R. Bibliography, C. Alur, N. Courcoubetis, T. A. Halbwachs, P. Henzinger et al., The algorithmic analysis of hybrid systems, Theoretical Computer Science, vol.138, issue.1, pp.3-34, 1995.

[. Alur, C. Courcoubetis, T. A. Henzinger, and P. Ho, Hybrid automata: An algorithmic approach to the specification and verification of hybrid systems, Hybrid Systems, pp.209-229, 1993.
DOI : 10.1007/3-540-57318-6_30

E. Asarin, T. Dang, and A. Girard, Hybridization methods for the analysis of nonlinear systems, Acta Informatica, vol.12, issue.2, pp.451-476, 2007.
DOI : 10.1007/s00236-006-0035-7

URL : https://hal.archives-ouvertes.fr/hal-00157475

D. Avis and K. Fukuda, Reverse search for enumeration, Discrete Applied Mathematics, vol.65, issue.1-3, pp.21-46, 1996.
DOI : 10.1016/0166-218X(95)00026-N

[. Althoff, O. Stursberg, and M. Buss, Computing reachable sets of hybrid systems using a combination of zonotopes and polytopes. Nonlinear Analysis: Hybrid Systems, 2009.

S. Michael, M. M. Branicky, J. Curtiss, S. Levine, and . Morgan, Sampling-based planning, control and verification of hybrid systems, Control Theory and Applications IEE Proceedings, vol.153, issue.5, pp.575-590, 2006.

W. Bern and D. Eppstein, Optimization over Zonotopes and Training Support Vector Machines, Talk given at WADS. (Cited on page 105, 2001.
DOI : 10.1007/3-540-44634-6_11

URL : http://arxiv.org/abs/cs/0105017

A. Bhatia and E. Frazzoli, Incremental Search Methods for Reachability Analysis of Continuous and Hybrid Systems, Hybrid Systems: Computation and Control, pp.451-471, 2004.
DOI : 10.1007/978-3-540-24743-2_10

R. W. Blum, V. R. Floyd, R. L. Pratt, R. E. Rivest, and . Tarjan, Time bounds for selection, Journal of Computer and System Sciences, vol.7, issue.4, pp.448-461, 1973.
DOI : 10.1016/S0022-0000(73)80033-9

URL : http://doi.org/10.1016/s0022-0000(73)80033-9

A. Bemporad and M. Morari, Verification of Hybrid Systems via Mathematical Programming, Hybrid Systems: Computation and Control, pp.31-45, 1999.
DOI : 10.1007/3-540-48983-5_7

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.8317

D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar, Convex analysis and optimization, Athena Scientific, 2003.

[. Boyd and L. Vandenberghe, Convex optimization, 2004.

[. Balas and E. Zemel, An Algorithm for Large Zero-One Knapsack Problems, Operations Research, vol.28, issue.5, pp.1130-1154, 1980.
DOI : 10.1287/opre.28.5.1130

P. Cousot and R. Cousot, Abstract interpretation, Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages , POPL '77, pp.238-252, 1977.
DOI : 10.1145/512950.512973

URL : https://hal.archives-ouvertes.fr/inria-00528590

R. Clarisó and J. Cortadella, The Octahedron Abstract Domain, SAS, pp.312-327, 2004.
DOI : 10.1007/978-3-540-27864-1_23

E. M. Clarke, A. Donzé, and A. Legay, Statistical Model Checking of Mixed-Analog Circuits with an Application to a Third Order ????????????? Modulator, Haifa Verification Conference, pp.149-163
DOI : 10.1016/j.ic.2006.05.002

A. Chutinan, Hybrid System Verification Using Discrete Model Approximations, 1999.

[. Chutinan and B. H. Krogh, Computing polyhedral approximations to flow pipes for dynamic systems, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171), pp.2089-2094, 1998.
DOI : 10.1109/CDC.1998.758642

P. Luca, R. Carloni, A. Passerone, A. L. Pinto, and . Angiovanni-vincentelli, Languages and tools for hybrid systems design . Foundations and Trends in Electronic Design Automation, pp.1-193, 2006.

D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, Proceedings of the nineteenth annual ACM conference on Theory of computing , STOC '87, pp.251-280, 1990.
DOI : 10.1145/28395.28396

URL : http://doi.org/10.1016/s0747-7171(08)80013-2

T. Dang, Vérification et Synthèse des Systèmes Hybrides, 2000.

[. Dang, G. Frehse, A. Girard, and C. L. Guernic, Approches formelles des systèmes embarqués communicants, Chapitre Outils pour l'analyse des modèles hybrides. Traité IC2, série Informatique et systèmes d'information, Hermes Science, 2008.

T. Dang, C. L. Guernic, and O. Maler, Computing reachable states for nonlinear biological models, In Computational Methods in Systems Biology Lecture Notes in Bioinformatics, vol.5688, issue.133, pp.126-141, 2009.

A. Donzé and O. Maler, Systematic Simulation Using Sensitivity Analysis, Hybrid Systems: Computation and Control, pp.174-189, 2007.
DOI : 10.1007/978-3-540-71493-4_16

A. Fehnker and F. Ivancic, Benchmarks for Hybrid Systems Verification, Hybrid Systems: Computation and Control, pp.326-341, 2004.
DOI : 10.1007/978-3-540-24743-2_22

G. Frehse and . Phaver, Algorithmic Verification of Hybrid Systems Past HyTech, International Journal on Software Tools for Technology Transfer (STTT), vol.10, issue.125, p.124, 2008.

A. Girard, Analyse Algorithmique des Systèmes Hybrides, 2004.

A. Girard, Reachability of Uncertain Linear Systems Using Zonotopes, Hybrid Systems: Computation and Control, pp.291-305, 2005.
DOI : 10.1007/978-3-540-31954-2_19

URL : https://hal.archives-ouvertes.fr/hal-00307003

A. Girard and C. L. Guernic, Efficient Reachability Analysis for Linear Systems using Support Functions, IFAC World Congress, 2008.
DOI : 10.3182/20080706-5-KR-1001.01514

URL : https://hal.archives-ouvertes.fr/hal-00307009

A. Girard and C. L. Guernic, Zonotope/Hyperplane Intersection for Hybrid Systems Reachability Analysis, Hybrid Systems: Computation and Control, pp.215-228, 2008.
DOI : 10.1007/978-3-540-78929-1_16

URL : https://hal.archives-ouvertes.fr/hal-00306993

A. Girard, C. L. Guernic, and O. Maler, Efficient Computation of Reachable Sets of Linear Time-Invariant Systems with Inputs, Hybrid Systems: Computation and Control, pp.257-271, 2006.
DOI : 10.1007/11730637_21

URL : https://hal.archives-ouvertes.fr/hal-00171555

R. Mark, I. Greenstreet, and . Mitchell, Reachability analysis using polygonal projections, Hybrid Systems: Computation and Control, pp.103-116

L. J. Guibas, A. Nguyen, and L. Zhang, Zonotopes as bounding volumes, SODA '03: Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, pp.803-812, 2003.

A. Girard and G. J. Pappas, Verification Using Simulation, Hybrid Systems: Computation and Control, pp.272-286, 2006.
DOI : 10.1007/11730637_22

URL : https://hal.archives-ouvertes.fr/hal-00171538

Z. Han, Reachability Analysis of Continuous Dynamic Systems Using Dimension Reduction and Decomposition, p.48, 2005.

A. Thomas, P. W. Henzinger, and . Kopke, Anuj Puri, and Pravin Varaiya. What's decidable about hybrid automata?, Journal of Computer and System Sciences, vol.57, issue.1, pp.94-124, 1998.

]. R. Jar73 and . Jarvis, On the identification of the convex hull of a finite set of points in the plane, Information Processing Letters, vol.2, issue.1, pp.18-21, 1973.

M. Kloetzer and C. Belta, Reachability Analysis of Multi-affine Systems, Hybrid Systems: Computation and Control, pp.348-362, 2006.
DOI : 10.1007/11730637_27

M. Kvasnica, P. Grieder, and M. Baoti´cbaoti´c, Multi-Parametric Toolbox (MPT), 2004.
DOI : 10.1007/978-3-540-24743-2_30

M. Kvasnica, P. Grieder, M. Baoti´cbaoti´c, and M. Morari, Multi-Parametric Toolbox (MPT), Lecture Notes in Computer Science, vol.2993, pp.448-462, 2004.
DOI : 10.1007/978-3-540-24743-2_30

]. L. Kha79 and . Khachiyan, A polynomial algorithm in linear programming (in russian) Doklady Akademiaa Nauk USSR, pp.1093-1096, 1979.

[. Kiefer, Sequential minimax search for a maximum, Proceedings of the American Mathematical Society, vol.4, issue.3, pp.502-506, 1953.
DOI : 10.1090/S0002-9939-1953-0055639-3

J. Kapinski, B. H. Krogh, O. Maler, and O. Stursberg, On Systematic Simulation of Open Continuous Systems, Hybrid Systems: Computation and Control, pp.283-297, 2003.
DOI : 10.1007/3-540-36580-X_22

[. Kühn, Rigorously computed orbits of dynamical systems without the wrapping effect, Computing, vol.66, issue.Suppl, pp.47-68, 1998.
DOI : 10.1007/BF02684450

A. A. Kurzhanskiy and P. Varaiya, Ellipsoidal toolbox, pp.39-46, 2006.

[. , L. Guernic, and A. Girard, Reachability analysis of hybrid systems using support functions, CAV, pp.540-554, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00769527

[. , L. Guernic, and A. Girard, Reachability analysis of linear systems using support functions. Nonlinear Analysis: Hybrid Systems, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00765598

[. Lohner, Einschliessung der Lösung gewöhnlicher Anfangsund Randwertaufgaben und Anwendungen, 1988.

[. Maler and G. Batt, Approximating Continuous Systems by Timed Automata, Formal Methods in Systems Biology, p.129, 2008.
DOI : 10.1007/978-3-540-68413-8_6

A. Miné, The octagon abstract domain, Proc. of the Workshop on Analysis, Slicing, and Transformation (AST'01), IEEE, pp.310-319, 2001.

[. Maler, Z. Manna, and A. Pnueli, Prom timed to hybrid systems, Lecture Notes in Computer Science, vol.600, pp.447-484, 1991.
DOI : 10.1007/BFb0032003

R. E. Moore, Interval Analysis. Prentice-Hall Series in Automatic Computation, Englewood Cliffs N. J, 1966.

I. Mitchell and C. Tomlin, Level Set Methods for Computation in Hybrid Systems, Hybrid Systems: Computation and Control, pp.310-323
DOI : 10.1007/3-540-46430-1_27

M. E. Muller, A note on a method for generating points uniformly on n-dimensional spheres, Communications of the ACM, vol.2, issue.4, pp.19-20, 1959.
DOI : 10.1145/377939.377946

A. Neumaier, Taylor forms?use and limits, Reliable Computing, vol.9, issue.1, pp.43-79, 2003.
DOI : 10.1023/A:1023061927787

S. Prajna and A. Jadbabaie, Safety Verification of Hybrid Systems Using Barrier Certificates, Hybrid Systems: Computation and Control, pp.477-492, 2004.
DOI : 10.1007/978-3-540-24743-2_32

M. Rousset, Sommes de Minkowski de Triangles, 1996.
URL : https://hal.archives-ouvertes.fr/tel-00005017

[. Ros, A. Sabater, and F. Thomas, An ellipsoidal calculus based on propagation and fusion, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.32, issue.4, pp.430-442, 2002.
DOI : 10.1109/TSMCB.2002.1018763

R. [. Tyrrell-rockafellar and . Wets, Variational analysis, p.27, 1998.
DOI : 10.1007/978-3-642-02431-3

[. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics , Computer Vision, and Materials Science, 1999.

O. Stursberg and B. H. Krogh, Efficient Representation and Computation of Reachable Sets for Hybrid Systems, Hybrid Systems: Computation and Control, pp.482-497, 2003.
DOI : 10.1007/3-540-36580-X_35

[. Tiwary, On the Hardness of Computing Intersection, Union and??Minkowski Sum of Polytopes, Discrete & Computational Geometry, vol.3, issue.2, pp.469-479, 2008.
DOI : 10.1007/s00454-008-9097-3

J. Michael and . Todd, The many facets of linear programming, Mathematical Programming, vol.91, issue.3, pp.417-436, 2002.

[. Varaiya, Reach Set Computation Using Optimal Control, Proc. KIT Workshop on Verification of Hybrid Systems, p.51, 1998.
DOI : 10.1007/978-3-642-59615-5_15

C. Weibel, Minkowski Sums of Polytopes, 2007.

A. [. Yudin and . Nemirovski, Informational complexity and efficient methods for the solution of convex extremal problems (in russian). ´ Ekonomika i Matematicheskie metody, Matekon, vol.12, issue.132, pp.357-369, 1976.

[. Zaslavsky, Facing Up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes. Number 154 in Memoirs of the, p.34, 1975.

M. Günter and . Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, vol.152, 1995.

[. Zong, What is known about unit cubes. Bulletin (New Series) of the, pp.181-211, 2005.
DOI : 10.1090/s0273-0979-05-01050-5

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.307.9983