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Outline

Quantum transport/localization in disordered or chaotic systems

Anderson localization and the Anderson metal-insulator transition in
disordered media

The Kicked Rotor with cold atoms: a very practical tool for studying
Anderson localization

Experimental observation of the Anderson transition with the
quasiperiodic Kicked Rotor

Critical regime
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Anderson localization

and the Anderson metal-insulator transition
in disordered media
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Interplay between disorder and interference effects

Classical

@ Multiple scattering = random walk = at long times, large
distances: diffusive behavior

N le mean free path
A wave length

¥

Quantum with time-reversal symmetry

@ Coherent backscattering = sIowsJ
;

down the diffusive behavior
Lo/ X > 1: weak disorder

° P l’ I' ‘Zpath/'A/ .
s Classical
@ phase ~ length of i" path/\ v
@ if i # j uncorrelated phases? 1 ’
® P(r,r') = AiAT + 31y AiA}
~ Yo AiAT




Essential features of Anderson localization

@ If return probability sufficiently strong = can stop the diffusion =
Anderson localization

@ Return probability = highly dependent on the dimensionality
@ In 1D, always localized (V disorder amplitude !)

@ In 2D, localization length exponentially large for weak disorder =
marginally localized

e In 3D, ANDERSON metal-insulator TRANSITION

At long times, large distances: P(r,r';t) ~7?

ox (r—r)? ox —2|r —r|
S YT Pl
D diffusion coefficient ¢ localization length
diffusive phase localized phase .
P P » W disorder
W amplitude
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The Anderson metal-insulator transition

A second-order continuous phase transition

@ At the threshold of the transition, no caracteristic quantity (length,

energy, ...) # first-order discontinuous transition (latent heat for
liquid-gaz transition)

@/~ (W-—-W,)", W> W, localized
@ D~ (W, - W)s, W< W,, diffusive

@ s = v critical exponents = universal (do not depend on
microscopic details)

Numerics: v = 1.57 = 0.02 [Slevin et al., PRL (1999)]

.
-0-...___.__
P Kl i

~

(

1/D
I

diffusive phase | localized phase
T

» W disorder
W, amplitude




Experimental studies of the Anderson transition

Disordered solids

Relies on global transport measurements like conductance =
transmission = localized phase: G(L) ~ e~24/¢

Il Interactions between electrons = non-trivial effects

= affect the critical behavior: v ~ 1

Classical waves in disordered media

Anderson localization = interference phenomenon
light, microwaves, acoustics, ... = no interactions

III' Localization/Absorption = same signature on the transmission
= exponential decay

= Statistics, temporal response, transverse localization

[Genack et al., PRL (1991); Wiersma et al., Nat. (1997); Stérzer et al., PRL (2006); Hu et al.,
Nat. Phys. (2008)]

No reliable determination of the critical exponents




Anderson localization with atomic matter waves

Cold atoms physics
@ Interference phenomena with atomic matter waves

@ Cooling and trapping methods =- very large coherence length
and )\ of atomic matter waves

@ Manipulation with optical potentials
@ Watching the wavefunction

Cold atoms in a 1D disordered light potential
@ Dilute Bose-Einstein condensate = negligible interactions
@ Speckle = 1D disordered light potential
@ Observation of Anderson localization in 1D {Billy et al., Nat. (2008)]
@ No 2D/3D disordered light potential yet!
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The Kicked Rotor with cold atoms: a very
practical tool for studying Anderson localization

J
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The 1D periodically Kicked Rotor
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Classical dynamics

Standard map

pALAAAGAN

n n+l
Pni1 = Pn+ Ksinf,
Hn 1= Hn + Pn+1

@ K stochasticity parameter

@ K > 1: pseudo-random (deterministic)
walk in momentum space with short
memory

Chaotic diffusion
@ On average: diffusion in momentum
space p
@ Assuming no correlations between
successive positions (é( > 1):
(P341) = (PR)+K?(sin® 0,) =~ (ph)+K?/2
@ Diffusion constant: D = K2/2
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Quantum dynamics vs. Classical dynamics

Interplay between chaos and interference effects
@ Start from an initially peaked state = Chaotic diffusive
expansion?
@ t > ty, dynamical localization [G. Casati et al., Springer (1979)]
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Quantum dynamics vs. Classical dynamics

Interplay between chaos and interference effects
@ Quantum localization (due to interference effects) in the
presence of chaos (disorder)
@ Dynamical localization = Anderson localization?

LAt Iong times t = 103 > te, Iarge dlstances
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The Kicked Rotor: a 1D pseudo-disordered system

Quantum dynamics

free
evolution

@ Evolution operator
U Ufree Uk\ck — e~ ip? /2he iK cos 6/h

@ 27 periodicity in § = discrete momentum basis |p = h/)

Evolution operator = pseudo-random banded matrix
@ Evolution operator in the discrete momentum basis:

<Uﬂ/’//) _ (efihﬁ/z(;/’/,) % (i/’—/J// /(K//z)>

@ 7/ irrational = ¢, = hg modulo [27] = pseudo-random phases
@ Jy_(K/h) = Bessel function # 0 for |I' — I| < K/h = hopping
amplitudes controlled by K/h
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The Kicked Rotor: a 1D pseudo-disordered system (2)

Kicked Rotor = 1D Anderson-like model [Fishman et al., PRL (1982)]
Viar+2 0l @-r=-ba

@ Pseudo-random on-site energies V; = tan [}(w — [P7/2)]
@ Hopping amplitudes /. increase with K/

Other rigorous arguments supporting the equivalence:

dynamical localization in the 1D Kicked Rotor
= Anderson localization in 1D disordered systems

@ Diagrammatic approach
@ Self-consistent theory
@ Supersymmetry
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Quasi-periodicity and effective dimensionality

The quasiperiodic Kicked Rotor [Shepelyansky, Phys. D (1987)]

~

2
ik — % + K(t)cosb>,0(t—n)
@ quasi-periodic modulation with two new frequencies, e
modulation amplitude:
K(t) = K[1 +eccos (wat + ¢2) cos (wst + 3)]

O T T A YA O o T s MR

@ dynamics strictly identical to that of a 3D Kicked pseudo-Rotor

2
H; = %+wzp2+w3p3+Kcoso1 [1+ecosbacosbs]) ,6(t—n)

with transverse kinetic energy linear in momentum and initial
condition taken as a plane source
Y3(01,02,03;t = 0) = 1hqp(01,t = 0)5(02 — ©2)d(03 — ¢3)
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Quasi-periodicity and effective dimensionality (2)

Diffusive classical dynamics in all 3 directions, anisotropy driven by &
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Floquet states of the 3D Kicked “Rotor” in a 3D Anderson-like model

@ On-site energies V; = tan [} (w — k22 + walo + w3ks) ]
(B, wo,ws, ) incommensurate quadruplet = pseudo-random

Numerical observation of the Anderson transition [Casati et al., PRL 62, 345
(1989)]

@ at very long time (t ~ 108) transition from localized to diffusive
distribution for K > K.
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Experimental observation
of the Anderson transition with the quasiperiodic
Kicked Rotor
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Experimental realization with cold atoms moore etat. prL (1995);
Quantum chaos group of PHLAM laboratory, Lille: JC Garreau, P Szriftgiser, J Chabé, H Lignier

Thermal distribution (MOT)

@ few recoils J\N\/\/L @ *V'\AAN\

@ no interactions Evexp (itkr-oun)) 5T Egexp(~itkx + wp)

1D quantum dynamics using the external
motion of cold atoms

@ Quasi-resonant laser field w; = wg + A;
= light-shift = effective potential

@ With a standing wave (Q2: Rabi temporal forcing
frequency): | | | | | | | | t
. P2 n0? o
H=—— +——cos (2ka) £(t)
2M  8A; : .
; Watching the wave-function
@ Temporal modulation of the laser _ .
intensity (with 6-kicks) = Kicked Rotor @ time of flight
with i = 8wg Ty (wg: atomic recoil @ velocity selective

frequency, Ti: kicking period) Raman technique
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Limitations of the experimental setup

Limitations

@ Atoms fall down out of the standing wave because of
gravitational field = 150 kicks maximum

Decoherence effects: condition t <« 7
Already known:
@ Atomic collisions between cold atoms = 7, ~ 600 kicks

@ Spontaneous emission = gives a random recoil = breaks
phase-coherence of the atomic wave function = 7, ~ 500 kicks
New:
@ Deviation of the standing wave from strict horizontality (angle «)
= residual gravitational field along the laser axis = non-trivial
deterministic “decoherence” effect = oo < 0.1° = 7, > 350 Kicks.

v
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Experimental observation of localized/diffusive
dynamics
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Finite-time limitations on a continuous transition

How to determine K. at 150 kicks? seems easier at long times!

@ for t <« t, not yet localized (= “not yet diffusive” distribution) but f,
diverges at the transition

Ec
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How to unambiguously identify the transition?

What characterizes the criticality?
@ No caracteristic time = algebraic dependence of (p?) ~ t” J
K=9
o diffusive
W(p)P? regime
2 ~Y
(log scale) (p%) ~ Dt
w0t
K =K.
500 -400 -300 -200 -100 0 100 200 300 400 500 Criti.Cal
Momentum regime
xw‘
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L) w
2000 2 K=4
“ . 1 localized
20 regime
y a 2 2
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Time t (number of kicks)
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How to unambiguously identify the transition?

What characterizes the criticality?
@ Algebraic dependence of (p?) ~ t7, i.e. anomalous diffusion J
K=9
o diffusive
(o) B s regime
2 ~Y
(log scale) (%) ~ Dt
10°F
K =K.
00 3I‘JIJ 200 -100 EI| 100 200 3IIJIJ 400 500 Cr|t|Ca|
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Scaling law in the vicinity of the Anderson transition

Characteristic lengths

@ Localization length diverges at Kz : £ ~ (K; — K)™*
@ Diffusion constant vanishes at K;": D ~ (K — K;)”

Continuous phase transition
@ Unified description of the localized and diffusive regimes
@ One parameter scaling hypothesis when K ~ K; and at long
times: (p?) ~ t'F [(K — K;) tk]

@ When t — oo we must recover:
@ a localized behavior for K < K;: v — 2vk, = 0
e a diffusive behavior for K > Ki: v + vko = 1

@ =~y=2/3and kp =1/3v

Scaling hypothesis
(P?) ~ BPF (K - Ko) £/ J

25/41



Critical anomalous diffusion

@ () ~ P F[(K—Ko) t1/3] = (p?) ~ 2% at K = K; )
105 IR R BRI | T E
- diffusive regime 1 critical regime
S - — slope 1 1 Vtslope 2/3
@ 104- t—o0 fit: slope ~ 0.664
(@)
o
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Critical anomalous diffusion: experimental observation
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anomalous diffusion: (p?) ~ t2/3




Rescaled dynamics: A = (p?)/t2/3

. ime
. diftusive 19"
K/? slope ! 3
t/H)O
L | T ™ R | rorrTT
v |
/ 1k = K.
2// critical regime
<p2> N\ = cste
INA =1In 27 _\ scale invariance
OF -

Time t (number of kicks)

28/41



Finite-size scaling ipichard etal. J. Phys. ¢ (1981); Mackinnon et al., PRL (1981)]

Finite-time scaling

Directly transpose the ideas of finite-size scaling (in usual
configuration space) to the temporal dynamics of the Kicked Rotor
=- overcome the finite-time limitation = determine ¢ for t — oo

= determination of the critical exponents v = s: ¢ ~ |K; — K|

How to verify the scaling hypothesis (p?) ~ t2/3F [(K — K) t'/3]?

@ More general scaling hypothesis:
@ Existence of £(K) scaling parameter depending only on K such

P &K
watn— &) - [,

@ £(K) unknown
@ Scaling function F unknown
@ We can determine both! Does ¢(K) ~ |K; — K|=*?
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Finite-time scaling

o Existence of ¢(K) such that: A = &) — F [5[5—/'2} ? J
inA — in $P°) The “displacement” is In£(K)
t2/3
) 7 T
7%
%S |
sl
critical A In&£(K)
gL
2}
&
.\\N 1F
>
(@)
9 :
0 2 4 4 6 8

In (£(K)/t1/73) K
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Finite-time scaling analysis of numerical results

Scaling parameter &
@ {~(for K < K

Scaling function F o ~1/Dfor K> K,

(P?) £(K) 4000 :

ANK,t) = 5 ~F |5 i

%

5 & 2000

|

S 0 i

h 4 5 6 7 8 9

K

-5
_2 ,

Oln@iygf 6 o well fitted by: £ ~ |[K — K;|7*

’ @ Critical point: K; ~ 6.4
@ Critical exponent: v ~ 1.6 0.2

31/41



Finite-time scaling analysis of experimental results

Scaling function F Scaling parameter &

6 40
30 R
w20 o e
ey,
10fppeee™™" LN
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In(E/t) K

Experimental determination of the critical exponent v
0 1/§=a|lK - K|V + 5
@ [ accounts for experimental imperfections
°
@ Critical exponent: v ~ 1.4 +0.3
@ Excellent agreement with numerics (no adjustable parameter)

v
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Does the quasiperiodic Kicked Rotor have the same
critical behavior as the 3D Anderson model?

Universality of the Anderson transition
[Slevin et al., PRL (1997); Slevin et al., PRL (1999)]

@ Critical exponents should be universal, i.e. not depend on
microscopic details but only on the symmetries of the system

@ 3D Anderson model belongs to the orthogonal universality class
(time-reversal symmetry): v = 1.57 £ 0.02

@ Unitary class when the time-reversal symmetry is broken (e.g.
magnetic field): » = 1.43 £ 0.04

Universality class of the quasiperiodic Kicked Rotor?
@ Kicked Rotor = time-reversal symmetric = orthogonal

@ Microscopic details of the quasiperiodic Kicked Rotor controlled
by (%, ws,ws, ) (incommensurate):
VYV =tan [% (w = h/12/2 + wob + W3/3)]
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YES! The quasiperiodic Kicked Rotor has the same

critical behavior as the 3D Anderson model.

| h | w | ws | K | e
Al 285 | 275 | 27v/13 | 6.24 — 6.58 | 0.413 — 0.462
B|l 285 |27 | 2rV17 | 549 — 557 | 0.499 — 0.514
c |[22516 | 1/n 1/n7 | 498 —5.05 | 0.423 — 0.436
D |[ 35399 | n/n h/n? 7983 | 0.425—-0.485

Table: The four sets of parameters considered: i, w, and w3 control the
microscopic details of the disorder, while ¢ drives the anisotropy of the
hopping amplitudes. n = 1.324717...

| K | A | v |y
A [ 6.36£0.02 | 1.60 £ 0.04 | 158 + 0.01 [ 0.71 £ 0.28
B || 553003 | 1.08 £0.09 | 1.60 - 0.03 | 0.33 £ 0.30
C || 5.00+£003 | 1.19+0.15 | 1.60 1 0.02 | 0.23 £ 0.29
D [ 809001 | 164003 | 159 1 0.01 | 043023
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Critical regime |
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Predictions of the self-consistent theory

Self-consistent theory for the quasi-periodic Kicked Rotor
3<b 1
D(w) = D — 2D(w) / d

—iw + D(w)®?
@ Anisotropy = diffusion tensor
@ f(p) = plane source = 6(p2 = 0)d(p3 = 0)

f
N

@ Anderson transition with » = 1 = fluctuations are not taken into
account

@ Atcriticality: D(w) ~ w'/3,thus (p?) ~ 3/3

w—

Analytic prediction for the critical wave function
134 (p, )2 = G(pt~1?)

with G(x) = § (30%/2) ™""* i [(352) " ]|

36
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Scale invariance of the critical wave function

W(p, t)]? t'/3|w(p, t)[2
10’ ‘ ‘ : : ‘ W
] R N\
10%F 1 10% f’ \_‘} B
y \
E E E N,
10°F 1 10%F / \ 1
E E E .’
10° / 1 10% A,,f \ ]
10° 3560"-1000" 500 6 50 100 1800 ¥20 o 0 10w
pt—1/3
Scaling 1/3[y(p, t)]2 = G(pt~"/2)?
Rescaling of all critical wave functions for t from t = 10° to t = 108! J
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Confrontation with numerics

2
|W(p,t=10°)]
10° w w w 0.4
10°F 1 o03F £
10°F 1 o2k E
10°F 1 o1 ]
1078 L L 0 I I I
-20 -10 0 10 20 10 0 10
p p

o0 = @) [07) ]

@ YES! No adjustable parameter: p = @Ac

@ deviations at p ~ 0 = multifractality = fluctuations (not taken into
account in the self-consistent theory)
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Confrontation with the experimental results

|W(p, t = 150)[2
0.07
0.06}
0.05¢
0.04F

G(x) =3 (35%2) " * Ai [ (30%2) 7 IxI] 2
YES! No adjustable parameter
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Conclusion

First experimental observation of the Anderson transition with atomic
matter waves (Chabé et al., 2008; Lemarié et al., 2009)

Full characterization of the transition
@ Finite-Time scaling to overcome the experimental limitations

@ First experimental unambiguous determination of the critical
exponent v ~ 1.4 + 0.3 ~ vanderson = 1.57 £ 0.02
New data: v ~1.5+0.2

Universality of the Anderson transition with the quasiperiodic Kicked
Rotor (Lemarié et al., 2009)

@ The quasiperiodic Kicked Rotor belongs to the same universality
class as for the Anderson model: v = 1.59 4+ 0.01 = vanderson

Critical wave function

@ Analytical prediction for the critical wave-function from the
self-consistent theory

@ Very good agreement with numerical data and experimental data

v
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Perspectives

The Anderson transition in 4D and 2D
@ Quasi-periodic modulation with 3 frequencies or 1 frequency
@ Critical exponent in 4D? Critical dimension?

Symmetries

@ Possibility to break the Time-Reversal Symmetry! = effective
magnetic field

@ = Anderson localization and transition in the Unitary class

Interactions
@ Kicked Rotor with BEC
@ Interactions controlled by Feshbach resonances
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