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Résumé

Cette thèse développe (1) un système de vérification en logique de séparation pour des pro-
grammes à la Java parallèles et (2) de nouvelles analyses utilisant la logique de séparation.

La logique de séparation est une variante de la logique linéaire [50] qui connâıt un
récent succès pour la vérification de programmes [93, 84, 88]. Dans la littérature, la logique
de séparation a été appliquée à des programmes while simples [93], des programmes while
parallèles [84], et des programmes objets séquentiels [88]. Ces remarques sont développées
dans l’introduction (chapitre 1). Dans cette thèse nous continuons ces travaux en adaptant
la logique de séparation aux programmes objets parallèles similaires à Java.

Dans ce but, nous dévelopons de nouvelles règles de vérification pour les primitives de
Java concernant le parallélisme. Pour se faire, nous élaborons un langage modèle similaire
à Java (chapitre 2) qui sert de base aux chapitres ultérieurs. Ensuite, nous mettons en
œuvre un système de vérification en logique de séparation pour les programmes écrits
dans ce langage modèle (chapitre 3).

Le chapitre 4 présente des règles de vérification pour les primitives fork et join. La
primitive fork démarre un nouveau thread et la primitive join permet d’attendre la termi-
naison d’un thread. Ces primitives sont utilisées par un certain nombre de langages: C++,
python, et C♯. Le chapitre 5 décrit des règles de vérification pour les verrous réentrants
qui sont utilisés en Java. Les verrous réentrants – contrairement aux verrous Posix –
peuvent être acquis plusieurs fois. Cette propriété simplifie la tâche du programmeur
mais complique la vérification.

La suite de la thèse présente trois nouvelles analyses utilisant la logique de séparation.
Au chapitre 7, nous continuons le travail de Cheon et al. sur les séquences d’appels de
méthodes autorisées (aka protocoles) [32]. Nous étendons ces travaux aux programmes
parallèles et inventons une technique afin de vérifier que les spécifications des méthodes
d’une classe sont conformes au protocole de cette classe. Au chapitre 8, nous développons
un algorithme pour montrer qu’une formule de logique de séparation n’en implique pas
une autre. Cet algorithme fonctionne de la manière suivante: étant donné deux formules
A et B, la taille des modèles potentiels de A et B est calculée approximativement, puis;
si les tailles obtenues sont incompatibles, l’algorithme conclut que A n’implique pas B.
Cet algorithme est utile dans les vérificateurs de programmes car ceux-ci doivent souvent
décider des implications. Enfin, au chapitre 9, nous montrons comment paralléliser et
optimiser des programmes en observant leurs preuves en logique de séparation. Cet
algorithme est implanté dans l’outil éterlou.

Pour finir, au chapitre 10, nous concluons et proposons des pistes pour compléter les
résultats de la présente thèse.
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Abstract

This thesis develops a verification system in separation logic for multithreaded Java pro-
grams. In addition, this thesis shows three new analyses based on separation logic.

Separation logic is a variant of linear logic [50] that did a recent breakthrough in pro-
gram verification [93, 84, 88]. In the literature, separation logic has been applied to simple
while programs [93], while programs with parallelism [84], and sequential object oriented
programs [88]. We complete these works by adapting separation logic to multithreaded
object-oriented programs la Java.

To pursue this goal, we develop new verification rules for Java’s primitives for multi-
threading. The basis of our work consists of a model language that we use throughout
the thesis (Chapter 2). All our formalisation is based on this model language.

First, we propose new verification rules for fork and join (Chapter 4). Fork starts a
new thread while join waits until the receiver thread terminates. Fork and join are used in
many mainstream languages including Java, C++, C#, and python. Then, we describe
verification rules for reentrant locks i.e. Java’s locks (Chapter 5). Reentrant locks - as
opposed to Posix locks - can be acquired multiple times (and released accordingly). This
property eases the programmer’s task, but it makes verification harder.

Second, we present three new analyses based on separation logic. The first analysis
(Chapter 7) completes Cheon et al.’s work on sequences of allowed method calls (i.e.
protocols). We extend this work to multithreaded programs and propose a technique to
verify that method contracts comply with class protocols. The second analysis permits to
show that a separation logic formula does not entail another formula (Chapter 8). This
algorithm works as follows: given two formulas A and B, the size of A and B’s models
is approximated; then if the sizes of models are incompatible, the algorithm concludes
that A does not entail B. This algorithm is useful in program verifiers, because they have
to decide entailment often. The third analysis shows how to parallelize and optimize
programs by looking at their proofs in separation logic (Chapter 9). This algorithm is
implemented in a tool called terlou.

Finally, we conclude and discuss possible future work in Chapter 10.
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qui me pousse. Toi et moi, c’est une thèse sans conclusion. . .
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ce, dans tous les domaines.

Scientifiquement, mes plus profonds remerciements vont à Christian Haack et Marieke
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combinaison de marcels, de mâıtrise du poulailler, et d’humour ; et Anne Pacalet pour
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L’homme ne peut décider de suivre
telle voie plutôt que la voie technique:
ou bien il décide d’user du moyen
traditionnel ou personnel et alors ses
moyens ne sont pas efficaces, ils seront
étouffés ou éliminés, ou bien il décide
d’accepter la nécessité technique, il
vaincra soumis de façon irrémédiable
à l’esclavage technique. Il n’y a donc
absolument aucune liberté de choix.

Le système technicien (1977)
Jacques Ellul

Chapter 1

Introduction

1.1 Motivation

Software is ubiquitous in a variety of activities. Withdrawing cash from an ATM, waiting
for the level crossing to go up at Enschede’s station, flying a plane, watching TV: in all
these situations, you interact with software, or worse your integrity relies on software.
The impact of software failure can vary, though. If your TV works incorrectly, you might
just switch it off and get it fixed. When you rely on software, however, a failure can be
deadly: if the level crossing does not go down when a train arrives you might get crushed.
Consequently, making sure that software works correctly is – in some fields – required.
This could be for good reasons: ensuring that trains, cars, and planes are safe. This could
be for terrible reasons: ensuring that tanks and fighter jets work correctly.

The goal of software verification is to provide some confidence in software. From a
high-level point of view, software verification is a set of methods that take programs as in-
put, and outputs certain guarantees about the input programs. Such guarantees include
“this program does not perform unexpected operations”, “this program never derefer-
ences a null pointer”, “this program allocates that amount of memory”, “this program
computes an answer to the problem X”, “this program does not transfer money”, “this
program does not leak my passwords” etc. The level of confidence provided by software
verification is inversely proportional to the effort required to apply the technique used.
Entirely automatic techniques give guarantees such as “this program does not perform
unexpected operations”. Providing the guarantee that “this program never dereferences
a null pointer” is less likely to be automatic. Showing that “this program computes an
answer to the problem X” usually requires human interaction. Typically, the human
interaction is to tune the verification technique (with annotations for example). In this
thesis, we show a technique that requires high effort from programmers, but provides high
confidence.

One of the first verification technique was type checking. Type checking ensures that
programs only perform valid operations. For example, the program below cannot be type
checked:

int n := 0;

string s := "tutut";

return (n = s);

1



2 CHAPTER 1. INTRODUCTION

This program is invalid, because it does not make sense: it compares an integer (n) and
a string (s). It is good practice to consider this an error (although some languages might
allow such a behavior). That is exactly the role of type checking. Considering the trade
off between automation and the level of confidence provided, type systems are entirely
automatic, but provide a low level of confidence. For example, consider the following
program:

zeroify(Integer o){

o.val := 0;

}

The program above might crash if the Integer object passed to zeroify is null.
In this case the assignment o.val := 0 fails. Here, Java’s or C++’s type systems do
not discover this possible error1. Basic type checkers answer to questions such as “does
this program perform unexpected operations ?” and advanced type checkers answer to
questions such as “does this program dereference a null pointer”. Type systems, however,
fail to ensure advanced properties. For example consider the following piece of C code:

int queens(int a, int b, int c){

int d=0,e=a& b& c,f=1;

if(a)for(f=0;d=(e-=d)&-e;f+=queens(a-d,(b+d)*2,(c+d)/2));

return f;

}

main(q){

scanf("%d",&q);

printf("%d\n",t(~(~0<<q),0,0));
}

This mysterious piece of code (studied by Filliâtre [47]) computes the number of
solutions to the well-known n-queens problem, where n is read on standard input. In-
terestingly, this program is actually very efficient at solving this problem. Type systems
cannot be used to verify that this program really solves the n-queen problem. To verify
this program, full-fledged software verification aka static checking is necessary. Generally
speaking, static checking requires programmers to specify (or annotate) programs, i.e., to
write down what programs are supposed to do. Static checkers take specified programs as
input and output mathematical formulas called proof obligations. If all proof obligations
can be discharged, then the input program satisfies the specifications. If some proof obli-
gations cannot be proven, then either the prover is too weak, or specifications are wrong,
or the program is wrong.

Static checking answers basic questions such as “does this program dereference a null
pointer ?” and advanced questions such as “does this program compute an answer to the
problem X ?”. On one hand, static checking requires effort from programmers, because
it requires programs to be annotated. On the other hand, static checking ensures strong
guarantees on software. For example of static checking’s powerfulness, Filliâtre proved
that the program above does solve the n-queens problem.

1Advanced type systems [59] could catch this bug, but they are not yet integrated in mainstream
languages.
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Static checking offers a level of confidence according to the programmer’s annotations.
If the programmer specifies solely memory safety (i.e., absence of null dereferences), then
static checking will provide only this level of confidence. Consequently, static checking
is not tailored to a particular problem. That is why better techniques might exist for
specific problems. Such problems include “does my program transfer money ?” or “does
my program leaks my passwords ?”. For these problems, techniques focusing on security
and privacy [10] perform better than static checking.

In the next section, we give detailed explanations on static checking. Even if specific
techniques might perform better than static checking for some problems, static check-
ing is the basis of program verification. Static checking’s advantage is that it lets the
programmer specify what property he wants to verify. Consequently, it handles a large
variety of problems. Below, we review techniques related to static checking and position
our work w.r.t. to these techniques.

1.2 Background

Hoare [57] first started program verification as we know it today. He proposed reasoning
with triples consisting of two formulas and a program. Such triples (which are now called
“Hoare triples”) have the following form:

{F}c{G}

Above, F and G are the two formulas and c is the program (c should be read as
“command”). This triple has the following meaning: if program c starts in a state
described by formula F , then, if c terminates, it will terminate in a state described
by G. In Hoare triples, F is called the precondition and G is called the postcondition.
Early work focused on how to build such triples for large programs. For small programs,
building Hoare triples is easy. For example, the following Hoare triple formalizes the
meaning of variable assignment:

{F [E/x]}x := E{F}

Above F [E/x] is formula F where all free occurrences of variable x have been replaced
by expression E. Then, the rule should be read as follows: what was true about E before
the assignment (i.e., F [E/x]) is true for x after the assignment (i.e., F ). Hoare triples for
large programs are built by using special rules. For example, the rule below shows how
to build a triple for a program that successively executes program c and program c′:

{F}c{G} {G}c′{H}
(Seq)

{F}c; c′{H}

In this rule the two triples above the bar are called the premises, while the triple below
the bar is called the conclusion. This rule (called the sequence rule) means the following:
given that program c satisfies the triple {F}c{G} and that program c′ satisfies the triple
{G}c′{H}, then it can be deduced that program c; c′ satisfies the triple {F}c;c′{H}.

A limitation of traditional Hoare logic is that it has no way to express what objects
are accessed and what objects are not accessed by method calls. For example consider
the following Java-like class:
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class 2DPoint{

int x,y;

requires true; ensures this.x == newx;

void setX(int newx){ this.x = newx; }

}

Above, method setX is annotated with a pre- and a postcondition. Preconditions
indicate what client must establish before calling a method, while postconditions indicate
what methods ensure to clients after they return. Here, the precondition true is vacuous:
it imposes nothing to clients. The postcondition this.x == newx indicates that method
setX updates field x with the value passed as a parameter.

Method setX’s precondition illustrates that Hoare logic is inadequate to express what
objects are accessed and what objects are not accessed by method calls. This precondition
is not enough informative. First, it does not indicate that field x of the receiver is accessed.
Second, it does not indicate which fields are not accessed (that is, all fields of all objects
except field x of the receiver). Knowing what fields are accessed and what fields are not
accessed is crucial to verify programs. If these informations are available, the algorithms
used for verification become simpler and program verification itself is easier.

This problem (which is called the frame or the aliasing problem) has been thoroughly
studied in the last decade. Recently, in the field of program verification, two techniques
arose to deal with this problem.

The first approach was to incorporate ownership techniques [34, 81] into program ver-
ifiers [41, 28, 6]. In this approach, programmers have to specify an ownership relation
between objects. Roughly, ownership relations enforce that objects are only modified by
their owners (which are also objects). This permits to tame aliasing, because strong as-
sumptions about possible modifications can be made. A shortcoming of these approaches
is that they do not help to verify multithreaded programs. First, because ownership re-
lations are static (once they are established they can never be changed), they are too
restrictive for multithreaded programs where the owners of objects change dynamically.
For example, an object might be owned successively by different threads or an object can
be successively owned by a thread and then by a lock. Second, ownership relations suffer
from the shortcoming that they should obey a fixed discipline (contrary to being specified
by programmers). Consequently, programs that fail complying to the discipline cannot
be verified.

The second approach used to deal with aliasing was to use a different logic, that allows
to express ownership relations dynamically. In most program verifiers [6, 28, 9], formulas
are written in some variant of first order logic. Recently, a new logic called separation
logic appeared [93]. One novelty of this logic is that it encompasses both ownership and
a solution to aliasing. The basic formula of separation logic is the points-to predicate
x.f 7→ v. This formula has a dual meaning: firstly, it asserts that the object field x.f
contains data value v and, secondly, it represents a permission to access the field x.f
(i.e., it expresses ownership of x.f). Separation logic also features a new operator: the
separating conjunction ⋆. Formula F ⋆ G means that formula F holds for a part of the
heap, while formula G holds for a separate part of the heap. This operator is the key to
tame aliasing. In separation logic, class 2DPoint is specified as follows:
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class 2DPoint{

int x,y;

requires this.x 7→ ; ensures this.x 7→ newx;

void setX(int newx){ this.x = newx; }

}

Now, the precondition expresses what field should be owned by callers to setX: simply
this.x. In addition, it implicitly expresses that everything that does not appear in the
precondition is left untouched, because there is no permission to access it.

Until now, we have only discussed sequential programs. Parallel programs (which are
also called multithreaded or concurrent programs), however, are nowadays becoming more
and more important. First, because of the high demand on software; programmers have to
write fast (scientific computing), responsive (user interfaces), and reliable code. Second,
as the speed of processors stopped increasing quickly, hardware manufacturer started
increasing the number of processors on motherboards: nowadays, most laptops feature 2
or 4 processors. Consequently, to efficiently use the hardware’s capabilities, programmers
now have to write multithreaded programs. This is not an easy task though: writing
multithreaded programs is much more difficult than writing sequential programs.

First, one has to decide how to parallelize to achieve the desired result. This requires
to use special patterns (worker threads, divide and conquer algorithms etc.) and to
implement them correctly. Second, and more concretely, one must avoid data races. A
data race occurs when two threads write to the same location in the heap simultaneously,
or when one thread writes to a location and another thread simultaneously reads the same
location. Data races are rarely intended and can result in unexpected behaviors [61].
Third, one has to avoid deadlocks. A deadlock occurs when a thread t0 waits for another
thread t1 to perform some action, while t1 also waits for t0 to perform some action. In
this case, both t0 and t1 are blocked forever, i.e., deadlocked.

Because of the issues sketched above, verifying multithreaded programs requires ded-
icated techniques that go beyond a simple adaptation of the verification techniques for
sequential programs. Historically, the first verification technique for parallel programs was
proposed by Owicki and Gries [87]. They advocated to check the interference between
commands from different processes. This solution, however, suffered from two defects.
First, it was non-modular: if a new process was added to the system, one had to check
possible interferences of this new process with all other processes. Second, Owicki and
Gries’s technique had a high complexity because all program points of a process had to
be checked for interferences against all program points of other processes.

Later, Jones proposed rely-guarantee [72] to tame the complexity of verification of
parallel programs. In this framework, programmers have to annotate each process with a
rely condition (what this process assumes about the environment, i.e., the other processes)
and a guarantee condition (what this process guarantees to the other processes). While
this method is flexible (it handles fine-grained parallelism), it had the disadvantage that
the rely and the guarantee condition of a process spread into all proofs of this process.
Concretely, at each program point, a process must make sure that it does not break its
guarantee condition.

In the last years, O’Hearn [84] adapted separation logic to reason about parallel pro-
grams. He discovered that separation logic solves both the modularity problem and the
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complexity problem of Owicki and Gries and Jones. Indeed, verification of concurrent
programs with separation logic is modular : each thread can be verified separately. Fur-
ther, complexity of verification is acceptable, because interferences between threads are
only handled at synchronization points.

O’Hearn studied simple while programs with a parallel operator ‖ and locks. He
developed the following Hoare rule to deal with the parallel operator:

{F}C{F ′} {G}C ′{G′}
(Parallel)

{F ⋆ G}C‖C ′{F ′ ⋆ G′}

Side condition: C does not modify any variables free in G, C ′, and G′ (and vice versa)

The rule (Parallel) can be understood as follows: for two threads to execute in parallel,
they should access disjoint parts of the heap (i.e., F and G). When the two threads
terminate, the resulting heap is simply the ⋆ conjunction of the heaps obtained after both
threads’s execution (i.e., F ′ and G′).

While the rule (Parallel) is sound, it is too restrictive: it forbids two threads to
simultaneously read a location. Boyland [23] solved this problem with a very intuitive
idea, which was later adapted to separation logic [21]. The idea is that (1) access tickets
are splittable, (2) a split of an access ticket still grants read access and (3) only a whole
access ticket grants write access. To account for multiple splits, Boyland uses fractions,
hence the name fractional permissions. In permission-accounting separation logic [21],

access tickets x.f 7→ v are superscripted by fractions π. x.f
π
7−→ v is equivalent to

x.f
π/2
7−→ v * x.f

π/2
7−→ v. In the Hoare rules, writing requires the full fraction 1, whereas

reading just requires some fraction π:

{x.f
1
7−→ }x.f = v{x.f

1
7−→ v} {x.f

π
7−→ v}y =x.f{x.f

π
7−→ v * v == y}

Permission-accounting separation logic maintains the global invariant that the sum of
all fractional permissions to the same cell is always at most 1. This prevents read-write
and write-write conflicts, but permits concurrent reads.

O’Hearn also presented Hoare rules for locks in separation logic, where he elegantly
adapted an old idea from concurrent programs with shared variables [3]: Each lock is
associated with a resource invariant which describes the part of the heap that the lock
guards. When a lock is acquired, it lends its resource invariant to the acquiring thread.
Dually, when a lock is released, it takes back its resource invariant from the releasing
thread. This is formally expressed by the following Hoare rules:

I is x’s resource invariant
{true}x.lock(){I}

I is x’s resource invariant
{I}x.unlock(){true}

Because of O’Hearn’s work, it has been known for a while that separation logic was a
convenient and powerful tool to reason about parallel programs.

Another extension to separation logic was Parkinson’s work on an object-oriented
language à la Java. He proposed to use abstract predicates to hide details of implementa-
tions. Abstract predicates are definitions that are transparent to class implementors, but
opaque to clients. In addition, Parkinson showed how to use abstract predicates to deal
with subtyping.

This thesis extends separation logic to deal with multithreaded object-oriented pro-
grams à la Java. The next section details this thesis’s contributions.
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1.3 This Thesis

We build on the work of O’Hearn on concurrent separation logic [84] and on the work of
Parkinson on object-oriented separation logic [88]. Here, we describe at a high-level the
contributions of this thesis.

Extension of Separation Logic to Multithreaded Java: We extend separation logic
to a multithreaded Java-like language. This is a challenge, because Java’s primi-
tives for multithreading differ from the primitives studied by O’Hearn. First, Java
uses fork and join to dynamically create threads instead of the idealized parallel
operator ‖. Fork and join are harder to model than the ‖ operator because they are
more general: ‖ can be encoded using fork and join (but not vice versa). Second,
Java uses reentrant locks (i.e., locks that can be acquired twice or more) instead of
O’Hearn’s non-reentrant locks.
This extension of separation logic is important, because it permits to verify realis-
tic Java programs. A crucial achievement is that we prove that our extension of
separation logic is sound (with pen and paper).

New Analyzes Based on Separation Logic: The first analysis extends method spec-
ifications with protocol specifications and permits to check that method specifica-
tions are correct. Again, this is important, because writing correct specifications is
difficult: specifications are harder to test (runtime checking is required) and tool
support for debugging specifications is scarce. The second analysis shows how to
disprove entailment between separation logic formulas. The crucial feature of this
algorithm is that it has a low complexity i.e., it provides a quick way to disprove en-
tailment (this is useful in program verifiers). The third analysis allows to parallelize
programs that have been proven correct with separation logic. As it is harder to
write parallel programs than sequential programs, this analysis provides program-
mers an alternative solution to obtain correct parallel programs. We provide a high
degree of confidence that these analyzes are correct: the soundness of the second
analysis has been checked with the Coq theorem prover [36], while the soundness
of the third analysis has been checked on paper.

Overview. We now give an outline of the thesis and present the contributions of each
chapter.

From Chapter 2 to Chapter 6, we show a verification system that handles fundamental
aspects of multithreaded Java-like programs.

❼ In Chapter 2, we present a Java-like language and its semantics. While this is not
new, this is a basis for the following chapters.

❼ In Chapter 3, we present how to specify and verify Java-like programs in separation
logic. To do this, we present a set of Hoare rules that we have shown sound. The key
contributions of this chapter are: for expressiveness, we use parameterized classes
and methods, we present a subtyping relation that avoids reverification of inherited
methods, and to export useful facts to clients, we use axioms and public modifiers.

❼ In Chapter 4, we show how to specify and verify Java-like programs with fork and
join as concurrency primitives. The key contributions of this chapter are verification
rules for fork and join. These verification rules are expressed with general purpose
abstract predicates, groups, and class axioms. Further, these verification rules allow
both single write-joiner and multiple readonly-joiner. Like Chapters 2 and 3, the
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work from this chapter has been done in close collaboration with Christian Haack. It
is published in the International Conference on Algebraic Methodology and Software
Technology (AMAST 2008) [53].

❼ In Chapter 5, we show how to specify and verify Java-like programs with reentrant
locks (i.e., locks that can be acquired twice or more). The key contributions of
this chapter are: verification rules for reentrant locks, a way to express resource
invariants (including inheritance) with general purpose abstract predicates, and an
example of how the combination of our expressive type system and separation logic
handles a challenging lock-coupling algorithm. The work from this chapter has been
done in collaboration with Christian Haack and Marieke Huisman. It is published in
the Asian Symposium on Programming Languages and Systems (APLAS 2008) [53].

❼ In Chapter 6, we prove that the verification system defined from Chapters 3 to 5 is
sound. This is a crucial achievement to obtain a good confidence in this system.

In Chapters 7, 8, and 9, we present three new analyzes based on separation logic.

❼ In Chapter 7, we specify class protocols. The key contributions of this chapter are:
an extension of Cheon et al.’s work to multithreaded Java-like programs that use
parameterized classes and advanced protocols, and a new technique to check that
method contracts are correct w.r.t. protocols. The work presented in this chapter
is published in the ACM Symposium on Applied Computing (SAC 2009) [64].

❼ In Chapter 8, we present a new technique to disprove entailment between separa-
tion logic formulas. We abstract formulas by the sizes of their possible models and
use comparisons of these sizes to disprove entailment between formulas. Intuitively,
to disprove that formula F entails formula G, it suffices to show that there exists
a model (i.e., a heap) of F whose size is smaller than the size of all models of
G. We give two different ways of calculating sizes of models, which have differing
complexity and precision. This work has been done in collaboration with François
Bobot and Alexander J. Summers. It is published in the proceedings of the In-
ternational Workshop on Aliasing, Confinement and Ownership in Object-Oriented
Programming (IWACO 2009) [65].

❼ In Chapter 9, we show a new technique to automatically parallelize and optimize
programs by rewriting their proofs. Proofs are represented as a derivation of Hoare
triples. The core of the procedure uses separation logic’s (Frame) rule to statically
detect parts of the state which are useless for a command to execute. Considered
optimizations are parallelization, early disposal, late allocation, early lock releasing,
late lock acquirement, and improvement of temporal locality [96]. Optimizations
are expressed as rewrite rules between proof trees and are performed automatically.
We present an implementation of the procedure. The work from this chapter is
published in the International Symposium on Static Analysis (SAS 2009) [63].

Finally, we conclude and discuss future work in Section 10.



Chapter 2

A Java-like Language

This chapter presents the Java-like language that will serve as the basis for Chapter 3, 4, 5,
6, and 7. This language contains the core object-oriented features of Java: mutable fields,
inheritance and method overriding, and interfaces. It does not contain, however, static
fields, super calls, and reflexion.

This chapter is structured as follows: In Section 2.1 we show the syntax of an object-
oriented model language à la Java, in Section 2.2 we present the semantics of our model
language, and in Section 2.3 we discuss related formalization of Java-like languages. We
do not prove a type soundness theorem for this language in this chapter. Such a theorem
will be included in a preservation theorem in Chapter 6.

Notes:

(a) The work from this chapter has been done in collaboration with Christian Haack.
It served at the basis for a publication in the International Conference on Algebraic
Methodology and Software Technology (AMAST 2008) [53].

(b) To help the reader, the symbol index in Appendix C on page 187 recapitulates where
symbols used in Chapters 2 to 7 are introduced.

2.1 Syntax

This section formally presents the Java-like language that is used to write programs
and specifications. The language distinguishes between read-only variables ı, read-write
variables ℓ, and logical variables α. The distinction between read-only and read-write
variables is not essential, but often avoids the need for syntactical side conditions in
the proof rules (see Section 3.3). Method parameters (including this) are read-only;
read-write variables can occur everywhere else, while logical variables can only occur in
specifications and types. Apart from this distinction, the identifier domains are standard:

Identifier Domains:

C, D ∈ ClassId class identifiers (including Object)
I, J ∈ IntId interface identifiers
s, t ∈ TypeId = ClassId ∪ IntId type identifiers
o, p, q, r ∈ ObjId object identifiers
f ∈ FieldId field identifiers

9
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m ∈ MethId method identifiers
P ∈ PredId predicate identifiers
ı ∈ RdVar read-only variables (including this)
ℓ ∈ RdWrVar read-write variables
α ∈ LogVar logical variables
x, y, z ∈ Var = RdVar ∪ RdWrVar ∪ LogVar variables

The distinction between read-only and read-write variables means that programs writ-
ten in this language are not valid Java programs. However, this is not a real restriction
because any valid Java program can be translated directly in our syntax.

Values are integers, booleans, object identifiers, and null. For convenience, read-only
variables can be used as values directly. Read-only and read-write variables can only
contain these basic values. In this chapter, specifications values only range over logic
variables and values, but they will be extended later.

n ∈ Int u, v, w ∈ Val ::= null | n | b | o | ı
b ∈ Bool = {true, false} π ∈ SpecVal ::= α | v

Now we define the types used in our language. Since interfaces and classes (defined
next) can be parameterized with specification values, object types are of the form t<π̄>.

T, U, V, W ∈ Type ::= void | int | bool | t<π̄>

Next, class declarations are defined. As in Java, classes can ext(end) other classes,
and impl(ement) interfaces. Classes declare fields, abstract predicates, class axioms, and
methods. Abstract predicates and class axioms are part of our specification language and
are explained in Section 3.2.1. Methods have pre/postcondition specifications, param-
eterized by logical variables. The meaning of a specification is defined via a universal
quantification over these parameters. In examples, we usually leave the parameterization
implicit, but it is treated explicitly in the formal language.

Class Declarations:

F ∈ Formula specification formulas (see Section 3.2)
spec ::= requiresF ; ensuresF ; pre/postconditions
fd ::= T f ; field declarations
pd ::= pred P<T̄ ᾱ> =F ; predicate definitions (see Section 3.2.1)
ax ::= axiom F ; class axioms (see Section 3.2.1)
md ::= <T̄ ᾱ> spec U m(V̄ ı̄){c} methods (scope of ᾱ, ı̄ is T̄ , spec, U, V̄ , c)
cl ∈ Class ::= class C<T̄ ᾱ> ext U impl V̄ {fd* pd* ax* md*}

class (scope of ᾱ is T̄ , U, V̄ , fd*, pd*, ax*,md*)

In a similar way, we define interfaces. In method types mt , the receiver is made explicit
by separating it from parameters by “;”. This is convenient for later developments.

Interface Declarations:

pt ::= pred P<T̄ ᾱ>; predicate types
mt ::= <T̄ ᾱ> spec U m(V0 ı0; V̄ ı̄ ) method types (scope of ᾱ, ı̄ is T̄ , spec, U, V0, V̄ )
int ∈ Interface ::= interface I<T̄ ᾱ> ext Ū {pt* ax* mt*}
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interfaces (scope of ᾱ is T̄ , Ū , pt*, ax*,mt*)

Class and interface declarations define class tables: ct ⊆ Interface ∪ Class. We use
the symbol �ct for the order on type identifiers induced by class table ct . We often leave
the subscript ct implicit. We impose the following sanity conditions on ct : (1) �ct is
antisymmetric, (2) if t (except Object) occurs anywhere in ct then t is declared in ct
and (3) ct does not contain duplicate declarations or a declaration of Object. We write
dom(ct) for the set of all type identifiers declared in ct .

Subtyping is inductively defined by the following rules:

Subtyping T <: T :

T <: T T <: U, U <: V ⇒ T <: V s<T̄ ᾱ> ext t<π̄′> ⇒ s<π̄> <: t<π̄′[π̄/ᾱ]>

t<π̄> <: Object t<T̄ ᾱ> impl I<π′> ⇒ t<π̄> <: I<π̄′[π̄/ᾱ]>

Commands are sequences of head commands hc and local variable declarations, ter-
minated by a return value:

Commands:

op ⊇ {==, !, &, |} ∪ {C classof } ∪ { instanceof T}
c ∈ Cmd ::= v | T ℓ; c | T ı = ℓ; c | hc; c

hc ∈ HeadCmd ::= ℓ = v | ℓ = op(v̄) | ℓ = v.f | v.f = v | ℓ = new C<π̄> |
ℓ = v.m(v̄) | if (v){c}else{c}

The meaning of the Java commands is exactly as in Java. To simplify later devel-
opments, our grammar for writing programs imposes that (1) every intermediate result
is assigned to a local variable and (2) the right hand sides of assignments contain no
read-write variables.

Class 2DPoint below shows a program written in our language (where specifications
are omitted):

class 2DPoint{

int x; int y;

void set(int xp, int yp){ this.x = xp; this.y = yp; null }

bool isOrigin(){

int ℓ; ℓ = this.x;

int ℓ′; ℓ′ = this.y;

int ı = ℓ; int ı′ = ℓ′;
bool ℓ′′ = (ı == 0 & ı′ == 0);

bool ı′′ = ℓ′′;
ı′′

}

}

Figure 2.1: Class 2DPoint written in our language
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For clarity reasons, in the remainder of this thesis, in snapshots of code, we omit
the terminating null value for methods with return type void, we omit dereferences to
this (as real Java permits), and we do not distinguish between read-only and read-write
variables. Au contraire, in formal material, we stick to the syntax defined in this section.

2.2 Semantics

This section describes the small-step operational semantics of our Java-like language.

Runtime structures. We model dynamics by a small-step operational semantics that op-
erates on states, consisting of a heap, a command, and a stack. This suffices because
we only consider sequential programs. In Chapter 4 and Chapter 5, we will consider
multithreaded programs and extend states. As usual, heaps map each object identifier
to its dynamic type and to a mapping from fields to closed values (i.e., values without
variables):

h ∈ Heap = ObjId ⇀ Type× (FieldId ⇀ ClVal) ClVal = Val \ RdVar

Given a heap h and an object identifier o, we write h(o)1 to denote o’s dynamic type
and h(o)2 to denote o’s store.

Stacks map read/write variables to closed values. Their domains do not include read-
only variables, because our operational semantics instantiates those by substitution:

s ∈ Stack = RdWrVar ⇀ ClVal

Finally, a state consists of a heap, a command, and a stack:

st ∈ State = Heap× Cmd× Stack

Auxiliary syntax for method call/return. To model method call and return, traditional
operational semantics for object-oriented programs use pile of stacks. The purpose of these
stacks is to keep track of the current receiver, method parameters, and local variables.
Here, we only keep track of the receiver and avoid keeping track of method parameters
and local variables. Because method parameters are read-only, we can deal with them
with substitution (see reduction rule (Red Call)); while we deal with read-write local
variables by (1) ensuring that all read-write local variables have different names (see
reduction rule (Red Dcl)) and (2) identifying programs up to variable renaming. This
avoids introducing another runtime structure and avoids representing method calls by a
derived form that “flattens” the stack. This derived form’s purpose is solely to keep track
of when the receiver changes. The derived form is defined as follows1:

c ::= . . . | ℓ = return(v); c | . . .
Restriction: This clause must not occur in source programs.

Now we define a derived form, ℓ � c; c′, which assigns the result of a computation c to
variable ℓ. In our applications of this derived form, c is always a source program command

1Where dots . . . indicate that we extend a definition that was given previously. We use this notation
all along the thesis.
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and we can therefore assume that c does not contain return-commands. Below, we write
fv(c) for the the set of free variables of c.

ℓ � v; c
∆

= ℓ = return(v); c

ℓ � (T ℓ′; c); c′
∆

= T ℓ′; ℓ � c; c′ if ℓ′ 6∈ fv(c′) and ℓ′ 6= ℓ

ℓ � (T ı = ℓ′; c); c′
∆

= T ı = ℓ′; ℓ � c; c′ if ı 6∈ fv(c′)

ℓ � (hc; c); c′
∆

= hc; ℓ � c; c′

We define sequential composition of commands:

c; c′
∆

= void ℓ; ℓ � c; c′ where ℓ 6∈ fv(c, c′)

Initialization. We define functions to initialize objects and to initialize programs.
Function df : Type→ ClVal maps types to their default values:

df(C<π>)
∆

= null df(void)
∆

= null df(int)
∆

= 0 df(bool)
∆

= false

Function initStore : Type ⇀ ObjStore maps object types to their initial object stores.
Function initStore uses function fld (formally defined in Appendix A) to look up fields in
the class table.

initStore(t<π̄>)(f) = df(T ) iff (T f) ∈ fld(C<π>)

Function init : Cmd → State maps programs to their initial state. Initially, the heap
is empty (hence the first ∅) and the stack is empty (hence the second ∅):

init(c) = 〈∅, c, ∅〉

Semantics of values. The semantics of read-only variables is left undefined, because we
deal with these variables by substitution. For values that are not read-only variables,
their semantics is simply identity:

Semantics of Values, [[v]] ∈ ClVal:

[[null]]
∆

= null [[n]]
∆

= n [[b]]
∆

= b [[o]]
∆

= o

Semantics of operators. To define the semantics of the command assigning the result of an
operation (case ℓ = op(v̄) of our command language), we define the semantics of operators.

Let arity be a function that assigns to each operator its arity. We define:

arity(==)
∆

= 2 arity(&)
∆

= 2 arity(|)
∆

= 2

arity(!)
∆

= 1 arity(C classof)
∆

= 1 arity(instanceof T )
∆

= 1

Let type be a function that maps each operator op to a partial function type(op) of
type {int, bool, Object, perm}arity(op) ⇀ {int, bool, perm}. We define:

type(==)
∆

= { ((T, T ), bool) | T ∈ {int, bool, Object, perm, lockset} }

type(!)
∆

= { (bool, bool) } type(&)
∆

= type(|)
∆

= { ((bool, bool), bool) }

type(C classof)
∆

= { (Object, bool) } type(instanceof T )
∆

= { (Object, bool) }
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We assume that each operator op is interpreted by a function of the following type:

[[op]] ∈ Heap→
⋃

(T̄ ,U)∈ type(op)

[[T̄ ]]h → [[U ]]h

For the logical operators !, | and &, we assume the usual interpretations. Operator
== is interpreted as the identity relation. The semantics of isclassof and instanceof

is as follows:

[[C classof]]h(o)
∆

=















true if o 6= null and h(o)1 = C<π̄> for some π̄
false if o 6= null, h(o)1 = D<π̄>, and D 6= C
false if o = null

undef o 6∈ dom(h)

[[o instanceof ]]h(T )
∆

=















true if o 6= null and h(o)1 <: T
false if o 6= null and h(o)1 6<: T
false if o = null

undef if o 6∈ dom(h)

We require that the semantics of operators is closed under heap extensions, and that
it does not depend on values in the heap:

(a) If [|op|]h(v̄) = w and h ⊆ h ′, then [|op|]h
′

(v̄) = w.
(b) If h′ = h[o.f 7→ u], then [|op|]h = [|op|]h

′

.

The interpretations of “C classof” and “ instanceof T” depend on the heap, but
still satisfy requirement (b), as they only depend on the type components of objects which
is fixed at object creation. Formally, the semantics of operators is expressed as follows:

Semantics of Operators: [[op(v̄)]] : Heap→ Stack ⇀ ClVal:

(Sem Op)
[[w1]]

h
s = v1 · · · [[wn]]hs = vn [[op]]h(v1, . . . , vn) = v

[[op(w1, . . . , wn)]]hs = v

Small-step reduction. The state reduction relation →ct is given with respect to a class
table ct . We usually omit the subscript ct . In the reduction rules, we use the following
abbreviation for field updates: h[o.f 7→ v] = h[o 7→ (h(o)1, h(o)2[f 7→ v])].

Below, we use function mbody(m, C<π̄>) (formally defined in Appendix A) to look up
the code of method m in class C<π̄>.

State Reductions, st →ct st ′:

(Red Dcl) ℓ 6∈ dom(s) s′ = s[ℓ 7→ df(T )]
〈h, T ℓ; c, s〉 → 〈h, c, s′〉

(Red Fin Dcl) s(ℓ) = v c′ = c[v/ı]
〈h, T ı = ℓ; c, s〉 → 〈h, c′, s〉

(Red Var Set) s′ = s[ℓ 7→ v]
〈h, ℓ = v; c, s〉 → 〈h, c, s′〉
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(Red Op) arity(op) = |v̄| [[op]]h(v̄) = w s′ = s[ℓ 7→ w]
〈h, ℓ = op(v̄); c, s〉 → 〈h, c, s′〉

(Red Get) s′ = s[ℓ 7→ h(o)2(f)]
〈h, ℓ = o.f ; c, s〉 → 〈h, c, s′〉

(Red Set) h′ = h[o.f 7→ v]
〈h, o.f = v; c, s〉 → 〈h ′, c, s〉

(Red New) o /∈ dom(h) h ′ = h[o 7→ (C<π̄>, initStore(C<π̄>))] s′ = s[ℓ 7→ o]
〈h, ℓ = new C<π̄>; c, s〉 → 〈h ′, c, s′〉

(Red Call) h(o)1 = C<π̄> mbody(m, C<π̄>) = (ı0; ı̄).cm c′ = cm[o/ı0, v̄/ı̄]
〈h, ℓ = o.m(v̄); c, s〉 → 〈h, ℓ � c′; c, s〉

(Red Return)
〈h, ℓ = return(v); c, s〉 → 〈h, ℓ = v; c, s〉

(Red If True)
〈h, if (true){c}else{c′}; c′′, s〉 → 〈h, c; c′′, s〉

(Red If False)
〈h, if (false){c}else{c′}; c′′, s〉 → 〈h, c′; c′′, s〉

Remarks:

❼ In (Red Dcl), read-write variables are initialized to a default value.
❼ In (Red Fin Dcl), declaration of read-only variables is handled by substituting the

right-hand side’s value for the newly declared variable in the continuation.
❼ In (Red New), the heap is extended to contain a new object.
❼ In (Red Call), ı0 is the formal method receiver and ı̄ are the formal method param-

eters. Like for declaration of read-only variables, both the formal method receiver
and the formal method parameters are substituted by the actual receiver and the
actual method parameters.

❼ We do not have loops and do not use them in later examples. We note, however,
that they could be added straightforwardly.

2.3 Related Work and Conclusion

Related Work. A number of formalization of Java exists. Here, we give a quick comparison
with some of these formalizations that are related to ours.

The closely related work is Parkinson’s thesis [88] who formalizes a subset of Java
to specify and verify such programs with separation logic. There are, however, a few
differences: we feature value-parameterized classes, we do not include casts (but it would
be straightforward to add them, as we did in our technical report [54]), we do not model
constructors, we do not provide block scoping, and, contrary to Parkinson, programs
written in our model language are not valid Java programs. In the next chapters, we will
compare our work with Parkinson’s work again.

Model languages to study Java’s type system include Featherweight Java [66] and
Drossopoulou et al.’s work [45]. These works focus on type soundness, whereas we focus
on providing a formal language amenable to program verification.

A number of formalization of Java inside theorem provers exists. Huisman formalizes a
large subset of Java inside Isabelle/HOL and PVS [60]. She mechanically proves soundness
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of Hoare rules for her model language. Klein and Nipkow formalize a large subset of Java
in Isabelle/HOL called Jinja [73]. Their formalization includes a virtual machine and a
compiler, and they prove type soundness of all the components.

Conclusion. We presented a Java-like language that will serve at the basis for Chap-
ters 3, 4, 5, 6, and 7. This language contains the core object-oriented features of Java:
mutable fields, inheritance and method overriding, and interfaces. For expressivity rea-
sons, it features value-parameterized classes. In the next chapter, we show how to specify
and verify programs written in this language with separation logic.



Chapter 3

Separation Logic for a Java-like
Language

In this chapter, we show how we specify and verify programs written in the Java-like
language from Chapter 2 with separation logic. This chapter will serve as the basis for
Chapters 4, 5, 6, and 7.

This chapter is structured as follows: in Section 3.1 we informally present separation
logic and in Section 3.2 we formally present the specific flavor of separation logic we use
to specify programs. In Section 3.3 we show Hoare rules that serve to verify programs,
in Section 3.4 and 3.5 we describe what are verified classes and verified programs. In
Section 3.6, we present two examples of verified classes: a simple Roster example and an
advanced Iterator example. Finally, we discuss related work and conclude in Section 3.7.

Note: The work described in this chapter has been done in collaboration with Chris-
tian Haack. It was published in the International Conference on Algebraic Methodology
and Software Technology (AMAST 2008) [53]. A considerably extended version of the
Iterator example from Section 3.6.2 has been published in the Journal of Object Tech-
nology (JOT) [55].

Convention: In formal material, we use dots “. . . ” to indicate that definitions from the
previous chapter are being extended.

3.1 Separation Logic: Informally

In this section, we informally present what is separation logic and what makes it a con-
venient tool to reason about object-oriented multithreaded programs. In particular, we
show aspects of separation logic that we use in this thesis.

3.1.1 Separation Logic — Formulas as Access Tickets

Separation logic [93] combines the usual logical operators with the points-to predicate
x.f 7→ v and the resource conjunction F *G.

The predicate x.f 7→ v has a dual purpose: firstly, it asserts that the object field x.f
contains data value v and, secondly, it represents a ticket that grants permission to access

17
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the field x.f . This is formalized by separation logic’s Hoare rules for reading and writing
fields (where x.f 7→ is short for (∃v)(x.f 7→ v)):

{x.f 7→ }x.f = v{x.f 7→ v} {x.f 7→ v}y =x.f{x.f 7→ v * v == y}

The crucial difference to standard Hoare logic is that both these rules have a precon-
dition of the form x.f 7→ : this formula functions as an access ticket for x.f .

It is important that tickets are not forgeable: one ticket is not the same as two tickets!
For this reason, the resource conjunction * is not idempotent: F is not equivalent to
F *F . Intuitively, the formula F *G represents two access tickets F and G to separate
parts of the heap. In other words, the part of the heap that F permits to access is
disjoint from the part of the heap that G permits to access. As a consequence, separation
logic’s * allows reasoning about (the absence of) aliases easily: this is why the Hoare
rules shown above are sound. To further exemplify * ’s importance, consider the following
code (where we write specifications in dark blue):

class Amount{

int x;

requires ?;

ensures a.x contains 0 and b.x contains 1;

void m(Amount a,Amount b){

a.x = 0;

b.x = 1;

}

}

Now, imagine that we would like to prove that, after executing m, a.x contains 0

and b.x contains 1 (as informally specified by m’s ensures clause). To prove such a
postcondition, we have to make sure that a and b point to different objects at entry to
m. This can be specified by a.x 7→ * b.x 7→ as m’s precondition. Note, however, that
a.x 7→ ∧ b.x 7→ would be incorrect as precondition, because a and b could point to the
same object, so that a.x could contain 1 after m’s execution.

3.1.2 Separation Logic — Local Reasoning

Another crucial property of separation logic is that it allows to reason locally about
methods. This means that, when calling a subprogram, one can identify (1) the (small)
part of the heap accessed by that subprogram and (2) the rest of the heap that is left
unaffected. Formally, this is expressed by the (Frame) rule [93] below:

{F}c{F ′}
(Frame)

{F *G}c{F ′ *G}

This rule expresses that given a command c which only accesses the part of the heap
described by F , one can reason locally about command c ((Frame)’s premise) and deduce
something global, i.e., in the context of a bigger heap F *G ((Frame)’s conclusion). In this
rule, G is called the frame and represents the part of the heap unaffected by executing c.
Later, it will be important to show that the (Frame) rule can be added to our verification
rules without harming soundness.
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3.1.3 Separation Logic — Abstraction

A good object-oriented programming practice is to consider objects abstractly i.e., to
hide implementation details to clients. To this end, Parkinson introduced abstract pred-
icates [88]. Abstract predicates hide implementation details to clients but allow class
implementers to use them. In other words, abstract predicates are opaque to clients but
transparent to class implementers.

As an example, consider class Box below that defines a predicate state to hide its
concrete state.

class Box{

int blx; int bly; // bottom left point

int trx; int try; // top right point

pred state = this.blx 7→ * this.bly 7→ * this.trx 7→ * this.try 7→ ;

requires this.state;

ensures this.state;

void move(deltax, deltay){

this.blx += deltax; this.trx += deltax;

this.bly += deltay; this.try += deltay;

}

}

Predicate state hides that the internal state of a Box consists of the four fields blx,
bly, trx and try: by inspecting method move’s contract (i.e., its requires and ensures

clauses), one cannot tell what the internal representation of class Box looks like. In
particular, class Box could store the coordinates of other points than the bottom left
point and the top right point or it could store one point and two distances.

3.1.4 Separation Logic — Proofs Outlines

Since separation logic’s early days [93], proofs of programs are represented as proof out-
lines. In proof outlines, assertions (or formulas) are inserted in-between commands. Such
assertions symbolically represent the heap. In a nutshell, commands can be seen as par-
tial functions from symbolic heaps to symbolic heaps: a command takes a symbolic heap
as input and – if the symbolic heap matches the command’s precondition – returns a
symbolic heap as output. All along this thesis, we represent proof of programs with proof
outlines. As an example, consider some method m with precondition F , body c0; . . . ;cn

and postcondition G. A proof outline for m will look like this:

{ F }

c0;

{ . . . }

. . .
{ . . . }

cn;

{ H } ← Does H entails G ?

The last line indicates that, for a proof outline to be correct, the last output formula
(H) must entail the method’s postcondition (G).
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3.2 Separation Logic

3.2.1 Syntax

In this section, we present the flavor of separation logic that we use to write method
contracts. We use intuitionistic separation logic [67, 93, 88] as this is suitable to rea-
son about properties that are invariant under heap extensions, and is appropriate for
garbage-collected languages like Java. Contrary to classical separation logic, intuitionis-
tic separation logic admits weakening. Informally, this means that one can “forget” a part
of the state: this is why intuitionistic separation logic is appropriate for garbage-collected
languages. The semantical difference between intuitionistic and classical separation logic
is detailed in Section 3.2.5.

Expressions e are built from values and variables using arithmetic and logical opera-
tors:

e ∈ Exp ::= π | ℓ | op(ē)

Specification formulas F are defined by the following grammar:

lop ∈ {*, -*, &, |} qt ∈ {ex, fa} κ ∈ Pred ::= P | P@C
F ∈ Formula ::= e | PointsTo(e.f, π, e) | π.κ<π̄> | F lop F | (qt T α)(F)

We now explain these formulas:
The points-to predicate PointsTo(e.f, π, v) is ASCII for e.f

π
7−→ v [21]. Superscript π

must be a fractional permission [23] i.e., a fraction 1
2n in the interval (0, 1]. As explained

earlier, formula PointsTo(e.f, π, v) has a dual meaning: firstly, it asserts that field e.f
contains value v, and, secondly, it represents access right π to e.f . Permission π = 1
grants write access while any permission π grants read access.

The resource conjunction F * G (a.k.a separating conjunction) expresses that re-
sources F and G are independently available: using either of these resources leaves the
other one intact. Resource conjunction is not idempotent: F does not imply F * F . Be-
cause Java is a garbage-collected language, we allow dropping assertions: F * G implies
F .

The resource implication F -*G (a.k.a. linear implication or magic wand) means “con-
sume F yielding G”. Resource F -*G permits to trade resource F to receive resource
G in return. Resource conjunction and implication are related by the modus ponens:
F * (F -*G) implies G. Section 3.6.2 exemplifies contracts that make heavy use of the
magic wand.

We remark that, to avoid a proof theory with bunched contexts (see Section 3.2.6), we
omit the ⇒-implication between heap formulas (and did not need it in later examples).
However, this design decision is not essential.

The predicate application π.κ<π̄> applies abstract predicate κ to its receiver parameter
π and the additional parameters π̄. As explained above, predicate definitions in classes
map abstract predicates to concrete definitions. Predicate definitions can be extended
in subclasses to account for extended object state. Semantically, P ’s predicate extension
in class C gets *-conjoined with P ’s predicate extensions in C’s superclasses. The quali-
fied predicate π.P@C<π̄> represents the *-conjunction of P ’s predicate extensions in C’s
superclasses, up to and including C. The unqualified predicate π.P<π̄> is equivalent to
π.P@C<π̄>, where C is π’s dynamic class. We allow predicates with missing parameters:
Semantically, missing parameters are existentially quantified.
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For expressivity purposes, it is crucial to allow parameterization of objects by permis-
sions. For this, we include a special type perm for fractional permissions:

T, U, V, W ∈ Type ::= . . . | perm | . . .

Because generic parameters are instantiated by specification values (see Section 2.1),
we extend specification values with fractional permissions. Fractional permissions are
represented symbolically: 1 represents itself, and if symbolic fraction π represents concrete
fraction fr then split(π) represents 1

2 · fr .

π ∈ SpecVal ::= . . . | 1 | split(π) | . . .

Quantifiers (qt T α)(F) are standard. Because specification values π and expressions
e contain logical variables α (see pages 10 and 20), bound variables can appear in many
positions: as type parameters; as the first, second, and third parameter in PointsTo

predicates; as predicate parameters etc.
In our model language, specifications are expressed with methods pre and postcondi-

tions. Preconditions are declared with keyword requires and postconditions are declared
with keyword ensures. In postconditions, the special identifier result can be used to
refer to the value returned. As shown in Section 2.1, the syntax of methods with pre and
postconditions is as follows:

class C { . . . <T̄ ᾱ> requiresF ; ensuresF ; U m(V̄ ı̄){c} . . . }

Interfaces may declare abstract predicates and classes may implement them by pro-
viding concrete definitions as separation logic formulas.

interface I { ... pred P<T̄ x̄>; ... }

class C implements I { ... pred P<T̄ x̄> =F; ... }

Class axioms export facts about relations between abstract predicates, without re-
vealing the detailed predicate implementations. Class implementors have to prove class
axioms and class clients can use them.

class C { ... axiom F;... }

Predicate definitions can be preceded by an optional public modifier. The role of
the public modifier is to export the definition of a predicate in a given class to clients.
Formally, public desugars to an axiom (where C is the enclosing class):

public pred P<T̄ x̄> =F
∆

=
pred P<T̄ x̄> =F;

axiom P@C<x̄> *-*F

Although public desugars to an axiom, public pred P<T̄ x̄> = F; is not equivalent
to pred P<T̄ x̄> = F; and axiom P<T̄ x̄> *-* F;. The latter axiom is more general than
public’s desugaring because it constrains extensions of P in C’s subclasses to satisfy
this axiom (whereas public’s desugaring simply exports P’s definition in class C). In
Sections 3.6.1 and 4.6.2, we make heavy use of this distinction.

Now, we show how to specify a class using our language.

For this, we reuse the Box example shown in Section 3.1.3. In Section 3.1.3, method
move’s contract is incomplete: it just specifies that fields of class Box are accessed but it
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does not specify method move’s functional behavior (i.e., how it increases x-coordinates
by deltax and y-coordinates by deltay). Expressing method move’s behavior can be
done as follows:

class Box{

int blx; int bly; // bottom left point

int trx; int try; // top right point

pred state<int i, int j, int k, int l> =

PointsTo(this.blx, 1, i) * PointsTo(this.bly, 1, j) *

PointsTo(this.trx, 1, k) * PointsTo(this.try, 1, l);

requires this.state<i,j,k,l>;
ensures (ex int i′,j′,k′,l′)(this.state<i′,j′,k′,l′> &

i+deltax==i′ & j+deltax==j′ &

k+deltax==k′ & l+deltax==l′);
void move(deltax, deltay){

blx += deltax; trx += deltax;

bly += deltay; try += deltay;

}

}

The previous example shows a basic usage of parameterized predicates. Advanced
specifications use predicate parameters in combination with class parameters to accom-
modate different usages of class instances. For example, for class Box to express that boxes
may be movable or sticky, one can parameterize class Box with a permission parameter:

class Box<perm p>{

int blx; int bly; // bottom left point

int trx; int try; // top right point

pred state<perm q> = PointsTo(this.blx, q, ) * PointsTo(this.bly, q, ) *

PointsTo(this.trx, q, ) * PointsTo(this.try, q, );

requires init;

ensures this.state<p>;

init(int i, int j, int k, int l){ blx = i; bly = j; trx = k; try = l; }

requires this.state<q>;

ensures this.state<q>;

void display(){ ... }

requires this.state<1>;

ensures this.state<1>;

void move(deltax, deltay){

blx += deltax; trx += deltax;

bly += deltay; try += deltay;

}

}

Now, the programmer can formally distinguish movable boxes (by instantiating p with
1) from sticky boxes (by instantiating p with a fraction strictly less than 1). Because
move’s precondition requires this.state<1>, it cannot be called on a sticky box: Box’s
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constructor (i.e., method init, because our model language does not have constructors)
ensures that, for sticky boxes, state<1> can never be established. This formally enforces
that sticky boxes cannot be made movable. In method init’s precondition, predicate
init represents write access to all fields of class Box1.

We define convenient derived forms for specification formulas:

PointsTo(e.f, π, T)
∆

= (ex T α)( PointsTo(e.f, π, α))

Perm(e.f, π)
∆

= (ex T α)( PointsTo(e.f, π, α)) where T is e.f ’s least type

F *-*G
∆

= (F -*G) & (G -*F)

F assures G
∆

= F -* (F *G) F ispartof G
∆

= G -* (F * (F -*G))

Intuitively, F ispartof G says that F is a physical part of G: one can take G apart
into F and its complement F -*G, and can put the two parts together to obtain G back.

3.2.2 Types

Because the semantics of formulas depends on a typing judgment, we need to define typing
rules before giving the formulas’s semantics.

A type environment is a partial function of type ObjId ∪ Var ⇀ Type. We use the
meta-variable Γ to range over type environments. Γhp denotes the restriction of Γ to
ObjId:

Γhp
∆

= { (o, T ) ∈ Γ | o ∈ ObjId }

A type environment is good when objects within its domain are well-typed:

Good Environments, Γ ⊢ ⋄:

(Env)
(∀x ∈ dom(Γ))(Γ ⊢ Γ(x) : ⋄) (∀o ∈ dom(Γ))(Γ(o) <: Object and Γhp ⊢ Γ(o) : ⋄)

Γ ⊢ ⋄

We define a sanity condition on types: primitive types are always sane, while user-
defined types must be such that (1) type identifiers are in the class table and (2) type
parameters are well-typed. Below, the existential quantification in (Ty Ref)’s second
premise enforces typing derivations to be finite.

Good Types, Γ ⊢ T : ⋄:

(Ty Primitive)
T ∈ {void, int, bool, perm}

Γ ⊢ T : ⋄

(Ty Ref) t<T̄ ᾱ> ∈ ct
(∃Γ′ ⊂ Γ)(Γ′ ⊢ ⋄ Γ′ ⊢ π̄ : T̄ [π̄/ᾱ])

Γ ⊢ t<π̄> : ⋄

We define a heap extension order on well-formed type environments:

Γ′ ⊇hp Γ iff Γ′ ⊢ ⋄, Γ ⊢ ⋄, Γ′ ⊇ Γ and Γ′
|Var = Γ|Var

As models of formulas are tuples that contain a heap and a stack (see Section 3.2.3),
we define a well-typedness judgment for objects, heaps, and stacks:

1 This predicate is emitted after creating an object as rule (New) on page 35 will formalize. Details
about this predicate are given in Section 3.3.
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Well-typed Objects, Γ ⊢ obj : ⋄:

(Obj) dom(os) ⊆ dom(fld(C<π̄>))
Γ ⊢ C<π̄> : ⋄ (∀f ∈ dom(os))(T f ∈ fld(C<π̄>) ⇒ Γ ⊢ os(f) : T )

Γ ⊢ (C<π̄>, os) : ⋄

Note that we require dom(os) ⊆ dom(fld(C<π̄>)), not dom(os) = dom(fld(C<π̄>)).
Thus, we allow partial objects. This is needed, because * joins heaps on a per-field basis.
This will be needed for fine-grained concurrency (as Section 3.6.1 exemplifies).

Below, we use function fst : Heap→ (ObjId ⇀ Type) to extract the function that maps
object identifiers to their dynamic types from a heap:

h(o) = (T, )⇒ fst(h)(o) = T

We now define well-typed heaps and stacks:

Well-typed Heaps and Stacks, Γ ⊢ h : ⋄ and Γ ⊢ s : ⋄ :

(Heap)
Γ ⊢ ⋄ Γ ⊆ fst(h) (∀o ∈ dom(h))(Γ ⊢ h(o) : ⋄)

Γ ⊢ h : ⋄

(Stack)
Γ ⊢ ⋄ (∀x ∈ dom(s))(Γ ⊢ s(x) : Γ(x))

Γ ⊢ s : ⋄

Because formulas include expressions, we define a well-typedness judgment for values,
specification values, and expressions (recall that expressions include specification values
of type bool).

Well-typed Values and Specification Values, Γ ⊢ v : T and Γ ⊢ π : T :

(Val Var)
Γ ⊢ ⋄ Γ(x) = T

Γ ⊢ x : T

(Val Oid)
Γ ⊢ ⋄ Γ(o) = T

Γ ⊢ o : T

(Val Sub)
Γ ⊢ π : T T <: U

Γ ⊢ π : U

(Val Null)
Γ ⊢ t<π̄> : ⋄

Γ ⊢ null : t<π̄>

(Val Int)
Γ ⊢ ⋄

Γ ⊢ n : int

(Val Bool)
Γ ⊢ ⋄

Γ ⊢ b : bool

(Val Full)
Γ ⊢ ⋄

Γ ⊢ 1 : perm

(Val Split)
Γ ⊢ π : perm

Γ ⊢ split(π) : perm

Well-typed Expressions, Γ ⊢ e : T :

(Exp Sub)
Γ ⊢ e : T T <: U

Γ ⊢ e : U

(Exp Var)
Γ ⊢ ⋄ Γ(ℓ) = T

Γ ⊢ ℓ : T

(Exp Op)
Γ ⊢ ē : Ū type(op)(Ū) = T

Γ ⊢ op(ē) : T

We now have all the machinery to define well-typed formulas. Below, the partial
function ptype(P,C<π̄>) (formally defined in Appendix A) looks up the type of predicate
P in the least supertype of C<π̄> that defines or extends P .
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Well-typed Formulas, Γ ⊢ F : ⋄:

(Form Bool)
Γ ⊢ e : bool

Γ ⊢ e : ⋄

(Form Points To)
Γ ⊢ e : U Γ ⊢ π : perm T f ∈ fld(U) Γ ⊢ e′ : T

Γ ⊢ PointsTo(e.f, π, e′) : ⋄

(Form Log Op)
Γ ⊢ F, F ′ : ⋄

Γ ⊢ F lop F ′ : ⋄

(Form Pred)
Γ ⊢ π : U ptype(κ, U) = pred P<T̄ ᾱ> Γ ⊢ π̄′ : T̄

Γ ⊢ π.κ<π̄′> : ⋄

(Form Quant)
Γ ⊢ T : ⋄ Γ, α : T ⊢ F : ⋄

Γ ⊢ (qt T α)(F) : ⋄

After all these boring definitions, we exemplify how to type check formula o.state< 1
2>

* PointsTo(o.blx, 1
2 , 1) in a type environment Γ = o 7→ Box<1> (where we reuse Sec-

tion 3.2.1’s parameterized class Box). Below, we consider that the class table only con-
sists of class Box parameterized by permission q. Vertical dots indicate elided parts of
derivations.

Γ ⊢ o.state< 1

2
> Γ ⊢ PointsTo(o.blx, 1

2
, 1)

(Form Log Op)
Γ ⊢ o.state< 1

2
> * PointsTo(o.blx, 1

2
, 1)

We now show that Γ ⊢ o.state< 1
2> and Γ ⊢ PointsTo(o.blx, 1

2 , 1) hold:

Γ ⊢ ⋄ Γ(o) = o : Box<1>
(Val Oid)

Γ(o) ⊢ o : Box<1> ptype(state, Box<1>) = pred state<perm q>

...

Γ ⊢ 1

2
, 1 : perm, int

Γ ⊢ o.state< 1

2
>

... (Val Oid)
Γ(o) ⊢ o : Box<1>

(Val Full)
Γ ⊢ 1 : perm

(Val Split)
Γ ⊢ 1

2
: perm int blx ∈ fld(Box<1>)

Γ ⊢ PointsTo(o.blx, 1

2
, 1)

Finally, we show that Γ ⊢ ⋄ holds:

Box<1> <: Object

Box<perm q> ∈ ct
(Val Full)

∅ ⊢ 1 : perm
(Ty Ref)

o 7→ Box<1> ⊢ Box<1> : ⋄
(Env)

o 7→ Box<1> ⊢ ⋄

3.2.3 Resources

In Section 3.2.5, we define a forcing relation of the form Γ ⊢ E ;R; s |= F , where E is a
predicate environment (that maps predicate identifiers to concrete heap predicates) and
R is a resource. In this paragraph, we define resources i.e., models of our formulas.
Intuitively, if Γ ⊢ E ;R; s |= F holds, this means that resource R is a program state that
is described by F .
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ResourcesR range over the set Resource with a binary relation # ⊆ Resource×Resource

(the compatibility relation) and a partial binary operator * : #→ Resource (the resource
joining operator) that is associative and commutative. Concretely, resources are pairs
R = (h,P) of a heap h and a permission table P ∈ ObjId × FieldId → [0, 1]. We require
that resources satisfy the following axioms:

(a) P(o, f) > 0 if o ∈ dom(h) and f ∈ dom(h(o)2).
(b) For all o 6∈ dom(h) and all f , P(o, f) = 0.

Axiom (a) ensures that the (partial) heap h only contains cells that are associated
with a positive permission. Technically, this condition is needed to prove soundness of
the verification rule for field updates. Axiom (b) ensures that all objects that are not yet
allocated have minimal permissions (with respect to the resource order presented below).
This is needed to prove soundness of the verification rule for allocating new objects.

Each of the two resource components carries itself a resource structure (#, *). These
structures are lifted to resources component-wise. We now define # and * for the two
components.

Heaps (which, as defined in Section 2.2, have type ObjId ⇀ Type× (FieldId ⇀ ClVal))
are compatible if they agree on object types and memory content:

h#h′ iff

{

(∀o ∈ dom(h) ∩ dom(h′)) (
h(o)1 = h′(o)1 and (∀f ∈ dom(h(o)2) ∩ dom(h′(o)2))( h(o)2(f) = h′(o)2(f) ) )

For example, heap o 7→ (Box, (blx 7→ 0)) and heap o 7→ (Box, (blx 7→ 1)) are incom-
patible, because they contain different values in field blx of object o. However, heap
o 7→ (Box, (blx 7→ 0)) and heap o 7→ (Box, (trx 7→ 0)) are compatible, because they
contain different values in different fields of object o. Note that, in this example, the two
heaps each contains a field of the single object o: we allow partial objects.

To define heap joining, we lift set union to deal with undefinedness: f ∨ g = f ∪ g,
f ∨ undef = undef ∨ f = f . Similarly for types: T ∨ undef = undef ∨ T = T ∨ T = T .

(h * h′)(o)1
∆

= h(o)1 ∨ h′(o)1 (h * h′)(o)2
∆

= h(o)2 ∨ h ′(o)2

Joining permission tables is point-wise addition:

P#P ′ iff (∀o)(P(o) + P ′(o) ≤ 1) (P *P ′)(o)
∆

= P(o) + P ′(o)

For later convenience, we define projection operators hp and perm as follows:

(h,P)hp

∆

= h (h,P)perm

∆

= P

We define an order on heaps, permission tables, and resources as follows:

h ≤ h ′ ∆

= (∃h ′′)(h * h ′′ = h ′)

P ≤ P ′ ∆

= (∃P ′′)(P *P ′′ = P ′) R ≤ R′ ∆

= (∃R′′)(R *R′′ = R′)

The three order just defined can be understood as follows: a heap h is less than a heap
h ′ if h contains less memory cells than h ′, a permission table pt is less than a permission
table P ′ if P’s permissions are less than P ′’s permissions, and a resource R is less than
a resource R′ if R’s components are all less than R′’s components.
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Example. To give the reader an intuition of what resources are, we give an example. For
this, we reuse Figure 2.1’s class 2DPoint:

class 2DPoint{

int x;

int y;

...

}

We define three resources and show how these resources are ordered. For this, we
define h,P, h ′,P ′, h ′′, and P ′′ as follows:

h
∆

= o 7→ (Point, (x 7→ 0)) P(q, f) =

{

1/2 if q = o and f = x

0 otherwise

h ′ ∆

= o 7→ (Point, (x 7→ 0)) P ′(q, f) =

{

1 if q = o and f = x

0 otherwise

h ′′ ∆

= o 7→ (Point, (x 7→ 0, y 7→ 0)) P ′′(q, f) =

{

1 if q = o and (f = x or f = y)
0 otherwise

Now, we define resources R,R′, and R′′ as follows:

R
∆

= (h,P) R′ ∆

= (h ′,P ′) R′′ ∆

= (h ′′,P ′′)

Intuitively, the three resources represent a state where there is only a Point at address
o. Resource R represents a partial read-only point, resource R′ represents a partial read-
write point, and resource R′′ represents a complete read-write point. The following holds:

R ≤ R′ ≤ R′′

3.2.4 Predicate Environments

The predicates that are declared in the class table define a predicate environment that
maps predicate symbols to relations.

Predicate domains. What is the domain of these relations? Roughly, the domain consists
of resources (including the heap) and tuples of specification values (representing class
parameters and predicate parameters). To define this formally, first, let SpecVals be the
set of all tuples of specification values:

SpecVals
∆

=
⋃

n≥0

SpecValn

Second, let Pred(ct) be the set of all qualified predicates P@C that are defined in class
table ct :

Pred(ct)
∆

= { P@C | C ∈ dom(ct) and P is defined in C }

For P@C in Pred(ct), its domain Dom(P@C) is defined as the subset of SpecVals ×
Resources×ObjId×SpecVals that consists of all tuples (π̄,R, r, π̄′) that satisfy the following
conditions:

(a) fst(Rhp) ⊢ r : C<π̄>.
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(b) ptype(P,C<π̄>) = pred P<T̄ ᾱ> and fst(Rhp) ⊢ π̄′ : T̄ for some T̄ , ᾱ.

Intuitively, if (π̄,R, r, π̄′) ∈ Dom(P@C), then π̄ represents the class parameters of r’s
dynamic class C, resource R represents the model used in the semantics relation (see
Section 3.2.5), r represents the predicate receiver, and π̄′ represents P ’s actual predicate
parameters.

Predicate environments. We choose to represent relations as functions into the two-
element set: Let 2 be the two-element set {0, 1} equipped with the usual order (i.e.,
0 ≤ 1). A predicate environment E is a function of type

∏

κ ∈ Pred(ct).Dom(κ)→ 2 such
that the following axiom holds:

(a) If (π̄,R, r, π̄′), (π̄,R′, r, π̄′) ∈ Dom(κ) and R ≤ R′,
then E(κ)(π̄,R, r, π̄′) ≤ E(κ)(π̄,R′, r, π̄′).

Axiom (a) says that predicates are monotone in the resources: if a predicate is satisfied
in resource R, then it is also satisfied in all larger resources R′. This axiom is natural for
a language with garbage collection. As we extend the set of formulas in next chapters,
we will extend the list of axioms that predicate environments must satisfy.

The class table’s predicate environment. The class table ct defines a predicate environment
that maps each predicate in ct to its definition. Technically, this predicate environment is
defined as the least fixed point of the endofunction2 Fct on predicate environments. The
definition of Fct refers to the Kripke resource semantics |=, as defined in Section 3.2.5.

pbody(r.P<π̄′>, C<π̄>) = F ext D<π̄′′>

C 6= Object and arity(P,D) = n ⇒ F ′ = r.P@D<π̄′
to n>

C = Object or P is rooted in C ⇒ F ′ = true
(Sem Pred)

Fct(E)(P@C)(π̄,R, r, π̄′) =

{

1 if fst(Rhp) ⊢ E ;R; ∅ |= F *F ′

0 otherwise

In this definition, π̄′
to n denotes the tuple consisting of the first n entries of π̄′ (which

may have more than n entries due to arity extension in subclasses).

Lemma 1 (Well-Typedness of Fct). If E is a predicate environment over X ⊆ Pred(ct),
then so is Fct(E).

Proof. We need to show that Fct(E) satisfies axiom (a) for predicate environments. But
this is a consequence of Lemma 8 that we show in Section 6.1.1. �

Theorem 1 (Existence of Fixed Points). If ct : ⋄, then there exists a predicate environ-
ment E such that Fct(E) = E.

Proof. This is a consequence of Theorem 8 on fixed points in [54]. In the proof
of this theorem, it is crucial to remark that, by syntactic restriction, cyclic predicate
dependencies must be positive. �

2An endofunction is a function whose range is a subset of its domain.
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3.2.5 Semantics

First, we define the semantics of expressions (recall that expressions of type bool are
included in the domain of formulas). Because expressions contain specification values,
we first give the semantics of specification values which consist of values and fractional
permissions.

Because the semantics of values is the set of closed values ClVal, we use SemVal =
ClVal ∪ (0, 1] to denote the semantics of specification values and we range over SemVal

with meta-variable µ. Interval (0, 1] represents the semantics of fractional permissions.

As specification values consist of values (whose semantics has been defined in Sec-
tion 2.2, page 12) and fractional permissions, new definitions only cover the semantics of
fractional permissions. We leave the semantics of logical variables α undefined, because
we deal with these variables by substitution:

Semantics of Specification Values, [[.]] : SpecVal→ SemVal:

. . . [[1]]
∆

= 1 [[split(π)]]
∆

= 1
2 · [[π]] . . .

We define the semantics of expressions:

Semantics of Expressions, [[e]] : Heap→ Stack ⇀ SemVal:

(Sem SpecVal)
[[π]] = µ

[[π]]hs = µ

(Sem Var)
s(ℓ) = v

[[ℓ]]hs = v

(Sem Op)
[[w1]]

h
s = v1 · · · [[wn]]hs = vn [[op]]h(v1, . . . , vn) = v

[[op(w1, . . . , wn)]]hs = v

Now, we define the semantics of formulas. Let (Γ ⊢ R : ⋄) whenever Γ ⊢ Rhp : ⋄
and P(o, f) > 0 implies o ∈ dom(Γ). Furthermore, let (Γ ⊢ E ,R, s, F : ⋄) whenever
Fct(E) = E , Γ ⊢ R : ⋄, Γ ⊢ s : ⋄, and Γ ⊢ F : ⋄. The relation (Γ ⊢ E ;R; s |= F ) is the
unique subset of (Γ ⊢ E ,R, s, F : ⋄) that satisfies the following clauses:
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Γ ⊢ (h,P); s |= e iff [[e]]hs = true

Γ ⊢ E ; (h,P); s |= PointsTo(e.f, π, e′) iff

{

[[e]]hs = o, h(o)2(f) = [[e′]]hs and
[[π]] ≤ P(o, f)

Γ ⊢ E ;R; s |= null.κ<π̄> iff true

Γ ⊢ E ;R; s |= o.P@C<π̄> iff

{

Rhp(o)1 <: C<π̄′> and
E(P@C)(π̄′,R, o, π̄) = 1

Γ ⊢ E ;R; s |= o.P<π̄> iff

{

(∃π̄′′)(Rhp(o)1 = C<π̄′> and
E(P@C)(π̄′,R, o, (π̄, π̄′′)) = 1)

Γ ⊢ E ;R; s |= F *G iff

{

(∃R1,R2)(R = R1 *R2,
Γ ⊢ E ;R1; s |= F and Γ ⊢ E ;R2; s |= G)

Γ ⊢ E ;R; s |= F -*G iff







(∀Γ′ ⊇hp Γ,R′)(
R#R′ and Γ′ ⊢ E ;R′; s |= F
⇒ Γ′ ⊢ E ;R *R′; s |= G )

Γ ⊢ E ;R; s |= F & G iff Γ ⊢ E ;R; s |= F and Γ ⊢ E ;R; s |= G

Γ ⊢ E ;R; s |= F |G iff Γ ⊢ E ;R; s |= F or Γ ⊢ E ;R; s |= G

Γ ⊢ E ;R; s |= (ex T α)(F) iff

{

(∃π)( Γhp ⊢ π : T and
Γ ⊢ E ;R; s |= F [π/α] )

Γ ⊢ E ;R; s |= (fa T α)(F) iff







(∀Γ′ ⊇hp Γ,R′ ≥ R, π)(
Γ′

hp ⊢ R
′
hp : ⋄ and Γ′

hp ⊢ π : T

⇒ Γ′ ⊢ E ;R′; s |= F [π/α] )

Example. We exemplify relation |= by reusing Figure 2.1’s class 2DPoint. We add predi-
cate state to class 2DPoint:

class 2DPoint{

int x;

int y;

pred state<perm p> = (ex int i,j)(PointsTo(x,p,i) * PointsTo(y,p,j));

}

Let ct be the class table that only contains class 2DPoint and E be some predicate
environment such that Fct(E) = E (which exists by Theorem 1). We define Γ, h, and P
as follows:

Γ
∆

= o 7→ 2DPoint h
∆

= o 7→ (2DPoint, x 7→ 0, y 7→ 0)

P(q)(f) =

{

1 if q = o and (f = x or f = y)
0 otherwise

Now, we show that Γ ⊢ E ; (h,P); ∅ |= o.state< 1
2> * PointsTo(o.x, 1

2 , 1) holds:

Proof. By the case * of the semantics, we have to find h ′,P ′, h ′′ and P ′′ such that the
following statements hold:

(a) Γ ⊢ E ; (h ′,P ′); ∅ |= o.state< 1
2> (goal)

(b) Γ ⊢ E ; (h ′′,P ′′); ∅ |= PointsTo(o.x, 1
2 , 1) (goal)
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(c) (h ′,P ′) * (h ′′,P ′′) = (h,P) (goal)

We define:

h ′ = h ′′ = h P ′(q)(f) = P ′′(q, f) =

{

1/2 if q = o and (f = x or f = y)
0 otherwise

R
∆

= (h,P)

Because h ′ = h ′′ = h and (∀o, f)(P ′(o)(f) + P ′′(o, f) = P(o, f)), goal (c) is closed.
By the case for unqualified predicates of our semantics, to show goal (a), we need to
show: E(state@2DPoint)(∅, (h ′,P ′), o, 1

2 ). By applying rule (Sem Pred), it suffices to
show: Γ ⊢ E ; (h ′,P ′); ∅ |= PointsTo(o.x, 1

2
, 1) * PointsTo(o.y, 1

2
, 1). By the case * of

the semantics, we have to find h ′
1,P

′
1, h

′
2 and P ′

2 such that the following statements hold:

(d) Γ ⊢ E ; (h ′
1,P

′
1); ∅ |= PointsTo(o.x, 1

2
, 1)

(e) Γ ⊢ E ; (h ′
2,P

′
2); ∅ |= PointsTo(o.y, 1

2
, 1)

(f) (h ′
1,P

′
1) * (h ′

2,P
′
2) = (h ′,P ′)

We define:

h ′
1 = o 7→ (2DPoint, x 7→ 0) P ′

1(q)(f) =

{

1/2 if q = o and f = x

0 otherwise

h ′
2 = o 7→ (2DPoint, y 7→ 0) P ′

2(q)(f) =

{

1/2 if q = o and f = y

0 otherwise

Note that h ′
1 and P ′

1 are such that (h ′
1,P

′
1) satisfies Section 3.2.3’s resource axioms (a)

and (b) (a similar remark applies for h ′
2,P

′
2 and (h ′

2,P
′
2)). Because h ′

1 * h ′
2 = h ′ and

P ′
1 *P

′
2 = P ′, goal (f) is closed. Now, by the case PointsTo of our semantics, P ′

1(o, x) =
1/2, and P ′

2(o, y) = 1/2, goals (d) and (e) are closed. This closes goal (a).
Goal (b) is routine. �

Difference between Intuitionistic and Classical Separation Logic. Intuitionistic and clas-
sical separation logic differ on the semantics of the PointsTo predicate. In intuitionistic
separation logic, the formula PointsTo(e.f, π, e′) asserts there is at least one allocated
cell at the address pointed to by e.f ; while in classical separation logic, the formula
PointsTo(e.f, π, e′) asserts there is exactly one allocated cell at the address pointed to
by e.f . Consequently, the intuitionistic semantics admits weakening. This is appropriate
to reason about garbage collected languages such as Java. Intuitively, wherever some ob-
ject can be garbaged, it is sound to forget this object’s state by using weakening. Dually,
in languages where deallocation is done by programmers (such as C and C++), the state
of deallocated objects is consumed by the primitive for deallocation.

3.2.6 Proof Theory

As usual, Hoare triples will be based on a logical consequence judgment. We define logical
consequence proof-theoretically. The proof theory has two judgments:

Γ; v; F̄ ⊢ G G is a logical consequence of the * -conjunction of F̄
Γ; v ⊢ F F is an axiom

In the former judgment, F̄ is a multiset of formulas. The parameter v represents the
current receiver. The receiver parameter is needed to determine the scope of predicate
definitions: a receiver v knows the definitions of predicates of the form v.P , but not
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the definitions of other predicates. In source code verification, the receiver parameter
is always this and can thus be omitted. We explicitly include the receiver parameter
in the general judgment, because we want the proof theory to be closed under value
substitutions.

Semantic Validity of Boolean Expressions. The proof theory depends on the relation Γ |= e
(“e is valid in all well-typed heaps”), which we do not axiomatize (in an implementation,
we would use external and dedicated theorem provers to decide this relation). To define
this relation, let σ range over closing substitutions, i.e, elements of Var ⇀ ClVal.

dom(σ) = dom(Γ) ∩ Var (∀x ∈ dom(σ))(Γhp ⊢ σ(x) : Γ(x)[σ])

Γ ⊢ σ : ⋄

ClosingSubst(Γ)
∆

= { σ | Γ ⊢ σ : ⋄ }

We say that a heap h is total iff for all o in dom(h) and all f ∈ dom(fld(h(o)1)) it is
the case that f ∈ dom(h(o)2) (remember that heaps were defined on page 12).

Heap(Γ)
∆

= { h | Γhp ⊢ h : ⋄ and h is total }

Now, we define Γ |= e as follows:

Γ |= e iff

{

Γ ⊢ e : bool and
( ∀Γ′ ⊇hp Γ, h ∈ Heap(Γ′), σ ∈ ClosingSubst(Γ′) )( [[e[σ]]]h∅ = true )

Natural Deduction Rules. The logical consequence judgment of our Hoare logic is based
on the natural deduction calculus of (affine) linear logic [99], which coincides with BI’s
natural deduction calculus [85] on our restricted set of logical operators. To avoid a proof
theory with bunched contexts, we omit the ⇒-implication between heap formulas (and
did not need it in later examples). However, this design decision is not essential.

Logical Consequence, Γ; v; F̄ ⊢ G:

(Id)
Γ ⊢ v, F̄ , G : Object, ⋄

Γ; v; F̄ , G ⊢ G

(Ax)
Γ; v ⊢ G Γ ⊢ v, F̄ , G : Object, ⋄

Γ; v; F̄ ⊢ G

(* Intro)
Γ; v; F̄ ⊢ H1 Γ; v; Ḡ ⊢ H2

Γ; v; F̄ , Ḡ ⊢ H1 *H2

(* Elim)
Γ; v; F̄ ⊢ G1 *G2 Γ; v; Ē,G1, G2 ⊢ H

Γ; v; F̄ , Ē ⊢ H

(-* Intro)
Γ; v; F̄ , G1 ⊢ G2

Γ; v; F̄ ⊢ G1 -*G2

(-* Elim)
Γ; v; F̄ ⊢ H1 -*H2 Γ; v; Ḡ ⊢ H1

Γ; v; F̄ , Ḡ ⊢ H2

(& Intro)
Γ; v; F̄ ⊢ G1 Γ; v; F̄ ⊢ G2

Γ; v; F̄ ⊢ G1 & G2

(& Elim 1)
Γ; v; F̄ ⊢ G1 & G2

Γ; v; F̄ ⊢ G1

(& Elim 2)
Γ; v; F̄ ⊢ G1 & G2

Γ; v; F̄ ⊢ G2

(| Intro 1)
Γ; v; F̄ ⊢ G1

Γ; v; F̄ ⊢ G1 |G2

(| Intro 2)
Γ; v; F̄ ⊢ G2

Γ; v; F̄ ⊢ G1 |G2

(| Elim) Γ; v; F̄ ⊢ G1 |G2

Γ; v; Ē,G1 ⊢ H Γ; v; Ē,G2 ⊢ H

Γ; v; F̄ , Ē ⊢ H



3.2. SEPARATION LOGIC 33

(Ex Intro) Γ, α : T ⊢ G : ⋄
Γ ⊢ π : T Γ; v; F̄ ⊢ G[π/α]

Γ; v; F̄ ⊢ (ex T α)(G)

(Ex Elim) α 6∈ F̄ ,H
Γ; v; Ē ⊢ (ex T α)(G) Γ, α : T ; v; F̄ , G ⊢ H

Γ; v; Ē, F̄ ⊢ H

(Fa Intro)
α 6∈ F̄ Γ, α : T ; v; F̄ ⊢ G

Γ; v; F̄ ⊢ (fa T α)(G)

(Fa Elim)
Γ; v; F̄ ⊢ (fa T α)(G) Γ ⊢ π : T

Γ; v; F̄ ⊢ G[π/α]

The proof system above has been implemented in a prototype tool called ratp [62]. The
implementation was used to verify entailment between formulas when verifying example
programs shown later.

Axioms. In addition to the logical consequence defined above, sound axioms capture
additional properties of our model. By axioms, we mean that they can be added to our
logical consequence judgment without harming soundness. This is shown by Theorem 2
below. We now present these axioms.

The first axiom regulates permission accounting (where v denotes the current receiver
and π

2 abbreviates split(π)):

(Split/Merge)
Γ; v ⊢ PointsTo(e.f, π, e′) *-* ( PointsTo(e.f, π

2 , e′) * PointsTo(e.f, π
2 , e′))

The next axiom allows predicate receivers to toggle between predicate names and
predicate definitions (where – as defined in Appendix A – pbody(o.P<π̄′>, C<π̄>) looks
up o.P<π̄′>’s definition in the type C<π̄> and returns its body F together with C<π̄>’s
direct superclass D<π̄′′>):

(Γ ⊢ v : C<π̄′′> ∧ pbody(v.P<π̄, π̄′>, C<π̄′′>) = F ext D<π̄′′′>)
(Open/Close)

⇒ Γ; v ⊢ v.P@C<π̄, π̄′> *-* (F * v.P@D<π̄>)

Note that the current receiver, as represented on the left of the ⊢, has to match the
predicate receiver on the right. This rule is the only reason why our logical consequence
judgment tracks the current receiver. Note also that P@C may have more parameters than
P@D: following Parkinson [88] we allow subclasses to extend predicate arities. Missing
predicate parameters are existentially quantified, as expressed by the following axiom:

Γ; v ⊢ π.P<π̄> *-* (ex T̄ ᾱ)(π.P<π̄, ᾱ>) (Missing Parameters)

The following axiom says that a predicate at a receiver’s dynamic type (i.e., without
@-selector) is stronger than the predicate at its static type. In combination with
(Open/Close), this allows to open and close predicates at the receiver’s static type:

Γ; v ⊢ π.P@C<π̄> ispartof π.P<π̄> (Dynamic Type)

There is another similar axiom:

C � D ⇒ Γ; v ⊢ π.P@D<π̄> ispartof π.P@C<π̄, π̄′> (ispartof Monotonic)
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The following axiom allows to drop the class modifier C from π.P@C if we know that C
is π’s dynamic class:

Γ; v ⊢ ( π.P@C<π̄> * C classof π ) -* π.P<π̄> (Known Type)

Our semantics of predicates defines predicates with null-receiver to hold:

Γ; v ⊢ null.κ<π̄> (Null Receiver)

We axiomatize true and false:

Γ; v ⊢ true (True) Γ; v ⊢ false -*F (False)

The substitutivity axiom allows to replace expressions by equal expressions:

(Γ ⊢ e, e′ : T ∧ Γ, x : T ⊢ F : ⋄) ⇒ Γ; v ⊢ (F [e/x] * e == e′) -*F [e′/x]

The next axiom lifts semantic validity of boolean expressions to the proof theory:

(Γ |= !e1 | !e2 | e′) ⇒ Γ; v ⊢ (e1 * e2) -* e′

The following axiom captures that fields point to a unique value. Recall that we write
“F assures G” to abbreviate “F -* (F *G)” (see Section 3.2.1):

Γ; v ⊢ (PointsTo(e.f, π, e′) & PointsTo(e.f, π′, e′′)) assures e′ == e′′

Then, there is an axiom that captures that all well-typed closed expressions represent
a value (because built-in operations are total):

(Γ ⊢ e : T ) ⇒ Γ; v ⊢ (ex T α)(e == α)

Finally, there is a copyability axiom for boolean expressions:

Γ; v ⊢ (F & e) -* (F * e) (Copyable)

Soundness of the proof theory. We define semantic entailment Γ ⊢ E ; F̄ |= G:

Γ ⊢ E ;R; s |= F1, . . . , Fn iff Γ ⊢ E ;R; s |= F1 * · · · *Fn

Γ ⊢ E ; F̄ |= G iff (∀Γ,R, s)(Γ ⊢ E ;R; s |= F̄ ⇒ Γ ⊢ E ;R; s |= G)

Now, we can express the proof theory’s soundness:

Theorem 2 (Soundness of Logical Consequence). If Fct(E) = E and (Γ; o; F̄ ⊢ G), then
(Γ ⊢ E ; F̄ |= G).

Proof. The proof is by induction on (Γ; o; F̄ ⊢ G)’s proof tree. The pen and paper
proof can be found in [54, ➜R]. The proof has been mechanically checked for a smaller
specification language (without abstract predicates and quantifiers) [62]. �
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3.3 Hoare Triples

In this section, we present Hoare rules to verify programs written in Section 2.1’s language.
Hoare triples for head commands have the following form:

Γ; v ⊢ {F}hc{G}

First, we present the rule for field writing . The rule’s precondition3 requires that the
heap contains at least the object dereferenced and the field mentioned. In addition, it
requires permission 1 to this object’s field, i.e., write-permission. The rule’s postcondition
simply ensures that the heap has been updated with the value assigned. It should be noted
that this rule is small [86]: it does not require anything more than a single PointsTo

predicate. The (Frame) rule (discussed below) is used to build proofs in bigger contexts.

Γ ⊢ u, w : U, W W f ∈ fld(U)
(Fld Set)

Γ; v ⊢ {PointsTo(u.f, 1, W)}u.f =w{PointsTo(u.f, 1, w)}

The rule for field reading requires a PointsTo predicate with any permission π:

Γ ⊢ u, π, w : U, perm, W W f ∈ fld(U) W <: Γ(ℓ)
(Get)

Γ; v ⊢ {PointsTo(u.f, π, w)}ℓ =u.f{PointsTo(u.f, π, w) * ℓ == w}

The rule for creating new objects has true as a precondition. That is because we
do not check for out of memory errors. After creating an object, all its fields are
writable: the ℓ.init predicate (formally defined in Appendix A) *-conjoins the predi-
cates PointsTo(ℓ.f, 1, df(T )) for all fields T f in ℓ’s class:

C<T̄ ᾱ> ∈ ct Γ ⊢ π̄ : T̄ [π̄/α] C<π̄> <: Γ(ℓ)
(New)

Γ; v ⊢ {true}ℓ = new C<π̄>{ℓ.init * C classof ℓ}

The rule for method calls is verbose, but standard:

mtype(m, t<π̄>) = <T̄ ᾱ> requiresG; ensures (ex U α′)(G′); U m(t<π̄> ı0; W̄ ı̄)
σ = (u/ı0, π̄

′/ᾱ, w̄/ı̄) Γ ⊢ u, π̄′, w̄ : t<π̄>, T̄ [σ], W̄ [σ] U [σ] <: Γ(ℓ)
(Call)

Γ; v ⊢ {u != null * G[σ]}ℓ =u.m(w̄){(ex U [σ] α′)(α′ == ℓ * G′[σ])}

Figure 3.1 lists the remaining standard rules, including rules for commands. Our
judgment for commands combines typing and Hoare triples:

Γ; v ⊢ {F}c : T{G}

T is a type of the return value (possibly a supertype of the return value’s dynamic
type). G is the postcondition and is always of the form G = (ex U α)(G′) with U <: T .
The existentially quantified α represents the return value. Figure 3.1 shows a rule for
assert statements which are defined later (on page 41). Even though return statements
are not available to programmers, Figure 3.1 shows a rule for return statements because
we added this auxiliary syntax in Section 2.2.

Importantly, our system includes the (Frame) rule. To understand this rule, note that
fv(F ) is the set of free variables of F and that we write x 6∈ F to abbreviate x 6∈ fv(F ).
Furthermore, we write writes(hc) for the set of read-write variables ℓ that occur freely
on the left-hand-side of an assignment in hc. (Frame)’s side condition on variables is
standard [84, 88]. Bornat showed how to get rid of this side condition [20] by treating
variable as resources.

3Where, as defined in Section 3.2.1, PointsTo(u.f, 1, W) stands for (ex W w)(PointsTo(u.f, 1, w)).
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Γ; v;F ⊢ G[w/α] Γ ⊢ w : U <: T Γ, α : U ⊢ G : ⋄
(Val)

Γ; v ⊢ {F}w : T{(ex U α)(G)}

ℓ 6∈ F,G Γ, ℓ : T ; v ⊢ {F * ℓ == df(T )}c : U{G}
(Dcl)Γ; v ⊢ {F}T ℓ; c : U{G}

ı 6∈ F,G, v
Γ ⊢ ℓ : T Γ, ı : T ; v ⊢ {F * ı == ℓ}c : U{G}

(Fin Dcl)
Γ; v ⊢ {F}T ı = ℓ; c : U{G}

Γ; v ⊢ {F}hc{F ′} Γ; v ⊢ {F ′}c : T{G}
(Seq)

Γ; v ⊢ {F}hc; c : T{G}

Γ; v ⊢ {F}hc{G} Γ ⊢ H : ⋄ fv(H) ∩ writes(hc) = ∅
(Frame)

Γ; v ⊢ {F *H}hc{G *H}

Γ; v ⊢ {F ′}hc{G′}
Γ; v;F ⊢ F ′ Γ; v;G′ ⊢ G

(Consequence)
Γ; v ⊢ {F}hc{G}

Γ, α : T ; v ⊢ {F}hc{G}
(Exists)

Γ; v ⊢ {(ex T α)(F)}hc{(ex T α)(G)}

Γ ⊢ w : Γ(ℓ)
(Var Set)

Γ; v ⊢ {true}ℓ =w{ℓ == w}

Γ ⊢ op(w̄) : Γ(ℓ)
(Op)

Γ; v ⊢ {true}ℓ = op(w̄){ℓ == op(w̄)}

Γ ⊢ w : bool
Γ; v ⊢ {F *w}c : void{G} Γ; v ⊢ {F * !w}c′ : void{G}

(If)
Γ; v ⊢ {F}if (w){c}else{c′}{G}

Γ; v;F ⊢ G
(Assert)

Γ; v ⊢ {F}assert(G){F}

Γ ⊢ v : T Γ; o;F ⊢ G[v/α] T <: U Γ, ℓ : U ; p ⊢ {(ex T α)(α == ℓ * G)}c : V {H}
(Return)

Γ, ℓ : U ; o ⊢ {F}ℓ = return(v); c : V {H}

Figure 3.1: Hoare triples
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3.4 Verified Interfaces and Classes

Before defining a judgment for verified programs, we need to define judgments for ver-
ified interfaces and classes. To do this, we first define method subtyping and predicate
subtyping.

Method Subtyping. First, recall that method types are of the following form:

<T̄ ᾱ> requiresF ; ensuresG;U m(V0 ı0; V̄ ı̄)

The self-parameter (ı0) is explicit, separated from the other formal parameters by a
semicolon. Before presenting the method subtyping rule in full generality, we present its
instance for method types without logical parameters:

U, V0, V̄
′ <: U ′, V ′

0 , V̄ Γ, ı0 : V0, ı̄ : V̄ ′; ı0; true ⊢ F ′ -* (F * (fa U result)(G -*G′))

Γ ⊢ requiresF ; ensuresG;U m(V0 ı0; V̄ ı̄) <: requiresF ′; ensuresG′;U ′ m(V ′
0 ı0; V̄

′ ı̄)

To understand this rule, we invite the reader to consider the following two derived
rules (where types are elided):

⊢ F ′ -* F ⊢ G -* G′

⊢ requires F ; ensures G <: requires F ′; ensures G′

⊢ requires F ; ensures G <: requires F * H; ensures G * H

The first of these derived rules is standard behavioral subtyping, the second one ab-
stracts separation logic’s frame rule. In order to see that these two rules follow from the
above rule, note that the following two formulas are tautologies (as can be easily proven
by natural deduction):

(F ′ -* F) * H -* F ′ -* F * H F * H -* F * (fa U x)(G -* G * H)

The general method subtyping rule also accounts for logical parameters (where we
abbreviate requires and ensures):

Γ, ı0 : V0; ı0; true ⊢ (fa T̄ ′ ᾱ)(fa V̄ ′ ı̄)(F ′ -* (ex W̄ ᾱ′)(F * (fa U result)(G -*G′)))

Γ ⊢ <T̄ ᾱ, W̄ ᾱ′> reqF ; ensG;U m(V0 ı0; V̄ ı̄) <: <T̄ ′ ᾱ> reqF ′; ensG′;U ′ m(V ′
0 ı0; V̄

′ ı̄)

Note that the subtype may have more logical parameters than the supertype. For
instance, we obtain the following derived rule:

⊢ <T α> requires F ; ensures G <: requires (ex T α)(F); ensures (ex T α)(G)

This derived rule is an abstraction of separation logic’s auxiliary variable rule (Exists)
(see page 36). It follows from the method subtyping rule by the following tautology:

(ex T α)(F) -* (ex T α)(F * (fa U x)(G -* (ex T α)(G)))
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Predicate Subtyping. Predicate type pt is a subtype of pt ′, if pt and pt ′ have the same
name and pt ’s parameter signature “extends” pt ′’s parameter signature:

pred P<T̄ ᾱ, T̄ ′ ᾱ′> <: pred P<T̄ ᾱ>

Class Axioms. Recall that we use axioms to export useful relations between predicates
to clients. For this to be sound, programmers have to prove axioms sound. We require
that class axioms are proven sound with a restricted logical consequence judgment:

⊢′
∆
= ⊢ without class axioms

We disallow the application of class axioms for proving class axioms in order to avoid
circularities. A class is sound if all its axioms are sound (the lookup function for axioms
(axiom) is defined in Appendix A):

C<T̄ ᾱ> sound

iff
axiom(C<ᾱ>) = F ⇒ ᾱ : T̄ , this : C<ᾱ>; this; C classof this ⊢′ F

Class Extensions and Interface Implementations. To define sanity conditions on classes
and interfaces, we define some lookup functions.

class C<T̄ ᾱ> ext U impl V̄ {fd* pd* ax* md*} → methods(C)
∆

= dom(md*)

interface I<T̄ ᾱ> ext Ū {pt* ax* mt*} → methods(I)
∆

= dom(mt*)

class C<T̄ ᾱ> ext U impl V̄ {fd* pd* ax* md*} → preds(C)
∆

= dom(pd*)

interface I<T̄ ᾱ> ext Ū {pt* ax* mt*} → preds(I)
∆

= dom(pt*)

class C<T̄ ᾱ> ext U impl V̄ {fd* pd* ax* md*} → declared(C)
∆

= dom(fd*)

Now, we define sanity conditions on classes and interfaces. These conditions are later
used to ensure that we only verify sane programs.

In the definitions below, we conceive the partial functions mtype and ptype (which
are formally defined in Appendix A) as total functions that map elements outside their
domains to the special element undef. Furthermore, we extend the subtyping relation:
<: = {(T, U) |T <: U} ∪ {(undef, undef)}.

Judgment C<T̄ ᾱ> ext U expresses that: (1) class C extends another class U , (2) class
C does not redeclare inherited fields, and (3) methods and predicates overridden in class
C are subtypes of the corresponding methods and predicates implemented in class U :

C<T̄ ᾱ> ext U
∆

=















U is a parameterized class
f ∈ dom(fld(U)) ⇒ f 6∈ declared(C)
(∀m,mt)(mtype(m, U) = MT ⇒ ᾱ : T̄ ⊢ mtype(m, C<ᾱ>) <: MT )
(∀P, pt)(ptype(P,U) = pt ⇒ ptype(P,C<ᾱ>) <: pt)

Judgment I<T̄ ᾱ> type-extends U expresses that: (1) interface I extends another
interface U and (2) methods and predicates overridden in interface I are subtypes of the
corresponding methods and predicates declared in U .
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I<T̄ ᾱ> type-extends U
∆

=















U is a (parameterized) interface
(∀m,mt)(mtype(m, U) = MT ⇒

ᾱ : T̄ ⊢ mtype(m, I<ᾱ>) <: MT )
(∀P, pt)(ptype(P,U) = pt ⇒ ptype(P, I<ᾱ>) <: pt)

I<T̄ ᾱ> type-extends Ū
∆

= (∀U ∈ Ū)(I<T̄ ᾱ> type-extends U)

Judgment C<T̄ ᾱ> impl U expresses that: (1) class C implements an interface U , (2)
methods and predicates declared in interface U are implemented in C, and (3) meth-
ods and predicates implemented in C are subtypes of the corresponding methods and
predicates declared in U :

C<T̄ ᾱ> impl U
∆

=































U is a (parameterized) interface
(∀m,mt)(mtype(m, U) = MT ⇒ mtype(m, C<ᾱ>) 6= undef)
(∀P, pt)(ptype(P,U) = pt ⇒ ptype(P,C<ᾱ>) 6= undef)
(∀m,mt)(mtype(m, U) = MT ⇒

ᾱ : T̄ ⊢ mtype(m, C<ᾱ>) <: MT )
(∀P, pt)(ptype(P,U) = pt ⇒ ptype(P,C<ᾱ>) <: pt)

C<T̄ ᾱ> impl Ū
∆

= (∀U ∈ Ū)(C<T̄ ᾱ> impl U)

Verified Interfaces and Classes. In this paragraph, we define what are verified interfaces
and classes. Later, when we verify a user-provided program, we will assume that the class
table (i.e., a set of interfaces and classes) is verified.

Well-formed Predicate Types, Γ ⊢ pt : ⋄, and Method Types, Γ ⊢ mt : ⋄:

(Pred Type)
Γ ⊢ T̄ : ⋄

Γ ⊢ pred P<T̄ ᾱ> : ⋄

(Mth Type)
Γ, ᾱ : T̄ , ı̄ : V̄ ⊢ T̄ , F, U, V̄ : ⋄ Γ, ᾱ : T̄ , ı̄ : V̄ , result : U ⊢ G : ⋄

Γ ⊢ <T̄ ᾱ> requiresF ; ensuresG; U m(V̄ ı̄) : ⋄

Verified Interfaces, int : ⋄:

(Ax)
Γ ⊢ F : ⋄

Γ ⊢ axiom F : ⋄

(Int) I<T̄ ᾱ> type-extends Ū init 6∈ dom(pt*)
ᾱ : T̄ ⊢ T̄ , Ū , pt* : ⋄ ᾱ : T̄ , this : I<ᾱ> ⊢ ax ,mt* : ⋄

interface I<T̄ ᾱ> ext Ū {pt* ax* mt*} : ⋄

Below, we write cfv(c) for the set of variables that occur freely in an object creation
command in c. Formally:

cfv(c) = {α ∈ fv(c) | α occurs in an object creation command ℓ = new C<π̄> }

Rule (Cls) below is the main judgment for verifying classes. Premises C<T̄ ᾱ> ext U
and C<T̄ ᾱ> impl V̄ enforce class C to be sane. Premise C<T̄ ᾱ> sound enforces C’s axioms



40 CHAPTER 3. SEPARATION LOGIC FOR A JAVA-LIKE LANGUAGE

to be sound. Premise ᾱ : T̄ , this : C<ᾱ> ⊢ fd*, ax*,md* : ⋄ enforces C’s methods (md*)
to be verified.

Rule (Mth) below verifies methods. In this rule, we prohibit object creation commands
to contain logical method parameters because our operational semantics does not keep
track of logical method parameters (while it does keep track of class parameters).

Verified Classes, cl : ⋄:

(Cls) C<T̄ ᾱ> ext U C<T̄ ᾱ> impl V̄ C<T̄ ᾱ> sound init 6∈ dom(pd*)
ᾱ : T̄ ⊢ T̄ , U, V̄ : ⋄ ᾱ : T̄ ⊢ pd* : ⋄ in C<ᾱ> ᾱ : T̄ , this : C<ᾱ> ⊢ fd*, ax*,md* : ⋄

class C<T̄ ᾱ> ext U impl V̄ {fd* pd* ax* md*} : ⋄

(Fld)
Γ ⊢ T : ⋄

Γ ⊢ T f : ⋄

(Pred)
Γ ⊢ pred P<T̄ ᾱ> : ⋄ Γ, this : U, ᾱ : T̄ ⊢ F : ⋄

Γ ⊢ pred P<T̄ ᾱ> =F : ⋄ in U

(Mth)
Γ ⊢ <T̄ ᾱ> requiresF ; ensuresG; U m(V̄ ı̄) : ⋄ cfv(c) ∩ ᾱ = ∅

Γ′ = Γ, ᾱ : T̄ , ı̄ : V̄ Γ′; this ⊢ {F * this 6= null}c : U{(ex U result)(G)}

Γ ⊢ <T̄ ᾱ> requiresF ; ensuresG; U m(V̄ ı̄){c} : ⋄

3.5 Verified Programs

We now have all the machinery to define what is a verified program. To do so, we extend
our verification rules to runtime states. Of course, the extended rules are never used in
verification, but instead define a global state invariant, st : ⋄, that is preserved by the
small-step rules of our operational semantics.

Our forcing relation |= from Section 3.2.5 assumes formulas without logical variables:
we deal with those by substitution, ranged over by σ ∈ LogVar ⇀ SpecVal. We let
(Γ ⊢ σ : Γ′) whenever dom(σ) = dom(Γ′) and (Γ[σ] ⊢ σ(α) : Γ′(α)[σ]) for all α in dom(σ).

Now, we extend the Hoare triple judgment to states:

Γ ⊢ σ : Γ′ dom(Γ′) ∩ cfv(c) = ∅ Γ,Γ′ ⊢ s : ⋄
Γ[σ] ⊢ E ;R; s |= F [σ] Γ,Γ′; r ⊢ {F}c : void{G}

(State)
〈h, c, s〉 : ⋄

The rule for states ensures that there exists a resource R to satisfy the state’s com-
mand. The object identifier r in the Hoare triple (last premise) is the current receiver,
needed to determine the scope of abstract predicates. Rule (State) enforces the current
command to be verified with precondition F and postcondition G. No condition is re-
quired on F and G, but note that, by the semantics of Hoare triples, F represents the
state’s allocated memory before executing c: if c is not a top level program (i.e., some
memory should be allocated for c to execute correctly), choosing a trivial F such as true
is incorrect. Similarly, G represents the state’s memory after executing c.

The judgment (ct : ⋄) is the top-level judgment of our source code verification system,
to be read as “class table ct is verified”. We have shown the following theorem:

Theorem 3 (Preservation). If (ct : ⋄), (st : ⋄) and st →ct st ′, then (st ′ : ⋄).
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Proof. See Section 6.1.2. �

The proof of Theorem 3 means soundness of all rules presented so far. In particular,
in this proof, we show that the Hoare rules from Section 3.3 are sound.

From the preservation theorem, we can draw two corollaries: verified programs never
dereference null and verified programs satisfy partial correctness. To formally state
these theorems, we say that a class table ct together with a “main” program c are sound
(written (ct , c) : ⋄) iff (ct : ⋄ and null; ∅ ⊢ {true}c : void{true}). In the latter
judgment, ∅ represents that the type environment is initially empty, null represents that
the receiver is initially vacuous, and true represents that the top level program has true
both as a precondition and as a postcondition. true is a correct precondition for top level
programs (Java’s main), because when a top level program starts to execute, the heap is
initially empty.

We can now state the first corollary (no null dereference) of the preservation theorem.
A head command hc is called a null error iff hc = (ℓ = null.f) or hc = (null.f = v) or
hc = (ℓ = null.m<π̄>(v̄)) for some ℓ, f, v, m, π̄, v̄.

Theorem 4 (Verified Programs are Null Error Free). If (ct , c) : ⋄ and init(c) →∗
ct

〈h, hc; c′, s〉, then hc is not a null error.

Proof. See Section 6.1.3. �

To state the second corollary (partial correctness) of the preservation theorem, we
extend head commands with specification commands. Specification commands sc are used
by the proof system, but are ignored at runtime. The specification command assert(F)

makes the proof system check that F holds at this program point:

hc ∈ HeadCmd ::= . . . | sc | . . .
sc ∈ SpecCmd ::= assert(F)

We update Section 2.2’s operational semantics to deal with specification commands.
Operationally, specification commands are no-ops:

State Reductions, st →ct st ′:

. . .
(Red No Op)
〈h, sc; c, s〉 → 〈h, c, s〉 . . .

Now, we can state the partial correctness theorem. It expresses that if a verified pro-
gram contains a specification command assert(F), then F holds whenever the assertion
is reached at runtime:

Theorem 5 (Partial Correctness).
If (ct , c) : ⋄ and init(c) →∗

ct 〈h, assert(F); c, s〉, then (Γ ⊢ E ; (h,P); s |= F [σ]) for some
Γ, E = Fct(E),P and σ ∈ LogVar ⇀ SpecVal.

Proof. See Section 6.1.3. �
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3.6 Examples of Reasoning

3.6.1 Example: Roster

This example consists of a linked list implementation of a class roster that collects student
identifiers and associates them with grades. We design the roster class so that multiple
threads can concurrently read a roster (this can be expressed in contracts, even though
we do not have multiple threads yet). Moreover, when a thread updates the grades we
allow other threads to concurrently read the student identifiers.

Objects of type Roster have two predicates with two permission parameters each:

ids and links<p,q>

predicate including student ids and links between the student entries
p is the permission for the student ids
q is the permission for the links

grades and links<p,q>

predicate including grades and links between the student entries
p is the permission for the grades
q is the permission for the links

As the two predicates overlap on the links, the two predicates do not give the right
to change the links. Predicate ids and links allows to change ids if p is 1 while pred-
icate grades and links allows to change grades if p is 1. To change the links, the two
predicates together are needed. This is expressed by predicate state in Roster’s imple-
mentation below.

class Roster{

int id; int grade; Roster next;

pred ids and links<perm p, perm q> =

Perm(id,p) *

(ex Roster x)(PointsTo(next,q,x) * x.ids and links<p,q>);

pred grades and links<perm p,perm q> =

Perm(grade,p) *

(ex RosterImpl x)(PointsTo(next,q,x) * x.grades and links<p,q>);

public pred state<perm p> = ids and links@Roster<p,p/2> *

grades and links@Roster<p,p/2>;

requires init * n.state<1>; ensures state@Roster<1>;

void init(int i, int g, Roster n) {

this.id = i; this.grade = g; this.next = n;

}

requires grades and links<1,p> * ids and links<q,r>;

ensures grades and links<1,p> * ids and links<q,r>;

void updateGrade(int id, int grade) {

if (this.id == id) { this.grade = grade; }

else if (next != null) { next.updateGrade(id,grade); }

}

requires ids and links<p,q>; ensures ids and links<p,q>;

bool contains(int id) {

bool b = this.id==id; if(!b && next!=null){ b=next.contains(id); }; b

}
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}

Here are informal interpretations of the method contracts:

updateGrade(id,grade): Requires write access to the grades and read access to the student ids
and the links. (We omit quantifiers over the logical variables p, q, r because they can be
inferred.)

contains(id): Requires read access to the student ids and the links. (We omit quantifiers over
the logical variables p, q because they can be inferred.)

Our implementation also contains an init-method:

init(id,grade,next): Plays the role of a constructor. Requires write access to the fields of this
(by precondition init) and write access to the state of next (by precondition n.state<1>).
Ensures write access to the roster (by postcondition state@RosterImpl<1>).

Note that method init’s postcondition refers to the Roster class. This might look
like breaking the abstraction provided by subtyping. However, because method init is
meant to be called right after object creation (using new Roster), init’s postcondition
can be converted into a form that does not mention the Roster class. Given an object o,
after calling o = new Roster and o.init(), the caller knows that Roster is o’s dynamic
class (recall that (New)’s postcondition includes an classof predicate) and can there-
fore convert the access ticket o.state@Roster<1> to o.state<1> (using axiom (Known
Type)).

Below, we verify method init. We do not give proof outlines for the two other
methods, because they are less interesting.

{ init * n.state<1> }

((Dynamic Type) axiom)
{ init * init@Roster ispartof init * n.state<1> }

(Unfolding ispartof definition)
{ init * init -* (init@Roster -* (init@Roster -* init)) * n.state<1> }

(Modus ponens)
{ init@Roster * (init@Roster -* init) * n.state<1> }

(Weakening)
{ init@Roster * n.state<1> }

((Open/Close) axiom)
{ Perm(this.id,1) * Perm(this.grade,1) * Perm(this.next,1) * n.state<1> }

this.id = id;

{ Perm(this.id,1) * Perm(this.grade,1) * Perm(this.next,1) * n.state<1> }

this.grade = grade;

{ Perm(this.id,1) * Perm(this.grade,1) * Perm(this.next,1) * n.state<1> }

this.next = n;

{ Perm(this.id,1) * Perm(this.grade,1) * PointsTo(this.next,1,n) *

n.state<1> }

((Open/Close) axiom)
{ Perm(this.id,1) * Perm(this.grade,1) * PointsTo(this.next,1,n) *

n.ids and links<1,1/2> * n.grades and links<1,1/2> }

((Split/Merge) axiom)
{ Perm(this.id,1) * PointsTo(this.next,1/2,n) * n.ids and links<1,1/2> *
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Perm(this.grade,1) * PointsTo(this.next,1/2,n) *

n.grades and links<1,1/2> }

((Open/Close) axiom)
{ state@Roster<1> }

Because init mimics a constructors, we have to allow clients to call methods updateGrade
and contains after init returned. To do this, we give clients the ability to switch between
the state predicate (init’s postcondition) and the grades and links and ids and links

predicates (that appear in updateGrade and contains’s contracts). For this, we use the
public modifier (as indicated in Roster’s implementation) before predicate state’s def-
inition. As explained in Section 3.2.1, the public modifier exports predicate state’s
definition in class Roster to clients.

3.6.2 Example: Iterator

In this example, we show how we can precisely specify the usage protocol of Java’s
Iterator interface. We do not give an implementation (which can be found in our
earlier technical report [54]) but show how value-parameterized classes and class axioms
are crucial to achieve our goal.

Often one wants to constrain object clients to adhere to certain usage protocols. Usage
protocols can, for instance, be specified in typestate systems [40] or; using ghost fields, by
general purpose specification languages [91]; or by dedicated specifications (as in Cheon et
al.’s work [32] and in Chapter 7). A limitation of these techniques is that state transitions
must always be associated with method calls. This is sometimes not sufficient. Consider
for instance Java’s Iterator interface (enriched with an init method because our model
language does not have constructors).

interface Iterator{

void init(Collection c);

boolean hasNext();

Object next();

void remove();

}

If iterators are used in an undisciplined way, there is the danger of unwanted concurrent
modification of the underlying collection (both of the collection elements and the collection
itself). Moreover, in concurrent programs bad iterator usage can result in data races. It
is therefore important that Iterator clients adhere to a usage discipline. The following
simple discipline would be safe for an iterator without remove: retrieve the next collection
element; then access the element; then trade the element access right for the right to
retrieve the next element; and so on. Although such a discipline is simple and makes
sense, it cannot be specified by existing typestate systems and it would be very clumsy to
specify it with classical specification languages because they can only express transitions
associated with method calls.

We have designed a usage protocol for the full Iterator interface with remove. Its
state machine is shown in Figure 3.2. The dashed arrows are the ones that are not
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ready readyFor
Next

readyFor
Remove

init
hasNext()==true

element=next()

access element

remove()abandon access
right for element

init(c)

abandon access
right for c

hasNext()==false

abandon
iterator and

get back access
right for c

Figure 3.2: Usage protocol of the Iterator interface

associated with method calls, and are hard to capture with existing object-oriented spec-
ification systems. Note in particular, that according to this protocol an Iterator client
can keep the access right for a collection element that he has removed. This protocol can
be expressed quite straightforwardly by a separation logic contract (making heavy use of
linear implication).

interface Iterator<perm p, Collection iteratee>{

pred ready; // prestate for iteration cycle

pred readyForNext; // prestate for next()

pred readyForRemove<Object element>; // prestate for remove()

axiom ready -* iteratee.state<p>; // stop iterating

requires init * c.state<p> * c==iteratee;

ensures ready;

void init(Collection c);

requires ready;

ensures (result -* readyForNext) & (!result -* ready);

boolean hasNext();

requires readyForNext;

ensures result.state<p> * readyForRemove<result> *

((result.state<p> * readyForRemove<result>) -* ready);

Object next();

requires readyForRemove< > * p==1;

ensures ready;

void remove();

}
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The interface has two parameters: firstly, a permission p and, secondly, the iteratee.
If the permission parameter is instantiated by a fraction p ≤ 1, one obtains a read-only
iterator, otherwise a read-write iterator. The states are represented by three abstract
predicates. The class axiom expresses that whenever the client is in the ready state, he
has the option to abandon the iterator for good and get the access right for the iteratee
back. The precondition of init() consumes a fraction p of the access right for the iteratee
and puts the iterator in the ready state. The init predicate in init()’s precondition
is a special abstract predicate that every object enters right after object creation and
that grants access to all of the object’s fields (recall that our model language does not
have constructors). The most interesting part of the Iterator contract is next()’s
postcondition. It grants access to the collection element that got returned, represented
by the special result variable. Furthermore, it grants permission to remove this element.
However, by the precondition of remove, this permission can only be used if the class
parameter p is 1, i.e., the iterator is read-write. Finally, next()’s postcondition grants
the right to trade the tickets result.state<p> and readyForRemove<result> for the
ready state.

We have implemented this interface for a doubly linked list implementation of the
Collection interface (it is detailed in our earlier work [54]). This implementation revealed
to be time consuming: finding the correct definitions of predicates ready, readyForNext,
readyForRemove, and the predicates of the doubly linked list was an intricate task. In-
tuitively, the difficulty lies in the nit-picking reasoning done at the level of fields of the
doubly linked list. The difficulties encountered when writing this implementation spawned
the idea underlying the work on class protocols shown in Chapter 7.

Work Related with the Iterator Example. Recently, iterators have served as a challeng-
ing case study for several verification systems, namely, separation logic [89], higher-order
separation logic [74], a linear typestate system [17, 18], and a linear type-and-effect sys-
tem [26].

Parkinson [89] uses iterators as an example. He supports simultaneous read-only
iterators through counting permissions [21], rather than fractional permissions. Unlike
us, he considers iterators over shallow collections, i.e., iterators that do not own their
underlying collections. His iterator interface does not have a remove() method, which
is particularly interesting for deep collections, because it is important that the collection
passes the access permission for removed elements to the remover. Parkinson’s proof of
his iterator implementation differs from ours: he uses a lemma that is proven inductively,
whereas our proof is based on the natural deduction rules for our fragment of separation
logic without an induction rule.

Krishnaswami [74] presents a protocol for iterators over linked lists using higher-
order separation logic. His collections are shallow and his iterators are read-only. His
protocol allows multiple iterators over a collection and enforces that all active iterators
are abandoned, once a new element is added to the collection. Technically, he achieves
this by parameterizing a higher-order predicate by a first-order predicate that represents
the state of a collection. Iterators that are created when the underlying collection is in a
certain state P may only be used as long as the collection is still in state P . The add()

method does not preserve the collection state and hence invalidates all existing iterators.
This is an elegant solution that makes use of the power of higher-order predicates.

Bierhoff and Aldrich [18] present a linear typestate system based on a fragment of
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linear logic. It uses linear implication as a separator between pre- and postconditions
(but not as a logical connective). Bierhoff and Aldrich use iterators as a case study for
their system [18, 17]. They support concurrent read-only iterators through fractional
permissions. Their protocols do not support iterators over deep collections with mu-
table collection elements, although [17] supports read-only access to collection elements
that get returned by next(). Our protocol cannot be represented in their system be-
cause their specification language lacks linear implication (needed to represent the dashed
readyForRemove-to-ready transition). Of course, they could add linear implication to
their language. They associate our second dashed transition (the one that terminates
an iteration) with the iterator’s finalize() method, and assume that a checker would
employ program analysis techniques to apply the finalize()-contract without explicitly
calling finalize(). In practice, this has the same effect as our axiom. Neither of Bierhoff
and Aldrich’s works [18, 17] presents an iterator implementation, or a mapping of iterator
state predicates to concrete definitions. To verify iterator implementations, related verifi-
cation systems employ recursive predicates and either induction [89] or introduction and
elimination rules for linear implication (this thesis) or both [74]. Recursive predicates,
induction and linear implication are not supported by Bierhoff and Aldrich’s works, and
it is thus possible that their works are not expressive enough to verify iterator implemen-
tations. Of course, it is likely that Bierhoff and Aldrich have deliberately avoided such
features (especially induction) because their system is designed as a lightweight typestate
system, rather than a full-blown program logic.

Boyland, Retert and Zhao [26] informally explain how to apply their linear type and
effect system (an extension of [25] with fractional permissions) to specify and verify iter-
ator protocols. Their system facilitates concurrent read-only iterators through fractional
permissions. The paper does not address iterators over deep collections. In contrast to
Boyland et al.’s [26] Iterator interface, our Iterator interface is parameterized by the
underlying collection. As a result, in our system client methods and classes sometimes
need an auxiliary parameter (in angle brackets). Like us, Boyland et al. use linear im-
plication to represent the state transition that finalizes an iterator. They represent this
linear implication as an effect on the iterator() method, whereas we choose to represent
it as a class axiom. Their linear implication operator (called “scepter”) has a different
semantics than separation logic’s magic wand, which we use.

3.7 Related Work and Conclusion

Related Work. The closest related work is Parkinson’s thesis [88] which provides verifica-
tion for Java-like programs specified with separation logic. We reuse most of Parkinson’s
ideas but differ on some points. We have a more restrictive rule for predicate extensions in
subclasses and for method subtyping. On the upside, we do not have to reverify inherited
methods; on the downside, our notion of subtyping is more restrictive. Recently [33, 90],
new approaches show how to get a notion of subtyping that is more powerful both than
Parkinson’s early work and our work. Another difference with Parkinson’s work is that
we provide value-parameterized classes and methods, class axioms, and public modifiers.
These features are crucial to handle advanced examples such as Java’s Iterator.

Verifiers for object-oriented programs include ESC/Java2 [35] for Java and Boogie for
C# [6]. On one hand, ESC/Java2 offers many facilities that we do not feature (arrays,
ghost fields, model classes and methods, etc.). On the other hand, ESC/Java2 uses tradi-
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tional Hoare logic. As outlined in the thesis’s introduction, this has the consequence that
alias reasoning becomes difficult. Another difference is that ESC/Java2 uses a weakest
precondition calculus to generate proof obligations, whereas implementation of our ver-
ification would be done with a symbolic execution algorithm (à la smallfoot [15]). On
the level of specifications, Boogie is similar to ESC/Java2. It includes, however, a per-
mission model based on invariants to help reasoning about aliasing. One advantage is
that reasoning can still be done in first order logic, for which very good solvers exist. A
disadvantage is that the permission model is fixed (it is not supplied by programmers)
and it can be too restrictive for intricate classes. Contrary to us, both ESC/Java2 and
Boogie use an intermediate language to generate proof obligations.

Dynamic frames [95, 94] is another approach to verify programs. In this approach,
programmers use pure methods (methods that do no write to the heap) and ghost fields
to specify sets of locations that are accessed by normal methods. Specifying the sets of
locations accessed by methods mimics separation logic’s permissions. Like ESC/Java2
and Boogie, program verifiers using dynamic frames generate proof obligations in first
order logic.

Conclusion. We presented how to specify and verify programs written in Chapter 2’s
language with separation logic. To do this, we presented a set of Hoare rules that we
have shown sound. The key contributions of this chapter are: (1) for expressiveness,
we provide parameterized classes and methods, (2) we provide a subtyping relation that
avoid reverification of inherited methods, and (3) to export useful facts to clients, we use
axioms and public modifiers.

In the next chapter, we extend our model language and our verification system to deal
with multithreaded programs that use fork and join as concurrency primitives.



Chapter 4

Separation Logic for fork/join

In this chapter, we extend Chapter 2’s language with multithreading. Multithreading is
achieved with fork and join primitives à la Java. Further, we extend Chapter 3’s assertion
language and verification rules to deal with fork and join primitives.

This chapter is structured as follows: in Section 4.1 we informally present what fork
and join primitives are, in Section 4.2 we show how to modify Section 2.1’s language to
model fork and join, in Section 4.3 we describe how to modify Section 3.2’s assertion
language and semantics to handle fork and join, in Section 4.4 we present the verification
rules for fork and join, and in Section 4.5 we show what are verified programs. We
present two examples of verified programs in Section 4.6: a simple example of a parallel
computation of the Fibonacci sequence and an advanced example of replication of a
database to mirrors. Finally, we discuss related work and conclude in Section 4.7.

Note: The work from this chapter has been done in collaboration with Christian Haack.
It is published in the International Conference on Algebraic Methodology and Software
Technology (AMAST 2008) [53]. Compared to [53], the treatment of run’s contract is
simpler and inheritance is handled in a better way.

Conventions: In formal material, we use grey background to highlight what are the
changes compared with previous chapters. As in the previous chapter, we use dots “. . . ”
to indicate that some material defined previously is being extended.

4.1 Fork/join: Background

As sketched in the thesis’s introduction, multithreaded programs are becoming ubiquitous,
because of (1) the high demand on software and of (2) the recent trend to increase the
number of processors on hardware.

Fork and join primitives are the main mechanisms for concurrency in a number of pro-
gramming languages including Java, C♯ (in these languages, fork is called start), python,
C++ etc. Fork starts a new thread i.e., it starts execution of code in parallel with the
code already running. Fork permits dynamic thread creation, because the number of
threads that is created during a program’s run is not statically determined: threads are
started when fork commands are executed. This is dynamic, because execution of fork
commands can depend on program variables which also depend on uncontrolled input.

49
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Join’s purpose is to wait for a thread to terminate: calling join on a thread blocks until
the thread has terminated, and then returns. An example usage of join is to wait for
some IO operation (like reading to the disk) to finish before inspecting the data obtained.
This can be performed by forking a new thread to perform the IO operation and by later
joining this thread.

In this chapter, we extend Chapter 3 with fork and join primitives. This includes ex-
tending our verification system with rules for these primitives and extending our assertion
language to model join’s behavior (nothing special will be needed for fork). As sketched
in the thesis’s introduction, we will see that separation logic is suited to reason about
concurrent programs, because it encompasses permissions to control access to the heap.
Because two write permissions (or a write permission and a read permission) to the same
cell cannot coexist, programs verified in our system are data race free by construction.

4.2 A Java-like Language with fork/join

We show how to extend the syntax and the semantics of Section 2.1’s language with fork
and join primitives.

Syntax. From now on, we assume that class tables always contain the declaration of class
Thread. Class Thread includes methods fork, join, and run:

class Thread extends Object{

final void fork();

final void join();

final void run() { null }

}

The methods fork and join are not implemented in Java. Instead, they are imple-
mented natively and their behavior is specified in the operational semantics as follows:

❼ o.fork() creates a new thread, whose thread identifier is o, and executes o.run() in
this thread. Method fork should not be called more than once on o: any subsequent
call results in blocking of the calling thread.

❼ o.join() blocks until thread o has terminated.

The run-method is meant to be overridden while methods join and fork cannot be
overridden (as indicated by the final modifiers). In Java, fork and join are not final.
In combination with super calls, this is useful for custom Thread classes. However, we
leave the study of overrideable fork and join method together with super calls as future
work, and stick to our setting for simplicity.

Runtime Structures. In Section 2.2, our operational semantics→ct was defined to operate
on states consisting of a heap, a command, and a stack. To account for multiple threads,
states are modified to contain a heap and a thread pool. A thread pool maps object
identifiers (representing Thread objects) to threads. Threads consist of a thread-local
stack s and a continuation c. For better readability, we use syntax-like notation and
write “s in c” for threads t = (s, c), and “o1 is t1 | · · · | on is tn” for thread pools
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ts = {o1 7→ t1, . . . , on 7→ tn}:

t ∈ Thread = Stack× Cmd ::= s in c
ts ∈ ThreadPool = ObjId ⇀ Thread ::= o1 is t1 | · · · | on is tn

st ∈ State = Heap× ThreadPool

Initialization. We modify Section 2.2’s definition of the initial state of a program. Below,
main is some distinguished object id for the main thread. The main thread has an empty
set of fields (hence the first ∅), and its stack is initially empty (hence the second ∅):

init(c) = 〈{main 7→ (Thread, ∅)}, main is (∅ in c)〉

The operational semantics defined in Section 2.2 is straightforwardly modified to deal
with multiple threads. In each case, one thread proceeds, while the other threads remain
untouched. In addition, to model fork and join, we change the reduction step (Red
Call) to model that it does not apply to fork and join. Instead, fork and join are
modeled by two new reductions steps ((Red Fork) and (Red Join)):

State Reductions, st →ct st ′:

. . .

(Red Call) m 6∈ {fork, join}
h(o)1 = C<π̄> mbody(m, C<π̄>) = (ı0; ı̄).cm c′ = cm[o/ı0, v̄/ı̄]
〈h, ts | p is (s in ℓ = o.m(v̄); c)〉 → 〈h, ts | p is (s in ℓ � c′; c)〉

(Red Fork) h(o)1 = C<π̄> o /∈ (dom(ts) ∪ {p}) mbody(run, C<π̄>) = (ı).cr co = cr[o/ı]
〈h, ts | p is (s in ℓ = o.fork(); c)〉 → 〈h, ts | p is (s in ℓ = null; c) | o is (∅ in co)〉

(Red Join)
〈h, ts | p is (s in ℓ = o.join(); c) | o is (s′ in v)〉 → 〈h, ts | p is (s in ℓ = null; c) | o is (s′ in v)〉

. . .

Remarks.

❼ In (Red Fork), a new thread o is forked. Thread o’s state consists of an empty
stack ∅ and command c0. Command co is the body of method run in o’s dynamic
type where the formal receiver this and the formal class parameters have been
substituted by the actual receiver and the actual class parameters.

❼ In (Red Join), thread p joins the terminated thread o. Our rule ensures that thread
o is terminated because its command consists of a single value v.

4.3 Separation Logic for fork/join

In this section, we extend our assertion language to deal with fork and join primitives.
We introduce (1) a Join predicate that controls how threads access postconditions of
terminated threads and (2) groups which are a restricted class of predicates. Groups are
needed to allow multiple threads to join a terminated thread.
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4.3.1 The Join predicate

To model join’s behavior, we add a new formula to the assertion language defined in
Section 3.2. This formula will be used (see Section 4.4) to govern exchange of permissions
from terminated threads to alive threads:

F ::= . . . | Join(e, π) | . . .

The intuitive meaning of Join(e, π) is as follows: this formula allows to pickup frac-
tion π (recall that permissions are fractions in (0, 1]) of thread e’s postcondition after e
terminated. As a specific case, if π is 1, the thread in which the Join predicate appears
can pickup thread e’s entire postcondition when e terminates.

We extend Section 3.2.2’s judgment for well-typed formulas as follows:

Well-typed Formulas, Γ ⊢ F : ⋄:

. . .

(Form Join)
Γ ⊢ e : Thread Γ ⊢ π : perm

Γ ⊢ Join(e, π) : ⋄
. . .

The Join predicate is emitted when new threads are created. To model this, we rede-
fine the init predicate (recall that init appears in (New)’s postcondition) for subclasses
of Thread and for other classes. We do that by (1) adding the following clause to the
definition of predicate lookup:

plkup(init, Thread) = pred init = Join(this, 1) ext Object

and (2) adding C 6= Thread as a premise to (Plkup init). Intuitively, when an object
o inheriting from Thread is created, a Join(o, 1) ticket is issued.

Resources. To express the semantics of the Join predicate, we need to change our defini-
tion of models (resources). Recall that, in Section 3.2.3, resources were couples of a heap
and a permission table of type ObjId × FieldId → [0, 1]. We modify permission tables so
that they have type ObjId × (FieldId × {join}) → [0, 1]. The additional element in the
domain of permission tables keeps track of how much a thread can pick up of another
thread’s postcondition. In other words, in the previous chapter, the meaning of resources
was to regulate access (write access, readonly access, or no access) to field of objects; now
resources still have this meaning, plus they regulate access of threads to other threads’s
postconditions. Obviously, we forbid join to be a valid field identifier to avoid confusion
between join’s special meaning and programmer-declared fields.

In addition, we add an element to resources; they become triples of a heap, a permis-
sion table, and a join table J ∈ ObjId → [0, 1]. Intuitively, for a thread o, J (o) keeps
track of how much of o’s postcondition has been picked up by other threads: when a
thread gets joined, its entry in J drops. The compatibility and joining operations on join
tables are defined as follows:

J#J ′ iff J = J ′ J *J ′ ∆

= J
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Because # is equality, join tables are “global”: in the preservation proof, all resources
will have the same join table1.

Now, we require resources to satisfy these axioms (in addition to Section 3.2.3’s ax-
ioms):

(a) For all o 6∈ dom(h) and all f (including join), P(o, f) = 0 and J (o) = 1.
(b) λ o . P(o, join) ≤ J .

Axiom (a) ensures that all objects that are not yet allocated have minimal permissions.
This is needed to prove soundness of the verification rule for allocating new objects.
Axiom (b) is a technical condition needed to prove soundness of the verification rule for
joining threads.

As usual, we define a projection operator:

(h,P,J )join

∆

= J

Predicate Environments. For technical reasons, we need to update the definition of pred-
icate environments given in Section 3.2.4 (see page 27). Specifically, we need predicate
environments to satisfy the following additional axiom:

(b) If (π̄, (h,P,J ), r, π̄′), (π̄, (h,P,J ′), r, π̄′) ∈ Dom(κ), o ∈ dom(h), P(o, join) ≤ x ≤
J (o), and J ′ = J [o 7→ x], then:

E(κ)(π̄, (h,P,J ), r, π̄′) ≤ E(κ)(π̄, (h,P,J ′), r, π̄′)

Axiom (b) is used to update the global join table, because, when a thread is joined,
its corresponding entry drops in all join tables.

Semantics. The semantics of the Join predicate is as follows:

Γ ⊢ (h,P,J ); s |= Join(e, π) iff [[e]]hs = o and [[π]] ≤ P(o, join)

Axiom. In analogy with the PointsTo predicate, we have a split/merge axiom for the
Join predicate:

Γ; v ⊢ Join(e, π) *-* ( Join(e, π
2 ) * Join(e, π

2 )) (Split/Merge Join)

4.3.2 Groups

In addition to pred, we use a new keyword group to declare predicates that have special
properties. Groups will be needed in the next section to express that multiple threads can
join a terminated thread. Groups are predicates that satisfy an additional split/merge
axiom. Formally, group desugars to a predicate and an axiom:

group P<T̄ x̄> =F
∆

=
pred P<T̄ x̄> =F;

axiom P<x̄> *-* (P<split(T̄ , x̄)> *P<split(T̄ , x̄)>)

where split is extended to pairs of type and parameter, so that it splits parameters of
type perm and leaves other parameters unchanged:

split(T, x)
∆

=

{

split(x) iff T = perm

x otherwise

1This suggests that join tables could be avoided all together in resources. It is unclear, however, if
an alternative approach would be cleaner because rules (State), (Cons Pool), and (Thread) would need
extra machinery.
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The meaning of the axiom for groups is as follows: (1) splitting (reading *-* from left
to right) P ’s parameters splits P predicates and (2) merging (reading *-* from right to
left) P ’s parameters merges P predicates.

For the group axiom above to make sense, extending the list of parameters of groups
(recall that we allow to extend the list of parameters of predicates) should be forbidden
in subclasses [54, ➜G]. Otherwise, if a subclass extends a group by adding parameters
to it, the axiom for group becomes unprovable. Intuitively, because missing parameters
of predicates are existentially quantified, one cannot soundly merge two groups where
parameters are missing (the missing parameters might be different for the two groups
being merged). This restriction could be slightly weakened by allowing extension of the
list of parameters with parameters that have unique witnesses i.e., such that missing
parameters are uniquely defined. We do not use this more liberal criterion, however,
because we do not need it any examples of this thesis.

4.4 Contracts for fork and join

Next, we extend the verification system defined in the previous chapter to include fork

and join primitives. As we give contracts for these primitives in a class, we do not need
to give new Hoare rules. Rules for fork and join will simply be instances of the rule for
method call (Mth). Contracts for fork and join model how permissions to access the
heap are exchanged between threads. Intuitively, newly created threads are given a part
of the heap by their parent thread. Dually, when terminated threads are joined, parts of
the heap they used is given to joining threads.

Class Thread. In Section 4.2, we introduced class Thread but did not give any specifica-
tions. Class Thread is specified as follows:

class Thread extends Object{

pred preFork = true;

group postJoin<perm p> = true;

requires preFork; ensures true;

final void fork();

requires Join(this,p); ensures postJoin<p>;

final void join();

final requires preFork; ensures postJoin<1>;

void run() { null }

}

The contracts of fork, join, and run are tightly related: (1) fork’s precondition is
similar to run’s precondition and (2) run’s postcondition includes predicate postJoin<1>
while join’s postcondition is postJoin<p>. Point (1) models that when a thread is
forked, its run method is executed: part of the parent thread’s state is passed to the
forked thread. Point (2) models that join returns after run terminated. Further, (2)
represents that threads joining a thread might pick up a part of the joined thread’s state.
The fact that permission p appears both as an argument to Join and to postJoin (in
join’s contract) models that joining threads pick up a part of the terminated thread’s
state which is proportional to Join’s argument. Because one Join(o, 1) predicate is issued
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per thread o, our system enforces that threads joining o do not pick up more than thread
o’s postcondition.

For the behavior just described to be sound, we require that postJoin is a group. This
requirement is required to prove soundness of join’s contract (see proof of Theorem 3
in Section 6.2.2 and Lemma 16). Intuitively, this requirement is needed because join’s
postcondition (i.e., postJoin) is split among several threads. Hence, we have to make
sure this splitting is sound.

Although method run is meant to be overridden, we require that method run’s con-
tract cannot be modified in subclasses of Thread (as indicated by a final modifier).
Enforcing run’s contract to be fixed allows to express that join’s postcondition is pro-
portional to the second parameter of Join’s predicate in an easy way (because we can
assume that run’s postcondition is always postJoin<1>). Fixing run’s contract in class
Thread means that programmers have to specify run in preFork and postJoin’s defi-
nitions. In our examples (see Section 4.6 and Section 5.6), having run’s contract fixed
proved to be convenient. However, it could possibly be inconvenient in more intricated
examples. A large case study is needed to answer this issue accurately.

Because run’s contract is fixed, run’s contract cannot be parameterized by logical pa-
rameters. One could consider that this reduces expressiveness. But this is wrong, because
logical parameters for run are unsound. As run’s pre and postconditions are interpreted
in different threads, one cannot guarantee that logical parameters are instantiated in a
similar manner between callers to fork and callers to join. Hence, logical parameters
have to be forbidden for run.

We highlight that method run can also be called directly, without forking a new
thread. Our system allows such behavior which is used in practice to flexibly control
concurrency (cf Java’s Executors [80]).

Alternative Solutions. Alternatively, we could allow arbitrary contracts for run, as we
did in our previous work [54]. This solution, however, has the disadvantage that we need
to introduce a new derived form for formulas (called scalar multiplication) at the level
of method’s contracts. With this thesis’s solution, we can “hide” scalar multiplication
“under the carpet” (see Section 4.5), i.e., we avoid scalar multiplication to spread in
method contracts and in proofs of programs (even if we need it to prove our verification
system sound). In addition, our earlier work breaks subtyping because, to start a thread,
one has to know the static type of the thread considered one level (in the class hierarchy)
below class Thread.

Yet another solution would be to combine (1) our approach of specifying fork, join,
and run with predicates in class Thread and (2) to use scalar multiplication as a new
constructor for formulas (i.e., not a derived form) to express that run’s postcondition can
be split among joiner threads. This solution, however, requires a thorough study because
having scalar multiplication as a new constructor for formulas may raise semantical issues
(as studied by Boyland [24]).

4.5 Verified Programs

We need to update Section 3.5’s rules to account for multiple threads. First, we craft
rules for thread pools:

(Empty Pool)
R ⊢ ∅ : ⋄

R ⊢ t : ⋄ R′ ⊢ ts : ⋄
(Cons Pool)

R *R′ ⊢ t | ts : ⋄



56 CHAPTER 4. SEPARATION LOGIC FOR FORK/JOIN

Now, the rule for states ensures that there exists a resource R to satisfy the thread
pool ts:

h = Rhp R ⊢ ts : ⋄
(State)

〈h, ts〉 : ⋄

In addition to the rule for states, we now have a rule for threads. Roughly, this rule
corresponds to Section 3.5’s (State)’s rule but it is modified to model that threads have a
fraction of postJoin<1> as postconditions. To model this, we introduce symbolic binary
fractions that represent numbers of the forms 1 or

∑n
i=1 bit i ·

1
2i :

bit ∈ {0, 1} bits ∈ Bits ::= 1 | bit , bits fr ∈ BinFrac ::= all | fr() | fr(bits)

Intuitively, we use symbolic binary fractions to speak about finite formulas of the form
r.P<1> * r.P< 1

2> * r.P< 1
8> * . . . . Formally, we define the scalar multiplication fr · r.P<π>

as follows:

all · r.P<π> = r.P<π>

fr() · r.P<π> = true

fr(1) · r.P<π> = r.P<split(π)>

fr(0, bits) · r.P<π> = fr(bits) · r.P<split(π)>

fr(1, bits) · r.P<π> = r.P<split(π)> * fr(bits) · r.P<split(π)>

For instance, fr(1, 0, 1) · r.P<1> *-* (r.P< 1
2> * r.P< 1

8>). The map [[·]] : BinFrac → Q

interprets symbolic binary fractions as concrete rationals:

[[all]]
∆

= 1 [[fr()]]
∆

= 0 [[fr(1)]]
∆

=
1

2
[[fr(0, bits)]]

∆

=
1

2
[[fr(bits)]] [[fr(1, bits)]]

∆

=
1

2
+

1

2
[[fr(bits)]]

Now, the rule for threads is as follows:

Rjoin(o) ≤ [[fr ]] Γ ⊢ σ : Γ′ Γ,Γ′ ⊢ s : ⋄ cfv(c) ∩ dom(Γ′) = ∅

Γ[σ] ⊢ E ;R; s |= F [σ] Γ,Γ′; r ⊢ {F}c : void{ fr · o.postJoin<1> }
(Thread)

R ⊢ o is (s in c) : ⋄

In rule (Thread), fr should be bigger than the thread considered’s entry in the global
join table (condition Rjoin(o) ≤ [[fr ]]). This forces joining threads to take back a part of a
terminated thread’s postcondion which is smaller than the terminated thread’s “remain-
ing” postcondition. This comes from the semantics of the Join predicate and the seman-
tics of join tables: Γ ⊢ (h,P,J ); s |= Join(e, π) holds iff [[e]]hs = o and [[π]] ≤ P(o, join).
Moreover, by P ≤ J (see axiom (b) on page 53), we have that P(o, join) ≤ J (o).

Like in Section 3.5, we have shown the preservation theorem 3 (Section 6.1.2’s proof is
completed in Section 6.2.2) and we have shown that verified programs satisfy the following
properties: null error freeness and partial correctness.

In addition, verified programs are data race free. A pair (hc, hc′) of head commands
is called a data race iff hc = (o.f = v) and either hc′ = (o.f = v′) or hc′ = (ℓ = o.f) for some
o, f, v, v′, ℓ.

Theorem 6 (Verified Programs are Data Race Free). If (ct , c) : ⋄ and init(c) →∗
ct

〈h, ts | o1 is (s1 in hc1; c1) | o2 is (s2 in hc2; c2)〉, then (hc1, hc2) is not a data race.

Proof. Sec Section 6.2.3 �
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4.6 Examples of Reasoning with fork/join

4.6.1 Fibonacci

Our first example is a recursive computation of the n-th Fibonacci number that runs
recursive calls in new threads. The example is taken from Lea’s patterns collection [76,
➜4.4.1.4]. Although the example is unrealistic, because there are faster non-recursive
algorithms to compute Fibonacci numbers, it nicely illustrates how our system works
with fork and join.

The Fib sequence shown below is a divide and conquer algorithm [76, ➜4.4.1]. A
divide and conquer algorithm has the property that; given a problem of size n > 0, it
can be divided into multiple problems of size < n, and so on recursively (until the size
of problems reaches 0). Many computationally intensive problems (such as merge sort or
matrix multiplication) can be expressed with divide and conquer algorithms. Generally
speaking, we believe our approach fits well to verify such programs.

We do not verify the functional behavior of this algorithm because we would need extra
machinery (such as axiomatizing the Fibonacci function which requires user-definable
mathematical predicates) but we prove race freedom. The meaning of preFork and
postJoin is as follows:

❼ preFork indicates that field number can be written
❼ postJoin<p> indicates that field number can be written (if p is 1) or only read (if
p < 1).

Here is the implementation and specification of class Fib:

class Fib extends Thread{

int number;

pred preFork = Perm(number,1);

group postJoin<perm p> = Perm(number,p);

axiom preFork -* postJoin<1>; // needed to verify run

requires init;

ensures Join(this,1) * preFork@Fib;

void init(int n){ number = n; }

requires preFork;

ensures postJoin<1>;

void run(){

if(!(number < 2)){

Fib f1 = new Fib; f1.init(number-1);

Fib f2 = new Fib; f2.init(number-2);

f1.fork(); f2.fork();

f1.join(); f2.join();

number = f1.number + f2.number;

}

}

}

We now comment method init and method run.
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Method init serves as a constructor as predicate init in the precondition shows.
After method init’s return, the Join predicate and preFork@Fib are available. Even if
predicate preFork is qualified by @Fib, this does not break subtyping. Because method
init serves as a constructor, predicate preFork@Fib (in combination with a isclassof

predicate, which is emitted in new’s postcondition) can be transformed into predicate
preFork by the axiom (Known Type) (see page 34). This behavior occurs twice in the
proof outline for method run below.

Method run is interesting, because permissions are transferred between threads during
its execution. Initially, there is only one thread (the main thread), executing its run

method. At first, the main thread has accessed solely to its number field (as specified
by run’s precondition i.e., preFork). Then, two child threads f1 and f2 are created but
not yet started. After initializing f1 and f2, the main threads has access to f1 and f2’s
states. Then, f1 and f2 are started: access to their number field is transferred from the
main thread to f1 and f2 themselves. Finally, the main thread waits for f1 and f2 to
terminate. By joining them, the main thread re-obtain permissions to access f1.number
and f2.number. That is why reading f1.number and f2.number in the last assignment
is correct.

Here is the proof outline for run:

{ preFork }

((Dynamic Type) axiom and modus ponens)
{ preFork@Fib * (preFork@Fib -* preFork) }

((Open/Close) axiom and abbreviation of preFork@Fib -* preFork by F)
{ Perm(this.number,1) * F }

(Because we have Perm(this.number,1), we can read this.number)
if(!(this.number < 2)){

{ Perm(this.number,1) * F }

Fib f1 = new Fib;

{ Perm(this.number,1) * F * f1.init * Fib classof f1 }

f1.init(number-1);

{ Perm(this.number,1) * F * f1.preFork@Fib * Fib classof f1 *

Join(f1,1) }

((Known Type) axiom)
{ Perm(this.number,1) * F * f1.preFork * Join(f1,1) }

Fib f2 = new Fib;

f2.init(number-2);

{ Perm(this.number,1) * F * f1.preFork * Join(f1,1) *

f2.preFork * Perm(f2.join,1) }

f1.fork();

{ Perm(this.number,1) * F * Join(f1,1) * f2.preFork *

Perm(f2.join,1) }

f2.fork();

{ Perm(this.number,1) * F * Join(f1,1) * Join(f2,1) }

(Because we have Join(f1,1), we have full access to the postcondition of f1.join)
f1.join();

{ Perm(this.number,1) * F * f1.postJoin<1> * Join(f2,1) }

f2.join();
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{ Perm(this.number,1) * F * f1.postJoin<1> * f2.postJoin<1> }

((Open/Close) axiom from left to right on postJoin to obtain permissions to read
f1.number and f2.number (details omitted))

this.number = f1.number + f2.number;

{ Perm(this.number,1) * F * f1.postJoin<1> * f2.postJoin<1> }

(Weakening and (Open/Close) axiom from right to left on Perm(this.number,1))
{ preFork@Fib * F }

(Modus ponens)
{ preFork }

(Class Fib’s axiom)
{ postJoin<1> }

Discussion. This example shows our rules for fork and join in action in a simple setting.
When f1.fork() is called, the state necessary for thread f1 to execute is transferred
from the parent thread to f1: f1.preFork is consumed. Dually, when f1.join() is
called, the parent thread waits for f1 to terminate and then gets back f1’s state (f1’s
postcondition). Because the parent thread has permission Join(f1,1) i.e., full access
to f1’s postcondition, the parent thread gets back f1.postJoin<1>. A similar behavior
occurs for thread f2.

When proving method run, we use class Fib’s axiom to establish run’s postcondition.
Given the definitions of preFork and postJoin, this axiom might seem useless at first
sight. This axiom, however, does not only relate preFork and postJoin’s definitions in
class Fib, but also in all possible subclasses of Fib. The fact that class Fib’s axiom is
needed to verify run means that preFork and postJoin have to be related in subclasses
of Fib for run to be safe in class Fib and in subclasses of Fib.

In method run of class Fib, threads do not share the postcondition of a terminated
thread. In other words, whenever rule (Mth) is applied with m = join, π is instantiated
by 1. Thus, in this case, it is not necessary for the implementation of postJoin to be a
group (i.e., to satisfy postJoin<p> *-* postJoin<p/2> * postJoin<p/2> for all p).

We could support both arbitrary implementations of postJoin and multiple joiners
if we introduced a run-method modifier “multi-join” such that only multi-join run-
methods may have multiple resource-splitting joiners and must have implementations of
postJoin that are groups. It would also be important to require that methods that
override multi-join methods are again multi-join. This would allow (1) thread classes
that are meant to be joined by a single thread (in these classes, postJoin could be an
arbitrary predicate, not a group) and (2) thread classes that can be joined by one or more
threads (in these classes, postJoin would have to be a group).

4.6.2 Replication of Databases2

Our second example sketches how to specify and verify a system that updates a database
and then replicates (in parallel) the database to multiple mirrors. Interfaces Database

and Mirror are as follows:

interface Database{

group state<perm p>;

2This example was suggested to me by Jean-Christophe Bach.
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requires state<1>; ensures state<1>;

void update();

}

interface Mirror{

pred state<perm p>;

requires init; ensures state<1>;

void init();

requires state<1> * d.state<p>; ensures state<1> * d.state<p>;

void replicate(Database d);

}

In both classes, predicate state represents the internal state of objects. To update a
database, state<1> is required (i.e., write access). To replicate a database to a mirror,
state<1> is required on the mirror but only state<p> (i.e., readonly access) is required
on the database.

Below, we present a dedicated thread to update a database. For later convenience,
we use the multi-join modifier discussed in Section 4.6.1 to indicate that postJoin’s
definition in class DatabaseUpdater is a group i.e., a DatabaseUpdater can be soundly
joined by multiple threads.

multi-join class DatabaseUpdater<Database updtdb> extends Thread{

Database d;

pred preFork = PointsTo(d,1,updtdb) * updtdb.state<1>;

public pred postJoin<perm p> = PointsTo(d,p,updtdb) * updtdb.state<p>;

axiom preFork -* postJoin<1>; // needed to verify run

requires init * f.state<1> * f==updtdb;

ensures preFork@DatabaseUpdater * Join(this,1);

void init(Database f){ this.d = f; }

requires preFork; ensures postJoin<1>;

void run(){ d.update(); }

requires postJoin<p>;

ensures result.state<p> * (result.state<p> -* postJoin<p>);

void getDatabase(){ d }

}

Class DatabaseUpdater is parameterized by the database being updated updtdb. Pa-
rameter updtdb expresses that field d is – in some sense – final, i.e., it is assigned only once.
This is enforced by the definitions of preFork and postJoin. For preFork and postJoin

to hold, field d must contain object updtdb. That is why we need f==updtdb in init’s
precondition. We will use this specification’s style a lot in class DatabaseReplicater

below and we discuss this usage later in this section. As class DatabaseUpdater extends
Thread and is multi-join, postJoin implementation is a group. To show that postJoin
is a group, we use that class Database’s predicate state is also a group.

Like class Fib before, class DatabaseUpdater uses an axiom to constrain extensions
of preFork and postJoin in possible subclasses. As indicated in Java comments, this



4.6. EXAMPLES OF REASONING WITH FORK/JOIN 61

axiom (or constraint) is required for method run to be correct. We highlight that this
axiom does not simply impose a constraint on preFork and postJoin’s definitions in class
DatabaseUpdater but also imposes a constraint on preFork and postJoin’s definitions
in DatabaseUpdater’s subclasses.

The postcondition of method getDatabase shows a use of the magic wand that we
often encounter (see also method next in Section 3.6.2’s Iterator). Generally, a postcon-
dition of the form F * (F -*G) where F gives access to the receiver’s internal representa-
tion and G gives access to the receiver means that clients are – temporarily or indefinitely
– allowed to access an object’s internal representation. In getDatabase’s case, this means
that (1) access to the internal database is given to clients: result.state<p> is ensured
and (2) clients may give up access to the internal database to recover access to the
DatabaseUpdater thread (result.state<p> -* postJoin<p>).

Generally speaking, postconditions of the form described above give clients two choices:
either they temporarily access the receiver’s internal representation and get access to the
receiver back by using modus ponens, either they indefinitely access the receiver’s inter-
nal representation. Alternatively, we can specify policies where access to the receiver’s
internal representation is persistent: access to the receiver can never be recovered. Such
a policy can be described with an axiom of the form F -*G (where F and G play similar
roles as above). Interface Iterator’s axiom in Section 3.6.2 exemplifies such a policy.

We provide a dedicated thread to replicate a database to one mirror:

class DatabaseReplicater<perm q,

DatabaseUpdater src,

Mirror dest> extends Thread{

DatabaseUpdater du;

Mirror m;

public pred state<perm p> = PointsTo(du,p,src) * PointsTo(m,p,dest) *

dest.state<p>;

pred preFork = state<1> * Join(src,q);

public pred postJoin<perm p> = state<q> * src.postJoin<q>;

axiom (state<1> * Join(src,q)) -* preFork; // to verify init

axiom (state<q> * src.postJoin<q>) -* postJoin<1>; // to verify run

requires init * Join(f,q) * n.state<1> * f==src * n==dest;

ensures preFork * Join(this,1);

void init(DatabaseUpdater f, Mirror n){ this.du = f; this.m = n; }

requires preFork; ensures postJoin<1>;

void run(){ du.join();

Database data = du.getDatabase();

m.replicate(data); }

}

Class DatabaseReplicater is not multi-join. On one hand, this is convenient be-
cause the implementation of postJoin is not a group. On the other hand, for this to
be sound, we have to make sure that wherever rule (Mth) is applied (with m = join)
on a thread whose static type is DatabaseReplicater, π is instantiated by 1. The
implementation of postJoin’s in DatabaseReplicater is peculiar because it ignores the
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permission parameter p. That is why class DatabaseReplicater’s second axiom is sound:
postJoin’s parameter is meaningless.

Method run of class DatabaseReplicater is the most interesting method. First, it
waits for the database updater to terminate (du.join()). Then, the database is re-
trieved (data = du.getDatabase()). Finally, the database is replicated to the mirror
(m.replicate(data)). On the level of access permissions, a similar behavior occurs :
the database is unpacked from the DatabaseUpdater thread, then the database is repli-
cated to the mirror, and it is packed again in the DatabaseUpdater thread. This means
that the DatabaseReplicater thread has temporary access to the database during run,
but before run terminates, access to the database is given back to the DatabaseUpdater
thread. This is reflected by the proof outline below, that shows correctness of method
run of class DatabaseReplicater:

{ preFork }

((Dynamic Type) axiom and modus ponens)
{ preFork@DatabaseReplicater * (preFork@DatabaseReplicater -* preFork) }

((Open/Close) axiom and weakening)
{ state<1> * Join(src,q) }

((Dynamic Type) axiom and modus ponens)
{ state@DatabaseReplicater<1> * (state@DatabaseReplicater<1> -* state<1>) *

Join(src,q) }

((Open/Close) axiom and abbreviating state@DatabaseReplicater<1> -* state<1> by F)
{ PointsTo(du,1,src) * PointsTo(m,1,dest) * dest.state<1> * Join(src,q) * F }

du.join()

{ PointsTo(du,1,src) * PointsTo(m,1,dest) * dest.state<1> * du.postJoin<q> * F }

data = du.getDatabase();

{ PointsTo(du,1,src) * PointsTo(m,1,dest) * dest.state<1> * data.state<q> *

(data.state<q> -* src.postJoin<q>) * F }

(Abbreviating data.state<q> -* src.postJoin<q> by G)
{ PointsTo(du,1,src) * PointsTo(m,1,dest) * dest.state<1> * data.state<q> *

F * G }

m.replicate(data)

{ PointsTo(du,1,src) * PointsTo(m,1,dest) * dest.state<1> * data.state<q> *

F * G }

((Open/Close) axiom)
{ state@DatabaseReplicater<1> * data.state<q> * F * G }

(Modus ponens)
{ state<1> * data.state<q> * G }

(Modus ponens)
{ state<1> * src.postJoin<q> }

(Class DatabaseReplicater’s second axiom)
{ postJoin<1> }

Above, the second application of modus ponens packs the database back into the
DatabaseUpdater thread.

The following piece of code shows how to to update and replicate a database to two
mirrors:

requires d.state<1> * m1.state<1> * m2.state<1>;

ensures d.state<1> * m1.state<1> * m2.state<1>;

void replicateTwice(Database d, Mirror m1, Mirror m2){

Thread t = new DatabaseUpdater<d>;
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t.init(d); t.start();

Thread u1,u2;

u1 = new DatabaseReplicater<1/2,t,m1>;

u2 = new DatabaseReplicater<1/2,t,m2>;

u1.init(t,m1); u2.init(t,m2);

u1.start(); u2.start();

u1.join(); u2.join();

}

The following proof outline (where, for space reasons, we omit the classof predicates)
demonstrates correctness of method replicateTwice:

{ d.state<1> * m1.state<1> * m2.state<1> }

Thread t = new DatabaseUpdater<d>;

{ d.state<1> * m1.state<1> * m2.state<1> * t.init }

t.init(d);

{ m1.state<1> * m2.state<1> * t.preFork@DatabaseUpdater * Join(t,1) }

((Known Type) axiom)
{ m1.state<1> * m2.state<1> * t.preFork * Join(t,1) }

t.start();

{ m1.state<1> * m2.state<1> * Join(t,1) }

Thread u1,u2; u1 = new DatabaseReplicater<1/2,t,m1>;

{ m1.state<1> * m2.state<1> * Join(t,1) * u1.init }

((Split/Merge Join) axiom)
{ m1.state<1> * m2.state<1> * Join(t,1/2) * Join(t,1/2) * u1.init }

u1.init(t,m1);

((Known Type) axiom)
{ m2.state<1> * Join(t,1/2) * u1.preFork * Join(u1,1) }

u2 = new DatabaseReplicater<1/2,t,m2>; u2.init(t,m2);

((Known Type) axiom)
{ u1.preFork * Join(u1,1) * u2.preFork * Join(u2,1) }

u1.start(); u2.start();

{ Join(u1,1) * Join(u2,1) }

u1.join(); u2.join();

{ u1.postJoin<1> * u2.postJoin<1> }

((Known Type) axiom)
{ u1.postJoin@DatabaseReplicater<1> * u2.postJoin@DatabaseReplicater<1> }

(Using that postJoin is public in class DatabaseReplicater)
{ u1.state<1> * t.postJoin<1/2> * u2.state<1> * t.postJoin<1/2> }

(Class Thread’s axiom on postJoin)
{ u1.state<1> * t.postJoin<1> * u2.state<1> }

((Known Type) axiom)
{ u1.state@DatabaseReplicater<1> * t.postJoin<1> *

u2.state@DatabaseReplicater<1> }

(Using that state is public in class DatabaseReplicater and weakening)
{ m1.state<1> * t.postJoin<1> * m2.state<1> }

((Known Type) axiom)
{ m1.state<1> * t.postJoin@DatabaseUpdater<1> * m2.state<1> }

(Using that postJoin is public in class DatabaseUpdater and weakening)
{ m1.state<1> * d.state<1> * m2.state<1> }
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Discussion. First, we highlight that the two DatabaseReplicater threads join the same
DatabaseUpdater thread. If we did not allow multiple joiners, we would not be able to
verify this example. Second, we make heavy use of class parameters, axioms, and public

modifiers. By doing so, we partially break the abstraction provided by object-oriented
programming, because parts of the implementations of predicates are revealed. This is,
however, dictated by the example we use:

In method replicateTwice’s precondition, d, m1 and m2 are visible to the client.
Inside method replicateTwice, however, the database d is “packed” into the Database-
Updater thread and mirrors m1 and m2 are packed into DatabaseReplicater threads.
Because method replicateTwice’s postcondition mentions d, m1, and m2, we have to
“unpack” these objects to prove replicateTwice’s postcondition. That is why we have to
keep track of how objects are stored into each others: that is the role of class parameters.
An alternative would be to use final fields and to keep track of informations such as
m1.du==d & u1.d==du & u2.d==du in method contracts. Such an assertion is correct as
long as fields on the right of a “.” are final. We believe this is a nice way to simplify
contracts and it is realistic: in real world Java programs, data is often passed to threads
by storing it into final fields. We have shown how to handle final fields in our previous
work [54]. While this makes specifications easier to write, the overall verification system
gets more complicated.

Similarly, axioms tell clients that they can throw away an object to obtain access
to the object’s internal representation. For example, the public modifier in postJoin’s
definition in class DatabaseUpdater plays this role. Informally, it means that “one can
throw away a terminated DatabaseUpdater thread to get access to its internal database”.

While we admit that our specifications are quite verbose for such an example, we
highlight that it would be hard or impossible to express this example in formalisms
that do not allow ownership transfer. In our setting, public predicates and class axioms
give different (recall the distinction between public and axiom explained at the end of
Section 3.6.1) ways to express possible ownership transfers.

4.7 Related Work and Conclusion

Related Work. Recent approaches in classical Hoare logics [69, 12, 77] studied verification
of programs with fork and join as concurrency primitives. In Jacobs et al.’s work [69],
objects can be in two states: unshared or shared. Unshared objects can only be accessed
by the thread that created them; while shared objects can be accessed by all threads,
provided these threads synchronize on this object. While this policy is simple, it is too
restrictive: an object cannot be passed by one thread to another thread without requiring
the latter thread to synchronize on this object. On the upside, Jacobs et al.’s verification
system uses automatic standard SMT solvers, while – for automatic verification – we
would require dedicated separation logic based provers. Like Jacobs, Leino and Müller [77]
showed a verification system that uses SMT solvers. They, however, do not impose a
programming model: they use fractional permissions to handle concurrency. They do not
support multiple readonly joiner threads.

Separation logic based approaches for parallel programs [84, 15] focused on a theoret-
ically elegant, but unrealistic, parallel operator. Notable exceptions are Hobor et al. [58]
and Gotsman et al. [51] who studied (concurrently to us) Posix threads for C-like pro-
grams. Contrary to us, Hobor et al. do not model join as a native method, instead they
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require programmers to model join with locks. For verification purposes, this means that
Hobor et al. would need extra facilities to make reasoning about fork/join as simple as
we do. Gotsman et al.’s work is very similar to Hobor et al.’s work.

Conclusion. We showed a Java-like language with fork and join as concurrency primi-
tives. The key contributions of this chapter are as follows: (1) we presented verification
rules for fork and join in an object-oriented language with inheritance; (2) we showed
how verification rules for fork and join can be expressed with general purpose abstract
predicates [88], groups, and class axioms; and (3) we provided verification rules that allow
both single write-joiner and multiple readonly-joiners (which Gotsman et al. [51] do not
support).

In the next chapter, we extend our model language and our verification system to deal
with reentrant locks i.e., Java’s basic primitive for synchronization mechanism.
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Chapter 5

Separation Logic for Reentrant
Locks

In this chapter, we present verification rules for Java’s reentrant locks. Together with
fork and join, reentrant locks are a crucial feature of Java for multithreaded programs.
Generally speaking, locks serve to synchronize threads and to control exclusive access to
resources that cannot be shared.

Reentrant locks can be acquired more than once by the same thread. This differs
from Posix threads that block if they acquire a lock twice. On one hand, reentrant
locks are a convenient tool for programmers because code does not need to check if a
lock is already acquired before trying to acquire it. On the other hand, reentrant locks
require extra machinery in the verification system, because initial acquirements have to
be distinguished from reentrant acquirements.

This chapter is structured as follows: in Section 5.1 we present how single-entrant
locks are handled in separation logic, in Section 5.2 we show how to modify Section 4.2’s
Java-like language to model reentrant locks, in Section 5.3 we describe new separation
logic formulas used to handle reentrant locks, in Section 5.4 we present verification rules
for reentrant locks, and in Section 5.5 we describe what are verified programs. We present
three examples of verified programs in Section 5.6: an implementation of mathematical
sets that exhibits typical usage of lock reentrancy in the Java library, an implementation of
the worker thread pattern [76, 4.1.4], and a challenging lock-coupling algorithm. Finally,
we discuss related work and conclude in Section 5.7.

Note: The work from this chapter has been done in collaboration with Christian Haack
and Marieke Huisman. It is published in the Asian Symposium on Programming Lan-
guages and Systems (APLAS 2008) [53].

5.1 Separation Logic and Locks

Separation logic for programming language with locks as a concurrency primitive has been
first explored by O’Hearn [84]. O’Hearn elegantly adapted an old idea from concurrent
programs with shared variables [3]. Each lock is associated with a resource invariant
which describes the part of the heap that the lock guards. When a lock is acquired, it

67
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lends its resource invariant to the acquiring thread. Dually, when a lock is released, it
takes back its resource invariant from the releasing thread. This is formally expressed by
the following Hoare rules:

I is x’s resource invariant
{true}x.lock(){I}

I is x’s resource invariant
{I}x.unlock(){true}

While these rules are sound for single-entrant locks, they are unsound for reentrant
locks, because they allow to “duplicate” a lock’s resource invariant:

{ true }

x.lock(); // I is x’s resource invariant

{ I }

x.lock();
{ I * I } ← wrong!

To recover soundness in the presence of reentrant locks, we design proof rules that dis-
tinguish between initial acquirement and reentrant acquirement of locks. This allows
to transfer a lock’s resource invariant to an acquiring thread only at initial acquirement.
Compared to the literature [84, 58, 51], where simple while languages and C-like languages
are studied, we also handle inheritance.

5.2 A Java-like Language with Reentrant Locks

We show how to modify the syntax and the semantics of Section 4.2’s language to model
reentrant locks.

Syntax. We extend the list of head commands defined in Section 2.1 as follows:

hc ∈ HeadCmd ::= . . . | v.lock() | v.unlock() | . . .

The meaning of lock and unlock is exactly like synchronized blocks in Java. We
choose lock and unlock as locking primitives because Java 5 provides lock objects that
provide a behavior similar to our primitives. In addition, lock and unlock primitives are
more expressive than synchronized blocks. First, synchronized blocks forbid to lock
and unlock an object in different methods. Second, synchronized blocks enforce proper
nesting of lock and unlock commands. To exemplify the second statement, consider the
following code:

o.lock(); q.lock(); o.unlock(); q.unlock();

Such a behavior cannot be reproduced with synchronized blocks.

Like class invariants must be initialized before method calls, resource invariants must
be initialized before the associated locks can be acquired. In O’Hearn’s simple concurrent
language [84], the set of locks is static and initialization of resource invariants is achieved
in a global initialization phase. This is not possible when locks are created dynamically.
Conceivably, we could tie the initialization of resource invariants to the end of object
constructors. However, this is problematic because Java’s object constructors are free to
leak references to partially constructed objects (e.g., by passing this to other methods).
Thus, in practice we have to distinguish between initialized and uninitialized objects
semantically. Furthermore, a semantic distinction enables late initialization of resource
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invariants, which can be useful for objects that remain thread-local for some time before
getting shared among threads.

We distinguish between fresh locks and initialized locks. A fresh lock does not yet
guard its resource invariant: a fresh lock is not ready to be acquired yet. An initialized
lock, however, is ready to be acquired. Initially, locks are fresh and they might become
initialized later. We require programmers to explicitly change the state of locks (from
fresh to initialized) with a commit command:

sc ∈ SpecCmd ::= . . . | π.commit | . . .

Operationally, π.commit is a no-op; semantically it checks that π is fresh and changes
π’s state to initialized. For expressiveness purposes, commit’s receiver ranges over specifi-
cation variables, which include both program variables and logical variables (such as class
parameters). In real-world Java programs, a possible default would be to add a commit

command at the end of constructors. Another possibility would be to infer commit com-
mands automatically.

Like in Java, we assume that class tables always contain the following class declaration:

class Object {

pred inv = true;

final void wait();

final void notify();

}

The distinguished inv predicate assigns to each lock a resource invariant. The defini-
tion true is a default and objects meant to be used as locks should extend inv’s definition
in subclasses of Object. As usual [84], the resource invariant o.inv can be assumed when
o’s lock is acquired non-reentrantly and must be established when o’s lock is released with
its reentrancy level dropping to 0. Regarding the interaction with subclassing, there is
nothing special about inv. It is treated just like other abstract predicates.

The methods wait and notify do not have Java implementations, but are imple-
mented natively. To model this, our operational semantics treats them in a special way
(see →’s definition on page 71). Intuitively, these methods behave as follows:

If o.wait() is called when object o is locked at reentrancy level n, then o’s lock is
released and the executing thread temporarily stops executing. When a thread calls
o.notify(), one thread that is stopped (because this thread called o.wait() before)
resumes and starts competing for o’s lock. When a resumed thread reacquires o’s lock,
its previous reentrancy level is restored.

We do not provide contracts for wait and notify yet, but will do so in Section 5.4.
On one hand, we do not put wait and notify in our set of commands, because we can
specify them with the contracts available to programmers. On the other hand, we put
lock, unlock, and commit in our set of commands. This is because the Hoare rules for
these methods cannot be expressed with the syntax of contracts available to programmers:
we need extra expressivity (see Section 5.4).

In addition to wait and notify, Java provides method notifyAll to notify all threads
waiting on an object. We do not include notifyAll in our verification system because it
can be treated exactly like notify.
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Runtime Structures. To represent locks in the operational semantics, we use a lock table.
Lock tables map objects o to either the symbol free, or to the thread object that currently
holds o’s lock and a number that counts how often it currently holds this lock:

l ∈ LockTable = ObjId ⇀ {free} ⊎ (ObjId× N)

Compared to Section 4.2, states are extended to include a heap, a lock table, and a
thread pool:

st ∈ State = Heap× LockTable × ThreadPool

Initialization. We modify Section 4.2’s definition of the initial state of a program. Initially,
the lock table of a program is empty (hence the second ∅):

init(c) = 〈{main 7→ (Thread, ∅)}, ∅ , main is (∅ in c)〉

We modify the operational semantics defined in Section 4.2 to deal with locks. Except
that a lock table is added, most of the existing cases of the operational semantics are left
untouched.

To represent states in which threads are waiting to be notified, we could associate
each object with a set of waiting threads (the “wait set”). However, we prefer to avoid
introducing yet another runtime structure, and therefore represent waiting states syntac-
tically:

hc ::= . . . | o.waiting(n) | o.resume(n) | . . .
Restriction: These clauses must not occur in source programs.

Here are the intuitive semantics of these head commands:

❼ o.waiting(n): If thread p’s head command is o.waiting(n), then p is waiting to
be notified to resume competition for o’s lock at reentrancy level n.

❼ o.resume(n): If thread p’s head command is o.resume(n), then p has been notified
to resume competition for o’s lock at reentrancy level n, and is now competing for
this lock.

Below, we list existing cases that are slightly modified ((Red New) and (Red Call))
and cases that are added ((Red Lock), (Red Unlock), (Red Wait), (Red Notify),
(Red Skip Notify), and (Red Resume)):

State Reductions, st →ct st ′:

. . .

(Red New) o /∈ dom(h) h ′ = h[o 7→ (C<π̄>, initStore(C<π̄>))] s′ = s[ℓ 7→ o] l ′ = l [o 7→ free]

〈h, l , ts | p is (s in ℓ = new C<π̄>; c)〉 → 〈h ′, l ′ , ts | p is (s′ in c)〉

(Red Call) m 6∈ {fork, join, wait, notify }

h(o)1 = C<π̄> mbody(m, C<π̄>) = (ı0, ı̄).cm c′ = cm[o/ı0, v̄/ı̄]

〈h, l , ts | p is (s in ℓ = o.m(v̄); c)〉 → 〈h, l , ts | p is (s in ℓ � c′; c)〉

(Red Lock) (l(o) = free, l ′ = l [o 7→ (1, p)]) or (l(o) = (n, p), l ′ = l [o 7→ (n + 1, p)])
〈h, l , ts | p is (s in o.lock(); c)〉 → 〈h, l ′, ts | p is (s in c)〉

(Red Unlock) l(o) = (n, p) n = 1⇒ l ′ = l [o 7→ free] n > 1⇒ l ′ = l [o 7→ (n− 1, p)]
〈h, l , ts | p is (s in o.unlock(); c)〉 → 〈h, l ′, ts | p is (s in c)〉
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(Red Wait) l(o) = (n, p) l ′ = l [o 7→ free]
〈h, l , ts | p is (s in ℓ = o.wait(); c)〉 → 〈h, l ′, ts | p is (s in o.waiting(n); o.resume(n); c)〉

(Red Notify) l(o) = (n, p)
〈h, l , ts | p is (s in ℓ = o.notify(); c) | q is (s′ in o.waiting(n′); c′)〉 →
〈h, l , ts | p is (s in c) | q is (s′ in c′)〉

(Red Skip Notify) l(o) = (n, p)
〈h, l , ts | p is (s in ℓ = o.notify(); c)〉 → 〈h, l , ts | p is (s in c)〉

(Red Resume) l(o) = free l ′ = l [o 7→ (n, p)]
〈h, l , ts | p is (s in o.resume(n); c)〉 → 〈h, l ′, ts | p is (s in c)〉

. . .

Remarks.

❼ Rule (Red Lock) distinguishes two cases: (1) lock o is acquired for the first time
(l(o) = free) and (2) lock o is acquired reentrantly (l(o) = (n, p)).

❼ Similarly, rule (Red Unlock) distinguishes two cases: (1) lock o’s reentrancy level
decreases but o remains acquired (l(o) = (n, p) and n > 1) and (2) lock o is released
(l(o) = (1, p)).

❼ Rule (Red Wait) fires only if the thread considered previously acquired wait’s re-
ceiver. In this case, wait’s receiver is released and the thread goes in the waiting

state. The thread’s reentrancy level is stored in waiting’s argument.
❼ Like rule (Red Wait), rules (Red Notify) and (Red Skip Notify) fire only if the

thread considered previously acquired notify’s receiver. Rule (Red Notify) fires if
there is a thread waiting on notify’s receiver. In this case, the waiting thread is
resumed. If there is no thread waiting on notify’s receiver, rule (Red Skip Notify)
fires. In this case, the call to notify has no effect on other threads.

❼ In Java, if o.wait() and o.notify() are called by a thread that does not hold o,
an IllegalMonitorState exception is raised. In our semantics, this is modeled by
being stuck. In Section 5.4, we will give contracts for wait and notify that ensure
verified programs are never stuck when calling wait or notify. In another words,
verified programs would never throw an IllegalMonitorState exception in Java’s
semantics.

❼ Rule (Red Resume) resumes a thread that previously waited on some lock. The
thread’s reentrancy level is restored.

5.3 Separation Logic for Reentrant Locks

In this section, we describe the new formulas that we add to the specification language
of Section 4.3.

In separation logic for single-entrant locks [84], locks can be acquired unconditionally.
For reentrant locks, on the other hand, it seems unavoidable that the proof rule for
acquiring a lock distinguishes between initial acquires and reacquires. This is needed
because it is quite obviously unsound to simply assume the resource invariant after a
re-acquire. Thus, a proof system for reentrant locks must keep track of the locks that the
current thread holds. To this end, we enrich our specification language:

π ∈ SpecVal ::= . . . | nil | π · π | . . .
F ∈ Formula ::= . . . | Lockset(π) | π contains e | . . .
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Here is the informal semantics of the new specification values and formulas:

❼ nil: the empty multiset.
❼ π · π′: the multiset union of multisets π and π′.
❼ Lockset(π): π is the multiset of locks held by the current thread. Multiplicities

record the current reentrancy level. (non-copyable)
❼ π contains e: multiset π contains object e. (copyable)

We classify the new formulas (of which there will be two more) into copyable and non-
copyable ones. Copyable formulas represent persistent state properties (i.e., properties
that hold forever, once established), whereas non-copyable formulas represent transient
state properties (i.e., properties that hold temporarily). For copyable F , we postulate the
axiom (G & F) -* (G *F), whereas for non-copyable formulas we postulate no such ax-
iom. Note that this axiom implies F -* (F *F), hence the term “copyable”. As indicated
above, π contains e is copyable, whereas Lockset(π) is not.

Initial Locksets. When verifying the body of Thread.run(), we assume Lockset(nil)

as a precondition.

Initializing Resource Invariants. As explained before, resource invariants must be ini-
tialized before the associated locks can be acquired. We use the specification command
commit to indicate where a lock changes from the fresh state to the initialized state.
Because we do not tie initialization to a specific program point (such as the end of con-
structors), we also have to keep track of the state of locks in our verification system. To
this end, we introduce two more formulas:

F ∈ Formula ::= . . . | e.fresh | e.initialized | . . .
Restriction: e.initialized must not occur in negative positions.

❼ e.fresh: e’s resource invariant is not yet initialized. (non-copyable)
❼ e.initialized: e’s resource invariant has been initialized. (copyable)

Because e.initialized is copyable, initialized formulas can “spread” to all threads,
allowing all threads to try to acquire locks (in Section 5.4, we will see that initialized
appears in the precondition of the Hoare rules for lock acquirement).

Types. We add a type to represent locksets:

T ::= . . . | lockset | . . .

To accommodate this new type, we update Section 3.2.2’s typing rule for good types:

Good Types, Γ ⊢ T : ⋄:

. . .

(Ty Primitive)

T ∈ {void, int, bool, perm, lockset }

Γ ⊢ T : ⋄
. . .

It is convenient to allow using objects as singleton locksets (rather than introducing
explicit syntax for converting from objects to singleton locksets). Hence, we postulate
Object <: lockset.
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Because we allow arbitrary specification values (including locksets) as type parameters,
we postulate that types with semantically equal type parameters are type-equivalent.
Technically, we let ≃ be the least equivalence relation on specification values that satisfies
the standard multiset axioms:

Equivalence of Specification Values: π ≃ π

nil · π ≃ π π · π′ ≃ π′ · π (π · π′) · π′′ ≃ π · (π′ · π′′)

Then we postulate that t<π̄> <: t<π̄′> when π̄ ≃ π̄′. Now, we extend Section 4.3’s
judgment for well-typed formulas:

Well-typed Formulas, Γ ⊢ F : ⋄:

. . .

(Form Lockset)
Γ ⊢ π : lockset

Γ ⊢ Lockset(π) : ⋄

(Form Contains)
Γ ⊢ π, e : lockset, Object

Γ ⊢ π contains e : ⋄

(Form Fresh)
Γ ⊢ e : Object

Γ ⊢ e.fresh : ⋄

(Form Initialized)
Γ ⊢ e : Object

Γ ⊢ e.initialized : ⋄
. . .

Resources. To express the semantics of the new formulas, we need to extend resources
with three new components. From now on, resources are 6-tuples of a heap, a permission
table, a join table, an abstract lock table L ∈ ObjId ⇀ Bag(ObjId), a fresh set F ⊆ ObjId,
and an initialized set I ⊆ ObjId.

Abstract lock tables map thread identifiers to locksets. Like permission tables that are
abstraction of heaps, abstract lock tables are abstraction of lock tables. The compatibility
relation captures that distinct threads cannot hold the same lock (we use ⊓ to denote bag
intersection, ⊔ for bag union, and [ ] for the empty bag):

L#L′ iff

{

dom(L) ∩ dom(L′) = ∅
(∀o ∈ dom(L), p ∈ dom(L′))(L(o) ⊓ L′(p) = [ ])

L *L′ ∆

= L ∪ L′

Fresh sets F keep track of allocated but not yet initialized objects, while initialized
sets I keep track of initialized objects. We define # for fresh sets as disjointness to
mirror that o.fresh is non-copyable, and for initialized sets as equality to mirror that
o.initialized is copyable:

F#F ′ iff F ∩ F ′ = ∅ F *F ′ ∆

= F ∪ F ′

I#I ′ iff I = I ′ I * I ′
∆

= I (= I ′)

We require resources to satisfy the following axioms (in addition to Section 4.3’s
axioms):

(a) F ∩ I = ∅.
(b) If o ∈ L(p) then o ∈ I.

Axiom (a) ensures that our interpretation of fresh sets and initialized sets makes sense:
an object can never be both fresh and initialized. Axiom (b) ensures that locked objects
are initialized.
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As usual, we define projection operators:

(h,P,J ,L,F , I)lock

∆

= L (h,P,J ,L,F , I)fresh
∆

= F (h,P,J ,L,F , I)init

∆

= I

Predicate Environments. In addition to Section 4.3’s axioms, we require predicate envi-
ronments to satisfy the following axiom:

(a) If (π̄, (h,P,J ,L,F , I), r, π̄′) ∈ Dom(κ),
then E(κ)(π̄, (h,P,J ,L,F , I), r, π̄′) ≤ E(κ)(π̄, (h,P,J ,L,F , I ∪ {o}), r, π̄′).

Axiom (a) is a technical condition used to update the global initialized set when an
object (here o) is committed.

Semantics of Values. Before defining the semantics of formulas, we need to extend the
semantics of values to locksets. Recall that SemVal is the set of semantics values (defined
in Section 3.2.5). Formally, SemVal = {null} ∪ ObjId ∪ Int ∪ Bool ∪ (0, 1]. We extend
this set to include semantic domains for locksets. The resulting set of semantic values is
defined as follows:

µ ∈ SemVal
∆

= ({null} ∪ ObjId ∪ Int ∪ Bool ∪ (0, 1] ∪ Bag(ObjId))/ ≡

where ≡ is the least equivalence relation on SemVal such that o ≡ [o] for all object ids o.
That is, ≡ is the least equivalence relation that identifies object identifiers with singleton
bags.

The following typing rule extends typing to values representing locksets:

µ ∈ Bag(ObjId)

Γ ⊢ µ : lockset

Let WellTypClSpecVal be the set of well-typed, closed specification values:

WellTypClSpecVal
∆

= { π | (∃Γ, T )(dom(Γ) ⊆ ObjId and Γ ⊢ π : T ) }

To define the semantics of well-typed, closed specification values, we simply define the
semantics of the two new specification values:

[[.]] : WellTypClSpecVal→ SemVal [[nil]]
∆

= [ ] [[π · π′]]
∆

= [[π]] ⊔ [[π′]]

Semantics of Formulas. We now state the semantics of formulas introduced to deal with
reentrant locks:

Γ ⊢ E ; (h,P,J ,L,F , I); s |= Lockset(π) iff L(o) = [[π]] for some o

Γ ⊢ E ; (h,P,J ,L,F , I); s |= π contains e iff [[e]]hs ∈ [[π]]

Γ ⊢ E ; (h,P,J ,L,F , I); s |= e.fresh iff [[e]]hs ∈ F

Γ ⊢ E ; (h,P,J ,L,F , I); s |= e.initialized iff [[e]]hs ∈ I

These clauses are self-explanatory, except perhaps the existential quantification in the
clause for Lockset(π). Intuitively, this clause says that there exists a thread identifier o
in L’s domain such that π denotes the current lockset associated with o.
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Axioms. We axiomatize bag membership:

Γ; v ⊢ !(nil contains e) Γ; v ⊢ (π · π′) contains e *-* (e == π | π′ contains e)

To show equalities between specification values (formula e == π above), we axiomatize
equality of specification values:

Γ; v ⊢ π == π Γ; v ⊢ π == π′ ⇒ Γ; v ⊢ π′ == π

Γ; v ⊢ π == π′ & π′ == π′′ ⇒ Γ; v ⊢ π == π′′

In addition, we lift bag equality (≃) to our proof theory:

π ≃ π′ ⇒ Γ; v ⊢ π == π′

Finally, we update Section 3.2.6’s (Copyable) axiom about copyability of formulas:

G ∈ {e, π contains e, e.initialized } ⇒ Γ; v ⊢ (F & G) -* (F *G) (Copyable)

5.4 Hoare Triples

In this section, we modify the Hoare triple (New) for allocating new objects and we show
Hoare triples for the new commands of our language.

We modify rule (New) so that it emits the fresh predicate in its postcondition:

C<T̄ ᾱ> ∈ ct Γ ⊢ π̄ : T̄ [π̄/α] C<π̄> <: Γ(ℓ)
(New)

Γ; v ⊢

{true}
ℓ = new C<π̄>

{ℓ.init * C classof ℓ * �Γ(u)<:Objectℓ !=u * ℓ.fresh }

In addition to the usual init and classof predicates, (New)’s postcondition records
that the newly created object is distinct from all other objects that are in scope. This
postcondition is usually omitted in separation logic, because separation logic gets around
explicit reasoning about the absence of aliasing. Unfortunately, we cannot entirely avoid
this kind of reasoning when establishing the precondition for the rule (Lock) below, which
requires that the lock is not already held by the current thread.

The specification command π.commit triggers π’s transition from the fresh to the
initialized state, provided π’s resource invariant is established:

Γ ⊢ π, π′ : Object, lockset
(Commit)

Γ; v ⊢
{Lockset(π′) *π.inv *π.fresh}

π.commit
{Lockset(π′) * !(π′ contains π) *π.initialized}

Intuitively, the fact that π.inv appears in (Commit)’s precondition but does not
appear in (Commit)’s postcondition indicates that after being committed, lock π begins
to guard its resource invariant: the resource invariant π.inv has been given to lock π and
π.inv is not available anymore to the executing thread. Furthermore, because π.fresh
only holds if π != null, this rule ensures that only non-null locks can become initialized.

The rule (Commit) ensures that monitor invariants cannot mention Lockset predi-
cates. This is important because Lockset predicates are interpreted w.r.t. to the current
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thread: having Lockset predicates inside monitor invariants does not make sense. The
fact that monitor invariants cannot mention Lockset predicates is enforced by (Commit)’s
precondition: because it mentions both a Lockset predicate and the lock’s monitor in-
variant inv, inv cannot include a Lockset predicate. This follows from the semantics of
the Lockset predicate and the semantics of the * operator: two Lockset predicates can-
not be *-conjoined. Hence, if inv includes a Lockset predicate, (Commit)’s precondition
cannot be established.

There are two rules each for locking and unlocking, depending on whether or not the
lock/unlock is associated with an initial entry or a reentry.

First, we present the two rules for locking:

Γ ⊢ u, π : Object, lockset
(Lock)

Γ; v ⊢ {Lockset(π) * !(π contains u) *u.initialized}
u.lock()

{Lockset(u · π) *u.inv}

Γ ⊢ u.π : Object, lockset
(Re-Lock)

Γ; v ⊢ {Lockset(u · π)}u.lock(){Lockset(u · u · π)}

The rule (Lock) applies when lock u is acquired non-reentrantly, as expressed by the
precondition Lockset(π) * !(π contains u). The precondition u.initialized makes
sure that (1) threads only acquire locks whose resource invariant is initialized, and (2)
no null-error can happen (because initialized values are non-null). The postcondition
adds u to the current thread’s lockset, and assumes u’s resource invariant. The resource
invariant obtained is u.inv (without @ selector). In proofs, the “visible” resource invariant
is opened at u’s static type using axioms (Open/Close) and (Dynamic Type) (these axioms
are visible on page 33).

Proving (Lock)’s precondition requires reasoning about aliases because one has to
prove !(π contains u). In practice, this assertion is proven by showing that u is different
from all elements of lockset π. Such a reasoning is a form of alias analysis. On one hand
this is unfortunate, because separation logic’s power comes from the fact that it does not
need to reason about aliases. On the other hand, this seems unavoidable. Whether this
is problematic in practice needs to be investigated on large case studies. In the examples
we study in this thesis (see Section 5.6), this precondition is a problem in one example
out of three (the lock coupling example).

The rule (Re-Lock) applies when a lock is acquired reentrantly. The precondition
of (Re-Lock), contrary to (Lock), does not require u.initialized, because this follows
from Lockset(u · π) (locksets contain only initialized values).

To provide more useful feedback to programmers, we present a derived rule of (Re-
Lock) that could be used in program checkers instead of (Re-Lock).

Γ ⊢ u, π : Object, lockset
(Re-Lock-Accurate)

Γ; v ⊢
{Lockset(u · π) *u.inv}

u.lock()
{Lockset(u · u · π) *u.inv}

Figure 5.1 shows method syncCallToMth that illustrates our point. To verify method
syncCallToMth, a possible strategy for a program checker would be to do a case split
on (!S contains this | S contains this) when reaching lock(). Now, consider the
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requires Initialized * Lockset(S); ensures ...;

void syncCallToMth(){

lock();

mth(); // requires inv

unlock();

}

Figure 5.1: Example showing (Re-Lock-Accurate)’s usefulness

case where S contains this holds (i.e., this is acquired reentrantly). When checking
the program above, a program checker that uses (Re-Lock-Accurate) would fail at the call
to lock() (because (Re-Lock-Accurate)’s precondition requires u.inv), while a program
checker that uses (Re-Lock) would fail at the call to mth(). Because, the specification
mistake concerns the usage of locks, not the call to mth(), using rule (Re-Lock-Accurate)
would provide a more accurate feedback to the programmer than rule (Re-Lock). Gener-
ally speaking, rule (Re-Lock) is convenient for the theory but rule (Re-Lock-Accurate) is
convenient in practice. In another words, upon lock reentry on a given lock o, one expects
o’s resource invariant to hold: this is what rule (Re-Lock-Accurate) enforces.

Second, we present the two rules for unlocking:

Γ ⊢ u, π : Object, lockset
(Re-Unlock)

Γ; v ⊢ {Lockset(u · u · π)}u.unlock(){Lockset(u · π)}

Γ ⊢ u, π : Object, lockset
(Unlock)

Γ; v ⊢ {Lockset(u · π) *u.inv}u.unlock(){Lockset(π)}

The rule (Re-Unlock) applies when u’s current reentrancy level is at least 2 and
(Unlock) applies when u’s resource invariant holds in the precondition.

Other Hoare Rules that Do Not Work. One might wish to avoid the disequalities in
(New)’s postcondition. Several approaches for this come to mind. First, one could
drop the disequalities in (New)’s postcondition, and rely on (Commit)’s postcondition
!(π′ contains π) to establish (Lock)’s precondition. While this would be sound, in
general it is too weak, as we are unable to lock π if we first lock some other object x
(because from !(π′ contains π) we cannot derive !(x · π′ contains π) unless we know
π !=x). Second, the Lockset predicate could be abandoned altogether, using a predicate
π.Held(n) instead, that specifies that the current thread holds lock π with reentrancy
level n. In particular, π.Held(0) means that the current thread does not hold π’s lock at
all. We could reformulate the rules for locking and unlocking using the Held-predicate,
and introduce ℓ.Held(0) as the postcondition of (New), replacing the disequalities. How-
ever, this approach does not work, because it grants only the object creator permission to
lock the created object! While it is conceivable that a clever program logic could somehow
introduce π.Held(0)-predicates in other ways (besides introducing it in the postcondition
of (New)), we have not been able to come up with a workable solution along these lines.

Wait and notify. Recall that in Section 5.2, we added methods wait and notify in class
Object without specifying their contracts. Now we specify those as shown in Figure 5.2
on page 78.
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class Object{

pred inv = true;

requires Lockset(S) * S contains this * inv;

ensures Lockset(S) * inv;

final void wait();

requires Lockset(S) * S contains this;

ensures Lockset(S);

final void notify();

}

Figure 5.2: Class Object

The preconditions for wait and notify require that the receiver is locked. These
requirements statically prevent IllegalMonitorStateExceptions, which are the runtime
exceptions that Java throws when o.wait() or o.notify() are called without holding
o’s lock. The postcondition of o.wait() ensures o.inv, because o is locked just before
o.wait() terminates.

Auxiliary Syntax. Recall that in Section 5.2, we added two new head commands waiting
and resume to represent waiting states. The Hoare rules for these commands are as
follows:

Γ ⊢ π, o : lockset, Object
(Waiting)

Γ; r ⊢
{Lockset(π) * o.initialized}

o.waiting(n)
{Lockset(π) * o.initialized}

Γ ⊢ o, π : Object, lockset
(Resume)

Γ; r ⊢
{Lockset(π) * o.initialized}

o.resume(n)
{Lockset(on · π) * o.inv)}

In (Resume), on denotes the multiset with n occurrences of o. More precisely: o0 = nil

and on = o · on−1 if n ≥ 1. Of course, the rules (Waiting) and (Resume) are never used
in source code verification, because source programs do not contain the auxiliary syntax.
Instead, the rules (Waiting) and (Resume) are used to state and prove the preservation
theorem.

5.5 Verified Programs

In this section, we show how to modify class Thread and top level rules of Chapter 4’s
verification system to handle reentrant locks.

The Thread class. To handle reentrant locks, we modify class Thread’s method contracts
as shown in Figure 5.3. Intuitively, we forbid fork and join’s contracts (i.e., preFork and
postJoin) to depend on the caller’s lockset. This would not make sense since Lockset

predicates are interpreted w.r.t. to the current thread. Obviously, a thread calling fork

differs from the newly created thread, while a thread calling join differs from the joined
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thread. We forbid fork and join’s contracts to depend on the caller’s lockset by (1)
adding Lockset(S) in fork’s precondition: because callers of fork have to establish
fork’s precondition, this forbids preFork to depend on a Lockset predicate (recall that
two Lockset predicates cannot be *-combined) and (2) by adding Lockset(S) in run’s
postcondition: this forbids postJoin to depend on a Lockset predicate:

class Thread ext Object{

pred preFork = true;

group postJoin<perm p> = true;

requires Lockset(S) * preFork; ensures Lockset(S) ;

final void fork();

requires Join(this,p); ensures postJoin<p>;

final void join();

final requires Lockset(nil) * preFork;

ensures (ex Lockset S)(Lockset(S)) * postJoin<1>;

void run() { null }

}

Figure 5.3: Class Thread

Top Level Rules. We need to update Section 4.5’s rules for runtime states to account for
reentrant locks.

There are two changes to rule (Thread): (1) premise dom(Rlock) = {o} is added to
ensure that a thread’s resource only tracks the locks held by this thread and (2) the
thread’s postcondition is modified to reflect the change in join’s postcondition in class
Thread.

(Thread)
Rjoin(o) ≤ [[fr ]] Γ ⊢ σ : Γ′ Γ,Γ′ ⊢ s : ⋄

cfv(c) ∩ dom(Γ′) = ∅ dom(Rlock) = {o} Γ[σ] ⊢ E ;R; s |= F [σ]

Γ,Γ′; r ⊢ {F}c : void{ (ex locksetS)(Lockset(S)) * fr · o.postJoin<1>}

R ⊢ o is (s in c) : ⋄

We define the set ready(R) of all initialized objects whose locks are not held, and the
function conc that maps abstract lock tables to concrete lock tables:

ready(R)
∆

= Rinit \ { o | (∃p)(o ∈ L(p)) }

conc(L)(o)
∆

=

{

(p,L(p)(o)) iff o ∈ L(p)
free otherwise

In conc’s definition, we let L(p)(o) stand for the multiplicity of o in L(p). Note that
conc is well-defined, by axiom (b) for resources (see page 73). The new rule for states
ensures that there exists a resource R to satisfy the thread pool ts and a resource R′ to
satisfy the resource invariants of the locks that are ready to be acquired. In addition,
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function conc relates the program’s lock table to the top level resource’s abstract lock
table:

h = (R * R′ )hp l = conc(Rlock) R ⊢ ts : ⋄

R#R′ R′
lock = ∅ fst(R′

hp) ⊆ fst(h) = Γ Γ ⊢ E ;R′; ∅ |= �o∈ready(R)o.inv (State)

〈h, l , ts〉 : ⋄

Like in Section 4.5, we have shown the preservation Theorem 3 (Section 6.2.2’s proof
is extended in Section 6.3) and we have shown that verified programs satisfy the following
properties: null error freeness, partial correctness, and data race freeness.

5.6 Examples of Reasoning with Reentrant Locks

In this section, we show examples of reasoning with our verification system. We provide
three examples: Section 5.6.1’s class Set shows a typical use of reentrant locks as it often
occurs in the Java library, Section 5.6.2 shows an implementation of the worker thread
design pattern [76, ➜4.1.4], and Section 5.6.3 shows an advanced lock coupling example.

5.6.1 A Typical Use of Reentrant Locks: class Set

In the Java library, lock reentrancy is useful because container classes often feature client
methods that are also helper methods. This happens if there is (1) a method which
synchronizes on the receiver and is meant to be called by clients, but (2) this method can
also be called by other methods of the same class. Because the other methods can also be
synchronized on the receiver, lock reentrancy avoids to duplicate method implementation
in two versions: a synchronized one (to be called by clients) and a lock free one (to be
called by other methods of the class).

We present an example of the behavior described above for a class Set that represents
mathematical sets. Internally, class Set is backed up by a list. Class Set contains a
method has that should be used by clients to check if some element belongs to the
receiver set. In addition, class Set contains method add which adds an element to the
receiver set if this element is not already present. Both method has and method add

lock the receiver set. Hence, as method add calls has, reentrant locks are crucial for class
Set’s implementation.

First, we provide class List that backs up class Set. Class List is a shallow con-
tainer: lists do not have permission to access their values. Values must be accessed by
synchronizing on them. That is why lists ensure that they only contain initialized values
(see predicate state’s implementation):

class List extends Object{

Object element;

List next;

pred state = PointsTo(element,1,v) * v.initialized *

PointsTo(next,1,n) * n.state;

requires init * o.initialized; ensures state@List;

void init(Object o, List n){ element = o; next = n; }

requires state; ensures state;
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bool has(Object o){

bool result;

if(element == o){ result = true; }

else{

if(next != null){ result = next.has(o); }

else{ result = false; }

}

result;

}

requires state * o.initialized; ensures state;

void add(Object o){

List l = new List;

l.init(o,this);

}

}

We explain the meaning of class List’s predicate state. Predicate state gives access
to field next of the list’s first node (see PointsTo(next,1,n)) and to all next fields of
subsequent nodes (because state is recursive, see n.state). In addition, predicate state
(1) provides references to the values stored in the list (see PointsTo(element,1,v) and
n.state) and (2) ensures that values are initialized (see v.initialized and n.state).
It is crucial to ensure that values inside lists are initialized because predicate state does
not give access to the values, it only provides references.

Second, we provide class Set. Class Set ensures that an object cannot appear twice in
the underlying list. For simplicity, we identify two objects if they have the same address
in the heap (i.e., we use Java’s ==)1:

class Set extends Object{

List rep;

pred inv = PointsTo(rep,1,r) * r.state;

requires Lockset(S) * init * fresh * Set classof this * o.initialized;

ensures Lockset(S) * !(S contains this) * initialized;

void init(Object o){

rep = new List;

rep.init(o,null);

commit;

}

requires Lockset(S) * (S contains this -* inv) * initialized;

ensures Lockset(S) * (S contains this -* inv);

bool has(Object o){

lock();

bool result = rep.has(o);

unlock();

result;

1Alternatively, we could put Java’s equals in class Object and use it here.
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}

requires Lockset(S) * !(S contains this) * initialized * o.initialized;

ensures Lockset(S) * !(S contains this);

void add(Object o){

lock();

if(!has(o)){ // lock-reentrant call

rep.add(o);

}

unlock();

}

}

Remarks.

❼ The resource invariant of a Set consists of (1) the field rep and (2) the list pointed
to by the field rep. This is specified in predicate inv’s implementation.

❼ A Set owns its underlying list rep: while the receiver set is locked when clients call
has or add, the underlying list is never locked. Access rights to the underlying list
are packed into the resource invariant of the set (see inv’s definition). As a result,
lists do not need to be initialized (no commit statement in class List).

❼ Elements of sets should be accessed by synchronizing on them. Although there is
no get method in class Set’s implementation, we make sure that elements of sets
are initialized (see state’s implementation in class List and o.initialized

in various contracts). Hence, a get method would have result.initialized as a
postcondition, allowing clients to lock returned elements.

❼ Method init both (1) initializes field rep and (2) initializes the set’s resource
invariant (with the commit command). Point (2) is formalized by having fresh in
init’s precondition and having initialized in init’s postcondition. In addition,
init’s precondition includes Set classof this. This is required to verify that
commit is sound i.e., that the monitor invariant is established before commit (see
init’s proof outline below).

❼ Contract of method has in class Set allows lock-reentrant calls. If a lock-reentrant
call is performed, however, inv is required (as expressed by (S contains this -*

inv)). Method add in class Set could be specified similarly.
❼ A simpler implementation of method add in class Set would call has on the un-

derlying list. In this way, the lock-reentrant call would be avoided. However, our
implementation is safer: if method has is overridden in subclasses of Set (but not
method add), our implementation is still correct; while the simpler implementation
could exhibit unexpected behaviors.

Classes List and Set have been verified with our system. Below, we verify method
init of class Set:

{ Lockset(S) * init * fresh * Set classof this * o.initialized }

((Known Type) axiom and abbreviation of Set classof this by F)
{ Lockset(S) * init@Set * fresh * F * o.initialized }

((Open/Close) axiom)
{ Lockset(S) * PointsTo(rep,1,null) * fresh * F * o.initialized }
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rep = new List;

(Weakening)
{ Lockset(S) * PointsTo(rep,1,r) * fresh * F * r.init * o.initialized }

rep.init(o,null);

{ Lockset(S) * PointsTo(rep,1,r) * fresh * F * r.state@List }

((Known Type) axiom on r)
{ Lockset(S) * PointsTo(rep,1,r) * fresh * F * r.state }

((Known Type) axiom on this)
{ Lockset(S) * inv * fresh }

commit;

{ Lockset(S) * !(S contains this) * initialized }

Now, we verify method add of class Set:

{ Lockset(S) * !(S contains this) * initialized * o.initialized }

lock();

{ Lockset(S.this) * inv * o.initialized }

(has’s precondition is satisfied: S.this contains this and inv is present)
if(has(o))

(Case 1: the conditional holds)
{ Lockset(S.this) * inv * o.initialized }

((Dynamic Type) axiom and modus ponens)
{ Lockset(S.this) * inv@Set * (inv@Set -* inv) * o.initialized }

((Open/Close) axiom)
{ Lockset(S.this) * PointsTo(rep,1,r) * r.state * (inv@Set -* inv) *

o.initialized }

rep.add(o);

{ Lockset(S.this) * PointsTo(rep,1,r) * r.state * (inv@Set -* inv) }

((Open/Close) axiom)
{ Lockset(S.this) * inv@Set * (inv@Set -* inv) }

(Modus ponens)
{ Lockset(S.this) * inv }

unlock();

{ Lockset(S) }

(Case 2: the conditional does not hold)
{ Lockset(S.this) * inv * o.initialized }

unlock();

(Weakening)
{ Lockset(S) }

Discussion. Class Set exemplifies a typical use of lock reentrancy in the Java library.
We believe that our verification system fits well to verify such classes. In addition, this
example shows how our system supports programs that include objects that must be
locked before access and objects that are accessed without synchronization. Importantly,
the addition of locks does not force programmers to indicate Lockset predicates every-
where in contracts: class List which backs up class Set does not mention any Lockset

predicates.
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5.6.2 The Worker Thread Design Pattern

The worker thread pattern [76, ➜4.1.4] consists of one thread (or more, in which case we
say there is a pool of worker threads) that performs many unrelated tasks in succession.
Client threads simply send tasks that must be executed to the worker thread. The worker
thread keeps pending tasks in some container and executes the task with the highest
priority first. This design pattern is of crucial importance in a variety of applications,
including cellular phones [37] and GUIs. Below, we show how to specify and verify an
implementation of this design pattern in our system.

Tasks are represented with an interface with only one method: process. Because
tasks should be accessed by synchronizing on them, process’s pre- and postcondition is
just initialized:

interface Task{

requires initialized; ensures initialized;

void process;

}

To store tasks in the worker thread, we use a generic Container that has methods
push and pop. In practice, Container could be implemented by a stack, a FIFO queue
etc. Method pop’s postcondition uses the special variable result to refer to the object
returned:

interface Container{

pred state;

requires init; ensures state@Container;

void init();

requires state * t.initialized; ensures state;

void push(Task t);

requires state; ensures state * (result==null | result.initialized);

Task pop();

}

We now have all the machinery to implement a worker thread. Method run implements
the behavior of the worker thread. First, the worker thread looks up if there is a task
pending by calling pop(). Second, two cases are possible: (1) if there is a task pending
(pop returned a non-null task), the task is processed and the worker thread immediately
looks up a new task or (2) if there is no task pending, the worker thread waits until a
client notifies it that a new task has been added. We highlight that the task is processed
without holding the worker thread’s lock to increase parallelism. Client threads send tasks
by calling method add. Because we do not have loops, we mimic a while(true) loop
with recursive calls to run. As worker threads are supposed to run forever and because
we only consider partial correctness, this does not harm soundness.

class WorkerThread extends Thread{

Container c;

pred inv = PointsTo(c,1,v) * v.state;
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pred preFork = initialized;

group postJoin<perm p> = initialized;

requires Lockset(S) * fresh * init;

ensures Lockset(S) * !(S contains this) * initialized ;

void init(){

c = new Container();

c.init();

commit;

}

requires Lockset(nil) * preFork;

ensures (ex Lockset S)(Lockset(S)) * postJoin<1>;

void run(){

lock();

Task t = c.pop();

unlock();

if(t!=null){ t.process(); run(); }

else{

lock();

wait();

unlock();

run();

}

}

requires Lockset(S) * t.initialized; ensures Lockset(S);

void add(Task t){

lock();

c.push(t);

notify();

unlock();

}

}

We verify method init of class WorkerThread:

{ Lockset(S) * fresh * init }

((Dynamic Type) axiom, modus ponens, and weakening)
{ Lockset(S) * fresh * init@WorkerThread }

((Open/Close) axiom)
{ Lockset(S) * fresh * PointsTo(c,1,null) * Join(this,1) }

(Weakening)
{ Lockset(S) * fresh * PointsTo(c,1,null) }

c = new Container();

(Weakening)
{ Lockset(S) * fresh * PointsTo(c,1,v) * v.init * Container classof v }

c.init();

{ Lockset(S) * fresh * PointsTo(c,1,v) * v.state@Container *

Container classof v }
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((Known Type) axiom)
{ Lockset(S) * fresh * PointsTo(c,1,v) * v.state }

((Open/Close) axiom)
{ Lockset(S) * fresh * inv }

commit;

{ Lockset(S) * (!S contains this) * initialized }

We verify method run of class WorkerThread:

{ Lockset(nil) * preFork }

((Dynamic Type) axiom and modus ponens)
{ Lockset(nil) * preFork@WorkerThread * (preFork@WorkerThread -* preFork) }

((Open/Close) axiom and abbreviating preFork@WorkerThread -* preFork by F)
{ Lockset(nil) * initialized * F }

((Copyable) on initialized)
lock();

{ Lockset(this) * initialized * inv * F }

((Dynamic Type) axiom and modus ponens)
{ Lockset(this) * initialized * inv@WorkerThread *

(inv@WorkerThread -* inv) * F }

((Open/Close) axiom and abbreviating inv@WorkerThread -* inv by G)
{ Lockset(this) * initialized * PointsTo(c,1,v) * v.state * F * G }

Task t = c.pop();

{ Lockset(this) * initialized * PointsTo(c,1,v) * v.state *

(t==null | t.initialized) * F * G }

((Open/Close) and modus ponens)
{ Lockset(this) * initialized * inv * (t==null | t.initialized) * F }

unlock();

{ Lockset(nil) * initialized * (t==null | t.initialized) * F }

if(t!=null)

(Case 1: the conditional holds)
{ Lockset(nil) * initialized * t.initialized * F * t!=null }

t.process();

{ Lockset(nil) * initialized * t.initialized * F }

((Open/Close) and weakening)
{ Lockset(nil) * preFork@WorkerThread * F }

(Modus ponens)
{ Lockset(nil) * preFork }

run();

(Case 2: the conditional does not hold)
{ Lockset(nil) * initialized * t==null * F }

((Copyable) on initialized and weakening)
lock();

{ Lockset(this) * initialized * inv * F }

wait();

{ Lockset(this) * initialized * inv * F }
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unlock();

{ Lockset(nil) * initialized * F }

((Open/Close))
{ Lockset(nil) * preFork@WorkerThread * F }

(Modus ponens)
{ Lockset(nil) * preFork }

run();

Discussion. This design pattern does not raise any problem for our verification system:
we are able to verify method contracts in a straightforward way. The reason is that, in
method run of class WorkerThread, the lockset is always precisely determined. Either it
is empty, or it only contains the worker thread itself, or it only contains the task being
processed (during the call to process). For this reason, our system handles this example
well. In the next section, we show an example where locksets raise real problems because
they cannot be determined precisely. In this situation, ownership reasoning is needed.

5.6.3 Lock Coupling

In this section, we illustrate how our verification system handles lock coupling. We use
the following convenient abbreviations:

π.locked(π′)
∆

= Lockset(π · π′) π.unlocked(π′)
∆

= Lockset(π′) * !(π′ contains π)

Suppose we want to implement a sorted linked list with repetitions. For simplicity,
assume that the list has only two methods: insert() and size(). The former inserts
an integer into the list, and the latter returns the current size of the list. To support a
constant-time size()-method, each node stores the size of its tail in a count-field. Each
node n maintains the invariant n.count == n.next.count + 1.

In order to allow multiple threads inserting simultaneously, we want to avoid using
a single lock for the whole list. We have to be careful, though: a naive locking policy
that simply locks one node at a time would be unsafe, because several threads trying
to simultaneously insert the same integer can cause a semantic data race, so that some
integers get lost and the count-fields get out of sync with the list size. The lock coupling
technique avoids this by simultaneously holding locks of two neighboring nodes at critical
times.

Lock coupling has been used as an example by Gotsman et al. [51] for single-entrant
locks. The additional problem with reentrant locks is that insert()’s precondition must
require that none of the list nodes is in the lockset of the current thread. This is necessary
to ensure that on method entry the current thread is capable of acquiring all nodes’s
resource invariants:

requires this.unlocked(S) * no list node is in S ;

ensures Lockset(S);

void insert(int x);

The question is how to formally represent the informal condition written in italic. Our
solution makes use of class parameters. We require that nodes of a lock-coupled list are
statically owned by the list object, i.e., they have type Node<o>, where o is the list object.
Then we can approximate the above contract as follows:
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requires this.unlocked(S) * no this-owned object is in S ;

ensures Lockset(S);

void insert(int x);

To express this formally, we define a marker interface, i.e., an interface with no content,
for owned objects:

interface Owned<Object owner> { /* a marker interface */ }

Next we define an auxiliary predicate π.traversable(π′) (read as “if the current
thread’s lockset is π′, then the aggregate owned by object π is traversable”). Concretely,
this predicate says that no object owned by π is contained in π′:

π.traversable(π′)
∆

=
(fa Object owner, Owned<owner> x)(!(π′ contains x) | owner !=π)

Note that in our definition of π.traversable(π′), we quantify over a type parameter
(namely the owner-parameter of the Owned-type). Here we are taking advantage of the
fact that program logic and type system are inter-dependent.

Now, we can formally define an interface for sorted integer lists:

interface SortedIntList {

pred inv<int c>; // c is the number of list nodes

requires this.inv<c>; ensures this.inv<c> * result==c;

int size();

requires this.unlocked(s) * this.traversable(s); ensures Lockset(s);

void insert(int x);

}

Figure 5.4 shows a tail-recursive lock-coupling implementation of SortedIntList.
The auxiliary predicate n.couple<c, c′>, as defined in the Node class, holds in states where
n.count == c and n.next.count == c′. Figure 5.4’s implementation has been verified in
our system.

But how can clients of lock-coupling lists establish insert()’s precondition? The
answer is that client code needs to track the types of locks held by the current thread.
For instance, if C is not a subclass of Owned, then list.insert()’s precondition is
implied by the following assertion, which is satisfied when the current thread has locked
only objects of types C and Owned<ℓ>.

list.unlocked(S) * ℓ!=list *

(fa Object z)(!(S contains z) | z instanceof C | z instanceof Owned<ℓ>)

Discussion. This example demonstrates that we can handle fine-grained concurrency de-
spite the technical difficulties raised by lock reentrancy (i.e., lock’s precondition is harder
to prove). However, we have to fall back on the type system to verify this example. Con-
sequently, ownership becomes static: with our specifications, nodes cannot be transferred
from a list to another, because the nodes’s owner would have to change. As a result,
our solution works for a limited set of programs and further work is needed to handle all
uses of fine-grained concurrency. In addition, because we use that our type system and
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class LockCouplingList implements SortedIntList{

Node<this> head;

pred inv<int c> = (ex Node<this> n)(

PointsTo(head, 1, n) * n.initialized * PointsTo(n.count, 1/2, c) );

requires this.inv<c>; ensures this.inv<c> * result==c;

int size() { return head.count; }

requires Lockset(S) * !(s contains this) * this.traversable(s);

ensures Lockset(S);

void insert(int x) {

lock(); Node<this> n = head;

if (n!=null) {

n.lock();

if (x <= n.val) {

n.unlock(); head = new Node<this>(x,head); head.commit; unlock();

} else { unlock(); n.count++; n.insert(x); }

} else { head = new Node<this>(x,null); unlock(); } } }

class Node<Object owner> implements Owned<owner>{

int count; int val; Node<owner> next;

public pred couple<int count this, int count next> =

(ex Node<owner> n)(

PointsTo(this.count, 1/2, count this) * PointsTo(this.val, 1,int)

* PointsTo(this.next, 1, n) * n!=this * n.initialized

* ( n!=null -* PointsTo(n.count, 1/2, count next) )

* ( n==null -* count this==1 ) );

public pred inv<int c> = couple<c,c-1>;

requires PointsTo(next.count, 1/2, c);

ensures PointsTo(next.count, 1/2, c)

* ( next!=null -* PointsTo(this.count, 1, c+1) )

* ( next==null -* PointsTo(this.count, 1, 1) )

* PointsTo(this.val, 1, val) * PointsTo(this.next, 1, next);

Node(int val, Node<owner> next) {

if (next!=null) { this.count = next.count+1; } else { this.count = 1; }

this.val = val; this.next = next; }

requires Lockset(this · S) * owner.traversable(s) * this.couple<c+1,c-1>;

ensures Lockset(S);

void insert(int x) {

Node<owner> n = next;

if (n!=null) {

n.lock();

if (x <= n.val) {

n.unlock(); next = new Node<owner>(x,n); next.commit; unlock();

} else { unlock(); n.count++; n.insert(x); }

} else { next = new Node<owner>(x, null); unlock(); } } }

Figure 5.4: A lock-coupling list
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our verification system are inter-dependent, automatically proving such a program would
require a tool that combines reasoning about types and reasoning about separation logic
formulas.

5.7 Related Work and Conclusion

Related Work. There are a number of similarities between our work and Gotsman et
al. [51]’s work, for instance the treatment of initialization of dynamically created locks.
Our initialized predicate corresponds to what Gotsman calls lock handles (with his
lock handle parameters corresponding to our class parameters). Since Gotsman’s language
supports deallocation of locks, he scales lock handles by fractional permissions in order to
keep track of sharing. This is not necessary in a garbage-collected language. In addition to
single-entrant locks, Gotsman also treats thread joining which we covered in the previous
chapter. The essential differences between Gotsman’s and our paper are (1) that we
treat reentrant locks, which are a different synchronization primitive than single-entrant
locks, and (2) that we treat subclassing and extension of resource invariants in subclasses.
Hobor et al.’s work [58] is very similar to [51].

Another related line of work is by Jacobs et al. [70] who extend the Boogie methodology
for reasoning about object invariants [7] to a multithreaded Java-like language. While
their system is based on classical logic (without operators like * and -*), it includes built-
in notions of ownership and access control. Their system deliberately enforces a certain
programming discipline (like concurrent separation logic and our variant of it also do)
rather than aiming for a complete program logic. The object life cycle imposed by their
discipline is essentially identical to ours. For instance, their shared objects (objects that
are shared between threads) directly correspond to our initialized objects (objects
whose resource invariants are initialized). Their system prevents deadlocks, which our
system does not. They achieve deadlock prevention by imposing a partial order on locks.
As a consequence of their order-based deadlock prevention, their programming discipline
statically prevents reentrancy, although it may not be too hard to relax this at the cost
of additional complexity.

A different approach is pursued by Vafeiadis et al. [98, 44]. This work combines
rely/guarantee with separation logic. On one hand, this is both powerful and flexible:
fine-grained concurrent algorithms can be specified and verified. On the other hand, their
verification system is more complex than ours. They do not treat reentrant locks.

In a more traditional approach, Ábráham, De Boer et al. [1, 39] apply assume-
guarantee reasoning to a multithreaded Java-like language.

Conclusion. We showed a Java-like language with reentrant locks. Our key contributions
are as follows: (1) we presented verification rules for reentrant locks, (2) we showed how
resource invariants can be expressed (including inheritance) with general purpose abstract
predicates, and (3) we described how the combination of an expressive type system and
separation logic handles a challenging lock-coupling algorithm. We remark that we do
not need to introduce new machinery to handle inheritance in combination with locks:
abstract predicates suffice.

The material described in Chapters 2, 3, 4, and in this chapter defines a verification
system for multithreaded Java. It covers the two main features of multithreaded Java
programs: fork and join primitives (Chapters 3 and 4) and reentrant locks (this chapter).
The next chapter shows that this verification system is sound.



Chapter 6

Soundness of Chapter 3 to
Chapter 5’s Verification System

In this chapter, we prove that the verification system described from Chapter 3 to 5 is
sound. This is an important goal, because static checking is supposed to offer a high-level
of confidence to verified programs. Consequently, it is crucial to show that the static
checking algorithm itself is correct.

The proofs are separated for each chapter. In Section 6.1, we show the soundness
of Chapter 3’s verification system, in Section 6.2, we show the soundness of Chapter 4’s
verification system, and in Section 6.3, we show the soundness of Chapter 5’s verification
system. In each section, the main proof is the preservation result. This proof shows that
Hoare rules (Sections 3.3, 4.4, and 5.4) for verification of programs are correct and rules
for verified programs (Sections 3.5, 4.5, and 5.5) are correct.

6.1 Soundness of Chapter 3’s Verification System

6.1.1 Properties

In this section, we collect standard lemmas that the system is designed to satisfy. These
lemmas are used in the proof of Theorems 3, 4, and 5; and in later proofs.

Properties of the Typing Judgments

Lemma 2 (Substitutivity and Inverse Substitutivity for Subtyping).

(a) If T <: U , then T [σ] <: U [σ].
(b) If T [σ] <: U , then U = U ′[σ] for some U ′.
(c) If T [σ] <: U [σ], then T <: U .

Proof. All three parts by induction on the derivation of the subtyping judgment. The
proof of part (c) uses part (b) to deal with the transitivity rule. �

Lemma 3 (Inverse Substitutivity for Values). If (Γ ⊢ σ : Γ′) and (Γ[σ] ⊢ v : T [σ]), then
(Γ,Γ′ ⊢ v : T ).

91
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Proof. In case v is an integer, boolean or null, this is obvious. So suppose that v is an
object identifier or a read-only variable. Then v ∈ dom(Γ) and Γ[σ](v) <: T [σ]. But then
Γ(v) <: T , by Lemma 2. But then (Γ,Γ′ ⊢ v : T ). �

Properties of the Proof Theory

Lemma 4 (Substitutivity). If (Γ[π̄/x̄] ⊢ π̄ : T̄ [π̄/x̄]) and (Γ, x̄ : T̄ ; v; F̄ ⊢ G), then
(Γ; v; F̄ )[π̄/x̄] ⊢ G[π̄/x̄].

Proof. By induction on the derivation of (Γ, x̄ : T̄ ; v; F̄ ⊢ G). �

Properties of Hoare Triples

Lemma 5 (Substitutivity).

(a) If (Γ[π̄/x̄] ⊢ π̄ : T̄ [π̄/x̄]) and (Γ, x̄ : T̄ ; v ⊢ {F}hc{G}),
then ((Γ; v)[π̄/x̄] ⊢ {F [π̄/x̄]}hc[π̄/x̄]{G[π̄/x̄]}).

(b) If (Γ[π̄/x̄] ⊢ π̄ : T̄ [π̄/x̄]) and (Γ, x̄ : T̄ ; v ⊢ {F}c : U{G}),
then ((Γ; v)[π̄/x̄] ⊢ {F [π̄/x̄]}c[π̄/x̄] : U [π̄/x̄]{G[π̄/x̄]}).

Proof. For hc by inspection of the last rule. For c by induction on the structure of c. �

Lemma 6 (Logical Consequence). If (Γ; v;F ⊢ F ′) and (Γ; v ⊢ {F ′}c : T{G}), then
(Γ; v ⊢ {F}c : T{G}).

Proof. By induction on the structure of c. �

Lemma 7 (Derived Rule for Bind). If (Γ; o ⊢ {F}c : T{(ex T α)(G)}), T <: Γ(ℓ) and
(Γ; p ⊢ {(ex T α)(α == ℓ * G)}c′ : U{H}), then (Γ; o ⊢ {F}ℓ � c; c′ : U{H}).

Proof. By induction on the structure of c. �

Properties of the Semantics

Lemma 8 (Resource Monotonicity). If (Γ ⊢ E ;R; s |= F ), R ≤ R′, Γ ⊆hp Γ′ and
(Γ′

hp ⊢ R
′
hp : ⋄), then (Γ′ ⊢ E ;R′; s |= F ).

Proof. By induction on the structure of F . For the cases where F = o.P<π̄> or
F = o.P@C<π̄>, one uses that predicate environments are monotone with respect to
resources, by axiom (a).

This proof has been mechanically checked for a smaller specification language (without
abstract predicates and quantifiers) [62]. �

Lemma 9 (Stack Invariance).

(a) If s|fv(e) = s′|fv(e) and [[e]]hs = µ, then [[e]]hs′ = µ.

(b) If s|fv(F ) = s′|fv(F ), Γhp = Γ′
hp, Γ|fv(F ) = Γ′

|fv(F ), (Γ′ ⊢ s′ : ⋄) and (Γ ⊢ E ;R; s |= F ),

then (Γ′ ⊢ E ;R; s′ |= F ).

Proof. Part (a) by induction on the structure of e. Part (b) by induction on the
structure of F . The proof is very similar to the proof of Lemma 72 in [54]. �
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Auxiliary Lemmas

We lift field update to resources:

R[o.f 7→ v]
∆

= (Rhp[o.f 7→ v],Rperm)

The following lemma is needed to prove soundness of the verification rule (Fld Set).

Lemma 10 (Field Update). Suppose Rperm(o, f) = 1, T f ∈ fld(Rhp(o)1) and fst(Rhp) ⊢
v : T . Then:

(a) R[o.f 7→ v] ∈ Resources

(b) If R#R′ and o ∈ dom(R′
hp),

then R[o.f 7→ v]#R′ and R[o.f 7→ v] *R′ = (R *R′)[o.f 7→ v].

We define:

initloc(o)(p, k)
∆

=

{

1 if p = o
0 otherwise

inithp(Γ, o, T )(p)
∆

=

{

(T, initStore(T )) if p = o
(Γ(o), ∅) if p ∈ dom(Γ) \ {o}

initrsc(Γ, o, T )
∆

= (inithp(Γ, o, T ), initloc(o))

The following lemma is needed to prove soundness of the verification rule (New).

Lemma 11 (Initialization).

(a) If (Γ ⊢ C<π̄> : ⋄), o 6∈ dom(Γ), (Γ ⊢ s : ⋄), Fct(E) = E and C � D, then
(Γ, o : C<π̄> ⊢ E ; initrsc(Γ, o, C<π̄>); s |= o.init@D).

(b) If (Γ ⊢ C<π̄> : ⋄), o 6∈ dom(Γ), (Γ ⊢ s : ⋄), and Fct(E) = E, then (Γ, o : C<π̄> ⊢
E ; initrsc(Γ, o, C<π̄>); s |= o.init).

Proof. Part (a) by induction on the subclassing order �. Part (b) follows from part (a)
because o.init is equivalent to o.init@C, if C is o’s dynamic class. �

6.1.2 Preservation

In this section, we prove the preservation theorem 3.

First, we observe that we can normalize Hoare proofs for head commands as follows:

Lemma 12 (Proof Normalization). If (Γ; v ⊢ {F}hc{G}) is derivable, then it has a proof
where every path to the proof goal ends in zero or more applications of (Consequence) and
(Exists) preceded by exactly one application of (Frame), preceded by a rule that is not a
structural rule (i.e., a rule different from (Frame), (Consequence), and (Exists)).

Proof. We need to show that we can permute an application of (Frame) upwards,
when preceded by (Consequence) or (Exists). These permutations are straightforward to
show. By associativity of * we can condense a sequence of several (Frame) applications
into a single (Frame) application. By neutrality of true, we can expand zero (Frame)
applications into one (Frame) application. �

Proof of Theorem 3 (Preservation). If (ct : ⋄), (st : ⋄) and st →ct st ′, then (st ′ : ⋄).

Proof.
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(1) ct : ⋄ assumption
(2) st : ⋄ assumption
(3) st → st ′ assumption

An inspection of the reduction rules shows that st is of the following form.

(4) st = 〈h, c, s〉

The proof of (st : ⋄) consists of an application of (State). This application has the
following premises:

(5) Γ ⊢ σ : Γ′

(6) dom(Γ′) ∩ cfv(c) = ∅
(7) Γ,Γ′ ⊢ s : ⋄
(8) Γ[σ] ⊢ E ;R; s |= F [σ]
(9) Γ,Γ′; r ⊢ {F}c : void{G}

We split cases according to the shape of c. Unless c is of the form c = hc; c′, the
reduction rule is one of (Red Dcl), (Red Fin Dcl), or (Red Return). Because these cases
are straightforward, we omit them here, and assume from this point on that c is of the
form c = hc; c′:

(10) c = hc; c′

(11) Γ,Γ′; r ⊢ {F}hc{F ′}
(12) Γ,Γ′; r ⊢ {F ′}c′ : void{G}

Let D be the proof tree of (Γ,Γ′; r ⊢ {F}hc{F ′}). By Lemma 12, we may assume that
each path to the root of D ends in a sequence of applications of (Consequence) and
(Exists) preceded by exactly one application of (Frame). We induct on D’s height:

Case 1, D ends in (Consequence): In this case, we have:

(1.1) Γ,Γ′; r;F ⊢ H
(1.2) Γ,Γ′; r ⊢ {H}hc{H ′}
(1.3) Γ,Γ′; r;H ′ ⊢ F ′

From (Γ[σ] ⊢ E ;R; s |= F [σ]) and (Γ,Γ′; r;F ⊢ H), it follows that:

(1.4) Γ[σ] ⊢ E ;R; s |= H[σ]

From (Γ,Γ′; r;H ′ ⊢ F ′) and (Γ,Γ′; r ⊢ {F ′}c′ : void{G}), it follows that:

(1.5) Γ,Γ′; r ⊢ {H ′}c′ : void{G}

The height of (Γ,Γ′; r ⊢ {H}hc{H ′})’s proof tree is one less than D’s height. In the proof
tree of st : ⋄, we replace (12) by (1.4), (15) by (1.2), and (16) by (1.5). The resulting tree
is a proof tree of st : ⋄. By induction hypothesis we obtain st ′ : ⋄.

Case 2, D ends in (Exists): In this case, we have:

(2.1) F = (ex T α)(H)

(2.2) Γ,Γ′, α : T ; r ⊢ {H}hc{H ′}
(2.3) F ′ = (ex T α)(H ′)

From (Γ[σ] ⊢ E ;R; s |= F [σ]), it follows that there is a π such that (Γ[σ]hp ⊢ π : T [σ])
and (Γ[σ] ⊢ E ;R; s |= H[σ][π/α]). Let Γ′′ = (Γ′, α : T ) and σ′ = (σ, π/α). Then:

(2.4) Γ ⊢ σ′ : Γ′′

(2.5) Γ,Γ′′ ⊢ s : ⋄
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(2.6) Γ[σ′] ⊢ E ;R; s |= H[σ′]

From (Γ,Γ′′; r;H ′ ⊢ F ′) and (Γ,Γ′; r ⊢ {F ′}c′ : void{G}), it follows that:

(2.7) Γ,Γ′′; r ⊢ {H ′}c′ : void{G}

The height of (Γ,Γ′′; r ⊢ {H}hc{H ′})’s proof tree is one less than D’s height. In the proof
tree of st : ⋄, we replace (7) by (2.4), (11) by (2.5), (12) by (2.6), (15) by (2.2), (16) by
(2.7). The resulting tree is a proof tree of st : ⋄. By induction hypothesis, st ′ : ⋄.

Case 3, D ends in (Frame) preceded by a non-structural rule: We split this case into
subcases according to the reduction rules. Because they are routine, we omit the cases
(Red Op), (Red Return), (Red If True), (Red If False), and (Red No Op). Details can be
found in the techreport accompanying our AMAST publication [54].

Case 3.1, (Red Get):

s′ = s[ℓ 7→ h(p)
2
(f)]

〈h, ℓ = p.f ; c′, s〉 → 〈h, c′, s′〉

In this case, we can further instantiate c and st ′ as follows:

(3.1.1) c = ℓ = p.f ; c′

(3.1.2) st ′ = 〈h, ts | c′, s′〉

(3.1.3) s′ = s[ℓ 7→ h(p)2(f)]

D ends in (Frame) preceded by (Get). From the premises of these rules, we obtain H, π
and u such that the following statements hold:

(3.1.4) F = PointsTo(p.f, π, u) *H

(3.1.5) Γ,Γ′ ⊢ p.f : (Γ)(ℓ)

(3.1.6) ℓ 6∈ H

(3.1.7) Γ,Γ′; r ⊢ {PointsTo(p.f, π, u) *H}ℓ = p.f{PointsTo(p.f, π, u) *H * ℓ == u}

(3.1.8) Γ,Γ′; r ⊢ {PointsTo(p.f, π, u) *H * ℓ == u}c′ : void{G}

From (3.1.4), we deduce that h(p)2(f) is defined and that h(p)2(f) = u. From (3.1.5), we
obtain that (Γ[σ] ⊢ p.f : Γ(ℓ)[σ]). Because (Γ[σ] ⊢ h : ⋄), we then get (Γ[σ] ⊢ h(p)2(f) :
Γ(ℓ)[σ]). Then (Γ,Γ′ ⊢ h(p)2(f) : Γ(ℓ)), by Lemma 3. Thus, we have:

(3.1.9) Γ,Γ′ ⊢ s′ : ⋄

From (12), we get h(p)2(f) = [[u]]hs . In addition, we have [[u]]hs = [[u]]hs′ . On the other
hand, we have [[ℓ]]hs′ = s′(ℓ) = h(p)2(f). Therefore, [[ℓ]]hs′ = h(p)2(f) = [[u]]hs = [[u]]hs′ . It
follows that (where 0 denotes the permission table that map all arguments to 0):

(3.1.10) Γ[σ] ⊢ E ;0; s′ |= ℓ == u

Because R *0 = R, we can combine (12) and (3.1.10) to obtain:

(3.1.11) Γ,Γ′[σ] ⊢ E ;R; s′ |= (PointsTo(p.f, π, u) *H)[σ] * ℓ == u

Because (ℓ == u)[σ] = ℓ == u (recall that σ’s domain is LogVar), we apply (State)
to (3.1.11), (3.1.8), and (3.1.9). We obtain st ′ : ⋄.



96 CHAPTER 6. SOUNDNESS OF THE VERIFICATION SYSTEM

Case 3.2, (Red Set):
h′ = h[p.f 7→ w]

〈h, p.f =w; c′, s〉 → 〈h ′, c′, s〉

In this case, we can further instantiate c and st ′ as follows:

(3.2.1) c = p.f =w; c′

(3.2.2) st ′ = 〈h′, c′, s〉
(3.2.3) h′ = h[p.f 7→ w]

D ends in (Frame) preceded by (Fld Set). From the rule premises, we obtain F ′ and E
such that:

(3.2.4) F = PointsTo(p.f, 1, T) *H
(3.2.5) Γ,Γ′ ⊢ p : C<π̄>
(3.2.6) T f ∈ fld(C<π̄>)
(3.2.7) Γ,Γ′ ⊢ w : T
(3.2.8) Γ,Γ′; r ⊢ {PointsTo(p.f, 1, w) *H}c′ : void{G}

From (12) and (3.2.4), we know there exist R′,R′′ such that R = R′ *R′′ and:

(3.2.9) Γ[σ] ⊢ E ;R′; s |= PointsTo(p.f, 1, T [σ])
(3.2.10) Γ[σ] ⊢ E ;R′′; s |= H[σ]

By inverting (Γ,Γ′ ⊢ p : C<π̄>) we obtain (Γ,Γ′)(p) <: C<π̄>. Because p is an object
id and dom(Γ′) ⊆ LogVar, we know that p 6∈ dom(Γ′). Therefore, Γ(p) <: C<π̄>. Let
h′ = R′

hp. Because (Γ[σ] ⊢ h′ : ⋄), we know that Γ[σ] = fst(h′). From Γ[σ] = fst(h′)
and Γ(p) <: C<π̄> it follows that h′(p)1 = (Γ[σ])(p) <: C<π̄>[σ]. From this and (3.2.6)
it follows that T [σ] f ∈ fld(h′(p)1). Applying substitutivity to (3.2.7), we get (Γ[σ] ⊢ w :
T [σ]). Furthermore, we have R′

perm(p, f) = 1 by (3.2.9).
From (3.2.9), it follows that:

(3.2.11) Γ[σ] ⊢ E ;R′[p.f 7→ w]; s |= PointsTo(p.f, 1, w)[σ]

By Lemma 10, we know that R′[p.f 7→ w]#R′′ and R′[p.f 7→ w] *R′′ = R[p.f 7→ w].
From (3.2.10) and (3.2.11), it then follows that:

(3.2.12) Γ[σ] ⊢ E ;R[p.f 7→ w]; s |= (PointsTo(p.f, 1, w) *H)[σ]

From (3.2.12), (3.2.8), and R[p.f 7→ w]hp = h[p.f 7→ w] = h′, we apply (State) and obtain
〈h′, c′, s〉 : ⋄.

Case 3.3, (Red New):

p /∈ dom(h) h ′ = h[p 7→ (C<π̄>, initStore(C<π̄>))] s′ = s[ℓ 7→ p] l ′ = l [o 7→ free]

〈h, l , ts | ℓ = new C<π̄>; c′, s〉 → 〈h ′, l ′ , ts | c′, s′〉

In this case, we can further instantiate c and st ′ as follows:

(3.3.1) c = ℓ = new C<π̄>; c′

(3.3.2) st ′ = 〈h ′, ts | c′, s′〉
(3.3.3) h ′ = h[p 7→ (C<π̄>, initStore(C<π̄>))]
(3.3.4) s′ = s[ℓ 7→ p]

D ends in (Frame) preceded by (New). From the premises of these rules, we obtain:

(3.3.5) F = true *H
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(3.3.6) C<T̄ ᾱ> ∈ ct
(3.3.7) Γ,Γ′ ⊢ π̄ : T̄ [π̄/ᾱ]
(3.3.8) C<π̄> <: Γ(ℓ)
(3.3.9) Γ,Γ′; r ⊢ {ℓ.init *C classof ℓ *H}c′ : void{G}
(3.3.10) ℓ 6∈ H

By substitutivity, we get (Γ[σ] ⊢ π̄[σ] : T̄ [π̄/ᾱ][σ]). Because dom(Γ′) ∩ fv(π̄) = ∅ (as-
sumption (8)) and dom(Γ′) = dom(σ), we get (Γ[σ] ⊢ π̄ : T̄ [π̄/ᾱ]). Because dom(Γ) ⊆
ObjId ∪ RdWrVar, it follows that (Γhp[σ] ⊢ π̄ : T̄ [π̄/ᾱ]). Because Γhp ⊢ ⋄, we know that
fv(Γhp) = ∅, thus Γhp[σ] = Γhp, thus (Γhp ⊢ π̄ : T̄ [π̄/ᾱ]), thus:

(3.3.11) Γhp ⊢ C<π̄> : ⋄

Let Γp = (Γ, p : C<π̄>) and R′ = initrsc(Γ[σ], p, C<π̄>). Thus, the premises for Lemma 11
are satisfied and we obtain:

(3.3.12) Γp[σ] ⊢ E ;R′; s |= p.init

Furthermore, we have:

(3.3.13) Γp[σ] ⊢ E ; ((p 7→ C<π̄>, ∅),0); s |= C classof p

Because, by R′’s and * ’s definitions, we have R′ * ((p 7→ C<π̄>, ∅),0) = R′, it follows
that:

(3.3.14) Γp[σ] ⊢ E ;R′; s |= p.init * C classof p

By resource axiom (b) for R, we have Rperm(p, k) = 0 for all k ∈ FieldId. It follows that
R#R′. Thus:

(3.3.15) Γp[σ] ⊢ E ;R *R′; s |= H[σ] * p.init * C classof p

Because, by (3.3.10), ℓ does not occur in H[σ] * p.init * C classof p, we can update s
at ℓ:

(3.3.16) Γp[σ] ⊢ E ;R *R′; s′ |= H[σ] * p.init * C classof p

Because s′(ℓ) = p, then:

(3.3.17) Γp[σ] ⊢ E ;R *R′; s′ |= H[σ] * ℓ.init * C classof ℓ

Because (3.3.11), (3.3.17), (3.3.9) and (R *R′)hp = h[p 7→ (C<π̄>, initStore(C<π̄>))] = h′

hold, we can apply (State) to obtain 〈h′, c′, s〉 : ⋄.

Case 3.4, (Red Call):

m 6∈ {fork, join, wait, notify }

h(p)1 = C<π̄> mbody(m, C<π̄>) = (ı0, ı̄).cm c′′ = cm[p/ı0, v̄/ı̄]

〈h, l , ts | ℓ = p.m(v̄); c′, s〉 → 〈h, l , ts | ℓ � c′′; c′, s〉

In this case, we can further instantiate c and st ′ as follows:

(3.4.1) c = ℓ = p.m<π̄>(v̄); c′

(3.4.2) st ′ = 〈h, ts | ℓ � c′′; c′, s〉

D ends in (Frame) preceded by (Call). From the rule premises, we obtain:

(3.4.3) F = E * J
(3.4.4) mtype(m, t<π̄′′>) = <T̄ ᾱ> requiresE; ensures (ex U α′′)(H); U m(t<π̄′′> ı0; V̄ ı̄)
(3.4.5) σ′ = (p/ı0, π̄/ᾱ, v̄/ı̄)
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(3.4.6) Γ,Γ′ ⊢ p, π̄, v̄ : t<π̄′′>, T̄ [σ′], V̄ [σ′]
(3.4.7) U [σ′] <: Γ(ℓ)
(3.4.8) Γ,Γ′; r ⊢ {J * (ex U [σ′] α′′)(α′′ == ℓ * H[σ′])}c′ : void{G}
(3.4.9) ℓ 6∈ J

In this case, (12) gives us1:

(3.4.10) Γ[σ] ⊢ E ;R; s |= E[σ′;σ] * J [σ]

Because of method inheritance and subtyping, we do not know in which class m is imple-
mented. We do a case split on the two possible cases: (1) m is implemented in a class B
such that t � B or (2) m is implemented in a class D such that C � D � t (recall that,
by h(p)1 = C<π̄′>, C is p’s dynamic class).

Case 3.4.1, m is implemented in a class B such that t � B: Without losing generality,
suppose that t<Ū ᾱ′> ∈ ct and B<W̄ ᾱ′′> ∈ ct . In this case, we have:

(3.4.1.1) mbody(m, t<π̄′′>) = mbody(m, B<ᾱ′′[π̄′′/ᾱ′]>)
(3.4.1.2) mtype(m, t<π̄′′>) = mtype(m, B<ᾱ′′[π̄′′/ᾱ′]>)

We have assumed that ct : ⋄. By (3.4.4), (3.4.1.1) and (3.4.1.2), it follows that we can
take the premise of rule (Mth) for m in B to obtain:

(3.4.1.3) ᾱ : T̄ , ᾱ′′ : W̄ , ı̄ : V̄ , ı0 : B<W̄>; ı0 ⊢
{E[σ′] * ı0 6= null}

c′′ : U [σ′]
{(ex U [σ′] α′′)(H[σ′])}

Let Γ′′ = π̄ : T̄ [σ′], π̄′′ : W̄ [σ′], v̄ : V̄ [σ′], p : B<W̄ [σ′]>. By substituting actual class
parameters for formal class parameters and actual method parameters for formal method
parameters, we obtain:

(3.4.1.4) Γ′′; p ⊢ {E[σ′] * p 6= null}c′′ : U [σ′]{(ex U [σ′] α′′)(H[σ′])}

By weakening the type environment from Γ′′ to (Γ,Γ′) (by (3.4.6)) and the frame rule,
we obtain:

(3.4.1.5) Γ,Γ′; p ⊢
{J *E[σ′] * p 6= null}

c′′ : U [σ′]
{(ex U [σ′] α′′)(J *H[σ′])}

Now we can apply the derived rule for “bind” (Lemma 7) to (3.4.1.5) and (3.4.8):

(3.4.1.6) Γ,Γ′; p ⊢ {J *E′[σ′] * p 6= null}ℓ � c′′; c′ : void{G}

Because (3.4.2.8), (3.4.2.7) and (3.4.1.6) hold, we can apply (State) to obtain:

(3.4.1.7) 〈h, ℓ � c′′; c′, s〉 : ⋄

Case 3.4.2, m is implemented in a class D such that C � D � t: Without los-
ing generality, suppose C<Ū ᾱ′> ∈ ct and D<W̄ ᾱ′′> ∈ ct . Because D � t, we know
there exists π̄′′′ such that D<π̄′′′> <: t<π̄′′>. Therefore, by monotonicity of mtype,
mtype(m, D<π̄′′′>) <: mtype(m, t<π̄′′>). Then, by definition of method subtyping, we
get:

(3.4.2.1) mtype(m, D<π̄′′′>) =
<T̄ ′ ᾱ, W̄ ᾱ′> requiresE′; ensures (ex U ′ α′′)(H ′); U ′ m(C<π̄′> ı0; V̄

′ ı̄)

1We use the semicolon for substitution composition: (σ′; σ)(x)
∆
= σ′(x)[σ]
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(3.4.2.2) T̄ <: T̄ ′, U ′ <: U , V̄ <: V̄ ′

(3.4.2.3) Γhp, ı0 : D<π̄′′′>; ı0; true ⊢
(fa T̄ ᾱ)(fa V̄ ı̄)(E -* (ex W̄ ᾱ′)(E′ * (fa U ′ α′′)(H ′ -*H)))

To abbreviate, let H ′′ = (fa U ′ α′′)(H ′ -*H). Applying substitutivity and (Fa Elim) to
(3.4.2.3), we obtain:

(3.4.2.4) Γhp; p; true ⊢ E[σ′;σ] -* (ex W̄ [σ′;σ] ᾱ′)(E′[σ′;σ] *H ′′[σ′;σ])

From (3.4.10) and (3.4.2.4), it follows that there exist π̄′′′′ and σ′′ such that:

(3.4.2.5) σ′′ = (σ, ᾱ′ 7→ π̄′′′)

(3.4.2.6) Γ[σ′′] ⊢ π̄′′′′ : W̄ [σ′;σ′′]

(3.4.2.7) Γ[σ′′] ⊢ E ;R; s |= J [σ′′] *E′[σ′;σ′′] *H ′′[σ′;σ′′]

Let Γ′′ = (Γ′, ᾱ : W̄ [σ′]). By (3.4.2.6), we get:

(3.4.2.8) Γ ⊢ σ′′ : Γ′′

Because C � D, by mbody’s definition:

(3.4.2.9) mbody(m, C<π̄′>) = mbody(m, D<ᾱ′′[π̄′/ᾱ′]>)

We have assumed that ct : ⋄. Because (3.4.2.9) holds, by taking the premise of rule (Mth)
for m in D and substitute actual class parameters for formal class parameters and actual
method parameters for formal method parameters, we obtain:

(3.4.2.10) Γ,Γ′′; p ⊢ {E′[σ′] * p 6= null}c′′ : U ′[σ′]{(ex U ′[σ′] α′′)(H ′[σ′])}

From (3.4.2.10) and (3.4.2.9) By the frame rule, we obtain:

(3.4.2.11) Γ,Γ′′; p ⊢ {J *H ′′[σ′] *E′[σ′] * p 6= null}
c′′ : U ′[σ′]
{(ex U ′[σ′] α′′)(J *H ′′[σ′] *H ′[σ′])}

We weaken (3.4.8) by extending the type environment to (Γ,Γ′′):

(3.4.2.12) Γ,Γ′′; r ⊢ {J * (ex U [σ′] α′′)(α′′ == ℓ * H[σ′])}c′ : void{G}

Using the natural deduction rules, one can show the following;

(3.4.2.13) Γ,Γ′′; r; (ex U ′[σ′] α′′)(J *H ′′[σ′] *H ′[σ′])
⊢ J * (ex U [σ′] α′′)(α′′ == ℓ * H[σ′])

Thus, by logical consequence (Lemma 6), we get:

(3.4.2.14) Γ,Γ′′; r ⊢ {(ex U ′[σ′] α′′)(J *H ′′[σ′] *H ′[σ′])}c′ : void{G}

Now we can apply the derived rule for “bind” (Lemma 7) to (3.4.2.11) and (3.4.2.14):

(3.4.2.15) Γ,Γ′′; p ⊢ {J *H ′′[σ′] *E′[σ′] * p 6= null}ℓ � c′′; c′ : void{G}

Because (3.4.2.8), (3.4.2.7) and (3.4.2.15) hold, we can apply (State) to obtain:

(3.4.2.16) 〈h, ℓ � c′′; c′, s〉 : ⋄

This concludes the proof. �
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6.1.3 Null Error Freeness and Partial Correctness

We can now easily prove several corollaries of the preservation theorem.

Lemma 13. If (ct , c) : ⋄, then init(c) : ⋄.

Proof. Suppose (ct , c) : ⋄. By definition, this means ct : ⋄ and ∅; null ⊢ {true}c :
void{true}. Let R = (∅,0). Let E be some predicate environment such that Fct(E) = E
(which exists by Theorem 1). Then (∅ ⊢ E ;R; ∅ |= true). Now it is easy to check that the
premises of (State) are satisfied (pick σ = Γ = Γ′ = s = ∅, r = null, and F = G = true).
Thus, init(c) : ⋄, by (State). �

Recall that a head command hc is called a null error iff hc = (ℓ = null.f) or hc =
(fin null.f = v) or hc = (ℓ = null.m<π̄>(v̄)) for some ℓ,fin, f, v, m, π̄, v̄.

Proof of Theorem 4 (Verified Programs are Null Error Free). If (ct , c) : ⋄ and
init(c) →∗

ct 〈h, hc; c, s〉, then hc is not a null error.

Proof. Let (ct , c) : ⋄, st = 〈h, hc; c, s〉, and init(c) →∗
ct st . By init(c) : ⋄ (Lemma 13) and

preservation (Theorem 3), we know that st : ⋄. Suppose, towards a contradiction, that hc
is a null error. Then hc = (ℓ = null.f) or hc = (null.f = v) or hc = (ℓ = null.m<π̄>(v̄)).

Suppose first that hc = (ℓ = null.f). An inspection of the last rules of (st : ⋄)’s
derivation reveals that there must then be Γ, E , R, s, π, u such that either Γ ⊢ E ;R; s |=
PointsTo(null.f, π, u). But by definition of |=, this statement cannot hold.

Suppose now that hc = (null.f = v) An inspection of the last rules of (st : ⋄)’s
derivation reveals that there must then be Γ, E , R, s, T such that Γ ⊢ E ;R; s |=
PointsTo(null.f, 1, T). But this is false, by definition of |=.

Suppose finally that hc = (ℓ = null.m<π̄>(v̄)). An inspection of the last rules of
(st : ⋄)’s derivation reveals that there must then be Γ, E , R, s such that Γ ⊢ E ;R; s |=
null != null, which is obviously false. �

Proof of Theorem 5 (Partial Correctness).
If (ct , c) : ⋄ and init(c) →∗

ct 〈h, assert(F); c, s〉, then (Γ ⊢ E ; (h,P); s |= F [σ]) for some
Γ, E = Fct(E),P and σ ∈ LogVar ⇀ SpecVal.

Proof. Let (ct , c) : ⋄, st = 〈h, assert(F); c, s〉, and init(c) →∗
ct st . By init(c) : ⋄

(Lemma 13) and preservation (Theorem 3), we know that st : ⋄. An inspection of the
last rules of (st : ⋄)’s derivation reveals that there must then be Γ, E = Fct(E), R,
σ ∈ LogVar ⇀ SpecVal such that (Γ ⊢ E ; (h,P); s |= F [σ]). �

6.2 Soundness of Chapter 4’s Verification System

First, we state some lemmas that are needed in the next section.

6.2.1 Properties

Symbolic Binary Fractions. We define functions perm2bits : SpecVal ⇀ Bits and perm2binfr :
SpecVal ⇀ BinFrac to map fractional permissions to binary fractions:

perm2bits(split(π))
∆

=

{

1 iff π = 1
0, perm2bits(π) otherwise

perm2binfr(π)
∆

=

{

all iff π = 1
fr(perm2bits(π)) otherwise
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For example, we have perm2binfr(split(split(1))) = fr(0, 1) and [[fr(0, 1)]] = 1/4.
Functions perm2bits and perm2binfr are partial because they only make sense on fractional
permissions (recall that the set SpecVal also contains Java values).

Lemma 14 (perm2binfr Is an Equivalence Relation). If perm2binfr(π) is defined, then
[[π]] = [[perm2binfr(π)]].

Proof. By induction on π. �

Lemma 15 (Subtraction of Symbolic Fractions). If [[fr2]] ≤ [[fr1]], then there exists a
unique symbolic fraction fr1 − fr2 such that (fr1 − fr2) + fr2 = fr1.

Proof. If [[fr1]] − [[fr2]] = 0, we define fr1 − fr2
∆

= fr(). If [[fr1]] − [[fr2]] = 1, we define

fr1− fr2
∆

= all. Otherwise, we represent [[fr1]]− [[fr2]] as
∑n

i=1 bit i ·
1
2i where bitn = 1, and

we define fr1−fr2
∆

= fr(bit1, . . . , bitn). By construction, we have [[fr1−fr2]]+[[fr2]] = [[fr2]].
Then (fr1− fr2)+ fr2 = fr2 because, by our definition of addition, (fr1− fr2)+ fr2 is the
only symbolic fraction fr such that [[fr1 − fr2]] + [[fr2]] = [[fr ]]. �

Lemma 16 (Distributivity of Scalar Multiplication). If fr1 + fr2 exists and Γ; v; true ⊢
o.P<π> *-* o.P<split(π)> * o.P<split(π)> holds, then:

Γ; v; true ⊢ (fr1 + fr2) · o.P<1> *-* fr1 · o.P<1> * fr2 · o.P<1>

Proof. Similar to the proof of Lemma 92 in [54, ➜T]. For this proof to apply here,
we first remark that Γ; v; true ⊢ o.P<π> *-* (o.P<split(π)> * o.P<split(π)>) implies
supportedness (as defined in [54]) of P . �

Semantics. The following lemma is needed to update the global join table after calling
join (recall that the global join table is an upper bound on how much of threads’s
postconditions can be taken back).

Lemma 17 (Thread Joining). Let o ∈ dom(h), P(o, join) ≤ x ≤ J (o) and J ′ =
J [(o) 7→ x].

If (Γ ⊢ E ; (h,P,J ); s |= F ), then (Γ ⊢ E ; (h,P,J ′); s |= F ).

Proof. By induction on the structure of F . For cases F = o.P@C<π̄> and F = o.P<π̄>,
we use axiom (b) for predicate environments. �

6.2.2 Preservation

Now, we update Theorem 3’s proof to cope with the new cases of the operational seman-
tics. We do not show how existing cases are updated to account for multiple threads: the
only change is that there is an extra level of indirection between the top level resource
and the resource for each thread (because states now include a thread pool instead of a
single thread). Details can be found in [54].

Proof of Theorem 3 (Preservation). If (ct : ⋄), (st : ⋄) and st →ct st ′, then (st ′ : ⋄).

Proof.

(1) ct : ⋄ assumption
(2) st : ⋄ assumption
(3) st → st ′ assumption
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An inspection of the reduction rules shows that st is of the following form.

(4) st = 〈h, ts | o is (s in c)〉

The proof of (st : ⋄) ends in an application of (State), preceded by an application of (Cons
Pool), preceded by an application of (Thread) for thread o. The rule (Cons Pool) includes
the following premise:

(5) Rts ⊢ ts : ⋄

The rule (Thread) has the following premises:

(6) Rjoin(o) ≤ [[fr ]]
(7) Γ ⊢ σ : Γ′

(8) dom(Γ′) ∩ cfv(c) = ∅
(9) Γ,Γ′ ⊢ s : ⋄
(10) Γ[σ] ⊢ E ;R; s |= F [σ]
(11) Γ,Γ′; r ⊢ {F}c : void{fr · o.postJoin<1>}

The proof structure is exactly as in Section 6.1.2. The only difference is that we have
to complete case 3 with the new reduction cases (Red Fork) and (Red Join). In these
cases, we can assume that the following statements hold:

(12) c = hc; c′

(13) Γ,Γ′; r ⊢ {F}hc{F ′}
(14) Γ,Γ′; r ⊢ {F ′}c′ : void{fr · o.postJoin<1>}

We now add cases (Red Fork) and (Red Join) to subcase 3 of Section 6.1.2’s proof.

Case 3.5, (Red Fork):

h(p)1 = C<π̄> p /∈ (dom(ts) ∪ {o}) mbody(run, C<π̄>) = (this).cr c′′ = cr[p/this]

〈h, ts | o is (s in ℓ = p.fork(); c′)〉 → 〈h, ts | o is (s in ℓ = null; c′) | p is (∅ in c′′)〉

In this case, we can further instantiate c and st ′ as follows:

(3.5.1) c = ℓ = p.fork(); c′

(3.5.2) st ′ = 〈h, ts | o is (s in ℓ = null; c′) | p is (∅ in c′′)〉

The last rules in (13)’s derivation are (Frame) preceded by (Call). From the rule premises,
we obtain:

(3.5.3) F = this.preFork *H.
(3.5.4) Γ,Γ′ ⊢ p : t<π̄′>

(3.5.5) void <: Γ(ℓ)
(3.5.6) Γ,Γ′; r ⊢ {H * (ex void α′)(α′ == ℓ)}c′ : void{fr · o.postJoin<1>}
(3.5.7) ℓ 6∈ H

Because of method inheritance and subtyping, we do not know in which class run is
implemented. Two cases are possible: (1) run is implemented in a class B such that
t � B or (2) run is implemented in a class D such that C � D � t (recall that, by
h(p)1 = C<π̄>, C is p’s dynamic class). From now on, we assume case (2) holds and omit
case (1) (it is simpler than case (2)).

Without loss of generality, let C<W̄ ᾱ> ∈ ct , D<T̄ ᾱ′> ∈ ct , and t<V̄ ᾱ′′> ∈ ct . By
mbody’s definition, we know that:
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(3.5.8) mbody(m, C<π̄>) = mbody(m, D<ᾱ′[π̄/ᾱ]>)

Because (3.5.8) holds, from the premises of rule (Mth) for D.run, we obtain (recall that
logical parameters are forbidden for run, hence the simple statement):

(3.5.9) ᾱ′ : T̄ , this : D<ᾱ′> ; this ⊢
{this.preFork * this != null}

cr : void
{(ex void α′)(this.postJoin<1>)}

Because D � t, we know that there exists π̄′′ such that D<π̄′′> <: t<π̄′[π̄′′/ᾱ′]>. Because
(Γhp ⊢ h : ⋄), we know that (Γhp ⊢ π̄′[π̄′′/ᾱ′] : V̄ ). From the last two judgments, by
subtyping and substitutivity, we obtain:

(3.5.10) ᾱ′ : T̄ [π̄′′/ᾱ′], this : t<π̄′[π̄′′/ᾱ′]> ; this ⊢
{this.preFork * this != null}

cr : void
{(ex void α′)(this.postJoin<1>)}

By applying substitutivity again (Lemma 5) to (3.5.10), we obtain:

(3.5.11) Γhp; p ⊢ {p.preFork * p != null}c′′ : void{(ex void α′)(p.postJoin<1>)}

By the definition of scalar definition, it follows that:

(3.5.12) Γhp; p ⊢ {p.preFork * p != null}c′′ : void{(ex void α′)(all · p.postJoin<1>)}

From (12) and (3.5.3), we know there exist Rp and Ro such that:

(3.5.13) Rp *Ro = R

(3.5.14) Γ[σ] ⊢ E ;Rp; s |= p.preFork * p != null

(3.5.15) Γ[σ] ⊢ E ;Ro; s |= H

From (3.5.14) and (3.5.12), applying (Thread) yields:

(3.5.16) Rp ⊢ p is (∅ in c′′) : ⋄

Applying admissibility of logical consequence (Lemma 6) to (3.5.6), we get:

(3.5.17) Γ,Γ′; r ⊢ {H * (ex void α′)(α′ == ℓ) * ℓ == null}c′ : void{fr · o.postJoin<1>}

Then, by (3.5.7), we can apply (Var Set) to obtain:

(3.5.18) Γ,Γ′; r ⊢ {H * (ex void α′)(α′ == ℓ)}ℓ = null; c′ : void{fr · o.postJoin<1>}

The existential formula can be validated by instantiating α′ by s(ℓ). Therefore, (3.5.15)
gives us:

(3.5.19) Γ,Γ′ ⊢ E ;Ro; s |= H * (ex void α′)(α′ == ℓ)

From (3.5.19) and (3.5.18), by (Thread), it follows that:

(3.5.20) Ro ⊢ o is (s in ℓ = null; c′) : ⋄

The rest is routine.
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Case 3.6, (Red Join):

〈h, ts ′ | o is (s in ℓ = p.join(); c′) | p is (s′ in v)〉 → 〈h, ts ′ | o is (s in ℓ = null; c′) | p is (s′ in v)〉

In this case, we can further instantiate c and st ′ as follows:

(3.6.1) ts = ts ′ | p is (s′ in v)
(3.6.2) c = ℓ = p.join(); c′

(3.6.3) st ′ = 〈h, ts ′ | o is (s in ℓ = null; c′) | p is (s′ in v)〉

The last rules in (13)’s derivation are (Frame) preceded by (Mth) (with m = join). From
the rule premises we obtain:

(3.6.4) F = Join(p, π′) *H
(3.6.5) Γ,Γ′ ⊢ p : C ′<π̄′>

(3.6.6) σ′ = (p/this)
(3.6.7) void <: Γ(ℓ)

(3.6.8) Γ,Γ′; r ⊢
{H * (ex void α′)(ᾱ′ == ℓ * p.postJoin<π′>)}

c′ : void
{fr · o.postJoin<1>}

(3.6.9) ℓ 6∈ H

From (12) and (3.6.4), we obtain:

(3.6.10) Γ[σ] ⊢ E ;R; s |= H[σ] * Join(p, π′)

By the semantics of *, there exist Ro,1 and Ro,2 such that:

(3.6.11) R = Ro,1 *Ro,2

(3.6.12) Γ[σ] ⊢ E ;Ro,1; s |= H[σ]
(3.6.13) Γ[σ] ⊢ E ;Ro,2; s |= Join(p, π′)

The last of these statements means that:

(3.6.14) [[π′]] ≤ Ro,2
perm(p)

Recall that (Rts ⊢ ts : ⋄), by (5), and ts = ts ′ | p is (s′ in v), by (3.6.1). The premises of
the last rule of (Rts ⊢ ts : ⋄)’s derivation are:

(3.6.15) Rts = Rts′

*Rp

(3.6.16) Rts′

⊢ ts ′ : ⋄
(3.6.17) Rp ⊢ p is (s′ in v) : ⋄

Let J = Rp
join. Recall that the *-composition of two resources is only defined if they

both have the same global join table. So J = Rts
join = Rjoin = Ro

join holds, too. From
(Rp ⊢ p is (s′ in v) : ⋄), by inverting (Thread), we know there exists frp such that these
judgments hold:

(3.6.18) Γ′′[σ′′′] ⊢ E ;Rp; s′ |= frp · p.postJoin<1>
(3.6.19) J (p) ≤ [[frp]]

We know that Γ′′
hp[σ

′′′] = Γ′′
hp = h(o)1 = Γhp = Γhp[σ]. Because frp · p.postJoin<1> does

not contain free variables, we can restrict the stack in (3.6.18):

(3.6.20) Γ[σ] ⊢ E ;Rp; ∅ |= frp · p.postJoin<1>
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We define: σ′′ = (σ′, v/α′). Let fr ′ ∆

= perm2binfr(π′). By axiom (b) for resources, we
have that

(

λq.Ro,2
perm(q, join)

)

(p) ≤ J (p) i.e., Ro,2
perm(p, join) ≤ J (p). Combining all

inequalities together, we obtain:

(3.6.21) [[π′]] ≤ Ro,2
perm(p, join) ≤ J (p) ≤ [[frp]]

By Lemma 14 and Lemma 15, it follows that frp − fr ′ exists. By standard arithmetic,

we have frp · p.postJoin<1> = ((frp − fr ′) + fr ′) · p.postJoin<1>. Because postJoin is
a group, we can apply distributivity (Lemma 16) and obtain:

(3.6.22) ((frp−fr ′)+fr ′)·p.postJoin<1> *-* (frp−fr ′)·p.postJoin<1> * fr ′·p.postJoin<1>

Therefore, (3.6.20) implies the following statement:

(3.6.23) Γ[σ] ⊢ E ;Rp; ∅ |= (frp − fr ′) · p.postJoin<1> * fr ′ · p.postJoin<1>.

By definition of semantic validity, there exist Rp,1 and Rp,2 such that:

(3.6.24) Rp = Rp,1 *Rp,2

(3.6.25) Γ[σ] ⊢ E ;Rp,1; ∅ |= (frp − fr ′) · p.postJoin<1>

(3.6.26) Γ[σ] ⊢ E ;Rp,2; ∅ |= fr ′ · p.postJoin<1>

We now define:

(3.6.27) J ′ ∆

= J [p 7→ (J (p)− [[fr ′]])]

(3.6.28) (Rts′

)′
∆

= (Rts′

hp ,Rts′

perm,J ′)

(3.6.29) (Ro,1)′
∆

= (Ro,1
hp ,Ro,1

perm,J ′)

(3.6.30) (Rp,2)′
∆

= (Rp,2
hp ,Rp,2

perm,J ′)

(3.6.31) (Rp)′
∆

= (Rp,1
hp ,Rp,1

perm,J ′)

(3.6.32) (Ro)′
∆

= (Ro,1)′ * (Rp,2)′

It now suffices to show the following claims:

(3.6.33) (Rts′

)′ ⊢ ts ′ : ⋄ goal
(3.6.34) (Rp)′ ⊢ p is (s′ in v) : ⋄ goal
(3.6.35) (Ro)′ ⊢ o is (s in ℓ = null; c′) : ⋄ goal

Goal (3.6.33) is a consequence of (Rts′

⊢ ts ′ : ⋄) and Lemma 17. To show goal (3.6.34)
we use (3.6.25) and Lemma 17. So we are left with goal (3.6.35): By combining (3.6.12)
and (3.6.26), we obtain:

(3.6.36) Γ[σ] ⊢ E ; (Ro,1)′ * (Rp,2)′; ∅ |= H[σ] * fr ′ · p.postJoin<1>

Because of (3.6.35), σ′′ = (σ′, v/α′), and furthermore because all values of type void are
equal to null, we obtain:

(3.6.37) Γ[σ] ⊢ E ; (Ro)′; s |= H[σ] * (ex void α′)(α′ == ℓ * fr ′ · p.postJoin<1>)

In addition, applying admissibility of logical consequence (Lemma 6) and (Var Set) to
(3.6.8) (like at the end of proof case (Red Fork)), we also get:

(3.6.38) Γ,Γ′; r ⊢
{H * (ex void α′)(α′ == ℓ * fr ′ · p.postJoin<1>)}

ℓ = null; c′ : void
{fr · o.postJoin<1>}

Our goal (3.6.35), now follows from (3.6.37) and (3.6.38). �
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6.2.3 Data Race Freedom

We obtain data race freedom of verified programs as a corollary of the preservation the-
orem.

Proof of Theorem 6 (Verified Programs are Data Race Free). If (ct , c) : ⋄ and
init(c) →∗

ct 〈h, ts | o1 is (s1 in hc1; c1) | o2 is (s2 in hc2; c2)〉, then (hc1, hc2) is not a data
race.

Proof. Let (ct , c) : ⋄, st = 〈h, ts | o1 is (s1 in hc1; c1) | o2 is (s2 in hc2; c2)〉, and
init(c) →∗

ct st . By init(c) : ⋄ (Lemma 13) and preservation (Theorem 3), we know that
st : ⋄. Suppose, towards a contradiction, that (hc1, hc2) is a data race. An inspection
of the last rules of (st : ⋄)’s derivation reveals that there must then be resources R, R′

and a heap cell o.f such that R ⊢ o1 is (s1 in hc1; c1) : ⋄, R′ ⊢ o2 is (s2 in hc2; c2) : ⋄,
R#R′, Rperm(o, f) = 1 and R′

perm(o, f) > 0. But then Rperm(o, f) +R′
perm(o, f) > 1, in

contradiction to R#R′. �

6.3 Soundness of Chapter 5’s Verification System: Preservation

To prove preservation, we need an auxiliary lemma:

Lemma 18 (Monotonicity of Initialized Sets).
If (Γ ⊢ E ;R; s |= F ), R′ = (Rhp,Rperm,Rjoin,Rlock,Rfresh,Rinit∪I) and I ⊆ dom(Γ), then
(Γ ⊢ E ;R′; s |= F ).

Proof. By induction on the structure of F , making use of the syntactic restriction that
the initialized-predicate must not occur in negative positions. �

Now, we update Theorem 3’s proof to cope with the new cases of the operational
semantics. We do not show how existing cases are updated to account for reentrant locks:
except in cases (Red New), (Red Fork) and, (Red Join) (where there is little change,
because we changed class Thread); there is no change at all in Theorem 3’s proof.

Proof of Theorem 3 (Preservation). If (ct : ⋄), (st : ⋄) and st →ct st ′, then (st ′ : ⋄).

Proof.

(1) ct : ⋄ assumption
(2) st : ⋄ assumption
(3) st → st ′ assumption

An inspection of the reduction rules shows that st is of the following form, where o is the
thread that the reduction rule “operates on” (i.e., for all rules but (Red Notify) the only
thread on the reduction’s left hand side whose components are explicitly named, and for
(Red Notify) the thread whose head command is notify()):

(4) st = 〈h, l , ts | o is (s in c)〉

The proof of (st : ⋄) ends in an application of (State), preceded by an application of (Cons
Pool), preceded by an application of (Thread) for thread o. Let Rts and R′ be the
resources that satisfy the thread pool ts and the resource invariants of the initialized,
unlocked objects (premises of (Cons Pool) and (State)):

(5) Rts ⊢ ts : ⋄
(6) (R *Rts)#R′
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(7) l = conc((R *Rts)lock)
(8) (Rfree)lock = ∅
(9) Γ′′ ⊢ E ;R′; ∅ |= �q∈ready(R*Rts)q.inv

The rule (Thread) includes the following premises:

(10) dom(Rlock) ⊆ {o}
(11) Γ,Γ′ ⊢ s : ⋄
(12) Γ[σ] ⊢ E ;R; s |= F [σ]
(13) Γ,Γ′; r ⊢ {F}c : void{G}

The proof structure is exactly like in Section 6.2.2. We extend case 3 with the new
reduction cases, i.e., (Red Lock), (Red Unlock), (Red No Op) (forcommit), (Red Wait),
(Red Notify), (Red Skip Notify), and (Red Resume). In all these cases, we can assume
that the following statements hold:

(14) c = hc; c′

(15) Γ,Γ′; r ⊢ {F}hc{F ′}
(16) Γ,Γ′; r ⊢ {F ′}c′ : void{G}

We now add cases (Red Lock), (Red Unlock), (Red Wait), (Red Notify),
(Red Skip Notify), and (Red Resume) to subcase 3 of Section 6.2.2’s proof.

Case 3.7, (Red Lock):

(l(p) = free, l ′ = l [p 7→ (1, o)]) or (l(p) = (n, o), l ′ = l [p 7→ (n + 1, o)])

〈h, l , ts | o is (s in p.lock(); c′)〉 → 〈h, l ′, ts | o is (s in c′)〉

In this case, we can further instantiate c and st ′ as follows:

(3.7.1) c = p.lock(); c′

(3.7.2) st ′ = 〈h, l ′, ts | o is (s in c′)〉
(3.7.3) (l(p) = free and l ′ = l [p 7→ (1, o)]) or (l(p) = (n, o) and l ′ = l [p 7→ (n + 1, o)])

The last rules in (13)’s derivation are (Frame) preceded by (Lock) or (Re-Lock). From
the premises of these rules, we obtain H and π such that either these judgments hold:

(3.7.4) F = H * Lockset(π) * !(π contains p) * p.initialized
(3.7.5) Γ,Γ′ ⊢ p, π,H : Object, lockset, ⋄
(3.7.6) Γ,Γ′; r ⊢ {H * Lockset(p · π) * p.inv}c′ : void{G}

or these judgments hold:

(3.7.7) F = H * Lockset(p · π)
(3.7.8) Γ,Γ′ ⊢ p, π,H : Object, lockset, ⋄
(3.7.9) Γ,Γ′; r ⊢ {H * Lockset(p · p · π)}c′ : void{G}

Now we split cases according to (3.7.3).

Case 3.7.1, l(p) = free and l ′ = l [p 7→ (1, o)]: We suppose that (3.7.7), (3.7.8), and
(3.7.9) hold and show that this contradicts the assumption that st : ⋄. By (12) and (3.7.7),
we have:

(3.7.1.1) Γ[σ] ⊢ E ;R; s |= H * Lockset(p · π)
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By the semantics of Lockset(p · π), the previous judgment means that Rlock(o)(p) =

[[p · π]]
Rhp
s (p) ≥ 1. In addition, by statement (7), we have that l = conc((R *Rts)lock).

From this statement and Rlock(o)(p) = [[p · π]]
Rhp
s ≥ 1, we deduce (by the second case of

conc’s definition) that l(p) = (1, ). This contradicts l(p) = free: this case is impossible.
Therefore, we can suppose that (3.7.4), (3.7.5), and (3.7.6) hold.

From (12) and (3.7.4), we have:

(3.7.1.2) Γ[σ] ⊢ E ;R; s |= H * Lockset(π) * !(π contains p) * p.initialized

From (3.7.1.2), by the semantics of p.initialized, it follows that p ∈ Rinit. By the
way initialized sets are joined, it follows that p ∈ (R *Rts)init. In addition we have
l(p) = free. From the previous statement and l = conc((R *Rts)lock) (statement (7))
it follows that (∀q ∈ dom((R *Rts)lock))(p 6∈ (R *Rts)lock(q)) holds (by the first case
of conc’s definition). From the previous statement and p ∈ (R *Rts)init, it follows that
p ∈ ready(R *Rts). Therefore, by (9) and case * of the formula semantics, there exist Rp

and R′
free such that:

(3.7.1.3) Rfree = Rp *R′
free

(3.7.1.4) Γ[σ] ⊢ E ;Rp; ∅ |= p.inv
(3.7.1.5) Γ[σ] ⊢ E ;R′

free; ∅ |= �q∈(ready(R*Rts)\p)q.inv

We define: R♮ ∆

= (Rhp,Rperm,Rjoin,Rlock[o 7→ (Rlock(o) ⊔ [p])],Rfresh,Rinit). By case
Lockset(p · π) of the formula semantics and (3.7.1.2), it follows that:

(3.7.1.6) Γ[σ] ⊢ E ;R♮; s |= H[σ] * Lockset(p · π)

We define: R′ ∆

= R♮ *Rp. Because R#Rts#Rfree and Rp ≤ Rfree (this follows from
Rp *R′

free = Rfree), we have R#Rp. In addition, because (Rfree)lock = ∅ (statement (8)),
we have that o 6∈ dom((Rp)lock). Putting this all together we obtain:

(3.7.1.7) R♮#Rp

From (3.7.1.6), (3.7.1.4), (3.7.1.7), and case * of the formula semantics, it follows that:

(3.7.1.8) Γ[σ] ⊢ E ;R′; s |= H[σ] * Lockset(p · π) * p.inv

We apply (Thread) to (3.7.1.8) and (3.7.6). We obtain that the thread o is verified:
(R′ ⊢ o is (s in c′) : ⋄). We apply (Cons Pool) to this judgment and (5). We obtain:

(3.7.1.9) R′ *Rts ⊢ t | ts : ⋄

Now we establish that resource axiom (b) is preserved for resource R′ *Rts (the proof is
similar for R′):

(3.7.1.10) {q | q ∈ (R′ *Rts)lock( )} ⊆ (R′ *Rts)init (goal)

By the definition of R′, we have:

(3.7.1.11) {q | q ∈ (R′ *Rts)lock( )} = {q | q ∈ (R *Rts)lock( )} ∪ {p}

Because p ∈ Rinit (this follows from (3.7.1.2)), by the way initialized sets are joined, we
have p ∈ (R *Rts)init. Now (R′ *Rts)init = (R *Rts)init, equality (3.7.1.11) and resource
property (b) for R *Rts suffice to show (3.7.1.10).

From the definitions of R′, p != null and l ′, it follows that l ′ = conc((R′ *Rts)lock).
From this judgment,R′#Rts#R

′
free (this follows from the definitions ofR′,Rts , andR′

free,
and R#Rts#Rfree), (3.7.1.5), and (3.7.1.9), we can apply (State). We obtain st ′ : ⋄.
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Case 3.7.2, l(p) = (n, o) and l ′ = l [p 7→ (n + 1, o)]: We suppose that (3.7.4), (3.7.5),
and (3.7.6) hold and show that this contradicts the assumption that st : ⋄. By (12)
and (3.7.4), we have:

(3.7.2.1) Γ[σ] ⊢ E ;R; s |= H[σ] * Lockset(π) * !(π contains p) * p.initialized

By the semantics of !(π contains p), the previous judgment means that p 6∈ Rlock(o)

and [[π]]
Rhp
s (p) = 0. In addition, by statement (7), we have that l = conc((R *Rts)lock).

From this statement and p 6∈ Rlock(o), we deduce (by the first case of conc’s definition)
that l(p) = free or (by the second case of conc’s definition) that l(p) = ( , q) with q 6= o.
In both cases, this contradicts l(p) = (n, o): this case is impossible. Therefore, we can
suppose that (3.7.7), (3.7.8), and (3.7.9) hold.

Like before, from (12) and (3.7.7), we have:

(3.7.2.2) Γ[σ] ⊢ E ;R; s |= H[σ] * Lockset(p · π)

By the semantics of lockset, we have p ∈ Rlock(o). We define:

(3.7.2.3) R′ ∆

= (Rhp,Rperm,Rjoin,Rlock[o 7→ (Rlock(o) ⊔ [p])],Rfresh,Rinit).

By the semantics of Lockset(p · p · π) and (3.7.2.2) it follows that:

(3.7.2.4) Γ[σ] ⊢ E ;R′; s |= H[σ] * Lockset(p · p · π)

We apply (Thread) to (3.7.2.4) and (3.7.9). We obtain that the thread o is verified: (R′ ⊢
o is (s in c′) : ⋄). We apply (Cons Pool) to this judgment and (5) to obtain that the thread
pool is verified (R′ *Rts ⊢ t | ts : ⋄). From this judgment and l ′ = conc((R′ *Rts)lock)
(this follows from (7) and the definitions of R′ and l ′) we can apply (State). We obtain
st ′ : ⋄.

Case 3.8, (Red Unlock):

l(p) = (n, o) n = 1⇒ l ′ = l [p 7→ free] n > 1⇒ l ′ = l [p 7→ (n− 1, o)]

〈h, l , ts | o is (s in p.unlock(); c′)〉 → 〈h, l ′, ts | o is (s in c′)〉

In this case, we can further instantiate c and st ′ as follows:

(3.8.1) c = p.unlock(); c′

(3.8.2) st ′ = 〈h, l ′, ts | o is (s in c′)〉
(3.8.3) (n = 1 and l ′ = l [p 7→ free]) or (n > 1 and l ′ = l [p 7→ (n− 1, o)])

The last rules in (13)’s derivation are (Frame) preceded by (Unlock) or (Re-Unlock).
From the premises of these rules, we obtain H and π such that either these judgments
hold:

(3.8.4) F = H * Lockset(p · p · π)
(3.8.5) Γ,Γ′ ⊢ p, π,H : Object, lockset, ⋄
(3.8.6) Γ,Γ′; r ⊢ {H * Lockset(p · π)}c′ : void{G}

or these judgments hold:

(3.8.7) F = H * Lockset(p · π) * p.inv
(3.8.8) Γ,Γ′ ⊢ p, π,H : Object, lockset, ⋄
(3.8.9) Γ,Γ′; r ⊢ {H * Lockset(π)}c′ : void{G}

Now we do a case split on (3.8.3).
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Case 3.8.1, n = 1 and l ′ = l [p 7→ free]: We suppose that (3.8.4), (3.8.5), and (3.8.6)
hold and show that this contradicts the assumption that st : ⋄. By (12) and using (3.8.4),
we have:

(3.8.1.1) Γ[σ] ⊢ E ;R; s |= H[σ] * Lockset(p · p · π)

By the semantics of Lockset(p · p · π), the previous judgment means that Rlock(o)(p) =

[[p · p · π]]
Rhp
s (p) ≥ 2. In addition, by statement (7), we have that l = conc((R *Rts)lock).

From this statement and Rlock(o)(p) = [[p · p · π]]
Rhp
s (p) ≥ 2, we deduce (by the second

case of conc’s definition) that l(p) = (2, ). This contradicts l(p) = (1, o): this case is
impossible. Therefore, we can suppose that (3.8.7), (3.8.8), and (3.8.9) hold.

By (12) and (3.8.7), we have:

(3.8.1.2) Γ[σ] ⊢ E ;R; s |= H[σ] * Lockset(p · π) * p.inv

From this judgment, by the semantics of *, it follows that there exist R1 and R2 such
that the following judgments hold:

(3.8.1.3) R = R1 *R2

(3.8.1.4) Γ[σ] ⊢ E ;R1; s |= H[σ] * Lockset(p · π)
(3.8.1.5) Γ[σ] ⊢ E ;R2; s |= p.inv

We define (note that the operator \ is overloaded for bags: it removes one occurence of
its right hand side from its left hand side):

(3.8.1.6) R′ ∆

= (R1
hp,R

1
perm,R1

join,R
1
lock[o 7→ (R1

lock(o) \ p)],R1
fresh,R

1
init)

By (3.8.1.4) and the definition of R′, it follows that:

(3.8.1.7) Γ[σ] ⊢ E ;R′; s |= H[σ] * Lockset(π)

We apply (Thread) to the previous judgment and (3.8.9) to obtain that thread o is verified:
(R′ ⊢ o is (s in c′) : ⋄).
Now we establish the invariant that there is an R′

free that satisfies the *-conjunction
of monitor invariants of unheld locks (i.e., we reestablish assumption (9)) (note that p ∈
(R *Rts)init holds because of resource axiom (b) for R *Rts and because Rlock(o)(p) = 1).
We define:

(3.8.1.8) R′
2

∆

= (R2
hp,R

2
perm,R2

join, ∅,R
2
fresh,R

2
init)

(3.8.1.9) R′
free

∆

= Rfree *R
′
2

By (10), we have dom(Rlock) ⊆ {o}. Further, by R = R1 *R2 and (3.8.1.4), we have
dom(R1) = {o}. BecauseR1#R2, it follows thatR2

lock = ∅. From the previous statement,
it follows that we can set the lock table to the empty set in (3.8.1.5). We obtain:

(3.8.1.10) Γ[σ] ⊢ E ;R′
2; s |= p.inv

From the definition of R′, the previous judgment, (9), and (8), it follows that:

(3.8.1.11) ready(R′ *R′
ts) = ready(R *R′

ts) ∪ {p}
(3.8.1.12) Γ ⊢ E ;R′

free; ∅ |= �q∈ready(R′ *R′

ts)
q.inv

(3.8.1.13) (R′
free)lock = ∅

Resource property (b) for R′ *Rts is preserved because of (1) resource property (b) for
R *Rts and (2) the following statement:
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(3.8.10)
{q | (∀q′ ∈ dom((R′ *Rts)lock))(q 6∈ (R′ *Rts)lock)(q

′)}
⊂

{q | (∀q′ ∈ dom((R *Rts)lock))(q 6∈ (R *Rts)lock)(q
′)}

Therefore, from l ′ = conc(R′ *Rts) (this follows from (7) and the definition of R′),
(R′ ⊢ o is (s in c′) : ⋄), (3.8.1.12), R′ # Rts # R′

free (this follows from (6)), and
(3.8.1.13), we can apply (State). We obtain: st ′ : ⋄.

Case 3.8.2, n > 1 and l ′ = l [p 7→ (n − 1, o)]: We suppose that (3.8.4), (3.8.5), and
(3.8.6) hold. We omit the proof in case where (3.8.7), (3.8.8), and (3.8.9) hold because it
is simpler (the hypotheses are stronger). By (3.8.4) and (12), we have:

(3.8.2.1) Γ[σ] ⊢ E ;R; s |= H[σ] * Lockset(p · p · π)

We define:

(3.8.2.2) R′ ∆

= (Rhp,Rperm,Rjoin,Rlock[o 7→ (Rlock(o) \ p)],Rfresh,Rinit)

By the definition of R′ and (3.8.2.1) it follows that:

(3.8.2.3) Γ[σ] ⊢ E ;R′; s |= H[σ] * Lockset(p · π)

We apply (Thread) to the previous judgment and (3.8.6). We obtain that thread o is
verified:

(3.8.2.4) (R′ ⊢ o is (s in c′) : ⋄)

We apply (Cons Pool) and (State) to l ′ = conc(R′ *Rts) (this follows from (7) and
the definition of R′), (3.8.2.4) and (5) (note that invariant (9) is preserved because
ready(R *Rts) = ready(R′ *Rts)). We obtain: st ′ : ⋄.

Case 3.9, (Red No Op) for commit:

〈h, l , ts | o is (s in p.commit; c′)〉 → 〈h, l , ts | o is (s in c′)〉

In this case, we can further instantiate c and st ′ as follows:

(3.9.1) c = p.commit; c′

(3.9.2) st ′ = 〈h, l , ts | o is (s in c′)〉

The last rules in (13)’s derivation are (Frame) preceded by (Commit). From the rule
premises we obtain H and π such that the following statements hold:

(3.9.3) F = H * Lockset(π) * p.inv * p.fresh
(3.9.4) Γ,Γ′ ⊢ p, π,H : Object, lockset, ⋄
(3.9.5) Γ,Γ′; r ⊢ {H * Lockset(π) * !(π contains p) * p.initialized}c′ : void{G}

By (13) and (3.9.3), we have:

(3.9.6) Γ[σ] ⊢ E ;R; s |= H[σ] * Lockset(π) * p.inv * p.fresh

From the previous judgment, by the semantics of *, it follows that there exist R1 and R2

such that the following judgments hold:

(3.9.7) R = R1 *R2

(3.9.8) Γ[σ] ⊢ E ;R1; s |= H[σ] * Lockset(π)
(3.9.9) Γ[σ] ⊢ E ;R2; s |= p.inv * p.fresh



112 CHAPTER 6. SOUNDNESS OF THE VERIFICATION SYSTEM

By judgment (3.9.6) and the semantics of p.fresh, it follows that p ∈ Rfresh. In addition,
by resource property (a), we have (R *Rts)fresh∩(R *Rts)init = ∅. From the way resources
are joined, it follows that p 6∈ Rinit. In addition, by p ∈ Rfresh, judgment (3.9.9), and the
way fresh sets are joined, we have p 6∈ (Rts)fresh. Putting this all together, we can define:

(3.9.10) R′ ∆

= (R1
hp,R

1
perm,R1

join,R
1
lock,R

1
fresh \ p,R1

init ∪ {p})

(3.9.11) R′
ts

∆

= ((Rts)hp, (Rts)loc, (Rts)join, (Rts)lock, (Rts)fresh, (Rts)init ∪ {p})

From the definitions of R′ and R′
ts , and R#Rts (statement (6)), it follows that:

(3.9.12) R′#R′
ts

By resource property (b) for (R *Rts) and p ∈ Rfresh, by contradiction, we have:

(3.9.13) (∀q ∈ dom((R *Rts)lock))(p 6∈ (R *Rts)lock(q))

By the definition of R′, we have p ∈ R′
init. By the semantics of p.initialized and

judgment (3.9.8), it follows that:

(3.9.14) Γ[σ] ⊢ E ;R′; s |= H[σ] * Lockset(π) * p.initialized

Let h♮ = Rhp. By statement (3.9.13) and judgment (3.9.6), it follows that that [[π]]h
♮

s (p) =
0 and p 6∈ Rlock(o). By the semantics of !(π contains p), and R′

lock = Rlock, it follows
that:

(3.9.15) Γ[σ] ⊢ E ;R′; s |= H[σ] * Lockset(π) * !(π contains p) * p.initialized

We apply (Thread) to the previous judgment and (3.9.5). We obtain that thread o is
verified: (R′ ⊢ o is (s in c′) : ⋄). By Lemma 18 and statement (5), it follows that we can
apply (Cons Pool) to obtain that the thread pool is verified: (R′

ts ⊢ ts : ⋄). We apply
(Cons Pool) to the previous statement and (R′ ⊢ o is (s in c′) : ⋄). We obtain:

(3.9.16) R′ *R′
ts ⊢ o | ts : ⋄

Now we establish the invariant that there is an R′
free that satisfy the *-conjunction of

monitor invariants of unheld locks (invariant (9)). We define:

(3.9.17) R♮
free

∆

= ((Rfree)hp, (Rfree)loc, (Rfree)join, (Rfree)lock, (Rfree)fresh, (Rfree)init ∪ {p})

(3.9.18) R′
2

∆

= (R2
hp,R

2
perm,R2

join,R
2
fresh, ∅,R

2
init ∪ {p})

(3.9.19) R′
free

∆

= R♮
free *R

′
2

By Lemma 18, we can add p to the resource’s initialized set of judgment (3.9.9). By (10),
we have dom(Rlock) ⊆ {o}. Further, byR = R1 *R2 and (3.9.8), we have dom(R1) = {o}.
Because R1#R2, it follows that R2

lock = ∅. From the previous statement, it follows that
we can set the lock table to the empty set in judgment (3.9.9). We obtain:

(3.9.20) Γ[σ] ⊢ E ;R′
2; s |= p.inv

By (3.9.13) and p ∈ (R′ *R′
ts)init, we have:

(3.9.21) ready(R′ *R′
ts) = ready(R *Rts) ∪ {p}

From (3.9.20), (9), (3.9.21), and (8), it follows that:

(3.9.22) Γ ⊢ E ;R′
free; ∅ |= �o∈ready(R′ *R′

ts)
o.inv

(3.9.23) (R′
free)lock = ∅

Now, we show that resource property (a) for R′ *R′
ts is preserved i.e., we show:
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(3.9.24) (R′ *R′
ts)fresh ∩ (R′ *R′

ts)init = ∅ (goal)

By resource property (a) for R *Rts , we have that:

(3.9.25) (R *Rts)fresh ∩ (R *Rts)init = ∅

In addition, by the definitions of R′ and R′
ts , we have:

(3.9.26) (R′ *R′
ts)fresh = (R *Rts)fresh \ p

(3.9.27) (R′ *R′
ts)init = (R *Rts)init ∪ {p}

Now, goal (3.9.24) follows from (3.9.25), (3.9.26), and (3.9.27).

From (3.9.16), R′#R′
ts#R

′
free (this follows from (6)), (3.9.23), and (3.9.22), we can apply

(State). We obtain: st ′ : ⋄.

Case 3.10, (Red Wait):

l(p) = (n, o) l ′ = l [p 7→ free]

〈h, l , ts | o is (s in ℓ = p.wait(); c′)〉 → 〈h, l ′, ts | o is (s in p.waiting(n); p.resume(n); c′)〉

In this case, we can further instantiate c and st ′ as follows:

(3.10.1) c = p = ; .wait() c′

(3.10.2) st ′ = 〈h, l ′, ts | o is (s in p.waiting(n); p.resume(n); c′)〉
(3.10.3) l(p) = (n, o)

The last rules in (13)’s derivation are (Frame) preceded by (Call). By method wait’s
specification in class Thread, it follows that; from the premises of rules (Frame) and (Call),
we obtain H and π such that these judgments hold:

(3.10.4) F = H * Lockset(π) *π contains p * p.inv
(3.10.5) Γ,Γ′ ⊢ p, π,H : Object, lockset, ⋄
(3.10.6) Γ,Γ′; r ⊢ {H * Lockset(π) * p.inv}c′ : void{G}

From (13) and (3.10.4), it follows that:

(3.10.7) Γ[σ] ⊢ E ;R; s |= F ′ * Lockset(e) * e contains p * p.inv

Let π′ be the multiset such that pn · π′ = π and such that π′ does not contain p. Note
that π′ exists by (3.10.7) and the semantics of the Lockset predicate. By (3.10.6), we
can apply (Waiting) and (Resume) to p.waiting(n); p.resume(n); c′. We obtain:

(3.10.8) Γ[σ]; v ⊢
{H * Lockset(π′) * !(π′ contains p) * p.initialized}

p.waiting(n); p.resume(n); c′ : void
{G}

By (3.10.7) and the semantics of *, it follows that there exist R1 and R2 such that the
following statements hold:

(3.10.9) R = R1 *R2

(3.10.10) Γ[σ] ⊢ E ;R1; s |= H * Lockset(π) *π contains p
(3.10.11) Γ[σ] ⊢ E ;R2; s |= p.inv

Let h♮ = R1
hp. By (3.10.10), it follows that R1

lock(p)(o) = [[π]]h
♮

s (p) ≥ 1. By the way
abstract lock tables are composed, it follows that (R *Rts)lock(p)(o) ≥ 1. Because of
resource property (b) for R *Rts , it follows that p ∈ (R *Rts)init. By the way initialized
sets are joined, it follows that:
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(3.10.12) p ∈ R1
init

We define (where \\ is an operator that removes all occurences of its right hand side from
its left hand side):

(3.10.13) R′ ∆

= (R1
hp,R

1
perm,R1

join,R
1
lock[o 7→ (R1

lock(o) \\ p)],R1
fresh,R

1
init)

(3.10.14) R′′ ∆

= (R2
hp,R

2
perm,R2

join, ∅,R
2
fresh,R

2
init)

By (3.10.10), (3.10.12), the definitions of R′ and π′, the semantics of Lockset(π′) and
!(π′ contains p), it follows that:

(3.10.15) Γ[σ] ⊢ E ;R′; s |= H * Lockset(π′) * !(π′ contains p) * p.initialized

We apply (Thread) to (3.10.15) and (3.10.8). We obtain that the thread o is verified:

(3.10.16) R′ ⊢ o is (s in p.waiting(n); p.resume(n); c′) : ⋄

We apply (Cons Pool) to the previous judgment and (5). We obtain that the thread pool
is verified: (R′ *Rts ⊢ o | ts : ⋄).

Now we establish the invariant that there is an R′
free that satisfy the *-conjunction of

monitors invariants of unheld locks (i.e., that invariant (9) is preserved).

By (10), we have dom(Rlock) ⊆ {o}. Further, by R = R1 *R2 and (3.10.10), we have
dom(R1) = {o}. BecauseR1#R2, it follows thatR2

lock = ∅. From the previous statement,
it follows that we can set the abstract lock table to the empty set in judgment (3.10.11).
We obtain:

(3.10.17) Γ[σ] ⊢ E ;R′′; s |= p.inv

Because (R *Rts) # Rfree (judgment (6)), we have R′′ # Rfree. We define:

(3.10.18) R′
free

∆

= R′′ *Rfree

By the definition of R′ (recall that p 6∈ (R′)lock(o)), the way abstract lock tables are
joined, and R1

lock(p)(o) > 0, it follows that ready(R′ *Rts) = ready(R *Rts) ∪ {p}. From
the previous judgment, it follows that we can combine (3.10.17) and (9) by case * of the
formula semantics to obtain:

(3.10.19) Γ ⊢ E ;R′
free; ∅ |= �o∈ready(R′ *Rts)o.inv

Because (R′ *Rts) # R′
free (this follows from (6)), l ′ = conc((R′ *Rts)lock) (this follows

from (7) and the definitions of R′ and l ′), (R′
free)lock = ∅ (this follows from the definition

of R′′ and (8)), we can apply (State) to (R′ *Rts ⊢ o | ts : ⋄). We obtain: st ′ : ⋄.

Case 3.11, (Red Notify):

l(p) = (n, o)

〈h, l , ts | o is (s in ℓ = p.notify(); c′) | q is (sq in p.waiting(n′); cq)〉 →
〈h, l , ts | o is (s in c′) | q is (sq in cq)〉

This proof case is trivial, because in the specification of notify and the Hoare rule for
waiting, the precondition implies the postcondition.

Case 3.12, (Red Skip Notify):

l(p) = (n, o)

〈h, l , ts | o is (s in ℓ = p.notify(); c′)〉 → 〈h, l , ts | o is (s in c′)〉

This proof case is trivial, because notify’s precondition implies its postcondition.
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Case 3.13, (Red Resume):

l(p) = free l ′ = l [p 7→ (n, o)]

〈h, l , ts | o is (s in p.resume(n); c′)〉 → 〈h, l ′, ts | o is (s in c′)〉

This proof case is very similar to the proof case for (Red Lock).
�
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Chapter 7

Specifying Protocols and
Checking Method Contracts

Classes and interfaces are often developed with a particular usage pattern in mind, i.e.,
methods are supposed to be called in a particular order. Such a usage pattern can be
described with a protocol. Protocols provide a higher level of specification, compared to
method contracts in the previous chapters. In this chapter, we show how to (1) specify
protocols (i.e., allowed sequences of method calls) of classes and (2) how to check that
method contracts are correct w.r.t. protocols.

This chapter is structured as follows: In Section 7.1 we informally explain what we
mean by protocols, in Section 7.2 we present the formal language we use to specify
protocols, and in Section 7.3 we illustrate this by specifying the protocols of Section 3.6.2’s
Iterator and Section 3.6.1’s Roster. In Section 7.4 we define the semantics of protocols
and in Section 7.5 we present a new technique to check that method contracts are correct
w.r.t. protocols.

Note: The work presented in this chapter is published in the ACM Symposium on Applied
Computing (SAC 2009) [64].

7.1 Protocols: Introduction

Classes and interfaces must sometimes be used according to a given protocol, i.e., method
calls should be done in a given order. Java’s StreamBuffer is an example of an interface
that must be used in a particular way : clients of this interface must call method read()

zero or more times and then call method close() once [80]. This can be concisely
specified with the following protocol:

read()*, close() (StreamBuffer)

More generally, a protocol is a regular expression indicating in which order methods
must be called. In this chapter, we extend Cheon et al.’s work [32] to deal with a variant
of parameterized and multithreaded classes (i.e., classes such that multiple threads can
safely execute in parallel on instances of these classes). We extend the specification
language and the semantical foundations of the work mentioned above. We maintain

117
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Cheon et al.’s spirit by providing a concise and intuitive regular expression-like notation
to write protocols of multithreaded programs.

In addition, we provide a technique to check that method contracts are correct w.r.t.
protocols. For example, given the protocol (StreamBuffer) above, a programmer has to
make sure that (1) read()’s postcondition implies reads’s precondition (because read can
be called multiple times successively) and (2) read()’s postcondition implies close()’s
precondition (because close is called after read). If one of the conditions above does not
hold, some programs, even if they obey StreamBuffer’s protocol, will fail to verify.

Our approach permits to check that method contracts are correct w.r.t. protocols
before implementing methods. According to the design by contract approach [79], a good
development process follows the following steps: (1) write high-level relations between
classes (UML-style specifications), (2) write high-level properties of individual classes
(protocols, invariants), (3) write method contracts, and (4) implement methods. However,
in the real world, most tools for software verification [6, 35] (including the verification
system described in previous chapters) are useful to check implementation of methods
against their contracts: as a result, the feedback from software verification tools comes
very late in the development process. A strength of our approach is to allow the use of
static checking early in the development process, which is – as outlined above – a good
practice for software development.

Consequently, our approach makes it easier to write correct specifications, because it
makes sure that the method level specifications respect the (more intuitive, simpler to
write) high-level protocol specifications.

We believe that support to write correct specifications (as our technique provides) is
crucial to encourage programmers to use formal methods. Our claim is supported by the
fact that it is easier to write and debug programs than to write and debug specifications.
For example, to test a program, one simply has to run it, whereas to test specifications one
needs tool support (such as JML’s runtime assertion checker [31]). In addition, we believe
writing specifications in separation logic is harder than writing specifications in first order
logic (such as JML [28] or Boogie [6]). When writing separation logic specifications, one
has to specify the threads’s permissions to access the heap and the functional behavior of
the program, whereas first order logic focuses solely on expressing the functional behavior
of the program.

7.2 Syntax

Protocols are specified by the grammar below (where we overload meta-variable s to range
over protocols). Section 3.2.1’s expressions are extended to include protocol variables.

w ∈ ProtVar protocol variables
e ∈ Exp ::= π | ℓ | w | op(ē)

s ∈ ProtSpec ::= m | w = m | s, s | s | s
| s? | s* | s+ | e ? s : s | s || s | !<n> s

Protocol specifications are single method specifications (whose return value is possibly
assigned to a variable (w = m)), or sequential composition of two protocol specifications
(s, s), or a composition of other protocols specifications with regular expressions operators
(|, ?, *, and +), or a conditional choice between two protocol specifications (e ? s : s), or
parallel composition of protocol specifications (s || s and !<n> s)
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The informal meaning of specifications is as follows: m denotes a call to m, w = m
denotes a call to m where m’s return value is stored in w, “s, s′” denotes the sequential
composition of s and s′, s | s′ denotes s or s′, s? denotes s zero or once, s* denotes s
zero or many times, s+ denotes s one or many times, e ? s : s′ denotes s if e is true s′

otherwise, s || s′ denotes s in parallel with s′ (heterogeneous parallelism), and !<n> s
denotes one to n s in parallel (homogeneous parallelism).

Since conditional protocols (case e ? s : s) are defined using expressions (which in-
clude specification values π i.e., logical variables α, see Sections 2.1 and 3.2.1), protocols
are parameterized by class parameters. This allows to adapt a protocol to the different
behaviors of a class (such as Section 3.6.2’s Iterator which is parameterized by permis-
sion p to distinguish between read-only and read-write iterators). We use this feature in
Section 7.3’s first example.

For conciseness, we do not include a conditional without “else” branch even if we use
it in later examples.

We extend the syntax of classes and interfaces with protocols:

prd ::= protocol s; protocol definitions
cl ∈ Class ::= class C<T̄ ᾱ> ext U impl V̄ { . . . prd . . . }

(scope of ᾱ includes T̄ , U, V̄ , prd)
int ∈ Interface ::= interface I<T̄ ᾱ> ext Ū { . . . prd . . . }

(scope of ᾱ includes T̄ , Ū , prd)

To type check protocols, we extend the domain of type environments so that they
contain protocol variables: From now on, type environments are partial functions of type
ObjId ∪ Var ∪ ProtVar ⇀ Type. The following rules type check protocols:

Well-typed Protocols, Γ ⊢ s : ⋄

(Prot Mth)
Γ ⊢ this : t<ᾱ> mlkup(m, t<ᾱ>) 6= undef

Γ ⊢ m : ⋄

(Prot Var Mth) Γ ⊢ this : t<ᾱ> Γ ⊢ w : U
mtype(m, t<ᾱ>) = <T̄ ᾱ> spec U m(V̄ ı̄)

Γ ⊢ w = m : ⋄

(Prot Var Mth Infer) Γ ⊢ this : t<ᾱ> Γ ⊢ m : ⋄ w 6∈ Γ
mtype(m, t<ᾱ>) = <T̄ ᾱ> spec U m(V̄ ı̄) Γ, w : U ⊢ s : ⋄

Γ ⊢ w = m, s : ⋄

(Prot Seq)
Γ ⊢ s : ⋄ Γ ⊢ s′ : ⋄

Γ ⊢ s, s′ : ⋄

(Prot Or)
Γ ⊢ s : ⋄ Γ ⊢ s′ : ⋄

Γ ⊢ s | s′ : ⋄

(Prot ?)
Γ ⊢ s : ⋄

Γ ⊢ s? : ⋄

(Prot *)
Γ ⊢ s : ⋄

Γ ⊢ s* : ⋄

(Prot +)
Γ ⊢ s : ⋄

Γ ⊢ s+ : ⋄

(Prot If)
Γ ⊢ e : bool Γ ⊢ s : ⋄ Γ ⊢ s′ : ⋄

Γ ⊢ e ? s : s′ : ⋄

(Prot ||)
Γ ⊢ s : ⋄ Γ ⊢ s′ : ⋄

Γ ⊢ s || s′ : ⋄
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(Prot !)
Γ ⊢ n : int Γ ⊢ s : ⋄

Γ ⊢ !<n> s : ⋄

Most rules are standard except (Prot Var Mth Infer). This rule is used to infer the
type of protocol variables. To do this, the rule looks up the receiver’s type (t<ᾱ>) and
uses the receiver’s type to look up the return type U of the method m (see the premise
mtype(m, t<ᾱ>) = <T̄ ᾱ> spec U m(V̄ ı̄)). The inferred type is then passed on to type
check the continuation of the protocol (Γ, w : U ⊢ s′ : ⋄). Protocols are type checked
when classes are verified. This is formally expressed by adding a premise to Section 3.4’s
(Cls) rule:

. . . this : C<ᾱ>, ᾱ : T̄ ⊢ s : ⋄ . . .
(Cls)

class C<T̄ ᾱ> ext U impl V̄ { . . . protocol s; . . . } : ⋄

7.3 Examples

In this section, we exemplify the use of protocols on two classes that we studied earlier
in Chapter 3.

Iterator. First, we look at the Iterator interface from Section 3.6.2. For convenience,
this interface is repeated here:

interface Iterator<perm p,Collection iteratee>{

init (Collection c);

boolean hasNext();

Object next();

void remove();

}

Clients of interface Iterator must follow a precise protocol. We already explained
it informally at the level of method contracts in Section 3.6.2. In Java’s documentation,
however, the protocol is described in terms of method calls. This description is spread
among the documentation of the methods of interface Iterator [80].

Intuitively, Java’s documentation specifies that init must be called first, then hasNext

must be called, then next may be called only if hasNext returned true before, and then
remove may be called if the iterator is read-write (it can read and write to the iteratee),
and this is to be repeated (except the call to init). To express that iterators may have
write-access to the iteratee, we parameterized interface Iterator by a permission p (see
details in Section 3.6.2). If p is instantiated by 1, one obtains a read-write iterator,
otherwise a read-only iterator.

We now show how to formally express this protocol with our extension. The fact that
init must be called first, before hasNext is expressed by this protocol:

protocol init, hasNext;

Then, the fact that next should be called if hasNext returned true before is described by
this protocol:

protocol init, w = hasNext, w ? next;
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Above, we use protocol variable w to bind the value returned by the call to hasNext.
Next, we express that remove may be called after next if the iterator is read-write with
the following protocol:

protocol init, w = hasNext, w ? (next, p==1 ? (remove?));

To complete the protocol, we specify that it can be repeated 0 or more times (excluding
init):

protocol init, (w = hasNext, w ? (next, p==1? (remove?)))*;

We believe that such a formal specification (compared to Java’s informal documentation)
would help clients to use Iterators in a disciplined way.

Roster. Our second example is the Roster interface from Section 3.6.1 that collects
student identifiers and associates. For convenience, we repeat this interface:

interface Roster{

void updateGrade(int id, int grade);

boolean contains(int id);

}

For performance issues, implementers of the Roster interface should allow multiple
threads to concurrently read a roster and a thread to update the grades while other
threads concurrently read the student identifiers. This can be specified with the following
protocol:

protocol (updateGrade? || (!contains)?)*;

Above, we abusively write !contains for !<232>contains. Our choice is motivated
by Java’s specification: the maximal number of threads for most virtual machines imple-
mentation is theoretically 232. Hence, our desugaring for the unparameterized ! operator
is sound for such virtual machines. In practice, virtual machines cannot handle such a
big number of threads and would crash before this number of threads.

Intuitively, in terms of method contracts, interface Roster’s protocol constrains
method updateGrade and method contains not to interfere. In terms of predicates, it
requires that the state obtained after creating a Roster instance can be divided into (1)
the state required by the execution of updateGrade and (2) the state required by multiple
concurrent executions of contains.

7.4 Semantics

Now, we give the semantics of protocols. This semantics provides a way to check program-
generated traces against protocols.

Our semantics consists of two different parts: (1) in Section 7.4.1, we instrument
programs to generate traces that track sequences of methods calls on all objects and (2)
in Section 7.4.2, we define the semantics of protocols in terms of predicates on traces.
Finally, in Section 7.4.3, we relate protocols and programs: we define what it means for
the run of a program to respect a protocol.

7.4.1 A Trace Semantics for Multithreaded Programs

To generate traces, we modify Section 5.2’s operational semantics to keep track of se-
quences of method calls on objects.
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Runtime Structures. Our semantics is defined in terms of actions, ghost stores, and traces.
An action is either method entry or method exit. Ghost stores keep track of class pa-
rameters and protocol variables. Class parameters are final: they are assigned only once
(at object creation), while protocol variables are assigned each time the corresponding
method is called. As an example, in interface Iterator’s protocol, the protocol variable
w is assigned each time hasNext is called. Ghost stores map logical variables (generic pa-
rameters) and protocol variables to specification values (permissions, client-defined values,
and Java built-in values). Finally, a trace is a sequence of ghost stores and actions:

a ∈ Action ::= m.enter | m.exit
σ ∈ GhostStore ::= (LogVar ∪ ProtVar) ⇀ SpecVal

τ ∈ Trace ::= GhostStore× Action

Alternatively, we could use heaps in our runtime structures, because they already
keep track of class parameters. We choose this solution, however, because we have to
keep track of protocol variables, which are not included in heaps anyway.

Pairs of a ghost store σ1 and an action a are written (σ, a). We write (σ, a) · τ for the
concatenation of the pair (σ, a) and trace τ , we abusively write τ ·τ ′ for the concatenation
of trace τ and trace τ ′ (this can be trivially defined in terms of the constructor (σ, a) · τ),
and we write ǫ for the empty sequence or trace. Note that, given the execution of a
multithreaded program and a distinguished object, we do not differentiate separate actions
from different threads. All actions of all threads form a single trace. This suffices to
express the semantics of protocols.

In the operational semantics, we associate each object with a trace. For this, we use
trace tables tt ∈ TraceTable = ObjId ⇀ Trace. We extend Section 5.2’s states to include
a trace table:

st ∈ State = Heap× LockTable× TraceTable × ThreadPool

We need to modify Section 5.2’s rule for method call (Red Call) to keep track of
method calls. We have to be careful though: we do not want to keep track of all method
calls, we only want to keep track of clients’s method calls i.e., top level calls. For example,
if a client calls o.m() and m’s implementation reentrantly calls o.n(), we only keep track of
the call to m (we check protocols w.r.t. to client calls, not internal calls). To distinguish
between client calls and internal (i.e., reentrant) calls, we use closed traces. A closed
trace is a sequence of pairs of an action and a ghost store such that any m.enter action
is followed by a m.exit action.

We write closed(τ) to denote closed traces. Formally, closed is defined as follows:

Closed Traces, closed(τ):

(Closed ǫ)

closed(ǫ)

(Pair Closed)

closed((σ, m.enter) · (σ′, m.exit))

(Conc Closed)
closed(τ) closed(τ ′)

closed(τ · τ ′)

1We overload σ, which we previously used to denote substitutions.
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In the operational semantics below, we use the following functions:

(σ, a)1
∆

= σ (σ, a)2
∆

= a

last(ǫ) = undef

last((σ, a) · τ)
∆

=

{

last(τ) iff τ 6= ǫ
(σ, a) otherwise

When we extend object o’s trace in a trace table tt , we use the following abbreviation:

tt [o← (σ, a)]
∆

= tt [o 7→ tt(o) · (σ, a)]

Initialization. We modify Section 5.2’s definition of the initial state of a program. Initially,
the trace table is empty (hence the third ∅):

init(c) = 〈{main 7→ (Thread, ∅)}, ∅, ∅ , main is (∅ in c)〉

Operational Semantics. We modify Section 5.2’s semantics to generate traces. Recall
that, a long time ago in a section far far away (i.e., Section 2.2); we defined a derived
form ℓ � c; c′, which assigns the result of a computation c to variable ℓ. In the operational
semantics, this derived form is introduced when a method (with body c) call is executed
(see (Red Call) on page 70).

We define a new derived form that has the same purpose as �. This new derived
form, however, also indicates that the method call being performed is a client call. This
is needed because, when a method returns, we sometimes need to keep track of the value
returned (because of possible protocol variables). To model this, we introduce a new
derived form ℓ ^o c; c′ to mean that (1) c is the body of the method about to execute;
(2) when the method will return, we will have to keep track of its return value; and (3)
the method’s receiver is o. Derived form ^ is defined similarly to � except in the base
case ℓ ^o v; c:

ℓ ^o v; c
∆

= ℓ = return-and-storeo(v); c

ℓ ^o (T ℓ′; c); c′
∆

= T ℓ′; ℓ ^o c; c′ if ℓ′ 6∈ fv(c′), ℓ′ 6= ℓ

ℓ ^o (T ı = ℓ′; c); c′
∆

= T ı = ℓ′; ℓ ^o c; c′ if ı 6∈ fv(c′)

ℓ ^o (hc; c); c′
∆

= hc; ℓ ^o c; c′

Above, return-and-store is a new command. Like return (which was introduced in
Section 2.2 on page 12), return-and-store is used to indicate when the receiver changes.
In addition, return-and-store indicates that (1) the value being returned must be stored
in the trace table and (2) the receiver of the returning method was o:

c ::= . . . | ℓ = return-and-storeo(v); c | . . .
Restriction: This clause must not occur in source programs.

In the operational semantics, we change rule (Red New), we replace rule (Red Call)
by rules (Red Call Track) and (Red Call Do Not Track), and we add rule
(Red Return Track). Rule (Red Return Track) uses function protlkup to lookup protocols
in the class table. Function protlkup is formally defined in Appendix A.
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State Reductions, st →ct st ′:

. . .

(Red New) o /∈ dom(h) h ′ = h[o 7→ (C<π̄>, initStore(C<π̄>))] s′ = s[ℓ 7→ o]

l ′ = l [o 7→ free] σ = ᾱ 7→ π̄ τ = (σ, new.enter) · (σ, new.exit)

〈h, l , tt , ts | p is (s in ℓ = new C<π̄>; c)〉 → 〈h ′, l ′, tt [o 7→ τ ] , ts | p is (s′ in c)〉

(Red Call Track) m 6∈ {fork, wait, notify} h(o)1 = C<π̄′>

mbody(m, C<π̄′>) = (ı0, ı̄).cm c′ = cm[o/ı0, v̄/ı̄]

closed(tt(o)) tt ′ = tt [o← (last(tt(o))
1
, m.enter)]

〈h, l , tt , ts | p is (s in ℓ = o.m(v̄); c)〉 → 〈h, l , tt ′ , ts | p is (s in ℓ ^o c′; c)〉

(Red Call Do Not Track) m 6∈ {fork, wait, notify} h(o)1 = C<π̄′>

mbody(m, C<π̄′>) = (ı0, ı̄).cm c′ = cm[o/ı0, v̄/ı̄] ¬closed(tt(o))

〈h, l , tt , ts | p is (s in ℓ = o.m(v̄); c)〉 → 〈h, l , tt , ts | p is (s in ℓ � c′; c)〉

(Red Return Track) h(o)
1

= C<π̄> w0 = m, . . . , wn = m ∈ protlkup(C<π̄>)
last(tt(o)) = (σ, m.enter) tt ′ = tt [o← (σ[w0 7→ v, . . . , wn 7→ v], m.exit)]

〈h, l , tt , p is (s in ℓ = return-and-storeo(v); c)〉 → 〈h, l , tt ′, p is (s in ℓ = v; c)〉

. . .

Remarks.

❼ Even though new is not a method call, the trace of an object is initialized as soon
as it is created. The initial trace of an object consists of two pairs of a ghost store
and an action. We need to do so because we need to keep track of the parameters
used to instantiate the newly created object (which are stored in the ghost store σ).
The two actions are simply new.enter and new.exit.

❼ When calling a method, if closed(tt(o)) holds, the method call is tracked because
it is a client call: rule (Red Call Track) applies. In this case, the trace table is
updated at o: a new pair of a ghost store (the last ghost store of o’s trace tt(o) i.e.,
last(tt(o))1) and an action is concatenated to o’s trace. Derived form ^ is used to
indicate that the method call is tracked.

❼ When calling a method, iff closed(tt(o)) does not hold, the method call is not tracked
because it is not a client call: rule (Red Call Do Not Track) applies. Derived form
← is used to indicate that the method call is not tracked.

❼ When a method whose return value must be tracked terminates, rule
(Red Return Track) applies. In this rule, the set of protocol variables (w0, . . . , wn)
that must be updated is looked up by protlkup(C<π̄>). Type C<π̄> is the type
of the receiver (i.e., o) of the method returning (as indicated by subscript o on
return-and-store).

Example. We show how the operational semantics behaves w.r.t. to traces. Our exam-
ple reuses the Iterator protocol explained in Section 7.3. For simplicity, in states we
focus on trace tables. We assume that the trace table is initially empty. Further, we
suppose that collection c has address ac in the heap, that the newly created iterator is
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allocated at address o, and that i.hasNext() returns true. Finally, we use the following
abbreviations:

σ
∆

= o 7→ (p 7→ 1/2, c 7→ ac)

σ′ ∆

= o 7→ (p 7→ 1/2, c 7→ ac, w 7→ true)

τnew
∆

= (σ, new.enter) · (σ, new.exit)

τinit
∆

= (σ, init.enter) · (σ, init.exit)

τhasNext
∆

= (σ, hasNext.enter) · (σ′, hasNext.exit)

τnext
∆

= (σ′, next.enter) · (σ′, next.exit)

Below, the left hand side shows the code while the right hand side shows the state in
between consecutive commands.

void getFirst(Collection c){ ← 〈∅〉
Iterator i = new Iterator<1/2,c>; ← 〈τnew〉
i.init(c); ← 〈τnew · τinit〉
bool b = i.hasNext(); ← 〈τnew · τinit · τhasNext〉
Object o = i.next(); ← 〈τnew · τinit · τhasNext · τnext〉

}

Operational Semantics. In addition to user-defined calls, we have to keep track of “special
calls” i.e., join, lock, unlock, wait, and notify. Methods join, wait, and notify are
special, because the operational semantics treats them in a special way. Methods lock

and unlock are also special: they are formally defined as commands (i.e., they are not in
class Object) and the operational semantics treats them in a special way.

We could simply forbid protocols to mention these “special” methods. They do not,
however, raise any problem for our technique. Further, we believe that programmers
could find it useful to mention these special methods in protocols. For example, if a
programmer wants to have non-reentrant locks, he could use the following class (recall
that methods lock and unlock are available in all classes):

class NonReentrantLock{

protocol (lock, unlock)*;

}

Integrating the aforementioned methods into our framework for protocols requires
crafting new rules for the operational semantics. We do not show these rules which would
be similar to the operational semantics’s rules for the methods considered (see (Red Join)
on page 51; (Red Lock), (Red Unlock), (Red Wait), (Red Notify), and (Red Skip Notify)
on page 70). The only change to these rules would be to keep track of calls to these
methods if the trace of the receiver object is closed.

Checking that Program Respect Protocols. So far, we have given a semantics of protocols in
terms of program runs; but we did not give any algorithm to actually check that programs
respect protocols. Cheon and Perumandla [32] give an algorithm to do that by adding
extra runtime checks. We could adapt this technique in a straightforward way. The only
difference is that we would need to synchronize access to the data structures used by the
runtime checker.
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7.4.2 Semantics of Protocols

The semantics of protocols is given by [[.]] : ProtSpec→ GhostStore→ 2Action. Intuitively,
[[s]](σ) returns the set of all possible sequences of actions that satisfy s w.r.t. σ. Except
for the cases e ? s : s, s || s, and !<n> s, [[.]]’s definition is standard:

[[m]](σ)
∆

=

{

{m.enter ·m.exit} iff σ = σ′ · σ′′

undef otherwise

[[w = m]](σ)
∆

=

{

{m.enter ·m.exit} iff σ = σ′ · σ′′

undef otherwise

[[s, s′]](σ)
∆

=







a · a′

∣

∣

∣

∣

∣

∣

a ∈ [[s]](σ0)
a′ ∈ [[s′]](σ1)
σ0 · σ1 = σ







[[s | s′]](σ)
∆

= [[s]](σ) ∪ [[s′]](σ)

[[s?]](σ)
∆

= {ǫ} ∪ [[s]](σ)

[[s*]](σ)
∆

=
⋃

i∈N
[[s]]i(σ)

[[s+]](σ)
∆

=
⋃

i∈N+ [[s]]i(σ)

and [[s]]n(σ) is defined as follows:

[[s]]0(ǫ)
∆

= {ǫ}

[[s]]i(σ)
∆

=







a · a′

∣

∣

∣

∣

∣

∣

a ∈ [[s]](σ0)
a′ ∈ [[s]]i−1(σ1)
σ0 · σ1 = σ







To define the semantics of a conditional protocol, we define function first : GhostStore ⇀
GhostStore to look up the first element of a sequence of ghost stores:

first(ǫ) = undef first(σ · σ)
∆

= σ

In the semantics of conditional protocols, we check the conditional’s truth w.r.t. the
first ghost store of the sequence of ghost stores and choose the protocol’s continuation
accordingly:

[[e ? s : s′]](σ)
∆

=

{

[[s]](σ) iff [[e]](first(σ)) = true

[[s′]](σ) otherwise

To define the cases s || s and !<n> s of the semantics of specifications, we define the

interleaving of two sequences of actions with ! : Action× Action→ 2Action:

ǫ ! a
∆

= {a}

a ! ǫ
∆

= {a}

a · a ! a′ · a′ ∆

=
{a · a′′ | a′′ ∈ a ! a′ · a′}

∪
{a′ · a′′ | a′′ ∈ a · a ! a′}

The ! operator is extended to sets of sequences (! : 2Action × 2Action → 2Action) in the
straightforward way. Then, we can define:

[[s || s′]](σ)
∆

= [[s]](σ) ! [[s′]](σ)

[[!<n> s]](σ)
∆

=
⋃

i∈{1,2,...,n} !i s(σ)
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where !i : ProtSpec→ 2Action is defined as follows:

!1 s(σ)
∆

= [[s]](σ)

!i s(σ)
∆

= [[s]](σ) ! (!i−1 s(σ)) (for i ≥ 2)

7.4.3 Satisfaction of Traces w.r.t. Protocols

A trace satisfies a protocol if its underlying sequence of actions is the prefix of one of the
sequences of the protocol’s semantics. We use the prefix of one of the sequences of the
protocol’s semantics, because we consider that not terminating a protocol is harmless.
Formally:

(σ0, a0) . . . (σn, an) ⊢ s iff (∃ a σ)(a0 . . . an · a ∈ [[new, s]](σ0 . . . σn · σ))

In our definition of ⊢, we add method new as a prefix of the protocol being checked.
We need to do that because as rule (Red New) on page 124 shows, when an object is
created, its initial trace is initialized with actions new.enter and new.exit.

Example. We show how the trace generated by method getFirst from Section 7.4.1
satisfies interface Iterator’s protocol. For convenience, we repeat some abbreviations
we used to define this trace:

σ
∆

= o 7→ (p 7→ 1/2, c 7→ ac)

σ′ ∆

= o 7→ (p 7→ 1/2, c 7→ ac, w 7→ true)

τnew
∆

= (σ, new.enter) · (σ, new.exit)

τinit
∆

= (σ, init.enter) · (σ, init.exit)

τhasNext
∆

= (σ, hasNext.enter) · (σ′, hasNext.exit)

τnext
∆

= (σ′, next.enter) · (σ′, next.exit)

We have to show:

τnew · τinit · τhasNext · τnext ⊢ init, (w = hasNext, w ? (next, p==1? (remove?)))*

We introduce the following abbreviations:

a0
∆

= new.enter · new.exit · init.enter · init.exit

a3
∆

= a0 · hasNext.enter · hasNext.exit · next.enter · next.exit

s0
∆

= new, init, (w = hasNext, w ? (next, p==1? (remove?)))*

s1
∆

= init, (w = hasNext, w ? (next, p==1? (remove?)))*

s2
∆

= (w = hasNext, w ? (next, p==1? (remove?)))*

s3
∆

= w = hasNext, w ? (next, p==1? (remove?))

By definition of ⊢, we have to find ac, σc such that the following statements hold (read
“c” as “continuation”):

(b) a3 · ac ∈ [[s0]](σ · σ · σ · σ · σ · σ
′ · σ′ · σ′ · σc)

We choose ac = σc = ǫ. By case “,” of our semantics, we have to find a?
0, σ

?
0, a

?
1, and σ?

1

such that the following statements hold:
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(c) a?
0 ∈ [[new]](σ?

0)

(d) a?
1 ∈ [[s1]](σ

?
1)

(e) a?
0 · a

?
1 = a3 and σ?

0 · σ
?
1 = σ · σ · σ · σ · σ · σ′ · σ′ · σ′.

We choose:

❼ a?
0 = new.enter · new.exit

❼ σ?
0 = σ · σ

❼ a?
1 = init.enter ·init.exit ·hasNext.enter ·hasNext.exit ·next.enter ·next.exit

❼ σ?
1 = σ · σ · σ · σ′ · σ′ · σ′

By case method call, goal (c) is closed. Further, goal (e) is trivially closed. To show
goal (d), we remark that the following statements hold:

(f) init.enter · init.exit ∈ [[init]](σ · σ)

(g) hasNext.enter · hasNext.exit · next.enter · next.exit ∈ [[s2 ]](σ · σ′ · σ′ · σ′)

Goal (f) holds by the case for method call of our semantics. We are left with goal (g).
By case “*” of our semantics, goal (g) follows from the following statements:

(h)
⋃

i∈[0,1][[s3]]
i(σ · σ′ · σ′ · σ′) ∈ [[(s2)*]](σ · σ

′ · σ′ · σ′)

(i) hasNext.enter ·hasNext.exit ·next.enter ·next.exit ∈
⋃

i∈[0,1][[s3 ]]i(σ ·σ′ ·σ′ ·σ′)

By case “,” of our semantics, goal (i) follows from the following statements:

(j) hasNext.enter · hasNext.exit ∈ [[w = hasNext]](σ · σ′)

(k) next.enter · next.exit ∈ [[w ? (next, p==1? (remove?))]](σ′ · σ′)

Goal (j) holds by the case for method call of our semantics. By the case for conditional
protocols of our semantics (case e ? s : s′), to prove that goal (g) holds, it suffices to
prove that the following statements hold:

(l) [[w]](first(σ′ · σ′)) = true

(m) next.enter · next.exit ∈ [[next, p==1? (remove?)]](σ′ · σ′)

Goal (l) holds because, by definition of σ′, we have: [[w]](first(σ′ · σ′)) = [[w]](σ′) = σ′(w) =
true. Goal (m) holds because the following statements hold:

(n) next.enter · next.exit ∈ [[next]](σ′ · σ′)

(o) ǫ ∈ [[p==1? (remove?)]](ǫ)

Goal (n) holds by the case for method calls of our semantics. Finally, goal (o) holds by
the case for conditional protocols and the case ? of our semantics.

Subtyping. We did not mention subtyping earlier because it is unproblematic. As in the
previous work on method call sequences [32], a straightforward interpretation of protocols
inheritance is to conjoin inherited protocols to the protocols declared in the inheriting
class. This means that a class has to respect inherited protocols and has to respect its
own protocols.
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7.5 Checking Method Contracts against Protocols

To help programmers check that method contracts are correct w.r.t. a protocol, we gen-
erate a program that simulates the protocol. The generated program is like a “maximal”
program, because it simulates all programs that obey the protocol. If the generated pro-
gram cannot be proven correct, the method contracts are wrong: some (client-provided)
programs will fail to verify, even though they obey the protocol considered.

When generating programs, we cannot (easily) provide method parameters fulfilling
the part of method preconditions that is relevant to method parameters. Therefore,
our technique is restricted to methods whose precondition has the form F op G (where
op = {*, & }) and no method parameter (excluding this) occurs in F . We refer to this
restriction by saying that method preconditions must be receiver splittable. Because of
this restriction, we can syntactically split method contracts into a part that concerns the
receiver (F ) and a part that concerns the parameters (G). Then, when checking that
method contracts are correct w.r.t. protocols, the part of the preconditions relevant to
parameters (G) is dropped. We believe that, in practice, most method preconditions are
receiver splittable. Our belief is supported by the fact that all examples in this thesis
are receiver splittable. In addition, all examples from Parkinson’s thesis [88] are receiver
splittable.

We write recs(F ) in t<ᾱ>.m to denote that precondition F of method m in class (or
interface) t<ᾱ> is receiver splittable. Formally, judgment recs is defined as follows:

Receiver-Splittable Formulas, recs(F ) in t<ᾱ>.m

(Recs Com)
op ∈ {*, &} recs(G op F ) in t<ᾱ>.m

recs(F op G) in t<ᾱ>.m

(Recs Base) mtype(m, t<ᾱ>)
∆

= <T̄ ᾱ′> spec U m(V̄ ı̄)
op ∈ {*, &} this 6∈ G fv(F ) ⊆ {this, ᾱ, ᾱ′}

recs(F op G) in t<ᾱ>.m

Rule (Recs Base) above formalizes our notion of receiver-splittable. In this rule, F
indicates the part of F op G that concerns the receiver; while G indicates the part that
concerns method parameters.

For our purposes, considering only the part of method preconditions that is relevant
to the receiver is sound: intuitively, that is because, when verifying generated programs,
verification is easier than in the real world (preconditions are weakened). If a generated
program fails to verify, the corresponding real world program (i.e., where preconditions
are complete) will also fail to verify.

We now have all the machinery to generate programs that have to be verified to check
that method contracts are correct w.r.t. protocols.

Figure 7.1 on page 130 shows the rules for generating programs. Function gen(r, s, T )
generates the program to be proven correct to show that method contracts of class T
are correct w.r.t. protocol s. In gen(r, s, T ), r denotes the receiver. In the cases m and
w = m, “unknown parameters” (parameters about which nothing is known) are passed to
m. Such parameters are modeled by using an alternative rule for variable declaration:
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gen(r, new, T )
∆

= T0 α0; . . . ; Tn αn; r=new<α0, . . . , αn> t;

gen(r, m, T )
∆

= T0 ℓ0; . . . ; Tn ℓn; T ′′o = r.m(ℓ0, . . . , ℓn); (m 6= new)

gen(r, w = m, T )
∆

= T0 ℓ0; . . . ; Tn ℓn; r.w = m(ℓ0, . . . , ℓn); T ′′o = r.w;

gen(r, s, s′, T )
∆

= gen(r, s, T ); gen(r, s′, T )

gen(r, s | s′, T )
∆

= boolean b; if(b){ gen(r, s, T ) }else{ gen(r, s′, T ) }

gen(r, s?, T )
∆

= boolean b; if(b){ gen(r, s, T ) }

gen(r, s*, T )
∆

= boolean b; while(b){ gen(r, s, T ) }

gen(r, s+, T )
∆

= gen(r, s, T ); boolean b; while(b){ gen(r, s, T ) }

gen(r, e ? s : s′, T )
∆

= boolean b;

if(b){ assume(e[r/this]); gen(r, s, T ) }
else{ assume(!e[r/this]); gen(r, s′, T ) }

gen(r, s || s′, T )
∆

= ThreadS tS=new ThreadS; ThreadSp tSp=new ThreadSp;

tS.init(r); tSp.init(r);
tS.start(); tSp.start();
tS.join(); tSp.join()

Above, class ThreadS is classgen(ThreadS, s, T ) and Class ThreadSp is classgen(ThreadSp, s′, T )

gen(r, !<n> s, T )
∆

= ThreadS i1= newThreadS; . . . ; ThreadS in= newThreadS;
i1.init(r); . . . ; in.init(r);
i1.start(); . . .; in.start();
i1.join(); . . . ; in.join();

Above, class ThreadS is classgen(ThreadS, s, T )

classgen(C, s, T )
∆

= class C extends Thread{

T rec;

requires ?; ensures ?; void init(T v){ rec=v; }

requires ?; ensures ?; void run(){ gen(rec, s, T ) }
}

Conventions:

(1) In the first case, T = t<ᾱ> and α0, . . . , αn = ᾱ.
(2) In the second and third cases, T ′′ is m’s return type and T0, . . . , Tn are m’s

arguments types.
(3) In case !<n> s, i1 = 1, . . . , in = n
(4) All introduced names are fresh.

Figure 7.1: Program generation to check adherence of contracts to protocol s of receiver
r of class T
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ℓ 6∈ F,G Γ, ℓ : T ; v ⊢ {F}c : U{G}
(Dcl Unknown)Γ; v ⊢ {F}T ℓ; c : U{G}

Compared with the standard rule for variable declaration (see (Dcl) on page 36),
rule (Dcl Unknown) does not give any information about the variable declared (while
in (Dcl), ℓ == df(T ) was added to (Γ, ℓ : T ; v ⊢ {F}c : U{G})’s precondition). As a result,
the following Hoare triplet (whose command is a single variable declaration) is provable
with (Dcl) but not with (Dcl Unknown):

∅; v ⊢ {true}Object ℓ : void{ℓ == null}

Because we restrict to methods whose preconditions are receiver splittable, it is correct
to pass unknown parameters to methods.

To model non-deterministic choice, we simply declare boolean variables. Examples
include gen(r, s | s′, T ) where both s and s′ can be executed, yet no information is
available to decide which branch is to be executed.

In case gen(r, s*, T ), we use a while loop to model that s might be executed 0 (if the
loop is not entered) or many times (if the loop is entered). Again, we use non-deterministic
choice to model that we do not know whether the loop is entered or not.

À la JML, we use assume statements to give hints to the verification system when
generating the program corresponding to a conditional protocol (case e ? s : s). We cannot
use Java’s if statement directly because expressions occurring in conditional protocols
are not valid Java expressions (recall that expressions contain fractional permissions). We
use the following Hoare rule to deal with assume statements in verification:

Γ ⊢ e : bool
(Assume)

Γ; v ⊢ {true}assume(e){e}

Because protocols can model multithreaded programs, gen(r, s, T ) can also gener-
ate custom classes extending Thread (see cases s || s′ and !<n> s and the function
classgen(C, s, T )). Generated classes are called from the generated program. In generated
classes the receiver is stored in field rec. Note that pre and postconditions of the init

and run methods of generated classes should be fulfilled manually.
In the case for heterogeneous parallelism (gen(r, s || s′, T )), two new threads are

created and the two protocols are executed in the two threads. Alternatively, we could
execute one branch of the protocol in the current thread and simply create one new thread.
We choose this solution, however, because it preserves the symmetry of the || operator. In
the case for homogeneous parallelism (gen(r, !<n> s, T )), the generated program creates
n new threads, starts them, and then joins them. This is possible, because we restricted
the first parameter of ! to be a known integer. If we used arrays, we could allow integer
variables to model an unknown level of parallelism.

Finally, we represent class parameters and protocol variables with ghost fields (see
r.w = m(ℓ0, . . . , ℓn) in case gen(r, w = m, T )). We need to do so, because conditional
protocols can refer to class parameters and protocol variables. We do not formalize ghost
fields and use them informally. Formalizing ghost fields would require to extend the
syntax of classes, to define an augmented operational semantics (in analogy with the
jmlrac compiler [31]). Because class parameters include fractional permissions, which are
not a basic Java type, we would in addition need to model fractional permissions with a
special class (like JML’s model classes).
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requires true; ensures true;

void checkAdherence(){

perm p; Collection c;

i = new Iterator<p,c>;

Collection c’;

i.init(c’);

boolean b0;

while(b0){

i.w = hasNext();

boolean b1;

if(b1){

assume(i.w); Object o = i.next();

boolean b2;

if(b2){

assume(i.p==1);

boolean b3;

if(b3){ i.remove(); }

}

}

}

}

Figure 7.2: Checking Iterator’s Protocol

We believe that, if we had the required extensions, showing the soundness of our
technique would be easy by a proof by induction over the structure of protocols. Here, we
use the term “soundness” to mean that our technique does not produce false positives.
If a generated program cannot be proven correct, then either the verification technique
is too weak or the method contracts are incorrect. In both cases, some (client-provided)
programs will fail to verify (even if they obey the order on method calls induced by the
protocol).

Example: the Iterator interface. To check that method contracts of the Iterator in-
terface are correct with interface Iterator’s protocol (shown in Section 7.3), one has to
verify the method shown in Figure 7.2. For convenience, we repeat interface Iterator’s
contracts in Figure 7.5, where the part of preconditions that correspond to method pa-
rameters has been dropped (the initial interface can be found on page 45).

To split preconditions, we use the rules for receiver-splittability defined before. To help
the reader understand these rules, we exemplify how we split method init’s precondition:

mtype(init, Iterator<p, c>) = <> spec void init(Iterator<p, c> this, Collection c)

this 6∈ (c.state<p> * c == iteratee) fv(init) = {this} ⊆ {this, p, iteratee}
((Recs Base))

recs(init * (c.state<p> * c == iteratee)) in Iterator<p, iteratee>.init

The derivation above means that predicate init is the part of method init’s precondition
relevant to the receiver. The rest (c.state<p> * c == iteratee) is discarded because (1)
it does not contain this and (2) it mentions a method parameter (c).
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interface Iterator<perm p, Collection iteratee>{

pred ready; // prestate for iteration cycle

pred readyForNext; // prestate for next()

pred readyForRemove<Object element>; // prestate for remove()

axiom ready -* iteratee.state<p>; // stop iterating

requires init;

ensures ready;

void init(Collection c);

requires ready;

ensures (result -* readyForNext) & (!result -* ready);

boolean hasNext();

requires readyForNext;

ensures result.state<p> * readyForRemove<result> *

((result.state<p> * readyForRemove<result>) -* ready);

Object next();

requires readyForRemove< > * p==1;

ensures ready;

void remove();

}

Figure 7.3: Interface Iterator with Contracts

Before showing the proof outline for Figure 7.2’s program, we show the Hoare rule we
use for while loops (where F designates the loop invariant):

Γ ⊢ e, F : bool, ⋄ Γ; v ⊢ {F & e}c : void{F}
(While)

Γ; v ⊢ {F}while (e){inv F ; c} : void{F & !e}

Figure 7.5 shows the proof outline for Figure 7.2’s program (where we use rule
(Dcl Unknown) instead of rule (Dcl)). This proof exhibits the relation between interface
Iterator’s contracts and interface Iterator’s protocol. Method hasNext’s postcondi-
tion uses operator & to accommodate the two possible behaviors after hasNext: either
hasNext returned true and the left-hand side of hasNext’s postcondition applies (point
(1) of Figure 7.5’s proof outline), or hasNext returned false and the right-hand side of
hasNext’s postcondition applies (point (5)). Similarly, next’s postcondition accommo-
dates two cases: either remove is called after next, in this case the formula containing
the wand -* is dropped (point (2)); or the protocol loops right after next (remove is not
called), in this case modus ponens is used to reestablish the loop’s invariant (point (4)).
Finally, the use of assume statements is crucial: assuming that hasNext returned true is
necessary for the proof to go through at point (1), while assuming that the iterator has
write access to the collection is necessary for the proof to go through at point (3).

Implementation We implemented the set of rules shown in Figure 7.1 in a tool called
pyrolobus. Our implementation, examples of protocols, and proofs of the corresponding
generated programs are available [62].
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{ true }

Perm p; Collection c;

{ true }

i=new Iterator<p,c>

(Because ghost fields v, p, and c have been added to Iterator’s definition.)
{ i.init * Perm(i.w,1) * PointsTo(i.p,1,p) * PointsTo(i.c,1,c) }

(Weakening)
{ i.init * Perm(i.w,1) * PointsTo(i.p,1,p) }

Collection c’; i.init(c’);

{ i.ready * Perm(i.w,1) * PointsTo(i.p,1,p) }

boolean b0;

while(b0){

inv i.ready * Perm(i.w,1) * PointsTo(i.p,1,p);

{ i.ready * Perm(i.w,1) * PointsTo(i.p,1,p) }

i.w = i.hasNext();

{ PointsTo(i.w,1,w) * PointsTo(i.p,1,p) * ((i.w -* i.readyForNext) & (!i.w -* i.ready)) }

boolean b1;

if(b1){

assume(i.w);

(Choice on &) (1)

{ PointsTo(i.w,1,true) * PointsTo(i.p,1,p) * i.readyForNext }

Object o = i.next();

{ PointsTo(i.w,1,true) * PointsTo(i.p,1,p) * i.readyForRemove<o> *

o.state<p> * ((o.state<p> * i.readyForRemove<o>) -* i.ready) }

boolean b2;

if(b2)){

assume(i.p==1);

{ PointsTo(i.w,1,true) * PointsTo(i.p,1,1) * i.readyForRemove<o> *

o.state<1> * ((o.state<1> * i.readyForRemove<o>) -* i.ready) }

boolean b3;

if(b3)){

{ PointsTo(i.w,1,true) * PointsTo(i.p,1,1) * i.readyForRemove<o> *

o.state<1> * ((o.state<1> * i.readyForRemove<o>) -* i.ready) }

(Weakening) (2)

{ PointsTo(i.w,1,true) * PointsTo(i.p,1,1) * i.readyForRemove<o> }

i.remove(); (3)

{ PointsTo(i.w,1,true) * PointsTo(i.p,1,1) * i.ready) }

} else {

{ PointsTo(i.w,1,true) * PointsTo(i.p,1,1) * i.readyForRemove<o> *

o.state<1> * ((o.state<1> * i.readyForRemove<o>) -* i.ready) }

(Modus Ponens) (4)

{ PointsTo(i.w,1,true) * PointsTo(i.p,1,1) * i.ready }

}

} else {

assume(i.p!=1);

{ PointsTo(i.w,1,true) * PointsTo(i.p,1,p) * i.readyForRemove<o> *

o.state<p> * ((o.state<p> * i.readyForRemove<o>) -* i.ready) }

(Modus Ponens)
{ PointsTo(i.w,1,true) * PointsTo(i.p,1,p) * i.ready }

} else {

assume(!i.w);

(Choice on &) (5)

{ PointsTo(i.w,1,true) * PointsTo(i.p,1,p) * i.ready }

}

} // end of the loop: in all conditionals, the invariant is reestablished.

(Weakening)
{ true }

Figure 7.4: Proof that interface Iterator’s contracts adhere to its protocol
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7.6 Related Work and Conclusion

Related Work. Cheon and Perumandla [32] first came up with the idea of specifying
protocols of sequential classes with regular expressions. Because we extend their work
to deal with protocol variables and parameterized classes, some sequential classes whose
protocol cannot be precisely expressed with Cheon and Perumandla’s language can now
be expressed (such as the Iterator example). Jass [8] permits to specify protocols in the
style of CSP. An advantage of our approach is that it is more amenable to programmers,
because our specification’s syntax is easy to grasp.

Both the work of Cheon and Perumandla and Jass support dynamic checking of pro-
tocols. We do not provide an implementation for dynamically checking protocols but our
goal is different: we use protocols to statically check that method contracts are correct
w.r.t. protocols.

Compared to Cheon et al. [32], we do not allow to specify nested call sequences. This
forbids to specify that, for example, given two methods m and n, m should call n. We
could extend our specifications to allow nested call sequences but it is unclear how to
adapt our technique for checking method contracts to such specifications. The reason is
that checking method contracts against protocols only makes sense for public protocols
(protocols that are used by clients). Nested call sequences, however, are useful for private
protocols (protocols that are used by class implementers). Contrary to the work cited,
we introduce protocol variables (case w = m), we allow to specify optional protocols (case
s?), to specify conditionals (case e ? s : s), and to specify parallelism (cases s || s, and
!<n> s).

Static checkers such as ESC/Java2 [35] or Boogie [6] permit to statically check user-
specified properties of programs, but these tools do not natively support protocols (i.e.,
protocols can be encoded but cannot be expressed directly).

Conclusion. We provided a concise and intuitive regular expression-like notation to specify
protocols of multithreaded Java-like programs that use a variant of generic classes. We
presented the semantical foundations of our specification language.

We showed a new technique to show that method contracts are correct w.r.t. a proto-
col. For this, we generate a program that must be proven correct. If the generated pro-
gram cannot be proven correct, the method contracts are wrong: some (client-provided)
programs will fail to verify, even though they obey the protocol considered. The program
generator has been implemented.
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Chapter 8

Two Certified Abstractions to
Disprove Entailment

In this chapter, we present a new technique to disprove entailment between separation
logic formulas. We abstract formulas by the sizes of their possible models and compare
these sizes to disprove entailment between formulas. Intuitively, to disprove an entailment
F ⊢ G, it suffices to show that there exists a model (i.e., a heap) of F whose size is smaller
than the size of all models of G. We present two different ways to calculate sizes of models,
which have different complexity and precision.

Our algorithm is of interest whenever entailment checking is performed, for example in
program verifiers. In Chapter 3 to Chapter 5’s verification system, entailment checking is
necessary to apply the rule (Consequence) (see page 36). In practice, this rule is applied
at every step in proof outlines. To apply this rule, program verifiers have to find a
formula F ′ such that (1) F ⊢ F ′ (where F describes the current state) and (2) formula F ′

matches the next command’s precondition. In variants of separation logic containing the
magic wand, quantifiers, and permissions (such as Chapter 3’s variant of separation logic),
finding an appropriate F ′ is an intricate task. As existing program verifiers [68, 33, 43]
do not include the problematic connectors, they do not tackle this issue. In this context,
since our algorithm’s complexity is low, it can be used to quickly show that a method
is not provable, because the maximal size of models of F is smaller than the minimal
size of models of the next command’s precondition. Importantly, our algorithm works for
variants of separation logic that include the problematic connectors.

This chapter is structured as follows: In Section 8.1, we present the variant of sep-
aration logic we use. In Section 8.2, we show the two different domains that we use
to abstract formulas, i.e., what are sizes. In Section 8.3, we describe the disproving al-
gorithm for intuitionistic separation logic and in Section 8.4, we present the disproving
algorithm for classical separation logic. In Section 8.5, we explain why our abstractions
are as precise as possible, while being sound. In Section 8.6, we compare the two different
abstractions. In Section 8.7, we explain how to extend our algorithm to more expressive
fragments of separation logic. In Section 8.8, we discuss the complexity of our algorithms,
in Section 8.9, we quickly describe our mechanical proofs, and in Section 8.10, we discuss
possible future work. Finally, we discuss related work and conclude in Section 8.11.

137
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Note: The work presented in this chapter is published in the proceedings of the Interna-
tional Workshop on Aliasing, Confinement and Ownership in Object-Oriented Program-
ming (IWACO 2009). This work has been done in collaboration with François Bobot
(who helped in particular with the Coq proofs) and Alexander J. Summers (who adapted
the procedure for the counting model of permissions). This chapter is self contained:
notations used in this chapter are not related to notations from other chapters.

8.1 Background

In this chapter, we use a variant of separation logic different from the other chapters of this
thesis. On one hand, we do not use Chapter 3’s variant of object-oriented separation logic,
because object-orientation raises its own problems for the procedure that we describe in
this chapter. On the other hand, we use a variant that is more expressive than the variant
used in the next chapter. Our choice is motivated as follows: we use the most expressive
variant possible, while keeping our procedure simple. That is why object-orientation is
not included: it requires a non-trivial extension of the work we present.

We work with permission accounting separation logic based on that of Bornat et al. [21]
that generalizes Chapter 3’s fractional permissions. We reuse Bornat et al.’s structure of
models to abstract over the permission models. A permission model M consists of:

(a) A commutative semigroup with total binary operator +M.
(b) A minimal permission, m0, that satisfies (∀m)(m0 +M m = m).
(c) A maximal permission, mW .
(d) A total order on permissions, ≤M.
(e) A subset of permissions which are defined to be splittable.
(f) A pair of functions on permissions, split1 and split2, which define the two parts

into which a splittable permission may be split. These functions must satisfy the
following property: (∀m)(split1(m) +M split2(m) = m).

The maximal permission mW represents full (and exclusive) access to a location, whereas
the minimal permission represents no access. Permissions in between these two extremes
will allow read access but not write access to a location. Some (in some models, all)
permissions are splittable: they can be divided into two smaller (in the sense of permission
ordering) permissions. In particular, the maximal permission may be split into smaller
permissions, none of which allow full access to the location. However, permissions may
also be combined (by addition): in this way it is possible for a full permission to be
regained, if all partial permissions are combined together.

Later, we define heaps that only contain valid permissions. Valid permissions are per-
missions that can be obtained by splitting zero or more times the maximal permission. As
a corollary, any valid permission m satisfies the following inequality: m0 <M m ≤M mW .
Our model, however, includes invalid permissions, because we need to sum permissions
above mW . In other words, validity of permission makes sense per cell; but as we sum
up permissions from all cells, we need invalid permissions. That is why +M is a total
operator. Finally, note that the minimal permission is not valid, because it does not give
any right to access the cell considered.

This chapter’s results have been established for two concrete permissions models:
Boyland’s fractional permission model (see Boyland and Bornat et al.’s papers [23, 21]
and Chapter 3) and the counting model of Bornat et al. [21].



8.1. BACKGROUND 139

In the fractional permission model, permissions are rational numbers1. The binary
operator and the ordering are the usual + and ≤ on rationals, the minimal permission is
0 and the maximal permission is 1. All permissions are splittable, and splitting simply
divides permissions in half: split1(m) = split2(m) = m

2 .
In the counting model, permissions are originally represented by integers, but we

re-encode them in a different manner to allow the use of a lexicographical order. We
encode permissions as a pair (n, i), where n is a natural number (in fact, only 0 or 1),
and i is an integer. Intuitively, the first of the pair indicates whether this permission
can be split, to give out further read permissions, while the second indicates a number of
read permissions (positive to represent read permissions which have been obtained, and
negative to represent those given out). The minimal permission is (0, 0), and the maximal
permission is (1, 0). Permissions are added by pairwise addition of their components, and
ordered by the lexicographic ordering. A permission is splittable if its first component is
1. The split functions are defined by: split1((1, i)) = (1, i − 1) and split2((1, i)) = (0, 1).
Contrary to the fractional permission model, the counting model is asymmetric, because
the two split functions are asymmetric. Function split1 outputs source permissions, that
can be further split; while function split2 outputs unsplittable permissions. Below, we
show how to obtain three read permissions by splitting the maximal permission (1, 0).
Among the three read permissions, (1,−2) is a source permission, while the two (0, 1)
permissions are unsplittable permissions:

(1, 0) (1,−1), (0, 1) (1,−2), (0, 1), (0, 1)

We map Bornat’s counting permissions onto our pairs model, by the following rules
(in which n represents a positive integer):

0 7→ (1, 0) n 7→ (1,−n) − n 7→ (0, n)

We study both intuitionistic and classical separation logic [67]. Both variants contains
pure (heap independent) and spatial (heap dependent) formulas:

n ∈ N

a, v ∈ n | n + n | n− n | . . . addresses and values
m abstract permissions
Π ::= a = a | a 6= a | true | . . . pure formulas

ΣI ::= a
m
→֒v intuitionistic spatial formulas (m must be valid)

ΣC ::= emp | a
m
7→v classical spatial formulas (m must be valid)

In intuitionistic separation logic, the atomic spatial formula is the harpoon a
m
→֒ v

while in classical separation logic, the atomic spatial formula is the points-to predicate

a
m
7→ v. The harpoon a

m
→֒ v’s is very similar to Chapter 3’s PointsTo predicate. Firstly,

a
m
→֒v asserts that the heap contains a cell at address a with content v. Secondly, a

m
→֒v

asserts permission m to the cell at address a. If m = mW , a
m
→֒ v asserts write and read

1In Chapter 3, the semantics of fractional permissions was included in the set of rational numbers in
(0, 1] (see the definition of [[.]] for specification values on page 29). This is inadequate for this chapter,
because we sum fractional permissions and end up with fractions whose semantics is above 1. Chapter 3’s
permissions are now called valid permissions.
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authorization to the cell at address a, otherwise it asserts readonly authorization. The
points-to predicate a

m
7→ v has the same meaning as the harpoon but it enforces that the

heap contains only the cell at address a. In addition, classical separation logic includes
the predicate emp that denotes an empty heap. Intuitionistic (respectively classical)
separation logic is obtained by taking Σ to be ΣI (respectively ΣC) below:

A, B ::= Π | Σ | A ⋆ A | A ∧A | A ∨A formulas

In A⋆B, ⋆ is the separating conjunction (like Chapter 3’s *). A⋆B represents a heap
consisting of two separate subheaps A and B. A ∧ B is the usual logical conjunction,
which represents two different views of a heap (like Chapter 3’s &). We do not include the
standard implication ⇒ as this keeps the approach simple by avoiding bunched contexts
in the proof system [85]. The fact that most separation-logic-based program verifiers do
not include a standard implication (see the implementations of program verifiers based on
separation logic [15, 68, 43] and Chapter 2 to Chapter 5’s verification system for Java-like
programs) supports our choice. In addition, we use a language without variables, but we
describe how variables impact our algorithm in Section 8.7.3.

Because our algorithms are defined in Coq [36], we represent heaps as lists (which are
well supported by Coq’s standard library). A list entry is a triplet of an address, a valid
permission, and a value:

c ::= (a, m, v) heap cells
h ::= [] | c :: h heaps

We define a projection operator to extract a value from a cell: val(a, m, v) = v and
we write h[a] to denote h’s set of heap cells whose address are a:

[][a]
∆

= ∅

((a, m, v) :: h)[a′]
∆

=

{

{(a, m, v)} ∪ h[a] if a = a′

h[a] otherwise

We write h(a) to denote the sum of permissions to a occurring in h:

[](a)
∆

= m0

((a, m, v) :: h)(a′)
∆

=

{

m +M h(a) if a = a′

h(a) otherwise

Conjunction of two heaps is simply list concatenation (written h@h′) and compatibility
of heaps is standard2. As usual, two heaps are compatible if the sum of permissions to
each cell is valid and if the two heaps coincide on values:

h # h′ ∆

= (∀a)

(

h(a) +M h′(a) ≤ mW and
(∀c ∈ h[a],∀c′ ∈ h ′[a])(val(c) = val(c′))

)

2In Chapter 3, conjunction of heaps was written h*h′ (see page 26) while compatibility of heaps was
written – as in this chapter – h#h′ (see page 26).
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The semantics of formulas is standard. In particular, the semantics of pure formulas
is left unaxiomatized:

h |= Π iff oracle(Π)
h |= emp iff h = []

h |= a
m
→֒v iff (∃h ′)(h = (a, m, v)@h ′)

h |= a
m
7→v iff h = (a, m, v)

h |= A ⋆ B iff (∃h1, h2)(h1 # h2, h = h1@h2, h1 |= A, and h2 |= B)
h |= A ∧B iff h |= A and h |= B
h |= A ∨B iff h |= A or h |= B

We write A ⊢ B to denote that A entails B. Figure 8.1 shows ⊢’s definition, i.e.,
the (standard) proof system. This proof system is very close to the proof system we
defined for Chapter 3’s verification system (see page 32). The only non-standard rules
are (Splitting) and (Merging) that lift permission splitting to formulas3:

(Id)
A ⊢ A

A ⊢ B (Weak)
A, C ⊢ B

oracle(Π)
(Oracle)

true ⊢ Π

A1 ⊢ B1 A2 ⊢ B2 (⋆ Intro)
A1, A2 ⊢ B1 ⋆ B2

A ⊢ B1 ⋆ B2 C, B1, B2 ⊢ D
(⋆ Elim)

A, C ⊢ D

A ⊢ B1 A ⊢ B2 (∧ Intro)
A ⊢ B1 ∧B2

A ⊢ B1 ∧B2 (∧ Elim 1)
A ⊢ B1

A ⊢ B1 ∧B2 (∧ Elim 2)
A ⊢ B2

A ⊢ B1 (∨ Intro 1)
A ⊢ B1 ∨B2

A ⊢ B2 (∨ Intro 2)
A ⊢ B1 ∨B2

∨ does not occur in A (Splitting)
A ⊢ split1(A) ⋆ split2(A)

∨ does not occur in A (Merging)
split1(A) ⋆ split2(A) ⊢ A

Figure 8.1: Proof System

In the proof rules (Splitting) and (Merging), we use split1 and split2 (defined below)
to lift permission splitting to formula splitting. The conditions on the proof rules for
splitting and merging ensure that no disjunctions occur within the formulas concerned.
This is because splitting and merging is unsound for disjunctions (and formulas with the
magic wand). As we only split formulas without these connectives, we need not define
those cases for the definition of splitting formulas:

3This means these rules could be used to prove the axiom for groups that we introduce in group’s
desugaring (see page 53). We have shown in our previous work [53] how to do that for Chapter 3’s variant
of separation logic. What we do now is similar but simpler, because we do not have abstract predicates.
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split1(Π)
∆

= Π

split1(emp)
∆

= emp

split1(a
m
→֒v)

∆

= a
split1(m)
→֒ v

split1(a
m
7→v)

∆

= a
split1(m)
7→ v

split1(A ⋆ B)
∆

= split1(A) ⋆ split1(B)

split1(A ∧B)
∆

= split1(A) ∧ split1(B)

split2(Π)
∆

= Π

split2(emp)
∆

= emp

split2(a
m
→֒v)

∆

= a
split2(m)
→֒ v

split2(a
m
7→v)

∆

= a
split2(m)
7→ v

split2(A ⋆ B)
∆

= split2(A) ⋆ split2(B)

split2(A ∧B)
∆

= split2(A) ∧ split2(B)

The proof system is sound w.r.t. to the semantics above:

Theorem 7 (Soundness of the proof system). If A ⊢ B, then for all h, h |= A implies
h |= B.

Because we use it later, we spell out Theorem 7’s contraposition:

Theorem 8 (Contraposition of the proof system’s soundness). If there exists h such that
h |= A and h 6|= B, then A 6 ⊢ B.

8.2 Domain of Abstraction: Sizes

We abstract models of separation logic formulas (i.e., heaps) by their size. We use two
abstractions of different precisions: the first abstraction is a whole heap abstraction,
while the second abstraction is a per cell abstraction. The two different abstractions have
a different trade-off between complexity and precision. The whole heap abstraction is
imprecise but has a low complexity both in time (see Section 8.8) and space. The per
cell abstraction is precise but has a higher complexity both in time (see Section 8.8) and
space.

For the whole heap abstraction, the size of a heap is simply the sum of all permissions
occurring in this heap:

sizeM([])
∆

= m0 sizeM((a, m, v) :: h)
∆

= m +M sizeM(h)

For the per cell abstraction, the size of a heap is a permission table (like Chapter 3’s
permission tables on page 26) i.e., the corresponding heap without values:

Pc ::= (a, m) permission table cells
P ::= [] | Pc :: P permission tables

sizeP([])
∆

= [] sizeP((a, m, v) :: h)
∆

= (a, m) :: sizeP(h)

As for heaps, we write P(a) to denote the sum of permissions to a occurring in P.
Sizes are equipped with an order. For the whole heap abstraction, we use the order on
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permissions ≤M, while for the per cell abstraction, we use an order on permission tables
≤P :

P ≤P P
′ ∆

= (∀a)(P(a) ≤ P ′(a))

Sizes are equipped with minimum and maximum functions. For the whole heap ab-
straction, we use standard definitions according to the corresponding order on permissions
≤M:

sminM(m, m′)
∆

=

{

m iff m ≤M m′

m′ otherwise
smaxM(m, m′)

∆

=

{

m′ iff m ≤M m′

m otherwise

For the per cell abstraction, we use definitions that merge permission tables point-wise:

sminP(P,P ′)
∆

= {P ′′ | (∀a)(P ′′(a) = sminM(P(a),P ′(a)))}

smaxP(P,P ′)
∆

= {P ′′ | (∀a)(P ′′(a) = smaxM(P(a),P ′(a)))}

From now on, we subscript functions when we speak about a concrete abstraction while
we use functions without subscripts when we describe properties of both abstractions.

8.3 The Disproving Algorithm for Intuitionistic Separation
Logic

To disprove entailment between formulas in intuitionistic separation logic, we search for
models with bounded sizes. Formally, we later define functions min and max that must
satisfy the following property:

Theorem 9 (Property of min and max). If h |= A, then min(A) ≤ size(h) and there exist
hs such that, hs |= A and size(hs) ≤ max(A).

Intuitively, Theorem 9 states that, given a satisfiable formula A (i.e., there exists h
such that h |= A), there exists a model hs of A whose size is in between min(A) and
max(A). Then, we use min and max to disprove entailment as follows:

Theorem 10 (min and max gives a disproving algorithm). If A is satisfiable and min(B) ≤
max(A) does not hold, then A 6 ⊢ B.

Proof. Because A is satisfiable, there exists h such that h |= A. Then, by Theorem 9,
it follows that there exists hs such that hs |= A and size(hs) ≤ max(A).

Now, suppose hs |= B. By Theorem 9, it follows that min(B) ≤ size(hs). From
size(hs) ≤ max(A), by transitivity, it follows that min(B) ≤ max(A). This contradicts,
however, the hypothesis that min(B) ≤ max(A) does not hold. Hence, hs 6|= B.

From hs |= A and hs 6|= B, by Theorem 8, it follows that A 6 ⊢ B. �

The reader might wonder why we formulate Theorem 10 with a negation on the
≤ operator instead of using a < operator. The reason is that, for permission tables,
¬(P ≤P P

′) is not equivalent to P ′ <P P (where <P would be defined in a way similar
to ≤P).

In the remainder of this section, we show definitions of min and max for the whole
heap abstraction and the per cell abstraction. As Section 8.9 discusses, these definitions
satisfy Theorem 9.
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8.3.1 Whole Heap Abstraction for Intuitionistic Separation Logic

min and max are defined as follows:

min(Π)
∆

= m0

min(a
m
→֒v)

∆

= m

min(A ⋆ B)
∆

= min(A) +M min(B)

min(A ∧B)
∆

= smaxM(min(A),min(B))

min(A ∨B)
∆

= sminM(min(A),min(B))

max(Π)
∆

= m0

max(a
m
→֒v)

∆

= m

max(A ⋆ B)
∆

= max(A) +M max(B)

max(A ∧B)
∆

= max(A) +M max(B)

max(A ∨B)
∆

= smaxM(max(A),max(B))

8.3.2 Per Cell Abstraction for Intuitionistic Separation Logic

min and max are defined as follows:

min(Π)
∆

= []

min(a
m
→֒v)

∆

= (a, m) :: []

min(A ⋆ B)
∆

= min(A)@min(B)

min(A ∧B)
∆

= smaxP(min(A),min(B))

min(A ∨B)
∆

= sminP(min(A),min(B))

max(Π)
∆

= []

max(a
m
→֒v)

∆

= (a, m) :: []

max(A ⋆ B)
∆

= max(A)@max(B)

max(A ∧B)
∆

= smaxP(max(A),max(B))

max(A ∨B)
∆

= smaxP(max(A),max(B))

Although max’s definitions are very similar for the two abstractions, there is one case
where they differ: in case ∧ of max. In analogy with the per cell abstraction, one could
expect max(A∧B) to be smaxM(max(A),max(B)) in the whole heap abstraction. To see
why this is unsound, however, one can consider a formula where the right and left hand

sides of a ∧ represent separate parts of the heap such as 42
1
→֒ ∧ 47

1
→֒ (where denotes

irrelevant values).

8.4 The Disproving Algorithm for Classical Separation Logic

To disprove entailment between formulas in classical separation logic, we pursue a slightly
different goal than for intuitionistic separation logic: instead of exhibiting one model
whose size is bounded, we search for bounds on the size of all models.

Because we allow pure formulas, which do not constrain the size of heaps modelling
them, we cannot always find an upper-bound on the size of heaps. Hence we add a
distinguished “maximal” size that we write ∞ (both for the whole heap and for the per
cell abstraction). The meaning of ∞ is axiomatized as follows:

(∀m)(m ≤M ∞) (∀P)(P ≤P ∞)

Theorem 11 (Property of min and max). If h |= A, then min(A) ≤ size(h) ≤ max(A).

Then, we use min and max to disprove entailment as follows:

Theorem 12 (min and max gives a disproving algorithm). If A is satisfiable and min(B) ≤
max(A) does not hold, then A 6 ⊢ B.

Proof. Similar to the proof of Theorem 10. �

In the remainder of this section, we give definitions of min and max for the whole heap
abstraction and the per cell abstraction. As Section 8.9 discusses, these definitions satisfy
Theorem 11. For min, we only show its definition in case of a formula emp; for other cases
min’s definition is similar to the intuitionistic case (see Sections 8.3.1 and 8.3.2).
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8.4.1 Whole Heap Abstraction for Classical Separation Logic

min and max are defined as follows:

min(emp)
∆

= m0

max(Π)
∆

= ∞

max(emp)
∆

= m0

max(a
m
7→v)

∆

= m

max(A ⋆ B)
∆

= max(A) +M max(B)

max(A ∧B)
∆

= sminM(max(A),max(B))

max(A ∨B)
∆

= smaxM(max(A),max(B))

As as example, consider the following computations of the maximum and minimum
of two formulas (for the fractional permissions model):

max((42
1
7→ ⋆ 47

1/2

7→ ) ∨ ((42
1
7→ ⋆ 47

3/4

7→ ) ∧ (47
1/2

7→ ⋆ 47
1/4

7→ ⋆ 42
1
7→ )))

= smaxM(1 +M 1/2, sminM(max(42
1
7→ ⋆ 47

3/4

7→ ),max(47
1/2

7→ ⋆ 47
1/4

7→ ⋆ 42
1
7→ )))

= smaxM( 3
2 , sminM( 7

4 , 7
4 )) = 7

4

min(42
1
7→ ⋆ 47

1/2

7→ ⋆ 47
1/2

7→ ) = 1 +M
1
2 +M

1
2 = 2

Now, because 2 ≤M 7/4 does not hold (note that, as Theorem 11 requires, the formula
on the left-hand side of ⊢ is satisfiable), our algorithm deduces:

(42
1
7→ ⋆ 47

1/2

7→ ) ∨ ((42
1
7→ ⋆ 47

3/4

7→ ) ∧ (47
1/2

7→ ⋆ 47
1/4

7→ ⋆ 42
1
7→ )) 6 ⊢ 42

1
7→ ⋆ 47

1/2

7→ ⋆ 47
1/2

7→

We now compare max’s definition for ⋆ and ∧ in both semantics (similar remarks apply
for the per cell abstraction).

❼ In the classical semantics, we have max(A⋆B) = max(A)+Mmax(B), while we have
max(A ∧ B) = sminM(max(A),max(B)). This reflects the intuition that, in A ⋆ B,
A and B represents separate heaps, while in A ∧ B, A and B represent different
views of the same heap.

❼ In the intuitionistic semantics, however, we have max(A ⋆ B) = max(A ∧ B) =
max(A) +M max(B). This reflects that, both in A ⋆ B and in A∧B, A and B must
(for ⋆) or may (for ∧) represent separate parts of the heap.

8.4.2 Per Cell Abstraction for Classical Separation Logic

min and max are defined as follows:

min(emp)
∆

= []

max(Π)
∆

= ∞

max(emp)
∆

= []

max(a
m
7→v)

∆

= (a, m) :: []

max(A ⋆ B)
∆

=











max(A)@max(B) if max(A) 6=∞ and
max(B) 6=∞

∞ otherwise

max(A ∧B)
∆

= sminP(max(A),max(B))

max(A ∨B)
∆

= smaxP(max(A),max(B))

In this case, the definitions of max are similar in both abstractions.
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8.4.3 On ∞

We elaborate here on the consequence of our use of∞ above for the whole heap abstraction
(similar comments apply to the per cell abstraction).

The ⋆ and ∨ connectives have a different behavior w.r.t. ∞ than ∧. To see why,
consider the following properties of +M, sminM, and smaxM w.r.t. ∞:

(∀m)(m +M∞ =∞+M m =∞)

(∀m)(sminM(m,∞) = sminM(∞, m) = m)

(∀m)(smaxM(m,∞) = smaxM(∞, m) =∞)

Because of the properties above, both the ⋆ and ∨ operators “spread” ∞: for op ∈
{⋆,∨}, max(A op B) = ∞ if max(A) = ∞ or max(B) = ∞. The ∧ operator, however,
stops ∞ from spreading: max(A ∧B) 6=∞ if max(A) 6=∞ or max(B) 6=∞.

Because the variants of separation logic used in program verifiers [15, 43] impose pure
formulas and spatial formulas to be ∧-conjoined at the top level, max would never return
∞ in these variants.

8.5 Precision

Ideally, min and max’s definitions need to be as tight as possible, while retaining soundness
(Theorems 9 and 11). We exemplify this for both variants of the logic. Our explanations
focus solely on the whole heap abstraction but our remarks apply to both abstractions.

In the intuitionistic semantics, we have max(A∧B) = max(A)+max(B). At first sight,
this might appear too loose, but the semantics of the harpoon requires this definition for
soundness. To see why, one can consider a formula in which the right and left hand sides

of a ∧ represent separate parts of the heap, such as 42
1
→֒ ∧ 47

1
→֒ . Models of this

formula must have a size greater or equal to 2, because ∧’s operands represent separate
parts of the heap.

In the classical semantics, we have max(A ∧ B) = sminM(max(A),max(B)). This
definition is tight because, if max(A) < max(B), by ∧’s semantics, it follows that any
model h of B whose size is greater than max(A) cannot be a model of A ∧ B, because
h cannot satisfy A (and conversely). In the classical semantics, we have max(A ∨ B) =
smaxM(max(A),max(B)). This definition is also tight because, if max(A) < max(B), by
∨’s semantics, it follows that a model of B can be a model of A ∨B (and conversely).

8.6 Comparison Between the Two Abstractions

The per cell abstraction is more powerful (or discriminative) than the whole heap abstrac-
tion. In another words, whenever the whole heap abstraction concludes that a formula
does not entail another formula, the per cell abstraction concludes the same (but not the
other way round). Formally, this statement is expressed by the following theorem:

Theorem 13 (The Per Cell Abstraction is More Powerful). If the whole heap abstraction
concludes A 6 ⊢ B, then the per cell abstraction concludes A 6 ⊢ B.
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Example. Here, we show an example (in the classical semantics) where the powerfulness
of the per cell abstraction is necessary to obtain the desired result. Concretely, we show
A and B such that the whole heap abstraction cannot conclude A 6 ⊢ B, while the per cell
abstraction does conclude A 6 ⊢ B.

We define:

A
∆

= 42
1/2

7→ ⋆ 47
1
7→ B

∆

= 42
1
7→ ⋆ 47

1/2

7→

In the whole heap abstraction, we have:

max(42
1/2

7→ ⋆ 47
1
7→ ) = 1/2 +M 1 = 3/2 min(42

1
7→ ⋆ 47

1/2

7→ ) = 1/2 +M 1 = 3/2

Because 3/2 ≤ 3/2 holds, we cannot conclude that 42
1
7→ ⋆ 47

1/2

7→ 6⊢ 42
1/2

7→ ⋆ 47
1
7→ . Now,

consider the computations of min and max in the per cell abstraction:

max(42
1/2

7→ ⋆ 47
1
7→ ) = (42, 1/2) :: (47, 1) min(42

1
7→ ⋆ 47

1/2

7→ ) = (42, 1) :: (47, 1/2)

The following holds:

(

(42, 1) :: (47, 1/2)
)

(42) = 1 6≤ 1/2 =
(

(42, 1/2) :: (47, 1)
)

(42)

As a consequence, by Theorem 11, we can conclude:

42
1/2

7→ ⋆ 47
1
7→ 6⊢ 42

1
7→ ⋆ 47

1/2

7→

8.7 Extension to Other Operators of Separation Logic

In this section, we review extensions of our algorithm for which our results are partial.
Our algorithm has been extended to deal with the magic wand but our extension might
be loose (w.r.t. precision) in the intuitionistic case (Section 8.7.1), soundness of min and
max for quantifiers has been checked only on pen and paper (Section 8.7.2), and variables
have been integrated only with the whole heap abstraction (Section 8.7.3).

8.7.1 The magic wand −−⋆

The magic wand −−⋆ matches the resource conjunction ⋆, in the sense that the modus
ponens law is satisfied: A ⋆ (A−−⋆ B) implies B. The magic wand’s semantics quantifies
over models of the wand’s left-hand side:

h |= A−−⋆ B iff (∀h′)((h′ |= A and h′ # h) implies h′@h |= B)

The following rules are added to the proof system to handle the wand:

A, B1 ⊢ B2
(−−⋆ Intro)

A ⊢ B1 −−⋆ B2

A ⊢ C1 −−⋆ C2 B ⊢ C1 (−−⋆ Elim)
A, B ⊢ C2

In both semantics, we have mechanically verified that our algorithm can be extended
to deal with the magic wand. Because min and max are now mutually recursive, min, like
max, can return ∞.
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Intuitionistic Semantics. In this case, the definitions of min and max from Section 8.3.1
for the whole heap abstraction are completed as follows:

min(A−−⋆ B) =

{

min(B) if min(B) 6=∞
m0 otherwise

max(A−−⋆ B) =

{

max(B) if max(B) 6=∞
∞ otherwise

For the per cell abstraction, definitions of min and max from Section 8.3.2 are com-
pleted as follows:

min(A−−⋆ B) =

{

min(B) if min(B) 6=∞
[] otherwise

max(A−−⋆ B) =

{

max(B) if max(B) 6=∞
∞ otherwise

Classical Semantics. In this case, the definitions of min and max from Section 8.4.1 for
the whole heap abstraction are completed as follows:

min(A−−⋆ B) =

{

min(B)−M max(A) if min(B) 6=∞ and max(A) 6=∞
m0 otherwise

max(A−−⋆ B) =

{

max(B)−M min(A) if max(B) 6=∞ and min(A) 6=∞
∞ otherwise

For the per cell abstraction, definitions of min and max from Section 8.4.2 are com-
pleted as follows:

min(A−−⋆ B) =

{

min(B)@−P (max(A)) if min(B) 6=∞ and max(A) 6=∞
[] otherwise

max(A−−⋆ B) =

{

max(B)@−P (min(A)) if max(B) 6=∞ and min(A) 6=∞
∞ otherwise

where −P pointwisely applies the unary −M operator to permission tables:

−P([]) = []
−P((a, m) :: P) = (a,−M(m)) :: −P(P)

In both semantics, for the definitions above to be sound, we need to assume that
formulas appearing on the left-hand side of the magic wand are satisfiable. While this
is harmful from a theoretical point of view, examples where the wand is used (see the
Iterator interface in Section 3.6.2 and the class DatabaseUpdater in Section 4.6.2)
suggest this is a plausible assumption for program verifiers (we do not include examples
from the literature because the wand is scarcely used).

We did not include the magic wand in Sections 8.3 and 8.4, because we believe the
precision of the definitions of min and max in the intuitionistic semantics can be enhanced
(i.e., by being similar to the classical semantics’s definitions). This is, however, a non-
trivial task. In a nutshell, the universal quantification in the magic wand’s semantics and
the way Theorem 9 is formulated (i.e., with an existential quantifier) prevent a simple
proof by induction.
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8.7.2 Quantification

We distinguish between quantification on values and permissions. We add the following
formulas to Section 8.1’s language:

A, B ::= . . . | ∃v. A | ∃m. A | ∀v. A | ∀m. A

The semantics is standard and we omit the corresponding proof rules which are also
standard. To define min and max, we introduce a “very small permission” ǫ. The meaning
of ǫ is axiomatized as follows:

(∀m)(m <M m +M ǫ)

For both abstractions min and max are defined as follows:

min(∃v. A) = min(A)
max(∃v. A) = max(A)

min(∃m. A) = min(A[ǫ/m])
max(∃m. A) = max(A[mW /m])

min(∀v. A) = min(A)
max(∀v. A) = max(A)

min(∀m. A) = min(A[mW /m])
max(∀m. A) = max(A[mW /m])

8.7.3 Variables

In real-world variants of separation logic, variables are used. For the whole heap abstrac-
tion, variables (including quantification over variables) do not create any extra difficulties
for our work. For the per cell abstraction, it is unclear at this stage how variables can be
handled in an optimal way.

8.8 Complexity

The complexity of our techniques is linear for the whole heap abstraction, and O(n(log n))
for the per cell abstraction (where n is the input formula’s size, defined in a standard way).
To our knowledge, there is no complexity result for entailment checking in separation logic.
We believe the complexity of our disproving algorithm is low enough to be useful when
entailment must be checked quickly. This is supported by the fact that integrating both
the magic wand and quantifiers do not increase our algorithm’s complexity, while they
typically increase by orders of magnitude the complexity of model-checking or validity-
checking [30, 27].

8.9 Soundness

All theorems from Section 8.1, 8.3, and 8.4 have been mechanically checked with Coq [36].
Addition of the magic wand (Section 8.7.1) has also been mechanically checked. Proofs
about the proof system (Theorems 7 and 8); properties of permissions, heaps, permissions
tables etc. are 3090 lines long. The proofs of Theorems 9, 10, 11, and 12 are 620 lines long.
The proofs have been engineered so that certified implementations of the two abstractions
could be extracted. Proof scripts are available online [62].

Proofs for quantifiers (Section 8.7.2) have been checked only on pen and paper.
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8.10 Future Work

This chapter’s procedure can be extended in two ways. First, it can be extended in
the cases where our results are partial (see Section 8.7). Second, and more importantly,
extending this procedure to object-oriented separation logic would be fruitful to evalu-
ate this procedure’s usefulness. We say so, because, in the fragment of separation logic
used in program verifiers for while languages (i.e., without the magic wand and without
quantifiers), entailment checking is decidable and very fast, rendering our procedure un-
necessary. In full-fledged object-oriented separation logic (i.e., including the magic wand,
quantifiers, and predicates), however, entailment checking is undecidable. In this case, we
believe our procedure would be useful. To extend our procedure to object-oriented sepa-
ration logic, one would need to infer relations between the sizes of models of predicates
and use these relations cleverly.

8.11 Related Work and Conclusion

Related Work. In the context of program verifiers, checking entailment between separation
logic formulas has been studied for while languages [16] and object-oriented languages [43,
33]. In these fragments, the magic wand−−⋆ is omitted and special predicates for describing
data structures are present.

Properties (decidability, undecidability, and complexity) both for model checking and
for validity have been studied [30, 14, 27]. To our knowledge, disproving entailment has
only been studied in a fully-fledged tableaux procedure by Galmiche et al. [48]. The cited
work’s algorithm for checking entailment can generate either proofs or counter-models,
whereas our algorithm focuses on disproving entailment and does not generate counter-
models. Galmiche et al. [48] do not provide a complexity results for their algorithm, but
we believe our algorithm’s complexity is much smaller.

Conclusion. We presented new techniques to disprove entailment between separation
logic formulas, which we believe to be particularly relevant in the context of automated
provers for separation logic. Because our algorithm’s complexity is low, it is of interest
wherever entailment checking needs to be checked quickly. We described two different
techniques (of different precision), each of which can be applied to both the intuitionistic
and classical variants of separation logic. We provided mechanical proofs of the soundness
of our techniques [62].



Chapter 9

Automatic Parallelization and
Optimization by Proof
Rewriting

In this chapter, we present a new technique to automatically parallelize programs. We
use the separating semantics of separation logic’s ⋆ operator to detect when program part
access separate parts of the heap. In addition to parallelization, we present various other
transformations that optimize programs by taking advantage of separating informations.
Transformation of programs is performed by a rewrite system.

This chapter is structured as follows: in Section 9.1 we show why automatic paral-
lelization is a useful technique and we describe our procedure from a high-level point of
view, in Section 9.2 we present the formal language that we use in this chapter (it differs
from the Java-like language that is used in Chapter 2 to Chapter 7), in Section 9.3 we
describe our procedure for automatic parallelization in details, in Section 9.4 we show
our procedure for various optimizations, in Section 9.5 we present our implementation, in
Section 9.6 we describe how our procedure would benefit of new advances of separation
logic, and in Section 9.7 we discuss possible future work. Finally, we discuss related work
and conclude in Section 9.8.

Note: The work from this chapter is published in the International Symposium on Static
Analysis (SAS 2009) [63]. This chapter is independent of the other chapters: notations
used here are unrelated with notations from other chapters.

9.1 Motivations and High Level Overview

As explained in the thesis’s introduction, the high demand on software and the increasing
number of processors on motherboards stimulate programmers to write multithreaded
programs. This is not an easy task though: writing correct multithreaded programs is
much more difficult than writing correct sequential programs.

In addition to problems we already described (data races and deadlocks), programmers
have to decide when to parallelize. This is a difficult task, because it requires an in-depth
knowledge of the data structures used. In addition, this is highly error-prone. If a program
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is incorrectly parallelized, data races and deadlocks (as explained above) might happen.
As the occurrence of these defects directly depends on the scheduler, they are hard to
reproduce and might look random at first sight. Consequently, the relation between the
incorrect parallelism and the errors might be overlooked, rendering program debugging
difficult.

For the reasons explained above, automatic parallelizers [56, 49, 52] have been intro-
duced. Automatic parallelizers take programs as input and yield parallelized programs
that should behave the same as the input programs. Automatic parallelizers can yield
programs that execute an order of magnitude faster than the input programs. One of the
shortcomings of these parallelizers is that they use intricate and ad-hoc pointer analysis.
As a result, showing that these parallelizers are sound is difficult.

In this chapter, we describe a new technique to infer parallelism from programs proven
correct with separation logic. Instead of designing ad-hoc analysis techniques, we use
separation logic to analyze programs before parallelizing them. We use separation logic’s
separating operator (the * operator in previous chapters) – which expresses disjointness
of parts of the heap – to detect potential parallelism. In a sense, we push Knuths’s advice
“premature optimization is the root of all evil” to an extreme: we optimize programs
once they have been proven correct.

Contrary to most previous works that manipulate proofs [11, 82, 92], our algorithms
manipulate proof trees representing derivations of Hoare triples. Figure 9.1 on page 153
shows the overall procedure:

(a) An external program attempts to verify the input program C.
(b) If C is verified (the verifier outputs “correct”), a proof tree is generated (P).
(c) Then the proof tree is rewritten to obtain a parallelized and optimized program

(Copt) together with its proof (Popt).

Figure 9.1 indicates the step that we take for granted in white (the program veri-
fier) and indicates our contributions in grey (the proof tree generator and the proof tree
rewriter). The generation of proof trees is done with a modified version of smallfoot [16]
and the rewrite system is implemented in tom [5].

9.2 Smallfoot

In this section, we present the programming language (Section 9.2.1), the variant of
separation logic used to annotate programs written in this language (Section 9.2.2), and
the proof rules used to verify annotated programs (Section 9.2.3). This material is not
new, it has been developed by Berdine et al.’s seminal work on smallfoot [15]. We just
recall the relevant parts of this work.

9.2.1 Smallfoot’s Programming Language

Smallfoot’s programming language is a small while language. It includes variables, ex-
pressions, simple objects, procedure, and locks:

x, y, z ∈ Var variables
E,F, G ::= null | x expressions

b ::= E = E | E 6= E boolean expressions
f, g, fi, l, r, . . . ∈ FieldId fields

p ∈ ProcId procedure identifiers
l ∈ LockId lock identifiers
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program

verifier

program C

proof
tree

generator

C correct
C wrong

proof
tree

rewriter

C,P(P is C’s proof)

Copt,Popt

(Copt is C parallelized
and optimized)

Figure 9.1: High level procedure with contributions in grey
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Atomic commands A and commands C are defined by the following grammar:

A ::= x := E | x := E→f | E→f := F | x := new() | dispose(E)

C ::= A | empty | local x | if b then C else C | while(b){C}
| lock(l) | unlock(l) | p(E1; E2) | C; C | C‖C ′

The meaning of atomic commands is as follows:

❼ Command x := E assigns E to variable x.
❼ Command x := E→ f looks up the content of field f of the cell at address E and

stores E → f ’s content in variable x.
❼ Command E→f := F assigns E to field f of the cell at address E.
❼ Command x := new() allocates a new cell and assigns the new cell’s address to x.
❼ Command dispose(E) disposes the cell pointed to by E.

In lock(l) and unlock(l)1, l is a non-reentrant lock [84]. Locks are declared in the
(omitted) program’s header and — like in Chapter 5 — come with a resource invariant,
i.e., a formula describing the part of the heap guarded by locks. Intuitively, when a lock
is acquired by a process, the lock’s resource invariant is transferred to the process; while
when a lock is released, the lock’s resource invariant is transferred from the process back
to the lock. In procedure calls p(E1; E2), E1 are the parameters that are unchanged in
p’s body, while E2 are the parameters that may be assigned to in p’s body.

The operational semantics of the language is omitted, because it is standard [15].

9.2.2 Smallfoot’s Assertion Language

Programs written in smallfoot’s language should be annotated with separation logic con-
tracts. Here, we present the variant of separation logic used to write contracts.

Our assertion language distinguishes between pure (heap independent) and spatial
(heap dependent) assertions:

Π ::= true | b | Π ∧Π pure formulas
ρ ::= f1 : E1, . . . , fn : En record expressions
S ::= E 7→ [ρ] | list(E) | tree(E) simple spatial formulas
Σ ::= emp | S | Σ ⋆ Σ spatial formulas

Ξ,Θ ∈ Π ➛ Σ formulas

The meaning of the simple spatial formulas is as follows: emp represents the empty
heap, E 7→ [ρ] represents a heap containing one cell at address E with content ρ, list(E)

represents a heap containing a list at address E, and tree(E) represents a heap containing
a tree whose root is at address E and whose left and right subtrees can be dereferenced
with fields l and r. The formula E 7→ [ρ] can mention any number of fields in ρ: the values
of omitted fields are implicitly existentially quantified. Top-level formulas are pairs Π ➛ Σ
where Π is a ∧-separated sequence of pure formulas (indicating equalities/inequalities
between expressions) and Σ is a ⋆-separated sequence of spatial formulas (indicating facts
about the heap).

1To smallfoot’s experts: smallfoot uses conditional critical regions with do endwith, instead of
lock/unlock commands. However, because smallfoot generates verification conditions [16], conditional
critical regions are treated like lock/unlock commands in smallfoot’s implementation. That is why we
use lock/unlock commands in our presentation.
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The ⋆ operator (like * in previous chapters) is the separation conjunction. Intuitively,
if formula Π ➛ (Σ⋆Σ′) holds, this means that the heap can be split in two disjoint subheaps
such that Π ➛ Σ represents the first subheap and Π ➛ Σ′ represents the second subheap.

We define the ∧-conjunction of a pure formula and a formula:

Π ∧ (Π′ ➛ Σ)
∆

= (Π ∧Π′) ➛ Σ

(Π ➛ Σ) ∧Π′ ∆

= (Π ∧Π′) ➛ Σ

Similarly, we define the ⋆-conjunction of a spatial formula and a formula:

Σ ⋆ (Π ➛ Σ′)
∆

= Π ➛ (Σ ⋆ Σ′)

(Π ➛ Σ) ⋆ Σ′ ∆

= Π ➛ (Σ ⋆ Σ′)

Finally, we define the ⋆-conjunction of two formulas:

(Π ➛ Σ) ⋆ (Π′ ➛ Σ′)
∆

= (Π ∧Π′) ➛ (Σ ⋆ Σ′)

Entailment between formulas is written Ξ ⊢ Θ. We lift ⊢ to pure formulas as follows:

Π ⊢ Π′ ∆

= Π ➛ emp ⊢ Π′ ➛ emp

We use σ to range over substitutions of the form x0/y0, . . . , xn/yn. Below we abusively
write Π ⊢ x0/y0, . . . , xn/yn to denote Π ⊢ x0 = y0∧· · ·∧xn = yn. We define a syntactical
equivalence relation between formulas as follows:

Π ➛ Σ⇔ Π′ ➛ Σ′ iff

{

Π is a permutation of Π′

∃σ, Π ⊢ σ and Σ[σ] is a permutation of Σ′

The semantics of formulas is omitted and can be found in Berdine et al.’s work [16].
Importantly, the semantics is classical (contrary to the semantics used from Chapter 3 to
Chapter 7). Classical separation logic is suitable to reason about programming languages
where programmers have to deallocate memory manually. The programming language
we use is such a language, because it has a dispose statement.

9.2.3 Smallfoot’s Proof Rules

Smallfoot programs are verified using a set of Hoare rules. Here, we only show the Hoare
rules2 for atomic commands because they are important for the algorithms we develop
later (see Section 9.3).

In these rules, we use the following notations to mutate and lookup the content of
records:

mutate(ρ, f, F ) =

{

f : F, ρ′ if ρ = f : E, ρ′

f : F, ρ if f 6∈ ρ
lkp(ρ, f) =

{

E if ρ = f : E, ρ′

x fresh if f 6∈ ρ

The first Hoare rule describes the effect of variable assignment:

2To smallfoot’s experts: in the original paper on smallfoot, the Hoare rules are presented in an
algorithmic style with continuations. We do not follow this presentation, because it does not fit well with
our explanations. We use a rule for sequential composition instead of including continuations in all rules.
In addition, we use standard Hoare rules for while loops, parallel composition, etc., whereas smallfoot uses
“subroutines”. The resulting verification systems are, anyway, equivalent: showing a program correct
with the proof rules we describe here is equivalent to showing this program correct with smallfoot’s
original rules.
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x′ is fresh (Assign)
{Π ➛ Σ}x := E{x = E[x′/x] ∧ (Π ➛ Σ[x′/x])}

In rule (Assign), the fresh variable x′ is used to record x’s value before the assignment.
In (Assign)’s postcondition, once the substitution x′/x has been applied, the unique x
remaining (in x = E[x′/x]) keeps track of the “old” value. This standard trick is also
used in other rules.

The following rule verifies heap lookup3:

Π ⊢ F = E lkp(ρ, f) = G x′ is fresh
(Lookup)

{Π ➛ Σ ⋆ F 7→ [ρ]}x := E→f{x = G[x′/x] ∧ (Π ➛ Σ ⋆ F 7→ [ρ])[x′/x]}

The rule (Lookup) requires that the dereferenced cell (pointed to by E) is allocated.
This follows from F 7→ [ρ] (which appears in the precondition) and F = E. By combining
these two assertions, one can derive E 7→ [ρ], i.e., the cell pointed to by E is allocated.

The next rule verifies mutations to the heap:

Π ⊢ F = E mutate(ρ, f,G) = ρ′
(Mutate)

{Π ➛ Σ ⋆ F 7→ [ρ]}E→f := G{Π ➛ Σ ⋆ F 7→ [ρ′]}

The rule (Mutate) requires that the dereferenced cell (pointed to by E) is allocated.
Like in the rule (Lookup), this follows from F 7→ [ρ] and F = E. Rule (Mutate)’s
postcondition reflects the change to the heap performed by the command.

Finally, there are two rules for allocation and deallocation:

x′ is fresh (New)
{Π ➛ Σ}x := new(){(Π ➛ Σ)[x′/x] ⋆ x 7→ []}

Π ⊢ F = E (Dispose)
{Π ➛ Σ ⋆ F 7→ [ρ]}dispose(E){Π ➛ Σ}

The rule (New) verifies that a new cell is allocated: x 7→ [] appears in the postcondition.
Rule (Dispose) reflects that a cell is disposed: F 7→ [ρ] appears in the precondition, but
not in the postcondition.

We do not show the rules for conditionals, loops, locks, and method calls, as they are
standard. We show, however, three rules that are at the basis of further developments: a
rule for parallel composition, a frame rule, and a rule for sequential composition.

First, we show a rule for parallel composition [84]:

{Ξ}C{Ξ′} {Θ}C ′{Θ′}
(Parallel)

{Ξ ⋆ Θ}C‖C ′{Ξ′ ⋆ Θ′}

Side condition: C does not modify any variables free in Θ, C ′, and Θ′ (and conversely).

The rule (Parallel) can be understood as follows: for two threads to execute in parallel,
they should access disjoint parts of the heap (i.e., Ξ and Θ). When the two threads
terminate, the resulting heap is simply the ⋆ conjunction of the heaps obtained after both
threads’s execution (i.e., Ξ′ and Θ′).

Second, smallfoot’s verification system admits a (Frame) rule [93, 83]. This means
that the following rule can be added to smallfoot’s set of proof rules without breaking
soundness:

3Where we include Berdine et al.’s “rearrangement” step. This means that the postcondition can
mention a variable (F ) different from the dereferenced program’s variable (E) as long as F = E holds.
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{Ξ}C{Θ}
(Frame Ξf )

{Ξ ⋆ Ξf}C{Θ ⋆ Ξf}

Side condition: C does not modify any variables in Ξf

The rule (Frame) allows reasoning about a program in isolation from its environment,
by focusing only on the part of the heap that this program accesses: This is expressed
as follows: if C’s execution safely transforms heap Ξ into heap Θ (i.e., {Ξ}C{Θ} holds),
then C’s execution safely transforms the “bigger” heap Ξ ⋆ Ξf into the heap Θ ⋆ Ξf (i.e.,
{Ξ⋆Ξf}C{Θ⋆Ξf} holds). The (Frame) rule is the essence of local reasoning. This means
that one should prove “small” triples ({Ξ}C{Θ}) and then use such triples in bigger
contexts ({Ξ ⋆ Ξf}C{Θ ⋆ Ξf}).

In the (Frame) above, formula Ξf is called the frame, it is the part of the heap that
is unaffected by C’s execution; while formula Ξ is called the antiframe [29], it is the part
of the heap that is affected by C’s execution.

Third, smallfoot admits a rule for sequential composition. This rule is not present in
the seminal work on smallfoot, because this work focuses on algorithmic checking, but it
is admissible:

{Ξ}C{Ξ′} {Ξ′}C{Θ}
(Seq)

{Ξ}C; C ′{Θ}

9.3 Automatic Parallelization

In this section, we describe our algorithm for parallelizing programs proven correct. As
sketched in this chapter’s introduction, our algorithm takes programs (with their proofs)
as input and yields (parallelized) programs as output (with their proofs). Proofs are a
derivation of Hoare triples and our algorithm is a rewrite system on such derivations.

9.3.1 High-Level Procedure

Our algorithm for rewriting proof trees focuses on two rules of separation logic: the (Frame)
rule and the (Parallel) rule. The basic idea of our reasoning is depicted by the following
rewrite rule:

{Ξ}C{Θ}
(Frame Ξ′)

{Ξ ⋆ Ξ′}C{Θ ⋆ Ξ′}

{Ξ′}C ′{Θ′}
(Frame Θ)

{Θ ⋆ Ξ′}C ′{Θ ⋆ Θ′}
(Seq)

{Ξ ⋆ Ξ′}C; C ′{Θ ⋆ Θ′}

↓Parallelize4

{Ξ}C{Θ} {Ξ′}C ′{Θ′}
(Parallel)

{Ξ ⋆ Ξ′}C‖C ′{Θ ⋆ Θ′}

The diagram above should be read as follows: Given a proof of the sequential program
C; C ′ we rewrite this proof into a proof of the parallel program C‖C ′. If the initial proof
tree is valid, this rewriting yields a valid proof tree because the leaves of the rewritten
proof tree are included in the leaves of the initial proof tree.

Intuitively, parallelizing C and C ′ is sound because the left-hand side of rule Parallelize
makes sure that command C does not access the part of the heap accessed by C ′: the

4To disambiguate between Hoare rules (enclosed in parentheses) and rewrite rules, we underline rewrite
rules.
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antiframe of C ′ (Ξ′) is framed to prove that executing C is safe (see (Frame Ξ′)). Dually,
command C ′ does not access the antiframe of c (Ξ). For these two reasons, it is safe to
execute C and C ′ in parallel.

Formally, rewrite rules are relations P → P ′ that take an input proof tree P and yield
an output proof tree P ′. A rewrite rule → is sound iff for all valid proof trees P such
that P → P ′, P ′ is valid. A proof tree is valid if each inference is an instance of a proof
rule.

The rewrite rules we present in this chapter satisfy the following properties: (1) the
rewrite rules are sound and (2) the rewrite rules preserve specifications i.e., given a proof
tree whose root is {Ξ} {Θ}, any tree returned by the rewrite system (consisting of all
rewrite rules from this chapter) will have {Ξ} {Θ} as its root. This holds simply be-
cause all our rewrite rules leave the pre/postcondition of the root of the input proof tree
untouched.

We conjecture that our rewrite system actually provides a stronger guarantee than
preserving specifications. Plausibly, the set of final states of an input program and the set
of final states of the corresponding optimized program are related. We leave this study,
however, as future work.

9.3.2 Proof Rules with Explicit Antiframes and Frames

In this section we show why smallfoot’s proof rules should be modified for our algorithm
to work properly. We provide appropriate proof rules.

As Parallelize’s left-hand side shows, the (Frame) rule is the central ingredient of
our procedure: for Parallelize to fire, we need applications of (Frame) inside proof trees.
In practice, however, frames are not systemically computed at atomic commands. To
exemplify this statement, consider smallfoot’s proof rule for heap lookup (Lookup):

lkp(ρ, f) = G Π ⊢ F = E x′ is fresh
(Lookup)

{Π ➛ Σ ⋆ F 7→ [ρ]}x := E→f{x = G[x′/x] ∧ (Π ➛ Σ ⋆ F 7→ [ρ])[x′/x]}

The rule (Lookup) does not frame the precondition: the whole pure part of the pre-
condition (Π) is used to show F = E and the substitution x′/x is applied to the whole
precondition (Π ➛ Σ⋆F 7→ [ρ]). In other words, this rule does make explicit the part of the
precondition that is framed i.e., (1) the pure part of the precondition that is useless to
show F = E and (2) the part of the precondition that is left unaffected by the substitution
x′/x.

A similar remark applies to the other rules for atomic commands: (Assign),(Mutate),
(New), and (Dispose). To remedy this problem, we propose new proof rules for atomic
commands where antiframes and frames are made explicit. Figure 9.2 shows rules (de-
rived from smallfoot’s proof rules) for each atomic command where antiframes and frames
are made explicit. In these rules, we subscript formulas representing antiframes by a and
formulas representing frames by f . Extra side conditions on the applications of (Frame)
are indicated as additional premises.

To help the reader understand these rules, we detail the rule exhibiting the antiframe
and frame at a field lookup command (the second rule). The antiframe Πa ➛ Σa ⋆ F 7→ [ρ]
consists of (1) the pure part of the precondition which is necessary to show F = E: it
is Πa and of (2) the spatial part of the precondition asserting that the cell at E exists
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x′ fresh (Assign)
{Ξa}x := E{Ξa[x′/x]} x 6∈ Ξf

(Frame Ξf )
{Ξa ⋆ Ξf}x := E{Ξa[x′/x] ⋆ Ξf}

Πa ⊢ F = E x′ fresh lkp(ρ, f) = G
Ξ = Πa[x′/x] ∧ x = G[x′/x] ➛ (Σa ⋆ F 7→ [ρ])[x′/x]

(Lookup)
{Πa ➛ Σa ⋆ F 7→ [ρ]}x := E→f{Ξ} x 6∈ Ξf

(Frame Ξf )
{(Πa ➛ Σa ⋆ F 7→ [ρ]) ⋆ Ξf}x := E→f{Ξ ⋆ Ξf}

Πa ⊢ F = E mutate(ρ, f,G) = ρ′
(Mutate)

{Πa ➛ F 7→ [ρ]}E→f := G{Πa ➛ F 7→ [ρ′]}
(Frame Ξf )

{Πa ➛ F 7→ [ρ] ⋆ Ξf}E→f := G{Πa ➛ F 7→ [ρ′] ⋆ Ξf}

x′ fresh (New)
{Ξa}x := new(){Ξa[x′/x] ⋆ x 7→ []} x 6∈ Ξf

(Frame Ξf )
{Ξa ⋆ Ξf}x := new(){Ξa[x′/x] ⋆ x 7→ [] ⋆ Ξf}

Πa ⊢ F = E
(Dispose)

{Πa ➛ F 7→ [ρ]}dispose(E){Πa ➛ emp}
(Frame Ξf )

{Πa ➛ F 7→ [ρ] ⋆ Ξf}dispose(E){Πa ➛ emp ⋆ Ξf}

Figure 9.2: Derived rules for atomic commands with explicit antiframes and frames

(F 7→ [ρ]) and the spatial part of the precondition affected by the substitution x′/x (Σa).
The frame is the antiframe’s complement (Ξf ).

Theorem 14. The rules in Figure 9.2 are sound.

Proof. Observe that the restrictions imposed on explicit frames (x 6∈ Ξf ) make explicit
frames immune to substitutions x′/x (cases (Assign), (Lookup), and (New)). Then,
further observe that these rules derive from [16]’s rules (which are sound). �

We have not discussed the rule for method calls. That is intentional: existing proof
rules for method calls [93, 15] already compute frames and antiframes at procedure calls.
Similarly, smallfoot makes frames and antiframes explicit at lock and unlock primitives.
Finally, we use standard rules for while loops and conditionals. There is a caveat though:
because smallfoot generates verification conditions [15], proofs for while loops are “sep-
arated” from the enclosing method. This will forbid to move code from within a loop
outside of the loop (and vice versa).

9.3.3 Frames Factorization

In this section, we show that explicit framing is not yet sufficient to obtain “good” frames.
We give a solution to this problem: we factorize frames.

Most proof trees generated by Figures 9.2’s rules do not match the left-hand side of
the rewrite rule Parallelize shown on page 157. To exemplify this statement, we define
the following abbreviation:
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(Mutate)
{Λx}x→f := E{ΛE

x }
(Fr Λ ,

y,z)
{Λ , ,

x,y,z}x→f := E{ΛE, ,
x,y,z}

(Mutate)
{Λy}y→f := F{ΛF

y }
(Fr ΛE,

x,z )
{ΛE, ,

x,y,z}y→f := F{ΛE,F,
x,y,z }

(Mutate)
{Λz}z→f := G{ΛG

z }
(Fr ΛE,F

x,y )
{ΛE,F,

x,y,z }z→f := G{ΛE,F,G
x,y,z }

(Seq)
{ΛE, ,

x,y,z}y→f := F ; z→f := G{ΛE,F,G
x,y,z }

(Seq)
{Λ , ,

x,y,z}x→f := E; y→f := F ; z→f := G{ΛE,F,G
x,y,z }

Figure 9.3: A proof tree obtained by applying Figure 9.2’s rules

ΛE0,...,Em
x0,...,xm

∆

= x0 7→ [f : E0] ⋆ · · · ⋆ xm 7→ [f : Em]

Note that this abbreviation enjoys the following equivalence:

Λ
E0,...,Em,Em+1,...,Em+k
x0,...,xm,xm+1,...,xm+k ⇔ ΛE0,...,Em

x0,...,xm
⋆ Λ

Em+1,...,Em+k
xm+1,...,xm+k

Now, to see why proof trees generated by Figure 9.2’s rules do not match the left-hand
side of the rewrite rule Parallelize, consider the proof tree shown in Figure 9.3 (where
pure formulas are omitted, (Fr) abbreviates (Frame), and denotes existentially quantified
values). The rewrite rule Parallelize cannot fire on Figure 9.3’s proof tree because this
proof tree contains applications of (Frame) at each atomic command. Generally, given a
program A0; A1; . . . , the proof rules with explicit frames generate a proof tree with the
following shape:

. . . (Frame)
{. . .}A0{. . .}

. . . (Frame)
{. . .}A1{. . .} . . .

(Seq)
{. . .}A1; . . . {. . .}

(Seq)
{. . .}A0; A1; . . . {. . .}

Proof trees with the shape above are inappropriate for the rewrite rule Parallelize.
Intuitively, the problem lies in the successive applications of (Frame) being redundant:
the same formula is framed multiple times. For example, in the proof tree shown in
Figure 9.3, the formula ΛE

x is framed twice: once in the center (Frame) and once in the
right (Frame).

More generally, the presence of redundant frames means that applications of (Frame)
are on short commands (i.e., atomic commands or a small sequence of commands). How-
ever, as the left-hand side of the rewrite rule for parallelization described in the introduc-
tion shows, to parallelize long commands (i.e., long sequence of commands), applications
of (Frame) have to be on long commands. Hence, removing redundant frames is a manda-
tory step before parallelizing. We solve this issue by inferring applications of (Frame) on
long commands from application of (Frame) on short commands.

The redundancy in applications of (Frame) originally arises from smallfoot’s sym-
bolic execution algorithm, that implements the set of Hoare rules shown in Section 9.2.3.
Because symbolic execution mimics an operational update of the state at each atomic
command, each atomic command is treated independently. To fix this issue, two solu-
tions are possible. The first solution is to build a new program verifier that infers frames
for non-atomic commands. We think this solution is inadequate because it requires to
design a program verifier with proof rewriting in mind (breaking separation of concerns).
The second solution, that we choose here, is to minimize the modifications of the program
verifier and to do as much work as possible on the proof rewriting side.
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{Ξa}C{Ξp}
(Frame Ξf )

{Ξa ⋆ Ξf}C{Ξp ⋆ Ξf}

{Θa}C
′{Θp}

(Frame Θf )
{Θa ⋆ Θf}C

′{Θp ⋆ Θf} {Θp ⋆ Θf}C
′′{Ξ′}

(Seq)
{Θa ⋆ Θf}C

′; C′′{Ξ′}
(Seq)

{Ξa ⋆ Ξf}C; C′; C′′{Ξ′}

↓ FactorizeFrames

{Ξa}C{Ξp}
(Frame Ξf0

)
{Ξa ⋆ Ξf0

}C{Ξp ⋆ Ξf0
}

{Θa}C
′{Θp}

(Frame Θf0
)

{Θa ⋆ Θf0
}C′{Θp ⋆ Θf0

}
(Seq)

{Ξa ⋆ Ξf0
}C; C′{Θp ⋆ Θf0

}
(Frame Ξc)

{Ξa ⋆ Ξf}C; C′{Θp ⋆ Θf} {Θp ⋆ Θf}C
′′{Ξ′}

(Seq)
{Ξa ⋆ Ξf}C; C′; C′′{Ξ′}

Guard: Ξf ⇔ Ξf0
⋆ Ξc and Θf ⇔ Θf0

⋆ Ξc

Figure 9.4: Rewrite rule to factorize applications of (Frame)

(Mutate)
{Λx}x→f := E{ΛE

x }
(Fr Λ ,

y,z)
{Λ , ,

x,y,z}x→f := E{ΛE, ,
x,y,z}

(Mutate)
{Λy}y→f := F{ΛF

y }
(Fr Λz)

{Λ ,
y,z}y→f := F{ΛF,

y,z}

(Mutate)
{Λz}z→f := G{ΛG

z }
(Fr ΛF

y )
{ΛF,

y,z}z→f := G{ΛF,G
y,z }

(Seq)
{Λ ,

y,z}y→f := F ; z→f := G{ΛF,G
y,z }

(Fr ΛE
x )

{ΛE, ,
x,y,z}y→f := F ; z→f := G{ΛE,F,G

x,y,z }
(Seq)

{Λ , ,
x,y,z}x→f := E; y→f := F ; z→f := G{ΛE,F,G

x,y,z }

Figure 9.5: Figure 9.3’s proof tree after applying FactorizeFrames once

Figure 9.4 shows the rewrite rule FactorizeFrames that removes redundancy in ap-
plications of (Frame). FactorizeFrames fires if C and C ′ are two consecutive commands
that both frame a part of the state (Ξf and Θf respectively) such that the two parts
of the state share a common part (Ξc as imposed by the guard). In FactorizeFrames’s
right-hand side, the common part of the state is framed once, below the application of
(Seq).

Both the left-hand side of FactorizeFrames and the right-hand side of FactorizeFrames
include the proof tree of the Hoare triple {Θp ⋆ Θf}C

′′{Ξ′}. We need to include such a
proof tree to match two possible cases: C ′′ can be a dummy “continuation” (represented
by the empty command) or a “normal” continuation. In the implementation, all rewrite
rules use this “possible continuation” trick. For clarity reasons, however, in the rest of
this chapter, we describe rewrite rules without such continuations and refer the interested
reader to Appendix C for full rules.

Figure 9.5 exemplifies an application of FactorizeFrames to Figure 9.3’s proof tree: the
redundancy of ΛE

x in the center and the right (Frame)s is factorized in a single (Frame).

Theorem 15. The rewrite rule FactorizeFrames is sound.

Proof. Suppose the left-hand side of FactorizeFrames is valid. The goal is to show that
the right-hand side of FactorizeFrames is valid.

For the application of (Frame Ξc) to be valid, we must show the two following equiva-
lences: Ξa ⋆ Ξf ⇔ Ξa ⋆ Ξf0

⋆ Ξc and Θp ⋆ Θf ⇔ Θp ⋆ Θf0
⋆ Ξc. But these two equivalences
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follow directly from FactorizeFrames’s guard.
For the application of (Frame Θf0

) to be valid, we must show the following equivalence:

Ξp ⋆ Ξf0
⇔ Θa ⋆ Θf0

(goal)

From FactorizeFrames’s first guard, we obtain:

Ξp ⋆ Ξf ⇔ Ξp ⋆ Ξf0
⋆ Ξc (equiv 1)

From the validity of the application of (Seq) in FactorizeFrames’s left-hand side, we
obtain: Ξp ⋆ Ξf ⇔ Θa ⋆ Θf . Then, from FactorizeFrames’s second guard, we obtain:

Ξp ⋆ Ξf ⇔ Θa ⋆ Θf0
⋆ Ξc (equiv 2)

By transitivity and symmetry of ⇔, equiv 1, and equiv 2, we obtain:

Ξp ⋆ Ξf0
⋆ Ξc ⇔ Θa ⋆ Θf0

⋆ Ξc (9.1)

By cancelling Ξc on the right hand sides of the last equivalence, we obtain the de-
sired goal. Now FactorizeFrames’s validity is deduced as follows: (1) each inference in
FactorizeFrames’s right-hand side is a valid instance of the proof rules and (2) the leaves
of FactorizeFrames’s right-hand side are identical to the leaves of FactorizeFrames’s left-
hand side (which are valid by hypothesis). �

9.3.4 Parallelization in Practice

In practice, factorizing frames is a mandatory step before applying the Parallelize rewrite
rule shown in the introduction. For example, applying Parallelize to the proof tree shown
in Figure 9.5 yields a proof of the following Hoare triple:

{Λ , ,
x,y,z}x→f := E ‖ (y→f := F ‖ z→f := G){ΛE,F,G

x,y,z }

For the Parallelize rewrite rule to be sound, we add the guard that C does not modify
variables in Ξ′, C ′, and Θ′ (and conversely). Note that, for clarity of presentation, the
Parallelize rule shown in Section 9.3.1 does not include the “possible continuation” trick
mentioned above. We refer the interested reader to Appendix C for the full rule.

Theorem 16. The rewrite rule Parallelize is sound.

Proof. Suppose Parallelize’s left-hand side is valid. The goal is to show that Parallelize’s
right-hand side is valid.

This holds for the two following reasons: (1) Parallelize’s right-hand side is a valid
application of (Parallel) (because the guard is exactly (Parallel)’s side condition) and
(2) the leaves of Parallelize’s right-hand side are identical to the leaves of Parallelize’s
left-hand side (which are valid by hypothesis). �

9.3.5 Examples of Parallelization

Figure 9.6 shows procedure disp tree (borrowed from smallfoot’s example suite) that
takes a tree at x and recursively disposes it (hence the postcondition emp). If the
tree is null then disp tree simply returns. Otherwise, the tree’s leaves are looked
up, disp tree is called on the leaves, and the root of the tree is disposed. Applying
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requires tree(x);
ensures emp;

disp tree(x;){
local i, j;
if(x = null){}

else{

i := x→ l; j := x→r;
disp tree(i;);
disp tree(j;);
dispose(x);

}

}

→

requires tree(x);
ensures emp;

disp tree(x;){
local i, j;
if(x = null){}

else{

i := x→ l; j := x→r;
disp tree(i;) ‖
disp tree(j;) ‖
dispose(x);

}

}

Figure 9.6: Parallelization of tree disposal

FactorizeFrames and Parallelize to disp tree yields a program where the recursive calls
to disp tree and the disposal of the root are executed in parallel.

Figure 9.7 shows procedure rotate tree (borrowed from Raza et al. [92]) that takes
a tree at x and rotates it by recursively swapping its left and right subtrees. Applying
FactorizeFrames and Parallelize to rotate tree yields a program where the field assign-
ments and the recursive calls are executed in parallel. We achieve better parallelism than
Raza et al. [92] where only the recursive calls are parallelized.

requires tree(x);
ensures tree(x);
rotate tree(x;){
local x1, x2;

if(x = null){}

else{

x1 := x→ l;
x2 := x→r;
x→l := x2;

x→r := x1;

rotate tree(x1;);
rotate tree(x2;);

}

}

→

requires tree(x);
ensures tree(x);
rotate tree(x;){
local x1, x2;

if(x = null){}

else{

x1 := x→ l;
x2 := x→r;
(x→l := x2; x→r := x1) ‖
rotate tree(x1;) ‖
rotate tree(x2;);

}

}

Figure 9.7: Parallelization of tree rotation

9.4 Automatic Optimization

In this section, we show a generic optimization that changes the program’s order (Sec-
tion 9.4.1) and we present a rewrite rule that optimizes temporal locality [96] (Section
9.4.2).
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9.4.1 Generic Optimization

We present an optimization that changes the program’s execution order. This optimiza-
tion has four concrete applications: (1) dispose memory as soon as possible to avoid out of
memory errors, (2) allocate memory as late as possible to leave more allocatable memory,
(3) release locks as soon as possible to increase parallelism, and (4) acquire locks as late
as possible to increase parallelism. Figure 9.8 shows the rewrite rule GenericOptimization
that changes the program’s execution order.

GenericOptimization fires if the program has the shape C; C ′; C ′′ such that C ′ frames
the postcondition of C (as imposed by the guard). Then, the program’s order is changed
so that C ′ executes before C. It should be noted that this rule imposes that C frames
the precondition of C ′ by the following reasoning: for the first application of (Seq) to
be valid in GenericOptimization’s left-hand side, we have Ξp ⋆ Ξf ⇔ Θa ⋆ Θf . From the
guard, it follows that Ξp ⋆Ξf ⇔ Θa ⋆Ξp ⋆Ξr. By simplifying Ξp on both sides, we obtain:
Ξf ⇔ Θa ⋆ Ξr. We can conclude that C frames the precondition of C ′ (Θa).

{Ξa}C{Ξp}
(Fr Ξf )

{Ξa ⋆ Ξf}C{Ξp ⋆ Ξf}

{Θa}C′{Θp}
(Fr Θf )

{Θa ⋆ Θf}C
′{Θp ⋆ Θf} {Θp ⋆ Θf}C

′′{Ξ′}
(Seq)

{Θa ⋆ Θf}C
′; C′′{Ξ′}

(Seq)
{Ξa ⋆ Ξf}C; C′; C′′{Ξ′}

↓ GenericOptimization

{Θa}C′{Θp}
(Fr Ξr ⋆ Ξa)

{Ξa ⋆ Θa ⋆ Ξr}C′{Ξa ⋆ Θp ⋆ Ξr}

{Ξa}C{Ξp}
(Fr Θp ⋆ Ξr)

{Ξa ⋆ Θp ⋆ Ξr}C{Ξp ⋆ Θp ⋆ Ξr} {Ξp ⋆ Θp ⋆ Ξr}C′′{Ξ′}
(Seq)

{Ξa ⋆ Θp ⋆ Ξr}C; C′′{Ξ′}
(Seq)

{Ξa ⋆ Ξf}C
′; C; C′′{Ξ′}

Guard: Θf ⇔ Ξp ⋆ Ξr

Figure 9.8: Rewrite rule to change the program’s execution order

We now detail GenericOptimization’s four concrete applications. (1) If C ′ is a dispose

command and C frames the precondition of C ′, it means that C does not access the state
disposed by C ′: better execute C ′ first to dispose memory as soon as possible. (2) If C is
a new command and C ′ frames the postcondition of C, it means that C ′ does not access
the state allocated by C: better execute C after C ′ to leave C ′ more allocatable memory.
(3) If C ′ is an unlock command and C frames the precondition of C ′ (i.e. the lock’s
resource invariant), it means that C does not access the part of the heap represented by
the lock’s resource invariant: better execute C ′ to release the lock first. (4) If C is a
lock command and C ′ frames the postcondition of C (i.e. the lock’s resource invariant),
it means that C ′ does not access the part of the heap represented by the lock’s resource
invariant: better execute C after C ′ to acquire the lock as late as possible.

Theorem 17. The rewrite rule GenericOptimization is sound.

Proof. Apply the guard’s equivalence in the right places and observe that (1) each
inference in GenericOptimization’s right-hand side is a valid instance of the proof rules
and (2) the leaves of GenericOptimization’s right-hand side are identical to the leaves of
GenericOptimization’s left-hand side (which are valid by hypothesis). �
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9.4.2 Optimization of Temporal Locality

Temporal locality [96] is the time between successive accesses to a heap cell. The lower
this time is, the faster a program can execute because the underlying processors are less
likely to access the main memory. Ideally, if a heap cell is accessed by two instructions
successively, this allows the executing processor to keep the content of this heap cell in
the cache, hence reducing execution time (no load/store to the main memory).

Because our framework does not express properties at the level of memory, we cannot
formally speak about temporal locality. However, a rewrite rule that optimizes temporal
locality can be written at our level of abstraction: heaps denoted by separation logic
formulas.

Intuitively, a program C;C ′;C ′′ such that C and C ′′ access a part of the heap disjoint
from the part of the heap accessed by C ′ can be transformed into C;C ′′;C ′ to improve
temporal locality. In the optimized program, C and C ′′ execute consecutively: because C
and C ′′ access the same part of the heap, the temporal locality of the optimized program is
improved (i.e., it is reduced). Figure 9.11 presents our rewrite rule for improving temporal
locality.

{Ξ}C{Ξ′}
(Fr Θ)

{Ξ ⋆ Θ}C{Ξ′ ⋆ Θ}

{Θ}C′{Θ′}
(Fr Ξ′)

{Ξ′ ⋆ Θ}C′{Ξ′ ⋆ Θ′}
(Seq)

{Ξ ⋆ Θ}C; C′{Ξ′ ⋆ Θ′}

{Ξ′}C′′{Ξ′′}
(Fr Θ′)

{Ξ′ ⋆ Θ′}C′′{Ξ′′ ⋆ Θ′}
(Seq)

{Ξ ⋆ Θ}C; C′; C′′{Ξ′′ ⋆ Θ′}

↓ TemporalLocality

{Ξ}C{Ξ′} {Ξ′}C′′{Ξ′′}
(Seq)

{Ξ}C; C′′{Ξ′′}
(Fr Θ)

{Ξ ⋆ Θ}C; C′′{Ξ′′ ⋆ Θ}

{Θ}C′{Θ′}
(Fr Ξ′′)

{Ξ′′ ⋆ Θ}C′{Ξ′′ ⋆ Θ′}
(Seq)

{Ξ ⋆ Θ}C; C′′; C′{Ξ′′ ⋆ Θ′}

Figure 9.9: Rewrite rule to improve temporal locality

Theorem 18. The rewrite rule TemporalLocality is sound.

Proof. Observe that the leaves of TemporalLocality’s right-hand side are identical to
the leaves of TemporalLocality’s left-hand side (which are valid by hypothesis). Further
observe that each inference in TemporalLocality’s right-hand side is a valid instance of
the proof rules. �

9.4.3 Examples of Optimization

Figure 9.10 shows procedure copy and dispose that copies the content of field val of
cell x to field val of cell c. As indicated by its subscript, lock l has c 7→ [val : ] as its
invariant, i.e., it guards access to the cell pointed to by c. Applying GenericOptimization
optimizes copy and dispose in two ways: the critical region is shortened and cell x is
disposed earlier.

Figure 9.11 shows how to combine TemporalLocality and Parallelize. Figure 9.11
shows method mth that traverses two lists. The method for list traversal is not shown,
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requires x 7→ [val : ];
ensures emp;

copy and dispose(x;){
local v;
lock(lc 7→[val: ]);

v := x→val;
c→val := v;
dispose(x);

unlock(lc 7→[val: ]);

}

→

requires x 7→ [val : ];
ensures emp;

copy and dispose(x;){
local v;
v := x→val;
dispose(x);
lock(lc 7→[val: ]);

c→val := v;
unlock(lc 7→[val: ]);

}

Figure 9.10: Optimization of a critical region

it could perform any action (reversal, sorting etc.) as long as it takes as input a list and
outputs a list (as indicated by list traverse’s contract). The optimization is performed
in three steps: (1) FactorizeFrames is applied, (2) TemporalLocality is applied to execute
the two traversals of list x in sequence, and (3) Parallelize is applied to parallelize the
traversals on x and the traversal on y. Because there are no constraints at all on the
implementation of list traversal, we believe this kind of optimization can be applied often
in practice.

requires list(x);
ensures list(x);
list traverse(x;){ ... }

requires list(x) ⋆ list(y);
requires list(x) ⋆ list(y);
mth(x, y;){
list traverse (x;);
list traverse (y;);
list traverse (x;);

}

→

requires list(x);
ensures list(x);
list traverse(x;){ ... }

requires list(x) ⋆ list(y);
requires list(x) ⋆ list(y);
mth(x, y;){
(list traverse (x;)
list traverse (x;)) ‖

list traverse (y;);
}

Figure 9.11: Optimization that combines TemporalLocality and Parallelize

9.5 Implementation

The techniques described in this chapter have been implemented in a tool called éterlou.
Éterlou consists of two distinct modules:

A proof tree generator which is an extended version of smallfoot [15]. The proof tree
generator generates proof trees using Figure 9.2’s rules. Our extension does not interfere
with the algorithms already present in smallfoot: it only computes antiframes and frames
at each atomic command (by using both smallfoot’s built-in algorithms and dedicated
algorithms).

Because the (Frame) rule is the central ingredient of our procedure, it is crucial that the
implementation of Figure 9.2’s rules computes the largest frames (formulas Ξf ) possible.
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For example, our implementation of the rule for field lookup (Figure 9.2’s second rule)
computes the smallest antiframe Πa that suffices to show F = E, and thus the largest
frames.

A proof tree rewriter which implements the various rewrite rules shown in this chapter.
The proof tree rewriter is written in tom [5], an extension of Java that adds constructs
for pattern matching. We make extensive use of tom’s mapping facility to pattern match
against user-defined Java objects. Another crucial feature of tom is the possibility to
define rewriting strategies.

All the examples of this chapter have been generated with éterlou. We have tested
éterlou against several example programs provided in smallfoot’s distribution and pointer
programs of our own. Our experiments revealed that to obtain the best optimizations
possible, the rewrite rules must be applied in a given order and/or with specific strategies.
For example, FactorizeFrames must be applied before Parallelize for the latter rewrite
rule to fire. In addition, applying rewrite rules from top to bottom (i.e., rewriting at
the root before trying to rewrite in subtrees) generally yields programs where parallelized
commands are longer (compared to other strategies such as bottom to top).

9.6 How to Take Advantage of Separation Logic’s Advances

In this section, we review advances of separation logic that have not been implemented
in smallfoot and we describe how our technique would benefit from these advances.

9.6.1 Object-Orientation

In object-oriented separation logic (as described from Chapter 2 to Chapter 5), separation
logic’s ⋆ splits objects per field. With smallfoot’s notations, this means that p 7→ [x :
] ⋆ p 7→ [y : ] would represent a point with two fields x and y (and omitted fields are

not existentially quantified). Splitting on a per-field basis provides more fine-grained
parallelism which allows to build such a proof:

{p 7→ [x : ] ⋆ p 7→ [y : ]}
p→x := E ‖ p→y := F
{p 7→ [x : E] ⋆ p 7→ [y : F ]}

Using a per-field semantics for ⋆ in the proof tree generator would allow Parallelize to
fire more often. For example, in rotate tree (see Figure 9.7), x→l := x2; x→r := x1

would be parallelized to x→l := x2 ‖ x→r := x1.
In addition, we emphasize that lifting our technique to object-oriented programs is

straightforward since our procedure’s key mechanism is the (Frame) rule which is sup-
ported by object-oriented separation logic (see Chapter 3 and Parkinson’s work [88])

9.6.2 Permission Accounting

Permission accounting (see Chapter 3 to Chapter 5) gives an alternative reading of the
points-to predicate 7→ by adding an extra parameter (called a permission π) to it. In
the flavor of separation logic with permissions, one can define a predicate tree(t,π)
representing access π to a tree t such that the following property holds:

tree(t, π)⇔ tree(t,
π

2
) ⋆ tree(t,

π

2
) (split)
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{tree(t, 1

2
)}contains(t, n){tree(t, 1

2
)} {tree(t, 1

2
)}contains(t, m){tree(t, 1

2
)}

(Parallel)
{tree(t, 1

2
) ⋆ tree(t, 1

2
)}contains(t, n) ‖ contains(t, m){tree(t, 1

2
) ⋆ tree(t, 1

2
)}

Figure 9.12: Proof tree of a program readonly accessing a tree in parallel

{tree(t, 1)}contains(t, n){tree(t, 1)} {tree(t, 1)}contains(t, n){tree(t, 1)}
(Seq)

{tree(t, 1)}contains(t, n); contains(t, m){tree(t, 1)}

Figure 9.13: Proof tree of a parallelizable program

Now, consider a procedure contains(t,n) that looks up if parameter n is in the set
of values contained in tree t:

requires tree(t,π); ensures tree(t,π);
contains(t,n){ ... }

Method contains’s contract is parameterized by permission π. This means that contains’s
precondition tree(t,π) can be instantiated by any π. This technique allows to verify
programs where different processes simultaneously read access a tree as the proof tree in
Figure 9.12 shows.

Now consider the proof tree in Figure 9.13. It is simple and depicts the typical rea-
soning performed in permission accounting separation logic. The rewrite rule Parallelize
shown in Section 9.3.1, however, does not fire on this proof tree. To obtain Figure 9.12’s
proof tree by rewriting Figure 9.13’s proof tree, we need to apply the (split) equivalence
from left to right to be able to apply FactorizeFrames and Parallelize. This requires ob-
serving that tree(t, 1) can be split and that contains’s contract is parameterized. In
another words, Figure 9.13’s proof tree does not show that contains is a read-only method
(because the tree predicate has 1 as second argument). For the parallelization to work,
one should (1) infer that predicate tree’s second argument can be changed to 1/2 and (2)
insert applications of (Frame) accordingly.

We have not found an elegant solution to this issue yet but we observe that permissions
accounting would allow Parallelize to fire strictly more often.

9.6.3 Fork/Join Parallelism

In Chapter 4, we showed how to handle dynamic thread creation with fork/join in sepa-
ration logic. Recall that fork and join work as follows: (1) calling t.fork() starts a new
thread t that executes in parallel with the rest of the program and (2) calling t.join()
stops the calling thread until thread t finishes: when t finishes the calling thread is re-
sumed.

When a parent thread forks a new thread, a part of the parent’s state is transferred to
the new thread. In smallfoot’s language, this would be formalized by the following rule:

Ξ is t’s precondition
(Fork)

{Ξ}t.fork(){true ➛ emp}

Dually, when a thread joins another thread, the former “takes back” a part of the
latter’s state. To formalize this behavior, we have shown in Chapter 4 how to add a new
predicate Join(t, π) which asserts that the thread in which it appears can take back part
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π of thread t’s state. In addition, the assertion language allows to multiply formulas by
a permission, written π · Ξ (for simplicity, we do not reintroduce Chapter 4’s predicates
here). To give the reader an intuition of the meaning of multiplication, we note that
integrating multiplication in smallfoot’s framework would make the following property
true:

π · (Π ➛ x
1
7→ [ρ])⇔ Π ➛ x

π
7→ [ρ]

With the Join predicate and formula multiplication, one can formalize join’s behav-
ior. For smallfoot, the rule below would express that a thread joining another thread t
can take back a part of t’s state:

Ξ is t’s postcondition
(Join)

{Join(t, π)}t.join(){π · Ξ}

Integrating (Fork) and (Join) in our framework would add two concrete applications to
the rewrite rule GenericOptimization. (1) If C ′ is a fork command, GenericOptimization
would rewrite proofs so that new threads are forked as soon as possible (increasing par-
allelism). (2) If C is a join command, GenericOptimization would rewrite proofs so
that threads join other processes as late as possible (increasing parallelism and reducing
joining time).

9.6.4 Variable as Resources

Bornat et al. [20] showed how to treat variables like heap cells. This allows to get rid of
the side condition in the (Parallel) rule resulting in a more uniform proof system. To do
this, the assertion language contains a new predicate Ownπ(x) that asserts ownership π of
variable x.

Roughly, writing a variable x requires permission Own1(x) while reading a variable re-
quires Ownπ(x) for any permission π (in analogy with the permission-accounting model).
This is useful to rule out races on shared variables (whereas the permission system shown
in Chapter 3 to Chapter 5 rules out races on heap cells) as the following program exem-
plifies:

{Own1(x) ⋆ ?}
x = y ‖ x = z

Above, ? cannot be filled with a predicate asserting ownership of x (needed for
verifying the parallel statement’s right-hand side) because Own1(x) is already needed to
verify the parallel statement’s left-hand side (and Own1(x) cannot be ⋆-combined with
Ownπ(x) for any π).

The variable as resources technique would fit perfectly in our framework because
variables that are not accessed by commands would be made explicit: Ownπ( ) predicates
would appear in frames. In other words, program verifiers implementing the variable as
resources technique would compute explicit frames and antiframes for atomic commands
like Figure 9.2’s rules do. Finally, the variable as resource technique would allow for
more uniform treatment of the Parallelize rewrite rule, because (Parallel)’s side condition
would be deleted.
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9.7 Future Work

Extending this chapter’s procedure to object-oriented programs is the next step to prove
this procedure’s usefulness. Detractors for this procedure claim it is impractical for real
world programs. I disagree: as long as there is a ⋆ operator in the specification language
and applications of the (Frame) rule in proof trees, this procedure is surprisingly effective
(as the implementation witnesses). To craft this extension, one would need to integrate
this procedure in a verifier for object-oriented programs with separation logic [43, 33].
Another possible future work would be to apply this technique to parallelize loops. This
would permit comparisons with traditional parallelizers [19, 4, 2, 100] that are effective
at parallelizing loops.

Finally, because FactorizeFrames’s guard (see page 161) uses the syntactical equiv-
alence ⇔, it might miss some semantical equivalences. Using an entailment relation ⊢
would be more powerful. However, we leave the problem of finding common frames with
a semantical equivalence as future work for the following reason: finding a common frame
(i.e., given Ξ and Θ; find Ξc,Ξr, and Θr such that Ξ ⊢ Ξr ⋆ Ξc and Θ ⊢ Θr ⋆ Ξc) cannot
be expressed efficiently in terms of known problems; such as a frame problem [16] (given
Ξ and Θ, find Ξf such that Ξ ⊢ Ξf ⋆ Θ), or a bi-abduction problem [29] (given Ξ and Θ,
find Ξa and Θf such that Ξ ⋆ Ξa ⊢ Θ ⋆ Θf ).

9.8 Related Work and Conclusion

Related Work. The closest (and concurrent) related work is by Raza et al. [92] They use
separation logic to parallelize programs. Our work differs in four ways: (1) Raza et al.
attaches labels to heaps and uses disjointness of labels to detect possible parallelism, while
we use the (Frame) rule to statically detect possible parallelism, leading to a technically
simpler procedure; (2) we express optimizations by rewrite rules on proof trees, allowing
us to feature other optimizations than parallelization and to use different optimization
strategies; (3) Raza et al. is applied after a shape analysis [42, 13], while our analysis is
applied after verification with a program verifier; and (4) contrary to Raza et al., we have
an implementation.

Practical approaches for parallelizing programs include parallelizing compilers [19, 4].
Parallelizing compilers focuses on loop parallelization and do not consider arbitrary pieces
of code. Parallelizing compilers can yield code that executes an order of magnitude faster
than classical compilers. Loop parallelization has been actively studied [75, 2, 100].

Formal approaches for optimizing programs include certified compilers [97, 78] and
certifying compilers [11, 82]. Certified compilers include optimizations that we do not con-
sider and provide fully machine-checked proofs. Certifying compilers manipulate formulas
representing proof obligations whereas we manipulate proof trees representing derivation
of Hoare triples. For this reason, we can consider high-level optimizations such as paral-
lelization whereas we cannot consider the low-level optimizations described in [11, 82].

Techniques to dispose memory as soon as possible have been studied for machine
registers [46] where the goal is to use as few registers as possible. Works on atomicity [38,
22] include techniques to release locks as soon as possible. Improving temporal locality
has been studied for a particular type of programs [71].

Conclusion We showed a new technique to optimize programs proven correct in sep-
aration logic. Proofs are represented as a derivation of Hoare triples. The core of the
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procedure uses separation logic’s (Frame) rule to statically detect parts of the state which
are useless for a command to execute. Considered optimizations are parallelization, early
disposal, late allocation, early lock releasing, and late lock acquirement. Optimizations
are expressed as rewrite rules between proof trees and are performed automatically.

The procedure has been implemented in the éterlou tool. Éterlou consists of a proof
tree generator (a modified version of the smallfoot program verifier [15]) and a proof tree
rewriter written in tom [5]. Small-scale experiments show that the approach is practical.
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Je ne suis pas seulement non violent
mais je suis pour la non-puissance.
Ce n’est sûrement pas une technique
efficace. [. . . ] [Mais] on ne peut
pas créer une société juste avec des
moyens injustes. On ne peut pas
créer une société libre avec des moyens
d’esclaves. C’est pour moi le centre de
ma pensée.

Entretiens (1994)
Jacques Ellul

Chapter 10

Conclusion

This thesis presented several extensions to separation logic for multithreaded object-
oriented programs. This work builds on separation logic [93] for while programs, fractional
permissions [23, 21], concurrent separation logic [84], and separation logic for object-
oriented programs [88]. Further, this thesis showed three new analyzes based on sepa-
ration logic. Below, we list the contributions of this thesis and discuss possible future
work.

Contributions. From Chapter 2 to Chapter 7, we showed a verification system that handles
fundamental aspects of multithreaded Java-like programs.

This verification system handles dynamic thread creation, i.e., fork/join style of par-
allelism (Chapter 4) à la Java. Further, this verification system supports Java’s reentrant
locks (Chapter 5). We provide several new features to extend expressiveness: param-
eterized classes and methods, and support for multiple readonly joiner threads. The
applicability of this verification system has been checked on design patterns from the
literature. Examples include the worker thread pattern and a lock coupling algorithm.
Importantly, this verification system has been shown sound (Chapter 6).

In Chapters 7, 8, and 9, we described three new analyzes based on separation logic.

We showed how to specify protocols of multithreaded Java-like programs (Chapter
7). This work is an extension of Cheon et al.’s work [32]. In addition, we described a
new technique to show that method contracts are correct w.r.t. protocols. For this, we
generate programs that must be proven correct. If the generated programs cannot be
proven correct, some client programs will fail to verify even if they obey the underlying
protocol. Because this technique can be applied early in the development process and
helps writing correct specifications (which are harder to test than programs), we believe
it is a valuable tool for developers using formal methods.

We presented a new technique to disprove entailment between separation logic for-
mulas (Chapter 8). We abstract models of formulas by their size and check whether two
formulas have models whose sizes are compatible. Given two formulas A and B that do
not have compatible models, we can conclude that A 6 ⊢ B. Because of its low complexity,
our algorithm is of interest wherever (1) entailment checking is performed often or (2)
entailment checking is undecidable (as in Chapters 3 to 5’s variant of separation logic).
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Finally, we showed a new technique to automatically parallelize and optimize pro-
grams by rewriting their proofs (Chapter 9). The core of the procedure uses separation
logic’s (Frame) rule to statically detect parts of the state which are useless for a command
to execute. Transformations are expressed as rewrite rules between proof trees and are
performed automatically. The procedure has been implemented in the éterlou tool.

Future Work. First, it is unclear if the contracts of run, fork, and join shown in Chap-
ter 4 are the most convenient ones. Because run’s contract should be expressed in the
definitions of predicates preFork and postJoin, it might be inconvenient to specify run

when several Thread classes inherit from each other. This issue did not occur in ex-
amples of this thesis, but we believe a broader study would be valuable. As sketched
in Section 4.4, a more flexible solution would be to add scalar multiplication as a new
constructor for formulas (as studied by Boyland [24]).

Second, the fact that proving the precondition of the rule for acquiring reentrant
locks (see rule (Re-Lock) in Chapter 5) requires solving an aliasing problem is unsatisfy-
ing. While we believe this is unavoidable with specifications that do not mention thread
identifiers, it might be that specifications that include thread identifiers would avoid this
problem (at the cost of putting an extra burden on the programmer).

Third, in Chapters 4 and 5, we do not verify deadlock freeness. Because deadlocks
depend on the scheduler, they are hard to reproduce and to eliminate manually. Conse-
quently, we believe it is important to provide formal support to avoid them. Deadlock
freeness has been studied extensively in the literature, in particular within general verifi-
cation systems [35, 69, 77]. We emphasize that, to be complete (as opposed to the works
just cited), also deadlocks caused by join must be avoided. Join-based deadlocks occur
when two threads join each other. Traditional solutions to deadlocks (such as imposing
an ordering relation on the locks acquired) should be adapted to fix this issue (e.g., by
ordering the threads joined).

Fourth, it would be valuable to implement the verification system described from
Chapter 3 to 5. In particular, it is unclear if this system can be completely automated.
There are three problems that should be tackled to reach this goal: (1) when to open and
close abstract predicates ? (2) how to automate entailment checking (in presence of the
magic wand it becomes undecidable) ? and (3) how to combine type-based reasoning and
separation logic reasoning (as exemplified in Section 5.6.3’s lock coupling example) ?

Fifth, Chapter 8’s procedure to disprove entailment and Chapter 9’s procedure for
automatic parallelization could be adapted to an object-oriented language. While this
requires developing new algorithms for Chapter 8’s procedure, it should be straightforward
for Chapter 9’s procedure.



Appendix A

Auxiliary Definitions for
Chapters 2 to 7

Field Lookup, fld(C<π̄>) = T̄ f̄ :

(Fields Base)

fld(Object) = ∅

(Fields Ind) fld(D<π̄′[π̄/ᾱ]>) = T̄ ′ f̄ ′

class C<T̄ ᾱ> ext D<π̄′> impl Ū {T̄ f̄ pd* ax* md*}

fld(C<π̄>) = (T̄ f̄)[π̄/ᾱ], T̄ ′ f̄ ′

Axiom Lookup, axiom(t<π̄>) = F :

axiom(ax*)
∆

=

{

true if ax* = ()
F * axiom(ax*) if ax* = (axiom F, ax*)

axiom(T̄ )
∆

=

{

true if T̄ = () or T̄ = (Object)
axiom(U) * axiom(V̄ ) if T̄ = (U, V̄ )

(Ax Class)
class C<T̄ ᾱ> ext U impl V̄ {fd* pd* ax* md*}

axiom(C<π̄>) = axiom(ax*[π̄/ᾱ]) * axiom((U, V̄ )[π̄/ᾱ])

(Ax Interface)
interface I<T̄ ᾱ> ext Ū {pt* ax* mt*}

axiom(I<π̄>) = axiom(ax*[π̄/ᾱ]) * axiom(Ū [π̄/ᾱ])

Remarks on method lookup (defined below):

❼ In mbody and mtype, we replace the implicit self-parameter this by an explicit
method parameter (separated from the other method parameters by a semicolon).
This is technically convenient for the theory.

❼ In mtype, we replace the implicit result-parameter result by an explicit existential
quantifier over the postcondition. This is technically convenient for the theory.
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Method Lookup, mtype(m, t<π̄>) = mt and mbody(m, C<π̄>) = (̄ı).c:

(Mlkup Object)
class Object { . . . <T̄ ᾱ> spec U m(V̄ ı̄){c} . . . }

mlkup(m, Object) = <T̄ ᾱ> spec U m(V̄ ı̄){c}

(Mlkup Defn)
class C<T̄ ′ ᾱ′> ext U ′ impl V̄ ′ { . . . <T̄ ᾱ> spec U m(V̄ ı̄){c} . . . }

mlkup(m, C<π̄>) = (<T̄ ᾱ> spec U m(V̄ ı̄){c})[π̄/ᾱ′]

(Mlkup Inherit) m 6∈ dom(md*)
class C<T̄ ᾱ> ext D<π̄′> impl Ū {fd* pd* md*} mlkup(m, D<π̄′[π̄/ᾱ]>) = md ′

mlkup(m, C<π̄>) = md ′

If mlkup(m, C<π̄>) = <T̄ ᾱ> requiresF ; ensuresG; U m(V̄ ı̄){c}, then:

mbody(m, C<π̄>)
∆

= (this; ı̄).c

mtype(m, C<π̄>)
∆

= <T̄ ᾱ> requiresF ; ensures (ex U result)(G); U m(C<π̄> this; V̄ ı̄)

(Mtype Interface)
interface I<T̄ ᾱ> ext Ū { . . . <T̄ ′ ᾱ′> requiresF ; ensuresG; U ′ m(V̄ ′ ı̄); . . . }

mtype(m, I<π̄>) = (<T̄ ′ ᾱ′> requiresF ; ensures (ex U ′ result)(G);U ′ m(I<π̄> this; V̄ ′ ı̄))[π̄/ᾱ]

(Mtype Interface Inherit) interface I<T̄ ᾱ> ext Ū , V, Ū ′ {pt* ax* mt*}
m 6∈ dom(mt*) (∀U ∈ Ū , Ū ′)(mtype(m, U [π̄/ᾱ]) = undef) mtype(m, V [π̄/ᾱ]) = mt

mtype(m, I<π̄>) = mt

(Mtype Interface Inherit Object) interface I<T̄ ᾱ> ext Ū {pt* ax* mt*}
m 6∈ dom(mt*) (∀U ∈ Ū)(mtype(m, U [π̄/ᾱ]) = undef) mtype(m, Object) = mt

mtype(m, I<π̄>) = mt

Remarks on predicate lookup:

❼ The “ext Object” in plkup(init, Object) and (Plkup Object) is included to match
the format of the relation. There is nothing more to this.

❼ Each class implicitly defines the init-predicate, which gives write permission to all
fields of the class frame. In (Plkup init), df(T ) is the default value of type T (df

is formally defined in Section 2.2).

Predicate Lookup, ptype(P, t<π̄>) = pt and pbody(π.P<π̄′>, C<π̄′′>) = F ext T :

plkup(init, Object) = pred init = true ext Object

(Plkup Object)
class Object { . . . pred P<T̄ ᾱ> =F ; . . . }

plkup(P, Object) = pred P<T̄ ᾱ> =F ext Object

(Plkup Defn)
class C<T̄ ′ ᾱ′> ext U impl V̄ { . . . pred P<T̄ ᾱ> =F ; . . . }

plkup(P,C<π̄>) = (pred P<T̄ ᾱ> =F ext Object)[π̄/ᾱ′]
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(Plkup init)
class C<T̄ ′ ᾱ′> ext U impl V̄ {fd* pd* md*} F = �

T f∈fd*PointsTo(this.f, 1, df(T ))

plkup(init, C<π̄>) = ( pred init =F ext U )[π̄/ᾱ′]

(Plkup Inherit) P 6∈ dom(pd*)
class C<T̄ ′ ᾱ′> ext U impl V̄ {fd* pd* md*} plkup(P,U) = pred P<T̄ ᾱ> =F ext U ′

plkup(P,C<π̄>) = (pred P<T̄ ᾱ> = true ext U)[π̄/ᾱ′]

If plkup(P,C<π̄>) = pred P<T̄ ᾱ> =F ext V , then:

pbody(π.P<π̄′>, C<π̄>)
∆

= (F ext V )[π/this, π̄′/ᾱ]

ptype(P,C<π̄>)
∆

= pred P<T̄ ᾱ>

(Ptype Interface)
interface I<T̄ ᾱ> ext Ū { . . . pred P<T̄ ′ ᾱ′>; . . . }

ptype(P, I<π̄>) = (pred P<T̄ ′ ᾱ′>)[π̄/ᾱ]

(Ptype Interface Inherit) interface I<T̄ ᾱ> ext Ū , V, Ū ′ {pt* ax* mt*}
P 6∈ dom(S) (∀U ∈ Ū , Ū ′)(ptype(P,U [π̄/ᾱ]) = undef) ptype(P, V [π̄/ᾱ]) = pt

ptype(P, I<π̄>) = pt

(Ptype Interface Inherit Object) interface I<T̄ ᾱ> ext Ū {pt* ax* mt*}
P 6∈ dom(pt*) (∀U ∈ Ū)(ptype(P,U [π̄/ᾱ]) = undef) ptype(P, Object) = pt

ptype(P, I<π̄>) = pt

The partial function ptype(P, t<π̄>) is extended to predicate selectors P@C as follows:

ptype(P@C, t<π̄>)
∆

=

{

ptype(P, t<π̄>) if t = C
undef otherwise

Protocol Lookup, protlkup(C<π̄>) = s̄

(Protlkup Object)

protlkup(Object) = ()

(Protlkup Class) protlkup(U) = s′ protlkup(V̄ ) = s′′

class C<T̄ ᾱ> ext U impl V̄ { . . . protocol s; . . . }

protlkup(C<π̄>) = (s, s′, s′′)[π̄/ᾱ]

(Protlkup Interface) protlkup(Ū) = s′

interface I<T̄ ᾱ> ext Ū { . . . protocol s; . . . }

protlkup(I<π̄>) = (s, s′)[π̄/ᾱ]
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Appendix B

Hoare Triples for Java-like
Programs

C<T̄ ᾱ> ∈ ct Γ ⊢ π̄ : T̄ [π̄/α] C<π̄> <: Γ(ℓ)
(New)

Γ; v ⊢
{true}

ℓ = new C<π̄>
{ℓ.init * C classof ℓ * �Γ(u)<:Object ℓ !=u * ℓ.fresh}

Γ ⊢ π, π′ : Object, lockset
(Commit)

Γ; v ⊢
{Lockset(π′) *π.inv *π.fresh}

π.commit
{Lockset(π′) * !(π′ contains π) *π.initialized}

Figure B.1: Rules for initialization commands

Γ ⊢ u, w : U,W W f ∈ fld(U)
(Fld Set)

Γ; v ⊢ {PointsTo(u.f, 1, W)}u.f =w{PointsTo(u.f, 1, w)}

Γ ⊢ u, π, w : U, perm, W W f ∈ fld(U) W <: Γ(ℓ)
(Get)

Γ; v ⊢ {PointsTo(u.f, π, w)}ℓ =u.f{PointsTo(u.f, π, w) * ℓ == w}

Figure B.2: Rules for commands that access the heap
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mtype(m, t<π̄>) = <T̄ ᾱ> requiresG; ensures (ex U α′)(G′); U m(t<π̄> ı0; W̄ ı̄)
σ = (u/ı0, π̄

′/ᾱ, w̄/ı̄) Γ ⊢ u, π̄′, w̄ : t<π̄>, T̄ [σ], W̄ [σ] U [σ] <: Γ(ℓ)
(Call)

Γ; v ⊢ {u != null * G[σ]}ℓ =u.m(w̄){(ex U [σ] α′)(α′ == ℓ * G′[σ])}

Γ ⊢ u, S : Thread, lockset
(Call instantiated by fork)Γ; v ⊢ {u != null * Lockset(S) * u.preFork}ℓ = u.fork(){Lockset(S)}

Γ ⊢ u, p : Thread, perm
(Call instantiated by join)Γ; v ⊢ {u != null * Join(u, p)}ℓ =u.join(){u.postJoin<p>}

Figure B.3: Rules for method calls

Γ ⊢ u, π : Object, lockset
(Lock)

Γ; v ⊢ {Lockset(π) * !(π contains u) *u.initialized}
u.lock()

{Lockset(u · π) *u.inv}

Γ ⊢ u.π : Object, lockset
(Re-Lock)

Γ; v ⊢ {Lockset(u · π)}u.lock(){Lockset(u · u · π)}

Γ ⊢ u : Object Γ ⊢ π : lockset
(Re-Unlock)

Γ; v ⊢ {Lockset(u · u · π)}u.unlock(){Lockset(u · π)}

Γ ⊢ u : Object Γ ⊢ π : lockset
(Unlock)

Γ; v ⊢ {Lockset(u · π) *u.inv}u.unlock(){Lockset(π)}

Figure B.4: Rules for locking/unlocking
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Γ; v;F ⊢ G[w/α] Γ ⊢ w : U <: T Γ, α : U ⊢ G : ⋄
(Val)

Γ; v ⊢ {F}w : T{(ex U α)(G)}

ℓ 6∈ F,G Γ, ℓ : T ; v ⊢ {F * ℓ == df(T )}c : U{G}
(Dcl)Γ; v ⊢ {F}T ℓ; c : U{G}

ı 6∈ F,G, v
Γ ⊢ ℓ : T Γ, ı : T ; v ⊢ {F * ı == ℓ}c : U{G}

(Fin Dcl)
Γ; v ⊢ {F}T ı = ℓ; c : U{G}

Γ; v ⊢ {F}hc{F ′} Γ; v ⊢ {F ′}c : T{G}
(Seq)

Γ; v ⊢ {F}hc; c : T{G}

Γ; v ⊢ {F}hc{G} Γ ⊢ H : ⋄ fv(H) ∩ writes(hc) = ∅
(Frame)

Γ; v ⊢ {F *H}hc{G *H}

Γ; v ⊢ {F ′}hc{G′}
Γ; v;F ⊢ F ′ Γ; v;G′ ⊢ G

(Consequence)
Γ; v ⊢ {F}hc{G}

Γ, α : T ; v ⊢ {F}hc{G}
(Exists)

Γ; v ⊢ {(ex T α)(F)}hc{(ex T α)(G)}

Γ ⊢ w : Γ(ℓ)
(Var Set)

Γ; v ⊢ {true}ℓ =w{ℓ == w}

Γ ⊢ op(w̄) : Γ(ℓ)
(Op)

Γ; v ⊢ {true}ℓ = op(w̄){ℓ == op(w̄)}

Γ ⊢ w : bool
Γ; v ⊢ {F *w}c : void{G} Γ; v ⊢ {F * !w}c′ : void{G}

(If)
Γ; v ⊢ {F}if (w){c}else{c′}{G}

Γ; v;F ⊢ G
(Assert)

Γ; v ⊢ {F}assert(G){F}

Γ ⊢ v : T Γ; o;F ⊢ G[v/α] T <: U Γ, ℓ : U ; p ⊢ {(ex T α)(α == ℓ * G)}c : V {H}
(Return)

Γ, ℓ : U ; o ⊢ {F}ℓ = return(v); c : V {H}

Figure B.5: Other rules



182 APPENDIX B. HOARE TRIPLES FOR JAVA-LIKE PROGRAMS



Appendix C

Implementation of Chapter 9’s
Rewrite Rules

For the rewrite rules to work in practice, the implementation of the rewrite rules is
more complex than the rules shown in Chapter 9. The caveat is the following: (1) the
implementation expects that there is a continuation unaffected by the optimizations, (2)
the implementation preserves the invariant that the first premise of an application of (Seq)
is always an application of (Frame) and, (3) the implementation preserves the invariant
that there are no double (Frame)s i.e., two applications of (Frame) on top of each other.

Rule (1) ensures that, given C and C ′ that can be parallelized, the Parallelize rule
will fire on the program C;C ′;C ′′ (and similarly for other optimizations). For rule (1) to
allow optimizations to fire when there is no continuation, the rewrite rules insert dummy
empty continuation in appropriate places. Rules (2) and (3) ensure that rewrite rules
can assume proof trees have a given shape (without the need for investigating different
cases). Rule (2)’s invariant that the first premise of an application of (Seq) is always
a (Frame) is ensured by inserting “dummy” (Frame)s true ➛ emp in appropriate places.
Rule (3)’s invariant that there are no double (Frame)s is ensured by ⋆-merging double
(Frame)s when needed.

In the implementation of the rewrite rules, for space reasons, we write ǫ for empty.
FactorizeFrames’s implementation is shown in Figure C.1 and Parallelize in Figure C.2.
GenericOptimization’s implementation is exactly as shown in Section 9.4.1 (see Figure 9.8
on page 164).

The implementation features two variations of TemporalLocality. Figure C.3 shows
a version meant to be applied before FactorizeFrames while Figure C.4 shows a version
meant to be applied after FactorizeFrames. That is because FactorizeFrames takes a
proof tree balanced to the right and yields a proof tree balanced to the left. To be
applied before FactorizeFrames, the first version of TemporalLocality (Figure C.3) takes
as input a proof tree balanced to the right, while the second version of TemporalLocality
(Figure C.4) takes as input a proof tree balanced to the left. In practice, both versions
of TemporalLocality are useful.
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{Ξa}C{Ξp}
(Frame Ξf )

{Ξa ⋆ Ξf}C{Ξp ⋆ Ξf}

{Θa}C
′{Θp}

(Frame Θf )
{Θa ⋆ Θf}C

′{Θp ⋆ Θf} {Θp ⋆ Θf}C
′′{Ξ′}

(Seq)
{Θa ⋆ Θf}C

′; C′′{Ξ′}
(Seq)

{Ξa ⋆ Ξf}C; C′; C′′{Ξ′}

↓ FactorizeFrames

{Ξa}C{Ξp}
(Frame Ξf0

)
{Ξa ⋆ Ξf0

}C{Ξp ⋆ Ξf0
}

{Θa}C
′{Θp}

(Frame Θf0
)

{Θa ⋆ Θf0
}C′{Θp ⋆ Θf0

}

Θp ⋆ Θf0
⊢ Θp ⋆ Θf0 (Empty)

{Θp ⋆ Θf0
}ǫ{Θp ⋆ Θf0

}
(Seq)

{Θa ⋆ Θf0
}C′; ǫ{Θp ⋆ Θf0

}
(Seq)

{Ξa ⋆ Ξf0
}C; C′; ǫ{Θp ⋆ Θf0

}
(Frame Ξc)

{Ξa ⋆ Ξf}C; C′; ǫ{Θp ⋆ Θf} {Θp ⋆ Θf}C
′′{Ξ′}

(Seq)
{Ξa ⋆ Ξf}C; C′; ǫ; C′′{Ξ′}

Guard: Ξf ⇔ Ξf0
⋆ Ξc and Θf ⇔ Θf0

⋆ Ξc

Figure C.1: FactorizeFrames’s implementation

{Ξ}C{Θ}
(Frame Ξ′)

{Ξ ⋆ Ξ′}C{Θ ⋆ Ξ′}

{Ξ′}C ′{Θ′}
(Frame Θ)

{Θ ⋆ Ξ′}C ′{Θ ⋆ Θ′} {Θ ⋆ Θ′}C ′′{Ξ′′}
(Seq)

{Θ ⋆ Ξ′}C ′; C ′′{Ξ′′}
(Seq)

{Ξ ⋆ Ξ′}C; C ′; C ′′{Ξ′′}

↓ (Parallelize)

{Ξ}C{Θ} {Ξ′}C ′{Θ′}
(Parallel)

{Ξ ⋆ Ξ′}C‖C ′{Θ ⋆ Θ′} {Θ ⋆ Θ′}C ′′{Ξ′′}
(Seq)

{Ξ ⋆ Ξ′}(C‖C ′); C ′′{Ξ′′}

Figure C.2: Parallelize’s implementation
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{Ξ}C{Ξ′}
(Fr Θ)

{Ξ ⋆ Θ}C{Ξ′ ⋆ Θ}

{Θ}C′{Θ′}
(Fr Ξ′)

{Ξ′ ⋆ Θ}C′{Ξ′ ⋆ Θ′}

{Ξ′}C′′{Ξ′′}
(Fr Θ′)

{Ξ′ ⋆ Θ′}C′′; C′′′{Ξ′′ ⋆ Θ′} {Ξ′′ ⋆ Θ′}C′′′{Ξp}
(Seq)

{Ξ′ ⋆ Θ′}C′′; C′′′{Ξp}
(Seq)

{Ξ′ ⋆ Θ}C′; C′′; C′′′{Ξp}
(Seq)

{Ξ ⋆ Θ}C; C′; C′′; C′′′{Ξp}

↓ TemporalLocality

{Ξ}C{Ξ′}

{Ξ′}C′′{Ξ′′}

Ξ′′ ⊢ Ξ′′

(Empty)
{Ξ′′}ǫ{Ξ′′}

(Seq)
{Ξ′}C′′; ǫ{Ξ′′}

(Seq)
{Ξ}C; C′′; ǫ{Ξ′′}

(Fr Θ)
{Ξ ⋆ Θ}C; C′′; ǫ{Ξ′′ ⋆ Θ}

{Θ}C′{Θ′}
(Fr Ξ′′)

{Ξ′′ ⋆ Θ}C′{Ξ′′ ⋆ Θ′} {Ξ′′ ⋆ Θ′}C′′′{Ξp}
(Seq)

{Ξ′′ ⋆ Θ}C′; C′′′{Ξp}
(Seq)

{Ξ ⋆ Θ}C; C′′; ǫ; C′; C′′′{Ξp}

Figure C.3: TemporalLocality’s implementation to be applied before FactorizeFrames

{Ξ}C{Ξ′}
(Fr Θ ⋆ Θ′′)

{Ξ ⋆ Θ ⋆ Θ′′}C{Ξ′ ⋆ Θ ⋆ Θ′′}

{Θ}C′{Θ′}
(Fr Ξ′)

{Ξ′ ⋆ Θ}C′{Ξ′ ⋆ Θ′}

{Ξ′}C′′{Ξ′′}
(Fr Θ′)

{Ξ′ ⋆ Θ′}C′′{Ξ′′ ⋆ Θ′}

Ξ′′ ⋆ Θ′ ⊢ Ξ′′ ⋆ Θ′

(Empty)
{Ξ′′ ⋆ Θ′}ǫ{Ξ′′ ⋆ Θ′}

(Seq)
{Ξ′ ⋆ Θ′}C′′; ǫ{Ξ′′ ⋆ Θ′}

(Seq)
{Ξ′ ⋆ Θ′}C′; C′′; ǫ{Ξ′′ ⋆ Θ′}

(Fr Θ′′)
{Ξ′ ⋆ Θ ⋆ Θ′′}C′; C′′; ǫ{Ξ′′ ⋆ Θ′ ⋆ Θ′′} {Ξ′′ ⋆ Θ ⋆ Θ′′}C′′′{Ξp}

(Seq)
{Ξ′ ⋆ Θ ⋆ Θ′′}C′; C′′; ǫ; C′′′{Ξp}

(Seq)
{Ξ ⋆ Θ ⋆ Θ′′}C; C′; C′′; ǫ; C′′′{Ξp}

↓ TemporalLocality

{Ξ}C{Ξ′}

{Ξ′}C′′{Ξ′′}

Ξ′′ ⊢ Ξ′′

(Empty)
{Ξ′′}ǫ{Ξ′′}

(Seq)
{Ξ′}C′′; ǫ{Ξ′′}

(Seq)
{Ξ}C; C′′; ǫ{Ξ′′}

(Fr Θ ⋆ Θ′′)
{Ξ ⋆ Θ ⋆ Θ′′}C; C′′; ǫ{Ξ′′ ⋆ Θ ⋆ Θ′′}

{Θ}C′{Θ′}
(Fr Ξ′′ ⋆ Θ′′)

{Ξ′′ ⋆ Θ ⋆ Θ′′}C′{Ξ′′ ⋆ Θ′ ⋆ Θ′′} {Ξ′′ ⋆ Θ′ ⋆ Θ′′}C′′′{Ξp}
(Seq)

{Ξ′′ ⋆ Θ ⋆ Θ′′}C′; C′′′{Ξp}
(Seq)

{Ξ ⋆ Θ ⋆ Θ′′}C; C′′; ǫ; C′; C′′′{Ξp}

Figure C.4: TemporalLocality’s implementation to be applied after FactorizeFrames
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Symbol Index for Chap. 2 to 7

# The compatibility relation, pages 26, 52, and 73.
-* The magic wand, page 20.
→ State reduction relation, pages 15, 41, 51, 71, and 124
* The separating conjunction, page 20.
* The joining operator for resources, pages 26, 52, and 73.
<: The subtyping relation, pages 11 and 72.
α ∈ LogVar A logical variable, page 9.
a ∈ Action ::= m.enter | m.exit An action, page 122.
C, D ∈ ClassId Class identifiers, page 9.
c ∈ Cmd A command, page 11.
df : Type→ ClVal Initialization of values, page 13.
e ∈ Exp An expression, pages 20 and 118.
f ∈ FieldId A field, page 9.
fld Function to lookups a class’s fields, page 175.
fst : Heap→ (ObjId ⇀ Type) Function that extracts types from heaps, page 24.

first : GhostStore ⇀ GhostStore Function that returns the head of a sequence, page 126.
h ∈ Heap = ObjId ⇀ Type× (FieldId ⇀ ClVal) A heap, page 12.
hc ∈ HeadCmd A head command, page 11, 41, 68, and 70.
F,G, H Formulas, pages 20, 52, 71, and 72.
F ⊆ ObjId A fresh set, page 73.
Γ ∈ ObjId ∪ Var ∪ ProtVar ⇀ Type A type environment, pages 23 and 119.
group A predicate modifier, page 53.
I ⊆ ObjId An initialized set, page 73.
I, J ∈ IntId Interface identifiers, page 9.
init : Cmd→ State Initialization of programs, pages 13, 51, 70, and 123.
initStore : Type ⇀ ObjStore Initialization of object stores, page 13.
ı ∈ RdVar A read-only variable, page 9.
J ∈ ObjId→ [0, 1] A join table, page 52.
L ∈ ObjId ⇀ Bag(ObjId) An abstract lock table, page 73.
ℓ ∈ RdWrVar A read-write variable, page 9.
l ∈ LockTable = ObjId ⇀ {free} ⊎ (ObjId× N) Lock tables, page 70.
m ∈ MethId A method identifier, page 9.
µ ∈ SemVal Semantics of values, pages 29 and 74.
multi-join A class modifier, page 59.
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o, p, q, r ∈ ObjId Object identifiers, page 9.
P ∈ PredId A predicate identifier, page 9.
π ∈ SpecVal Specification values, pages 10, 21, and 73.
public Modifier to export predicates’s definitions, page 21.
R ∈ Resource Resources, pages 25, 52, and 73.
result A special identifier in postconditions, page 21.
return An auxiliary command page 12.
σ A substitution.
σ ∈ GhostStore ::= (LogVar ∪ ProtVar) ⇀ SpecVal A ghost store, page 122.
s, t ∈ TypeId = ClassId ∪ IntId Type identifiers, page 9.
s ∈ Stack = RdWrVar ⇀ ClVal A stack, page 12.
sc ∈ SpecCmd A specification command, pages 41 and 69.
st ∈ State = Heap× Cmd× Stack A state, pages 12, 51, 70, and 122.

τ ∈ Trace ::= GhostStore× Action A trace, page 122.
tt ∈ TraceTable = ObjId ⇀ Trace A trace table, page 122.
T, U, V, W ∈ Type Types, pages 10, 21, and 72.
t ∈ Thread = Stack× Cmd ::= s in c A thread, page 51.
ts ∈ ThreadPool = ObjId ⇀ Thread A thread pool, page 51.
u, v, w ∈ Val Values, page 10.
x, y, z ∈ Var = RdVar ∪ RdWrVar ∪ LogVar Variables, page 9.
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