypothesis
there is an R such that M1 ։ µαR and Rσ ։ N1. Then our assertion holds with
Q = R[α :=r M2]. �

Lemma 69 Let M , N be terms of the µµ′-calculus such that M , N ∈ SN and
(M N) /∈ SN . Then either M ։ µαM ′ such that µαM ′[α =r N ] /∈ SN or
N ։ µβN ′ such that µβN ′[β =l M ] /∈ SN .

Proof By induction on η(M) + η(N). If M → M ′ and (M ′ N) /∈ SN , then
η(M) < η(M ′) and the induction hypothesis applies. The situation is similar when
N → N ′ and (M N ′) /∈ SN . If M = µαM1, µαM1[α :=r N ] /∈ SN , or N = µβN1,
µβN1[β :=l M ] /∈ SN , then the result is obvious. �

Lemma 70 Let M , N ∈ SN such that M [α :=r N ] /∈ SN (resp. M [α :=l N ] /∈
SN) for some α. Then there is an (α M1) �M for which M1[α :=r N ] ∈ SN (resp.
M1[α :=l N ] ∈ SN) and (M1[α :=r N ] N) /∈ SN (resp. (M1[α :=l N ] N) /∈ SN).

Proof The proof goes by induction on ηc(M). Let us only treat the case of
M [α :=r N ] /∈ SN .

1. M = (M1 M2). By Lemma 69 either M1[α :=r N ]։ µβM ′
1 and µβM ′

1[β :=r

M2[α :=r N ]] /∈ SN or M2[α :=r N ] ։ µγM ′
2 and µγM ′

2[γ :=l M1[α :=r

N ]] /∈ SN . Suppose the former case holds, the latter being similar. Then, by
Lemma 68, there is an M3 such that M1 ։ µβM3 and M3[α :=r N ] ։ M ′

1.
By this we have

µβM3[β :=r M2][α :=r N ] = µβM3[α :=r N ][β :=r M2[α :=r N ]]
։ µβM ′

1[β :=r M2[α :=r N ]] /∈ SN.

But then, since η(µβM3[β :=r M2]) < η(M), we can apply the induction
hypothesis.

2. M = µβM1. Trivial.

3. M = (β M1).

- β = α. If M1[α :=r N ] /∈ SN , then the induction hypothesis applies.
Otherwise our assertion follows with the M1 under discussion.

- β 6= α. The induction hypothesis gives the result.
�

Definition 71 Let M be a term. Let us define a norm for M :

|M | =





0 if M = x,
|M1| + |M2| if M = (M1 M2),
max{|M2| | (α M2) ≤M1} + 1 if M = µαM1 and α ∈ Fv(M1),
0 if M = µαM1 and α /∈ Fv(M1),
0 if M = (α M1).

Remark 72 For every M the norm of M is a natural number.

Remark 73 In the sequel, if σ is a µ-substitution consisting of one element, then
we are going to omit the subscript l or r, if it is clear from the context. Moreover, in
this case, if σ can equally be a µ- or a µ′-substitution, then we are going to suppose
that σ is a µ-substitution, unless otherwise stated.
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Lemma 74 Let M be a term and σ be a substitution. Then

|Mσ| = |M |.

Proof Obviously, it is enough to prove the statement for σ = [α := N ], supposing,
by the above remark, that σ is a µ-substitution. The proof goes by induction on
cxty(M). The only interesting case is M = µβM1. If β ∈ Fv(M1), then, applying
the induction hypothesis,

|µβM1[α := N ]| = max{|M ′
1| | (β M ′

1) ≤M1[α := N ]} + 1

= max{|M2[α := N ]| | (β M2) ≤M1} + 1 = |µβM1|.

In case of β /∈ Fv(M1) the equation |µβM1[α := N ]| = |µβM1| = 0 is valid. �

Lemma 75 Let M and N be terms. Then |(µαM N)| ≥ |µαM [α :=r N ]| (resp.
|(M µαN)| ≥ |µαN [α :=l M ]|).

Proof We deal with the case of the µ-reduction only. Let us suppose first α ∈
Fv(M). By Definition 71 and Lemma 74

|µαM [α := N ]| = max{|M1| | (α M1) ≤M [α := N ]} + 1

= max{|(M2[α := N ] N)| | (α M2) ≤M} + 1

= max{|M2| | (α M2) ≤M} + |N | + 1

= |µαM | + |N | = |(µαM N)|.

If α /∈ Fv(M), then, by Definition 71, we have |(µαM N)| = |µαM |+ |N | = |N | ≥
|µαM [α :=r N ]| = 0. �

Lemma 76 Let M ։ N . Then

|M | ≥ |N |.

Proof It is enough to show that M → N implies |M | ≥ |N |. The proof goes by
induction on cxty(M). The only interesting case is M = (M1 M2).

1. M1 →M ′
1 or M2 →M ′

2. Obvious.

2. M1 = µαM3, N = µαM3[α :=r M2], or M2 = µβM3, N = µβM3[α :=l M1].
Applying Lemma 75 we obtain the result.

�

Lemma 77 Let M , N be terms, assume (α M1) ≤M . Then we have

|µαM | > |M1[α := N ]|.

Proof By Definition 71 and Lemma 74

|µαM | = max{|P | | (α P ) ≤M} + 1

> |M1| = |M1[α := N ]|.

�

Theorem 78 The µµ′-calculus strongly normalizes.

Proof It is enough to prove that, for arbitrary M , N ∈ SN , (M N) ∈ SN as well.
Let M , N ∈ SN such that (M N) /∈ SN , with the property that 〈|(M N)|, η(M)+
η(N)〉 is minimal. Then by Lemma 69 either M ։ µαM ′, µαM ′[α =r N ] /∈ SN
or N ։ µβN ′, µβN ′[β =l M ] /∈ SN . Suppose the former is valid. On account of
Lemma 76, M →+ µαM ′ contradicts the minimality of (M N), so we may assume
M = µαM ′. In accordance with Lemma 70 there exists an (α M1) �M ′ such that
M1[α :=r N ] ∈ SN and (M1[α :=r N ] N) /∈ SN . By Lemma 77 this contradicts
the minimality of (M N) again. �
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1.2.2 The µµ′ρ-calculus is not strongly normalizing

On the grounds of the example of the Parigot-style λµµ′-calculus, the question
naturally arises in this case also what can be said about the extended λµµ′-calculus
with the ρ-rule added. We would remind the reader that the de Groote-style λµµ′-
calculus coincides with the original one except for the facts that in the construction
of the terms the distinction between named and unnamed terms has disappeared
and the term forming rules have become more flexible: a µ-operator can now be
followed by any kind of term (in the untyped version), not necessarily by a term
beginning with a µ-variable.

First, we are going to have a closer look at the µµ′-calculus expanded with the ρ-
rule. It turns out that, unlike the untyped Parigot-style µµ′ρ-calculus, this calculus
is not strongly normalizing, as the following assertion states.

Proposition 79 The untyped µµ′ρ-calculus is not strongly normalizing.

Proof Let U = µα(α (α x)), and V = µβU . Then the following reductions show
that there exists an infinite reduction sequence starting from (V U):

(V U) →µ′ µα(α (V (α (V x))))

→µ µα(α (V (α µβU)))

→ρ µα(α (V U [β := α]))

= µα(α (V U)).

�

We remark that in case the θ-rule is allowed, the example above serves as a
complete loop giving back the initial term in the end. Hereupon, what remains as
a natural question to be examined is the weak normalization of the calculus.

1.2.3 The µµ′ρ-calculus is weakly normalizing

In this subsection we present a proof for the weak normalization of the µµ′ρ-calculus.
The proof consists of determining an algorithm by which every term can be reduced
to a normal form and, at the same time, verifying that this algorithm really pro-
vides a weak normalization process, that is, it terminates. The description of the
algorithm and the proof for its termination take place in Theorem 101, which is the
main statement of this section. Beforehand, we are concerned with introducing the
notions and assertions used in the proof of this theorem.

Definition 80 An address is a finite list of the symbols {l, r}. The empty address
will be denoted as []. Let a be an address, s ∈ {l, r}, then [s :: a] denote the
concatenation of [s] and a.
If M is a term and a an address, we can define the subterm of M at address a in
the following way.

1. M[] = M ,

2. M[l::b] = Pb (resp. M[r::b] = Qb), if M = (P Q) and Pb (resp. Qb) is defined.
Otherwise, M[s::b] (s ∈ {l, r}) is undefined.

We say that M ′ can be addressed in M with an address a if Ma = M ′ holds.

Definition 81 Let M be a term and a be an address, such that Ma is defined.
Then M〈a = N〉 is the term where Ma is exchanged by N in M .
With the above notation let N [α : =aM ] denote the term which is obtained from N
by replacing each subterm of the form (α U) in N by (α M〈a = U〉).
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Example 82 1. Let N = µβ(α (µγ(z (α y)))), M = (x1 (x2 x3)), a = [r :: l].
Then N [α :=a M ] = µβ(α (x1 ((µγ(z (α (x1 (y x3))))) x3))).

2. M [α :=l N ] = M [α :=[r] (N U)] and M [α :=r N ] = M [α :=[l] (U N)], where
U can be arbitrary.

3. Suppose M〈a := N〉 is defined. Let M ′ be the term obtained from M by
exchanging Ma for the new variable xa. Then M〈a := N〉 = M ′[xa := N ].
This relation will be used in the sequel.

Definition 83 1. An occurrence of a λ-variable x in M is said to be correct
with respect to an occurrence of a µ-variable α, if there is an N and an address
a, such that (α N) ≤M and (N)a = x for the occurrences under discussion.

2. We call an occurrence of a variable x correct if there is a (necessarily unique)
α such that x is correct w.r.t. α.

3. M is x-correct, if all the occurrences of x are correct such that different oc-
currences of x are corresponded to different occurrences of µ-variables of M .
In notation: M ∈ C(x).

With an abuse of terminology, in the sequel we may omit the references to occur-
rences and simply speak of the variables itself.

Definition 84 We call a term M admissible, if, for all x ∈ Fv(M), we have M is
x-correct and, for every occurrence of x, if x is correct with respect to an occurrence
of an α, then α ∈ Fv(M).

Example 85 1. Let M = (α (x (β (x (µγy x))))). Then the first occurrence of
x is correct w.r.t. α, the second and the third are correct w.r.t. β, but M is
not x-correct. y is not correct in M .

2. Let N = (α (x (β (x (γ (y x)))))). Then N ∈ C(x), N ∈ C(y), moreover N is
even admissible.

3. Let N = µβ(γ ((x y) (β x))). Then N ∈ C(x), N ∈ C(y) but, because of the
second occurrence of x, N is not admissible.

Definition 86 Let U be a term. Let us define a function hx inductively on the
subterms of U .

1. hx((U1 U2)) = max{hx(U1), hx(U2)},

2. hx((α U1)) =

{
hx(U1) + 1 if x has a correct occurrence in (U1) with respect to α,
hx(U1) otherwise,

3. hx(µαU1) = hx(U1),

4. hx(y) = 0, if y ∈ V ar.

Example 87 Let M and N be as in Example 85. Then hx(M) = 2, hy(M) = 0.
Furthermore, hx(N) = 3, hy(N) = 1.

Lemma 88 Let U be a term. Then hx(U) equals the length of the longest sequence
of the form U ≥ (α1 U1) ≥ . . . ≥ (αm Um) such that each (αi Ui) (1 ≤ i ≤ m)
contains an occurrence of x correct with respect to αi.
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Proof Let U ′ ≤ U and l ∈ N. We are going to prove by induction on cxty(U ′)
that

hx(U ′) ≥ l ⇔ there is a sequence U ′ ≥ (α1 U1) ≥ . . . ≥ (αl Ul)

such that each (αi Ui) (1 ≤ i ≤ m) contains an occurrence of x correct with respect
to αi.
(⇒) Let hx(U ′) ≥ l.

1. U ′ = (U ′
1 U

′
2). Then hx(U ′

i) ≥ l for some i ∈ {1, 2}. The result follows from
the induction hypothesis.

2. U ′ = (α U ′′).

- x has a correct occurrence in U ′′ w.r.t. α. Then hx(U ′′) ≥ l − 1, the
induction hypothesis applies.

- x has no correct occurrences in U ′′ w.r.t. α. In this case hx(U ′′) ≤ l,
again the induction hypothesis gives the result.

3. U ′ = µαU ′′. hx(U ′) = hx(U ′′), the induction hypothesis applies.

(⇐) Let U ′ ≥ (α1 U1) ≥ . . . ≥ (αl Ul) be a sequence of the above form. By
induction on i we have hx((αl−i Ul−i)) ≥ i+ 1, from which hx(U ′) ≥ l follows. �

Corollary 89 If U is x-correct and hx(U) = m, then there is a sequence U ≥
(α1 U1) ≥ . . . ≥ (αm Um) such that each (αi Ui) (1 ≤ i ≤ m) contains exactly one
occurrence of x which is correct w.r.t. αi.

Definition 90 Let us define sets of terms for all n ∈ N in the following way:
Sn := {M |M ∈ NF and M contains at most n µ-s}.
We are going to write V ∈ Sn+ , if V ∈ Sn and V contains at least one µ.

Remark 91 1. Observe that M ∈ NF implies that M = ~µM1 for some se-
quence of µ-s and an M1 ∈ S0.

2. In the sequel in ~µW the notation ~µ will stand for an arbitrary (possibly empty)
sequence of µ-s and, in this context, W denotes a term in S0.

Definition 92 We say that U ∈ S0 is almost admissible (in short a.a.), if for all
x ∈ Fv(U) either U ∈ C(x) or there exists exactly one occurrence of x which is
not correct in U . Moreover, U is such that, for every x satisfying U /∈ C(x), if we
replace the non-correct occurrence of x in question by a new variable x′, then, for
the resulting term U ′, we have U ′ ∈ C(x).

Example 93 1. Let N = (x (y (β (x z)))), then N is not admissible, since
neither x nor y are correct in N . However, replacing x by x′, y by y′ we
obtain for the resulting term N ′ that N ′ ∈ C(x) and N ′ ∈ C(y). Thus N is
almost admissible.

2. Let N = µβ((β x) x). Then N is neither almost admissible, nor admissible,
since N /∈ C(x) but, for the term N ′ = µβ((β x) x′), we still have N ′ /∈ C(x).

Lemma 94 Let U ∈ S0. Let us take a non-correct occurrence of a variable x in
U . Then there is a (possibly empty) address a such that

Ua = x

for that occurrence of x.

Proof By induction on cxty(U).
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1. The cases U = y and U = (U1 U2) are obvious.

2. U = (α U1). This case is impossible. Namely, since the underlying occurrence
of x is non-correct in U , it is non-correct in U1 as well. So, by induction
hypothesis, we would get (U1)b = x for some b, which would imply the cor-
rectness of this occurrence of x.

�

Definition 95 Let s ∈ {l, r}. We denote by s the complement of s, which is
defined as r if s = l, and as l otherwise.

Lemma 96 Let (α U) be admissible, Ua = x for some x ∈ Fv(U) and address
a = [a1, . . . , ak]. Assume hx((α U)) = m. Furthermore let U ′ = U[a1,...,ai] with an
1 ≤ i ≤ k, suppose (β V ) ≤ U ′. Then (β V ) is admissible and hx((β V )) ≤ m− 1.

Proof Let us take an occurrence of a variable x′ ∈ Fv(V ). Since (α U) ∈ C(x′)
there are (α′ W ) ≤ (α U) and an address b such that Wb = x′ for this occurrence.
Then (α′ W ) > (β V ), together with Wb = x′ ∈ V , is impossible. Thus (α′ W ) ≤
(β V ), that is, the underlying occurrence of x′ is correct in (β V ) w.r.t. the same
variable as in (α U). It follows that (β V ) is admissible.
Let (α1 V1) ≥ . . . ≥ (αl Vl) be a sequence of subterms of (β V ) forming an element
of the set determining hx((β V )) as in Lemma 88. But Ua = x /∈ (β V ), so
(α U) ≥ (α1 V1) ≥ . . . ≥ (αl Vl) is also a suitable sequence for hx((α U)), which
means l + 1 ≤ m, that is, hx((β V )) ≤ m− 1. �

Lemma 97 Let U , V be admissible. Then U [x := V ] also is admissible.

Proof Let y ∈ U [x := V ]. Then either y comes from from U or from V . In the
former case U ∈ C(y) implies there is a (α U ′) ≤ U and an a such that U ′

a = y.
Then (α U ′[x := V ]) ≤ U [x := V ] and (U ′[x := V ])a = y is valid. In the latter case
V ′

b = y for some b and (β V ′) ≤ V , but this relation remains true for the occurrence
of y in the substituted instance of V also. By this reasoning the admissibility of
U [x := V ] follows. �

Lemma 98 Let U ∈ S0, V = µγV1 ∈ Sn+ , and suppose Ua is defined. Then

U〈a := V 〉։ µγV1[γ :=a U ] ∈ Sn+ .

Proof Let a = [a1, . . . , ak], the proof goes by induction on k. (For k = 0 the
statement is obvious.)

1. Let k = 1, say a = [r]. Then U = (U1 U2) and

U〈a = V 〉 = (U1 V ) → µγV1[γ : =lU1] = µγV1[γ : =[r](U1 U2)].

2. Suppose a := [a1 :: b], say a1 = l. Then U = (U1 U2) and

U〈a = V 〉 = (U1〈b = V 〉 U2)։ (µγV1[γ : =bU1] U2) → µγV1[γ : =a(U1 U2)].
�
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Lemma 99 Let U ∈ S0 be almost admissible, and let V = µγ~µV1 ∈ Sn+ be
admissible. Assume x is such that the only occurrence of x in U is a non-correct
one. Then we have an admissible W ∈ S0 such that

U [x := V ]։ µγ~µW.

Moreover, let x′ ∈ Fv(µγ~µW ) be correct w.r.t. α. Then either α is a free µ-variable
of µγ~µW or α = γ.

Proof Applying Lemma 94 we have Ua = x for some address a. By Lemma 98,

U [x := V ]։ µγ~µV1[γ :=a U ].

Let W := V1[γ :=a U ] ∈ S0. For the admissibility of W it must be checked first
that for all x′ ∈ Fv(W ) we have W ∈ C(x′).

1. Let x′ ∈ Fv(W ), suppose first x′ ∈ V1 holds. Since V ∈ C(x′), we have a
(β V2) ≤ V1 and a b such that (V2)b = x′. By the admissibility of V , β 6= γ.
Then we have

(β V2)[γ :=a U ] = (β V2[γ :=a U ])

and (V2[γ :=a U ])b = x′, so x′ is correct in W w.r.t. the same variable as in
V1.

2. Suppose x′ ∈ Fv(W ) comes from U , let a = [a1, . . . , ak]. Then there is
some instance of U and (γ V ′) ≤ V1 such that x′ ∈ U〈a := V ′[γ :=a U ]〉
and x′ /∈ V ′[γ :=a U ]. This implies that there is an 1 ≤ i ≤ k such that
a′ = [a1, . . . , ai] and x′ ∈ Ua′ for that instance of U .

- Assume x′ ∈ U is correct. Then we have (β U ′) ≤ U and U ′
b = x′ for

some (β U ′) and b. By induction on i we obtain (β U ′) ≤ Ua′ for the Ua′

as above. Thus x′ is correct in W w.r.t. the same variable as in U .

- Let the occurrence of x′ in U be non-correct. Then, since U ∈ S0, by
Lemma 94 we have a b 6= a such that Ub = x′ for that instance of U .
In this case (U〈a = V ′[γ :=a U ]〉)b = x′, which means that x′ is correct
w.r.t. γ.

By the above argument it can easily be checked also that different occurrences
of x′ ∈ Fv(W ) are correct w.r.t. different occurrences of µ-variables of W , so
admissibility holds. The last statement is again straightforward, since the argument
shows that for any x′ ∈ Fv(µγ~µW ) the occurrences of x′ are correct either w.r.t.
free µ-variables of µγ~µW , or µ-variables of U , or γ. �

Lemma 100 Let U , U1, x, x1 be such that x ∈ Fv(U), x1 /∈ Fv(U) and U1 ∈
C(x1). Then U [x := U1] ∈ C(x1) and

hx1
(U1) = hx1

(U [x := U1]).

Proof The claim U [x := U1] ∈ C(x1) follows at once from the facts that U1 ∈
C(x1) and x1 /∈ Fv(U).
Let us prove hx1

(U1) = hx1
(U [x := U1]).

The direction hx1
(U1) ≤ hx1

(U [x := U1]) is trivial. For the reverse direction let
(α1 W1) ≥ . . . ≥ (αm Wm) be a sequence of subterms of U [x := U1] as in Lemma
88. Let us take an occurrence of x1 in W1 correct w.r.t. α1. Since x1 /∈ U ,
x1 is in some substituted instance of U1. But U1 ∈ C(x1) and x1 is correct in
U [x := U1] with respect to α1, these together involve (α1 W1) ≤ U1, from which
hx1

(U [x := U1]) ≤ hx1
(U1) follows. �
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Theorem 101 Let U , V be admissible. Assume U ∈ S0 and V ∈ Sn for some
n ∈ N. Then there is an admissible W ∈ S0 such that

U [x := V ]։ ~µW.

Proof We may assume n ≥ 1 and x ∈ Fv(U), since otherwise the statement is
trivial. If x ∈ Fv(U), we have hx(U) = m for some m > 0.
The proof goes by induction with respect to the lexicographically ordered pair
〈n,m〉. Let us examine the general case, that is, n,m > 1 first, since the cases
n = 1 or m = 1 follow as special instances of the general one.
Let us enumerate in U all the maximal subterms of the form (α′ U ′) such that U ′

contains an occurrence of x correct with respect to α′. Let them be (α1 U1), . . . , (αp Up).
Let us take (α1 U1), suppose (U1)a = x for some a = [a1, . . . , ak]. Assume tem-
porarily k ≥ 1, that is a 6= []. Let us assign a term φ(U1, V ) to U1 in the following
manner. Let us take all the maximal subterms of the terms U[a1,...,ai] (1 ≤ i ≤ k)
such that they are of the form (α′ U ′) and U ′ contains a correct occurrence of x
w.r.t. α′. Let W1, . . . ,Ws be an enumeration of them. By Lemma 96 we can assert
that Wj is admissible and hx(Wj) ≤ m − 1 (1 ≤ j ≤ s). Exchange the terms
W1, . . . ,Ws with the new variables x1, . . . , xs, respectively. Denote the new term
by π(U1). In case of a = [] let π(U1) = V . Write

η1 := [x1 := W1[x := V ], . . . , xs := Ws[x := V ]].

Now we have
U1[x := V ] = π(U1)[x := V ]η1.

Let φ(U1, V ) = π(U1)[x := V ]. Observe that x /∈ φ(U1, V ) and φ(U1, V ) contains a
µ only in the subterm (φ(U1, V ))a = V . By hypothesis the conditions of Lemma 99
fulfil, so

φ(U1, V )։ µγ~µW,

where V = µγ~µV1 and W ∈ S0. Implementing a ρ-reduction with α1 we arrive at

(α1 φ(U1, V ))։ ~µW [γ := α1].

Denote the term on the right hand side by ψ(U1, V ). We should remark that, since
n > 1, ψ(U1, V ) ∈ S(n−1)+ and by Lemma 99 we also have the admissibility of
ψ(U1, V ). As a summary we have obtained that

U1[x := V ]։ ψ(U1, V )η1.

Let us perform the same process for every (αi Ui), taking care that the sets dom(ηi)
(1 ≤ i ≤ p) are pairwise disjoint sets of new variables. Let π∗(U) denote the term
obtained form U by exchanging every Ui by π(Ui), moreover let χ(U, V ) be the
result of exchanging every (αi Ui) (1 ≤ i ≤ p) for ψ(Ui, V ) in the original U .
Denote η :=

⋃p
i=1 ηi. Then we can conclude

U [x := V ] = π∗(U)[x := V ]η ։ χ(U, V )η. (1.1)

Let {y1, . . . , yp} be a set of new variables. Let us replace in χ(U, V ) every subterm
ψ(Ui, V ) (1 ≤ i ≤ p) by the variables y1, . . . , yp, respectively. Denote the resulting
term of S0 by U ′. Observe that U ′ is almost admissible and the only variables which
may not be correct in U ′ are y1, . . . , yp. Let

σ := [y1 := ψ(U1, V ), . . . , yp := ψ(Up, V )].

With this notation we get

χ(U, V ) = U ′σ.

We have two possible cases.
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1. For all yi (1 ≤ i ≤ p) U ′ ∈ C(yi) holds. In this case, since all variable
occurrences are correct in U ′ and U ′ ∈ S0, U

′ is admissible. Moreover,
σ(yi) = ψ(Ui, V ) ∈ S(n−1)+ are also admissible. Thus, successively applying
the induction hypothesis to U ′ and the one-element substitutions constituting
σ, we obtain the relation

U ′σ ։ ~µU ′′,

where U ′′ ∈ S0 is admissible.

2. There is a yj ∈ dom(σ) such that U ′ /∈ C(yj). Then, by Lemma 99, there

is an admissible Ũ ∈ S0 such that U ′[yj := ψ(Uj , V )] ։ ~µ1Ũ . Let σ′ be
the substitution obtained from σ by omitting yj from dom(σ). Successively

applying the induction hypothesis to Ũ and σ′ we acquire an admissible U ′′ ∈
S0 such that Ũσ′ ։ ~µ2U

′′, which implies

U ′σ ։ ~µU ′′.

Let U ′′ ∈ S0 be the term obtained by any of the above arguments such that

χ(U, V ) = U ′σ ։ ~µU ′′. (1.2)

We should recall that x does not occur in U ′′. Take x1 ∈ dom(η). We may suppose
x1 ∈ Fv(U ′′). Then

U ′′[x1 := W1[x := V ]] = U ′′[x1 := W1][x := V ]

and by Lemma 100 we have

hx(U ′′[x1 := W1]) = hx(W1) ≤ m− 1.

Lemma 97 gives the admissibility of U ′′[x1 := W1]. Thus U ′′[x1 := W1] ∈ S0 is
admissible, hx(U ′′[x1 := W1]) ≤ m − 1, hence the induction hypothesis applied to
U ′′[x1 := W1] and V yields

U ′′[x1 := W1[x := V ]] = U ′′[x1 := W1][x := V ]։ ~µU∗
1 ,

where U∗
1 ∈ S0 is admissible and does not contain x. We can repeat the above

process with U∗
1 and [x2 := W2[x := V ]] instead of U ′′ and [x1 := W1[x := V ]] to

obtain an admissible U∗
2 ∈ S0 such that x /∈ Fv(U∗

2 ) and

U∗
1 [x2 := W2[x := V ]] = U∗

1 [x2 := W2][x := V ]։ ~µU∗
2 .

Continuing in this way for the remaining elements of dom(η) we can conclude that

U ′′η ։ ~µU∗ (1.3)

with an admissible U∗ ∈ S0. Then (1.3), together with (1.1) and (1.2), yields the
result.

Let us treat the case m = 1 or n = 1. Let us suppose first m = 1 and n > 1. In
this case the η of the previous process is empty. Thus, with the notations as above,

U [x := V ]։ χ(U, V ).

Applying for χ(U, V ) the method described in the second part of the algorithm we
obtain the result.
If n = 1, then we can demonstrate by induction on m, that there is an admissible
U ′ ∈ S0 such that U [x := V ]։ U ′. For n,m = 1 the statement is obvious. If n = 1
and m > 1, then

U [x := V ]։ χ(U, V )η,

where, in this case, χ(U, V ) ∈ S0 is admissible and for all x′ ∈ dom(η) we have
η(x′) = W ′[x := V ] for some admissible W ′ ∈ S0 such that hx(W ′) ≤ m− 1. Then
we can apply the induction hypothesis to every η(x′) with x′ ∈ dom(η), by which
the assertion follows. �

37



Corollary 102 The µµ′ρ-calculus is weakly normalizing.

Proof It is enough to prove that for U , V ∈ NF we have (U V ) ∈ NF . We
may suppose U , V ∈ Sn+ and, in the beginning, U and V contain no λ-variables.
Let U = µα−→µ 1U

′ for some U ′ ∈ S0. Let U∗ be the term obtained from U ′ by
exchanging every subterm (α U ′′) ≤ U ′ for (α (U ′′ x)). Then, applying Theorem
101, we have

(U V ) = (µα−→µ 1U
′ V ) → µα−→µ 1U

′[α := V ]

= µα−→µ 1U
∗[x := V ]։ µα−→µ 1

−→µ 2W = −→µW

for some W ∈ S0. �

Example 103 The following easy example gives some insight into the operation
of the algorithm. Let

U = (α (x0 u))(α (x0 (α (x0 v)))), V = µβ1µβ2(β1 (w (β1 w)))(β2 (w (β1 (w (β2 w))))).

We may suppose u, v and w are constants. Then hx0
(U) = 2, V ∈ S2 and

U [x0 := V ] = (α (V u))(α (V (α (V v)))).

Applying the notation of the algorithm and writing V = µβ1µβ2V
′ we have

U1 = (x0 u), U2 = (x0 (α (x0 v))),
π(U1) = (x0 u), π(U2) = (x0 x1),
φ(U1, V ) = (V u), φ(U2, V ) = (V x1),
ψ(U1, V ) = µβ2(α ((w (α (w u))) u))(β2 (w(α ((w (β2 w)) u)))

= µβ2V
′[β1 := u][β1 := α],

ψ(U2, V ) = µβ2(α ((w (α (w x1))) x1))(β2 (w(α ((w (β2 w)) x1)))
= µβ2V

′[β1 := x1][β1 := α],
η = η1 = [x1 := (α (x0 v))[x0 := V ]].

Figure 1.1 illustrates the operation of the algorithm until this point, the notation
applied there is the one used here and in Theorem 101. Now, writing yi for ψ(Ui, V )
(i ∈ {1, 2}), we arrive at U ′ = (y1 y2), thus

U ′[y1 := ψ(U1, V )] → µβ2(α ((w (α (w u))) u))(β2 ((w (α ((w (β2 (w y2))) u))) y2)).

We have ψ(U2, V ) ∈ S1, so making use of the case n = 1 in Theorem 101, we obtain

U ′[y1 := ψ(U1, V ), y2 := ψ(U2, V )] →∗ µβ2U
′′

with some admissible U ′′ ∈ S0. Returning back to η, since x0 /∈ U ′′, W1 =
(α (x0 v)) ∈ C(x0), Lemma 100 yields

hx0
(U ′′[x1 := (α (x0 v))]) = hx0

((α (x0 v))) = 1.

We are now dealing with the case of m = 1. By the process described in Theorem
101

(U ′′[x1 := (α (x0 v))])[x0 := V ] →∗ χ(U ′′[x1 := (α (x0 v))], V ) = M

such that M = M ′[y3 := N1, y4 := N2] for some M ′ ∈ S0 and N1, N2 ∈ S1. But
then, successively applying the algorithm for n = 1, we obtain a normal form of M ,
by which the normalization process is completed.
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1.2.4 The λµµ′ρ-calculus is weakly normalizing

Let us consider the example in Proposition 79. We can observe that the terms
U = µα(α (α x)) and V = µβU can even be typed. Let x : ⊥, then α : ¬⊥ and
β : ¬(⊥ → ⊥) yield the typing relations U : ⊥, V : ⊥ → ⊥. Thus, we have obtained
that the λµµ′ρ-calculus is not strongly normalizing either. In possession of the weak
normalization of the untyped calculus we can prove, however, that the typed one is
weakly normalizing also.
The general idea of the proof is as follows: starting from a term M1 in µµ′ρ-normal
form, i.e. from a term in which there are no µ-, µ′- or ρ-redexes, we begin eliminating
all its β-redexes by any weak normalization algorithm for the typed λ-calculus until
we arrive at a term M2 in β-normal form. Having done this, we apply the µµ′ρ-
weak normalization algorithm to M2 to obtain an M3 in µµ′ρ-normal form. We
state and prove in Theorem 111 that the maximum of the rank of the β-redexes of
M1 is strictly greater than that of M3. By this, the process must terminate.

Definition 104 1. NFµ := {M |M is in µµ′ρ-normal form}

2. NF β := {M |M is in β-normal form}

Definition 105 Let M , N be terms such that M ։ν N . The notation M ։ν
β N

(or simply M ։β N) means that ν entirely consists of β-reductions, analogously,
M ։ν

µ N (or simply M ։µ N) indicates that ν consists of µ-, µ′- and ρ-reductions.

Definition 106 The length of a type A is defined as the number of the arrows in
A.

Definition 107 Let M be a λµ-term, and r a redex in M .

1. The rank of r is:

rank(r,M) =





lh(type(λxM1)) if r = (λxM1 M2),
lh(type(µαM1)) if r = (µαM1 M2),
lh(type(µβM2)) if r = (M1 µβM2)

and r is neither a β- nor a µ-redex,
lh(type(µβM1)) if r = (α µβM1).

2. The rank of M is:

rank(M) = max{rank(r,M) | r is a redex in M}.

Remark 108 When r is both a µ- and a µ′-redex of M , then we calculate rank(r,M)
as if r were a µ-redex only. Similarly, for the case, when r is both a β- and a µ′-
redex in M . This causes no changes when determining the value rank(M), since
in both of the cases above rank(r,M) is greater when r is considered as a β- or as
a µ-redex, respectively, than as a µ′-redex.

Lemma 109 Let M , N be λµ-terms. Then

rank(M [x := N ]) ≤ max{rank(M), rank(N), lh(type(x))}.

Proof By induction on cxty(M). The only interesting case is M = (M1 M2). We
examine some of the cases.

1. M [x := N ] is not a redex. Applying the induction hypothesis we have

rank(M [x := N ]) = max{rank(M1[x := N ]), rank(M2[x := N ])}

≤ max{rank(M1), rank(M2), rank(N), lh(type(x))}

≤ max{rank(M), rank(N), lh(type(x))},

where we have made use of the fact that in this case M is not a redex either.
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2. M [x := N ] is a β-redex. The proof for the other redexes is similar.

- If M1 = λyM3, then

rank(M [x := N ]) = max{rank(M3[x := N ]), rank(M2[x := N ]),

lh(type(M1[x := N ]))}

≤ max{rank(M3), rank(M2), rank(N),

lh(type(M1)), lh(type(x))}

= max{rank(M), rank(N), lh(type(x))}.

- Assume M1 = x. Then

rank(M [x := N ]) = max{rank(N), rank(M2), lh(type(N))}

≤ max{rank(M), rank(N), lh(type(x))}.
�

Lemma 110 Let M ։β M
′. Then rank(M) ≥ rank(M ′).

Proof It is enough to prove ifM →r M ′ such that r is a β-redex, then rank(M) ≥
rank(M ′). The proof goes by induction on cxty(M). The only interesting case is
M = (M1 M2).

1. M = (M1 M2) →
r (M ′

1 M2) = M ′.

- M ′ is not a redex. Then rank(M ′) = max{rank(M ′
1), rank(M2)} ≤

max{rank(M1), rank(M2)} ≤ rank(M) by the induction hypothesis.

- M ′ is a redex. The only non-trivial case is M1 = r →β M
′
1. Then, by the

induction hypothesis and since lh(type(M ′
1)) < rank(r,M) ≤ rank(M),

we obtain

rank(M ′) = max{rank(M ′
1), rank(M2), lh(type(M

′
1))}

≤ max{rank(M1), rank(M2), rank(M)}

= rank(M).

2. M = (M1 M2) →
r (M1 M

′
2) = M ′. The induction hypothesis applies.

3. r = M →r M ′. Assume M = (λxM3 M2). By Lemma 109, rank(M ′) ≤
max{rank(M3), rank(M2), lh(type(x))} ≤ rank(M).

�

Theorem 111 Let M1,M3 ∈ NFµ and M2 ∈ NF β such that

M1 ։β M2 ։µ M3.

Then
rank(M1) > rank(M3).

We are going to proceed with the proof of the theorem by disassembling it into
several lemmas which will altogether yield the result.

Definition 112 The function occ is such that if M is a term, then occ(M,π) is
the subterm of M at address π provided it is defined.

1. occ(M, []) = M ,
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2. occ((M1 M2), [l :: s]) = occ(M1, s),

3. occ((M1 M2), [r :: s]) = occ(M2, s),

4. occ(λxM1, [λx :: s]) = occ(M1, s),

5. occ(µαM1, [µα :: s]) = occ(M1, s),

6. occ((α M1), [α :: s]) = occ(M1, s).

Let the expression occ(M,π) be undefined if it is not in one of the forms indicated
on the left-hand side of the above equations. We say that π is an occurrence of N
in M , if occ(M,π) = N .

With an abuse of terminology we may refer simply to a subterm N of M , rather
than mentioning N together with its occurrence π.

Notation 113 Let M be a term.

1. In this subsection let Tm denote the set of λµ-terms.

2. Denote by Sbt(M) the set of subterms of M .

3. Denote by Occ the set of all possible addresses, that is,

Occ =
(
{λx | x ∈ V} ∪ {α | α ∈ W} ∪ {µα | α ∈ W} ∪ {l, r}

)<∞
,

where V (resp. W) denotes the set of λ-variables (resp. µ-variables).

4. If S is an arbitrary set, let P(S) stand for the set of its subsets.

Remark 114 In order to facilitate the presentation, in this section we ignore the
stipulation that all terms are in pure variable forms. Thus, when performing a
substitution we disregard the renaming of bound variables.

Definition 115 Let lst(ξ) denote the last element of ξ provided ξ 6= [], undefined
otherwise.

Definition 116 Let M be a term. The function bn : Tm × Occ → Tm defined
below has the following property: if occ(M, ξ) = (α N) (resp. occ(M, ξ) = x), then
bn(M, ξ) is the smallest subterm of M containing occ(M, ξ) in which the variable α
(resp. the variable x) becomes bound.

1. If occ(M, ξ) = (α P ), then let bn(M, ξ) = occ(M, ζ), where ζ is the longest
initial segment of ξ such that occ(M, ζ) = µαQ if such a Q exists.

2. If occ(M, ξ) = x, then bn(M, ξ) = occ(M, ζ), where ζ is the longest initial
segment of ξ such that occ(M, ζ) = λxQ if such a Q exists.

3. Let bn(M, ξ) be undefined otherwise.

Notation 117 An address ξ is said to be an occurrence of a µ-variable α (resp.
λ-variable x) if occ(M, ξ) = (α P ) for some P (resp. occ(M, ξ) = x).

Definition 118 An occurrence ξ of α (resp. x) is free in M if bn(M, ξ) is unde-
fined.

Definition 119 Let M be a term and ξ = [a1, . . . , an]. Assume occ(M, ξ) is de-
fined. We denote by r(M,α, ξ) (resp. l(M,α, ξ)) the address obtained from ξ by
inserting simultaneously an element r (resp. l) after each ai for which ai = α and
ξi−1 = [a1, . . . , ai−1] is a free occurrence of α in M (where ξ0 = []). We write briefly
l(ξ) (resp. r(ξ)) if M and α are clear from the context.
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Example 120 Let M = (α (x µα(α y))) (α λxy). Let ξ1 = [l, α, l], ξ2 =
[l, α, r, µα, α] and ξ3 = [r, α]. Then l(M, ξ1, α) = [l, α, l, l], r(M, ξ2, α) = [l, α, r, r, µα, α]
and l(M, ξ1, α) = [r, α, l], respectively.

Notation 121 We write π2 ≤ π1 if π2 is an initial subsequence of π1. The nota-
tion π1 ≁ π2 indicates the fact that neither π1 ≤ π2 nor π2 ≤ π1 holds.

Remark 122 Let M be a term. We can observe that π2 ≤ π1 iff occ(M,π1) ≤
occ(M,π2).

Definition 123 Let r be a redex of M , assume occ(M,π) = r. The function
adr : Tm×Occ×Occ→ P(Occ) is defined in a way such that its value adr(M,π, ξ)
gives the set of addresses of the residuals of the subterm occ(M, ξ) after reducing in
M with the redex r.

1. r = (λxP Q).

(a) adr(M,π, ξ) = {ξ} if π ≁ ξ,

(b) adr(M,π, ξ) = {π#ζ} if ξ = [π :: l :: λx]#ζ,

(c) adr(M,π, ξ) = {π#ε#ζ | occ(P, ε) = x} if ξ = [π :: r]#ζ,

(d) adr(M,π, ξ) = {ξ} if ξ < π.

2. r = (µαP Q).

(a) adr(M,π, ξ) = {ξ} if π ≁ ξ,

(b) adr(M,π, ξ) = {[π :: µα]#l(occ(M,π′), α, ζ)}, if ξ = π′#ζ with π′ =
[π :: l :: µα] and l(occ(M,π′), α, ζ) is defined according to Definition 119,

(c) adr(M,π, ξ) = {[π :: µα]#l(occ(M,π′), α, ε)#[α :: r :: ζ] | occ(P, ε) =
(α V ), for some (α V ) ≤ P} if ξ = [π :: r]#ζ and π′ = [π :: l :: µα],

(d) adr(M,π, ξ) = {π} if ξ = [π :: l],

(e) adr(M,π, ξ) = {ξ} if ξ < π.

3. r = (P µαQ).

(a) adr(M,π, ξ) = {ξ} if π ≁ ξ,

(b) adr(M,π, ξ) = {[π :: µα]#r(occ(M,π′), α, ζ)} if ξ = π′#ζ with π′ = [π ::
r :: µα] and r(occ(M,π′), α, ζ) is defined according to Definition 119,

(c) adr(M,π, ξ) = {[π :: µα]#r(occ(M,π′), α, ε)ε#[α :: l :: ζ] | occ(P, ε) =
(α V ), for some (α V ) ≤ P} if ξ = [π :: l]#ζ and π′ = [π :: r :: µα],

(d) adr(M,π, ξ) = {π} if ξ = [π :: r],

(e) adr(M,π, ξ) = {ξ} if ξ < π.

4. r = (α µβP ).

(a) adr(M,π, ξ) = {ξ} if π ≁ ξ,

(b) adr(M,π, ξ) = {[π]#ζ ′} if ξ = [π :: α :: µβ]#ζ, where ζ ′ is obtained from
ζ by exchanging every occurrence of β in ζ for α,

(c) adr(M,π, ξ) = {ξ} if ξ < π.

Definition 124 We define the function des0 : Tm × Occ × Occ → P(Tm) as
follows. Let M →r N , assume occ(M,π) = r. The value des0(M,π, ξ) determines
the set of descendants of the subterm of M at address ξ after reducing in M with
the redex at address π. That is,

des0(M,π, ξ) = {occ(N, ζ) | ζ ∈ adr(M,π, ξ)}.
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Remark 125 The above function is not everywhere defined. More exactly, for
every address π there are terms which has no descendants w.r.t. the reduction with
the redex r at address π. In detail:

1. If r = (λxP Q), then the terms which have no residuals are those with ad-
dresses π and [π :: l], namely r itself and λxP .

2. If r = (µαP Q), then r only has no residual.

3. The situation is analogous to the above one, if r = (P µβQ).

4. If r = (α µβP ), then r and µβP , that is, the terms with addresses π and
[π :: α], have no residuals.

Definition 126 Let σ be a sequence of addresses. We define the values des(M,σ, ξ)
of the function des : Tm×Occ×Occ→ P(Tm) by induction on |σ|.

1. des(M, [π], ξ) = des0(M,π, ξ) if σ = [π].

2. des(M, [π :: σ1], ξ) =
⋃
{des(N, σ1, ζ) | ζ ∈ adr(M,π, ξ)}, where M →r N , in

other words: N = des(M,π, []), and occ(M,π) = r.

Notation 127 Let M ≥ N and M ։σ M ′, suppose N = occ(M, ξ). We say
that N ′ is a descendant of N w.r.t. σ, if N ′ ∈ des(M,σ, ξ). We denote this by
N ≫σ N ′. In the case when σ is a sequence of β-reductions we say that N ′ is a
β-descendant of N , in notation N ≫β N

′. If σ contains no β-reductions we speak
of µ-descendants. In notation: N ≫µ N

′.

Remark 128 The reduction relation, considered as a binary relation in the sense
of Definition 28, conveys information about what redex occurrence is being reduced
and which is the actual reduction rule being applied. In simply typed λ-calculus either
of these two pieces of information determine the other. Here, a redex, considered as
a subterm occurrence, does not necessarily indicate which reduction rule takes place
actually. Throughout the present work, by a reduction M →r N we not only mean
an address π, where occ(M,π) = r is a redex occurrence in M , but rather a pair
carrying the piece of information of what kind of reduction is being applied together
with the address of the redex occurrence in the term. Thus, the terminology redex
is mostly reserved for denoting a subterm occurrence rather than an application of
a reduction rule. The name reduction or reduction rule is intended to refer to the
reduction step actually implemented together with knowing which redex occurrence
is under discussion. The same stipulation should hold for the notion of reduction
sequences as well. If ambiguity should emerge, we indicate explicitly what kind of
reduction rule we are concerned with.

The definition below goes round this notation a little further.

Definition 129 Let C[] be a (possibly empty) one-holed context. Assume M =
C[r] →r N = C[r′]. Then the functional part of r is defined as follows.

1. If r = (λxP Q), r′ = P [x := Q], then the functional part of r is λxP .

2. If r = (µαP Q), r′ = µαP [α :=r Q], then the functional part of r is µαP .

3. If r = (P µαQ), r′ = µαQ[α :=l P ], then the functional part of r is µαQ.

4. If r = (α µβP ), r′ = P [β := α], then the functional part of r is µβP .

Lemma 130 Let M ։σ M ′ and M ≥ N . Assume N ≫σ N ′ for some N ′. Then
the following assertions are valid.
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1. If N = λxP , then type(N) = type(N ′).

2. If N = (α P ), then type(N) = type(N ′).

3. If N = (P1 P2), then type(N) = type(N ′).

4. If N = µαP and σ is a β-reduction sequence, then type(N) = type(N ′).

Proof A straightforward induction on |σ|. Note that in Case 4 the stipulation
that σ is a β-reduction sequnce is actually needed. For, let M = (Q µαP ), where
Q : A → B and N = µαP : A are such that lh(A) < lh(B). Assume σ consists of
the single µ′-reduction M . Then N ≫σ N ′ = µαP [α :=l Q] and lh(type(N ′)) >
lh(type(N)). �

Lemma 131 Let M ∈ NFµ, suppose occ(M, ξ) = µαN < M . Then one of the
following cases holds:

1. lst(ξ) = µβ for some β,

2. lst(ξ) = λx for some x.

Proof Trivial. �

Lemma 132 Let M ∈ NFβ, suppose occ(M, ξ) = λxN < M . Then one of the
following cases holds:

1. lst(ξ) = λy for some y,

2. lst(ξ) = r,

3. lst(ξ) = α for some α.

Proof Trivial. One should observe that, since µαS ≤ M implies S : ⊥ for an
arbitrary µαS, the case lst(ξ) = µα is impossible. �

Remark 133 Intuitively, Lemma 132 has the following meaning. Let M ∈ NF β

and λxN < M . Then either λyλxN ≤M , or there exits an S such that (S λxN) ≤
M , or (α λxN) ≤ M for the occurrence of λxN in question. An analogous state-
ment is true in relation with Lemma 131.

Definition 134 Let σ be M = M0 →r1 M1 →r2 . . .→rn Mn, assume occ(M, ξ) =
(α P ). We say that (α P ) is used in σ, if there is an 1 ≤ i < n such that
(α P ) ≫[r1,...,ri] occ(Mi, ζ) for some ζ and bn(Mi, ζ) is the functional part of ri+1.

Definition 135 Let σ be M = M0 →r1 M1 →r2 . . .→rn Mn, assume occ(M, ξ) =
λxP . We say that λxP is used in σ, if there is an 1 ≤ i < n such that λxP ≫[r1,...,ri]

occ(Mi, ζ) for some ζ and λxP ′ is the functional part of ri+1.

Lemma 136 Let M ։σ N , N ′ ≤ N . Then there is a unique M ′ ≤ M such that
M ′ ≫σ N ′.

Proof Straightforward. �

Lemma 137 Let M ։σ N , P ≤ M . Assume P ≫σ Q. Then the following
assertions are valid.

1. If P = λxP1, then Q = λxQ1.

2. If P = µαP1, then Q = µαQ1.

3. If P = (α P1), then Q = (β Q1) for some β.

4. If P = (P1 P2), then Q = (Q1 Q2).

Proof Straightforward. �
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Remark 138 Observe that by Lemma 137 in Definition 134 (resp. in Defini-
tion 135) (α P ) ≫[r1,...,ri] occ(Mi, ζ) (resp. λxP ≫[r1,...,ri] occ(Mi, ζ)) imply
occ(Mi, ζ) = (β P ′) for some P ′ (resp. occ(Mi, ζ) = λxP ′ for some P ′).

Lemma 139 Let M ։σ N , P ≤ M . Assume P ≫σ Q. Then the following
assertions are valid.

1. If Q = λxQ1, then P = λxP1.

2. If Q = µαQ1, then P = µαP1.

3. If Q = (β Q1), then P = (α P1) for some α.

4. If Q = (Q1 Q2), then P = (P1 P2).

Proof Combine Lemmas 136 and 137. �

Lemma 140 Let M ։σ N , occ(M, ξ) = (α P ). Assume (α P ) is not used
in σ. Then, for any occ(N, ζ) = (β Q), (α P ) ≫σ (β Q) iff P ≫σ Q with
occ(N, [ζ :: β]) = Q.

Proof The proof goes by induction on |σ|. The case for |σ| = 0 is trivial. Assume
M →r M ′ ։σ′

N such that σ = [r]#σ′ for some σ′. Let r = occ(M,π) = (µγS T )
such that r is a µ-reduction in σ. We prove that (α P ) ≫r (α R) for some
occ(M ′, δ) = (α R) iff P ≫r R with occ(M ′, δ′) = R such that δ′ = [δ :: α].
From this, by the induction hypothesis, the result follows. We have to distinguish
the subcases forming Definition 123.

1. π ≁ ξ. Then π ≁ [ξ :: α]: the result obviously holds.

2. ξ = [π :: l :: µγ]#ξ′. Then δ = [π :: µγ]#l(S, γ, ξ′), where l(S, γ, ξ′) is defined
in accordance with Definition 119. Moreover, δ′ = [π :: µγ]#l(S, γ, [ξ′ :: α]).
Since (α P ) is not used in [r] we have either α is not free in S or α 6= γ. This
means l(ξ′) = [l(ξ′) :: α], that is, δ′ = [δ :: α], which proves our assertion.

3. ξ = [π :: r]#ξ′. In this case δ = π#[l(S, γ, ε) :: γ :: r]#ξ′, where occ(µγS, ε) =
(γ U) for some U and l(S, γ, ε) is defined in accordance with Definition 119.
Moreover, we have δ′ = π#[l(S, γ, ε) :: γ :: r]#[ξ′ :: α] for some ε, where
occ(µγS, ε) = (γ U) for some U . This implies again that for every δ there is
a δ′ = [δ :: α] and vice versa.

4. ξ = [π :: l]. Since occ(M, ξ) = (α P ), this case is impossible.

5. ξ < π. Since, by hypothesis, both (α R) and R exist, we have [ξ :: α] < π.
Then, δ′ = [ξ :: α] = [δ :: α], which gives the result.

�

Lemma 141 Let M ։σ N , occ(M, ξ) = λxP . Assume λxP is not used in σ.
Then, for any occ(N, ζ) = λxQ, λxP ≫σ λxQ iff P ≫σ Q with occ(N, [ζ :: λx]) =
Q.

Proof Similar to the above one. �
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Lemma 142 Let M ։σ
µ N , occ(M, ξ) = λxS such that lst(ξ) = r. Assume

λxS ≫σ
µ λxU for some occ(N, ζ) = λxU . Then lst(ζ) = r.

Proof The proof goes by induction on |σ|. The case for |σ| = 0 is trivial. Assume
M →r M ′ ։σ′

N such that σ = [r]#σ′ for some σ′. Let r = (µαP Q) be a µ-redex.
The other cases are similar. Assume occ(M,π) = r and occ(M, ξ) = λxS such that
lst(ξ) = r. We prove that λxS ≫r λxV with occ(M ′, ζ ′) = λxV implies lst(ζ ′) = r,
which, by the induction hypothesis, yields the result. We have to distinguish the
cases constituting Definition 123.

1. ξ ≁ π. Then ζ ′ = ξ, which gives the result.

2. ξ = [π :: l :: µα]#τ . In this case ζ = π#[l(P, α, τ)], where l(P, α, τ) is defined
in accordance with Definition 119. Then, since lst(τ) = r, we necessarily have
lst(l(P, α, τ)) = r.

3. ξ = [π :: r]#τ . Then ζ ′ = [π :: µα]#[l(P, α, ε) :: α :: r]#τ , where occ(µαP, ε) =
(α U) for some U and l(P, α, ε) is defined in accordance with Definition 119.
If τ 6= ∅, then lst(ξ) = lst(τ) = lst(ζ ′) and we are done. Otherwise, the result
is again obvious.

4. ξ = [π :: l]. Since occ(M, ξ) = λxP , this case is impossible.

5. ξ < π. Then the relation ζ ′ = ξ yields the result again.
�

Remark 143 Informally, Lemma 142 can be stated as follows. Let M ։σ
µ N and

(T λxS) ≤ M . Assume λxS ≫σ
µ λxU for some λxU ≤ N . Then there is a V such

that
(V λxU) ≤ N

for the same occurrence of λxU .

Remark 144 Before giving a formal proof of Theorem 111 we present an informal
explanation of the main argument of the proof. Let M1, M2 and M3 be given such
that M1, M3 ∈ NFµ and M2 ∈ NFβ, moreover

M1 ։
σ
β M2 ։

ν
µ M3

for some σ and ν. Let (λxP Q) ≤ M3 be such that rank((λxP Q),M3) =
rank(M3). We prove that there is a λzW ≤ M1 such that it is used in σ and
lh(type(λzW )) > lh(type(λxP )). In this case, by Lemmas 110 and 130, we have

rank(M1) ≥ lh(type(λzW )) > lh(type(λxP )) = rank(M3),

which is the result. Starting from (λxP Q), we find λzW in the following way. By
Lemma 139 there is a λxS ≤M2 for which

λxS ≫ν λxP.

Lemma 130 gives type(λxS) = type(λxP ). Furthermore, since also λxS < M2,
Lemma 132 yields three possibilities. Either λyλxS ≤M2 for some y, or (T λxS) ≤
M2 for some T , or (α λxS) ≤ M2 for some α. We prove that only the latter case
is possible. Then, we show that (α λxS) is used in ν. Applying this, we find a
µβV < M1 such that

type(µβV ) = type(λxS).

By Lemma 131, either µγµβV ≤ M1 for some γ or λyµβV ≤ M1 for some y. We
prove finally that only the latter case is possible and λyµβV is exactly the λ-term
needed.
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Proof of Theorem 111 Assume we have M1, M3 ∈ NFµ and M2 ∈ NF β such
that

M1 ։
σ
β M2 ։

ν
µ M3

for some σ and ν.
Let occ(M3, ξ

′) = (λxP Q) with rank((λxP Q),M3) = rank(M3), furthermore we
write ξ = [ξ′ :: l]. Then, by Lemmas 136 and 139, there is an occ(M2, ζ) = λxS
such that

λxS ≫ν λxP. (1.4)

The relation λxS = M2, together with (1.4), would yield λxP = M3, which is
impossible. Hence, λxS < M2. By Lemma 132, there are three possibilities.

1. lst(ζ) = λy. Since ν is a µµ′ρ-reduction sequence, λyλxS cannot be used
in ν, hence, by Lemma 141, lst(ζ) = lst(ξ) = λy would also hold, which is
impossible.

2. lst(ζ) = r. Then, by Lemma 142, lst(ξ) = r, which is impossible again.

3. lst(ζ) = α. In this case (α λxS) is used in ν. Otherwise, by Lemma 140, we
have lst(ξ) = β for some β, which is not possible. Now, let M2 = N0 →r1

N1 →r2 . . . →rn Nn = M3 with ν := [r1, . . . , rn]. There exists an 1 ≤ i < n
such that

(α λxS) ≫[r1,...,ri] (β S′)

for some occ(Ni, ζ
′) = (β S′), and µβU = bn(Ni, ζ

′) is the functional part of
the µ- or µ′-reduction ri+1. We use the notation occ(Ni, ε) = µβU . We may
suppose that (α λxS) is not used in [r1, . . . , ri], so, applying Lemmas 140 and
137, we can conclude

λxS ≫[r1,...,ri] λxS′′ = S′ (1.5)

for some S′′. Let σ′ := σ#[r1, . . . , ri]. By Lemmas 139 and 136 there exists a
unique ε′ such that occ(M1, ε

′) = µβV and

µβV ≫σ′

β µβU.

Additionally, by a reasoning as before, µβV < M1. Then, making use of
Lemma 131, we have two possibilities.

- lst(ε′) = µγ. Since µβU = bn(Ni, ε) and S′ = λxS′′, we have

type(µβU) = type(λxS′′),

thus, Lemma 130 yields

type(µβV ) = type(µβU) = type(λxS′′) 6=⊥ . (1.6)

In the same time, because of typing rules, we have type(µβV ) =⊥, a
contradiction.

- lst(ε′) = λy. Then λyµβV is used in σ. Assume the contrary. Then
λyµβV is not used in σ′ either, so, by Lemma 141, lst(ε) = λy would
hold as well. But then µβU cannot be the functional part of the µ-
or µ′-reduction ri+1. If λyµβV is used in σ = [s1, . . . , sm], we have a
1 ≤ j < m such that λyµβV ≫[s1,...,sj ] λyV ′ and λyV ′ is the functional
part of sj+1. By Lemmas 110 and 130 this implies

rank(M1) ≥ lh(type(λyµβV )) = lh(type(λyV ′)). (1.7)
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By (1.4), (1.5) and Lemma 130 we have

type(λxS) = type(λxS′′) = type(λxP ).

Combining this with (1.6) and (1.7) we obtain

rank(M1) ≥ lh(type(λyµβV )) > lh(type(µβV ))

= lh(type(λxP )) = rank(M3). �

1.2.5 The λµµ′ρθ-calculus

We can extend the algorithm presented for the weak normalization of the λµµ′ρ-
calculus to the case of the λµµ′ρθ-calculus in a straightforward way. In the sequel
we apply the notation of the previous section.

Lemma 145 Let M ∈ NFβµµ′ρ, suppose occ(M, ξ) = µαN < M . Then one of
the following cases is valid.

1. lst(ξ) = λx for some x,

2. lst(ξ) = µβ for some β.

Proof Trivial. �

Lemma 146 Let M ∈ NFβµµ′ρ, assume r = µα(α N) ≤ M is a θ-redex and
M →r M ′. Then we have M ′ ∈ NFβµµ′ρ.

Proof Obvious by Lemma 145. �

Theorem 147 Let M ∈ NFβµµ′ρ. Then there is an M∗ such that M ։θ M
∗ and

M∗ ∈ NFβµµ′ρθ.

Proof We prove the assertion by induction on cxty(M). Let M →r M ′, where
r is a θ-redex. By the previous lemma M ′ ∈ NFβµµ′ρ. But cxty(M ′) < cxty(M),
which gives the result. �

1.2.6 Standardization for the λµµ′ρθ-calculus

In this section we present a standardization theorem for the λµµ′ρθ-calculus.

Definition 148 The sequence (Mi)1≤i≤n is βµµ′ρθ-standard if one of the follow-
ing holds.

1. Mi = λxNi (1 ≤ i ≤ n) and (Ni)1≤i≤n is standard.

2. Mi = µαNi (1 ≤ i ≤ n) and (Ni)1≤i≤n is standard.

3. Mi = (α Ni) (1 ≤ i ≤ n) and (Ni)1≤i≤n is standard.

4. There are standard sequences (Ni)1≤i≤k and (Pi)k≤i≤n such that Mi = (Ni Pk)
for 1 ≤ i ≤ k and Mi = (Nk Pi) for k ≤ i ≤ n.

5. There is a standard sequence (Ni)1≤i≤k and a Q such that

(a) either Mi = (Ni Q) for 1 ≤ i ≤ k, Nk = λxP and (Ni)1≤i≤k−1 does not
begin with a λ, Mk+1 = P [x := Q] and the sequence (Mi)k+1≤i≤n is
standard,

(b) or Mi = (Ni Q) for 1 ≤ i ≤ k, Nk = µαP and (Ni)1≤i≤k−1 does not
begin with a µ, Mk+1 = µαP [α := Q] and the sequence (Mi)k+1≤i≤n is
standard,
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(c) or Mi = (Q Ni) for 1 ≤ i ≤ k, Nk = µαP and (Ni)1≤i≤k−1 does not
begin with a µ, Mk+1 = µαP [α := Q] and the sequence (Mi)k+1≤i≤n is
standard.

6. There is a standard sequence (Ni)1≤i≤k such that Mi = (α Ni) (1 ≤ i ≤ k),
Nk = µβP and Ni does not begin with a µ for 1 ≤ i ≤ k−1, Mk+1 = P [β := α]
and the sequence (Mi)k+1≤i≤n is standard.

7. There is a standard sequence (Ni)1≤i≤k such that Mi = µαNi (1 ≤ i ≤ k),
Mk = µα(α P ) with α /∈ Fv(P ) and Mi is not a θ-redex for 1 ≤ i ≤ k − 1,
Mk+1 = P and the sequence (Mi)k+1≤i≤n is standard.

Definition 149 We say that M ։st M
′ if there is a standard reduction sequence

(Mi)1≤k≤n such that M = M1 and M ′ = Mn.

To handle the case of the λµµ′ρθ-calculus in relation with standardization asser-
tions, we need some additional notions, these are the notions of overlapping redexes
and critical pairs. However, the definition of these notions are rather technical in
the literature (cf. [33]), so we use these concepts intuitively only. Consider the
following example. Let an ARS, A, be given as A = {Σ,→1,→2}. Suppose Σ, as
the set of terms for A, contains two term forming operators F and G. Let a, b ∈ Σ
be terms in normal forms other than variables, suppose b 6= G(c) for any c. Assume
the relations

F (G(x), y) →1 y,

G(a) →2 b

define the reduction rules →1 and →2. Then F (G(a), x) →1 x and, on the other
hand, F (G(a), x) →2 F (b, x). Observe that x and F (b, x) are both in normal forms
and cannot be reduced to each other. The cause of the phenomenon was the fact
that F (G(a), x) contains a redex w.r.t both the →1 and the →2 reductions, however,
the two redexes have a subterm in common, namely G(a). Now, the contraction
of one of the two redexes destroys the other by removing the subterm in common.
This situation is called overlapping. Moreover, contracting the overlapping redexes
in F (G(a), x) supplies the critical pair 〈x, F (b, x)〉.

Remark 150 Definition 148 is formulated on the model of the definition of a
standard λµµ′-reduction sequence in David and Nour [13]. Restricted to the λ-,
µ- and ρ-reductions, this definition is equivalent to Definition ?? of Chapter 2. In
this case, we cannot define standard reduction sequences in a way like there, since
the representation of Lemma 176, together with the notion of the head-redex defined
in Definition 184, is no more applicable here. Moreover, in contrast to the λµµ′-
calculus in David and Nour [13], we have to cope with some additional problems.
Namely, there are several critical pairs induced by the reduction rules.

1. A θ-redex can overlap with a µ- and a µ′-redex, respectively. For example, let
µα(α M) be a θ-redex, N be a term. Then (µα(α M) N) →θ (M N) and
(µα(α M) N) →µ µα(α (M N)). Similarly for the θ- and the µ′-reductions.

2. A θ-redex can overlap with a ρ-redex. For example, let µα(α M) be a θ-redex.
If M = µβM1, then µα(α µβM1) →θ µβM1 and µα(α µβM1) →ρ µαM1[β :=
α]. Similarly for the case when, concerning the overlapping redexes, the ρ-
redex is inside and the θ-redex is outside.

The following examples illustrate how we can manage the cases of overlapping
redexes.
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Example 151 1. The overlapping redexes are a θ- and a ρ-redex. The θ-redex
is inside the ρ-redex. The original sequence:

(α µβ(β µγx)) →θ (α µγx) →ρ x.

The standardization:

(α µβ(β µγx)) →ρ (α µγx) →ρ x.

2. The overlapping redexes are a θ- and a ρ-redex. The ρ-redex is inside the
θ-redex. The original sequence:

µα(α µβ(λx(β y) y)) →ρ µα(λx(α y) y) →β µα(α y) →θ y.

The standardization:

µα(α µβ(λx(β y) y)) →θ µβ(λx(β y) y) →β µβ(β y) →θ y.

3. The overlapping redexes are a µ- and a θ-redex. The original sequence:

(µα(α x) y) →θ (x y).

The standardization:

(µα(α x) y) →µ µα(α (x y)) →θ (x y).

4. Though, this is not overlapping, the case when a µ-reduction is obtained by
implementing a θ-reduction before is interesting also. The original sequence:

(µα(α µβ(x (β x))) y) →θ (µβ(x (β x)) y) →µ µβ(x (β (x y))).

The standardization:

(µα(α µβ(x (β x))) y) →µ µα(α (µβ(x (β x)) y)) →θ (µβ(x (β x)) y)

→µ µβ(x (β (x y))).

Definition 152 Let σ be M1 →r1→r2 . . .→rn Mn+1 for some n ≥ 0. We call the
terms M1, . . . ,Mn+1 the elements of σ.

Lemma 153 Assume M ։st P and N ։st Q. Then we have:

1. M [x := N ]։st P [x := Q],

2. M [α := N ]։st P [α := Q],

3. M [β := α]։st P [β := α].

Proof In each case the proof goes by induction on 〈lh(M ։st P ), cxty(M)〉.
Let us consider the case of M [α := N ]. Let M ։σ P and N ։ν Q such that σ,
ν ∈ St.

1. |σ| = 0: straightforward.

2. |σ| ≥ 1. We treat some of the cases, distinguishing the various possibilities
according to Definition 148.

(a) M = (M1 M2).

- Let P = (M ′
1 M2) with M1 →M ′

1 or P = (M1 M
′
2) with M2 →M ′

2.
Then the induction hypothesis applies.
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- Let M = (M1 M2) ։
σ1 (λyU M2) → (U [y := M2]) ։

σ2 P , where
λyU is the first element of σ1 beginning with a λ. Then, by the
induction hypothesis, the sequence

(M1 M2)[α := N ] ։ (λyU [α := N ] M2[α := N ])

→ U [α := N ][y := M2[α := N ]]

= U [y := M2][α := N ] ։st P [α := Q]

is standard also.

- Let M = (M1 M2) ։
σ1 (µβU M2) → (µβU [β := M2]) ։

σ2 P ,
where µβU is the first element of σ1 beginning with a µ. Then, by
the induction hypothesis, the sequence

(M1 M2)[α := N ] ։ (µβU [α := N ] M2[α := N ])

→ µβU [α := N ][β := M2[α := N ]]

= µβU [β := M2][α := N ]

։ P [α := Q]

is standard.

(b) M = (β M1).

- M = (α M1). If (α M1)։st (α P1), then, by the induction hypoth-
esis, the sequence (α (M1[α := N ] N))։st (α (P1[α := Q] N))։st

(α (P1[α := Q] Q)) = (α P1)[α := Q] is standard.
Assume M ։σ1 (α µγU) →ρ U [γ := α] ։σ2 P , where µγU is
the first element in σ1 beginning with a µ. Then, by the induction
hypothesis, the reduction sequence

M [α := N ] = (α (M1[α := N ] N))

։ (α (µγU [α := N ] N))

→µ (α µγU [α := N ][γ := N ])

→ρ U [α := N ][γ := N ][γ := α]

= U [γ := α][α := N ]

։ P [α := Q]

is standard.

- M = (β M1) such that β 6= α. Similar to the above one.

(c) M = µβM1. Analogous to the above case.
�

Lemma 154 Let M ։st P → Q. Then we have M ։st Q.

Proof The proof goes by induction on 〈lh(M ։st P ), cxty(M)〉, distinguishing
the cases of Definition 148. We only treat some of the cases.

1. Assume M = (M1 M2) ։
σ1
st (N1 M2)

σ2 ։st (N1 N2) = P . If Q = (N ′
1 N2)

with N1 → N ′
1 or Q = (N1 N

′
2) with N2 → N ′

2, by the induction hypothesis we
have the result. Otherwise we have obtained Q by reducing P . We examine
some of the cases.

(a) P = (λxN3 N2). Let R be the first element of σ1 being of the form λxR1.
Then by Lemma 153 the reduction sequence

M ։ (λxR1 M2) → R1[x := M2]։ N3[x := N2] = Q

is standard.
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(b) P = (µαN3 N2).

- Let M1 ։
σ′

1 µαM ′
1 ։

σ′′

1 µαN3 such that σ1 = σ′
1#σ

′′
1 and µαM ′

1 is
the first element of σ′

1 beginning with a µ. An argument similar to
the above one gives the result.

- Assume M1 ։
σ′

1 µβM ′
1 ։

σ′′

1 µαN3, where µβM ′
1 is the first element

of the sequence σ′
1 beginning with a µ. Then we necessarily have

µβM ′
1 ։st µβ(β M ′′

1 ) →θ M
′′
1 ։st µαN3 for some M ′′

1 such that β /∈
Fv(M ′′

1 ). In this case, by Lemma 153 and the induction hypothesis,
we obtain the standard reduction sequence

M = (M1 M2) ։ (µβM ′
1 M2) →µ µβM ′

1[β := M2]

։ µβ(β M ′′
1 )[β := M2] = µβ(β (M ′′

1 M2))

→θ (M ′′
1 M2) ։ Q.

2. Let M = (M1 M2) ։
σ (λyP M2) →β P [y := M2] ։

ν P , where σ, ν ∈ St
and λyP is the first element of σ beginning with a λ. Then the induction
hypothesis applied to P [y := M2]։

ν P gives a standard ν′ such that P [y :=
M2]։

ν′

Q. The sequence M = (M1 M2)։
σ (λyP M2) →β P [y := M2]։

ν′

Q is standard again.
�

Theorem 155 Let M be a term, assume M ։ N . Then we have M ։st N .

Proof Follows from Lemma 154 by induction on lh(M ։ N). �

1.2.7 Concluding remarks

The λµµ′ρ′θ-calculus

In the paper de Groote [28] the λµ-calculus is expanded with a simplification rule
differing from the ones treated so far. The syntax of the λµ-calculus is based on
the de Groote-style formalism, that is, the set of terms is defined as in Definition
12. The main difference with our presentation is the fact that the ρ-rule is defined
in a context dependent manner. The new rule, which we denote by ρ′, is as follows.

µα(β µγM) →ρ′ µαM [γ := β]

The justification of this presentation is closely related to the introduction of a
new rule called the ε-rule, which will be treated in the next subsection in detail. De
Groote proves the strong normalization of the λµ-calculus equipped with the rules
ρ′, ε and θ in de Groote [28] in the following way. By a reducibility argument similar
to the ones presented in [61] and in [24], he demonstrates that the λµ-calculus is
strongly normalizing. Then, with a similar reasoning as in Section 1.1, he shows
that the ρ′-, ε- and θ-rules can be strongly postponed w.r.t. the λ- and µ-rules.

Let us consider now the de Groote-style λµµ′-calculus expanded with the ρ′-,
θ-rules. We call it the λµµ′ρ′θ-calculus. It is straightforward to check, following the
reasoning in de Groote [28], that the ρ′- and the θ-rules can be strongly postponed
w.r.t. the µ′-rule as well. As an immediate consequence we obtain the following
assertion.

Theorem 156 The λµµ′-calculus expanded with the ρ′- and θ-rules is strongly
normalizing.

Proof By the above remark and by the strong normalizability of the λµµ′-calculus
(cf. David and Nour [14]). �
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Adjoining the ε-rule to the calculus raises some problems, namely, the ε-rule
cannot be postponed w.r.t. the µ′-rule and this anticipates that the strong normal-
ization may no longer be valid for a calculus where both the µ′- and the ε-rules are
present.

The ε-rule

Let us restrict our presentation to the typed λµµ′-calculus first.

Definition 157 Let M be a term, let α : ¬⊥. Define a transformation by cxty(M)
rendering Mα to M .

1. xα = x,

2. (M ′ M ′′)α = (M ′
α M

′′
α),

3. µβM ′
α = µβM ′

α,

4. (β M ′) = (β M ′
α), if β 6= α,

5. (α M ′)α = M ′
α,

6. λxM ′
α = λxM ′

α.

In effect, given a term M and an α : ¬⊥, Mα is the result of replacing, starting
from the innermost ones, every subterm (α N) in M by N . Now let the ε-rule be
defined as follows:

µγµαM →ε µγMα.

Observe that, since µαM : ⊥, the type-condition α : ¬⊥ is satisfied. Figure 1.2
justifies the introduction of the ε-rule from the side of reductions in the proofs. We
note that the ε-rule simply eliminates in a proof of Γ ⊢ µαM : ⊥ the superfluous
derivation steps which lead from a conclusion N : ⊥ to (α N) : ⊥, where N is a
term occurring in the right hand side of the derivation of Γ ⊢ µαM : ⊥.

As for the untyped case, Definition 157 makes sense without changes if we delete
the type restriction imposed on α. With this modification the definition for the ε-
rule in the typed setting can be accepted for this case also. Observe that the
context dependent presentation of the rule ensures for the untyped setting that the
α eliminated by the rule behaves like a variable α : ¬⊥ in the typed calculus.

The reason for the introduction of a new rule ρ′ in de Groote [28] was the
following. For a moment, consider the λµ-calculus with the original ρ-rule and
the ε-rule just defined. In contrary to the λµρ-calculus, the new calculus does not
satisfy the Church-Rosser property as the following counterexample shows.

Example 158

(α µβµγM) →ρ µγM [β := α]

(α µβµγM) →ε (α µβMγ)

If we define ρ′ as in the previous subsection, then confluence is restored. But,
as we have mentioned before, adding the ε-rule in the presence of µ′ raises some
other problems. Namely, even the weak normalization property is not retained
in the µµ′ε-calculus. In what follows let → denote the union of the µ-, µ′- and
ε-reductions.

Definition 159 We define a function φ assigning to a typed µ-term an untyped
µ-term as follows. Let u be a fixed λ-variable.
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1. φ(y) = u if y is a λ-variable,

2. φ((α M)) = (α φ(M)),

3. φ((M1 M2)) = φ(M1), if M2 is a λ-variable or M1 and M2 both are λ-
variables,

4. φ((M1 M2)) = φ(M2), if M1 is a λ-variable,

5. φ((M1 M2)) = (φ(M1) φ(M2)), if neither of M1 and M2 is a λ-variable,

6. φ(µαM) = µαφ(M).

Intuitively, φ(M) is obtained from M by erasing all the left- or right-hand side
parts of the applications of M which are merely λ-variables, not counting subterms
of the form (α M ′), for some M ′, as applications and then replacing every λ-variable
remaining in the resulting term by u.

Example 160 1. φ((y1 (y2 (y3 y4)))) = u, where yi : ⊥ → ⊥ (1 ≤ i ≤ 3) and
y4 : ⊥,

2. φ((((y1 y2) y3) y4)) = u, where y1 : ⊥ → (⊥ → (⊥ → ⊥)) and yi : ⊥
(2 ≤ i ≤ 4),

3. φ(µγ(µβ(β (z (β y))) µα(α (α x)))) = µγ(µβ(β (β u)) µα(α (α u))), where
x : ⊥, y : ⊥ → ⊥, z : ⊥ → (⊥ → ⊥) and α : ¬⊥, β : ¬(⊥ → ⊥).

Lemma 161 Let M , N be typed µ-terms.

1. φ(M [α :=r N ]) = φ(φ(M)[α :=r φ(N)]) (resp. φ(N [α :=l M ]) = φ(φ(N)[α :=l

φ(M)])).

2. φ(M)α = φ(Mα).

3. φ(φ(M)) = φ(M).

Proof Obvious. �

Lemma 162 Let M be a typed µ-term. Then φ(M [α := z]) = φ(M).

Proof Straightforward. �

Lemma 163 Let M be a typed µ-term. Assume M → M ′. Then either φ(M) =
φ(M ′) or there exists an N such that φ(M) → N and φ(N) = φ(M ′).

Proof By induction on cxty(M), applying Lemmas 161 and 162. �

Lemma 164 Let M be a typed µ-term. If M is in normal form, then φ(M) is in
normal form either.

Proof Obvious. �
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Lemma 165 In the µµ′ε-calculus there exists a typed µ-term which does not reduce
to a normal form.

Proof Let U = µα(α (α x)), V = µβ(β (z (β y))), where α : ¬⊥, β : ¬(⊥ → ⊥),
x : ⊥, y : ⊥ → ⊥ and z : ⊥ → (⊥ → ⊥). Assume M = µγ(V U), where γ : ¬⊥.
Let M = M0 → M1 → . . . → Mn → . . . be a reduction sequence starting from
M . Let us define a set of terms by induction on n. Let S0 = {φ(M)}. Assume Si

is defined, then let Si+1 = φ(R(Si)), where R(S) = {N ′ | N → N ′ and N ∈ S}
and φ(S) = {φ(N) | N ∈ S} for an arbitrary set of terms S. By Lemma 163,

φ(Mi) ⊆
⋃i

j=0 Sj , where 0 ≤ i is a natural number. By Lemma 164 it is enough to
prove that no element of Sj (j ≥ 0) is in normal form. Let W = µα(α (α u)), then
we have:

S0 = {µγ(W W )},

S1 = {µγµα(α ((α W ) W )), µγµα(α (W (α W )))},

S2 = {µγ(W W ), µγµα(α µβ(β ((β (α W )) (α W )))), µγµα(α µβ(β ((α W ) (β (α W )))))},

S3 = {µγµβ(β ((β W ) W )), µγµβ(β (W (β W )))} = S1,

. . .

The above equations prove our assertion. �

The following lemma refers to the ν-reduction rule, which is defined in the
subsection below.

Lemma 166 There are terms of the typed λµµ′ε- and λµµ′νε-calculi which have
no normalizing reduction sequences.

Proof It is enough to consider the term in the proof of Lemma 165. �

Theorem 167 The typed λµµ′ρε-calculus is weakly normalizing.

Proof Let M be a typed λµ-term. By Theorem 111 we have an M ′ in βµµ′ρ-
normal form such that M ։M ′. It is straightforward to check that implementing
an ε-reduction on a term in βµµ′ρ-normal form creates no additional redexes except
for ε- and θ-redexes. Likewise, implementing a θ-reduction on a term in βµµ′ρ-
normal form creates no additional redexes except for θ-redexes. But a reduction
sequence consisting entirely of θ- and ε-reductions must necessarily terminate. This
yields the result. �

The ν-rule

There is one more simplification rule defined in Parigot [46], this is the so-called
ν-rule. The ν-rule is as follows:

µαM →ν λxµαM [α :=r x],

if M contains a subterm of the form (α λyN). The ν-rule obtains its importance
in relation with determining the general form of normal, classical integers, that is,
normal λµ-terms of type ∀X(X → ((X → X) → X)) (cf. Parigot [46]).

We define the untyped µµ′ν-calculus as the set of λµ-terms equipped with the
µ-, µ′- and ν-reduction rules. As an application of the method of Section 1.2.1 we
can show that the untyped µµ′ν-calculus is strongly normalizing. To this end it is
enough to modify the norm of Section 1.2.1 in the following way.
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Definition 168 Let M be a λµ-term. Let us define a norm for M as follows:

|M | =





0 if M = x,
|M1| + |M2| if M = (M1 M2),
max{|M2| | (α M2) ≤M1} + 1 if M = µαM1 and α ∈ Fv(M1),
0 if M = µαM1 and α /∈ Fv(M1),
|M1| if M = λxM1,
0 if M = (α M1).

It is straightforward to check that all the assertions of Section 1.2.1 remain true,
making the slight changes in the proofs where necessary. We state without proof
the result:

Theorem 169 The untyped µµ′ν-calculus is strongly normalizing.

As for the typed λµµ′ν-calculus, it can be verified that the reasoning for the
case of the λµµ′-calculus in David and Nour [14] can be modified to give the strong
normalization of the λµµ′ν-calculus as well. We state the assertion without proof:

Theorem 170 The typed λµµ′ν-calculus is strongly normalizing.

We have not examined the normalization properties of the λµµ′ρν-calculus yet.
We conjecture that the λµµ′ρν-calculus is weakly normalizing.

The λµµ′-calculus with type-restrictions

The following construction provides a strongly normalizing version of the typed
λµµ′-calculus without requiring the ρ-rule to be defined in a context dependent
way, and it also eludes the problem of non-termination emerged before when trying
to adjoin the ε-rule. Let us consider the following version of the λµµ′-calculus
denoted by λµεµ

′
ε. Let the terms of the calculus be as follows. Let V = {x, y, z, . . .}

be the set of λ-variables and let Wε = {α, β, γ, . . .} be the set of µ-variables such
that, for every α ∈ Wε, if α : ¬A, then we have A 6= ⊥. If α ∈ Wε, we say that α
is a µε-variable.

Definition 171 The set of terms, Tε, of the λµεµ
′
ε-calculus is defined as follows.

Tε := V | λVTε | µWεTε | (Wε Tε) | (Tε Tε).

The reduction rules are the β-rule, the µε- and the µ′
ε-rules. The µε- and µ′

ε-
rules are defined as follows. In the definition below let the term Mα be obtained
from M as given in Definition 157.

Definition 172 1.

(µαM N) →µε

{
µαM [α :=r N ], if (µαM N) : A such that A 6= ⊥,
M [α :=r N ]α, if (µαM N) : ⊥.

2.

(M µαN) →µ′
ε

{
µαN [α :=l M ], if (M µαN) : A such that A 6= ⊥,
N [α :=l M ]α, if (M µαN) : ⊥.

In other words, the µε- and the µ′
ε-rules differ form the µ- and the µ′-rules in the

following respect. Let (µαM N) (resp. (N µαM)) be a µε-redex (resp. a µ′
ε-redex)

such that (µαM N) : ⊥ (resp. (N µαM) : ⊥). Then (µαM N) →µε
M [α :=r N ]α

(resp. (M µαN) →µ′
ε
N [α :=l M ]α). We should note that the µε-rule (resp.

the µ′
ε-rule) emerges as if we implemented successively a µ-rule (resp. a µ′-rule)
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together with a context independent version of the ε-rule. Observe that the proof-
theoretical meaning of the change in the presentation in comparison with the λµµ′-
calculus is that we omit the otherwise superfluous inference steps from a proof of
Γ, α : ¬⊥ ⊢ M : ⊥ to Γ, α : ¬⊥ ⊢ (α M) : ⊥. Since have no variables α : ¬⊥ in
this case, we had to alter the definitions of the µ- and µ′-reductions accordingly.

Now, we add the ρ-rule unchanged to the λµεµ
′
ε-calculus. Note that the ε-rule

is meaningless in this calculus. If we examine the proof of the strong normalization
of the λµµ′-calculus in David and Nour [14], we can find that the argument applied
there can be adapted to our case as well. The core of the reasoning is the fact that
the following property remains true in the µεµ

′
ερ-calculus: let M be a term, σ be a

µ-substitution such that Mσ ։ µαP for some µαP . Then there exists an M1 such
that M ։ µαM1 and M1σ ։ P . The validity of this property is ensured by our
type restrictions. We state without proof the following assertion:

Theorem 173 The λµεµ
′
ερ-calculus is strongly normalizing.

Proof By modifying the proof related to the λµµ′-calculus in David and Nour
[14]. �

Remark 174 It is straightforward to check that the θ-rule can be postponed w.r.t.
the β-, µε-, µ

′
ε- and ρ-rules. Thus, we can state as a simple corollary that the

λµεµ
′
ε-calculus expanded with the ρ- and θ-rules is strongly normalizing.

Remark 175 If we intend to adapt the above method to the untyped case also, the
solutions being at the author’s disposal at present do not appear to be as handy as
for the typed case. The restrictions on the formation of terms do not seem to be
so strongly justified as in the untyped setting. If we aim to find a method without
defining any of the rules in a context dependent manner, the following definition for
the ρ-rule might be a solution. Let ρ̃ be defined as

(α µβM) →eρ (ε M [β := α]),

where ε is a new variable. This means roughly, if we borrow Parigot’s ter-
minology here, that a named term cannot reduce to anything else but a named
term. As before, this involves that the λµµ′ρ̃-calculus is strongly normalizing. The
drawback of the ρ̃-rule is that in a typed environment the derivation of the typ-
ing relation (ε M [β := α]) : ⊥ contains an unnecessary step from the sequent
Γ, ε : ¬⊥ ⊢ M [β := α] : ⊥ to the sequent Γ, ε : ¬⊥ ⊢ (ε M [β := α]) : ⊥. On
the other hand it decreases the number of detours in the proof in the sense that it
eliminates a part of the original proof tree where a ⊥-elimination rule is followed
by a ⊥-introduction rule.
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U = α
x0 u α

x0

α
x0 v

V =

µβ1

µβ2

β1

w
β1 w

β2

w
β1

w
β2 w

U1 = x0 u U2 = x0

α
x0 v

W1 = α
x0 v

π∗(U)[x := V ] =
α

V u α
V x1

−→µ

α V[β1 := u] α
V x1

−→ρ

µβ2V’[β1 := u][β1 := α]
α

V x1

−→µ
µβ2V’[β1 := u][β1 := α]

α V[β2 := x1]

−→ρ

µβ2V’[β1 := u][β1 := α] µβ2V’[β1 := x1][β1 := α]

= (ψ(U1, V ) ψ(U2, V )).

Figure 1.1: The first steps of the algorithm of Theorem 101 for the U and V of Example
103.

...
Γ, β : ¬A,α : ¬⊥ ⊢ M : ⊥

Γ, β : ¬A ⊢ µαM : ⊥
ε-reduction:  

Γ ⊢ µβµαM : A

...
Γ, β : ¬A ⊢ Mα : ⊥

Γ ⊢ µβMα : A

...

Γ, α : ¬⊥ ⊢ Nα : ⊥
locally:  

Γ, α : ¬⊥ ⊢ (α Nα) : ⊥

...
Γ ⊢ Nα : ⊥

Figure 1.2: The reductions in the proofs in relation with the ε-rule
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Chapter 2

An estimation for the lengths

of reduction sequences of the

λµρθ-calculus

The present chapter is concerned with the simply typed λµρθ-calculus. It is known
that the λµ-calculus is strongly normalizing (see e.g. Parigot[47], or David and Nour
[12]). This chapter contributes to the existing results by finding an upper bound
for the lengths of the βµρθ-reduction sequences, from which, as a consequence,
another proof of the strong normalization of the λµ-calculus extended with the
ρ- and θ-rules is acquired. For the simply-typed λ-calculus several results have
appeared concerning the lengths of reduction sequences (cf. Schwichtenberg [57],
Schwichtenberg [58], Xi [66], Beckmann [2]). The following proof is based on the
estimations for the simply-typed λ-calculus published by Xi (cf. [66]).

First of all, let us get acquainted with some definitions and notation.

Lemma 176 Every term of the simply typed λµρθ-calculus can be written uniquely
in one of the following forms. In the definition below let

−→
P denote a (possibly empty)

sequence of arguments.

1. M is a variable,

2. M = λxM1,

3. M = µαM1 and M is not a θ-redex,

4. M = (α M1) and M is not a ρ-redex,

5. M = (x M1
−→
P ),

6. M = (λxM1 M2
−→
P ),

7. M = (µαM1 M2
−→
P ),

8. M = (α µβM1),

9. M = µα(α M1) and α /∈ Fv(M1).

Proof Obvious. �
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In the sequel, for the sake of simplicity, redexes can also be denoted by lowercase
letters. In this chapter we modify the definition of the complexity of a term as
follows:

Definition 177 1. comp(x) = 1,

2. comp((α M)) = comp(M) + 1,

3. comp(λxM) = comp(M) + 1,

4. comp(µαM) = comp(M) + 1,

5. comp((M N)) = comp(M) + comp(N).

Definition 178 Let σ = [r1, . . . , rn] (n ≥ 1). We say that σ′ is an initial subse-
quent of σ, if σ′ = [r1, . . . , ri] for some 1 ≤ i ≤ n. We denote it by σ′ ≤ σ.

The definitions and notations in relation with the notion of the descendant are
taken from Section 1.2.4 of the previous chapter.

We have to supplement it with the notion of descendant w.r.t. the θ-reduction.
First we extend the function adr of Definition 123 for the case when its first argu-
ment is a θ-redex.

Definition 179 Let occ(M,π) = µα(α P ). Assume α /∈ Fv(P ).

1. If ξ ≁ π, then adr(M,π, ξ) = {ξ}.

2. If ξ = [π :: µα :: α]#ξ′, then adr(M,π, ξ) = {π#ξ′}.

3. If ξ < π, then adr(M,π, ξ) = {ξ}.

Definition 180 Let M →r N , assume occ(M,π) = r. Then

des0(M,π, ξ) = {occ(N, ζ) | ζ ∈ adr(M,π, ξ)}.

We should observe that if occ(M,π) = µα(α P ), the terms µα(α P ) and (α P )
have no descendants w.r.t. the reduction of µα(α P ) in M .

The function des is defined in a way analogous to that of Definition 126, applying
the function des0 of Definition 180.

Definition 181 Let M1 →r1 M2 →r2 . . .→rn Mn+1, suppose occ(M1, π) = r is a
redex of M1. Then r is involved in σ, if there is a σi = [r1, . . . , ri] (1 ≤ i < n) such
that ri+1 ∈ des(M1, σi, π).

Definition 182 Let M1 →r1 M1 →r2 . . .→rn Mn+1, σi = [r1, . . . , ri] (1 ≤ i ≤ n)
and N = occ(M1, ξ). We say that N disappears in σ = σn if one of the following
conditions holds.

1. N = µαP and N ′ = µαP ′, where N ′ ∈ des(M1, σi, ξ) and N ′ is the only
descendant of N w.r.t. σi, and ri+1 = N ′.

2. N = (α P ), N ′ = (β P ′), where N ′ ∈ des(M1, σi, ξ) and N ′ is the only
descendant of N w.r.t. σi, and ri+1 = N ′.

Remark 183 1. Intuitively, if µαP disappears in a reduction sequence σ, then,
for every element of σ, it has at most one descendant, and there is a descen-
dant of it, being of the form µαP ′, which is reduced as a θ-redex in σ.
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2. Likewise, if (α P ) disappears in a reduction sequence σ, then, for every el-
ement of σ, it has at most one descendant, and there is a descendant of it,
being of the form (β P ′), which is reduced as a ρ-redex in σ.

Definition 184 The head-redex of a term M is defined as follows. The numbering
of the cases refers to the numbering in Lemma 176.

- Case 1: M has no head-redex.

- Cases 2-4: The head-redex of M is that of M1, if it exists.

- Case 5: M has no head-redex.

- Case 6: The head-redex of M is (λxM1 M2).

- Case 7: The head-redex of M is (µαM1 M2).

- Case 8-9: The head-redex of M is M itself.

Remark 185 If M = (µαM1 M2
−→
P ), which is Case 7, then there can appear a

critical pair of redexes provided µαM1 is a θ-redex as well. In this situation we
always choose the µ-redex (µαM1 M2) as the head-redex of M .

Definition 186 Let M1 →r1 M2 →r2 . . . →rn Mn+1. Then σ = [r1, . . . , rn] is a
head-reduction sequence, if, for each 1 ≤ i ≤ n, ri is the head-redex of Mi.

Lemma 187 Let M ։σ M ′ such that the head-redex r of M exists and is not
involved in σ. Moreover, assume that if r = (µαM1 M2) for some M1 and M2,
then µαM1 does not disappear in σ. Then the head-redex r′ of M ′ exists and it is
the unique residual of r w.r.t. σ.

Proof By induction on |σ|, taking into account the various cases of Definition
184. �

In the definition below, as an abuse of notation, we speak of a subterm of
a given term rather than an occurrence in a term, although we understand the
notation N ≤M as specifying an occurrence in M . In the sequel, we resort to this
shorthand in terminology several times.

Definition 188 Let M1 ≤ M . The number of arguments of M1 in M is the
maximal value of n for which (M1 . . .Mn+1) ≤ M for the same occurrence of M1

in M . In case of n = 0 we say that M1 has no arguments.

Definition 189 1. The θ-redex µα(α M1) ≤ M is called regular if it has no
arguments in M . Otherwise, µα(α M1) is called irregular.

2. The reduction sequence M1 →r1 M2 →r2 . . . →rn Mn+1 is regular if it con-
tains no reductions with irregular θ-redexes.

Notation 190 1. Let σ, ν be (possibly empty) sequences of reductions. Then
σ#ν denotes their concatenation.

2. Let σ = [r1, . . . , rn]. We denote by σ[x := M ] (resp. σ[α :=s M ] with s ∈
{l, r}) the reduction sequence [r1[x := M ], . . . , rn[x := M ]] (resp. [r1[α :=s

M ], . . . , rn[α :=s M ]]). Moreover, let σ[α := β] denote the reduction sequence
[r1[α := β], . . . , rn[α := β]].

Notation 191 Let M = (M1 M2 . . .Mn) = (M1 M2
−→
P ), with a possibly empty

sequence of arguments
−→
P . Then, for 2 < i ≤ n, we write Mi ∈

−→
P . In this case we

call the Mi (2 < i ≤ n) the components of
−→
P .
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Definition 192 Let us define the components of a term M which is different from
a variable.

1. If M = λxM1 or M = µαM1 or M = (α M1), then the component of M is
M1.

2. If M = (µαM1 M2
−→
P ), then the components of M are µαM1, M2 and the

components of
−→
P .

3. If M = (λxM1 M2
−→
P ), then the components of M are M1, M2 and the

components of
−→
P .

4. If M = (x M1
−→
P ), then the components of M are x, M1 and the components

of
−→
P .

2.0.8 Standardization in the λµρθ-calculus

In the present subsection we inspect some assertions concerning estimations for the
lengths of standard reduction sequences in the λµρθ-calculus. Many of the proofs
are the adaptations of the ones related to the simply typed λ-calculus in Xi [66] to
the case of the λµρθ-calculus. We give here a detailed account of them, however,
since in our opinion the proofs presented below are perhaps formulated in a bit
more distinct way. The definition below coincides with Definition 148 except for
the fact that the case for the µ′-reduction is omitted.

Definition 193 The sequence (Mi)1≤i≤n is βµρθ-standard if one of the following
holds.

1. Mi = λxNi (1 ≤ i ≤ n) and (Ni)1≤i≤n is standard.

2. Mi = µαNi (1 ≤ i ≤ n) and (Ni)1≤i≤n is standard.

3. Mi = (α Ni) (1 ≤ i ≤ n) and (Ni)1≤i≤n is standard.

4. There are standard sequences (Ni)1≤i≤k and (Pi)k≤i≤n such that Mi = (Ni Pk)
for 1 ≤ i ≤ k and Mi = (Nk Pi) for k ≤ i ≤ n.

5. There is a standard sequence (Ni)1≤i≤k and a Q such that

(a) either Mi = (Ni Q) for 1 ≤ i ≤ k, Nk = λxP and (Ni)1≤i≤k−1 does not
begin with a λ, Mk+1 = P [x := Q] and the sequence (Mi)k+1≤i≤n is
standard,

(b) or Mi = (Ni Q) for 1 ≤ i ≤ k, Nk = µαP and (Ni)1≤i≤k−1 does not
begin with a µ, Mk+1 = µαP [α := Q] and the sequence (Mi)k+1≤i≤n is
standard,

6. There is a standard sequence (Ni)1≤i≤k such that Mi = (α Ni) (1 ≤ i ≤ k),
Nk = µβP and Ni does not begin with a µ for 1 ≤ i ≤ k−1, Mk+1 = P [β := α]
and the sequence (Mi)k+1≤i≤n is standard.

7. There is a standard sequence (Ni)1≤i≤k such that Mi = µαNi (1 ≤ i ≤ k),
Mk = µα(α P ) with α /∈ Fv(P ) and Mi is not a θ-redex for 1 ≤ i ≤ k − 1,
Mk+1 = P and the sequence (Mi)k+1≤i≤n is standard.

Definition 194 We say that M ։st M
′ if there is a standard reduction sequence

(Mi)1≤k≤n such that M = M1 and M ′ = Mn.

Lemma 195 Let M ։σ M ′ such that σ is standard. Assume the head-redex rh
of M , if it exists, is not involved in σ. Then the following statements are true.
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1. If M = λxM1, then M ′ = λxM ′
1, where M1 ։

σ M ′
1.

2. If M = (α M1), then M ′ = (α M ′
1), where M1 ։

σ M ′
1.

3. If M1, . . . ,Mn are the components of M , then there are standard σ1, . . . , σn

and terms M ′
1, . . . ,M

′
n such that Mi ։

σi M ′
i (1 ≤ i ≤ n), M ′ = (M ′

1 . . .M
′
n)

and σ = σ1# . . .#σn.

Proof By induction on 〈σ, comp(M)〉. Let us only consider only Case 3. Assume

M = (µαM1 M2
−→
P ). The other cases are similar.

1. If σ is standard by virtue of Point 4 of Definition 193 and
−→
P is not empty, then

the induction hypothesis applies. If
−→
P is empty, the result is again obvious.

2. Assume σ is standard by reason of Point 5 (b) of Definition 193. We prove
that this situation is impossible. The case of Point 5 (a) of Definition 193 is

similar. If
−→
P is not empty, we have the result induction hypothesis. Let

−→
P be

empty. Then σ must be of the form (µαM1 M2) → µαM1[α := M2] ։
σ′

M ′

for some σ′ ∈ St, which, by assumption, is again impossible.
�

Remark 196 The analogue of the above assertion is not valid for M = µαM1.
Let M = µα(α (x (λxy (α x)))). Assume σ is

µα(α (x (λxy (α x)))) →β µα(α (x y)) →θ (x y).

Then σ ∈ St and M has no head-redex, but M is not of the form µαM1.

Lemma 197 Let M ։σ′

M ′ ։σ′′

M ′′ such that σ′ is a head-reduction sequence
and σ′′ is standard. Then σ = σ′#σ′′ is standard.

Proof Let σ′ = [r]#σ. We prove the result by induction on 〈|σ|, comp(M)〉,
taking into account the various points of Definition 193.

1. |σ| = 0. Assume, for example, M = (λxM1 M2
−→
P ) = (λxM1 M2 . . .Mn),

where
−→
P might be empty. Then M →r (M1[x := M2] . . .Mn) ։σ′′

M ′′ such
that σ′′ ∈ St. Let us examine some of the cases.

- σ′′ is standard by virtue of Points 1-3 of Definition 193. Then, necessarily,
−→
P is empty and [r]#σ′′ ∈ St by Point 5 (a) of Definition 193.

- σ′′ is standard by virtue of Point 4 of Definition 193. If
−→
P is empty,

we have the result by Point 5 (a) of the same definition. Otherwise
we have (M1[x := M2] . . .Mn−1) ։

σ′′

1 N1 and Mn ։
σ′′

2 N2 with some
standard σ′′

1 and σ′′
2 such that σ′′ = σ′′

1#σ′′
2 . We can apply the induction

hypothesis to [r]#σ′′
1 , which yields the result.

- σ′′ is standard by virtue of Point 5 (a) of Definition 193. We may suppose

again that
−→
P is not empty. Then we have standard σ′′

1 and σ′′
2 for which

σ′′ = σ′′
1#σ′′

2 and σ′′
1 = [r1, . . . , rk+1] for some k ≥ 0 such that (M1[x :=

M2] . . .Mn−1) = N1 →r1 N2 →r2 . . . →rk Nk+1 = λyQ for some λyQ
and (λyQ Mn) →rk+1 Q[y := Mn] ։σ′′

2 M ′′. Moreover, none of the
terms N1, . . . , Nk begins with a λ. Then, by the induction hypothesis,
[r]#σ′′

1 ∈ St and, obviously, no element of the sequence M,N1, . . . , Nk

begins with a λ. This means that [r]#σ′′ is standard.

2. The cases when |σ| ≥ 1 follow from the induction hypothesis.
�
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Lemma 198 Let M ։σ M ′ such that σ is standard, regular and the head-redex
rh of M is involved in σ. Then σ = [rh]#σ′ for some σ′.

Proof The proof goes by induction on |σ|, considering the various cases of Defi-
nition 193.

1. |σ| = 0: there is nothing to prove.

2. |σ| ≥ 1. Assume r 6= rh, where σ = [r]#σ′. Let M →r M ′′ ։σ′

M ′. By
Lemma 187, the head-redex r′′ of M ′′ is involved in σ′, thus, by the induction
hypothesis, we have σ′ = [r′′]#σ′′. Now, by examining the various forms of
M according to Lemma 176, we can check easily that the above situation is
impossible. In case of M = (µαM1 M2 . . .Mn) we have to use the fact that,
by the regularity of σ, µαM1 does not disappear.

�

Remark 199 1. The above lemma is not valid without the regularity assump-
tion, as the following reduction sequence shows:

(µα(α λxx) y) →θ (λxx y) →β y.

2. Taking into account the form of Definition 193, it seems to be promising to
formulate the lemma above in the following way. Let the standard, regular
reduction sequence σ be defined as M1 →r1 M2 → . . . → Mn →rn Mn+1.
Assume Mn = rn. Then σ is a head-reduction sequence. But in the presence
of θ, this statement is false, as it is demonstrated by the reduction sequence
in Remark 196.

Definition 200 Let M be a term, x be a λ-variable (resp. α be a µ-variable).
Denote by |M |x (resp. |M |α) the number of occurrences of x (resp. α) in M .

Notation 201 Let σ be the reduction sequence M1 →r1 M1 →r2 . . . →rn Mn+1

for some terms M1, . . . ,Mn+1. Let 〈σ〉(ρ,α) denote the number of ρ-reductions of
the form (α µβP ) in σ if α ∈ Fv(M), otherwise let 〈σ〉(ρ,α) be 0.

Lemma 202 Let M ։σ M ′. Then there exists a ν such that M [x := N ] ։ν

M ′[x := N ] and |ν| = |σ|. Moreover, if σ is standard, then ν is standard, and if σ
is regular, then ν is regular.

Proof The proof goes by a straightforward induction on 〈|σ|, comp(M)〉. �

Lemma 203 Let M , M ′ be λµ-terms such that M ։σ M ′. Assume N1, . . . , Nk

are λµ-terms for which α /∈ Fv(Ni) (1 ≤ i ≤ k). Then there exists a ν such that
M [α := N1] . . . [α := Nk] ։ν M ′[α := N1] . . . [α := Nk] and |ν| = |σ| + k · 〈σ〉(ρ,α).
Moreover, if σ is standard, then ν is standard, and if σ is regular, then ν is regular.

Proof By induction on 〈|σ|, comp(M)〉.

1. |σ| = 0: trivial.

2. σ = r#σ′, where M →[r] M ′′ ։σ′

M ′. The only interesting case is M =
(γ µβM1) →ρ M1[β := γ] = M ′′ ։σ′

M ′. If α 6= γ, then the result follows
from the induction hypothesis. Otherwise, we have

M [α := N1] . . . [α := Nk] = (α (µβM1[α := N1] . . . [α := Nk] N1 . . . Nk))

։
k
µ (α µβM1[α := N1] . . . [α := Nk][β := N1] . . . [β := Nk])

→ρ M1[β := α][α := N1] . . . [α := Nk],

which, by the induction hypothesis, yields the result. In the case when σ is
standard, the standardness of ν is ensured by Lemma 197.

�
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Lemma 204 1. Let N ։σ N ′. Then there exists a ν such that M [x := N ]։ν

M [x := N ′] and |ν| = |σ|·|M |x. Moreover, if σ is standard, then ν is standard,
and if σ is regular, then ν is regular.

2. Let N ։σ N ′. Then there exists a ν such that M [α := N ] ։ν M [α := N ′]
and |ν| = |σ| · |M |α. Moreover, if σ is standard, then ν is standard, and if σ
is regular, then ν is regular.

Proof Let us only deal with Case 1. The proof goes by a straightforward induction
on comp(M). For example, let us consider two of the cases.

- M = x: τ = σ is appropriate.

- M = (M1 M2): The induction hypothesis gives τi ∈ St such that Mi[x :=
N ] ։τi Mi[x := N ′] and |τi| = |σ| · |Mi|x (i ∈ {1, 2}). Then we can choose
τ = τ1#τ2.

�

Notation 205 1. Let M ։σ M ′ for some terms M and M ′. Let us denote by
〈σ〉θ the number of θ-reductions occurring in σ.

2. Let M be a term, assume occ(M,π) = N . Let us denote by arg(M,π) the
number of arguments of the occurrence of N in M . We write

sumarg(M,N) =
∑

{arg(M,π) | occ(M,π) = N}

if N has at least one occurrence in M , otherwise let sumarg(M,N) = 0.

Lemma 206 Let M ։σ M ′, N ։ν N ′. Assume σ and ν are standard and
regular. Then there is a standard, regular reduction sequence τ such that

M [x := N ]։τ M ′[x := N ′]

and |τ | = |σ| + |M ′|x · |ν| + sumarg(M ′, x) · 〈ν〉θ.

Proof The proof goes by induction on 〈|σ|, comp(M)〉, taking into account the
various points of Definition 193.

A, |σ| = 0: This case is treated by Lemma 204.

B, σ = [r]#σ′.

1. M = λyM1 or M = µαM1 or M = (α M1) such that M1 ։
σ M ′

1: the
induction hypothesis gives the result.

2. M = (M1 M2)։
σ1 (M ′

1 M2)։
σ2 (M ′

1 M
′
2) = M ′ such that σ = σ1#σ2

and σ1, σ2 are standard, regular.

(a) If the head-redex rh of M1 is involved in σ1, then, by Lemma 198,
r = rh, furthermore rh[x := N ] is again the head-redex of M1[x :=
N ]. By the regularity of σ, rh is not a θ-redex. This means that
[rh[x := N ]]#σ′[x := N ] is standard and regular, and, by applying
the induction hypothesis to σ′, we obtain the result.

(b) Assume the head-redex rh of M1 is not involved in σ1 or does not
exist.

- If M1 is of the form other than (x
−→
P ), for some (possibly empty)

−→
P , then, taking into consideration Lemma 195, we can apply
the induction hypothesis. Observe that in the case of M =
(µαN1 N2

−→
P ), by regularity, µαN1 cannot disappear, thus the

sequence (µαN1[x := N ] N2[x := N ]
−→
P [x := N ])։ (µαN ′

1[x :=

N ′] N ′
2[x := N ′]

−→
P

′
[x := N ′]) obtained by the induction hypoth-

esis is again standard and regular.
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- Finally, assume M1 = (x
−→
P ). Suppose

−→
P is not empty, that

is, M1 = (x P1 . . . Pk) for some P1, . . . , Pk. We write M∗ =
(y P ′

1 . . . P
′
k M

′
2), where y is a new variable andM ′ = (x P ′

1 . . . P
′
k M

′
2).

Let N ։ν′′

N ′′ ։ν′

N ′, where ν′ and ν′′ are such that ν =
ν′′#ν′. Now, we prove by induction on |ν′| that a standard,
regular τ ′ can be given for which (N ′′ P1[x := N ] . . . Pk[x :=
N ] M2[x := N ]) ։τ ′

M ′[x := N ′] and |τ ′| = |σ| + |ν′| +
(k + 1) · 〈ν′〉θ + |M∗|x · |ν| + sumarg(M∗, x) · 〈ν〉θ. Assume
ν′ = [s]#ζ, and we already have the result for ζ. If s is other
than a θ-redex, then the induction hypothesis applies. Assume
N ′′ = µα(α Q) →[s] Q ։ζ N ′. Then we can choose as τ ′ the
reduction sequence below:

(µα(α Q) P1[x := N ] . . . Pk[x := N ] M2[x := N ])

→k+1
µ µα(α (Q P1[x := N ] . . .M2[x := N ]))

→θ (Q P1[x := N ] . . .M2[x := N ])

։τ ′′

M ′[x := N ′],

where τ ′′ is obtained by the induction hypothesis. For the length
of τ ′ we have

|τ ′| = 1 + (k + 1) + |τ ′′|

= 1 + (k + 1) + |σ| + |ζ| + (k + 1) · 〈ζ〉θ

+ |M∗|x · |ν| + sumarg(M∗, x) · 〈ν〉θ

= |σ| + |ν′| + (k + 1) · 〈ν′〉θ + |M∗|x · |ν| + sumarg(M∗, x) · 〈ν〉θ.

Taking into account the facts that |M ′|x = |M∗|x+1 and sumarg(M ′, x) =
sumarg(M∗, x)+(k+1), we obtain the desired result with ν = ν′.

3. Let σ be M = (M1 M2) ։
σ1 (λyP M2) → P [y := M2] ։

σ2 M ′. Let
us write s = (λyP M2). We show that r = rh, where σ = [r]#σ′ and
rh is the head-redex of M . Assume that the head-redex rh of M is not
involved in σ1. By the regularity of σ, M1 = µαM3 is not possible.
Thus, applying Lemma 195, we obtain that M1 = λyM3 for some M3.
Therefore, σ1 is empty and σ begins with rh. If rh is involved in σ,
then, by Lemma 198, we again have the result. Since rh[x := N ] is the
head-redex of M [x := N ], by Lemma 197 and the induction hypothesis,
we obtain our assertion.

4. M = µαM1 →r1 µαM2 → . . .→ µαMk →rk µα(α Mk+1) →θ Mk+1 ։
σ2

M ′, where none of µαM1, . . . , µαMk is a θ-redex and σ = σ1#[rk+1]#σ2

with σ1 = [r1, . . . , rk] and rk+1 = µα(α Mk+1). Then, applying Lemma
202 for σ1 and the induction hypothesis for σ2, we obtain the result for the
standard, regular reduction sequenceM [x := N ]։σ1[x:=N ] µα(α Mk+1[x :=
N ]) →θ Mk+1[x := N ]։τ2 M ′[x := N ′].

The remaining cases are proved analogously.
�

Lemma 207 Let M ։σ M ′, N ։ν N ′. Assume σ and ν are standard and
regular. Then there is a standard, regular reduction sequence τ such that

M [α := N ]։τ M ′[α := N ′]

and |τ | = |σ| + 〈σ〉(ρ,α) + |M ′|α · |ν|.
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Proof The proof goes by induction on 〈|σ|, comp(M)〉, similarly to that of the
previous lemma. We consider some of the cases according to Definition 193.

1. σ=0: This case is treated in Lemma 204.

2. σ = [r]#σ′ for some σ′.

(a) M = (M1 M2) ։
σ1 (M ′

1 M2) ։
σ2 (M ′

1 M
′
2) = M ′, where σ1 and σ2

are standard and regular such that σ = σ1#σ2. By the induction hy-
pothesis we have the standard and regular reduction sequences M1[α :=
N ] ։τ1 M ′

1[α := N ′] and M2[α := N ] ։τ2 M ′
2[α := N ′] with appro-

priate lengths. Moreover, since, for any M and N , M [α := N ] = µβN1

implies M = µβM1 and N1 = M1[α := N ] we also have the regularity of
τ = τ1#τ2.

(b) M = (α M1) ։
σ1 (α (µβM2)) →ρ M2[β := α] ։σ2 M ′, where σ =

σ1#[s]#σ2 with s = (α (µβM2)) and σ1, σ2 standard, regular. Then, by
the induction hypothesis and Lemmas 203 and 197, we have the standard
and regular τ such that

(α (M1[α := N ] N)) ։τ1 (α (µβM2[α := N ] N))

→µ (α µβM2[α := N ][β := N ])

→ρ M2[β := α][α := N ]

։τ2 M ′[α := N ′].

For the length of τ we have |τ | = 2 + |τ1| + |τ2| = 2 + |σ1| + 〈σ1〉(ρ,α) +
|σ2| + 〈σ2〉(ρ,α) + |M ′|α · |ν| = |σ| + 〈σ〉(ρ,α) + |M ′|α · |ν|.

All the remaining cases are proved in a similar way, by applying the induction
hypothesis. �

Before we continue with our estimations we prove the following lemma.

Lemma 208 Let M be a term. We have sumarg(M,x) ≤ comp(M) − 1.

Proof By induction on comp(M). The only interesting case is M = (x
−→
P ) for

some
−→
P . We may assume

−→
P is non-empty. Let M1, . . . ,Mn be the components of

−→
P . Then sumarg(M,x) = n+

∑n
i=1 sumarg(Mi, x) ≤ n+

∑n
i=1(comp(Mi)− 1) =

comp(M) − 1. �

For our estimations we also need the following notion.

Definition 209 The set of λµI-terms is defined inductively as follows:

1. x is a λµI-term,

2. λxM is a λµI-term provided M is a λµI-term and x ∈ Fv(M),

3. µαM is a λµI-term provided M is a λµI-term and α ∈ Fv(M),

4. (M N) is a λµI-term if M and N are λµI-terms.

Lemma 210 Let M ։σ M ′ such that M is a λµI-term. Then M ′ is a λµI-term
also.

Proof By a straightforward induction on 〈|σ|, comp(M)〉. �
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Definition 211 Let r be a redex, the number m(r,M) is defined by:

m(r,M) =





|P |α if r = (µαP Q),
|P |x + comp(P ) if r = (λxP Q),
1 if r = (α µβP ),
2n+ 1 if r = µα(α P ) ≤M and µα(α P ) has n arguments in M.

Notation 212 Let us write |σ|∗ = max{|σ|, 1}.

Lemma 213 Let M ։σ M ′ →r M ′′, where σ is a regular, standard reduction
sequence. Then we can construct a regular, standard M ։τ M ′′ such that

|τ | ≤ 1 +max{m(r,M ′), 2} · |σ|∗.

Moreover, if M is a λµI-term, then 1 + |σ| ≤ |τ | holds as well.

Proof The proof goes by induction 〈|σ|, comp(M)〉. The case of |σ| = 0 is obvious,
thus we may assume σ = [s]#σ′ for some σ′.

1. The head-redex rh of M does not exist or is not involved in σ. We consider
some of the cases.

(a) M = (µαM1 M2
−→
P ) = (µαM1 M2 . . .Mn). Since σ is regular, µαM1

cannot disappear. Thus, by Lemma 195, we haveM ′ = (µαM ′
1 M

′
2 . . .M

′
n)

such that Mi ։
σi M ′

i and σ = σ1# . . .#σn, where σi (1 ≤ i ≤ n) are
standard and regular. If r ≤ M ′

i for some 1 ≤ i ≤ n, then the induction
hypothesis applies.

- r = µαM ′
1. Then M ′

1 = (α M ′′
1 ) for some α /∈ Fv(M ′′

1 ). Now, we
can define τ1 as

(µαM1 M2 . . .Mn) ։n−1
µ µαM1[α := M2] . . . [α := Mn]

→σ′

1 µα(α M ′′
1 )[α := M2] . . . [α := Mn]

= µα(α (M ′′
1 M2 . . .Mn)) →θ (M ′′

1 M2 . . .Mn),

where σ′
1 is obtained from σ1 by Lemma 203. Then

|τ1| = (n− 1) + |σ′
1| + 1 = 1 + (n− 1) + |σ1| + (n− 1) · 〈σ1〉(ρ,α)

≤ 1 + (2n− 1) · |σ1|
∗.

By this |τ | ≤ 1+max{m(r,M ′), 2}·|σ|∗ follows. The above equation
also yields for τ1 the relation |τ1| ≥ |σ1|+1, which gives |τ | ≥ |σ|+1
concerning the second part of our assertion.

- r = (µαM ′
1 M ′

2). By Lemmas 207 and 197, we have a standard,
regular τ1 such that (µαM1 M2) →µ M1[α := M2] ։ M ′

1[α := M ′
2]

with |τ1| = 1 + |σ1| + 〈σ1〉(ρ,α) + |M ′
1|α · |σ2|. This means |τ1| ≤

1 + 2 · |σ1|
∗ + |M ′

1|α · |σ2|
∗ ≤ 1 +max{m(r,M ′), 2} · (|σ1|

∗ + |σ2|
∗),

by which the result follows for τ = τ1# . . .#σn. If M is a λµI-
term, we also have |τ1| ≥ 1 + |σ1| + |σ2|, which, in this case, implies
|τ | ≥ 1 + |σ|.

(b) M = (λxM1 M2
−→
P ) = (λxM1 M2 . . .Mn). Similar to the second subcase

of the case above. In the course of the argument we have to apply Lemma
206 and, by the estimation for m(r,M ′), we also make use of Lemma 208.

(c) M = (α M1). By Lemma 195, we have M ′ = (α M ′
1) and M1 ։

σ M ′
1.

If r ≤ M ′
1, the induction hypothesis applies. Assume r = (α M ′

1) =
(α µβM ′′

1 ). Since rh, if it exists, is not involved in σ, Lemma 195 implies
that the only possibility is M1 = µγM2.
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- γ = β: We have M2 ։
σ M ′′

1 , and the reduction sequence M →ρ

M2[β := α]։σ[β:=α] M ′′
1 [β := α] is appropriate.

- γ 6= β: In this case µγM2 must disappear in σ. There exists standard
and regular σ1 and σ2 such that µγM2 ։

σ1 µγ(γ M3) →θ M3 ։
σ2

µβM ′′
1 . The reduction sequence (α µγM2) →ρ M2[γ := α]։σ1[γ:=α]

(γ M3)[γ := α] = (α M3)։
τ1 M ′′

1 [β := α] is a standard and regular
reduction sequence of appropriate length, where τ1 is obtained from
σ2#[r] by the induction hypothesis.

2. The head-redex rh of M is involved in σ. We have, by Lemma 198, s = rh.
Applying the induction hypothesis and Lemma 197, we obtain the result.

�

Theorem 214 Let σ be the reduction sequence M1 →r1 M2 →r2 . . . →rn Mn+1.
Then there is a standard, regular reduction sequence st(σ) such that M1 ։

st(σ)

Mn+1 and the following relations are valid.

1. |st(σ)| ≤ (1 +max{m(r1,M1), 2}) · . . . · (1 +max{m(rn,Mn), 2}).

2. Moreover, if M is a λµI-term, then |st(σ)| ≥ |σ|.

Proof Both cases are proved by induction on |σ|, applying Lemma 213. We
examine only Case 1.

1. |σ| = 1: The only interesting case isM1 = (µa(α N1) N2 . . . Nk) →θ (N1 N2 . . . Nk) =
M2. Then M1 = (µa(α N1) N2 . . . Nk) ։n−1

µ µα(α (N1 N2 . . . Nk)) →θ

(N1 N2 . . . Nk) = M2 is appropriate for st(σ).

2. σ = σ′#[rn], where |σ′| ≥ 1: By the induction hypothesis we can find a
standard and regular st(σ′) with appropriate length such that M1 ։

st(σ′) Mn.
Moreover, |st(σ′)|∗ = |st(σ′)|. Then, by Lemma 213, there is a standard and
regular M1 ։

τ Mn+1 such that |τ | ≤ 1 + max{m(rn,Mn), 2} · |st(σ′)|∗ ≤
(1 +max{m(rn,Mn), 2}) · |st(σ′)|∗, which yields the result.

�

Remark 215 Theorem 214 asserts for the case of the λµρθ-calculus the standard-
ization result well-known in the simply-typed λ-calculus. Moreover, as in the case
for the λ-calculus examined in Xi [66], it furnishes us with an upper bound con-
cerning the length of the standard, regular reduction sequence constructed from the
original one.

Definition 216 Let σ be the reduction sequence M1 →r1 M2 →r2 . . . →rn Mn+1.
Denote by M(σ) (the measure of σ) the number

M(σ) =

n∏

i=1

(1 +max{m(ri,Mi), 2}).

2.0.9 On the lengths of standard reduction sequences

Definition 217 Let M be a term. The leftmost redex of M , in notation lr(M),
is defined as follows.

1. lr(λxM) = lr(M),

2. lr(µαM) = µαM if µαM is a θ-redex, and lr(µαM) = lr(M) otherwise.
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3. lr((α M)) = (α M) if (α M) is a ρ-redex, and lr((α M)) = lr(M) otherwise.

4. lr((µαM1 M2
−→
P )) = (µαM1 M2).

5. lr((λxM1 M2
−→
P )) = (λxM1 M2).

6. lr((x M1
−→
P )) = lr(Mi) provided Mi /∈ NF and Mj ∈ NF (1 ≤ j ≤ i− 1).

Definition 218 A reduction sequence M1 →r1 M2 →r2 . . . →rn Mn+1 is the
leftmost reduction sequence from M1 to Mn+1 if ri is the leftmost redex of Mi

(1 ≤ i ≤ n). We denote by M ։lrs N the fact that M reduces to N via a leftmost
reduction sequence. Then the reduction sequence itself is denoted by lrs(M ։ N).

Lemma 219 Let M be a λµI-term. Assume M has a normal form M ′. Then
every standard and regular reduction sequence M ։M ′ is of the same length.

Proof We prove something more. Let σ be standard, regular such that either
M ։ν M ′′ →r M ′, where σ = ν#[r] and r is the leftmost redex of M ′′, or M ։σ

M ′, where M ′ ∈ NF . Then we have M ։lrs M
′ such that |σ| = |lrs(M ։ M ′)|.

The two cases are proven simultaneously by induction on 〈|σ|, comp(M)〉. The case
of |σ| = 0 is trivial. Hence, we may assume that σ = [s]#σ′.

1. Let M = (µαM1 M2
−→
P ) = (µαM1 M2 . . .Mn).

- Let us assume first M ։σ M ′ with a standard and regular σ such that
M ′ ∈ NF . It is straightforward to check by induction on |σ|, and distin-
guishing the cases of Definition 193, that in this case rh = (µαM1 M2)
must be involved in σ. It follows, by Lemma 198, that s = rh. Thus, the
induction hypothesis applies.

- On the other hand, let M ։ν M ′′ →r M ′ as above. Assume that rh is
not involved in ν. Then, making use of the regularity of ν and Lemma
195, we obtain immediately that M ′′ = (µαM ′′

1 M ′′
2 . . .M

′′
n ) for some

M ′′
i (1 ≤ i ≤ n). Then r = (µαM ′′

1 M ′′
2 ) would follow, contradicting the

standardness of σ. Therefore, rh is involved in ν and Lemma 197 yields
again s = rh, by which the result follows.

2. The case of M = (λxM1 M2
−→
P ) is analogous to the above one.

3. M = µαM1. Assume any of the premisses are valid, that is either M ։ν

M ′′ →r M ′ with σ = ν#[r] standard, regular and r = lr(M ′′) or M ։σ M ′

with σ standard, regular and M ′ ∈ NF .

(a) M = µαM1 ։
σ µαM ′

1 = M ′. By the induction hypothesis, we have
|σ| = |lrs(M1 ։ M ′

1)|. Let lrs(M1 ։ M ′
1) = M1 →r1 M2 →r2→ . . . →

Mn+1. We show lrs(M1 ։M ′
1) = lrs(µαM1 ։ µαM ′

1) by induction on
n.

- The sequence (µαMi)1≤i≤n+1 does not contain a θ-redex. Then
lrs(M1 ։M ′

1) = lrs(µαM1 ։ µαM ′
1), and we are done.

- The sequence (µαMi)1≤i≤n+1 contains a θ-redex. Assume µαMj =
µα(α N) is the first θ-redex in the sequence under discussion. Let
µαM1 ։

σ1 µα(α N) ։σ2 µαM ′
1. Then (α N) must disappear in

σ2, otherwise, in both cases, a contradiction would emerge either by
the standardness of σ or by the fact that M ′ ∈ NF . Thus, we have
µα(α N) ։σ3 µα(α µβP ) →ρ µαP [β := α] ։σ4 µαM ′

1 for some σ3

and σ4. Then µαM1 ։
σ1 µα(α N) →θ N ։

σ3 µβP is the leftmost
reduction sequence from M to µβP , and, applying the induction
hypothesis to µβP ։σ4[α:=β] µβM ′

1[α := β], we obtain the result.
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(b) M = µαM1 →r1 µαM2 → . . .→ µαMk →rk µαMk+1 = µα(α M ′
k+1) →θ

M ′
k+1 = Mk+2 ։

σ2 M ′, where µα(α M ′
k+1) is the first θ-redex in the

sequence (µαMi)1≤i≤k+1. We may assume σ1 = [r1, . . . , rk] is not empty,
otherwise the result follows by applying the induction hypothesis to σ2.
In what follows, we show that rk = lr(µαMk). Obviously, this implies
that the induction hypothesis can be applied to M1 ։

σ1 Mk+1, that
is, we have M1 ։lrs Mk+1 such that |lrs(M1 ։ Mk+1)| = |σ1|. Then,
as in the above subcase of Case 3, we can prove that |lrs(µαM1 ։

µαMk+1)| = |lrs(M1 ։Mk+1)|, which yields the result.

- Mk = (β M ′
k). Suppose β = α. Then, by assumption, α ∈ Fv(M ′

k).
Since Mk is a λµI term, this would imply α ∈ Fv(Mk+1), a con-
tradiction. Hence, β 6= α. In this case Mk = (β M ′

k) → Mk+1 =
(α M ′

k+1) means M ′
k = µγM ′′

k such that µαMk →ρ µαM
′′
k [γ := β] =

µαMk+1. This proves our assertion.

- Mk = µβM ′
k. Then, from Mk → Mk+1 = (α M ′

k+1), it follows that
M ′

k = (β M ′′
k ) and rk = Mk →θ M

′′
k = Mk+1.

- Mk = λxM ′
k is impossible.

- Mk = (M ′
k M

′′
k ). Then, necessarily, rk = (M ′

k M
′′
k ), and the proof is

finished.
�

Remark 220 As it is expected, Lemma 219 is not valid in the general case. Let
M = µα(α (λx(x x) (λxy (α y)))). The reduction sequences σ1 defined as

µα(α (λx(x x) (λxy (α y)))) →β µα(α (λx(x x) y))

→θ (λx(x x) y)

→β (y y)

and σ2 defined as

µα(α (λx(x x) (λxy (α y)))) →β µα(α ((λxy (α y)) (λxy (α y))))

→β µα(α (y (λxy (α y))))

→β µα(α (y y))

→θ (y y)

are both standard and regular, leading from M to its normal form. In spite of all
these they have different lengths.

Corollary 221 Let M be a λµI-term. Assume M has a normal form M ′. Then
the leftmost reduction sequence is the longest one leading from M to M ′.

Proof Follows from Theorem 214 and Lemma 219. �

2.0.10 The estimation for the λµρθI-calculus

In this section we give an estimation for the lengths of the reduction sequences in
the λµρθI-calculus.

Let A be a type. We apply the notion of the length of A in correspondence with
Definition 106 in the previous chapter. The rank of a redex, given in Definition 107,
needs to be supplemented with the case of a θ-redex, the other cases remaining the
same as in the definition mentioned.
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Definition 222 Let M be a λµI-term, and r = µα(α M1) ≤ M a θ-redex. Then
the rank of r is:

rank(r,M) = lh(type(µα(α M1))).

The rank of a term M is defined again as the maximum of the rank of its redexes.

Definition 223 1. We say that a reduction sequence ν is a k-reduction se-
quence, if every redex in ν is of rank k.

2. A reduction sequence is a k-normalization for a given term M , if it is a k-
reduction sequence and eliminates all redexes of rank k in M . Define

NFk = {M | rank(M) < k}.

3. Let M be a λµ-term, suppose rank(M) = k. A reduction sequence starting
from M is good, if it has the following properties. It begins with eliminating
redexes of rank k from M in a certain order: it eliminates first the leftmost,
innermost redex of rank k, that is, the redex containing no other redexes of
rank k and stands in the leftmost position among these redexes. After elimi-
nating all the redexes of rank k it continues in the same way with the set of
redexes having maximal rank in the term obtained.

Lemma 224 The algorithm described in Definition 223 is a normalization algo-
rithm.

Proof We only give a sketch of the proof. Let M be a term of rank k. Let r be
the leftmost, innermost k-redex of M .

1. k ≥ 1.

- r = (λxP Q). Then, as in the case of the simply typed λ-calculus, it can
be checked easily that reducing with r creates no k-redexes.

- Let r = (µαP Q) with µαP : A → B and Q : A. Let (α U) ≤ P .
Assume (U [α := Q] Q) ≤ r′ = µαP [α := Q] is a k-redex. Then, since r
is innermost, the only possibility is U = λxU1 for some U1. But reducing
with (λxU1[α := Q] Q) creates no k-redexes, thus we can eliminate
subsequently the k-redexes from r′.

- Let r = (α µβP ) be the leftmost, innermost k-redex of M with k ≥
1. Since (α µβP ) : ⊥, the case when ((α µβP ) U) ≤ M for some
U is impossible. Furthermore, since r is the leftmost redex, the case
µγ(α µβP ) ≤ M and P = (γ P ′) for some γ /∈ P ′, that is, the situation
when reducing with r would create a θ-redex, is again impossible. Hence
the reduction with r could create a ρ-redex only. This happens when
(γ (α µβP )) ≤ M and P = µδP ′. But this involves µδP ′ : ⊥, that
is, (γ µδP ′[β := α]) is not a k-redex. Therefore, when reducing with
r = (α µβP ), the number of k-redexes decrease.

- r = µα(α P ). By Definition 217, if r is leftmost, then there exists
no U such that (µα(α P ) U) ≤ M . This means that reducing with
r can create a k-redex only if P = (β P ′) such that β /∈ Fv(P ′) and
µβµα(α (β P ′)) ≤M . But then µα(α P ) : ⊥, which is impossible.

2. k = 0. In this case the only redexes in M are ρ- or θ-redexes of type ⊥. It is
straightforward to check that the reducing of these redexes can only create ρ-
or θ-redexes. But any reduction sequence consisting entirely of ρ- or θ-redexes
must terminate. This proves our assertion.

�
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Lemma 225 Let rank(µαP Q) = k, assume x /∈ Fv(P ). Let (µαP Q)։νU ,
where ν is a good k-normalization sequence. Then there are terms P ′, Q′, U ′ and
good k-normalization sequences ν1, ν2, ν3 such that

P։ν1P ′, Q։ν2Q′, µαP ′ x։ν3U ′

together with U = U ′[x = Q′], ν = ν1#ν2#ν3[x := Q′].

Proof The algorithm proceeds by eliminating the innermost k-redexes from left
to right, that is we have (possibly empty) ν1 and ν2- both being k-normalization
sequences- such that ν1#ν2 ≤ ν and P ։ν1 P ′ ∈ NF k, Q ։ν2 Q′ ∈ NF k. Then
ν continues with reducing (µαP ′ Q′) and the redexes created by this reduction. It
is immediate to check that when reducing (µαP ′ Q′), the created k-redexes can
only be redexes of the form (λyV [α := Q′] Q′) for some λyV of rank k such that
(α λyV ) ≤ P ′, so for every k-redex r in µαP ′[α := Q′] there is an r′ in µαP ′[α := x]
such that r = r′[x := Q′]. Reducing with these β-redexes in µαP ′[α := Q′], no more
k-redexes are created. This proves our assertion. �

Lemma 226 Let rank(λyP Q) = k, assume x /∈ Fv(P ). Let (λyP Q)։νU ,
where ν is a good k-normalization sequence. Then there are terms P ′, Q′, U ′ and
good k-normalization sequences ν1, ν2 such that

P։ν1P ′, Q։ν2Q′, (λyP ′ x)→ν3P ′[y := x] = P ′′

and ν = ν1#ν2#ν3[x := Q′]. Moreover, U = P ′′[x := Q′].

Proof Analogous to the proof of the above lemma. �

Remark 227 A result very similar in nature to those of Lemmas 225 and 226 can
be found in Xi [67].

Lemma 228 Let r = (µαP x), µαP ∈ NF k, rank(r) = k and x /∈ Fv(P ).
Assume (µαP x)։νU ∈ NFk, where ν is a good k-normalization sequence. Then

1. |ν| ≤ comp(P ),

2. comp(U) ≤ 2 · comp(P ).

Proof

1. Since µαP ∈ NF k, in µαP [α := x] k-redexes of the form (λyQ[α := x] x)
can only occur, where (α λyQ) ≤ P and rank(λyQ) = k. Subsequently
reducing these redexes gives U , which means that U can be obtained in at
most |P |α + 1 ≤ comp(P ) steps.

2. Considering the above argument, since x is a variable, the β-reduction steps
in ν does not increase the size of the term, so

comp(U) ≤ comp(µαP [α := x]) = 1 + comp(P ) + |P |α ≤ 2 · comp(P ).
�
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Lemma 229 Let M be a term, suppose rank(M) = k. Let M ։ν M ′ by a good
k-normalization sequence ν. Then we have

1. comp(M ′) ≤ 2comp(M)−1,

2. |ν| ≤ 2comp(M)−1.

Proof

1. The proof goes by induction on comp(M).

(a) M = x or M = λxM1. Obvious.

(b) M = µαM1. If M = µα(α M1) is a θ-redex of rank k, then, since the
algorithm eliminates k-redexes from bottom to up and from left to right,
we have a ν′ ≤ ν such that µα(α M1)։

ν′

µα(α M ′
1) →

r M ′
1 = M ′. But

in this case M →θ M1 ։
ν′

M ′ is valid as well, thus by the induction
hypothesis

comp(M ′) ≤ 2comp((M1)−1) < 2comp(M)−1.

If µαM1 is not a θ-redex, but reduces to a θ-redex of rank k in the
course of the process, then a reasoning analogous to the above one works.
Finally, if µαM1 is not a θ-redex and it neither reduces to a θ-redex, then
the induction hypothesis applies.

(c) M = (M1 M2).

- M is not a k-redex. Then M cannot reduce to a k-redex. Suppose
on the contrary that there is some initial subsequent of ν such that
it reduces M to a k-redex, take ν′ as the shortest such reduction
sequence. Suppose M reduces to a µ-redex. (The case of a β-redex is
similar.) In this case we haveM ։ν′

(µβN1 N2), whereM1 ։ µβN1

and M2 ։ N2. Then M ։ν′′

(N3 N2) →r′

(µβN1 N2) must hold
for some r′, ν′′ such that ν′ = ν′′#[r′] and for some N3, N3 not
beginning with a µ. This means N3 = r′ would be again a k-redex,
but a straightforward examination of the possible cases shows it is
impossible. Hence we have M ′ = (M ′

1 M ′
2), ν = ν1#ν2 for some

k-reduction sequences sequences ν1, ν2 and Mi ։
νi M ′

i (i ∈ {1, 2}).
Thus by the induction hypothesis

comp(M ′) = comp(M ′
1) + comp(M ′

2) ≤ 2comp(M1)−1 + 2comp(M2)−1

≤ 2comp(M)−1.

- M is a k-redex. Suppose M = (µαM1 M2). Then M is involved in
ν as a µ-redex. By Lemma 225 we have M ′

1, M
′
2, M

′′ and ν1, ν2, ν3
such that

M1։
ν1M ′

1, M2։
ν2M ′

2, (µαM ′
1 x)։

ν3M ′′

together with M ′ = M ′′[x := M ′
2], ν = ν1#ν2#ν3[x := M ′

2], pro-
vided x /∈ Fv(M1). From this, by Lemma 228 and by the induction
hypothesis,

comp(M ′) = comp(M ′′[x := M ′
2])

= comp(M ′′) + |M ′′|x · (comp(M ′
2) − 1)

< comp(M ′′) · comp(M ′
2) ≤ 2 · comp(M ′

1) · comp(M
′
2)

≤ 2 · 2comp(M1)−1 · 2comp(M2)−1 < 2comp(M)−1

follows.
If M = (λxM1 M2): similar to the case of the µ-redex.
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(d) M = (α M1).

- M does not reduce to a k-redex.

- M is either a k-redex, or reduces to a k-redex. That is, there is a ν′

and a µβM2 ∈ NF k such that (α M1) ։
ν′

(α µβM2) →r M2[β :=
α] and ν′#[r] = ν. The induction hypothesis for M1 gives the result.

2. By induction on comp(M) we prove |ν| ≤ 2comp(M)−1. The only interesting
case is when M is a redex of rank k. Let, for example, M = (µαM1 M2).
Since ν is a k-normalization sequence we can assume again that M is involved
in ν. By Lemma 225 we have M ′

1, M
′
2 and k-normalization sequences ν1, ν2, ν3

such that

M1։
ν1M ′

1, M2։
ν2M ′

2, (µαM ′
1 x)։

ν3M ′′

together with M ′ = M ′′[x = M ′
2], ν = ν1#ν2#ν3[x := M ′

2], provided x /∈
Fv(M1). Then, using Lemma 228 and the induction hypothesis, we obtain

|ν| = |ν1| + |ν2| + |ν3[x := M ′
2]| = |ν1| + |ν2| + |ν3|

≤ 2comp(M1)−1 + 2comp(M2)−1 + 2comp(M1)−1

= 2comp(M1) + 2comp(M2)−1 ≤ 2comp(M)−1.
�

Definition 230 Let tower be defined as follows.

tower(n,m) =

{
m if n = 0,
2tower(n−1,m) if n > 0.

Theorem 231 Let M be a term such that rank(M) = k. Suppose M ։σ N ∈
NF , where σ is a good reduction sequence. Then

M(σ) < tower(k + 1, comp(M)).

Proof We first we prove by induction on k that

M(σ) < tower(1, tower(1, comp(M)) +

k∑

i=2

tower(i, comp(M) − 1)).

Let k = 1. Then σ is a 1-normalization sequence. Suppose σ is M = M1 →r1

M2 →r2 . . . →rn−1 Mn →rn Mn+1 for some n ≥ 1. We have, by Lemma 229,
1 +max{m(ri,Mi), 2} ≤ 2 · comp(Mi)− 1 ≤ 2 · 2comp(M)−1 − 1 < 2comp(M). Again,
by Lemma 229,

M(σ) =

n∏

i=1

(1 +max{m(ri,Mi), 2}) <

n∏

i=1

2comp(M)

= 2n·comp(M).

Applying Lemma 229, we obtain n = |σ| ≤ 2comp(M)−1, so M(σ) < 2comp(M)·2comp(M)−1

≤

22comp(M)

= tower(1, tower(1, comp(M))).
Let rank(M) = k + 1, k ≥ 1. Assume M ։σ′

M ′ ։σ′′

N ∈ NF , where σ′ is
a k + 1-normalization sequence starting from M . By the induction hypothesis we
have

M(σ′′) < tower(1, tower(1, comp(M ′)) +

k∑

i=2

tower(i, comp(M ′) − 1)).
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As above, we obtain again M(σ′) < 22comp(M)

. Then, using the multiplicity of M
and Lemma 229, we can assert

M(σ) = M(σ′) · M(σ′′)

< 22comp(M)

· tower
(
1, tower(1, comp(M ′)) +

k∑

i=2

tower(i, comp(M ′) − 1)
)

< 22comp(M)

· tower
(
1, tower(1, tower(1, comp(M) − 1))

+

k∑

i=2

tower(i, tower(1, comp(M) − 1))
)

= 22comp(M)

· 2

22comp(M)−1

+ . . .+ 2·
·
·
2comp(M)−1

︸ ︷︷ ︸
k

= tower(1, tower(1, comp(M)) +

k+1∑

i=2

tower(i, comp(M) − 1)).

Finally, we prove by induction on k that

tower(1, comp(M)) +
k∑

i=2

tower(i, comp(M) − 1) ≤ tower(k, comp(M)),

by which the assertion of the lemma follows. Let k = 1. Then we have

2comp(M) = 2comp(M).

Let k = n+ 1, n ≥ 1. Applying the induction hypothesis, we obtain

tower(1, comp(M)) +

n+1∑

i=2

tower(i, comp(M) − 1)

= 2comp(M) + 22comp(M)−1

+ . . .+ 2·
·
·
2comp(M)−1

︸ ︷︷ ︸
n+1

≤ tower(n, comp(M)) + tower(n+ 1, comp(M) − 1)

< tower(n+ 1, comp(M)).

By this the proof is finished. �

Corollary 232 Let M be a λµI-term of rank k. Then every reduction sequence
starting from M has length less than tower(k + 1, comp(M)).

Proof LetN be the normal-form ofM . By Lemma 224 and by Theorem 231 there
exists a σ such that M ։σ N and M(σ) < tower(k + 2, comp(M)). By Theorem
214 there is a standard and regular σ′ such that M ։σ′

N and |σ′| < M(σ). The
result follows now from Corollary 221. �

2.0.11 The general case

In what follows we transform every λµ-term M into a λµI-term [|M |]k with some
k ≥ 0 such that η(M) ≤ η([|M |]k), by which, using Corollary 232, we can obtain a
bound for η(M) also.

Notation 233 Let type(α) = ¬A. Then we write type∗(α) = A.
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Lemma 234 Let M , N be terms. Then

rank(M [α := N ]) ≤ max{rank(M), rank(N), lh(type∗(α))}.

Proof By induction on comp(M). The only interesting case is M = (α M1) for
some M1.

1. M1 = λxM2. By induction hypothesis:

rank(M [α := N ]) = rank((α (λxM2[α := N ] N)))

= max{rank(M2[α := N ]), rank(N),

lh(type(λxM2[α := N ]))}

≤ max{rank(M), rank(N), lh(type∗(α))}.

2. M1 = µβM2. Similar to the previous one.

3. M1 is neither of the above forms. Then we have

rank(M [α := N ]) = rank((α (M1[α := N ] N)))

= max{rank(M1[α := N ]), rank(N)}

≤ max{rank(M), rank(N), lh(type∗(α))}.
�

Lemma 235 If M ։M ′, then rank(M ′) ≤ rank(M).

Proof It is enough to show rank(M ′) ≤ rank(M) provided M →r M ′.

1. r is a β-redex. This case was already dealt with in Lemma 110 in Chapter
1. The addition of the θ-reduction to the set of the reductions in the proof of
Lemma 110 only means slight changes.

2. r = (µαM1 M2).

- r is not the head-redex of M . Clearly, the induction hypothesis applies.

- M = (µαM1 M2 . . .Mn). Then M ′ = (µαM1[α := M2] . . .Mn). By
Lemma 234 we have

rank(M ′) ≤ max{rank(µαM1[α := M2]), . . . , rank(Mn),

lh(type(µαM1[α := M2]))}

≤ max{rank(M1), rank(M2), . . . , rank(Mn), lh(type∗(α))}

= rank(M).

3. r = (α µβM1).

- r is not the head-redex of M . The induction hypothesis applies again.

- M = (α µβM1). In this case M ′ = M1[β := α], and our assertion
obviously follows.

�
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Let V = {v (A,B) | A,B are types} be a set of distinguished variables such that
for all A, B we have v (A,B) : A → (B → A). Let M : A and N : B be typed
λµ-terms. We denote the term ((v (A,B) M) N) by 〈M,N〉.

Definition 236 Let M be a λµ-term, k ≥ 0. The λµI-term, [|M |]k, assigned to
M is defined as follows.

- [|M |]k = M , if M is a variable,

- [|M |]k = λxλy1 . . . λym〈([|M1|]k y1 . . . ym), x〉, if M = λxM1 such that lh(type(M)) ≤
k and type(M1) = A1 → . . . → Am → B, type(yi) = Ai (1 ≤ i ≤ m) and B
is atomic,

- [|M |]k = λx〈[|M1|]k, x)〉, if M = λxM1 and lh(type(M)) > k,

- [|M |]k = µα〈[|M1|]k, (α z)〉, if M = µαM1, where α /∈ Fv(M1) and z is a new
variable such that type(M) = type(z),

- [|M |]k = µα[|M1|]k, if M = µαM1 and α ∈ Fv(M1),

- [|M |]k = (α [|M1|]k), if M = (α M1),

- [|M |]k = ([|M1|]k [|M2|]k), if M = (M1 M2).

Remark 237 The above definition differs slightly from the one applied in Xi [66].
Apart from the fact that it is stated for the case of the λµρθ-calculus, even its
restriction to the case of the simply-typed λ-calculus is modified a little. The reason
of the modification was the observation that Definition 5.11 in [66] is apparently
not enough for proving Corollary 5.13. Xi defines a transformation [|.|] from the
simply-typed λ- to the λI-calculus in Definition 5.11 of [66] as follows. Let the set
of variables V be defined as above. Let ((v (A,B) M) N) = 〈M,N〉 provided M : A,
N : B and v (A,B) : A→ (B → A).

- [|M |] = M , if M is a variable,

- [|M |] = λxλy1 . . . λym〈([|M1|] y1 . . . ym), x〉, if M = λxM1 such that type(M1) =
A1 → . . .→ Am → B, type(yi) = Ai (1 ≤ i ≤ m) and B is atomic,

- [|M |] = ([|M1|] [|M2|]), if M = (M1 M2).

In his estimation concerning the length of a reduction sequence from M (cf. Xi
[66], Corollary 5.13) he uses the inequality comp([|M |]) ≤ (2k+3)·comp(M), where
rank(M) = k. When M contains a subterm of the form λxM1 with lh(type(λxM1)) >
k- in this case λxM1 is not the functional part of β-redex-, this inequality can be-
come false. He tries to remedy the problem by saying if λxM1 ≤ M such that
lh(type(λxM1)) > k, then let [|λxM1|] = λx[|M1|]. This gives rise to another prob-
lem, since, with this stipulation, [|M |] can cease to be a λI-term. The following
definition, which is a restriction of Definition 236, can be a solution. Let M be a
λ-term, let k ≥ 0.

- [|M |]k = M , if M is a variable,

- [|M |]k = λxλy1 . . . λym〈([|M1|]k y1 . . . ym), x〉, if M = λxM1 such that lh(type(M)) ≤
k and type(M1) = A1 → . . . → Am → B, type(yi) = Ai (1 ≤ i ≤ m) and B
is atomic,

- [|M |]k = λx〈[|M1|]k, x)〉, if M = λxM1 and lh(type(M)) > k,

- [|M |]k = ([|M1|]k [|M2|]k), if M = (M1 M2).
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We have to make sure that the definition is ”stable” concerning reductions, that
is, if N ≤ M and M →r M ′, then, if N ′ is a descendant of N w.r.t. r, [|N ′|]k
is calculated by applying the same point of the above definition as the one when
determining [|N |]k before. This is ensured by Lemma 235. The same thing must
also be proved for the λµ-calculus in relation with Definition 236, this is done in
the sequel.

Lemma 238 Let M be a λµ-term of type A, assume k ≥ 0.

1. [|M |]k is a λµI-term of type A,

2. [|M |]k[x := [|N |]k] = [|M [x := N ]|]k, provided x /∈ Fv([|M |]k),

3. [|M |]k[α := [|N |]k] = [|M [α := N ]|]k,

4. [|M |]k[β := α] = [|M [β := α]|]k.

Proof By induction on comp(M). �

Our next aim is to prove η(M) ≤ η([|M |]k). For this purpose we prove some
additional lemmas.

Lemma 239 Let M = (λxM1 M2
−→
P ) and N = (M1[x := M2]

−→
P ). Assume

N and M2 are strongly normalising. Then M is also strongly normalizable and
η(M) ≤ η(N) + η(M2) + 1.

Proof Let M ։σ U be an arbitrary reduction sequence, we are going to show
that |σ| ≤ η(N) + η(M2) + 1, from which the result follows. We may suppose that
(λxM1 M2) is involved in σ. Then σ is of the following form for some σ1 and σ2:

M = (λxM1 M2
−→
P )։σ1 M ′ = (λxM ′

1 M
′
2

−→
P ′)

→ (M ′
1[x := M ′

2]
−→
P ′)։σ2 U,

where Mi ։
νi M ′

i (i ∈ {1, 2}),
−→
P ։ν3

−→
P ′ and σ1 = ν1#ν2#ν3. Let σ′ denote the

reduction sequence as below:

M = (λxM1 M2
−→
P )։ν2 (λxM1 M

′
2
−→
P )

→ (M1[x := M ′
2]

−→
P )։σ∗

U,

where σ∗ = ν′1#ν3#σ2 and ν′1 is constructed from ν1 by Lemma 202. Then

|σ| = |σ′| ≤ η(M2) + 1 + η(N),

which is the desired result. �

Lemma 240 Let M = (α µβM1), N = M1[β := α], suppose N is strongly nor-
malising. Then M is also strongly normalizable and η(M) = η(N) + 1.

Proof Assume σ is a reduction sequence starting from (α µβM1). We prove
σ ≤ η(N) + 1, from which the result follows. Let σ = [r]#σ′ for some σ′. We
distinguish the various cases according to the form of σ.

1. (α µβM1) →r
ρ M1[β := α] ։σ′

M2, where σ = [r]#σ′. Then the result
obviously follows.

2. (α µβM1) →
r M2 ։

σ′

M3, where M2 6= N and µβM1 does not disappear in
σ. Then M3 = (α µβM ′

3) and M1 ։
σ M ′

3, which yields the result.

3. (α µβM1) →
r M2 ։

σ′

M3, where M2 6= N and µβM1 disappears in σ. Then
(α µβM1) ։

σ′′

(α µβ(β Mk)) →θ (α Mk) ։σ′′′

M3, where µβM1 does not
disappear in σ′′. We have (α µβM1) →ρ M1[β := α] ։σ′′[β:=α] (β Mk)[β :=

α] = (α Mk)։σ′′′

M3, and the latter reduction sequence is equal in length to
σ. By this the result follows.

The reverse direction is obvious. �
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Lemma 241 Let M = µα(α M1) be a θ-redex, suppose M1 is strongly normalis-
ing. Then M is also strongly normalizable and η(M) = η(M1) + 1.

Proof Similar to the above one. �

Lemma 242 Let M = (µαM1 M2
−→
P ) and N = (µαM1[α := M2]

−→
P ′). Assume

α ∈ Fv(M1). Then
η(M) = η(N) + 1.

Proof Let M →σ M∗. We prove σ ≤ η(N) + 1, from this η(M) ≤ η(N) + 1
follows.

1. r = (µαM1 M2) is involved in σ.

- µαM1 does not disappear in σ: (µαM1 M2
−→
P ) →σ′

(µαM ′
1 M

′
2

−→
P ′) →µ

(µαM ′
1[α := M ′

2]
−→
P ′) ։σ′′

M∗. Then, since α ∈ Fv(M1), by Lemmas

204 and 203, the reduction sequence (µαM1 M2
−→
P ) →r (µαM1[α :=

M2]
−→
P ) ։ (µαM1[α := M ′

2]
−→
P ) ։ (µαM ′

1[α := M ′
2]

−→
P ′) ։σ′′

M∗ has
length at least |σ|, by which the assertion follows.

- µαM1 disappears in σ: (µαM1 M2
−→
P ) →σ′

(µα(α M ′
1) M

′
2

−→
P ′) →θ

(M ′
1 M ′

2

−→
P ′) ։σ′′

M∗. Then, since α ∈ Fv(M1), by Lemmas 204

and 203 the sequence (µαM1 M2
−→
P ) →µ (µαM1[α := M2]

−→
P ) ։

(µα(α M ′
1)[α := M ′

2]
−→
P ′) = (µα(α (M ′

1 M
′
2))

−→
P ′) →θ (M ′

1 M
′
2

−→
P ′) ։σ′′

M∗ has length at least |σ|, which yields the result.

2. r = (µαM1 M2) is not involved in σ.

- µαM1 does not disappear in σ: That is, (µαM1 M2
−→
P ) ։ M∗ =

(µαM ′
1 M

′
2

−→
P ′). Then, since α ∈ Fv(M1), we can apply Lemmas 204

and 203 to assert that (µαM1 M2
−→
P ) →r (µαM1[α := M2]

−→
P ) ։

(µαM ′
1[α := M ′

2]
−→
P

′
) has length at least |σ| + 1.

- µαM1 disappears in σ: (µαM1 M2
−→
P ) ։ (µα(α M ′

1) M ′
2

−→
P ′) →θ

(M ′
1 M

′
2

−→
P ′)։M∗. By Lemmas 203 and 204 the sequence (µαM1 M2

−→
P ) →r

(µαM1[α := M2]
−→
P )։ (µα(α M ′

1)[α := M ′
2]

−→
P ′) = (µα(α (M ′

1 M
′
2))

−→
P ′) →θ

(M ′
1 M

′
2

−→
P ′)։M∗ has length at least |σ|+1, which proves the assertion.

The reverse direction is obvious. �

Lemma 243 Let M = (µαM1 M2
−→
P ), α /∈ Fv(M1), and N = (µαM1

−→
P ).

Assume N and M2 are strongly normalising. Then M is also strongly normalizable
and η(M) = η(N) + η(M2) + 1.

Proof The proof of η(M) ≤ η(N) + η(M2) + 1 is similar to the first part of the
proof of Lemma 242. In this case the verification is made easier by the fact that,
since α /∈ Fv(M1), µαM1 does not disappear in a reduction sequence starting from
M .
For the converse: Let N ։σ N ′ and M2 ։

ν M ′
2. Then (µαM1 M2

−→
P ) →ν

(µαM1 M
′
2
−→
P ) →µ (µαM1

−→
P ) →σ N ′ is a reduction sequence starting from M ,

which means that η(N) + η(M2) + 1 ≤ η(M). �
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Lemma 244 Let M , N be λµI-terms and
−→
P be a sequence of arguments con-

sisting of λµI-terms. Assume α /∈ Fv(N). Then η((µα〈M, (α z)〉
−→
P )) + η(N) ≤

η((µα〈M, (α (z N))〉
−→
P )).

Proof Let U = (µα〈M, (α z)〉
−→
P ), V = (µα〈M, (α (z N))〉

−→
P ). If

−→
P is

empty, the result is trivial, so may assume
−→
P is not empty and its components

are M1, . . . ,Mn. We are going to prove if U ։σ1 U ′, N ։σ2 N ′ for some σ1, σ2,
U ′, N ′, then we have a reduction sequence ν of V such that |σ1|+ |σ2| ≤ |ν|. By the
second part of Theorem 214, it is enough to restrict our attention to the case when
σ1 and σ2 are standard. We may assume that the head-redex of U is involved in
σ1, otherwise the result is trivial. Furthermore, we may suppose that µα〈M, (α z)〉
is reduced in |σ1| with all of its arguments M1, . . . ,Mn. Then σ1 is of the form

U ։ξ µα〈M [α := M1] . . . [α := Mn], (α (z M1 . . .Mn))〉

։ζ µα〈M ′, (α (z M1 . . .Mn))〉 ։ζ∗

µα〈M ′, (α (z M ′
1 . . .M

′
n))〉,

where M [α := M1] . . . [α := Mn]։ζ M ′ and ζ∗ = ζ1# . . .#ζn with Mi ։
ζi M ′

i for

1 ≤ i ≤ n. Let ξ′ be V ։ξ′

µα〈M [α := M1] . . . [α := Mn], (α (z N M1 . . .Mn))〉,
then choosing ν as

ν = ξ′#ζ#σ2#ζ
∗

is appropriate. �

Lemma 245 Let M be a λµ-term, α be a µ-variable. Then α ∈ Fv(M) ⇔ α ∈
Fv([|M |]k).

Proof Trivial. �

Lemma 246 Let M → M ′, assume rank(M) ≤ k. Then η([|M ′|]k) + 1 ≤
η([|M |]k).

Proof By induction on comp(M).

1. M = λxM1. The induction hypothesis applies.

2. M = (λxM1 M2 . . .Mn). We have lh(type(λxM1)) ≤ k. Let type(M1) =
A1 → . . . Am → B, where B is atomic. Let M ′ = (M1[x := M2] . . .Mn),
otherwise the induction hypothesis applies. Since B is atomic, we have m ≥
n− 2. From this

[|M |]k → λy1 . . . λym〈([|M1|]k[x := [|M2|]k] y1 . . . ym), [|M2|]k〉 . . . [|Mn|]k

։ λyn−1 . . . λym〈([|M1|]k[x := [|M2|]k] . . . [|Mn|]k yn−1 . . . ym), [|M2|]k〉.

Lemma 238 gives

([|M1|]k[x := [|M2|]k] [|M3|]k . . . [|Mn|]k) = ([|M1[x := M2]|]k [|M3|]k . . . [|Mn|]k)

= ([|M1[x := M2] M3 . . .Mn|]k) = [|M ′|]k,

by which the result follows.

3. M = (µαM1 M2 . . .Mn). We may assume again that M →r M ′, where
r = (µαM1 M2).

- α ∈ Fv(M1). Let M ′ = (µαM1[α := M2] . . .Mn). We have by Lemma
238:

[|M |]k = (µα[|M1|]k [|M2|]k . . . [|Mn|]k) → (µα[|M1|]k[α := [|M2|]k] . . . [|Mn|]k)

= (µα[|M1[α := M2]|]k . . . [|Mn|]k) = [|M ′|]k.
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- α /∈ Fv(M1). In this case M ′ = µαM1 M3 . . .Mn. Then

[|M |]k → (µα〈[|M1|]k, (α (z [|M2|]k))〉 [|M3|]k . . . [|Mn|]k).

Lemma 244 gives η((µα〈[|M1|]k, (α (z [|M2|]k))〉 [|M3|]k . . . [|Mn|]k)) ≥
η((µα〈[|M1|]k, (α z)〉 [|M3|]k . . . [|Mn|]k)) + η([|M2|]k) + 1. Moreover, by
induction on n, we obtain that η([|M ′|]k) ≤ η((µα〈[|M1|]k, (α z)〉 [|M3|]k . . . [|Mn|]k)),
by which the result follows.

4. M = (α M1). The only interesting case is M = (α µβM ′
1) → M ′

1[β :=
α]. If β ∈ Fv(M ′

1), then [|M |]k = (α µβ[|M ′
1|]k). Otherwise, [|M |]k =

(α µβ〈[|M ′
1|]k, (β z)〉). Applying Lemma 238, in both cases we obtain the

result.

5. M = µαM1. Analogous to the previous one.

6. If M = (x M1
−→
P ), the induction hypothesis applies.

�

Lemma 247 Let M be a λµ-term, assume rank(M) ≤ k. Then η(M) ≤ η([|M |]k).

Proof By induction on 〈η([|M |]k), comp(M)〉.

1. If M = λxM1, by the induction hypothesis we have the result.

2. Let M = (x M1 . . .Mn). Then, by the induction hypothesis,

η(M) = η(M1) + . . .+ η(Mn) ≤ η([|M1|]k) + . . .+ η([|Mn|]k) = η([|M |]k).

3. M = (λxM1 M2 . . .Mn). Let M ′ = (M1[x := M2] . . .Mn). If follows from
Lemma 235 that rank(M ′) ≤ k. Thus, by Lemmas 239, 246 and the induction
hypothesis,

η(M) ≤ η(M ′) + η(M2) + 1 ≤ η([|M ′|]k) + η([|M2|]k) + 1 ≤ η([|M |]k).

4. M = (µαM1 M2 . . .Mn).

- α ∈ Fv(M1). Let M ′ = (µαM1[α := M2] . . .Mn). Then rank(M ′) ≤ k
by Lemma 235 again. We have by Lemmas 246, 242 and the induction
hypothesis

η(M) = η(M ′) + 1 ≤ η([|M ′|]k) + 1 = η([|M |]k).

- α /∈ Fv(M1). Let M ′ = (µαM1 M3 . . .Mn). We have

[|M |]k → (µα〈[|M1|]k, (α (z [|M2|]k))〉 [|M3|]k . . . [|Mn|]k),

which, together with Lemmas 243, 244, 235 and the induction hypothesis,
yields that

η(M) ≤ η(M ′) + η(M2) + 1 ≤ η([|M ′|]k) + η([|M2|]k) + 1 ≤ η([|M |]k).

5. M = µαM1.
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- α ∈ Fv(M1). If µαM1 = µα(α M2) is a θ-redex, then, by Lemmas 241,
235 and the induction hypothesis,

η(M) = η(M2) + 1 ≤ η([|M2|]k) + 1 = η([|M |]k).

Otherwise, let µαM1 → M ′. Since µαM1 is not a θ-redex, we have
M ′ = µαM ′

1 together with rank(M ′) ≤ k. By Lemma 246, we can apply
the induction hypothesis to M ′, that is,

η(µαM ′
1) + 1 ≤ η([|µαM ′

1|]k) + 1 ≤ η([|µαM1|]k).

But M ′ was arbitrary and η(M) = max{η(M ′) + 1 | M → M ′}, which
proves our assertion.

- α /∈ Fv(M1). Then we can apply the induction hypothesis to M1.

6. Let M = (α µβM ′). Similar to the previous case.
�

Lemma 248 Let M be a λµ-term. Assume rank(M) ≤ k for some k ≥ 0. Then
comp([|M |]k) ≤ (2k + 3) · comp(M).

Proof The only nontrivial case is M = λxM1. Let lh(type(λxM1)) = l.

1. Assume k < l. Then

comp([|M |]k) = comp(λx〈[|M1|]k, x〉) = comp([|M1|]k)+3 ≤ (2k+3)·comp(M).

2. Let k ≥ l. Then, for some m ≤ l, we obtain by the induction hypothesis

comp([|M |]k) = comp(λxλy1 . . . λym〈([|M1|]k y1 . . . ym), x〉)

= comp([|M1|]k) + 2m+ 3 ≤ (2k + 3) · comp(M).
�

Lemma 249 Let M be a term. Then rank([|M |]k) = rank(M).

Proof Obvious. �

Theorem 250 Let M be a λµ-term, suppose rank(M) = k. Then every βµρθ-
reduction sequence starting from M is of length less than

tower(k + 1, (2k + 3) · comp(M)).

Proof We obtain, by Lemma 248, comp([|M |]k) ≤ (2k + 3) · comp(M) and, by
Lemma 249, rank([|M |]k) = rank(M). These, together with Corollary 232 and
Lemma 247, imply

η(M) ≤ η([|M |]k) < tower(k + 1, comp([|M |]k))

≤ tower(k + 1, (2k + 3) · comp(M)).

�
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2.1 Concluding remarks

2.1.1 A possible attempt to calculate an upper bound for the

λµρ-calculus

In the following observations we confine our attention to the case of the λµρ-calculus.
For establishing a bound for the lengths of reduction sequences of the λµρ-calculus
it seems to be a natural idea to try to transform a reduction sequence of the λµρ-
calculus into a reduction sequence of the λ-calculus. We go round this approach
a little bit more detailed: we present the CPS-translation from the simply-typed
λµρ-calculus to the simply-typed λ-calculus introduced by de Groote [29], and then
we give an account of the possibilities of finding an appropriate bound with this
method. The notation for the CPS-translation is taken from de Groote [29]. As to
a bound for the simply-typed λ-calculus we regard the one presented in Xi [66].

Definition 251 Let o be some distinguished atomic type. Then A =∼∼ Ao, where
∼ A = A→ o and where

1. ⊥o = o,

2. Ao = A, if A is atomic,

3. (A→ B)o = A→ B.

To facilitate reading, in the following definition a is used as a µ-variable and as
a λ-variable at the same time.

Definition 252 The CPS-translation M of a λµρ-term M is defined as follows.

1. x = λk.(x k),

2. λxM = λk.(k (λxM)),

3. M N = λk.(M (λm.(m N k))),

4. µaM = λa(M (λk.k)),

5. a M = λk.(M a).

Proposition 253 Let Γ (resp. △) denote a λ-context (resp. µ-context), that is, a
finite (possibly empty) set of declarations of the form x : A (resp. a : ¬A). Let M : A
be a typable term with λ-context Γ and µ-context ∆. Then its CPS-translation, M ,
is typable with contexts Γ and ∼ △o.

Let =λ (resp. =µ) denote the relation defined as the reflexive, symmetric, tran-
sitive closure of the β-reduction (resp. that of the union of the β-, µ- and ρ-
reductions). As usual, we consider terms differing in renaming of bound variables
as equals. Then, in [26], de Groote proves the following:

Proposition 254 M =µ N iff M =λ N .

Unfortunately, in Proposition 254 M ։λ N does not hold generally, even if
M ։µ N . So on one hand we cannot use the CPS-translation to imitate the
reduction sequences in the λµρ-calculus by reduction sequences in the λ-calculus.
On the other hand there can be another drawback of this approach.
In general, we could make use of the CPS-translation for estimating bounds of
reduction sequences if for any M ։σ

µ nf(M) we could find a ν with M ։ν
λ nf(M)

such that |σ| ≤ c · |ν| with some constant c, where nf(M) and nf(M) denote the
(unique) normal form of M in the λµρ- and of M in the λ-calculus, respectively.

(In fact, we even know that nf(M) = nf(M), where M stands for the so called
modified CPS-translation of the term M (cf. de Groote [26]).)
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Definition 255 Let comp be defined for λ-terms as follows.

1. comp(x) = 1,

2. comp(λxM) = comp(M) + 1,

3. comp((M N)) = comp(M) + comp(N).

For the moment suppose for every reduction sequence M ։σ nf(M) we can
find a reduction sequence ν such that M ։ν

λ nf(M) with |σ| ≤ c · |ν|. By the result
for the β-normalization in Xi [66], we would have for any ν as above

|ν| < c · tower(rank(M) + 1, (2 · rank(M) + 3) · comp(M)),

where the rank of a λ-term is understood as the maximum of the ranks of its
β-redexes. On the other hand we have the following estimations.

Proposition 256 Let M be a λµ-term. Then

1. rank(M) = 3 · rank(M),

2. 2 · comp(M) < comp(M).

This means that the best estimation for the lengths of the reductions with this
method would be greater than c·tower(3·rank(M)+1, (12·rank(M)+6)·comp(M)),
and by the direct method this upper bound is tower(rank(M)+1, (2 ·rank(M)+3) ·
comp(M)). At present, no CPS-translation which could yield a significantly better
estimation is known to the author.

2.1.2 A translation of the λµ-calculus into the λ∗

c
-calculus

Recently, a new translation of the λµ-calculus into a version of the λ-calculus formu-
lated with recursive equations for types was discovered by David and Nour (cf. [16]).
This is somewhat simpler than the CPS-translation and provides an easy method
of finding an estimation for the lengths of reduction sequences in the λµ-calculus.
We present a version of it, establishing a connection between the λµ-calculus and
a variant of the λ-calculus enlarged with some constants. Enhance the set of types
of the simply typed λ-calculus with an element ⊥ and define ¬A as A → ⊥. Let
X be an atomic type, add for each X a new constant cX of type ¬¬X → X. Let
us call the new calculus as λ∗c . The method traces back to Krivine [36], where he
supplemented the typed-calculus with a constant of type ∀X(¬¬X → X).

Definition 257 We define for each type A a closed λ∗c-term TA such that TA :
¬¬A→ A.

1. T⊥ = λy(yI), where I = λxx,

2. TX = cX , where X is a base type,

3. TA→B = λxλy(TB λz(x λt(z (t y)))).

Definition 258 Let k ≥ 0. We define a translation of the set of λµ-terms into
the set of terms of the λ∗c-calculus as follows.

1. |x|k = x,

2. |λxM |k = λx|M |k,

3. |(M N)|k = (|M |k |N |k),
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4. |µaM |k = (TA λa|M |k), if a has type ¬A and lh(A) ≤ k,

5. |µaM |k = (z |M |k), if a has type ¬A and lh(A) > k and where z : ⊥ → A is
a new variable,

6. |(a M)|k = (a |M |k).

In the above definition the µ-variables and its translated counterparts were de-
noted with the same letters. Let ⊢λµ and ⊢λ∗

c
denote the typing relations in the

λµ- and in the λ∗-calculus, respectively. We have the following assertions.

Lemma 259 Let k ≥ 0. If Γ ⊢λµ M : A, then Γ ⊢λ∗
c
|M |k : A.

Proof Straightforward. �

Lemma 260 Let M , N be typed λµ-terms. Assume k ≥ rank(M). If M →λµ N ,
then |M |k ։

+
λ |N |k.

Proof Obviously, it is enough to check the relation |(µaM1 M2)|k ։
+
λ |µaM1[a :=

M2]|k, where, necessarily, k ≥ lh(A) provided type(a) = ¬A. �

Lemma 261 Let M , N be typed λµ-terms. Assume k ≥ rank(M). Let M ։n N .
Then |M |k ։

m |N |k for some m ≥ n.

Proof Follows from Lemmas 235 and 260. �

Since no reduction rules are added to λ when defining λ∗c , the method of Xi [66]
for estimating the lengths of reduction sequences is also applicable to λ∗c without
any changes. We state without proof the following theorem:

Theorem 262 Let M be a λ∗c-term, assume rank(M) = k. Then every reduction
sequence starting from M has length less than

tower(k + 1, (2k + 3) · comp(M)).

In order to establish a bound for the lengths of λµ-reduction sequences we have
to estimate the size of the translated terms as well.

Lemma 263 Let A be a type. Assume lh(A) is defined as in Definition 106. Then

comp(TA) ≥ 8 · lh(A) + 3.

Proof Obvious. �

Lemma 264 Let M be a λµ-term. Assume rank(M) = k. Then

comp(|M |k) ≤ (8k + 4) · comp(M).

Proof By induction on comp(M). We only check one of the cases. Let M =
(µaM1 M2). Assume type(a) = ¬A. Then, since k ≥ lh(A), we have by Lemma
263 and the induction hypothesis

comp(|M |k) = comp(|µaM1|k |M2|k)

= comp((TA λa|M1|k)) + comp(|M2|k)

≤ (8k + 4) + comp(|M1|k) + comp(|M2|k)

≤ (8k + 4) · comp(M).

�

Theorem 265 Let M be a λµ-term, assume rank(M) = k. Then every reduction
sequence starting from M has length less than

tower(k + 1, (2k + 3) · (8k + 4) · comp(M)).

Proof Follows from Theorem 262 and Lemma 264. �

This method, however, is not applicable to the λµρθ-calculus, since, in the case
of the ρ-reduction, Lemma 260 is not valid.
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Chapter 3

Strong normalization of the

λ
Sym
Prop

-calculus

The λSym -calculus was introduced by Berardi and Barbanera in [1]. It is organized
entirely around the duality in classical logic, by this reason, it has a negation ”built-
in”, that is, it contains an involutive negation for which ¬A is not defined as A→ ⊥
with some type ⊥. Instead, each type is related to its natural negated type on the
model of the notion of duality introduced by negation in classical logic. In fact,
Berardi and Barbanera defined a calculus equivalent to first order Peano arithmetic,

however, we only consider here its propositional part, denoted by λ
Sym
Prop , since all

the other calculi treated by us in this work are concerned with propositional logic.
The main objective of this chapter is to give an arithmetical proof for the strong

normalization of the λ
Sym
Prop -calculus. Our exposition is based on the methods of the

strong normalization proofs presented in the papers of David and Nour (cf. [14] and
[15], respectively). As regards the basic definitions and notation for the calculus,
we refer to the introduction.

3.1 The λβπ-calculus is strongly normalizing

The present chapter is devoted to giving an arithmetical proof for the following
theorem.

Theorem 266 The typed λ
Sym
Prop-calculus is strongly normalizing.

We accomplish this task in several substeps. In this section we prove the strong

normalization of a restricted version of the typed λ
Sym
Prop -calculus, then extend the

result for the remaining reduction rules also. In what follows we assume that we
are in the realm of the typed calculus.
Let → stand for the union of →β , →β⊥

, →π, →π⊥
and, as usual, ։ denote the

reflexive, symmetric and transitive closure of →. The calculus with this reduction
will be termed as λββ⊥ππ⊥

. The notions of reduction sequence, normal form and
normalization are defined with respect to →. Let SN denote the set of strongly
normalizable terms of λββ⊥ππ⊥

concerning → settled as above. In the sequel we
detail the proofs for the β- and π-reductions only, all the proofs below can be
extended with the cases of the β⊥- and π⊥-reduction rules in a straightforward way.
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Definition 267 The complexity of a term is defined as follows.

1. cxty(x) = 1,

2. cxty(〈P1, P2〉) = cxty(P1) + cxty(P2),

3. cxty(σi(P )) = cxty(P ) + 1, for i ∈ {1, 2},

4. cxty(λxP ) = cxty(P ) + 1,

5. cxty((P1 ⋆ P2)) = cxty(P1) + cxty(P2).

Definition 268 Let M ∈ SN . Then ηc(M) stands for 〈η(M), cxty(M)〉, where
η(M) denotes the length of the longest reduction sequence starting from M .

Lemma 269 Let us suppose M ∈ SN , N ∈ SN and (M ⋆N) /∈ SN . Then either
M ։ λxP , and P [x := N ] /∈ SN (resp. N ։ λyQ and Q[y := M ] /∈ SN), or there
are P , Q, R such that M ։ P , N ։ Q and (M ⋆N)։ (P ⋆Q) →π R /∈ SN (resp.
(M ⋆N)։ (P ⋆ Q) →π⊥ R /∈ SN).

Proof By induction on ηc(M) + ηc(N).
Let us consider an infinite reduction sequence of (M ⋆ N). If the first reduction
takes place in M or in N , then the induction hypothesis applies. Otherwise, if the
first reduction is a β (or β⊥) the first case holds, if the first step is a π (or π⊥),
then the second case is valid. �

Notation 270 1. A proper term is a term differing from a variable.

2. Let ΣA denote the set of simultaneous substitutions of the form σ = [x1 :=
N1, . . . , xk := Nk] for some k ≥ 1, where every Ni has type A.
σ is said to be in SN , if, for every x ∈ dom(σ), σ(x) ∈ SN holds.

In the sequel we suppose that if ρ is a simultaneous substitution and x ∈ dom(ρ),
then ρ(x) is proper.

Lemma 271 Let M ։ N .

1. If N = λxP , then M = λxP1 with P1 ։ P .

2. If N = 〈P,Q〉, then M = 〈P1, Q1〉 with P1 ։ P , Q1 ։ Q.

3. If N = σ(P ), then M = σ(P1) with P1 ։ P .

Proof Straightforward. �

Lemma 272 Let Mρ։ N , assume ρ is a simultaneous substitution.

1. If N = λxP , then either M = λyP1 and P1ρ ։ P or M = x ∈ dom(ρ),
ρ(x) = λyP1 and P1 ։ P .

2. If N = 〈P1, P2〉, then either M = 〈M1,M2〉, Miρ ։ Pi or M = x ∈ dom(ρ),
ρ(x) = 〈M1,M2〉 and Mi ։ Pi (i ∈ {1, 2}).

3. If N = σi(P ) for i ∈ {1, 2}, then either M = σi(P1) and P1ρ ։ P or
M = x ∈ dom(ρ), ρ(x) = σi(P1) and P1 ։ P .

Proof We consider only Case 1, the other cases being similar. By Lemma 271
Mρ ։ λyP involves Mρ = λyP1, for some P1, such that P1 ։ P . Then either
M = λyP2 and P2ρ։ P or M = x ∈ dom(ρ), ρ(x) = λyP1 and P1 ։ P . �
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Lemma 273 If M ∈ SN , then (M ⋆ x) ∈ SN (resp. (x ⋆M) ∈ SN).

Proof Let us suppose M ∈ SN and (M ⋆ x) /∈ SN . Applying Lemma 269,
there exist an M1 such that M ։ λyM1 and M1[y := x] /∈ SN . Assume ηc(M1)
is minimal. Because of being non-SN , M1 must be an application, but in this
case, by Lemma 269, either M1 = (λzM2 ⋆ M3) and (M2[y := x])[z := M3[y :=
x]] = (M2[z := M3])[y := x] /∈ SN , or M1 = (〈M3,M4〉 ⋆ σ1(M5)) (resp. M1 =
(〈M3,M4〉⋆σ2(M5))) and (M3 ⋆M5)[y := x] /∈ SN (resp. (M4 ⋆M5)[y := x] /∈ SN).
Each of the cases contradict the minimality of η(M1). �

Definition 274 The complexity of a type is defined inductively as follows.

1. c(A) = 0, if A is atomic or negated atomic type,

2. c(A) = 0, if A = ⊥,

3. c(A1 ∧A2) = c(A1 ∨A2) = c(A1) + c(A2) + 1.

Lemma 275 For every type A 6= ⊥:

c(A) = c(A⊥).

Proof By induction on cxty(A). �

Lemma 276 Let M , P be proper terms, assume type(P ) = A. Let σ = [x1 :=
N1, . . . , xk := Nk] ∈ ΣA and y is a variable not occurring in Ni (1 ≤ i ≤ k).
Suppose Mσ ∈ SN and Mσ[y := P ] /∈ SN .
Assume, for every U, V ∈ SN such that c(type(V )) < c(type(P )) = n, we have
U [x := V ] ∈ SN .
Then there exists a proper M ′ ≺ M and a substitution σ′ ∈ SN such that M ′σ′ ∈
SN and (P ⋆M ′σ′) /∈ SN (or (M ′σ′ ⋆ P ) /∈ SN).

Proof Let us denote by C the conclusion of the lemma, and by H the assumption
that for every U, V ∈ SN such that c(type(V )) < c(A) = n we have U [x := V ] ∈
SN . Let U := {U |U � M and U is proper} and V := {V |V � Ni for some
1 ≤ i ≤ k and V is proper}. Define inductively the following sets of substitutions:

ρ ∈ Σ iff ρ = ∅ or ρ = ρ′ + [x := V τ ], where ρ′ ∈ Σ, τ ∈ Θ, V ∈ V and x is of type
A,

τ ∈ Θ iff τ = ∅ or τ = τ ′ + [z := Uρ], where τ ′ ∈ Θ, ρ ∈ Σ, U ∈ U and z is of type
A⊥.

We are going to prove something more general.
(1) If U ∈ U and ρ ∈ Σ, Uρ ∈ SN and Uρ[y := P ] /∈ SN , then C holds.
(2) If V ∈ V and τ ∈ Θ, V τ ∈ SN and V τ [y := P ] /∈ SN , then C holds.
The statements are proved simultaneously by induction on ηc(Uρ) and ηc(V τ). We
are going to deal with case (1) only, case (2) can be treated in a similar way.
The only nontrivial case is U = (U1 ⋆U2). Assume Uρ ∈ SN and Uρ[y := P ] /∈ SN .
We may suppose Uiρ[y := P ] ∈ SN (i ∈ {1, 2}), otherwise the statement follows.

A, U1ρ[y := P ]։ λuU ′, U ′[u = U2ρ[y := P ]] /∈ SN .

1. If U1 is proper, then by Lemma 272 there exists U ′
1 such that U1 = λuU ′

1

and U ′
1ρ[y := P ] ։ U ′. Then U ′

1ρ[y := P ][u = U2ρ[y := P ]] = (U ′
1[u =

U2])ρ[y := P ] /∈ SN , U ′
1[u := U2] ∈ U and η((U ′

1[u := U2])ρ) < η(Uρ).
The result follows by the induction hypothesis.

2. U1 ∈ V ar:

(a) If U1 = x ∈ dom(ρ):
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- ρ(x) = V ′τ ։ λzV , for some V ′ ∈ V, τ ∈ Θ. Since V ′ is
proper, by Lemma 272 there is a V1 such that λzV1 = V ′ and
V1τ ։ V . Then V1 is proper, since type(V1) = ⊥. Thus V1 ∈ V,
(V1τ [z := U2ρ])[y := P ] /∈ SN , so the induction hypothesis
applies, since type(z) = A⊥ and ηc(V1τ [z := U2ρ]) < ηc(Uρ).

- ρ(x) = V τ , U2ρ[y := P ] ։ λzU ′, U2 is proper and U ′[z :=
V τ [y := P ]] /∈ SN . Then by Lemma 272 there is an U3 such that
U2 = λzU3 and U3ρ[y := P ]։ U ′. By the above argument U3 is
proper, thus, since type(z) = A and ηc(U3ρ[z := V τ ]) < ηc(Uρ),
the induction hypothesis yields C.

- U1 = x ∈ dom(ρ) and U2 ∈ V ar: In this case, since U1ρ[y :=
P ] ∈ SN , by Lemma 273 U2 ∈ V ar/(dom(ρ)∪{y}) is impossible.
If U2 ∈ dom(ρ) or U2 = y, then this would involve type(U1) =
type(U2), which is impossible again.

(b) U1 = y : Then (P ⋆U2ρ[y := P ]) /∈ SN . Since, for every x ∈ dom(ρ),
type(x) = type(P ) = A, U2 /∈ dom(ρ), and for the same reason U2 6=
y. Moreover, by Lemma 273, U2 ∈ V ar/(dom(ρ) ∪ {y}) together
with (P ⋆ U2ρ[y := P ]) /∈ SN would involve P /∈ SN , thus U2 is
proper. This gives the conclusion of the lemma.

(c) U1 = z /∈ dom(ρ) ∪ {y}: By Lemma 273, U2ρ[y := P ] ∈ SN implies
(z ⋆ U2ρ[y := P ]) ∈ SN , which would mean Uρ[y := P ] ∈ SN ,
contradicting our hypothesis.

B, U1ρ[y := P ]։ 〈U ′, U ′′〉 and either U2ρ[y := P ]։ σ1(W ) and (U ′ ⋆W ) /∈ SN
or U2ρ[y := P ]։ σ2(W ) and (U ′′ ⋆ W ) /∈ SN . Assume the former is valid.

1. If U1, U2 are proper, then, by Lemma 272, U1 = 〈U3, U4〉, U2 = σ1(U5),
U3ρ[y := P ] ։ U ′ and U5ρ[y := P ] ։ W . The induction hypothesis
applies with (U3 ⋆ U5).

2. U1 ∈ V ar :

(a) U1 = x ∈ dom(ρ): Then there exist V ∈ V and τ ∈ Θ such that
ρ(x) = V τ . V τ ։ 〈U ′, U ′′〉, so, by Lemma 272, V = 〈V1, V2〉, V1τ ։
U ′, V2τ ։ U ′′. By hypothesis (V1τ ⋆W ) = (z ⋆W [z := V1τ ]) /∈ SN ,
where U2ρ[y := P ] ։ σ1(W ) ∈ SN . But then (z ⋆ W ) ∈ SN , and
c(type(V1τ)) < c(type(x)), contradicting H.

(b) U1 = y: (P ⋆ U2ρ[y := P ]) /∈ SN . Since, for every x ∈ dom(ρ),
type(x) = type(P ), we have U2 /∈ dom(ρ). For the same reason U2 6=
y. Because of Lemma 273 and P ∈ SN , U2 /∈ V ar/(dom(ρ) ∪ {y}),
so U2 ∈ U , which yields the conclusion of the lemma again.

3. The proof for U2 ∈ V ar is similar to part B,2., by which the proof of the
lemma is completed.

�

Lemma 277 If M,N ∈ SN , then M [x := N ] ∈ SN .

Proof We are going to prove a bit more general statement. Suppose M,Ni ∈ SN
are proper, type(Ni) = A (1 ≤ i ≤ k). Let τi ∈ ΣA⊥ are such that τi ∈ SN
(1 ≤ i ≤ k) and let ρ = [x1 := N1τ1, . . . , xk := Nkτk]. Then we have Mρ ∈ SN .

The proof is by induction on (c(A), η(M), cxty(M), Σ η(Ni),Σ cxty(Ni)) where,
in Σ η(Ni) and Σ cxty(Ni), we count each occurrence of the substituted variable.
For example if k = 1 and x1 has n occurrences, then Σ η(Ni) = n · η(N1).

The only nontrivial case is when M = (M1 ⋆ M2) and Mρ /∈ SN . By the
induction hypothesis Miρ ∈ SN (i ∈ {1, 2}).
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A, M1ρ։ λzM ′, M2ρ։M ′′ and M ′[z := M ′′] /∈ SN :

1. M1 is proper, then there is an M3 such that M1 = λzM3 and M3ρ։M ′.
In this case (M3[z := M2])ρ /∈ SN and since η(M3[z := M2]) < η(M),
the induction hypothesis gives the result.

2. M1 ∈ V ar: Then M1 = x ∈ dom(ρ), ρ(x) = Njτj ։ λzM ′ for some
(1 ≤ j ≤ k). Since Nj is proper, there is an N ′ such that Nj = λzN ′,

N ′τj ։ M ′. Then N ′τj [z := M2ρ] /∈ SN and type(z) = type(Nj)
⊥

=
type(τj), so, by the previous lemma, we have an N ′′ ≺ N ′ and a τ ′ such
that (N ′′τ ′ ⋆ M2ρ) /∈ SN .

Now we have (N ′′τ ′⋆M2ρ) = (y⋆M2ρ)[y := N ′′τ ′], type(N ′′) = type(τ ′)
⊥

=
A and ηc(N ′′) < ηc(Nj), which contradicts the induction hypothesis.

B, M1ρ ։ 〈M ′,M ′′〉 and either M2 ։ σ1(M
′′′), (M ′ ⋆ M ′′′) /∈ SN or M2 ։

σ2(M
′′′), (M ′′ ⋆ M ′′′) /∈ SN . Suppose the former.

1. M1,M2 are proper, then there areM3,M4,M5 such thatM1 = 〈M3,M4〉,
M2 = σ1(M5) and M3ρ ։ M ′, M4ρ ։ M ′′, M5ρ ։ M ′′′. We have
(M3 ⋆ M5)ρ /∈ SN and η((M3 ⋆ M5)) < η(M), a contradiction.

2. M1 = x ∈ dom(ρ): ρ(x) = Njτj ։ 〈M ′,M ′′〉, Nj is proper. Then by
Lemma 272 Nj = 〈U, V 〉, Uτj ։ M ′, V τj ։ M ′′. Now (Uτj ⋆ M

′′′) =
(y⋆M ′′′)[y := Uτj ] /∈ SN , but c(type(U)) < c(type(Nj)), a contradiction
again.

3. M2 ∈ V ar: This is similar to the previous case. By the same argument
as in part A,2.,(a) of the proof of the previous lemma M1 and M2 cannot
be both variables. This completes the proof of the lemma.

�

Theorem 278 The λββ⊥ππ⊥
-calculus is strongly normalizing.

Proof It is enough to show that, for every term, M , N ∈ SN implies (M ⋆N) ∈
SN . Supposing M,N ∈ SN , Lemma 273 gives (M ⋆ x) ∈ SN , which yields, by the
previous lemma, (M ⋆N) = (M ⋆ x)[x := N ] ∈ SN . �

3.2 The cases of the η- and η⊥-reductions

In this section we prove that the η- and η⊥-reductions can be postponed w.r.t.
β, β⊥, π, π⊥. Let →βπ stand for the union of →β ,→β⊥

,→π,→π⊥
and let M →e N

denote the fact that M →η N or M →η⊥ N . Furthermore, we denote by β0

(resp. by β⊥
0 ) the β-reduction (λxM ⋆ N) →β M [x := N ] (resp. the β⊥-reduction

(N ⋆ λxM) →β⊥
M [x := N ]), where x occurs at most once in M . The reasoning

applied in this section is analogous to the one already used in Section 1.1 of Chapter
1.

Lemma 279 If U →e V →β W , then there is a V ′ such that U →β V
′ ։e W or

U →β0 V
′ →β W .

Proof It is sufficient to outline the proof for the case when →e stands for an
η-reduction. The proof is by induction on cxty(U). The only interesting case is
U = (U1 ⋆ U2). We only deal with the nontrivial subcases.

1. U1 = λx(U3 ⋆ x), with x /∈ Fv(U3), and V = (U3 ⋆ U2) →β U4[y := U2] = W ,
where U3 = λyU4. In this case U = (λx(U3 ⋆ x) ⋆ U2) →β0 (U3 ⋆ U2) →β

U4[y := U2] = W , so →η→β turns into →β0
→β .
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2. U1 = λxU3, U3 →η U4 and V = (λxU4 ⋆ U2) →β U4[x := U2] = W . Then
U →β V

′ = U3[x := U2] →η U4[x := U2] = W .

3. U1 = λxU3, U2 →η U4 and V = (λxU3 ⋆ U4) →β U3[x := U4] = W . Then
U →β V

′ = U3[x := U2]։η U3[x := U4].

�

Lemma 280 If U →e V →β0
W , then U →β0

W or there is a V ′ such that
U →β0 V

′ →e W or U →β0 V
′ →β0 W .

Proof The proof is completely similar to that of Lemma 279. �

Lemma 281 If U։eV →β0 W , then U→β0
+V ′։eW for some V ′, and

lg(U→β0
+V ′։eW ) ≤ lg(U։eV →β0

W ).

Proof By induction on lg(U→e
∗V →β0

W ), using Lemma 280. �

Lemma 282 If U։eV →β W , then U→β
+V ′ ։e W for some V ′.

Proof By induction on lg(U։eV →β W ). Use Lemmas 279, 281. �

Analogous statements can also be formulated for →β⊥
. So we have on the

pattern of Lemma 282:

Lemma 283 If U։eV →β⊥
W , then U→β⊥

+V ′։eW for some V ′.

Proof Similar to that of the previous lemma. �

Lemma 284 If U →e V →π W (resp. U →e V →π⊥
W ), then there is a V ′ such

that U →π V
′ →e W (resp. U →π⊥

V ′ →e W ).

Proof Obvious. �

Lemma 285 If U ։e V →βπ W , then there exists a V ′ such that U →+
βπ V

′ ։e

W .

Proof By Lemmas 282, 283 and 284. �

Lemma 286 The η- and the η⊥-reductions are strongly normalizing.

Proof Implementing an η- or an η⊥-reduction on M reduces the complexity of
M . �

Corollary 287 Let λβπη denote the calculus obtained from λββ⊥ππ⊥
by adding to

it the η- and η⊥-reductions. Then, λβπη is strongly normalizing.

Proof Let →βπη denote the union of {→β ,→β⊥ ,→π,→π⊥ ,→η,→η⊥}. Let M
be a term, we prove by induction on ηβπ(M) that M ∈ SN . Assume σ is an infinite
βπη-reduction sequence starting from M . If σ begins with a →βπ or contains
only →e-reductions, then we are done. Otherwise there is an initial subsequent
M ։σ′

e M ′ →βπ N with |σ′| ≥ 1. By Lemma 285, we have M →+
βπ M ′′ ։e N .

Thus, we can apply the induction hypothesis to M ′′. �

3.3 The λ
Sym
Prop

-calculus is strongly normalizing

What has remained is to augment the calculus treated so far with the rule Triv. Let
→βπη denote one of the reductions in the set {β, β⊥, π, π⊥, η, η⊥}. For the strong
normalization it is enough to show that →T riv can be postponed w.r.t. →βπη.

Lemma 288 If U →Triv V →βπη W , then there exists a V ′ such that U →βπη

V ′ →Triv W .

Proof From U = E[V ] →Triv V →βπη W it follows that U = E[V ] →βπη

E[W ] →Triv W , since W : ⊥ necessarily holds. �
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Lemma 289 If U ։Triv V →βπη W , then there exists a V ′ such that U →+
βπη

V ′ ։Triv W .

Proof Follows from the previous lemma. �

Lemma 290 The reduction →Triv is strongly normalizing.

Proof Implementing →Triv on M reduces the complexity of M . �

Corollary 291 The λβπη-calculus extended with the rule Triv is strongly normal-
izing.

Proof By Corollary 287 and Lemmas 289 and 290. �

By this the proof of Theorem 266 is completed.
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Chapter 4

Translations between the

λ
Sym
Prop

-calculus and the

λµµ̃∗-calculus

After realizing that the Curry-Howard isomorphism can also be extended to classical
logic, several logical calculi have been invented to answer this purpose. It appears
to be a natural question how these logical calculi relate to each other.
In respect of the relation between the λµ- and the λµµ̃-calculus the question was
answered by Curien and Herbelin (cf. [11]) and by Rocheteau ([55]). Curien and
Herbelin defined a translation both for the call-by-value and the call-by-name part
of the λµ-calculus into the λµµ̃-calculus. Rocheteau finished this work by defining
simulations between the two calculi in both directions. In the first part of this chap-
ter we define the λµµ̃∗-calculus, which is the λµµ̃-calculus extended with negation,

and we describe translations between the λµµ̃∗-calculus and the λ
Sym
Prop -calculus.

In the remaining part we present a proof of the strong normalization of the λµµ̃∗-
calculus based on the method applied in David and Nour [15] for proving the strong
normalization of the λµµ̃-calculus.

4.1 Relating the λ
Sym
Prop

-calculus to the λµµ̃∗-calculus

4.1.1 The λµµ̃∗-calculus

The typing rules in the λµµ̃-calculus do not handle negation. This means, that for a
full treatment of propositional logic we have to introduce rules concerning it. Since
commands, which could have been candidates for objects of type ⊥, are distinctly
separated from terms, it seems to be the most convenient way to define negation
by new term- and type-forming operators. In accordance with this, the terms and
commands of the λµµ̃∗-calculus are defined as follows:

Definition 292 The commands and terms of the λµµ̃∗-calculus.

p ::= ⌊t, e⌋
t ::= x | λx t | µa p | e

e ::= a | (t.e) | µ̃x p | t̃
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As an abuse of terminology, in the sequel when speaking about the syntactic
elements of the λµµ̃∗-calculus, we may not distinguish terms from commands and
we regard commands as terms also. The type inference rules are the same as in the
λµµ̃-calculus with two extra rules added for the types of the complemented terms.
Below, Γ (resp. △) is a set of declarations of the form x : A (resp. a : A) where x
(resp. a) is a t-variable (resp. an e-variable) and A is a type such that an expression
of the form x : A (resp. a : A) occurs at most once in Γ (resp. in △). Moreover, we
introduce an equation between types to ensure that our negation is an involutive
one.

Definition 293 The type inference rules related to the negation.

Γ | e : A ⊢ △

Γ ⊢ e : A⊥ | △

Γ ⊢ t : A | △

Γ | t̃ : A⊥ ⊢ △

Besides the reduction rules already present in λµµ̃ we endow the calculus with
some more new rules to handle the larger set of terms. In what follows cl stands
for the name: complementer rule.

Definition 294 The reduction rules concerning negation.

- t̃→ cl1,l
t,

- ẽ→ cl1,r
e,

- ⌊e, t̃⌋ → cl2 ⌊t, e⌋.

We shall denote the cl1,l- and cl1,r-rules with a common notation as the cl1-rules.

The new rules correspond to straightforward transformations of proofs. Figure
4.1 gives a description of them. In order to have the subject reduction in the new
calculus, we define an equational theory on types by adding to the usual equations
which ensure that the equality is an equivalence relation the set of equations

(A⊥)⊥ = A.

With this, the negation in the λµµ̃∗-calculus becomes an involutive one.

4.1.2 A translation of the λµµ̃∗-calculus into the λ
Sym
Prop

-calculus

Preparatory to the presentation of the translation let us introduce some definitions
and notation below.

Notation 295 1. In what follows, let ⊢1, ⊢2 stand for deducibility in λµµ̃∗ and

in λ
Sym
Prop , respectively.

2. Likewise →1 and →2 will be applied to denote an arbitrary reduction step

in λµµ̃∗ and in λ
Sym
Prop, respectively. As usual →∗

i will mean the reflexive,

transitive and and →+
i the transitive closure of →i (i ∈ {1, 2}).

3. Let T1 and T2 denote the set of terms of the λµµ̃∗- and the λ
Sym
Prop-calculi,

respectively.
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4. Let us consider the λ
Sym
Prop-calculus. We write πi(y) = λz(y ⋆ σi(z)) (i ∈

{1, 2}). Then, we can observe that

y : A ∧B, z : A⊥ ⊢ y : A ∧B

y : A ∧B, z : A⊥ ⊢ z : A⊥

y : A ∧B, z : A⊥ ⊢ σ1(z) : A⊥ ∨B⊥

y : A ∧B, z : A⊥ ⊢ (y ⋆ σ1(z)) : ⊥

y : A ∧B ⊢ λz(y ⋆ σ1(z)) : A

is a deduction of π1(y) : A from y : A ∧ B in λ
Sym
Prop. Similarly, we can

establish a deduction of π2(y) : B from y : A ∧B.

Definition 296 We define a translation .e : T1 → T2 as follows.

pe = (ue ⋆ ve) if p = ⌊v, u⌋.

te =





x if t = x,
λy(λx(π2(y) ⋆ u

e) ⋆ π1(y)) if t = λxu,
λx(ee ⋆ te) if t = µ̃x⌊t, e⌋,
ue if t = ũ.

ee =





a if e = a,
〈te, he〉 if e = t.h,
λa(ee ⋆ te) if e = µa⌊t, e⌋,
he if e = h.

The translation .e : T1 → T2 extends to the types also.

Definition 297 1. Ae = A, where A is an atomic type,

2. (A⊥)e = (Ae)⊥,

3. (A→ B)e = (Ae)⊥ ∨Be.

Lemma 298 The translation .e maps equal types to equal types.

Proof It is enough to check (A⊥⊥
)e = Ae, which obviously holds. �

Notation 299 Let Γ, △ be contexts of the λµµ̃∗-calculus. Then Γe = {x : Ae | x :
A ∈ Γ} and (△e)⊥ = {a : (Ae)⊥ | a : A ∈ △}.

Lemma 300 1. Γ ⊢1 t : A | △ =⇒ Γe, (△e)⊥ ⊢2 t
e : Ae,

2. Γ | t : A ⊢1 △ =⇒ Γe, (△e)⊥ ⊢2 t
e : (Ae)⊥,

3. c : (Γ ⊢1 △) =⇒ Γe, (△e)⊥ ⊢2 c
e : ⊥.

Proof The above statements are proved simultaneously according to the length
of the λµµ̃∗-deduction. Let us examine some of the more interesting cases.

1. Suppose

Γ, x : A ⊢1 u : B | △

Γ ⊢1 λxu : A→ B | △
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Then we have by the induction hypothesis and Notation 295

Γe, (△e)⊥, x : Ae, y : Ae ∧ (Be)⊥ ⊢2 u
e : Be,

Γe, (△e)⊥, y : Ae ∧ (Be)⊥ ⊢2 π1(y) : Ae,

and likewise
Γe, (△e)⊥, y : Ae ∧ (Be)⊥ ⊢2 π2(y) : (Be)⊥.

Thus we can conclude

Γe, (△e)⊥, x : Ae, y : Ae ∧ (Be)⊥ ⊢2 u
e : Be Γe, (△e)⊥, x : Ae, y : Ae ∧ (Be)⊥ ⊢2 π2(y) : (Be)⊥

Γe, (△e)⊥, x : Ae, y : Ae ∧ (Be)⊥ ⊢2 (π2(y) ⋆ u
e) : ⊥

Γe, (△e)⊥, y : Ae ∧ (Be)⊥ ⊢2 λx(π2(y) ⋆ u
e) : (Ae)⊥

From which

Γe, (△e)⊥, y : Ae ∧ (Be)⊥ ⊢2 λx(π2(y) ⋆ u
e) : (Ae)⊥ Γe, (△e)⊥, y : Ae ∧ (Be)⊥ ⊢2 π1(y) : Ae

Γe, (△e)⊥ ⊢2 λy(λx(π2(y) ⋆ u
e) ⋆ π1(y)) : (Ae)⊥ ∨Be

follows.

2. Assume now

Γ ⊢1 t : A | △ Γ | e : B ⊢1 △

Γ | t.e : a→ B ⊢1 △

Then we have

Γe, (△e)⊥ ⊢2 t
e : Ae Γe, (△e)⊥ ⊢2 e

e : (Be)⊥

Γe, (△e)⊥ ⊢2 〈te, ee〉 : Ae ∧ (Be)⊥

3. From

Γ ⊢1 t : A | △ Γ | e : A ⊢1 △

⌊t, e⌋ : (Γ ⊢1 △)

we obtain

Γe, (△e)⊥ ⊢2 t
e : Ae Γe, (△e)⊥ ⊢2 e

e : (Ae)⊥

Γe, (△e)⊥ ⊢2 (ee ⋆ te) : ⊥

4. Moreover

⌊t, e⌋ : (Γ ⊢1 △)

Γ ⊢1 λa⌊t, e⌋ : A | △\{a : A}

yields

Γe, (△e)⊥ ⊢2 (ee ⋆ te) : ⊥

Γe, (△e)⊥\{a : (Ae)⊥} ⊢2 λa(e
e ⋆ te) : Ae

5. Finally
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Γ ⊢1 t : A | △

Γ | t̃ : A⊥ ⊢1 △

gives

Γe, (△e)⊥ ⊢2 t
e : Ae

Γe, (△e)⊥ ⊢2 t
e : Ae

�

Our next aim is to prove that λµµ̃∗ can be simulated by the λ
Sym
Prop -calculus. To

this end we introduce a new notion of equality in the λ
Sym
Prop -calculus.

Definition 301 We define a relation ∼ on the terms of the λ
Sym
Prop-calculus.

1. x ∼ x,

2. λxu ∼ λxu′ if u ∼ u′,

3. 〈p, q〉 ∼ 〈p′, q′〉 if p ∼ p′ and q ∼ q′,

4. σi(p) ∼ σi(p
′) (i ∈ {1, 2}) if p ∼ p′,

5. (p ⋆ q) ∼ (p′ ⋆ q′) and (p ⋆ q) ∼ (q′ ⋆ p′) if p ∼ p′ and q ∼ q′.

We say that p and q are equal up to symmetry provided p ∼ q.

Lemma 302 The relation ∼ is an equivalence relation on the terms of the λ
Sym
Prop-

calculus.

Proof Obvious. �

Lemma 303 Let u, u′, v and v′ be terms of the λ
Sym
Prop-calculus. Assume u ∼ u′

and v ∼ v′. Then we have:

1. u[x := v] ∼ u′[x := v],

2. u[x := v] ∼ u[x := v′].

Proof Both assertions are proved by induction on cxty(u). �

The relation ∼ is interchangeable with the reductions of the λ
Sym
Prop -calculus, as

the following lemma shows.

Lemma 304 Let p, p′, q be λ
Sym
Prop-terms such that p ∼ p′ → q. Then there is a

q′ for which p→ q′ ∼ q.

Proof We can apply Lemmas 302 and 303. �

We also need the lemma below.

Lemma 305 Let u be a either a command or a term, and t, e be terms of the
λµµ̃∗-calculus. Then

1. (u[x := t])e = ue[x := te],

2. (u[a := e])e = ue[a := ee].

Proof By induction on u. �
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Now we can formulate our assertion about the simulation of λµµ̃∗ by λ
Sym
Prop .

Theorem 306 1. v →1 w =⇒ ve →+
2 we, if →1∈ {→β ,→µ,→µ̃,→sl

,→sr
}.

2. v →1 w =⇒ ve ∼ we, if →1∈ {→cl1,l
,→cl1,r

,→cl2}.

Proof

1. Let us only treat the typical cases.

(a) v = ⌊λxu, (t.e)⌋ →β ⌊t, µ̃x⌊u, e⌋⌋ = w. Then

ve = (〈te, ee〉 ⋆ λy(λx(π2(y) ⋆ u
e) ⋆ π1(y))) →β⊥

(λx(π2(〈t
e, ee〉) ⋆ ue) ⋆ π1(〈t

e, ee〉))։

(λx(ee ⋆ ue) ⋆ te) = we.

(b) v = ⌊µap, e⌋ →µ p[a := e] = w. Then, by Lemma 305,

ve = (ee ⋆ λape) →β⊥ pe[a = ee] = we.

(c) v = µa⌊w, a⌋ →sl
w, a /∈ w. We obtain

ve = λa(a ⋆ we) →η⊥ we.

2. (a) v = ũ→cl1,l
u = w. Then

ve = (ũ)e = ue = we.

(b) v = ⌊v, ũ⌋ →cl2 ⌊u, v⌋ = w. We have

ve = ⌊v, ũ⌋e = (ue ⋆ ve) ∼ we.
�

Corollary 307 If λ
Sym
Prop strongly normalizes, then the same is true for λµµ̃∗.

Proof Let σ be an infinite reduction sequence in λµµ̃∗. By Theorem 306 and
Lemma 304, σ cannot contain an infinite number of β-, µ-, µ̃-, sl- and sr-reductions.
Thus, there would exist an infinite reduction sequence consisting entirely of cl1,l-,
cl1,r- and cl2-reductions, which is impossible. �

4.1.3 A translation of the λ
Sym
Prop

-calculus into the λµµ̃∗-calculus

Now we are going to deal with the converse relation. That is we will present a

translation of λ
Sym
Prop into λµµ̃∗ which faithfully reflects the typability relations of

one calculus in the other one. Then we prove that our translation is in fact a

simulation of λ
Sym
Prop in λµµ̃∗. As in the previous subsection, let T1 and T2 denote

the set of terms of the λµµ̃∗- and the λ
Sym
Prop -calculi, respectively.

Definition 308 The translation .f : T2 → T1 is defined as follows.

tf =





x if t = x,

⌊vf, ũf⌋ if t = (u ⋆ v),

µ̃xuf if t = λxu,

(uf.ṽf) if t = 〈u, v〉,
λaµb⌊uf, ã⌋ if t = σ1(u) provided b /∈ Fv(⌊uf, ã⌋),
λauf if t = σ2(u).
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Definition 309 The translation extends to the types:

1. αf = α,

2. (α⊥)
f
= α⊥,

3. (A ∧B)f = (Af → (Bf)⊥)⊥,

4. (A ∨B)f = (Af)⊥ → Bf.

We remark that .f maps the terms of the λ
Sym
Prop -calculus with type ⊥ to com-

mands of the λµµ̃∗-calculus, which have no types.

Lemma 310 For all types A we have (A⊥)
f
= (Af)⊥.

Proof By induction on c(A). �

Lemma 311 The translation .f maps equal types to equal types.

Proof By the lemma above. �

As before, let ⊢1, ⊢2 denote deducibility in λµµ̃∗ and in λ
Sym
Prop , respectively.

Then we can assert:

Lemma 312 1. Γ ⊢2 t : A =⇒ Γf ⊢1 t
f : Af, if A 6= ⊥,

2. Γ ⊢2 t : ⊥ =⇒ tf : (Γf ⊢1 ) otherwise.

Proof The proof proceeds by a simultaneous induction on the length of the

derivation in λ
Sym
Prop . Let us only examine some of the typical cases of the first

assertion.

1. Suppose

Γ, x : A ⊢2 u : ⊥

Γ ⊢2 λxu : A⊥

Then, applying the induction hypothesis,

uf : (Γf, x : Af ⊢1 )

Γf | µ̃xuf : Af ⊢1

Γf ⊢1 µ̃xuf : (Af)⊥

2. By the induction hypothesis and Lemma 310

Γ ⊢2 u : A⊥ Γ ⊢2 v : A

Γ ⊢2 (u ⋆ v) : ⊥

yields

Γf ⊢1 u
f : (Af)⊥

Γf | ũf : Af ⊢1 Γf ⊢1 v
f : Af

⌊vf, ũf⌋ : (Γf ⊢1 )

3. The deduction
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Γ ⊢2 u : A

Γ ⊢2 σ1(u) : A ∨B

gives

Γf, a : (Af)⊥ ⊢1 u
f : Af | b : Bf

Γf, a : (Af)⊥ ⊢1 a : (Af)⊥ | b : Bf

Γf, a : (Af)⊥ | ã : Af ⊢1 b : Bf

⌊uf, ã⌋ : (Γf, a : (Af)⊥ ⊢1 b : Bf)

Γf, a : (Af)⊥ ⊢1 µb⌊u
f, ã⌋ : Bf

Γf ⊢1 λaµb⌊u
f, ã⌋ : (Af)⊥ → Bf

The remaining cases can be proved in a similar way. �

Now we turn to the proof of the simulation of λ
Sym
Prop in λµµ̃∗.

Lemma 313 Let u, v be λ
Sym
Prop-terms. Then

(u[x := v])
f
= uf[x := vf].

Proof By induction on cxty(u). �

Theorem 314

t→2 s =⇒ tf →+
1 sf

provided →1 and →2 denote the reducibility relations in λµµ̃∗ and in λ
Sym
Prop, re-

spectively.

Proof Let us prove some of the more interesting cases.

1. t = (λxu ⋆ v) →β u[x := v] = s. Then, applying Lemma 313,

tf = ⌊vf,
˜̃
µxuf⌋ →cl1

⌊vf, µ̃xuf⌋ →µ̃

uf[x := vf] = sf.

2. t = (v ⋆ λxu) →β⊥
u[x := v] = s. In this case

tf = ⌊µ̃xuf, ṽf⌋ →cl2

⌊vf, µ̃xuf⌋ →µ̃

uf[x := vf] = sf.

3. t = (〈u, v〉 ⋆ σ1(w)) →π (u ⋆ w) = s. We have

tf = ⌊λzµb⌊wf, z̃⌋,
˜
(uf.ṽf)⌋ →cl1

⌊λzµb⌊wf, z̃⌋, (uf.ṽf, )⌋ →β

⌊uf, µ̃z⌊µb⌊wf, z̃⌋, ṽf⌋⌋ →µ̃

⌊µb⌊wf, ũf⌋, ṽf⌋ →µ

⌊wf, ũf⌋ = sf.
�
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Corollary 315 If the λµµ̃∗-calculus is strongly normalizable, then the same is true

for the λ
Sym
Prop-calculus as well.

Proof By Theorem 314. �

4.1.4 The connection between the two translations

In this section we examine the compositions of the translations .e and .f. In order
to establish a smooth connection between a λµµ̃∗-term u and its corresponding

term uef, we have to enhance both the λµµ̃∗- and the λ
Sym
Prop -calculi with terms and

equations for surjective pairs. Let us deal first with the λµµ̃∗-calculus. We denote
the calculus arising by the modifications below by λµµ̃∗

pair.

Definition 316 The commands and terms of the extended calculus are defined as
follows.

p ::= ⌊t, e⌋
t ::= x | λx t | µa p | p1(t) | p2(t) | e

e ::= a | (t.e) | µ̃x p | t̃

Let T1 denote the set of terms and commands of the λµµ̃∗
pair-calculus.

Notation 317 We abbreviate the term (u.ṽ) by 〈u, v〉. Observe that 〈u, v〉 has
type (A→ B⊥)⊥ provided u : A and v : B.

The typing rules below are added to the calculus, where Γ (resp. △) is a set of
declarations of the form x : A (resp. a : A) where x (resp. a) is a t-variable (resp.
an e-variable) and A is a type such that an expression of the form x : A (resp. a : A)
occurs at most once in Γ (resp. in △).

Γ ⊢ t : (A→ B⊥)⊥ | △

Γ ⊢ p1(t) : A | △

Γ ⊢ t : (A→ B⊥)⊥ | △

Γ ⊢ p2(t) : B | △

Definition 318 We introduce equations for the new terms.

- p1(〈u, v〉) =p1
u,

- p2(〈u, v〉) =p2 v,

- 〈p1(t), p2(t)〉) =p t.

The union of the equations, compatible with term formation rules, will be denoted
by =pair.

Now, consider the λ
Sym
Prop -calculus. The result of the modifications described be-

low is called the λ
Sym
Prop+Pair -calculus. calculus The set of terms of the λ

Sym
Prop+Pair -

calculus are those of λ
Sym
Prop with two new term forming rules added.

Definition 319 The terms of the calculus are:

T := x | λxT | (T ⋆ T ) | 〈T , T 〉 | σ1(T ) | σ2(T ) | p1(T ) | p2(T ).

We denote the set of terms for the λ
Sym
Prop+Pair -calculus by T2.

102



The typing rules of the λ
Sym
Prop+Pair -calculus are those of λ

Sym
Prop supplemented

by the following two rules. As usual, let Γ denote a context, that is, a possibly
empty set of declarations of the form x : A.

p1)
Γ ⊢ u : A ∧B

Γ ⊢ p1(u) : A
p2)

Γ ⊢ u : A ∧B

Γ ⊢ p2(u) : B

Definition 320 The new equations of λ
Sym
Prop+Pair are as follows.

- p1(〈u, v〉) =p1
u,

- p2(〈u, v〉) =p2 v,

- 〈p1(u), p2(u)〉 =p u.

The union of the equations, compatible with term formation rules, will be denoted
by =pair.

By relating the terms of λµµ̃∗
pair of the forms p1(u), p2(u) and 〈u, v〉 to the terms

of λ
Sym
Prop+Pair of the forms p1(u), p2(u) and 〈u, v〉, respectively, the transformations

.e and .f straightforwardly extend to the new calculi preserving pair-equations.
Thus, we have the counterparts of Lemmas 300, 306 and 312 and 314. In the
following statements, we understand by .e and .f the transformations between the
extended calculi.

Lemma 321 Let π1 and π2 be defined as in Notation 295. Then we have:

1. π1(y)
f =pair q1 ։ p1(y) for some q1,

2. π2(y)
f =pair q2 ։ p2(y) for some q2.

Proof A straightforward computation yields the result. �

To describe the effect of the composition .ef : T1 → T1 we need the following
function T on T1.

Definition 322 We define a function T assigning a λµµ̃∗
pair-term to a λµµ̃∗

pair-
term.

1. T (x) = x,

2. T (λxu) = µ̃y⌊u[x := p1(y)], p̃2(y)⌋,

3. T (µ̃xp) = µ̃xT (p),

4. T (u) = T (u),

5. T (p1(u)) = p1(T (u)),

6. T (p2(u)) = p2(T (u)).

7. T (a) = a,

8. T ((u.v)) = 〈T (u), T (v)〉,

9. T (µap) = µ̃aT (p),

10. T (h̃) = T (h),

11. T (⌊t, e⌋) = ⌊T (t), T̃ (e)⌋.

Lemma 323 Let u be a term of the λµµ̃∗
pair-calculus, then we have

uef =pair u
′
։ T (u)

for some term u′. Moreover, if u is a λµµ̃∗-term, then uef is a λµµ̃∗-term also.

Proof Straightforward. In the case of u = λxv, we can apply Lemma 321. �
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The other direction gives an easier solution. In this case we return to our original

calculi λµµ̃∗ and λ
Sym
Prop .

Lemma 324 Let u be a λ
Sym
Prop-term. Then ufe ։ u.

Proof Obvious. �

4.2 Concluding remarks

We present a proof of the strong normalization of the λµµ̃∗-calculus, which is a
reformulation of the proof of the strong normalization of the λµµ̃-calculus given in
David and Nour [15]. The main assertions are the same as in David and Nour [15],
only the reasoning leading to the result differs somewhat. In this proof Lemmas
331 and 345 play more emphatic roles, the main lemmas, Lemmas 338 and 354, are
deduced from them. To illustrate the essential argument of the proof we begin with
the case of the untyped µµ̃-calculus.

4.2.1 The strong normalization of the µµ̃-calculus

Let us consider the set of terms of the λµµ̃∗-calculus. In this section let → denote
a µ- or a µ̃-reduction. We call the resulting calculus the untyped µµ̃-calculus.

Definition 325 A term is called proper, if it differs from a variable.

Notation 326 Let Σl (resp. Σr) denote the set of substitutions of the form [x1 :=
t1, . . . , xk = tk] ([a1 := e1, . . . , ak = ek], resp.), where, for all 1 ≤ i ≤ k, ti is proper
(resp. ei is proper). We call an element of Σl (resp. Σr) a left- or l-substitution
(resp. right- or r-substitution). Moreover, let A be a type. If we require type(ti) = A
(resp. type(ei) = A) for 1 ≤ i ≤ k, then we denote the set of such substitutions by
ΣA,l (resp. ΣA,r).

Lemma 327 Let t be a left-, e be a right term, assume t and e are proper. Let ρ
be a left-substitution (resp. a right-substitution). Then the following assertions are
valid.

1. If tρ։ µαt′1, then t = µαt1 for some t1 such that t1ρ։ t′1.

2. If eρ։ µ̃xe′1, then e = µ̃xe1 for some e1 such that e1ρ։ e′1.

Proof Obvious. �

Lemma 328 Assume t, e ∈ SN , ⌊t, e⌋ /∈ SN . Then we have the following possi-
bilities:

1. t = µαt1 and t1[α := e] /∈ SN ,

2. e = µ̃xe1, e1[x := t] /∈ SN .

Proof By induction on η(t) + η(e). �
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Notation 329 In what follows, u and v denote arbitrary terms or commands.
Moreover, in the sequel we may loosen the convention of the denotations for l- and
r-terms, that is, a t may as well denote an r-term and likewise for e.

Definition 330 Let ξ be M1 →r1 M2 → . . . → Mn →rn Mn+1. Then ξ is called
zoom-in if, for every 1 ≤ i < n, there is an r′i such that ri →

ri r′i ≥ ri+1.

Lemma 331 Let u, s ∈ SN (resp. u, h ∈ SN), suppose u[x := s] /∈ SN (resp.
u[a := h] /∈ SN). Then u ։ξ v ≥ ⌊x, e⌋ (resp. u ։ξ v ≥ ⌊t, a⌋) for some ⌊x, e⌋
(resp. ⌊t, a⌋) such that ξ is zoom-in and e[x := s] ∈ SN and ⌊x, e⌋[x := s] /∈ SN
(resp. t[a := h] ∈ SN and ⌊t, a⌋[a := h] /∈ SN ).

Proof By induction on ηc(u), applying Lemmas 327 and 328. �

Definition 332 A set A of proper terms is called �-closed from below if, for every
u and u′, u′ � u ∈ A and u′ is proper implies u′ ∈ A.

Definition 333 Let A and B be sets �-closed from below. We define simultane-
ously two sets of substitutions Π(B) ⊆ Σr and Θ(A) ⊆ Σl as follows.

1. (a) ∅ ∈ Π(B),

(b) [a1 := e1τ1, . . . , an = enτn] ∈ Π(B) if n ≥ 0 and ei ∈ B and τi ∈ Θ(A)
for 1 ≤ i ≤ n.

2. (a) ∅ ∈ Θ(A).

(b) [x1 := t1ρ1, . . . , xn = tnρn] ∈ Θ(A) if n ≥ 0 and ti ∈ A and ρi ∈ Π(B)
for 1 ≤ i ≤ n.

Definition 334 Let S(A,B) be a set of terms as follows.

S(A,B) = {uρ | u ∈ A and ρ ∈ Π(B)} ∪ {vτ | v ∈ B and τ ∈ Θ(A)}.

Definition 335 Let u ∈ S(A,B). We define

ht(u) =





0 if u ∈ A or u ∈ B,
max{ht(ρ(a)) | a ∈ dom(ρ)} + 1 if u = u1ρ with u1 ∈ A and ρ ∈ Π(B),
max{ht(τ(x)) | x ∈ dom(τ)} + 1 if u = u1τ with u1 ∈ B and τ ∈ Θ(A).

Lemma 336 Let u ≤ v ∈ S(A,B), then u ∈ S(A,B).

Proof A straightforward induction on ht(v). �

Lemma 337 Let σ = [r1, . . . , rn] be a zoom-in reduction sequence. Assume r1 ∈
S(A,B). Then rn ∈ S(A,B).

Proof It is enough to prove the assertion for n = 2. Let r1 ∈ S(A,B), r1 → r′1 ≥
r2. We may assume r1 = uρ for some u ∈ A and ρ ∈ Π(B). Since u is proper
we have u = ⌊u1, u2⌋. Let u2ρ = µ̃xu′2, the proof for u1ρ = µau′1 being similar.
If u2 is proper, then u2 = µ̃xu′′2 and r′1 = u′′2 [x := u1]ρ ∈ S(A,B). Otherwise
u2 = a ∈ dom(ρ) and ρ(a) = µ̃xu′2 = µ̃xvτ for some v ∈ B and τ ∈ Θ(A). We have
r′1 = u′2[x := u1ρ] = vτ [x := u1ρ] ∈ S(A,B). The statement follows from Lemma
336. �
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Lemma 338 1. Let tσ, e ∈ SN for some term t, r-term e and σ ∈ Σr. Assume
tσ[a := e] /∈ SN , where a /∈ Im(σ). Then there exists an ⌊t′, a⌋ � t and a
σ′ ∈ Σr such that t′σ′ ∈ SN and ⌊t′σ′, e⌋ /∈ SN .

2. Let tδ, s ∈ SN for some term t, l-term s and δ ∈ Σl. Assume tδ[x := s] /∈ SN ,
where x /∈ Im(δ). Then there exists an ⌊x, t′⌋ � t and a δ′ ∈ Σl such that
t′δ′ ∈ SN and ⌊s, t′δ′⌋ /∈ SN .

Proof We regard only the case tσ, e ∈ SN for some r-term e and a σ ∈ Σr such
that tσ[a := e] /∈ SN , where a /∈ Im(σ). Let us define

U := {u |u � t and u is proper},

V := {v | v � σ(b) for some b ∈ dom(σ) and v is proper}.

Define Π(V), Θ(U) and S(U ,V) as in Definitions 333 and 334. We have tσ ∈
S(U ,V). By Lemma 331 there is an ⌊t∗, a⌋ � tσ and a zoom-in reduction sequence
tσ →r1 t1 →r2 t2 →r3 . . . →rn tn such that ⌊t∗, a⌋ ≤ rn and t∗[a := e] ∈ SN and
⌊t∗[a := e], e⌋ /∈ SN . Lemmas 337 and 336 give ⌊t∗, a⌋ ∈ S(U ,V). Since a /∈ Im(σ)
and the elements of U are proper we have ⌊t∗, a⌋ = ⌊t′, a⌋ρ for some ⌊t′, a⌋ � t and
ρ ∈ Σr, which yields the result. �

Theorem 339 The µµ̃-calculus is strongly normalizing.

Proof See Theorem 3.2 in David and Nour [15]. �

4.2.2 The strong normalization of the λµµ̃∗-calculus

We continue with the proof of the strong normalization of the λµµ̃∗-calculus. The
proof is analogous to that of the previous section, so we indicate only the main
differences below. As in David and Nour [15], it can be verified that the sl- and
sr-rules can be postponed w.r.t. the other rules of the λµµ̃∗-calculus, hence we
ignore them in our examinations. In this section let → denote the union of the β-,
µ-, µ̃-, cl1.l-, cl1,r-, and cl2-reductions. The following lemma will be useful.

Lemma 340 Let t ∈ SN (resp. e ∈ SN). Then ⌊t, a⌋ ∈ SN (resp. ⌊x, e⌋ ∈ SN).

Proof Straightforward. �

Lemma 341 Let t be a left-, e be a right term, assume t and e are proper. Let ρ
be a left-substitution (resp. a right-substitution). Then the following assertions are
valid.

1. If tρ։ µαt′1, then t = µαt1 for some t1 such that t1ρ։ t′1.

2. If tρ։ λxt′1, then t = λxt1 for some t1 such that t1ρ։ t′1.

3. If eρ։ µ̃xe′1, then e = µ̃xe1 for some e1 such that e1ρ։ e′1.

4. If eρ ։ (t′1.e
′
1), then e = (t1.e1) for some t1, e1 such that t1ρ ։ t′1 and

e1ρ։ e′1.

Proof Obvious. �
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Lemma 342 Assume t, e ∈ SN , ⌊t, e⌋ /∈ SN . Then we have the following possi-
bilities:

1. t = µαs and s[α := e] /∈ SN ,

2. e = µ̃xh, h[x := t] /∈ SN ,

3. t = λxu, e = (s.h) and ⌊s, µ̃x⌊u, h⌋⌋ /∈ SN ,

4. t = s̃ and ⌊s, e⌋ /∈ SN ,

5. e = h̃ and ⌊t, h⌋ /∈ SN ,

6. t = h, e = s̃ and ⌊s, h⌋ /∈ SN .

Proof By induction on η(t) + η(e). �

The presence of the complementer rules makes the definition of a zoom-in strat-
egy a little more elaborate. In the following definition let →1 stand for the union
of the β-, µ-, µ̃-, and cl2-reductions. .

Definition 343 Let π = [p1, . . . , pn] (n ≥ 1) be a sequence of commands, assume
pi = ⌊qi, hi⌋ (1 ≤ i ≤ n). Then π is a zoom-in sequence if there is a reduction

sequence such that, for every 1 ≤ i ≤ n, pi →
pi

1 p′i ≥ pi+1 or qi = q̃′i and pi →cl1,l

⌊q′i, hi⌋ ≥ pi+1 or hi = h̃′i and pi →cl1,r
⌊qi, h

′
i⌋ ≥ pi+1. Furthermore, we say that π

is a minimal non-sn sequence if qi, hi ∈ SN and pi /∈ SN (1 ≤ i ≤ n).

Definition 344 Let u be a λ
Sym
Prop-term. The function φ gives the associated com-

mand of a redex r ≤ u, if it exists. If r is a λ-, µ-, µ̃-, or cl2-redex, then φ(r) = r.

If r = t̃ (resp. r = ẽ) such that there exists an v for which ⌊r, v⌋ ≤ u (resp.
⌊⌋v, r ≤ u), then φ(r) = ⌊r, v⌋ (resp. φ(r) = ⌊v, r⌋). Let φ(r) be undefined other-
wise. Let ξ = [r1, . . . , rn], then φ(ξ) = [φ(r1), . . . , φ(rn)] if φ(ri) is defined for every
1 ≤ i ≤ n and set φ(ξ) as undefined otherwise.

Lemma 345 Let u, s ∈ SN (resp. u, h ∈ SN), suppose u[x := s] /∈ SN (resp.
u[a := h] /∈ SN). Then u ։ξ v ≥ ⌊x, e⌋ (resp. u ։ξ v ≥ ⌊t, a⌋) for some ⌊x, e⌋
(resp. ⌊t, a⌋) such that φ(ξ) is a zoom-in, minimal non-sn sequence of commands
and e[x := s] ∈ SN and ⌊x, e⌋[x := s] /∈ SN (resp. t[a := h] ∈ SN and ⌊t, a⌋[a :=
h] /∈ SN ).

Proof The proof goes by induction on ηc(u) applying Lemmas 341 and 342. �

The complementer rules also necessitate a more involved definition of closure
from below.

Definition 346 We introduce a relation on the terms of the λµµ̃∗-calculus. Let
V arl (resp. V arr) denote the set of l-variables (resp. r-variables) of the λµµ̃∗-
calculus. Let V ar = V arl∪V arr. Assume u is a term and Fv(u) = {x1, . . . , xn, a1, . . . , am}.
Then u ≈ u′ iff there exists a σ : V ar → V ar such that σ(xi) ∈ V arl if 1 ≤ i ≤ n,
σ(aj) ∈ V arr provided 1 ≤ j ≤ m and u′ = uσ. In this case we say that u′ is almost
equal to u.

It is immediate to see that ≈ is an equivalence relation on the set of terms of
the λµµ̃∗-calculus.

Definition 347 Let u, u′ be terms. We write u′ w u if there is an u′′ � u such
that u′ ≈ u′′.

Lemma 348 Let u and u′ be such that u′ w u. Then ηc(u′) ≤ ηc(u).

Proof Obvious. �
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Definition 349 A set A of proper terms is called w-closed from below if, for every
u and u′, u′ w u ∈ A and u′ is proper implies u′ ∈ A.

Definition 350 Let A and B be sets w-closed from below. Let A be a type. We
define simultaneously two sets of substitutions ΠA(B) ⊆ ΣA,r and ΘA(A) ⊆ ΣA,l as
follows.

1. (a) ∅ ∈ ΠA(B),

(b) [a1 := e1τ1, . . . , an = enτn] ∈ ΠA(B) if n ≥ 0 and ei ∈ B such that
type(ei) = A and τi ∈ ΘA(A) for 1 ≤ i ≤ n.

2. (a) ∅ ∈ ΘA(A).

(b) [x1 := t1ρ1, . . . , xn = tnρn] ∈ ΘA(A) if n ≥ 0 and ti ∈ A such that
type(ti) = A and ρi ∈ ΠA(B) for 1 ≤ i ≤ n.

The set SA(A,B) is defined as in Definition 334 using w instead of �, where the
subscript A indicates the common type of the substitutions involved.

Lemma 351 Let u ≤ v ∈ SA(A,B), then u ∈ SA(A,B).

Proof Analogous to the proof of Lemma 336. �

Definition 352 The length of a type A of the λµµ̃∗-calulus is defined as follows.

1. lh(A) = 0 if A is an atomic type,

2. lh(A→ B) = lh(A) + lh(B) + 1,

3. lh(A⊥) = lh(A).

We remark that this definition results that the length of a type A is the number
of arrows in A in this calculus also. Thus, equal types have the same lengths.

Lemma 353 Let n be an integer. Let H be the property as follows: if u, v ∈ SN
and lh(type(v)) < n, then u[x := v] ∈ SN (resp. u[a := v] ∈ SN). Assume H
holds. Let π = [p1, . . . , pn] be a zoom-in, minimal non-sn sequence of commands.
Let A be a type of length n. Assume p1 ∈ SA(A,B) for some sets A and B w-closed
from below. Then pn ∈ SA(A,B).

Proof The proof is similar to that of Lemma 337. We only indicate the more
interesting changes. Is is enough to consider the case of n = 2.

1. p1 = ⌊λxt, (s.e)⌋ →λ p′1 = ⌊s, µ̃x⌊t, e⌋⌋ ≥ p2. Assume p1 ∈ SA(A,B), we
may suppose p1 = uρ for some u ∈ A and ρ ∈ ΠA(B). Then u = ⌊u1, u2⌋
with u1ρ = λxt and u2ρ = (s.e). Assume u1 and u2 are proper. Then,
by Lemma 341, we have t = t1ρ and (s.e) = (s1.e1)ρ for some t1, s1 and
e1. Now, p′1 = ⌊s1, µ̃x⌊t1, e1⌋⌋ρ ∈ SA(A,B), which yields, by Lemma 351,
p2 ∈ SA(A,B). Assume either u1 or u2 is a variable. Since ρ ∈ ΠA(B) ⊆ ΣA,r,
this must be u2. Then u2 = ρ(a) = (u′2.u

′′
2) for some a ∈ dom(ρ). We have

p′1 = ⌊u′2, µ̃x⌊t, u
′′
2⌋⌋. Since lh(type(u′2)) < lh(A) and lh(type(u′′2)) < lh(A),

by assumption H and Lemma 340, we obtain p′1 ∈ SN , which contradicts the
hypothesis p2 /∈ SN . Similarly, u1 cannot be a variable either.

2. p1 = ⌊q̃, e⌋ →cl1,l
⌊q, e⌋ = p′1 ≥ p2 or p1 = ⌊q, ẽ⌋ →cl1,r

⌊q, e⌋ = p′1 ≥ p2.
Assume the latter holds. Let p1 = uρ for some u ∈ A and ρ ∈ ΠA(B).
Then u = ⌊u1, u2⌋. If u2 is proper, we have the result since A is w-closed
from below. Otherwise, ẽ = ρ(a) = vτ for some v ∈ B and τ ∈ ΘA(A).
This means v = ṽ1 for some v1 ∈ B. Let ρ1 := ρ + [a1 := v1τ ]. Then
p′1 = ⌊u1ρ, v1τ⌋ = ⌊u1, a1⌋ρ1 ∈ SA(A,B), since ⌊u1, a1⌋ w u and ρ1 ∈ ΠA(B).

�
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Lemma 354 Let n be an integer. Let H be the property as follows: if u, v ∈ SN
and lh(type(v)) < n, then u[x := v] ∈ SN (resp. u[a := v] ∈ SN). Assume H
holds. Let A be a type such that lh(A) = n.

1. Let tσ, e ∈ SN for some term t, r-term e and σ ∈ ΣA,r. Assume tσ[a := e] /∈
SN , where a /∈ Im(σ). Then there exists an ⌊t′, a⌋ w t and a σ′ ∈ ΣA,r such
that t′σ′ ∈ SN and ⌊t′σ′, e⌋ /∈ SN .

2. Let tδ, s ∈ SN for some term t, l-term s and δ ∈ ΣA,l. Assume tδ[x := s] /∈
SN , where x /∈ Im(δ). Then there exists an ⌊x, t′⌋ w t and a δ′ ∈ ΣA,l such
that t′δ′ ∈ SN and ⌊s, t′δ′⌋ /∈ SN .

Proof Similar to that of Lemma 338, applying Lemmas 345 and 353. �

Lemma 355 If t, s, e ∈ SN , then t[x := s], t[a := e] ∈ SN .

Proof As in Lemma 3.11 of David and Nour [15]. �

Theorem 356 The λµµ̃∗-calculus is strongly normalizing.

Proof Cf. Theorem 3.3 in David and Nour [15]. The cases induced by the com-
plementer rules in the enumeration in Lemma 342, and thus not appearing in the
λµµ̃-calculus, can be handled in a straightforward way. �
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...

Γ ⊢ t : A | △

Γ | et : A⊥ ⊢ △
cl1,l-reduction:  

Γ ⊢ et : A | △

...

Γ ⊢ t : A | △

...

Γ | e : A ⊢ △

Γ ⊢ e : A⊥ | △

...

Γ ⊢ t : A | △

Γ | et : A⊥ ⊢ △
cl2-reduction:  

⌊e,et⌋ : (Γ ⊢ △)

...

Γ ⊢ t : A | △

...

Γ | e : A ⊢ △

⌊t, e⌋ : (Γ ⊢ △)

Figure 4.1: The reductions in the proofs corresponding to the cl1,l- and cl2-rules of the
λµµ̃∗-calculus.
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Conclusions

Overview

In this work we continued investigations in the following directions.

1. We examined in Chapter 1 the λµµ′-calculus. In the first part of the chapter
we proved that the Parigot-style λµµ′-calculus extended with the ρ- and the
θ-rules is strongly normalizing. For this purpose, knowing, by the result [14] of
David and Nour, the strong normalization of the Parigot-style λµµ′-calculus
also, it was enough to establish the following two assertions.

- In the Parigot-style λµµ′-calculus expanded with the ρ- and the θ-rules,
the θ-reduction can be postponed w.r.t. all the other rules.

- The ρ-reduction can be postponed in the Parigot-style λµµ′-calculus.

The second half of the chapter was devoted to the de Groote-style λµµ′-
calculus.

- A new proof of the strong normalization of the µµ′-calculus was pre-
sented.

- A counterexample was given to refute the strong normalization of the
µµ′ρ-calculus.

- The weak normalization of µµ′ρ was established by finding a normalizing
algorithm for the calculus.

- The above result was applied to obtain the weak normalization of the
λµµ′ρ-calculus. The algorithm trivially extends to the case of the λµµ′ρθ-
calculus also.

- A standardization theorem was formulated and proved for the λµµ′ρθ-
calculus.

- In the end of the chapter the effect of the addition of some other simpli-
fication rules to the µµ′- or the λµµ′-calculi were examined.

2. In Chapter 2 we were concerned with estimations about the lengths of reduc-
tions in the λµρθ-calculus.

- An upper bound was found for the lengths of reductions in λµρθ-calculus.

- In regard to the λµρθ-calculus a standardization theorem was asserted
and proved, together with finding a bound for the length of the stan-
dardization of a given λµρθ-reduction sequence.

3. In Chapter 3 an arithmetical proof for the strong normalization of the λ
Sym
Prop -

calculus was presented.

4. In Chapter 4 we defined translations between the λ
Sym
Prop - and the λµµ̃∗-calculi

preserving strong normalization.
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Open questions

1. In Section 1.2.2 a counterexample for the strong normalization of the µµ′ρ-
calculus was given. In the realm of the untyped λ-calculus there is a well-
known result supplying a necessary condition for a term not to be strongly
normalizing, this is the so-called Ω-theorem (cf. Raamsdonk et al. [52]). Let
us use the notation Ω = (ωω), where ω = λx(x x). The Ω-theorem roughly
states that if a term is not strongly normalizing, it must contain in some
sense the non-strongly normalizing term Ω. We conjecture that a very similar
theorem also holds for the µµ′ρ-calculus with (U V ) and (V U), respectively,
where U = µα(α (α x)) and V = µβU are the terms introduced in Section
1.2.2. For this purpose we clarify a little more in what sense the term (U V )
(resp. (V U)) is contained in a non-strongly normalizing term of the µµ′ρ-
calculus. The treatment below follows that of the case of Ω in Raamsdonk et
al. [52].

Definition 357 We define a relation called substring on the set of all terms
of the µµ′ρ-calculus.

1. xE y for arbitrary variables x and y,

2. M E µαN , if M EN and α /∈ Fv(N),

3. M E (N P ), if M EN ,

4. M E (P N), if M EN ,

5. µαM E µβN [α := β], if M EN and β /∈ Fv(N),

6. M E (α N), if M EN ,

7. (α M)E (α N), if M EN ,

8. (M1 M2)E (N1 N2), if M1 EN1 and M2 EN2.

Example 358 1. µα(α (α x))E µβ(β (β (x y))),

2. µβµα(α x)E µβµαµγ(γ x),

3. µα(α x)E µβµγ((β x) (β x)),

4. µα(α (α x)) 5 µα(α (β x)),

5. µα(α (α x)) 5 µβ(β µα(α x)),

6. µα(α (α x)) 5 (µα(α x) µα(α x)).

The set ΛU is the set of all terms not containing multiple occurrences of a
bound variable. In the definition below we use the notation |M |α defined in
Definition 200.

Definition 359 The set ΛU is defined as follows.

1. x ∈ ΛU ,

2. µαM ∈ ΛU , if M ∈ ΛU and |M |α ≤ 1,

3. (α M) ∈ ΛU , if M ∈ ΛU ,

4. (M1 M2) ∈ ΛU , if M1 ∈ ΛU and M2 ∈ ΛU .

We can observe that M ∈ ΛU iff U = µα(α (α x)) 5 M .

Definition 360 We define the set ΛUV .
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1. x ∈ ΛUV ,

2. µαM ∈ ΛUV , if M ∈ ΛUV ,

3. (α M) ∈ ΛUV , if M ∈ ΛUV ,

4. (M1 M2) ∈ ΛUV , if M1 ∈ ΛUV and M2 ∈ ΛU ,

5. (M1 M2) ∈ ΛUV , if M1 ∈ ΛU and M2 ∈ ΛUV .

We can see easily that M ∈ ΛUV iff (U V ) 5 M (or (V U) 5 M , respectively)
with U and V defined as above. We can formulate the following conjecture
now.

Conjecture 361 If M ∈ ΛUV , then M ∈ SN .

Examining the proof of the Ω-theorem, we find that for proving Conjecture
361 it is enough to establish the assertion below.

Definition 362 We define two sets of terms, ΛX and ΛY , simultaneously.

(a) 1. x ∈ ΛX ,

2. (α M) ∈ ΛX , if M ∈ ΛX ,

3. µαM ∈ ΛX , if M ∈ ΛY ,

4. (M1 M2) ∈ ΛX , if M1 and M2 ∈ ΛX .

(b) 1. x ∈ ΛY ,

2. (α M) ∈ ΛY , if M ∈ ΛX ,

3. µαM ∈ ΛY , if M ∈ ΛY and |M |α ≤ 1,

4. (M1 M2) ∈ ΛY , if M1 and M2 ∈ ΛY .

Intuitively, if M ∈ ΛX , then M has the following property. Let µαM1 ≤ M
such that |M |α > 1. Then either there is an address a for which Ma = µαM1

or there is a (β N) ≤ M and an address b such that Nb = µαM1. We may
observe that the latter condition means that µαM1 is correct in M in the
sense of Definition 83. Now we can state the following conjecture.

Conjecture 363 If M ∈ ΛX , then M ∈ SN .

2. In Section 1.2.1 we presented a new proof for the strong normalization of
the µµ′-calculus by finding a norm strictly decreasing on the possible non-
terminating reduction sequences. It seems to be promising to extend the
proof for λµµ′ also. This necessitates an appropriate extension of the norm
to λµ-terms also, which can be a future work for us. We remark that it is a
long-standing open problem to find a norm for the simply typed λ-calculus
which is strictly decreasing at each reduction step.

3. In Chapter 2 we established a bound for the lengths of the reduction sequences
in the λµρθ-calculus. It is an interesting question also to find a bound for
the lengths of the reduction sequences in the µµ′- and in the λµµ′-calculus,
respectively. It appears that the norm defined in Section 1.2.1 can be modified
in a way such that it also supplies a bound for the lengths of reductions in
the µµ′-calculus. Probably, a similar approach could also be suitable for the
λµµ′-calculus: having found a norm establishing the strong normalization of
the λµµ′-calculus, we might try to extract with the help of this norm a bound
for the lengths of the reduction sequences in the calculus.
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