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ET AUTOMATES
( Streaming Tree Automata and XPath )
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Cette thèse n’est pas uniquement le fruit de mon travail, c’est également la
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Résuḿe en Français Ces dernières années, XML est devenu le format stan-
dard pour l’échange de données. Les documents XML sont généralement pro-
duits à partir de bases de données, durant le traitement dedocuments, ou au sein
d’applications Web. L’échange de données en flux est fréquemment utilisé lors
de l’envoi de données conséquentes par le réseau. Ainsi le transfert par flux est
adéquat pour de nombreux traitements XML .

Dans cette thèse, nous étudions des algorithmes d’évaluation de requêtes sur
des flux XML . Notre objectif est de gérer efficacement la mémoire, afin de pou-
voir évaluer des requêtes sur des données volumineuses,tout en utilisant peu de
mémoire. Cette tâche s’avère complexe, et nécessite des restrictions importantes
sur les langages de requêtes. Nous étudions donc les requˆetes définies par des
automates déterministes ou par des fragments du standard W3C XPath, plutôt que
par des langages plus puissants comme les standards W3C XQuery et XSLT.

Nous définissons tout d’abord lesstreaming tree automata(STAs), qui opèrent
sur les arbres d’arité non bornée dans l’ordre du document. Nous prouvons
qu’ils sont équivalents auxnested word automataet auxpushdown forest au-
tomata. Nous élaborons ensuite un algorithme d’évaluation au plus tôt, pour les
requêtes définies par des STAs déterministes. Bien qu’ilne stocke que les candi-
dats nécessaires, cet algorithme est en temps polynomial `a chaque événement du
flux, et pour chaque candidat. Par conséquent, nous obtenons des résultats posi-
tifs pour l’évaluation en flux des requêtes définies par des STAs déterministes.
Nous mesurons une telle adéquation d’un langage de requêtes à une évaluation
en flux via un nouveau modèle de machines, appeléesstreaming random access
machines(SRAMs), et via une mesure du nombre de candidats simultanément
vivants, appeléconcurrence. Nous montrons également qu’il peut être décidé en
temps polynomial si la concurrence d’une requête définie par un STA déterministe
est bornée. Notre preuve est basée sur une réduction au problème de la valuation
bornée des relations reconnaissables d’arbres.

Concernant le standard W3C XPath, nous montrons que même depetits frag-
ments syntaxiques ne sont pas adaptés à une évaluation enflux, sauf si P=NP. Les
difficultés proviennent du non-déterminisme de ce langage, ainsi que du nom-
bre de conjonctions et de disjonctions. Nous définissons des fragments de For-
ward XPath qui évitent ces problèmes, et prouvons, par compilation vers les STAs
déterministes en temps polynomial, qu’ils sont adaptés `a une évaluation en flux.

Titre en Français Flux XML , Requêtes XPath et Automates

Mots clés en Français Flux XML , requêtes, arbres, automates, XPath.



Résuḿe en Anglais During the last years, XML has evolved into the quasi stan-
dard format for data exchange. Most typically, XML documents are produced
from databases, during document processing, and for Web applications. Strea-
ming is a natural exchange mode, that is frequently used whensending large
amounts of data over networks, such as in database driven Webapplications.
Streaming is thus relevant for many XML processing tasks.

In this thesis, we study streaming algorithms for XML query answering. Our
main objective lies in efficient memory management, in orderto be able to query
huge data collections with low memory consumption. This turns out to be a sur-
prisingly complex task, which requires serious restrictions on the query language.
We therefore consider queries defined by deterministic automata or in fragments
of the W3C standard language XPath, rather than studying more powerful lan-
guages such as the W3C standards XQuery or XSLT.

We first proposestreaming tree automata(STAs) that operate on unranked
trees in streaming order, and prove them equivalent to nested word automata and
to pushdown forest automata. We then contribute an earliestquery answering
algorithm for query defined by deterministic STAs. Even though it succeeds to
store only alive answer candidates, it consumes only PTIME per event and can-
didate. This yields positive streamability results for classes of queries defined
by deterministic STAs. The precise streamability notion here relies on a new ma-
chine model that we callstreaming random access machines(SRAMs), and on the
number of concurrently alive candidates of a query. We also show that bounded
concurrency is decidable in PTIME for queries defined by deterministic STAs. Our
proof is by reduction to bounded valuedness of recognizabletree relations.

Concerning the W3C standard query language XPath, we first show that small
syntactic fragments are not streamable except if P=NP. The problematic features
are non-determinism in combination with nesting of and/or operators. We define
fragments of Forward XPath with schema assumptions that avoid these aspects
and prove them streamable by PTIME compilation to deterministic STAs.

Titre en Anglais Streaming Tree Automata and XPath

Mots clés en Anglais XML streams, queries, trees, automata, XPath.
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Chapter 1

Introduction

1.1 Background

The XML format, introduced over ten years ago [BPSM+08], has become ade
factostandard for data exchange. It is now a common language for various com-
munities, from web technologies to document processing anddatabases. Origi-
nating from SGML, XML defines semi-structured documents, modeled by trees.
The syntax of an XML document is a well-nested sequence of tags, some of them
containing textual content. This differs from relational databases, where the data
is stored in tables. With XML appeared schema languages like DTDs (Document
Type Definition), XML Schema or Relax NG. A schema is used to define the cor-
rect structure of XML documents of some given application.

Consider for instance the XML document in Figure 1.1(a). This represents
geospatial data of two cities, and is modeled by the tree in Figure 1.2. A schema
for this document is presented in Figure 1.1(b).

The first task for processing XML is to validatedocuments against schemas.
This is a requirement for applications that manipulate XML data, in order to check
their conformance to the desired schema. The second task isquery answering,
which consists of selecting nodes in an XML document, according to the query.
This is a basic step to retrieve information from an XML document. In our ex-
ample one might want to retrieve triples(name,lat,lon). Query answering
is a generalization offiltering, which requires to determine whether an XML do-
cument has a match w.r.t. the query. The third task, and very common use of
query answering, isdata transformation. In the context of XML , this aspect has
many applications. Data exchange, for instance, consists of translating a docu-
ment satisfying a schema, to a document conforming to another schema. In our
example, geospatial data can be represented using different schemas by different
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<geo>
<point>
<name>Lille</name>
<lat>50.63050</lat>
<lon>3.07063</lon>

</point>
<point>
<name>Hellemmes</name>
<lat>50.62746</lat>
<lon>3.10853</lon>

</point>
</geo>

(a) XML document.

geo → point∗

point→ (name,lat?,lon?)
name → #PCDATA
lat → #PCDATA
lon → #PCDATA

(b) DTD schema.

Figure 1.1: XML file containing geospatial data, conforming to a DTD.

geo

point

name

Lille

lat

50.63050

lon

3.07063

point

name

Hellemmes

lat

50.62746

lon

3.10853

Figure 1.2: The tree representation of the XML file in Figure 1.1(a).

governments or companies, so one might want to export these data into another
schema. Data transformation consider all possible transformations from an XML

document to another one. Another frequent example is the transformation of XML

documents to HTML web pages using XSLT stylesheets.
All these tasks can be performed in several modes. The first mode is thein-

memory evaluation. Here the whole XML document is loaded into main memory,
and then processed. The output is produced only when all the query answers are
computed. One drawback of this approach is a significant memory consumption.
Another is that often some answers can be produced before thewhole set of query
answers is computed. An approach to solve the latter deficiency is theenume-
ration of solutions. It consists in outputting, after a preprocessing phase, each
solution one at a time, with a reasonable delay between two consecutive answers.
Finally, thestreamingmode imposes stronger restrictions on space usage. In this
mode, the XML document is read in only one pass, from the first to the last tag
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of the document. The output is also produced in a streaming manner: When an
answer is found or a part of the output document is computed, it is immediately
output to another device. The objective of a streaming evaluation is to use less
memory, by only buffering the required information. Buffering is necessary when
the output still depends on the continuation of the stream. The goal is to deal with
documents that cannot be loaded into main memory, or to process XML streams
coming from the network on the fly.

Several standards have been elaborated for the aforementioned tasks. We al-
ready illustrated schema languages at DTDs, defined within the XML recommen-
dation [BPSM+08]. XML Schema [FW04] extends DTDs by adding some fea-
tures like more precise characterizations of textual content. Moreover, an XML

Schema is itself an XML document, unlike DTDs. Relax NG [vdV03] focuses on
the description of the structure of valid trees, and delegates the specification of
valid textual content to XML Schema.

XPath [CD99] is the standard language for selecting nodes inXML documents.
It is based on a description of paths, by series of steps to be followed in order to
reach selected nodes. XPath also allows to add filters along these steps. A filter is
a Boolean combination of path expressions, and is satisfied if a node matches this
combination. It is also possible to test textual content of nodes. The navigational
core of XPath 1.0, named CoreXPath 1.0, has been extracted byGottlob, Koch and
Pichler in [GKP05]. XPath is a core query language, used for node selection in
many other languages, like XPointer [DMJ01], a standard forselecting fragments
of XML documents.

XPath is also used by both popular transformation languagesXQuery
[BCF+07] and XSLT [Cla99]. XQuery is an imperative language usingfor-loops
in order to select tuples of nodes, that are subsequently inserted in some XML

context to produce an output XML document. XSLT is closer to functional pro-
gramming. An XSLT stylesheet is a set of template rules that are activated on
nodes matching XPath expressions.

XProc [WMT09] proposes to combine all these standards usinga pipeline
language. Whereas XPath, XQuery and XSLT were not designed for streaming
evaluation, XProc permits to define parts of the tree where the selection and trans-
formation occur, and thus restricts the inherent difficulties of their streaming eva-
luation to smaller regions. We will see in this dissertationthat other languages,
like STX [BBC02], have been designed specifically for streaming evaluation, but
no standard has been adopted yet.

Finite word automata [HU79] process words in one pass, to decide their ac-
ceptance. Hence, they naturally perform streaming evaluation of words. These
objects have been extensively studied, and enjoy interesting relations with logics
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and formal languages, as an automaton basically defines a language of words.
XML documents are modeled as trees, not words. However, original X ML docu-
ments are linearizations of these trees: An XML document is a series of tags (an
XML stream), and thus a word. Here, tags are well-nested, reflecting the tree struc-
ture. Finite word automata are not able to take this nesting relation into account,
so we need a more powerful notion of automata to process XML streams.

Tree automata [CDG+07] provide a framework to formally define and study
XML tasks. Tree automata also benefit from extensive work, and still relate di-
rectly with logics and languages over trees. In particular,they provide an al-
gebraic framework to XML databases, like the relational algebra for relational
databases. It has been shown that tree automata could capture all the standard
schema languages, and the translation of a schema to a tree automaton is rela-
tively simple [MLM01]. Tree automata were also proposed to define queries in
trees [NS02, Koc03, BS04, CNT04]. XPath expressions can be translated into
tree automata, but this time the translation is not trivial.Validation (here, named
model-checking) and query answering tasks are also studiedfor tree automata.
Transformations are defined by tree transducers. These differ from tree automata
by allowing to produce an output while reading an input tree.

1.2 Motivations

In this manuscript, we study the query answering task, usinga streaming evalua-
tion, on queries defined by XPath and tree automata. Streaming evaluation is now
a major challenge for XPath processing. Michael Kay, the author of the reference
XQuery processor Saxon, recently declared [Kay09]:

The streaming capabilities [of Saxon] are now one of the major rea-
sons people buy the product.

The evaluation of streamed XML documents has been considered for a long
time. We illustrate this evaluation mode and related concepts on a query over
words on the alphabet{a, b}. Consider the query that selects positions labeled
by a, directly followed byb ·b. For instance, on the worda ·b ·a ·a ·b ·b ·b ·a ·b ·b,
this query selects positions 4 and 8, as illustrated in Figure 1.3. All b-positions
can immediately be discarded. Fora-positions, the selection or rejection cannot
be decided immediately. Positions followed by ana (like 3) can be discarded
after one step, and those followed byb·a (like 1) after two steps. This query can
be answered with a sliding window of length 3, and needs to buffer at most one
candidate at a time. We namedelaythe minimal size for the sliding window, and
concurrency[BYFJ05] the minimal number of simultaneous alive candidates. A
candidate isalive at a given time point, when there exists a continuation of the
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input a b a a b b b a b b
buffer 1 1 3 4 4 8 8
output 4 8

Figure 1.3: Streaming evaluation for the selection ofa-positions followed byb·b.

stream after this time point for which the candidate is selected, and another for
which it is rejected. Hence these alive candidates have to bebuffered. It is often
easy to define small queries with high concurrency, for instance here by allowing
that b ·b appears after ana, but not immediately after. Schema information can
reduce the buffering requirements. For instance suppose that all valid words are
such that once three successiveb-positions are read, alla-positions are followed by
b ·b. Then alla-positions following threeb-positions can be output immediately.
For instance here, the position 8 can be safely output at position 8 instead of
position 10.

From the beginning, streaming algorithms outperformed other evaluators, but
worked on restricted fragments. Many difficulties for streaming evaluation were
identified. For the validation task [SV02], a first problem isthe recursive nature
of XML documents. Processing recursive documents requires storing information
about ancestor nodes in a stack. Hence the memory can be bounded by the height
of the tree, but cannot be bounded independently for all trees. Query languages
like XPath are inherently non-deterministic [PC05], unlike schema languages. For
instance XPath allows steps through thedescendantaxis. Starting from one node,
this matches all its descendants, thus generating a lot of candidate nodes for the
next step. Here, these candidates need sometimes to be buffered, as they might
require some information to determine if they satisfy the query (for instance if
there is a condition on their next siblings). These difficulties even occur when fil-
tering XML documents using XPath [AF00]. Moreover, XPath allows branching,
by allowing filters and conjunctions inside filters. This also often participates in
increasing the complexity of algorithms. Transformationsimpose additional dif-
ficulties for streaming [FHM+05, Mic07]. This is typically the case for the ope-
rators dealing with positions among selected elements, forinstance when looking
for the last selected node, or for sorting nodes.

Relative to these blocking aspects, lower memory bounds forthese tasks have
been established. In the context of query answering, the keynotion is the concur-
rency, as introduced previously. It has been proved [BYFJ05] that the concurrency
is a lower memory bound for processing XPath queries, for a fragment of XPath
without wildcards. This raises a challenging issue: can we reach this bound? This
question can be decomposed into several variants. First, can this result be gener-
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alized to larger query classes? It would also be interestingto know whether the
bound is tight, i.e. whether there exist algorithms which memory consumption is
tight from this lower bound. What is the cost in time for reaching such bounds,
i.e. do these algorithms require a lot of computation, in order to decide the se-
lection or rejection of candidates? How does this cost vary from a query class to
another? In other words, are there query classes for which efficient algorithms
exist? Can we characterize such query classes by some property? Can queries
with unbounded concurrency be tractable for streaming? Which queries require
low buffering (even though unbounded)? These questions motivate a notion finer
than concurrency: thestreamabilityof a query, i.e. a measure of appropriateness
to streaming evaluation. The concurrency draws a first frontier, between queries
having bounded concurrency (and thus using bounded memory on every docu-
ment of bounded-depth) and the remaining one. But the questions above call for
a more fine-grained notion of streamability.

Beyond filtering and monadic node-selection queries, we study n-ary queries,
for n ≥ 0. These are queries selectingn-tuples of nodes in trees. The casen = 0
corresponds to Boolean queries that can only distinguish trees selecting the empty
tuple, and hence define tree languages. They are used to filtertrees satisfying
some constraints. Forn = 1, we obtain monadic queries, that select, for each
tree, a set of nodes in this tree. The selection ofn-tuples of nodes is a core ope-
ration in transformation languages. For XPath 2.0 and XQuery, this operation is
done through nested for-loops called FLOWR expressions. XPath 1.0 only de-
fines monadic queries. By introducing variables, we allow XPath 1.0 to define
n-ary queries. Compared to FLOWR expressions, this permits more flexibility in
terms of evaluation, and might complicate the task of our algorithms. FLOWR
expressions are more low-level instructions, that might help the developer to de-
fine queries suitable to streaming, or not. For queries by automata,n-ary queries
are defined by languages of annotated trees.

Reaching the memory lower bound is very time consuming. Benedikt et al.
[BJLW08] show for instance that for XPath used with DTDs, rejecting failed can-
didates at the earliest time point with an algorithm built inpolynomial time in the
size of query, with per-event polynomial time in the size of the query, is equivalent
to PTIME = PSPACE.

Berlea [Ber06, Ber07] studyregular tree queries, defined by tree grammars.
For this query class, Berlea proposes an algorithm based on tree automata, that
uses optimal memory management (in terms of stored candidates), while enjoy-
ing PTIME per-event and per-candidate space and time. However, this query class
assumes an infinite alphabet, even for labels. This differs from the XML for-
mat, where only textual contents (i.e., data values) are unrestricted. The fact that
the alphabet is infinite indeed simplifies earliest selection or rejection of candi-
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dates tremendously. In particular, this query language is not closed by com-
plement. The algorithm can however be used for answering positive XPath ex-
pressions in PTIME, when assuming a bound on the branching width of XPath
expressions. Moreover, this algorithm efficiently processes queries defined by
non-deterministic automata.

Some algorithms were proposed for the streaming evaluationof XPath. For
downward axes, we can mention the work by Bar-Yossef et al. [BYFJ05,
BYFJ07], Ramanan [Ram05, Ram09], and Gou and Chirkova [GC07a]. Algo-
rithms by Barton et al. [BCG+03] and Wu and Theodoratos [WT08] allow both
upward and downward axes. Olteanu et al. [OMFB02, OKB03, Olt07b] prove
that Forward XPath, the fragment of XPath 1.0 where all axes respecting the do-
cument order are allowed, is as expressive as CoreXPath 1.0.They proposeSPEX,
an efficient algorithm based on transducers networks, that evaluates all Forward
XPath expressions. Nizar and Kumar [NK08] define an algorithm for Forward
XPath expressions where no negation occurs. Recently, theyextend their frame-
work [NK09] to allow backward axes. Benedikt and Jeffrey [BJ07] study logics
equivalent to CoreXPath 1.0, and their appropriateness forstreaming. They iden-
tify fragments using backward and downward modalities without negation, such
that the selection of a node can be decided when opening (resp. closing) it. They
show that for these fragments polynomial per-event space and time algorithms ex-
ist. Benedikt et al. [BJLW08] study the filtering of XML streams against XPath
constraints, and introduce a heuristic for the earliest detection of violated con-
straints. All these algorithms for the evaluation of XPath over XML streams do
not achieve optimal memory management, and store useless candidates (or partial
matches) in some cases. Ley and Benedikt et al. [LB09] study whether there exist
extensions of XPath being as expressive as the first-order logic, and using only
forward axes. They prove that the first-order complete extensions used when all
axes are allowed do not suffice when restricted to forward axes.

Other lower bounds were also established, in addition to concurrency. Bar-
Yossef et al. [BYFJ04, BYFJ07] establish three lower bounds, for some fragments
of XPath. The first one is thequery frontier size, i.e. the maximal number of sib-
lings of all ancestors of a node, in the tree representation of the query. The second
one is therecursion depthof the document, which corresponds to the maximal
number of ancestors with the same label. The third one is the logarithmic value
of thedepthof the tree. Grohe, Koch and Schweikardt [GKS07], while studying
Turing machines modeling stream processing with multiple scans, establish that
for CoreXPath 1.0, thedepthof the tree is a lower bound. A more complete state
of the art is provided in Section 1.4.
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1.3 Contributions

We now present our contributions. Throughout this manuscript, we considern-
ary queries, i.e. queries that selectn-tuples of nodes, instead of simple nodes, as
allowed by XPath 2.0. Moreover, we always try to take advantage of schemas to
make stream processing more efficient, as schemas are often available in concrete
applications.

Streamability We start by defining a computational model for streaming query
answering: theStreaming Random Access Machines(SRAMs). We then intro-
duce our notion ofstreamability. We have seen that such a notion is lacking in
the current state of the art. In particular, the absence of such formal definitions
leads to a number of errors in the space complexity analysis of many papers.
Roughly speaking, for a natural numberm or m = ∞, a query ism-streamable
if it can be computed using polynomial space and time for all trees for which
the concurrency of the query is less thanm. This sets up a hierarchy of query
classes.m-streamability with a high value ofm is desirable, and means that input
trees with concurrency lower thanm can be efficiently processed.∞-streamable
queries are calledstreamablequeries, and always use polynomial per-event time
and space, independently of the concurrency. We study the relations between
query classes that are∞-streamable, and query classes that arem-streamable for
all m ∈ N0. Query classes beingm-streamable for allm ∈ N0 must have polyno-
mially bounded concurrency in order to be∞-streamable (for monadic queries).
We study the hardness of deciding whether a query class has bounded (resp. poly-
nomially bounded) concurrency. For Forward XPath, these problems are coNP-
hard. We show that being1-streamable implies a PTIME universality test on the
class of queries, whenever this class verifies some properties. As universality for
Forward XPath queries is coNP-hard, Forward XPath is not1-streamable, and thus
notm-streamable for allm ∈ N ∪ {∞}.

Streaming Tree Automata We defineStreaming Tree Automata(STAs) as a no-
tion of tree automata that performs pre-order traversals oftrees. This corresponds
to streaming traversals of XML documents. STAs are a reformulation of nested
word automata [Alu07] that operate directly on trees instead of nested words.
We show the equivalence between STAs and other automata notions that traverse
trees (or encodings of trees) in pre-order: pushdown forestautomata [NS98], visi-
bly pushdown automata [AM04] and nested word automata. We also exhibit back
and forth translations between STAs and standard (bottom-up and top-down) tree
automata. Queries defined by deterministic STAs (dSTAs) arem-streamable for
all m ≥ 0, when bounding the depth of trees. We proved it by elaborating an
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earliest query answeringalgorithm.

Earliest Query Answering for Streaming Tree Automata Earliest query an-
swering (EQA) algorithms have the property of writing answers at the earliest
point onto the output stream. In other words, each answer is output once there is
enough information to ensure that this answer will be selected on any continua-
tion of the stream. Symmetrically, all rejected candidatesare discarded when they
fail in all continuations (a property namedfast-fail in [BJLW08]). These notions
originate from the work of Bar-Yossef et al. [BYFJ05] and Berlea [Ber06]. While
Bar-Yossef derived lower memory bounds for streaming, we prove time lower
bounds, by studying decision problems inherent to EQA algorithms.

The property of being earliest is a requirement for algorithms buffering only
alive candidates: not being earliest means that at some point, a candidate is stored
while it does not have to. However, being earliest is often computationally com-
plex. For XPath queries, we show that it is coNP-hard to decide whether a pre-
fix of the stream ensures selection of a given candidate. For queries defined by
dSTAs, this task becomes tractable, and our earliest query answering algorithm
runs in PTIME (for fixed arityn). This proves that dSTAs are a robust formalism
for defining streamable queries. Our working hypothesis is that every class of
streamable queries can be translated in PTIME to dSTAs. This is for instance the
case for the streamable fragment of XPath defined below, for which we provide
such a translation, hence proving its streamability.

XPath We then study the streamability of XPath in more details. We identify
a hierarchy of fragments, namedk-Downward XPath (withk ∈ N), that arem-
streamable for allm ≥ 0. Here, the key property is that ink-Downward XPath, the
number of correct matches of a branch of the expression w.r.t. the tree is at most
one at any time point. In order to ensure this property, we combine syntactic re-
strictions (on the query) with semantic restrictions (on the schema).k-Downward
XPath is a rich fragment, in that it allows negation, branching (and thus disjunc-
tion), and downward axes (child and descendant). We providean effective PTIME

translation ofk-Downward XPath expressions to dSTAs. Hence we can reuse
all our algorithms for dSTAs onk-Downward XPath, and in particular the EQA
algorithm.

Bounding Concurrency and Delay Finally we prove that for queries defined
by dSTAs, it can be decided in PTIME whether a query has bounded delay and/or
bounded concurrency. Thedelayis the maximal number of events between read-
ing a selected node (or tuple of nodes in then-ary case) and the earliest point
where its selection can be decided. Delay and concurrency are key streamability
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measures: delay is related to the quality of service, while concurrency is a mea-
sure of buffering requirements. To obtain these decidability properties, we use
and extend results on recognizable relations over trees, that were already studied
in the ranked case [Tis90, CDG+07] and also the unranked case [BL02, BLN07].
These are relations over trees that can be recognized by an automaton, modulo an
encoding of tree relations into tree languages. We prove that the bounded andk-
bounded valuedness of binary recognizable relations can bedecided in PTIME, by
reduction to bounded valuedness of tree transducers [Sei92] andk-bounded am-
biguity of tree automata. This also allows us to decide in PTIME whether a query
has ak-bounded delay and/or ak-bounded concurrency, for fixedk and fixed arity
n.

1.4 State of the Art

This section surveys the recent work on stream processing, in the context of XML

databases. For a survey on streaming more generally, we refer the reader to
[Mut05]. We start by enumerating several models for stream processing. We
present known lower bounds for XML stream processing, and then exhibit upper
bounds by listing known algorithms for processing XML streams.

Models for Stream Processing

Turing machines with multiple tapes, and restrictions on the direction of head
moves or on the number of head reversals are studied for a longtime [HU69].
These restrictions define new classes of computable languages. Gurevitch, Lein-
ders and Van den Bussche [GLdB07] consider stream queries asparticular func-
tions from stream to stream. They study which functions mapping an input stream
to an output stream are computable, and in particular which of them are com-
putable with bounded memory. Babcock et al. [BBD+02] previously surveyed
some common problems for stream processing, and how they arehandled in exis-
ting data stream management systems (DSMS).

Grohe, Koch and Schweikardt [GKS07, Sch07a] investigate Turing machines
with one external tape where the input is read (and writing isallowed under some
conditions), an output write-only tape, and internal tapeswithout restrictions.
They define a hierarchy of machines: machines allowingk + 1 head reversals
on the input tape are strictly more expressive than machinesallowing k rever-
sals. Schweikardt [Sch07a] surveys generalizations of stream processing models,
where data can be stored in external (and thus slower) devices (on this precise
topic, see also the survey by Vitter [Vit01]).

The expressiveness of query languages over trees is often established w.r.t.
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two yardstick logics: the first-order logic (FO) and the monadic second-order
logic (MSO), with predicates describing tree structures. Marx shows in [MdR05]
that CoreXPath 1.0 is strictly less expressive than FO. Queries defined by tree
automata are exactly MSO-definable queries, by the standardequivalence between
tree automata and MSO logic established by Doner [Don70] andThatcher and
Wright [TW68]. Ley and Benedikt [LB09] study whether there exists a first-order
complete logic using only forward axes, i.e. axes that respect document order.
For this purpose, they adapt and combine two modal logics. The first one is the
Linear Temporal Logic (LTL) and the second one the Computational Tree Logic
(CTL∗), which is a temporal logic with branching. They show that using LTL
for vertical path expressions together with CTL∗ for horizontal and downward
moves leads to a first-order complete logic. However this logic uses backward
moves. Unfortunately, the first-order completeness is lostwhen restricting to only
forward moves, or when restricting the nesting depth ofuntil operators in LTL.

We also note that streaming query answering is a particular case of the view
maintenance problem (i.e. maintaining the answer set afterupdates of the docu-
ment), where only insertions of nodes are allowed [SI84, GMS93, BGMM09].

Lower Bounds

In [GKS07], Grohe, Koch and Schweikardt apply techniques from communication
complexity to prove lower bounds. They show that, as a consequence, forfiltering
CoreXPath 1.0 queries thedepthof the input treet is a lower memory bound, i.e.
there is no streaming algorithm using less thano(depth(t)) buffering space for
input treest.

Communication complexity [Yao79, KN97] is a powerful tool for proving
lower bounds. It characterizes the minimal amount of information needed to com-
pute a function by two agents, each of them knowing a part of the input.

In [BYFJ04, BYFJ07], Bar-Yossef et al. use this technique toexhibit other
lower bounds on a fragment of XPath named Redundancy-free XPath. The bounds
apply even for filtering. A key property of Redundancy-free XPath is that a node
of the tree cannot match several distinct query nodes. Thesebounds are formu-
lated w.r.t. theinstance datacomplexity, i.e. in terms of properties of each query
and document to be evaluated, as opposed to the worst-case complexity. A first
memory lower bound on Redundancy-free XPath is thequery frontier size. When
a queryQ is represented as a tree, the frontier size at a node of this tree is the
number of siblings of this nodes, and its ancestors’ siblings. The query frontier
size ofQ is the largest frontier over all nodes ofQ. The second lower bound is
the documentrecursion depth. The recursion depth of a treet w.r.t. a queryQ is
the maximal number of nested nodes matching a same node inQ. The last lower
bound islog(d), whered is the depth of the documentt. This latter lower bound is
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smaller than the recent bound proved by Grohe et al. for filtering CoreXPath 1.0
[GKS07] mentioned above.

In a subsequent work [BYFJ05], Bar-Yossef et al. prove that theconcurrency
of a query is a memory lower bound, on Star Free XPath, the fragment of Core-
XPath 1.0 with only downward axes (self, ch and ch∗) and without wildcards.
More precisely, the concurrency is proved to be a lower memory bound for the
worst-case complexity. For instance data complexity, it isproved that there exists
a document, almost similar to the original one, that requires the concurrency in
terms of space.

Benedikt et al. [BJLW08] study the feasability offast-fail filtering for XPath
with DTDs. Fast-fail means that it must be decided at the earliest time point
whether the stream is rejected by a given XPath filter. They prove that PTIME =
PSPACE is equivalent to having a PTIME algorithm compiling XPath filters to
fast-fail algorithms using polynomial per-event time complexity (in the size of the
XPath filter and DTD). Moreover, Benedikt and Jeffrey [BJ07]prove that there is
no subexponential functionf such that all positive CoreXPath 1.0 filtersQ can
be computed by algorithms usingf(|Q|, |Σ|) total space, on bounded-depth trees,
even when fast-fail is not required.

Lower bounds were also established in more general frameworks. Arasu et al.
prove some lower bounds for the streaming evaluation of conjunctive queries, with
multiple input tapes [ABB+04], and more general streamed data. The aforemen-
tioned work by Grohe et al. [GKS07] contains additional results when reversals
on the input tape are allowed. Recently, Schweikardt extends this framework by
allowing multiple input tapes [Sch09]. Communication complexity was already
used to prove lower bounds for some streaming problems on relational databases,
for instance by Henzinger et al. [HRR99].

Validation

We now survey upper bounds for XML streams processing, by mentioning known
algorithms. The easiest task when processing XML documents is the validation,
i.e. determine whether a document conforms to a given schema. This problem
was first addressed by Segoufin and Vianu [SV02]. In this paper, the authors are
looking for DTDs for which the validation can be done with bounded memory.
This is not the case for all DTDs. They prove that it is sufficient for the DTD to
be non-recursive, or to be fully recursive. A DTDs is fully recursive if all labels
leading to recursive labels are mutually recursive. This property can be checked
in EXPTIME for DTDs, and in PTIME for deterministic DTDs. However, this con-
dition is not proved to be necessary, and the problem is stillopen. Some progress
was obtained by Segoufin and Sirangelo in [SS07], where the approach is based
on finite state automata checking only local properties of trees. For non-recursive
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DTDs, Chitic and Rosu [CR04] prove an exponential lower and upper bound for
computing the equivalent minimal deterministic automaton(this automaton also
checks that the document is well-nested). We note that a precise characterization
of schemas that can be validated with constant space is knownfor another stream
encoding, where the labels are not given in closing tags [BLS06].

Chitic and Rosu [CR04] also relax the constant-memory requirement by al-
lowing the size to be logarithmic in the size of the input stream. They present
syntactic restrictions on recursive DTDs, so that they can be validated with loga-
rithmic space in the input stream size.

A weaker requirement for validating XML streams is to bound the space by
the depth of the input tree. In [SV02], Segoufin and Vianu already show that
every EDTD can be translated into a deterministic pushdown automaton, whose
stack usage is bounded by the depth of the input tree. Moreover, they show that
any DTD can be compiled into an equivalent EDTD of quadratic size, for which
the validation is done with bounded memory. In [GKPS05], Gottlob et al. show
that the validation problem for XML streams varies from LOGSPACE to LOGCFL,
depending on the schema language and representation.

For the more specific problem of typing, Martens et al. [MNS05] prove that
typing each node of an XML document at its opening event w.r.t. a restrained com-
petition EDTD can be done in streaming mode. Such a construction, using visibly
pushdown automata, is for instance provided by Kumar et al. in [KMV07]1. An
alternative algorithm, avoiding the static construction of the whole automaton,
is proposed by Schewe et al. in [STW08]. Martens et al. also prove that non-
restrained competition EDTDs cannot be typed in a streamingmanner. Martens
et al. [MNSB06a] study the precise expressiveness of XML Schema, and propose
to replace a constraint of XML Schema (Element Declarations Consistent) by the
one-pass pre-order typing requirement. Typing is also sometimes used as a pre-
processing phase for further querying, as proposed for instance by Russell et al.
in [RNC03].

Filtering

Filtering XML documents is similar to validation in that it defines valid trees, but
differs by the specification language. Whereas validation relies on schema lan-
guages, filtering trees w.r.t. a given XPath expression consists in selecting trees
in which this XPath expression selects at least one node. Altinel and Franklin,
in a seminal work [AF00], introduce the framework ofselective dissemination of
information, where many XML documents have to be filtered w.r.t. many XPath

1We show in Chapter 4 how to translate a DTD into a Streaming Tree Automaton, which is a
similar construction.
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expressions, for publish/subscribe systems. They proposean algorithm called
XFilter for this purpose, based on a translation of non-branching XPath expres-
sions to automata, that are then combined and indexed for efficient filtering. A
number of alternative algorithms were proposed, like YFilter [DFFT02, DRF04],
which improve XFilter by another method for combining automata, and XTrie
[CFGR02], that proposes a better data structure.

In [GMOS03, GGM+04], Green et al. propose XMLTK, a system based on the
translation of XPath queries to a finite word automaton. Hence the events can be
processed with constant time. However the automaton has first to be determinized,
causing a blow-up in the filter size. This can be sometimes avoided by building
the automaton on demand, but the worst case remains the same.The automaton is
just an intermediate representation of the query, and the algorithm uses it together
with a stack (bounded by the depth of the tree) during the execution. In [GS03b],
Gupta and Suciu define XPush machines, that directly use deterministic pushdown
automata.

All these systems have either strong restrictions on XPath expressions (no
predicates, or predicates that does not require look-aheads) or lead to exponential
algorithms. Bar-Yossef et al. [BYFJ04, BYFJ07] prove the tightness of their
lower bounds by an algorithm using̃O(|Q| · r · log(d)) in space, wherẽO removes
logarithmic factors, andd (resp.r) is the depth (resp. recursive depth) oft.

Benedikt and Jeffrey [BJ07] investigate filtering algorithms with space (and
per-event time) independent of the input stream, and polynomial in the filter. They
show that this holds for two classes of queries. The first one is a fragment of posi-
tive CoreXPath 1.0 (using backward, i.e. up and left, axes),and the second one a
fragment of Conditional XPath, also using backward axis. The backward restric-
tion does not weaken the expressiveness: in both fragments,any non-backward
query can be rewritten to a backward one. The techniques are similar to the ones
used by Olteanu for SPEX [Olt07b] (as explained later for monadic queries): a
translation of queries into transducers networks, and a proof that the restriction on
axis does not change the expressiveness.

Benedikt et al. [BJLW08] study the problem of firewalling XML streams under
XPath constraints. This is similar to filtering, except thatthe goal here is to detect
XML messages violating XPath constraints, and reject them as soon as possible.
We already discussed about the hardness of thisfast-fail feature. The authors pro-
pose however a tractable solution, by using binary decisiondiagrams (BDDs) for
implementing automata (here the trees are of bounded depth), by using a heuristic
for fast-fail, and by restricting XPath queries (no wildcards, no rightward moves,
and no data joins). When compared to transducers networks, BDDs offer better
static analysis opportunities.
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Query Answering

XPath with Downward Axes TwigM [CDZ06] consider monadic XPath
queries using only downward (ch and ch∗) axes. TwigM focuses on an effi-
cient data structure for storing pattern matches, and dealswith positive downward
XPath expressions, i.e. tree patterns.StreamTX[HJHL08] aims at adapting the
TwigStack algorithm to stream processing of tree patterns,while allowing selec-
tion of tuples of nodes, instead of nodes.XSQ[PC05] does neither allow negation,
but includes aggregators and data values comparisons. The core of XSQ is a hi-
erarchy of pushdown transducers, with additional buffers.Chen et al. [CLT+08]
consider a streaming evaluation ofgeneralized tree patterns, that consist in tree
patterns augmented with thefor-let-return(FLOWR) expressions of XQuery.

Ramanan [Ram05, Ram09] proposes an algorithm that allows negation and
downward axes. Its complexity isO((depth(t) + concurQ(t)) · |Q|) in space and
O(|t| · |Q| · depth(t)) in time, in the worst case. An extension with backward
axesprecand(ns−1)∗ is also presented in [Ram09]. Gou and Chirkova [GC07a]
provide another algorithm for downward XPath, with linear combined complex-
ity O(|Q| · |t|). This paper however seems too optimistic by asserting optimal
buffering. We will see later on that this requires non-polynomial time (unless
PTIME = NP) on downward XPath. Bar-Yossef et al. [BYFJ05] prove thatthe
concurrency lower bound is tight, by an algorithm that uses,on non-recursive do-
cumentst, O(concurQ(t)+ |Q| · (log(|Q|)+ log(|t|))) space and̃O(|Q| · |t|) time,
whereÕ removes logarithmic factors.

XPath with Downward and Upward Axes Beyond downward axis, some al-
gorithms were proposed for dealing with parent (ch−1) and ancestor ((ch−1)+)
axis, together with downward axis. This increases the difficulty, as the algorithm
has to process the query in a bottom-up way, by guessing whether descendant
nodes will further match. This implies high buffering cost.Xaos[BCG+03] al-
lows both downward and upward axes in XPath, and starts by converting upward
axes to downward axes. One drawback of Xaos is that answers are output only
when the input stream ends. Wu and Theodoratos [WT08] propose an alternate
algorithm, calledPSX, for the same set of queries, represented aspartial tree-
pattern queries. By using a stack-based technique to encode matches, they out-
perform Xaos.TurboXPath[JFB05] is an XML stream processor evaluating XPath
expressions with downward and upward axis, together with a restricted form of
for-let-where(FLOWR in XQuery) expressions. Hence, TurboXPath returns tu-
ples of nodes instead of nodes, i.e. processesn-ary queries.

Forward XPath and Variants Forward XPath is the fragment of XPath using
only forward axes, i.e. downward axes, plus next-sibling, its transitive closure,
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and the axisfoll that moves to all nodes following the next sibling of the cur-
rent node in document order. As shown by Olteanu et al., Forward XPath is very
expressive, as adding backward axes to Forward XPath does not change its ex-
pressiveness [OMFB02, Olt07a]. However translating an XPath expression with
backward axes to a Forward XPath expression can imply an exponential blow-
up in the size of the expression. Ley and Benedikt [LB09] prove that Conditional
XPath does not enjoy this property, i.e., Conditional XPathwith only forward axes
is not as expressive as Conditional XPath.

SPEX[OMFB02, OKB03, Olt07b] uses a transducers network as queryevalu-
ator. Each element of the XPath expression (label test, axis, etc) is translated into
a simple transducers, equipped with a stack. Transducers are linked according to
the query structure. For instance a stepch::a is translated into two transducers, one
for ch and one fora. The output of thech-transducers conveys an XML stream,
that is the input of thea-transducer. This way, a DAG of transducers is built.

Nizar and Kumar [NK08] propose an algorithm for an extensionof monadic
tree patterns, where axesfoll andns∗ are allowed. Hence this algorithm defines
monadic queries where the negation is not allowed. The complexity of this al-
gorithm is not given, and only experimentally studied. Recently, the authors also
investigate the streaming evaluation of monadic tree patterns with additional back-
ward axesprecandns−1 [NK09].

Desai [Des01] defines Sequential XPath, a fragment where only forward axes
are allowed in path expressions (outside filters), and only backward axes are al-
lowed in filters. In this fragment, selection of a node can be decided at opening
time, and thus no buffering of candidates is required. The memory consumption
only depends on the depths of the input tree and the Sequential XPath expression.

CoreXPath 1.0 Clark [Cla08] proposes a translation of CoreXPath 1.0 ex-
pressions (interpreted as binary queries) to visibly pushdown automata, in-
spired from the standard translation of MSO formulas to equivalent automata
[Don70, TW68, CDG+07]. All axes are allowed. The resulting visibly push-
down automata are non-deterministic, and recognize trees annotated with two
variables (corresponding to the canonical language of the queries in our frame-
work). The complexity is non-elementary in the size of the expression, i.e., it
cannot be bounded by a tower of exponentials of fixed height. It becomes poly-
nomial when negations are forbidden and the branching width(i.e., the number
of leaves in the tree representation of the expression) is bounded. Such transla-
tions permit to reuse algorithms designed for queries by automata, with XPath
expressions.
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Queries by Automata One of the first models for evaluating queries in strea-
ming mode on semi-structured documents was proposed by Neumann and Seidl
[NS98, Neu00]. They define monadic queries on forests, i.e. sequences of trees
(calledhedgesin this manuscript). Queries are defined by means offorest gram-
mars, rephrased as a patterns language of contexts. The selection is made through
a special tree variable, and the query selects nodes of the forest where this tree
variable can be used. In terms of expressiveness, this corresponds to forest regular
languages [Tak75], and regular tree languages when restricted to trees. Neumann
and Seidl introducepushdown forest automatain order to evaluate these queries
while parsing the XML document, and thus in a streaming way. The links between
pushdown forest automataand the model of STAs we use in this manuscript are
studied in Chapter 4, and show that the models are similar. Inparticular we pro-
vide translations between these models, that allow to change the automaton model
behind streaming algorithms.

In the general setting, the evaluation of queries defined by forest grammars
using pushdown forest automata is done in two traversals of the tree (left-to-right
and then right-to-left). By adding constraints to the grammar, they defineright-
ignoring grammars. These grammars have the property that when traversing the
document in streaming order, it can be decided whether a nodeis selected at clos-
ing time. Berlea and Seidl present an extension of this modelfor n-ary queries
[BS04]. They keep the same framework: Queries are defined by grammars, and
evaluated using pushdown forest automata.

Berlea [Ber06, Ber07] extends these results to an algorithmthat evaluates, in
one pre-order traversal of the tree, queries defined by forest grammars (named
regular tree grammarsin the paper). His algorithm is also based on pushdown
forest automata, and achieves close to optimal memory usage. As the alphabet of
labels is infinite, it is easier to decide whether a state of the automaton will accept
all possible continuations. However, the XML format restricts labels to a finite
set, and the algorithm is less efficient on finite alphabets. For instance, consider
the XPath expression//a[not(not(a) and not(b))], that selects alla-nodes whose
children are all labeled bya or b. If the alphabet is known to beΣ = {a, b} then
all a-nodes can be selected immediately. This cannot be done by the algorithm
proposed in [Ber06], and this algorithm will take a decisionfor the selection of
ana-node when closing it. For infinite alphabets, the difference is that a wildcard
test is always satisfied, and not a finite union of label tests.

Some results similar to the aforementioned work by Neumann and Seidl
[NS98] were established by Kumar et al. in [KMV07], who usevisibly pushdown
automatainstead of pushdown forest automata. In particular, the authors exhibit
the logic Pre-MSO, corresponding to MSO-definable queries for which the selec-
tion of a node only depends on its prefix tree. They show that queries defined by
Pre-MSO formulas can be efficiently processed by visibly pushdown automata,
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using constant per-event time, and memory inO(depth(t)), wheret is the input
tree. However, the translation of a Pre-MSO formula to such an automaton is
non-elementary [AM04, AM06]. In a follow-up work [MV08], Madhusudan and
Viswanathan show that queries defined by visibly pushdown automata can be effi-
ciently processed. However, the authors hide a crucial point, as they suppose that
the states of the automaton already have enough informationto decide whether
they are universal, i.e. whether the residual language theyaccept is any correct
continuation of the stream. We propose in Chapter 5 a construction for obtaining
such a property for all states, and prove that an exponentialtime is required for
this.

Transformations

Beyond node-selection queries, the streaming evaluation mode is also used for
transforming XML documents. Several XQuery processors were proposed for
XML streams. Ludäscher et al. [LMP02] translate XQuery expressions into a
network of XML Stream Machines (XSM) that take XML streams as inputs, and
output other XML streams. Finally, the network is compiled into aC program.
Koch et al. proposeFluXQuery[KSSS04a], an XQuery processor based on the
intermediate language FluX. FluX adds aprocess-streaminstruction to XQuery,
that makes the use of buffers more explicit. In [KSSS04b], the authors show how
schema information can be used to improve the translation toFluX programs.
GCX [SSK07] reduces the amount of data to be buffered by purging them us-
ing a garbage collector. This one is based on static and dynamic analysis of the
query. Fernández et al. [FMSS07] analyze which parts of queries can be evalu-
ated in a streaming manner. They build query execution plansthat combine some
parts of the query in streaming mode, and other parts using common in-memory
techniques. Wei et al. [WRML08] try to reduce space consumption when XML

documents are recursive.Tukwila[IHW02] is an XQuery processor that evaluates
numerous XQuery expressions on an XML stream. The core of Tukwila is based
on a stack and a meta-automaton that enables and disables deterministic finite
automata that represent linear path expressions of queries.

XSLT is another transformation language based on templatesthat are activated
by XPath expressions defining their execution context. Hence this language is
suited to be modeled by transducers. Dvoráková and Rovan [DR07] propose to
adapt this idea to a streaming evaluation.

Other transformation languages for XML have been specifically conceived for
streaming purpose.STX [BBC02] is an event-driven programming language. It
is based on templates that specify which operations should be done on the data
matching the template pattern. In [KS07], Koch and Scherzinger propose to
add attribution functions to the rules of DTDs. These functions are executed
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while the document is parsed, and can produce an output. Thisway, these DTDs
(named XML Stream Attribute Grammars) define transformations. By requiring a
strong notion of one-unambiguity for the regular expressions, the document can be
parsed with a look-ahead of1. Hence the memory consumption can be bounded
(when assuming a bound on the depth of trees). A previous version of this frame-
work namedTransformXcan be found in [SK05]. Frisch definesXStream[FN07],
a functional programming language that efficiently performs XML transforma-
tions. The execution plan ofXStreamis elaborated dynamically, to take advantage
of the execution context. Frisch [Fri04] also proposes an efficient implementation
of pattern-matching inCDuce[BCF03], using tree automata. These operate in do-
cument order, and thus the pattern-matching algorithm deals with XML streams.
XTiSP[Nak04] is another transformation language for XML streams. XTiSP uses
as underlying model macro tree transducers, i.e. tree transducers augmented with
an accumulator.

1.5 Outline

Chapter 2 introduces the basic objects that we study in this manuscript: unranked
trees, schema languages, and queries. It also provides a state of the art about query
evaluation.
Chapter 3 defines our model of streaming, and the state of the art for streaming
query answering. We introduce the notion ofm-streamability, and show that large
query classes are not streamable.
Chapter 4 is devoted to Streaming Tree Automata, a model of tree automata
adapted to streaming. Beyond the definition, we explicit thelink with other exis-
ting models of tree automata.
Chapter 5 studies the streamability of deterministic Streaming Tree Automata
(dSTAs). For this purpose, we propose an earliest query answering algorithm
for queries defined by dSTAs.
Chapter 6 exhibits streamable fragments of XPath. This is mainly proved by a
PTIME translation of XPath queries of these fragments to dSTAs.
Chapter 7 proves that deciding whether a query defined by dSTAs has a bounded
(resp. k-bounded) delay and concurrency can be done in polynomial time, for a
fixedk and a fixed arityn.

1.6 Author’s Publications

Streaming Tree Automata Our model of Streaming Tree Automata was estab-
lished with the collaboration of Anne-Cécile Caron and Yves Roos, and presented
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in [GNR08]. Chapter 4 contains the results of this paper, with extra back and forth
translations between STAs and standard tree automata.

Earliest Query Answering The definition of earliest query answering and rel-
ative hardness results described in Chapter 5 were presented in [GNT09b], and
a preliminary version in [GCNT08]. This is also a joint work with Anne-Cécile
Caron and Yves Roos.

Bounded Concurrency and Delay The PTIME decision procedures for decid-
ing bounded delay and concurrency of queries defined by dSTAswere presented
in [GNT09a]. Chapter 7 contains the results of this paper, with additional im-
provements. The main improvement is the procedure for deciding thek-bounded
delay and concurrency in PTIME for a fixedk (it is in NP in the paper). We also
prove that whenk is variable, the problem becomes EXPTIME-complete. Finally,
we give a more efficient algorithm for computing the value of the delay in the case
of words.

Unpublished Content Our notion of streamability, and the corresponding com-
putational model, as presented in Chapter 3 have not been published yet. It is also
the case for our streamable fragments of XPath, and the corresponding translation
to dSTAs, presented in Chapter 6.
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page 20)
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(Cited page 20)

[GNT09a] Olivier Gauwin, Joachim Niehren, and Sophie Tison. Bounded Delay
and Concurrency for Earliest Query Answering. In3rd International Confer-
ence on Language and Automata Theory and Applications, volume 5457 of
Lecture Notes in Computer Science, pages 350–361. Springer Verlag, 2009.
(Cited page 20)
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Schemas and Query Languages
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In this chapter, we introduce the basic notions used throughout this
manuscript. The structures we study are unranked trees on a finite alphabet.
We present this model, together with some standard logics and automata mod-
els. Schemas are another standard formalism for defining tree languages. Finally,
queries over unranked trees are introduced using differentobjects: automata or
XPath expressions. We survey known query answering algorithms for these query
classes.

2.1 Unranked Trees and Logics

We start with the definition of unranked trees, and the standard framework that
relates tree logics to tree automata [TW68, Don70, Tho97, CDG+07], now com-
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monly used in the context of XML [Nev02b, Nev02a, Lib06, Sch07b].

2.1.1 Trees and Binary Encodings

We define unranked trees as trees over an unranked alphabet. We then present two
encodings into binary trees, used to lift results for rankedtrees to unranked trees.

Alphabet

An unranked alphabetΣ is a finite set of symbols. Aranked alphabetis a pair
(Σ, ar) whereΣ is a finite set of symbols, andar a function associating to each
symbol its arity: ar: Σ → N0. Here we writeN0 for the set of non-negative
integers, andN for natural numbers. For convenience the arity will be sometimes
left implicit in the notations.

Unranked Trees

Let Σ be an unranked alphabet. The set ofunranked treesoverΣ, denotedTΣ, is
the least set such thata(t1, . . . , tk) ∈ TΣ if a ∈ Σ, k ∈ N0 and for all1 ≤ i ≤ k,
ti ∈ TΣ. In particular we always exclude the empty tree from the set of trees.

An unranked treelanguageoverΣ is a subset ofTΣ. Unranked trees will be the
default class of structures we will consider in this manuscript, so in the following
a tree (resp. a tree language) will denote an unranked tree (resp. an unranked tree
language). With this definition, trees are finite, ordered and labeled.

The set ofnodesof a treet ∈ TΣ is the following prefix-closed language over
natural numbersN:

nod(a(t1, . . . , tk)) = {ǫ} ∪ {i·π | π ∈ nod(ti)}

wherew·w′ is the concatenation of the wordsw andw′. The nodeǫ always corre-
sponds to theroot of the tree. We inductively define the functionlabt: nod(t)→ Σ
that maps each node to its label. Ift = a(t1, . . . , ak) then labt(ǫ) = a, and
labt(i·π) = labti(π).

Thedepthof a tree is the length of its longest branch:

depth(t) =

{
1 if t = a with a ∈ Σ
1 + max1≤i≤k depth(ti) if t = a(t1, . . . , tk) with k ≥ 1

Hedges

A hedgeoverΣ is a sequence of trees(t1, . . . , tk) with ti ∈ TΣ, for somek ∈ N0

and1 ≤ i ≤ k. The set of hedges overΣ is thus defined as:

HΣ = {(t1, . . . , tk) | k ∈ N0 and ti ∈ TΣ for all 1 ≤ i ≤ k}
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The set of nodes of a hedge is defined from the set of nodes of itstrees:

nod((t1, . . . , tk)) =
⋃

1≤i≤k

{i·π | π ∈ nod(ti)}

Note that the hedge(t1) is different from the treet1, and has a different set of
nodes. We will sometimes consider the empty hedge().

Ranked Trees

In the following we always deal with unranked trees, but sometimes use automata
on ranked trees together with a binary encoding, to define unranked tree lan-
guages.

Given a ranked alphabet(Σ, ar), we define the set of ranked trees over(Σ, ar)
as the least setT r

Σ containingf(t1, . . . , tk) for each symbolf of arity k and
t1, . . . , tk ∈ T

r
Σ . Binary trees are a special case of ranked trees, where all symbols

have arity0 or 2. We writeT bin
Σ for the set of binary trees over a ranked alphabet

(Σ, ar).

Binary Encodings

Binary encodings are used to encode unranked trees overΣ into binary trees.
Two of them are commonly used: thefirst-child next-siblingencoding, and the
Curryfication. For other encodings, see for instance [MSV03, FGK03].

Rabin’s first-child next-sibling encoding [Rab69, Koc03] is defined by
fcns: TΣ → T bin

Σ⊥
whereΣ⊥ = Σ ⊎ {⊥}, all symbols fromΣ having arity2,

and⊥ being the sole constant symbol. This is defined by the following rules, and
illustrated in Figure 2.1(b). For convenience we first encode hedges into binary
trees usingfcnsH:

fcnsH(()) = ⊥
fcnsH((a(t′1, . . . , t

′
m), t2, . . . , tk)) = a( fcnsH(t′1, . . . , t

′
m) , fcnsH((t2, . . . , tk)) )

Then we simply usefcnsH on unary hedges:fcns(t) = fcnsH((t)).
The second encoding of unranked trees corresponds to the Curryfication

of terms, illustrated in Figure 2.1(c). This is defined through the function
curry: TΣ → T bin

Σ@
, whereΣ@ = Σ ⊎ {@} is the ranked alphabet in which all

symbols fromΣ are constant symbols, and@ is the only binary symbol.

curry(a(t1, . . . , tk)) =

{
a if k = 0
@( curry(a(t1, . . . , tk−1)) , curry(tk) ) otherwise
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Figure 2.1: Binary encodings.

2.1.2 FO and MSO Logics

First-Order (FO) and Monadic Second-Order (MSO) logics areyardstick logics
for expressing properties of structures. We start with the definition of relational
structures, exhibit relational structures correspondingto unranked trees, and fi-
nally define the syntax and semantics of both logics.

Logics over unranked trees were recently surveyed by Libkin[Lib06] and
Bojańczyk [Boj08]. In this manuscript we only address finite trees. More general
results about finite models are available in the framework offinite model theory
[EF99, Lib04].

Relational Structures

A relational signature∆ consists of a finite set of relation symbolsr ∈ ∆, each
relation having a fixed arityar(r) ∈ N0. A relationalstructure sover∆ consists of
a non-empty finite setdom(s) called the domain ofs and relationsrs ⊆ dom(s)ar(r)

interpreting all symbolsr ∈ ∆. We writeS∆ for the set of structures over∆. The
size|s| of a relational structures is defined by:|s| = |dom(s)|+ |rs|.

Words as Relational Structures

We illustrate the definitions in the case of word structures.The signature, that we
consider for words over a finite alphabetΣ, is ∆ = {laba | a ∈ Σ} ∪ {≤}.
A non-empty wordw = a1 · . . .·ak ∈ Σ∗ is the relational structure with domain
dom(w) = {1, . . . , k} and the following relations:

• labw
a = {i | ai = a, 1 ≤ i ≤ k}

• ≤w= {(i, j) | 1 ≤ i ≤ j ≤ k}
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Trees as Relational Structures

An unranked treet ∈ TΣ can be also considered as a relational structure over the
relational signature∆ = {laba | a ∈ Σ}∪{fc, ns}, wherelaba are monadic (i.e.,
unary) relations, whilefc andnsare binary. The domain oft is exactly its set of
nodes:dom(t) = nod(t). The relations of the structuret are the following, where
a ∈ Σ:

• labt
a = {π | labt(π) = a}

• fct = {(π, π ·1) | π ·1 ∈ nod(t)}

• nst = {(π ·i, π ·(i+1)) | 1 ≤ i, π ·(i+1) ∈ nod(t)}

A tree t also defines the following relations, that we will sometimesuse as base
relations of some logics.ch is the standardchild relation. ch∗ (resp. ns∗) is the
reflexive transitive closure ofch (resp.ns).

• cht = {(π, π ·i) | π ·i ∈ nod(t)}

• (ch∗)t = {(π, π ·π′) | π ·π′ ∈ nod(t)}

• (ns∗)t = {(π ·i, π ·j) | 1 ≤ i ≤ j, π ·j ∈ nod(t)} ∪ {(ǫ, ǫ)}

Throughout the manuscript we use monadic predicates, selecting respectively the
root node, the leaves, and the last children:

• roott = {ǫ}

• leaft = {π ∈ nod(t) | ∄π′. (π, π′) ∈ cht}

• lct = {π ∈ nod(t) | ∄π′. (π, π′) ∈ nst}

First-Order Logic

From a relational signature∆ and a countable setV of variables, the set FO[∆] of
first-order formulasφ over∆ is defined by the following grammar:

φ ::= r(x1, . . . , xk) | φ ∧ φ | ¬φ | ∃x. φ | x = x′

wherer ∈ ∆ is a relation of arityk, andx, x′, x1, . . . , xk ∈ V. Free variables of
a formulaφ are variables ofV that appear inφ outside the scope of quantifiers∃.
Non-free variables are called bound variables in the following. A formula without
free variables is calledclosed.

A formulaφ ∈ FO[∆] is interpreted over a relational structures on the signa-
ture∆ using an assignmentµ of the free variables ofφ intodom(s). The semantics
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of FO[∆]-formulas is defined through the satisfiability relations, µ |= φ, as de-
fined inductively below:

s, µ |= r(x1, . . . , xk) iff (µ(x1), . . . , µ(xk)) ∈ rs

s, µ |= φ ∧ φ′ iff s, µ |= φ ands, µ |= φ′

s, µ |= ¬φ iff s, µ 6|= φ
s, µ |= ∃x. φ iff there existsπ ∈ dom(s) such thats, µ[x← π] |= φ
s, µ |= x = x′ iff µ(x) = µ(x′)

whereµ[x← π] is obtained fromµ by assigningπ to x.
Several signatures can be considered for the FO logic over unranked trees. The

most commonly used is FO[ch∗, ns∗]. For convenience we always omit to mention
the relations(laba)a∈Σ, as they will always be part of the signature. This signature
allows to define the relationschandns:

ch(x, y) = ch∗(x, y) ∧ x 6= y ∧ ¬∃z. z 6= x ∧ z 6= y ∧ ch∗(x, z) ∧ ch∗(z, y)
ns(x, y) = ns∗(x, y) ∧ x 6= y ∧ ¬∃z. z 6= x ∧ z 6= y ∧ ns∗(x, z) ∧ ns∗(z, y)

On the contrary, the relationsch∗ andns∗ are not definable in FO[ch, ns] [Lib04].
In the general case, FO does not allow to express the transitive closure of binary
relations [Fag75, EF99].

The first-order logic is one of the key topics in logics and mathematics. For
tree structures, numerous results have been established, even though some prob-
lems remain open. We outline the most relevant results in thefollowing.

Thesatisfiabilityproblem of a logic is the problem of deciding whether, given
a formulaφ in the logic, there exists a model forφ, i.e. a structures and an
assignmentµ such thats, µ |= φ. While the satisfiability of FO formulas was
proved undecidable for arbitrary [Chu36, Tur37] and finite structures [Tra50], it is
decidable for trees (both ranked and unranked). This also holds for the Monadic
Second-Order logic, an extension of FO that we present below.

The model-checkingproblem is the decision problem that takes as input a
structures, an assignmentµ and a formulaφ, and outputs the truth value of
s, µ |= φ. For FO on finite structures, the model-checking is PSPACE-complete,
even on trees [Sto74, Var82].

Algebraic characterizations of FO-definable tree languages (for instance by
means of automata) are more complex than for the MSO logic. Some work on this
topic can be found in the manuscript of Bojańczyk [Boj04]. In [BS05], Benedikt
and Segoufin study the FO-definability problem, i.e. the problem of deciding
whether a tree language can be defined using an FO formula. They present such
a procedure for FO[ch, ns] over ranked trees and unordered unranked trees. The
question is still open for ordered unranked trees, the classof structures that we
consider in this manuscript.
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Monadic Second-Order Logic

The Monadic Second-Order logic (MSO) extends the First-Order logic with quan-
tification over second-order variables, i.e. unary predicates, that are usually in-
terpreted as sets. We extendV with second-order variables, ranged over byX.
MSO[∆] is the set of MSO formulas over the signature∆, as defined by the gram-
mar:

φ ::= r(x1, . . . , xk) | φ ∧ φ | ¬φ | ∃x. φ | ∃X. φ | x ∈ X

wherer ∈ ∆ has arityk, andx, x1, . . . , xk, X ∈ V.
The semantics of FO formulas can be easily extended to MSO. Itis now de-

fined on a structures under an assignmentµ, that maps each free first-order vari-
able to an element ofdom(s) and each free second-order variable to a subset of
dom(s). Then the satisfiability relation is extended in the following way:

s, µ |= ∃X. φ iff there existsD ⊆ dom(s) such thats, µ[X ← D] |= φ
s, µ |= x ∈ X iff µ(x) ∈ µ(X)

For unranked tree structures, the usual signature used for expressing MSO
formulas is∆ = {fc, ns, (laba)a∈Σ}, and we denote the corresponding logic by
MSO[fc, ns]. Unlike FO logic, MSO can express the transitive closure of binary
relations. For instance the following formulaφ is the transitive closure of the
relation defined byϕ:

φ(y1, y2) = ∀X. (y1∈X ∧ ∀(x1, x2). (x1∈X ∧ ϕ(x1, x2) ⇒ x2∈X)) ⇒ y2∈X

Hence we can definens∗ from ns, thenchby composingfc andns∗, and finallych∗

from ch. A tree languageL is saidMSO-definableif there exists an MSO[fc, ns]-
formulaφ without free variable such that

L = {t ∈ TΣ | t |= φ}

On binary trees, MSO is sometimes called theweak second order logic with
two successors(WS2S): the two successor relations are first-child and second-
child, andweakmeans that the second-order variables are interpreted asfinite
sets. WSkS is the generalization tok successors.

MSO enjoys clean algebraic characterizations, as opposed to known FO char-
acterizations [Boj04]. The first link with automata was madeby Büchi on strings
[Büc60]. In the following, we introduce tree automata and recall the equivalence
between tree automata and MSO on trees, as established by Doner [Don70], and
Thatcher and Wright [TW68]. This translation comes at a certain cost, having the
following consequences on satisfiability and model-checking problems.
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Satisfiability of MSO[fc, ns] formulas is known to be non-elementary [SM73,
Mey73, Sto74]: for every algorithm solving this problem, its complexity cannot
be bounded by a tower of exponential of fixed height [Grz53, FG02]. A way to
test the satisfiability is by translation of formulas into tree automata, which is a
non-elementary process. Then it suffices to test the emptiness of tree automata,
which can be done in PTIME, as shown in Section 2.1.3.

The model-checking of MSO[fc, ns] formulas on finite trees is a PSPACE-
complete problem, as for FO formulas [Sto74, Var82]. When the formula is fixed,
the problem becomes linear, as we can translate the formula into an automaton in
constant time (disregarding thus the non-elementary blowup), and then check that
the tree is accepted by the automaton in linear time.

2.1.3 Tree Automata

Unranked trees can be converted into ranked ones using encodings, as shown in
Section 2.1.1. We introduce tree automata for binary trees,and present the lan-
guage of unranked trees they define, when associated with a binary encoding.

Tree automata were introduced by Doner [Don65, Don70] and Thatcher and
Wright [TW65, TW68], to prove the decidability of the weak second order theory
of multiple successors (WSkS). They regained interest in the context of XML , as
shown in the surveys by Neven [Nev02b, Nev02a] and Schwentick [Sch07b].

Bottom-Up Tree Automata

Let Σr = Σ0⊎Σ2 be a ranked alphabet, where arity of symbols inΣ0 (resp.Σ2) is
0 (resp.2). A (bottom-up)tree automaton(TA) for binary trees inT bin

Σr
is a tuple

A = (stat, fin, rul) consisting of finite setsfin ⊆ statand a setrul ⊆ stat× Σ0 ∪
stat3 × Σ2, that we denote as

f(q1, q2)→ q and c→ q

whereq1, q2, q ∈ stat, f ∈ Σ2 andc ∈ Σ0. A run of A on t ∈ T bin
Σr

is a function
r: nod(t) → statsuch thatf(r(π ·1), r(π ·2)) → r(π) belongs torul for all nodes
π of t with labt(π) = f ∈ Σ2, andc → r(π) in rul for all nodesπ of t with
labt(π) = c ∈ Σ0. A run is successfulif r(ǫ) ∈ fin. The languageLbin(A)
is the set of all binary trees overΣr that permit a successful run byA. Doner
[Don70] and Thatcher and Wright [TW68] proved that a ranked tree language is
recognizable by a TA iff it can be defined in the WS2S logic. WS2S corresponds
to MSO with a monadic predicate for label tests and two binarypredicates, one
for the left child, and one for the right one.
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A (bottom-up) deterministic TA (dTA) is a TA that does not have two rules
with the same left-hand side. TA are determinizable, i.e. every TA A has an
equivalent dTAA′. The determinization procedure has an EXPTIME lower bound.

The size of a TAA is its number of states plus its number of rules:|A| =
|statA| + |rulA|. We sometimes provide complexity results in terms of numberof
states|statA|, number of rules|rulA|, or size of the alphabet|Σ|, whenever this
precision is relevant.

When associated with a binary encoding, these automata define languages of
unranked trees:

Lenc(A) = {t ∈ TΣ | f(t) ∈ Lbin(A)}

with enc∈ {fcns, curry}. Stepwise tree automata [CNT04] are exactly TAs used
with thecurry encoding.

A languageL of binary trees (resp. unranked trees) isregular if there is an
automatonA for binary trees such thatLbin(A) = L (resp.Lfcns(A) = L). Here
we choosefcnsas binary encoding, but we will see in Chapter 4 that choosing
curry defines the same class.

Top-Down Tree Automata

Numerous other automata notions were defined. In the ranked case, we mention
top-down tree automata(↓TA) [CDG+07], as we will use them later on to capture
some schema languages.↓TAs are similar to TAs, but evaluates the tree by starting
at the root and ending in leaves.

A top-down tree automaton (↓TA) for binary trees inT bin
Σr

is syntactically
equivalent to a bottom-up TA. However, the corresponding notion of runs differ,
and for clarity we choose to represent the rules as

q, f → (q1, q2) and q → c

for binary symbolsf ∈ Σ2 and symbolsc ∈ Σ0. A run of a↓TA A on a tree
t ∈ T bin

Σr
is also a functionr: nod(t) → stat, but evaluated from root to leaves:

For all nodesπ of t, r(π), f → (r(π ·1), r(π ·2)) ∈ rul if labt(π) = f ∈ Σ2,
and r(π) → c ∈ rul if labt(π) = c ∈ Σ0. A run is accepting ifr(ǫ) ∈ init.
HenceLbin(A) is the set of trees for which a run ofA exists. As usual,↓TA can
be used together with a binary encoding to define a language ofunranked trees.
Deterministic↓TAs (d↓TAs) are↓TAs having at most one right hand side per left
hand side in its rules, and a unique initial state. d↓TAs are known to be strictly
less expressive than↓TAs, while↓TAs are as expressive as TAs [CDG+07].
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Alternatives

Tree Walking Automata (TWAs) [AU71] are automata for rankedtrees, that do
not operate in parallel, nor use a stack. They run through thetree from one node
to another, according to the direction indicated by the rule. TWAs are strictly
less expressive than TAs [BC05]. They are even less expressive than FO ex-
tended with a transitive closure operator [EH07]. However their nested variant
was used to prove that this extension of FO is strictly less expressive than MSO
[BSSS06, tCS08]. TWAs cannot be determinized [BC04]. Some extensions of
TWAs with pebbles define a hierarchy of automata classes, with different expres-
siveness [EH99, EHB99, BSSS06].

For unranked trees, many models were proposed too, as surveyed in
[CDG+07, Sch07b] for instance. One of the first model designed for process-
ing XML documents are hedge automata [BKWM01]. Hedge automata operate
bottom-up, and use a regular language as acceptor for the language of children of
a node.

Chapter 4 of this manuscript introduces Streaming Tree Automata, a model
where trees are evaluated using a pre-order traversal of their structure. In that
chapter we exhibit the links with other models that use this evaluation order,
on structures that include unranked trees: Visibly Pushdown Automata [AM04],
Nested Word Automata [Alu07] and Pushdown Forest Automata [NS98].

Expressiveness and Closure Properties

Doner [Don70] and Thatcher and Wright [TW68] proved that theclass of regular
ranked tree languages is exactly the class of MSO-definable ranked tree languages.
It is folklore that this equivalence also holds in the unranked case [CDG+07].

Proposition 1. A languageL ⊆ TΣ is MSO-definable iff it is regular.

Hence closure properties of MSO-definable languages also apply to regular
languages [CDG+07].

Proposition 2. Regular languages are closed under complement, union, and in-
tersection. The corresponding operations on TAs can be donein PTIME, except
the complementation of non-deterministic automata. They all preserve determin-
ism except the projection.

We recall the complexity of some decision problems for tree automata. These
results hold for both ranked and unranked tree automata.

problem input output complexity for TAs complexity for dTAs

emptiness A L(A) = ∅? O(|A|) O(|A|)
universality A L(A) = TΣ? EXPTIME-complete PTIME

inclusion A, A′ L(A) ⊆ L(A′)? EXPTIME-complete O(|A| · |A′|)
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Note that for the inclusion problem, onlyA′ needs to be deterministic. The usual
technique is to test whetherL(A ∩ A′) = ∅, whereA′ is the complement ofA′.
This complementation might imply higher complexity, as it requires completion.
However this completion can be avoided [CGLN09].

2.2 Schemas

Schema languages are used to define sets ofvalid trees. In the context of XML ,
schemas are used to specify the possible structures of treesthat represent some set
of documents. Schema languages are often based on tree grammars [MLM01], but
here we consider them from the perspective of tree automata.In this manuscript
we study some schema languages, that will be useful in the context of a strea-
ming evaluation on XML documents. We restrict ourselves to Document Type
Definitions (DTDs) and their extended version. Other standard schema languages
are, for instance, XML Schema [FW04, MLM01, Chi00], Relax NG[CM01] and
Schematron [Jel06]. Note that both XML Schemas and Relax NG can be mode-
led by Extended DTDs. For a more complete description and study of schema
languages, we refer the reader to [MLM01, MNSB06b, Sch07b, CDG+07].

2.2.1 Document Type Definition

The Document Type Definition (DTDs) is a W3C recommendation [BPSM+08],
and the most commonly used formalism for defining schemas over XML docu-
ments. A DTD is an extended context-free grammar, i.e. a context-free grammar
where right-hand sides are regular expressions. Figure 2.2contains an example of
DTD for documents describing discotheques. The XML document in Figure 2.3
is valid w.r.t. to this DTD. Real DTDs permit the use of the #PCDATA symbol,
indicating that some textual data is expected. Here we replace it byǫ as we never
take data values into account in this manuscript.

Formally, a DTDD over the alphabetΣ is a pairD = (init, rul), whereinit ∈
Σ is a start symbol, andrul a function mapping a regular expressione = rul(a)
for every symbolsa ∈ Σ. For convenience we often writerul as a set of mappings
a→ e. Regular expressions respect the following grammar:

e ::= a | e·e | e + e | e∗ | ǫ

wherea ∈ Σ andǫ is the empty word. We writeL(e) ⊆ Σ∗ for the word lan-
guage defined by the regular expressione. Then for each lettera ∈ Σ, the DTD
inductively defines the following set of unranked trees:

La(D) = {a(t1, . . . , tk) | a1 . . . ak ∈ L(rul(a)), ti ∈ Lai
(D) for 1 ≤ i ≤ k}
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albums → (cd+ online)∗

cd → title·author·tracklist
online → title·author·tracklist·url
tracklist → track·track∗

title → #PCDATA
author → #PCDATA
track → #PCDATA
url → #PCDATA

Figure 2.2: A DTD describing discotheques.

albums

cd

title

The Black
Swan

author

Bert
Jansch

tracklist

track

The Black
Swan

track

High
Days

online

title

Midnight
Man

author

Davy
Graham

tracklist

track

No Preacher
Blues

url

http://...

Figure 2.3: A valid tree describing a discotheque.
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The language of valid trees defined by the DTDD = (init, rul) is the language
associated with its start symbol, i.e.Linit(D).

Expressiveness

DTDs are strictly less expressive than regular languages. They exactly correspond
to local tree languages[MLM01]: for every pair of valid treest andt′, if t (resp.
t′) has a nodeπ (resp. π′) labeled bya ∈ Σ, then replacing int the subtree
rooted atπ by the subtree oft′ rooted atπ′ leads to a new valid tree. In other
terms, DTDs do not take the context into account, but only thelocal label [PV00].
Hence, DTDs can be translated in PTIME to ↓TAs recognizing thefcnsencoding
of valid trees. A lot of algorithms were proposed for processing efficiently DTDs
with regards to the usual problems related to tree languages: membership (here,
named validation) and typing [BKW98, SV02], inclusion, equivalence [MNS04].

Beside this formalization, the W3C recommendation [BPSM+08] indicates
that the regular expressions have to beone-unambiguous. This means that when
parsing the word from left to right, there must be at any time point at most one
possible matching in the regular expression. In other terms, the Glushkov au-
tomaton [Glu61] obtained from the regular expression must be deterministic. We
call a DTD deterministic, if all its corresponding regular expressions are one-
unambiguous.

2.2.2 Extended Document Type Definition

Extended DTDs(EDTDs for short, and sometimes calledspecializedDTDs in the
literature) were proposed by Papakonstantinou and Vianu [PV00], by allowing
each label to have several types. Each type is associated with one label. The
regular expressions of an EDTD are not based on labels, but ontypes. This way,
EDTDs capture all regular languages.

For instance, consider the discotheque example previouslyintroduced. Sup-
pose that we want to use a url for authors instead of some #PCDATA, but only
for online albums. This would be impossible using a DTD, as this is a non-local
property. With EDTDs, we can introduce two types of authors,and thus solve the
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problem:

albums→ (cd | online)∗

cd→ title·cdAuthor·tracklist
online→ title·onlineAuthor·tracklist·url

tracklist→ track·track∗

title→#PCDATA
cdAuthor→#PCDATA

onlineAuthor→ url
track→#PCDATA

url→#PCDATA

type(albums) = albums
type(cd) = cd

type(online) = online
type(tracklist) = tracklist

type(title) = title
type(cdAuthor) = author

type(onlineAuthor) = author
type(track) = track

type(url) = url

More formally, an EDTDD overΣ is a tuple(init, rul, T, type) whereT is the set
of types,init ∈ T, rul maps each type ofT to a regular expression of types, and
typemaps each type to a symbol ofΣ. With each typeϑ ∈ T we can associate the
language:

Lϑ(D) =

{
a(t1, . . . , tk) |

a = type(ϑ),
ϑ1 . . . ϑk∈L(rul(ϑ)), ti∈Lϑi

(D) for 1 ≤ i ≤ k

}

The language recognized byD is Linit(D). In terms of expressiveness, EDTDs
exactly capture the set of regular unranked tree languages [PV00].

Introducing types leads to the problem of typing each label of a document.
Two types are saidcompetingif both are mapped to the same label (for instance,
cdAuthorandonlineAuthorin our example). Computing types increases the cost
of parsing and processing, when compared to DTDs. This is whysome restrictions
on EDTDs have been proposed.

Single-type EDTDs

The first restriction on EDTDs is to require that no regular expression can contain
two competing types. This corresponds tosingle-typeEDTDs, and also to XML

Schema according to [MLM01] (see also [MNSB06b]). Single-type EDTDs is
also the class of languages for which the ancestor string (the concatenation of
labels of the current branch) determines the type: if two valid trees have the same
ancestor strings until nodesπ andπ′, then swapping the corresponding subtrees
leads also to valid trees [MNS05].

In our discography example, the EDTD extension is single-type, as the only
competing types arecdAuthorand onlineAuthor, and they never appear in the
same rule.
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Restrained Competition EDTDs

We introduce the second restriction, namely therestrained competition. This one
is similar to the determinism of DTDs, but at the level of types: An EDTD is
restrained competitionif there does not exist two different competing typesϑ1

andϑ2 and wordsu, v1, v2 ∈ T∗ such that{u ·ϑ1 ·v1, u ·ϑ2 ·v2} ∈ L(e) for some
regular expressione in rul. Martens et al. [MNS05] prove that deciding whether
an EDTD is restrained-competition is in (a subclass of) PTIME. An EDTD is
deterministicif all its regular expressions are one-unambiguous. Clearly, every
single type EDTD is also restrained competition, and every restrained competition
EDTD is deterministic.

Restrained competition EDTDs are strictly more expressivethan deterministic
DTDs, but strictly less than regular languages [MLM01]. In fact, we get the same
characterization as for single-type EDTDs, except that we replace the string of
ancestors by the string of ancestors of the leftmost siblingof the node, plus its left
siblings. Hence deterministic restrained competition EDTDs can be translated
in linear time to d↓TAs on the first-child next-sibling encoding of trees (see for
instance Lemma 33 of [CGLN09]). Deterministic restrained competition EDTDs
can be efficiently used to type documents in streaming order.In Chapter 4, we
present a translation of restrained-competition EDTDs to automata that evaluate
documents in a streaming fashion.

2.3 Queries

In the context of databases, queries are used to select data to be processed later on.
In this manuscript, we focus on queries that only take the structure of the database
into account, not the data values.

We definen-ary queries over relational structures, as functions selecting n-
tuples of elements of the domain. The special cases of queries over words and
trees are introduced. Logics and automata, as presented previously, are then used
for definingn-ary queries. Finally, the W3C standards XPath 1.0 and XPath2.0
are introduced, and their navigational cores are formalized. We also mention other
formalisms for querying in trees, and expose the state of theart for queries eva-
luation.

2.3.1 Queries over Relational Structures

We first introduce queries over relational structures. In the context of XML ,
schemas are used to define the set of valid trees. In this manuscript, we study
the evaluation of queries that only select tuples of nodes invalid trees of some
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given schema. To generalize this idea, queries are always given with an associ-
ated schema, that we name thedomainof the query. This has to be distinguished
with the set of trees on which the query selects some nodes, and thus the schema
given by a separate object.

Definition

Let ∆ be a relational signature andn ∈ N0. A schema over∆ is a subsetS ⊆ S∆.
An n-ary query with schemaS is a functionQ with domaindom(Q) = S, which
maps all structuress ∈ S to a set of tuples of elements, and only selects on valid
structures:

Q(s) ⊆ dom(s)n and Q(s) 6= ∅ ⇒ s∈ dom(Q)

A Boolean queryQ is a query of arity0, where the empty tuple() is selected for
some trees. Amonadic queryis a query of arity1. We sometimes use queries
without schema, meaning that we consider queries with the universal schemaS =
S∆.

A query language(also calledquery classin this manuscript)Q of arity n
over ∆ consists of a setQ, whose expressionse ∈ Q have a size|e| ∈ N and
a queryQe of arity n, so thatQe(s) ⊆ dom(s)n for all s ∈ S∆. Note that the
expressione defines both the schemadom(Qe) ⊆ S∆ and the object for selecting
nodesQe(s) ⊆ dom(s)n. Hence expressions are usually a pair of objects. In
this manuscript we will study query classes for which expressions will be either
XPath expressions or tree automata for selecting nodes, with automata for the
schema languages.

The query evaluation problem takes as inputs an expressione and a structure
s, and outputsQe(s). It is parameterized by a query class. The complexity of
this problem when the query and structure are both variable,is calledcombined
complexity. When the size of the expression is fixed, we name itdata complexity.

Below, we will define queries in words, where the schema is a class of rela-
tional structures of words indom(Q) ⊆ Σ∗, and queries in unranked trees where
the schema is a class of relational structures of unranked treesdom(Q) ⊆ TΣ. The
domains can be defined by automata or XML schemas.

FO and MSO-definable Queries

Queries can be easily defined from FO and MSO formulas, by using their free
variables. This can be done modulo an ordering on these free variables, and by
requiring that MSO formulas only have first-order free variables.

Let φ, φ′ ∈ FO[∆] (resp. φ, φ′ ∈ MSO[∆]) whereφ′ is closed, and let
x1, . . . , xn be the free variables ofφ, all of them being first-order. Then we define
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then-ary queryQφ(x1,...,xn),φ′ by:

Qφ(x1,...,xn),φ′(s) = {(π1, . . . , πn) | s, [x1 ← π1, . . . , xn ← πn] |= φ}

for all s ∈ S∆ such thats |= φ′, anddom(Qφ(x1,...,xn),φ′) = {s | s |= φ′}. Sim-
ilarly, we defineQφ(x1,...,xn) for the case without schema, by lifting the condition
s |= φ′ anddom(Qφ(x1,...,xn),φ′) = S∆.

We say that ann-ary queryQ is FO-definable(resp. MSO-definable) over
∆-structures if there exist FO[∆] formulas (resp. MSO[∆] formulas)φ with free
variablesx1, . . . , xn andφ′ (a closed formula) such thatQ = Qφ(x1,...,xn),φ′ . Hence
FO[∆] and MSO[∆] are two query classes, whose expressions are formulas with
ordered free variables for the selecting part, with closed formulas for the schema
part.

Canonical Language

We can equivalently define a query as a set of annotated structures. This will be
used to define queries by structures acceptors, like automata. Boolean queriesQ
with dom(Q) = S∆ can be identified with structuresLQ = {s | () ∈ Q(s)}. But
how can we define languages of structures forn-ary queries?

We fix an ordered set of distinct variablesVn = {x1, . . . , xn} and define
extended relation signatures∆n = ∆ ∪ Vn such that every variable becomes a
unary relation symbol. For every structures ∈ S∆ and tupleτ = (π1, . . . , πn) ∈
dom(s)n we define anannotated structure s∗ τ ∈ S∆n as follows:

dom(s∗ τ) = dom(s)
rs∗τ = rs for all r ∈ ∆
xs∗τ

i = {πi} for all 1 ≤ i ≤ n

We call a structurẽs ∈ S∆n canonicalif xs̃ is a singleton for allx ∈ Vn. Clearly,
all annotated structuress∗ τ are canonical. Conversely, every canonical structure
s̃ is equal to some annotated structures ∗ τ . We therefore define the canonical
languageLQ of ann-ary queryQ as the following set of annotated structures:

LQ = {s∗ τ | τ ∈ Q(s)}

The canonical language of a Boolean query indeed coincides with the schema
LQ = {s | () ∈ Q(s)}. Note however, that the domain of a query is only partially
specified by the canonical language. In particular there mayexist valid structures
s ∈ dom(Q) on which nothing is selected, i.e.,Q(s) = ∅, so we cannot identify
dom(Q) with the structures on which something is selected. In orderto fix this
problem, we identify aQ with the pair(LQ, dom(Q)) of its canonical language
and its domain.
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Logical Operations on Queries

We define logical operations forn-ary queriesQ, Q′ with the same schemaS:
conjunctionQ ∧ Q′, disjunctionQ ∨ Q′, negation¬Q, existential quantification
∃xi. Q and cylindrificationciQ for all 1 ≤ i ≤ n. All these queries have the same
domainS and satisfy for all structuress∈ S:

conjunction Q ∧Q′(s) = Q(s) ∩Q′(s)

negation ¬Q(s) =

{
dom(s)n −Q(s) if s∈ S
∅ otherwise

quantification ∃xi. Q(s) =
{(π1, . . . , πi−1, πi+1, . . . , πn) | ∃πi. (π1, . . . , πn) ∈ Q(s)}

cylindrification ciQ(s) = {(π1, . . . , πi, π, πi+1, . . . , πn) | (π1, . . . , πn) ∈ Q(s)}

Note that∃xi. Q is a query of arityn−1 andciQ arity n+1, while all others have
arity n.

We next relate logical operations on queries to set operations on canonical
languages. This correspondence is the reason why this annotation method is said
canonical. We define for allr ∈ ∆n a projection operatorΠr: S∆ → S∆n−{r}

which removes symbolr from the relational structures. We get the following
equalities:

intersection LQ∧Q′ = LQ ∩ LQ′

complement L¬Q = {s∗ τ | s∈ dom(Q), τ ∈ dom(s)n} − LQ

projection L∃x. Q = {Πx(s ∗ τ) | s ∗ τ ∈ LQ}
cylindrification LciQ =

⋃
s∈LQ

Π−1
xi

(s)

Queries over Words

An n-ary queryQ in words has some schemadom(Q) ⊆ Σ∗ and selectsn-tuples
of positions in words indom(Q). Suppose that we fixdom(Q) = Σ∗. We can then
define a monadic query by the following FO-formula with a single free variable
x1:

φ(x1) = ∃x2. (x1 ≤ x2 ∧ laba(x2))

For every wordw in the schema, the queryQφ(x1) defined by this formula selects
all positions before somea-labeled positions.

Given a wordw = a1 ·. . .·am ∈ Σ∗ and a tupleτ = (π1, . . . , πn) ∈ dom(w)n,
we can identify the annotated structurew ∗ τ with the following annotated word
overΣ× 2Vn:

(a1, {xi | πi = 1})·. . .·(am, {xi | πi = m})
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albums

online

title author tracklist

(a) A treet ∈ TΣ.

(albums, ∅)

(online, {x1})

(title, ∅) (author, {x2}) (tracklist, ∅)

(b) The annotated treet ∗ (1, 1·2).

Figure 2.4: Example of tree annotation.

For instance, we identify the annotated structureb·a·c ∗ (2) with the word(b, ∅)·
(a, {x1}), (c, ∅). Hence the canonical language of ann-ary queryQ in words over
∆ thus can be identified with a languageLQ of annotated words with alphabet
Σ× 2Vn.

Queries over Unranked Trees

QueriesQ in unranked trees ofTΣ are queries with some domaindom(Q) ⊆ TΣ.
They select tuples of nodesQ(t) ⊆ nod(t)n for all treest ∈ dom(Q). For instance,
considering the schema in Figure 2.2 describing discotheques, we can define a
query that selects all pairs of nodes(π, π′) whereπ′ is a descendant ofπ labeled
by authorusing the following FO-formula with free variablesx1 andx2:

φ(x1, x2) = (ch∗(x1, x2) ∧ labauthor(x2))

By analogy with the case of words, the canonical language of an n-ary queryQ
in unranked trees overΣ can be identified with a language of unranked trees over
the alphabetΣ× 2Vn whereVn = {x1, . . . , xn}. We illustrate this in Figure 2.4.

2.3.2 Queries by Automata

Let n ∈ N0 be some arity. If a notion of automaton exists for a class of an-
notated relational structuresS∆n , then we can use automata for defining queries
over structures ofS∆ by means of the canonical languages.

If A is a tree automaton over the alphabetΣ× 2Vn recognizing only canonical
structures andB a word (resp. tree) automaton overΣ, then we define the query
QA,B by:

LQA,B
= L(A) and dom(QA,B) = L(B)
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Note that in the definition of queries, we required that queries only select on valid
trees. This means that we only consider automataA, B such thatΠΣ(L(A)) ⊆
L(B), whereΠΣ is the projection along theΣ component.

We call a queryQ over unranked treesregular if there exist two tree automata
A andB such thatQ = QA,B. From these definitions, we can extend the corre-
spondence between regular and MSO-definable tree languagesof Proposition 1 to
queries. It suffices to use Proposition 1 on the canonical language ofQ.

Proposition 3. A query over unranked trees is regular iff it is MSO-definable.

More complete results about the links between logics and automata for trees
are presented in [CDG+07, Nev02b, Nev02a] and for more general structures in
[Tho97].

Related Work on Queries by Automata

Different approaches were proposed to use automata to definequeries on trees.
An alternative way of using automata for defining queries is to use the anno-

tations of trees by runs of the automaton, where some tuples of states permit to
define tuples of selected nodes. This can also be seen as putting the variablesVn

in the states instead of the alphabet. LetSelect⊆ statn be the set ofn-tuples
of selecting states of a TAA. We can define a query selectingn-tuples of nodes
mapped byA to n-tuples of selecting states on some run:

Q∃(t) =

{
(π1, . . . , πn) |

there is a successful runr of A on t
where(r(π1), . . . , r(πn)) ∈ Select

}

These queries, namedexistential run-based queries, are studied by Niehren et al.
in [NPTT05], and proved to capture MSO-definable queries too. Replacing the
existential quantification on runs by a universal one does not change their expres-
siveness. This is no longer the case when considering the class of deterministic
automata. The authors also consider unambiguous automata,i.e., automata having
at most one accepting run per tree. A property of these automata is that ann-ary
query can be defined using an unambiguous automaton iff it canbe written as a
Boolean combination of monadic MSO formulas. As a consequence, monadic
queries defined by unambiguous automata are exactly monadicMSO-definable
queries. But forn > 1, queries defined by unambiguous automata are strictly less
expressive than MSO-definable queries.

In a prior work [FGK03], Frick et al. proposed a monadic variant of this
approach, usingselecting tree automata, and operating on DAGs that are a com-
pact representation of trees. Without compact representation, the query evalua-
tion problem for a selecting tree automatonA on a treet is in timeO(|A|3 · |t|).
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When trees are compressed, the query evaluation problem is in time2O(|A|) · |tc|,
wheretc is a compact representation oft. Hosoya and Pierce [HP03] also de-
fined run-basedn-ary queries throughpattern automata, on ranked trees. Neven
and Schwentick introducedquery automatain [NS02]. They start from two-way
automata [Mor94] and add selecting states. In terms of expressiveness,query
automatacapture MSO-definable queries. In the unranked case, this isthe case
only when adding stay transitions. Emptiness, inclusion and equivalence of query
automata are all EXPTIME-complete problems.

Other automata models were proposed for processing XML documents in the
context of streaming. This led to the introduction of tree automata that run through
trees in pre-order traversal of their nodes. We survey such automata in Chapter 4
of this manuscript.

2.3.3 XPath

With the introduction of XML as a standard for semi-structured data [BPSM+08],
the W3C defined the XPath query language [CD99]. XPath is usedto select sets of
nodes in XML documents, based on some properties of paths. XPath is a basis for
numerous other standards: XML Schema [FW04] for defining schemas, XPointer
[DMJ01] for identifying fragments of XML documents, and XQuery [BCF+07]
and XSLT [Cla99] for document transformations.

Two versions of XPath have been released so far. XPath 1.0 defines queries by
path expressions, with other features like data value tests, arithmetic operations,
aggregators, etc. XPath 2.0 extends XPath 1.0 with the objective of having a first-
order complete navigational core, that is missing in XPath 1.0. We present both
versions in the following. Known results about expressiveness, evaluation and
static analysis of XPath 1.0 are surveyed by Benedikt and Koch in [BK08].

XPath 1.0

XPath 1.0 is a navigational language based on a set of axis related to tree struc-
tures. XPath 1.0 expressions define monadic queries using a simple syntax, with-
out variables. Consider for instance the expression://cd[author]/title. It con-
siders allcd nodes (// is the descendant, i.e.,ch∗ axis), tests whether they have an
authorchild node ([. . . ] delimits test expressions), and if this is the case, outputs
their title children nodes (/ is the composition of steps, and the default axis isch).

CoreXPath 1.0 As mentioned earlier, XPath 1.0 comes with features that are
not navigational. In particular, data value manipulationssuch as arithmetic ope-
rations make XPath 1.0 undecidable. For this reason, Gottlob, Koch and Pichler
define CoreXPath 1.0 [GKP05], a formal characterization of the navigational core



44 Chapter 2 – Schemas and Query Languages

axis d ::= self | foll | prec
| ch | ch∗ | ch+ | ch−1 | (ch−1)∗ | (ch−1)+

| ns | ns∗ | ns+ | ns−1 | (ns−1)∗ | (ns−1)+

label tests ℓ ::= a | ∗ (wherea ∈ Σ)
steps S ::= d::ℓ
paths P ::= S | SF | S/P
filters F ::= [P] | [not(F)] | [F1 and F2]
rooted path R ::= /P

Figure 2.5: Syntax of CoreXPath 1.0.

of XPath 1.0. We recall the syntax of CoreXPath 1.0 in Figure 2.5. A Core-
XPath 1.0 expression is either a path expressionP or a rooted path expressionR.
CoreXPath 1.0 allowsnsandns−1 axis, as opposed to the XPath standard.

We progressively define the semantics of each element, when interpreted on a
treet ∈ TΣ. Label tests and filters are interpreted as unary relations,that select
the nodes of the tree satisfying these tests:J.Kt

filter ⊆ nod(t). Axis, steps and paths
are interpreted as binary relations, relating pairs of nodes of t: J.Kt

path⊆ nod(t)×
nod(t).

The axisself relates each node with itself:

JselfKt
path = {(π, π) | π ∈ nod(t)}

Axis ch andnskeep their usual semantics from the definition oft as a relational
structure:

JchKt
path = cht JnsKt

path = nst

We define the transitive and inverse variants of axis using the corresponding ope-
rations on binary relations:

Jd∗Kt
path = (JdKt

path)
∗ Jd+Kt

path = (JdKt
path)

+ Jd−1Kt
path = (JdKt

path)
−1

The following (resp. preceding) axis relates each nodes with all nodes greater
(resp. smaller) than itself in post-order (resp. pre-order) traversal:

JfollKt
path = J(ch−1)∗Kt

path◦ Jns+Kt
path◦ Jch∗Kt

path

JprecKt
path = J(ch−1)∗Kt

path◦ J(ns−1)+Kt
path◦ Jch∗Kt

path

Label tests have a monadic interpretation, like filters:JℓKt
filter ⊆ nod(t). The

symbol “*” is a wildcard:

JaKt
filter = labt

a J∗Kt
filter = nod(t)
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A step is a move in the tree along a path, where the target node verifies the label
test. This is the basic element of a path, and is interpreted as a binary relation:

Jd::ℓKt
path = JdKt

path ∩ (nod(t)× JℓKt
filter)

Finally, path expressions are defined by a series of steps, with the possible addition
of filters:

JSFKt
path = JSKt

path ∩ (nod(t)× JFKt
filter)

JS/PKt
path = JSKt

path◦ JPKt
path

Path filters are interpreted existentially. Boolean operations are then interpreted
as usual:

J[P]Kt
filter = {π | ∃π′. (π, π′) ∈ JPKt

path}
J[not(F)]Kt

filter = nod(t)− JFKt
filter

J[F1 and F2]K
t
filter = JF1K

t
filter ∩ JF2K

t
filter

Rooted paths are interpreted as the set of nodes accessible when starting at the
root node, and following the path. Thus it is a monadic relation: J.Kt

rpath⊆ nod(t):

J/PKt
rpath = {π | (ǫ, π) ∈ JPKt

path}

If a CoreXPath 1.0 expression is a path expressionP, then it naturally defines the
binary queryQP(t) = JPKt

path. If it is a rooted path expressionR, it corresponds
to the monadic queryQR(t) = JRKt

rpath. The set of binary queries defined by path
expressions of CoreXPath 1.0 exactly captures the two variables fragment of FO
over unranked trees [MdR05]. This fragment is strictly lessexpressive than FO.
In [Mar05b, Mar05a], Marx shows that any extension of CoreXPath 1.0 closed
under path complementation is FO-expressive.

Static Analysis CoreXPath 1.0 is now a well-studied logic. Static problems are
analyzed in [NS03, Woo03, MS04, GLS07]. Main results are presented in surveys
[GKP03, BK08]. Satisfiability of CoreXPath 1.0 is known to bedecidable, even
in the presence of DTDs [BFG08]. Containment (also called inclusion) of queries
is the problem that takes as input two expressionse ande′, and outputs the truth
value ofQe(t) ⊆ Qe′(t) for all t ∈ TΣ. We writeQe ⊆ Qe′ if this property holds.
For binary queries of CoreXPath 1.0, containment is EXPTIME-complete. In this
manuscript we will sometimes use reductions to the universality of queries, i.e.
given an expressione defining a query, decide whether∀t ∈ TΣ, ∀τ ∈ nod(t)n,
τ ∈ Qe(t).

Proposition 4. Deciding the universality of Boolean CoreXPath 1.0 filters and
monadic CoreXPath 1.0 expressions restricted to axes ch andch∗ is coNP-hard.
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Proof. As negation and disjunctions are allowed in CoreXPath 1.0 filters, contain-
ment and universality are equivalent, becauseTΣ ⊆ LQ[not(e1) or e2]

iff LQe1
⊆ LQe2

.
Moreover, containment of CoreXPath 1.0 filters was proved coNP-hard by Miklau
and Suciu [MS04], even for positive filters restricted to axes ch andch∗. In the
presence of negation, universality of monadic queries is harder than universality
of Boolean queries of the same class.

For the dynamic approach, we present known query evaluationalgorithms in
Section 2.3.5.

Forward XPath Forward XPath [Olt07b] is the restriction of CoreXPath 1.0
where allowed axes are only forward axes, i.e. axesd such that if(π, π′) ∈ JdKt

path,
thenπ′ follows π in document order. Such axis are:

d ::= self | foll | ch | ch∗ | ch+ | ns | ns∗ | ns+

This set of axis is often used for streaming XML : matches of Forward XPath
expressions can be built progressively along the stream, without guessing un-
read information. This restriction on axes does not affect expressiveness: every
CoreXPath 1.0 expression can be rewritten into an equivalent Forward XPath ex-
pression [OMFB02]. However this translation can produce exponentially bigger
expressions.

CoreXPath 1.0 Extensions Some extensions of CoreXPath 1.0, inspired by
temporal logics, were proposed. For example, Marx definesConditional XPath
[Mar04a, Mar05a] from CoreXPath 1.0 by adding path expressions of the form
(S F)+ whereS = d::ℓ is a step andF a filter expression. This expression is in-
terpreted as the transitive closure:J(S F)+Kt

path = (JS FKt
path)

+, i.e., we can move
according toS, and at each step we must check thatF is true. This is inspired by
theUntil operator of temporal logics: we can do jumps alongSuntil some posi-
tion, and on the wayF is true at each step. Conditional XPath is FO-complete,
and thus strictly more expressive than CoreXPath 1.0. As we will see later on, this
does not increase the evaluation time.

Beyond Conditional XPath,Regular XPath [Mar04b] allows transitive clo-
sure of any path expression, not only steps. In [tC06], ten Cate defines Regular
XPath≈ as the extension of Regular XPath by the equality operator≈. Given two
path expressionsP1 andP2, P1 ≈ P2 is true at nodeπ of t if there is a nodeπ′

that can be reached fromπ by bothP1 andP2. It is still unknown whether this
operator is needed. In terms of expressiveness, Regular XPath≈ (when considered
as a binary query language) is a strict extension of Conditional XPath, as it cap-
tures FO∗, the FO logic over trees allowing a transitive closure operator on formu-
las having exactly two free variables. However, Regular XPath does not capture
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MSO-definable queries. Indeed, ten Cate and Segoufin recently proved that FO∗

is strictly included in MSO for trees [tCS08] (they proved a more general result,
as their transitive closure operator allows for more than two free variables). The
evaluation of a Regular XPath expressione on a treet can be performed in time
O(|t| · |e|) [Mar04b].

CoreXPath 1.0 with (attribute) data value comparisons has also been studied.
Its satisfiability is undecidable in the general case [GF05], but becomes decidable
with restriction on allowed axes [BDM+06, BFG08, Fig09]. In particular, ho-
rizontal axes introduce additional difficulties [GF05, BFG08]. In [Par09], Parys
proves that CoreXPath 1.0 expressionse with data value comparisons can be eval-
uated in timeO(|t| · |e|3). Adding aggregators leads to an exponential blow-up in
the query size.

Tree Patterns

Tree patterns are similar to CoreXPath 1.0 queries using only descending axis
ch and ch∗, and no negation and disjunction. They definen-ary queries using
variablesVn = {x1, . . . , xn}. Tree patterns are expressions of the form/F where
F is defined by the following grammar:

F ::= and(F1, F2) | ch(F) | ch∗(F) | ℓ(F) | x | true

whereℓ ∈ Σ, x ∈ Vn, d ∈ {ch, ch∗}, and the operator/ appears in root position
only. The semanticJFKt,µ ⊆ nod(t) is defined modulo an assignmentµ : Vn →
nod(t) and the following equations:

Jand(F1, F2)Kt,µ = JF1Kt,µ ∩ JF2Kt,µ

Jch(F)Kt,µ = {π | ∃π′ ∈ JFKt,µ. cht(π, π′)}
Jch∗(F)Kt,µ = {π | ∃π′ ∈ JFKt,µ. (ch∗)t(π, π′)}

Jℓ(F)Kt,µ = {π | ℓ = labt(π)}
JxKt,µ = {µ(x)}

JtrueKt,µ = {nod(t)}
J/FKt,µ = {ǫ} ∩ JFKt,µ

The query defined by a tree pattern/F is given by:

Q(t) = {(µ(x1), . . . , µ(xn)) | ǫ ∈ J/FKt,µ}

Sometimes [BKS02], the query is composed by the matchings ofall nodes of the
expression, i.e., for each step a new variable is present. Miklau and Suciu [MS04]
show that inclusion of tree patterns is coNP-complete. In [BFK05], Benedikt
et al. study the sublanguages of XPath obtained by removing filters, downward
recursion, and/or upward axis, while never allowing horizontal axis. They relate
these fragments to tree patterns, in terms of expressiveness.
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axis d ::= self | foll | prec
| ch | ch∗ | ch+ | ch−1 | (ch−1)∗ | (ch−1)+

| ns | ns∗ | ns+ | ns−1 | (ns−1)∗ | (ns−1)+

label tests ℓ ::= a | ∗ (wherea ∈ Σ)
steps S ::= d::ℓ
node test N ::= . | x (wherex ∈ V)
paths P ::= S | SF | S/P

| P1 union P2 | P1 intersect P2 | P1 except P2
| N | for x in P1 return P2

filters F ::= [P] | [not(F)] | [F1 and F2] | [N1 is N2]
rooted path R ::= /P

Figure 2.6: Syntax of CoreXPath 2.0.

XPath 2.0

XPath 2.0 [KRS+07] has been defined from XPath 1.0 by adding some features,
in order to get a more expressive query language. XPath 2.0 permits the use of
variablesx (from an infinite setV of variables). These are interpreted as path
expressions that move from any node to the node assigned tox. A test is added to
compare nodes assigned to variables:[x is .] tests whether the current node is the
one assigned tox, whereas[x is y] is true ifx andy are both assigned to the current
node. An iterator is also added, through for-loops of the form for x in P1 returnP2.
This is interpreted as a path expression. Two path expressions operators are also
added: the relative complementP1 except P2, the unionP1 union P2 and the
intersectionP1 intersect P2.

CoreXPath 2.0 is a formalization of the navigational core ofXPath 2.0 pro-
posed by ten Cate and Marx [tCM07]. Its syntax is detailed in Figure 2.6.

We define only the semantics of the new elements of CoreXPath 2.0, as el-
ements coming from CoreXPath 1.0 keep the same semantics. More precisely,
the semantics of a CoreXPath 2.0 expressione on a treet is done modulo an as-
signmentµ of the free variables ofe to nodes oft. CoreXPath 1.0 expressions
only propagate this assignment, whereas CoreXPath 2.0 expressions use it in the
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following way:

J.Kt,µ
path = JselfKt,µ

path

JxKt,µ
path = nod(t)× {µ(x)}

JP1 union P2K
t,µ
path = JP1K

t,µ
path∪ JP2K

t,µ
path

JP1 intersect P2K
t,µ
path = JP1K

t,µ
path∩ JP2K

t,µ
path

JP1 except P2K
t,µ
path = JP1K

t,µ
path− JP2K

t,µ
path

Jfor x in P1 return P2K
t,µ
path = {(π1, π2) | ∃π3 ∈ nod(t).

(π1, π3) ∈ JP1K
t,µ
path and(π1, π2) ∈ JP2K

t,µ[x←π3]
path }

J[. is x]Kt,µ
filter = {µ(x)}

J[. is .]Kt,µ
filter = nod(t)

J[x is y]Kt,µ
filter = J. is xKt,µ

filter ∩ J. is yKt,µ
filter

This time, CoreXPath 2.0 path expressionsP (and similarly for rooted path ex-
pressionsR) definen-ary queries by the assignments that satisfy the expression:

QP(t) = {(π1, . . . , πn) | JPK
t,[x1←π1,...,xn←πn]
path 6= ∅}

The problem of query inclusion for various fragments of CoreXPath 2.0 is
studied in [tCL07]. It ranges from EXPTIME (for the extension of CoreXPath 1.0
with path equality) and 2-EXPTIME (for the extension with path intersection), to
non-elementary (for the extension with path complementation or for-loops). The
equivalence problem is shown decidable in [tCM07]. Satisfiability of XPath 2.0
was studied in [Hid03] before the axomatization of XPath 2.0by CoreXPath 2.0.
In terms of expressiveness, CoreXPath 2.0 is FO-complete. Some FO-expressive
fragments of CoreXPath 2.0 enjoying efficient evaluation algorithms are presented
in [FNTT07]. We present them in Section 2.3.5.

2.3.4 Other Approaches for Querying in Trees

In this section we briefly survey some other formalisms proposed for querying
finite ordered trees.

Conjunctive Queries

A conjunctive queryQ(x1, . . . , xn) over a signature∆ = {r1, . . . , rk} is a FO[∆]
formula only using conjunctions, and existential quantifiers at the outermost lev-
els, as for instance:

φ(x1) = ∃y1. ∃y2. r1(x1, y1) ∧ r2(y2)

Conjunctive queries enjoy a clean relation with the Project/Join algebra, and thus
are also studied in the context of relational databases [AHV95].
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Conjunctive queries over trees are studied by Gottlob et al.in [GKS06]. The
authors investigate the tractability of the query evaluation problem, depending on
which XPath axis are used in the signature∆. A frontier is established for arbi-
trary finite structures, and then applied to XPath axis. Depending on the chosen set
of XPath axis, the query evaluation is either in PTIME or NP-hard. In [BFLS06],
Bry et al. investigate algorithms for conjunctiven-ary queries over graphs, that
are also efficient on trees.

Other restrictions over conjunctive queries are studied inthe context of re-
lational databases. For instanceacyclic conjunctive queriesare introduced by
Yannakakis [Yan81]. These are conjunctive queries which corresponding hyper-
graph representation is acyclic. Yannakakis proposed an algorithm that evaluates
these queriesQ in time O(|D| · |φ| · |φ(D)|) for a databaseD. Some algorithms
for evaluating acyclic conjunctive queries incrementallyare proposed by Bagan et
al. [BDG07]. Tree patterns(as presented in Section 2.3.3) are a special case of
acyclic conjunctive queries on tree structures.

Monadic Datalog

Datalog Datalog is a generalization of conjunctive queries, introducing recur-
sion. A Datalog program is a set of Datalog rules, each of thembeing composed
by a head (an atom) and a body (a conjunction of atoms, i.e. a conjunctive query).
For instance the conjunctive query mentioned in the preceding paragraph corre-
sponds to the rule:

φ(x1) :- r1(x1, y1), r2(y2).

Datalog comes with the least fixed point semantics, as explained below for ground
Datalog. For precise definitions and results, see for instance [AHV95, CGT90].

Monadic Datalog In [GK04], Gottlob and Koch proposeMonadic Datalogas
a monadic query language over unranked trees. A Monadic Datalog program
is a Datalog program where all head predicates are unary, andone of these is
considered as the selecting predicate, thus defining a monadic query. Gottlob and
Koch consider the signatureΛ = {fc, ns, root, leaf, lc} ∪ {laba | a ∈ Σ}, where
root, leaf and lc are monadic predicates respectively selecting the root node, the
leaves and the last children (i.e., children nodes without next-sibling). Over this
signature, Monadic Datalog programs exactly capture monadic queries that are
MSO[fc, ns]-definable. The query evaluation of a Monadic Datalog program P on
a treet is in linear combined complexity:O(|t| · |P |).

Ground Datalog In this manuscript we sometimes useground Datalogas a
simple way to define new relations. A ground Datalog program is a Datalog pro-
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gram without variables. We recall here the definition, and the key result about the
linear resolution of such programs.

Let Λ be a ranked signature containing constantsc ∈ Λ and predicatesp ∈ Λ,
where all predicates have an arityar(p) ∈ N0. We call a termp(c1, . . . , car(p))
a literal, and denote the set of literals overΛ by lit(Λ). A clauseis a pair in
lit(Λ) × lit(Λ)k (with k ∈ N0) that we writeL :- L1, . . . , Lk. as usual. Aground
Datalog programP is a finite set of clauses overΛ. Its size|P | is the total number
of symbols appearing in all its clauses.

The least fixed point lfp(P ) of P is the least set of literals overΛ that satisfies
that for all clausesL :- L1, . . . , Lk. of P , if L1, . . . , Lk ∈ lfp(P ) thenL ∈ lfp(P ).
As no negation is allowed, every ground Datalog programP has a unique least
fixed point, and this one is finite. For ground Datalog, this least fixed point can be
efficiently computed [CGT89, DEGV01, GGV02].

Proposition 5. For every signatureΛ and every ground Datalog programP over
Λ, the least fixed point ofP can be computed in timeO(|P |).

Modal Logics

Modal logics are logics using modality operators. Among these logics, temporal
logics are a popular way to describe properties of dynamic systems, and check
them by verification techniques. They can be used to express that a property will
be satisfied in some system continuation, in all continuations, or to check that a
property is true until some time point where another property is true. In trees,
properties are expressed on paths of the tree. We briefly mention some works on
temporal logics over ordered trees (see [Lib06] for a more complete overview).

Linear Temporal Logic(LTL) is known to capture FO on words, by Kamp’s
Theorem [Kam68]. In [Mar05a], Marx adapts the definition of LTL to trees by
using two variants for each modality operator: one for horizontal paths (alongns),
one for vertical paths (alongch). The resulting logic is equivalent to FO[ch∗, ns∗],
in terms of expressiveness, for Boolean and unary queries. Benedikt and Jeffrey
[BJ07] consider theHennessy-Milner Logic(HML) [HM85], obtained from the
previous logic by lifting theuntil modality. This way, they capture CoreXPath 1.0.

Computation Tree Logic(CTL) and CTL∗ add branching to the LTL approach,
by distinguishing node formulas and path formulas (in the same way as XPath uses
filters and path expressions). CTL∗ was proved equivalent to FO for binary trees
for a long time [HT87], and recently Barceló and Libkin proved that CTL∗past is
equivalent to FO over unranked trees [BL05]. “past” means here thatch−1 and
ns−1 are also used in modality operators.

Propositional Dynamic Logic(PDL) has also been adapted to trees by
Afanasiev et al. [ABD+05]. PDLtree, the resulting logic, is based on Boolean
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combinations (and existential quantification) of path formulas where branching
and transitive closures are allowed. Its expressiveness isexactly the same as Reg-
ular XPath [Mar04b].

The modalµ-calculusadds least and greatest fixed points to modal logics.
Barceló and Libkin studied this logic in the context of unranked trees [BL05]. For
Boolean and monadic queries, theµ-calculus based on axisfc andnsis equivalent
to MSO. Some logics inspired from theµ-calculus were later defined [GLS07] to
improve the satisfiability checking.

Other Models of Queries

We briefly mention other formalisms for querying in trees.
Neumann and Seidl define monadic queries byforest grammars[NS98], that

were extended ton-ary queries by Berlea and Seidl [BS04]. In order to evaluate
these queries, Neumann and Seidl introducepushdown forest automata. These au-
tomata traverse the input tree in pre-order, and thus permita streaming evaluation.
For this reason, we present this work in more details in Chapter 3.

Regular path queriesare queries on graphs, defined by regular expressions on
basic steps (like XPath steps) [ABS00]. In trees, this corresponds tocaterpillar
expressions, as defined by Brüggemann-Klein and Wood [BKW00]. These are
strictly less expressive than MSO, and incomparable with FO. Goris and Marx
definelooping caterpillars[GM05] by adding a loop predicate, that only keeps
loops of an expression. Looping caterpillar are able to capture binary FO queries
on unranked trees.

Regular expressions can also be used at a higher level, to define regular ex-
pression patterns. In [BCF03], Benzaken et al. proposeCDuce, a typed program-
ming language for XML . This language uses such regular expression patterns to
select hedge elements. These patterns are based on tree variables, hedge algebra
operators, and regular expressions operators. Here, a syntactic restriction avoids
subtree equality tests. These are allowed in the more general Tree Query Logic
[CG04, FTT07], a spatial logic for ordered trees.

Some work has also be done for combining existing query formalisms. In
particular, Boolean and monadic queries can be used to definen-ary queries, as
explained for instance in [Sch00, NS00, FNTT06, ABL07].

2.3.5 Evaluation Algorithms

In this section we survey the complexity of outputting all the answers of a query,
for the different classes related to our framework. We survey results for algorithms
without streaming constraints (see also the survey by Koch [Koc06]). The related
work on streaming is in Chapter 1.



Section 2.3 – Queries 53

Query Evaluation and Enumeration

We present two frameworks for computing answers of a query.

1. Queryevaluationis the more general framework, that measures the overall
time required to output the set of all answers.

2. Queryenumeration[JPY88, GS03a, Bag06, Cou09] distinguishes the pre-
computation and the delay between consecutive answers. Hence the first
answer can usually be output more quickly than by computing the whole
answer set.

These frameworks do not take space complexity into account,as the tree is
entirely stored in main memory. More precisely, in the enumeration framework,
space and time are bounded by the same function during the incremental com-
putation of answers, but no restriction is made during the preprocessing phase
[Bag09]. We provide the definitions in the sequel. LetQ be a query class, each
expressione ∈ Q being equipped with a size|e| ∈ N0 and defining a queryQe.

We say thatQ can beevaluatedin time f , if there exists an algorithm that
takes as input any expressione ∈ Q and any treet ∈ TΣ, and outputs the setQe(t)
in time less thanO(f(|t|, |e|, |Qe(t)|)), where|Qe(t)| is the number of elements
in Qe(t). Note that query evaluation is harder than satisfiability.

The classQ can beenumeratedwith preprocessingf and delayd if there
exists an algorithm that takes as input any expressione ∈ Q and treet ∈ TΣ, has
a preprocessing phase of time less thanO(f(|t|, |e|)), and then enumerates all the
answersQe(t) with a delay at mostd(|t|, |e|) between two consecutive answers.
There is no restriction on the output order of answers. Outputting an answer twice
is forbidden.

Query enumeration is an intermediate model between the standard evaluation
and the streaming evaluation. It is a special case of query evaluation algorithms,
while streaming query answering algorithms can be considered as special cases of
enumeration algorithms, with the additional constraint onthe traversal order, and
with a focus on space consumption.

A recent work by Bagan et al. introduces two other frameworks[BDGO08].
The first one is the computation of a random solution, whereasthe second one is
the computation of thej-th solution. Another problem is to maintain the set of
answers while the XML document is updated. This is usually referred as theview
maintenance problem[SI84, GMS93, BGMM09].

Automata, FO and MSO defined Queries

The evaluation of FO formulas over relational structures isPSPACE-complete.
Once the query is fixed, it becomes a PTIME problem [Var95].
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In [DO06], Durand and Olive study the enumeration complexity for queries
defined by first-order formulas on quasi-unary structures. Quasi-unary structures
are structuress over a signature∆ containing unary relations symbols, plus one
functionf : dom(s)→ dom(s). In particular labeled unordered unranked trees can
be encoded into quasi-unary structures. They prove that enumeration over these
structures can be done with a precomputation linear in the size of the structure and
the query, and a delay linear in the size of the query (independent of the structure
size).

Satisfiability, and thus evaluation, of MSO formulas is non-elementary. Once
more, this is not the case when the formula is fixed. In [Bag06], Bagan provides
an enumeration algorithm that progressively outputs answers of any query defined
by an MSO formula over trees (in fact, over the more general class of graphs of
bounded tree-width). This algorithm avoids duplicate answers, has a precom-
putation phase linear in|t| and a delay linear in the arityn, when the formula
φ(x1, . . . , xn) is fixed.

For queries defined by automata, Bagan also proposes in [Bag06] an algorithm
with a precomputation time inO(|A|3 · |t|) whereA is an automaton recognizing
the canonical language of the query (with universal schema). Its delay between
answers is inO(n), wheren is the arity.

XPath

The first XPath query engines were known to use exponential time, even for
CoreXPath 1.0 queries. In [GKP03, GKP05], Gottlob et al. propose an algo-
rithm that evaluates the full XPath 1.0 language in PTIME combined complexity
(i.e., polynomial in both expression|e| and XML document size|t|). Moreover,
this algorithm runs in linear combined complexityO(|t| · |e|) for CoreXPath 1.0
queries. The algorithm is simply based on a bottom-up semantic of XPath. By
other means, Ramanan proves the same result on the positive fragment of Core-
XPath 1.0 [Ram03]. Marx showed that the evaluation of Conditional XPath and
Regular XPath also enjoys PTIME combined complexity [Mar04b]. In terms of
data complexity Gottlob et al. show in [GKPS05] that the query evaluation prob-
lem (and validation) is not PTIME-hard, but belongs to lower (parallelizable) com-
plexity classes. Marian and Siméon [MS03] propose a projection technique, such
that useless parts of the XML document (w.r.t. to a given query) are not loaded in
main memory.

CoreXPath 2.0 is known to capture FO-definablen-ary queries modulo lin-
ear time transformations. As a consequence, the evaluationis PSPACE-complete
for CoreXPath 2.0, and no PTIME algorithm exists unless PTIME=PSPACE. In
[FNTT07], Filiot et al. exhibit a fragment of CoreXPath 2.0,that enjoys a PTIME

evaluation, while still being FO-complete. This fragment imposes the following
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restrictions: no quantifiers, no variable sharing in path composition, and no vari-
ables below complementation. To the best of our knowledge, there are no results
for the enumeration of XPath queries.

Tree Patterns

Many algorithms were proposed for evaluating tree patterns, a subclass of Core-
XPath 1.0. The first algorithms evaluating tree patterns (also calledtwig patterns)
computed all pairs of nodes satisfying each step of the query, and then joined
them to output the answers. This approach computes a lot of useless intermedi-
ate results. A first improvement, namedTwigStack, was proposed by Bruno et
al. [BKS02]. It is based on a technique namedholistic twig join, that checks for
matchings along a root-to-leaf path, instead of steps. However, the algorithm still
computes too much intermediate results (more than the size of the answer set) in
presence of child axis.

Some improvements were subsequently proposed. Jiang et al.[JWLY03]
eliminate more intermediate matchings, while Chen [Che06]improves their merg-
ing. Chen et al. proposeTwig2Stack[CLT+06]. Their algorithm deals withGen-
eralized Tree Patterns, i.e., tree patterns that allowfor-loopsà la XPath 2.0. Their
algorithm runs in timeO(|t| · |e|) for usual tree patternse. Some further improve-
ments were presented in [ZXM07, JLH+07]. We refer the reader to [GC07b] for
a more complete survey on tree patterns.

Validation

In [Seg03], Segoufin proves that the validation problem ranges from LOGSPACE-
complete to LOGCFL-complete, depending on the schema language and represen-
tation (this includes DTDs and EDTDs). Martens et al. [MNSB06b] study the
more specific case of XML Schema, but mostly in terms of expressiveness.
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3.1 Introduction

Query answering in streaming mode is a challenging issue. Streaming evaluation
aims for low memory consumption. However, most of query languages, like the
W3C language XPath, are not designed for streaming evaluation. A measure for
the difficult of a query for streaming processing is itsconcurrency. The concur-
rency of a query is the maximal number of simultaneous candidate solutions, that
can be selected or not, depending on the end of stream. Concurrency was intro-
duced by Bar-Yossef et al., and proved to be a lower memory bound for fragments
of XPath [BYFJ05]. Unfortunately, XPath expressions may have unbounded con-
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currency, such as for instance/ch∗::∗.

In this chapter, we present our definition of query answeringover XML

streams. We start with the correspondence between XML documents and their
serialization, i.e. the linearization of trees. We proposea computational model
namedStreaming Random Access Machines(SRAMs) in order to formally define
the intended inputs and outputs of streaming query answering algorithms, and
the corresponding complexity measure. We define the complexity of SRAMs in
terms of space and time, in order to study the relationship between efficient buffer-
ing and computational cost. In particular, we prove in Chapter 5 some hardness
results for time complexity, when only alive candidates arebuffered.

We propose a measure ofstreamabilityfor query classes. Roughly speaking,
for m ∈ N0 ∪ {∞}, m-streamable queries can be processed in polynomial space
and time when evaluated on trees inducing concurrency less thanm. This defi-
nition generates a hierarchy of query classes. We investigate the characteristics
of this hierarchy, and show which properties must be verifiedby a query class in
order to be∞-streamable, the queries that are most suitable to streaming in our
hierarchy.

Finally, we prove hardness results for testing bounded concurrency for a
query class. We also show the consequence of being streamable, and apply
these results on XPath. For Forward XPath, we get negative results: deciding
bounded concurrency is coNP-hard, and Forward XPath is notm-streamable, for
all m ∈ N∪{∞}.1 This motivates further investigations on streamable fragments
of Forward XPath.

Other computational models were already proposed for stream processing of
XML documents. In [SV02], Segoufin and Vianu study the validation of XML

documents in a streaming mode, with bounded memory. In this case, requir-
ing bounded memory is equivalent to the existence of a finite state automaton
(without stack) recognizing the language of valid trees. More elaborated ma-
chines for stream processing were proposed by Grohe, Koch and Schweikardt
[GKS07, Sch07a]. Their machine model uses external memory to measure buffer-
ing requirements of algorithms, and allows to read the inputstream several times.
They infer tight bounds for the complexity of evaluating CoreXPath 1.0 queries
over XML streams, in the Boolean and monadic cases. When restricted to a single
scan of the input stream, they prove that the depth of the corresponding tree is
a lower memory bound, for monadic CoreXPath 1.0 expressions. Benedikt and
Jeffrey [BJ07] proposed a simpler model based on Turing machines. They define
tractable query classes for this model. We show in this chapter that two of these
are∞-streamable according to our model.

1We proved stronger hardness results in follow-up work.
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3.2 Streaming

We start this section with a description of XML streams and the definition of our
computational model for evaluating queries in XML streams. We formally intro-
duce the notion of concurrency, that we will use later on to define our streamability
measure.

3.2.1 Linearizations of Trees

A streaming algorithm that answers a queryQ for some class of structuresS reads
a linearization of a structures∈ S from the input stream, and computes a collec-
tion of answersQ(s) incrementally. For words, linearization is straightforward, as
words are already linear data structures.

a

b c

Unranked trees need linearization in order to be put
onto a stream. For every setS, let

Ŝ = {op, cl} × S

Σ̂ is the set of tagged opening and closing parenthesis. An opening parenthesis
(op, a) corresponds to the XML tag<a> and a closing parenthesis(cl, a) to the
XML tag</a>. For every treet ∈ TΣ we define thevisible wordvw(t) ∈ Σ̂ by
linearization as follows:

vw(a(t1, . . . , tn)) = (op, a)·vw(t1)·. . .·vw(tn)·(cl, a)

This word is well-nested in that every opening parenthesis is properly closed. The
letters of the visible word vw(t) can be identified with elements of the following
set:

eve(t) = {start} ∪ n̂od(t)

We illustrate the definitions at the treet = a(b, c). The XML stream fort, its
corresponding visible words vw(t) and its set of events are as follows:

XML stream <a> <b> </b> <c> </c> </a>
vw(t) = (op, a)· (op, b)· (cl, b)·(op, c)·(cl, c)·(cl, a)
eve(t) ={start,(op, ǫ),(op, 1),(cl, 1),(op, 2),(cl, 2),(cl, ǫ)}

Let � be the total order oneve(t) corresponding to the total order of
pos(vw(t)) and pr(e) ∈ eve(t) be the immediate predecessor of an event

η ∈ n̂od(t). For instance,pr((op, 2)) = (cl, 1) in our example. We write

domη(t) = {π ∈ nod(t) | (op, π) � η}
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for the set of all nodes visited until eventη.
We extend the definitions to hedges, in a straightforward manner. A hedgeh ∈

HΣ has the following set of events:eve(h) = start∪ n̂od(h). Forh = (t1, . . . , tk),
the order� is a total order oneve(h), wherestart is the least event, the events ofti
(1 ≤ i ≤ k) are ordered according to the previous definition for trees,and events
of ti are all inferior to those oftj , if i < j.

3.2.2 Example of Stream Processing

Before defining our computational model, we provide an example for streaming
query evaluation.

a

a

a b

Consider the monadic queryQ0 that selects all nodes la-
beled bya and having ab child. This corresponds to the XPath
expression:/ch∗::a[ch::b]. We suppose here that the domain
of Q0 is TΣ. Let t0 = a(a(a, b)) as illustrated on the right. In
the following table, we present the run of a streaming algorithm computingQ(t0)
incrementally.

input <a> <a> <a> </a> <b> </b> </a> </a>
ǫ ǫ ǫ ǫ

buffer 1 1 1
1·1

output {ǫ, 1}

When ana-node is read, it is buffered as we have to wait for ab-child in order to
decide for its selection, or to wait until closing time in case of rejection. Here, only
nodesǫ and1 are selected, and we can observe that they are output exactlywhen
ab child is opened, and thus at the earliest time point. Similarly, the candidate1·1
is rejected exactly when closing this node, and it could not be rejected before.

For n-ary queries, the output is a set of tuples of nodes. Hence, the buffered
candidates are also tuples, that can be partial, as some components might not
be known yet. We use the symbol• to mark these components. Consider for
instance the binary queryQ1 without schema defined by the XPath 2.0 expression
/ch∗::a[x1][ns::b[x2]]. Q1 selects all pairs(πa, πb), whereπa is labeled bya, πb

is labeled byb, andπb is the next sibling ofπa, i.e. ns(πa, πb). The run of an
algorithm computingQ1 on the treet0 is for instance:

input <a> <a> <a> </a> <b> </b> </a> </a>
(ǫ, •) (ǫ, •) (ǫ, •) (ǫ, •) (ǫ, •) (ǫ, •) (ǫ, •) (ǫ, •)

buffer (1, •) (1, •) (1, •) (1, •) (1, •) (1, •) (1, •)
(1·1, •) (1·1, •) (1·1, 1·2) (1·1, 1·2)

output {(1·1, 1·2)}
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Here the algorithm chooses to output the answers(πa, πb) at the parent node of
πb. This provides a time-efficient algorithm, as we are sure at this time point to
have enough information to decide for selection. However this implies to buffer
candidates longer than required. For instance here the answer pair (1 · 1, 1 · 2)
may be output when opening node1 ·2. We study the time cost for achieving
such earliest selection (and rejection) in Chapter 5. Note also that adding schema
information can improve buffering. For instance ifQ1 had a schema where only
a-nodes having twoa-ancestors can have ab-sibling, then the two first candidates
could have been rejected immediately.

3.2.3 Concurrency

We define the notion ofconcurrency, that intuitively captures the number of can-
didates to be buffered simultaneously, as proposed by Bar-Yossef et al. [BYFJ05].
This is a key notion for lower bounds in memory consumption. We will use it in
the definition of our computational model, and our streamability measure.

Prefix Tree For every eventη ∈ n̂od(t), let the prefix treet�η be the fragment
of t which contains all nodes oft opened before (and including)η: nod(t�η) =

domη(t), and satisfyinglabt�η

(π) = labt(π) for all π ∈ nod(t�η). Note that
t�(cl,π) contains all proper descendants ofπ in t, while t�(op,π) does not. For two
treest, t′ ∈ TΣ andη ∈ eve(t) we define the predicateequalη(t, t

′), that holds ift
andt′ have the same prefix untilη:

equalη(t, t
′) iff η ∈ eve(t) ∩ eve(t′) andt�η = t′�η

Partial Candidates As already mentioned in the previous example, partial can-
didatesτ are elements ofdom•η(t)

n where:

dom•η(t) = domη(t) ⊎ {•}

The symbol• denotes components where no selection occurred so far. Comple-
tionscompl(τ, t, η) are complete candidates obtained by replacing•-components
of τ by nodes oft opened afterη:

compl((π1, . . . , πn), t, η) =




(π′1, . . . , π
′
n) ∈ nod(t)n |

for all 1 ≤ i ≤ n,
πi 6= π′i ⇒
πi = • ∧ η ≺ (op, π′i)






We call a candidatecompleteif it does not contain•-components.
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Alive Candidates and Concurrency Let Q be ann-ary query. We call a can-
didateτ alive at eventη of a treet, if the information int�η is not sufficient for
selection or rejection ofτ , i.e., if there exists a continuation oft afterη that selects
(a completion of) this candidate, and another one that does not:

(τ, η) ∈ aliveQ(t)⇔{
∃t′ ∈ dom(Q). equalη(t, t

′)∧ ∃τ ′ ∈ compl(τ, t′, η). τ ′ ∈ Q(t′)
∧ ∃t′′ ∈ dom(Q).equalη(t, t

′′)∧ ∃τ ′′ ∈ compl(τ, t′′, η).τ ′′ 6∈ Q(t′′)

Definition 1 (Concurrency). The maximal number of alive candidates at an event
is calledconcurrency:

concurQ(t) = max
η∈eve(t)

|{τ | (τ, η) ∈ aliveQ(t)}|

We say that the concurrency of a queryQ is k-bounded (withk ∈ N0) if
concurQ(s) ≤ k for all structuress∈ dom(Q). It is bounded if it isk-bounded for
somek ∈ N0. Note that queries with unbounded concurrency cannot be processed
in streaming manner with bounded memory.

Compared with the original definition by Bar-Yossef et al. (Definition 3 in
[BYFJ05]), our notion of concurrency is generalized ton-ary queries, and arbi-
trary query languages. A consequence is that we deal with partial tuples. We
choose to include the empty tuple{•}n among possible alive candidates. The
reason is that this simplifies the definitions and complexityanalysis, as our algo-
rithms treats the empty tuple as other candidates. By the way, this only introduces
a difference of1 between both definitions, and keeps the bounds unchanged. We
note that in this original definition [BYFJ05] resides some ambiguity: It seems
that nodes cannot be alive before being closed. From the use of concurrency in
the same paper, it appears that the definition of Bar-Yossef et al. has to be inter-
preted as formally presented above.

For XPath expressions, the concurrency differs from the number of matches.
For each alive candidate, there can be numerous matches, i.e. embeddings of
the expression into the tree, verifying the axis and label tests of the query. In
particular, the concurrency is always lower than the numberof matches, as for
each match corresponds a unique alive candidate.

3.2.4 Evaluation Model

To formalize our notion of streaming computation of queries, and to have a clean
notion of complexity, we define Streaming Random Access Machines (SRAMs),
as illustrated in Figure 3.1. These are inspired by RAM machines described by
Grandjean et al. [Gra96, GO04].



Section 3.2 – Streaming 63

The purpose of SRAMs is to characterize a class of algorithmsfor streaming
query answering, that we consider as realistic. The lower complexity bounds we
will present, apply only to such realistic algorithms. In particular, our model
avoids compaction tricks for the storage of nodes, by providing node identifiers
only at opening time, and by disabling the access to node identifiers by the finite
state control. We detail these features after the followingdefinition. Note that
compaction techniques are not used by existing streaming algorithms for general
purpose query languages. We assume that the size of every node is inO(1), inde-
pendently of the length of its address. This is realistic, since we assume trees of
bounded depth anyway.

An SRAM is a deterministic machine composed by:

• an input tape I, on which the head cannot write nor move to the left,

• an infinite set ofregisters{i}i∈N0 . Each register can contain a node. We
write R(i) for the content of the registeri.

• aworking memory W, with read/write and constant-time random access

• anoutput tape O, on which the head cannot move to the left nor read

• a finite state control, made of a finite set of instructions. The allowed in-
structions are:

all usual instructions of random access machines for reading and writing
on the working memoryW.

read the event below the head of the input tapeI is read. Such an event
contains three items: an actionα ∈ {op, cl}, a lettera ∈ Σ, and, ifα =
op, a node identifierπ. Note that node identifiers may not correspond
to our encoding onN∗, and thus the program cannot compute such
identifiers.

– if α = op, then the node identifierπ is stored in a free registeri,
i.e. R(i)← π. The data forα, a andi are written onW.

– if α = cl, then the data forα anda are written onW.

output if the head ofW points to(i1, . . . , in), then(R(i1), . . . , R(in)) is
written onto the output tapeO, and the head ofO moves to the next
free slot.

free(i) to free the registeri, wherei is read fromW.

halt to stop the machine.
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input tapeI
. . .

output tapeO
. . .

working memoryW
. . .

registers
i1
i2

ik

R(i1)
R(i2)

R(ik)

. . .

. . .

finite
state

control

Figure 3.1: Streaming Random Access Machine.

To define the intended inputs, we present a variant of visiblewords with node
identifiers: vwid(t) is obtained from vw(t) by adding the nodes in opening events
(we use the symbol♯ for closing events). This corresponds to the stream generated
by the parser, and hence the real input of streaming algorithms. For clarity, we
suppose that the parser uses our encoding of nodes as a sequence of integers, i.e.
nod(t). For instance for the treet = a(b, c) we get:

XML stream <a> <b> </b> <c> </c> </a>
vwid(t) = (op, a, ǫ)·(op, b, 1)· (cl, b, ♯)·(op, c, 2)· (cl, c, ♯)· (cl, a, ♯)

Registers are used to capture the number of candidate nodes to be buffered simul-
taneously. Providing node identifiers only at opening time avoids some hacks in
the representation of candidates. LetQ be a monadic query, and assume thatQ
can determine at closing time whether a node is selected. Then an SRAMM
computingQ can be built, such thatM uses only one register (for the current
node), and a stack on the working tapeW to store candidates, using an internal
representation (not node identifiers). Hence the number of registers used byM
do not capture the number of simultaneous candidates. Moreover, the internal
representation of candidates onW allows compression techniques, that we want
to avoid in our model.

Definition 2 (Computation). An SRAMM computesa queryQ if for all trees
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t ∈ dom(Q), if vwid(t) is on the input tape, thenM outputs the setQ(t), in any
order but without duplicates, and halts.

Node identifiers cannot be written to the working memoryW, so they cannot
be computed by the finite state control. Even if they could, there would be no way
to output them, as only the registers contents can be output.If node identifiers
were stored on the working memory, they could be computed with less memory,
by tricky methods. Consider for instance the query on words that selects all po-
sitions of a wordw before ab-position. The concurrency of this query is very
high (and even unbounded), as all positions are alive candidate until ab-position
is read. However, the query can be computed with memoryO(log(|w|)), by just
maintaining a counter for the current position, and if it is ab, iterate from the
last b-position (to be also stored) to the current one. In our model, this trick is
impossible, as (identifiers of) alive candidates are storedin registers.

The working memoryW considers a candidate(π1, . . . , πn) as the tuple of
registers addresses(i1, . . . , in), with (π1, . . . , πn) = (R(i1), . . . , R(in)). Note that
the set of candidate tuples might be stored in a more compact way (as investigated
for instance by Meuss et al. in [MSB01]), but this is usually not the case for
algorithms in the literature. This is why we choose to store only nodes in registers,
instead of tuples of nodes.

For queries defined by XPath expressions, the implementation by an SRAM
does not exactly follow the XPath semantics defined by the W3C. First, the W3C
XPath semantics requires that the subtrees rooted at selected nodes should be
output, not only node identifiers. Second, the selected (tuples of) nodes should
be output in document order. We think however that both requirements are too
strong to be integrated inside the machine. The query evaluation algorithms can
be used in some transformation language (like XQuery or XSLT), where the ma-
terialization of subtrees is not needed at the selection level, and identifiers suffice.
Similarly, the document order is not useful in all transformations, and known to
be incompatible with efficient stream processing (and for instance with earliest
query answering). We choose to keep a model based on the minimal input/out-
put requirements of streaming evaluation of queries. This strengthens our lower
bounds and hardness results.

Definition 3 (Complexity). An SRAMM computes the queryQ with per-event
time Time(M, t) and per-event space Space(M, t) ifM computesQ, and during
the computation ofQ(t):

1. at all time points,M uses some registers among registersR(i) with i ≤
Space(M, t), and at most Space(M, t) slots in the working memory, and

2. the number of executed instructions between reading two successive events
on the input tape is bounded by Time(M, t). This includes the time be-
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fore reading the first event, and the time between reading thelast one and
halting.

Most of the algorithms will have to pass information from opening to closing
events. This is usually done through a stack, that has to be stored in the working
memory. Hence for these algorithms, the space requirementswill be at least the
depth of the input tree.

These definitions are done modulo an encoding for the input and output data.
The cost of instructions is supposed uniform. The size of each register (i.e. the
number of bits that can be stored in a register) is exactly thesize of node identifiers
in the input stream. As node identifiers cannot be computed bythe finite state con-
trol, the number of registers that are simultaneously required by monadic queries
is at least the concurrency of the query. This gives us a lowerbound for memory
consumption (Proposition 6 below), thanks to the separation between registers
containing node identifiers, and the working memory. A working hypothesis here
is that the concurrency is a real lower bound for rich monadicquery classes, as
proved by Bar-Yossef et al. for an XPath fragment [BYFJ05].

Proposition 6. Evaluating a monadic queryQ on a treet requires per-event space
Ω(concurQ(t)).

For n-ary queries, this is not true, as candidate tuples (containing registers
identifiers, not nodes) are stored in the working memory. Butthe registers need
to memorize which nodes are used in the alive candidates. We call this quantity
concur nodQ(t):

concur nodQ(t) = max
η∈eve(t)

|{π | τ is alive atη andπ is in τ}|

Proposition 7. Evaluating a queryQ on a tree t requires per-event space
Ω(concur nodQ(t)).

Proof. LetM be an SRAM computing a queryQ. Let t ∈ TΣ, and consider
a candidate tupleτ 6= {•}n that is alive at eventη ∈ eve(t). Let I�η be the
content of the input tapeI beforeη. Let π be a node appearing inτ , and suppose
for contradiction thatπ is not stored in registers after treatingη (i.e., just before
reading the event followingη). As τ is alive atη, there is a continuationC of the
input stream that selectsτ . Consider the run ofM on the concatenation ofI�η

andC. AsM is deterministic, the machine is in the same state atη, soπ is not in
the registers.M will have to outputτ before halting, andτ could not be output
beforeη because it is alive, and thus there is another continuation of the stream
for which τ is not selected. Henceτ will have to be output (strictly) afterη. The
only way to outputτ is to use the “output” instruction. But this requires to retrieve
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π from the registers. The identifier ofπ is read only once on the input stream, at
event(op, π). As it is not in registers afterη, and(op, π) � η (asπ is in τ , alive
atη),M cannot outputτ , which contradicts its definition.

This also proves Proposition 6, because for monadic queries
concur nodQ(t) = concurQ(t).

3.3 Streamable Query Classes

3.3.1 Streamability

We now formally define our notion of streamability, and studysome properties of
this new notion.

Definition 4 (Streamability). Letm ∈ N0∪{∞}. A query classQ ism-streamable
with polynomialsp0, p1, p2 if one can compute SRAMsM(Qe) in time p0(|e|)
for all e ∈ Q such thatM(Qe) computesQe and if concurQe(t) ≤ m then
Space(M(Qe), t) ≤ p1(|e|) and Time(M(Qe), t) ≤ p2(|e|). A query classQ
is m-streamableif it is m-streamable for somep0, p1, p2, and streamableif it is
∞-streamable.

We recall thatSpace(M(Q), t) andTime(M(Q), t) are per-event complexity
measures. The definition directly provides a hierarchy of streamability for query
classes.

Lemma 1. Let m ∈ N0. If the query classQ is (m+1)-streamable then it is also
m-streamable, with the same polynomials. Furthermore, ifQ is streamable, then
it is m-streamable for allm ∈ N0, with the same polynomials.

Hence we get a hierarchy of query classes:

0-streamable⊇ 1-streamable⊇ · · · ⊇ m-streamable⊇ · · · ⊇ streamable

However, for classes of monadic queries, streamability mayfail even thoughm-
streamability holds for allm ∈ N0. Consider for instance the queryQe defined
by the XPath expressione = /self::a[ch::b]/ch::c on trees ofT{a,b,c,d}. This query
selects allc-nodes that are children of ana-labeled root, and have a sibling labeled
by b. It is easy to see thatQe has unbounded concurrency. For instance, on
the treea(c, . . . , c, b), all c-nodes are alive before opening theb-node. LetQ =
{Qe}. This query class ism-streamable for allm ∈ N0: For a givenm, one
can build in PTIME an SRAMM(Qe) that uses polynomial per-event space and
time, on trees for which the concurrency is less thanm. However,Q is not∞-
streamable. This class is in Star-Free XPath, so by the lowerbound of Bar-Yossef
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et al. [BYFJ05], any algorithm computingQe requires spaceΩ(concurQe(t)) on
non-recursivet, i.e., whent does not have a branch with duplicated labels. Hence
an SRAM computingQe cannot use space bounded by some polynomialp1, asQe

has unbounded concurrency. In order to relate streamability andm-streamability,
we have to add a condition on the concurrency of the query class.

Definition 5. A query classQ has polynomially bounded concurrencyif there
exists a polynomialp such that concurQe(t) ≤ p(|e|) for all e ∈ Q and trees
t ∈ dom(Q).

Proposition 8 gives a sufficient condition for being streamable: the query class
has to bem-streamable for allm with the same polynomials, and must have poly-
nomially bounded concurrency.

Proposition 8. If the concurrency of a query classQ is polynomially bounded and
there exist polynomialsp0, p1, p2 such that for allm ∈ N0,Q ism-streamable with
p0, p1, p2, thenQ is∞-streamable.

Proof. Let p, p0, p1, p2 be polynomials such thatQ is m-streamable withp0, p1, p2

for all m ∈ N0, and the concurrency ofQ is bounded byp. Let t ∈ TΣ ande ∈ Q.
For everym ∈ N, letMm(Qe) be an SRAM computingQe and verifyingm-
streamability. We show thatMp(|e|)(Qe) verifies∞-streaming with polynomials
p′0, p1, p2 wherep′0(X) = p0(X)+X+|p|. To generate the SRAMMp(|e|)(Qe) in
time p0(|e|)+|e|+|p|, we first compute the value ofp(|e|) in time |e| + |p|, and
then generateMp(|e|)(Qe) in time p0(|e|). A single step ofMp(|e|)(Qe) on trees
t ∈ TΣ costsSpace(Mp(|e|)(Qe), t) ≤ p1(|e|) andTime(Mp(|e|)(Qe), t) ≤ p2(|e|),
as bounded concurrency yieldsconcurQe(t) ≤ p(|e|).

For the converse, we have already seen in Lemma 1 that∞-streamability im-
pliesm-streamability for allm ∈ N0, with the same polynomials. We can also
prove a weaker form of bounded concurrency.

Proposition 9. If a query classQ is∞-streamable, there exists a polynomialp
such that for alle ∈ Q and all t ∈ dom(Qe), concurnodQe(t) ≤ p(|e|).

Proof. Suppose thatQ is∞-streamable, and letp1 be the corresponding polyno-
mial bounding space. By Proposition 7 we get, for alle ∈ Q andt ∈ dom(Qe),
and all for SRAMsM(Qe) computingQe:

concur nodQe(t) ≤ Space(M(Qe), t) ≤ p1(|e|)

so thatconcur nod is polynomially bounded byp1.
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Benedikt and Jeffrey [BJ07] exhibited two∞-streamable query classes. Both
are fragments of backwardXuntil, an extension of CoreXPath 1.0 adding anuntil
operator, but restricted to backward and downward axes. Theauthors prove the
∞-streamability of two query classes:

1. Boolean queries (i.e. filters) defined by backwardXuntil formulas, over non-
recursive trees, and

2. monadic queries defined by strict backwardXuntil formulas, over non-
recursive trees.Strictmeans that downward axes are not allowed. It implies
that concurrency is at most one, as all conditions to be satisfied for selecting
a new candidate depend on the prefix until this candidate (no look-ahead is
needed).

3.3.2 Boolean and Monadic Queries

For Boolean and monadic queries, some properties of the concurrency give
stronger results. Boolean queries have a concurrency bounded by1, as the only
possible alive candidate is the empty tuple() (which can be seen as either the
potentially selected tuple, or the empty partial candidate{•}0).

Proposition 10. A Boolean query classQ is streamable if and only ifQ is 1-
streamable.

Proof. Suppose thatQ is 1-streamable. Then it is0-streamable by Lemma 1. As
the concurrency of Boolean queries is bounded by1, Q is m-streamable for all
m ∈ N0, with the same polynomials, and by Proposition 8, it is∞-streamable.
The converse is immediate by Lemma 1.

For monadic queries, the concurrency may be unbounded in thegeneral case.
However, both forms of concurrency we introduced coincide,and we get the fol-
lowing equivalence.

Corollary 1. A monadic query classQ is streamable if and only if the concurrency
ofQ is polynomially bounded and there exist polynomialsp0, p1, p2 such that for
all m ∈ N0,Q is m-streamable withp0, p1, p2.

Proof. Immediate by Proposition 8, Lemma 1, Proposition 9, and the fact that
concur nodQ(t) = concurQ(t) for monadic queries.
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3.4 Hardness of Streamability

We present hardness results for streamability of small classes of queries. Of course
these hardness results also hold for larger query classes. We start by studying the
complexity of deciding whether a query class has bounded concurrency (resp.
polynomially bounded concurrency). We then investigate the streamability of
queries defined by XPath expressions. In this section we onlyconsider queries
Q with universal schemadom(Q) = TΣ, and the results also hold for queries with
other schemas.

3.4.1 Hardness of Bounded Concurrency

We start by defining, from any set of monadic queries, anotherset of monadic
queries that requires high buffering. The idea is to start from a monadic query
Q, and define the queryall(Q) that selects all the children of the root, ifQ has a
match when evaluated from the last child of the root.

We call a monadic queryQ descendingif node selection byQ is indepen-
dent of the node’s upper context, i.e. ifπ ∈ Q(t) is equivalent toǫ ∈ Q(t.π),
wheret.π is the subtree oft rooted atπ. For all monadic queriesQ we define
another monadic queryall(Q) whose semantics is given by the following XPath
expression:

all(Q) =df /ch::∗[ns∗::∗[Q][not(ns::∗)]]

It selects all children of the root if the last child of the root belongs to the lan-
guage of the Boolean query[Q], which isL[Q] = {t ∈ TΣ | Q(t) 6= ∅}. LetQ
be a language of monadic queries. We say that the operatorall can be defined
polynomially inQ if there exists a polynomialp such that for alle ∈ Q there
exists an expressione′ ∈ Q of size at mostp(|e|) such thatQe′ = all(Qe). We
say that a nodeπ is safely selected (resp. safely rejected) by a query at event η if
π is selected (resp. not selected) in all valid continuationsof the stream afterη.

Lemma 2. For all descending monadic queriesQ, treest matchinga(t1, . . . , tj),
and1 ≤ k ≤ j:

1. nodek is safely selected by all(Q) at (op, j) in t iff L[Q] = TΣ.

2. nodek is safely rejected by all(Q) at (op, j) in t iff L [Q] = ∅.

3. nodek is alive for all(Q) at (op, j) in t iff ∅ 6= L[Q] 6= TΣ.

Proof. (⇐) We first assume thatL[Q] = TΣ and show thatk is safely selected at
event(op, j) in treest matchinga(t1, . . . , tj) and1 ≤ k ≤ j. Let t′ ∈ TΣ be a
continuation oft beyond(op, j), i.e. equal(op,j)(t, t

′) holds. Letj′ be the last child
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of the root oft′, so thatj ≤ j′. Thenk ∈ all(Q)(t′) iff j′ ∈ J[Q]Kt′

filter. The latter
is equivalent toǫ ∈ J[Q]Kt′.j′

filter sinceQ is descending. This holds sinceL[Q] = TΣ.
Thus event(op, j) is sufficient for selection ofk in all continuations oft.

We now assume thatL[Q] = ∅. The last child of the root cannot satisfy[Q] in
any continuation, so no node can ever be selected.

We suppose that∅ 6= L[Q] 6= TΣ and show thatk is alive at(op, j) in trees
t ∈ TΣ with j ∈ nod(t) and1 ≤ k ≤ j. Let t′ ∈ TΣ be a continuation oft beyond
(op, j) andj′ be the last child oft′. Now k is selected if and only ift′.j′ ∈ L[Q].
Since∅ 6= L[Q] 6= TΣ this is the case in somet′ but not in others, so thatk is alive
at (op, j).

(⇒) Since these cases are exhaustive, all inverse implications follow.

As a consequence, the concurrency of the query defined byall(Q) is bounded
only if L[Q] is empty or universal, as fort = a(t1, . . . , tj) we get:

concurall(Q)(t) =






0 if L[Q] = ∅
1 if L[Q] = TΣ
j + 1 otherwise

The concurrency is1 whenL[Q] = TΣ, because in this case the empty candidate
(•) is always alive. It is never alive on an empty query, i.e., wheneverL[Q] = ∅.

Proposition 11. LetQ be a class of descending monadic queries that can define
operators “all” and “not” in polynomial time, then the two decision problems
below are more difficult modulo aPTIME reduction than universality LQ[e]

= TΣ
for all e ∈ Q.

Polynomially bounded concurrency
PARAMETER: Q
INPUT: e ∈ Q
OUTPUT: decide whether there exists a polynomialp such that:

∀t ∈ TΣ. concurQe(t) < p(|e|)

Bounded concurrency
PARAMETER: Q
INPUT: e ∈ Q
OUTPUT: truth value of:∃k ∈ N0. ∀t ∈ TΣ. concurQe(t) < k

Proof. Since all queries defined bye ∈ Q are descending, the existence of a
polynomialp such that∀t. concurall(Qe)(t) ≤ p(|e|) is equivalent toLQ[e]

= TΣ ∨
L[not(e)] = TΣ by Lemma 2; equally for∃k∈N0. ∀t∈TΣ. concurall(Qe)(t) < k.

Proposition 11 gives a first result on the hardness of deciding bounded concur-
rency of queries. For deterministic automata, testing the universality is in PTIME,
and we will see in Chapter 7 that deciding bounded concurrency is also in PTIME.
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3.4.2 Hardness of Streamability

We now characterize the streamability of query classesQ. The following theorem
states that being1-streamable (while verifying two other properties) implies that
the universality of descending Boolean queries defined fromQ is in PTIME. This
can be used to prove that some query class is not1-streamable, and hence not
m-streamable for anym ∈ N ∪ {∞}.

Theorem 1. LetQ be a class of definitions of monadic queries such that there
exist polynomialsr, s such that:

1. query all(Qe) is definable by an expression inQ of sizer(|e|) in time
O(r(|e|)).

2. membershipa ∈ LQ[e]
can be tested in times(|e|) for all a ∈ Σ.

If such a classQ is 1-streamable with polynomialsp0, p1, p2 then the universality
problem of Boolean queries{Q[e] | e ∈ Q descending} can be solved in polyno-
mial timeO(p0(r(|e|)) + s(|e|) + r(|e|) + p1(r(|e|)) · p2(r(|e|))).

Proof. Our polynomial time equivalence test for descending queries defined inQ
works as follows:

fun u n i v Q (e ) # where e ∈ Q descend ing
l e t a∈Σ a r b i t r a r y
i f a in LQ[e]

then # language non−empty
compute e′ wi th Qe′ = all(Qe)
l e t j = p1 ( | e′ | ) +1
l e t t =a ( a , . . . , a ) w i th j c h i l d r e n
l e t M = M(Qe′ ) # needs t imep0(|e′|)
l e t ou t = run M on t u n t i l even t (op , j )

i f ou t . isEmpty ( )
then return f a l s e
else return t r u e

else # language non−u n i v e r s a l
return f a l s e

Testing whethera belongs toLQ[e]
can be done in times(|e|). The construction

of e′ definingall(Qe) with size|e′| = r(|e|) requires timeO(r(|e|)). The whole
algorithm requires timeO(p0(r(|e|)) + s(|e|) + r(|e|) + j · p2(|e

′|)), which is
O(p0(r(|e|)) + s(|e|) + r(|e|) + p1(r(|e|)) · p2(r(|e|))). It remains to argue the
correctness of the algorithm.

CaseLQ[e]
= TΣ. Sincee is descending, we haveconcurQe′

(t) = 1 for t =
a(a, . . . , a) with j children from Lemma 2. SinceQ is streamable modulo
1-concurrency, there exists an SRAMM(Qe′) that requires on input trees
t space at mostp1(|e

′|) and time at mostp2(|e
′|) per step. All nodesk ∈

nod(t) where1 ≤ k ≤ j are safely selected byQe′ = all(Qe) at event
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(op, j) by part 1 of Lemma 2. These arep1(|e
′|) + 1 many nodes, but the

space ofM(Qe′) is at mostj = p1(|e
′|) + 1. Since none of the nodes can

be discarded, one of them must be output until(op, j). Thusout 6= ∅ and
our algorithm returnstrueas expected.

CaseLQ[e]
6= TΣ. If a 6∈ LQ[e]

then we know thatLQ[e]
is not universal and can

safely returnfalse. Otherwise, SRAMM(Qe′) is run ont, but cannot output
anything until event(op, j) since all nodesk ∈ nod(t) with 1 ≤ k ≤ j are
still alive for Qe′ = all(Qe) by part 2 of Lemma 2. Thus,out.isEmpty() is
true so that our algorithm returnsfalseas expected.

3.4.3 Non-Streamability of Forward XPath

We now apply the previous results on Forward XPath. First, this proves that
bounded concurrency and polynomially bounded concurrencycan not be decided
in PTIME, unless PTIME = NP.

Corollary 2. Deciding bounded concurrency resp. polynomially bounded con-
currency is coNP-hard for monadic queries in Forward XPath.

Proof. Universality for a fragment of Forward XPath (using only downward axes)
is coNP-hard by Proposition 4. So the corollary follows fromProposition 11.

In terms of streamability, we also get a negative result for Forward XPath.

Corollary 3. Forward XPath isnot1-streamable except if P=NP.

Proof. Forward XPath permits to define the operatorall in linear time. Univer-
sality of [e] is equivalent to universality of/ch::∗[e], which is descending for all
Forward XPath queriese. The universality problem for monadic descending For-
ward XPath queries in the fragment is coNP-hard (by Proposition 4). Theorem 1
thus shows that this query class is not1-streamable except if PTIME = NP.

This shows that even the weak notion of1-streamability is unfeasible for For-
ward XPath. In Chapter 6, we define fragments of Forward XPaththat arem-
streamable for allm ∈ N0.
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3.5 Conclusion

In this chapter we defined our computational model for query answering through
a special form of RAMs called SRAMs. Based on this model and the notion of
concurrency of queries, we introduce a measure of streamability for classes of
queries. This classifies query classes in the following way.For query classes
that are not0-streamable, there is no PTIME algorithm detecting empty queries,
and thus memory consumption cannot be optimal with PTIME processing. Query
classes that arem-streamable withm ∈ N0 allow a polynomial space and time
evaluation for queries with concurrency at mostm. ∞-streamable queries enjoy
this property for all queries of the class. We can observe that the definition varies
from coarse-grained static requirements for∞-streamability to more fine-grained
requirements form-streamability, where the algorithm is supposed to evaluate
queries efficiently only on trees implying low concurrency.

The study of necessary and sufficient conditions for∞-streamability reveals
some asymmetry between monadic andn-ary queries. Forn-ary queries, we have
to distinguish betweenconcurQ(t), the number of simultaneous alive tuples, and
concur nodQ(t), the number of nodes involved simultaneously in alive tuples.
This comes from the definition of SRAMs, where registers do not store candidates
(i.e. tuples) but node identifiers used by candidates. The reason of this design
choice is that in real algorithms, tuples might be represented compactly, and in
general the concurrency is not a lower bound for evaluating queries. Concurrency
is proved to be a lower bound only on some fragments of XPath [BYFJ05]. An
interesting question would be to prove thatconcur nodQ(t) is a lower bound for
large classes ofn-ary queries, which we conjecture to be true for large query
classes. For this, we would have to find fooling sets in order to apply results from
communication complexity.

We have seen at the end of this chapter some negative results about Forward
XPath: it is coNP-hard to decide the bounded concurrency formonadic queries,
and Forward XPath is not1-streamable. In Chapter 6, we define fragments that
arem-streamable for allm ∈ N0, and another∞-streamable fragment. In Chapter
5, we study the streamability of queries defined by StreamingTree Automata.
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4.1 Introduction

Tree automata are acceptors for trees over a given alphabet.While being procedu-
ral objects, they enjoy clean relations with logics and language theory [CDG+07].
Hence they can be considered either for algorithms (they arebased on notions of
runs) or for specification (they define tree languages).

In this manuscript, we will use both aspects of tree automata. In particu-
lar, tree automata will define queries, and will also serve asbasis for our algo-
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STA

DTD

top-down automata
overfcnsencoding

stepwise tree automata pushdown forest automata

nested word automata

our translation preserves determinism
our translation does not preserve determinism

Figure 4.1: Translations provided in this chapter.

rithms. For this reason, we are looking for tree automata whose runs can operate
on XML streams, and thus respect a pre-order traversal of trees. Tree automata
usually operate bottom-up (from the leaves to the root of thetree) or top-down.
Some automata models operating in pre-order were however proposed for tree-
like structures. Neumann and Seidl proposepushdown forest automata(PFAs)
[NS98], a notion of automata for hedges, which generalize unranked trees. These
automata were sometimes adapted to particular algorithmiccontexts: They are
reformulated to Pre-Order Automata by Berlea in [Ber06], and to Non-Uniform
Automata by Frisch in [Fri04]. More recently, Alur and Madhusudan introduce
visibly pushdown automata(VPAs) [AM04] in the context of program verifica-
tion. This model is also used for XML streams processing [KMV07]. VPAs were
reformulated tonested word automata(NWAs) by Alur [Alu07]. All these models
do not operate directly on trees. PFAs operate on hedges, VPAs on words over a
visible alphabet (where each letter either always pushes oralways pops data onto
the stack), and NWAs on nested words, i.e. words with a binarynesting relation
on positions.

In this chapter, we defineStreaming Tree Automata(STAs), a notion of au-
tomata operating directly on unranked trees in pre-order. STAs are a reformula-
tion of NWAs, that operate directly on trees, instead of nested words. We start
by showing how DTDs can be translated to STAs. We then relate them to PFAs
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and NWAs by providing the back and forth translations towards these models. We
also study the relationship between STAs and tree automata models that does not
operate in streaming order. We provide back and forth translations for two such
models. The first one is stepwise tree automata [CNT04], which correspond to
standard bottom-up automata on the Curryfication of trees. The second one is
the notion of top-down automata on the first-child next-sibling encoding of trees.
We show in particular that the translations from both modelsto STAs preserve
determinism, and hence that determinism of STAs is a stronger notion than for
these two models. In [AM09], Alur and Madhusudan claim that astepwise tree
automaton can be translated into a NWA with the same number ofstates, but
without providing the translation. The translations provided in this chapter are
illustrated in Figure 4.1.

Thanks to these explicit translations, we fix the precise relations between au-
tomata notions, as for instance between NWAs and PFAs. Our translations permit
to reuse algorithms designed for a specific automata notion with other automata.
For instance, queries defined by NWAs can be processed by query answering al-
gorithms for PFAs [BS04].

Throughout this manuscript, we will show the relevance of STAs for stream
processing of XML documents. In particular, deterministic STAs define queries
that enjoy remarkable streamability properties. In Chapter 5, we propose an
efficient query answering algorithm for queries by dSTAs, and prove them-
streamability of this query class for allm ∈ N0, on shallow trees. In Chap-
ter 6, we define fragments of XPath, and prove their streamability by translation
to dSTAs. In this translation, STAs are able to deterministically detect ends of
scopes (regions of trees where matches of XPath expressionscan occur). Finally,
in Chapter 7, STAs are used to recognize some relations on trees, that we need to
prove decidability results. For instance, testing the equality of two tree prefixes
until an event is performed by a simple dSTA.

4.2 Streaming Tree Automata

4.2.1 Definition

We begin this chapter with the definition of Streaming Tree Automata (STAs) and
their corresponding notion of run.

Definition 6. An STAA = (Σ, stat, init, fin, rul) consists of a:

• a finite alphabetΣ of node labels,

• a finite set stat= state⊎statn composed of event states state and node states
statn,
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Figure 4.2: An STA checking the Boolean XPath filter[ch∗::a[ch::b]].

• initial states init⊆ state and final states fin⊆ state,

• a set rul⊆ {op, cl} × Σ× statn× stat2e of rules. We denote rules as:

q0
α a:γ
−−−→ q1

whereα ∈ {op, cl}, q0, q1 ∈ state, a ∈ Σ, γ ∈ statn.

Whenever necessary, we will upper index components ofA, as for instance,
writing rulA instead ofrul. The size of an STA is its number of rules and states:
|A| = |rulA| + |statA|. An STA traverses the sequence of events of a given treet,
while annotating all events oft by event states and all nodes oft by node states.
Let q0 be the state of the previous event processed, and(α, π) be the current event.
The automaton chooses some rule with actionα and labela = labt(π) whose left
hand side isq0. If α = op then it annotates the nodeπ with node stateγ. If α = cl
then the rule matches only, if the node state annotated at opening time toπ is equal
to the node stateγ of the rule. For matching rules, the automaton annotates state
q1 on the right hand side to the current event.
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Runs More formally, a runr of an STA on a treet is a pair of functions(re, rn)
with typesre : eve(t) → state andrn : nod(t) → statn, such thatre(start) ∈ init
and the following rules belong torul for all π ∈ nod(t) with a = labt(π), and
actionsα ∈ {op, cl}:

re(pr((α, π)))
α a:rn(π)
−−−−−→ re((α, π))

wherepr returns the preceding event. An example of a run of an STA on the
treea(a, a(a, a(b), b))) is given in Figure 4.2. It tests whether this tree satisfies
the Boolean XPath query[ch∗::a[ch::b]], or equivalently the first-order formula
∃x. (laba(x) ∧ ∃y. (ch(x, y) ∧ labb(y))). When opening ana-node in its initial
state0, this STA guesses whether it matches thea-position of the XPath expression
(state 1) or not (state 0). From state1, it waits while traversing a sequence of
states(2∗1)∗, until someb-child is opened, before concluding success in state3.
The information of being a child of thea-node opened in state1 is annotated by
node statey, and passed over from the left to the right.

A run r of A on a treet is successful ifre((cl, ǫ)) ∈ finA. The set of all possible
runs of the STAA on the treet is denotedrunsA(t) and the subset of all successful
runs byruns succA(t). The recognized languageL(A) is the set of all treest ∈ TΣ
that permit a successful run byA, i.e.,L(A) = {t ∈ TΣ | runs succA(t) 6= ∅}. For
a hedge(t1, . . . , tk), a run is successful ifre(start) ∈ initA andre((cl, k)) ∈ finA.

Determinism An STA is deterministicor adSTA, if it has a single initial state,
no twoop rules for the same letter use the same event state on the left,and no two
cl rules for the same letter use the same node state and the same event state on the
left. Every STA has an equivalent dSTA, as proved in Section 4.2.2.

Run Computation and Stack The unique run of a dSTAA on a treet can
be computed in a streaming manner, if it exists. The input is the ordered set of
eventseve(t) for somet obtained by parallel preprocessing with a SAX parser,
and the output is the sequence of states thatA assigns to the events oft. The
comparison between the run of a dSTA on events and on the corresponding nested
word is illustrated in Figure 4.2(c). We study the link between STAs and nested
word automata in more details, in Section 4.4. The common wayto implement
an STA is to use a current event state and a stack, in order to store the node states
associated to ancestors of the current node, as these stateswill be used when
closing these ancestors. In SRAMs, this stack will be storedinside the working
tape.

Weakness Following [Alu07], we call an STAweakif statn = state and allop-
rules have the formq0

op a:q0
−−−−→ q1. As proved in Theorem 1 of [Alu07] for NWAs,
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every STAA is equivalent to some weak STAB. For instance we can buildB of
size at most|B| = O(|statAe | · |statAn |). To see this, letstatBn = statBe = statAe ×
statAn , with initB = initA × statAn andfinB = finA × statAn . The rules ofB are
derived from those ofA according to the following two inference schemas.

q0
op a:γ1
−−−−→ q1 ∈ rulA γ2 ∈ statAn

(q0, γ1)
op a:(q0,γ1)
−−−−−−→ (q1, γ2) ∈ rulB

q0
cl a:γ0
−−−→ q1 ∈ rulA

γ1, γ2 ∈ statAn q2 ∈ statAe

(q0, γ1)
cl a:(q2,γ0)
−−−−−−→ (q1, γ2) ∈ rulB

4.2.2 Determinization

We present here the determinization of STAs inspired from the determinization
of VPAs [AM04]. This procedure is slightly simpler because we only consider
(encodings of) trees, and choose a more algebraic construction. Hence the states
of the dSTA will reflect the accessibility relation through the hedge of left siblings.
The accessibility relation of an STAA through a hedgeh ∈ HΣ is the set of pairs
(q1, q2) ∈ statA × statA such that there is a run ofA throughh that begins inq1

and ends inq2.

Proposition 12. For every STAA, a dSTAA′ recognizing the same language can
be computed in timeO(2|A|

2
).

Proof. A state ofA′ is a set of pairs of states:statA
′

= 2statA×statA. For such a
stateP ∈ statA

′
, we writeΠ1(P ) = {q | ∃q′. (q, q′) ∈ P} (same forΠ2). In the

following, idstatA denotes{(p, p) | p ∈ statA}, and similarly foridinitA. For every
stateP ∈ statA

′
and labela ∈ Σ, we also defineUpdateaP by:

UpdateaP = {(q, q′) | ∃(q1, q2) ∈ P. ∃γ. q
op a:γ
−−−→ q1 ∈ rulA∧ q2

cl a:γ
−−−→ q′ ∈ rulA}

In other words, ifP is the set of pairs of states(q1, q2) such that there is a run of
A from q1 to q2 through the hedge(t1, . . . , tk), thenUpdateaP is the set of pairs
of states(q′1, q

′
2) for which there is a run ofA from q′1 to q′2 through the tree

a(t1, . . . , tk), as illustrated in Figure 4.3. We defineA′ by:

initA
′

= idinitA

finA′

= {P | π2(P ) ∩ finA 6= ∅}

a ∈ Σ P ∈ statA
′

P
op a:P
−−−→ idstatA ∈ rulA

′

a ∈ Σ P, P ′ ⊆ statA

P
cl a:P ′

−−−→ P ′ ◦ UpdateaP ∈ rulA
′

A′ is deterministic, and weak. For everyη = (α, π), we writehη for the hedge
whose roots are left siblings ofπ (including π iff α = cl). We prove that the
following property is an invariant. From the definition of initial and final states of
A′, this is sufficient to prove the correctness of the construction.
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q2P
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Figure 4.3:UpdateaP .

Invariant: for r = (re, rn) run ofA′ on t, andπ ∈ nod(t):

rn(π) = accessibility relation throughh(op,π) and
re((cl, π)) = accessibility relation throughh(cl,π)

At opening of the root, the state is the identity of initial states, which corre-
sponds to accessibility through an empty hedge at the root.

Suppose that the property holds for events precedingη ∈ eve(t), and that
η = (op, π). If pr(η) = (op, π′) thenπ is a first child andrn(π) = re((op, π′)) =
idstatA, which is the accessibility relation through the empty hedgehη. Otherwise,
if pr(η) = (cl, π′), then by induction hypothesisrn(π) = re((cl, π′)) is the acces-
sibility relation through the hedgeh(cl,π′) = hη.

Now suppose thatη = (cl, π) and labt(π) = a. Let η′ = pr(η) andP =
re(η

′). By induction hypothesis,rn(π) is the accessibility throughh(op,π), so it
only remains to show thatUpdateaP is the accessibility through the hedge(t.π)
wheret.π is the subtree oft rooted atπ. If π is a leaf thenP = idstatA. and
UpdateaP is the accessibility through the hedge(a). If π is not a leaf, then by
induction hypothesis,P is the accessibility through the hedge of children ofπ, so
UpdateaP is the accessibility through(tπ).

Note that this procedure is close to optimal, in the sense that there exists a
family of regular tree languagesLs (for s ≥ 1) such thatLs can be recognized by
an STA of sizeO(s), but every dSTA recognizingLs requires at least2s2

states
[AM09].

4.2.3 Expressiveness and Decision Problems

In terms of expressiveness, STAs capture all MSO-definable tree languages.

Proposition 13. STAs and MSO capture the same class of languages of unranked
trees.
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The logical operations can be performed with the same complexity as for usual
tree automata.

Proposition 14. Union and intersection of STAs can be performed inPTIME.
Complementation of STAs isEXPTIME-complete, and inPTIME for dSTAs.

The complexity of inclusion and universality for STAs is EXPTIME-complete,
as other common automata models over unranked trees.

Proposition 15. Universality and inclusion are bothEXPTIME-complete prob-
lems for STAs, and are inPTIME for dSTAs.

All these results will be proved by the PTIME back and forth translations be-
tween STAs and other automata models (stepwise tree automata, for instance)
provided in the sequel.

4.3 Translation of DTDs into STAs

In our algorithms, we often consider that schemas are provided by deterministic
STAs. They can be obtained by translating extended DTDs thatare restrained
competition and deterministic [KMV07], so that running such STAs performs
one-pass typing. We present the translation of DTDs to STAs.Given a deter-
ministic DTD with alphabetΣ, we compute the collection of Glushkov automata
(Ga)a∈Σ over Σ, which are deterministic finite automata for the regular expres-
sions of the DTD [BK93]. Let root ∈ Σ be the root symbol of the DTD.

From the collection of Glushkov automata, we construct a deterministic STA
S recognizing the trees validated by the DTD. The states ofS unify the states of
all Glushkov automata and add a unique initial stateI and a unique final stateF:

statS = ⊎a∈ΣstatGa ⊎ {I, F}

The rules of the STAS are obtained systematically from those of the Glushkov
automata according to the two following inference schemas:

q0
b
→ q1 ∈ rulGa q2 ∈ initGb q3 ∈ finGb

q0
op b:q0
−−−→ q2 ∈ rulS

q3
cl b:q0
−−−→ q1 ∈ rulS

a = root q0 ∈ initGa q1 ∈ finGa

I
op a:I
−−−→ q0 ∈ rulS

q1
cl a:I
−−→ F ∈ rulS

These schemas can be read as follows. When reading ab-child under ana-node,
the STA associates the previous stateq0 of the Glushkov automatonGa with the
b-node, and goes to the initial stateq2 of Gb. Then the children of theb-node are
processed in streaming order by the STA. The intended resulting state is the final



Section 4.3 – Translation of DTDs into STAs 83
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Figure 4.4: Glushkov automata for DTDa→ ab + b andb→ ǫ.
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Figure 4.5: The STA for the DTD in Figure 4.4.
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Figure 4.6: Successful run of the STA in Figure 4.5.

stateq3 of Gb. Hence the closing rule forb hasq3 as incoming state, checks that
q0 was associated with theb-node, and goes to the next stateq1 in Ga.

For instance, the STA drawn in Figure4.5 accepts valid documents for the
DTD in Figure 4.4. A successful run on the treea(a(b), b) is shown in Fig-
ure 4.6. This construction preserves determinism, in that DTDs with determin-
istic Glushkov automata are translated to deterministic STAs. A translation of
deterministic restrained competition EDTDs to deterministic ↓TA over thefcns
encoding is provided by Champavère et al. in [CGLN09] (Lemma 33).
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a a b b a b b a
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Figure 4.7: Successful run of the NWA in Figure 4.5.

4.4 Nested Word Automata

In this section we present the relation between STAs and nested word automata.
This notion of automata is itself very similar to visibly pushdown automata. The
difference is in the way the structure is given as input. For visibly pushdown
automata, the input word is defined on a visible alphabet, so that each letter is
associated with one action (opening or closing, and also theneutral local letters in
the general definition). For nested word automata, the inputword is given as a flat
word plus a binary nesting relation on its positions.

4.4.1 Definition

Nested word automata (NWAs) [Alu07] are equal to STAs syntactically but run
on nested words, so they have different semantics. We show that both semantics
coincide modulo encoding unranked trees into nested words.

A nested word overΣ is a pair(w, E) wherew ∈ Σ∗ is a word andE ⊆
dom(w)× dom(w) a set of forward edges without overlap. We assume that every
position in a nested word is adjacent to exactly one edge, andthat for every edge,
both adjacent positions have the same label.1

A run of an NWA A on a nested word(w, E) annotates all positions of
dom(w), the start position0, and all edges inE by states, as illustrated by the
example in Figure4.7. More precisely, a run ofA as an NWA consists of two
functionsr = (re, rn) with typesre : dom(w) ∪ {0} → statAe andrn : E → statAn .
It is licensed byA if for all edges(i, j) ∈ E adjacent to positions labeled bya,
the following tuples belong torulA:

re(i− 1)
op a:rn(i,j)
−−−−−−→ re(i)

re(j − 1)
cl a:rn(i,j)
−−−−−→ re(j)

Unranked treest ∈ TΣ can be encoded into nested words nw(t) = (w, E) overΣ.
For instance, the nested word fora(a(b), b) is drawn in Figure4.7. More formally,

1More general definitions of nested words in the literature dopermit dangling edges, internal
positions, and unmatched labels, that we exclude here.
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let η1 . . . ηn be the sequence of events int exceptstart in their total order. The
word:

w = a1 . . . an

is the sequence of allai ∈ Σ labeling the nodes of eventηi in t where1 ≤ i ≤ n.
The edges link opening to closing events of the same node, i.e.:

E = {(i, j) | π ∈ nod(t), ηi = (op, π), ηj = (cl, π)}

4.4.2 Translations into and from STAs

The functionIe : eve(t) → dom(nw(t)) ∪ {0} with Ie(start) = 0 andIe(ηi) = i
for all 1 ≤ i ≤ n is a bijection, as well as the functionIn : nod(t) → E with
In(π) = (Ie((op, π)), Ie((cl, π))). Thus, events oft correspond to positions of
nw(t) or 0 and nodes oft to edges of nw(t). The edges oft do not have immediate
counterparts in nw(t), but can be inferred from the relations of positions in nw(t)
nevertheless.

Proposition 16. Let A be an STA overΣ and t ∈ TΣ an unranked tree. A run
(rn, re) on nw(t) is licensed byA as an NWA if and only if the run(rn ◦ In, re ◦ Ie)
on t is licensed byA as an STA.

As a consequence, the runs ofA on t and nw(t) correspond bijectively, andt
is accepted byA as an STA if and only if nw(t) is accepted byA as an NWA.

Nested words(w, E) encoding unranked trees satisfy the following restriction:

no hedges: there exists an edge(1, |w|) ∈ E.

Conversely, every nested word satisfying this condition encodes some unranked
tree. Every edge(i, j) in E corresponds to one nodeπ of this tree, using the
common label ofi andj. As no overlap occurs, positions betweeni andj can
be translated into a sequence of trees, defining the childrenof π. Theno hedges
condition ensures that this sequence of trees has a unique root.

4.5 Pushdown Forest Automata

We recall PFAs from Neumann and Seidl [NS98] which operate on hedges (called
forests there), and show how they relate to STAs.
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Figure 4.8: Run of a PFA.

4.5.1 Definition

We reformulate the original recursive definition of PFAs evaluators by formalizing
a corresponding notion of runs. We restrict ourselves to tree languages, in that we
define runs on trees only. This is no serious restriction, since our results extend
easily to sequences of trees.

Definition 7. A pushdown forest automaton (PFA)is a tuple(Σ, stat, init, fin, rul)
whereΣ is a finite set, stat= state ⊎ statn is a finite set of states, composed of
event states and node states, init, fin ⊆ state are finite sets of event states, and rul
is a set of rules of the following forms, whereq0, q1 ∈ state, γ ∈ statn anda ∈ Σ:

downa q0 → q1 sideq0 γ → q1 upa q0 → γ

Event states are originally calledforest statesand node states correspond to
the originaltree states. PFAs traverse trees in document order. When leaving a
nodeπ, two rules are used. First, anup-rule maps the node to some node state.
Second, aside-rule assigns an event state to the closing event of the node.up-rules
can be eliminated, but are kept here as in the original definition.

More formally, PFAsP permit runsr = (re, rn) on treest, with re:eve(t) →
state andrn: nod(t) → statn, if P contains the following rules for all nodesπ ∈
nod(t) with a labela ∈ Σ:

down a re(pr((op, π))) → re((op, π))
side re(pr((op, π))) rn(π) → re((cl, π))

up a re(pr((cl, π))) → rn(π)



Section 4.5 – Pushdown Forest Automata 87

and re(start) ∈ init. The run is successful ifre((cl, ǫ)) ∈ fin. Figure 4.8(a)
presents a run of a PFA on our example tree. The representation of rules is ex-
plained in Figures4.8(b), 4.8(c)and4.8(d).

4.5.2 Equivalence to STAs

We present polynomial time translations between weak STAs and PFAs and vice
versa, which preserve runs up to simple correspondences andthus languages.

From PFAs to weak STAs

We transform PFAsP into weak STAss(P ) by removing intermediate tree states,
identifying rules fordownandop, and combining rules forup andside into cl.
Let stats(P ) = statPe , inits(P ) = initP , andfins(P ) = finP , and let the following
schemas define the rules ofs(P ):

downa q0 → q1 ∈ rulP

q0
op a:q0
−−−−→ q1 ∈ ruls(P )

upa q1 → γ1 ∈ rulP

sideq0 γ1 → q2 ∈ rulP

q1
cl a:q0
−−−→ q2 ∈ ruls(P )

From weak STAs to PFAs

Let A be a weak STA. We define a corresponding PFAp(A) such thats(p(A)) =

A. This shows thatp(A) andA recognize the same tree language. Letstatp(A)
e =

statA andstatp(A)
n = Σ × statA, initial and final states remaining the same. The

following inference schemas detail how the rules ofp(A) are inferred fromA.

q0
op a:q0
−−−−→ q1 ∈ rulA

downa q0 → q1 ∈ rulp(A)

q0
cl a:q1
−−−→ q2 ∈ rulA

upa q0 → (a, q0) ∈ rulp(A)

sideq1 (a, q0)→ q2 ∈ rulp(A)

Theorem 2. Every PFA can be converted into an STA accepting the same lan-
guage, and vice versa.

Proof. First, we prove thatL(s(P )) = L(P ). This translation preserves the first
functionre of runs. Sinces(P ) is weak, this function is sufficient to define a whole
run ofs(P ). Conversely, given a run ofs(P ) on t, we can easily build the second
functionrn as everycl rule used inre is generated using an intermediate tree state.
These translations preserve acceptance, soL(P ) = L(s(P )).

Second, we show that for all weak STAsA, s(p(A)) = A. Recall that weak-
ness can be assumed w.l.o.g. Translations ofop anddownrules are exactly sym-
metric. The double inclusion ofcl rules ofA ands(p(A)) can be easily checked.
Initial and final states are also preserved.
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Thus, PFAs can be converted into weak STAs with fewer states so that the tree
languages are preserved. Vice versa, there exists a language preserving translation
of weak STAs to PFAs which may increase the number of states bya factor of|Σ|.

The runs of STAs and corresponding PFAs assign the same eventstates to
opening and closing events. This means that they define the same run-based
queries, when selecting in event states only. This is illustrated in Figure4.8(a), by
a run of the PFA corresponding to the STA of the previous example Figure4.6.

As a consequence, we can rely on the query answering algorithm for push-
down forest automata [BS04] for answering run-based weak STA queries. Re-
moving the weakness limitation does not create any problem.This way, we obtain
a query answering algorithm forn-ary queries defined by STAs and NWAs.

4.6 Standard Tree Automata

In Section2.1.3, we have seen how standard automata, that were originally de-
fined for ranked trees, can be combined with binary encodingsin order to recog-
nize unranked trees. In this section, we consider two of these models. The first
one is given by bottom-up tree automata operating oncurry encodings of trees,
also calledStepwise Tree Automata[CNT04]. The second one uses top-down tree
automata onfcnsencoding of trees. The reason why we are interested in these
models, is that they operate in a way that is compatible with astreaming evalua-
tion. They can be considered as special classes of STAs. We provide back and
forth translations between each model and STAs, and show that the translations
to STAs preserve determinism. This shows that determinism of STAs is stronger
than determinism of these classes.

4.6.1 Stepwise Tree Automata

From Stepwise Tree Automata to STAs

The translation of stepwise tree automata to STAs is quite straightforward, as they
can be seen as a weaker form of STAs: a stepwise tree automatonevaluates a
hedge (of children of a node) sequentially, from left to right. The difference with
STAs is that when evaluating a new tree of the hedge, the stateresulting from the
evaluation of the beginning of the hedge is unknown. The translation of a stepwise
tree automatonA to an STAA′ is detailed and proved below, and illustrated in
Figure4.9. The key idea here is to translate an @-rule by a closing rule,that uses
the stack to know how the hedge of preceding siblings of the current node was
evaluated, and the current state to know what is the state forthe subtree rooted at
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(b) A run of the corresponding STAA′

oncurry−1(t).

Figure 4.9: Example of runs for the translation of stepwise tree automata to STAs.

the current node. Labels are only used at opening.

statA
′

= statA ⊎ {qi, qf} initA
′

= {qi} finA′

= {qf}

@(q0, q1)→ q2 ∈ rulA

q1
cl a:q0
−−−→ q2 ∈ rulA

′

a→ q1 ∈ rulA q0 ∈ statA

q0
op a:q0
−−−−→ q1 ∈ rulA

′

q ∈ finA a ∈ Σ

q
cl a:qi
−−−→ qf

Correctness relies on the following property, that can be easily proved inductively
on the structure oft ∈ TΣ@

:

there is a runr of A on t iff there is a runr ′ of A′ oncurry−1(t), and if such
runs exist, thenr(ǫ) = r ′((cl, k)) if the root of curry−1(t) hask children,
andr ′((op, ǫ)) = r(πǫ) whereπǫ is the first leaf oft in pre-order.

From STAs to Stepwise Tree Automata

We exhibit a translation from an STAA to a TA recognizing the language of cor-
respondingcurry encodings of trees, i.e. an equivalent stepwise tree automaton.
This time the translation is more intricate, as STAs allow tosend the current state
from one node to its right sibling, but stepwise tree automata do not. This is why
we have to guess this state, and then to check whether this guess corresponds to
the state reached when closing the previous sibling. The construction is shown
above and illustrated in Figure4.10.

statA
′

= Σ× statA × statA

q0
op a:γ
−−−→ q1 ∈ rulA q2

cl a:γ
−−−→ q3 ∈ rulA q0 ∈ initA q3 ∈ finA

(a, q1, q2) ∈ finA′
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(a) A run of the STAA on t ∈ TΣ.
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tonA′ oncurry(t).

Figure 4.10: Example of runs for the translation of STAs to stepwise tree au-
tomata.

q0
op a:γ
−−−→ q1 ∈ rulA

a→ (a, q1, q1) ∈ rulA
′

q0
op b:γ
−−−→ q1 ∈ rulA q2

cl b:γ
−−−→ q3 ∈ rulA q4 ∈ statA a ∈ Σ

@((a, q4, q0), (b, q1, q2))→ (a, q4, q3) ∈ rulA
′

The following invariant can be proved inductively on the structure oft ∈ TΣ@
:

there is a runr ′ of A′ on t such thatr ′(ǫ) = (a, q0, q1) iff the root of
curry−1(t) is labeled bya, there is a runr of A on curry−1(t) such that
r((op, ǫ)) = q0 andr((cl, k)) = q1 wherek is the last child of the root.

4.6.2 Top-Down Tree Automata w.r.t.fcns Encoding

As already mentioned in Section2.2, DTDs can easily be translated into TAs over
fcnsencodings of trees. We now relate these automata to STAs.

From Top-Down Tree Automata to STAs

Let A be a↓TA recognizing binary trees inTΣ⊥
, that arefcns-encodings of un-

ranked trees. We define an STAA′ over Σ such thatL(A) = L(A′). This is
illustrated by Figure4.11, with runs ofA on fcns(t) andA′ on t.

statA
′
= statA

initA
′
= initA

finA′

= statA

q, a→ (q1, q2) ∈ rulA

q
op a:q2
−−−−→ q1 ∈ rulA

′

⊥ → q1 ∈ rulA a ∈ Σ q2 ∈ statA

q1
cl a:q2
−−−→ q2 ∈ rulA

′

This preserves determinism, and the correctness is easily proved using the follow-
ing invariant:
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(a) A run of a↓TA A on t ∈ TΣ⊥
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(b) A run of the corresponding
STA A′ on fcns−1(t).

Figure 4.11: Example of runs for the translation of↓TAs over fcnsencoding to
STAs.

if h = (t1, . . . , tk) is an hedge overΣ, then there is a runr of A on fcnsH(h)
iff there is a runr ′ of A′ onh, and if such runs exist, then, ifπ′ is the root of
t1 andπ the corresponding node infcnsH(h) we have:r ′e((op, π′)) = r(π·1)
andr ′n(π

′) = r(π ·2).

From STAs to Top-Down Tree Automata

Let A be an STA over the alphabetΣ. We define the↓TA A′ overΣ⊥ such that
L(A′) = L(A):

statA
′

= statA × statA finA′

= initA × finA

q0
op a:γ
−−−→ q1 ∈ rulA q2

cl a:γ
−−−→ q3 ∈ rulA q4 ∈ statA

(q0, q4), a→ ((q1, q2), (q3, q4)) ∈ rulA
′

q ∈ statA

⊥ → (q, q) ∈ rulA
′

Figure4.12illustrates this translation. The following property is easy to prove by
induction on the structure oft, and gives the main idea of the construction:

there is a runr ′ of A′ on t iff there is a runr of A on the hedgefcns−1(t),
and if such runs exist thenr ′(ǫ) = (q0, q1) iff there is a run ofA on fcns−1(t)
starting inq0 and ending inq1.

4.7 Conclusion

These translations between automata models allow to reuse algorithms designed
for specific models. In our framework, automata can be used for schema defini-
tion or query definition. While STAs, NWAs and PFAs are quite similar models,
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(a) A run of the STAA on t ∈ TΣ.
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(b) A run of the corresponding↓TA A on fcns(t).

Figure 4.12: Example of runs for the translation of STAs to TAs overfcnsencod-
ing.

operating in pre-order traversals of trees, the use of binary encodings on top of
ranked tree automata define models with weaker notions of determinism.

In the remainder of the manuscript, we use dSTAs for defining queries and
schemas. STAs benefit from a simple definition, which implementation (using
SAX, for instance) is easy to explain. Moreover, STAs are closely related to our
computational model. An STA can be implemented by an SRAM where the work-
ing tape stores the current configuration, i.e. the current node, and the stack of
node states for its ancestors. The next chapter provides an example of how an
algorithm can be defined on top of STAs.
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5.1 Introduction

Streamability of queries defined by deterministic automatais investigated in this
chapter. We prove that queries defined by dSTAs, when restricted to shallow trees,
arem-streamable for allm ∈ N0. They are however not∞-streamable, as queries
with high concurrency can be defined with small dSTAs. In order to obtain these
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results, we propose an earliest query answering algorithm,for queries defined by
dSTAs.

Earliest Query Answering(EQA) has been introduced by Bar-Yossef et al.
in [BYFJ05] and Berlea in [Ber06]. An EQA algorithm outputs selected (tuples
of) nodes at the earliest time point when they can be output. Symmetrically, it
rejects failed candidates at the earliest time point, once no valid continuation of
the stream will select them. Violating one of these constraints means that some
candidate is unnecessarily buffered. Indeed, EQA algorithms only memorize alive
candidates. This corresponds to a lower memory bound for ourcomputational
model, as already proved in Proposition7.

In this chapter, we present an EQA algorithm for dSTAs queries. As pre-
viously mentioned, EQA ensures good properties in terms of space complexity.
Thanks to determinism, our algorithm is also efficient in terms of time cost. When
the depth of valid trees is bounded, this algorithm achievesa PTIME preprocess-
ing, and then a PTIME cost per event and per candidate, in the size of dSTAs
defining the query and schema. The main idea of the algorithm is the dynamic
computation of safe states, that ensure selection (resp. rejection) of candidates.

The complexity of EQA is also investigated, for arbitrary query languages.
Deciding for selection and rejection in an earliest manner is often computationally
hard, and can be reduced to inclusion of Boolean queries. As aconsequence, for
non-deterministic STAs, earliest selection and rejectionis EXPTIME-complete.
Thus, there is no PTIME EQA algorithm for queries by STAs. For XPath, we
exhibit a fragment with only downward axes, for which EQA is not feasible in
PTIME, unless PTIME =NP.

Related work The idea of earliest query answering originates from two papers.
In [BYFJ05], Bar-Yossef et al. define the concurrency of a query w.r.t. atree, and
prove that it constitutes a lower memory bound for a fragmentof XPath. They
also provide an algorithm with space complexity close to theconcurrency for
shallow trees. In [Ber06], Berlea proposes an EQA algorithm for queries defined
by grammars, and then translated into pushdown forest automata. This algorithm
is however different from ours, as it assumes an infinite alphabet and does not take
schemas into account. This is a major difference, as explained in Section1.4.

Earliest detection of rejected candidates is also studied by Benedikt et al. in
[BJLW08] for filtering XML streams, through thefast-fail property. The authors
prove that this problem is not tractable unless PTIME = PSPACE. The solution
adopted by the authors is to approximate the detection of rejected candidates.

In the streaming literature, it is often claimed that answers are output as soon
as possible. From the hardness results previously mentioned, this is often false.
For instance Gou and Chirkova [GC07a] claim that their algorithmachieves op-
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timal buffering-space performanceon a fragment of XPath that contains tree pat-
terns. Their algorithm runs in PTIME, which is impossible for EQA algorithms,
unless PTIME = NP. Usually, a query answering algorithm for XPath outputs
an answer when all positive filters have found a match, and thecurrent event is
outside the scopes of all negative filters. This is the case for instance for SPEX,
proposed by Olteanu in [Olt07b] and for the logics considered by Benedikt and
Jeffrey in [BJ07]. These algorithms are not earliest, because it could be decided
before the end of the scopes of negative filters whether they can still be satisfied
in any continuation of the stream. Consider for instance theXPath expression
//a[b or not(b)] that selects alla-nodes, if they have ab-child or not. Here, all
a-nodes can be selected when they are read, as the filter is always true. However
these algorithms will outputa-nodes when closing them.

Madhusudan and Viswanathan [MV08] propose an EQA algorithm forn-ary
queries defined by non-deterministic nested word automata recognizing canonical
languages, without schema considerations. However, the authors assume that the
input automaton does not accept the full linearization of a tree, but the smallest
prefix of a tree linearization such that all well-nested suffixes are in the canoni-
cal language of the query. Transforming an automaton recognizing a canonical
language, to an equivalent one accepting these prefixes is a complex task. Our
algorithm avoids its entire construction by computing its rules on demand. An-
other difference is that we require deterministic automata. In the non-deterministic
case, the complexity of this transformation is not studied by Madhusudan and
Viswanathan.

Earliest Query Answering algorithms decide at every event the safety of out-
putting (resp. rejecting) every candidate. This safety property seems related to
safety properties studied in formal verification, where thesystem has to verify
such a property in every possible future. For instance in [KV01], Kupferman and
Vardi propose to build an automaton recognizing all bad prefixes, such that all suf-
fixes will lead the system into a bad configuration. The links between such formal
verification methods and earliest query answering are stillto be investigated.

5.2 Earliest Query Answering

We recall the foundations of earliest query answering (EQA). In Section3.4, we
introduced the notions of safe selection and rejection: A tupleτ is safely selected
(resp. rejected) by a query at eventη if τ is selected (resp. rejected) in all valid
continuations of the stream beyondη. We formalize these notions through suf-
ficient events for selection and rejection, and derive some decision problems of
EQA algorithms forn-ary node selection queries. We establish lower complexity
bounds for such algorithms.
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5.2.1 Earliest Event for Selection

Before defining earliest events for selection, we introducesufficient events for
selection. Let t ∈ TΣ be an unranked tree andQ a query of arityn. An event
η ∈ eve(t) is said sufficient for the selection of tupleτ ∈ nod(t)n by Q if for
every continuation of the stream beyondη, τ is selected byQ. This quantification
over all continuations is expressed through all trees sharing the same prefix until
η, in the following definition. Note that this formalizes the notion of safety for
selection (resp. rejection) briefly introduced in Section3.4.

Definition 8 (Sufficient events for selection). LetQ be ann-ary query overΣ and
t ∈ dom(Q) a tree. We relate tuplesτ ∈ nod(t)n to eventsη ∈ eve(t) that are
sufficient for their selection:

(τ, η) ∈ selQ(t) ⇔

{
τ ∈ domη(t)

n ∧
∀t′ ∈ dom(Q). equalη(t, t

′)⇒ τ ∈ Q(t′)

The first condition,τ ∈ domη(t)
n, restricts the considered tuples to those

containing nodes that were read beforeη, as streaming algorithms cannot output
nodes that have not be seen yet. Note that(τ, η) ∈ selQ(t) implies τ ∈ Q(t).
Furthermore, successors of sufficient events are sufficient.

Theearliesteventη for selectingτ is the first sufficient event for selectingτ :

(τ, η) ∈ earliest selQ(t)⇔ η = min
�
{η′ | (τ, η′) ∈ selQ(t)}

b

a a

a b c

Consider for instance the monadic queryQ1 with
schema T{a,b,c} defined by the XPath expression
/ch∗::a[ch::c]/ch::b, or equivalently by the first-order
formulalabb(x)∧∃y. (laba(y)∧ ch(y, x)∧∃z. (ch(y, z)∧
labc(z))) with one free variablex. On the treet = b(a, a(a, b, c)), the
earliest time point to select node2·2 is event (op, 2·3) when the c-child
is opened, i.e.,((2·2), (op, 2·3)) ∈ earliestselQ1(t). Events following
(op, 2·3) are sufficient for selecting2·2, but not earliest. For instance:
((2·2), (cl, 2·3)) ∈ selQ1(t)− earliest selQ1(t).

For queryQ2 defined by the same XPath expression, but with the more re-
strictive schema, requiring that all innera-nodes have at least onec-child, we can
select node2·2 at opening time, i.e.,((2·2), (op, 2·2)) ∈ earliest selQ2(t).

5.2.2 Earliest Event for Rejection

For optimal memory management, it is equally important to discardrejectedans-
wer candidates in an earliest manner, i.e., candidates thatwill never be selected



Section 5.3 – Complexity of Selection Sufficiency 97

in any possible future. Going one step further, one might also want to remove
rejected partial candidates, for which no completion will ever be selected in any
future.

Definition 9 (Sufficient events for rejection). We call a candidateτ rejectedat
eventη, or equivalentlyη sufficient for rejectingτ , if no completion ofτ can be
selected in the future:

(τ, η) ∈ rejQ(t) ⇔






τ ∈ dom•η(t)
n ∧

∀t′ ∈ dom(Q). equalη(t, t
′)⇒

∀τ ′ ∈ compl(τ, t′, η). τ ′ /∈ Q(t′)

Theearliesteventη for rejectingτ is the first sufficient event for rejectingτ :

(τ, η) ∈ earliest rejQ(t)⇔ η = min
�
{η′ | (τ, η′) ∈ rejQ(t)}

We illustrate these definitions at the queryQ1 defined by the XPath expres-
sion /ch∗::a[ch::c]/ch::b, on the treet = b(a, a(a, b)). All nodesπ that are not
labeled byb (and the rootǫ) can be immediately rejected, i.e.((π), (op, π)) ∈
earliest rejQ1

(t). For theb-node2 ·2, the earliest event for rejection is(cl, 2), as
all siblings of2·2 must have been inspected.

Link to Concurrency Earliest events for selection and rejection are closely re-
lated to the concurrency of the query, introduced in Section3.2.3. A tuple τ is
alive at eventη iff η is not sufficient for selectingτ , nor for rejecting it:

(τ, η) ∈ aliveQ(t) ⇔ (τ, η) /∈ selQ(t) ∪ rejQ(t)

5.3 Complexity of Selection Sufficiency

5.3.1 Sufficiency Problem

The definition of sufficient events for selection leads to theproblem of deciding
whether an eventη is sufficient for selecting a tupleτ . This problem has to be
solved by all EQA algorithms at every processed event, and hence will give us
lower bounds for the per-event time of EQA algorithms. For simplicity, we only
address the sufficiency for selection here, not for rejection.

Definition 10 (Sufficiency problem). TheSUFFICIENCY problem is defined by the
following parameters, input and outputs:

PARAMETERS: a signatureΣ, a classQ of queries of arityn,
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INPUTS: an expressione ∈ Q, a treet ∈ TΣ, an n-tuple τ ∈ nod(t)n, and an
eventη ∈ eve(t)− {start}.

OUTPUT: the truth value of(τ, η) ∈ selQe(t).

We provide hardness results forSUFFICIENCY. To establish these results, we
reduce language inclusion toSUFFICIENCY.

5.3.2 Reduction from Language Inclusion

Let cQ,τ,η,t be the set of trees on whichτ is selected or that have a prefix different
from t�η:

cQ,τ,η,t = {t′ ∈ TΣ | equalη(t, t
′)⇒ τ ∈ Q(t′)}

Then we can rephrase sufficiency for selection in the following way.

Lemma 3. (τ, η) ∈ selQ(t) ⇔ τ ∈ domη(t)
n ∧ dom(Q) ⊆ cQ,τ,η,t

This reformulation relatesSUFFICIENCY to language inclusion for classes of
Boolean queries. TheINCLUSION problem for a classQ of Boolean queries inputs
an expressione ∈ Q and outputs the truth value ofdom(Qe) ⊆ LQe. UNIVER-
SALITY returns the truth value ofTΣ ⊆ LQe instead.

Lemma 4 (Hardness). For all classesQ of Boolean queries there is a linear
time reduction ofINCLUSION to SUFFICIENCY, and of UNIVERSALITY to SUFFI-
CIENCY for queries with schemaTΣ.

Proof. Let e ∈ Q and t ∈ dom(Q) a tree. SinceQe is Boolean, the definition
yieldscQe,(),start,t = LQe. Thus, Lemma3 proves that((), start) ∈ selQe(t) if and
only if dom(Qe) ⊆ LQe.

5.3.3 Hardness of EQA for XPath and STAs

We consider Boolean filters in the following fragment of Forward XPath, where
ℓ ∈ Σ ∪ {∗}:

F ::= [ch::ℓ F] | [ch∗::ℓ F] | [F1 and F2] | [not(F)] | [true]

Proposition 17. SUFFICIENCY for Boolean queries defined in the above fragment
of Forward XPath is coNP-hard, even without schema assumptions.

Proof. According to Lemma4, SUFFICIENCY without schemas is harder than
UNIVERSALITY of Boolean queries. The latter problem was proven coNP-hard
for the above fragment of Forward XPath in Proposition4.
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Adding schemas does not reduce the complexity of the problem. As a conse-
quence, every EQA algorithm for a larger fragment of XPath cannot be in poly-
nomial time, except if PTIME = NP.

For queries defined by non-deterministic automata,SUFFICIENCY remains
hard, even with Boolean queries.

Proposition 18. SUFFICIENCY for Boolean queries defined by STAs isEXPTIME-
hard.

Proof. By Lemma4, SUFFICIENCY without schemas is harder thanUNIVERSAL-
ITY for STAs, and thus EXPTIME-hard by Proposition15.

However, when restricted to deterministic STAs, the problem becomes
tractable. The crucial point here is that dSTAs can check equality of prefixes
of two trees until eventη deterministically.

As previously introduced, we writeQA for the query defined by the STAA
recognizing a canonical language, i.e.,LQA

= L(A) anddom(QA) = TΣ. When a
schema is provided by an STAB, QA,B denotes the query such thatLQA,B

= L(A)
anddom(QA,B) = L(B).

Lemma 5. If a dSTAA recognizes a canonical language, then for allt ∈ TΣ,
τ ∈ nod(t)n andη ∈ eve(t), we can compute a dSTA recognizing the language
cQA,τ,η,t in PTIME in |A|, |t|, |τ | and |η|.

Proof. We prove that we can build a dSTA recognizingcA,τ,η,t in polynomial time
from A, t, π ∈ nod(t), α ∈ {op, cl}, and τ ∈ nod(t)n. We define two tree
languages:

Eqt,η = {t′ | equalη(t, t
′)} Qτ = {t′ | τ ∈ QA(t′)}

With these definitions, we getcQA,τ,η,t = Eqcompl
t,η ∪Qτ whereLcompl = {t ∈ TΣ |

t /∈ L} for L ⊆ TΣ. Hence it suffices to build dSTAs recognizingEqt,η andQτ in
PTIME.

First of all, we define a weak dSTA recognizingEqt,η = {t′ | equalη(t, t
′)}.

We setstate = eve(t�η), statn = {γ} (arbitrary), init = {start}, fin = {η}, and
the following rules where� andpr are interpreted oneve(t):

(α, π) � η a = labt(π)

pr((α, π))
α a:γ
−−−→ (α, π)

a ∈ Σ

η
op a:γ
−−−→ η η

cl a:γ
−−−→ η

Second, we define a dSTA recognizing the setQτ = {t′ | τ ∈ QA(t′)}. Such a
dSTA can be built in several steps. We first build a dSTAA′ recognizing all trees
annotated with the tupleτ , i.e.:

L(A′) = {t ∗ τ | t ∈ TΣ}



100 Chapter 5 – Earliest Query Answering for Streaming Tree Automata

(a, ∅)

(b, {x2})

(c, ∅)

(d, ∅)

(e, {x1})

(f, ∅)

ǫ

1

ǫ

⊥

⊥
1

2

⊥
⊥
⊥

2·1
2
⊥

⊥
2·1

⊥

⊥
⊥
⊥

Figure 5.1: A run of the dSTAA′, whenτ = (2·1, 1). The domain for thisτ is
domain= {ǫ, 1, 2, 2·1}, as indicated by framed nodes.

Then we can intersectA′ with A, in order to distinguish all annotated trees on
which τ is selected byQA. Finally, we can project on theΣ-component in order
to obtain the desired trees:

Qτ = ΠΣ(QA ∧QA′)

The corresponding automata operations preserve determinism, in this particular
case: for each treet ∈ TΣ, there is at most one run ofA ∩ A′ on t ∗ τ , as both
automata are deterministic. Hence, after projection, there is also at most one run
on t, and thus the determinism is preserved by the projection, inthis case.

It remains to detail the construction ofA′. If the arity of QA is n = 0 then
τ = () and we can take a universal automaton, asL(A′) = TΣ. Otherwise,
in order to define this automaton in polynomial size in|τ |, some preprocessing
on τ is required, which factorizes common prefixes of node addresses. Roughly
speaking, we calldomainthe domain of the smallest tree containingτ , and build
a dSTA that computes in its states the next element ofdomainto be checked, as
illustrated in Figure5.1. Formally, letdomainbe the set of positionsπ smaller or
equal to some position ofτ for the order defined byπ.i < π.j if i < j andπ < π.i.
We writedomain⊥ = domain∪ {⊥}. We introduce the functionnext: {op, cl} ×
(N∗ ∪ {⊥}) → domain⊥ that indicates whether the domain still continues above
(resp. at the right of) the current nodeπ, when called with(op, π) (resp.(cl, π)):






next(op, π) = π ·1 if π ·1 ∈ domain, ⊥ otherwise
next(cl, π ·i) = π ·(i + 1) if π ·(i + 1) ∈ domain,⊥ otherwise
next(α,⊥) = ⊥ for α ∈ {op, cl}

We also introduce the functionvarsτ : domain⊥ → 2Vn that associates with each
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node the variables corresponding to the annotation byτ :

if τ = (π1, . . . , πn) then

{
varsτ (π) = {xi | πi = π}
varsτ (⊥) = ∅

We can now define the dSTAA′. A run of A′ is shown in Figure5.1.

statA
′

e = statA
′

n = domain⊥
initA

′

= ǫ

finA′

= {⊥}

a ∈ Σ π, π′ ∈ domain⊥ l = varsτ (π)

π
op (a,l):π
−−−−−→ next(op, π) ∈ rulA

′

π′
cl (a,l):π
−−−−−→ next(cl, π) ∈ rulA

′

Theorem 3. SUFFICIENCY for n-ary dSTA queries is in polynomial time.

Proof. We can testL(B) ⊆ cA,τ,η,t in polynomial time, ifB is given an dSTA,
since we can compute a dSTA forcA,τ,η,t in linear time by Lemma5, and since
INCLUSION for dSTAs is in polynomial time (Proposition15).

As a corollarySUFFICIENCY for STAs is EXPTIME-complete. A EXPTIME

algorithm follows from STA determinization and Theorem3. By Proposition18,
the lower bound holds already for STAs defining Boolean queries.

5.4 EQA Algorithm for dSTAs

From the previous results, we know thatSUFFICIENCY can be decided in PTIME

for queries defined by dSTAs. In this section we propose an earliest query ans-
wering algorithm for such queries, using polynomial per-event time and space for
each candidate. We start with a static transformation of thedSTA A defining the
queryQA into another dSTAE(A), in Section5.4.1. E(A) andA recognize the
same language, but the states ofE(A) contain enough information for deciding
sufficiency for selection and rejection. This is not the casefor A, as in general the
sufficiency depends on the configuration, and hence from the states of the ancestor
nodes (as their states will be later used at closing). However, this translation ofA
into E(A) implies an exponential blow-up. In Section5.4.2, we propose a PTIME

algorithm that avoids this blow-up by constructing the needed parts ofE(A) on
the fly. In Section5.4.3, we show how schemas can be taken into account, and
illustrate it at an example in Section5.4.4. Finally, we show how the algorithm
can be efficiently implemented in Section5.4.5.
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5.4.1 Safe States Computation for dSTAs

We define a partial runr of an STAA on a treet like a run, except that it operates
only on a prefixt�η for some eventη ∈ eve(t). We writep runsA(t) for the set of
all partial runs ofA on t.

Safe States for Selection

Let A be a dSTA overΣ × 2Vn defining a queryQA, t ∈ TΣ, η ∈ eve(t), and
τ ∈ nod(t)n. We consider for the moment queries with universal schemas.

Definition 11 (safe states for selection). We call a stateq ∈ statAe safe for selection
of τ at eventη if the existence of a partial run r ofA on t that mapsη to q implies
(τ, η) ∈ selQA

(t). In other terms, these are the states that ensure sufficiencyfor
selection when they are reached:

safeselA(τ,η)(t) = {q | (∃r ∈ p runsA(t ∗ τ) ∧ re(η) = q)⇒ (τ, η) ∈ selQA
(t)}

(a, v)

h

q0

γ
q2

q1

In general,A does not have safe states, or more precisely,
a sufficient event can be reached by a run ofA, but the cor-
responding run does not go into a safe state for selection. We
now describe how these states can be computed by a new
dSTA E(A), which permits to decide sufficiency. Here we need some auxiliary
definitions. LetrunsAq0→q1

(h) be the set of runs of an STAA on a hedgeh that start
in stateq0 and end in stateq1. The operatorev clA(h, q0, (a, v), γ) evaluates hedge
h from stateq0 and subsequently applies a closing rule with label(a, v) ∈ Σ×2Vn

and stateγ:

ev clA(h, q0, (a, v), γ) = {q2 | ∃r ∈ runsAq0→q1
(h). q1

cl (a,v):γ
−−−−−→ q2 ∈ rulA}

We consider continuations through hedges inHsel = HΣ×{∅}, as safe states for
selection are defined for complete tuples, and thus valid continuations cannot use
variables anymore. The operatoruniv selA((a, v), γ, P ) computes all states, from
where all hedges inHsel can be evaluated and closed w.r.t.(a, v) andγ into a state
of P ⊆ statAe :

univ selA((a, v), γ, P ) = {q0 | ∀h ∈ Hsel. ev clA(h, q0, (a, v), γ) ∩ P 6= ∅}

Given A, t, and τ , we can compute inductively the safe statesSsel(η) =
safeselA(τ,η)(t) for all eventsη ∈ eve(t), using three propagation rules, as illus-
trated in Figure5.2and proved by Lemma6.
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(a, ∅)

(a, ∅)

(b, {x2})

(b, ∅)

(a, {x1}) (b, ∅) (a, ∅)

S0S1

S1 S1S2

S2S3

S4

S4 S4 S4S5 S6 S7

Rule 1
Rule 2

Rule 3

Figure 5.2: Propagation rules for safe states.

Rule 1 For the closing event of the root, the event(cl, ǫ) is sufficient for selection
of the givenτ on t iff all continuations after(cl, ǫ) succeed. The only existing
continuation is the empty one, so the sufficiency only depends on the success of
the run. Thus when closing the root, the set of safe states forselection are the final
states:

Ssel((cl, ǫ)) = finA

Rule 2 At each nodeπ, the safe states for the opening event can be computed
from those of the corresponding closing event. These are thestates for which the
traversal of any hedgeh (of children), followed by the closure of the node, leads
to a safe state at closing.

Ssel((op, π)) = univ selA((a, v), γ, Ssel((cl, π)))

where(a, v) = labt(π) andγ = rA
n (π).

Rule 3 Third, the safe states for the opening event ofπ are equal to those for the
closing events of children ofπ:

Ssel((cl, π ·i)) = Ssel((op, π))

This might seem surprising at first sight. However, the condition for rule 2 can
be rephrased in the following way for rule 3: the traversal ofany hedge (here, of
right siblings and their descendants) followed by the closure of the parent node
must lead to a safe state for closing the parent node.
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Safe States for Rejection

The treatment of safe states for rejection is more delicate.Here we have to assume
determinism and completeness for a proper treatment of partial candidates. The
definitionssaferej anduniv rej remain the same, except that we have to replace
selby rej, τ ∈ nod(t)n by τ ∈ nod•(t)n. Furthermore,Hsel is replaced byHrej =
HΣ×2Vn , as safe states for rejection consider partial tuples. Hence continuations
can still contain variables in their labels, and we cannot restrict the hedges to be
traversed toHΣ×{∅}:

saferejA(τ,η)(t) = {q | (∃r ∈ p runsA(t ∗ τ) ∧ re(η) = q)⇒ (τ, η) ∈ rejQA
(t)}

univ rejA((a, v), γ, P ) = {q0 | ∀h ∈ Hrej. ev clA(h, q0, (a, v), γ) ∩ P 6= ∅}

Propagation rules definingSrej are also easily adapted from those definingSsel.

Rule 1 Rejection states at the root are precisely non-final states:

Srej((cl, ǫ)) = statAe − finA

Rule 2 The critical rule

Srej((op, π)) = univ rejA((a, v), γ, Srej((cl, π)))

remains correct when imposing determinism and completeness onA, since this
ensures that a hedge will fail iff a run on this hedge leads to arejection state. The
additional quantification over hedges inHrej (in the definition ofuniv rej), which
may turn continuations into non-canonically annotated trees, makes no difficulty,
since such trees cannot be recognized byA, when assuming that the language of
A is canonical (it defines a query), as we do.

Rule 3 The third rule is the direct adaptation:

Srej((cl, π ·i)) = Srej((op, π))

Building E(A)

Now the propagation rules allow to infer bothsafeselA(τ,η)(t) andsaferejA(τ,η)(t)
for all eventsη. We can see in Figure5.2 that the definition of safe states is
incompatible with a streaming evaluation. Nevertheless, the computation of safe
states can be done by running the STAE(A) defined in Figure5.3. This STA does
all the computation when opening nodes. In particular, whenreading(op, π) it
computes the safe states for the events(cl, π) and assigns them to the node state of
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q0
op (a,v):γ1
−−−−−−→ q1 ∈ rulA

S1 = univ selA((a, v), γ1,S0)
R1 = univ rejA((a, v), γ1,R0)

(q0,S0,R0)
op (a,v):(γ1,S0,R0)
−−−−−−−−−−→ (q1,S1,R1) ∈ rulE(A)

q0
cl (a,v):γ0
−−−−−→ q1 ∈ rulA S0,S1,R0,R1 ⊆ statAe

(q0,S0,R0)
cl (a,v):(γ0 ,S1,R1)
−−−−−−−−−−→ (q1,S1,R1) ∈ rulE(A)

initE(A)= (initA, finA, statAe −finA)

finE(A) = {(q, finA, statAe −finA) | q ∈ finA}

Figure 5.3: Construction ofE(A) from A.

π (i.e. they are pushed on the stack), so that they can be used atclosing. Safe states
are also propagated among siblings through node states. Note that for sake of
clarity, this construction does not hold for earliest selection of () at thestartevent,
for Boolean queries. However, this case can be processed easily by considering
every possible label of the root. The signature ofE(A) is still Σ × 2Vn, as forA.
The state sets may be exponentially large, sincestatE(A)

e = statAe × 2statAe × 2statAe

andstatE(A)
n = statAn × 2statAe × 2statAe . Note thatE preserves determinism.

Proposition 19. Let A be a dSTA onΣ × 2Vn that defines a query. Then E(A) is
a dSTA that accepts the same language asA.

Furthermore, ifrA (resp.rE(A)) is the unique run ofA (resp. E(A)) on t ∗ τ ∈
TΣ×2Vn then for allη ∈ eve(η)− {start}:

rE(A)
e (η) = (rA

e (η), safeselA(τ,η)(t), saferejA(τ,η)(t))

Proof. We prove this proposition by Lemmas6 and7. For the whole section, we
fix A, a dSTA onΣ × 2Vn that defines a query,t ∗ τ ∈ TΣ×2Vn , and we suppose
thatrA is the unique run ofA on t ∗ τ .

We first prove that the propagation rules define the safe states. Let us consider
the functionf that associates a pair(S,R) ∈ 2statAe ×2statAe with each event oft∗τ
(exceptstart) using the following inference rules:

f((cl, ǫ)) = (finA, statAe − finA) (5.1)

π ∈ nod(t) f((cl, π)) = (S,R) (a, v) = labt(π) γ = rA
n (π)

f((op, π))=(univ selA((a, v), γ,S), univ rejA((a, v), γ,R))
(5.2)

π ∈ nod(t) π ·i ∈ nod(t) f((op, π)) = (S,R)

f((cl, π ·i)) = (S,R)
(5.3)
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Lemma 6. For every eventη ∈ eve(t)− {start},

f(η) = (safeselA(τ,η)(t), saferejA(τ,η)(t))

Proof. We proceed by induction on events oft (exceptstart), according to a top-
down, breadth-first, right-to-left traversal oft.

For (cl, ǫ), the result is trivial from rule (5.1) and the definitions ofsafesel
andsaferej.

Let η = (op, π), and suppose that the property holds for
(cl, π). From the application of rule (5.2), we know that f(η) =
(univ selA((a, v), γ,S), univ rejA((a, v), γ,R)) with f((cl, π)) = (S,R),
(a, v) = labt(π) and γ = rA

n (π). By definition, we have:
univ selA((a, v), γ,S) = {q | ∀h ∈ Hsel. ev clA(h, q, (a, v), γ) ∈ S},
and by induction hypothesis,S = safeselA(τ,(cl,π))(t).

We first prove thatuniv selA((a, v)), γ,S) = safeselA(τ,η)(t). Suppose that
q ∈ safeselA(τ,η)(t). Let h ∈ Hsel, and q′ = ev clA(h, q, (a, v), γ). Then
q′ ∈ safeselA(τ,(cl,π))(t), as sufficiency remains true for events followingη.
Thus, q ∈ univ selA((a, v), γ,S). Conversely, ifq ∈ univ selA((a, v), γ,S)
then τ ∈ domη(t)

n (consider the empty continuation). So for every
t′ ∈ TΣ such thatequalη(t, t

′), the hedgeh of children of π in t′ is in
Hsel. Thus ev clA(h, q, (a, v), γ) ∈ safeselA(τ,(cl,π))(t), which means thatτ ∈
QA(t′), so η is sufficient for selectingτ , and q ∈ safeselA(τ,η)(t). Finally,
univ selA((a, v), γ,S) = safeselA(τ,η)(t).

Now we prove the similar result for safe states for rejection, i.e., that:
univ rejA((a, v), γ,R) = saferejA(τ,η)(t). The difference here is that we deal with
partial candidates. We writeτ�η for the partial tuple obtained by replacing every
component strictly afterη by •. InclusionsaferejA(τ,η)(t) ⊆ univ rejA((a, v), γ,S)
holds for the same reason, namely events followingη remain sufficient for rejec-
tion, even for completions ofτ�η. Now suppose thatq ∈ univ rejA((a, v), γ,S).
Fix t′ ∈ TΣ such thatequalη(t, t

′), and leth be the hedge of children ofπ in t′.
Thenev clA(h, q, (a, v), γ) ∈ saferejA(τ,(cl,π))(t), and thus every completionτ ′ of
τ�η afterη fails. Henceη is sufficient for rejectingτ�η, andq ∈ saferejA(τ,η)(t).

Finally we considerη = (cl, π · i), and assume that the property holds for
(op, π) and (cl, π). From Rule (5.3) and induction hypothesis, we obtain that:
f((cl, π ·i)) = (safeselA(τ,(op,π))(t), saferejA(τ,(op,π))(t)).

First we prove thatsafeselA(τ,(op,π))(t) = safeselA(τ,η)(t). We have:
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q ∈ safeselA(τ,(op,π))(t)

⇔ (∃r ∈ p runsA(t ∗ τ) ∧ re((op, π)) = q)⇒ (τ, (op, π)) ∈ selQA
(t)

⇔ (∃r ∈ p runsA(t ∗ τ) ∧ re((op, π)) = q)⇒
∀h∈Hsel. ev clA(h, q, (a, v), γ)∈safeselA(τ,(cl,π))(t)

(i)
⇔ (∃r ∈ p runsA(t ∗ τ) ∧ re((cl, π ·i)) = q)⇒ (τ, (cl, π ·i)) ∈ selQA

(t)
⇔ q ∈ safeselA(τ,(cl,π·i))(t)

The equivalence(i) holds because when applyingop-rules, STAs do not distin-
guish between downward or rightward moves, i.e., they do notknow whether the
last action wasopor cl. We now show thatsaferejA(τ,(op,π))(t) = saferejA(τ,η)(t):

q ∈ saferejA(τ,(op,π))(t)

⇔ (∃r ∈ p runsA(t ∗ τ) ∧ re((op, π)) = q)⇒ (τ, (op, π)) ∈ rejQA
(t)

⇔ (∃r ∈ p runsA(t ∗ τ) ∧ re((op, π)) = q)⇒
∀h∈Hrej. ev clA(h, q, (a, v), γ)∈saferejA(τh,(cl,π))(t)

⇔ (∃r ∈ p runsA(t ∗ τ) ∧ re((cl, π ·i)) = q)⇒ (τ, (cl, π ·i)) ∈ rejQA
(t)

⇔ q ∈ saferejA(τ,(cl,π·i))(t)
whereτh is obtained fromτ by adding variables inh.

Lemma 7. There is a run(rE(A)
e , rE(A)

n ) of E(A) on t ∗ τ ∈ L(A), and for every
eventη ∈ eve(t)− {start},

rE(A)
e (η) = (rA

e (η),S,R) with (S,R) = f(η)

Proof. Inference schemas definingE(A) show that every runr of A has a unique
corresponding runr ′ in E(A), andr is the first component ofr ′. Again, we use
an induction on events oft (exceptstart) according to a top-down, breadth-first,
left-to-right traversal oft.

For η = (cl, ǫ), we havef(η) = (finA, statAe − finA). At the root, we have
rn(ǫ) = (rA

n (ǫ), finA, statAe −finA) , sore((cl, ǫ)) = (rA
e ((cl, ǫ)), finA, statAe −finA).

Now consider thatη = (op, π) and suppose that we haverE(A)
e ((cl, π)) =

(rA
e ((cl, π)),S ′,R′) with (S ′,R′) = f((cl, π)). This implies that

rE(A)
n (π) = (rA

n (π),S ′,R′), so we getS ′ = univ selA((a, v), γ,S), R′ =

univ rejA((a, v), γ,R) andrE(A)
e (η) = (rA

e (η),S,R) where(a, v) = labt(π) and
γ = rA

n (π). Hence,(S,R) = f((op, π)).
Finally, let us assume thatη = (cl, π · i) and also thatrE(A)

e ((op, π)) =
(rA

e ((op, π)),S,R) with S,R defined by(S,R) = f((op, π)). By an immediate
induction on children ofπ, each childπ·j of π verifiesrE(A)

n (π·j) = (rA
n (π·j),S,R)

and for the staterE(A)
e ((cl, π·j)) = (rA

e ((cl, π·j)),S,R), and in particular forj = i.
From rule (5.3) of the definition off , we know that(S,R) = f((cl, π ·i)).

These two lemmas finally prove the correctness ofE(A).



108 Chapter 5 – Earliest Query Answering for Streaming Tree Automata

(a, v) ∈ Σ× {∅} q1
op (a,v):γ
−−−−−→ q3 ∈ rulA q4

cl (a,v):γ
−−−−−→ q2 ∈ rulA

accHsel(q1, q2) :- accHsel(q3, q4).

q ∈ statAe
accHsel(q, q).

q1, q2, q3 ∈ statAe
accHsel(q1, q2) :- accHsel(q1, q3),accHsel(q3, q2).

Figure 5.4: Inference rules for the definition ofaccAHsel
.

Running automatonE(A) for a candidate permits to test sufficiency for se-
lection and rejection at the event when it happens. At most one run has to be
processed per candidate, thanks to determinism.

5.4.2 Generic EQA Algorithm and its Instantiation for dSTAs

We present an EQA algorithm for queries defined by dSTAsA which runs in
polynomial time per step and candidate. The idea is to run theearliest automaton
E(A) of Section5.4.1on the input stream in order to decide selection and rejection
sufficiency for all answer candidates at all time points, without constructingE(A)
explicitly.

Running E(A) on the fly

Given a dSTAA overΣ× 2Vn and a treet ∗ τ over the same signature, we want to
compute a run ofE(A) ont∗τ in polynomial time in the size ofA. The application
of closing rules ofE(A) is easy, since it only has to look for a rule ofA. Applying
opening rules ofE(A) is a little more tedious, since we have to compute the sets
univ sel((a, v), γ, P ) anduniv rej((a, v), γ, P ′) while givena ∈ Σ, γ ∈ statAn , and
P, P ′ ⊆ statAe .

When assuming the completeness ofA in addition to determinism (which can
be ensured in polynomial time for a fixed arityn), these sets can be computed
by reduction to information on accessibility through hedges for A. Given a set
H ⊆ HΣ×2Vn of hedges, and event statesq1, q2 ∈ statAe , we define the following
accessibility predicate:

accAH(q1, q2) ⇔ ∃h ∈ H. runsAq1→q2
(h) 6= ∅

We compute it forHsel = HΣ×{∅} andHrej = HΣ×2Vn , with the Datalog program
in Figures5.4and5.5.
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(a, v) ∈ Σ× 2Vn q1
op (a,v):γ
−−−−−→ q3 ∈ rulA q4

cl (a,v):γ
−−−−−→ q2 ∈ rulA

accHrej(q1, q2) :- accHrej(q3, q4).

q ∈ statAe
accHrej(q, q).

q1, q2, q3 ∈ statAe
accHrej(q1, q2) :- accHrej(q1, q3),accHrej(q3, q2).

Figure 5.5: Inference rules for the definition ofaccAHrej
.

Proposition 20. The collections of values accA
Hsel

(q1, q2) and accAHrej
(q1, q2) can be

computed in timeO(|rulA|2 + |statAe |
3) for every complete dSTAA.

To explain the computation of univ selA, we introduce
beforeCloseA((a, v), γ, P ), the set of states that lead to a state ofP after
closing(a, v) with γ:

beforeCloseA((a, v), γ, P ) = {q0 | ∃q1 ∈ P. q0
cl (a,v):γ
−−−−−→ q1 ∈ rulA}

Lemma 8. For deterministic and completeA, and forX ∈ {sel, rej}, the safe
states univXA((a, v), γ, P ) are equal to:

{q | ∀q0. accAHX
(q, q0)⇒ q0 ∈ beforeCloseA((a, v), γ, P )}

Proof. Immediate from the definitions.

We will see in the sequel how the relationsaccHsel andaccHrej are precomputed
and then reused dynamically.

Generic Algorithm

Our algorithm will be obtained by instantiating the skeleton in Figure5.6 of a
generic EQA algorithm, which is parameterized by a classQ of query defini-
tions. In our computational model, such an algorithm, for a given queryQ, is
implemented by an SRAM, where candidates are stored in the working memory,
whereas the node identifiers are stored in registers. The static input of the al-
gorithm is a query definitione ∈ Q, and its dynamic input on the stream is its
ordered set of events. We assume that the stream is already parsed, as in our
SRAM model. Our algorithm adds the tuples ofQ(t) to the external output col-
lection incrementally at the earliest possible event. The main idea is to generate
all candidate tuples, test their aliveness repeatedly, output selected candidates and
remove rejected candidates.
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fun answer (e , t ) % e ∈ Q , t ∈ dom(Q)
l e t c a n d i d a t e s = s e t . new (∅ )

in
for η in eve(t) in s t ream ing−o r d e r do

c a n d i d a t e s . upda te (η )
for τ in c a n d i d a t e s do

i f (τ ,η ) ∈ s e lQe
( t )

then add−o u t p u t (τ )
c a n d i d a t e s . remove (τ )

e l s e i f (τ ,η ) ∈ r e j Qe
( t )

then c a n d i d a t e s . remove (τ )

Figure 5.6: Generic EQA algorithm for a classQ of query definitions.

Instantiation for dSTAs

Now suppose that the query is defined by a dSTAA. For every candidateτ we
maintain its configuration inE(A), i.e. its current state(q,S,R) ∈ statE(A)

e and a
sequenceΥ ∈ (statE(A)

n )∗ inside a stack. Sufficiency for selection(τ, e) ∈ selQA
(t)

is verified by testingq ∈ S, and sufficiency for rejection(τ, e) ∈ rejQA
(t) by

checkingq ∈ R. Updating the current state is done by applying a rule ofE(A),
that we can compute using the alternative definition ofuniv X in Lemma8.

Updating the current set of candidates at eventη means to apply a rule of
E(A) to the current state(q,S,R) ∈ E(A), and for opening events to create all
new candidates, where the current node is used. LetC the number of candidates
to be processed at event(op, π). Each of theC candidates originates from an
alive candidate at the previous eventpr((op, π)), with a possible completion of•-
components withπ. We distinguish between candidates that get safe for selection
or rejection at(op, π) from those that are still alive. We writei = simult safeQA

(t)
for a bound on the former (when iterating oneve(t)), while the second is bounded
by the concurrencyc = concurQA

(t). Hence we haveC ≤ c + i. Let us formalize
simult safeQ(t), the maximal number of candidates becoming safe for selection
or rejection at the same event. For a tupleτ and a nodeπ, we writeτ−π for the
tuple obtained fromτ by replacingπ by •.

simult safeQ(t)=maxπ∈nod(t)

∣∣∣∣

{
τ |

τ−π is alive at eventpr((op, π))
∧ τ is not alive at event(op, π)

}∣∣∣∣

=maxπ∈nod(t)

∣∣∣∣

{
τ |

(τ−π, pr((op, π))) /∈ selQ(t) ∪ rejQ(t)
∧ (τ, (op, π)) ∈ selQ(t) ∪ rejQ(t)

}∣∣∣∣

The maximal value forsimult safeQ(t) is reached when there are many alive can-
didatesτ−π atpr((op, π)), and all the candidatesτ are not alive at(op, π). There
can be at most2n values forτ , for a givenτ−π, so we get the following upper



Section 5.4 – EQA Algorithm for dSTAs 111

bound:
simult safeQ(t) ≤ 2n · concurQ(t)

We have already seen how to apply rules ofE(A) in polynomial time in the
size ofA. The node state of the rule is pushed to stackΥ for opening events, and
popped fromΥ for closing events.

Theorem 4. For every complete dSTAA recognizing a canonical language over
Σ × 2Vn, one can compute in timeO(|A|3) an SRAMMA computing the query
QA and using at each event:

• Time(MA, t) = O((c + i) · |A|2)

• Space(MA, t) = O(c · d · |A|)

with c = concurQA
(t), i = simult safeQA

(t), andd = depth(t).

Proof. The computation ofMA from A consists mainly in building the accessi-
bility relationsaccAHX

for X ∈ {sel, rej}. We can compute these relations forA in
timeO(|A|3) according to Proposition20. These relations are stored in the finite
state control.

Processing an opening event requires more computations than a closing one,
as it needs to determine the sufficient events. Given a labela ∈ Σ and a current
state(q0,S0,R0) for the partial run of the candidate, we have to consider the rules

of A of the form q0
op (a,v):γ1
−−−−−−→ q1. For each of these rules, the computation of

beforeClose((a, v), γ1,S0) can be performed in timeO(|rulA|). Then, the compu-
tation ofuniv X whereX ∈ {sel, rej} can be done in timeO(|statAe |

2), by Lemma
8. There are at most(c + i) such updates to process per event.

The fact that this algorithm is an EQA algorithm implies thatat mostc candi-
dates are stored at a time. For each candidate, we have to store the node states of
its ancestors and its current event state, which requiresd · |A|.

5.4.3 Adding Schemas

With respect to sufficiency checking, we can integrate the schema into the query.
Validation of the document with respect to the schema is an independent task, that
we run in parallel. Given ann-ary queryQ with a schemadom(Q) ⊆ TΣ, we
define the queriesQsel andQrej with universal schema:

Qsel(t) =

{
Q(t) if t ∈ dom(Q)
nod(t)n otherwise

dom(Qsel) = TΣ

Qrej(t) =

{
Q(t) if t ∈ dom(Q)
∅ otherwise

dom(Qrej) = TΣ
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q0
op (a,v):γ1
−−−−−−→ q1∈ rulA q′0

op a:γ′
1−−−−→ q′1∈ rulB

(q0, q
′
0)

op (a,v):(γ1 ,γ′
1)

−−−−−−−−→ (q1, q
′
1) ∈ rulAsel

q0
cl (a,v):γ0
−−−−−→ q1∈ rulA q′0

cl a:γ′
0−−−→ q′1∈ rulB

(q0, q
′
0)

cl (a,v):(γ0,γ′
0)

−−−−−−−−→ (q1, q
′
1) ∈ rulAsel

initAsel = initA × initB finAsel = (finA × finB) ∪ (statAe × (statBe − finB))

Figure 5.7: Construction ofAsel from A andB.

Lemma 9. selQ = selQsel and rejQ = rejQrej
.

Proof. Straightforward from definitions.

(τ, η) ∈ selQsel iff τ ∈ domη(t)
n ∧ ∀t′ ∈ TΣ. equalη(t, t

′)⇒ τ ∈ Qsel(t
′)

iff τ ∈ domη(t)
n ∧ ∀t′ ∈ dom(Q). equalη(t, t

′)⇒ τ ∈ Q(t′)

(τ, η) ∈ rejQrej
iff






τ ∈ dom•η(t)
n ∧

∀t′ ∈ TΣ. equalη(t, t
′)⇒

∀τ ′ ∈ compl(τ, t′, η). τ ′ 6∈ Qrej(t
′)

iff






τ ∈ dom•η(t)
n ∧

∀t′ ∈ dom(Q). equalη(t, t
′)⇒

∀τ ′ ∈ compl(τ, t′, η). τ ′ 6∈ Q(t′)

For selection detection, the idea is to build an automatonAsel recognizing
Qsel from the STAsA andB recognizingQA,B. This automaton will be similar
to the product automaton ofA and B, but final states will be enriched by all
invalid selections, as introduced in the definition ofQsel. Figure5.7shows how to
obtain the STAAsel. Prior to this construction,A andB must be determinized and
completed. For rejection detection, we proceed the same wayto obtainArej such
thatQArej = Qrej. The only difference betweenAsel andArej lies in the final states:
finArej = finA × finB.

Lemma 10. L(Asel) = LQsel andL(Arej) = LQrej.

This way, we can compute the safe states for selection withE(Asel) and the
safe states for rejection withE(Arej). From an implementation point of view, there
is no need to compute the safe states for rejection ofE(Asel) and the safe states
for selection ofE(Arej). Thus, we can run the efficient algorithm presented in
Section5.4.2and compute the same amount of safe states as forE(A), but on
a bigger automaton. We get the following result for our EQA algorithm with
schemas.
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Theorem 5. For every complete dSTAA recognizing a canonical language over
Σ × 2Vn and every complete dSTAB, one can compute in timeO(|A|3 · |B|3) an
SRAMMA,B computing the queryQA,B, whereMA,B uses for each event:

• Time(MA,B, t) = O((c + i) · |A|2 · |B|2)

• Space(MA,B, t) = O(c · d · |A| · |B|)

with c = concurQA,B
(t), i = simult safeQA,B

(t), andd = depth(t).

Proof. The complexity analysis is similar to Theorem4. The difference is that we
useAsel andArej instead ofA, and|Asel| and|Arej| are inO(|A| · |B|), and can be
computed with this time complexity.

5.4.4 Example Run of the Algorithm with Schema

For illustration, let us consider the monadic queryQ0 that selects all nodes without
next sibling. It can be defined in MSO by the formula¬∃y. ns(x, y). The root oft
is selected, and this can be decided when opening it. Withoutschema, membership
π ∈ Q0(t) cannot always be decided at opening time, so the algorithm needs to
memorize nodes until, either encountering the opening event of the next sibling
(for nodesπ /∈ Q0(t)) or the closing event of the father (for selected nodesπ ∈
Q0(t)). When assuming the DTDa → (a∗b)∗ and b → ǫ, one knows that all
a-nodes except the root have a next sibling in all trees satisfying the DTD, so
selection ofa nodes be decided early at opening time. Forb-nodes, selection can
still be decided only later, when closing the parent. We consider the schemaS0

which corresponds to the DTD{a → a∗b, b → ǫ}, and choose it as domain of
Q0: dom(Q0) = S0. We show how the algorithm would behave on this input.

For clarity, we omit node states in the following figures, as only one occurs in
each automaton. Moreover, wheneverℓ occurs in a rule, this means that this rules
exists forℓ ∈ {a, b}. Let A be the dSTA represented in Figure5.8(a), andB the
dSTA in Figure5.8(b). We haveQ0 = QA,B.

We start by completingA with the sink state3 andB with the sink state2. By
applying the inference rules in Figure5.7, we obtain the STAAsel represented in
Figure5.9(states resulting from completion are omitted for clarity). The STAArej

only differs on final states.
Then we compute the relationsaccHsel and accHrej . Figure5.10 is an array

of Booleans representing the relationaccHrej . States(q0, q1) are writtenq0q1

for sake of conciseness. The relationaccHsel is obtained from this array by re-
placing values in italics by0. For instance,accHrej((0, 2), (1, 2)) holds, but not
accHsel((0, 2), (1, 2)).
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0 1 2

op (ℓ, ∅)
op (ℓ, {x1}) op (ℓ, ∅)

cl (ℓ, ∅)

cl (ℓ, {x1}) cl (ℓ, ∅)

cl (ℓ, ∅)

(a) dSTAA recognizingLQ0 .

0

1

opa
op b

cl bcl a

(b) dSTA B recognizing
L(B) = dom(Q0).

Figure 5.8: Input dSTAs.

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

op (ℓ, ∅)
op (ℓ, {x1})

cl (b, ∅)cl (a, ∅)

cl (b, {x1})

cl (a, {x1})

cl (b, ∅)

cl (a, ∅)

op (ℓ, ∅)

cl (b, ∅)cl (a, ∅)

Figure 5.9: The dSTAAsel obtained fromA andB (sink states are omitted).

Suppose that we want to compute the safe states at a root labeled by(a, ∅) on
our example. This corresponds to computingsafeselAsel((a, ∅), γ, finAsel), where
γ is the only node state inAsel. First, we obtain from the “cl” rules ofAsel:

beforeCloseAsel((a, ∅), γ, finAsel) =
{(0, 0), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (3, 0), (3, 2)}

We denote this setBC1. From the previous section, we can look at which statesq
verify ∀q0. accHsel(q, q0)⇒ q0 ∈ BC1. These states are the safe states:

safeselAsel((a, ∅), γ, finAsel) = {(0, 2), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (3, 2)}

Using this processing at each opening event for safe states for selection and rejec-
tion, we obtain the run on the canonical tree represented in Figure5.11. Here, safe
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accHrej 00 01 02 10 11 12 20 21 22 30 31 32

00 1 1 1 1 1 1 1 1 1 1 1 1
01 0 1 1 0 0 1 0 0 1 0 0 1
02 0 0 1 0 0 1 0 0 1 0 0 1
10 0 0 0 1 0 0 0 0 0 1 1 1
11 0 0 0 0 1 0 0 0 0 0 0 1
12 0 0 0 0 0 1 0 0 0 0 0 1
20 0 0 0 0 0 0 1 1 1 1 1 1
21 0 0 0 0 0 0 0 1 1 0 0 1
22 0 0 0 0 0 0 0 0 1 0 0 1
30 0 0 0 0 0 0 0 0 0 1 1 1
31 0 0 0 0 0 0 0 0 0 0 1 1
32 0 0 0 0 0 0 0 0 0 0 0 1

Figure 5.10:accHrej associated toQ0 andS0.

states for selectionS are those provided byAsel and safe states for rejectionR are
those provided byArej. We only represent them as they are the only relevant ones
(safe states for rejection computed byAsel are useless, for instance).

5.4.5 Implementation

We are currently implementing the algorithm described above, in a project named
EvoXs [GP09]. A first step is to have an earliest query answering algorithm for
queries defined by dSTAs. Then we would like to implement the translation of
XPath fragments to dSTAs, in order to have an EQA XPath evaluator. The trans-
lation of XPath fragments to dSTAs is provided in Chapter6.

We provide here a more precise and efficient procedure for thecomputation of
safe statesuniv X whereX ∈ {sel, rej} for a dSTAA. We first exhibit some prop-
erties of the function mapping setsP to beforeClose((a, v), γ, P ), where(a, v)
andγ are fixed.

Lemma 11. For every(a, v) ∈ Σ× 2Vn, γ ∈ statAn , andP1, P2 ⊆ statAe :

beforeClose((a, v), γ, P1∪P2) = beforeClose((a, v), γ, P1)∪beforeClose(a, γ, P2)

So we getbeforeClose((a, v), γ, P2) = ∪q∈P2beforeClose((a, v), γ, {q}).
Hence we can precomputebeforeClose((a, v), γ, {q}) for eacha ∈ Σ, γ ∈ statAn
andq ∈ statAe , and reuse it for computingbeforeClose((a, v), γ, P2). This prepro-
cessing requires timeO(|Σ| · |A|3) and spaceO(|Σ| · |A|2). This could also be
replaced by a computation on-demand, and by keeping in memory the results.

Now we look into more details the properties of the function mapping setsP
to univ X((a, v), γ, P ) for fixed (a, v) andγ.



116 Chapter 5 – Earliest Query Answering for Streaming Tree Automata

(0, 0), S0, F0

(a, ∅)

(a, ∅)

(b, ∅)

(b, {x1})

(0, 0), S1, F1

γ, S0, F0

(2, 0), S0, F0

(0, 0), S2, F2

γ, S1, F1

(0, 0), S1, F1

(0, 0), S3, F3

γ, S2, F2

(0, 1), S2, F2

(0, 0), S4, F4

γ, S1, F1

(1, 1), S1, F1

(a) Run of the algorithm on a tree for one candidate.

S0={(0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (3, 1), (3, 2)}
S1=S2={(0, 2), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (3, 2)}
S3={(0, 1), (0, 2), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (3, 1), (3, 2)}
S4={(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)}
F0={(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2)}
F1={(0, 1), (0, 2), (1, 0), (1, 2), (2, 2), (3, 0), (3, 1), (3, 2)}
F2={(0, 2), (1, 0), (1, 2), (2, 2), (3, 0), (3, 1), (3, 2)}
F3={(0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2)}
F4={(0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2)}

(b) Sets involved in this run.

Figure 5.11: Run of the algorithm on a tree.

Lemma 12. For every(a, v) ∈ Σ × 2Vn, γ ∈ statAn , P1, P2 ⊆ statAe and X ∈
{sel, rej}:

univ X((a, v), γ, P1 ∪ P2) ⊇ univ X((a, v), γ, P1) ∪ univ X((a, v), γ, P2)

A consequence is that the function mapping setsP → univ X((a, v), γ, P )
is monotonic. Note that in the general case,univ X((a, v), γ, P1 ∪ P2) 6⊆
univ X((a, v), γ, P1) ∪ univ X((a, v), γ, P2). For instance, in our example,
(0, 2) /∈ univ rej(a1, 0, {(1, 2)}) and (0, 2) /∈ univ rej(a1, 0, {(3, 2)}), but
(0, 2) ∈ univ rej(a1, 0, {(1, 2), (3, 2)}).

Algorithm in Figure 5.12 uses these results, and also the fact that, from
Lemma8, univ X((a, v), γ, P2) ⊆ beforeClose((a, v), γ, P2). Note that if we
choose to store all the computations of safe states (used in the firstfor loop), this
can use memory of sizeO(|Σ| · |statAn | · |2

statAe |2). However, this can be weakened.
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fun univ X ( (a, v) ,γ ,P )
l e t s a f e S t a t e s = s e t . new (∅ )
l e t b e f o r e C l = ∪q∈P beforeClose((a, v), γ, {q})
l e t agenda = b e f o r e C l

in

/ / f i r s t we s e t t h e agenda to what r e a l l y needs to be computed
for P1 ⊆ P such that univ X((a, v), γ, P1) is memorized

l e t U = univ X((a, v), γ, P1)
in

s a f e S t a t e s . add (U )
agenda . remove (U )

/ / t hen we per form t h e needed compu ta t ions
for q in agenda

i s s a f e = t r u e
for q′ such that accHX

(q, q′)
i f q′ not in b e f o r e C l

i s s a f e = f a l s e
i f i s s a f e

s a f e S t a t e s . add (q )

return s a f e S t a t e s

Figure 5.12: Algorithm computinguniv X((a, v), γ, P ).

For instance a good trade-off between memory and time consumption can be to
store all safe states of all previous siblings of the currentbranch. The reason is
that the safe states at opening(op, π·i) are computed from the safe states at closing
(cl, π ·i), which are the same for all siblings (as they are equal to the safe states at
(op, π)). Thus, if two siblings have the same label and the same associated node
state, their safe states are equal.

5.5 Streamability of dSTAs

The EQA algorithm previously described gives a PTIME procedure for evaluating
queries defined by dSTAs, while keeping only alive candidates in memory. As
a consequence, dSTAs are a streamable query class when treesare shallow, i.e.
when there is a bound on the depth of valid trees. LetQd

dSTAs be the class of
queries of fixed arityn where all expressionse ∈ Q are composed of two dSTAs
A,B definingQA,B, with the semantic restriction that schemasL(B) only contains
trees of depth at mostd.

Theorem 6. For everyd ∈ N, the classQd
dSTAsis m-streamable for allm ∈ N0.

Proof. The EQA algorithm requires complete dSTAs, so a first step is to complete
A andB. This can be done in timeO(|Σ| ·2n · |statAe | · |statAn | + |rulA|) for A, and
similarly for B. Asn is fixed, this is a PTIME procedure. Then the precomputation
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step of the EQA algorithm is in PTIME, so we can find a polynomialp0 for the
computation of SRAMsMA,B computingQA,B.

If we suppose that the concurrency oft is less than a givenm, then
concurQA,B

(t) + simult safeQA,B
(t) ≤ (2n + 1) · m, as we know that

simult safeQA,B
(t) ≤ 2n · concurQA,B

(t). Hence from Theorem5, the time used
per event is inO((2n +1) ·m · |A|2 · |B|2), and we can find a polynomialp2 bound-
ing this, asn is fixed. The space complexity is inO(m · depth(t) · |A| · |B|), and
depth(t) is bounded byd. Hence a polynomialp2 bounding the space complexity
exists.

However dSTAs allow to define queries with unbounded concurrency, so they
are not∞-streamable.

Proposition 21. For everyd ≥ 2, the classQd
dSTAsis not∞-streamable.

Proof. We can for instance define a dSTAA for the query selecting all children of
the root, if the last one is labeled bya. For this query and any value ofk, the tree
t with k + 2 children is such thatconcur nodQA

(t) > k. By Proposition9,Qd
dSTAs

is not∞-streamable for shallow trees containing trees of depthd = 2.

5.6 Conclusion

In this chapter, we have seen that dSTAs enjoy good streamability properties, by
proposing an EQA algorithm using low buffering (close to optimal) while still be-
ing in polynomial. More generally, EQA is time consuming fornumerous query
classes. We believe that dSTAs are the good model for efficient XML stream pro-
cessing, and conjecture that a query class ism-streamable for allm ∈ N0 iff there
is a PTIME translation to dSTAs. In Chapter6, we provide such a translation for
a fragment of XPath, thus proving itsm-streamability for allm ∈ N0. Finding
∞-streamable classes of dSTAs-defined queries by syntactic and semantic restric-
tions is an open issue.

Processing XML streams often implies a tradeoff between time and space com-
plexity. In earliest query answering algorithms, the priority is given to a minimal
space consumption. In the future, we plan to validate our algorithm experimen-
tally. For some queries, significant improvements are expected on space con-
sumption. In this chapter we provided some details on efficient computation of
safe states. Some further work is also planned, to get a concise data structure for
the set of alive candidates to be buffered. Another challenge is to avoid the com-
pletion of the input dSTAsA andB, as the completeness was always assumed, but
the completion requires time inO(|Σ| · 2n · |statAe | · |statn|A) for A, and similarly
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for B. It will also be interesting to distinguish which queries are efficiently pro-
cessed. In Chapter7, we give a procedure to detect some of these queries, namely
those having bounded delay and concurrency.

Another future work is to investigate how the EQA algorithm can be extended.
We propose three extensions in the sequel. The first possibleextension is on the
query class. We studied queries defined by dSTAs, but is it possible to adapt
the algorithm for deterministic pushdown automata? This seems reasonable, as
STAs are a reformulation of visibly pushdown automata, i.e.pushdown automata
where the letter gives the action (push or pop). Without determinism, we can-
not build a PTIME EQA algorithm (by Proposition18), and determinism, together
with our representation through canonical languages, werecrucial in our con-
struction. The second extension is to consider other structures, and for instance
directed acyclic graphs. These structures models for instance XML documents
with ID/IDREF links. The third extension could be on the property computedby
the algorithm. Here, the property is the safety for selection and rejection. But the
core of the algorithm consists in putting the interesting information from the con-
text (the states of ancestors, typically) into the current state, so that the algorithm
can use it progressively.
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Streamable Fragments of Forward
XPath
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6.1 Introduction

Forward XPath is not streamable, even if restricted to downward axes, as we have
seen in Chapter3 (Corollary3). In this chapter, we distinguish fragments of For-
ward XPath that arem-streamability for allm ∈ N0. A streaming algorithm is
obtained by compilation to dSTAs in PTIME. Here, we overcome the difficulty
that Vardi and Wolper’s automata construction for formulasof the modal logic
LTL [ VW94] and thus for XPath [LS08] may produce non-deterministic tree au-
tomata of exponential size. In contrast, our construction yields deterministic tree
automata of polynomial size.

This chapter illustrates that dSTAs guide us towards relevant restrictions on
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Forward XPath. We conjecture that most of our restrictions are indeed neces-
sary for streamability and thus independent of our automataapproach. While our
results can be understood as a proof of concept, they do not yet constitute an
exhaustive treatment with narrow upper and lower bounds.

Our translation will be by induction on the structure of pathexpressions. For
simplicity, we consider the fragment of Forward XPath with downward axesch
andch∗ only. Our construction requires the following syntactic and semantic re-
strictions (based on the schema), which define the query languagek-Downward
XPath fork ∈ N.

First of all, the usage of intersections needs to be limited,which arise when
translating conjunctions in path expressions. Allowing anunbounded number of
conjunctions would correspond to intersecting an unbounded number of automata,
and thus require exponential time. As we need a PTIME translation, we limit the
number of branches ofk-Downward XPath expressions tok.

Second, non-determinism must be avoided when translating descendant axis
ch∗, since otherwise, simultaneous treatments of all possiblematches may overlap.
Suppose for instance, that we want to construct a dSTA for a path expression
ch∗::∗[F] from a dSTAAF for filter F. Then, for each descendant of the root,
we have to runAF. This can lead to an unbounded number of simultaneous runs
of AF to be handled byA, so thatA cannot be of polynomial size. In order to
avoid such overlaps, we require that all steps with descendant axis are guarded
by a node label, i.e., they must have the formch∗::a[F]. Furthermore, we impose
the semantic restriction, that no tree satisfying the schema may contain nesteda-
nodes. This way, there exists at most onea-node per branch of every valid tree,
so that we can check them by independent runs ofAF on all subtrees rooted at
a-nodes. AutomatonA starts by looking for ana-node, and once such a node is
found, it runs the automatonAF in order to check whether thisa-node verifies
F. When closing thea-node, the automaton checks whether the run ofAF was
successful, and searches for anothera-node on another branch ifAF failed.

Based on these restrictions, we obtain a translation ofk-Downward XPath ex-
pressions to equivalent dSTAs in PTIME. Combined with the earliest query ans-
wering (EQA) algorithm for dSTAs of Chapter5, this translation yields an EQA
algorithm fork-Downward XPath and provesm-streamability for allm ∈ N0, but
not∞-streamable, sincek-Downward XPath contains queries with unbounded
concurrency.

Even thoughk-Downward XPath is small in that it supports only downward
axes, it is still very expressive, as it allows for conjunctions, disjunctions, nega-
tions, and supportsn-ary queries. The restrictions ofk-Downward XPath are nat-
ural, in that they avoid overlapping tests of the same filter for different matches.
We conjecture that our approach can be extended to further axis, but that removing
some of these other restrictions would lead to non-streamability. In the last section
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of this chapter, we discuss some opportunities for extensions and improvements.
First, we present a further restriction onk-Downward XPath, that should imply
∞-streamability, and second, we discuss a generalization with horizontal axes.

Related work The idea of translating XPath expressions into automata forstrea-
ming XPath evaluation has been proposed for a long time. Altinel and Franklin
[AF00] proposed a translation of non-branching downward path expressions to
word automata on the language of branches. Green et al. [GMOS03, GGM+04]
also use this kind of translation, while allowing branchingexpressions, and using
a stack during the evaluation.

Gupta and Suciu [GS03b] propose the use of deterministic pushdown au-
tomata, and come up with an algorithm that is closer to ours. In terms of com-
plexity, the algorithm by Gupta and Suciu requires exponential time in the size of
the query, as determinization is needed. Only needed parts of the automaton are
determinized, though, as the algorithm computes it lazily.Moreover, their frag-
ment subsumesk-Downward XPath, as it mainly consists in CoreXPath 1.0, with
downward axes and data joins.

Compact representations of automata were also investigated, in the context
of XPath streaming evaluation. Transducer networks are such compact represen-
tations. They consist in a network of pushdown transducers,that are pushdown
automata sending messages to other automata. Translationsof several XPath frag-
ments to transducer networks were investigated. Peng and Chawathe [PC05] focus
on XPath with downward axes, while Olteanu [Olt07b] translates all of Forward
XPath. Benedikt and Jeffrey [BJ07] study the filtering case for a fragment of
XPath where matching can be decided at opening (resp. closing) time. Benedikt,
Jeffrey and Ley-Wild [BJLW08] prove that this translation can be done in linear
space and time for a fragment using backward guarded moves. More generally,
all the aforementioned translations of XPath fragments to transducer networks are
in PTIME and yield time-efficient algorithms. However, transducer networks are
not adapted to static analysis, and all these algorithms store useless candidates
in some cases. In [BJLW08], Benedikt, Jeffrey and Ley-Wild propose to replace
transducer networks by binary decision diagrams (BDDs [Bry86]), as these can
also be used as compact data structures for automata. Translations of transducer
networks and BDDs to standard automata are in exponential time, so that we can-
not use these representations to get a PTIME EQA algorithm using the algorithm
for dSTAs in Chapter5.

XPath is a navigational language, whose similarities with modal logics has
been extensively studied [Lib06]. LTL, the Linear Temporal Logic, is a modal
logic defining properties over words, using modality operators Next, Previous,
Until andSince. A variant of LTL for tree structures, called TLtree, has been pro-



124 Chapter 6 – Streamable Fragments of Forward XPath

posed by Schlingloff [Sch92], and XPath expressions can be translated in linear
time to equivalent TLtree formulas [Mar05a].

Vardi and Wolper [VW94] propose a translation of LTL formulas to automata
in exponential time, for infinite words. This construction can be easily adapted
for TLtree over finite trees. Libkin and Sirangelo [LS08] propose such a transla-
tion from TLtree formulas into query automata [NS02], i.e. tree automata using
word automata to recognize the languages of labels of children. This translation
also uses exponential time. Calvanese et al. [CDGLV09] proved recently that
Regular XPath can also be translated in exponential time to non-deterministic tree
automata (standard automata overfcns encodings of trees). This time, the au-
thors do not use modal logics as intermediate query language, but alternating tree
automata.

CoreXPath 1.0 has the expressiveness as the two-variables fragment of FO
over trees [MdR05], and is thus strictly less expressive than MSO and tree au-
tomata. Using the standard techniques for translating MSO formulas to tree
automata [Don70, TW68] leads to algorithms with non-elementary complexity
[KMV07, Cla08].

6.2 m-Streamable Fragments of Forward XPath

We start this chapter by introducingm-streamable XPath fragments, form ∈ N0.
We definek-Downward XPath by imposing semantic and syntactic restrictions
simultaneously. The expressions ofk-Downward XPath are pairs of definitions
of n-ary queries and schemas. Schemas are defined by dSTAs and queries by
filters terms withn variables. Using filter terms with variables instead of Forward
XPath expressions is not essential, but has the advantage ofbeing more general
while simplifying algorithms. In the remainder of the chapter, we assume that
|Σ| ≥ 2.

6.2.1 Filter Terms with Variables

Let D = {ch∗, ch} be the set of axis andV a set of variables. Filter terms are
ranked trees with signature∆ = {and, not, true, /, ∗} ∪ D ∪ Σ ∪ V as below,
whered ∈ D, ℓ ∈ Σ ∪ {∗} andx ∈ V.

T ::= and(T1, T2) | not(T ) | true | /(T ) | d(T ) | ℓ(T ) | x

The only additional restriction we assume, is that the operator / can appear in root
position only. Terms of the form/(T ) correspond to root filters and all others to
ordinary filters. Given a treet and a variable assignmentµ : V → nod(t), we
define a set valued semanticsJT Kt,µ ⊆ nod(t) for all filter terms in Figure6.1.
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J/T Kt,µ = {ǫ} ∩ JT Kt,µ Jd(T )Kt,µ = {π | ∃π′ ∈ JT Kt,µ. (π, π′) ∈ dt}
JxKt,µ={µ(x)} Jℓ(T )Kt,µ = {π | ℓ ∈ {∗, labt(π)}} ∩ JT Kt,µ

JtrueKt,µ = nod(t) Jand(T1, T2)Kt,µ = JT1Kt,µ ∩ JT2Kt,µ

Jnot(T )Kt,µ = nod(t)− JT Kt,µ

Figure 6.1: Semantics of filter terms.

T([self::ℓ]) = ℓ(true) T([d::ℓ]) = d(ℓ(true))
T([self::ℓ F]) = ℓ(T(F))) T([d::ℓ F]) = d(ℓ(T(F)))
T([self::ℓ/P]) = ℓ(T([P])) T([d::ℓ/P]) = d(ℓ(T([P])))
T([not(F)]) = not(T(F)) T([F1 and F2]) = and(T(F1), T(F2))
T([x]) = x T(/P) = /(T([P]))

Figure 6.2: Filters and rooted paths as filter terms, whered 6= self. We assume
the selection position of rooted paths was marked at beforehand by a variable[x].

In Figure6.2, we map XPath filters and rooted paths using axes{self, ch, ch∗}
to filter terms. The translation of filtersT(F) is straightforward. Similarly, we
translate rooted pathsR to filter termsT(R(x)) with a single free variablex. We
annotate this variable before translation toR by using the extra filter[x]. The
translation preserves the semantics: For filters, we have

JFKt
filter = JT(F)Kt,µ

for all variable assignmentsµ. For root filtersR, wherex annotates the selection
position, we have

JR(x)Kt
filter = {µ(x) | JT(R(x))Kt,µ 6= ∅}

6.2.2 k-Downward XPath

Let thewidth of a termT be the number of its leaves. This corresponds to the
maximum number of conjunctions to be tested simultaneously. We have to bound
this number for our automata constructions (condition1 below).

Descendant axis are a source of trouble since they are highlynondeterministic.
The query defined by/(ch∗(∗(and(x, ch∗(a))))) for instance has unbounded con-
currency, since the selection ofb-nodes in treesb(b(b(. . . (a) . . .))) can be decided
only when encountering thea-leaf. This problem is solved by three restrictions:
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All descendant steps must be guarded by a label ofΣ, i.e., they must all be of the
form ch∗(a(T )) (condition3). We impose a semantic restriction on all treest ac-
ceptable by the schema, stating that no furthera-node may be encountered below
ana-node int (condition4). All filters must start at the root, in order to avoid any
implicit descending step (condition2). Finally, we only consider shallow trees
(condition5).

Let k ∈ N. We definek-Downward XPathas the query class containing all
pairs(T (x1, . . . , xn), B) of termsT with a sequence of variablesx1, . . . , xn and
dSTAsB with signatureΣ, that satisfy the following conditions:

1. the width ofT is bounded byk, i.e.,T has at mostk leaves.

2. T starts at the root, i.e.,T matches some term/(T ′).

3. if ch∗(T ′) is a subterm ofT thenT ′ matches some terma(T ′′).

4. if ch∗(a(T ′′)) is a subterm ofT then:

∀t ∈ L(B). ∀π, π′ ∈ laba(t). π 6= π′ ⇒ ¬(ch∗)t(π, π′)

5. the depth of the valid treest ∈ L(B) is bounded by some constant.

6.2.3 Deciding Membership tok-Downward XPath

A procedure for testing in PTIME whether a pair(T (x1, . . . , xn), B) is in
k-Downward XPath can be obtained. We first characterize STAs recognizing trees
of bounded depth, in order to decide condition5.

Lemma 13. For fixedn, it can be decided inPTIME whether an STAB accepts
trees of bounded depth, i.e., whether∃d ∈ N. t ∈ L(B)⇒ depth(t) ≤ d.

Proof. To decide whether trees inL(B) are of bounded depth, we look for vertical
loops. Letdeepbe the relation on(statBe )4 defined by:

deep(q1, q
′
1, q2, q

′
2)⇔






∃t ∈ TΣ. ∃r ∈ runsB(t). ∃(π, π′) ∈ ch+(t).
q1 = r(pr((op, π))) ∧ q′1 = r((cl, π)) ∧
q2 = r(pr((op, π′))) ∧ q′2 = r((cl, π′))

The relationdeepcan be computed by the Datalog program given by inference
rules in Figure6.3. We use a smooth notation: rules in hypothesis of inference
schemas have to be rules ofB, andaccHΣ

is the accessibility relation ofB through
hedges on alphabetΣ, as defined in Section5.4.2. The first inference schema
handles the case whereπ′ is a child ofπ. The second one is the recursive case
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q1
op a:γ1
−−−−→ q3

accHΣ−−−→ q2
op b:γ2
−−−−→ q4

accHΣ−−−→ q5
cl b:γ2
−−−→ q′2

accHΣ−−−→ q6
cl a:γ1
−−−→ q′1

deep(q1, q
′
1, q2, q

′
2).

q1
op a:γ1
−−−−→ q3

accHΣ−−−→ q4 q′4
accHΣ−−−→ q6

cl a:γ1
−−−→ q′1 q2, q

′
2 ∈ state

deep(q1, q
′
1, q2, q

′
2) :- deep(q4, q

′
4, q2, q

′
2).

Figure 6.3: Inference rules for the definition ofdeep.

for deeper depths. We call a stateproductiveif it can be reached by an initial
state, and a final state can be reached from it.L(B) is not of bounded depth iff we
can loop between(q1, q

′
1) and(q1, q

′
1) itself, i.e. iff there exists productive states

q1, q
′
1 ∈ statBe such thatdeep(q1, q

′
1, q1, q

′
1). This can be checked in PTIME.

Proposition 22. Given a termT (x1, . . . , xn) and a dSTAB overΣ, it is decidable
in PTIME depending on|T |, |B|, |Σ|, k andn whether(T (x1, . . . , xn), B) is in
k-Downward XPath.

Proof. Conditions1 to 3 are syntactic, and can be checked in PTIME in |T |.
Condition 5 can be checked in PTIME in |B| by Lemma 13. For condi-
tion 4, let Da be a dSTA accepting trees having twoa-nodes in a branch, i.e.:
L(Da) = {t ∈ TΣ | ∃π, π′ ∈ labt

a. ch+(π, π′)}. Then, for every label
a ∈ Σ such thatch∗(T ′) is a subterm ofT for someT ′, we have to check that
L(B) ∩ L(Da) = ∅. This can be done in timeO(|T | · |B| · |Σ|).

6.2.4 Translatingk-Downward XPath to dSTAs

For fixed k∈N, we propose a new PTIME translation of expressions
(T (x1, . . . , xn), B) of k-Downward XPath into dSTAs(A, B) such that
(T (x1, . . . , xn), B) and(A, B) both recognize the same queryQA,B. The dSTA
B defining the schema does not need translation, and we only compile terms
T (x1, . . . , xn) into dSTAsA. The translation is correct and in PTIME if B is
such that(T (x1, . . . , xn), B) is in k-Downward XPath.

For clarity, we first provide a translation of expressions ink-Downward XPath
to dSTAs such that the target dSTAs accept non-canonical trees: variables inVn

may not appear, or appear several times in those trees. For this purpose, we extend
canonical annotations. For a treet ∈ TΣ and a functionν: nod(t) → 2Vn, let t∗̃ν
be the tree withdom(t∗̃ν) = dom(t) and for all nodesπ ∈ nod(t), labt∗̃ν(π) =
(labt(π), ν(π)). The semantics of filter terms is extended in the natural way,by
changing the semantics of variablesx ∈ Vn: JxKt,ν = {π ∈ nod(t) | x ∈ ν(π)}.



128 Chapter 6 – Streamable Fragments of Forward XPath

Moreover, dSTAs resulting from the translation are such that there exists a run
on every tree overΣ×2Vn. STAs having these property are calledpseudo-complete
in the sequel.

Lemma 14. There existsc > 0 such that for every expression(T1(x1, . . . , xn), B)
of k-Downward XPath and subtermT of T1, a pseudo-complete dSTAA over sig-
natureΣ×2Vn with at most(3 · |T |)width(T ) event and node states can be computed
in time at mostc · (|rulA| · (5 · |Σ|)width(T ) + |T |) such that for every treet ∈ L(B)
andν: nod(t)→ 2Vn:

t∗̃ν ∈ L(A) iff ǫ ∈ JT Kt,ν

Proof. The proof is by induction on the structure of filter terms. Forα ∈ {op, cl}
and a ∈ Σ, we write rulAα,a = {q1

α a:γ
−−−→ q2 ∈ rulA}. In the following, we

assume that dSTAs are stored by a data structure for which we can find constants
ci (1 ≤ i ≤ 7) such that:

(i). for every pair of pseudo-complete dSTAs(A1, A2), a pseudo-complete
dSTA forA1 ∩A2 with |statA1

e | · |statA2
e | event states,|statA1

n | · |statA2
n | node

states and such that|rulA| =
∑

α∈{op,cl},a∈Σ |rulA1
α,a|·|rulA2

α,a| can be computed

in time c1 · |rulA|.

(ii). for every dSTAA, the dSTAA′ obtained by swapping the final states ofA
(i.e.,finA′

= statAe − finA) can be obtained in constant timec2.1

(iii). for every dSTAA, the set of rulesIA = {q1
op (a,v):γ
−−−−−→ q2 ∈ rulA | q1 ∈

initA} can be computed in timec3 · |IA|.

(iv). for every dSTAA and every(a, v, γ) ∈ Σ× 2Vn × statAn , the set of closing

rulesCA = {q1
cl (a,v):γ
−−−−−→ q2 ∈ rulA} can be computed in timec4 · |CA|.

(v). for every dSTAA and symbola ∈ Σ, we can build in constant timec5 the
dSTAA′ obtained fromA by removing all rules usinga, i.e. rulA

′

= rulA−

{q1
α (a,v):γ
−−−−−→ q2 ∈ rulA}.2

(vi). for every dSTAA and symbola ∈ Σ, the set of rulesRA = {q1
cl (a,v):γ
−−−−−→

q2 ∈ rulA} can be computed in timec6 · |RA|.

1This can be achieved, for instance, with one flag for the automaton, indicating whether the set
of final states has to be interpreted as its complement.

2We assume in the sequel thatc5 ≥ 2.
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(vii). for every dSTAA and statesq0, q1, q2, γ, the following sequence of opera-
tions can be performed in constant timec7: addq0 to statAe , addγ to statAn ,
setinitA to {q1}, and setfinA to {q2}.

Let us now prove the invariant by induction on the structure of T , with c = c1
2

+
c2 + c3 + c4 + c5 + c6 + 3 · c7. The time needed for building a rule (given all its
parameters) and adding it to the set of rules of a dSTA is supposed to be1 in the
following.

CaseT = and(T1, T2). Let A1 be the pseudo-complete dSTA forT1 andA2 the
pseudo-complete dSTA forA2. Let A be the product of the two, such
that pairs of final states are accepting, and pairs of initialstates are ini-
tial. A recognizes the correct tree language, as for all treest ∈ L(B) and
ν: nod(t)→ 2Vn:

t∗̃ν ∈ L(A) ⇔ t∗̃ν ∈ L(A1) ∧ t∗̃ν ∈ L(A2)
⇔ ǫ ∈ JT1Kt,ν ∧ ǫ ∈ JT2Kt,ν by induction hypothesis
⇔ ǫ ∈ JT Kt,ν

A is deterministic and pseudo-complete sinceA1 andA2 are deterministic
and pseudo-complete. The number of event states ofA is:

|statAe | = |statA1
e | · |statA2

e |
≤ (3 · |T1|)

width(T1) · (3 · |T2|)
width(T2) by induction hypothesis

≤ (3 · |T |)width(T1) · (3 · |T |)width(T2)

≤ (3 · |T |)width(T1)+width(T2)

≤ (3 · |T |)width(T )

and similarly for node states. BuildingA consists in buildingA1 andA2

(which can be done in timec · (|rulA1| · (5 · |Σ|)width(T1) + |T1|)+ c · (|rulA2| ·
(5 · |Σ|)width(T2) + |T2|) by induction hypothesis) and thenA from these two
dSTAs, which can be done in timec1 · |rulA| by condition(i). Hence the
total time for buildingA is:

c·(|rulA1|·(5·|Σ|)width(T1)+|T1|)
+ c·(|rulA2|·(5·|Σ|)width(T2)+|T2|) + c1·|rulA|
= Θ + c·(|T1|+ |T2|) + c1·|rulA|

with

Θ = c·(|rulA1 |·(5·|Σ|)width(T1))
+ c·(|rulA2 |·(5·|Σ|)width(T2))

≤ c·(|rulA1 |+ |rulA2 |)·(5·|Σ|)width(T )−1 aswidth(T )−1 ≥ width(Ti)

≤ c·|rulA|· |rulA1 |+|rulA2 |

|rulA|
·(5·|Σ|)width(T )−1

≤ c·|rulA|·4·|Σ|·(5·|Σ|)width(T )−1 cf below
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For the last inequality, we know from condition(i) that |rulA| =∑
α∈{op,cl},a∈Σ |rulA1

α,a| · |rulA2
α,a|. By grouping by actions and letters, we get:

|rulA1 |+|rulA2 |

|rulA|
= |rulA1 |+|rulA2 |

P

α∈{op,cl},a∈Σ |rul
A1
α,a|·|rul

A2
α,a|

=
P

α∈{op,cl},a∈Σ |rul
A1
α,a|+|rul

A2
α,a|

P

α∈{op,cl},a∈Σ |rul
A1
α,a|·|rul

A2
α,a|

≤
∑

α∈{op,cl},a∈Σ
|rul

A1
α,a|+|rul

A2
α,a|

|rul
A1
α,a|·|rul

A2
α,a|
≤ 4·|Σ|

Note that|rulA1
α,a| > 0 and|rulA2

α,a| > 0 asA is pseudo-complete. Finally, the
total time for computingA is:

Θ + c·(|T1|+ |T2|) + c1·|rulA|
≤ Θ + c·|T |+ c1·|rulA| as|T |=|T1|+|T2|+1
≤ c·|rulA|·4·|Σ|·(5·|Σ|)width(T )−1 + c·|T |+ c1·|rulA|
≤ c·(|rulA|·((5·|Σ|)width(T )−1·(4·|Σ|) + c1

c
) + |T |)

≤ c·(|rulA|·((5·|Σ|)width(T )−1·(4·|Σ|+ c1
c
)) + |T |)

≤ c·(|rulA|·((5·|Σ|)width(T )−1·5·|Σ|) + |T |) as c1
c
≤ 2 ≤ |Σ|

≤ c·(|rulA|·(5·|Σ|)width(T ) + |T |)

CaseT = not(T ′). Let A′ be the pseudo-complete dSTA built forT ′. Let A be
the STA obtained fromA′ by swapping the final states, i.e.:

statAe = statA
′

e initA = initA
′

rulA = rulA
′

statAn = statA
′

n finA = statA
′

e − finA′

A′ is deterministic and pseudo-complete, so we get:

t∗̃ν ∈ L(A) ⇔ t∗̃ν /∈ L(A′)
ind. hyp.
⇔ ǫ /∈ JT ′Kt,ν ⇔ ǫ ∈ JT Kt,ν

The number of states ofA is:

|statAe | = |statA
′

e | ≤ (3 · |T ′|)width(T ′) by induction hypothesis
≤ (3 · |T |)width(T ′)

≤ (3 · |T |)width(T )

and similarly for|statAe |. By induction hypothesis, buildingA′ can be done
in time c · (|rulA

′

| · (5 · |Σ|)width(T ′) + |T ′|). By condition(ii) , the time for
building A from A′ is bounded byc2, so the total time for buildingA is at
most:

c · (|rulA
′

| · (5 · |Σ|)width(T ′) + |T ′|) + c2

= c · (|rulA| · (5 · |Σ|)width(T ′) + |T ′|) + c2

= c · (|rulA| · (5 · |Σ|)width(T ) + |T ′|) + c2 aswidth(T ) = width(T ′)
≤ c · (|rulA| · (5 · |Σ|)width(T ) + |T ′|) + c asc ≥ c2

≤ c · (|rulA| · (5 · |Σ|)width(T ) + |T ′|+ 1)
≤ c · (|rulA| · (5 · |Σ|)width(T ) + |T |) as|T | = |T ′|+1
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CaseT = true. As JtrueKt,ν = nod(t), A is universal, and we can buildA as
follows:

statAe = statAn = initA = finA = {1}
a ∈ Σ v ⊆ Vn α ∈ {op, cl}

1
α (a,v):1
−−−−−→ 1 ∈ rulA

Obviously,|statAe | = |statAn | ≤ (3 · |T |)width(T ). Building A requires time
at mostc7 for setting the states (by condition(vii) ), plus time|rulA| for the
rules, so a total time of:

|rulA|+ c7 ≤ c · |rulA|+ c7

≤ c · (|rulA|+ 1) asc ≥ c7

≤ c · (|rulA| · (5 · |Σ|)width(T ) + 1)
≤ c · (|rulA| · (5 · |Σ|)width(T ) + |T |)

CaseT = /(T ′). By definition, ǫ ∈ JT Kt,ν ⇔ ǫ ∈ JT ′Kt,ν so we can keep the
automaton forT ′.

CaseT = ch(T ′). Let A′ be the automaton built forT ′. The automatonA for T
has to launchA′ when opening each child of the root. Here we need three
additional event statesstatAe = statA

′

e ⊎ {start, 0, 1}: start is only used as
initial state, to detect(op, ǫ), while 0 and1 are used between the children
of the root, to propagate the detection of matchings:initA = {start} and
finA = {1}. We also need two new node states, in order to pass information
about matchings through children of the root:statAn = {0, 1}. We detect the
last event(cl, ǫ) by the fact that we close from an event state in{0, 1}, if
the root has children. Otherwise, we close in state0, so the run will not be
accepting. We define the rules ofA by the following inference schemas:

a ∈ Σ v ⊆ Vn

start
α (a,v):0
−−−−−→ 0

opening the root:
move to0

q1
op (a,v):γ
−−−−−→ q2 ∈ rulA

′

q1 ∈ initA
′

♭ ∈ {0, 1}

♭
op (a,v): ♭
−−−−−→ q2

opening a child:
start testingT ′

q1
α (a,v):γ
−−−−−→ q2 ∈ rulA

′

q1
α (a,v):γ
−−−−−→ q2

run test ofT ′

q1
cl (a,v):γ
−−−−−→ q2 ∈ rulA

′

q′1
op (a,v):γ
−−−−−→ q′2 ∈ rulA

′

q2 6∈ finA′

q′1 ∈ initA
′ ♭ ∈ {0, 1}

q1
cl (a,v): ♭
−−−−−→ ♭

failure ofT ′:
no new match
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q1
cl (a,v):γ
−−−−−→ q2 ∈ rulA

′

q′1
op (a,v):γ
−−−−−→ q′2 ∈ rulA

′

q2 ∈ finA′

q′1 ∈ initA
′ ♭ ∈ {0, 1}

q1
cl (a,v): ♭
−−−−−→ 1

success ofT ′:
move to1

a ∈ Σ v ⊆ Vn ♭ ∈ {0, 1}

♭
cl (a,v):0
−−−−−→ ♭

closing the root

A is deterministic. The fact that all axes inD are downwards permits to
decide, when closing a child, whether this child matchesT ′. By a left-to-
right induction on the children of the root oft ∗ ν, we can prove that the run
r of A on t∗ν assigns1 to (cl, i) if there is an accepting run ofA′ on a child
j (with 1 ≤ j ≤ j) of ǫ, and0 otherwise. As this Boolean is kept when
closing the root, and is set to0 if there is no child, we have:

a(t1, . . . , tk) ∗ ν ∈ L(A) ⇔ ∃1 ≤ i ≤ k. ti ∗ νi ∈ L(A′)
ind. hyp.
⇔ ∃1 ≤ i ≤ k. ǫ ∈ JT ′Kti,νi

⇔ ǫ ∈ JT Kt,ν

whereνi is the restriction ofν to nodes ofti. Moreover, we just introduced
three event states:

|statAe | = |statA
′

e |+ 3 ≤ (3 · |T ′|)width(T ′) + 3 by induction hypothesis
≤ (3 · |T ′|)width(T ) + 3
≤ (3 · (|T ′|+ 1))width(T )

≤ (3 · |T |)width(T )

and we only introduced two node states, which is even lower. In terms of
time cost, we have to prove that every new rule is built in constant time.
This is straightforward for then1 rules operating at the root. By condition
(iii) , then2 rules for opening a child are built in timec3 ·n2. For thej-th rule
among thesen2 rules, we can computepj rules with corresponding labels
and node states in timec4 · pj, according to condition(iv). We include inc4

the cost for testing whether the target state is final. Moreover, the time for
adding the new states tostatAe andstatAn , and setting initial and final states
is bounded by3 · c7, according to condition(vii) . Let Θ be the time for
computingA′ and for setting initial and final states:

Θ = c · (|rulA
′

|·(5·|Σ|)width(T ′) + |T ′|) + 3·c7 by induction hyp.
≤ c · (|rulA

′

|·(5·|Σ|)width(T ′) + |T ′|+ 1) as3·c7 ≤ c

≤ c · (|rulA
′

|·(5·|Σ|)width(T ′) + |T |) as|T | = |T ′|+ 1

≤ c · (|rulA
′

|·(5·|Σ|)width(T ) + |T |) aswidth(T ′) = width(T )
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The total time for buildingA is:

Θ + n1 + c3 · n2 +
∑

1≤j≤n2
c4 · pj

= Θ + n1 + c3 · n2 + c4 ·
∑

1≤j≤n2
pj

≤ Θ + (c3 + c4) · (n1 + n2 +
∑

1≤j≤n2
pj)

≤ Θ + c · (n1 + n2 +
∑

1≤j≤n2
pj) asc3 + c4 ≤ c

≤ c·(|rulA
′

|·(5·|Σ|)width(T ) + |T |+ n1 + n2 +
∑

1≤j≤n2
pj) cf above

≤ c·(|rulA
′

|·(5·|Σ|)width(T ) + n1 + n2 +
∑

1≤j≤n2
pj + |T |)

≤ c·((|rulA
′

|+ n1 + n2 +
∑

1≤j≤n2
pj)·(5·|Σ|)

width(T ) + |T |)

≤ c·(|rulA|·(5·|Σ|)width(T ) + |T |) cf below

The last inequality holds because|rulA| = |rulA
′

|+ n1 + n2 +
∑

1≤j≤n2
pj .

CaseT = ch∗(T ′′). By condition3, T ′′ = a(T ′) for somea ∈ Σ and filter term
T ′. Let A′ be the pseudo-complete dSTA constructed forT ′. We define the
pseudo-complete dSTAA for T as follows:

statAe = statA
′

e ⊎ {0, 1} initA = {0}
statAn = statA

′

n ⊎ {0} finA = {1}

In event state0, automatonA searches for ana-node matchingT , while in
event state1 it has found such a node. Node state1 marks the currenta-node
that is tested. Node state0 is used elsewhere except belowa-nodes. At every
time point there is at most onea-node to be considered, by condition4.

b ∈ Σ− {a} v ⊆ Vn α ∈ {op, cl}

0
α (b,v):0
−−−−−→ 0

wait for a-node

q1
op (a,v):γ
−−−−−→ q2 ∈ rulA

′

q1 ∈ initA
′

0
op (a,v):γ
−−−−−→ q2

find a-node: start testingT ′

b ∈ Σ− {a} q1
α (b,v):γ
−−−−−→ q2 ∈ rulA

′

q1
α (b,v):γ
−−−−−→ q2

run test ofT ′

q1
cl (a,v):γ
−−−−−→ q2 ∈ rulA

′

q2 6∈ finA′

q1
cl (a,v):γ
−−−−−→ 0

failure ofT ′: restart

q1
cl (a,v):γ
−−−−−→ q2 ∈ rulA

′

q2 ∈ finA′

q1
cl (a,v):γ
−−−−−→ 1

success ofT ′
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b ∈ Σ v ⊆ Vn α ∈ {op, cl}

1
α (b,v):0
−−−−−→ 1

filter T successful

Now one can show how to construct a run ofA for all trees verifying con-
dition 4 such thatǫ ∈ JT Kt,ν , and vice versa, if there exists a successful run
of A on some treet ∗ ν verifying condition4 thenǫ ∈ JT Kt,ν .

One reason for which this works is thatA′ is pseudo-complete, so that the
run for T ′ can always be continued. No match ofa can be missed, since
no node abovea is labeled bya (condition4). The only reason to move
into a state different from0 before opening thea-node is anothera-node
on the left. Either the run ofT ′ there succeeds, and the automaton goes
into the universal state1, or else, it finishes but fails, and returns back into
state0, so that newa-nodes can be tested. AutomatonA is deterministic, by
determinism ofA′ and the inference schemas defining its rules. Moreover,
A is pseudo-complete by construction. We obtain the following number of
states:

|statAe | = |statA
′

e |+ 2 ≤ (3 · |T ′|)width(T ′) + 2 = (3 · |T ′|)width(T ) + 2
≤ (3 · |T |)width(T )

|statAn | = |statA
′

n |+ 1 ≤ (3 · |T ′|)width(T ′) + 1 = (3 · |T ′|)width(T ) + 1
≤ (3 · |T |)width(T )

The time cost for buildingA can be decomposed as follows. Each of the
n1 rules waiting for ana-node, or propagating that filterT is successful, is
generated in constant time. From condition(iii) , then2 rules used when an
a-node is found can be built in timec3 · n2. The rules for testingT ′ are
constructed in timec5, according to condition(v). Then3 rules used after
a failure or success ofT ′ are generated in timec6 · n3, by condition(vi).
Finally, the time needed for settingstatAe , statAn , initA andfinA is bounded
by 2 · c7, by condition(vii) . Let Θ be the time for buildingA′ plus the time
needed for settingstatAe , statAn , initA andfinA:

Θ = c · (|rulA
′

|·(5·|Σ|)width(T ′) + |T ′|) + 2·c7 by induction hypothesis
≤ c · (|rulA

′

|·(5·|Σ|)width(T ′) + |T ′|+ 1) as2 · c7 ≤ c

≤ c · (|rulA
′

|·(5·|Σ|)width(T ′) + |T |) as|T | = |T ′|+ 2

≤ c · (|rulA
′

|·(5·|Σ|)width(T ) + |T |) aswidth(T ) = width(T ′)



Section 6.2 –m-Streamable Fragments of Forward XPath 135

The overall time cost for computingA is:

Θ + n1 + c3 · n2 + c5 + c6 · n3

≤ Θ + (c3 + c5 + c6) · (n1 + n2 + n3) asn1+c5 ≤ n1·c5

≤ Θ + c · (n1 + n2 + n3) asc3+c5+c6≤c

≤ c · (|rulA
′

|·(5·|Σ|)width(T ) + n1 + n2 + n3 + |T |) cf above
≤ c · ((|rulA

′

|+ n1 + n2 + n3)·(5·|Σ|)
width(T ) + |T |)

≤ c · (|rulA|·(5·|Σ|)width(T ) + |T |) cf below

Here we supposed thatn1 + c5 ≤ n1 · c5, which is true asn1 = (|Σ| −
1) · 2n+1 ≥ 2, andc5 ≥ 2. The number of rules ofA is exactly: |rulA| =
|rulA

′

|+ n1 + n2 + n3, which justifies the last inequality.

CaseT = ℓ(T ′). Let A′ be the automaton built forT ′. If ℓ = ∗ then we can take
A = A′. Otherwise,ℓ = a ∈ Σ. We can buildA from A′ by adding one
event state0 and one node state0. The event state0 is a sink state. When
opening the root,A checks whether it is labeled bya. If this is the case,A
performs the run ofA′ until the end. Otherwise,A goes to the sink state0.

statAe = statA
′

e ⊎ {start, 0} initA = {start}
statAn = statA

′

n ⊎ {0} finA = finA′

q1
op (a,v):γ
−−−−−→ q2 ∈ rulA

′

q1 ∈ initA
′

start
op (a,v):γ
−−−−−→ q2

opening ana-root

b ∈ Σ− {a} v ⊆ Vn

start
op (b,v):0
−−−−−→ 0

opening ab-root, withb 6= a

b ∈ Σ q1
α (b,v):γ
−−−−−→ q2 ∈ rulA

′

q1
α (b,v):γ
−−−−−→ q2

testT ′

b ∈ Σ v ⊆ Vn

0
α (b,v):0
−−−−−→ 0

sink state0 is universal

The number of states ofA is:

|statAe | = |statA
′

e |+ 2 ≤ (3 · |T ′|)width(T ′) + 2 = (3 · |T ′|)width(T ) + 2
≤ (3 · |T |)width(T )

|statAn | = |statA
′

n |+ 1 ≤ (3 · |T ′|)width(T ′) + 1 = (3 · |T ′|)width(T ) + 1
≤ (3 · |T |)width(T )

In order to buildA, we have to go through then1 rules ofA′ starting from
an initial state. This can be done in timec3 ·n1, according to condition(iii) .
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Copying rules ofA′ has no cost, as we transformA′ to A. Then2 rules for
opening ab-node and for the sink state0 can be built in timen2. The event,
node, initial and final states can be set in time2 ·c7 by condition(vii) . LetΘ
be the time needed to buildA′ and to set event, node, initial and final states:

Θ = c · (|rulA
′

|·(5·|Σ|)width(T ′) + |T ′|) + 2 · c7 by induction hypothesis
≤ c · (|rulA

′

|·(5·|Σ|)width(T ′) + |T ′|+ 1) as2 · c7 ≤ c

≤ c · (|rulA
′

|·(5·|Σ|)width(T ′) + |T |) as|T | = |T ′|+1

≤ c · (|rulA
′

|·(5·|Σ|)width(T ) + |T |) aswidth(T )=width(T ′)

The overall time cost for buildingA is thus at most:

Θ + c3 · n1 + n2

≤ Θ + c3 · (n1 + n2)
≤ Θ + c · (n1 + n2) asc3 ≤ c

≤ c · (|rulA
′

|·(5·|Σ|)width(T ) + n1 + n2 + |T |) cf above
≤ c · ((|rulA

′

|+ n1 + n2)·(5·|Σ|)
width(T ) + |T |)

≤ c · (|rulA|·(5·|Σ|)width(T ) + |T |) cf below

We have|rulA| = |rulA
′

|+ n1 + n2, so the last inequality is true.

CaseT = x. Suppose that the root of the treet∗̃ν is labeled by(a, v). Then the
automatonA only needs to check thatx ∈ v. We can do it using only two
event states (asA must be pseudo-complete).

statAe = {0, 1} initA = {0}
statAn = {0} finA = {1}

q ∈ {0, 1} a ∈ Σ v ⊆ Vn

q
op (a,v):0
−−−−−→ 0

at opening, go to0

q ∈ {0, 1} a ∈ Σ v ⊆ Vn x ∈ v

q
cl (a,v):0
−−−−−→ 1

at closing, go to1 if x ∈ v

q ∈ {0, 1} a ∈ Σ v ⊆ Vn x /∈ v

q
cl (a,v):0
−−−−−→ 0

at closing, go to0 if x /∈ v

A is deterministic and pseudo-complete, and the correctnessis immediate.
The number of states verifies the desired property:

|statAe | = 2 ≤ (3 · 1)1 = (3 · |T |)width(T )

|statAn | = 1 ≤ (3 · 1)1 = (3 · |T |)width(T )
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Building each rule ofA is done in time1, and setting the event, node, initial
and final states is done in time2 · c7 by condition(vii) , so we can buildA in
time:

|rulA|+ 2 · c7 ≤ |rulA|+ c as2 · c7 ≤ c
≤ c · (|rulA|+ 1)
≤ c · (|rulA|+ |T |) as|T | = 1
≤ c · (|rulA|·(5·|Σ|)width(T ) + |T |)

This completes the proof of Lemma14.

In the sequel we extend the definition of canonical treest ∗ τ ∈ TΣ×2Vn built
from a treet and tupleτ ∈ nod(t)n. We define canonical treest ∗ µ from t and an
assignmentµ : Vn → nod(t) in the natural way:t ∗ µ = t ∗ (µ(x1), . . . , µ(xn)).

Theorem 7. Let k andn be fixed, and let assume that|Σ| ≥ 2. Given an expres-
sion(T (x1, . . . , xn), B) of k-Downward XPath, a pseudo-complete dSTAA over
signatureΣ× 2Vn can be computed in polynomial timeO(|T |2k · 30k · |Σ|k+1 · 6n)
such that for every treet ∈ L(B) andµ: Vn → nod(t):

t ∗ µ ∈ L(A) iff ǫ ∈ JT Kt,µ

Proof. Let A0 be the pseudo-complete dSTA obtained forT in time c ·
(|rulA0 |·(5·|Σ|)width(T ) + |T |) by Lemma14. By condition1, width(T ) ≤ k, and
we have|statA0

e | ≤ (3 · |T |)k and|statA0
n | ≤ (3 · |T |)k. As A0 is a deterministic

STA over alphabetΣ× 2Vn, |rulA0| is in O(|statA0
e | · |statA0

n | · |Σ| · 2
n), soA0 can

be computed in timeO((3 · |T |)2k · 2n · 5k · |Σ|k+1).
To obtainA from A0, it suffices to intersectA0 with the dSTAC, that recog-

nizes canonical trees, i.e. trees over signatureΣ× 2Vn where every variable ofVn

appears exactly once. We propose the following construction for C, that simply
collects read variables at opening time:

statCe =2Vn initC={∅} finC={Vn} statCn ={ }

a ∈ Σ v, v′ ⊆ Vn v ∩ v′ = ∅

v
op (a,v′):
−−−−−→ v ∪ v′ ∈ rulAC

2Vn

a ∈ Σ v′ ⊆ v ⊆ Vn

v
cl (a,v′):
−−−−−→ v ∈ rulAC

2Vn

We can buildC in timeO(|Σ| · 3n): For opening rules, choosingv andv′ consists
in determining for each variablex ∈ Vn whetherx ∈ v − v′, x ∈ v′ − v or
x /∈ v ∪ v′. Similarly, for closing rules, we have to choose whetherx ∈ v − v′,
x ∈ v′, or x /∈ v ∪ v′.

Let A = A0 ∩ C. A accepts canonical treest ∗ µ whereµ: Vn → nod(t).
For such a treet and assignmentµ, we know by definition of operator̃∗ that
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t ∗ µ ∈ L(A) ⇔ t∗̃(µ−1) ∈ L(A0). From the definition ofA0, t∗̃(µ−1) ∈
L(A0)⇔ ǫ ∈ JT Kt,µ.

The time for buildingA is the time for buildingA0 andC, and the cost of
intersecting them. BuildingA0 is in time O((3 · |T |)2k · 2n · 5k · |Σ|k+1), and
buildingC in timeO(|Σ| · 3n). For the intersection ofA0 andC, we have|rulA0 |
in O((3 · |T |)2k · |Σ| · 2n), and|rulC | in O(|Σ| · 3n), so their intersection is in time
O(|Σ|2 · 6n · (3 · |T |)2k). Hence the total time for buildingA is in O((3 · |T |)2k ·
(2n · 5k · |Σ|k+1 + |Σ|2 · 6n)), which is alsoO((3 · |T |)2k · |Σ|k+1 · 5k · 6n), and thus
O(|T |2k · |Σ|k+1 · 30k · 6n).

6.2.5 k-Downward XPath is m-streamable for everym ∈ N0

Theorem 8. For every fixedk, n ≥ 0, the query languagek-Downward XPath
restricted ton-ary queries ism-streamable for allm ∈ N0.

Proof. Let (T (x1, . . . , xn), B) be an expression ofk-Downward XPath, which
consists of a filter termT with n variablesx1, . . . , xn and a dSTAB over Σ.
Let Q be then-ary query defined byT (x1, . . . , xn), with the schemaL(B). Let
A(Q) be the algorithm that first applies the algorithm of Section6.2.4 in order
to translateT (x1, . . . , xn) to a pseudo-complete dSTAA with signatureΣ × 2Vn

in PTIME, completes it (also in PTIME for fixed n) and then applies the PTIME

precomputation of the query answering algorithm of Chapter5, to build an SRAM
M computingQ. Let p0 be a polynomial bounding the time of these steps.

The algorithm of Chapter5 has the following costs per step (Theorem5):
O((c+i)·|A|2 ·|B|2) in time andO(c·d·|A|·|B|) in space, wherec = concurQ(t),
i = simult safeQ(t) andd = depth(t). Let m ∈ N0, and suppose thatc ≤ m.
Then, asi ≤ 2n · c, |A| being inO(|T |2k), andd being bounded by restriction5,
there are polynomialsp1 andp2 such that for every event of every treet ∈ L(B),
Space(A, t) ≤ p1(|T | · |B|) andTime(A, t) ≤ p2(|T | · |B|). Thus, the query class
is m-streamable forp0, p1 andp2.

The concurrency ofk-Downward XPath expressions is not always bounded,
however, so that streamability fails by Proposition9. Even thoughm-streamable
for all m ∈ N0, we can define queries with unbounded concurrency in
k-Downward XPath. For binary queries, counter examples are easy to construct.
For instance, the query/(and(ch(a(x)), ch(b(y)))) selects all(a, b) pairs in trees
c(a, a, a, . . . , b) but nothing in treesc(a, a, a, . . . , a). This shows that an un-
bounded number of partial candidates may be alive, where only the first com-
ponent is instantiated to somea-node. The previous example can also adapted
to the monadic case, with the expression/(and(ch(a(x)), ch(b(true)))). With the
same trees, we also prove that this query has unbounded concurrency.
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In many practical use cases,m-streamability suffices to ensure the existence
of efficient algorithms. Consider for instance a bibliography file, where every
child of the root describes a book. Consider also the queryQ that looks for co-
authors of a given authora. The concurrency ofQ may be unbounded, as we
can read an unbounded number of authors under a book, before reaching ana-
node. However, in practice, the number of co-authors is low,and queries inm-
streamable query classes, wherem is greater than the maximal number of co-
authors, can be processed with polynomial per-step space and time cost.

6.3 Beyondk-Downward XPath: Prospective Ideas

In this section we propose two extensions ofk-Downward XPath. The first one
limits the concurrency, in order to obtain an∞-streamable fragment of XPath.
The second extension adds horizontal axesns andns∗. This section intends to
provide prospective ideas for future work. Most results arenot proved and
should be considered as conjectures.

6.3.1 ∞-Streamable Fragments of Forward XPath

In Theorem8, we proved thatk-Downward XPath ism-streamable for allm ∈ N0.
As previously mentioned, it is however not∞-streamable. However, restricting
k-Downward XPath to queries of polynomially bounded concurrency would be
sufficient.

Theorem 9. Every fragment ofk-Downward XPath having polynomially bounded
concurrency is∞-streamable, for everyk ∈ N.

Proof. By Proposition8and hypothesis, it suffices to show that there exist polyno-
mialsp0, p1 andp2 such that for allm ∈ N0, k-Downward XPath ism-streamable
with p0, p1, p2. We need to prove that polynomialsp0, p1 and p2 used in the
proof of Theorem8 are independent fromm. This is obviously the case for
p0. The concurrency is polynomially bounded (by hypothesis),so there exists
a polynomialp such thatconcurQe(t) ≤ p(|e|) for all t ∈ TΣ and all expres-
sionse in k-Downward XPath. Ife = (T (x1, . . . , xn), B), then by Theorem7,
T (x1, . . . , xn) can be converted in PTIME into a dSTAA recognizingLT (x1,...,xn).
Hence there exists a polynomialp′ such that|A| ≤ p′(|T (x1, . . . , xn)|), and we
can find polynomialsp1 andp2 such that for every expression(T (x1, . . . , xn), B)
of k-Downward XPath,Space(A, t) ≤ p1(|T (x1, . . . , xn)|·|B|) andTime(A, t) ≤
p2(|T (x1, . . . , xn)|·|B|).

Thanks to downward axes and guards onch∗ axes, every branch of
k-Downward XPath queries only has at most one match at a time. This is however
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not sufficient to bound concurrency. We propose two additional sets of conditions,
in order to obtain a fragment of -Downward XPath with boundedconcurrency.

Variables below negation In the sequel we callpositionsthe set of nodes of a
termT . A negativeposition is a position with an odd number of strict ancestors
labeled bynot. An or -position is a negative position labeled byand.

Variables in negative positions raise trouble. Consider for instance the query
/(and(not(x), ch∗(a(true)))) which selects all nodesx that are not the root, if the
tree contains ana-node. This query has unbounded concurrency. The problem
is variablex which occurs in negative position, so that it does not have tomatch
the current position. We have to forbid variables in negative positions all over
(condition7 below). Note that the selecting position in CoreXPath 1.0 expressions
is always positive, so this restriction is quite natural.

Variables in disjunctions are a further source of trouble. For instance, consider
the query defined by/(or(ch∗(c(and(x, ch∗(a(true))))), ch∗(b(true)))) which se-
lects all nodes in treea(a(. . . (a(b)))), where the second branch becomes true
independently of the value of variablex in the first branch. A streaming algorithm
can decide selection only at the end when opening theb-leaf. Thus this query has
unbounded concurrency. This query can be expressed in our dialect of Forward
XPath, by using conjunction and negation. We need to impose that all choices of
or-positions contain the same variables (condition6).

Variables below axes or label tests in negative positions raise trouble. Consider
for instance the query: for alla-nodes there exists ab-child which is selected, i.e.,
/(not(ch∗(a(not(ch(b(x))))))). This query selects allc-nodes in treec(c, . . . , c)
but not inc(c, . . . , c, a(b)) where it selects theb-node. Thus, none of thec-nodes
is safe for selection before the end, i.e., the concurrency of the query is unbounded.
In order to avoid this, we have to forbid variables below occurrences of axes (resp.
label tests) in negative position (condition8). This again is satisfied by all paths
of CoreXPath 1.0.

Variables below conjunction Queries using conjunctions may have high
concurrency. Consider for instance the query defined by the expression
/(and(ch(a(x)), ch(b(true)))), that selects alla-children of the root, if the root
has ab-child. It selects alla-nodes on treeb(a, . . . , a, b) but nothing on tree
b(a, . . . , a), and thus has unbounded concurrency. This query implicitlytests
among siblings of nodes. We can avoid this effect by forbidding axes between
and-positions and variables, as expressed by condition9 below.

Weak k-Downward XPath Let V(T ) be the set of variables used in a term
T . The query languageWeakk-Downward XPathprovides all pairs(T, B) of
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k-Downward XPath that satisfy the following further restrictions:

6. all or-positionp of T with choicesT1, . . . , Tn satisfyV(T1) = . . . = V(Tn),
i.e. use the same variables.

7. variables appear in positive positions only, i.e., iflabT
x (p) then there is an

even number ofnot-labeled positions abovep.

8. on the branch of a positionp labeledx, there is no negative position labeled
by an axisd or a label testℓ.

9. no position labeled by an axisd can have both a descendant, labeled by a
variablex, and an ancestor, labeled byand.

We conjecture that monadic queries in Weakk-Downward XPath have con-
currency at most2, and thus that Monadic Weakk-Downward XPath is∞-
streamable.

6.3.2 Adding Horizontal Axes

In this section we propose some ideas for dealing with horizontal axesns and
ns∗. The major difference with downward axes is that selection of nodes (or their
validity w.r.t. to a match) cannot always be decided at closing time.

Deciding at Last Siblings A solution is to postpone this decision to the closing
time of the parent node. Indeed, suppose that we want to know whether a node
π ∈ nod(t) verifies a filter termT , i.e., whetherπ ∈ JT Kt,µ. Then, as we only use
axesD = {ch, ch∗, ns, ns∗}, the validity ofπ ∈ JT Kt,µ can be decided when all
right-siblings ofπ and their descendants have been seen. The earliest time point
where we know that all this region has been read is at closing the parent ofπ.

In order to maintain a PTIME translation to dSTAs, we need to still have at
most one match to compute at a time. This implies some updatesin conditions1
to 5. For instance, label guards must be imposed for bothch∗ and ns∗, and if
such a guard symbola is in T , thena-nodes are forbidden among right-siblings of
a-nodes, and their descendants.

k-Forward XPath We define an extension ofk-Downward XPath with axes
D = {ch, ch∗, ns, ns∗}. Fork ∈ N, k-Forward XPathis the query class containing
all pairs(T (x1, . . . , xn), B) of termsT with a sequence of variables(x1, . . . , xn)
and dSTAsB over alphabetΣ verifying the following conditions:

1. the width ofT is bounded byk, i.e.,T has at mostk leaves.
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2. the termT starts at the root, i.e.,T matches some term/(T ′).

3. if d(T ′) is a subterm ofT , with d ∈ D, thenT ′ matches some terma(T ′′),
with a ∈ Σ.

4. if d(a(T ′′)) is a subterm ofT , whered ∈ D, then:

∀t ∈ L(B). ∀πa, π
′
a ∈ laba(t). ∄π ∈ nod(t).






πa 6= π′a
∧ (πa, π) ∈ (ns∗)t

∧ (π, π′a) ∈ (ch∗)t

5. the depth of the valid treest ∈ L(B) is bounded by some constant.

All conditions are identical to those ofk-Downward XPath except conditions
3 and4. Condition3 imposes a label guard below every axis position. If such
a guarda appears inT , then condition4 forbidsa-nodes among descendants of
right-siblings of anothera-node int ∈ L(B). Hence, before testing a new match
for the a-position, we can decide the validity of the previous match for this a-
position.

We conjecture that the algorithm translatingk-Downward XPath expressions
into dSTAs in PTIME can be easily adapted tok-Forward XPath. The only treat-
ments to change are those for axes, i.e.,T = d(a(T ′)). Instead of running the
automaton forT ′ until closing thea-nodeπ, we have to run it until closing the
parent node ofπ. If this holds, this would also mean thatk-Forward XPath is
m-streamable for allm ∈ N0.

Let Weakk-Forward XPath be the fragment ofk-Forward XPath with the ad-
ditional restrictions6 to 9 of Weakk-Downward XPath. We also conjecture that
Weakk-Forward XPath is∞-streamable. Moreover, membership tok-Forward
XPath and Weakk-Forward XPath can be decided in PTIME.

Discussion on Improvements The restrictions ofk-Forward XPath are quite
strong. Consider for instance the queryQ1 defined by the expression
/(ch∗(a(ch(b(x))))), and the queryQ2 defined by/(ch∗(a(ns∗(b(x))))). Query
Q1 selects allb-nodes having ana-node as parent, whereasQ2 selects allb-nodes
having ana-node as previous sibling. Ink-Forward XPath, for both queries, no
a-node can appear among next-siblings ofa, and their descendants. ForQ2, for-
biddinga-nodes among right-siblings ofa-nodes avoids unbounded concurrency,
as for instance in treec(a, . . . , a, b). Nevertheless, this is useless forQ1, as the
subtermch(b(x)) belowch∗(a) looks for matches only in descendants ofa-nodes.

This would justify to introduce a notion ofscope, wherescopetπ(T ) would
contain the region from which the truth value ofπ ∈ JT Kt,µ depends. In
the previous example,scopetπ(ch(b(x))) would contain children ofπ, whereas
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scopetπ(ns∗(b(x))) would contain all right-siblings ofπ. Hence, instead of forbid-
ding a-node in right-siblings and their descendants whend(a(T ′)) appears inT ,
we would forbida-nodes only inscopetπ(T ′), for all t ∈ L(B) andπ ∈ laba(t).

6.4 Conclusion

After non-streamability results on Forward XPath in Chapter 3, we presented in
the present chapter the hierarchyk-Downward XPath (fork ∈ N) of query classes
enjoying streamability properties. To prove these properties, we provided a trans-
lation to dSTAs in PTIME. We also proposed some insights for∞-streamable
extensions, and for extensions allowing rightward moves. We discuss in the fol-
lowing some further possible improvements and open issues related to these frag-
ments and their translations.

The first question is whetherk-Forward XPath can be enlarged, while remain-
ing m-streamable for allm ∈ N0. In our translation we excluded one forward
axis: thefoll axis. We conjecture that adding this axis is not a problem in the
translation, as the end of scope for this axis is always when the root is closed,
which can be easily detected. However strong restrictions on valid trees will have
to be added, as the presence of a stepfoll::a will impose that there is at most one
a-node per valid trees. About extendingk-Forward XPath, an open question is
the definition of a necessary and sufficient criterion on Forward XPath fragments,
that ensures PTIME translation to dSTAs.

Concerning Weakk-Forward XPath, we conjectured that restrictions6 to 8
imply bounded concurrency, whereas polynomially bounded concurrency would
be sufficient for being∞-streamable. This leads to an open question: can we take
weaker restrictions and remain polynomially bounded?

One may also want to improve the proposed translation fork-Downward
XPath, in order to infer assertions at their earliest position, and thus get an au-
tomatonA being earliest, likeE(A) in Chapter5. In order to obtain this property,
the algorithm has to take the schema into account, as it will sometimes have to
infer assertions before their corresponding ends of scope,as some subterm ofT
might be unsatisfiable or always satisfied for every continuation of t ∗ µ beyond
the current event. It is also open whether this could be done efficiently.

Another question is whether we could get better query answering algorithms
without translating the XPath expressions to dSTAs, but rather working directly
with the XPath expressions. We are not optimistic about suchimprovements,
as dSTAs are close to the implementation level of XML streaming algorithms,
and in our translation, only relevant information is storedinto the states of the
automaton.



144 Chapter 6 – Streamable Fragments of Forward XPath



Chapter 7

Deciding Bounded Delay and
Concurrency

Contents
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . .146
7.2 Delay and Concurrency for Words and Trees. . . . . . . . 148

7.2.1 EQA for Words and Trees. . . . . . . . . . . . . . . 148
7.2.2 Delay . . . . . . . . . . . . . . . . . . . . . . . . . .149
7.2.3 Link to Concurrency. . . . . . . . . . . . . . . . . . 149

7.3 Bounded Delay and Concurrency for Queries in Words . . 150
7.3.1 Finite Automata . . . . . . . . . . . . . . . . . . . . 151
7.3.2 Definingn-ary Queries. . . . . . . . . . . . . . . . . 151
7.3.3 Computing Delays of Queries. . . . . . . . . . . . . 153
7.3.4 Reduction to Bounded Ambiguity. . . . . . . . . . . 158
7.3.5 Deciding Bounded Concurrency. . . . . . . . . . . . 159

7.4 Recognizable Relations between Unranked Trees. . . . . . 161
7.4.1 Closure Properties. . . . . . . . . . . . . . . . . . . 162
7.4.2 Recognizable Relations. . . . . . . . . . . . . . . . . 164
7.4.3 Sorted FO Logic. . . . . . . . . . . . . . . . . . . . 165
7.4.4 Sorted FO Logic of Recognizable Relations. . . . . . 166
7.4.5 Bounded Valuedness. . . . . . . . . . . . . . . . . . 168
7.4.6 k-Bounded Valuedness. . . . . . . . . . . . . . . . . 172

7.5 Deciding Bounded Delay and Concurrency. . . . . . . . . 173
7.5.1 Basic Recognizable Relations. . . . . . . . . . . . . 174
7.5.2 Bounded Delay. . . . . . . . . . . . . . . . . . . . . 177
7.5.3 Bounded Concurrency. . . . . . . . . . . . . . . . . 178
7.5.4 Discussion of Direct Construction. . . . . . . . . . . 179

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . .180



146 Chapter 7 – Deciding Bounded Delay and Concurrency

7.1 Introduction

The classQd
dSTAs of queries defined by dSTAs where valid trees have depth at

mostd is m-streamable, for allm ∈ N0. Qd
dSTAs is however not∞-streamable,

as it contains queries of unbounded concurrency defined by small dSTAs. The
m-streamability ofQd

dSTAsmeans that queries in this class can be efficiently evalu-
ated, when the concurrency of queries w.r.t. input trees is smaller thanm. Hence,
bounding the concurrency of queries w.r.t. all valid trees ensures efficient evalua-
tion in streaming mode. LetQd,c

dSTAs be the subclass ofQd
dSTAs containing queries

having concurrency at mostc on all valid trees. By Proposition8, Qd,c
dSTAs is∞-

streamable.
In this chapter, we prove that it can be decided in polynomialtime whether a

query defined by a dSTA has bounded concurrency on all valid trees, and whether
for a givenk, the concurrency is bounded byk. This provides an efficient proce-
dure for deciding whether a query belongs toQd,c

dSTAs.
To establish that boundedness for concurrency is decidablein PTIME, we use

automata techniques. We start with the case of queries over words, defined by
standard deterministic word automata. Bounded (andk-bounded) ambiguity of
word automata is known to be decidable in PTIME, as studied for instance by
Stearns and Hunt [SH85], Weber and Seidl [WS86], or more recently by Allauzen
et al. [AMR08]. We transform automata defining queries to non-deterministic
automata, whose ambiguity is exactly the concurrency of queries. Hence, we lift
the decision problem from bounded concurrency to bounded ambiguity.

For trees, however, this method cannot be used directly. We choose to use
recognizable relations, as studied by Tison for ranked trees [Tis90, CDG+07],
and recently investigated by Benedikt et al. [BL02, BLN07] for unranked trees.
A relation between trees is recognizable if the set of overlays of tuples in this
relation is recognized by some tree automaton. Concurrencyof queries defined by
automata can be expressed by recognizable relations. We show how to define the
relation capturing concurrency by first-order formulas with tree-valued variables,
from the automaton defining the query. Our reduction is in PTIME if we assume
determinism, since we only use a restricted class of first-order formulas in prenex
normal form, where all quantifiers are existential. Note that quantification over
trees (instead of nodes of trees in MSO) allows us to express in a direct manner
properties of queries to be checked onall continuationsof the stream.

In order to obtain our PTIME decision procedure, we prove that for fixedk,
bounded andk-bounded valuedness of binary recognizable relations can be de-
cided in polynomial time even when the automaton defining therelation is non-
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deterministic (whenk is variable, it becomes EXPTIME-complete). The valued-
ness of a binary relationR is the maximal number of treest2 that are in relation
with the same treet1 in the first component, i.e. such that(t1, t2) ∈ R. For
bounded valuedness, we reduce the problem to the bounded valuedness of tree
transducers, studied by Seidl in [Sei92]. For k-bounded valuedness, we use the
equivalence between operations on relations and operations on automata.

In [BL02, BLN07], Benedikt et al. define two extension operators (downward
and rightward) plus an operator checking that a relation is arelabeling (i.e. re-
lates trees with the same shape). They prove that a relation is recognizable if and
only if it can be expressed by an FO formula, using these operators as predicates.
Compared to this work by Benedikt et al., our results on valuedness are new.

In addition to concurrency, we are interested in the maximaldelayof a query,
for which we obtain similar decidability results. For monadic queries, the delay is
the number of events between reading a selected node, and theearliest time point
from which its selection can be safely decided, i.e., from which any continuation
of the stream will select it. Forn-ary queries, we start counting when the tuple
becomes complete (as it cannot be output before).

Bounded delay is interesting for two reasons. First, the delay of a query mea-
sures quality of service, whereas the concurrency measuresthe memory require-
ments. It bounds the waiting time for selection, in terms of number of events.
Second, bounded delay implies bounded concurrency, for monadic queries. More-
over, the delay of a query is easier to characterize than its concurrency. Hence, for
query over words, we give a direct procedure for computing the delay. For queries
over trees, bounded delay can be decided in PTIME when the arityn of queries is
variable, whereas we have to fix it for deciding bounded concurrency in PTIME.

For n-ary queries, delay and concurrency are incomparable. A query with
bounded concurrency but unbounded delay is easy to find, for instance the query
that selects the root if its last child is labeled bya. Its concurrency is bounded, as
only the root node is alive, but the delay is the number of events between opening
the root and closing its last child, and thus unbounded. On the contrary, we can
build queries with bounded delay but unbounded concurrency. This is due to the
fact that concurrency takes partial tuples into account, but the delay does not.
Hence we can build queries that generate a lot of partial candidates, but for which
the answer tuples can be output immediately once they get complete. This is for
instance the case, for the query that selects all pairs of nodes. It requires to buffer
all partial tuples containing previously opened nodes in one component. Once
a new node is read, we can complete all these partial tuples with this node, and
output the resulting tuples immediately, without delay.
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7.2 Delay and Concurrency for Words and Trees

We generalize the earliest query answering definitions of Section3.2to both words
and trees. We define the notion of delay, and generalize concurrency to words and
trees.

7.2.1 EQA for Words and Trees

We consider the cases of words and trees in simultaneously, where eitherS = Σ∗

is the set of all words orS = TΣ the set of all unranked tree overΣ.
We consider words as relational structures, as introduced in Section2.1.2. A

wordw = a1·. . .·ak ∈ Σ∗ has domaindom(w) = {1, . . . , k}, and by analogy with
trees, we define its set of events by:eve(w) = {0, . . . , k}. Given a wordw ∈ Σ∗,
we write domη(w) = {1, . . . , η} for the set of positions ofw visited before the
eventη, anddom•η(w) = domη(w) ∪ {•}.

Let Q be ann-ary query in structuresS, s∈ S a structure, andη ∈ eve(s) an
event ofs. A complete candidateuntil eventη is a tupleτ ∈ domη(s)n. Given two
structuress1, s2 ∈ S and an eventη ∈ eve(s1) ∪ eve(s2), we say that the prefixes
of the linearizations ofs1 ands2 until η coincide, if:

equalη(s1, s2)⇔

{
domη(s1) = domη(s2) ∧
∀a ∈ Σ. ∀π ∈ domη(s1). (labs1

a (π)⇔ labs2
a (π))

Definitions of sufficient events for selection (resp. rejection) are easily lifted to
arbitrary structures. We writecompl(τ, s, η) for the set of complete candidates,
in which all unknown components ofτ have been instantiated with elementsπ ∈
dom(s)− domη(s).

(τ, η) ∈ selQ(s) ⇔ τ ∈ domη(s)n ∧ ∀s′ ∈ dom(Q). equalη(s, s′)⇒ τ ∈ Q(s′)

(τ, η) ∈ rejQ(s)⇔






τ ∈ dom•η(s)
n ∧

∀s′ ∈ dom(Q). equalη(s, s′)⇒
∀τ ′ ∈ compl(τ, s′, η). τ ′ /∈ Q(s′)

Alive candidates atη if τ are those being neither rejected nor selected atη.

(τ, η) ∈ aliveQ(s)⇔ τ ∈ dom•η(s)
n and(τ, η) 6∈ rejQ(s) and(τ, η) 6∈ selQ(s)

We introduce the concurrency at an eventη, which is more fine-grained than the
global concurrency defined in Section3.2.3.

concurQ(s, η) = |{τ ∈ dom•η(s)
n | (τ, η) ∈ aliveQ(s)}|

With this definition, we obtain the following equivalence with our previous notion
of concurrency:concurQ(s) = maxη∈eve(s) concurQ(s, η).
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7.2.2 Delay

We formally introduce the notion ofdelayin our query answering framework, for
both words and trees. For monadic queries, it is the number ofevents between a
node and the earliest event for its selection. Given a structures (a word or a tree),
let

latest((π1, . . . , πn)) = min{η ∈ eve(s) | π1, . . . , πn ∈ domη(s)}

be the minimal event, where all elements of the tuple have been visited.

Definition 12 (Delay). Thedelayof ann-ary queryQ for a tupleτ ∈ dom(s) is
the number of eventsη following latest(τ) such thatη is insufficient for selection,
i.e. (τ, η) 6∈ selQ(s).

delayQ(s, τ) = |{η ∈ eve(s) | latest(τ) � η, (τ, η) 6∈ selQ(s)}|

A queryQ hask-bounded delayif delayQ(s, τ) ≤ k for all s ∈ dom(Q) and
τ ∈ Q(w). It has bounded delay if it hask-bounded delay for somek ≥ 0.

Having bounded delay means that every EQA algorithm will output selected
tuples a constant time after completion. This is a guaranteeon the quality of
service.

7.2.3 Link to Concurrency

For monadic queries, some links exist between concurrency and delay.

Lemma 15. For all monadic queriesQ, structures s∈ dom(Q), and eventsη ∈
eve(s):

concurQ(s, η) ≤ sup
s′∈dom(Q),τ∈Q(s′)

delayQ(s′, τ) + 1

The lemma fails for queries of higher arities, where the delay between the tu-
ple components may be unbounded even though the delay of selection of complete
tuples is bounded. In this case, the set of alive partial tuples may grow without
bound, even though the set of alive complete tuples is bounded. For instance con-
sider the queryQ with Q(t) = nod(t)2 for all treest ∈ TΣ. This query has delay0,
since every pair of nodes can be selected immediately, once the its last component
has been visited. Nevertheless, all partial tuples(π, •) with π ∈ domη(t) are alive
at all eventsη, so that the concurrency of this query is not bounded.

Proof. Let s′ ∈ S andk ∈ N0 ∪ {∞}. In the case of words (whereS = Σ∗),
we definedomk

η(s
′) by {π′ | η − k ≤ π′ ≤ η}, and in the case of trees (where

S = TΣ), we definedomk
η(s
′) as{π′ | prk(η) ≤ (op, π′) ≤ η}.
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Let Q be a monadic query. Letd = sups′∈dom(Q),τ∈Q(s′)delayQ(s′, τ) be the
number in the lemma, ands ∈ dom(Q) be a structure with eventη ∈ eve(s). We
claim for allπ ∈ dom(s) that:

π 6∈ domd
η(s)⇒ ((π), η) 6∈ aliveQ(s)

To see this, we first note that ifπ 6∈ domη(s) thenπ is not alive atη. Now let us
considerπ ∈ domη(s)− domd

η(s). We distinguish two cases.

1. In the first case, there exists a continuations′ ∈ dom(Q) with equalη(s, s′)
such that(π) ∈ Q(s′). This continuations′ satisfiesdelayQ(s′, (π)) ≤ d,
so thatπ ∈ domη(s) − domd

η(s) yields ((π), η) ∈ sel(s). This contradicts
aliveness.

2. Otherwise, all continuationss′ of s beyondη satisfy(π) 6∈ Q(s′), so that
((π), η) ∈ rej(s). This equally implies non-aliveness.

This proves the claim, which yields for all partial tuplesτ :

(τ, η) ∈ aliveQ(s)⇒ τ ∈ domd
η(s) ∪ {•}

Hence,concurQ(s, η) ≤ d + 1 by definition of concurrency.

Proposition 23. A monadic query withk-bounded delay has(k+1)-bounded con-
currency.

Proof. This is an immediate consequence of Lemma15.

The converse does not hold. As a counter example, consider the monadic
query which selects the first letter of all words whose last letter is ab. This query
has concurrency bounded by1, since the first letter is the only alive candidate
before the end, but unbounded delay.

7.3 Bounded Delay and Concurrency for Queries in
Words

We consider the case, where queries in words are defined by twodeterministic
finite automata, that recognize the canonical language of the query and its schema
respectively. We obtain PTIME decision procedures for bounded delay and con-
currency by reduction to bounded ambiguity of non-deterministic finite automata.
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7.3.1 Finite Automata

A finite automaton(nFA) overΣ is a tupleA = (stat, init, rul, fin) whereinit, fin
andstatare finite sets withinit, fin ⊆ stat, andrul ⊆ stat2 × (Σ ∪ {ǫ}) contains
rules that we write asq

a
→ q′ or q

ǫ
→ q′ whereq, q′ ∈ statanda ∈ Σ. Whenever

necessary, we will index the components ofA by A. Let the size ofA count all
states and rules, i.e.|A| = |statA| + |rulA|. We also sometimes use the notation
A[init=I] (resp.A[fin=I]) for the automaton obtained fromA by setting its initial
(resp. final) states toI.

A run of A on a wordw is a functionr : eve(w)→ statA so thatr(0) ∈ initA
andr(π−1)

ǫ ∗
→

a
→

ǫ ∗
→ r(π) is justified byrul for all π ∈ dom(w) with a = labw(π).

A run is successful ifr(|w|) ∈ finA. The languageL(A) ⊆ Σ∗ is the set of all
words that permit a successful run byA. An nFA is calledproductive, if all its
states are used in some successful run. This is the case if allstates are reachable
from some initial state, and if for all states, some final state can be reached.

An nFA A is deterministicor a dFA if it has at most one initial state, no epsilon
rules, and for every pair(q, a) there exists at most one ruleq

a
→ q′ ∈ rulA. Note

that for every wordw there exists at most one run by a dFAA.

Bounded Ambiguity

We next consider the degree of ambiguity of nFAsA. Theambiguity ambA(w) is
the number of successful runs ofA on w. Clearly,ambA(w) ≤ 1 for all w ∈ Σ∗

if A is a dFA. We call the ambiguity ofA k-boundedif ambA(w) ≤ k for all
w ∈ Σ∗. It is bounded, if it is bounded by somek.

Stearns and Hunt [SH85] (Theorem 4.1) present for fixedk ∈ N a PTIME

algorithm for decidingk-bounded ambiguity of nFAs. Let us writep
w
→ q by A

if there exists a run ofA[init={p}] onw that ends inq. Weber and Seidl [WS86]
show that an nFAA has unbounded ambiguity iff there exists a wordw ∈ Σ+ and
distinct statesp 6= q such thatp

w
→ p, p

w
→ q, andq

w
→ q by A. This can be tested

in O(|A|3) as shown very recently by [AMR08].

7.3.2 Definingn-ary Queries

As usual, we can define queries by two automata, one for the canonical language
and another for the schema. We call an nFA canonical if and only if its language is.
Let A be a canonical nFAA with alphabetΣ × 2Vn andB an nFA with alphabet
Σ, such thatw ∈ L(B) for all w ∗ τ ∈ L(A). The queryQA,B defined by the
pair (A, B) is the uniquen-ary query with domainL(B) and canonical language
L(A). If L(B) = Σ+ then we writeQA instead ofQA,B. AutomatonB is needed
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in order to distinguish those words, on which the query is notdefined, from those,
where the query returns the empty set. Note that ifQA,B(w) 6= ∅ thenw ∈ L(B).

Let the type of a wordw with alphabetΣ×2Vn be a functiontypew : Vn → N0

that counts how many times a variable appears in labels, i.e., for x ∈ Vn:

typew(x) = |{π ∈ dom(w) | labw
(a,v)(π) with x ∈ v}|

We say that a wordw has type1Vn if typew(x) = 1 for all x ∈ Vn. All words over
Σ × 2Vn of type1Vn have the formw ∗ τ , and vice versa. We next show that all
states of productive canonical nFAs have unique types. Thiswas already noticed
in Lemma 3 of [CLN04]:

Lemma 16. If A is a productive canonical nFA andq ∈ statA then all words
recognized byA[fin = {q}] have the same type.

Proof. SinceA is productive, there exists a wordw ∈ L(A[init = {q}]). Assume
that there exist wordsw1, w2 ∈ L(A[fin = {q}]) with different types. Hence, the
wordsw1·w andw2·w must have different types, sincetypew1·w

= typew1
+ typew 6=

typew2
+ typew = typew2·w

. This is impossible, though, sinceL(A) is canonical,
so thattypew2·w(x) = typew1·w(x) = 1 for all x ∈ Vn

We can thus define the type of a stateq of a productive canonical nFA in
a unique manner, by the type of some wordw, that is evaluated into this state.
type(q) will denote this type. Furthermore, as the automaton is canonical and
productive, this type is determined by the set{x ∈ Vn | typew(x) = 1}. So we
can identify the type of a state with a subset ofVn.

Consider the queryQφ(x1) in words with alphabet{a, b}, which selects all
positions labeled bya or eventually succeeded by ana. In Figure7.1, we illustrate
an automaton for the canonical language of this query graphically. Its states have
the following types:∅ for q0 (no variables seen before entering in this state), and
{x1} for q1 andq2 (x1 seen before entering in these states).

Query answering fordFAs is the algorithmic problem that receives as input
two dFAsA and dFAB defining ann-ary query and a wordw ∈ L(B), and
returns as outputQA,B(w). The objective is to find all tuplesτ of positions inw
such thatw ∗ τ ∈ L(A). The naive algorithm enumerates all tuplesτ ∈ dom(w)n

and runsA deterministically onw ∗ τ . This algorithm first resolves the choice of
τ nondeterministically, before running the deterministic automatonA.

Determinism for canonical automata will turn out to be essential for PTIME

streaming algorithms and decision complexity (e.g. the safety property below).
It should be noticed that canonical nFAs can always be determinized without
changing the query they define. This would fail when defining queries by se-
lection automata, i.e. nFAs overΣ with a set of selection states as considered in
[FGK03, NPTT05].
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q0

q1

q2

(a, {x1})

(b, {x1})

(a, ∅)

(a, ∅)
(b, ∅)

(b, ∅)

(a, ∅)
(b, ∅)

Figure 7.1: A dFA for the canonical language ofQφ(x1) whereφ = ∃x2. (x1 ≤
x2 ∧ laba(x2)).

7.3.3 Computing Delays of Queries

We show how to decide whether a query has bounded delay and howto compute
this delay in polynomial time. We consider the case with schemas. Schema elimi-
nation as proposed in Section5.4.3can easily be adapted to queries over relational
structures. However, it would require to fix the arityn of the queries, and spoil
small polynomials: Given automataA andB definingQ = QA,B, we cannot build
an automaton recognizingQsel or Qrej without a blowup inO(2n) in the general
case, since we have to extend the alphabet ofB from Σ to Σ× 2Vn.

Safe States for Selection

For every languageL ⊆ Σ+ we define a language of annotated wordsL ⊗ ∅
with alphabetΣ × 2Vn such that all letters of words inL are annotated by∅, i.e.,
L⊗ ∅ = {(a1, ∅)·. . .·(ak, ∅) | a1 ·. . .·ak ∈ L}

Definition 13. If dFAsA andB define a query then we call a state(p, q) ∈ statA×
statB safe for selectionbyQA,B if L(B[init={q}])⊗ ∅ ⊆ L(A[init={p}]).

Figure7.2 illustrates an automaton for the query that selects alla-nodes that
are succeeded byb·b. In this example, we assume the universal schemaB with a
single state, so thatA is isomorphic toP(A, B). The types and safety properties
of all states are indicated in the figure.

We next show that safe states capture sufficiency for selection. In order to do
so, we construct a dFAP(A, B) which runsA andB in parallel. Its alphabet is
Σ× 2Vn as forA, while B has alphabetΣ.

statP(A,B) = statA × statB
initP(A,B) = initA × initB
finP(A,B) = finA × finB

p
(a,v)
→ p′ ∈ rulA q

a
→ q′ ∈ rulB

(p, q)
(a,v)
→ (p′, q′) ∈ rulP(A,B)
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p0 p1 p2 p3

(a, ∅)
(b, ∅)

(a, {x1}) (b, ∅) (b, ∅)

(a, ∅)
(b, ∅)

unsafesel unsafesel unsafesel safesel

∅ {x1} {x1} {x1}

Figure 7.2: AutomatonA for the query selectinga-nodes followed byb·b. There
are two reachable unsafe states of type{x1} = V1, p1 andp2. The restriction of
A to these two states is acyclic, so the selection delay ofQA is bounded. It is
bounded by2, since the longest path in this part of the automaton has 2 nodes.

Building P(A, B) needs time inO((|Σ|+n) · |A| · |B|), if we suppose for instance
that variables inv are stored in a vector ofn bits.

Lemma 17. Let A andB be productive dFAs that define a query, and r a run of
P(A, B) onw ∗ τ andη ∈ eve(w). Then state r(η) is safe for selection byQA,B if
and only if(τ, η) ∈ selQA,B

(w).

Proof. Sufficiency for selection(τ, η) ∈ selQA,B
(w) is equivalent toτ ∈

domη(w)n and∀w′ ∈ L(B) : equalη(w, w′) ⇒ w′ ∗ τ ∈ L(A). Let w = w0 ·w1

such that|w0| = η. Sinceτ ∈ domη(w)n, we havew ∗ τ = (w0 ∗ τ)·(w1⊗∅). Fur-
thermore,equalη(w, w′) is equivalent to∃w′1. w′ = w0 ·w

′
1. Now r(η) is the state

that the unique run ofP(A, B) onw0 ∗ τ reaches (determinism). For(p, q) = r(η)
we have:

∀w′ ∈ L(B) : equalη(w, w′)⇒ w′ ∗ τ ∈ L(A)
⇔ ∀w′1. w0 ·w

′
1 ∈ L(B)⇒ (w0 ∗ τ)·(w′1 ⊗ ∅) ∈ L(A)

⇔ ∀w′1. w′1 ∈ L(B[init = {q}])⇒ w′1 ⊗ ∅ ∈ L(A[init = {p}]) (determinism)
⇔ L(B[init = {q}])⊗ ∅ ⊆ L(A[init = {p}])
⇔ r(η) safe for selection byQA,B

Conversely, assume thatr(η) = (p, q) is safe for selection byQA,B. Since we
assumedA andB to be productive, this implies thattype(p) = Vn, so thatτ ∈
domη(w)n. We can thus decomposew = w0 ·w1 such that|w0| = η as above,
and apply the above equivalence, in order to conclude from safety for selection,
that∀w′ ∈ L(B) : equalη(w, w′) ⇒ w′ ∗ τ ∈ L(A), and thus sufficiency for
selection.

The parallel automatonP(A, B) is canonical, sinceL(A) = L(P(A, B)), but
may contain non-productive states, even ifA andB are productive. For instance,
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consider productive automataA andB that define the queryQ with dom(Q) =
{a, a·a}, Q(a) = {1} andQ(a·a) = ∅. We will be interested only in the productive
part of the canonical automatonP(A, B), for which unique types exist.

Lemma 18. If A andB are productive, then all safe states ofQA,B that are reach-
able in P(A, B) are productive and have typeVn.

Proof. To see this, suppose that(p, q) is safe and reachable. SinceB is productive,
there exists a wordw ∈ L(B[init={q}]). Safety proves thatw ⊗ ∅ ∈ L(A[init =
{p}]). Thus,w ∈ P(A, B)[init = {(p, q)}], so that(p, q) is productive. SinceA is
canonical,P(A, B) is canonical, so thattype(p) ⊎ type(w ⊗ ∅) = Vn.

Capturing the Delay

Proposition 24. Let QA,B be defined by productive dFAsA andB, and let Pu be
the restriction of nFA P(A, B) to productive unsafe states of typeVn.

1. The delay ofQA,B is bounded if and only if the digraph of nFA Pu is acyclic.

2. In this case, the delay ofQA,B is equal to the length of the longest path in
Pu.

Proof. Let P = P(A, B) andPu the restriction ofP to productive unsafe states of
typeVn. Let q be a state ofPu for which a cycle exists. Since all states ofPu are
productive inP, there exists a wordv1 ∈ L(P[fin = {q}]). SincePu has a cycle,
there exists a nonempty wordv2 ∈ L(P[init = {q}, fin = {q}]). Again, sinceP is
productive, there exists a wordv3 ∈ L(P[init = {q}]). It follows for all m ≥ 0,
thatv = v1 ·(v2)

m ·v3 ∈ L(P). SinceL(P) = L(A), wordv has the formw ∗ τ for
some wordw ∈ Σ∗ andτ ∈ dom(w)n. By Lemma17, none of the events in|v2|

m

is sufficient for the selection ofτ in w since the run ofP on v maps all of them to
unsafe states. This shows that the selection delay ofτ in v is at leastm and thus
unbounded.

For the converse, we suppose thatPu is acyclic and show that the delay ofQA,B

is bounded by the length of the longest path instatPu. Let w andτ be such that
w ∗ τ ∈ L(A) andr be the successful run ofA that accepts this word. Letη be an
arbitrary event that contributes to the delay ofτ , i.e., an event withτ ∈ domη(w)
and (τ, η) /∈ selQA,B

(w). The first condition yields thattype(r(η)) = 1Vn and
the second condition thatr(η) is unsafe for selection by Lemma17. Thus,r(η) ∈
statPu. SincePu is acyclic, it follows that statesr(η) are distinct for distinct events
η that contribute to the delay. Furthermore, all these statesbelong to the same path
of Pu, such thatdelayQA,B

(w, τ) is bounded by the length of the longest path in
Pu.
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If Pu is acyclic, letr a longest path inPu and letw a word such thatw∗∅ labels
r. Since all states ofP are reachable and productive, there existsw1 ∗ τ which
reaches inP the first state ofr; similarly, there exists a wordw2 such thatw2 ∗ ∅
labels a path from the last state ofr to a final state ofP. ThendelayQ(w1·w·w2, τ)
is the length (here, the number of states) ofr.

In order to compute the set of all safe states, we rely on the following charac-
terization of unsafe states.

Lemma 19. Let A, B be productive dFAs that define a query. A reachable state
(p0, q0) of P(A, B) is unsafe for selection byQA,B if and only a state(p, q) can be
reached from(p0, q0) such that:

(U1) eitherp /∈ finA andq ∈ finB,

(U2) or there exists a transitionq
a
→ q′ ∈ rulB but no transitionp

(a,∅)
→ p′ ∈ rulA

for all p′ ∈ statA.

Proof. Let P = P(A, B). We start with a claim about propagation of unsafety.

Claim 14. Reachable states of P that can reach unsafe states are unsafe.

To see this, let(p1, q1) be a reachable state and(p2, q2) be an unsafe state that
is reached from(p1, q1) by some wordv1, i.e. v1 ∈ P[init = {(p1, q1)}, fin =
{(p2, q2)}]. Since(p2, q2) is unsafe, there exists a wordw ∈ L(B[init = {q2}])
such thatw ⊗ ∅ /∈ L(A[init = {p2}]). We distinguish two cases.

1. If v1 matchesw1 ⊗ ∅ thenw1 ·w ∈ L(B[init = {q1}]) and(w1 ·w) ⊗ ∅ /∈
L(A[init = {p2}]), so that(p1, q1) is unsafe.

2. If v1 does not matchw1 ⊗ ∅ thentype(p1) 6= Vn so that(p1, q1) is unsafe by
Lemma18, since(p1, q1) is reachable inPand sinceA andB are productive.

Based on this claim, we can now show both directions of the lemma.

“⇐” By Claim 14 it is sufficient to show that all states(p, q) satisfying (U1)
or (U2) are unsafe. In case of (U1) wherep /∈ finA and q ∈ finB, the
empty word contradicts the safety of(p, q), sinceǫ ∈ L(B[init = {q}]) but
ǫ ⊗ ∅ /∈ L(A[init = {p}]). In case of (U2), there exists some transition

q
a
→ q′ ∈ rulB but no transitionp

(a,∅)
→ p′ ∈ rulA for all p′ ∈ statA. Since

B is productive, there exists a wordw ∈ L(B[init = {q2}]). The word
a ·w now contradicts safety of(p, q) sincea ·w ∈ L(B[init = {p}]) but
(a·w)⊗ ∅ 6∈ L(A[init = {q}]).
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“⇒” We show that all unsafe states(p0, q0) can reach some state(p, q) that satis-
fies (U1) or (U2). If (p0, q0) is unsafe then there exists a wordw ∈ Σ∗ such
thatw ∈ L(B[init = {q0}]) andw ⊗ ∅ /∈ L(A[init = {p0}]). Let w0 be the
longest prefix ofw such that there exists a run ofP[init = {(p0, q0)}] onw0.
Let (p, q) be the state reached by this run after readingw0, and letw1 be the
suffix of w such thatw = w0 ·w1. State(p, q) is thus reached from(p0, q0).
It remains to show that(p, q) satisfies (U1) or (U2).

1. If w1 = ǫ thenp ∈ finB andq /∈ finA, so that(p, q) satisfies (U1).

2. If w1 matchesa·w2 then there cannot exist any transitionp
(a,∅)
→ p′ since

w0 was chosen of maximal length. There exists a transitionq
a
→ q′ for

someq′ though. Hence,(p, q) satisfies (U2).

Lemma 20. The set of reachable safe states for selection for ann-ary queryQA,B

can be computed in timeO((|Σ|+ n) · |A| · |B|) from dFAsA andB.

Proof. Instead of the set of reachable safe states, we compute the set of reachable
unsafe states. A Datalog program testing the reachability of states satisfying (U1)
or (U2), which characterizes unsafety for reachable states by Lemma19, can be
defined as follows:

p′ /∈ finA q′ ∈ finB

unsafesel(p, q).
∀p′.p

(a,∅)
→ p′ /∈ rulA q

a
→ q′ ∈ rulB

unsafesel(p, q).

(p, q)
(a,V )
→ (p′, q′) ∈ rulP(A,B)

unsafesel(p, q) :- unsafesel(p
′, q′).

This programP can be computed in timeO((|Σ|+ n) · |A| · |B|), while being of
sizeO(|A| · |B|). It is a ground Datalog program, so its least fixed pointlfp(P )
can be computed in timeO(|A| · |B|) (see Proposition5 in the appendix).

Theorem 10. The delay of queriesQA,B in words with alphabetΣ and arityn ∈
N0 defined by dFAsA andB can be computed in timeO((|Σ|+ n) · |A| · |B|).

In particular, we can decide in the same time, whether a queryQA,B has
bounded delay ork-bounded delay, even ifk belongs to the input.

Proof. We first renderB productive and construct the dFAP(A, B). Second, we
compute all reachable safe states by Lemma20and derive the sub-automatonPu,
that restrictsP(A, B) to productive unsafe states of typeVn. By Proposition24,
the delay ofQA,B is∞ if and only if Pu contains a cycle. Otherwise, we compute
the delay by counting the length of the longest path ofPu. All of these operations
can be performed in timeO((|Σ|+ n) · |A| · |B|).
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p0 p1 p2 p3

ok(a, ∅)
(b, ∅)

(a, {x1}) (b, ∅) (b, ∅)

(a, ∅)
(b, ∅)

ǫ
ǫ

(a, ∅)
(b, ∅)

unsafesel unsafesel unsafesel

{x1} {x1} {x1}

Figure 7.3: nFAD(A, B) for the dFAA in Figure 7.2 with trivial universalB.
The ambiguity ofD(A, B) is 2 (on word(a, {x1})·(b, ∅) for instance), such as the
delay ofQA,B.

7.3.4 Reduction to Bounded Ambiguity

Before moving on to bounded concurrency, we introduce a moregeneral method
to decide boundedness by reduction to bounded ambiguity of nFAs at the example
of bounded delay.

The idea is to turn the dFAP(A, B) it into an nFA D(A, B) such that
ambD(A,B)(w ∗ τ) = delayQA,B

(w, τ) for all τ ∈ QA,B(w). We can then test
whetherD(A, B) has bounded ork-bounded ambiguity, which can be done in
PTIME as shown in [AMR08, Sei92].

We constructD(A, B) from P(A, B) by adding a new stateokandǫ-transitions
from all unsafe states of typeVn to ok. Figure7.3 presents the result of this
operation on the automaton in Figure7.2.

statD(A,B) = statP(A,B) ⊎ {ok}, initD(A,B) = initP(A,B), finD(A,B) = {ok}

r ∈ rulP(A,B)

r ∈ rulD(A,B)

unsafesel(p, q) p has typeVn

(p, q)
ǫ
→ ok∈ rulD(A,B)

a ∈ Σ

ok
(a,∅)
→ ok∈ rulD(A,B)

Proposition 25. For all τ ∈ QA,B(w): delayQA,B
(w, τ) = ambD(A,B)(w ∗ τ).

Proof. Consider a runr of D(A, B) on a canonical wordw ∗ τ with τ ∈ Q(w).
We can show inductively onr that the ambiguity ofD(A, B) on w is exactly the
number of states used inr that are not safe for selection. The initial state is unique
asA is deterministic, so at the beginning the ambiguity is1. When reading a new
letter, if the associated stateq is not unsafe or has not typeVn, then there is only
one way to continue the run, via a rule ofP(A, B). If it is unsafe with typeVn,
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then there are two possibilities: either by using the run ofP(A, B), or by firing
the ǫ-transition. Both runs will succeed (asok is universal), so in this case the
ambiguity is increased by one. HenceambD(A,B)(w ∗ τ) is the number of unsafe
states used in the run ofP(A, B), and also ofA, onw ∗ τ . From the definitions of
delay (here the typeVn ensures that we start counting atlatest(τ)), safe states and
by Lemma17, this is exactlydelayQA,B

(w, τ).

Proposition25 yields slightly weaker results than Theorem10. It permits to
apply PTIME algorithms for deciding bounded ork-bounded ambiguity of dFAs,
in order to decide bounded ork-bounded delay in PTIME. However, it doesnot
allow to compute the optimal bound inP -time, requires to fixk in order to decide
k-boundedness inP -time, and yields higher polynomials. As we will show next,
this general approach is useful to decide bounded andk-bounded concurrency, for
which we do not dispose any more direct algorithm.

7.3.5 Deciding Bounded Concurrency

We show how to reduce in PTIME bounded concurrency to bounded ambiguity
andk-bounded concurrency tok-bounded ambiguity.

The concurrency of a query counts the number of simultaneously alive partial
candidates. Beside of sufficiency for selection, alivenessdepends on sufficiency
for rejection. We thus need a notion of safe states for rejection.

Definition 15. A pair of states(p, q) of P(A, B) is safe for rejection byQA,B if no
final state can be reached from(p, q), i.e., ifL(P(A, B)[init = {(p, q)}]) = ∅.

We saw in the proof of Theorem10 how to compute safe states for selection,
so now we need a method to compute safe states for rejection.

Lemma 21. The set of safe states for rejection byQA,B for nFAsA andB can be
computed in timeO(|A| · |B|).

Proof. We compute the set of all unsafe states for rejection. In order to do so, it is
sufficient to compute the set of all states ofP(A, B) from which some final state
can be reached. This can be done by the following ground Datalog program:

p′ ∈ finA q′ ∈ finB

unsaferej(p, q).
p

(a,v)
→ p′ ∈ rulA q

a
→ q′ ∈ rulB

unsaferej(p, q) :- unsaferej(p
′, q′).

This program can be constructed in timeO(|A| · |B|) from A andB. By Proposi-
tion 5, thelfp(P ) can be computed in timeO(|A| · |B|).
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p0 p1 p2 p3

ok(a, ∅)
(b, ∅)

(a, ∅) (b, ∅) (b, ∅)

(a, ∅)
(b, ∅)(a, {y})

(b, {y})

unsafesel unsafesel unsafesel
unsaferej unsaferej unsaferej unsaferej

Figure 7.4: nFAC(A, B) for query dFAA in Figure 7.2 and trivial universal
B. Even though nondeterministic, the ambiguity ofC(A, B) is 1, equally to the
concurrency ofQA,B.

We define an nFAC(A, B) such thatambC(A,B)(w ∗ η) = concurQ(w, η).
The situation is a little different than forD(A, B), in thatC(A, B) runs on words
annotated by events rather than tuples. We fix a new variabley /∈ Vn that will
denote the event of interest, and define the alphabet ofC(A, B) to beΣ × 2{y}.
The idea of nFAC(A, B) is to guess a partial candidateτ , until the event markery
comes, and to test whetherτ is alive at that event, and to accept in case of success.

statC(A,B)=statA×statB ⊎ {ok}
initC(A,B)=initA×initB
finC(A,B)={ok}

(p, q)
(a,V )
→ (p′, q′) ∈ rulP(A,B)

(p, q)
(a,∅)
→ (p′, q′) ∈ rulC(A,B)

(p, q)
(a,v)
→ (p1, q1)∈rulP(A,B) unsafesel(p1, q1) unsaferej(p1, q1)

(p, q)
(a,{y})
→ ok∈ rulC(A,B)

Both rules guess a set of variablesV and check that the current position is the
denotation of all variables inV , by running automatonA with V in the input
letter. The second rules inputs the event marker, and goes into theok-state, if
automatonP(A, B) could move to states that are unsafe for both selection and
rejection, so that the current partial candidate is alive. For illustration, consider
Figure7.4 which shows the automatonC(A, B) obtained from the automatonA
in Figure7.2and the trivial universal automatonB.

Given a wordw = a1 ·. . .·am and a position1 ≤ η ≤ m we writew|η for the
word (a1, ∅)·(aη−1, ∅)·(aη, {y}).

Proposition 26. concurQA,B
(w, η) = ambC(A,B)(w|η), for all w ∈ L(B) and

η ∈ dom(w).

Proof. Let w ∈ L(B) andη ∈ dom(w). Suppose thatτ1 and τ2 are different
partial tuples that are alive atη. Let r1 andr2 be the runs ofA on the prefixes of
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w ∗ τ1 resp.w ∗ τ2 until η. Sinceτ1 andτ2 are different, there exists a positioni
such that the prefixes of lengthi < η of w ∗ τ1 andw ∗ τ2 have different types.
SinceA is canonical, this implies that both runs assign states of different types to
positioni, so thatr1(i) 6= r2(i).

Let a1 ·. . .·aη be the prefix ofw until positionη. By construction ofC(A, B),
both runsr i restricted to{1, . . . , η−1} are also runs ofC(A, B) on word v =
(a1 ·. . .·aη−1) ⊗ ∅. These runs can be extended to successful runs ofC(A, B) on
w|η = v·(aη, {y}) by mapping positionη to ok, since both tuplesτi are alive at
eventη (and thus neither safe for selection nor rejection). Both runs are different,
since runsr1 and r2 differ at some positioni < η. HenceconcurQA,B

(w, η) ≤
ambC(A,B)(w|η).

For the converse, consider two different runsr1 andr2 of C(A, B) onw|η. We
now build two partial tuplesτ1 andτ2 and the corresponding runsr ′1 andr ′2 of A
on the prefixes ofw∗τ1 andw∗τ2 until η. These are hidden in the rules applied for
producing runsr1 andr2 by C(A, B). Since the states which permitted to move
to ok are alive, the runsr ′1 andr ′2 can be extended into an alive state atη. This
shows that both tuplesτ1 andτ2 are alive. They are different, since produced from
distinct runsr1 andr2. This shows thatambC(A,B)(w|η) ≤ concurQA,B

(w, η).

Theorem 11. Bounded andk-bounded concurrency for queries and schemas de-
fined by canonical dFAs can be decided inPTIME for any fixedk ≥ 0.

Proof. From Lemmas20 and 21, C(A, B) can be constructed in PTIME from
A andB. By Proposition26, it remains to decide the finite (resp.k-bounded)
ambiguity ofC(A, B). This can also be done in PTIME [AMR08, Sei92]. Before
the construction, we need to makeA andB productive, which can be done in time
O(|A|+ |B|).

7.4 Recognizable Relations between Unranked
Trees

Even with STAs, it remains difficult to lift our PTIME algorithms for words to
trees, since the notion of safe states becomes more complex.The difference is
that in STAs, the configuration depends on the current state,but also on the con-
tent of the stack. Given a canonical dSTAA for queryQA, one can define another
dSTAE(A) for which appropriate notions of safe states w.r.t.QA exist, as shown
in Chapter5. The size ofE(A), however, may grow exponentially in|A|. There-
fore, we cannot useE(A) to construct polynomially sized counterparts ofD(A)
andC(A) in the case of unranked trees, for instance automata which ambiguity
captures the delay (resp. the concurrency). We conjecture that in the general case
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there is no PTIME algorithm for computing deterministic automata capturingthe
delay and the concurrency fromA.

Nevertheless, we are able to prove the following theorem:

Theorem 12(Main). Bounded delay is decidable inPTIME for n-ary queries de-
fined by deterministic streaming tree automata wheren may be variable. Bounded
concurrency is decidable inPTIME for fixedn. For fixedk andn, k-bounded delay
and concurrency are decidable inPTIME.

Since top-down deterministic tree automata (d↓TAs) modulo fcns encoding
and bottom-up deterministic automata (dTAs) modulocurry encoding can be
translated to dSTAs in PTIME (see Chapter4), Theorem12 does equally apply
for queries defined by such automata. The proof will be based on reductions to
bounded resp.k-bounded valuedness of recognizable relations between unranked
trees. It will be presented in Section7.5.

Regular tree languages enjoy closure properties over logical operations, thanks
to the underlying properties of tree automata. A tree language can be considered
as a unary relation over the set of all trees. A generalization consists in considering
n-ary relations over trees, i.e., sets ofn-tuples of trees.

In this section, we show how to extend the notion of recognizable relations
[CDG+07] to the case of unranked trees. Closure properties of automata still en-
sure that FO-formulas over recognizable relations withn free variables define rec-
ognizable relations betweenn unranked trees (so that satisfiability is decidable).
Unlike the framework proposed by Benedikt et al. [BLN07], we do not define
basic relations, and allow different alphabets on the components of the relations.
Our major contribution here is that bounded valuedness andk-bounded valued-
ness (for a fixedk) of binary relations can be decided in PTIME. For bounded
valuedness, we use a reduction to bounded valuedness of transducers [Sei92]. k-
bounded valuedness is resolved by reduction to the emptiness of an automaton,
that can be computed in PTIME thanks to properties of recognizable relations.

7.4.1 Closure Properties

Cylindrification Extension

Cylindrification of queries has been defined in Section2.3, as the inverse pro-
jection. We extend the definition in order to allow the insertion of several com-
ponents (instead of one), plus copying and permutation of components, but no
deletion. For ann-ary queryQ over relational structuresS, cylindrificationcθQ
for a functionθ : {1, . . . , m} → {1, . . . , m} with {1, . . . , n} ⊆ θ({1, . . . , m}) is
defined by the following equality, for all structuress∈ S:

cθQ(s) = {(πθ(1), . . . , πθ(m)) ∈ dom(s)m | (π1, . . . , πn) ∈ Q(s)}
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The schema is unchanged:dom(cθQ) = dom(Q).

Queries by First-Order Formulas

In Section2.3 and in the previous paragraph, we defined logical operationson
queries. We show how they can be used to define queries from first-order formu-
las. This is an alternative definition of first-order definable queries introduced in
Section2.3.

Every FO formulaφ with at mostm free variables̃y = (y1, . . . , ym) ∈ Vm

defines am-ary queryQφ(ỹ) whose domain contains allS-structures.

Qφ1∧φ2(ỹ) = Qφ1(ỹ) ∧Qφ2(ỹ) Q¬φ(ỹ) = ¬Qφ(ỹ)

Q(∃z.φ)(ỹ) = ∃z.Qφ(ỹ,z) Qr(y1,...,yn)(yθ(1),...,yθ(m)) = cθr

Here, we identify relation symbolr with the query of arityar(r) that satisfies
r(s) = rs for all structuress∈ S.

Logical Operations on Tree Languages

Beyond standard Boolean operations on languages [CDG+07], we define pro-
jection operationsproji: TΣ1×...×Σm → TΣi

for all 1 ≤ i ≤ m, such that all
proji(t) relabels all nodesπ ∈ nod(t) to the i-th component of its label. We
write t = t1 ∗ · · · ∗ tm if ∧1≤i≤mproji(t) = ti. We can define more gen-
eral projection operationsprojI : TΣ1×...×Σm → TΣi1

×...×Σin
that preserve a sub-

set of componentsI = {i1, . . . , in} where 1 ≤ i1 < . . . < in ≤ m by
projI(t1 ∗ . . . ∗ tm) = ti1 ∗ . . . ∗ tin . Projections can be lifted to languages of
treesL ⊆ TΣ1×...×Σm by projI(L) = {projI(t) | t ∈ L}.

We also need cylindrification operations on tree languages,which may add,
copy, and exchange components of tuple trees, but not deletethem. We formalize
unsortedcylindrification operations that apply to treesL ⊆ TΣn , where all com-
ponents have the same signatureΣ. For functionsθ : {1, . . . , m} → {1, . . . , m}
with {1, . . . , n} ⊆ θ({1, . . . , m}) we define:

cθL = {tθ(1) ∗ . . . ∗ tθ(m) ∈ TΣm | t1 ∗ . . . ∗ tn ∈ L}

Note that all newly added components have signatureΣ. Sortedcylindrification
operations, that add components of particular types, can beobtained from unsorted
cylindrification and intersection.

Closure Properties of Automata

In this chapter, we assume an arbitrary class of tree automata, that satisfy the
properties in Proposition27. In particular, we consider three classes of tree au-
tomata studied in Chapter4: TAs w.r.t. fcnsandcurry encodings, and STAs. They
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all have the same expressiveness, as proved by the back and forth translations in
Chapter4, and exactly capture MSO-definable queries (and languages)over un-
ranked trees. In the following, we say that a tree language isrecognizableif it is
MSO-definable.

Proposition 27 (Closure properties). Recognizable languages are closed under
Boolean operations, projection and cylindrification. All corresponding operations
on tree automata can be performed inPTIME, except for the complementation of
non-deterministic tree automata. They all preserve determinism except for pro-
jection.

Proof. Closure properties of recognizable languages are due to theclosure proper-
ties of MSO-definable languages. It is folklore that these operations are in PTIME

and preserve determinism except for projection, for the three classes of automata
we consider.

Cylindrification operationscθ are a little richer than the usual cylindrifica-
tion operationsci that insert a single new component at positioni [CDG+07]. In
addition, they can copy components, which can be tested by intersection with de-
terministic tree automata that recognize the set{t ∗ t | t ∈ TΣ}, and permute
components. While operationcθ can be implemented in PTIME for every fixedθ
by computing intersections with a fixed number of tree automata, this cannot be
done in PTIME for variableθ.

Note, however, that cylindrification cannot delete components, such as projec-
tion, since projection operations on automata may spoil determinism.

7.4.2 Recognizable Relations

We study recognizable relations between trees [CDG+07] in the ranked and un-
ranked case [BLN07]. These are sets of tuples of trees, such that the set of overlays
of these tuples is recognizable by a tree automaton.

We first recall a standard method to define recognizable relations in FO logic
from a set of basic recognizable relations, while relying onthe closure properties
of tree automata. We then present the second main contribution of this article. We
show that bounded valuedness andk-bounded valuedness (for a fixedk) of binary
relations can be decided in PTIME. For bounded valuedness, we present a PTIME

reduction to bounded valuedness of transducers [Sei92], and fork-bounded val-
uedness, a PTIME reduction to emptiness of tree automaton.

In this section, we assume an arbitrary class of automata forunranked trees
A that satisfy the following properties. Here, we assume thatevery automaton
A ∈ A has an abstract notion of statessA.

(A1) every automaton ofA can be transformed into an STA in PTIME.
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a

b c
⊛

d

e

f

=

(a, d)

(b, e)

(⊡, f)

(c, ⊡)

Figure 7.5: Example for overlays

(A2) classA is closed under intersection, complementation, cylindrification and
projection modulo PTIME transformations, that preserve determinism ex-
cept for projection.

All these properties hold for the three classes of automata studied in the previous
section: Chapter4 proves the expressiveness requirement (A1) and Proposition27
the closure properties (A2). Note however, that hedge automata with dFAs for
horizontal languages [CDG+07] fail to satisfy (A2), since deterministic hedge
automata cannot be complemented in PTIME.

Theoverlayof k unranked treesti ∈ TΣi is the unranked treet1 ⊛ . . . ⊛ tk in
TΣ1

⊡
×...×Σk

⊡

obtained by superposing thesek trees top-down and left-to-right; the
⊡ symbol represents missing children where the structures ofthe trees differ. This
is illustrated in Figure7.5and formally defined by:

a(t1, . . . , tk) ⊛ b(t′1, . . . , t
′
l) ={

(a, b)(t1 ⊛ t′1, . . . , tl ⊛ t′l, tl+1 ⊛ ⊡, . . . , tk ⊛ ⊡) if l ≤ k
(a, b)(t1 ⊛ t′1, . . . , tk ⊛ t′k, ⊡ ⊛ tk+1, . . . , ⊡ ⊛ tl) otherwise

Overlays of ranked trees can be obtained this way too [CDG+07], except that
overlayed symbols need to inherit the maximal arity.

Definition 16. A k-ary relationR between unranked trees isrecognizableiff the
language of its overlays ovl(R) = {t1 ⊛ . . . ⊛ tk | (t1, . . . , tk) ∈ R} is recog-
nizable by a tree automaton. We say thatR is recognized by the automatonA if
ovl(R) = L(A).

Prime examples for recognizable relations [BLN07] are the tree extension re-
lation≤↓,≤→⊆ TΣ × TΣ, such thatt ≤↓ t′ if t′ is obtained by repeatedly adding
children to leaves oft, andt ≤→ t′ if t′ is obtained by repeatedly adding next-
siblings to right most children oft.

7.4.3 Sorted FO Logic

We need a sorted first-order logic in order to define recognizable relations be-
tween trees with various signatures. Note that only the simpler case with a single
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signature was treated in [BLN07].
A sorted relational signatureis a relational signatureS = Sorts⊎ ℜ, that

consists of a set of monadic symbolsσ ∈ Sortscalled sorts and a set of relation
symbolsr ∈ ℜ, each of which has a sortsort(r) ∈ Sortsar(r). A sorted relational
structure sover S = Sorts⊎ ℜ is a relational structure such that:dom(s) =
∪σ∈Sortsσ

s and for every relation symbolr ∈ ℜ of arity m:

sort(r) = (σ1, . . . , σm)⇒ rs ⊆ σs
1 × . . .× σs

m

In the FO logic of sorted relational structures, we can definesort bounded quanti-
fiers:

∃x∈σ.φ =df ∃x.(σ(x) ∧ φ)

A sorted FO formulais a FO formula in which all quantifiers are sort bounded.
Every sorted FO formulaφ overS with at mostm free sorted variables defines an
n-ary relation for every sorted relational structures overS:

Rφ(x1:σ1,...,xm:σm)(s) = Qφ(x1,...,xm)(s) ∩ σs
1 × . . .× σs

m

7.4.4 Sorted FO Logic of Recognizable Relations

We assume a collection of alphabetsΩ. A structures of recognizable relations
between trees with alphabets inΩ has a sorted relational signature with sorts
Sorts = {Tω | ω ∈ Ω} that are interpreted by themselves in every structure,
such that every relation symbolr ∈ ℜ is interpreted as a recognizable relation
rs ⊆ sort(r) between trees.

A sorted FO formula for recognizable relations with alphabets Ω has the fol-
lowing form wherer ∈ ℜ andT1, . . . , Tn, T ∈ V andω ∈ Ω.

φ ::= r(T1, . . . , Tar(r)) | φ ∧ φ′ | ¬φ | ∃T∈Tω. φ

Here we use capital letters for variables, since they range over trees rather than
nodes of a single tree. The size|φ| of a formula is the number of nodes ofφ.

We write FO∃[ℜ] for the set of sorted formulas, where quantifiers are existen-
tial and in prenex positions. Lets = {Ar}r∈ℜ be a collection of automata that
recognize the relations inℜ, or equivalently, the structure of recognizable rela-
tions they induce. Every sorted FO formulaφ with at mostm free sorted variables
defines ann-ary relation between trees:

Rφ(T1:Tω1 ,...,Tm:Tωm )(ϑ) ⊆ Tω1 × · · · × Tωm

The closure properties of tree automata w.r.t. Boolean operations, cylindrification,
and projection ensure that all such relations are recognizable.
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Proposition 28. Let φ be a fixed formula in FO∃[ℜ] with at mostm free sorted
variablesT1:Tω1 , . . . , Tm:Tωm . Then there exists a polynomialp such that for all
structures of recognizable relationsϑ = {Ar}r∈ℜ defined by tree automata such
thatAr is deterministic ifr occurs below in negationφ, one can compute in time
p(

∑
r∈ℜ |Ar|) an automaton that recognizes the relationRφ(T1:Tω1 ,...,Tm:Tωm )(ϑ).

The computed automaton is deterministic, if all automata are deterministic andφ
is free of existential quantifiers.

Proof. The proposition depends of the closure properties (A2) of the class of au-
tomata under consideration. The proof is by induction on thestructure of formulas
in FO∃[ℜ]. It follows from two claims, that relate operations on tree relations to
operations on tree languages to closure properties of tree automata.

Claim 17. For all Q ⊆ Tω1 × . . . × Tωm , Vm = {X1, . . . , Xm} and θ :
{1, . . . , m} → {1, . . . , m} with {1, . . . , n} ⊆ θ({1, . . . , m}):

ovl(∃Xi.Q) = proj{1,...,i−1,i+1,...,m}(ovl(Q)) ovl(cθQ) = cθovl(Q)

ovl(¬Q) = ovl(Tω1 × . . .× Tωm)− ovl(Q) ovl(Q1 ∧Q2) = ovl(Q1) ∩ ovl(Q2)

The proof is straightforward from the definitions. The next second claim re-
lates connectives of sorted FO formulas to operations on tree relations.

Claim 18. For all alphabetsω̃ = (ω1, . . . , ωm) and ωm+1, variables X̃ =
(X1, . . . , Xm) andXm+1 that are pairwise distinct, structures s of tree relations,
functionsθ : {1, . . . , m} → {1, . . . , m} with {1, . . . , n} ⊆ θ({1, . . . , m}), sorted
formulasφ, φ1, φ2 in FO[ℜ], and relations symbolsr ∈ ℜ:

ovl(R∃Xm+1∈Tωm+1 .φ(X̃:Tω̃)(s)) = proj{1,...,m}(ovl(Rφ(X̃ :Tω̃,Xm+1:Tωm+1)(s)))

ovl(Rr(X̃)(Xθ(1) :Tωθ(1)
,...,Xθ(m):Tωθ(m)

)(s)) = ovl(Tωθ(1)
× . . .× Tωθ(m)

) ∩ cθovl(rs)

ovl(Rφ1∧φ2(X̃:Tω̃)(s)) = ovl(Rφ1(X̃:Tω̃)(s)) ∩ ovl(Rφ2(X̃ :Tω̃)(s))
ovl(R¬φ(X̃ :Tω̃)(s)) = ovl(Tω1 × . . .× Tωm)− ovl(Rφ(X̃ :Tω̃)(s))

The proof is straightforward from the definitions and the previous claim. For
illustration, we elaborate the case of negation, where the sorting information is
needed. LetLω̃ = ovl(Tω1 × . . .× Tωm).

ovl(R¬φ(X̃:Tω̃)(s)) = Lω̃ ∩ ovl(Q¬φ(X̃ :Tω̃)(s))
= Lω̃ ∩ (Lω̃ − ovl(Qφ(X̃:Tω̃)(s))) (previous claim)
= Lω̃ − ovl(Rφ(X̃ :Tω̃)(s))

Finally, we illustrate the induction for formulaφ = ¬φ′. Sinceφ ∈ FO∃[ℜ], for-
mulaφ′ cannot contain existential quantifiers. Furthermore, all automataAr for re-
lations symbols occurring inφ must be deterministic by assumption. By induction
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hypothesis, there exists a polynomialp′ such that for all structuresϑ = {Ar}r∈ℜ
defined automata automataAr, one can compute in timep(

∑
r∈ℜ |Ar|) a deter-

ministic automatonA′ recognizing the languageovl(Rφ′(X̃ :Tω̃)(ϑ)). Recall that
ovl(Rφ(X̃ :Tω̃

)(ϑ)) is equal toovl(Tω1 × . . . × Tωm) − ovl(Rφ′(X̃ :Tω̃)(s)) as shown
by the previous claim. We obtain an automatonA recognizing this language by
complementingA′ and intersecting it with an automaton forovl(Tω1× . . .×Tωm).
This can be done in timep1(|A

′|) · |ω1| · . . . · |ωm| for some polynomialp1, since
A′ was deterministic. Furthermore, automatonA can be constructed deterministi-
cally fromA′. We can thus define polynomialp byp(ξ) = p1(p

′(ξ))·|ω1|·. . .·|ωm|.
The only construction, where non-determinism is needed areprojections. This

is why we require existential quantifiers to appear only in prenex position. Note
that the proposition can be extended to general FO formulas,but not in PTIME.

In Section7.5, we will see that relations capturing the notions of delay and
concurrency of queriesQA,B can be defined in PTIME from A andB by using
FO∃[ℜ] formulas, for a suitable set of relation symbolsℜ whose interpretation
depends onA andB. The delay and concurrency will exactly be the valuedness
of the corresponding recognizable relations. In the remainder of this section, we
prove that bounded valuedness andk-bounded valuedness or recognizable rela-
tions are decidable in PTIME from automata defining the relations.

7.4.5 Bounded Valuedness

Let R ⊆ TΣ1 × TΣ2 be a recognizable binary relation. For everyt1 ∈ TΣ1 , the
number#R(t1) = |{t2 | (t1, t2) ∈ R}| counts the trees inTΣ2 in relation to it.
Thevaluednessof R is the maximal such numberval(R) = maxt∈TΣ1

#R(t). We
call R k-boundedif val(R) ≤ k, andboundedif it is k-bounded for somek ∈ N0.

We want to reduce bounded valuedness of recognizable relations over un-
ranked trees to the same problem for ranked trees. This can beobtained by a
correspondence between the overlay of a tree and the overlayof its fcnsencoding.
Let ren be the morphism on binary trees that renames constants(⊡, . . . , ⊡) to ⊡

and preserves the trees otherwise. This morphism is linear and one-to-one, so it
preserves regularity in both directions:L is recognizable iffren(L) is recogniz-
able. The following lemma relates overlays of unranked and ranked trees. Note
that this nice correspondence does not hold for thecurry encoding.

Lemma 22. fcns(t1 ⊛ . . . ⊛ tn) = ren(fcns(t1) ⊛ . . . ⊛ fcns(tn))

The following proposition shows that valuedness is preserved by thefcnsen-
coding. Letfcns(R) = {(fcns(t1), fcns(t2)) | (t1, t2) ∈ R}.
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Proposition 29. A binary relationR between unranked trees is recognizable iff
the corresponding relation between binary trees fcns(R) is, and val(fcns(R)) =
val(R).

Proof. By definition fcns(R) = {(fcns(t1), fcns(t2)) | (t1, t2) ∈ R}. Lemma22
yields fcns(ovl(R)) = ren(ovl(fcns(R))). The morphismren preserves recogniz-
ability back and forth. Thus,fcns(R) is a recognizable relation iffovl(fcns(R)) is
recognizable language of binary trees iffren(ovl(fcns(R))) is a recognizable lan-
guage of binary trees ifffcns(ovl(R)) is a recognizable language of binary trees
iff ovl(R) is a recognizable language of unranked trees iffR is a recognizable
relation of unranked trees.

Theorem 13. For every automatonA recognizing a binary relationR between
unranked trees, val(R) <∞ can be decided inPTIME in |A|.

This theorem holds for all classes of automata for unranked trees that satisfy
the expressiveness property (A1) and thus to kinds of tree automata introduced
before. Note that we will apply this theorem to non-deterministic automataA
later on.

Proof. We prove Theorem13 in two steps. First we show by Proposition30 that
the result holds for relabeling relations. A relabeling relationR ⊆ TΣ1× . . .×TΣn

is a relation between trees of the same structure, i.e. whenever (t1, . . . , tn) ∈ R
thennod(t1) = . . . = nod(tn). In other words, the overlays inovl(R) do not
contain any place holder⊡. Then we exhibit how to associate with any relation
R a relabeling relationCR with the same valuedness, where the automaton rec-
ognizingCR can be constructed in PTIME from A definingR. The correctness of
the construction is proved by Lemma24.

Proposition 30. The finite valuedness of a binary relabeling recognizable relation
R can be decided inPTIME in |A|, when given an automatonA recognizingR.

Proof. Every automaton can be converted to an STA in PTIME by assumption
(A1), and thus to a TAs modulo thefcnsencoding by translations of Chapter4.
Proposition29permits to reduce the current Proposition to recognizable relations
of binary trees defined by standard TAs.

So letR ⊆ T bin
Σ1
× T bin

Σ2
be a relabeling relation for binary signatures, andA

a TA for trees inT bin
Σ1×Σ2

that recognizesR, i.e. L(A) = ovl(R). We transform
A into a bottom-up tree transducerT for defining the relationR of the format in
[Sei92]. The rules ofT are inferred as follows wherex1, x2 are variables:

(f, g)(q1, q2)→ q ∈ rulA
f(q1(x1), q2(x2))→ q(g(x1, x2)) ∈ rulT

(a, b)→ q ∈ rulA
a→ q(b) ∈ rulT
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Figure 7.6: A recognizable relationR and the relabelingCR with the same val-
uedness.

This transducerT has the same valuedness asR. Theorem 2.8 of [Sei92] shows
that it can be decided in polynomial time whetherT is finite-valued, i.e. whether
R is bounded.

The above construction of bottom-up transducers cannot be lifted to recogniz-
able relations beyond relabelings. Instead, we show how to convert recognizable
relations into recognizable relabelings, while preserving valuedness.

So, letR be a recognizable relation overT bin
Σ1 ×T bin

Σ2 . We define a recognizable
relabelingCR ∈ T

bin
Σ1

⊡
×Σ2

⊡

, where we have 2 symbols(⊡, ⊡) with arities0 and

2 respectively. The idea is to expand both trees in pairs(t1, t2) ∈ R to trees
(t′1, t

′
2) ∈ CR of the same structure, by repeatedly adding⊡-children to leaves

of t1 or t2. Expansionexi(t, t′) holds for two treest ∈ T bin
Σi and t′ ∈ T bin

Σi
⊡

if

nod(t) ⊆ nod(t′), both trees have the same labels on common nodes, and all new
nodes oft′ are labeled by⊡. We define the relabelingCR by:

CR = {(t′1, t
′
2)∈TΣ1

⊡

×TΣ2
⊡

| (t1, t2)∈R, ex1(t1, t
′
1), ex2(t2, t

′
2), nod(t′1)=nod(t′2)}

An example is given in Figure7.6. While the relationR there is finite, the corre-
sponding relabelingCR is infinite, since it has infinitely many witnesses of every
pair ofR.

Lemma 23. If A is a dTA recognizingR, then there exists a dTAA′ of sizeO(|A|)
that recognizesCR.

Proof. We add one more state toA, so thatstat(A′) = stat(A)∪{q⊡} andfin(A) =
fin(A′). AutomatonA′ runsA top-down, until⊡ occurs, and then checks for equal
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domains:

(⊡, ⊡)→ q⊡ ∈ rul(A′)
(⊡, ⊡)(q⊡, q⊡)→ q⊡ ∈ rul(A′)

(a, b)→ q ∈ rulA
(a, b)(q⊡, q⊡)→ q ∈ rul(A′)

(a, b)(q⊡)→ q ∈ rul(A′)

Lemma 24. CR andR have the same valuedness.

Proof. If exi(t, t′) holds for (t, t′) ∈ TΣi × TΣi
⊡

, then we writecleani(t′) = t,
which is well-defined ast is unique for a givent′. It is easy to check that:

• if s ∈ TΣ1
⊡
×Σ2

⊡

thens ∈ ovl(CR) iff (clean1(proj1(s)), clean2(proj2(s))) ∈
R

• (t1, t2) ∈ CR iff (clean1(t1), clean2(t2)) ∈ R andnod(t1) = nod(t2).

First, let us prove that the valuedness ofCR is at least the valuedness ofR.
Let t in TΣ1 such that there exists at leastk distinct ti with (t, ti) ∈ R. Let
D = nod(t)∪∪k

i=1nod(ti). For a treeu and a set of nodesD such thatnod(t) ⊆ D,
we define the completion ofu w.r.t. D as the treeuD defined bynod(uD) = D

and labuD

(π) = labu(π) if p belongs tonod(u), labuD

(π) = ⊡ otherwise. As
nod(tD) = nod(tDi ) andclean1(tD) = t, clean2(tDi ) = ti, we have(tD, tDi ) ∈ CR,
1 ≤ i ≤ n. As theti, 1 ≤ i ≤ n, are distinct, so are thetDi , 1 ≤ i ≤ n: the
valuedness ofCR is at least the valuedness ofR.

Now, let us prove that the valuedness ofCR is at most the valuedness ofR.
Let u in TΣ1

⊡

such that there exists at leastk distinctvi with CR(u, vi). Let t =

clean1(u), ti = clean2(vi): we have(t, ti) ∈ R. It remains to prove that theti are
all distinct.

Let 1 ≤ i < j ≤ n: asvi 6= vj there exists a positionπ such thatlabvi(π) 6=
labvj (π):

• either labvi(π) 6= ⊡ and labvj (π) 6= ⊡: thenπ belongs tonod(ti) and to
nod(tj) andlabti(π) 6= labtj (π).

• either labvi(π) 6= ⊡ and labvj (π) = ⊡: thenπ belongs tonod(ti) andπ
does not belong tonod(tj).

• eitherlabvj (π) 6= ⊡ andlabvi(π) = ⊡: similar to the precedent case.

So, there existst ∈ TΣ1 such that there exists at leastk distinct ti with (t, ti) ∈
R.
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Even if testing bounded valuedness of tree transducers is known to be in
PTIME, the complexity of known polynomial algorithms is much higher than for
testing bounded ambiguity of tree automata [SdS08].

Note that if we add the condition thatA is deterministic, then a similar con-
struction could have been done using automata instead of transducers. IfA′ is
the automaton onΣ2 obtained fromA by projecting theΣ1 components, then
amb(A′) = val(R), and ambiguity andk-ambiguity of A′ can be obtained in
PTIME [Sei92]. However, we will use relations defined by FO∃[ℜ] formula, which
corresponding automata are non-deterministic.

7.4.6 k-Bounded Valuedness

In this section we study the problem of deciding whether a binary recognizable
relation hask-bounded valuedness. We first prove that, whenk is fixed, we can
still decidek-bounded valuedness in PTIME. Then we consider the problem when
k is variable, and prove that it becomes EXPTIME-hard.

Here we cannot prove thatk-bounded valuedness can be decided in PTIME

through the use of transducers, like for Lemma30, as known algorithms for de-
ciding k-boundedness of transducers are in non-deterministic polynomial time
(Theorem 2.2 of [Sei92]).

The problem does neither reduce to deciding thek-ambiguity of an automaton.
We will need to measure the valuedness of relations (as they will capture delay and
concurrency), butamb(A) andval(R) are not comparable, whenA recognizesR.

Theorem 14. Let Σ1 andΣ2 be two alphabets andk ∈ N0 fixed. There exists a
polynomialp such that for every structure s with a single relationR ⊆ TΣ1 × TΣ2

recognized by a possibly nondeterministic tree automatonA, val(R) ≤ k can be
decided in timep(|A|).

Proof. We consider the tree relationSameTree= {(t, t) | t ∈ TΣ2} which is
recognizable by a tree automaton of sizeO(|Σ2|

2). We fix a binary relation symbol
r that is interpreted by structuress given byR such thatrs = R. We define a
formulaval>k with k + 2 free variables in the logic of recognizable relations in
FO∃[r, SameTree], such thatRval>k(T :TΣ1

,T1:TΣ2
,...Tk+1:TΣ2

)(R) = ∅ if and only if
val(R) > k:

val>k =df

∧

1≤i≤k+1

r(T, Ti) ∧
∧

1≤i<j≤k+1

¬SameTree(Ti, Tj)

A tree automaton recognizing relationRval>k(T :TΣ1
,T1:TΣ2

,...Tk+1:TΣ2
)(R) = ∅ can

be computed in polynomial time from tree automatonA, where the polynomial
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depends on the fixed parameters|Σ1|, |Σ2| andk. This follows from Proposi-
tion 28since formula relation symbolr does not occur below negation in formula
val>k. Emptiness of the language of this automaton can be tested inlinear time.
Hence, there exists a polynomialp (depending on the fixed parametersk, Σ1, and
Σ2), such that we can checkval(R) > k in polynomial timeO(p(|A|)) from an
automatonA recognizingR.

Theorem14provides a PTIME decision procedurek-bounded valuedness, un-
der the assumption thatk is fixed and the proof relies on an automaton of size
O(|A|k+1). Without this assumption, however, we cannot avoid an exponential
blow-up.

Theorem 15. The problem that inputsk ∈ N0 and an automatonA recognizing a
binary relationR between unranked trees, and outputs the truth value of val(R) ≤
k is EXPTIME-complete.

Proof. By the proof of Theorem14, the problem is in EXPTIME. For the hardness
part, we will reduce emptiness of intersection of deterministic tree automata in
this problem. LetInt(S) the problem that inputsS, a finite sequence of deter-
ministic tree automata, and outputs “yes” if and only if there is at least one term
recognized by each automaton of the sequence. Now, from all automataA we
can build in polynomial time a binary relationRA that associates with a treet, t
labeled by an accepting run, if such a run exists. So, fromS - w.l.o.g. we sup-
pose the set of states are disjoint- we construct in polynomial time an automaton
AS for the binary relation∨A∈SRA. As the automata are deterministic,AS will
be (|S| − 1) − bounded iff there isn’t any term recognized by each automaton
of the sequence. We conclude as emptiness of intersection ofdeterministic tree
automata is EXPTIME-hard.

Using the above constructions and Theorem 2.7 of [Sei92], we can build an
algorithm for computing the exact value ofval(R), if it exists. The overall com-
plexity is a fixed number of exponentials in|A|.

7.5 Deciding Bounded Delay and Concurrency

We prove the main Theorem12 on deciding bounded delay and concurrency for
queries defined by dSTAs by reduction to bounded valuedness of recognizable
relations.
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7.5.1 Basic Recognizable Relations

We start by defining various relations between trees by dSTAs, that we will use
later on for defining the delay and concurrency of dSTA definedqueries by recog-
nizable relations between trees.

The prime example is the tree relationEq ⊆ TΣ × TΣ × T{0,op,cl}. For every
eventη = (α, π) ∈ eve(t) and treet ∈ TΣ, let renη(t) ∈ T{0,op,cl} be obtained by
renaming the label ofπ to α and the labels of all other nodes oft to 0. We then
define:

(t, s, renη(t)) ∈ Eq⇔df equalη(t, s)

so thatt ands have the same prefix until eventη. See Figure7.7for an example.

Lemma 25. For every signatureΣ we can compute a dSTA in timeO(|Σ|2), that
recognizes the relation Eq⊆ TΣ × TΣ × T{0,op,cl}.

Proof. We define a dSTAA onΣ⊡×Σ⊡×{0, op, cl}⊡ such thatL(A) = ovl(Eq).
We use two statesstatAe = {before, after}, whereinitA = {before} andfinA =
{after}. We use a single dummy node statestatAn = { }. The rules are given by
the following inference schema:

α ∈ {op, cl} a ∈ Σ b ∈ Σ⊡

before
α (a,a,0):
−−−−−→ before before

op (a,a,cl):
−−−−−−→ before

before
α (a,a,α):
−−−−−−→ after after

α (a,b,0):
−−−−−→ after

after
cl (a,b,op):
−−−−−−→ after after

α (⊡,a,⊡):
−−−−−−→ after

Note that the rulebefore
op (a,a,cl):
−−−−−−→ beforeis used to check the equality below a

nodeπ if prefix equality has to be checked until(cl, π). AutomatonA has size
O(|Σ2|) and can be computed in this time.

The next kind of tree relations express canonical languagesof queries. Given
a treet ∈ TΣ and a complete tupleτ ∈ dom(t)n, we define a treepruneτ (t) ∈ T2Vn
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as follows. Lett′ be the prefix oft with domaindomlatest(τ)(t). We setpruneτ (t) =
proj2(t

′ ∗ τ).
For everyn-ary queryQ, we define a recognizable relationCanQ ⊆ TΣ×T2Vn ,

which relates treest ∈ TΣ with tuplesτ ∈ Q(t):

CanQ = {(t, pruneτ (t)) | τ ∈ Q(t)}

Lemma 26. Let A andB be dSTAs that define ann-ary queryQ = QA,B. Then
we can compute a dSTA fromA in timeO(|A|2 · |Σ|) that recognizes CanQ.

Note that the size of the computed automaton is independent of n, even though
2Vn appears in the alphabet ofCanQ.

Proof. An automatonAC recognizingCanQ can be built in polynomial time in
|A| and|Σ|. The idea is exploit the types of states of canonical automata, in order
to detect eventη = latest(τ), rather than storing the variables seen so far in the
state. In order to ensure the uniqueness of types, we have to makeA productive.
We can then compute the types of all states during a traversalof the automaton.
The automatonAC can then be computed as follows:

statAC
e = statAe

initAC = initA

finAC = finA

statAC
n = statAn

q0
α (a,v):γ
−−−−−→ q1 ∈ rulA q0 not of typeVn or α = cl

q0
α (a,v):γ
−−−−−→ q1 ∈ rulAC

q0
α (a,∅):γ
−−−−−→ q1 ∈ rulA q0 of typeVn

q0
α (a,⊡):γ
−−−−−→ q1 ∈ rulAC

The automaton simulatesA until it reaches states of typeVn. From there on,
it expects⊡ as annotation, instead of∅. Note thatAC is deterministic sinceA
is.

The relationBef = {(t, pruneτ (t), renη(t)) | τ ∈ domη(t)
n} is the subset

of TΣ × T2Vn × T{0,op,cl} that captures alln-tuples of nodes oft (on its second
component) that contain only nodes opened before an eventη provided by the third
component.Bef is recognizable by a dTA of sizeO(2n), so we cannot use this
relation for PTIME algorithms without fixingn. The problem can be circumvented
by using the following relationBef&CanQ which can be recognized while using
the states of the canonical automaton forL(Q) for checking types:

Bef&CanQ = {(t, sτ , sη) ∈ TΣ × T2Vn × T{0,op,cl} | CanQ(t, sτ ), Bef(t, sτ , sη)}

Lemma 27. We can compute a dSTAAC recognizing Bef&CanQA,B
in time

O(|A|2 · |Σ|).
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Proof. We build a dSTAAB&C that recognizesBef&CanQ in PTIME from the
dSTA AC recognizingCanQ. We have to check, that at most one eventη is an-
notated into the third component, and that is comes afterlatest(τ) for the tupleτ
of the second component, i.e., when automatonAC has moved into a state of type
Vn.

Let B = {0, 1} be the set of Booleans. We definestatAB&C
e = statAC

e × B, in
order to control by a Boolean, whether the third component has been seen before.
We define initial states byinitAB&C = initAC × {0}, final states byfinAB&C =
finAC × {1}, and node states bystatAB&C

n = statAC
n .

q0
α (a,v):γ
−−−−−→ q1 ∈ rulAC

♭ ∈ B α′ 6= α

(q0, ♭)
α (a,v,α′):γ
−−−−−−→ (q1, ♭) ∈ rulAB&C

q0
α (a,v):γ
−−−−−→ q1 ∈ rulAC

q1 has typeVn in AC

(q0, 0)
α (a,v,α):γ
−−−−−−→ (q1, 1) ∈ rulAB&C

We define a variant ofBef for partial tuples, calledBef•. Here, we do not try
to avoid the blow-up for two reasons. First,Bef• will be used with another relation
calledC2Vn , and a blow-up is necessary to recognizeC2Vn . Second, separating the
relations permits to clarify the definition of the formula capturing concurrency.
Let renτ (s) ∈ T2Vn be the projection ofs ∗ τ to 2Vn, i.e.,nod(renτ (s)) = nod(s)
andlabrenτ (s)(π) = v if labs(π) = (a, v) for somea ∈ Σ, and allπ ∈ nod(s).

The relationBef• = {(renτ (t), renη(t)) | ∃t ∈ TΣ. τ ∈ dom•η(t)
n} is a subset

of T2Vn ×T{0,op,cl} that relates annotations of trees with tuplesτ and eventsη, such
that latest(τ) � η.

Lemma 28. A dSTA recognizing Bef• can be computed in timeO(3n).

Proof. The following dSTAABef• recognizes the relationBef•. In the states, we
collect (at opening) variables corresponding to the components ofτ that have been
encountered. We also add a Boolean, that indicates whether the eventη has been
read. Note that on the second component, we can read values different from0
when we are not atη. For instance ifη = (op, π), we will read “op” on the second
component when we go through(cl, π).

stat
ABef•
e =2Vn×B initABef•={(∅, 0)} finABef•=2Vn×{1} stat

ABef•
n ={ }

Rules are defined by the following inference schemas. At opening, we check
canonicity if η has not been reached; otherwise we forbid variables in the first
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component. Whenη is reached, we still allow to read variables, and change the
Boolean.

α ∈ {0, cl} v, v′ ⊆ Vn v ∩ v′ = ∅

(v, 0)
op (v′,α):
−−−−−→ (v ∪ v′, 0) ∈ rulABef•

(v, 0)
op (v′,op):
−−−−−−→ (v ∪ v′, 1) ∈ rulABef•

(v, 1)
op (∅,0):
−−−−−→ (v, 1) ∈ rulABef•

At closing, we do not check anything. We just change the Boolean whenη is
reached.

♭ ∈ B α ∈ {0, op} v′ ⊆ v ⊆ Vn

(v, 0)
cl (v′,cl):
−−−−−→ (v, 1) ∈ rulABef•

(v, ♭)
cl (v′,α):
−−−−−→ (v, ♭) ∈ rulABef•

ABef• can be computed in timeO(3n): For opening rules, choosingv andv′ con-
sists in determining for each variablex ∈ Vn whetherx ∈ v − v′, x ∈ v′ − v or
x /∈ v ∪ v′. Similarly, for closing rules, we have to choose whetherx ∈ v − v′,
x ∈ v′, or x /∈ v ∪ v′.

Finally, the relationC2Vn ⊆ T2Vn is the set of trees ofT2Vn of type1Vn.

Lemma 29. An dSTA recognizing C2Vn can be computed in timeO(3n).

Proof. Here we just have to collect variables in states at opening, and read only
variables that have not been seen so far.

stat
AC

2Vn
e =2Vn initAC

2Vn ={∅} finAC
2Vn ={Vn} stat

AC
2Vn

n ={ }

v, v′ ⊆ Vn v ∩ v′ = ∅

v
op v′:
−−−→ v ∪ v′ ∈ rulAC

2Vn

v′ ⊆ v ⊆ Vn

v
cl v′:
−−−→ v ∈ rulAC

2Vn

The complexity comes from the same argument as Lemma28.

7.5.2 Bounded Delay

Our objective is to define the formulasdelayQ and concurQ in the logic
FO∃[Eq, Can, S, Bef, Bef&Can] preferably without usingBef. Relational struc-
tures for interpretation are fixed by a queryQ, which maps the relation symbols
to the following recognizable relationsCanQ, Bef&CanQ, andSQ = dom(Q).
All other relation symbols have a fixed interpretation by therelation of the same
name.
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We start with the definition of the relationSelQ = {(t, renτ (t), renη(t)) |
(τ, η) ∈ selQ(t)} by an FO formulaSel with three free variables, such that
SelQ = RSel(Tt:TΣ,Tτ :T

2Vn ,Tη:T{0,op,cl})(Q):

Sel =df S(Tt) ∧ Bef(Tt, Tτ , Tη)
∧ ∀T ′t ∈ TΣ. (S(T ′t ) ∧ Eq(Tt, T

′
t , Tη)) ⇒ Can(T ′t , Tτ )

Note that entailment ofCan(T ′t , Tτ ) is correct only since we prune trees using
Bef: if (t′, t, η) belongs to relationREq(Tt:TΣ,T ′

t :TΣ,Tη :T{0,op,cl}) thent andt′ may have
different domains beyondη. Given dSTAsA andB definingQ = QA,B we can
thus define a dSTA recognizingSelQ(Tt, Tτ , Tη). Unfortunately, we cannot con-
struct this dSTA in PTIME yet, since formulaSeldoes not belong to the existential
fragments of FO and uses relationBef. Nevertheless, we obtain algorithm for
deciding judgments(τ, η) ∈ selQ(t).

We define the relationDelayQ = {(t, renτ (t), renη(t)) | η ∈ delayQ(t, τ)} by
the following formula of FO∃[Eq, Bef&Can, S, Can], that expresses thatη is an
event increasing the delay if the nodes ofτ ∈ Q(t) are beforeη in t, and there is
a treet′ that equalst until η but with τ /∈ Q(t′). The formula has 3 free variables
such thatDelayQ = RDelay(Tt:TΣ,Tτ :T

2Vn ,T{0,op,cl})(Q).

Delay =df ∃T
′
t ∈ TΣ. S(Tt) ∧ Bef&Can(Tt, Tτ , Tη)

∧ S(T ′t ) ∧ Eq(Tt, T
′
t , Tη) ∧ ¬Can(T ′t , Tτ )

All base relations can be defined by dSTAs of polynomial size when leavingn
variable (since we do not need the relationBef here, and by Lemmas25, 26 and
27). Given deterministic automataA andB, we can thus define a possibly non-
deterministic automaton recognizingDelayQA,B

(Tt, Tτ , Tη) in PTIME from A and
B. Let 2DelayQ = {(t ⊛ sτ , sη) | (t, sτ , sη) ∈ DelayQ}. Both relations are
recognized by the same automaton. This relation exactly captures the delay:

val(2DelayQ) = max
τ∈Q(t)

delayQ(t, τ)

By Proposition28 we can define automata recognizing relation2DelayQ in
PTIME, so that we can decide bounded delay andk-bounded delay ofQ for a
fixedk in PTIME by Theorems13 and14.

7.5.3 Bounded Concurrency

For concurrency, we proceed in a similar manner.

Proposition 31. If arity n ∈ N is fixed, then for everyn-ary queryQ = QA,B

defined by dSTAsA andB, we can compute inPTIME a possibly nondetermin-
istic STA that recognizes the relation AliveQ = {(t, renτ (t), renη(t)) | (τ, η) ∈
aliveQ(t)}.
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Proof. We defineAliveQ by a formula of FO∃[S, Can, EqΣ, Eq2Vn , C2Vn , Bef•],
such thatAliveQ = RAlive(Tt:TΣ,Tτ :T

2Vn ,Tη :T{0,op,cl})(Q). Here we use the relationEq
with two different alphabets:Σ and2Vn. The latter permits to express completions
of tuples.

Alive(Tt,Tτ ,Tη) =df ∃T
′
t ∈TΣ. ∃T ′′t ∈TΣ. ∃T ′τ ∈T2Vn . ∃T ′′τ ∈T2Vn .

S(T ′t ) ∧ S(T ′′t )
∧ CanQ(T ′t , T

′
τ ) ∧ EqΣ(Tt, T

′
t , Tη) ∧ Eq2Vn (Tτ , T

′
τ , Tη) ∧ Bef•(Tτ , Tη)

∧ ¬CanQ(T ′′t ,T ′′τ ) ∧ EqΣ(Tt,T
′′
t ,Tη) ∧ Eq2Vn (Tτ ,T

′′
τ ,Tη) ∧ C2Vn (T ′′τ )

This formula expresses thatτ is alive atη of t ∈ TΣ if there exists continuations
t′, t′′ ∈ TΣ of t beyondη and two completionsτ ′, τ ′′ of τ beyondη such that
τ ′ ∈ Q(t′) but τ ′′ /∈ Q(t′′). Bef• checks whetherlatest(τ) � η. C2Vn verifies that
T ′′τ is canonical, as this is not done by¬CanQ(T ′′t ,T ′′τ ). All relations used in the
formula are recognizable by automata that can be computed inPTIME by Lemmas
25, 26, 28and29, so that an STA forAliveQ is obtained from Proposition28(since
A is deterministic). Indeed, this result remains true ifB is nondeterministic, since
relation symbolS does not occur below negation.

Note that we cannot integrate the canonicity control forT ′′t into the negated
relation¬Can(T ′′t ,T ′′τ ). The deeper problem is that automataA for canonical lan-
guages of queriesQA,B do not have a notion of safe statesin the case of trees,
since safety depend also on the current stack content.

Let 2AliveQ be the binary version ofAliveQ, i.e., 2AliveQ = {(t ⊛ sη, sτ) |
(t, sη, sτ ) ∈ AliveQ}, then:

val(2AliveQ) = max
t∈dom(Q)

concurQ(t)

We can recognize2AliveQ with the same automaton asAliveQ, which can be
computed in PTIME for fixed n from A and B by Proposition31. Hence we
can decide bounded andk-bounded concurrency ofQ for fixed n and k in
PTIME by Theorems13 and 14. The cost of the automaton construction is in
O(p(|Σ|, |A|, |B|) · (2n)4 · (3n)2) for some polynomialp: building the automaton
for Eq2Vn is in O((2n)2) by Lemma25, and the automata forBef• andC2Vn are
built in O(3n) by Lemmas28 and29. A lower complexity may be obtained by
more ad hoc constructions, for instance by directly computing an automaton for
AliveQ.

7.5.4 Discussion of Direct Construction

We end this section by pointing out an alternative (and more direct) construction,
that computes in timeO(p(|Σ|, |A|, |B|) · (2n)2) (for some polynomialp) an STA
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recognizingAliveQ. In Chapter5, we explained how to compute a dSTAE(A)
recognizingL(A), and such that each state is either safe or unsafe for selection
(and respectively for rejection). This cannot be done forA, as the safety condition
depends on the current configuration, which contains a stackcontent. This comes
however at a cost: each state ofE(A) includes a set of safe states, and thus the
size ofE(A) is in O(2|A|).

To avoid this blowup, we use non-determinism. When buildingE(A), a new
set of safe states is computed for each opening rule. Insteadof computing this
set, we guess non-deterministically a state that is unsafe for selection and a state
that is unsafe for rejection. Hence states ofAAlive are 3-tuples of states ofA: one
state for the run ofA and two unsafe states. The computation of unsafe states
follows the same line as the computation of safe states forE(A). We just have to
replace a universal quantification on continuations (they all have to be safe) by an
existential quantification (one must fail, to be unsafe for selection).

While avoiding a blowup in the size ofA, we still have to make it complete,
which requires time inO(|Σ| · (2n)2). The completion is needed, as there must be
an accepting run ofAAlive when we reach an unsafe state for selection atη (if the
second state of the pair was also unsafe for rejection). Notethat this alternative
construction requires that the automatonB recognizing the schema language is
deterministic. This is not the case for the construction using recognizable rela-
tions.

7.6 Conclusion

In this chapter, we proved that deciding whether a query defined by dSTAs has
bounded (resp.k-bounded) delay and concurrency can be performed in polyno-
mial time, for a fixedk. We chose to focus on measures of delay and concurrency
that were motivated by query answering in a streaming manner. Some extensions
of these measures could be also investigated, especially for the delay. For instance
we studied the delay for selecting a tuple, but we could also study the delay for re-
jecting a candidate tuple. This measure is close to concurrency, as bounded delay
for rejection implies bounded concurrency, whereas bounded delay for selection
does not (forn-ary queries).

We also chose to measure the delay from the point where the candidate tuple
gets complete, as it cannot be output before. We could define the i-th delay like
in our definition, but starting to count wheni components of the tuple are filled.
Hencen-th delay would be the delay studied in this chapter. This would make
sense if we want to decide whether all completions of a partial tuple will succeed,
and in this case output it. Then the completion with any incoming node could be
performed by a parallel process.
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Another variant for thei-th delay is to measure the number of events between
completingi components and completingi+1 components of the candidate tuples.
If all these delays are bounded, then the query has bounded delay, according to
the definition studied in this chapter. This would give intermediate measures of
bounded delay. For instance, we could characterize queriesfor which components
of candidates are quickly filled, except one component for which the delay may
be unbounded. This could help designing streamable queries.

In terms of improvements, we would like to replace the reduction to the
bounded valuedness of tree transducers to a more direct construction. Indeed,
tree transducers are more powerful than binary recognizable relations, so we can
hope for more efficient algorithms. This requires however toconsider two kinds
of non-determinism inside the automaton recoginzing the query: the usual non-
determinism (on runs of the automaton) and the non-determinism on the second
component of the binary relation. Another open question is whether a restriction
on shallow trees could lead to more efficient algorithms.
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Chapter 8

Conclusion

8.1 Main Results

The work presented in this manuscript focused on XML data, and more specif-
ically to the query answering over XML streams. We addressed two kinds of
queries. The first one is XPath, a W3C standard based on a navigational language.
The second one is tree automata, a tool originating from language theory, that we
use here as query definition language. Usually, XML data come with a schema that
describes the structure of valid XML documents. We took schemas into account in
our framework, as they can improve the efficiency of query answering algorithms.
All query classes that we studied allow the definition ofn-ary queries, i.e., queries
that selectn-tuples of nodes, instead of simple nodes.

We started this dissertation with a description of our framework for query
answering on streams in Chapter3. To establish a clear definition, and get a
precise complexity measure, we introduced Streaming Random Access Machines
(SRAMs). These are RAMs with some registers, a working memory and two
tapes: a read-only input tape and a write-only output tape. Then we introduced a
measure for the streamability of queries. A query is said streamable if there is an
algorithm computing it, that uses a PTIME preprocessing, and polynomial space
and time for processing each event of the stream. These complexity measures are
in the size of the query, but constant in the size of the tree. By relaxing these
strong requirements, we defined a hierarchy ofm-streamable query classes, for
m ∈ N0. Then we studied the streamability of queries defined by XPath and
tree automata, the two query classes studied in this manuscript. We proved that
both are not streamable, even at low levels of our hierarchy.This motivated the
investigation of streamable fragments.

For tree automata, we defined Streaming Tree Automata (STAs), a model that
evaluates trees according to a pre-order traversal. This corresponds to the way
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a tree is read when its corresponding XML document is accessed in a streaming
mode. In Chapter4, we studied the links between STAs and other automata mod-
els: models that also evaluate in pre-order (nested word automata, visibly push-
down automata and pushdown forest automata) and standard models that evaluate
in a bottom-up or top-down manner. In particular, deterministic STAs (dSTAs)
can be obtained in PTIME from all other models. In Chapter5, we proved that
dSTAs arem-streamable on shallow trees for allm ∈ N0. To get this positive re-
sult, we introduced Earliest Query Answering (EQA). An EQA algorithm outputs
each answer at the earliest time point where it can be decidedthat it is selected by
the query, whatever the continuation of the stream is. This algorithm also discards
candidates that will not be selected in any continuation, atthe earliest time point.
We study the complexity of such algorithms, and establish lower bounds. These
bounds are of great interest, as any streaming query answering algorithm with
optimal memory consumption has to be an EQA algorithm, and thus these lower
bounds indicate how much time is needed to reach optimal space complexity. The
m-streamability of dSTAs is shown by building an EQA algorithm for queries de-
fined by dSTAs, that uses polynomial per-event space and time, for each candidate
that needs to be buffered.

For queries defined by XPath expressions, we proposedk-Downward XPath
(for k ∈ N), a set of fragments suitable to streaming evaluation.k-Downward
XPath ism-streamable for allm ∈ N0. It allows only downward axesch and
ch∗, and restricts the inherent non-determinism of XPath, so that k-Downward
XPath expressions can be translated in PTIME to equivalent dSTAs. The positive
streamability results were obtained by reduction to streamability of dSTAs, as pre-
viously described. Our translation to dSTAs allows us to apply all our algorithms
for dSTAs onk-Downward XPath expressions, in particular the EQA algorithm,
and the decision procedures described in the sequel.

Finally, we established that deciding bounded (andk-bounded) delay and con-
currency of queries defined by dSTAs can be decided in PTIME. The delay of a
monadic query is the maximal number of events between reading a selected node,
and the earliest event where it can be decided that it will be selected in any con-
tinuation of the stream. Forn-ary queries, we start measuring the delay when the
tuple is filled. Hence havingk-bounded delay ensures that once a candidate is
complete, we have to way at mostk events before being able to output it. The
concurrency is the number of simultaneously alive candidates, i.e. candidates that
have to be buffered, as their selection or rejection cannot be decided yet. Both
results were established using properties of recognizablerelations over unranked
trees, for which we proved that the bounded valuedness can bedecided in PTIME

for a givenk, even from non-deterministic automata.
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8.2 Perspectives

Throughout the dissertation, we studied the scalability ofquery classes through
our notion of streamability. We proved non-streamability for some classes (XPath,
non-deterministic tree automata) and alsom-streamability for some others, for
all m ∈ N0 (k-Downward XPath, and dSTAs). However, we did not provide a
method to effectively compute the degree of streamability of a query class, when
it is in-between. In particular, it would be interesting to find characterizations that
are equivalent tom-streamability. Moreover, our computational model implies a
memory lower bound for all queries (see Proposition7). Some results by Bar-
Yossef et al. [BYFJ05] prove that this bound is a real lower bound for any query
answering algorithm for some fragment of XPath. It is still open whether this also
holds for other XPath fragments, and for queries defined by tree automata.

In Chapter6, we have seen that translatingk-Downward XPath to dSTAs
proved them-streamability ofk-Downward XPath, for allm ∈ N0. An open
question (which was also our working hypothesis) is whetherquery classes for
which a PTIME translation to dSTAs exist are exactly query classes that are m-
streamable for allm ∈ N0. This would prove that dSTAs are the good model for
defining streamable queries. Another interesting characterization of streamability
could also exist at the level of logics, as proposed recentlyby Ley and Benedikt
[LB09]. In particular, it is known that FO formulas can only describe local prop-
erties. This may restrict the number of simultaneous candidates, and thus lead
to streamable query classes. However, when allowed moves (i.e. predicates) are
not along the document order, this fails. For instance allowing transitive closure
in axes likech∗ allows jumps in the tree, and thus moves with unbounded delay.
Even the next-sibling axisns is problematic, as the number of events between
the opening of two direct siblings can be unbounded, even on shallow trees. All
streamable classes studied in this dissertation have a semantic restriction on the
depth of trees, i.e. only consider shallow trees. Then a question is whether we
could use this fact to get better algorithms. For instance wecould translate tree
automata to word automata (recognizing the words of tags) onthe fly, and use
more efficient algorithms for words. Moreover, we only focused on queries that
only take the structure of the tree into account, not the textual data.

The framework adopted in this dissertation may be extended in several ways.
First, we could allow multiple scans over the XML stream, instead of a single
pass. This makes sense for stored data that can be read several times. This was
studied by Grohe, Koch and Schweikardt [GKS07] for XPath, but not for queries
by automata. It would be also interesting to study how several queries can be si-
multaneously computed on several XML streams. The challenge here is to find a
data structure for the compact representation of the set of candidate tuples. This
question is also relevant for our EQA algorithm for dSTAs, where we did not ad-
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dress this problem. It was studied for instance by Meuss et al. in [MSB01], but
outside the scope of a streaming evaluation. Another alternative framework for
XML streams is the use of indexed streams, where one stream is defined for each
label of the alphabet, and in each stream, elements are accessed in document order.
This has been recently investigated by Shalem and Bar-Yossef, for the restricted
case of tree patterns [SBY08]. More generally, this raises the question of XML

serialization. It could be interesting to allow more flexible forms of serialization,
not only the document order. The way XML documents (and their schemas) are
generated usually ignores which queries will have to be evaluated on these do-
cuments. Hence the information may be stored in a different order than what is
needed for the evaluation of queries. To solve this problem,a solution could be to
distinguish between the DOM representation of an XML document and its serial-
ization, by serializing it according to some information onpotential queries asked
on this document.

Concerning the earliest query answering algorithms studied in Chapter5, the
goal was to prove lower memory bounds. As a consequence, the tradeoff between
space and time complexity is here on the extreme side of optimal space consump-
tion, at any time cost. A way to relax this requirement is to find heuristics, as
investigated by Benedikt et al. [BJLW08] for approximating the earliest rejection
of candidates. Other results are known for approximate query answering, as those
established by De Rougemont et al. [CJdR08, dRV08]. Approximate validation
of XML streams has been investigated by Thomo et al. in [TVY08], and Schewe
et al. in [STW08]. Another way to relax the earliest decision requirement isto
postpone these decisions (selection or rejection) to a timepoint where we are sure
that enough information has been read. This is a common solution in existing
algorithms. For instance for fragments of XPath allowing only downward moves
and tests, the decision for selecting a node is usually done when closing it. It
could be interesting to try to improve this, for instance by considering schema
information.

Query answering is a first step towards the evaluation of transformations.
Hence a natural extension of our work is to take XQuery FLOWR expressions
into account. These are for-loops with variables, that can be nested, and also
select tuples of nodes. The next step is to produce the outputXML document pro-
gressively. This will create new difficulties, as once more we will have to decide
whether some part can be output because it will not change in any continuation
of the input stream. Transformation languages contain someother features like
aggregators, and their streaming evaluation also has to be studied. XProc pro-
poses to define transformations through XML pipelines. This language allows to
separate regions of the XML tree where a transformation (defined for instance in
XQuery or XSLT) occurs, and thus avoids to buffer too much information. This
is why this language looks more suitable to a streaming evaluation than XQuery
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transformations on full documents.
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Chapter 9

Résuḿe

9.1 Contexte

Le format XML , introduit il y a dix ans, s’est imposé comme le standard pour les
applications orientées Web et le traitement des documents[BPSM+08]. Emanant
de SGML, XML définit des documents semi-structurés, modélisés par des arbres.
La syntaxe d’un document XML est une suite de balises bien imbriquées, dont
certaines contiennent des données textuelles. Ceci diff`ere des bases de données
relationnelles, où les données sont stockées dans des tables. Avec XML sont ap-
parus des langages de schémas comme les DTDs (Document TypeDefinition),
XML Schema ou Relax NG. Un schéma définit la structure attenduedes docu-
ments XML utilisés au sein d’une application donnée.

Considérons par exemple le document XML représenté dans la figure9.1(a).
Ce document contient des données géospatiales concernant deux villes, et est
modélisé par l’arbre représenté dans la figure9.2. Un schéma pour ce document
est présenté dans la figure9.1(b).

Le premier type de traitement des documents XML est lavalidationd’un docu-
ment par rapport à un schéma donné. Ceci est nécessaire aux applications manip-
ulant des données XML , afin de de s’assurer de leur conformité envers le schéma
souhaité. Le second type de traitement consiste à répondre aux requêtes, c’est-
à-dire à trouver les nœuds d’un document XML sélectionnés par une requête. Il
s’agit d’une étape de base pour récupérer des informations dans un document
XML . Dans notre exemple il peut être intéressant de sélectionner les triplets
(nom,lat,lon). Le filtrage est un cas particulier de réponse aux requêtes, où
il suffit de déterminer si un document XML possède une solution par rapport
à une requête. Le troisième type de traitement est latransformationde docu-
ments XML , elle-même souvent basée sur une notion de requêtes. Lestransfor-
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<geo>
<point>
<nom>Lille</nom>
<lat>50.63050</lat>
<lon>3.07063</lon>

</point>
<point>
<nom>Hellemmes</nom>
<lat>50.62746</lat>
<lon>3.10853</lon>

</point>
</geo>

(a) Document XML .

geo → point∗

point→ (nom,lat?,lon?)
nom → #PCDATA
lat → #PCDATA
lon → #PCDATA

(b) Schéma défini par une DTD.

Figure 9.1: Fichier XML contenant des données géospatiales, conforme à une
DTD.

geo

point

nom

Lille

lat

50.63050

lon

3.07063

point

nom

Hellemmes

lat

50.62746

lon

3.10853

Figure 9.2: Représentation arborescente du fichier XML de la figure 9.1(a).

mations possèdent beaucoup d’applications dans le cadre des documents XML .
Par exemple l’échange de données consiste à transformerun document conforme
à un schéma, en un document conforme à un autre schéma. Latransformation
de données désigne l’ensemble des transformations d’un document XML en un
autre. Un autre exemple fréquent est la transformation desdocuments XML en
pages Web, en utilisant des feuilles de style XSLT.

Toutes ces types de traitement peuvent être effectués selon différents modes.
Le premier est l’́evaluation en ḿemoire centrale. Dans ce cas, le document XML

est entièrement chargé en mémoire centrale, puis trait´e. La sortie est produite
uniquement lorsque l’ensemble des solutions est calculé.L’un des inconvénients
de cette méthode est une consommation mémoire importante. Un autre in-
convénient est de devoir attendre la fin du traitement pour produire les sorties,
alors que souvent certaines sont connues avant. Une autre approche permettant de
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résoudre cet inconvénient est l’énuḿerationdes solutions. Cela consiste à sortir,
après une phase de précalcul, chaque solution, l’une apr`es l’autre, avec un délai
raisonnable entre deux solutions consécutives. Enfin, le mode d’évaluationen
flux (streaming) impose davantage de restrictions sur la consommation mémoire.
Dans ce mode, le document XML est lu en une seule passe, de la première balise à
la dernière. Cet ordre est appelé ordre du document. La sortie est également pro-
duite en flux : lorsqu’une solution est trouvée, ou qu’une partie du document de
sortie est produite, elle est envoyée sur un périphérique de sortie. L’objectif d’une
évaluation en flux est d’utiliser moins de ressources mémoire, en ne stoquant que
l’information nécessaire. Le stockage est nécessaire lorsque la sortie dépend de
la suite du flux d’entrée. Le but est de pouvoir traiter des documents ne pouvant
être chargés en mémoire centrale, ou de traiter à la vol´ee des flux XML provenant
d’un réseau.

Plusieurs standards ont été mis en place pour les différents types de traitements
évoqués ci-dessus. Nous avons déjà illustré les langages de schéma par les DTDs,
définies au sein du standard XML [BPSM+08]. XML Schema [FW04] est une
extension des DTDs permettant par exemple de caractériserplus précisément le
contenu des données textuelles. De plus, les schémas définis en XML Schema sont
eux-mêmes des documents XML , à la différence des DTDs. Relax NG [vdV03]
décrit la structure des arbres valides, et délègue la sp´ecification des données
textuelles valides à XML Schema.

XPath [CD99] est le standard pour la sélection de nœuds dans les documents
XML . XPath est basé sur la description des chemins, par des suites d’étapes
à suivre jusqu’à atteindre les nœuds sélectionnés. XPath permet également
d’ajouter des filtres à chaque étape. Un filtre est une combinaison booléenne
d’expressions de chemins, et est satisfait si un nœud satisfait cette combinaison.
Il est également possible de tester le contenu textuel des nœuds. XPath est un
langage de requête central, utilisé comme mécanisme de sélection de nœuds dans
de nombreux autres langages, comme XPointer [DMJ01], un standard pour la
sélection de fragments dans les documents XML .

XPath est également utilisé par les deux langages de transformation XQuery
[BCF+07] et XSLT [Cla99]. XQuery est un langage impératif utilisant des boucles
for pour sélectionner des tuples de nœuds. Ceux-ci sont ensuite insérés dans un
contexte XML pour produire un document XML de sortie. XSLT est plus proche
de la programmation fonctionnelle. Une feuille de style XSLT est composée de
patrons, activés pour les nœuds satisfaisant l’expression XPath.

XProc [WMT09] propose de combiner tous ces standards grâce à un langage
de pipelines. Alors que XPath, XQuery et XSLT n’étaient pasconçus pour une
évaluation en flux, XProc permet de définir des parties de l’arbre où opèrent la
sélection et la transformation. Ainsi, les difficultés inhérentes à l’évaluation en
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flux sont circonscrites à certaines régions. Comme évoqué dans ce manuscrit,
d’autres langages, comme STX [BBC02], ont été conçus spécifiquement pour une
évaluation en flux, mais aucun standard n’a été adopté.

Les automates finis de mots [HU79] opèrent sur les mots en un seul passage,
afin de décider de leur appartenance au langage de l’automate. Ainsi, ils évaluent
naturellement les mots en flux. Ces objets ont été étudiés de longue date, et
bénéficient de liens intéressants avec la logique et la théorie des langages. Les
documents XML sont modélisés par des arbres, et non par des mots. Cependant,
les documents XML de base sont des linéarisations de ces arbres : un document
XML est une suite de balises (un flux XML ), et donc un mot. Ici les balises sont
bien imbriquées, et reflètent la structure d’arbre. Les automates de mots sont inca-
pables de prendre en compte cette relation d’imbrication. Nous avons donc besoin
d’un modèle d’automates plus puissant pour traiter les fluxXML .

Les automates d’arbres [CDG+07] fournissent un cadre pour la définition
et l’étude des traitements XML . Des relations directes avec la logique et la
théorie des langages d’arbres ont été également établies au travers de nombreux
travaux. En particulier, ils représentent un cadre algébrique pour les bases de
données XML , de la même manière que l’algèbre relationnelle pour lesbases
de données relationnelles. Il a été montré que les automates d’arbres capturent
tous les langages de schémas standards, et la traduction d’un schéma en au-
tomate d’arbre est relativement simple [MLM01]. Les automates d’arbres ont
également été proposés comme mécanisme de définitionde requêtes dans les ar-
bres [NS02, Koc03, BS04, CNT04]. Les expressions XPath peuvent également
être traduites en automates d’arbres, mais cette fois la traduction n’est pas triv-
iale. La validation et le traitement des requêtes ont également été étudiés pour
les automates d’arbres. Les transformations sont définiespar des transducteurs
d’arbres. Par rapport aux automates d’arbres, ils permettent de produire une sortie
tout en lisant l’entrée.

9.2 Motivations

Dans ce manuscrit, nous étudions les algorithmes de réponse aux requêtes, util-
isant une évaluation en flux, pour des requêtes définies par des expressions XPath
et des automates d’arbres. L’évaluation en flux est désormais un défi majeur pour
le traitement des requêtes XPath. Michael Kay, le concepteur de Saxon (le moteur
de référence pour XQuery) déclarait récemment [Kay09] :

Les capacités de traitement en flux [de Saxon] sont désormais l’une
des principales raisons pour lesquelles les gens achètentle produit.
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entrée a b a a b b b a b b
mémoire 1 1 3 4 4 8 8
sortie 4 8

Figure 9.3: Evaluation en flux pour la sélection des positionsa suivies parb·b.

Le traitement en flux des documents XML est étudié depuis longtemps. Nous
illustrons ce mode d’évaluation et les concepts afférents par une requête sur les
mots de l’alphabet{a, b}. Considérons la requête qui sélectionne les positions
étiquetées para, et directement suivies parb·b. Par exemple, sur le mota·b·a·a·b·b·b·a·b·b,
cette requête sélectionne les positions 4 et 8, comme indiqué dans la figure9.3.
Toutes les positions étiquetées parb peuvent immédiatement être écartées. Pour
les positions étiquetées para, la sélection ou le rejet d’une position candidate ne
peuvent pas être décidés immédiatement. Les positionssuivies para (comme
la position 3) peuvent être rejetées après une étape, etcelles suivies parb · a
(comme 1) après deux. Cette requête peut être évaluée avec une fenêtre (slid-
ing window) de longueur 3, et nécessite de mémoriser au plus un seul candidat
à la fois. Nous appelonsdélai la taille minimale de la fenêtre, etconcurrence
[BYFJ05] le nombre minimal de candidats simultanément vivants. Uncandidat
estvivant à un certain moment, s’il existe une continuation du flux permettant sa
sélection, et une autre permettant son rejet. Ainsi les candidats vivants nécessitent
d’être mémorisés. Il est souvent facile de définir des requêtes ayant une concur-
rence élevée, par exemple ici en permettant queb·b apparaisse aprèsa, mais pas
immédiatement. Les schémas peuvent permettre de réduire la quantité de données
à mémoriser. Par exemple supposons que tous les mots valides sont tels qu’une
fois que troisb successifs sont apparus, toute positiona est suivie parb ·b. Dans
ce cas, toutes les positions étiquetées para apparaissant après troisb successifs
pevent être immédiatement sélectionnées. Par exempledans notre cas, la position
8 peut être sortie à la position 8 au lieu de la position 10.

Dès les premiers travaux, les algorithmes d’évaluation en flux ont montré de
meilleurs performances, mais ne permettaient de n’évaluer que des fragments re-
streints des langages de requêtes. De nombreuses difficultés liées à ce mode
d’évaluation ont été identifiées. Pour la validation [SV02], un premier obsta-
cle est la nature récursive des documents XML . Le traitement de documents
récursifs nécessite de stocker dans une pile des informations à propos des ancêtres
des nœuds. Ainsi la mémoire peut être bornée par la profondeur de l’arbre,
mais ne peut pas être bornée indépendamment pour tous lesarbres. Les lan-
gages de requête comme XPath sont, de manière inhérente,non déterministes
[PC05], à la différence des langages de schémas. Par exemple, XPath permet
de parcourir l’arbre suivant l’axedescendant. En partant d’un nœud, cela corre-
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spond à sélectionner tous ses descendants, et donc génère de nombreux candidats
pour l’étape suivante. Parmi ces candidats, certains auront besoin d’être stockés,
puisqu’ils peuvent avoir besoin d’informations supplémentaires pour déterminer
s’ils satisfont la requête. Ces difficultés apparaissentdéjà pour le filtrage de do-
cuments XML par des expressions XPath [AF00]. De plus, XPath permet le
branchement, via les filtres et les conjonctions au sein des filtres. Cela aug-
mente souvent la complexité des algorithmes. Les transformations apportent des
problèmes supplémentaires pour l’évaluation en flux [FHM+05, Mic07]. C’est
typiquement le cas pour les opérateurs manipulant les positions parmi les éléments
sélectionnés, par exemple en cherchant le dernier élément sélectionné, ou pour
trier ces éléments.

Par rapport à ces aspects bloquants, des bornes inférieures pour la mémoire ont
été établies pour ces différents traitements. Pour lesrequêtes, la notion centrale est
la concurrence, précédemment introduite. Il a été montré [BYFJ05] que la con-
currence est une borne inférieure pour la mémoire, lors dutraitement des requêtes
XPath appartenant à un certain fragment. Cela amène à se poser la question suiv-
ante : peut-on atteindre cette borne ? Cette question peut être décomposée en
plusieurs variantes. Tout d’abord, ce résultat se généralise-t-il à d’autres classes
de requêtes ? Il serait également intéressant de savoir si cette borne inférieure
est proche de la borne supérieure, c’est-à-dire s’il existe des algorithmes dont la
consommation mémoire soit proche de cette borne inférieure. Quel est le coût en
temps de calcul pour atteindre de telles bornes ? En d’autrestermes, ces algo-
rithmes nécessitent-ils des temps de calcul importants pour décider de la sélection
ou du rejet des candidats ? Comment ces coûts varient-ils d’une classe de requêtes
à l’autre ? Existe-t-il des classes de requêtes pour lesquelles des algorithmes ef-
ficaces existent ? Ces classes sont-elles caractérisées pour une certaine propriété
? Les classes ayant une concurrence non bornée peuvent-elles être traitées ef-
ficacement ? Quelles requêtes nécessitent peu de mémorisation (même si cette
mémorisation ne peut être bornée) ? Ces questions motivent la définition d’une
mesure plus fine que la concurrence : lastreamabilit́e d’une requête, i.e. une
notion mesurant à quel point une requête est adaptée à une évaluation en flux.
La concurrence établit une première frontière entre lesrequêtes ayant une con-
currence bornée (et pouvant ainsi être évaluées avec une mémoire bornée sur des
arbres de profondeur bornée) et les autres. Mais les questions ci-dessus justifient
la définition d’une notion plus fine de streamabilité.

Nous nous intéressons aux requêtesn-aires, pourn ≥ 0. Celles-ci
sélectionnent desn-uplets de nœuds dans les arbres. Le casn = 0 corre-
spond aux requêtes booléennes, qui peuvent uniquement distinguer les arbres
sélectionnant le tuple vide des autres arbres. Ainsi les requêtes booléennes
définissent des langages d’arbres, et sont utilisées pourfiltrer les arbres satis-
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faisant certaines contraintes. Pourn = 1, nous obtenons les requêtes monadiques,
qui sélectionnent dans chaque arbre un sous-ensemble de ses nœuds. La sélection
de n-uplets de nœuds est une opération centrale dans les langages de transfor-
mation. Dans XPath 2.0 et XQuery, cette opération est effectuée via des boucles
pour imbriquées, appelées expressions FLOWR. XPath 1.0 définit uniquement
des requêtes monadiques. En ajoutant des variables, nous permettons à XPath
1.0 de définir des requêtesn-aires. Par rapport aux expressions FLOWR, cela
donne plus de flexibilité en terme d’évaluation, et peut compliquer la tâche de nos
algorithmes. Les expressions FLOWR sont des instructions de plus bas niveau,
permettant au développeur de définir des requêtes adapt´ees à une évaluation en
flux ou pas. Pour les requêtes par automates, les requêtesn-aires sont définies par
des langages d’arbres annotés.

Etat de l’art Atteindre la borne inférieure en terme de consommation mémoire
a un coût très important en temps. Benedikt et al. [BJLW08] montrent par ex-
emple que pour XPath avec DTDs, pouvoir rejeter les candidats ayant échoué au
plus tôt, avec un algorithme construit en temps polynomialpar rapport à la taille
de la requête, et utilisant un temps polynomial (par rapport à la requête) à chaque
événement du flux, est équivalent à PTIME = PSPACE.

Berlea [Ber06, Ber07] étudie lesreqûetes ŕegulìeres d’arbres, définies par des
grammaires d’arbres. Pour cette classe de requêtes, Berlea propose un algorithme
basé sur les automates d’arbres, utilisant un espace mémoire optimal en terme
de nombre de candidats, tout en traitant chaque événementen temps et espace
polynomial, pour chaque candidat. Cependant, cette classede requêtes suppose
un alphabet infini, à la différence des documents XML . La taille infinie de alphabet
simplifie grandement le fait de pouvoir sélectionner ou rejeter les candidats au plus
tôt.

Certains algorithmes ont été proposés pour l’évaluation en flux de XPath.
Pour les axes vers le bas (descendants), nous pouvons mentionner les travaux
de Bar-Yossef et al. [BYFJ05, BYFJ07], Ramanan [Ram05, Ram09], et Gou
and Chirkova [GC07a]. Les algorithmes de Barton et al. [BCG+03] et de Wu
et Theodoratos [WT08] autorisent les axes vers le haut (ancêtres) et vers le bas.
Olteanu et al. [OMFB02, OKB03, Olt07b] prouvent que Forward XPath, le frag-
ment de XPath où seuls les axes respectant l’ordre du document sont autorisés,
est aussi expressif que XPath (en terme de capacités navigationnelles). Ils pro-
posentSPEX, un algorithme efficace basé sur les réseaux de transducteurs, qui
évaluent les expressions Forward XPath. Nizar et Kumar [NK08] définissent un
algorithme pour les expressions Forward XPath où aucune n´egation n’apparaı̂t.
Récemment, ils étendent cet algorithme aux axes inverses[NK09]. Benedikt et
Jeffrey [BJ07] étudient des logiques équivalentes à la partie navigationnelle de
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XPath, et déterminent si elles conviennent à une évaluation en flux. Ils iden-
tifient des fragments utilisant des modalités vers le bas etdans l’ordre inverse
du document, sans négation, de telle sorte que la sélection d’un nœud peut être
décidée lors de son ouverture ou de sa fermeture. Pour ces fragments, ils mon-
trent que des algorithmes en temps et espace polynomiaux parévénement existent.
Benedikt et al. [BJLW08] étudient le filtrage des flux XML par des contraintes
XPath, et proposent une heuristique pour la détection au plus tôt des violations de
contraintes. Tous ces algorithmes pour l’évaluation de XPath sur des flux XML

n’atteignent pas une consommation mémoire optimale, et stockent inutilement des
candidats (ou des correspondances partielles) dans certains cas. Ley et Benedikt
et al. [LB09] étudient l’existence d’extensions de XPath ayant l’expressivité de la
logique du premier ordre, et n’utilisant que des axes compatibles avec l’ordre du
document. Ils prouvent que les extensions ayant l’expressivité du premier ordre
lorsque tous les axes sont permis ne suffisent pas lorsqu’elles sont restreintes aux
axes compatibles avec l’ordre du document.

D’autres bornes inférieures ont été établies, indépendemment de la concur-
rence. Bar-Yossef et al. [BYFJ04, BYFJ07] prouvent trois bornes inférieures
pour des fragments de XPath. La première est lataille de la frontìere de la
reqûete, c’est-à-dire le nombre maximal de frères des ancêtres d’un nœud, dans
la représentation arborescente de la requête. La secondeest laprofondeur de
récursiondu document, ce qui correspond au nombre maximal d’ancêtres ayant la
même étiquette. La troisième est le logarithme de laprofondeurde l’arbre. Grohe,
Koch et Schweikardt [GKS07], en étudiant des machines de Turing modélisant
l’évaluation en flux avec plusieurs passes, montrent que pour la partie navigation-
nelle de XPath, laprofondeurde l’arbre est une borne inférieure.

9.3 Contributions

Nous présentons à présent nos contributions. Tout au long du manuscrit, nous
considérons les requêtesn-aires, i.e., les requêtes qui sélectionnent desn-uplets
de nœuds, au lieu de simples nœuds, comme défini dans XPath 2.0. De plus, nous
essayons toujours de prendre les schémas en considération, afin d’améliorer le
traitement des flux, puisque les schémas sont souvent disponibles dans les appli-
cations concrètes.

Streamabilité Nous commençons par définir un modèle de calcul pour
l’évaluation des requêtes en flux : lesStreaming Random Access Machines
(SRAMs). Puis nous introduisons notre notion destreamabilit́e. Nous avions
précédemment constaté qu’une telle notion manquait. Enraison de l’absence
de telles définitions formelles, plusieurs publications présentent des erreurs dans
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l’analyse de complexité en espace. De manière simplifiée, pour un entier naturel
m, ou pourm =∞, une requête estm-streamable si elle peut être calculée en util-
isant un temps et un espace polynomial sur tous les arbres pour lesquels la concur-
rence de la requête est inférieure àm. Cela introduit une hiérarchie de classes de
requêtes. Etrem-streamable avec une valeur élevée pourm est souhaitable, et sig-
nifie que les arbres d’entrée entrainant une concurrence inférieure àm peuvent être
traités efficacement. Les requêtes∞-streamables utilisent toujours un temps et
un espace polynomial par événement, indépendamment de la concurrence. Nous
étudions les relations entre les classes de requêtes∞-streamables, et les classes
de requêtesm-streamable pour toutm ∈ N0. Ces dernières doivent avoir une
concurrence polynomialement bornée pour être∞-streamables (pour les requêtes
monadiques). Nous étudions la dureté de décider si une classe de requête a une
concurrence bornée, ou une concurrence polynomialement bornée. Pour Forward
XPath, ces problèmes sont coNP-durs. Nous montrons qu’être 1-streamable a
pour conséquence l’existence d’un test d’universalité polynomial sur la classe de
requêtes, dès que cette classe vérifie certaines propri´etés. Comme l’universalité
de Forward XPath est coNP-dure, Forward XPath n’est pas1-streamable, et donc
n’est pasm-streamable, pour toutm ∈ N ∪ {∞}.

Streaming Tree Automata Nous définissons lesStreaming Tree Automata
(STAs), un modèle d’automates évaluant les arbres dans l’ordre du document.
Cela correspond exactement à l’ordre d’évaluation du fluxXML correspondant.
Nous établissons les correspondances entre ce modèle et les autres modèles
évaluant dans l’ordre du document, mais sur d’autres structures : lespushdown
forest automata[NS98], les visibly pushdown automata[AM04] et les nested
word automata[Alu07]. Nous montrons également comment les DTDs peuvent
être traduites en STAs, ainsi que les relations entre STAs et les automates d’arbres
standard (opérant vers le haut ou vers le bas). Les requêtes définies par des STAs
déterministes (dSTAs) sont streamables, dès lors que lesarbres ont une profondeur
bornée. Nous le prouvons en élaborant un algorithme évaluant les requêtes au plus
tôt pour les requêtes définies par dSTAs.

Traitement des Reqûetes au plus t̂ot pour les Streaming Tree Automata Les
algorithmes permettant de répondre aux requêtesau plus t̂ot ont la propriété de
sortir les réponses aux requêtes dès qu’assez d’informations ont été lues pour as-
surer la sélection d’une solution, quelle que soit la suitedu flux. De manière
duale, tous les candidats rejetés sont éliminés dès qu’il est certain qu’aucune suite
du flux ne permettra de sélectionner ce candidat (une propriété nomméefast-fail
dans [BJLW08]). Ce cadre de travail, bien que n’ayant jamais été définiformelle-
ment, trouve son origine dans les travaux de Bar-Yossef et al. [BYFJ05] et de
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Berlea [Ber06]. Nous proposons une telle définition formelle.
Cette capacité à répondre aux requêtes au plus tôt est requise par tout algo-

rithme ayant une consommation mémoire optimale. Dans le cas contraire, cela
signifierait qu’à un certain moment un candidat est inutilement stocké. Cepen-
dant, le fait de pouvoir répondre au plus tôt a souvent un coût important en temps
de calcul. Pour les requêtes XPath, nous montrons qu’il estcoNP-dur de décider
si le préfixe d’un flux assure la sélection d’un candidat donné. Pour les requêtes
définies par dSTAs, le problème devient traitable, et notre algorithme de réponse
au plus tôt fonctionne en temps polynomial, pour une aritén donnée. Ceci fait
des dSTAs un modèle robuste pour définir des requêtes adaptées à une évaluation
en flux. Notre hypothèse de travail est que toute classe de requête streamable
peut être traduite en temps polynomial vers les dSTAs. C’est le cas par exemple
pour le fragment de XPath défini ci-après, pour lequel nousfournissons une telle
traduction, prouvant ainsi sa streamabilité.

XPath Nous étudions ensuite la streamabilité de XPath plus en d´etail. Nous
identifions une hiérarchie, nomméek-Downward XPath, ayant pour propriété
d’être m-streamable pour toutm ≥ 0. La propriété fondamentale ici est que
k-Downward XPath permet de n’avoir au plus qu’un seul candidat simultanément,
pour toutes les étapes de chaque branche de l’expression XPath. Pour obtenir
cette propriété, nous combinons des restrictions syntaxiques (sur la requête) et
sémantiques (sur le schéma).k-Downward XPath est un fragment expressif, par
le fait qu’il autorise la négation, le branchement (conjonction et disjonction), ainsi
que les axes vers le bas (fils et descendants). De plus, nous fournissons une tra-
duction effective et en temps polynomial des expressionsk-Downward XPath vers
les dSTAs. De cette manière, nous pouvons réutiliser nos algorithmes conçus pour
les dSTAs avec des expressionsk-Downward XPath, et en particulier notre algo-
rithme permettant d’évaluer au plus tôt.

Borner la concurrence et le d́elai Enfin, nous prouvons que pour les requêtes
définies par dSTAs, il peut être décidé en temps polynomial si une requête a
un délai borné et/ou une concurrence bornée. Ledélai est le nombre maximal
d’événements entre la lecture d’un nœud (ou d’unn-uplet de nœuds dans le cas
n-aire) et le premier événement à partir duquel sa sélection peut être décidée. Le
délai et la concurrence sont deux mesures clés pour la streamabilité : le délai est
lié à la qualité de service, alors que la concurrence est une mesure de la quantité
de mémoire nécessaire. Pour obtenir ces propriétés, nous utilisons et étendons
les résultats concernant les relations reconnaissables d’arbres, déjà étudiées pour
les arbres d’arité bornée [Tis90, CDG+07] ainsi que les arbres d’arité non bornée
[BL02, BLN07]. Ces relations entre arbres ont la particularité d’êtrereconnues
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par des automates, modulo un codage des relations entre arbres vers les langages
d’arbres. Nous montrons qu’il peut être décidé en temps polynomial si la val-
uation d’une relation reconnaissable binaire est bornée,et si elle est bornée par
un certaink donné. Nous obtenons ces résultats par réduction sur la valuation
bornée des transducteurs d’arbres [Sei92] et l’ambiguiték-bornée des automates
d’arbres. Cela nous permet de décider en temps polynomial si, pour unk donné
et une aritén donnée, une requête a un délai borné park et/ou une concurrence
bornée park.
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Stark. XQuery Streaming à la Carte. In23nd International Confer-
ence on Data Engineering, pages 256–265. IEEE Comp. Soc. Press,
2007. (Cited page18)

[FN07] Alain Frisch and Keisuke Nakano. Streaming XML transformation
using term rewriting. InProgramming Language Technologies for
XML (PLAN-X 2007), 2007. (Cited page19)

[FNTT06] Emmanuel Filiot, Joachim Niehren, Jean-Marc Talbot, and Sophie
Tison. Composing monadic queries in trees. In Giuseppe Castagna
and Mukund Raghavachari, editors,PLAN-X International Work-
shop, pages 61–70. Basic Research in Computer Science, 2006.
(Cited page52)

[FNTT07] Emmanuel Filiot, Joachim Niehren, Jean-Marc Talbot, and Sophie
Tison. Polynomial time fragments of XPath with variables. In
26th ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, pages 205–214. ACM-Press, 2007. (Cited
pages49and54)

[Fri04] Alain Frisch. Regular tree language recognition with static informa-
tion. In Exploring New Frontiers of Theoretical Informatics, IFIP



214 Bibliography

18th World Computer Congress, TCS 3rd International Conference
on Theoretical Computer Science, pages 661–674, 2004. (Cited
pages19 and76)

[FTT07] Emmanuel Filiot, Jean-Marc Talbot, and Sophie Tison. Satisfiability
of a spatial logic with tree variables. In16th EACSL Annual Con-
ference on Computer Science and Logic, volume 4646 ofLecture
Notes in Computer Science, pages 130–145. Springer Verlag, 2007.
(Cited page52)

[FW04] David C. Fallside and Priscilla Walmsley. XML
Schema Part 0: Primer Second Edition, October 2004.
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/.
(Cited pages3, 33, 43, and191)

[GC07a] Gang Gou and Rada Chirkova. Efficient algorithms for evaluating
XPath over streams. In36th ACM SIGMOD International Confer-
ence on Management of Data, pages 269–280. ACM-Press, 2007.
(Cited pages7, 15, 94, and195)

[GC07b] Gang Gou and Rada Chirkova. Efficiently Querying Large XML
Data Repositories: A Survey.IEEE Trans. on Know. Data Eng.,
19(10):1381–1403, 2007. (Cited page55)

[GF05] Floris Geerts and Wenfei Fan. Satisfiability of XPath Queries with
Sibling Axes. In10th International Symposium on Database Pro-
gramming Languages, volume 3774 ofLecture Notes in Computer
Science, pages 122–137. Springer Verlag, 2005. (Cited page47)

[GGM+04] Todd J. Green, Ashish Gupta, Gerome Miklau, Makoto Onizuka,
and Dan Suciu. Processing XML streams with deterministic au-
tomata and stream indexes.ACM Trans. Database Syst., 29(4):752–
788, 2004. (Cited pages14and123)
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Logic and Relational Structures

∆ relational signature 2.1.2
s relational structure 2.1.2
S set of relational structures 2.1.2
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V set of variables 2.3.3
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d depth of a tree 2.1.1
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T term

Queries

Q query 2.3.1
n arity of a query 2.3.1
S schema 2.3.1
LQ canonical language of the queryQ 2.3.1
dom(Q) domain of a query, i.e., associated schema 2.3.1
e expression defining a query 2.3.1
Q query class 2.3.1
QA query with universal schema, defined from the

automatonA by LQ = L(A)
2.3.2

QA,B queryQA, except thatdom(Q) = L(B) 2.3.2

Automata

A automaton
L(A) language recognized by the automatonA
B automaton recognizing the schema language
q a state 4.2
P a set of states
γ a node state 4.2
stat set of states
state set of event states 4.2
statn set of node states 4.2
init set of initial states
fin set of final states
rul set of rules
r run of an automaton
runs set of runs of an automaton
runs succ successful runs of an automaton
amb(A) degree of ambiguity of an automaton 7.3.1

Streaming

Ŝ {op, cl} × S 3.2.1
η event 3.2
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� document order on events 3.2.1
pr(η) event precedingη in document order 3.2.1
α action in{op, cl} 3.2
M Streaming Random Access Machine (SRAM) 3.2.4
m degree of streamability 3.3.1

Relations over Trees

R relation over trees 7.4.2
⊛ overlay operator 7.4.2
⊡ fill symbol for differing structures 7.4.2
ovl(R) language of overlays of the relationR 7.4.2
ℜ set of symbols of recognizable relations 7.4.4
r symbol of recognizable relation 7.4.4
Ω set of alphabets 7.4.4
ω alphabet inΩ 7.4.4
Sorts a set of sorts 7.4.3
σ a sort 7.4.3
sort(r) the sort of symbolr of recognizable relation 7.4.3
val(R) valuedness of the relationR 7.4.5
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Licence Creative Commons

Ce chapitre contient le texte de la licence Creative CommonsPaternité – Pas
d’Utilisation Commerciale – Pas de Modification, version 2.0.1

A.1 Contrat

L’Oeuvre (telle que définie ci-dessous) est mise à disposition selon les termes du
présent contrat appelé Contrat Public Creative Commons (dénommé ici “CPCC”
ou “Contrat”). L’Oeuvre est protégée par le droit de la propriété littéraire
et artistique (droit d’auteur, droits voisins, droits des producteurs de bases de
données) ou toute autre loi applicable. Toute utilisationde l’Oeuvre autrement
qu’explicitement autorisée selon ce Contrat ou le droit applicable est interdite.

L’exercice sur l’Oeuvre de tout droit proposé par le présent contrat vaut accep-
tation de celui-ci. Selon les termes et les obligations du présent contrat, la partie
Offrante propose à la partie Acceptante l’exercice de certains droits présentés ci-
après, et l’Acceptant en approuve les termes et conditionsd’utilisation.

Définitions

1. “Oeuvre” : oeuvre de l’esprit protégeable par le droit de lapropriété
littéraire et artistique ou toute loi applicable et qui estmise à disposition
selon les termes du présent Contrat.

2. “Oeuvre dite Collective” : une oeuvre dans laquelle l’oeuvre, dans sa forme
intégrale et non modifiée, est assemblée en un ensemble collectif avec
d’autres contributions qui constituent en elles-mêmes des oeuvres séparées
et indépendantes. Constituent notamment des Oeuvres dites Collectives les

1Voir : http://creativecommons.org/licenses/by-nc-nd/2.0/fr/.

http://creativecommons.org/licenses/by-nc-nd/2.0/fr/
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publications périodiques, les anthologies ou les encyclopédies. Aux termes
de la présente autorisation, une oeuvre qui constitue une Oeuvre dite Col-
lective ne sera pas considérée comme une Oeuvre dite Dérivée (telle que
définie ci-après).

3. “Oeuvre dite Dérivée” : une oeuvre créée soit à partir de l’Oeuvre seule,
soit à partir de l’Oeuvre et d’autres oeuvres préexistantes. Constituent
notamment des Oeuvres dites Dérivées les traductions, les arrangements
musicaux, les adaptations théâtrales, littéraires ou cinématographiques, les
enregistrements sonores, les reproductions par un art ou unprocédé quel-
conque, les résumés, ou toute autre forme sous laquelle l’Oeuvre puisse
être remaniée, modifiée, transformée ou adaptée, à l’exception d’une oeu-
vre qui constitue une Oeuvre dite Collective. Une Oeuvre dite Collective ne
sera pas considérée comme une Oeuvre dite Dérivée aux termes du présent
Contrat. Dans le cas où l’Oeuvre serait une composition musicale ou un en-
registrement sonore, la synchronisation de l’oeuvre avec une image animée
sera considérée comme une Oeuvre dite Dérivée pour les propos de ce Con-
trat.

4. “Auteur original” : la ou les personnes physiques qui ont cr´eé l’Oeuvre.

5. “Offrant” : la ou les personne(s) physique(s) ou morale(s) qui proposent la
mise à disposition de l’Oeuvre selon les termes du présentContrat.

6. “Acceptant” : la personne physique ou morale qui accepte le présent contrat
et exerce des droits sans en avoir violé les termes au préalable ou qui a reçu
l’autorisation expresse de l’Offrant d’exercer des droitsdans le cadre du
présent contrat malgré une précédente violation de ce contrat.

Exceptions aux droits exclusifs

Aucune disposition de ce contrat n’a pour intention de réduire, limiter ou restrein-
dre les prérogatives issues des exceptions aux droits, de l’épuisement des droits
ou d’autres limitations aux droits exclusifs des ayants droit selon le droit de la
propriété littéraire et artistique ou les autres lois applicables.

Autorisation

Soumis aux termes et conditions définis dans cette autorisation, et ceci pendant
toute la durée de protection de l’Oeuvre par le droit de la propriété littéraire et
artistique ou le droit applicable, l’Offrant accorde à l’Acceptant l’autorisation
mondiale d’exercer à titre gratuit et non exclusif les droits suivants :
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1. reproduire l’Oeuvre, incorporer l’Oeuvre dans une ou plusieurs Oeuvres
dites Collectives et reproduire l’Oeuvre telle qu’incorporée dans lesdites
Oeuvres dites Collectives;

2. distribuer des exemplaires ou enregistrements, présenter, représenter ou
communiquer l’Oeuvre au public par tout procédé technique, y compris in-
corporée dans des Oeuvres Collectives;

3. lorsque l’Oeuvre est une base de données, extraire et réutiliser des parties
substantielles de l’Oeuvre.

Les droits mentionnés ci-dessus peuvent être exercés sur tous les supports,
médias, procédés techniques et formats. Les droits ci-dessus incluent le droit
d’effectuer les modifications nécessaires techniquementà l’exercice des droits
dans d’autres formats et procédés techniques. L’exercice de tous les droits qui
ne sont pas expressément autorisés par l’Offrant ou dont il n’aurait pas la gestion
demeure réservé, notamment les mécanismes de gestion collective obligatoire ap-
plicables décrits à l’article 4(d).

Restrictions

L’autorisation accordée par l’article 3 est expressément assujettie et limitée par le
respect des restrictions suivantes :

1. L’Acceptant peut reproduire, distribuer, représenter oucommuniquer au
public l’Oeuvre y compris par voie numérique uniquement selon les ter-
mes de ce Contrat. L’Acceptant doit inclure une copie ou l’adresse Internet
(Identifiant Uniforme de Ressource) du présent Contrat à toute reproduc-
tion ou enregistrement de l’Oeuvre que l’Acceptant distribue, représente ou
communique au public y compris par voie numérique. L’Acceptant ne peut
pas offrir ou imposer de conditions d’utilisation de l’Oeuvre qui altèrent
ou restreignent les termes du présent Contrat ou l’exercice des droits qui
y sont accordés au bénéficiaire. L’Acceptant ne peut pas céder de droits
sur l’Oeuvre. L’Acceptant doit conserver intactes toutes les informations
qui renvoient à ce Contrat et à l’exonération de responsabilité. L’Acceptant
ne peut pas reproduire, distribuer, représenter ou communiquer au public
l’Oeuvre, y compris par voie numérique, en utilisant une mesure technique
de contrôle d’accès ou de contrôle d’utilisation qui serait contradictoire avec
les termes de cet Accord contractuel. Les mentions ci-dessus s’appliquent à
l’Oeuvre telle qu’incorporée dans une Oeuvre dite Collective, mais, en de-
hors de l’Oeuvre en elle-même, ne soumettent pas l’Oeuvre dite Collective,
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aux termes du présent Contrat. Si l’Acceptant crée une Oeuvre dite Col-
lective, à la demande de tout Offrant, il devra, dans la mesure du possible,
retirer de l’Oeuvre dite Collective toute référence au dit Offrant, comme
demandé. Si l’Acceptant crée une Oeuvre dite Collective,à la demande de
tout Auteur, il devra, dans la mesure du possible, retirer del’Oeuvre dite
Collective toute référence au dit Auteur, comme demandé.

2. L’Acceptant ne peut exercer aucun des droits conférés parl’article 3 avec
l’intention ou l’objectif d’obtenir un profit commercial ouune compensa-
tion financière personnelle. L’échange de l’Oeuvre avec d’autres Oeuvres
protégées par le droit de la propriété littéraire et artistique par le partage
électronique de fichiers, ou par tout autre moyen, n’est pasconsidéré comme
un échange avec l’intention ou l’objectif d’un profit commercial ou d’une
compensation financière personnelle, dans la mesure où aucun paiement ou
compensation financière n’intervient en relation avec l’´echange d’Oeuvres
protégées.

3. Si l’Acceptant reproduit, distribue, représente ou communique l’Oeuvre
au public, y compris par voie numérique, il doit conserver intactes toutes
les informations sur le régime des droits et en attribuer lapaternité à
l’Auteur Original, de manière raisonnable au regard au médium ou au
moyen utilisé. Il doit communiquer le nom de l’Auteur Original ou son
éventuel pseudonyme s’il est indiqué ; le titre de l’Oeuvre Originale s’il
est indiqué ; dans la mesure du possible, l’adresse Internet ou Identifiant
Uniforme de Ressource (URI), s’il existe, spécifié par l’Offrant comme as-
socié à l’Oeuvre, à moins que cette adresse ne renvoie pasaux informations
légales (paternité et conditions d’utilisation de l’Oeuvre). Ces obligations
d’attribution de paternité doivent être exécutées de manière raisonnable.
Cependant, dans le cas d’une Oeuvre dite Collective, ces informations
doivent, au minimum, apparaı̂tre à la place et de manière aussi visible que
celles à laquelle apparaissent les informations de même nature.

4. Dans le cas où une utilisation de l’Oeuvre serait soumise àun régime légal
de gestion collective obligatoire, l’Offrant se réserve le droit exclusif de
collecter ces redevances par l’intermédiaire de la société de perception et de
répartition des droits compétente. Sont notamment concernés la radiodiffu-
sion et la communication dans un lieu public de phonogrammespubliés à
des fins de commerce, certains cas de retransmission par câble et satellite,
la copie privée d’Oeuvres fixées sur phonogrammes ou vidéogrammes, la
reproduction par reprographie.
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Garantie et exońeration de responsabilit́e

1. En mettant l’Oeuvre à la disposition du public selon les termes de ce Con-
trat, l’Offrant déclare de bonne foi qu’à sa connaissanceet dans les limites
d’une enquête raisonnable :

(a) L’Offrant a obtenu tous les droits sur l’Oeuvre nécessaires pour
pouvoir autoriser l’exercice des droits accordés par le présent Con-
trat, et permettre la jouissance paisible et l’exercice licite de ces
droits, ceci sans que l’Acceptant n’ait aucune obligation de verser
de rémunération ou tout autre paiement ou droits, dans la limite des
mécanismes de gestion collective obligatoire applicables décrits à
l’article 4(e);

(b) L’Oeuvre n’est constitutive ni d’une violation des droits de tiers, no-
tamment du droit de la propriété littéraire et artistique, du droit des
marques, du droit de l’information, du droit civil ou de toutautre
droit, ni de diffamation, de violation de la vie privée ou detout autre
préjudice délictuel à l’égard de toute tierce partie.

2. A l’exception des situations expressément mentionnées dans le présent Con-
trat ou dans un autre accord écrit, ou exigées par la loi applicable, l’Oeuvre
est mise à disposition en l’état sans garantie d’aucune sorte, qu’elle soit
expresse ou tacite, y compris à l’égard du contenu ou de l’exactitude de
l’Oeuvre.

Limitation de responsabilité

A l’exception des garanties d’ordre public imposées par laloi applicable et des
réparations imposées par le régime de la responsabilit´e vis-à-vis d’un tiers en
raison de la violation des garanties prévues par l’article5 du présent contrat,
l’Offrant ne sera en aucun cas tenu responsable vis-à-vis de l’Acceptant, sur
la base d’aucune théorie légale ni en raison d’aucun préjudice direct, indirect,
matériel ou moral, résultant de l’exécution du présentContrat ou de l’utilisation
de l’Oeuvre, y compris dans l’hypothèse où l’Offrant avait connaissance de la
possible existence d’un tel préjudice.

Résiliation

1. Tout manquement aux termes du contrat par l’Acceptant entraı̂ne la
résiliation automatique du Contrat et la fin des droits qui en découlent.
Cependant, le contrat conserve ses effets envers les personnes physiques
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ou morales qui ont reçu de la part de l’Acceptant, en exécution du présent
contrat, la mise à disposition d’Oeuvres dites Dérivées, ou d’Oeuvres dites
Collectives, ceci tant qu’elles respectent pleinement leurs obligations. Les
sections 1, 2, 5, 6 et 7 du contrat continuent à s’appliquer après la résiliation
de celui-ci.

2. Dans les limites indiquées ci-dessus, le présent Contrats’applique pen-
dant toute la durée de protection de l’Oeuvre selon le droitapplicable.
Néanmoins, l’Offrant se réserve à tout moment le droit d’exploiter l’Oeuvre
sous des conditions contractuelles différentes, ou d’en cesser la diffusion;
cependant, le recours à cette option ne doit pas conduire àretirer les effets
du présent Contrat (ou de tout contrat qui a été ou doit être accordé selon les
termes de ce Contrat), et ce Contrat continuera à s’appliquer dans tous ses
effets jusqu’à ce que sa résiliation intervienne dans lesconditions décrites
ci-dessus.

Divers

1. A chaque reproduction ou communication au public par voie numérique de
l’Oeuvre ou d’une Oeuvre dite Collective par l’Acceptant, l’Offrant pro-
pose au bénéficiaire une offre de mise à disposition de l’Oeuvre dans des
termes et conditions identiques à ceux accordés à la partie Acceptante dans
le présent Contrat.

2. La nullité ou l’inapplicabilité d’une quelconque disposition de ce Contrat
au regard de la loi applicable n’affecte pas celle des autresdispositions qui
resteront pleinement valides et applicables. Sans action additionnelle par
les parties à cet accord, lesdites dispositions devront être interprétées dans
la mesure minimum nécessaire à leur validité et leur applicabilité.

3. Aucune limite, renonciation ou modification des termes ou dispositions du
présent Contrat ne pourra être acceptée sans le consentement écrit et signé
de la partie compétente.

4. Ce Contrat constitue le seul accord entre les parties à propos de
l’Oeuvre mise ici à disposition. Il n’existe aucun élément annexe, ac-
cord supplémentaire ou mandat portant sur cette Oeuvre en dehors des
éléments mentionnés ici. L’Offrant ne sera tenu par aucune disposition
supplémentaire qui pourrait apparaı̂tre dans une quelconque communica-
tion en provenance de l’Acceptant. Ce Contrat ne peut être modifié sans
l’accord mutuel écrit de l’Offrant et de l’Acceptant.

5. Le droit applicable est le droit français.
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A.2 Creative Commons

Creative Commons n’est pas partie à ce Contrat et n’offre aucune forme de
garantie relative à l’Oeuvre. Creative Commons décline toute responsabilité à
l’égard de l’Acceptant ou de toute autre partie, quel que soit le fondement légal de
cette responsabilité et quel que soit le préjudice subi, direct, indirect, matériel ou
moral, qui surviendrait en rapport avec le présent Contrat. Cependant, si Creative
Commons s’est expressément identifié comme Offrant pour mettre une Oeuvre à
disposition selon les termes de ce Contrat, Creative Commons jouira de tous les
droits et obligations d’un Offrant.

A l’exception des fins limitées à informer le public que l’Oeuvre est mise à
disposition sous CPCC, aucune des parties n’utilisera la marque “Creative Com-
mons” ou toute autre indication ou logo afférent sans le consentement préalable
écrit de Creative Commons. Toute utilisation autorisée devra être effectuée en
conformité avec les lignes directrices de Creative Commons à jour au moment
de l’utilisation, telles qu’elles sont disponibles sur sonsite Internet ou sur simple
demande.

Creative Commons peut être contacté à
http://creativecommons.org/.

http://creativecommons.org/
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