Streaming Tree Automata and XPath

I INRIA

Olivier Gauwin

\\ Université
’f Lille1 Mostrare Project

Sciences et Technologies

Ph.D. Defense
ifL September 28th, 2009

supervisors: Joachim Niehren and Sophie Tison

Olivier Gauwin (Mostrare) September 28th, 2009 1/ 44

XML
A Format for Semi-Structured Data

XML Document Corresponding Tree
<bib>
<book> .
<author> Hopcroft </author> bib
<author> Ullman </author> ////// N\
<title> Introduction... </title> book book

</book> / ‘ \ ‘
<book>
author author title e

[I [

Hopcroft Ullman Introduction...

</book>
<book>

</book>
</bib>

Olivier Gauwin (Mostrare)

book

September 28th, 2009

2/ 44

XML
A Format for Semi-Structured Data

XML Document
<bib>

</bib>

Olivier Gauwin (Mostrare)

Corresponding Tree

bib

XML
A Format for Semi-Structured Data

XML Document Corresponding Tree
<bib>

<book> .
bib

/\\
book book book
</book>

<book>

</book>
<book>

</book>
</bib>

Olivier Gauwin (Mostrare) September 28th, 2009 2 /44

XML
A Format for Semi-Structured Data

XML Document Corresponding Tree
<bib>
<book> .
<author> Hopcroft </author> bib
<author> Ullman </author> ////// N\
<title> Introduction... </title> book book

</book> / ‘ \ ‘
<book>
author author title e

[I [

Hopcroft Ullman Introduction...

</book>
<book>

</book>
</bib>

Olivier Gauwin (Mostrare)

book

September 28th, 2009

2/ 44

XML
A Format for Semi-Structured Data

XML Document Corresponding Tree
<bib>
<book> .
<author> Hopcroft </author> bib
<author> Ullman </author> ////// N\
<title> Introduction... </title> book book book

</book> //// | \\\\
<book>

author author title

: | | |
</book>

<book>

</book>
</bib>

finite labeled ordered unranked trees

Olivier Gauwin (Mostrare)

Hopcroft Ullman Introduction...

September 28th, 2009

2/ 44

Streaming

@ process data on-the-fly
@ objective: low memory consumption (buffering)

@ Uuse cases:

> huge data (larger than main memory)
> natural stream sources:

*

*
*
*

network sockets
sensors
subscribed feeds
etc.

Olivier Gauwin (Mostrare)

September 28th, 2009

3/ 44

XML Streams

<bib>
<book>
<author> Hopcroft </author> bib

<author> Ullman </author> ////// \\\\\\
<title> Introduction... </title> book book
</book> 0o oo

<book> ‘ ‘

: author author title
</book> \ I \
</bib> Hopcroft Ullman Introduction...

Olivier Gauwin (Mostrare) September 28th, 2009 4 / 44

XML Streams

<bib>

® bib

Olivier Gauwin (Mostrare)

XML Streams

<bib>
<book>

bib

® book

Olivier Gauwin (Mostrare) P Sl e) A

XML Streams

<bib>
<book>
<author> bib
book

® author

Olivier Gauwin (Mostrare) P Sl e) A

XML Streams

<bib>
<book>
<author> Hopcroft bib
book
author
|
Hopcroft

Olivier Gauwin (Mostrare) P Sl e) A

XML Streams

<bib>
<book>
<author> Hopcroft </author>

authore
|
Hopcroft

Olivier Gauwin (Mostrare)

book

bib

XML Streams

<bib>
<book>
<author> Hopcroft </author>
<author>

author
|
Hopcroft

bib

7

book

® quthor

Olivier Gauwin (Mostrare) September 28th, 2009

4/ 44

XML Streams

<bib>
<book>
<author> Hopcroft </author>
<author> Ullman

author
\
Hopcroft

/////_Mb

book

author
|
Ullman

Olivier Gauwin (Mostrare) September 28th, 2009

4/ 44

XML Streams

<bib>
<book>
<author> Hopcroft </author>
<author> Ullman </author>

author
\
Hopcroft

/////_Mb

book

authore
|
Ullman

Olivier Gauwin (Mostrare) September 28th, 2009

4/ 44

XML Streams

<bib>
<book>
<author> Hopcroft </author>
<author> Ullman </author>
<title>

author
\
Hopcroft

bib
book
author ® title
|
Ullman

Olivier Gauwin (Mostrare) September 28th, 2009

4/ 44

XML Streams

<bib>
<book>
<author> Hopcroft </author>
<author> Ullman </author>

<title> Introduction...
book

author author
\ |
Hopcroft Ullman

Olivier Gauwin (Mostrare)

bib

title
|

Introduction...

September 28th, 2009

4/ 44

XML Streams

<bib>
<book>
<author> Hopcroft </author> bib
<author> Ullman </author>
<title> Introduction... </title>

book
author author title ®
I | I
Hopcroft Ullman Introduction...

Olivier Gauwin (Mostrare) September 28th, 2009 4 / 44

XML Streams

<bib>
<book>
<author> Hopcroft </author> bib
<author> Ullman </author>
<title> Introduction... </title>

°
</book> book
author author title
I | I
Hopcroft Ullman Introduction...

Olivier Gauwin (Mostrare) September 28th, 2009 4 / 44

XML Streams

<bib>
<book>
<author> Hopcroft </author> bib

<author> Ullman </author> ////// \\\\\\
<title> Introduction... </title> book ook o
</book> 00 00

<book> ‘ ‘

: author author title
</book> \ I \

Hopcroft Ullman Introduction...

Olivier Gauwin (Mostrare) September 28th, 2009 4 / 44

XML Streams

<bib>
<book>
<author> Hopcroft </author> bib e
<author> Ullman </author> ////// \\\\\\
<title> Introduction... </title>
</book> book book
<book> ‘ ‘
: author author title
</book> \ I \
</bib> Hopcroft Ullman Introduction...

Olivier Gauwin (Mostrare) September 28th, 2009 4 / 44

Data exchange

book book

N |
author author title ---

[I [

Hopcroft Ullman Introduction...

Hopcroft Ullman b

Introduction...

conform to schema 1

@ requires transformations

— conform to schema 2

@ usually based on selection of tuples of nodes

@ via queries

Olivier Gauwin (Mostrare)

September 28th, 2009

5/ 44

Queries

Monadic Queries

we only deal with monadic queries (n = 1) in this talk, i.e.:

Q(t) C nod(t)

For clarity, we ignore schemas.

Olivier Gauwin (Mostrare) September 28th, 2009 6 /44

Studied Query Classes

@ XPath

@ Queries by Automata

Olivier Gauwin (Mostrare)

XPath

@ W3C query language for XML documents
@ navigational language

book book
author author title author title
Hopcroft Ullman Introduction... Knuth The art of C.P.

Olivier Gauwin (Mostrare) September 28th, 2009

8/ 44

XPath

@ W3C query language for XML documents
@ navigational language
> axis: ch (child), ch* (descendant-or-self), etc.

book book
author author title author title
Hopcroft Ullman Introduction... Knuth The art of C.P.

Olivier Gauwin (Mostrare) September 28th, 2009

8/ 44

XPath

@ W3C query language for XML documents

@ navigational language
> axis: ch (child), ch* (descendant-or-self), etc.
» step: ch™::book (or with wildcard: ch*::x)

book book
author author title author title
Hopcroft Ullman Introduction... Knuth The art of C.P.

Olivier Gauwin (Mostrare) September 28th, 2009

8/ 44

XPath

@ W3C query language for XML documents

@ navigational language
> axis: ch (child), ch* (descendant-or-self), etc.
» step: ch™::book (or with wildcard: ch*::x)
> path: ch*::book/ch::author

book book
author author title author title
Hopcroft Ullman Introduction... Knuth The art of C.P.

Olivier Gauwin (Mostrare) September 28th, 2009

8/ 44

XPath

@ W3C query language for XML documents
@ navigational language
> axis: ch (child), ch* (descendant-or-self), etc.
» step: ch™::book (or with wildcard: ch*::x)
> path: ch*::book/ch::author
> filter: [ch::author=""Hopcroft”] (and also: [F and F], [not(F)])

book book
author author title author title
Hopcroft Ullman Introduction... Knuth The art of C.P.

Olivier Gauwin (Mostrare) September 28th, 2009

8/ 44

XPath

@ W3C query language for XML documents
@ navigational language
» axis: ch (child), ch* (descendant-or-self), etc.
» step: ch™::book (or with wildcard: ch*::x)
> path: ch*::book/ch::author
> filter: [ch::author:”Hopcroft”] (and also: [F and F], [not(F)])

book book
author author title author title
Hopcroft Ullman Introduction... Knuth The art of C.P.

o for instance: /ch*::book[ch::author=""Hopcroft"]/ch::author
selects all co-authors of Hopcroft

Olivier Gauwin (Mostrare) September 28th, 2009

8/ 44

XPath

@ W3C query language for XML documents
@ navigational language
» axis: ch (child), ch* (descendant-or-self), etc.
» step: ch™::book (or with wildcard: ch*::x)
> path: ch*::book/ch::author
> filter: [ch::author:”Hopcroft”] (and also: [F and F], [not(F)])

Kw

author author title author tltle

Hopcroft Ullman Introduction.. Knuth The art of C.P.

o for instance: /ch*::book[ch::author=""Hopcroft"]/ch::author
selects all co-authors of Hopcroft

Olivier Gauwin (Mostrare)

September 28th, 2009

8/ 44

XPath

@ W3C query language for XML documents
@ navigational language
» axis: ch (child), ch* (descendant-or-self), etc.
» step: ch™::book (or with wildcard: ch*::x)
> path: ch*::book/ch::author
> filter: [ch::author:”Hopcroft”] (and also: [F and F], [not(F)])

bib

book

/N

author author title author title

Hopcroft Ullman Introduction... Knuth The art of C.P.

o for instance: /ch*::book[ch::author=""Hopcroft"]/ch::author
selects all co-authors of Hopcroft

Olivier Gauwin (Mostrare) September 28th, 2009

8/ 44

XPath

@ W3C query language for XML documents
@ navigational language
> axis: ch (child), ch* (descendant-or-self), etc.
» step: ch™::book (or with wildcard: ch*::x)
> path: ch*::book/ch::author
> filter: [ch::author=""Hopcroft”] (and also: [F and F], [not(F)])
bib

T

book book

AN /N

title author title

Hopcroft Ullman Introduction... Knuth The art of C.P.

o for instance: /ch*::book[ch::author=""Hopcroft"]/ch::author
selects all co-authors of Hopcroft

Olivier Gauwin (Mostrare) September 28th, 2009

8/ 44

XPath fragments

@ Core XPath : navigational core (no data values)
@ Forward XPath : Core XPath restricted to forward axes
o Downward XPath : Core XPath restricted to axes ch, ch*

Olivier Gauwin (Mostrare) September 28th, 2009 9 /44

Queries by Automata

Canonical trees
a
RN
a b

|
b

=

Olivier Gauwin (Mostrare) September 28th, 2009 10 / 44

Queries by Automata

Canonical trees

Olivier Gauwin (Mostrare) September 28th, 2009 10 / 44

Queries by Automata

Canonical trees

a (a,0)
N\ N\
t= a b txm = (a,{x}) (b, 0)
| |
b T ™ (b,0)

Olivier Gauwin (Mostrare) September 28th, 2009 10 / 44

Queries by Automata

Canonical trees

a (a,0)
N\ N\
t= a b txm = (a,{x}) (b, 0)
| ™ |
b T ™ (b,0)

Canonical language

@ A monadic query Q defines the tree language Lo = {t*7 | m€Q(t)}

@ A language L of canonical trees defines the query Q(t) such that
TeQ(t)ifftxm el

A tree automaton over ¥ x 21X} recognizing canonical trees defines a
query over Y.

Olivier Gauwin (Mostrare) | Streaming Tree Automata and XPath September 28th, 2009 10 / 44

Querying XML Streams

Example: co-authors of Hopcroft

XML stream | Buffers | Actions
<bib>; | |

Olivier Gauwin (Mostrare) September 28th, 2009 11 / 44

Querying XML Streams
Example: co-authors of Hopcroft
XML stream | Buffers | Actions

<bib>;
<book>>

Olivier Gauwin (Mostrare) September 28th, 2009 11 / 44

Querying XML Streams

Example: co-authors of Hopcroft

XML stream | Buffers | Actions
<bib>;
<book>>
<author>3 3

Olivier Gauwin (Mostrare) September 28th, 2009 11 / 44

Querying XML Streams

Example: co-authors of Hopcroft

XML stream | Buffers | Actions
<bib>;
<book>>
<author>3 3
Ullman 3

Olivier Gauwin (Mostrare) September 28th, 2009 11 / 44

Querying XML Streams

Example: co-authors of Hopcroft

XML stream | Buffers | Actions
<bib>;
<book>>
<author>3 3
Ullman 3
</author> 3

Olivier Gauwin (Mostrare) September 28th, 2009 11 / 44

Querying XML Streams

Example: co-authors of Hopcroft

XML stream | Buffers | Actions
<bib>;
<book>>
<author>3 3
Ullman 3
</author> 3
<author>4 3,4

Olivier Gauwin (Mostrare) September 28th, 2009 11 / 44

Querying XML Streams

Example: co-authors of Hopcroft

XML stream

Buffers

Actions

<bib>;
<book>>
<author>3
Ullman
</author>
<author>y4
Hopcroft

w w w

output {3,4}

Olivier Gauwin (Mostrare) September 28th, 2009

11/ 44

Querying XML Streams

Example: co-authors of Hopcroft

XML stream Buffers Actions
<bib>;
<book>>
<author>3
Ullman
</author>
<author>4 3,4
Hopcroft output {3,4}
</author>

w w w

Olivier Gauwin (Mostrare) September 28th, 2009 11 / 44

Querying XML Streams

Example: co-authors of Hopcroft

XML stream

Buffers

Actions

<bib>;
<book>>

<author>3
Ullman

</author>

<author>y4
Hopcroft

</author>

<author>sg

w w w

output {3,4}

output {5}

Olivier Gauwin (Mostrare) September 28th, 2009

11/ 44

Querying XML Streams

Example: co-authors of Hopcroft

XML stream

Buffers

Actions

<bib>;
<book>>

<author>3
Ullman

</author>

<author>y4
Hopcroft

</author>

<author>sg
Vianu

w w w

output {3,4}

output {5}

Olivier Gauwin (Mostrare) September 28th, 2009

11/ 44

Querying XML Streams

Example: co-authors of Hopcroft

XML stream

Buffers

Actions

<bib>;
<book>>

<author>3
Ullman

</author>

<author>y4
Hopcroft

</author>

<author>sg
Vianu

</author>

w w w

output {3,4}

output {5}

Olivier Gauwin (Mostrare) September 28th, 2009

11/ 44

Querying XML Streams

Example: co-authors of Hopcroft

XML stream

Buffers

Actions

<bib>;
<book>>
<author>3
Ullman
</author>
<author>y4
Hopcroft
</author>
<author>sg
Vianu
</author>
</book>

w w w

output {3,4}

output {5}

Olivier Gauwin (Mostrare) September 28th, 2009

11/ 44

Querying XML Streams

Example: co-authors of Hopcroft

XML stream

Buffers

Actions

<bib>;
<book>>
<author>3
Ullman
</author>
<author>y4
Hopcroft
</author>
<author>sg
Vianu
</author>
</book>
<book>

w w w

output {3,4}

output {5}

Olivier Gauwin (Mostrare) September 28th, 2009

11/ 44

Querying XML Streams

Example: co-authors of Hopcroft

XML stream

Buffers

Actions

<bib>;
<book>>
<author>3
Ullman
</author>
<author>y4
Hopcroft
</author>
<author>sg
Vianu
</author>
</book>
<book>
<author>g

w w w

output {3,4}

output {5}

Olivier Gauwin (Mostrare) September 28th, 2009

11/ 44

Querying XML Streams

Example: co-authors of Hopcroft

XML stream

Buffers

Actions

<bib>;
<book>>
<author>3
Ullman
</author>
<author>y4
Hopcroft
</author>
<author>sg
Vianu
</author>
</book>
<book>
<author>g
Knuth

w ww

output {3,4}

output {5}

Olivier Gauwin (Mostrare) September 28th, 2009

11/ 44

Querying XML Streams

Example: co-authors of Hopcroft

XML stream

Buffers

Actions

<bib>;
<book>>
<author>3
Ullman
</author>
<author>y4
Hopcroft
</author>
<author>sg
Vianu
</author>
</book>
<book>
<author>g
Knuth
</author>

w ww

(o))

output {3,4}

output {5}

Olivier Gauwin (Mostrare) September 28th, 2009

11/ 44

Querying XML Streams

Example: co-authors of Hopcroft

XML stream

Buffers

Actions

<bib>;
<book>>
<author>3
Ullman
</author>
<author>y4
Hopcroft
</author>
<author>sg
Vianu
</author>
</book>
<book>
<author>g
Knuth
</author>
</book>

w ww

(o))

output {3,4}

output {5}

discard {6}

Olivier Gauwin (Mostrare) September 28th, 2009

11/ 44

Querying XML Streams

Example: co-authors of Hopcroft

XML stream

Buffers

Actions

<bib>;
<book>>
<author>3
Ullman
</author>
<author>y4
Hopcroft
</author>
<author>sg
Vianu
</author>
</book>
<book>
<author>g
Knuth
</author>
</book>
</bib>

w ww

(o))

output {3,4}

output {5}

discard {6}

Olivier Gauwin (Mostrare) September 28th, 2009

11/ 44

Questions and Contributions

Olivier Gauwin (Mostrare)

Questions and Contributions

@ How much memory is needed?

» new model: Streaming Random Access Machines,
for query answering algorithms over streams
» we derive a lower space bound

Olivier Gauwin (Mostrare) September 28th, 2009 12 / 44

Questions and Contributions

@ How much memory is needed?

» new model: Streaming Random Access Machines,
for query answering algorithms over streams
» we derive a lower space bound

@ How to characterize query languages suitable to streaming?

> new measure: m-Streamability
» hardness results for queries by automata and XPath

Olivier Gauwin (Mostrare) September 28th, 2009 12 / 44

Questions and Contributions

@ How much memory is needed?
» new model: Streaming Random Access Machines,
for query answering algorithms over streams
» we derive a lower space bound
@ How to characterize query languages suitable to streaming?
> new measure: m-Streamability
» hardness results for queries by automata and XPath
» Bounded Concurrency and Delay (not presented here)

Olivier Gauwin (Mostrare) September 28th, 2009 12 / 44

Questions and Contributions

@ How much memory is needed?

» new model: Streaming Random Access Machines,
for query answering algorithms over streams
» we derive a lower space bound

@ How to characterize query languages suitable to streaming?

> new measure: m-Streamability
» hardness results for queries by automata and XPath
» Bounded Concurrency and Delay (not presented here)

@ Are there tractable fragments?

Olivier Gauwin (Mostrare) September 28th, 2009 12 / 44

Questions and Contributions

@ How much memory is needed?
» new model: Streaming Random Access Machines,
for query answering algorithms over streams
» we derive a lower space bound
@ How to characterize query languages suitable to streaming?
> new measure: m-Streamability
» hardness results for queries by automata and XPath
» Bounded Concurrency and Delay (not presented here)
@ Are there tractable fragments?
> queries defined by deterministic Streaming Tree Automata
* Earliest Query Answering algorithm

Olivier Gauwin (Mostrare) September 28th, 2009 12 / 44

Questions and Contributions

@ How much memory is needed?
» new model: Streaming Random Access Machines,
for query answering algorithms over streams
» we derive a lower space bound
@ How to characterize query languages suitable to streaming?
> new measure: m-Streamability
» hardness results for queries by automata and XPath
» Bounded Concurrency and Delay (not presented here)
@ Are there tractable fragments?
> queries defined by deterministic Streaming Tree Automata
* Earliest Query Answering algorithm
» k-Downward XPath: a streamable fragment of XPath

Olivier Gauwin (Mostrare) September 28th, 2009 12 / 44

© Memory Requirements

© Streamability

© Queries by Automata

O XPath

Olivier Gauwin (Mostrare) September 28th, 2009 13 / 44

© Memory Requirements

Olivier Gauwin (Mostrare)

Buffering Requirements

of query answering algorithms over XML streams

@ O(]t]) is equivalent to in-memory algorithms
» too much space

Olivier Gauwin (Mostrare) September 28th, 2009 15 / 44

Buffering Requirements

of query answering algorithms over XML streams

@ O(]t]) is equivalent to in-memory algorithms
» too much space

@ O(1) = bounded buffering (independent from t)

Olivier Gauwin (Mostrare) September 28th, 2009 15 / 44

Buffering Requirements

of query answering algorithms over XML streams

@ O(]t]) is equivalent to in-memory algorithms
» too much space

@ O(1) = bounded buffering (independent from t)
» Boolean queries (tree acceptors)

Olivier Gauwin (Mostrare) September 28th, 2009 15 / 44

Buffering Requirements

of query answering algorithms over XML streams

@ O(]t]) is equivalent to in-memory algorithms
» too much space

@ O(1) = bounded buffering (independent from t)
» Boolean queries (tree acceptors)

* validation wrt a DTD in O(1) is only known for restricted forms of
DTDs (SecouriN, VIANU 02)

Olivier Gauwin (Mostrare) September 28th, 2009 15 / 44

Buffering Requirements

of query answering algorithms over XML streams

@ O(]t]) is equivalent to in-memory algorithms
» too much space

@ O(1) = bounded buffering (independent from t)
» Boolean queries (tree acceptors)
* validation wrt a DTD in O(1) is only known for restricted forms of
DTDs (SecouriN, VIANU 02)
* for Positive Core XPath, filtering non-recursive documents requires

space at least exponential in the size of the expression (BENEDIKT,
JEFFREY 07)

Olivier Gauwin (Mostrare) September 28th, 2009 15 / 44

Buffering Requirements

of query answering algorithms over XML streams

@ O(]t]) is equivalent to in-memory algorithms
» too much space

@ O(1) = bounded buffering (independent from t)
» Boolean queries (tree acceptors)

* validation wrt a DTD in O(1) is only known for restricted forms of
DTDs (SecouriN, VIANU 02)

* for Positive Core XPath, filtering non-recursive documents requires
space at least exponential in the size of the expression (BENEDIKT,
JEFFREY 07)

» monadic queries

Olivier Gauwin (Mostrare) September 28th, 2009 15 / 44

Buffering Requirements

of query answering algorithms over XML streams

@ O(]t]) is equivalent to in-memory algorithms
» too much space

@ O(1) = bounded buffering (independent from t)
» Boolean queries (tree acceptors)

* validation wrt a DTD in O(1) is only known for restricted forms of
DTDs (SecouriN, VIANU 02)

* for Positive Core XPath, filtering non-recursive documents requires
space at least exponential in the size of the expression (BENEDIKT,
JEFFREY 07)

» monadic queries

* for Positive Core XPath, there is no streaming algorithm using bounded

buffering, even on non-recursive documents (BENEDIKT, JEFFREY 07)

Olivier Gauwin (Mostrare) September 28th, 2009 15 / 44

Buffering Requirements

of query answering algorithms over XML streams

@ O(|t]) is equivalent to in-memory algorithms
» too much space

@ O(1) = bounded buffering (independent from t)
» Boolean queries (tree acceptors)
* validation wrt a DTD in O(1) is only known for restricted forms of
DTDs (SecouriN, VIANU 02)
* for Positive Core XPath, filtering non-recursive documents requires
space at least exponential in the size of the expression (BENEDIKT,
JEFFREY 07)

» monadic queries

* for Positive Core XPath, there is no streaming algorithm using bounded
buffering, even on non-recursive documents (BENEDIKT, JEFFREY 07)
* O(1) is impossible for co-authors of Hopcroft

Olivier Gauwin (Mostrare) September 28th, 2009 15 / 44

Concurrency

(BAR-YOsSEF, FONTOURA, JOSIFOVSKI 05)

Alive nodes
A node 7 of t is alive for Q at event 7 if:
@ there is a continuation t’ of t after n s.t. 7 € Q(t')

@ there is a continuation t” of t after n s.t. m ¢ Q(t")

Concurrency

The concurrency of @ wrt t is the maximal number of simultaneous alive
nodes.

Olivier Gauwin (Mostrare) September 28th, 2009 16 / 44

Concurrency

Example

Query Q: co-authors of Hopcroft

XML stream Alive nodes
<bib>;
<book>>
<author>3 3
Ullman 3
</author> 3
n <author>y 3,4

Olivier Gauwin (Mostrare)

September 28th, 2009

17 / 44

Concurrency

Example

Query Q: co-authors of Hopcroft

XML stream Alive nodes Nodes 1 and 2 are not alive at 1 because:
<bib>;
<book>s @ there is no continuation for which they
<author>3 3 are selected
Ullman 3
</author> 3
n <author>, 3,4

Olivier Gauwin (Mostrare) September 28th, 2009 17 / 44

Concurrency

Example

Query Q: co-authors of Hopcroft

XML stream

Alive nodes Nodes 1 and 2 are not alive at 1 because:

<bib>;
<book>>
<author>3
Ullman
</author>
n <author>,

@ there is no continuation for which they
are selected

w w w

Nodes 3 and 4 are alive at i because:

Olivier Gauwin (Mostrare) September 28th, 2009

17 / 44

Concurrency

Example

Query Q: co-authors of Hopcroft

XML stream Alive nodes Nodes 1 and 2 are not alive at 1 because:
<bib>;
<book>s @ there is no continuation for which they
<author>3 3 are selected
Ullman
</author> 3 Nodes 3 and 4 are alive at i because:
n <author>4 3,4
Hopcroft | output {3,4} @ there is one continuation for which they
</author> are selected and
</book>
</bib>

Olivier Gauwin (Mostrare) September 28th, 2009 17 / 44

Concurrency

Example

Query Q: co-authors of Hopcroft

Nodes 1 and 2 are not alive at 1 because:

XML stream Alive nodes
Pb>1 @ there is no continuation for which they
<book>>
<author>3 3 are selected
Ulman 3 Nodes 3 and 4 are alive at n because:
</author> 3
4 <a1\1;-h°r>4 g'i @ there is one continuation for which they
lanu)
</author> 34 are selected and
</;{E§0k> discard {3, 4} @ there is one continuation for which they
1

Olivier Gauwin (Mostrare)

are rejected

September 28th, 2009 17 / 44

Concurrency

Example

Query Q: co-authors of Hopcroft

Nodes 1 and 2 are not alive at 1 because:

XML stream Alive nodes
Pb>1 @ there is no continuation for which they
<book>>
<author>3 3 are selected
Ulman 3 Nodes 3 and 4 are alive at n because:
</author> 3
! <a1\1;-h°r>4 g'i @ there is one continuation for which they
lanu)
</author> 34 are selected and
</;{E§0k> discard {3, 4} @ there is one continuation for which they
1

are rejected

The concurrency of Q wrt t is 2.

Olivier Gauwin (Mostrare)

September 28th, 2009 17 / 44

Concurrency

A space lower bound?

The concurrency was known to be a lower bound on a very special case.
Theorem (BAR—YOSSEF, FONTOURA, JOSIFOVSKI 05)

Let t be a non-recursive tree, @ a query in Downward XPath without
wildcard, and c the close-concurrency of Q wrt t. Then there is a tree t/
similar to t for which evaluating @ requires space at least c.

Is concurrency a lower bound for all query answering algorithms on XML
streams?

@ in general no, due to possible compaction of buffered candidates

@ in known algorithms yes

Olivier Gauwin (Mostrare) September 28th, 2009 18 / 44

Streaming Random Access Machines (SRAMs)

input tape /

—
registers

ni Rn) w————
r.

N

[T

R(r) finite
state

control

r

x

R(r)

output tape O

—

@ node identifiers are stored in registers, and unknown from controller

» this avoids compaction tricks

@ space used = number of registers + used working memory

Olivier Gauwin (Mostrare) September 28th, 2009 19 / 44

Streaming Random Access Machines (SRAMs)

Theorem

Concurrency is a space lower bound for queries computed by SRAMs.

Olivier Gauwin (Mostrare) September 28th, 2009 20 / 44

Deciding Bounded Concurrency

Hardness results

Jk. Vt. concurrency of Q on t < k = bounded buffering is possible

Vv
bounded concurrency

Olivier Gauwin (Mostrare) September 28th, 2009 21 / 44

Deciding Bounded Concurrency

Hardness results

Jk. Vt. concurrency of Q on t < k = bounded buffering is possible

bounded concurrency

Hard queries

all(Q) = /self ::x[lastchild::x[Q]] / ch::x

Given a query class Q for which all and not can be defined in polynomial
time, deciding whether a query has bounded concurrency is harder than
universality of the corresponding Boolean query.

Consequences

@ coNP-hard for Downward XPath
@ EXPTIME-hard for queries by non-deterministic automata

Olivier Gauwin (Mostrare) | Streaming Tree Automata and XPath September 28th, 2009 21 / 44

Deciding Bounded Concurrency

Positive results

Theorem

For queries defined by deterministic Streaming Tree Automata:
@ deciding bounded concurrency is in PTIME

@ deciding k-bounded concurrency is in PTIME when k is fixed

Similar results for bounded delay.
This result is obtained through properties of recognizable relations over

unranked trees, and a reduction to bounded valuedness of transducers
(SEIDL 92).

Olivier Gauwin (Mostrare) September 28th, 2009 22 / 44

Bounded vs Unbounded Concurrency

We also want to deal with queries with unbounded concurrency:

@ on real documents, concurrency may be bounded, even though not
specified in schemas (e.g. co-authors)

@ concurrency may be large for some trees, and small for others

Olivier Gauwin (Mostrare) September 28th, 2009 23 / 44

© Streamability

Olivier Gauwin (Mostrare)

Towards a Measure of Streamability

@ Space and time restrictions

> time also has to be considered:
» deciding aliveness of a node at a given event is often computationally
hard

* coNP-hard for Downward XPath,
* EXPTIME-hard for queries by automata

@ Streamability concerns query classes, not queries

> a query class Q is a set of query definitions e € Q with size |e| > 1 and
defining queries Q.
» for instance: XPath expressions, automata, etc.

Olivier Gauwin (Mostrare) September 28th, 2009 25 / 44

Streamability

Definition
Let m € NU {oco}. A query class Q is m-streamable iff

there exists a polynomial p such that for all e € O:

» an SRAM M. computing Q. can be built in time p(|e|)
> for all trees t with concurq, (t) < m:

M uses per event space and time in p(|e|)

Olivier Gauwin (Mostrare) September 28th, 2009 26 / 44

Streamability

Definition
Let m € NU {oco}. A query class Q is m-streamable iff

there exists a polynomial p such that for all e € O:

» an SRAM M. computing Q. can be built in time p(|e|)
> for all trees t with concurq, (t) < m:

M uses per event space and time in p(|e|)

Hierarchy

0-streamable D 1-streamable D 2-streamable D ... D oo-streamable

Olivier Gauwin (Mostrare) September 28th, 2009 26 / 44

Streamability

Definition
Let m € NU {oco}. A query class Q is m-streamable iff

there exists a polynomial p such that for all e € O:

» an SRAM M. computing Q. can be built in time p(|e|)
> for all trees t with concurq, (t) < m:

M e uses per event space and time in p(|e|)

Hierarchy

0-streamable D 1-streamable D 2-streamable D ... D oo-streamable

oo-streamability vs finite streamability

Q is co-streamable iff:
@ Qis m-streamable for all m € N (with the same polynomial p) and

@ Q has polynomially bounded concurrency, i.e., there is a polynomial
p' s.t. Ve € Q, Vt, concurg,(t) < p'(le|)

Olivier Gauwin (Mostrare) | Streaming Tree Automata and XPath September 28th, 2009 26 / 44

Hardness of Streamability

Theorem

If Q is a query class such that:
Q queries all(Q.) can be defined in PTIME in |e|
@ membership a € Ljq,) can be tested in PTIME in |e]
© QO is 0-streamable

then universality of Boolean queries {[Q.] | e € Q descending} can be
solved in PTIME.

all(Q) = /self ::x[lastchild::*[Q]] /ch::*

Olivier Gauwin (Mostrare) September 28th, 2009 27 / 44

Hardness of Streamability

Theorem

If Q is a query class such that:
Q queries all(Q.) can be defined in PTIME in |e|
@ membership a € Ljq,) can be tested in PTIME in |e]
© QO is 0-streamable

then universality of Boolean queries {[Q.] | e € Q descending} can be
solved in PTIME.

all(Q) = /self ::x[lastchild::*[Q]] /ch::*

Consequences

@ Forward XPath is not O-streamable except if P=NP.

@ queries by automata are not 0-streamable.

Olivier Gauwin (Mostrare) | Streaming Tree Automata and XPath September 28th, 2009 27 / 44

Positive results?

Question

Are there streamable and expressive fragments of XPath and automata?

Olivier Gauwin (Mostrare) September 28th, 2009 28 / 44

© Queries by Automata

Olivier Gauwin (Mostrare)

Streamability of Queries by Automata

@ non-deterministic automata are not O-streamable

Olivier Gauwin (Mostrare) P el TR ATE) D

Streamability of Queries by Automata

@ non-deterministic automata are not 0-streamable
@ automata will be evaluated according to pre-order traversal of trees
» we use the corresponding notion of determinism

Olivier Gauwin (Mostrare) September 28th, 2009 30 / 44

Streamability of Queries by Automata

@ non-deterministic automata are not 0-streamable

@ automata will be evaluated according to pre-order traversal of trees
» we use the corresponding notion of determinism
» we define Streaming Tree Automata, a variant of:

Pushdown Forest Automata (NEUMANN, SEIDL 98)
Visibly Pushdown Automata (ALUR, MADHUSUDAN 04)
Nested Word Automata (ALUR 07)

etc.

* ot o %

Olivier Gauwin (Mostrare) September 28th, 2009 30 / 44

Streaming Tree Automata (STAs)

e a e b ®a

O

° e b e b °

—(O—2+1 T .@,2 6‘3 2
Y

A: STA on 7y with ¥ = {a, b}
and state = {0,1,2,3,4,5}
and stat, = {«, 5,7}

Olivier Gauwin (Mostrare) September 28th, 2009 31/ 44

Streaming Tree Automata (STAs)

e a e b ®a

B N
2 e b e b ®a
—(0—— 5 A3 3 2 0
e b
v a
A: STA on 7y with ¥ = {a, b}
and state = {0,1,2,3,4,5}
and stat, = {«, 5,7} 2 b

b

Olivier Gauwin (Mostrare) September 28th, 2009 31/ 44

Streaming Tree Automata (STAs)

e a e b ®a

B N
2 e b e b ®a
—(0——1 5 A3 3 2 0

e b ;

A (0%

’Y 1 a
A: STA on 7y with ¥ = {a, b}
and state = {0,1,2,3,4,5}
and stat, = {«, 5,7} 3 b

b

Olivier Gauwin (Mostrare) September 28th, 2009 31/ 44

Streaming Tree Automata (STAs)

e a e b ®a

Dl
2 e b e b ®a
—(0—— 5 A3 3 2 0

e b ;

A «

FY 1 a
A: STA on Ty with ¥ = {a, b}
and state = {0,1,2,3,4,5}
and stat, = {«, 3,7} 1*’" g b

b

Olivier Gauwin (Mostrare) September 28th, 2009 31/ 44

Streaming Tree Automata (STAs)

e a e b ®a

Dl
2 e b e b ®a
—(0——1 5 A3 3 2 0
e b ;
A «
FY 1 a
A: STA on Ty with ¥ = {a, b}
and state = {0,1,2,3,4,5}
and stat, = {«, 3,7} 1*’" g b
v
4 b

Olivier Gauwin (Mostrare) September 28th, 2009 31/ 44

Streaming Tree Automata (STAs)

e a e b ®a

B LN
2 e b e b ®a
—(0—— 5 A3 3 2 0
e b ;
A «
FY 1 a
A: STA on Ty with ¥ = {a, b}
and state = {0,1,2,3,4,5}
and stat, = {«, 3,7} 1*’" g b
v 0
4 b 3

Olivier Gauwin (Mostrare) September 28th, 2009 31/ 44

Streaming Tree Automata (STAs)

e a e b ®a
e a e b e b °a
—(0— 4 3 2

1
2/ B ~ 2/ 6 0
e b ' a
FY 1 a
A: STA on Ty with ¥ = {a, b}
and state = {0,1,2,3,4,5}
and stat, = {«, 3,7} 1*’" g 5 b
i ‘ s
v B
4 b 3

September 28th, 2009 31/ 44

Olivier Gauwin (Mostrare)

Streaming Tree Automata (STAs)

e a e b ®a
e a e b e b e a
—(0— 4 3 2

1
2/ B ~ 2/ 6 0
e b ' a
FY 1 a
A: STA on 7y with ¥ = {a, b}
and state = {0,1,2,3,4,5}
and stat, = {o, 8,7} 1 § > .2 Z
voB
4. b 3

September 28th, 2009

Olivier Gauwin (Mostrare)

31/ 44

Streaming Tree Automata (STAs)

e a e b ®a
e a e b e b e a
—(0— 4 3 2

1
e b ; o
7 1 a
A: STA on 7y with ¥ = {a, b}
and state = {07 1)2’37475} ﬂ
and stat, = {0[,6,’}/} 1’(2 D vy Z 3
H ‘ A T v
vo8
4. b 3

September 28th, 2009 31/ 44

Olivier Gauwin (Mostrare)

Streaming Tree Automata (STAs)

e a e b ®a
e a e b e b e a
—(0— 4 3 2

1
e b ; o
. K 1 a5

A: STA on 7y with ¥ = {a, b} .

and state = {07 1) 2’ 37 4’7 5} ﬂ

and stat, = {04,6,’)’} 1»" 2 D vy Z 3
; ‘ ' R ¢
vo8
4. b 3

September 28th, 2009 31/ 44

Olivier Gauwin (Mostrare)

Streaming Tree Automata (STAs)

e a e b ®a
e a e b e b e a
—(0— 4 3 2

1
=B v B 0
e b . o
: 7 1 a_5
A: STA on 75y with ¥ = {a, b} .
and state = {0,1,2,3,4,5} ﬂ 7
and stat, = {a, 3,7} 15y g e Op 3
1) T
voB
4. b 3

Deterministic STAs (dSTAs) respect the streaming order.

September 28th, 2009 31/ 44

Olivier Gauwin (Mostrare)

Streamability of Queries by dSTAs

Theorem
The class Q‘E,STAS of queries defined by dSTAs on trees of depth at most &

is m-streamable for all m > 0.

@ proved using an Earliest Query Answering algorithm

5 .
@ QisTas is not oo-streamable

Olivier Gauwin (Mostrare) September 28th, 2009 32/ 44

Earliest Query Answering (EQA)

EQA algorithms:

@ output selected nodes as soon as possible

@ reject nodes that are not selected as soon as possible

In other words: only keep alive nodes in memory.

Olivier Gauwin (Mostrare) September 28th, 2009 33/ 44

Ex: an STA for detecting sufficiency

A — Ex
defines the query @ defines the query @
detects earliest selection/rejection

Olivier Gauwin (Mostrare) September 28th, 2009 34 / 44

Ex: an STA for detecting sufficiency

A — Ex
defines the query @ defines the query @
detects earliest selection/rejection

Olivier Gauwin (Mostrare) September 28th, 2009 34 / 44

Ex: an STA for detecting sufficiency

A — Ex
defines the query @ defines the query @
detects earliest selection/rejection

@ remark: for words, all states are already safe or unsafe...

Olivier Gauwin (Mostrare) September 28th, 2009 34 / 44

Ex: an STA for detecting sufficiency

A — Ex
defines the query @ defines the query @
detects earliest selection/rejection

@ remark: for words, all states are already safe or unsafe...
@ ...but not for STAs: it depends on the context (i.e. the stack)

Olivier Gauwin (Mostrare) September 28th, 2009 34 / 44

Ex: an STA for detecting sufficiency

A — Ex
defines the query @ defines the query @
detects earliest selection/rejection

@ remark: for words, all states are already safe or unsafe...
@ ...but not for STAs: it depends on the context (i.e. the stack)

@ dynamic computation of safe states for selection and rejection

Olivier Gauwin (Mostrare) September 28th, 2009 34 / 44

EQA for Queries by dSTAs

Problem: Ea has size exponential in |A]

@ and we want a PTIME algorithm

Olivier Gauwin (Mostrare) September 28th, 2009 35/ 44

EQA for Queries by dSTAs

Problem: Ea has size exponential in |A]

@ and we want a PTIME algorithm

Solution: we build parts of E4 on the fly for the input tree t
@ safe states are updated at every event in PTIME

@ E, is deterministic: we compute one run per alive node

Olivier Gauwin (Mostrare) September 28th, 2009 35/ 44

EQA for Queries by dSTAs

Problem: Ea has size exponential in |A]

@ and we want a PTIME algorithm

Solution: we build parts of E4 on the fly for the input tree t
@ safe states are updated at every event in PTIME

@ E, is deterministic: we compute one run per alive node

Complexity
@ PTIME precomputation
@ PTIME per event and per alive node

@ space = concurrency (alive nodes) + depth (stack)

- QﬁSTAS is m-streamable for all m > 0.

Olivier Gauwin (Mostrare) September 28th, 2009 35/ 44

O XPath

Olivier Gauwin (Mostrare)

XPath Streamability

o Forward XPath is not O-streamable.

Olivier Gauwin (Mostrare)

XPath Streamability

o Forward XPath is not O-streamable.

@ PTIME translation of a fragment of XPath to dSTAs implies its
streamability.

Olivier Gauwin (Mostrare) September 28th, 2009 37 / 44

XPath Streamability

@ Forward XPath is not O-streamable.

@ PTIME translation of a fragment of XPath to dSTAs implies its
streamability.

@ the usual XPath — deterministic automata translation is doubly
exponential (VArDI, WOLPER 94), (LIBKIN, STRANGELO 08)

Olivier Gauwin (Mostrare) September 28th, 2009 37 / 44

k-Downward XPath

=Downward XPath with the additional restrictions:

© the total number of filters [...] is bounded by k > 0
Q all steps with ch* have a label test (i.e. no ch*::x)
© if ch™::a appears, then no a-descendant of an a-node
© bound on the depth of valid trees

Olivier Gauwin (Mostrare) September 28th, 2009 38 / 44

PTIME Translation of k-Downward XPath to dSTAs

by induction on the structure of k-Downward XPath expressions
Example: /ch*::a[not(ch::c)]/ch::b

@ A, checks whether the root is labeled by (b, {x})

Olivier Gauwin (Mostrare) September 28th, 2009 39 / 44

PTiME Translation of k-Downward XPath to dSTAs

by induction on the structure of k-Downward XPath expressions
Example: /ch*::a[not(ch::c)]/ch::b

@ A, checks whether the root is labeled by (b, {x})

@ Ach-p runs Ap on every child of the root, and succeeds iff A, succeeds
at least once

Olivier Gauwin (Mostrare) September 28th, 2009 39 / 44

PTIME Translation of k-Downward XPath to dSTAs
by induction on the structure of k-Downward XPath expressions
Example: /ch*::a[not(ch::c)]/ch::b

@ A, checks whether the root is labeled by (b, {x})

@ Ach-p runs Ap on every child of the root, and succeeds iff A, succeeds
at least once

o similarly for Acp..c (the label must be (¢,) instead of (b, {x}))

Olivier Gauwin (Mostrare) September 28th, 2009 39 / 44

PTiME Translation of k-Downward XPath to dSTAs

by induction on the structure of k-Downward XPath expressions
Example: /ch*::a[not(ch::c)]/ch::b

@ A, checks whether the root is labeled by (b, {x})

@ Ach-p runs Ap on every child of the root, and succeeds iff A, succeeds
at least once

o similarly for Acp..c (the label must be (¢,) instead of (b, {x}))
@ Apot(ch:c) is the complement of Acp:.c

Olivier Gauwin (Mostrare) | Streaming Tree Automata and XPath September 28th, 2009 39 / 44

PTiME Translation of k-Downward XPath to dSTAs

by induction on the structure of k-Downward XPath expressions
Example: /ch*::a[not(ch::c)]/ch::b

@ A, checks whether the root is labeled by (b, {x})

@ Ach-p runs Ap on every child of the root, and succeeds iff A, succeeds
at least once

o similarly for Acp..c (the label must be (¢,) instead of (b, {x}))
@ Apot(ch:c) is the complement of Acp:.c

° A[not(ch::c)]/ch::b is the intersection of Anot(ch::c) and Ach:b

Olivier Gauwin (Mostrare) | Streaming Tree Automata and XPath September 28th, 2009 39 / 44

PTiME Translation of k-Downward XPath to dSTAs

by induction on the structure of k-Downward XPath expressions
Example: /ch*::a[not(ch::c)]/ch::b

@ A, checks whether the root is labeled by (b, {x})

Ach::b runs Ap on every child of the root, and succeeds iff Ap, succeeds
at least once

similarly for Acp..c (the label must be (¢, ?) instead of (b, {x}))
Anot(ch::c) is the complement of Ag..c

©

A[not(ch::c)]/ch::b is the intersection of Anot(ch::c) and Acp:.p

e © ¢ ¢

A/ch*::a[not(ch::c)]/ch::b looks for a-nodes, runs A[not(ch::c)]/ch::b for each
of them, and succeeds iff one of them succeeded

Olivier Gauwin (Mostrare) | Streaming Tree Automata and XPath September 28th, 2009 39 / 44

PTiME Translation of k-Downward XPath to dSTAs

by induction on the structure of k-Downward XPath expressions
Example: /ch*::a[not(ch::c)]/ch::b

@ A, checks whether the root is labeled by (b, {x})

Ach::b runs Ap on every child of the root, and succeeds iff Ap, succeeds
at least once

similarly for Acp..c (the label must be (¢,) instead of (b, {x}))
Anot(ch::c) 1S the complement of Acp:.c

©

A[not(ch::c)]/ch::b is the intersection of Anot(ch::c) and Acp:.p

e © ¢ ¢

A/ch*::a[not(ch::c)]/ch::b looks for a-nodes, runs A[not(ch::c)]/ch::b for each
of them, and succeeds iff one of them succeeded

Thanks to the restrictions, all steps preserve determinism, and the
construction is in PTIME.

Olivier Gauwin (Mostrare) | Streaming Tree Automata and XPath September 28th, 2009 39 / 44

Known algorithms for streaming XPath

Fragment 0-str. m-str. oo-str. look-
vm ahead

Olivier Gauwin (Mostrare) P el TR AR D

Known algorithms for streaming XPath

Fragment 0-str. m-str. oo-str. look-
vm ahead
Downward XPath (RAMANAN 05)
(BAR-YossEF, F., J. 05) X X X v
(Gou, CHIRKOVA 07)

Olivier Gauwin (Mostrare) September 28th, 2009 40 / 44

Known algorithms for streaming XPath

Fragment 0-str. m-str. oo-str. look-
vm ahead
Downward XPath (RAMANAN 05)
(BAR-YossEF, F., J. 05) X X X v
(Gou, CHIRKOVA 07)
Forward XPath (OLTEANU 07) X X X v

Olivier Gauwin (Mostrare)

September 28th, 2009

40 / 44

Known algorithms for streaming XPath

Fragment 0-str. m-str. oo-str. look-
vm ahead
Downward XPath (RAMANAN 05)
(BAR-YossEF, F., J. 05) X X X v
(Gou, CHIRKOVA 07)
Forward XPath (OLTEANU 07) X X X v
k-Downward XPath (G., NIEHREN 09) v v X v

Olivier Gauwin (Mostrare) September 28th, 2009 40 / 44

Known algorithms for streaming XPath

Fragment 0-str. m-str. oo-str. look-
vm ahead
Downward XPath (RAMANAN 05)
(BAR-YossEF, F., J. 05) X X X v
(Gou, CHIRKOVA 07)
Forward XPath (OLTEANU 07) X X X v
k-Downward XPath (G., NIEHREN 09) v v X v
Strict Backward XUntil v v v X

(BENEDIKT, JEFFREY 07)

etc.

Olivier Gauwin (Mostrare) September 28th, 2009 40 / 44

Conclusion

Olivier Gauwin (Mostrare)

Main contributions

Streamability

@ SRAMs model for query answering algorithms on streams
@ Streamability measure

» Hardness results
@ Testing bounded concurrency

» Hardness results
» PTIME procedure for queries by deterministic STAs (LATA'09)

Olivier Gauwin (Mostrare) September 28th, 2009 42 / 44

Main contributions

Streamability

@ SRAMs model for query answering algorithms on streams
@ Streamability measure
» Hardness results

@ Testing bounded concurrency
» Hardness results

» PTIME procedure for queries by deterministic STAs (LATA'09)
Streamable fragments

@ Queries by deterministic STAs (IPL'08)
» Earliest Query Answering algorithm (FCT'09)

@ k-Downward XPath

Olivier Gauwin (Mostrare) | Streaming Tree Automata and XPath September 28th, 2009 42 / 44

Perspectives

Future Work

@ implementations

> our algorithms focus on low memory consumption
» this requires additional time

Olivier Gauwin (Mostrare) September 28th, 2009 43 / 44

Perspectives

Future Work

@ implementations

> our algorithms focus on low memory consumption
» this requires additional time

@ XProc

Olivier Gauwin (Mostrare) September 28th, 2009 43 / 44

Perspectives

Future Work

@ implementations

> our algorithms focus on low memory consumption
» this requires additional time

@ XProc

Open Questions

@ How to relax (approximate?) the earliest condition?

Olivier Gauwin (Mostrare) September 28th, 2009 43 / 44

Perspectives

Future Work

@ implementations

> our algorithms focus on low memory consumption
» this requires additional time

@ XProc

Open Questions

@ How to relax (approximate?) the earliest condition?

@ Can we extend the fragments (more XPath axes, etc.)?

Olivier Gauwin (Mostrare) September 28th, 2009 43 / 44

Perspectives

Future Work

@ implementations

> our algorithms focus on low memory consumption
» this requires additional time

@ XProc

Open Questions

@ How to relax (approximate?) the earliest condition?

@ Can we extend the fragments (more XPath axes, etc.)?
@ Are there logical characterizations of streamable query classes?
» bounded concurrency, bounded delay, etc.

Olivier Gauwin (Mostrare) | Streaming Tree Automata and XPath September 28th, 2009 43 / 44

Perspectives

Future Work

@ implementations
> our algorithms focus on low memory consumption
» this requires additional time

@ XProc

Open Questions

@ How to relax (approximate?) the earliest condition?
@ Can we extend the fragments (more XPath axes, etc.)?

@ Are there logical characterizations of streamable query classes?
» bounded concurrency, bounded delay, etc.

@ Can we extend these results to transformations?

Olivier Gauwin (Mostrare) | Streaming Tree Automata and XPath September 28th, 2009 43 / 44

Thank you

Olivier Gauwin (Mostrare)

	Memory Requirements
	Streamability
	Queries by Automata
	XPath

