The Anderson Transition
 with Atomic Matter Waves

Dominique Delande

Laboratoire Kastler-Brossel Université Pierre et Marie Curie and Ecole Normale Supérieure (Paris)

Jean-Claude Garreau

Hans Lignier

Pascal Szriftgiser

Julien Chabé

Laboratoire PHLAM Université de Lille

Outline

Quantum transport/localization in disordered or chaotic systems

Anderson localization and the Anderson metal-insulator transition in disordered media

The Kicked Rotor with cold atoms: a very practical tool for studying Anderson localization

Experimental observation of the Anderson transition with the quasiperiodic Kicked Rotor

Critical regime

Anderson localization and the Anderson metal-insulator transition in disordered media

Interplay between disorder and interference effects

Classical

- Multiple scattering \Rightarrow random walk \Rightarrow at long times, large distances: diffusive behavior

ℓ_{e} mean free path
λ wave length

Quantum with time-reversal symmetry

- Coherent backscattering \Rightarrow slows down the diffusive behavior
$\ell_{e} / \lambda \gg 1$: weak disorder
- $P\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=\left|\sum_{\text {path } i} \mathcal{A}_{i}\right|^{2}$
- phase \sim length of $i^{\text {th }}$ path $/ \lambda$
- if $i \neq j$ uncorrelated phases?
- $P\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=\sum_{i} \mathcal{A}_{i} \mathcal{A}_{i}^{*}+\sum_{i \neq j} \mathcal{A}_{i} \mathcal{A}_{j}^{*}$ $\approx \sum_{i} \mathcal{A}_{i} \mathcal{A}_{i}^{*}$

Essential features of Anderson localization

- If return probability sufficiently strong \Rightarrow can stop the diffusion $=$ Anderson localization
- Return probability = highly dependent on the dimensionality
- In 1D, always localized (\forall disorder amplitude !)
- In 2D, localization length exponentially large for weak disorder \Rightarrow marginally localized
- In 3D, Anderson metal-insulator transition

At long times, large distances: $P\left(\boldsymbol{r}, \boldsymbol{r}^{\prime} ; t\right) \sim$?
$\exp \left[-\frac{\left(\boldsymbol{r}^{\prime}-\boldsymbol{r}\right)^{2}}{4 D t}\right]$
D diffusion coefficient
diffusive phase
localized phase \rightarrow W disorder \rightarrow W disorder
ℓ localization length

The Anderson metal-insulator transition

A second-order continuous phase transition

- At the threshold of the transition, no caracteristic quantity (length, energy, ...) \neq first-order discontinuous transition (latent heat for liquid-gaz transition)
- $\ell \sim\left(W-W_{c}\right)^{-\nu}, W>W_{c}$, localized
- $D \sim\left(W_{c}-W\right)^{s}, W<W_{c}$, diffusive
- $s=\nu$ critical exponents = universal (do not depend on microscopic details)
Numerics: $\nu=1.57 \pm 0.02$ [Slevin et al., PRL (1999)]

Experimental studies of the Anderson transition

Disordered solids

- Relies on global transport measurements like conductance $=$ transmission \Rightarrow localized phase: $G(L) \sim e^{-2 L / \ell}$
- !!! Interactions between electrons \Rightarrow non-trivial effects \Rightarrow affect the critical behavior: $\nu \approx 1$

Classical waves in disordered media

- Anderson localization = interference phenomenon
- light, microwaves, acoustics,..\Rightarrow no interactions
- !!! Localization/Absorption = same signature on the transmission = exponential decay
- \Rightarrow Statistics, temporal response, transverse localization
[Genack et al., PRL (1991); Wiersma et al., Nat. (1997); Störzer et al., PRL (2006); Hu et al., Nat. Phys. (2008)]
- No reliable determination of the critical exponents

Anderson localization with atomic matter waves

Cold atoms physics

- Interference phenomena with atomic matter waves
- Cooling and trapping methods \Rightarrow very large coherence length and λ of atomic matter waves
- Manipulation with optical potentials
- Watching the wavefunction

Cold atoms in a 1D disordered light potential

- Dilute Bose-Einstein condensate \Rightarrow negligible interactions
- Speckle \Rightarrow 1D disordered light potential
- Observation of Anderson localization in 1D [Billy et al., Nat. (2008)]
- No 2D/3D disordered light potential yet!

The Kicked Rotor with cold atoms: a very practical tool for studying Anderson localization

The 1D periodically Kicked Rotor

$$
H=\frac{p^{2}}{2}+K \cos \theta \sum_{n} \delta(t-n)
$$

Classical dynamics

Standard map

$$
\begin{gathered}
p_{n+1}=p_{n}+K \sin \theta_{n} \\
\theta_{n+1}=\theta_{n}+p_{n+1}
\end{gathered}
$$

- K stochasticity parameter
- $K \gg 1$: pseudo-random (deterministic) walk in momentum space with short memory

Chaotic diffusion

- On average: diffusion in momentum space p
- Assuming no correlations between successive positions ($K \gg 1$):

$$
\left\langle p_{n+1}^{2}\right\rangle \approx\left\langle p_{n}^{2}\right\rangle+K^{2}\left\langle\sin ^{2} \theta_{n}\right\rangle \approx\left\langle p_{n}^{2}\right\rangle+K^{2} / 2
$$

- Diffusion constant: $D=K^{2} / 2$

Quantum dynamics vs. Classical dynamics

Interplay between chaos and interference effects

- Start from an initially peaked state \Rightarrow Chaotic diffusive expansion?
- $t>t_{\ell}$, dynamical localization [G. Casati et al., Springer (1979)]

Quantum dynamics vs. Classical dynamics

Interplay between chaos and interference effects

- Quantum localization (due to interference effects) in the presence of chaos (disorder)
- Dynamical localization = Anderson localization?

The Kicked Rotor: a 1D pseudo-disordered system

Quantum dynamics

- Evolution operator:

$$
\hat{U}=\hat{U}_{\text {tree }} \hat{U}_{\text {kick }}=e^{-i \hat{\rho}^{2} / 2 \hbar} e^{-i K \cos \hat{\theta} / \hbar}
$$

- 2π periodicity in $\theta \Rightarrow$ discrete momentum basis $|p=\hbar /\rangle$

Evolution operator = pseudo-random banded matrix

- Evolution operator in the discrete momentum basis:

$$
\left(U_{\beta_{l, I^{\prime}}}\right)=\left(e^{-i \hbar I^{\prime} / 2} \delta_{l, l^{\prime}}\right) \times\left(i^{I^{\prime}-1} J_{l^{\prime}-I}(K / \hbar)\right)
$$

- \hbar / π irrational $\Rightarrow \phi_{l}=\hbar \frac{\rho^{2}}{2}$ modulo $[2 \pi]=$ pseudo-random phases
- $J_{\Lambda^{\prime}-I}(K / \hbar)=$ Bessel function $\neq 0$ for $\left|I^{\prime}-I\right| \lesssim K / \hbar \Rightarrow$ hopping amplitudes controlled by K / \hbar

The Kicked Rotor: a 1D pseudo-disordered system (2)

Kicked Rotor \equiv 1D Anderson-like model [Fishman et al., PRL (1982)]

$$
\mathcal{V}_{l} a_{l}+\sum_{l^{\prime} \neq 0} t_{l^{\prime}} a_{l-l^{\prime}}=-t_{0} a_{l}
$$

- Pseudo-random on-site energies $\mathcal{V}_{l}=\tan \left[\frac{1}{2}\left(\omega-I^{2} \hbar / 2\right)\right]$
- Hopping amplitudes t_{μ} increase with K / \hbar

Other rigorous arguments supporting the equivalence: dynamical localization in the 1D Kicked Rotor = Anderson localization in 1D disordered systems

- Diagrammatic approach
- Self-consistent theory
- Supersymmetry

Quasi-periodicity and effective dimensionality

The quasiperiodic Kicked Rotor [Shepelyansky, Phys. D (1987)]

$$
H_{\mathrm{qp}}=\frac{\hat{p}^{2}}{2}+\mathcal{K}(t) \cos \hat{\theta} \sum_{n} \delta(t-n)
$$

- quasi-periodic modulation with two new frequencies, ε modulation amplitude:
$\mathcal{K}(t)=K\left[1+\varepsilon \cos \left(\omega_{2} t+\varphi_{2}\right) \cos \left(\omega_{3} t+\varphi_{3}\right)\right]$
$\mathcal{K}(t)$

- dynamics strictly identical to that of a 3D Kicked pseudo-Rotor
$H_{3}=\frac{p_{1}{ }^{2}}{2}+\omega_{2} p_{2}+\omega_{3} p_{3}+K \cos \theta_{1}\left[1+\varepsilon \cos \theta_{2} \cos \theta_{3}\right] \sum_{n} \delta(t-n)$
with transverse kinetic energy linear in momentum and initial condition taken as a plane source

$$
\psi_{3}\left(\theta_{1}, \theta_{2}, \theta_{3} ; t=0\right)=\psi_{\mathrm{qp}}\left(\theta_{1}, t=0\right) \delta\left(\theta_{2}-\varphi_{2}\right) \delta\left(\theta_{3}-\varphi_{3}\right)
$$

Quasi-periodicity and effective dimensionality (2)

Diffusive classical dynamics in all 3 directions, anisotropy driven by ε

Floquet states of the 3D Kicked "Rotor" in a 3D Anderson-like model

- On-site energies $\mathcal{V}_{1}=\tan \left[\frac{1}{2}\left(\omega-\hbar l_{1}^{2} / 2+\omega_{2} I_{2}+\omega_{3} l_{3}\right)\right]$ $\left(\hbar, \omega_{2}, \omega_{3}, \pi\right)$ incommensurate quadruplet \Rightarrow pseudo-random

Numerical observation of the Anderson transition [Casati et al., PRL 62, 345 (1989)]

- at very long time $\left(t \approx 10^{6}\right)$ transition from localized to diffusive distribution for $K>K_{c}$

Experimental observation of the Anderson transition with the quasiperiodic Kicked Rotor

Experimental realization with cold atoms [Moor e etal., PRL (1995)] Quantum chaos group of PHLAM laboratory, Lille: JC Garreau, P Szriftgiser, J Chabé, H Lignier

Thermal distribution (MOT)

- few recoils
- no interactions

$$
\mathfrak{W W M}_{E_{0} \exp \left(i\left(k_{1} x-\omega_{1}, t\right)\right)}
$$

1D quantum dynamics using the external motion of cold atoms

- Quasi-resonant laser field $\omega_{L}=\omega_{0}+\Delta_{L}$ \Rightarrow light-shift \Rightarrow effective potential
- With a standing wave (Ω : Rabi frequency):

$$
\hat{\mathcal{H}}=\frac{\hat{P}^{2}}{2 M}+\frac{\hbar \Omega^{2}}{8 \Delta_{L}} \cos \left(2 k_{L} \hat{X}\right) f(t)
$$

- Temporal modulation of the laser intensity (with δ-kicks) \Rightarrow Kicked Rotor with $\hbar=8 \omega_{R} T_{1}\left(\omega_{R}\right.$: atomic recoil frequency, T_{1} : kicking period)
temporal forcing

Watching the wave-function

- time of flight
- velocity selective Raman technique

Limitations of the experimental setup

Limitations

- Atoms fall down out of the standing wave because of gravitational field $\Rightarrow 150$ kicks maximum

Decoherence effects: condition $t \ll \tau_{\phi}$

Already known:

- Atomic collisions between cold atoms $\Rightarrow \tau_{\phi} \approx 600$ kicks
- Spontaneous emission \Rightarrow gives a random recoil \Rightarrow breaks phase-coherence of the atomic wave function $\Rightarrow \tau_{\phi} \approx 500$ kicks New:
- Deviation of the standing wave from strict horizontality (angle α) \Rightarrow residual gravitational field along the laser axis \Rightarrow non-trivial deterministic "decoherence" effect $\Rightarrow \alpha<0.1^{\circ} \Rightarrow \tau_{\phi}>350$ kicks.

Experimental observation of localized/diffusive dynamics

Kick strength

Finite-time limitations on a continuous transition

How to determine K_{c} at 150 kicks? seems easier at long times!

- for $t \ll t_{\ell}$ not yet localized (\approx "not yet diffusive" distribution) but t_{ℓ} diverges at the transition

How to unambiguously identify the transition?

What characterizes the criticality?

- No caracteristic time \Rightarrow algebraic dependence of $\left\langle p^{2}\right\rangle \sim t^{\gamma}$

Time t (number of kicks)

How to unambiguously identify the transition?

What characterizes the criticality?

- Algebraic dependence of $\left\langle p^{2}\right\rangle \sim t^{\gamma}$, i.e. anomalous diffusion

Time t (number of kicks)

Scaling law in the vicinity of the Anderson transition

Characteristic lengths

- Localization length diverges at $K_{c}{ }^{-}: \ell \sim\left(K_{c}-K\right)^{-\nu}$
- Diffusion constant vanishes at $K_{c}{ }^{+}: D \sim\left(K-K_{c}\right)^{\nu}$

Continuous phase transition

- Unified description of the localized and diffusive regimes
- One parameter scaling hypothesis when $K \simeq K_{c}$ and at long times: $\left\langle p^{2}\right\rangle \sim t^{\gamma} F\left[\left(K-K_{c}\right) t^{k_{2}}\right]$
- When $t \rightarrow \infty$ we must recover:
- a localized behavior for $K<K_{c}: \gamma-2 \nu k_{2}=0$
- a diffusive behavior for $K>K_{c}: \gamma+\nu k_{2}=1$
- $\Rightarrow \gamma=2 / 3$ and $k_{2}=1 / 3 \nu$

Scaling hypothesis

$$
\left\langle p^{2}\right\rangle \sim t^{2 / 3} F\left[\left(K-K_{c}\right) t^{1 / 3 \nu}\right]
$$

Critical anomalous diffusion

$$
\text { - }\left\langle p^{2}\right\rangle \sim t^{2 / 3} F\left[\left(K-K_{c}\right) t^{1 / 3 \nu}\right] \Rightarrow\left\langle p^{2}\right\rangle \sim t^{2 / 3} \text { at } K=K_{c}
$$

Time t (number of kicks, log scale)

Critical anomalous diffusion: experimental observation

Rescaled dynamics: $\Lambda=\left\langle p^{2}\right\rangle / t^{2 / 3}$

Time t (number of kicks)

Finite-time scaling

Directly transpose the ideas of finite-size scaling (in usual configuration space) to the temporal dynamics of the Kicked Rotor \Rightarrow overcome the finite-time limitation \Rightarrow determine ℓ for $t \rightarrow \infty$
\Rightarrow determination of the critical exponents $\nu=s: \ell \sim\left|K_{c}-K\right|^{-\nu}$

How to verify the scaling hypothesis $\left\langle p^{2}\right\rangle \sim t^{2 / 3} F\left[\left(K-K_{c}\right) t^{1 / 3 \nu}\right]$?

- More general scaling hypothesis:
- Existence of $\xi(K)$ scaling parameter depending only on K such that $\Lambda=\frac{\left\langle p^{2}\right\rangle}{t^{2 / 3}}=\mathcal{F}\left[\frac{\xi(K)}{t^{1 / 3}}\right]$?
- $\xi(K)$ unknown
- Scaling function \mathcal{F} unknown
- We can determine both! Does $\xi(K) \sim\left|K_{c}-K\right|^{-\nu}$?

Finite-time scaling

- Existence of $\xi(K)$ such that: $\Lambda=\frac{\left\langle p^{2}\right\rangle}{t^{2 / 3}}=\mathcal{F}\left[\frac{\xi(K)}{t^{1 / 3}}\right]$?

Finite-time scaling analysis of numerical results

Scaling parameter ξ

- $\xi \sim \ell$ for $K<K_{c}$
- $\xi \sim 1 / D$ for $K>K_{c}$

- well fitted by: $\xi \sim\left|K-K_{c}\right|^{-\nu}$
- Critical point: $K_{c} \simeq 6.4$
- Critical exponent: $\nu \simeq 1.6 \pm 0.2$

Finite-time scaling analysis of experimental results

Scaling function \mathcal{F}

Scaling parameter ξ

Experimental determination of the critical exponent ν

- $1 / \xi=\alpha\left|K-K_{c}\right|^{\nu}+\beta$
- β accounts for experimental imperfections
- Critical point: $K_{c} \simeq 6.4$
- Critical exponent: $\nu \simeq 1.4 \pm 0.3$
- Excellent agreement with numerics (no adjustable parameter)

Does the quasiperiodic Kicked Rotor have the same critical behavior as the 3D Anderson model?

Universality of the Anderson transition
[Slevin et al., PRL (1997); Slevin et al., PRL (1999)]

- Critical exponents should be universal, i.e. not depend on microscopic details but only on the symmetries of the system
- 3D Anderson model belongs to the orthogonal universality class (time-reversal symmetry): $\nu=1.57 \pm 0.02$
- Unitary class when the time-reversal symmetry is broken (e.g. magnetic field): $\nu=1.43 \pm 0.04$

Universality class of the quasiperiodic Kicked Rotor?

- Kicked Rotor $=$ time-reversal symmetric \Rightarrow orthogonal
- Microscopic details of the quasiperiodic Kicked Rotor controlled by ($\hbar, \omega_{2}, \omega_{3}, \pi$) (incommensurate): $\mathcal{V}_{I}=\tan \left[\frac{1}{2}\left(\omega-\hbar l_{1}^{2} / 2+\omega_{2} I_{2}+\omega_{3} / 3\right)\right]$

YES! The quasiperiodic Kicked Rotor has the same critical behavior as the 3D Anderson model.

	\hbar	ω_{2}	ω_{3}	K	ε
\mathcal{A}	2.85	$2 \pi \sqrt{5}$	$2 \pi \sqrt{13}$	$6.24 \rightarrow 6.58$	$0.413 \rightarrow 0.462$
\mathcal{B}	2.85	$2 \pi \sqrt{7}$	$2 \pi \sqrt{17}$	$5.49 \rightarrow 5.57$	$0.499 \rightarrow 0.514$
\mathcal{C}	2.2516	$1 / \eta$	$1 / \eta^{2}$	$4.98 \rightarrow 5.05$	$0.423 \rightarrow 0.436$
\mathcal{D}	3.5399	\hbar / η	\hbar / η^{2}	$7.9 \rightarrow 8.3$	$0.425 \rightarrow 0.485$

Table: The four sets of parameters considered: \hbar, ω_{2} and ω_{3} control the microscopic details of the disorder, while ϵ drives the anisotropy of the hopping amplitudes. $\eta=1.324717$...

	K_{c}	$\ln \wedge_{c}$	ν	y
\mathcal{A}	6.36 ± 0.02	1.60 ± 0.04	$\mathbf{1 . 5 8} \pm \mathbf{0 . 0 1}$	0.71 ± 0.28
\mathcal{B}	5.53 ± 0.03	1.08 ± 0.09	$\mathbf{1 . 6 0} \pm \mathbf{0 . 0 3}$	0.33 ± 0.30
\mathcal{C}	5.00 ± 0.03	1.19 ± 0.15	$\mathbf{1 . 6 0} \pm \mathbf{0 . 0 2}$	0.23 ± 0.29
\mathcal{D}	8.09 ± 0.01	1.64 ± 0.03	$\mathbf{1 . 5 9} \pm \mathbf{0 . 0 1}$	0.43 ± 0.23

Critical regime

Predictions of the self-consistent theory

Self-consistent theory for the quasi-periodic Kicked Rotor

$$
D(\omega)=D-2 D(\omega) \int \frac{\mathrm{d}^{3} \boldsymbol{\Phi}}{(2 \pi)^{3}} \frac{1}{-i \omega+D(\omega) \boldsymbol{\Phi}^{2}}
$$

- Anisotropy \Rightarrow diffusion tensor
- $f(\varphi)=$ plane source $=\delta\left(\varphi_{2}=0\right) \delta\left(\varphi_{3}=0\right)$

$$
|\psi(p, t)|^{2}=\int \frac{\mathrm{d} \omega}{2 \pi} e^{-i \omega t} \int \frac{\mathrm{~d}^{3} \varphi}{(2 \pi)^{3}} e^{i \varphi \cdot p} \frac{f(\varphi)}{-i \omega+D(\omega) \varphi^{2}}
$$

- Anderson transition with $\nu=1 \Rightarrow$ fluctuations are not taken into account
- At criticality: $D(\omega) \underset{\omega \rightarrow 0}{\sim} \omega^{1 / 3}$, thus $\left\langle p^{2}\right\rangle \sim t^{2 / 3}$

Analytic prediction for the critical wave function

$$
\begin{gathered}
t^{1 / 3}|\psi(p, t)|^{2}=\mathcal{G}\left(p t^{-1 / 3}\right) \\
\text { with } \mathcal{G}(x)=\frac{3}{2}\left(3 \rho^{3 / 2}\right)^{-1 / 3} \mathrm{Ai}\left[\left(3 \rho^{3 / 2}\right)^{-1 / 3}|x|\right]
\end{gathered}
$$

Scale invariance of the critical wave function

$|\Psi(p, t)|^{2}$

$$
t^{1 / 3}|\Psi(p, t)|^{2}
$$

Scaling $t^{1 / 3}|\psi(p, t)|^{2}=\mathcal{G}\left(p t^{-1 / 3}\right)$?
Rescaling of all critical wave functions for t from $t=10^{3}$ to $t=10^{6}$!

Confrontation with numerics

$$
\mathcal{G}(x)=\frac{3}{2}\left(3 \rho^{3 / 2}\right)^{-1 / 3} \mathrm{Ai}\left[\left(3 \rho^{3 / 2}\right)^{-1 / 3}|x|\right] ?
$$

- YES! No adjustable parameter: $\rho=\frac{\Gamma(2 / 3)}{3} \Lambda_{c}$
- deviations at $p \approx 0 \Rightarrow$ multifractality \equiv fluctuations (not taken into account in the self-consistent theory)

Confrontation with the experimental results

$$
\mathcal{G}(x)=\frac{3}{2}\left(3 \rho^{3 / 2}\right)^{-1 / 3} \mathrm{Ai}\left[\left(3 \rho^{3 / 2}\right)^{-1 / 3}|x|\right] ?
$$

YES! No adjustable parameter

Conclusion

First experimental observation of the Anderson transition with atomic matter waves (Chabé et al., 2008; Lemarié et al., 2009)
Full characterization of the transition

- Finite-Time scaling to overcome the experimental limitations
- First experimental unambiguous determination of the critical exponent $\nu \simeq 1.4 \pm 0.3 \simeq \nu_{\text {Anderson }}=1.57 \pm 0.02$ New data: $\nu \simeq 1.5 \pm 0.2$

> Universality of the Anderson transition with the quasiperiodic Kicked Rotor (Lemarié et al., 2009)
> - The quasiperiodic Kicked Rotor belongs to the same universality class as for the Anderson model: $\nu=1.59 \pm 0.01=\nu_{\text {Anderson }}$

Critical wave function

- Analytical prediction for the critical wave-function from the self-consistent theory
- Very good agreement with numerical data and experimental data

Perspectives

The Anderson transition in 4D and 2D

- Quasi-periodic modulation with 3 frequencies or 1 frequency
- Critical exponent in 4D? Critical dimension?

Symmetries

- Possibility to break the Time-Reversal Symmetry! \equiv effective magnetic field
- \Rightarrow Anderson localization and transition in the Unitary class

Interactions

- Kicked Rotor with BEC
- Interactions controlled by Feshbach resonances

