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Abstract
In this thesis, we consider two classes of long memory processes: the stationary long
memory processes and the non-stationary long memory processes. We are devoted to the
study of their probabilistic properties, estimation methods, forecast methods and the sta-
tistical tests.

Stationary long memory processes have been extensively studied over the past decades. It
has been shown that some long memory processes have the properties of self-similarity,
which are important for parameter estimation. We review the self-similar properties of
continuous-time and discrete-time long memory processes. We establish the propositions
that stationary long memory process is asymptotically second-order self-similar, while
stationary short memory process is not asymptotically second-order self-similar. Then
we extend the results to specific long memory processes such as k-factor GARMA pro-
cesses and k-factor GIGARCH processes. We also investigate the self-similar properties
of some heteroscedastic models and the processes with switches and jumps.

We make a review for the stationary long memory processes’ parameter estimation meth-
ods, including the parametric methods (for example, maximum likelihood estimation, ap-
proximate maximum likelihood estimation) and the semiparametric methods (for exam-
ple, GPH method, Whittle method, Robinson method). The consistency and asymptotic
normality behaviors are also investigated for the estimators.

Testing the fractionally integrated order of seasonal and non-seasonal unit roots of the
stochastic stationary long memory process is quite important for the economic and finan-
cial time series modeling. The widely used Robinson test (1994) is applied to various
well-known long memory models. Via Monte Carlo experiments, we study and compare
the performances of this test using several sample sizes, which provide a good reference
for the practitioners who want to apply Robinson’s test.

In practice, seasonality and time-varying long-range dependence can often be observed
and thus some kind of non-stationarity exists inside the economic and financial data
sets. To take into account this kind of phenomena, we review the existing non-stationary
processes and we propose a new class of non-stationary stochastic process: the locally
stationary k-factor Gegenbauer process. We describe a procedure of estimating consis-
tently the time-varying parameters with the help of the discrete wavelet packet transform
(DWPT). The consistency and asymptotic normality of the estimates are proved. The ro-
bustness of the algorithm is investigated through simulation study.

We also propose the forecast method for this new non-stationary long memory processes.
Applications and forecasts based on the error correction term in the error correction model
of the Nikkei Stock Average 225 (NSA 225) index and the West Texas Intermediate (WTI)
crude oil price are followed.
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Résumé
Dans cette thèse, on considère deux types de processus longues mémoires: les proces-
sus stationnaires et non-stationnaires. Nous nous consacrons à l’étude de leurs propriétés
statistiques, les méthodes d’estimation, les méthodes de prévision et les tests statistiques.

Les processus longue mémoire stationaires ont été largement étudiés au cours des dernières
décennies. Il a été démontré que des processus longue mémoire ont des propriétés d’auto-
similarité, qui sont importants pour l’estimation des paramètres. Nous passons en revue
les propriétés d’auto-similairité des processus longue mémoire en temps continu et en
temps discret. Nous proposons deux propositions montrant que les processus longue
mémoire sont asymptotiquement auto-similaires du deuxième ordre, alors que proces-
sus courte mémoire ne sont pas asymptotiquement auto-similaires du deuxième ordre.
Ensuite, nous étudions l’auto-similairité des processus longue mémoire spécifiques tels
que les processus GARMA à k facteurs et les processus GIGARCH à k facteurs. Nous
avons également étudié les propriétés d’auto-similarités des modèles heteroscedastiques
et des processus avec des sauts.

Nous faisons une revue des méthodes d’estimation des paramètres des processus longue
mémoire, par méthodes paramétriques (par exemple, l’estimation par maximum de vraisem-
blance et estimation par pseudo-maximum de vraisemblance) et les méthodes semiparamétriques
(par exemple, la méthode de GPH, la méthode de Whittle, la méthode de Robinson). Les
comportements de consistance et de normalité asymptotique sont également étudiés pour
ces estimateurs.

Le test sur l’ordre fractionnaire intégré de la racine unité saisonnière et non-saisonnière
des processus longue mémoire stationnaires est très important pour la modélisation des
series économiques et financières. Le test de Robinson (1994) est largement utilisé et ap-
pliqué aux divers modèles longues mémoires bien connus. A partir de méthode de Monte
Carlo, nous étudions et comparons les performances de ce test en utilisant plusieurs tailles
d’échantillons. Ce travail est important pour les praticiens qui veulent utiliser le test de
Robinson.

Dans la pratique, lorsqu’on traite des données financières et économiques, la saisonnal-
ité et la dépendance qui évolvent avec le temps peuvent souvent être observées. Ainsi
une sorte de non-stationnarité existe dans les données financières. Afin de prendre en
compte ce genre de phénomènes, nous passons en revue les processus non-stationnaires et
nous proposons une nouvelle classe de processus stochastiques: les processus de Gegen-
bauer à k facteurs localement stationnaire. Nous proposons une procédure d’estimation
de la fonction de paramètres en utilisant la transformation discrète en paquets d’ondelettes
(DWPT). La robustesse de l’algorithme est étudiée par simulations.

Nous proposons également des méthodes de prévisions pour cette nouvelle classe de pro-
cessus non-stationnaire à long mémoire. Nous dennons des applications sur le terme de
la correction d’erreurs de l’analyse cointégration fractionnaire de l’index Nikkei Stock
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Average 225 et nous étudions les prix mondiaux du pétrole brut.

Mots Clés: Transformation discrète en paquets d’ondelettes, Processus de Gegenbauer,
Processus longue mémoire, Simulation de Monte Carlo, Nikkei 225, Non-stationarité, Es-
timation des moindres carrés, Seasonnarité, Auto-similarité, Test.

JEL Classification: C12, C13, C14, C15, C22, C63, G15.
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Chapter 1

Introduction

In our endeavours to understand the changing world around us, observations of one kind
or another are frequently made sequentially over time. The record of sunspots is a classic
example, which may be traced back to 28 B.C.

A time series is a set of observations Xt, each one being recorded at a specified time
t. A discrete time series is one in which the set T0 of times at which observations are
made is a discrete set, as is the case for example when observations are made at fixed time
intervals. Continuous time series are obtained when observations are recorded continu-
ously over some time interval. And the most important objective in our study of a time
series is to uncover the law governing its generation.

Definition 1.0.1. A stochastic process is a family of random variables {Xt, t ∈ T} defined
on a probability space (Ω, F, P ), where T is a set of time points.

In this thesis, we consider the data coming in the form of a univariate stochastic process.
The identification of processes with strong correlation between observations far apart in
time or space (so-called long memory or long range dependence) is now widespread in
many diverse fields and disciplines, which is the main interest in this thesis.

The past several decades have witnessed an increasing interest in fractionally integrated
processes as a convenient way of describing the long memory properties of many time
series. In the pioneering papers about long memory, Granger and Joyeux (1980) and
Hosking (1981) proposed a fractionally integrated ARMA (ARFIMA) process which ex-
tends the conventional ARIMA model using a differencing operator (I −B)d, where d is
allowed to take any non-integer value. Since then, ARFIMA processes, which have been
fitted to many time series, have provided reliable long-term inferences and have become
one of the most popular parametric long memory models in the literature. A singularity
or a pole can be observed at the zero frequency in the spectrum of the ARFIMA process.

In empirical studies, fractional integration and long memory have been found relevant
in many areas in macroeconomics and finance. There have been many studies to provide
a theoretical motivation for fractional integration and long memory, for instance models
based on aggregation have been suggested by Robinson (1976) and Granger and Joyeux
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(1980), error duration models by Parke (1999), and regime switching models by Diebold
and Inoue (2001). Other examples of applications are Diebold and Rudebusch (1989,
1991) and Sowell (1992b) for various GDP measures, Gil-Alana and Robinson (1997) for
the extended Nelson-Plosser data set, Hassler and Wolters (1995) and Baillie et al. (1996)
for inflation data, Diebold et al. (1991) and Baillie (1996) for real exchange rate data, and
Andersen, Bollerslev, Diebold and Ebens (2001) and Andersen, Bollerslev, Diebold and
Labys (2001) for financial volatility series.

One extension of the ARFIMA process is Gegenbauer ARMA (GARMA) model pro-
posed by Gray et al. (1989) in which the operator (I − 2νB + B2)d is used to character-
ize seasonal long memory with period 2π/f where f(= cos−1(ν)) is called the Gegen-
bauer frequency. In comparison with the ARFIMA model, the long memory property
of a GARMA process is reflected by the unbounded spectral density f(ω) around the
Gegenabuer freqeuncy f :

f(ω) ∼ |ω − f |−2d as ω → f,

for 0 < d < 1/2, where x ∼ y means that x/y tends to 1. Thus, GARMA process has
only one singular point in the spectral density. The GARMA model was further general-
ized to allow multiple poles in the spectrum which leads to the k-factor GARMA models
(see Giraitis and Leipus, 1995; Woodward et al., 1998).

Another extension was proposed by Porter-Hudak (1990), who generalized the ARFIMA
models to seasonal fractionally integrated ARMA (SARFIMA) models by incorporat-
ing the operator (I − Bs)d with a known period s, with a successful application to the
U.S. monetary aggregates. In contrast to the ARFIMA model, the spectral density of an
SAFRIMA process has singularities not only at zero frequency but also at frequencies
with multiple values of 2π/s.

More generally, Robinson (1994) proposed the season and/or cyclical long memory (SCLM)
model which is a generalization of most long memory processes. It permits the singulari-
ties at zero and non-zero frequencies at the same time.

In the thesis, we make great efforts on the study of the long memory processes. Briefly
speaking, this thesis is composed mainly by two parts of work. The first part of our work
is concerned with the modeling and probabilistic properties of stationary long memory
processes. The second part of our work is concentrated on the study of non-stationary
long memory processes by wavelet methods.

In the first part of our work, we review the self-similar concepts and properties for the
continuous-time processes and discrete-time processes. We particularly focus on the re-
lationship between long range dependence and self-similarity for discrete-time processes,
and we present some new results for these latter models. Our major contribution here
is that we have proved that if a process is both covariance stationary and long memory,
then it is asymptotically second-order self-similar. Under Gaussianity, these processes are
all asymptotically self-similar. We apply this result to the processes such as the k-factor
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GARMA processes, the k-factor GIGARCH processes, etc. We also prove that if a pro-
cess is covariance stationary and short memory, then it is not asymptotically self-similar.
Thus, the usual linear ARMA processes, the GARCH processes, the models with switches
and the models with breaks, are not asymptotically self-similar. Whereas, we show that
under appropriate assumptions and hypotheses the SETAR models can be asymptotically
self-similar. Moreover, for the processes with breaks and jumps, although they are the-
oretically short memory processes, they are empirically long memory processes with the
sample autocorrelation function decaying hyperbolically to zero. Consequently, theo-
retically they are not asymptotically second-order self-similar, while empirically they are
asymptotically second-order self-similar. Since we often refer the empirical long memory
behavior as "spurious long memory behavior", we propose a new notion to describe this
phenomenon: the "spurious asymptotically second-order self-similar" behavior. This part
of work has been written as a working paper (Document de Travail du Centre d’Economie
de la Sorbonne de l’Université Paris 1–2007.55) and has been presented at the seminar
of "Monnaie, Banque, Finance et Assurance" of University Paris 1 in June 2007. See in
Chapter 2 for more details .

Furthermore, to have an overall idea of the parameter estimation methods for the seasonal
and/or cyclical long memory processes, we make a review in Chapter 4 of the parametric
methods based on the maximum likelihood function in time and frequency domain, the
semiparametric methods based on the Geweke and Porter-Hudak (GPH) method in the
frequency domain, etc. We also discuss briefly the asymptotical behaviors of the estima-
tors.

We are also quite interested in the statistical test for the long memory processes. Work-
ing with macroeconomics data sets significates that we deal with data sets with rather
small sample sizes, generally lower than 1 000 points. Our aim is to know the accuracy
of this test for a finite sample size. Our major contribution here is to assess the rate of
convergence for Robinson’s test using Monte Carlo simulations. To adjust these models
on real data sets, it is fundamental to detect long memory behavior through statistical
tests. Thus, in the second part of our work, we focus on the Robinson test (1994) to
test the long memory parameters. Robinson (1994) investigated a general model in order
to test whether the data stemmed from a stationary or a non-stationary process, under
uncorrelated and weakly-correlated innovations (εt)t. We recall the Robinson test and
carry out the Monte Carlo simulations using grid-search method in order to study the
finite sample behaviors of the test for several long memory models under the innova-
tions of strong white noise and GARCH noise, the fractional integrated model, k-factor
Gegenbauer model (k = 1, 2, 3, 4), rigid Hassler models, flexible Hassler models, etc. We
compare the different finite sample behaviors of the seasonal and/or cyclical long memory
processes, which provides a useful reference in practice. We find that the sample size is
crucial for the accuracy of the test. From another point of view, the Robinson test can
work as a parameter estimation method by grid searching. This part of work is described
in Chapter 7 and has been presented at the seminar of "Monnaie, Banque, Finance et As-
surance" of University Paris 1 in June 2008, and also at the International Symposium on
Forecasting 2008 in Nice, France. This paper is in revision for the journal of Computa-
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tional Statistics and Data Analysis.

Although stationarity has been usually regarded as a valid assumption for series of short
duration. However, such an assumption is rapidly losing its credibility in the enormous
databases maintained by firms and organizations on a large variety of subjects such as
geophysics, oceanography, meteorology, speech and economics. By means of the auto-
correlation function (ACF) (with autocorrelations on the y axis and the different time lags
on the x axis) it is possible to detect non-stationarity of the time series with respect to the
mean level.

In practice, there are many stochastic processes which are not stationary. Sometimes,
we will do some transformations to make them stationary. An example of non-stationary
time series is given in Figure 1.1, which represents the values of the Nasdaq-100 index
from January 4, 1999 through January 4, 2009. This index includes hundred of the largest
non-financial domestic and international companies listed on the Nasdaq National Mar-
ket. It is clear that this process contains a trend, which can be removed if we compute the
first-order difference of the logarithm of the Nasdaq-100 series (the log-return index), see
Figure 1.2. The resulting zero-mean process still contains valuable information for the
analyst, in terms of the volatility of the time series.

However, some time series are not suitable to be made stationary. An example of a non-
stationary time series is a record of readings of the atmosphere temperature measured each
10 seconds with some random errors that have a constant distribution with zero mean. At
any given time point the mean of the readings is equal to the true temperature. On the
other hand, the mean value itself changes with time–as far as the true temperature varies
with time. Thus, it gives us great motivations to investigate the estimation method of the
long memory parameters for non-stationary processes.

To our knowledge, the existing non-stationarity of long memory time series is character-

ized by two kinds of parameters. One is the constant parameter d(∈ (
1

2
, 1)) in the fraction-

ally integrated model (I −B)dXt = εt. The other is the time-varying parameter function

d(t)(∈ (−1

2
,
1

2
)) in the generalized fractionally integrated model (I−B)d(t)Xt = εt con-

sidered by Jensen (2000), Whithcer and Jensen (2000), Cavanaugh et al. (2002), etc.

It is necessary to extend the concept of long memory to the non-stationary framework,
(see Cheung and Lai, 1993; Maynard and Phillips, 2001; Phillips, 2005). In Chapter 5,
for non-stationary processes, we first review the previous work focusing on the estima-
tion method of long memory parameter, in particularly the fractional integrated model.
The methods are concentrated on the GPH method, local Whittle method, exact local
Whittle method, fully extended local Whittle method, Whittle pseudo maximum likeli-
hood method and wavelet-based local Whittle method. We also discuss the corresponding
consistency and normality of the estimators. Hurvich and Ray (1995) argued, that the
GPH estimator was consistent only when d < 1 by simulation, and Kim and Phillips
(1999) theoretically. In the same context, Velasco (1999a) showed the consistency and
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the asymptotic normality of the Robinson (1995a) estimator for d ∈ [1/2, 3/4]. To solve
the non-consistency problem, Hurvich and Ray (1995) and Velasco (1999a) suggested the
use of data tapering, which was first proposed by Cooley and Tukey (1965) and discussed
by Cooley et al. (1967) and Jones (1971). This technique has also been used by many au-
thors, such as Hurvich and Chen (2000), Giraitis and Robinson (2003), Sibbertsen (2004),
Olhede et al. (2004), among many others. For any value of d, Velasco (1999a) showed
that if the tapering order p is greater or equal to [d + 1/2] + 1, the estimator is consistent
and asymptotically normal.

On the other hand, in reality, many naturally occurring phenomena show a slow drift
in their periodicities and self-similarities, when observed for enough long time period.
The changes in the cycles and self-similarities are often so gradual that a process over a
short span will behave as a stationary process. This information on the drift of the cycles
and self-similarities can provide a great deal of insight into the dynamics of an evolving
process. The analysis of the non-stationary economic time series with time-varying pa-
rameters has been going on for some time. According to the long memory processes with
time-varying parameter functions, one important model is the locally stationary ARFIMA
model, which has been studied by Jensen (1992a), Whitcher and Jensen (2000) and Ca-
vanaugh et al. (2002), for instance. In fact, this model can be regarded as an extension of
the stationary ARFIMA model which permits the long memory parameter to evolve with
time. These authors all used the wavelet techniques based on the semiparametric method
for estimating the parameters. Whitcher and Jensen (2000) improved the wavelet-based
GPH method (Jensen, 1999) by the concept of the cone of influence. Cavanaugh et al.
(2002) studied the self-similar property of the locally stationary ARFIMA model, built
the approximate log-linear relationship, and estimated the time-varying parameters which
has been proved to be quite efficient. Concerning the estimation methods of this class
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of processes, Brock (2000) discussed the need for time-frequency analysis of economic
time series when he brought up the work on the interface between ecology and economics.

Fourier transform is known to be suitable to analyze the stationary time series with its
localized frequency basis function. Whereas, since wavelet transform is localized both in
time and in frequency, it has the ability to capture the characteristics of the events that are
local in time, which makes it an ideal tool for studying non-stationary or transient time
series with time-varying characteristics. Yves Meyer may be considered as the founder of
this mathematical subject, which we call wavelet analysis. Of course, Meyer’s profound
contribution to wavelet analysis is much more than being a pioneer of this new mathemati-
cal field. For the past ten years, he has been totally committed to its development, not only
by building the mathematical foundation, but also by actively promoting the field as an
interdisciplinary area of research. In fact, a number of concepts such as non-stationarity,
multiresolution and approximate decorrelation emerge from wavelet filters, as it provides
a natural platform to deal with the time-varying characteristics found in most real world
time series, and thus the assumption of stationarity may be avoided. Hence, a transform
that decomposes a process into different time horizons (scales) is appealing as it differ-
ences seasonalities, reveals structural breaks and volatility clusters, and identifies local
and global dynamic properties of a process at these time scales. Moreover, wavelet fil-
ters provide a convenient way of dissolving the correlation structure of a process across
time scales. This will indicate that the wavelet coefficients at one level are not (much)
associated with coefficients at different scales or within their scales. This is useful when
performing tasks such as simulations, estimations, and test since it is always easier to deal
with an uncorrelated process than one with unknown correlation structure.

One of the most important task of this thesis is to study the non-stationary time series
models with seasonalities which permit the long memory parameters to evolve with time,
motivated by the idea of Dalhaus (1997). As an extension of the k-factor GARMA model
and that of the fractionally integrated model, a class of new model (locally stationary
k-factor Gegenbauer process) is proposed:

k∏
i=1

(I − 2νB + B2)d(t)yt = εt,

where εt is Gaussian white noise. Fr appropriate values of d(t), this model can be re-
garded locally as stationary processes with constant parameter, that is to say, piecewise
stationary. Based on this kind of understanding, we develop a wavelet-based estima-
tion procedure with the help of the DWPT. After evenly partitioning the time interval,
we locate the DWPT coefficients on each subinterval according to the "Heisenberg box"
principle. Then we calculate the the wavelet variances on each subinterval, which is an ap-
proximate estimate of the spectrum. Then we apply the ordinary least squares regressions
on the subintervals. What we obtain at last are the local estimates on the subintervals. The
first and last estimates are omitted before doing smoothing in order to avoid the bound-
ary effects. We adopt the spline smoothing method and loess smoothing method to get
the smoothed curves. Furthermore, we prove the consistency and asymptotical normality.
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The robustness of the estimates is verified by Monte Carlo simulation study. We simu-
late six kinds of elementary functions as the parametric functions: the constant, linear,
quadratic, cubic, exponential and logarithmic functions. We present the smoothed curves
for the estimated long memory parameter functions with comparison to the other authors’
estimation results, and we also present the mean bias and the mean RMSE of the estima-
tion for the simulated series. To our knowledge, there exists almost no literature of the
forecast method for the non-stationary processes. For the new non-stationary processes
that we propose in this thesis, we develop the corresponding forecast method based on the
estimations. According to the model, the most critical point is to make the forecast for the
long memory parameter function, with which we obtain the forecast for the original series.

This part of work is presented in Chapter 5 and we have written as a working paper (Doc-
ument de Travail du Centre d’Economie de la Sorbonne de l’Université Paris 1–2009.15).
It will be submitted to a statistic journal of high level.

In the application part, we apply the new non-stationary model on the error correction
term of the cointegration model of Nikkei Stock Average 225 index and on the WTI oil
price data, using the wavelet-based estimation procedure that we proposed and we make
the h-step-ahead forecasts of the long memory parameter functions. Then we make the
h-step-ahead forecasts of the error correction terms. The forecasts are also evaluated by
the bias and the root mean square error. We discuss a little the applicability of the new
model and the new estimation method.

The remainder of this thesis is organized as follows: In Chapter 2, we introduce some
probabilistic properties of stationary processes. Chapter 3 are the wavelet techniques for
time series analysis. In Chapter 4, we make a review of the estimation methods for station-
ary long memory processes. Chapter 5 is concerned with the estimation methods of the
non-stationary processes. In Chapter 6, we make some applications on the financial data
series and the energy data series. Chapter 7 is concentrated on the tests for the fractional
order of long memory processes. Chapter 8 is the conclusion.
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Chapter 2

Some Probabilistic Properties of
Stationary Processes

2.1 Introduction of Stationary Processes
Let Xt denote a real-valued random variable representing the observation made at time t.
We confine our study to observations made at regular time intervals, and without loss of
generality, we assume that the basic time interval is of duration one unit of time.

Now we present some important features of time series with time-invariant properties.

Definition 2.1.1. The time series (Xt)t is said to be stricly stationary if, for any t1, t2, · · · , tn ∈
Z, any k ∈ Z, and n = 1, 2, · · · ,

FXt1 ,Xt2 ,··· ,Xtn
(x1, · · · , xn) = FXt1+k,Xt2+k,··· ,Xtn+k

(x1, · · · , xn), (2.1)

where F denotes the distribution function of the set of random variables which appear as
suffices.

The term "weakly stationary", "second-order stationary", "covariance stationary" or "wide-
sense stationary" is used to describe the theoretically less restricted situation in which

E(Xt1) = E(Xt1+k), Cov(Xt1 , Xt2) = Cov(Xt1+k, Xt2+k), (2.2)

for all t1, t2, k ∈ Z, the covariances being assumed to exist. Strict stationarity implies
weak stationarity provided that V ar(Xt) exists. And these two concepts are equivalent
under Gaussianity.

In practice, to obtain stationarity, sometimes we need to do some simple transforma-
tions, such as taking differences of consecutive observations, subtracting a polynomial or
trigonometric trend, etc.

Consider a covariance stationary time series (Xt)t with finite variance. It follows from
the relationship (2.2) that Cov(Xt1 , Xt2) is simply a function of |t1− t2|. This function is
called the autocovariance function of (Xt)t at lag (t1 − t2). We denote it by γt2−t1 . The
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ratio γτ/γ0 (τ ∈ Z), is called the autocorrelation function of (Xt)t of lag τ , denoted by ρτ .

For a scalar covariance stationary process (Xt)t, if we assume absolute continuity of the
spectral distribution function, then there is a spectral density f(λ) (−π < λ ≤ π), such
that the autocovariance

γj = E[(X1 − E(X1))(X1+j − E(X1))] =

∫ π

−π

cos(jλ)f(λ)dλ.

In the analysis of stationary time series, the behavior of the spectral density around zero
frequency is often of interest, which is an important characteristic in identifying the
model.

2.1.1 Short Memory Processes
Definition 2.1.2. A covariance stationary process (Xt)t is called short memory (or short

range dependence) process, if its autocorrelation function ρk satisfies
∞∑

k=0

ρk < ∞.

Thus the autoregressive moving average(ARMA) processes and autoregressive condi-
tional heteroscedastic(ARCH) processes are the classical short memory processes. In
Figure 2.1 we observe the sample autocorrelation function of a simulated short memory
process.

2.1.2 Long Memory Processes
One of the earliest studies which mentioned that the observed time series may exhibit
long range dependence is attributed to the pioneering work of Hurst (1951). While look-
ing at time series from the physical sciences (rainfall, tress rings, river levels, etc.), he
noticed that his R/S- statistic, on a logarithmic scale, was randomly scattered around a

line with slope H >
1

2
for large sample sizes. For a stationary process with short range

dependence, log R/S should be proportional to k1/2, for large k. Hurst’s discovery of
slopes proportional to kH , with H > 1/2, was in direct contradiction to the theory of
such processes at the time. This discovery is known as the "Hurst effect" and H is the
"Hurst parameter".

Mandelbrot and co-workers (Mandelbrot and Van Ness, 1968; Mandelbrot and Wallis,
1969) showed that the Hurst effect may be modeled by fractional Gaussian noise with
self-similarity parameter 0 < H < 1. This process exhibits stationary long memory dy-

namics when 1/2 < H < 1 and reduces to white noise when H =
1

2
. The spectrum of

fractional Gaussian noise may be derived from an appropriately filtered spectral density
function of fractional Brownian motion and evaluated via numeric integration, although
finite term approximations may be used in practice. We will instead focus our attention
on a convenient class of time series models known as fractional differencing processes.
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Since the work of Granger and Joyeux (1980) and Hosking (1981), long memory pro-
cesses have been widely studied. There exist different characterizations for the concept
of long memory in time domain or in spectral domain.

We say that a function h changes slowly to infinity (or to zero) if it satisfies the condition
H: for all a ∈ R, h(ax)/h(x) → 1, when x →∞ (or x → 0).

Definition 2.1.3. A covariance stationary process (Xt)t is called long memory process
if it has an autocorrelation function ρk which behaves like a power function decaying to
zero hyperbolically as

ρk ∼ Cρ(k) · k−α, as k →∞, 0 < α < 1, (2.3)

where ∼ represents the asymptotic equivalence, and Cρ(k) is a function which changes
slowly to infinity satisfying the condition H.

This definition is concerned with the concept of long memory behavior in time domain,
which means that the decay rate of autocorrelations is very slow. Thus, the autocorrelation
series is absolutely divergent, i.e. Σ∞

k=0ρk = ∞. Remark that if we note H = 1− α

2
, the

long memory behavior following the Definition 2.1.3 occurs when
1

2
< H < 1. Figure

2.2 shows the sample autocorrelation function (ACF) of a simulated long memory pro-
cess. Obviously, a very slow decay of the ACF is displayed.

Due to the Fourier transform, the covariance function is connected to the spectral den-
sity. In spectral domain, we define the long memory behavior which is characterized by
the rate of explosions at low frequencies as follows:

Definition 2.1.4. A covariance stationary process (Xt)t is called long memory process if
its spectral density function f is approximated by

f(λ) ∼ Cf (λ) · λ−2d, as λ → 0+, 0 < d <
1

2
, (2.4)

where Cf (λ) is a function which changes slowly to zero at frequency zero satisfying the
condition H.

For d ≥ 1

2
, a function behaving like λ−2d as λ → 0+ will not be integrable so that co-

variance stationarity cannot be obtained, while the case when d > −1

2
corresponds to an

invertibility condition in parametric models with property (2.4). In fact, property (2.4)
is also useful in modeling stochastic processes by semi-parametric methods. Figure 2.3
illustrates the spectrum of a a simulated long memory behavior. We can find an explosion
at the zero frequency in the spectrum.

It should be pointed out that Definition 2.1.3 and Definition 2.1.4 are given in an asymp-
totic context near the zero frequency, which indicate the singularity at zero frequency in
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the spectral density.

More generally, a process is said to exhibit long memory behavior if its spectral density is
unbounded at a finite number of frequencies between [0, π]. While if the process exhibits
short memory behavior, the spectral density is bounded on the frequency interval [0, π].

Definition 2.1.5. A covariance stationary process (Xt)t is called long memory process if
its spectral density function f has the following property:

∃λ0 ∈ [0, π], such that f(λ0) is unbounded.

Figure 2.4 shows the spectrum of a simulated long memory process (Gegenbauer process)

with an explosion at the frequency λ0 =
2π

3
. Figure 2.5 shows the spectrum of the 2-factor

Gegenbauer process with two explosions in the spectrum. While in Figure 2.6, we can
observe three explosions in the spectrum of the Hassler model.
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2.2 Self-similar Properties for Stationary Processes

2.2.1 Concepts of Self-similarity
In the past decades there has been a growing interest in studying self-similar processes and
asymptotically self-similar processes which were first introduced theoretically through
the work of Komogorov (1941). These processes are typically used to model random
phenomena with long range dependence, which informally means significant correlations
across arbitrarily large time scales.
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The concept of self-similarity has been considered by many authors, mainly in the context
of continuous time. Many applications can be found in physics, geophysics, hydrology,
finance, economics, communications and the "1/f noises".

Self-similarity is a pervasive characteristic to describe the phenomena exhibiting certain
forms of long range dependence. It provides an elegant explanation and interpretation
of an empirical law that is commonly referred as the Hurst’s effect. The parameter H
introduced previously is the so-called Hurst parameter, designed to capture the degree of
self-similarity. Self-similarity measures the deviation of self-similar process away from

the Brownian motion whose Hurst parameter H is equal to
1

2
.

A priori, there is no evident link between the notion of self-similarity and long memory
(see Beran (1994)). Generally speaking, the concept of long memory is not equivalent to
that of self-similarity or asymptotical self-similarity. For a self-similar or asymptotically
self-similar process, we cannot justify directly whether it is long memory or not. For ex-
ample, Brownian motion is self-similar but not long memory, while fractional Brownian
motion is an H-self-similar process with stationary increments (for specific values of H)
and at the same time it exhibits long memory behavior. Thus we observe that the relation-
ship between these two properties necessitates to be carefully identified.

There exist several different definitions for self-similarity and asymptotic self-similarity.
In the context of stochastic processes, self-similarity is defined in terms of the distribution
of the processes. We will consider these concepts respectively for continuous-time and
discrete-time processes.

2.2.2 Continuous-time Self-similar Processes
Definitions of Self-similarity

Definition 2.2.1. A real-valued stochastic process Z = {Z(t)}t∈R is an H-self-similar
process (or self-similar process with index H > 0), if for any a > 0,

{Z(at)}t∈R =d {aHZ(t)}. (2.5)

We call such a model H-ss process.
Here ” =d ” means identical in finite-dimensional distributions.

Definition 2.2.2. A process Z = {Z(t)}t∈R is an H-self-similar process with stationary
increments (or self-similar process with index H > 0 and with stationary increments), if
for the H-ss process {Zt}t∈R and all h ∈ Z,

{Z(t + h)− Z(h)}t∈R =d {Z(t)− Z(0)}t∈R. (2.6)

We call such a model H-sssi process.
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Properties of Self-similar Processes

Let {Zt}t∈R be an H-sssi process with 0 ≤ H < 1. We introduce the increment process
(Xt)t∈Z defined by Xt = Zt − Zt−1, ∀ t. Denote γZ(·) the covariance function of the
process {Zt}t∈R and σ2

Z its variance. Then we have the following properties, see Beran
(1994) and Taqqu et al. (1997):

1. Z(0)=0 almost surely (a.s.).

2. −Z(t) =d Z(−t).

3. Suppose Z(t) is a non-trivial H-sssi process with H > 0:

(i) If E[|Z(1)|γ] < ∞ for some γ < 1, then H < 1/γ;

(ii) If E[|Z(1)|] < ∞, then H < 1;

(iii) If E[|Z(1)|] < ∞ and 0 < H < 1, then E[Z(t)] = 0;

(iv) If E[|Z(1)|] < ∞ and H = 1, then Z(t) = tZ(1) a.s..

4. E[(Zt − Zt−1)
2] = σ2

Z(t− s)2H and γZ(t, s) =
1

2
σ2

Z [t2H − (t− s)2H + s2H ].

5. Let X be the sample mean of the process (Xt)t, then we have some empirical
properties concerning X: X = nH−1(Z1 − Z0) and V ar(X) = σ2

Zn2H−2.

6. If (Xt)t is a Gaussian process with mean µ and variance σ2
X , then n1−H(X−µ)/σX

is a standard normal random variable.

7. Among continuous-time processes, the H-ss process and the H-sssi process are the
most frequently studied processes. Definition 2.2.1 hints that self-similar processes
are stochastic processes that are invariant in distribution under appropriate scaling
of time and space. If an H-ss process is not covariance stationary, we will consider
the increments of the H-ss process to get some stationarity. On the other hand, an
H-ss process cannot be strictly stationary.

8. For the H−ss process {Z(t)}t∈R, the process Y (t) = e−tHZ(et)(t ∈ R) is station-
ary. Conversely, if {Y (t)}t∈R is stationary, then the process Z(t) = tHY (lnt)(t >
0) is H-ss.

9. When
1

2
< H < 1, the process (Xt)t∈Z exhibits long memory behavior.

When H =
1

2
, the process (Xt)t∈Z is uncorrelated.

When 0 < H <
1

2
, the process (Xt)t∈Z exhibits short memory.
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2.2.3 Discrete-time Self-similar Processes
For a covariance stationary time series (Xt)t∈Z, if its covariance exists and its autocorrela-
tion function ρk has the asymptotical behavior lim

k→∞
ρk = 0, then the parameter H belongs

to the interval (0, 1).

Let (Xt)t be a covariance stationary time series. Denote

X
(m)
t =

1

m

tm∑

k=(t−1)m+1

Xk, k = 1, 2, ..., (2.7)

the corresponding aggregated sequence with level of aggregation m(> 1), and ρ
(m)
k the

autocorrelation function of the process (X
(m)
t )t∈Z.

Definitions of Self-similarity

Definition 2.2.3. A strictly stationary stochastic process (Xt)t is exactly self-similar (or
asymptotically self-similar) if for all t,

Xt =d m1−HX
(m)
t (2.8)

holds for all m (or as m → ∞), where (X
(m)
t )t is the aggregated sequence defined as in

Equation (2.7) and 1/2 < H < 1.

Another characterization of self-similarity is based on second-order moments as follows:

Definition 2.2.4. Let (Xt)t be a covariance stationary process,

1. The process (Xt)t is called exactly second-order self-similar, or s.o.s.s, if m1−HX
(m)
t

has the same autocorrelation as Xt, for all m and for all t. Thus,

V ar(X(m)) = V ar(X)m2H−2 (2.9)

and ρ
(m)
k = ρk (2.10)

where 1/2 < H < 1, m > 1, k = 0, 1, 2, · · · , and ρk ∼ Ck2H−2, as k →∞.

2. The process (Xt)t is called asymptotically second-order self-similar, or a.s.o.s.s, if

lim
m→∞

ρ
(m)
k =

1

2
[(k + 1)2H − 2k2H + (k − 1)2H ], ∀ k > 0.

We denote in the following

gH(k) =
1

2
[(k + 1)2H − 2k2H + (k − 1)2H ], where k > 0. (2.11)

The notion of exact (asymptotical) self-similarity concerns all the finite-dimensional dis-
tributions of a strictly stationary process, while the notion of exact (asymptotical) second-
order self-similarity concerns only the variance and autocorrelation function of a covari-
ance stationary process. In fact, under Gaussian framework, exact second-order self-
similarity is equivalent to exact self-similarity, and likewise, asymptotic second-order
self-similarity is equivalent to asymptotic self-similarity.
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Properties of s.o.s.s. and a.s.o.s.s Time Series

Let (Xt)t be a covariance stationary exactly second-order self-similar process. Denote ρk

its autocorrelation function, fX(λ) its spectral density function, σ2
X its variance, then we

have the following properties:

1. The autocorrelation function of the s.o.s.s process (Xt)t is such that:

ρk = gH(k), ∀k > 0, (2.12)

where gH(k) is introduced in the Equation (2.11).

2. For 1/2 < H < 1, the s.o.s.s process (Xt)t exhibits long memory behavior with its
autocorrelation function decaying hyperbolically: ρk ∼ H(2H − 1)k2H−2, as k →
∞. And, its spectral density function explodes at the origin with fX(λ) ∼ |λ|1−2H ,
as λ → 0.

3. The spectral density of the process (Xt)t verifies:

fX(λ) = 2Cf (1−cos λ)
∞∑

i=−∞
| 2πi+λ |−2H−1= Cf | λ |1−2H +O(| λ |min(3−2H,2))

(2.13)
where λ ∈ [−π, π], 1/2 < H < 1 and Cf = σ2

X(2π)−1 sin(πH)Γ(2H + 1).

4. There exists some equivalences between the previous properties. The condition
(2.9) is equivalent to the condition (2.12) and they are both equivalent to the condi-
tion (2.13). Whereas, with the condition (2.9), we can deduce condition (2.10), but
not vice versa. (see Taqqu et al. (1997) for more details)

It should be pointed out that we can also use the above property 1 and property 3 as
the definition of second-order self-similarity processes. Thus, with these properties, we
obtain the following result which presents the relationship between self-similarity and
long memory behaviors.

Lemma 2.2.5. Let (Xt)t be a covariance stationary process, if this process is short mem-
ory as is defined in Definition 2.1.2, then it is not asymptotically second-order self-similar.

Proof. For a short memory process (Xt)t, the corresponding autocorrelation function de-
cays exponentially to zero, so it does not satisfy the Equation (2.12), which means that
the process (Xt)t is not asymptotically second-order self-similar.

Lemma 2.2.6. Let (Xt)t be a covariance stationary long memory process with
1

2
<

H < 1, then this process is asymptotically second-order self-similar. Furthermore, under
Gaussianity, the process is asymptotically self-similar.

Proof. For a covariance stationary process (Xt)t, its autocorrelation function decays hy-
perbolically, i.e.

lim
k→∞

ρk

k2H−2
= c,

1

2
< H < 1.
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According to the results of Tsybakov and Georganas (1997), we deduce that

lim
m→∞

ρ
(m)
k = gH(k), ∀k = 1, 2, · · · .

Thus the process is asymptotically second-order self-similar following the definition 2.2.4.

From the Lemma 2.2.6, the following result is straightforward:

Lemma 2.2.7. Let (Xt)t be a covariance stationary long memory process with
1

2
< H <

1, if the spectral density of the process blows up at the origin, then the process is asymp-
totically second-order self-similar. Under Gaussianity, it is asymptotically self-similar.

2.2.4 Examples of Self-similar Processes in Continuous Time
In this part, we present some continuous-time processes and study their self-similar prop-
erties and long range dependence. We consider three cases: Gaussian H-sssi models,
non-Gaussian H-sssi models and multi-fractal processes.

Gaussian H-sssi Models

The canonical Gaussian H-sssi model is the fractional Brownian motion, which is unique
under a scaling constant. We recall first of all the definition of Brownian motion.

Definition 2.2.8. Let B(t) be a stochastic process with continuous sample paths and such
that, ∀t ∈ R,

(i) B(0) = 0 a.s.;
(ii) B(t) has independent increments;
(iii) for each t, B(t) has a Gaussian distribution with mean zero and variance t;
(iv) E[B(t)−B(s)] = 0;

Then B(t) is called the (standard) Brownian motion.

According to the definition, we can remark that the Brownian motion is a
1

2
-ss process.

However, since the increments of the Brownian motion are independent, it is not a long
memory process.

Among continuous-time processes, another important model is the fractional Brownian
motion, which is the canonical example of Gaussian H-sssi processes.

Definition 2.2.9. Let B(t) be the standard Brownian motion with 0 < H < 1. Define
BH(t) the stochastic integral

BH(t) =

∫
ωH(t, u)dB(u)

where the convergence of the integral is under L2-norm with respect to the Lebesgue
measure on the real numbers, where the weight function ωH satisfying the following con-
ditions:
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• ωH(t, u) = 0, for t ≤ u;

• ωH(t, u) = (t− u)H− 1
2 , for 0 ≤ u < t;

• ωH(t, u) = (t− u)H− 1
2 − (−u)H− 1

2 , for u < 0,

then BH(t) is called the fractional Brownian motion (fBm) with self-similar parameter
H .

Now we recall some interesting properties concerning the fractional Brownian motion:

1. The fBm is the unique Gaussian H-sssi process, with respect to a scaling constant.

2. The covariance function γ(k) (k ∈ Z) of the fBm is proportional to |k|2H−2, as
k →∞.

3. When 0 < H < 1, the fBm exhibits long memory behavior, since its spectral
density f(w)(−π < ω < π) is proportional to ω−2H−1, as ω → 0.

4. We can divide the class of the fBm into three classes: anti-persistent process (0 <

H <
1

2
), random walk (H =

1

2
) and persistent process (

1

2
< H < 1).

5. To check whether a process {X(t)}t∈R is the fBm, we need to verify the following
items:

(i) It is a Gaussian process with mean 0, X(0) = 0;

(ii) E[X2(t)] = σ2|t|2H , for some σ > 0, 0 < H < 1;

(iii) The process {X(t)}t∈R has stationary increments.

6. We often consider the fBm as a generalization of the Brownian motion. When
H = 1, we get the degenerate case.

Since the fBm is the H-sssi processes, it builds a bridge between the continuous-time
processes and the discrete-time processes.

Non-Gaussian H-sssi Models

In contrast to the uniqueness of the Gaussian H-sssi process, we have an infinite number
of non-Gaussian H-sssi models, among which there is a large class of models with infinite
variance – the α-stable processes (with 0 < α < 2). If α = 2, they reduce to the Gaussian
processes.

For α-stable H-sssi processes with 0 < α < 2, we have the following properties:

1. For different α ∈ (0, 2), the parameter H lies in different intervals:

• H ∈ (0,
1

α
], if 0 < α < 1

• H ∈ (0, 1], if 1 < α < 2.
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2. When 0 < α < 2 and H 6= 1

α
, one of the most commonly studied α-stable H-sssi

processes is the linear fractal stable motion (or linear fractal Lévy motion).

When 0 < α < 2 and H =
1

α
, we get the α-stable Lévy motion.

3. When 0 < α < 1, the unique non-degenerate α-stable
1

α
-sssi process is the α-stable

Lévy motion.
When 1 ≤ α < 2, there is no uniqueness any more. For example, when α = 1, X
is a 1-stable random variable. This means that the process Y (t) = t ·X (∀t ∈ R) is
a 1-sssi process.

4. When 1 < α < 2, the log-fractional stable motion is
1

α
-sssi process.

5. There exist many other standard families of α-stable H-sssi processes, and for sim-
plicity, we concentrate on the symmetric case. The three famous symmetric α-
stable (SαS) H-sssi processes are:

• the linear fractional stable motions;

• the real harmonizable fractional stable motions;

• the sub-Gaussian fractional motions.

All these three models reduce themselves to fractional Brownian motion if α = 2.
The corresponding increments processes are called linear fractional stable noise,
real harmonizable fractional stable noise and sub-Gaussian fractional noise.

6. Comparing the fBm and the α-stable Lévy processes, we find that the self-similarity
property can have quite different origins:

• It can arise from strong dependence between increments in the absence of high
variability (ex. fBm). This mechanism for self-similarity is called "Joseph
effect".

• It can arise from high variability, whose increments are independent and heavy
tailed (α-stable Lévy process). This mechanism for self-similarity is called
"Noach effect".

7. The relationship between self-similar processes, Gaussian processes and Lévy pro-
cesses can be characterized as follows:

• A self-similar and Gaussian process is the fractional Brownian motion;

• A self-similar and Lévy process is the so-called α-stable process;

• A Gaussian and Lévy process corresponds to the Brownian motion with drift;

• The Brownian motion acts as a particular case of all these three kinds of pro-
cesses.
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Multi-fractal Processes

The notion of self-similarity coincides with the original definition of fractality for ge-
ometric objets. The concept of fractality comes from the fractal geometry to describe
the self-similar processes. So we can generalize the notion of self-similarity to multi-
fractality.

Definition 2.2.10. A random process {X(t)}t>0 is called a multi-fractal process if for
any a > 0, there exits a random function M(a), such that X(at) =d M(a)X(t).

Exact self-similar process is a degenerate example of multi-fractal process, which can be
called mono-fractal process.

2.2.5 Examples of Self-similar Processes in Discrete Time
In this part, we investigate the classical discrete-time processes and their self-similarity
properties. The study concerns fGn, k-factor GARMA process, k-factor GIGARCH pro-
cess, process with switches, process with breaks and process with threshold.

• Fractional Gaussian Noise (fGn)

Definition 2.2.11. A process (Xt)t∈Z is called a fractional Gaussian noise, or fGn,
if it satisfies, for all t ∈ Z, Xt = BH(t) − BH(t − 1), where {BH(t)}t∈R is a
fractional Brownian motion introduced in Definition 2.2.9.

Thus, the fractional Gaussian noise (fGn) is defined as the increments sequences of
the process fBm. And it has the following properties:

1. The fractional Gaussian noise is an exactly self-similar stationary Gaussian
process with zero mean.

2. Since the fractional Brownian motion is the unique H-sssi Gaussian process,
the process fGn is also the unique stationary Gaussian process which is exactly
self-similar. The uniqueness is under the sense of a scaling constant.

• k-factor GARMA Processes

Definition 2.2.12. A process (Xt)t is called a k-factor Gegenbauer autoregressive
moving average process, or a k-factor GARMA process, if it has the following rep-
resentation

Φ(B)
k∏

i=1

(1− 2νiB + B2)diXt = Θ(B)εt, (2.14)

where k is a finite integer, |νi| ≤ 1 for all i = 1, · · · , k, (εt)t is a white noise
with zero mean and variance σ2

ε , and Φ(B) = I − φ1B − · · · − φpB
p, Θ(B) =

I − θ1B − · · · − θqB
q, di ∈ R, B is the backshift operator satisfying BXt = Xt−1.
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Notice that the frequencies λi = cos−1(νi)(i = 1, · · · , k) are called Gegenbauer
frequencies. This model was first studied by Woodward et al. (1998) and Giraitis
and Leipus (1995).

In the following, we recall the conditions for a covariance stationary k-factor GARMA
process to be long memory in order to apply the result of the lemmas that we ob-
tained.

Lemma 2.2.13. A k-factor GARMA process is covariance stationary and exhibits
long memory behavior when νi are distinct, all the roots of the polynomials Φ(B)

and Θ(B) are distinct and outside the unit circle, and if (i) 0 < di <
1

2
and |νi| < 1

or if (ii) 0 < di <
1

4
and |νi| = 1, for i = 1, · · · , k.

Proposition 2.2.14. Let (Xt)t be a k-factor GARMA process, then under the condi-
tions of Lemma 2.2.13, it is asymptotically second-order self-similar. Furthermore,
under Gaussianity, it is asymptotically self-similar.

Proof. A k-factor GARMA process is covariance stationary and long memory un-
der the conditions of Lemma 2.2.13. Thus according to Lemma 2.2.6, a k-factor
GARMA process is asymptotically second-order self-similar. Under Gaussianity, it
is asymptotically self-similar.

We note that there are many particular cases of k-factor GARMA process described
as follows:

1. When k = 1 in Equation (2.14), we get Gegenbauer ARMA (GARMA) pro-
cess introduced by Gray et al. (1989). This model contains the Gegenbauer
process (GI(d)), without short memory terms.

2. When k = 1 and ν = 1 in Equation (2.14), we get the fractional inte-
grated ARMA (ARFIMA) process introduced by Granger and Joyeux (1980)
and Hosking (1981). This model contains the fractional integrated process
(FI(d))when there are no short memory terms.

As a consequence, these models, as the particular cases of k-factor GARMA pro-
cess, are covariance stationary, they are asymptotically self-similar, for which the
results are given in Proposition 2.2.14.

• Heteroscedastic Processes
GARCH Processes and Related Processes

Definition 2.2.15. A process (Xt)t is a generalized autoregressive conditional het-
eroscedastic process with order p (≥ 0) and q (> 0), or GARCH(p,q), if it has the
following representation Xt = σtεt and

σ2
t = α0 +

q∑
i=1

αiX
2
t−i +

p∑
j=1

βj

2∑
t−j

= α0 + a(B)X2
t + b(B)σ2

t , (2.15)
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where α0 > 0, αi ≥ 0(i = 1, · · · , q), βj ≥ 0(j = 1, · · · , p), {εt} ∼ IID(0, 1),
and εt is independent of {Xt−k, k ≥ 1} for all t, B is the backshift operator, a(B)
and b(B) are polynomials in B of order q and p respectively.

This model was introduced by Bollerslev (1986). If βj = 0 in (2.15), we get an

ARCH process (Engle 1982). If
q∑

i=1

αi +

p∑
j=1

βj = 1, we get an IGARCH process

(Bollerslev 1988).

Lemma 2.2.16. The GARCH (p,q) process defined in Definition 2.2.15 is covari-
ance stationary with E(Xt) = 0, V ar(Xt) = α0(1−a(1)−b(1))−1 and Cov(Xt, Xs) =
0 for t 6= s, if and only if a(1) + b(1) < 1.

See Bollerslev (1986) for more details.

Proposition 2.2.17. Let (Xt)t be the GARCH process introduced in Definition
2.2.15, if a(1) + b(1) < 1, then it is not asymptotically second-order self-similar.

Proof. If a(1) + b(1) < 1, according to the Lemma 2.2.16, the GARCH model is
covariance stationary and short memory. Thus, following the Lemma 2.2.5, it is not
asymptotically second-order self-similar.

The conclusion also works for particular GARCH models like ARCH and IGARCH
models.

k-factor GIGARCH Processes

Definition 2.2.18. A process (Xt)t is called a k-factor Gegenbauer integrated gen-
eralized autoregressive conditional heteroscedastic process, or a k-factor GIGARCH
process, if it has the following representation

Φ(B)
k∏

i=1

(I − 2νiB + B2)di(Xt − µ) = Θ(B)εt, (2.16)

where εt = ξtσt with (ξt)t∈Z a white noise process with unit variance and mean zero,

σ2
t = a0+

r∑
i=1

aiε
2
t−i +

s∑
j=1

bjσt−j , µ the mean of the process (Xt)t, Φ(B) and Θ(B)

polynomials in B of order p and q respectively, B the backshift operator satisfying
BXt = Xt−1, d = (d1, ..., dk) the memory parameters and ν = (ν1, ..., νk) the
frequency location parameters, di ∈ R, |νi| ≤ 1, i = 1, · · · , k.

Notice that the frequencies λi = cos−1(νi) (i = 1, ..., k) are called Gegenbauer
frequencies.
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Lemma 2.2.19. A k-factor GIGARCH process (Xt)t∈Z is covariance stationary
when the following hypotheses are satisfied:

(H0) : a0 > 0, a1, ..., ar, b1, ...bs ≥ 0 and
r∑

i=1

ai +
s∑

i=1

bi < 1;

(H1) : |di| < 1 if |νi| < 1 and |di| < 1

4
if νi = 1, for i = 1, ..., k;

(H2) : all the roots of Φ(B) = 0 and Θ(B) = 0 lie outside the unit circle and there
is no common root;

(H3) : E(ε4
t ) < ∞;

(H4) : νi(i = 1, ..., k) are supposed to be known.

Lemma 2.2.20. A covariance stationary k-factor GIGARCH process is long mem-

ory when |νi| < 1 and 0 < di <
1

2
. The asymptotic behaviors of spectral density

and autocorrelation function are as follows: fX(λ) ∼ c(λ)|λ− λj|−2d, as λ → λj ,
j = 1, ..., k, and ρk ∼ k2d−1 cos(kλj), as k → ∞, where λj = cos−1(νj) is the
Gegenbauer frequency.

See Guégan (2003) for detail.

Proposition 2.2.21. Let (Xt)t be a k-factor GIGARCH process, it is asymptoti-
cally second-order self-similar under the conditions of Lemma (2.2.19) and Lemma
(2.2.20). Furthermore, under Gaussianity, it is asymptotically self-similar.

Proof. A k-factor GIGARCH process is covariance stationary and exhibits long
memory under the conditions of Lemma 2.2.19 and Lemma 2.2.20, thus according
to Lemma 2.2.6, a k-factor GIGARCH process is asymptotically second-order self-
similar. Under the framework of Gaussianity, it is asymptotically self-similar.

The k-factor GIGARCH processes exhibit both heteroscedasticity and long memory
characteristics.

• Processes with Switches and Jumps
Structural breaks have been observed in many economic and financial time series.
A lot of models have been proposed in order to capture the existence of structural
changes and complex dynamic patterns.

Let (Xt)t be a process whose recursive scheme is

Xt = µst + εt, (2.17)

where (µst)t is a process that we specify below and (εt)t is a strong white noise,
independent of (µst)t.

With respect to the process (µst)t, we distinguish two cases:
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1. (µst)t depends on a hidden ergodic Markov chain (st)t;

2. If (µst)t = µt, then we will assume that this process depends on a probability
p.

The first class of models includes "models with switches" and the second class in-
cludes "models with breaks". If these processes are covariance stationary, for most
of them, it has been proved that they are short memory processes. Nevertheless,
among these processes, some exhibit empirically a kind of long memory behavior
when we observe the corresponding behavior of the sample autocorrelation func-
tion. Thus for these processes, studying their self-similarity is more complex than
for the previous class of processes that we have already discussed.

Processes with Switches and Breaks
We consider a two-state Markov Switching model (Xt)t defined by the following
equations:

Xt = µst + φstXt−1 + σstεt, (2.18)

where µst , φst and σst (i = 1, 2) are real parameters, σi are positive and (εt)t

is a strong white noise with mean m ∈ R and variance σ2 ∈ R∗+, and (εt)t is
independent of the hidden ergodic Markov chain (st)t, which is characterized by its
transition probabilities pij , defined by:

P [st = j|st−1 = i] = pij (2.19)

with 0 ≤ pij ≤ 1 and
2∑

j=1

pij = 1 (i = 1, 2). Thus the transition matrix is equal to

P =

(
p11 1− p22

1− p11 p22

)
.

Proposition 2.2.22. Let (Xt)t be a process defined by Equation (2.18) and Equa-
tion (2.19), then if max

i=1,2
{pi1|φ1|2 + pi2|φ2|2} < 1, the two-state Markov Switching

model is covariance stationary and also short memory, thus it is not asymptotically
second-order self-similar.

Proof. Under the above conditions, the process (Xt)t defined by Equation (2.18)
and Equation (2.19) is covariance stationary (Yang 2000). Under stationarity, theo-
retically this model is known to be short memory. Thus, following Lemma 2.2.5, it
is not asymptotically second-order self-similar.

Actually, there are many other interesting models with switches contained in Equa-
tion (2.17), for example:

– the mean regime switching model Xt = µst + εt;

– the mean variance regime switching model Xt = µst + σstεt;
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– the sign model Xt = sign(Xt−1) + εt, where εt ∼ N(0, σ2).

For all of these models with switches, if they are covariance stationary, then they
are theoretically short memory processes, although empirically they exhibit long
memory behavior. Likewise, they are not asymptotically second-order self-similar.

Now we consider processes with breaks. Assume the process (Xt)t is defined by

Xt = µt + εt, (2.20)

where the process (µst)t = µt depends on a probability p. Different dynamics of
the process (µt)t corresponds to different break models, for example: the Binomial
model, the random walk model with a Bernouilli process, the STOPBREAK model,
the stationary random level shift model, the mean-plus-noise model, etc. Un-
der stationarity, these models are short memory and is not asymptotically second-
order self-similar. However, empirically, the sample autocorrelation function of the
Markov-Switching process decreases in an hyperbolic way towards zero, thus it
exhibits the long memory behavior. According to Lemma 2.2.6, empirically this
process appears asymptotically second-order self-similar. We will call this kind
of behavior a "Spurious asymptotically second-order self-similar" behavior. Simi-
larly, when the models with breaks and switches introduced above are covariance
stationary, they are also theoretically short memory processes, although empiri-
cally they exhibit long memory behavior. Therefore, under stationarity, they are not
asymptotically second-order self-similar, but present some "spurious asymptotical
second-order self-similar" behavior.

Processes with Threshold
Consider the general form of the processes with threshold:

Xt = f(Xt−1)(1−G(Xt−d, γ, c)) + g(Xt−1)G(Xt−d, γ, c) + εt, (2.21)

where the function f and g can be any linear or nonlinear functions of the past
values of Xt or εt. The process (εt)t is a strong white noise and G is an indicator
function or a continuous function. For a given threshold c and the position of the
random variable Xt−d with respect to this threshold c, the process (Xt)t contains
different models, for example, SETAR models, STAR models, etc.

Lemma 2.2.23. Consider the threshold process defined in Equation (2.21), if func-
tions f and g are to short memory processes, then under covariance stationarity,
the model (2.21) is short memory.

Proposition 2.2.24. For the process with threshold defined in Equation (2.21), if
the functions f and g correspond to short memory process, then the model (2.21) is
not asymptotically second-order self-similar.

Proof. According to Lemma 2.2.23, if the functions f and g are short memory pro-
cess, the process (2.21) is short memory. Thus, following Lemma 2.2.5, the process
(2.21) is not asymptotically second-order self-similar.
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Now we consider the long memory SETAR model, defined as follows:

Xt = (1−B)−dε
(1)
t It(Xt−d ≤ c) + ε

(2)
t [1− It(Xt−d ≤ c)], (2.22)

and the assumptions:
(H5) : The process (ε

(i)
t )t (i = 1, 2) is a sequence of independent identically dis-

tributed random variables.
(H6) : The long memory parameter d is such that 0 < d < 1/2. So in regime 1, the
process is invertible and stationary.

Lemma 2.2.25. Under the assumptions (H5) and (H6), the process (Xt)t defined in
Equation (2.22) is globally covariance stationary. Asymptotically its spectral den-
sity function is such that fX(ω) ∼ Cω−2d, as ω → 0, where C is a positive constant,

and its autocorrelation function verifies γX(h) ∼ Γ(1− 2d)

Γ(d)Γ(1− d)
h2d−1, as h → 0.

Proposition 2.2.26. Under the assumptions (H5) and (H6), the covariance sta-
tionary SETAR model defined in Equation (2.22) is asymptotically second-order
self-similar. Furthermore, under Gaussianity, it is asymptotically self-similar.

Proof. Under the assumptions (H5) and (H6), following Lemma 2.2.25, the covari-
ance stationary model defined in Equation (2.22) is long memory process. Accord-
ing to Lemma 2.2.6, it is asymptotically second-order self-similar. Furthermore,
under Gaussianity, it is asymptotically self-similar.

Dufrénot et al. (2005a, 2005b, 2008) have make the applications of the long memory
SETAR models on some real data.

2.2.6 Summarize for the Self-similar Processes
In the previous part, we have discussed the self-similar properties for continuous-time
and discrete-time processes. In the continuous-time framework, the fractional Gaussian
noise is the unique Gaussian H-sssi process. We made a review for the non-Gaussian
H-sssi models. Then we study the multifractal process as one of the generalized self-
similar processes. In the discrete-time framework, we proposed two important lemmas
which reveal the relationship between the self-similar properties and long/short memory
behaviors. We proved that the covariance stationary long memory process is asymptoti-
cally second-order self-similar, while the covariance stationary short memory process is
not asymptotically second-order self-similar. Then we apply these two lemmas to sev-
eral stochastic processes: the ARFIMA models, the k-factor GARMA models, GARCH
models, k-factor GIGARCH models, processes with switches, processes with breaks and
processes with threshold, etc.

Now, Guégan (2007) has proved that, if a process is not globally stationary, but only lo-
cally stationary, which means that for instance, for two subsets of the process, the means
are different (as in model (2.18)), then the sample autocorrelation function decreases hy-
perbolically towards zero. According to the definition of long memory process in time
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domain, this process appears globally long memory. The arising question is the existence
of self-similarity for this process. It seems that even if it is not globally covariance station-
ary, it can be globally asymptotically second-order self-similar. Thus, we suggest in that
case that the process have a spurious asymptotically second-order self-similar behavior.

We summarize the previous discussions in a graph to give some intuitive overall ideas
of the main concepts discussed in the previous sections:

Bm

Lévy
Bmwithdrift

fBm

H-ss
H-sssi

Discrete time

Continuous time Gaussian

Covariance
Stationary

Long
Memory
Process

Gaussian
Process

Process

a.s.o.s.s
a.s.s

increments ?

α-stable

s.o.s.s

¼
1

2
< H < 1

ρ(k) = gH(k)-

(acf)

In this graph, H-ss stands for H-self-similar process; H-sssi stands for H-self-similar
process with stationary increments; a.s.s for asymptotically self-similar; a.s.o.s.s for asymp-
totically second-order self-similar; s.o.s.s for second-order self-similar; Autocorelation
function (ACF) for long memory process defined in sense of autocorrelation function;
Bm for Brownian motion; fBm for fractional Brownian motion; α-stable for α-stable
process; Lévy for Lévy process.
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Chapter 3

Wavelet Techniques for Time Series
Analysis

The discrete wavelet transform (DWT) has several appealing qualities that make it a useful
tool for time series analysis. Although developed originally with geophysical applications
in mind (Goupillaud et al. 1984), the DWT and its variants have found a home in a wide
variety of disciplines – geology, atmospheric science, turbulence and applied mathemat-
ics, etc. The engineering community quickly realized that common techniques in signal
processing were closely related and developed the framework of multiresolution analy-
sis (Mallat, 1989). There are numerous references over the past decades with respect to
wavelet analysis. Introductory texts include Ogden (1997), Vidakovic (1999), and Per-
cival and Walden (2000) from a statistical perspective; Vetterli and Kovačević (1995),
Burrus et al. (1998), and Mallat (1998) from an engineering perspective; and Strang and
Nguyen (1996) and Chui (1992, 1997) from a more mathematical perspective.

This chapter provides a brief discussion of time-frequency representations, including the
classical Fourier transform and short-time Fourier transform. And a detailed introduction
of the wavelet transform is followed. This part of review serves for the work in Chapter 4
and Chapter 5 and to make this thesis self-contained.

3.1 Introduction of the Time-frequency Representations

3.1.1 Fourier Transform
The discrete Fourier transform (DFT) may be derived from a variety of perspectives (e.g.
approximating the Fourier transform of a function, approximating the Fourier coefficients
of a function) (Briggs and Henson, 1995). We prefer to take the viewpoint of approximat-
ing a discretely sampled time series (Xt)t via a linear combination of sines and cosines.
Each of these sines and cosines is itself a function of frequency, and therefore the DFT
may be seen as a decomposition on a frequency-by-frequency basis. The Fourier basis
functions (sines and cosines) are very appealing when representing a stationary time se-
ries.
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The Fourier transform is an alternative representation of the original time series such that
it summarizes information in the data as a function of frequency and therefore does not
preserve information in time. This is the opposite of how we observed the original time
series, where no frequency resolution was provided. When observing the time series in
the time domain, we have complete time resolution and no frequency resolution, whereas
the opposite is true after performing the Fourier transform.

3.1.2 Short-Time Fourier Transform
Gabor (1946) recognized that the Fourier transform goes too far by eliminating all time
resolution by frequency resolution and attempted to achieve a balance between time and
frequency by sliding a window across the time series and taking the Fourier transform of
the windowed series. This is known as the Gabor transform or Short-Time Fourier Trans-
form (STFT). The resulting expansion is a function of two parameters, frequency and
time-shift. The key property is that the window size is fixed with respect to frequency.
This produces a rectangular partitioning of the time-frequency plane.

The choice of window is very important with respect to the performance of the STFT
in practice. Since the STFT is simply applying the Fourier transform to pieces of the
time series of interests, it will not be able to resolve the events if they happen to appear
within the width of the window. In this case, the lack of time resolution of the Fourier
transform is present. In general, one cannot achieve simultaneous time and frequency res-
olution because of the Heisenberg uncertainty principle. In the field of particle physics,
an elementary particle does not simultaneously have a precise position and momentum.
The better one determines the position of the particle, the less precisely the momentum is
known at that time, and vice versa. For signal processing, this rule translates into the fact
that signal does not simultaneously have a precise location in time and precise frequency.
An interesting discussion of the Heisenberg uncertainty principle in signal processing can
be found in Hubbard (1996) and Mallat (1989).

3.1.3 Wavelet Transform
What is needed to overcome the fixed time-frequency partition is a new set of basis func-
tions. The wavelet transform utilizes a basic function (called the mother wavelet), then
dilates and translates it to capture the features that are local in time and local in frequency.
The resulting time-frequency partition corresponding to the wavelet transform is long in
time when capturing low-frequency events, thus having good frequency resolution for
these events, and long in frequency when capturing high-frequency events, thus having
good time resolution for these events. Consequently, the wavelet transform intelligently
adapts itself to capture features across a wide range of time and frequencies.

The Fourier transform, and also the STFT, is a function of frequency, while the wavelet
transform is a function of scale. Actually, the scale in a wavelet transform is indeed related
to frequency. Loosely speaking, scale is inversely proportional to a frequency interval. If
the scale parameter increases, then the wavelet basis is
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• stretched in the time domain,

• shrunk in the frequency domain, and

• shifted toward lower frequencies.

Conversely, a decrease in the scale parameter

• reduces the time support,

• increases the number of frequencies captured, and

• shifts toward higher frequencies.

3.2 Properties of the Wavelet Transform
Although the Fourier transform, the STFT, and wavelet transform are all alternative rep-
resentations, each transform is well suited to certain types of applications. Wavelets, with
their ability to quantify events in both time and scale, are well suited to study a wide
range of time series. We introduce some features of wavelets and wavelet transforms
before discussing the discrete wavelet transform.

3.2.1 Continuous Wavelet Functions
A wavelet ψ(t) is simply a function of time t that obeys a basic rule, known as the wavelet
admissibility condition:

Cψ =

∫ ∞

0

|Ψ(f)|
f

df < ∞, (3.1)

where Ψ(f) is the Fourier transform, a function of frequency f , of ψ(t). This condition
ensures that Ψ(f) goes to zero quickly as f → 0 (Grossmann and Morlet, 1984; Mallat,
1998). In fact, to guarantee that Cψ < ∞ we must impose Ψ(0) = 0, which is equivalent
to ∫ ∞

−∞
ψ(t)dt = 0. (3.2)

A second condition imposed on a wavelet function is unit energy, that is
∫ ∞

−∞
|ψ(t)|2dt = 1. (3.3)

By satisfying both Equation (3.2) and (3.3), the wavelet function must have nonzero en-
tries, but all departures from zero must cancel out. The classic example of a continuous-
time wavelet function is the Morlet wavelet. The Mexican hat wavelet is an example of
symmetric wavelet function, see Percival and Walden (2000) for more details.

The continuous wavelet transform (CWT) is a function of two variables W (u, s) and
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is obtained by simply projecting the function of interest x(t) onto a particular wavelet ψ
via

W (u, s) =

∫ ∞

−∞
x(t)ψu,s(t)dt, (3.4)

where
ψu,s(t) =

1√
s
ψ(

t− u

s
)

is the translated (by u) and dilated (by s) version of the original wavelet function. The
resulting wavelet coefficients are a function of these two parameters, location and scale,
even though the original function is only a function of one parameter. By applying shifted
and translated versions of the mother wavelet to a function of interest, we are breaking
down the complicated structure present in the function into simpler components. This is
called analyzing and decomposing the function. If a wavelet satisfies the admissibility
condition (Equation (3.1)), then an inverse operation may be performed to produce the
function from its wavelet coefficients; that is,

x(t) =
1

Cψ

∫ ∞

0

∫ ∞

−∞
W (u, s)ψu,s(t)du

ds

s2
.

This is called synthesizing and reconstructing the function. A key property of wavelet
transforms is their ability to decompose and perfectly reconstruct a square-integrable
function.

3.2.2 Continuous versus Discrete Wavelet Transform
As mentioned previously, the CWT is a function of two parameters and therefore contains
a high amount of extra (redundant) information when analyzing a function. Enough in-
formation would be available to easily detect this discontinuity if one were to sample only
a portion of the CWT. Thus we reduce our task from analyzing an image (the CWT) with
continuous parameters u and s to viewing a small number of scales with a varying num-
ber of wavelet coefficients at each scale. This is the discrete wavelet transform (DWT).
Although the DWT may be derived without referring to the CWT, we may review it as
a "discretization" of the CWT through sampling specific wavelet coefficients (Vidakovic,
1999). A critical sampling of the CWT is obtained via

s = 2−j and u = k2−j,

where j and k are integers representing the set of discrete translations and discrete dila-
tions. A critical sampling defines the resolution of the DWT in both time and frequency.
We use the term critical sampling to denote the minimum number of coefficients sampled
from the CWT to ensure that all information present in the original function is retained by
the wavelet coefficients. The CWT takes on values at every point on the time-frequency
plane. The DWT, on the other hand, only takes on values at very few points and the
wavelets that follow these values ψj,k(t) = 2j/2ψ(2jt− k) (for all integers j, k), produce
an orthogonal basis. If we select a sequence of dyadic scales and instead use all integer
translations:

s = 2−j and u = k,
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then we arrive at the maximal overlap DWT (MODWT).

Over the past decades, both the DWT and MODWT have been utilized in a variety of
fields and under a variety of names. With respect to economics and finance, J.B. Ram-
sey and co-authors first introduced wavelets into the mainstream literature. Ramsey and
Zhang (1997) performed a time-frequency analysis of foreign exchange rates (Deutsche
Mark versus U.S. Dollar and Japanese yen versus U.S. Dollar) using wavelets. They
found that wavelet analysis succinctly captured a variety of non-stationary events in the
series. Ramsey and Lampart (1998a, b) decomposed economic variables across several
wavelet scales in order to identify different relationships between money and income, and
between consumption and income. See Ramsey (1999) for a review article on wavelets in
economics and finance. Stengos and Sun (2001) designed a consistent specification test
for a regression model based on wavelet estimation, and Fan (2000) proposed a wavelet
estimator of a partial linear model by regressing boundary independent DWT coefficients
of the dependent variable on the corresponding DWT coefficients of the regressors in
linear part of the model across several scales.

3.3 Discrete Wavelet Filters
Before formulating the DWT or MODWT, we discuss the discrete wavelet filters avail-
able to us. Fundamental properties of the continuous wavelet functions (filters), such as
integration to zero and unit energy (Equation (3.2) and (3.3)), have discrete counterparts.

Let hl = (h0, · · · , hL−1) be a finite length discrete wavelet filter such that it integrates
(sums) to zero

L−1∑

l=0

hl = 0 (3.5)

and have unit energy
L−1∑

l=0

h2
l = 1. (3.6)

In addition to Equation (3.5) and (3.6), the wavelet (or high-pass) filter hl is orthogonal
to its even shifts; that is,

L−1∑

l=0

hlhl+2n = 0, for all nonzero integers n. (3.7)

This comes from the relationship between the DWT and CWT via a critical sampling.
To construct the orthonormal matrix that defines the DWT, wavelet coefficients cannot
interact with one another. Equations (3.6) and (3.7) may be succinctly expressed in the
frequency domain via the squared gain function

H(f) +H(f +
1

2
) = 2, for all f. (3.8)
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The natural object to complement a high-pass filter is a low-pass (scaling) filter whose
squared gain function monotonically increases as f → 0. By applying both hl and gl to an
observed time series, we separate high-frequency oscillations from low-frequency ones.
We will denote a low-pass filter as gl = (g0, · · · , gL−1), and its transfer and squared gain
function are given by G(f) and G(f), respectively. For all the wavelets considered here,
the low-pass filter coefficients are determined by the "quadrature mirror relationship":

gl = (−1)l+1hL−1−l, for l = 0, · · · , L− 1. (3.9)

The inverse relationship is given by hl = (−1)lgL−1−l. Using Equation (3.9) allows us to
relate the transfer function for gl and hl via

G(f) =
L−1∑

l=0

gle
−i2πf = e−i2πf(L−1)H(f − 1

2
),

and, thus the squared gain function follows

G(f) = |e−2πf(L−1)H(f − 1

2
)|2 = |H(

1

2
− f)|2 = H(

1

2
− f). (3.10)

Finally, a band-pass filter has a squared gain function that covers an interval of frequencies

and then decays to zero as f → 0 and f → 1

2
. We may construct a band-pass filter by

recursively applying a combination of low-pass and high-pass filters.

3.3.1 Haar Wavelets
The first wavelet filter, the Haar wavelet (Haar, 1910), remained in relatively obscurity
until the convergence of several disciplines to form what we now know in a broad sense
as wavelet methodology. It is a filter of length L = 2 that can be succinctly defined by its
scaling (low-pass) filter coefficients

g0 = g1 =
1√
2
,

or equivalently by its wavelet (high-pass) filter coefficients h0 =
1√
2

and hl = − 1√
2

through the inverse quadrature mirror relationship.

The Haar wavelet is special since it is the only symmetric compactly supported orthonor-
mal wavelet (Daubechies, 1992). It is also useful for presenting the basic properties shared
by all the wavelet filters. Although the Haar wavelet filter is easy to visualize and imple-
ment, it is inadequate for most real-world applications in that it is a poor approximation to
an ideal band-pass filter. An ideal band-pass filter is proportional to one inside the desired
frequency interval and zero at all other frequencies.
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3.3.2 Daubechies Wavelets
The Daubechies wavelet filters represent a collection of wavelets that improve the frequency-
domain characteristics of the Haar wavelet and may be still interpreted as generalized
differences of adjacent averages (Daubechies, 1992). Daubechies derived these wavelets
from the criteria of a compactly supported function with the maximum number of van-
ishing moments. In general, there are no explicit time-domain formulae for this class for
wavelet filters (when possible, filter coefficients will be provided). Daubechies first chose
an extremal phase factorization, whose resulting wavelet we denote by D(L) where L is
the length of the filter. An alternative factorization leads to the least asymmetric class of
wavelets, which we denote by LA(L). Shann and Yen (1999) provided exact values for
both the extremal phase and least asymmetric wavelets of length L ∈ {8, 10}. Longer
extremal phase and least asymmetric wavelet filters do not have a closed form and have
been tabulated by, for example, Daubechies (1992) and Percival and Walden (2000).

For Daubechies wavelets, the number of vanishing moments is half the filter length, thus
the Haar wavelet has a single vanishing moment, the D(4) wavelet has two vanishing
moments, and the D(8) and LA(8) wavelets both have four vanishing moments. One
implication of this property is that longer wavelet filters may produce stationary wavelet
coefficients vectors from "higher degree" non-stationary stochastic processes.

3.3.3 Minimum Bandwidth Discrete-time Wavelets
The minimum-bandwidth discrete-time (MBDT) wavelets are a new class of orthonormal
wavelet filters that were developed by Morris and Peravali (1999). They are generated via
an iterative optimization of the spectral factorization procedure. This results in a family
of filters that have similar values to those of the Daubechies wavelets, but are obtained
through a completely iterative procedure. Hence, although Daubechies wavelets have
closed form expressions for the squared gain functions, the MBDT wavelets do not.

What MBDT wavelets offer is an improved approximation to an ideal band-pass filter
for length L ≥ 8. The MBDT wavelets offer superior frequency domain properties
to Daubechies wavelets given a filter of the same length. From a statistical point of
view, band-pass filtering a time series is important to produce approximately uncorre-
lated wavelet coefficients for processes with quite general spectra. The MBDT wavelets
offer improved frequency resolution to that of the Daubechies family of wavelets. They
are most similar to the Daubechies extremal phase family of wavelets.

3.4 Discrete Wavelet Transform (DWT)
These days, data availability is becoming less and less of a problem. For instance, most of
the exchanges and especially those that trade electronically would gladly provide tick-by-
tick data to interested parties. Data vendors have themselves improved their data struc-
tures and provide their users with tools to collect data from over-the-counter (OTC) mar-
kets. Data vendors like Reuters, for instance, transmit more than 275,000 prices per day
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for foreign exchange spot rates alone. With such massive amounts of financial data being
collected at any given time, the discrete wavelet transform is computationally cheaper rel-
ative to the continuous wavelet transform. Furthermore, economic and financial data are
inherently discrete, and thus we consider discrete transformations.

The DWT is an alternative to the Fourier transform for analyzing a time series. It pro-
vides wavelet coefficients that are local in both time and frequency. The DWT may be
thought of as a critical sampling of the CWT–that is, it uses the least number of coeffi-
cients possible. The DWT possesses key attributes such as approximately decorrelating
certain processes and efficiently captures important features of a process in a limited num-
ber of coefficients.

There are a variety of ways to express the basic DWT. As we have seen from the def-
inition of the CWT, wavelet coefficients were obtained from projecting (or correlating)
portions of a time series with translated and dilated versions of the wavelet function. We
also note that projection is closely related to convolution and we introduce filtering con-
cepts for discrete series. Here it is most straightforward to introduce the DWT through a
simple matrix operation.

Let x be a dyadic length vector (N = 2J ) of observations. The length N vector of
discrete wavelet coefficients w is obtained via

w = Wx,

where W is an N × N orthonormal matrix defining the DWT, composed of the wavelet
and scaling filter coefficients arranged on a row-by-row basis. The vector of wavelet
coefficients may be organized into J + 1 vectors,

w = [w1,w2, · · · ,wJ ,vJ ], (3.11)

where wj is a length N/2j (j = 1, 2, · · · , J) vector of wavelet coefficients associated
with changes on a scale of length λj = 2j−1 and wJ is a length N/2J vector of scaling
coefficients associated with averages on a scale of length 2J = 2λJ .

3.4.1 Implementation of the DWT: Pyramid Algorithm
In practice, the DWT is implemented via pyramid algorithm (Mallat, 1989) that, starting
with the data xt, filters a series using h1 and g1, subsamples both filter outputs to half their
original lengths, keeps the subsampled output from the h1 filter as wavelet coefficients,
and then repeats the above filtering operations on the subsampled output from the g1 filter.

For each iteration of pyramid algorithm, we require three objects: the data vector x, the
wavelet filter hl, and the scaling filter gl. Assuming those quantities are passed into the
program, the first iteration of the pyramid algorithm begins by filtering (convolving) the
data with each filter to obtain the following wavelet and scaling coefficients:

w1,t =
L−1∑

l=0

hlx2t+1−l mod N and v1,t =
L−1∑

l=0

glx2t+1−l mod N ,
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where t = 0, 1, · · · , N/2−1 (this may be combined into the same loop for computational
efficiency). Note that the downsampling operation has been included in the filtering step
through the subscript of xt. The N length vector of observations has been high-pass and
low-pass filtered to obtain N/2 coefficients associated with this information. The second
step of the pyramid algorithm starts by defining the "data" to be the scaling coefficients
v1 from the first iteration and apply the filtering operations as above to obtain the second
level of wavelet and scaling coefficients :

w2,t =
L−1∑

l=0

hlv1,2t+1−l mod N and v2,t =
L−1∑

l=0

glv1,2t+1−l mod N ,

t = 0, 1, · · · , N/4 − 1. Keeping all vectors of wavelet coefficients, and the final level of
scaling coefficients, we have the following length N decomposition w = [w1,w2,v2]

T .
After the third iteration of the pyramid algorithm, where we apply filtering operations to
v2, the decomposition now looks like w = [w1,w2,w3,v3]

T . The procedure may be
repeated up to J times where J = log2(N) and gives the vector of wavelet coefficients in
Equations (3.11).

Inverting the DWT is achieved through upsampling the final level of wavelet and scal-
ing coefficients, convolving them with their respective filters (wavelet for wavelet and
scaling for scaling) and adding up to the two filtered vectors. Starting with the final level
of the DWT, upsampling the vectors wJ and vJ will result in two new vectors:

w0
J = [0 wJ,0]

T and v0
J = [0 vJ,0]

T .

The level J − 1 vector of scaling coefficients vJ−1 is given by

vJ−1,t =
L−1∑

l=0

hlw
0
J,t+l mod 2 +

L−1∑

l=0

glv
0
J,t+l mod 2,

t = 0, 1. Notice that the length of vJ−1 is twice that of vJ , as to be expected. The next
step of reconstruction involves upsampling to produce

w0
J−1 = [0 wJ−1,0 0 wJ−1,1]

T and v0
J−1 = [0 vJ−1,0 0 vJ−1,1]

T ,

and the level J − 2 vector of scaling coefficients vJ−2 is given by

vJ−2,t =
L−1∑

l=0

hlw
0
J−1,t+l mod 4 +

L−1∑

l=0

glv
0
J−1,t+l mod 4,

t = 0, 1, 2, 3. This procedure may be repeated until the first level of wavelet and scaling
coefficients have been upsampled and combined to produce the original vector of obser-
vations; that is,

xt =
L−1∑

l=0

hlw
0
1,t+l mod N +

L−1∑

l=0

glv
0
1,t+l mod N ,

t = 0, 1, · · · , N − 1.
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3.4.2 Multiresolution Analysis
Using the DWT, we may formulate an additive decomposition of a series of observations.
Let dj = WT

j wj for j = 1, · · · , J , define the j-th level wavelet detail associated with
changes in x at scale λj . The wavelet coefficients wj = Wjx represent the portion of the
wavelet synthesis attributable to scale λj . For a length N = 2J vector of observations, the
final wavelet detail dJ+1 = vT

J vJ is equal to the sample mean of the observations.

A multiresolution analysis (MRA) may now be defined via

xt =
J+1∑
j=1

dj,t, t = 0, · · · , N − 1. (3.12)

That is, for each observation xt is a linear combination of wavelet detail coefficients.

Let sj =
J+1∑

k=j+1

dk define the j-th level wavelet smooth for 0 ≤ j ≤ J , where sJ+1 is

defined to be a vector of zeros. Whereas the wavelet detail dj is associated with variations
at a particular scale, sj , is a cumulative sum of these variations and will be smoother

and smoother as j increases. In fact x − sj =

j∑

k=1

dj so that only lower-scale details

(high-frequency features) will be apparent. The jth level wavelet rough characterizes the

remaining lower-scale details through rj =

j∑

k=1

dk for 1 ≤ j ≤ J +1, where r0 is defined

to be a vector of zeros. A vector of observations may thus be decomposed through a
wavelet smooth and rough via

x = sj + rj,

for all j. The terminology "detail" and "smooth" were used by Percival and Walden (2000)
to describe additive decompositions from Fourier and wavelet transforms.

3.5 Maximal Overlap Discrete Wavelet Transform (MODWT)
An alternative wavelet transform–the maximal overlap discrete wavelet transform (MODWT)–
is computed without subsampling the filtered output. The MODWT gives up orthogonal-
ity in order to gain features the DWT does not possess. A consequence of this is that the
wavelet and scaling coefficients must be rescaled in order to retain the variance preserving
property of the DWT.

Although not an orthonormal transform, the MODWT has several advantages over the
DWT such as translation invariance, approximation of a zero-phase filtering operation
and easy computation for any sample size (Percival and Walden, 2000). The MODWT
may be interpreted as applying the rescaled wavelet filters of the DWT to the vector but
not decimating (downsampling) the output after filtering.
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The following properties are important in distinguishing the MODWT from the DWT
(Percival and Mofjeld, 1997):

1. The MODWT can handle any sample size N , while the Jp-th order partial DWT
restricts the sample size to a multiple of 2Jp .

2. The detail and smooth coefficients of a MODWT multiresolution analysis are as-
sociated with zero phase filters. This means events that feature in the original time
series may be properly aligned with features in the multiresolution analysis.

3. The MODWT is invariant to circularly shifting the original time series. Hence,
shifting the time series by an integer unit will shift the MODWT wavelet and scaling
coefficients the same amount. This property does not hold for the DWT.

4. While both the DWT and MODWT can perform an analysis of variance on a time
series, the MODWT wavelet variance estimator is asymptotically more efficient
than the same estimator based on the DWT (Percival, 1995).

The MODWT goes by several names in the statistical and engineering literature, such as,
the "stationary DWT" (Nason and Silverman, 1995), "translation invariant DWT" (Coif-
man and Donoho, 1995; Liang and Parks, 1996), and "time-invariant DWT" (Pesquet et
al., 1996).

3.5.1 Definition and Implementation of MODWT
Let x be an arbitrary length N vector of observations. The length (J + 1)N vector of
MODWT coefficients w̃ is a (J + 1)N ×N matrix defining the MODWT. The vector of
MODWT coefficients may be organized into J + 1 vectors via

w̃ = [w̃1, w̃2, · · · , w̃J , ṽJ ]T , (3.13)

where w̃j is a length N/2j vector coefficients associated with changes on a scale of length
λj = 2j−1 and ṽJ is a length N/2J vector of scaling coefficients associated with averages
on a scale of length 2J = 2λJ , just as with the DWT. For time series of dyadic length (N =
2J), the MODWT may be subsampled and rescaled to obtain DWT wavelet coefficients
via

wj,t = 2j/2w̃j,2j(t+1)−1, t = 0, · · · , N/2j − 1,

and DWT scaling coefficients via

vJ,t = 2J/2ṽJ,2J (t+1)−1, t = 0, · · · , N/2J − 1.

3.5.2 Multiresolution Analysis
An analogous MRA to that of the DWT may be performed utilizing the MODWT via

xt =
J+1∑
j=1

d̃j,t, t = 0, · · · , N − 1,
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where d̃j,t is the t-th element of d̃j = W̃T
j w̃j for j = 1, · · · , J . We may also define

respectively the MODWT-based wavelet smooths and roughs to be

s̃J,t =
J+1∑

k=j+1

d̃k,t and r̃j,t =

j∑

k=1

d̃k,t, t = 0, · · · , N − 1.

A key feature of an MRA using the MODWT is that the wavelet details and smooth
are associated with zero-phase filters. Thus, interesting features in the wavelet details
and smooth may be perfectly aligned with the original time series. This attribute is not
available through the DWT since it subsamples the output of its filtering operations.

3.6 Discrete Wavelet Packet Transform (DWPT)
The DWT has a very specific band-pass filtering structure that partitions the spectrum of
long memory process finer and finer as f → 0 (i.e. where the spectrum is unbounded)
which is described in detail in the next section. This is done through a succession of
filtering and downsampling operations. In order to exploit the approximate decorrelation
property for long memory processes with seasonality, we need to generalize the partition
scheme of the DWT.

This is easily obtained by performing the discrete wavelet packet transform (DWPT) on
the process, see for example, Wickerhauser (1994) and Percival and Walden (2000). In-
stead of one particular filtering sequence, the DWPT executes all possible filtering combi-
nations to obtain a wavelet packet tree, denoted by T . Let T = {(j, n)|j = 0, · · · , J ; n =
0, · · · , 2j−1} be the collection of all doublets (j, n) that form the indices of the nodes of a
wavelet packet tree. An orthonormal basis B ⊂ T is obtained when a collection of DWPT
coefficients is chosen, whose ideal band-pass frequencies are disjoint and cover [0, 1/2].
The set B is simply a collection of doublets (j, n) that corresponds to an orthonormal ba-
sis. Ramsey and Zhang (1996) used a similar, but more extensive, wave-form dictionary
to analyze the Standard and Poor’s 500 stock index. They found that this decomposition
brought out the intermittent nature of the stock market index, that of intense bursts of
activity across a wide frequency range followed by periods of relative quiet.

Let x be a dyadic length vector (N = 2J) of observations, then the length N vector
of DWPT coefficients wB is obtained via

wB = WBx,

where WB is an N × N orthonormal matrix defined by the orthonormal basis B. All
(J + 1)N wavelet packet coefficients may be computed by constructing an overcomplete
matrix WT and applying it to the vector of observations; that is, wT = WT x, where WT
is an (J + 1)N ×N matrix.

Constructing the matrices WB or WT involves a minor amount of book-keeping in or-
der to retain the sequency ordering of the wavelet packet filters. Let h0, · · · , hL−1 be the
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unit scale wavelet (high-pass) filter coefficients from a Daubechies compactly supported
wavelet family of even length L, with scaling (low-pass) coefficients computed via the
quadrature mirror relationship. Now we define

un,l =

{
gl, if n mod 4 = 0 or 3;
hl, if n mod 4 = 1 or 2,

to be the appropriate filter at a given node of the wavelet packet tree. The wavelet packet
filters un,l preserve the ordering of the DWPT by increasing frequency.

Let h0, · · · , hL−1 be the unit scale wavelet (high-pass) filter. Thus, the scaling (low-pass)
coefficients may be computed via the quadrature mirror relationship:

gl = (−1)l+1hL−l−1, l = 0, 1, · · · , L− 1.

Instead of one particular filtering sequence, the DWPT executes all possible filtering com-
binations to construct a wavelet packet tree, denoted by T = {(j, n)|j = 0, · · · , J−1; n =
0, · · · , 2j − 1}.

The DWPT coefficients are then calculated using the pyramid algorithm of filtering and
downsampling (Mallat, 1999). Denote Wj, n, K the K−th element of length Nj(= N/2j),
corresponding to the wavelet coefficient vector Wj, n, (j, n) ∈ T with W0, 0 = x. Given
the DWPT coefficients Wj−1, [n

2
], K , where [ · ] represents the "integer part" operator, then

the coefficient Wj, n, K is calculated by

Wj, n, K ≡
Lj−1∑

l=0

un, lWj−1, [n
2
], 2K+1−l mod Nj−1

, K = 0, 1, · · · , Nj − 1, (3.14)

where Lj = (2j − 1)(L− 1) + 1 is the length of a level j wavelet filter.

An adaptive orthonormal basis B ⊂ T is obtained when a collection of DWPT coeffi-
cients is retained such that band-pass frequencies are disjoint and cover the frequency

interval [0,
1

2
] (Percival and Walden, 2000; Gençay et al., 2001).

As with the DWT, the DWPT is most efficiently computed using a pyramid algorithm
(Wickerhauser, 1994). The algorithm has O(N log N) operations, like the fast Fourier
transform (FFT).

There is no longer a convenient interpretation of wavelet packet coefficient vectors with
differences at various scales. Instead, the vector wj,n is associated with the frequency

interval λj,n = [
n

2j+1
,
n + 1

2j+1
]. The DWPT coefficient vectors corresponding to the DWT

coefficients are given by wj,1 at each scale.
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3.7 Maximal Overlap Discrete Wavelet Packet Transform
(MODWPT)

Definition of the maximal overlap DWPT (MODWPT) is straightforward and follows di-
rectly from the DWPT. The rescaled wavelet packet filter is defined to be ũn,l = un,l/2

1/2.
Using ũn,l instead of the filter un,l and not subsampling the filter output produces the
MODWPT coefficients. Hence the vector of MODWPT coefficients w̃j,n is computed
recursively given w̃j−1, n

2
via

w̃j,n,t =

Lj−1∑

l=0

ũn,lw̃j−1,[n
2
],t−2j−1l mod N , t = 0, 1, · · · , N − 1.

Each vector of MODWPT coefficients has length N (to begin the recursion simply define
w̃0,0 = x). This formulation leads to the efficient computation using a pyramid-type
algorithm (Percival and Walden, 2000). As with the DWPT, the MODWPT is an energy
preserving transform and we may define the decomposition of energy at each level of the
transform via

‖ x ‖2=
2j−1∑
n=0

‖ w̃j,n ‖2, for j = 1, · · · , J.

This corresponds to the basis Bj = {(j, n)|n = 0, · · · , 2j − 1}. Given a particular level
j of the transform, we may also reconstruct x by projecting the MODWPT coefficients
back onto their rescaled filter coefficients via

xt =
2j−1∑
n=0

Lj−1∑

l=0

ũj,n,lw̃j,n,t+l modN , t = 0, · · · , N − 1, (3.15)

where Lj = (2j − 1)(L− 1) + 1 is the length of a level j wavelet filter.

Let d̃j,n = (d̃j,n,0, d̃j,n,1,··· ,d̃j,n,N−1
) be the MODWPT detail associated with the frequency

interval λj,n, then the t−th element of d̃j,n is given by

d̃j,n,t =

Lj−1∑

l=0

ũj,n,lw̃j,n,t+l mod N , t = 0, · · · , N − 1,

and an additive decomposition in Equation (3.15) may be rewritten as

x =
∑

(j,n)∈B
d̃j,n

for any orthonormal basis B. These details are associated with zero-phase filters, just like
the MODWT, and therefore line up perfectly with the features in the original time series
x at the same time.
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Chapter 4

Estimation Methods for Stationary
Long Memory Processes: A Review

Long memory models have been used by several authors to model data with persistent
autocorrelations. The earlier model was introduced by Mandelbrot and Van Ness (1968)
and Mandelbrot (1971) to formalize Hurst’s empirical findings using cumulative river flow

data. Let Yt =

∫ t

∞
(t − s)H− 1

2 dB(s), where B(s) is Brownian motion and H ∈ (0, 1).

Then Xt = Yt − Yt−1 is a simple fractional Gaussian noise, which is designed to account
for the long term behavior of time series. The second long memory model was proposed
by Granger and Joyeux (1980) and Hosking (1981) – the fractional integrated autoregres-
sive moving average (ARFIMA) models with an infinite peak in the spectrum at f = 0.
Geweke and Porter-Hudak (1983) proved that the definitions of fractional Gaussian noise
and integrated (or fractionally differenced) series are equivalent.

A simple generalization of the ARFIMA model is the Gegenbauer process (Gray et al.,
1989) or a seasonal persistent process (Anděl, 1986). More generally, Woodward et
al. (1998) proposed the k-factor Gegenbauer and k-factor Gegenbauer ARMA process,
which can model long term periodic behavior associated with several peaks in frequencies

in [0,
1

2
].

In order to allow for different persistence parameters across different frequencies, we
consider the general class of fractionally integrated zero mean processes (Xt)t, referred
to as Seasonal and/or Cyclical Long Memory (SCLM henceforth) processes, defined by
the following equation:

F (B)Xt = (I −B)d0

k−1∏
i=1

(I − 2νiB + B2)di(I + B)dkXt = εt, (4.1)

where B is the backshift operator. For i = 1, · · · , k − 1, νi = cosλi, λi being any fre-
quency between 0 and π. For i = 0, 1, · · · k and di is such that: |di| < 1/2, implying
thus that the spectral density is unbounded at λi. Moreover, (εt)t is an innovation process
to be specified. This model has been first discussed by Robinson (1994) in order to test

42



whether the data stems from a stationary or a non-stationary process, under uncorrelated
and weakly correlated innovations (εt)t.

Without loss of generality, we assume that (Xt)t described by Equation (4.1)is a zero
mean process and for the moment we assume that (Xt)t is a stationary process. The
process nests all the specific long memory processes introduced from the nineties in the
literature to take both the seasonal and/or cyclical behaviors and the long memory com-
ponents of the data into account. From model (4.1), we can derive in a stationary setting
a lot of models as follows whose interest in macroeconomics is recognized.

• If di = 0 (i = 1, · · · , k), we get the FI(d) (Fractionally Integrated) process if (εt)t

is a white noise:
(I −B)dXt = εt, (4.2)

proposed by Granger and Joyeux (1980) and Hosking (1981). If we assume that
(εt)t follows a GARCH noise, we get the FIGARCH model (fractionally integrated
and GARCH), see Baillie, Bollerslev and Mikkelsen (1996) or reference. This class
of models permits to take into account the existence of an infinite cycle, as well as
the spectral density’s typical shape of macroeconomics data, namely an explosion
for the very low frequencies.

• In order to model a fixed seasonal periodicity s, supposed to be even, we generally
use the following representation:

(I −Bs)dXt = εt. (4.3)

For instance, if s = 4, the expression (4.3) becomes:

(I −B4)dXt = (I −B)d(I + B2)d(I + B)dXt = εt. (4.4)

This filter was introduced by Porter-Hudak (1990), called the rigid filter and can be
considered as the particular case of Hassler’s flexible filter (1994): (I − B)d1(I +
B2)d2(I + B)d3Xt = εt. It is motivated by factorizing I − B4 according to its unit
roots, allowing to model stationary fractional seasonalities. The spectral density of
the process (4.3) is unbounded for the three seasonal frequencies {0, π/2, π}. This
representation is useful for quarterly data sets (with s = 4) and if we deal with
monthly data we consider the same model using s = 12.

• It may happen that we observe an explosion at the zero frequency as well as at any
frequency between ]0, π]. This means that an infinite cycle is mixed with another
seasonality. In that case, we use the following model for (Xt)t:

(I −B)d1(I −Bs)d2Xt = εt. (4.5)

This model was introduced by Porter-Hudak (1990). The parameter d1 corresponds
to the persistence associated to the infinite cycle and d2 is the persistence associated
to the fixed seasonality.
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• In the presence of explosions at k frequencies in the spectral density, we use a model
characterizing these k persistent periodicities. It is the k-factor Gegenbauer process
given by:

k∏
i=1

(I − 2νiB + B2)diXt = εt, (4.6)

with, for i = 1, . . . , k, νi = cos(λi), the frequencies λi = cos−1(νi) being the
Gegenbauer frequencies or the G- frequencies. When (εt)t is a white noise, this
model was introduced by Giraitis and Leipus (1995) and Woodward, Cheng and
Gray (1998). When (εt)t follows a GARCH process, (Xt)t is called a GIGARCH
process, introduced by Guégan (2000, 2003).

• Inside the spectral density, we can observe k explosions as well as an explosion at
the zero frequency, then the previous model becomes:

(I −B)d

k∏
i=1

(I − 2νiB + B2)diXt = εt. (4.7)

There are a number of estimators of a long memory process’ long memory parameter
when the parameter is assumed to hold constant over the entire data set. We make a
review in the following.

4.1 ARFIMA Processes
A model that has long range dependence and is frequently used in modeling long mem-
ory is the fractionally integrated autoregressive moving average (ARFIMA) model. The
ARFIMA model succinctly captures the slowly decaying autocovariance function of a

long memory process with fractional difference or long memory parameter d = H − 1

2
,

where H is the Hurst parameter. By letting the difference parameter take non-integer
values, the ARFIMA model permits to model complex long-run behavior in a more par-
simonious manner.

There are several estimation methods for ARFIMA models, including parametric, semi-
parametric (in frequency domain and in time domain), and wavelet methods. Nielsen
and Frederiksen (2005) studied and carried out the finite sample comparison of differ-
ent estimation methods. They found that among the parametric method, the frequency
domain maximum likelihood procedure is superior with respect to both bias and RMSE.
And the bias of parametric time domain procedures is alleviated when larger sample sizes
are considered. Among the semiparametric (frequency domain and wavelet) methods, the
bias-reduced log-periodogram regression (Andrews and Guggenberger, 2003) and local
polynomial Whittle estimators (Andrews and Sun, 2004) outperform the correctly speci-
fied time domain parametric domain methods. Furthermore, when the methods are very
heavily biased owing to contamination from short-run dynamics, these estimators show a

44



much lower bias at the expense of an increase in the RMSE. Finally, if there is not suf-
ficient trimming of scales, the wavelet-based method are heavily biased when short-run
dynamics is introduced.

We first briefly describe the ARFIMA model and provide an introduction to the esti-
mation methods. We do not present all the mathematical assumptions underlying each
estimation procedure but rather describe the methods and applicability in general and also
briefly discuss and compare the asymptotic distributions of the various estimators.

Granger and Joyeux (1980) and Hosking (1981) introduced an ARFIMA(p, d, q) pro-
cess if its d-th difference is a stationary and invertible ARMA(p, q) process. Here d may

be any real number such that −1

2
< d <

1

2
(to ensure the stationarity and invertibility).

More precisely, Xt is an ARFIMA(p, d, q) if

Φ(B)(I −B)d(Xt − ν) = Θ(B)εt, (4.8)

where Φ(z) = 1− φ1z− · · · − φpz
p and Θ(z) = 1 + θ1z + · · ·+ θqz

q are polynomials of
order p and q, respectively, with roots outside the unit circle, εt is Gaussian white noise
with the variance σ2.

If d > −1

2
, the process is invertible and possesses a linear (Wold) representation, and

if d <
1

2
, it is covariance stationary. If d = 0, the spectral density is bounded at the origin

and the process has only weak dependence (short memory). Furthermore, the parameter
d determines the (long) memory of the process. If d > 0, the process is said to have
long memory, since the autocorrelations die out at a hyperbolic rate (and indeed are no
longer absolutely summable), in contrast to the much faster exponential rate in the weak
dependence case, whereas if d < 0, the process is said to be antipersistent (Mandelbrot,

1982) and has mostly negative autocorrelations. The case 0 ≤ d ≤ 1

2
has been proved

particularly relevant for many applications in finance and economics.

The autocorrelation function of the process (4.8) satisfies

ρk ∼ cρk
2d−1, 0 < cρ < ∞ as k →∞, (4.9)

which decays at a hyperbolic rate, see Granger and Joyeux (1980) and Hosking (1981).
Equivalently, the behavior of the autocorrelations at large lags can be stated in the fre-
quency domain at small frequencies.

Thus, defining the spectral density function of Xt, fX(λ), as

γk =

∫ π

−π

fX(λ)eiλkdλ, (4.10)
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where γk is the k-th autocovariance of Xt, it can be shown that the spectral density of the
ARFIMA(p, d, q) process (4.8) is given by

fX(λ) =
σ2

2π
|1− eiλ|−2d |Θ(eiλ)|2

|Φ(eiλ)|2 =
σ2

2π
(2 sin λ/2)−2d |Θ(eiλ)|2

|Φ(eiλ)|2 . (4.11)

Thus the approximation (4.9) can be restated in the frequency domain as follows (see
Granger and Joyeux (1980), Hosking (1981), or Beran (1994))

fX(λ) ∼ g|λ|−2d, 0 < g < ∞, as λ → 0. (4.12)

4.1.1 Parametric Estimators
Four different parametric maximum likelihood estimators (MLE) are described in the fol-
lowing: the exact time domain MLE, the modified profile likelihood estimator, the con-
ditional time domain MLE, and the frequency domain MLE. The time domain estimators
are based on the likelihood function of the ARFIMA(p,d,q) model with or without condi-
tioning on initial observations, and the frequency domain estimator is based on Whittle’s
approximation to the likelihood function in the frequency domain.

Maximum Likelihood in the Time Domain

As for the estimation of the factional differencing parameter in ARFIMA model, in time
domain, the often used maximum likelihood method are the exact Gaussian maximum
likelihood estimator (Sowell, 1992b), the modified likelihood estimator (Cox and Reid,
1987; An and Bloomfield, 1993), the conditional maximum likelihood estimator or con-
ditional sum of squares estimator (Chung et Baillie, 1993; Beran, 1995; Tanaka, 1999;
Nielsen, 2004), etc.

The exact Gaussian maximum likelihood objective function for the model (4.8) is (when

−1

2
< d <

1

2
):

LE(d, φ, θ, σ2, µ) = −T

2
log |Ω| − 1

2
(Y − µl)′Ω−1(Y − µl), (4.13)

where l = (1, · · · , 1)′, X = (X1, · · · , XT )′, φ and θ are the parameters of Φ(B) and
Θ(B), µ is the mean of X , and Ω is the variance matrix of X , which is a complicated
function of d and the remaining parameters of the model. Sowell (1992a) derived an ef-
ficient procedure for solving this function in terms of hypergeometric functions, but an
important limitation is that the roots of the autoregressive polynomial cannot be multiple.

Gathering the parameters in the vector γ = (d, φ, θ, σ2, µ)′, the exact maximum like-
lihood (EML) estimator is obtained by maximizing the likelihood function (4.13) with
respect to γ. Sowell (1992a) showed that the EML estimator of d is

√
T -consistent and

asymptotically normal, i.e.,
√

T (d̂EML − d) →d N(0, (π2/6− C)−1), (4.14)
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where C = 0 when p = q = 0 and C > 0 otherwise. The variance of the EML estimator
may be derived as the (1, 1) element of the inverse of the matrix

1

4π

∫ 2π

0

∂ log fX(λ)

∂γ

∂ log fX(λ)

∂λ
dλ.

Although the time and frequency domain maximum likelihood estimators are asymptoti-
cally equivalent, their finite sample properties differ. Sowell (1992b) showed that the time
domain estimator has better finite sample properties than the frequency domain estimator
when the mean of the process is known. However, Cheung and Diebold (1994) showed
that the finite sample efficiency of the discrete Whittle frequency domain MLE relative to
time domain EML rised dramatically when the mean is unknown and has to be estimated.

The modified profile likelihood (MPL) estimator is based on a correction of the param-
eters of interest (here d, Φ, Θ) for the second-order effects due to nuisance parameters
(here σ2, µ). Thus the idea is to reduce the bias by applying a transformation that makes
(d, Φ, Θ) orthogonal to (σ2, µ), see Cox and Reid (1987) and An and Bloomfield (1993).
The modified profile log-likelihood function is given as (without constants)

LM(d, φ, θ; µ̂) = −(
1

2
− 1

T
) log |R|−1

2
log(l′R−1l)−(

T − 3

2
) log[T−1(X−µ̂l)′R−1(X−µ̂l)],

(4.15)
where R = Ω/σ2 and µ̂ = (l′R−1l)−1l′R−1X . The asymptotic distribution of the MPL
estimator is unchanged compared to the EML estimator on which it is based, and hence it
also satisfies the asymptotic distribution (4.14).

Imposing the initialization Xt = 0(t ≤ 0), the model (4.8) is valid for any value of d
and is a type II fractional process in the terminology of Marinucci and Robinson (1999).
The objective function considered by Chung and Baillie (1993), Beran (1995), Tanaka
(1999), and Nielsen (2004) is

Lc(d, φ, θ, µ) = −T

2
log[

T∑
t=1

(
Φ(B)

Θ(B)
(I −B)d(Xt − µ))2], (4.16)

and we call the estimator that maximizes Equation (4.16) the conditional maximum like-
lihood (CML) estimator. Maximizing LC is equivalent to minimizing the usual (condi-
tional) sum of squares, and hence this estimator is also referred to as the CSS estimator
by some authors, e.g., Chung and Baillie (1993) and Beran (1995). The CML estimator
has the same asymptotic distribution (4.14) as the EML estimator for any value of d and
is computationally much less demanding.

The parametric estimators are asymptotically efficient in the classical sense when the
model is Gaussian and correctly specified.

Maximum Likelihood in the Frequency Domain

An alternative approximate MLE of the ARFIMA(p, d, q) model follows the idea of
Whittle (1951), who noted that for stationary models the covariance matrix Ω can be
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diagonalized by transforming the model into the frequency domain. Fox and Taqqu (1986)

showed that (when d ∈ (−1

2
,
1

2
)) the log likelihood can be approximated by

LF (d, φ, θ, σ2) = −
[T/2]∑
j=1

[log fX(λj) +
I(λj)

fX(λj)
], (4.17)

where λj = 2πj/T are the Fourier frequencies, I(λ) =
1

2πT
|

T∑
t=1

Xte
itλ|2 is the peri-

odogram of Xt, fX(λ) is the spectral density of Xt given in Equation (4.11).

The approximate frequency domain maximum likelihood (FML) estimator is defined
as the maximizer of Equation (4.17) and was proposed by Fox and Taqqu (1986), who
also proposed a continuously integrated version of (4.17). Dahlhaus (1989) also assumed
Gaussianity and considered the exact likelihood function in the frequency domain. Note
that the FML estimator is invariant to the presence of a nonzero mean, i.e., µ 6= 0, since
j = 0 (the zero frequency) is left out of the summation in (4.17). The FML estimator
has the same asymptotic normality, i.e.,

√
T -consistency and asymptotic normality, and

when the process is Gaussian, asymptotic efficiency. Finally, Giraitis and Surgailis (1990)
relaxed the Gaussianity assumption and analyze the Whittle estimate for linear processes,
showing that it is

√
T -consistent and asymptotically normal but no longer efficient, while

Hosoya (1997) extended the previous analysis to multivariate framework.

4.1.2 Semiparametric Estimators
After the seminal papers of Granger and Joyeux (1980) and Hosking (1981), fractional
integration processes (FI(d)) have attracted the attention of many statisticians and econo-
metricians. These long-range dependence processes give more flexibility to empirical
research than the classical FI(0) and FI(1) classes of processes. For 0 < d < 1/2, they
are stationary with hyperbolic decay of the autocorrelation function and they exhibit long
memory or long-range dependence. To estimate d, we usually use the semiparametric
methods developed by Geweke and Porter-Hudak (1983) (henceforth referred to GPH).
Agiakloglou et al. (1993) showed that this estimator has a large bias. Reisen (1994),
Robinson (1994, 1995a,b) and Lobato and Robinson (1996) give some estimators with a
small bias.

The semiparametric frequency domain estimators are based on the approximation (4.12)
to the spectral density. Two classes of semiparametric estimators have become very pop-
ular in empirical work, the log-periodogram regression method suggested by Geweke and
Porter-Hudak (1983) and the local Whittle approach suggested by Künsch (1987). Some
earlier work on the (adjusted) rescaled range, or "R/S" statistic, by Hurst (1951) and
Mandelbrot and Wallis (1969), or its modified version allows for weak dependence by Lo
(1991).

The semiparametric estimators enjoy robustness to short-run dynamics, since they use
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only information from the periodogram ordinates in the vicinity of the origin. Indeed,
the short-run dynamics in the model, i.e., the autoregressive and moving average polyno-
mials Φ(·) and Θ(·) in ARFIMA model (4.8), does not even have to be specified. The
drawback is that only

√
m-consistency is achieved, where m = m(T ) is a user-chosen

bandwidth parameter, in comparison to
√

T -consistency (and efficiency) in the parametric
case. Thus the semiparametric approach is much less efficient than the parametric one,
sine it requires at least

m

T
→ 0.

Log-periodogram Regression

Probably the most commonly applied semiparametric estimator is the log-periodogram
regression (LPR) estimator introduced by Geweke and Porter-Hudak (1983) and analyzed
in detail by Robinson (1995b). Taking logs in Equation (4.12) and inserting sample quan-
tities, we get the approximate regression relationship

log(I(λj)) = constant− 2d log(λj) + error. (4.18)

The LPR estimator is defined as the OLS estimator in the regression (4.18) using j =
1, · · · ,m, where m = m(T ) is a bandwidth number which tends to infinity as T → ∞
but at a slower rate than T . Note that the estimator is invariant to a non-zero mean, since
j = 0 is left out of the regression.

Under suitable regularity conditions, including Xt being Gaussian (later relaxed by Ve-
lasco (2000)) and a restriction on the bandwidth, Robinson (1995b) derived the asymp-
totically normal limit distribution for the LPR estimator when d is in the stationary and

invertible range (−1

2
,
1

2
). The proof by Robinson (1995b) also employed trimming of the

very low frequencies as suggested by Künsch (1986), but following recent research, e.g.,
Hurvich et al. (1998) and the original suggestion of Geweke ad Porter-Hudak (1983),
the trimming is not necessary and has been largely ignored in empirical work. Kim
and Phillips (1999) and Velasco (1999b) demonstrated that the range of consistency is

d ∈ (−1

2
, 1] and the range of asymptotic normality is d ∈ (−1

2
,
3

4
). The limiting distribu-

tion of the LPR estimator for d ∈ (−1

2
,
1

2
) is given by Robinson (1995a) as

√
m(d̂R − d) →d N(0,

π2

24
). (4.19)

There exist also some other estimators based on LPR estimator, the bias reduced log-
periodogram regression (BRLPR) estimator by Agiakloglou et al. (1993) and Andrews
and Gugggenberger (2003) and the pooled log-periodogram regression (PLPR) estimator
by Shimotsu and Phillips (2002); see Nielsen and Frederisksen (2005) for more details.

Local Whittle Approach

The other class of semiparametric frequency domain estimators we consider follows the
local Whittle approach suggestd by Künsch (1987). The local Whittle (LW) estimator was
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analyzed by Robinson (1995a) (who called it a Gaussian semiparametric estimator) and
is attractive because of its likelihood interpretation, nice asymptotic properties and very
mild assumptions. The LW estimator is defined as the maximizer of the (local Whittle
likelihood) function

Q(g, d) = − 1

m

m∑
j=1

[log(gλ−2d
j ) +

I(λj)

gλ−2d
j

]. (4.20)

One drawback compared to log-periodogram estimation is that numerical optimization is
needed. However, the assumptions underlying this estimator are weaker than those of the

LPR estimator, and Robinson (1995a) showed that when d ∈ (−1

2
,
1

2
),

√
m(d̂LW − d) →d N(0,

1

4
). (4.21)

Thus the asymptotic distribution is extremely simple, facilitating easy asymptotic infer-
ence, and in particular the estimator is more efficient than the LPR estimator. The ranges
of consistency and asymptotic normality for the LW estimator have been shown by Ve-
lasco (1999a) and by Phillips and Shimotsu (2004) to be the same as those of the LPR
estimator.

An exact local Whittle (ELW) estimator has been proposed by Shimotsu and Phillips
(2005) that avoids some of the approximations in the deviation of the LW estimator and
is valid for any value of d. The ELW estimator replaces the objective function (4.20) by
the function

QE(g, d) = − 1

m

m∑
j=1

[log(gλ−2d
j ) +

I∆dX(λj)

g
], (4.22)

where I∆dX(λ) =
1

2πT
|

T∑
t=1

(∆dXt)e
itλ|2 is the periodogram of ∆dXt. The ELW estima-

tor satisfies (4.21) for any value of d and is thus not confined to any particular range of d
values, but it is confined to zero-mean processes.

In addition, Shimotsu (2002) proposed the feasible ELW (FELW) estimator. Andrews
and Sun (2004) proposed a generalization of the local Whittle estimator–the local poly-

nomial Whittle (LPW) estimator of d for d ∈ (−1

2
,
1

2
).

For both the log-periodogram regression method and the local Whittle approach, the
choice of bandwidth parameter m is very important. Results on optimal (mean squared
error minimizing) choice of bandwidth for the log-periodogram regression have been de-
rived by Hurvich et al. (1998), and results for the local Whittle approach have been
derived by Henry and Robinson (1996). In both cases, the optimal bandwidth is found to
be a multiple of T 0.8, where the multiplicative constant depends on the smoothness of the
spectral density near the origin, i.e., on the short-run dynamics of the process.
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4.1.3 Wavelet Estimators
In the latter part of the twenties century, several disciplines came to the realization of the
naturally occurring phenomena (river flow, atmospheric patterns, telecommunications,
astronomy, financial markets, etc.) which exhibit correlations that do not decay at a suffi-
ciently fast rate. This means that observations separated by long periods of time still ex-
hibit significant correlation. These time series are known as long memory or long range
dependent processes and require different approaches to modeling than short memory
time series. At first, Fourier-based methods dominated the literature in terms of identi-
fying and fitting models to long memory processes. Both least squares and maximum
likelihood procedures have been established for estimating the model parameters in the
case of long range dependence. By generalizing the concept of a long memory process to
a long memory process with seasonality, one may apply these estimation procedures to a
much broader class of time series models.

Wavelets have shown great promise in handling long memory and a combination of short-
memory and long-memory processes. By performing a wavelet decomposition to an ob-
served time series, one makes an implicit assumption about the underlying nature of the
process. Specifically, there is a hierarchical structure present in the data so that informa-
tion in the time series is evolving at different time horizons (scales) and different magni-
tudes. When decomposed appropriately, one may more easily view the individual factors
that make up the (potentially) complicated process. More precisely, the correlation matrix
of the decomposition is essentially block diagonal. Large values on the diagonal repre-
sent the information at a particular level of the decomposition and near zero values on the
off-diagonal denote little interaction between elements. This concept was discussed by
Brock (2000).

By design, the wavelet’s strength rests in its ability to localize simultaneously processes in
time and scale. At high scales, the wavelet has a small centralized time support enabling it
to focus on short-lived time phenomena like a singularity point. At low scales, the wavelet
has a large time support allowing it to identify long periodic behavior. By moving from
low to high scales, the wavelet zooms in on the behavior of a process at a particular point
in time, identifying singularities, jumps, and cusps. Alternatively, the wavelet can zoom
out to reveal the long, smooth features of a series. In practice, the Haar and Daubechies
(1988) wavelets are most commonly applied in the literature.

In the study of the estimation of long memory parameters, there exists mainly two meth-
ods through wavelet techniques, the ordinary least squares (OLS) method and the maxi-
mum likelihood method. These methods are applicable due to the ability of the DWT to
decorrelate long memory processes.

For the fractional integrated ARMA (ARFIMA) model introduced by Granger and Joyeux
(1980) and Hosking (1981), an explosion can be found at the zero frequency in its spec-
trum. Using the expression of the spectral density of the ARFIMA process, Geweke and
Porter-Hudak (1983) proposed a semiparametric method using the log regression on the
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periodogram in order to estimate the long memory parameter d. We refer to this estimator
the GPH estimator. Thereafter, several improvements have been suggested such as using
an alternative spectral estimator. In the wavelet framework, Jensen (1999) introduced a
wavelet-based estimator of d using the OLS regression. The main technique used here is
that the wavelet coefficients’ variance is an approximate estimation of the spectrum. Thus
we can obtain a log linear regression between the wavelet coefficients’ variance and the
scale. This approach is known for its simplicity in operation and application, but the large
variance of the estimator posed a problem. Thus we need to pay attention for the adoption
of this method.

The other method often used by the practitioners is the wavelet-based approximate max-
imum likelihood estimation, which has been investigated by McCoy and Walden (1996)
and Jensen (1999a, 2000). This method produced much less mean squared errors when
compared to the wavelet-based OLS method. To avoid the complexity in computing the
exact likelihood, a wavelet-based approximate maximum likelihood estimator is proposed
by replacing the covariance matrix of the process with an approximation using the DWT.

Let Xt be a stationary and invertible FI(d) (−1

2
< d <

1

2
) process with zero mean

whose d-th order backward difference is as follows:

(I −B)dXt =
∞∑

k=0

(
d
k

)
(−1)kXt−k = εt, (4.23)

where
(

d
k

)
=

d!

k!(d− k)!
and εt is a white noise process with variance σ2

ε .

The autocovariance sequence (ACVS) of Xt is defined to be

γτ = E(Xt, Xt−τ ) =
σ2

ε(−1)τΓ(1− 2d)

Γ(1 + τ − d)Γ(1− τ − d)
,

which means the variance is given by

V ar(Xt) = γ0 =
σ2

εΓ(1− 2d)

[Γ(1− d)2]
.

The spectral density function (SDF) of Xt is

SX(f) =
σ2

ε

|2 sin(πf)|2d
, for − 1

2
< f <

1

2
. (4.24)

Consequently, SX(f) ∝ f−2d approximately as f → 0 and, thus the SDF is approxi-

mately linear on the log scale. When 0 < d <
1

2
, the SDF has an asymptote at frequency

zero, in which case the process exhibits slowly decaying autocovariances and provides a
simple example of a long memory process.
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We explore the output of the DWT when applied to an FI(d) process. Emphasis will
be on the spectral properties of the DWT coefficients. The ability of the DWT to decor-
relate time series, such as the FI(d) process, producing wavelet coefficients for a given
scale, which are approximately uncorrelated, is well-known; see, for example, Tewfik
and Kim (1992), McCoy and Walden (1996) and Wornell (1996). The DWT produces
wavelet coefficients with flat spectra and therefore exhibit little correlation within scales.
And there is very little cross-correlation between scales too. This property is used to sim-
ulate FI(d) process and also to estimate the long memory parameter d in practice. Ramsey
(1998) showed this fact empirically to validate previous results with respect to performing
regressions at different time scales.

There is an important property worthy of being mentioned. The band-pass variance Bj

for an FI(d) process, with spectrum given in Equation (4.24), in the frequency interval
[−2−j,−2−j−1) ∪ (2−j−1, 2−j] is

Bj = 2 · 4−d

∫ 1/2j

1/2j+1

σ2
ε

| sin(πf)|2d
df. (4.25)

Replace the true SDF at each frequency interval with a constant Sj = Sj(f), for all f ,
such that the band-pass variances are equal. This step assumes the SDF is slowly varying
across the frequency interval. Integrating the constant spectrum over [−2−j,−2−j−1) ∪
(2−j−1, 2−j] gives ∫ 1/2j

1/2j+1

Sj,ndf = Sj2
−j−1.

Equating this to the band-pass variance gives

2Sj2
−j−1 = Bj =⇒ Sj = 2jBj. (4.26)

The variance of wavelet coefficients wj,t is therefore given by Sj through the band-pass
nature of the DWT.

A popular time-domain technique for simulating time series is based on the Levinson-
Durbin recursions (Hosking, 1984). This time domain method is exact, but the Levinson-
Durbin recursions require O(N2) operations and become unwieldy for larger sample
sizes. Davies and Harte (1987) described a method for simulating certain stationary Gaus-
sian time series of length N with known autocovariances γ0, γ1, · · · , γN−1. The method
is based on the Fourier transform and is provided in Chan and Wood (1994) and Beran
(1994). This method is exact for short memory processes, like the typical ARMA time
series models, but is approximate when used to generate FI(d) process (Percival, 1993).
Even so, the Fourier-based method is very efficient and produces realizations of FI(d)
process with good statistical properties. Recently, Parke (1999) proposed a simulation
procedure by representing the FI(d) process via an error duration model. A DWT-based
method for generating realizations of FI(d) process was proposed by McCoy and Walden
(1996).
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Wavelet Ordinary Least Squares (OLS) Estimator

Using the logarithmic decay of the autocovariance function of a long memory process,
Jensen (1999) showed that a log-linear relationship (suggested by McCoy and Walden,
1996; Johnstone and Silverman, 1997) exists between the variance of the wavelet coef-
ficient from the long memory process and its scale, which can be used to estimate d by
least squares regression. Leaving out high level wavelet coefficients results in robustness
to the short-run dynamics, which is similar to the LPR estimator (see McCoy and Walden,
1996; Tse et al., 2002).

The approximate linear relationship between the periodogram and Fourier frequencies
(on a log-log scale) has been known for a long time. Geweke and Porter-Hudak (1983)
first proposed the regressing the log values on the periodogram on the log SDF to estimate
the fractional differencing parameter d (we refer to this as the GPH estimator). Although
very popular, the GPH estimator suffers from the poor asymptotic properties of the peri-
odogram. Improvements to the GPH estimator have been suggested, such as restricting
the number of frequencies used in the regression or using an alternative spectral estima-
tor (smoothed or multitaper). A wavelet-based estimator of d was introduced by Jensen
(1999b) using ordinary least square (OLS) regression. Tkacz (2000) has applied this tech-
nique to nominal interest rates in the United States and Canada.

For a vector of observations y, the OLS model is formulated via y = Xβ + e, where

y =




y1

y2
...

yJ


 X =




1 x1,1

1 x2,1
...

...
1 xJ,1


 β =

(
β0

β1

)

are the length J vector of dependence observations, the J × 2 dimensional model matrix
and the length 2 parameter vector, respectively. The final vector

e = [e1, e2, · · · , eJ ]T

is the column of model errors with E(e) = 0 and V ar(e) = σ2
eIJ . The OLS estimator β̂

of β is
β̂ = (XTX)−1XTy, (4.27)

and the covariance matrix of β̂ is given by

Σβ̂ = σ2
e(X

TX)−1. (4.28)

We are interested in estimating the slope parameter β1 when the dependent observations
are yj = log(σ̂2

x(λj)) and the independent observations are xj,1 = log(λj), for j =
1, · · · , J . There is a relationship between the wavelet variance σ2

x(λj) and scale λj (on a
log-log scale) for FI(d) process. Jensen (1999b) proved that σ2

x(λj) → Cλ2d−1
j as j →∞

for FI(d) process with −1

2
≤ d ≤ 1

2
. A reasonable regression model is therefore

log(σ̂2
x(λj)) = β0 + β1 log(λj) + ej, (4.29)
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where β1 = 2d− 1. Defining yj = log(σ̂2
x(λj)) and xj,1 = log(λj) for j = 1, · · · , J , the

OLS estimator of β1 is given by the second element of β̂ in Equation (4.27), or explicitly,

β̂1 =

∑J
j=1[log(λj)− log(λj)] log(σ̂2

x(λj))∑J
j=1[log(λj)− log(λj)]2

,

where log(λj) is the sample mean of log(λj). Hence the OLS estimator of the fractional
difference parameter is d̂ = (β̂1 + 1)/2. The variance of the OLS estimator is

V ar(β̂1) =
σ̂2

e∑J
j=1[log(λj)− log(λj)]2

,

where the estimated variance of the model errors is given by (most easily expressed in
matrix notation)

σ̂2
e =

(y −Xβ̂)T (y −Xβ̂)

J − 2
.

Basic properties of the variance tell us that V ar(d̂) =
1

4
V ar(β̂1). Jensen (2000) used

the wavelet transform to decompose the variance of a long memory process to develop an
alternative to the frequency domain estimators of the long memory parameter, but only
for globally stationary long memory processes.

In particular, Jensen (1999) showed that for the fractionally integrated noise process Xt

satisfying (I − B)dXt = εt, when d ∈ (−1

2
,
1

2
), the wavelet coefficient ωj,k has the

following asymptotic behavior,

ωj,k →d N(0, σ22−2jd) as j → 0. (4.30)

If we define the variance of ωj,k as R(j), the intuitive log-linear relationship

log R(j) = log σ2 − d log 22j (4.31)

arises. To estimate d through Equation (4.31), an estimate of the variance is required.
Jensen (1999) proposed

R̂(j) = 2−j

2j−1∑

k=0

ω2
j,k, j = 0, · · · , p− 1, (4.32)

and the relationship (4.31) thus gives rise to the regression

log R̂(j) = constant− d log 22j + error, j = J, · · · , p− 1−K, (4.33)

which can be estimated by ordinary least squares yielding the wavelet OLS (WOLS) esti-

mator. The WOLS estimator is consistent and asymptotically normal when d ∈ (−1

2
,
1

2
),

see Jensen (1999). The trimming of the lowest J scales was suggested by Jensen (1999)
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to avoid boundary effects, and the trimming of the highest K scales was suggested by
McCoy and Walden (1996) and Tse et al. (2002), since (4.30) is valid for small j only.

The wavelet coefficients’ variance is a regularization of the spectrum (Percival, 1995,
McCoy and Walden, 1996), which is a quite useful property for the estimation theory.
The wavelet coefficients’ variance decomposes the variance of the series across different
scales. Those scales which contribute the most to the series’ variance are associated with
those wavelet coefficients with largest variance. Hence, the wavelet coefficients’ sample
variance provided a more intuitive parametric estimate of its population variance than the
non-parametric periodogram does of the power spectrum. More importantly, whereas the
periodogram is an inconsistent estimator of the spectrum, the wavelet coefficients’ sample
variance is a consistent estimator of the population variance that enables the wavelet OLS
estimator to be a consistent estimator of the fractional differencing parameter.

The use of periodogram regressions appears simple but rather ad hoc. Nevertheless, Ya-
jima (1985) extended these results to show the strong consistency of this least squares

estimator over d in the open interval (−1

2
,
1

2
) and the asymptotic normality of these least

squares estimator for d in [0,
1

4
). In addition, he gave results on the rates of convergence

for the estimator when d ∈ [
1

4
,
1

2
). The main problem of the least squares technique is its

large variance.

Maximum Likelihood Estimation in Scale and Space (Wavelet MLE)

Other researchers (e.g. Hipel and McLeod, 1978; Hosking, 1981) suggested using max-
imum likelihood (ML) techniques on the basis of asymptotic efficiency. Nevertheless, it
is unclear how the long-term and short-term parameters can be distinguished (i.e. identi-
fied) in the time domain. Identification can be done very simply in the frequency domain,
despite the general equivalence that exists between spectral and time domain frameworks.
Hosking (1981) proposed an iterative ML technique that first estimated d using ML tech-
niques and then identified the ARMA structure from a residual series differenced by d.
Clearly this estimate of d would be inconsistent.

Wavelet-based maximum likelihood estimation procedure has been investigated by Mc-
Coy and Walden (1996) and Jensen (1999a, 2000). Although ordinary least squares esti-
mation is popular because of its simplicity to program and to compute, it produces much
larger mean square errors when compared to maximum likelihood method. The wavelet-
based maximum likelihood method presented here overcomes the difficulty of computing
the exact likelihood by replacing the covariance matrix of the process with an approxi-
mation using the DWT. This is possible due to the ability of the DWT to decorrelate long
memory processes.

More concretely, let x be a length N(= 2J) FI(d) process with mean zero and covari-
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ance matrix given by Σx. Then its likelihood can be written as

L(d, σ2
ε |x) = (2π)−N/2|Σx|−1/2 exp[−1

2
xT Σ−1

x x], (4.34)

see Brockwell and Davis (1991) for reference. The quantity |Σx| is the determinant of
Σx. The maximum likelihood (MLE) estimators of the parameters (d and σ2

ε ) are those
quantities that maximize Equation (4.34). To avoid the difficulties in computing the exact
MLE, we use the approximate decorrelation of the DWT as applied to FI(d) process; that
is ,

Σx ≈ Σ̂x = WT ΩNW ,

where W is the orthonormal matrix defining the DWT and ΩN is a diagonal matrix con-
taining the variances of DWT coefficients computed from FI(d) process ; that is,

ΩN = diag(S1, · · · , S1︸ ︷︷ ︸
N/2

, S2, · · · , S2︸ ︷︷ ︸
N/4

, · · · , Sj, · · · , Sj︸ ︷︷ ︸
N/2j

, · · · , SJ , SJ+1).

The approximate likelihood function is now

L̂(d, σ2
ε |x) = (2π)−N/2|Σ̂x|−1/2 exp[−1

2
xT Σ̂−1

x x].

Hence, we want to find values of d and σ2
ε that minimize the log-likelihood function

L̂(d, σ2
ε |x) = −2 log(L(d, σ2

ε |x))−N log(2π) = log(|Σ̂x|) + xT Σ̂−1
x x.

Since the variance for scale λj DWT coefficients is given by Sj . We note that Sj depends
on two parameters related to the FI(d) process, the fractional differencing parameter d and
variance σ2

ε . Let Sj(d, σ2
ε) = σ2

εS
′
j(d). Through the properties of diagonal and orthonor-

mal matrices, the approximate log-likelihood function may be rewritten as

L̂(d, σ2
ε |x) = N log(σ2

ε) + log(S ′J+1(d)) +
J∑

j=1

log(S ′j(d)) +
1

σ2
ε

[
vT

J vJ

S ′J+1(d)
+

J∑
j=1

wT
j wj

S ′j(d)
].

(4.35)
Differentiating Equation (4.35) with respect to σ2

ε and setting the result to zero, the MLE
of σ2

ε is found to be

σ̂2
ε =

1

N
[

vT
J vJ

S ′J+1(d)
+

J∑
j=1

wT
j wj

S ′j(d)
].

Substituting σ2
ε into Equation (4.35) we obtain the reduced log-likelihood

L̂(d|x) = N log(σ2
ε) + log(S ′J+1(d)) +

J∑
j=1

Nj log(S ′j(d)).

The reduced log-likelihood is now a function of only the fractional differencing parameter
d ∈ (−1/2, 1/2).
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This maximum likelihood (ML) procedure may be extended to allow for short memory
(ARMA) components in the time series model – producing an ARFIMA(p,d,q) model
given by

Φ(B)(I −B)dXt = Θ(B)εt,

where Φ(B) and Θ(B) are p and q degree polynomials in the backshift operator with
autoregressive (AR) parameters Φ = (φ1, φ2, · · · , φp) and moving average (MA) param-
eters Θ = (θ1, θ2, · · · , θq), respectively. The approximate log-likelihood has been inves-
tigated by Jensen (1999a), who compared an approximate wavelet-based ML procedure
to the approximate frequency-domain ML procedure in Fox and Taqqu (1986).

An alternative to the (approximate) ML estimators described above is to use an approx-
imate wavelet ML (AWML) estimator. Following the arguments of McCoy and Walden
(1996) and Johnstone and Silverman (1997), see also Jensen (1998, 2000), we assume
that the asymptotic behavior (4.30) is satisfied, where σ2 depends on other parameters of
the model but do not vary with j.

The DWT provides a simple and effective method for approximately diagonalizing the
variance/covariance of the original process. It follows that, ignoring wavelet coefficients
j > p− 1−K, the approximate wavelet likelihood function is given by

LW (d, σ2) = −1

2

p−1−K∑
j=0

[(2j − 1) log(σ22−2jd) +
2j−1∑

k=0

ω2
j,k

σ22−2jd
] (4.36)

and the WML estimator is obtained by maximizing LW . Since the relationship (4.30) is
only valid for small j, we follow McCoy and Walden (1996) and Tse et al. (2002) and
leave out the K largest scales in the likelihood function (4.36) to achieve robustness to
the possible presence of short-run dynamics in the same sense as the semiparametric fre-
quency domain estimators.

McCoy and Walden (1996) and Jensen (1999a) have both provided an approximate maxi-
mum likelihood (AML) estimator to the fractional difference parameter for long memory
time series models.

4.2 Seasonal and/or Cyclical Long Memory (SCLM) Mod-
els

The potential value of a fractionally differenced model for a series, such as the monetary
aggregates, is indicated by the sample autocorrelation function (ACF) of the first differ-
ence of the series. If a seasonally fractionally differenced model is appropriate, this ACF
displays a hyperbolic decay at the seasonal lags, rather than the slow linear decay char-
acteristic of the conventional seasonal differencing models, see in Figure 4.1 to have an
intuitive idea. For this class of model, there are two types of long memory parameter es-
timation methods which are often used: a semiparametric one, based on the expression of
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Figure 4.1: The ACF of a simulated seasonal long memory processes

the log-periodogram, and a pseudo maximum likelihood one, based on the Whittle likeli-
hood.

One of the most difficult problems of the semiparametric method for the generalized long
memory process with seasonalities is the choice of the trimming number l and the choice
of the bandwidth m. The semiparametric method requires first the estimation of the
Gegenbauer frequencies, and we use as estimates the values for which the peridogram
is maximum. The semiparametric estimate has the great advantage to be easily com-
puted, but it possesses nevertheless a slow convergence rate. Thus, this estimate must be
carefully used in the case of small sample sizes, although statistical techniques, such as
smoothing and tapering, can greatly improve the semiparametric estimate performances
in such cases. Palma and Chan (2005) studied the asymptotic behavior of the estimated
parameters of model (4.1) using pseudo-maximum likelihood method.
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In practice, parameter estimation in statistical long memory models having spectral den-
sity with singularities is done in two steps (Gray et al., 1989; Chung, 1996a, b; Woodward
et al., 1998). The first step consists in grid-search procedure to estimate the frequencies in
which the spectral density is unbounded and in a second step, the memory parameter d is
estimated by using a classical parametric method. Particularly, in the case of Gegenbauer
process, Yajima (1996) proposed to estimate first the frequency of unbounded spectral
density by maximizing the periodogram. The 2-steps method of Yajima (1996) and the
simultaneous method have the great advantage to avoid a grid-search procedure, which
is a very time-consuming method. Other authors considered a simultaneous global esti-
mation of the whole of the parameters (Giraitis and Leipus, 1995; Ferrara, 2000). This
method can be generalized to the case of a spectral density with several singularities (see
Ferrara, 2000).

The common techniques for estimating the long-memory parameter for an ARFIMA
model have been extended to the seasonal models, including log-periodogram and semi-
parametric analysis (Arteche and Robinson, 2000). Ferrara (2000) used the Whittle’s
estimation of the maximum likelihood to estimate the parameters of k-factor Gegenauer
processes. Whitcher (2004) applied the approximate maximum likelihood estimation to
the case of long memory processes with seasonality, utilizing the DWPT under a partic-
ular basis function B to approximately diagonalize the variance/covariance matrix of the
Gegenbauer process.

Recall the seasonal and/or cyclical long memory process (4.1) proposed by Robinson
(1994):

(I −B)d0

k−1∑
i=1

(I − 2νiB + B2)di(I + B)dkXt = εt.

We will consider in the following the estimation method for the particular cases of this
general model.

4.2.1 Estimation for the k-factor Gegenbauer ARMA Processes
Hosking (1981) notes that taking the fractional power of a second-order polynomial
makes it possible to describe long term structures of periodic shape. Thus, Gray et al.
(1989) proposed the so-called Gegenbauer ARMA (GARMA) model, possessing a cycli-
cal and persistent structure. Then Woodward et al. (1998) and Giratis and Leipus (1995)
extended the GARMA model to the case in which the serie has a k cyclical persistent
components, that is the k-factor Gegenbauer ARMA (k-factor GARMA) model. It is a
particular case of the SCLM model.

Both time and frequency domain techniques have been established for the simulation of
FI(d) process. The partitioning of the time-frequency plane by the DWT makes it a nat-
ural alternative to the discrete Fourier transform for decomposing long memory process.
However, the DWT cannot be adapted to a general SDF of the Gegenbauer processes. In-
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stead, we may make use of the DWPT, to produce the least correlated wavelet coefficients.

We consider first of all the stationary Gegenbauer process (Xt)t with a singularity on
the interval [0, π] in the spectrum. It contains only one persistent cyclical component. Let
Xt be a stochastic process such that

(I − 2νB + B2)dXt = εt (4.37)

where εt is Gaussian white noise, then Xt is a Gegenbauer (or seasonal persistent) process,
a simple example of the k-factor Gegenbauer ARMA (GARMA) process which permits
the seasonalities and also takes into account the short memory terms.

Gray et al. (1989) showed that Xt is stationary and invertible for |ν| = 1 and −1/4 <
d < 1/4 or |ν| < 1 and −1/2 < d < 1/2. When ν=1, Equation (4.37) becomes
(I −B)2dXt = εt, which is an FI(d) process with parameter 2d. Clearly, the definition of
the Gegenbauer process also includes an FI(d) process.

Equation (4.37) may be rewritten as an infinite moving-average process via

Xt =
∞∑

j=0

Cj(d, ν)εt−j,

where Cj(d, ν) are the Gegenbauer coefficients (Rainville, 1960) which can be calculated
by the following recursion formula:





C0(d, ν) = 1
C1(d, ν) = 2dν

Cj(d, ν) = 2ν(
d− 1

j
+ 1)Cj−1(d, ν)− (2

d− 1

j
+ 1)Cj−2(d, ν).

The SDF of Xt is given by

SX(f) =
σ2

ε

{2| cos(f)− ν|2d} , for − π

2
< f <

π

2
, (4.38)

so that SX(f) becomes unbounded at frequency fG = cos−1(ν), sometimes called the
Gegenbauer frequency.

The autocovariance sequence (ACVS) of a Gegenabuer process may be expressed via
the Fourier transform of its SDF; that is,

γτ =

∫ 1/2

−1/2

Sy(f) cos(fτ)df.

Gray et al. (1994) showed that the autocorrelation sequence of a Gegenabuer process is
given by

ρτ ∼ τ 2d−1 cos(fGτ), as τ →∞. (4.39)
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An obvious extension of the Gegenabuer process would be to allow multiple singularities
to appear in the SDF of the process. Woodward et al. (1998) and Giraitis and Leipus
(1995) considered the zero mean k-factor Gegenabuer process given by

k∏
i=1

(I − 2νiB + B2)diXt = εt,

exhibiting k asymptotes located at the frequencies fi = cos−1(νi) (i = 1, · · · , k), in its
spectrum

S
(k)
X = σ2

ε

k∏
i=1

{2| cos(f)− νi|}−2di , |f | < π

2
. (4.40)

Using this model allows one to incorporate several observed oscillations, such as an an-
nual frequency and its harmonics. For the generalized long memory processes possessing
the singularities at the non-zero frequencies in the spectrum, the DWT is not adaptable to
decorrelate the general SDF.

Whitcher (2004) analyzed the feasibility of the OLS regression for the Gegenbauer pro-
cesses. In fact, he established a linear relationship (on a log-log scale) between the
DWPT variance and the long memory parameter, using the spectral density function of the
Gegenbauer process. It is indeed a frequency-based semiparametric method. However,
he showed that the wavelet-based OLS estimate of the fractional differencing parameter
for Gegenbauer process exhibits reasonable bias and MSE characteristics in simulation
studies. And if a non-adaptive orthonormal basis is used, the wavelet packet OLS estima-
tor is heavily biased, since the basis mimic the frequency domain estimators of the SDF.
Thus, he suggested that the wavelet-based OLS estimate should be restricted in its use in
practice.

On the other side, Whitcher (2004) proposed the approximate maximum likelihood es-
timation (AMLE) for Gegenbauer process using the wavelet-based OLS estimate as the
initial value. He utilized the DWPT under a particular choice of orthonormal basis to
approximately diagonalize the covariance matrix of a Gegenbauer process. What’s more,
this maximum likelihood method can also be applied to the k-factor Gegenbauer ARMA
processes possessing the short memory terms. Using the wavelet-based AMLE, he found
that the bias and RMSE are largely improved.

• Ordinary Least Squares (OLS) Estimation of Gegenabuer Processes
Porter-Hudak (1990) extended the non seasonal estimation technique developed in
Geweke and Poter-Hudak (1983) to the fractionally differenced seasonal model and
offered some preliminary sampling evidence as to its efficacy.

And the observed linear relationship (on a log-log scale) between the wavelet vari-
ance σ2

x(λj) and scale λj provided the impetus to use OLS estimation for the frac-
tional differencing parameter d of FI(d) process. Actually, there also exists a log-
linear relationship for Gegenabuer process.
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By applying the logarithmic transform to both sides of Equation (4.38), we get

log SX(f) = −2d log 2| cos(f)− ν|. (4.41)

This suggests a simple linear regression of log ŜX(f) on log 2| cos(2πf) − ν| in
order to estimate the fractional differencing parameter d, where log ŜX(f) is an
estimate of the true spectrum at each frequency (e.g. the periodogram or multitaper
spectrum estimator). Arteche and Robinson (2000) suggested a simple modification
to Equation (4.41), which consists of replacing the explicit parametric form of the
SDF with just the frequency, yielding

log SX(f) ≈ −2d log 2|f − cos−1 ν|. (4.42)

Thus, our variables for the OLS regression y = Xβ + e based on Equation (4.41)
are

y =




log ŜX(f1)

log ŜX(f2)
...

log ŜX(fk)


 X =




1 log 2| cos(f1)− ν|
1 log 2| cos(f2)− ν|
...

...
1 log 2| cos(fk)− ν|


 β =

(
β0

β1

)

and model errors e = [e1, e2, · · · , eJ ]T . The OLS estimator of β1 is the second el-
ement of β̂ = (XTX)−1XTy, thus using the transformation d̂OLS = −β̂1/2 gives
the estimated fractional differencing parameter. To utilize the regression based on
Equation (4.42), simply construct the model matrix X using log 2|f − cos−1 ν|
instead of log 2| cos(f) − ν|. Additional modifications to this log-periodogram re-
gression scheme may be found in Arteche and Robinson (2000). Robinson (1995)
replaced the parametric form of the SDF with frequency in Equation (4.42) and
found it to work quite well for long memory processes.

We now extend the results to formulate a wavelet packet variance estimator for the
fractional difference parameter of Gegenabuer process. Since the variance of the
wavelet coefficients is an estimation of the true spectrum, we obtain the following
relationship:

log σ2(λj,n) = −2d log 2| cos(µj,n)− ν|, (4.43)

where µj,n is the midpoint of the frequency interval λj,n. In strict terms, the (j, n)-th
wavelet packet variance covers the entire interval of frequencies λj,n but it suffices
to represent this interval by its midpoint here. As in Equation (4.41), the slope from
a simple linear regression of log σ̃2(λj,n) on log 2| cos(µj,n)−ν|, appropriately nor-
malized, provided an estimate of the fractional differencing parameter. Simplifying
Equation (4.43) to just the frequencies, not the full SDF, yields

log σ2(λj,n) = −2d log 2|µj,n − cos−1 ν|. (4.44)

63



For the wavelet packet variance, the variables for the OLS regression y = Xβ + e
based on Equation (4.43) are

y =




log σ̂X(λj,n)
log σ̂X(λj,n)

...
log σ̂X(λj,n)


 X =




1 log 2| cos(µj,n)− ν|
1 log 2| cos(µj,n)− ν|
...

...
1 log 2| cos(µj,n)− ν|


 β =

(
β0

β1

)

and model errors e = [e1, e2, · · · , eJ ]T . As the log-periodogram estimator, the
OLS estimator of β1 is the second element of β̂ = (XTX)−1XTy and using the
transformation d̂OLS = −β̂1/2 gives the estimated fractional difference parame-

ter with V ar(d̂OLS) =
1

4
V ar(β̂1). To utilize the regression based on Equation

(4.44), we simply construct the model matrix X using log 2|µj,n − cos−1 ν| instead
of log 2| cos(µj,n)− ν|.

Whereas the OLS estimate of the fractional differencing parameter for long mem-
ory processes has been shown to exhibit reasonable bias and MSE characteristics
in simulation studies, Whitcher (2000) showed that the log-periodogram estimator
using Equation (4.42) is heavily biased and the wavelet packet OLS estimate also
performs poorly when using a non-adaptive orthonormal basis. This basis mimics
frequency domain estimators of the SDF. When utilizing an adaptive orthonormal
basis, the wavelet packet OLS estimate of the fractional differencing parameter out-
performs both the log-periodogram and non-adaptive wavelet packet estimates. In
practice, the OLS estimator d̂OLS for Gegenabuer process should be restricted in its
use to input into a maximum likelihood procedure and not be regarded as a visable
estimator on its own.

• Approximate Maximum Likelihood Estimation of Gegenabuer Processes
We have provided an approximate maximum likelihood estimator for the fractional
differencing parameter of the long memory process. The DWT provides a simple
and effective method for approximately diagonalizing the covariance matrix of the
original process. We extend these results to the case of Gegenabuer process, where
two parameters d and ν define the SDF. The key point is to utilize the DWPT under
a particular choice of orthonormal basis B to approximately diagonalize the covari-
ance matrix of a Gegenabuer process.

Let x be a realization of a zero mean stationary Gegenbauer process with unknown
parameter d, ν and σ2

ε > 0. Recall that the likelihood function of x, under the
assumption of multivariate Gaussianity, is given by

L(d, ν, σ2
ε |x) = (2π)−N/2|Σx|−1/2exp[−1

2
xT Σ−1

x x]. (4.45)

The MLEs of the parameters d, ν, and σ2
ε are those quantities that maximize Equa-

tion (4.45). We avoid the difficulties in computing the exact MLEs by using the
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approximate decorrelation of the DWPT as applied to Gegenabuer process; that is,

Σx ≈ Σ̂x = WB
T ΩNWB

where WB is an N × N orthonormal matrix defining the DWPT through the basis
B and ΩN is a diagonal matrix containing the band-pass variances associated with
(j, n) ∈ B. The approximate likelihood function is now

L̂(d, ν, σ2
ε |x) = (2π)−N/2|Σ̂x|−1/2exp[−1

2
xT Σ̂−1

x x].

Hence we want to find values of d, ν and σ2
ε that minimize the log-likelihood func-

tion

L̃(d, ν, σ2
ε |x) = −2 log(L̂(d, ν, σ2

ε |x))−N log(2π) = log(|Σ̂x|) + xT Σ̂−1
x x.

We know that the variance for DWPT coefficients associated with the frequency
interval λj,n is given by Sj,n. We note that Sj,n depends on three parameters related
to the Gegenabuer process: the fractional difference parameter d, the Gegenbauer
frequency fG = cos−1(ν), and the variance σ2

ε . Let Sj,n(d, ν, σ2
ε) = σ2

εS
′
j,n(d, ν).

Since properties of diagonal and orthonormal matrices, the approximate log-likelihood
function may be rewritten as

L̃(d, ν, σ2
ε |x) = N log(σ2

ε) +
∑

(j,n)∈B
Nj log(S ′j,n(d, ν)) +

1

σ2
ε

[
∑

(j,n)∈B

wT
j,nwj,n

S ′j,n(d, ν)
].

(4.46)
Differencing Equation (4.46) with respect to σ2

ε and setting the result to zero, the
MLE of σ2

ε is found to be

σ̂2
ε =

1

N
[

∑

(j,n)∈B

wT
j,nwj,n

S ′j,n(d, ν)
].

Substituting σ̂2
ε into Equation (4.46), we obtain the reduced log-likelihood function

as follows:
L̂(d, ν|x) = N log(σ̂2

ε) +
∑

(j,n)∈B
Nj log(S ′j,n(d, ν)).

This estimation procedure differs from the frequency-based semiparametric estima-
tor of Arteche and Robinson (2000) by simultaneously determining MLEs for both
the fractional difference parameter and Gegenbauer frequency.

The estimation procedure outlined here has assumed only one singularity in the
spectrum of Xt. It is common to observe a fundamental frequency, say the annual
cycle, and several harmonics, such as cycles of two per year, and so on. These may
be included in the ML procedure by using the spectrum of a k-factor Gegenabuer
process. The likelihood function would then be a function of d = (d1, d2, · · · , dk),
Φ = (φ1, φ2, · · · , φk) and σ2

ε . Long memory may also be incorporated into the
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modeling by allowing one of the Gegenabuer frequencies to be zero. The fractional
difference parameter associated with this zero frequency would be constrained via
|d| ≤ 1/4, but the relation to a fractional differencing parameter of an FI(d) is 2d.
Finally, short memory may also be included by adding AR or MA terms to the spec-
trum of the model. Thus we allow ML estimation for parameters to cover a wide
variety of time series models involving long memory with seasonality.

The spectral density of the k-factor GARMA process is as follows:

SX(f) =
σ2

ε

2π

|Θ(eif )|2
|Φ(eif )|2

k∏
i=1

|4 sin(
f + fi

2
) sin(

f − fi

2
)|−2di , for f ∈ [0, 2π), (4.47)

where fi = cos−1(νi) (i = 1, · · · , k) are the k Gegenbauer frequencies. We have the
approximation of the spectral density as follows:

SX(f) ∼ C|f − fi|−2d∗i , when f → fi, (4.48)

where C is a strictly positive finite constant and

d∗ =

{
2di, if fi ∈ {0, π},
di, if 0 < fi < π.

Arteche (1998) carried out the generalized Robinson method with the trimming technique
to estimate di(i = 1, · · · , k) and proved the asymptotic behavior of the estimates.

For the k-factor GARMA model, the estimation method proposed by Chung (1996a, b) is
based on the minimization of the conditional sum of squared residuals (CSS). However,
parameter estimation of this class of process is delicate. Chung (1996a, b) showed that
the estimator of ν obtained by CSS minimization converges at a greater speed than the
other parameters. This rules out the use of gradient-based methods on the whole set of
parameters. It is therefore advisable to use an alternative method based on an incremental
search (or grid-search). This method is very slow if the grid-search corresponds to [−1, 1].
It is then more effective to restrict the search interval to a neighborhood of frequencies
relative to the strongest values of the periodogram. Chung demonstrated that the distri-
bution of the estimators of d, as well as that of a possible ARMA structure obtained by
minimization of the CSS function, is asymptotically normal. Parameter significance can
be tested by a significant Student test.

Recall that the Whittle estimator of θ = (d, ν, σ2
ε) is obtained by minimizing the fol-

lowing approximation of the log-likelihood function (see Beran 1994):

LW (X, θ) =
1

2π

∫ π

−π

(log(fX(λ, θ)) +
IT (λ)

fX(λ, θ)
)dλ, (4.49)

where fX(λ, θ) is the spectral density of the k-factor Gegenbauer process (Xt)t generating
the data, and IT (λ) is the periodogram defined by

IT (λ) =
1

2πT
|

T∑
t=1

eiλt(Xt − X̄T )|2,
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where X̄T is the empirical mean of the process, equal to zero in our case.

Under some classical conditions inherent to the Whittle estimation procedure, Giraitis
and Leipus (1995) proved the strong consistency of the Whittle estimator θ̂T , by using a
result of Hannan (1973). The limiting distribution of the Whittle estimator of Gegenbauer
process was proven by Diongue and Guégan (2004). The asymptotic Gaussian distribu-
tion of the Whittle estimator has been proved under some non-restrictive conditions, by
extending the proof of Yajima (1985) to the vectorial case.

It is worthwhile to note that the convergence rate of this pseudo maximum likelihood
estimate is greater than the convergence rate of the semiparametric estimate. While the
convergence rate of the conditional sum of squares (CSS) estimate of the Gegenbauer fre-
quency is O(T−1). Whitcher (2004) proposed a method to estimate the parameters of the
Gegenbauer processes using semiparametric method by wavelet transformation. He took
the logarithmic of the SDF of Gegenbauer process, yielding

log SX(f) = −2d log | cos f − ν|.
Thus, we obtained a simple linear regression of log ŜX(f) to estimate the long memory
parameter d, where ŜX(f) is an estimate of the true spectrum at each frequency.

4.2.2 Estimation for the Models with Fixed Seasonal Periodicity
Consider the simple model

(I −Bs)dXt = εt, (4.50)

where d is the fractionally differenced component and lies inside the interval (−1/2, 1/2),
εt is a white noise process, and s is the seasonal periodicity (e.g. s = 12 for monthly
series). The model in (4.50) is a direct analogue of the simple fractional differenced
model (4.23). The generalization of (4.50) to an autoregressive moving average (ARMA)
model with a fractionally differenced seasonal component is

Φ(B)(I −Bs)dXt = Θ(B)εt, (4.51)

where Φ(B) and Θ(B) are autoregressive and moving average polynomials (each con-
ceivably including seasonal components).

Porter-Hudak (1990) extended the results of Geweke and Porter-Hudak (1983) to the
model (4.51), considering the spectral density of the model (4.50),

SX(f) = σ2/2π(2(1− cos(sf)))−d. (4.52)

The natural extension of the non-seasonal technique given in Geweke and Porter-Hudak
(1983) is a regression of the log periodogram, log I(πj/T ), around the seasonal harmon-
ics, πsj/T (j = 1, 2, · · · , g(T )), for some choice of g(T ) such that the limit of g(T )/T
goes to 0 as T →∞,

log I(πj/T ) = φ0 − d log(2(1− cos(πjs/T ))), j = 1, 2, · · · , g(T ). (4.53)
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Consider a more general seasonal process. Porter-Hudak (1990) introduced the following
model, taking into account the presence of an infinite cycle as well as a given seasonality
with a certain persistence:

Φ(B)(I −B)d1(I −Bs)d2Xt = Θ(B)εt, (4.54)

whose spectral density is given by, for −π ≤ f ≤ π:

SX(f) =
σ2

2π
(2 sin(fs/2))−2d2(2 sin(f/2))−2d1 . (4.55)

The parameter estimation is generally done with the Geweke and Porter-Hudak (1983)
method, or GPH method. Two fractionally differenced components d1 and d2 could be
estimated in a multivariate regression setting, by considering the following regression:

log I(πj/T ) = φ0−d1 log(2(1−cos(πj/T )))−d2 log(2(1−cos(πjs/T ))), j = 1, 2, · · · , g(T ).
(4.56)

Unfortunately, this latter expression is asymptotically equivalent to log(πj/T ) = φ0 −
d1 log(πj/T ) − d2 log(πjs/T ) or log I(πj/T ) = φ − (d1 + d2) log(πj/T ). Hence both
d1 and d2 can not be identified (see Porter-Hudak, 1983).

4.3 Seasonal and/or Cyclical Asymmetric Long Memory
(SCALM) Models

By adding the asymmetry, Arteche and Robinson (2000) introduced the Seasonal and/or
Cyclical Asymmetric Long Memory model, or SCALM. They consider a semiparametric
approach using spectral density defined in the following way:

f(λ) ∼ C1|λ− ω| as λ → ω+, (4.57)
f(λ) ∼ C2|λ + ω| as λ → ω−, (4.58)

where ω ∈ (0, π] and for i = 1, 2,

0 < Ci < ∞, |di| < 1

2
, (4.59)

permitting
d1 6= d2, and/or C1 6= C2. (4.60)

Arteche and Robinson (2000) proposed an estimate of d1 and d2 based on a trimming
approach of the periodogram. A complementary approach for parameter estimation is
considered by Olhede, McCoy and Stephens (2004).
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Chapter 5

Estimation and Forecast for
Non-stationary Long Memory Processes

Stationarity has always played an important role in time series analysis. One reason is
that for stationary processes there exists a rich and elegant theory which allows for a
detailed investigation of the different methods used in statistical inference. As a conse-
quence, practitioners often try to use stationary methods even when the data clearly show
a non-stationary behavior, e.g. by taking differences or by looking at different segments
separately.

However, in some situations, the assumption that real world processes exhibit a constant
long memory structure may not be reasonable. Time-varying long memory characteristics
have been hypothesized or observed in telecommunications networks, physiological sig-
nals, seismic measurements, etc. To better capture the non-stationary behavior associated
with market collapses, political upheavals and new announcements, we need to study the
non-stationary models with the time-varying parameters.

It is difficult to develop a general non-stationary theory. On one hand, an asymptotic
theory is needed, since for example an investigation of a maximum likelihood estimate
for fixed sample size is much too complicated and will not lead to any satisfactory results.
On the other hand, a classical asymptotic theory with the assumption that more and more
observations of the future become available does not make sense since future observa-
tions of a general non-stationary process do not necessarily contain any information of
the structure at present.

It is well-known that the Fourier transform is well-equipped with its localized frequency
basis functions and spectral representation to deal with stationary time series, but its use in
non-stationary setting is not recommended. Whereas wavelet analysis is more appropri-
ate to analyze the time-varying behavior of non-stationary time series because it is well
localized both in time and scale. Compared with the study on wavelet applications of
stationary long memory processes, the wavelet-based work on non-stationary processes
is not so much. Here, in order to provide a consistent and robust procedure to estimate
the long memory parameters of non-stationary processes, we focus on wavelet techniques.
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Summarizing the time-varying nature through a constant long memory parameter, also
known as the Hurst coefficient H , yields a stationary model that does not capture its non-
stationary behavior. Gonçalvès and Abry (1997) estimated a local scaling exponent for a
continuous-time, multifractal, Brownian motion process characterized by a time-varying
Hurst coefficient H(t). Their method relies on the multiple window scalogram (squared
magnitude of the continuous wavelet transform) to estimate H(t). This involves con-
structing non-standard wavelets to compute the scalograms, which may hinder practical
implementation.

As far as we know, the existing work concerning the non-stationary processes is mostly
concentrated on the fractional integrated process (I − B)dXt = εt with a constant dif-

ferencing parameter d ∈ (
1

2
, 1) and the fractional model (I − B)d(t)Xt = εt with a

time-varying parameter function d(t) ∈ (−1

2
,
1

2
).

For the first case, many authors adopted the estimation method based on the Whittle
method, see for example Abadir et al. (2007), Beran and Terrin (1996), Moulines et
al. (1998), Phillips and Shimotsu (2000, 2004, 2006) and Velasco and Robinson (2000).
For the second case, the possibility that the long memory parameter d is not constant over
time is an interesting generalization of the usual FI(d) process. Veitch and Abry (1999)
developed a testing procedure for the time constancy of d, while Whitcher and Jensen
(2000) proposed an OLS estimator for a non-stationary FI(d) process, and Jensen and
Whitcher (2000) applied the OLS-based estimator to a year of high-frequency foreign ex-
change rates. Parameter estimation for a non-stationary long memory time series model,
through OLS or maximum likelihood, is in its infancy and should benefit greatly from
wavelet-based methods.

In the literature, in order to estimate the fractional differencing parameter of the processes
for which the spectrum has the singularity only at zero, the authors perform the orthonor-
mal discrete wavelet transform (DWT) to decorrelate the original time series (Jensen,
1999a, b; Cavanaugh et al., 2002). The band-pass structure of the DWT partitions the
spectrum finer and finer as the frequency tends to 0, where the spectrum is unbounded. It
is performed through a succession of low-pass and high-pass filtering operations.

For the long memory processes with seasonal terms, the spectral density function can ex-
plode at any frequency between 0 and π. We apply the discrete wavelet packet transform
(DWPT) instead of DWT which permits to approximately decorrelate the spectrum of the
process. To realize this approximate decorrelation, we resort to the minimum-bandwidth
discrete-time (MBDT) wavelets with length L (denoted by MB(L)), introduced by Morris
and Peravali (1999). It permits to approximately decorrelate the band-pass filter and to
choose the adaptive orthonormal basis (Whitcher, 2004).

Since there exists an OLS regression (4.43) to obtain the long memory parameter of the
Gegenbauer process, we will try to utilize this method in the estimation of non-stationary
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long memory processes with seasonalities, see Chapter 5 for details. And the approximate
likelihood estimation method for non-stationary long memory processes with seasonali-
ties is still under consideration.

5.1 Fractional Integrated Processes with a Constant Long
Memory Parameter

Moulines et al. (2008) considered a time series with memory parameter d ∈ R. This
time series is either stationary or can be made stationary after differencing a finite number
of times. They proposed a wavelet-based semiparametric pseudo-likelihood maximum
method estimator – the local Whittle wavelet estimator of the memory parameter d. They
also showed that the estimator is consistent and rate optimal if the process is linear, and
is asymptotically normal if the process is Gaussian.

In fact, the study of the estimation of long memory parameters in non-stationary long
memory processes is mostly focused on the fractional integrated process proposed by
Granger and Joyeux (1980) and Hosking (1981) to take into account the existence of non-
stationarity jointly with presence of persistence.

Consider the model
(I −B)dXt = εt, |d| ≥ 1

2
. (5.1)

Such fractional integrated process has been studied by Beran and Terrin (1996), Velasco
and Robinson (2000), Shimotsu and Phillips (2000, 2004, 2006), Abadir et al. (2007) and
Moulines et al. (2008), for instance. In these work, the authors applied Geweke-Porter-
Hudak (GPH) method, local Whittle method, exact local Whittle method, fully extended
local Whittle method, Whittle pseudo maximum likelihood method, wavelet-based local
Whittle method for estimating the parameter.

Considering the fractional integrated process (5.1), Phillips and Shimotsu (2001) found
that for the local Whittle (LW) estimator of the non-stationary fractional integrated pro-

cesses (|d| ≥ 1

2
), the asymptotic theory is discontinuous at d =

3

4
and d = 1. Thus it is

awkward to use the LW estimator because of non-normal limit theory and the estimator is
inconsistent when d > 1. And the LW estimator is not a good general purpose estimator

when the value of d may take on values in the non-stationary zone beyond
3

4
. Shimotsu

and Phillips (2002) proposed the exact local Whittle method for the estimation of the frac-
tional integration, which is applicable to the stationary and non-stationary processes. And

the estimator is shown to be consistent and to follow the N(0,
1

4
) limit distribution for all

values of d.

When d ∈ (−3

2
,∞), Abadir et al. (2007) investigated the properties of fully extended

local Whittle (FELW) estimator, which is applicable not only for the traditional cases but
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also for nonlinear and non-Gaussian processes. They showed that the estimator is consis-
tent and has the good asymptotic behavior.

Whittle pseudo-maximum likelihood estimates of parameters for stationary time series
have been found to be consistent and asymptotically normal in the presence of long range
dependence. Generalizing the definition of the long memory parameter d, Velasco and
Robinson (2000) extended these results to include possibly non-stationary (0.5 ≤ d < 1)
and anti-persistent (−0.5 < d < 0) observations. Using adequate data tapers , we can
apply this estimation technique to any degree of non-stationarity d ≥ 0.5 without prior
knowledge of the memory of the series.

5.2 Locally Stationary ARFIMA Processes
For the non-stationary long memory processes, some authors studied the processes with
time-varying long memory parameters instead of a constant long memory parameter. For
instance, a locally stationary ARFIMA model is studied in Jensen (1999a) and Whitcher
and Jensen (2000). They introduced the operator (I−B)d(t). And Cavanaugh et al. (2002)
investigated the self-similar processes, for example, the time-varying fractional Brownian
motion and the fractional Gaussian noise with the time-varying parameter. The authors
developed the estimation procedures based on wavelets techniques, succeeding in captur-
ing the local changes in the series.

Existing frequency-domain estimators of the long memory parameter depend on the Fourier
transforms localized in frequency. These estimators are incapable of addressing any time-
varying long memory behavior (see Geweke and Porter-Hudak, 1983; Fox and Taqqu,
1986) for two of the most popular frequency domain, long memory estimators). By def-
inition, the statistical properties of a non-stationary process are a function of time and
scale. Since the wavelet is localized in time, it is feasible to focus on a period where the
statistical properties of the non-stationary process are relatively stable and not affected
by observations with differing statistical properties. Hence, whereas Fourier analysis is
for the study of stationary processes, wavelet analysis is more suitable for the study of
non-stationary processes.

Whitcher and Jensen (2000) introduced a stochastic process defined Xt,T given by

Xt,T = (I −B)−d(t) Θ(B)

Φ(B)
εt ≡

∞∑
j=0

Γ[j + d(t)]

Γ(j + 1)Γ[d(t)]
Ψjεt−j, (5.2)

where d(t)(∈ (−1

2
,
1

2
)) is the time-varying fractional differencing parameter and εt is a

sequence of mean zero normal (Gaussian) random variables with variance σ2
ε . Here, B

denotes the lag (backshift) operator, that is Xt−j,T = BjXt,T , and Γ(·) is the gamma
function. The functions Θ(B) and Φ(B) are respectively p and q order polynomials
in the lag operator B, each with roots outside the unit circle, and Ψj is the solution to
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Ψjz
j =

Θ(z)

Φ(z)
. Called a locally stationary ARFIMA model, this long memory time series

model is a member of the non-stationary class of processes known as locally stationary
processes (Dalhaus, 1996).

Actually, we can rewrite the model (5.2) in the following form:

Φ(B)(I −B)d(t)Xt,T = Θ(B)εt. (5.3)

This process can be regarded as an extension of the ARFIMA model allowing the long
memory parameter to evolve over time.

The time-varying spectral density function for Xt,T is given by S(u, ω) ∼ ω−2d(u), where
u = t/T . If d(u) > 0, S(u, ω) is smooth for frequencies close to zero, but is unbounded
when ω = 0. In other words, the energy of Xt,T is concentrated over those frequencies
associated with long term cycles. If d(u) < 0, then S(u, 0) = 0 and Xt,T is a locally
stationary series that is anti-persistent. As a result of the time-varying long memory pa-
rameter, Xt,T will be smoother with less variation in its amplitude during time periods
where d(u) > 0. And Xt,T will have large fluctuations in its value when d(u) < 0.

The short memory parameter found in Θ(B) and Ψ(B) could be modeled as functions
of t. Since these parameters only affect the short-run dynamics of the process and our
main interest is to study the estimation of the long memory parameters, thus we can set
the short memory parameters to be zero.

Whitcher and Jensen (2000) extended Jensen (1999a)’s wavelet-based ordinary least squares
(OLS) estimator of long memory d to d(t), by using the cone of influence to determine the
location in time of the long memory estimate. They introduced an estimation procedure
for the fractional differencing parameter function of a particular model, locally station-
ary long memory processes. Instead of arbitrarily partitioning the data, they allowed the
support of the central portion of the wavelet filter to determine a scale-dependent window
for computing the local wavelet variance. The estimator is calculated via ordinary least
squares regression applied to the local wavelet variances. The wavelet-based estimator of
the local long-memory parameter is demonstrated using vertical ocean shear data.

Besides, Cavanaugh et al. (2002) considered the model (5.3) as a locally self-similar

process with the scaling function H(t) = d(t) +
1

2
, since many phenomena exhibit self-

similar patterns that change as the phenomenon itself evolves. They proved that the model
(5.3) is a locally self-similar process, then by applying the discrete wavelet transform and
by partitioning the time interval, they built the approximate log-linear relationship be-
tween the wavelet coefficients and the scale, and they carried out the OLS regression
on each partitioned subinterval, thus they obtained the local estimates of the scaling pa-
rameter function. After smoothing, they got the shape of the parameter function. And
they also proved the consistency of the estimator. Then several practical applications are
presented, for example in the data of the vertical ocean shear measurements, yearly wa-
ter levels for Nile river and Ethernet network traffic measurements, which illustrated that
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their wavelet-based method can quantify time-dependent self-similarity patterns that arise
in actual temporal and spatial series.

5.3 Locally Stationary k-factor Gegenbauer Processes
Long memory processes have been extensively studied over the past decades. When
we deal with the financial and economic data, seasonality and time-varying long-range
dependence can often be observed and thus some kind of non-stationarity can exist in-
side financial data sets. To take into account this kind of phenomena, we propose a new
class of stochastic process: the locally stationary k-factor Gegenbauer process. We de-
scribe a procedure of estimating consistently the time-varying parameters by applying
the discrete wavelet packet transform (DWPT). The robustness of the algorithm is in-
vestigated through simulation study. We propose also the forecast method for this new
non-stationary model.

Working with the existence of non-stationarity does not mean that we observe explo-
sions. Due to the existence of seasonalities inside data sets, the k-factor GARMA model
has been extensively applied in economics and finance, which was justified by Diebold
and Rudebush (1989), Sowell (1992), Gil-Alana and Robinson (2001), Carlin and Demp-
ster (1989), Porter Hudak (1990), Ray (1993), Franses and Ooms (1997), Arteche and
Robinson (2000), Arteche (2003), Darné et al (2004), Ferrara and Guégan (2001a, b) and
Gil-Alana and Hualde (2008), to name just a few.

Most of the applications within this framework assume that the data sets are stationary.
But in practice, series cannot always be made stationary even by transformation or some-
times it makes no sense to render the data sets stationary. Generally, that the underlying
process is mean-reverting can be useful in practice. Some examples can be found in ecol-
ogy for instance, Whitcher and Jensen (2000) and Cavanaugh et al. (2002).

In this part, we extend the k-factor Gegenbauer model assuming that the parameters di

evolve with time. Thus, we introduce a new model which is locally stationary taking
into account both the presence of persistence and the existence of seasonalities, and we
provide an estimation procedure adapted to this new class of models. We consider the
following model:

k∏
i=1

(I − 2 cos λiB + B2)di(t)yt = εt, (5.4)

where εt is a Gaussian white noise. In this model, the long memory parameter is time-
varying, thus the model is non-stationary, which can be regarded as piecewise stationary
process. In the spectrum of this model, we can also observe the explosions at non-zero
frequency, which indicates the seasonality.

We specify now why the locally stationary k-factor Gegenbauer model is well-defined
and the conditions which ensure the local stationarity. First of all, we remark that the
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operator
k∏

i=1

(I − 2 cos λiB + B2)di(t) permits to define the fixed frequencies λi of the

spectrum characterized by the time-varying long memory parameters di(t) (1 ≤ i ≤ k).
Then, we can expand the previous operator in the following way:

k∏
i=1

(I − 2 cos λiB + B2)di(t) =
∞∑

n=0

πn(t)Bn, (5.5)

and the coefficients πn(t) verify:

πn(t) =
∑

0 ≤ j1, · · · , jk ≤ n
j1 + · · ·+ jk = n

c
(−d1(t))
j1

(cos λ1) · · · c(−dk(t))
jk

(cos λk) (5.6)

in which c
(d(t))
k (x) are orthogonal Gegenbauer (or ultraspherical) polynomials defined on

[−1, 1]. Thus, we get the following proposition which ensures the existence and locally
stationarity conditions for the locally stationary k-factor Gegenbauer process.

Proposition 5.3.1. Let dj(t)(j = 1, · · · , k) be regular and nonzero functions satisfying
the condition

|dj(t)| <





1

2
, if 0 < λj < π

1

4
, if λj = 0 or π.

(5.7)

Then, there exists a unique solution for the locally stationary k-factor Gegenbauer model
which has the following representation

y(t) =
∞∑

n=0

ψn(t)ε(t− n). (5.8)

The coefficients ψn(t) verify:

ψn(t) = 2
∑

k:0<λk<π

D(k, t)
Γ(n + dk(t))

Γ(n + 1)Γ(dk(t))
cos(λkn + νk)

+
∑

k:λk=0 or π

D(k, t)
Γ(n + 2dk(t))

Γ(n + 1)Γ(2dk(t))
cos(λkn) + O(n−2+max{d∗1(t),··· ,d∗k(t)})

(5.9)

for any given time t, as n →∞, where

d∗k(t) =

{
dk(t), if 0 < λk < π
2dk(t), if λk = 0 or π,

νk(t) = λk

k∑
j=1

dj(t)− π

k−1∑
j=1

dj(t)− dk(t)
π

2
,
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and

D(k, t) =





|2 sin λk|−dk(t)
∏

j 6=k

|2(cos λk − cos λj)|−dj(t), if 0 < λk < π.

∏

j 6=k

|2(cos λk − cos λj)|−dj(t), if λk = 0 or π.

The prove of the proposition can be referred to in the Appendix.

This proposition ensures that the locally stationary k-factor Gegenbauer process is well-
defined since every L2 functions can be approximated by regular functions. Thus, for
the locally stationary k-factor Gegenbauer process, the parameters di(t) evolve with time
and, at each time di(t) are constant. Therefore locally, the locally stationary k-factor
Gegenbauer model corresponds to the stationary k-factor Gegenbauer process.

5.3.1 Procedure for Estimating di(t)

In the stationary case, estimation methods for long memory models with seasonalities
have been developed using semiparametric methods (Robinson, 1995; Chung, 1996a, b;
Arteche and Robinson, 2000; Diongue et al., 2004).

In this part, we develop a procedure based on wavelet method in order to estimate the
time-varying long memory parameter di(t). We focus on wavelet method to investigate
properties of this new model using the discrete wavelet packet transform (DWPT) which
permits to approximately decorrelate the spectrum of the process. We first establish an ap-
proximate log-linear relationship between the time-varying wavelet variance of the DWPT
coefficients and the time-varying long memory parameter di(t). Finally we apply locally
the OLS regression method to obtain local estimates of the time-varying parameters. Our
method may be regarded as an extension of the log-linear regression techniques proposed
by Whitcher (2004). It can also be considered as an extension of the estimation technique
of locally self-similar parameters proposed by Cavanaugh et al. (2002).

5.3.2 Estimation Procedure
First, we assume that the sample size is dyadic (N = 2J ), otherwise we repeat the last
data value several times to achieve such a sample size.

In the first step, we are restricted to a locally stationary 1-factor Gegenbauer model and
we assume that we observe yt (t = 1, · · · , N ), such that:

(I − 2νB + B2)d(t)yt = εt, (5.10)

(εt)t being a Gaussian white noise. We assume that the time-varying fractional differenc-
ing parameter is such that |d(t)| < 1/2, B is the backshift operator, yt−j = Bjyt. In order
to estimate d(t), providing an asymptotic theory, we need to make N tend to infinity. To
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avoid instability of d(t), we suppose that we observe d(t) on a finer grid (making d(t)
rescaled on [0, 1]), that we observe (yt,N) such that:

(I − 2νB + B2)d(t/N)yt,N = εt. (5.11)

Letting N tends to infinity means that we have in the sample y1,N , · · · , yN,N more and
more observations for each value of d(t).

Now, we are going to characterize this local stationary process through its spectral den-
sity: this tool is superior in presence of seasonalities, to the autocovariance function.

The stochastic process defined in (5.10) is a Gegenbauer process that is locally stationary
in the sense of Dalhaus (1996a), with realizations of length N . Its spectral density is such
that:

fN(λ) =
σ2

εt

2π

1

(2|cosλ− ν|)2d(t/N)
, −π

2
< λ <

π

2
. (5.12)

As the process yt,N is non-stationary, increasing the number of observations by measuring
new realizations of the process tells us nothing about the process’ behavior at the begin-
ning of the period. As a result, we fix the time period and we liken it to measuring the
process at higher and higher levels of resolution on a fixed time interval along with the
increase of N .

The spectral density for the process (5.11) is an even, 2π-periodic function that is uni-
formly Lipchitz continuous in t/N ∈ [0, 1]. The time-varying spectral density function is
given by:

fN(λ) ∼ (2|λ− cos−1 ν|)−2d(t/N), as λ → cos−1 ν.

Then, if d(t/N) > 0, fN(λ) is smooth for frequencies around cos−1 ν, but is unbounded
when λ → cos−1 ν. In other words the behavior of yt,N is concentrated over the frequency
associated with seasonality. This behavior can be extended to the case where we have
several explosions inside the spectral density. This means that, on the interval [0, N ], we
observe the locally stationary k-factor Gegenbauer process:

k∏
i=1

(I − 2νiB + B2)di(t/N)yt,N = εt, (5.13)

where εt is Gaussian white noise with the time-varying spectral density:

fN(λ) =
σ2

εt

2π

k∏
i=1

(2| cos λ− νi|)−2di(t/N). (5.14)

For the locally stationary 1-factor Gegenbauer process defined in (5.11), its time-varying
spectral density is expressed in Equation (5.12). Thus by applying the logarithmic trans-
form to both sides of Equation (5.12), we get

log fN(λ) = C − 2d(
t

N
) log 2| cos λ− ν|, −π

2
< λ <

π

2
. (5.15)
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This suggests a simple regression of log fN(λ) on log 2| cos λ − ν| to estimate the frac-

tional difference parameter function d(
t

N
). For convenience, we approximate (5.15) by

the following relationship:

log fN(λ) ≈ C − 2d(
t

N
) log 2|λ− cos−1(ν)|, −1

2
< λ <

1

2
. (5.16)

Thus, we partition the time interval [0, 1) into 2l (0 < l < J − 1) non-overlapping
subintervals as follows:

Ih = [h2−2l, (h + 1)2−2l), h = 0, · · · , 2l − 1.

On each subinterval, we suppose that the time-varying parameter d(
t

N
) is locally con-

stant, i.e., the process (yt,N)t is locally stationary on each subinterval Ih = [h2−2l, (h +
1)2−2l), h = 0, · · · 2l−1. Since the time-varying wavelet variance provides an estimate of
the spectral density function, the logarithmic transformation of the variance of the wavelet
coefficients provides the following log-linear relationship, for i = 1, · · · , k:

log σ2
i (λj,n, t) = αi(t) + βi(t) log 2| cos µj,n − νi|, (5.17)

where σ2
i (λj, n, t) is the variance of the DWPT coefficients Wj, n associated, at time t, with

the frequency interval λj, n = (
n

2j+1
,
n + 1

2j+1
] (where n = 0, · · · , 2j − 1; j = 0, · · · , J − 1);

µj, n is the midpoint of the interval λj, n; βi(t) is the slope of the log-linear relationship at
time t. Denote that di(t) = −βi(t)/2. Now we apply locally the following approximation
of the Equation (5.17) in order to estimate di(t):

log σ2
i (λj,n, t) = αi(t) + βi(t) log 2|µj,n − cos−1(νi)|+ ui(t), (5.18)

where ui(t) is a sequence of correlated random variables (we follow Arteche and Robin-
son (2000)’s methodology).

5.3.3 Procedure for Estimating di(t) (i = 1, · · · , k)
Using the previous filtering, we present a general procedure for estimating the time-
varying parameter functions di(t) (i = 1, · · · , k), of the model (5.13). We assume that the
sample size is dyadic (N = 2J ). We detail the different steps in order to estimate di(t).

1. We first detect the Gegenbauer frequency λ1 which corresponds to the highest ex-
plosion in the periodogram: ν1 = cos(λ1). This frequency is fixed all along the
procedure.

2. We compute the DWPT coefficient vectors Wj, n of length Nj through the formula
(3.14), where j = 0, · · · , J − 1; n = 0, · · · , 2j − 1.
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3. We associate to the vector Wj, n an adaptive orthonormal basis B, such that the
squared gain function of the wavelet filter associated with Wj, n is sufficiently small
at the Gegenbauer frequency. Practically, we define Uj, n(f) = |Uj, n(f)|2 to be
the squared gain function for the wavelet packet filter uj, n, l, where Uj, n(f) is the
discrete Fourier transform (DFT) of

uj, n, l =

Lj−1∑

k=0

un, kuj−1, [n
2
], l−2j−1k, l = 0, · · · , Lj − 1,

with u1, 0, l = gl, u1, 1, l = hl and Lj = (2j − 1)(L − 1) + 1, gl and hl being the
scaling filter and the wavelet filter defined as before.

4. The basis selection procedure involves selecting the combination of wavelet basis
functions such that Uj, n(f1) < ε for some ε > 0 at the minimum level j. However,
the method of basis selection is not unique and the basis is not unique either. We
apply the white noise tests like the portmanteau test to determine the best adaptive
orthonormal basis that decorrelates the observed time series.

5. We partition the sampling interval [0, 1) into 2l non-overlapping subintervals of
equal length, where l is an integer chosen such that 0 < l < (J − 1). ”l” depends
on the length of the data and the required precision. The 2l subintervals are as
follows

Ih = [h2−l, (h + 1)2−l), where h = 0, · · · , 2l − 1.

6. We locate the DWPT coefficients Wj,n,K on each subinterval Ih. In order to con-
struct the local estimates for the time-varying long memory parameter d1(t), we
proceed according to the Heisenberg uncertainty principle: every DWPT coefficient
vector is mapped to a rectangle (Heisenberg box) defined in the time-frequency
plane with the boxes completely covering the plane.

7. Since the DWPT coefficient vector Wj, n = (Wj, n, K) corresponds to the frequency

interval λj, n = (
n

2j+1
,
n + 1

2j+1
], we obtain the corresponding time interval on the

time-frequency plane with the width of Wj, n is 2j/N . Whereas, the length of the
vector Wj,n is Nj . Therefore, we partition the elements of the vectors Wj,n with
equal length Nj/2

l = 2J−j−l and attach them sequently to the subintervals Ih.

8. On each subinterval Ih (h = 0, · · · , 2l − 1), we consider the bivariate collection of
data

{(log 2|µj,n − cos−1(ν1)|, log σ2
1(λj, n)) | 0 ≤ n ≤ 2j − 1; 0 ≤ j ≤ J − 1},

then we get the approximate log-relationship (5.18). On each subinterval Ih, we
carry out the ordinary least squares (OLS) regression to get the local estimates for
the slope β1(t). Thus we obtain 2l local estimates for the parameter β1(t). Since

d̃1(t) = − β̃1(t)

2
, we get 2l local estimates for the parameter d1(t).
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9. We omit the first and the last estimates to avoid the boundary effects. We associate
the time index for d̃1(t) to the interval Ih by the midpoint of Ih, i.e. 2−l−1(2h + 1),
and we smooth the estimated 2l points by two local polynomial methods: spline
method and loess (locally weighted scatter plot smoothing) method. Thus, we ob-
tain two smoothed curves d̂1(t) from the local estimates which approximate the true
parameter curve.

10. The above steps (1-9) permit to get the estimate of d̂1(t) and ν̂1 for the correspond-
ing Gegenbauer frequency λ̂1.

11. Now, we proceed in the same way to estimate the other Gegenbauer frequencies
and their corresponding time-varying long memory parameters. First we calculate
y1

t,N := (I − 2ν̂1B + B2)d̂1(t)yt,N , where d̂1(t) and ν̂1 are obtained in the previous
steps. We need to interpolate some points such that the vector d̂1(t) is of length N ,
due to the fact that the number of points on the smoothed curves is less than N if
we adopt the loess smoothing method, for instance.

12. We repeat the above steps 1 to 9 on the vector y1
t,N , then we get the estimate d̂2(t))

and ν̂2 associated to the frequency λ̂2.

13. We proceed in the same way for other Gegenbauer frequencies until the (k + 1)-th
step providing the white noise (εt)t.

At the end, there is no more peak in the periodogram, and we have k pairs of estimations
for the Gegenbauer frequencies and parameter functions.

5.3.4 Consistency for Estimates d̂i(t) (i = 1, · · · , k)

In this subsection, we study the properties of the estimates d̂i(t) (i = 1, · · · , k). To
get d̂i(t), we have previously established a linear regression between the variance of the
DWPT wavelet coefficients Wj,n,t and the long memory parameters di(t). Some similar
approaches have been developed, in a stationary setting, by Geweke and Porter-Hudak
(1983), Robinson (1995), Hurvich and Beltrao (1993) and Arteche (1998). And they ob-
tain the consistency of the constant long memory parameter di. We will follow here the
same method.

We have introduced the spectral density for the process (yt,N)t in (5.14). We will assume
that the assumptions A1 - A2 and A4 - A5 introduced in Arteche (1998) are verified for
fN(λ) defined in (5.14). The assumptions A1 and A2 specify the local behavior of the
spectrum. The assumption A4 corresponds to the "trimming" condition introduced first in
Robinson (1995). Now, under these assumptions and in the case of a 1-factor stationary
Gegenbauer model, the asymptotic normality of the long memory parameter is obtained.

Lemma 5.3.2. Consider the Gegenbauer model (I − 2ν1B + B2)d1yt = εt with the
previous assumptions A1 - A2 and A4 - A5. Let d̂1 be the least squares estimate of d1
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obtained from the following regression:

log I(ω + λj) = c + d1(−2 log λj) + uj, j = l + 1, · · · ,m, (5.19)

where c = log C − η, η is the Euler’s constant η = 0.5772 · · · ,
uj = log(

I(ω + λj)

Cλ−2d1
j

)+η, λj =
2πj

n
are Fourier frequencies and I(λ) is the periodogram.

Then
2
√

m(d̂1 − d1) →d N(0,
π

6
).

This lemma has been proved by Arteche (1998).

Now we consider the locally stationary 1−factor Gegenbauer process (I−2νB+B2)d1(t)yt =
εt. The parameter d(t) has been locally estimated on a sequence of subintervals Ih

(h = 0, · · · , 2l − 1) treating locally as the stationary process, then we get

∀h,
√

m(β̂1(h)− β1(h)) →d N(0,
π

6
), h = 0, 1, · · · , 2l − 1.

Since d̃1(t) = − β̃(t)

2
, we have

∀h,
√

m(d̃1(h)− d1(h)) →d N(0,
π

24
), h = 0, 1, · · · , 2l − 1.

In order to get a smoothed curve for d̂1(t), we have smoothed the 2l independent estimates
(d̃1(0), · · · , d̃1(2

l − 1)) using two local polynomial methods: spline method and loess
method, i.e., there exists a set of basis function ω̂h(t) satisfying that there exists a constant

C such that (
2l−1∑

h=0

ωh(t)
2 = C < ∞) and

d̂1(t) =
2l−1∑

h=0

ω̂h(t)d̃1(h).

Thus E[d̂1(t)] =
2l−1∑

h=0

ω̂h(t)E[d̃1(h)] = 0, and V ar[d̂1(t)] = V ar[
2l−1∑

h=0

ω̂h(t)d̃1(h)] =

(
2l−1∑

h=0

ω̂h(t))
2V ar[d̃1(h)] = C

π

24
≡ C1. Assuming that N tends to infinity, thus l tends to

infinity, we can apply the central limit theorem and get the following result:
√

m(d̂1(t)− d1(t)) →d N(0, C1).

This result is still true for all the time-varying parameters di(t)(i = 1, · · · , k), of a locally
stationary k-factor Gegenbauer process.
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5.4 Simulation Experiments
In this section, we carry out some Monte Carlo simulations to establish the robustness of
the estimation of the parameter function di(t) using wavelet approach, for finite samples.
We focus on the model (5.10) with (εt)t, a Gaussian noise:

(I − 2νB + B2)d(t)y(t) = ε(t). (5.20)

We consider the constant, linear, quadratic, cubic, exponential and logarithmic functions
d(t) as follows:

1. d(t) is constant: d0(t) = 0.3;

2. d(t) is linear: d1(t) = 0.2t + 0.1;

3. d(t) is quadratic: d2(t) = 0.3(t− 0.5)2 + 0.1;

4. d(t) is cubic: d3(t) = 0.4(t− 0.5)3 + 0.3;

5. d(t) is exponential: d4(t) = 0.01 exp (2t) + 0.3;

6. d(t) is logarithmic: d5(t) = 0.1(log(10t + 0.5) + 1.0).

For convenience, we assume that the observed data points [y1, · · · , yN ]T are equally
spaced on the time interval and are scaled on the time interval [0, 1), using the transfor-

mation ti =
i− 1

N
(where i = 1, · · · , N = 2J ). In our examples, we use N = 4096 = 212

(J = 12) and the Gegenbauer frequency cos−1ν = λG =
π

3
.

For the estimation procedure, we use the MB(16) wavelet filter (L = 16), and we choose
the adaptive orthonormal basis using portmanteau test with p = 0.01. We partition the
sampling interval [0, 1) into 26 = 64 subintervals (l = 6) and, we get 64 local estimates
for d(t). Finally, we smooth the estimates using two local polynomial methods, spline
method and loess method. We replicate the simulations 100 times for each locally sta-
tionary 1-factor GARMA process (5.10) with the two previous functions d(t). We carry
out the code on the computer Mac OS X 10.5.1 Léopard, written in language R with the
help of the package "waveslim".

We denote (y0,t)t, · · · , (y5,t)t, the process (5.10) for constant, linear, quadratic, cubic,
exponential and logarithmic parameter functions expressed in the beginning of this part.
For each process, we provide the trajectories, the autocorrelation function, spectrum and
the estimated curves smoothed by spline method and loess method together with the true
functions of d(t), see in from Figure 5.1 to Figure 5.24 for more details.

In Table 5.1, numerical results for the six models (y0,t)t, (y1,t)t, (y2,t)t, (y3,t)t, (y4,t)t and
(y5,t)t are provided with 100 times replication. We give the mean of the estimated Gegen-
bauer frequencies, mean of the bias and that of the RMSE for d̂(t) using 100 simulations.
We deduce that:
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Gegenbauer frequency cos−1 ν bias of d̂(t) RMSE of d̂(t)
y0,t 0.333403 spline: -0.159373 spline: 0.174109

loess: -0.120514 loess: 0.127925
y1,t 0.33262 spline: -0.115436 spline: 0.126721

loess: -0.089052 loess: 0.095458
y2,t 0.335110 spline: -0.006068 spline: 0.039389

loess: -0.001749 loess: 0.032570
y3,t 0.333198 spline: -0.166090 spline: 0.178187

loess: -0.123020 loess: 0.130845
y4,t 0.333235 spline: -0.169756 spline: 0.185885

loess: -0.122901 loess: 0.131963
y5,t 0.333284 spline: -0.171724 spline: 0.185447

loess: -0.133765 loess: 0.138645

Table 5.1: Estimation of Gegenbauer frequencies, bias and RMSE of (y0,t)t, (y1,t)t, (y2,t)t,
(y3,t)t, (y4,t)t, (y5,t)t.

1. Each estimated curve approximates the general shape of the time-varying parameter
function. The rebuilding of the curve smoothed using the loess method appears
better than that using the spline method.

2. The estimations of the Gegenbauer frequencies have quite small bias. The small
values for the bias and the RMSE of the estimated parameter suggest that our algo-
rithm is robust. Comparing the two smoothing methods, we find that in most cases,
the loess method performs a little better than the spline method.
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Figure 5.1: Sample path of (y0,t)t

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

Series  y

Figure 5.2: ACF of (y0,t)t
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Figure 5.3: Spectrum of (y0,t)t
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Figure 5.4: d̃0(t) (smoothed by spline and loess method) for (y0,t)t
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Figure 5.6: ACF of (y1,t)t
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Figure 5.7: Spectrum of (y1,t)t

5.5 Forecast for Non-stationary Processes
There exists much literature concerning the forecast for stationary processes, see for ex-
ample, Geweke and Porter-Hudak (1983), Barkoulas and Baum (1997), Noakes et al.
(1988), Ray (1993a), Smith and Yadav (1994), Crato and Ray (1996), Brodsky and Hur-
vich (1999), etc.

As for the forecast of non-stationary process, to our knowledge, there exists almost no
literature for reference. In this thesis, since we proposed a new non-stationary process
together with a consistent and robust wavelet-based estimation procedure, it is necessary
to give out a method of the forecast for this new model.

It is known that the best prediction on a horizon h for a time series yt is in the sense
of the minimum mean squared error (MSE). The forecast provided by the predictor of
least squares method is given by the following expression:

ŷt(h) = E(yt+h|It), where It = σ(ys, s ≤ t).

We assess the predictive ability of the model by considering the root mean square error
(RMSE) of prediction. The criteria are defined as follows:

RMSE =

√√√√1

h

h∑

l=1

(yt+l − ŷt(l))2,

where h is the forecast horizon and ŷt(l) is the predicted value of yt+l, see Priestley (1981)
for reference.
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Figure 5.8: d̃1(t) (smoothed by spline and loess method) for (y1,t)t
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Figure 5.10: ACF of (y2,t)t
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Figure 5.11: Spectrum of (y2,t)t

Now, we consider the forecast for non-stationary processes, especially the locally sta-
tionary k-factor Gegenbauer process that we have proposed:

k∏
i=1

(I − 2 cos λiB + B2)di(t)yt = ε(t), (5.21)

where (εt)t is white noise with variance σ2
ε .

Our strategy for the prediction of the locally stationary k-factor Gegenbauer process is
as follows:

1. Make the n-step-ahead forecast for the long memory parameter functions d̂t(h) =
E(d(t + h)|It), where It = σ(d(s), s ≤ t).
We start from the estimations of d̂i(t) obtained by the wavelet-based algorithm
which are smoothed by spline method and loess method. It is the prediction for the
estimated polynomial curves.

2. Calculate yt using the Equations (5.5) and (5.6).

In detail, suppose that we have the series y1, · · · , yT which has been modeled by the
locally stationary k-factor Gegenbauer process (5.21), and the estimated time-varying
parameters are d̂i(t), t = 1, · · · , T . First we make the n-step-ahead forecasts d̂i(T + h)
(h = 1, · · · , n) for the time-varying long memory parameters. One smoothed curve is
obtained by the cubic smoothing spline method. We predict a smoothing spline fit at
new points. The predicted fit is linear beyond the original data. The other smoothed
curve is obtained by the loess method using local fitting by fitting a polynomial surface
determined by one or more numerical predictors. According to the results of Monte Carlo
experiments, when the degree of smoothing is 0.75, the estimation behavior seems to
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Figure 5.12: d̃2(t) (smoothed by spline and loess method) for (y2,t)t
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Figure 5.14: ACF of (y3,t)t
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Figure 5.15: Spectrum of (y3,t)t

be the best for the loess method with comparison to the other degrees of smoothing.
And a few iterations of an M-estimation procedure with Tukey’s biweight are used to
achieve the forecast of d̂(t). Then we obtain the forecast ŷT+h (h = 1, · · · , n) using the
orthogonal Gegenbauer coefficients. To justify the behavior of the forecast, we measure
the corresponding bias and RMSE.
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Figure 5.16: d̃3(t) (smoothed by spline and loess method) for (y3,t)t
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Figure 5.18: ACF of (y4,t)t
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Figure 5.19: Spectrum of (y4,t)t
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Figure 5.20: d̃4(t) (smoothed by spline and loess method) for (y4,t)t
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Figure 5.22: ACF of (y5,t)t
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Figure 5.23: Spectrum of (y5,t)t
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Figure 5.24: d̃5(t) (smoothed by spline and loess method) for (y5,t)t
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Chapter 6

Applications

This chapter is concerned with the application results of the financial and energy data,
applying the estimation theory of stationary and non-stationary long memory processes.
In particular, for these two series, we apply the new non-stationary model and wavelet-
based estimation method that we proposed in Chapter 5. Then we make the predictions.

6.1 Nikkei Stock Average 225 Index Data

6.1.1 Data Set
Many authors have made the applications on the stock markets, for example, Dufrénot et
al. (2005a) and Ferrara and Guégan (2001a). In this section we consider the Nikkei Stock
Average 225 (NSA 225) spot index and futures price which correspond to 4096 daily
observations of the spot index and the futures price of the NSA 225, covering the period
from January 2nd 1989 to September 13rd 2004. Daily closing values of the spot index
and the settlement prices of the futures contracts are used. The regular futures contracts
mature in March, June, September and December. For further details on the futures price
series, we refer to Lien and Tse (1999). Data sets are available from Thomson data stream.

6.1.2 Modeling
Figure 6.1 represents the daily spot index and daily futures prices from January 2nd 1989
to September 13rd 2004. (St)t denotes the logarithm of the spot price and (Ft)t the
logarithm of the futures price. Lien and Tse (1999) assumed that (St)t and (Ft)t were
both integrated of order one and they modeled the relationship between (St)t and (Ft)t

using an error correction model (ECM), proposed by Engle and Granger (1987). Current
prices are affected by the past prices and error correction term and the authors used the
following relationship:

∆St = φ0 +

p∑
i=1

φi∆St−i +

q∑
j=1

ψj∆Ft−j + γZt−1 + εSt , (6.1)

where (Zt)t is such that Zt = Ft − St, for t = 1, · · · , T . Figure 6.2 represents the error
correction term (Zt)t, which is the difference between the log futures prices and the log
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spot prices.

Our aim is to model the error correction term (Zt)t using the non-stationary model and
the method that we have developed in Chapter 5. Indeed, Lien and Tse (1999) and Fer-
rara and Guégan (2001b) have already considered this problem using stationary models
on a shorter period (from January 1989 to August 1997 and from May 1992 to August
1996 respectively). In the error correction model (ECM) of Lien and Tse (1999), the spot
prices and futures prices are integrated of order one but the bias (the difference between
the futures price and the spot indexes) is fractionally integrated. Whereas, Ferrara and
Guégan (2001b) modeled the bias in the ECM by stationary Gegenbauer process, which
has been proved to be more efficient than the modeling proposed by Lien and Tse (1999).

However, what we consider is an even longer time period of data set, which is not neces-
sarily globally stationary. Since we observe the existence of volatility in (Zt)t, it seems
appropriate to model the series (Zt)t by non-stationary model with time-varying parame-
ters. In the following, we propose to model the series using the locally stationary k-factor
GARMA process.

In the first step, we use the wavelet multiresolution analysis to remove the time-varying
mean. For this purpose, we apply the Maximal Overlap Discrete Wavelet Transform
(MODWT) (J=6) with a Daubechies least asymmetric (LA(8)) wavelet filter and per-
form the multiresolution analysis, which is shown in Figure 6.3. The wavelet details,
D1, · · · , D6, exhibit the zero mean, while the wavelet smooth S6, associated with the low
frequency [0, 1/64], captures the trend of the series. To remove the time-dependent mean,
we ignore the wavelet smooth and sum up the six wavelet details. We get the residuals:
Zt − S6,t where S6,t is the wavelet smooth. Thus, the residuals still keep the periodicity
in the original data.

In the second step, we estimate the Gegenbauer frequency λ̂G = 0.015 which corre-
sponds to the highest explosion in the periodogram. Thus, we apply the DWPT on the
residuals Zt − Z6,t, choosing the orthonormal basis, locating the DWPT coefficients on
the evenly partitioned 64 subintervals, calculating locally the variance, and carrying out
the approximate OLS regression on each subinterval. Then, we smoothed the local esti-
mated points of the long memory parameter by spline and loess method, without taking
into account the first and last estimated points to avoid the boundary effects.

Thus, we fit the residuals by the following model:

(I − 2× 0.995B + B2)d̂(t)(Zt − S6,t) = εt, (6.2)

where d̂(t) is the estimated curves presented in Figure 6.4, ν = 0.995 = cos(2πλ̂G) and
S6,t is the wavelet smooth obtained by the multiresolution analysis indicated in Figure 6.3.
The thin real curve is the estimated parameter function obtained by spline smoothing, and
the thick real curve is smoothed by loess method. In Figure 6.4, we can also observe
the estimation results in dashed line and dotted line using another two semi-parametric
methods, Robinson method (1995) and Whittle method (1951), treating the parameter
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Figure 6.1: Trajectory of NSA 225 index (02/01/1989-13/09/2004)

function as a constant in the model 6.2. Comparing our result with that in Ferrara and
Guégan (2001b) on the same time period, we get similar behavior, while our result cap-
turing more precisely the local changes.

Therefore, the new model and the new method that we developed in Chapter 5 permit
to extend the other authors’ work by capturing the local characteristics, which indicates
the advantages of our methodology. Indeed, on a shorter time period, it seems to be rea-
sonable to assume the stationarity for the series. However on a longer time period, since
general stationarity is not always satisfied, it seems to be more appropriate to consider the
non-stationary processes and the time-varying parameters and to work locally.
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Figure 6.4: d̃(t) smoothed by spline and loess method
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h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7
Bias 23.30081 23.06577 23.26697 22.83360 22.88856 23.30048 23.20274

RMSE 0.465407 0.3278092 0.2697851 0.2288531 0.2071427 0.1911432 0.1750827

Table 6.1: The relative results of the h-step-ahead predictions on the error correction
term in the ECM of NSA 225 index data using the locally stationary 1-factor Gegenbauer
model (parameter function smoothed by spline method).

6.1.3 Forecast
In the previous part, we have modeled the error correction term in the ECM of the NSA
225 index by the locally stationary 1-factor Gegenbauer process. Now we turn to the
forecast of the model. According to the forecast theory described in Chapter 5, what is
critical is to forecast the time-varying long memory parameter function d̂(t) in the model.

Using the strategy that we described in Chapter 5, first of all, we make the the h-step-
ahead (h = 1, · · · , 7) forecasts for d̂(t) smoothed by spline method and that by loess
method. Once we obtain the h-step-ahead predictions for d̂(t), we can deduce the h-step-
ahead predictions for Zt. We present in the following the prediction results according to
the smoothing method for the estimated long memory parameter functions.

• The first case: the parameter function is obtained by the spline smoothing.

We first make the h-step-ahead forecasts for d̂(t) (h = 1, · · · , 7). We can ob-
serve the predictions for d̂(t) in Figure 6.5 (h = 1), Figure 6.6 (h = 2), Figure 6.7
(h = 3), Figure 6.8 (h = 4), Figure 6.9 (h = 5), Figure 6.10 (h = 6) and Figure
6.11 (h = 7). Then we utilize these results to forecast the error correction term
Zt. Figure 6.12 (h = 1), Figure 6.13 (h = 2), Figure 6.14 (h = 3), Figure 6.15
(h = 4), Figure 6.16 (h = 5), Figure 6.17 (h = 6) and Figure 6.18 (h = 7) are the
corresponding predictions for Zt.

From the graphs, there seems to exist some differences between the true trajec-
tory (see in Figure 6.2) and the predicted trajectory. To our understanding, it is to
some extent due to the different scales in the graphs. To have a more clear idea of
our forecast, we need to refer to the criteria of the forecast. In Table 6.1, the bias
and the RMSE of the h-step-ahead predictions are presented. We find that although
Zt is a long series with the length 4096, the bias and the RMSE are quite small,
which is really satisfying.

• The second case: the parameter function is smoothed by the loess method.

We first make the h-step-ahead forecast for d̂(t) (h = 1, · · · , 7). We can observe
the predictions for d̂(t) in Figure 6.19 (h = 1), Figure 6.20 (h = 2), Figure 6.21
(h = 3), Figure 6.22 (h = 4), Figure 6.23 (h = 5), Figure 6.24 (h = 6) and Figure
6.25 (h = 7). Then we utilize these results to forecast the error correction term Zt,
using the strategy described in the previous Chapter. In Figure 6.26, Figure 6.27,
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Figure 6.5: NSA: 1-step-ahead forecast for d̃(t) smoothed by spline method
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Figure 6.6: NSA: 2-step-ahead forecast for d̃(t) smoothed by spline method
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Figure 6.7: NSA: 3-step-ahead forecast for d̃(t) smoothed by spline method
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Figure 6.8: NSA: 4-step-ahead forecast for d̃(t) smoothed by spline method
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Figure 6.9: NSA: 5-step-ahead forecast for d̃(t) smoothed by spline method
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Figure 6.10: NSA: 6-step-ahead forecast for d̃(t) smoothed by spline method
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Figure 6.11: NSA: 7-step-ahead forecast for d̃(t) smoothed by spline method
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Figure 6.12: 1-step-ahead forecast
for the error term in the ECM
of NSA 225 index (smoothed by
spline method).
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Figure 6.13: 2-step-ahead forecast
for the error term in the ECM
of NSA 225 index (smoothed by
spline method).
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Figure 6.14: 3-step-ahead forecast
for the error term in the ECM
of NSA 225 index (smoothed by
spline method).
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Figure 6.15: 4-step-ahead forecast
for the error term in the ECM
of NSA 225 index (smoothed by
spline method).
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Figure 6.16: 5-step-ahead forecast
for the error term in the ECM
of NSA 225 index (smoothed by
spline method).
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Figure 6.17: 6-step-ahead forecast
for the error term in the ECM
of NSA 225 index (smoothed by
spline method).

Time

Z
Z

0 1000 2000 3000 4000

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

0.
03

7−step−ahead forecast

Figure 6.18: 7-step-ahead forecast
for the error term in the ECM
of NSA 225 index (smoothed by
spline method).
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h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7
Bias 21.30018 21.20002 21.2284 20.79552 21.42539 21.4057 21.49394

RMSE 0.4323617 0.3029903 0.2462552 0.2110108 0.1936811 0.1756666 0.1647264

Table 6.2: The relative results of the h-step-ahead predictions on the error correction
term in the ECM of NSA 225 index data using the locally stationary Gegenbauer model
(parameter function smoothed by loess method).

Figure 6.28, Figure 6.29, Figure 6.30, Figure 6.31 and Figure 6.32, we can observe
all the predictions.

Similarly, from the graphs, there seems to exist some differences between the true
trajectory (see in Figure 6.2) and the predicted trajectory. We think that it is to some
extent due to the different scales in the graphs. To have a more clear idea of our
forecast, we refer to the two criteria of the forecast. In Table 6.2, the bias and the
RMSE of the h-step-ahead predictions are presented. We find that the bias and the
RMSE are not too large with comparison to the length of the time series Zt, which
is really satisfying.

From the numerical point of view, we find that the forecast based on the loess smoothing
is really a little better than that based on the spline smoothing, which is consistent with
our conjecture made from the simulation experiments for estimation.
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Figure 6.19: NSA: 1-step-ahead
forecast for d̃(t) smoothed by loess
method
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Figure 6.20: NSA: 2-step-ahead
forecast for d̃(t) smoothed by loess
method
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Figure 6.21: NSA: 3-step-ahead
forecast for d̃(t) smoothed by loess
method
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Figure 6.22: NSA: 4-step-ahead
forecast for d̃(t) smoothed by loess
method
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Figure 6.23: NSA: 5-step-ahead
forecast for d̃(t) smoothed by loess
method
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Figure 6.24: NSA: 6-step-ahead
forecast for d̃(t) smoothed by loess
method
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Figure 6.25: NSA: 7-step-ahead
forecast for d̃(t) smoothed by loess
method
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Figure 6.26: 1-step-ahead forecast
for the error term in the model of
NSA 225 index (smoothed by loess
method).
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Figure 6.27: 2-step-ahead forecast
for the error term in the model of
NSA 225 index (smoothed by loess
method).
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Figure 6.28: 3-step-ahead forecast
for the error term in the model of
NSA 225 index (smoothed by loess
method).
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Figure 6.29: 4-step-ahead forecast
for the error term in the model of
NSA 225 index (smoothed by loess
method).
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Figure 6.30: 5-step-ahead forecast
for the error term in the model of
NSA 225 index (smoothed by loess
method).
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Figure 6.31: 6-step-ahead forecast
for the error term in the model of
NSA 225 index (smoothed by loess
method).
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Figure 6.32: 7-step-ahead forecast
for the error term in the model of
NSA 225 index (smoothed by loess
method).

6.2 WTI Oil Data
Crude oil prices behave similarly as many other commodities with wide price swings in
times of shortage or oversupply. Thus, to predict the oil price seems to be quite important.
West Texas Intermediate (WTI), also known as Texas Light Sweet, is a type of crude oil
used as a benchmark in oil pricing and the underlying commodity of New York Mercan-
tile Exchange’s oil futures contracts. This oil type is often referenced in North American
news reports about oil prices, alongside North Sea Brent Crude.

Historical price data for WTI can be found on a web site maintained by Energy Infor-
mation Administration, Department of Energy. It is listed as WTI, Cushing, Oklahoma.
Typical price difference per barrel is about $1 more than Brent, and $2 more than OPEC
basket.

Denote Xt the WTI oil price. The length of the data that we consider is 5110. We
observe that Xt is not stationary (see in Figure 6.33). The moments of Xt is as follows:
mean(X) = 23.76919, variance(X) = 100.1522, skewness = 1.993175, kurtosis =
7.363735. We carry out the augmented Dickey-Fuller test to test the stationarity and we
find that the process Xt is not stationary. Therefore, we have two choices to carry out the
modeling.

First of all, we can apply the stationary models. To obtain the stationarity, we difference
Xt: Ut = Xt−Xt−1. See in Figure 6.34 for more details of Ut. According to the behavior
of the ACF and PACF of Ut, we decide to de-mean the series Ut: Zt = Ut −mean(Ut)
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and to model Zt by the autoregressive models. The other choice is to carry out the model-
ing in the non-stationary setting using the new non-stationary model and new estimation
algorithm that we proposed in Chapter 5.

6.2.1 Fitting by Stationary Model: AR(1)+FI(d) Model
If we chose to model Zt by an AR(1) model, we get the following equation:

Zt = â1Zt−1 + εt,

where â1 = −0.04144. In Figure 6.35, we can find how the AR(1) model fits Zt. Ac-
cording to the fitting behavior of Zt, we turn to study the residuals (εt)t. The related
information for εt is exhibited in Figure 6.36. It is something like a noise. Thus we study
the square of εt to investigate the properties of the volatility in the oil price, see in Figure
6.37 for the information of (ε2

t )t. Since there exists an explosion near the 0 frequency in
its spectrum, we decide to fit the volatility (ε2

t )t by a fractional integrated model FI(d) as
follows:

(I −B)d̂ε2
t = νt,

where d̂ = 0.1234373. Observing Figure 6.38, we do not find the existence of long mem-
ory behavior in the residual νt. However, νt is not totally white noise. Since the residual
νt is a a little complicated, here we just consider it as a Gaussian white noise for simplicity.

Thus, we model Zt as follows:
{

Zt = â1Zt−1 + εt

(I −B)d̂ε2
t = νt,

(6.3)

where â1 = −0.0414, d̂ = 0.1234373 and νt is Gaussian white noise with mean zero.

Graphically, it seems that this model does not fit very well the series (Zt)t.

6.2.2 Fitting by Stationary Model: AR(2)+FI(d) Model
If we model Zt by an AR(2) model, we get the following equation:

Zt = â1Zt−1 + â2Zt−2 + εt,

where â1 = −0.0422963, â2 = −0.02060408. In Figure 6.39, we can observe how
Zt is fit by the AR(2) model. According to the fitting behavior of Zt, we turn to study
the residuals (εt)t. The related information of (εt)t is exhibited in Figure 6.40. It looks
something like a noise,thus we study the square of the (εt)t to investigate the properties of
the volatility in the oil price, see in Figure 6.41 for the information of (ε2

t )t. We observe
that there exists an explosion near the 0 frequency in the spectrum, thus we fit the volatility
(ε2

t )t by a fractional integrated model FI(d) as follows:

(I −B)d̂ε2
t = νt,
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Figure 6.33: WTI: The sample path, spectrum, ACF and PACF of (Xt)t

where d̂ = 0.1230429, estimated by the GPH method. In the residual νt, there does not
exist long memory behavior, see Figure 6.42. We can regard it as a kind of noise, but it is
not completely a white noise. For simplicity, we just consider it as a Gaussian white noise.

Thus, we model Zt as follows:
{

Zt = â1Zt−1 + â2Zt−2 + εt

(I −B)d̂ε2
t = νt,

(6.4)

where â1 = −0.0422963, â2 = −0.02060408, d̂ = 0.1230429 and νt is Gaussian white
noise with zero mean.

Similarly, from the graphs, it seems that this model does not fit very well the series Zt.
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Figure 6.34: WTI: The sample path, spectrum, ACF and PACF of (Ut)t
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Figure 6.35: WTI: Fit Zt by AR(1) model
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Figure 6.36: WTI: AR(1)+FI(d), The sample path, spectrum, ACF and PACF of the resid-
ual (εt)t of the AR(1) term
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Figure 6.37: WTI: AR(1)+FI(d), The sample path, spectrum, ACF and PACF of the
volatility (ε2

t )t
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Figure 6.38: WTI: AR(1)+FI(d), The residual (νt)t of the FI(d) term
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Figure 6.39: WTI: Fit Zt by AR(2) model
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Figure 6.40: WTI: AR(2)+FI(d), Sample path, spectrum, ACF and PACF of the residual
(εt)t of AR(2) term
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Figure 6.41: WTI: AR(2)+FI(d), The sample path, spectrum, ACF and PACF of the
volatility (ε2

t )t
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Figure 6.42: WTI: AR(2)+FI(d), The residuals of the FI(d) term (νt)t
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6.2.3 Fitting by Non-stationary Model Using Wavelet Method
First we detrend Xt through multiresolution analysis (MRA) by applying the MODWT
on Xt, where we adopt the Daubechies least asymmetric "LA8" as the wavelet filter, the
depth of the decomposition is 6 and the decomposed vector is assumed to be periodic on
its defined interval. That is to say, Zt = Xt−S6,t, where S6,t is the wavelet smooth in the
multiresolution analysis presented in Figure 6.43. We investigate the properties of Zt in
Figure 6.44. Observing the behavior of ACF and spectrum of Zt, we decide to model Zt

by locally stationary 1-factor Gegenbauer process with time-varying parameter function:

(I − 2νB + B2)d(t)Zt = εt.

We estimate the Gegenbauer frequency which corresponds to the frequency of the maxi-
mum periodogram and we get λ̂G = 0.01049805. Then we apply the wavelet-based algo-
rithm that we proposed in Chapter 5. We partition evenly the time interval and carry out
the OLS regression using DWPT wavelet coefficients on each subinterval and we smooth
the estimations by spline method and loess method.

Thus we model Xt as follows:
{

Xt = Zt + S6,t

(I − 2νB + B2)d̂(t)Zt = εt,
(6.5)

where ν = cos(2πλ̂G) = 0.9978253, εt is Gaussian white noise with zero mean and the
estimation d̂(t) is presented in the Figure 6.45. The thin curve is the estimation smoothed
by spline method. The thick curve is the estimation smoothed by loess method.

If we observe carefully the Figure 6.45, we find that the estimated function d̂(t) does

not lie well in the definition interval (−1

2
,
1

2
) for both two kinds of smoothing method. It

is really a little awkward. To solve this problem, we decide to do some differencing in
order to satisfy the range of definition interval for the parameter function. After differ-
encing, we investigate the properties of Zt in Figure 6.46. Thus we have the modeling as
follows: {

Xt = Zt + S6,t

(I − 2νB + B2)d̂(t)+1Zt = εt,
(6.6)

where ν = cos(2πλ̂G) = 0.9978253, εt is Gaussian white noise with zero mean and the
estimation d̂(t) is presented in the Figure 6.47. The thin curve is the estimation smoothed
by spline method. The thick curve is the estimation smoothed by loess method.

Now the estimated parameter function smoothed by the loess method lies well in the
definition interval, while part of the parameter function smoothed by the spline is still

outside the interval (−1

2
,
1

2
).
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Figure 6.44: WTI: The sample path, spectrum, ACF and PACF of (Zt)t
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Figure 6.45: WTI: The estimated parameter of (dt)t
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Figure 6.46: WTI: The sample path, spectrum, ACF and PACF of (Zt)t after differencing
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Figure 6.47: WTI: The estimated parameter of (dt)t after differncing

133



6.2.4 Forecast
In this section, we utilize the previous estimation results of modeling to make the forecast
for the WTI oil price data.

Forecast for the Model Fit by the AR(1)+FI(d) Model

To make the forecast in this case, the most important thing is to make the forecast for the
volatility ε2

t . We regard (νt)t as a Gaussian white noise with zero mean and generate the
volatility by

ε2
t = (I −B)−d̂νt.

In Figure 6.48 (h = 1), Figure 6.50 (h = 2), Figure 6.52 (h = 3), Figure 6.54 (h = 4),
Figure 6.56 (h = 5), Figure 6.58 (h = 6) and Figure 6.60 (h = 7), we can observe the
h-step-ahead forecasts (h = 1, · · · , 7) for the volatility. Then we make the autoregressive
regression to obtain the h-step-ahead predictions for Zt. The results are resented in Figure
6.49 (h = 1), Figure 6.51 (h = 2), Figure 6.53 (h = 3), Figure 6.55 (h = 4), Figure 6.57
(h = 5), Figure 6.59 (h = 6) and Figure 6.61 (h = 7). In Table 6.3, we evaluate the
forecast behavior by the bias and the RMSE.

Observing the graphs, we find that the forecasts for (ε2
t )t and (Zt)t are not far away from

the mean. But they do not grasp very well the local volatilities. And the bias and the
RMSE are relatively a little too large.
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Figure 6.48: WTI: The 1-step-
ahead prediction of (ε2

t )t concern-
ing AR(1)+FI(d) model

Time

Z

0 1000 2000 3000 4000 5000

−
10

−
5

0
5

true Z_t
1−step−ahead predicted Z_t

Figure 6.49: WTI: The 1-
step-ahead prediction Zt using
AR(1)+FI(d) model
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Figure 6.50: WTI: The 2-step-
ahead prediction of (ε2

t )t concern-
ing AR(1)+FI(d) model
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Figure 6.51: WTI: The 2-step-
ahead prediction of (Zt)t concern-
ing AR(1)+FI(d) model
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Figure 6.52: WTI: The 3-step-
ahead prediction of (ε2

t )t concern-
ing AR(1)+FI(d) model
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Figure 6.53: WTI: The 3-
step-ahead prediction Zt using
AR(1)+FI(d) model

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7
Bias 6489.46 6503.977 6451.939 6451.207 6377.762 6431.554 6509.753

RMSE 105.2755 74.59163 60.41483 52.38439 46.2088 42.57117 39.73764

Table 6.3: The relative results of the h-step-ahead predictions on Zt of the WTI oil price
data using the AR(1)+FI(d) model.
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Figure 6.54: WTI: The 4-step-
ahead prediction of (ε2

t )t concern-
ing AR(1)+FI(d) model
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Figure 6.55: WTI: The 4-step-
ahead prediction of (Zt)t concern-
ing AR(1)+FI(d) model
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Figure 6.56: WTI: The 5-step-
ahead prediction of (ε2

t )t concern-
ing AR(1)+FI(d) model

Time

Z

0 1000 2000 3000 4000 5000

−
10

−
5

0
5

true Z_t
5−step−ahead predicted Z_t

Figure 6.57: WTI: The 5-
step-ahead prediction Zt using
AR(1)+FI(d) model

136



Time

ep
si

2

0 1000 2000 3000 4000 5000

0
20

40
60

80
10

0

true volatility
6−step−ahead predicted volatility

Figure 6.58: WTI: The 6-step-
ahead prediction of (ε2

t )t concern-
ing AR(1)+FI(d) model
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Figure 6.59: WTI: The 6-step-
ahead prediction of (Zt)t concern-
ing AR(1)+FI(d) model
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Figure 6.60: WTI: The 7-step-
ahead prediction of (ε2

t )t concern-
ing AR(1)+FI(d) model
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Figure 6.61: WTI: The 7-
step-ahead prediction Zt using
AR(1)+FI(d) model
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h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7
Bias 6427.122 6396.929 6493.92 6455.806 6425.974 6517.23 6412.771

RMSE 103.7263 73.4362 60.59561 52.3697 46.75349 43.07525 39.19955

Table 6.4: The relative results of the h-step-ahead predictions on Zt of the WTI oil price
data using the AR(2)+FI(d) model.

Forecast for the Model Fit by the AR(2)+FI(d) model

To make the forecast in this case, the most important thing is to make the forecast for the
volatility ε2

t . We regard (νt)t as a Gaussian white noise with zero mean and generate the
volatility by

ε2
t = (I −B)−d̂νt.

In Figure 6.62 (h = 1), Figure 6.64 (h = 2), Figure 6.66 (h = 3), Figure 6.68 (h = 4),
Figure 6.70 (h = 5), Figure 6.72 (h = 6) and Figure 6.74 (h = 7), we can observe the
h-step-ahead forecasts (h = 1, · · · , 7) for the volatility. Then we make the autoregressive
regression to obtain the h-step-ahead predictions for Zt. The results are resented in Figure
6.63 (h = 1), Figure 6.65 (h = 2), Figure 6.67 (h = 3), Figure 6.69 (h = 4), Figure 6.71
(h = 5), Figure 6.73 (h = 6) and Figure 6.75 (h = 7). In Table 6.4, we evaluate the
forecast behavior by the bias and the RMSE.

Similarly, observing the graphs, we find that the forecasts for (ε2
t )t and (Zt)t are not

far away from the mean. But they do not grasp very well the local volatilities. And the
bias and the RMSE are relatively a little too large.
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Figure 6.62: WTI: The 1-step-
ahead prediction of (ε2

t )t concern-
ing AR(2)+FI(d) model
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Figure 6.63: WTI: The 1-
step-ahead prediction Zt using
AR(2)+FI(d) model
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Figure 6.64: WTI: The 2-step-
ahead prediction of (ε2

t )t concern-
ing AR(2)+FI(d) model
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Figure 6.65: WTI: The 2-step-
ahead prediction of (Zt)t concern-
ing AR(2)+FI(d) model
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Figure 6.66: WTI: The 3-step-
ahead prediction of (ε2

t )t concern-
ing AR(2)+FI(d) model
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Figure 6.67: WTI: The 3-
step-ahead prediction Zt using
AR(2)+FI(d) model
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Figure 6.68: WTI: The 4-step-
ahead prediction of (ε2

t )t concern-
ing AR(2)+FI(d) model
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Figure 6.69: WTI: The 4-
step-ahead prediction Zt using
AR(2)+FI(d) model
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Figure 6.70: WTI: The 5-step-
ahead prediction of (ε2

t )t concern-
ing AR(2)+FI(d) model
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Figure 6.71: WTI: The 5-
step-ahead prediction Zt using
AR(2)+FI(d) model
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Figure 6.72: WTI: The 6-step-
ahead prediction of (ε2

t )t concern-
ing AR(2)+FI(d) model
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Figure 6.73: WTI: The 6-
step-ahead prediction Zt using
AR(2)+FI(d) model
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Figure 6.74: WTI: The 7-step-
ahead prediction of (ε2

t )t concern-
ing AR(2)+FI(d) model
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Figure 6.75: WTI: The 7-
step-ahead prediction Zt using
AR(2)+FI(d) model
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h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7
Bias 6608.34 6983.16 9299.67 6620.821 6360.43 6342.72 8446.96

RMSE 135.25 102.40 110.10 68.47 56.24 53.12 65.91

Table 6.5: The relative results of the h-step-ahead predictions of WTI oil price data using
the locally stationary Gegenbauer model (parameter function smoothed by loess method).

Forecast for the Model Fit by the Locally Stationary Gegenbauer Model

Observing the figures of the estimation of the parameter function, we find that with-
out differencing of the original data, the most part of the estimated parameter functions
(smoothed by spline and loess method) lie outside the definition interval of the locally
stationary Gegenabuer model.

To overcome this awkwardness, we have done some differencing. Thus, the estimation
smoothed by loess method lies well in the definition interval of the locally stationary
Gegenbauer process, while the estimation smoothed by spline method does not lie totally
in the definition interval. In the following, we will make the predictions using the param-
eter function smoothed by the loess method satisfying the model 6.6.

We first make the h-step-ahead forecasts for d̂(t) (h = 1, · · · , 7) where the parameter
function is smoothed by the loess method. We can observe the predictions for d̂(t) in
Figure 6.76 (h = 1), Figure 6.78 (h = 2), Figure 6.80 (h = 3), Figure 6.82 (h = 4),
Figure 6.84 (h = 5), Figure 6.86 (h = 6) and Figure 6.88 (h = 7). Then we utilize these
results to forecast the error correction term Zt, using the strategy described in the previous
Chapter. We present in Figure 6.77, Figure 6.79, Figure 6.81, Figure 6.83, Figure 6.85,
Figure 6.87 and Figure 6.89 for all the predictions.

From the graphs, we can find that the forecasts for Zt are to some extent quite good,
capturing well the local changes in the trajectory. To have a more clear idea of our fore-
cast, we refer to the two criteria of the forecast. In Table 6.5, the bias and the RMSE of
the h-step-ahead predictions are presented. We find that the bias and the RMSE are not so
large and thus acceptable, which indicates that the forecast for the model 6.6 is effective.

In fact, if we make the forecast based on the model 6.5, we can imagine the poor result of
the forecast due to the fact that the range of the estimate is [0, 1], which is not permitted
by the definition of the locally stationary k-factor Gegenbauer process (see Proposition
5.3.1). Thus, if we go on doing the forecast using the estimation based on the locally
stationary model without doing any treatments beforehand, the result would not be good.
However, if we notice this problem before prediction, we can carry out some differencing
such that the parameter function can lie well in the definition interval. That is why we
obtained good forecast results based on the model ??.
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Figure 6.76: 1-step-ahead forecast
of the long memory parameter for
the WTI data (smoothed by the
loess method).
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Figure 6.77: 1-step-ahead forecast
of the WTI oil price data (smoothed
by the loess method).
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Figure 6.78: 2-step-ahead forecast
of the long memory parameter for
the WTI data (smoothed by the
loess method).
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Figure 6.79: 2-step-ahead forecast
of the WTI oil price data (smoothed
by the loess method).
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Figure 6.80: 3-step-ahead forecast
of the long memory parameter for
the WTI data (smoothed by the
loess method).
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Figure 6.81: 3-step-ahead forecast
of the WTI oil price data (smoothed
by the loess method).
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Figure 6.82: 4-step-ahead forecast
of the long memory parameter for
the WTI data (smoothed by the
loess method).
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Figure 6.83: 4-step-ahead forecast
of the WTI oil price data (smoothed
by the loess method).
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Figure 6.84: 5-step-ahead forecast
of the long memory parameter for
the WTI data (smoothed by the
loess method).
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Figure 6.85: 5-step-ahead forecast
of the WTI oil price data (smoothed
by the loess method).

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

time

dr
eg

_O
LS

1

loess smoothing
6−step−ahead forecast

Figure 6.86: 6-step-ahead forecast
of the long memory parameter for
the WTI data (smoothed by the
loess method).
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Figure 6.87: 6-step-ahead forecast
of the WTI oil price data (smoothed
by the loess method).
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Figure 6.88: 7-step-ahead forecast
of the long memory parameter for
the WTI data (smoothed by the
loess method).
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Figure 6.89: 7-step-ahead forecast
of the WTI oil price data (smoothed
by the loess method).

6.3 Conclusion
In practice, we need to pay attention to the applicability of our model, particularly the
range of the definition interval for the parameter function.

If the estimated curve of the long memory parameter function lies well in the interval
of the definition of the locally stationary k-factor Gegenbauer process, we can go on car-
rying out the forecast, and the result will be quite satisfying, for example, the case of
NSA225 index data. Otherwise, if the estimated curve is outside the definition interval,
we have to do some transformations before modeling.

As we can find in the case of the WTI oil price data, if we apply directly the locally
stationary 1-factor Gegenbauer processes, we find that the estimated function is not well
located in the definition interval of the model, which will lead to the poor prediction re-
sults. However, after suitable differencing, we find that the estimated parameter function
smoothed by loess method lies well in the definition interval. Therefore, the graphical
result and numerical results are good with no doubt.
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Chapter 7

Testing the Fractional Order of Long
Memory Processes

Usefulness of fractionally integrated processes has been pointed out over the recent years
in order to take various strong persistence effects into modeling. Macroeconomics work
on the modeling and forecasting of economic activity time series have made an extensive
use of the fractional alternative through long memory processes. For example, Carlin
and Dempster (1989) considered monthly unemployment rate of US males; Porter-Hudak
(1990) dealt with the US money supply and monetary aggregates and Ray (1993) pro-
posed models for monthly IBM revenue data. Monthly UK inflation rates have been con-
sidered by Franses and Ooms (1997), Arteche and Robinson (2000) and Arteche (2003).
Other applications also dealt with time series on consumer goods (Darné, Guiraud and
Terraza, 2004), public transportation (Ferrara and Guégan, 2000), exchange rates (Fer-
rara and Guégan, 2001a), spot prices (Ferrara and Guégan, 2001b) or electricity prices
(Diongue and Guégan, 2004).

For all those applications, a specific fractionally integrated process has been proposed by
the researchers. Generally the choice of the process corresponds to a specific problematic
and no comparison has been carried out with different types of long memory processes.
For example, some papers used the classical fractionally integrated process, introduced
by Granger and Joyeux (1980) and Hosking (1981), while others focused on generalized
long memory processes or seasonal long memory processes dedicated to take cyclical or
seasonal components with persistence into account.

As we have seen the properties of a time series depend on its order of integration, d, that
is on the presence of unit roots. It is important to have techniques available to determine
the actual form of non-stationarity and to distinguish between stochastic and deterministic
trends if possible. There is a large literature on testing for unit roots theory.

The need to test economic theories which imply random walks has stimulated a large
literature involving the unit root distribution (see Dickey and Fuller (1979, 1981), Evans
and Savin (1981, 1984), Sargan and Bhargava (1983), Phillips (1987)). One facet of the
unit root literature has concerned weakening the assumption of IID errors. In particular
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Phillips (1987) showed that the unit root distribution can be used to test for a random
walk if the errors satisfy a strong mixing condition. Unfortunately, this condition may
not be justified for some economic time series. For example, dependency greater than
allowed in Phillips (1987), is permitted by fractionally integrated models which extend
the ARIMA(p, d, q) model to real values of d. Furthermore, studies of fractional integra-
tion (Granger and Joyeux (1981), Geweke and Porter-Hudak (1983)) have concluded that
some economic time series possess fractional unit roots.

7.1 Unit Root Test for Autoregressive Moving Average
Processes

Recently, methods for detecting unit roots in autoregressive and autoregressive- moving
average time series have been proposed. The presence of a unit root indicates that the
time series is not stationary but that differencing will reduce it to stationarity. The tests
proposed to date require specification of the number of autoregressive and moving aver-
age coefficients in the model.

A good survey may be found in Dickey et al. (1986), among others. Consider the simple
AR(1) model:

Xt = φXt−1 + εt, (7.1)

where y0 = 0 and the innovation εt is a white noise sequence with constant variance. We
can regress Xt on Xt−1 and then use the standard t-statistic to test the null hypothesis:
H0 : φ = φ0. The problem arises because we do not know a priori whether the model is
stationary. If |φ| < 1, the AR(1) model is stationary, and the ordinary least squares esti-
mator of φ, φ̂OLS , equals the maximum likelihood estimator under normality and follows
a normal asymptotic distribution. Furthermore, the statistic given by:

tφ =
φ̂LS − φ0

sφ̂

,

where sφ̂ is the estimated standard deviation of φ̂LS , follows an asymptotic distribution
N(0, 1). For small samples, this statistic is distributed approximately as a Student’s t with
(T − 1) degrees of freedom. Nevertheless, when φ = 1, this result does not hold. It can
be shown that the OLS estimator of φ is biased downwards and that the t-statistic under
the unit-root null hypothesis, does not have a Student’s t distribution even in the limit as
the sample size becomes infinite. The AR(1) model (7.1) can be written as follows by
subtract Xt−1 at both sides of the equation:

Xt −Xt−1 = (φ− 1)Xt−1 + εt (7.2)

or
∆Xt = ρXt−1 + εt, (7.3)

where ρ = φ − 1. The relevant unit root hypothesis is ρ = 0 and the alternative is one
side:

Ha : ρ < 0,
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since ρ > 0 corresponds to explosive time series models. Dickey (1976) tabulated the
percentiles of this statistic under the unit root null hypothesis. The H0 of a unit root is
rejected when the value of the statistic is lower than the critical value. This statistic, de-
noted by τ , is called the Dickey-Fuller statistic and their critical values are published in
Fuller (1976).

Up to now it has been shown how to test the null hypothesis of a random walk (one
unit root) against the alternative of a zero mean, stationary . For economic time series, it
could be of interest to consider alternative hypothesis including stationarity around a con-
stant and/or a linear trend. This could be achieved by introducing these terms in model
(7.3):

∆Xt = α + ρXt−1 + εt, (7.4)

∆Xt = α + βt + ρXt−1 + εt. (7.5)

The unit root null hypothesis is simply H0 : ρ = 0 in both model (7.4)-(7.5). Dick-Fuller
tabulated the critical values for the corresponding statistics, denoted by τµ and ττ respec-
tively. It should be noted that model (7.5) under the null hypothesis becomes a random
walk plus drift model, which is a hypothesis that frequently arises in economic applica-
tions.

The augmented Dickey-Fuller (ADF) test tests the null hypothesis that a time series Xt

is FI(1) against the alternative that it is FI(0), assuming that the dynamics in the data
have an ARMA structure. Hassler and Wolters (1994) found that the Augmented Dickey-
Fuller test (hereafter ADF) against fractional alternatives lost considerable power when
augmented terms were added. In contrast, Krämer and Dittmann (1998) showed that this
test is consistent if the order of the autoregression does not tend to infinity too fast.

7.2 Unit Root Test for Fractional Integrated Processes
The class of fractionally integrated processes, denoted as FI(d), where the order of inte-
gration d is extended to be any real number, has proved very useful in capturing the per-
sistence properties of many long-memory processes: Baillie (1996), Beran (1994), and
Granger and Joyeux (1980). In general, unit root tests are consistent when the alternative
is a FI(d) process but their power turns out to be quite low (see Diebold and Rudebusch
(1991), Schmidt and Lee (1996)). In particular, this lack of power has motivated the
development of new testing approaches that take this type of alternative explicitly into
consideration. There is a growing literature on this subject that can be basically classified
into two strands. First, there are Wald-type tests that, by working under the alternative
hypothesis, provide point estimates of the memory parameter and build confidence inter-
vals around it. Secondly, there are Lagrange Multiplier (LM) tests where statistics are
evaluated under the corresponding null hypothesis. Within the first group, there are a
very large number of rather heterogeneous contributions: parametric and semiparamet-
ric methods of estimating d both in the frequency and in the time domain (see, inter
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alia, Geweke and Porter-Hudak (1983), Fox and Taqqu (1986), Sowell (1992), Robin-
son (1992)). However, most of them lack power when used for testing purposes. On
one hand, the semiparametric techniques tend to yield large confidence intervals that in-
clude too often the null hypothesis. On the other hand, although in general the parametric
methods present narrower confidence intervals, the precision with which the parameters
are estimated hinges on the correct specification of the model (see Hauser, Potscher and
Reschenhofer (1999)). Within the second group, Robinson (1994) and Tanaka (1999)
have proposed useful LM tests in the frequency and the time domain, respectively. A
distinctive feature of both approaches is that, in contrast to the classical unit root tests
where asymptotic distributions are nonstandard and require case-by-case numerical tab-
ulation, they do have standard asymptotic distributions. In this respect, Robinson (1994)
has attributed this different limit behavior to the use of an explicit autoregressive (AR)
alternative in the classical unit root-testing approach. Nonetheless, despite the advantage
of having a standard limit distribution, a possible shortcoming of the LM approach is that,
by working under the null hypothesis, it does not yield any direct information about the
correct long memory parameter, d, when the null is rejected.

In order to overcome that drawback, Dolado et al. (2002) proposed a simple Wald-type
test in the time domain that has acceptable power properties and, as a by-product of its im-
plementation, provides information about the values of d under the alternative hypothesis.
It turns out to be a generalization of the well-known Dickey-Fuller (D-F) test, originally
developed for the case of FI(1) versus FI(0), to the more general case of FI(d0) versus
FI(d1) with d1 < d0 and, thus, they referred to it as the Fractional Dickey-Fuller (FD-F)
test. When d0 = 1, the proposed test statistics are based on the OLS estimator, or its
t-ratio, of the coefficient on ∆d1Xt−1 in a regression of ∆Xt on ∆d1Xt−1 and, possibly,
some lags of ∆Xt. When d1 is not taken to be known a priori, a pre-estimation of d, is
needed to implement the test. We show that the choice of any T 1/2-consistent estimator
of d1 ∈ [0, 1) suffices to make the test feasible, while achieving asymptotic normality.

Another well-known unit root test was proposed by Robinson (1994). He investigated
a general model in order to test whether the data stemmed from a stationary or a non-
stationary process, under uncorrelated and weakly-correlated innovations (εt)t. The pro-
cess described by the following equation nests all the specific long memory processes
generally used in applications:

F (B)Xt = (I −B)d0+θ0

k−1∏
i=1

(I − 2νiB + B2)di+θi(I + B)dk+θkXt = εt, (7.6)

where B is the backshift operator. For i = 1, · · · , k − 1, νi = cosλi, λi being any fre-
quency between 0 and π. For i = 0, 1, · · · k, θi belongs to [−1, 1] and di is such that:
|di| < 1/2, implying thus that the spectral density is unbounded in λi. Moreover, (εt)t is
an innovation process to be specified.

To adjust these models on real data sets, it is fundamental to detect long memory be-
havior through statistical tests. Here, we investigate Robinson (1994) test. The properties
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of this test have been proved in an asymptotic setting. Working with macroeconomics
data sets significates that we deal with data sets with rather small sample sizes, generally
lower than 1 000 points. Thus it is crucial for practitioners to know the accuracy of this
test for a finite sample size. We assess the rate of convergence for Robinson’s test using
Monte Carlo simulations.

From a practical point of view, before implementing a fractional process on real data,
it is warmly recommended to carry out a statistical test to show evidence of persistence in
the data. In this respect, the test of Robinson (1994) has been proved to be very useful for
testing stationarity of many SCLM processes (see Gil-Alana, 2001, 2006). This test also
permits to test the integration order at various frequencies and does not require the esti-
mation of long memory parameters since the series have a short memory behavior under
the null hypothesis. Now, this test can also be used to test the degree of persistence of the
memory parameter using the null of Robinson test. However, one of the major drawback
in empirical macroeconomics is the rather small amount of data available to the practi-
tioners. For example in the industrialized countries, the broadest measure of economic
activity released by the quarterly national accounts of the statistical institutes, namely
GDP, is generally available only since 1970. Thus, in most of the cases, less than 160 data
points are available to carry out the analysis on a quarterly basis. In this respect, it ap-
pears crucial to study the finite sample behavior of the statistical procedures carried out at
each step of the statistical analysis. In this paper, we propose a simulation experiment to
determine the possible application of the Robinson (1994) test for finite samples. Indeed,
in his paper the results were proved in an asymptotic setting and we need to know how the
test works empirically. We study the convergence of the test according to the fractional
process used to generate simulated data. We investigate this rate of convergence whatever
the innovation process is uncorrelated or weakly correlated.

We briefly describe Robinson test (1994) which is a Lagrange Multiplier test for testing
unit roots and other fractionally hypotheses when the roots are located at any frequency
on the interval [0, π]. The test is derived via the score principle and its asymptotic critical
values follow the Chi-squared distribution. Let (Yt)t be a stochastic process such that:

Yt = β
′
Zt + Xt, (7.7)

where (Zt)t is a k × 1 observable vector, β an unknown k × 1 vector and (Xt)t a process
which follows Equation (7.6). In the rest of the paper, we assume that β = 0 and (εt)t is
either a strong white noise or a GARCH(1,1) noise.

Robinson (1994) worked with the general model (7.6) for a fixed d and tested the assump-
tion

H0 : θ = (θ0, · · · , θk)
′ = 0,

against the alternative:
Ha : θ 6= 0.

The test statistic is defined by:

R̃ =
T

σ̃4

ã2

Ã
, (7.8)
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where T is the length of the raw time series and

σ̃2 =
2π

T

∗∑
j

Iε̃(λj).

Iε̃(λj) is the periodogram of ε̃t with ε̃t = F (B)Yt, F (B) being given in Equation (7.6).
Moreover, we get:

Ã =
2

T

∗∑
j

ψ(λj) · ψ(λj)
′,

and

ã2 =
−2π

T

∗∑
j

ψ(λj)I(λj),

where
∗∑
j

is the sum over λj =
2πj

T
∈ M = {λ : −π < λ < π, λ /∈ (ρl−η, ρl +η)} such

that ρl are the distinct poles of ψ(λ) on (−π, π], η is a given positive constant. Finally, we
get:

ψ(λj) = (ψl(λj)),

with

ψl(λj) = δ0l log |2sin1

2
λj|+ δkl log(2cos

1

2
λj) +

k∑
i=1

δil log(|2(cos(λj)− cos ωi)|,

for l = 0, 1, · · · , k, where δil = 1 if i = l and 0 otherwise.

Under stationary conditions, Robinson (1994) established that:

R̃ →d χ2
k+1,

where k + 1 = dim(θ). If χ2
k+1 represents the χ2 distribution with k + 1 degrees of

freedom then χ2
k+1,α represents a quantile for a given level α. As soon as R̃ > χ2

k+1,α, we
reject H0, with a risk α.

Under the null, the test chooses the best long memory parameter which corresponds to
the greatest p-value of the Chi-square test. We accept the null hypotheses if the p-value is
greater than the significant level and we reject it if the p-value is smaller than or equal to
the significance level. The test appears as a method to test the long memory parameters.
We can perform the properties of this test to estimate parameters using a Monte Carlo
simulation which provides the mean, bias and RMSE for a suitable number of replications.

Monte Carlo Experiment

In this section we carry out the Monte Carlo experiments for several models derived from
Equation (7.6) using different sample sizes with replications.
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Under (H0), we simulate different models using first a strong Gaussian white noise (εt)t

with zero mean and unit variance and second a GARCH (1,1) noise. In that latter case,
εt =

√
htξt, ht = a0 + a1ε

2
t−1 + b1ht−1, with (ξt)t being a sequence of i.i.d. Gaussian

random variables with zero mean and unit variance, a0 = 1, a1 = 0.15 and b1 = 0.8.

We consider nine various models: one model (4.2) , two models (4.3), two models (4.5)
and four models (4.6). For the models (4.3), we use s = 4 and s = 12, then we mix the
possible explosion at frequency zero with the explosions with fixed seasonalities assum-
ing s = 4 and s = 12. For the Gegenbauer models, we detail the results with respect to
the location frequency and the number of explosions inside the spectral density. When
we have only one factor in the model, the true value of the long memory parameter is
d = 0.3 (except for the model (1 + B)d = εt, for which we use d = 0.2); in presence of
two factors, we use d1 = 0.3 and d2 = 0.4; in presence of three factors, we use d1 = 0.2,
d2 = 0.3 and d3 = 0.4.

We consider several sample sizes T from 100 to 3000. We do not give the results up to
3000 because we intend to apply the method to macroeconomic data sets whose sizes are
generally smaller. In all cases, we use two sizes of replication, TT = 100, 1000, 5000.
We only present the results for TT = 100, because the results are quite similar with
TT = 1000 and TT = 5000. The results are available upon request.

We carry out the code on the computer Mac OS X 10.5.1 Léopard, written in language
R. The random numbers are generated by the command "rnorm()" as the pseudo ran-
dom numbers. In the tables the notation d̂ represents the mean of the TT realisations
(d̂1, . . . , d̂TT ) possessing the greatest p-value of the test. In the tables, n represents the
percentage of times that we get the true value for all the long memory parameters involved
into the models.

We find that for the models with only one term, like models (4.2) and (4.6) with k = 1, the
test performs correctly for sample size greater than 900. However, for the models (4.3),
although there is only one parameter to test, the test does not present good performances.
The performances become correct for sample sizes equal to 2000 and 3000. The same
results are observed when we simulate models with several factors, like the models (4.5)
and (4.6) with k ≥ 2. The more the explosions are inside the spectral density, the worse is
the test’s performance. We never got convergence for the test applying at the model (4.7)
as soon as k > 3. From a general point of view, as expected, the performance of the test
increases with the sample size.

The main results are the following:

1. First, we assume that the noise (εt)t is a strong white noise in all the models:

• For the model (4.2), d̂ = 0.3 when T reaches 3000.

• For the models (4.3), d̂ = 0.3, for s = 4 when T reaches 3000, and the test
does not converge when we use s = 12.
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• For the models (4.5), d̂ = 0.3, for s = 4 and s = 12, when T reaches 3000.

• For the 1-factor model (4.6),

(a) If ν = −1, d̂ = 0.201 when T reaches 700.
(b) If ν = cos(π/3), d̂ = 0.3 when T reaches 2000.

• For a 2-factors model (4.6), d̂1 = 0.3 and d̂2 = 0.4 when T reaches 3000.

• For a 3-factors model (4.6), d̂1 = 0.2, d̂2 = 0.3 and d̂3 = 0.4 when T reaches
2000.

2. Second, we assume that the noise (εt)t is a GARCH(1,1) noise for all the models:

• For the model (4.2), d̂ = 0.299 when T reaches 3000.

• For the model (4.3), d̂ = 0.3, for s = 4 when T reaches 3000, and does not
converge when we use s = 12.

• For the models (4.5), the test does not converge.

• For the 1-factor model (4.6),

(a) If ν = −1, d̂ = 0.206 when T reaches 1000.
(b) If ν = cos(π/3), d̂ = 0.3 when T reaches 2000.

• For a 2-factors model (4.6), d̂1 = 0.3 and d̂2 = 0.4 when T reaches 3000.

• For a 3-factors model (4.6), d̂1 = 0.2, d̂2 = 0.3 and d̂3 = 0.4 when T reaches
3000.

In the presence of an infinite cycle, when we simulate the models (4.4) and (4.5), the com-
parison of the performances of the test shows that the convergence is slower. Sometimes
the test does not converge at all. We observe also that the test does not converge when we
use the model (4.3) with s = 12. In any case, the test convergence is very slow for all the
models we use. As soon as we have more than one explosion, we need to use almost 1000
data to be sure to attain in mean the correct estimated value. When we have more than
one explosion inside the spectral density, it appears difficult to use the test for samples
whose size is smaller than 3000. The results are quite similar whatever the noise we use
for simulations: a strong white noise or a GARCH noise.

Conclusion

In this part, we evaluate the performances of the Robinson (1994) test for several sim-
ulated SCLM models. We show that the sample size is crucial for the accuracy of the
test. It appears that the use of this test is mainly recommended when we observe only one
explosion in the spectral density if we have at least 500 points. If there exists more than
one explosion inside the spectral density, this test does not provide accurate information
if the sample size of the data set is less than 3000. This latter result raises concern as
regards the applications of Robinson test to seasonal macroeconomics data.
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Chapter 8

Conclusion

In this thesis, we have studied the stochastic long memory processes. Two classes of pro-
cesses have been considered, the stationary long memory processes and the non-stationary
long memory processes. We have investigated the probabilistic properties, parameter es-
timation methods, statistical tests, forecast methods, etc. And the applications to the
financial data and the energy data are followed.

8.1 Overview of the Contribution
The contributions of this thesis on the stationary processes are composed by four parts.

• Self-similarity Properties:
In Chapter 2, we studied the probabilistic properties of the stationary processes,
focusing on their corresponding self-similar properties. In continuous-time frame-
work, we have reviewed three classes of processes: H-self-similar processes (ex:
Brownian motion), Gaussian H-self-similar process with stationary increments (frac-
tional Brownian motion), non-Gaussian H-self-similar processes with stationary
increments (ex: α-stable processes with 0 < α < 2) and multi-fractional processes.
In discrete-time framework, we have reviewed the different definitions of self-
similarity (exactly self-similar, asymptotically self-similar, exactly second-order
self-similar, asymptotically second-order self-similar) and clarified the relationship
among these definitions. Since the concepts of self-similarity and long / short mem-
ory are not equivalent, we proposed two important propositions which build the
relationship between long range dependence and self-similarity. We proved that
the stationary long memory process is asymptotically second-order self-similar,
while the stationary short memory process is not asymptotically second-order self-
similar. What’s more, under Gaussianity, the stationary long memory process is
asymptotically self-similar, and the stationary short memory process is not asymp-
totically self-similar. Then we applied these results on the classical discrete-time
processes, for example, the fractional Gaussian noise, k-factor GARMA processes,
heteroscedastic processes, processes with switches and jumps, etc.

• Estimation:
In Chapter 4, we made a review of the estimation methods for stationary seasonal
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and/or cyclical long memory (SCLM) processes (Robinson, 1994). Firstly we con-
sidered the ARFIMA models. After briefly describing the model, we recalled for
this simple and classical long memory model the estimation methods, including the
parametric, semiparametric (in frequency domain and in time domain) and wavelet
methods. We did not present all the mathematical assumptions underlying the es-
timation procedure but rather described the methods and applicability, and we also
discussed the asymptotic distributions of the estimators. For the parametric method,
we have studied the four parametric maximum likelihood estimators (MLE): the
exact time domain MLE, the modified profile likelihood estimator, the conditional
time domain MLE and the frequency domain MLE. For the semiparametric esti-
mators, we have looked at the log-periodogram regression method and the local
Whittle Whittle approach. We also mentioned some modified versions of these es-
timators. For the wavelet methods, we focused on the wavelet-based ordinary least
squares (OLS) estimator and the wavelet maximum likelihood estimator. We dis-
cussed also the advantages and disadvantages of these estimators. Secondly, we
considered the estimation methods of the models with seasonality. We studied the
k-factor Gegenbauer ARMA processes for its OLS estimator, approximate maxi-
mum likelihood estimator, conditional sum of squares residuals (CSS) estimator,
wavelet-based OLS estimator and wavelet-based approximate maximum likelihood
estimator, etc. We also have a brief look at the estimation methods for the models
with fixed seasonal periodicity, the particular cases of the SCLM model. Thus, the
rigid Hassler’s models and flexible Hassler’s models are all in this category. For
completeness, we also mentioned a little the seasonal and/or cyclical asymmetric
long memory processes and the corresponding estimation methods.

• Unit Root Test:
In Chapter 7, we first recalled the well-known unit root test for ARMA process,
Dicky-Fuller test, the augmented Dicky-Fuller test, etc. We mainly focused on one
of unit root tests, the Robinson (1994) test. We evaluated the performances of the
Robinson (1994) test for several simulated SCLM models. We showed that the
sample size is crucial for the accuracy of the test. It seems that the use of this test is
mainly recommended when we observe only one explosion in the spectral density
if we have at least 500 points. The results raise concern as regards the applications
of Robinson test to seasonal macroeconomics data.

Our contributions on the non-stationary processes are as follows:

• Modeling:
In Chapter 5, we first recalled two kinds of non-stationary fractional integrated pro-
cesses, the fractionally integrated processes with a constant long memory parameter

|d|(> 1

2
) and the generalized fractionally integrated processes with time-varying

parameter. Then we proposed a new non-stationary process, which permits the ex-
istence of the time-varying persistence and seasonality at the same time: the locally
stationary k-factor Gegenbauer process. This new process can be regarded as an
extension of the stationary k-factor Gegenabuer process allowing the time-varying
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parameter. On the other hand, it can be considered as an extension of the general-
ized fractional integrated process permitting the seasonalities.

• Estimation and Forecast:
In Chapter 5, we first reviewed the estimation methods for the non-stationary frac-
tional integrated processes and their corresponding asymptotic behaviors.Then we
proposed a new non-stationary model: the locally stationary k-factor Gegenabuer
process and a new semiparametric estimation procedure using wavelet method,
which is proved to be consistent and asymptotically normal. Through Monte Carlo
simulation experiments, we studied the robustness of the estimator. The results are
satisfying with small bias and small root mean square errors. Then we presented
the forecast method for non-stationary long memory processes.

• Applications:
Chapter 6 is concerned with the applications on the financial data and the energy
data. For the error correction term in ECM of NAS 225 index, we applied on
the series the new non-stationary model and the wavelet-based algorithm that we
proposed in Chapter 5. With comparison to other authors’ work, the estimation of
our model captures better the local characteristics of the parameter function. And
the forecast based on our estimation is also quite satisfying with little bias and
RMSE. For the world crude oil data, we have modeled the WTI price series by
several different models, the autoregressive models with fractional integrated noise
and the locally stationary 1-factor Gegenabuer process. For the modeling by the
locally stationary 1-factor Gegenabuer model, we need to pay attention to the range
of the definition interval. If needed, we have to do some transformation such that

the estimated parameter function lies well in the interval (−1

2
,
1

2
). Thus, we can get

the satisfying forecast results.

8.2 Possible Directions for Future Research
Some challenging problems remain for future research.

The first problem is to provide an approximate maximum likelihood estimation (AMLE)
method for the locally stationary k-factor Gegenbauer processes. For the generalized
fractional integrated model, generally, there exist two wavelet-based estimation methods:
the wavelet-based OLS method and the wavelet-based AMLE method. In this thesis, we
have built the wavelet-based OLS method for the locally stationary k-factor Gegenbauer
processes. Thus, we would like to establish a wavelet-based AMLE method for this new
non-stationary model. However, because of the technical difficulty, we have not yet solved
this problem.

The second problem is to consider the locally stationary k-factor Gegenbauer processes
with the short memory terms. What we consider in this thesis are the locally stationary
k-factor Gegenabuer processes, which are the particular cases of the locally stationary k-
factor GARMA processes. It will be of great interest to estimate the ARMA coefficients
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together with the long memory parameter functions. But we are not quite sure whether
the existence of ARMA term will result in some contaminations on the estimation.

Another idea is to propose a new model: the locally stationary seasonal and/or cyclical
long memory process, which permits the long memory parameters of the SCLM model to
vary with time. The spectrum will be a little complicated, and the wavelet-based estima-
tion will be even more difficult. But it will be quite interesting to investigate such kind of
general model.
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Appendix A

The Well-definedness of the Locally
Stationary k-factor Gegenbauer
Processes

In this part, we give out the proof for Proposition 5.3.1. For more details and the classical
theorem of Darboux’s method, we can refer to Giraitis and Leipus (1995).

PROOF of Proposition 5.3.1.

Proof. We prove it through Darboux’s method.
Let λ−j = −λj , d−j = dj , j = 1, · · · ,m. Consider the following function

Ud1(t),··· ,dm(t)(z) =
m∏

j=1

(1− eiλjz)dj(t)(1− e−iλjz)dj(t)

with singular points zj = eiλj , j = ±1, · · · ,±m on the unit circle |z| = 1. Denote
I(k) = {j : 1 ≤ |j| ≤ m,λj 6= λ−kmod 2π}. Thus, Ud1(t),··· ,dm(t)(z) = ek(t)hk(1−zz−k)

in the neighborhood of the point zk(1 ≤ |k| ≤ m), where ek(t) =
∏

j∈I(k)

(1− zjzk)
dj(t) and

hk(z, t) = zd∗k(t)
∏

j∈I(k)

(1− zjzk)
dk(t). If we expand hk(z, t) in powers series about z = 0,

we obtain ek(t)hk(z, t) =
∞∑

ν=0

c(k)
ν (t)zd∗k(t)+ν , where

c(k)
ν (t) = ek(t)

∑

(s)

∏

j∈I(k)

(
d∗j(t)
sj

)
(

zjzk

1− zjzk

)sj

and the sum
∑

(s)

is taken over all integers 0 ≤ sj ≤ ν, j ∈ I(k) such that
∑

j∈I(k)

sj =

ν. Then by Darboux’s method (see Giraitis and Leipus 1995), the following general
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expansion for the weights πn(t) in (5.6) can be obtained

πn(t) =

p−1∑
ν=0

m∑

k=1

c̃(k)
ν

(
d∗k(t) + ν

n

)
+ O(n−P−min{d∗1(t),··· ,d∗m(t)}−1) (A.1)

where

c̃(k)
ν =

{
2Re(c(k)

ν (−e−iλk)n), if 0 < λk < π

Re(c(k)
ν (−e−iλk)n), λk = 0 or π.

If we stop the expansion (A.1) at the term ν = 0 (p = 1), we obtain

πn(t) =
m∑

k=1

(
d∗k(t)

n

)
c̃
(k)
0 + O(n−2−min{d∗1(t),··· ,d∗m(t)}), as n →∞.

Then the symmetry leads to the asymptotical expansion (5.9). So the application of the
linear filter (ψj, j ∈ Z) to a stationary white noise ε(t) gives a well-defined process

X̃(t) = 5−d1(t),··· ,−dm(t)
λ1,··· ,λm

=
∞∑

n=0

ψn(t)ε(t− n),

which is the solution of Equation (5.13).

According to the condition (5.7) and asymptotical expansion (5.9), we can get
∞∑

n=0

ψ2
n(t) <

∞ and
∞∑

n=0

π2
n(t) < ∞. Therefore we obtain the uniqueness.
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