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LIST OF ABBREVIATIONS

Ad Adenovirus

AF Aortic Flow

Akt Protein kinase B

AP-1 Activator protein 1, redox regulated transcription factor

ASK1 Apoptosis signal-regulating kinase 1

Bax , Bad Pro-apoptotic proteins

Bcl-2 Anti-apoptotic protein

CAM Cell adhesion molecules

cAMP Cyclic adenosine 5'-monophosphate

CF Coronary Flow

Dn Dominant negative

eNOS endothelial Nitric Oxide Synthase

ET-1 Endothelin-1

EV Empty vector

FGF2 Fibroblast growth factor 2

FGFR Fibroblast growth factor receptor

GAPDH Glyceraldehyde-3-phosphate dehydrogenase

Glrx Glutaredoxin

GSH Glutathione

GSHPx Glutathione peroxidase

GSSG Oxidized glutathione, glutathione disulfide

!GST Glutathione S-transferase

H2O2 Hydrogen peroxide

HIF1_ Hypoxia inducible factor-1

HR Heart rate

IAP-2 Inhibitors of apoptosis protein-2

IHD Ischemic heart disease

I-R Ischemia-Reperfusion

IκB Inhibitory κB

JNK c-Jun N-terminal kinase

LAD Left anterior descending coronary artery
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LPS Lipopolysaccharides

LVDP Left Ventricular Developed Pressure

LVdp/dt maximum first derivative of developed pressure

MAPK Mitogen activated protein kinase

MDA Malondialdehyde

MI    Myocardial infarction

MnSOD Manganese-Superoxide dismutase

_-MyHC _-myosin heavy chain

NFκB Nuclear transcription Factor κB

NO Nitric Oxide

NOS Nitric Oxide Synthase

O2
_- Superoxide anion radical

OH_
Hydroxyl radical

ONOO - Peroxynitrite anion

p.f.u. Plaque forming unit

PI-3-kinase Phosphatidyl-inositol -3 - kinase

PLA2 Phospholipase A2

PMN Polymorphonuclear leukocyte

PR39 Peptide regulator 39 of angiogenesis

Prdx Peroxiredoxin

PTP Mitochondrial PTP

ROS Reactive oxygen species

RT-PCR Reverse transcriptase polymerase chain reaction

SH- Sulfhydryl groups

SOD Superoxide dismutase

TBS Tris-buffered saline

Trx Thioredoxin

TrxR Thioredoxin reductase

TTC Triphenyl-tetrazolium-chloride

TUNEL Terminal deoxynucleotidyl transferase dUTP nick-end labeling



6

Introduction

Cardiovascular diseases represent the most prevalent serious disorders in the developed

countries. The American Heart Association has reported that in 2002, 62 million Americans

suffer from one or more cardiovascular diseases (including hypertension). In the United

States, more than 12 million persons have ischemic heart disease (IHD), approximately 6

millon have angina pectoris, and 7 million have sustained a myocardial infarction (MI). In

Hungary, approximately 51% of mortality is caused by cardiovascular diseases according to

report of Hungarian Epidemiology Society and the second leading cause of death is cancer

with 26%. Several risk factors may contribute to development of ischemic heart disease such

as hyperlipidemia, hypertension, obesity, smoking, diabetes, inactivity, family history, stress,

age and sex. IHD arises when there is an imbalance between the myocardial oxygen demand

and blood supply. Faulty functioning of the coronary circulation, most commonly due to fatty

atherosclerotic plaques or blood clots, causes a reduction in blood flow, and subsequently

ischemia and/or MI (Hearse, 1988; Katz, 1990). MI related to infarction is a disease of multiple

pathways with variable outcomes. Both ischemia and reperfusion contribute to cell and tissue

damage after cardiac infarction. Myocardial ischemia/reperfusion initiates maldistribution of

ions and various signaling mechanisms leading to oxidative injury and inflammatory

responses which include liberation of cytokines (Ockaili et al., 2005) and free radicals (McCord,

1985), up- and downregulation of various genes and their proteins (Abbott et al., 1999; Szendrei et

al., 2002; Das et al., 2005), and cell death by apoptosis (Liu et al., 2005) and/or necrosis (Kingma et

al., 1987). The treatment of myocardial infarction is currently mostly directed at restoration of

blood flow to the previously ischemic area, and reduction of oxygen demand of the heart.

However, during reperfusion of cardiac tissue, depending on the duration of the previous

ischemic event, the heart undergoes additional damage due to the activation of various

pathways, functional and physiological impairments, leading to cell death.

Probably the two most important consequences of ischemia/reperfusion-induced cardiac

injury are (i) heart failure and (ii) ventricular fibrillation leading to sudden cardiac death.

Sudden cardiac death occurs in 1,2 million cases each year in the industrialized countries of

North America and the European Union. (Davies, 2001; Rosengren et al., 2004; Cesairo and Dec,

2006). Thus, interventions for the salvage of the myocardium following myocardial ischemia

are essential for minimizing the myocardial damage that leads to left ventricular dysfunction

and the subsequent risk for heart failure and sudden cardiac death.
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Reactive oxygen species (ROS) playing a dual role as both deleterious and beneficial

species (Valko et al., 2006). At moderate concentrations, they play an important role as

regulatory mediators in signaling processes and cellular processes, including gene expression,

growth, and regulated forms of cell death (e.g., apoptosis) (Dröge, 2002). However, at high

concentrations they are deleterious for living organisms and damage all major cellular

constituents (Valko et al., 2001; Ridnour et al., 2005). ROS have been implicated in

tumorigenesis/carcinogenesis (Cerutti, 1985), in the aging process (Cadenas and Davies, 2000), and

in the progression of cardiovascular diseases, neurodegenerative disorders, rheumatoid

arthritis, and inflammatory diseases of the lung (Dröge, 2002).

In physiological conditions, free radicals and reactive nonradical species derived from

radicals are generated in small but measurable concentrations (Sies, 1993) during the normal

cellular metabolism or in response to environmental stress and are normally inactivated by

endogenous scavenging systems (Moensa et al., 2005). However under pathophysiological

conditions, the production of ROS in excess of an endogenous cellular capacity for their

detoxification and/or utilization cause disruption of „redox homeostasis” and issue in a non-

homeostatic state referred to as „oxidative stress” (Pryor et al., 2006).

Oxidative stress have been implicated in myocardial I-R injury via several mechanisms

and multiple pathways such as e.g., (i) the modification or degradation of cellular

biochemicals, including DNA, protein, lipids, and carbohydrates, (ii) the activation of pro-

inflammatory nuclear transcription factors such as NF_B and AP-1 which may upregulate

death proteins or produce inhibitors of survival proteins (Ockaili et al., 2005), (iii) the release of

cytochrome-c from mitochondria and activation of caspases, p53, and kinases, including

apoptosis signal-regulating kinase 1 (ASK1), c-Jun N-terminal kinase (JNK), and p38

mitogen-activated protein kinase (Ueda et al., 2002) (iv) the peroxidation of membrane lipids

and formation of lipid radicals (Singal et al., 1983; Radi et al., 1991; Leifert et al., 1999) which may

contribute to (v) calcium overload (Tani et al., 1989; Piper et al., 1998), (vi) contractile dysfunction

and hypercontracture (Suzuki et al., 1991; Bolli et al., 1999), (vii) reperfusion arrhythmias (Bernier et

al., 1986; Hearse, 1988) and ultimately all of which leads to (viii) the death of cardiomyocytes.

Cells or tissues are in a stable state if the rates of ROS production and scavenging

capacity are essentially constant and in balance („Oxidant-antioxidant balance” or „redox

balance”). This state is achieved by mechanisms called „redox regulation”. The process of

„redox regulation” protects living organisms from oxidative stress and maintains „redox

homeostasis” by controlling the redox status in vivo (Dröge, 2002; Valko et al., 2007).
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It now becomes increasingly clear that the major role in redox regulation is played by

modification of sulfhydryl groups (SH-) in signal proteins, which, from one hand, involves

ROS, and from the other such thiol-containing molecules as glutathione (GSH), glutaredoxins

(Glrxs), thioredoxins (Trxs), and peroxiredoxins (Prdxs).

To date, no investigations have addressed the potential role of Glrx-2 and Prdx6 in

cardiac disorders and myocardial ischemia-reperfusion. Therefore, our researches have been

mainly focused to these thiol-containing antioxidants molecules.

 Glutaredoxins

Since Glrx-2 catalyzes the reversible glutathionylation of mitochondrial complex 1 (Beer

et al., 2004), it is expected to play a significant role in reducing the oxidative environment of

the cell and decrease the cellular injury. Glutaredoxins (Glrxs) belong to the members of the

thioredoxin superfamily of thiol/disulfide exchange catalysts, and hence known as „thiol-

transferases”. Glrxs are similar to thioredoxins in structure and size; they also contain a redox

active Cys-X1-X2-Cys (Cys-Pro-Tyr-Cys) sequence. Contrary to the Trx/thioredoxin

reductase system, glutaredoxin lacks a specific reductase for reduction of its oxidized form;

this role belongs to the GSH/glutathione reductase system. An important property of

glutaredoxins is their ability to reduce mixed disulfides (Holmgren, 1989). The Glrx system

consists of Glrx, GSH and NADPH-dependent GSH reductase. Glrxs are able to catalyse

reactions not only via a dithiol mechanism (as Trxs do), but also via a monothiol mechanism

(Bushweller et al., 1992; Holmgren et al. 1995), which is required for the reduction of protein GSH

mixed disulphides (deglutathionylation). (Holmgren, 1985; Lillig et al., 2004)

Dithiol mechanism:

R-S2 + Grx-(SH)2 _ R-(SH)2 + Grx-S2

Grx-S2 + 2 GSH_ Grx-(SH)2 + GSSG

Monothiol mechanism:

R-S-SG + Grx-(SH)2_R-SH + Grx-S-SG

Grx-S-SG + GSH _ Grx-(SH) + GSSG

where R-S-SG is a mixed disulphide with GSH.

Glrxs are predominantly localized in the cytoplasm; however, they can also be detected

in the nucleus and mitochondria (Rodríguez-Manzaneque et al., 2002). Two mammalian Glrxs have
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been identified: Glrx1 localizes in the cytosol and Glrx2 localizes primarily in mitochondria,

but can also localize in the nucleus (Lundberg et al., 2001). Cytosolic Glrx1 is involved in

multiple cellular processes, e.g., protein disulphide reduction as in ribonucleotide reductase,

dehydroascorbate reduction (Wells et al., 1990), regulation of transcription factors (Bandyopadhyay

et al., 1998; Hirota et al., 2000) and apoptosis (Chrestensen et al., 2000; Daily et al., 2001). Similar to

Trx-1 (Saitoh et al., 1998), Glrx1 can regulate apoptosis through ASK-1 (apoptosis signal-

regulating kinase-1), which is a mitogen-activated protein kinase kinase kinase (MAPKKK)

that binds to the reduced Glrx1 (Song et al., 2002). Upon oxidation, Glrx1 becomes detached

from ASK-1 thereby potentiating a survival signal while activation of ASK-1 will generate a

death signal. Recently, Glrx1 has been identified in mammalian hearts (Mazzocco et al., 2002),

however, its role in ischemic heart disease remains unknown.

The second mammalian Glrx2 was identified more recently (Gladyshev et al., 2001). Glrx2

encodes two isoforms; a nuclear Glrx2 exists in addition to a mitochondrial Glrx2.  Glrx2 is a

very efficient catalyst of protein deglutathionylation. The oxidized active site of Glrx2 is also

a substrate for thioredoxin reductase (TrxR) (Johansson et al., 2004). TrxR efficiently reduces

both the active site disulphide and the Glrx2-S-SG intermediate formed in the reduction of

glutathionylated proteins, thus supporting both monothiol and dithiol reactions. Glrx2

combines both the characteristics of a Trx and a Glrx. At sufficiently oxidizing conditions the

active site in Glrx2 cannot be reduced by GSH. The direct reduction via TrxR enables Glrx2

to reduce glutathionylated proteins and a series of low-molecular-mass substrates even during

conditions of oxidative stress (Johansson et al., 2004).  Mitochondria are the major intracellular

source of ROS, which are produced by complex I and complex III during mitochondrial

respiration (Indo et al., 2007). ROS alter the ratio of GSH/GSSG, which can change the activity

of many key proteins by formation of mixed disulphides of GSH with critical cysteine

residues (glutathionylation) (Wang et al., 1997; Lind et al., 1998; Barrett et al., 1999; Klatt et al., 1999;

Zech et al., 1999; Pineda-Molina et al., 2001).  ROS formation by complex I is increased upon

glutathionylation of two thiols in its NADH-binding pocket (Taylor et al., 2003). Glrx2 is an

efficient catalyst of monothiol reactions with high affinity for glutathionylated proteins

(Johansson et al., 2004), and Glrx2 catalyses the reversible glutathionylation of complex I and

other proteins of the inner mitochondrial membrane over a wide range of GSH/GSSG ratios

(Beer et al., 2004). In addition, Glrx2 protects the cells from apoptosis by preventing the loss of

cardiolipin, and inhibit cytochrome-c release and caspase activation (Lillig et al., 2004; Enoksson

et al., 2005).
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Glrx2 has also been characterized as an iron–sulfur protein. This unusual Glrx can bind

a (2Fe–2S) cluster that bridges two molecules of Glrx2. Dimeric holo Glrx2 is enzymatically

inactive, but cluster degradation and monomerization of Glrx2 activates the oxidoreductase.

The cluster is stabilized by GSH, but destroyed by GSSG and ROS. It has therefore been

proposed that the cluster serves as a redox sensor for the activation of Glrx2 during conditions

of oxidative stress (Lillig et al., 2005).

 Peroxiredoxins

Peroxiredoxins (Prdx) or thioredoxin peroxidases are a recently described superfamily

of nonseleno-proteins (Rhee et al., 1999) belong to thioredoxin superfamily (Fujii et al., 2001;

Turoczi et al., 2003) and found in a wide range of living organisms from bacteria to mammals

(Hofmann et al., 2002; Wood et al., 2003). Peroxiredoxins are antioxidant enzymes, and perform the

same function as catalases and glutathione-dependent peroxidases, however, their catalytic

activity is significantly lower than that of the latter. Beside of thioredoxin reductase (TrxR)

the peroxiredoxin is another thioredoxin related protein capable of directly reducing peroxides

such as H2O2, organic hydroperoxides, and peroxynitrite. They use thiol groups as reducing

equivalents to scavenge oxidants (Rhee et al., 1999). In the process they are oxidized as they

homo or heterodimerize with other family members through disulfide bonds formed between

conserved cysteine residues. Trx then reduces the oxidized Prdx back to the active monomeric

form. In the process Trx becomes oxidized and is reduced by TrxR (Chae et al., 1999; Moran et

al., 2001; Nordberg et al., 2001; Powis and Montfort, 2001).

To be able to perform peroxide reduction, Prdxs contain redox active cysteine residues

in their catalytic sites. According to the protein contains one or two conserved cysteine

residues, Prdxs can be divided into two subgroups, namely 1-Cys or 2-Cys peroxiredoxins

(Rhee et al., 2001; Flohé et al., 2003). To date, six members of the peroxiredoxin superfamily have

been known (Prdx1-Prdx6) in mammalian tissues: Five members are 2-Cys enzymes (Prdx1-

Prdx5) that use thioredoxin as an electron donor (Rhee et al., 2001; Hofmann et al., 2002).

Peroxiredoxin 6 (Prdx6) is the only mammalian member of the 1-Cys peroxiredoxin group.

Prdx6, however - unlike the other mammalian members of the family - utilizes glutathione

(GSH) as physiological reductant (Kang et al., 1998; Fisher et al., 1999). Prdx6 is expressed in all

major organs, including the heart (Fisher et al., 2005), it is enriched in lung and especially in

Clara and alveolar type II epithelial cells (Kim et al., 1998). Prdx6 is bifunctional because

besides its peroxidase activity, protecting cells from oxidative damage, it also has Ca-
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independent phospholipase A2 (PLA2) activity. According to above Prdx6 has two separate

active centers for these two activities: (i) GPx catalytic center and (ii) PLA2 catalytic center

(Fisher et al., 1999; Chen et al., 2000). There are some differences between Prdx6 and other

members of Prdx family: such as (i) 2-Cys enzymes form a disulfide either internally (Prdx5)

or through homodimerization (Prdx1–4), whereas Prdx6 forms a disulfide with GSH mediated

by !GST. (ii) Prdx6 can catalyze the reduction of phospholipid hydroperoxides, (Fisher et al.,

1999), whereas this activity has not yet been demonstrated for the other peroxiredoxins. It is

worth to mention that the ubiquitous cytosolic GSH peroxidase (GSHPx-1) also does not have

this activity (Fisher et al., 1999). (iii) Prdx6 also has PLA2 activity, whereas the sequence

associated with this activity is not present in other peroxiredoxins (Chen et al., 2000). A role of

Prdx6 in neurodegenerative diseases has also been recognized (Kim et al., 2003). Changes in

Prdx are associated with the development of Pick disease, dementia in Lewy body disease, in

sporadic Creutfeldt-Jacob morbidity, and in atherogenesis (Power et al., 2002; Krapfenbauer et al.,

2003; Wang, Phelan et al., 2004).  Prdx6 is elevated in connection with Pick disease, a

neurodegenerative illness related to nuclear palsy and temporal dementia in the central

nervous system in relation with saitohin Q allele of human tau gene (Verpillat et al., 2002).

Overexpression of Prdx6 was shown to protect the lung against hyperoxia-induced injury in

mice (Wang, Feinstein et al., 2004).  Conversely, Prdx6 knockout mice were shown to be

hypersensitive to hyperoxia, providing evidence that Prdx6 is an important antioxidant

enzyme under in vivo conditions.

 New trend in the cardioprotection: PR39 Gene therapy

Gene therapy may represent an alternate mode of pharmacological intervention to

combat cardiovascular diseases. Gene therapy is a technique in which a normal allele of a

gene is administered into a cell in order to modify the genetic repertoire of the target cell

which either cannot express its own copy or produces a defective copy. A variety of cells

have been used for this purpose which include fibroblasts, keratinocytes, hepatocytes,

endothelial cells, and myocytes (Brody and Crystal, 1994).

There are five important components which must be considered in the development of

gene therapy: (i) the isolation and cloning of a target gene; (ii) the development of a proper

vector for gene transfer; (iii) the identification of a target cell; (iv) in vivo gene delivery, and

(v) the identification of potential therapeutic targets. Both viral and nonviral vectors have

been used for the purpose of gene therapy (Schwartz and Moawad, 1997), but viral vectors have
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been proven to be the most effective (Rowland et al., 1995). Two types of vectors have been used

for the purpose of gene delivery: (i) retrovirus and (ii) adenovirus. Retrovirus contains RNA

genomes that are reverse transcribed after infection yielding a double-stranded cDNA copy of

the genome flanked by identical elements (long terminal repeats) which contains the

regulatory sequences necessary for the expression of intervening genes. Retroviral vectors are

produced by deleting viral genes from the provirus and replacing with the target gene of

therapeutic potential. Their use has been limited because of very unstable in vivo and their

capacity for foreign DNA is limited to less than 10 kb. In contrast to retroviruses,

adenoviruses contain relatively larger double stranded DNA of 36 kb and 150 kb with broad

host range. Usually these viruses do not integrate into the host cell genome. They enter cells

through specific surface receptors and travel to the nucleus. However, adenoviruses do not

require host cell proliferation for gene transfer and subsequent expression.

PR-39 is a proline and arginine-rich (PR) macrophage-derived antibacterial peptide,

exhibits a broad spectrum of biological activities that include inhibition of phagocyte NADPH

oxidase (Shi et al., 1996), as well as proteasome activity (Gaczynska et al., 2003). Li et al., (2000)

and Gao et al., (2000) have shown that the inhibition of proteasome activity results in

decreased degradation of hypoxia inducible factor-1 (HIF1_), and I_B_ proteins. The

stabilization of HIF1_ protein and the upregulation of HIF1_ –dependent gene expression

make PR39 an angiogenic master switch peptide (Li et al., 2000). Adding to the salutary effect

of PR39 on tissues exposed to inflammation or ischemia, the increased I_B_ levels seen in

response to PR39 activity, inhibited NF_B activation, which leads to abrogation of NF_B-

dependent gene expression in cell culture and mouse models of acute pancreatitis and

myocardial infarction (Gao et al., 2000). In a next step, they tested that PR-39 inhibited

myocardial ischemia–reperfusion (I–R) injury by blocking proteasome-mediated I_B_

degradation (Bao et al., 2001). The biological properties of PR-39 make this peptide a

reasonable candidate for cardioprotection. Indeed, in addition to our own work, several other

reports exist in the literature pointing to the cardioprotective ability of PR-39. PR-39 has been

shown to block high K+-induced reactive oxygen species (ROS) production in cultured

endothelial cells and isolated perfused rat lungs (Al-Mehdi et al., 1998), and it inhibits leukocyte

recruitment into inflamed tissue and thus attenuates myocardial reperfusion injury in a murine

model of cardiac I–R (Hoffmeyer et al., 2000). A more recent study showed that PR-39 also

inhibits apoptosis in hypoxic endothelial cells (Wu et al., 2004).

Although the role of I_B_ stabilization in response to PR39 has been established as a

cardioprotective effect of PR39 in I–R, the effect of PR39 on HIF1_ protein levels in this
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setting has not been studied. Hence, we studied HIF1_ levels and cardioprotection in response

to PR39 gene therapy, and because the cardioprotective effects of PR39 potentially are

mediated by its established enhancement of fibroblast growth factor 2 (FGF2) signaling (Li et

al., 2002), we also sought to determine the importance of FGF receptor (FGFR) signaling in

ischemia/reperfusion.

 Glucocorticoids

Beneficial effects of glucocorticoids have been known for many decades, and increasing

knowledge of the mechanisms of glucocorticoid action indicates that pretreatment with

glucocorticoids could have organ-protective effects in various diseases (Sellevold and Jynge,

1985; Engelman et al., 1989; Toft et al., 1997; Spanier and McDonough, 2000). However, the action

mechanism(s) of glucocorticoids, in ischemic/reperfused myocardium, is not clear up to date.

Glucocorticoids given acutely are beneficial against inflammation in various experimental

models (Feola et al., 1976), and they have even been employed to reduce the inflammatory

effects of extracorporeal circulation during open-heart surgery (Yamanoi et al., 1991; Ildan et al.,

1995; Teoh et al., 1995; Sakurai et al., 1997). Furthermore, they are able to reduce ischemia-

reperfusion-induced myocardial apoptosis in immature hearts (Pearl et al., 2002). In addition,

glucocorticoid administration reduces myocardial intercellular adhesion molecule-1 (Toft et al.,

1997) and monocyte chemoattractant protein-1 mRNA expression compared with control

piglets (Pearl et al., 2002). The reduction of neutrophil adhesion and activation proteins in

neonatal myocardium was associated with less apoptotic cell death after glucocorticoid

administration. Glucocorticoid-induced attenuation of myocardial apoptosis might have

important implications for maintaining long-term ventricular function after ischemia and

reperfusion (Pearl et al., 2002).

We investigated whether pretreatment with dexamethasone could protect working rat

heart function when subjected to global ischemia and reperfusion. We hypothesize, that

protection might be due to, beside the reduction of cytochrome-c release from mitochondria to

cytoplasm, the induction of cardioprotective “de novo” proteins. Because actinomycin D is a

protein synthesis inhibitor at the transcriptional level, in further experiments we investigated

whether actinomycin D could interfere with the dexamethasone-induced cardioprotection.
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AIMS OF THE STUDIES

In our experiments, we used isolated working mouse and rat hearts to study the role of

thiol-containing compounds and bioactive agents in ischemia-reperfusion induced injury and

potential role of redox-signaling mechanisms in cardioprotection. For this reason our

researches have been focused for four different areas:

I. In the first parts of our work, we investigated Prdx6-/- mice. In view of the prevailing

view that reperfusion of ischemic myocardium generates ROS (Burwell et al., 2006; Das,

2001) and GSH is a potential target of ROS attack, we hypothesized that Prdx6 could

play a role in ischemia-reperfusion injury.

We investigated:

• Whether Prdx6 have any crucial role in cardioprotection?

• Targeted disruption of peroxiredoxin 6 gene how can influence the post-

ischemic cardiac functions, the infarct size, and cardiomyocyte apoptosis?

• Does it have role in cellular injury? Does it have effects on malondialdehyde

(MDA) formation?

II. In the second parts of our research, we worked with glutaredoxin-2 (Glrx2) transgenic

mice and we intended to determine the potential role of Glrx2 in cardiac disorders and

the specific role of Glrx2 in myocardial ischemia and reperfusion.

In our mind the following questions are come up:

• Whether myocardial overexpression of Glrx2 in the heart could rescue the

cardiac cells from apoptosis and necrosis induced by ischemia and

reperfusion?

• Besides we intended to examine the effects of Glrx2 overexpression on

recovery of myocardium contractile performance, myocardial infarct size and

cardiomycyte apoptosis.

• Does it have influence of Glrx2 overexpression on the caspase activity,

cytochrome-c release and cardiolipin content of the heart?

• Does it have effects on antioxidant activity (GSH/GSSG ratio) and lipid

peroxidation (malondialdehyde MDA formation)?

We also sought to determine the pattern of survival signal triggered by Glrx2

overexpression.
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III. In the third parts of our experiments, we intended to study the beneficial effects of

PR39 gene therapy in the setting of I-R injury. Because the cardioprotective effects of

PR39 potentially are mediated by its established enhancement of fibroblast growth

factor 2 (FGF2) signaling (Ray et al., 2001), we also sought to determine the importance

of FGF receptor (FGFR) signaling in I–R.

We investigated:

• Whether the PR39 and FGFR1-dn gene therapy could improve the ventricular

recovery and are able to decrease the infarct size as well as cardiomyocyte

apoptosis?

• Is it able to reduce of ROS activity?

• Is there any effect of PR39 gene therapy on HIF1_ expression? What are

effects of PR39 gene therapy on HIF1_ expression?

IV. In the last parts of our work, we investigated the pharmacological effects of

pretreatment with dexamethasone in working rat heart model.

We asked:

• Whether pretreatment with dexamethasone could protect working rat heart

function when subjected to global ischemia and reperfusion?

• Does it have influence of pretreatment dexamethasone on the translocation of

cytochrome-c from mitochondria to cytoplasm?

• Whether actinomycin D (as a protein synthesis inhibitor) could interfere with

the dexamethasone-induced cardioprotection?
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        MATERIALS AND METHODS

    Animals and materials

1. Generation of Prdx6 -/- mice

The full-length BAC genomic clone (clone BACM-153C17 from a 129/SvJ mouse

genomic library) containing functional 1-cys Prdx gene was used to construct the targeting

vector as described by Krapfenbauer et al., (2003) elsewhere.

1.1 Expression analysis of the Prdx6 protein in the hearts of Prdx6 -/- and wild-type mice

Western blot analysis was performed to detect Prdx6 protein in the Prdx6 -/- and wild-

type mouse hearts.

2. Generation of glutaredoxin-2 (Glrx2) transgenic mice

The human Glrx2 transgene was constructed by placing a full-length cDNA fragment,

which codes for the human mitochondrial Glrx2 (IMAGE clone 512859, NCBI accession #

AA062724), downstream to the 5_ flanking sequence and promoter of the mouse _-myosin

heavy chain (_-MyHC) gene (Chen et al., 2001). The entire expression sequence, including the

genomic sequence of the mouse _- MyHC gene, the human Glrx2 cDNA, and the SV40 splice

and polyadenylation sites, was released from the plasmid by digestion with enzymes ClaI and

NotI and purified after separation on an agarose gel. The DNA fragment was then

microinjected into the pronuclei of fertilized eggs harvested from female B6C3

(C57BL/6_C3H) F1 mice mated with male B6C3 F1 mice according to the standard method

(Hogan et al., 1994). Only one line of transgenic mice was generated. The mice used in the

studies were generated by breeding the female (hemizygous) transgenic mouse with male

B6C3 hybrid mice. Transgenic mice were identified by Southern blot analysis of mouse tail

DNA. Both male and female mice were used in the studies and nontransgenic littermates were

used as controls for transgenic mice.

2.1  Activity assay of total glutaredoxin in homogenates of heart mitochondria

Mitochondria were isolated from mouse hearts according to the method described

previously by Xiong et al., (2006). The mitochondria from each mouse heart were then

homogenized in 0.5 ml of lysis buffer (50 mM potassium phosphate buffer, pH 7.8, 0.5%

Triton X-100, and 3% glycerol) containing protease inhibitor cocktail (P-8340, Sigma, St.



17

Louis, MO) and 1 mM phenylmethylsulfonyl fluoride with a Polytron homogenizer followed

by sonication. The homogenates were then clarified by centrifugation at 20,000_g for 15 min

and stored at _70 °C. The method described by Mieyal et al., (1991) was used to determine

the Glrx in homogenates of isolated heart mitochondria. Briefly, 0.1 ml of homogenate was

added to 0.8 ml of reaction mixture and then incubated at 30 °C for 5 min. The reaction was

initiated by adding 0.1 ml of 20 mM 2-hydroxyethyl disulfide to the reaction mixture and

absorbance at 340 nm was followed for 30 s. The activity of Glrxs was determined by the rate

of NADPH oxidation per minute per mg of protein using an extinction coefficient of 6.2

mM_1 cm_1.

3.  Generation of adenoviral constructs

Adenovirus-serotype 5-based vectors were produced by recombination in 293 cells.

Briefly, the transgene of interest was cloned into a shuttle plasmid that contained CMV

promoter and SV40 polyadenylation sequences flanked by adenovirus-5 gene sequences from

the E1 region. This shuttle plasmid was then co-transfected into 293 cells along with a

plasmid containing the entire Ad5 genome, minus the E3 region, plus ampicillin resistance

and stuffer sequences that made this construct too large to be packaged into an adenovirus

capsid. After recombination, the transgene expression cassette was inserted into the Ad5

genome and the ampicillin resistance and stuffer sequences were deleted. The resultant

double-stranded DNA was small enough to be packaged into the Ad5 capsid, and the missing

E1 function was provided in trans by the 293 cells. After transfection, the 293 cells were

overlayed with nutrient agarose and plaques were picked ~10–12 days later. Each plaque was

amplified in 293 cells and the insertion of the transgene documented by PCR. Positive

plaques then underwent large-scale amplification in 293 cells. After amplification, the

adenoviral constructs were purified by double CsCl gradient ultracentrifugation, followed by

dialysis against phosphate buffered saline. The final titers were generally in the 1012–1013

particle/ml range, and the particle to plaque forming units (p.f.u.) ratios were generally

~10–100:1.

3.1  Time course of PR-39 expression after adenoviral gene transfer in healthy mouse

 heart

Mice were anesthetized, intubated, and ventilated with 2% isoflurane in oxygen and a left

lateral thoracotomy was performed. Adenoviral constructs encoding PR-39 were suspended in

PBS and a single injection of 109 p.f.u. in 20 _l was performed. The injection site was in the
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anterior wall of the left ventricle approximately 3 mm below the auricle of the left atrium

between the LAD (left anterior descending coronary artery) and the first diagonal branch. The

injection needle was introduced 1 mm into the myocardium at a very shallow angle (10–20°)

in cranial direction. Deposition of the suspension was verified by slight bulging and blanching

of the epicardial surface. A total of twelve mice were injected, and three mice were

euthanized at each of the following time points: immediately after injection, and 3, 7, and 14

days after injection. After isolation of RNA, expression of PR39 was assayed by reverse

transcriptase polymerase chain reaction (RT-PCR).

    Methods

1. Isolated working heart preparation

Mice (25–34 g) and rats (320-350 g) were anesthetized with pentobarbital sodium (60

mg/kg body wt ip.) and anticoagulated with heparin sodium (500 IU/kg body wt ip) injection.

After ensuring sufficient depth of anesthesia, thoracotomy was performed, and aorta of heart

was identified. After we excised the heart from the chest by the aorta, the lung and connective

tissue were removed and the whole heart was transferred to ice-cold (4°C) modified

Krebs–Henseleit bicarbonate solution, which contained (in mM) 118 NaCl, 4.7 KCl, 1.7

CaCl2, 24 NaHCO3, 1.2 KH2PO4, 12 MgSO4, and 10 glucose, until contraction had ceased.

Both the aorta and pulmonary vein were cannulated as quickly as possible and perfused in

retrograde Langendorff mode against constant perfusion pressure of 100 cm H2O (10 kPa) for

a standardization period. Immediate start of retrograde perfusion helped to wash out the blood

and its component from the vascular system. Perfusate temperature was maintained at 37°C

and saturated with 95% O2 and 5% CO2 gas mixture during the entire experiment. The

duration of the retrograde perfusion was 10 min; after this procedure, the heart was switched

to an antegrade perfusion mode. In the antegrade perfusion mode, the buffer enters the

cannulated left atrium at pressure equivalent to 10 cm H2O (1 kPa) and passes to the left

ventricle, from which it is spontaneously ejected through the aortic cannula. Baseline

measurements of heart rate (HR), coronary flow (CF), aortic flow (AF), left ventricular

developed pressure (LVDP), and its first derivative (LVdp/dt) were recorded and the coronary

perfusate was collected for further MDA assay. After this periode the antegrade perfusion line

was closed, and the heart was subjected to 30 min ischemia. Before the initiation of 2 h

reperfusion, the heart was perfused in retrograde mode to avoid the development of a high
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incidence of ventricular fibrillation. The cardiac function was registered at 15, 30, 60, and 120

min of reperfusion.

2.  Experimental protocols

2.1  Experimental protocol for Prdx6 -/- mice study

In the first study used isolated working Prdx6 -/- and wild-type mouse hearts. The isolated

hearts were randomly divided into two groups: Prdx6 -/- or wild type. For baseline control,

isolated hearts were perfused with Krebs-Henseleit bicarbonate buffer for 2 h 45 min.

2.2  Experimental protocol for studying cardioprotection of Glrx2 overexpression

In the second study we used isolated working hearts from Glrx2 transgenic mice and non-

transgenic littermates (wild type). The mice were randomly divided into six groups: (i) wild

type control; (ii) wild type ischemia; (iii) wild type ischemia/reperfusion; (iv) Glrx2

transgenic control; (v) Glrx2 transgenic ischemia; and (vi) Glrx2 transgenic

ischemia/reperfusion. All hearts were then perfused by working mode and haemodynamic

measurements were performed.

2.3  Experimental protocol for studying myocardial protection against ischemia–

reperfusion injury with PR-39

To study the cardioprotective effect of PR39 and the role of FGFR1 signaling in the

setting of I-R injury, 36 mice were randomly allocated to one of four experimental groups,

eight animals per group. One group was treated with adenoviral construct encoding PR39

(AdPR39) as described, a second group received adenoviral construct encoding dominant

negative FGF receptor-1 (AdFGFR1-dn), and the control groups received either adenoviral

constructs encoding empty vector (AdEV) or AdPR39 in combination with 4 _g of a plasmid

encoding a dominant negative mutant of HIF1_ (AdPR39 + HIF1_-dn) (Fig. 1). A left lateral

thoracotomy was performed and the viral constructs were administered as a single injection of

109 plaque forming units (p.f.u.) in 20 _l phosphate buffered saline (PBS) and 8 _l PBS

containing 4 _g of plasmid was injected. The injection site was in the anterior wall of the left

ventricle approximately 3 mm below the auricle of the left atrium. Deposition of the

suspension was verified by slight bulging and blanching of the epicardial surface. Seven days

after gene transfer the mice were euthanized, the hearts were excised and positioned in an ex
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vivo working heart set up to be subjected to I–R injury. Hemodynamic measurements were

carried out before a 20 min period of ischemia, followed by a 2 h of reperfusion.

          Fig. 1. Experimental protocol for PR39 gene therapy study.

      

2.4  Experimental protocol for dexamethasone study

Rats were treated with 2 mg/kg of intraperitoneal injection of dexamethasone, and 24

hours later, hearts were isolated and subjected to 30 min of normothermic global ischemia

followed by 2 hours of reperfusion. In additional studies, rats were treated with 0.5 mg/kg of

an intravenous injection of actinomycin D, a protein synthesis inhibitor, one hour before the

dexamethasone injection. The doses and administration of dexamethasone and actinomycin D

were selected to our previously published study (Tosaki et al., 1985). The same concentration

range of dexamethasone was used in the study of Spanier and McDonough (2000), and

Engelman et al., (1989) in a model of cardiac ischemia/reperfusion. Myocardial function was

measured before ischemia and after 60 and 120 min of reperfusion in each group.

3.  Measurement of the cardiac function and arrhythmias

An epicardial electrocardiogram (ECG) was recorded by a computer system throughout

the experimental period by two silver electrodes attached directly to the heart. The ECGs were

analyzed to determine the incidence of ventricular fibrillation (VF). The heart was considered

to be in VF if an irregular undulating baseline was seen on the ECG. The heart was

considered to be in sinus rhythm if normal sinus complexes occurring in a regular rhythm

were apparent on the ECG. Before ischemia and during reperfusion, heart rate, left ventricular
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develop pressure (LVDP) (the difference between the maximum systolic and diastolic

pressure), and the first derivative of develop pressure were recorded by Gould p23XL

transducer. The signal was amplified by using Gould 6600 series signal conditioner and

monitored on Cordat II real-time acquisition system (Maulik et al., 1999; Ray et al., 2001; Turoczi et

al., 2003). The aortic flow was measured by a flow meter. The coronary flow was measured by

time collection of the coronary effluent dripping from the heart.

4.  Measurements of the infarct size

At the end of each experiment, the heart was infused with 10% solution of

triphenyltetrazolium (TTC) in phosphate buffer through the aortic cannula for 20 min

(Imamura et al., 2002). The left ventricle was removed and sliced into 1-mm thickness of cross-

sectional pieces and weight. Each slice was scanned with computer-assisted scanner. The risk

area of the whole myocardium was stained in red by TTC, while the infarct zone remained

unstained by TTC. These were measured by using computerized software, and these areas

were multiplied by the weight of the each section; these results were summed up to obtain the

total of the risk zone and infarct zone. The infarct size was expressed as the ratio of the infarct

zone to the risk zone.

5.  TUNEL assay for the assessment of apoptotic cell death

 Immunohistochemical detection of apoptotic cells was carried out using terminal

deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), in which residues

of digoxigenin-labeled dUTP are catalytically incorporated into the DNA by terminal

deoxynucleotidyl transferase II, an enzyme that catalyzes a template-independent addition of

nucleotide triphosphate to the 3_-OH ends of double- or single-stranded DNA (Maulik et al.,

1999; Maulik et al., 2000). The incorporated nucleotide was incubated with a sheep polyclonal

anti-digoxigenin antibody followed by an FITC-conjugated rabbit anti-sheep IgG as a

secondary antibody as described by the manufacturer. The sections were washed in PBS three

times, blocked with normal rabbit serum, and incubated with mouse monoclonal antibody

recognizing cardiac myosin heavy chain followed by staining with TRIRC-conjugated rabbit

anti-mouse IgG. The fluorescence staining was viewed with a confocal laser microscope.

Apoptotic cells were counted and expressed as a percentage of total myocyte population.

6.  Measurement of malondialdehyde for assessment of oxidative stress
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 Malondialdehyde (MDA) was measured as MDA-2,4- dinitrophenylhydrazine (MDA-

DNPH) derivative by HPLC (Cordis et al., 1995). In brief, coronary effluents were collected and

derivatized with 2,4-dinitrophenylhydrazine (DNPH). The aqueous phase was extracted with

pentane, blown down with nitrogen, and reconstituted in 200 _l of acetonitrile. Aliquots of 25

_l in acetonitrile were injected onto a Beckman Ultrasphere C18 (3 _m) column. The products

were eluted isocratically with a mobile phase containing acetonitrile/water/acetic acid

(40:60:0.1, vol/vol/vol) and measured at three different wavelengths (307, 325, and 356 nm)

by using a Waters M-490 multichannel UV detector. The peak for MDA was identified by

cochromatography with a DNPH derivative of the authentic standard, peak addition, UV

pattern of absorption at the three wavelengths, and by gas chromatography-mass spectroscopy

(GS-MS). The amount of MDA was determined by performing peak area analysis using the

Maxima software program.

7.  Western blot analysis

Left ventricles from the hearts were homogenized in a buffer containing 25 mM Tris–HCl,

25 mM NaCl, 1 mM orthovanadate, 10 mM NaF, 10 mM pyrophosphate, 10 mM okadaic

acid, 0.5 mM EDTA, and 1 mM phenylmethylsulfonyl fluoride. High-molecular-weight

markers (Bio-Rad, Hercules, CA, USA) and 100 µg total membrane proteins were separated

by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in running buffer (25 mM Tris,

192 mM glycine, 0.1 % (w/v) SDS, pH 8.3). After electrophoresis, the separated proteins

were transferred onto 0.45-µm polyvinylidene difluoride membrane in transfer buffer (25 mM

Tris base, 192 mM glycine, 20 % (v/v) metanol, pH 8.3). The membrane was blocked in TBS-

T buffer ((50 mM Tris, pH 7.5, 150 mM NaCl) and 0.1 % (v/v) Tween-20, and 5 % (w/v)

non-fat dry milk)) and incubated overnight at 4°C with primary antibodies. Then the

membrane was washed several times with TBS-T buffer according to the manufacturer’s

instructions and incubated with secondary antibodies conjugated to horseradish peroxidase for

1 h at room temperature. Blots were developed using ECL-PLUS detection system according

to manufacturer instruction. The resulting blots were digitized, subjected to densitometric

scanning using a standard NIH image program, and normalized against loading control. There

is no antibody available that recognizes PR39 on Western blots, thus PR39 expression was

confirmed by RT-PCR.

8.  Determination of caspase 9 and caspase 3 activities
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Caspase activity was evaluated by the use of caspase 9 and caspase 3 colorimetric assay

kit obtained from R&D Systems (Uchiyama et al., 2004). In sortly, cells that are suspected to or

have been induced to undergo apoptosis are first lysed to collect their intracellular contents.

The cell lysate can then be tested for protease activity by the addition of a caspase-specific

peptide that is conjugated to the color reporter molecule p-nitroanaline (pNA). The cleavage

of the peptide by the caspase releases the chromophore pNA, which can be quantitated

spectrophotometrically at a wavelength of 405 nm.

9.  NF_B analysis

To determine DNA binding of NF_B, nuclear proteins were isolated from the heart as

described previously (Maulik et al., 1999). About 150 mg of left ventricle from the heart tissue

was homogenized in ice-cold Tris-buffered saline (TBS) and centrifuged at 3000_g for 5 min

at 4 °C. The pellet was resuspended by gentle pipetting in 1.5 ml of ice-cold hypotonic buffer

containing 10 mM HEPES, (pH 7.9), 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM

DTT, 0.5 mM PMSF, and 1 _M each of aprotinin, pepstatin, and leupeptin. The solution was

allowed to swell on ice for 15 min after addition of 100 mM of 10% Nonidet P-40. This

homogenate was centrifuged for 30 s at 4 °C in a microcentrifuge tube. The supernatant

contained the cytoplasmic protein. The nuclear pellet was resuspended in a solution

containing 20 mM HEPES, (pH 7.9), 0.4 M NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM DTT, 1

mM PMSF, and 1 _M each of aprotinin, pepstatin, and leupeptin. Protein concentration was

estimated using the Pierce Protein Assay kit (Pierce Chemical Co, Rockford, IL).

NF_B oligonucleotide (AGTTGAGG-GGACTTTCCCAGG) (2.5 _l of 20nm/_l) was

labeled using T4 polynucleotide kinase as previously described. The binding reaction mixture

contained in a total volume of 20.2 _l, 0.2 _l DTT (0.2 M), 1 _l BSA (20 mg/ml), 4 _l

poly(dI-dC) (0.5 _g/_l), 0.2 _l buffer D+, 4 _l buffer F, 2 mM 32P-oligo (0.5 ng/_l) and 7 _l

extract containing 10 _g protein. The composition of buffer D+ was 20 mM HEPES, (pH 7.9),

20% glycerol, 100 mM KCl, 0.5 mM EDTA, 0.25% Nonidet P-40 while buffer F contained

20% Ficoll 400, 100 mM HEPES, (pH 7.9), and 300 mM KCl. Ten milliliter of the solution

was loaded onto a 4% acrylamide gel and separated at 80 V until the dye hit the bottom.

Autoradiographic results were evaluated quantitatively by an image analyzer.

10.  Assessment of GSH/GSSG ratio
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The concentrations of GSH and GSSG were determined by the well-established methods

by measuring the enzymatic recycling procedure using glutathione reductase and 5,5_-

dithiobis (2-nitrobenzoic) acid using standard kits.

11.  Determination of cardiolipid content of the heart

Mitochondria were prepared by subcellular fractionation of the heart by well-established

method. Cardiolipin degradation was estimated by the measurement of cardiolipin content in

the mitochondria by staining with 10-N-nonyl acridine orange [NAO] (Molecular Probes) as

described previously (Nomura et al., 2000). One hundred nanomolars of NAO was added to the

mitochondrial preparation, incubated for 30 min, and NAO binding was determined with

fluorescence activated cell sorter analysis.

12.  Construction of HIF-1_ dominant negative mutant

Mouse HIF1_ cDNA, full length, in pSPORT expression vector (CMV, NotI-SalI) and the

plasmid template were mixed and amplified by SP6 reverse primer (5’-

GGCCTATTTAGGTGACACTA-3’) and HIF1_ internal primer encompassing amino acids

760 to 768 along with an inserted Sph1 site (5’-GTCTGCATGCTAAAATCCTTT-

CACTCGTTTCCAG-3’), using VentR DNA polymerase (New England Biolab, Ipswich,

MA). The amplified DNA fragment was digested by EcoRI and SphI, ligated back to the

parental plasmid also digested with EcoRI and SphI. The resultant plasmid thus contained the

HIF1_ cDNA encoding amino acids 1–768, including the nuclear localization signal, the 5’-

UTR, and the entire 3’UTR downstream of the SphI site. It was devoid of the amino acids 769

to 836 containing the C-terminal transactivation domain. The efficacy of the emutant was

tested by using one C2C12 cell line stably transfected with a HIF1_ (5 X) responsive

promoter-reporter (luciferase) construct. Cells were grown in 60 mm dishes and transfected

either with 2 _g empty vector DNA or the dominant negative construct, and cell lysates were

assayed for luciferase activity.

13.  Statistical analysis

Values for myocardial functional parameters, MDA, GSH/GSSG ratio, enzymes activities,

apoptotic cardiomyocytes, and infarct sizes are expressed as the mean ± standard error of the

mean (SEM). In the Prdx6-/- study, the statistical analysis was performed by one-way

ANOVA for any differences between the mean values of all groups. Differences between data

were analyzed for significance by performing Student's t-test.
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In the Glrx2 and dexamethasone study, one-way analysis of variance was first carried out

to test for any differences between the mean values of all groups. If differences were

established, the values of all groups were compared with those of the drug-free control group

by multiple t-test followed by Bonferroni correction. Because the incidence of reperfusion-

induced ventricular fibrillation followed a nonparametric distribution, therefore chi-square

test was used for the statistical analysis of VF.

In the PR39 study, all parameters are also expressed as the mean ± standard error of the

mean (SEM). Analysis of variance test was first carried out, followed by Bonforni’s

correction, to test for any differences between the mean values of all groups. If differences

between groups were established, the values of the treated groups were compared with those

of the control group by a modified t-test. The results were considered significant if  p < 0.05.
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RESULTS

I. Part: Role of the Prdx6 in the ischemia-reperfusion injury

1.1 Characterization of Prdx6 
_
/
_ mice

The Western blot was performed for the detection of glutathione peroxidase-1

(GSHPx-1), catalase, and peroxiredoxin 6 (Prdx6) proteins. As shown in Fig. 2, Prdx6 _/_

mouse hearts had no expression of Prdx6 while the wild-type mouse hearts possessed

significant amount of Prdx6. Similar to GSHPx, Prdx6 scavenges both hydroperoxides and

H2O2 (the latter can also be removed by catalase); it is thus presumed that Prdx6, GSHPx, and

catalase together make an antioxidant module. We thus tested whether deletion of Prdx6 had

any effects on catalase and GSHPx activities. Noticeably, in Prdx6 _/_ mouse heart GSHPx-1

and catalase levels remained unchanged vis-a`-vis the wild-type hearts (Fig. 2.).

Fig. 2. Western blot analysis for the detection of glutathione peroxidase-1 (GSHPx-1),

 catalase, and peroxiredoxin 6 (Prdx6) proteins.

  

The results of densitometric scanning are shown on the top of the protein blots.

Results are expressed as means ± SEM of 3 separate hearts per group. Prdx6 was not detected

in the Prdx6_/_ mouse hearts. *p < 0.05 vs. wild type.

1.2 Effects of ischemia-reperfusion on the left ventricular function of wild-type and

 Prdx6
_
/
_ mouse hearts
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Throughout the study, the heart rates and coronary flows were not different between the

two groups (Fig. 3.), suggesting that Prdx6_/_ had no effects on these parameters.

Fig 3. Effects of Prdx6-/- on Heart Rate and Coronary Flow
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Results are expressed as means ± SEM of n = 6 animals per group.

The aortic flow (AF) and LVDP, as well as the maximum first derivative of LVDP,

were significantly lower in the Prdx6_/_ mouse hearts vs. wild-type hearts during the entire

reperfusion period, except for AF, which was significantly lower only at 60 min (3.6 ± 0.4

ml/min vs. 5.7 ± 0.3 ml/min) and 120 min of reperfusion (2.0 ± 0.3 ml/min vs. 3.8 ± 0.4

ml/min) (Fig 4).

Fig 4. Effects of Prdx6-/- on aortic flow (AF) and LVDP, as well as the maximum first

derivative of LVDP
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Results are expressed as means ± SEM of n = 6 animals per group. LVDP, left

ventricular developed pressure; LVmaxdP/dt, maximum first derivative of LVDP; Prdx6_/_

mice, peroxiredoxin 6 gene knockout mice. *p < 0.05 vs. wild type.
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1.3  Myocardial infarction and cardiomyocyte apoptosis

Myocardial infarct size expressed as infarct size/area of risk was significantly higher

for the Prdx6_/_ mouse hearts compared with that in wild-type controls (Fig. 5, left). However,

both groups had a similar level of area of risk. Myocardial infarcted tissue was scattered

throughout each ventricle in each heart from both groups. The white area that was not stained

by TTC indicated irreversible ischemic injury. Mean value of infarct size in the Prdx6_/_

group was 49.9 ± 1.7% vs. 36.5 ± 1.4% for the wild-type group.

The apoptotic cardiomyocytes visualized by double-antibody staining (TUNEL in

conjunction with a myosin heavy chain to detect myocytes) were present in significantly

higher quantities (21.5 ± 0.9%) in the Prdx6_/_ group compared with the wild-type (8.5 ±

0.8%) group (Fig. 5, right).

Infarction was not developed or apoptosis was not detected in the hearts perfused for

the same time period without subjecting them to ischemia-reperfusion (results not shown).

Fig. 5. Myocardial infarct size (left) and cardiomyocyte apoptosis (right)



31

Results are shown as means ± SEM of 6 animals per group. Open bars, wild-type

mice. Filled bars, Prdx6_/_ mice. BL, baseline; I/R, ischemia-reperfusion. *p < 0.05 vs. wild-

type.

1.4  ROS activity and oxidative stress

MDA is the presumptive marker for lipid peroxidation and oxidative stress developed

from ROS generated during the reperfusion of ischemic myocardium.

MDA content of the heart determined at the end of each experiment showed

significantly higher amount of MDA (39.6 ± 0.8 pg/g) compared with that in hearts from the

wild-type controls (26.0 ± 0.9 pg/g), indicating development of higher amount of oxidative

stress in the Prdx6_/_ hearts (Fig. 6).

Fig. 6. Malonaldehyde (MDA) formation in the hearts of wild-type (open bars) and

Prdx6_/_ mice (filled bars) at baseline and at the end of ischemia/ reperfusion.

Results are shown as means ± SEM of 6 animals per group. *p < 0.05  vs. wild-type.
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II. Part: Role of the Glrx-2 in the cardioprotection

2.1. Characterization of the transgenic mice overexpressing Glrx2 in the mitochondria

of cardiomyocytes

A more detailed description on generation and characterization of the human Glrx2

transgenic mice will be documented elsewhere (Diotte et al., unpublished data). Briefly, the

human Glrx2 transgene driven by the 5_ flanking sequence and promoter of the mouse _-

MyHC gene is mainly expressed in the heart and to a much lesser extent in lungs of

transgenic mice. Since the human Glrx2 cDNA contained in the transgene codes for a

mitochondrial Glrx2 protein, we measured Glrx activity in homogenates of isolated heart

mitochondria. The specific Glrx activity was increased by 192% in heart mitochondria of

Glrx2 transgenic mice compared to that of non-transgenic mice (13.7± 0.9 vs. 4.7±0.9 nmol

NADPH/min/mg protein, respectively. p < 0.001, n > 5).

Fig. 7. (Left) Western blot analysis and (right) Northern blot analysis.

Homogenates of mouse ventricles were electrophoresed, transferred, and probed with

antibodies against _-actin and glutaredoxin-2. One hundred micrograms of protein was loaded

for each sample. In the transgenic mice a significant increase in the amount of glutaredoxin-2

occurred in the heart.

For the Northern blot analysis RNA samples were isolated from mouse heart ventricle

and subsequently hybridized to 32P-labeled probes corresponding to glutaredoxin-2 and

GAPDH used to demonstrate loading controls. In the transgenic mice a significant increase in

the amount of glutaredoxin-2 occurred in the heart.

2.2. Recovery of myocardium contractile performance

In all groups the cardiac function including aortic flow (AF), LVDP, and LVdp/dt

were significantly depressed during the progression of reperfusion. The cardiac function

consistently displayed improved recovery (except for coronary flow) for the hearts from
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Glrx2 transgenic mice as compared to that of wild type mice. (Fig. 8) Aortic flow (AF),

LVDP, and LVdp/dt are the function of cardiomyocytes while coronary flow is the function

of endothelial cells. Thus, these results would tend to suggest that Glrx2 overexpression

improved myocyte function without significantly affecting endothelial cell function.

Fig. 8. Recovery of myocardium contractile performance in Glrx-2 transgenic mice as

 compared to wild type mice
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Results are expressed as means ± SEM of n = 6 animals per group. LVDP, left

ventricular developed pressure; LVdP/dt, first derivative of LVDP; Glrx2 transgenic mice:

Glutaredoxin-2 transgenic mice. *p < 0.05 vs. wild type (non-transgenic mice).
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2.3. Myocardial infarct sizes and cardiomyocyte apoptosis in wild type and Glrx2

       transgenic mice

Infarct size expressed as percent infarction to total area at risk was noticeably

decreased in Glrx2 transgenic mouse hearts (32.5 ± 1.3%) compared to the wild type control

(46.2 ± 2.6%) (Fig. 9, left). There was no infarction if these hearts were perfused for the same

time period (time-matched) without subjecting them to ischemia/reperfusion.

Cardiomyocyte apoptosis (Fig. 9, right) followed an identical pattern. The apoptotic

cardiomyocytes were present in significantly lower quantities in the Glrx2 transgenic mouse

hearts (12.1 ± 1.2%) compared to the wild-type (23.0 ± 1.1%) group.

Fig. 9. Myocardial infarct size (left) and cardiomyocyte apoptosis (right) of the hearts from

wild type and Glrx2 transgenic and knockout mice subjected to ischemia/ reperfusion.

Results are shown as means ± SEM of six hearts per group. *p < 0.05 vs. baseline; †p < 0.05

vs.wild type.

2.4. Effects of Glrx2 overexpression on cytochrome-c release and caspase activation

 Baseline wild type
  I/R-wild type
 Baseline-transgenic
  I/R-transgenic
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To specifically determine the role of mitochondria of cardiomyocyte apoptosis,

immunoblots of cytochrome-c were examined. A significant increase in cytochrome-c was

found after ischemia/reperfusion in the hearts of wild type animals, but this amount did not

increase in the hearts of Glrx2 overexpressed hearts (Fig. 10).

Fig. 10. Western blot analysis cytochrome-c protein.

Cytosolic fraction from mouse ventricles was electrophoresed, transferred, and probed

with antibodies against cytochrome-c and GAPDH. In the transgenic mice, significantly

reduced amount of cytochrome-c was found. 1: baseline-wild type; 2, 3: I/R-wild type; 4:

baseline transgenic; 5, 6: I/R-transgenic.

Caspases measured with synthetic caspase substrates DEVD-pNA and LEHD-pNA

revealed an increase in both caspase 3 (right) and caspase 9 (left) after the reperfusion of the

ischemic hearts (Fig. 11). There was no increase in caspase activities after 30 min of ischemia

in any of the hearts. The amount of increase in caspase activities was less for the Glrx2

overexpressed hearts compared to wild type hearts.

Fig. 11. Activities of caspase 3 and caspase 9.

Results are shown as means ± SEM of six hearts per group. *p<0.05 vs. baseline;

†p<0.05 vs. wild type. Baseline  , ischemia  , I/R  .
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2.5. Effects of Glrx2 overexpression on cardiolipin content of the heart

Since binding of cytochrome-c to the inner mitochondrial membrane is known to

involve mitochondrial phospholipid, cardiolipin, we determined the effects of Glrx2

overexpression on the mitochondrial cardiolipin content as shown in Fig. 12.

Fig. 12. Loss of cardiolipin from the inner membrane of the mitochondria.

                           

Results are shown as means ± SEM of six hearts per group. *p<0.05 vs. baseline;
†p<0.05 vs. wild type.

Ischemia/reperfusion induced significant loss of cardiolipin from the mitochondria;

however, such loss of cardiolipin was significantly less in the Glrx2 overexpressed hearts

compared to wild type controls.

2.6. Effects of Glrx2 overexpression ischemia /reperfusion-induced oxidative stress

We determined the amount of oxidative stress in the heart by measuring MDA content

of the mouse hearts. MDA content was increased progressively and steadily as a function of

the reperfusion time in all groups of hearts (Fig. 13, left). MDA content was significantly

reduced at 60 min and 120 min of reperfusion in the Glrx2-overexpressing hearts compared to

wild type controls.

  Baseline
  Ischemia
  I/R



39

The ratio of GSH/GSSG (Fig. 13, right) followed a similar pattern. Glrx2

overexpression increased GSH/GSSG ratio in ischemia reperfused hearts compared to that of

wild type hearts.

Fig. 13. Malonaldehyde content (left) and GSH/GSSG ratio (right) of the hearts from

wild type and Glrx2 transgenic mice subjected to ischemia/reperfusion.

The hearts were collected at the indicated times and MDA content, GSH and GSSG

were determined as described earlier. Results are shown as means ± SEM of at least 4 hearts

per group per time point. *p<0.05 vs. baseline; †p<0.05 vs. wild type.  Baseline , ischemia

 , I/R  .

2.7. Glrx2-mediated survival signals in the heart

Having confirmed cardioprotective role of Glrx2 in the heart, we attempted to

determine the pattern of survival signal generated by Glrx2. We first examined if Glrx2 could

induce the activation of Akt, the well-known component of survival signaling. As shown in

Fig. 14, the Western blots revealed no changes in the amount of Akt after ischemia or

reperfusion. The phosphorylation of Akt also remained unaltered after ischemia or

reperfusion; however, significantly higher extent of Akt phosphorylation was noticed in Glrx2

overexpressed hearts.

.
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    Fig. 14. Effects of ischemia/reperfusion on the phosphorylation of Akt.

The hearts were collected at the end of each experiment and Western blots were performed

with specific antibodies against Akt or phospho-Akt. Akt served as control. Representative

blots (of three experiment per group) are shown. 1, 2, 3: wild type; 4, 5, 6: transgenic. 1, 4:

baseline; 2, 5: ischemia; 3, 6: I/R.

The amount of proapoptotic Bax increased significantly after ischemia and reperfusion

in the wild type hearts as compared to Glrx2 transgenic hearts (Fig. 15). The anti-apoptotic

protein Bcl-2 was reduced significantly in both wild type and Grx2+/+ heart, but the amount

of Bcl-2 remained much higher in the Glrx2 overexpressed hearts. The ratio of Bcl2/Bax

remained significantly higher after ischemia/reperfusion in the Glrx2 overexpressed hearts.

Fig. 15. Effects of ischemia/reperfusion on the expression of Bax and Bcl-2.

The hearts were collected at the end of each experiment and Western blots were performed

with specific antibodies against Bax or Bcl-2. GAPDH served as control. Representative blots

(of three experiments per group) are shown. 1, 2, 3: wild type; 4, 5, 6: transgenic. 1, 4:

baseline; 2, 5: ischemia; 3, 6: I/R.

We also measured the nuclear binding of the redox-sensitive transcription factor

NF_B, which is known to be regulated by Glrxs. As shown in Fig. 16, NF_B binding activity

increased for both groups after ischemia and further increased after reperfusion. The greater

NF_B binding activities was noticed in the Glrx2 overexpressed hearts compared to wild type

hearts.

Fig. 16. Effects of ischemia/reperfusion on the NF_B binding activity in the glutaredoxin

 transgenic heart.
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Nuclear extracts were isolated from wild type and transgenic hearts. These extracts were used

for electrophoretic mobility shift assay as described in the Materials and methods section.

Lanes 1, 4: baseline; 2, 5: ischemia; 3, 6: I/R.  Results are representative of three experiments

per group.

III. Part: Role of the PR39 gene therapy in the cardioprotection

3.1. Time course of PR-39 expression

As shown in Fig. 17. there was no PR39 expression immediately after injection, but

robust expression of the transcript was found at all later time points. The complete absence of

PR-39 immediately after injection is in concordance with the fact that PR-39 has not been

identified in mice to date, and is in line with the absence of the PR-39 sequence in the mouse

genome.

Fig. 17. PR39 expression after intramyocardial injection of AdPR39 in normal mouse

hearts.

Lane 1: molecular weight markers. Lane 2: PCR reaction without reverse

transcriptase. Lane 3: no PR39 expression immediately after injection (n = 3);

robust PR39 expression at 3 days (n = 3, lane 4), 7 days (n = 3, lane 5), and

14 days (n = 3, lane 6) after injection.
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A left lateral thoracotomy was performed and adenoviral constructs encoding PR39

were administered as a single injection of 109 p.f.u. in 20 _l phosphate buffered saline. A total

of 12 mice were injected, and 3 mice were euthanized at each of the following time points:

immediately after injection, and 3, 7, and 14 days after injection. The hearts were excised and

placed in RNAlater. After isolation of RNA, expression of PR39 was assayed by RT-PCR.

3.2 Effects of PR-39 and dnFGFR1 gene therapy on ventricular recovery, infarct size,

 and cardiomyocyte apoptosis

At baseline the haemodynamics parameters are comparable in all groups, there were

no differences between groups, and heart rate remained the same in all groups throughout the

experiment. Following I–R, in AdPR-39 hearts, aortic flow, LVDP, and LVdp/dt were

maintained at baseline levels, whereas all values dropped significantly after I–R in the other

groups (Fig. 18), except for aortic flow in the AdFGFR1-dn group, which remains

significantly higher in the AdFGFR1-dn group than in the AdEV and the AdPR39 + HIF1_-

dn control groups. The difference in aortic flow between AdPR39 and both control groups

(AdEV and AdPR39 + HIF1_-dn) was statistically significant, whereas LVDP and LVdp/dt

were significantly lower compared to AdPR39 hearts in all other groups (Fig. 18).

Fig. 18. Hemodynamic effects of PR39 and FGFR1-dn gene therapy, before 20 min

cardiac ischemia and during 2 h reperfusion in ex vivo isolated working mouse hearts.
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Results are expressed as means ± SEM of six animals per group. LV: left ventricle.

*AdPR39 vs. AdEV and AdPR39 + HIF1_-dn: p < 0.05; †AdPR39 vs. AdFGFR1-dn: p <

0.05; ‡ AdFGFR1-dn vs. AdEV and AdPR39 + HIF1_-dn: p < 0.05.

3.2.1 Effects of PR39 and FGFR1-dn gene therapy on MI size and cardiomyocyte

apoptosis
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MI was significantly smaller in the AdPR39 (8.7 ± 0.9 %), and AdFGFR1-dn (23.8 ±

1.1%) groups, compared to controls (AdEV 29.9 ± 2.2%, AdPR39 + HIF1_-dn 30.8 ± 2.7%).

The MI size in the AdPR39 group was also significantly smaller compared to the other

groups.

Cardiomyocyte apoptosis was also significantly reduced after AdPR39 and

AdFGFR1-dn gene transfer (Fig. 19). In the AdPR39 group apoptosis was also significantly

smaller compared to the AdFGFR1-dn group.

Interestingly, although the effect of FGFR1-dn gene transfer was clearly less

pronounced than AdPR39 gene therapy, abrogation of FGFR1 signaling also conveyed

cardioprotection after I–R. The hemodynamic profile of AdFGFR1-dn treated animals was

more favorable than in the control group, infarcts were smaller, and cardiomyocyte apoptosis

was reduced.

Fig. 19. Effects of PR39 and FGFR1-dn gene therapy on myocardial infarct size and

cardiomyocyte apoptosis.
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The results are expressed as means ± SEM of six animals per group. EV, group treated

with adenoviral construct encoding empty vector; FGFR1-dn, group treated with adenoviral

construct encoding dominant negative FGF receptor 1; PR39, group treated with adenoviral

construct encoding PR39; AdPR39 + HIF1_-dn, group treated with adenoviral construct

encoding PR39 and plasmid encoding dominant negative HIF1_.

3.3. Effects of PR-39 and dnFGFR1 gene therapy on the reduction of ROS activity
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MDA formation is a presumptive marker for ROS activity in the biological system.

PR-39 and FGFR1-dn gene therapy resulted in a significant reduction of ROS formation, as

shown by significantly reduced the amounts of MDA compared to control group. In addition,

the generation of ROS in the FGFR1-dn group was significantly greater than in the PR39

group (Fig. 20).

The results are expressed as means ± SEM of six animals per group. EV, group treated

with adenoviral construct encoding empty vector; FGFR1-dn, group treated with adenoviral

construct encoding dominant negative FGF receptor 1; MDA, malonaldehyde; PR39, group

treated with adenoviral construct encoding PR39.

3.4. Effects of PR-39 and dnFGFR1 gene therapy on HIF1_ expression

Western blot analysis of left ventricular myocardium showed increased levels of

HIF1_ protein in AdPR39 treated animals compared to animals treated with AdFGFR1-dn

and AdEV (Fig. 21). Furthermore, the reduction in infarct size was abrogated when dnCMV-

HIF1_ was injected along with AdPR39 (AdPR39 + HIF1_-dn group), further confirming that

the beneficial effect of PR39 was mediated by HIF1_.

Fig. 21.  Elevated myocardial HIF1_ protein levels after PR39 gene therapy but not

 after FGFR1-dn and EV transfer.

Fig. 20. Effects of PR-39 and

FGFR1-dn gene therapy on

malonaldehyde (MDA) content

of the heart.
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The results are expressed as means ± SEM of six animals per group. EV, group treated

with adenoviral construct encoding empty vector; FGFR1-dn, group treated with adenoviral

construct encoding dominant negative FGF receptor 1; PR39, group treated with adenoviral

construct encoding PR39.

Fig. 22. Confirmation of the dominant negative function of the HIF1_ mutant.
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In non-transfected cells hypoxia caused about 20-fold induction of basal (normoxic) promoter

activity. The results are expressed as means ± SEM of three experiments.

IV. Part: Role of the glucocorticoids against I-R induced injury

4.1 Effects of dexamethasone and actinomycin D preteatment on recovery of

myocardium contractile performance

Table 1 shows no changes registered in heart function (heart rate, coronary flow, aortic

flow, and left ventricular developed pressure) before the induction of ischemia in the

dexamethasone (2 mg/kg), and actinomycin D (0.5 mg/kg) coadministered with

dexamethasone (2 mg/kg) treated hearts in comparison with the drug-free control

ischemic/reperfused values. A significant increase in aortic flow and left ventricular

developed pressure were observed during reperfusion in the dexamethasone treated subjects.

Thus, after 60 min of reperfusion, postischemic values of aortic flow and left ventricular

developed pressure were significantly increased from their ischemic/reperfused control values

of 10.7 ± 0.3 ml/min and 10.5 ± 0.3 kPa to 22.2 ± 0.3 ml/min (p<0.05) and 14.3 ± 0.5 kPa

(p<0.05), respectively, in the dexamethasone treated group. The same improvement in the

recovery of aortic flow and left ventricular developed pressure was observed after 2 h of

reperfusion in the dexamethasone treated myocardium. In rats treated with 0.5 mg/kg of

actinomycin D, a protein synthesis inhibitor, injected i.v. 1 hour before the dexamethasone

injection (2 mg/kg), suppressed the dexamethasone-induced cardiac protection in heart

function in the isolated ischemic/reperfused myocardium. Actinomycin D alone did not

change significantly cardiac function (heart rate, coronary flow, aortic flow, and left

ventricular developed pressure) before the induction of ischemia and during reperfusion in

comparison with the drug-free ischemic/reperfused control values.

Table 1. Effects of dexamethasone pretreatment on ventricular recovery
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n = 6 in each group, mean ± SEM, *p < 0.05 compared to the I/R group, HR: heart rate

(beasts/min), CF: coronary flow (ml/min), AF: aortic flow (ml/min), LVDP: left ventricular

developed pressure (kPa), I/R: ischemia/reperfusion.

4.2 Effects of dexamethasone and actinomycin D preteatment on reperfusion induced

arrythmias

The ECGs were analyzed to determine the incidence of reperfusion-induced VF. Our

data demonstrate that 24 hours dexamethasone pretreatment significantly reduced the

incidence of reperfusion-induced VF (Fig. 23). Thus, in rats treated with 2 mg/kg of

dexamethasone and hearts were isolated and subjected to 30 min ischemia followed by 2 h of

reperfusion, the incidence of reperfusion-induced VF was reduced from its control drug-free

value of 100% to 33% (p<0.05). Actinomycin D completely interfered with the

antiarrhythmic effect of dexamethasone, and in rats when actinomycin D was coadministered

with dexamethasone, the incidence of reperfusion-induced VF was the same (100%) as we

observed it in the drug-free ischemic/control group (Fig. 23).

Reperfusion
Parameter Group Baseline

60 min 120 min
I/R 309 ± 7 304 ± 2 300 ± 2

DX + I/R 315 ± 8 303 ± 3 301 ± 2
Heart Rate
(beats/min)

Act D + DX + I/R 312 ± 9 303 ± 1 300 ± 2

I/R 27.0 ± 1.1 20.0 ± 0.5 17.8 ± 0.3

DX + I/R 26.6 ± 1.0 20.5 ± 0.4 18.3 ± 0.3
Coronary

Flow,(ml/min)
Act D + DX + I/R 26.3 ± 0.8 19.3 ± 0.5 17.5 ± 0.3

I/R 52.0 ± 1.5 10.7 ± 0.3 7.0 ± 1.2

DX + I/R 51.4 ± 1.3 22.2 ± 0.3 * 19.3 ± 0.3 *
Aortic Flow

(ml/min)
Act D + DX + I/R 50.8 ± 1.1 10.3 ± 2.4 7.0 ± 0.4

I/R 17.4 ± 0.4 10.5 ± 0.3 7.0 ± 0.4

DX + I/R 17.8 ± 0.3 14.3 ± 0.5 * 12.3 ± 0.5 *
LVDP

(mmHg)
Act D + DX + I/R 17.0 ± 0.5 10.6 ± 0.2 6.7 ± 0.4
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*p < 0.05, comparisons were made to the drug-free control group.

In the other study, we investigated the effects of various doses of sour cherry seed

extract and we found that pretreatment - dose-dependent manner - was able to reduce the

incidence of reperfusion induced VF in isolated rat hearts. (Fig. 24) (Bak et al., 2006)
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Isolated hearts (n=12 in each group) were obtained from rats treated orally with 0

mg/kg, 1 mg/kg, 5 mg/kg, 10 mg/kg, and 30 mg/kg of sour cherry seed extract, respectively,

for 14 days. *p<0.05 compared to the untreated age-matched drug-free control values.

4.3 Effects of dexamethasone and actinomycin D treatment on the

ischemia/reperfusion-induced cytochrome-c release

In additional experiments, we investigated the effects of dexamethasone and

actinomycin D treatment on the ischemia/reperfusion-induced apoptotic signal intensity

 *

Fig. 24. Effects of various

doses of sour cherry seed

extract on the incidence (%)

of VF in isolated rat hearts

subjected to 30 min of

ischemia followed by 120

min of reperfusion.

Fig .  23 .  The ef fect  of

dexamethasone (DX) and

actinomycin D coadministered

with dexamethasone (ActD +

DX) on the incidence (%) of

reperfusion-induced ventricular

fibrillation (VF).
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measuring cytochrome-c release from mitochondria. As it was previously described, the

mitochondrial cytochrome-c is released to the cytosol during apoptosis (Borutaite et al., 2003;

Vanden Hoek et al., 2003). Using Western blot analysis and measuring the relative amounts of

mitochondrial and cytosolic cytochrome-c, we found that dexamethasone pretreatment (2

mg/kg i.p.) prevented ischemia/reperfusion-induced apoptosis (Fig. 25.) measuring cytosolic

cytochrome-c release, as a marker for apoptosis. Thus, 83% of total cytochrome-c signal was

found in cytosol in the control drug-free ischemic/reperfused samples, and this value was

decreased to 58 % in the dexamethasone treated subjects indicating a reduced release of

cytochrome-c from the mitochondria to cytoplasm. In addition, the coadministration of

dexamethasone and actinomycin D resulted in the same extent of cytochrome-c release to that

seen in the case of ischemic/reperfused drug-free controls (78 % of total cytochrome-c was

detected in cytosol). It seems, therefore, that the application of actinomycin D suspended the

action of dexamethasone, at least in part, to prevent ischemia/reperfusion-induced

cytochrome-c release-related apoptotic cell death.

Fig. 25. The effect of dexamethasone (DX) and actinomycin D + dexamethasone (ActD

+ DX) pretreatment on ischemia/reperfusion-induced cytochrome-c release.

A) Mitochondrial (Mito) and cytosolic (Cyto) fractions were prepared from hearts, which

received either ischemia/reperfusion only (I/R), 2 mg/kg dexamethasone pretreatment before

the initiation of ischemia/reperfusion, or 0.5 mg/kg actinomycin D plus 2mg/kg
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dexamethasone treatment before the initiation of ischemia/reperfusion (ActD + DX).

Immunoblotting was carried out using a mouse anti-cytochrome c antibody.

B) The amounts of the cytochrome-c in the different fractions were quantitated by

densitometry (optical density; OD), and expressed as the percentage of the total OD

representing the sum of the OD values in the two fractions. The figure is a representative of

four independent experiments providing similar data. *p < 0.05 compared to the

ischemic/reperfused (I/R) value.
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DISCUSSION

I. Part: Role of the Prdx6 in the ischemia-reperfusion injury

The most noticeable and salient feature of our studies is that despite the presence of

significant amount of catalase and GSHPx in the hearts of Prdx6_/_ mice, these hearts were

susceptible to ischemia-reperfusion injury, suggesting a nonredundant role of Prdx6 in

cardioprotection. The hearts of Prdx6_/_ mice had reduced postischemic ventricular recovery

and increased myocardial infarct size and exhibited a greater number of apoptotic

cardiomyocytes compared with those values in wild-type hearts. These hearts also had a

significantly higher amount of MDA compared with that present in wild-type mouse hearts.

Peroxiredoxins or thioredoxin peroxidases, belong to a relatively new family of

antioxidant enzymes. Six peroxiredoxins (Prdx1–Prdx6) have yet been identified, of which

Prdx6 is found in the cytosolic fraction together with Prdx1, Prdx2, and Prdx4. Prdx4 is also

found in mitochondria and peroxisome, while Prdx3 exists only in mitochondria (Rhee et al.,

2005). Prdx6 is abundantly present in most of the tissues, including the heart. The antioxidant

activity of Prdx6 is attributed to its ability to reduce H2O2 and hydroperoxides. Unlike other

members of the Prdx family, which have two catalytically active cysteines, Prdx6 contains

only one NH2-terminal conserved cysteine (Cys47) and is, therefore, termed as 1-Cys Prdx

(Rhee, Kang et al., 2005). While oxidized Prdx1–Prdx5 are reduced through the electron transfer

from thiol-containing donor thioredoxin, Prdx6 receives electron transfer from glutathione.

It has long been known that reperfusion of the ischemic heart produces ROS, thereby

subjecting the hearts to an increased amount of oxidative stress. In normal hearts, because of

the presence of an adequate amount of antioxidants, ROS are readily removed. In contrast,

under pathophysiological conditions, O2
_-  undergoes a sequence of reactions producing H2O2

and hydroxyl radicals (OH_). SOD scavenges O2
_- by catalyzing a dismutation reaction, where

simultaneous oxidation (O2
_- to O2) and reduction (O2

_- to H2O2) reactions take place (Das and

Maulik, 1994). The heme-containing enzyme catalase transforms H2O2 into H2O and molecular

O2.

Mammalian heart contains high amount of glutathione (GSH), which ensures the

conversion of toxic lipid peroxides into nontoxic products utilizing the necessary reducing

equivalents from the reduced GSH (Rigobello et al., 2005). GSH also detoxifies H2O2 and

hydroperoxides that are produced in the ischemic myocardium. Oxidized glutathione is then
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reduced to GSH through GSHPx, thereby maintaining the supply of reduced glutathione. The

GSHPx reaction removes H2O2 at the expense of GSH. The maintenance of GSH levels thus

appears to be crucial, and thiol (SH) groups are essential for the tissues to protect themselves

against the ROS attack. Furthermore, the generated OH_ can attack the unsaturated lipids in

the cell, causing lipid peroxidation and producing lipid hydroperoxides, which further

exacerbates ischemia- reperfusion injury. GSHPx can also scavenge the hydroperoxides by

converting them into hydroxy fatty acids. GSHPx reverses the thiol oxidation reaction,

because GSHPx is a GSH-consuming enzyme. It has been observed that while transgenic

mice overexpressing GSHPx were resistant to myocardial ischemia-reperfusion injury (Yoshida

et al., 1996), whereas mice devoid of GSHPx were susceptible to the same (Yoshida et al., 1997).

Similar to GSHPx, Prdx6 can also remove both H2O2 and hydroperoxides. However,

Prdx6 can reduce phospholipid hydroperoxides while GSHPx (the type I or cytosolic enzyme)

does not have that ability (Fisher et al., 1999). We hypothesize that reduction of peroxidized

membrane phospholipids by Prdx6 accounts for its unique antioxidant effect. In addition to

GSH peroxidase activity, Prdx6 also possesses phospholipase A2 (PLA2) activity. A recent

study showed a direct interaction between surfactant protein A and Prdx6, which provided a

mechanism of regulation of the PLA2 activity of Prdx6 by surfactant protein A (Wu et al., 2006).

The same authors demonstrated that Prdx6 null mice had reduced degradation of internalized

dipalmitoylphosphatidylcholine (DPPC) in the lung epithelium and a decreased rate of DPPC

synthesis by the remodeling pathway (Fisher et al., 2005).

The results of this study showed the presence of significant amounts of catalase and

GSHPx in the hearts of Prdx6_/_ mice. It is interesting to note that despite the presence of

catalase and GSHPx in these hearts, these hearts were subjected to an increased amount of

oxidative stress and were vulnerable to cellular injury, suggesting a crucial role of Prdx6 in

the ischemic reperfusion injury. Evidence is rapidly accumulating, suggesting a key role of

Prdx6 in cellular injury. For example, transgenic mice overexpressing Prdx6 exhibited

increased resistance to lung injury in hyperoxia (Wang, Feinstein et al., 2004). In this study, at 96

h of hyperoxia, transgenic mice had less epithelial cell necrosis, perivascular edema, and

inflammatory cell recruitment, as well as lower thiobarbituric acid-reactive substances and

protein carbonyls in lung homogenate, indicating increased cellular defense and providing

evidence that Prdx6 functions as a lung antioxidant enzyme. In another study, the same

authors showed an induction of Prdx6 in lung epithelial cells by oxidative stress (Kim et al.,

2003). Increased lung expression of Prdx6 through adenoviral-mediated transfer of the Prdx6

gene protected against hyperoxic injury (Wang, Manevich et al., 2004). Examination of the lungs
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indicated that Prdx6-overexpressing animals compared with wild type had less lipid

peroxidation, less protein oxidation, less lung edema, and less lung inflammation when

evaluated at 72 h of hyperoxia (Wang et al., 2006). Another recent study found that Prdx6_/_

mice on a B6;129 background were significantly more susceptible to atherosclerosis

compared with controls (Wang, Phelan et al., 2004). However, Prdx6_/_ mice on either 129 or B6

backgrounds were neither more susceptible nor more resistant to atherosclerosis than were

their normal counterparts. In another related study, mice with targeted mutation of Prdx6 were

found to develop normally but were susceptible to oxidative stress (Wang et al., 2003). This

study showed that Prdx6_/_ macrophages had higher H2O2 levels and lower survival rates,

more severe tissue damage, and higher protein oxidation rates despite the fact that there were

no differences in the mRNA expression levels of GSHPx and catalase. It was also reported

that Prdxs reduce hydrogen peroxide coupled with Trx (Netto et al., 1996), and protect against

oxidative stress-induced cytochrome-c release and apoptosis differently from Bcl-2 (Zhang et

al., 1997). The results of our study are therefore consistent with these reports that despite

undiminished levels of catalase and GSHPx, Prdx6_/_ hearts were more susceptible to

ischemic injury.

In summary, the results of this study demonstrated a crucial role for Prdx6 in

myocardial ischemia-reperfusion injury. Prdx6_/_ mice devoid of Prdx6 exhibited reduced

postischemic ventricular recovery and larger infarct size and a higher number of apoptotic

cardiomyocytes compared with those in wild-type controls. It appears that these Prdx6_/_

mouse hearts were exposed to a greater amount of oxidative stress as evidenced from the

presence of higher amount of MDA in the hearts.

II. Part: Role of the Glrx-2 in the cardioprotection

Several salient features are apparent from the results of our second study. First,

overexpression of Glrx2 resulted in cardioprotection as evidenced by improved post-ischemic

ventricular recovery and reduction of myocardial infarct size and cardiomyocyte apoptosis.

Reduction of apoptotic cell death appears to be due to the reduction of caspase activation and

cytochrome-c in the mitochondria. Second, Glrx2 overexpression resulted in a reduced loss of

cardiolipin, a target for cytochrome-c binding to the inner mitochondrial membrane. Third,

Glrx2 overexpression reduced ischemia/reperfusion-mediated increased oxidative stress and
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increased the amount of GSH/GSSG ratio in the heart. Finally, the survival signal triggered by

Glrx2 overexpression appears to involve activation of NF_B, Akt, and Bcl-2.

Evidence is rapidly accumulating indicating a crucial role of mitochondria in

predicting the life and death of cardiomyocytes. For example, mitochondria are critically

involved in apoptotic cell death triggered by ischemia and reperfusion (Kluck et al., 1997).  On

the one hand, protooncogene product Bcl-2 located in mitochondria functions as a suppressor

of apoptosis while the proapoptotic protein Bax readily translocated into the mitochondrial

membrane after a death signal (Pagano et al., 2007). Bcl-2 prevents the release of many

apoptogenic proteins from mitochondria to the cytosol thereby inhibiting apoptosis (Miyamoto

et al., 2007). In heart cells, the ratio of Bcl-2 and Bax predicts whether these cells would

survive or destined to die. When Bcl-2/Bax ratio is reduced, such as during

ischemia/reperfusion, cytochrome-c is released in the cytosol, which triggers the formation of

apoptosome complex leading to the activation of caspases, the end effectors of apoptosis

(Halestrap et al., 2000). On the other hand, for the maintenance of mitochondrial integrity,

membrane potential is likely to have influence on myocardial energy production and ultimate

survival of the cells. Cellular injury is directly related to changes of mitochondrial

architecture including an irreversible loss of the matrix contents and integral membrane

protein constituents such as cytochrome-c (Hengartner, 2000). Once released, cytochrome-c

triggers the formation of apoptotic complex, which readily activates caspase cascade initiated

by caspase 9 leading to the activation of procaspase 3, the main executioner of apoptosis

(Cardone et al., 1998).

The results of the present study showed reduction of cytochrome-c and caspase

activation in the Glrx2 overexpressed heart suggesting critical involvement of mitochondria in

the process of cardiomyocyte survival and death. These results are consistent with previous

findings that Glrx2 plays an important role in attenuating apoptosis by preventing

cytochrome-c release in Glrx2 overexpressed HeLa cells (Enoksson et al., 2005). Binding of

cytochrome-c to the inner mitochondrial membrane involves mitochondrial phospholipid

cardiolipin (Hoch, 1992). Reduced amount of cardiolipin was detected in the mitochondria after

ischemia and reperfusion. Oxidative stress developed during ischemia/reperfusion is likely to

reduce mitochondrial content of cardiolipin (Fariss et al., 2005). Moreover, cardiolipin is the

mitochondrial target for the Bcl2 family protein Bid (Liu et al., 2004). Overexpression of Glrx2

significantly reduced the loss of cardiolipin from the mitochondrial membrane.
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Glrx2 facilitates the maintenance of mitochondrial redox homoeostasis upon treatment

with apoptotic agents, thereby preventing cardiolipin oxidation and cytochrome-c release, i.e.

the induction of apoptosis.

Glutaredoxin-2 is a 16 kDa protein, which catalyzes reduction of protein disulfides via

a dithiol reaction involving two redox active cysteine residues, or reduction of protein–GSH

mixed disulfides through a monothiol mechanism utilizing only the N-terminal active site Cys

residue (Holmgren, 1989). While mammalian Glrx1 lacks known translocation signals for

transport to a subcellular compartment (Padilla et al., 1995), Glrx2 protein can be present in both

the nucleus and mitochondria. Glrx2 possesses high affinity toward glutathionylated

substrates, especially protein–GSH mixed disulfides, and accepts electrons from both GSH

and thioredoxin reductase (Johansson et al., 2004; Beer et al., 2004). It should be noted that, under

oxidative stress conditions when GSH/GSSG ratio is reduced, thereby limiting the availability

of GSH, the active site thiols in Glrx2 can still be reduced by thioredoxin reductase and

NADPH (Aslund et al., 1997), and hence it is likely that Glrx2 would protect the cells from

oxidative stress. In our study Glrx2 rescued the hearts from ischemia/ reperfusion-mediated

oxidative stress by reducing MDA formation and maintaining GSH/GSSH ratio. Our results

support previous reports that silencing of Glrx2 by siRNA dramatically increased the

sensitivity of cells towards oxidative stress induced by (ROS-inducing agents) doxorubicin

and phenylarsine oxide (Lillig et al., 2004; Lillig et al., 2005), and overexpression decreases the

susceptibility of cells to apoptosis induced by doxorubicin or the antimetabolite 2-deoxy-D-

glucose (Enoksson et al., 2005). Another recent study has indicated that Glrx2 possesses GSH-

and thioredoxin reductase-dependent peroxidase activity (Fernando et al., 2006). The authors

noted that dual electron accepting capability of Glrx2 might be important to the cells,

especially those under high oxidative stress conditions where cellular GSH level becomes low

as in the present case. A related paper showed that the exposure of mitochondria to oxidized

GSH/GSSG led to reversible oxidation of reactive protein thiols by thiol-disulfide exchange

and both protein disulfide formation and glutathionylation were catalyzed by Glrx2 (Beer et al.,

2004). The authors were able to demonstrate that Glrx2 played a central role in mitochondrial

response to redox signal and oxidative stress by coordinated regulation of mitochondrial

glutathione pool and thiols.

Overexpression of Glrx2 appears to rescue the cardiomyocytes in the ischemic

reperfused heart through the PI-3-kinase-Akt survival pathway. Akt appears to be a critical

regulator of PI-3-kinase-mediated cell survival and constitutive activation of Akt is sufficient

to block cell death by a variety of apoptotic stimuli (Datta et al., 1999). The present study
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showed that overexpression of Glrx2 potentiated an increased phosphorylation of Akt

supporting a previous finding, which demonstrated that dual activation of Ras/PI-3-kinase and

AP-1 cascades was an essential component of the Glrx2 mechanism of action (Daily et al.,

2001). Once activated, Akt can phosphorylate and inactivate proapoptotic proteins such as Bad

and procaspase 9 and activate antiapoptotic redox-sensitive transcription factor NF_B (Brunet

et al., 1999), a finding consistent with our results that indicated an increase in Bcl2/Bax ratio

and activation of NF_B in the Glrx2 overexpressed cells. A previous study showed nuclear

translocation of NF_B by Glrx2 involving I_B_ phosphorylation and degradation (Brunet et al.,

1999).

In summary, our results demonstrate that overexpression of Glrx2 can rescue the heart

cells from ischemia/reperfusion induced apoptosis through the activation of NF_B and Akt.

There was a reduction of cytochrome-c and caspases as well as preservation of mitochondrial

cardiolipin indicating a crucial role of mitochondria in the cardioprotection afforded by Glrx2.

III. Part: Role of the PR39 gene therapy in the cardioprotection

Ischemic reperfused heart represents a potential target for gene therapy because gene

transfer can represent an alternate pharmacological approach to protect the heart from cellular

injury. It was reported that direct injection of reporter genes into hearts subjected to coronary

artery occlusion followed by reperfusion could result in gene expression comparable to the

levels observed in non-occluded normal hearts (Leor et al., 1996).

Our study demonstrates the cardioprotective effect of AdPR39 gene transfer in I–R,

because previous work in this setting was done in genetically modified mice (Cordis et al., 1995)

and with PR39 peptide therapy (Hoffmeyer et al., 2000). We show that mouse hearts infected with

adenovirus encoding PR39 were resistant to I–R as compared to empty vector and for the first

time we show that HIF1_ protein levels are elevated in I–R after AdPR39 gene transfer. Thus,

PR39-mediated cardioprotection after I–R is conveyed not only through decreased

degradation of I_B_ (Bao et al., 2001), but also through prevention of HIF1_ breakdown. This

mechanism is confirmed in the mice that were co-transfected with AdPR39 and the HIF1_-dn

plasmid. Interestingly and rather unexpectedly, the dominant negative mutant of FGF

receptor-1 conveyed an intermediate degree of cardioprotection against I–R, as shown by a

more favorable hemodynamic profile in AdFGFR1-dn treated animals versus controls, as well

as significantly smaller MI, significantly less apoptosis, and significantly lower MDA levels
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compared to the EV group. This is the first report demonstrating that PR39 gene therapy can

reduce myocardial I–R through a mechanism involving conservation of HIF1_ protein and a

reduction of oxidative stress and it is in agreement with previous observations that PR39

reduces the formation of ROS in isolated perfused rat lungs (Al-Mehdi et al., 1998). Others have

shown that PR39 mediated protection against I–R in vivo is accompanied by a reduction of

neutrophil infiltration in the area at risk (Korthuis et al., 1999; Hoffmeyer et al., 2000; Bao et al., 2001).

In the present study, the ability of PR-39 to reduce ROS activity cannot be attributed to its

ability to reduce polymorphonuclear leukocytes (PMN) accumulation in the infarct zone,

because this study was performed in buffer-perfused (devoid of PMN) isolated hearts.

Although it was not shown, it is likely that PR-39 reduced mitochondrial generated ROS

activity because concomitant with a reduction of MDA, PR-39 also decreased cardiomyocyte

apoptosis.

A recent study has indicated that PR39 inhibits apoptosis by inhibiting caspase-3

(Ramanathan et al., 2004), based on the observations of early LPS (lipopolysaccharides) induced

apoptosis in macrophages. Macrophages that were treated with PR39 had significantly less

caspase-3 activity compared to untreated controls. In the PR39-treated cells, I_B_ degradation

was inhibited and thus nuclear translocation of NF_B and NF_B-dependent gene expression

were attenuated. The ability of PR39 to reduce ROS activity may also contribute to its

antiapoptotic effects as shown here. In collaboration with others, we have shown that PR39

inhibits apoptosis in hypoxic endothelial cells by decreasing caspase-3 and increasing

inhibitors of apoptosis protein-2 (IAP-2) expression (Engelman et al., 1995). Reduction of

caspase-3 activity by PR39 was attenuated in IAP-2siRNA transfected cells, suggesting that

PR39 mediated inhibition of apoptosis may also occur via IAP-2.

As mentioned earlier, PR39 is an angiogenic master switch peptide, thus increased

neovascularization could have played a role in mitigating I–R in the PR39-treated animals, the

more so because increased HIF1_ levels in response to PR-39, augment myocardial vessel

density in _-myosin heavy chain-PR39 transgenic mice (Bao et al., 2001). Here we confirm

persistence of HIF1_ in PR39-treated hearts, but there is no evidence of increased vessel

density in these hearts, because the coronary blood flow levels were the same in all groups at

baseline (Figs. 18 and 22). Rather, it is more likely that the metabolic and pro-survival

responses induced by HIF1_ are the major determinants of cardioprotection in the current

experiments, together with the previously documented reduction of I_B_ degradation. The

fact that the abrogation of FGFR1 signaling conveys cardioprotection in the current study is

intriguing and merits further investigation because FGF signaling has been shown to reduce
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apoptosis and enhance cell survival (Alavi et al., 2003). It was also reported that intracoronary

administration of an adenoviral vector encoding fibroblast growth factor could ameliorate

ischemic reperfusion injury (Giordano et al., 1996). On the other hand, inflammation and cell

death in I–R are mediated in part by increased FGF levels (Meij et al., 2002; Detillieux et al., 2003).

Thus, in balance the beneficial anti-inflammatory effect of abrogated FGF signaling may

outweigh the negative effect of a diminution of cell survival signals.

There are two contradictory hypotheses regarding the cellular redox status and HIF1_

expression during hypoxia. First, cellular levels of ROS production are enhanced during

hypoxia in an attempt to stabilize HIF1_ (Chandel et al., 2000). The alternative hypothesis

proposes that HIF1_ expression is necessary to inhibit ROS generation during hypoxia

(Neumcke et al., 1999; Semenza, 2001). Our study supports the second hypothesis as it shows a

reduction of ROS in concert with HIF1_ induction. Nevertheless, the molecular link between

PR39 expression, induction of HIF1_, and cardioprotection needs further investigation.

Although HIF1_ has been attributed towards protection against ischemia reperfusion injury of

the myocardium, the genetic network that mediates this effect is yet to be deciphered (Wilhide

and Jones, 2006). Furthermore, recently the cardioprotective effects of adenovirus-mediated

delivery of a constitutively stable hybrid form of HIF1_ (HIF1_-VP16) cDNA have been

reported (Date et al., 2005). However, follow-up analysis revealed that while hypoxic

myocardium does not induce B-type natriuretic peptide (BNP), those receiving recombinant

HIF1_ induces BNP expression via an HIF1_ responsive element in the BNP promoter,

thereby raising a cautionary note of such approach (Wilhide and Jones, 2006). Taken together, our

approach of induction of HIF1_ by delivering AdPR39 provides an alternative approach of

therapeutic activation of HIF1_ in a natural context.

In summary, we demonstrate for the first time the cardioprotective ability of PR-39

gene therapy. PR-39 expression persisted up to 14 days following gene transfer and was

associated with a reduction of oxidative stress and apoptotic cell death in concert with an

increase in HIF1_ protein levels. HIF1_-dependent protective metabolic and pro-survival

responses rather than proangiogenic mechanisms are likely responsible for the

cardioprotective effects in this study (Fig. 26). Figure 26. shows the proposed mechanism of

action of cardioprotection by PR-39 gene therapy. Expression of PR-39 leads to the induction

of HIF1_ and FGF-2, which then synergize each others effect. Cardioprotection is provided

by the integrative effects of both FGF-2 and HIF1_.
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Fig. 26. The proposed mechanism of action of cardioprotection by PR-39.

Furthermore, in a novel observation we show that abrogation of FGFR1 signaling also

conveys cardioprotection, albeit to a lesser degree than PR39 gene transfer. The consequences

of this finding relative to the mechanism of PR39-mediated enhancement of FGF signaling

and the role of FGF itself in I–R injury merit further investigation.

IV. Part: Role of the glucocorticoids against I-R induced injury

The effects of glucocorticoids are numerous and widespread in cells and tissues. Their

various effects include alterations in carbohydrate, lipid, and protein metabolism,

maintenance of electrolyte and fluid balance, preservation of normal function of kidney,

skeletal muscle, endocrine, nervous, immune, and cardiovascular system. In addition, by

mechanisms those are still not completely understood. It has been also proven that

glucocorticoids have anti-inflammatory and immunosuppressive actions, one of the major

pharmacological uses of this class of drugs, also provide a protective mechanism under

physiological or pathological conditions, since many of the endogen mediators associated

with pathological conditions could lead to cardiovascular collapse if unopposed by adrenal

glucocorticoids. Several steroids that are classified predominantly as mineralocorticoids or

glucocorticoids also possess significant activity on fluid and electrolyte handling influencing

the function of cells and organs. Thus, the diverse actions of glucocorticoids are related in

complex ways to those of various drugs affected the function of cardiovascular system.

Glucocorticoids have been the basis of pharmacotherapy aimed at reducing
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inflammation response after cardiopulmonary bypass surgery (Sellewold and Jynge, 1985;

Engelman et al., 1989; Pearl et al., 2002). However, the mechanism(s) by which glucocorticoids

improve postischemic cardiovascular function has not been yet elucidated in ischemic

myocardium. In the present study, we approached the action mechanism(s) of glucocorticoids,

dexamethasone, from a different angle including the suppression of cytochrome-c release that

results, at least in part, in cardiomyocytes loss in ischemia/reperfusion. Although the specific

roles of apoptosis and necrosis, the two causes of cell death, remain controversial. Studies

have demonstrated that apoptosis, beside necrosis, significantly contributes to the death of

cardiomyocytes with reperfusion (Stephanou et al., 2002; Borutaite et al., 2003; Hochhauser et al.,

2003).

It is not clear and is not the goal of the present study to what extent of apoptosis and

necrosis individually contribute to the development of postischemic injury, and probably both

of them, a “necro-apoptotic” mechanism contributes to the development of reperfusion-

induced damage. Cytochrome-c is an essential component of the mitochondrial respiratory

chain. It is a soluble protein that is localized in the intermembrane space and is loosely

attached to the surface of the inner mitochondrial membrane (Gonzales and Neupert, 1990).

Cytochrome-c is a necessary component of cellular apoptotic program suggests that

mitochondria may be involved in apoptosis by releasing cytochrome-c. One of the main

mechanisms for triggering this apoptosis appears to be mitochondrial permeability transition

followed by cytochrome-c release. Cytochrome-c release can result in caspase activation and

thus apoptosis, but also results in mitochondrial dysfunction, which might contribute to

contractile dysfunction or necrosis at reperfusion (Borutaite et al., 2003). In the present study, we

demonstrate that under our experimental circumstances dexamethasone significantly improves

cardiac function providing evidence that glucocorticoids could mediate reperfusion-induced

injury via the mechanism of apoptosis signals, including the release of cytochrome-c from

mitochondria to cytoplasm. Furthermore, the results of our study measuring of cytochrome-c

release from mitochondria to cytoplasm suggest that pro-apoptotic signaling may play an

important role in the development of reperfusion-induced damage. However, the application

of dexamethasone may not afford alone a complete protection against postischemic damage

via apoptotic or other mechanisms in our model. We demonstrate, under our experimental

conditions, that dexamethasone significantly improves postischemic cardiac function,

providing evidence that reduced release of cytochrome-c, a marker of apoptosis (Zhao et al.,

2003), to cytoplasm attenuates reperfusion-induced injury. Furthermore, the results of this

study suggest that cytochrome-c release from mitochondria an important role in the
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development of reperfusion-induced damage, and the application of dexamethasone could

afford a significant protection against postischemic injury, which can be blocked by a protein

synthesis inhibitor, actinomycin D. Actinomycin D, as an antineoplastic drug, displays its

cytotoxicity and induction of apoptosis against tumor cells (Shang et al., 2001). On the other

hand, actinomycin D is an inhibitor of RNA synthesis, which can alleviate or block the

apoptotic process and decrease the cytotoxicity induced by several stimuli such as the

dihydrofolate reductase inhibitor aminopterin (Chung et al., 2001) and the prostaglandin

derivative 15-deoxy-delta 12,14-prostaglandin J2 (Clay et al., 2001). However, a surprising

manifestation has also been observed that actinomycin D promotes induction of apoptosis by

some specific stimuli, for example, tumor necrosis factor-related apoptosis-inducing ligand

(Griffith et al., 2002) and the death receptor CD95 (Glazyrin et al., 2002). In addition to inhibiting

RNA and “de novo” protein synthesis, actinomycin D intercalates DNA and produces double-

strand DNA breaks as a topoisomerase II poison. DNA breaks can also occur through the

generation of free radicals (Ross and Bradley, 1981). Actinomycin D by itself is enough to induce

tumor cell apoptosis (Muscarella et al., 1998) although it can suppress RNA synthesis and

encoded proteins during the process, and its inhibitory effect is believed to be the main

mechanism of its anticancer activity. In our study, actinomycin D inhibits the cardioprotective

effect of dexamethasone, probably via repressing RNA synthesis (Quing et al, 2003) and

inhibiting glucocorticoid-induced “de novo protein” synthesis. Thus, dexamethasone-induced

cardiac protection could be originated from “de novo” protein synthesis, which may include

heat shock proteins (HSP), such as HSP 32 (Bak et al., 2003) and 72 (Valen et al., 2000; Tekin et al.,

2001).

There are currently abundant data to indicate that different signal mechanisms

contribute to apoptosis leading to postischemic cardiac failure, but it is reasonably to believe

that different and multiple mechanisms rather than a single factor could significantly

contribute to the development of cardiac apoptosis. This is supported and well explained for

instance by an elegant study of Ma et al., (1999) showing that the administration of a p38

MAPK inhibitor completely blocked p38 MAPK activation, but this concentration failed to

completely prevent the development of ischemia/reperfusion-induced apoptosis. Of course,

other apoptotic signal mechanisms, not specifically studied and discussed in the present study,

e.g., caspases (Li et al., 2001; Scarabelli et al., 2001; Stephanou et al., 2001; Rodriguez et al., 2002), TNF-

α (Birks et al., 2000; Kurrelmeyer et al., 2000), p53 (Leri et al., 1999), transglutaminase (Szegezdi et al.,

2000; Nemes et al., 2001), heat shock proteins (Valen et al., 2000), glucose and cellular ATP

contents also may play an important role in the development of apoptosis (Jonassen et al., 2000;
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Schaffer et al., 2000; Elsasser et al., 2000). Our present study suggests a mechanism of

glucocorticoid-induced cardiac protection, however, more pharmacological studies must be

done to verify the exact action mechanism of dexamethasone related to apoptosis and “de

novo protein” synthesis in ischemic/reperfused myocardium.
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SUMMARY

In our experiments, we have been used isolated working mouse hearts to study the role of

redox-signaling mechanisms in cardioprotection.

In the first part of our research, we studied the potential role of the peroxiredoxin 6

(Prdx6) in I-R induced injury. Prdx6 is a novel peroxidase enzyme belonging to the Prdx

family, which in mammals contains five more peroxiredoxins (Prdx1–Prdx5). Like

glutathione peroxidase (GSHPx) and catalase, Prdx6 possesses H2O2- scavenging activities,

and, like the former, it also removes hydroperoxides. Since significant amounts of catalase

and GSHPx are present in the heart contributing toward the attenuation of H2O2 and

hydroperoxides formed during I-R injury and thereby providing cardioprotection, we

investigated whether Prdx6 also has any role in this process. In this study we used Prdx6_/_

mice to assess the role of Prdx6 in ischemic injury. Western blot analysis revealed the absence

of any Prdx activity in the Prdx6_/_ mouse heart, while the GSHPx-1 and catalase levels

remained unchanged. Randomly selected hearts from Prdx6_/_ mice and wild-type mice were

subjected to 30 min of global ischemia followed by 120 min of reperfusion at normothermia.

The hearts from the Prdx6_/_ mice were more susceptible to ischemic reperfusion injury as

evidenced by reduced recovery of left ventricular function, increased myocardial infarct size,

and higher amount of apoptotic cardiomyocytes compared with wild-type mouse hearts.

These Prdx6_/_ hearts were also subjected to a higher amount of oxidative stress as evidenced

by the presence of higher amount of malondialdehyde. Our finding thus indicates a non-

redundant role of Prdx6 in myocardial ischemic reperfusion injury as catalase, and GSHPx

could not make up for the deficiency of Prdx6 activities.

In the second part of our experiments, we intend to determined the potential role of the

glutaredoxin2 (Glrx2) in cardiac disorders. Mitochondrial Glrx2 has been recognized as an

important redox regulator in mammalian organs including heart. This study examined if

myocardial overexpression of Glrx2 in the heart could rescue the cardiac cells from apoptosis

and necrosis induced by ischemia and reperfusion. The human Glrx2 transgene was created

by placing a full-length cDNA fragment encoding human mitochondrial Glrx2 downstream to

the 5_ flanking sequence and promoter of the mouse _-myosin heavy chain gene. The isolated

hearts from Glrx2 transgenic mice and non-transgenic (wild type) littermates were subjected

to 30 min of global ischemia followed by 2 h of reperfusion in working mode. The hearts

from Glrx2 transgenic mice displayed significantly improved contractile performance and

reduced myocardial infarct size and cardiomyocyte apoptosis. There was a reduction in
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cytochrome-c release and activation of caspase 3 and caspase 9. Glrx2 overexpression also

reduced the ischemia/reperfusion-mediated loss of mitochondrial cardiolipin, decreased the

activities of reactive oxygen species (ROS) and preserved GSH/GSSG ratio. Glrx2 mediated

survival signal appeared to be stemmed from PI-3-kinase-Akt survival signaling pathway and

involved the activation of redox sensitive transcription factor NF_B and anti-apoptotic protein

Bcl-2. Our results indicate a crucial role of mitochondrial Glrx2 in cardioprotection.

In the third parts of our work, we have been examined the cardioprotective abilities of

PR39 gene therapy. PR-39, a proline-arginine-rich angiogenic response peptide, has been

implicated in myocardial ischemic-reperfusion injury. In this study, male C57Bl/J6 mice were

randomized to intramyocardial injection of 109 plaque forming units (p.f.u.) adenovirus

encoding PR39 (PR39), FGFR1 dominant negative signaling construct (FGFR1-dn), empty

vector (EV), or PR39 adenovirus plus 4 _g of plasmid endcoding a HIF-1_ dominant negative

construct (PR39 + HIF-1_-dn). Seven days later, hearts were subjected to 20 min of ischemia

and 2 h. reperfusion ex vivo and aortic and coronary flow, left ventricular developed pressure

(LVDP), and LVdp/dt were measured. Myocardial infarct (MI) size and cardiomyocyte

apoptosis were measured by TTC staining and TUNEL, respectively. PR39 expression was

robust up to 14 days after gene transfer and was absent after EV and FGFR1-dn.

Hemodynamics showed no differences at baseline, and heart rate remained unchanged in all

groups throughout the experiment. After I–R, hemodynamics remained unchanged in PR39

hearts, but deteriorated significantly in the other groups, except for aortic flow, which

remained significantly higher in FGFR1-dn than in EV and PR39 + HIF-1_-dn (p < 0.05),

although it was lower than in PR39 (p < 0.05). MI was 8.7 ± 0.9 % in PR39, 23.8 ± 1.1% in

FGFR1-dn, 29.9 ± 2.2% in EV, and 30.8 ± 2.7 % in PR39 + HIF-1_-dn (PR39 vs. other

groups: p < 0.05; FGFR1-dn vs. EV and PR39 + HIF-1_-dn: p < 0.05). In PR39, HIF-1_

protein was higher than in FGFR1-dn and EV. Importantly, co-transfection of HIF1_-dn with

PR39 completely abolished cardioprotection by PR39. Cardioprotection by PR39 is likely

conveyed by protective metabolic and survival responses through HIF-1_ stabilization and not

by angiogenesis, because baseline coronary flow was the same in all groups. Abrogation of

FGFR1 signaling conveyed an intermediate degree of cardioprotection.

In the last parts of our research, we investigated the contribution of dexamethasone

treatment on the recovery of postischemic cardiac function and the development of

reperfusion-induced arrhythmias in ischemic/reperfused isolated rat hearts.

Electrocardiograms were monitored to determine the incidence of reperfusion-induced

ventricular fibrillation. Dexamethasone pretreatment significantly reduces the occurrence of
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ventricular fibrillation. Cytochrome-c release was also observed in the cytoplasm and it was

interfered with dexamethasone pretreatment. The results suggest that the inhibition of

cytochrome-c release is involved in the dexamethasone-induced cardiac protection and

actinomycin D prevented the dexamethasone-induced cardiac protection.
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RÉSUMÉ

Dans la première partie de notre travail, nous avons étudié le rôle de la peroxyrédoxine-6

(Prdx6) sur un modèle d’ischémie/reperfusion. Comme la glutathion peroxydase (GSHPx) et

la catalase, la Prdx6 est capable de neutraliser le peroxyde d’hydrogène et les hydroperoxydes

organiques. Ces propriétés scavenger de la catalase et de la GSHPx jouent un rôle majeur

dans la protection du tissu cardiaque soumis à un processus d’ischémie/reperfusion, en

neutralisant les H2O2 et les hydroperoxydes formés dans ces conditions pathologiques. Nous

avons donc cherché à vérifier si la Prdx6 peut contribuer également à un tel mécanisme de

protection et nos résultats montrent que le déficit en Prdx6, chez la souris, ne peut être

compensé par l’activité catalase ou l’activité GSHPx et suggère donc que cette enzyme joue

un rôle non redondant avec les autres systèmes antioxydants cellulaires.

Dans la seconde partie de ce travail, nous avons tenté de préciser le rôle potentiel de la

glutarédoxine-2 (Glrx2) dans les conditions d’ischémie/reperfusion cardiaque. On sait en effet

que la Glrx2 mitonchondriale joue un rôle important de régulateur redox dans de nombreux

organes des mammifères, en particulier le coeur. Nous avons donc testé l’effet d’une

surexpression myocardique de Glrx2 sur l’incidence de l’apoptose et de la nécrose au cours de

l’ischémie et de la reperfusion. Sur des préparations de coeurs isolés de souris Glrx2

transgéniques soumis à une période de 30 minutes d’ischémie globale, suivie de 2 heures de

reperfusion (modèle du coeur travaillant). Comparés à des coeurs d’animaux de souche

sauvage, les coeurs des souris transgéniques Glrx2 maintenaient une fonction contractile

significativement meilleure et présentaient une taille d’infarctus réduite ainsi que des

phénomènes d’apoptose limités. La surexpression de Glrx2 entraînait également une

diminution de la fuite de cardiolipine mitochondriale, une diminution de l’activité des espèces

réactives dérivées de l’oxygène et une préservation du rapport glutathion réduit / glutathion

oxydé.

Dans la troisième partie de ce travail, nous avons étudié les effets d’une thérapie génique

PR39 chez la souris. PR39 est un peptide pro-angiogénique qui a déjà été impliqué en

pathologie cardiaque. Dans cette étude, des souris mâles C57B1/J6 subissaient une injection

intracardiaque d’une suspension d’adénovirus : codant PR39 (PR39), ou contruit dominant

négatif FGFR1 (FGFR1-dn), ou vecteur vide (EV), ou PR39 plus un plasmide codant un

construit dominant négatif HIF-1 (PR39 + HIF-1-dn). Une semaine plus tard, les coeurs
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étaient soumis à 20 min d’ischémie et 2 heures de reperfusion ex vivo. Dans ces conditions,

l’hémodynamique cardiaque restait inchangée dans les coeurs PR39, alors qu’elle se

détériorait significativement dans les autres groupes. La cotransfection d’HIF-1-dn avec PR39

abolissait totalement cet effet cardioprotecteur.

Dans la dernière partie de ce travail, nous avons étudié la contribution d’un traitement à la

dexamethazone sur la récupération post-ischémique de la fonction cardiaque et sur le

développement des troubles du rythme de reperfusion. Dans cette étude conduite sur des

coeurs isolés de rats, le prétraitement dexamethazone réduit significativement l’incidence de

la fibrillation ventriculaire. Nos résultats suggèrent que l’inhibition de la libération du

cytochrome-C est impliquée dans la cardioprotection par la dexaméthazone.
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