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Outline
Quantum transport/localization in disordered or chaotic systems

Anderson localization and the Anderson metal-insulator transition in
disordered media

The Kicked Rotor with cold atoms: a very practical tool for studying
Anderson localization

Experimental observation of the Anderson transition with the
quasiperiodic Kicked Rotor

Critical regime
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Anderson localization
and the Anderson metal-insulator transition

in disordered media
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Interplay between disorder and interference effects

Classical
Multiple scattering⇒ random walk⇒ at long times, large
distances: diffusive behavior

r

r’
`e

λ

`e/λ� 1: weak disorder

P(r , r ′) =
∣∣∣∑path i Ai

∣∣∣2
phase ∼ length of i th path/λ
if i 6= j uncorrelated phases?
P(r , r ′) =

∑
i AiA∗i +

∑
i 6=j AiA∗j

≈
∑

i AiA∗i

`e mean free path
λ wave length

Quantum with time-reversal symmetry

Coherent backscattering⇒ slows
down the diffusive behavior

Classical

Quantum
r’=r r’=r

AiA∗i
AiA∗j
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Essential features of Anderson localization

If return probability sufficiently strong⇒ can stop the diffusion =
Anderson localization
Return probability = highly dependent on the dimensionality
In 1D, always localized (∀ disorder amplitude !)
In 2D, localization length exponentially large for weak disorder⇒
marginally localized
In 3D, ANDERSON metal-insulator TRANSITION

At long times, large distances: P(r , r ′; t) ∼?

W disorder 
amplitude

localized phasediffusive phase

Wc

exp
[
− (r ′ − r)2

4Dt

]
D diffusion coefficient

exp
[
−2|r ′ − r |

`

]
` localization length
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The Anderson metal-insulator transition

A second-order continuous phase transition

At the threshold of the transition, no caracteristic quantity (length,
energy, ...) 6= first-order discontinuous transition (latent heat for
liquid-gaz transition)
` ∼ (W −Wc)−ν , W > Wc , localized
D ∼ (Wc −W )s, W < Wc , diffusive
s = ν critical exponents = universal (do not depend on
microscopic details)
Numerics: ν = 1.57± 0.02 [Slevin et al., PRL (1999)]

1/D `
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Experimental studies of the Anderson transition

Disordered solids
Relies on global transport measurements like conductance =
transmission⇒ localized phase: G(L) ∼ e−2L/`

!!! Interactions between electrons⇒ non-trivial effects
⇒ affect the critical behavior: ν ≈ 1

Classical waves in disordered media
Anderson localization = interference phenomenon
light, microwaves, acoustics, ... ⇒ no interactions
!!! Localization/Absorption = same signature on the transmission
= exponential decay
⇒ Statistics, temporal response, transverse localization
[Genack et al., PRL (1991); Wiersma et al., Nat. (1997); Störzer et al., PRL (2006); Hu et al.,

Nat. Phys. (2008)]

No reliable determination of the critical exponents
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Anderson localization with atomic matter waves

Cold atoms physics

Interference phenomena with atomic matter waves
Cooling and trapping methods⇒ very large coherence length
and λ of atomic matter waves
Manipulation with optical potentials
Watching the wavefunction

Cold atoms in a 1D disordered light potential

Dilute Bose-Einstein condensate⇒ negligible interactions
Speckle⇒ 1D disordered light potential
Observation of Anderson localization in 1D [Billy et al., Nat. (2008)]

No 2D/3D disordered light potential yet!

8 / 41



The Kicked Rotor with cold atoms: a very
practical tool for studying Anderson localization

9 / 41



The 1D periodically Kicked Rotor

H =
p2

2
+ K cos θ

∑
n δ(t − n)

Free evolution

! K
ic

k!
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Classical dynamics

Standard map

t
n n+1

pn+1 = pn + K sin θn
θn+1 = θn + pn+1

K stochasticity parameter
K � 1: pseudo-random (deterministic)
walk in momentum space with short
memory

Chaotic diffusion
On average: diffusion in momentum
space p
Assuming no correlations between
successive positions (K � 1):
〈p2

n+1〉 ≈ 〈p2
n〉+K 2〈sin2 θn〉 ≈ 〈p2

n〉+K 2/2

Diffusion constant: D = K 2/2

t = 1000p

θ
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Quantum dynamics vs. Classical dynamics

Interplay between chaos and interference effects

Start from an initially peaked state⇒ Chaotic diffusive
expansion?
t > t`, dynamical localization [G. Casati et al., Springer (1979)]

〈p2〉

|ψ(p, t)|2

(log scale)

t
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Quantum dynamics vs. Classical dynamics

Interplay between chaos and interference effects

Quantum localization (due to interference effects) in the
presence of chaos (disorder)
Dynamical localization = Anderson localization?

〈p2〉

|ψ(p, t)|2

(log scale)

t

At long times t = 103 � t`, large distances
Quantum

∼ exp
[
−2|p|
`

]Classical

∼ exp
[
−p2

4Dt

]

〈p2〉 ∼ `2〈p2〉 ∼ Dt
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The Kicked Rotor: a 1D pseudo-disordered system

Quantum dynamics

Evolution operator:
Û = ÛfreeÛkick = e−i p̂2/2~e−iK cos θ̂/~

ki
ck free

evolution

2π periodicity in θ ⇒ discrete momentum basis |p = ~l〉

Evolution operator = pseudo-random banded matrix

Evolution operator in the discrete momentum basis:(
Uβ l,l′

)
=
(

e−i~l2/2δl,l′
)
×
(

i l
′−lJl′−l (K/~)

)
~/π irrational⇒ φl = ~ l2

2 modulo [2π] = pseudo-random phases
Jl′−l (K/~) = Bessel function 6= 0 for |l ′ − l | . K/~⇒ hopping
amplitudes controlled by K/~
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The Kicked Rotor: a 1D pseudo-disordered system (2)

Kicked Rotor ≡ 1D Anderson-like model [Fishman et al., PRL (1982)]

Vl al +
∑

l′ 6=0 tl′ al−l′ = −t0 al

Pseudo-random on-site energies Vl = tan
[ 1

2 (ω − l2~/2)
]

Hopping amplitudes tl′ increase with K/~

Other rigorous arguments supporting the equivalence:
dynamical localization in the 1D Kicked Rotor
= Anderson localization in 1D disordered systems

Diagrammatic approach
Self-consistent theory
Supersymmetry
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Quasi-periodicity and effective dimensionality

The quasiperiodic Kicked Rotor [Shepelyansky, Phys. D (1987)]

Hqp =
p̂2

2
+K(t) cos θ̂

∑
n δ(t − n)

quasi-periodic modulation with two new frequencies, ε
modulation amplitude:
K(t) = K [1 + ε cos (ω2t + ϕ2) cos (ω3t + ϕ3)]

K(t)
t

dynamics strictly identical to that of a 3D Kicked pseudo-Rotor

H3 =
p1

2

2
+ω2p2 +ω3p3 + K cos θ1 [1 + ε cos θ2 cos θ3]

∑
n δ(t−n)

with transverse kinetic energy linear in momentum and initial
condition taken as a plane source
ψ3(θ1, θ2, θ3; t = 0) = ψqp(θ1, t = 0)δ(θ2 − ϕ2)δ(θ3 − ϕ3)

p2

p1pl
an

e 
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Quasi-periodicity and effective dimensionality (2)

Diffusive classical dynamics in all 3 directions, anisotropy driven by ε
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Floquet states of the 3D Kicked “Rotor” in a 3D Anderson-like model

On-site energies Vl = tan
[ 1

2

(
ω − ~l21/2 + ω2l2 + ω3l3

)]
(~, ω2, ω3, π) incommensurate quadruplet⇒ pseudo-random

Numerical observation of the Anderson transition [Casati et al., PRL 62, 345

(1989)]

at very long time (t ≈ 106) transition from localized to diffusive
distribution for K > Kc
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Experimental observation
of the Anderson transition with the quasiperiodic

Kicked Rotor
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Experimental realization with cold atoms [Moore et al., PRL (1995)]
Quantum chaos group of PHLAM laboratory, Lille: JC Garreau, P Szriftgiser, J Chabé, H Lignier

Thermal distribution (MOT)

few recoils
no interactions

1D quantum dynamics using the external
motion of cold atoms

Quasi-resonant laser field ωL = ω0 + ∆L
⇒ light-shift⇒ effective potential
With a standing wave (Ω: Rabi
frequency):

Ĥ =
P̂2

2M
+

~Ω2

8∆L
cos

(
2kLX̂

)
f (t)

Temporal modulation of the laser
intensity (with δ-kicks)⇒ Kicked Rotor
with ~ = 8ωRT1 (ωR : atomic recoil
frequency, T1: kicking period)

t

temporal forcing

Watching the wave-function

time of flight
velocity selective
Raman technique
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Limitations of the experimental setup

Limitations
Atoms fall down out of the standing wave because of
gravitational field⇒ 150 kicks maximum

Decoherence effects: condition t � τφ

Already known:
Atomic collisions between cold atoms⇒ τφ ≈ 600 kicks
Spontaneous emission⇒ gives a random recoil⇒ breaks
phase-coherence of the atomic wave function⇒ τφ ≈ 500 kicks

New:
Deviation of the standing wave from strict horizontality (angle α)
⇒ residual gravitational field along the laser axis⇒ non-trivial
deterministic “decoherence” effect⇒ α < 0.1◦ ⇒ τφ > 350 kicks.
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Experimental observation of localized/diffusive
dynamics

Kick strength
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Finite-time limitations on a continuous transition
How to determine Kc at 150 kicks? seems easier at long times!

for t � t` not yet localized (≈ “not yet diffusive” distribution) but t`
diverges at the transition
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K
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How to unambiguously identify the transition?

What characterizes the criticality?

No caracteristic time⇒ algebraic dependence of 〈p2〉 ∼ tγ

〈p2〉

|Ψ(p)|2

(log scale)

Time t (number of kicks)

K=9
diffusive
regime
〈p2〉 ∼ Dt

K = Kc
critical
regime

K=4
localized
regime
〈p2〉 ∼ `2
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How to unambiguously identify the transition?

What characterizes the criticality?

Algebraic dependence of 〈p2〉 ∼ tγ , i.e. anomalous diffusion

〈p2〉

|Ψ(p)|2

(log scale)

Time t (number of kicks)

K=9
diffusive
regime
〈p2〉 ∼ Dt

K = Kc
critical
regime

K=4
localized
regime
〈p2〉 ∼ `2
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Scaling law in the vicinity of the Anderson transition

Characteristic lengths

Localization length diverges at Kc
−: ` ∼ (Kc − K )−ν

Diffusion constant vanishes at Kc
+: D ∼ (K − Kc)ν

Continuous phase transition

Unified description of the localized and diffusive regimes
One parameter scaling hypothesis when K ' Kc and at long
times: 〈p2〉 ∼ tγF

[
(K − Kc) tk2

]
When t →∞ we must recover:

a localized behavior for K < Kc : γ − 2νk2 = 0
a diffusive behavior for K > Kc : γ + νk2 = 1

⇒ γ = 2/3 and k2 = 1/3ν

Scaling hypothesis

〈p2〉 ∼ t2/3F
[
(K − Kc) t1/3ν

]
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Critical anomalous diffusion

〈p2〉 ∼ t2/3 F
ˆ
(K − Kc) t1/3ν˜

⇒ 〈p2〉 ∼ t2/3 at K = Kc
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fit: slope ≈ 0.664
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slope 0
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Critical anomalous diffusion: experimental observation
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Rescaled dynamics: Λ = 〈p2〉/t2/3
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Finite-size scaling [Pichard et al., J. Phys. C (1981); MacKinnon et al., PRL (1981)]

Finite-time scaling

Directly transpose the ideas of finite-size scaling (in usual
configuration space) to the temporal dynamics of the Kicked Rotor
⇒ overcome the finite-time limitation⇒ determine ` for t →∞
⇒ determination of the critical exponents ν = s: ` ∼ |Kc − K |−ν

How to verify the scaling hypothesis 〈p2〉 ∼ t2/3F
[
(K − Kc) t1/3ν

]
?

More general scaling hypothesis:
Existence of ξ(K ) scaling parameter depending only on K such

that Λ =
〈p2〉
t2/3 = F

[
ξ(K )

t1/3

]
?

ξ(K ) unknown
Scaling function F unknown
We can determine both! Does ξ(K ) ∼ |Kc − K |−ν?
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Finite-time scaling

Existence of ξ(K ) such that: Λ = 〈p2〉
t2/3 = F

[
ξ(K )
t1/3

]
?

The “displacement” is ln ξ(K )ln Λ = ln
〈p2〉
t2/3

ln(1/t1/3) ln
(
ξ(K )/t1/3

)
K

diffusive

critical ln ξ(K )

lo
ca

liz
ed
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Finite-time scaling analysis of numerical results

Scaling function F

Λ(K , t) =
〈p2〉
t2/3 ∼ F

[
ξ(K )

t1/3

]

Scaling parameter ξ

ξ ∼ ` for K < Kc

ξ ∼ 1/D for K > Kc

4 5 6 7 8 9
0

2000

4000

K

ξ

well fitted by: ξ ∼ |K − Kc |−ν

Critical point: Kc ' 6.4
Critical exponent: ν ' 1.6± 0.2
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Finite-time scaling analysis of experimental results

Scaling function F
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Experimental determination of the critical exponent ν

1/ξ = α|K − Kc |ν + β

β accounts for experimental imperfections
Critical point: Kc ' 6.4
Critical exponent: ν ' 1.4± 0.3
Excellent agreement with numerics (no adjustable parameter)
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Does the quasiperiodic Kicked Rotor have the same
critical behavior as the 3D Anderson model?

Universality of the Anderson transition
[Slevin et al., PRL (1997); Slevin et al., PRL (1999)]

Critical exponents should be universal, i.e. not depend on
microscopic details but only on the symmetries of the system
3D Anderson model belongs to the orthogonal universality class
(time-reversal symmetry): ν = 1.57± 0.02
Unitary class when the time-reversal symmetry is broken (e.g.
magnetic field): ν = 1.43± 0.04

Universality class of the quasiperiodic Kicked Rotor?

Kicked Rotor = time-reversal symmetric⇒ orthogonal
Microscopic details of the quasiperiodic Kicked Rotor controlled
by (~, ω2, ω3, π) (incommensurate):
Vl = tan

[ 1
2

(
ω − ~l21/2 + ω2l2 + ω3l3

)]
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YES! The quasiperiodic Kicked Rotor has the same
critical behavior as the 3D Anderson model.

~ ω2 ω3 K ε

A 2.85 2π
√

5 2π
√

13 6.24→ 6.58 0.413→ 0.462
B 2.85 2π

√
7 2π

√
17 5.49→ 5.57 0.499→ 0.514

C 2.2516 1/η 1/η2 4.98→ 5.05 0.423→ 0.436
D 3.5399 ~/η ~/η2 7.9→ 8.3 0.425→ 0.485

Table: The four sets of parameters considered: ~, ω2 and ω3 control the
microscopic details of the disorder, while ε drives the anisotropy of the
hopping amplitudes. η = 1.324717...

Kc ln Λc ν y
A 6.36± 0.02 1.60± 0.04 1.58± 0.01 0.71± 0.28
B 5.53± 0.03 1.08± 0.09 1.60± 0.03 0.33± 0.30
C 5.00± 0.03 1.19± 0.15 1.60± 0.02 0.23± 0.29
D 8.09± 0.01 1.64± 0.03 1.59± 0.01 0.43± 0.23
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Critical regime
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Predictions of the self-consistent theory

Self-consistent theory for the quasi-periodic Kicked Rotor

D(ω) = D − 2D(ω)

∫
d3Φ

(2π)3
1

−iω + D(ω)Φ2

Anisotropy⇒ diffusion tensor
f (ϕ) = plane source = δ(ϕ2 = 0)δ(ϕ3 = 0)

|ψ(p, t)|2 =

∫
dω
2π

e−iωt
∫

d3ϕ

(2π)3 eiϕ·p f (ϕ)

−iω + D(ω)ϕ2

Anderson transition with ν = 1⇒ fluctuations are not taken into
account
At criticality: D(ω) ∼

ω→0
ω1/3, thus 〈p2〉 ∼ t2/3

Analytic prediction for the critical wave function

t1/3|ψ(p, t)|2 = G(pt−1/3)

with G(x) = 3
2

(
3ρ3/2

)−1/3
Ai
[(

3ρ3/2
)−1/3 |x |

]
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Scale invariance of the critical wave function

-1500 -1000 -500 0 500 1000 150010
-8

10
-6

10
-4

10
-2

10
0

|Ψ(p, t)|2

p
-20 -10 0 10 2010
-8

10
-6

10
-4

10
-2

10
0

t1/3|Ψ(p, t)|2

pt−1/3

Scaling t1/3|ψ(p, t)|2 = G(pt−1/3)?

Rescaling of all critical wave functions for t from t = 103 to t = 106!
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Confrontation with numerics
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G(x) = 3
2

(
3ρ3/2

)−1/3
Ai
[(

3ρ3/2
)−1/3 |x |

]
?

YES! No adjustable parameter: ρ =
Γ(2/3)

3
Λc

deviations at p ≈ 0⇒ multifractality ≡ fluctuations (not taken into
account in the self-consistent theory)

38 / 41



Confrontation with the experimental results
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YES! No adjustable parameter
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Conclusion

First experimental observation of the Anderson transition with atomic
matter waves (Chabé et al., 2008; Lemarié et al., 2009)

Full characterization of the transition
Finite-Time scaling to overcome the experimental limitations
First experimental unambiguous determination of the critical
exponent ν ' 1.4± 0.3 ' νAnderson = 1.57± 0.02
New data: ν ' 1.5± 0.2

Universality of the Anderson transition with the quasiperiodic Kicked
Rotor (Lemarié et al., 2009)

The quasiperiodic Kicked Rotor belongs to the same universality
class as for the Anderson model: ν = 1.59± 0.01 = νAnderson

Critical wave function
Analytical prediction for the critical wave-function from the
self-consistent theory
Very good agreement with numerical data and experimental data
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Perspectives

The Anderson transition in 4D and 2D
Quasi-periodic modulation with 3 frequencies or 1 frequency
Critical exponent in 4D? Critical dimension?

Symmetries

Possibility to break the Time-Reversal Symmetry! ≡ effective
magnetic field
⇒ Anderson localization and transition in the Unitary class

Interactions
Kicked Rotor with BEC
Interactions controlled by Feshbach resonances
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