Minimisation d'énergie sous contraintes, applications en algèbre linéaire et en contrôle linéaire

Alexis Gryson sous la direction de Bernhard Beckermann

Laboratoire Paul Painlevé Université Lille 1

1er Juillet 2009

Outline

Zolotarev problem

Applications

Constrained logarithmic potential theory

Asymptotics of discrete Zolotarev quantity

Explicit expression

Numerical examples

Outline

Zolotarev problem

Applications

Constrained logarithmic potential theory

Asymptotics of discrete Zolotarev quantity

Explicit expression

Numerical examples

Our problem

Consider

- 1. E_N , F_N disjoint sets of at most N elements in \mathbb{C}
- 2. $\mathcal{R}_n = \{p/q : p, q \text{ polynomials of degree } \leq n\}$
- 3. $||f||_{L^{\infty}(E)} = \sup_{z \in E} |f(z)|$

Our problem

Consider

- 1. E_N , F_N disjoint sets of at most N elements in \mathbb{C}
- 2. $\mathcal{R}_n = \{p/q : p, q \text{ polynomials of degree } \leq n\}$
- 3. $||f||_{L^{\infty}(E)} = \sup_{z \in E} |f(z)|$

Find N-th root asymptotics for

$$Z_n(E_N, F_N) := \inf_{r \in \mathcal{R}_n} ||r||_{L^{\infty}(E_N)} ||1/r||_{L^{\infty}(F_N)}$$

provided that $n,N \to \infty$ such that $n/N \to t > 0$, and

$$\nu_{N}(E_{N}) := \frac{1}{N} \sum_{\lambda \in E_{N}} \delta_{\lambda} \stackrel{\star}{\rightharpoonup} \sigma_{1} \qquad \nu_{N}(F_{N}) := \frac{1}{N} \sum_{\lambda \in F_{N}} \delta_{\lambda} \stackrel{\star}{\rightharpoonup} \sigma_{2}$$

Our problem

Consider

- 1. E_N , F_N disjoint sets of at most N elements in \mathbb{C}
- 2. $\mathcal{R}_n = \{p/q : p, q \text{ polynomials of degree } \leq n\}$
- 3. $||f||_{L^{\infty}(E)} = \sup_{z \in E} |f(z)|$

Find N-th root asymptotics for

$$Z_n(E_N, F_N) := \min_{r \in \mathcal{R}_n} ||r||_{L^{\infty}(E_N)} ||1/r||_{L^{\infty}(F_N)}$$

provided that $n, N \to \infty$ such that $n/N \to t > 0$, and

$$\nu_{N}(E_{N}) := \frac{1}{N} \sum_{\lambda \in E_{N}} \delta_{\lambda} \stackrel{\star}{\rightharpoonup} \sigma_{1} \qquad \nu_{N}(F_{N}) := \frac{1}{N} \sum_{\lambda \in F_{N}} \delta_{\lambda} \stackrel{\star}{\rightharpoonup} \sigma_{2}$$

What is known?

• E_N , F_N replaced by larger infinite sets E, F of positive capacity, [Gonchar 78] :

$$Z_n(E_N,F_N)^{1/n} \leq Z_n(E,F)^{1/n} \to \exp\left(-\frac{1}{\operatorname{cap}(E,F)}\right)$$

- cap(E, F) capacity of condenser with plates E (positive unit charge) and F (negative unit charge) in \mathbb{R}^2
- Extensions known for different degrees of numerator/denominator [Levin & Saff 01]

Zolotarev's findings

• For $E = [\alpha, \beta]$, $F = [-\beta, -\alpha]$: explicit formulas

$$\operatorname{cap}([\alpha, \beta], [-\beta, -\alpha]) = \frac{K'(\alpha/\beta)}{2\pi K(\alpha/\beta)}$$

Elliptic functions

$$K(k) := \int_0^1 \frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}} \quad K'(k) = K(\sqrt{1-k^2})$$

Then

$$Z_n([\alpha,\beta],[-\beta,-\alpha])^{1/n} \to \exp\left(-2\pi \frac{K(\alpha/\beta)}{K'(\alpha/\beta)}\right)$$

• Inequalities [Braess 80]

An example

- $E = 1/200 + \{0, 1/5, 2/5, 3/5, 4/5, 1\}$
- Top : $Z_4(E, -E) \sim 10^{-4}$
- Bottom : Z_4 (conv(E), conv(-E)) $\sim 10^{-2}$

Main finding for real E_N , F_N

Under suitable smoothness, separation assumptions and assumptions on the form of limit measures σ_1 , σ_2

$$Z_n(E_N, F_N)^{1/N} \to \exp\left(-\int_0^t 2\pi \frac{K(a_\tau/b_\tau)}{K'(a_\tau/b_\tau)} d\tau\right)$$

provided that $n, N \to \infty$ s.t. $n/N \to t > 0$.

Main finding for real E_N , F_N

Under suitable smoothness, separation assumptions and assumptions on the form of limit measures σ_1 , σ_2

$$Z_n(E_N,F_N)^{1/N}
ightarrow \exp\left(-\int_0^t 2\pi rac{K(a_{ au}/b_{ au})}{K'(a_{ au}/b_{ au})} d au
ight)$$

provided that $n, N \to \infty$ s.t. $n/N \to t > 0$.

Notice:

- 1. $\tau \mapsto a_{\tau}$ increasing, $\tau \mapsto b_{\tau}$ decreasing (defined implicitly).
- 2. If both functions constant : we recover result of Zolotarev.
- 3. Intervals $[a_{\tau}, b_{\tau}]$ shrinking implies superlinear rate.

Outline

Zolotarev problem

Applications

Constrained logarithmic potential theory

Asymptotics of discrete Zolotarev quantity

Explicit expression

Numerical examples

Sylvester/Lyapunov equation

• ADI -alternating direction implicit- method [Peaceman & Rachford 1955] : solve the Sylvester equation : AX - XB = C, $X \in \mathbb{C}^{N \times N}$, $A, B, C \in \mathbb{C}^{N \times N}$, A, B normal.

Sylvester/Lyapunov equation

- ADI -alternating direction implicit- method [Peaceman & Rachford 1955] : solve the Sylvester equation : AX − XB = C, X ∈ C^{N×N}, A, B, C ∈ C^{N×N}, A, B normal.
- Symmetric case : $B = -A^*$ and C hermitian, the equation becomes $AX + XA^* = C$, known as Lyapunov equation.

Sylvester/Lyapunov equation

- ADI -alternating direction implicit- method [Peaceman & Rachford 1955] : solve the Sylvester equation : AX XB = C, $X \in \mathbb{C}^{N \times N}$, $A, B, C \in \mathbb{C}^{N \times N}$, A, B normal.
- Symmetric case : $B = -A^*$ and C hermitian, the equation becomes $AX + XA^* = C$, known as Lyapunov equation.
- Unique solution if Λ(A) ∩ Λ(B) = ∅.
- True in Lyapunov case if A symmetric positive definite (which we consider for the moment).
- Can be formulated as N^2 by N^2 linear system, but generally not efficient.

The ADI iteration for AX - XB = C

- With an initial guess $X_0 \in \mathbb{C}^{N \times N}$ and free parameters $p_k, q_k \in \mathbb{C}$
- Written at two steps :

$$(A - p_k)X_{k+1/2} = X_k(B - p_k) + C$$

 $X_{k+1}(B - q_k) = (A - q_k)X_{k+1/2} - C$

The ADI iteration for AX - XB = C

- With an initial guess $X_0 \in \mathbb{C}^{N \times N}$ and free parameters $p_k, q_k \in \mathbb{C}$
- Written at two steps :

$$(A - p_k)X_{k+1/2} = X_k(B - p_k) + C$$

 $X_{k+1}(B - q_k) = (A - q_k)X_{k+1/2} - C$

Thus

$$\frac{||X-X_n||}{||X-X_0||} \leq ||r_n(A)||||r_n(B)^{-1}|| \quad r_n(z) := \prod_{k=0}^{n-1} \frac{z-q_k}{z-p_k}.$$

- Bound $Z_n(\Lambda(A), \Lambda(B))$ in case of optimal parameters
- Around ADI: [Smith 68], [Penzl 00], [Sabino 06], [Benner 08]

ADI bound $Z_n(\Lambda(A), \Lambda(B))$ in case of optimal parameters

CLASSICAL APPROACH: replace $\Lambda(A)$, $\Lambda(B)$ by larger "nice" sets E, F and use parameters p_k , q_k for optimal rational function for $Z_n(E,F)$.

PROBLEM: we do forget about that there are perhaps only relatively few eigenvalues close to 0.

ADI bound $Z_n(\Lambda(A), \Lambda(B))$ in case of optimal parameters

CLASSICAL APPROACH: replace $\Lambda(A)$, $\Lambda(B)$ by larger "nice" sets E, F and use parameters p_k , q_k for optimal rational function for $Z_n(E,F)$.

PROBLEM: we do forget about that there are perhaps only relatively few eigenvalues close to 0.

But for many sequences of matrices $(A_N)_{N\geq 1}$ coming from discretization of PDE with varying "stepsize", the limit distribution σ_1 for eigenvalues $E_N=\Lambda(A_N)$ is known, even if we do not know so much about the eigenvalues.

Other applications

SV of matrices with small displacement rank

$$\sigma_{1+n\rho}(X) \leq Z_n(\Lambda(A), \Lambda(B)) \, \sigma_1(X), \quad \rho = \operatorname{rg}(AX - XB).$$

• Approximation of signum function : $E \subset \mathbb{R}_+$, $F \subset \mathbb{R}_-$ discrete disjoint sets,

$$S_n(E,F) = \frac{\sqrt{Z_n(E,F)}}{1 + Z_n(E,F)}$$

with

$$S_n(E,F) := \inf \{S_R, R \in \mathcal{R}_n, \text{ real coefficients}\}\$$

and

$$S_R := \max_{x \in F \cup F} |R(x) - s(x)|.$$

Link with linear control theory

- Model reduction for continuous stationnary linear dynamical system.
- Σ square system realizing

$$\mathcal{H}(z) = C(zI - A)^{-1}B$$

Error bound : $\|\Sigma - \Sigma_r\| \le (\sigma_{r+1} + \ldots + \sigma_n)$ where Σ_r obtained by model reduction and balanced truncation, (σ_ℓ) Hankel SV of Σ and eigenvalues of X solution of

$$AX + XA = -BC$$
.

 To predict the quality of the reduction : solve (large) Sylvester equations. Outline

Zolotarev problem

Applications

Constrained logarithmic potential theory

Asymptotics of discrete Zolotarev quantity

Explicit expression

Numerical examples

Continuous potential theory

- α, β finite positive Borel measures on $\mathbb C$ with compact support
- Logarithmic potential:

$$U^{\alpha}(z) := \int \log \frac{1}{|z - x|} d\alpha(x)$$

Logarithmic energy :

$$I(\alpha,\beta) := \int \int \log \frac{1}{|x-y|} d\alpha(x) d\beta(y) = \int U^{\alpha}(y) d\beta(y)$$

• Signed measures : $\mu = \mu_1 - \mu_2$ (Jordan decomposition)

$$I_Q(\mu) := I(\mu_1, \mu_1) - 2I(\mu_1, \mu_2) + I(\mu_2, \mu_2) + 2 \int Q(z) d\mu(z)$$

Discrete potential theory

Normalized counting measure

$$\nu_N(E_N) = \frac{1}{N} \sum_{\lambda \in E_N} \delta_{\lambda}$$

Discrete energy

$$I^{\star}\left(\nu_{N}(E_{N}),\nu_{N}(F_{N})\right):=\frac{1}{N^{2}}\sum_{x\in E_{N},y\in F_{N},\atop x\neq y}\log\frac{1}{|x-y|}$$

and

$$I^{*}(\nu_{N}(E_{N}) - \nu_{N}(F_{N})) := I^{*}(\nu_{N}(E_{N})) + I^{*}(\nu_{N}(F_{N})) - 2I^{*}(\nu_{N}(E_{N}), \nu_{N}(F_{N}))$$

Why potential theory?

$$p(z) = \prod_{\lambda \in E_N} (z - \lambda) \implies -\frac{1}{N} \log |p(z)| = U^{\nu_N(E_N)}(z)$$

Each absolutely continuous measure can by approached by zero counting measures

Difficulties while passing to the limit : $\nu_N(E_N) \stackrel{\star}{\rightharpoonup} \mu$ implies

$$\liminf U^{\nu_N(E_N)}(z) \ge U^{\mu}(z), \quad \liminf I^*(\nu_N(E_N)) \ge I(\mu).$$

Why potential theory?

$$p(z) = \prod_{\lambda \in E_N} (z - \lambda) \quad \Longrightarrow \quad -\frac{1}{N} \log |p(z)| = U^{\nu_N(E_N)}(z)$$

Each absolutely continuous measure can by approached by zero counting measures

Difficulties while passing to the limit : $\nu_N(E_N) \stackrel{\star}{\rightharpoonup} \mu$ implies

$$\liminf U^{\nu_N(E_N)}(z) \geq U^{\mu}(z), \quad \liminf I^{\star}\left(\nu_N(E_N)\right) \geq I(\mu).$$

Rational functions:

$$r(z) = \prod_{\lambda \in E_N} (z - \lambda) / \prod_{\lambda \in F_N} (z - \lambda) \implies -\frac{1}{N} \log |r(z)| = U^{\nu_N(E_N) - \nu_N(F_N)}(z)$$

signed measures instead of positive measures.

Logarithmic potential theory

	Positive measures	Signed measures
Q	[Gauss 1830], [Frostman 36], [Rakhmanov 84], [Mhaskar & Saff 84]	[Gonchar & Rakhmanov 84]
σ	[Dragnev & Saff 97], [Beckermann & Kuijlaars 01]	

Potential theory with constraint

For $t \in (0, \min(\sigma_1(\mathbb{C}), \sigma_2(\mathbb{C})))$, we define

$$\mathcal{M}_{\sigma}^{t} := \{ \mu := \mu_{1} - \mu_{2}, 0 \leq \mu_{j} \leq \sigma_{j}, \mu_{j} \text{ measure of mass } t \}$$

and the constrained energy problem:

among all the measures μ which belongs to $\mathcal{M}_{\sigma}^t,$ determine μ^t such that

$$I(\mu^t) = \inf(I(\mu), \mu \in \mathcal{M}_{\sigma}^t)$$

Potential theory with constraint

For $t \in (0, \min(\sigma_1(\mathbb{C}), \sigma_2(\mathbb{C})))$, we define

$$\mathcal{M}_{\sigma}^{t} := \{\mu := \mu_{1} - \mu_{2}, 0 \leq \mu_{j} \leq \sigma_{j}, \mu_{j} \text{ measure of mass } t\}$$

and the constrained energy problem:

among all the measures μ which belongs to \mathcal{M}_{σ}^{t} , determine μ^{t} such that

$$I(\mu^t) = \inf(I(\mu), \mu \in \mathcal{M}_{\sigma}^t)$$

Theorem 1

Unique minimizer μ^t characterized by the following variationnal conditions : there are two constants F_1^t and F_2^t such that

$$egin{aligned} U^{\mu^t}(z) &= F_1^t & z \in \operatorname{supp}(\sigma_1 - \mu_1^t) =: S_1^t \ U^{\mu^t}(z) &\leq F_1^t & z \in \mathbb{C} \ -U^{\mu^t}(z) &= F_2^t & z \in \operatorname{supp}(\sigma_2 - \mu_2^t) =: S_2^t \ -U^{\mu^t}(z) &\leq F_2^t & z \in \mathbb{C} \end{aligned}$$

Outline

Zolotarev problem

Applications

Constrained logarithmic potential theory

Asymptotics of discrete Zolotarev quantity

Explicit expression

Numerical examples

1. $E_N, F_N \subset \mathbb{C}$ disjoint sets of at most N elements, $(E_N)_N$ and $(F_N)_N$ bounded sequences

- 1. $E_N, F_N \subset \mathbb{C}$ disjoint sets of at most N elements, $(E_N)_N$ and $(F_N)_N$ bounded sequences
- 2. $\nu_N(E_N) \stackrel{\star}{\rightharpoonup} \sigma_1$, $\nu_N(F_N) \stackrel{\star}{\rightharpoonup} \sigma_2$ and $\sigma := \sigma_1 \sigma_2$

- 1. $E_N, F_N \subset \mathbb{C}$ disjoint sets of at most N elements, $(E_N)_N$ and $(F_N)_N$ bounded sequences
- 2. $\nu_N(E_N) \stackrel{\star}{\rightharpoonup} \sigma_1$, $\nu_N(F_N) \stackrel{\star}{\rightharpoonup} \sigma_2$ and $\sigma := \sigma_1 \sigma_2$
- 3. U^{σ_1} and U^{σ_2} continuous with cap $(\sup(\sigma_1) \cap \sup(\sigma_2)) = 0$

- 1. $E_N, F_N \subset \mathbb{C}$ disjoint sets of at most N elements, $(E_N)_N$ and $(F_N)_N$ bounded sequences
- 2. $\nu_N(E_N) \stackrel{\star}{\rightharpoonup} \sigma_1$, $\nu_N(F_N) \stackrel{\star}{\rightharpoonup} \sigma_2$ and $\sigma := \sigma_1 \sigma_2$
- 3. U^{σ_1} and U^{σ_2} continuous with cap $(\sup(\sigma_1) \cap \sup(\sigma_2)) = 0$

4.

$$\lim_{N\to+\infty}I^*\left(\nu_N(E_N)+\nu_N(F_N)\right)=I(\sigma_1+\sigma_2)$$

- 1. $E_N, F_N \subset \mathbb{C}$ disjoint sets of at most N elements, $(E_N)_N$ and $(F_N)_N$ bounded sequences
- 2. $\nu_N(E_N) \stackrel{\star}{\rightharpoonup} \sigma_1$, $\nu_N(F_N) \stackrel{\star}{\rightharpoonup} \sigma_2$ and $\sigma := \sigma_1 \sigma_2$
- 3. U^{σ_1} and U^{σ_2} continuous with cap $(supp(\sigma_1) \cap supp(\sigma_2)) = 0$

4.

$$\lim_{N\to+\infty}I^{\star}\left(\nu_{N}(E_{N})+\nu_{N}(F_{N})\right)=I(\sigma_{1}+\sigma_{2})$$

5.

$$\lim_{N\to +\infty} \mathsf{dist}\left(E_N,F_N\right)^{1/N} = 1$$

Precise statement of asymptotics

With
$$F^t := F_1^t + F_2^t$$

Theorem 2

Under the assumptions 1, 2, 3,

$$\limsup_{\substack{n,N\to\infty\\n/N\to t}} Z_n(E_N,F_N)^{1/N} \le \exp(-F^t) \tag{1}$$

and with 4, 5,

$$\lim_{\substack{n,N\to\infty\\n/N\to t}} Z_n(E_N,F_N)^{1/N} = \exp(-F^t)$$
 (2)

Upper bound

Given for
$$\ell=1,2$$

$$S_\ell(t) := \left\{ U^{\mu^t}(z) = (-1)^{\ell+1} F_\ell^t
ight\}$$

Upper bound

Given for $\ell = 1, 2$

$$S_{\ell}(t) := \left\{ U^{\mu^t}(z) = (-1)^{\ell+1} F_{\ell}^t \right\}$$

Construct good rational function with

- Zeros : every point in $E_N \setminus S_1(t)$
- Poles : every point in $F_N \setminus S_2(t)$
- Method : discretizing μ^t

Lower bound

- Consider rational Fekete points: subsets E_n^{*} ⊂ E_N, F_n^{*} ⊂ F_N both with n + 1 elements and minimal I_N(E_n^{*}, F_n^{*}).
- Show that $\nu_N(E_n^*) \nu_N(F_n^*) \stackrel{\star}{\rightharpoonup} \mu^t$, and

$$\frac{1}{(n+1)^2}Z_n^{\star}(E_n^{\star},F_n^{\star}) \leq Z_n(E_N,F_N)$$

 Method: singular values of a Cauchy-type matrix built on Fekete points. Outline

Zolotarev problem

Applications

Constrained logarithmic potential theory

Asymptotics of discrete Zolotarev quantity

Explicit expression

Numerical examples

A more explicit expression for F^t

From now on, $\sigma_1(\mathbb{C}) = \sigma_2(\mathbb{C})$.

The formula for F is not very explicit, link with superlinear convergence? In the polynomial case, explicit formula given by [Kuijlaars & Beckermann 01] via [Buyarov & Rakhmanov 99].

Theorem 3

With $S_{\ell}^t = \operatorname{supp}(\sigma_{\ell} - \mu_{\ell}^t)$, the families $(S_1^t)_t$, $(S_2^t)_t$ and $(\operatorname{cap}(S_1^t, S_2^t))_t$ decrease in t.

Moreover.

$$F^t = \int_0^t \frac{d\tau}{\mathsf{cap}(S_1^\tau, S_2^\tau)}$$

Sketched proof

- Duality with vector equilibrium problem with external field
- Monotonicity of sets follows from [Lapik 06]
- Caracterization by generalization of Rakhmanov-Maskhar-Saff functional
- $t \mapsto F^t$ convex, with derivative $1/\operatorname{cap}(S_1^t, S_2^t)$

Sufficient conditions for interval case

Consider constraint with symmetry $\sigma_1'(x) = -\sigma_2'(-x)$.

E.g. $A = A^* = -B \ge 0$ in ADI.

Same symmetry for μ^t .

Theorem 4

Let
$$supp(\sigma_1) = [a, b] \subset [0, +\infty]$$
. If

$$x \mapsto \sqrt{(x^2 - a^2)(b^2 - x^2)} \sigma_1'(x)$$

is increasing then

$$S_1^t = -S_2^t = [\alpha, b].$$

Computation of S_{ℓ}^{t}

- Interval symmetric case : $S_1^t = [\alpha, b] = -S_2^t$.
- Minimization of RMS functional.
- Integral equation :

$$t = \frac{2}{b\pi} \int_{[0,\alpha] \cup [b,+\infty]} \Pi\left(1, 1 - \frac{\alpha^2}{z^2}, \sqrt{1 - \frac{\alpha^2}{b^2}}\right) z \sqrt{\left|\frac{z^2 - b^2}{z^2 - \alpha^2}\right|} d\sigma(z)$$

with

$$\Pi(z,\nu,k) := \int_0^z \frac{dt}{(1-\nu t^2)\sqrt{(1-t^2)(1-k^2t^2)}}$$

Outline

Zolotarev problem

Applications

Constrained logarithmic potential theory

Asymptotics of discrete Zolotarev quantity

Explicit expression

Numerical examples

- ADI for Lyapounov equation AX + XA = B
- Choose X randomly, then compute B and solve the equation with ADI, initial guess $X_0 = 0$
- x-axis: number of iterations
- y-axis: error and upper bound for both continuous and discrete parameters
- Parameters : built with Leja-Bagby rational points

Equidistant eigenvalues

Toy example

2D Laplacian

In this case: [Sabino 06]: 40 iterations, [Penzl 00]: 70 iterations.

4D Laplacian

Conclusion, future work

- Potential theory learns where the discrete nature is important and in which case the discrete nature is important.
- More general necessary condition for the interval case?
- Asymptotics of Leja-Bagby points for discrete sets?
- Computation of the Ritz values
- Strong asymptotics?
- Other choice of ratio?

Leja-Bagby points

•

$$q_{m+1} = \arg\min_{z \in E} |w(z)r_m(z)|, \quad r_m(z) = \prod_{j=1}^m \frac{z - q_j}{z + q_j}, \quad r_0(z) = 1.$$

- Suggested in the context of ADI in [Levenberg & Reichel 93]
- Asymptotic distribution : described by equilibrium measure?