
HAL Id: tel-00422569
https://theses.hal.science/tel-00422569v1
Submitted on 7 Oct 2009 (v1), last revised 9 Nov 2009 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reachability Analysis of Hybrid Systems with Linear
Continuous Dynamics

Colas Le Guernic

To cite this version:
Colas Le Guernic. Reachability Analysis of Hybrid Systems with Linear Continuous Dynamics. Com-
puter Science [cs]. Université Joseph-Fourier - Grenoble I, 2009. English. �NNT : �. �tel-00422569v1�

https://theses.hal.science/tel-00422569v1
https://hal.archives-ouvertes.fr

Thèse de Doctorat
Université Grenoble I – Joseph Fourier

Octobre 2009

Reachability Analysis
of Hybrid Systems with

Linear Continuous Dynamics

Colas Le Guernic

Université Grenoble I – Joseph Fourier

École Doctorale Mathématiques, Sciences et
Technologies de l’Information, Informatique

Reachability Analysis of Hybrid Systems

with Linear Continuous Dynamics
Calcul d’Atteignabilité des Systèmes Hybrides à Partie Continue Linéaire

T H È S E
pour obtenir le grade de

Docteur de l’Université Joseph Fourier
Spécialité : Mathématiques et Informatique

Préparée au Laboratoire VERIMAG, Équipe TEMPO
Présentée et soutenue publiquement par

Colas LE GUERNIC

le 28 Octobre 2009

Devant la commission composée de :

Nicolas Halbwachs D.R. CNRS Examinateur
Bruce Krogh Pr. CMU Rapporteur
Manfred Morari Pr. ETHZ Rapporteur
Eugene Asarin Pr. UP7 Examinateur
Patrick Cousot Pr. ENS/NYU Examinateur
Oded Maler D.R. CNRS Directeur de thèse
Antoine Girard M.Cf. UJF Co-directeur de thèse

Contents

1 Introduction 1
1.1 Motivations . 1
1.2 Proving Safety . 3

1.2.1 Simulations . 3
1.2.2 Barrier Certificates . 4
1.2.3 Reachability . 5

1.3 Outline of the Thesis . 6

2 Representing Sets 9
2.1 Distances and Approximations . 10
2.2 Set Representation . 12

2.2.1 Boxes . 12
2.2.2 Ellipsoids . 13
2.2.3 Polytopes . 13
2.2.4 Zonotopes . 15
2.2.5 Support Functions . 18
2.2.6 Other Representations . 22

2.3 Operations on Sets . 24
2.3.1 Boxes . 24
2.3.2 Ellipsoids . 25
2.3.3 Polytopes . 25
2.3.4 Zonotopes . 26
2.3.5 Support Functions . 27

I Linear Systems 29

3 State of the Art in Linear Systems Reachability 31
3.1 Autonomous System . 32
3.2 Non-Autonomous System . 33
3.3 Reachability of the Discretized System 35

iii

Contents

3.4 Approximate Reachability of the Discretized System 36

3.4.1 Wrapping Effect . 37

3.4.2 Approximation Strategies 37

3.4.3 Curse of Dimensionality . 43

4 A New Scheme 45

4.1 A New Scheme . 46

4.1.1 Implementation using Zonotopes 47

4.1.2 Implementation using Support Functions 48

4.2 Approximation without Wrapping Effect 49

4.2.1 Over-Approximations . 51

4.2.2 Under-Approximations . 53

4.3 Time Discretization . 54

4.4 Experimental Results . 57

4.4.1 A Five-Dimensional Linear System 57

4.4.2 High-Dimensional Linear Systems 61

5 Going Further with Support Functions 65

5.1 Discrete Reachability Algorithm . 65

5.1.1 Comparison with Related Approaches 66

5.1.2 Improvements of the Algorithm 67

5.1.3 Computing Support Vectors 69

5.2 Improved Time Discretization . 71

5.3 Continuous Reachability Algorithm 73

5.4 Experimental Results . 74

5.4.1 RLC Model of a Transmission Line 74

5.4.2 Extensive Experiments . 75

II Hybrid Systems 77

6 Introduction to Hybrid Systems Reachability 79

6.1 Hybrid Automata . 80

6.2 Reachability Analysis of Hybrid Automata 82

6.3 Outline of Part II . 84

7 Staying in the Invariant 87

7.1 Working with Algorithm 4.1 . 89

7.2 Working with Algorithm 5.1 . 90

7.3 Mixing Algorithms . 91

7.4 Examples . 92

iv

Contents

8 Intersection with a Hyperplanar Guard 93
8.1 Detecting Intersection . 94
8.2 Zonotope/Hyperplane Intersection 95

8.2.1 From Dimension d to Dimension 2 96
8.2.2 Intersection of a Zonogon and a Line 99
8.2.3 Intersection of the Reachable Set and a Line 104
8.2.4 From Polytope to Zonotope 105
8.2.5 Playing with the Generators 106

8.3 Support Function/Hyperplane Intersection 107
8.3.1 Intersection of a 2-Dimensional Convex Set and a Line . . . 108
8.3.2 Intersection of the Reachable Set and a Line 114
8.3.3 Simplifying the Resulting Support Function 116

8.4 Applications . 117
8.4.1 Thermostat . 117
8.4.2 Navigation Benchmark . 118

9 Conclusion and Future work 121

Appendices 125

A Proofs 125
A.1 Proofs of Chapter 2 . 125

A.1.1 Proof of Proposition 2.2 . 125
A.2 Proofs of Chapter 4 . 126

A.2.1 Proof of Proposition 4.4 . 126
A.2.2 Proof of Lemma 4.1 . 127

A.3 Proofs of Chapter 5 . 129
A.3.1 Proof of Lemma 5.1 . 129
A.3.2 Proof of Theorem 5.1 . 131
A.3.3 Proof of proposition 5.4 . 132

A.4 Proofs of chapter 7 . 134
A.4.1 Proof of corollary 7.1 . 134

A.5 Proofs of chapter 8 . 134
A.5.1 Proof of lemma 8.1 . 134
A.5.2 Proof of theorem 8.1 . 135

B Sources for Figure 3.2 137

C Introduction (in French) 141

D Conclusion (in French) 149

Bibliography 153

v

Chapter 1
Introduction

Remark. Every chapter of this thesis starts by a short abstract in

French, except for the introduction and conclusion for which transla-

tions can be found on Appendices C and D respectively.

Remarque. Chaque chapitre de cette thèse débute par un court résumé

en Français, à l’exception de cette introduction et de la conclusion qui

sont traduites en Annexes C et D respectivement.

1.1 Motivations

This thesis consists of several contributions to the problem of computing reachable
states of continuous and hybrid systems. For continuous systems, the problem can
be formulated as follows:

Consider a continuous dynamical system with input over some state space X
defined via a differential equation of the form

ẋ = f(x, u) (1.1)

where u ranges over some pre-specified set of admissible input signals. Given a set
X0 ⊂ X , compute all the states visited by trajectories of the system starting from
any x0 ∈ X0.

The significance of this question is that it allows us to verify whether a system
behaves correctly in the presence of all admissible disturbances, where “correctly”
can mean the avoidance of a “bad” subset of the state space or, potentially, more
complex temporal properties. Such reachability computation can be used to check
the robustness of a control system or an analog electrical circuit against distur-
bances or to compute the implications of biological models where parameter values
and environmental conditions are not precisely known. Historically this line of re-
search originated from the study of hybrid (discrete-continuous) systems and the

1

Chapter 1. Introduction

attempts to apply ideas coming from the verification of programs and digital hard-
ware to systems admitting real-valued state variables.

An intuitive explanation of what is going on in reachability computation can
be given in terms of numerical simulation, the most commonly-used approach for
validating complex systems. Each individual simulation consists in picking one
initial condition and one input stimulus (random, periodic, step, etc.), producing
the induced trajectory using numerical integration and observing whether this
trajectory behaves correctly. Ideally we would like to repeat this procedure with
all possible disturbances whose number is huge and typically even non countable.
Reachability computation achieves the same effect as exhaustive simulation by
performing the simulation in a “breadth-first” manner: rather than running each
individual simulation to completion and then starting a new one, one computes
at each time step all the states reachable by all possible inputs. This set-based
simulation is, of course, more costly than the simulation of individual trajectories
but provides more confidence in the correctness of the system.

Unlike other methods used for analysis of continuous (and mostly linear) sys-
tems, the information obtained from reachability computation covers also the tran-
sient behavior of the system in question, and not only its stationary behavior.
This property makes the approach particularly attractive for the analysis of hy-
brid (discrete-continuous) systems where the applicability of analytic methods is
rather limited. Such hybrid models can express, for example, deviation from ide-
alized linear models due to constraints and saturation as well as other switching
phenomena.

It is worth noting that reachability computation has a lot in common with
the domain known as interval analysis which is concerned with providing rigorous
results to numerical computations, despite rounding errors. What is common to
these two domains is that they provide answers in terms of sets that are guaranteed
to contain the exact answer and hence some ideas and techniques of set-based
computations are shared. However the source of uncertainty in interval analysis are
internal errors in the computation due to the use of bounded-precision arithmetics
while in our case they are due to the external environment of the modeled system
or the fact that the model itself has parameters which are not precisely known.

The major contributions of this thesis are:

1. Linear Systems : for systems defined by linear (time-invariant) differential
equations we provide a new algorithmic scheme which improves complexity
both theoretically and empirically. This scheme increases the dimensionality
of systems that can be treated by more than an order of magnitude while
avoiding the wrapping effect [Moo66];

2. Hybrid Systems : we extend the above scheme to handle piecewise-linear1

systems defined by hybrid automata with linear differential equations. The

1or piecewise affine.

2

1.2. Proving Safety

main challenge here is to compute efficiently the intersection of the reachable
sets in one mode with the switching surfaces (transition guard);

In the rest of this chapter we give more insight into the question of what it
means to compute the reachable set.

1.2 Proving Safety

In this study, our main interest is not on the asymptotic behavior of a dynamical
system, or its behavior around a reference trajectory, but on the transient behavior
of all the trajectories generated by the system:

ẋ = f(x, u)

where u ranges over some pre-specified set of admissible input signals Ũ ⊂ R
+ 7→ U

and x(0) lies in X0.
The set of all possible trajectories is then:

Ξ(X0) =
{

ξ : ξ(0) ∈ X0 and ∃u ∈ Ũ , ∀t ≥ 0, ξ̇(t) = f(ξ(t), u(t))
}

Given a trajectory one can check if it verifies some properties we are interested
in. One property of interest is the safety property. A trajectory ξ is said to be safe
if it does not intersect a bad set F :

∀t ≥ 0, ξ(t) 6∈ F

The set F is a region of the state space we want to avoid. As an example, we do
not want an airplane to fly below its stalling speed, or the temperature of the core
of a nuclear reactor to heat beyond the critical fuel surface temperature.

Here we are not interested in one trajectory, but we want the whole system to
be safe:

∀ξ ∈ Ξ(X0), ∀t ≥ 0, ξ(t) 6∈ F
If F is avoided, then the system is said to be safe.

In this section we briefly describe three methods used to tackle this problem,
the last of which, reachability analysis, is the subject of this thesis.

1.2.1 Simulations

If the set X0 of initial conditions and the set of admissible input signals are finite, it
is possible to analyse the system exhaustively. Unfortunately Ξ(X0) is often infinite
and rarely countable, it is impossible to study all the trajectories individually.
Moreover simulations are usually done on a finite time horizon, thus we often only
study the bounded time safety of the system:

∀ξ ∈ Ξ(X0), ∀t ∈ [0; T], ξ(t) 6∈ F

3

Chapter 1. Introduction

where T is our time horizon.
One can apply statistical methods to solve this problem [CDL08]. Checking

a sufficient (finite) number of randomly chosen trajectories might give sufficient
confidence in the system.

Figure 1.1: A few trajectories leaving the initial set (in grey). Only one trajectory
(dashed) intersect the bad set (in black).

Another solution is to try to generate a finite set of trajectories that will ex-
hibit all the behaviors of the system [KKMS03, BF04, BCLM06, GP06, DM07].
Most of these techniques are based on Rapidly-exploring Random Trees (RRT)
originally developed in the field of motion planning, sensitivity analysis, or ap-
proximate bisimulation. The idea is to cover the set of reachable states by a small
neighborhood of a finite set of trajectories. In other words we want this finite set of
trajectories to be such that any state reachable by the original system is at a small
distance from one of the chosen trajectories. Under some condition it is possible
to bound this distance.

To recap, if an unsafe trajectory is found, the system is known to be unsafe.
Otherwise the analysis is inconclusive. But one may try to use statistical analysis
or generate the trajectories in a way that will give some confidence in the safety
of the system. Under certain restricted conditions it is even possible to guarantee
that the system is actually safe.

1.2.2 Barrier Certificates

Another way to tackle the safety problem, is to search for a surface, separating
the set of initial points X0 and the bad set F , which can not be crossed by any
trajectory. More formally we have the following definition:

Definition 1.1 ([PJ04]). A differentiable function B : X → R is a barrier certifi-
cate iff it satisfies the following conditions:

B(x) > 0 ∀x ∈ F
B(x) ≤ 0 ∀x ∈ X0

∂B

∂x
· f(x, u) ≤ 0 ∀(x, u) ∈ X × U such that B(x) = 0

4

1.2. Proving Safety

An illustration is given on Figure 1.2.

Figure 1.2: A barrier certificate proving safety of the system.

This notion of barrier certificate is closely linked to the one of Lyapunov func-
tion originally developed for stability analysis at the end of the 19th century by
Aleksandr Lyapunov and is still extensively investigated. Intuitively a Lyapunov
function V is positive everywhere except on one point x0 where V (x0) = 0, and
its time derivative, which is equal to ∂V

∂x
· f(x, u) if it is differentiable, is nowhere

positive. If such a function exists then x0 is a stable equilibrium.
Here we are not interested in stability but in safety. If there is a k ∈ R such

that V (x) > k for all x in F , and V (x) ≤ k for all x in X0 then x 7→ V (x)− k is a
barrier certificate for our problem. Thus finding a barrier certificate can be done
by finding a Lyapunov function.

But even for stable linear system, for which Lyapunov functions can be sys-
tematically found, once we have a Lyapunov function there is no guarantee that
such a k exists. To summarize, barrier certificates might be hard to find, but they
can guarantee the safety of a system over an infinite time horizon.

1.2.3 Reachability

The approach we take in this thesis is to compute the reachable set2. The reachable
set is the set of all points reachable by the system:

R(X0) = {x : ∃ξ ∈ Ξ(X0), ∃t ∈ R
+, x = ξ(t)}

Unfortunately, this set is often impossible to compute. Instead we compute
approximations of this set. In order to be able to verify properties like safety, this
approximation must be conservative, that is, an over-approximation: R ⊆ R .

Then, if R ∩F = ∅, we can guarantee that R ∩F = ∅, and that the system is
safe. IfR∩F is not empty the analysis is inconclusive and one might try to improve

2Another object of interest to reachability analysis is the reachability tube, or flow pipe:

Rtube(X0) = {(x, t) : ∃ξ ∈ Ξ(X0), x = ξ(t)}

but we will mainly focus here on the reachable set.

5

Chapter 1. Introduction

the over-approximation. But if the system is unsafe, any over-approximation will
intersect the bad set F and we will not be able to conclude. Thus it is sometimes
also interesting to compute an under-approximation R ⊆ R. If R intersects F
then the system is unsafe.

There are several ways to compute approximations of the reachable sets, the
most obvious and useless way is to remark that ∅ ⊆ R ⊆ X . Thus the fastest algo-
rithm simply returns ∅ and X as under-and over-approximations of the reachable
set. This is why we will need a notion of quality of approximation.

More interesting ways of approximating the reachable sets were discussed in
the two previous sections. Indeed, a finite set of trajectories gives an under-
approximation ofR. Under some conditions, it is even possible to guarantee that if
we keep generating trajectories for an infinite time, the set of visited points will be
dense in R. Moreover, if all the points of R are known to be in an ǫ-neighborhood
of our finite set of trajectories, then we also have an over-approximation of R.

A barrier certificate V also defines directly an over-approximation of the reach-
able set: R ⊆ {x : V (x) ≤ 0}. The frontier of the reachable set defines a barrier
certificate, the smallest with respect to inclusion.

The approach we will take is related to simulation. But instead of having points
evolving in the state space we will have sets. Like for simulation it is rather difficult
to consider an infinite time horizon. That is why we will focus on bounded time
reachability. The set we want to over-, or under-, approximate is:

R[0;T](X0) = {x : ∃ξ ∈ Ξ(X0), ∃t ∈ [0; T], x = ξ(t)}

where T is our time horizon.
In the following we will denote by R[t0;t1](Y) the set of points reachable from

Y between times t0 and t1 by system (1.1), or, more formally:

R[t0;t1](Y) = {x : ∃ξ ∈ Ξ(Y), and ∃t ∈ [t0; t1], x = ξ(t)}

We also define Rt(Y) as R[t;t](Y). When Y is omitted it is assumed to be X0.
Let us remark that for bounded horizon in discrete time there exists an alter-

native approach for proving safety which consists of formulating the existence of
a property-violating (or safety-violating) trajectory as an existence of a satisfying
assignment to a formula which is obtained by unfolding the recurrence relation
defining the system k times with a new set of variables for each time step. This
approach underlies, in fact, model-predictive control, and its adaptation to verifi-
cation of hybrid system has been investigated in [BM99].

1.3 Outline of the Thesis

The thesis is separated in two parts. The first part is concerned with reachabil-
ity analysis of continuous linear systems. The second part extend this work to
hybrid systems reachability. Before that, Chapter 2 investigates some of the set
representations that have been used in the context of reachability analysis.

6

1.3. Outline of the Thesis

Part I The first part of this thesis is separated into three chapters. After ex-
posing approaches related to ours in Chapter 3, we present the main contribution
of this thesis: a new algorithmic scheme for reachability analysis of linear time-
invariant systems in Chapter 4. The only drawback of its exact implementation is
that its output is hard to manipulate. It can also be implemented into an approxi-
mation algorithm that is not subject to the wrapping effect, an uncontrolled growth
of the approximation which is the subject of numerous research papers since the
early 1960s. Finally, Chapter 5 discusses a variant of this algorithm specialized to
support functions, a functional representation of convex sets.

Part II The second part of this thesis starts by a short introduction to hybrid
systems reachability analysis in Chapter 6. Then, we focus on two aspects of
hybrid systems: firstly, we investigate the implications of having an invariant for
the continuous reachability analysis in Chapter 7, and finally, in Chapter 8, we
explain how to intersect the outputs of the algorithms described in Part I with
hyperplanar guards.

The concluding chapter summarizes the contributions of this thesis and suggests
some future research directions.

7

Chapter 1. Introduction

8

Chapter 2
Representing Sets

Résumé : Avant de calculer l’ensemble atteignable nous devons clari-

fier la notion de calcul d’un ensemble. Si il s’agit de trouver une repré-

sentation pour cet ensemble alors R[0;T] peut être représenté par X0, U ,

f et T . Pour pouvoir faire des calculs, et résoudre des problèmes, nous

devons choisir une bonne représentation. Par exemple, pour vérifier la

sûreté d’un système nous devons pouvoir déterminer si l’intersection

avec F est vide. Dans cette thèse nous décrivons des algorithmes qui

permettent d’exprimer l’ensemble atteignable, initialement représenté

par X0, U , f et T , sous une forme exploitable par d’autres outils pour

déterminer certaines propriétés du système.

Dans ce chapitre, nous nous intéressons aux notions de sur- et sous-

approximation ainsi qu’à la distance de Hausdorff ; cette distance nous

permet d’évaluer la qualité d’une approximation. Nous présentons en-

suite plusieurs classes d’ensembles et leurs représentations : produits

d’intervalles, ellipsöıdes, polytopes, zonotopes, et ensembles convexes

représentés par leur fonction support. Nous montrons enfin comment

effectuer certaines opérations sur ces ensembles : transformation affine,

somme de Minkowski, union convexe, et intersection avec un hyperplan.

The exact reachable set is very hard to compute, for this reason we only com-
pute an over-approximation, and only for a bounded time horizon.

Before that, we must clarify what it means to compute a set. Indeed, if it
means finding a computer representation of this set, then, R[0;T] can already be
represented by X0, U , f and T . In order to be able to do some computations one
must first choose a class of sets with a good representation.

A good representation should allow us to solve problems. If we want to check
safety, we need to be able to check intersection with F . However, safety is not
the only problem one may solve with an approximation of the reachable set. The
aim of this thesis is to design algorithms that will transform the reachable set,

9

Chapter 2. Representing Sets

represented initially by X0, U , f and T into a form that other tools can use to
solve efficiently problems of interest.

In this chapter, we will first define the notions of over-and under-approximation,
as well as the notion of Hausdorff distance, which is a way to evaluate the quality
of an approximation. Then, we will present some useful classes of sets together
with their representation. Finally we will show how some operations on these sets
can be performed. For improved readability, all sets are considered to be closed.

2.1 Distances and Approximations

We want to approximate a setR by a set R̃ . One of the properties we are interested
in, is the safety property: we want to know if R intersects a bad set F . Ideally, we
would like to have the following property:

R ∩ F = ∅ ⇐⇒ R̃ ∩ F = ∅

This is generally very hard to achieve. Moreover if the approximation is computed
independently from F , then this would imply that R = R̃ . That is why we will
only consider one direction of the equivalence relation.

R ∩ F = ∅ =⇒ R̃ ∩ F = ∅

or
R ∩ F = ∅ ⇐= R̃ ∩ F = ∅

One sufficient condition to ensure these properties is that R̃ ⊆ R or R ⊆ R̃ ,
respectively. In the first case R̃ is called an under-approximation of R, and will
be denoted R. In the second case R̃ is called an over-approximation of R, and

will be denoted R .
Our main focus in this thesis is on computing over-approximations, but we will

also consider under-approximations.
For any X ⊆ R

d, any subset of X and any set containing X are valid under- and
over-approximations of X , respectively. The notion of Hausdorff distance will help
us evaluate the quality of an approximation. This distance on sets is defined with
respect to a distance on points. For the latter we will take the distance induced
by an unspecified norm.

Definition 2.1. Let X and Y be two sets. The Hausdorff distance between X and
Y, denoted dH (X ,Y) is:

dH (X ,Y) = max

(
sup
x∈X

inf
y∈Y
‖x− y‖, sup

y∈Y
inf
x∈X
‖x− y‖

)

The Hausdorff distance is a distance on sets in the metric sense, it thus has
some nice properties:

10

2.1. Distances and Approximations

y

x

Figure 2.1: The Hausdorff distance (induced by the Euclidean norm) between these
two sets is realized on x and y.

• identity of indiscernibles: For any two closed sets X and Y ,

dH (X ,Y) = 0⇐⇒ X = Y

• symmetry: for any two sets X and Y ,

dH (X ,Y) = dH (Y ,X)

• triangle inequality: for any three sets X , Y and Z,

dH (X ,Z) ≤ dH (X ,Y) + dH (Y ,Z)

One property of particular interest uses the notion of Minkowski sums.

Definition 2.2 (Minkowski sum). The Minkowski sum of two sets X and Y is the
set of sums of elements from X and Y:

X ⊕ Y = {x + y : x ∈ X and y ∈ Y}

x ⊕ y =
x

x + y

= y

y + x

Figure 2.2: Minkowski sum of a square and a disk.

This concept is illustrated on Figure 2.2 with the example of two points x and
y from X and Y respectively, and their sum x + y inside of X ⊕Y . Naturally, the
commutativity of + implies the commutativity of ⊕.

11

Chapter 2. Representing Sets

Proposition 2.1. For any two closed sets X and Y, if B is the ball of radius
dH (X ,Y), then:

X ⊆ Y ⊕ B and Y ⊆ X ⊕ B
Furthermore, B is the smallest such ball.

2.2 Set Representation

In this section we present some useful classes of subsets of R
d, and their represen-

tations, that have been used in the context of reachability analysis. They all have
also been successfully used in numerous other fields.

We will illustrate how an arbitrary set S (see Figure 2.3) can be approximated
by a member of each class.

2.2.1 Boxes

One of the most simple class of sets is the class of boxes1.

Definition 2.3 (Box). A set B is a box iff it can be expressed as a product of
intervals.

B = [x1; x1]× . . .× [xd; xd]

B is the set of points x whose ith coordinate, xi, lies between xi and xi.

One of their strengths is that they admit a compact representation: boxes
in R

d only require 2d parameters. Moreover, most operations can be done very
efficiently. They are successfully used in numerous fields, notably in the context
of interval analysis [MKC09] and interval arithmetic. They allow us to compute
mathematically rigorous bounds by extending real arithmetic and functions over
reals in general to intervals. Unfortunately they yield a coarse over-approximation
in our context as we will see in the next chapter.

For a set S we define its interval hull, denoted ✷ (S).

Definition 2.4 (Interval Hull). The interval hull of a set S, denoted ✷ (S), is its
smallest enclosing box.

✷ (S) = [x1; x1]× . . .× [xd; xd]

where for all i, xi = inf{xi : x ∈ S} and xi = sup{xi : x ∈ S}.
An illustration of the interval hull is given on Figure 2.3.
We also define the symmetric interval hull of S, denoted ⊡ (S).

Definition 2.5 (Symmetric Interval Hull). The symmetric interval hull of a set
S, denoted ⊡ (S), is its smallest enclosing interval product symmetric with respect
to the origin:

⊡ (S) = [−|x1|; |x1|]× . . .× [−|xd|; |xd|]
where for all i, |xi| = sup{|xi| : x ∈ S}.

1Also known as interval products, (axis aligned) hyper-rectangles, . . .

12

2.2. Set Representation

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8
y

y

xx

Figure 2.3: The set S and its interval hull ✷ (S).

2.2.2 Ellipsoids

An ellipsoid is the image of an Euclidean ball by an invertible linear transformation,
A. They are usually represented by their center c and a shape matrix Q = AA⊤.

Definition 2.6 (Ellipsoid). Given a point c and a positive definite2 matrix Q we
can define the ellipsoid E(c, Q) of center c and shape matrix Q as:

E(c, Q) = {x : (x− c) ·Q−1(x− c) ≤ 1}

When Q is the identity matrix I, E(c, I) is the unit Euclidean ball of center c.
Like interval products they have a constant representation size, d(d+1) param-

eters in dimension d, but they are much more efficient in approximating smooth
sets. They are used in various ellipsoidal calculus tools [RST02, KV06].

One notable application of ellipsoids is the ellipsoid method [YN76] in opti-
mization. It has been used in [Kha79] to prove that linear programs (optimization
of a linear function over a convex polytope, for an interesting review on the subject
see [Tod02]) can be solved in polynomial time.

2.2.3 Polytopes

Polytopes are the generalization of polygons and polyhedra3 to higher dimension.
They play an important role in numerous fields and are the subject of numerous
textbooks (see e.g. [Zie95]).

2A matrix Q is positive definite iff it is equal to its transpose Q⊤, and x · Qx > 0 for all
nonzero x.

3Here a polyhedron is a 3-dimensional polytope, in other context it can mean unbounded
polytope

13

Chapter 2. Representing Sets

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

Figure 2.4: A set S and an enclosing ellipsoid.

Definition 2.7 (Polytope). A polytope P is the bounded intersection of a finite
set H of half-spaces:

P =
⋂

h∈H
h

An half-space is a set defined by a non-null normal vector n and a value γ:

{x : x · n ≤ γ}

Equivalently a bounded polytope P is the convex hull of a finite set V:

P = {
∑

v∈V
αvv : ∀v ∈ V , αv ≥ 0 and

∑

v∈V
αv = 1}

The elements of V are called the vertices of P.

These two definitions lead to two complementary representations:

• a V-polytope is a polytope represented by its vertices.

• a H-polytope is a polytope represented by a set of half-spaces, defining its
facets, each half-space being represented by its normal vector n and a value
γ: {x : x·n ≤ γ}. Normal vectors and corresponding values are often merged
in a matrix A and a vector b, then P = {x : Ax ≤ b}, where ≤ must be
interpreted component-wise.

It is common to use both representations, since some operations are easier on
the first, for example convex hull of union of polytopes, while others are easier on
the second, for example intersection.

Contrary to ellipsoids and interval products, polytopes do not necessarily have
a center of symmetry, which is certainly an advantage when trying to approximate

14

2.2. Set Representation

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

Figure 2.5: A set S and an enclosing polytope.

a set like S in Figure 2.5. However one may argue that the basic objects underlying
convex polytopes are half-spaces, and that intersections of ellipsoids are much more
expressive than intersections of half-spaces4.

Another difference is that, polytopes do not have a constant representation
size, since we can intersect as many half-spaces as we want. If the size of the
manipulated polytopes grows during computation, one may need some reduction
algorithm in order to reduce the number of vertices, or facets, while introducing
as small approximation error as possible [Fre08].

Another solution is to consider a sub-class of the class of polytope by restrict-
ing the orientation of the facets to a fixed, possibly finite, set L. We will denote
such a class as the class of L-polytopes. These sub-classes are sometimes called
template polyhedra5. Some of them have custom representations and algorithms,
a simple example is the class of interval products, but we can also mention oc-
tagons [Min01] and octahedrons [CC04], both developed in the context of abstract
interpretation [CC77].

2.2.4 Zonotopes

An interesting sub-class of polytopes is the class of zonotopes6 which underlies
affine arithmetic, an extension of interval arithmetic.

Definition 2.8 (Zonotope). A zonotope Z in R
d is the image of a unit cube B∞

in R
n by an affine transformation.

Z = {Ax + c : x ∈ B∞}
4Indeed for any polytope with k facets there is a sequence of intersections of k ellipsoids that

converge towards it, which means that the set of all polytopes with k facets is a subset of the
boundary of the set of intersections of k ellipsoids.

5in this context polyhedron is synonymous to unbounded polytope.
6also known as Affine Forms, G-intervals,

15

Chapter 2. Representing Sets

When the affine transformation preserves dimensionality, Z is restricted to be a
parallelotope. But the class of zonotopes is richer, allowing affine transformations
going from R

n to R
d, where n can be smaller than, equal to, or bigger than d.

Figure 2.6: Ceci n’est pas un cube.

An example, simple to visualize, is the usual drawing of a 3 dimensional cube.
In order for it to fit on a 2 dimensional piece of paper one usually applies an
affine transformation going from R

3 to R
2, as in Figure 2.6. In order to see more

examples of zonogons constructed from a cube in R
3, just take any almost cubic

object (like a pack of cigarettes) and let the sun apply an affine transformation for
you by casting a shadow in the shape of a zonogon.

There is another characterization for zonotopes which is less intuitive but, in
our context, more useful. This characterization uses the notion of Minkowski sums.

Definition 2.9 (Zonotope). A zonotope Z is the finite Minkowski sum of line
segments.

Z =

{
c +

n−1∑

i=0

αigi : ∀i, −1 ≤ αi ≤ 1

}

Figure 2.7: A Minkowski sum of line segments.

To better understand this second definition we will link it to the first one by
expressing the unit cube as a sum of line segments.

16

2.2. Set Representation

The unit cube [Zon05] B∞ in R
n is the product of n intervals, [−1; 1]n. There

is a relation between products of sets and Minkowski sums. Indeed if X and Y are
two subsets of R

n and R
m respectively then:

X × Y = (X × {0m})⊕ ({0n} × Y)

where 0k is the origin of R
k. Thus we can express the unit cube as:

B∞ =
n−1⊕

i=0

Li where Li = {0i} × [−1; 1]× {0n−i−1}

Thus, a zonotope is a Minkowski sum of line segments.

Z = AB∞ ⊕ {c} =

(
n−1⊕

i=0

ALi

)
⊕ {c}

If we denote by gi the ith column of the matrix A, then:

ALi = {αgi : α ∈ [−1; 1]}

and the line segment ALi is said to be generated by the vector gi. Thus a zonotope
can be represented by its center c and the list of its generators g0, . . ., gn−1. Such
a zonotope is denoted by 〈c|g0, . . . , gn−1〉.

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

Figure 2.8: A set S and an enclosing zonotope with its center and generators.

As with polytopes, we have a variable representation size; more generators may
help to improve an approximation. The ratio n

d
, the number of generators over

the dimension of the zonotope is called the order of the zonotope. One can see
on Figure 2.8 an order 3 approximation of a 2 dimensional non-convex set (thus
having 6 generators). However, contrary to polytopes, it has the same limitation
as interval products and ellipsoids, in that it has a center of symmetry.

17

Chapter 2. Representing Sets

Nevertheless, not all centrally symmetric polytopes are zonotopes. A zonotope
is a centrally symmetric polytope whose facets of any dimension are also centrally
symmetric polytopes. Note that the condition on central symmetry of facets is
very restrictive as illustrated in Figure 2.9. Indeed, in a two dimensional plane any
centrally symmetric convex polygon is of course a zonogon7, but for dimensions
higher than 2 very few centrally symmetric convex polytopes are zonotopes. That
is why some operations involving zonotopes, for example enclosing a set of points
by a zonotope [GNZ03], are much easier in the plane.

Figure 2.9: A centrally symmetric set which is not a zonotope.

As we will see in this thesis, the main interest of zonotopes in our context is
that it is expressed as a “sum of things”. Most of our algorithms can be easily
extended to sums of geometrical objects more complex than line segments, like
triangles [Rou96], ellipsoids, or any mix of objects for which a linear transformation
can be easily computed.

2.2.5 Support Functions

All the sets we have seen so far are convex and represented by a set of parameters.
Now we will represent convex sets by a function.

Definition 2.10 (Support function). The support function of a set S, denoted ρS
is defined by:

ρS : R
d → R ∪ {−∞,∞}

ℓ 7→ sup
x∈S

x · ℓ

A point x of S such that x · ℓ = ρS(ℓ) is called a support vector of S in direction
ℓ. We will denote by νS (ℓ) the set of support vectors of S in direction ℓ, and by
νℓ
S an element of νS (ℓ).

Given a vector ℓ, ρS(ℓ) is the solution to the following linear optimization
problem: maximize the linear function x · ℓ for x in S. Intuitively the value ρS(ℓ)
tells you where to place a hyperplane orthogonal to ℓ so that is touches S as
illustrated on Figure 2.10, such a hyperplane is called a supporting hyperplane.

7A zonogon is a zonotope in dimension 2

18

2.2. Set Representation

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

ℓ

Hℓ = {x : x · ℓ = ρS(ℓ)}

Figure 2.10: A set S and its supporting hyperplane in direction ℓ: Hℓ.

To any set S, even non-convex, we can associate its support function8, but from
a support function we can only deduce the closed convex hull of this set. Indeed:

CH (S) =
⋂

ℓ∈Rd

{x : x · ℓ ≤ ρS(ℓ)} (2.1)

Thus, if S is convex and closed, it is uniquely determined by its support func-
tion, and it is equal to the intersection of the infinite set of half-spaces with normal
vectors ℓ ∈ R

d and distance values ρS(ℓ). That is why support functions play an
important role in convex analysis (see e.g. [BNO03, BV04, RW98]).

This representation can be seen as a H-polytope with an uncountable number
of constraints.

Like with any other representation, a transformation on S is translated into
an operation on ρS . And properties of S are computed using one or several calls
to ρS . Of course in order to manipulate this function on a computer it will be
represented by an algorithm computing its values.

For the unit balls associated with the usual norms, the support function can
be computed efficiently.

Proposition 2.2. For any k > 1, the unit ball for the k-norm in dimension d is:

Bk =

x ∈ R

d : ‖x‖k =

(
d−1∑

i=0

|xi|k
)1/k

≤ 1

its support function is given by:

ρBk
(ℓ) = ‖ℓ‖ k

k−1

8This does not mean that for any set S we can easily find an algorithm computing its support
function.

19

Chapter 2. Representing Sets

For ℓ 6= 0, an associated support vector is given by:

νℓ
Bd

k
=

v

‖v‖k

where v is such that viℓi = |ℓi|
k

k−1 for all i.

Proof. (see A.1.1 on page 125)

Passing to the limit, we can also deduce the support function for the unit balls
B1and B∞ =

{
x ∈ R

d : ‖x‖∞ = max0≤i<d |xi| ≤ 1
}
.

ρB1
(ℓ) = ‖ℓ‖∞

ρB∞(ℓ) = ‖ℓ‖1

More complex sets can be considered using operations on these elementary
convex sets, such as linear transformations, homothety, Minkowski sum, or convex
hull of union of sets.

The support function of sets defined using these operations can be computed
using the following properties:

Proposition 2.3. For all compact convex sets X , Y ⊆ R
d, for all matrices A, all

positive scalars λ, and all vectors ℓ ∈ R
d, we have:

ρAX (ℓ) = ρX (A⊤ℓ)

ρλX (ℓ) = ρX (λℓ) = λρX (ℓ)

ρX⊕Y(ℓ) = ρX (ℓ) + ρY(ℓ)

ρCH(X∪Y)(ℓ) = max(ρX (ℓ), ρY(ℓ))

Proof. A proof can be easily derived from the properties of the dot product.

With just the first of these properties, and the support function of B∞ and B2

respectively, we can already deduce the support function of a zonotope Z whose
generators g0, . . ., gn−1 are the columns of a matrix A, or an ellipsoid E with shape
matrix Q = BB⊤:

ρZ(ℓ) = ρAB∞(ℓ) = ‖A⊤ℓ‖1 =
n−1∑

j=0

|gj · ℓ|

ρE(ℓ) = ρBB2
(ℓ) = ‖B⊤ℓ‖2 =

√
ℓ⊤Qℓ

As for polytopes, computing the support function is exactly solving a linear
program. Indeed, for a convex H-polytope represented by a set of constraints

20

2.2. Set Representation

Ax ≤ b, the support function at ℓ is the solution to the following optimization
problem:

maximize x · ℓ
subject to Ax ≤ b

Thus, support functions can be computed efficiently for a quite large class of
sets. Moreover, it is often possible to deduce one support vector in a given direction
from the evaluation of the support function in that direction. Support vectors for
unit balls can be deduced from the proof of Proposition 2.2, and an equivalent to
Proposition 2.3 can be easily formulated.

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

Figure 2.11: A set S and its convex hull CH (S).

The set S shown in Figures 2.3, 2.4, 2.5, 2.8, and 2.11 is:

S =

{(
2.2
2.3

)}
⊕
⋃

λ∈[0;1]

(
(1− λ)P0 ⊕ λP1 ⊕ λ(1− λ)P2

)

where

P0 = B1 P1 =

{(
13
2

)}
⊕ B1 P2 =

{(
0
11

)}
⊕ B∞

Its support function is rather easy to compute:

ρS(ℓ) = max
λ∈[0;1]

((
2.2
2.3

)
· ℓ + ‖ℓ‖∞ + λ

(
13
2

)
· ℓ + λ(1− λ)

((
0
11

)
· ℓ + ‖ℓ‖1

))

Thus, only a few dot products and maximizing a degree 2 polynomial in one
variable on an interval are needed to compute ρS(ℓ), which allows us to represent
the convex hull of S efficiently.

21

Chapter 2. Representing Sets

Support functions are not always that simple. One way to simplify one is
to over-approximate the set it represents by a polytope, and then represent that
polytope by its support function.

From equation (2.1), it is easy to see that polyhedral over-approximation of an
arbitrary compact convex set can be obtained by sampling its support function.

Proposition 2.4. Let S be a compact convex set and ℓ1, . . . , ℓr ∈ R
d be arbitrarily

chosen vectors; let us define the following halfspaces:

Hk = {x ∈ R
d : ℓk · x ≤ ρS(ℓk)}, k = 1, . . . , r

and the polyhedron

P =
r⋂

k=1

Hk.

Then, S ⊆ P. Moreover, we say that this over-approximation is tight as S touches
all the facets of P.

An example of such polyhedral over-approximation of a convex set can be seen
in Figure 2.5. Indeed, approximating tightly a set by a polytope is equivalent to
sampling its support function.

Furthermore, support vectors can be used to compute an under-approximation
of an arbitrary compact convex set.

Proposition 2.5. Let S be a compact convex set and ℓ1, . . . , ℓr ∈ R
d be arbitrarily

chosen non zero vectors; let us take one point xk in each set νS (ℓk) and define the
polyhedron

P = CH

(
r⋃

k=1

{xk}
)

.

Then, P ⊆ S. Moreover, we say that this under-approximation is tight as P
touches the boundary of S.

Figure 2.12 shows how a compact convex set can be under- and over-approxi-
mated by two polytopes using its support vectors and support function respectively.
This figures also illustrate how the normal to the facets of the under-approximation
can be used to improve both approximations.

2.2.6 Other Representations

Other representations of sets have been used in the context of reachability analysis.
Notably some that can represent non-convex sets. We will not present them but
only give a few references to some of the main classes of sets.

• Taylor models [Neu03] are based on Taylor expansions and interval products.
They can be seen as a generalization of interval products, similar to order 0
Taylor models, and zonotopes, similar to order 1 Taylor models.

22

2.2. Set Representation

(a) A set, 3 directions, and their associ-
ated support vectors and supporting hy-
perplane.

(b) Normals to the facets of the under-
approximation give 3 new directions.

(c) Improvement of the approximation with evenly distributed directions (left) or direc-
tions given by previous under-approximation (right).

(d) Resulting over- and under-approximations for two different sets of directions.

Figure 2.12: Refining under- and over-approximation of a closed convex set repre-
sented by its support function.

23

Chapter 2. Representing Sets

• In the level sets [Set99, MT00] framework, a set is represented by the zeros,
or negative values, of a multivariate function.

• Projectagons [GM99] are non convex polytopes represented by their projec-
tions on two dimensional spaces.

2.3 Operations on Sets

In the previous section we have described how we represent sets in this thesis. In
the next chapters we will manipulate these representations in order to approximate
the reachable sets of linear and hybrid systems.

The main operations we will need are linear transformation, Minkowski sum,
convex union, and intersection with a hyperplane. Table 2.1 informally summarizes
the difficulty of performing these operations in each of the classes presented in the
previous section.

Size A · · ⊕ · CH (· ∪ ·) · ∩ H
Boxes 2d +
Ellipsoids d2 + d + +
H-Polytopes kd + k ∗ − − +
V-Polytopes kd + − + −
Zonotopes kd + d + +
Support Functions NA + + + −

Table 2.1: Performing linear transformation, Minkowski sum, convex union, and
intersection with a hyperplane using different classes of sets together with their
representation is either easy (+), easy most of the time (∗), hard (−), or impossible
(no sign) in the class considered. Representation size is expressed as a function of
d, the dimension of the system, and k, the number of constraints (H-Polytopes),
vertices (V-Polytopes), or generators (Zonotopes).

2.3.1 Boxes

Boxes are very simple sets with a compact representation, their main disadvantage
is that very few operations result in a box. Amongst the four operations considered,
this class of sets is only closed by Minkowski sum.

This operation can be applied very easily by taking the sum of each interval:

[x; x]⊕ [y; y] = [x + y; x + y]

24

2.3. Operations on Sets

2.3.2 Ellipsoids

An ellipsoid is the image by an invertible linear transformation of an Euclidean
ball. We can extend this definition to non-invertible linear transformation using the
support function of ellipsoids. Indeed, Given a point c and a positive semi-definite9

matrix Q we can define the (possibly degenerate) ellipsoid E(c, Q) of center c and
shape matrix Q as the set whose support function is:

ρE(c,Q)(ℓ) = c · ℓ +
√

ℓ⊤Qℓ

Now that we can manipulate degenerate ellipsoids it is clear that for any linear
transformation A, the image of an ellipsoid of center c and shape matrix Q by A
is an ellipsoid, and its center is Ac and its shape matrix AQA⊤.

The class of ellipsoids is also closed by intersection with a hyperplane. Indeed,
if E is the image of a Euclidean ball by a linear transformation A, the pre-image
of E and any hyperplane of R

d by A are an Euclidean ball and a hyperplane in the
pre-image of R

d. Since the intersection of an Euclidean ball and a hyperplane is
an Euclidean ball of smaller dimension, its image by A is an ellipsoid.

Unfortunately this class of sets is not closed under Minkowski sum or convex
union, as illustrated on Figure 2.13.

Figure 2.13: Minkowski sum (left) and Convex union (right) of two ellipsoids
(dashed).

2.3.3 Polytopes

The class of polytopes is closed under all four operations we are interested in.
And most of this operations can be performed efficiently on at least one of the
representation if we do not impose to be in canonical form.

Intersection with a hyperplane can be done by just adding two constraints to
a H-polytope.

9A matrix Q is positive semi-definite iff it is equal to its transpose Q⊤, and x ·Qx ≥ 0 for all
x.

25

Chapter 2. Representing Sets

Convex union of two V-polytopes can be done by taking the union of their
vertices.

Applying a linear transformation to a V-polytope can be done by applying it to
each of its vertices. For H-polytope it is almost as easy, the linear transformation
must be applied to each of the constraints:

A{x : x · n ≤ γ} = {x : x · (A−1)⊤n ≤ γ}

If A is not invertible, the problem becomes much harder.
As for Minkowski sum, both representations not only suffer from the lack of

efficient algorithm [Wei07, Tiw08], but also from the dramatic increase of the
representation size.

2.3.4 Zonotopes

This combinatorial explosion of Minkowski sum is hidden for zonotopes represented
by their generators. Indeed the sum of two zonotopes Z1 = 〈c|g0, . . . , gn−1〉 and
Z2 =

〈
c′|g′

0, . . . , g
′
m−1

〉
is:

Z1 ⊕Z2 =
〈
c + c′|g0, . . . , gn−1, g

′
0, . . . , g

′
m−1

〉

It can be computed in O (d), and the size of the output is only the sum of the size
of the inputs.

A generic zonotope of order p, though it is encoded by only pd2 + d numbers,
has more than (2p)d−1/

√
d vertices [Zas75]. Hence, zonotopes are perfectly suited

for the representation of high dimensional sets.
Linear transformation is not harder, thanks to the distributivity of linear trans-

formation over Minkowski sum. The image of a zonotope Z = 〈c|g0, . . . , gn−1〉 by
a linear transformation A is:

AZ = 〈Ac|Ag0, . . . , Agn−1〉

Then, the computational complexity of a linear transformation applied to a zono-
tope is O (pLd), where Ld is the complexity of the multiplication of two d × d
matrices. Using standard matrix multiplication the computational complexity of
the linear transformation is10 O (pd3). In comparison, if the zonotope Z was to
be represented by its vertices, the linear transformation would require at least
(2p)d−1d3/2 operations.

Unfortunately, this class of sets is not closed under convex union or intersec-
tion with a hyperplane. Indeed, both operations break central symmetry; convex
union for obvious reasons, and an example with intersection with a hyperplane is
illustrated on Figure 2.9, where the intersection between a cube and a plane is a
triangle.

10Note that, theoretically, the complexity can be further reduced down to O
(
pd2.376

)
by using

a more sophisticate matrix multiplication algorithm [CW90].

26

2.3. Operations on Sets

2.3.5 Support Functions

As we already know from Proposition 2.3, most of these operations can be per-
formed very easily on convex sets represented by their support functions.

Computing the value of the support function of the intersection of two sets X
and Y in one direction, using only their support functions is much harder, but we
can at least bound this value:

ρX∩Y(ℓ) ≤ min (ρX (ℓ), ρY(ℓ))

We even can use this approximation to represent X ∩ Y since:

X ∩ Y =
⋂

ℓ∈Rd

{x : x · ℓ ≤ min (ρX (ℓ), ρY(ℓ))}

Unfortunately this property is lost as soon as Minkowski sum is involved, indeed
min (ρX (ℓ), ρY(ℓ)) + ρZ(ℓ) does not represent X ∩ Y ⊕Z but (X ⊕ Z) ∩ (Y ⊕ Z).
Moreover, if Y is a hyperplane, then ρY will be equal to infinity almost everywhere.

There is an exact relation [RW98] linking ρX∩Y , ρX , and ρY ; unfortunately, this
relation is not effective from the computational point of view.

ρX∩Y(ℓ) = inf
w∈Rd

(ρX (ℓ− w) + ρY(w))

If Y is a hyperplane, Y = {x : x · n = γ}, then the problem can be reduced to the
minimization of a unimodal function in one variable:

ρX∩Y(ℓ) = inf
λ∈R

(ρX (ℓ− λn) + λγ)

The case of intersection with a hyperplane will be investigated in detail in Sec-
tion 8.3, where we will reduce the problem to the minimization of a slightly different
function.

In Table 2.1, the representation size of support functions is not indicated. In
fact, it can be almost anything and is not relevant. What is relevant is the com-
plexity of its algorithm.

27

Chapter 2. Representing Sets

28

Part I

Linear Systems

29

Chapter 3
State of the Art in Linear Systems
Reachability

Résumé : Nous présentons ici quelques méthodes pour le calcul de

l’ensemble atteignable des systèmes linéaires sur un temps borné. Ces

méthodes sont toutes basées sur la discrétisation de l’équation différen-

tielle ẋ = Ax(t)+u(t) en une relation de récurrence sur des ensembles :

Ωi+1 = ΦΩi ⊕ V. Chaque Ωi contient l’ensemble R[iδ;(i+1)δ] où δ est le

pas de discrétisation. L’ensemble atteignable par le système sur [0;Nδ]
peut alors être sur-approximé par les N premiers termes de cette sé-

quence.

Malheureusement les Ωi sont en général difficilement calculables, c’est

pourquoi la plupart des outils produisent une approximation Ω̃i de Ωi à

chaque étape. L’accumulation et la propagation de ces approximations

peuvent rendre les Ω̃i inutilisables.

In this chapter we present some approaches, related to ours, for computing the
set of points reachable by a linear system within a time horizon T .

As stated in Chapter 1, the approach we take is related to simulation, but
instead of having points evolving in the state space we have sets. It is sometimes
possible to transform the differential equation on the state variables in an equation
on the parameters of the set representation [KV06]. Integrating the latter will
result in a sequence of sets approximating each of the Rti(X0), where the ti are the
times corresponding to the integration steps. Then, one may miss some interesting
behaviors occurring during any]ti; ti+1[.

Instead, the original differential equation (1.1) is discretized and the reachable
set R[0;T] is over-approximated by the union of a finite number N of sets from the
chosen class, that is why we also speak about reachable sets in plural. Each of
these sets is an approximation of R[iδ;(i+1)δ], where i is an integer between 0 and
N − 1, and δ = T

N
is the time step. As for simulation, R[0;t] is easier to compute

31

Chapter 3. State of the Art in Linear Systems Reachability

accurately if t is small.
In order to compute these sets we use the fact that the composition of two

reachability operators R[t0;t1] and R[t′
0
;t′

1
] behave isomorphically1 to the addition of

intervals, that is:

R[t0;t1]

(
R[t′

0
;t′

1
](Y)

)
= R[t0+t′

0
;t1+t′

1
](Y)

In particular, for any i in N:

Rδ

(
R[iδ;(i+1)δ](Y)

)
= R[(i+1)δ;(i+2)δ](Y)

This is how Algorithm 3.1 computes the reachable sets for time-invariant (not
necessarily linear) systems.

Algorithm 3.1 Algorithmic scheme for reachability analysis.
Input: X0, T the time horizon, N the number of steps.
Output: R[0;T](X0) as a union of N sets.
1: δ ← T

N

2: Ω0 ← R[0;δ](X0)
3: for i from 0 to N − 2 do
4: Ωi+1 ← Rδ(Ωi)
5: end for
6: return Ω0 ∪ · · · ∪ ΩN−1

Then we need a way to approximate R[0;δ](X0) by a set in the chosen class and
a map Rδ operating on this class such that Rδ(Y) ⊆ Rδ(Y) such maps are called
extensions of Rδ over a particular class.

We will present here some of the classical methods, computing the bounded
time reachable set of a continuous linear system, based on Algorithm 3.1. We
will first show how time discretization can be done for autonomous system and
non-autonomous systems without specifying the class of sets used. Then the case
of each of the classes of sets defined in the previous chapter will be explored in
more detail.

3.1 Autonomous System

We are here interested in the reachable sets of a dynamical system given by an
autonomous linear ordinary differential equation (ODE)2.

ẋ(t) = Ax(t) (3.1)

1If the system is time variant, ẋ = f(x, u, t), a similar approach is possible but slightly less
readable. But any time varying system can be transformed into a time-invariant one by adding
one variable, representing time, to the state space.

2Some autonomous systems are expressed as ẋ(t) = Ax(t) + b, they can be rewritten using
one additional state variable with null derivative as ẋ(t) = A′x(t)

32

3.2. Non-Autonomous System

Solutions for equation (3.1) have the following form:

x(t) = etAx0

From this expression, it is easy to deduce that for any set Y , Rδ(Y) is eδAY .
Thus the sequence of reachable sets we want to compute is defined by the following
recurrence relation:

Ωi+1 = eδAΩi

Since the class of boxes is not closed under linear transformations it can not be
used to compute the terms of this sequence, in contrast to ellipsoids, polytopes,
zonotopes and convex sets represented by their support functions.

But first, R[0;δ] (X0) must be approximated by a set Ω0. Indeed this set is not
convex and we only consider here classes of convex sets. We will here briefly outline
a classical method used to perform this approximation [Dan00, Gir04].

Our main interest is in over-approximation: Ω0 must contain R[0;δ] (X0), and
in particular it must contain R0 (X0) and Rδ (X0). Thus, we will start from the

convex hull of R0 (X0) ∪Rδ (X0). Let us call this set Ω̃.
Then an over-approximation Ω0 can be computed by finding an upper-bound

αδ for the Hausdorff distance between Ω̃ and R[0;δ] (X0), and using Proposition 2.1.

R[0;δ] (X0) ⊆ CH (R0 (X0) ∪Rδ (X0))⊕ B(αδ) = Ω0

where B(αδ) is the ball of radius αδ. The reader is referred to [Gir04] or to
Lemma 5.1 for more details on different ways to find such a bound.

An alternative way to compute a polyhedral over-approximation of R[0;δ] (X0),
described in [CK98, Chu99], is to solve several non-linear optimization problems
over it, in other words, to sample its support function.

3.2 Non-Autonomous System

We consider now a non-autonomous linear system3:

ẋ(t) = Ax(t) + u(t) (3.2)

with x(0) in X0 and u(t) in U . We assume that U is compact and convex, not
necessarily full-dimensional, and only consider measurable input functions u.

Solutions for equation (3.2) have the following form:

x(t) = etAx0 +

∫ t

0

e(t−s)Au(s) ds (3.3)

If we remark that
∫ t

0
e(t−s)Au(s) ds is equal to Rt({0}), we can decompose the

operator Rδ into:
Rδ : Y 7→ eδAY ⊕Rδ({0})

3non-autonomous systems are often expressed as ẋ(t) = Ax(t)+Bu(t), they can be rewritten
as ẋ(t) = Ax(t) + v(t) by constraining v(t) to be in BU .

33

Chapter 3. State of the Art in Linear Systems Reachability

and express the set of points reachable during [0; δ] by:

R[0;δ](X0) =
⋃

s∈[0;δ]

(
esAX0 ⊕Rs({0})

)

Two things remain to be done:

• Find a way to express, or over-approximate, Rδ({0}) by a set V in the class
of sets chosen for computation. Leading to the set-valued discretized system:

Ωi+1 = ΦΩi ⊕ V (3.4)

with Φ = eδA

• Initialize this sequence of sets by over-approximating R[0;δ](X0) by a set Ω0.

We will then have to compute the N first sets of the sequence defined by (3.4)
and Ω0 in order to over-approximate the reachable set of the original system be-
tween times 0 and Nδ.

There are several ways to approximateRδ({0}), andR[0;δ](X0). In the following
we summarize one such approximation scheme taken from [Gir05].

Lemma 3.1 ([Gir05]). Given a norm ‖ · ‖, let µ = supu∈U ‖u‖ then:

Rδ({0}) ⊆ V = B(βδ)

where B(βδ) is the ball of radius βδ associated to ‖ · ‖, and βδ = eδ‖A‖−1

‖A‖ µ.

Furthermore, if U = B(µ), for any set S:

dH (Rδ(S), ΦS ⊕ V) ≤ µ‖A‖eδ‖A‖δ2

In order to over-approximateR[0;δ](X0), one can use the same kind of techniques
used for the autonomous case.

Lemma 3.2 ([Gir05]4). Given a norm ‖·‖, let µ = supu∈U ‖u‖ and ν = supx∈X0
‖x‖

then:
R[0;δ](X0) ⊆ Ω0 = CH (X0 ∪ ΦX0)⊕ B(αδ + βδ)

where αδ =
(
eδ‖A‖ − 1− δ‖A‖

)
ν.

Furthermore, if U = B(µ):

dH

(
R[0;δ](X0),CH (X0 ∪ ΦX0)⊕ B(αδ + βδ)

)
≤ δ‖A‖eδ‖A‖

(
µ

‖A‖ +

(
1

2
+ δ

)
ν

)

Using these two lemmata, one can initialize the sequence defined by equa-
tion (3.4) and over-approximate the reachable set R[0;T](X0) by

⋃N−1
i=0 Ωi. Fur-

thermore, the following theorem tells us that the distance between these two sets
vanishes when δ tends toward 0.

4 In [Gir05], this lemma is stated for a zonotope representation and thus use an over-
approximation of CH (X0 ∪ ΦX0) while ensuring the convergence of the approximation.

34

3.3. Reachability of the Discretized System

Theorem 3.1 ([Gir05]). Let Ω0, . . ., ΩN−1, be the N first terms of the sequence
defined by (3.4) using V and Ω0 as defined in Lemmata 3.1 and 3.2 respectively.
Then:

R[0;T](X0) ⊆
N−1⋃

i=0

Ωi

Furthermore, if U = B(µ):

dH

(
R[0;T](X0),

N−1⋃

i=0

Ωi

)
≤ δ‖A‖eT‖A‖

(
2µ

‖A‖ +

(
1

2
+ δ

)
ν

)

3.3 Reachability of the Discretized System

We now have to compute the N first sets of sequence (3.4):

Ωi+1 = ΦΩi ⊕ V

Algorithm 3.2 makes a direct use of this recurrence relation.

Algorithm 3.2 Reachability of linear systems with input.
Input: The matrix Φ, the sets Ω0 and V , an integer N .
Output: The first N terms of the sequence defined in equation (3.4).
1: for i from 0 to N − 2 do
2: Ωi+1 ← ΦΩi ⊕ V
3: end for
4: return {Ω0, . . . , ΩN−1}

We do not worry here about the discretization procedure which induces an
inevitable over-approximation (which can be provably reduced by reducing the
time step). That is why the only operations we need for this algorithm to work are
linear transformations and Minkowski sum. Among the classes of sets presented
in Chapter 2, only polytopes, zonotopes, and convex sets represented by their
support functions are closed under these operations; hence boxes and ellipsoids
are excluded (see Table 2.1).

Polytopes One implementation of this method is given in the Multi-Parametric
Toolbox (MPT) [KGBM04, KGB04]. The matrix Φ is eδA. Thus it is invertible and
the linear transformation can be computed computed linearly in the representation
size of Ωi, whether H-polytopes or V-polytopes are used. Unfortunately, the other
operation involved, Minkowski sum, is hard to compute for both representations.
Moreover, Minkowski sum increases the number of constraints or vertices defining
a polytope, and makes linear transformation progressively harder to compute as
we proceed in the iteration.

35

Chapter 3. State of the Art in Linear Systems Reachability

Indeed, if both Ω0 and V are cubes, after k discrete steps Ωk−1 may have

more than (2k)d−1

√
d

vertices and more than 2
(

kd
d−1

)
facets of dimension d− 1. Hence,

except for small dimension and small discrete-time horizon, or equivalently, large
time step, Algorithm 3.2 can not be reasonably used with polytopes.

Zonotopes Unlike polytopes, Minkowski sum is easy to compute for zonotopes
and does not dramatically increase the number of generators. If Ω0 and V are of
order p and q respectively, then after k discrete steps the representation size of
Ωk−1 is of order p + (k − 1)q.

Thus computing the N first sets of sequence (3.4) using zonotopes can be done
in time O ((Np + N2q)Ld), with space complexity O ((Np + N2q)d2). Except for
very large discrete-time horizons, or very small time steps, this computation is
tractable. Unfortunately, using zonotopes, the output of Algorithm 3.2 consists of
a list of high order zonotopes which are hard to handle for further use.

Support Functions The case of support functions is special. Using this repre-
sentation, Algorithm 3.2 returns a list of N functions. Computing their evaluation
tree can be done in O (N) time and memory.

Support functions used in this way can be seen as lazy computation. All will
be done when we will need the value of ρΩk

(ℓ) which has time complexity of

O
(
k(d2 + Ct

ρV
) + Ct

ρΩ0

)
, where Ct

ρV
and Ct

ρΩ0
are the time complexity of ρV and

ρΩ0
respectively. And the time complexity of evaluating all the ρΩk

in one direction

ℓ is O
(
N2(d2 + Ct

ρV
) + NCt

ρΩ0

)
.

3.4 Approximate Reachability of the Discretized

System

The fact that some classes of sets are not closed under both linear transforma-
tion and Minkowski sum, or that the application of these operations produces
progressively more complex sets, motivates the use of over-approximation (wrap-
ping), replacing Ωi by a superset Ωi which is less complex. Recurrence (3.4) is thus
replaced by

Ωi+1 = ΦΩi ⊕ V (3.5)

where the overline denotes an over-approximation.
To realize (3.5) we need an approximation procedure ApproxΦ·⊕· () which takes

as input two sets X and Y and returns an over-approximation of ΦX ⊕ Y . The
same can be done for under-approximation.

Before briefly explaining some of the most common approximation procedures,
we will investigate the implication of the use of an approximation procedure in
Algorithm 3.3.

36

3.4. Approximate Reachability of the Discretized System

Algorithm 3.3 Approximate Reachability of linear systems with input.
Input: The matrix Φ, the sets Ω0 and V , an integer N .
Output: The first N terms of the sequence defined in equation (3.5).
1: for i from 0 to N − 2 do

2: Ω̃i+1 ← ApproxΦ·⊕·

(
Ω̃i,V

)

3: end for
4: return {Ω̃0, . . . , Ω̃N−1}

Remark. What is important here is the shape of the sets considered, not their
position in the state space. That is why in the following, figures of individual sets
and their approximation might not be given together with a reference system.

3.4.1 Wrapping Effect

In Algorithm 3.3, Ω̃i+1, the approximation of Ωi+1 is computed using ApproxΦ·⊕· ()

from Ω̃i which is already an approximation of Ωi. This accumulation and propa-
gation of approximation errors can lead, if uncontrolled, to an exaggerated growth
of the enclosures.

Because of these successive wrappings, even for stable systems, Algorithm 3.3
can produce a sequence of exponentially growing sets. Moreover, since the number
of discrete sets, N , is proportional to the inverse of the timestep, δ, Theorem 3.1
is lost, and reducing the timestep does not necessarly reduce the approximation
error.

This effect was first observed in the early 1960s with the use of interval methods
in the field of validated integration of ODEs. Since then, various strategies have
been designed to try to control it.

Unfortunately, the error introduce by an approximation method is often very
hard to evaluate, or even define. One good criterion would be the Hausdorff
distance between the exact set Ωi and its enclosure Ω̃i normalized by the diameter
of Ωi, where the diameter of a set S is defined to be DS = supx,y∈S2 ‖y − x‖.
But this value is very hard to bound in a useful way, mainly because of the linear
transformation.

3.4.2 Approximation Strategies

In this section we investigate which approximation functions, ApproxΦ·⊕· (), have
been used for reachability analysis with each class of sets presented in Chapter 2.

3.4.2.1 Interval Hulls

The class of boxes is a very simple class, as such it has some advantages: the best
over-approximation of a set by a box can be easily defined as the intersection of
all possible box over-approximations, in other words, its interval hull.

37

Chapter 3. State of the Art in Linear Systems Reachability

The ultimate ApproxΦ·⊕· () function is the function that to X and Y associates
✷ (ΦX ⊕ Y).

Let us analyse how it behaves on a very simple two dimensional example:

Φ =

(
cos(π/4) − sin(π/4)
sin(π/4) cos(π/4)

)

Ω0 = B∞ = [−1; 1]× [−1; 1]

V = {0}

Φ is just the matrix of rotation by an angle (π/4). For all k, Ω2k is Ω0, and Ω2k+1

is ΦΩ0.
Using Algorithm 3.3 with the best possible approximation function we get:

Ωk = 2k/2Ω0

as illustrated on Figure 3.1.

Figure 3.1: Successive wrapping induced by a rotation of π
4
. From left to right, in

light grey: Ω0, Ω1, and Ω2; in grey: Ω̃1 and ΦΩ̃1; in dark grey Ω̃2.

This figure also illustrates the fact that the over-approximation at one step
can be induced by the propagation of the approximation error introduced at the
previous step only.

The analysis performed with interval hulls is closely linked to the choice of
the direction of the axis. One improvement is to perform an orthonormal change
of variables at each step in order to reduce the approximation error. This pre-
conditioning of the class of boxes leads to the class of oriented rectangular hulls
(ORH) [SK03].

Closure by Minkowski sum is lost, but a good orientation strategy can dramat-
ically improve the analysis. The QR-method [Loh88] uses a QR decomposition of
Φ and is very effective for pure rotations, but fails exponentially on some examples.

3.4.2.2 Ellipsoids

Contrary to the class of Boxes, the class of Ellipsoids is closed under linear trans-
formation but not Minkowski sum.

Various ellipsoidal calculi [RST02, KV06] overcome this problem, but choosing
the best ellipsoidal enclosure with respect to Hausdorff distance at each step gives
no guarantees on the quality of the over-approximation after several steps. Instead,

38

3.4. Approximate Reachability of the Discretized System

one5 can ensure that the boundary of each Ω̃i touches the boundary of the set it
over- or under-approximate in at least one direction, the approximation is then
said to be tight.

Indeed if one can tightly approximate the sum of two ellipsoids in any given
direction, and if Ω̃i is a tight approximation of Ωi in direction ℓi, then one only
has to tightly approximate the sum of ΦΩ̃i and V in direction (Φ−1)⊤ℓi to ensure

the tightness of Ω̃i+1.
Tightness might be an interesting property, but it is not always relevant, even

more if it is not always in the same direction. Indeed tightness of each individual
Ω̃i guarantees the tightness of the reachable tube but gives no information about
its projection on the state space: the reachable set.

Moreover, since ellipsoids have a constrained shape, forcing tightness in one
direction may lead to rough over-approximation in other directions. In practice,
approximating tightness in one random direction instead of ℓi at each step, may
produce better (with respect to Hausdorff distance) approximations, as illustrated
on Figure 3.2.

Figure 3.2: Over-approximation of the reachable set of a 5 dimensional system
using tight (in black) or non-tight (in grey) approximations, obtained with the
Ellipsoidal Toolbox [KV06] and a modified version for the non-tight approximation.
On the left: range of the first variable as a function of the step k. On the right:
projection of the reachable set on the first two variables. For more details see
Appendix B.

3.4.2.3 Polytopes

Here the approximation procedure is not introduced to overcome the lack of closure
under one operation of the class considered, but to avoid the uncontrolled growth
of the number of parameters needed to represent the sets involved.

5This is what is done in the Ellipsoidal Toolbox, which exists as a standalone [KV06] or as
part of the MPT [KGB04].

39

Chapter 3. State of the Art in Linear Systems Reachability

The most common technique is to over-approximate ΦΩ̃i ⊕ V by a polytope
whose facets have the same normals has the facets of ΦΩ̃i. We say that we push
or lift the facets of ΦΩ̃i until it includes ΦΩ̃i ⊕ V . One simple way to do it, is to
represent V by its support function ρV and to replace every facet of the form:

{x : x · n ≤ γ}

by
{x : x · n ≤ γ + ρV(n)}

It is also possible to perform an exact computation and then remove some of
the constraints, or vertices, of the resulting polytope [Fre08].

Another solution is to restrict the Ω̃i to be in a smaller class. As an example, us-
ing template polyhedra, or only considering initial sets of small dimension [Han05].

3.4.2.4 Zonotopes

From Section 3.3 we know that zonotopes allow for a quite efficient implementation
of the exact scheme. But the number of generators of Ωi grow linearly with the i,
which leads to a time complexity quadratic in N , the discrete time horizon.

In order to tackle this problem one must limit the number of generators. Over-
approximating a zonotope by reducing its number of generators is a hard problem.
Various strategies [Küh98, Gir05, ASB09] use the same kind of ideas, illustrated
on Figure 3.3:

• The set G of generators is partitioned into a set K of generators that will be
kept, and a set A. So that the zonotope ZG generated by G is the sum of ZK
and ZA, generated respectively by K and A.

• The zonotope ZA is over-approximated by an order one zonotope Znew, which
can be either a box or with directions chosen from K.

• Then ZG is over-approximated by ZK ⊕Znew.

These approaches have some serious limitations.

Quality of Approximation As already stated, reducing the number of gener-
ators without introducing too much error is a hard problem. Even defining what
the best approximation is can be challenging. Still, one can expect some kind of
local optimality. But when approximating a zonotope Z by a zonotope Z using
one of the methods described previously, there is no guarantee that there is no
other zonotope Z̃, whose generators have the same directions as the generators of
Z but with different lengths, such that Z ⊂ Z̃ ⊂ Z. Indeed if there is a generator
h in A and a generator g in K such that h and g are in the same orthant6, the
overall approximation can be improved by using g in the approximation of h as
illustrated on Figure 3.4 and 3.5.

6If Znew is not a cube, one can use the same idea with one change of variables.

40

3.4. Approximate Reachability of the Discretized System

= ⊕

Figure 3.3: Over-approximation of a zonotope by a lower order zonotope.

h
g

h
g

Figure 3.4: A segment generated by vector h is approximated by its interval hull
(left). Using a vector g in the same orthant leads to a strictly better approximation
(right).

= ⊕

Figure 3.5: Improving the approximation in Figure 3.3.

41

Chapter 3. State of the Art in Linear Systems Reachability

Robustness The generators in A are chosen for individual properties, without
looking at the whole set of generators. If one replaces one generator g in a zonotope
Z by 1

n
g+ǫ1, . . ., 1

n
g+ǫn, where the ǫi are random vectors whose norm is very small,

it will not change Z a lot but may dramatically change its over-approximation.
As an example, in [Gir05], the generators are sorted with respect to ‖g‖1−‖g‖∞,

only the biggest vectors are kept. Using the zonotope in Figure 3.5, we get:

< < < < <

By cutting some generators in several parts, we can reorder them arbitrarily.

< < = = = = < = < <

Even if both sets of vectors generate the same zonotopes, we get two very
different over-approximation as illustrated on Figure 3.6.

Figure 3.6: Splitting some generators of a zonotope may dramatically change its
over-approximation, without changing its shape.

In order to avoid this problem one might chose the generators independently
from their length. As an example, instead of sorting the generators with respect
to ‖g‖1−‖g‖∞, one might sort them with respect to ‖g‖1−‖g‖∞

‖g‖2
; but if this increase

robustness it might decrease the quality of approximation in general.
It might be more interesting, but much more costly, to form clusters of gener-

ators with similar directions.
To the best of the author’s knowledge no approximation strategy solves any of

these issues. Since zonotopes are involved in numerous fields it would be interesting
to try to solve them.

42

3.4. Approximate Reachability of the Discretized System

3.4.2.5 Support Functions

Support functions have been mainly used to represent the initial set Ω0 or V ,
sometimes without being named [CK98, Chu99, Dan00].

Reachability analysis of linear systems based on the use of support functions
was explicitly proposed in [Var98]. The support functions of the reachable sets are
computed recursively using the relation:

ρΩi+1
(ℓ) = ρΩi

(Φ⊤ℓ) + ρV(ℓ).

Then, a polyhedral over-approximation Ωi is computed by first choosing a sequence
ℓ0,0, . . . ℓ0,r−1 of initial directions, then for each direction, we have:

ℓi,k =
(
Φ⊤)−1

ℓi−1,k

ρi,k = ρi−1,k + ρV(ℓi,k) ρ0,k = ρΩ0
(ℓ0,k)

And we get the following over-approximations:

Ωi =
r−1⋂

k=0

{
x ∈ R

d : ℓi,k · x ≤ ρi,k = ρΩi
(ℓi,k)

}

where ℓi,k = ((Φδ
⊤)−1)iℓ0,k. Note that Ωi is defined using the exact values of the

support function of Ωi in the directions ℓi,k. As a consequence, Ωi touches all the
faces of Ωi, and the approximation is said to be tight.

Then, if a support function is needed one can derive one from the polyhedral
representation of Ωi by solving a linear program.

But the quality of these over-approximations might suffer from the evolution
of the directions ℓi,k. Let us fix ℓ0,k. The directions used for the approximation of
Ωi are then ℓi,k = ((Φ⊤)−1)iℓ0,k. For simplicity, we assume that the eigenvalue of
(Φ⊤)−1 with largest modulus is real and denote by ℓ∗ the associated eigenvector.
Then all the vectors ℓi,1, . . . , ℓi,r tend to point towards the direction of ℓ∗ when
i grows. This means that the polyhedral over-approximation Ωi is likely to be
ill-conditioned for large values of i

3.4.3 Curse of Dimensionality

Working in high dimension, or just in not small dimension poses a number of
problems that makes everything more difficult.

First there is a combinatorial problem. As an example, the Minkowski sum of
two polytopes introduce many more vertices and facets in high dimension.

Secondly, and more importantly, the quality of any approximation decreases
dramatically. Consider the unit cube B∞, and the euclidean unit ball B2, and
their best possible enclosure, with respect to Hausdorff distance, by an ellipsoid or
a parallelotope respectively. In dimension d the best enclosures are an euclidean
ball of radius

√
d and a unit cube respectively. Their error in terms of Hausdorff

43

Chapter 3. State of the Art in Linear Systems Reachability

distance will be of the order
√

d, as illustrated on Figure 3.7, although B2 touches
B∞ in 2d points, and B∞ touches

√
dB2 in 2d points.

This phenomenon is illustrated on Figure 3.7. A 100-dimensional unit Eu-
clidean ball is tightly approximated by the unit cube in 200 directions

−10 −1 1 10

−10

−1

1

10

Figure 3.7: In dimension 100, projected on the plane generated by (0, 1, . . . , 1) and
(1, 0, . . . , 0), the unit Euclidean ball is tightly approximated by the unit cube in 200
directions, leading to 200 intersection points between their respective boundaries.
The two central crosses correspond to 99 intersection points each.
The unit cube is tightly approximated by a ball of radius 10 in 2100 directions
leading to 2100 intersection points between their respective boundaries. Each cross
is the projection of between 1 and

(
99
49

)
intersection points.

44

Chapter 4
A New Scheme

Résumé : Nous présentons dans ce chapitre la principale contribution

de cette thèse, à la fois simple et efficace : un nouveau schéma algorith-

mique pour l’analyse d’atteignabilité des systèmes linéaires invariants.

Nous décomposons la relation de récurence Ωi+1 = ΦΩi ⊕ V en trois

relations :
A0 = Ω0, Ai+1 = ΦAi,
V0 = V, V i+1 = ΦV i,
S0 = {0}, Si+1 = Si ⊕ V i.

Ωi est alors égal à Ai⊕Si. La séparation de la transformation linéaire

et la somme de Minkowski nous permet de calculer efficacement la sé-

quence des Ωi en utilisant des zonotopes. Ces zonotopes ayant beaucoup

de générateurs, nous développons également une version qui approxime

les Ωi sans souffrir de l’effet d’emballage.

The major contribution of this chapter is a new implementation scheme for
the recurrence relation Ωi+1 = ΦΩi ⊕ V which improves significantly (both the-
oretically and empirically) the computation of the reachable sets of linear time-
invariant (LTI) systems with bounded inputs. A version of this algorithm based
on zonotopes decisively outperforms related algorithms. In addition, algorithms
for the computation of over- and under-approximations of the reachable sets are
proposed. These algorithms are not subject to the wrapping effect. Most of the
results in this chapter have been published in [GLGM06]

This chapter is organized as follows: in Section 4.1 we describe the simplest
and most powerful contribution of this thesis, a new, more efficient algorithm,
and discuss its implementations using zonotopes and support functions while in
Section 4.2 we describe a general approximation scheme aiming to replace Algo-
rithm 3.3 that gives good results even when the approximation function is the
interval hull, then in Section 4.3 we improve the transformation of the original
continuous-time system into an approximating discrete-time system. In the last
section several implementations of both algorithms are tested on some examples.

45

Chapter 4. A New Scheme

Algorithm 4.1 Reachability of discrete linear time-invariant systems.

Input: The matrix Φ, the sets Ω0 and V , an integer N .
Output: The first N terms of the sequence defined in equation (3.4).
1: A0 ← Ω0

2: V0 ← V
3: S0 ← {0}
4: for i from 1 to N − 1 do
5: Ai ← ΦAi−1 ⊲ Ai = ΦiΩ0

6: Si ← Si−1 ⊕ V i−1 ⊲ Si =
⊕i−1

j=0 ΦjV
7: V i ← ΦV i−1 ⊲ V i = ΦiV
8: Ωi ← Ai ⊕ Si ⊲ Ωi = ΦiΩ0 ⊕

⊕i−1
j=0 ΦjV

9: end for
10: return {Ω0, . . . , ΩN−1}

4.1 A New Scheme

We have a sequence of sets defined by equation (3.4):

Ωi+1 = ΦΩi ⊕ V

Applying this recurrence relation leads to a time consuming algorithm. Ap-
plying an approximate version of this relation leads to an accumulation of errors
hard to quantify because of the alternation between linear transformations and
Minkowski sums.

Let us remark that the closed form of Ωi is:

Ωi = ΦiΩ0 ⊕
i−1⊕

j=0

ΦjV

Then, let us define the auxiliary sequences of sets:

A0 = Ω0, Ai+1 = ΦAi,
V0 = V , V i+1 = ΦV i,
S0 = {0}, Si+1 = Si ⊕ V i.

(4.1)

Equivalently, we have

Ai = ΦiΩ0, V i = ΦiV and Si =
i−1⊕

j=0

ΦjV

Therefore, Ωi = Ai ⊕ Si where Ai is the reachable set of the autonomous system
from the set of initial states Ω0, and Si is the reachable set of the system with inputs
from the initial set {0}. Note that the decomposition of the linear transformation
and the Minkowski sum in the computation of Si+1 is possible only because the

46

4.1. A New Scheme

system is time-invariant. Algorithm 4.1 implements the reachable set computation
based on the recurrence relations (4.1).

The main advantage of this algorithm is that the linear transformations are
applied to sets whose representation size does not increase1 at each iteration and
this constitutes a significant improvement over existing algorithmic realizations of
the recurrence relation (3.4).

Theorem 4.1. The time complexity of Algorithm 4.1 is bounded by

O (NL(nin) + NS(nout))

where L is the complexity of performing a linear transformation, S is the com-
plexity of performing a Minkowski sum, nin bounds the representation size of Ω0

and V, and nout bounds the representation size of ΩN−1.

These parameters depend obviously on the class of sets chosen for the repre-
sentation.

Due to the Minkowski sum, the size of the output may actually be very large.
Hence, for an efficient implementation of Algorithm 4.1, the class of sets used
for the representation of the reachable sets has to satisfy one of the following
properties. Either the representation size of the Minkowski sum of two sets equals
the representation size of the operands, or the computational complexity of the
Minkowski sum is independent of the size of the operands.

General polytopes, for example, satisfy neither of these requirements. As far as
we know, there is no reasonable representation satisfying the first property which
is closed under Minkowski sum and linear transformations. The second property is
satisfied by the class of zonotopes and support functions for which the complexity
of Minkowski sum does not depend on the description complexity of the sets.

In the following section, the implementation of Algorithm 4.1 using zonotopes
is discussed.

4.1.1 Implementation using Zonotopes

From Section 2.3.4, we know that the complexity of applying a linear transforma-
tion to a d-dimensional zonotope of order p is O (pLd), where Ld is the complexity
of the multiplication of two d × d matrices. For Minkowski sum, the complex-
ity is only O (d) because we only have to sum the centers of the two operands
and concatenate their list of generators. We thus get the following corollary to
Theorem 4.1:

Corollary 4.1. The time complexity of Algorithm 4.1 using zonotopes to represent
sets is2:

O
(
N(p + q)d3

)

1If we make the reasonable assumption that a linear transformation does not increase the
representation size of a set. This is not verified for support functions, but then applying a linear
transformation has constant cost O (1)

2Note that, theoretically, the complexity can be further reduced down to O
(
N(p + q)d2.376

)

by using a more sophisticate matrix multiplication algorithm [CW90].

47

Chapter 4. A New Scheme

where p and q are the order of the zonotopes Ω0 and V respectively.

Moreover, since most of the generators of Si are already stored in memory as
the generators of Si−1, the additional cost, in term of memory, of Ωi after the
computation of Ω1, . . . , Ωi−1 is only O ((p + q)d2), the space needed to store the
generators of Ai and V i. Therefore, the space complexity of a zonotope implemen-
tation of Algorithm 4.1 is O (N(p + q)d2).

We now have a very efficient exact algorithm for computing the N first terms
of the sequence defined in Equation (3.4). Both its time and space complexity are
linear in N . Unfortunately its output consists of zonotopes of order up to p + Nq.
Because of the combinatorial nature of zonotopes, it seems that not much can be
done with this output. Another limitation of this algorithm is that Ω0 and V must
be given as zonotopes.

In order to solve this last problem one can choose to extend this algorithm to
sums of arbitrary sets. Remember that a zonotope is a Minkowski sum of a set of
segments, each segment being represented by its generator. Then, instead of a list
of vectors, Si will be a list of sets.

But this does not solve the problem of the combinatorial nature of the Min-
kowski sum. Fortunately, some operations do not need to be performed in full
dimension and one can reduce the dimension of the state space. This is possible
because linear transformation, and projection in particular, is distributive with
respect to Minkowski sum. As an example, if one want to plot the reachable set,
considering that most displays are in 2D, one can first project all the generators
on the screen, whether they are segments or more complex sets, and then compute
the sum in 2D. More details will be given in Section 8.2.

4.1.2 Implementation using Support Functions

It is clear that, as for Algorithm 3.2, support functions allow an efficient implemen-
tation of Algorithm 4.1. The time complexity does not change, O (N), neither does

the time complexity of the returned support functions, O
(
Nd2 + NCt

ρV
+ Ct

ρΩ0

)
.

The problem is that when analyzing the reachable set
⋃N−1

i=0 Ωi, one will need to
evaluate the support function of all the Ωi, the complexity of this elementary task

is O
(
N2d2 + N2Ct

ρV
+ NCt

ρΩ0

)
. In order to have an efficient implementation of

this algorithm using support functions, one must, instead of a sequence of support
functions, consider a single function that returns a sequence of values:

ℓ 7→ (ρΩ0
(ℓ), . . . , ρΩN−1

(ℓ))

and use the redundancies of the system to get an efficient way of computing this
function. That is what we will do in Chapter 5.

48

4.2. Approximation without Wrapping Effect

4.2 Approximation without Wrapping Effect

Algorithm 4.1 implemented with zonotopes makes it possible to compute exactly
the sets defined by the recurrence relation (3.4):

Ωi+1 = ΦΩi ⊕ V

The output of this algorithm consists in a sequence of high order zonotopes with
many generators in common. Although we can use it for some operations as
we will see in Chapter 8, it is often preferable to have an output that is easier
to manipulate, even at the expense of approximations. Moreover the sequence
is computed exactly only if Ω0 and V can be expressed as zonotopes, which is
not always the case. The extension to more general classes of sets evoked in
Section 4.1.1 renders the manipulation of the output even more complicated.

That is why we investigate an approximation variant of Algorithm 4.1. Before
going further, let us recall a few facts from Chapter 3.

There is no efficient implementation of Algorithm 3.2. This is due to this
instruction: Ωi+1 ← ΦΩi⊕V. The complexity of Ωi grows because of the Minkowski
sum, and ΦΩi ⊕ V becomes harder and harder to compute. In order to deal
with this problem, researchers in the field decided to replace this instruction by
Ωi+1 ← ApproxΦ·⊕· (Ωi,V), which led to Algorithm 3.3. The challenge was then
to find a good approximation function. But the error introduced by this sequence
of approximations is hard to control or analyze, and no implementation provides
a reasonable bound in terms of Hausdorff distance.

Here, Ωi is computed from three sequences of sets. Ai and V i are easy to
compute, the only requirement is that they are in a class of sets closed by linear
transformation. The difficulty comes from Si. Thus instead of computing it ex-
actly, we will compute an approximation S̃i with the following recurrence relation:

S̃0 = {0}, and S̃i = Approx⊕

(
S̃i−1,V i−1

)

We replace Si ← Si−1 ⊕ V i−1 by S̃i ← Approx⊕

(
S̃i−1,V i−1

)
in Algorithm 4.1 to

get its approximation variant, Algorithm 4.2.
The challenge is now to find a good approximation function for Minkowski

sum. This is much easier than finding a good approximation function for linear
transformation and Minkowski sum ΦΩi ⊕ V . In fact, we can reuse all (over- or
under-) approximation functions designed for Algorithm 3.3 with identity as a
linear transformation. Indeed choosing

Approx⊕

(
S̃i−1,V i−1

)
= ApproxI·⊕·

(
S̃i−1,V i−1

)

is one possibility.
Moreover the error in terms of Hausdorff distance is much easier to analyze

since:

dH

(
S̃i,Si

)
≤ dH

(
S̃i−1,Si−1

)
+ dH

(
Approx⊕

(
S̃i−1,V i−1

)
, S̃i−1 ⊕ V i−1

)

49

Chapter 4. A New Scheme

Algorithm 4.2 Approximate reachability of discrete linear time-invariant systems.

Input: The matrix Φ, the sets Ω0 and V , an integer N .
Output: Approximations of the first N terms of the sequence defined in equa-

tion (3.4).
1: A0 ← Ω0

2: V0 ← V
3: S̃0 ← {0}
4: for i from 1 to N − 1 do
5: Ai ← ΦAi−1

6: S̃i ← Approx⊕

(
S̃i−1,V i−1

)

7: V i ← ΦV i−1

8: Ω̃i ← Approx⊕

(
S̃i,Ai

)

9: end for
10: return {Ω̃0, . . . , Ω̃N−1}

The error introduced by Algorithm 4.2 in terms of Hausdorff distance is smaller
than the sum of the errors introduced at each step:

dH

(
Ω̃i, Ωi

)
≤ dH

(
Approx⊕

(
S̃i,Ai

)
, S̃i ⊕Ai

)

+
i−1∑

j=0

dH

(
Approx⊕

(
S̃j,Vj

)
, S̃j ⊕ Vj

)

which results in a limited wrapping effect.
Another possibility is to use two classes of sets closed under linear transforma-

tion for Ai and V i, and a class of sets closed under Minkowski sum with constant
representation size for Si. We then only need an approximation function that
transforms a set of any of the first two classes into a set of this last class. Then:

Approx⊕

(
S̃i−1,V i−1

)
= S̃i−1 ⊕ Approx (V i−1)

Let us remark that here, approximations occur only when Approx (·) is invoked.
Note that Approx (·) is always applied to exact sets and that other operations are
computed exactly. This is the main difference with Algorithm 3.3, the approxima-
tion Ω̃i of Ωi is not used in the computation of Ω̃i+1. Thus, approximation errors
do not propagate further through the computations and Algorithm 4.2 does not
suffer from the wrapping effect.

In this case the error becomes:

dH

(
Ω̃i, Ωi

)
≤ dH (Approx (Ai),Ai) +

i−1∑

j=0

dH (Approx (Vj),Vj)

And if Approx (·) is distributive with respect to Minkowski sum, Ω̃i is equal to
Approx (Ωi). As a consequence we have the following important proposition.

50

4.2. Approximation without Wrapping Effect

Proposition 4.1. If the Ω̃i are computed using Algorithm 4.2 with an approxima-
tion function distributive with respect to Minkowski sum, then:

lim
δ→0

⌊T/δ⌋⋃

i=0

Ω̃i =
⋃

t∈[0;T]

Approx (Rt(X0))

This proposition guarantees that reducing the time step improves the approx-
imation of the reachable set of the original continuous system, which is not the
case for Algorithm 3.3.

In the following sections we will use some approximation functions such that

Approx⊕

(
S̃i,V i

)
⊆ S̃i ⊕ V i or S̃i ⊕ V i ⊆ Approx⊕

(
S̃i,V i

)
leading to over- and

under-approximation algorithms.

4.2.1 Over-Approximations

The worst approximation function we have presented in Chapter 3 is the interval
hull. But it behaves really well with Algorithm 4.2. If we define Approx⊕ (·, ·) as:

Approx⊕
(
S i−1,V i−1

)
= S i−1 ⊕✷ (V i−1)

we will have Ωi = ✷ (Ωi), since ✷ (·) is distributive with respect to Minkowski sum.
Using interval hulls with Algorithm 3.3 led to an over-approximation that could

grow exponentially with the number of steps, even for a contracting systems. Here,
since Ωi = ✷ (Ωi), we have:

dH

(
Ωi, Ωi

)
≤ DΩi

2

where DΩi
= supx,y∈Ωi

‖x− y‖. Moreover each face of Ωi has at least one common

point with the set Ωi, the over-approximations Ω0, . . . , ΩN−1 are tight.
Moreover, the Minkowski sum of two interval hulls is very easy to compute,

and they can be represented with only 2d values. Thus the time complexity of
Algorithm 4.2 implemented with interval hulls is

O
(
N(LA + LV + C✷(A) + C✷(V))

)

and its space complexity is:

O (CA + CV + Nd)

One way to compute the interval hull of a set is to evaluate its support function
in the directions given by the canonical basis of R

d, e0, . . ., ed−1 and their opposites
−e0, . . ., −ed−1. The time complexity of Algorithm 4.2 implemented with interval
hulls is then:

O
(
N(LA + LV + d(Ct

ρA
+ C

t
ρV

))
)

In fact we do not have to limit ourselves to directions e0, . . ., ed−1, −e0, . . .,
−ed−1. Instead, we can chose any finite set of arbitrarily chosen directions, the
resulting approximation is called a template polyhedron.

51

Chapter 4. A New Scheme

Definition 4.1 (Template polyhedron). For any set L = {ℓ0, . . . , ℓk−1} of vectors
in R

d, and any vector v in (R ∪ {∞})k, we define the polytope:

[v]L = {x : ∀i ∈ [0; k − 1], x · ℓi ≤ vi}

For any set L, we define the class PL of L-polytopes as the set of all [v]L.

Note that [v]L = [u]L does not imply v = u.
Let us remark that interval products constitute the class of L-polytopes where

L is the set {e0, . . . , ed−1,−e0, . . . ,−ed−1}, and that parallelepipeds are obtained
when L is a set of d linearly independent vectors and their opposite. For a given
set of vectors L, the closure of the class of L-polytopes under Minkowski sum is
easy to show:

[v]L ⊕ [u]L = [v + u]L.

In order to use L-polytopes in Algorithm 4.2, we need an over-approximation
function which maps a set to its smallest enclosing L-polytope.

Proposition 4.2. Let A be a subset of R
d, then the L-polytope ✷L (A) = [v]L

given by3

vi = ρA(ℓi)

is the smallest enclosing L-polytope of A. Moreover, each face of ✷L (A) has at
least one common point with A.

The distributivity of ✷L (·) with respect to Minkowski sum is straightforward.
Hence, it can be efficiently used as an approximation function for Algorithm 4.2.
The time complexity of the algorithm becomes

O
(
N(LA + LV + k(Ct

ρA
+ C

t
ρV

))
)

and its space complexity is:

O (CA + CV + Nk)

where k is the cardinality of L.
Moreover, since Ωi = ✷L (Ωi), we have:

Proposition 4.3. The ratio between the Hausdorff distance between Ωi and Ωi

and the radius of Ωi is bounded by a constant depending only on L:

dH

(
Ωi, Ωi

)

RΩi

≤ HL + 1

where HL is the Hausdorff distance between the unit ball and its smallest enclosing
by an L-polytope, and RΩi

is the radius of Ωi:

RΩi
= inf

c∈Rd
sup
x∈Ωi

‖x− c‖

3Note that we do not require here A to be represented by its support function, we just need
to be able to compute it.

52

4.2. Approximation without Wrapping Effect

Figure 4.1: A set (grey) and its over- (dark grey) and under- (light grey) approxi-
mations in the directions given by L.

Proof. Ωi is the smallest enclosing L-polytope of Ωi, and by definition, Ωi is in-
cluded in a ball of radius RΩi

, B(RΩi
), thus we have: Ωi ⊆ Ωi ⊆ ✷L (B(RΩi

))
and:

dH

(
Ωi, Ωi

)
≤ dH (✷L (B(RΩi

)), Ωi)

≤ dH (✷L (B(RΩi
)),B(RΩi

)) + dH (B(RΩi
), Ωi)

≤ HLRΩi
+ RΩi

which proves the proposition.

To the best of the author’s knowledge, no other method offers a constant bound
on the ratio between the approximation error and the radius of Ωi.

Remark. Since we do not use Ωi to compute Ωi+1 we lose the following property,
common to Algorithms 3.2, 3.3, and 4.1:

ΦΩi ⊕ V ⊆ Ωi+1

4.2.2 Under-Approximations

The only classes of sets with constant representation size closed under Minkowski
sum we have seen so far are the classes of L-polytopes. Since it might be hard to
compute for an arbitrary set its largest enclosed L-polytope, if it exists, we will
not be able to decompose Approx⊕ (S i,V i) into S i⊕Approx (V i) when considering
under-approximations.

The computation of an over-approximation of a setA by an L-polytope involves
the support function of A. If A is closed and convex, we can use its support vectors
in order to under-approximate it. Indeed for any set L = {ℓ0, . . . , ℓk−1} of vectors

53

Chapter 4. A New Scheme

in R
d, the set of support vectors of A in direction ℓi, νA (ℓi), is included in A.

Since A is convex, we have:

CH

(
⋃

ℓ∈L
νA (ℓ)

)
⊆ A

Let us remark that linear transformation and Minkowski sum preserve convex-
ity, thus if Ω0 and V are convex, so are all the Ωi.

Let L be a set of directions, instead of working with the sets νΩi
(ℓ), we will

compute one point νℓ
Ωi

in each νΩi
(ℓ) and under-approximate Ωi by the convex

hull of {νℓ
Ωi

: ℓ ∈ L}. In order to do so, we will represent Si in Algorithm 4.2 by a
set of vectors indexed by vectors in L:

Si = CH ({gℓ : ℓ ∈ L})
the computation of Si+1 can then be done by:

Approx⊕ (Si,Vi) = CH
(
{gℓ + νℓ

Vi
: ℓ ∈ L}

)
(4.2)

The time complexity of Algorithm 4.2 using this approximation of the Min-
kowski sum is

O
(
N(LA + LV + k(Ct

ρA
+ C

t
ρV

))
)

and its space complexity is:

O (CA + CV + Nkd)

where k is the cardinal of L.
Moreover, since Ωi = CH

(
{νℓ

Ωi
: ℓ ∈ L}

)
, we have:

dH (Ωi, Ωi) ≤ dH (Ωi, ✷L (Ωi)) ≤ (HL + 1) RΩi

Remark. It is also possible to work with a convex hull of a set of ellipsoids instead
of a set of points by using an under-approximation for the Minkowski sum [KV06].

4.3 Time Discretization

In Section 4.1 and 4.2 we showed how to compute, or approximate, the N first sets
defined by the recurrence relation Ωi+1 = ΦΩi ⊕ V . This discrete sequence of sets
is obtained from the time discretization of the following differential equation:

ẋ(t) = Ax(t) + u(t)

with x(0) ∈ X0 and u(t) ∈ U . With a well chosen Ω0 and V , we can over-
approximate the reachable set of the continuous system, R[0,T](X0), by

⋃N−1
i=0 Ωi.

Theorem 3.1 guarantees that the error introduced by this time discretization is
proportional to the time step δ = T/N .

In this section we improve the precision of the time discretization procedure,
but we will first show that there is little hope to improve asymptotically the bounds
on the error given by Theorem 3.1.

54

4.3. Time Discretization

Proposition 4.4. The Hausdorff distance between R[iδ;(i+1)δ] and its convex hull
can be proportional to δ.

Proof. (see A.2.1 on page 126)

This proposition tells us that using convex sets it is not possible to have a
discretization scheme giving a better asymptotic bound on the error than O (δ).
Trying to improve the bound of Theorem 3.1 from this point of view is hopeless.

But from a practical point of view it can be improved in several ways. The
most obvious one is to use the superposition principle and to decompose X0 and
U into {x0} ⊕ X ′

0 and {b} ⊕ U ′ respectively, where x0 and b are chosen so that
supx∈X ′

0
‖x‖ and supu∈U ′ ‖u‖ are minimal.

The autonomous system ẋ(t) = Ax(t) + b can then be discretized into

ωk+1 = Φωk ⊕
{∫ δ

0

e(δ−τ)Abdτ

}

with ω0 computed from x0 with a guaranteed orbit algorithm and a smaller time
step.

The non-autonomous system ẋ(t) = Ax(t)+u(t), with x(0) ∈ X ′
0 and u(t) ∈ U ′,

is discretized into:

Ω′
i+1 = ΦΩ′

i ⊕ V ′

this discretization involves RX ′
0

and RU ′ , the radii of X ′
0 and U ′ respectively, which

are much smaller than RX0
and RU .

We can now superpose these two systems in order to get a recurrence relation
allowing us to over-approximate the reachable set of the original system.

Ωi+1 = ΦΩi ⊕
{∫ δ

0

e(δ−τ)Abdτ

}
⊕ V ′ with Ω0 = ω0 ⊕ Ω′

0

In the following, our approximations of the discretized flow and initial set in-
volve ⊡ (X0) and ⊡ (U), it might thus be interesting to choose x0 and b such that
✷ (X0) and ✷ (U) are already centrally symmetric. We drop the ′ for readability.

For the next improvements we need the following operator: the extension of
absolute value to vectors and matrices, component wise.

Definition 4.2. Let M = (mi,j) be a matrix, and v = (vi) a vector. We define
|M | and |v| the absolute values of M and V :

|M | = (|mi,j|) and |v| = (|vi|)

We can now use this operator to have a more precise approximation of the flow.

Given a subset Ω ⊆ R
d, the following lemma provides us with an over-approx-

imation of Rδ(Ω):

55

Chapter 4. A New Scheme

Lemma 4.1. Let Ω ⊆ R
d, let Ω′ be the set defined by :

Ω′ = eδAΩ ⊕ δU ⊕ EU (4.3)

where EU = ✷

(
|A|−2

(
eδ|A| − I − δ|A|

)
⊡ (AU)

)

Then, Rδ(Ω) ⊆ Ω′ and, if ‖ · ‖ is the infinity norm:

dH (Ω′,Rδ (Ω)) ≤ 2REU ≤ 2
(
eδ‖A‖ − 1− δ‖A‖

) RU
‖A‖ (4.4)

Proof. (see A.2.2 on page 127)

We now have discretized the differential equation, but we still have to over-
approximate the first element of the sequence R[0;δ](X0).

Most classes of sets impose strong restrictions on our ability to over-approxi-
mate R[0;δ](X0) efficiently. The most flexible class of set is the class of convex sets
represented by their support function. The next chapter is devoted to this class,
and Lemma 5.1 describes such an over-approximation.

We can deduce from this lemma an over-approximation in other classes of sets.
If we denote:

EX0
=✷

(
|A|−1

(
eδ|A| − I

)
⊡
(
A(I − eδA)X0

))

⊕✷

(
|A|−2

(
eδ|A| − I − δ|A|

)
⊡
(
A2eδAX0

))
,

since EX0
and EU are boxes, we can easily compute EX0

⊖ EU , the smallest set E
such that EX0

⊆ EU ⊕ E .
Then, Ω0 can be over-approximated by:

Ω0 ⊆ CH
(
X0, e

δAX0 ⊕ δU ⊕ EU
)
⊕ 1

4
E

Or, if the convex hull is not representable or too hard to compute:

Ω0 ⊆ CH (X0, eδAX0)⊕ δU ⊕ EU ⊕
1

4
E

Since δ is small, X0 and eδAX0 are almost the same, and their convex hull can be
approximated more easily.

Remark. |A| need not to be invertible. Indeed:

|A|−1
(
eδ|A| − I

)
=

∞∑

i=0

δi+1

(i + 1)!
|A|i

|A|−2
(
eδ|A| − I − δ|A|

)
=

∞∑

i=0

δi+2

(i + 2)!
|A|i

They can be computed by taking the matrix exponential of 3d× 3d block matrix:

exp

δ

|A| I 0
0 0 I
0 0 0

 =

eδ|A| ∑∞
i=0

δi+1

(i+1)!
|A|i ∑∞

i=0
δi+2

(i+2)!
|A|i

0 I δI
0 0 I

56

4.4. Experimental Results

Now that we have an over-approximation of Ω0 and an extensions of Rδ we can
over-approximate R[0;T](X0) by the N first sets of the sequence :

Ωi+1 = eδAΩi ⊕ δU ⊕ EU (4.5)

Remark. If instead we want to under-approximate R[0;T](X0) we first have to take
Ω0 ⊆ R[0;δ](X0). One obvious way to get this is to take Ω0 = X0. We can then
consider that the input u is constant on all the intervals [iδ; (i + 1)δ]. If we define
the sequence Ωi as:

Ωi+1 = eδAΩi ⊕ A−1
(
eδA − I

)
U

then for all i, Ωi ⊆ Riδ(X0) ⊆ R[iδ;(i+1)δ](X0) and:

⋃

i∈[0;N]

Ωi ⊆ R[0;T](X0)

4.4 Experimental Results

Most of the algorithms in this chapter have been implemented into a prototype
tool in OCaml. We use the GNU Scientific Library for linear algebra and the GNU
Linear Programming Kit as an LP solver. For the sake of comparison, we have
also implemented the zonotope-based reachability algorithm presented in [Gir05].
At each step, in order to avoid computational explosion, it reduces the complexity
of the reachable set by over-approximating it by a zonotope of fixed order p as
explained in Section 3.4.2.4. In the following, we refer to this algorithm by Zono-
p. Set representations and linear algebra operations were implemented in separate
modules so that all algorithms use the same subroutines. All computations were
performed on a Pentium IV 3.2GHz with 1GB RAM.

4.4.1 A Five-Dimensional Linear System

As a first benchmark consider the following five-dimensional example borrowed
from [Gir05].

Example 4.1. Compute the set of points reachable for time t in [0; 5] by the
following system:

ẋ = Ax(t) + u(t)

where A = PDP−1 is the image of the block diagonal matrix D after a change of
variables P .

D =

−1 −4 0 0 0
4 −1 0 0 0
0 0 −3 1 0
0 0 −1 −3 0
0 0 0 0 −2

P =

0.6 −0.1 0.1 0.7 −0.2
−0.5 0.7 −0.1 −0.8 0

0.9 −0.5 0.3 −0.6 0.1
0.5 −0.7 0.5 0.6 0.3
0.8 0.7 0.6 −0.3 0.2

57

Chapter 4. A New Scheme

For all time t the input u must belong to a set U equal to the Euclidean ball of
radius 0.01 centered at the origin; the initial set X0 is defined as the cube of side
0.02 centered at (1, 0, 0, 0, 0):

X0 =
{
(1, 0, 0, 0, 0)⊤

}
⊕ B∞(0.01) U = B2(0.01)

4.4.1.1 Comparison with the Ellipsoidal Toolbox

A first difficulty of this example is that the initial set X0 and the set of inputs U
do not belong to the same class of sets, the first one is a box, and thus can also be
expressed as a polytope or zonotope, and the second one is an ellipsoid, the only
class of sets that can represent them both is the class of convex sets represented
by their support function, this will be the subject of Chapter 5.

(a) Using Algorithm 4.1 (grey) and Algo-
rithm 4.2 with boxes (black).

(b) Using the Ellipsoidal Toolbox (black)
and a modified version (grey).

Figure 4.2: Projection on the first two variables of the reachable set of Example 4.1
computed using the discretization procedure of Section 3.2 with N = 1000.

On Figure 3.2 (reproduced on Figure 4.2b) we used the Ellipsoidal Toolbox,
and a modified version of it, to compute the reachable set of Example 4.1. Since
this tool deals with ellipsoids, we defined X0 to be the euclidean ball of radius 0.01
centered at (1, 0, 0, 0, 0) in order not to advantage our algorithms. The resulting
reachable set is smaller; remember that because of the curse of dimensionality, the
ration between the radii of the unit ball and the smallest ball enclosing the unit
cube is

√
5 > 2.236. Our implementations of Algorithms 4.1 and 4.2 deal with

zonotopes. In order to be conservative we have to convert ellipsoids to their inter-
val hull4. Converting U to ✷ (U) directly is not a good idea. Instead we perform
the time discretization with U as an ellipsoid and then we convert V to a box.

4Note that an implementation of Algorithms 4.2 mixing zonotopes and ellipsoids is possible:
we either convert the Ai to ellipsoids or the Vi to L-polytopes whether we want Ωi to be expressed
as an ellipsoid or an L-polytope respectively.

58

4.4. Experimental Results

For a fair comparison between both techniques we use the same discretization pro-
cedure, described in Section 3.2, for the Ellipsoidal Toolbox and our algorithms.
The reachable sets on Figure 4.2 are not surprising. We already know that Algo-
rithm 4.1 computes the exact reachable set up to initial discretization errors, and
that Algorithm 4.2 implemented with boxes returns the interval hulls of the exact
Ωi.

4.4.1.2 Improved Time Discretization

(a) N = 200, δ = T/N = 0.025. (b) N = 1000, δ = T/N = 0.005.

Figure 4.3: Projection on the first two variables of the reachable set of Example 4.1
computed with Algorithm 4.1 using the discretization procedure from Section 3.2
(black) and 4.3 (grey).

On Figure 4.3 we compare the error introduced by the discretization procedure
from Section 3.2 with the error introduced by ours, described in Section 4.3. In
order to do so, we use Algorithm 4.1. This algorithm computes the exact sequence
of Ωi. Thus the differences between both reachable sets is only due to the time
discretization procedure used. With a small time step the difference is barely
visible since both methods converge towards the exact reachable set. But our
method makes it possible to take a bigger time step with a reasonable error. There
are two main advantages, both coming from the fact that N is smaller:

• Computing the N first sets of the sequence of Ωi is faster if N is smaller.

• Manipulating the reachable set is much easier, it is composed of fewer sets,
and, if computed exactly using Algorithm 4.1, they are zonotopes of lower
order.

4.4.1.3 Varying the Time Step

Our improved time discretization procedure allows to converge faster toward the
exact reachable set, and reducing the time step improves the quality of the approx-

59

Chapter 4. A New Scheme

imation as illustrated on Figures 4.4a and b. But this is not true for all algorithms.
Indeed, for at least some of the algorithms that are subject to the wrapping effect,
which is not the case of Algorithms 4.1 and 4.2, reducing the time step increase
the wrapping effect because it increases the number of iterations required to cover
the same time interval. As we can see on Figures 4.4c and d, reducing the time
step actually decreases the quality of the over-approximations obtained by Algo-
rithm Zono-20, which breaks the convergence of the overall analysis.

(a) N = 100, δ = T/N = 0.05. (b) N = 1000, δ = T/N = 0.005.

(c) N = 100, δ = T/N = 0.05. (d) N = 1000, δ = T/N = 0.005.

Figure 4.4: Projection on the first two variables of the reachable set of Example 4.1
computed with Algorithm 4.2 using interval hulls (top) or Algorithm Zono-20
(bottom).

4.4.1.4 Time and Memory Consumption

The efficiency of our algorithms in term of time and memory consumption is con-
firmed by Tables 4.1 and 4.2. The shading denotes a qualitative interpretation of
the values: lighter is better. We can see that Algorithms 4.1 and 4.2 are fast and
require much less memory. Algorithm 4.2, which computes interval-hull approx-
imations, is at least 30 times faster and needs more than 35 times less memory

60

4.4. Experimental Results

than Algorithm Zono-20, while producing approximations of higher quality.

N = 100 200 400 600 800 1000
Algorithm 4.1 < 0.01 < 0.01 < 0.01 0.01 0.01 0.02
Algorithm 4.2 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01
Zono-20 0.02 0.04 0.11 0.16 0.22 0.29
Zono-40 0.05 0.12 0.24 0.35 0.47 0.59

Table 4.1: Execution time (in seconds) of the reachability analysis of Example 4.1
with different values of N .

N = 100 200 400 600 800 1000
Algorithm 4.1 0.234 0.468 0.703 1.171 1.640 1.875
Algorithm 4.2 0.234 0.234 0.234 0.234 0.234 0.234
Zono-20 0.937 1.640 3.281 4.921 6.562 8.203
Zono-40 1.640 3.046 6.328 9.609 13.125 15.937

Table 4.2: Memory consumption (in MB) of the reachability analysis of Exam-
ple 4.1 with different values of N .

N = 100 200 400 600 800 1000
Algorithm 4.1 0.09 0.40 1.63 3.74 6.94 11.03
Algorithm 4.2 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Zono-20 0.04 0.10 0.20 0.31 0.41 0.53
Zono-40 0.09 0.20 0.44 0.65 0.88 1.13

Table 4.3: Time (in seconds) required for plotting the computed sets.

We also report on Table 4.3 the time required for plotting the output of each
algorithm. Not surprisingly, interval hulls are very easy to manipulate, which
confirms the usefulness of Algorithm 4.2 implemented with interval hulls.

4.4.2 High-Dimensional Linear Systems

Computation times and memory consumptions for linear systems of several dimen-
sions d are reported in Table 4.5 and 4.6.

These systems are randomly generated according to the following procedure:
the matrix A is chosen at random and then normalized for the infinity norm and
the inputs are cubes of side 0.02 with a random center. We compute the set of
points reachable during [0; 1]. The time needed for the discretization of the system

61

Chapter 4. A New Scheme

d = 10 20 50 100 200 500
Section 3.2 (s) < 0.01 < 0.01 < 0.01 < 0.01 0.12 2.45
Section 3.2 (MB) 0.234 0.234 0.234 0.703 2.097 13.23

Section 4.3 (s) < 0.01 < 0.01 < 0.01 < 0.01 1.54 30.84
Section 4.3 (MB) 0.234 0.234 0.234 0.937 3.406 20.203

Table 4.4: Time and memory consumption of the discretization procedures de-
scribed in Sections 3.2 and 4.3.

d = 10 20 50 100 200 500
Algorithm 4.1 < 0.01 0.02 0.24 1.18 11.6 132.
Algorithm 4.2 < 0.01 0.02 0.19 1.20 11.9 133.
Zono-20 0.07 0.26 1.60 8.10 65.1 > 300
Zono-40 0.12 0.46 2.77 14.0 117. > 300

Table 4.5: Execution time (in seconds) of the reachability analysis of randomly
generated systems of different dimensions.

is reported on Table 4.4. We use a time step of 0.01 and thus need to compute the
100 first Ωi.

Algorithms 4.1 and 4.2 appear to be scalable in terms of both time and space,
which confirms the theoretical complexity estimations. Let us remark that using
Algorithm 4.2, we can compute a tight over-approximation of the reachable set of
a 100-dimensional system after 100 time steps using less than 1MB memory in a
little more than 1s.

62

4.4. Experimental Results

d = 10 20 50 100 200 500
Algorithm 4.1 0.703 1.640 8.671 33.04 128.4 794.1
Algorithm 4.2 0.234 0.234 0.468 0.937 3.269 18.38
Zono-20 2.578 7.968 43.35 166.1 652.2
Zono-40 4.218 13.82 75.23 286.6 1119.

Table 4.6: Memory consumption (in MB) of the reachability analysis of randomly
generated systems of different dimensions.

63

Chapter 4. A New Scheme

64

Chapter 5
Going Further with Support Functions

Résumé : Nous avons présenté jusqu’alors des algorithmes indépen-

dants de la représentation choisie. Nous avons ensuite montré comment

instancier ces algorithmes. Ici nous nous intéressons exclusivement à la

représentation des ensembles convexes par leur fonction support. L’al-

gorithme que nous proposons prend en entrée Φ, ρV , ρΩ0
, et N et ren-

voie une fonction f :

f : ℓ 7→ (ρΩ0
(ℓ), . . . , ρΩN−1

(ℓ))

Cette algorithme accélère significativement l’analyse quand on ne s’in-

téresse qu’à un sous-espace de l’espace d’états. Par ailleurs, la poly-

valence des fonctions support permet d’améliorer considérablement le

calcul de Ω0 et V lors de la discrétisation du système original.

In this chapter we focus exclusively on the class of convex sets represented
by their support functions. As stated in Sections 3.3 and 4.1.2 this representa-
tion demands an adaptation of the regular computational scheme. Moreover, its
expressiveness allows for a better approximation of R[0;δ](X0), the initial set for
the discretized system. Most of the results in this chapter have been published
in [GLG08a, LGG09b].

5.1 Discrete Reachability Algorithm

We have a sequence of sets defined by equation (3.4):

Ωi+1 = ΦΩi ⊕ V

We want to compute a representation for the N first sets of this sequence.
As stated before, returning a list of support functions is not satisfying, because

we want to exploit the redundancies of the system. Instead we return a function,

65

Chapter 5. Going Further with Support Functions

f , taking as input a vector ℓ, and returning the values of each support function in
this direction:

f : ℓ 7→ (ρΩ0
(ℓ), . . . , ρΩN−1

(ℓ)) (5.1)

Thus our reachability algorithm takes as input Φ, ρV , ρΩ0
, and N and returns

this function. This is, in fact, the partial evaluation of Algorithm 5.1.

Algorithm 5.1 Evaluation of ρΩ0
(ℓ), . . . , ρΩN−1

(ℓ).

Input: The matrix Φ, the support functions of the sets V and Ω0, an integer N ,
and a vector ℓ.

Output: ρi = ρΩi
(ℓ) for i in {0, . . . , N − 1}

1: r0 ← ℓ
2: s0 ← 0
3: ρ0 ← ρΩ0

(r0)
4: for i from 1 to N − 1 do
5: ri ← Φ⊤ri−1 ⊲ ri =

(
Φ⊤)i ℓ

6: si ← si−1 + ρV(ri−1) ⊲ si =
∑i−1

j=0 ρV

((
Φ⊤)j ℓ

)

7: ρi ← ρΩ0
(ri) + si ⊲ ρi = ρΩ0

((
Φ⊤)i ℓ

)
+
∑i−1

j=0 ρV

((
Φ⊤)j ℓ

)

8: end for
9: return {ρ0, . . . , ρN−1}

Proposition 5.1. Algorithm 5.1 returns ρΩ0
(ℓ), . . . , ρΩN−1

(ℓ), where the Ωi are
defined by equation (3.4).

Its time complexity is:

O
(
N
(
d2 + C

t
ρΩ0

+ C
t
ρV

))

Its space complexity is:

O
(
Nd + d2 + C

s
ρΩ0

+ C
s
ρV

)

where Ct
ρ and Cs

ρ are, respectively, the time and space complexity of ρ.

Proof. A proof can be easily deduce from Proposition 2.3.

5.1.1 Comparison with Related Approaches

As already stated in Section 3.4.2.5, reachability analysis of linear systems based
on the use of support functions has already been proposed in [Var98]. We would
like to discuss here the differences between the two approaches. In [Var98], the
support functions of the reachable sets are computed recursively using the relation:

ρΩi+1
(ℓ) = ρΩi

(Φ⊤ℓ) + ρV(ℓ).

66

5.1. Discrete Reachability Algorithm

Given a vector ℓ, an algorithm based on this relation returns:
(
ρΩ0

((
Φ⊤)N−1

ℓ
)

, ρΩ1

((
Φ⊤)N−2

ℓ
)

, . . . , ρΩN−2

(
Φ⊤ℓ

)
, ρΩN−1

(ℓ)
)

Thus, using the same idea of partial evaluation, we can deduce an algorithm,
with the same complexity as Algorithm 5.1, taking as input Φ, ρV , ρΩ0

, and N and
returning the function:

g : ℓ 7→
(
ρΩ0

((
Φ⊤)N−1

ℓ
)

, . . . , ρΩN−1
(ℓ)
)

(5.2)

When Φ is invertible (and it is if it comes from the discretization of a continuous
system) all the Ωi can be deduced from g.

f and g, as defined by equations (5.1) and (5.2) respectively, are thus two rep-
resentations of the sequence of sets (Ωi), and they have the same time complexity.
But g does not return the values of all the ρΩi

in the same direction, and this has
some serious consequences on its usability as a representation.

First, computing the support function of the reachable set ρ∪Ωi
can be done

with only one call to f and taking the maximum amongst N values, but requires
N calls to g and N linear transformations.

Second, if one wants to plot the reachable set on a 2d screen, or even in 3d,
one must first approximate the projection of every Ωi in the considered low dimen-
sional subspace by a polytope, with a precision depending on the resolution of the
screen. Sampling f in directions that are in the considered subspace is enough,
but, because of Φ, calling g might give a constraints in this subspace only for ΩN−1.
More generally, this problem occurs whenever one is interested in the projection of
the reachable sets on an output subspace. Let us consider, for instance the single
output system:

{
ẋ(t) = Ax(t) + Bu(t), u(t) ∈ U , x(0) ∈ X0

y(t) = cx(t)

where c⊤ ∈ R
d. Then, in order to compute an over-approximation of the interval

reachable by y(t) it is sufficient to run Algorithm 5.1 with ℓ = c⊤.
Lastly, computing polyhedral over-approximations of the Ωi by sampling f and

h leads to very different results. Sampling f with vectors in a set L produces L-
polyhedral approximations. From Proposition 4.3, we know that the ratio between
the approximation error and the radius of Ωi depends only on L. On the contrary,
sampling g with vectors in a set L produces over-approximations that can be ill-

conditioned because all vectors in
(
Φ⊤)N−1 L might tend towards the same vector

as already explained in section3.4.2.5.

5.1.2 Improvements of the Algorithm

Algorithm 5.1 allows a functional representation of the sequence of sets (Ωi). The
directions in which f , as defined in equation (5.1), will be called are guided by the

67

Chapter 5. Going Further with Support Functions

transformation we want to apply, or the property we want to check, on the reach-
able set. A side effect of these calls is the creation of a polyhedral approximation
of each Ωi.

Sometimes, at each step of the analysis of the reachable set, there is only one
direction ℓ of interest, as we will see in Section 8.3, after the evaluation of f(ℓ) we
either stop the analysis or deduce a new direction of interest.

More often, there are several directions of interest, in particular if there are
several properties to check, as we will see in Section 8.1. In this case, one can use
the fact that f can be computed independantly for each direction. Then, with α
processors, the support function of every Ωi can be computed in r directions with
complexity:

O
(⌈ r

α

⌉
N(d2 + C

t
ρΩ0

+ C
t
ρV

)
)

This is of particular interest if one wants to compute a polyhedral approxima-
tion of the Ωi, leading to an efficient parallel variant of the L-polytopes implemen-
tation of Algorithm 4.2.

When computing such approximations, the choice of some directions is guided
by the system, and others are chosen we a relative freedom. In this case, we can
do much better than just sampling f .

Let us assume that the different directions of approximation ℓ1, . . . , ℓr have
been chosen such that:

ℓk = (Φ⊤)pkℓ, k = 1, . . . , r where p1 < · · · < pr.

One could argue that such a choice of directions suffers from the problem already
evoked in Section 5.1.1. Indeed, given a direction ℓ, the vectors (Φδ

⊤)pℓ will point
towards the same direction as p grows. For that reason the indices p1, . . . , pr must
be chosen carefully.

As an example, one can choose the indices pk iteratively, taking pk+1 such that
the angle between (Φ⊤)pk+1ℓ and the vectors (Φ⊤)piℓ is bigger than some value, or:

∀i ≤ k,

∣∣∣∣
(Φ⊤)pk+1ℓ · (Φ⊤)piℓ

‖(Φ⊤)pk+1ℓ‖‖(Φ⊤)piℓ‖

∣∣∣∣ ≤ ε.

Then, it follows that for all i = 0, . . . , N − 1, k = 1, . . . , r:

ρΩi
(ℓk) = ρΩ0

(
(Φδ

⊤)i(Φδ
⊤)pkℓ

)
+

i−1∑

j=0

ρWδ

(
(Φδ

⊤)j(Φδ
⊤)pkℓ

)

= ρΩ0

(
(Φδ

⊤)i+pkℓ
)

+
i−1∑

j=0

ρWδ

(
(Φδ

⊤)j+pkℓ
)

= ρΩ0

(
(Φδ

⊤)i+pkℓ
)

+

i+pk−1∑

j=pk

ρWδ

(
(Φδ

⊤)jℓ
)

= ρΩ0
(ri+pk

) + si+pk
− spk

.

68

5.1. Discrete Reachability Algorithm

Thus, it is sufficient to compute the sequences r0, . . . , rN+pr−1 and s0, . . . , sN+pr−1.
Then, the complexity of the reachability analysis drops to

O
(
(N + pr)(d

2 + C
t
ρΩ0

+ C
t
ρV

+ r)
)

If ℓ is an eigenvector of Φ⊤ associated to a real eigenvalue, it is clear that
the vectors ℓk = (Φ⊤)pkℓ will be colinear. In this case, the previous improvement
cannot be used. However, evaluating the support function in the direction of an
eigenvector ℓ can be interesting as it can be done very efficiently. If Φ⊤ℓ = λℓ,
with λ ≥ 0 then:

ρΩi
(ℓ) = ρΩ0

(λiℓ) +
i−1∑

j=0

ρWδ
(λjℓ)

= λiρΩ0
(ℓ) + ρWδ

(ℓ)
i−1∑

j=0

λj.

Then, only the evaluation of ρΩ0
(ℓ) and ρV(ℓ) are needed. Hyperplanes bounding

the reachable sets, in the direction given by an eigenvector are computed in only

O
(
N + Ct

ρΩ0
+ Ct

ρV

)
. Similarly, if λ < 0, ρΩi

(ℓ) can be computed from ρΩ0
(ℓ),

ρΩ0
(−ℓ), ρV(ℓ) and ρV(−ℓ).

5.1.3 Computing Support Vectors

Now that we know how to evaluate the support function of the Ωi in one direc-
tion, it would be also interesting to have an associated support vector in that
direction. Interesting applications include the production of a polyhedral under-
approximation of Ωi expressed as the convex hull of a set of points.

The closed form of Ωi is

ΦiΩ0 ⊕
i−1⊕

j=0

ΦjV

In order to evaluate its support function in direction ℓ, we use a sequence rj =(
Φ⊤)j ℓ, and evaluate the support functions of Ω0 and V in the directions rj.

ρΩi
= ρΩ0

(ri) +
i−1∑

j=0

ρV (rj)

Together with the ρΩ0
(rj) and ρV(rj), it is possible to compute some support

vectors, denoted as ν
rj

Ω0
and ν

rj

V . Now we can use the following proposition to find
a support vector for Ωi.

69

Chapter 5. Going Further with Support Functions

Proposition 5.2. For any sets X and Y, any linear transformation A, and any
vector ℓ, we have:

νAX (ℓ) = AνX
(
A⊤ℓ

)

νX⊕Y (ℓ) = νX (ℓ)⊕ νY (ℓ)

Proof. A proof can be easily derived from the properties of the dot product.

Then the set of support vectors for Ωi in direction ℓ is:

νΩi
(ℓ) = ΦiνΩ0

(ri)⊕
i−1⊕

j=0

ΦjνV (rj)

and since ν
rj

Ω0
and ν

rj

V belongs to νΩ0
(rj) and νV (rj) respectively, we can compute

an element of νΩi
(ℓ):

Φiνri

Ω0
+

i−1∑

j=0

Φjν
rj

V ∈ νΩi
(ℓ)

This point is in fact the ith element defined by xk+1 = Φxk + vk with x0 = νri

Ω0
and

vk = ν
ri−k−1

V .
Contrary to what was done in Section 4.2.2, we do not get directly support

vectors of the Ωi, but the inputs that drive the system to these support vectors,
which is interesting from the control synthesis point of view, but if we want these
support vectors, additional computations are required. Indeed we can get νℓ

ΩN

by simulating the system with x0 = νri

Ω0
and vk = ν

ri−k−1

V : O (Nd2) operations
are required. If we get support vectors for all i using simulations, then it will
require O (N2d2) operations. Instead, if N is bigger than d, it is more efficient to
first compute all the Φj in O (Nd3) operations and then all the Φjν

rj

V in O (Nd2).
Finally, the sums

∑i−1
j=0 Φjν

rj

V can be computed using:

i∑

j=0

Φjν
rj

V =

(
i−1∑

j=0

Φjν
rj

V

)
+ Φiνri

V

Getting support vectors is thus rather costly compared to evaluating the sup-
port functions. From Proposition 5.1, we know that Algorithm 5.1 computes
ρΩ0

(ℓ), . . . , ρΩN−1
(ℓ), with time complexity:

O
(
N
(
d2 + C

t
ρΩ0

+ C
t
ρV

))

Even if we can get support vectors for free from the evaluation of ρΩ0
and ρV ,

O (Nd3) operations remains to be done.

Remark. It is possible to do a little bit better if d is bigger than log N . We
can first compute the sequence of Φ2k

in O (log Nd3) operations, then each Φjν
rj

V
requires a number of linear transformations equal to the number of 1’s in the base
2 representation of j. Computing the support vectors of all the Ωi in one direction
from ν

rj

Ω0
and ν

rj

V requires O ((N + d)d2 log N) operations.

70

5.2. Improved Time Discretization

5.2 Improved Time Discretization

In this section we take advantage of the expressiveness of support functions to get
a better over-approximation Ω0 of R[0;δ](X0).

As in the two previous chapters, we have a linear ordinary differential equation:

ẋ(t) = Ax(t) + u(t)

with x(0) ∈ X0 and u(t) ∈ U . And we want to compute R[0;T](X0), the set of
points reachable from X0 in time less than T .

We do it by covering R[0;T](X0) by N convex sets defined by the recurrence
relation:

Ωi+1 = ΦΩi ⊕ V
where Φ is eδA, V is an over-approximation of Rδ({0}) and Ω0 an over-approxima-
tion of R[0;δ](X0), with δ = T/N .

Lemma 4.1, on page 56, already gives us an over-approximation of Rδ({0}),
as the Minkowski sum of δU and a box. The following lemma gives us an over-
approximation of R[0;δ](X0) by a set with an easy-to-compute support function.

X0

eδAX0

Ω0

X0

eδAX0

Ω0

Figure 5.1: ApproximatingR[0;δ] for Example 4.1 with µ = 0.5 using the discretiza-
tion procedure from Section 3.2 (left) or 5.2 (right).

Lemma 5.1. Let λ ∈ [0; 1], and Ω0,λ be the convex set defined by :

Ω0,λ = (1− λ)X0⊕λeδAX0⊕λ(1− λ)EX0

⊕λδU ⊕λ2EU (5.3)

where

EX0
=✷

(
|A|−1

(
eδ|A| − I

)
⊡
(
A(I − eδA)X0

))

⊕✷

(
|A|−2

(
eδ|A| − I − δ|A|

)
⊡
(
A2eδAX0

))

and EU =✷

(
|A|−2

(
eδ|A| − I − δ|A|

)
⊡ (AU)

)

71

Chapter 5. Going Further with Support Functions

If we define Ω0 as:

Ω0 = CH

⋃

λ∈[0;1]

Ω0,λ

 (5.4)

then, R[0;δ](X0) ⊆ Ω0 and

dH

(
Ω0,R[0;δ](X0)

)
≤ 1

4

(
eδ‖A‖ − 1

)
DX0

+ 1
2
REX0

+ 2REU

≤ 1
4

(
eδ‖A‖ − 1

)
DX0

+ 2
(
eδ‖A‖ − 1

)2 (RX0

2
+ RU

‖A‖

) (5.5)

Proof. (see A.3.1 on page 129)

One feature of this approximation is that Ω0,1, the part of Ω0 = R[0;δ] cor-
responding to time δ, is equal to ΦΩ0,0 ⊕ δU ⊕ EU , which is the part of Ω1 =
ΦΩ0⊕ δU ⊕EU corresponding to time δ. This allows a smoother approximation of
the reachable set, as illustrated on Figures 5.1 and 5.2.

Figure 5.2: Ω0, Ω1, and Ω2, as defined by Example 4.1 with µ = 0.5 using the
discretization procedure from Section 3.2 (left) or 5.2 (right).

Ω0, as defined in this lemma, might seem hard to represent. In fact, its support
function is not harder to compute than the one of X0 and U . Since the signs of λ,
(1− λ), λ2, and λ(1− λ) do not change on [0; 1], we have:

ρΩ0
(ℓ) = supλ∈[0;1]

(
(1− λ)ρX0

(ℓ) + λρX0
((eδA)⊤ℓ) + λ(1− λ)ρEX0

(ℓ)

+ λδρU(ℓ) + λ2ρEU (ℓ)
)

which means that we only have to maximize a polynomial in one variable of degree
2 on [0; 1] after the evaluation of the support function of the sets involved.
EX0

and EU will be first expressed as boxes using 2d calls to ρX0
and ρU respec-

tively and a few linear transformations. Then these boxes will be represented by
their support functions.

72

5.3. Continuous Reachability Algorithm

Proposition 5.3. The time complexity of ρΩ0
as defined in equation (5.4) is

C
t
ρΩ0

= O
(
d2 + C

t
ρX0

+ C
t
ρU

)

We already know from Proposition 4.4 that we can not improve asymptotically
the bounds on the error given by Theorem 3.1, but we can state a similar result.

Theorem 5.1. Consider the sequence of sets defined by equations (5.4) and (4.3).
Then, for all i ∈ N, we have R[iδ;(i+1)δ](X0) ⊆ Ωi and

dH

(
Ωi,R[iδ;(i+1)δ](X0)

)
≤ δeT‖A‖

(‖A‖
4

DX0
+

3

4
δ‖A‖2eδ‖A‖RX0

+ eδ‖A‖RU

)

Proof. (see A.3.2 on page 132)

From this point of view, there is no significant improvement between this the-
orem and Theorem 3.1. From a practical point of view, we already know that it
might produce a much smaller over-approximation as illustrated on Figure 4.3a.

5.3 Continuous Reachability Algorithm

As explained in the introduction of Chapter 3, it is possible to avoid time discretiza-
tion and work directly with the continuous equation by translating the differential
equation on the state variable into a differential equation on the parameters of the
set representation.

We want to compute the reachable set of:

ẋ(t) = Ax(t) + u(t)

with x(0) ∈ X0 and u(t) ∈ U .
We are interested in Rt for all t in [0; T]. Similar to the discrete-time case, we

want to express ρRt
as a function of ρX0

and ρU .

Proposition 5.4. For all t ∈ R
+,

ρRt
(ℓ) = ρX0

(
etA⊤

ℓ
)

+

∫ t

0

ρU

(
eτA⊤

ℓ
)

dτ. (5.6)

Proof. (see A.3.3 on page 133)

For the practical computation of the support function of the reachable sets, we
introduce, similar to the discrete-time case, auxiliary functions r : R

+ → R
d and

s : R
+ → R defined by the differential equations:

ṙ(t) = A⊤r(t) r(0) = ℓ, (5.7)

ṡ(t) = ρU(r(t)) s(0) = 0. (5.8)

73

Chapter 5. Going Further with Support Functions

Equivalently, we have

r(t) = etA⊤

ℓ and s(t) =

∫ t

0

ρU

(
eτA⊤

ℓ
)

dτ

Using Proposition 5.4, it follows that the support function of the reachable set Rt

can be computed using the following equation

ρRt
(ℓ) = ρX0

(r(t)) + s(t).

Hence, the evaluation of the support function of the reachable sets can be done
by simulating the differential equations (5.7) and (5.8). Naturally in order to
guarantee a conservative approximation, one must use guaranteed integration, and
take care about what happens between the integration steps.

Most of the remarks done for discrete systems in Section 5.1.1 and 5.1.2 can
be adapted to the continuous case.

5.4 Experimental Results

In this section, we show the effectiveness of our approach on some examples. Al-
gorithm 5.1 has been implemented in OCaml, without any of the improvements
proposed in Section 5.1.2. All computations were performed on a Pentium IV
3.2GHz with 1GB RAM.

5.4.1 RLC Model of a Transmission Line

The first example we consider is a verification problem for a transmission line
borrowed from [Han05]. The goal is to check that the transient behavior of a long
transmission line is acceptable both in terms of overshoot and of response time.
Figure 5.3 shows a model of the transmission line, which consists of a number of
RLC components (R: resistor, L: inductor, C: capacitor) modelling segments of
the line. The left side is the sending end and the right side is the receiving end of
the transmission line.

Figure 5.3: RLC model of a transmission line

The dynamics of the system are given by the single-input single-output linear
dynamical system

{
ẋ(t) = Ax(t) + buin(t), uin(t) ∈ U , x(0) ∈ X0,
uout(t) = cx(t)

74

5.4. Experimental Results

where x(t) ∈ R
d with d = 81 is the state vector containing the voltage of the

capacitors and the current of the inductors and uin(t) ∈ U ⊆ R is the voltage
at the sending end. The output of the system is the voltage uout(t) ∈ R at the
receiving end, since uout(t) = cx(t) we will take ℓ = c⊤.

Initially, the system is supposed to be in an ε-neighborhood (with ε = 0.01) of
the set of steady states for an input voltage inside [−0.2; 0.2]. Then, at time t = 0,
the input voltage is switched to a value in [0.99; 1.01]:

X0 = −A−1b [−0.2; 0.2]⊕ εB, U = [0.99; 1.01].

Figure 5.4: Reachable values of uout(t) against time t.

Figure 5.4 shows the reachable values of the output voltage for a time horizon
of 3ns. It was computed in 0.10s using 0.234MB.

5.4.2 Extensive Experiments

Our implementation has also been tested on randomly generated examples of differ-
ent dimension. Tables 5.1 and 5.2 summarize the results of our experimentations.
The shading denotes a qualitative interpretation of the values: lighter is better.
We computed polyhedral over-approximations of the reachable sets Ω0, . . ., ΩN−1

with N = 100, for random matrices A of dimension d. We either used Algo-
rithm 4.2 (denoted as direct in the tables), or sampled Algorithm 5.1 (denoted as

75

Chapter 5. Going Further with Support Functions

d = 10 20 50 100 200 500
direct Z 1 < 0.01 0.01 0.13 1.00 5.44 85.9
sf Z 1 < 0.01 < 0.01 0.01 0.01 0.05 0.28
direct E 1 < 0.01 0.02 0.27 1.71 11.8
sf E 1 < 0.01 < 0.01 < 0.01 0.02 0.05 0.31
direct Z d < 0.01 0.02 0.27 1.86 11.4
sf Z d < 0.01 0.02 0.23 1.5 11.1
direct E d 0.01 0.04 0.41 2.82 21.9
sf E d < 0.01 0.02 0.19 1.48 8.98
direct Z d2 0.04 0.35 7.38 90.6
sf Z d2 0.04 0.36 9.83
direct E d2 0.03 0.26 6.69
sf E d2 0.03 0.32 9.16

Table 5.1: Execution time (in seconds) for N = 100 for several linear systems of
different dimensions

d = 10 20 50 100 200 500
direct Z 1 0.234 0.234 0.234 0.703 2.258 13.43
sf Z 1 0.234 0.234 0.234 0.469 1.480 8.707
direct E 1 0.234 0.234 0.469 1.172 4.961
sf E 1 0.234 0.234 0.234 0.703 2.332 12.53
direct Z d 0.234 0.234 0.469 1.172 3.195
sf Z d 0.234 0.234 0.234 0.703 2.184
direct E d 0.234 0.469 0.937 3.281 7.332
sf E d 0.234 0.234 0.234 0.703 3.035
direct Z d2 0.703 2.812 18.28 77.81
sf Z d2 0.234 0.469 3.75
direct E d2 0.703 3.047 18.98
sf E d2 0.234 0.469 3.75

Table 5.2: Memory consumption (in MB) for N = 100 for several linear systems
of different dimensions

sf in the tables); initial and inputs set were given either as zonotopes of order 1
(Z) or ellipsoids (E); and the computed tight over-approximation consisted in the
intersection of 2, 2d, or 2d2 half-spaces. Algorithms are terminated after 90s.

We can see that Algorithm 5.1 has great performances for systems with a single
output: it can compute exact bounds on this output for the first 100 timesteps in
less than a third of a second for a 500 dimensionnal system.

76

Part II

Hybrid Systems

77

Chapter 6
Introduction to Hybrid Systems
Reachability

Résumé : Dans la première partie de cette thèse nous nous sommes

intéressé à l’analyse d’atteignabilité des systèmes linéaires. Dans cette

seconde partie nous allons adapter nos résultats à l’étude des systèmes

hybrides.

Les systèmes hybrides sont des systèmes qui présentent à la fois une

dynamique continue et une dynamique discrète. Par exemple une balle

rebondissante peut être modélisée par un système hybride : à chaque re-

bond la vitesse de la balle est instantanément changée, entre les rebonds

la balle est en chute libre et sa position ainsi que sa vitesse évoluent

suivant une équation différentielle.

Dans ce chapitre nous décrivons une modélisation classique des sys-

tèmes hybrides : les automates hybrides. Nous présentons ensuite le

schéma algorithmique classique pour l’analyse d’atteignabilité des au-

tomates hybrides.

Hybrid dynamical systems are systems that exhibit both continuous and dis-
crete dynamics. They can arise when a digital controller interacts with a physical
system, as in flight control systems. They can also come from the simplification
of a sigmoidal behavior by a step function, this is common in biology where some
genes can go from an inactive state to a fully expressed state in a relatively short
time.

A classical example of a hybrid system, where the discrete dynamics comes
from collision, is the bouncing ball. The ball is dropped from an initial height
and bounces on the floor. With each bounce, modeled as an inelastic collision, the
speed of the ball is instantaneously changed; between each bounce, the ball is in
free fall, and its speed and position evolve according to a differential equation.

In this chapter, we first describe a classical model for hybrid systems called

79

Chapter 6. Introduction to Hybrid Systems Reachability

hybrid automata, then we present a classical algorithmic scheme for reachability
analysis of hybrid automata.

6.1 Hybrid Automata

Hybrid automata are formal models that combine discrete automata with con-
tinuous variables that change over time [MMP91, ACHH93]. In each location of
the discrete automaton, the evolution of the continuous variables is specified by
a differential equation. Discrete transitions, or jumps, are triggered by some ge-
ometrical condition on the continuous variables, and produce an instantaneous
transformation on these variables. For a more formal definition:

Definition 6.1 (Hybrid Automaton). A hybrid automaton H is a tuple

H = (Q,Var , Inv ,Flow ,Trans , Init)

consisting of the following elements:

Locations: elements of Q are called locations, they are the vertices of a graph
whose edges, called discrete transitions, are given by Trans;

Variables: a state of the automaton consists of a location and a value for each
variable (formally described as a valuation over Var). The set of all states
of the automaton is called its state space. To simplify the presentation, we
assume that the state space is Q × R

d, where d is the number of variables.
We will also simply write y to denote the name of the variable y or its value
according to the context; x sometimes denotes the vector of all variables;

Invariants: for each location q, the variables can only take values in a given set
called invariant and denoted Iq. The invariants are given by Inv ⊆ Q×R

d;

Flow: the set Flow ⊆ Q×R
d×R

d defines the continuous change of the variables
over time for each location. In a location q, x can take the values of a function
ξ(t) if at each time instant t, (q, ξ̇(t), ξ(t)) ∈ Flow, where ξ̇(t) denotes the
derivative of ξ(t) with respect to time;

Transitions: the discrete transitions Trans ⊆ Q × 2R
d×R

d × Q specify instanta-
neous changes of the state of the automaton. A transition (q, µ, q′) signifies
the system can instantaneously jump from any state (q, x) to any state (q′, x′)
if (q′, x′) ∈ Inv and (x, x′) ∈ µ. The relation µ is called the jump relation1

of the transition;

Initial States: a set of states Init ⊆ Q×R
d specifies the initial states from which

all behavior of the automaton begins.

1Also known as reset map.

80

6.1. Hybrid Automata

We can now define the hybrid automaton of the bouncing ball. Even though
this example has only one location, its behaviors consist of alternating time elapse
and discrete transitions that show much of the complexity that hybrid systems can
exhibit.

Example 6.1. Consider a bouncing ball, whose height above ground and vertical
speed are measured by continuous variables x and v. We can model this system
with the hybrid automaton shown in Figure 6.1, which has only one location q and
one transition. The equations of motion of the ball lead directly to a description
of the continuous dynamics in the form of a set of ordinary differential equations:

Flow = {(l, ẋ, v̇, x, v) : ẋ = v, v̇ = −g},

where g is the gravitational constant. If we suppose the ground to be at height
x = 0, we can model the fact that the ball does not penetrate the ground as an
invariant:

Inv = {(l, x, v)|x ≥ 0}.
As the ball reaches the ground at x = 0, it bounces; we abstract this phenomenon
by an instantaneous change of its speed, which changes direction and is reduced
by some constant positive factor c ≤ 1 that captures the loss of energy due to
deformation. This instantaneous change is modeled by a transition (q, µ, q), with
the jump relation

µ = {(x, v, x′, v′) : x = 0 ∧ v < 0 ∧ x′ = 0 ∧ v′ = −cv}.

Note that we include the constraint v < 0 since the ball only bounces when it moves
towards the ground. If this constraint is omitted, the model erroneously contains the
behavior that when the system reaches x = 0 it carries out the discrete transition
infinitely often in zero time, v converging towards zero. Assuming that initially
the ball is at rest at a height x0, we define the initial states to be

Init = {(q, x, v) : x = x0, v = 0},

which is indicated in Figure 6.1 by an incoming arrow to the location.

x ≥ 0
ẋ = v
v̇ = −g

x = x0

v = 0

}

x = 0 ∧ v < 0
x′ = 0
v′ = −cv

Figure 6.1: Hybrid automaton model of a bouncing ball

The behavior of a hybrid automaton is defined by its executions, which are
sequences of time elapse and discrete transitions. Formally, an execution σ is

81

Chapter 6. Introduction to Hybrid Systems Reachability

a finite or infinite sequence of states (qi, xi), delays δi ∈ R
≥0 and differentiable

functions ξi : R→ R
d,

σ = (q0, x0)
δ0,ξ0−−→ (q1, x1)

δ1,ξ1−−→ (q2, x2)
δ2,ξ2−−→ · · · (6.1)

such that for all i ≥ 0 the following conditions are satisfied:

• (q0, x0) ∈ Init , (qi, xi) ∈ Inv ;

• ξi(0) = xi and for all t, 0 ≤ t ≤ δi, (qi, ξi(t)) ∈ Inv ,

(qi, ξ̇i(t), ξi(t)) ∈ Flow

• there is a transition (qi, µi, qi+1) such that (ξi(δi), xi+1) ∈ µi.

A state (q, x) is reachable if there is an executation with (q, x) = (qi, ξi(t)),
0 ≤ t ≤ δi, for some i.

The continuous component of an execution of the bouncing ball is shown in
Figure 6.2a, for constants g = 1, c = 3/4 and x0 = 1. The states that are reachable
from this initial state are shown in Figure 6.2b.

0 5 10
0

0.2

0.4

0.6

0.8

1

P
os

iti
on

 x

(a) Position x over time t.

0 0.5 1
−2

−1

0

1

2

(b) Speed v over position x.

Figure 6.2: Behavior of the bouncing ball model.

6.2 Reachability Analysis of Hybrid Automata

The computation of the set of reachable states is generally very costly. For all
but the most simple classes of systems, the problem is known to be undecid-
able [ACH+95, HKPV98]. One therefore often resorts to computing a simpler
over-approximation of the set of reachable states.

The basic algorithm for computing the set of reachable states is a simple fixed
point calculation. Starting from the set of initial states Init , one adds the successor

82

6.2. Reachability Analysis of Hybrid Automata

states of time elapse and discrete transitions until no new states are found, and
therefore a fixed point is reached. These sucessors states are computed with the
following operators:

• The states that are reachable from {q} × X by letting time elapse are

Rloc(q,X) = {(q, x) : ∃ξ, t′, ξ(0) ∈ X ∧ ξ(t′) = x∧
∀ 0 ≤ t ≤ t′, ξ(t) ∈ Iq ∧ (q, ξ̇(t), ξ(t)) ∈ Flow}

(6.2)

• Given a set of states {q} × Y , the states that are reachable by taking a
discrete transition e = (q, µ, q′) ∈ Trans are given by

Rjump(e,Y) = {(q′, x′) : ∃x ∈ Y , (x, x′) ∈ µ} (6.3)

The set of reachable states RH (Init) can be computed with Algorithm 6.1.

Algorithm 6.1 Reachability analysis of a hybrid automaton.

Input: A hybrid automaton H in which the set of initial states Init is decomposed
into

⋃
q∈Q{q} × X0,q.

Output: RH(Init).
1: L← {(q,X0,q) : q ∈ Q}
2: Σ← ∅
3: R ← ∅
4: while L 6= ∅ do
5: Pick (q,X) ∈ L
6: Σ← Σ ∪ ({q} × X)
7: Y ← Rloc(q,X) ⊲ Reachable set by continuous evolution
8: R ← R∪ ({q} × Y)
9: for e ∈ Trans of the form e = (q, µ, q′) do

10: X ′ ← Rjump(e,Y) ⊲ Reachable set by discrete evolution
11: if {q′} × X ′ 6⊆ Σ then
12: Insert (q′,X ′) in L ⊲ Insert in L if not explored yet
13: end if
14: end for
15: end while
16: return R

This algorithm, implemented in various tools [CPPAV06, DFGLG08], computes
the unbounded time reachable set; even for purely continuous system it is rarely
possible to have a useful approximation of the unbounded time reachable set in
finite time, thus Rloc might not terminate. In order to deal with this problem
we often resort to bounded time reachability. It can be done by modifying Algo-
rithm 6.1, but it can be cumbersome. Another way is to modify the input hybrid

83

Chapter 6. Introduction to Hybrid Systems Reachability

system by adding one variable t whose derivative is 1 in every location, and add
transitions to a sink location s when t becomes bigger than the time bound T .
If the original hybrid system H is defined by (Q,Var , Inv ,Flow ,Trans , Init), we
analyze HT defined by:

QT = Q∪ {s}
VarT = Var ∪ {t}
InvT = Inv ∩ (Q× {(x, t) : t ≤ T})

FlowT = {(q, x′, 1, x, t) : (q, x′, x) ∈ Flow ∧ 0 ≤ t ≤ T}
TransT =

{
(q, µT , q′) : ∃µ, (q, µ, q′) ∈ Trans∧

µT = {(x, t, x′, t) : (x, x′) ∈ µ ∧ 0 ≤ t ≤ T}
}

∪
{
(q, µ, s) : q ∈ Q ∧ µ = {(x, T, 0, T) : x ∈ R

d}
}

InitT = Init × {0}

But this is not enough to guarantee the termination of Algorithm 6.1. One problem
that can arise is Zeno execution: an infinite number of transition in a finite amount
of time. An example of such an execution is given by the bouncing ball as defined
in Example 6.1. One way around this problem is to impose a bound J on the
number of discrete transitions taken in a way similar to the bound on time, then
the algorithm computes the set of points reachable in less than time T and with
less than J jumps. It is also possible to avoid such an execution by imposing a
delay in each discrete transition:

TransT =
{
(q, µT , q′) : ∃µ, (q, µ, q′) ∈ Trans∧

µT = {(x, t, x′, t + ǫ) : (x, x′) ∈ µ ∧ 0 ≤ t ≤ T}
}

∪
{
(q, µ, s) : q ∈ Q ∧ µ = {(x, t, 0, T) : x ∈ R

d ∧ t ≥ T}
}

One disadvantage is that it changes the semantic of the original system.

6.3 Outline of Part II

In this thesis, we consider hybrid automata with the following restrictions:

• The flow in each location q is a linear time-invariant system ẋ(t) = Aqx(t) +
u(t) with u(t) ∈ Uq and x(t) ∈ Iq:

Flow = {(q, Aqx + u, x) : q ∈ Q, x ∈ Iq and u ∈ Uq}

• Every discrete transition e = (q, µe, q
′) in Trans is triggered when the con-

tinuous variables reach some part of the state space Ge called the guard of e,
an affine transformation is then applied to the continuous variables:

µe = {(x, Aex + u) : x ∈ Ge and u ∈ Ue}

84

6.3. Outline of Part II

Thus Rloc must compute the set of points reachable by a linear time-invariant
system within an invariant I, and for any transition e = (q, µe, q

′), Rjump(e,Y) is
(q′, Ae(Y ∩ Ge)⊕ Ue).

In Chapters 4 and 5 we have presented several techniques for reachability analy-
sis of linear time-invariant systems. In order to use these algorithms in the context
of hybrid systems, we must be able to compute discrete transitions with their
outputs. When the Ωi are approximated, the representation of these approxima-
tions are rather classical. They can be ellipsoids or polytopes, as an example. In
contrast, when the Ωi are computed exactly, we use much more complex represen-
tations which have never been used in this context. Algorithm 4.1 produces high
order zonotopes, with many shared generators. Algorithm 5.1 is based on support
function, to a vector ℓ it associates the values of the support function of all the Ωi.

In the following chapters we will show how theses techniques can be used in
the context of hybrid systems reachability analysis. In Chapter 7 we explain some
of the implications of the invariant. Then, in Chapter 8, we show how to deal with
hyperplanar guards before studying the case of zonotopes and support functions.
We do not investigate the numerous other aspects of hybrid systems reachability
analysis. Most of the results in these chapters have been published in [GLG08b,
LGG09a].

85

Chapter 6. Introduction to Hybrid Systems Reachability

86

Chapter 7
Staying in the Invariant

Résumé : Dans ce chapitre nous étudions l’atteignabilité pour le

système continu défini dans un état discret d’un automate hybride.

Contrairement au cas purement continu, un automate hybride défini

un invariant dans chaque état discret ; nous voulons calculer l’ensemble

des points atteignables sans sortir de cette invariant. Après discrétisa-

tion, la séquence d’ensemble que nous étudions est :

ℵi+1 = (Φℵi ⊕ V) ∩ I

À cause de l’intersection avec l’invariant nous ne pouvons pas décom-

poser cette relation de récurrence comme dans la première partie. Nous

allons donc étudier une sur-approximation de ℵi+1 définie par

ℵi ⊂ ℵ∩i = Ωi ∩
i−1⋂

j=0

Ij

où Ωi est l’ensemble atteignable sans prendre en compte l’invariant et

Ij est l’ensemble atteignable à partir de l’invariant.

In the first part of this thesis we discussed ways to compute the bounded time
reachable set of linear time-invariant systems, given by the following equation:

ẋ(t) = Ax(t) + u(t) with u(t) ∈ U

In order to compute reachable sets for a hybrid system, we must compute
reachable sets in each location. And because of the invariant, the differential
equation becomes:

ẋ(t) = Ax(t) + u(t) with u(t) ∈ U and x(t) ∈ I (7.1)

87

Chapter 7. Staying in the Invariant

It can be discretized into:

ℵi+1 = (Φℵi ⊕ V) ∩ I (7.2)

This discretization poses two problems. First, if all the continuous trajectories
leave the invariant, then, even the slightest over-approximation of the continuous
flow might lead to a huge over-approximation of the reachable set, if some of the
discrete trajectories do not leave the invariant. Secondly, it forbids us from using
the superposition principle to compute efficiently the exact reachable set for the
discretized system.

Indeed, in the purely continuous system, we used the associativity of the Min-
kowski sum to compute Ωi as the sum of ΦiΩ0 and

⊕i−1
j=0 ΦjV . Now, the closed

form of ℵi is:

ℵi =
((

. . .
((

Φiℵ0 ⊕ Φi−1V
)
∩ Φi−1I ⊕ Φi−2V

)
. . .
)
∩ ΦI ⊕ V

)
∩ I

Alas, Minkowski sum is not distributive with respect to intersection, nor is
intersection distributive with respect to Minkowski sum. And contrary to what
is done in Chapters 4 and 5, if we want an exact representation of ℵi+1 we must
compute it from ℵi. Thanks to the following proposition we can compute an
over-approximation of ℵi+1 using the efficient algorithms described in the previous
chapters.

Proposition 7.1. Let X , Y, and Z, be three subsets of R
d, then:

(X ∩ Y)⊕Z ⊆ (X ⊕ Z) ∩ (Y ⊕ Z)

Equality can occur, especially when Z is empty, reduced to one point, or a set of
isolated points that are sufficiently further apart. But generally these two sets are
different. As an example, consider any two non-empty sets X and Y with empty
intersection, if we take Z = R

d, then (X ∩Y)⊕Z is empty, and (X ⊕Z)∩ (Y⊕Z)
is the whole state space.

Corollary 7.1. Let ℵi be the ith term of the sequence defined by equation (7.2),
then:

ℵi ⊆ Ωi ∩
i−1⋂

j=0

Ij

where Ωi and the Ij are defined by:

Ωk+1 = ΦΩk ⊕ V Ω0 = ℵ0

Ik+1 = ΦIk ⊕ V I0 = I

Proof. (see A.4.1 on page 134)

88

7.1. Working with Algorithm 4.1

Thanks to this corollary we have two sequences of sets defined by a recurence
relation we already studied extensively in previous chapters. Instead of computing
ℵi we will over-approximate it by Ωi ∩

⋂i−1
j=0 Ij, in the following this set is denoted

by ℵ∩i :

ℵ∩i = Ωi ∩
i−1⋂

j=0

Ij

7.1 Working with Algorithm 4.1

Algorithm 7.1 is based on Algorithm 4.1 and computes the sequence of ℵ∩i . Note
that termination is not guaranteed, and one may have to impose a time bound.

Another problem is posed on lines 15 and 17: the set representations that make
it possible to compute the sequences of Ωi and Ii exactly, zonotopes and support
functions, do not allow intersection, either because the class is not closed under
intersection (zonotopes) or because intersection is too hard to compute (support
functions).

Algorithm 7.1 Approximate Reachability in one location.

Input: The matrix Φ, the sets ℵ0 and V , and the invariant I.
Output: An over-approximation of the non-empty sets of the sequence defined

by equation (7.2): The first non-empty ℵ∩i .
1: AΩ

0 ← ℵ0

2: AI
0 ← I

3: V0 ← V
4: S0 ← {0}
5: I0 ← I
6: K0 ← R

d

7: i← 0
8: while ℵ∩i 6= ∅ do
9: i← i + 1

10: AΩ
i ← ΦAΩ

i−1 ⊲ AΩ
i = ΦiΩ0

11: AI
i ← ΦAI

i−1 ⊲ AI
i = ΦiI

12: Si ← Si−1 ⊕ V i−1 ⊲ Si =
⊕i−1

j=0 ΦjV
13: V i ← ΦV i−1 ⊲ V i = ΦiV
14: Ωi ← AΩ

i ⊕ Si ⊲ Ωi = ΦiΩ0 ⊕
⊕i−1

j=0 ΦjV
15: Ki ← Ki−1 ∩ Ii−1 ⊲ Ki =

⋂i−1
j=0 Ij

16: Ii ← AI
i ⊕ Si ⊲ Ii = ΦiI ⊕⊕i−1

j=0 ΦjV
17: ℵ∩i ← Ωi ∩ Ki ⊲ ℵ∩i = Ωi ∩

⋂i−1
j=0 Ij

18: end while
19: return {ℵ∩0 , . . . ,ℵ∩i−1}

In order to solve this problem, additional approximations are needed. Similarly

89

Chapter 7. Staying in the Invariant

to Algorithm 4.2, it is possible to add Approx⊕ (·, ·) and Approx∩ (·, ·) on lines
where ⊕ and ∩ are involved. The good news is that, similarly to Algorithm 4.2,
linear transformations are first performed exactly, then Minkowski sums are ap-
proximated, and finally intersections are approximated. Operations are performed
in a precise order, and sets that have been involved in intersections are never in-
volved in Minkowski sums or linear transformations, this facilitates the avoidance
of any wrapping effect.

Another advantage of using such an algorithm is that, if the flow of the hybrid
system enters again in this location, then we do not need to re-compute the AI

i ,
Si, Ki, and Ii. Moreover, only the last AI

i and Ii needs to be kept in memory,
since we only need Si and Ki to compute ℵ∩i .

7.2 Working with Algorithm 5.1

Algorithm 7.2, adapted from Algorithm 5.1, presents the same advantages. More-
over, even if it only outputs an upper-bound on each value of the support functions
of the ℵ∩i = Ωi ∩

⋂i−1
j=0 Ij in direction ℓ, we can still use it to represent ℵ∩i because:

ℵ∩i =
⋂

ℓ∈Rd

{
x : x · ℓ ≤ min

(
ρΩi

(ℓ) ,
i−1

min
j=0

ρIj
(ℓ)

)}

Algorithm 7.2 Approximate Reachability in one location using support functions.

Input: The matrix Φ, the sets ℵ0 and V , the invariant I, and a direction ℓ.
Output: Upper-bounds of all ρℵ∩

i
(ℓ).

1: r0 ← ℓ
2: s0 ← 0
3: k0 ←∞
4: ρΩ

0 ← ρℵ0
(ℓ)

5: ρI
0 ← ρI(ℓ)

6: ρ0 ← ρℵ0
(ℓ)

7: i← 0
8: while ρi ≥ −ρI(−ℓ) do
9: i← i + 1

10: ri ← Φ⊤ri−1 ⊲ ri =
(
Φ⊤)i ℓ

11: si ← si−1 + ρV(ri−1) ⊲ si =
∑i−1

j=0 ρV

((
Φ⊤)j ℓ

)

12: ρΩ
i ← ρℵ0

(ri) + si ⊲ ρΩ
i = ρΩi

(ℓ)
13: ki ← min(ki−1, ρ

I
i−1) ⊲ ki = mini−1

j=0 ρIj
(ℓ)

14: ρI
i ← ρI(ri) + si ⊲ ρI

i = ρIi
(ℓ)

15: ρi = min(ρΩ
i , ki) ⊲ ρi = min

(
ρΩi

(ℓ) , mini−1
j=0 ρIj

(ℓ)
)

16: end while
17: return {ρ0, . . . , ρi−1}

90

7.3. Mixing Algorithms

The condition on line 8 in Algorithm 7.2 is sufficient to prove emptiness of ℵ∩i .
Indeed, the value ρi defines a halfspace {x : x · ℓ ≤ ρi} containing ℵ∩i , and the
value of −ρI(−ℓ) defines a halfspace containing I: {x : x · ℓ ≥ −ρI(−ℓ)}. It is
clear that ρi < −ρI(−ℓ) implies that these two halfspaces are empty, and that
ℵ∩i = ℵ∩i ∩ I = ∅.

It is also clear that this condition might never be falsified, even if ℵ∩i becomes
empty. That is why Algorithm 7.2 should be called on several directions ℓ concur-
rently, leading to polyhedral over-approximations of the ℵ∩i . These approximations
can also be computed using Algorithm 7.1 and template polyhedra to represent Si

and Ki.
The advantages of Algorithm 7.2 are that all the improvements described in

Section 5.1.2 can be used, and that refining the approximations can be done ef-
ficiently. The advantage of Algorithm 7.1 is that it is not limited to polyhedral
approximations.

7.3 Mixing Algorithms

The two algorithms we have presented here use Algorithms 4.1 and 5.1 respectively
to compute the sequence of Ωi and Ii. One interesting consequence is that we can
share some computations between this two sequences. But for better approxima-
tions it might be interesting to compute these two sequences by two different algo-
rithms. As an example, one can use a wrapping-effect-free algorithm to compute
the sequence of Ωi, and one algorithm from Chapter 3 to compute the sequence of
Ii, or even the sequence of Ki directly.

Another interesting approach would be to first compute wrapping-effect-free
approximations of the Ωi, and then adapt an algorithm from Chapter 3 to compute
a sequence:

ℵi+1 =
(
Φℵi ⊕ V

)
∩ I ∩ Ωi+1

The presence of Ωi helps avoid the wrapping effect inherent to such a computation
scheme. The main advantage is that instead of over-approximating ℵ∩i , which is
already an over-approximation of ℵi, we are here over-approximating ℵi directly.
It is then possible to get an approximation ℵi that is not a superset of ℵ∩i . One
drawback is that we do not compute the sequence of Ki and can not reuse it if
hybrid trajectories enter this location again.

Remark. More generally, when we have several algorithms approximating a se-
quence of sets, each with its strengths and weaknesses, it is always interesting not
only to intersect their outputs, but also to let them help each other.

If the invariant is a polytope, a useful approximation can be obtained by using
L-polytopes, where L contains the normals to the faces of I, for computing Ωi,
and a face-lifting algorithm (see Section 3.4.2.3) for I i.

Once the ℵi has been computed, they can be used to compute an over-approx-
imation of the intersection between ℵi and the guards. For numerical reasons it

91

Chapter 7. Staying in the Invariant

might be interesting to compute this intersection before intersecting ℵi with I, in
that case Ki should be

⋂i−1
j=1 Ij instead of

⋂i−1
j=0 Ij.

The case of the intersection with one hyperplanar guard defining an halfspace
as invariant is investigated in Chapter 8. This can be extended to the case of
polyhedral invariants.

7.4 Examples

We illustrate the efficiency of our method by adding an invariant to Example 4.1.
We used Algorithm 7.2 to compute polyhedral approximation (with 50 constraints)
of the sets of points reachable while staying in the invariant.

As a first example we use the halfspace defined by {(x0, x1, x2, x3, x4) : x1 ≤
0.64}. In a second example we use the cylinder defined by {(x0, x1, x2, x3, x4) :
(x0 − 0.3)2 + .(x1 + 0.025)2 ≤ 0.64}. In both examples we use the sequence of Ωi

to add bounds on all variables and improve the analysis, thus our first invariant
was expressed as a cube and the second one as the product of a circle with a three
dimensional cube. Both examples were analyzed in less than 0.5s and using less
than 10MB. Due to poor handling of polytopes in our tool, plotting the computed
sets took nearly five minutes.

Figure 7.1: Reachability analysis inside an invariant: Ωi ∩ I in black and ℵi in
grey.

92

Chapter 8
Intersection with a Hyperplanar Guard

Résumé : Dans ce chapitre nous considérons une garde hyperplanaire

G égale à {x : x · n = γ}, l’invariant I est inclus dans le demi-espace

{x : x·n ≤ γ}. Nous nous intéressons à l’intersection Yℵ
G entre la garde

et l’ensemble atteignable par le système continu défini dans l’état dis-

cret courant. En appliquant la relation de saut à Yℵ
G nous obtiendrons

l’ensemble initial dans le nouvel état discret.

On ne sait pas calculer efficacement la séquence des ℵi, nous pouvons

tout d’abord calculer une première sur-approximation de Yℵ
G à partir

d’une sur-approximation des ℵi. Nous pouvons ensuite améliorer cette

première approximation grâce à la séquence exacte des Ωi.

Nous montrons dans ce chapitre comment calculer l’intersection entre

un hyperplan et la séquence des Ωi sous forme de zonotopes ayant beau-

coup de générateurs en commun ou sous forme de fonction support.

In this chapter, we consider one hyperplanar guard G equal to {x : x · n = γ},
the invariant I is in the halfspace {x : x · n ≤ γ}. We are interested in the
intersection Yℵ

G between the guard and the N first sets of the sequence defined by:

ℵi+1 = (Φℵi ⊕ V) ∩ I

Applying the jump relation to Yℵ
G gives us the initial set in the next location.

Without loss of generality we suppose here that the jump relation is the identity
map; for affine maps, we can use the transformations described in Section 2.3.

Computing the exact sequence of ℵi is untractable in general, thus we will
over-approximate Yℵ

G using two sequences:

• A sequence of sets ℵi over-approximating the reachable set.

• The N first sets of the sequence defined by:

Ωi+1 = ΦΩi ⊕ V

93

Chapter 8. Intersection with a Hyperplanar Guard

Before approximating Yℵ
G we first detect for which indices i, ℵi may intersect the

guard.

8.1 Detecting Intersection

In order to detect for which indices i, ℵi intersects the guard we need to know
ρℵi

(n), and ρℵi
(−n). Indeed, for any set X :

• If ρX (n) < γ then X does not intersect the guard.

• If −ρX (−n) ≤ γ ≤ ρX (n) then X does intersect the guard.

• If γ < −ρX (−n) then X is outside of the invariant1.

x · n = γ

n

X

x · n = ρX (n)x · n = −ρX (−n)

Figure 8.1: Checking emptiness of X ∩ {x : x · n = γ}.

Detecting the first index i such that ℵi intersects the guard can be done very
efficiently. Indeed, for all j smaller than this index, we have ℵj = Ωj, thus i is the
first index such that γ ≤ ρΩi

(n).
Unfortunately, we can not always compute ρℵi

(n) and ρℵi
(−n) efficiently after

this first intersection, and only have over-approximations of these values. This is
sufficient to reject some indices where we know intersection can not occur. The
approximations of ρℵi

(n), and ρℵi
(−n) given by Algorithm 7.2, can be used as a

first filter, then one can use ρℵi
(n), and ρℵi

(−n) on the remaining indices2.

1which means in our context that ℵi is empty, and ρℵi
(−n) = −∞.

2ρ
ℵi

(n) can be smaller than the computed approximation ρn,i of ρℵi
(n), even if ℵi is computed

by sampling Algorithm 7.2. Indeed, the constraint implied by ρn,i can be made redundant by
some constraints in several other directions.

94

8.2. Zonotope/Hyperplane Intersection

In the end, we have a set I of indices such that ℵi intersects G if i is in I, and
ℵi does not intersect G if i is not in I. The set I will be usually partitioned into
several sets of consecutive indices. Without loss of generality we consider that I
is [imin : imax].

Then the intersection between the reachable set and the flow can be over-
approximated by ℵimin

∩ G, . . ., and ℵimax
∩ G. Leading to imax − imin + 1 initial

sets in the next location. In order to avoid an explosion of the number of initial
sets to consider, we use instead:

Yℵ
G = CH

(
imax⋃

i=imin

(
ℵi ∩ G

)
)

or an approximation of this set.

Remark. It is sometimes easier to compute instead CH
((⋃imax

i=imin
ℵi

)
∩ G
)
, but

this leads to a coarser approximation.

Each intersection ℵi ∩ G can be computed efficiently if ℵi is an ellipsoid or
a polyhedron represented by its faces. Computing their convex union is much
harder but it can be approximated. The resulting set might be greatly improved
by intersecting it with (an approximation of):

YΩ
G = CH

(
imax⋃

i=imin

(Ωi ∩ G)
)

Indeed, if the dot product between the flow and the normal to G has a constant

sign over YΩ
G , then YΩ

G is equal to CH
(⋃imax

i=imin
(ℵi ∩ G)

)
. Even if this is not the

case, computing YΩ
G can provide an improvement over Yℵ

G .

Remark. YΩ
G is defined using the indices imin and imax computed thanks to the

sequence of ℵi. This allows a faster computation and a better estimate since some
intersections do not need to be computed.

In the two following sections, we will show how YΩ
G can be computed, or at

least approximated, when the sequence of Ωi is computed by Algorithm 4.1 using
zonotopes, or Algorithm 5.1 using support functions.

8.2 Zonotope/Hyperplane Intersection

An efficient implementation of Algorithm 4.1 using zonotopes outputs a sequence of
zonotopes of increasingly high order with a lot of generators in common. For now,
we forget about these redundancies and only consider the intersection between one
high order zonotope Z and a hyperplane G equal to {x : x · n = γ}.

The problem with such an intersection is that the end result might not be a
zonotope, as already stated in Section 2.3.4, in fact it can be any polytope.

95

Chapter 8. Intersection with a Hyperplanar Guard

Proposition 8.1. Let G be a hyperplane, and P a polytope in G. There exists a
zonotope Z such that P = Z ∩ G.

Proof. Without loss of generality we will take G as {x : x0 = 1}. If V is the set of
vertices of P let us define the zonotope Z:

Z =

{
∑

v∈V
αvv : 0 ≤ αv ≤ 1

}

Let us note that since the first component of every vertices of P is 1, the first
component of

∑
v∈V αvv is

∑
αv, then the intersection of Z with G is:

Z ∩ G =

{
∑

v∈V
αvv : 0 ≤ αv ≤ 1 and

∑
αv = 1

}

which is exactly the convex hull of V , in other words:

Z ∩ G = P

Thus, if we want to compute this intersection we must work with a class of sets
containing at least all convex polytopes. The good news is that computing a H-
or V-representation of a zonotope can be done polynomially in the number of its
faces [Zas75] or vertices [AF96] respectively, the bad news is that a zonotope with r
generators in dimension d might have up to 2

(
r

d−1

)
faces and 2

∑d−1
i=0

(
r−1

i

)
vertices.

Even for relatively small zonotopes, this can be prohibitively large. Thus, it is
clear that this approach is untractable. Another approach is to over-approximate
the zonotope, either via a zonotope of lower order or directly by a polytope, be-
fore computing the intersection. However, even if the over-approximation of the
zonotope is tight (i.e. the over-approximation touches the zonotope in several
points), the over-approximation of the intersection is generally not. Moreover, we

want to compute this intersection in order to improve over Yℵ
G which is already

computed from an approximation. Instead, we propose a third approach which
allows to compute a tight over-approximation of the intersection directly, without
approximating or computing a H- or V-representation of Z.

8.2.1 From Dimension d to Dimension 2

We will not over-approximate the intersection by a zonotope directly, but first by
a polytope which will then be approximated by, or expressed as, a zonotope. As
already discussed in Chapter 2, approximating a set by a polytope is sampling its
support function. Moreover, the support function of the intersection between a set
S, and a hyperplane G equal to {x : x · n = γ}, can be expressed as [RW98]:

ρS∩G(ℓ) = inf
λ∈R

(ρS(ℓ− λn) + λγ)

96

8.2. Zonotope/Hyperplane Intersection

which can be computed by looking for a vector in the plane (or line) generated by
ℓ and n. Instead of using this expression we will use the following proposition.

Proposition 8.2. Let G be a hyperplane, G = {x ∈ R
d : x · n = γ}, S a set, and

ℓ in R
d. Let Πn,ℓ be the following linear transformation:

Πn,ℓ : R
d → R

2

x 7→ (x · n, x · ℓ)

Then, we have the following equality

{x · ℓ : x ∈ S ∩ G} = {y : (γ, y) ∈ Πn,ℓ(S)}

Proof. Let y belong to {x · ℓ : x ∈ S ∩ G}, then there exists x in S ∩ G such that
x · ℓ = y. Since x ∈ G, we have x · n = γ. Therefore (γ, y) = Πn,ℓ(x) ∈ Πn,ℓ(S)
because x ∈ S. Thus, y ∈ {y : (γ, y) ∈ Πn,ℓ(S)}.

Conversely, if y ∈ {y : (γ, y) ∈ Πn,ℓ(S)}, then (γ, y) ∈ Πn,ℓ(S). It follows that
there exists x ∈ S such that x · n = γ and x · ℓ = y. Since x · n = γ, it follows that
x ∈ G. Thus, y = x ·ℓ with x ∈ S∩G and it follows that y ∈ {x ·ℓ : x ∈ S∩G}.

This proposition states that we can reduce the problem of evaluating the sup-
port function of the intersection of a set S and a hyperplane G in one direc-
tion, to the problem of applying a rank 2 linear transformation, Πn,ℓ, to S and
then computing the intersection of the 2-dimensional set Πn,ℓ(S) and the line
Lγ = {(x, y) ∈ R

2 : x = γ}. For any set of directions L computing the L polytope
✷L (S) can be done by |L| linear transformation of rank 2 and |L| intersections
in two dimensions. Algorithm 8.1 implements this idea, which is illustrated on
Figure 8.2.

Algorithm 8.1 Dimension reduction

Input: A set S, a hyperplane G = {x ∈ R
d : x · n = γ} and a finite set L of

directions.
Output: ✷L (S).
1: for ℓ in L do
2: Sπ

n,ℓ ← Πn,ℓ(S)
3: ρℓ ← BOUND INTERSECT 2D(Sπ

n,ℓ, Lγ)
4: end for
5: return {x ∈ R

d : ∀ℓ ∈ L, x · ℓ ≤ ρℓ}

All the Πn,ℓ involve multiplication by n⊤, in order to take advantage of this
redundancy, one may apply all the Πn,ℓ using one (|L|+ 1)× d matrix. Moreover,
if for all ℓ in L, −ℓ also belongs to L then Πn,−ℓ(S) need not to be computed and
ρ−ℓ can be computed using Πn,ℓ(S). Then all the two dimensional intersection

problems can be generated using one (|L|
2

+ 1)× d matrix.

97

Chapter 8. Intersection with a Hyperplanar Guard

Figure 8.2: Polyhedral approximation of the intersection between a set and a
hyperplane can be done using projections and intersections in 2d only.

98

8.2. Zonotope/Hyperplane Intersection

In our case, the set S is a zonotope, then the projection Πn,ℓ(S) is a two-
dimensional zonotope, a zonogon, which can be computed efficiently:

Πn,ℓ(〈c|g1, . . . , gr〉) = 〈Πn,ℓ(c)|Πn,ℓ(g1), . . . , Πn,ℓ(gr)〉 .

The computation of the intersection of Πn,ℓ(S) and the line Lγ is investigated
in the next subsection where two algorithms are proposed to solve this problem.

Remarks. One should keep in mind that this dimension reduction technique is
not specific to zonotopes but applies to any set. It is only efficient if the image by
a linear transformation can be computed easily, which excludes H-polytopes, but
includes any implicit Minkowski sum of a combination of V-polytopes and ellipsoids
as already evoked in Section 4.1.1.

Furthermore, it can be easily adapted to the intersection with a halfspace. An-
other variant would be to allow reduction to any subspace of R

d, whether because
efficient intersection algorithms exist in dimension higher than two, or in order to
study the intersection with several halfplanes or halfspaces.

8.2.2 Intersection of a Zonogon and a Line

Algorithm 8.1 requires the computation of the support function of the intersec-
tion of a two dimensional zonotope with a line in direction (0, 1). In a two di-
mensional space, a zonotope is called a zonogon and its number of vertices, as
its number of edges, is two times its number of generators. Thus, it is possible
to express a zonogon as a polygon (two dimensional polytope) which can easily
be intersected with a line. We now denote by Z = 〈c|g1, . . . , gr〉 the zonogon
that we want to intersect with Lγ = {(x, y) : x = γ}. An extremely naive way
of determining the list of vertices of a zonogon is to generate the list of points
{c +

∑r
i=1 αigi : ∀i, αi = −1 or αi = 1} and then to take the convex hull of this

set. This is clearly not a good approach since we need to compute a list of 2r

points.

Instead, we will look for the edge of Z intersecting Lγ with the highest y-
coordinate. A first algorithm works by scanning the vertices and is mainly intended
to help understand the second algorithm.

Remark. This problem is very similar to the fractional Knapsack problem. Epp-
stein suggested in a talk [BE01] that one could maximize a linear function on the
intersection of a zonotope and a hyperplane by adapting the greedy algorithm for
the fractional Knapsack problem. This is actually what Algorithm 8.2 does. Algo-
rithm 8.3, on the other hand, is similar to Bamas and Zemel’s algorithm [BZ80].

In the following, for any vector v, xv and yv will denote the x- and y-coordinates
of v respectively.

99

Chapter 8. Intersection with a Hyperplanar Guard

8.2.2.1 Scanning the Vertices.

It is well known that the facets of a zonotope 〈c|g1, . . . , gr〉 are zonotopes whose
generators are taken from the list {g1, . . . , gr}. Then, we can deduce that the
edges of a zonogon are segments of the form [P ; P + 2g] where P is a vertex of
the zonogon and g a generator. Therefore, it is sufficient to scan the generators in
trigonometric (or anti-trigonometric) order to scan the vertices of the zonogon in a
way that is similar to the gift wrapping algorithm [Jar73]. This idea is implemented
in Algorithm 8.2.

Algorithm 8.2 BOUND INTERSECT 2D

Input: A zonogon Z = 〈c|g1, . . . , gr〉 and a line Lγ = {(x, y) : x = γ} such that
Z ∩ Lγ 6= ∅.

Output: ρZ∩Lγ
((0, 1)⊤).

1: P ← c ⊲ current position
2: j ← 1
3: for i from 1 to r do
4: if ygi

> 0 or (ygi
= 0 and xgi

> 0) then ⊲ gi = (xgi
, ygi

)
5: gi ← −gi ⊲ Ensure all generators are pointing downward
6: end if
7: P ← P − gi ⊲ Drives P toward the highest vertex of Z
8: end for
9: g1, . . . , gr ← SORT(g1, . . . , gr) ⊲ Sort the generators in trigonometric order

10: if xP < γ then
11: g1, . . . , gr ← gr, . . . , g1 ⊲ Sort the generators in clockwise order
12: end if
13: while [P ; P + 2gj] ∩ Lγ = ∅ do
14: P ← P + 2gj

15: j ← j + 1
16: end while
17: (x, y)← [P ; P + 2gj] ∩ Lγ

18: return y

All the generators are taken pointing downward for simplicity. This does not
change the zonogon since replacing a generator g by it opposite −g does not
modify the shape of a zonogon. Then, we compute the highest3 vertex of Z, and
sort the generators according to the trigonometric or clockwise order. Scanning
the generators in that order allows us to scan the vertices of Z. While scanning
these vertices, we check for the intersection with the line Lγ. This leads to an
algorithm for the intersection between a line and a zonogon with r generators
whose complexity is O(r log r). The most time consuming part is to sort the
generators.

3meaning the vertex with the highest y-coordinate, for simplicity of the explanations we
assume it to be unique. Actually, it is the rightmost vertex amongst the highest vertices.

100

8.2. Zonotope/Hyperplane Intersection

Remark. The lowest vertex of the intersection can be found by stopping the while

loop only after a second intersection is detected.

In practice, the number of generators r can be very large (remember that the
zonogon we want to intersect comes from the reachable set Ωk computed by Algo-
rithm 4.1; Ωk has about kd generators). Further, each time a discrete transition
occurs, this procedure is called several times by Algorithm 8.1 (one call for each
direction of approximation). Thus, we need it to be as fast as possible. Hence,
instead of scanning all the vertices of Z, we look directly for the two edges that
intersect the line Lγ with a dichotomic search.

8.2.2.2 Dichotomic Search of the Intersecting Edges.

We start again from the vertex of Z with the highest y-coordinate. At each step
of the algorithm, P is a vertex of the zonogon representing the current position
and G is a set of generators such that the segment [P ; P +

∑
g∈G 2g] intersects the

line Lγ. We choose a pivot vector s and split the generators in G into two sets,
G1 and G2, of generators respectively above and below s. Then, it is clear that Lγ

intersects either [P ; P +
∑

g∈G1
2g] or [P +

∑
g∈G1

2g; P +
∑

g∈G 2g]. We continue
either with P and G1 or P +

∑
g∈G1

2g and G2. Algorithm 8.3 implements this
approach. Figures 8.3 and 8.4 illustrate the execution of the algorithm.

With a good pivot selection algorithm [BFP+73], the dichotomic search has a
linear complexity. For our problem, we choose the sum of the remaining gener-
ators as the pivot. Even though this leads to a quadratic theoretical worst case
complexity, it improves the practical behavior. Indeed, the sum of the remain-
ing generators is already available and it has a nice geometric interpretation, as
illustrated in Figure 8.4.

At each step, P and P +
∑

g∈G 2g are both the closest computed vertex to the
line {(x, y) : x = γ}, each on a different side of this line, thus defining the best
computed under-approximation of ρZ∩Lγ

((0, 1)⊤) at this step. A pivot s defines
a vertex Q = P +

∑
g∈G1

2g between P and P +
∑

g∈G 2g. The line of direction
s going through Q is tangent to Z and its intersection with Lγ defines an over-
approximation of ρZ∩Lγ

((0, 1)⊤). Choosing s =
∑

g∈G g as the pivot ensures that
the distance between the over-approximation and the under-approximation of the
value we are looking for is not correlated with γ, the position of the intersecting
line.

Remark. Algorithms 8.2 and 8.3 require that the intersection between Z and Lγ

is not empty. If one does not use an exact arithmetic it is possible that, even
though the algorithm for the support function of Z returns two values indicating
that −ρZ(−n) < γ < ρZ(n), both algorithms fail to find an intersection. In that
case one has to decide whether the intersection should be considered empty, or if
ρZ∩Lγ

((0, 1)⊤) should be deduced from a support vector of Z in direction n or −n.

101

Chapter 8. Intersection with a Hyperplanar Guard

Algorithm 8.3 BOUND INTERSECT 2D

Input: A zonogon Z = 〈c|g1, . . . , gr〉 and a line Lγ = {(x, y) : x = γ} such that
Z ∩ Lγ 6= ∅.

Output: ρZ∩Lγ
((0, 1)⊤).

1: P ← c ⊲ current position P = (xP , yP)
2: for i from 1 to r do
3: if ygi

> 0 or (ygi
= 0 and xgi

> 0) then ⊲ gi = (xgi
, ygi

)
4: gi ← −gi ⊲ Ensure all generators are pointing downward
5: end if
6: P ← P − gi ⊲ Drives P toward the highest vertex of Z
7: end for
8: if xp < γ then
9: G← {g1, . . . , gr} ∩ (R+ × R) ⊲ We should look right

10: else
11: G← {g1, . . . , gr} ∩ (R− × R) ⊲ or left
12: end if
13: s←∑

g∈G 2g
14: while |G| > 1 do
15: (G1, G2)← SPLIT PIVOT(G, s)
16: s1 ←

∑
g∈G1

2g
17: if [P ; P + s1] intersects Lγ then
18: G← G1

19: s← s1

20: else
21: G← G2

22: s← s− s1

23: P ← P + s1

24: end if
25: end while ⊲ Only one generator remains
26: (x, y)← [P ; P + s] ∩ Lγ

27: return y

102

8.2. Zonotope/Hyperplane Intersection

P

Lγ

(a) After line 7.

P

Lγ

(b) After line 12.

P Lγ

(c) After one iteration of the while loop.

P Lγ

(d) After two iterations of the while loop.

Figure 8.3: Dichotomic search of the intersecting edges. Line indications are given
with respect to Algorithm 8.3. The light grey set is the zonogon generated by G.

103

Chapter 8. Intersection with a Hyperplanar Guard

P

P + s

P + s1

s

s1

Lγ

Figure 8.4: A good choice for the pivot allows a smart enclosure of the intersection
point.

8.2.3 Intersection of the Reachable Set and a Line

Now that we know how to intersect a zonogon with a line, we can approximate the
intersection of a zonotope with a hyperplane, using Algorithm 8.1. Approximating

all the Ωimin
∩ G, . . ., Ωimax

∩ G allows us to improve the approximation Yℵ
G of

CH
(⋃imax

i=imin
(ℵi ∩ G)

)
.

If the intersections Ωi ∩ G are computed independently, we do not exploit the
fact that the reachable sets Ωi have a special structure. They actually share a lot of
generators. Indeed, with the notations of Algorithm 4.1, the zonotopes intersecting
the guards are:

Ωimin
= Aimin

⊕ Simin

Ωimin+1 = Aimin+1 ⊕ Vimin
⊕ Simin

...

Ωimax
= Aimax

⊕ Vimax−1 ⊕ . . .⊕ Vimin
⊕ Simin

They all share the generators in Simin
. Actually each zonotope Ωi shares all its

generators but the ones in Ai with the zonotopes of greater index. Consequently,
when approximating the intersection Ωi ∩ G, it is possible to reuse most of the
computations already done for smaller indices. Not only the projections of most
of the generators of Ωi have already been computed, but they are also partially
sorted.

Moreover, at each step of Algorithm 8.3, one can easily compute an under-
approximation, ρ

ℓ,i
, and an over-approximation, ρℓ,i, of ρΩi∩G(ℓ) as explained at

104

8.2. Zonotope/Hyperplane Intersection

the end of the previous subsection and on Figure 8.4. It is then possible to modify
Algorithm 8.3 in order to compute all the intersection concurrently. Since we are
not interested in each individual intersection, but rather in their union, we can
add a variable ρ

ℓ
containing the maximum of all ρ

ℓ,i
, and at each step:

• Determine the index j such that for all i in the same concurrent computation,
ρℓ,i is smaller than ρℓ,j.

• Choose the pivot according to Ωj.

• Update all ρ
ℓ,i

and ρℓ,i.

• Update ρ
ℓ
.

• Drop the computation for all i such that ρℓ,i is smaller than ρ
ℓ
. Indeed, there

can be no support vector of YΩ
G in direction ℓ in the set Ωi ∩ G.

• Start two new concurrent computation base on the branching on line 17 in
Algorithm 8.3.

The resulting algorithm might not be efficient for a small number of generators,
because one has to maintain several concurrent computations, and each time an
index i is dropped its shared generators must be moved to the right index. That
is why, instead of stopping when |G| = 1, one should stop when |G| reaches some
value, and switch to Algorithm 8.2.

8.2.4 From Polytope to Zonotope

In the previous sections we described efficient methods to sample the support func-
tion of YΩ

G in several directions, when the Ωi are obtained thanks to Algorithm 4.1
using zonotopes. In other word, we computed a polytope P represented by its

faces that tightly over-approximate YΩ
G . Then P ∩Yℵ

G will be used as an initial set
of points in a new location.

In Algorithm 8.1, we have the choice of the normal vectors to the facets of
the approximating polytope P . It might be interesting to choose these direction

of approximation according to the shape of Yℵ
G . But a stronger constraint is the

production of a zonotope. Indeed, in order to continue the reachability analysis of

the original hybrid system, we need to express P∩Yℵ
G as a zonotope. Unfortunately

this set might not be a zonotope or even a polytope. Moreover, even if it was
a polytope, to the best of the author’s knowledge, there is no known efficient
algorithm for the approximation of a general polytope by a zonotope (except in
small dimension [GNZ03]).

We can choose the directions of approximation such that the resulting polytope
can be easily approximated by a zonotope. Even better, we can choose these vec-
tors such that the approximating polytope is a zonotope. Indeed, some polytopes
are easily expressed as zonotopes; this is the case for the class of parallelotopes

105

Chapter 8. Intersection with a Hyperplanar Guard

and particularly for hyper-rectangles. Hence, we choose the normal vectors to the
facets such that the over-approximation P of the intersection YΩ

G of the reachable
set with the the guard is a hyper-rectangle.

Then P can be used directly as an over-approximation of P ∩ Yℵ
G , or one can

over-approximate this set by a hyper-rectangle by sampling the support function

of Yℵ
G in the directions given by the normals to the facets of P .

Expressing the initial set in the next location as a zonotope is not our only
constraint, we also want the approximation to be not too coarse. Thus we should

not choose any set of directions generating a hyper-rectangle. Yℵ
G might help.

If not, one can first generate at random (in a way similar to [Mul59]) a set of
directions, and only keep the direction ℓ0 that induces the thinner approximation.
Then, we randomly generate a set of directions orthogonal to the directions already
chosen, and again we only keep the one for which ρYΩ

G
(ℓ) + ρYΩ

G
(−ℓ) is minimal,

until we get a hyper-rectangle after d− 2 steps.

But even carefully chosen, a hyper-rectangular over-approximation might be
too coarse. One way to improve it is to consider a partition of its generators into
pairs. Without loss of generality, and in order to simplify the notations, we will
consider that P is a box: [x1; x1]× . . .× [xd−1; xd−1]× [γ; γ].

Grouping the axis by pairs we can express P as P1,2×P3,4×. . .×Pd−2,d−1×[γ; γ]
if d is odd or P1,2 × P3,4 × . . . × Pd−1,d if d is even, where, for all odd i, Pi,i+1 is
[xi; xi]× [xi+1; xi+1]. Then, in each plane generated by axis i and i + 1 we choose
new directions of approximation in order to improve over Pi,i+1; intersecting the

resulting set with the projection of Yℵ
G on the plane generated by axis i and i + 1,

we get a set Qi,i+1. Since Qi,i+1 is two dimensional we can approximate it by a
zonotope Zi,i+1 efficiently [GNZ03].

Using the relation between Cartesian products and Minkowski sums already
exposed in Section 2.2.4, we can easily express the product of the Zi,i+1 as a
zonotope.

This improvement can be significant but is not the prefect cure against the
curse of dimensionality (see Section 3.4.3). As an example, the Hausdorff distance
between the unit sphere and the unit cube is

√
d − 1. Using this technique we

can not get a distance smaller than
√
⌈d/2⌉ − 1, the distance between the unit

sphere in dimension d and its over-approximation by a product of unit spheres
in dimension 2 (and a segment if d is odd). Moreover it does not allow to take
advantage of the combinatorial structure of zonotopes, because all the faces of the
resulting set have to be actually computed.

In the next section we try to address this problem.

8.2.5 Playing with the Generators

In the previous sections we showed how to tightly approximate the intersection
between a zonotope and a hyperplane. But as already stated in Section 3.4.2.2,
tightness is an interesting property but does not always guarantee a good approx-

106

8.3. Support Function/Hyperplane Intersection

imation. Moreover, tightness is relative to the sequence of Ωi, and the resulting
set is not tight with respect to the set of points reachable from the initial set in
the current location, which is itself already an over-approximation.

Performing an initial over-approximation might reduce the Hausdorff distance
while loosing tightness.

Proposition 8.3. Let G be a hyperplane, SG a subset of the hyperplane parallel to
G containing 0, and S a set. Then:

(SG ⊕ S) ∩ G = SG ⊕ (S ∩ G)

.

Proof. If G = {x : x · n = γ} then for all x in SG, x · n = 0 by definition of SG.
Then:

(SG ⊕ S) ∩ G = {x1 + x2 : x1 ∈ SG and x2 ∈ S and (x1 + x2) · n = γ}
= {x1 + x2 : x1 ∈ SG and x2 ∈ S and x2 · n = γ}

(SG ⊕ S) ∩ G = SG ⊕ (S ∩ G)

Thanks to this proposition we can approximate the intersection between a zono-
tope and a hyperplane without computing explicitly all the faces of the resulting
approximation. Only S ∩ G needs to be approximated.

Unfortunately, most of the time, the Ωi will not be expressible as a sum SG⊕S.
That is why it might be interesting to over-approximate the Ωi by zonotopes of
this form. This is where tightness is lost. Notice that the aim here is not to reduce
the number of generators but to have some generators (generating a not too small
zonotope) parallel to G. The approximation may have more generators than the
initial zonotope.

8.3 Support Function/Hyperplane Intersection

We now consider the approximation of YΩ
G when the Ωi are represented by Al-

gorithm 5.1. All we have is a function f that to a vector ℓ associates the tuple(
ρΩimin

(ℓ), . . . , ρΩimax
(ℓ)
)
:

f : ℓ 7→
(
ρΩimin

(ℓ), . . . , ρΩimax
(ℓ)
)

Similarly to the previous case we will first only consider the intersection of one
set S, represented by its support function, with a hyperplane. Again we will use
Proposition 8.2 to reduce the dimension to 2. Finally we will consider the sequence
of sets represented by f .

Here we want to express YΩ
G by its support function. Thus we will describe an

algorithm computing the value of the support function of YΩ
G in one direction ℓ.

YΩ
G will the be represented by this algorithm.

107

Chapter 8. Intersection with a Hyperplanar Guard

8.3.1 Intersection of a 2-Dimensional Convex Set and a
Line

As explained in Section 2.3.5, evaluating the support function of the intersection
between a set S and a hyperplane G, equal to {x : x · n = γ}, can be reduced to
the minimization of a unimodal function in one variable:

ρS∩G(ℓ) = inf
λ∈R

(ρS(ℓ− λn) + λγ)

Instead, we use Proposition 8.2 and apply Πn,ℓ to S, then we compute the
support function of the intersection between Πn,ℓS and the line Lγ in direction
(0, 1)⊤. In order to do so we will minimize the function h:

h :]0; π[→ R

θ 7→ ρΠn,ℓS
(vθ)−γ cos θ

sin θ

where:

vθ =

(
cos θ
sin θ

)
ρΠn,ℓS(vθ) = ρS

(
Π⊤

n,ℓvθ

)
= ρS (n cos θ + ℓ sin θ)

Figure 8.5 gives a geometric interpretation of h. To an angle θ in]0; π[we
associate a vector vθ = (cos θ sin θ)⊤ in R

2, the codomain of Πn,ℓ. Computing the
value of the support function of Πn,ℓS in direction vθ gives us a supporting line of
equation x cos θ + y sin θ = ρΠn,ℓS(vθ). The value of h(θ) is the y-coordinate of the
intersection between this line and Lγ.

θ
vθ

Lγ

h(θ)

0 ππ
6

π
3

π
2

2π
3

5π
6

θ

θ

Πn,ℓS

Figure 8.5: Definition of the function h.

In the following, we drop Πn,ℓ and consider a 2-dimensional set S for simplicity
of notation.

108

8.3. Support Function/Hyperplane Intersection

Lemma 8.1. Let S be a 2-dimensional set and θ0, θ1 be in]0; π[such that θ0 < θ1.
Let (x0, y0) and (x1, y1) be support vectors of S associated to directions vθ0

and vθ1

respectively, we denote by (x, y) the intersection between the two supporting lines.
Then:

x0 ≥ x ≥ x1

Proof. (see A.5.1 on page 134)

A geometric interpretation of this lemma is that by scanning the support vec-
tors of S for angles from 0 to π, we will walk along the boundary of S from right
to left. This will be useful to prove the next theorem.

Theorem 8.1. For any compact convex set S and any real γ, the function h
defined by:

h :]0; π[→ R

θ 7→
ρS

0

@

0

@

cos θ
sin θ

1

A

1

A−γ cos θ

sin θ

is monotonic or unimodal and:

inf
θ∈]0;π[

h(θ) = ρS∩Lγ

((
0
1

))

Proof. (see A.5.2 on page 135)

We will use this theorem to over-approximate ρS∩Lγ
. A first algorithm min-

imizes h using a dichotomic search and support vectors, a second one only uses
support function with a golden section search [Kie53].

8.3.1.1 Dichotomic Search

Here we present a method very similar to Algorithm 8.3. In this algorithm, com-
puting the vertex with the highest y-coordinate is actually computing a support
vector of Z in direction (0, 1)⊤. Then choosing a vector v as a pivot leads to
computing a support vector of Z in a direction orthogonal to v.

Algorithm 8.4 is an adaptation of Algorithm 8.3 to sets represented by their
support function. We want to minimize h on]0; π[, keeping in mind its geometric
interpretation. We start with a range [θ0; θ1] = [0; π] and two support vectors P
and Q corresponding to the directions defined by angles θ1 and θ0 respectively.
Since S is convex, the intersection (γ, ymin) between the line (PQ) and Lγ is inside
S ∩ Lγ, thus ymin is an under-approximation of ρS∩Lγ

((0, 1)⊤ = infθ∈]0;π[h(θ).
At each step we choose an angle θ in]θ0; θ1[, and compute h(θ) and a support

vector (xθ, yθ) of S in direction vθ = (cos θ, sin θ). If, as an example, xθ is smaller
than γ, then for all θ′ in]θ; θ1[, h(θ′) ≥ h(θ). Thus we update our range of angles
to [θ0; θ], and the point P is replaced by (xθ, yθ). The new line (PQ) defines a
new lower bound ymin for the minimum of h over]0; π[. In order to find the exact

109

Chapter 8. Intersection with a Hyperplanar Guard

Algorithm 8.4 BOUND INTERSECT 2D

Input: The support function ρS of a set S, a function νS returning a support
vector of S in the direction defined by the given angle, and a line Lγ = {(x, y) :
x = γ} such that S ∩ Lγ 6= ∅.

Output: ρS∩Lγ
((0, 1)⊤).

1: θ0 ← 0, θ1 ← π
2: Q← νS(0), P ← νS(π)
3: ymin ← −∞, ymax ←∞
4: while ymax − ymin > 0 do ⊲ or ymax − ymin > ǫ
5: θ ← CHOOSE θ(θ0, θ1, Q, P)
6: (xθ, yθ)← νS(θ) ⊲ one support vector in direction vθ

7: if xθ < γ then ⊲ We should look right
8: P ← (xθ, yθ)
9: θ1 ← θ

10: else ⊲ or left
11: Q← (xθ, yθ)
12: θ0 ← θ
13: end if
14: (γ, ymin)← (PQ) ∩ Lγ

15: ymax ← min(h(θ), ymax)
16: end while
17: return ymax

value of this minimum, we should stop when xθ = γ. Since this is not guaranteed
to happen in finite time, we instead stop when the difference between the upper
bound ymax = h(θ) and the lower bound ymin is smaller than some ǫ.

There are several ways to choose an angle θ. Taking (θ0 + θ1)/2, the middle
of the current range of angles, guarantees that at each step the width of [θ0; θ1] is
reduced by a factor 2. An other interesting choice is the angle defined by the normal
to the line (PQ). In fact, this is similar to choosing s as a pivot in Algorithm 8.3,
making it an interesting choice for the same reasons. Moreover, this choice of θ
guarantees that the exact value infθ∈]0;π[h(θ) is eventually found if S is a polygon,
or more generally if the intersection occurs on an edge delimited by two points of
S that are corresponding to support vectors in several directions.

Figure 8.6 illustrates the execution of Algorithm 8.4. At first we choose θ
equal to π/2, then we take the angle defined by the normal to the line (PQ),
thus mimicking the behavior of Algorithm 8.3. The light grey area on the right
corresponds to [θ0; θ1] × [ymin; ymax], the current search space for (θmin, h(θmin)),
where θmin is the angle that minimizes h. After three iterations this area is smaller
than [0.87; 1.06] × [2.20; 2.31], and we know that by bounding infθ∈]0;π[h(θ), in
other words ρS∩Lγ

((0, 1)⊤), by 2.31 we are doing an over-approximation smaller
than 0.11. In order to evaluate this error in terms of percentage of the size of
S ∩ Lγ, we can apply the same method to the evaluation of ρS∩Lγ

((0,−1)⊤).

110

8.3. Support Function/Hyperplane Intersection

θvθ

Lγ

P

Q

ymin

ymax

h(θ)

0 ππ
6

π
3

π
2

2π
3

5π
6

θ

S

Lγ

P

Q

h(θ)

0 ππ
6

π
3

π
2

2π
3

5π
6

θ

S

Lγ

P

Q

h(θ)

0 ππ
6

π
3

π
2

2π
3

5π
6

θ

S

Figure 8.6: Algorithm 8.4: after 1, 2, and 3 iterations of the while loop.

111

Chapter 8. Intersection with a Hyperplanar Guard

8.3.1.2 Golden Section Search

Theorem 8.1 allows us to reduce the problem of evaluating ρS∩Lγ
((0, 1)⊤) to the

minimization of a unimodal function h. In the previous section, the search for this
minimum was guided by support vectors. But support vectors are not always easy
to get. Using the method presented in Section 5.1.3, computing support vectors
together with values of support functions costs twice as much as just computing the
values of the considered support functions. Moreover, since reachability analysis
of linear systems can be done with support functions only, it would be interesting
to extend this work to hybrid systems without requiring support vectors.

Algorithm 8.5 Golden Section Search

Input: A unimodal function h.
Output: An upper-bound of infθ∈]0;π[h(θ).

1: φ← 1+
√

5
2

⊲ The golden ratio.
2: θ1 ← 0, θ4 ← π
3: θ3 ← π/φ
4: θ2 ← θ4 − θ3 + θ1 ⊲ Ensure that θ4 − θ2 = θ3 − θ1.
5: h2 ← h(θ2), h3 ← h(θ3)
6: while θ3 − θ2 > ǫ do
7: if h2 < h3 then
8: θ4 ← θ3, θ3 ← θ2, h3 ← h2

9: θ2 ← θ4 − θ3 + θ1 ⊲ Ensure that θ4 − θ2 = θ3 − θ1.
10: h2 ← h(θ2)
11: else
12: θ1 ← θ2, θ2 ← θ3, h2 ← h3

13: θ3 ← θ4 − θ2 + θ1 ⊲ Ensure that θ4 − θ2 = θ3 − θ1.
14: h3 ← h(θ3)
15: end if
16: end while
17: return min(h2, h3)

Since h is unimodal we can use a golden section search [Kie53] to find its
minimum, and it will not involve computation of support vectors. The golden
section search, implemented in Algorithm 8.5, works by successively narrowing the
range of values inside which the minimum is known to exist. At each step, the
value of h is known at four points θ1 < θ2 < θ3 < θ4, the minimum is known to
lie between θ1 and θ4. If h(θ2) < h(θ3) then, there is at least one point θ between
θ3 and θ3 where h is increasing, and since h is unimodal, h is increasing between
θ and θ4: the minimum can not be reached in [θ3; θ4]. The new range of values is
taken to be [θ1; θ3]. Conversely, if h(θ2) > h(θ3), we continue with θ2 < θ3 < θ4.

In order to continue the algorithm we must choose a second point θ in [θ1; θ3]
and evaluate h(θ). This choice involves the golden ratio, φ = (

√
5 + 1)/2, and

guarantees that the width of the search interval is divided by a factor φ at each

112

8.3. Support Function/Hyperplane Intersection

step. The algorithm stops when the width of the search interval becomes small
enough.

Occasionally, we might have h(θ2) = h(θ3). Then going back to the geometric
interpretation of h, it means that the supporting lines indirection θ2 and θ3 intersect
at the point (γ, h(θ2)). We can then deduce from Lemma 8.1 that the minimum
of h is reached between θ2 and θ3.

This stopping criterion is not really satisfying, because we do not know if we are
making a big over-approximation or not. In the previous section, the knowledge of
some support vectors gives us an under-approximation of ρS∩Lγ

((0, 1)⊤). Here we
do not have support vectors, but we still know they exists. Figure 8.7 illustrates
how we can use this knowledge to deduce an under-approximation of ρS∩Lγ

((0, 1)⊤).

n

Lγ

A

B

C
D

E

S

Figure 8.7: Deducing, from an over-approximation of S, a lower bound for the
maximum y-coordinate in the intersection between S and Lγ.

In this figure, the support function of S has been evaluated in 5 directions,
leading to an unbounded polyhedral over-approximation with four vertices A, B,
D, and E. We know that there is at least one point of S in each of the edges [AB],
[BD], and [DE], we will denote them respectively P[AB], P[BD], and P[DE]. We
also denote by C the intersection point between [BD] and Lγ. If P[BD] is on the
left of C, then the segment from P[BD] to P[DE] intersects Lγ. Since S is convex
and [P[BD]P[DE]] is above [BE] then the intersection between [BE] and Lγ defines
an under-approximation of ρS∩Lγ

((0, 1)⊤). If on the contrary P[BD] is on the right
of C, then, similarly, its the intersection between [AD] and Lγ that defines an
under-approximation of ρS∩Lγ

((0, 1)⊤). Since we do not know where P[BD] is, we
take the most conservative under-approximation.

We can now use this under-approximation to change the stopping criterion in
Algorithm 8.5. Figure8.8 illustrates the execution of this algorithm. The light
grey area on the right corresponds to [θ1; θ4] × [ymin; ymax], the current search
space for (θmin, h(θmin)), where θmin is the angle that minimizes h. At first, the

113

Chapter 8. Intersection with a Hyperplanar Guard

over-approximation of S induced by the computed supporting lines has only one
unbounded edge on the right of Lγ. Thus, using the notations of Figure 8.7, we can
not define the point E, and the point P[DE] can be anywhere on this unbounded
half line. As a consequence we can not find a lower bound for the minimum of
h. Fortunately, such a minimum can be defined, and improved, in the following
iterations. This is not always the case, and we still have sometimes to rely on a
bound on θ3 − θ2 if no lower bound for h can be found.

Remark. If getting a support vector together with the value of the support func-
tion in one direction costs twice as much as just evaluating the support function.
Then Algorithm 8.5 converges faster than Algorithm 8.4 with a mid point strategy.
Indeed, in the former the width of the search interval is reduced by a factor φ2 every
two iterations, while in the latter it is reduced by a factor 2 < φ2 every iteration.

8.3.2 Intersection of the Reachable Set and a Line

We now have two algorithms for the approximation of the support function of
the intersection between a set S and a hyperplane G. The first one makes use
of support vector and the second one proves useful when they are not readily
available. Similarly to Section 8.2.3 we want to adapt these algorithms to the
intersection between the reachable set and a hyperplane. We could compute the
value of the support function of the intersection between each individual set and
G, but we want to take advantage of the redundancies of the system.

We have a sequence of sets Ωimin
, . . ., Ωimax

, each of them has a non-empty
intersection with G. This sequence is represented by a function f :

f : ℓ 7→
(
ρΩimin

(ℓ), . . . , ρΩimax
(ℓ)
)

We want to over-approximate the support function of the set
⋃imax

i=imin
(Ωi ∩ G),

denoted as YΩ
G :

ρYΩ

G
(ℓ) =

imax

max
i=imin

ρΩi∩G(ℓ)

We will apply previous algorithms concurently.

Adaptation of Algorithm 8.4 For each index i in [imin; imax] we have a range
of angles [θi

0; θ
i
1] and a range of values [yi

min; y
i
max]. We define ymin and ymax to be

the maximum of all yi
min and yi

max respectively. Then at each step:

• Determine the index j such that yj
max = ymax.

• Choose an angle θ in [θj
0; θ

j
1] according to Ωj.

• Compute support vectors in the direction defined by θ.

• Update all the [θi
0; θ

i
1] and [yi

min; y
i
max].

114

8.3. Support Function/Hyperplane Intersection

Lγ

ymax

h(θ)

0 ππ
6

π
3

π
2

2π
3

5π
6

θ

S

Lγ

ymax

ymin

h(θ)

0 ππ
6

π
3

π
2

2π
3

5π
6

θ

S

Lγ

h(θ)

0 ππ
6

π
3

π
2

2π
3

5π
6

θ

S

Figure 8.8: Algorithm 8.5: after the 1st, 2nd, and 4th execution of line 8 or 12.

115

Chapter 8. Intersection with a Hyperplanar Guard

• Drop the computation for all i such that yi
max is smaller than ymin. Indeed,

there can be no support vector of YΩ
G in direction ℓ in the set Ωi ∩ G.

We stop when ymax − ymin becomes smaller than some ǫ. As seen in Section 5.1.3
computing several support vectors can be very expensive compared to evaluating
the support functions of the Ωi. That is why the golden section search is preferable
when evaluating ρYΩ

G
.

Adaptation of Algorithm 8.5 For each index i, instead of having four angles
θ1, θ2, θ3, and θ4, we only use three angles θi

1, θi, and θi
4. Similarly to the adaptation

of Algorithm 8.4, we choose a new angle θ according to the Ωi defining the biggest
ymax. Since this angle is not always chosen according to the same index i, the
golden ratio might be lost. Thus, instead of taking θ equal to θi

4 − θi + θi
1 we

choose θ1 + (θi − θi
1)/φ if θi is bigger than the mean of θ1 and θ4, if not, we take

θ4 + (θi − θi
4)/φ.

8.3.3 Simplifying the Resulting Support Function

Contrary to the zonotope case, we do not need further transformations. Indeed,
using Proposition 8.2 together with Algorithm 8.4 or 8.5, we can get a function
ρX0,q′

, approximating the support function of the initial set in the next location q′,

such that for all ℓ we have:

ρYΩ

G
(ℓ) ≤ ρX0,q′

(ℓ) ≤ ρYΩ

G
(ℓ) + ǫ

There are several problems with this function. First, it might not be convex – at
the next guard intersection Algorithm 8.4 or 8.5 may fail if h is not unimodal. It

is even worse if we want to take advantage of Yℵ
G , and use the following function

to represent X0,q′ :

ℓ 7→ min
(
ρX0,q′

(ℓ), ρYℵ
G

(ℓ),
)

Secondly, evaluating ρX0,q′
in one direction ℓ requires several calls to Algo-

rithm 5.1 in order to get the sequence of ρΩi
(ℓ′) for some directions ℓ′. This, in

turn, requires several calls to ρX0,q
, the support function of the initial set in the

previous location. If ρX0,q
has been defined using the same process, it will re-

quire even more calls to Algorithm 5.1. All this for evaluating ρX0,q′
in only one

direction. Thus, evaluating ρX0,q′
can become prohibitively expensive after a few

discrete locations have been visited.
In order to avoid this combinatorial explosion, and the non-convexity of ρX0,q′

,

we will instead sample ρX0,q′
in order to get a polyhedral over-approximation of

YΩ
G . The initial set in the next discrete location is taken to be:

X0,q′ = ✷L1

(
YΩ

G
)
∩✷L2

(
Yℵ

G

)

We can then represent this polytope by its support function.

116

8.4. Applications

ON OFF

T (0.5, t) > 0.2

T (0.5, t) < 0.15

Figure 8.9: Hybrid model of a thermostat.

Remark. In order to reduce the complexity of the evaluation of ρX0,q′
, and thus

the complexity of the overall reachability computation, it might be interesting to
approximate X0,q′ by a box or a zonotope.

In order to reduce the resulting over-approximation for the reachable set, X0,q′

can be represented by several support functions of increasing precision and complex-
ity of evaluation. If the interval hull of X0,q′ is sufficient to prove that some guard
is not reached, there is no need to evaluate its support function more precisely.

8.4 Applications

In this section we show the effectiveness of our approaches on some examples. The
first one is treated using zonotopes, while in the second one we represent sets by
their support function.

8.4.1 Thermostat

As a first example, we consider a high dimensional hybrid system with two discrete
states. A heat source can be switched on or off at one end of a metal rod of
length 1, the switching is driven by a sensor placed at the middle of the rod. The
temperature at each point x of the rod, T (x, t) is driven by the Heat equation:

∂T

∂t
= k

∂2T

∂x2
.

When the heat source is ON, we have T (0, t) = 1, and when it is OFF, T (0, t) = 0.
We approximate this partial differential equation by a linear ordinary differential
equation using a finite difference scheme on a grid of size 1

90
.

The resulting hybrid system has 89 continuous variables and 2 discrete states
(see Figure 8.9). We computed the reachable sets of this system for 1000 times step,
during which 10 discrete transitions occured, in 71.6s using 406MB of memory.
Figure 8.10 shows the reachable sets at three different time, each after a discrete
transition.

117

Chapter 8. Intersection with a Hyperplanar Guard

Figure 8.10: Reachable set at three different times. The x-axis represents the
position in the metal rod, and the y-axis the temperature. The dot on the middle
of the x-axis specify the position of the sensor, and the two horizontal line the
switching temperatures. The heat source is on the left.

8.4.2 Navigation Benchmark

We now consider the navigation benchmark for hybrid systems verification pro-
posed in [FI04]. It models an object moving in a plane, whose position and ve-
locities are denoted x(t) and v(t). The plane is partitioned into cubes, each cube
corresponds to one location of the hybrid system. At time t, a location q is active
if x(t) is in the associated cube; there, the object follows dynamically a desired ve-
locity vq ∈ R

2. We use the instances NAV01 and NAV04 from [Fre08]. We render
the problem slightly more challenging by including an additional continuous input
u(t) modelling disturbances. In the location q, the four-dimensional continuous
dynamics is given by

ẋ(t) = v(t), v̇(t) = A(v(t)− vq − u(t)), ‖u(t)‖2 ≤ 0.1 where A =
(−1.2 0.1

0.1 −1.2

)
.

In Figure 8.11, we represented the projection of the reachable sets on the posi-
tion variables as well as the partition of the plane and, in each cube of the partition
the set of velocities vq ⊕ 0.1B in the associated location.

One can check on Figure 8.11b that the intersection of the over-approximation
ℵi of the reachable sets in one location with the guards does not coincide with the

over-approximation Yℵ
G of the intersection of the reachable set in one location with

the guards. The latter is more accurate because of the use of the exact Ωi for the
intersection.

On Figures 8.11c and 8.11d the support function of this intersection is sampled
in 6 directions defining its interval hull. We need to add 12 directions of approx-
imation to get an octagon, used in Figures 8.11a and 8.11b. The benefit of using
more directions of approximation can be clearly seen for NAV04. But the support
function of an interval hull can be computed very efficiently using ρB∞ as defined
in Proposition 2.2. While the support function of an octagon is here computed
with a LP solver. This explains the execution times in Table 8.1.

Table 8.1 also contains time and memory used by the optimized tool PHAVer
on a similar computer as reported in [Fre08]. One should be careful when com-
paring this results. On one hand the navigation problem we consider here is more

118

8.4. Applications

NAV01 NAV04
time (s) memory (MB) time (s) memory (MB)

octagon 10.28 0.24 54.77 0.47
cube 0.11 0.24 0.88 0.47
PHAVer 8.7 29.0 13.6 47.6

Table 8.1: Time and memory needed for reachability analysis of NAV01 and
NAV04.

challenging than the original one since we add disturbances on the input. These
disturbances add, in several locations, chattering effects that cannot occur without
them, and produces bigger exact reachable sets. On the other hand PHAVer uses
exact arithmetic.

119

Chapter 8. Intersection with a Hyperplanar Guard

(a) NAV01 – octagon (b) NAV04 – octagon

(c) NAV01 – cube (d) NAV04 – cube

Figure 8.11: Two navigation benchmarks with perturbations. In a and b the
intersections with the guards are over-approximated by octagons, whereas in c
and d they are over-approximated by their interval hulls. Dark grey: initial set.
Grey: reachable sets. Light grey: Target State. Black: Forbidden State.

120

Chapter 9
Conclusion and Future work

In this thesis we made several contributions to reachability analysis of hybrid
automata with linear time-invariant flow, convex invariants, hyperplanar guards
and affine reset maps.

The simplest and most powerful contributions of this thesis is the decomposition
of the following set valued recurrence relation:

Ωi+1 = ΦΩi ⊕ V (9.1)

into three:

A0 = Ω0 Ai+1 = ΦAi

V0 = V V i+1 = ΦV i

S0 = {0} Si+1 = Si ⊕ V i

Ωi can then be expressed as the Minkowski sum of Ai and Si.
Thanks to the disentanglement of linear transformation and Minkowski sum

we were able to devise two efficient algorithms computing the N first sets of the
sequence defined by equation (9.1), one using zonotopes, and one using support
functions, as well as a whole family of approximation algorithms that are not sub-
ject to the wrapping effect. The main interest of these approximation algorithms
is the ease of use of their output which consists of a list of sets in the chosen
representation.

In the second part of this thesis, we extended this work to the case of hybrid
automata. We showed how to use the invariant in order to improve the approxi-
mation of the reachable set in the continuous part. But the main contribution of
Part II is the use of the exact sequence of Ωi, expressed as high order zonotopes
with a lot of common generators, or as a support function, to compute an approx-
imation of the intersection between the reachable set in the continuous part, and
hyperplanar guards. Not only does it improve substantially the approximation of
this set, it also proves that the exact Ωi are useful in spite of their cumbersome
representation.

121

Chapter 9. Conclusion and Future work

Most of the algorithms described in this thesis have been implemented in a
prototype tool in OCaml. In the purely continuous case it outperforms all other
tools in term of execution speed and quality of approximation. In the hybrid case
it shows promising results and can compete with PHAVer, a highly optimized tool,
on some non-trivial examples.

Naturally, a lot remains to be done and there are numerous opportunities for
future work.

Periodic Linear Systems Our algorithms only work for linear time-invariant
systems. A first extension would be to adapt them to periodic systems
ẋ(t) = A(t)x(t) + u(t) where either A, or the set of admissible input U , or
both, are periodic.

Time-Varying Linear Systems Our algorithms can not be modified to com-
pute all the Ωi for time-varying systems, but it might be possible to modify
them in order to compute only one Ωk for some k. Combining this with a
standard algorithm for time-varying systems it could reduce the wrapping
effect for some indexes k. Another way to reduce the wrapping effect is to
adapt our discretization procedure to the time-varying case. By reducing the
number of time steps required to achieve a certain precision it will indirectly
reduce the wrapping effect.

Parameterized Linear Systems In this thesis we assumed that all matrices
were known exactly, but it is not always the case and it would be particularly
interesting to use our algorithms in the context of parameterized systems
where the matrix A is only known to belong to a small subset of Md(R).

Ellipsoids As discussed in Section 3.4.2.2, tight ellipsoidal enclosures of the Ωi

tend to become flat, and releasing tightness may improve the approximation
in terms of Hausdorff distance. It would be interesting to analyze this phe-
nomenon and maybe derive a new approximation for the Minkowski sum of
two ellipsoids that is almost tight in one direction without resulting into flat
over-approximations.

Zonotopes This compact representation appears in numerous fields, and as al-
ready discussed in Section 3.4.2.4. To the best of the author knowledge,
there are no satisfying order-reduction algorithms. Improving the existing
one would already be interesting.

Hybrid Systems A first step towards improvement in term of speed of the anal-
ysis would be to investigate a set representation by support functions with
increasing complexity and precision as suggested in Section 8.3.3. More-
over, among the aspects of hybrid systems that have not been addressed in
this thesis, Zeno executions, chattering, and sliding modes are of particular
interest; they are poorly handled by our algorithms.

122

Non-Linear Systems In order to analyze more complex systems one can ap-
proximate the continuous flow by a hybrid system with simpler continu-
ous dynamics. This technique is called hybridization [ADG07]. Variants of
this technique, using hysteretic transitions or dynamic hybridization, show
promising results [DLGM09]. This kind of dynamic abstraction is particu-
larly suited to multi-affine system [KB06, MB08], because here the value of
the flow inside a box is equal to the convex hull of the values of the flow at
the vertices of this box. It would be interesting to characterize and extend
this work to a multivariate function whose value inside a box is equal to the
interval hull of its values at the vertices of this box.

Tool Last but not least, some efforts should be made to bring our tool from the
prototype stage to a more usable stage.

123

Chapter 9. Conclusion and Future work

124

Appendix A
Proofs

A.1 Proofs of Chapter 2

A.1.1 Proof of Proposition 2.2

Proposition. For any k > 1, the unit ball for the k-norm in dimension d is:

Bd
k =

x ∈ R

d : ‖x‖k =

(
d−1∑

i=0

|xi|k
)1/k

≤ 1

its support function is given by:

ρBd
k
(ℓ) = ‖ℓ‖ k

k−1

For ℓ 6= 0, the associated support vector is given by:

νBd
k
(ℓ) =

v

‖v‖k
where v is such that viℓi = |ℓi|

k
k−1 for all i.

Proof. If we pose p = k and q = k
k−1

, then p and q are Hölder conjugates. Then
using Hölder’s inequality we know that for any x:

x · ℓ ≤ ‖x‖p‖ℓ‖q (A.1)

And thus for any x in Bd
k we have x · ℓ ≤ ‖ℓ‖q and:

ρBd
k
(ℓ) ≤ ‖ℓ‖ k

k−1

Let us now take v such that vi = 0 if ℓi = 0 or |ℓi|q
ℓi

otherwise. If ℓ is different

from 0, so is v, and v/‖v‖p belongs to Bd
k.

v

‖v‖p
· ℓ =

∑d−1
i=0 |ℓi|q(∑d−1

i=0 |ℓi|p(q−1)
)1/p

125

Appendix A. Proofs

Since p and q are Hölder conjugates, we have p(q − 1) = q, and:

v

‖v‖p
· ℓ =

(
d−1∑

i=0

|ℓi|q
)1− 1

p

= ‖ℓ‖q
which ends the proof of the proposition.

A.2 Proofs of Chapter 4

A.2.1 Proof of Proposition 4.4

Proposition. The Hausdorff distance between R[iδ;(i+1)δ] and its convex hull can
be proportional to δ.

Proof. Take:

A =

[
0 −1
1 0

]
and U =

{(
0
0

)}

It is easy to show that starting from
{
(x, 0)⊤ : −1 ≤ x ≤ 1

}
the set of points

reachable at time t is:

Rt =

{(
x cos t
x sin t

)
: −1 ≤ x ≤ 1

}

Since CH
(
R[0;δ]

)
is convex and contains X0 and Rδ, it also contains:

z =
1

2

(
−1
0

)
+ (1− 1

2
)

(
cos δ
sin δ

)

as illustrated on Figure A.1.

Figure A.1: R[0;δ] and its convex hull.

Thus the Hausdorff distance between R[0;δ] and its convex hull is at least:

inf

{∥∥∥∥
(

x cos t
x sin t

)
− 1

2

(
cos δ − 1

sin δ

)∥∥∥∥ : −1 ≤ x ≤ 1 and 0 ≤ t ≤ δ

}

And since
x cos t− 1

2
(cos δ − 1) = x + o (δ)

x sin t− 1
2
sin δ = xt− δ

2
+ o (δ)

we do not have: dH

(
CH

(
R[0;δ]

)
,R[0;δ]

)
= o (δ)

126

A.2. Proofs of Chapter 4

A.2.2 Proof of Lemma 4.1

Lemma. Let Ω ⊆ R
d, let Ω′ be the set defined by :

Ω′ = eδAΩ ⊕ δU ⊕ EU (4.3)

where EU = ✷

(
|A|−2

(
eδ|A| − I − δ|A|

)
⊡ (AU)

)

Then, Rδ(Ω) ⊆ Ω′ and, if ‖ · ‖ is the infinity norm:

dH (Ω′,Rδ (Ω)) ≤ 2REU ≤ 2
(
eδ‖A‖ − 1− δ‖A‖

) RU
‖A‖ (4.4)

Proof. Let us consider x(.) a trajectory of the system, then there exists an initial
state x0 ∈ X0 and an input u(.) such that for all t, u(t) ∈ U and

x(δ) = eδAx0 +

∫ δ

0

e(δ−s)Au(s)ds

Thus Rδ (X0) = eδAX0 ⊕ V with

V =

{∫ δ

0

e(δ−s)Au(s)ds : ∀s ∈ [0; δ] u(s) ∈ U
}

We want to over-approximate this set by a simpler one. eδAX0 is already simple
enough, we will focus on V .

In order to do so, we over-approximate the support function of V by the support
function of another set. For any v ∈ V there exist u(.) such that for any ℓ:

v · ℓ =

∫ δ

0

e(δ−s)Au(s)ds · ℓ

=
∞∑

i=0

∫ δ

0

(δ − s)i

i!
Aiu(s) · ℓds

≤
k−1∑

i=0

∫ δ

0

(δ − s)i

i!
sup
u∈U

(
Aiu · ℓ

)
ds +

∞∑

i=k

∫ δ

0

(δ − s)i

i!
Aiu(s) · ℓds

v · ℓ ≤
k−1∑

i=0

δi+1

(i + 1)!
ρAiU(ℓ) +

∞∑

i=k

∣∣∣∣
∫ δ

0

(δ − s)i

i!
Aku(s)ds · (Ai−k)⊤ℓ

∣∣∣∣

By taking ρAiU(ℓ) we lose the correlation between all the u, but it allows us to
apply a coarse over-approximation on a smaller set. For sake of simplicity we will
limit ourselves to k = 1.

v · ℓ ≤ δρU(ℓ) +
∞∑

i=1

∣∣∣∣
∫ δ

0

(δ − s)i

i!
Au(s)ds · (Ai−1)⊤ℓ

∣∣∣∣

127

Appendix A. Proofs

Before going further, let us remark a few properties of |.|. For any two vectors
x and y, it is easy to show that: |x · y| ≤ |x| · |y|. It is also clear that for any two
matrices A and B, |ABx| ≤ |A||B||x| component wise.

We now focus on:
∣∣∣
∫ δ

0
(δ−s)i

i!
Au(s)ds · (Ai−1)⊤ℓ

∣∣∣
∣∣∣∣
∫ δ

0

(δ − s)i

i!
Au(s)ds · (Ai−1)⊤ℓ

∣∣∣∣ ≤
∫ δ

0

(δ − s)i

i!
|Au(s)| ds · |A⊤|i−1|ℓ|

We now take umax
1 ∈ ⊡ (AU) such that for all u ∈ U : |Au| ≤ umax

1 component wise.

∣∣∣∣
∫ δ

0

(δ − s)i

i!
Au(s)ds · (Ai−1)⊤ℓ

∣∣∣∣ ≤
∫ δ

0

(δ − s)i

i!
umax

1 ds · |A⊤|i−1|ℓ|

≤ δi+1

(i + 1)!
umax

1 · |A⊤|i−1|ℓ|

≤ δi+1

(i + 1)!
|A|i−1umax

1 · |ℓ|

Going back to v · ℓ we get:

v · ℓ ≤ δρU(ℓ) +
∞∑

i=1

δi+1

(i + 1)!
|A|i−1umax

1 · |ℓ|

If we call e1 the point:

e1 =
∞∑

i=1

δi+1

(i + 1)!
|A|i−1umax

1

we have:
ρV(ℓ) ≤ δρU(ℓ) + |e1| · |ℓ|

Let EU = ⊡ ({e1}), it is easy to show that ρEU (ℓ) = |e1| · |ℓ|, and that EU is also

equal to ✷

(∑∞
i=1

δi+1

(i+1)!
|A|i−1

⊡ (AU)
)

For all ℓ, we have:
ρV(ℓ) ≤ δρU(ℓ) + ρEU (ℓ)

Thus,
V ⊂ δU ⊕ EU

which proves the first part of the lemma.
We now have to prove that

dH (Ω′,Rδ (Ω)) ≤ 2
(
eδ‖A‖ − 1− δ‖A‖

) RU
‖A‖

Since Rδ (Ω) ⊂ Ω′,

dH (Ω′,Rδ (Ω)) = sup
x∈Ω′

inf
y∈Rδ(Ω)

‖x− y‖

128

A.3. Proofs of Chapter 5

Let x ∈ Ω′ there exists x0 ∈ Ω, ux ∈ U and e ∈ EU , such that x = eδAx0+δux+e.
Starting from x0 and with u(s) = ux we get y ∈ Rδ (Ω), and:

‖x− y‖ =

∥∥∥∥δux + e−
∫ δ

0

e(δ−s)Auxds

∥∥∥∥ =

∥∥∥∥∥e−
∞∑

i=1

δi+1

(i + 1)!
Aiux

∥∥∥∥∥

≤ ‖e‖+

∥∥∥∥∥

∞∑

i=1

δi+1

(i + 1)!
Aiux

∥∥∥∥∥

≤ 2REU ≤ 2
eδ‖A‖ − 1− δ‖A‖

‖A‖ RU

which ends the proof of lemma 4.1.

A.3 Proofs of Chapter 5

A.3.1 Proof of Lemma 5.1

Lemma. Let λ ∈ [0; 1], and Ω0,λ be the convex set defined by :

Ω0,λ = (1− λ)X0⊕λeδAX0⊕λ(1− λ)EX0

⊕λδU ⊕λ2EU (5.3)

where

EX0
=✷

(
|A|−1

(
eδ|A| − I

)
⊡
(
A(I − eδA)X0

))

⊕✷

(
|A|−2

(
eδ|A| − I − δ|A|

)
⊡
(
A2eδAX0

))

and EU =✷

(
|A|−2

(
eδ|A| − I − δ|A|

)
⊡ (AU)

)

If we define Ω0 as:

Ω0 = CH

⋃

λ∈[0;1]

Ω0,λ

 (5.4)

then, R[0;δ](X0) ⊆ Ω0 and

dH

(
Ω0,R[0;δ](X0)

)
≤ 1

4

(
eδ‖A‖ − 1

)
DX0

+ 1
2
REX0

+ 2REU

≤ 1
4

(
eδ‖A‖ − 1

)
DX0

+ 2
(
eδ‖A‖ − 1

)2 (RX0

2
+ RU

‖A‖

) (5.5)

Proof. We already now that for any t:

Rt(X0) = etAX0 ⊕ V t

with V t = {
∫ t

0
e(t−s)Au(s)ds : ∀s ∈ [0; t] u(s) ∈ U}.

129

Appendix A. Proofs

We want to over-approximate Rt(X0) by a simpler set. A set that can be
expressed as a sum of sets constructed from X0, eδAX0 and U .

Let us first focus on etAX0. To prove the lemma, we need to introduce the
following sets for λ ∈ [0; 1]:

Pλ =
{
(1− λ)x + λeδAx : x ∈ X0

}
and Qλ = (1− λ)X0 ⊕ λeδAX0

Let us remark that Pλ ⊆ Qλ, which implies that

dH (Pλ,Qλ) = sup
z∈Qλ

inf
z′∈Pλ

‖z − z′‖.

Let z ∈ Qλ, then there exists x and y in X0 such that

z = (1− λ)x + λeδAy.

Since X0 is convex, (1 − λ)x + λy ∈ X0. Then, let us consider the point z′ ∈ Pλ

defined by
z′ = (1− λ)((1− λ)x + λy) + λeδA((1− λ)x + λy).

Then, we have
z − z′ = λ(1− λ)(eδA − I)(y − x).

We showed that for all z ∈ Qλ, there exists z′ ∈ Pλ such that

‖z − z′‖ ≤ 1

4
(eδ‖A‖ − 1)DX0

.

It follows that

dH (Pλ,Qλ) ≤
1

4
(eδ‖A‖ − 1)DX0

(A.2)

Let x0 ∈ X0 it is clear that etAx0 is equal to e(t−δ)AeδAX0. Taking a convex
combination of these two expressions we get:

etAx0 =

(
1− t

δ

)
etAx0 +

t

δ
e(t−δ)A(eδAx0)

=
∞∑

i=0

(
1− t

δ

)
ti

i!
Aix0 +

∞∑

i=0

t

δ

(t− δ)i

i!
AieδAx0

=

(
1− t

δ

)
x0 +

t

δ
eδAx0

+
t

δ

(
1− t

δ

)(∞∑

i=1

δti−1

i!
Aix0 −

∞∑

i=1

δ(t− δ)i−1

i!
AieδAx0

)

=

(
1− t

δ

)
x0 +

t

δ
eδAx0

+
t

δ

(
1− t

δ

) ∞∑

i=1

(
t

δ

)i−1
δi

i!
Ai(I − eδA)x0

+
t

δ

(
1− t

δ

) ∞∑

i=2

((
t

δ

)i−1

−
(

t

δ
− 1

)i−1
)

δi

i!
AieδAx0

130

A.3. Proofs of Chapter 5

Similarly to the proof of lemma 4.1, and using the fact that for any x ∈ [0; 1] and
any k > 0:

−1 ≤ xk − (x− 1)k ≤ 1

we have:

etAx0 −
((

1− t

δ

)
x0 +

t

δ
eδAx0

)
∈ t

δ

(
1− t

δ

)
EX0

Thus

etAX0 ⊂ P t
δ
⊕ t

δ

(
1− t

δ

)
EX0

(A.3)

and

dH

(
etAX0,P t

δ

)
≤

REX0

4
(A.4)

Applying the same method to V t we get:

V t ⊂
t

δ
δU ⊕ t2

δ2
EU (A.5)

and

dH

(
V t,

t

δ
δU
)
≤ REU (A.6)

Using equations (A.3) and (A.5) we can deduce that:

Rt(X0) ⊂ Ω0, t
δ

and
Rt([0; δ]) =

⋃

t∈[0;δ]

Rt(X0) ⊂
⋃

t∈[0;δ]

Ω0, t
δ
⊂ Ω0

For the second part of the lemma, we use equations (A.2), (A.4) and (A.6),
and the fact that for any x ≥ 0:

ex − 1− x ≤ ex(ex − 1− x) ≤ (ex − 1)2

A.3.2 Proof of Theorem 5.1

Theorem. Let us consider the sequence of sets Ωi defined by equations (5.4)
and (4.3). Then, for all i ∈ N, we have R[iδ;(i+1)δ](X0) ⊆ Ωi and

dH

(
Ωi,R[iδ;(i+1)δ](X0)

)
≤ δeT‖A‖

(‖A‖
4

DX0
+

3

4
δ‖A‖2eδ‖A‖RX0

+ eδ‖A‖RU

)

131

Appendix A. Proofs

Proof. From lemma 5.1, R[0,δ](X0) ⊆ Ω0. Assume R[iδ,(i+1)δ](X0) ⊆ Ωi, then

R[(i+1)δ,(i+2)δ](X0) = Rδ

(
R[iδ,(i+1)δ](X0)

)
⊆ Rδ (Ωi) ⊆ eδAΩi ⊕ δU ⊕ EU .

Therefore, R[(i+1)δ,(i+2)δ](X0) ⊆ Ωi+1 and the first part of the theorem holds. Let
us note ∆i = dH

(
Ωi,R[iδ,(i+1)δ](X0)

)
, then

∆i+1 = dH

(
Ωi+1,Rδ

(
R[iδ,(i+1)δ](X0)

))

≤ dH (Ωi+1,Rδ (Ωi)) + dH

(
Rδ (Ωi),Rδ

(
R[iδ,(i+1)δ](X0)

))

From lemma 4.1, dH (Ωi+1,Rδ (Ωi)) ≤ 2REU and it is easy to show that

dH

(
Rδ (Ωi),Rδ

(
R[iδ,(i+1)δ](X0)

))
≤ eδ‖A‖dH

(
Ωi,R[iδ,(i+1)δ](X0)

)
.

Thus, we have that ∆i+1 ≤ eδ‖A‖∆i + 2REU . Therefore, for all i = 0, . . . , N − 1

∆i ≤ eiδ‖A‖∆0 + 2REU

i−1∑

k=0

ekδ‖A‖.

Then, from lemma 5.1,

∆i ≤ eiδ‖A‖
(

eδ‖A‖ − 1

4
DX0

+ 2REU +
1

2
REX0

)
+ 2REU

i−1∑

k=0

ekr‖A‖

≤ δe(i+1)δ‖A‖‖A‖
4

DX0
+ 2(eδ‖A‖ − 1− δ‖A‖) RU

‖A‖

i∑

k=0

ekδ‖A‖

+
eiδ‖A‖

2

(
eδ‖A‖(eδ‖A‖ − 1− δ‖A‖) + (eδ‖A‖ − 1)2

)
RX0

≤ δe(i+1)δ‖A‖
(‖A‖

4
DX0

+
3

4
δ‖A‖2eδ‖A‖RX0

)
+ δ2‖A‖2eδ‖A‖ RU

‖A‖
e(i+1)δ‖A‖ − 1

eδ‖A‖ − 1

≤ δe(i+1)δ‖A‖
(‖A‖

4
DX0

+
3

4
δ‖A‖2eδ‖A‖RX0

)
+ δ2‖A‖2eδ‖A‖ RU

‖A‖
e(i+1)δ‖A‖

δ‖A‖

≤ δe(i+1)δ‖A‖
(‖A‖

4
DX0

+
3

4
δ‖A‖2eδ‖A‖RX0

+ eδ‖A‖RU

)
.

This leads to the estimate of the theorem since (i + 1)δ ≤ T .

A.3.3 Proof of proposition 5.4

Proposition. For all t ∈ R
+,

ρRt
(ℓ) = ρX0

(
etA⊤

ℓ
)

+

∫ t

0

ρU

(
eτA⊤

ℓ
)

dτ. (5.6)

132

A.3. Proofs of Chapter 5

Proof. One trajectory of system (3.2) is given by:

x(t) = etAx0 +

∫ t

0

e(t−s)Au(s) ds

Then for all ℓ,

ℓ · x(t) = ℓ · etAx(0) + ℓ ·
∫ t

0

e(t−τ)Au(τ)dτ

= ℓ · etAx(0) + ℓ ·
∫ t

0

eτAu(t− τ)dτ

= x(0) · etA⊤

ℓ +

∫ t

0

u(t− τ) · eτA⊤

ℓdτ.

Then ρRt
(ℓ) is obtained by maximizing ℓ · x(t) over the initial condition x(0) ∈ X0

and input function u : [0, t]→ U . Then,

ρRt
(ℓ) = max

x(0)
x(0) · etA⊤

ℓ + max
u

∫ t

0

u(t− τ) · eτA⊤

ℓdτ

= ρX0

(
etA⊤

ℓ
)

+ max
u

∫ t

0

u(t− τ) · eτA⊤

ℓdτ

For all u : [0, t]→ U , for all t ∈ R
+ and τ ∈ [0, t], we have that

u(t− τ) · eτA⊤

ℓ ≤ ρU

(
eτA⊤

ℓ
)

Therefore,

max
u

∫ t

0

u(t− τ) · eτA⊤

ℓdτ ≤
∫ t

0

ρU

(
eτA⊤

ℓ
)

dτ

Let us consider the input function u∗ : [0, t]→ U that associate to τ ∈ [0, t], a
support vector of U in the direction e(t−τ)A⊤

ℓ. Then, for all τ in [0, t]:

u∗(t− τ) · eτA⊤

ℓ = ρU

(
eτA⊤

ℓ
)

It follows that

max
u

∫ t

0

u(t− τ) · eτA⊤

ℓdτ ≥
∫ t

0

ρU

(
eτA⊤

ℓ
)

dτ

and equation (5.6) holds.

133

Appendix A. Proofs

A.4 Proofs of chapter 7

A.4.1 Proof of corollary 7.1

Corollary. Let ℵi be the ith term of the sequence defined by equation (7.2), then:

ℵi ⊆ Ωi ∩
i−1⋂

j=0

Ij

where Ωi and the Ij are defined by:

Ωk+1 = ΦΩk ⊕ V Ω0 = ℵ0

Ik+1 = ΦIk ⊕ V I0 = I
Proof. By induction on i. By definition, ℵ0 is equal to Ω0. Let us now suppose
that ℵi is a subset of Ωi ∩

⋂i−1
j=0 Ij. Then:

Φℵi ⊕ V ⊆ Φ

(
Ωi ∩

i−1⋂

j=0

Ij

)
⊕ V

Then, from proposition 7.1:

Φℵi ⊕ V ⊆ (ΦΩi ⊕ V) ∩
i−1⋂

j=0

(ΦIj ⊕ V)

(Φℵi ⊕ V) ∩ I ⊆
(

Ωi+1 ∩
i⋂

j=1

Ij

)
∩ I

ℵi+1 ⊆ Ωi+1 ∩
i⋂

j=0

Ij

A.5 Proofs of chapter 8

A.5.1 Proof of lemma 8.1

Lemma A.1. Let S be a 2-dimensional set and θ0, θ1 be in]0; π[such that θ0 < θ1.
Let (x0, y0) and (x1, y1) be support vectors of S associated to directions vθ0

and vθ1

respectively, we denote by (x, y) the intersection between the two supporting lines.
Then:

x0 ≥ x ≥ x1

Proof. By definition ρS(vθ1
) is greater than x0 cos θ1 + y0 sin θ1, thus:

x1 cos θ1 + y1 sin θ1 ≥ x0 cos θ1 + y0 sin θ1

(x1 − x0) cos θ1 ≥ (y0 − y1) sin θ1

134

A.5. Proofs of chapter 8

Since θ1 is in]0; π[, we have (x1 − x0) cot θ1 ≥ (y0 − y1). Symmetrically, we have
(x0 − x1) cot θ0 ≥ (y1 − y0) and thus:

(x1 − x0) cot θ1 ≥ (x1 − x0) cot θ0

Since cotangent is decreasing on]0; π[and θ0 < θ1, this implies that x0 ≥ x1.
If we now consider the set delimited by the two supporting lines associated to

θ0 and θ1, then (x, y) is the support vector associated to angle (θ0 + θ1)/2 and we
can apply what we just proved to finish the proof of the lemma.

A.5.2 Proof of theorem 8.1

Theorem. For any compact convex set S and any real γ, the function h defined
by:

h :]0; π[→ R

θ 7→
ρS

0

@

0

@

cos θ
sin θ

1

A

1

A−γ cos θ

sin θ

is monotonous or unimodal and:

inf
θ∈]0;π[

h(θ) = ρS∩Lγ

((
0
1

))

Proof. We will consider three different cases:

• −ρS ((−1, 0)) < γ < ρS ((1, 0))

• −ρS ((−1, 0)) = γ or γ = ρS ((1, 0))

• −ρS ((−1, 0)) > γ or γ > ρS ((1, 0))

In the first case, S ∩ Lγ is not empty and, being unidimensional, has a unique
support vector P0 in direction (0, 1)⊤. P0 is on the boundary of S∩Lγ, thus it is also
on the boundary of S. Since this set is compact and convex, and −ρS ((−1, 0)) <
γ < ρS ((1 0)), there is an angle θ0, not necessarily unique, in]0; π[, such that P0

is a support vector of S in direction vθ0
= (cos θ0, sin θ0)

⊤.
The supporting line of S in direction vθ0

crosses Lγ in P0 thus:

h(θ0) = ρS∩Lγ

((
0
1

))

Using lemma 8.1, one can show that for any θ1, θ2 in]θ0; π[such that θ1 < θ2,
we have h(θ1) < h(θ2), the supporting line associated to θ2 is above the one
associated to θ1 when they intersect Lγ. Thus h is increasing on]θ0; π[, similarly
h is decreasing on]0; θ0[. h is unimodal and infθ∈]0;π[h(θ) = ρS∩Lγ

((0, 1)).
In the other cases, we can similarly show that h is either increasing or decreasing

on]0; π[, whether γ ≥ ρS ((1, 0)) or −ρS ((−1, 0)) ≥ γ respectively.

135

Appendix A. Proofs

If γ > ρS ((1, 0)) or −ρS ((−1, 0)) > γ, then its is clear that infθ∈]0;π[h(θ) =
ρS∩Lγ

((0 1)) = −∞.
Let us now suppose that −ρS ((−1, 0)) = γ, then h is decreasing, since S

is closed, S ∩ Lγ is not empty and h converges towards a value y greater than
ρS∩Lγ

((0, 1)). Let us suppose that (γ, y) does not belong to S, since S is closed
and convex there is a line, separating S and (γ, y), defined by an angle θ in]0; π[,
and we have

ρS(θ) < γ cos θ + y sin θ

h(θ) < y

Which is in contradiction with the fact that h is decreasing toward y. Thus (γ, y)
does belong to S and infθ∈]0;π[h(θ) = ρS∩Lγ

((0, 1)). Similarly, if ρS ((1 0)) = γ,
the theorem is verified.

136

Appendix B
Sources for Figure 3.2

We want to know if a tight approximation always implies a good approximation.
We use the Ellipsoidal Toolbox [KV06] version 1.1.2 released on June 6th 2009,
together with Matlab 7.5.0.338 (R2007b).

The system we will study is taken from [Gir05]:

ẋ(t) = Ax(t) + Bu(t)

with x(0) in X0 and, for all t, u(t) in U .
The matrix A is generated from a bloc diagonal matrix D, and a change of

variables given by a matrix P :

D=[-1 -4 0 0 0;

4 -1 0 0 0;

0 0 -3 1 0;

0 0 -1 -3 0;

0 0 0 0 -2];

P=[0.6 -0.1 0.1 0.7 -0.2;

-0.5 0.7 -0.1 -0.8 0 ;

0.9 -0.5 0.3 -0.6 0.1;

0.5 -0.7 0.5 0.6 0.3;

0.8 0.7 0.6 -0.3 0.2];

A=P*D*inv(P)

The matrix B is the identity matrix, and U is the ball of radius µ centered at
the origin:

B=eye(5)

mu=0.01

The initial set, X0 is the ball centered at x0 of radius r0.

x0=[1 0 0 0 0]’

r0=0.01

EX0=ellipsoid(x0,r0^2*eye(5))

137

Appendix B. Sources for Figure 3.2

We will now discretize this system with a time step δ. We first take the matrix
exponential of A:

delta=0.005

Phi=expm(delta*A)

Then, we use Lemma 3.1 in order to get V :

nA=norm(A,2)

beta=mu*(exp(delta*nA)-1)/nA

V = beta^2 * eye(5)

EV = ellipsoid(V)

And Lemma 3.2 in order to get Ω0:

nu=norm(x0,2)+r0

alpha=(exp(delta*nA)-1-delta*nA)*nu

B0=ellipsoid((alpha+beta)^2*eye(5))

EX1=Phi*EX0

CH=ellunion_ea([EX0 EX1])

l=2*rand(5,1)-1

Omega0=minksum_ea([CH B0], l)

The function minksum_ea takes as input an array a of ellipsoids and one vector l,
it returns an over-approximation, tight in direction l, of the Minkowski sum of all
the ellipsoids in a. Here, we chose a random vector in the unit cube.

We can now define the discretized system Ωi+1 = ΦΩi ⊕ V :

sys = linsys(Phi, B, EV, [], [], [], [], ’d’)

We then compute a tight over-approximation of the reachable set for the first
1000 time steps:

N=1000

l0=2*rand(5,1)-1

rs_tight = reach(sys,Omega0,l0,N)

Tightness is guaranteed by applying minksum_ea to ΦΩk and V with vector ℓk =
(Φ−1)⊤ℓ0. Indeed if Ωk is a tight over-approximation of Ωk in direction ℓk, then
ΦΩk is a tight over-approximation of ΦΩk in direction (Φ−1)⊤ℓk, and applying
minksum_ea with vector (Φ−1)⊤ℓk will maintain tightness.

The problem with tightness in one direction, is that it does not guarantee a
good approximation in the other directions. In order to remove tightness, we will
call minksum_ea with a random vector at each step. For that purpose, we change
the line that update l in the source of the function eesm_de called by reach. On
line 57 in file eesm_de.m we change l = Ai’ * l; to l=2*rand(5,1)-1;. Then
we compute a non-tight over-approximation of the reachable set:

138

rs_not_tight = reach(sys,Omega0,l0,N)

The first graph in Figure 3.2 was obtained by projecting the reachable tubes
on the first variable:

Lproj=[1;0;0;0;0];

Y_tight=[rho(get_ea(rs_tight),Lproj);

-rho(get_ea(rs_tight),-Lproj)];

Y_not_tight=[rho(get_ea(rs_not_tight),Lproj);

-rho(get_ea(rs_not_tight),-Lproj)];

line([0:N;0:N],Y_tight,’Color’,’b’); hold on;

line([0:N;0:N],Y_not_tight,’Color’,’r’);

The second one by projecting the reachable sets on the first two variables:

BB = [1 0 0 0 0; 0 1 0 0 0]’;

P_tight = projection(rs_tight, BB);

P_not_tight = projection(rs_not_tight, BB);

plot_ea(P_tight,’b’); hold on;

plot_ea(P_not_tight,’r’);

139

Appendix B. Sources for Figure 3.2

140

Appendix C
Introduction (in French)

C.1 Motivations

Cette thèse consiste en quelques contributions au problème du calcul des états
atteignables pour les systèmes continus et hybrides. Pour les systèmes continus, ce
problème peut être formulé de la façon suivante :

Considérons un système dynamique avec entrées défini dans un espace d’états
X par une équation différentielle de la forme :

ẋ = f(x, u) (C.1)

où u appartient à un ensemble prédéfini de signaux d’entrée admissible. Étant
donné un ensemble X0 ⊂ X , calculer tout les états visités par au moins une tra-
jectoire générée par ce système à partir d’un point x0 ∈ X0.

Résoudre ce problème permet de décider si un système garde un comportement
correct pour toutes les perturbations admissibles ; correct peut signifier l’évitement
d’un mauvais sous-ensemble de l’espace d’états ou, éventuellement, la vérification
de propriétés temporelles plus complexes. L’ensemble atteignable peut être utilisé
pour vérifier la robustesse d’un système de contrôle ou d’un circuit analogique sou-
mis à des perturbations ou pour étudier des modèles biologiques où les valeurs de
certains paramètres ainsi que les conditions environnementales sont mal connues.
Historiquement, cette approche trouve son origine dans l’étude des systèmes hy-
brides (discret/continu) et l’extension des méthodes de vérification de programmes
et de circuits digitaux à des systèmes manipulant des variables réelles.

Une explication intuitive du calcul de l’ensemble atteignable peut être donnée
en terme de simulation numérique, l’approche la plus répandue pour la validation
des systèmes complexes. Pour chaque simulation, on choisit une condition initiale
et un signal d’entrée (aléatoire, périodique, étagé, etc.), la trajectoire induite est
obtenue par intégration numérique ; on peut ensuite vérifier si cette trajectoire à
un comportement correct ou non. Idéalement, ce processus devrait être répété pour
toutes les conditions initiales et tous les signaux d’entrée possibles. Malheureuse-
ment cela implique beaucoup de simulations, en général une infinité indénombrable.

141

Appendix C. Introduction (in French)

L’analyse d’atteignabilité permet d’obtenir les mêmes résultats que des simula-
tions exhaustives en effectuant la simulation en largeur d’abord : au lieu de simuler
complètement chaque trajectoire avant d’en commencer une autre, l’ensemble des
points atteignables pendant un court instant est calculé à chaque pas de temps.
Cette simulation basée sur des ensembles est, bien sûr, plus coûteuse qu’une simu-
lation d’une trajectoire individuelle, mais permet de garantir le bon comportement
d’un système.

À la différence de la plupart des méthodes d’analyse pour les systèmes continus,
le calcul d’atteignabilité donne une information sur le comportement transitoire du
système étudié et pas uniquement sur son comportement asymptotique. Cette ap-
proche est donc particulièrement intéressante pour l’analyse des systèmes hybrides
(discret/continu) que les méthodes d’analyse classiques abordent difficilement. Un
modèle hybride peut exprimer, par exemple, certains comportements d’un système
idéalement linéaire soumis à saturations, ou d’autres phénomènes de commutation.

Notons que le calcul d’atteignabilité présente des similitudes avec le domaine
de l’analyse par intervalle qui permet des calculs numériques rigoureux malgré les
erreurs d’arrondi. Ces deux techniques manipulent des ensembles, et garantissent
que ces ensembles contiennent le résultat recherché, elles partagent donc des tech-
niques de calcul ensembliste. Toutefois, la source d’incertitude dans l’analyse par
intervalle est en général liée aux erreurs de calcul provoquées par l’utilisation d’une
arithmétique à précision bornée, alors qu’ici elle est liée à l’environnement du sys-
tème modélisé ou au fait que le modèles lui-même a certains paramètres qui ne
sont pas connus précisément.

Les principales contributions de cette thèse sont :

1. Systèmes Linéaires : pour les systèmes définis pas une équation différen-
tielle linéaires (invariante en temps), nous développons un nouveau schéma
algorithmique qui présente une amélioration tant au niveau théorique que
pratique. Ce schéma permet d’analyser des systèmes auparavant inaccessible
sans souffrir de l’effet d’emballage ;

2. Systèmes Hybrides : nous étendons ce schéma au systèmes linéaires par mor-
ceaux1 définis par un automate hybride avec des équations différentielle
linéaires. La principale difficulté est de calculer efficacement l’intersection
entre l’ensemble atteignable dans un mode avec les gardes de transition ;

Dans la suite de ce chapitre nous présentons plus précisément le problème de
l’atteignabilité ainsi que les techniques associées avant de présenter le contenu de
la thèse plus en détail.

C.2 Prouver la Sûreté

Nous ne nous intéressons pas ici au comportement asymptotique d’un système
dynamique, pas plus qu’à son comportement au voisinage d’une trajectoire de réfé-

1ou affine par morceaux

142

C.2. Prouver la Sûreté

rence, mais plutôt au comportement transitoire de toutes les trajectoires générées
par ce système :

ẋ = f(x, u)

où u appartient à un ensemble prédéfini de signaux d’entrée admissible Ũ ⊂ R
+ 7→

U , et x(0) est pris dans X0.
L’ensemble de toutes les trajectoires possibles est alors :

Ξ(X0) =
{

ξ : ξ(0) ∈ X0 and ∃u ∈ Ũ , ∀t ≥ 0, ξ̇(t) = f(ξ(t), u(t))
}

Étant donné une trajectoire, il est possible de vérifier qu’elle respecte certaines
propriétés. Une propriété particulièrement intéressante est la propriété de sûreté.
Une trajectoire ξ est sûre si elle n’entre pas dans un mauvais ensemble F :

∀t ≥ 0, ξ(t) 6∈ F

L’ensemble F est une région de l’espace d’états qui doit être évitée. Par exemple,
un avion doit éviter de voler à une vitesse inférieure à sa vitesse de décrochage, la
température du cœur d’une centrale nucléaire ne doit pas dépasser un certain seuil
critique.

Qu’une trajectoire donnée soit sûre n’est pas suffisant, il est souhaitable que
toutes les trajectoires du système soient sûres :

∀ξ ∈ Ξ(X0), ∀t ≥ 0, ξ(t) 6∈ F

Si F est évité, on dit que le système est sûr.

Fig. C.1 – Quelques trajectoires quittent l’ensemble initial (en gris). Seule une
trajectoire (en pointillé) intersecte l’ensemble mauvais (en noir).

Nous allons maintenant présenter les trois principales méthodes utilisées pour
vérifier la sûreté d’un système ; la dernière, l’analyse d’atteignabilité, est le sujet
de cette thèse.

143

Appendix C. Introduction (in French)

C.2.1 Simulations

Si l’ensemble des conditions initiales X0 ainsi que l’ensemble des entrées admis-
sibles sont finis, alors il est possible d’analyser le système de façon exhaustive par
simulations. Malheureusement Ξ(X0) est souvent infini et rarement dénombrable,
il est impossible d’étudier toutes les trajectoires individuellement. Par ailleurs,
les trajectoires sont en général simulées pour un intervalle de temps donnés, on
n’étudie donc souvent la sûreté d’un système que sur un temps borné :

∀ξ ∈ Ξ(X0), ∀t ∈ [0; T], ξ(t) 6∈ F

où T est la borne temporelle.
En appliquant des méthodes statistiques [CDL08], un ensemble fini de trajec-

toires générée aléatoirement peut donner une certaine confiance en la sûreté du
système.

Une autre solution est de chercher un ensemble fini de trajectoires qui vont
mettre en évidence tous les comportement du système [KKMS03, BF04, BCLM06,
GP06, DM07]. La plupart de ces techniques sont basées sur les arbres RRT
(Rapidly-exploring Random Trees) développés à l’origine dans le domaine de la
planification de mouvement, l’analyse de sensibilité, ou les relations de bisimula-
tion approximative. L’idée est de couvrir l’ensemble des états atteignable par un
petit voisinage d’un ensemble fini de trajectoires. En d’autres termes, cet ensemble
fini de trajectoires doit être tel que tout état atteignable par une trajectoire du
système est à une petite distance d’au moins une des trajectoires choisies. En
respectant certaines conditions il est parfois possible de borner cette distance.

En conclusion, en se basant sur des simulations, si une des trajectoires simulées
n’est pas sûre alors le système n’est pas sûr, dans le cas contraire on ne peut
pas conclure. Il est tout de même possible d’utiliser une analyse statistique ou de
générer les trajectoires d’une façon qui apporte un certain degré de confiance en la
sûreté du système. Sous certaines conditions il est même possible de garantir que
le système est sûr.

C.2.2 Fonction Barrière

Une autre approche au problème de sûreté est de chercher une surface qui
sépare l’ensemble des états initiaux X0 et l’ensemble interdit F et qui ne peut être
traversée par aucune trajectoire. Formellement :

Définition C.1 ([PJ04]). Une fonction différentiable B : X → R est une fonction
barrière si et seulement si elle vérifie les conditions suivantes :

B(x) > 0 ∀x ∈ F
B(x) ≤ 0 ∀x ∈ X0

∂B

∂x
· f(x, u) ≤ 0 ∀(x, u) ∈ X × U tels que B(x) = 0

144

C.2. Prouver la Sûreté

Fig. C.2 – Une barrière prouve la sûreté du système.

Le Figure C.2 illustre cette notion.

Cette notion de barrière est liée à celle de fonction de Lyapunov, développée à
l’origine pour l’analyse de stabilité à la fin du 19ème siècle par Aleksandr Lyapu-
nov et encore étudiée aujourd’hui. Intuitivement, une fonction de Lyapunov V est
positive partout sauf en un point x0 où V (x0) = 0, et sa dérivée temporelle, égale
à ∂V

∂x
·f(x, u) si elle est différentiable, n’est nulle part positive. Si une telle fonction

existe, alors x0 est un point d’équilibre stable.

Ici, nous ne sommes pas intéressés par la stabilité du système, mais par sa
sûreté. Si il existe un k dans R tel que V (x) > k pour tout x dans F , et V (x) ≤ k
pour tout x dans X0 alors x 7→ V (x) − k est une fonction barrière pour notre
problème. Ainsi, une fonction de Lyapunov peut être utilisée pour construire une
fonction barrière.

Malheureusement, même pour les système linéaire stable, pour lesquels on sait
construire de façon systématique des fonctions de Lyapunov, il n’est pas toujours
facile de trouver une fonction barrière. En effet, pour une fonction de Lyapunov
donnée, il n’est pas garantie qu’un tel k existe. Pour résumer, les fonctions barrières
peuvent être dures à trouver mais elles garantissent la sûreté du système pour un
temps non borné.

C.2.3 Atteignabilité

L’approche envisagée dans cette thèse est de calculer l’ensemble atteignable2.
L’ensemble atteignable est l’ensemble de tous les points que le système peut at-
teindre :

R(X0) = {x : ∃ξ ∈ Ξ(X0), ∃t ∈ R
+, x = ξ(t)}

2Un autre objet intéressant dans l’analyse d’atteignabilité est le tube d’atteignabilité :

Rtube(X0) = {(x, t) : ∃ξ ∈ Ξ(X0), x = ξ(t)}

mais nous allons ici principalement nous concentrer sur l’ensemble atteignable.

145

Appendix C. Introduction (in French)

Malheureusement cet ensemble est souvent impossible à calculer. Nous allons
donc l’approcher. Pour pouvoir tout de même vérifier certaines propriétés, comme
la sûreté, cette approximation doit être conservative, en d’autres termes, elle doit
être une sur-approximation : R ⊆ R .

Ainsi, si R ∩ F = ∅, alors R ∩ F = ∅, et le système est sûr. Si R ∩ F
n’est pas vide, l’analyse n’est pas concluante et on peut essayé d’améliorer la sur-
approximation. Mais si le système n’est pas sûr, toute sur-approximation intersecte
l’ensemble interdit F , et aucune sur-approximation ne permet de conclure. Il est
donc parfois utile de calculer une sous-approximation R ⊆ R. Si R intersecte F
alors le système n’est pas sûr.

Plusieurs approximations sont possibles, les plus évidentes, et plus inutiles,
peuvent être obtenues en remarquant que ∅ ⊆ R ⊆ X . L’algorithme le plus rapide
renvoie donc tout simplement ∅ et X comme sous- et sur-approximations de l’en-
semble atteignable, c’est pourquoi nous allons avoir besoin d’une notion de qualité
d’une approximation.

D’autres méthodes bien plus intéressantes ont été présentées dans les précé-
dentes sections. En effet, un ensemble fini de trajectoires donne une sous-approxi-
mation de R. Il est même possible, sous certaines conditions, de garantir qu’en
continuant à générer des trajectoires pendant un temps infini, l’ensemble des points
visités sera dense dans R. Par ailleurs, si on sait que tous les points de R sont
dans un ǫ-voisinage de l’ensemble fini de trajectoires considérées, alors ce voisinage
définit une sur-approximation de R.

Une fonction barrière V définit également une sur-approximation de l’ensemble
atteignable : R ⊆ {x : V (x) ≤ 0}. Réciproquement, la frontière de l’ensemble
atteignable peut définir une fonction barrière, celle dont la partie négative est la
plus petite pour l’inclusion.

Nous allons prendre une approche similaire à la simulation. Mais au lieu d’avoir
un point qui évolue dans l’espace d’états, nous allons avoir un ensemble. Comme
pour la simulation, il est difficile de considérer un horizon temporel non-borné.
C’est pourquoi nous nous concentrerons sur l’atteignabilité avec une borne tempo-
relle. L’ensemble que nous voulons sur-, ou sous-, approcher est :

R[0;T](X0) = {x : ∃ξ ∈ Ξ(X0), ∃t ∈ [0; T], x = ξ(t)}

où T est notre borne temporelle.
Dans la suite, R[t0;t1](Y) désigne l’ensemble des points atteignables à partir de

Y entre les temps t0 et t1 par le système (C.1), où, plus formellement :

R[t0;t1](Y) = {x : ∃ξ ∈ Ξ(Y), et ∃t ∈ [t0; t1], x = ξ(t)}

Nous définissons également Rt(Y) comme étant R[t;t](Y). Quand Y est omis, c’est
qu’il s’agit de X0.

Remarquons que pour un horizon temporel borné en temps discret il existe
une autre méthode pour vérifier qu’un système est sûr : l’existence d’une trajec-
toire non-sûre est exprimée par une formule obtenue en déroulant la relation de

146

C.3. Plan de la Thèse

récurrence définissant le système k fois, avec un nouvel ensemble de variables pour
chaque pas de temps. Cette approche sous-tend en fait la commande prédictive,
son adaptation à la vérification des systèmes hybrides a été étudiée dans [BM99].

C.3 Plan de la Thèse

Cette annexe est une traduction de l’introduction de cette thèse, rédigée en
anglais. Dans la suite nous suivons le plan de la version anglaise, chaque section
correspond à un chapitre de la thèse. Elle est constituée de deux parties principales.
Dans la première nous nous intéressons à l’atteignabilité des systèmes continus
linéaires. La seconde adapte ces résultats aux systèmes hybrides. Mais d’abord,
nous étudions dans le Chapitre 2 quelques représentations d’ensembles utilisées
dans le contexte de l’atteignabilité.

Partie I La première partie de cette thèse est constituée de trois chapitres. Après
avoir donné un aperçu de l’état de l’art dans le Chapitre 3 nous présentons, dans
le Chapitre 4, la principale contributions de cette thèse : un nouveau schéma algo-
rithmique pour l’analyse d’atteignabilité des systèmes linéaires invariants. Le seul
inconvénient de son implémentation exacte est que sa sortie peut être difficile à
manipuler. Nous nous intéressons donc également à une implémentation produi-
sant une sur-approximation non soumise à l’effet d’emballage, une accumulation
incontrôlée des erreurs d’approximation, sujet de nombreuses recherches depuis
le début des années soixante. Dans le dernier chapitre de cette première partie,
Chapitre 5, nous présentons une variante de cet algorithme utilisant les fonctions
support, une représentation fonctionnelle des ensembles convexes.

Partie II La seconde partie de cette thèse débute par une courte introduction
à l’analyse d’atteignabilité pour les systèmes hybrides au Chapitre 6. Nous nous
concentrons ensuite sur deux aspects des systèmes hybrides : premièrement, nous
étudions, Chapitre 7, les conséquences de l’introduction d’un invariant dans la
partie continue, et pour finir nous expliquons comment intersecter la sortie des
algorithmes décrits Partie I avec des gardes hyerplanaires dans le Chapitre 8.

Le dernier chapitre, traduit Annexe D, résume les contributions de cette thèse
et suggère quelques pistes de recherche.

147

Appendix C. Introduction (in French)

148

Appendix D
Conclusion (in French)

Dans cette thèse nous avons donné quelques contributions à l’analyse d’at-
teignabilité des systèmes hybrides à partie continue linéaire, invariants convexes,
gardes hyperplanaires, et saut affine.

La plus simple, et la plus puissante, d’entre elles est la décomposition de la
relation de récurrence :

Ωi+1 = ΦΩi ⊕ V (D.1)

en trois :

A0 = Ω0 Ai+1 = ΦAi

V0 = V V i+1 = ΦV i

S0 = {0} Si+1 = Si ⊕ V i

Ωi peut alors être exprimé comme la somme de Minkowski de Ai et Si.
La séparation de la transformation linéaire et la somme de Minkowski nous a

permis de développer deux algorithmes efficaces calculant les N premiers termes de
la séquence définie par l’équation (D.1), l’une utilisant des zonotopes, l’autre des
fonctions support, ainsi qu’une famille d’algorithme sur-approchants qui ne sont
pas soumis à l’effet d’emballage. L’intérêt principale des algorithmes approchants
est la simplicité de leur sortie, qui est constituée d’une liste d’ensembles dans la
représentation choisie.

Dans la seconde partie nous avons adapté ces résultats à l’étude des systèmes
hybrides. Nous avons montré comment utiliser l’invariant pour améliorer l’approxi-
mation de l’ensemble atteignable dans la partie continue. Mais la principale contri-
bution de la Partie II est l’utilisation de la séquence exacte des Ωi, représentés par
des zonotopes d’ordre élevé ayant des générateurs en commun, ou par leur fonction
support, pour calculer une approximation de l’intersection entre l’ensemble attei-
gnable de la partie continue avec des gardes hyperplanaires. Non seulement cela
permet d’améliorer considérablement l’approximation de cette ensemble, mais cela
prouve aussi que les Ωi exactes sont utiles malgré leur représentation particulière.

149

Appendix D. Conclusion (in French)

La plupart des algorithmes décrits dans cette thèse ont été implantés dans un
prototype en OCaml. Pour des systèmes purement continus il est plus performant
que les autres outils en terme de vitesse d’exécution ainsi que terme de qualité de
l’approximation. Dans le cas hybride, il présente des résultats prometteurs et peut
se mesurer à PHAVer, un outil hautement optimisé, sur des exemples non-triviaux.

Naturellement, beaucoup reste à faire, et il y a de nombreuses opportunités
pour de futurs travaux.

Systèmes Linéaires Périodiques Nos algorithmes sont dédiés aux systèmes li-
néaires invariant en temps. Une première extension serait de les adapter aux
systèmes périodiques ẋ(t) = A(t)x(t) + u(t) où A, ou l’ensemble des signaux
d’entrée admissibles U , ou les deux, sont périodiques.

Systèmes Linéaires Pour les systèmes linéaires variants en temps, il est sans
doute possible de modifier nos algorithmes pour qu’ils calculent un Ωk pour
un certain k. Cela pourrait permettre de réduire l’effet d’emballage produit
par les algorithmes standards. Un autre moyen de réduire l’effet d’emballage
est d’adapter notre procédure de discretization aux systèmes temps variant,
en augmentant la taille du pas de temps pour obtenir une certain précision
cela permet de réduire le nombre de pas temps nécessaire pour couvrir une
certain durée et donc de réduire l’effet d’emballage indirectement.

Systèmes Linéaires Paramétrisés Nous considérons ici que toutes les matrices
sont connues exactement, mais ce n’est pas toujours le cas et il serait inté-
ressant d’utiliser notre schéma algorithmique dans le contexte des systèmes
paramétrisés pour lesquels ont sait juste que la matrice A appartient à un
petit sous ensemble de Md(R). Cela pourrait également permettre de prendre
en compte l’utilisation d’une arithmétique à virgule flottante.

Ellipsöıdes Comme nous en avons discuté dans la Section 3.4.2.2, les enveloppes
ellipsöıdales ajustées des Ωi ont tendances à s’aplatir ; relâcher cette propriété
de contact peut améliorer l’approximation en terme de distance de Hausdorff
Il serait intéressant d’analyser ce phénomène pour peut-être en déduire une
méthode offrant un bon compromis entre l’ajustement et l’aplatissement.

Zonotopes Cette représentation compacte est utilisée dans de nombreux do-
maines. Malheureusement il semble qu’il n’y ait pas d’algorithme permet-
tant de réduire l’ordre d’un zonotope de façon satisfaisante. Améliorer les
méthodes existantes serait déjà un premier pas.

Systèmes Hybrides Une première piste pour accélérer l’analyse est de consi-
dérer une représentation par plusieurs fonctions support de complexité, et
précision, croissante comme nous l’avons suggéré dans la Section 8.3.3. Par
ailleurs, parmi les aspects des systèmes hybrides qui n’ont pas été traités
dans cette thèse, les exécutions Zeno, les changements de mode fréquents,
et les modes glissant présentes un intérêt particulier ; Moreover, among the
aspects of hybrid systems that have not been addressed in this thesis, Zeno
executions, chattering, and sliding modes are of particular interest ; ils sont
mal gérés par nos algorithmes.

150

Systèmes Non-Linéaires Des systèmes plus complexes peuvent être analysé en
remplaçant la dynamique non-linéaire par un système hybride avec une dy-
namique continue plus simple, cette technique est connue sous le terme hybri-
disation [ADG07]. Des variantes de cette technique utilisant des transitions
hystérèse ou une hybridisation dynamique semblent prometteuses [DLGM09].
Abstraire la dynamique continue peut être fait efficacement pour les systèmes
multi-affine [KB06, MB08], en effet, la valeur du flux à l’intérieur d’une bôıte
est exactement l’enveloppe convexe des valeurs du flux aux sommets de cette
bôıte. La prochaine étape serait de caractérisé l’ensemble des fonctions pour
lesquelles la valeur à l’intérieur d’une bôıte est exactement l’enveloppe par
intervalles des valeurs du flux aux sommets de cette bôıte.

Outils Finalement, un effort important doit être fourni pour faire passer notre
outil de l’état de prototype à l’état d’outil distribuable.

151

Appendix D. Conclusion (in French)

152

Bibliography

[ACH+95] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A.
Henzinger, Pei-Hsin Ho, Xavier Nicollin, Alfredo Olivero, Joseph
Sifakis, and Sergio Yovine. The algorithmic analysis of hybrid sys-
tems. Theoretical Computer Science, 138(1):3–34, 1995. (Cited on
page 82.)

[ACHH93] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-
Hsin Ho. Hybrid automata: An algorithmic approach to the specifi-
cation and verification of hybrid systems. In Hybrid Systems, volume
736 of Lecture Notes in Computer Science, pages 209–229. Springer,
1993. (Cited on page 80.)

[ADG07] Eugene Asarin, Thao Dang, and Antoine Girard. Hybridization meth-
ods for the analysis of nonlinear systems. Acta Inf., 43(7):451–476,
2007. (Cited on pages 123 and 151.)

[AF96] David Avis and Komei Fukuda. Reverse search for enumeration. Dis-
crete Applied Mathematics, 65(1-3):21–46, 1996. (Cited on page 96.)

[ASB09] Matthias Althoff, Olaf Stursberg, and Martin Buss. Computing reach-
able sets of hybrid systems using a combination of zonotopes and
polytopes. Nonlinear Analysis: Hybrid Systems, In Press, Corrected
Proof:–, 2009. (Cited on page 40.)

[BCLM06] Michael S. Branicky, Michael M. Curtiss, Joshua Levine, and Stu-
art Morgan. Sampling-based planning, control and verification of
hybrid systems. Control Theory and Applications, IEE Proceedings,
153(5):575–590, Sept. 2006. (Cited on pages 4 and 144.)

[BE01] Marshall Wayne Bern and David Eppstein. Optimization over zono-
topes and training support vector machines, 2001. Talk given at
WADS. (Cited on page 99.)

[BF04] Amit Bhatia and Emilio Frazzoli. Incremental search methods for
reachability analysis of continuous and hybrid systems. In Hybrid

153

Bibliography

Systems: Computation and Control, volume 2993 of Lecture Notes in
Computer Science, pages 451–471. Springer, 2004. (Cited on pages 4
and 144.)

[BFP+73] Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest,
and Robert Endre Tarjan. Time bounds for selection. Journal of Com-
puter and System Sciences, 7(4):448–461, 1973. (Cited on page 101.)

[BM99] Alberto Bemporad and Manfred Morari. Verification of hybrid sys-
tems via mathematical programming. In Hybrid Systems: Computa-
tion and Control, volume 1569 of Lecture Notes in Computer Science,
pages 31–45. Springer, 1999. (Cited on pages 6 and 147.)

[BNO03] Dimitri P. Bertsekas, Angelia Nedic, and Asuman E. Ozdaglar. Con-
vex analysis and optimization. Athena Scientific, 2003. (Cited on
page 19.)

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cam-
bridge University Press, 2004. (Cited on page 19.)

[BZ80] Egon Balas and Eitan Zemel. An algorithm for large zero-one knap-
sack problems. Operations Research, 28(5):1130–1154, Sep. - Oct.
1980. (Cited on page 99.)

[CC77] Patrick Cousot and Radhia Cousot. Abstract Interpretation: a Uni-
fied Lattice Model for Static Analysis of Programs by Construction
or Approximation of Fixpoints. In POPL’77: 4th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
238–252. ACM, January 1977. (Cited on page 15.)

[CC04] Robert Clarisó and Jordi Cortadella. The octahedron abstract do-
main. In SAS, volume 3148 of Lecture Notes in Computer Science,
pages 312–327. Springer, 2004. (Cited on page 15.)

[CDL08] Edmund M. Clarke, Alexandre Donzé, and Axel Legay. Statistical
model checking of mixed-analog circuits with an application to a
third-order delta-sigma modulator. In Haifa Verification Conference,
volume 5394 of Lecture Notes in Computer Science, pages 149–163.
Springer, 2008. (Cited on pages 4 and 144.)

[Chu99] Alongkrit Chutinan. Hybrid System Verification Using Discrete Model
Approximations. PhD thesis, Department of Electrical and Computer
Engineering, Carnegie Mellon University, 1999. (Cited on pages 33
and 43.)

[CK98] Alongkrit Chutinan and Bruce H. Krogh. Computing polyhedral ap-
proximations to flow pipes for dynamic systems. volume 2, pages
2089–2094 vol.2, Dec 1998. (Cited on pages 33 and 43.)

154

Bibliography

[CPPAV06] Luca P. Carloni, Roberto Passerone, Alessandro Pinto, and Alberto L.
Angiovanni-Vincentelli. Languages and tools for hybrid systems de-
sign. Foundations and Trends in Electronic Design Automation,
1(1/2):1–193, 2006. (Cited on page 83.)

[CW90] Don Coppersmith and Shmuel Winograd. Matrix multiplication via
arithmetic progressions. Journal of Symbolic Computation, 9(3):251–
280, 1990. (Cited on pages 26 and 47.)

[Dan00] Thao Dang. Vérification et Synthèse des Systèmes Hybrides. PhD
thesis, Institut National Polytecnique de Grenoble, 2000. (Cited on
pages 33 and 43.)

[DFGLG08] Thao Dang, Goran Frehse, Antoine Girard, and Colas Le Guernic.
Approches formelles des systèmes embarqués communicants, Chapitre
Outils pour l’analyse des modèles hybrides. Traité IC2, série Infor-
matique et systèmes d’information. Hermes Science, 2008. (Cited on
page 83.)

[DLGM09] Thao Dang, Colas Le Guernic, and Oded Maler. Computing reachable
states for nonlinear biological models. In Computational Methods in
Systems Biology, volume 5688 of Lecture Notes in Bioinformatics,
pages 126–141. Springer, 2009. (Cited on pages 123 and 151.)

[DM07] Alexandre Donzé and Oded Maler. Systematic simulation using sensi-
tivity analysis. In Hybrid Systems: Computation and Control, volume
4416 of Lecture Notes in Computer Science, pages 174–189. Springer,
2007. (Cited on pages 4 and 144.)

[FI04] Ansgar Fehnker and Franjo Ivancic. Benchmarks for hybrid systems
verification. In Hybrid Systems: Computation and Control, volume
2993 of Lecture Notes in Computer Science, pages 326–341. Springer,
2004. (Cited on page 118.)

[Fre08] Goran Frehse. PHAVer: Algorithmic Verification of Hybrid Systems
Past HyTech. International Journal on Software Tools for Technology
Transfer (STTT), 10(3), June 2008. (Cited on pages 15, 40, and 118.)

[Gir04] Antoine Girard. Analyse Algorithmique des Systèmes Hybrides. PhD
thesis, Institut National Polytecnique de Grenoble, 2004. (Cited on
page 33.)

[Gir05] Antoine Girard. Reachability of uncertain linear systems using zono-
topes. In Hybrid Systems: Computation and Control, volume 3414 of
Lecture Notes in Computer Science, pages 291–305. Springer, 2005.
(Cited on pages 34, 35, 40, 42, 57, and 137.)

155

Bibliography

[GLG08a] Antoine Girard and Colas Le Guernic. Efficient reachability analysis
for linear systems using support functions. In IFAC World Congress
2008, 2008. (Cited on page 65.)

[GLG08b] Antoine Girard and Colas Le Guernic. Zonotope-hyperplane inter-
section for hybrid systems reachability analysis. In Hybrid Systems:
Computation and Control, volume 4981 of Lecture Notes in Computer
Science, pages 215–228. Springer, 2008. (Cited on page 85.)

[GLGM06] Antoine Girard, Colas Le Guernic, and Oded Maler. Efficient compu-
tation of reachable sets of linear time-invariant systems with inputs.
In Hybrid Systems: Computation and Control, volume 3927 of Lecture
Notes in Computer Science, pages 257–271. Springer, 2006. (Cited
on page 45.)

[GM99] Mark R. Greenstreet and Ian Mitchell. Reachability analysis using
polygonal projections. In Hybrid Systems: Computation and Control,
volume 1569 of Lecture Notes in Computer Science, pages 103–116.
Springer, 1999. (Cited on page 24.)

[GNZ03] Leonidas J. Guibas, An Nguyen, and Li Zhang. Zonotopes as
bounding volumes. In SODA ’03: Proceedings of the fourteenth
annual ACM-SIAM symposium on Discrete algorithms, pages 803–
812, Philadelphia, PA, USA, 2003. Society for Industrial and Applied
Mathematics. (Cited on pages 18, 105, and 106.)

[GP06] Antoine Girard and George J. Pappas. Verification using simulation.
In Hybrid Systems: Computation and Control, volume 3927 of Lecture
Notes in Computer Science, pages 272–286. Springer, 2006. (Cited
on pages 4 and 144.)

[Han05] Zhi Han. Reachability Analysis of Continuous Dynamic Systems Us-
ing Dimension Reduction and Decomposition. PhD thesis, Depart-
ment of Electrical and Computer Engineering, Carnegie Mellon Uni-
versity, 2005. (Cited on pages 40 and 74.)

[HKPV98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin
Varaiya. What’s decidable about hybrid automata? Journal of Com-
puter and System Sciences, 57(1):94–124, 1998. (Cited on page 82.)

[Jar73] R. A Jarvis. On the identification of the convex hull of a finite set of
points in the plane. Information Processing Letters, 2(1):18–21, 1973.
(Cited on page 100.)

[KB06] Marius Kloetzer and Calin Belta. Reachability analysis of multi-affine
systems. In Hybrid Systems: Computation and Control, volume 3927
of Lecture Notes in Computer Science, pages 348–362. Springer, 2006.
(Cited on pages 123 and 151.)

156

Bibliography

[KGB04] Michal Kvasnica, Pascal Grieder, and Mato Baotić. Multi-Parametric
Toolbox (MPT), 2004. (Cited on pages 35 and 39.)

[KGBM04] Michal Kvasnica, Pascal Grieder, Mato Baotić, and Manfred Morari.
Multi-parametric toolbox (mpt). In Hybrid Systems: Computation
and Control, volume 2993 of Lecture Notes in Computer Science,
pages 448–462. Springer, 2004. (Cited on page 35.)

[Kha79] L. G. Khachiyan. A polynomial algorithm in linear programming
(in russian). Doklady Akademiaa Nauk USSR., 244:1093–1096, 1979.
English Translation: Soviet Mathematics Doklady, Volume 20, 191–
194. (Cited on page 13.)

[Kie53] Jack Carl Kiefer. Sequential minimax search for a maximum. Proceed-
ings of the American Mathematical Society, 4:502–506, 1953. (Cited
on pages 109 and 112.)

[KKMS03] James Kapinski, Bruce H. Krogh, Oded Maler, and Olaf Stursberg.
On systematic simulation of open continuous systems. In Hybrid Sys-
tems: Computation and Control, volume 2623 of Lecture Notes in
Computer Science, pages 283–297. Springer, 2003. (Cited on pages 4
and 144.)

[Küh98] Wolfgang Kühn. Rigorously computed orbits of dynamical systems
without the wrapping effect. Computing, 61(1):47–68, 1998. (Cited
on page 40.)

[KV06] Alex A. Kurzhanskiy and Pravin Varaiya. Ellipsoidal toolbox. Tech-
nical Report UCB/EECS-2006-46, EECS Department, University of
California, Berkeley, May 2006. (Cited on pages 13, 31, 38, 39, 54,
and 137.)

[LGG09a] Colas Le Guernic and Antoine Girard. Reachability analysis of hybrid
systems using support functions. In CAV, volume 5643 of Lecture
Notes in Computer Science, pages 540–554. Springer, 2009. (Cited
on page 85.)

[LGG09b] Colas Le Guernic and Antoine Girard. Reachability analysis of linear
systems using support functions. Nonlinear Analysis: Hybrid Sys-
tems, In Press, Corrected Proof:–, 2009. (Cited on page 65.)

[Loh88] Rudolf Lohner. Einschliessung der Lösung gewöhnlicher Anfangs-
und Randwertaufgaben und Anwendungen. PhD thesis, Universität
Fridericiana Karlsruhe, 1988. (Cited on page 38.)

[MB08] Oded Maler and Grégory Batt. Approximating continuous systems
by timed automata. In Formal Methods in Systems Biology, volume

157

Bibliography

5054 of Lecture Notes in Computer Science, pages 77–89. Springer,
2008. (Cited on pages 123 and 151.)

[Min01] Antoine Miné. The octagon abstract domain. In Proc. of the Work-
shop on Analysis, Slicing, and Transformation (AST’01), IEEE,
pages 310–319, Stuttgart, Gernamy, October 2001. IEEE CS Press.
(Cited on page 15.)

[MKC09] Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud. Introduc-
tion to Interval Analysis. SIAM, January 2009. (Cited on page 12.)

[MMP91] Oded Maler, Zohar Manna, and Amir Pnueli. From timed to hybrid
systems. In Real-Time: Theory in Practice, REX Workshop, volume
600 of Lecture Notes in Computer Science, pages 447–484. Springer,
1991. (Cited on page 80.)

[Moo66] Ramon E. Moore. Interval Analysis. Prentice-Hall Series in Auto-
matic Computation. Prentice-Hall, Englewood Cliffs N. J., January
1966. (Cited on page 2.)

[MT00] Ian Mitchell and Claire Tomlin. Level set methods for computation
in hybrid systems. In Hybrid Systems: Computation and Control,
volume 1790 of Lecture Notes in Computer Science, pages 310–323.
Springer, 2000. (Cited on page 24.)

[Mul59] Mervin E. Muller. A note on a method for generating points uniformly
on n-dimensional spheres. Communications of the ACM, 2(4):19–20,
1959. (Cited on page 106.)

[Neu03] Arnold Neumaier. Taylor forms–use and limits. Reliable Computing,
9(1):43–79, 2003. (Cited on page 22.)

[PJ04] Stephen Prajna and Ali Jadbabaie. Safety verification of hybrid sys-
tems using barrier certificates. In Hybrid Systems: Computation and
Control, volume 2993 of Lecture Notes in Computer Science, pages
477–492. Springer, 2004. (Cited on pages 4 and 144.)

[Rou96] Mireille Rousset. Sommes de Minkowski de Triangles. PhD thesis,
Université Joseph Fourier, 1996. (Cited on page 18.)

[RST02] Llúıs Ros, A. Sabater, and Federico Thomas. An ellipsoidal calcu-
lus based on propagation and fusion. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B, 32(4):430–442, 2002. (Cited on
pages 13 and 38.)

[RW98] R. Tyrrell Rockafellar and Roger J.-B. Wets. Variational analysis.
Springer, 1998. (Cited on pages 19, 27, and 96.)

158

Bibliography

[Set99] James Albert Sethian. Level Set Methods and Fast Marching Meth-
ods: Evolving Interfaces in Computational Geometry, Fluid Mechan-
ics, Computer Vision, and Materials Science. Cambridge University
Press, 1999. (Cited on page 24.)

[SK03] Olaf Stursberg and Bruce H. Krogh. Efficient representation and
computation of reachable sets for hybrid systems. In Hybrid Systems:
Computation and Control, volume 2623 of Lecture Notes in Computer
Science, pages 482–497. Springer, 2003. (Cited on page 38.)

[Tiw08] Hans Raj Tiwary. On the hardness of computing intersection, union
and minkowski sum of polytopes. Discrete Computational Geometry,
40(3):469–479, 2008. (Cited on page 26.)

[Tod02] Michael J. Todd. The many facets of linear programming. Mathemat-
ical Programming, 91(3):417–436, February 2002. (Cited on page 13.)

[Var98] Pravin Varaiya. Reach set computation using optimal control. In
Proc. KIT Workshop on Verification of Hybrid Systems. Verimag,
Grenoble, 1998. (Cited on pages 43 and 66.)

[Wei07] Christophe Weibel. Minkowski Sums of Polytopes. PhD thesis, École
Polytechnique Fédérale de Lausanne, 2007. (Cited on page 26.)

[YN76] D. B. Yudin and A. S. Nemirovski. Informational complexity and
efficient methods for the solution of convex extremal problems (in
russian). Ékonomika i Matematicheskie metody, 12:357–369, 1976.
English translation: Matekon 13(2), 3–25. (Cited on page 13.)

[Zas75] Thomas Zaslavsky. Facing Up to Arrangements: Face-Count Formu-
las for Partitions of Space by Hyperplanes. Number 154 in Memoirs of
the American Mathematical Society. American Mathematical Society,
1975. (Cited on pages 26 and 96.)

[Zie95] Günter M. Ziegler. Lectures on Polytopes, volume 152 of Graduate
Texts in Mathematics. Springer, 1995. (Cited on page 13.)

[Zon05] Chuanming Zong. What is known about unit cubes. Bulletin (New
Series) of the American Mathematical Society, 42(2):181–211, Jan-
uary 2005. (Cited on page 17.)

159

Calcul d’Atteignabilité des Systèmes Hybrides
à Partie Continue Linéaire

Mots clés : atteignabilité, système hybride, équation différentielle linéaire, ap-
proximation, zonotope, fonction support, hyperplan, intersection.
Résumé : Cette thèse est consacrée au calcul des états atteignables des systèmes
linéaires et hybrides. La première partie est consacrée aux systèmes linéaires. Après
avoir présenté les méthodes existantes, nous introduisons notre principale contri-
bution : un nouveau schéma algorithmique pour l’analyse d’accessibilité des sys-
tèmes linéaires invariants qui surclasse nettement les algorithmes existants. Une
implémentation exacte peut produire des ensembles difficiles à manipuler, nous
proposons donc une version produisant une sur-approximation non soumise à l’ef-
fet d’emballage, une accumulation incontrôlée des erreurs d’approximation, ainsi
qu’une variante dédiée aux fonctions support, une représentation fonctionnelle des
ensembles convexes. La deuxième partie adapte ces résultats aux systèmes hy-
brides. Nous montrons d’abord comment gérer les invariants, avant de nous inté-
resser à l’approximation de l’intersection entre l’ensemble atteignable par la dyna-
mique continue et des gardes hyperplanaires.

Reachability Analysis of Hybrid Systems
with Linear Continuous Dynamics

Keywords: reachability, hybrid system, linear differential equation, approxima-
tion, zonotope, support function, hyperplane, intersection.
Abstract: This thesis is devoted to the problem of computing reachable sets of
linear and hybrid systems. In the first part, after exposing existing approaches
for reachability analysis of linear systems, we present the main contribution of the
thesis: a new algorithmic scheme for linear time-invariant systems that definitely
outperforms existing algorithms. As the exact implementation furnishes a repre-
sentation of the reachable sets that is sometimes hard to manipulate, we propose
an approximate version that is not subject to the wrapping effect, an uncontrolled
growth of the approximation errors. We also discuss a variant of this algorithm
specialized to support functions, a functional representation of convex sets. In
the second part, we extend this work to hybrid systems. We first show how to
deal with the constraints on the continuous dynamics imposed by the invariants.
Then, we present algorithms for approximating the intersection of the continuous
reachable sets with hyperplanar guards.

VERIMAG
Centre Équation - 2, avenue de Vignate

38610 Gières, FRANCE

	Front Cover
	Table of Contents
	Introduction
	Motivations
	Proving Safety
	Simulations
	Barrier Certificates
	Reachability

	Outline of the Thesis

	Representing Sets
	Distances and Approximations
	Set Representation
	Boxes
	Ellipsoids
	Polytopes
	Zonotopes
	Support Functions
	Other Representations

	Operations on Sets
	Boxes
	Ellipsoids
	Polytopes
	Zonotopes
	Support Functions

	I Linear Systems
	State of the Art in Linear Systems Reachability
	Autonomous System
	Non-Autonomous System
	Reachability of the Discretized System
	Approximate Reachability of the Discretized System
	Wrapping Effect
	Approximation Strategies
	Curse of Dimensionality

	A New Scheme
	A New Scheme
	Implementation using Zonotopes
	Implementation using Support Functions

	Approximation without Wrapping Effect
	Over-Approximations
	Under-Approximations

	Time Discretization
	Experimental Results
	A Five-Dimensional Linear System
	High-Dimensional Linear Systems

	Going Further with Support Functions
	Discrete Reachability Algorithm
	Comparison with Related Approaches
	Improvements of the Algorithm
	Computing Support Vectors

	Improved Time Discretization
	Continuous Reachability Algorithm
	Experimental Results
	RLC Model of a Transmission Line
	Extensive Experiments

	II Hybrid Systems
	Introduction to Hybrid Systems Reachability
	Hybrid Automata
	Reachability Analysis of Hybrid Automata
	Outline of Part II

	Staying in the Invariant
	Working with Algorithm 4.1
	Working with Algorithm 5.1
	Mixing Algorithms
	Examples

	Intersection with a Hyperplanar Guard
	Detecting Intersection
	Zonotope/Hyperplane Intersection
	From Dimension d to Dimension 2
	Intersection of a Zonogon and a Line
	Intersection of the Reachable Set and a Line
	From Polytope to Zonotope
	Playing with the Generators

	Support Function/Hyperplane Intersection
	Intersection of a 2-Dimensional Convex Set and a Line
	Intersection of the Reachable Set and a Line
	Simplifying the Resulting Support Function

	Applications
	Thermostat
	Navigation Benchmark

	Conclusion and Future work
	Appendices
	Proofs
	Proofs of Chapter 2
	Proof of Proposition 2.2

	Proofs of Chapter 4
	Proof of Proposition 4.4
	Proof of Lemma 4.1

	Proofs of Chapter 5
	Proof of Lemma 5.1
	Proof of Theorem 5.1
	Proof of proposition 5.4

	Proofs of chapter 7
	Proof of corollary 7.1

	Proofs of chapter 8
	Proof of lemma 8.1
	Proof of theorem 8.1

	Sources for Figure 3.2
	Introduction (in French)
	Motivations
	Prouver la Sûreté
	Simulations
	Fonction Barrière
	Atteignabilité

	Plan de la Thèse

	Conclusion (in French)

	Bibliography
	Back Cover

