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Our problem

Consider
1. En, Fy disjoint sets of at most N elements in C
2. Rn=A{p/q: p,q polynomials of degree < n}
3. |fllieo(ey = supzee |f(2)]
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Zolotarev problem

What is known ?

e Ep, Fp replaced by larger infinite sets E, F of positive
capacity, [Gonchar 78] :

1
Zn(EN, FN)l/n S Zn(E, F)l/n — exp <—Cap(EF)>

e cap(E, F) capacity of condenser with plates E (positive unit
charge) and F (negative unit charge) in R?

e Extensions known for different degrees of
numerator/denominator [Levin & Saff 01]
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Zolotarev's findings

For E = [a, (], F =[5, —q] : explicit formulas

cap([a, 8], [-8, —a]) = m

Elliptic functions

K(k) = /1 at K'(K) = K(v/1— K2
o Ve ea)

e Then

Zo ([0, 81, =B, —a]) /" — exp (—zw

Inequalities [Braess 80]
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An example

150 f
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50 -
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-1501 /
.
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

o E=1/200+ {0, 1/5,2/5, 3/5, 4/5, 1}
e Top: Z4y(E,—E) ~107*
e Bottom : Z; (conv(E), conv(—E)) ~ 1072




Zolotarev problem

Main finding for real Ey, Fy

Under suitable smoothness, separation assumptions and assumptions
on the form of limit measures o1, o>

provided that n, N — oo s.t. n/N — t > 0.




Zolotarev problem

Main finding for real Ey, Fy

Under suitable smoothness, separation assumptions and assumptions
on the form of limit measures o1, o>

provided that n, N — oo s.t. n/N — t > 0.

Notice :
1. 7 — a, increasing, T — b, decreasing (defined implicitly).
2. If both functions constant : we recover result of Zolotarev.

3. Intervals [a;, b;] shrinking implies superlinear rate.
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Sylvester/Lyapunov equation

e ADI -alternating direction implicit- method [Peaceman &
Rachford 1955] : solve the Sylvester equation : AX — XB = C,
X eCNV*N A B, CeCNV*N A B normal.
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Sylvester/Lyapunov equation

e ADI -alternating direction implicit- method [Peaceman &
Rachford 1955] : solve the Sylvester equation : AX — XB = C,
X eCNV*N A B, CeCNV*N A B normal.

e Symmetric case : B = —A* and C hermitian, the equation
becomes AX + XA* = C, known as Lyapunov equation.



Applications

Sylvester/Lyapunov equation

ADI -alternating direction implicit- method [Peaceman &
Rachford 1955] : solve the Sylvester equation : AX — XB = C,
X eCNV*N A B, CeCNV*N A B normal.

Symmetric case : B = —A* and C hermitian, the equation
becomes AX + XA* = C, known as Lyapunov equation.
Unique solution if A(A) NA(B) = 0.

True in Lyapunov case if A symmetric positive definite
(which we consider for the moment).

Can be formulated as N? by N? linear system, but generally
not efficient.
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The ADI iteration for AX — XB = C

e With an initial guess Xg € CN*N and free parameters
Pk, Gk € C
e Written at two steps :

(A= pi)Xis12 = Xe(B = p) + C
Xe1(B — qx) = (A= qi)Xiy12 — C



Applications

The ADI iteration for AX — XB = C

With an initial guess Xo € CV*N and free parameters
Pk, Gk € C
Written at two steps :

(A= pi)Xis12 = Xe(B = p) + C

Thus Xk+1(B — qk) = (A — qk)Xk+1/2 - C
[1X = Xall 1 T Z— 9k
T < || (A)|||| (B r(z) = .
=] < Alin(8) 1 )= TT 7=

Bound Z,(A(A), A(B)) in case of optimal parameters
Around ADI : [Smith 68], [Penzl 00], [Sabino 06], [Benner 08]
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ADI bound Z,(A(A),A(B)) in case of optimal parameters

CLASSICAL APPROACH : replace A(A),A(B) by larger "nice"
sets E, F and use parameters py, g, for optimal rational function
for Z,(E, F).

PROBLEM : we do forget about that there are perhaps only
relatively few eigenvalues close to 0.



Applications

ADI bound Z,(A(A),A(B)) in case of optimal parameters

CLASSICAL APPROACH : replace A(A),A(B) by larger "nice"
sets E, F and use parameters py, g, for optimal rational function
for Z,(E, F).

PROBLEM : we do forget about that there are perhaps only
relatively few eigenvalues close to 0.

But for many sequences of matrices (Ay)y>; coming from
discretization of PDE with varying "stepsize", the limit distribution
o1 for eigenvalues Eyy = A(Ap) is known, even if we do not know
so much about the eigenvalues.



Applications

Other applications

e SV of matrices with small displacement rank
014np(X) < Zn(A(A),A(B)) 01(X), p = rg(AX — XB).

e Approximation of signum function : E C Ry, F C R_ discrete
disjoint sets,

_ Z,(E,F)
S E AN
with
Sn(E, F) :=inf{Sgr, R € R, real coefficients}
and

Sg = max_ |R(x) — s(x)] .



Applications

Link with linear control theory

Model reduction for continuous stationnary linear dynamical
system.

Y square system realizing
H(z) = C(zl — A)7'B

Error bound : || — X,|| < (0/41+ ...+ 0pn) where &,
obtained by model reduction and balanced truncation, (o)
Hankel SV of ¥ and eigenvalues of X solution of

AX + XA = —-BC.

To predict the quality of the reduction : solve (large) Sylvester
equations.
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Constrained PT

Continuous potential theory

a, B finite positive Borel measures on C with compact support

1
= [ log 7=

Srda()dly) = / U°(y)dB(y)

Logarithmic potential :

Logarithmic energy :

- f fos?

Signed measures : u = pj — uo (Jordan decomposition)

loli) = (s 12) = 20, 1) + sz, ) + 2 [ Q2)dl(2)



Outline Zolotarev problem Applications Constrained PT Asymp. Zol. Explicit expression Numerical examples

Discrete potential theory

e Normalized counting measure
(Ev) = 30
v ==
N\EN N A
AeEpn

e Discrete energy

I"(vn(En), vn(F)) ::% 2 Ioglx—l)/!

xEEp,yEF,
X7y

and

I* (vn(En) — vn(Fn)) = 1" (vn(En)) + 17 (vn(Frv))
— 21" (vn(En), vn(Fn))



Constrained PT

Why potential theory ?

) =TI (-2 = —plogle(z)] = U(En)(z)

AeEpn

Each absolutely continuous measure can by approached by zero
counting measures
Difficulties while passing to the limit : vy (Eyn) = u implies

liminf U"NEN)(2) > UM(z2), liminf I* (un(En)) > 1(p).



Constrained PT

Why potential theory ?

)= T2 = g logle(z)] = U(En)(z)
AEEy

Each absolutely continuous measure can by approached by zero
counting measures
Difficulties while passing to the limit : vy (Eyn) = u implies

liminf U"NEN)(2) > UM(z2), liminf I* (un(En)) > 1(p).

Rational functions :

@)= TN/l = —%Ioglr(z)l — Y (E)—n(Fr) (7)

AeEyN AeFN

signed measures instead of positive measures.



Constrained PT

Logarithmic potential theory

Positive measures Signed measures

[Gauss 1830], [Frostman 36], [Gonchar & Rakhmanov 84]
[Rakhmanov 84|, [Mhaskar & Saff 84]

[Dragnev & Saff 97],
[Beckermann & Kuijlaars 01]




Constrained PT
Potential theory with constraint
For t € (0, min (01(C), 02(C))), we define
ME = {p:=p1 — p2,0 < pj < o, uj measure of mass t}

and the constrained energy problem :

among all the measures 1 which belongs to MZ, determine p* such
that

I(u") = inf(I(p), p € M;)




Constrained PT

Potential theory with constraint
For t € (0, min (01(C), 02(C))), we define
ME = {p:=p1 — p2,0 < pj < o, uj measure of mass t}
and the constrained energy problem :
among all the measures 1 which belongs to MZ, determine p* such
that

I(u") = inf(I(p), p € M;)

Theorem 1
Unique minimizer ut characterized by the following variationnal

conditions : there are two constants F{ and F} such that

U (z) = F{ zcsupp(or — puf) =: Sf
U ()< Ff zeC
~U"(2) = F} z €supp(o2 — ph) = S}
—UM(z)<Ff zeC
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Assumptions

1. En, Fy C C disjoint sets of at most N elements, (Ey)y and
(Fn)n bounded sequences
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Assumptions

1. En, Fy C C disjoint sets of at most N elements, (Ey)y and
(Fn)n bounded sequences

2. I/N(EN) BN o1, VN(FN) B (%) and 0 := 01 — 02
3. Ut and U2 continuous with cap (supp(o1) Nsupp(oz2)) =0
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Assumptions

1. En, Fy C C disjoint sets of at most N elements, (Ey)y and
(Fn)n bounded sequences

2. VN(EN) BN o1, VN(FN) B (%) and 0 := 01 — 02
3. Ut and U2 continuous with cap (supp(o1) Nsupp(oz2)) =0

ylim_ 1" (vn(En) + vn(Fr)) = 11 + 02)



Asymp. Zol.

Assumptions

. En, Fy C C disjoint sets of at most N elements, (Ey)y and
(Fn)n bounded sequences

2. VN(EN) BN o1, VN(FN) B (%) and 0 := 01 — 02
3. Ut and U2 continuous with cap (supp(o1) Nsupp(oz2)) =0

Nlim I* (I/N(EN) + l/N(FN)) = /(0'1 + 02)
— 400

lim dist (En, Fy)YV =1

N—+oo
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Precise statement of asymptotics

With Ft .= Ff 4 F/

Theorem 2
Under the assumptions 1, 2, 3,

lim sup Zy(En, Fn)Y'"N < exp(—F?)
n,N—oco
n/N—t

and with 4, 5,

!Jm Z(Ep, FN)l/N = exp(—F")
Nt

Numerical examples
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Upper bound

Given for £ =1,2

Si(t) = {U(2) = (-1
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Upper bound

Given for £ =1,2

Si(t) = {U"'(2) = (-1}

Construct good rational function with
e Zeros : every point in Ey \ S1(t)
e Poles : every point in Fy \ Sa(t)
e Method : discretizing u*
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Lower bound

e Consider rational Fekete points : subsets E) C Ey, F} C Fpn
both with n+ 1 elements and minimal In(E}, F}).

o Show that vy(E}) — vn(FZ) = ut, and

1 * * *
mzn(En7 Fy) < Zu(En, Fn)

e Method : singular values of a Cauchy-type matrix built on
Fekete points.
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A more explicit expression for F*

From now on, 01(C) = g2(C).

The formula for is not very explicit, link with superlinear
convergence ? In the polynomial case, explicit formula given by [Kuijlaars
& Beckermann 01] via [Buyarov & Rakhmanov 99].

Theorem 3
With S} = supp (o¢ — }), the families (S§)¢, (S5): and
(cap(S{,S})), decrease in t.

Moreover,
£t /t dr
Jo cap(57,57)
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Sketched proof

Duality with vector equilibrium problem with external field

Monotonicity of sets follows from [Lapik 06]

Caracterization by generalization of Rakhmanov-Maskhar-Saff
functional

o t— F! convex, with derivative 1/ cap(S{, S3)
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Sufficient conditions for interval case

Consider constraint with symmetry o} (x) = —o5(—x).
Eg. A=A"=—-B>0in ADIL
Same symmetry for ut.

Theorem 4
Let supp(o1) = [a, b] C [0, +o0]. If

x /(2 — 2)(B? — x2)0(x)

is increasing then

Si=-5 =] b].
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Computation of S}

e Interval symmetric case : Sf = [a, b] = —SJ.
e Minimization of RMS functional.

e Integral equation :

2 2
t:2/ n{Li-51-% )z
b J(0,0]u1b, +oc] z b

with

ot dt
N(z,v, k) := /0 (1-vt2)y/(1- )1 - K12
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Numerical examples

ADI for Lyapounov equation AX + XA= B

Choose X randomly, then compute B and solve the equation
with ADI, initial guess Xo =0

x-axis : number of iterations

y-axis : error and upper bound for both continuous and
discrete parameters

Parameters : built with Leja-Bagby rational points
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Equidistant eigenvalues
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Toy example

10 T T T

107 - \

10 ]

10

18 n " n n n

cos Tk 1
= - — < < =
En cos N +N4 1<k<N;, N=100

10
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2D Laplacian

Explicit expression

107 -

0L

15 .

10

0 5

2D
EN

10 15 20 25 30

35 40

{22cos(k”)} . N =100
N+1 1<k<N

Numerical examples

In this case : [Sabino 06] : 40 iterations, [Penzl 00] : 70 iterations.
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4D Laplacian

Explicit expression

10°
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20 25

Numerical examples



Numerical examples

Conclusion, future work

Potential theory learns where the discrete nature is important
and in which case the discrete nature is important.

More general necessary condition for the interval case?
Asymptotics of Leja-Bagby points for discrete sets?
Computation of the Ritz values

Strong asymptotics ?

Other choice of ratio?
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Leja-Bagby points

m
L 7129
Gm+1 = argmin [w(2)rm(2)],  rm(2) = JH1 z+q’

n(z) =1.

e Suggested in the context of ADI in [Levenberg & Reichel 93]

e Asymptotic distribution : described by equilibrium measure 7
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