
Streaming Tree Automata and XPath

Olivier Gauwin

Mostrare Project

Ph.D. Defense
September 28th, 2009
supervisors: Joachim Niehren and Sophie Tison

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 1 / 44

Xml
A Format for Semi-Structured Data

Xml Document Corresponding Tree
<bib>

<book>

<author> Hopcroft </author>

<author> Ullman </author>

<title> Introduction... </title>

</book>

<book>

...
</book>

<book>

...
</book>

</bib>

bib

book book book

author

Hopcroft

author

Ullman

title

Introduction...

.

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 2 / 44

Xml
A Format for Semi-Structured Data

Xml Document Corresponding Tree
<bib>

</bib>

bib

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 2 / 44

Xml
A Format for Semi-Structured Data

Xml Document Corresponding Tree
<bib>

<book>

</book>

<book>

</book>

<book>

</book>

</bib>

bib

book book book

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 2 / 44

Xml
A Format for Semi-Structured Data

Xml Document Corresponding Tree
<bib>

<book>

<author> Hopcroft </author>

<author> Ullman </author>

<title> Introduction... </title>

</book>

<book>

...
</book>

<book>

...
</book>

</bib>

bib

book book book

author

Hopcroft

author

Ullman

title

Introduction...

.

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 2 / 44

Xml
A Format for Semi-Structured Data

Xml Document Corresponding Tree
<bib>

<book>

<author> Hopcroft </author>

<author> Ullman </author>

<title> Introduction... </title>

</book>

<book>

...
</book>

<book>

...
</book>

</bib>

bib

book book book

author

Hopcroft

author

Ullman

title

Introduction...

.

finite labeled ordered unranked trees

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 2 / 44

Streaming

process data on-the-fly

objective: low memory consumption (buffering)

use cases:
◮ huge data (larger than main memory)
◮ natural stream sources:

⋆ network sockets
⋆ sensors
⋆ subscribed feeds
⋆ etc.

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 3 / 44

Xml Streams

<bib>

<book>

<author> Hopcroft </author>

<author> Ullman </author>

<title> Introduction... </title>

</book>

<book>

...
</book>

</bib>

bib

book

author

Hopcroft

author

Ullman

title

Introduction...

book

. . .

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 4 / 44

Xml Streams

<bib>

bib•

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 4 / 44

Xml Streams

<bib>

<book>

bib

book•

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 4 / 44

Xml Streams

<bib>

<book>

<author> bib

book

author•

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 4 / 44

Xml Streams

<bib>

<book>

<author> Hopcroft bib

book

author

Hopcroft

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 4 / 44

Xml Streams

<bib>

<book>

<author> Hopcroft </author> bib

book

author

Hopcroft

•

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 4 / 44

Xml Streams

<bib>

<book>

<author> Hopcroft </author>

<author>
bib

book

author

Hopcroft

author•

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 4 / 44

Xml Streams

<bib>

<book>

<author> Hopcroft </author>

<author> Ullman
bib

book

author

Hopcroft

author

Ullman

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 4 / 44

Xml Streams

<bib>

<book>

<author> Hopcroft </author>

<author> Ullman </author>
bib

book

author

Hopcroft

author

Ullman

•

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 4 / 44

Xml Streams

<bib>

<book>

<author> Hopcroft </author>

<author> Ullman </author>

<title>

bib

book

author

Hopcroft

author

Ullman

title•

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 4 / 44

Xml Streams

<bib>

<book>

<author> Hopcroft </author>

<author> Ullman </author>

<title> Introduction...

bib

book

author

Hopcroft

author

Ullman

title

Introduction...

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 4 / 44

Xml Streams

<bib>

<book>

<author> Hopcroft </author>

<author> Ullman </author>

<title> Introduction... </title>

bib

book

author

Hopcroft

author

Ullman

title

Introduction...

•

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 4 / 44

Xml Streams

<bib>

<book>

<author> Hopcroft </author>

<author> Ullman </author>

<title> Introduction... </title>

</book>

bib

book

author

Hopcroft

author

Ullman

title

Introduction...

•

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 4 / 44

Xml Streams

<bib>

<book>

<author> Hopcroft </author>

<author> Ullman </author>

<title> Introduction... </title>

</book>

<book>

...
</book>

bib

book

author

Hopcroft

author

Ullman

title

Introduction...

book

. . .

•

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 4 / 44

Xml Streams

<bib>

<book>

<author> Hopcroft </author>

<author> Ullman </author>

<title> Introduction... </title>

</book>

<book>

...
</book>

</bib>

bib

book

author

Hopcroft

author

Ullman

title

Introduction...

book

. . .

•

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 4 / 44

Data exchange

bib

book book

author

Hopcroft

author

Ullman

title

Introduction...

. . .

html

body

table

tr tr

td

Hopcroft

td

Ullman

td

b

Introduction...

. . .

conform to schema 1 → conform to schema 2

requires transformations

usually based on selection of tuples of nodes

via queries

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 5 / 44

Queries

Monadic Queries

we only deal with monadic queries (n = 1) in this talk, i.e.:

Q(t) ⊆ nod(t)

For clarity, we ignore schemas.

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 6 / 44

Studied Query Classes

XPath

Queries by Automata

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 7 / 44

XPath

W3C query language for Xml documents
navigational language

bib

book book

author

Hopcroft

author

Ullman

title

Introduction...

author

Knuth

title

The art of C.P.

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 8 / 44

XPath

W3C query language for Xml documents
navigational language

◮ axis: ch (child), ch∗ (descendant-or-self), etc.

bib

book book

author

Hopcroft

author

Ullman

title

Introduction...

author

Knuth

title

The art of C.P.

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 8 / 44

XPath

W3C query language for Xml documents
navigational language

◮ axis: ch (child), ch∗ (descendant-or-self), etc.
◮ step: ch∗::book (or with wildcard: ch∗::∗)

bib

book book

author

Hopcroft

author

Ullman

title

Introduction...

author

Knuth

title

The art of C.P.

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 8 / 44

XPath

W3C query language for Xml documents
navigational language

◮ axis: ch (child), ch∗ (descendant-or-self), etc.
◮ step: ch∗::book (or with wildcard: ch∗::∗)

◮ path: ch∗::book/ch::author

bib

book book

author

Hopcroft

author

Ullman

title

Introduction...

author

Knuth

title

The art of C.P.

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 8 / 44

XPath

W3C query language for Xml documents
navigational language

◮ axis: ch (child), ch∗ (descendant-or-self), etc.
◮ step: ch∗::book (or with wildcard: ch∗::∗)

◮ path: ch∗::book/ch::author
◮ filter: [ch::author=′′Hopcroft ′′] (and also: [F and F], [not(F)])

bib

book book

author

Hopcroft

author

Ullman

title

Introduction...

author

Knuth

title

The art of C.P.

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 8 / 44

XPath

W3C query language for Xml documents
navigational language

◮ axis: ch (child), ch∗ (descendant-or-self), etc.
◮ step: ch∗::book (or with wildcard: ch∗::∗)

◮ path: ch∗::book/ch::author
◮ filter: [ch::author=′′Hopcroft ′′] (and also: [F and F], [not(F)])

bib

book book

author

Hopcroft

author

Ullman

title

Introduction...

author

Knuth

title

The art of C.P.

for instance: /ch∗::book[ch::author=′′Hopcroft ′′]/ch::author
selects all co-authors of Hopcroft

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 8 / 44

XPath

W3C query language for Xml documents
navigational language

◮ axis: ch (child), ch∗ (descendant-or-self), etc.
◮ step: ch∗::book (or with wildcard: ch∗::∗)

◮ path: ch∗::book/ch::author
◮ filter: [ch::author=′′Hopcroft ′′] (and also: [F and F], [not(F)])

bib

book book

author

Hopcroft

author

Ullman

title

Introduction...

author

Knuth

title

The art of C.P.

for instance: /ch∗::book[ch::author=′′Hopcroft ′′]/ch::author
selects all co-authors of Hopcroft

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 8 / 44

XPath

W3C query language for Xml documents
navigational language

◮ axis: ch (child), ch∗ (descendant-or-self), etc.
◮ step: ch∗::book (or with wildcard: ch∗::∗)

◮ path: ch∗::book/ch::author
◮ filter: [ch::author=′′Hopcroft ′′] (and also: [F and F], [not(F)])

bib

book book

author

Hopcroft

author

Ullman

title

Introduction...

author

Knuth

title

The art of C.P.

for instance: /ch∗::book[ch::author=′′Hopcroft ′′]/ch::author
selects all co-authors of Hopcroft

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 8 / 44

XPath

W3C query language for Xml documents
navigational language

◮ axis: ch (child), ch∗ (descendant-or-self), etc.
◮ step: ch∗::book (or with wildcard: ch∗::∗)

◮ path: ch∗::book/ch::author
◮ filter: [ch::author=′′Hopcroft ′′] (and also: [F and F], [not(F)])

bib

book book

author

Hopcroft

author

Ullman

title

Introduction...

author

Knuth

title

The art of C.P.

for instance: /ch∗::book[ch::author=′′Hopcroft ′′]/ch::author
selects all co-authors of Hopcroft

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 8 / 44

XPath fragments

Core XPath : navigational core (no data values)

Forward XPath : Core XPath restricted to forward axes

Downward XPath : Core XPath restricted to axes ch, ch∗

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 9 / 44

Queries by Automata

Canonical trees

t =

a

a b

b

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 10 / 44

Queries by Automata

Canonical trees

t =

a

a b

b π

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 10 / 44

Queries by Automata

Canonical trees

t =

a

a b

b π

t ∗ π =

(a, ∅)

(a, {x}) (b, ∅)

(b, ∅)

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 10 / 44

Queries by Automata

Canonical trees

t =

a

a b

b π

t ∗ π =

(a, ∅)

(a, {x}) (b, ∅)

(b, ∅)

Canonical language

A monadic query Q defines the tree language LQ = {t ∗π | π∈Q(t)}

A language L of canonical trees defines the query Q(t) such that
π ∈ Q(t) iff t ∗ π ∈ L

A tree automaton over Σ × 2{x} recognizing canonical trees defines a
query over Σ.

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 10 / 44

Querying Xml Streams

Example: co-authors of Hopcroft

Xml stream Buffers Actions
<bib>1

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 11 / 44

Querying Xml Streams

Example: co-authors of Hopcroft

Xml stream Buffers Actions
<bib>1

<book>2

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 11 / 44

Querying Xml Streams

Example: co-authors of Hopcroft

Xml stream Buffers Actions
<bib>1

<book>2

<author>3 3

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 11 / 44

Querying Xml Streams

Example: co-authors of Hopcroft

Xml stream Buffers Actions
<bib>1

<book>2

<author>3 3
Ullman 3

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 11 / 44

Querying Xml Streams

Example: co-authors of Hopcroft

Xml stream Buffers Actions
<bib>1

<book>2

<author>3 3
Ullman 3

</author> 3

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 11 / 44

Querying Xml Streams

Example: co-authors of Hopcroft

Xml stream Buffers Actions
<bib>1

<book>2

<author>3 3
Ullman 3

</author> 3
<author>4 3,4

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 11 / 44

Querying Xml Streams

Example: co-authors of Hopcroft

Xml stream Buffers Actions
<bib>1

<book>2

<author>3 3
Ullman 3

</author> 3
<author>4 3,4

Hopcroft output {3, 4}

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 11 / 44

Querying Xml Streams

Example: co-authors of Hopcroft

Xml stream Buffers Actions
<bib>1

<book>2

<author>3 3
Ullman 3

</author> 3
<author>4 3,4

Hopcroft output {3, 4}
</author>

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 11 / 44

Querying Xml Streams

Example: co-authors of Hopcroft

Xml stream Buffers Actions
<bib>1

<book>2

<author>3 3
Ullman 3

</author> 3
<author>4 3,4

Hopcroft output {3, 4}
</author>

<author>5 output {5}

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 11 / 44

Querying Xml Streams

Example: co-authors of Hopcroft

Xml stream Buffers Actions
<bib>1

<book>2

<author>3 3
Ullman 3

</author> 3
<author>4 3,4

Hopcroft output {3, 4}
</author>

<author>5 output {5}
Vianu

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 11 / 44

Querying Xml Streams

Example: co-authors of Hopcroft

Xml stream Buffers Actions
<bib>1

<book>2

<author>3 3
Ullman 3

</author> 3
<author>4 3,4

Hopcroft output {3, 4}
</author>

<author>5 output {5}
Vianu

</author>

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 11 / 44

Querying Xml Streams

Example: co-authors of Hopcroft

Xml stream Buffers Actions
<bib>1

<book>2

<author>3 3
Ullman 3

</author> 3
<author>4 3,4

Hopcroft output {3, 4}
</author>

<author>5 output {5}
Vianu

</author>

</book>

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 11 / 44

Querying Xml Streams

Example: co-authors of Hopcroft

Xml stream Buffers Actions
<bib>1

<book>2

<author>3 3
Ullman 3

</author> 3
<author>4 3,4

Hopcroft output {3, 4}
</author>

<author>5 output {5}
Vianu

</author>

</book>

<book>

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 11 / 44

Querying Xml Streams

Example: co-authors of Hopcroft

Xml stream Buffers Actions
<bib>1

<book>2

<author>3 3
Ullman 3

</author> 3
<author>4 3,4

Hopcroft output {3, 4}
</author>

<author>5 output {5}
Vianu

</author>

</book>

<book>

<author>6 6

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 11 / 44

Querying Xml Streams

Example: co-authors of Hopcroft

Xml stream Buffers Actions
<bib>1

<book>2

<author>3 3
Ullman 3

</author> 3
<author>4 3,4

Hopcroft output {3, 4}
</author>

<author>5 output {5}
Vianu

</author>

</book>

<book>

<author>6 6
Knuth 6

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 11 / 44

Querying Xml Streams

Example: co-authors of Hopcroft

Xml stream Buffers Actions
<bib>1

<book>2

<author>3 3
Ullman 3

</author> 3
<author>4 3,4

Hopcroft output {3, 4}
</author>

<author>5 output {5}
Vianu

</author>

</book>

<book>

<author>6 6
Knuth 6

</author> 6

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 11 / 44

Querying Xml Streams

Example: co-authors of Hopcroft

Xml stream Buffers Actions
<bib>1

<book>2

<author>3 3
Ullman 3

</author> 3
<author>4 3,4

Hopcroft output {3, 4}
</author>

<author>5 output {5}
Vianu

</author>

</book>

<book>

<author>6 6
Knuth 6

</author> 6
</book> discard {6}

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 11 / 44

Querying Xml Streams

Example: co-authors of Hopcroft

Xml stream Buffers Actions
<bib>1

<book>2

<author>3 3
Ullman 3

</author> 3
<author>4 3,4

Hopcroft output {3, 4}
</author>

<author>5 output {5}
Vianu

</author>

</book>

<book>

<author>6 6
Knuth 6

</author> 6
</book> discard {6}

</bib>

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 11 / 44

Questions and Contributions

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 12 / 44

Questions and Contributions

How much memory is needed?
◮ new model: Streaming Random Access Machines,

for query answering algorithms over streams
◮ we derive a lower space bound

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 12 / 44

Questions and Contributions

How much memory is needed?
◮ new model: Streaming Random Access Machines,

for query answering algorithms over streams
◮ we derive a lower space bound

How to characterize query languages suitable to streaming?
◮ new measure: m-Streamability
◮ hardness results for queries by automata and XPath

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 12 / 44

Questions and Contributions

How much memory is needed?
◮ new model: Streaming Random Access Machines,

for query answering algorithms over streams
◮ we derive a lower space bound

How to characterize query languages suitable to streaming?
◮ new measure: m-Streamability
◮ hardness results for queries by automata and XPath
◮ Bounded Concurrency and Delay (not presented here)

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 12 / 44

Questions and Contributions

How much memory is needed?
◮ new model: Streaming Random Access Machines,

for query answering algorithms over streams
◮ we derive a lower space bound

How to characterize query languages suitable to streaming?
◮ new measure: m-Streamability
◮ hardness results for queries by automata and XPath
◮ Bounded Concurrency and Delay (not presented here)

Are there tractable fragments?

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 12 / 44

Questions and Contributions

How much memory is needed?
◮ new model: Streaming Random Access Machines,

for query answering algorithms over streams
◮ we derive a lower space bound

How to characterize query languages suitable to streaming?
◮ new measure: m-Streamability
◮ hardness results for queries by automata and XPath
◮ Bounded Concurrency and Delay (not presented here)

Are there tractable fragments?
◮ queries defined by deterministic Streaming Tree Automata

⋆ Earliest Query Answering algorithm

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 12 / 44

Questions and Contributions

How much memory is needed?
◮ new model: Streaming Random Access Machines,

for query answering algorithms over streams
◮ we derive a lower space bound

How to characterize query languages suitable to streaming?
◮ new measure: m-Streamability
◮ hardness results for queries by automata and XPath
◮ Bounded Concurrency and Delay (not presented here)

Are there tractable fragments?
◮ queries defined by deterministic Streaming Tree Automata

⋆ Earliest Query Answering algorithm

◮ k-Downward XPath: a streamable fragment of XPath

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 12 / 44

1 Memory Requirements

2 Streamability

3 Queries by Automata

4 XPath

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 13 / 44

1 Memory Requirements

2 Streamability

3 Queries by Automata

4 XPath

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 14 / 44

Buffering Requirements
of query answering algorithms over Xml streams

O(|t|) is equivalent to in-memory algorithms
◮ too much space

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 15 / 44

Buffering Requirements
of query answering algorithms over Xml streams

O(|t|) is equivalent to in-memory algorithms
◮ too much space

O(1) = bounded buffering (independent from t)

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 15 / 44

Buffering Requirements
of query answering algorithms over Xml streams

O(|t|) is equivalent to in-memory algorithms
◮ too much space

O(1) = bounded buffering (independent from t)
◮ Boolean queries (tree acceptors)

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 15 / 44

Buffering Requirements
of query answering algorithms over Xml streams

O(|t|) is equivalent to in-memory algorithms
◮ too much space

O(1) = bounded buffering (independent from t)
◮ Boolean queries (tree acceptors)

⋆ validation wrt a DTD in O(1) is only known for restricted forms of
DTDs (Segoufin, Vianu 02)

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 15 / 44

Buffering Requirements
of query answering algorithms over Xml streams

O(|t|) is equivalent to in-memory algorithms
◮ too much space

O(1) = bounded buffering (independent from t)
◮ Boolean queries (tree acceptors)

⋆ validation wrt a DTD in O(1) is only known for restricted forms of
DTDs (Segoufin, Vianu 02)

⋆ for Positive Core XPath, filtering non-recursive documents requires
space at least exponential in the size of the expression (Benedikt,

Jeffrey 07)

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 15 / 44

Buffering Requirements
of query answering algorithms over Xml streams

O(|t|) is equivalent to in-memory algorithms
◮ too much space

O(1) = bounded buffering (independent from t)
◮ Boolean queries (tree acceptors)

⋆ validation wrt a DTD in O(1) is only known for restricted forms of
DTDs (Segoufin, Vianu 02)

⋆ for Positive Core XPath, filtering non-recursive documents requires
space at least exponential in the size of the expression (Benedikt,

Jeffrey 07)

◮ monadic queries

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 15 / 44

Buffering Requirements
of query answering algorithms over Xml streams

O(|t|) is equivalent to in-memory algorithms
◮ too much space

O(1) = bounded buffering (independent from t)
◮ Boolean queries (tree acceptors)

⋆ validation wrt a DTD in O(1) is only known for restricted forms of
DTDs (Segoufin, Vianu 02)

⋆ for Positive Core XPath, filtering non-recursive documents requires
space at least exponential in the size of the expression (Benedikt,

Jeffrey 07)

◮ monadic queries
⋆ for Positive Core XPath, there is no streaming algorithm using bounded

buffering, even on non-recursive documents (Benedikt, Jeffrey 07)

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 15 / 44

Buffering Requirements
of query answering algorithms over Xml streams

O(|t|) is equivalent to in-memory algorithms
◮ too much space

O(1) = bounded buffering (independent from t)
◮ Boolean queries (tree acceptors)

⋆ validation wrt a DTD in O(1) is only known for restricted forms of
DTDs (Segoufin, Vianu 02)

⋆ for Positive Core XPath, filtering non-recursive documents requires
space at least exponential in the size of the expression (Benedikt,

Jeffrey 07)

◮ monadic queries
⋆ for Positive Core XPath, there is no streaming algorithm using bounded

buffering, even on non-recursive documents (Benedikt, Jeffrey 07)
⋆ O(1) is impossible for co-authors of Hopcroft

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 15 / 44

Concurrency
(Bar-Yossef, Fontoura, Josifovski 05)

Alive nodes

A node π of t is alive for Q at event η if:

there is a continuation t ′ of t after η s.t. π ∈ Q(t ′)

there is a continuation t ′′ of t after η s.t. π /∈ Q(t ′′)

Concurrency

The concurrency of Q wrt t is the maximal number of simultaneous alive
nodes.

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 16 / 44

Concurrency
Example

Query Q: co-authors of Hopcroft

Xml stream Alive nodes
<bib>1

<book>2

<author>3 3
Ullman 3

</author> 3
η <author>4 3,4

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 17 / 44

Concurrency
Example

Query Q: co-authors of Hopcroft

Xml stream Alive nodes
<bib>1

<book>2

<author>3 3
Ullman 3

</author> 3
η <author>4 3,4

Nodes 1 and 2 are not alive at η because:

there is no continuation for which they
are selected

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 17 / 44

Concurrency
Example

Query Q: co-authors of Hopcroft

Xml stream Alive nodes
<bib>1

<book>2

<author>3 3
Ullman 3

</author> 3
η <author>4 3,4

Nodes 1 and 2 are not alive at η because:

there is no continuation for which they
are selected

Nodes 3 and 4 are alive at η because:

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 17 / 44

Concurrency
Example

Query Q: co-authors of Hopcroft

Xml stream Alive nodes
<bib>1

<book>2

<author>3 3
Ullman 3

</author> 3
η <author>4 3,4

Hopcroft output {3, 4}
</author>

</book>

</bib>

Nodes 1 and 2 are not alive at η because:

there is no continuation for which they
are selected

Nodes 3 and 4 are alive at η because:

there is one continuation for which they
are selected and

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 17 / 44

Concurrency
Example

Query Q: co-authors of Hopcroft

Xml stream Alive nodes
<bib>1

<book>2

<author>3 3
Ullman 3

</author> 3
η <author>4 3,4

Vianu 3,4
</author> 3,4

</book> discard {3, 4}
</bib>

Nodes 1 and 2 are not alive at η because:

there is no continuation for which they
are selected

Nodes 3 and 4 are alive at η because:

there is one continuation for which they
are selected and

there is one continuation for which they
are rejected

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 17 / 44

Concurrency
Example

Query Q: co-authors of Hopcroft

Xml stream Alive nodes
<bib>1

<book>2

<author>3 3
Ullman 3

</author> 3
η <author>4 3,4

Vianu 3,4
</author> 3,4

</book> discard {3, 4}
</bib>

Nodes 1 and 2 are not alive at η because:

there is no continuation for which they
are selected

Nodes 3 and 4 are alive at η because:

there is one continuation for which they
are selected and

there is one continuation for which they
are rejected

The concurrency of Q wrt t is 2.

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 17 / 44

Concurrency
A space lower bound?

The concurrency was known to be a lower bound on a very special case.

Theorem (Bar-Yossef, Fontoura, Josifovski 05)

Let t be a non-recursive tree, Q a query in Downward XPath without

wildcard, and c the close-concurrency of Q wrt t. Then there is a tree t ′

similar to t for which evaluating Q requires space at least c.

Is concurrency a lower bound for all query answering algorithms on Xml
streams?

in general no, due to possible compaction of buffered candidates

in known algorithms yes

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 18 / 44

Streaming Random Access Machines (SRAMs)

input tape I

. . .

output tape O
. . .

working memory W
. . .

registers
r1
r2

rk

R(r1)
R(r2)

R(rk)

. . .

. . .

finite
state

control

node identifiers are stored in registers, and unknown from controller

◮ this avoids compaction tricks

space used = number of registers + used working memory

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 19 / 44

Streaming Random Access Machines (SRAMs)

Theorem

Concurrency is a space lower bound for queries computed by SRAMs.

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 20 / 44

Deciding Bounded Concurrency
Hardness results

∃k . ∀t. concurrency of Q on t ≤ k
︸ ︷︷ ︸

bounded concurrency

⇒ bounded buffering is possible

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 21 / 44

Deciding Bounded Concurrency
Hardness results

∃k . ∀t. concurrency of Q on t ≤ k
︸ ︷︷ ︸

bounded concurrency

⇒ bounded buffering is possible

Hard queries

all(Q) = /self ::∗[lastchild ::∗[Q]]/ch::∗

Given a query class Q for which all and not can be defined in polynomial
time, deciding whether a query has bounded concurrency is harder than
universality of the corresponding Boolean query.

Consequences

coNP-hard for Downward XPath

EXPTIME-hard for queries by non-deterministic automata

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 21 / 44

Deciding Bounded Concurrency
Positive results

Theorem

For queries defined by deterministic Streaming Tree Automata:

deciding bounded concurrency is in Ptime

deciding k-bounded concurrency is in Ptime when k is fixed

Similar results for bounded delay.

This result is obtained through properties of recognizable relations over
unranked trees, and a reduction to bounded valuedness of transducers
(Seidl 92).

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 22 / 44

Bounded vs Unbounded Concurrency

We also want to deal with queries with unbounded concurrency:

on real documents, concurrency may be bounded, even though not
specified in schemas (e.g. co-authors)

concurrency may be large for some trees, and small for others

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 23 / 44

1 Memory Requirements

2 Streamability

3 Queries by Automata

4 XPath

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 24 / 44

Towards a Measure of Streamability

Space and time restrictions
◮ time also has to be considered:
◮ deciding aliveness of a node at a given event is often computationally

hard
⋆ coNP-hard for Downward XPath,
⋆ EXPTIME-hard for queries by automata

Streamability concerns query classes, not queries
◮ a query class Q is a set of query definitions e ∈ Q with size |e| ≥ 1 and

defining queries Qe

◮ for instance: XPath expressions, automata, etc.

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 25 / 44

Streamability

Definition

Let m ∈ N ∪ {∞}. A query class Q is m-streamable iff

there exists a polynomial p such that for all e ∈ Q:
◮ an SRAM Me computing Qe can be built in time p(|e|)
◮ for all trees t with concurQe

(t) ≤ m:

Me uses per event space and time in p(|e|)

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 26 / 44

Streamability

Definition

Let m ∈ N ∪ {∞}. A query class Q is m-streamable iff

there exists a polynomial p such that for all e ∈ Q:
◮ an SRAM Me computing Qe can be built in time p(|e|)
◮ for all trees t with concurQe

(t) ≤ m:

Me uses per event space and time in p(|e|)

Hierarchy

0-streamable ⊇ 1-streamable ⊇ 2-streamable ⊇ . . .⊇ ∞-streamable

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 26 / 44

Streamability

Definition

Let m ∈ N ∪ {∞}. A query class Q is m-streamable iff

there exists a polynomial p such that for all e ∈ Q:
◮ an SRAM Me computing Qe can be built in time p(|e|)
◮ for all trees t with concurQe

(t) ≤ m:

Me uses per event space and time in p(|e|)

Hierarchy

0-streamable ⊇ 1-streamable ⊇ 2-streamable ⊇ . . .⊇ ∞-streamable

∞-streamability vs finite streamability

Q is ∞-streamable iff:

Q is m-streamable for all m ∈ N (with the same polynomial p) and

Q has polynomially bounded concurrency, i.e., there is a polynomial
p′ s.t. ∀e ∈ Q, ∀t, concurQe

(t) ≤ p′(|e|)

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 26 / 44

Hardness of Streamability

Theorem

If Q is a query class such that:

1 queries all(Qe) can be defined in Ptime in |e|

2 membership a ∈ L[Qe] can be tested in Ptime in |e|

3 Q is 0-streamable

then universality of Boolean queries {[Qe] | e ∈ Q descending} can be

solved in Ptime.

all(Q) = /self ::∗[lastchild ::∗[Q]]/ch::∗

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 27 / 44

Hardness of Streamability

Theorem

If Q is a query class such that:

1 queries all(Qe) can be defined in Ptime in |e|

2 membership a ∈ L[Qe] can be tested in Ptime in |e|

3 Q is 0-streamable

then universality of Boolean queries {[Qe] | e ∈ Q descending} can be

solved in Ptime.

all(Q) = /self ::∗[lastchild ::∗[Q]]/ch::∗

Consequences

Forward XPath is not 0-streamable except if P=NP.

queries by automata are not 0-streamable.

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 27 / 44

Positive results?

Question

Are there streamable and expressive fragments of XPath and automata?

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 28 / 44

1 Memory Requirements

2 Streamability

3 Queries by Automata

4 XPath

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 29 / 44

Streamability of Queries by Automata

non-deterministic automata are not 0-streamable

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 30 / 44

Streamability of Queries by Automata

non-deterministic automata are not 0-streamable

automata will be evaluated according to pre-order traversal of trees
◮ we use the corresponding notion of determinism

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 30 / 44

Streamability of Queries by Automata

non-deterministic automata are not 0-streamable

automata will be evaluated according to pre-order traversal of trees
◮ we use the corresponding notion of determinism
◮ we define Streaming Tree Automata, a variant of:

⋆ Pushdown Forest Automata (Neumann, Seidl 98)
⋆ Visibly Pushdown Automata (Alur, Madhusudan 04)
⋆ Nested Word Automata (Alur 07)
⋆ etc.

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 30 / 44

Streaming Tree Automata (STAs)

0 1 4 3 2

5

• a
α

• a

β

• b

β

• b

β

• b
γ

• a

α

• a

β
• b
γ

A: STA on TΣ with Σ = {a, b}
and state = {0, 1, 2, 3, 4, 5}
and statn = {α, β, γ}

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 31 / 44

Streaming Tree Automata (STAs)

0 1 4 3 2

5

• a
α

• a

β

• b

β

• b

β

• b
γ

• a

α

• a

β
• b
γ

A: STA on TΣ with Σ = {a, b}
and state = {0, 1, 2, 3, 4, 5}
and statn = {α, β, γ}

a

a

b

b

0

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 31 / 44

Streaming Tree Automata (STAs)

0 1 4 3 2

5

• a
α

• a

β

• b

β

• b

β

• b
γ

• a

α

• a

β
• b
γ

A: STA on TΣ with Σ = {a, b}
and state = {0, 1, 2, 3, 4, 5}
and statn = {α, β, γ}

a

a

b

b

0

1
α

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 31 / 44

Streaming Tree Automata (STAs)

0 1 4 3 2

5

• a
α

• a

β

• b

β

• b

β

• b
γ

• a

α

• a

β
• b
γ

A: STA on TΣ with Σ = {a, b}
and state = {0, 1, 2, 3, 4, 5}
and statn = {α, β, γ}

a

a

b

b

0

1
α

1
β

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 31 / 44

Streaming Tree Automata (STAs)

0 1 4 3 2

5

• a
α

• a

β

• b

β

• b

β

• b
γ

• a

α

• a

β
• b
γ

A: STA on TΣ with Σ = {a, b}
and state = {0, 1, 2, 3, 4, 5}
and statn = {α, β, γ}

a

a

b

b

0

1
α

1
β

4
β

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 31 / 44

Streaming Tree Automata (STAs)

0 1 4 3 2

5

• a
α

• a

β

• b

β

• b

β

• b
γ

• a

α

• a

β
• b
γ

A: STA on TΣ with Σ = {a, b}
and state = {0, 1, 2, 3, 4, 5}
and statn = {α, β, γ}

a

a

b

b

0

1
α

1
β

4
β

3

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 31 / 44

Streaming Tree Automata (STAs)

0 1 4 3 2

5

• a
α

• a

β

• b

β

• b

β

• b
γ

• a

α

• a

β
• b
γ

A: STA on TΣ with Σ = {a, b}
and state = {0, 1, 2, 3, 4, 5}
and statn = {α, β, γ}

a

a

b

b

0

1
α

1
β

4
β

3

2

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 31 / 44

Streaming Tree Automata (STAs)

0 1 4 3 2

5

• a
α

• a

β

• b

β

• b

β

• b
γ

• a

α

• a

β
• b
γ

A: STA on TΣ with Σ = {a, b}
and state = {0, 1, 2, 3, 4, 5}
and statn = {α, β, γ}

a

a

b

b

0

1
α

1
β

4
β

3

2 4
γ

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 31 / 44

Streaming Tree Automata (STAs)

0 1 4 3 2

5

• a
α

• a

β

• b

β

• b

β

• b
γ

• a

α

• a

β
• b
γ

A: STA on TΣ with Σ = {a, b}
and state = {0, 1, 2, 3, 4, 5}
and statn = {α, β, γ}

a

a

b

b

0

1
α

1
β

4
β

3

2 4
γ

3

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 31 / 44

Streaming Tree Automata (STAs)

0 1 4 3 2

5

• a
α

• a

β

• b

β

• b

β

• b
γ

• a

α

• a

β
• b
γ

A: STA on TΣ with Σ = {a, b}
and state = {0, 1, 2, 3, 4, 5}
and statn = {α, β, γ}

a

a

b

b

0

1
α

1
β

4
β

3

2 4
γ

3

5

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 31 / 44

Streaming Tree Automata (STAs)

0 1 4 3 2

5

• a
α

• a

β

• b

β

• b

β

• b
γ

• a

α

• a

β
• b
γ

A: STA on TΣ with Σ = {a, b}
and state = {0, 1, 2, 3, 4, 5}
and statn = {α, β, γ}

a

a

b

b

0

1
α

1
β

4
β

3

2 4
γ

3

5

Deterministic STAs (dSTAs) respect the streaming order.

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 31 / 44

Streamability of Queries by dSTAs

Theorem

The class Qδ
dSTAs of queries defined by dSTAs on trees of depth at most δ

is m-streamable for all m ≥ 0.

proved using an Earliest Query Answering algorithm

Qδ
dSTAs is not ∞-streamable

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 32 / 44

Earliest Query Answering (EQA)

EQA algorithms:

output selected nodes as soon as possible

reject nodes that are not selected as soon as possible

In other words: only keep alive nodes in memory.

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 33 / 44

EA: an STA for detecting sufficiency

A → EA

defines the query Q defines the query Q

detects earliest selection/rejection

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 34 / 44

EA: an STA for detecting sufficiency

A → EA

defines the query Q defines the query Q

detects earliest selection/rejection

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 34 / 44

EA: an STA for detecting sufficiency

A → EA

defines the query Q defines the query Q

detects earliest selection/rejection

remark: for words, all states are already safe or unsafe...

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 34 / 44

EA: an STA for detecting sufficiency

A → EA

defines the query Q defines the query Q

detects earliest selection/rejection

remark: for words, all states are already safe or unsafe...

...but not for STAs: it depends on the context (i.e. the stack)

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 34 / 44

EA: an STA for detecting sufficiency

A → EA

defines the query Q defines the query Q

detects earliest selection/rejection

remark: for words, all states are already safe or unsafe...

...but not for STAs: it depends on the context (i.e. the stack)

dynamic computation of safe states for selection and rejection

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 34 / 44

EQA for Queries by dSTAs

Problem: EA has size exponential in |A|

and we want a Ptime algorithm

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 35 / 44

EQA for Queries by dSTAs

Problem: EA has size exponential in |A|

and we want a Ptime algorithm

Solution: we build parts of EA on the fly for the input tree t

safe states are updated at every event in Ptime

EA is deterministic: we compute one run per alive node

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 35 / 44

EQA for Queries by dSTAs

Problem: EA has size exponential in |A|

and we want a Ptime algorithm

Solution: we build parts of EA on the fly for the input tree t

safe states are updated at every event in Ptime

EA is deterministic: we compute one run per alive node

Complexity

Ptime precomputation

Ptime per event and per alive node

space = concurrency (alive nodes) + depth (stack)

→ Qδ
dSTAs is m-streamable for all m ≥ 0.

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 35 / 44

1 Memory Requirements

2 Streamability

3 Queries by Automata

4 XPath

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 36 / 44

XPath Streamability

Forward XPath is not 0-streamable.

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 37 / 44

XPath Streamability

Forward XPath is not 0-streamable.

Ptime translation of a fragment of XPath to dSTAs implies its
streamability.

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 37 / 44

XPath Streamability

Forward XPath is not 0-streamable.

Ptime translation of a fragment of XPath to dSTAs implies its
streamability.

the usual XPath → deterministic automata translation is doubly
exponential (Vardi, Wolper 94), (Libkin, Sirangelo 08)

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 37 / 44

k-Downward XPath

=Downward XPath with the additional restrictions:

1 the total number of filters [. . .] is bounded by k ≥ 0

2 all steps with ch∗ have a label test (i.e. no ch∗::∗)

3 if ch∗::a appears, then no a-descendant of an a-node

4 bound on the depth of valid trees

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 38 / 44

Ptime Translation of k-Downward XPath to dSTAs

by induction on the structure of k-Downward XPath expressions

Example: /ch∗::a[not(ch::c)]/ch::b

Ab checks whether the root is labeled by (b, {x})

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 39 / 44

Ptime Translation of k-Downward XPath to dSTAs

by induction on the structure of k-Downward XPath expressions

Example: /ch∗::a[not(ch::c)]/ch::b

Ab checks whether the root is labeled by (b, {x})

Ach::b runs Ab on every child of the root, and succeeds iff Ab succeeds
at least once

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 39 / 44

Ptime Translation of k-Downward XPath to dSTAs

by induction on the structure of k-Downward XPath expressions

Example: /ch∗::a[not(ch::c)]/ch::b

Ab checks whether the root is labeled by (b, {x})

Ach::b runs Ab on every child of the root, and succeeds iff Ab succeeds
at least once

similarly for Ach::c (the label must be (c , ∅) instead of (b, {x}))

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 39 / 44

Ptime Translation of k-Downward XPath to dSTAs

by induction on the structure of k-Downward XPath expressions

Example: /ch∗::a[not(ch::c)]/ch::b

Ab checks whether the root is labeled by (b, {x})

Ach::b runs Ab on every child of the root, and succeeds iff Ab succeeds
at least once

similarly for Ach::c (the label must be (c , ∅) instead of (b, {x}))

Anot(ch::c) is the complement of Ach::c

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 39 / 44

Ptime Translation of k-Downward XPath to dSTAs

by induction on the structure of k-Downward XPath expressions

Example: /ch∗::a[not(ch::c)]/ch::b

Ab checks whether the root is labeled by (b, {x})

Ach::b runs Ab on every child of the root, and succeeds iff Ab succeeds
at least once

similarly for Ach::c (the label must be (c , ∅) instead of (b, {x}))

Anot(ch::c) is the complement of Ach::c

A[not(ch::c)]/ch::b is the intersection of Anot(ch::c) and Ach::b

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 39 / 44

Ptime Translation of k-Downward XPath to dSTAs

by induction on the structure of k-Downward XPath expressions

Example: /ch∗::a[not(ch::c)]/ch::b

Ab checks whether the root is labeled by (b, {x})

Ach::b runs Ab on every child of the root, and succeeds iff Ab succeeds
at least once

similarly for Ach::c (the label must be (c , ∅) instead of (b, {x}))

Anot(ch::c) is the complement of Ach::c

A[not(ch::c)]/ch::b is the intersection of Anot(ch::c) and Ach::b

A/ch∗::a[not(ch::c)]/ch::b looks for a-nodes, runs A[not(ch::c)]/ch::b for each
of them, and succeeds iff one of them succeeded

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 39 / 44

Ptime Translation of k-Downward XPath to dSTAs

by induction on the structure of k-Downward XPath expressions

Example: /ch∗::a[not(ch::c)]/ch::b

Ab checks whether the root is labeled by (b, {x})

Ach::b runs Ab on every child of the root, and succeeds iff Ab succeeds
at least once

similarly for Ach::c (the label must be (c , ∅) instead of (b, {x}))

Anot(ch::c) is the complement of Ach::c

A[not(ch::c)]/ch::b is the intersection of Anot(ch::c) and Ach::b

A/ch∗::a[not(ch::c)]/ch::b looks for a-nodes, runs A[not(ch::c)]/ch::b for each
of them, and succeeds iff one of them succeeded

Thanks to the restrictions, all steps preserve determinism, and the
construction is in Ptime.

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 39 / 44

Known algorithms for streaming XPath

Fragment 0-str. m-str. ∞-str. look-
∀m ahead

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 40 / 44

Known algorithms for streaming XPath

Fragment 0-str. m-str. ∞-str. look-
∀m ahead

Downward XPath (Ramanan 05)

(Bar-Yossef, F., J. 05) x x x X

(Gou, Chirkova 07)

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 40 / 44

Known algorithms for streaming XPath

Fragment 0-str. m-str. ∞-str. look-
∀m ahead

Downward XPath (Ramanan 05)

(Bar-Yossef, F., J. 05) x x x X

(Gou, Chirkova 07)

Forward XPath (Olteanu 07) x x x X

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 40 / 44

Known algorithms for streaming XPath

Fragment 0-str. m-str. ∞-str. look-
∀m ahead

Downward XPath (Ramanan 05)

(Bar-Yossef, F., J. 05) x x x X

(Gou, Chirkova 07)

Forward XPath (Olteanu 07) x x x X

k-Downward XPath (G., Niehren 09) X X x X

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 40 / 44

Known algorithms for streaming XPath

Fragment 0-str. m-str. ∞-str. look-
∀m ahead

Downward XPath (Ramanan 05)

(Bar-Yossef, F., J. 05) x x x X

(Gou, Chirkova 07)

Forward XPath (Olteanu 07) x x x X

k-Downward XPath (G., Niehren 09) X X x X

Strict Backward XUntil X X X x
(Benedikt, Jeffrey 07)

etc.

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 40 / 44

Conclusion

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 41 / 44

Main contributions

Streamability

SRAMs model for query answering algorithms on streams

Streamability measure
◮ Hardness results

Testing bounded concurrency
◮ Hardness results
◮ Ptime procedure for queries by deterministic STAs (LATA’09)

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 42 / 44

Main contributions

Streamability

SRAMs model for query answering algorithms on streams

Streamability measure
◮ Hardness results

Testing bounded concurrency
◮ Hardness results
◮ Ptime procedure for queries by deterministic STAs (LATA’09)

Streamable fragments

Queries by deterministic STAs (IPL’08)
◮ Earliest Query Answering algorithm (FCT’09)

k-Downward XPath

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 42 / 44

Perspectives

Future Work

implementations
◮ our algorithms focus on low memory consumption
◮ this requires additional time

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 43 / 44

Perspectives

Future Work

implementations
◮ our algorithms focus on low memory consumption
◮ this requires additional time

XProc

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 43 / 44

Perspectives

Future Work

implementations
◮ our algorithms focus on low memory consumption
◮ this requires additional time

XProc

Open Questions

How to relax (approximate?) the earliest condition?

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 43 / 44

Perspectives

Future Work

implementations
◮ our algorithms focus on low memory consumption
◮ this requires additional time

XProc

Open Questions

How to relax (approximate?) the earliest condition?

Can we extend the fragments (more XPath axes, etc.)?

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 43 / 44

Perspectives

Future Work

implementations
◮ our algorithms focus on low memory consumption
◮ this requires additional time

XProc

Open Questions

How to relax (approximate?) the earliest condition?

Can we extend the fragments (more XPath axes, etc.)?

Are there logical characterizations of streamable query classes?
◮ bounded concurrency, bounded delay, etc.

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 43 / 44

Perspectives

Future Work

implementations
◮ our algorithms focus on low memory consumption
◮ this requires additional time

XProc

Open Questions

How to relax (approximate?) the earliest condition?

Can we extend the fragments (more XPath axes, etc.)?

Are there logical characterizations of streamable query classes?
◮ bounded concurrency, bounded delay, etc.

Can we extend these results to transformations?

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 43 / 44

Thank you

Olivier Gauwin (Mostrare) Streaming Tree Automata and XPath September 28th, 2009 44 / 44

	Memory Requirements
	Streamability
	Queries by Automata
	XPath

