
HAL Id: tel-00421386
https://theses.hal.science/tel-00421386

Submitted on 1 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cavity quantum electrodynamics and intersubband
polaritonics of a two dimensional electron gas

Simone de Liberato

To cite this version:
Simone de Liberato. Cavity quantum electrodynamics and intersubband polaritonics of a two di-
mensional electron gas. Condensed Matter [cond-mat]. Université Paris-Diderot - Paris VII, 2009.
English. �NNT : �. �tel-00421386�

https://theses.hal.science/tel-00421386
https://hal.archives-ouvertes.fr
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Introduction

The history of cavity quantum electrodynamics, the study of light-matter in-

teraction in quantum confined geometries, started when Purcell [2] noted that

the spontaneous emission rate of an excited atom can be changed by adjusting

the boundary conditions of the electromagnetic field with properly engineered

cavities. Since then, experiments showing modifications of spontaneous emis-

sion rates were realized with ever-growing atom-cavity couplings and cavity

quality factors [3, 4, 5, 6, 7]. This lead eventually to systems in which the pho-

ton lifetime inside the cavity was substantially bigger than the spontaneous

emission rate, that is systems in which a single photon undergoes multiple ab-

sorption and reemission cycles before escaping the cavity [8, 9, 10]. The first

experiments that reached this regime, named strong coupling regime, were

performed with Rydberg atoms in superconducting cavities. Strong coupling

regime was then achieved in solid-state systems, using quantum well excitons

in microcavities [11] and, more recently, Cooper pair boxes in superconducting

circuits [12] (in this case the name circuit quantum electrodynamics is often

employed).

But what does strong coupling exactly means? Textbooks normally define

two coupled systems to be strongly coupled if it is possible to experimentally

resolve the energy shift due to the coupling, that is the coupling constant

(quantified by the vacuum Rabi frequency ΩR) needs to be bigger than the

linewidth of the resonances. If two systems are strongly coupled, the com-

posite system eigenstates can not be described as a tensorial product of the

eigenstates of the two bare ones. That is the interaction is so strong that entan-

gles the systems and the only meaningful information becomes the eigenstate

of the coupled system. In the case of two level systems (e. g. the Rydberg

atoms in microwave cavities), people usually calls these eigenstates of dressed

states, in the case of bosonic ones (e. g. excitons in planar microcavities), the

name polaritons is used.
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In the last ten years, exciton polaritonics has become a remarkably rich

field in condensed matter physics, fertile both for fundamental and applied

research [13, 14, 15, 16, 17, 18, 19]. In such systems, thanks to the small

polaritonic mass (inherited from their photonic part), it is possible to reach

the quantum degenerate regime at temperatures orders of magnitude bigger

than in atomic systems. Exciton polariton Bose-Einstein condensation was

recently achieved at a temperature of few kelvin [20], compared to hundreds

of nanokelvin needed for atomic cloud Bose-Einstein condensates. New kinds

of electroluminescent [21] and lasing [22, 23] devices have been realized with

such quasi-particles, often with unprecedented performances.

In 2003 there was a new entry in the list of solid-state strongly coupled

systems with the first experimental observation of the strong coupling be-

tween a microcavity photon mode and the intersubband transition of a doped

quantum well [24]. Intersubband transitions are named in opposition to the

usual interband transitions, occurring between valence and conduction band in

semiconductors. They are instead transitions between the subbands in which

the conduction band is split due to the quantum well confinement. While

this kind of polaritons, quickly dubbed intersubband polaritons, are in vari-

ous respect profoundly different from exciton polaritons, both for the energy

range (mid-infrared to Terahertz) and for the nature of the electronic transi-

tion (intersubband transitions, contrary to excitons, are not bound states), the

main interest of these new polaritons stays in the strength of the light-matter

interaction [25].

We just mentioned that the light-matter coupling in these systems, as for

excitons or atoms, can be strong. Is it possible to go further? The definition

of strong coupling in term of energy shifts and linewidths is clearly relevant in

spectroscopic experiments: two systems are strongly coupled if we can resolve

the effect of the interaction, which produces an energy anticrossing between

light and matter resonances. Anyway it does not permit to make any assess-

ment on the real strength of the interaction. Being in the usual strong coupling

regime means to have an energy shift due to coupling bigger than the linewidth

of the resonance, that can be achieved even with extremely small couplings,

if the losses are small enough. In order to assess the real strength of the in-

teraction, the right figure of merit is the ratio between the interaction energy

and the bare system excitation energy ~ω12 (transition energy). The ratio ΩR

ω12

gives a direct assessment of the relative strength of the interaction, not of our

ability to spectroscopically observe it.
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In atomic systems ΩR

ω12
is typically less then 10−6 in the case of a single

atom. That is the atomic transition resonance shifts of less than one part

per million from its unperturbed position. We can still see the shift simply

because superconducting cavity can have an astounding quality factor, of the

order of 109, that permits us to resolve even such tiny shifts. Is it possible

to do better? Not in dilute atomic systems [26], where the smallness of this

ratio directly depends upon the small value of the fine structure constant

α ≃ 1
137

. In condensed matter cavity quantum electrodynamics it is possible

to beat this limit, exploiting collective, coherent excitations. If a large number

of electrons gets collectively excited, the ensuing excitation has a collective

dipole, whose intensity scales as the square root of the electron number, in

a phenomenon reminiscent of the Dicke superradiance [27]. In excitons for

example, where a large number of valence electron states participates to the

excitation, experiments have reached values up to 10−2 for the ratio ΩR

ω12
[28,

29, 30, 31].

In intersubband excitations, the values obtained until now are bigger than

10−1, and there is still a large marge of improvement [32]. That is, the cou-

pling is intrinsically strong, enough to significatively change the spectrum of

the system and the nature of the quantum ground state. Other systems in

which such large couplings could be achieved are Cooper pair boxes coupled to

superconducting line resonators, where theoretical values up to 20 have been

predicted [26]. This regime of intrinsic strong coupling was named ultra-strong

coupling. Such ultra-strong coupling is interesting for various reasons. In par-

ticular the ground state turns out to be a squeezed vacuum, containing pairs

of virtual photons [25, 33].

While such virtual excitations are normally unobservable, they can become

real if the system is modulated in a non-adiabatic way [34]. This effect, the

emission of photons out of the ground state when the system is perturbed,

is a manifestation of the dynamical Casimir effect [35], an elusive and never

observed quantum electrodynamics effect reminiscent of the Unruh effect [36]

(colloquially speaking the dynamical Casimir effect predicts that a mirror,

shaken in the vacuum, emits photon pairs, the Unruh effect predicts that

a thermometer, shaken in the vacuum, measures a non-zero temperature).

Intersubband polaritonic systems, together with Cooper pair boxes, seems to

be very promising systems for observing this kind of effects.

On a more applied ground, it is important to point out that the light matter

coupling could affect electric transport and electroluminescence, opening new
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opportunities that could be exploited to create high-efficiency light sources in

the mid-infrared and Terahertz regions.

The manuscript consists of five chapters. Chapter 1 serves as a general in-

troduction and reference, the other four follow quite chronologically my Ph.D.

work of the last three years. Chapter 2 presents a comprehensive quantum

Langevin theory predicting the quantum vacuum radiation induced by the

non-adiabatic modulation of the vacuum Rabi frequency in microcavity em-

bedded quantum wells. The theory accounts both for ultra-strong light-matter

excitations and losses due to the coupling with radiative and non-radiative

baths. Chapter 2 also reports of two experimental milestones [32, 37] toward

the observation of such effect.

Chapters 3 and 4 present a general theory to describe the influence of inter-

subband polaritons on electron transport and electroluminescence. Chapter 3

presents a numerical method [38] capable to model electrical transport through

a microcavity embedded quantum well, taking into account the strong cou-

pling of electrons with the microcavity photons. Not only it gives a theoretical

explanation to various features observed in electroluminescence experiments

[39], but it also shows that, by increasing the light matter coupling in such

devices, it may be possible to drastically increase their quantum efficiency, in

a strong coupling extension of the Purcell effect [2]. Chapter 4 shows how the

coupling with the quantum vacuum fluctuations of the microcavity electromag-

netic field can qualitatively change the spectral function of the electrons inside

the structure. The spectral function is characterized by a Fano resonance, due

to the coupling of the electrons with the continuum of intersubband polari-

tons. The theory suggests that these features may be exploited to improve the

quantum efficiency by selectively excite superradiant states through resonant

electron injection. Finally Chapter 5 shows how it is possible to exploit the

peculiar properties of intersubband polaritons in order to obtain a new kind

of inversionless laser [40]. A theory of polariton stimulated scattering due to

interaction with optical phonons is developed, that fully takes into account

saturation effects that make the behavior of intersubband polaritons to depart

from the one of pure bosons. With realistic parameters, this theory predicts

lasing with a threshold almost two orders of magnitude lower than existing

intersubband lasers.

Sometimes the algebra behind the presented results may be heavy. In order

to improve readability I reduced to the minimum the quantity of equations in

the main body of the text, moving all the technical calculations in the Appen-
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dices. Each Chapter has thus its own Appendix, in which the reader interested

in technical details will find all the calculations that were not included neither

in the corresponding Chapter, nor in Letter format publications.
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Chapter 1

Introduction intersubband

polaritons physics

1.1 Introduction

A number of the following chapters are dedicated to solve various problems

linked with the physics of quantum coherent phenomena in microcavity em-

bedded quantum wells. In order to keep the chapters independent, avoiding

both boring repetitions and too many inter-chapter references, I decided to

collect in this first chapter all the notions necessary for the comprehension of

this thesis.

I will start giving an overview of different quantum mechanical concepts.

I think that almost all of them are considered as common background for

working scientists in condensed matter physics, anyway I prefer to review them,

especially because the aspects I am interested in are often not the ones stressed

in textbooks. Then I will give a brief review of the physics of quantum wells,

microcavities and of their interactions. In the last part I will introduce the

main theoretical tools I will need, that is the many body Hamiltonian for the

system, in its full form as well as in different simplified forms that will be useful

for treating different problems.
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1.2 Useful quantum mechanics concepts

1.2.1 Weak and strong coupling

In basic quantum mechanics, when describing the evolution of a system, it is

customary to make a strong distinction between the case in which the initial

state of such system is coupled only to another discrete state or instead to a

continuum of final states. In the first case the dynamics exhibits oscillations,

called Rabi oscillations, while in the second case the dynamics is irreversible

and usually described by means of the Fermi golden rule.

The apparent dichotomy between these two cases is given by the fact that,

due to the coherent nature of quantum mechanics, the initial state couples

at the same time to all the possible final states. If the different final states

have different energies anyway they will oscillate at different frequencies and

thus, even if for long times we expect to still observe Rabi oscillations (or more

precisely quantum revival of Rabi oscillations [41, 42, 43]), for short times the

phase of the system is randomized on a timescale of the order of the inverse of

the continuum frequency width. If this randomization is faster than the Rabi

oscillation period, the coherence is lost before even one single oscillation can

take place.

It is easy to understand that the real dichotomy is not between a discrete

level and a continuum but between a narrow and a broad continuum, where

the width of the continuum has to be compared with the frequency of the

Rabi oscillations. For this reason the two regimes are called strong and weak

coupling respectively, where weak and strong refer to the strength of the cou-

pling, that is proportional to the frequency of the Rabi oscillations. Clearly

this definition is equivalent to the more common definition of weak and strong

coupling between two coupled systems based on the possibility to resolve the

energy anticrossing of the eigenmodes induced, at resonance, by the coupling.

1.2.2 Collective coupling

The phenomenon of superradiance, usually known as Dicke superradiance [27,

44, 45, 46], is basically the drastic enhancement in the spontaneous emission

rate of a collection of coherently excited two level systems. This concept has

a broad interest, both for fundamental and applied reasons, and it is crucial

to almost all the results of this thesis. For this reason I will give here an

extremely short introduction on superradiance from a point of view that, while
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quite different from the standard textbook definition, is specifically useful for

the present work. Superradiance is a consequence of a very basic property

of quantum mechanics. If a quantum state |ψ〉 is identically coupled with

N degenerate states |φj〉 then, applying an unitary transformation on the

degenerate subspace {|φj〉}, we can redefine the states in order to have the

initial state coupled to a single final state, with a coupling constant
√
N times

bigger than the bare one. The proof of this statement is simple linear algebra.

The system Hamiltonian, calling ~ω the energy of the initial state and choosing

as zero the energy of the degenerate subspace is

H = ~ω|ψ〉〈ψ|+ ~Ω
N

∑

j=1

|ψ〉〈φj| + |φj〉〈ψ|. (1.1)

Applying to the to the degenerate subspace a linear transformation that maps

{|φj〉} to {|φ̄j〉} such that |φ̄1〉 = 1√
N

∑

j |φj〉 and the other vectors are deter-

mined by orthonormality, we obtain

H̄ = ~ω|ψ〉〈ψ|+
√
N~Ω(|ψ〉〈φ̄1| + |φ̄1〉〈ψ|). (1.2)

We see that in the new Hamiltonian there is only one state coupled to the

initial one with an enhanced coefficient, while the other N − 1 are uncoupled

and have disappeared from the Hamiltonian.

1.2.3 Bosonic Approximation

The main manifestation of electrons fermionic nature is the existence of Pauli

blocking, only one electron can occupy each quantum state at a given time.

For an electronic transition between an initial and a final state to be possible

we need to have both the initial state full and the final state empty. This

means that a collection of N two level systems can only be excited N times

before it saturates. For example in a semiconductor, if a significant fraction

of valence electrons are pumped into the conduction band, further electrons

have a reduced phase space to jump and the light-matter interaction decreases.

On the contrary a single bosonic oscillator can absorb an unlimited number

of excitations. Given the extreme ease we have in treating bosonic fields, it is

tempting, at least as long as we are far from saturation, that is if the number of

excitations n is much smaller than N , to approximate the collective excitation

of many two level systems with a single bosonic mode.
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There is indeed a deeper link between a bosonic field and an ensemble of

fermionic transitions. To consider the latter as a boson is substantially the

same approximation we make when we say that an atom with an even number

of fermions acts as a boson. Formally we can describe a two level system

by means of two second-quantized fermionic fields, c1 and c2. For example a

transition between the first and the second level will be given by the operator

b† = c†2c1, that is an electron is annihilated in the first level and is created in

the second one. The property of fermionic fields (c21 = c22 = 0) assures that

such transition is possible only if the first level is full and the second one empty.

If we consider a collection of N of such two level systems, indexed by an index

j, it is easy to verify that, if |ψ〉 is a state such that n systems are excited,

then on average 〈ψ|[bj, b†j′]|ψ〉 = δj,j′ + O( n
N

). That is, the operators bj , being

composed of an even number of fermions have, at low excitation densities, the

commutation relations of bosonic fields.

1.2.4 The rotating wave approximation

The rotating wave approximation (RWA) is an approximation scheme consist-

ing of neglecting highly nonresonant (that is quickly oscillating) terms in the

Hamiltonian. The RWA is used over almost all the domains of physics, from

astronomy to quantum mechanics and permits the exact solution of various

otherwise intractable problems.

The breaking of this approximation, or more precisely the physics that

emerges if this approximation is not valid, will be an important part of Chapter

2. I will thus take some time here to review the basics of the RWA by analyzing

its application to a really simple quantum system.

Let us consider the Hamiltonian of two coupled resonant harmonic os-

cillators, whose second quantization annihilation operators are a and b, the

frequency is ω and the coupling strength Ω. The Hamiltonian is thus

H = ~ω(a†a+ b†b) + ~Ω(a + a†)(b+ b†). (1.3)

Applying the RWA on the system described by Eq. 1.3 means neglecting the

terms ab and a†b†. These terms connect states with a bare energy difference

of 2ω and thus their contribution in second order perturbation theory (i.e. to

the energy of the ground state) is of the order of

∆2 =
Ω2

ω
. (1.4)



1.3. Physical system 23

If ω ≫ Ω the effect of antiresonant terms is thus suppressed. This is the case

in almost all non-driven physical systems. Only in the last few years a number

of propositions [47, 48, 26, 25, 33, 34, 32] have been put forward of systems

not fulfilling the RWA.

1.3 Physical system

1.3.1 The doped quantum well

A quantum well is a planar heterostructure that quantum confines electrons

along the growth axis. This tight confinement strongly influences the density

of states of the electrons, that effectively behave as a two dimensional electron

gas (2DEG). The confinement in fact splits the electronic Bloch bands into

discrete subbands, in Fig. 1.1 it is shown the typical band structure and in-

plane dispersion of a quantum well. The electrons are free to move in the plane

normal to the growth direction with an effective mass given by the subband

dispersion ~ωj,n(k), where j = v, c is the band index, k is the component

of the wavevector in the plane normal to the growth direction and n is an

integer giving the subband index. An electronic state in the quantum well

will thus be indexed by the two components of the in-plane wavevector kx

and ky (we will consistently suppose that the growth direction is along the z

axis), the band index, the subband index and the spin. The Fermi level of a

quantum well, that in an intrinsic semiconductor would be in the gap between

the highest energy valence subband and the lowest energy conduction subband,

can be easily shifted by doping. This permits to select which of the multiple

interband and intersubband transitions is optically active. In the rest of the

thesis we will be interested in the coupling of intersubband transitions with

light, thus we will consider quantum wells whose Fermi level is between the

first and the second conduction subband, even if experimentally other cases

are possible [49]. The main interest of considering such transitions is that,

due to the parallelness of the conduction subbands and the smallness of the

photon wavevector, the 2DEG behave approximately as a collection of two

level systems with the same transition frequency. In fact being the photonic

wavevector much smaller than the electronic one, photonic induced transitions

are almost vertical on the scale of the electronic dispersions of Fig. 1.1. As

we have seen in Section 1.2.2 a collection of two level systems coupled to the

light can be seen as a single system with a coupling
√
N times bigger. This is



24 Chapter 1. Introduction intersubband polaritons physics

e

h

Conduction band

Valence band

E
gap

h̄ω12

Position along the z axis

C
on

fin
em

en
t p

ot
en

tia
l

E
gap

h̄ω12

In−plane wavevector

E
ne

rg
y

Figure 1.1: Top panel: schema representing the band structure of a semicon-

ductor quantum well. The electronic confinement and the presence of subbands

are well visible. Bottom panel: the corresponding band dispersion, as a func-

tion of the wavevector in the plane normal to the growth direction.
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exactly what happens in the case of intersubband transitions. Only one linear

superposition of electronic transitions, called bright intersubband excitation, is

coupled to the light field, but with a dipole
√
N times bigger than the bare one,

where N is the number of electrons in the 2DEG. Such dipole is oriented along

the z axis, giving a polarization selection rule for intersubband excitations,

only Transverse Magnetic (TM) polarized light couple to the quantum well,

while Transverse Electric (TE) polarized photons are completely decoupled.

1.3.2 The microcavity

In order to increase the coupling between light and matter, it is favorable

to increase the spatial overlap between the photonic modes and the matter

excitations. This is at the heart of the so called Purcell effect [2]. In order

to increase this overlap it is necessary to confine the photonic mode inside a

cavity. A number of different cavity technologies have been devised, spanning

different geometries and frequency ranges: from superconducting microwaves

[50] to one dimensional transmission lines [51]. In condensed matter systems

the interest in increasing the light-matter coupling is not only linked with the

possibility to observe interesting new physics [34] but also to the engineering

of efficient light emitters [52, 38]. This interest has led to the conception

of different kinds of microcavities with planar geometries that can be directly

embedded in semiconductor heterostructures. The confinement of the photonic

mode can be obtained using dielectric Bragg mirrors, metallic mirrors or even

exploiting total internal reflection.

The effect of a planar microcavity is to quantize the photon wavevector

along the growth direction. The photonic dispersion is thus given by

ωcav, j(q) =
c√
ǫr

√

q2 + q2
z,j, (1.5)

where qz,j is the j-th value of the quantized qz vector. A typical dispersion is

shown in Fig. 1.2.

It is worthwhile to notice the parabolic dispersion around q = 0, photons

gets an effective mass due to the confinement. In the following we will work in

a regime in which the intersubband gap energy ~ω12 is resonant with a mode

on the first cavity branch. We will thus limit ourselves to consider the first

photonic branch, being the others well out of resonance.
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Figure 1.2: Energy dispersion of a planar microcavity as a function of the

wavevector in the plane normal to the growth direction. The index j indexes

different photonic branches corresponding to different values of the quantized

wavevector along the growth direction.
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1.3.3 Intersubband polaritons

When the microcavity is resonant with the intersubband transition energy

~ω12, due to the strength of the coupling between an intersubband excitation

and a microcavity photon, the system can be in the strong coupling regime. In

Fig. 1.3 it is shown a typical dispersion of the system resonances as a function

of the in-plane wavevector. Dashed lines are the bare resonances of the inter-

subband transition and of the microcavity photons, while solid lines are the

dispersions of normal modes of the coupled system. At resonance, the anti-

crossing between the dispersions of the two normal modes is clearly visible. In

this regime the new eigenmodes of the system are called intersubband polari-

tons. The experimental observation of their resonances has been reported for

the first time in [24]. Their data with the anticrossing of reflectance resonances

can be found in Fig. 1.4. Another, more recent observation of polariton reso-

        

UP

LP

h̄ω12

In−plane wavevector

E
n
e
r
g
y

UP

LP

h̄ω12

Figure 1.3: Energy dispersions of excitations in a microcavity embedded quan-

tum well as a function of the wavevector in the plane normal to the growth

direction. Dashed lines represent the dispersion of the intersubband excitation

(dispersionless) and of the bare microcavity photon mode. Solid lines represent

the upper (UP) and lower (LP) polariton branches.
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Figure 1.4: Experimental data from Ref. [24]. The reflectance spectra for

various angles show clearly the level anticrossing. This is the first experimental

observation of intersubband polariton dispersions.
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nances in a quantum cascade structure is shown in Fig. 1.5. In Fig. 1.6 there

is a sketch of the mesa etched sample and of the corresponding band diagram

(Both images are from Refs. [53] and [39]).
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Figure 1.5: Reflectivity spectra as a function of the incident angle. In the inset

the position of the peaks (full dots) is compared with the theoretical results of

transfer matrix calculations (line). Image taken from Ref. [39].

1.4 Quantum description

1.4.1 The full Hamiltonian

In order to elaborate a theory of a microcavity embedded two dimensional

electron gas, we will need to derive the second quantization Hamiltonian for

such system. The quantum fields we need to describe are the microcavity

photon field and the electron fields in the first and second subbands. We thus

introduce the electron creation fermionic operators in the first and second

subband (c†1,σ,k and c†2,σ,k), and the bosonic creation operator a†ζ,q, where σ is

the electron spin, ζ the photon polarization, while k and q are the in-plane
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Figure 1.6: Top panel: schema of the mesa etched sample of Ref. [53]. Bottom

panel: band diagram of the quantum cascade structure. Images taken from

Ref. [53].
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wavevectors. Systematically in this thesis, I will use the letters k and q for

the electronic and photonic wavevector respectively. This distinction will often

be useful due to the smallness of photons wavevectors compared to electronic

ones.

The Hamiltonian, whose exact derivation is detailed in Appendix A, is

H =
∑

k

~ωc,1(k)c
†
1,kc1,k + ~ωc,2(k)c

†
2,kc2,k (1.6)

+
∑

q

~ωcav(q)a
†
qaq + ~D(q)(a1,−q + a†1,q)(a1,q + a†1,−q)

+
∑

k,q

~χ(q)(aq + a†−q)c
†
2,k+qc1,k + ~χ(q)(a−q + a†q)c

†
1,kc2,k+q.

The energy dispersions of the two quantum well conduction subbands, shown

in Fig. 1.1 as a function of the in-plane wavevector k, are ~ωc,1(k) = ~2k2

2m⋆ and

~ωc,2(k) = ~ω12 + ~
2k2

2m⋆ , being k the electron in-plane wavevector and m⋆ the

effective mass of the conduction subbands (non-parabolicity is here neglected,

see Ref. [54]).

As explained in detail in A, we neglect the electron spin, because all the

interactions are spin-conserving. Due to selection rules of intersubband tran-

sitions, we omit the photon polarization, which is assumed to be TM. For

simplicity, we consider only a photonic branch, which is quasi-resonant with

the intersubband transition, while other cavity photon modes are supposed

to be off-resonance and can be therefore neglected. Due to the light-matter

interaction terms, which are product of three operators, the Hamiltonian in

Eq. 1.6 is of formidable complexity, in order to make it tractable, studying

different problems we will make various kinds of (controlled) approximations.

1.4.2 The RWA fermionic Hamiltonian

When the light-matter coupling is not too big compared to the intersubband

transition frequency, we can safely apply the RWA to the Hamiltonian in Eq.

1.6. This is equivalent to neglect terms in a2
q that annihilate pairs of photons

and terms of the form a†−qc
†
2,k+qc1,k that describe an electron jumping from

the first to the second subband emitting a photon. The resulting Hamiltonian
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is thus

HRWA =
∑

k

~ωc,1(k)c
†
1,kc1,k + ~ωc,2(k)c

†
2,kc2,k +

∑

q

~[ωcav(q) + 2D(q)]a†qaq

+
∑

k,q

~χ(q)aqc
†
2,k+qc1,k + ~χ(q)a†qc

†
1,kc2,k+q. (1.7)

This Hamiltonian, even if it cannot describe regimes of extremely strong cou-

plings, retains all the nonlinearities due to Pauli blocking and can describe

both low excited or extremely high excitation regimes. More important for

us it retains, contrary to the bosonized Hamiltonian we will see in the next

section, the description at the level of the single electron, that is necessary

when trying to describe electronic transport.

1.4.3 The bosonic Hamiltonian

The large dopant densities usually used in intersubband polariton experiments

(of the order of 1012 cm−2) and thus the large number of electrons involved,

make the numerical study of Hamiltonian in Eq. 1.6 a formidable task. A way

to proceed is to notice that even if a large number of electrons participate in

the light-matter interaction, only few degrees of freedom are effectively excited.

If we do not bother to lose the possibility to describe the system at the level of

single electron, we can thus exploit the techniques developed in Section 1.2.3

and bosonize the [55, 56] Hamiltonian in Eq. 1.6. We thus define N bosonic

intersubband transition operators as

bjq =
1√
N

∑

k

βj
kc

†
2,k+qc1,k. (1.8)

where β1
k = 1 ∀k and the other N − 1 βj

k are determined with an orthonormal-

ization procedure.

If we are working in the diluted regime, that is if the number of excitations

we wish to treat is much smaller than the number of electrons, it is easy to

verify that these operators behave like bosons. If we take the state |n〉 to be

a state with all the electrons in the first subband, except for n that are in the

second one, we have

〈n|[bjq, bj
′ †

q′ ]|n〉 = δ(q − q′)δj,j′ +O(
n

N
) (1.9)

〈n|[bjq, bj
′

q′ ]|n〉 = 0.
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We have thus not only greatly reduced the number of dynamical degrees of

freedom, but we have also transformed a cubic Hamiltonian in a quadratic,

bosonic one. Again this approximation, as can be seen from Eq. 1.9, is valid

only in the diluite regime, where the excitations do not see each other and

fermionic saturation effects do not impair intersubband excitations bosonicity.

We will see in Chapter 5 how to deal with bosonization at higher excitation

densities.

The energy of such intersubband transition excitations can be found by

calculating the average value of Hamiltonian over the state bj †q |F 〉, where |F 〉 =
∏

k<kF
c†1,k|0〉 is the system ground state with all the electrons in the first

subband, that we use also as zero of energy and |0〉 is the vacuum state for the

electron and photon modes (c1,k|0〉 = c2,k|0〉 = aq|0〉 = 0). We obtain

〈F |bjqHbj †q |F 〉 =
~

N

∑

k

[ω2(k + q) − ω1(k)]. (1.10)

Given the smallness of the photonic wavevector q compared to the electronic

one k, we can safely consider ω2(k + q) − ω1(k) ≃ ω12 and thus obtain the

bosonic effective Hamiltonian:

HBos =
∑

q

~[ωcav(q) + 2D(q)]a†qaq +
∑

j

~ω12b
j †
q b

j
q + ~ΩR(q)(a†qb

1
q + aqb

1 †
q )

+ ~ΩR(q)(aqb
1
−q + a†qb

1 †
−q) + ~D(q)(aqa−q + a†qa

†
−q). (1.11)

where ΩR(q) =
√
Nχ(q) is the effective vacuum Rabi frequency. It is clear the

affinity of transformation in Eq. 1.8 and the superradiant states defined in

section 1.2.2. Of the N possible intersubband transitions for a given in-plane

wavevector q, only one linear superposition is coupled with the microcavity

photon field, with a coupling constant
√
N times bigger than the coupling

constant of a single electron and the other N − 1 excitations are not coupled

at all. We will call the former a bright intersubband excitation and the others

dark intersubband excitations. Being the dark excitations uncoupled, when

interested only in optically active excitations, we will drop them out of the

Hamiltonian and for simplicity we will call bq the bright excitation

HBos =
∑

q

~[ωcav(q) + 2D(q)]a†qaq + ~ω12b
†
qbq + ~ΩR(q)(a†qbq + aqb

†
q)

+ ~ΩR(q)(aqb−q + a†qb
†
−q) + ~D(q)(aqa−q + a†qa

†
−q). (1.12)
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1.4.4 The RWA bosonic Hamiltonian

If together will all the conditions to be able to use Hamiltonian in Eq. 1.12,

we have also a ratio ΩR

ω12
small enough for being in the RWA regime, we can

apply the RWA to Hamiltonian in Eq. 1.12. This means to neglect terms that

creates or annihilates pairs of excitations. The resulting Hamiltonian is thus

HRWA
Bos =

∑

q

~[ωcav(q) + 2D(q)]a†qaq + ~ω12b
†
qbq + ~ΩR(q)(a†qbq + aqb

†
q).

(1.13)



Chapter 2

Quantum vacuum radiation

phenomena

2.1 Introduction

One of the better known predictions of quantum theory is that the empty

space is filled with the vacuum energy of the zero-point fluctuations of the

quantum electromagnetic field. This zero-point energy is not measurable in

empty space, but if we introduce boundary conditions that make its density

inhomogeneous, we can in principle measure the resulting force. In the static

case such inhomogeneous zero-point energy gives rise to the so called Casimir

force , an usually attractive (but sometime repulsive [57]) force between two

conducting bodies in the vacuum. The Casimir effect has been measured with

great precision in a number of different experimental setups [58, 59, 60].

If the boundary conditions are time-varying a new class of phenomena

arises, in which the zero-point fluctuations of the electromagnetic field are

transformed into real photons. This effect is often referred to as dynami-

cal Casimir effect [35]. Theoretical predictions show that a conducting plate,

nonuniformly accelerated in the vacuum, can emit (see Fig. 2.1 for a pictorical

visualization of the phenomenon). This emission is due to vacuum fluctuations

that exert on the plate a sort of viscous friction that slows it down. Mechani-

cal energy is then dissipated in the environment as propagating photon pairs.

The radiation generated by a time-modulation of the quantum vacuum is a

very general and fascinating phenomenon, bearing various analogies with the

Unruh-Hawking radiation [36, 61] in the curved space-time around a black hole.

However, contrary to the static case, dynamic effects due to the modulation of



36 Chapter 2. Quantum vacuum radiation phenomena

Figure 2.1: An artist view of the dynamical Casimir effect, by G. Ruoso.

the quantum vacuum have not yet been observed due to the extremely small

number of photons emitted for realistic mechanical accelerations. Even using

as accelerating plates the vibrating mirrors of high-finesse Fabry-Pérot res-

onators [62, 63], in order to enhance the intensity of the quantum vacuum

radiation, the predicted emitted radiation is very challenging to be measured.

A big step toward an experimental verification of the dynamical Casimir effect

has been the idea to consider, instead of a cavity with moving mirrors, a fixed

cavity with a time-varying refractive index [64, 65]. From the point of view of

a cavity photon, what is important is the effective optical length of the cavity,

given by the bare cavity length times the refractive index of the cavity dielec-

tric spacer. Modulating the refractive index at high frequency anyway is much

simpler than modulating the cavity length, as we have to deal only with the in-

ertia of the dielectric properties, not with the mechanical motion of the whole

solid. Still, the very weak intensity of the emitted radiation has so far hindered

its experimental observation. Working on this line, we discovered that in the

case of microcavity embedded quantum wells, the unprecedented strength of

the light-matter coupling permits to have a Casimir radiation strong enough

to be measured with present day technologies. We were able to estimate both

the intensity and the spectral signature of emitted radiation [34]. An exper-

imental realization of our proposal has been built up and has recently given

some results, which are very promising towards the observation of quantum

vacuum radiation [37]. Other groups are also working on the idea of exploiting

ultra-strong light-matter coupled systems for dynamical Casimir experiment.
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Especially interesting are experiments exploiting superconducting transmission

lines [66] and qubits [47, 26].

2.2 Quantum vacuum radiation as ultra-strong

coupling effect

Quantum vacuum radiation, that is the emission of light from a time-dependent

vacuum, is often theoretically described (and calculated) as the consequence

of field quantization with time-dependent boundaries [65]. In our case we

will adopt a different point of view that, while allowing us to calculate all

the system observables, will give a much more intuitive understanding of the

process and underline the importance of working in a regime of ultra-strong

light-matter interaction.

Let us consider a microcavity embedding multiple quantum wells, as de-

scribed in Section 1.3. The photon emission is due to the light-matter coupling,

so that only light-coupled matter excitations play a role. In order to describe

the system we will thus use the bosonic Hamiltonian of Section 1.4.3

Hbos =
∑

q

~[ωcav(q) + 2D(q)]a†qaq + ~ω12b
†
qbq + ~ΩR(q)(a†qbq + aqb

†
q)

+ ~ΩR(q)(aqb−q + a†qb
†
−q) + ~D(q)(aqa−q + a†qa

†
−q). (2.1)

As all the terms in the Hamiltonian are bilinear in the field operators, it can

be exactly diagonalized through a Hopfield-Bogoliubov transformation [55].

Introducing the Lower Polariton (LP) and Upper Polariton (UP) annihilation

operators

pj,q = wj,q aq + xj,q bq + yj,q a
†
−q + zj,q b

†
−q , (2.2)

where j ∈ {LP, UP} we can thus cast the Hamiltonian in the diagonal form

Hbos = EG +
∑

j∈{LP,UP}

∑

q

~ωj,k p
†
j,qpj,q. (2.3)

The values of the polariton frequencies, obtained diagonalizing Hamiltonian

Hbos for different values of ΩR(q)/ω12 are shown in Fig. 2.2. From Eq. 2.2 we

see that the annihilation operator of a polariton is a linear combination of an-

nihilation and creation operators of intersubband excitations and microcavity

photons. The fact of having here both creation and annihilation operators is

of fundamental importance. It is easy to verify that if |0〉 is the ground state
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Figure 2.2: Normalized polariton frequencies ωLP,q/ω12 and ωUP,q/ω12 as a

function of ΩR(q)/ω12. The calculation has been performed with q such that

ωcav(q) + 2D(q) = ω12. See Ref. [25].

for the uncoupled microcavity-quantum wells system, defined by the relation

aq|0〉 = bq|0〉 = 0, then pj,q|0〉 6= 0. That is the ground state of the coupled

system is different from the one of the uncoupled system. If instead of Hamil-

tonian Hbos we would have used the bosonic RWA Hamiltonian of Section 1.4.4

(that is Hbos without terms composed of two annihilation or two creation op-

erators ), annihilation and creation operators would have been decoupled. In

that case we would have pj,q|0〉 = 0. Antiresonant terms, which are relevant

in the ultra-strong coupling regime, change the quantum ground state. The

squared norm of the coefficients of the Hopfield-Bogoliubov transformation in

Eq. 2.2 are shown in Fig. 2.3. Only in the ultra-strong coupling regime, y

and z coefficients, that couple annihilation and creation operators, have non-

negligible values. We thus introduce the polaritonic vacuum state |G〉, defined

by pj,q|G〉 = 0. From Eq. 2.2 we can calculate the expectation value of the

number of photons in this state

〈G|a†qaq|G〉 = |yLP,q|2 + |yUP,q|2. (2.4)
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Figure 2.3: Mixing fractions for the Lower Polariton (LP) mode as a function

of ΩR(q)/ω12. The calculation has been performed with q such that ωcav(q) +

2D(q) = ω12. The Upper Polariton (UP) fractions (not shown) are simply

|wUP,q| = |xLP,q|, |xUP,q| = |wLP,q|, |yUP,q| = |zLP,q|, |zUP,q| = |yLP,q|. See Ref.

[25].
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This quantity can be quickly estimated from Fig. 2.3. In the ground state of

the polaritonic system there is a finite population of virtual photons. These

photons are virtual because, in absence of any time-dependent perturbation,

they cannot escape from the cavity.

Now we can imagine a gedanken experiment in which our system is prepared

in its ground state |G〉 and in some way, at the time t = 0, we completely and

instantly switch off the light-matter interaction (see Fig. 2.4). Being the

change non-adiabatic the system will be at the time t = 0+, still in the state

|G〉, that now it is not anymore the ground state. Therefore, it is now an

excited state and contains a finite and real photon population. Supposing the

system coupled to an external reservoir, it will relax to its real ground state |0〉,
emitting the exceeding energy as quantum vacuum radiation. A non-adiabatic

change of the light-matter coupling can thus lead to the emission of photons

out of the vacuum. Following Ref. [25] we can give a rough estimate of the

number of emitted photons in this gedanken experiment, supposing that all

the virtual photons are emitted outside the cavity. The number of photon

states (per unit area) in the two dimensional momentum volume d2q is simply

d2q/(2π)2. Hence the differential density of photons (per unit area) in the two

dimensional momentum volume d2q is

dρphot =
d2q

(2π)2
〈G|a†qaq|G〉, (2.5)

where the photon number 〈G|a†qaq|G〉 in the ground state is given by Eq. 2.4.

Rewriting Eq. 2.5 as a function of the propagation angle θ (q(θ) = qz tan(θ))

we find that, for the resonance angle such that ωcav(q(θres)) + 2D(q) = ω12 we

have

dρphot

dθ
=
ω2

12ǫr
2πc2

tan(θres)〈G|a†qaq|G〉. (2.6)

To give a numerical application of Eq. 2.6, we can consider the following

values, taken from Ref. [37]: ~ω12 = 113 meV, a resonance angle θres = 65◦

and ~ΩR,q(θres) = 10 meV. For these parameters, Eq. 2.6 gives the differential

photon density
dρphot

dθ
≃ 2.3 × 109m−2rad−1. We will use this reference value

later as useful benchmark to test the theory and numerical methods developed

in the following sections.



2.2. Quantum vacuum radiation as ultra-strong coupling effect 41

     

Timet=0

C
ou

pl
in

g 
co

ns
ta

nt

ΩR

0

     

Timet=0

S
ys

te
m

 s
ta

te

|G〉

|0〉

Virtual bound photons Real emitted photons

Figure 2.4: Pictorical representation of the gedanken experiment discussed in

Section 2.2. The system is initially prepared in its ground state |G〉, with a

vacuum Rabi frequency ΩR(q). At the time t = 0, the light-matter coupling

is completely and abruptly switched off. Being the change non-adiabatic, the

system at the time t = 0+ is still in the state |G〉, that now is not anymore the

ground state and has thus (by definition) an energy bigger than the ground

state. It will relax to its new ground state |0〉 (the standard vacuum), emitting

the exceeding energy as quantum vacuum radiation.
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2.3 Formal theory

The gedanken experiment presented in the previous section showed us that

we have to expect the emission of photons when the coupling constant is non-

adiabatically modulated in time. In order to fully grasp the problem, we have

to build up a quantitative theory capable of calculating the emitted radiation

for an arbitrary time modulation of the coupling constant ΩR(q)(t), accounting

for the coupling with the environment. We need to consider the coupling

of the system with an environment for a two-fold reason. On one side the

intra-cavity fields, both matter and light, are not observable by themselves.

What we can observe are the photons that leak out of the cavity due to the

non-perfect reflectivity of the mirrors. On the other side the environment

causes fluctuation and dissipation phenomena we have to consider in order to

quantitatively model a real experiment.

We will consider a generic time varying vacuum Rabi frequency, composed

of a fixed as well as a time dependent part:

ΩR(q, t) = Ω̄R(q) + Ωmod
R,q (t). (2.7)

We can take care of the coupling to the environment by using a generalized

quantum Langevin formalism. All the details of the derivation can be found in

Appendix B. The important point is that we can trace out the environment and

obtain a self consistent quantum Langevin equation for the intra-cavity fields

aq and bq only. The effect of the environment will all be contained in a causal

memory kernel (making the dynamics non-Markovian) and in a Langevin force

term due to the environment-induced fluctuations. The Langevin equations for

the system thus read

daq

dt
= − i

~
[aq, Hbos] −

∫

dt′Γcav,q(t− t′)aq(t
′) + Fcav,q(t), (2.8)

dbq
dt

= − i

~
[bq, Hbos] −

∫

dt′Γ12,q(t− t′)bq(t
′) + F12,q(t),

where Γcav,q(t) and Γ12,q(t) are the memory kernels associated with the cavity

photon and matter fields and Fcav,q(t) and F12,q(t) are the respective Langevin

force operators. Real and imaginary parts of Γcav,q(t) and Γ12,q(t) are linked by

Kramers-Kroning relations, the real parts give an effective damping while the

imaginary parts cause an energy shift due to the interactions. The expression

of these quantities as a function of the environment parameters can be found

in Appendix B. What is important to know here is that the real part of the
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Fourier transform of the memory kernels Γ̃cav,q(ω) and Γ̃12,q(ω) are directly

linked with the density of states in the environment with energy ~ω. Having

the excitation modes in the environment all a positive energy we have

ℜ(Γ̃cav,q(ω < 0)) = ℜ(Γ̃12,q(ω < 0)) = 0. (2.9)

In other words, the damping occurs only at positive frequencies. In order to

solve this system of equations it is useful to pass in Fourier space in order

to get rid of the convolution product due to the non-Markovian dynamics.

Anyway the resulting equations will not be local in frequency, because of the

time dependency of the vacuum Rabi frequency. It is convenient to define the

following vectors for the Fourier transformed intra-cavity fields and Langevin

forces:

ãr
q(ω) ≡











ãq(ω)

b̃q(ω)

ã†−q(−ω)

b̃†−q(−ω)











, F̃r
q(ω) ≡











F̃cav,q(ω)

F̃12,q(ω)

F̃ †
cav,−q(−ω)

F̃ †
12,−q(−ω)











. (2.10)

We will moreover introduce two different Hopfield 4 × 4 matrices. The first,

Mq,ω, groups all the time independent terms and the second, Mmod
q,ω , all the

terms due to the time-modulation of the vacuum Rabi frequency :

Mq,ω =











ωcav(q) + 2D(q) − ω − iΓ̃cav,q(ω) ΩR(q)

ΩR(q) ω12 − ω − iΓ̃12,q(ω)

−2D(q) −ΩR(q)

−ΩR(q) 0

(2.11)

2D(q) ΩR(q)

ΩR(q) 0

−ωcav(q) − 2D(q) − ω − iΓ̃∗
cav,q(−ω) −ΩR(q)

−ΩR(q) −ω12 − ω − iΓ̃∗
12,q(−ω)











,

Mmod
q,ω =











2D̃q(ω) Ω̃mod
R,q (ω) 2D̃q(ω) Ω̃mod

R,q (ω)

Ω̃mod
R,q (ω) 0 Ω̃mod

R,q (ω) 0

−2D̃q(ω) −Ω̃mod
R,q (ω) −2D̃q(ω) −Ω̃mod

R,q (ω)

−Ω̃mod
R,q (ω) 0 −Ω̃mod

R,q (ω) 0











. (2.12)
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In this way the Fourier transform of the system in Eq. B.8, can be written in

the simple matricial form:
∫ ∞

−∞
dω′

∑

s

(Mrs
q,ω′δ(ω − ω′) + Mmod rs

q,ω−ω′)ãs(ω′)q = −iF̃r
q(ω). (2.13)

We can see explicitly from Eq. 2.13 that the Mmod
q,ω matrix containing the

time modulation of the vacuum Rabi frequency couples different frequencies

between them, making the system of equations nonlocal in frequency space. If

we define

Mrs
q (ω, ω′) ≡ Mrs

q,ω′δ(ω − ω′) + Mmod rs
q,ω−ω′, (2.14)

we can rewrite Eq. 2.13 in a more compact form:
∫ ∞

−∞
dω′

∑

s

Mrs
q (ω, ω′)ãs

q(ω
′) = −iF̃r

q(ω). (2.15)

In the following we will call Grs
q (ω, ω′) the inverse of Mrs

q (ω, ω′). By definition

∫ ∞

−∞
dω′

∑

s

Grs
q (ω, ω′)Mst

q (ω′, ω′′) ≡ δrtδ(ω − ω′′). (2.16)

We can thus formally solve Eq. 2.15 as:

ãr
q(ω) = −i

∫ ∞

−∞
dω′

∑

s

Grs
q (ω, ω′)F̃s

q(ω
′). (2.17)

Therefore, we have solved, at least formally, the problem of calculating the

intra-cavity photon field with an arbitrary time modulation of the vacuum

Rabi frequency, fully accounting for the coupling with the environment. Now

we would like to calculate the field emitted outside the cavity. As shown in

Appendix A, the spectrum of the photonic field emitted outside the cavity can

be calculated as a function of the intra-cavity photonic field ãq(ω) (supposing

the extra-cavity field initially in its vacuum state) as

Sq(ω) =
1

π
ℜ(Γ̃cav,q(ω))〈ã†q(ω)ãq(ω)〉. (2.18)

Inserting Eq. 2.17 into Eq. 2.18 we obtain:

Sq(ω) =
1

π
ℜ(Γ̃cav,q(ω))

∫ ∞

−∞

∫ ∞

−∞
dωdω′

∑

rs

G∗1r
q (ωq,q, ω)G1s

q (ωq,q, ω
′)〈F̃†

q(ω)rF̃q(ω
′)s〉.

(2.19)
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In Appendix B we calculated the average values for quadratic forms of Langevin

forces as

〈F̃†
q(ω)rF̃q(ω

′)s〉 = 4πδ(ω − ω′)δr,s[δr,3ℜ(Γ̃cav,−q(−ω)) + δr,4ℜ(Γ̃12,−q(−ω))].

(2.20)

Exploiting Eqs. 2.19 and 2.20, we can put the result in its final form:

Sq(ω) = 4ℜ(Γ̃cav,q(ω))

∫ ∞

−∞
dω′|G13

q (ω, ω′)|2ℜ(Γ̃cav,q(−ω′))

+ |G14
q (ω, ω′)|2ℜ(Γ̃12,q(−ω′)). (2.21)

It is interesting to notice that if we have no modulation Mrs
q (ω, ω′) is pro-

portional to δ(ω − ω′) and so is its inverse Gq. Eq. 2.21 then tells us that

Sq(ω) ∝ ℜ(Γ̃cav,q(ω))ℜ(Γ̃cav,q(−ω)). From Eq. 2.9 we thus conclude that

Sq(ω) = 0. This shows explicitly that, as expected, in absence of any modula-

tion no photon is emitted out of the cavity.

2.4 Numerical results

In order to obtain the spectrum of emitted radiation, given by Eq. 2.21,

we need to numerically calculate Grs
q (ω, ω′). This does not pose any major

technical problem as it is easy to verify that Eq. 2.16 defines Grs
q (ω, ω′) as the

inverse of the linear operator Mrs
q (ω, ω′). It is thus sufficient to discretize the

frequency space on a grid of Nω points, write down Mq as a 4Nω ×4Nω matrix

and invert it.

At first, we applied our theory to the case of a periodic sinusoidal modu-

lation, in order to be able to study the emission spectra as a function of only

two parameters, the amplitude of the modulation ∆ΩR(q) and its frequency

ωmod. We thus consider a vacuum Rabi frequency of the form:

ΩR(q, t) = Ω̄R(q) + ∆ΩR(q) sin(t). (2.22)

Being the modulation periodic (and thus acting for an infinite time) the rel-

evant quantity to consider is not the spectral density of emitted photons per

mode Sq(ω) but the spectral density of emitted photons per mode and per unit

time dSq(ω)/dt. Integrating it over the whole frequency range we can find the

total number of emitted photons per mode per unit time

dNout
q /dt =

∫ ∞

−∞

dSq(ω)

dt
dω. (2.23)
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This is the steady quantum vacuum fluorescence rate. Predictions for the rate

dNout
q /dt of emitted photons as a function of the modulation frequency ωmod

(in units of ω12) are shown in Fig. 2.5 for the resonant case ω12 = ωcav(q) +

2D(q) for which the emission is the strongest. Thanks to the ultra-strong

coupling regime, the emission intensity however has a moderate q dependence,

remaining important over a wide anticrossing region. For the sake of simplicity,

a frequency-independent damping rate has been considered ℜ{Γ̃cav,q(ω > 0)} =

ℜ{Γ̃12,q(ω > 0)} = Γ, and the imaginary part has been consistently determined

via the Kramers-Kronig relations [33]. Values inspired from recent experiments

[24, 67, 68] have been used for the cavity parameters. Representative results are

shown in Fig. 2.5. The structures in the integrated spectrum shown in Fig. 2.5

can be identified as resonance peaks when the modulation is phase-matched.

We can effectively consider the dynamical Casimir effect as a parametric
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Figure 2.5: Rate of emitted photons dNout
q /dt (in units of ω12) as a function

of the normalized modulation frequency ωmod/ω12. Parameters: (ωcav(q) +

2D(q))/ω12 = 1, Γ/ω12 = 0.025, Ω̄R(q)/ω12 = 0.2, ∆ΩR(q)/ω12 = 0.04. The

letters A, B and C indicate three different resonantly enhanced processes.

excitation of the quantum vacuum. As usual for parametric processes [69],
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Figure 2.6: On the left are plotted the spectral densities of emitted photons

(arb. u.) for the processes A, B and C of Fig. 2.5. On the right there is

a schematic representation of the three phase-matched parametric processes

involved.
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the creation of pairs of real polaritons by the vacuum modulation is indeed

resonantly enhanced when the phase-matching condition

r ωmod = ωj(q) + ωj′(−q) (2.24)

is fulfilled, r being a generic positive integer number, and j, j′ ∈ {LP, UP} (see

Fig. 2.6). Photons have to be created in pairs in order to conserve in-plane

momentum. The dominant features, labeled A, B and C, are the three lowest-

order r = 1 peaks corresponding to the processes where either two Lower

Polaritons (LPs), or one LP and one Upper Polariton (UP), or two UP’s are

generated. This interpretation is supported by the spectral densities plotted

in the three panels of Fig. 2.6 for modulation frequencies corresponding to

respectively A, B and C peaks. In each case, the emission is strongly peaked

at the frequencies of the final polariton states involved in the process; for the

parameter chosen, we have indeed [25, 33] ωLP (q) ≃ ω12 − Ω̄R(q) = 0.8ω12 for

the lower polariton and ωUP (q) ≃ ω12 + Ω̄R(q) = 1.2ω12 for the upper polari-

ton. The shoulder and the smaller peak at ωmod/ω12 < 1 can be attributed

to r = 2 processes, while higher order processes require a weaker damping to

be visible. Note that here we have chosen a low quality factor for the reso-

nances. In other systems (such as Josephson junctions [70, 51]) the quality

factors would be much higher. More insight into the properties of the quan-

tum vacuum emission are given in Fig. 2.7. In the top panel, the robustness

of the emission has been verified for increasing values of the damping rate

Γ: the resonant enhancement is quenched, but the main qualitative features

remain unaffected even for rather large damping rates. In the bottom panel,

comparison with the black body emission in the absence of any modulation

is made: the total rate of emitted black body photons at given q is shown

as a function of ω12 (ranging from the Terahertz to the mid-infrared range)

for q corresponding to an intra-cavity photon propagation angle of 60◦ and

different temperatures. Note how the black body emission decreases almost

exponentially with ω12, while the quantum vacuum radiation, being a function

of Ω̄R(q)/ω12 only, linearly increases with ω12 at fixed Ω̄R(q)/ω12. From this

plot, one is quantitatively reassured that for reasonably low temperatures the

quantum vacuum radiation can exceed the black-body emission by several or-

ders of magnitude. The increase of the emitted intensity versus the modulation

amplitude ∆ΩR(q)/ω12 is shown in the top panel of Fig. 2.8. In particular,

it is evident the strongly superlinear increase of the emission intensity around

the A and C resonance peaks. In these regions, if the modulation amplitude is
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Figure 2.7: Top panel: rate dNout
q /dt (in units of ω12) of emitted photons

as a function of ωmod/ω12 for different values of the damping Γ/ω12 = 0.025

(solid black), 0.05 (dashed blue), 0.075 (dot-dashed red). Other parameters

as in Fig. 2.5. Bottom panel: normalized rate of emitted photons from a

black-body emitter as a function of ω12 for different temperatures.
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q /dt (in units of ω12) of quantum vacuum

fluorescence as a function of ωmod/ω12 for different values of the normalized

modulation amplitude ∆ΩR(q)/ω12 = 0.01, 0.04, 0.07, 0.1 (from bottom to top)

and Γ/ω12 = 0.025. Other parameters as in Fig. 2.5. Bottom panel: instability

boundaries for Γ/ω12 = 0.025 (solid back) and 0.05 (dashed blue). Above the

lines, the system is parametrically unstable.
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large enough, the system can develop a parametric instability, the incoherent

quantum vacuum radiation being replaced by a coherent parametric oscillation

[69]. Above the instability threshold, the results obtained from the solution

of Eq. (B.8) in Fourier space are no longer valid, being the field amplitudes

exponentially growing with time. Hence they are not shown here. The in-

stability boundaries for parametric oscillation can be calculated applying the

Floquet method [71] to the mean-field equations for the intra-cavity fields 〈aq〉
and 〈bq〉. The result is shown in the bottom panel of Fig. 2.8 as a function of

ωmod/ω12 and ∆ΩR(q)/ω12: the border of the instability zones agree well with

the position of the vertical asymptotes of the spectra in the top panel of Fig.

2.8.

2.5 Experiments: ultra-strong coupling

As we saw in the preceding sections, the quantum vacuum radiation is entirely

due to the effect of anti-resonant terms in the Hamiltonian. The relevance

of these antiresonant terms increases with the ratio ΩR

ω12
, explaining why the

ultra-strong coupling is important to have large quantum vacuum radiation ef-

fects. The first milestone toward an experimental observation of the quantum

vacuum radiation has thus been to show, for the first time, that microcavity

embedded quantum wells can really be in the ultra-strong coupling regime. -

In order to verify that, the idea is to compare the experimental polaritonic

dispersions with the theoretical predictions obtained from the full bosonic

Hamiltonian in Eq. 2.1 and from the bosonic RWA Hamiltonian of Section

1.4.3.

The experiments were conducted in the laboratory of A. Tredicucci in Pisa.

In order to be able to discriminate the role of antiresonant terms, the relevant

physical quantities need to be measured. In particular, are essential the ex-

perimental dispersion of the bare cavity mode and the intersubband transition

frequency ω12. The bare intersubband transition frequency of the active re-

gion was measured by collecting transmitted light at an incident angle small

enough to exclude any cavity-induced shift of the intersubband absorption

(for experimental details see Ref. [32]). Since the bottom mirror of the sam-

ple utilizes total internal reflection, one cannot determine precisely the cavity

resonance energy through measurements at zero incidence angle, where the

intersubband transition does not couple to the radiation. Therefore a second

sample, identical in the growth sequence, but without any doping in the active
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region was measured in order to determine the energy dispersion of the cav-

ity mode. X-ray diffraction and electron microscopy measurements were per-

formed to check that the control sample had the same layer structure (within

experimental errors). The shift of the cavity refractive index induced by the

absence of doping in the quantum wells was computed to be at most ∼ 1

%. The only remaining free fitting parameter is the vacuum Rabi frequency

ΩR(q) (defined in Section 1.4.3). We calculated the root mean square devia-

tion from the experimental data for different values of ΩR(q) (top panel of Fig.

2.9) using two different theoretical models: the full Hamiltonian of Eq. 2.1

(solid black line) and the bosonic RWA Hamiltonian (dashed blue line). For

the full Hamiltonian an excellent agreement is found for a vacuum Rabi energy

~ΩR(q) = ~ΩR(qres) = 16.5 meV ∼ 11 % of the intersubband transition energy,

with a fit RMS error of only 0.9 meV. For the bosonic RWA Hamiltonian the

agreement is decidedly worse, with a minimum error of 4 meV, well beyond the

experimental resolution. The optimal angular dispersions are plotted in the

bottom panel and compared with the experimental values (red circles). Note

that, as discussed in Ref. [49], the actual value of the vacuum Rabi energy

is much smaller than half the splitting observed in the spectra, owing to the

fact that the two polariton energies, once measured at the same angle, do not

correspond to the same in-plane wavevector q.

We have thus experimentally shown that microcavity embedded quantum

wells can be in the ultra-strong coupling regime, and thus the effect of the

antiresonant terms makes them optimal candidates for the experimental ob-

servation of the dynamical Casimir effect.

2.6 Experiments: ultra-fast modulation

As we have seen (i.e. in Eq. 2.24 and in Fig. 2.5), in order to emit radiation

from the vacuum it is necessary to modulate the light-matter coupling at a

frequency of the order of 2ω12. In the recent years, various propositions on

how to change in-situ the vacuum Rabi frequency have been put forward. All

are based on a modulation of the electronic population inside the quantum

wells. In fact, as discussed in Section 1.2.2, the vacuum Rabi frequency is

proportional to the square root of the density of the two dimensional electron

gas.

The easiest way to modulate the electron density is to shift the Fermi level

of the system by means of an electrostatic bias [67]. Unfortunately this option,
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Figure 2.9: Top panel: root mean square deviation from measured dispersion

of the calculated polariton energies as a function of the vacuum Rabi energy,

the only fitting parameter. The solid black line refers to the H̄bos, while the

dashed blue one to the bosonic RWA Hamiltonian. Bottom panel: angular

dispersions of the lower and upper polaritons in the two cases compared to

experimental data (red circles). The ΩR(q) used are the ones that minimize

the error.
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even if technically quite simple, is not well suited for dynamical Casimir experi-

ments due to the intrinsic frequency limit of the electric modulation (ω12 varies

from few Terahertz to hundreds of Terahertz, while the electronic modulation

is limited by the capacitance and cannot typically exceed 100 Gigahertz). An

interesting proposition, that could a priori give a modulation with the right

frequency, has been to exploit coherent tunneling between two energetically

aligned quantum wells in order to obtain the desired time modulation of the

electronic population [68]. The first realized proposal that accomplishes a

modulation fast enough to permit, at least theoretically, the observation of

the quantum vacuum radiation, has been recently realized in the group of R.

Huber in Konstanz [37]. The idea, schematized in the top panel of Fig. 2.10, is

to start with an undoped quantum well and then to use a control femtosecond

pulse to pump an electronic population from the valence band into the first

conduction subband, effectively switching on the transition on a timescale com-

parable to the laser pulse duration (12 fs for the actual experimental setup).

The cavity dynamics is then probed by a broadband Terahertz beam, whose

central frequency is resonant with the intersubband transition. The bottom

panel of Fig. 2.10 shows the results of the experiment, that is the probe re-

flectance spectra as a function of the pump-probe delay. For negative delays

(the probe arrives before the control beam) the probe does not see any elec-

tron in the conduction subbands, the intersubband transition is thus optically

inactive. The only visible resonance is the bare cavity one at 113 meV (blue

arrow in Fig. 2.10). For positive delays instead the probe sees the electronic

population created by the pump and the relative polaritonic splitting appears

non-adiabatically in the reflected spectra. The initial bare photon state is re-

placed by two coupled polariton branches appearing simultaneously at energy

positions of 93 meV and 143 meV (red arrows in Fig. 2.10). Most remark-

ably, the new resonances do not develop by gradual bifurcation out of the bare

cavity mode. In contrast, switching occurs discontinuously once the control

pulse promotes electrons into the first conduction subband. With this setup

it is thus possible to realize a real non-adiabatic control of the light-matter

coupling.

2.7 Conclusions and perspectives

The experiment described in Section 2.6, bears a strong similarity with the

gedanken experiment of Section 2.2, with the only difference that here we are
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Figure 2.10: On the top there is a schema of the experiment of Ref. [37]. An

electronic population is excited in the first conduction subband by a femtosec-

ond control laser and then the intersubband transition is probed by broadband

Terahertz beam. On the bottom there are the results of the experiment. Spec-

tra of the reflected probe are given for various pump-probe time delays. The

12 fs pump pulse arrives at tD = 0. Blue arrow: bare cavity resonance, red

arrows: ultra-strongly coupled intersubband cavity polariton branches.
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Figure 2.11: Spectra of emitted photons per radiant per unit time in the case of

a switch off (top panel) and of a switch on (bottom panel). All the parameters

are taken from Ref. [37].



2.7. Conclusions and perspectives 57

0 10 20 30 40
10

6

10
7

10
8

10
9

10
10

Time (fs)

E
m

itt
ed

 p
ho

to
ns

 (
ra

d−
1 m

−
2 )

Figure 2.12: Total number of emitted Casimir photons as a function of the

full width half maximum length (FWHM) of the pump pulse. All the other

parameters are taken from Ref. [37].
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considering a sudden switch on instead that a switch off. Given the symmetry

of the problem (one case is simply the time-reversal of the other), we expect

to have the same number of emitted photons in the two cases. However, if

we follow the same reasoning of section 2.2, in the switch-on case we expect

to have an emission peaked at the polariton frequencies instead that at the

bare cavity one. In the Fig. 2.11 we plotted the calculated spectra of emitted

photons with the parameters of the real experiment, in the case of a switch off

(top panel) and of a switch on (bottom panel). As we expected the emissions

are of the same amplitude, but in the second one we have the appearing of a

polaritonic splitting. In Fig. 2.12 it is shown the total calculated number of

emitted Casimir photons as a function of the full width half maximum length

(FWHM) of the pump impulse. We see that for a 12 fs FWHM pulse we expect

to have between 108 and 109 photons emitted per radiant per squared meter,

an emission strength a priori high enough for being measured. The measure is

anyway challenging because these photons are emitted incoherently and thus a

the average emitted field is equal to zero. It will be thus necessary to measure

not the field itself but the amplitude noise of the signal, that could give a direct

measurement of the number and frequency of emitted photons. Once a solid

evidence for quantum vacuum radiation will be obtained, the next important

step will be to measure the quantum correlation between the emitted photons.

In fact, as we have seen, for example in the right panels of Fig. 2.6, in order

to conserve in-plane momentum, photons are emitted in pairs and we expect

to have strong quantum correlations between them. Fig. 2.12 is also a good

consistency check for the theory and the numerical codes developed. In fact for

the pump length that tends toward zero, that is for an instantaneous switch

on, we get a value around 2×109 photons per radiant per squared meter, that

is we recover with good accuracy the result of the estimate in the gedanken

experiment of section 2.2.



Chapter 3

Light emitters in the strong

coupling regime

3.1 Introduction

In the last two decades, the fundamental research on the physics of intersub-

band transitions in semiconductor quantum wells led to a number of novel ap-

plications in quantum optoelectronics [72]. The interplay between judiciously

quantum engineered intersubband transitions and vertical electron transport

paved the way to the development of the so-called quantum cascade elec-

troluminescent devices and lasers, which are unipolar optoelectronic sources

emitting in the mid- and far-infrared portion of the electromagnetic spectrum

[73, 74, 75]. As we have seen in Chapter 1, recent reflectivity experiments

[24, 67, 68] have demonstrated that by embedding a doped quantum well struc-

ture in a planar microcavity, it is possible to achieve strong coupling regime

between an intersubband transition and a cavity photon mode, provided that a

dense enough two-dimensional electron gas populates the fundamental quan-

tum well subband. The links between the strong coupling regime and the

electron transport have been the object of various theoretical and experimen-

tal works. A new kind of microcavity-embedded quantum cascade device in

the strong coupling regime was proposed in Ref. [52] and the first experimental

demonstrations of a microcavity quantum cascade photovoltaic detector and of

an electroluminescent device in the strong coupling regime have been recently

reported [53, 39].

One of the central topics of my Ph.D. thesis has been to develop a quanti-

tative theoretical understanding of the effect of strong coupling on electronic
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transport and on the efficiency of light emitting devices. This task posed a

number of theoretical and numerical problems, because in order to be able to

track electron transport and dynamical changes in electronic populations, it

is necessary to keep in the Hamiltonian all the degrees of freedom of single

electrons, taking care of all the nonlinearities due to Pauli blocking. Thus we

can not, as we did in the previous Chapter, rely purely on bosonized Hamil-

tonians that describe only the few collective degrees of freedom coupled to

the microcavity photon mode. In order to make the problem treatable, I will

describe two different limits, making in the two cases completely different ap-

proximations. In this Chapter, we will treat the case of a macroscopic current

flowing through the device. The macroscopic current will modify the electron

populations, leading to a highly nonlinear dynamics. Being the dimension of

the corresponding Hilbert space too big for a direct diagonalization, I will rely

on a sort of higher order mean field theory in order to describe the dynamics

of the observable quantities, like the electronic and photonic populations. The

mean field approximation will anyway neglect all the effects of the light-matter

coupling on the electron spectral function. These subtle quantum mechanical

effects will be the object of the next Chapter in which on the contrary, by

restraining to the regime of small currents, it will be possible to exactly di-

agonalize the system Hamiltonian. The approximation used in this Chapter

is thus valid only if the spectral width of the electrical contacts are too big

to probe the modification in the particles spectral functions induced by the

light-matter coupling.

3.2 Hamiltonian and approximations

As explained in Section 3.1, we need to use an Hamiltonian that describes all

the degrees of freedom of the single electrons. If we do not consider the ultra-

strong coupling limit, we can safely apply the rotating wave approximation,

as described in Section 1.4.2. This choice will become still better justified

a posteriori because, as we will see, the coupling constant decreases when a

voltage difference is applied to the structure. We will thus use the fermionic

RWA Hamiltonian of Section 1.4.2

H =
∑

σ,k

~ωc,1(k)c
†
1,σ,kc1,σ,k + ~ωc,2(k)c

†
2,σ,kc2,σ,k +

∑

q

~ωcav(q)a
†
qaq

+
∑

σ,k,q

~χ(q)aqc
†
2,σ,k+qc1,σ,k + ~χ(q)a†qc

†
1,σ,kc2,σ,k+q +Hother, (3.1)
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where we have explicitly written the electron spin index. The Hamiltonian

term Hother is meant to include all the interactions other than the light-matter

coupling, that is: (i) electron-phonon interaction; (ii) electron-electron interac-

tion; (iii) electron tunneling coupling to the injection and extraction reservoir;

(iv) coupling between the cavity photon field and the extracavity field. The

Hilbert space relative to Hamiltonian in Eq. 3.1, is too large to permit nu-

merical diagonalization. We will instead try to find an evolution equation

for the expectation values of a number of observable quantities, like the elec-

tronic and photonic populations in each mode. Unfortunately, due to the cubic

light-matter coupling terms in the Hamiltonian (terms like ~χ(q)a†qc
†
σ,k,1cσ,k+q,2

that couple two fermion operators and one boson operator) it is not possible

to write down an exact closed set of equations for the evolution of expecta-

tion values, being the Heisenberg equation of motion for each product of N

operators coupled at least with one product of N + 1 operators. In other

words, the equations of motion of the different observables of the system form

an infinite hierarchy. One approximation method that has been used in or-

der to solve this kind of systems is the so-called cluster expansion scheme

[76, 77, 78]. Formally, it is based on a systematic development of expectation

values of operator products in terms of correlation functions. Practically, it

consists to keep as dynamical variables all the expectation values containing

up to a certain number of operators and factorizing, like in Wick’s theorem,

all the others, obtaining a sort of higher order mean field theory. From the

Hamiltonian in Eq. 3.1 and from the discussion of bosonized Hamiltonians

in Section 1.4.3, it is clear that a bosonic operator aq, couples always to a

pair of fermionic operators. In order to obtain a consistent truncation scheme,

a pair of fermionic operators has thus to be considered of the same order as

a single bosonic operator when deciding what expectation values have to be

factorized. In order not to miss, with this type of approximation, important

aspects of the physics of polaritons, the hierarchy must be truncated at the

level of the product of two bosonic operators (i.e., the product of four fermion

operators), that is the level at which polaritonic-induced coherence phenomena

become visible. The details of the factorization can be found in Appendix C.

The expectation values entering the present cluster factorization, that are our

dynamical variables, are the electronic and photonic populations, the corre-

lation between the cavity photon field and the intersubband polarization, as

well as polarization-polarization correlations. The electron occupation num-

bers in the two quantum well conduction subbands are n1,k =< c†1,σ,kc1,σ,k >
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and n2,k =< c†2,σ,kc2,σ,k >. Note that, since in the absence of a magnetic field

all quantities are spin-independent, we omit the spin-index in the notation of

the averaged quantities. The cavity photon number is na,q =< a†qaq >. The

correlation between the cavity photon field and the intersubband electronic

polarization is represented by the quantity

Y (q,k) =< a†qc
†
1,σ,kc2,σ,k+q > . (3.2)

Finally, the polarization-polarization correlation function is given by

X(q + k′,k′,k) =
∑

σ

< c†2,σ,q+k′c1,σ,k′c†1,σ′,kc2,σ′,k+q > . (3.3)

Our aim is thus to obtain a closed set of evolution equations for the vari-

ables n1,k, n2,k, na,q, Y (q,k), X(q + k′,k′,k). While the light-matter coupling

terms in Eq. 3.1 will be treated, as we said, by calculating the Heisenberg evo-

lution for the operators and then factorizing the their expectation values, the

terms in Hother, namely the phonon scattering, electron-electron interaction,

the coupling to the contact reservoirs and the coupling to the external elec-

tromagnetic field will be treated in an effective way. The carrier non-radiative

relaxation (due to phonon-electron and electron-electron scattering) is modeled

in terms of a simple phenomenological relaxation time τk that tends to bring

the electronic instantaneous populations n1,k and n2,k back to their equilib-

rium distributions n0
1,k and n0

2,k . In the same way the dephasing of the light-

matter (Y (q,k, t)) and matter-matter (X(q + k′,k′,k, t)) coherencies will be

quantified by two relaxation constants ΓY and ΓX that tend to bring their

values to the factorized values, thus destroying correlations. Note that in the

spontaneous photon emission regime, Y (q,k) can not be factorized: in fact,

spontaneous emission is incoherent and < aq >= 0, < c†1,σ,kc2,σ,k+q >= 0,

meaning that the cavity field and the intersubband polarization have no def-

inite phase. Unlike Y (q,k), X(k′ + q,k′,k) can be factorized in products of

non-zero lower-order expectation values of operators. In fact, we have

X(k′ + q,k′,k) = 2n2,k+q(1 − n1,k)δk,k′ + δX(k′ + q,k′,k). (3.4)

The first contribution is an uncorrelated plasma term, while δX(k′ + q,k′,k)

describes the higher-order correlation, which can be destroyed by dephasing

processes quantified by the damping rate ΓX .

Note that the role of Coulomb electron-electron interaction on intersubband

transitions has been studied, e.g., in Ref. [79]. In the case of subbands with
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parallel parabolic dispersion (e.g., same effective mass), Coulomb interaction

produces a moderate renormalization of the intersubband transition frequency

ω12 and of its oscillator strength, which can be included in the experimentally

measured quantities.

The two subbands are coupled to two electronic reservoirs, named respec-

tively left and right contacts (see Fig. 3.1). We will call Γin
p,j,k the elec-

tronic tunneling rate into the k-mode of the subband j = 1, 2 from the

reservoir p = left, right. Analogously Γout
p,j,k is defined as the electronic tun-

neling rate from the k-mode of the subband j into the reservoir p. The

total in-tunneling and out-tunneling rates are Γin
j,k = Γin

left,j,k + Γin
right,j,k and

Γout
j,k = Γout

left,j,k + Γout
right,j,k.

The self-consistent local equilibrium occupation numbers n0
1,k and n0

2,k are

given by quasi-Fermi-Dirac distributions:

n0
1,k =

1

eβ(~ωc,1(k)−ǫF ) + 1
,

n0
2,k =

1

eβ(~ωc,2(k)−ǫF ) + 1
, (3.5)

where β = 1/(KT ) is the Boltzmann thermal factor, and ǫF is the quantum

well self-consistent Fermi level, such that:

∑

k

n1,k + n2,k =
Sm∗

2π~2

∫ ∞

0

dǫ
1

eβ(ǫ−ǫF ) + 1
+

1

eβ(ǫ+~ω12−ǫF ) + 1
, (3.6)

that is we define the instantaneous equilibrium populations n0
1,k and n0

2,k as

the thermalized populations containing the same number of electrons as the

actual non-equilibrium ones.

Putting all together, the resulting closed system of equations for the one-

time expectation values reads:
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d

dt
na,q = −2γ na,q + 2i

∑

k

χ(q)Y (q,k) + c.c.

d

dt
n1,k = −

n1,k − n0
1,k

τk
− Γout

1,kn1,k + Γin
1,k(1 − n1,k)

+i
∑

q

χ(q)Y (q,k) + c.c.

d

dt
n2,k = −

n2,k − n0
2,k

τk
− Γout

2,kn2,k + Γin
2,k(1 − n2,k)

−i
∑

q

χ(q)Y (q,k − q) + c.c.

d

dt
Y (q,k) = i(ωcav(q) + ωc,1(k) − ωc,2(k + q) + iΓY (q,k))Y (q,k) (3.7)

−i
∑

q′

χ(q)X(q + q′,q′,k) + iχ(q)na,q(n1,k − n2,k+q)

d

dt
X(k′ + q,k′,k) = i(−ωc,1(k

′) + ωc,2(k
′ + q) + ωc,1(k) − ωc,2(k + q))

X(k′ + q,k′,k) − ΓX(k′ + q,k′,k) (X(k′ + q,k′,k)

−2n2,k+q(1 − n1,k)δk,k′) + i
∑

q′

χ(q′′)(Y ∗(q′,k)δk′,kn2,k+q

+Y ∗(q′,q + k − q′)δk′,k(1 − n1,k))

+2iχ(q)Y ∗(q,k′)(n1,k − n2,k+q) − 2iχ(q)Y (q,k)(n1,k′ − n2,k′+q).

The wavevector dependent injection and extraction rates in Eq. 3.7 can be

in principle of different origin. Here we give the formal expression for elastic

tunneling processes conserving the in-plane momentum. Additional processes

(such as assisted tunneling) can be accounted for by adding their contribu-

tion to the expressions for Γin
j,k and Γout

j,k . As electronic contact reservoirs, we

will consider semiconductor doped superlattices, as it is generally the case in

unipolar quantum cascade devices. The chemical potential in each contact is

labeled µp with p = left, right. In each reservoir, we will consider miniband

states with energy Eres
p,k,kz

. In the elastic tunneling process, electron energy

and in-plane momentum are conserved. The tunneling rate from the contact

reservoir into the j-th subband can be calculated with the Fermi golden rule

Γin
p,j,k =

2π

~

∑

kz

|Vp,j,k,kz|2δ
(

Eres
p,k,kz

− ~ωj(k)
)

1 + eβ(Eres
p,k,kz

−µp)
, (3.8)
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Figure 3.1: Top panel: sketch of the energy dispersion of the two quantum

well subbands and of the minibands in the left and right contacts in the zero-

bias case. Here the system is in thermal equilibrium and the Fermi level in

the quantum well is the same as in the two contacts. The doping level in the

contacts determines the equilibrium density in the quantum well. The subband

and minibands have an energy dispersion versus the in-plane wavevector, which

is a conserved quantity in the planar structure. This electronic structure is

embedded in a planar microcavity, with a cavity photon mode quasi-resonant

to the intersubband transition. Bottom panel: the same but with an applied

voltage bias. Here, the left contact acts as an electronic extractor, while the

right one is the injector. In the quantum well, non-equilibrium steady-state

populations can be established in the two subbands.
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where Vp,j,k,kz is the tunneling matrix element and kz is in general an index

over the electronic states of the miniband with in-plane wavevector k. It can

be interpreted as the axial electronic wavevector in the case the two leads are

just bulk contacts. 1/(1+ eβ(Eres
p,k,kz

−µp)) is the Fermi-Dirac occupation number

of the electron states in the contact. Analogously the tunneling rate from the

j-th subband of the quantum well into the reservoir p reads

Γout
p,j,k =

2π

~

∑

kz

|Vp,j,k,kz|2δ
(

Eres
p,k,kz

− ~ωj(k)
)

1 + e−β(Eres
p,k,kz

−µp)
, (3.9)

where

1

1 + e−β(Eres
p,k,kz

−µp)
= 1 − 1

1 + eβ(Eres
p,k,kz

−µp)
(3.10)

is the hole occupation number in the contact. The value of Γin,out
p,j,k can be

quantum engineered, depending on the specific structure. In particular, by

changing the thickness of the potential barriers, it is possible to tailor consid-

erably the tunneling matrix element. It is straightforward to see that a simple

relationship occurs between Γin
p,j,k and Γout

p,j,k, namely

Γin
p,j,k

Γout
p,j,k

= eβ(µp−~ωj(k)). (3.11)

Note that here we have assumed that the bare energy dispersion of the electrons

in the two subbands is unaffected. This is valid when the injector miniband

energy width is not smaller than the light-matter coupling strength. For large

values of the vacuum Rabi frequency, the spectral function of the electrons in

the second subband is non-trivially modified as well as the tunneling process

using a narrow-band injector, as discussed in Chapter 4.

3.3 Steady-state regime and observable quan-

tities

We are interested in the steady-state solutions for the quantities na,q, n1,k, n2,k,

Y (q,k) and X(q + q′,q′,k). Hence, we can set the time derivatives equal to

zero, transforming the differential system in Eq. 3.7 into an algebraic one. In

the steady-state regime, the electronic current (number of electrons per unit
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time) through the structure is given by the expression

I = 2
∑

k

Γout
left,1,kn1,k + Γout

left,2,kn2,k − Γin
left,1,k(1 − n1,k) − Γin

left,2,k(1 − n2,k).

(3.12)

The total rate of photons emitted out of the microcavity reads

P = 2γ
∑

q

na,q, (3.13)

where 1/(2γ) is the escape time of a photon out of the microcavity. The

quantum efficiency η is defined as the ratio between the photonic current out

of the cavity and electronic current , i.e., η = P
I
. In the steady-state regime,

the momentum-dependent spontaneous photon emission spectra are given by

the expression

Lq(ω) ∝
∫ ∞

0

dtℜ < a†q(0)aq(t) > e(iω−0+)t. (3.14)

In order to determine< a†q(0)aq(t) >, we need to solve the following Heisenberg

equations of motion

d

dt
< a†q(0)aq > = −iωcav(q) < a†q(0)aq > (3.15)

+iχ(q)
∑

k,σ

< a†q(0)c†1,σ,kc2,σ,k+q >

d

dt
< a†q(0)c†1,σ,kc2,σ,k+q > = −iω12 < a†q(0)c†1,σ,kc2,σ,k+q >

−i
∑

q′

χ(q′) < a†q(0)aq′c†2,σ,k+q′c2,σ,k+q >

+i
∑

q′

χ(q′) < a†q(0)aq′c†1,σ,kc1,σ,k+q−q′ > .

Here we have omitted the coupling of the electronic injector and extractor

reservoirs to the quantity < a†q(0)c†1,σ,kc2,σ,k+q >. This coupling would involve

correlations between the quantum well electronic field and the contact elec-

tronic fields. Since we are dealing with incoherent electron transport, we will

neglect such correlations with the contact reservoirs, which are also extremely

tricky to tackle.

In order to solve the system for two times averages in Eq. 3.15 we exploited

the truncation scheme we used for the system of one times averages in Eq.
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3.7. Truncating the hierarchy at the level of two bosonic excitations (details

in Appendix C) and taking the unilateral Fourier transform (
∫ ∞
0
dteiωt) we

obtain:

Sq(t = 0) = na,q = i(ω − ωcav(q) + iΓS(q))S̃q(ω) + 2iχ(q)Z̃q(ω) (3.16)

Zq(t = 0) =
∑

k

Y (q,k) = i(ω − ω12 + iΓZ(q))Z̃q(ω) + iχ(q)S̃q(ω)D,

where Sq(t) =< a†q(0)aq(t) >, Zq(t) =
∑

k < a†q(0)c†1,σ,kc2,σ,k+q > and D

represents half the difference between the total number of electrons in the

fundamental subband and the number in the second one, namely

D =
∑

k

Dk =
∑

k

(n1,k − n2,k). (3.17)

Note that the total density of electrons is 2
∑

k n1,k + n2,k, where the 2 factor

accounts for the two-fold spin degeneracy of the electron states in the conduc-

tion subbands. ΓS and ΓZ are phenomenological damping rates for Sq and Zq

respectively. The analytical solutions are

S̃q(ω) =
ina,q

(

γ(ωcav(q)−ω12

ΓY
+ i) − (ω − ω12 + iΓZ)

)

(ω − ω12 + iΓZ)(ω − ωcav(q) + iΓS) − 2χ(q)2D
, (3.18)

Z̃q(ω) = −
χ(q)Sq(ω)D + iγna,q

2χ(q)
(ωcav(q)−ω12

ΓY
− i)

ω − ω12 + iΓZ
. (3.19)

The electroluminescence spectrum is simply Lq(ω) ∝ ℜS̃q(ω). From the ana-

lytical result for S̃q(ω), we see immediately that emission spectrum is resonant

at the two polariton frequencies ω±(q) satisfying the equation

(ω − ω12 + iΓZ)(ω − ωcav(q) + iΓS) − 2χ(q)2D = 0. (3.20)

The quantity ΩR(q) = χ(q)
√

2D is just the vacuum Rabi frequency of the

present system. At resonance (i.e., ωcav(q) = ω12), the necessary condition for

the appearance of a strong coupling polaritonic splitting is D > D0 = (ΓS−ΓZ)2

8χ(q)2
,

meaning that the total density of electrons in the fundamental subband must

be larger enough than the total density in the second. For a vacuum Rabi

frequency much larger than ΓZ and ΓS, the minimum polariton splitting is

given by twice the vacuum Rabi frequency.
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Note that here the electroluminescence spectral shape does not depend

explicitly on the spectral properties of the injector and extractor reservoirs.

The spectrum in Eq. 3.18 has the same shape as the absorption (in presence of

the same carrier densities). The dependence on the transport is only implicit,

being given by the steady-state carrier and photon populations. The exact

diagonalization method described in Chapter 4 indeed shows that the spectral

properties of the electronic contact modifies significantly the spectral shape

of the electroluminescence in the case of narrow band injectors. Hence, the

spectrum predicted by Eq. 3.18 is valid only for broad band injectors. This

is not really surprising because, in order to calculate the tunneling rates, we

have used bare electronic states in the quantum well and have only considered

incoherent population injection and extraction processes.

3.4 Numerical procedure and results

Here, we apply our theory using realistic parameters for a microcavity-embedded

quantum cascade electroluminescent source. In order to simplify the algebra,

given the huge difference in the typical wavectors of photons and electrons,

we have systematically neglected the photon wavevector whenever added to

an electronic wavevector, as explained in Section 1.4.3. Applying this approx-

imation, we can obtain a closed set of algebraic equations where the variables

are the populations in the two subbands and in the cavity photonic branch,

as shown in Appendix C. This system has been solved numerically using a

standard Newton method. We achieve numerical convergence in a relatively

fast computation time except in the limit of vanishing bias, when the injector

and extractor are strongly ’misaligned’ with the two subbands. Physically in

this case the steady-state situation is reached in times very long compared to

the dynamics of the quantum well system, the photon population is extremely

small and correspondingly the numerical method fails to converge. Anyway

this is not a real limitation, because we are interested in the behavior of the

system in presence of a finite voltage bias, producing a significant current flow

and photonic output.

In Fig. 3.1, we show a sketch of the energy profile of the injector and

extractor with respect to the quantum well subbands respectively without and

with an applied bias. Specifically, in the numerical calculations we have used
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the following electronic out-tunneling rates:

Γout
left,j,k =

Γe−
(E0,left−qV/2)2

2σ2

1 + eβ(−~ωj,k+µleft−qV/2)
, (3.21)

Γout
right,j,k =

Γe−
(E0,right+qV/2)2

2σ2

1 + eβ(−~ωj,k+µright+qV/2)
,

where σ = 0.1~ω12, 1/Γ = 0.4ps, E0,left and E0,right are the energy offsets of the

left and right minibands. The in-tunneling rates are determined by applying

the relation in Eq. 3.11. In all the simulations, we have taken E0,left = E0,right =

0.5~ω12 and µleft = µright = 1
3
~ω12.

Note that these are just phenomenological injection rates. For the am-

plitude Γ, we have considered values which are consistent with what realisti-

cally obtainable in semiconductor intersubband devices. Importantly, in real

structures Γ can be considerably quantum engineered by changing the barrier

thickness and/or the miniband structure of the injection superlattices. This

is why we have not considered a very specific injector configuration and taken

the simplified expression in Eq. 4.17 with realistic parameters.

When a voltage bias is applied, the two reservoirs are shifted symmetrically,

as shown in the bottom panel of Fig. 3.1. In all the simulations, except

when otherwise stated we used the realistic damping parameters ΓX = ΓY =

ΓS = ΓZ = 0.1ω12, γ = 0.05ω12, while the temperature is T = 77K. In the

simulations we have also considered τk to be independent from k and such

that 1
τ

= 0.005ω12, except when otherwise stated. Here we have considered

only an active quantum well. For quantum cascade structures with several

active quantum wells repeated in a periodic way, the dynamics is similar and

the present treatment can be generalized without major difficulties. In the

simulations, the intersubband transition energy ~ω12 is, except where otherwise

stated, equal to 150 meV and the coupling constant χ(q) is such that the

vacuum Rabi frequency is 0.1ω12 for an electron density of 5 × 1011 cm−2 (all

in the fundamental subband). When ~ω12 is changed, the coupling constant

is adjusted in order to keep the ratio between the vacuum Rabi frequency and

transition frequency constant. The effective mass m∗ has been taken to be one

tenth of the bare electronic mass. In the numerical calculations, the cavity

spacer dielectric constant is ǫr = 10. For each simulation, the resonance in-

plane wavevector qres, given by the condition ωcav(qres) = ω12, corresponds to

an internal cavity photon propagation angle θres equal to 70 degrees, where

tan θres = qres/qz. In the top panel of Fig. 3.2, we show the current density
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Figure 3.2: Current density versus applied voltage (top panel) and Photonic

current density versus electronic current (bottom panel) for different values of

the intersubband transition energy: ~ω12 = 50 meV, (dashed-dotted line), 100

meV (dashed line) and 150 meV (solid line).
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versus applied voltage (between the injector and extractor) for different values

of ~ω12. The current-voltage profile is characteristic of an unipolar quantum

cascade light emitting diode. The current grows superlinearly in the voltage

region where the injector Fermi level approaches the second subband. The

current is bigger for smaller ~ω12 because, keeping the injection rate Γ constant

(but all the internal rates of the system proportional to ~ω12), the injection

and extraction processes become the dominant processes. The rates of emitted

photons per unit area (integrated all over the in-plane wavevectors) are shown

in the bottom panel of Fig. 3.2 as a function of the flowing current, showing

an approximately linear behavior. Fig. 3.3 shows contour plots of the electron

occupation numbers of the first and second subband respectively as a function

of the applied voltage and of the kinetic energy. The insets in Fig. 3.3 show

respectively the integrated density of electrons in the first and second subband.

It is apparent that with increasing voltage the population in the first subband

decreases, while the population in the second subband increases. When the

injector Fermi level becomes aligned with the second subband, as expected,

the carrier occupation numbers in the two subbands are considerably out of

equilibrium. The decrease of the first subband carrier occupation numbers is

beneficial for the radiative efficiency of the spontaneous emission, because the

influence of Pauli blocking is reduced. Moreover, in the considered conditions,

the density of electrons in the first subband is still considerably larger than in

the second subband, thus producing a large vacuum Rabi coupling and efficient

emission rate. Fig. 3.4 contains a contour plot of the cavity photon occupation

number versus the bare photon energy, showing that the maximum of emission

is obtained when the bare photon energy is resonant with the intersubband

transition, as expected and as observed experimentally [39, 80]. With the

considered parameters, the density of electrons in the first subband is high

enough to be in the strong coupling regime, as depicted in Fig. 3.5, where

the anticrossing of two polariton branches is clearly present. The minimum

polariton splitting, given by the expression 2χ(q)
√

2D is reported in Fig. 3.5

as a function of the applied bias. With increasing voltage, the population

difference D =
∑

kDk =
∑

k(n1,k−n2,k) diminishes. This results in a decrease

of the vacuum Rabi frequency and consequently of the polariton splitting. This

high-excitation feature has been already observed in experiments [39, 80].

It is interesting to analyze the quantum efficiency η, defined as the ratio
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Figure 3.3: Electron occupation number in the first (top panel) and second

(bottom panel) conduction subband as a function of kinetic energy and applied

voltage. In the insets there are the integrated density of electrons in the two

subbands versus voltage. In these simulations ~ω12 = 150 meV.
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between the photonic emission rate and the electronic current, namely

η =
2γ

∑

q na,q
∑

k[Γ
out
1,kn1,k − Γin

1,k(1 − n1,k)]
. (3.22)

In Fig. 3.6, we plot the quantum efficiency η at eV = ~ω12 versus the resonant

vacuum Rabi frequency ΩR = ΩR(qres) at the same voltage (log-log scale). In

the simulations, the vacuum Rabi frequency has been varied by changing the

coupling constant χ(q). In a realistic quantum engineered device, χ(q) can be

tailored in different ways. For example, by growing the active quantum wells

in a spatial region where the cavity mode field is very small, it is possible to

quench dramatically the value of χ(q). Moreover, by using different shape of

quantum wells, it is also possible to tailor the transition dipole d12. Fig. 3.6

shows that in the weak coupling regime (small values of ΩR) the efficiency

grows like Ω2
R. In the strong coupling regime, the efficiency becomes impres-

sive and then tends to saturate. It is apparent that the radiative efficiency

smoothly increases passing from the weak to the strong coupling regime. This

crossover occurs because the radiative efficiency depends on the spectrally in-

tegrated emission and it is therefore insensitive to the sudden appearing of

the polariton doublet in the strong coupling emission spectra. In Fig. 3.6,

the efficiency is plotted for different values of the damping coefficients (top

panel) and of the nonradiative population relaxation rate 1/τ (bottom panel).

The nonradiative population relaxation rate has clearly the most significant

effect, in the considered regime of parameters, the efficiency is proportional to

τ . It is interesting to compare our results for this microcavity system with the

standard free space case. In the free-space case, the photon current, obtained

by applying the Fermi golden rule, is given by the formula

P =
2d2

12ω
3
12

√
ǫr

3πc3~ǫ0

∑

k

n2,k(1 − n1,k). (3.23)

As it is well known, the free-space radiative efficiency dramatically decreases

with the intersubband emission wavelength due to the ω3
12d

2
12 dependence of

the spontaneous emission rate (d2
12 ∝ 1/ω12, so the spontaneous emission rate

scales effectively as ω2
12). In the mid-infrared, by using the same parameters,

for a transition of 150 meV, the quantum efficiency is of the order of 10−4−10−5

(see the red line in the top panel of Fig. 3.6). Hence, it is clear from our results

that a strong coupling light-emitting diode based on a planar microcavity

system can provide a dramatic enhancement with respect to the free space
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polariton splitting as a function of the applied voltage for ~ω12 = 150 meV.
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Figure 3.6: Quantum efficiency versus the corresponding resonant vacuum

Rabi frequency at the voltage eV = ~ω12 for ~ω12 = 150 meV. The three lines

in the top panel are obtained with different values of the coherence damping

coefficients: ΓX = ΓY = 0.1ω12 (solid line), 0.05ω12 (dashed line) and 0.025ω12

(dashed-dotted line). The three lines in the bottom panel are obtained with

different values of the non-radiative relaxation rate: 1
τ

= 0.01ω12 (dashed line),

0.005ω12 (solid line) and 0.0025ω12 (dashed-dotted line). In red is marked a

typical efficiency value in the free space (no cavity) case.



78 Chapter 3. Light emitters in the strong coupling regime

case (even three orders of magnitude for the larger vacuum Rabi frequency

case).

3.5 Conclusions and perspectives

We developed a numerical method to study the effect of strong coupling on

electron transport and electroluminescence. Our results agree with the data

from the first transport experiments in the strong coupling regime [53, 39, 80].

In particular our theory predicts correctly that, being the vacuum Rabi fre-

quency proportional to the population imbalance between the first and the

second conduction subband, it decreases when a large current flows through

the structure. Moreover we showed that even in presence of non-radiative

relaxation and Pauli blocking, the quantum efficiency of the microcavity inter-

subband electroluminescence can be considerably enhanced by increasing the

vacuum Rabi frequency, giving the first evidence of Purcell effect in the strong

coupling regime. We expect that, given the actual trend in the increase of the

vacuum Rabi frequency, it will soon be possible to experimentally measure this

effect. On this topic it is important to stress that the ΩR in the abscissa of Fig.

3.6 is the vacuum Rabi frequency at the corresponding working point. From

the bottom panel of Fig. 3.5 we see that the splitting (and thus the vacuum

Rabi frequency) at the working point can easily be one order of magnitude

smaller than the zero-bias one. This means that present-day state-of-the-art

experiments, that have vacuum Rabi frequencies of the order of few percents of

ω12, have an efficiency comparable with the free space case. In order to exper-

imentally measure the strong coupling Purcell effect it will thus be necessary

to work in order to obtain samples with bigger vacuum Rabi frequencies, of

the order at least of a tenth of ω12. Samples with such large couplings have

been recently reported [32]. We thus not only expect a rapid experimental

verification of our predictions, but we also hope to see it applied in real word

devices, to considerably increase the efficiency of mid-infrared and Terahertz

light emitting devices.

Our method is well suited to model a large spectrum of possible devices,

giving quantitative results with very limited computational resources and we

expect it will be thoroughly exploited to design the next generation of opto-

electronics polaritonic devices.



Chapter 4

Electron tunneling into

polariton states

4.1 Introduction

In the previous Chapter we developed a theory able to describe light emitting

devices in the strong coupling regime, under the assumption of incoherent,

broadband injection. In this Chapter we will instead try to understand what

happens when the injector is spectrally narrow.

If we consider the bare quantum well, neglecting light-matter coupling,

electrons can occupy a certain number of eigenstates |η〉, each one identified

by its own set of quantum numbers (that here we will collectively identify as η)

and to each one corresponds a well defined energy Eη. In the case of resonant

electron tunneling, conservation of energy implies that in order to excite an

electron in the state |η〉, we need to inject an electron with an energy equal to

Eη.

This is not anymore the case when we consider the quantum well coupled

with the microcavity photon field. The eigenstates of the light-matter coupled

system, with a well defined energy, will be instead linear superpositions of

different electronic and photonic states. If we are able to accurately select the

energy of the injected electrons, we can thus choose which particular linear

superposition of electronic states to excite. The interest being that, as we have

seen in Section 1.2.2, only one linear superposition of electronic excitations (the

bright state) is coupled, in a superradiant way, to the electromagnetic field. We

could thus, by injecting an electron with exactly the right energy, put it in the

state maximally coupled to the microcavity photonic field. The extremely
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short radiative lifetime of such states would thus permit us to dramatically

increase the efficiency of these systems as light emitting devices.

The energy shift between unperturbed electronic states and light-matter

coupled states is of the order of the vacuum Rabi frequency. In order to exploit

this effect we thus need to have an injector narrow enough to excite selectively

superradiant states, that is we need an injector whose spectral width is smaller

than the vacuum Rabi frequency itself.

In this Chapter we will lay out the theory for such resonant electron in-

jection into superradiant states. We will show that the electronic eigenstates

originate from a Fano-like coupling between the bare injected electron and the

continuum of cavity polariton modes. Our theory will demonstrate that res-

onant electron tunnelling from a narrow-band injector contact can effectively

lead to ultraefficient polariton electroluminescence.

4.2 General formalism

As in the previous Chapter, we will use here the RWA fermionic Hamiltonian

of Section 1.4.2. The system will thus be described by the Hamiltonian

H =
∑

k

~ωc,1(k)c
†
1,kc1,k + ~ωc,2(k)c

†
2,kc2,k +

∑

q

~ωcav(q)a
†
qaq (4.1)

+
∑

k,q

~χ(q)aqc
†
2,k+qc1,k + ~χ(q)a†qc

†
1,kc2,k+q,

where for simplicity we neglected the electron spin. In this Chapter we will thus

consider that each sum over the electronic in-plane wavevector k is implicitly

also a sum over the electron spin.

It is well known in the theory of quantum transport [81] that, if we wish

to study the tunneling injection of one electron at low temperature, we have

to determine the electron spectral function, defined as:

A+
j (k, ω) =

∑

ζ

|〈ζ |c†j,k|FN〉|2δ(ω − ωζ) , (4.2)

where |FN〉 is the N-electron Fermi sea ground state times the vacuum state

for the cavity photon field and j = 1, 2 is the conduction subband index.

The index ζ labels the excited (N+1)-electron eigenstates and ~ωζ are the

corresponding eigenenergies. Note that here we will develop our theory at zero

temperature, but it will remain valid as long as KT is much smaller than the



4.3. Spectral function with light-matter interactions 81

Fermi energy of the two-dimensional electron gas (≃ 600K). As apparent from

Eq. 4.2, the electron spectral function is the density of quasi-electron states,

weighted by the overlap with the bare electron state c†j,k|FN〉. In other words,

it is the many-body equivalent of the single-electron density of states. This

is the key quantity affecting the electron tunneling and can be non-trivially

modified by interactions like in the case of superconductors. It is important to

understand that the spectral function describes the density of electronic states

for a given initial state. That is, in our case, it describes the available states

in presence of an unperturbed Fermi sea. Within this framework, we will thus

be unable to account for the nonlinear effects induced by the fact that the

current can modify the equilibrium electronic population. This means that

the theory we will develop in this Chapter is valid only in a regime of currents

small enough not to perturb the electronic population. As we explained in

the previous Chapter, this is the price to pay in order to be able to look for

an exact solution of the many body problem, instead that adopting truncated

mean field theories (as we did in Chapter 3).

For a non-interacting electron gas, c†1,k|FN〉 and c†2,k|FN〉 are eigenstates of

the Hamiltonian and thus all the other eigenstates are orthogonal to them.

Therefore the non-interacting spectral functions are

A+
1 (k, ω) = δ(ω − ωc,1(k))θ(k − kF ), (4.3)

A+
2 (k, ω) = δ(ω − ωc,2(k)), (4.4)

where kF is the Fermi wavevector. θ(x) is the Heaviside function and its

presence is due to Pauli blocking: c†1,k|FN〉 = 0 for k < kF . Eq. 4.3 just

says that there are unoccupied electron states in the first subband with energy

lower than the Fermi level.

4.3 Spectral function with light-matter inter-

actions

As seen in the previous Section, in the non-interacting case, the electron spec-

tral function is just a Dirac delta. Physically, this means that an electron

with wavevector k can be injected in the subband j = 1, 2 only with an en-

ergy equal to the bare electron energy ~ωc,j(k) and that such excitation has

an infinite lifetime. By contrast, interactions can profoundly modify the na-

ture of electron excitations and therefore produce qualitative and quantitative
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changes of the electron spectral functions. In the case of a weakly interacting

electron gas, the spectral function has a broadened quasi-electron peak: the

spectral broadening is due to the finite lifetime of the electronic excitation. In

the case of a strongly interacting electron gas (like in the case of supercon-

ductors) the electron spectral function can be qualitatively different from the

non-interacting gas. Here, we are interested in how the nature of the quasi-

electron excitations is modified by the strong coupling to the vacuum field of

a microcavity. In particular, we assume that the light-matter interaction is

the strongest one. We will provide here a nonperturbative theory to determine

the dressed electronic excitations in such a strong coupling limit and their

corresponding spectral function. All other residual interactions, i.e. the cou-

pling with an injector contact and the coupling with the extra-cavity photonic

modes, will be treated as perturbations. The consistency and limit of validity

of such a scheme will be discussed in the next Section, where the theoretical

results are applied. In the interacting case, it is easy to verify that c†1,k|FN〉 is

still an eigenvector of the Hamiltonian in Eq. 4.1 and thus the first subband

spectral function A+
1 (k, ω) is still given by Eq. 4.3. Instead for the electrons

in the second subband we have to distinguish between two cases: k well inside

or outside the Fermi sea. In the first case, an electron in the second subband

can not emit a photon because all the final states in the first subband are

occupied (Pauli blocking), hence the spectral function will be given by the un-

perturbed one (Eq. 4.4). Well outside the Fermi sea, an injected electron can

emit and the spectral function will be modified by the light-matter interaction.

A smooth transition between the two cases will take place for |k − kF | of the

order of the resonant cavity photon wave-vector qres, where ωcav(qres) = ω12.

Being the ratio qres/kF typically very small, of the order of 10−2 (see Ref. [49]),

we can safely consider an abrupt transition at the Fermi edge.

In order to evaluate A+
2 (k, ω) for k > kF we need to find all the (N+1)-

electron eigenstates that have a nonzero overlap with c†2,k|FN〉. In order to do

this we notice that the Hamiltonian in Eq. 4.1 commutes with the number of

total fermions

N̂F =
∑

j=1,2

∑

k

c†j,kcj,k, (4.5)

the total in plane wave-vector operator

K̂ =
∑

j=1,2

∑

k

k c†j,kcj,k +
∑

q

q a†qaq, (4.6)



4.3. Spectral function with light-matter interactions 83

Figure 4.1: Sketch of the dynamical coupling between quantum states in a

microcavity-embedded doped quantum well In the ground state, the first sub-

band is doped with a dense two-dimensional electron gas (bold lines at the

bottom of the dispersions). Black dots represent bare electrons, while white

dots denote holes in the electron gas. The dashed cones depicts the possi-

ble final states for an electron radiatively relaxing from the second to the

first subband by emission of a cavity photon. The ground state with N elec-

trons is the standard Fermi sea |FN〉. The injection (e.g., through electron

tunneling) of an additional electron in the second subband creates the state

|C〉 = c†2,k|FN〉, which, in presence of light-matter interaction, is not an eigen-

state. Spontaneous emission of a cavity photon couples the |C〉 state to the

states |A,q〉 = a†qc
†
1,k−q|FN〉. Reabsorption of the emitted cavity photon can

couple back to the |C〉 state or to the states |B,q,k′〉 = c†2,k′+qc1,k′c†1,k−q|FN〉.
Spontaneous emission couples the |B〉 states back to |A〉 states or to states of

the form |D,q,q′,k′〉 = a†q′c
†
1,k′+q−q′c1,k′c†1,k−q|FN〉. Being the relevant cavity

photon wavevectors very small compared to the Fermi wavevector, sponta-

neous emission can occur only on narrow emission cone in momentum space.

Due to the small probability of photon absorption by electrons on the border

the Fermi sea, we can neglect |D〉 states and assume that the system always

jumps from |B〉 states to |A〉 states. Thus the relevant dynamics takes place

only between the states in the shaded region. We can thus neglect the other

marginal states while diagonalizing the light-matter Hamiltonian.



84 Chapter 4. Electron tunneling into polariton states

and the excitation number operator

Q̂ =
∑

k

c†2,kc2,k +
∑

q

a†qaq. (4.7)

Hence the eigenstates |ζ〉 of H can be also labeled by the corresponding eigen-

values Nζ ,Kζ and Qζ . We will thus identify an eigenstate of H in the subspace

(N̂F = N, K̂ = K, Q̂ = Q) as |N,K, Q, ζ〉, where the index ζ now runs over

all the eigenstates of the subspace. The states obtained by applying electron

creation or destruction operators on the eigenstates |N,K, Q, ζ〉 are still eigen-

states of N̂F , K̂ and Q̂. The state c†1,k|N,K, Q, ζ〉 is in the subspace labeled by

the quantum numbers (N+1,K + k, Q); c1,k|N,K, Q, ζ〉 in (N−1,K − k, Q);

c†2,k|N,K, Q, ζ〉 in (N+1,K + k, Q+1); c2,k|N,K, Q, ζ〉 in (N−1,K − k, Q−1).

Having |FN〉 quantum numbers (N,0,0) the state c†2,k|F 〉 is thus in the

subspace labeled by the quantum numbers (N+1,k, 1). We can limit ourselves

to diagonalize H in this subspace, which is spanned by vectors of the form: (i)

c†2,k0

∏N
j=1 c

†
1,kj

|0〉, where |0〉 is the empty conduction band state and
∑N

j=1 kj =

k − k0; (ii) a†q0

∏N+1
j=1 c†1,kj

|0〉 with
∑N+1

j=1 kj = k − q0. For a large number of

electrons, the exact diagonalization of the Hamiltonian in this subspace is an

unmanageable task. Here, we show that by a judicious approximation, we can

considerably simplify the diagonalization problem, keeping the relevant non-

perturbative physics. Namely, we claim that the elements of the (N + 1,k, 1)

subspace can be well approximated by vectors of the form

|N + 1,k, 1, ζ〉 =

{

µζ c
†
2,k +

∑

q

[

αζ(q) a†qc
†
1,k−q (4.8)

+
∑

|k′|<kF

βζ (q,k′)c†2,k′+qc1,k′c†1,k−q











|FN〉 .

To understand the origin of our approximation, let us consider the time evo-

lution picture sketched in Fig. 4.1. Suppose that initially the system is in its

ground state |FN〉. After injection of one bare electron, the state of the system

is

|C〉 = c†2,k|FN〉. (4.9)

If k is well inside the Fermi sphere, as we said before, it is Pauli blocked and

can not radiatively relax into the first subband. Instead, when k > kF , the
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Figure 4.2: Electron spectral function A+
2 (k, ω) for the second subband , for

all k > kF . The spectral function, defined in Eq. (4.2), is the density of

quasi-electron states, weighted by the overlap with the bare electron state (the

integral of the spectral function is normalized to one). Coupling parameter:

ΩR(qres) = χ(qres)
√
N = 0.1ω12.



86 Chapter 4. Electron tunneling into polariton states

injected electron can radiatively decay, emitting a photon and falling into the

first subband. After the first emission the state will have the form

|A,q〉 = a†qc
†
1,k−q|FN〉. (4.10)

If the cavity system is closed and only the light-matter interaction is consid-

ered, the emitted photon will be eventually reabsorbed. The system can evolve

back to the state |C〉 or into one vector of the form

|B,q,k′〉 = c†2,k′+qc1,k′c†1,k−q|FN〉. (4.11)

If k′ is well inside the Fermi sea, when the second subband electron decays, the

only available final state in the first subband will be the one with wavevector

k′, that is the system will go back to state |A,q〉. If k′ is on the border of

the Fermi sea, on the contrary, the system can evolve into a state of the form

|D,q,q′,k′〉 = a†q′c
†
1,k′+q−q′c1,k′c†1,k−q|FN〉. The probability of ending in any of

the |D,q,q′,k′〉 states is negligible. In fact, the probability for k′ to be near

enough to the border of the Fermi sea for allowing an emission to electronic

states with k > kF is proportional to the ratio qres/kF ≪ 1. Hence, the

diagonalization problem can be simplified and we can thus look for vectors of

the form shown in Eq. 4.8. Even if the |A,q〉, |B,q,k′〉 and |C〉 states still

form an infinite dimensional space, the Hamiltonian in Eq. 4.1 can be now

numerically diagonalized by discretizing the q and k in-plane wavevectors. The

details of the diagonalization can be found in Appendix D. After the numerical

procedure, and some linear algebra, we obtain the following form for vectors

in Eq. 4.8

|N + 1,k, 1, ζ〉 = µζ c
†
2,k|FN〉 +

∑

q,σ=±
λζ,σ,q|σ, q〉 . (4.12)

The states |σ, q〉, that are linear superpositions of |A,q〉 and |B,q,k′〉 states,

are given by

|±, q〉 =
1√
Lq

∑

|q|=q

|±,q〉 , (4.13)

where

|±,q〉 =
(ω±(q) − ω12)|A,q〉 + χ(q)

∑

k |B,q,k〉
√

(ω±(q) − ω12)
2 + |χ(q)|2N

, (4.14)

are nothing else that the polaritonic states described in Section 1.3.3, q is the

polaritonic in-plane wavevector, σ is the polaritonic branch index and ω±(q)

are the polaritonic energies.
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That is |σ, q〉 are superpositions of polaritonic states with in-plane wavevec-

tors q, such that |q|= q, (see Appendix D for details). In conclusion, after

having numerically calculated the coefficients in Eq. 4.12, and the relative

eigenenergies ~ωζ, we can write the spectral function of electrons in the second

subband as

A+
2 (k, ω) =

∑

ζ

|µζ|2δ(ω − ωζ)θ(k − kF ) + δ(ω − ωc,2(k))θ(kF − k). (4.15)

In Fig. 4.2, we show numerical results using a vacuum Rabi frequency

ΩR(qres) = |χ(qres)|
√
N = 0.1ω12. (4.16)

As it appears from Eq. 4.15, the broadening of the spectral function is intrin-

sic, being associated to the continuum spectrum of frequencies ωζ correspond-

ing to the dressed electronic states. At each frequency ωζ , the magnitude of

the spectral function is given by the spectral weight |µζ|2, depending on the

overlap between the dressed state |N + 1,k, 1, ζ〉 and the bare electron state

|C〉 = c†2,k|FN〉. As shown in Eq. 4.12, the electronic eigenstates of the system

are given by the Fano-like coupling between the bare electron state and the

continuum of cavity polariton excitations. Indeed, the pronounced dip around

ω = ω12 in the spectral function is a quantum interference feature, typical of

a Fano resonance [82].

As we said before the sharp transition in Eq. 4.15 between k > kF and

k < kF is only a consequence of the approximations we made of neglecting the

border of the Fermi sea and the effect of the temperature. In a real case both

effects will tend to smooth the transition, the first on an energy scale of the

order of ~2kF qres

m∗
and the second on an energy scale of KT .

4.4 Tunneling coupling, losses and electrolu-

minescence

The states |N + 1,k, 1, ζ〉 have been obtained by diagonalizing the Hamil-

tonian in Eq. 4.1, which takes into account only the coupling between the

two-subband electronic system and the microcavity photon quantum field. If,

as we have assumed, the light-matter interaction is the strongest one, all other

residual couplings can be treated perturbatively. These residual interactions

include the coupling to the extracavity fields, the interaction with contacts,
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phonon and impurity scattering as well as Coulomb electron-electron interac-

tions [79].

The states |N + 1,k, 1, ζ〉 can be excited for example by resonant electron

tunneling from a bulk injector or an injection miniband. If V tc
k is the tunneling

coupling matrix element between the state |F 〉 and c†2,k|F 〉 induced by the

coupling with the injector we have, using the Fermi golden rule, the following

injection rate

Γinj(k, ζ) =
2π

~
|µζ|2|V tc

k |2ρinj(ωζ)nF (ωζ), (4.17)

where ρinj(ω) is the density of electronic states inside the contact and nf(ω)

its Fermi distribution. ρinj(ω)nf(ω) determines the spectral shape of the in-

jector. µζ comes from Eq. 4.15 and represents the electron spectral weight.

It is worthwhile to notice that the formula in Eq. 4.17 is quite independent

from the model of injector considered. All the relevant information are con-

tained in the coupling strength V tc
k and the spectral shape ρinj(ω)nf(ω). Any

form of scattering, including in-plane wavevector non-conserving interactions

or non-resonant injection, will give a different (and possibly broadened) injec-

tor spectral shape. The finite transmission of the cavity mirrors is responsible

for a finite lifetime for the cavity photons and consequently for the dressed

states |N + 1,k, 1, ζ〉. By using the Fermi golden rule and a quasi-mode cou-

pling to the extracavity field, we find that the radiative lifetime τr,k,ζ reads

1

τr,k,ζ
=

2π

~

∑

q,qz

|αζ(q)|2|V qm
q,qz

|2δ(~ωζ − ~ωq,qz)θ(k − kF ), (4.18)

where V qm
q,qz

is the quasi-mode coupling matrix element, ωq,qz the extracavity

photon frequency and αζ(q) = 〈A,q|N +1,k, 1, ζ〉 as defined in Eq. 4.8. Hav-

ing calculated the tunneling injection rate and the radiative lifetime for the

different states, we are able to evaluate the electroluminescence spectra. It

is convenient to introduce the normalized photon emission distribution corre-

sponding to each eigenstate |N + 1,k, 1, ζ〉, namely

L(q, ζ) = N
∑

qz

|αζ(q)|2|V qm
q,qz

|2δ(~ωζ − ~ωq,qz), (4.19)

where the normalization N is fixed by imposing
∑

q L(q, ζ) = 1. The number

of photons with in-plane wave-vector q and frequency ω emitted per unit time

is

Nph(q, ω) =
1

π

∑

k,ζ

Γinj(k, ζ)L(q, ζ)
1/τr,k,ζ

(ω− ωζ)2 + (1/τr,k,ζ + 1/τnr,k,ζ)2
, (4.20)
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Figure 4.3: Extracavity electroluminescence spectra Nph(q, ω). Panel (a): the

case of a broadband electrical injector (bandwidth equal to ω12, centered at

ω = ω12). The other panels show the results for a narrow-band injector (width

0.05ω12) centered respectively at ω = ω12 (b), 1.2ω12 (c) and 0.8ω12(d). The

non-radiative relaxation rate 1/τnr has been taken equal to 0.005ω12. In all

panels, the dashed-dotted lines are the frequency dispersions of the two in-

tersubband polariton branches. In the first panel the solid line represents the

edge of the light cone [49].
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Figure 4.4: Logaritmic plot of the absolute value of the radiative matrix el-

ement αζ(q) = 〈A,q|N + 1,k, 1, ζ〉, responsible for the radiative lifetime of

the electronic eigenstates. The image is shown in saturated colors to improve

readability. The dispersion of the two cavity polariton branches is apparent.

where the last factor accounts for the Lorentzian broadening due to radia-

tive and non-radiative processes. τnr,k,ζ is the non-radiative lifetime of the

electronic excitations and Γinj(k, ζ) is given by Eq. 4.17. Fig. 4.3 reports

representative electroluminescence spectra in the case of a broadband (panel

a) and narrowband (panel b,c,d) injector. In the broadband case, the emission

is resonant at the intersubband cavity polariton frequencies (dashed lines) and

it is significant in a wide range of in-plane wavectors (coherently with the the-

ory developed in Chapter 3). In contrast, in the case of narrowband electrical

injector, our theory shows that the photon in-plane momentum and the en-

ergy of the cavity polariton emission can be selected by the resonant electron

tunneling process. This agrees with what suggested by recent experiments, in

which it seems that the injector acts as a filter, selecting the energy of the

polaritonic emission [39].

One important point to notice is that, consistent with the experiments, our
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theory correctly predicts the absence of emission at the unperturbed intersub-

band frequency ω12. This is a purely quantum mechanical effect and indeed it

reassures us of the correctness of our analysis. Effectively if we make a naive

calculation of the emission spectra, neglecting polaritonic coherence, we would

obtain, in the case of a broadband injector, an emission peaked at the bare

intersubband frequency ω12 instead of the two polaritonic resonances. This is

because, due to the big peak in the electron spectral function at the energy of

the unperturbed electron (Fig. 4.2), the vast majority of electrons are injected

at the bare intersubband transition energy and this compensates for the small

photonic fraction (and thus the longer radiative lifetime) of these states. The

absence of the central peak is indeed due to an interference effect between lower

and upper polaritons. Due to the symmetry lower-upper polariton around ω12,

and electrons injected at the bare intersubband energy, emit at the same time

a lower polariton and an upper polariton, their destructive interference gives a

zero net emission. This can be seen in Fig. 4.4, where the absolute value of the

matrix element αζ(q) = 〈A,q|N + 1,k, 1, ζ〉 is plotted in logaritmic scale as

a function of the in-plane wavevector q and of the eigenenergies of the states

|N + 1,k, 1, ζ〉 . The white line at the frequency ω12 corresponds to a zero

value for the matrix element, impeding thus any emission at this frequency, as

shown in Eq. 4.19.

In free-space, the quantum efficiency of electroluminescent devices based on

intersubband transitions is poor (≈ 10−5 in the mid-infrared) due to the slow

radiative recombination of long wavelength transitions. In the microcavity

case, the efficiency of the emission from an excited state |N + 1,k, 1, ζ〉 is

given by (1 + τr,k,ζ/τnr,k,ζ)
−1. Because 1/τnr,k,ζ is essentially proportional to

the matter component of the excitation and 1/τr,k,ζ to its photonic fraction,

we have found that it is possible to obtain a quantum efficiency approaching

unity by selectively injecting electrons into dressed states with a high photonic

fraction. In particular, this is achievable by avoiding injection resonant with

the central peak of the electron spectral function in Fig. 4.2, which corresponds

to states with strong overlap with the bare electron state.

In the present theory, we have not considered the role of electronic disorder,

which is known to break the in-plane translational invariance. However, in the

limit of large vacuum Rabi energies (i.e., significantly larger than the energy

scale of the disorder potential), the inhomogeneous broadening is expected to

have a perturbative role.

Let us point out clearly that in order to achieve a high quantum efficiency,
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it is necessary to have a considerably narrow spectral width for the injector,

on the order of a small fraction (10−2) of the intersubband transition energy

~ω12. This is essential in order to be able to inject electrons selectively into

the superradiant states, while avoiding both the peak associated to the dark

excitations at the bare electron energy and the states with k < kF that can not

radiatively decay. In the experiments in Ref. [39], the spectral width of the

injector (a heavily doped superlattice) is comparable to the polariton vacuum

Rabi frequency and hence such selective excitations of the superradiant states

cannot be reached. In order to have an injector with narrower spectral width,

several electronic designs could be implemented. For example, one can grow a

filter quantum well between the superlattice injector and the active quantum

well: resonant electron tunneling through the intermediate quantum well can

significantly enhance the resonant character of the excitation. Moreover, for

a given injector, improved microcavity samples with larger vacuum Rabi fre-

quency would allow the system a more resonant excitation of the superradiant

electronic states.

4.5 Conclusions and perspectives

In conclusion, in this Chapter we have determined in a non-perturbative way

the quasi-electron states in a microcavity-embedded two-dimensional electron

gas. Such states originate from a Fano-like coupling between the bare electron

state and the continuum of cavity polariton excitations. We have proven that

these states can be selectively excited by resonant electron tunneling and that

the use of narrow-band injector may give rise to efficient intersubband polariton

electroluminescence. Even if no experiments have been realized up to date,

different experimental groups manifested us their interest on these topics. We

are thus confident that our theory will soon get an experimental verification

and that the first prototypes of light emitting devices exploiting this technology

could be only few years afar.



Chapter 5

Intersubband polariton

scattering and lasing

5.1 Introduction

In Chapter 1, we introduced intersubband polaritons as the low-energy exci-

tations of a microcavity-embedded two dimensional electron gas. In Section

1.4.3 we claimed that, in the dilute regime, such excitations behave almost as

bosons, with a deviation from pure bosonicity depending on the ratio between

the number of polaritonic excitations and the number of electrons in the two

dimensional electron gas. It is well known that the scattering of bosons from

an initial to a final state can be stimulated, i.e., enhanced, by the occupation

of the final state. This remarkable property is in stark contrast with the be-

havior of fermions, such as electrons, whose scattering is Pauli blocked by final

state occupation. So the question is: can intersubband cavity polaritons enjoy

stimulated scattering?

Even if in low-energy matter there are no elementary bosons, composite

particles acting like bosons are quite ubiquitous in physics. In atomic physics,

atoms with even number of fermions act as bosons, and can give rise to Bose-

Einstein condensates [83]. In condensed matter systems, the attractive inter-

actions between two electrons can give rise to bosonic particles, like Cooper

pairs in metallic superconductors [84] or Coulomb bound electron-hole pairs

(excitons) in semiconductors. In contrast to atoms, Cooper pairs and excitons,

intersubband excitations do not correspond to any bound state of an attractive

interaction. The well definite resonance frequency of intersubband excitations

is not due to the presence of a discrete bound state, but to the parabolicity
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of intersubband dispersions, as explained in Section 1.3.1. Even if intersub-

band excitations do not correspond to a bound state, they are still composed

of an electron in an excited subband and a hole in the Fermi sea. Hence, we

can regard them as composite bosons and expect the occurrence of stimulated

scattering.

In this Chapter, we present a microscopic theory of the stimulated scat-

tering of intersubband cavity polaritons [40]. In particular, we will consider

the polariton scattering induced by the coupling with optical phonons, which

is typically the most important scattering channel affecting semiconductor in-

tersubband transitions, while the Coulomb interaction is known to produce

only moderate renormalization effects [79]. Starting from the RWA-fermionic

Hamiltonian introduced in Section 1.4.2 and extensively used in Chapters 3

and 4 and by using an iterative commutation procedure, we will determine the

phonon-induced polariton scattering for an arbitrary number of excitations in

the initial and final intersubband cavity polariton modes. Our results indeed

will prove the possibility of final-state stimulation of the intersubband cav-

ity polariton scattering. Our theory also provides the deviations from perfect

bosonicity, occurring at high excitation densities. We will apply our results

to the case of a GaAs system with realistic losses and study the possibility of

intersubband cavity polariton lasing under resonant optical pumping.

5.2 General formalism

We consider the Hamiltonian H = HRWA + Hphon where HRWA is the light-

matter term for the cavity system introduced in Section 1.4.2, while Hphon

describes the coupling to bulk longitudinal-optical phonons (LO-phonons) via

the Fröhlich interaction [85]

HRWA =
∑

k

~ωc,1(k)c
†
1,kc1,k + ~ωc,2(k)c

†
2,kc2,k +

∑

q

~[ωcav(q) + 2D(q)]a†qaq

+
∑

k,q

~χ(q)aqc
†
2,k+qc1,k + ~χ(q)a†qc

†
1,kc2,k+q,

Hphon =
∑

q,qz

~ωLO(q, qz)d
†
q,qz

dq,qz +
∑

k,q,qz
i,j=1,2

~Cij(q, qz)dq,qzc
†
i,k+qcj,k

+ ~Cij(q, qz)d
†
q,qz

c†j,kci,k+q, (5.1)

where d†q,qz
are the creation operators for optical phonons with three-dimensional

wavevectors (q, qz) and energy ~ωLO(q, qz) = ~ωLO (the wavevector depen-
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dence of the optical phonon energy is negligible). Their phases are chosen in

order to make the coupling coefficients Cij(q, qz) real. Being that all the in-

teractions with optical phonon conserve spin, we can still omit the spin degree

of freedom for the electrons.

In the dilute regime we know that the low energy excitations of HRWA

are the two intersubband polaritonic branches. By applying a Hopfield trans-

formation to the bosonized version of HRWA (that is the Hamiltonian HRWA
bos

introduced in Section 1.4.4), exactly as we did in Chapter 2, we can write the

creation operators of such excitations as

p†η,q = αη,qa
†
q + βη,qb

†
q (5.2)

where η = {LP, UP} denotes the polariton branch index, αη,q and βη,q are real

Hopfield coefficients describing the light and matter component respectively,

while ~ωη(q) are their corresponding energies (see Fig. 5.1).

We will take Eq. 5.2 as the definition of an intersubband polariton creation

operator, using it to obtain multiple-polariton states, as common in the theory

of composite boson scattering [86, 87]. Our procedure will thus be to define

initial and final states as multi-polariton / phonon states, obtained acting on

the state |F 〉 (that is the ground state of the system, the electronic ground state

times the photon and phonon vacuum) with multiple polaritonic and phononic

creation operators and then calculate transition rates between such states with

the Fermi golden rule, using as interaction Hamiltonian Hphon, defined in Eq.

5.1. Specifically, we are interested in calculating the polariton scattering rate

induced by the emission of an optical phonon from an initial polariton pump

mode (branch η′ and in-plane wavevector q’) to a final signal mode (branch

η and in-plane wavevector q). This kind of process is pictured in Fig. 5.1 for

the case η′ = UP and η = LP . In order to calculate such many-body matrix

elements involving multiple photonic, intersubband and phononic operators,

we will need to deal with their actual commutation relations.

While the cavity photons are elementary bosons obeying the standard com-

mutation rule [aq, a
†
q′ ] = δq,q′ and the phonons, in the harmonic approxima-

tion, also obey standard bosonic commutation rules [dq,qz , d
†
q′,q′z

] = δq,q′δqz,q′z ,

intersubband excitations are not elementary bosons and thus their creation an

annihilation operators satisfy modified commutation rules. By writing down

the expression for intersubband excitation operators in term of electronic op-

erators

bq =
1√
N

∑

k

c†2,k+qc1,k (5.3)
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Figure 5.1: A typical energy dispersion (in units of the intersubband transition

energy ~ω12) of intersubband cavity polaritons versus in-plane wavevector (in

units of the resonant wavevector qres). Due to the interaction with bulk optical

phonons, a polariton pumped in the upper polariton (UP) branch can scatter

into a final state (signal mode) in the lower polariton (LP) branch by emit-

ting an optical phonon with energy ~ωLO (36 meV for GaAs). The considered

modes have Hopfield coefficients βUP,q′ = βLP,q = 0.5. The dashed lines indi-

cate the same kind of scattering process by changing the in-plane momentum

of the initial state along the upper polariton branch.
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and using anticommutation rules for fermions {cj,k, c†j′,k′} = δk,k′δj,j′, we find

(the details of the calculation are in Appendix E)

[bq, b
†
q′] = δq,q′ −Dq,q′, (5.4)

Dq,q′ = δq,q′ − 1

N

∑

|k|<kF

c†1,kc1,k+q−q′ − c†2,k+q′c2,k+q,

where Dq,q′ is the operator describing the deviation from the behavior of el-

ementary bosons, originally introduced in the context of excitonic composite

bosons [86, 87]. By iteration, we find the following commutation relations:

[Dq,q′, b†m
q′′ ] = 2m

N
b†q′′+q′−qb

†m−1
q′′ , (5.5)

[bq, b
†m
q′ ] = mb†m−1

q′ (δq,q′ −Dq,q′) − m(m−1)
N

b†2q′−qb
†m−2
q′ ,

[bmq , b
†
q′ ] = m(δq,q′ −Dq,q′)bm−1

q − m(m−1)
N

b2q−q′bm−2
q .

Exploiting Eq. 5.5 we can thus in principle calculate many-body matrix el-

ements by commuting destruction operators multiple times to the right side

and applying the annihilation identity aq|F >= bq|F >= 0. This will leave

behind only C-numbers and Dq,q′ operators. Due to the fact that typical pho-

tonic wavevectors q are much smaller (at least two orders of magnitude) than

the electronic Fermi wavevector kF , we have Dq,q′|F 〉 ≃ 0 with corrections of

the order of |q − q′|kF due to the electrons occupying the edge of the Fermi

sphere. Neglecting these corrections we can thus get rid of all operators and

obtain the matrix elements as pure C-numbers.

5.3 Many-body matrix elements calculation

If we wish to investigate the occurrence of stimulated scattering, we need to

evaluate the scattering rates for arbitrary occupation numbers m and n of

respectively the initial and final polariton modes. The emission of an optical

phonon can induce the scattering of one polariton from the pump to the signal

mode, leading to a transition from the state

p†m
η′,q′p

†n
η,q|F 〉 (5.6)

(m polaritons in the pump mode and n polaritons in the signal mode) to the

state

d†q′−q,qz
p†m−1

η′,q′ p
†n+1
η,q |F 〉 (5.7)
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(m− 1 polaritons in the pump mode, n+ 1 polaritons in the signal mode and

one optical phonon). Therefore, we need to consider the squared normalized

matrix element given by

~
2|V n

m|2 =
|〈F |pn+1

η,q p
m−1
η′,q′dq′−q,qzHphonp

†m
η′,q′p†n

η,q|F 〉|2

〈F |pn
η,qp

m
η′,q′p

†m
η′,q′p

†n
η,q|F 〉〈F |pn+1

η,q p
m−1
η′,q′ p

†m−1
η′,q′ p

†n+1
η,q |F 〉

. (5.8)

The denominator is a normalization factor due to the fact that, by commuta-

tion rules in Eq. 5.5, the states defined in Eqs. 5.6 and 5.7 are not normalized.

In order to evaluate Eq. 5.8, we have to exploit the expression of the polariton

operators in Eq. 5.2 in terms of the cavity photon and intersubband excitation

operators. From Eq. 5.5, some algebra (detailed in Appendix E) shows that

the unnormalized polaritonic matrix element between initial and final state

〈F |pn+1
η,q p

m−1
η′,q′dq−q′,qzHphonp

†m
η′,q′p†n

η,q|F 〉 is given by

(n + 1)!m!βη,qβ̄η′,q′(C22(q − q′, qz) − C11(q − q′, qz))
∑

l=0,...,n
h=0,...,m−1

(

n

l

)

(5.9)

(

m− 1

h

)

|αη,q|2l|βη,q|2(n−l)|αη′,q′|2h|βη′,q′|2(m−1−h)fn−l
m−h,

where fn
m = n

m
Km−1,m

n+1,n−1 + Km−1,m−1
n+1,n and the quantity Kn,s

m,r is defined by the

relation

n!m!Kn,s
m,r = 〈F |bnqbmq′b† s

q b
† r
q′ b

†
Q|F 〉 (5.10)

with Q = q(n− s) + q′(m− r). Analogously, for the normalization factors in

Eq. 5.8, we find

〈F |pn
η,qp

m
η′,q′p

†m
η′,q′p

†n
η,q|F 〉 = n!m!

∑

l=0,...,n
h=0,...,m

(

n

l

)(

m

h

)

(5.11)

|αη,q|2l|βη,q|2(n−l)|αη′,q′|2h|βη′,q′|2(m−h)Kn−l,n−l
m−h,m−h−1.

Therefore we have reduced the problem of calculating the many-body matrix

elements needed to determine the scattering rates, to the problem of deter-

mining the four indexes K coefficients. Commuting, by means of Eq. 5.5, one

destruction operator from the right to the left in Eq. 5.10, it is possible to

obtain, as shown in Appendix E, a recurrence relation that allows us to numer-

ically evaluate Km,s
n,r ∀m,n, s, r. Namely the K coefficients obey the following
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equation

Kn,s
m,r = δm,rδn,s+1Kn−1,n−1

m,m−1 + δm,r+1δn,sKn,n−1
m−1,m−1 (5.12)

− s!r!

n!m!N
[n(n− 1)Ks,n−2

r,m +m(m− 1)Ks,n
r,m−2 + 2nmKs,n−1

r,m−1].

As it can be shown by calculations in Appendix E, the K coefficients also obey

a few algebraic identities that greatly simplify their numerical calculation,

namely

Kn,s
m,r ∝ δn+m,r+s+1 (5.13)

Kn,n−1
m,m = Kn,n

m,m−1

Kn,s
m,r = Km,r

n,s .

Thus Eq. 5.8 can be written as

|V n
m|2= (n + 1)mBn

m|βη,qβη′,q′[C22(q − q′, qz) − C11(q − q′, qz)]|2 (5.14)

where Bn
m is a bosonicity factor depending on the coefficients Kn,s

m,r. Its ex-

pression is cumbersome, but it can be obtained putting together Eqs. (5.8),

(5.9) and (5.11). Such a quantity depends on the Hopfield coefficients and on

excitation numbers m and n normalized to the total number of electrons N in

the ground state. In Fig. 5.2, we report B0
m versus m/N obtained by a nu-

merical evaluation of recursive relation in Eq. 5.12. For normalized excitation

densities m+n
N

smaller than 0.1, we find that Bn
m is well approximated by the

formula

Bn
m ≃ 1 − ζ

m+ n

N
, (5.15)

where ζ depends on the Hopfield coefficients of the polariton modes and varies

from 0 for pure photonic excitations (perfect bosons) to 1 for pure matter ones.

5.4 Scattering rate and lasing threshold

Using the Fermi golden rule and calling A(q − q′, qz, ω) the optical phonon’s

spectral function, we have

Γm,n
sc = 2π

∑

qz

∫

dω|V n
m|2A(q − q′, qz, ω)δ(ωη(q) − ωη′(q′) + ω), (5.16)



100 Chapter 5. Intersubband polariton scattering and lasing

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

m/N

B
m0

Figure 5.2: The solid line represents the bosonicity factor Bn=0
m versus m/N

for the pump and signal polariton modes considered in Fig. 5.1. For pure

bosons Bn
m is always 1. The dashed line is the same quantity for pure matter

excitations. For m/N ≪ 1, deviations from perfect bosonicity are negligible.
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where Γm,n
sc is the number of polaritons per unit time scattered from the pump

mode (with occupancy m) into the final signal mode (with occupancy n).

Using a Lorentzian shape of width ΓLO for the phonon spectral function

and neglecting the LO-phonon dispersion, we thus obtain

Γm,n
sc =

m

S
(n+ 1)Bn

m|βη,q|2|βη′,q′|2ωLO

ΓLO

4e2LQWFσ

ǫ~
. (5.17)

This expression contains the effect of final-state stimulation through the (1+n)

term and the deviations from ideal bosonic behavior through the bosonicity

factor Bn
m. The other parameters in the formula are S the sample surface,

LQW the QW length and Fσ a form factor (depending on σ = LQW |q − q′|)
describing the overlap between the conduction subband and the phonon en-

velope wavefunctions [85]. For typical QW widths and photonic wavevectors,

σ ≪ 1. In the case of a QW with infinite barriers, Fσ≃0 ≃ 0.1. For GaAs

optical phonons, the ratio ωLO

ΓLO
≈ 100 [88].

In order to have a sizeable polariton-phonon interaction, both the initial

and final polariton modes must have significant electronic components, quan-

tified by |βη′,q′|2 and |βη,q|2 (only the matter part of the polariton sees the

interaction with phonons). At the same time, in order to have a good cou-

pling to the extracavity electromagnetic field (required for optical pumping

and detection) also the photonic components |αη′,q′|2 and |αη,q|2 need to be

significant. These conditions can be simply met by choosing the pump mode

in the upper polaritonic branch and the signal mode in the lower polaritonic

one (η = LP and η′ = UP , as shown in Fig. 5.1), when the polariton en-

ergy splitting 2ΩR(qres) = 2~χ(qres)
√
N at the resonant wavector qres (such

as ωc(qres) = ω12) is a non negligible fraction of the optical phonon energy

(36 meV for GaAs). This situation is already realized in recent microcavity

samples [67, 49, 39] with mid-infrared intersubband transition frequencies. In

Fig. 5.3, we report the calculation of the spontaneous in-scattering rate Γm,0
sc

(i.e., n = 0, unoccupied final state) for the process shown in Fig. 5.1 for a

GaAs system with ~ω12 = 150 meV (mid-infrared), LQW = 10 nm, N/S = 1012

cm−2. In order to have a build-up of the occupation number of the final state

and to enter the regime of stimulated scattering, the spontaneous in-scattering

rate Γm,0
sc must be compared with the polariton damping rate given by the

formula

Γloss
η,q ≃ |αη,q|2Γloss

cav,q + |βη,q|2Γloss
12 , (5.18)

where Γloss
cav,q is the damping rate for the cavity mode (due to the finite mirror

transmission) and Γloss
12 is the intersubband excitation damping rate due to
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Figure 5.3: Spontaneous scattering rate Γm,n=0
sc from the pumped polariton

to the signal polariton mode for the process depicted in Fig. 5.1 versus the

pump polariton density m/S. The electron density in the ground state is

N/S = 1012 cm−2. In the considered range of excitation densities, m/N < 0.25,

i.e., much smaller than the onset of electronic population inversion. Other

GaAs parameters are given in the text.

non-radiative processes. In the microcavities samples studied up to now, the

radiative and non-radiative contribution are comparable (see for example Ref.

[24]), giving a total population damping rate of the order a few ps−1, which is

consistent with our calculations.

Neglecting the pump depletion (relevant only above an eventual stimulation

threshold), we can write two rate equations for the signal and pump mode

occupation numbers, namely

dn

dt
= Γm,n

sc − Γloss
signal n,

dm

dt
=

AIpumpS

~ωUP,q′
− Γloss

pump m, (5.19)

where Γloss
signal and Γpump

signal are the loss rates of the signal and pump modes given
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by Eq. (5.18), A the polariton absorption coefficient at the pump frequency

and Ipump the optical pump intensity. From the steady-state solution for n, we

can calculate the threshold pump density mthr/S to have a lasing instability.

For n≪ m, Bn
m ≃ B0

m and Γm,n
sc ≃ (1+n)Γm,0

sc . The threshold pump polariton

density mthr/S is then given by the equation Γmthr ,0
sc = Γloss

signal. The steady-

state solution for m gives the threshold pumping intensity versus the polariton

threshold density, namely

I thr
pump =

Γloss
pump~ωUP,q′

A
mthr/S. (5.20)

For a realistic value Γloss
signal = Γloss

pump = 5 ps−1, we obtain a threshold density

for the pump mode of 1.1 × 1011 cm−2, i.e. m/N = 0.11 (and a total number

of electrons in the excited subband of the order of 0.11N |βη′,q′|2), as indicated

in Fig. 5.3. With a polariton absorption coefficient A = 0.4 [39], this gives a

threshold pump intensity of 3.5× 104 W/cm2. This is approximately 2 orders

of magnitude smaller of what required to achieve electron population inversion

in the two subbands [89].

Note that the mechanism described here is different from the standard

phonon-assisted lasing based on stimulated Raman photon scattering[90, 91]:

in such traditional case, the stimulation concerns the photon field. In our

case, it is the polariton field to be stimulated and the the pump creates real

polariton excitations. Our stimulated polariton scattering process based on

a two-subband system is also different from intersubband electronic Raman

effects [92] in three-subband systems.

5.5 Conclusions and perspectives

In conclusion, we have derived a theory for the stimulated scattering of inter-

subband cavity polariton excitations of a dense two-dimensional electron gas.

The intersubband cavity polariton excitations are composite bosons arising

from the strong light-matter coupling and are not associated to any bound

electronic states. We have shown exactly how the bosonicity of these excita-

tions is controlled by density of the two-dimensional electron gas in the ground

state. The present theory could pave the way to the experimental demon-

stration of fundamental quantum degeneracy phenomena and unconventional

lasing devices without population inversion based on composite bosons with

controllable properties and interactions. A question still open is if it is possi-

ble to exploit the theory of polariton scattering developed in this Chapter, to
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obtain an electrically pumped polaritonic laser. Apart from its fundamental

interest to the field of coherent phenomena in condensed matter systems, such

laser could also be of great technological interest, both for its extremely low

treshold and for its potential capability to operate at room-temperature.



General conclusions

Intersubband polaritons are recently discovered [24] low energy excitations in

microcavity embedded quantum wells. While some aspects of their physics

are reminiscent of the better known exciton polaritons, they present various

properties that make them particularly interesting both for fundamental and

applied research. On the fundamental side, their unprecedented light-matter

coupling [25] permits to investigate new regimes of cavity quantum electrody-

namics. On the applied side, they are promising systems for the realization of

efficient, room-temperature [49] light emitting devices in the mid-infrared and

Terahertz.

This thesis introduced various aspects of the physics of intersubband po-

laritons. I presented a quantum theory that predicts the emission of quan-

tum vacuum radiation when the ultra-strong light-matter interaction is non-

adiabatically modulated [34]. While various other proposals had been ad-

vanced in order to measure such effect [62, 63], we believe that the present one

is particularly promising due to the large value of predicted quantum vacuum

radiation. I also participated in two preliminary experimental works toward

the observation of such effect [32, 37], that proved how a non-adiabatic modula-

tion of the ultra-strong light-matter coupling can be achieved in intersubband

polariton systems. Now that both the theoretical predictions and the prelim-

inary experiments are in place, experimentalists will have the opportunity to

work toward the measure of the quantuum vacuum radiation itself, complet-

ing, we hope, a quest that started almost forty years ago [93]. These works

could have an impact also in other fields, such as circuit quantum electrody-

namics, where similar experiments are being performed [94, 95] and in general

in all domains where it is possible to obtain a non-adiabatic change in the

light-matter coupling.

On a more applied level, I studied how the strong coupling regime impacts

on electron transport and electroluminescence in microcavity embedded quan-
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tum wells. I developed an efficient numerical method [38] capable to model

electroluminescence under incoherent electron injection. Apart for its useful-

ness in modelling real word devices, it shows that, by increasing the light-

matter coupling in such structures, it si possible to increase their quantum

efficiency, giving evidence of a strong coupling extension of the Purcell effect

[2]. Realization of samples with even larger vacuum Rabi couplings [32] may

soon permit an experimental verification of such effects and thus to increase

the efficiency of ligh emitting devices in the mid-infrared and Terahertz.

In the strong coupling regime, when the light-matter coupling is bigger than

all the other spurious couplings, electrons are dressed by the quantum vacuum

fluctuations of the electromagnetic field [96], leading to an electron spectral

function qualitatively different from the unperturbed one. This modification

in the spectral function can be exploited to selectively excite superradiant

states by resonant electron injection. This kind of effect can be observed if the

electrons are injected in the structure with an energy resolution comparable to

the vacuum Rabi energy. Given the Rabi energy of actual samples, we hope

that it will be soon possible to observe such injection effect, thus dramatically

improving quantum efficiency of intersubband light emitting devices.

I also studied the possibility for intersubband polaritons to undergo stim-

ulated scattering. The results presented here prove that, despite of saturation

effects at higher densities, it is possible to reach the stimulated scattering

regime, obtaining a low-threshold, inversionless optical pumped laser [40]. Re-

alization of such laser, apart from its applied interest, will give physicist work-

ing in the field of condensed matter coherent phenomena the possibility to

study a new kind of room-temperature degenerate quantum gas.

In conclusion, this thesis work may stimulate many interesting experimen-

tal and theoretical studies in the growing fields of cavity quantum electrody-

namics, quantum opto-electronics, intersubband polaritonics and light-matter

interaction in general.
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Second quantized Hamiltonian

In this Appendix we will derive the second quantized Hamiltonian introduced

in Chapter 1. We invite the reader to refer to that Chapter for a detailed

description of the physical system under consideration.

We have a two-dimensional electron gas in a microcavity. We will call N the

number of electrons, S = Lx×Ly the surface of the sample, LQW the thickness

of the quantum well and Lcav the cavity length. For a clearer derivation we

will consider here perfect metallic boundary conditions for the electromagnetic

field. Introducing the photonic creation and annihilation operators a†σ,q and

aσ,q, whose commutation relations are [aσ,qa
†
σ′,q′] = δ(q − q′)δσ,σ′ , we can write

the quantized vector potential of the free electromagnetic field, fulfilling the

boundary conditions, as (see Ref. [97] for details)

A(r) =
∑

σ,q

√

~

2ǫ0ωcav(q)
(aσ,quq,σ + a†σ,qu

∗
q,σ). (A.1)

In Eq. A.1 σ = TM, TE are the two polarizations of the field, q = (2πlx
Lx
, 2πly

Ly
, πlz

Lcav
)

is the three-dimensional wavevector of the electromagnetic wave, l1, l2 ∈ Z, l3 ∈
N and the two spatial modes are given by

uq,TM =

√

2

SLcav
eiqxx+iqyy(i sin(qzz) cos(θ)e1 + cos(qzz) sin(θ)ez),

uq,TE =

√

2

SLcav

eiqxx+iqyyi sin(qzz)e2, (A.2)

where e1 and e2 are orthogonal vectors in the plane (x, y) with e2 ·q = 0, θ is

the angle q makes with the z axis and z ∈ [0, Lcav].
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Anyway, being LQW ≪ Lcav, we have qzz ≪ 1, that is the electrons see

an electromagnetic field constant along the z-axis. Placing the quantum well

containing the electron gas at z = 0, only the TM mode is coupled to the

electrons and it has the form

uq,TM =

√

2

SLcav
eiqxx+iqyy sin(θ)ez. (A.3)

Being only the TM mode coupled with the electron gas, we will drop the

polarization index from photonic operators.

Due to translational invariance in the x− y plane, the uncoupled electron

eigenstates can be put in the form

ψk,j(r, z) = eik·rφj(z), (A.4)

where j = 1, 2 is the conduction subband index and φj(z) is a function localized

inside the quantum well, whose exact form depends upon the well potential

shape. We introduce the fermionic creation and annihilation operators c†j,k and

cj,σ,k for electrons in the state ψk,j(r, z) with spin σ, such that {cj,σ,k, c
†
j′,σ′,k′} =

δ(k − k′)δj,j′δσ,σ′ .

The Hamiltonian describing the coupled light-matter system is given by

minimally coupling the electrons to the electromagnetic field

H =

N
∑

j=1

(p− eA(r))2

2m⋆
. (A.5)

Developing Eq. A.5 we can isolate three terms: a free term, a term linear

in the vector potential and a term quadratic in the vector potential. We

will now quantize these three terms. The free part of the Hamiltonian is

automatically diagonalized because we chose its eigenstates (in Eq. A.4) as

second quantization basis. It thus read

HF =
∑

k,σ,j=1,2

~ωc,j(k)c
†
j,σ,kcj,σ,k. (A.6)

The part linear in the vector potential can be evaluated from Eqs. A.1, A.3

and A.5, introducing the matrix element of the momentum operator between

two electronic eigenstates p12 =
∫

φ1(z)pzφ2(z)dz. Notice that being pz an odd

operator only electronic states between different subbands are coupled by this

term. We have thus

HL =
∑

q

~ωcav(q)a
†
qaq +

∑

σ,k,q

√

~e2

m⋆ 2ǫ0ωcav(q)SLcav
cos(kzz) sin(θ)p12

[(aq + a†−q)c
†
2,σ,k+qc1,σ,k + (a−q + a†q)c†1,σ,kc2,σ,k+q]. (A.7)
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For a deep rectangular well almost all the oscillator strength is concentrated in

the lowest transition, with the effects of higher energy transitions accounting

only for minor corrections. This approximation becomes exact in the case of a

parabolic confinement, for which p12 =
√

~m⋆ω12/2. In the following we will

thus consider the case of a parabolic quantum well in order to simplify the

resulting expressions.

The part quadratic in the vector potential can be obtained in the same way,

but this time the Hamiltonian depends neither on z nor on pz and thus only

electronic states in the same subband are coupled. The resulting Hamiltonian

reads

HQ =
∑

σ,k,q

~e2 sin(θ)2

2ǫ0ωcav(q)m⋆SLcav
(c†1,σ,kc1,σ,k + c†2,σ,kc2,σ,k)(aq + a†−q)(a−q + a†q).

(A.8)

Eq. A.8 can be greatly simplified by noticing that
∑

σ,k

(c†1,σ,kc1,σ,k + c†2,σ,kc2,σ,k) = N (A.9)

is the total number of electrons in the quantum well, and it is thus equal to

N times the identity if the number of electrons is fixed to N . We can thus

rewrite Eq. A.8 as

HQ =
∑

q

~e2 sin(θ)2N

2ǫ0ωcav(q)m⋆SLcav
(aq + a†−q)(a−q + a†q). (A.10)

In order to obtain Eq. A.8 we neglected the terms of the form c†j,σ,kcj,σ,k+q−q′a†qaq′.

This approximation, necessary to put the Hamiltonian in the quadratic form

of Eq. A.10 is justified by the fact that the photonic wavevectors q and q′ are

much smaller than the electronic ones. In fact terms like c†j,σ,kcj,σ,k+q−q′a†qaq′,

describe processes in which a photon is scattered by an electron. This kind of

process is possible only if the initial electronic state is filled and the final one

is empty and thus only if k + q − q′ is inside the Fermi sea and k is outside.

To neglect these terms is thus equivalent to neglect the tiny fraction of elec-

trons just on the border of the Fermi surface (at a distance of the order of the

resonant photonic wavevector).

Defining

χ(q)2 =
e2 sin(θ)2

2ǫ0ωcav(q)m⋆SLcav

(A.11)
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and

D(q) =
χ(q)2

ω12
(A.12)

we can thus write Hamiltonian in Eq. A.5 in the form

H =
∑

k

~ωc,1(k)c
†
1,σ,kc1,σ,k + ~ωc,2(k)c

†
2,σ,kc2,σ,k (A.13)

+
∑

q

~ωcav(q)a
†
qaq + ~D(q)(a1,−q + a†1,q)(a1,q + a†1,−q)

+
∑

k,q

~χ(q)(aq + a†−q)c
†
2,σ,k+qc1,σ,k + ~χ(q)(a−q + a†q)c

†
1,σ,kc2,σ,k+q.
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Input-output formalism

In this Appendix we will introduce the input-output formalism that will allow

us to theoretically describe the coupling of the system with the environment.

The environment will be modeled by two baths of harmonic excitations, one

coupled to the cavity electromagnetic field, the other to the electronic polar-

ization. The first bath models the external electromagnetic field coupled to

the microcavity photons by the finite reflectivity of the mirrors, the second

models all the spurious degrees of freedom (for example phonons and thermal

electronic excitations) coupled to the electrons.

We will consider the following model Hamiltonian:

H = Hbos +Hbath
phot +Hbath

el , (B.1)

where Hbos is the Hamiltonian is the Hamiltonian of Section 1.11 describing

the microcavity embedded quantum wells, while Hbath
ph and Hbath

el describe the

terms due to the photonic and electronic reservoir respectively.

The presence of extra-cavity electromagnetic modes can be modeled by the

Hamiltonian:

Hbath
ph =

∫

dqz
∑

q

~ωph(q, qz)α
†
q,qz

αq,qz

+ i~

∫

dqz
∑

q

(κph(q, qz)αq,qza
†
q − κ∗ph(q, qz)α

†
q,qz

aq). (B.2)

Here, ωph(q, qz) is the frequency of an extra-cavity photon with wavevector

(q, qz) and α†
q,qz

is the corresponding creation operator (extra-cavity photon

modes are three dimensional). The coupling between the cavity and the extra-

cavity radiation fields is quantified by the matrix element κph(q, qz), whose
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value depends on the specific mirror structure and can be calculated through

a solution of the Maxwell equations for the cavity system. The coupling part

of this Hamiltonian has been obtained using the Rotating Wave Approxima-

tion (see Section 1.2.4 ), for a thoughtful justification of this see Ref. [33].

In the same way the coupling to the electronic bath can be modeled by the

Hamiltonian:

Hbath
el =

∫

dqz
∑

q

~ωel(q, qz)β
†
q,qz

βq,qz

+ i~

∫

dqz
∑

q

(κel(q, qz)βq,qzb
†
q − κ∗el(q, qz)β

†
q,qz

bq), (B.3)

where we kept the same notation of Eq. B.2 even if now qz does not need

to be a wavevector component but it is a general index over the states of the

bath. From Eqs. B.1 and B.2 we can calculate the equation of motion for the

extra-cavity photon operator in Heisemberg representation

dαq,qz(t)

dt
= − i

~
[αq,qz(t), H ] = −iωph(q, qz)αq,qz(t) − κ∗ph(q, qz)aq(t), (B.4)

and its solution can be formally written as

αq,qz(t) = e−iωph(q,qz)(t−t0)αq,qz(t0) − κ∗ph(q, qz)

∫ t

t0

dt′e−iωph(q,qz)(t−t′)aq(t
′),

(B.5)

t0 being the initial time. These formulas con be inserted into the evolution

equation for the cavity photon amplitude:

daq(t)

dt
= − i

~
[aq(t), Hbos] +

∫

dqzκph(q, qz)αq,qz(t) (B.6)

= − i

~
[aq, Hbos] +

∫

dqzκph(q, qz)αq,qz(t0)e
−iωph(q,qz)(t−t0)

−
∫

dqz|κph(q, qz)|
∫ t

t0

dt′e−iωph(q,qz)(t−t′)aq(t
′).

Using the standard definition

αin
q,qz

≡ lim
t0→−∞

αq,qz(t0)e
−iωph(q,qz)t0 , (B.7)

αout
q,qz

≡ lim
t→∞

αq,qz(t)e
−iωph(q,qz)t,

for the input and output fields one can cast Eq. B.6 in the form of a quantum

Langevin equation

daq(t)

dt
= − i

~
[aq, Hbos] −

∫

dt′Γcav,q(t− t′)aq(t
′) + Fcav,q(t), (B.8)
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where the (causal) damping memory kernel is given by

Γcav,q(t) = Θ(t)

∫

dqz|κph(q, qz)|2e−iωph(q,qz)t, (B.9)

and the fluctuating Langevin force is represented by the operator

Fcav,q(t) =

∫

dqzκph(q, qz)e
−iωph(q,q)tαin

q,q. (B.10)

Applying the same procedure for the bath coupled with the electrons we thus

obtain a set of quantum Langevin equations describing, by means of a non-

Markovian dynamics and of fluctuating forces, the system coupled with its

environment

daq

dt
= − i

~
[aq, Hbos] −

∫

dt′Γcav,q(t− t′)aq(t
′) + Fcav,q(t) (B.11)

dbq
dt

= − i

~
[bq, Hbos] −

∫

dt′Γ12,q(t− t′)bq(t
′) + F12,q(t).

Once the intra-cavity fields have been determined by solving Eq. B.11, the

extra-cavity emitted field can be found by inserting Eq. B.7 into Eq. B.5 and

taking t0 → −∞ and t→ ∞. We obtain

αout
q,qz

= αin
q,qz

+ κ∗ph(q, qz)ãq(ωph(q, qz)). (B.12)

From Eq. B.12 we can get an expression for the number operator for the extra

cavity photons

αout †
q,qz

αout
q,qz

= αin †
q,qz

αin
q,qz

+ κ∗ph(q, qz)α
in †
q,qz

ãq(ωph(q, qz)) (B.13)

+ κph(q, qz)ã
†
q(ωph(q, qz))α

in
q,qz

+ |κph(q, qz)|2ã†q(ωph(q, qz))ãq(ωph(q, qz)).

Multiplying both sides of the equation for the extra-cavity photonic density of

states ρph
q (ωph(q, qz)), considering the extra-cavity field initially in its vacuum

state and introducing the spectrum of emitted radiation

Sq(ω(q, qz)) = ρph
q (ωph(q, qz))〈αout †

q,qz
αout

q,qz
〉, (B.14)

we thus obtain

Sq(ω) =
1

π
ℜ(Γ̃cav,q(ω))〈ã†q(ω)ãq(ω)〉. (B.15)
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We end this Appendix with the explicit calculation of the expectation values

of quadratic forms of the Langevin forces:

< F̃ †3
q (ω)F̃ 3

q(ω′) > = < F̃cav,−q(−ω)F̃ †
cav,−q(−ω′) >

=
∑

qz ,q′z

κph
qz ,−qκ

ph∗
q′z ,−q4π

2δ(−ω − ωqz,−q)δ(−ω′ − ωq′z,−q)

< αin
qz,−qα

†in
q′z,−q >

=
∑

qz

|κph
qz,−q|24π2δ(−ω − ωq,qz)δ(ω − ω′)

= 4πδ(ω − ω′)ℜ(Γ̃cav,−q(−ω)),

< F̃ †4
q (ω)F̃ 4

q(ω′) > = < F̃12,−q(−ω)F̃ †
12,−q(−ω′) >

=
∑

qz ,q′z

κel
qz ,−qκ

el∗
q′z ,−q4π

2δ(−ω − ωbath
qz,−q)δ(−ω′ − ωbath

q′z,−q)

< βin
qz,−qβ

†in
q′z,−q >

=
∑

qz

|κel
qz,−q|24π2δ(−ω − ωbath

qz,−q)δ(ω − ω′)

= 4πδ(ω − ω′)ℜ(Γ̃12,−q(−ω)). (B.16)

All the other possible combinations are zero because, being the input state the

vacuum, it is annihilated by both αin
q,qz

and βin
q,qz

operators.



Appendix C

Factorization scheme

As explained in Chapter 3, we used a cluster expansion and truncation scheme

to obtain a closed set of algebraic equations describing the electronic and

photonic populations. Here we briefly review the principles of this method

following [76, 77, 78] and apply it to the actual case.

If we consider each bosonic operator or each pair of fermionic operators as

an excitation operator and we write the expectation value of an N excitation

operator as < N >, then the Heisenberg equation of motion takes the form

i
∂

∂t
< N >= T [< N >] + V [< N + 1 >], (C.1)

where the N-excitation expectation value is coupled to higher order quanti-

ties via the functional V. An N-excitation truncation scheme is obtained if

we factorize all the expectation values of more than N excitations in all the

possible ways and considering the sign exchange for the fermionic operators

in order to obtain a factorized expression that respects the commutation and

anticommutation properties of the original one.

We are interested in incoherent emission only, so the only nonzero one-

excitation operators we consider are < c†1,σ,kc1,σ,k > and < c†2,σ,kc2,σ,k >. We

choose N = 2, that is we factorize all the 3 or more excitation operators. The
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3 excitations operators have been factorized in the following way

< aqc1,σ,kc
†
2,σ,k′c

†
2,σ′,k′′c2,σ′,k′′′ > = − < aqc

†
2,σ,k′c1,σ,k >< c†2,σ′,k′′c2,σ′,k′′′ >

+ < aqc
†
2,σ′,k′′c1,σ,k >< c†2,σ,k′c2,σ′,k′′′ >

= − < aqc
†
2,σ,k′c1,σ,k > δk′′,k′′′n2,k′′

+ < aqc
†
2,σ,k′′c1,σ,k > δk′,k′′′δσ,σ′n2,k′ , (C.2)

< aqc
†
2,σ,kc1,σ,k′c1,σ′,k′′c†1,σ′,k′′′ > = − < aqc

†
2,σ,kc1,σ′,k′′ >< c1,σ,k′c†1,σ′,k′′′ >

+ < aqc
†
2,σ,kc1,σ,k′ >< c1,σ′,k′′c†1,σ′,k′′′ >

= − < aqc
†
2,σ,kc1,σ,k′′ > δk′,k′′′δσ,σ′(1 − n1,k′)

+ < aqc
†
2,σ,kc1,σ,k′ > δk′′,k′′′(1 − n1,k′′).

For the two-time quantities in the calculation of luminescence spectrum, we

proceed analogously and obtain:

< a†q(0)aq′c†2,σ,k+qc2,σ,k+q′ > = < a†q(0)aq′ >< c†2,σ,k+qc2,σ,k+q′ > δq,q′,

< a†q(0)aq′c†1,σ,kc1,σ,k+q−q′ > = < a†q(0)aq′ >< c†1,σ,kc1,σ,k+q−q′ > δq,q′.

(C.3)

By means of this factorization scheme we arrived in Chapter 3 to the system

of coupled nonlinear differential equations described in Eq. 3.7. In the steady-

state regime, neglecting the photonic wavevector into sums over electronic

wavevectors, it can be cast in the form of a system of algebraic equations, well

suited for numerical calculations

0 =
Bq

D

∑

k

(1 −Dk)(
n1,k − n0

1,k

τk
+ Γout

1,kn1,k − Γin
1,k(1 − n1,k)) − 2BqFΓX

D

+

(

Bq(γ + ΓX) + (
δ2
q

ΓY

+
GqΓX

2Dχ(q)2
)γ

)

na,q, (C.4)

0 = (
∑

q

Bqχ(q)2

GqΓX
(1 −Dk) +

1

2
)(
n1,k − n0

1,k

τk
+ Γout

1,kn1,k − Γin
1,k(1 − n1,k))

+
Dk

ΓXΓY

∑

q

χ(q)2na,q

Gq

(ΓYBq(γ + ΓX) + δ2
qγ) − 2Fk

∑

q

Bqχ(q)2

Gq

,

0 = −
n2,k − n0

2,k

τk
− Γout

2,kn2,k + Γin
2,k(1 − n2,k) −

n1,k − n0
1,k

τk
− Γout

1,kn1,k + Γin
1,k(1 − n1,k),
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where

Dk = n1,k − n2,k (C.5)

Fk = n2,k(1 − n1,k)

D =
∑

k

Dk

F =
∑

k

Fk

Bq = ΓY +
2χ(q)2

ΓX
D

δq = ωc(q) − ω12

Gq = (ωc(q) − ω12)
2 + (ΓY +

2χ(q)2D

ΓX
)2.

The equilibrium populations n0
1,k and n0

2,k are given by

n0
1,k =

1

exp β(ω1(k) − ǫF ) + 1
, (C.6)

n0
2,k =

1

exp β(ω2(k) − ǫF ) + 1
,

where ǫF is calculated by inverting the relation

∑

k

n1,k + n2,k =
m∗

2π~2

∫ ∞

0

dǫ
1

exp β(ǫ− ǫF ) + 1
+

1

exp β(ǫ+ E12 − ǫF ) + 1
.

(C.7)

Discretizing the electronic and photonic wavevectors on a grid of respectively

Nk and Nq points, we obtain a system of 2Nk + Nq equations that can be

numerically solved, e.g., with a Newton algorithm.
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Appendix D

Diagonalization procedure

In Chapter 4 we showed how it is possible, in order to study the electron

injection, to restrict ourselves to the one-excitation subspace Q̂ = 1. More-

over we showed how only a tiny (but still infinite-dimensional) subspace of

this subspace is relevant for our results. Namely we claimed that the dy-

namics of the system can be accurately described restraining to the subspace

{|C〉, |A,q〉, |B,q,k′〉, |B,q,k′′〉, . . . , |A,q′〉, |B,q′,k′〉, |B,q′,k′′〉, . . .}, where the

definition of the aforementioned kets can be found in Section 4.2. In such sub-

space the Hamiltonian in Eq. 4.2 reads

HN+1,k,1 = ~

















ωc,2(k) v(q) v(q′) v(q′′) · · ·
v(q)T M(q) 0 0 · · ·
v(q′)T 0 M(q′) 0 · · ·
v(q′′)T 0 0 M(q′′)

. . .
...

...
...

. . .
. . .

















(D.1)

and M(q) is the Hamiltonian matrix block in the subspace spanned by

{|A,q〉, |B,q,k′〉, |B,q,k′′〉, . . . }. It effectively describes the system in pres-
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ence of one photon with a well defined wavevector q

M(q) =











ωcav(q) + ωc,1(|k− q|)) χ(q)

χ(q) ωc,2(|k′ + q|) − ωc,1(k
′) + ωc,1(|k − q|)

χ(q) 0
...

...

χ(q) . . .

0 . . .

ωc,2(|k′′ + q|) − ωc,1(k
′′) + ωc,1(|k − q|) . . .

. . .
. . .













, (D.2)

where v(q) = [χ(q), 0, 0, . . . ]. Since the typical wavevector q of the resonantly

coupled cavity photon mode is much smaller than kF , we can perform the

standard approximation ωc,2(|k + q|)− ωc,1(k) ≃ ωc,2(k)− ωc,1(k) = ω12. This

way, we can exactly diagonalize each of the M(q) blocks. As expected from the

theory of optically excited polaritons [25], by diagonalizing the matrix M(q)

we find two bright electronic states (i.e., with a photonic mixing component)

|±,q〉 =
(ω±(q) − ω12)|A,q〉 + χ(q)

∑

k |B,q,k〉
√

(ω±(q) − ω12)
2 + |χ(q)|2N

, (D.3)

with energies ~ωc,1(k) + ~ω±(q), where

ω±(q) =
ωcav(q) + ω12

2
±

√

(

ωcav(q) − ω12

2

)2

+N |χ(q)|2 . (D.4)

Note that ~ω±(q) are the energies of the two branches of intersubband cavity

polaritons [25]. The other orthogonal states are dark (no photonic component),

with eigenvalues ωc,2(k) = ωc,1(k) + ω12 and eigenvectors

|l,q〉 =

∑

k βl(q,k)|B,q,k〉√
N

(D.5)

where the βl(q,k) are such that

∑

k

βl(q,k) = 0, (D.6)

∑

k

βl(q,k)β∗
l′(q,k) = δl,l′.
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Since 〈l,q|H c†2,k|FN 〉 = 0, the dark states |l,q〉 are also eigenstates of the ma-

trix HN+1,k,1 and do not contribute to the electron spectral function, because

they have zero overlap with the state |C〉 = c†2,k|FN〉 = 0. In contrast, this is

not the case for the bright eigenstates of each block M(q), as we find

〈±,q|H c†2,k|FN〉 =
χ(q)(ω±(q) − ω12)

√

(ω±(q) − ω12)2 + |χ(q)|2N
= J±(q) . (D.7)

Therefore, the representation ofH in the subspace {|C〉, |+,q〉, |−,q〉, |+,q′〉, |−,q′〉, . . .}
reads

H′

N+1,k,1 = ~

0

B

B

B

B

B

B

B

B

B

B

B

B

@

ωc,1(k) + ω12 J+(q) J−(q) J+(q′) J−(q′) · · ·
J+(q) ωc,1(k) + ω+(q) 0 0 0 · · ·
J−(q) 0 ωc,1(k) + ω−(q) 0 0 · · ·
J+(q′) 0 0 ωc,1(k) + ω+(q′) 0 · · ·

J−(q′) 0 0 0 ωc,1(k) + ω−(q′)
. . .

..

.
..
.

..

.
..
.

. . .
. . .

1

C

C

C

C

C

C

C

C

C

C

C

C

A

.

Hence, here we have demonstrated that the bare electron state c†2,k|FN〉 is cou-

pled to the continuum of the polariton modes with all the different wavevectors

q. Since the polariton frequencies ω± and the coupling J± depend only on the

modulus of q, we can further simplify the diagonalization problem by intro-

ducing the ’annular’ bright states

|±, q〉 =
1√
Lq

∑

|q|=q

|±,q〉 , (D.8)

where L =
√
S and 2π/L is the linear density of modes in reciprocal space. All

annular states are coupled to |C〉. Instead, all the orthogonal linear combina-
tions of |±,q〉 (with |q|= q) are uncoupled and therefore do not contribute to
the electron spectral function. The matrix representation of H in the subspace
{|C〉, |+, q〉, |−, q〉, |+, q′〉, |−, q′〉, . . .} reads

H′′

N+1,k,1 = ~

0

B

B

B

B

B

B

B

B

B

B

B

B

@

ωc,1(k) + ω12 J+(q)
√

Lq J−(q)
√

Lq J+(q′)
√

Lq′ J−(q′)
√

Lq′ · · ·
J+(q)

√
Lq ωc,1(k) + ω+(q) 0 0 0 · · ·

J−(q)
√

Lq 0 ωc,1(k) + ω−(q) 0 0 · · ·
J+(q′)

√
Lq′ 0 0 ωc,1(k) + ω+(q′) 0 · · ·

J−(q′)
√

Lq′ 0 0 0 ~ωc,1(k) + ω−(q′)
. . .

...
...

...
...

. . .
. . .

1

C

C

C

C

C

C

C

C

C

C

C

C

A

.

Hence, in the subspace (N+1,k, 1), we have found that eigenstates of H with

a finite overlap with the bare electron have the form

|N + 1,k, 1, ζ〉 = µζ c
†
2k|FN〉 +

∑

q,σ=±
λζ,σ,q|σ, q〉 . (D.9)
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The coefficients µζ and λζ,σ,q as well as the corresponding energy eigenval-

ues ~ωζ can be calculated though a numerical diagonalization of the matrix

H′′
N+1,k,1.



Appendix E

Matrix elements recursive

relation

In this Appendix we will write down the algebra leading to results of Chapter

5. The first step is to work out the commutator algebra for the intersubband

excitation operators, originally defined in Section 1.4.3. The creation and

annihilation operators for intersubband excitations with in-plane wavevector

q can be written as

b†q =
1√
N

∑

k

c†2,k+qc1,k, (E.1)

bq =
1√
N

∑

k

c†1,kc2,k+q.

Using the fermionic anticommutator relations

{ci,k, c†j,k′} = δ(k − k′)δi,j, (E.2)

{ci,k, cj,k′} = 0,

we obtain

[bq, b
†
q′] =

1

N

∑

k,k′

[c†1,kc2,k+q, c
†
2,k′+q′c1,k′ ] (E.3)

=
1

N

∑

k

c†1,kc1,k+q−q′ − c†2,k+q′c2,k+q = δ(q − q′) −Dq,q′,

where the deviation from Boson operator Dq,q′ has been defined as

Dq,q′ = δ(q − q′) − 1

N

∑

k

c†1,kc1,k+q−q′ − c†2,k+q′c2,k+q. (E.4)
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Commuting it with the intersubband operators and rescaling the indexes we

thus obtain

[Dq,q′, b†q′′ ] =
2

N
b†q′′+q′−q, (E.5)

[bq′′ , Dq,q′] =
2

N
bq′′+q−q′.

By iteration

[Dq,q′, b†m
q′′ ] =

2m

N
b†q′′+q′−qb

†m−1
q′′ , (E.6)

[bmq′′ , Dq,q′] =
2m

N
bm−1
q′′ bq′′+q−q′ ,

[bq, b
†m
q′ ] = mb†m−1

q′ [δ(q − q′) −Dq,q′] − m(m− 1)

N
b†2q′−qb

†m−2
q′ ,

[bmq , b
†
q′] = m[δ(q − q′) −Dq,q′]bm−1

q − m(m− 1)

N
b2q−q′bm−2

q .

From Eq. E.4 we have that the action of Dq,q′ on the N -electrons ground state

|F 〉 =
∏

k<kF
c†1,k|0〉 gives

Dq,q′|F 〉 = δ(q − q′)|F 〉 − 1

N

∏

k>kF
|k+q−q′|<kF

c†1,k|0〉. (E.7)

The second term of Eq. E.7 is gives a contribution of the order of qres

kF
and

will be thus neglected. We will now introduce the four-indexes K coefficients,

that will play a prominent role in our recursive calculation procedure. Let us

define the K coefficients as

n!m!Kn,s
m,r = 〈F |bnqbmq′b† s

q b
† r
q′ b

†
Q|F 〉, (E.8)

Q = q(n− s) + q′(m− r).

It is obvious from the definition that Kn,s
m,r ∝ δ(n + m − r − s − 1) and that

Kn,s
m,r = Km,r

n,s . With the chosen normalization the K coefficients, for small m

and n, are of the order 1/N if n 6= s and m 6= r and of order 1 otherwise (for

real bosons 〈F |bnqbmq′b
†m
q′ b†n

q |F 〉 = n!m!). Let us notice that in the case n = s

or m = r the definition of the indexes is not unique, in fact

〈F |bnqbmq′b
†m
q′ b

†n
q |F 〉 = 〈F |bnqbmq′b

†m
q′ b

†n−1
q b†q|F 〉 = n!m!Kn,n−1

m,m (E.9)

= 〈F |bnqbmq′b
†m−1
q′ b†q′b

†n
q |F 〉 = n!m!Kn,n

m,m−1,
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but this does not cause any ambiguity, simply certain symmetries of the result-

ing expressions will be hidden (e.g. them↔ n symmetry). Now by commuting

one of the creation operators in the definition of K coefficients in Eq. E.8 all

the way to the left, until it annihilates on the ground state, we find a recursive

relations for the K coefficients

〈F |bnqbmq′b† s
q b

† r
q′ b

†
Q|F 〉 = 〈F |bnqb†Qbmq′b† s

q b
† r
q′ |F 〉 (E.10)

+mδ(q′ −Q)〈F |bnqbm−1
q′ b† s

q b
† r
q′ |F 〉

−m〈F |bnqDq′,Qb
m−1
q′ b† s

q b
† r
q′ |F 〉

−m(m− 1)

N
〈F |bnqb2q′−Qb

m−2
q′ b† s

q b
† r
q′ |F 〉

= nδ(q − Q)〈F |bn−1
q bmq′b† s

q b
† r
q′ |F 〉

−n(n− 1)

N
〈F |b2q−Qb

n−2
q bmq′b† s

q b
† r
q′ |F 〉

+mδ(q′ −Q)〈F |bnqbm−1
q′ b† s

q b
† r
q′ |F 〉

−2mn

N
〈F |bn−1

q bq+q′−Qb
m−1
q′ b† s

q b
† r
q′ |F 〉

−m(m− 1)

N
〈F |bnqb2q′−Qb

m−2
q′ b† s

q b
† r
q′ |F 〉,

and so

Kn,s
m,r = δ(m− r)δ(n− s− 1)Kn−1,n−1

m,m−1 + δ(m− r − 1)δ(n− s)Kn,n−1
m−1,m−1

− s!r!

n!m!N
[n(n− 1)Ks,n−2

r,m +m(m− 1)Ks,n
r,m−2 + 2nmKs,n−1

r,m−1].(E.11)

This recursion relation permits us to numerically calculate the K coefficients

for realistic parameters in a reasonable computing time. Having calculated

the K coefficients we can pass to calculate the Hamiltonian matrix elements

between states with multiple intersubband excitations. In order to simplify the

algebra, in the Hamiltonian in Eq. 5.1, we will neglect the C12 and C21 terms.

These terms describe an intersubband phonon emission, that is an electron falls

from the second to the first conduction subband emitting a LO-phonon. The

process involved thus destroys an intersubband excitation and can not give a

stimulated scattering to the first order. It could give a stimulated scattering

effect to higher orders, for example in a process in which two polaritons scatter,

one of them is annihilated and the other is scattered in the final state. These

processes are anyway much weaker then the first order processes given by
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intrasubband C11 and C22 scattering terms. We thus obtain

[H, b†q] = ω12b
†
q +

∑

q′,qz

[C22(q
′, qz) − C11(q

′, qz)](d
†
−q′,qz

+ dq′,qz)b
†
q+q′ .

(E.12)

Using iteratively Eq. E.12 we can calculate the (unnormalized) scattering

matrix element as

〈F |bn+1
q bm−1

q′ dq′−q,qzHphonb
†m
q′ b

†n
q |F 〉 =

∑

q′′

[C22(q
′′, qz) − C11(q

′′, qz)]

(n〈F |bn+1
q bm−1

q′ b†m
q′ b

†
q+q′′b

†n−1
q |F 〉 +m〈F |bn+1

q bm−1
q′ b†q′+q′′b

†m−1
q′ b†n

q |F 〉)
= [C22(q − q′, qz) − C11(q − q′, qz)] (E.13)

(n〈F |bn+1
q bm−1

q′ b†m
q′ b

†
2q−q′b

†n−1
q |F 〉 +m〈F |bn+1

q bm−1
q′ b†m−1

q′ b†n+1
q |F 〉)

= (n + 1)!m![C22(q − q′, qz) − C11(q − q′, qz)](
n

m
Km−1,m

n+1,n−1 + Km−1,m−1
n+1,n )

and so the normalized squared matrix element

|〈F |bn+1
q bm−1

q′ dq′−q,qzHphonb
†m
q′ b†n

q |F 〉|2

〈F |bn+1
q bm−1

q′ b†m−1
q′ b†n+1

q |F 〉〈F |bnqbmq′b
†m
q′ b

†n
q |F 〉

(E.14)

is equal to

(n+ 1)m[C22(q − q′, qz) − C11(q − q′, qz)]
2( n

m
Km−1,m

n+1,n−1 + Km−1,m−1
n+1,n )2

Km,m
n,n−1Km−1,m−1

n+1,n

(E.15)

that as expected scales as m(n+ 1) for small occupation numbers.

We thus know how to calculate scattering matrix elements of intersubband

excitations. From these results it is straightforward to calculate scattering ma-

trix elements involving microcavity intersubband polariton states. Considering

the polariton creation and annihilation operators (see Eq. 5.2)

p†η,q = ᾱη,qa
†
q + β̄η,qbq, (E.16)

pη,q = αη,qaq + βη,qb
†
q,

we can write multi-polariton matrix elements as binomial expansions involving

light or matter terms. Given that aη and bη operators commute and that

photon operators commute with Hphon, we will obtain all the intersubband

polaritons matrix elements as expressions containing only K coefficients and

Hopfield coefficients.
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The multi-polariton normalization is given by

〈F |pn
η,qp

m
η′,q′p

†m
η′,q′p

†n
η,q|F 〉 = 〈F |

∑

j

(

n

j

)

αj
η,qa

j
qβ

n−j
η,q b

n−j
q

∑

y

(

m

y

)

αy
η,q′a

y
q′β

m−y
η′,q′ b

m−y
q′

∑

h

(

m

h

)

ᾱh
η′,q′a

† h
q′ β̄

m−h
η′,q′ b

†m−h
q′

∑

l

(

n

l

)

ᾱl
η,qa

† l
q β̄

n−l
η,q b

†n−l
q |F 〉

=
∑

l,h

(

n

l

)2(
m

h

)2

|αη,q|2l|βη,q|2(n−l)|αη′,q′|2h|βη′,q′|2(m−h)

h!l!〈F |bn−l
q bm−h

q′ b†m−h
q′ b†n−l

q |F 〉

= n!m!
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l,h

(

n

l

)(

m

h

)

|αη,q|2l|βη,q|2(n−l)|αη′,q′|2h

|βη′,q′|2(m−h)Kn−l,n−l
m−h,m−h−1 (E.17)

and the unnormalized matrix element by

〈F |pn+1
η,q p

m−1
η′,q′dq′−q,qzHphonp
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η′,q′p

†n
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(
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y
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The expression for the squared normalized polariton scattering matrix element

that we need for the Fermi golden rule

~
2|V n

m|2 =
|〈F |pn+1

η,q p
m−1
η′,q′ dq′−q,qzHphonp

†m
η′,q′p†n

η,q|F 〉|2

〈F |pn
η,qp

m
η′,q′p

†m
η′,q′p

†n
η,q|F 〉〈F |pn+1

η,q p
m−1
η′,q′ p

†m−1
η′,q′ p

†n+1
η,q |F 〉

(E.19)

can thus be obtained by putting together Eqs. E.17 and E.18 and from the

resulting expression we can read out the Bn
m coefficient (see Eq.5.14).



128 Appendix E. Matrix elements recursive relation

In order to obtain the final expression for the scattering rate (Eq. 5.17)

only remain to calculate the C11(q, qz) and C22(q, qz) coefficients. They are

given by matrix elements of the Frölich Hamiltonian [85]

∑

q

α(q, qz)e
−i(rq+zqz)d†q,qz

+ ᾱ(q, qz)e
i(rq+zqz)dq,qz , (E.20)

between electronic states corresponding respectively to the first and second

conduction subband, where

|α(q, qz)|2= 2π~ωLO
e2

ǫSLcav(q2 + q2
z)
. (E.21)

For definiteness in order to obtain the formula of Chapter 5, we considered the

case of a infinite rectangular potential well.
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photon confinement in semiconductor nanostructures, Proceedings of the

International School of Physics ”Enrico Fermi” – course 150 (IOS Press

(Amsterdam, Washington D.C), 2003).

[19] B. Deveaud, editor, The physics of semiconductor microcavities: from

fundamentals to nanoscale devices (Wiley-VCH, 2007).

[20] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J.

Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli,

V. Savona, P. B. Littlewood, B. Deveaud & Le Si Dang, Bose-Einstein

condensation of exciton polaritons, Nature 443, 409 (2006).



Bibliography 131

[21] S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos &

P. G. Savvidis, A GaAs polariton light-emitting diode operating near room

temperature, Nature 453, 372 (2008/05/15/print).

[22] G. Malpuech, A. Di Carlo, A. V. Kavokin, J. J. Baumberg, M. Zamfirescu

& P. Lugli, Room-temperature polariton lasers based on GaN microcavi-

ties, Applied Physics Letters 81, 412 (2002).

[23] S. Christopoulos, G. Baldassarri Hoger von Hogersthal, A. J. D. Grundy,

P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann,

R. Butte, E. Feltin, J.-F. Carlin & N. Grandjean, Room-Temperature Po-

lariton Lasing in Semiconductor Microcavities, Physical Review Letters

98, 126405 (2007).
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Paris Diderot-Paris 7 (2007).

[81] S. Datta, Quantum Transport: Atom to Transistor (Cambridge University

Press, 2005).

[82] U. Fano, Effects of Configuration Interaction on Intensities and Phase

Shifts, Physical Review 124, 1866 (1961).

[83] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman & E. A.

Cornell, Observation of Bose-Einstein Condensation in a Dilute Atomic

Vapor, Science 269, 198 (1995).

[84] A. J. Leggett, Quantum Liquids: Bose Condensation and Cooper Pairing

in Condensed-Matter Systems (Oxford University Press, 2006).

[85] R. Ferreira & G. Bastard, Evaluation of some scattering times for elec-

trons in unbiased and biased single- and multiple-quantum-well structures,

Physical Review B 40, 1074 (1989).



Bibliography 137

[86] M. Combescot, O. Betbeder-Matibet & R. Combescot, Exciton-exciton

scattering: Composite boson versus elementary boson, Physical Review B

75, 174305 (2007).

[87] M. Combescot, O. Betbeder-Matibet & F. Dubin, The many-body physics

of composite bosons, Physics Reports 463, 215 (2008), ISSN 0370-1573.

[88] P. Y. Yu & M. Cardona, Fundamentals of Semiconductors (Springer,

2001).

[89] O. Gauthier-Lafaye, P. Boucaud, F. H. Julien, S. Sauvage, S. Cabaret,

J.-M. Lourtioz, V. Thierry-Mieg & R. Planel, Long-wavelength ([approxi-

mate] 15.5 mu m) unipolar semiconductor laser in GaAs quantum wells,

Applied Physics Letters 71, 3619 (1997).

[90] R. W. Hellwarth, Theory of Stimulated Raman Scattering, Physical Re-

view 130, 1850 (1963).

[91] H. C. Liu, Iva W. Cheung, A. J. SpringThorpe, C. Dharma-wardana, Z. R.

Wasilewski, D. J. Lockwood & G. C. Aers, Intersubband Raman Laser,

Applied Physics Letters 78, 3580 (2001).

[92] J. B. Khurgin & H. C. Liu, Stimulated polariton scattering in intersubband

lasers: Role of motional narrowing, Physical Review B 74, 035317 (2006).

[93] Gerald T. Moore, Quantum Theory of the Electromagnetic Field in

a Variable-Length One-Dimensional Cavity, Journal of Mathematical

Physics 11, 2679 (1970).

[94] A. V. Dodonov, L. C. Celeri, F. Pascoal, M. D. Lukin & S. F.

Yelin, Photon generation from vacuum in non-stationary circuit QED,

arXiv:0806.4035v3.

[95] S. De Liberato, D. Gerace, I. Carusotto & C. Ciuti, External quantum

vacuum radiation from a cavity-embedded qubit, in preparation.

[96] S. De Liberato & C. Ciuti, Quantum theory of electron tunneling into

intersubband cavity polariton states, Physical Review B 79, 075317 (2009).

[97] K. Kakazu & Y. S. Kim, Quantization of electromagnetic fields in cavities

and spontaneous emission, Physical Review A 50, 1830 (1994).


