THE ANDERSON TRANSITION WITH ATOMIC MATTER WAVES

Dominique Delande

Benoît Grémaud

Jean-Claude Garreau

Hans Lignier

Pascal Szriftgiser

Julien Chabé

Gabriel Lemarié

Laboratoire Kastler-Brossel Université Pierre et Marie Curie and Ecole Normale Supérieure (Paris)

Anderson localization and the Anderson metal-insulator transition in disordered media

The Kicked Rotor with cold atoms: a very practical tool for studying Anderson localization

Experimental observation of the Anderson transition with the quasiperiodic Kicked Rotor

Critical regime

Anderson localization and the Anderson metal-insulator transition in disordered media

Interplay between disorder and interference effects

Classical

Multiple scattering ⇒ random walk ⇒ at long times, large distances: diffusive behavior

 $\ell_e/\lambda \gg$ 1: weak disorder

•
$$P(\mathbf{r},\mathbf{r}') = \left|\sum_{\text{path } i} \mathcal{A}_i\right|^2$$

- phase \sim length of *i*th path/ λ
- if $i \neq j$ uncorrelated phases?

•
$$P(\mathbf{r},\mathbf{r}') = \sum_{i} \mathcal{A}_{i} \mathcal{A}_{i}^{*} + \sum_{i \neq j} \mathcal{A}_{i} \mathcal{A}_{j}^{*}$$

 $\approx \sum_{i} \mathcal{A}_{i} \mathcal{A}_{i}^{*}$

ℓ_e mean free path λ wave length

Quantum with time-reversal symmetry

● Coherent backscattering ⇒ slows down the diffusive behavior

Essential features of Anderson localization

- If return probability sufficiently strong \Rightarrow can stop the diffusion = Anderson localization
- Return probability = highly dependent on the dimensionality
- In 1D, always localized (∀ disorder amplitude !)
- In 2D, localization length exponentially large for weak disorder \Rightarrow marginally localized
- In 3D, ANDERSON metal-insulator TRANSITION

At long times, large distances: $P(\mathbf{r}, \mathbf{r}'; t) \sim ?$

The Anderson metal-insulator transition

A second-order continuous phase transition

- At the threshold of the transition, no caracteristic quantity (length, energy, ...) ≠ first-order discontinuous transition (latent heat for liquid-gaz transition)
- $\ell \sim (W W_c)^{-\nu}$, $W > W_c$, localized
- $D \sim (W_c W)^s$, $W < W_c$, diffusive
- $s = \nu$ critical exponents = universal (do not depend on microscopic details) Numerics: $\nu = 1.57 \pm 0.02$ [Slevin et al., PRL (1999)]

Experimental studies of the Anderson transition

Disordered solids

- Relies on global transport measurements like conductance = transmission \Rightarrow localized phase: $G(L) \sim e^{-2L/\ell}$
- III Interactions between electrons \Rightarrow non-trivial effects \Rightarrow affect the critical behavior: $\nu \approx 1$

Classical waves in disordered media

- Anderson localization = interference phenomenon
- light, microwaves, acoustics, $... \Rightarrow$ no interactions
- III Localization/Absorption = same signature on the transmission = exponential decay
- ⇒ Statistics, temporal response, transverse localization [Genack et al., PRL (1991); Wiersma et al., Nat. (1997); Störzer et al., PRL (2006); Hu et al., Nat. Phys. (2008)]
- No reliable determination of the critical exponents

Cold atoms physics

- Interference phenomena with atomic matter waves
- Cooling and trapping methods ⇒ very large coherence length and λ of atomic matter waves
- Manipulation with optical potentials
- Watching the wavefunction

Cold atoms in a 1D disordered light potential

- Dilute Bose-Einstein condensate ⇒ negligible interactions
- Speckle ⇒ 1D disordered light potential
- Observation of Anderson localization in 1D [Billy et al., Nat. (2008)]
- No 2D/3D disordered light potential yet!

The Kicked Rotor with cold atoms: a very practical tool for studying Anderson localization

The 1D periodically Kicked Rotor

$$H = \frac{p^2}{2} + K \cos \theta \sum_n \delta(t - n)$$

Classical dynamics

walk in momentum space with short memory

Chaotic diffusion

- On average: diffusion in momentum space p
- Assuming no correlations between successive positions ($K \gg 1$): $\langle p_{n+1}^2 \rangle \approx \langle p_n^2 \rangle + K^2 \langle \sin^2 \theta_n \rangle \approx \langle p_n^2 \rangle + K^2/2$
- Diffusion constant: $D = K^2/2$

Quantum dynamics vs. Classical dynamics

Interplay between chaos and interference effects

- Start from an initially peaked state ⇒ Chaotic diffusive expansion?
- $t > t_{\ell}$, dynamical localization [G. Casati et al., Springer (1979)]

12/41

Quantum dynamics vs. Classical dynamics

Interplay between chaos and interference effects

- Quantum localization (due to interference effects) in the presence of chaos (disorder)
- Dynamical localization = Anderson localization?

t

The Kicked Rotor: a 1D pseudo-disordered system

Evolution operator = pseudo-random banded matrix

• Evolution operator in the discrete momentum basis:

$$\left(\boldsymbol{U}_{\beta_{l,l'}}\right) = \left(\boldsymbol{e}^{-i\hbar l^2/2}\delta_{l,l'}\right) \times \left(i^{l'-l}\boldsymbol{J}_{l'-l}(\boldsymbol{K}/\hbar)\right)$$

- \hbar/π irrational $\Rightarrow \phi_l = \hbar \frac{l^2}{2}$ modulo $[2\pi]$ = pseudo-random phases
- J_{I'-I}(K/ħ) = Bessel function ≠ 0 for |I' I| ≲ K/ħ ⇒ hopping amplitudes controlled by K/ħ

Kicked Rotor \equiv 1D Anderson-like model [Fishman et al., PRL (1982)]

 $\mathcal{V}_l a_l + \sum_{l'\neq 0} t_{l'} a_{l-l'} = -t_0 a_l$

- Pseudo-random on-site energies $\mathcal{V}_l = \tan \left[\frac{1}{2}(\omega l^2\hbar/2)\right]$
- Hopping amplitudes $t_{l'}$ increase with K/\hbar

Other rigorous arguments supporting the equivalence: dynamical localization in the 1D Kicked Rotor = Anderson localization in 1D disordered systems

- Diagrammatic approach
- Self-consistent theory
- Supersymmetry

Quasi-periodicity and effective dimensionality

The quasiperiodic Kicked Rotor [Shepelyansky, Phys. D (1987)]

$$H_{\rm qp} = \frac{\hat{p}^2}{2} + \mathcal{K}(t)\cos\hat{\theta}\sum_n \delta(t-n)$$

• quasi-periodic modulation with two new frequencies, ε modulation amplitude:

 $\mathcal{K}(t) = \mathcal{K}\left[1 + \varepsilon \cos\left(\frac{\omega_2 t}{2} + \varphi_2\right) \cos\left(\frac{\omega_3 t}{2} + \varphi_3\right)\right]$

- $\mathcal{K}(t)$
 - dynamics **strictly identical** to that of a 3D Kicked pseudo-Rotor $H_3 = \frac{p_1^2}{2} + \omega_2 p_2 + \omega_3 p_3 + K \cos \theta_1 [1 + \varepsilon \cos \theta_2 \cos \theta_3] \sum_n \delta(t-n)$ with transverse kinetic energy **linear in momentum** and initial
 condition taken as a plane source

 $\psi_{3}(\theta_{1},\theta_{2},\theta_{3};t=0)=\psi_{\mathsf{qp}}(\theta_{1},t=0)\delta(\theta_{2}-\varphi_{2})\delta(\theta_{3}-\varphi_{3})$

Quasi-periodicity and effective dimensionality (2)

Diffusive classical dynamics in all 3 directions, anisotropy driven by ε 0.006 50000 along p_2 , p_3 Momentum distribution 0.005 40000 $\langle p_1^2 \rangle$ 0.004 30000 0.003 20000 0.002 $\langle p_2^2 \rangle, \langle p_3^2 \rangle$ 10000 0.001 along p_1 200 400 600 800 1000 +

Floquet states of the 3D Kicked "Rotor" in a 3D Anderson-like model

500 р

-500

• On-site energies $\mathcal{V}_I = \tan \left[\frac{1}{2} \left(\omega - \hbar l_1^2 / 2 + \omega_2 l_2 + \omega_3 l_3 \right) \right]$ $(\hbar, \omega_2, \omega_3, \pi)$ incommensurate guadruplet \Rightarrow pseudo-random

Numerical observation of the Anderson transition [Casati et al., PRL 62, 345] (1989)]

• at very long time ($t \approx 10^6$) transition from localized to diffusive distribution for $K > K_c$

Experimental observation of the Anderson transition with the quasiperiodic Kicked Rotor

Experimental realization with cold atoms [Moore et al., PRL (1995)]

Quantum chaos group of PHLAM laboratory, Lille: JC Garreau, P Szriftgiser, J Chabé, H Lignier

Thermal distribution (MOT)

- few recoils
- no interactions

$$\int \int \int dt dt = \int$$

$$\begin{array}{c} F(\mathbf{e}) \\ -F(\mathbf{g}) \\ -F(\mathbf{g}) \\ -F(\mathbf{g}) \\ E_0 \exp\left(-i(k_{\mathrm{L}}x + \omega_{\mathrm{L}}t)\right) \end{array}$$

1D quantum dynamics using the external motion of cold atoms

- Quasi-resonant laser field $\omega_L = \omega_0 + \Delta_L$ \Rightarrow light-shift \Rightarrow effective potential
- With a standing wave (Ω: Rabi frequency):

$$\hat{\mathcal{H}} = \frac{\hat{P}^2}{2M} + \frac{\hbar\Omega^2}{8\Delta_L} \cos\left(2k_L\hat{X}\right)f(t)$$

• Temporal modulation of the laser intensity (with δ -kicks) \Rightarrow Kicked Rotor with $\hbar = 8\omega_R T_1$ (ω_R : atomic recoil frequency, T_1 : kicking period)

Watching the wave-function

- time of flight
- velocity selective Raman technique

Limitations of the experimental setup

Limitations

 Atoms fall down out of the standing wave because of gravitational field ⇒ 150 kicks maximum

Decoherence effects: condition $t \ll \tau_{\phi}$

Already known:

- Atomic collisions between cold atoms $\Rightarrow \tau_{\phi} \approx 600$ kicks
- Spontaneous emission \Rightarrow gives a random recoil \Rightarrow breaks phase-coherence of the atomic wave function $\Rightarrow \tau_{\phi} \approx 500$ kicks

New:

• Deviation of the standing wave from strict horizontality (angle α) \Rightarrow residual gravitational field along the laser axis \Rightarrow non-trivial deterministic "decoherence" effect $\Rightarrow \alpha < 0.1^{\circ} \Rightarrow \tau_{\phi} > 350$ kicks.

Experimental observation of localized/diffusive dynamics

Finite-time limitations on a continuous transition

How to determine K_c at 150 kicks? seems easier at long times!

for t ≪ t_ℓ not yet localized (≈ "not yet diffusive" distribution) but t_ℓ diverges at the transition

How to unambiguously identify the transition?

How to unambiguously identify the transition?

Time *t* (number of kicks)

Scaling law in the vicinity of the Anderson transition

Characteristic lengths

- Localization length diverges at K_c^- : $\ell \sim (K_c K)^{-\nu}$
- Diffusion constant vanishes at K_c^+ : $D \sim (K K_c)^{\nu}$

Continuous phase transition

- Unified description of the localized and diffusive regimes
- One parameter scaling hypothesis when K ≃ K_c and at long times: ⟨p²⟩ ~ t^γF [(K − K_c) t^{k₂}]
- When $t \to \infty$ we must recover:
 - a localized behavior for $K < K_c$: $\gamma 2\nu k_2 = 0$
 - a diffusive behavior for $K > K_c$: $\gamma + \nu k_2 = 1$

•
$$\Rightarrow \gamma = 2/3$$
 and $k_2 = 1/3\nu$

Scaling hypothesis

$$\langle p^2
angle \sim t^{2/3} F \left[(K - K_c) t^{1/3
u}
ight]$$

Critical anomalous diffusion

Critical anomalous diffusion: experimental observation

Rescaled dynamics: $\Lambda = \langle p^2 \rangle / t^{2/3}$

Finite-time scaling

Directly transpose the ideas of finite-size scaling (in usual configuration space) to the temporal dynamics of the Kicked Rotor \Rightarrow overcome the finite-time limitation \Rightarrow determine ℓ for $t \to \infty$

 \Rightarrow determination of the critical exponents $\nu = s$: $\ell \sim |K_c - K|^{-\nu}$

How to verify the scaling hypothesis $\langle p^2 \rangle \sim t^{2/3} F \left[(K - K_c) t^{1/3\nu} \right]$?

- More general scaling hypothesis:
- Existence of $\xi(K)$ scaling parameter depending only on K such that $\Lambda = \frac{\langle p^2 \rangle}{t^{2/3}} = \mathcal{F}\left[\frac{\xi(K)}{t^{1/3}}\right]$?
- ξ(K) unknown
- Scaling function \mathcal{F} unknown

• We can determine both! Does $\xi(K) \sim |K_c - K|^{-\nu}$?

Finite-time scaling

Finite-time scaling analysis of numerical results

Scaling function \mathcal{F}

$$\Lambda(K, t) = rac{\langle p^2
angle}{t^{2/3}} \sim \mathcal{F}\left[rac{\xi(K)}{t^{1/3}}
ight]$$

Scaling parameter ξ • $\xi \sim \ell$ for $K < K_c$

- well fitted by: $\xi \sim |K K_c|^{-\nu}$
- Critical point: $K_c \simeq 6.4$
- Critical exponent: $\nu \simeq 1.6 \pm 0.2$

Finite-time scaling analysis of experimental results

Experimental determination of the critical exponent ν

•
$$1/\xi = \alpha |\mathbf{K} - \mathbf{K}_c|^{\nu} + \beta$$

- β accounts for experimental imperfections
- Critical point: $K_c \simeq 6.4$
- Critical exponent: $\nu \simeq 1.4 \pm 0.3$
- Excellent agreement with numerics (no adjustable parameter)

Does the quasiperiodic Kicked Rotor have the same critical behavior as the 3D Anderson model?

Universality of the Anderson transition [Slevin et al., PRL (1997); Slevin et al., PRL (1999)]

- Critical exponents should be universal, i.e. not depend on microscopic details but only on the symmetries of the system
- 3D Anderson model belongs to the orthogonal universality class (time-reversal symmetry): $\nu = 1.57 \pm 0.02$
- Unitary class when the time-reversal symmetry is broken (e.g. magnetic field): $\nu = 1.43 \pm 0.04$

Universality class of the quasiperiodic Kicked Rotor?

- Kicked Rotor = time-reversal symmetric \Rightarrow orthogonal
- Microscopic details of the quasiperiodic Kicked Rotor controlled by (ħ, ω₂, ω₃, π) (incommensurate):
 V_I = tan [¹/₂ (ω − ħl²₁/2 + ω₂l₂ + ω₃l₃)]

YES! The quasiperiodic Kicked Rotor has the same critical behavior as the 3D Anderson model.

	\hbar	ω_2	ω_3	K	ε
$ \mathcal{A} $	2.85	$2\pi\sqrt{5}$	$2\pi\sqrt{13}$	$6.24 \rightarrow 6.58$	$0.413 \rightarrow 0.462$
\mathcal{B}	2.85	$2\pi\sqrt{7}$	$2\pi\sqrt{17}$	$5.49 \rightarrow 5.57$	$0.499 \rightarrow 0.514$
\mathcal{C}	2.2516	$1/\eta$	$1/\eta^2$	$4.98 \rightarrow 5.05$	$0.423 \rightarrow 0.436$
\mathcal{D}	3.5399	\hbar/η	\hbar/η^2	$7.9 \rightarrow 8.3$	$0.425 \rightarrow 0.485$

Table: The four sets of parameters considered: \hbar , ω_2 and ω_3 control the microscopic details of the disorder, while ϵ drives the anisotropy of the hopping amplitudes. $\eta = 1.324717...$

	K _c	$\ln \Lambda_c$	ν	У
\mathcal{A}	6.36 ± 0.02	1.60 ± 0.04	$\textbf{1.58} \pm \textbf{0.01}$	0.71 ± 0.28
\mathcal{B}	5.53 ± 0.03	1.08 ± 0.09	$\textbf{1.60} \pm \textbf{0.03}$	0.33 ± 0.30
\mathcal{C}	5.00 ± 0.03	1.19 ± 0.15	$\textbf{1.60} \pm \textbf{0.02}$	0.23 ± 0.29
\mathcal{D}	8.09 ± 0.01	1.64 ± 0.03	$\textbf{1.59} \pm \textbf{0.01}$	0.43 ± 0.23

Critical regime

Predictions of the self-consistent theory

Self-consistent theory for the quasi-periodic Kicked Rotor

$$D(\omega) = D - 2D(\omega) \int \frac{\mathrm{d}^3 \mathbf{\Phi}}{(2\pi)^3} \frac{1}{-i\omega + D(\omega) \mathbf{\Phi}^2}$$

• Anisotropy \Rightarrow diffusion tensor

•
$$f(\varphi) = \text{plane source} = \delta(\varphi_2 = 0)\delta(\varphi_3 = 0)$$

 $|\psi(p, t)|^2 = \int \frac{d\omega}{2\pi} e^{-i\omega t} \int \frac{d^3\varphi}{(2\pi)^3} e^{i\varphi \cdot p} \frac{f(\varphi)}{-i\omega + D(\omega)\varphi^2}$

• Anderson transition with $\nu = 1 \Rightarrow$ fluctuations are not taken into account

• At criticality:
$$D(\omega) \underset{\omega \to 0}{\sim} \omega^{1/3}$$
, thus $\langle p^2 \rangle \sim t^{2/3}$

Analytic prediction for the critical wave function

$$t^{1/3}|\psi(p,t)|^2 = \mathcal{G}(pt^{-1/3})$$

with
$$\mathcal{G}(x)=rac{3}{2}\left(3
ho^{3/2}
ight)^{-1/3}\mathsf{Ai}\left[\left(3
ho^{3/2}
ight)^{-1/3}|x|
ight]$$

Scale invariance of the critical wave function

Scaling $t^{1/3}|\psi(p,t)|^2 = \mathcal{G}(pt^{-1/3})$?

Rescaling of all critical wave functions for *t* from $t = 10^3$ to $t = 10^6$!

Confrontation with numerics

$$\mathcal{G}(x) = \frac{3}{2} \left(3\rho^{3/2} \right)^{-1/3} \text{Ai} \left[\left(3\rho^{3/2} \right)^{-1/3} |x| \right]$$
?

- YES! No adjustable parameter: $\rho = \frac{\Gamma(2/3)}{3} \Lambda_c$
- deviations at p ≈ 0 ⇒ multifractality ≡ fluctuations (not taken into account in the self-consistent theory)

Confrontation with the experimental results

$$\mathcal{G}(x) = \frac{3}{2} \left(3\rho^{3/2} \right)^{-1/3} \operatorname{Ai} \left[\left(3\rho^{3/2} \right)^{-1/3} |x| \right]?$$

YES! No adjustable parameter

Conclusion

First experimental observation of the Anderson transition with atomic matter waves (Chabé et al., 2008; Lemarié et al., 2009)

Full characterization of the transition

- Finite-Time scaling to overcome the experimental limitations
- First experimental unambiguous determination of the critical exponent $\nu \simeq 1.4 \pm 0.3 \simeq \nu_{\text{Anderson}} = 1.57 \pm 0.02$ New data: $\nu \simeq 1.5 \pm 0.2$

Universality of the Anderson transition with the quasiperiodic Kicked Rotor (Lemarié et al., 2009)

• The quasiperiodic Kicked Rotor belongs to the same universality class as for the Anderson model: $\nu = 1.59 \pm 0.01 = \nu_{\text{Anderson}}$

Critical wave function

- Analytical prediction for the critical wave-function from the self-consistent theory
- Very good agreement with numerical data and experimental data

The Anderson transition in 4D and 2D

- Quasi-periodic modulation with 3 frequencies or 1 frequency
- Critical exponent in 4D? Critical dimension?

Symmetries

- Possibility to break the Time-Reversal Symmetry!
 = effective magnetic field
- ullet \Rightarrow Anderson localization and transition in the Unitary class

Interactions

- Kicked Rotor with BEC
- Interactions controlled by Feshbach resonances