\

Streaming Tree Automata and XPath

Olivier Gauwin

» To cite this version:

Olivier Gauwin. Streaming Tree Automata and XPath. Software Engineering [cs.SE]. Université des
Sciences et Technologie de Lille - Lille I, 2009. English. NNT: . tel-00421911v1

HAL Id: tel-00421911
https://theses.hal.science/tel-00421911v1
Submitted on 5 Oct 2009 (v1), last revised 23 Jun 2010 (v3)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00421911v1
https://hal.archives-ouvertes.fr

Universig Lille 1 — Sciences et Technologies
Laboratoire d’'Informatique Fondamentale de Lille
Institut National de Recherche en Informatique et en Autique

U i .t, ’
Q@ il EinriA

Sciences et Techno logies

THESE

présenée en prendre version en vue d’obtenir le
grade de Docteur, gialité Informatique

par

Olivier Gauwin

FLUX XML, REQUETES XPATH

ET AUTOMATES
(Streaming Tree Automata and XPath)

These soutenue le 28 septembre 2009 devant le jury cag®sos

MICHAEL BENEDIKT Oxford University Rapporteur
HELMUT SEIDL Technische Universitat Minchen Rapporteur
HUBERT COMON-LUNDH ENS Cachan Examinateur
ARNAUD DURAND Université Denis Diderot — Paris 7 Examinateur
SEBASTIAN MANETH University of New South Wales Examinateur
JOACHIM NIEHREN INRIA Directeur

SOPHIE TISON Université de Lille 1 Co-Directrice

Flux XML, Requétes XPath et Automates

Copyright(© 2009, certains droits réservés (voir 'appendice A).
Olivier Gauwin

Version: October 2, 2009

Remerciements

Cette these n’est pas uniquement le fruit de mon travadstcégalement la
conséquence de collaborations fecondes et de volomagdilantes.

En premier lieu je remercie mes directeurs de these, Joaldiehren et So-
phie Tison. lls m’ont accordé leur confiance des le prernaier, alors que nous
ne nous connaissions pas. Tous deux sont a l'origine de rodillées et de
conseils, dont cette these est le reflet, et dont leur cemghtarité est souvent la
source. J'ai apprécié de pouvoir travailler a leurecdtirant ces trois ans.

Cette these doit également son existence a Pierre Margar ses enseigne-
ments et la supervision de mon stage de DEA avec Sébastieiedcny, il a su
m’initier avec enthousiasme a la science informatiquée demercie grandement
pour son soutien dans ma recherche d’une these.

Anne-Cécile Caron et Yves Roos ont travaillé avec noudayartie auto-
mates. D’autres travaux ont été inities avec Arnaud Bdret Marco Kuhlmann.
De nombreuses discussions ont également influencé nasixianotamment avec
Sebastian Maneth et Michael Benedikt. J'ai été tres dweude travailler avec
chacun d’entre eux, j'ai beaucoup appris grace a eux.

Je remercie Michael Benedikt, Helmut Seidl, Hubert Comandh, Arnaud
Durand et Sebastian Maneth d’avoir accepté de faire pautjary.

Je suis reconnaissant envers I'equipe Mostrare, potat [tBesprit stimulant
qui y regne. Merci a Rémi Gilleron pour I'accueil et lesnseils prodigués. Je
salue également les doctorants et post-docs Mostrarelefude notre amitié, je
remercie en particulier Emmanuel Filiot et Stawek Stawagrskar avoir repondu
a mes nombreuses questions ! Benoit Papegay a commanp&hhentation de
certains algorithmes, je I'en remercie. Je remercie I'lNRlour avoir financé
cette these, ainsi que le LIFL et l'université Lille 1 pdes moyens accordés.

Je ne peux bien slr pas énumérer tout ce qui a éveillé imérét pour la
science et l'informatique. J'y inclus mes professeurs dense, que je remercie.
Un merci tout particulier a mes parents, pour m’avoir adédyeaucoup de liberté,
et plus généralement pour m’avoir fait confiance, souteihancouragé. Enfin
merci a Laurence pour son soutien, méme quand le travais depdessus !

Résunme en Francais Ces dernieres annéesMX est devenu le format stan-
dard pour I'échange de données. Les documemis Xont généralement pro-
duits a partir de bases de données, durant le traitemes@enents, ou au sein
d’applications Web. L'échange de données en flux esugéygnent utilisé lors
de I'envoi de données conséquentes par le réseau. Ainsnsfert par flux est
adéquat pour de nombreux traitementgLX

Dans cette thése, nous étudions des algorithmes d@&iatude requétes sur
des flux XML. Notre objectif est de gérer efficacement la mémoire, adipal-
voir évaluer des requétes sur des données voluminetosgsn utilisant peu de
mémoire. Cette tache s’avere complexe, et nécessiteedérictions importantes
sur les langages de requétes. Nous étudions donc lestesqdéfinies par des
automates déterministes ou par des fragments du standa@d¥WVath, plutdt que
par des langages plus puissants comme les standards W3CGyX&uesLT.

Nous définissons tout d’abord Isseaming tree automat&TAS), qui operent
sur les arbres d’arité non bornée dans l'ordre du documéidus prouvons
gu’ils sont équivalents aurested word automatat aux pushdown forest au-
tomata Nous élaborons ensuite un algorithme d’évaluation as fdt, pour les
requétes définies par des STAs déterministes. Bien ge'dtocke que les candi-
dats nécessaires, cet algorithme est en temps polynaroleque événement du
flux, et pour chaque candidat. Par conséquent, nous olgetesrésultats posi-
tifs pour I'évaluation en flux des requétes définies pa 8&As déterministes.
Nous mesurons une telle adéquation d’'un langage de exjaétine évaluation
en flux via un nouveau modele de machines, appedreaming random access
machinegSRAMS), et via une mesure du nombre de candidats simuttang
vivants, appel&oncurrence Nous montrons également qu’il peut étre décidé en
temps polynomial si la concurrence d’'une requéte défiaiaip STA déterministe
est bornée. Notre preuve est basée sur une réductioroblépre de la valuation
bornée des relations reconnaissables d’arbres.

Concernant le standard W3C XPath, nous montrons que mépetitefrag-
ments syntaxiques ne sont pas adaptés a une évaluatilx esauf si P=NP. Les
difficultés proviennent du non-déterminisme de ce laegagnsi que du nom-
bre de conjonctions et de disjonctions. Nous définissossrdgments de For-
ward XPath qui évitent ces problemes, et prouvons, papdation vers les STAs
déterministes en temps polynomial, gu’ils sont adaptése évaluation en flux.

Titre en Francais Flux XML, Requétes XPath et Automates

Mots clés en Francais Flux XML, requétes, arbres, automates, XPath.

Résune en Anglais During the last years, ML has evolved into the quasi stan-
dard format for data exchange. Most typicallymX documents are produced
from databases, during document processing, and for Welicappns. Strea-
ming is a natural exchange mode, that is frequently used vgeeading large
amounts of data over networks, such as in database drivenapjelications.
Streaming is thus relevant for manyiX processing tasks.

In this thesis, we study streaming algorithms faviXquery answering. Our
main objective lies in efficient memory management, in otddye able to query
huge data collections with low memory consumption. Thissusut to be a sur-
prisingly complex task, which requires serious restrizsion the query language.
We therefore consider queries defined by deterministicraata or in fragments
of the W3C standard language XPath, rather than studying mpowerful lan-
guages such as the W3C standards XQuery or XSLT.

We first proposestreaming tree automatéSTAS) that operate on unranked
trees in streaming order, and prove them equivalent to degbed automata and
to pushdown forest automata. We then contribute an eadigsty answering
algorithm for query defined by deterministic STAs. Even ftjlout succeeds to
store only alive answer candidates, it consumes omiyP per event and can-
didate. This yields positive streamability results forssles of queries defined
by deterministic STAs. The precise streamability notiorehelies on a new ma-
chine model that we caditreaming random access machif8®AMs), and on the
number of concurrently alive candidates of a query. We atsovsthat bounded
concurrency is decidable infME for queries defined by deterministic STAs. Our
proof is by reduction to bounded valuedness of recognizabéerelations.

Concerning the W3C standard query language XPath, we fiost giat small
syntactic fragments are not streamable except if P=NP. Tolglgmatic features
are non-determinism in combination with nesting of andfogrators. We define
fragments of Forward XPath with schema assumptions that dhese aspects
and prove them streamable byIRE compilation to deterministic STAs.

Titre en Anglais Streaming Tree Automata and XPath

Mots clés en Anglais XML streams, queries, trees, automata, XPath.

Contents

1 Introduction 1
1.1 Background 1
1.2 Motivations 4
1.3 Contributions 8
1.4 StateoftheArt 10
15 Outline e 19
1.6 Authors Publications 19
2 Schemas and Query Languages 23
2.1 Unranked TreesandlLogics 23
2.1.1 TreesandBinary Encodings 24
212 FOandMSOLogics 26
213 TreeAutomata 30
2.2 Schemas 33
2.2.1 Document Type Definition 33
2.2.2 Extended Document Type Definition. 35
2.3 QUETIES e 37
2.3.1 Queries over Relational Structures 37
2.3.2 QueriesbyAutomata 41
233 XPath 43
2.3.4 Other Approaches for Queryingin Trees. 49
2.3.5 Evaluation Algorithms 52
3 Streamability 57
3.1 Introduction 57
3.2 Streaming 59
3.2.1 LinearizationsofTrees 59
3.2.2 Example of Stream Processing 60
3.2.3 CONCUITENCY v i o e e e e e e e e e e 61
3.2.4 EvaluationModel, 62

3.3 Streamable QueryClasses 67

3.3.1 Streamability 0oL 67

3.3.2 Boolean and Monadic Queries 69
3.4 Hardness of Streamability 70
3.4.1 Hardness of Bounded Concurrency 70
3.4.2 Hardness of Streamability 72
3.4.3 Non-Streamability of Forward XPath 73
3.5 Conclusion 74
Streaming Tree Automata 75
4.1 Introduction 75
4.2 Streaming Tree Automata 77
42.1 Definition 77
4.2.2 Determinization. o 80
4.2.3 Expressiveness and Decision Problems 81
4.3 Translationof DTDSINtOSTAS 82
4.4 Nested Word Automata 84
4.4.1 Definition 84
4.4.2 TranslationsintoandfromSTAs 85
4.5 Pushdown ForestAutomata 85
451 Definition 86
45.2 EquivalencetoSTAs, 87
4.6 Standard Tree Automata 88
4.6.1 Stepwise Tree Automata 88
4.6.2 Top-Down Tree Automata w.rftnsEncoding 90
4.7 Conclusion 91
Earliest Query Answering for Streaming Tree Automata 93
5.1 Introduction 93
5.2 EarliestQuery Answering. e 95
5.2.1 Earliest Eventfor Selection 96
5.2.2 Earliest Event for Rejection 96
5.3 Complexity of Selection Sufficiency 79
5.3.1 Sufficiency Problem 97
5.3.2 Reduction from Language Inclusion 98
5.3.3 Hardness of EQA for XPathand STAs 98
5.4 EQAAlgorithmfordSTAs 101
5.4.1 Safe States ComputationfordSTAs 102
5.4.2 Generic EQA Algorithm and its Instantiation for dASTAs108
543 AddingSchemas 111
5.4.4 Example Run of the Algorithm with Schema 113

545 Implementation. 115

5.5 StreamabilityofdSTAs 117

5,6 Conclusion 118
Streamable Fragments of Forward XPath 121
6.1 Introduction 121
6.2 m-Streamable Fragments of Forward XPath
6.2.1 Filter Terms with Variables 124
6.2.2 k-Downward XPath 125
6.2.3 Deciding Membership to-Downward XPath 126
6.2.4 Translating-Downward XPathto dSTAs 127

6.2.5 k-Downward XPath isn-streamable for every, € N, . . 138
6.3 Beyondk-Downward XPath: Prospectiveldeas
6.3.1 oo-Streamable Fragments of Forward XPath

6.3.2 Adding Horizontal Axes 141
6.4 Conclusion 143
Deciding Bounded Delay and Concurrency 145
7.1 Introduction 146
7.2 Delay and Concurrency for Wordsand Trees 48 1
721 EQAforWordsandTrees 148
722 Delay 149
7.2.3 LinktoConcurrency 149
7.3 Bounded Delay and Concurrency for Queries in Words . . . 150
7.3.1 Finite Automata 151
7.3.2 Definingn-ary Queries L. 151

7.3.3 Computing Delays of Queries

7.3.4 Reduction to Bounded Ambiguity 158

7.3.5 Deciding Bounded Concurrency
7.4 Recognizable Relations between Unranked Trees 161

7.4.1 Closure Properties

7.4.2 Recognizable Relations.

743 SortedFOLogic 165
7.4.4 Sorted FO Logic of Recognizable Relations 6 16
7.4.5 BoundedValuedness
7.4.6 k-BoundedValuedness 172
7.5 Deciding Bounded Delay and Concurrency 317

7.5.1 Basic Recognizable Relations

7.5.2 BoundedDelay 177

7.5.3 Bounded Concurrency

7.5.4 Discussion of Direct Construction 179
7.6 Conclusion 180

8 Conclusion 183

8.1 MainResults e 183
8.2 Perspectives 185
9 Reésune 189
9.1 Contexte i e e e e 189
9.2 Motivations 192
9.3 Contributions 196
Index 201
Bibliography 203
Notations 229
List of Figures 233
A Licence Creative Commons 235
Al Contrat e 235

A.2 Creative COMMONS o o v i i e e s i 241

Chapter 1

Introduction

1.1 Background

The XmL format, introduced over ten years ago [BPSD8], has become de
factostandard for data exchange. It is now a common language faugacom-
munities, from web technologies to document processingdatabases. Origi-
nating from $mML, XML defines semi-structured documents, modeled by trees.
The syntax of an XiL document is a well-nested sequence of tags, some of them
containing textual content. This differs from relationatabases, where the data
is stored in tables. With ML appeared schema languages like DTDs (Document
Type Definition), XML Schema or Relax NG. A schema is used to define the cor-
rect structure of XiL documents of some given application.

Consider for instance the L document in Figure 1.1(a). This represents
geospatial data of two cities, and is modeled by the treegnriéi 1.2. A schema
for this document is presented in Figure 1.1(b).

The first task for processingm is to validatedocuments against schemas.
This is a requirement for applications that manipulat&>Xdata, in order to check
their conformance to the desired schema. The second tagkery answering
which consists of selecting nodes in amX document, according to the query.
This is a basic step to retrieve information from amiXdocument. In our ex-
ample one might want to retrieve tripl¢eane,| at ,| on). Query answering
is a generalization diltering, which requires to determine whether amiX do-
cument has a match w.r.t. the query. The third task, and vemynwon use of
guery answering, igdata transformation In the context of XiL, this aspect has
many applications. Data exchange, for instance, considtaimslating a docu-
ment satisfying a schema, to a document conforming to ansttteema. In our
example, geospatial data can be represented using differkemas by different

2 Chapter 1 — Introduction

<geo>
<poi nt >
<nane>Lille</ nane>
<| at >50.6305&/ | at >
<l on>3.07063/ | on>
</ poi nt >
<poi nt >
<nane>Hellemmes/ nane>
<l at >50.6274&/ | at >
<l on>3.1085%/ | on>
</ poi nt >
</ geo>
(a) XML document.

geo —point*

poi nt — (nane,l at 7,1 on?)
nanme — #PCDATA

| at — #PCDATA

|l on — #PCDATA

(b) DTD schema.

Figure 1.1: XvL file containing geospatial data, conforming to a DTD.

geo

point point

7\ T

name lat lon name lat lon

Lille 50.63050 3.07063 Hellemmes 50.62746 3.10853

Figure 1.2: The tree representation of theXfile in Figure 1.1(a).

governments or companies, so one might want to export thetseito another
schema. Data transformation consider all possible tramsfoons from an XL
document to another one. Another frequent example is thefsemation of XL
documents to FIML web pages using XSLT stylesheets.

All these tasks can be performed in several modes. The firdensothein-
memory evaluationHere the whole XiL document is loaded into main memory,
and then processed. The output is produced only when allube/@nswers are
computed. One drawback of this approach is a significant mgoansumption.
Another is that often some answers can be produced befovehtble set of query
answers is computed. An approach to solve the latter defigientheenume-
ration of solutions. It consists in outputting, after a preproacegphase, each
solution one at a time, with a reasonable delay between tweammtive answers.
Finally, thestreamingmode imposes stronger restrictions on space usage. In this
mode, the X1L document is read in only one pass, from the first to the last tag

Section 1.1 — Background 3

of the document. The output is also produced in a streaminghara When an
answer is found or a part of the output document is computesl jmmediately
output to another device. The objective of a streaming edin is to use less
memory, by only buffering the required information. Buffey is necessary when
the output still depends on the continuation of the streahne. goal is to deal with
documents that cannot be loaded into main memory, or to pso¥eL Streams
coming from the network on the fly.

Several standards have been elaborated for the aforemedtiasks. We al-
ready illustrated schema languages at DTDs, defined witl@rXtL recommen-
dation [BPSM 08]. XML Schema [FWO04] extends DTDs by adding some fea-
tures like more precise characterizations of textual cunt®&oreover, an XiL
Schema is itself an ML document, unlike DTDs. Relax NG [vdV03] focuses on
the description of the structure of valid trees, and dekeg#te specification of
valid textual content to XIL Schema.

XPath [CD99] is the standard language for selecting nod¥sin documents.
It is based on a description of paths, by series of steps tollmvied in order to
reach selected nodes. XPath also allows to add filters almsgtsteps. A filter is
a Boolean combination of path expressions, and is satigfeedade matches this
combination. It is also possible to test textual contentarfes. The navigational
core of XPath 1.0, named CoreXPath 1.0, has been extractédtbipb, Koch and
Pichler in [GKPO05]. XPath is a core query language, used éaterselection in
many other languages, like XPointer [DMJ01], a standarédébecting fragments
of XML documents.

XPath is also used by both popular transformation langua¥@siery
[BCFT07] and XSLT [Cla99]. XQuery is an imperative language udorgoops
in order to select tuples of nodes, that are subsequenttytetsin some XiL
context to produce an output{ document. XSLT is closer to functional pro-
gramming. An XSLT stylesheet is a set of template rules thata@tivated on
nodes matching XPath expressions.

XProc [WMTO09] proposes to combine all these standards uaipgpeline
language. Whereas XPath, XQuery and XSLT were not desigmestieaming
evaluation, XProc permits to define parts of the tree whezeséhection and trans-
formation occur, and thus restricts the inherent diffi@stof their streaming eva-
luation to smaller regions. We will see in this dissertatibat other languages,
like STX [BBCO02], have been designed specifically for stremevaluation, but
no standard has been adopted yet.

Finite word automata [HU79] process words in one pass, taddebeir ac-
ceptance. Hence, they naturally perform streaming evialuatf words. These
objects have been extensively studied, and enjoy integestiations with logics

4 Chapter 1 — Introduction

and formal languages, as an automaton basically definesgadga of words.
XML documents are modeled as trees, not words. However, drigma docu-
ments are linearizations of these trees: AmiXdocument is a series of tags (an
XML stream), and thus aword. Here, tags are well-nested, liefidbte tree struc-
ture. Finite word automata are not able to take this nesgtagion into account,
so we need a more powerful notion of automata to process 3treams.

Tree automata [CD@)7] provide a framework to formally define and study
XML tasks. Tree automata also benefit from extensive work, alhdetate di-
rectly with logics and languages over trees. In particulaey provide an al-
gebraic framework to XL databases, like the relational algebra for relational
databases. It has been shown that tree automata could eaftdine standard
schema languages, and the translation of a schema to a teeaan is rela-
tively simple [MLMO1]. Tree automata were also proposed éfirte queries in
trees [NS02, Koc03, BS04, CNT04]. XPath expressions canareslated into
tree automata, but this time the translation is not trividlidation (here, named
model-checking) and query answering tasks are also studietlee automata.
Transformations are defined by tree transducers. Thes# fifim tree automata
by allowing to produce an output while reading an input tree.

1.2 Motivations

In this manuscript, we study the query answering task, ugisfgeaming evalua-
tion, on queries defined by XPath and tree automata. Strggenaluation is now
a major challenge for XPath processing. Michael Kay, thé@ubf the reference
XQuery processor Saxon, recently declared [Kay09]:

The streaming capabilities [of Saxon] are now one of the m&a-
sons people buy the product.

The evaluation of streamedM(documents has been considered for a long
time. We illustrate this evaluation mode and related cotscep a query over
words on the alphabdia, b}. Consider the query that selects positions labeled
by a, directly followed byb-b. For instance, on the wor@d-b-a-a-b-b-b-a-b-b,
this query selects positions 4 and 8, as illustrated in EiduB. All b-positions
can immediately be discarded. Fepositions, the selection or rejection cannot
be decided immediately. Positions followed by arflike 3) can be discarded
after one step, and those followed by: (like 1) after two steps. This query can
be answered with a sliding window of length 3, and needs téebat most one
candidate at a time. We nardelaythe minimal size for the sliding window, and
concurrency{BYFJO05] the minimal number of simultaneous alive candidatA
candidate isalive at a given time point, when there exists a continuation of the

Section 1.2 — Motivations 5

input |a b a a b b b a b b
buffer |1 1 3 4 4 8 8
output 4 8

Figure 1.3: Streaming evaluation for the selection-@ositions followed by-b.

stream after this time point for which the candidate is gelcand another for
which it is rejected. Hence these alive candidates have tmffered. It is often
easy to define small queries with high concurrency, for msehere by allowing
thatb-b appears after an, but not immediately after. Schema information can
reduce the buffering requirements. For instance suppa@dethvalid words are
such that once three successiyositions are read, alkpositions are followed by
b-b. Then alla-positions following threé-positions can be output immediately.
For instance here, the position 8 can be safely output atipos3 instead of
position 10.

From the beginning, streaming algorithms outperformeeogivaluators, but
worked on restricted fragments. Many difficulties for stnag evaluation were
identified. For the validation task [SV02], a first problenthg recursive nature
of XML documents. Processing recursive documents requireagiaformation
about ancestor nodes in a stack. Hence the memory can bedzbhpdhe height
of the tree, but cannot be bounded independently for alktr€aery languages
like XPath are inherently non-deterministic [PC05], uelschema languages. For
instance XPath allows steps through tirescendandxis. Starting from one node,
this matches all its descendants, thus generating a lotrofidate nodes for the
next step. Here, these candidates need sometimes to becblifées they might
require some information to determine if they satisfy thergu(for instance if
there is a condition on their next siblings). These diffiedteven occur when fil-
tering XML documents using XPath [AF00]. Moreover, XPath allows bihamg,
by allowing filters and conjunctions inside filters. Thisaatsften participates in
increasing the complexity of algorithms. Transformationpose additional dif-
ficulties for streaming [FHMO5, MicQ7]. This is typically the case for the ope-
rators dealing with positions among selected elementsn&ance when looking
for the last selected node, or for sorting nodes.

Relative to these blocking aspects, lower memory bounddhése tasks have
been established. In the context of query answering, the&ggn is the concur-
rency, as introduced previously. It has been proved [BY R} the concurrency
is a lower memory bound for processing XPath queries, foagnfrent of XPath
without wildcards. This raises a challenging issue: cane@eh this bound? This
guestion can be decomposed into several variants. Firsthtsresult be gener-

6 Chapter 1 — Introduction

alized to larger query classes? It would also be interesarighow whether the
bound is tight, i.e. whether there exist algorithms whichmoey consumption is
tight from this lower bound. What is the cost in time for reiachsuch bounds,
i.e. do these algorithms require a lot of computation, ineottd decide the se-
lection or rejection of candidates? How does this cost viainfa query class to
another? In other words, are there query classes for whiatiesft algorithms
exist? Can we characterize such query classes by some tydp€an queries
with unbounded concurrency be tractable for streaming?ciWWbueries require
low buffering (even though unbounded)? These questiong/ateta notion finer
than concurrency: thstreamabilityof a query, i.e. a measure of appropriateness
to streaming evaluation. The concurrency draws a first iegnbetween queries
having bounded concurrency (and thus using bounded memmogvery docu-
ment of bounded-depth) and the remaining one. But the questibove call for
a more fine-grained notion of streamability.

Beyond filtering and monadic node-selection queries, waystdary queries,
for n > 0. These are queries selectinguples of nodes in trees. The case-
corresponds to Boolean queries that can only distinguesistselecting the empty
tuple, and hence define tree languages. They are used tatrdésr satisfying
some constraints. For = 1, we obtain monadic queries, that select, for each
tree, a set of nodes in this tree. The selection-tdiples of nodes is a core ope-
ration in transformation languages. For XPath 2.0 and X@Quhrs operation is
done through nested for-loops called FLOWR expressionsatiXR.0 only de-
fines monadic queries. By introducing variables, we allonatP1.0 to define
n-ary queries. Compared to FLOWR expressions, this pernote riexibility in
terms of evaluation, and might complicate the task of ouorilgms. FLOWR
expressions are more low-level instructions, that migh kiee developer to de-
fine queries suitable to streaming, or not. For queries byraata,n-ary queries
are defined by languages of annotated trees.

Reaching the memory lower bound is very time consuming. Bi&het al.
[BJLWO8] show for instance that for XPath used with DTDsengjng failed can-
didates at the earliest time point with an algorithm builpotynomial time in the
size of query, with per-event polynomial time in the sizet@ Query, is equivalent
to PTIME = PSPACE

Berlea [Ber06, Ber07] studsegular tree queriesdefined by tree grammars.
For this query class, Berlea proposes an algorithm baseteeratitomata, that
uses optimal memory management (in terms of stored camdigavhile enjoy-
ing PTIME per-event and per-candidate space and time. However,ubiy glass
assumes an infinite alphabet, even for labels. This diffemnfthe XvL for-
mat, where only textual contents (i.e., data values) areatncted. The fact that
the alphabet is infinite indeed simplifies earliest selecto rejection of candi-

Section 1.2 — Motivations 7

dates tremendously. In particular, this query languageotsciosed by com-
plement. The algorithm can however be used for answeringiypoXPath ex-
pressions in PIME, when assuming a bound on the branching width of XPath
expressions. Moreover, this algorithm efficiently proessgueries defined by
non-deterministic automata.

Some algorithms were proposed for the streaming evaluafiotPath. For
downward axes, we can mention the work by Bar-Yossef et al.YFR5,
BYFJO7], Ramanan [Ram05, Ram09], and Gou and Chirkova [@{C0&lgo-
rithms by Barton et al. [BCG03] and Wu and Theodoratos [WT08] allow both
upward and downward axes. Olteanu et al. [OMFB02, OKBO3) i} prove
that Forward XPath, the fragment of XPath 1.0 where all agspecting the do-
cument order are allowed, is as expressive as CoreXPatiie§.propos&PEX
an efficient algorithm based on transducers networks, tretates all Forward
XPath expressions. Nizar and Kumar [NK08] define an algoritbr Forward
XPath expressions where no negation occurs. Recentlyektend their frame-
work [NKQ09] to allow backward axes. Benedikt and Jeffrey QB study logics
equivalent to CoreXPath 1.0, and their appropriatenesstfeaming. They iden-
tify fragments using backward and downward modalities autinegation, such
that the selection of a node can be decided when opening Eksing) it. They
show that for these fragments polynomial per-event spadeime algorithms ex-
ist. Benedikt et al. [BJLWO08] study the filtering ofM{ streams against XPath
constraints, and introduce a heuristic for the earlieseat&in of violated con-
straints. All these algorithms for the evaluation of XPatteroXmL streams do
not achieve optimal memory management, and store useled&lates (or partial
matches) in some cases. Ley and Benedikt et al. [LB0O9] studbtiver there exist
extensions of XPath being as expressive as the first-ordér, land using only
forward axes. They prove that the first-order complete esxters used when all
axes are allowed do not suffice when restricted to forwarg.axe

Other lower bounds were also established, in addition tecwoancy. Bar-
Yossefetal. [BYFJ04, BYFJQ7] establish three lower boyfatssome fragments
of XPath. The first one is thguery frontier sizei.e. the maximal number of sib-
lings of all ancestors of a node, in the tree representafitimeaquery. The second
one is therecursion depthof the document, which corresponds to the maximal
number of ancestors with the same label. The third one isadparithmic value
of the depthof the tree. Grohe, Koch and Schweikardt [GKS07], while ging
Turing machines modeling stream processing with multipbns, establish that
for CoreXPath 1.0, thdepthof the tree is a lower bound. A more complete state
of the art is provided in Section 1.4.

8 Chapter 1 — Introduction

1.3 Contributions

We now present our contributions. Throughout this manpgcwe considern-

ary queries, i.e. queries that seleetuples of nodes, instead of simple nodes, as
allowed by XPath 2.0. Moreover, we always try to take advgetaf schemas to
make stream processing more efficient, as schemas are wétidaiode in concrete
applications.

Streamability We start by defining a computational model for streaming yuer
answering: theStreaming Random Access Machii8RAMs). We then intro-
duce our notion oktreamability We have seen that such a notion is lacking in
the current state of the art. In particular, the absence df $ormal definitions
leads to a number of errors in the space complexity analyisimamy papers.
Roughly speaking, for a natural numberor m = oo, a query ism-streamable

if it can be computed using polynomial space and time forrakd$ for which
the concurrency of the query is less than This sets up a hierarchy of query
classesm-streamability with a high value of. is desirable, and means that input
trees with concurrency lower than can be efficiently processedo-streamable
gueries are calledtreamablequeries, and always use polynomial per-event time
and space, independently of the concurrency. We study thdoms between
guery classes that are-streamable, and query classes thatrarstreamable for
all m € Ny. Query classes being-streamable for alln € N, must have polyno-
mially bounded concurrency in order to be-streamable (for monadic queries).
We study the hardness of deciding whether a query class hawlbd (resp. poly-
nomially bounded) concurrency. For Forward XPath, thesblpms are coNP-
hard. We show that beintystreamable implies a™E universality test on the
class of queries, whenever this class verifies some preges universality for
Forward XPath queries is coNP-hard, Forward XPath id reiteamable, and thus
notm-streamable for altn € N U {oo}.

Streaming Tree Automata We defineStreaming Tree Automa(&TAsS) as a no-
tion of tree automata that performs pre-order traversalseet. This corresponds
to streaming traversals of ML documents. STAs are a reformulation of nested
word automata [AluQ7] that operate directly on trees indtenested words.
We show the equivalence between STAs and other automataedliat traverse
trees (or encodings of trees) in pre-order: pushdown fengtstmata [NS98], visi-
bly pushdown automata [AM04] and nested word automata. Weexthibit back
and forth translations between STAs and standard (botfoemd top-down) tree
automata. Queries defined by deterministic STAs (dSTAs)astreamable for
all m > 0, when bounding the depth of trees. We proved it by elabayadim

Section 1.3 — Contributions 9

earliest query answeringlgorithm.

Earliest Query Answering for Streaming Tree Automata Earliest query an-
swering (EQA) algorithms have the property of writing anssat the earliest
point onto the output stream. In other words, each answart@ubonce there is
enough information to ensure that this answer will be setécin any continua-
tion of the stream. Symmetrically, all rejected candidaresdiscarded when they
fail in all continuations (a property naméalst-failin [BJLWO08]). These notions
originate from the work of Bar-Yossef et al. [BYFJ05] and Bar[Ber06]. While
Bar-Yossef derived lower memory bounds for streaming, weveitime lower
bounds, by studying decision problems inherent to EQA #lymis.

The property of being earliest is a requirement for algongrbuffering only
alive candidates: not being earliest means that at some, patandidate is stored
while it does not have to. However, being earliest is oftemgotationally com-
plex. For XPath queries, we show that it is coNP-hard to dewiiether a pre-
fix of the stream ensures selection of a given candidate. &eriep defined by
dSTAs, this task becomes tractable, and our earliest queswexing algorithm
runs in PriME (for fixed arityn). This proves that dSTAs are a robust formalism
for defining streamable queries. Our working hypothesihé every class of
streamable queries can be translatedimn2 to dSTAs. This is for instance the
case for the streamable fragment of XPath defined below, faclwwe provide
such a translation, hence proving its streamability.

XPath We then study the streamability of XPath in more details. Wémntify

a hierarchy of fragments, naméeDownward XPath (withk € N), that arem-
streamable for alln > 0. Here, the key property is that iRDownward XPath, the
number of correct matches of a branch of the expression thettree is at most
one at any time point. In order to ensure this property, welinensyntactic re-
strictions (on the query) with semantic restrictions (om $bhema)k-Downward
XPath is a rich fragment, in that it allows negation, branghjand thus disjunc-
tion), and downward axes (child and descendant). We prandsffective RIME
translation ofk-Downward XPath expressions to dSTAs. Hence we can reuse
all our algorithms for dSTAs o-Downward XPath, and in particular the EQA
algorithm.

Bounding Concurrency and Delay Finally we prove that for queries defined
by dSTAs, it can be decided inTRME whether a query has bounded delay and/or
bounded concurrency. Thielayis the maximal number of events between read-
ing a selected node (or tuple of nodes in thary case) and the earliest point
where its selection can be decided. Delay and concurrermckegr streamability

10 Chapter 1 — Introduction

measures: delay is related to the quality of service, whalecarrency is a mea-
sure of buffering requirements. To obtain these decidghjilfoperties, we use
and extend results on recognizable relations over treasytére already studied
in the ranked case [Tis90, CD®7] and also the unranked case [BL02, BLNQ7].
These are relations over trees that can be recognized bytamaion, modulo an
encoding of tree relations into tree languages. We provetiiesbounded anél-
bounded valuedness of binary recognizable relations caetided in RIME, by
reduction to bounded valuedness of tree transducers [S&i@l:-bounded am-
biguity of tree automata. This also allows us to decideinv2 whether a query
has ak-bounded delay and/orkabounded concurrency, for fixédand fixed arity
n.

1.4 State of the Art

This section surveys the recent work on stream processirilgeicontext of XL
databases. For a survey on streaming more generally, we trefereader to
[Mut05]. We start by enumerating several models for streaotgssing. We
present known lower bounds forM{ stream processing, and then exhibit upper
bounds by listing known algorithms for processingiiXstreams.

Models for Stream Processing

Turing machines with multiple tapes, and restrictions oa direction of head
moves or on the number of head reversals are studied for atioeg[HUG9].
These restrictions define new classes of computable laegu&urevitch, Lein-
ders and Van den Bussche [GLdBO7] consider stream querigarasular func-
tions from stream to stream. They study which functions nrapan input stream
to an output stream are computable, and in particular whidihem are com-
putable with bounded memory. Babcock et al. [BBI2] previously surveyed
some common problems for stream processing, and how théyaadded in exis-
ting data stream management systems (DSMS).

Grohe, Koch and Schweikardt [GKS07, Sch07a] investigatenumachines
with one external tape where the input is read (and writiral®ved under some
conditions), an output write-only tape, and internal tapéhout restrictions.
They define a hierarchy of machines: machines allowing 1 head reversals
on the input tape are strictly more expressive than machatiewing & rever-
sals. Schweikardt [Sch07a] surveys generalizations eésirprocessing models,
where data can be stored in external (and thus slower) deyoethis precise
topic, see also the survey by Vitter [Vit01]).

The expressiveness of query languages over trees is ofteblissed w.r.t.

Section 1.4 — State of the Art 11

two yardstick logics: the first-order logic (FO) and the mdicasecond-order
logic (MSO), with predicates describing tree structuresrishows in [MdRO5]
that CoreXPath 1.0 is strictly less expressive than FO. @safefined by tree
automata are exactly MSO-definable queries, by the stardgaiidalence between
tree automata and MSO logic established by Doner [Don70]Tdratcher and
Wright [TW68]. Ley and Benedikt [LB09] study whether therasts a first-order
complete logic using only forward axes, i.e. axes that retsgecument order.
For this purpose, they adapt and combine two modal logic® fifst one is the
Linear Temporal Logic (LTL) and the second one the Compaoitati Tree Logic
(CTL*), which is a temporal logic with branching. They show thaings.TL
for vertical path expressions together with CTior horizontal and downward
moves leads to a first-order complete logic. However thisclages backward
moves. Unfortunately, the first-order completeness isidn restricting to only
forward moves, or when restricting the nesting depthrdfl operators in LTL.
We also note that streaming query answering is a particalse of the view
maintenance problem (i.e. maintaining the answer set aftdates of the docu-
ment), where only insertions of nodes are allowed [SI84, GRIBGMMAO09].

Lower Bounds

In [GKSO07], Grohe, Koch and Schweikardt apply techniquesifcommunication
complexity to prove lower bounds. They show that, as a careecg, fofiltering
CoreXPath 1.0 queries tltepthof the input tree is a lower memory bound, i.e.
there is no streaming algorithm using less thadepth{t)) buffering space for
input trees.

Communication complexity [Yao79, KN97] is a powerful toarfproving
lower bounds. It characterizes the minimal amount of infation needed to com-
pute a function by two agents, each of them knowing a partefrthut.

In [BYFJO4, BYFJO7], Bar-Yossef et al. use this techniquexbibit other
lower bounds on a fragment of XPath named Redundancy-frea¢hXPhe bounds
apply even for filtering. A key property of Redundancy-freBath is that a node
of the tree cannot match several distinct query nodes. Tbegeds are formu-
lated w.r.t. thanstance dataomplexity, i.e. in terms of properties of each query
and document to be evaluated, as opposed to the worst-cagsaestity. A first
memory lower bound on Redundancy-free XPath isghery frontier sizeWhen
a query(is represented as a tree, the frontier size at a node of t#esigrthe
number of siblings of this nodes, and its ancestors’ silslinghe query frontier
size of () is the largest frontier over all nodes @ The second lower bound is
the documentecursion depth The recursion depth of a tréev.r.t. a queryQ is
the maximal number of nested nodes matching a same nageTime last lower
bound islog(d), whered is the depth of the documentThis latter lower bound is

12 Chapter 1 — Introduction

smaller than the recent bound proved by Grohe et al. forifilge€CoreXPath 1.0
[GKSO07] mentioned above.

In a subsequent work [BYFJO5], Bar-Yossef et al. prove thatbncurrency
of a query is a memory lower bound, on Star Free XPath, therfead of Core-
XPath 1.0 with only downward axesdlf, ch and ch®) and without wildcards.
More precisely, the concurrency is proved to be a lower mgrbound for the
worst-case complexity. For instance data complexity, fires/ed that there exists
a document, almost similar to the original one, that reguire concurrency in
terms of space.

Benedikt et al. [BJLWOS8] study the feasability fafst-fail filtering for XPath
with DTDs. Fast-fail means that it must be decided at theiesdrtime point
whether the stream is rejected by a given XPath filter. Theyethat RIME =
PSPACE is equivalent to having aTME algorithm compiling XPath filters to
fast-fail algorithms using polynomial per-event time cdexy (in the size of the
XPath filter and DTD). Moreover, Benedikt and Jeffrey [BJp@ve that there is
no subexponential functiofi such that all positive CoreXPath 1.0 filtefscan
be computed by algorithms usirf@|Q|, |>|) total space, on bounded-depth trees,
even when fast-fail is not required.

Lower bounds were also established in more general frankswérasu et al.
prove some lower bounds for the streaming evaluation ofisartjve queries, with
multiple input tapes [ABB04], and more general streamed data. The aforemen-
tioned work by Grohe et al. [GKS07] contains additional isswhen reversals
on the input tape are allowed. Recently, Schweikardt extéinid framework by
allowing multiple input tapes [Sch09]. Communication cdexgy was already
used to prove lower bounds for some streaming problems atioeél databases,
for instance by Henzinger et al. [HRR99].

Validation

We now survey upper bounds fomX streams processing, by mentioning known
algorithms. The easiest task when processimg. Xlocuments is the validation,
i.e. determine whether a document conforms to a given schémig problem
was first addressed by Segoufin and Vianu [SV02]. In this pdberauthors are
looking for DTDs for which the validation can be done with noded memory.
This is not the case for all DTDs. They prove that it is suffitior the DTD to
be non-recursive, or to be fully recursive. A DTDs is fullycuesive if all labels
leading to recursive labels are mutually recursive. Thapprty can be checked
in EXPTIME for DTDs, and in RIME for deterministic DTDs. However, this con-
dition is not proved to be necessary, and the problem isogtéh. Some progress
was obtained by Segoufin and Sirangelo in [SS07], where theaph is based
on finite state automata checking only local propertiesaddr For non-recursive

Section 1.4 — State of the Art 13

DTDs, Chitic and Rosu [CR04] prove an exponential lower applew bound for
computing the equivalent minimal deterministic automa(this automaton also
checks that the document is well-nested). We note that aggrebaracterization
of schemas that can be validated with constant space is kfmvamother stream
encoding, where the labels are not given in closing tags [B.S

Chitic and Rosu [CRO04] also relax the constant-memory reguent by al-
lowing the size to be logarithmic in the size of the input atmne They present
syntactic restrictions on recursive DTDs, so that they candidated with loga-
rithmic space in the input stream size.

A weaker requirement for validatingm_ streams is to bound the space by
the depth of the input tree. In [SV02], Segoufin and Vianuadseshow that
every EDTD can be translated into a deterministic pushdaworaaton, whose
stack usage is bounded by the depth of the input tree. Morethey show that
any DTD can be compiled into an equivalent EDTD of quadratie,dor which
the validation is done with bounded memory. In [GKPS05],tBbtet al. show
that the validation problem for ML streams varies from&GSPACE to LOGCFL,
depending on the schema language and representation.

For the more specific problem of typing, Martens et al. [MNS@®ve that
typing each node of an™L document at its opening event w.r.t. a restrained com-
petition EDTD can be done in streaming mode. Such a congiryeatsing visibly
pushdown automata, is for instance provided by Kumar etndlkKkMV07]*. An
alternative algorithm, avoiding the static constructidrtiee whole automaton,
is proposed by Schewe et al. in [STWO08]. Martens et al. alsvgthat non-
restrained competition EDTDs cannot be typed in a streammagner. Martens
et al. [MNSBO06a] study the precise expressivenessni X6chema, and propose
to replace a constraint of ML Schema (Element Declarations Consistent) by the
one-pass pre-order typing requirement. Typing is also siomes used as a pre-
processing phase for further querying, as proposed foamast by Russell et al.
in [RNCO3].

Filtering

Filtering XML documents is similar to validation in that it defines valiges, but
differs by the specification language. Whereas validateies on schema lan-
guages, filtering trees w.r.t. a given XPath expressionistsg selecting trees
in which this XPath expression selects at least one nodeneAland Franklin,

in a seminal work [AF0O], introduce the frameworks#lective dissemination of
information where many XiL documents have to be filtered w.r.t. many XPath

1We show in Chapter 4 how to translate a DTD into a Streaming Aomaton, which is a
similar construction.

14 Chapter 1 — Introduction

expressions, for publish/subscribe systems. They proposalgorithm called
XFilter for this purpose, based on a translation of non-branchingtiXExpres-
sions to automata, that are then combined and indexed foregffifiltering. A
number of alternative algorithms were proposed, like F[DFFT02, DRF04],
which improve XFilter by another method for combining autdey and XTrie
[CFGRO02], that proposes a better data structure.

In [GMOSO03, GGM 04], Green et al. proposend. TK, a system based on the
translation of XPath queries to a finite word automaton. leghe events can be
processed with constant time. However the automaton hatoflse determinized,
causing a blow-up in the filter size. This can be sometimegladoby building
the automaton on demand, but the worst case remains the $amautomaton is
just an intermediate representation of the query, and teiéthm uses it together
with a stack (bounded by the depth of the tree) during thewgi@t. In [GS03b],
Gupta and Suciu define XPush machines, that directly usendigtistic pushdown
automata.

All these systems have either strong restrictions on XPafhiessions (no
predicates, or predicates that does not require look-aeadead to exponential
algorithms. Bar-Yossef et al. [BYFJO4, BYFJO7] prove thghtness of their
lower bounds by an algorithm usi(|Q| - 7 - log(d)) in space, wheré removes
logarithmic factors, and (resp.r) is the depth (resp. recursive depth)of

Benedikt and Jeffrey [BJO7] investigate filtering algomth with space (and
per-event time) independent of the input stream, and pofyaldn the filter. They
show that this holds for two classes of queries. The first saefiagment of posi-
tive CoreXPath 1.0 (using backward, i.e. up and left, axas),the second one a
fragment of Conditional XPath, also using backward axise backward restric-
tion does not weaken the expressiveness: in both fragmamgsnon-backward
guery can be rewritten to a backward one. The techniquesrailaisto the ones
used by Olteanu for SPEX [OIt07b] (as explained later for atha queries): a
translation of queries into transducers networks, and afphat the restriction on
axis does not change the expressiveness.

Benedikt et al. [BJLWO8] study the problem of firewalling/iX streams under
XPath constraints. This is similar to filtering, except ttie goal here is to detect
XML messages violating XPath constraints, and reject themasa®possible.
We already discussed about the hardness ofaistsfail feature. The authors pro-
pose however a tractable solution, by using binary decidiagrams (BDDs) for
implementing automata (here the trees are of bounded déptiying a heuristic
for fast-fail, and by restricting XPath queries (no wilddsyno rightward moves,
and no data joins). When compared to transducers netwoik®BsBffer better
static analysis opportunities.

Section 1.4 — State of the Art 15

Query Answering

XPath with Downward Axes TwigM [CDZ06] consider monadic XPath
gueries using only downwarctlf and ch*) axes. TwigM focuses on an effi-
cient data structure for storing pattern matches, and aatigositive downward
XPath expressions, i.e. tree patten&treamTXHIJHLO08] aims at adapting the
TwigStack algorithm to stream processing of tree pattexde allowing selec-
tion of tuples of nodes, instead of nodSQ[PCO05] does neither allow negation,
but includes aggregators and data values comparisons. oree@tXSQ is a hi-
erarchy of pushdown transducers, with additional buff€isen et al. [CLT 08]
consider a streaming evaluation géneralized tree patternshat consist in tree
patterns augmented with tifier-let-return (FLOWR) expressions of XQuery.

Ramanan [Ram05, RamQ09] proposes an algorithm that allogatioa and
downward axes. Its complexity 3((depth{t) + concur,(t)) - |@|) in space and
O(Jt] - |Q| - depth(t)) in time, in the worst case. An extension with backward
axesprecand(ns!)* is also presented in [Ram09]. Gou and Chirkova [GC07a]
provide another algorithm for downward XPath, with lineambined complex-
ity O(|Q| - |t]). This paper however seems too optimistic by asserting @btim
buffering. We will see later on that this requires non-palymal time (unless
PTIME = NP) on downward XPath. Bar-Yossef et al. [BYFJO5] prove that
concurrency lower bound is tight, by an algorithm that useson-recursive do-
cuments, O(concug,(t) +|Q| - (log(|Q|) +1log(|t]))) space and(|Q| - |¢|) time,
whereO removes logarithmic factors.

XPath with Downward and Upward Axes Beyond downward axis, some al-
gorithms were proposed for dealing with parecii (‘) and ancestor(¢h™')*)
axis, together with downward axis. This increases the ditfycas the algorithm
has to process the query in a bottom-up way, by guessing ehdtscendant
nodes will further match. This implies high buffering co3taos[BCG* 03] al-
lows both downward and upward axes in XPath, and starts byecting upward
axes to downward axes. One drawback of Xaos is that answersugput only
when the input stream ends. Wu and Theodoratos [WTO08] pepnsalternate
algorithm, calledPSX for the same set of queries, representegasial tree-
pattern queries By using a stack-based technique to encode matches, tiey ou
perform Xaos.TurboXPatHJFBO05] is an XL stream processor evaluating XPath
expressions with downward and upward axis, together witbstricted form of
for-let-where(FLOWR in XQuery) expressions. Hence, TurboXPath retuuas t
ples of nodes instead of nodes, i.e. processas/ queries.

Forward XPath and Variants Forward XPath is the fragment of XPath using
only forward axes, i.e. downward axes, plus next-siblitg) tiansitive closure,

16 Chapter 1 — Introduction

and the axidoll that moves to all nodes following the next sibling of the cur-
rent node in document order. As shown by Olteanu et al., FarwW&ath is very
expressive, as adding backward axes to Forward XPath ddeshange its ex-
pressiveness [OMFBO02, Olt07a]. However translating antiXapression with
backward axes to a Forward XPath expression can imply annexpial blow-
up in the size of the expression. Ley and Benedikt [LB0O9] prthat Conditional
XPath does not enjoy this property, i.e., Conditional XReith only forward axes

is not as expressive as Conditional XPath.

SPEX[OMFB02, OKBO03, OIlt07b] uses a transducers network as gereaju-
ator. Each element of the XPath expression (label test, etayis translated into
a simple transducers, equipped with a stack. Transducetm&ed according to
the query structure. For instance a sthpa is translated into two transducers, one
for ch and one fora. The output of theeh-transducers conveys anvX stream,
that is the input of the-transducer. This way, a DAG of transducers is built.

Nizar and Kumar [NKO08] propose an algorithm for an extengiddmonadic
tree patterns, where axédl andns® are allowed. Hence this algorithm defines
monadic queries where the negation is not allowed. The cexitplof this al-
gorithm is not given, and only experimentally studied. Relyethe authors also
investigate the streaming evaluation of monadic tree petteith additional back-
ward axegprecandns ! [NKO09].

Desai [Des01] defines Sequential XPath, a fragment wheseforward axes
are allowed in path expressions (outside filters), and oatkard axes are al-
lowed in filters. In this fragment, selection of a node can beidkd at opening
time, and thus no buffering of candidates is required. Thenorg consumption
only depends on the depths of the input tree and the SeglLER@h expression.

CoreXPath 1.0 Clark [Cla08] proposes a translation of CoreXPath 1.0 ex-
pressions (interpreted as binary queries) to visibly paosimd automata, in-
spired from the standard translation of MSO formulas to elant automata
[Don70, TW68, CDG07]. All axes are allowed. The resulting visibly push-
down automata are non-deterministic, and recognize treaetated with two
variables (corresponding to the canonical language of tlegigs in our frame-
work). The complexity is non-elementary in the size of theression, i.e., it
cannot be bounded by a tower of exponentials of fixed heighie¢omes poly-
nomial when negations are forbidden and the branching width the number
of leaves in the tree representation of the expression)usded. Such transla-
tions permit to reuse algorithms designed for queries bgraata, with XPath
expressions.

Section 1.4 — State of the Art 17

Queries by Automata One of the first models for evaluating queries in strea-
ming mode on semi-structured documents was proposed by &leuand Seidl
[NS98, Neu00]. They define monadic queries on forests, equances of trees
(calledhedgesn this manuscript). Queries are defined by mean®afst gram-
mars rephrased as a patterns language of contexts. The salectiade through
a special tree variable, and the query selects nodes of thstfahere this tree
variable can be used. In terms of expressiveness, thisspamnels to forest regular
languages [Tak75], and regular tree languages when itesttic trees. Neumann
and Seidl introduceushdown forest automata order to evaluate these queries
while parsing the XaL document, and thus in a streaming way. The links between
pushdown forest automatand the model of STAs we use in this manuscript are
studied in Chapter 4, and show that the models are similgvaiticular we pro-
vide translations between these models, that allow to chtrgautomaton model
behind streaming algorithms.

In the general setting, the evaluation of queries definedobgst grammars
using pushdown forest automata is done in two traversalseofree (left-to-right
and then right-to-left). By adding constraints to the graannthey defingight-
ignoring grammars. These grammars have the property that whengnagehe
document in streaming order, it can be decided whether aisadected at clos-
ing time. Berlea and Seidl present an extension of this mfudet-ary queries
[BS04]. They keep the same framework: Queries are defineddymars, and
evaluated using pushdown forest automata.

Berlea [Ber06, Ber07] extends these results to an algoritfahevaluates, in
one pre-order traversal of the tree, queries defined by tfgreenmars (named
regular tree grammarsn the paper). His algorithm is also based on pushdown
forest automata, and achieves close to optimal memory ugegihe alphabet of
labels is infinite, it is easier to decide whether a state eftitomaton will accept
all possible continuations. However, thevuX format restricts labels to a finite
set, and the algorithm is less efficient on finite alphabets.ifstance, consider
the XPath expressiofya[not(not(a) and notb))], that selects alk-nodes whose
children are all labeled by or b. If the alphabet is known to b = {a, b} then
all a-nodes can be selected immediately. This cannot be doneebgigiorithm
proposed in [Ber06], and this algorithm will take a decisfonthe selection of
ana-node when closing it. For infinite alphabets, the differsiscthat a wildcard
test is always satisfied, and not a finite union of label tests.

Some results similar to the aforementioned work by Neumamh Seidl
[NS98] were established by Kumar et al. in [KMVO07], who wsgibly pushdown
automatainstead of pushdown forest automata. In particular, theastexhibit
the logic Pre-MSO, corresponding to MSO-definable quenesvhich the selec-
tion of a node only depends on its prefix tree. They show thatigs defined by
Pre-MSO formulas can be efficiently processed by visiblyhplosvn automata,

18 Chapter 1 — Introduction

using constant per-event time, and memoryifdeptht)), wheret is the input
tree. However, the translation of a Pre-MSO formula to sutla@tomaton is
non-elementary [AM04, AMO06]. In a follow-up work [MV08], M#husudan and
Viswanathan show that queries defined by visibly pushdoworaata can be effi-
ciently processed. However, the authors hide a crucialtpasnthey suppose that
the states of the automaton already have enough informadidecide whether
they are universal, i.e. whether the residual language adleegpt is any correct
continuation of the stream. We propose in Chapter 5 a cartgirufor obtaining
such a property for all states, and prove that an exponeirial is required for
this.

Transformations

Beyond node-selection queries, the streaming evaluatiotienns also used for
transforming XML documents. Several XQuery processors were proposed for
XML streams. Ludascher et al. [LMPO02] translate XQuery exgioes into a
network of XmL Stream Machines{SM) that take XL streams as inputs, and
output other XL streams. Finally, the network is compiled int@Caprogram.
Koch et al. propos&luXQuery[KSSS04a], an XQuery processor based on the
intermediate language FluX. FluX addgecess-streannstruction to XQuery,
that makes the use of buffers more explicit. In [KSSS04lg,atthors show how
schema information can be used to improve the translatidAuX programs.
GCX [SSKO07] reduces the amount of data to be buffered by purdiegntus-
ing a garbage collector. This one is based on static and dgremalysis of the
guery. Fernandez et al. [FMSSO07] analyze which parts ofigsi€an be evalu-
ated in a streaming manner. They build query execution glaatcombine some
parts of the query in streaming mode, and other parts usimgram in-memory
techniques. Wei et al. [WRMLO8] try to reduce space consiuonpirhen XvL
documents are recursivEukwila[[HWO02] is an XQuery processor that evaluates
numerous XQuery expressions on amiXstream. The core of Tukwila is based
on a stack and a meta-automaton that enables and disabérmumestic finite
automata that represent linear path expressions of queries

XSLT is another transformation language based on templaétare activated
by XPath expressions defining their execution context. ddhcs language is
suited to be modeled by transducers. Dvorakova and RAWR0T] propose to
adapt this idea to a streaming evaluation.

Other transformation languages fomX have been specifically conceived for
streaming purposeSTX[BBCO02] is an event-driven programming language. It
is based on templates that specify which operations shauldone on the data
matching the template pattern. In [KS07], Koch and Schegeimpropose to
add attribution functions to the rules of DTDs. These fumtsi are executed

Section 1.5 — Outline 19

while the document is parsed, and can produce an output.wiyisthese DTDs
(named XL Stream Attribute Grammars) define transformations. By iregga
strong notion of one-unambiguity for the regular expressjthe document can be
parsed with a look-ahead of Hence the memory consumption can be bounded
(when assuming a bound on the depth of trees). A previousoveo$ this frame-
work namedlransformXcan be found in [SKO5]. Frisch defin¥Strean{FNO7],

a functional programming language that efficiently perferkmL transforma-
tions. The execution plan &Streamis elaborated dynamically, to take advantage
of the execution context. Frisch [Fri04] also proposes &nieft implementation

of pattern-matching i€Duce[BCF03], using tree automata. These operate in do-
cument order, and thus the pattern-matching algorithmsde#h XML streams.
XTiSP[Nak04] is another transformation language fanX streams. XTiSP uses
as underlying model macro tree transducers, i.e. treedumess augmented with
an accumulator.

1.5 Outline

Chapter 2 introduces the basic objects that we study in thisuscript: unranked
trees, schema languages, and queries. It also provides atthae art about query
evaluation.

Chapter 3 defines our model of streaming, and the state ofrthierastreaming
query answering. We introduce the notiomefstreamability, and show that large
guery classes are not streamable.

Chapter 4 is devoted to Streaming Tree Automata, a modeleef automata
adapted to streaming. Beyond the definition, we explicitithlewith other exis-
ting models of tree automata.

Chapter 5 studies the streamability of deterministic $tiag Tree Automata
(dSTAs). For this purpose, we propose an earliest query ensgvalgorithm
for queries defined by dSTAs.

Chapter 6 exhibits streamable fragments of XPath. This imign@roved by a
PTIME translation of XPath queries of these fragments to dSTAs.

Chapter 7 proves that deciding whether a query defined by d98&4 a bounded
(resp. k-bounded) delay and concurrency can be done in polynomig, tfor a
fixed k and a fixed arityn.

1.6 Author’s Publications

Streaming Tree Automata Our model of Streaming Tree Automata was estab-
lished with the collaboration of Anne-Cécile Caron and ¥®oos, and presented

20 Chapter 1 — Introduction

in [GNRO8]. Chapter 4 contains the results of this papel extra back and forth
translations between STAs and standard tree automata.

Earliest Query Answering The definition of earliest query answering and rel-
ative hardness results described in Chapter 5 were presenf&NTO09b], and

a preliminary version in [GCNTO08]. This is also a joint worktivAnne-Cécile
Caron and Yves Roos.

Bounded Concurrency and Delay The Prime decision procedures for decid-
ing bounded delay and concurrency of queries defined by d®/B%e presented
in [GNT09a]. Chapter 7 contains the results of this papethadditional im-
provements. The main improvement is the procedure for degitie k-bounded
delay and concurrency inTME for a fixedk (it is in NP in the paper). We also
prove that wherk is variable, the problem becomes®rimME-complete. Finally,
we give a more efficient algorithm for computing the valuehaf tlelay in the case
of words.

Unpublished Content Our notion of streamability, and the corresponding com-
putational model, as presented in Chapter 3 have not bedisipedbyet. It is also
the case for our streamable fragments of XPath, and thespmneling translation

to dSTAs, presented in Chapter 6.

[GCNTO08] Olivier Gauwin, Anne-Cécile Caron, Joachim Nieh, and Sophie
Tison. Complexity of Earliest Query Answering with StreagniTree Au-
tomata. INnACM SIGPLAN Workshop on Programming Language Techniques
for XML (PLAN-X) January 2008. PLAN-X Workshop of ACM POPL. (Cited
page 20)

[GNROS8] Olivier Gauwin, Joachim Niehren, and Yves Roos. e&tning Tree
Automata. Information Processing Letterd09(1):13-17, December 2008.
(Cited page 20)

[GNTO09a] Olivier Gauwin, Joachim Niehren, and Sophie TisBaunded Delay
and Concurrency for Earliest Query Answering.3nd International Confer-
ence on Language and Automata Theory and Applicatieolsime 5457 of
Lecture Notes in Computer Sciengages 350-361. Springer Verlag, 2009.
(Cited page 20)

[GNTOQ9b] Olivier Gauwin, Joachim Niehren, and Sophie Tis&arliest Query
Answering for Deterministic Nested Word Automata. 1Ivth International

Section 1.6 — Author’s Publications 21

Symposium on Fundamentals of Computer Thealume of 5699 of_ecture
Notes in Computer Science, pages 121-132. Springer V&G@f. (Cited
page 20)

22

Chapter 1 — Introduction

Chapter 2

Schemas and Query Languages

Contents

2.1 Unranked TreesandlLogics 23
2.1.1 TreesandBinary Encodings 24
212 FOandMSOLogics 26
213 TreeAutomata 30

22 Schemas 33
2.2.1 Document Type Definition 33
2.2.2 Extended Document Type Definition. 35

23 Queries e 37
2.3.1 Queries over Relational Structures 37
2.3.2 QuerieshyAutomata 41
233 XPath 43
2.3.4 Other Approaches for Queryingin Trees 49
2.3.5 Evaluation Algorithms 52

In this chapter, we introduce the basic notions used througltthis
manuscript. The structures we study are unranked trees amtea dlphabet.
We present this model, together with some standard logidsaatomata mod-
els. Schemas are another standard formalism for definiedanguages. Finally,
queries over unranked trees are introduced using diffexejeicts: automata or
XPath expressions. We survey known query answering algostor these query
classes.

2.1 Unranked Trees and Logics

We start with the definition of unranked trees, and the stahftamework that
relates tree logics to tree automata [TW68, Don70, Tho97GOLY], now com-

24 Chapter 2 — Schemas and Query Languages

monly used in the context of ML [Nev02b, Nev02a, Lib06, Sch07b].

2.1.1 Trees and Binary Encodings

We define unranked trees as trees over an unranked alphabdéteWpresent two
encodings into binary trees, used to lift results for rantkeds to unranked trees.

Alphabet

An unranked alphabek is a finite set of symbols. Aanked alphabets a pair
(33, ar) whereX is a finite set of symbols, anar a function associating to each
symbol its arity: ar: ¥ — N,. Here we writeN, for the set of non-negative
integers, andN for natural numbers. For convenience the arity will be somes
left implicit in the notations.

Unranked Trees

Let X be an unranked alphabet. The setinfanked treesver:, denoted’y;, is
the least set such thatty, ..., 1) € 7x if a € X, k € Ny and for alll < <k,
t; € Tx. In particular we always exclude the empty tree from the t&ees.

An unranked treéanguageovery. is a subset of s.. Unranked trees will be the
default class of structures we will consider in this manycso in the following
atree (resp. a tree language) will denote an unranked &sp.(an unranked tree
language). With this definition, trees are finite, ordered labeled.

The set ofnodesof a treet € 75 is the following prefix-closed language over
natural numbersi:

nod(a(ty,...,t;)) = {e} U {i-7 | = € nodt;)}

wherew-w’ is the concatenation of the wordsandw’. The node: always corre-
sponds to theoot of the tree. We inductively define the functiab’: nod(t) — X
that maps each node to its label. tif= a(ty,...,a;) thenlab’(¢) = a, and
lab’(i-7) = lab’ (7).
Thedepthof a tree is the length of its longest branch:
1 ift=awitha e X
deptl‘(t) o { 1+ maxj<;<k depti‘(tz) if t = a(tl, . ,tk) with & >1

Hedges

A hedgeoverX is a sequence of treés,, . . ., t;) with ¢; € 75, for somek € Ny
andl < ¢ < k. The set of hedges overis thus defined as:

Hs ={(t1,...,tx) | k€ Ny and t; € Ty, forall1 <i <k}

Section 2.1 — Unranked Trees and Logics 25

The set of nodes of a hedge is defined from the set of nodestodés.

nod((t1,....tx)) = | J {i-m | = € nod(t;)}

1<i<k

Note that the hedgé,) is different from the tree;, and has a different set of
nodes. We will sometimes consider the empty hedge

Ranked Trees

In the following we always deal with unranked trees, but stimes use automata
on ranked trees together with a binary encoding, to definankad tree lan-
guages.

Given a ranked alphabgX, ar), we define the set of ranked trees oyErar)
as the least sefy. containing f(ti,...,t;) for each symbolf of arity k£ and
t1,...,t € T4, Binary trees are a special case of ranked trees, wherenaliclg
have arity0 or 2. We write 7, for the set of binary trees over a ranked alphabet
(3, ar).

Binary Encodings

Binary encodings are used to encode unranked trees>\eto binary trees.
Two of them are commonly used: thiest-child next-siblingencoding, and the
Curryfication For other encodings, see for instance [MSV03, FGKO03].

Rabin’s first-child next-sibling encoding [Rab69, Koc03 defined by
fcns 7o — 72" whereX, = ¥ @ {1}, all symbols from¥ having arity2,
and_L being the sole constant symbol. This is defined by the folgwules, and
illustrated in Figure 2.1(b). For convenience we first ercbddges into binary
trees usindcns,:

fons,(() = L
fens, ((a(ty, ... t,). ta, ..., 1)) = a(fens, (¢, ..., t.) , fens,((ta, ..., 1)))

Then we simply usé&ns,, on unary hedgedcngt) = fcns,((1)).

The second encoding of unranked trees corresponds to thefiCation
of terms, illustrated in Figure 2.1(c). This is defined thgbuthe function
curry: 7y, — ’Tg’g‘ whereXq = ¥ w {@} is the ranked alphabet in which all
symbols from> are constant symbols, anlis the only binary symbol.

a if k=0

curry(a(ts, ..., tx)) = { @(curry(a(ty,...,tx_1)), curry(t;)) otherwise

26 Chapter 2 — Schemas and Query Languages

/N @
o boL o N
VRN
AR AN /N /7 N\
| 1 /d /@\ c d e
e AN
/6\ - a b
1 1
(a) Atreet € Tx. (b) fengt). (c) curry(t).

Figure 2.1: Binary encodings.

2.1.2 FO and MSO Logics

First-Order (FO) and Monadic Second-Order (MSO) logicsyamlstick logics
for expressing properties of structures. We start with thndion of relational
structures, exhibit relational structures correspondngnranked trees, and fi-
nally define the syntax and semantics of both logics.

Logics over unranked trees were recently surveyed by Lilpkib06] and
Bojanhczyk [Boj08]. In this manuscript we only address fritees. More general
results about finite models are available in the frameworknite model theory
[EF99, Lib04].

Relational Structures

A relational signatureA consists of a finite set of relation symbols A, each
relation having a fixed aritgir(r) € Ny. A relationalstructure soverA consists of
a non-empty finite setom(s) called the domain of and relations® C don(s)®(")
interpreting all symbols € A. We writeSx for the set of structures ovéx. The
size|s| of a relational structursis defined by:|s| = |dom(s)| + |79].

Words as Relational Structures

We illustrate the definitions in the case of word structufidge signature, that we
consider for words over a finite alphabetis A = {lab, | a« € Z} U {<}.

A non-empty wordw = a;-...-a; € X* is the relational structure with domain
domw) = {1,..., k} and the following relations:

e laby ={i | a;=a,1<i<k}

o <V={(i,j) | 1<i<j<k}

Section 2.1 — Unranked Trees and Logics 27

Trees as Relational Structures

An unranked tree¢ € 7x, can be also considered as a relational structure over the
relational signaturéd = {lab, | a € X} U{fc, ns}, wherelab, are monadic (i.e.,
unary) relations, whiléc andnsare binary. The domain dfis exactly its set of
nodes:dom(t) = nod(t). The relations of the structuteare the following, where

a € X

o labl = {x | lab’(r) = a}
o fc' = {(m,7-1) | 71 € nod(t)}
e NS = {(mi,m-(i+1)) | 1 <4, 7 (i+1) € nod(t)}

A treet also defines the following relations, that we will sometimies as base
relations of some logicschis the standarahild relation. ch® (resp. ns") is the
reflexive transitive closure ath (resp.ns).

o chf = {(m,7i) | mi € nod(t)}
o (ch") ={(m,m-7') | m-7" € nod(t)}
e (ns) ={(mi,m-j) | 1<i<j, mjenodt)}U{(ce)}

Throughout the manuscript we use monadic predicates, tsejgespectively the
root node, the leaves, and the last children:

e root' = {¢}
e leaf = {r € nodt) | . (7, 7') € ch}

e Ic' = {r €nodt) | . (7, 7') € ns}

First-Order Logic

From a relational signatur& and a countable s&t of variables, the set HQ\| of
first-order formulag) over A is defined by the following grammar:

¢ = r(ry,...,x5) | ONG | 2@ | Fx.p | x=2a

wherer € A is a relation of arityk, andz, 2, x1, ..., x; € V. Free variables of
a formulag are variables o¥’ that appear i outside the scope of quantifiefis
Non-free variables are called bound variables in the falgwA formula without
free variables is calledlosed

A formula¢ € FO[A] is interpreted over a relational structwwen the signa-
ture A using an assignmenptof the free variables af into dom(s). The semantics

28 Chapter 2 — Schemas and Query Languages

of FO[A]-formulas is defined through the satisfiability relat®m = ¢, as de-
fined inductively below:

S uETr(ry,.. .,z 0ff (u(xy),...,w(zg)) €1®

SuEGNY iff spukEg¢ands pl ¢

S uE -9 iff s pupEo

S,pukE3dr. ¢ iff there existst € dom(s) such thas, [z «— 7] = ¢
SpuFz=21 it pu(z) = p(2’)

wherey [z — 7] is obtained fromu by assigningr to .

Several signatures can be considered for the FO logic ovankad trees. The
most commonly used is HEh", ns‘]. For convenience we always omit to mention
the relationglab,).cs, as they will always be part of the signature. This signature
allows to define the relatiorsh andns

ch(z,y) = ch'(z,y) ANx #yAN—-Tz. 24 x NzF#yAch(z,2) Ach'(z,y)
nsz,y) = nsS(z,y) ANz #yA-Jz.z#4xANzF#yAns(z,z) Ans(z,y)

On the contrary, the relatiorth* andns' are not definable in F©h, ng [Lib04].
In the general case, FO does not allow to express the tnamsitisure of binary
relations [Fag75, EF99].

The first-order logic is one of the key topics in logics and meatatics. For
tree structures, numerous results have been establisredileough some prob-
lems remain open. We outline the most relevant results ifiailf@ving.

Thesatisfiabilityproblem of a logic is the problem of deciding whether, given
a formula¢ in the logic, there exists a model fgr, i.e. a structures and an
assignmenj such thats, u = ¢. While the satisfiability of FO formulas was
proved undecidable for arbitrary [Chu36, Tur37] and finttectures [Tra50], itis
decidable for trees (both ranked and unranked). This alktsHor the Monadic
Second-Order logic, an extension of FO that we present below

The model-checkingroblem is the decision problem that takes as input a
structures, an assignment, and a formulag, and outputs the truth value of
s, i = ¢. For FO on finite structures, the model-checking &Rcecomplete,
even on trees [Sto74, Var82].

Algebraic characterizations of FO-definable tree langsdf@ instance by
means of automata) are more complex than for the MSO logimeSeork on this
topic can be found in the manuscript of Bojanczyk [Boj04].[BS05], Benedikt
and Segoufin study the FO-definability problem, i.e. the [@wbof deciding
whether a tree language can be defined using an FO formula. present such
a procedure for F@h, ng over ranked trees and unordered unranked trees. The
guestion is still open for ordered unranked trees, the @assructures that we
consider in this manuscript.

Section 2.1 — Unranked Trees and Logics 29

Monadic Second-Order Logic

The Monadic Second-Order logic (MSO) extends the Firste®iapic with quan-
tification over second-order variables, i.e. unary pradgathat are usually in-
terpreted as sets. We exteWdwith second-order variables, ranged over.Xy
MSO[A] is the set of MSO formulas over the signatiyeas defined by the gram-
mar:

¢ =r(r,...,xk) | NG| ¢ | x| X 9 | x€X

wherer € A has arityk, andx, 1, ..., 2, X € V.

The semantics of FO formulas can be easily extended to MS®nliw de-
fined on a structure under an assignmenpt that maps each free first-order vari-
able to an element afon(s) and each free second-order variable to a subset of
dom(s). Then the satisfiability relation is extended in the follogiway:

s, u=3X. ¢ iff there existsD C doms) such thas, u|X <« D] = ¢
spEreX iff u(x) e pnX)

For unranked tree structures, the usual signature usedfoessing MSO
formulas isA = {fc,ns (lab,).cx}, and we denote the corresponding logic by
MSQjfc, ny. Unlike FO logic, MSO can express the transitive closureinaty
relations. For instance the following formudais the transitive closure of the
relation defined byp:

O(y1,y2) = VX, (1 €X AV(21,22). (116X A (21, 22) = 12€X)) = 126X

Hence we can defings® from ns thench by composindc andns®, and finallych®
from ch. A tree languagéd is saidMSO-definabléf there exists an MS(x, ng-
formula¢ without free variable such that

L={teTs |t} ¢}

On binary trees, MSO is sometimes called theak second order logic with
two successoréWWS2S): the two successor relations are first-child andrsgco
child, andweak means that the second-order variables are interpretditites
sets. WSKS is the generalizationitauccessors.

MSO enjoys clean algebraic characterizations, as oppodatbivn FO char-
acterizations [B0oj04]. The first link with automata was mageBuichi on strings
[Buc60]. In the following, we introduce tree automata aadall the equivalence
between tree automata and MSO on trees, as established gy [on70], and
Thatcher and Wright [TW68]. This translation comes at aaiertost, having the
following consequences on satisfiability and model-chagkiroblems.

30 Chapter 2 — Schemas and Query Languages

Satisfiability of MSOfc, ng formulas is known to be non-elementary [SM73,
Mey73, Sto74]: for every algorithm solving this problens domplexity cannot
be bounded by a tower of exponential of fixed height [Grz530FG A way to
test the satisfiability is by translation of formulas intedrautomata, which is a
non-elementary process. Then it suffices to test the engstioktree automata,
which can be done inBME, as shown in Section 2.1.3.

The model-checking of MS[&, ng formulas on finite trees is aSPACE
complete problem, as for FO formulas [Sto74, Var82]. Whenftiimula is fixed,
the problem becomes linear, as we can translate the formwadan automaton in
constant time (disregarding thus the non-elementary bipyand then check that
the tree is accepted by the automaton in linear time.

2.1.3 Tree Automata

Unranked trees can be converted into ranked ones using iegso@s shown in
Section 2.1.1. We introduce tree automata for binary traed,present the lan-
guage of unranked trees they define, when associated wittagytencoding.
Tree automata were introduced by Doner [Don65, Don70] aratcher and
Wright [TW65, TW68], to prove the decidability of the wealkcead order theory
of multiple successors (WSKS). They regained interestarctintext of XL, as
shown in the surveys by Neven [Nev02b, Nev02a] and Schwe[Bich07b].

Bottom-Up Tree Automata

LetY, = Xqw 3, be aranked alphabet, where arity of symbolEjnresp.X,) is
0 (resp.2). A (bottom-up)tree automatorfTA) for binary trees irﬂ'zkf” is a tuple
A = (stat fin, rul) consisting of finite setfin C statand a setul C statx ¥, U
staf x Y,, that we denote as

fla,q) — ¢ and c¢c—gq

whereg;, ¢, q € stat, f € ¥, andc € Xo. Arunof Aont € 72" is a function
r: nod(t) — statsuch thatf(r(x-1),r(7w-2)) — r(xr) belongs taul for all nodes
7 of t with lab’(7) = f € ¥,, ande — r(x) in rul for all nodesr of ¢ with
lab’(7) = ¢ € . A run is successfulf r(e) € fin. The language.’"(A)
is the set of all binary trees ovét, that permit a successful run by. Doner
[Don70] and Thatcher and Wright [TW68] proved that a rankee tanguage is
recognizable by a TA iff it can be defined in the WS2S logic. \8S®rresponds
to MSO with a monadic predicate for label tests and two birmedicates, one
for the left child, and one for the right one.

Section 2.1 — Unranked Trees and Logics 31

A (bottom-up) deterministic TA (dTA) is a TA that does not leawo rules
with the same left-hand side. TA are determinizable, i.eenefA A has an
equivalent dTAA’. The determinization procedure has axPEIME lower bound.

The size of a TAA is its number of states plus its number of ruled| =
|staty| + |rul 4|. We sometimes provide complexity results in terms of nunaber
states|stats|, number of rulegrul 4|, or size of the alphabekt|, whenever this
precision is relevant.

When associated with a binary encoding, these automataedafiguages of
unranked trees:

Lend A) = {t € Ty, | f(t) € L™(A)}

with enc e {fcns curry}. Stepwise tree automata [CNTO4] are exactly TAs used
with thecurry encoding.

A languagel of binary trees (resp. unranked treesyagular if there is an
automatonA for binary trees such that®"(A) = L (resp. Lins(A) = L). Here
we choosécnsas binary encoding, but we will see in Chapter 4 that choosing
curry defines the same class.

Top-Down Tree Automata

Numerous other automata notions were defined. In the rarksel ve mention
top-down tree automatg TA) [CDG*07], as we will use them later on to capture
some schema languagedJAs are similar to TAs, but evaluates the tree by starting
at the root and ending in leaves.

A top-down tree automaton|TA) for binary trees in’TXE’j“ is syntactically
equivalent to a bottom-up TA. However, the correspondinggonoof runs differ,
and for clarity we choose to represent the rules as

¢, [— (q1,q) and ¢—c

for binary symbolsf € ¥, and symbols: € ¥,. Arun of a|TA A on a tree

t € TP is also a function: nod(¢) — stat, but evaluated from root to leaves:
For all nodesr of ¢, r(x), f — (r(z-1),r(xw-2)) € rul if lab'(7) = f € %y,
andr(r) — ¢ € rulif lab’(7) = ¢ € . A runis accepting iff(¢) € init.
HenceLP"(A) is the set of trees for which a run af exists. As usual|TA can
be used together with a binary encoding to define a languagarahked trees.
Deterministic| TAs (d] TAs) are| TAs having at most one right hand side per left
hand side in its rules, and a unique initial stat¢. TAls are known to be strictly
less expressive thaTAs, while | TAs are as expressive as TAs [CDG/].

32 Chapter 2 — Schemas and Query Languages

Alternatives

Tree Walking Automata (TWAS) [AU71] are automata for rankegks, that do
not operate in parallel, nor use a stack. They run throughrésefrom one node
to another, according to the direction indicated by the.rul&®As are strictly
less expressive than TAs [BCO5]. They are even less expeesisan FO ex-
tended with a transitive closure operator [EHO07]. Howewsirt nested variant
was used to prove that this extension of FO is strictly leggessive than MSO
[BSSS06, tCS08]. TWAS cannot be determinized [BC04]. Sortensions of
TWAs with pebbles define a hierarchy of automata classeh, difterent expres-
siveness [EH99, EHB99, BSSSO06].

For unranked trees, many models were proposed too, as sdrviey
[CDG'07, Sch07b] for instance. One of the first model designed focgss-
ing XML documents are hedge automata [BKWMO01]. Hedge automatateper
bottom-up, and use a regular language as acceptor for tadge of children of
a node.

Chapter 4 of this manuscript introduces Streaming Tree rata, a model
where trees are evaluated using a pre-order traversal wfdimecture. In that
chapter we exhibit the links with other models that use thigleation order,
on structures that include unranked trees: Visibly Pusimdawtomata [AMO04],
Nested Word Automata [Alu07] and Pushdown Forest Autom<&0B].

Expressiveness and Closure Properties

Doner [Don70] and Thatcher and Wright [TW68] proved thatdlsess of regular
ranked tree languages is exactly the class of MSO-definablesd tree languages.
It is folklore that this equivalence also holds in the uneshkase [CDGO7].

Proposition 1. A languagel C 7y, is MSO-definable iff it is regular.

Hence closure properties of MSO-definable languages algly &p regular
languages [CDGO7].

Proposition 2. Regular languages are closed under complement, union,rand i
tersection. The corresponding operations on TAs can be doRgIME, except
the complementation of non-deterministic automata. Thigy@serve determin-
ism except the projection.

We recall the complexity of some decision problems for tne®@mata. These
results hold for both ranked and unranked tree automata.

problem | input | output | complexity for TAs | complexity for dTAs
emptiness | A L(A) =07 O(|A|) O(]A])

universality| A L(A) =717 ExXPTIME-complete| PTIME

inclusion | A, A" | L(A) C L(A")? | ExPTIME-complete| O(|A] - |A'])

Section 2.2 — Schemas 33

Note that for the inclusion problem, onl/ needs to be deterministic. The usual
technique is to test whethénA N A’) = (), where A’ is the complement oft’.
This complementation might imply higher complexity, aseijuires completion.
However this completion can be avoided [CGLNQ9].

2.2 Schemas

Schema languages are used to define setalaf trees. In the context of ML,
schemas are used to specify the possible structures otlratagpresent some set
of documents. Schema languages are often based on tree grapfih M01], but
here we consider them from the perspective of tree autonratais manuscript
we study some schema languages, that will be useful in theexioaf a strea-
ming evaluation on XL documents. We restrict ourselves to Document Type
Definitions (DTDs) and their extended version. Other stathdahema languages
are, for instance, XML Schema [FW04, MLMO1, Chi00], Relax ING01] and
Schematron [Jel06]. Note that bothvK Schemas and Relax NG can be mode-
led by Extended DTDs. For a more complete description andysbfi schema
languages, we refer the reader to [MLMO1, MNSB06b, SchOTGCO7].

2.2.1 Document Type Definition

The Document Type Definition (DTDs) is a W3C recommendat®R$M+08],
and the most commonly used formalism for defining schemas Xwe. docu-
ments. A DTD is an extended context-free grammar, i.e. aextifitee grammar
where right-hand sides are regular expressions. Figureaatains an example of
DTD for documents describing discotheques. TheLXdocument in Figure 2.3
is valid w.r.t. to this DTD. Real DTDs permit the use of the #PATA symbol,
indicating that some textual data is expected. Here we ceptdy c as we never
take data values into account in this manuscript.

Formally, a DTDD over the alphabet is a pairD = (init, rul), whereinit €
Y is a start symbol, andul a function mapping a regular expressios= rul(a)
for every symbols, € 3. For convenience we often writal as a set of mappings
a — e. Regular expressions respect the following grammar:

ex=a|ee|ete| e |e

wherea € ¥ ande is the empty word. We writd.(e) C ¥* for the word lan-
guage defined by the regular expressiormhen for each lettet € X, the DTD
inductively defines the following set of unranked trees:

L.(D)={a(ty,....tx) | a1...ar € L(rul(a)), t; € L,, (D) for1 <i < k}

34 Chapter 2 — Schemas and Query Languages

albums

— (cd+ online)*
cd — title-authortracklist
online — title-authortracklist url
tracklist — tracktrack
title — #PCDATA
author — #PCDATA
track — #PCDATA
url — #PCDATA

Figure 2.2: A DTD describing discotheques.

albums
//cd\ /online
titte” author tracklist title~ author tracklist url

| | / N\ | | | |
The Black Bert track track Midnight Davy track http://...
Swan Jansch ‘ \ Man Graham ‘

The BlackHigh No Preacher
Swan Days Blues

Figure 2.3: A valid tree describing a discotheque.

Section 2.2 — Schemas 35

The language of valid trees defined by the DTD= (init, rul) is the language
associated with its start symbol, i.Byt (D).

Expressiveness

DTDs are strictly less expressive than regular languagesy €xactly correspond
to local tree languagefMLMO1]: for every pair of valid treeg andt/, if ¢ (resp.
t') has a noder (resp. 7') labeled bya € X, then replacing int the subtree
rooted atr by the subtree of rooted atx’ leads to a new valid tree. In other
terms, DTDs do not take the context into account, but onlydbal label [PV0O].
Hence, DTDs can be translated imRE to | TAs recognizing thécnsencoding
of valid trees. A lot of algorithms were proposed for protegfficiently DTDs
with regards to the usual problems related to tree languagembership (here,
named validation) and typing [BKW98, SV02], inclusion, eglence [MNSO04].

Beside this formalization, the W3C recommendation [BP®8] indicates
that the regular expressions have todme-unambiguousThis means that when
parsing the word from left to right, there must be at any timepat most one
possible matching in the regular expression. In other tethes Glushkov au-
tomaton [Glu61] obtained from the regular expression masddterministic. We
call a DTD deterministi¢ if all its corresponding regular expressions are one-
unambiguous.

2.2.2 Extended Document Type Definition

Extended DTDYEDTDs for short, and sometimes callggkecializedTDs in the

literature) were proposed by Papakonstantinou and ViaMoOQR by allowing

each label to have several types. Each type is associatbdowd label. The
regular expressions of an EDTD are not based on labels, biypes. This way,
EDTDs capture all regular languages.

For instance, consider the discotheque example previaosyduced. Sup-
pose that we want to use a url for authors instead of some #HBDBut only
for online albums. This would be impossible using a DTD, as iha non-local
property. With EDTDs, we can introduce two types of autharg] thus solve the

36 Chapter 2 — Schemas and Query Languages

problem:
albums— (cd | onling)* typgalbumg = albums
cd — title-cdAuthortracklist typgcd) = cd
online — title-onlineAuthortracklist url typgonline) = online
tracklist— track-track typgtracklist) = tracklist
titte — #PCDATA typgtitle) = title
cdAuthor— #PCDATA typg cdAuthorn = author
onlineAuthor— url typgonlineAuthoy = author
track— #PCDATA typgtrack) = track
url — #PCDATA type(url) = url

More formally, an EDTDD overY is a tuple(init, rul, ¥, type) where¥ is the set
of types,init € ¥, rul maps each type of to a regular expression of types, and
typemaps each type to a symbolXf With each type) € T we can associate the
language:

_ a = typgd),
Ly(D) = {‘L(tl""’tk) |9y geeLril(9)), heLy, (D) for 1 <i <k }

The language recognized Wy is Lyt (D). In terms of expressiveness, EDTDs
exactly capture the set of regular unranked tree langu&tésq].

Introducing types leads to the problem of typing each laliel document.
Two types are saidompetingf both are mapped to the same label (for instance,
cdAuthorandonlineAuthorin our example). Computing types increases the cost
of parsing and processing, when compared to DTDs. This iss@he restrictions
on EDTDs have been proposed.

Single-type EDTDs

The first restriction on EDTDs is to require that no regulgrression can contain
two competing types. This correspondssingle-typeEDTDs, and also to ML
Schema according to [MLMO1] (see also [MNSBOG6b]). Singlpet EDTDs is
also the class of languages for which the ancestor strirg dtimcatenation of
labels of the current branch) determines the type: if twaMaées have the same
ancestor strings until nodesand~’, then swapping the corresponding subtrees
leads also to valid trees [MNSO05].

In our discography example, the EDTD extension is singpefyas the only
competing types aredAuthorand onlineAuthor and they never appear in the
same rule.

Section 2.3 — Queries 37

Restrained Competition EDTDs

We introduce the second restriction, namely tb&trained competitianThis one

is similar to the determinism of DTDs, but at the level of tgpéAn EDTD is
restrained competitionf there does not exist two different competing typgs
andd, and wordsu, vy, ve € T* such that{u-9;,-vy, u-J5-v9} € L(e) for some
regular expressioain rul. Martens et al. [MNSO5] prove that deciding whether
an EDTD is restrained-competition is in (a subclass of)M&. An EDTD is
deterministicif all its regular expressions are one-unambiguous. Gleaxlery
single type EDTD is also restrained competition, and evesyrained competition
EDTD is deterministic.

Restrained competition EDTDs are strictly more expres$iaa deterministic
DTDs, but strictly less than regular languages [MLMOL1]. actf we get the same
characterization as for single-type EDTDs, except that @gace the string of
ancestors by the string of ancestors of the leftmost sildfrige node, plus its left
siblings. Hence deterministic restrained competition B3Tcan be translated
in linear time to d TAs on the first-child next-sibling encoding of trees (see fo
instance Lemma 33 of [CGLNO09]). Deterministic restrainedhpetition EDTDs
can be efficiently used to type documents in streaming orse€Chapter 4, we
present a translation of restrained-competition EDTDsutomata that evaluate
documents in a streaming fashion.

2.3 Queries

In the context of databases, queries are used to selecodaggptocessed later on.
In this manuscript, we focus on queries that only take thectire of the database
into account, not the data values.

We definen-ary queries over relational structures, as functionsctelg n-
tuples of elements of the domain. The special cases of guevier words and
trees are introduced. Logics and automata, as presenta@dysly, are then used
for definingn-ary queries. Finally, the W3C standards XPath 1.0 and XP#h
are introduced, and their navigational cores are formdli¥ée also mention other
formalisms for querying in trees, and expose the state oathéor queries eva-
luation.

2.3.1 Queries over Relational Structures

We first introduce queries over relational structures. Ia tontext of XvL,
schemas are used to define the set of valid trees. In this m@piisve study
the evaluation of queries that only select tuples of nodesiid trees of some

38 Chapter 2 — Schemas and Query Languages

given schema. To generalize this idea, queries are alwags giith an associ-
ated schema, that we name th@mainof the query. This has to be distinguished
with the set of trees on which the query selects some noddghas the schema
given by a separate object.

Definition

Let A be arelational signature amde N,. A schema oveA is a subset C Sa.

An n-ary query with schem4 is a function with domaindom @) = S, which
maps all structures € S to a set of tuples of elements, and only selects on valid
structures:

Q(s) Cdoms)” and Q(s) # 0 = se domQ)

A Boolean query is a query of arity0, where the empty tuplg is selected for
some trees. Anonadic queryis a query of arityl. We sometimes use queries
without schemameaning that we consider queries with the universal schtema
Sa.

A query languagdalso calledquery classin this manuscript)Q of arity n
over A consists of a se@, whose expressions € Q have a sizee| € N and
a queryQ. of arity n, so thatQ.(s) C dom(s)” for all s € SA. Note that the
expressiore defines both the schendam(@).) C Sa and the object for selecting
nodesq.(s) € dom(s)". Hence expressions are usually a pair of objects. In
this manuscript we will study query classes for which expi@ss will be either
XPath expressions or tree automata for selecting nodeh, amtomata for the
schema languages.

The query evaluation problem takes as inputs an expressaod a structure
s, and outputs).(s). It is parameterized by a query class. The complexity of
this problem when the query and structure are both variablealledcombined
complexity When the size of the expression is fixed, we nantiait complexity

Below, we will define queries in words, where the schema isaascbf rela-
tional structures of words idom(@)) C >*, and queries in unranked trees where
the schema is a class of relational structures of unrankeddom) C 75.. The
domains can be defined by automata efLXschemas.

FO and MSO-definable Queries

Queries can be easily defined from FO and MSO formulas, bygusieir free
variables. This can be done modulo an ordering on these &eables, and by
requiring that MSO formulas only have first-order free vilés.

Let ¢,¢' € FO[A] (resp. ¢,¢' € MSO[A|) where¢' is closed, and let
x1,...,x, bethe free variables af, all of them being first-order. Then we define

Section 2.3 — Queries 39

then-ary queryQy(z,,...o.),¢ DY:
Qoer,zn) (S) = {(m1, . m) | S[x1 =71, 20—] | &}

for all s € Sa such that = ¢/, anddom Qg (z,....en)er) = {S | S| ¢'}. Sim-
ilarly, we defineQ(,, ..., for the case without schema, by lifting the condition
sk ¢’ anddomQp(asz,).¢") = Sa-

We say that am-ary query(@ is FO-definable(resp. MSO-definableover
A-structures if there exist HQA] formulas (resp. MS@\] formulas)¢ with free
variablesr,, ..., z, and¢’ (a closed formula) such thét = Q4(z,,... 2.« HENCE
FO[A] and MSQA] are two query classes, whose expressions are formulas with
ordered free variables for the selecting part, with closethfilas for the schema
part.

Canonical Language

We can equivalently define a query as a set of annotated tesctThis will be
used to define queries by structures acceptors, like autorBatlean querie®

with dom@) = Sa can be identified with structurds, = {s| () € Q(s)}. But

how can we define languages of structures#ary queries?

We fix an ordered set of distinct variableéy = {zi,...,z,} and define
extended relation signaturés, = A UV, such that every variable becomes a
unary relation symbol. For every structise S, and tupler = (m,...,m,) €
dom(s)” we define arannotated structure s € Sa,, as follows:

dom(sx 7) = dom(s)
ST =S forallr € A
¥ = {m} foralll1 <i<n

We call a structuré € S, canonicalif 2° is a singleton for all: € V,. Clearly,

all annotated structurest 7 are canonical. Conversely, every canonical structure
5 is equal to some annotated structgre 7. We therefore define the canonical
languagd. of ann-ary query@ as the following set of annotated structures:

Lo ={sx7[7€Q(s)}

The canonical language of a Boolean query indeed coincidéstihie schema
Lo = {s| () € Q(s)}. Note however, that the domain of a query is only partially
specified by the canonical language. In particular there exast valid structures

s € dom(®) on which nothing is selected, i.&)(s) = (), so we cannot identify
dom(@) with the structures on which something is selected. In otdédix this
problem, we identify &) with the pair(Lg, dom(())) of its canonical language
and its domain.

40 Chapter 2 — Schemas and Query Languages

Logical Operations on Queries

We define logical operations for-ary queries, Q' with the same schemé&:
conjunction@ A @', disjunction@ Vv ', negation—(Q), existential quantification
dz;. @ and cylindrificatiorc; @ for all 1 < i < n. All these queries have the same
domainsS and satisfy for all structurese S:

conjunction QA Q'(S) =Q(s)NQ'(S) |
negation -Q(s) = { 80”(3)” —Q(s) ifses

otherwise
quantification Jz;. Q(s) =
{(ﬂ-la s T 1 T Ly - - ey Wn) ‘ Elﬂ—i' (71'1, s ,7Tn) € Q(S)}
cylindrification ¢;Q(s) = { (71, ..., ™, T Tix1, -+ 70) | (71,..., ™) € Q(S)}
Note thatdz;. @ is a query of arityn—1 andc;Q arity n+1, while all others have

arity n.

We next relate logical operations on queries to set operatan canonical
languages. This correspondence is the reason why thisamromethod is said
canonical We define for allr € A,, a projection operatoll,: Sx — Sa,—{r}
which removes symbat from the relational structures. We get the following
equalities:

intersection Lorg' = Lo MLy

complement L.g={sx7 | sedom(), 7 € doms)"} — Lo
projection Lsz o = {IL(s*x7) | s*x7 € Lg}
cylindrification L. = Ugy, 15, (5)

Ty

Queries over Words

An n-ary query(Q in words has some scherdam(@)) C >* and selects-tuples
of positions in words iom(@). Suppose that we fidlom @) = X*. We can then
define a monadic query by the following FO-formula with a $nfyee variable
Z1.

¢(x1) = Fza. (21 < 29 Alab,(22))

For every wordw in the schema, the quetyy(,,) defined by this formula selects
all positions before some-labeled positions.

Given awordw = a;-...-a,, € ¥* and a tupler = (7, ..., m,) € domw)",
we can identify the annotated structurex 7 with the following annotated word
overy x 2Vn:

(ar, {x; | m = 1}) .. .- (am, {z; | m = m})

Section 2.3 — Queries 41

albums (albums ()

online (onling {x})

SN TN

title author tracklist (title,) (author{z,}) (tracklist®)

(a) Atreet € Ty. (b) The annotated trefex (1, 1-2).

Figure 2.4: Example of tree annotation.

For instance, we identify the annotated structure c * (2) with the word(b, ())-
(a,{z1}), (¢, 0). Hence the canonical language ofraary queryQ in words over
A thus can be identified with a languagig of annotated words with alphabet
¥ ox 2Vn,

Queries over Unranked Trees

Queries() in unranked trees dfy; are queries with some domailomQ) C 7s..
They select tuples of nodéx¢) C nod(t)" for all treest € dom(@). For instance,
considering the schema in Figure 2.2 describing discotgqwe can define a
query that selects all pairs of nodes 7') wherer’ is a descendant of labeled
by authorusing the following FO-formula with free variables andz,:

925(3317 x2) = (Ch*(l’l, x2) A |abauthor(x2))

By analogy with the case of words, the canonical languagenof-ary queryQ
in unranked trees over can be identified with a language of unranked trees over
the alphabet x 2V whereV,, = {z1, ..., z,}. We illustrate this in Figure 2.4.

2.3.2 Queries by Automata

Let n € Ny be some arity. If a notion of automaton exists for a class of an
notated relational structures, , then we can use automata for defining queries
over structures of, by means of the canonical languages.

If Ais atree automaton over the alphabet 2V~ recognizing only canonical
structures and3? a word (resp. tree) automaton overthen we define the query
Qa,p by:

Lows =L(A) and domQugs) = L(B)

42 Chapter 2 — Schemas and Query Languages

Note that in the definition of queries, we required that ceeednly select on valid
trees. This means that we only consider automt& such thatlly(L(A)) C
L(B), wherelly; is the projection along the component.

We call a query over unranked treeggular if there exist two tree automata
A and B such that) = Q4 5. From these definitions, we can extend the corre-
spondence between regular and MSO-definable tree langobBesposition 1 to
queries. It suffices to use Proposition 1 on the canonicgluage ofQ.

Proposition 3. A query over unranked trees is regular iff it is MSO-definable

More complete results about the links between logics andnaatia for trees
are presented in [CD®7, Nev02b, Nev02a] and for more general structures in
[Tho97].

Related Work on Queries by Automata

Different approaches were proposed to use automata to dpferes on trees.
An alternative way of using automata for defining querie®igge the anno-
tations of trees by runs of the automaton, where some tuplssates permit to
define tuples of selected nodes. This can also be seen asgathiei variabled’,
in the states instead of the alphabet. BeflectC stat’ be the set ofi-tuples
of selecting states of a TAl. We can define a query selectingtuples of nodes
mapped byA to n-tuples of selecting states on some run:
there is a successful rurof A ont
@s(t) = {(7”’ 7). | where(r(m,),...,r(r,)) € Select }

These queries, namextistential run-based querigare studied by Niehren et al.
in [NPTTO5], and proved to capture MSO-definable queries teeplacing the
existential quantification on runs by a universal one do¢shange their expres-
siveness. This is no longer the case when considering tise ofadeterministic
automata. The authors also consider unambiguous autareatapytomata having
at most one accepting run per tree. A property of these autoimghat am-ary
guery can be defined using an unambiguous automaton iff ibeanritten as a
Boolean combination of monadic MSO formulas. As a consecgiemonadic
gueries defined by unambiguous automata are exactly mohsi@-definable
gueries. But fon > 1, queries defined by unambiguous automata are strictly less
expressive than MSO-definable queries.

In a prior work [FGKO3], Frick et al. proposed a monadic vatiaf this
approach, usingelecting tree automatand operating on DAGs that are a com-
pact representation of trees. Without compact represeniahe query evalua-
tion problem for a selecting tree automatdron a treef is in time O(|AJ? - [¢]).

Section 2.3 — Queries 43

When trees are compressed, the query evaluation problentireé 204D . |¢.|,
wheret, is a compact representation ©of Hosoya and Pierce [HP03] also de-
fined run-based-ary queries througpattern automataon ranked trees. Neven
and Schwentick introduceguiery automatan [NS02]. They start from two-way
automata [Mor94] and add selecting states. In terms of sgprenessquery
automatacapture MSO-definable queries. In the unranked case, ttieisase
only when adding stay transitions. Emptiness, inclusiaheqguivalence of query
automata are all 2 TIME-complete problems.

Other automata models were proposed for processvg documents in the
context of streaming. This led to the introduction of treeauata that run through
trees in pre-order traversal of their nodes. We survey sutdnzata in Chapter 4
of this manuscript.

2.3.3 XPath

With the introduction of XL as a standard for semi-structured data [BP 98I,
the W3C defined the XPath query language [CD99]. XPath is tzseelect sets of
nodes in XML documents, based on some properties of paths. XPath issafbasi
numerous other standards: XML Schema [FWO04] for definingstws, XPointer
[DMJO1] for identifying fragments of XiL documents, and XQuery [BCB7]
and XSLT [Cla99] for document transformations.

Two versions of XPath have been released so far. XPath 11i@edajueries by
path expressions, with other features like data value,tagthmetic operations,
aggregators, etc. XPath 2.0 extends XPath 1.0 with the tmgeaf having a first-
order complete navigational core, that is missing in XPath We present both
versions in the following. Known results about expressass evaluation and
static analysis of XPath 1.0 are surveyed by Benedikt andhKofBKO08].

XPath 1.0

XPath 1.0 is a navigational language based on a set of astedeto tree struc-
tures. XPath 1.0 expressions define monadic queries usingpéessyntax, with-

out variables. Consider for instance the expressjord[author]/title. It con-
siders allcd nodes (/ is the descendant, i.eh" axis), tests whether they have an
authorchild node {. . .| delimits test expressions), and if this is the case, outputs
theirtitle children nodes/is the composition of steps, and the default axish)s

CoreXPath 1.0 As mentioned earlier, XPath 1.0 comes with features that are
not navigational. In particular, data value manipulatisash as arithmetic ope-
rations make XPath 1.0 undecidable. For this reason, Gotdoch and Pichler
define CoreXPath 1.0 [GKPO05], a formal characterizatiomefrtavigational core

44 Chapter 2 — Schemas and Query Languages

axis d == self | foll | prec
| ch | ch* | ch™ | ch™' | (ch!)* | (chh)*
| ns| ns | ns" | nst | (nsH)* | (nsh)T

label tests 0 == a | * (wherea € Y0)
steps S = d:/

paths P = S| SF| S/P

filters F == [P] | [not(F)] | [F1andF]
rooted path R := /P

Figure 2.5: Syntax of CoreXPath 1.0.

of XPath 1.0. We recall the syntax of CoreXPath 1.0 in Figuf 2A Core-
XPath 1.0 expression is either a path expresBian a rooted path expressidi
CoreXPath 1.0 allowssandns™! axis, as opposed to the XPath standard.

We progressively define the semantics of each element, witerpreted on a
treet € 7x. Label tests and filters are interpreted as unary relatitias,select
the nodes of the tree satisfying these tefii;., C nod(¢). Axis, steps and paths
are interpreted as binary relations, relating pairs of sade: [.]),, € nod(t) x
nod(t).

The axisself relates each node with itself:

[selffpan = {(w.7) | =€ nod(t)}

Axis ch andnskeep their usual semantics from the definitiort @fs a relational
structure:
[[Ch]]éath = chf [[nqrath =ns

We define the transitive and inverse variants of axis usiagthresponding ope-
rations on binary relations:

[0 Tpan = (Idloar)™ [Tpan = ([dpan) ™ [Tpan = ([dlpaw)

The following (resp. preceding axis relates each nodes with all nodes greater
(resp. smaller) than itself in post-order (resp. pre-Orttaversal:

[[fon]]éath: [[(Ch_lz* éatho [[nsi_]]lrt)atho [[Ch* E)ath
[[preq]éath: [[(Ch_)* E)atho [[(ns*1)+ E)atho [[Ch*]]éath

Label tests have a monadic interpretation, like filtefé}},, < nod(t). The
symbol “*” is a wildcard:

[[a]]?ilter - |abZ [[*H?ilter - nOd(t)

Section 2.3 — Queries 45

A step is a move in the tree along a path, where the target nexifeeg the label
test. This is the basic element of a path, and is interpretedanary relation:

[[d::gﬂéath: [[d]]f:)ath N (nOd(t) X [[E]]Filter)

Finally, path expressions are defined by a series of stefistlve possible addition

of filters:
[[Sﬂ]éath = [[S]]éath N (HOd(t) X [[F]]gilter)
[[S/ P]]éath = [[S]]éath o [[P]]éath

Path filters are interpreted existentially. Boolean openatare then interpreted

as usual:
[Plier = {7 | 37" (7, 7") € [Plant
[HnOt(F)”]Filter = nOd(t) - [[F]]Filter
[HFI and F2”]¥ilter = [[Fl]]gilter N [[F2]]€ilter

Rooted paths are interpreted as the set of hodes accessible starting at the
root node, and following the path. Thus it is a monadic refat. [, € nod(t):

[/Ppatn= {7 | (€,7) € [Plpan}

If a CoreXPath 1.0 expression is a path expresBiaimen it naturally defines the
binary queryQp(t) = [P]u If it is a rooted path expressiaR, it corresponds
to the monadic quer)r(t) = [R]f,. The set of binary queries defined by path
expressions of CoreXPath 1.0 exactly captures the twohlasdragment of FO
over unranked trees [MdRO5]. This fragment is strictly lespressive than FO.
In [Mar05b, Mar05a], Marx shows that any extension of CorakiP1.0 closed
under path complementation is FO-expressive.

Static Analysis CoreXPath 1.0 is now a well-studied logic. Static problemnes a
analyzed in [NS03, Woo03, MS04, GLS07]. Main results ars@néed in surveys
[GKPO03, BKO08]. Satisfiability of CoreXPath 1.0 is known to #ecidable, even
in the presence of DTDs [BFGO08]. Containment (also calletusion) of queries
is the problem that takes as input two expressioaade’, and outputs the truth
value of Q. (t) C Q. (t) forall t € Ts.. We write@. C Q. if this property holds.
For binary queries of CoreXPath 1.0, containmentx®EME-complete. In this
manuscript we will sometimes use reductions to the uniligysaf queries, i.e.
given an expressioa defining a query, decide whethet € 75, V7 € nod(t)",

T € Qe(t).

Proposition 4. Deciding the universality of Boolean CoreXPath 1.0 filtersla
monadic CoreXPath 1.0 expressions restricted to axes clthng coNP-hard.

46 Chapter 2 — Schemas and Query Languages

Proof. As negation and disjunctions are allowed in CoreXPath 1t€r$) contain-
ment and universality are equivalent, becalise- Lg, . ., .., iff Lo., € Lo.,-
Moreover, containment of CoreXPath 1.0 filters was provédR:tard by Miklau
and Suciu [MS04], even for positive filters restricted tosge andch®. In the
presence of negation, universality of monadic queries iddrahan universality
of Boolean queries of the same class. O

For the dynamic approach, we present known query evaluatgorithms in
Section 2.3.5.

Forward XPath Forward XPath [OItO7b] is the restriction of CoreXPath 1.0
where allowed axes are only forward axes, i.e. akesch that if(7, 7') € [d])
thenr’ follows 7 in document order. Such axis are:

d:=self | foll | ch | ch* | ch" | ns| ns" | ns

This set of axis is often used for streamingiX. matches of Forward XPath
expressions can be built progressively along the strearmowi guessing un-
read information. This restriction on axes does not affepressiveness: every
CoreXPath 1.0 expression can be rewritten into an equivil@nvard XPath ex-

pression [OMFB02]. However this translation can produgeogentially bigger

expressions.

CoreXPath 1.0 Extensions Some extensions of CoreXPath 1.0, inspired by
temporal logics, were proposed. For example, Marx def@@sditional XPath
[MarO4a, Mar05a] from CoreXPath 1.0 by adding path expoesspf the form
(SPH™ whereS = d::/ is a step andF a filter expression. This expression is in-
terpreted as the transitive closufS F)*] . = ([S Hpan)*, i-€., we can move
according tdS, and at each step we must check tRhas true. This is inspired by
the Until operator of temporal logics: we can do jumps al@&@wntil some posi-
tion, and on the way is true at each step. Conditional XPath is FO-complete,
and thus strictly more expressive than CoreXPath 1.0. As iWeee later on, this
does not increase the evaluation time.

Beyond Conditional XPathRegular XPath [Mar0O4b] allows transitive clo-
sure of any path expression, not only steps. In [tC06], tete Gafines Regular
XPath® as the extension of Regular XPath by the equality operatdbiven two
path expressionB; andP,, P, ~ P, is true at noder of ¢ if there is a noder’
that can be reached fromby bothP; andP,. It is still unknown whether this
operator is needed. In terms of expressiveness, RegulahXRahen considered
as a binary query language) is a strict extension of ConwitiXPath, as it cap-
tures FO, the FO logic over trees allowing a transitive closure ofmeran formu-
las having exactly two free variables. However, RegulartkRes not capture

Section 2.3 — Queries 47

MSO-definable queries. Indeed, ten Cate and Segoufin rgqeotied that FO
is strictly included in MSO for trees [tCS08] (they proved ama general result,
as their transitive closure operator allows for more tham free variables). The
evaluation of a Regular XPath expressioan a treef can be performed in time
O(|t] - |e|]) [Mar04b].

CoreXPath 1.0 with (attribute) data value comparisons lsslzeen studied.
Its satisfiability is undecidable in the general case [GFB6] becomes decidable
with restriction on allowed axes [BDMD6, BFGO08, Fig09]. In particular, ho-
rizontal axes introduce additional difficulties [GF05, B&&}. In [Par09], Parys
proves that CoreXPath 1.0 expressiength data value comparisons can be eval-
uated in timeO(|¢] - |e|®). Adding aggregators leads to an exponential blow-up in
the query size.

Tree Patterns

Tree patterns are similar to CoreXPath 1.0 queries using descending axis
ch andch®, and no negation and disjunction. They definrary queries using
variablesV,, = {x,...,z,}. Tree patterns are expressions of the fgifrwhere
F is defined by the following grammar:

F:=andF;,Fy) | ch(F) | ch*(F) | ¢F) | = | true

wherel € ¥, x € V,, d € {ch,ch'}, and the operatof appears in root position
only. The semanti¢F],,, C nod(t) is defined modulo an assignment V,, —
nod(t) and the following equations:

landFi,F2)]e, = [Filep N [F2]ey
[ch(F)., = {m | 37" € [Flip. chi(m, ')}
[ch(F)le = A{x | 37" € [Flip- (ch)(m,)}
6P, = {7 | £=lab’(x)}
[z]en = {n(x)}
[true],,, = {nod)}
[/Flen = {3 N [Flen

The query defined by a tree pattefffis given by:

Q(t) = {(u(x1), ., pu(wn)) | € € [/Fliu}

Sometimes [BKS02], the query is composed by the matchingdl abdes of the
expression, i.e., for each step a new variable is presekdalvland Suciu [MS04]
show that inclusion of tree patterns is coNP-complete. IRKB5], Benedikt
et al. study the sublanguages of XPath obtained by remowviegsfi downward
recursion, and/or upward axis, while never allowing hamizab axis. They relate
these fragments to tree patterns, in terms of expressisenes

48 Chapter 2 — Schemas and Query Languages

axis d == self | foll | prec
| ch | ch* | ch® | ch! | (chi')* | (chh)*
| ns| ns | ns" | nst | (nsH)* | (nsh)T

label tests ¢ == a | % (wherea € Y0)

steps S = d:/

node test N == .|z (wherex € V)

paths P = S| SF| S/P
| Prunion R, | P;intersectB | P; exceptB
| N | forzin P, return P,

filters F == [P] | [not(F)] | [F1and Fy] | [Ny is Ny

rooted path R := /P

Figure 2.6: Syntax of CoreXPath 2.0.

XPath 2.0

XPath 2.0 [KRS 07] has been defined from XPath 1.0 by adding some features,
in order to get a more expressive query language. XPath 2mitsethe use of
variablesz (from an infinite sef) of variables). These are interpreted as path
expressions that move from any node to the node assignedddest is added to
compare nodes assigned to variabless .| tests whether the current node is the
one assigned te, whereasz is y] is true if x andy are both assigned to the current
node. An iterator is also added, through for-loops of thenffmor « in P; return .

This is interpreted as a path expression. Two path expressiperators are also
added: the relative complemeRt except B, the unionP; union R, and the
intersectiorP; intersect B.

CoreXPath 2.0 is a formalization of the navigational corexBfath 2.0 pro-
posed by ten Cate and Marx [tCMOQ7]. Its syntax is detailedigufe 2.6.

We define only the semantics of the new elements of CoreXPatha2 el-
ements coming from CoreXPath 1.0 keep the same semanticse pMecisely,
the semantics of a CoreXPath 2.0 expressiam a treet is done modulo an as-
signmenty, of the free variables of to nodes oft. CoreXPath 1.0 expressions
only propagate this assignment, whereas CoreXPath 2.@&sipns use it in the

Section 2.3 — Queries 49

following way:

[[]]Exfth = Hself]]path
[[x]]path_ nod(t) x {u(x)}
[P, union PQ]]path [[P1]]pamU [[Pz]]pam
[P, intersect B]]path - [[Pl]]path N [Pk
[P, except B]]path [Pl ain — (P2l
[for zin Py return Ry 4 = { (w1, ™) | s € nod(t).
(77'1771'3) S [[Pl]]path and(WhW?) < [[Pzﬂpg[ﬁhm]}
[H is x”]fllter {:u()}
[H is] fllter = nOd()
[H is y“]fllter [[is x]]fllter N [[is y]]ﬂlter

This time, CoreXPath 2.0 path expressidhgand similarly for rooted path ex-
pressionsk) definen-ary queries by the assignments that satisfy the expression

QP(t) = {(7T1, c.. ,7Tn) | [[P]]g;fﬁhwl T —Tn] 7A @}

The problem of query inclusion for various fragments of CdPath 2.0 is
studied in [tCLO7]. It ranges from X TIME (for the extension of CoreXPath 1.0
with path equality) and 2-ETIME (for the extension with path intersection), to
non-elementary (for the extension with path complemeoratr for-loops). The
equivalence problem is shown decidable in [tCMO07]. Satidfist of XPath 2.0
was studied in [Hid03] before the axomatization of XPatht&/@oreXPath 2.0.
In terms of expressiveness, CoreXPath 2.0 is FO-completee3-O-expressive
fragments of CoreXPath 2.0 enjoying efficient evaluatiggoathms are presented
in [FNTTO7]. We present them in Section 2.3.5.

2.3.4 Other Approaches for Querying in Trees

In this section we briefly survey some other formalisms psggbfor querying
finite ordered trees.

Conjunctive Queries

A conjunctive query)(zy, ..., x,) over a signaturéd = {ry,... .} is a FOA]
formula only using conjunctions, and existential quantfiat the outermost lev-
els, as for instance:

d(x1) = Fyi. Fya. mi(z1,91) A ra(y2)

Conjunctive queries enjoy a clean relation with the Préjedh algebra, and thus
are also studied in the context of relational databases [25]V

50 Chapter 2 — Schemas and Query Languages

Conjunctive queries over trees are studied by Gottlob endlGKS06]. The
authors investigate the tractability of the query evatraproblem, depending on
which XPath axis are used in the signatuye A frontier is established for arbi-
trary finite structures, and then applied to XPath axis. Ddpey on the chosen set
of XPath axis, the query evaluation is either mii?e or NP-hard. In [BFLSO06],
Bry et al. investigate algorithms for conjunctiveary queries over graphs, that
are also efficient on trees.

Other restrictions over conjunctive queries are studiethencontext of re-
lational databases. For instanaeyclic conjunctive querieare introduced by
Yannakakis [Yan81]. These are conjunctive queries whiaghesponding hyper-
graph representation is acyclic. Yannakakis proposedgoritim that evaluates
these querie§) in time O(|D| - |¢| - |¢(D)|) for a databasé®. Some algorithms
for evaluating acyclic conjunctive queries incrementally proposed by Bagan et
al. [BDGO7]. Tree patterngas presented in Section 2.3.3) are a special case of
acyclic conjunctive queries on tree structures.

Monadic Datalog

Datalog Datalogis a generalization of conjunctive queries, introducingure
sion. A Datalog program is a set of Datalog rules, each of themg composed
by a head (an atom) and a body (a conjunction of atoms, i.enjamctive query).
For instance the conjunctive query mentioned in the precedaragraph corre-
sponds to the rule:

(1) = ri(x1, 1), r2(y2)-

Datalog comes with the least fixed point semantics, as engdidbelow for ground
Datalog. For precise definitions and results, see for icgt§HV95, CGT90].

Monadic Datalog In [GKO04], Gottlob and Koch proposlonadic Datalogas
a monadic query language over unranked trees. A Monadicld@afaogram
is a Datalog program where all head predicates are unarypaadf these is
considered as the selecting predicate, thus defining a nogaedry. Gottlob and
Koch consider the signature = {fc, ns root, leaf Ic} U {lab, | a € ¥}, where
root, leaf andlc are monadic predicates respectively selecting the rooé nibe
leaves and the last children (i.e., children nodes witheuxt-sibling). Over this
signature, Monadic Datalog programs exactly capture morgekries that are
MSOJfc, ng-definable. The query evaluation of a Monadic Datalog pnogFaon
atreet is in linear combined complexityd(|¢| - | P]).

Ground Datalog In this manuscript we sometimes ugeound Datalogas a
simple way to define new relations. A ground Datalog prograiam Datalog pro-

Section 2.3 — Queries 51

gram without variables. We recall here the definition, arelky result about the
linear resolution of such programs.

Let A be a ranked signature containing constantsA and predicateg € A,
where all predicates have an ariy(p) € No. We call a termp(cy, .. ., cap))
a literal, and denote the set of literals ov&rby lit(A). A clauseis a pair in
lit(A) x lit(A)* (with k& € Ny) that we writeL :- Ly, ..., L. as usual. Aground
Datalog programP is a finite set of clauses ovar Its size| P| is the total number
of symbols appearing in all its clauses.

Theleast fixed point IfpP) of P is the least set of literals ovérthat satisfies
that for all clauseg. :- Ly, ..., L. of P,if Ly, ..., Ly € Ifp(P) thenL € Ifp(P).
As no negation is allowed, every ground Datalog progiarnas a unique least
fixed point, and this one is finite. For ground Datalog, thastdixed point can be
efficiently computed [CGT89, DEGV01, GGV02].

Proposition 5. For every signature\ and every ground Datalog prograi over
A, the least fixed point P can be computed in time(|P|).

Modal Logics

Modal logics are logics using modality operators. Amongéhkgics, temporal
logics are a popular way to describe properties of dynanstesys, and check
them by verification techniques. They can be used to exphesstproperty will
be satisfied in some system continuation, in all continmati@r to check that a
property is true until some time point where another properttrue. In trees,
properties are expressed on paths of the tree. We brieflyiomesdme works on
temporal logics over ordered trees (see [Lib06] for a morapete overview).

Linear Temporal Logi¢LTL) is known to capture FO on words, by Kamp’s
Theorem [Kam68]. In [MarO5a], Marx adapts the definition @iLLto trees by
using two variants for each modality operator: one for hamrtal paths (alongs),
one for vertical paths (alongh). The resulting logic is equivalent to F", ns,
in terms of expressiveness, for Boolean and unary queriesedikt and Jeffrey
[BJO7] consider thedennessy-Milner Logi¢HML) [HM85], obtained from the
previous logic by lifting thauntil modality. This way, they capture CoreXPath 1.0.

Computation Tree Logi(CTL) and CTL" add branching to the LTL approach,
by distinguishing node formulas and path formulas (in theesavay as XPath uses
filters and path expressions). CTwas proved equivalent to FO for binary trees
for a long time [HT87], and recently Barcelo and Libkin peabvthat CTL, is
equivalent to FO over unranked trees [BLO5hast means here thath™' and
ns ! are also used in modality operators.

Propositional Dynamic Logio(PDL) has also been adapted to trees by
Afanasiev et al. [ABD05]. PDLyce, the resulting logic, is based on Boolean

52 Chapter 2 — Schemas and Query Languages

combinations (and existential quantification) of path falas where branching
and transitive closures are allowed. Its expressivenessistly the same as Reg-
ular XPath [Mar04b].

The modal p-calculusadds least and greatest fixed points to modal logics.
Barcel6 and Libkin studied this logic in the context of umkad trees [BLO5]. For
Boolean and monadic queries, thealculus based on axis andnsis equivalent
to MSO. Some logics inspired from thecalculus were later defined [GLS07] to
improve the satisfiability checking.

Other Models of Queries

We briefly mention other formalisms for querying in trees.

Neumann and Seidl define monadic queriegdrgst grammargNS98], that
were extended ta-ary queries by Berlea and Seidl [BS04]. In order to evaluate
these queries, Neumann and Seidl introqueghdown forest automat@hese au-
tomata traverse the input tree in pre-order, and thus parstieaming evaluation.
For this reason, we present this work in more details in Géraht

Regular path querieare queries on graphs, defined by regular expressions on
basic steps (like XPath steps) [ABS00]. In trees, this amoads tacaterpillar
expressionsas defined by Briggemann-Klein and Wood [BKWO0OQ]. These are
strictly less expressive than MSO, and incomparable with G6ris and Marx
definelooping caterpillarsfGMO05] by adding a loop predicate, that only keeps
loops of an expression. Looping caterpillar are able towadbinary FO queries
on unranked trees.

Regular expressions can also be used at a higher level, tededular ex-
pression patterndn [BCF03], Benzaken et al. propo§&®uce a typed program-
ming language for XiL. This language uses such regular expression patterns to
select hedge elements. These patterns are based on tr@gesrhedge algebra
operators, and regular expressions operators. Here, actigntestriction avoids
subtree equality tests. These are allowed in the more dehe@ Query Logic
[CGO04, FTTO7], a spatial logic for ordered trees.

Some work has also be done for combining existing query fbsma. In
particular, Boolean and monadic queries can be used to defarg queries, as
explained for instance in [Sch00, NS00, FNTT06, ABLO7].

2.3.5 Evaluation Algorithms

In this section we survey the complexity of outputting ak #mswers of a query,
for the different classes related to our framework. We surgsults for algorithms
without streaming constraints (see also the survey by KKok(6]). The related
work on streaming is in Chapter 1.

Section 2.3 — Queries 53

Query Evaluation and Enumeration
We present two frameworks for computing answers of a query.

1. Queryevaluationis the more general framework, that measures the overall
time required to output the set of all answers.

2. Queryenumeratior[JPY88, GS03a, Bag06, Cou09] distinguishes the pre-
computation and the delay between consecutive answersceHbg first
answer can usually be output more quickly than by computiegwthole
answer set.

These frameworks do not take space complexity into accamthe tree is
entirely stored in main memory. More precisely, in the entatien framework,
space and time are bounded by the same function during themental com-
putation of answers, but no restriction is made during theppocessing phase
[Bag09]. We provide the definitions in the sequel. I&be a query class, each
expressiore € Q being equipped with a siZe| € N, and defining a querg)..

We say thatQ can beevaluatedin time f, if there exists an algorithm that
takes as input any expressier Q and any tree € 7x, and outputs the sé). ()
in time less tharO(f([t|, |e], |Q(t)])), where|Q.(t)| is the number of elements
in Q.(t). Note that query evaluation is harder than satisfiability.

The classQ can beenumeratedvith preprocessing’ and delayd if there
exists an algorithm that takes as input any expressien@ and treel € 7y, has
a preprocessing phase of time less thH1f(|¢|, |e|)), and then enumerates all the
answerd).(t) with a delay at mosi(|t|, |e|) between two consecutive answers.
There is no restriction on the output order of answers. Qtitgan answer twice
is forbidden.

Query enumeration is an intermediate model between thdatdrevaluation
and the streaming evaluation. It is a special case of querlyatron algorithms,
while streaming query answering algorithms can be consdias special cases of
enumeration algorithms, with the additional constraintimntraversal order, and
with a focus on space consumption.

A recent work by Bagan et al. introduces two other framew¢B{3GO08].
The first one is the computation of a random solution, whetieasecond one is
the computation of thg-th solution. Another problem is to maintain the set of
answers while the ML document is updated. This is usually referred asvibes
maintenance problesI184, GMS93, BGMMO09].

Automata, FO and MSO defined Queries

The evaluation of FO formulas over relational structure®3s®Acecomplete.
Once the query is fixed, it becomes alRe problem [Var95].

54 Chapter 2 — Schemas and Query Languages

In [DOO06], Durand and Olive study the enumeration complefar queries
defined by first-order formulas on quasi-unary structuragaspunary structures
are structures over a signaturé\ containing unary relations symbols, plus one
function f: dom's) — dom(s). In particular labeled unordered unranked trees can
be encoded into quasi-unary structures. They prove thaheration over these
structures can be done with a precomputation linear in #eecfithe structure and
the query, and a delay linear in the size of the query (indégetof the structure
size).

Satisfiability, and thus evaluation, of MSO formulas is redementary. Once
more, this is not the case when the formula is fixed. In [BagBépan provides
an enumeration algorithm that progressively outputs arsafeany query defined
by an MSO formula over trees (in fact, over the more geneedscbf graphs of
bounded tree-width). This algorithm avoids duplicate aarswhas a precom-
putation phase linear ift| and a delay linear in the arity, when the formula
o(xq, ..., x,) is fixed.

For queries defined by automata, Bagan also proposes in @ag@lgorithm
with a precomputation time i® (| A|? - |t|) whereA is an automaton recognizing
the canonical language of the query (with universal scherta)delay between
answers is irO(n), wheren is the arity.

XPath

The first XPath query engines were known to use exponentia,tieven for
CoreXPath 1.0 queries. In [GKP03, GKPO05], Gottlob et al. pose an algo-
rithm that evaluates the full XPath 1.0 language inME combined complexity
(i.e., polynomial in both expressida] and XML document sizet|). Moreover,
this algorithm runs in linear combined complexi®(|¢| - |e|) for CoreXPath 1.0
gueries. The algorithm is simply based on a bottom-up samahiXPath. By
other means, Ramanan proves the same result on the posityradnt of Core-
XPath 1.0 [Ram03]. Marx showed that the evaluation of Coowlil XPath and
Regular XPath also enjoysTRME combined complexity [MarO4b]. In terms of
data complexity Gottlob et al. show in [GKPS05] that the gumraluation prob-
lem (and validation) is not RME-hard, but belongs to lower (parallelizable) com-
plexity classes. Marian and Siméon [MS03] propose a ptiojetechnique, such
that useless parts of theMX document (w.r.t. to a given query) are not loaded in
main memory.

CoreXPath 2.0 is known to capture FO-definabtary queries modulo lin-
ear time transformations. As a consequence, the evaluatiesPACEcomplete
for CoreXPath 2.0, and noTiME algorithm exists unlessTME=PSPACE. In
[FNTTO7], Filiot et al. exhibit a fragment of CoreXPath 2tBat enjoys a PIME
evaluation, while still being FO-complete. This fragmempses the following

Section 2.3 — Queries 55

restrictions: no quantifiers, no variable sharing in patmgosition, and no vari-
ables below complementation. To the best of our knowledggetare no results
for the enumeration of XPath queries.

Tree Patterns

Many algorithms were proposed for evaluating tree pattearsibclass of Core-
XPath 1.0. The first algorithms evaluating tree patterrso(ablledwig patterns)
computed all pairs of nodes satisfying each step of the gqueny then joined
them to output the answers. This approach computes a lotebéassintermedi-
ate results. A first improvement, namé&aigStack was proposed by Bruno et
al. [BKSO02]. It is based on a technique nantfealistic twig join, that checks for
matchings along a root-to-leaf path, instead of steps. Mew¢he algorithm still
computes too much intermediate results (more than the $ithee @nswer set) in
presence of child axis.

Some improvements were subsequently proposed. Jiang ¢0\AILY03]
eliminate more intermediate matchings, while Chen [Ch&B@}oves their merg-
ing. Chen et al. proposBwnig2StacfCLT "06]. Their algorithm deals witksen-
eralized Tree Patterns.e., tree patterns that alloier-loopsa la XPath 2.0. Their
algorithm runs in time)(|¢| - |e|) for usual tree patterns Some further improve-
ments were presented in [ZXMO07, JiEA7]. We refer the reader to [GCO7b] for
a more complete survey on tree patterns.

Validation

In [Seg03], Segoufin proves that the validation problem earfgom LOGSPACE
complete to IOGCFL-complete, depending on the schema language and represen-
tation (this includes DTDs and EDTDs). Martens et al. [MN8BDstudy the
more specific case of ML Schema, but mostly in terms of expressiveness.

56

Chapter 2 — Schemas and Query Languages

Chapter 3

Streamability

Contents

3.1 Introduction 57

3.2 Streaming. 59
3.2.1 Linearizationsof Trees 59
3.2.2 Example of Stream Processing 60
3.23 Concurrency 61
3.2.4 EvaluationModel, 62

3.3 Streamable QueryClasses 67
3.3.1 Streamability 67
3.3.2 Boolean and Monadic Queries 69

3.4 Hardness of Streamability 70
3.4.1 Hardness of Bounded Concurrency 70
3.4.2 Hardness of Streamability 72
3.4.3 Non-Streamability of Forward XPath 73

3.5 Conclusion 74

3.1 Introduction

Query answering in streaming mode is a challenging issuea®ing evaluation
aims for low memory consumption. However, most of query lagges, like the
W3C language XPath, are not designed for streaming evaluafi measure for
the difficult of a query for streaming processing isdtscurrency The concur-

rency of a query is the maximal number of simultaneous catdiglolutions, that
can be selected or not, depending on the end of stream. Gencwyrwas intro-

duced by Bar-Yossef et al., and proved to be a lower memorgdbéar fragments
of XPath [BYFJO5]. Unfortunately, XPath expressions mayehanbounded con-

58 Chapter 3 — Streamability

currency, such as for instangeh®::x.

In this chapter, we present our definition of query answergr XmL
streams. We start with the correspondence between Hocuments and their
serialization, i.e. the linearization of trees. We propassomputational model
namedStreaming Random Access Machi@RAMS) in order to formally define
the intended inputs and outputs of streaming query ansgeligorithms, and
the corresponding complexity measure. We define the contplekSRAMs in
terms of space and time, in order to study the relationshipdsn efficient buffer-
ing and computational cost. In particular, we prove in Caaptsome hardness
results for time complexity, when only alive candidateslartered.

We propose a measure stfeamabilityfor query classes. Roughly speaking,
for m € Ny U {oo}, m-streamable queries can be processed in polynomial space
and time when evaluated on trees inducing concurrency thessit. This defi-
nition generates a hierarchy of query classes. We invdstih@ characteristics
of this hierarchy, and show which properties must be verifg@ query class in
order to beco-streamable, the queries that are most suitable to strgaimiour
hierarchy.

Finally, we prove hardness results for testing bounded wwoancy for a
guery class. We also show the consequence of being streameatd apply
these results on XPath. For Forward XPath, we get negatsudtse deciding
bounded concurrency is coNP-hard, and Forward XPath ismrstreamable, for
allm € NU {oo}.? This motivates further investigations on streamable fraigts
of Forward XPath.

Other computational models were already proposed forrstygacessing of
XML documents. In [SV02], Segoufin and Vianu study the valicatib XML
documents in a streaming mode, with bounded memory. In @B, crequir-
ing bounded memory is equivalent to the existence of a firidiee automaton
(without stack) recognizing the language of valid trees. réMelaborated ma-
chines for stream processing were proposed by Grohe, KodhSahweikardt
[GKSO07, Sch07a]. Their machine model uses external meneanegsure buffer-
ing requirements of algorithms, and allows to read the isfngam several times.
They infer tight bounds for the complexity of evaluating E¥Path 1.0 queries
over XML streams, in the Boolean and monadic cases. When restrictesingle
scan of the input stream, they prove that the depth of theespanding tree is
a lower memory bound, for monadic CoreXPath 1.0 expressiBesedikt and
Jeffrey [BJO7] proposed a simpler model based on Turing mash They define
tractable query classes for this model. We show in this @rapat two of these
areoo-streamable according to our model.

1We proved stronger hardness results in follow-up work.

Section 3.2 — Streaming 59

3.2 Streaming

We start this section with a description ofiX streams and the definition of our
computational model for evaluating queries imX streams. We formally intro-
duce the notion of concurrency, that we will use later on fondeour streamability
measure.

3.2.1 Linearizations of Trees

A streaming algorithm that answers a quéryor some class of structurésreads
a linearization of a structurge S from the input stream, and computes a collec-
tion of answerg)(s) incrementally. For words, linearization is straightfordizas
words are already linear data structures.

Unranked trees need linearization in order to be put

a
onto a stream. For every sgf let AN
~ b C
S ={opcl} xS

S is the set of tagged opening and closing parenthesis. Aningpgarenthesis
(op, a) corresponds to the ML tag<a> and a closing parenthegisl, a) to the
XML tag</ a>. For every tree¢ € 7y we define thevisible wordvw(t) € S by
linearization as follows:

wW(a(ty, ..., t,)) = (0p,a)-VW(t1)-...-vW(t,)-(cl, a)

This word is well-nested in that every opening parenthagsaperly closed. The
letters of the visible word vi¢) can be identified with elements of the following
set:

evdt) = {start} U nod(t)
We illustrate the definitions at the tree= «a(b,c). The XML stream fort, its
corresponding visible words W) and its set of events are as follows:

XML stream <a> <c> </c>
vw(t) = (op, a)-(op, b)- (cl, b)- (op, ¢)- (cl, ¢)-(cl, a)
evdt) ={start (op, €),(op, 1),(cl, 1),(op, 2),(cl, 2),(cl,€) }

Let < be the total order orevet) corresponding to the total order of
pogvw(t)) and pr(e) € evdt) be the immediate predecessor of an event

—

n € nod(t). For instancepr((op,2)) = (cl, 1) in our example. We write

dom,(t) = {w € nod(t) | (op,7) < n}

60 Chapter 3 — Streamability

for the set of all nodes visited until event
We extend the definitions to hedges, in a straightforwardmeam hedgé: €

Hyx. has the following set of eventevgh) = startu rﬁj(\h). Forh = (ty,..., 1),
the order< is a total order omve h), wherestartis the least event, the eventstpf
(1 <i < k) are ordered according to the previous definition for treesl, events
of ¢; are all inferior to those of;, if i < j.

3.2.2 Example of Stream Processing

Before defining our computational model, we provide an eXarfgr streaming
guery evaluation.

Consider the monadic query, that selects all nodes la- a
beled bya and having @& child. This corresponds to the XPath |
expression:/ch*::a[ch::b]. We suppose here that the domain /a\
of Qy is Tx. Letty = a(a(a, b)) as illustrated on the right. In b
the following table, we present the run of a streaming athoricomputing? (o)
incrementally.

input | <a> <a> <a>
€ € € €
buffer 1 1 1
1-1
output {¢,1}

When anae-node is read, it is buffered as we have to wait férehild in order to
decide for its selection, or to wait until closing time in eaxd rejection. Here, only
nodese and1 are selected, and we can observe that they are output exdutly
ab child is opened, and thus at the earliest time point. Sityjlre candidaté -1
is rejected exactly when closing this node, and it could motdpected before.

For n-ary queries, the output is a set of tuples of nodes. Heneehulfered
candidates are also tuples, that can be partial, as someoc@mis might not
be known yet. We use the symbelto mark these components. Consider for
instance the binary query; without schema defined by the XPath 2.0 expression
/ch::a[xq][ns:blxs]]. @y selects all pairgr,,), wherer, is labeled bya, m,
is labeled byb, and, is the next sibling ofr,, i.e. ngx,,). The run of an
algorithm computing); on the tre€, is for instance:

input | <a> <a> <a> </ b> </ a> </ a>
(e,0) (e,0) (e,0) (e, o) (€,0) (€,0) (€,0) (€,0)
buffer (1,e) (1,8) (1,e) (1,0) (1,0) (1,0) (1,0)
(1-1,0) (1-1,e) (1-1,1-2) (1-1,1-2)

output {(1-1,1-2)}

Section 3.2 — Streaming 61

Here the algorithm chooses to output the answegsr,) at the parent node of
7. This provides a time-efficient algorithm, as we are suréigttime point to
have enough information to decide for selection. Howevirithplies to buffer
candidates longer than required. For instance here theearzair (1-1,1-2)
may be output when opening node2. We study the time cost for achieving
such earliest selection (and rejection) in Chapter 5. Niste that adding schema
information can improve buffering. For instanceJf had a schema where only
a-nodes having twa-ancestors can haveesibling, then the two first candidates
could have been rejected immediately.

3.2.3 Concurrency

We define the notion afoncurrencythat intuitively captures the number of can-
didates to be buffered simultaneously, as proposed by Basef et al. [BYFJO05].
This is a key notion for lower bounds in memory consumptior® WMl use it in
the definition of our computational model, and our strealftitglmheasure.

Prefix Tree For every event) € rﬁd(\t), let the prefix tree¢=" be the fragment
of ¢ which contains all nodes dfopened before (and including) nod(t="7) =
dom(¢), and satisfyingab’™" (7) = lab'(x) for all = € nod(t="). Note that
t=(m) contains all proper descendantsroin ¢, while t=°P™) does not. For two
treest,t’ € Tx andn € evdt) we define the predicatequal (¢, '), that holds ift
andt’ have the same prefix untjt

equal (t,t') iff 1 e evet)nevdl)andt=" = t'="

Partial Candidates As already mentioned in the previous example, partial can-
didatesr are elements adonf (¢)" where:

donf (t) = dom,(t) & {e}

The symbole denotes components where no selection occurred so far. lEemp
tionscomplr,t,n) are complete candidates obtained by replasittymponents
of 7 by nodes ot opened aften:

forall1 <i<n,
compl(rmy,...,m),t,n) =< (71,...,m,) € nodt)" | m # . =
T =e A 77—<(0p77rz/')

We call a candidateompletéf it does not contaim-components.

62 Chapter 3 — Streamability

Alive Candidates and Concurrency Let () be ann-ary query. We call a can-
didater alive at event; of a treet, if the information int=" is not sufficient for

selection or rejection aof, i.e., if there exists a continuation béftern that selects
(a completion of) this candidate, and another one that does n

(1,m) € alivey(t) <
3t" € domQ). equal,(t,t') A 37" € complr,t',n). 7' € Q(t')
{ A Tt € domQ).equal (t,t")A 37" € complr, ", n).7" ¢ Q(t")

Definition 1 (Concurrency,) The maximal number of alive candidates at an event
is calledconcurrency

concui(t) = max [{7 | (r,n) € aliveg(t)}|
neevet)

We say that the concurrency of a quepyis k-bounded (witht € N) if
concur,(s) < k for all structuress € dom((Y). It is bounded if it isk-bounded for
somek € Ny. Note that queries with unbounded concurrency cannot beepsed
in streaming manner with bounded memory.

Compared with the original definition by Bar-Yossef et al.efiition 3 in
[BYFJO5]), our notion of concurrency is generalizednt@ry queries, and arbi-
trary query languages. A consequence is that we deal witiapauples. We
choose to include the empty tup{e@}™ among possible alive candidates. The
reason is that this simplifies the definitions and compleaitglysis, as our algo-
rithms treats the empty tuple as other candidates. By thetiviayonly introduces
a difference ofl between both definitions, and keeps the bounds unchanged. We
note that in this original definition [BYFJO5] resides somrmebéguity: It seems
that nodes cannot be alive before being closed. From thefusenourrency in
the same paper, it appears that the definition of Bar-Yogsaf das to be inter-
preted as formally presented above.

For XPath expressions, the concurrency differs from thebamof matches.
For each alive candidate, there can be numerous matchesgsmbéeddings of
the expression into the tree, verifying the axis and labstistef the query. In
particular, the concurrency is always lower than the nunafenatches, as for
each match corresponds a unique alive candidate.

3.2.4 Evaluation Model

To formalize our notion of streaming computation of quersedd to have a clean
notion of complexity, we define Streaming Random Access Mash(SRAMS),
as illustrated in Figure 3.1. These are inspired by RAM maehidescribed by
Grandjean et al. [Gra96, GO04].

Section 3.2 — Streaming 63

The purpose of SRAMSs is to characterize a class of algoritiemstreaming
guery answering, that we consider as realistic. The lowemdexity bounds we
will present, apply only to such realistic algorithms. Inrfpaular, our model
avoids compaction tricks for the storage of nodes, by piiagichode identifiers
only at opening time, and by disabling the access to nodeifea by the finite
state control. We detail these features after the followde@nition. Note that
compaction techniques are not used by existing streamguayittims for general
purpose query languages. We assume that the size of evesyisiod) (1), inde-
pendently of the length of its address. This is realisticcsiwe assume trees of
bounded depth anyway.

An SRAM is a deterministic machine composed by:

e aninput tape | on which the head cannot write nor move to the left,

an infinite set ofregisters{i}.cn,. Each register can contain a node. We
write R(¢) for the content of the register

aworking memory Wwith read/write and constant-time random access

anoutput tape Qon which the head cannot move to the left nor read

a finite state control, made of a finite set of instructionse BHowed in-
structions are:

all usual instructions of random access machines for reading and writing
on the working memoryV.

read the event below the head of the input tdpis read. Such an event
contains three items: an actianc {op, cl}, alettera € 3, and, ifa =
op, a node identifierr. Note that node identifiers may not correspond
to our encoding orlN*, and thus the program cannot compute such
identifiers.

— If a = op, then the node identifier is stored in a free registeéy
i.e. R(7) < w. The data fory, a andi are written or.

— if a = cl, then the data forx anda are written onw.

output if the head ofW points to(iy, ...,i,), then(R(iy),...,R(i,)) is
written onto the output tap®, and the head o® moves to the next
free slot.

free(i) to free the register, wherei is read fromw.
halt to stop the machine.

64 Chapter 3 — Streamability

input tapel
HIEEEEENEEEEEEEEEEE
» reg(ist)ezrs \\‘
2; R(’i;) 1 finite
control
in | R(g) —
o working memor_}\N\
HEEEEEEEEN
output tapeO o

Figure 3.1: Streaming Random Access Machine.

To define the intended inputs, we present a variant of visilolels with node
identifiers: vw(t) is obtained from wit) by adding the nodes in opening events
(we use the symbdlfor closing events). This corresponds to the stream gegeerat
by the parser, and hence the real input of streaming algosith~or clarity, we
suppose that the parser uses our encoding of nodes as a cegfiamegers, i.e.
nod(t). For instance for the tree= a(b, c) we get:

XML stream <a> </ b> <c> </c>
VWig (t> = (Op7 a, 6)' (Opa b7 1) (CL b7 Jj) (0p7 C, 2) (CL C, ﬂ) (CL a, ﬁ)

Registers are used to capture the number of candidate mmtesuffered simul-
taneously. Providing node identifiers only at opening timeids some hacks in
the representation of candidates. Kgbe a monadic query, and assume tfat
can determine at closing time whether a node is selectedn aheéSRAM M
computing can be built, such thaM uses only one register (for the current
node), and a stack on the working tay)eto store candidates, using an internal
representation (not node identifiers). Hence the numbeegters used byt

do not capture the number of simultaneous candidates. Mergthe internal
representation of candidates Whallows compression techniques, that we want
to avoid in our model.

Definition 2 (Computation) An SRAMM computesa query(if for all trees

Section 3.2 — Streaming 65

t € dom @), if vwig(t) is on the input tape, them outputs the sef)(¢), in any
order but without duplicates, and halts.

Node identifiers cannot be written to the working memW@/yso they cannot
be computed by the finite state control. Even if they couldreéiwould be no way
to output them, as only the registers contents can be outpubde identifiers
were stored on the working memory, they could be computel s memory,
by tricky methods. Consider for instance the query on wohnds$ $elects all po-
sitions of a wordw before ab-position. The concurrency of this query is very
high (and even unbounded), as all positions are alive catalightil ab-position
is read. However, the query can be computed with memuiyg(|w|)), by just
maintaining a counter for the current position, and if it is, aterate from the
last b-position (to be also stored) to the current one. In our maotthés trick is
impossible, as (identifiers of) alive candidates are storedgisters.

The working memoryW considers a candidater, ..., w,) as the tuple of
registers addressés, . . ., i,), with (71, ..., 7,) = (R(¢1),...,R(i,)). Note that
the set of candidate tuples might be stored in a more compac{as investigated
for instance by Meuss et al. in [MSBO01]), but this is usualbt the case for
algorithms in the literature. This is why we choose to starlg aodes in registers,
instead of tuples of nodes.

For queries defined by XPath expressions, the implementatiican SRAM
does not exactly follow the XPath semantics defined by the WGt, the W3C
XPath semantics requires that the subtrees rooted at eglacdes should be
output, not only node identifiers. Second, the selecteddgsupf) nodes should
be output in document order. We think however that both requents are too
strong to be integrated inside the machine. The query etrafualgorithms can
be used in some transformation language (like XQuery or ¥SWhere the ma-
terialization of subtrees is not needed at the selecticel land identifiers suffice.
Similarly, the document order is not useful in all transfatians, and known to
be incompatible with efficient stream processing (and fgtance with earliest
query answering). We choose to keep a model based on the alimput/out-
put requirements of streaming evaluation of queries. Tiengthens our lower
bounds and hardness results.

Definition 3 (Complexity) An SRAMM computes the query with per-event
time Timg.M, t) and per-event space Spagd, ¢) if M computes), and during
the computation of)(¢):

1. at all time points,M uses some registers among regist&(§) with i <
SpacéM, t), and at most Spa¢a, t) slots in the working memory, and

2. the number of executed instructions between reading imeessive events
on the input tape is bounded by Tifie,¢). This includes the time be-

66 Chapter 3 — Streamability

fore reading the first event, and the time between readindatsteone and
halting.

Most of the algorithms will have to pass information from opeg to closing
events. This is usually done through a stack, that has todoedsin the working
memory. Hence for these algorithms, the space requiremelhtse at least the
depth of the input tree.

These definitions are done modulo an encoding for the inpdibatput data.
The cost of instructions is supposed uniform. The size oheagister (i.e. the
number of bits that can be stored in a register) is exactlgitteeof node identifiers
in the input stream. As node identifiers cannot be computetéfinite state con-
trol, the number of registers that are simultaneously reguby monadic queries
is at least the concurrency of the query. This gives us a Ibwand for memory
consumption (Proposition 6 below), thanks to the separdtietween registers
containing node identifiers, and the working memory. A wogkhypothesis here
is that the concurrency is a real lower bound for rich monagiery classes, as
proved by Bar-Yossef et al. for an XPath fragment [BYFJO05].

Proposition 6. Evaluating a monadic query on a treet requires per-event space
Q(concug(t)).

For n-ary queries, this is not true, as candidate tuples (comigiregisters
identifiers, not nodes) are stored in the working memory. tBatregisters need
to memorize which nodes are used in the alive candidates. alWéhis quantity
concurnody(t):

concurnod,(t) = max |{r | 7isaliveatyandrisint}|
neevet)

Proposition 7. Evaluating a queryQ on a treet requires per-event space
)(concurnody(t)).

Proof. Let M be an SRAM computing a query. Lett € 7y, and consider
a candidate tuple # {e}" that is alive at eventy € evdt). Let =" be the
content of the input tapebeforer. Let 7 be a node appearing in and suppose
for contradiction thatr is not stored in registers after treatindi.e., just before
reading the event following). As 7 is alive atn, there is a continuatio@' of the
input stream that selects Consider the run oM on the concatenation af”
andC'. As M is deterministic, the machine is in the same statg ab is not in
the registers M will have to outputr before halting, and could not be output
beforen because it is alive, and thus there is another continuafidineostream
for which 7 is not selected. Hencewill have to be output (strictly) aftey. The
only way to output is to use the “output” instruction. But this requires to iete

Section 3.3 — Streamable Query Classes 67

7 from the registers. The identifier afis read only once on the input stream, at
event(op, 7). As itis not in registers aftey, and(op,) < n (asw isin 7, alive
atn), M cannot output, which contradicts its definition. O

This also proves Proposition 6, because for monadic queries
concurnod,(t) = concuiy(t).

3.3 Streamable Query Classes

3.3.1 Streamability

We now formally define our notion of streamability, and stsdyne properties of
this new notion.

Definition 4 (Streamability) Letm € NoU{occ}. A query clas® is m-streamable
with polynomialspy, p1, po if one can compute SRAMSI(Q.) in time py(|e|)

for all e € Q such thatM(Q.) computes®. and if concug, (t) < m then

SpacéM(Q.),t) < pi(le]) and TImgM(Q.),t) < pa(le|). A query classQ

is m-streamablef it is m-streamable for somg,, p1, p2, and streamablef it is

oco-Streamable.

We recall thatSpace M (Q), t) andTimg M (Q), t) are per-event complexity
measures. The definition directly provides a hierarchy iashability for query
classes.

Lemma 1. Letm € Ny. If the query clas® is (m+1)-streamable then it is also
m-Streamable, with the same polynomials. Furthermorg i§ streamable, then
it is m-streamable for alin € N,, with the same polynomials.

Hence we get a hierarchy of query classes:
0-streamable> 1-streamable - - - O m-streamable> - - - O streamable

However, for classes of monadic queries, streamability fakyeven thoughn-
streamability holds for alin € Ny. Consider for instance the que€y. defined

by the XPath expression= /self::a[ch::b] /ch::c on trees ofl . ..q1. This query
selects alk-nodes that are children of adlabeled root, and have a sibling labeled
by b. It is easy to see thap. has unbounded concurrency. For instance, on
the treea(c, . .., ¢, b), all c-nodes are alive before opening theode. LetQ =
{Q.}. This query class isn-streamable for alln € Nj: For a givenm, one
can build in BFIME an SRAMM(Q.) that uses polynomial per-event space and
time, on trees for which the concurrency is less thanHowever,Q is not co-
streamable. This class is in Star-Free XPath, so by the Ibaend of Bar-Yossef

68 Chapter 3 — Streamability

et al. [BYFJO05], any algorithm computin@. requires spac€(concuy,,(¢)) on
non-recursive, i.e., whent does not have a branch with duplicated labels. Hence
an SRAM computing). cannot use space bounded by some polynomijasq).

has unbounded concurrency. In order to relate streampaaiiid.-streamability,

we have to add a condition on the concurrency of the quergclas

Definition 5. A query classQ has polynomially bounded concurrengf/there
exists a polynomiap such that concuj, (t) < p(|e|) for all e € Q and trees

t € dom@).

Proposition 8 gives a sufficient condition for being streblaathe query class
has to ben-streamable for alt» with the same polynomials, and must have poly-
nomially bounded concurrency.

Proposition 8. If the concurrency of a query clagsis polynomially bounded and
there exist polynomials), p1, p» such that for alln € Ny, QO is m-streamable with
Do, P1, P2, thenQ is co-streamable.

Proof. Letp, po, p1, p2 be polynomials such th& is m-streamable witlpy, p1, p»
for all m € Ny, and the concurrency @& is bounded by. Lett € 7y, ande € Q.
For everym € N, let M,,,(Q.) be an SRAM computing). and verifyingm-
streamability. We show that1,,.)(Q.) verifies co-streaming with polynomials
Py, P1, p2 Wherep,(X) = po(X)+X+|p|. To generate the SRAMA,,(¢)(Q.) in
time po(|e|)+|e|+|p|, we first compute the value g@fje|) in time |e| + |p|, and
then generateM,.,(Q.) in time py(|e|). A single step ofM,,.(Q.) on trees
t € Ty costsSpaceM,(cp(Qe),t) < pi(le]) andTiIMgM (e (Qe), t) < pa(lel),
as bounded concurrency yieldsncur,, () < p(le]). O

For the converse, we have already seen in Lemma Ithatreamability im-
plies m-streamability for allm € Ny, with the same polynomials. We can also
prove a weaker form of bounded concurrency.

Proposition 9. If a query classQ is co-streamable, there exists a polynomjal
such that for alle € Q and allt € dom(()..), concurnod,, () < p(le]).

Proof. Suppose tha@ is co-streamable, and let be the corresponding polyno-
mial bounding space. By Proposition 7 we get, forealt Q andt € domQ.),
and all for SRAMsM (Q).) computing@.:

concurnody, (t) < SpaceM(Q.),t) < pi(|e])

so thatconcurnodis polynomially bounded by;. O

Section 3.3 — Streamable Query Classes 69

Benedikt and Jeffrey [BJO7] exhibited two-streamable query classes. Both
are fragments of backwardl,.;, an extension of CoreXPath 1.0 addingantil
operator, but restricted to backward and downward axes. alitigors prove the
oo-streamability of two query classes:

1. Boolean queries (i.e. filters) defined by backwatg; formulas, over non-
recursive trees, and

2. monadic queries defined by strict backwaty,; formulas, over non-
recursive treesStrict means that downward axes are not allowed. It implies
that concurrency is at most one, as all conditions to befeatifor selecting
a new candidate depend on the prefix until this candidatedok-dhead is
needed).

3.3.2 Boolean and Monadic Queries

For Boolean and monadic queries, some properties of theucamcy give
stronger results. Boolean queries have a concurrency leouoyll, as the only
possible alive candidate is the empty tupje(which can be seen as either the
potentially selected tuple, or the empty partial candidate).

Proposition 10. A Boolean query clasg is streamable if and only if is 1-
streamable.

Proof. Suppose tha@ is 1-streamable. Then it i&-streamable by Lemma 1. As
the concurrency of Boolean queries is bounded b is m-streamable for all
m € Ny, with the same polynomials, and by Proposition 8, itdisstreamable.
The converse is immediate by Lemma 1. O

For monadic queries, the concurrency may be unbounded igetheral case.
However, both forms of concurrency we introduced coincaie we get the fol-
lowing equivalence.

Corollary 1. A monadic query clasg is streamable if and only if the concurrency
of @ is polynomially bounded and there exist polynomjals,, p» such that for
all m € Ny, Q is m-streamable withpg, p1, ps.

Proof. Immediate by Proposition 8, Lemma 1, Proposition 9, and #ue that
concurnod,(t) = concu,(t) for monadic queries. O

70 Chapter 3 — Streamability

3.4 Hardness of Streamability

We present hardness results for streamability of smalsekaef queries. Of course
these hardness results also hold for larger query classestait by studying the
complexity of deciding whether a query class has boundeduwoency (resp.
polynomially bounded concurrency). We then investigag slreamability of
gueries defined by XPath expressions. In this section we cogider queries
@ with universal schemdom()) = 75, and the results also hold for queries with
other schemas.

3.4.1 Hardness of Bounded Concurrency

We start by defining, from any set of monadic queries, anatkeéiof monadic
gueries that requires high buffering. The idea is to stamnfa monadic query
@, and define the quemll(Q) that selects all the children of the root(ifhas a
match when evaluated from the last child of the root.

We call a monadic query) descendingf node selection by is indepen-
dent of the node’s upper context, i.e.nife Q(¢) is equivalent tee € Q(t.7),
wheret.r is the subtree of rooted atr. For all monadic querie® we define
another monadic quemll () whose semantics is given by the following XPath
expression:

all(Q) =qr /chix[ns"::x[Q][not(ns:)]]

It selects all children of the root if the last child of the tdmelongs to the lan-
guage of the Boolean quefg)], which isLig) = {t € 7Ty, | Q(t) # 0}. LetQ
be a language of monadic queries. We say that the opealitoan be defined
polynomially in Q if there exists a polynomigl such that for alle € Q there
exists an expressiati € Q of size at mosp(|e|) such that)., = all(Q.). We
say that a node is safely selected (resp. safely rejected) by a query attevén
7 is selected (resp. not selected) in all valid continuatimfrtbe stream aftes.

Lemma 2. For all descending monadic queri€s treest matchinga(ty, . .., t;),
andl <k <j:

1. nodek is safely selected by &) at (op, j) in t iff Ljg) = Ts.
2. nodek is safely rejected by di9) at (op, j) in ¢ iff Lig = 0.
3. nodek is alive for all(Q) at (op, j) in ¢ iff 0 # Lig) # 7.

Proof. (<) We first assume that;y = 7y, and show that is safely selected at
event(op, j) in treest matchinga(t;,...,t;) andl < k < j. Lett € 7y be a
continuation ot beyond(op, j), i.e. equal,, (¢, ') holds. Letj’ be the last child

Section 3.4 — Hardness of Streamability 71

of the root oft/, so thatj < j'. Thenk ¢ all(Q)(¥) iff j' € [[Q]]k- The latter
is equivalent ta- € [[Q]]4:2 sinceq is descending. This holds sinte) = 7s.
Thus eventop, j) is sufficient for selection of in all continuations of.

We now assume that = (). The last child of the root cannot satigfy] in
any continuation, so no node can ever be selected.

We suppose thdt # L;g # 7y and show thak is alive at(op, j) in trees
t € Ty with 7 € nod(t) and1 < k < j. Lett’ € 75, be a continuation of beyond
(op, j) and;j’ be the last child of’. Now k is selected if and only if.j" € L.
Sincef) # Lg) # 75 this is the case in somébut not in others, so thatis alive
at(op, j).

(=) Since these cases are exhaustive, all inverse implicatwiow. O

As a consequence, the concurrency of the query definedl {gy) is bounded
only if Lig is empty or universal, as far= a(t,, .. ., t;) we get:

conculg)(t) = ¢ 1 if Lig = 7x
j+1 otherwise

The concurrency i$ whenlL g = 7, because in this case the empty candidate
(e) is always alive. It is never alive on an empty query, i.e., méverlL g = 0.

Proposition 11. Let Q be a class of descending monadic queries that can define
operators “all” and “not” in polynomial time, then the two dasion problems
below are more difficult modulo BTIME reduction than universality(!%e] =T
forall e € Q.

Polynomially bounded concurrency
PARAMETER: Q
INPUT: e€Q
OUTPUT. decide whether there exists a polynomiauch that
Vt € Tx. concui, (t) < p(le])

Bounded concurrency
PARAMETER: Q
INPUT: ee€Q
OUTPUT: truth value of:3k € Ny. V¢ € 7x. concuy,, (t) < k

Proof. Since all queries defined by € Q are descending, the existence of a
polynomialp such thatvt. concurq.)(t) < p(le|) is equivalenttdq, = 7s V
Linot(ey) = 7 by Lemma 2; equally foBEENy. Vi€ Ty, concukyq,)(t) < k. O

Proposition 11 gives a first result on the hardness of degidounded concur-
rency of queries. For deterministic automata, testing thieausality is in A'IME,
and we will see in Chapter 7 that deciding bounded concuyresraiso in RIME.

72 Chapter 3 — Streamability

3.4.2 Hardness of Streamability

We now characterize the streamability of query clagde$he following theorem
states that being-streamable (while verifying two other properties) implibat
the universality of descending Boolean queries defined s in PTIME. This
can be used to prove that some query class islrgiteamable, and hence not
m-streamable for any: € N U {oco}.

Theorem 1. Let Q be a class of definitions of monadic queries such that there
exist polynomials, s such that:

1. query allQ.) is definable by an expression @ of sizer(|e|) in time

O(r(le])).
2. membership € Lq,, can be tested in time(|e|) for all a € 3.

If such a clasg is 1-streamable with polynomials,, p1, p» then the universality
problem of Boolean querie8) | e € Q descendiny can be solved in polyno-

mial imeO (po(r(le])) + s([el) + r(le]) + pr(r([e])) - p2(r([e])))-

Proof. Our polynomial time equivalence test for descending gseatedfined inQ
works as follows:

fun univ_Q(e) # where e€ Q descending
let acX arbitrary
if ain Lo,
then # language norempty
compute ¢/ with Q. = all(Qe)
let | = pi(|e'])+1
let t=a(a,...,a) with j children
let M = M(Q.) # needs timepo(|e’|)
let out = run M on ¢ until event (©p,j)
if out.isEmpty ()
then return false
else return true
else # language nonuniversal
return false

Testing whether: belongs toL,,, can be done in time(|e[). The construction
of ¢’ definingall(Q.) with size|e’| = r(|e|) requires timeD(r(|e|)). The whole
algorithm requires time (po(r(le])) + s(le]) + r(le]) + 7 - p2(|€'])), which is
Opolr(el)) + s(lel) + r(|el) + pa(r(|e])) - pa(r(le]))). It remains to argue the
correctness of the algorithm.

Caselq,, = 7s. Sincee is descending, we haweoncug, (1) = 1 for ¢t =
a(a, . ..,a) with j children from Lemma 2. Sinc@ is streamable modulo
1-concurrency, there exists an SRAM (Q.) that requires on input trees
t space at most; (Je’|) and time at mosps(|e’|) per step. All nodes €
nod(t) wherel < k < j are safely selected b§., = all(Q.) at event

Section 3.4 — Hardness of Streamability 73

(op,j) by part 1 of Lemma 2. These ape(|¢/|) + 1 many nodes, but the
space ofM(Q.) is at mostj = p;(|¢/|) + 1. Since none of the nodes can
be discarded, one of them must be output ufg, j). Thusout # () and
our algorithm returnsrue as expected.

Caselq,, # Ts. If a & Lg, then we know that, is not universal and can
safely returrfalse Otherwise, SRAMM (Q./) is run ont, but cannot output
anything until eventop, j) since all node# € nod(t) with 1 < k£ < j are
still alive for Q. = all(Q.) by part 2 of Lemma 2. Thusut.is Empty() is
true so that our algorithm returfislseas expected.

3.4.3 Non-Streamability of Forward XPath

We now apply the previous results on Forward XPath. Firgg piioves that
bounded concurrency and polynomially bounded concurreanynot be decided
in PTIME, unless RIME = NP.

Corollary 2. Deciding bounded concurrency resp. polynomially boundad ¢
currency is coNP-hard for monadic queries in Forward XPath.

Proof. Universality for a fragment of Forward XPath (using only dovard axes)
is coNP-hard by Proposition 4. So the corollary follows frBnoposition 11. [

In terms of streamability, we also get a negative result fomard XPath.
Corollary 3. Forward XPath isnot 1-streamable except if P=NP.

Proof. Forward XPath permits to define the operaadirin linear time. Univer-
sality of [e] is equivalent to universality ofch::x[e], which is descending for all
Forward XPath queries The universality problem for monadic descending For-
ward XPath queries in the fragment is coNP-hard (by Projoosit). Theorem 1
thus shows that this query class is nedtreamable except ifPME = NP. [

This shows that even the weak notionlestreamability is unfeasible for For-
ward XPath. In Chapter 6, we define fragments of Forward X®zh arem-
streamable for alin € N,,.

74 Chapter 3 — Streamability

3.5 Conclusion

In this chapter we defined our computational model for quesnering through
a special form of RAMs called SRAMs. Based on this model ardrtbtion of
concurrency of queries, we introduce a measure of stredityaior classes of
gueries. This classifies query classes in the following wiagr query classes
that are not)-streamable, there is norRME algorithm detecting empty queries,
and thus memory consumption cannot be optimal withM2 processing. Query
classes that are-streamable withn € N, allow a polynomial space and time
evaluation for queries with concurrency at mest co-streamable queries enjoy
this property for all queries of the class. We can observethigadefinition varies
from coarse-grained static requirementsdorstreamability to more fine-grained
requirements forn-streamability, where the algorithm is supposed to evaluat
gueries efficiently only on trees implying low concurrency.

The study of necessary and sufficient conditionsdoistreamability reveals
some asymmetry between monadic andry queries. Fon-ary queries, we have
to distinguish betweenoncug,(¢), the number of simultaneous alive tuples, and
concurnody(t), the number of nodes involved simultaneously in alive tsiple
This comes from the definition of SRAMs, where registers dstare candidates
(i.e. tuples) but node identifiers used by candidates. Thasore of this design
choice is that in real algorithms, tuples might be repre=grbmpactly, and in
general the concurrency is not a lower bound for evaluatiregigs. Concurrency
is proved to be a lower bound only on some fragments of XPa¥#F[B5]. An
interesting question would be to prove tleahcurnod,(t) is a lower bound for
large classes ofi-ary queries, which we conjecture to be true for large query
classes. For this, we would have to find fooling sets in ord@piply results from
communication complexity.

We have seen at the end of this chapter some negative rebalis Borward
XPath: it is coNP-hard to decide the bounded concurrencynfmnadic queries,
and Forward XPath is ndt-streamable. In Chapter 6, we define fragments that
arem-streamable for alln € N, and anotheso-streamable fragment. In Chapter
5, we study the streamability of queries defined by Strearireg Automata.

Chapter 4

Streaming Tree Automata

Contents
4.1 Introduction 75
4.2 Streaming Tree Automata 77
4.2.1 Definition o o o 77
4.2.2 Determinization. 80
4.2.3 Expressiveness and Decision Problems 81
4.3 Translation of DTDsintoSTAs 82
4.4 Nested Word Automata 84
441 Definition 84
4.4.2 Translationsintoand fromSTAs 85
45 Pushdown ForestAutomata 85
451 Definition 86
45.2 EquivalencetoSTAS 87
4.6 Standard Tree Automata 88
4.6.1 Stepwise Tree Automata 88
4.6.2 Top-Down Tree Automata w.rftcnsEncoding 90
4.7 Conclusion e 91

4.1 Introduction

Tree automata are acceptors for trees over a given alphathée being procedu-
ral objects, they enjoy clean relations with logics and lagge theory [CDGO7].
Hence they can be considered either for algorithms (thepased on notions of
runs) or for specification (they define tree languages).

In this manuscript, we will use both aspects of tree automataparticu-
lar, tree automata will define queries, and will also servéass for our algo-

76 Chapter 4 — Streaming Tree Automata

DTD
top-down automata ——— / nested word automata
overfcnsencoding ~----_______ STA
//
stepwise tree automata pushdown forest automata

our translation preserves determinism
77777 - our translation does not preserve determinism

Figure 4.1: Translations provided in this chapter.

rithms. For this reason, we are looking for tree automatas&hrans can operate
on XML streams, and thus respect a pre-order traversal of treeg alitomata
usually operate bottom-up (from the leaves to the root ofttée) or top-down.
Some automata models operating in pre-order were howewpoped for tree-
like structures. Neumann and Seidl propgsshdown forest automa(®FAs)
[NS98], a notion of automata for hedges, which generalizanked trees. These
automata were sometimes adapted to particular algoriticontexts: They are
reformulated to Pre-Order Automata by Berlea in [BerO61 &mNon-Uniform
Automata by Frisch in [Fri04]. More recently, Alur and Madiugan introduce
visibly pushdown automat@/PAs) [AMO04] in the context of program verifica-
tion. This model is also used forn streams processing [KMV07]. VPAs were
reformulated tomested word automai® WAS) by Alur [Alu07]. All these models
do not operate directly on trees. PFAs operate on hedgess WRAvords over a
visible alphabet (where each letter either always pushata@ys pops data onto
the stack), and NWAs on nested words, i.e. words with a binasting relation
on positions.

In this chapter, we defin8treaming Tree Automai®&TAsS), a notion of au-
tomata operating directly on unranked trees in pre-ord&AsSare a reformula-
tion of NWAs, that operate directly on trees, instead of @egéstords. We start
by showing how DTDs can be translated to STAs. We then reltegmtto PFAS

Section 4.2 — Streaming Tree Automata 77

and NWAs by providing the back and forth translations towdlgse models. We
also study the relationship between STAs and tree automadizisithat does not
operate in streaming order. We provide back and forth tediasis for two such

models. The first one is stepwise tree automata [CNTO04], kvbarrespond to
standard bottom-up automata on the Curryfication of tredse Jecond one is
the notion of top-down automata on the first-child nextiadplencoding of trees.
We show in particular that the translations from both modelSTAs preserve
determinism, and hence that determinism of STAs is a stronggéon than for

these two models. In [AMO09], Alur and Madhusudan claim thatepwise tree
automaton can be translated into a NWA with the same numbstabés, but
without providing the translation. The translations pd®d in this chapter are
illustrated in Figure 4.1.

Thanks to these explicit translations, we fix the precisati@hs between au-
tomata notions, as for instance between NWAs and PFAs. @uslations permit
to reuse algorithms designed for a specific automata notitimother automata.
For instance, queries defined by NWAs can be processed by guewering al-
gorithms for PFAs [BS04].

Throughout this manuscript, we will show the relevance oASTor stream
processing of XiL documents. In particular, deterministic STAs define querie
that enjoy remarkable streamability properties. In Chaptewe propose an
efficient query answering algorithm for queries by dSTAsd gmove them-
streamability of this query class for alh € N,, on shallow trees. In Chap-
ter 6, we define fragments of XPath, and prove their stredityaby translation
to dSTAs. In this translation, STAs are able to determio@ly detect ends of
scopes (regions of trees where matches of XPath expressaraccur). Finally,
in Chapter 7, STAs are used to recognize some relations es, titeat we need to
prove decidability results. For instance, testing the étyuaf two tree prefixes
until an event is performed by a simple dSTA.

4.2 Streaming Tree Automata

4.2.1 Definition

We begin this chapter with the definition of Streaming Tre¢olata (STAs) and
their corresponding notion of run.

Definition 6. An STAA = (¥, stat init, fin, rul) consists of a:
¢ afinite alphabet of node labels,

¢ afinite set stat= stat W stat, composed of event states statd node states
stat,,

78 Chapter 4 — Streaming Tree Automata

)
/' “~
, .
, .
’ Ay
’ \
/ \
\
a > -
_‘v e ‘~~
. S
e AN
. .
, .
, .
, .
, .
; .
g) Y T
cl x:x
AR 4 S

op *:x 4 of
op .z .
. vV
cl x:x 2 b2
(a) An STAA. (b) Successful run oft on a treet.

T
T
/T\
z Y T x
7N\ SN //_\\ N
a—a—a—a—a—a—a—ph—pbp—a—h—b—a—a
0 0 0 0 1 2 12 2 2 1 3 3 3 3

(c) Successful run oft on the nested word af

Figure 4.2: An STA checking the Boolean XPath filfeln*::a[ch::b]].

e initial states initC stat and final states firC stat,

e asetrulC {op cl} x ¥ x stat, x stag of rules. We denote rules as:

o ay
o — q1

wherea € {op,cl}, qv, ¢1 € stat, a € 3, v € stat,.

Whenever necessary, we will upper index componentd,as for instance,
writing rul? instead ofrul. The size of an STA is its number of rules and states:
|A| = |rul| 4 |stat'|. An STA traverses the sequence of events of a givertiree
while annotating all events afby event states and all nodestdfy node states.
Let ¢y be the state of the previous event processed(and) be the current event.
The automaton chooses some rule with acticand labek: = lab’ () whose left
hand side ig. If = opthen it annotates the nodewith node statey. If o = cl
then the rule matches only, if the node state annotated atrogpme tor is equal
to the node state of the rule. For matching rules, the automaton annotatés sta
¢1 on the right hand side to the current event.

Section 4.2 — Streaming Tree Automata 79

Runs More formally, a rurr of an STA on a tree is a pair of functiongre, ry,)
with typesr, : evet) — stat andr, : nod(t) — stat,, such thate(start) € init
and the following rules belong tal for all # € nod(t) with a = lab’(r), and
actionsa € {op, cl}:

re(pr((a, 7)) =2 v o((a, 7))

wherepr returns the preceding event. An example of a run of an STA en th
treea(a,a(a,a(b),b))) is given in Figure 4.2. It tests whether this tree satisfies
the Boolean XPath querich::a[ch::b]], or equivalently the first-order formula
Jz. (lab,(z) A Jy. (ch(z,y) A laby(y))). When opening am-node in its initial
stated, this STA guesses whether it matchesdhgosition of the XPath expression
(state 1) or not (state 0). From stdteit waits while traversing a sequence of
states(2*1)*, until someb-child is opened, before concluding success in state
The information of being a child of the-node opened in statieis annotated by
node state, and passed over from the left to the right.

Arunr of Aon atred is successful if¢((cl, €)) € fin. The set of all possible
runs of the STA4 on the tree is denoteduns?(¢) and the subset of all successful
runs byruns.succ'(¢). The recognized languade A) is the set of all trees € 7y,
that permit a successful run by i.e., L(A) = {t € Tx | runssucc!(t) # 0}. For
ahedgdty, ..., 1), arunis successful if,(start) € init* andre((cl, k)) € fin.

Determinism An STA isdeterministicor adSTA, if it has a single initial state,
no twoop rules for the same letter use the same event state on tharidfho two
cl rules for the same letter use the same node state and the gamistate on the
left. Every STA has an equivalent dSTA, as proved in Secti@4

Run Computation and Stack The unique run of a dSTA on a treet can
be computed in a streaming manner, if it exists. The inputésdrdered set of
eventsevet) for somet obtained by parallel preprocessing with a SAX parser,
and the output is the sequence of states thaissigns to the events of The
comparison between the run of a dSTA on events and on thespomding nested
word is illustrated in Figure 4.2(c). We study the link beemeSTAs and nested
word automata in more details, in Section 4.4. The common twagplement
an STA is to use a current event state and a stack, in ordesr®tste node states
associated to ancestors of the current node, as these wilitee used when
closing these ancestors. In SRAMs, this stack will be stanedie the working
tape.

Weakness Following [Alu07], we call an STAveakif stat, = stat and allop-
rules have the form, 222, ¢,. As proved in Theorem 1 of [Alu07] for NWAs,

80 Chapter 4 — Streaming Tree Automata

every STAA is equivalent to some weak STB. For instance we can builg of
size at mostB| = O(|stat}| - |stat}|). To see this, lestat® = sta’ = stat! x
stat!, with init? = init* x stat! andfin® = fin* x stat!. The rules ofB are
derived from those ofi according to the following two inference schemas.

qo d o, q € rul?
71,72 € stafl ¢ € stag
cl a:(g2,70)
(%ﬂh) e (Ch,’}/Q) e rul®

g 221 g e rult 4, € stat?

op a:(qo,71)
) —— (

(g0, M q,72) € rul®

4.2.2 Determinization

We present here the determinization of STAs inspired froendéterminization
of VPAs [AMO04]. This procedure is slightly simpler because anly consider
(encodings of) trees, and choose a more algebraic coristiu¢ience the states
of the dSTA will reflect the accessibility relation throudiethedge of left siblings.
The accessibility relation of an STA through a hedgé € Hsy; is the set of pairs
(q1,q2) € stat* x stat* such that there is a run of throught that begins iny;
and ends iny.

Proposition 12. For every STA4, a dSTAA’ recognizing the same language can
be computed in tim@(2/47).

Proof. A state of 4’ is a set of pairs of statestat! = 2s@'>st@" For such a
stateP ¢ stat', we writeIl,(P) = {¢ | 3¢. (¢,¢') € P} (same forl,). In the
following, ids denotes(p, p) | p € stat'}, and similarly forid;,,1. For every
stateP ¢ stat' and labek € ¥, we also defindJpdaté, by:

Update, = {(¢,¢) | (a1, %) € P.Fy.q R, e rult Agy dea, ¢ €rult}

In other words, ifP is the set of pairs of statés,, ¢») such that there is a run of
A from ¢, to ¢, through the hedgét,, ..., %), thenUpdaté, is the set of pairs
of states(q;, ¢5) for which there is a run ofd from ¢; to ¢} through the tree
a(tq, ..., tx), as illustrated in Figure 4.3. We defing by:

initAl - idinitA
fin' = {P | m(P)Nfin’ % 0}

aeY Pecstat” a€eyY P P Cstath
P 2U i € rul? P 2=, pro Updaté, € rul®’

A’ is deterministic, and weak. For eveyy= («a, 7), we writeh,, for the hedge
whose roots are left siblings af (including 7 iff o = cl). We prove that the
following property is an invariant. From the definition oftial and final states of
A’, this is sufficient to prove the correctness of the constact

Section 4.2 — Streaming Tree Automata 81

q

Y
Updat

Figure 4.3:Updaté,.

Invariant: for r = (re,r,) run of A’ ont, andr € nod(t):

r(m) = accessibility relation througho,) and
re((cl, 7)) = accessibility relation throughg)

At opening of the root, the state is the identity of initight&ts, which corre-
sponds to accessibility through an empty hedge at the root.

Suppose that the property holds for events preceding evet), and that
n = (op,m). If pr(n) = (op, 7’) thenr is a first child and ,(7) = re((op, 7)) =
idsiaer, Which is the accessibility relation through the empty reelg Otherwise,
if pr(n) = (cl, "), then by induction hypothesig(m) = re((cl, 7’)) is the acces-
sibility relation through the hedg@c) = h,,.

Now suppose thay = (cl,) andlab’(r) = a. Lety = pr(n) andP =
re(r’). By induction hypothesis;y(7) is the accessibility throughop~), SO it
only remains to show thdtipdaté, is the accessibility through the hedger)
wheret.r is the subtree of rooted atr. If 7 is a leaf thenP = idga. and
Updaté, is the accessibility through the hed@ge). If 7 is not a leaf, then by
induction hypothesis? is the accessibility through the hedge of childrenrp§o
Updaté, is the accessibility througft.,).]

Note that this procedure is close to optimal, in the sensethiegge exists a
family of regular tree languagds, (for s > 1) such thatl, can be recognized by
an STA of sizeO(s), but every dSTA recognizing requires at leas?®” states
[AMO9].

4.2.3 Expressiveness and Decision Problems

In terms of expressiveness, STAs capture all MSO-definadéelanguages.

Proposition 13. STAs and MSO capture the same class of languages of unranked
trees.

82 Chapter 4 — Streaming Tree Automata

The logical operations can be performed with the same coatylkes for usual
tree automata.

Proposition 14. Union and intersection of STAs can be performed®nME.
Complementation of STAsEXPTIME-complete, and ifPTIME for dSTAs.

The complexity of inclusion and universality for STAs iXETIME-complete,
as other common automata models over unranked trees.

Proposition 15. Universality and inclusion are botExPTIME-complete prob-
lems for STAs, and are iATIME for dSTASs.

All these results will be proved by therRMe back and forth translations be-
tween STAs and other automata models (stepwise tree awdpfoatinstance)
provided in the sequel.

4.3 Translation of DTDs into STAs

In our algorithms, we often consider that schemas are peovity deterministic
STAs. They can be obtained by translating extended DTDsatetestrained
competition and deterministicKMV07], so that running such STAs performs
one-pass typing. We present the translation of DTDs to STBsen a deter-
ministic DTD with alphabet, we compute the collection of Glushkov automata
(G.)qex OVer Y, which are deterministic finite automata for the regularresp
sions of the DTD BK93]. Let root € ¥ be the root symbol of the DTD.

From the collection of Glushkov automata, we construct ardenistic STA
S recognizing the trees validated by the DTD. The stateS ohify the states of
all Glushkov automata and add a unique initial staaad a unique final state

stat’ = W,exstat™ W {I, F}

The rules of the STAS are obtained systematically from those of the Glushkov
automata according to the two following inference schemas:

G 2 g €Ul g €init® g e fin® a=root ¢ €initSe ¢ € fin%

op b: op a:l
g 222, gy € rul® | — qo € rul®
cl b: cl a:l S

These schemas can be read as follows. When readirghéd under am-node,
the STA associates the previous stat®f the Glushkov automato@', with the
b-node, and goes to the initial stateof GG,. Then the children of thé-node are
processed in streaming order by the STA. The intended negdtate is the final

Section 4.3 — Translation of DTDs into STAs 83

b

OO O

Figure 4.4: Glushkov automata for DTD— ab + b andb — e.

clb:1 cla:|

Figure 4.6: Successful run of the STA in Figure 4.5.

stategs of GG,. Hence the closing rule fdrhasgs as incoming state, checks that
qo Was associated with thenode, and goes to the next staten G,,.

For instance, the STA drawn in Figude5 accepts valid documents for the
DTD in Figure4.4. A successful run on the trega(b),b) is shown in Fig-
ure 4.6. This construction preserves determinism, in that DTD$ wigtermin-
istic Glushkov automata are translated to deterministiBsSTA translation of
deterministic restrained competition EDTDs to deterntiai$TA over thefcns
encoding is provided by Champavere et al. @GLNO0Y (Lemma 33).

84 Chapter 4 — Streaming Tree Automata

|
1
1 2
AN A
a—a—bh—b—a—pbp—b—a
| 1 1 4 3 2 4 3 F

Figure 4.7: Successful run of the NWA in Figure 4.5.

4.4 Nested Word Automata

In this section we present the relation between STAs anckdesbrd automata.
This notion of automata is itself very similar to visibly gjndown automata. The
difference is in the way the structure is given as input. Heibly pushdown

automata, the input word is defined on a visible alphabethabdach letter is
associated with one action (opening or closing, and alsa¢héral local letters in
the general definition). For nested word automata, the ivwpud is given as a flat
word plus a binary nesting relation on its positions.

4.4.1 Definition

Nested word automata (NWAsSA[uO7] are equal to STAs syntactically but run
on nested words, so they have different semantics. We shatvbtith semantics
coincide modulo encoding unranked trees into nested words.

A nested word ovek: is a pair(w, £) wherew € ¥* is a word andE C
dom(w) x domw) a set of forward edges without overlap. We assume that every
position in a nested word is adjacent to exactly one edgetratdor every edge,
both adjacent positions have the same label.

A run of an NWA A on a nested wordw, E) annotates all positions of
domw), the start positior), and all edges iy by states, as illustrated by the
example in Figuret.7. More precisely, a run ofi as an NWA consists of two
functionsr = (re, ry) with typesre : domw) U {0} — stat' andr, : £ — stat!,

It is licensed byA if for all edges(i, j) € E adjacent to positions labeled lay
the following tuples belong toul:

re(i — 1) 2200y)
i | a:rn(z,7 i
re(j — 1) 20 r ()

Unranked trees € 7y, can be encoded into nested words(tiw= (w, E') over..
For instance, the nested word fafu(b), b) is drawn in Figuret.7. More formally,

More general definitions of nested words in the literaturgpdonit dangling edges, internal
positions, and unmatched labels, that we exclude here.

Section 4.5 — Pushdown Forest Automata 85

letn, ... n, be the sequence of eventstiexceptstart in their total order. The
word:

wW=aj...a,

is the sequence of all;, € ¥ labeling the nodes of eventin ¢t wherel < i < n.
The edges link opening to closing events of the same node, i.e

E={(@i,j) | = €nodt), n; = (op,m),n; = (cl, m)}

4.4.2 Translations into and from STAs

The function/e : evet) — domnw(t)) U {0} with I(start) = 0 ande(n;) = @
forall 1 < i < nis a bijection, as well as the functialy : nodt) — E with
In(m) = (le((op, 7)), Ie((cl,7))). Thus, events of correspond to positions of
nw(¢) or 0 and nodes of to edges of n\t). The edges of do not have immediate
counterparts in n\), but can be inferred from the relations of positions in(fjiw
nevertheless.

Proposition 16. Let A be an STA oveE andt¢ € 75, an unranked tree. A run
(rn, re) On NW(¢t) is licensed byd as an NWA if and only if the rur, o I, re o Ie)
ont is licensed by4 as an STA.

As a consequence, the runs4fn¢ and nwt) correspond bijectively, and
is accepted byl as an STA if and only if n\¢t) is accepted byl as an NWA.

Nested word$w, £') encoding unranked trees satisfy the following restriction
no hedges:there exists an edd@, |w|) € E.

Conversely, every nested word satisfying this conditiocogiles some unranked
tree. Every edgéi,j) in £ corresponds to one nodeof this tree, using the
common label of andj. As no overlap occurs, positions betweeand ;j can
be translated into a sequence of trees, defining the chilafren Theno hedges
condition ensures that this sequence of trees has a uniqgtie ro

4.5 Pushdown Forest Automata

We recall PFAs from Neumann and Seii$98 which operate on hedges (called
forests there), and show how they relate to STAs.

86 Chapter 4 — Streaming Tree Automata

1 a, 1

| \ ,

4_p, .3 4 b 3 % .2
(a) Example of run. (b) downb1—4 (c)upa3—3 (d)sidel 3'—2

Figure 4.8: Run of a PFA.

4.5.1 Definition

We reformulate the original recursive definition of PFAslaators by formalizing
a corresponding notion of runs. We restrict ourselves ®larguages, in that we
define runs on trees only. This is no serious restrictiorgesmur results extend
easily to sequences of trees.

Definition 7. A pushdown forest automaton (PF&)a tuple(3Z, stat init, fin, rul)
whereX is a finite set, stat= stat W stat, is a finite set of states, composed of
event states and node states, ifiit C stat are finite sets of event states, and rul
is a set of rules of the following forms, whegg ¢; € stat, v € stat, anda € X:

downa ¢y — ¢ sidegyy — @ upagqy — vy

Event states are originally callddrest statesand node states correspond to
the originaltree states PFAs traverse trees in document order. When leaving a
nodem, two rules are used. First, aip-rule maps the node to some node state.
Second, siderule assigns an event state to the closing event of the nupdelles
can be eliminated, but are kept here as in the original defimit

More formally, PFASP permit runsr = (re, ry) on treest, with re.evet) —
stat andr,: nod(t) — stat, if P contains the following rules for all nodesc
nod(t) with a labela € ¥:

down a re(pr((op,m))) — 1
side r(pr((op,7))) ra(m) — re((cl, 7))
up a re(pr((cl,m))) — r

Section 4.5 — Pushdown Forest Automata 87

andrg(start) € init. The run is successful ifs((cl,€)) € fin. Figure4.8(a)
presents a run of a PFA on our example tree. The representatiales is ex-
plained in Figure<.8(b) 4.8(c)and4.8(d)

4.5.2 Equivalence to STAs

We present polynomial time translations between weak STIsREAS and vice
versa, which preserve runs up to simple correspondencehasthnguages.

From PFAs to weak STAs

We transform PFA$ into weak STAss(P) by removing intermediate tree states,
identifying rules fordownandop, and combining rules foup andsideinto cl.
Let stat(”) = sta}, init*™ = init”, andfin*”) = fin”, and let the following
schemas define the rules gfP):

upa ¢ — v € rul?
downa ¢y — ¢, € rul” P aqr = P
o a0 sidegy 71 — ¢ € rul

s(P) -
go —— 1 € rul @ cl a:qo @ € I’U|S(P)

From weak STAs to PFAs

Let A be a weak STA. We define a corresponding BIFA) such thats(p(A)) =

A. This shows thap(A) and A recognize the same tree language. dtaf =
stat! andstat™” = ¥ x stat!, initial and final states remaining the same. The
following inference schemas detail how the ruleef) are inferred fromA.

cl a:
qo 4, 2 € rulA

upa go — (a,qo) € rul?
sideq; (a,q) — ¢z € rulP@

(o] :
4o M> € ruIA

downa ¢y — ¢ € rul?™®

Theorem 2. Every PFA can be converted into an STA accepting the same lan-
guage, and vice versa.

Proof. First, we prove thal.(s(P)) = L(P). This translation preserves the first
functionr, of runs. Since(P) is weak, this function is sufficient to define a whole
run of s(P). Conversely, given a run &f P) ont, we can easily build the second
functionr, as everycl rule used irre is generated using an intermediate tree state.
These translations preserve acceptancé (80 = L(s(P)).

Second, we show that for all weak STAS s(p(A)) = A. Recall that weak-
ness can be assumed w.l.0.g. Translationgpainddownrules are exactly sym-
metric. The double inclusion afl rules of A ands(p(A)) can be easily checked.
Initial and final states are also preserved. O

88 Chapter 4 — Streaming Tree Automata

Thus, PFAs can be converted into weak STAs with fewer statésat the tree
languages are preserved. Vice versa, there exists a laagoesgerving translation
of weak STAs to PFAs which may increase the number of stateségtor of|>|.

The runs of STAs and corresponding PFAs assign the same statas to
opening and closing events. This means that they define tne san-based
gueries, when selecting in event states only. This is iéustl in Figuret.8(a) by
a run of the PFA corresponding to the STA of the previous exarfjgure4.6.

As a consequence, we can rely on the query answering algofah push-
down forest automataB[S04 for answering run-based weak STA queries. Re-
moving the weakness limitation does not create any probléns. way, we obtain
a query answering algorithm farary queries defined by STAs and NWAs.

4.6 Standard Tree Automata

In Section2.1.3 we have seen how standard automata, that were originally de
fined for ranked trees, can be combined with binary encodimgsder to recog-
nize unranked trees. In this section, we consider two ofettmegdels. The first
one is given by bottom-up tree automata operatingmy encodings of trees,
also calledStepwise Tree Automat@NT04]. The second one uses top-down tree
automata orficnsencoding of trees. The reason why we are interested in these
models, is that they operate in a way that is compatible witr@aming evalua-
tion. They can be considered as special classes of STAs. Wvdprback and
forth translations between each model and STAs, and shawhbdranslations

to STAs preserve determinism. This shows that determinisBTAs is stronger
than determinism of these classes.

4.6.1 Stepwise Tree Automata
From Stepwise Tree Automata to STAS

The translation of stepwise tree automata to STAs is quigggsttforward, as they
can be seen as a weaker form of STAs: a stepwise tree automadbrates a
hedge (of children of a node) sequentially, from left to tighhe difference with
STAs is that when evaluating a new tree of the hedge, the retsidting from the
evaluation of the beginning of the hedge is unknown. Thestedion of a stepwise
tree automatori to an STA A’ is detailed and proved below, and illustrated in
Figure4.9. The key idea here is to translate an @-rule by a closing tide uses
the stack to know how the hedge of preceding siblings of threeati node was
evaluated, and the current state to know what is the statbéosubtree rooted at

Section 4.6 — Standard Tree Automata 89

q’i

/@qg\ QOCLQf -~
44 qr B
AN 'qo/ .
q}@\ B¢ gsd ge€ 7 b (J2 L \c/% q:5 C‘iqf
y 45 |
@qo b q6 e qr

AN

(a) Arun of a stepwise tree automatdron (b) A run of the corresponding STA’
teTs,. oncurry1(t).

Figure 4.9: Example of runs for the translation of stepwise automata to STAS.

the current node. Labels are only used at opening.
stat = stat' W {¢;, s} init" ={q;} fin" = {qs}

Qgo,q1) = @ erul® g g erl?® gestat! gefin® aeX

cl a:q ’ op a:qo A’ cl a:q;
g — g € rul G — q1 € rul q—qs

Correctness relies on the following property, that can Is#yeproved inductively
on the structure of € 7y, :

there is a rum of A ont iff there is a run’ of A’ oncurry~!(¢), and if such
runs exist, them(e) = r’((cl, k)) if the root of curry'(¢) hask children,
andr’((op,¢)) = r(m.) wherer, is the first leaf oft in pre-order.

From STAs to Stepwise Tree Automata

We exhibit a translation from an STA to a TA recognizing the language of cor-
respondingcurry encodings of trees, i.e. an equivalent stepwise tree atitoma
This time the translation is more intricate, as STAs allowead the current state
from one node to its right sibling, but stepwise tree aut@naiat not. This is why
we have to guess this state, and then to check whether thés goeresponds to
the state reached when closing the previous sibling. Thetnastion is shown
above and illustrated in Figu#e1Q

stat' = ¥ x stat* x stat’

: | a: .. .
4o SR q1 € rulA qo =, qs € rUlA Qo € init4 g3 € fin

(CL, qi1, q2) S ﬁnA/

90 Chapter 4 — Streaming Tree Automata

q0

X 71
_ (0«7Q17q9) @
T Q1 aqlo -
/ Rl T
a,q1,45 , 96,48
772 74‘ / \ / \
Q2\I{ 43 (J4\cj% %a‘qu (a,q1,a3) @ (c) (dd - e |
! c7q 7q 7q 7q e’q 7q
*75: / \ 4,494 6,46 7,47

q7 e g8
N <

(a) Arunofthe STAA ont € 7x. (b) A run of the corresponding stepwise tree automa-
ton A’ oncurry(t).

a
(a,q1,q1) (b, q2,92)

Figure 4.10: Example of runs for the translation of STAs tepstise tree au-
tomata.

(0] :
qo M Q1 € rulA

a—(a,q,q1) € rul®’

o 2 g et g et g estatt aeX
@((CL, qa, qO)J (b7 q1, Q2)) - (CL, 44, 93) S rU|AI
The following invariant can be proved inductively on theusture oft € 7y, :

there is a runr” of A’ on ¢ such thatr’(e) = (a,qo,q) iff the root of
curry~'(t) is labeled bya, there is a rurr of A on curry~!(¢) such that
r((op,e)) = qo andr((cl, k)) = ¢; wherek is the last child of the root.

4.6.2 Top-Down Tree Automata w.r.t.fcns Encoding

As already mentioned in Secti@2, DTDs can easily be translated into TAs over
fcnsencodings of trees. We now relate these automata to STAs.

From Top-Down Tree Automata to STAS

Let A be a|TA recognizing binary trees iffy, , that arefcnsencodings of un-
ranked trees. We define an STA over ¥ such thatl.(A) = L(A’). This is
illustrated by Figuret.11, with runs of A onfcngt) and A’ ont.

?t"?‘tj, i ?t?‘tj ¢, a — (q1,q2) € rul? 1l —sgeru? aey ¢ e stat’
|n|t - |n|t op a:q2 |A, cl a:qa A’
fin' —stat 9 @& @ — qo € rul

This preserves determinism, and the correctness is easigg using the follow-
ing invariant:

Section 4.7 — Conclusion 91

q/OCL\ qo\ q10

q1p quol q1 C‘quo

Ve AN , \\
q2] Q/:J.c\ g3 /q5 "
2 3 4 C (g5 6 9
ol %E’d\ q\b—‘q ’q\/q ’ql C‘Z%
q/6€\ Bl § 8 :
qrl 48l W\\e}qg

(&) Arunofa|TA Aont € Ty, . (b) A run of the corresponding
STA A’ onfcns ™ (1).

Figure 4.11: Example of runs for the translation|@As overfcnsencoding to
STAs.

if h = (t1,...,t) is an hedge ovex, then there is a runof A onfcns, (h)
iff there isa runr’ of A’ onh, and if such runs exist, then,4f is the root of
t, andr the corresponding node fons, (h) we haver,((op, 7')) = r(x-1)
andr/(7') =r(mw-2).

From STAs to Top-Down Tree Automata

Let A be an STA over the alphabBt We define thg TA A’ overX; such that
L(A") = L(A):

stat' = stat* x stat® fin? = init?* x fin®

o 2 et 2% el g e stat! q € stat’
! A/
(40, q4),a — ((q1, 42), (g3, qu)) € rul 1L —(g,q) €rul

Figure4.12illustrates this translation. The following property isgdo prove by
induction on the structure @f and gives the main idea of the construction:

there is a run’ of A’ ont iff there is a runr of A on the hedgédcns *(t),
and if such runs exist thate) = (g, ¢1) iff there is a run ofd onfcns ™ (¢)
starting ingy and ending iny;.

4.7 Conclusion

These translations between automata models allow to régesthms designed
for specific models. In our framework, automata can be useddieema defini-
tion or query definition. While STAs, NWAs and PFAs are quitaikar models,

92 Chapter 4 — Streaming Tree Automata

QO‘ o (%#I}o)a -
T q1 CLQ10 (q1,99) b 1 (a10, q10)

/ \ PN
v 72 V4 (92,92) | C (g3, 99)
e

N
= \b 4, \c(% 1 d qu (qa,94) | d (g5,99)
- - | N
v V5 } (qs,q/s) € - 1 (g9, 99)
a7 e ds (a707) | 1 (as, as)

(&) Arunofthe STAA ont € 7. (b) A run of the correspondinglA A onfcngt).

Figure 4.12: Example of runs for the translation of STAs ts T erfcnsencod-
ing.

operating in pre-order traversals of trees, the use of pieacodings on top of
ranked tree automata define models with weaker notions efmétism.

In the remainder of the manuscript, we use dSTAs for definumgrigs and
schemas. STAs benefit from a simple definition, which impletaigon (using
SAX, for instance) is easy to explain. Moreover, STAs arselyp related to our
computational model. An STA can be implemented by an SRAMrevtiee work-
ing tape stores the current configuration, i.e. the curredenand the stack of
node states for its ancestors. The next chapter providegampe of how an
algorithm can be defined on top of STAs.

Chapter 5

Earliest Query Answering for
Streaming Tree Automata

Contents
5.1 Introduction 93
5.2 Earliest Query Answering. 95
5.2.1 Earliest Event for Selection. 96
5.2.2 Earliest Event for Rejection 96
5.3 Complexity of Selection Sufficiency 97
5.3.1 Sufficiency Problem. 97
5.3.2 Reduction from Language Inclusion. 98
5.3.3 Hardness of EQA for XPathand STAs 98
5.4 EQAAlgorithm fordSTAs 101
5.4.1 Safe States Computation for dSTAs. 102
5.4.2 Generic EQA Algorithm and its Instantiation for dASTAS3
543 AddingSchemas 111
5.4.4 Example Run of the Algorithm with Schema. . . . 113
545 Implementation 115
5.5 Streamability of dSTAs 117
56 Conclusion. 118

5.1 Introduction

Streamability of queries defined by deterministic autonmtavestigated in this
chapter. We prove that queries defined by dSTAs, when resdrio shallow trees,
arem-streamable for alln € Ny. They are however nab-streamable, as queries
with high concurrency can be defined with small dSTAs. In otdeobtain these

94 Chapter 5 — Earliest Query Answering for Streaming Tree Mata

results, we propose an earliest query answering algorittingueries defined by
dSTAs.

Earliest Query AnsweringEQA) has been introduced by Bar-Yossef et al.
in [BYFJOF and Berlea in Ber0g. An EQA algorithm outputs selected (tuples
of) nodes at the earliest time point when they can be outpymnSetrically, it
rejects failed candidates at the earliest time point, oreceatid continuation of
the stream will select them. Violating one of these constsameans that some
candidate is unnecessarily buffered. Indeed, EQA algosthnly memorize alive
candidates. This corresponds to a lower memory bound forcomnputational
model, as already proved in Propositian

In this chapter, we present an EQA algorithm for dSTAs q@eri@s pre-
viously mentioned, EQA ensures good properties in termgpats complexity.
Thanks to determinism, our algorithm is also efficient imtgiof time cost. When
the depth of valid trees is bounded, this algorithm achievBsIME preprocess-
ing, and then a RME cost per event and per candidate, in the size of dSTAs
defining the query and schema. The main idea of the algorightha dynamic
computation of safe states, that ensure selection (rejgetio) of candidates.

The complexity of EQA is also investigated, for arbitraryequ languages.
Deciding for selection and rejection in an earliest mangseften computationally
hard, and can be reduced to inclusion of Boolean queries. desmsequence, for
non-deterministic STAs, earliest selection and reject®EXPTIME-complete.
Thus, there is no AME EQA algorithm for queries by STAs. For XPath, we
exhibit a fragment with only downward axes, for which EQA st feasible in
PTIME, unless RIME =NP.

Related work The idea of earliest query answering originates from twcepsp
In [BYFJOS, Bar-Yossef et al. define the concurrency of a query w.itte@, and
prove that it constitutes a lower memory bound for a fragnoérXPath. They
also provide an algorithm with space complexity close to ¢bacurrency for
shallow trees. InBer0q, Berlea proposes an EQA algorithm for queries defined
by grammars, and then translated into pushdown forest aitorithis algorithm
is however different from ours, as it assumes an infiniteateh and does not take
schemas into account. This is a major difference, as exgadmSectioril.4.

Earliest detection of rejected candidates is also studyeBdmedikt et al. in
[BIJLWOS for filtering XML streams, through thiast-fail property. The authors
prove that this problem is not tractable unlessMt = PSPACE The solution
adopted by the authors is to approximate the detection eftegl candidates.

In the streaming literature, it is often claimed that an®sase output as soon
as possible. From the hardness results previously mewtjdhis is often false.
For instance Gou and Chirkov&{ 074 claim that their algorithnachieves op-

Section 5.2 — Earliest Query Answering 95

timal buffering-space performanos a fragment of XPath that contains tree pat-
terns. Their algorithm runs inTME, which is impossible for EQA algorithms,
unless RIME = NP. Usually, a query answering algorithm for XPath outputs
an answer when all positive filters have found a match, anatinent event is
outside the scopes of all negative filters. This is the caseftance for SPEX,
proposed by Olteanu irJIt07h and for the logics considered by Benedikt and
Jeffrey in BJO7. These algorithms are not earliest, because it could beleec
before the end of the scopes of negative filters whether taeystll be satisfied

in any continuation of the stream. Consider for instanceXRath expression
//alb or not(b)] that selects alk-nodes, if they have &child or not. Here, all
a-nodes can be selected when they are read, as the filter igsatruee. However
these algorithms will output-nodes when closing them.

Madhusudan and ViswanathadV08] propose an EQA algorithm fas-ary
queries defined by non-deterministic nested word autoneatagnizing canonical
languages, without schema considerations. However, tt®eiassume that the
input automaton does not accept the full linearization afea,tbut the smallest
prefix of a tree linearization such that all well-nested seffiare in the canoni-
cal language of the query. Transforming an automaton rezimgna canonical
language, to an equivalent one accepting these prefixesamplex task. Our
algorithm avoids its entire construction by computing itkes on demand. An-
other difference is that we require deterministic automiatéhe non-deterministic
case, the complexity of this transformation is not studigdMadhusudan and
Viswanathan.

Earliest Query Answering algorithms decide at every eveatsafety of out-
putting (resp. rejecting) every candidate. This safetypprty seems related to
safety properties studied in formal verification, where $lgstem has to verify
such a property in every possible future. For instanc&W(J1], Kupferman and
Vardi propose to build an automaton recognizing all bad pesfisuch that all suf-
fixes will lead the system into a bad configuration. The linkeen such formal
verification methods and earliest query answering aretstile investigated.

5.2 Earliest Query Answering

We recall the foundations of earliest query answering (EQW5ection3.4, we
introduced the notions of safe selection and rejection:@Aau is safely selected
(resp. rejected) by a query at evenif 7 is selected (resp. rejected) in all valid
continuations of the stream beyond We formalize these notions through suf-
ficient events for selection and rejection, and derive sogwstbn problems of
EQA algorithms fom-ary node selection queries. We establish lower complexity
bounds for such algorithms.

96 Chapter 5 — Earliest Query Answering for Streaming Tree Mata

5.2.1 Earliest Event for Selection

Before defining earliest events for selection, we introdsig#icient events for
selection Lett € 7y be an unranked tree arfg a query of arityn. An event
n € evdt) is said sufficient for the selection of tuptec nod(t)" by @ if for
every continuation of the stream beyomd- is selected byy. This quantification
over all continuations is expressed through all trees sgdhie same prefix until
7, in the following definition. Note that this formalizes thetion of safety for
selection (resp. rejection) briefly introduced in Sectioh

Definition 8 (Sufficient events for selection).et) be ann-ary query oveix: and
t € domQ) a tree. We relate tuples € nodt)" to events) € evet) that are
sufficient for their selection:

T € dom,(t)™ A
(7.m) € seb(t) < { vt e drc??n(Q). equal (t,t) = 7 € Q(t')

The first condition,r € dom,(¢)", restricts the considered tuples to those
containing nodes that were read befgreas streaming algorithms cannot output
nodes that have not be seen yet. Note that)) € sel)(t) impliesT € Q(t).
Furthermore, successors of sufficient events are sufficient

Theearliesteventy for selectingr is the first sufficient event for selecting

(1,m) € earliestsely(t) < n = mgn{n' | (1,7") € seb(t)}

Consider for instance the monadic query; with b

schema 7;. defined by the XPath expression \&
/ch::a[ch::c] /ch:b, or equivalently by the first-order VAN
formulalaby,(z) A Jy. (Iab,(y) A ch(y, z) A3z. (ch(y, 2) A @b c
lab.(z))) with one free variablez. On the treet = b(a,a(a,b,c)), the

earliest time point to select nod22 is event (op,2-3) when the c-child
is opened, i.e.((2-2),(op,2:3)) € earliestsel, (). Events following
(op,2-3) are sufficient for selecting2-2, but not earliest. For instance:
((2-2), (cl,2-3)) € sely, (t) — earliestsel, (t).

For query(@, defined by the same XPath expression, but with the more re-
strictive schema, requiring that all inn@mnodes have at least onechild, we can
select node-2 at opening time, i.e((2-2), (op,2-2)) € earliestsel,, ().

5.2.2 Earliest Event for Rejection

For optimal memory management, it is equally important szdidrejectedans-
wer candidates in an earliest manner, i.e., candidatesviiatever be selected

Section 5.3 — Complexity of Selection Sufficiency 97

in any possible future. Going one step further, one might alant to remove
rejected partial candidates, for which no completion wiktiebe selected in any
future.

Definition 9 (Sufficient events for rejection)Ve call a candidate rejectedat
eventn, or equivalentlyy sufficient for rejectingr, if no completion of- can be
selected in the future:

T € donf(t)" A

(1,m) € rejp(t) < { vt' € dom(@Q). equal (t,t') =
V1’ e complr,t',n). 7 ¢ Q(t)

Theearliesteventy for rejectingr is the first sufficient event for rejecting

(7,m) € earliestrej,(t) < n = mgn{n’ | (7,1) € rejg(t)}

We illustrate these definitions at the quepy defined by the XPath expres-
sion /ch::a[ch::c] /ch:b, on the tree = b(a,a(a,b)). All nodesr that are not
labeled byb (and the rook) can be immediately rejected, i.€(n), (op, 7)) €
earliestrej,, (t). For theb-node2-2, the earliest event for rejection sl, 2), as
all siblings of2-2 must have been inspected.

Link to Concurrency Earliest events for selection and rejection are closely re-
lated to the concurrency of the query, introduced in Sec3i@3 A tupler is
alive at eveny) iff n is not sufficient for selecting, nor for rejecting it:

(r,n) € aliveg(t) <« (7,m) ¢ selp(t) Urejy(t)

5.3 Complexity of Selection Sufficiency

5.3.1 Sufficiency Problem

The definition of sufficient events for selection leads to pheblem of deciding
whether an eveny is sufficient for selecting a tuple. This problem has to be
solved by all EQA algorithms at every processed event, amdeh&ill give us
lower bounds for the per-event time of EQA algorithms. Famgicity, we only
address the sufficiency for selection here, not for rejectio

Definition 10 (Sufficiency problem) ThesurFICIENCY problem is defined by the
following parameters, input and outputs:

PARAMETERS: a signatube, a classQ of queries of arityn,

98 Chapter 5 — Earliest Query Answering for Streaming Tree Mata

INPUTS: an expressioa € Q, a treet € 7y, ann-tupler € nodt)", and an
event) € evet) — {start}.

OUTPUT: the truth value ofr,n) € sel,.(1).

We provide hardness results fBUFFICIENCY. To establish these results, we
reduce language inclusion SWFFICIENCY.

5.3.2 Reduction from Language Inclusion

Letcy -+ b€ the set of trees on whichis selected or that have a prefix different
from ¢=7:
Cormt =1t € Tz | equal(t,t') = 7€ Q(t')}

Then we can rephrase sufficiency for selection in the folhgway.
Lemma3. (7,7) € seh(t) <« 7 e dom,(t)" AdomQ) C Co e

This reformulation relateSUFFICIENCY to language inclusion for classes of
Boolean queries. TheicLUSION problem for a clas®) of Boolean queries inputs
an expressiom € Q and outputs the truth value dbm@.) C Ly, . UNIVER-
SALITY returns the truth value dfs; C L, instead.

Lemma 4 (Hardness) For all classesQ of Boolean queries there is a linear
time reduction ofiNCLUSION to SUFFICIENCY, and of UNIVERSALITY to SUFFI-
CIENCY for queries with schemy.

Proof. Lete € Q andt € dom(Q) a tree. Sinc&). is Boolean, the definition
yieldscy, () sat: = Lg.. Thus, LemméB proves tha{(), start) € sel,, (¢) if and
only if dom(@.) C Lo,. O

5.3.3 Hardness of EQA for XPath and STAs

We consider Boolean filters in the following fragment of Fardl XPath, where
e XU {x}:

Fou=|[ch:F] | [ch:0F] | [F1andFs] | [not(F)] | [tru€]

Proposition 17. SUFFICIENCY for Boolean queries defined in the above fragment
of Forward XPath is coNP-hard, even without schema assumgti

Proof. According to Lemmad4, SUFFICIENCY without schemas is harder than
UNIVERSALITY of Boolean queries. The latter problem was proven coNP-hard
for the above fragment of Forward XPath in Proposi#ion O

Section 5.3 — Complexity of Selection Sufficiency 99

Adding schemas does not reduce the complexity of the prabfema conse-
quence, every EQA algorithm for a larger fragment of XPattnce be in poly-
nomial time, except if PIME = NP.

For queries defined by non-deterministic automataFFICIENCY remains
hard, even with Boolean queries.

Proposition 18. sUFFICIENCY for Boolean queries defined by STA&EKPTIME-
hard.

Proof. By Lemmad, SUFFICIENCY without schemas is harder thanIVERSAL-
ITY for STAs, and thus EPTIME-hard by Propositiod5s.]

However, when restricted to deterministic STAs, the problbecomes
tractable. The crucial point here is that dSTAs can checlalgguof prefixes
of two trees until eveny deterministically.

As previously introduced, we writ€ 4 for the query defined by the STA
recognizing a canonical language, ile,,, = L(A) anddomQ4) = 7».. When a
schema s provided by an STA, Q) 4 5 denotes the query suchthag, , = L(A)
anddom Q4 5) = L(B).

Lemma 5. If a dSTAA recognizes a canonical language, then for alE 7,
7 € nodt)" andn € evet), we can compute a dSTA recognizing the language
CQ 4t IN PTIME in |A], [t], |7] and|n].

Proof. We prove that we can build a dSTA recognizing-. ,,, in polynomial time
from A, t, 7 € nod(t), « € {op,cl}, and7 € nod(t)". We define two tree
languages:

Eq, ={t'" | equaj(t,?)} Q. ={t" | 7€ Qa(t)}

With these definitions, we geb, ., = E§S™ U Q, whereL®™' = {t € Ty, |
t ¢ L} for L C 75. Hence it suffices to build dSTAs recogniziig, , and@; in
PTIME.

First of all, we define a weak dSTA recognizikg, , = {t' | equal,(t,t')}.
We setstat, = eve¢="), stat, = {7} (arbitrary),init = {start}, fin = {5}, and
the following rules where< andpr are interpreted orve?):

(a,m) =1 a = lab’(r) a€y
pr((a, m)) = (a,7) n P Sy

Second, we define a dSTA recognizing the@et= {t' | 7 € Qa(t')}. Such a
dSTA can be built in several steps. We first build a dSAAecognizing all trees
annotated with the tuple, i.e.:

LAY ={ts7 | t€ T}

100 Chapter 5 — Earliest Query Answering for Streaming Tree Mata

Figure 5.1: A run of the dSTAY, whent = (2-1,1). The domain for thig is
domain= {e, 1,2,2-1}, as indicated by framed nodes.

Then we can intersect’ with A, in order to distinguish all annotated trees on
which 7 is selected by) 4. Finally, we can project on thE-component in order
to obtain the desired trees:

QT - HE(QA A\ QA’)

The corresponding automata operations preserve detesrmim this particular
case: for each tree € Ty, there is at most one run of N A’ ont * 7, as both
automata are deterministic. Hence, after projectiongtigernlso at most one run
ont, and thus the determinism is preserved by the projecticthiscase.

It remains to detail the construction df. If the arity of Q4 is n = 0 then
7 = () and we can take a universal automaton,/dsl’) = 7y. Otherwise,
in order to define this automaton in polynomial siz€4fi some preprocessing
on 7 is required, which factorizes common prefixes of node adéesRoughly
speaking, we callomainthe domain of the smallest tree containingand build
a dSTA that computes in its states the next elemewtoohainto be checked, as
illustrated in Figureb.1 Formally, letdomainbe the set of positions smaller or
equal to some position affor the order defined by.i < 7.jif i < jandr < 7.i.
We writedomain. = domainu { L }. We introduce the functionext {op, cl} x
(N*U{L}) — domain_that indicates whether the domain still continues above
(resp. at the right of) the current nodewhen called withop, 7) (resp.(cl, 7)):

nextop,7) = m- if 7-1 € domain 1 otherwise
nex{cl,7-i) = w-(i+1) if 7-(i+ 1) € domain_L otherwise
nexta, L) = L for a € {op, cl}

We also introduce the functiovars,: domain — 2Y» that associates with each

Section 5.4 — EQA Algorithm for dSTAs 101

node the variables corresponding to the annotation: by

if = (mi,....m,) then { vers(n s I m=n)

We can now define the dSTA'. A run of A’ is shown in Figuré.1

stat! = stat!’ = domain ac 7,7 € domain [= vars,(m)

LAl) /
init" = e 7 XD hex(op,) € rul”
s AT | (a,l): /
fin™ = {1} 7 LT nextel,) € rul

Theorem 3. SUFFICIENCY for n-ary dSTA queries is in polynomial time.

Proof. We can test.(B) C Cy, -, in polynomial time, if B is given an dSTA,
since we can compute a dSTA foj ,, ; in linear time by Lemm&, and since
INCLUSION for dSTAs is in polynomial time (Propositidlb). O

As a corollarysurriCIENCY for STAs is EXPTIME-complete. A EPTIME
algorithm follows from STA determinization and Theor@nBy Propositionl8§,
the lower bound holds already for STAs defining Boolean epseri

5.4 EQA Algorithm for dSTAs

From the previous results, we know tleiFFICIENCY can be decided in RME
for queries defined by dSTAs. In this section we propose diestguery ans-
wering algorithm for such queries, using polynomial peergvime and space for
each candidate. We start with a static transformation oti&eA A defining the
query@ 4 into another dSTAE(A), in Section5.4.1 E(A) and A recognize the
same language, but the statesE9f1) contain enough information for deciding
sufficiency for selection and rejection. This is not the dased, as in general the
sufficiency depends on the configuration, and hence from#tessof the ancestor
nodes (as their states will be later used at closing). Howyévis translation ofA
into E(A) implies an exponential blow-up. In Sectid.2 we propose a RME
algorithm that avoids this blow-up by constructing the rezbgarts ofE(A) on
the fly. In Sections.4.3 we show how schemas can be taken into account, and
illustrate it at an example in Sectidn4.4 Finally, we show how the algorithm
can be efficiently implemented in Sectidmi.5

102 Chapter 5 — Earliest Query Answering for Streaming Tree Mata

5.4.1 Safe States Computation for dSTAs

We define a partial runof an STAA on a tree like a run, except that it operates
only on a prefixt=" for some event) € evet). We writep_runs’(t) for the set of
all partial runs ofA on¢t.

Safe States for Selection

Let A be a dSTA ovel x 2V» defining a quenQ,, t € Tx, n € evet), and
7 € nod(t)". We consider for the moment queries with universal schemas.

Definition 11 (safe states for selectiarjve call a state € stat! safe for selection
of 7 at event if the existence of a partial run r o ont that maps; to g implies
(1,m) € sel,(t). In other terms, these are the states that ensure sufficiemcy
selection when they are reached:

safesel, , (1) ={q | (3re prunst(t + 7) A re(n) = q) = (1,1) € seb, (1)}

In general, A does not have safe states, or more precisely, , 7
a sufficient event can be reached by a rurombut the cor- © ,,(,a’ U) “
responding run does not go into a safe state for selection. rﬁm 0
now describe how these states can be computed by a
dSTA E(A), which permits to decide sufficiency. Here we need some ianil
definitions. Leruns;, . (h) be the set of runs of an STA on a hedgé: that start
in stateg, and end in statg,. The operatoev.cl (h, ¢, (a,v),~) evaluates hedge
h from statey, and subsequently applies a closing rule with Idbel) € ¥ x 2=
and statey:

cl (a,v):

ev.cl*(h, g, (a,v),7) = {q2 | Ir e runs* . (h). @ = g € rul*}

q0—q1
We consider continuations through hedgesdn, = Hsx g, as safe states for
selection are defined for complete tuples, and thus valitirmeations cannot use
variables anymore. The operatmiv_sel'((a,v), v, P) computes all states, from
where all hedges ifi(s can be evaluated and closed w.fd, v) and+y into a state
of P C statl:

univ_sel*((a, v), v, P) = {qo | Vh € Hse. €V.Cl*(h, qo, (a,v),7) N P # 0}
Given A, t, and 7, we can compute inductively the safe statgg(n) =

safesg m)_(t) for all eventsy € evet), using three propagation rules, as illus-
trated in Figurés.2and proved by Lemm@.

Section 5.4 — EQA Algorithm for dSTAs 103

Figure 5.2: Propagation rules for safe states.

Rule 1 Forthe closing event of the root, the evéclt ¢) is sufficient for selection
of the givenr on ¢ iff all continuations after(cl, ¢) succeed. The only existing
continuation is the empty one, so the sufficiency only depamdthe success of
the run. Thus when closing the root, the set of safe statesefection are the final
states:

Ssel((cl, €)) = fin

Rule 2 At each noder, the safe states for the opening event can be computed
from those of the corresponding closing event. These arstéttes for which the
traversal of any hedge (of children), followed by the closure of the node, leads
to a safe state at closing.

Ssei((0p, 7)) = univ_sel*((a, v), v, Ssel((cl, 7)))
where(a, v) = lab’(7) andy = ri(n).

Rule 3 Third, the safe states for the opening event afe equal to those for the
closing events of children of:

Ssel((cl, 7)) = Ssel((Op, 7))

This might seem surprising at first sight. However, the cbowlifor rule 2 can
be rephrased in the following way for rule 3: the traversaho§ hedge (here, of
right siblings and their descendants) followed by the dlesf the parent node
must lead to a safe state for closing the parent node.

104 Chapter 5 — Earliest Query Answering for Streaming Tree Mata

Safe States for Rejection

The treatment of safe states for rejection is more deli¢deee we have to assume
determinism and completeness for a proper treatment afpaandidates. The
definitionssaferej anduniv_rej remain the same, except that we have to replace
selby rej, 7 € nod(t)" by 7 € nod,(t)". FurthermoreHse is replaced byH s =
Hs,ovn, @S safe states for rejection consider partial tuples. elepatinuations
can still contain variables in their labels, and we cannstriet the hedges to be
traversed tdHs,, ¢y :

saferej., (1) = {q | (3r € pruns*(t«7) A re(n) = q) = (7,n) € rejy, (1)}

univ.rej’ ((a,v), 7, P) = {go | Yh € Heej. €.l (R, qo, (a,v),7) N P # 0}
Propagation rules definingj; are also easily adapted from those defintiag

Rule 1 Rejection states at the root are precisely non-final states:

Sii((cl, €)) = stat! — fin®

Rule 2 The critical rule

Srei((0p, m)) = univrej’ ((a,v), 7, Sei((Cl, 7)))

remains correct when imposing determinism and compleseors!, since this
ensures that a hedge will fail iff a run on this hedge leadsri&gjextion state. The
additional quantification over hedgesi,; (in the definition ofuniv_rej), which
may turn continuations into non-canonically annotatedgyenakes no difficulty,
since such trees cannot be recognizeddbyvhen assuming that the language of
A is canonical (it defines a query), as we do.

Rule 3 The third rule is the direct adaptation:
Srej((Cl, 7)) = Stej((0P, 7))

Building E(A)

Now the propagation rules allow to infer bmhfeseﬁm) (t) and saferejém) (1)

for all eventsy. We can see in FigurB.2 that the definition of safe states is
incompatible with a streaming evaluation. Nevertheldss,computation of safe
states can be done by running the SH@) defined in Figuré.3. This STA does

all the computation when opening nodes. In particular, wiezming(op,) it
computes the safe states for the evéaltsr) and assigns them to the node state of

Section 5.4 — EQA Algorithm for dSTAs 105

S = univsel'((a,v),v1,Sy)
R, = univrej’((a,v),71, Ro)

(q07807720) op (a,v):(71,S0,Ro) (Q1,31,721) c rulE(A)

o op (a,v):1 ¢ € rult

cl (a,v):v0

g ————> q €rul”! So,S1, Ro, R C stagy
I (a,v):(v0,51,R
(quO,Ro) o @v)lr0,51,R) (ql,Sl,Rl) S rUlE(A)
initEW= (init4, fin", stat! —fin?)
finFW = {(q, fin?, stat! —fin?) | ¢ € fin"}

Figure 5.3: Construction d&(A) from A.

7 (i.e. they are pushed on the stack), so that they can be uskediaiy. Safe states
are also propagated among siblings through node states tNat for sake of
clarity, this construction does not hold for earliest sétecof () at thestartevent,
for Boolean queries. However, this case can be processéy epsonsidering
every possible label of the root. The signaturée6fl) is still ¥ x 2V», as for A.
The state sets may be exponentially large, sstag! = sta! x ostaE ostat!

andstaf = stat! x 25t x 2sE' Note thatE preserves determinism.

Proposition 19. Let A be a dSTA o x 2 that defines a query. Thern(E) is
a dSTA that accepts the same languagelas

Furthermore, ifr4 (resp.r5(4) is the unique run ofd (resp. EA)) ont x 7 €
Ts..ov. then for alln € evegn) — {start}:

rE () = (12 (n), safeset’,, (1), safereif, , (1))
Proof. We prove this proposition by Lemmé&sand?. For the whole section, we
fix A, a dSTA on¥ x 2Y» that defines a query,x 7 € Ty, ov., and we suppose
thatr4 is the unique run ofi ont * 7.
We first prove that the propagation rules define the safesstaét us consider
the functionf that associates a pdif, R) € 259 x 252" with each event of +
(exceptstart) using the following inference rules:

f((cl,e)) = (fin?, stat} — fin) (5.1)

menodt) f((cl, 7)) =(S,R) (a,v) =labl(7) v =ri(n)
f((op,)= (univ_seIA((a, v),7,S), univrejt((a, v), v, R))

(5.2)

menodt) mienodt) f((opw)) =(S,R) (5.3)

f((CLﬂ-'i)) = <87 R)

106 Chapter 5 — Earliest Query Answering for Streaming Tree Mata

Lemma 6. For every event) € evdt) — {start},

f(n) = (safesel, , (t), saferej’, (1))

Proof. We proceed by induction on eventstafexceptstart), according to a top-
down, breadth-first, right-to-left traversal of

For (cl, €), the result is trivial from ruleq.1) and the definitions o$afesel
andsafere;.

Let » = (op,w), and suppose that the property holds for
(cl,). From the application of rule 5(2), we know that f(n) =
(univsel*((a,v), v, S), univrej*((a,v),7, R)) with f((cl, 7)) = (S,R),
(a,v) = lab'(x) and v = ri(n). By definition, we have:
univ.sel((a,v),7,S) = {q¢ | Vh € Hse evcl(h,q,(a,v),y) € S},
and by induction hypothesis, = safese@(clm))(t).

We first prove thauniv_sel'((a,v)),v,S) = safese -+ (). Suppose that
q € safesel, (t). Leth € Hs andq = evcl(h,q,(a,v),7). Then
q € safese(i,(c,m))(t), as sufficiency remains true for events following
Thus, ¢ € univsel'((a,v),v,S). Conversely, if; € univsel'((a,v),7,S)
then = < dom,(¢)" (consider the empty continuation). So for every
t" € 7Ty such thatequal(t,t'), the hedgeh of children of 7 in ¢’ is in
Hse Thusevcl(h,q, (a,v),7) € safesel. . (t), which means that ¢
Qa(t"), son is sufficient for selectingr, andq € safese(’m)(t). Finally,
univ_sel'((a,v),7,S) = safesel, , (t).

Now we prove the similar result for safe states for rejectiom., that:
univ_rej* ((a,v), v, R) = saferej(im)(t). The difference here is that we deal with
partial candidates. We write=" for the partial tuple obtained by replacing every
component strictly afteg by e. Inclusionsaferejém) (t) C univrej((a,v),v,S)
holds for the same reason, namely events followjmgmain sufficient for rejec-
tion, even for completions af=". Now suppose that € univ.rej*((a,v),,S).
Fix ¢ € 7z such thatequal (¢,t'), and leth be the hedge of children of in ¢'.
Thenev.cl?(h, ¢, (a,v),) € saferej(. . (t), and thus every completiori of
=1 aftern fails. Hencey is sufficient for rejecting=", andq € saferejém(t).

Finally we considem = (cl,7-i), and assume that the property holds for
(op,7) and(cl, 7). From Rule §.3) and induction hypothesis, we obtain that:
f((cl i) = (safesel, o (1), saferejl o,) (1))

First we prove th%afese@,(opm))(t) = safesel; (¢). We have:

Section 5.4 — EQA Algorithm for dSTAs 107

q € safesel’ ;0. (t)
(3r € porunsi(t « 1) Are((op, 7)) = q) = (7, (op, 7)) € seb, (1)
(Ir € porunst(t = 7) Arg((0p, 7)) = q) =

Vh € Hser ev.el? (b, q, (a,v),7) € Safese@,(cm)(t)

=3
=
U @r e prunst(t = 7) Are((cl, i) = q) = (1, (cl, 71)) € seb, (t)
& g e safesel] .y (t)
The equwalencéz) holds because when applyiog-rules, STAs do not distin-
guish between downward or rightward moves, i.e., they ddknotv whether the
last action wasp or cl. We now show tha$aferej 7 opr (f) = saferejém) (1):
q€ saferej (o) (D)
& (3rep. runs“(t *7) ATe((0p, 7))
& (Ir € porunsi(t = 1) Are((0p, 7))
Vh € Hej. evelt(h, q, (a,v),7) €
& (Irep. runs“(t *7) Are((Cl,m-7))
& g€ saferej (chmip(t)
wherer;, is obtalned fromr by adding variables inh.]

% = (7, (op, 7)) € rejg, (t)
aferej(;, (ci.n(t)
q) = (7, (cl, 7)) € rejg, (t)

II"’

Lemma 7. There is a run(rs“Y r5™)) of E(4) ont « 7 € L(A), and for every
event) € evet) — {start},

rE(A) (77) = (r?(ﬁ)7 S, R) with (87 R) = f(ﬁ)

Proof. Inference schemas definiiifA) show that every run of A has a unique
corresponding rum’ in E(A), andr is the first component af. Again, we use
an induction on events af(exceptstart) according to a top-down, breadth-first,
left-to-right traversal of.

Forn = (cl,e), we havef(n) = (fin stat! — fin?). At the root, we have
rn(e) = (rd(e), fin stat! —fin) , sore((cl, €)) = (1’ ((cl €)), fin’ sta;:4 fin)

Now consider that) = (op,7) and suppose that we havé (cl,m)) =
rd((cl,m)), S R) with (S',R) = f((cl,m)). This implies that
rE(A)() = (rid(n),S',R'), so we getS' = univsel'((a,v),7,S), R' =
univ_rej*((a,v), v, R) andrs¥ (n) = (rA(n), S, R) where(a, v) = lab(w) and
v =ri(r). Hence(S,R) = f((op, 7)).

Finally, let us assume that = (cl,7-7) and also thar 5« ((op,m)) =
(rd((op,7)),S,R) with S, R defined by(S,R) = f((op, 7)). By an immediate
induction on children ofr, each childrj of r verifiesrg " () = (ri{(m),S,R)
and for the state5™* ((cl mj)) = (rd((cl, 7)), S, R), and in particular foy = .
From rule 6.3) of the definition off, we know that S, R) = f((cl, 7-7)). O

These two lemmas finally prove the correctnesg(of). O

108 Chapter 5 — Earliest Query Answering for Streaming Tree Mata

a,v): | (a,v):
(a,v) € x {0} @ o (@), g et g o lap), g € rult

acCy.,(q1, q2) - aCCx., (g3, qa)-

q € stag' 01, g2, g3 € Stag
aCCHseI(q7 q) aCGHseI(Qh Q2) - aCCHseI(Qh Q3)7aCCHseI(Q37 Q2)

Figure 5.4: Inference rules for the definitionaxfc)_.

Running automatotie(A) for a candidate permits to test sufficiency for se-
lection and rejection at the event when it happens. At mostron has to be
processed per candidate, thanks to determinism.

5.4.2 Generic EQA Algorithm and its Instantiation for dSTAs

We present an EQA algorithm for queries defined by dSPAwhich runs in
polynomial time per step and candidate. The idea is to rue#nkest automaton
E(A) of Sections.4.1on the input stream in order to decide selection and rejectio
sufficiency for all answer candidates at all time pointshwaiit constructindg(A)
explicitly.

Running E(A) on the fly

Given a dSTAA overY x 2¥» and a tree * 7 over the same signature, we want to
compute a run oE(A) ontx7 in polynomial time in the size ofl. The application

of closing rules oE(A) is easy, since it only has to look for a rule 4f Applying
opening rules oE(A) is a little more tedious, since we have to compute the sets
univ_sel(a,v), v, P) anduniv.rej((a, v),~y, P') while givena € ¥, v € stat}, and

P, P’ C stat.

When assuming the completenessiah addition to determinism (which can
be ensured in polynomial time for a fixed arity, these sets can be computed
by reduction to information on accessibility through hesif@ A. Given a set
H C Hy,ov. Of hedges, and event stat@sq, € stat', we define the following
accessibility predicate:

accy(qi,¢z) < 3JheH.runs._ (k) #0

We compute it forHse) = Hxw gy aNdHiej = Hyxova, With the Datalog program
in Figuresb.4and5.5.

Section 5.4 — EQA Algorithm for dSTAs 109

a,v): I (a,v):
(a,0) €T x 2V g PO gt g SO g € rul
aCGy,; (41, G2) - ACCr,;(q3, qa)-
q € sta! 01, ¢2, g3 € Stat

ACCr,(,q). ACCr (1, G2) - ACCH;(q1, G3),8CCH (43, G2)-
Figure 5.5: Inference rules for the definitionalfcf_‘trej.

Proposition 20. The collections of values agg¢ (¢, ¢;) and acg;_ (g1, ¢2) can be
computed in tim@(|rul|? + |staf|*) for every complete dSTA.

To explain the computation of univ.sel, we introduce
beforeClosé((a,v),v, P), the set of states that lead to a state fafter
closing(a, v) with ~:

beforeClosé((a. v), v, P) = {a | 3a1 € P.qp =% g1 € rult}

Lemma 8. For deterministic and completd, and for X € {sel rej}, the safe
states univX”((a,v), v, P) are equal to:

{q | Yao. accyy, (q,q0) = qo € beforeClosé((a,v),, P)}

Proof. Immediate from the definitions. OJ

We will see in the sequel how the relaticass,,, andacg,,,, are precomputed
and then reused dynamically.

Generic Algorithm

Our algorithm will be obtained by instantiating the sketeto Figure5.6 of a
generic EQA algorithm, which is parameterized by a cl@ssf query defini-
tions. In our computational model, such an algorithm, fonaegy queryQ, is
implemented by an SRAM, where candidates are stored in tihkimgomemory,
whereas the node identifiers are stored in registers. Tlie staut of the al-
gorithm is a query definitiom € Q, and its dynamic input on the stream is its
ordered set of events. We assume that the stream is alreaslydpas in our
SRAM model. Our algorithm adds the tuples@ft) to the external output col-
lection incrementally at the earliest possible event. Tlagnrdea is to generate
all candidate tuples, test their aliveness repeatediputiselected candidates and
remove rejected candidates.

110 Chapter 5 — Earliest Query Answering for Streaming Tree Mata

fun answerge,t) % ec Q, t e domQ)
let candidates = set.newW]
in
for n in evet) in streaming-order do
candidates . updatep)
for 7 in candidatesdo
if (r,n) € selg,(t)
then add-output(r)
candidates .remover(
elseif (7,n7) € rejg. (1)
then candidates .remover(

Figure 5.6: Generic EQA algorithm for a clag@sof query definitions.

Instantiation for dSTAs

Now suppose that the query is defined by a dSTAFor every candidate we
maintain its configuration iE(A), i.e. its current statéy, S, R) € sta and a
sequence € (staﬁ(A))* inside a stack. Sufficiency for selection e) € sel,, (¢)
is verified by testing; € S, and sufficiency for rejectiofir, ¢) € rej, () by
checkingg € R. Updating the current state is done by applying a rul&(f),
that we can compute using the alternative definitionrf,_X in Lemma8.
Updating the current set of candidates at evgmieans to apply a rule of

E(A) to the current staté;, S, R) € E(A), and for opening events to create all
new candidates, where the current node is usedCLite number of candidates
to be processed at evefdp, 7). Each of theC' candidates originates from an
alive candidate at the previous event(op, 7)), with a possible completion of
components withr. We distinguish between candidates that get safe for setect
or rejection atop, 7) from those that are still alive. We write= simultsafe, , ()
for a bound on the former (when iterating ewet)), while the second is bounded
by the concurrency = concug,, (¢). Hence we havé’ < ¢+ 1. Let us formalize
simultsafe,(t), the maximal number of candidates becoming safe for selecti
or rejection at the same event. For a tuplend a noder, we write 7—x for the
tuple obtained fromr by replacingr by e.

. T—m is alive at evenpr((op, 7))
Simultsafe, (t)=maxcnogs) {T | A risnotalive at eventop,) H

A%, g {T | (r—m, pr((op,7))) ¢ Seb(t)UrejQ(t)}'
menod(t) A (7, (op,m)) € sely(t) Urejy(t)

The maximal value fosimultsafe,(t) is reached when there are many alive can-
didatesr—m atpr((op, 7)), and all the candidatesare not alive atop,). There
can be at mos2" values forr, for a givent—m, so we get the following upper

Section 5.4 — EQA Algorithm for dSTAs 111

bound:
simultsafe,(t) < 2" - concuiy(t)

We have already seen how to apply rules=0fl) in polynomial time in the
size of A. The node state of the rule is pushed to stédior opening events, and
popped fromY for closing events.

Theorem 4. For every complete dSTA recognizing a canonical language over
¥ x 2¥», one can compute in tim@ (| AJ?) an SRAMM 4, computing the query
@ 4 and using at each event:

o TImgMy,t) =0O((c+1) - |A|2)
e SpacéM ,,t) =O(c-d-|A]|)
with ¢ = concug,, (t), i = simultsafe, (¢), andd = deptht).

Proof. The computation of\1 4 from A consists mainly in building the accessi-
bility relationsacc;; for X € {sel rej}. We can compute these relations fbin
time O(| A|?) according to PropositioB0. These relations are stored in the finite
state control.

Processing an opening event requires more computationsatibbsing one,
as it needs to determine the sufficient events. Given a lalsel: and a current

state(qo, So, Ro) for the partial run of the candidate, we have to considerukesr

of A of the form g, op (e0)m, qi1. For each of these rules, the computation of

beforeClosé(a, v), v1, Sp) can be performed in tim@(|rul*|). Then, the compu-
tation ofuniv.X whereX € {sel rej} can be done in tim&(|stat!|?), by Lemma
8. There are at most: +) such updates to process per event.

The fact that this algorithm is an EQA algorithm implies thatostc candi-
dates are stored at a time. For each candidate, we have ¢dliséonode states of
its ancestors and its current event state, which reqdiréd|. O

5.4.3 Adding Schemas

With respect to sufficiency checking, we can integrate ties@a into the query.
Validation of the document with respect to the schema is dependent task, that
we run in parallel. Given am-ary query@ with a schemalom @) C 7y, we
define the querieQse and Qe With universal schema:

Quelt) :{ Qu) - iftedomQ) oo)~ T

nod(t)” otherwise

Qrej(t) = { Q(t) e N dOfT(Q) don(@rej) = TZ

0 otherwise

112 Chapter 5 — Earliest Query Answering for Streaming Tree Mata

op (a,v):y1

g ——— qerul! q SPah, ¢, erul®
(g0 q) 2, (g1 qp) € rulte

qo 4>CI (@) q € rul @ M q, € rul?
(90, 95) (atkto), (q1,q)) € ruls

inits=e = init® x init? fin"= = (fin x fin®) U (stat} x (staf — fin?))
Figure 5.7: Construction ol from A and B.

Lemma 9. sel, = sek,, and ref, = rej,_.

sel

Proof. Straightforward from definitions.

(1,m) € Sely, iff 7edom,(t)" A V' € Ts. equal(t,t') = 7 € Qselt’)
iff 7€ dom,(t)" AVt € domQ). equal(t,t') = 7€ Q(t')
T e donf(t)" A
(7.m) € rejg,, iff vt' € Tx. equal (t,t') =
V' e complr,t',n). 7 & Quj(t')
T € donf(t)" A
iff vt' € domQ). equal (¢, t') =
vr' e complr,t',n). 7 & Q(t')
(|

For selection detection, the idea is to build an automatgn recognizing
Qsel from the STAsA and B recognizing@ 4 . This automaton will be similar
to the product automaton o and B, but final states will be enriched by all
invalid selections, as introduced in the definitionigg,. Figure5.7 shows how to
obtain the STAAge. Prior to this constructiord and B must be determinized and
completed. For rejection detection, we proceed the sameavatain A, such
that@ 4., = Qrj. The only difference betweetse; and Ay lies in the final states:
fin'el = fin? x fin®,

Lemma 10. L(Ase) = Lo, and L(Arej) = Loy

This way, we can compute the safe states for selection Efith,)) and the
safe states for rejection with(A;j). From an implementation point of view, there
is no need to compute the safe states for rejectioB(efs) and the safe states
for selection ofE(Ayj). Thus, we can run the efficient algorithm presented in
Section5.4.2and compute the same amount of safe states ak(fay, but on
a bigger automaton. We get the following result for our EQ4&oaithm with
schemas.

Section 5.4 — EQA Algorithm for dSTAs 113

Theorem 5. For every complete dSTA recognizing a canonical language over
¥ x 2¥» and every complete dSTA, one can compute in tim@(|A|® - | B|?) an
SRAMM 4 5 computing the querg) 4, 5, whereM 4 g uses for each event:

o TimgMy p,t) =O((c+1)- |AP* - |B|?)
e SpacéM, 5, t) =O(c-d-|A|-|B])
with ¢ = concug,, , (1), i = simultsafe,, (¢), andd = depth).

Proof. The complexity analysis is similar to TheorenThe difference is that we
useAse and Ay instead ofA, and| Ase| and|Awj| are inO(|A| - |B|), and can be
computed with this time complexity. O

5.4.4 Example Run of the Algorithm with Schema

For illustration, let us consider the monadic quégythat selects all nodes without
next sibling. It can be defined in MSO by the formwlay. ns(z, y). The root oft

is selected, and this can be decided when opening it. Witdahgma, membership
T € Qo(t) cannot always be decided at opening time, so the algoritredst®
memorize nodes until, either encountering the openingtevetie next sibling
(for nodesr ¢ Qy(t)) or the closing event of the father (for selected nodes
(Qo(t)). When assuming the DT — (a*b)* andb — ¢, one knows that all
a-nodes except the root have a next sibling in all trees gatigfthe DTD, so
selection ofu nodes be decided early at opening time. ~oodes, selection can
still be decided only later, when closing the parent. We m@rshe schema,,
which corresponds to the DTRu — a*b, b — €}, and choose it as domain of
Qo: domQy) = Sy. We show how the algorithm would behave on this input.

For clarity, we omit node states in the following figures, ak/@ne occurs in
each automaton. Moreover, whenev¥@ccurs in a rule, this means that this rules
exists for¢ € {a,b}. Let A be the dSTA represented in Figuse3(a) and B the
dSTA in Figure5.8(b) We havel)y = Q4 5.

We start by completingl with the sink stat& and B with the sink stat@. By
applying the inference rules in Figube7, we obtain the STAd represented in
Figure5.9(states resulting from completion are omitted for clarifjfie STAA;
only differs on final states.

Then we compute the relatiorec,,, andaccy,,. Figure5.10is an array
of Booleans representing the relatiagcy,,. States(q,q:) are writtengyq
for sake of conciseness. The relatiaccy,, is obtained from this array by re-
placing values in italics by. For instanceaccy,((0,2),(1,2)) holds, but not

aCCHse|((0> 2)7 (17 2))

114 Chapter 5 — Earliest Query Answering for Streaming Tree A#ta

op (£,) opa
op (¢,{x1}) op (¢,0) opb

cla . clb
cl (¢,0) cl (¢,0) e

(a) dSTAA recognizing_q,, . (b) dSTA B recognizing
L(B) = domQy).

] cl (f, {xl})@ cl (67@) @

Figure 5.8: Input dSTAs.

Figure 5.9: The dSTAdse obtained fromA and B (sink states are omitted).

Suppose that we want to compute the safe states at a rocdding(a, () on
our example. This corresponds to computiagesel’s=((a,), v, fin=), where
~ is the only node state iAge. First, we obtain from thec!” rules of A

beforeClosé=((a, (), v, fins!) =
{(0,0),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0), (3,2)}

We denote this seBC. From the previous section, we can look at which states
verify Vqo. accy,(q, @) = qo € BC). These states are the safe states:

safesel’=((a,), v, fin=) = {(0,2), (1,1), (1,2),(2,0),(2,1),(2,2),(3,2)}

Using this processing at each opening event for safe stategliection and rejec-
tion, we obtain the run on the canonical tree representejur€5.11 Here, safe

Section 5.4 — EQA Algorithm for dSTAs 115

QD
8
£
D

]
o
[en]
=
o
[N}
=
o
=
[
=
[}
w
o
w
ur
w
[N}

=
=
[uy

coococoro00coO N
coocorrmooooOo LR
coorrrooOoRRP LN

8
[N eNoNoNoeNoNoNoNo ool
O OO OO OO+
O OO OO OO OoOOHHHH
[eNeoNeNoNoNoNeNeN ==
[eNoNoeNoNoeNoNo N =Ry
QOO OOFRFOORR R
OO OOPRPOO~ROO
O HF OO RPOoOO—OO
R R R R R R R R R

Figure 5.10:acg,, associated t@), andSj.

states for selectiof are those provided by and safe states for rejectiGhare
those provided byl,;. We only represent them as they are the only relevant ones
(safe states for rejection computed Ay, are useless, for instance).

5.4.5 Implementation

We are currently implementing the algorithm described abova project named
EvoXs [GP09. A first step is to have an earliest query answering algorifor
queries defined by dSTAs. Then we would like to implement thadlation of
XPath fragments to dSTAs, in order to have an EQA XPath et@lu&he trans-
lation of XPath fragments to dSTAs is provided in Chajiter

We provide here a more precise and efficient procedure farahgutation of
safe statesniv_X whereX € {selrej} for a dSTAA. We first exhibit some prop-
erties of the function mapping set3 to beforeClos§a, v), v, P), where(a, v)
and~ are fixed.

Lemma 11. For every(a,v) € ¥ x 2=, v € stat!, and P, P, C stat:
beforeCloséa, v), v, PLUP,) = beforeClos&a, v), v, P;)UbeforeCloséu, v, P,)

So we getbeforeClos€a,v),v, P») = U,ep,beforeClos€a,v),v, {q}).
Hence we can precompubeforeClos€(a,v), v, {¢q}) for eacha € ¥, v € stat}
andq € stat!, and reuse it for computinigeforeClosé&(a, v), v,). This prepro-
cessing requires tim@(|X| - |A|?) and spaceé(|X| - |A|?). This could also be
replaced by a computation on-demand, and by keeping in metheresults.

Now we look into more details the properties of the functioampping sets?
to univ_X((a, v),~, P) for fixed (a, v) and~.

116 Chapter 5 — Earliest Query Answering for Streaming Tree Mata

(0,0), So, Fo

7, So, Fo
©.0.5.7 (a,() 0.5 F
- ...

""""’Yv S1, Fy ~¥,S1, F1 .
0,055, 7 (a, () 0.0 81,73 Loosur (b {z}) aoosm

Sl:SQZ{((]’ 2)7 (17 1)7 (17 2)7 (27 0)7 (27 1)7 (27 2)7 (37 2)}

S3:{(07 1)7 (07 2)7 (17 1)7 (17 2)7 (27 0)7 (27 1)7 (27 2)7 (37 1)7 (37 2)}

S4:{(07 0)7 (07 1)7 (07 2)7 (17 1)7 (17 2)7 (27 1)7 (27 2)7 (37 1)7 (37 2)}

FO:{(07 0)7 (07 1)7 (07 2)7 (17 1)7 (17 2)7 (27 1)7 (27 2)7 (37 0)7 (37 1)7 (37 2)}
F1={(0,1),(0,2),(1,0),(1,2),(2,2),(3,0), (3,1), (3,2)}

F2={(0,2),(1,0), (1,2),(2,2), (3,0), (3,1),(3,2)}

F3:{(07 1)7 (07 2)7 (17 1)7 (17 2)7 (27 1)7 (27 2)7 (37 0)7 (37 1), (3, 2)}

F4:{(07 1)7 (07 2)7 (17 0)7 (17 1)7 (17 2)7 (27 0)7 (27 1)7 (27 2), (37 0), (37 1)7 (37 2)}

(b) Sets involved in this run.

Figure 5.11: Run of the algorithm on a tree.

Lemma 12. For every(a,v) € ¥ x 2¥», v € stat', P;, P, C stafl and X €
{sel rej}:

univ-X((a, v),vy, P, U Py) 2 univ-X((a, v), vy, P1) Uuniv-X((a,v),, Ps)

A consequence is that the function mapping gets- univ_-X((a,v),~, P)
is monotonic. Note that in the general casmivX((a,v),y,PL U P) <
univ-X((a, v),~, P1) U univ-X((a,v),7, P»). For instance, in our example,
(0,2) ¢ univrej(ay,0,{(1,2)}) and (0,2) ¢ univrej(ai,0,{(3,2)}), but
(0,2) € univrej(ag, 0,{(1,2),(3,2)}).

Algorithm in Figure5.12 uses these results, and also the fact that, from
Lemmas, univX((a,v),v, P») C beforeClos&a,v),~, P,). Note that if we
choose to store all the computations of safe states (usée ifirstfor loop), this
can use memory of siz@(|X| - |stat!| - |25 |2). However, this can be weakened.

Section 5.5 — Streamability of dSTAs 117

fun univ.X((a,v),v,P)
let safeStates = set.neW]
let beforeCl = UgcpbeforeClosé(a,v),~,{q})
let agenda = beforeCl

in

/I first we set the agenda to what really needs to be computed
for Py C P such that univ.X((a,v),v,P1) is memorized
let U = univ-X((a,v),~, P1)
in
safeStates .addf)
agenda .remove()

// then we perform the needed computations
for ¢ in agenda
is_safe = true
for ¢’ such that accy, (q,q¢')
if ¢ not in beforeCl
is_.safe = false
if is_safe
safeStates .add

return safeStates

Figure 5.12: Algorithm computingniv_X((a, v),~, P).

For instance a good trade-off between memory and time copioimcan be to
store all safe states of all previous siblings of the curlgahch. The reason is
that the safe states at openifgp, 7)) are computed from the safe states at closing
(cl,w-7), which are the same for all siblings (as they are equal toafeestates at
(op, m)). Thus, if two siblings have the same label and the same iaéedaode
state, their safe states are equal.

5.5 Streamability of dSTAs

The EQA algorithm previously described givesaWe procedure for evaluating
queries defined by dSTAs, while keeping only alive candglatememory. As
a consequence, dSTAs are a streamable query class wherarteesisallow, i.e.
when there is a bound on the depth of valid trees. Qft;, be the class of
gueries of fixed arity: where all expressionse Q are composed of two dSTAs
A,B definingQ@ 4 5, with the semantic restriction that schenig#3) only contains
trees of depth at most

Theorem 6. For everyd € N, the classQds1asiS m-streamable for alln € Nj.

Proof. The EQA algorithm requires complete dSTASs, so a first stepi®mplete
AandB. This can be done in tim@(|%|- 2" - |stat!| - [stat!| + |rul?|) for A, and
similarly for B. Asn is fixed, thisis a PIME procedure. Then the precomputation

118 Chapter 5 — Earliest Query Answering for Streaming Tree Mata

step of the EQA algorithm is in ®ME, so we can find a polynomiak, for the
computation of SRAMs\ 4 5 computing® 4 5.

If we suppose that the concurrency ofis less than a givenn, then
concup, ,(t) + simultsafg,, () < (2" + 1) - m, as we know that
simultsafg,, (f) < 2" - concu, ,(t). Hence from Theorer, the time used
per eventisirO((2"+1)-m-|AJ*-|B|?), and we can find a polynomia} bound-
ing this, asn is fixed. The space complexity is ®(m - deptht) - |A| - |B|), and
deptht) is bounded byl. Hence a polynomial, bounding the space complexity
exists. O

However dSTAs allow to define queries with unbounded corauny, so they
are notco-streamable.

Proposition 21. For everyd > 2, the classQis a.iS Notoo-streamable.

Proof. We can for instance define a dSFAfor the query selecting all children of
the root, if the last one is labeled hy For this query and any value éf the tree
t with k + 2 children is such thatoncurnod, , (t) > k. By Propositiord, Qdsas
is notoo-streamable for shallow trees containing trees of depth2. O

5.6 Conclusion

In this chapter, we have seen that dSTAs enjoy good streditpadyoperties, by
proposing an EQA algorithm using low buffering (close toioyatl) while still be-
ing in polynomial. More generally, EQA is time consuming farmerous query
classes. We believe that dSTAs are the good model for effiZien stream pro-
cessing, and conjecture that a query class-streamable for alln € N iff there

is a PriME translation to dSTAs. In Chaptér we provide such a translation for
a fragment of XPath, thus proving its-streamability for allm € N,. Finding
oo-streamable classes of dSTAs-defined queries by syntaxtisemantic restric-
tions is an open issue.

Processing XiL streams often implies a tradeoff between time and space com-
plexity. In earliest query answering algorithms, the ptjois given to a minimal
space consumption. In the future, we plan to validate ouwrdalgm experimen-
tally. For some queries, significant improvements are el@geon space con-
sumption. In this chapter we provided some details on effta®@mputation of
safe states. Some further work is also planned, to get as®udaita structure for
the set of alive candidates to be buffered. Another chadleado avoid the com-
pletion of the input dSTAg! and B, as the completeness was always assumed, but
the completion requires time (|| - 2" - [stat!| - |stat,|*) for A, and similarly

Section 5.6 — Conclusion 119

for B. It will also be interesting to distinguish which querieg a&ifficiently pro-
cessed. In Chaptét, we give a procedure to detect some of these queries, namely
those having bounded delay and concurrency.

Another future work is to investigate how the EQA algorithambe extended.
We propose three extensions in the sequel. The first possibdasion is on the
guery class. We studied queries defined by dSTAs, but is iiplesto adapt
the algorithm for deterministic pushdown automata? Thesrsereasonable, as
STAs are a reformulation of visibly pushdown automata,pieshdown automata
where the letter gives the action (push or pop). Without rdeitésm, we can-
not build a BIME EQA algorithm (by Propositiot8), and determinism, together
with our representation through canonical languages, wareial in our con-
struction. The second extension is to consider other strest and for instance
directed acyclic graphs. These structures models fornostaML documents
with ID/IDREF links. The third extension could be on the property compingd
the algorithm. Here, the property is the safety for selectind rejection. But the
core of the algorithm consists in putting the interestirfgimation from the con-
text (the states of ancestors, typically) into the curréaties so that the algorithm
can use it progressively.

120 Chapter 5 — Earliest Query Answering for Streaming Tree A#ta

Chapter 6

Streamable Fragments of Forward
XPath

Contents
6.1 Introduction 121
6.2 m-Streamable Fragments of Forward XPath 124
6.2.1 Filter Terms with Variables 124
6.2.2 k-Downward XPath 125
6.2.3 Deciding Membership to-Downward XPath. 126
6.2.4 Translating-Downward XPathto dSTAs 127
6.2.5 k-Downward XPath isn-streamable for everyn € Ny 138
6.3 Beyondk-Downward XPath: Prospective Ideas. 139
6.3.1 oo-Streamable Fragments of Forward XPath. . . . 139
6.3.2 Adding Horizontal Axes. 141
6.4 Conclusion 143

6.1 Introduction

Forward XPath is not streamable, even if restricted to doardvaxes, as we have
seen in Chapte3 (Corollary 3). In this chapter, we distinguish fragments of For-
ward XPath that are:-streamability for allm € Ny. A streaming algorithm is
obtained by compilation to dSTAs inTRME. Here, we overcome the difficulty
that Vardi and Wolper’'s automata construction for formufshe modal logic
LTL [VW94] and thus for XPathl{S08 may produce non-deterministic tree au-
tomata of exponential size. In contrast, our constructiefdg deterministic tree
automata of polynomial size.

This chapter illustrates that dSTAs guide us towards relekestrictions on

122 Chapter 6 — Streamable Fragments of Forward XPath

Forward XPath. We conjecture that most of our restrictioresiadeed neces-
sary for streamability and thus independent of our autorappaoach. While our
results can be understood as a proof of concept, they do matoyestitute an
exhaustive treatment with narrow upper and lower bounds.

Our translation will be by induction on the structure of paitpressions. For
simplicity, we consider the fragment of Forward XPath wittwehward axe<h
andch® only. Our construction requires the following syntacticla®mantic re-
strictions (based on the schema), which define the queruyek-Downward
XPath fork € N.

First of all, the usage of intersections needs to be limiguch arise when
translating conjunctions in path expressions. Allowinguabounded number of
conjunctions would correspond to intersecting an unbodmdenber of automata,
and thus require exponential time. As we needrav translation, we limit the
number of branches éfDownward XPath expressions to

Second, non-determinism must be avoided when translagegethdant axis
ch®, since otherwise, simultaneous treatments of all possiatehes may overlap.
Suppose for instance, that we want to construct a dSTA fortl @gpression
ch*::x[F] from a dSTA A for filter F. Then, for each descendant of the root,
we have to rundg. This can lead to an unbounded number of simultaneous runs
of Ar to be handled by, so thatA cannot be of polynomial size. In order to
avoid such overlaps, we require that all steps with desceralds are guarded
by a node label, i.e., they must have the fari::a[F]. Furthermore, we impose
the semantic restriction, that no tree satisfying the seheray contain nested
nodes. This way, there exists at most erneode per branch of every valid tree,
so that we can check them by independent rungdobn all subtrees rooted at
a-nodes. Automatoni starts by looking for am-node, and once such a node is
found, it runs the automatoAdr in order to check whether this-node verifies
F. When closing thei-node, the automaton checks whether the rumefvas
successful, and searches for anothr@ode on another branch.if: failed.

Based on these restrictions, we obtain a translatidgr@bwnward XPath ex-
pressions to equivalent dSTAs imie. Combined with the earliest query ans-
wering (EQA) algorithm for dSTAs of Chapté& this translation yields an EQA
algorithm fork-Downward XPath and proves-streamability for alln € Ny, but
not oco-streamable, sincé-Downward XPath contains queries with unbounded
concurrency.

Even thought-Downward XPath is small in that it supports only downward
axes, it is still very expressive, as it allows for conjunos, disjunctions, nega-
tions, and supports-ary queries. The restrictions #fDownward XPath are nat-
ural, in that they avoid overlapping tests of the same filberdifferent matches.
We conjecture that our approach can be extended to furtierax that removing
some of these other restrictions would lead to non-stredityaln the last section

Section 6.1 — Introduction 123

of this chapter, we discuss some opportunities for exteissamd improvements.
First, we present a further restriction érDownward XPath, that should imply
oo-streamability, and second, we discuss a generalizatitmivarizontal axes.

Related work The idea of translating XPath expressions into automatstfea-
ming XPath evaluation has been proposed for a long timendll&nd Franklin
[AFOQ] proposed a translation of non-branching downward pathresgions to
word automata on the language of branches. Green e6BMOS03 GGM*04]
also use this kind of translation, while allowing branchegpressions, and using
a stack during the evaluation.

Gupta and SuciuGS03h propose the use of deterministic pushdown au-
tomata, and come up with an algorithm that is closer to oursgeims of com-
plexity, the algorithm by Gupta and Suciu requires expaaétime in the size of
the query, as determinization is needed. Only needed phtfte @utomaton are
determinized, though, as the algorithm computes it lazireover, their frag-
ment subsumek-Downward XPath, as it mainly consists in CoreXPath 1.0hwit
downward axes and data joins.

Compact representations of automata were also invedtigatehe context
of XPath streaming evaluation. Transducer networks ark sampact represen-
tations. They consist in a network of pushdown transdudkeg,are pushdown
automata sending messages to other automata. Translatiemgeral XPath frag-
ments to transducer networks were investigated. Peng aa&he PC03J focus
on XPath with downward axes, while OltearDI{074 translates all of Forward
XPath. Benedikt and Jeffrey\Bp07 study the filtering case for a fragment of
XPath where matching can be decided at opening (resp. glosme. Benedikt,
Jeffrey and Ley-Wild BJLWOS§ prove that this translation can be done in linear
space and time for a fragment using backward guarded movese lenerally,
all the aforementioned translations of XPath fragmentsaiastducer networks are
in PTIME and yield time-efficient algorithms. However, transducetworks are
not adapted to static analysis, and all these algorithnre steeless candidates
in some cases. IBJLWO0§), Benedikt, Jeffrey and Ley-Wild propose to replace
transducer networks by binary decision diagrams (BDBxy$6]), as these can
also be used as compact data structures for automata. dtianslof transducer
networks and BDDs to standard automata are in exponential 8o that we can-
not use these representations to getrave EQA algorithm using the algorithm
for dSTAs in Chapteb.

XPath is a navigational language, whose similarities witbdal logics has
been extensively studied.ip06]. LTL, the Linear Temporal Logic, is a modal
logic defining properties over words, using modality oparmaiNext Previous
Until andSince A variant of LTL for tree structures, called Tk, has been pro-

124 Chapter 6 — Streamable Fragments of Forward XPath

posed by Schlingloff$ch92, and XPath expressions can be translated in linear
time to equivalent Tkee formulas Mar054.

Vardi and WolperYW94] propose a translation of LTL formulas to automata
in exponential time, for infinite words. This constructioancbe easily adapted
for TLyee OVer finite trees. Libkin and Sirangela$08 propose such a transla-
tion from Tlgee formulas into query automatdNE03, i.e. tree automata using
word automata to recognize the languages of labels of @mldifhis translation
also uses exponential time. Calvanese et &IDGLV09] proved recently that
Regular XPath can also be translated in exponential timemnedeterministic tree
automata (standard automata of@mns encodings of trees). This time, the au-
thors do not use modal logics as intermediate query langiage@lternating tree
automata.

CoreXPath 1.0 has the expressiveness as the two-variablgwmdnt of FO
over trees MdROY, and is thus strictly less expressive than MSO and tree au-
tomata. Using the standard techniques for translating M&@nilas to tree
automata Don7Q TW68] leads to algorithms with non-elementary complexity
[KMVO7, Cla0§.

6.2 m-Streamable Fragments of Forward XPath

We start this chapter by introducing-streamable XPath fragments, far e Nj.
We definek-Downward XPath by imposing semantic and syntactic regine
simultaneously. The expressionsieDownward XPath are pairs of definitions
of n-ary queries and schemas. Schemas are defined by dSTAs anesdue
filters terms withn variables. Using filter terms with variables instead of Famv
XPath expressions is not essential, but has the advantdggirgf more general
while simplifying algorithms. In the remainder of the chaptwe assume that
X > 2.

6.2.1 Filter Terms with Variables

Let D = {ch*,ch} be the set of axis anl a set of variables. Filter terms are
ranked trees with signaturd = {and not true, /,x} U D U X UV as below,
whered € D, € X U {x} andx € V.

T == andTy,T) | not(T) | true | /(T) | d(T) | «T) | «

The only additional restriction we assume, is that the dpeyacan appear in root
position only. Terms of the formi(7") correspond to root filters and all others to
ordinary filters. Given a treé and a variable assignment: V — nod(t), we
define a set valued semanti&s], ,, C nod(¢) for all filter terms in Figures.1

Section 6.2 +n-Streamable Fragments of Forward XPath 125

[/TTe = {e} N [T]ep [A(T)]tp = {7 | 37" € [T]sp- (7, 7') € d'}
[z]e={n(z)} (1)) = {7 | £ € {x,lab’(7)}} N [T]s,
[true];,, = nod(t) [and(T1, T5)]e = [T1]e N [12] 1

[not(T)]:,u = nod(t) — 1T,

Figure 6.1: Semantics of filter terms.

T([self::¢]) = L(true) T([d::4]) = d(£(true))

T([self::t F]) = ((Z(F))) T([d::l F]) = d(L(Z(F)))
T([self:l/P]) = L(Z([P])) F([d::4/P]) = d(¢(Z([P])))
T([not(F)]) = not(T(F)) T([F1 and F3)) = and(T(F}), T(Fy))
[z]) == T(/P) = /(Z([P]))

Figure 6.2: Filters and rooted paths as filter terms, whlege self. We assume
the selection position of rooted paths was marked at befmdby a variabléz|.

In Figure6.2, we map XPath filters and rooted paths using gsedf, ch, ch*}
to filter terms. The translation of filter§(F) is straightforward. Similarly, we
translate rooted paths to filter termsT(R(z)) with a single free variable. We
annotate this variable before translationRdy using the extra filtefz]. The
translation preserves the semantics: For filters, we have

[[F]]gilter = [[‘Z(F)]]tu

for all variable assignmenjs For root filtersR, wherex annotates the selection
position, we have

[R(@)]fner = {(x) | [T(R(2))]es # 0}

6.2.2 k-Downward XPath

Let thewidth of a termT" be the number of its leaves. This corresponds to the
maximum number of conjunctions to be tested simultaneolMgéyhave to bound
this number for our automata constructions (conditidrelow).

Descendant axis are a source of trouble since they are mghigeterministic.
The query defined by(ch*(x(andz, ch*(a))))) for instance has unbounded con-
currency, since the selectioni@hodes in trees(b(b(. .. (a) .. .))) can be decided
only when encountering theleaf. This problem is solved by three restrictions:

126 Chapter 6 — Streamable Fragments of Forward XPath

All descendant steps must be guarded by a labgl,afe., they must all be of the
form ch*(a(7")) (condition3). We impose a semantic restriction on all trees-
ceptable by the schema, stating that no furtheode may be encountered below
ana-node int (condition4). All filters must start at the root, in order to avoid any
implicit descending step (conditia2). Finally, we only consider shallow trees
(condition5).

Let £ € N. We definek-Downward XPathas the query class containing all
pairs(T(x1,...,x,), B) of termsT with a sequence of variables, . . ., x, and
dSTAs B with signatureX, that satisfy the following conditions:

1. the width ofT" is bounded by, i.e.,T" has at most leaves.
2. T starts at the root, i.€Z) matches some terff(7”).
3. if ch*(T") is a subterm of" thenT” matches some tera(7").

4. if ch*(a(7T")) is a subterm of " then:

Vt € L(B).Vr, " €lab,(t). 7 # 7' = —(ch*)! (7, 7)

5. the depth of the valid treesc L(B) is bounded by some constant.

6.2.3 Deciding Membership tok-Downward XPath

A procedure for testing in BME whether a pair(T(zy,...,z,),B) is in
k-Downward XPath can be obtained. We first characterize S&émgnizing trees
of bounded depth, in order to decide condit®n

Lemma 13. For fixedn, it can be decided ifPTIME whether an STA3 accepts
trees of bounded depth, i.e., whethigre N. t € L(B) = deptht) < d.

Proof. To decide whether trees it B) are of bounded depth, we look for vertical
loops. Letdeepbe the relation oristat?)* defined by:

3t € Ts,. Ir € runs?(¢). (=
deefiqi. ¢1, ¢2. ¢) < { q = r(pr((op,m))) A
g2 = r(pr((op,7'))) A

,7') € cht(t).
1=

g5 = r((cl, 7))

The relationdeepcan be computed by the Datalog program given by inference
rules in Figure6.3. We use a smooth notation: rules in hypothesis of inference
schemas have to be rulesBf andacc.,. is the accessibility relation d8 through
hedges on alphabét, as defined in SectioB.4.2 The first inference schema
handles the case wheré is a child ofr. The second one is the recursive case

Section 6.2 +n-Streamable Fragments of Forward XPath 127

op a1 acCy op biy2 acCy clbya , 8CCHy clay
41 a3 a2 44 4ds 4y de a4

deefiqi, g1, 42, ¢5).

op a:y1 acCCry, , 8CCxy clavy:

q q3 qa qy 6 a1 02, ¢ € Stat
deefdqi, ¢, ¢2, ¢5) - deefqs, ¢, g2, G5).

Figure 6.3: Inference rules for the definitionadep

for deeper depths. We call a stagmductiveif it can be reached by an initial
state, and a final state can be reached from(iB3) is not of bounded depth iff we
can loop betweell, ¢;) and(q1, ¢)) itself, i.e. iff there exists productive states
¢, q; € staff such thatleefqi, ¢}, q1, ¢}). This can be checked inTiRvE. O

Proposition 22. Given a ternil’(z4, ..., x,,) and a dSTAB over, it is decidable
in PTIME depending onT|, |B|, |X|, ¥ andn whether(T'(z4,...,z,), B) isin
k-Downward XPath.

Proof. Conditions1 to 3 are syntactic, and can be checked miNgE in |7T|.
Condition 5 can be checked in #ME in |B| by Lemmal13. For condi-
tion 4, let D, be a dSTA accepting trees having twenodes in a branch, i.e.:
L(D,) = {t € T | 3Ir,« € lab,. ch(x,7')}. Then, for every label
a € ¥ such thatch®(7”) is a subterm off” for some7”, we have to check that
L(B)N L(D,) = 0. This can be done in tim@(|T’| - | B| - |X]). O

6.2.4 Translatingk-Downward XPath to dSTAs

For fixed k€N, we propose a new TME translation of expressions
(T(z1,...,2,),B) of k-Downward XPath into dSTAsS(A, B) such that
(T'(xy,...,x,), B) and (A, B) both recognize the same quepy, 5. The dSTA
B defining the schema does not need translation, and we onlpiterms
T(zy,...,z,) iInto dSTAs A. The translation is correct and inTRE if B is
such tha{7'(z4, ..., x,), B) is in k-Downward XPath.

For clarity, we first provide a translation of expressions4Downward XPath
to dSTAs such that the target dSTAs accept non-canoniczd:tnariables iV,
may not appear, or appear several times in those trees. iE@uitpose, we extend
canonical annotations. For a tree 7. and a function’: nod(t) — 2¥», let txv
be the tree witidon(tkv) = dom(t) and for all nodesr € nod(t), lab™ (7) =
(lab’(7), v(m)). The semantics of filter terms is extended in the natural \wgy,
changing the semantics of variables V,: [z]:, = {m € nod(t) | = € v(m)}.

128 Chapter 6 — Streamable Fragments of Forward XPath

Moreover, dSTAs resulting from the translation are suchtthere exists a run
on every tree ovex x 2+, STAs having these property are calfggktudo-complete
in the sequel.

Lemma 14. There exists > 0 such that for every expressio®’ (x4, ..., z,), B)

of k-Downward XPath and subterffi of 77, a pseudo-complete dSTHAover sig-
naturey x 2¥» with at most(3 - |T7'|)"9"(") event and node states can be computed
in time at most: - (|rul| - (5 - |X])“9N(T) 1 |T|) such that for every treee L(B)
andv: nodt) — 2V

tiv € L(A) iff € € [T].

Proof. The proof is by induction on the structure of filter terms. ko {op, cl}
anda € %, we writerul, = {¢ = ¢ € rul*}. In the following, we
assume that dSTAs are stored by a data structure for whictawéred constants
¢; (1 <1 <7)such that:

(i). for every pair of pseudo-complete dSTAs;, A;), a pseudo-complete
dSTA for A; N A, with |stat' | - |stat'2| event stategdstat)! | - [stat?| node
states and such thatil | = 3 iy aes [TUIZL]-[rul 22 | can be computed
intimec, - [rul’|.

(ii). for every dSTAA, the dSTAA’ obtained by swapping the final states4f
(i.e.,fin" = stat! — fin") can be obtained in constant timg!

(iii). for every dSTAA, the set of ruled, = {¢ RN, e rulh | ¢ €

init} can be computed in timg - |14].

(iv). for every dSTAA and every(a,v,v) € X x 2¥» x stat}, the set of closing
cl (a,v):y

rulesCy = {q1 —— ¢, € rul"} can be computed in timg, - |C4].

(v). for every dSTAA and symbok € 3, we can build in constant timeg the
dSTA A’ obtained fromA by removing all rules using, i.e. rult’ = rul* —

{q1 M @2 € ruIA}.Z

cl (a,v):y
- =

(vi). for every dSTAA and symbok € ¥, the set of ruleR, = {¢
¢ € rul} can be computed in time - |Ry4|.

1This can be achieved, for instance, with one flag for the aatom indicating whether the set
of final states has to be interpreted as its complement.
2We assume in the sequel thgt> 2.

Section 6.2 +n-Streamable Fragments of Forward XPath 129

(vii). for every dSTAA and statesy, ¢1, ¢2, 7, the following sequence of opera-
tions can be performed in constant time addgq, to stat!, add~ to stat’,
setinit® to {¢, }, and sefin® to {¢,}.

Let us now prove the invariant by induction on the structuré’ owith c = 5 +

Co + 3+ ¢4 + ¢5 + cg + 3 - ¢7. The time needed for building a rule (given all its
parameters) and adding it to the set of rules of a dSTA is ssgrpto bel in the
following.

CaseT = and(7},T»). Let A; be the pseudo-complete dSTA for and A, the
pseudo-complete dSTA fad,. Let A be the product of the two, such
that pairs of final states are accepting, and pairs of ingiates are ini-
tial. A recognizes the correct tree language, as for all ttees.(B) and
v:nod(t) — 2V

tiv € L(A) < txv e L(A)) N txv € L(A)
& ee [Ny N €€ [To]en by induction hypothesis
& e€ [T]ts

A is deterministic and pseudo-complete sineand A, are deterministic
and pseudo-complete. The number of event statekisf

|stat| |stat!t| - |stat,2|

(3 |Ty|)Watn(TL) . (3 . | Tp|)Wdt(72) - py induction hypothesis
(3 . ‘T|>Width(T1) . (3 . |T‘)Width(Tg)

(3 - || WdtnTs) rwin(T2)
(

3. ‘ T |)Width(T)

and similarly for node states. Building consists in building4; and A,
(which can be done in time- (Jrult| - (5 | %)™ |7y]) + ¢ (Jrul2| -
(5 - |S])Wdh(Z2) 4 |T3|) by induction hypothesis) and thenfrom these two
dSTAs, which can be done in timg - |rul’'| by condition(i). Hence the
total time for buildingA is:

c-(Jrul|-(5-|) T 4|73 |)
+ c-(|rul2 |- (5-| S|)WAhT2) | T |) + ¢-[rul?|
=0+ C(|T1| + |T2|) + cl-\ru|A|

VAVARVANI VAN |

with
O = c(|rul]-(5-[x])wancr)
+ ¢ ([rul2]- (53]t
< e (Jrul?] 4 [rul?2))- (5|])width(T) -1 aswidth(T)—l > width(T;)
< ol \fU|A1\+|ru|A2\ (5- ‘ED idth(7)—
< clrul?| 4. \2\ (5 |33)width(T cf below

130 Chapter 6 — Streamable Fragments of Forward XPath

For the last inequality, we know from conditio(i) that |rul| =
> acioparacs ITUIAL] - [rul2 . By grouping by actions and letters, we get:

A A
[l At | rul42] [rul 41 | [rul 42| _ Xaciopd.aes Mlaul+rula
A - A A - A A
[rul | Zae{op,c|},aez"’Ula,laHrUIa-,Qa Zae{op,cl},aez‘rUIO‘}“HmIa?“
A A
Z |rUIo¢,1a|+‘rUIa,2a < 4.‘2‘
— ac{op,cl}aex ‘ru|2"1a‘,‘ru|2"2a| —

Note that] ruI§}a| >0 and|ru|§?a| > (0 asA is pseudo-complete. Finally, the
total time for computing4 is:

O + c(|Th] + [T3]) + cr-rul?|
<O+ ¢|T| + cr-|rul?| as|T|=|Ty|+|Tz|+1
< c-|rul?|-4-|2|-(5- |E|)W‘d”‘(T)‘ + ¢|T| + ¢;-|rul?|
< e ([rul?]-((5+[S])WMAD=L (4 |53]) 4 <) 4 |T))
< e ([rul?]-((5+[S])WMADL (4 |5] 4 <)) 4 |T))
< e (Jrul?|-((5:[S| =15.53[) + | T) as? <2< |3
< e (|rul?]-(5:|])@ 4 |T7])

CaseT = not(7"). Let A’ be the pseudo-complete dSTA built fof. Let A be
the STA obtained fromd’ by swapping the final states, i.e.:
stat! = stat init* = init?’ rult = rul?
stat! = stat! fin! = stat)’ — fin’"
A’ is deterministic and pseudo-complete, so we get:
tv € L(A) & tiw¢ L(A) " ¢ [T, & celll.
The number of states of is:

stat!| = [stat’| (3-|T"|)Wh(T) by induction hypothesis
(3 X |T‘)Width(T')
(3 X |T‘)Width(T)

VAIVANIVAN

and similarly for|stat!|. By induction hypothesis, building’ can be done
intime ¢ - (Jrul®’| - (5 - |S|)WINT) 4 |77]). By condition(ii), the time for
building A from A’ is bounded by, so the total time for building! is at

most:
- ([rul®| - (5« [V 1 T7)) + ¢
= - (‘I’U|A| . (5 |Z|)Wldth (T") + |T/D + ¢y
= c-(Jrul?| - (5 [Z))WENTD) L TY)) + ¢, aswidth(T) = width(T”)
< e (rulf] - (5- [S)YEND) 4T £ e ase > o
< e (Jrult] - (5 [S)WEnT) 477 4+ 1)
< c-(rul?]- (5 - |Z)VENT) 4 7)) as|T| = |T'|+1

Section 6.2 +n-Streamable Fragments of Forward XPath 131

CaseT = true. As [true],, = nod(t), A is universal, and we can build as
follows:

ace¥ vCV, ac{opcl}
1a(a,v):

stat! = stat! = init? = fin® = {1} . "
1 € rul

Obviously, |sta!| = |stat!| < (3 - |T|)T), Building A requires time
at mostc; for setting the states (by conditigwii)), plus time|rul?| for the
rules, so a total time of:

. |ru|A| +cr

(Jrul? + 1) asc > ¢z
([rutf - (5 - X[1)

([rul] - (5 - [X[)"e 4|71

|ru|A| + c7

VANVANVANRVAN
o a o o

CaseT = /(1"). By definition,e € [T];, < € € [T"]:, so we can keep the
automaton fof”.

CaseT = ch(7”). Let A’ be the automaton built fdf’. The automato for T
has to launchd’ when opening each child of the root. Here we need three
additional event statestat! = stat)’ w {start 0, 1}: startis only used as
initial state, to detectop, ¢), while 0 and1 are used between the children
of the root, to propagate the detection of matchingit = {start} and
fin® = {1}. We also need two new node states, in order to pass informatio
about matchings through children of the rostiat! = {0, 1}. We detect the
last event(cl, ¢) by the fact that we close from an event statgin1}, if
the root has children. Otherwise, we close in statso the run will not be
accepting. We define the rules afby the following inference schemas:

ae¥ vCV, opening the root:
start 499, move to0
g U eulh g einitt be{0,1} opening a child:
a,v): b i !
) op (a,v) 0 start testing/’
¢ S, g, € rul’
PRCRIE run test of7”
G — G2
cl (a,v):y Al inA’
g =20 e rul g2 & fin .
, op(av)y % ! e initd »€{0,1} failure of T:
G ——— @ e % no new match

cl (av): b
G ———b

132

Chapter 6 — Streamable Fragments of Forward XPath

I V)t / . !/
7 g, g € rult ¢ € fin?

»€{0,1} success of”:

/ op (a’y);'\/ / Al / InItA/
n———nem | .Eh © move tol
@ cl (a,v): 1
aeX vCV, b e {0,1} _
b ol (a,0):0) closing the root
—_—

A is deterministic. The fact that all axes Th are downwards permits to
decide, when closing a child, whether this child matchesBy a left-to-
right induction on the children of the root 6% v, we can prove that the run
r of Aontx*wv assignd to (cl, 7) if there is an accepting run of on a child

j (with 1 < j < j) of ¢, and0 otherwise. As this Boolean is kept when
closing the root, and is set toif there is no child, we have:

a(ty,...,tg)xv e L(A) & N <i<k.txy € L(A)

"D g1 <i<koee [T,
& €€ [T]w

wherey; is the restriction of to nodes of;. Moreover, we just introduced
three event states:

|stat!| = |stat)’| + 3 (3-|T"|)Weth(T) + 3 by induction hypothesis
(3 . |Tl|)Width(T) +3

(3 . (|T’| + 1))width(T)

(3 . |T‘)Width(T)

VARVANVANIVA

and we only introduced two node states, which is even lowetedms of
time cost, we have to prove that every new rule is built in tamistime.
This is straightforward for the; rules operating at the root. By condition
(i), thens, rules for opening a child are built in timg- n,. For thej-th rule
among thesey, rules, we can computg; rules with corresponding labels
and node states in timg - p;, according to conditiofiv). We include inc,
the cost for testing whether the target state is final. Mogedahe time for
adding the new states &tat! andstat!, and setting initial and final states
is bounded by3 - ¢;, according to conditiorfvii). Let © be the time for
computingA’ and for setting initial and final states:

O = ¢ ([rul?|-(5-]2|)VeT) 4 |T'|) 4+ 3-¢; by induction hyp.
< e (rul? (5 B)MENT) 4T 4 1) as3e; < ¢
< e (Jrul®) (5[SV 4 |7)) as|T|=[T"|+1
< e (Jrul?]- (5] D)W 1 |T7)) aswidth(7") = width(T")

Section 6.2 +n-Streamable Fragments of Forward XPath 133

The total time for buildingA is:

O+ni+cz nat D cjcp, Ca Dy
=0+mn +C3'n2+c4'21§j§n2pj

<O+ (cstea) (g +ng+ Zlgjgng P;)
<O+c- (TLl + ng + Zlgquw pj) ascs +c4 <c

< c.(‘ruw|.(5.|Z|)width(T) + \T| +ny +ny + lejgm pj) cf above
< c([rul? |- (5|)W) 4y 4y + Z1gjgn2 p; + 7))

< e ((rul [+ ny 4 na 4 3012, 27) (5 ST 4 |7))

< c-(|rul?]- (5] 4 |7) cf below

The last inequality holds becaugal”| = |rul?'| + n; +ny + D i<i<ny Pi-

CaseT = ch*(T"). By condition3, 7" = a(T") for somea € X and filter term
T'. Let A’ be the pseudo-complete dSTA constructediforWe define the
pseudo-complete dSTA for T" as follows:

stat! = stat!’ w {0, 1} init* = {0}
staf! = stat” w {0} fin* = {1}

In event staté), automatond searches for an-node matching’, while in
event staté it has found such a node. Node sthtaarks the curreni-node
that is tested. Node staies used elsewhere except belowmodes. At every
time point there is at most onenode to be considered, by conditidn

beX—{a} vCV, «ac{opcl} .
a (byv):0 wait for a-node
0 ———0

g 2O el g € init?

0 op (a,v):y
- {2

find a-node: start testin@”

be X —{a} Q1MQQ6rU|A,

a (byv)y
G —— (2

run test of7”

g L el gy o fin?
cl (a,v)y
—_% O

failure of T’: restart
1

I (a,v): /

cl (a,v)y
—_% 1

¢ € fin?

success of”
1

134

Chapter 6 — Streamable Fragments of Forward XPath

be¥X vCV, aec{opcl} _
a (by):0 filter T' successful
1 ——1

Now one can show how to construct a runfor all trees verifying con-
dition 4 such that € [, and vice versa, if there exists a successful run
of A on some tree « v verifying condition4 thene € [T7;,,.

One reason for which this works is thadt is pseudo-complete, so that the
run for 77 can always be continued. No matchwotan be missed, since
no node above is labeled bya (condition4). The only reason to move
into a state different fron® before opening the-node is anothet-node

on the left. Either the run of” there succeeds, and the automaton goes
into the universal state, or else, it finishes but fails, and returns back into
state0, so that new:-nodes can be tested. Automatédis deterministic, by
determinism ofA’ and the inference schemas defining its rules. Moreover,
A is pseudo-complete by construction. We obtain the follgwinmber of
states:

sta!| = [stag’| +2 < (3 [T/ 4 9 = (3. [T/ 42
< (3 . |T‘)Width(T)

Istat!| = |statd’ | + 1 < (3 - |T7[)WENT) 4 1 = (3. |T7|)Wdth(T) 4 1
S (3 . |T|)Width(T)

The time cost for buildingd can be decomposed as follows. Each of the
ny rules waiting for aru-node, or propagating that filt@f is successful, is
generated in constant time. From condit{@i) , then, rules used when an
a-node is found can be built in tim& - n,. The rules for testing” are
constructed in times, according to conditiorfiv). Thens rules used after

a failure or success df’ are generated in time; - n3, by condition(vi).
Finally, the time needed for settirsgat’, stat', init* andfin” is bounded
by 2 - ¢7, by condition(vii). Let © be the time for buildingd’ plus the time
needed for settingtat!, stat', init* andfin’:

O = c-(Jrul?|-(5-|S|)WINT) 4| T7|) +2.¢; by induction hypothesis
< e (|rul | (54 BMENT) 4T 41) as2-er < ¢
< e (Jrul®) (5[SV 4 |7)) as|T'| = [T"| +2
< e (Jrul?]- (5] D)W 1 |T7)) aswidth(7T") = width(7")

Section 6.2 +n-Streamable Fragments of Forward XPath 135

The overall time cost for computing is:

@+n1+03-n2+c5+06-n3
< O + (03 + c5 + 06) . (n1 + no + ng) asni+cs; < ny-cs
<O+c-(ny+ns+n3) ascs+cs+cg<c
¢ (Jrul|-(5-| S WD)) 4y + g +|T]) cf above
< c- ((Jrul?’| 4 ny + ng + ng)-(5-| S)WNT) 4 |7))
c - (Jrul|-(5-] %))Watn) 7)) cf below

Here we supposed that + ¢; < ny - ¢5, Which is true asy; = (|X| —
1) - 271 > 2 andcs > 2. The number of rules ofl is exactly: |ru|A\ =
Irul?’| + ny + ny + ng, which justifies the last inequality.

CaseT = ((T"). Let A’ be the automaton built for”. If ¢ = x then we can take
A = A'. Otherwise/ = a € . We can buildA from A’ by adding one
event staté® and one node state The event staté is a sink state. When
opening the rootd checks whether it is labeled ly If this is the caseA
performs the run ofl” until the end. Otherwised goes to the sink state

stat! = sta)’ w {start 0} init! = {start}
stat! = stat’’ v {0} fin! = fin?
g 20, (@07 g € rul?’ q1 € init?

op (a,0)7y opening aru-root
start ——— Q2

bEE—{a} vCV,

start (b,0):0 0 opening a-root, withb # a
a (byv)y A
beX — = rul
= q1a b 42 € test7”
G — @
beX vCV, _ _ .
(b0): sink state) is universal

0 L0

The number of states of is:

|sta§4\ |sta§‘ | +2< (|TIDWIdth (T") 19 = (. |T/Dwidth(T) +9
< (3 |T‘)Wldth

|sta¢]4\ = |sta1;j"| +1<(3- |T/Dvwdth (T) 41 = (3- |T/Dwidth(T) +1
S(|T‘)Wldth T)

In order to buildA, we have to go through the rules of A’ starting from
an initial state. This can be done in timg n;, according to conditiofiii) .

136

Chapter 6 — Streamable Fragments of Forward XPath

Copying rules ofA’ has no cost, as we transforito A. Then, rules for
opening a-node and for the sink stafecan be built in time,. The event,
node, initial and final states can be set in titne; by condition(vii). Let©

be the time needed to buildl and to set event, node, initial and final states:

O = c-(Jrul|-(5:|%))WenT) 4|7y + 2 ¢; by induction hypothesis
< e (Jrul?]- (5| S WANT) 4| T7| 4 1) as2-c; <c
< e (rul|- (5.5 7)) as|T| = [T"|+1
< e (Jrul?]- (5] BV 1 |T7)) aswidth(7")=width(7")

The overall time cost for buildingl is thus at most:

© +c3-np+ no

@+Cg' (n1+n2)

©+c-(ng +ng) ascz < c¢
- ([rul[-(5-|SWINT)) 4 ny +|T]) cf above
- ((Jrul®'| 4 ny 4 ng)-(5-| S|V 4 |7))

c - (Jrul?|-(5:|)W) 4 |7) cf below

VAN VANRVANR VAR VAN

We havejrul!| = [rul?’| + ny + ny, so the last inequality is true.

CaseT = z. Suppose that the root of the tree is labeled by(a,v). Then the

automaton4 only needs to check that € v. We can do it using only two
event states (ad must be pseudo-complete).

stat! = {0,1} init* = {0}

stat! = {0} fin! = {1}
q€{0,1} ISPy v CV, .

op (a,0):0 0 at opening, go to

qe{0,1} a€ X vCV, T EV _ _
ol (@,0):0 atclosing,gotd if z € v
S@vs

q€{0,1} aey vCV, ré¢v _ .
o (@0):0 at closing, go td) if = ¢ v
R
A is deterministic and pseudo-complete, and the correcieessnediate.
The number of states verifies the desired property:

stat| =2 < (3- 1)t = (3 [T|)™*)
stat| =1 < (3- 1)t = (3. [T|)"*")

Section 6.2 +n-Streamable Fragments of Forward XPath 137

Building each rule of is done in timel, and setting the event, node, initial
and final states is done in tin2e ¢; by condition(vii), so we can build4 in

time:
rult[+2-¢; < |rul?| +¢ as2-c; <c
< c-(Jrult]+1)
< e (rult + (7)) as|T| =1
< e (Jrut]- (5)™+ |7
This completes the proof of Lemnia. O

In the sequel we extend the definition of canonical trees € 7y, ,v,. built
from a treet and tupler € nod(¢)". We define canonical trees 1 from ¢ and an
assignment : V,, — nod(t) in the natural wayt x pu =t (u(x1), . .., pu(z,)).

Theorem 7. Let k andn be fixed, and let assume that| > 2. Given an expres-
sion(T'(xy,...,x,), B) of k-Downward XPath, a pseudo-complete dSTAver
signatureX x 2¥» can be computed in polynomial tinag |T'|?* - 30* - |S|k+1 . 6m)
such that for every treec L(B) andu: V,, — nodt):

txpue L(A) iff €€ [T,

Proof. Let A, be the pseudo-complete dSTA obtained fbrin time ¢ -
(Jrulto|-(5-|S|)Wdh(T) ¢ |T|) by Lemmal4. By conditionl, width(T') < k, and
we havelstatle| < (3 - |T|)* and|statie| < (3 - |T|)*. As A, is a deterministic
STA over alphabel x 2", [rul?| is in O(|statl®| - |statle| - |2] - 2"), S04, can
be computed in timé&((3 - |T])?* - 27 - 5% . |S[F+1).

To obtainA from Ay, it suffices to intersect, with the dSTAC, that recog-
nizes canonical trees, i.e. trees over signallise2"» where every variable o,
appears exactly once. We propose the following constmdtoC', that simply
collects read variables at opening time:

staf=2"" init°={0} fi"“={V,} staf={}

a€ey v, ' CV, vNv' =10 a€ey vV CovCV,

op (a,v’):_ A
v L>UUU’ € rul” v

A e rulemn
We can build” in time O(|%| - 3™): For opening rules, choosingandv’ consists
in determining for each variable € V,, whetherxr € v — v/, x € v — v or
x ¢ v U . Similarly, for closing rules, we have to choose whethet v — v/,
rev,orx¢vUv.

Let A = Ay N C. A accepts canonical treés« u whereu: V,, — nod(t).
For such a tree¢ and assignment, we know by definition of operato that

138 Chapter 6 — Streamable Fragments of Forward XPath

txpu € L(A) & t¥(ut) € L(Ap). From the definition ofA,, t¥(u™!) €
L(Ap) < € € [T]s,.

The time for buildingA is the time for building4, and C, and the cost of
intersecting them. Buildingl, is in time O((3 - |T[)?* - 2 - 5% . |$|*1), and
building C in time O(|X| - 3"). For the intersection afi, andC, we haverul|
inO((3-]T))% -] - 27), and|rul®| in O(]%] - 3"), so their intersection is in time
O(|Z]? - 6™ - (3 - |T|)?*). Hence the total time for building is in O((3 - |T|)?* -
(27 5% S|P+ |32 6")), which is alsaO((3 - |T|)?* - |X|*1. 5% . 67), and thus
O(|T | - |S|F+1 . 30% - 6m). O

6.2.5 k-Downward XPath is m-streamable for everym € N

Theorem 8. For every fixedk,n > 0, the query languagé-Downward XPath
restricted ton-ary queries isn-streamable for alin € N,.

Proof. Let (T'(xy,...,x,), B) be an expression df-Downward XPath, which
consists of a filter tern¥” with n variablesz, ..., z, and a dSTAB over X.
Let @ be then-ary query defined b{'(z4, ..., z,), with the schemd.(B). Let
A(Q) be the algorithm that first applies the algorithm of Sec#o?.4in order
to translatel'(xz4, . .., z,) to a pseudo-complete dSTA with signature® x 2V»
in PTIME, completes it (also in RME for fixed n) and then applies theTRvE
precomputation of the query answering algorithm of Chaptey build an SRAM
M computing@. Let p, be a polynomial bounding the time of these steps.
The algorithm of Chapteb has the following costs per step (Theor&m
O((c+1)-|Al*|B|?) intime andO(c-d-|A|-| B|) in space, where = conculy(t),
i = simultsafe,(t) andd = depth{t). Letm € Ny, and suppose that < m.
Then, as < 2" - ¢, |A| being inO(|T'|?*), andd being bounded by restrictidh
there are polynomialg, andp, such that for every event of every tree L(B),
SpacéA,t) < pi(|T|-|B])andTimg A, t) < po(|T] - |B|). Thus, the query class
is m-streamable fopy, p1 andp,. O

The concurrency ok-Downward XPath expressions is not always bounded,
however, so that streamability fails by PropositnEven thoughn-streamable
for all m € N, we can define queries with unbounded concurrency in
k-Downward XPath. For binary queries, counter examples asg & construct.
For instance, the queny(andch(a(z)), ch(b(y)))) selects alla, b) pairs in trees
c(a,a,a,...,b) but nothing in trees:(a,a,a,...,a). This shows that an un-
bounded number of partial candidates may be alive, wheng thel first com-
ponent is instantiated to sonaenode. The previous example can also adapted
to the monadic case, with the expressigand ch(a(z)), ch(b(true)))). With the
same trees, we also prove that this query has unboundedrcency

Section 6.3 — Beyonk-Downward XPath: Prospective Ideas 139

In many practical use cases,-streamability suffices to ensure the existence
of efficient algorithms. Consider for instance a bibliogrggile, where every
child of the root describes a book. Consider also the qqetiat looks for co-
authors of a given authar. The concurrency of) may be unbounded, as we
can read an unbounded number of authors under a book, befacking anu-
node. However, in practice, the number of co-authors is &ovd queries inn-
streamable query classes, wheteis greater than the maximal number of co-
authors, can be processed with polynomial per-step spatctrae cost.

6.3 Beyondk-Downward XPath: Prospective Ideas

In this section we propose two extensionsteDownward XPath. The first one
limits the concurrency, in order to obtain an-streamable fragment of XPath.
The second extension adds horizontal axgandns. This section intends to
provide prospective ideas for future work. Most results arenot proved and
should be considered as conjectures.

6.3.1 oo-Streamable Fragments of Forward XPath

In TheorenB, we proved thak-Downward XPath isn-streamable for alt, € Nj.
As previously mentioned, it is however net-streamable. However, restricting
k-Downward XPath to queries of polynomially bounded conency would be
sufficient.

Theorem 9. Every fragment of-Downward XPath having polynomially bounded
concurrency isx-streamable, for every € N.

Proof. By Propositior8 and hypothesis, it suffices to show that there exist polyno-
mialspg, p1 andp, such that for alin € Ny, k-Downward XPath ign-streamable
with po, p1, po. We need to prove that polynomigls, p; andp, used in the
proof of Theorem8 are independent frorm. This is obviously the case for
po- The concurrency is polynomially bounded (by hypothess)there exists
a polynomialp such thatconcuy,, (t) < p(le|) for all t € 7y and all expres-
sionse in k-Downward XPath. Ife = (T'(xy,...,z,), B), then by Theoren?,
T(z1,...,z,) can be converted inTME into a dSTAA recognizingLr(,,..z,)-
Hence there exists a polynomigllsuch that A| < p/(|T(x4,...,z,)|), and we
can find polynomialg; andp, such that for every expressiofi(zy, ..., z,), B)
of k-Downward XPathSpacéA.t) < pi(|T(z1, ..., z,)|-|B|) andTimg A, t) <
pa(|T(ar, ..)| BI). 0

Thanks to downward axes and guards ofii axes, every branch of
k-Downward XPath queries only has at most one match at a titms.ig however

140 Chapter 6 — Streamable Fragments of Forward XPath

not sufficient to bound concurrency. We propose two addilisats of conditions,
in order to obtain a fragment of -Downward XPath with boundedcurrency.

Variables below negation In the sequel we cafpositionsthe set of nodes of a
termT. A negativeposition is a position with an odd number of strict ancestors
labeled bynot An or -position is a negative position labeled agd

Variables in negative positions raise trouble. Consideirfstance the query
/(andnot(x), ch*(a(true)))) which selects all nodesthat are not the root, if the
tree contains am-node. This query has unbounded concurrency. The problem
is variablex which occurs in negative position, so that it does not havaatch
the current position. We have to forbid variables in negapwsitions all over
(condition7 below). Note that the selecting position in CoreXPath 1fressions
is always positive, so this restriction is quite natural.

Variables in disjunctions are a further source of troubla. iRstance, consider
the query defined by(or(ch*(c(and(z, ch*(a(true))))), ch*(b(true)))) which se-
lects all nodes in tree(a(...(a(b)))), where the second branch becomes true
independently of the value of variabten the first branch. A streaming algorithm
can decide selection only at the end when opening4leaf. Thus this query has
unbounded concurrency. This query can be expressed in alectof Forward
XPath, by using conjunction and negation. We need to impuesteat| choices of
or-positions contain the same variables (condi&pn

Variables below axes or label tests in negative positioiss teouble. Consider
for instance the query: for all-nodes there existstachild which is selected, i.e.,
/(not(ch*(a(not(ch(b(x))))))). This query selects all-nodes in tree:(c, ..., c)
but notinc(c, ..., c,a(b)) where it selects theé-node. Thus, none of thenodes
is safe for selection before the end, i.e., the concurrehtheajuery is unbounded.

In order to avoid this, we have to forbid variables below aoenices of axes (resp.
label tests) in negative position (conditi@8h This again is satisfied by all paths
of CoreXPath 1.0.

Variables below conjunction Queries using conjunctions may have high
concurrency. Consider for instance the query defined by thession
/(andch(a(z)), ch(b(true)))), that selects alk-children of the root, if the root
has ab-child. It selects alla-nodes on treé(q, ..., a,b) but nothing on tree
b(a,...,a), and thus has unbounded concurrency. This query implitétys
among siblings of nodes. We can avoid this effect by forligdaxes between
and-positions and variables, as expressed by condfibelow.

Weak k-Downward XPath Let V(T') be the set of variables used in a term
T. The query languag®/eakk-Downward XPathprovides all pairgT, B) of

Section 6.3 — Beyonk-Downward XPath: Prospective Ideas 141

k-Downward XPath that satisfy the following further restioos:

6. all or-positionp of 7" with choicesTl?, . . ., T, satisfyV(T3) = ... = V(T,,),
i.e. use the same variables.

7. variables appear in positive positions only, i.e.laif’ (p) then there is an
even number ohotlabeled positions above

8. on the branch of a positignlabeledr, there is no negative position labeled
by an axisd or a label test.

9. no position labeled by an axiscan have both a descendant, labeled by a
variablez, and an ancestor, labeled agd

We conjecture that monadic queries in Wéakownward XPath have con-
currency at mose, and thus that Monadic WeakDownward XPath isco-
streamable.

6.3.2 Adding Horizontal Axes

In this section we propose some ideas for dealing with hateloaxesns and
ns'. The major difference with downward axes is that selectiomoales (or their
validity w.r.t. to a match) cannot always be decided at cigsime.

Deciding at Last Siblings A solution is to postpone this decision to the closing
time of the parent node. Indeed, suppose that we want to knosther a node
7 € nod(t) verifies a filter terni’, i.e., whetherr € [T]; . Then, as we only use
axesD = {ch ch",ns ns‘}, the validity ofr € [17;, can be decided when all
right-siblings ofr and their descendants have been seen. The earliest tinte poin
where we know that all this region has been read is at closi@garent ofr.

In order to maintain a RME translation to dSTAs, we need to still have at
most one match to compute at a time. This implies some updateditionsl
to 5. For instance, label guards must be imposed for lmbthand ns®, and if
such a guard symbalis in 7', thena-nodes are forbidden among right-siblings of
a-nodes, and their descendants.

k-Forward XPath We define an extension df-Downward XPath with axes
D = {ch,ch",ns ns‘}. Fork € N, k-Forward XPathis the query class containing
all pairs(7'(z4,...,x,), B) of termsT with a sequence of variablés,, ..., z,)
and dSTASB over alphabek verifying the following conditions:

1. the width ofT" is bounded by, i.e.,T" has at mosk leaves.

142 Chapter 6 — Streamable Fragments of Forward XPath

2. the termT starts at the root, i.€Z; matches some terf(7”).

3. if d(T") is a subterm of", with d € D, thenT” matches some tera(7"),
with a € X.

4. if d(a(T")) is a subterm of”", whered € D, then:

Ta 7 T,
Vt € L(B). V7., 7, € lab,(t). Br € nod(t). { A (7., 7) € (ns")!
A (m, 7)€ (ch')t

5. the depth of the valid treegsc L(B) is bounded by some constant.

All conditions are identical to those @tDownward XPath except conditions
3 and4. Condition3 imposes a label guard below every axis position. If such
a guarda appears irfl’, then conditiord forbids a-nodes among descendants of
right-siblings of anothes-node int € L(B). Hence, before testing a new match
for the a-position, we can decide the validity of the previous matchthis a-
position.

We conjecture that the algorithm translatikdpownward XPath expressions
into dSTAs in AIME can be easily adapted teForward XPath. The only treat-
ments to change are those for axes, ifé.= d(a(7")). Instead of running the
automaton forl” until closing thea-noden, we have to run it until closing the
parent node ofr. If this holds, this would also mean thatForward XPath is
m-streamable for alln € Nj.

Let Weakk-Forward XPath be the fragment bfForward XPath with the ad-
ditional restrictions to 9 of Weakk-Downward XPath. We also conjecture that
Weakk-Forward XPath isxo-streamable. Moreover, membershipitd-orward
XPath and Weak-Forward XPath can be decided imIRE.

Discussion on Improvements The restrictions ofc-Forward XPath are quite
strong. Consider for instance the que€y, defined by the expression
/(ch*(a(ch(b(x))))), and the queryy, defined by/(ch"(a(ns'(b(z))))). Query
(), selects alb-nodes having an-node as parent, where@s selects alb-nodes
having ana-node as previous sibling. lk-Forward XPath, for both queries, no
a-node can appear among next-siblingspénd their descendants. FQs, for-
biddinga-nodes among right-siblings efnodes avoids unbounded concurrency,
as for instance in tree(q, . . ., a, b). Nevertheless, this is useless gy, as the
subtermch(b(x)) belowch®(a) looks for matches only in descendantsiafiodes.
This would justify to introduce a notion afcope wherescopé(7T') would
contain the region from which the truth value of € [T7];, depends. In
the previous examplescopé (ch(b(x))) would contain children ofr, whereas

Section 6.4 — Conclusion 143

scopé (ns‘(b(z))) would contain all right-siblings of. Hence, instead of forbid-
ding a-node in right-siblings and their descendants whgr(7")) appears irl’,
we would forbida-nodes only irscopé(7”), for all t € L(B) andr € lab,(t).

6.4 Conclusion

After non-streamability results on Forward XPath in Chaewe presented in
the present chapter the hierardpownward XPath (fok € N) of query classes
enjoying streamability properties. To prove these propgrive provided a trans-
lation to dSTAs in RIME. We also proposed some insights far-streamable
extensions, and for extensions allowing rightward moves.df¥cuss in the fol-
lowing some further possible improvements and open isslated to these frag-
ments and their translations.

The first question is whethérForward XPath can be enlarged, while remain-
ing m-streamable for alln € N,. In our translation we excluded one forward
axis: thefoll axis. We conjecture that adding this axis is not a problenmhe t
translation, as the end of scope for this axis is always wherradot is closed,
which can be easily detected. However strong restrictiongtid trees will have
to be added, as the presence of a $tdpa will impose that there is at most one
a-node per valid trees. About extendigg-orward XPath, an open question is
the definition of a necessary and sufficient criterion on FwdaXPath fragments,
that ensures AME translation to dSTAs.

Concerning Weak-Forward XPath, we conjectured that restrictidhso 8
imply bounded concurrency, whereas polynomially boundattarrency would
be sufficient for beingo-streamable. This leads to an open question: can we take
weaker restrictions and remain polynomially bounded?

One may also want to improve the proposed translationkf@rownward
XPath, in order to infer assertions at their earliest positand thus get an au-
tomatonA being earliest, likde(A) in Chapterb. In order to obtain this property,
the algorithm has to take the schema into account, as it wfiflesimes have to
infer assertions before their corresponding ends of scagpepme subterm af
might be unsatisfiable or always satisfied for every contionaof ¢ x 1 beyond
the current event. It is also open whether this could be déugently.

Another question is whether we could get better query anageaigorithms
without translating the XPath expressions to dSTAs, buteratvorking directly
with the XPath expressions. We are not optimistic about sogrovements,
as dSTAs are close to the implementation level oiLXstreaming algorithms,
and in our translation, only relevant information is storetb the states of the
automaton.

144 Chapter 6 — Streamable Fragments of Forward XPath

Chapter 7

Deciding Bounded Delay and

Concurrency
Contents
7.1 Introduction 146
7.2 Delay and Concurrency for Words and Trees. 148
721 EQAforWordsandTrees 148
722 Delay. 149
7.2.3 LinktoConcurrency. 149
7.3 Bounded Delay and Concurrency for Queries in Words . . 150
7.3.1 Finite Automata. 151
7.3.2 Definingn-ary Queries. 151
7.3.3 Computing Delays of Queries 153
7.3.4 Reduction to Bounded Ambiguity 158
7.3.5 Deciding Bounded Concurrency. 159
7.4 Recognizable Relations between Unranked Trees. 161
7.4.1 Closure Properties 162
7.4.2 Recognizable Relations. 164
743 SortedFOLogic. 165
7.4.4 Sorted FO Logic of Recognizable Relations 166
7.45 BoundedValuedness. 168
7.4.6 k-BoundedValuedness. 172
7.5 Deciding Bounded Delay and Concurrency. 173
7.5.1 Basic Recognizable Relations. 174
752 BoundedDelay 177
7.5.3 Bounded Concurrency 178
7.5.4 Discussion of Direct Construction. 179

7.6

Conclusion 180

146 Chapter 7 — Deciding Bounded Delay and Concurrency

7.1 Introduction

The classQdsas Of queries defined by dSTAs where valid trees have depth at
mostd is m-streamable, for alln € Ny. QlgrasiS however nobo-streamable,
as it contains queries of unbounded concurrency defined Iayl si8TAs. The
m-streamability 0fQ4s, means that queries in this class can be efficiently evalu-
ated, when the concurrency of queries w.r.t. input treesalsr thanm. Hence,
bounding the concurrency of queries w.r.t. all valid treesuges efficient evalua-
tion in streaming mode. LeDS,, be the subclass aDis ., containing queries
having concurrency at moston all valid trees. By Propositio8, Q%S is co-
streamable.

In this chapter, we prove that it can be decided in polynotmag whether a
guery defined by a dSTA has bounded concurrency on all vaestrand whether
for a givenk, the concurrency is bounded by This provides an efficient proce-
dure for deciding whether a query belonggQf, .

To establish that boundedness for concurrency is decidalfeIME, we use
automata techniques. We start with the case of queries ovatswdefined by
standard deterministic word automata. Bounded (attabunded) ambiguity of
word automata is known to be decidable im®E, as studied for instance by
Stearns and Hung§H85, Weber and SeidMvS84, or more recently by Allauzen
et al. [AMRO8]. We transform automata defining queries to non-deteritiinis
automata, whose ambiguity is exactly the concurrency ofigeeHence, we lift
the decision problem from bounded concurrency to boundduiurity.

For trees, however, this method cannot be used directly. Mdese to use
recognizable relations, as studied by Tison for rankedstf€s90, CDG07],
and recently investigated by Benedikt et @BLD2, BLNO7] for unranked trees.
A relation between trees is recognizable if the set of oysrlaf tuples in this
relation is recognized by some tree automaton. Concurreimyeries defined by
automata can be expressed by recognizable relations. Welslw to define the
relation capturing concurrency by first-order formulashwiee-valued variables,
from the automaton defining the query. Our reduction isTmvi2 if we assume
determinism, since we only use a restricted class of firdéioflormulas in prenex
normal form, where all quantifiers are existential. Note tpaantification over
trees (instead of nodes of trees in MSO) allows us to expreasdirect manner
properties of queries to be checkedalhcontinuationsof the stream.

In order to obtain our PME decision procedure, we prove that for fixed
bounded and:-bounded valuedness of binary recognizable relations eateb
cided in polynomial time even when the automaton definingréfation is non-

Section 7.1 — Introduction 147

deterministic (wherk is variable, it becomes>@TIME-complete). The valued-
ness of a binary relatioR is the maximal number of treégs that are in relation
with the same tree, in the first component, i.e. such th@t,¢,) € R. For
bounded valuedness, we reduce the problem to the boundeedvedss of tree
transducers, studied by Seidl i84i93. For k-bounded valuedness, we use the
equivalence between operations on relations and opesatibautomata.

In [BLO2, BLNO7], Benedikt et al. define two extension operators (downward
and rightward) plus an operator checking that a relationnslabeling (i.e. re-
lates trees with the same shape). They prove that a relati@eognizable if and
only if it can be expressed by an FO formula, using these opsras predicates.
Compared to this work by Benedikt et al., our results on \@dhass are new.

In addition to concurrency, we are interested in the maxuhe#yof a query,
for which we obtain similar decidability results. For moiagueries, the delay is
the number of events between reading a selected node, ardriest time point
from which its selection can be safely decided, i.e., fromcllany continuation
of the stream will select it. For-ary queries, we start counting when the tuple
becomes complete (as it cannot be output before).

Bounded delay is interesting for two reasons. First, thaydef a query mea-
sures quality of service, whereas the concurrency meatwgasemory require-
ments. It bounds the waiting time for selection, in terms omiber of events.
Second, bounded delay implies bounded concurrency, foadiogueries. More-
over, the delay of a query is easier to characterize thawitswrrency. Hence, for
query over words, we give a direct procedure for computiegitlay. For queries
over trees, bounded delay can be decidedimB when the arityn of queries is
variable, whereas we have to fix it for deciding bounded caeagy in PriME.

For n-ary queries, delay and concurrency are incomparable. Ayqwéh
bounded concurrency but unbounded delay is easy to findpétance the query
that selects the root if its last child is labeleddyits concurrency is bounded, as
only the root node is alive, but the delay is the number of &s/batween opening
the root and closing its last child, and thus unbounded. @rcdmtrary, we can
build queries with bounded delay but unbounded concurrehliis is due to the
fact that concurrency takes partial tuples into account,tihe delay does not.
Hence we can build queries that generate a lot of partialidates, but for which
the answer tuples can be output immediately once they gepleden This is for
instance the case, for the query that selects all pairs addsidtdrequires to buffer
all partial tuples containing previously opened nodes ia oamponent. Once
a new node is read, we can complete all these partial tuplistins node, and
output the resulting tuples immediately, without delay.

148 Chapter 7 — Deciding Bounded Delay and Concurrency

7.2 Delay and Concurrency for Words and Trees

We generalize the earliest query answering definitions cfi@g3.2to both words
and trees. We define the notion of delay, and generalize caaray to words and
trees.

7.2.1 EQA for Words and Trees

We consider the cases of words and trees in simultaneousérenreithels = X+
is the set of all words of = 7y, the set of all unranked tree ovEr

We consider words as relational structures, as introdut&ection2.1.2 A
wordw = a;-.. .-, € X* has domaimom(w) = {1,..., k}, and by analogy with
trees, we define its set of events fewgw) = {0,..., k}. Given a wordw € ¥*,
we writedom,(w) = {1,...,n} for the set of positions ofv visited before the
eventy, anddonf (w) = dom,(w) U {e}.

Let @ be ann-ary query in structure§, s € S a structure, ang € evegs) an
event ofs. A complete candidatentil eventy is a tupler € dom,(s)”. Given two
structuress;, s, € S and an even € eves;) U eves,), we say that the prefixes
of the linearizations o$; ands, until n coincide, if:

dom,(s;) = dom,(s;) A
equal,(s;, ;) { va”é? .V e dr:g?rm(sl). (labg () < lab’ (7))

Definitions of sufficient events for selection (resp. rammt) are easily lifted to
arbitrary structures. We writeompl7, s, 1) for the set of complete candidates,
in which all unknown components efhave been instantiated with elements

dom(s) — dom,(s).
(1,n) € sely(s) & 7 €dom(s)" AVS € domQ). equal (s S) = 7 € Q(S)

T € donf(s)" A

(1,m) € rejg(s) & { Vs € dom(Q). equal (s,s) =
V1’ € complr,s,n). 7" ¢ Q)

Alive candidates a4 if 7 are those being neither rejected nor selected at
(7,m) € aliveg(s) < 7 € donf(s)" and(7,7) ¢ rejo(s) and(r,n) & sely(s)

We introduce the concurrency at an eventwhich is more fine-grained than the
global concurrency defined in Secti8r2.3

concuiy(s, 1) = [{7 € donf(s)" | (7,n) € alivey(s)}|

With this definition, we obtain the following equivalencetwour previous notion
of concurrencyconcur (S) = max;ceves) CONCULL(S, 7).

Section 7.2 — Delay and Concurrency for Words and Trees 149

7.2.2 Delay

We formally introduce the notion afelayin our query answering framework, for
both words and trees. For monadic queries, it is the numbeverits between a
node and the earliest event for its selection. Given a strast(a word or a tree),
let

lates{ (71, ..., m,)) = min{n € eves) | m,...,m, € dom,(s)}

be the minimal event, where all elements of the tuple hava bisited.

Definition 12 (Delay). Thedelayof ann-ary query@ for a tupler € dom(s) is
the number of eventsfollowing latestr) such that; is insufficient for selection,

i.e. (7,n) & seb(s).
delay,(s, 7) = [{n € eves) | latestr) <1, (7,7) & seb(s)}|

A query@ has k-bounded delayf delay,(s,7) < k for all s € dom(Q) and
T € Q(w). It has bounded delay if it hasbounded delay for sonie> 0.

Having bounded delay means that every EQA algorithm wilpatselected
tuples a constant time after completion. This is a guaraote¢he quality of
service.

7.2.3 Link to Concurrency

For monadic queries, some links exist between concurremdylalay.

Lemma 15. For all monadic queries), structures sc domQ), and events) €

eves):
concug(s,n) < sup delay, (s, 7) +1
g edom(@),7eQ(S)

The lemma fails for queries of higher arities, where the ylblestween the tu-
ple components may be unbounded even though the delay ofisalef complete
tuples is bounded. In this case, the set of alive partiakesiphay grow without
bound, even though the set of alive complete tuples is balirfela instance con-
sider the query) with Q(¢) = nod(¢)? for all treest € 7. This query has delay,
since every pair of nodes can be selected immediately, tiedéstlast component
has been visited. Nevertheless, all partial tugtes) with 7 € dom,(¢) are alive
at all events, so that the concurrency of this query is not bounded.

Proof. Lets € S andk € Ny U {oo}. In the case of words (whe® = ¥*),
we definedonﬁ(s’) by {7 | n — k < ' < n}, and in the case of trees (where

S = Ty), we definedonf(s') as{=’ | pr*(n) < (op,) < n}.

150 Chapter 7 — Deciding Bounded Delay and Concurrency

Let be a monadic query. Let = supscdonq).rcq(s)delay,(s,) be the
number in the lemma, arsle dom(@)) be a structure with event € eves). We
claim for allm € dom(s) that:

m & donf(s) ,n) € alivey(s)
To see this, we first note thatif ¢ dom,(s) thenr is not alive at). Now let us
considerr € dom,(s) — donf(s). We distinguish two cases.

1. In the first case, there exists a continuatsbe dom(Q) with equal (s, s
such that(w) € Q(). This continuatiors’ satisfiesdelay, (s, (7)) < d,

so thatr € dom,(s) — donﬁ yields ((7),n) € sels). This contradicts
aliveness.

2. Otherwise, all continuations of s beyondn satisfy () ¢ Q(S), so that
((m),n) € rej(s). This equally implies non-aliveness.

This proves the claim, which yields for all partial tuptes

(7.n) € alivey(s) = 7 € donf(s) U {e}
Hence concur,(s,) < d + 1 by definition of concurrency. O

Proposition 23. A monadic query wittk-bounded delay hag:+1)-bounded con-
currency.

Proof. This is an immediate consequence of Lenttba O

The converse does not hold. As a counter example, considemtnadic
guery which selects the first letter of all words whose latsétas ab. This query
has concurrency bounded hy since the first letter is the only alive candidate
before the end, but unbounded delay.

7.3 Bounded Delay and Concurrency for Queries in
Words

We consider the case, where queries in words are defined bgatesministic
finite automata, that recognize the canonical languageeajtiery and its schema
respectively. We obtain/®ME decision procedures for bounded delay and con-
currency by reduction to bounded ambiguity of non-deterstimfinite automata.

Section 7.3 — Bounded Delay and Concurrency for Queries irdg/o 151

7.3.1 Finite Automata

A finite automator{nFA) overX is a tupleA = (stat init, rul, fin) whereinit, fin
andstatare finite sets witlinit, fin C stat andrul C stat x (X U {¢}) contains
rules that we write ag % ¢’ or ¢ = ¢’ whereq, ¢ € statanda € . Whenever
necessary, we will index the components/oby A. Let the size ofA count all
states and rules, i.eA| = |staty| + |rul4|. We also sometimes use the notation
Alinit=I] (resp.A[fin=1I]) for the automaton obtained frorhby setting its initial
(resp. final) states to.

A run of A on a worduw is a functionr : evgw) — staty so thatr(0) € init4
andr(r—1) =555 r(n) is justified byrul for all 7 € dom(w) with a = lab® (r).
A run is successful i-(|w|) € fin,. The languagd.(A) C X* is the set of all
words that permit a successful run By An nFA is calledproductive if all its
states are used in some successful run. This is the casesiatds are reachable
from some initial state, and if for all states, some finalestatn be reached.

An nFA A isdeterministicor a dFA if it has at most one initial state, no epsilon
rules, and for every paiy, a) there exists at most one ruje®: ¢ € rul,. Note
that for every wordu there exists at most one run by a dBA

Bounded Ambiguity

We next consider the degree of ambiguity of NnEASTheambiguity amh(w) is
the number of successful runs dfon w. Clearly,amb,(w) < 1 for all w € ¥*
if Ais a dFA. We call the ambiguity ofl k-boundedif amb,(w) < £ for all
w € ¥*. Itis boundedif it is bounded by somé.

Stearns and HuntgH83 (Theorem 4.1) present for fixed € N a PrIME
algorithm for deciding:-bounded ambiguity of nFAs. Let us wrije-> ¢ by A
if there exists a run ofi[init={p}| onw that ends iry. Weber and Seid\WS8q
show that an nFA has unbounded ambiguity iff there exists a warg >+ and
distinct state® # ¢ such thap = p, p = ¢, andg — ¢ by A. This can be tested
in O(]A]®) as shown very recently byAMRO0S].

7.3.2 Definingn-ary Queries

As usual, we can define queries by two automata, one for thengzad language
and another for the schema. We call an nFA canonical if anglibité language is.
Let A be a canonical nFAL with alphabet. x 2¥» and B an nFA with alphabet
¥, such thatw € L(B) for all w7 € L(A). The queryQ 4 s defined by the
pair (A, B) is the uniquer-ary query with domairlL(B) and canonical language
L(A). If L(B) = £ then we write) 4 instead ofQ) 4 5. AutomatonB is needed

152 Chapter 7 — Deciding Bounded Delay and Concurrency

in order to distinguish those words, on which the query isdsfined, from those,
where the query returns the empty set. Note th@tifs(w) # 0 thenw € L(B).

Let the type of a wordy with alphabet: x 2V be a functiortype, : V, — N,
that counts how many times a variable appears in labelsfare: € V,,:

type,(z) = [{m € domw) | lab(, ,,(m) with z € v}

We say that a word has typel " if type,(z) = 1 for all z € V,. All words over

¥ x 2¥» of type 1V have the formw * 7, and vice versa. We next show that all
states of productive canonical nFAs have unique types. Wassalready noticed
in Lemma 3 of CLNO4]:

Lemma 16. If A is a productive canonical nFA ang € stat, then all words
recognized byl[fin = {¢}] have the same type.

Proof. SinceA is productive, there exists a wotd € L(Afinit = {¢}]). Assume
that there exist words,, w, € L(A[fin = {¢}]) with different types. Hence, the
wordsw;-w andw,w must have different types, singge, ., = typg,, +type, #
typg,, + typg, = typg,,,. This is impossible, though, sindg A) is canonical,
so thattype,_,,(v) = type, ., (z) = 1L forallz € V, O

We can thus define the type of a stat®f a productive canonical nFA in
a unique manner, by the type of some wardthat is evaluated into this state.
type(q) will denote this type. Furthermore, as the automaton is c&abd and
productive, this type is determined by the $etc V, | type,(x) = 1}. So we
can identify the type of a state with a subsetpf

Consider the query),(,,) in words with alphabefa, b}, which selects all
positions labeled by or eventually succeeded by anin Figure7.1, we illustrate
an automaton for the canonical language of this query gcafiii Its states have
the following types:(for ¢, (no variables seen before entering in this state), and
{z;} for ¢; andgs (z; seen before entering in these states).

Query answering fodFAs is the algorithmic problem that receives as input
two dFAs A and dFA B defining ann-ary query and a wordv € L(B), and
returns as outpup 4 z(w). The objective is to find all tuples of positions inw
such thatv * 7 € L(A). The naive algorithm enumerates all tuptes dom(w)™
and runsA deterministically onov = 7. This algorithm first resolves the choice of
7 nondeterministically, before running the deterministitcematonA.

Determinism for canonical automata will turn out to be esiséfor PTIME
streaming algorithms and decision complexity (e.g. thetggbroperty below).

It should be noticed that canonical nFAs can always be détered without
changing the query they define. This would fail when definingrees by se-
lection automata, i.e. nFAs ov&rwith a set of selection states as considered in
[FGKO3 NPTTOS.

Section 7.3 — Bounded Delay and Concurrency for Queries irdg/o 153

Figure 7.1: A dFA for the canonical language®@f,,) where¢ = 3Jz,. (z; <
Zo N |aba(l’2>>.

7.3.3 Computing Delays of Queries

We show how to decide whether a query has bounded delay antbhoympute
this delay in polynomial time. We consider the case with sté® Schema elimi-
nation as proposed in Sectié.3can easily be adapted to queries over relational
structures. However, it would require to fix the arityof the queries, and spoil
small polynomials: Given automathandB defining = @ 4 5, we cannot build

an automaton recognizin@se or Qrj Without a blowup inO(2") in the general
case, since we have to extend the alphabét bm X to X x 2=,

Safe States for Selection

For every languagé, C Xt we define a language of annotated wordsy ()
with alphabet: x 2V» such that all letters of words ih are annotated bf), i.e.,
Le)= {(al,(l))-. . .'(Clk;,@) | ar-...-a € L}

Definition 13. If dFAs A and B define a query then we call a stdte ¢) € staty x
statz safe for selectioivy Q 4 p if L(Blinit={q}]) ® 0 C L(Alinit={p}]).

Figure7.2illustrates an automaton for the query that selectg-albdes that
are succeeded lyb. In this example, we assume the universal schéhath a
single state, so that is isomorphic taP(A, B). The types and safety properties
of all states are indicated in the figure.

We next show that safe states capture sufficiency for selechh order to do
so, we construct a dFR(A, B) which runsA and B in parallel. Its alphabet is
¥ x 2¥» as for A, while B has alphabet.

Sta‘p(A B) = staty x statg (a,0) a
iNitp 4,3y = iNit4 X initp p—peruly g¢g—qctulp

i : . (a,v)
fInP(A,B) = fInA X fInB (p7 q) - (p,,q,) € rU|p(A’B)

154 Chapter 7 — Deciding Bounded Delay and Concurrency

unsafe, unsafe, unsafe, safe,,

0 {1} {1} {1}
Figure 7.2: Automatomi for the query selecting-nodes followed by-b. There
are two reachable unsafe states of type} = V,, p; andp,. The restriction of
A to these two states is acyclic, so the selection dela@ ofis bounded. It is
bounded by2, since the longest path in this part of the automaton has 8sod

Building P(A, B) needs time irO((|X| +n) - |A] - | B|), if we suppose for instance
that variables inv are stored in a vector of bits.

Lemma 17. Let A and B be productive dFAs that define a query, and r a run of
P(A, B) onw x 7 andn € evew). Then state () is safe for selection b§ 4 g if
and only if(,n) € sel, ,(w).

Proof. Sufficiency for selection(r,7) € sel, ,(w) is equivalent tor €
dom,(w)" andvw' € L(B) : equal(w,w') = w'* 1 € L(A). Letw = wy-w,
such thatw,| = 7. Sincer € dom,(w)", we havew 7 = (wo *7)-(w; ® 0). Fur-
thermore equal (w, w’) is equivalent tadw). w' = wy-wj. Now r(n) is the state
that the unique run d?(A, B) onwy * 7 reaches (determinism). FQs, q) = r(n)
we have:

Vw' € L(B) : equa) (w,w’) = w'* 1 € L(A)

Vw]. wo-w) € L(B) = (wg * 7)-(w] @ 0) € L(A)

Vw!. wi € L(B[init = {¢}]) = w] ® 0 € L(Afinit = {p}]) (determinism)
L(Blinit = {g})) ® 0 < L(Afinit = {p}])

r(n) safe for selection by) 4 5

teee

Conversely, assume thatn) = (p, q) is safe for selection by), 5. Since we
assumed and B to be productive, this implies th&gpep) = V,, so thatr €
dom,(w)". We can thus decompose = wy-w; such thatw,| = n as above,
and apply the above equivalence, in order to conclude frdetyséor selection,
thatvw' € L(B) : equa)(w,w’) = w7 € L(A), and thus sufficiency for
selection. O

The parallel automatoR(A, B) is canonical, sincé.(A) = L(P(A, B)), but
may contain non-productive states, eved iind B are productive. For instance,

Section 7.3 — Bounded Delay and Concurrency for Queries irdg/o 155

consider productive automathand B that define the querg) with domQ) =
{a,aa}, Q(a) = {1} andQ(aa) = (). We will be interested only in the productive
part of the canonical automat®iA, B), for which unique types exist.

Lemma 18. If A and B are productive, then all safe states@f 5 that are reach-
able in R(A, B) are productive and have type,.

Proof. To see this, suppose that ¢) is safe and reachable. SinBes productive,
there exists a word € L(Blinit={q}]). Safety proves that @ () € L(A[init =
{p}])- Thus,w € P(A, B)linit = {(p, q) }], so that(p, ¢) is productive. Sincel is
canonical P(A, B) is canonical, so thaypgp) W typgw @) = V,. O

Capturing the Delay

Proposition 24. Let 4 5 be defined by productive dFAsand B, and let P* be
the restriction of nFA PA, B) to productive unsafe states of typg.

1. The delay of) 4 5 is bounded if and only if the digraph of nFA' B acyclic.

2. In this case, the delay @} 4 5 is equal to the length of the longest path in
P

Proof. Let P = P(A, B) andP* the restriction oP to productive unsafe states of
typeV,. Letq be a state oP" for which a cycle exists. Since all statesRf are
productive inP, there exists a word, € L(P[fin = {q}]). SinceP" has a cycle,
there exists a nonempty wowd € L(P[init = {¢}, fin = {¢}]). Again, sinceP is
productive, there exists a wokg € L(P[init = {¢}]). It follows for all m > 0,
thatv = v, - (vy)™-v3 € L(P). SinceL(P) = L(A), wordv has the formw « 7 for
some wordw € ¥* andr € domw)™. By Lemmal7, none of the events ijvy|™
is sufficient for the selection af in w since the run oP onv maps all of them to
unsafe states. This shows that the selection delayiofv is at leastn and thus
unbounded.

For the converse, we suppose tRats acyclic and show that the delay©f, 5
is bounded by the length of the longest patlsiat.. Let w andr be such that
w7 € L(A) andr be the successful run of that accepts this word. Letbe an
arbitrary event that contributes to the delayrof.e., an event withr € dom,(w)
and(r,n) ¢ seb, ,(w). The first condition yields thayper(n)) = 1¥» and
the second condition thatn) is unsafe for selection by Lemni&. Thus,r(n) €
stak.. SinceP" is acyclic, it follows that stategn) are distinct for distinct events
n that contribute to the delay. Furthermore, all these statmng to the same path
of P*, such thadelayQA’B(w, 7) is bounded by the length of the longest path in
P

156 Chapter 7 — Deciding Bounded Delay and Concurrency

If P is acyclic, letr a longest path i?" and letw a word such that () labels

r. Since all states dP are reachable and productive, there exists< 7 which

reaches irP the first state of; similarly, there exists a word, such thatu, * ()

labels a path from the last staterafo a final state oP. Thendela;b(wl-w-wg, T)
is the length (here, the number of statesy.of

[

In order to compute the set of all safe states, we rely on th@ximg charac-
terization of unsafe states.

Lemma 19. Let A, B be productive dFAs that define a query. A reachable state
(po, qo) of P(A, B) is unsafe for selection by 4 5 if and only a statép, ¢) can be
reached from(py, qo) such that:

(U1) eitherp ¢ fin, andq € fing,

(U2) or there exists a transitiop - ¢’ € rulz but no transitiorp @) p € ruly
forall p’ € staty.

Proof. LetP = P(A, B). We start with a claim about propagation of unsafety.
Claim 14. Reachable states of P that can reach unsafe states are unsafe

To see this, letp,, ¢1) be a reachable state afg, ¢-) be an unsafe state that
is reached from(p;, ¢;) by some wordvy, i.e. v; € Plinit = {(p1,q1)},fin =
{(p2,q2)}]- Since(ps, q2) is unsafe, there exists a word € L(B[init = {¢}])
such thaty @ 0 ¢ L(Alinit = {p>}]). We distinguish two cases.

1. If v matchesw; ® 0 thenw,-w € L(BJinit = {¢;}]) and(w;-w) @ § ¢
L(Afinit = {p,}]), so that(p;, ¢;) is unsafe.

2. If v; does not match; ® () thentype(p;) # V, so that(pi, ¢1) is unsafe by
Lemmals, since(py, ¢1) is reachable if® and sinced and B are productive.

Based on this claim, we can now show both directions of therlam

“«<” By Claim 14 it is sufficient to show that all statg®, ¢) satisfying (Ul)
or (U2) are unsafe. In case of (y wherep ¢ fin, andg € fing, the
empty word contradicts the safety @f, ¢), sincee € L(B[init = {q}]) but
e® 0 ¢ L(Afinit = {p}]). In case of (), there exists some transition

g = ¢ € rulg but no transitiorp @) p’ € ruly for all p/ € staty. Since
B is productive, there exists a word € L(B[init = {g¢.}]). The word
a-w now contradicts safety dfp, ¢) sincea-w € L(BJinit = {p}|) but
(a-w)® 0 & L(A[init = {q}]).

Section 7.3 — Bounded Delay and Concurrency for Queries irdg/o 157

“=" We show that all unsafe statgs, qo) can reach some statg, ¢) that satis-
fies (U1) or (U2). If (po, qo) is unsafe then there exists a wards >* such
thatw € L(BJinit = {g}]) andw @ 0 ¢ L(Ainit = {py}]). Letw, be the
longest prefix ofv such that there exists a run@finit = {(po, go) }] on wy.
Let (p, ¢) be the state reached by this run after readipgand letw; be the
suffix of w such thatw = wq-w;. State(p, q) is thus reached frortpy, qo).
It remains to show thalp, ¢) satisfies (U) or (U2).

1. If w; = ethenp € fing andq ¢ fin,, so that(p, q) satisfies (U).

2. If w; matchesiw, then there cannot exist any transitpﬁlﬁ) p’ since
wo was chosen of maximal length. There exists a transitien ¢’ for
someq’ though. Hence(p, ¢) satisfies ().

O

Lemma 20. The set of reachable safe states for selection for-amy queryQ 4 5
can be computed in tim@((|X| +n) - |A| - | B|) from dFAsA and B.

Proof. Instead of the set of reachable safe states, we computettbiersachable
unsafe states. A Datalog program testing the reachabflgyates satisfying (U)
or (U2), which characterizes unsafety for reachable states bymah®, can be
defined as follows:

, . 0
p ¢ fin, ¢ € fing Vp'.p il péruly ¢ q erulp
unsafe(p, ¢)- unsafe,(p, q).

a,V o
(r.0) "™ (. q) € rlpa)
unsafgg(p, ¢) - unsafey(p', ¢').
This programP can be computed in tim@((|X| + n) - |A| - | B|), while being of
sizeO(]A]| - |B]). Itis a ground Datalog program, so its least fixed ptimtP)
can be computed in tim@(|A| - | B|) (see Propositios in the appendix). [

Theorem 10. The delay of querie® 4 5 in words with alphabekE and arityn &
N, defined by dFAs! and B can be computed in tim@((|X| + n) - |A| - | B]).

In particular, we can decide in the same time, whether a qdery; has
bounded delay ok-bounded delay, even if belongs to the input.

Proof. We first render3 productive and construct the dRX A, B). Second, we
compute all reachable safe states by Len2@and derive the sub-automatB,
that restrictd?(A, B) to productive unsafe states of typg. By Proposition24,
the delay of() 4 5 is oo if and only if P* contains a cycle. Otherwise, we compute
the delay by counting the length of the longest patR'afAll of these operations
can be performed in tim@((|X| +n) - |A4| - | B|).]

158 Chapter 7 — Deciding Bounded Delay and Concurrency

unsafe,, unsafe,, unsafe

{21} {71} {z1}

Figure 7.3: nFAD(A, B) for the dFA A in Figure 7.2 with trivial universab.
The ambiguity oD (A, B) is 2 (on word(a, {x1})-(b,) for instance), such as the
delay ofQ 4 5.

7.3.4 Reduction to Bounded Ambiguity

Before moving on to bounded concurrency, we introduce a general method
to decide boundedness by reduction to bounded ambiguitiyAd at the example
of bounded delay.

The idea is to turn the dFA(A, B) it into an nFA D(A, B) such that
amiy 4 p)(w = 7) = delay,, (w,7) forall 7 € Qap(w). We can then test
whetherD(A, B) has bounded ok-bounded ambiguity, which can be done in
PTIME as shown inAMRO08, Sei93.

We construcD(A, B) from P(A, B) by adding a new statekande-transitions
from all unsafe states of type, to ok Figure7.3 presents the result of this
operation on the automaton in Figufe

stap(4,p) = Stapa,p) W {ok}, initD(AB) = initp(A7B), finD(A,B) = {ok}

7 € tulpa,p) unsafgy(p,q) phastypeV, a€ X
r € rulpia, By (p,q) = OK€ rulpa g ok “? ok e rulp(a,m)

Proposition 25. For all 7 € Q4 5(w): delay, , (w,7) = ambya, p)(w * 7).

Proof. Consider a rum of D(A, B) on a canonical wordy * 7 with 7 € Q(w).

We can show inductively onthat the ambiguity oD(A, B) on w is exactly the
number of states usedirthat are not safe for selection. The initial state is unique
as A is deterministic, so at the beginning the ambiguity.isWhen reading a new
letter, if the associated stagas not unsafe or has not typg,, then there is only
one way to continue the run, via a rule BfA, B). If it is unsafe with typeV,,

Section 7.3 — Bounded Delay and Concurrency for Queries irdg/o 159

then there are two possibilities: either by using the ruRd, B), or by firing
the e-transition. Both runs will succeed (@& is universal), so in this case the
ambiguity is increased by one. Her@ely 4) (w * 7) is the number of unsafe
states used in the run 8{ A, B), and also of4, onw * 7. From the definitions of
delay (here the typ¥®,, ensures that we start countindaties{ 7)), safe states and
by Lemmal?, this is exactlwlela)@A’B(w, 7).]

Proposition25 yields slightly weaker results than Theordid It permits to
apply Prime algorithms for deciding bounded érbounded ambiguity of dFAS,
in order to decide bounded érbounded delay in AME. However, it doesiot
allow to compute the optimal bound #+-time, requires to fix in order to decide
k-boundedness i-time, and yields higher polynomials. As we will show next,
this general approach is useful to decide bounded:anounded concurrency, for
which we do not dispose any more direct algorithm.

7.3.5 Deciding Bounded Concurrency

We show how to reduce inTPME bounded concurrency to bounded ambiguity
andk-bounded concurrency tebounded ambiguity.

The concurrency of a query counts the number of simultarigalige partial
candidates. Beside of sufficiency for selection, aliverteggends on sufficiency
for rejection. We thus need a notion of safe states for rgject

Definition 15. A pair of stategp, q) of P(A, B) is safe for rejection by) 4 5 if no
final state can be reached frofp, ¢), i.e., if L(P(A, B)[init = {(p,q)}]) = 0.

We saw in the proof of Theored0 how to compute safe states for selection,
so now we need a method to compute safe states for rejection.

Lemma 21. The set of safe states for rejection®y for nFAsA and B can be
computed in tim& (| 4| - | B|).

Proof. We compute the set of all unsafe states for rejection. Inrdodéo so, it is
sufficient to compute the set of all statesR§fA, B) from which some final state
can be reached. This can be done by the following ground &atadogram:

p € fing, q € fing p(ﬂ)p’eruu qg=q €rulg
unsafe, (p, q). unsafe, (p, q) :- unsafe,(p', ¢').

This program can be constructed in ti¢| A| - | B|) from A and B. By Proposi-
tion 5, thelfp(P) can be computed in tim@(|A| - | B|). O

160 Chapter 7 — Deciding Bounded Delay and Concurrency

(a,0)
(b, 0)
b,0
6.9 Pp3
unsafe, unsafe, unsafe,
unsafg, unsafg, unsafg, unsafe,

Figure 7.4: nFAC(A, B) for query dFA A in Figure 7.2 and trivial universal
B. Even though nondeterministic, the ambiguityQ{fA, B) is 1, equally to the
concurrency of) 4 .

We define an nFAC(A, B) such thatamlya gy (w *) = concui(w,n).
The situation is a little different than f@(A, B), in thatC(A, B) runs on words
annotated by events rather than tuples. We fix a new varialge)),, that will
denote the event of interest, and define the alphab€(df B) to beX x 2{¥},
The idea of NFAC(A, B) is to guess a partial candidateuntil the event markey
comes, and to test whethers alive at that event, and to accept in case of success.

staty(4, py=staty x statz & {ok} @vy ,,
inite 4 g —init , xini rul
INitca,3)=INIt 4 XINIt 5 (. q) a_Q; (', q') € rulp(a,

. (a,0)
fing 4 py=1{0k} (p,q) = (P, q) € rulgia,p

(a)
(p,q) = (p1,q)€rulpa,py unsafgy(py, 1) unsafe,(py, q1)

(P, q) (a’{—%}) oK € rulca,p)

Both rules guess a set of variablEsand check that the current position is the
denotation of all variables ifv, by running automatomi with V' in the input
letter. The second rules inputs the event marker, and geedhe ok-state, if
automatonP(A, B) could move to states that are unsafe for both selection and
rejection, so that the current partial candidate is aliver iFustration, consider
Figure 7.4 which shows the automatd®(A, B) obtained from the automatot
in Figure7.2and the trivial universal automatds

Given awordw = a;-. . .-a,, and a position < n < m we writew|n for the

word (al, @) : (Cln—b @) . (am {y})

Proposition 26. concug,, ,(w,n) = amky g)(w|n), for all w € L(B) and
n € domw).

Proof. Let w € L(B) andn € dom(w). Suppose that; andr, are different
partial tuples that are alive at Letr; andr, be the runs ofd on the prefixes of

Section 7.4 — Recognizable Relations between Unranked Tree 161

w * T resp.w * 75 until . Sincer; andr, are different, there exists a position
such that the prefixes of lengih< n of w x 7, andw * 7 have different types.
SinceA is canonical, this implies that both runs assign statesftdréint types to
position:, so thatr (i) # (7).

Leta,-...-a, be the prefix ofw until positionn. By construction ofC(A, B),
both runsr; restricted to{1,...,n—1} are also runs o€(A, B) on wordv =
(ai-...-ay—1) ® 0. These runs can be extended to successful ru%.4f B) on
wln = v-(a,, {y}) by mapping positiom to ok, since both tuples; are alive at
eventn (and thus neither safe for selection nor rejection). Botisrare different,
since rung'; andr, differ at some positior < 7. Henceconcul, ,(w,n) <
amby(a,) (w|n).

For the converse, consider two different runsindr, of C(A, B) onw|n. We
now build two partial tuples; andr, and the corresponding runsandr’, of A
on the prefixes ofvx 7, andw x5 until . These are hidden in the rules applied for
producing rung; andr, by C(A, B). Since the states which permitted to move
to ok are alive, the runs| andr/, can be extended into an alive statejatThis
shows that both tuples andr, are alive. They are different, since produced from
distinct runsr; andr,. This shows thaambx 4,) (w|n) < conculy, ,(w,n). O

Theorem 11. Bounded and-bounded concurrency for queries and schemas de-
fined by canonical dFAs can be decidedPnME for any fixedk > 0.

Proof. From Lemmas20 and 21, C(A, B) can be constructed inTRME from
A and B. By Proposition26, it remains to decide the finite (resg-bounded)
ambiguity of C(A, B). This can also be done inTRME [AMRO08, Sei93. Before
the construction, we need to makeand B productive, which can be done in time
O(|A] +[B]). O

7.4 Recognizable Relations between Unranked
Trees

Even with STAs, it remains difficult to lift our RME algorithms for words to
trees, since the notion of safe states becomes more complexdifference is
that in STAs, the configuration depends on the current dbatealso on the con-
tent of the stack. Given a canonical dSA4or query(@ 4, one can define another
dSTA E(A) for which appropriate notions of safe states w@.t, exist, as shown
in Chapterb. The size ofE(A), however, may grow exponentially jd|. There-
fore, we cannot us&'(A) to construct polynomially sized counterpartsiifA)
andC(A) in the case of unranked trees, for instance automata whidigarty
captures the delay (resp. the concurrency). We conjedtatert the general case

162 Chapter 7 — Deciding Bounded Delay and Concurrency

there is no PIME algorithm for computing deterministic automata capturtimg
delay and the concurrency frorh
Nevertheless, we are able to prove the following theorem:

Theorem 12(Main). Bounded delay is decidable RTIME for n-ary queries de-

fined by deterministic streaming tree automata wheneay be variable. Bounded
concurrency is decidable iRTIME for fixedn. For fixedk andn, k-bounded delay
and concurrency are decidable PTIME.

Since top-down deterministic tree automataT@s) modulofcns encoding
and bottom-up deterministic automata (dTAs) modalory encoding can be
translated to dSTAs in BME (see Chapted), Theorem12 does equally apply
for queries defined by such automata. The proof will be basekductions to
bounded respk-bounded valuedness of recognizable relations betweemked
trees. It will be presented in Sectirb.

Regular tree languages enjoy closure properties overdbgperations, thanks
to the underlying properties of tree automata. A tree lagguezan be considered
as a unary relation over the set of all trees. A generalinatomsists in considering
n-ary relations over trees, i.e., setsofuples of trees.

In this section, we show how to extend the notion of recodrieaelations
[CDG"07] to the case of unranked trees. Closure properties of autostid en-
sure that FO-formulas over recognizable relations witlee variables define rec-
ognizable relations betweenunranked trees (so that satisfiability is decidable).
Unlike the framework proposed by Benedikt et aBLNO7], we do not define
basic relations, and allow different alphabets on the corepts of the relations.
Our major contribution here is that bounded valuednesskabdunded valued-
ness (for a fixed:) of binary relations can be decided iImIME. For bounded
valuedness, we use a reduction to bounded valuedness sfitizars $ei93. k-
bounded valuedness is resolved by reduction to the emptwfezn automaton,
that can be computed inTAME thanks to properties of recognizable relations.

7.4.1 Closure Properties
Cylindrification Extension

Cylindrification of queries has been defined in Sect®d as the inverse pro-
jection. We extend the definition in order to allow the ing@rtof several com-
ponents (instead of one), plus copying and permutation ofpaments, but no
deletion. For am-ary query@ over relational structureS, cylindrificationcyQ
for a functiond : {1,...,m} — {1,....m}with{1,...,n} CO({1,...,m})is
defined by the following equality, for all structures S:

coQ(s) = {(moq1), - - -, Tomy) € dOM(S)™ | (m1,...,m,) € Q(s)}

Section 7.4 — Recognizable Relations between Unranked Tree 163

The schema is unchangedbm(c,) = dom Q).

Queries by First-Order Formulas

In Section2.3 and in the previous paragraph, we defined logical operatons
queries. We show how they can be used to define queries frarofdsr formu-
las. This is an alternative definition of first-order defireaUeries introduced in
Section2.3

Every FO formulap with at mostm free variables) = (y1,...,yn) € V™
defines an-ary queryQ,; whose domain contains afl-structures.

Qoingn@) = Qo) N Renm Q-0) = Qo)
Q@ze)m) = 32-Qp(,2) Qr (1) Wo(1y o () = COT

Here, we identify relation symbol with the query of arityar(r) that satisfies
r(s) = r®for all structures € S.

Logical Operations on Tree Languages

Beyond standard Boolean operations on langua@&d*t07], we define pro-
jection operationgroj;: 7s,«.. xx, — Iy, forall 1 < i < m, such that all
proj,(t) relabels all nodes € nod(t) to thei-th component of its label. We
write t =ty % -+ % b, If Ai<i<mproj;(t) = t;. We can define more gen-
eral projection operationgroj;: 7s, «. xx,, — T, % x5, that preserve a sub-
set of componentd = {iy,...,i,} wherel < 4 < ... < i, < m by
proj,(t; * ... xt,) = t; *...*t; . Projections can be lifted to languages of
treesL C Ts,«..xx,, by proj,;(L) = {proj,(t) | t € L}.

We also need cylindrification operations on tree languages;h may add,
copy, and exchange components of tuple trees, but not dbkate We formalize
unsortedcylindrification operations that apply to treésC 7., where all com-
ponents have the same signatdreFor functions? : {1,...,m} — {1,...,m}
with {1,...,n} CO({1,...,m}) we define:

Note that all newly added components have signatur&ortedcylindrification
operations, that add components of particular types, cabtaéned from unsorted
cylindrification and intersection.

Closure Properties of Automata

In this chapter, we assume an arbitrary class of tree autrizt satisfy the
properties in Propositio7. In particular, we consider three classes of tree au-
tomata studied in Chaptdr TAs w.r.t. fcnsandcurry encodings, and STAs. They

164 Chapter 7 — Deciding Bounded Delay and Concurrency

all have the same expressiveness, as proved by the backrémdrémslations in
Chapter4, and exactly capture MSO-definable queries (and languayes)un-
ranked trees. In the following, we say that a tree languagecisgnizabldf it is
MSO-definable.

Proposition 27 (Closure properties)Recognizable languages are closed under
Boolean operations, projection and cylindrification. Adreesponding operations
on tree automata can be performedRmiME, except for the complementation of
non-deterministic tree automata. They all preserve deit@sm except for pro-
jection.

Proof. Closure properties of recognizable languages are due tbdbere proper-
ties of MSO-definable languages. It is folklore that theserapons are in PME
and preserve determinism except for projection, for thedlulasses of automata
we consider.

Cylindrification operationg:; are a little richer than the usual cylindrifica-
tion operations; that insert a single new component at positig€DG*07]. In
addition, they can copy components, which can be testedtbysection with de-
terministic tree automata that recognize the{get ¢t | t € 75}, and permute
components. While operatiap can be implemented inTPME for every fixedd
by computing intersections with a fixed number of tree autanthis cannot be
done in AIME for variabled.

Note, however, that cylindrification cannot delete compusesuch as projec-
tion, since projection operations on automata may spodrdanism. O

7.4.2 Recognizable Relations

We study recognizable relations between tr&e®E07] in the ranked and un-
ranked caseHLNO7]. These are sets of tuples of trees, such that the set ofxyeerl
of these tuples is recognizable by a tree automaton.

We first recall a standard method to define recognizable@akin FO logic
from a set of basic recognizable relations, while relyingtmnclosure properties
of tree automata. We then present the second main contnbotithis article. We
show that bounded valuedness @adounded valuedness (for a fixejlof binary
relations can be decided imrRE. For bounded valuedness, we present avi2
reduction to bounded valuedness of transducsesdd, and for k-bounded val-
uedness, aRME reduction to emptiness of tree automaton.

In this section, we assume an arbitrary class of automatarfranked trees
A that satisfy the following properties. Here, we assume évaty automaton
A € A has an abstract notion of states

(A1) every automaton afl can be transformed into an STA IITRIE.

Section 7.4 — Recognizable Relations between Unranked Tree 165

(©, f)

Figure 7.5: Example for overlays

(A2) classA is closed under intersection, complementation, cylincatfon and
projection modulo PIME transformations, that preserve determinism ex-
cept for projection.

All these properties hold for the three classes of autontatiied in the previous
section: Chaptet proves the expressiveness requiremeni) @d Propositio27
the closure properties (3. Note however, that hedge automata with dFAs for
horizontal languagesODG'07] fail to satisfy (A2), since deterministic hedge
automata cannot be complemented nNFE.

Theoverlayof k unranked trees € 7. is the unranked treg ® ... ® t; in
Tzlmxmxxk obtained by superposing thekdrees top-down and left-to-right; the
1 symbol represents missing children where the structurdeedfees differ. This
is illustrated in Figuré/.5and formally defined by:

a(ty, ..., tp) ®b(th, ... 1) =
(a,b)(ty @y, ..., @, @O, .., @) fI<k
(a,b)(ty ®t), ..., tpy®t, O®tpr1, ..., D®) otherwise

Overlays of ranked trees can be obtained this way @DBG"07], except that
overlayed symbols need to inherit the maximal arity.

Definition 16. A k-ary relation R between unranked treesriscognizableff the
language of its overlays oMk) = {t; ® ... ® t, | (t1,...,tx) € R} is recog-
nizable by a tree automaton. We say tlfais recognized by the automatohif
ovI(R) = L(A).

Prime examples for recognizable relatioB& NO7] are the tree extension re-
lation <|, <_,C 7Ty, x Ty, such that <, ¢'if ¢’ is obtained by repeatedly adding
children to leaves of, andt <_, ¢’ if ¢’ is obtained by repeatedly adding next-
siblings to right most children af

7.4.3 Sorted FO Logic

We need a sorted first-order logic in order to define recodphizeelations be-
tween trees with various signatures. Note that only the Engase with a single

166 Chapter 7 — Deciding Bounded Delay and Concurrency

signature was treated iBLNO7].

A sorted relational signaturés a relational signaturé = Sortsw &, that
consists of a set of monadic symbeisc Sortscalled sorts and a set of relation
symbolsr € R, each of which has a sbrt(r) € Sort$'"). A sorted relational
structure sover S = Sortsw R is a relational structure such thatom's) =
Usesorter® and for every relation symbel € R of arity m:

S
m

sort(r) = (o1,...,0m) = 1°C o} X... X0

In the FO logic of sorted relational structures, we can deforébounded quanti-
fiers:
dr€o.¢ =g Jz.(0() A @)

A sorted FO formulas a FO formula in which all quantifiers are sort bounded.
Every sorted FO formula overS with at mostn free sorted variables defines an
n-ary relation for every sorted relational structsreversS:

7.4.4 Sorted FO Logic of Recognizable Relations

We assume a collection of alphabéts A structures of recognizable relations
between trees with alphabets §h has a sorted relational signature with sorts
Sorts= {7, | w € Q} that are interpreted by themselves in every structure,
such that every relation symbelc R is interpreted as a recognizable relation
rs C sort(r) between trees.

A sorted FO formula for recognizable relations with alphaléehas the fol-
lowing form wherer € R andTy,...,T,,T € V andw € ().

¢ = r(Th,....Taw) | 0N P | 0 | ITET,. ¢

Here we use capital letters for variables, since they ranvge toees rather than
nodes of a single tree. The sizg of a formula is the number of nodes of

We write FQ;[}] for the set of sorted formulas, where quantifiers are existen
tial and in prenex positions. Lat= {A4,},x be a collection of automata that
recognize the relations ift, or equivalently, the structure of recognizable rela-
tions they induce. Every sorted FO formuylavith at mostn free sorted variables
defines am-ary relation between trees:

Ryt 2y oo Ty () € Ty X oo X T,

m

The closure properties of tree automata w.r.t. Booleanatiwers, cylindrification,
and projection ensure that all such relations are recoplaza

Section 7.4 — Recognizable Relations between Unranked Tree 167

Proposition 28. Let ¢ be a fixed formula in FGR| with at mostm free sorted
variablesT:7,,,...,T,,:7,, . Then there exists a polynomialsuch that for all
structures of recognizable relations= { A, },cx defined by tree automata such
that A, is deterministic ifr occurs below in negation, one can compute in time
p(>_,en |[Ar]) @an automaton that recognizes the relatiéqyr,.z, ... 7,..7.,.) (V).
The computed automaton is deterministic, if all automatadeterministic ang

is free of existential quantifiers.

Proof. The proposition depends of the closure propertie®) @ the class of au-
tomata under consideration. The proof is by induction orsthecture of formulas
in FO3[R]. It follows from two claims, that relate operations on tre&tions to
operations on tree languages to closure properties of tteenata.

Claim 17. Forall Q € 7, x ... x 7, , V,, = {Xy,..., X} and 6 :
{1,...,m} = {1,... m}pwith{1,....n} CO({1,...,m}):

.......... my(OVI(Q)) oVl(cy@) = cyovI(Q)
ovI(ﬁQ) = ovI(TW1 X ..o X T) ovl(@Q) ovl(@Q1 A Q2) =ovI(Qy) Novl(Qs)

The proof is straightforward from the definitions. The neat@nd claim re-
lates connectives of sorted FO formulas to operations @véiations.

Claim 18. For all alphabets = (wy,...,w,,) and w,,,, variables X =
(X1,...,X,,) and X, that are pairwise distinct, structures s of tree relations,
functionst : {1,...,m} — {1,...,m}with{1,....n} CO({1,...,m}), sorted
formulase, ¢1, ¢, in FO[R], and relations symbols € %:

0V|(R3Xm+1671,m+1 5(x.72)(S) = Projg (OV|(R¢()~(:’Z},,XW+1:TmmH)(S)))
0V|(Rr)(Xo(1) Twe(l) Xo(m): Twe())(S)) - OVI(%Q(I) - X Ide(m)) A CGOVI(TS)
OVI(Ry, g, (%.7,)(S) = OVI(Ry, x.7,)(S) NOVI(R,, 5.7.)(S))

OVI(R_ 5.7.)(5) = OV, x ... X T,,,) — 0V|(R (%:7)(S))

The proof is straightforward from the definitions and thevpras claim. For
illustration, we elaborate the case of negation, where dinéng information is
needed. Lel; = ovl(7,, x ... x T,).

OVI(R_4%.7.)(8) = LaNovl(Q_,x.7.)(5)
= LN (Lo —ovl(Qyx.7,)(s))) (previous claim)
= Lo —oVI(Ry5.7,)(9))

Finally, we illustrate the induction for formula = —¢'. Since¢ € FOs[R], for-
mula¢’ cannot contain existential quantifiers. Furthermore,athaataA, for re-
lations symbols occurring ih must be deterministic by assumption. By induction

168 Chapter 7 — Deciding Bounded Delay and Concurrency

hypothesis, there exists a polynomgakuch that for all structure$ = {A, },cn
defined automata automath, one can compute in timg(} | . |A.|) a deter-
ministic automatonA’ recognizing the languagevl(R, «.r.,(v)). Recall that
OVI(Ry 5.7) (V) is equal toovl(Z,, x ... x T,,) — oVI(Ry x.7.(S)) as shown
by the previous claim. We obtain an automatémecognizing this language by
complementingd’ and intersecting it with an automaton fvl(Z;,, x...x 7,).
This can be done in timg, (|A’|) - |w1] - ... - |wm| fOor some polynomiap;, since
A’ was deterministic. Furthermore, automatbiean be constructed deterministi-
cally from A’. We can thus define polynomiaby p(&) = p1(p/(€))-|w1]-. . .+ |wm]-
The only construction, where non-determinism is needeg@mjections. This
is why we require existential quantifiers to appear only ien@x position. Note
that the proposition can be extended to general FO formblasyot in PriME.
]

In Section7.5, we will see that relations capturing the notions of delagt an
concurrency of querie§ 4 5 can be defined in ”RME from A and B by using
FOs[R] formulas, for a suitable set of relation symbétswhose interpretation
depends ol and B. The delay and concurrency will exactly be the valuedness
of the corresponding recognizable relations. In the redeiof this section, we
prove that bounded valuedness a@ntiounded valuedness or recognizable rela-
tions are decidable inTPME from automata defining the relations.

7.4.5 Bounded Valuedness

Let R C 75, x Ty, be a recognizable binary relation. For everye 7y, the
number#R(t;) = |[{t2 | (t1,t2) € R}| counts the trees iffy,, in relation to it.
Thevaluednessf R is the maximal such numbeal(R) = max,cr, #L(t). We
call R k-boundedf val(R) < k, andboundedf itis k-bounded for somé € Nj.

We want to reduce bounded valuedness of recognizableam$ativer un-
ranked trees to the same problem for ranked trees. This cabtaégned by a
correspondence between the overlay of a tree and the ow#rigyfcnsencoding.
Let ren be the morphism on binary trees that renames constants . , [J) to [
and preserves the trees otherwise. This morphism is linehoae-to-one, so it
preserves regularity in both directioné:is recognizable ifren(L) is recogniz-
able. The following lemma relates overlays of unranked amked trees. Note
that this nice correspondence does not hold forctimey encoding.

Lemma 22.fendt; ® ... ®t,) = ren(fengty) ® ... ® fengt,))

The following proposition shows that valuedness is presgtwy thefcnsen-
coding. Letfecng R) = {(fcngt,), fendgts)) | (t1,t2) € R}.

Section 7.4 — Recognizable Relations between Unranked Tree 169

Proposition 29. A binary relation R between unranked trees is recognizable iff
the corresponding relation between binary trees {étisis, and valfcngR)) =
val(R).

Proof. By definitionfcng R) = {(fcngty), fengts)) | (t1,t2) € R}. Lemma22
yieldsfcngovl(R)) = ren(ovl(fcng R))). The morphisnren preserves recogniz-
ability back and forth. Thudcng R) is a recognizable relation itivl(fcng R)) is
recognizable language of binary treesréh(ovl(fcng R))) is a recognizable lan-
guage of binary trees ificngovl(R)) is a recognizable language of binary trees
iff ovl(R) is a recognizable language of unranked treesRiffs a recognizable
relation of unranked trees. O

Theorem 13. For every automatori recognizing a binary relatior? between
unranked trees, vaR) < oo can be decided iPTIME in | A|.

This theorem holds for all classes of automata for unrantessbstthat satisfy
the expressiveness propertyl()Aand thus to kinds of tree automata introduced
before. Note that we will apply this theorem to non-deteiistio automataA
later on.

Proof. We prove Theorem3in two steps. First we show by PropositiBa that

the result holds for relabeling relations. A relabelin@tein R C 751 x ... X Tsn

is a relation between trees of the same structure, i.e. wee(g, ... ,t,) € R
thennod(t;) = ... = nod(t,). In other words, the overlays iovi(R) do not
contain any place holdéfl. Then we exhibit how to associate with any relation
R a relabeling relatior’; with the same valuedness, where the automaton rec-
ognizingC'r can be constructed inTAVE from A defining R. The correctness of
the construction is proved by Lemrdd. O

Proposition 30. The finite valuedness of a binary relabeling recognizabiien
R can be decided iPTIME in |A|, when given an automataf recognizingR.

Proof. Every automaton can be converted to an STA inM& by assumption
(A1), and thus to a TAs modulo tHensencoding by translations of Chaptér
Proposition29 permits to reduce the current Proposition to recognizadiéions
of binary trees defined by standard TAs.

So letR C 72" x 72" be a relabeling relation for binary signatures, ahd
a TA for trees inZ2" , that recognizes, i.e. L(A) = ovl(R). We transform
A into a bottom-up tree transducérfor defining the relation of the format in
[Sei9]. The rules ofl" are inferred as follows whetrg, ., are variables:

(f,9)(q1,92) = g €ruly (a,b) — q € ruly
fqi(z1), go(x2)) — q(g(21, 22)) € ruly a—q(b) € ruly

170 Chapter 7 — Deciding Bounded Delay and Concurrency

f f

/N 7\ /N /\ 7 VARV VAAVARN
OO da ald OO0 O Hda a

Figure 7.6: A recognizable relatiaR and the relabeling'r with the same val-
uedness.

This transducef’ has the same valuednessfasTheorem 2.8 of$ei93 shows
that it can be decided in polynomial time whetheérs finite-valued, i.e. whether
R is bounded. O

The above construction of bottom-up transducers cannotted to recogniz-
able relations beyond relabelings. Instead, we show hownhgeart recognizable
relations into recognizable relabelings, while presegwialuedness.

So, letR be a recognizable relation ov&f!" x 75", We define a recognizable
relabelingCr € szé”@%, where we have 2 symbol&], [J) with arities0 and

2 respectively. The idea is to expand both trees in pdirss) € R to trees
(t1,t,) € Cg of the same structure, by repeatedly additighildren to leaves

of ¢, or t,. Expansionex(t,t') holds for two trees € 72" and¢’ € sz'; if
nod(t) C nod(t’), both trees have the same labels on common nodes, and all new
nodes oft’ are labeled by1. We define the relabeling’z by:

Cr = {(ty, 1) €Ty x Tz | (t1, t2)€R, @x(t1, 1), @%(ta, 1), nod(ty)=nod(s) }

An example is given in Figuré.6. While the relationR there is finite, the corre-
sponding relabeling’'; is infinite, since it has infinitely many witnesses of every
pair of R.

Lemma 23. If Ais a dTA recognizing?, then there exists a dTA' of sizeO(|A|)
that recognizeg .

Proof. We add one more state t so thastat A’) = stat(A)U{¢a} andfin(4) =
fin(A’). AutomatonA’ runsA top-down, until:] occurs, and then checks for equal

Section 7.4 — Recognizable Relations between Unranked Tree 171

(a,0) — g € ruly
(a,0)(gm, qm) — q € rul(A’)
(a,b)(qm) — q € rul(A’)

([,B)) — gm € rul(A)
[,) (gm, qm) — go € rul(A’)

Lemma 24. Cr and R have the same valuedness.

Proof. If ex(t,t') holds for (¢,t') € Tsi X 7Ty , then we writeclean(t') = t,
which is well-defined asis unique for a giver'. It is easy to check that:

o if s € Ty ux2 thens € ovl(Cr) iff (clean (proj;(s)), cleary(proj,(s))) €
R

o (t1,ty) € CRiff (clean(t,),clean(t;)) € R andnod(t;) = nod(ts).

First, let us prove that the valuedness(gf is at least the valuedness ff
Let ¢ in 751 such that there exists at ledstdistinct ¢; with (¢,¢;,) € R. Let
D = nod(t)UU%_ nod(t;). For atree: and a set of node® such thahod(t) C D,
we define the completion of w.r.t. D as the tree.” defined bynod(u”) = D
andlab’ () = lab“(r) if p belongs tonod(v), lab*” (7) = [otherwise. As
nod(t”) = nod(t”) andclean (t”) = t, cleany(t?) = t;, we have(t?,tP) € O,
1 <i < n. Asthet;, 1 < i < n, are distinct, so are the€’, 1 < i < n: the
valuedness of ' is at least the valuedness Bf

Now, let us prove that the valuedness(®f is at most the valuedness &t
Let v in 7'% such that there exists at ledstistinctv; with Cr(u,v;). Lett =
clean (u),t; = clean(v;): we have(t,t;) € R. It remains to prove that the are
all distinct.

Letl < < j < n:! asv; # v; there exists a position such thatab” (7) #
lab® (7r):

e eitherlab”(7) # [0 andlab® (w) # [J: thenw belongs tonod(t;) and to
nod(Z,) andlab’ () # lab" (rr).

e eitherlab(r) # [andlab™(x) = [I: thenw belongs tonod(¢;) and =
does not belong tood(t;).

e eitherlab® () # [andlab’ (7) = [: similar to the precedent case.

So, there exists € 7x: such that there exists at ledstistinct¢; with (¢,¢;) €
R.]

172 Chapter 7 — Deciding Bounded Delay and Concurrency

Even if testing bounded valuedness of tree transducersawikrio be in
PTIME, the complexity of known polynomial algorithms is much heglthan for
testing bounded ambiguity of tree automaa$08§.

Note that if we add the condition that is deterministic, then a similar con-
struction could have been done using automata instead mdduaers. IfA’ is
the automaton o, obtained fromA by projecting theX; components, then
amh(A’) = val(R), and ambiguity and:-ambiguity of A’ can be obtained in
PTIME [Sei93. However, we will use relations defined by E@| formula, which
corresponding automata are non-deterministic.

7.4.6 k-Bounded Valuedness

In this section we study the problem of deciding whether atyimecognizable
relation hast-bounded valuedness. We first prove that, whasa fixed, we can
still decidek-bounded valuedness imRE. Then we consider the problem when
k is variable, and prove that it becomegsfE IME-hard.

Here we cannot prove thatbounded valuedness can be decided Tnvi2
through the use of transducers, like for Lem8@a as known algorithms for de-
ciding k-boundedness of transducers are in non-deterministicnpaiyal time
(Theorem 2.2 of$ei93).

The problem does neither reduce to decidingittaambiguity of an automaton.
We will need to measure the valuedness of relations (as tiieyapture delay and
concurrency), buami(A) andval(R) are not comparable, whefirecognizes?.

Theorem 14. LetY; and Y, be two alphabets anél € N fixed. There exists a
polynomialp such that for every structure s with a single relatiBrnC 7, x 7y,
recognized by a possibly nondeterministic tree automatpwal(R) < k can be
decided in timey(| A]).

Proof. We consider the tree relatidbameTree= {(¢,t) | t € 7x,} which is
recognizable by a tree automaton of giz@¥:,|?). We fix a binary relation symbol

r that is interpreted by structuresggiven by R such that> = R. We define a
formulaval., with k£ + 2 free variables in the logic of recognizable relations in
FOs[r, SameTreg such thatRyay, (1.7, 717, .. Tesr:Tsy) (1) = 0 if @nd only if
val(R) > k:

vaby =o« /\ r(T.T)n N\ —SameTred;, T)

1<i<k+1 1<i<j<k+1

A tree automaton recognizing relatidh,a|>k(T;T21jlzTET“TkH:TZQ)(R) = () can
be computed in polynomial time from tree automatbnwhere the polynomial

Section 7.5 — Deciding Bounded Delay and Concurrency 173

depends on the fixed parametéYs|, |X,| andk. This follows from Proposi-
tion 28 since formula relation symbeldoes not occur below negation in formula
val.,. Emptiness of the language of this automaton can be test@teer time.
Hence, there exists a polynomja{depending on the fixed parametérs:;, and
¥9), such that we can chealal(R) > k in polynomial timeO(p(]A|)) from an
automatonA recognizingR.]

Theoreml4 provides a PIME decision procedurk-bounded valuedness, un-
der the assumption thatis fixed and the proof relies on an automaton of size
O(|A|*1). Without this assumption, however, we cannot avoid an esptal
blow-up.

Theorem 15. The problem that inputs € N, and an automatonl recognizing a
binary relation? between unranked trees, and outputs the truth value ofyjat
k is EXPTIME-complete.

Proof. By the proof of Theorem4, the problemis in EPTIME. For the hardness
part, we will reduce emptiness of intersection of deterstinitree automata in
this problem. Let/nt(S) the problem that input$, a finite sequence of deter-
ministic tree automata, and outputs “yes” if and only if thés at least one term
recognized by each automaton of the sequence. Now, fronutdheataA we
can build in polynomial time a binary relatiok, that associates with a tregt
labeled by an accepting run, if such a run exists. So, ffbrmw.l.0.g. we sup-
pose the set of states are disjoint- we construct in polyabtimme an automaton
Ag for the binary relationv 4csR4. As the automata are deterministi€g will
be (]S| — 1) — bounded iff there isn’'t any term recognized by each automaton
of the sequence. We conclude as emptiness of intersectidatefministic tree
automata is EPTIME-hard.]

Using the above constructions and Theorem 2.75&i93, we can build an
algorithm for computing the exact value wdl(R), if it exists. The overall com-
plexity is a fixed number of exponentials|iA|.

7.5 Deciding Bounded Delay and Concurrency

We prove the main Theored? on deciding bounded delay and concurrency for
queries defined by dSTAs by reduction to bounded valuednesscognizable
relations.

174 Chapter 7 — Deciding Bounded Delay and Concurrency

a a 0 0
/N /N VAN /N
c‘t b C‘L c‘t cl 0 (R op
\
b b a 0 0
(a) Treet (b) Trees (c) Treeren’(¢t) (d) Treeren” (t)

Figure 7.7:(t, s, ren(t)) € Eqbut (¢, s, ren” (t)) ¢ Eq

7.5.1 Basic Recognizable Relations

We start by defining various relations between trees by dStfst we will use
later on for defining the delay and concurrency of dSTA defipgeries by recog-
nizable relations between trees.

The prime example is the tree relati&ig C 7, x 7, X Ty pcy- FOr every
eventn = (a,) € evet) and treet € Ty, letren’(t) € Ty opcn e Obtained by
renaming the label of to « and the labels of all other nodesofo 0. We then
define:

(t,s,ren’(t)) € Eq«q €qual (t, s)

so thatt ands have the same prefix until evemt See Figur&.7for an example.

Lemma 25. For every signaturé& we can compute a dSTA in timdg|X|?), that
recognizes the relation EQ 75, x 7s; X T{o,0p,cl}-

Proof. We define a dSTA on X x ¥ x {0, op, cl} such thatl.(A) = ovl(Eq).
We use two statestat! = {before after}, whereinit* = {before andfin® =
{after}. We use a single dummy node statat! = {_}. The rules are given by
the following inference schema:

a € {op,cl} a€y beXp

a (a,a,0): a,a,cl):_
beforeﬁ before beforem before
before 2%, after after "%, after

after 2“2, Jfter after 22 after

op (a,a,cl):-

Note that the ruldefore beforeis used to check the equality below a
noder if prefix equality has to be checked untdl, 7). AutomatonA has size
O(|%?|) and can be computed in this time. O

The next kind of tree relations express canonical languafjigaeries. Given
atreet € 7y, and a complete tuple € dom(¢)", we define a treprun€ (t) € Zov,

Section 7.5 — Deciding Bounded Delay and Concurrency 175

as follows. Lett’ be the prefix of with domaindomaesy-) (). We setprun€ (t) =
proj, (' * 7).

For everyn-ary query), we define a recognizable relati@an, C 75, x Zv,,
which relates trees € 7y, with tuplesr € Q(t):

Can, = {(t,prun€ (1)) | 7 € Q(1)}

Lemma 26. Let A and B be dSTAs that define arary query@) = Q4 5. Then
we can compute a dSTA framin time O(|A|* - |X]) that recognizes Can

Note that the size of the computed automaton is independeneven though
2Y» appears in the alphabet 6fn,.

Proof. An automatonA. recognizingCan, can be built in polynomial time in
|A| and|X|. The idea is exploit the types of states of canonical autanaorder

to detect eventy = lates{r), rather than storing the variables seen so far in the
state. In order to ensure the uniqueness of types, we havake snproductive.
We can then compute the types of all states during a travefshe automaton.
The automatom can then be computed as follows:

a (av)y

go ——— q1 € 1uly qo not of typeV,, or o = cl
stat'c = sta a (a,v)y
initgc - initg G —— @ €Ml
finlc = fin" .
a (a,0):y
stat'c = stat! o ———q €ruly gooftypeV,

The automaton simulate$ until it reaches states of type,. From there on,
it expectsl] as annotation, instead ¢f Note thatA. is deterministic sinced
is. O

The relationBef = {(¢,prun€ (t),ren’(¢)) | 7 € dom,(¢t)"} is the subset
of T, x Tovw x Tio0peny that captures alh-tuples of nodes of (on its second
component) that contain only nodes opened before an ey@ovided by the third
component.Bef is recognizable by a dTA of siz@(2"), so we cannot use this
relation for PriME algorithms without fixing:. The problem can be circumvented
by using the following relatioiBef&Can, which can be recognized while using
the states of the canonical automaton£o€)) for checking types:

Bef&Can, = {(t,s;,s,) € Ts X Tova X Tjoopey | Cany(t, s-), Bef(t, s, 5,)}

Lemma 27. We can compute a dSTA. recognizing Bef&Ca@AB in time
O(|AP - 1Z]).

176 Chapter 7 — Deciding Bounded Delay and Concurrency

Proof. We build a dSTAAgc that recognizeBef&Can, in PTIME from the
dSTA A recognizingCan,. We have to check, that at most one evemns an-
notated into the third component, and that is comes &tes{7) for the tupler
of the second component, i.e., when automaterhas moved into a state of type
V.

LetB = {0, 1} be the set of Booleans. We defis@t'z«c = statlc x B, in
order to control by a Boolean, whether the third componestigen seen before.
We define initial states binit*z«c = init4c x {0}, final states byfinzec =
fin'c x {1}, and node states Istat's«c = stat'c.

Q()mqlErUlAc beB o # «

b) a (av,a)y (

(QO> qi, b) € rU|AB&C

go —2, @) ¢ €ruly, ¢ hastypey, in Ac

0) a (a,v,a):y (

(4o, q1,1) € rul .

0

We define a variant dBef for partial tuples, calle®ef,. Here, we do not try
to avoid the blow-up for two reasons. FirBef, will be used with another relation
calledC,v,, and a blow-up is necessary to recogrize,. Second, separating the
relations permits to clarify the definition of the formulaptaring concurrency.
Letren(s) € T,v. be the projection of * 7 to 2", i.e.,nod(ren" (s)) = nod(s)
andlab™") (1) = v if lab*(7) = (a, v) for somea € ¥, and allr € nod(s).

The relatiorBef, = {(ren"(¢),ren"(t)) | 3t € 7s. 7 € donf(¢)"} is a subset
of Tov. x Tio0pcy that relates annotations of trees with tuptesnd events), such
thatlates{r) < .

Lemma 28. A dSTA recognizing Bgtan be computed in time(3").

Proof. The following dSTA Ages, recognizes the relatioBef,. In the states, we
collect (at opening) variables corresponding to the coreptsiofr that have been
encountered. We also add a Boolean, that indicates whétb@vent; has been
read. Note that on the second component, we can read valifie®i from0
when we are not aj. For instance ify = (op,), we will read ‘op” on the second
component when we go througétl, 7).

stat®*=2"" xB init"®e={(0,0)} findsee=2""x {1} staf*={}

Rules are defined by the following inference schemas. At iogerwe check
canonicity if n has not been reached; otherwise we forbid variables in the fir

Section 7.5 — Deciding Bounded Delay and Concurrency 177

component. Whem is reached, we still allow to read variables, and change the
Boolean.
a € {0,cl} v, CV, vnNv =10

(v,0) Y) oy 0) € rulee

(v,0) 2P, 1) € ruldee

(v,1) 2LV, 1) € pylAeen

At closing, we do not check anything. We just change the Boolhens, is
reached.
b€ B a € {0, op} vV CovCV,

(v,0) LD (4 1) € ruldee

(0,0) L) b) € ruldeen

Ager, can be computed in tim@(3"): For opening rules, choosingandv’ con-
sists in determining for each variablec V,, whetherr € v — v, x € v/ —v or
x ¢ v Uwv'. Similarly, for closing rules, we have to choose whethet v — ¢/,
rev,orx¢vUv. O

Finally, the relatiorC,v, C 7Tov. is the set of trees df;v, of typelV».
Lemma 29. An dSTA recognizing4,. can be computed in time@(3").

Proof. Here we just have to collect variables in states at openingread only
variables that have not been seen so far.

A A
stat 2" =2 init"ve ={0} fin" ={V,} staf, 2" ={_}

v, o' CV, vNv =10 vV CovCV,
. | v
v P U € ruleov v 275y € rulvn
The complexity comes from the same argument as Le28na]

7.5.2 Bounded Delay

Our objective is to define the formuladelay, and concug, in the logic
FO5[Eq, Can S, Bef, Bef&Carj preferably without usindef. Relational struc-
tures for interpretation are fixed by a quepy which maps the relation symbols
to the following recognizable relatiorGarn,, Bef&Can,, and S, = domQ).
All other relation symbols have a fixed interpretation by teéktion of the same
name.

178 Chapter 7 — Deciding Bounded Delay and Concurrency

We start with the definition of the relatioBel, = {(¢,ren (¢),ren’(t)) |
(1,m) € seb(t)} by an FO formulaSel with three free variables, such that

Sel, = RseKTt:T27TT:7—QVn Tn:T10,0pcl}) (@Q):

Sel =4 S(Tt) A Bef(Tt,TT,Tn)
NVT! € T, (S(T}) A EQ(T, T, T,) = Can(T,T,)

Note that entailment o€an(7}/, T,) is correct only since we prune trees using
Bef: if (¢/,t,n) belongs to relationREq(Tt;TE,T{;TE,TW:T{O’OQC'}) thent andt’ may have
different domains beyong. Given dSTAsA and B defining@ = Q4 5 we can
thus define a dSTA recognizirsel, (73, T, T,,). Unfortunately, we cannot con-
struct this dSTA in PIME yet, since formul&eldoes not belong to the existential
fragments of FO and uses relati@ef. Nevertheless, we obtain algorithm for
deciding judgmentsr, n) € sel(t).

We define the relatioDelay, = {(¢,ren’(t),ren’(t)) | n € delay,(t,7)} by
the following formula of FQ[Eq, Bef&Can S, Can, that expresses thatis an
event increasing the delay if the nodesrof Q)(¢) are before; in t, and there is
a treet’ that equals until n but with7 ¢ Q(¢'). The formula has 3 free variables

such thaDeIayQ = RDday(Tt:T&TT:TQ - 77{0’@&'})(@).

Delay =« 37} € 7. S(T}) N Bef&Can1,T;,T,)
NS(TY) N BEAT:, T7,T,) N —Can(T},T)

All base relations can be defined by dSTAs of polynomial sibenvieavingn
variable (since we do not need the relat®ef here, and by Lemma25, 26 and
27). Given deterministic automatd and B, we can thus define a possibly non-
deterministic automaton recogniziﬁ?gelayQA’B(Tt, T.,T,) in PTIME from A and
B. Let2Delay, = {(t ® s;,s,) | (t,5;,5,) € Delay,}. Both relations are
recognized by the same automaton. This relation exactloapthe delay:

I(2Del = I
val(2Delay,) Trggéq)de ay,(t,7)

By Proposition28 we can define automata recognizing relatelay, in
PTIME, so that we can decide bounded delay &Adounded delay of) for a
fixed k£ in PTIME by Theoremd.3and14.

7.5.3 Bounded Concurrency

For concurrency, we proceed in a similar manner.

Proposition 31. If arity n € N is fixed, then for every-ary queryQ = Qap
defined by dSTA4 and B, we can compute iPTIME a possibly nondetermin-
istic STA that recognizes the relation Alive= {(¢,ren”(t),ren’(t)) | (7,n) €

alivey(t)}.

Section 7.5 — Deciding Bounded Delay and Concurrency 179

Proof. We defineAlive, by a formula of FQ[S, Can Eqy, Eg,y,, Cov., Bef,],
such thatAliveg = Raive(r, 75 1T,y Ty Tioopey) (@) HETE We Use the relatidaq

with two different alphabetst and2Y». The latter permits to express completions
of tuples.

Alive(T;,,T;,T,) =g 3T} € T5,. 3T} € Ts;. 3T € Tov. 3TV € Tovn.
S(TY) A S(TY)
A Carg(T{,T!) N Eoas(Th, 17, T,) NEdy, (T, T2, T,) N Bef,(T},T,)

A ~Cany(T//.T7) A Ety(Ti,1.T;) A Edy, (T.T/.T,) A Cy, (T7)

This formula expresses thatis alive atn of ¢ € 75, if there exists continuations
t',t" € Ty of t beyondn and two completions’, 7 of 7 beyondn such that
€ Q') butt” ¢ Q(t"). Bef, checks whetheates{r) < 7. C,v, verifies that
T" is canonical, as this is not done byCan,(7,,7). All relations used in the
formula are recognizable by automata that can be computedire by Lemmas
25, 26, 28and29, so that an STA foAlive, is obtained from Propositio®8 (since
Ais deterministic). Indeed, this result remains trugiis nondeterministic, since
relation symbolS does not occur below negation. O

Note that we cannot integrate the canonicity controlfgrinto the negated
relation—-Can(7/', 7). The deeper problem is that automait&or canonical lan-
guages of querie§ 4 5 do not have a notion of safe statesthe case of tregs
since safety depend also on the current stack content.

Let 2Alive, be the binary version oAlivey, i.e., 2Alivey = {(t ® s,, s,) |
(t, sy, s;) € Aliveg}, then:

val(2Alivey) = ter(%%(x@ concury(t)

We can recogniz@Alive, with the same automaton &divey, which can be
computed in RPIME for fixed n from A and B by Proposition31l. Hence we
can decide bounded andbounded concurrency of) for fixed n and & in
PTIME by Theoremsl3 and14. The cost of the automaton construction is in
O(p(|3], |Al,|B]) - (2m)* - (3™)?) for some polynomiap: building the automaton
for Eqyy, is in O((2")?) by Lemma25, and the automata f@ef, andC,v, are
built in O(3™) by Lemmas28 and29. A lower complexity may be obtained by
more ad hoc constructions, for instance by directly conmguéin automaton for
Aliveg.

7.5.4 Discussion of Direct Construction

We end this section by pointing out an alternative (and maext) construction,
that computes in timé&(p(|X], | 4], | B]) - (2")?) (for some polynomiap) an STA

180 Chapter 7 — Deciding Bounded Delay and Concurrency

recognizingAlivey. In Chapterb, we explained how to compute a dSTAA)
recognizingL(A), and such that each state is either safe or unsafe for selecti
(and respectively for rejection). This cannot be done4pas the safety condition
depends on the current configuration, which contains a staatent. This comes
however at a cost: each stateE(fA) includes a set of safe states, and thus the
size ofE(A) isin O(2!4]),

To avoid this blowup, we use non-determinism. When buildig), a new
set of safe states is computed for each opening rule. Insteedmputing this
set, we guess non-deterministically a state that is unsafeelection and a state
that is unsafe for rejection. Hence statesiaf,e are 3-tuples of states of: one
state for the run ofd and two unsafe states. The computation of unsafe states
follows the same line as the computation of safe statek(fdr. We just have to
replace a universal quantification on continuations (tHelyaae to be safe) by an
existential quantification (one must fail, to be unsafe fdestion).

While avoiding a blowup in the size of, we still have to make it complete,
which requires time i) (]3| - (2")?). The completion is needed, as there must be
an accepting run ofi5ie When we reach an unsafe state for selectiom @tthe
second state of the pair was also unsafe for rejection). Nhatiethis alternative
construction requires that the automatBrrecognizing the schema language is
deterministic. This is not the case for the constructiomgisecognizable rela-
tions.

7.6 Conclusion

In this chapter, we proved that deciding whether a query déflny dSTAs has
bounded (respk-bounded) delay and concurrency can be performed in polyno-
mial time, for a fixedk. We chose to focus on measures of delay and concurrency
that were motivated by query answering in a streaming mai@mne extensions
of these measures could be also investigated, especiatlydalelay. For instance
we studied the delay for selecting a tuple, but we could alsdyshe delay for re-
jecting a candidate tuple. This measure is close to conucyras bounded delay
for rejection implies bounded concurrency, whereas bodmldday for selection
does not (fom-ary queries).

We also chose to measure the delay from the point where thibdzda tuple
gets complete, as it cannot be output before. We could ddfmeth delay like
in our definition, but starting to count wheércomponents of the tuple are filled.
Hencen-th delay would be the delay studied in this chapter. Thisld/onake
sense if we want to decide whether all completions of a gaude will succeed,
and in this case output it. Then the completion with any inicgmode could be
performed by a parallel process.

Section 7.6 — Conclusion 181

Another variant for the-th delay is to measure the number of events between
completingi components and completing 1 components of the candidate tuples.
If all these delays are bounded, then the query has boundayg decording to
the definition studied in this chapter. This would give intediate measures of
bounded delay. For instance, we could characterize querigghich components
of candidates are quickly filled, except one component foicwkhe delay may
be unbounded. This could help designing streamable queries

In terms of improvements, we would like to replace the reducto the
bounded valuedness of tree transducers to a more directregactisn. Indeed,
tree transducers are more powerful than binary recogrezatdtions, so we can
hope for more efficient algorithms. This requires howeverdnsider two kinds
of non-determinism inside the automaton recoginzing theryjuthe usual non-
determinism (on runs of the automaton) and the non-deté&mion the second
component of the binary relation. Another open questionhistiver a restriction
on shallow trees could lead to more efficient algorithms.

182 Chapter 7 — Deciding Bounded Delay and Concurrency

Chapter 8

Conclusion

8.1 Main Results

The work presented in this manuscript focused amLXdata, and more specif-
ically to the query answering overn{ streams. We addressed two kinds of
queries. The first one is XPath, a W3C standard based on aatiavigl language.
The second one is tree automata, a tool originating fromuagg theory, that we
use here as query definition language. Usually. Xlata come with a schema that
describes the structure of validdX documents. We took schemas into accountin
our framework, as they can improve the efficiency of queryamsg algorithms.
All query classes that we studied allow the definitiomedry queries, i.e., queries
that select:-tuples of nodes, instead of simple nodes.

We started this dissertation with a description of our frewmidx for query
answering on streams in Chapt&r To establish a clear definition, and get a
precise complexity measure, we introduced Streaming Rarlicess Machines
(SRAMs). These are RAMs with some registers, a working mgnamd two
tapes: a read-only input tape and a write-only output taprenTwe introduced a
measure for the streamability of queries. A query is saebstrable if there is an
algorithm computing it, that uses alME preprocessing, and polynomial space
and time for processing each event of the stream. These egitypineasures are
in the size of the query, but constant in the size of the treg.rébaxing these
strong requirements, we defined a hierarchyrestreamable query classes, for
m € Ny. Then we studied the streamability of queries defined by KXRad
tree automata, the two query classes studied in this maptiséve proved that
both are not streamable, even at low levels of our hierar@iys motivated the
investigation of streamable fragments.

For tree automata, we defined Streaming Tree Automata (S@Aspdel that
evaluates trees according to a pre-order traversal. Thiegmonds to the way

184 Chapter 8 — Conclusion

a tree is read when its correspondingiX document is accessed in a streaming
mode. In Chapted, we studied the links between STAs and other automata mod-
els: models that also evaluate in pre-order (nested womhaatt, visibly push-
down automata and pushdown forest automata) and standaielsribat evaluate
in a bottom-up or top-down manner. In particular, deterstiniSTAs (dSTAS)
can be obtained in ®ME from all other models. In Chapté&;, we proved that
dSTAs aren-streamable on shallow trees for all € Ny. To get this positive re-
sult, we introduced Earliest Query Answering (EQA). An EQ@aaithm outputs
each answer at the earliest time point where it can be detidedt is selected by
the query, whatever the continuation of the stream is. Tigisrahm also discards
candidates that will not be selected in any continuatiotheearliest time point.
We study the complexity of such algorithms, and establigreldbounds. These
bounds are of great interest, as any streaming query amgyvalgorithm with
optimal memory consumption has to be an EQA algorithm, and these lower
bounds indicate how much time is needed to reach optimakspaoplexity. The
m-streamability of dSTAs is shown by building an EQA algonitfor queries de-
fined by dSTAs, that uses polynomial per-event space and tomeach candidate
that needs to be buffered.

For queries defined by XPath expressions, we propésedwnward XPath
(for k € N), a set of fragments suitable to streaming evaluatibibDownward
XPath ism-streamable for alln € Ny. It allows only downward axesh and
ch*, and restricts the inherent non-determinism of XPath, sbAFDownward
XPath expressions can be translated imvE to equivalent dSTAs. The positive
streamability results were obtained by reduction to stedaihity of ASTAS, as pre-
viously described. Our translation to dSTAs allows us toyapf our algorithms
for dSTAs onk-Downward XPath expressions, in particular the EQA aldponit
and the decision procedures described in the sequel.

Finally, we established that deciding bounded (afitbunded) delay and con-
currency of queries defined by dSTAs can be decidedrimP. The delay of a
monadic query is the maximal number of events between rgadselected node,
and the earliest event where it can be decided that it willdbecsed in any con-
tinuation of the stream. For-ary queries, we start measuring the delay when the
tuple is filled. Hence having-bounded delay ensures that once a candidate is
complete, we have to way at madstevents before being able to output it. The
concurrency is the number of simultaneously alive candglate. candidates that
have to be buffered, as their selection or rejection canealdrided yet. Both
results were established using properties of recognizatdéons over unranked
trees, for which we proved that the bounded valuedness cdedided in RIME
for a givenk, even from non-deterministic automata.

Section 8.2 — Perspectives 185

8.2 Perspectives

Throughout the dissertation, we studied the scalabilitgudry classes through
our notion of streamability. We proved non-streamability§ome classes (XPath,
non-deterministic tree automata) and alsestreamability for some others, for
all m € Ny (k-Downward XPath, and dSTAs). However, we did not provide a
method to effectively compute the degree of streamabifity query class, when
itis in-between. In particular, it would be interesting todicharacterizations that
are equivalent ten-streamability. Moreover, our computational model implae
memory lower bound for all queries (see Proposit®n Some results by Bar-
Yossef et al. BYFJ0J prove that this bound is a real lower bound for any query
answering algorithm for some fragment of XPath. It is sgdea whether this also
holds for other XPath fragments, and for queries definedds automata.

In Chapter6, we have seen that translatilgDownward XPath to dSTAs
proved them-streamability ofk-Downward XPath, for alin € N,. An open
question (which was also our working hypothesis) is whethesry classes for
which a PriME translation to dSTAs exist are exactly query classes theatrar
streamable for alin € N,. This would prove that dSTAs are the good model for
defining streamable queries. Another interesting chatiaateon of streamability
could also exist at the level of logics, as proposed recdntlizey and Benedikt
[LBO9]. In particular, it is known that FO formulas can only deberiocal prop-
erties. This may restrict the number of simultaneous caatdg] and thus lead
to streamable query classes. However, when allowed moxespfiedicates) are
not along the document order, this fails. For instance aligwransitive closure
in axes likech® allows jumps in the tree, and thus moves with unbounded delay
Even the next-sibling axigs is problematic, as the number of events between
the opening of two direct siblings can be unbounded, everhahliasv trees. All
streamable classes studied in this dissertation have ansiemastriction on the
depth of trees, i.e. only consider shallow trees. Then atoues whether we
could use this fact to get better algorithms. For instanceadd translate tree
automata to word automata (recognizing the words of taggherfly, and use
more efficient algorithms for words. Moreover, we only foedon queries that
only take the structure of the tree into account, not thauehdata.

The framework adopted in this dissertation may be extenaeéveral ways.
First, we could allow multiple scans over thevX stream, instead of a single
pass. This makes sense for stored data that can be readl sewesa This was
studied by Grohe, Koch and Schweikar@{S07 for XPath, but not for queries
by automata. It would be also interesting to study how séwpraries can be si-
multaneously computed on severaliX streams. The challenge here is to find a
data structure for the compact representation of the sedradidate tuples. This
question is also relevant for our EQA algorithm for dSTAs endwe did not ad-

186 Chapter 8 — Conclusion

dress this problem. It was studied for instance by Meuss. ahdMSBO01], but
outside the scope of a streaming evaluation. Another atimenframework for
XML streams is the use of indexed streams, where one streamriediédir each
label of the alphabet, and in each stream, elements aresact@sdocument order.
This has been recently investigated by Shalem and Bar-¥desehe restricted
case of tree patternSBY08. More generally, this raises the question aflX
serialization. It could be interesting to allow more flexilbbrms of serialization,
not only the document order. The wayX documents (and their schemas) are
generated usually ignores which queries will have to beuatal on these do-
cuments. Hence the information may be stored in a differesiérothan what is
needed for the evaluation of queries. To solve this prob&eswlution could be to
distinguish between the DOM representation of amXdocument and its serial-
ization, by serializing it according to some informationptential queries asked
on this document.

Concerning the earliest query answering algorithms stlicti€Chapters, the
goal was to prove lower memory bounds. As a consequence attheaff between
space and time complexity is here on the extreme side of @apspace consump-
tion, at any time cost. A way to relax this requirement is tal fireuristics, as
investigated by Benedikt et aBJLWO0S§ for approximating the earliest rejection
of candidates. Other results are known for approximateycaeswering, as those
established by De Rougemont et aCJOR08 dRV0§. Approximate validation
of XML streams has been investigated by Thomo et alT\fY[08], and Schewe
et al. in [STWO0§. Another way to relax the earliest decision requiremerbis
postpone these decisions (selection or rejection) to apimmg where we are sure
that enough information has been read. This is a commoniaolirt existing
algorithms. For instance for fragments of XPath allowintyalownward moves
and tests, the decision for selecting a node is usually ddmenwlosing it. It
could be interesting to try to improve this, for instance lonsidering schema
information.

Query answering is a first step towards the evaluation ofstoamations.
Hence a natural extension of our work is to take XQuery FLOWPRressions
into account. These are for-loops with variables, that camésted, and also
select tuples of nodes. The next step is to produce the oMtputdocument pro-
gressively. This will create new difficulties, as once moewill have to decide
whether some part can be output because it will not changayircantinuation
of the input stream. Transformation languages contain saotimer features like
aggregators, and their streaming evaluation also has tdulbésd. XProc pro-
poses to define transformations througkiXpipelines. This language allows to
separate regions of thend. tree where a transformation (defined for instance in
XQuery or XSLT) occurs, and thus avoids to buffer too mucloinfation. This
is why this language looks more suitable to a streaming atialn than XQuery

Section 8.2 — Perspectives 187

transformations on full documents.

188 Chapter 8 — Conclusion

Chapter 9

Resune

9.1 Contexte

Le format XML, introduit il y a dix ans, s’est imposé comme le standardr pes!
applications orientées Web et le traitement des docuniB®SM"08]. Emanant
de ML, XML définit des documents semi-structurés, modélisés gaadores.
La syntaxe d’un document L est une suite de balises bien imbriquées, dont
certaines contiennent des données textuelles. Ceerélitfes bases de données
relationnelles, ou les données sont stockées dans loles.taAivec XL sont ap-
parus des langages de schémas comme les DTDs (DocumenDe&fipéion),
XML Schema ou Relax NG. Un schéma définit la structure atteddsedocu-
ments XvL utilisés au sein d’une application donnée.

Considérons par exemple le documemtiXreprésenté dans la figugel(a)
Ce document contient des données géospatiales conteataax villes, et est
modélisé par I'arbre représenté dans la figdu2 Un schéma pour ce document
est présenté dans la figu®el (b)

Le premier type de traitement des documentg >est lavalidationd’'un docu-
ment par rapport a un schéma donné. Ceci est nécesaaiepplications manip-
ulant des donnéesmL, afin de de s’assurer de leur conformité envers le schéma
souhaité. Le second type de traitement consiste a répank requétes, c’est-
a-dire a trouver les nceuds d’'un documemiXsélectionnés par une requéte. Il
s’agit d'une étape de base pour récupérer des informatians un document
XML. Dans notre exemple il peut étre intéressant de sélewtioles triplets
(noml at,l on). Le filtrage est un cas particulier de réponse aux requétes, ou
il suffit de déterminer si un documentM{ possede une solution par rapport
a une requéte. Le troisieme type de traitement estalasformationde docu-
ments XL, elle-méme souvent basée sur une notion de requétesrdredor-

190 Chapter 9 — Résumé

<geo>
<poi nt >
<nonwLille</ non®
<| at >50.6305@&/ | at >
<l on>3.07063/ | on>
</ poi nt >
<poi nt >
<non®Hellemmes/ non®
<l at >50.6274&/ | at >
<l on>3.1085%/ | on>
</ poi nt >
</ geo>
(a) Document XiL.

geo —point*

poi nt — (noml at ? |1 on?)
nom — #PCDATA

lat — #PCDATA

|l on — #PCDATA

(b) Schéma défini par une DTD.

Figure 9.1: Fichier XaL contenant des données géospatiales, conforme a une
DTD.

geo

point point

\

nom lat lon nom lat lon

Lille 50.63050 3.07063 Hellemmes 50.62746 3.10853

Figure 9.2: Représentation arborescente du fichier Xe la figure 9.1(a).

mations possedent beaucoup d’applications dans le casdrelacuments ML.
Par exemple I'echange de données consiste a transfomawcument conforme
a un schéma, en un document conforme a un autre schémtaarsiormation
de données désigne I'ensemble des transformations aianndent XL en un
autre. Un autre exemple frequent est la transformationrddeaments XiL en
pages Web, en utilisant des feuilles de style XSLT.

Toutes ces types de traitement peuvent étre effectués ddferents modes.
Le premier est Bvaluation en ramoire centraleDans ce cas, le documentiX
est entierement chargé en mémoire centrale, puietrdifl sortie est produite
uniquement lorsque I'ensemble des solutions est caltil@. des inconvénients
de cette méthode est une consommation mémoire importabtie autre in-
convénient est de devoir attendre la fin du traitement poodyire les sorties,
alors que souvent certaines sont connues avant. Une apnechp permettant de

Section 9.1 — Contexte 191

résoudre cet inconvénient estiunérationdes solutions. Cela consiste a sortir,
apres une phase de précalcul, chaque solution, 'uresdfautre, avec un délai
raisonnable entre deux solutions consécutives. Enfin,ddemd’évaluatioren
flux (streaming impose davantage de restrictions sur la consommationainém
Dans ce mode, le documentiX est lu en une seule passe, de la premiéere balise a
la derniere. Cet ordre est appelé ordre du document. ltee smt également pro-
duite en flux : lorsqu’une solution est trouvée, ou qu’'undipalu document de
sortie est produite, elle est envoyée sur un périphérigusortie. L'objectif d’'une
évaluation en flux est d’utiliser moins de ressources m@men ne stoquant que
I'information nécessaire. Le stockage est nécessaisgle la sortie dépend de
la suite du flux d’entrée. Le but est de pouvoir traiter desudeents ne pouvant
étre chargés en mémoire centrale, ou de traiter a kevdé's flux XiL provenant
d’un réseau.

Plusieurs standards ont &€té mis en place pour les diff@tgpes de traitements
évoqueés ci-dessus. Nous avons déja illustré les z@mde schéma par les DTDs,
définies au sein du standarduX [BPSM™08]. XML Schema FW04] est une
extension des DTDs permettant par exemple de caract@liseprécisement le
contenu des données textuelles. De plus, les schemassaafiXvL Schema sont
eux-mémes des documentsX, a la difference des DTDs. Relax N&dV03]
décrit la structure des arbres valides, et délegue é&xiipation des données
textuelles valides a ML Schema.

XPath [CD99 est le standard pour la sélection de nceuds dans les dotzimen
XML. XPath est basé sur la description des chemins, par dess gliitapes
a suivre jusqu’a atteindre les noeuds sélectionnés. thXparmet également
d’ajouter des filtres a chaque étape. Un filtre est une coaromn booléenne
d’expressions de chemins, et est satisfait si un nceudatitistte combinaison.

Il est eégalement possible de tester le contenu textuel dmsds. XPath est un
langage de requéte central, utilise comme mécanismeléeti®n de noeuds dans
de nombreux autres langages, comme XPoirbJ01], un standard pour la

sélection de fragments dans les documenis X

XPath est également utilisé par les deux langages defdoramstion XQuery
[BCFt07] et XSLT [Cla99. XQuery est un langage impératif utilisant des boucles
for pour sélectionner des tuples de nceuds. Ceux-ci sont eniggérés dans un
contexte XML pour produire un documentwL de sortie. XSLT est plus proche
de la programmation fonctionnelle. Une feuille de style XSist composée de
patrons, activés pour les nceuds satisfaisant I'expne3dfath.

XProc WMTOQ9] propose de combiner tous ces standards grace a un langage
de pipelines. Alors que XPath, XQuery et XSLT n’étaient paacus pour une
évaluation en flux, XProc permet de définir des parties adbie ou operent la
sélection et la transformation. Ainsi, les difficultéh@mentes a I'évaluation en

192 Chapter 9 — Résumé

flux sont circonscrites a certaines régions. Comme &apns ce manuscrit,
d’autres langages, comme STBBCO0Z), ont été congus spécifiquement pour une
évaluation en flux, mais aucun standard n’a été adopté.

Les automates finis de motdJ79] opéerent sur les mots en un seul passage,
afin de décider de leur appartenance au langage de 'awgoiiatsi, ils évaluent
naturellement les mots en flux. Ces objets ont été &udélongue date, et
bénéficient de liens intéressants avec la logique etdartd des langages. Les
documents XiL sont modélisés par des arbres, et non par des mots. Cependa
les documents ML de base sont des linéarisations de ces arbres : un document
XML est une suite de balises (un fluxX), et donc un mot. Ici les balises sont
bien imbriquées, et refletent la structure d’arbre. Lesmates de mots sont inca-
pables de prendre en compte cette relation d'imbricatimud\vons donc besoin
d’'un modele d’automates plus puissant pour traiter lesXiunx .

Les automates d'arbreCPG*07] fournissent un cadre pour la définition
et I'eétude des traitementsN{. Des relations directes avec la logique et la
théorie des langages d’arbres ont été égalementi&€tadnl travers de nombreux
travaux. En particulier, ils représentent un cadre aigéle pour les bases de
données XiL, de la méme maniere que l'algebre relationnelle pourbleses
de données relationnelles. Il a é&té montré que les aattesrd’arbres capturent
tous les langages de schémas standards, et la traductionsdhéma en au-
tomate d’arbre est relativement simpMLMO1]. Les automates d’arbres ont
également été proposés comme mécanisme de défidéioaquétes dans les ar-
bres NS02 Koc03 BS04 CNTO04. Les expressions XPath peuvent également
étre traduites en automates d’arbres, mais cette foiathuttion n’est pas triv-
iale. La validation et le traitement des requétes ontégeht été étudiés pour
les automates d’arbres. Les transformations sont défpaesles transducteurs
d’arbres. Par rapport aux automates d’arbres, ils permteteeproduire une sortie
tout en lisant I'entrée.

9.2 Motivations

Dans ce manuscrit, nous étudions les algorithmes de sepamx requétes, util-
isant une évaluation en flux, pour des requétes définiedgsaexpressions XPath
et des automates d’arbres. L'évaluation en flux est désisrom défi majeur pour
le traitement des requétes XPath. Michael Kay, le concepte Saxon (le moteur
de référence pour XQuery) déclarait recemméatyf09 :

Les capacités de traitement en flux [de Saxon] sont déssiinae
des principales raisons pour lesquelles les gens acheteraduit.

Section 9.2 — Motivations 193

entrée a b a a b b b a b d
mémoire|1 1 3 4 4 8 8
sortie 4 8

Figure 9.3: Evaluation en flux pour la sélection des pos#iosuivies pamw-b.

Le traitement en flux des documentsX est étudié depuis longtemps. Nous
illustrons ce mode d’évaluation et les concepts affar@atr une requéte sur les
mots de l'alphabefa, b}. Considérons la requéte qui sélectionne les positions
étiquetées par, et directement suivies paér. Par exemple, sur le mabaabbbabb,
cette requéte sélectionne les positions 4 et 8, commgu@dians la figur®.3.
Toutes les positions étiquetées pgreuvent immédiatement &tre écartées. Pour
les positions étiquetées parla sélection ou le rejet d’'une position candidate ne
peuvent pas étre décidés immédiatement. Les positaivées para (comme
la position 3) peuvent étre rejetées apres une étapeelles suivies pab - a
(comme 1) apres deux. Cette requéte peut etre évaltgeume fenétres(id-
ing window de longueur 3, et nécessite de mémoriser au plus un sedidzd
a la fois. Nous appelondélai la taille minimale de la fenétre, ebncurrence
[BYFJO] le nombre minimal de candidats simultanément vivants. caindidat
estvivanta un certain moment, s'il existe une continuation du fluxmpettant sa
sélection, et une autre permettant son rejet. Ainsi ledidats vivants nécessitent
d’étre mémorisés. Il est souvent facile de définir depiédes ayant une concur-
rence élevée, par exemple ici en permettantigéeapparaisse apres mais pas
immédiatement. Les schémas peuvent permettre de edduguantité de données
a mémoriser. Par exemple supposons que tous les motevaliht tels qu’'une
fois que troish successifs sont apparus, toute positiogst suivie pab-b. Dans
ce cas, toutes les positions étiquetéesdgpapparaissant apres trdisuccessifs
pevent étre immédiatement sélectionnées. Par examapkenotre cas, la position
8 peut étre sortie a la position 8 au lieu de la position 10.

Des les premiers travaux, les algorithmes d’évaluatiofiex ont montré de
meilleurs performances, mais ne permettaient de n’évajue des fragments re-
streints des langages de requétes. De nombreuses difidides a ce mode
d’évaluation ont été identifiees. Pour la validati®@VpZ, un premier obsta-
cle est la nature récursive des documentsLX Le traitement de documents
récursifs nécessite de stocker dans une pile des infamnsai propos des ancétres
des nceuds. Ainsi la mémoire peut étre bornée par la pdefande l'arbre,
mais ne peut pas étre bornée indépendamment pour towshess. Les lan-
gages de requéte comme XPath sont, de maniere inhéremtegéterministes
[PCO0Y, a la difference des langages de schémas. Par exempthXpermet
de parcourir I'arbre suivant I'axdescendantEn partant d’'un nceud, cela corre-

194 Chapter 9 — Résumé

spond a sélectionner tous ses descendants, et donegngombreux candidats
pour I'étape suivante. Parmi ces candidats, certainsnabesoin d’étre stockés,
puisqu’ils peuvent avoir besoin d’informations supplé&taéres pour déterminer
s'ils satisfont la requéte. Ces difficultés apparaissi&a pour le filtrage de do-
cuments XML par des expressions XPatAHOQ]. De plus, XPath permet le
branchement, via les filtres et les conjonctions au sein dtessfi Cela aug-
mente souvent la complexité des algorithmes. Les tramsfions apportent des
problemes supplémentaires pour I'évaluation en flel{N*05, Mic07]. C'est
typiquement le cas pour les opérateurs manipulant les@asparmi les éléements
sélectionnés, par exemple en cherchant le dernierexléselectionné, ou pour
trier ces €lements.

Par rapport a ces aspects bloquants, des bornes inf&sipour la mémoire ont
été établies pour ces differents traitements. Pouelggétes, la notion centrale est
la concurrence, precédemment introduite. Il a été méojf@YFJ0F que la con-
currence est une borne inféerieure pour la mémoire, lotsaii¢ment des requétes
XPath appartenant a un certain fragment. Cela amene @sge fa question suiv-
ante : peut-on atteindre cette borne ? Cette question peutiécomposée en
plusieurs variantes. Tout d’abord, ce résultat se g#isert-il & d'autres classes
de requétes ? Il serait également intéressant de sawgtte borne inférieure
est proche de la borne supérieure, c’est-a-dire s’iltexdgs algorithmes dont la
consommation mémoire soit proche de cette borne inféxieQuel est le colt en
temps de calcul pour atteindre de telles bornes ? En d’atdre®es, ces algo-
rithmes nécessitent-ils des temps de calcul importantsgbecider de la sélection
ou du rejet des candidats ? Comment ces colts varientdifectlasse de requétes
a l'autre ? Existe-t-il des classes de requétes pour &ksgudes algorithmes ef-
ficaces existent ? Ces classes sont-elles caractérisaesipe certaine propriété
? Les classes ayant une concurrence non bornée peuvenesi traitées ef-
ficacement ? Quelles requétes nécessitent peu de matmrigmeéme si cette
mémorisation ne peut étre bornée) ? Ces questions motwaléfinition d’'une
mesure plus fine que la concurrence :steeamabili€ d’une requéte, i.e. une
notion mesurant a quel point une requéte est adaptée &vwaduation en flux.
La concurrence établit une premiere frontiere entreréggiétes ayant une con-
currence bornée (et pouvant ainsi étre évaluées aweon@moire bornée sur des
arbres de profondeur bornée) et les autres. Mais les questi-dessus justifient
la définition d’'une notion plus fine de streamabilité.

Nous nous intéressons aux requétesires, pourn > 0. Celles-ci
sélectionnent des-uplets de nceuds dans les arbres. Lewas- 0 corre-
spond aux requétes booléennes, qui peuvent uniquemsimgilier les arbres
sélectionnant le tuple vide des autres arbres. Ainsi lgsiges booléennes
définissent des langages d’arbres, et sont utilisées filtrer les arbres satis-

Section 9.2 — Motivations 195

faisant certaines contraintes. Paut 1, nous obtenons les requétes monadiques,
qui sélectionnent dans chaque arbre un sous-ensemble decsgls. La sélection
de n-uplets de noeuds est une opération centrale dans les Emgdagtransfor-
mation. Dans XPath 2.0 et XQuery, cette opération est teféecvia des boucles
pour imbriquées, appelées expressions FLOWR. XPath 1.0itéfiquement
des requétes monadiques. En ajoutant des variables, eomefons a XPath
1.0 de définir des requétesaires. Par rapport aux expressions FLOWR, cela
donne plus de flexibilité en terme d’évaluation, et peumpbquer la tache de nos
algorithmes. Les expressions FLOWR sont des instructienglus bas niveau,
permettant au développeur de définir des requétes eglmpt une évaluation en
flux ou pas. Pour les requétes par automates, les requ&iess sont définies par
des langages d’arbres annotés.

Etat de I'art Atteindre la borne inférieure en terme de consommatiomoié

a un codt tres important en temps. Benedikt et 8JLWO08§ montrent par ex-
emple que pour XPath avec DTDs, pouvoir rejeter les carsl@gant échoué au
plus tdt, avec un algorithme construit en temps polynompaalrapport a la taille
de la requéte, et utilisant un temps polynomial (par rap@da requéte) a chaque
éevéenement du flux, est équivalent ailRe = PSPACE

Berlea Ber06 Ber07] étudie lesrequétes egulieres d’arbresdéfinies par des
grammaires d’arbres. Pour cette classe de requétesaBedpose un algorithme
basé sur les automates d’arbres, utilisant un espace m€omimal en terme
de nombre de candidats, tout en traitant chague événesnet@mps et espace
polynomial, pour chaque candidat. Cependant, cette clissequétes suppose
un alphabet infini, & la difference des documentga X La taille infinie de alphabet
simplifie grandement le fait de pouvoir sélectionner oatesjles candidats au plus
tot.

Certains algorithmes ont été proposés pour I'évatmagn flux de XPath.
Pour les axes vers le bas (descendants), nous pouvons nratties travaux
de Bar-Yossef et al. HYFJO5 BYFJO7, Ramanan Ram05 Ram09, et Gou
and Chirkova GC073. Les algorithmes de Barton et alBCG"03] et de Wu
et TheodoratosWTO08] autorisent les axes vers le haut (ancétres) et vers le bas.
Olteanu et al. DMFB02 OKBO03, OIt07h prouvent que Forward XPath, le frag-
ment de XPath ou seuls les axes respectant I'ordre du dodwsoat autorisés,
est aussi expressif que XPath (en terme de capacités tiavigelles). lls pro-
posentSPEX un algorithme efficace basé sur les réseaux de transaacigui
évaluent les expressions Forward XPath. Nizar et KunR&0B] définissent un
algorithme pour les expressions Forward XPath ou aucegation n’apparait.
Récemment, ils étendent cet algorithme aux axes invéhi€89]. Benedikt et
Jeffrey BJO7 étudient des logiques équivalentes a la partie namigaelle de

196 Chapter 9 — Résumé

XPath, et déterminent si elles conviennent a une évialuan flux. lls iden-
tifient des fragments utilisant des modalités vers le bagaes I'ordre inverse
du document, sans négation, de telle sorte que la séledtim noeud peut étre
décidée lors de son ouverture ou de sa fermeture. Pouragménts, ils mon-
trent que des algorithmes en temps et espace polynomiaéx@aement existent.
Benedikt et al. BJILWO§ étudient le filtrage des flux ML par des contraintes
XPath, et proposent une heuristique pour la détectionwaitpt des violations de
contraintes. Tous ces algorithmes pour I'évaluation datRBur des flux XiL
n’atteignent pas une consommation mémoire optimalepekent inutilement des
candidats (ou des correspondances partielles) dansnsecas. Ley et Benedikt
et al. LBO9] étudient I'existence d’extensions de XPath ayant I'esggivité de la
logique du premier ordre, et n'utilisant que des axes coimbleatavec I'ordre du
document. lls prouvent que les extensions ayant I'exprigggiu premier ordre
lorsque tous les axes sont permis ne suffisent pas lorsgsi'®dint restreintes aux
axes compatibles avec I'ordre du document.

D’autres bornes inférieures ont été établies, indépenment de la concur-
rence. Bar-Yossef et al.BYFJ04 BYFJO7 prouvent trois bornes inférieures
pour des fragments de XPath. La premiere edialhe de la frontere de la
requete c’est-a-dire le nombre maximal de freres des ancétias moeud, dans
la représentation arborescente de la requéte. La seastidaprofondeur de
récursiondu document, ce qui correspond au nombre maximal d’arcayant la
méme étiquette. La troisieme est le logarithme daeddondeurde I'arbre. Grohe,
Koch et SchweikardtGKS07, en étudiant des machines de Turing modélisant
I'évaluation en flux avec plusieurs passes, montrent que lpgartie navigation-
nelle de XPath, lprofondeurde I'arbre est une borne inférieure.

9.3 Contributions

Nous présentons a présent nos contributions. Tout ag donmanuscrit, nous
considérons les requétesaires, i.e., les requétes qui sélectionnent.deplets
de nceuds, au lieu de simples nceuds, comme défini dans XBaibe2plus, nous
essayons toujours de prendre les schémas en considérafiio d’'améliorer le
traitement des flux, puisque les schémas sont souventrdidps dans les appli-
cations concretes.

Streamabilité Nous commencons par définir un modele de calcul pour
'évaluation des requétes en flux : |&reaming Random Access Machines
(SRAMSs). Puis nous introduisons notre notion steeamabilie. Nous avions
précédemment constaté qu’une telle notion manquait.raison de I'absence
de telles définitions formelles, plusieurs publicationssgntent des erreurs dans

Section 9.3 — Contributions 197

I'analyse de complexité en espace. De maniere simplifiéar un entier naturel
m, OU pourm = oo, une requéte est-streamable si elle peut &tre calculée en util-
isant un temps et un espace polynomial sur tous les arbresgsouiels la concur-
rence de la requéte est inférieurera Cela introduit une hiérarchie de classes de
requétes. Etre:-streamable avec une valeur élevée pawgst souhaitable, et sig-
nifie que les arbres d’entrée entrainant une concurremfeadgare an peuvent étre
traités efficacement. Les requétesstreamables utilisent toujours un temps et
un espace polynomial par événement, independammenta®turrence. Nous
étudions les relations entre les classes de requétsreamables, et les classes
de requétesn-streamable pour toutr € Ny. Ces dernieres doivent avoir une
concurrence polynomialement bornée pour étrstreamables (pour les requétes
monadiques). Nous étudions la dureté de décider si wsselde requéte a une
concurrence bornée, ou une concurrence polynomialenoenéb. Pour Forward
XPath, ces problemes sont coNP-durs. Nous montronsrgul&treamable a
pour conséquence I'existence d’un test d’universaligmpomial sur la classe de
requétes, des que cette classe vérifie certaines ptépriComme l'universalité
de Forward XPath est coNP-dure, Forward XPath n’estlpstseamable, et donc
n'est pasn-streamable, pour tout € N U {oc}.

Streaming Tree Automata Nous définissons leStreaming Tree Automata
(STAs), un modele d’automates évaluant les arbres dandré du document.
Cela correspond exactement a I'ordre d’évaluation du Xwx. correspondant.
Nous établissons les correspondances entre ce modeés etutres modeles
évaluant dans I'ordre du document, mais sur d’autres ttres : lespushdown
forest automatgdNS9g, les visibly pushdown automatpAMO04] et les nested
word automatgAlu07]. Nous montrons également comment les DTDs peuvent
étre traduites en STAs, ainsi que les relations entre STks @automates d’arbres
standard (opérant vers le haut ou vers le bas). Les rexjdéfmies par des STAs
déterministes (dSTASs) sont streamables, des lors qaeldess ont une profondeur
bornée. Nous le prouvons en élaborant un algorithmeuawntles requétes au plus
tot pour les requétes définies par dSTAs.

Traitement des Reqlétes au plus 6t pour les Streaming Tree Automata Les
algorithmes permettant de répondre aux requéteplus 6t ont la propriété de
sortir les réponses aux requétes des qu’assez d’infmnsaont été lues pour as-
surer la sélection d’'une solution, quelle que soit la sditeflux. De maniere
duale, tous les candidats rejetés sont éliminés dékegticertain qu’aucune suite
du flux ne permettra de sélectionner ce candidat (une @i@mommeédast-fail
dans BJLWO0§). Ce cadre de travail, bien que n'ayant jamais été désimelle-
ment, trouve son origine dans les travaux de Bar-Yossef. e[BFJ0g et de

198 Chapter 9 — Résumé

Berlea Ber0§. Nous proposons une telle définition formelle.

Cette capacité a répondre aux requétes au plus toegsise par tout algo-
rithme ayant une consommation mémoire optimale. Dansdecoatraire, cela
signifierait qu’a un certain moment un candidat est inotéat stocké. Cepen-
dant, le fait de pouvoir répondre au plus tdt a souvent uir icoportant en temps
de calcul. Pour les requétes XPath, nous montrons qu’dasP-dur de décider
si le préfixe d’un flux assure la sélection d'un candidatrdanPour les requétes
définies par dSTAs, le probleme devient traitable, etenatgorithme de réponse
au plus tot fonctionne en temps polynomial, pour une aritlonnée. Ceci fait
des dSTAs un modele robuste pour définir des requéteséatap une évaluation
en flux. Notre hypothese de travail est que toute classe gleete streamable
peut étre traduite en temps polynomial vers les dSTAs. t@eesas par exemple
pour le fragment de XPath défini ci-apres, pour lequel foumissons une telle
traduction, prouvant ainsi sa streamabilité.

XPath Nous étudions ensuite la streamabilité de XPath plusetaild"Nous
identifions une hiérarchie, nommé&eDownward XPath, ayant pour propriété
d’étre m-streamable pour tout: > 0. La propriété fondamentale ici est que
k-Downward XPath permet de n’avoir au plus qu’un seul cartdioaultanément,
pour toutes les étapes de chaque branche de I'expressiath XPour obtenir
cette propriété, nous combinons des restrictions syotas (sur la requéte) et
sémantiques (sur le schéma}Downward XPath est un fragment expressif, par
le fait qu’il autorise la négation, le branchement (cowrfion et disjonction), ainsi
gue les axes vers le bas (fils et descendants). De plus, nousssons une tra-
duction effective et en temps polynomial des expressieDswnward XPath vers
les dSTAs. De cette maniere, nous pouvons réutiliser igosithmes congus pour
les dSTAs avec des expressignBownward XPath, et en particulier notre algo-
rithme permettant d’évaluer au plus tot.

Borner la concurrence et le ctlai Enfin, nous prouvons que pour les requétes
définies par dSTAs, il peut étre décidé en temps polyabsii une requéte a
un délai borné et/ou une concurrence bornée.délai est le nombre maximal
d’événements entre la lecture d’'un nceud (ou ditmplet de nceuds dans le cas
n-aire) et le premier @événement a partir duquel sa sélegeut étre décidée. Le
délai et la concurrence sont deux mesures clés pour lansatgilite : le délai est
lié a la qualité de service, alors que la concurrence estroesure de la quantité
de mémoire nécessaire. Pour obtenir ces propriétass ntlisons et étendons
les résultats concernant les relations reconnaissalagsels, déja étudiées pour
les arbres d’arité bornéd@ig90, CDG*07] ainsi que les arbres d’arité non bornée
[BLO2, BLNOQ7]. Ces relations entre arbres ont la particularité d’@éeonnues

Section 9.3 — Contributions 199

par des automates, modulo un codage des relations entes adrs les langages
d’arbres. Nous montrons qu'’il peut étre décidé en tenggnomial si la val-
uation d’une relation reconnaissable binaire est boragsij elle est bornée par
un certaink donné. Nous obtenons ces résultats par réduction sualleton
bornée des transducteurs d’arbr€gipg et I'ambiguiték-bornée des automates
d’arbres. Cela nous permet de décider en temps polynomj@bsr unk donné
et une aritén donnée, une requéte a un délai borné jpat/ou une concurrence
bornée pak.

200 Chapter 9 — Résumé

Index

alive candidate57
alphabet
ranked21
unranked21
ambiguity,147
automaton
pseudo-completd,23
ambiguity,147

bottom-up tree automatog8

finite word automatonl47
nested word automatoid8

pushdown forest automato®il

stepwise tree automato®4

streaming tree automaton3
top-down tree automato@9

tree automator28
tree walking automator29

visibly pushdown automatofi8

binary encoding23

candidate
alive,57
completes57
partial,57
canonical
language36
structure 36
complexity
combined complexity35
data complexity35
concurrencys7
polynomially bounded62
cylindrification, 37, 158 159

delay,145
document orde£5
DTD, 31

extended DTD32

earliest query answerin§1
event,54
earliest for rejection93
earliest for selectior§2
sufficient for rejection92
sufficient for selection91
event state/3
expression35s

forest state82

hedge22
linearization 55

linearization 54
logic
FO,25
MSO, 26

nested word automatoiri8
node state73

overlay,161

position,136

productive 123 147
projection,37, 159

pushdown forest automato®l

query,35
class35

202

Index

descendingg5
enumeration complexit0
evaluation35

evaluation complexity50
expression35
language35

recognizable relatior,61
relational structure24
restrained competitior34

safe
rejection,66
selection66
state for rejection99
state for selectiorf8, 149
schema35
scopel37
state
event state/3
forest state82
node state73
tree state82
stepwise tree automato4
streamability62

streaming random access machib@,

streaming tree automaton3

term
filter term,120
position,136
width, 121

tree
depth,22
linearization 54
prefix tree 57
ranked tree22
shallow,112
unranked tree22

tree automator28

tree pattern44

tree state82

valuednessl 64
visibly pushdown automatofi8

word, 24
word automaton]47

XPath
CoreXPath 1.040
CoreXPath 2.045
k-Downward XPath121
Forward XPath43
k-Forward XPath137
Weakk-Downward XPath136
Weakk-Forward XPath138
tree patternd4

Bibliography

[ABB104] Arvind Arasu, Brian Babcock, Shivnath Babu, Jon McAlistmnd
Jennifer Widom. Characterizing memory requirements farigs
over continuous data stream®CM Transactions on Database Sys-
tems 29(1):162-194, 2004. (Cited pad2)

[ABD *05] Loredana Afanasiev, Patrick Blackburn, loanna DimitriBartrand
Gaiffe, Evan Goris, Maarten Marx, and Maarten de Rijke. P f
ordered treesJournal of Applied Non-Classical Logic$5(2):115—
135, 2005. (Cited pagel)

[ABLO7] Marcelo Arenas, Pablo Barcelo, and Leonid Libkin. Comigni
temporal logics for querying XML documents. International
Conference on Database Thepmyages 359-373, 2007. (Cited
page52)

[ABS00] Serge Abiteboul, Peter Buneman, and Dan Subiata on the Web:
from relations to semistructured data and XMYorgan Kaufmann,
2000. (Cited pagé2)

[AFO0] Mehmet Altinel and Michael J. Franklin. Efficient Filteriog XML
Documents for Selective Dissemination of Information26th In-
ternational Conference on Very Large Data Baspages 53—64.
Morgan Kaufmann, 2000. (Cited padggsl3, 123 and194)

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianlkoundations of
Databases1995. (Cited page49 and50)

[AluO7] Rajeev Alur. Marrying words and trees. #6th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems
pages 233-242. ACM-Press, 2007. (Cited pa)e32, 76, 79, 84,
and197)

204

Bibliography

[AMO4]

[AMO6]

[AMO9]

[AMROS]

[AU71]

Rajeev Alur and P. Madhusudan. Visibly pushdown languades.
36th ACM Symposium on Theory of Computipgges 202—-211.
ACM-Press, 2004. (Cited pag8s18, 32, 76, 80, and197)

Rajeev Alur and P. Madhusudan. Adding nesting structureotals:

In 10th International Conference on Developments in Language
Theory volume 4036 ol ecture Notes in Computer Scienpages
1-13. Springer Verlag, 2006. (Cited patf®

Rajeev Alur and P. Madhusudan. Adding nesting structureotals:
Journal of the ACM56(3):1-43, 2009. (Cited pag@g and81)

Cyril Allauzen, Mehryar Mohri, and Ashish Rastogi. Genealglo-
rithms for testing the ambiguity of finite automata.Developments
in Language Theory, 12th International Confereneelume 5257
of Lecture Notes in Computer Sciengeages 108-120. Springer
Verlag, 2008. (Cited pagesi6, 151, 158 and161)

Alfred V. Aho and Jeffrey D. Ullmann. Translations on a cotte
free grammarlnformation and Contrql19:439-475, 1971. (Cited
page32)

[Bag06] Guillaume Bagan. MSO Queries on Tree Decomposable Stesctur

are Computable with Linear Delay. @omputer Science Logic
volume 4646 ofLecture Notes in Computer Sciengeges 208—
222. Springer Verlag, 2006. (Cited padesand54)

[Bag09] Guillaume Bagan. Algorithmes et complext des prol@mes

[BBCO2]

[BBD102]

[BCO4]

d’énungration pour I'evaluation de regétes logiquesPhD thesis,
Université de Caen, 2009. (Cited paaf®

Oliver Becker, Paul Brown, and Petr Cimprich.
Streaming Transformations for XML (STX), 2002.
http://stx.sourceforge.net/. (Cited pages3, 18,
and192

Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwand
Jennifer Widom. Models and issues in data stream systerd<Ch
SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systemgpages 1-16. ACM-Press, 2002. (Cited page

Mikotaj Bojahczyk and Thomas Colcombet. Tree-walkingoemiata
cannot be determinized. [Bilst International Colloquium on Au-
tomata, Languages and Programmijrgecture Notes in Computer
Science, pages 246—-256. Springer Verlag, 2004. (Cited 33ge

http://stx.sourceforge.net/

Bibliography 205

[BCO5] Mikotaj Bojahczyk and Thomas Colcombet. Tree-walkingoamiata
do not recognize all regular languages.3ifth Annual ACM Sym-
posium on Theory of Computingages 234-243, New York, NY,
USA, 2005. ACM-Press. (Cited page)

[BCFO3] Véronique Benzaken, Giuseppe Castagna, and Alain Fi@&dhce:
an XML-centric general-purpose languagd&CM SIGPLAN No-
tices 38(9):51-63, 2003. (Cited page&8and52)

[BCFt07] Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela

Florescu, Jonathan Robie, and Jérdbme Siméon. XQuery
1.0 An XML query language, W3C recommendation, 2007.
http://mww.w3.0rg/TR/2007/REC-xquery-20070123/. @cit

pages3, 43, and19])

[BCG*03] Charles Barton, Philippe Charles, Deepak Goyal, Mukund
Raghavachari, Marcus Fontoura, and Vanja Josifovski. aStieg
XPath Processing with Forward and Backward Axesl9th Inter-
national Conference on Data Engineeringages 455-466, 2003.
(Cited paged, 15, and195)

[BDGO7] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On
acyclic conjunctive queries and constant delay enumeratitn
Computer Science Logic, 21st International Workshop, C3172
16th Annual Conference of the EACGSlolume 4646 ofLecture
Notes in Computer Sciengeages 208—222. Springer Verlag, 2007.
(Cited pages0)

[BDGOO08] Guillaume Bagan, Arnaud Durand, Etienne Grandjean, aedéfi¢
Olive. Computing the jth solution of a first-order querRAIRQ
42:147-164, 2008. (Cited pad8)

[BDM*T06] Mikotaj Bojahczyk, Claire David, Anca Muscholl, Thomas
Schwentick, and Luc Segoufin. Two-variable logic on dateg@nd
XML reasoning. InTwenty-fifth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systgrages 10-19, 2006.
(Cited paget?)

[Ber06] Alexandru Berlea. Online evaluation of regular tree quseiNordic
Journal of Computingl3(4):1-26, 2006. (Cited pag6s9, 17, 76,
94, 195 and198)

206 Bibliography

[Ber07] Alexandru Berlea. On-the-fly tuple selection for XQuery. Aro-
ceedings of the International Workshop on XQuery Impleaent
tion, Experience and Perspectivekine 2007. (Cited pagés 17,
and195

[BFGO08] Michael Benedikt, Wenfei Fan, and Floris Geerts. XPathsfabil-
ity in the presence of DTDslournal of the ACM55(2):1-79, 2008.
(Cited pagegl5 and47)

[BFKO5] Michael Benedikt, Wenfei Fan, and Gabriel Kuper. Strudtprap-
erties of XPath fragment3heoretical Computer Sciencg36(1):3—
31, 2005. (Cited pagé7)

[BFLS06] Francois Bry, Tim Furche, Benedikt Linse, and Andreas &etier.
Efficient evaluation of n-ary conjunctive queries over sresnd
graphs. In8th annual ACM international workshop on Web Infor-
mation and Data Management (WIDM)ages 11-18. ACM-Press,
2006. (Cited pag&0)

[BGMMO9] Henrik Bjorklund, Wouter Gelade, Marcel Marquardt, andnWwi
Martens. Incremental XPath evaluation.12th International Con-
ference on Database Theogryolume 361, pages 162-173. ACM-
Press, 2009. (Cited pagé$ and53)

[BJO7] Michael Benedikt and Alan Jeffrey. Efficient and expressiee fil-
ters. InFoundations of Software Technology and Theoretical Com-
puter Sciencevolume 4855 ot ecture Notes in Computer Science
pages 461-472. Springer Verlag, 2007. (Cited pagd, 14, 51,

58, 69, 95, 123 and195H

[BJLWO08] Michael Benedikt, Alan Jeffrey, and Ruy Ley-Wild. Streanme-i
walling of XML Constraints. IPACM SIGMOD International Con-
ference on Management of Dafsges 487-498. ACM-Press, 2008.
(Cited pages$, 7,9, 12, 14, 94, 123 186, 195 196 and197)

[BK93] Anne Bruggemann-Klein. Regular expressions to finite raatta.
Theoretical Computer Scienc&20(2):197-213, November 1993.
(Cited page32)

[BKO8] Michael Benedikt and Christoph Koch. XPath leasha@M com-
puting surveys41(1), 2008. (Cited pagek3 and45)

Bibliography 207

[BKSO02] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Halistrig

[BKWOS]

[BKWOO]

[BKWMO1]

[BLO2]

[BLOS]

[BLNO7]

[BLS06]

[Bojo4]

[Bojo8]

joins: optimal XML pattern matching. IBIGMOD’02 pages 310—
321, 2002. (Cited page’ and55)

Anne Briggemann-Klein and Derick Wood. One-unambiguegs r
ular languages. Information and Computatiqn142(2):182—-206,
May 1998. (Cited pag85)

Anne Briggemann-Klein and Derick Wood. Caterpillars, teat
tree automata and tree pattern matchingD&velopments in Lan-
guage Theory, Foundations, Applications, and Perspexi{¥899)
pages 270-285. World Scientific, 2000. (Cited page

Anne Bruggemann-Klein, Derick Wood, and Makoto MuratagRe
ular tree and regular hedge languages over unranked alish&ee-
sion 1, April 07 2001. (Cited pad#?)

Michael Benedikt and Leonid Libkin. Tree extension algsbizo-
gics, automata, and query languagesPiaceeding of the’d Logic

in Computer Science Conferenpages 203—-214. IEEE Comp. Soc.
Press, 2002. (Cited pag#6, 146 147, and198

Pablo Barcel6 and Leonid Libkin. Temporal logics over unked
trees. In20th Annual IEEE Symposium on Logic in Computer Sci-
ence pages 31-40. IEEE Comp. Soc. Press, 2005. (Cited g#ges
and52)

Michael Benedikt, Leonid Libkin, and Frank Neven. Logicefid-
ability and query languages over ranked and unranked tr€si
Transactions on Computational Logjc8(2), April 2007. (Cited
pageslO, 146 147,162 164, 165 166 and198)

Vince Barany, Christof Loding, and Olivier Serre. Reayitly prob-
lems for visibly pushdown languages. In B. Durand and W. Tasm
editors,23rd Annual Symposioum on Theoretical Aspects of Com-
puter Sciencevolume 3884 ot ecture Notes in Computer Science
pages 420-431. Springer Verlag, 2006. (Cited pgEg)e

Mikotaj Bojanczyk. Decidable Properties of Tree LanguagdzhD
thesis, Warsaw University, 2004. (Cited pa@8and29)

Mikotaj Bojahczyk. Effective characterizations of tregics, 2008.
PODS’08 Keynote. (Cited pagb)

208 Bibliography

[BPSMT08] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve
Maler, and Francois Yergeau. Extensible Markup Lan-
guage (XML) 1.0 (Fifth Edition), November 2008.
http://ww. w3. or g/ TR/ 2008/ REC- xm - 20081126/ .
(Cited pageq, 3, 33, 35,43, 189 and191)

[Bry86] Randal E. Bryant. Graph-Based Algorithms for Boolean Fonct
Manipulation. IEEE Transactions on Computer85(8):677-691,
1986. (Cited pagé23

[BS04] Alexandru Berlea and Helmut Seidl. Binary queries for doeam
trees. Nordic Journal of Computingl11(1):41-71, 2004. (Cited
pagest, 17,52, 77, 88, and192)

[BSO05] Michael Benedikt and Luc Segoufin. Regular tree languages de
finable in FO and FOmod. I22nd International Symposium on
Theoretical Aspects of Computer Scieneglume 3404 of_ecture
Notes in Computer Sciengeages 327-339. Springer Verlag, 2005.
(Cited page2d)

[BSSS06] Mikotaj Bojanhczyk, Mathias Samuelides, Thomas Schwéntnd
Luc Segoufin. Expressive power of pebbles automatalnter-
national Colloquium on Automata Languages and Programming
(ICALP’06), Lecture Notes in Computer Science, pages 157-168.
Springer Verlag, 2006. (Cited page)

[Buic60] J.R. Buchi. On a decision method in a restricted second @ité-
metic. In Stanford Univ. Press., editd?yoc. Internat. Congr. on
Logic, Methodology and Philosophy of Scienpages 1-11, 1960.
(Cited page29)

[BYFJO4] Ziv Bar-Yossef, Marcus Fontoura, and Vanja Josifovski. @e t
memory requirements of XPath evaluation over XML streams.
In ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systemgages 177-188. ACM-Press, 2004. (Cited
pages/, 11, 14, and196)

[BYFJO5] Ziv Bar-Yossef, Marcus Fontoura, and Vanja Josifovski. fBumhg
in query evaluation over XML streams. ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Sysiesges 216—
227. ACM-Press, 2005. (Cited pagkss, 7, 9, 12, 15, 57, 61, 62,
66, 68, 74, 94, 185,193 194, 195 and197)

http://www.w3.org/TR/2008/REC-xml-20081126/

Bibliography 209

[BYFJO7] Ziv Bar-Yossef, Marcus Fontoura, and Vanja Josifovski. Qe t
memory requirements of XPath evaluation over XML streajosi-
nal of Computer and System Scien¢®(3):391-441, 2007. (Cited
pages/, 11, 14, 195 and196)

[CD99] James Clark and Steve DeRose. XML path language (XPath): W3C
recommendation, 1999. (Cited padgk43, and191)

[CDG*07] Hubert Comon, Max Dauchet, Rémi Gilleron, Christof Laglifrlo-
rent Jacquemard, Denis Lugiez, Sophie Tison, and Marc T@hma
Tree automata techniques and applications. Availablenerdince
1997:http://tata.gforge.inria.fr, October 2007. Re-
vised October, 12th 2007. (Cited pagg40, 16, 23, 31, 32, 33, 42,
75,146, 162 163 164, 165 192 and198)

[CDGLVO09] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzeaimd,
Moshe Vardi. An Automata-Theoretic Approach to Regular tkPa
In 12th International Symposium on Database Programming Lan-
guages2009. (Cited pagé24)

[CDZ06] YiChen, Susan B. Davidson, and Yifeng Zheng. An Efficient kkPa
Query Processor for XML Streams. B2nd International Confer-
ence on Data Engineeringage 79. IEEE Computer Society, 2006.
(Cited pagelb)

[CFGRO2] C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efiti
filtering of XML documents with XPath expressiong.he VLDB
Journal 11(4):354-379, 2002. (Cited pafd)

[CGO4] Luca Cardelli and Giorgio Ghelli. TQL: a query language for
semistructured data based on the ambient logMathematical
Structures in Computer Sciencé&4(3):285-327, 2004. (Cited
pageb2)

[CGLNQ9] Jérdme Champavere, Rémi Gilleron, Aurélien Lemay, dmachim
Niehren. Efficient inclusion checking for deterministiedr au-
tomata and XML schemasinformation and Computatiqgr2009.
(Cited page$83, 37, and83)

[CGT89] Stefano Ceri, Georg Gottlob, and Letizia Tanca. What Youaisy
Wanted to Know About Datalog (And Never Dared to AsKLEE
Trans. on Know. Data Engl1(1):146-166, March 1989. (Cited
page51)

http://tata.gforge.inria.fr

210

Bibliography

[CGT90] Stefano Ceri, Georg Gottlob, and Letizia Tanlcagic programming

and databasesSpringer Verlag, 1990. (Cited pa§6)

[Che06] Dunren Che. MyTwigStack: A Holistic Twig Join Algorithm vt

[Chi0O]

Effective Path Merging Support. [fth International Conference on
Software Engineering, Artificial Intelligence, Networgiand Par-
allel/Distributed Computing (SNPDpages 184-189. IEEE Com-
puter Society, 2006. (Cited pa§é)

Boris Chidlovskii. Using regular tree automata as XML schsm
In Proceedings of IEEE Advances in Digital Librarjgmges 89-98,
2000. (Cited pag83)

[Chu36] Alonzo Church. A Note on the Entscheidungsproblelournal of

Symbolic Logig1(1):40-41, 1936. (Cited pa@s)

[CIJdRO8] Huang Cheng, Li Jun, and Michel de Rougemont. Approximate Va

[Cla99]

[Cla08]

[CLNO4]

[CLT+06]

[CLT+08]

lidity of XML Streaming Data. Im9th International Conference on
Web-Age Information Management (WA|Mages 149-156, 2008.
(Cited pagel86)

James Clark. XSL Transformations (XSLT) version 1.0, W3C
recommendation, 1999. http://www.w3.0rg/TR/1999/RESIt-x
19991116. (Cited pages 43, and19])

Robert Clark. Querying Streaming XML Using Visibly Pushdow
Automata. Technical Report UIUCDCS-R-2008-3008, Uniigrs
of lllinois at Urbana-Champaign, October 2008. (Cited abe
and124)

Julien Carme, Aurélien Lemay, and Joachim Niehren. Learni
node selecting tree transducer from completely annotatathe
ples. In7th International Colloquium on Grammatical Inference
volume 3264 ofLecture Notes in Atrtificial Intelligen¢cgpages 91—
102. Springer Verlag, 2004. (Cited patg?)

Songting Chen, Hua-Gang Li, Junichi Tatemura, Wang-Pihtgi
Divyakant Agrawal, and K. Selcuk Candan. Twig2stack: dmit
up processing of generalized-tree-pattern queries ovek ¥btu-
ments. InProceedings of VLDBpages 283-294, 2006. (Cited

pages5)

Songting Chen, Hua-Gang Li, Jun’ichi Tatemura, Wang-Pin Hs
ung, Divyakant Agrawal, and K. Selcuk Candan. Scalablefilg

Bibliography 211

of Multiple Generalized-Tree-Pattern Queries over XMLe&tns.
IEEE Trans. on Know. Data Eng20(12):1627-1640, 2008. (Cited

pageld)

[CMO1] James Clark and Makoto Murata. Relax NG specifica-
tion. http://www.oasis-open.org/committees/relaxspgt-
20011203.html, 2001. (Cited pa88)

[CNTO4] Julien Carme, Joachim Niehren, and Marc Tommasi. Queryg u
ranked trees with stepwise tree automatda. 9th International Con-
ference on Rewriting Techniques and Applicatiommdume 3091 of
Lecture Notes in Computer Sciengages 105-118. Springer Ver-
lag, 2004. (Cited pages 31, 77, 88, and192)

[Cou09] Bruno Courcelle. Linear delay enumeration and monadicrsgco
order logic. Discrete Applied Mathematics57(12):2675-2700,
2009. (Cited pagé3)

[CRO4] Cristiana Chitic and Daniela Rosu. On validation of XML simes
using finite state machines. [fth International Workshop on the
Web and Databases (WebDB)ages 85-90. ACM-Press, 2004.
(Cited pageld)

[DEGVO01] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei
Voronkov. Complexity and expressive power of logic prognaimg.
ACM computing survey83(3):374-425, September 2001. (Cited
pagebl)

[Des01] Arpan Desai. Introduction to Sequential XPath. IDEAlliance
XML Conferencg2001. (Cited pag&6)

[DFFTO2] Y. Diao, P. Fischer, M.J. Franklin, and R. To. YFilter: Eféat and
Scalable Filtering of XML Documents. 1©8th International Con-
ference on Data Engineeringage 341. IEEE Comp. Soc. Press,
2002. (Cited pagé4)

[DMJO1] Steve DeRose, Eve Maler, and Ron Daniel Jr. XML
Pointer Language (XPointer) version 1.0, 2001.
http://mww.w3.0rg/TR/2001/WD-xptr-20010108/. (Citeages3,
43, and19])

[DOO06] Arnaud Durand and Frédéric Olive. First-Order Queriesr@@ne
Unary Function. InCSL, 15th Annual Conference of the EACSL

212 Bibliography

volume 4207 ofLecture Notes in Computer Sciengeges 334—
348. Springer Verlag, 2006. (Cited pagé

[Don65] John E. Doner. Decidability of the weak second-order thebtwo
successors.Notices Amer. Math. Sqcl12:365-468, March 1965.
(Cited page30)

[Don70] John E. Doner. Tree acceptors and some of their applications
4:406-451, 1970. (Cited pages, 16, 23, 29, 30, 32, and124)

[DRO7] Jana Dvorakova and Branislav Rovan. A Transducer-Basau &
work for Streaming XML Transformations. B3rd Conference on
Current Trends in Theory and Practice of Computer Sciepeges
50-60. Institute of Computer Science AS CR, Prague, 200ifedC
pagel8)

[DRFO04] Yanlei Diao, Shariq Rizvi, and Michael J. Franklin. Towarals
internet-scale XML dissemination service. 30th international
conference on Very Large Data Baseages 612—623. VLDB En-
dowment, 2004. (Cited pade))

[dRV08] Michel de Rougemont and Adrien Vieilleribiere. Approxitea
schemas, source-consistency and query answelmgnal of Intel-
ligent Information System81(2):127-146, 2008. (Cited pa86)

[EF99] Heinz-Dieter Ebbinghaus and Jorg Fluntinite Model Theory
Springer Verlag, Berlin, 1999. (Cited pagg8and28)

[EH99] Joost Engelfriet and Hendrik Jan Hoogeboom. Tree-walketzpfe
automata. Idewels are Forever, Contributions on Theoretical Com-
puter Science in Honor of Arto Salomapages 72—-83. Springer-
Verlag, 1999. (Cited page?)

[EHO7] Joost Engelfriet and Hendrik Jan Hoogeboom. Automata with
nested pebbles capture first-order logic with transitiesgie.Log-
ical Methods in Computer Scienc®2):3, 2007. (Cited pad&?)

[EHB99] Joost Engelfriet, Hendrik Jan Hoogeboom, and Jan-Pasod¥st.
Trips on treesActa Cybern.14(1):51-64, 1999. (Cited page)

[Fag75] Ronald Fagin. Monadic generalized spectzzitschrift fir Math-
ematische Logik und Grundlagen der Mathema2ik:89-96, 1975.
(Cited page2d)

Bibliography 213

[FGO02] Markus Frick and Martin Grohe. The complexity of first-orderd

[FGKO03]

[FHM+05]

[Fig09]

monadic second-order logic revisited. UICS '02: Proceedings of
the 17th Annual IEEE Symposium on Logic in Computer Scjence
pages 215-224, Washington, DC, USA, 2002. (Cited [3)e

Markus Frick, Martin Grohe, and Christoph Koch. Query Ew@alu
tion on Compressed Trees. 18th IEEE Symposium on Logic in
Computer Scienggages 188-197. IEEE Comp. Soc. Press, 2003.
(Cited page®5, 42, and152)

Mary F. Fernandez, Jan Hidders, Philippe Michiels, d&&iméon,

and Roel Vercammen. Optimizing Sorting and Duplicate Eiani

tion in XQuery Path Expressions. Ith International Conference
on Database and Expert Systems Applications (DEKAQes 554—
563, 2005. (Cited pagdsand194)

Diego Figueira. Satisfiability of downward XPath with datpual-

ity tests. In28th ACM SIGMOD-SIGACT-SIGART symposium on
Principles of Database Systeppages 197-206. ACM-Press, 2009.
(Cited paget?)

[FMSSO07] Mary Fernandez, Philippe Michiels, Jerdbme Siméon, arichiskl

[FNO7]

[FNTTO6]

[FNTTO7]

[Frio4]

Stark. XQuery Streaming a la Carte. 28nd International Confer-
ence on Data Engineeringages 256—265. IEEE Comp. Soc. Press,
2007. (Cited pagé?8)

Alain Frisch and Keisuke Nakano. Streaming XML transforiorat
using term rewriting. IrProgramming Language Technologies for
XML (PLAN-X 2007)2007. (Cited pag&9)

Emmanuel Filiot, Joachim Niehren, Jean-Marc Talbot, anph&o
Tison. Composing monadic queries in trees. In GiuseppeaGaat

and Mukund Raghavachari, edito®BLAN-X International Work-
shop pages 61-70. Basic Research in Computer Science, 2006.
(Cited pages2)

Emmanuel Filiot, Joachim Niehren, Jean-Marc Talbot, angh&o
Tison. Polynomial time fragments of XPath with variablesa |
26th ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systempages 205-214. ACM-Press, 2007. (Cited
pages49 and54)

Alain Frisch. Regular tree language recognition with stetiorma-
tion. In Exploring New Frontiers of Theoretical Informatics, IFIP

214 Bibliography

18th World Computer Congress, TCS 3rd International Caarfee
on Theoretical Computer Sciencpages 661-674, 2004. (Cited
pagesl9and76)

[FTTO7] Emmanuel Filiot, Jean-Marc Talbot, and Sophie Tison. Saligity
of a spatial logic with tree variables. k6th EACSL Annual Con-
ference on Computer Science and Logiolume 4646 ofLecture
Notes in Computer Sciengeages 130-145. Springer Verlag, 2007.
(Cited pages?2)

[FWO04] David C. Fallside and Priscilla Walmsley. XML
Schema Part 0: Primer Second Edition, October 2004.
http://ww. w3. or g/ TR/ 2004/ REC- xm schema- 0- 20041028/ .
(Cited pages, 33,43, and19))

[GCO7a] Gang Gou and Rada Chirkova. Efficient algorithms for evahgat
XPath over streams. 186th ACM SIGMOD International Confer-
ence on Management of Datpages 269-280. ACM-Press, 2007.
(Cited paged, 15, 94, and195

[GCO7b] Gang Gou and Rada Chirkova. Efficiently Querying Large XML
Data Repositories: A SurveylEEE Trans. on Know. Data Eng.
19(10):1381-1403, 2007. (Cited paofe

[GFO5] Floris Geerts and Wenfei Fan. Satisfiability of XPath Quenidth
Sibling Axes. In10th International Symposium on Database Pro-
gramming Languagesolume 3774 olecture Notes in Computer
Sciencepages 122-137. Springer Verlag, 2005. (Cited pbge

[GGMT04] Todd J. Green, Ashish Gupta, Gerome Miklau, Makoto Onizuka,
and Dan Suciu. Processing XML streams with deterministic au
tomata and stream indexe®CM Trans. Database Sysf9(4):752—
788, 2004. (Cited pagdstand123

[GGVO02] Georg Gottlob, Erich Gradel, and Helmut Veith. Datalog EIT
a Deductive Query Language with Linear Time Model Checking.
ACM Transactions on Computational Logic(1):42—79, January
2002. (Cited pag&l)

[GKO04] Georg Gottlob and Christoph Koch. Monadic datalog and the ex
pressive power of languages for web information extractigour-
nal of the ACM 51(1):74-113, 2004. (Cited pa§6)

http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/

Bibliography 215

[GKPO3] Georg Gottlob, Christoph Koch, and Reinhard Pichler. XRuath
cessing in a nutshellSIGMOD Reg. 32(2):21-27, 2003. (Cited
pagesdsand54)

[GKPO5] Georg Gottlob, Christoph Koch, and Reinhard Pichler. Edfiti
algorithms for processing XPath querieACM Transactions on
Database Systems30(2):444-491, 2005. (Cited pagé8s 43,
and54)

[GKPSO05] Georg Gottlob, Christoph Koch, Reinhard Pichler, and Luc
Segoufin. The complexity of XPath query evaluation and XMp-ty
ing. Journal of the ACM52(2):284-335, 2005. (Cited pag&s
and54)

[GKS06] Georg Gottlob, Christoph Koch, and Klaus U. Schulz. Conijwec
queries over treegournal of the ACM53(2):238-272, 2006. (Cited
pageb0)

[GKSO07] Martin Grohe, Christoph Koch, and Nicole Schweikardt. Tigh
lower bounds for query processing on streaming and exteraai-
ory data. Theoretical Computer Sciencg30(1-2):199-217, 2007.
(Cited paged, 10, 11, 12, 58, 185 and196)

[GLdABO7] Yuri Gurevich, Dirk Leinders, and Jan Van den Bussche. A Theo
of Stream Queries. IDatabase Programming Languagéscture
Notes in Computer Science, pages 153-168. Springer Va4,
(Cited pag€l0)

[GLSO07] Pierre Geneves, Nabil Layaida, and Alan Schmitt. Efficsatic
analysis of XML paths and types. B007 ACM SIGPLAN confer-
ence on Programming language design and implementatioB(RL
volume 42, pages 342-351. ACM-Press, 2007. (Cited pd§es
and52)

[Glu61] Victor M. Glushkov. The abstract theory of automat&ussian
Mathematical Survey46(5):1-53, 1961. (Cited pa@®)

[GMO5] Evan Goris and Maarten Marx. Looping caterpillars. In Psika
Panangaden, editoRroceedings of the Twentieth Annual IEEE
Symp. on Logic in Computer Science, LICS 200ages 51-60.
IEEE Comp. Soc. Press, June 2005. (Cited @)e

216 Bibliography

[GMOSO03] Todd J. Green, Gerome Miklau, Makoto Onizuka, and Dan Su-
ciu. Processing XML streams with deterministic automatePro-
ceedings of ICDT’'03volume 2572 ofLecture Notes in Computer
Science pages 173-189. Springer Verlag, 2003. (Cited pdges
and123

[GMS93] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian
Maintaining Views Incrementally. 18IGMOD International Con-
ference on Management of Dafzages 157-166. ACM Press, 1993.
(Cited paged.1and53)

[GO04] Etienne Grandjean and Frédéric Olive. Graph propertieskable
in linear time in the number of verticeslournal of Computer and
System Sciencé8(3):546-597, 2004. (Cited pag@)

[GPO9] Olivier Gauwin and Benoit Papegay. EvoXs project, 2009.
https://gforge.inria.fr/projects/evoxs/. (Cited
pagellH

[Gra96] Etienne Grandjean. Sorting, Linear Time and the Satisftgsirob-
lem. Ann. Math. Artif. Intell, 16:183—-236, 1996. (Cited page)

[Grz53] Andrzej Grzegorczyk. Some classes of recursive functions.
Rozprawy Matematyczn:1-45, 1953. (Cited padid)

[GS03a] Etienne Grandjean and Thomas Schwentick. Machine-Indkgrgn
Characterizations and Complete Problems for Deterministiear
Time. SIAM Journal on Computing2(1):196—-230, 2003. (Cited
pages3)

[GS03b] Ashish Kumar Gupta and Dan Suciu. Stream processing of XPath
gueries with predicates. IBIGMOD '03: Proceedings of the 2003
ACM SIGMOD international conference on Management of data
pages 419-430. ACM-Press, 2003. (Cited pdgkand123)

[Hid03] Jan Hidders. Satisfiability of XPath expressions.The 9th Inter-
national Workshop on Data Base Programming Languageges
21-36, 2003. (Cited pagt9)

[HIJHLO8] Wook-Shin Han, Haifeng Jiang, Howard Ho, and Quanzhong Li.
StreamTX: extracting tuples from streaming XML dataroceed-
ings of the VLDB Endowmerit(1):289-300, 2008. (Cited padé)

https://gforge.inria.fr/projects/evoxs/

Bibliography 217

[HM85] Matthew Hennessy and Robin Milner. Algebraic laws for ndede
minism and concurrencylournal of the ACM32(1), 1985. (Cited
page51)

[HPO3] Haruo Hosoya and Benjamin Pierce. Regular expression pat-
tern matching for XML. Journal of Functional Programming
6(13):961-1004, 2003. (Cited pag8d)

[HRR99] Monika R. Henzinger, Prabhakar Raghavan, and Sridhar Ra-
jagopalan. Computing on data streamsAmerican Mathematical
Society, 1999. (Cited padk?)

[HT87] Thilo Hafer and Wolfgang Thomas. Computation tree logic €TL
and path quantifiers in the monadic theory of the binary tree.
14th International Colloquium on Automata, languages amao- p
gramming pages 269-279. Springer Verlag, 1987. (Cited f&he

[HU69] J.E. Hopcroft and J.D. Ullman. Some Results on Tape-boufded
ing Machines. Journal of the ACM16(1):168-177, 1969. (Cited
pagelO)

[HU79] J.E. Hopcroft and J.D. Ullman.Introduction to Automata The-
ory, Languages, and ComputatioAddison-Wesley, 1979. (Cited
pages3 and192

[[HWO02] Zachary G. Ives, A. Y. Halevy, and D. S. Weld. An XML query
engine for network-bound dat@he VLDB Journgl11(4):380—402,
2002. (Cited pagé8)

[Jel06] Rick Jelliffe. Schematron specification (ISO/IEC 19757-3)06.
(Cited page33)

[JFBO5] Vanja Josifovski, Marcus Fontoura, and Attila Barta. Quegy
XML streams. The VLDB Journagl14(2):197-210, 2005. (Cited

pageld)

[JLH*07] Zhewei Jiang, Cheng Luo, Wen-Chi Hou, Qiang Zhu, and Dunren
Che. Efficient processing of XML twig pattern: A novel oneagke
holistic solution. In18th International Conference on Database and
Expert Systems Applications (DEXAkcture Notes in Computer
Science, pages 87-97. Springer Verlag, 2007. (Cited page

[JPY88] David S. Johnson, Christos H. Papadimitriou, and Mihalis-Ya
nakakis. On generating all maximal independent sktfarmation
Processing Letter27(3):119-123, 1988. (Cited pa§8)

218

Bibliography

[JWLY03]

Haifeng Jiang, Wei Wang, Hongjun Lu, and Jeffrey Xu Yu. Holis
tic Twig Joins on Indexed XML Documents. BEBth International
Conference on Very Large Data Baspages 273-284, 2003. (Cited

pages5)

[Kam68] J. A. Kamp. Tense Logic and the Theory of Linear OrdePhD

[Kay09]

[KMVO07]

[KN97]

[Koc03]

[Koc06]

[KRS+07]

[KS07]

thesis, University of California, Los Angeles, 1968. (@ifgagesl)

Michael Kay. Saxon diaries, June 19th, 2009.
htt p://saxoni ca. bl oghar bor. coni bl og. (Cited
pagest and192

Viraj Kumar, P. Madhusudan, and Mahesh Viswanathan. \jsibl
Pushdown Automata for Streaming XML. [6th international
conference on World Wide Wepages 1053-1062. ACM-Press,
2007. (Cited pages3, 17, 76, 82, and124)

Eyal Kushilevitz and Noam Nisan.Communication Complexity
Cambridge University Press, 1997. (Cited padg

Christoph Koch. Efficient processing of expressive nodeesieg
gueries on XML data in secondary storage: A tree automagacba
approach. IrfProc. VLDB 20032003. (Cited page$, 25, and192

Christoph Koch. Processing queries on tree-structured elffit
ciently. In 25th ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systenmages 213-224, New York, NY,
USA, 2006. ACM-Press. (Cited page)

Michael Kay, Jonathan Robie, Jérdme Siméon, Scott Boag,
Mary F. Fernandez, Anders Berglund, and Don Chamberlin.
XML path language (XPath) 2.0. Recommendation, W3C, Jan-
uary 2007. http://www.w3.0rg/TR/2007/REC-xpath20-20023/.
(Cited paget8)

Christoph Koch and Stefanie Scherzinger. Attribute gramsma
for scalable query processing on XML stream¥LPB Journa)
16(3):317-342, 2007. (Cited pa@8)

[KSSS04a]Christoph Koch, Stefanie Scherzinger, Nicole Schweikaedtd

Bernhard Stegmaier. FluXQuery: An optimizing XQuery pr&ce
sor for streaming XML data. Ir80th International Conference
on Very Large Data Basepages 1309-1312. Morgan Kaufmann,
2004. (Cited pagé8)

http://saxonica.blogharbor.com/blog

Bibliography 219

[KSSS04b] Christoph Koch, Stefanie Scherzinger, Nicole Schweikagaitd

[KV01]

[LBOY]

[Lib04]

[Lib06]

[LMP02]

[LSO08]

Bernhard Stegmaier. Schema-based Scheduling of Everg$3ors
and Buffer Minimization for Queries on Structured Data Sins.
In 30th International Conference on Very Large Data Bagegjes
228-239. Morgan Kaufmann, 2004. (Cited pdée

Orna Kupferman and Moshe Y. Vardi. Model checking of safety
properties. Formal Methods in System Desigh9(3):291-314,
2001. (Cited pag8b)

Clemens Ley and Michael Benedikt. How Big Must Complete
XML Query Languages Be? 1d2th International Conference
on Database Theorypages 183-200. ACM-Press, 2009. (Cited
pages/, 11, 16, 185 and196)

Leonid Libkin. Elements of Finite Model Thearypringer Verlag,
2004. (Cited page26 and28)

Leonid Libkin. Logics over unranked trees: an overvidvagical
Methods in Computer Sciencg(2):1-31, 2006. (Cited paged,
26,51, and123

Bertram Ludascher, Pratik Mukhopadhyay, and Yannis Rapak
stantinou. A transducer-based XML query processor28th in-
ternational conference on Very Large Data Basesges 227—238.
VLDB Endowment, 2002. (Cited pade)

Leonid Libkin and Cristina Sirangelo. Reasoning about XMitthw
Temporal Logics and Automata. [bth International Conference
on Logic for Programming, Artificial Intelligence, and Reasg
(LPAR’08) volume 5330 of_ecture Notes in Atrtificial Intelligence
pages 97-112. Springer Verlag, 2008. (Cited pdgdsand124)

[MarO4a] Maarten Marx. Conditional XPath, the first order completeaP

[Mar04b]

dialect. INACP SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systemmages 13-22. ACM-Press, 2004. (Cited
page46)

Maarten Marx. XPath with conditional axis relations. Indali
Bertino, Stavros Christodoulakis, Dimitris Plexousakigssilis
Christophides, Manolis Koubarakis, Klemens Bohm, anah&leer-
rari, editors,9th International Conference on Extending Database
Technology volume 2992 ofLecture Notes in Computer Science

220 Bibliography

pages 477-494. Springer Verlag, 2004. (Cited patfgst7, 52,
and54)

[MarO05a] Maarten Marx. Conditional XPatiACM Transactions on Database
Systems30(4):929-959, 2005. (Cited pagds 46, 51, and124)

[Mar05b] Maarten Marx. First order paths in ordered treesintiernational
Conference on Database Thepryages 114-128, 2005. (Cited

paged4b)

[MdRO5] Maarten Marx and Maarten de Rijke. Semantic characteoaati
of navigational XPath.SIGMOD Re¢.34(2):41-46, 2005. (Cited
pagesl], 45 and124)

[Mey73] Albert R. Meyer. Weak monadic second-order theory of sugmes
is not elementary recursive. Manuscript, 1973. (Cited B)e

[MicO7] Philippe Michiels. Optimizing XPath in the Context of an XQuery
Implementation PhD thesis, Universiteit Antwerpen, 2007. (Cited
pagesb and194)

[MLMO1] M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema
languages using formal language theory.Ektreme Markup Lan-
guages Montreal, Canada, 2001. (Cited pagks33, 35, 36, 37,
and192

[MNSO04] Wim Martens, Frank Neven, and Thomas Schwentick. Complex-
ity of decision problems for simple regular expressionsMithe-
matical Foundations of Computer Science 2004, 29th Inti&onal
Symposiunpages 889-900, 2004. (Cited p&i

[MNSO05] Wim Martens, Frank Neven, and Thomas Schwentick. Which XML
schemas admit 1-pass preorder typing?10th International Con-
ference on Database Thegmolume 3363 of ecture Notes in Com-
puter Sciencegpages 68—82. Springer Verlag, 2005. (Cited pdges
36, and37)

[MNSBO06a] Wim Martens, Frank Neven, Thomas Schwentick, and Geert Jan
Bex. Expressiveness and complexity of XML scherA&M Trans-
actions of Database Systen34.(3):770-813, 2006. (Cited pa8)

[MNSBO6b] Wim Martens, Frank Neven, Thomas Schwentick, and Geert Jan
Bex. Expressiveness and Complexity of XML Sche®@M Trans-
actions on Database Systeni31(3):770-813, September 2006.
(Cited pages$3, 36, and55)

Bibliography 221

[Mor94] Etsuro Moriya. On two-way tree automataformation Processing
Letters 50(3):117-121, 1994. (Cited pagd8)

[MS03] Amélie Marian and Jerdme Siméon. Projecting XML Docuntse
In 29th International Conference on Very Large Data Bageges
213-224. Morgan Kaufmann, 2003. (Cited p&dke

[MS04] Gerome Miklau and Dan Suciu. Containment and equivalenca fo
fragment of XPath.Journal of the ACM51(1):2-45, 2004. (Cited
pagesds, 46, and47)

[MSBO01] Holger Meuss, Klaus U. Schulz, and Francois Bry. Towards ag
gregated answers for semistructured data. In Jan Van destBels
and Victor Vianu, editord)atabase Theory - ICDT 2001, 8th Inter-
national Conference, London, UK, January 4-6, 2001, Prdosgs
volume 1973 of_ecture Notes in Computer Scienpages 346—360.
Springer Verlag, 2001. (Cited pagéSand186)

[MSVO03] Tova Milo, Dan Suciu, and Victor Vianu. Type checking XML tisx
formers. Journal of Computer and System Scignt€66):66—97,
2003. (Cited pageb)

[MutO5] S. Muthukrishnan. Data Streams: Algorithms and Applicagio
Foundations and Trends in Theoretical Computer Scierig@),
2005. (Cited pagé0)

[MVO08] Parthasarathy Madhusudan and Mahesh Viswanathan. Query Au
tomata for Nested Words, 2008. Unpublished. (Cited pddes
and9b)

[Nak04] Keisuke Nakano. An Implementation Scheme for XML Transfor-
mation Languages through Derivation of Stream Processadms.
2nd ASIAN Symposium on Programming Languages and Systems
(APLASO04)2004. (Cited pag&9)

[Neu00] Andreas NeumanrParsing and Quering XML Documents in SML
PhD thesis, Universitat Trier, 2000. (Cited pdgé

[Nev02a] Frank Neven. Automata, logic, and XML. @omputer Science
Logic, Lecture Notes in Computer Science, pages 2—26. Springer
Verlag, 2002. (Cited pagext, 30, and42)

[Nev02b] Frank Neven. Automata theory for XML researcheiSIGMOD
Rec, 31(3):39-46, 2002. (Cited pag24, 30, and42)

222

Bibliography

[NKO8] Abdul Nizar and Sreenivasa Kumar. Efficient Evaluation afviFrd
XPath Axes over XML Streams. Ib4th International Conference
on Management of Data (COMADpages 222-233, 2008. (Cited
pages/, 16, and195)

[NKQO9] Abdul Nizar and Sreenivasa Kumar. Ordered Backward XPath
Axis Processing against XML Streams. 6th International XML
Database Symposium (XSymplume 5679 ofLecture Notes in
Computer Sciengepages 1-16. Springer Verlag, 2009. (Cited
pages/, 16, and195)

[NPTTO5] Joachim Niehren, Laurent Planque, Jean-Marc Talbot, aptii€o

Tison. N-ary queries by tree automatalth International Sympo-
sium on Database Programming Languageslume 3774 ol_ec-
ture Notes in Computer Sciengeages 217-231. Springer Verlag,
September 2005. (Cited pagé®and152)

[NS98] Andreas Neumann and Helmut Seidl. Locating matches of &iee p
terns in forests. Irnl8th Conference on Foundations of Software
Technology and Theoretical Computer Scienegelume 1530 of
Lecture Notes in Computer Sciengages 134-145. Springer Ver-
lag, 1998. (Cited page 17, 32, 52, 76, 85, and197)

[NS00] Frank Neven and Thomas Schwentick. Expressive and effipant
tern languages for tree-structured dataPtnceedings of the Nine-
teenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems (PODS-0@ages 145-156, N. Y., May 15-17
2000. (Cited pag82)

[NS02] Frank Neven and Thomas Schwentick. Query automata over fi-
nite trees.Theoretical Computer Scienc275(1-2):633—-674, 2002.
(Cited pagedl, 43, 124, and192

[NS03] Frank Neven and Thomas Schwentick. XPath containment in the
presence of disjunction, DTDs, and variables.9th International
Conference on Database Thepmplume 2572 olecture Notes in
Computer Scien¢cgages 315-329. Springer Verlag, 2003. (Cited

page45)

[OKBO03] Dan Olteanu, Tobias Kiesling, and Francois Bry. An Evabrat

of Regular Path Expressions with Qualifiers against XML &trs.
In 19th International Conference on Data Engineeripgges 702—
704, 2003. (Cited pagét 16, and195)

Bibliography 223

[Olt07a] Dan Olteanu. Forward node-selecting queries over tre&€M
Transactions on Database Syste®(1):3, 2007. (Cited padkb)

[OIt07b] Dan Olteanu. SPEX: Streamed and progressive evaluatioRafX
IEEE Trans. on Know. Data Eng19(7):934-949, 2007. (Cited
pages/, 14, 16, 46, 95, 123 and195

[OMFBO02] Dan Olteanu, Holger Meuss, Tim Furche, and Francois BryatkP
Looking Forward. InNXML-Based Data Management and Multime-
dia Engineering - EDBT 2002 Workshgp®lume 2490 ol ecture
Notes in Computer Sciengeages 109-127. Springer Verlag, 2002.
(Cited paged, 16, 46, and195

[Par09] Pawet Parys. XPath Evaluation in Linear Time with Polyndmia
Combined Complexity. Ir28th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Sysigrages 55-64. ACM-
Press, 2009. (Cited padgq)

[PCO5] Feng Peng and Sudarshan S. Chawathe. XSQ: A streaming XPath
engine. ACM Transactions on Database Syste®8(2):577-623,
2005. (Cited pages, 15, 123 and193

[PVOOQ] Yannis Papakonstantinou and Victor Vianu. DTD inference fo
views of XML data. In19th ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of Database Systempages 35-46. ACM-
Press, 2000. (Cited pag85 and36)

[Rab69] Michael O. Rabin. Decidability of Second-Order Theoried Awl-
tomata on Infinite Treeslransactions of the American Mathemati-
cal Society141:1-35, 1969. (Cited pa@®)

[Ram03] Prakash Ramanan. Covering indexes for XML queries: bisatrar
- simulation = negation. I29th international conference on Very
Large Data Basepages 165-176. Morgan Kaufmann, 2003. (Cited
page54)

[Ram05] Prakash Ramanan. Evaluating an XPath Query on a Streamirhg XM
Document. Inl12th International Conference on Management of
Data (COMAD) 2005. (Cited pages, 15, and195

[Ram09] Prakash Ramanan. Worst-case optimal algorithm for XPatuav
tion over XML streams.Journal of Computer and System Scignce
2009. Article in press. (Cited pag&sl5, and195

224 Bibliography

[RNCO03] George Russell, Mathias Neumiller, and Richard C. H. Conno
TypEx: A Type Based Approach to XML Stream Queryinglriter-
national Workshop on Web and Databases (Web[pByes 55-60,
2003. (Cited pagé?3)

[SBYO08] Mirit Shalem and Ziv Bar-Yossef. The Space Complexity of-Pro
cessing XML Twig Queries Over Indexed Documents.2#th In-
ternational Conference on Data Engineerjmgges 824-832, 2008.
(Cited pagel86)

[Sch92] Bernd-Holger Schlingloff. Expressive Completeness Of peral
Logic Of TreesJournal of Applied Non-Classical Logic®(2):157—
180, 1992. (Cited pagk24)

[Sch00] Thomas Schwentick. On diving in trees.MFCS '00: Proceedings
of the 25th International Symposium on Mathematical Fotioda
of Computer Scien¢gpages 660—669, London, UK, 2000. (Cited
page52)

[SchO7a] Nicole Schweikardt. Machine models and lower bounds forygue
processing. IMwenty-Sixth ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systempages 41-52. ACM-
Press, 2007. (Cited pag&8 and598)

[Sch07b] Thomas Schwentick. Automata for XML—a surveyJournal
of Computer and System Scien@8(3):289-315, 2007. (Cited
page24, 30, 32, and33)

[Sch09] Nicole Schweikardt. Lower Bounds for Multi-Pass Procegh
Multiple Data Streams. I26th International Symposium on Theo-
retical Aspects of Computer Sciene®lume 09001, pages 51-61,
2009. Dagstuhl Seminar Proceedings. (Cited pg)e

[SdS08] Jacques Sakarovitch and Rodrigo de Souza. On the Decigtaddili
Bounded Valuedness for Transducers. 3Brd international sym-
posium on Mathematical Foundations of Computer Scignoé
ume 5162 ofLecture Notes in Computer Sciengages 588-600.
Springer Verlag, 2008. (Cited pad€2

[Seg03] Luc Segoufin. Typing and querying XML documents: some com-
plexity bounds. In22nd ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systemages 167-178, 2003.
(Cited pagebb)

Bibliography 225

[Sei92] Helmut Seidl. Ambiguity, Valuedness and Costs, 1992. Hialtiibn
Thesis. Universitat des Saarlandes. (Cited pd@e347, 158 161,
162 164,169 170 172 173 and199

[SH85] R. E. Stearns and H. B. Hunt Ill. On the equivalence and contai
ment problems for unambiguous regular expressions, regrda-
mars and finite automat&IAM Journal on Computind4(3):598—
611, 1985. (Cited pagest6and15])

[S184] Oded Shmueli and Alon Itai. Maintenance of Views. $hG-
MOD’84, Proceedings of Annual Meetingages 240-255. ACM
Press, 1984. (Cited pag&s and53)

[SKO05] Stefanie Scherzinger and Alfons Kemper. Syntax-directeddfor-
mations of XML Streams (TransformX). Programming Language
Technologies for XML (PLAN-X 200%)005. (Cited pag&9)

[SM73] L.J. Stockmeyer and A.R. Meyer. Word problems requiringoexp
nential time. InProc. 5th ACM Symp. on Theory of Computing
pages 1-9, 1973. (Cited pag6)

[SS07] Luc Segoufin and Cristina Sirangelo. Constant-memory atibd
of streaming XML documents against DTDs. Database Theory
- ICDT 2007, 11th International Conferengeages 299-313, 2007.
(Cited pagel2)

[SSKO07] Michael Schmidt, Stefanie Scherzinger, and Christoph K&mm-
bined static and dynamic analysis for effective buffer miziation
in streaming XQuery evaluation. B3rd IEEE International Con-
ference on Data Engineeringages 236-245, 2007. (Cited pdd@

[Sto74] L. J. Stockmeyer. The Complexity of Decision Problems in Au-
tomata Theory PhD thesis, Department of Electrical Engineering,
MIT, 1974. (Cited page28 and30)

[STWO08] Klaus Dieter Schewe, Bernhard Thalheim, and Qing Wang. - Vali
dation of streaming XML documents with abstract state nraehi
In 10th International Conference on Information Integratiand
Web-based Applications & Services (iWASges 147-153. ACM-
Press, 2008. (Cited pag&8 and186)

[SV02] Luc Segoufin and Victor Vianu. Validating streaming XML do-
cuments. InTwenty-first ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systempages 53—-64, 2002. (Cited
pagesb, 12, 13 35, 58, and193

226 Bibliography

[Tak75] Masako Takahashi. Generalizations of regular sets andapplica-
tion to a study of context-free languagesformation and Contral
27:1-36, 1975. (Cited pade)

[tCO6] Balder ten Cate. The expressiveness of XPath with trapsiiv-
sure. In25th ACM SIGMOD-SIGACT Symposium on Principles
of Database Systempages 328-337. ACM-Press, 2006. (Cited
page46)

[tCLO7] Balder ten Cate and Carsten Lutz. The complexity of queryaion
ment in expressive fragments of XPath 2.026th ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems
pages 73—-82. ACM-Press, 2007. (Cited pdfe

[tCMO7] Balder ten Cate and Maarten Marx. Axiomatizing the logiaaiec
of XPath 2.0. IniInternational Conference on Database Theory
volume 4353 ofLecture Notes in Computer Sciengeges 134—
148. Springer Verlag, 2007. (Cited pagksand49)

[tCS08] Balder ten Cate and Luc Segoufin. XPath, transitive closagi)
and nested tree walking automata2lfth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systesges 251—
260. ACM-Press, 2008. (Cited pagé®and47)

[Tho97] Wolfgang Thomas. Languages, automata and logic. In G. Rozen
berg and A. Salomaa, editotdandbook of Formal Languagegol-
ume 3, pages 389-456. Springer Verlag, 1997. (Cited pa8es
and4?2)

[Tis90] Sophie Tison.Automates Comme Outils deeBision dans les Ar-
bres. These d’habilitation, Laboratoire d’Informatique Fonuen-
tale de Lille, 1990. (Cited pagd®, 146, and198

[Tra50] B.A. Trakhtenbrot. Impossibility of an algorithm for the agion
problem in finite classesDoklady Akademii Nauk SSSR):569—
572, 1950. (Cited page8)

[Tur37] Alan M. Turing. Computability and lambda-definabilitjournal of
Symbolic Logic2(4):153-163, 1937. (Cited pag8)

[TVYO08] Alex Thomo, S. Venkatesh, and Ying Ying Ye. Visibly Pushdown
Transducers for Approximate Validation of Streaming XMLn |
5th International Symposium on Foundations of Informatzonu
Knowledge Systems (FolKSjolume 4932 ofLecture Notes in

Bibliography 227

[TW65]

[TW68]

[Var82]

[Var95]

[vdV03]

[Vit01]

[VW94]

[WMTOO]

[Wo003]

[WRMLOS]

Computer Scienggpages 219-238. Springer Verlag, 2008. (Cited
pagel86)

J. W. Thatcher and J. B. Wright. Generalized finite automaia.
tices Amer. Math. Soc820, 1965. Abstract No 65T-649. (Cited
page30)

J. W. Thatcher and J. B. Wright. Generalized finite automath w
an application to a decision problem of second-order lolyiathe-
matical System Theor2:57-82, 1968. (Cited pagé4, 16, 23, 29,
30, 32, and124)

Moshe Y. Vardi. The complexity of relational query langusgén
14th ACM Symposium on Theory of Computipgges 137-146,
1982. (Cited page28and30)

Moshe Y. Vardi. On the complexity of bounded-variable gegrilin
Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systeppages 266—-276, 1995. (Cited pdf»

Eric van der Vlist. Relax NG O’Reilly Media, Inc., 2003. (Cited
pages3 and19])

Jeffrey Scott Vitter. External memory algorithms and ddtacs
tures: dealing with massive data. ACM computing surveys
33(2):209-271, 2001. (Cited pad6)

Moshe Y. Vardi and Pierre Wolper. Reasoning about infiniteco
putations. Information and Computatiqrii15:1-37, 1994. (Cited
pagesl2land124)

Norman Walsh, Alex Milowski, and Henry S. Thompson. XProc:
An XML Pipeline Language, March 2009. W3C Candidate Recom-
mendation. (Cited pagesand191)

Peter T. Wood. Containment for XPath fragments under DTD con
straints. In9th International Conference on Database Themugl-
ume 2572 ofLecture Notes in Computer Sciengages 300-314.
Springer Verlag, 2003. (Cited pag®)

Mingzhu Wei, Elke A. Rundensteiner, Murali Mani, and Ming Li
Processing recursive XQuery over XML streams: The Raindmp
proach.Data Knowl. Eng.65(2):243-265, 2008. (Cited pai8)

228 Bibliography

[WS86] Andreas Weber and Helmut Seidl. On the degree of ambiguity of
finite automata. IMathematical Foundations of Computer Science
volume 233 ofLecture Notes in Computer Scienpgages 620-629.
Springer Verlag, 1986. (Cited pagk46and15])

[WTO08] Xiaoying Wu and Dimitri Theodoratos. Evaluating Partiak&r
Pattern Queries on XML Streams. 17th ACM International Con-
ference on Information and Knowledge Management (CIKM’08)
pages 1409-1410. ACM Press, 2008. (Cited pagés, and195

[Yan81] Mihalis Yannakakis. Algorithms for acyclic database schemin
Proceeding of VLDBpages 82-94. IEEE Computer Society, 1981.
(Cited pages0)

[Yao79] Andrew Chi-Chih Yao. Some complexity questions relatediss d
tributive computing. Inl1th annual ACM Symposium on Theory of
Computing pages 209-213. ACM-Press, 1979. (Cited phbe

[ZXMO7] Junfeng Zhou, Min Xie, and Xiaofeng Meng. TwigStack+: Hotis
twig join pruning using extended solution extension. 1&5%—
860, 2007. (Cited paged)

Notations

Notation Description Section
Generic Notations
N set of strictly positive natural numbers 211
Ny set of natural numbers includirty 211
b Boolean 6.2.4
B the set of Booleans 7.5.1
I semantic interpretation 2.3.3
Logic and Relational Structures
A relational signature 2.1.2
S relational structure 2.1.2
S set of relational structures 2.1.2
i assignment of variables 2.1.2
V set of variables 2.3.3
V, the set of variable$x, ..., z,} 2.3.1
Words, Trees, Terms and Hedges
)y alphabet 211
a element of: 21.1
w word 2.1.2
t tree 2.1.1
Ts, unranked trees ovet 2.1.1
i node of a tree 211
T tuple of nodes of a tree 2.3.1
d depth of a tree 2.1.1
h hedge 21.1
Hs, hedges oveE 2.1.1

230 Notations

Notation Description Section
T term
Queries
Q query 231
n arity of a query 2.3.1
S schema 2.3.1
Lo canonical language of the quety 2.3.1
dom @) domain of a query, i.e., associated schema 2.3.1
e expression defining a query 2.3.1
Q query class 2.3.1
Qa query with universal schema, defined from th2.3.2
automatord by Lo = L(A)
Qa.B query(@ 4, except thadom @) = L(B) 2.3.2
Automata
A automaton
L(A) language recognized by the automatbn
B automaton recognizing the schema language
q a state 4.2
P a set of states
v a node state 4.2
stat set of states
stat, set of event states 4.2
stat, set of node states 4.2
init set of initial states
fin set of final states
rul set of rules
r run of an automaton
runs set of runs of an automaton
runs.succ successful runs of an automaton
amh(A) degree of ambiguity of an automaton 7.3.1
Streaming
S {op,cl} x S 321
i event 3.2

Notations 231

Notation Description Section
= document order on events 3.2.1
pr(n) event preceding in document order 3.2.1

a action in{op, cl} 3.2

M Streaming Random Access Machine (SRAM) 3.2.4

m degree of streamability 3.3.1

Relations over Trees

R relation over trees 7.4.2
® overlay operator 7.4.2
] fill symbol for differing structures 7.4.2
ovl(R) language of overlays of the relatidn 7.4.2
R set of symbols of recognizable relations 7.4.4
r symbol of recognizable relation 7.4.4
Q set of alphabets 7.4.4
W alphabet in2 7.4.4

a set of sorts 7.4.3

a sort 7.4.3

» Q
<R
= =
= wn

~—

the sort of symbot of recognizable relation 7.4.3
val(R) valuedness of the relatiaR 7.4.5

232 Notations

List of Figures

11
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
412

5.1
5.2
5.3
5.4
5.5
5.6

XML file containing geospatial data, conformingtoa DTD. . . 2
The tree representation of theX file in Figure 1.1(a). 2
lllustration of streaming evaluation. 5
Binaryencodings. 26
A DTD describing discotheques.. 34
A valid tree describing a discotheque.. 34
Example of tree annotation.. 41
Syntax of CoreXPath 1.0.. 44
Syntax of CoreXPath2.0.. 48
Streaming Random Access Machine. 64
Translations provided in Chapter.4. 76
An STA checking the Boolean XPath filleh*::a[ch:b]]. 78
Updaté,. 81
Glushkov automata for DT — ab+bandb —e. 83
The STAforthe DTDinFigure4.4. 83
Successful run of the STAinFigure4.5.. 83
Successful run of the NWA in Figure4.5. 84
RunofaPFA. 86
Translation of stepwise tree automatato STAs.. 89
Translation of STAs to stepwise tree automata. 90
Translation of TAs overfcnsencodingto STAs. 91
Translation of STAs to TAs ovéensencoding. 92
Arun of the dSTAA', whenr = (2-1,1). 100
Propagation rules forsafe states. 103
Construction oE(A) from A. 105
Inference rules for the definitionatc,_.. 108
Inference rules for the definition atc,‘; 109

Generic EQA algorithm for a clag3 of query definitions. 110

234 List of Figures
5.7 Construction ofdge fromAandB.. 112
58 InputdSTAS. 114
5.9 The dSTAA¢ obtained fromdandB. 114
5.10 acgy,, associated tQo andSp. 115
5.11 Run of the algorithmonatree.. 116
5.12 Algorithm computinginiv.X((a,v),v, P). 117
6.1 Semanticsoffilterterms. 125
6.2 Filters and rooted paths as filterterms. 125
6.3 Inference rules for the definitiondéep. 127
7.1 AdFAfor the canonical language Q). 153
7.2 AutomatonA for the query selecting-nodes followed by-b. . . 154
7.3 nFAD(A, B) forthedFAAinFigure 7.2.. 158
7.4 nFAC(A, B) forquery dFAA inFigure7.2.. 160
7.5 Exampleforoverlays 165
7.6 Arecognizable relatioR and the relabeling’z. 170
7.7 (t,s,ren(t)) € Eqbut(t,s,ren” (t)) ¢Eq 174
9.1 Fichier XuL contenant des données géospatiales.. 190
9.2 Représentation arborescente du fichisXe la figure 9.1(a). . 190
9.3 lllustration de I'évaluationenflux. 193

Appendix A

Licence Creative Commons

Ce chapitre contient le texte de la licence Creative ComnRatsrnité — Pas
d’Utilisation Commerciale — Pas de Modification, versio@.2.

A.1 Contrat

L'Oeuvre (telle que définie ci-dessous) est mise a disjprsselon les termes du
présent contrat appelé Contrat Public Creative Comma&sgmmeé ici “CPCC”
ou “Contrat”). L'Oeuvre est protégée par le droit de la piété littéraire
et artistique (droit d’auteur, droits voisins, droits desgucteurs de bases de
données) ou toute autre loi applicable. Toute utilisatien’Oeuvre autrement
gu’explicitement autorisée selon ce Contrat ou le drgitiggble est interdite.

L'exercice sur 'Oeuvre de tout droit proposé par le prigssentrat vaut accep-
tation de celui-ci. Selon les termes et les obligations ésgmt contrat, la partie
Offrante propose a la partie Acceptante I'exercice deagestdroits présentés ci-
apres, et I’Acceptant en approuve les termes et conditiangisation.

Définitions
1. “Oeuvre” : oeuvre de l'esprit protegeable par le droit deplapriété

littéraire et artistique ou toute loi applicable et qui esse a disposition
selon les termes du présent Contrat.

2. “Oeuvre dite Collective” : une oeuvre dans laquelle 'oe\dans sa forme
integrale et non modifiee, est assemblée en un ensembéetifoavec
d’autres contributions qui constituent en elles-mémesadeivres séparées
et indépendantes. Constituent notamment des OeuvrasGhtiectives les

NVoir: http://creativecommons. org/licenses/by-nc-nd/2.0/fr/.

http://creativecommons.org/licenses/by-nc-nd/2.0/fr/

236

Chapter A — Licence Creative Commons

publications périodiques, les anthologies ou les enpgres. Aux termes
de la présente autorisation, une oeuvre qui constitue @@ dite Col-
lective ne sera pas considéree comme une Oeuvre ditgdeéftelle que
définie ci-apres).

. “Oeuvre dite Dérivée” : une oeuvre créée soit a parin’@euvre seule,

soit a partir de I'Oeuvre et d’autres oeuvres préexigtsnt Constituent
notamment des Oeuvres dites Dérivées les traductioesarlangements
musicaux, les adaptations théatrales, litterairesin@nsatographiques, les
enregistrements sonores, les reproductions par un art quasédé quel-

conque, les résumés, ou toute autre forme sous laquélEuVre puisse
étre remaniée, modifiee, transformée ou adaptéexadption d’une oeu-
vre qui constitue une Oeuvre dite Collective. Une Oeuvre Gitllective ne

sera pas considérée comme une Oeuvre dite Dérivée amggelu présent
Contrat. Dans le cas ou I'Oeuvre serait une compositioricalesou un en-

registrement sonore, la synchronisation de I'oeuvre anedmage animée
sera considérée comme une Oeuvre dite Dérivée pourdeepde ce Con-
trat.

. “Auteur original” : la ou les personnes physiques qui oeédfOeuvre.

“Offrant” : la ou les personne(s) physique(s) ou morale(s)moposent la
mise a disposition de I'Oeuvre selon les termes du pré&Sentrat.

. “Acceptant” : la personne physique ou morale qui acceptedsgnt contrat

et exerce des droits sans en avoir violé les termes augléadu qui a recu
'autorisation expresse de I'Offrant d’exercer des draigss le cadre du
présent contrat malgré une précédente violation dengat.

Exceptions aux droits exclusifs

Aucune disposition de ce contrat n’a pour intention de iregllimiter ou restrein-

dre les prérogatives issues des exceptions aux droitsepli@dement des droits
ou d’autres limitations aux droits exclusifs des ayantstdrelon le droit de la

propriété littéraire et artistique ou les autres loiplagables.

Autorisation

Soumis aux termes et conditions définis dans cette autiorisat ceci pendant
toute la durée de protection de I'Oeuvre par le droit de t@ppéeté litteraire et
artistique ou le droit applicable, I'Offrant accorde a ¢@eptant I'autorisation
mondiale d’exercer a titre gratuit et non exclusif les tirsuivants :

Section A.1 — Contrat 237

1. reproduire I'Oeuvre, incorporer I'Oeuvre dans une ou @uss Oeuvres
dites Collectives et reproduire I'Oeuvre telle gu’incor@e dans lesdites
Oeuvres dites Collectives;

2. distribuer des exemplaires ou enregistrements, prasamgrésenter ou
communiquer I'Oeuvre au public par tout procédé techajgucompris in-
corporée dans des Oeuvres Collectives;

3. lorsque I'Oeuvre est une base de données, extraire éiigéuties parties
substantielles de I'Oeuvre.

Les droits mentionnés ci-dessus peuvent étre exeraé®ss les supports,
médias, procédés techniques et formats. Les droitessub incluent le droit
d’effectuer les modifications nécessaires techniqueradigxercice des droits
dans d’autres formats et procédés techniques. L'exembéctous les droits qui
ne sont pas expressément autorisés par I'Offrant ou tlot#urait pas la gestion
demeure réservé, notamment les mécanismes de gestiective obligatoire ap-
plicables décrits a I'article 4(d).

Restrictions

L'autorisation accordée par l'article 3 est expressérassujettie et limitée par le
respect des restrictions suivantes :

1. L'Acceptant peut reproduire, distribuer, représentercommuniquer au
public I'Oeuvre y compris par voie numériqgue uniquemernorsdes ter-
mes de ce Contrat. L'Acceptant doit inclure une copie ouréade Internet
(Identifiant Uniforme de Ressource) du présent Contratudet reproduc-
tion ou enregistrement de I'Oeuvre que I’Acceptant diskeitreprésente ou
communique au public y compris par voie numérique. L'Adaepne peut
pas offrir ou imposer de conditions d'utilisation de I'Oeewjui alterent
ou restreignent les termes du présent Contrat ou I'ex@mbés droits qui
y sont accordés au bénéficiaire. L'Acceptant ne peut gdercde droits
sur I'Oeuvre. L'Acceptant doit conserver intactes toutss ihformations
qui renvoient a ce Contrat et a I'exonération de resplitiga L'Acceptant
ne peut pas reproduire, distribuer, représenter ou coriquenau public
I'Oeuvre, y compris par voie numérique, en utilisant unesume technique
de contrble d’acces ou de contrble d’utilisation quesiazontradictoire avec
les termes de cet Accord contractuel. Les mentions ci-desappliquent a
I'Oeuvre telle gu’incorporée dans une Oeuvre dite ColNegtmais, en de-
hors de I'Oeuvre en elle-méme, ne soumettent pas I'Oeltacdllective,

238

Chapter A — Licence Creative Commons

aux termes du présent Contrat. Si I’Acceptant crée unev@edite Col-
lective, a la demande de tout Offrant, il devra, dans la meedu possible,
retirer de I'Oeuvre dite Collective toute référence atu@ifrant, comme
demandé. SiI’Acceptant crée une Oeuvre dite Collectia,demande de
tout Auteur, il devra, dans la mesure du possible, retiref@euvre dite
Collective toute réféerence au dit Auteur, comme demandé

. L'Acceptant ne peut exercer aucun des droits conféréd'gudicle 3 avec

I'intention ou l'objectif d’obtenir un profit commercial oune compensa-
tion financiere personnelle. L'échange de I'Oeuvre avaatdes Oeuvres
protégées par le droit de la propriété litteraire atstique par le partage
electronique de fichiers, ou par tout autre moyen, n’estpasidéré comme
un échange avec l'intention ou I'objectif d’'un profit commial ou d’'une
compensation financiere personnelle, dans la mesurecuingaiement ou
compensation financiere n’intervient en relation avechange d’Oeuvres
protégées.

. Si I'’Acceptant reproduit, distribue, représente ou comigue I'Oeuvre

au public, y compris par voie numérique, il doit conserveactes toutes
les informations sur le réegime des droits et en attribuepdéernité a
I'Auteur Original, de maniére raisonnable au regard audiom@ ou au

moyen utilisé. 1l doit communiquer le nom de I'’Auteur Ongi ou son

eventuel pseudonyme s'il est indiqué ; le titre de 'Oeu@riginale s'il

est indiqué ; dans la mesure du possible, I'adresse Iritexnédentifiant

Uniforme de Ressource (URI), s'il existe, spécifié parfif@nt comme as-
socié a I'Oeuvre, a moins que cette adresse ne renvoieysasformations
leégales (paternité et conditions d'utilisation de 'Qes). Ces obligations
d’attribution de paternité doivent étre exécutées dmigre raisonnable.
Cependant, dans le cas d’'une Oeuvre dite Collective, cesniattions

doivent, au minimum, apparaitre a la place et de manigssiaisible que
celles a laquelle apparaissent les informations de mé&neen

. Dans le cas ou une utilisation de I'Oeuvre serait soumise egime legal

de gestion collective obligatoire, I'Offrant se résereedroit exclusif de
collecter ces redevances par I'intermédiaire de la $&cdié perception et de
répartition des droits compétente. Sont notamment coBeda radiodiffu-
sion et la communication dans un lieu public de phonogranpnétés a
des fins de commerce, certains cas de retransmission paret&atellite,
la copie privée d’Oeuvres fixées sur phonogrammes owwgid@nmes, la
reproduction par reprographie.

Section A.1 — Contrat 239

Garantie et exoreration de responsabilie

1. En mettant 'Oeuvre a la disposition du public selon leses de ce Con-
trat, I'Offrant déclare de bonne foi qu’a sa connaissagtagans les limites
d’'une enquéte raisonnable :

(a) LOffrant a obtenu tous les droits sur I'Oeuvre nécessaipgur

(b)

pouvoir autoriser I'exercice des droits accordés par &s@nt Con-
trat, et permettre la jouissance paisible et I'exercicédide ces
droits, ceci sans que I’Acceptant n’ait aucune obligatienverser
de remunération ou tout autre paiement ou droits, dansniteldes
mécanismes de gestion collective obligatoire applicaldecrits a
l'article 4(e);

L'Oeuvre n’est constitutive ni d’'une violation des droits tlers, no-
tamment du droit de la propriété litteraire et artisgqulu droit des
marques, du droit de I'information, du droit civil ou de toartre
droit, ni de diffamation, de violation de la vie privée ou tdeit autre
préjudice délictuel a I'égard de toute tierce partie.

2. Al'exception des situations expressément mentionnass k& présent Con-
trat ou dans un autre accord écrit, ou exigées par la Idicgtye, I'Oeuvre
est mise a disposition en I'état sans garantie d’aucunte,squ’elle soit
expresse ou tacite, y compris a I'égard du contenu ou dedt@ude de
I'Oeuvre.

Limitation de responsabilité

A I'exception des garanties d’ordre public imposées pdoiapplicable et des

réparations imposées par le régime de la responsabikta-vis d'un tiers en

raison de la violation des garanties prévues par l'articléu présent contrat,
I'Offrant ne sera en aucun cas tenu responsable vis-ae/iBAtceptant, sur

la base d’aucune théorie légale ni en raison d’aucurugié direct, indirect,

matériel ou moral, résultant de I'exécution du prégeantrat ou de l'utilisation

de I'Oeuvre, y compris dans I'hypothese ou I'Offrant av@nnaissance de la
possible existence d’un tel préjudice.

Résiliation

1. Tout manquement aux termes du contrat par I'’Acceptant ¥etréa
résiliation automatique du Contrat et la fin des droits quidécoulent.
Cependant, le contrat conserve ses effets envers les pesphysiques

240 Chapter A — Licence Creative Commons

ou morales qui ont recu de la part de I'’Acceptant, en exécwtu présent
contrat, la mise a disposition d’'Oeuvres dites Dériyeasd’Oeuvres dites
Collectives, ceci tant gu’elles respectent pleinementslebligations. Les
sections 1, 2, 5, 6 et 7 du contrat continuent a s’appligpersala résiliation
de celui-ci.

2. Dans les limites indiquées ci-dessus, le présent Costagiplique pen-
dant toute la durée de protection de I'Oeuvre selon le dipjilicable.
Néanmoins, I'Offrant se réserve a tout moment le draxgloiter 'Oeuvre
sous des conditions contractuelles differentes, ou désser la diffusion;
cependant, le recours a cette option ne doit pas conduetrar les effets
du présent Contrat (ou de tout contrat qui a été ou daatatcordé selon les
termes de ce Contrat), et ce Contrat continuera a s’applidans tous ses
effets jusqu’a ce que sa résiliation intervienne dansdeslitions décrites
ci-dessus.

Divers

1. A chaque reproduction ou communication au public par voreé&nigue de
'Oeuvre ou d’'une Oeuvre dite Collective par I’Acceptan©ffrant pro-
pose au bénéficiaire une offre de mise a disposition deli®@e dans des
termes et conditions identiques a ceux accordés a lepsrteptante dans
le présent Contrat.

2. La nullité ou l'inapplicabilité d'une quelconque dispkien de ce Contrat
au regard de la loi applicable n’affecte pas celle des adiggmsitions qui
resteront pleinement valides et applicables. Sans actditi@nnelle par
les parties a cet accord, lesdites dispositions devroatigterprétées dans
la mesure minimum nécessaire a leur validité et leuriagbilité.

3. Aucune limite, renonciation ou modification des termes @pdsitions du
présent Contrat ne pourra étre acceptée sans le conmttécrit et signé
de la partie compétente.

4. Ce Contrat constitue le seul accord entre les parties aoprape
'Oeuvre mise ici a disposition. Il n’existe aucun élémennexe, ac-
cord supplémentaire ou mandat portant sur cette Oeuvreebarsl des
eléments mentionnés ici. L'Offrant ne sera tenu par aacdisposition
supplémentaire qui pourrait apparaitre dans une quel@mrommunica-
tion en provenance de I'Acceptant. Ce Contrat ne peut ébdifié sans
I'accord mutuel écrit de I'Offrant et de I'’Acceptant.

5. Le droit applicable est le droit francais.

Section A.2 — Creative Commons 241

A.2 Creative Commons

Creative Commons n’est pas partie a ce Contrat et n'offreuae forme de

garantie relative a I'Oeuvre. Creative Commons déclmgd responsabilité a
I'égard de I'Acceptant ou de toute autre partie, quel gudsdfondement légal de
cette responsabilité et quel que soit le préjudice suf@ct] indirect, matériel ou

moral, qui surviendrait en rapport avec le present Con@apendant, si Creative
Commons s’est expressément identifie comme Offrant pattrenune Oeuvre a
disposition selon les termes de ce Contrat, Creative Comarnuuira de tous les
droits et obligations d’un Offrant.

A I'exception des fins limitées a informer le public que €@vre est mise a
disposition sous CPCC, aucune des parties n’utilisera laumed'Creative Com-
mons” ou toute autre indication ou logo afférent sans leseatement préalable
écrit de Creative Commons. Toute utilisation autoriséera étre effectuée en
conformité avec les lignes directrices de Creative Consrifour au moment
de I'utilisation, telles qu’elles sont disponibles sur site Internet ou sur simple
demande.

Creative Commons peut etre contacté
http://creati vecommons. org/.

http://creativecommons.org/

242 Chapter A — Licence Creative Commons

	Introduction
	Background
	Motivations
	Contributions
	State of the Art
	Outline
	Author's Publications

	Schemas and Query Languages
	Unranked Trees and Logics
	Trees and Binary Encodings
	FO and MSO Logics
	Tree Automata

	Schemas
	Document Type Definition
	Extended Document Type Definition

	Queries
	Queries over Relational Structures
	Queries by Automata
	XPath
	Other Approaches for Querying in Trees
	Evaluation Algorithms

	Streamability
	Introduction
	Streaming
	Linearizations of Trees
	Example of Stream Processing
	Concurrency
	Evaluation Model

	Streamable Query Classes
	Streamability
	Boolean and Monadic Queries

	Hardness of Streamability
	Hardness of Bounded Concurrency
	Hardness of Streamability
	Non-Streamability of Forward XPath

	Conclusion

	Streaming Tree Automata
	Introduction
	Streaming Tree Automata
	Definition
	Determinization
	Expressiveness and Decision Problems

	Translation of DTDs into STAs
	Nested Word Automata
	Definition
	Translations into and from STAs

	Pushdown Forest Automata
	Definition
	Equivalence to STAs

	Standard Tree Automata
	Stepwise Tree Automata
	Top-Down Tree Automata w.r.t. fcns Encoding

	Conclusion

	Earliest Query Answering for Streaming Tree Automata
	Introduction
	Earliest Query Answering
	Earliest Event for Selection
	Earliest Event for Rejection

	Complexity of Selection Sufficiency
	Sufficiency Problem
	Reduction from Language Inclusion
	Hardness of EQA for XPath and STAs

	EQA Algorithm for dSTAs
	Safe States Computation for dSTAs
	Generic EQA Algorithm and its Instantiation for dSTAs
	Adding Schemas
	Example Run of the Algorithm with Schema
	Implementation

	Streamability of dSTAs
	Conclusion

	Streamable Fragments of Forward XPath
	Introduction
	m-Streamable Fragments of Forward XPath
	Filter Terms with Variables
	k-Downward XPath
	Deciding Membership to k-Downward XPath
	Translating k-Downward XPath to dSTAs
	k-Downward XPath is m-streamable for every mN0

	Beyond k-Downward XPath: Prospective Ideas
	-Streamable Fragments of Forward XPath
	Adding Horizontal Axes

	Conclusion

	Deciding Bounded Delay and Concurrency
	Introduction
	Delay and Concurrency for Words and Trees
	EQA for Words and Trees
	Delay
	Link to Concurrency

	Bounded Delay and Concurrency for Queries in Words
	Finite Automata
	Defining n-ary Queries
	Computing Delays of Queries
	Reduction to Bounded Ambiguity
	Deciding Bounded Concurrency

	Recognizable Relations between Unranked Trees
	Closure Properties
	Recognizable Relations
	Sorted FO Logic
	Sorted FO Logic of Recognizable Relations
	Bounded Valuedness
	k-Bounded Valuedness

	Deciding Bounded Delay and Concurrency
	Basic Recognizable Relations
	Bounded Delay
	Bounded Concurrency
	Discussion of Direct Construction

	Conclusion

	Conclusion
	Main Results
	Perspectives

	Résumé
	Contexte
	Motivations
	Contributions

	Index
	Bibliography
	Notations
	List of Figures
	Licence Creative Commons
	Contrat
	Creative Commons

