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Streaming

@ process data on-the-fly
@ objective: low memory consumption (buffering)

@ Uuse cases:

> huge data (larger than main memory)
> natural stream sources:

*

*
*
*

network sockets
sensors
subscribed feeds
etc.
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Data exchange

book book

N |
author author  title ---

[ I [

Hopcroft Ullman Introduction...

Hopcroft  Ullman b

Introduction...

conform to schema 1

@ requires transformations

— conform to schema 2

@ usually based on selection of tuples of nodes

@ via queries
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Queries

Monadic Queries

we only deal with monadic queries (n = 1) in this talk, i.e.:

Q(t) C nod(t)

For clarity, we ignore schemas.
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Studied Query Classes

@ XPath

@ Queries by Automata
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@ navigational language
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XPath fragments

@ Core XPath : navigational core (no data values)
@ Forward XPath : Core XPath restricted to forward axes
o Downward XPath : Core XPath restricted to axes ch, ch*
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Canonical trees
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Queries by Automata

Canonical trees

a (a,0)
N\ N\
t= a b txm = (a,{x}) (b, 0)
| ™ |
b T ™ (b,0)

Canonical language

@ A monadic query Q defines the tree language Lo = {t*7 | m€Q(t)}

@ A language L of canonical trees defines the query Q(t) such that
TeQ(t)ifftxm el

A tree automaton over ¥ x 21X} recognizing canonical trees defines a
query over Y.
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Querying XML Streams
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© Queries by Automata

O XPath
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Buffering Requirements

of query answering algorithms over XML streams

@ O(]t]) is equivalent to in-memory algorithms
» too much space
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Buffering Requirements

of query answering algorithms over XML streams
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@ O(1) = bounded buffering (independent from t)
» Boolean queries (tree acceptors)
* validation wrt a DTD in O(1) is only known for restricted forms of
DTDs (SecouriN, VIANU 02)
* for Positive Core XPath, filtering non-recursive documents requires
space at least exponential in the size of the expression (BENEDIKT,
JEFFREY 07)

» monadic queries

* for Positive Core XPath, there is no streaming algorithm using bounded
buffering, even on non-recursive documents (BENEDIKT, JEFFREY 07)
* O(1) is impossible for co-authors of Hopcroft
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Concurrency

(BAR-YOsSEF, FONTOURA, JOSIFOVSKI 05)

Alive nodes
A node 7 of t is alive for Q at event 7 if:
@ there is a continuation t’ of t after n s.t. 7 € Q(t')

@ there is a continuation t” of t after n s.t. m ¢ Q(t")

Concurrency

The concurrency of @ wrt t is the maximal number of simultaneous alive
nodes.
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Concurrency

Example

Query Q: co-authors of Hopcroft

XML stream Alive nodes
<bib>;
<book>>
<author>3 3
Ullman 3
</author> 3
n <author>y 3,4
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Example

Query Q: co-authors of Hopcroft

XML stream

Alive nodes Nodes 1 and 2 are not alive at 1 because:

<bib>;
<book>>
<author>3
Ullman
</author>
n <author>,

@ there is no continuation for which they
are selected

w w w

Nodes 3 and 4 are alive at i because:
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Concurrency

Example

Query Q: co-authors of Hopcroft

XML stream Alive nodes Nodes 1 and 2 are not alive at 1 because:
<bib>; . . . .
<book>s @ there is no continuation for which they
<author>3 3 are selected
Ullman
</author> 3 Nodes 3 and 4 are alive at i because:
n <author>4 3,4 . . . .
Hopcroft | output {3,4} @ there is one continuation for which they
</author> are selected and
</book>
</bib>
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Concurrency

Example

Query Q: co-authors of Hopcroft

Nodes 1 and 2 are not alive at 1 because:

XML stream Alive nodes
Pb>1 @ there is no continuation for which they
<book>>
<author>3 3 are selected
Ulman 3 Nodes 3 and 4 are alive at n because:
</author> 3
4 <a1\1;-h°r>4 g'i @ there is one continuation for which they
lanu )
</author> 34 are selected and
</;{E§0k> discard {3, 4} @ there is one continuation for which they
1
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Concurrency

Example

Query Q: co-authors of Hopcroft

Nodes 1 and 2 are not alive at 1 because:

XML stream Alive nodes
Pb>1 @ there is no continuation for which they
<book>>
<author>3 3 are selected
Ulman 3 Nodes 3 and 4 are alive at n because:
</author> 3
! <a1\1;-h°r>4 g'i @ there is one continuation for which they
lanu )
</author> 34 are selected and
</;{E§0k> discard {3, 4} @ there is one continuation for which they
1

are rejected

The concurrency of Q wrt t is 2.
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Concurrency

A space lower bound?

The concurrency was known to be a lower bound on a very special case.
Theorem (BAR—YOSSEF, FONTOURA, JOSIFOVSKI 05)

Let t be a non-recursive tree, @ a query in Downward XPath without
wildcard, and c the close-concurrency of Q wrt t. Then there is a tree t/
similar to t for which evaluating @ requires space at least c.

Is concurrency a lower bound for all query answering algorithms on XML
streams?

@ in general no, due to possible compaction of buffered candidates

@ in known algorithms yes
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Streaming Random Access Machines (SRAMs)

input tape /

—
registers

ni Rn) w————
r.

N

[ T

R(r) finite
state

control

r

x

R(r)

output tape O

—

@ node identifiers are stored in registers, and unknown from controller

» this avoids compaction tricks

@ space used = number of registers + used working memory
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Streaming Random Access Machines (SRAMs)

Theorem

Concurrency is a space lower bound for queries computed by SRAMs.
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Deciding Bounded Concurrency

Hardness results

Jk. Vt. concurrency of Q on t < k = bounded buffering is possible

Vv
bounded concurrency
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Deciding Bounded Concurrency

Hardness results

Jk. Vt. concurrency of Q on t < k = bounded buffering is possible

bounded concurrency

Hard queries

all(Q) = /self ::x[lastchild::x[Q]] / ch::x

Given a query class Q for which all and not can be defined in polynomial
time, deciding whether a query has bounded concurrency is harder than
universality of the corresponding Boolean query.

Consequences

@ coNP-hard for Downward XPath
@ EXPTIME-hard for queries by non-deterministic automata
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Deciding Bounded Concurrency

Positive results

Theorem

For queries defined by deterministic Streaming Tree Automata:
@ deciding bounded concurrency is in PTIME

@ deciding k-bounded concurrency is in PTIME when k is fixed

Similar results for bounded delay.
This result is obtained through properties of recognizable relations over

unranked trees, and a reduction to bounded valuedness of transducers
(SEIDL 92).
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Bounded vs Unbounded Concurrency

We also want to deal with queries with unbounded concurrency:

@ on real documents, concurrency may be bounded, even though not
specified in schemas (e.g. co-authors)

@ concurrency may be large for some trees, and small for others
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© Streamability
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Towards a Measure of Streamability

@ Space and time restrictions

> time also has to be considered:
» deciding aliveness of a node at a given event is often computationally
hard

* coNP-hard for Downward XPath,
* EXPTIME-hard for queries by automata

@ Streamability concerns query classes, not queries

> a query class Q is a set of query definitions e € Q with size |e| > 1 and
defining queries Q.
» for instance: XPath expressions, automata, etc.
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Streamability

Definition
Let m € NU {oco}. A query class Q is m-streamable iff

there exists a polynomial p such that for all e € O:

» an SRAM M. computing Q. can be built in time p(|e|)
> for all trees t with concurq, (t) < m:

M uses per event space and time in p(|e|)
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Streamability

Definition
Let m € NU {oco}. A query class Q is m-streamable iff

there exists a polynomial p such that for all e € O:

» an SRAM M. computing Q. can be built in time p(|e|)
> for all trees t with concurq, (t) < m:

M e uses per event space and time in p(|e|)

Hierarchy

0-streamable D 1-streamable D 2-streamable D ... D oo-streamable

oo-streamability vs finite streamability

Q is co-streamable iff:
@ Qis m-streamable for all m € N (with the same polynomial p) and

@ Q has polynomially bounded concurrency, i.e., there is a polynomial
p' s.t. Ve € Q, Vt, concurg,(t) < p'(le|)
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Hardness of Streamability

Theorem

If Q is a query class such that:
Q queries all(Q.) can be defined in PTIME in |e|
@ membership a € Ljq,) can be tested in PTIME in |e]
© QO is 0-streamable

then universality of Boolean queries {[Q.] | e € Q descending} can be
solved in PTIME.

all(Q) = /self ::x[lastchild::*[Q]] /ch::*
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Hardness of Streamability

Theorem

If Q is a query class such that:
Q queries all(Q.) can be defined in PTIME in |e|
@ membership a € Ljq,) can be tested in PTIME in |e]
© QO is 0-streamable

then universality of Boolean queries {[Q.] | e € Q descending} can be
solved in PTIME.

all(Q) = /self ::x[lastchild::*[Q]] /ch::*

Consequences

@ Forward XPath is not O-streamable except if P=NP.

@ queries by automata are not 0-streamable.
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Positive results?

Question

Are there streamable and expressive fragments of XPath and automata?
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© Queries by Automata

Olivier Gauwin (Mostrare)



Streamability of Queries by Automata

@ non-deterministic automata are not O-streamable
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Streamability of Queries by Automata

@ non-deterministic automata are not 0-streamable
@ automata will be evaluated according to pre-order traversal of trees
» we use the corresponding notion of determinism
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Streamability of Queries by Automata

@ non-deterministic automata are not 0-streamable

@ automata will be evaluated according to pre-order traversal of trees
» we use the corresponding notion of determinism
» we define Streaming Tree Automata, a variant of:

Pushdown Forest Automata (NEUMANN, SEIDL 98)
Visibly Pushdown Automata (ALUR, MADHUSUDAN 04)
Nested Word Automata (ALUR 07)

etc.

* ot o %

Olivier Gauwin (Mostrare) September 28th, 2009 30 / 44



Streaming Tree Automata (STAs)

e a e b ®a

O

° e b e b °

—(O—2+1 T .@,2 6‘3 2
Y

A: STA on 7y with ¥ = {a, b}
and state = {0,1,2,3,4,5}
and stat, = {«, 5,7}
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Streaming Tree Automata (STAs)
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Streaming Tree Automata (STAs)

e a e b ®a
e a e b e b e a
—(0— 4 3 2

1
=B v B 0
e b . o
: 7 1 a_5
A: STA on 75y with ¥ = {a, b} .
and state = {0,1,2,3,4,5} ﬂ 7
and stat, = {a, 3,7} 15y g e Op 3
1 ) T
voB
4. b 3

Deterministic STAs (dSTAs) respect the streaming order.
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Streamability of Queries by dSTAs

Theorem
The class Q‘E,STAS of queries defined by dSTAs on trees of depth at most &

is m-streamable for all m > 0.

@ proved using an Earliest Query Answering algorithm

5 .
@ QisTas is not oo-streamable
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Earliest Query Answering (EQA)

EQA algorithms:

@ output selected nodes as soon as possible

@ reject nodes that are not selected as soon as possible

In other words: only keep alive nodes in memory.
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Ex: an STA for detecting sufficiency

A — Ex
defines the query @ defines the query @
detects earliest selection/rejection
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Ex: an STA for detecting sufficiency

A — Ex
defines the query @ defines the query @
detects earliest selection/rejection

@ remark: for words, all states are already safe or unsafe...
@ ...but not for STAs: it depends on the context (i.e. the stack)

@ dynamic computation of safe states for selection and rejection
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EQA for Queries by dSTAs

Problem: Ea has size exponential in |A]

@ and we want a PTIME algorithm
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@ and we want a PTIME algorithm

Solution: we build parts of E4 on the fly for the input tree t
@ safe states are updated at every event in PTIME

@ E, is deterministic: we compute one run per alive node
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EQA for Queries by dSTAs

Problem: Ea has size exponential in |A]

@ and we want a PTIME algorithm

Solution: we build parts of E4 on the fly for the input tree t
@ safe states are updated at every event in PTIME

@ E, is deterministic: we compute one run per alive node

Complexity
@ PTIME precomputation
@ PTIME per event and per alive node

@ space = concurrency (alive nodes) + depth (stack)

- QﬁSTAS is m-streamable for all m > 0.
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XPath Streamability

o Forward XPath is not O-streamable.
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o Forward XPath is not O-streamable.

@ PTIME translation of a fragment of XPath to dSTAs implies its
streamability.
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XPath Streamability

@ Forward XPath is not O-streamable.

@ PTIME translation of a fragment of XPath to dSTAs implies its
streamability.

@ the usual XPath — deterministic automata translation is doubly
exponential (VArDI, WOLPER 94), (LIBKIN, STRANGELO 08)
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k-Downward XPath

=Downward XPath with the additional restrictions:

© the total number of filters [...] is bounded by k > 0
Q all steps with ch* have a label test (i.e. no ch*::x)
© if ch™::a appears, then no a-descendant of an a-node
© bound on the depth of valid trees
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PTIME Translation of k-Downward XPath to dSTAs

by induction on the structure of k-Downward XPath expressions
Example: /ch*::a[not(ch::c)]/ch::b

@ A, checks whether the root is labeled by (b, {x})
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PTiME Translation of k-Downward XPath to dSTAs

by induction on the structure of k-Downward XPath expressions
Example: /ch*::a[not(ch::c)]/ch::b

@ A, checks whether the root is labeled by (b, {x})

@ Ach-p runs Ap on every child of the root, and succeeds iff A, succeeds
at least once

o similarly for Acp..c (the label must be (¢, ) instead of (b, {x}))
@ Apot(ch:c) is the complement of Acp:.c

° A[not(ch::c)]/ch::b is the intersection of Anot(ch::c) and Ach:b
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PTiME Translation of k-Downward XPath to dSTAs

by induction on the structure of k-Downward XPath expressions
Example: /ch*::a[not(ch::c)]/ch::b

@ A, checks whether the root is labeled by (b, {x})

Ach::b runs Ap on every child of the root, and succeeds iff Ap, succeeds
at least once

similarly for Acp..c (the label must be (¢, ?) instead of (b, {x}))
Anot(ch::c) is the complement of Ag..c

©

A[not(ch::c)]/ch::b is the intersection of Anot(ch::c) and Acp:.p

e © ¢ ¢

A/ch*::a[not(ch::c)]/ch::b looks for a-nodes, runs A[not(ch::c)]/ch::b for each
of them, and succeeds iff one of them succeeded
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PTiME Translation of k-Downward XPath to dSTAs

by induction on the structure of k-Downward XPath expressions
Example: /ch*::a[not(ch::c)]/ch::b

@ A, checks whether the root is labeled by (b, {x})

Ach::b runs Ap on every child of the root, and succeeds iff Ap, succeeds
at least once

similarly for Acp..c (the label must be (¢, ) instead of (b, {x}))
Anot(ch::c) 1S the complement of Acp:.c

©

A[not(ch::c)]/ch::b is the intersection of Anot(ch::c) and Acp:.p

e © ¢ ¢

A/ch*::a[not(ch::c)]/ch::b looks for a-nodes, runs A[not(ch::c)]/ch::b for each
of them, and succeeds iff one of them succeeded

Thanks to the restrictions, all steps preserve determinism, and the
construction is in PTIME.
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Known algorithms for streaming XPath

Fragment 0-str. m-str. oo-str.  look-
vm ahead
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Known algorithms for streaming XPath

Fragment 0-str. m-str. oo-str.  look-
vm ahead
Downward XPath (RAMANAN 05)
(BAR-YossEF, F., J. 05) X X X v
(Gou, CHIRKOVA 07)
Forward XPath (OLTEANU 07) X X X v
k-Downward XPath (G., NIEHREN 09) v v X v
Strict Backward XUntil v v v X

(BENEDIKT, JEFFREY 07)

etc.
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Main contributions

Streamability

@ SRAMs model for query answering algorithms on streams
@ Streamability measure

» Hardness results
@ Testing bounded concurrency

» Hardness results
» PTIME procedure for queries by deterministic STAs (LATA'09)
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Main contributions

Streamability

@ SRAMs model for query answering algorithms on streams
@ Streamability measure
» Hardness results

@ Testing bounded concurrency
» Hardness results

» PTIME procedure for queries by deterministic STAs (LATA'09)
Streamable fragments

@ Queries by deterministic STAs (IPL'08)
» Earliest Query Answering algorithm (FCT'09)

@ k-Downward XPath
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Perspectives

Future Work

@ implementations

> our algorithms focus on low memory consumption
» this requires additional time
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Perspectives

Future Work

@ implementations
> our algorithms focus on low memory consumption
» this requires additional time

@ XProc

Open Questions

@ How to relax (approximate?) the earliest condition?
@ Can we extend the fragments (more XPath axes, etc.)?

@ Are there logical characterizations of streamable query classes?
» bounded concurrency, bounded delay, etc.

@ Can we extend these results to transformations?
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Thank you

Olivier Gauwin (Mostrare)
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