
Specification and Verification of Multithreaded
Object-Oriented Programs with Separation Logic

Clément Hurlin

INRIA Sophia Antipolis – Méditerranée, France
Universiteit Twente, The Netherlands

Soutenance de thèse

Thèse dirigée par Marieke Huisman
Thèse effectuée au sein des équipes Everest et FMT

14 septembre 2009

Un programme, qu’est ce que c’est ?

Un programme est une suite d’instructions.

Exemple de programme calculant la valeur d’une fraction:

lire n;
lire d;
affiche n / d;

Le but de cette thèse:
S’assurer que les programmes fonctionnent correctement.

ë Par exemple, le programme ci-dessus est-il correct ?
ë Hum, pas vraiment, on peut effectuer une division par zéro. . .
ë C.à.d. que ce programme peut planter.

2

Un programme, qu’est ce que c’est ?

Un programme est une suite d’instructions.

Exemple de programme calculant la valeur d’une fraction:

lire n;
lire d;
affiche n / d;

Le but de cette thèse:
S’assurer que les programmes fonctionnent correctement.

ë Par exemple, le programme ci-dessus est-il correct ?
ë Hum, pas vraiment, on peut effectuer une division par zéro. . .
ë C.à.d. que ce programme peut planter.

2

Un programme, qu’est ce que c’est ?

Un programme est une suite d’instructions.

Exemple de programme calculant la valeur d’une fraction:

lire n;
lire d;
affiche n / d;

Le but de cette thèse:
S’assurer que les programmes fonctionnent correctement.

ë Par exemple, le programme ci-dessus est-il correct ?
ë Hum, pas vraiment, on peut effectuer une division par zéro. . .
ë C.à.d. que ce programme peut planter.

2

Un programme, qu’est ce que c’est ?

Un programme est une suite d’instructions.

Exemple de programme calculant la valeur d’une fraction:

lire n;
lire d;
si d � 0 alors affiche (n / d);
sinon affiche ‘‘Erreur : d doit etre different de zero.’’;

Le but de cette thèse:
S’assurer que les programmes fonctionnent correctement.

ë Par exemple, le programme ci-dessus est-il correct ?
ë Oui!

3

Vérifier des programmes

Pour s’assurer du bon fonctionnement des programmes, on les vérifie.

Vérifier un programme P, ça consiste à:
Spécifier formellement P, c.à.d. exprimer ce que P est censé faire.
Vérifier que P satisfait sa spécification.

programme P programme P

spécification
formelle S

+ + P respecte S ?

spécification
informelle

4

Sujets d’étude de cette thèse

programme P programme P

spécification
formelle S

+ + P respecte S ?

spécification
informelle

comment spécifier ?

5

Sujets d’étude de cette thèse

programme P programme P

spécification
formelle S

+ + P respecte S ?

spécification
informelle

comment spécifier ?

5

Sujets d’étude de cette thèse

programme P programme P

spécification
formelle S

+ + P respecte S ?

spécification
informelle

comment spécifier ? comment vérifier ?

5

Sujets d’étude de cette thèse

programme P programme P

spécification
formelle S

+ + P respecte S ?

spécification
informelle

comment spécifier ? comment vérifier ?

5

Sujets d’étude de cette thèse

programme P programme P

spécification
formelle S

+ + P respecte S ?

spécification
informelle

comment spécifier ? comment vérifier ?

Pour des programmes objets et multi-processeurs.

6

Objectives of the thesis

To adapt separation logic to multithreaded Java

ë I.e. to support Java’s primitives for multithreading:
p1q fork/join
p2q Reentrant locks

By using variants of separation logic [Reynolds’02]:
� Separation logic for while programs with a parallel operator } [O’Hearn’07]
� Separation logic for sequential Java programs [Parkinson’05]

Side effects of the thesis:
Three analyses based on separation logic

7

Objectives of the thesis

To adapt separation logic to multithreaded Java

ë I.e. to support Java’s primitives for multithreading:
p1q fork/join
p2q Reentrant locks

By using variants of separation logic [Reynolds’02]:
� Separation logic for while programs with a parallel operator } [O’Hearn’07]
� Separation logic for sequential Java programs [Parkinson’05]

Side effects of the thesis:
Three analyses based on separation logic

7

Objectives of the thesis

To adapt separation logic to multithreaded Java

ë I.e. to support Java’s primitives for multithreading:
p1q fork/join
p2q Reentrant locks

By using variants of separation logic [Reynolds’02]:
� Separation logic for while programs with a parallel operator } [O’Hearn’07]
� Separation logic for sequential Java programs [Parkinson’05]

Side effects of the thesis:
Three analyses based on separation logic

7

Our tool for reasoning: Separation Logic
Our assertion language is permission accounting separation logic

[Reynolds’02,Bornat et al.’05].
Formulas represent permissions to access the heap.

Formula x.f π
ÞÝÑ v has a dual meaning:

� x.f contains value v.
� Permission π to access field x.f .

Permissions π are fractions in p0,1s [Boyland’03].
� Permission 1 grants write and read access.
� Any permission 1 grants readonly access.

Abstract predicates represent complex formulas [Parkinson’05]:
They are defined in classes.
They have at least one parameter (the receiver)

Compared to the literature:
We mix object-orientation and permissions.
Classes can be parameterized by specification values.

8

Our tool for reasoning: Separation Logic
Our assertion language is permission accounting separation logic

[Reynolds’02,Bornat et al.’05].
Formulas represent permissions to access the heap.

Formula x.f π
ÞÝÑ v has a dual meaning:

� x.f contains value v.
� Permission π to access field x.f .

Permissions π are fractions in p0,1s [Boyland’03].
� Permission 1 grants write and read access.
� Any permission 1 grants readonly access.

Abstract predicates represent complex formulas [Parkinson’05]:
They are defined in classes.
They have at least one parameter (the receiver)

Compared to the literature:
We mix object-orientation and permissions.
Classes can be parameterized by specification values.

8

Our tool for reasoning: Separation Logic
Our assertion language is permission accounting separation logic

[Reynolds’02,Bornat et al.’05].
Formulas represent permissions to access the heap.

Formula x.f π
ÞÝÑ v has a dual meaning:

� x.f contains value v.
� Permission π to access field x.f .

Permissions π are fractions in p0,1s [Boyland’03].
� Permission 1 grants write and read access.
� Any permission 1 grants readonly access.

Abstract predicates represent complex formulas [Parkinson’05]:
They are defined in classes.
They have at least one parameter (the receiver)

Compared to the literature:
We mix object-orientation and permissions.
Classes can be parameterized by specification values.

8

Objective 1: fork/join [AMAST’08]

fork and join are the two primitives used to create and wait threads
(in Java, C++, C, python, etc.):

t.fork() starts a new thread t.
t.join() waits until thread t terminates.

ë fork and join are more general than }.

In terms of resources (i.e. the heap), fork and join behave as follows:

t.fork() consumes the resource needed by t to execute.
t.join() gets back [a part of] t’s resource when t terminates.

9

Objective 1: fork/join [AMAST’08]

fork and join are the two primitives used to create and wait threads
(in Java, C++, C, python, etc.):

t.fork() starts a new thread t.
t.join() waits until thread t terminates.

ë fork and join are more general than }.

In terms of resources (i.e. the heap), fork and join behave as follows:
t.fork() consumes the resource needed by t to execute.

t.join() gets back [a part of] t’s resource when t terminates.

9

Objective 1: fork/join [AMAST’08]

fork and join are the two primitives used to create and wait threads
(in Java, C++, C, python, etc.):

t.fork() starts a new thread t.
t.join() waits until thread t terminates.

ë fork and join are more general than }.

In terms of resources (i.e. the heap), fork and join behave as follows:
t.fork() consumes the resource needed by t to execute.
t.join() gets back [a part of] t’s resource when t terminates.

9

fork and join in terms of resources (1)

thread t0

10

fork and join in terms of resources (1)

thread t0 t1.fork()

thread t1

10

fork and join in terms of resources (1)

thread t0 t1.fork()

thread t1

10

fork and join in terms of resources (1)

thread t0 t1.fork()

thread t1

t1.join()

10

Fork and join in terms of resources (2)

thread t0

thread t2

11

Fork and join in terms of resources (2)

thread t0

thread t2

t1.fork()

thread t1

11

Fork and join in terms of resources (2)

thread t0

thread t2

t1.fork()

thread t1

11

Fork and join in terms of resources (2)

thread t0

thread t2

t1.fork()

thread t1

t1.join()

t1.join()

11

Hoare rules for fork and join

class Thread extends Object{

void fork();

void join();

void run() { null }

}

When t.fork() is called, t.run() is executed in parallel.

12

Hoare rules for fork and join

class Thread extends Object{

void fork();

void join();

void run() { null }

}

When t.fork() is called, t.run() is executed in parallel.

12

Hoare rules for fork and join

class Thread extends Object{

pred preFork = true; // to be extended in subclasses

requires preFork; ensures true;
void fork();

void join();

requires preFork; ensures true;
void run() { null }

}

When t.fork() is called, t.run() is executed in parallel.

13

Hoare rules for fork and join

class Thread extends Object{

pred preFork = true;
pred postJoin = true; // to be extended in subclasses

requires preFork; ensures true;
void fork();

requires Join(this); ensures postJoin;
void join();

requires preFork; ensures postJoin;
void run() { null }

}

t.join() resumes when t terminates.
Join(t): the thread in which this formula appears can get back t’s
postcondition when t terminates.

ë But this does not allow concurrent joiners.

14

Hoare rules for fork and join

class Thread extends Object{

pred preFork = true;
pred postJoin = true; // to be extended in subclasses

requires preFork; ensures true;
void fork();

requires Join(this); ensures postJoin;
void join();

requires preFork; ensures postJoin;
void run() { null }

}

t.join() resumes when t terminates.
Join(t): the thread in which this formula appears can get back t’s
postcondition when t terminates.

ë But this does not allow concurrent joiners.
14

Fork and join in terms of resources (2)

thread t0

thread t2

t1.fork()

thread t1

15

Fork and join in terms of resources (2)

thread t0

thread t2

t1.fork()

thread t1

t1.join()

t1.join()

15

Hoare rules for fork and join

class Thread extends Object{

pred preFork = true;
pred postJoin<perm p> = true;

requires preFork; ensures true;
void fork();

requires Join(this,p); ensures postJoin<p>;
void join();

requires preFork; ensures postJoin<1>;
void run() { null }

}

ë We parameterize Join and postJoin by a permission.
Join(t,p) give access to fraction p of thread t’s postcondition.

16

Hoare rules for fork and join

class Thread extends Object{

pred preFork = true;
group postJoin = true;

requires preFork; ensures true;
void fork();

requires Join(this,p); ensures postJoin<p>;
void join();

requires preFork; ensures postJoin<1>;
void run() { null }

}

For soundness:
postJoin is a special predicate: a group.

ë It satisfies @perm p.postJoin<p> *-* (postJoin<p{2>*postJoin<p{2>).

17

Objective 2: reentrant locks [APLAS’08]
Reentrant locks are the main primitive to acquire/release locks in Java.

They can be acquired more than once (and released accordingly)
ë Convenient for programmers (no need to acquire conditionally)

class Set{

int size(){ // client and helper method

}

bool has(Element e){ // client method

}

}

18

Objective 2: reentrant locks [APLAS’08]
Reentrant locks are the main primitive to acquire/release locks in Java.

They can be acquired more than once (and released accordingly)
ë Convenient for programmers (no need to acquire conditionally)

class Set{

int size(){ // client and helper method

}

bool has(Element e){ // client method

}

}
18

Objective 2: reentrant locks [APLAS’08]
Reentrant locks are the main primitive to acquire/release locks in Java.

They can be acquired more than once (and released accordingly)
ë Convenient for programmers (no need to acquire conditionally)

class Set{

int size(){
lock(this);
...

unlock(this);
return ...;

}

bool has(Element e){
lock(this);
bool result;
if(size()==0) unlock(this); return false;
else ...; unlock(this); return ...;

}

}
19

Objective 2: reentrant locks [APLAS’08]
Reentrant locks are the main primitive to acquire/release locks in Java.

They can be acquired more than once (and released accordingly)
ë Convenient for programmers (no need to acquire conditionally)

class Set{

int size(){
lock(this);
...

unlock(this);
return ...;

}

bool has(Element e){
lock(this);
bool result;
if(size()==0) unlock(this); return false;
else ...; unlock(this); return ...;

}

}
20

Objective 2: reentrant locks [APLAS’08]

In separation logic [O’Hearn’07]:
Each lock guards a part of the heap called the lock’s resource invariant.
Resource invariants are exchanged between locks and threads:

� When a lock is acquired, it lends its resource invariant to the acquiring thread.
� When a lock is released, it claims back its resource invariant from the releasing

thread.

Resource invariants are represented by the distinguished abstract predicate inv:

class Object{
pred inv = true;

}

21

Objective 2: reentrant locks [APLAS’08]

In separation logic [O’Hearn’07]:
Each lock guards a part of the heap called the lock’s resource invariant.
Resource invariants are exchanged between locks and threads:

� When a lock is acquired, it lends its resource invariant to the acquiring thread.
� When a lock is released, it claims back its resource invariant from the releasing

thread.

Resource invariants are represented by the distinguished abstract predicate inv:

class Object{
pred inv = true;

}

21

Objective 2: reentrant locks [APLAS’08]

In separation logic [O’Hearn’07]:
Each lock guards a part of the heap called the lock’s resource invariant.
Resource invariants are exchanged between locks and threads:

� When a lock is acquired, it lends its resource invariant to the acquiring thread.
� When a lock is released, it claims back its resource invariant from the releasing

thread.

But this is unsound for reentrant locks!
ë We need to distinguish between initial acquirements and reentrant acquirements.

22

Objective 2: reentrant locks [APLAS’08]

In separation logic [O’Hearn’07]:
Each lock guards a part of the heap called the lock’s resource invariant.
Resource invariants are exchanged between locks and threads:

� When a lock is acquired, it lends its resource invariant to the acquiring thread.
� When a lock is released, it claims back its resource invariant from the releasing

thread.

But this is unsound for reentrant locks!
ë We need to distinguish between initial acquirements and reentrant acquirements.

22

Separation Logic for Reentrant Locks

4 formulas to speak about locks (where S is a multiset):

Lockset(S) | S contains x | x.fresh | x.initialized

For each thread, we track the set of currently held locks:
Lockset(S): S is the multiset of currently held locks.
S contains x: lockset S contains lock x.

For each lock, we track its abstract lock state:
x.fresh: x’s resource invariant is not initialized
x.initialized: x’s resource invariant is initialized.

23

Separation Logic for Reentrant Locks

4 formulas to speak about locks (where S is a multiset):

Lockset(S) | S contains x | x.fresh | x.initialized

For each thread, we track the set of currently held locks:
Lockset(S): S is the multiset of currently held locks.
S contains x: lockset S contains lock x.

For each lock, we track its abstract lock state:
x.fresh: x’s resource invariant is not initialized
x.initialized: x’s resource invariant is initialized.

23

Initializing Locks

C<π̄> : Γpxq
(New)

Γ$

ttrueu
x� new C<π̄>

tx.init * C classof x * �Γpuq :Object x!=u * x.freshu

ë After creation a lock cannot be acquired: x.initialized fails to match
(Lock)’s precondition.

(Commit)

Γ$
tLockset(S)*x.inv*x.freshu

x.commit
tLockset(S)* (S contains x)*x.initializedu

ë x.commit is a no-op.
ë After being committed a lock can be acquired: (Commit)’s postcondition entails

x.initialized.

24

Initializing Locks

C<π̄> : Γpxq
(New)

Γ$

ttrueu
x� new C<π̄>

tx.init * C classof x * �Γpuq :Object x!=u * x.freshu

ë After creation a lock cannot be acquired: x.initialized fails to match
(Lock)’s precondition.

(Commit)

Γ$
tLockset(S)*x.inv*x.freshu

x.commit
tLockset(S)* (S contains x)*x.initializedu

ë x.commit is a no-op.
ë After being committed a lock can be acquired: (Commit)’s postcondition entails

x.initialized.

24

Acquiring Locks

(Lock)

Γ$
tLockset(S)*(S contains x)*x.initializedu

lockpxq
tLockset(x �S)*x.invu

ë First acquirement: resource invariants obtained.
ë Nothing special to handle subclassing.

(Re-Lock)
Γ$ tLockset(x �S)ulockpxqtLockset(x �x �S)u

ë Reentrant acquirement: x’s resource invariant not obtained.

25

Releasing Locks

The 2 rules for releasing locks are dual to the rules for acquirement.
ë Hence, we do not discuss them.

26

Objectives 1 and 2: Achievements

A sound verification system for realistic multithreaded Java programs.
Usability tested against challenging case studies:

� Concurrent iterator
� Lock coupling algorithm (still some limitations)

Algorithmic verification still to be developed

After that:
3 new analyses based on separation logic

ë 2 of these analyses are sketched in the next slides

27

Objectives 1 and 2: Achievements

A sound verification system for realistic multithreaded Java programs.
Usability tested against challenging case studies:

� Concurrent iterator
� Lock coupling algorithm (still some limitations)

Algorithmic verification still to be developed

After that:
3 new analyses based on separation logic

ë 2 of these analyses are sketched in the next slides

27

1st Analysis: Fast Disproving of Entailment
[IWACO’09]

Goal:
Disprove entailment between separation logic formulas

ë I.e. to prove A& B

Usefulness:
Program verifiers spend their time checking entailment.

ë I.e. given the program’s state A, and the next command’s precondition B,
ë program verifiers have to find a F such that A$ B�F.

In full separation logic, $ is undecidable.
If we can prove that A& B, then we know that F cannot be found.

ë This avoids trying to prove unprovable programs.

28

1st Analysis: Fast Disproving of Entailment
[IWACO’09]

Goal:
Disprove entailment between separation logic formulas

ë I.e. to prove A& B

Usefulness:
Program verifiers spend their time checking entailment.

ë I.e. given the program’s state A, and the next command’s precondition B,
ë program verifiers have to find a F such that A$ B�F.

In full separation logic, $ is undecidable.
If we can prove that A& B, then we know that F cannot be found.

ë This avoids trying to prove unprovable programs.

28

1st Analysis: Fast Disproving of Entailment
[IWACO’09]

Goal:
Disprove entailment between separation logic formulas

ë I.e. to prove A& B

Usefulness:
Program verifiers spend their time checking entailment.

ë I.e. given the program’s state A, and the next command’s precondition B,
ë program verifiers have to find a F such that A$ B�F.

In full separation logic, $ is undecidable.
If we can prove that A& B, then we know that F cannot be found.

ë This avoids trying to prove unprovable programs.

28

Disproving Technique

Soundness of the proof system:

A$ B implies p@h, h |ù AÑ h |ù Bq

Contraposition:

pDh,h |ù A^ h |ù Bq implies A& B

Goal of this work:
Take A and B and prove that A& B

By discriminating models of A and B

29

Disproving Technique

Soundness of the proof system:

A$ B implies p@h, h |ù AÑ h |ù Bq

Contraposition:

pDh,h |ù A^ h |ù Bq implies A& B

Goal of this work:
Take A and B and prove that A& B

By discriminating models of A and B

29

Disproving Technique (classical semantics)

Objective:

Find h such that h |ù A and h |ù B

We compute bounds on the size of models.
max : FormulaÑ Size
min : FormulaÑ Size
size : ModelÑ Size

max(A)

size(h)

min(A)

Properties of max and min (classical semantics):

@h,h |ù A implies minpAq ¤ sizephq ¤ maxpAq

30

Disproving Technique (classical semantics)

Objective:

Find h such that h |ù A and h |ù B

We compute bounds on the size of models.
max : FormulaÑ Size
min : FormulaÑ Size
size : ModelÑ Size

max(A)

size(h)

min(A)

Properties of max and min (classical semantics):

@h,h |ù A implies minpAq ¤ sizephq ¤ maxpAq

30

Disproving Technique (classical semantics)

pDh,h |ù A^ h |ù Bq implies A& B

@h,h |ù A implies minpAq ¤ sizephq ¤ maxpAq

Ó

maxpAq minpBq implies A& B

31

1st Analysis: Achievements

A fast technique to disprove entailment.
Two different trade offs between speed and precision

(two ways to define Size)
Proven correct in Coq
License-left proof scripts

32

1st Analysis: Achievements

A fast technique to disprove entailment.
Two different trade offs between speed and precision

(two ways to define Size)

Proven correct in Coq
License-left proof scripts

32

1st Analysis: Achievements

A fast technique to disprove entailment.
Two different trade offs between speed and precision

(two ways to define Size)
Proven correct in Coq
License-left proof scripts

32

2nd Analysis: Optimizations by Proof Rewriting
[SAS’09]

We parallelize and optimize proven programs.

To parallelize programs, you need to know:
What data is accessed by programs.
What data is not accessed by programs.

The good thing is:
Separation logic proofs exhibit how data is accessed (or not):

� Antiframes exhibit data that is accessed. (explained next)
� The (Frame) rule exhibits data that is not accessed. (explained next)

Optimizations are expressed with a rewrite system between proof trees.
Proof trees are derivations of Hoare triplets.

33

2nd Analysis: Optimizations by Proof Rewriting
[SAS’09]

We parallelize and optimize proven programs.

To parallelize programs, you need to know:
What data is accessed by programs.
What data is not accessed by programs.

The good thing is:
Separation logic proofs exhibit how data is accessed (or not):

� Antiframes exhibit data that is accessed. (explained next)
� The (Frame) rule exhibits data that is not accessed. (explained next)

Optimizations are expressed with a rewrite system between proof trees.
Proof trees are derivations of Hoare triplets.

33

2nd Analysis: Optimizations by Proof Rewriting
[SAS’09]

We parallelize and optimize proven programs.

To parallelize programs, you need to know:
What data is accessed by programs.
What data is not accessed by programs.

The good thing is:
Separation logic proofs exhibit how data is accessed (or not):

� Antiframes exhibit data that is accessed. (explained next)
� The (Frame) rule exhibits data that is not accessed. (explained next)

Optimizations are expressed with a rewrite system between proof trees.
Proof trees are derivations of Hoare triplets.

33

High-Level
Procedure program

verifier

program C

proof
treegenerator

C correct
C wrong

proof
tree

rewriter

C,P(P is C’s proof)

Copt,Popt

(Copt is C parallelized
and optimized)

contributions

34

Separation Logic: (Frame) rule

tΞauCtΞa1u (Frame Ξf)
tΞa �ΞfuCtΞa1 �Ξfu

Ξf

Ξa

Ξf

Ξa′
C

Ξa is the antiframe Ð accessed data
Ξf is the frame Ð not-accessed data

Later, (Fr) sometimes abbreviates (Frame).
35

With Frames: Parallelization Is Easy

tΞuCtΘu
(Fr Ξ1)

tΞ�Ξ1uCtΘ�Ξ1u

tΞ1uC1tΘ1u
(Fr Θ)

tΘ�Ξ1uC1tΘ�Θ1u
(Seq)

tΞ�Ξ1uC; C1tΘ�Θ1u

Ó Parallelize

tΞuCtΘu tΞ1uC1tΘ1u
(Parallel)

tΞ�Ξ1uC } C1tΘ�Θ1u

36

Parallelize’s left hand side

tΞuCtΘu
(Fr Ξ1)

tΞ�Ξ1uCtΘ�Ξ1u

tΞ1uC1tΘ1u
(Fr Θ)

tΘ�Ξ1uC1tΘ�Θ1u
(Seq)

tΞ�Ξ1uC; C1tΘ�Θ1u

Ξ′

Ξ

Ξ′

Θ
C

37

Parallelize’s left hand side

tΞuCtΘu
(Fr Ξ1)

tΞ�Ξ1uCtΘ�Ξ1u

tΞ1uC1tΘ1u
(Fr Θ)

tΘ�Ξ1uC1tΘ�Θ1u
(Seq)

tΞ�Ξ1uC; C1tΘ�Θ1u

Ξ′

Ξ

Ξ′

Θ
C

Θ′C ′
Θ

37

Parallelize’s right hand side

tΞuCtΘu tΞ1uC1tΘ1u
(Parallel)

tΞ�Ξ1uC } C1tΘ�Θ1u

Ξ′

Ξ

Θ′C ′
Θ

C

38

Parallelize

tΞuCtΘu
(Fr Ξ1)

tΞ�Ξ1uCtΘ�Ξ1u

tΞ1uC1tΘ1u
(Fr Θ)

tΘ�Ξ1uC1tΘ�Θ1u
(Seq)

tΞ�Ξ1uC; C1tΘ�Θ1u

Ó Parallelize

tΞuCtΘu tΞ1uC1tΘ1u
(Parallel)

tΞ�Ξ1uC } C1tΘ�Θ1u

Ξ′

Ξ

Ξ′

Θ
C

Θ′C ′
Θ

Ó

Ξ′

Ξ

Θ′C ′
Θ

C

39

2nd Analysis: Achievements

An entirely new technique to parallelize and optimize programs.
ë Other optimizations than parallelization have been studied.

No ad-hoc analyses: separation logic proofs are taken as analyses.
Can parallelize any code (i.e. not focused on loops).
Soundness is easier to prove than for classical approaches.
License-left prototype implementation.

40

Related Work
Program verification:

Separation logic for sequential Java [Parkinson’05,Distefano et al.’08,Chin et
al.’08]
Separation logic for multithreaded C [Gotsman et al.’07,Appel et al.’07]
Boogie for multithreaded C# [Barnett et al.’04,Jacobs et al.’06]
ESC/Java2 for Java [Leino et al.’02,Kiniry et al.’04]

Algorithms for entailment/disproving:
Sound and complete entailment in Smallfoot [Berdine et al.’04]
Sound entailment in JStar [Parkinson et al.’08]
Sound and complete entailment and refutation [Galmiche et al.’08]

Automatic parallelization:
Many “classical” approaches
By using separation logic [Raza et al.’09]

41

Related Work
Program verification:

Separation logic for sequential Java [Parkinson’05,Distefano et al.’08,Chin et
al.’08]
Separation logic for multithreaded C [Gotsman et al.’07,Appel et al.’07]
Boogie for multithreaded C# [Barnett et al.’04,Jacobs et al.’06]
ESC/Java2 for Java [Leino et al.’02,Kiniry et al.’04]

Algorithms for entailment/disproving:
Sound and complete entailment in Smallfoot [Berdine et al.’04]
Sound entailment in JStar [Parkinson et al.’08]
Sound and complete entailment and refutation [Galmiche et al.’08]

Automatic parallelization:
Many “classical” approaches
By using separation logic [Raza et al.’09]

41

Related Work
Program verification:

Separation logic for sequential Java [Parkinson’05,Distefano et al.’08,Chin et
al.’08]
Separation logic for multithreaded C [Gotsman et al.’07,Appel et al.’07]
Boogie for multithreaded C# [Barnett et al.’04,Jacobs et al.’06]
ESC/Java2 for Java [Leino et al.’02,Kiniry et al.’04]

Algorithms for entailment/disproving:
Sound and complete entailment in Smallfoot [Berdine et al.’04]
Sound entailment in JStar [Parkinson et al.’08]
Sound and complete entailment and refutation [Galmiche et al.’08]

Automatic parallelization:
Many “classical” approaches
By using separation logic [Raza et al.’09]

41

Main Publications
Separation Logic Contracts for a Java-like Language with Fork/Join; Haack and
Hurlin; AMAST’08

� Reasoning about Java’s Reentrant Locks; Haack, Huisman, and Hurlin;
APLAS’08

� Specifying and Checking Protocols of Multithreaded Classes; Hurlin; SAC’09
Resource Usage Protocols for Iterators; Haack and Hurlin; Journal of Object
Technology’09

� Size Does Matter: Two Certified Abstractions to Disprove Entailment in
Intuitionistic and Classical Separation Logic; Hurlin, Bobot, and Summers;
IWACO’09

� Automatic Parallelization and Optimization of Programs by Proof Rewriting;
Hurlin; SAS’09

Developments:
1 Some Coq proofs for the AMAST and APLAS papers.
2 ocaml implementation of some of the techniques described in the SAC paper.
3 Full Coq proofs for the IWACO paper.
4 ocaml and Java+tom prototype implementation of the SAS paper.

42

Main Publications
Separation Logic Contracts for a Java-like Language with Fork/Join; Haack and
Hurlin; AMAST’08

� Reasoning about Java’s Reentrant Locks; Haack, Huisman, and Hurlin;
APLAS’08

� Specifying and Checking Protocols of Multithreaded Classes; Hurlin; SAC’09
Resource Usage Protocols for Iterators; Haack and Hurlin; Journal of Object
Technology’09

� Size Does Matter: Two Certified Abstractions to Disprove Entailment in
Intuitionistic and Classical Separation Logic; Hurlin, Bobot, and Summers;
IWACO’09

� Automatic Parallelization and Optimization of Programs by Proof Rewriting;
Hurlin; SAS’09

Developments:
1 Some Coq proofs for the AMAST and APLAS papers.
2 ocaml implementation of some of the techniques described in the SAC paper.
3 Full Coq proofs for the IWACO paper.
4 ocaml and Java+tom prototype implementation of the SAS paper.

42

Conclusion

First, we developed:
A sound verification system for multithreaded Java programs in separation logic,

ë that uses realistic primitives,
ë and that handles challenging examples (iterator, lock-coupling).

Second:
We extended previous work on protocols. (omitted in this talk)
We discovered a fast algorithm to disprove entailment.
We showed how to parallelize and optimize programs by rewriting their proofs.

43

Conclusion

First, we developed:
A sound verification system for multithreaded Java programs in separation logic,

ë that uses realistic primitives,

ë and that handles challenging examples (iterator, lock-coupling).

Second:
We extended previous work on protocols. (omitted in this talk)
We discovered a fast algorithm to disprove entailment.
We showed how to parallelize and optimize programs by rewriting their proofs.

43

Conclusion

First, we developed:
A sound verification system for multithreaded Java programs in separation logic,

ë that uses realistic primitives,
ë and that handles challenging examples (iterator, lock-coupling).

Second:
We extended previous work on protocols. (omitted in this talk)
We discovered a fast algorithm to disprove entailment.
We showed how to parallelize and optimize programs by rewriting their proofs.

43

Conclusion

First, we developed:
A sound verification system for multithreaded Java programs in separation logic,

ë that uses realistic primitives,
ë and that handles challenging examples (iterator, lock-coupling).

Second:
We extended previous work on protocols. (omitted in this talk)
We discovered a fast algorithm to disprove entailment.
We showed how to parallelize and optimize programs by rewriting their proofs.

43

Future Work

For the verification system:
Implementing it!
Doing a large case study

For the disproving algorithm:
Extension to object-orientation

ë By keeping its simplicity and its usefulness (not straightforward)

For the parallelizing analysis:
Extension to object-oriented programs (easy)
Extension to loopsÑ to battle it out with classical parallelizers!

44

Thank you

Fork and join in terms of resources (2)

thread t0

46

Fork and join in terms of resources (2)

thread t0 t1.fork()

thread t1

46

Fork and join in terms of resources (2)

thread t0 t1.fork()

thread t1

46

Fork and join in terms of resources (2)

thread t0 t1.fork()

thread t1 t2.start()

thread t2

46

Releasing Locks

(Re-Unlock)
Γ$ tLockset(x �x �S)uunlockpxqtLockset(x �S)u

ë Releasing x but x’s reentrancy level ¡ 1: invariant not abandoned.

(Unlock)
Γ$ tLockset(x �S)*x.invuunlockpxqtLockset(S)u

ë x’s reentrancy level not known to be ¡ 1, x’s resource invariant abandoned.

47

Disproving Technique (classical semantics)

pDh,h |ù A^ h |ù Bq implies A& B

@h,h |ù A implies minpAq ¤ sizephq ¤ maxpAq

Ó

maxpAq minpBq implies A& B

48

Defining size

sizephq ∆
� sum of h’s permissions

size: ModelÑ Perm

Models h are lists of triples of an address, a permission, and a value.
ë An example model is p42,π,3q :: p47,π 1,�5q :: p42,π2,0q :: rs.

sizepp42,π,3q :: p47,π 1,�5q :: p42,π2,0q :: rsq � π�π 1�π2

49

Defining size

sizephq ∆
� sum of h’s permissions

size: ModelÑ Perm

Models h are lists of triples of an address, a permission, and a value.
ë An example model is p42,π,3q :: p47,π 1,�5q :: p42,π2,0q :: rs.

sizepp42,π,3q :: p47,π 1,�5q :: p42,π2,0q :: rsq � π�π 1�π2

49

Defining max/min (classical semantics)(excerpt)

maxp π
ÞÑ q�π

maxpA�Bq�maxpAq�π maxpBq
minp π

ÞÑ q�π

minpA�Bq�minpAq�π minpBq

h |ù a π
ÞÑ v iff h� pa,π,vq

h |ù A�B iff DhA,hB,h� hAZhB,hA |ù A and hB |ù B

50

Defining max/min (classical semantics)(excerpt)

maxpA^Bq�minπ pmaxpAq,maxpBqq
maxpA_Bq�maxπpmaxpAq,maxpBqq

minpA^Bq�maxπpminpAq,minpBqq
minpA_Bq�minπ pminpAq,minpBqq

h |ù A^B iff h |ù A and h |ù B
h |ù A_B iff h |ù A or h |ù B

51

Defining max/min (classical semantics)(excerpt)

maxp π
ÞÑ q�π

maxpA�Bq�maxpAq�π maxpBq
minp π

ÞÑ q�π

minpA�Bq�minpAq�π minpBq

h |ù a π
ÞÑ v iff h� pa,π,vq

h |ù A�B iff DhA,hB,h� hAZhB,hA |ù A and hB |ù B

max(A)

size(A)
max(B)

size(B)

52

Defining max/min (classical semantics)(excerpt)

maxp π
ÞÑ q�π

maxpA�Bq�maxpAq�π maxpBq

maxpBq

minp π
ÞÑ q�π

minpA�Bq�minpAq�π minpBq

h |ù a π
ÞÑ v iff h� pa,π,vq

h |ù A�B iff DhA,hB,h� hAZhB,hA |ù A and hB |ù B

max(A)

size(A)
max(B)

size(B)

53

Defining max/min (classical semantics)(excerpt)

maxp π
ÞÑ q�π

maxpA�Bq�maxpAq�π maxpBq
minp π

ÞÑ q�π

minpA�Bq�minpAq�π minpBq

h |ù a π
ÞÑ v iff h� pa,π,vq

h |ù A�B iff DhA,hB,h� hAZhB,hA |ù A and hB |ù B

max(A)

size(A)
max(B)

size(B)

53

Defining max/min (classical semantics)(excerpt)

maxp π
ÞÑ q�π

maxpA�Bq�maxpAq�π maxpBq
minp π

ÞÑ q�π

minpA�Bq�minpAq�π minpBq

h |ù a π
ÞÑ v iff h� pa,π,vq

h |ù A�B iff DhA,hB,h� hAZhB,hA |ù A and hB |ù B

max(A ? B)

54

Defining max/min (classical semantics)

maxp π
ÞÑ q �π

maxpA�Bq �maxpAq�π maxpBq
maxpA -*Bq�maxpBq�π minpAq

minp π
ÞÑ q �π

minpA�Bq �minpAq�π minpBq
minpA -*Bq�minpBq�π maxpAq

h |ù a π
ÞÑ v iff h� pa,π,vq

h |ù A�B iff DhA,hB,h� hAZhB,hA |ù A and hB |ù B
h |ù A -*B iff @hA,hA |ù A and hA and h are compatible

implies hAZh |ù A�B

55

Defining max/min (classical semantics)

maxp@π.Aq�maxpArπw{πsq
maxpDπ.Aq�maxpArπw{πsq
maxp@v.Aq � maxpDv.Aq � maxpAq

minp@π.Aq�minpArπw{πsq
minpDπ.Aq�minpArε{πsq
minp@v.Aq � minpDv.Aq � minpAq

ë Standard semantics of quantifiers (omitted)
ε is an infinitely small permission

56

Defining max/min (classical semantics)

maxpbq�8 minpbq�π0

h |ù b iff oraclepbq

b is a pure formula, i.e., it does not depend on the heap h.
π0 is the minimal permission.

57

Toy Example

Λ
n,m,k
x,y,z

∆
� x ÞÑrf : ns � y ÞÑrf : ms � z ÞÑrf : ks

(Mutate)
tΛxuxÑf � ntΛn

xu (Fr Λ ,
y,z)

tΛ , ,
x,y,zuxÑf � ntΛn, ,

x,y,zu

(Mutate)
tΛyuyÑf � mtΛm

y u
(Fr Λn,

x,z)
tΛn, ,

x,y,zuyÑf � mtΛn,m,
x,y,z u

(Mutate)
tΛzuzÑf � ktΛk

zu (Fr Λn,m
x,y)

tΛn,m,
x,y,z uzÑf � ktΛn,m,k

x,y,z u
(Seq)

tΛn, ,
x,y,zuyÑf � m; zÑf � ktΛn,m,k

x,y,z u
(Seq)

tΛ , ,
x,y,zuxÑf � n; yÑf � m; zÑf � ktΛn,m,k

x,y,z u

Ó

(Mutate)
tΛxuxÑf � ntΛn

xu

(Mutate)
tΛyuyÑf � mtΛm

y u
(Mutate)

tΛzuzÑf � ktΛk
zu

(Parallel)
tΛ ,

y,zuyÑf � m } zÑf � ktΛm,k
y,z u

(Parallel)
tΛ , ,

x,y,zuxÑf � n } pyÑf � m } zÑf � kqtΛn,m,k
x,y,z u

Hypothesis: the left hand side is a valid proof tree.
Soundness follows from the inclusion of the rhs’s leaves in the lhs’s leaves.

58

Toy Example

Λ
n,m,k
x,y,z

∆
� x ÞÑrf : ns � y ÞÑrf : ms � z ÞÑrf : ks

(Mutate)
tΛxuxÑf � ntΛn

xu (Fr Λ ,
y,z)

tΛ , ,
x,y,zuxÑf � ntΛn, ,

x,y,zu

(Mutate)
tΛyuyÑf � mtΛm

y u
(Fr Λn,

x,z)
tΛn, ,

x,y,zuyÑf � mtΛn,m,
x,y,z u

(Mutate)
tΛzuzÑf � ktΛk

zu (Fr Λn,m
x,y)

tΛn,m,
x,y,z uzÑf � ktΛn,m,k

x,y,z u
(Seq)

tΛn, ,
x,y,zuyÑf � m; zÑf � ktΛn,m,k

x,y,z u
(Seq)

tΛ , ,
x,y,zuxÑf � n; yÑf � m; zÑf � ktΛn,m,k

x,y,z u

Ó

(Mutate)
tΛxuxÑf � ntΛn

xu

(Mutate)
tΛyuyÑf � mtΛm

y u
(Mutate)

tΛzuzÑf � ktΛk
zu

(Parallel)
tΛ ,

y,zuyÑf � m } zÑf � ktΛm,k
y,z u

(Parallel)
tΛ , ,

x,y,zuxÑf � n } pyÑf � m } zÑf � kqtΛn,m,k
x,y,z u

Hypothesis: the left hand side is a valid proof tree.
Soundness follows from the inclusion of the rhs’s leaves in the lhs’s leaves.

58

Guarantees of the Rewrite System

The rewrite system modifies programs but preserves specifications:

P
tΞuCtΘu

Ó

Q
tΞuC1tΘu

The program and the proof are modified: P,C ÑQ,C1,
ë but specifications are preserved: Ξ,Θ Ñ Ξ,Θ.

Conjecture:
Programs related with Ñ are equivalent from a big step p.o.v.

59

We Want the Frames �

The (Frame) rule is the central ingredient of our procedure.
Problem: Existing program verifiers (e.g. smallfoot) do not make frames explicit.

Π$ F � E . . . (Mutate)
tΠ ¦ F ÞÑrρsuEÑf � GtΠ ¦ F ÞÑrρ 1su

ë Π is “too big”: there exists a “smaller” antiframe Πa such that Πa $ F � E.

60

Recall the big picture ?

program
verifier

program C

proof
treegenerator

C correct
C wrong

proof
tree

rewriter

C,P(P is C’s proof)

Copt,Popt

(Copt is C parallelized
and optimized)

In the proof tree generator:
Proof rules with explicit frames.
But still usage of the program’s
verifier normal rules for verification.

Next slides:

Proof rules with explicit {anti-,} frames

61

We Want the Frames

Berdine, Calcagno, and O’Hearn “Symbolic Execution with Separation Logic”

Π$ F � E . . . (Mutate)
tΠ ¦ F ÞÑrρsuEÑf � GtΠ ¦ F ÞÑrρ 1su

With explicit frames and antiframes

Πa $ F � E . . .
(Mutate)

tΠa ¦ F ÞÑrρsuEÑf � GtΠa ¦ F ÞÑrρ 1su
(Frame Ξf)

tpΠa ¦ F ÞÑrρsq �Ξf uEÑf � GtpΠa ¦ F ÞÑrρ 1sq �Ξf u

62

We Want the Frames

Berdine, Calcagno, and O’Hearn “Symbolic Execution with Separation Logic”

. . . x1 fresh Π$ F � E (Lookup)
tΠ ¦ Σ�F ÞÑrρsux :� EÑ f t. . .^Πrx1{xs ¦ pΣ�F ÞÑrρsqrx1{xsu

With explicit frames and antiframes

x1 fresh . . .
Πa $ F � E
Ξ�Πarx1{xs^ . . . ¦ pΣa �F ÞÑrρsqrx1{xs

(Lookup)
tΠa ¦ Σa �F ÞÑrρsux :� EÑ f tΞu x R Ξf (Frame Ξf)

t pΠa ¦ Σa �F ÞÑrρsq
looooooooomooooooooon

antiframe needed to prove
E ÞÑrρs and affected by [x’/x]

� Ξfloomoon

frame unaffected
by [x’/x]

ux :� EÑ f tΞ�Ξf u

63

We Want the Frames

Berdine, Calcagno, and O’Hearn “Symbolic Execution with Separation Logic”

Π$K (Inconsistent)
tΠ ¦ ΣuCtΘu

With explicit frames and antiframes

Πa $K (Inconsistent)
tΠa ¦ empuCtΘu

(Frame Πf ¦ Σf)
t Πa ¦ emp

loomoon

sufficient antiframe to prove K

�Πf ¦ Σfloomoon

frame

uCtΘu

emp
∆
� the heap is empty.

64

Shape of Generated Trees

Because of the algorithm used in program verifiers,
ë proof trees have a special shape.

For successive commands C0,C1,C2, . . . , proof trees have this shape:

..
(Fr Ξ)

t..uC0t..u

..
(Fr Θ)

t..uC1t..u

..
(Fr Ξ1)

t..uC2t..u ..

t..uC2; ..t..u
(Seq)

t..uC1; C2; ..t..u
(Seq)

t..uC0; C1; C2; ..t..u

A (Frame) at each command.
ë Problem: Frames are redundant (i.e., ΞYΘYΞ1 �H).
ë In practice, this must be avoided for optimizations to fire.

65

We Want the Frames �

We rewrite proof trees to frame multiple commands,
ë i.e., we factorize frames.

Below, Ξc is the factorized frame.

Guard: Ξf ô Ξf0 �Ξc and Θf ô Θf0 �Ξc

tΞauCtΞpu (Frame Ξf)
tΞa �Ξf uCtΞp �Ξf u

tΘauC1tΘpu (Frame Θf)
tΘa �Θf uC1tΘp �Θf u (Seq)

tΞa �Ξf uC; C1tΘp �Θf u

Ó FactorizeFrames
tΞauCtΞpu (Fr Ξf0)

tΞa �Ξf0uCtΞp �Ξf0u

tΘauC1tΘpu (Fr Θf0)
tΘa �Θf0uC

1tΘp �Θf0u (Seq)
tΞa �Ξf0uC; C1tΘp �Θf0u (Frame Ξc)
tΞa �Ξf uC; C1tΘp �Θf u

66

FactorizeFrames’s left hand side

tΞauCtΞpu (Fr Ξf)
tΞa �Ξf uCtΞp �Ξf u

tΘauC1tΘpu (Fr Θf)
tΘa �Θf uC1tΘp �Θf u (Seq)

tΞa �Ξf uC; C1tΘp �Θf u

Ξf

Ξa

Ξf

Ξp
C

Guard: Ξf ô Ξf0 �Ξc and Θf ô Θf0 �Ξc

The part of the heap framed twice (in red) is the common frame Ξc.

67

FactorizeFrames’s left hand side

tΞauCtΞpu (Fr Ξf)
tΞa �Ξf uCtΞp �Ξf u

tΘauC1tΘpu (Fr Θf)
tΘa �Θf uC1tΘp �Θf u (Seq)

tΞa �Ξf uC; C1tΘp �Θf u

Ξf

Ξa

Ξf

Ξp
C

Θf

Θa

Θf

Θp
C ′

Guard: Ξf ô Ξf0 �Ξc and Θf ô Θf0 �Ξc

The part of the heap framed twice (in red) is the common frame Ξc.

67

FactorizeFrames’s left hand side

tΞauCtΞpu (Fr Ξf)
tΞa �Ξf uCtΞp �Ξf u

tΘauC1tΘpu (Fr Θf)
tΘa �Θf uC1tΘp �Θf u (Seq)

tΞa �Ξf uC; C1tΘp �Θf u

Ξf

Ξa

Ξf

Ξp
C

Θf

Θa

Θf

Θp
C ′

Guard: Ξf ô Ξf0 �Ξc and Θf ô Θf0 �Ξc

The part of the heap framed twice (in red) is the common frame Ξc.

67

We Want the Frames �

Guard: Ξf ô Ξf0 �Ξc and Θf ô Θf0 �Ξc

tΞauCtΞpu (Frame Ξf)
tΞa �Ξf uCtΞp �Ξf u

tΘauC1tΘpu (Frame Θf)
tΘa �Θf uC1tΘp �Θf u (Seq)

tΞa �Ξf uC; C1tΘp �Θf u

Ó FactorizeFrames

tΞauCtΞpu (Fr Ξf0)
tΞa �Ξf0uCtΞp �Ξf0u

tΘauC1tΘpu (Fr Θf0)
tΘa �Θf0uC

1tΘp �Θf0u (Seq)
tΞa �Ξf0uC; C1tΘp �Θf0u (Frame Ξc)
tΞa �Ξf uC; C1tΘp �Θf u

ë The common part of Ξf and Θf (i.e., Ξc) is framed separately.
ë The new application of (Frame) is on a longer command (C; C1) than before.

68

Example
requires treepxq;
ensures treepxq;
rotate treepx;q{
local x1,x2;
ifpx� nilq{}
else{

x1 :� xÑ l;
x2 :� xÑr;
xÑl� x2;
xÑr � x1;
rotate treepx1;q;
rotate treepx2;q; }}

Ñ

requires treepxq;
ensures treepxq;
rotate treepx;q{
local x1,x2;
ifpx� nilq{}
else{

x1 :� xÑ l;
x2 :� xÑr;
pxÑl� x2; xÑr � x1q ||
rotate treepx1;q ||
rotate treepx2;q; }}

Implementation:
The rewrite rules have been implemented in Java+tom.
tom extends Java to pattern match against tom/user-defined Java objects.
Each rewrite rule is less than 75 lines of code (i.e. manageable).
Use of tom’s strategies to fine tune optimizations.

69

Example
requires treepxq;
ensures treepxq;
rotate treepx;q{
local x1,x2;
ifpx� nilq{}
else{

x1 :� xÑ l;
x2 :� xÑr;
xÑl� x2;
xÑr � x1;
rotate treepx1;q;
rotate treepx2;q; }}

Ñ

requires treepxq;
ensures treepxq;
rotate treepx;q{
local x1,x2;
ifpx� nilq{}
else{

x1 :� xÑ l;
x2 :� xÑr;
pxÑl� x2; xÑr � x1q ||
rotate treepx1;q ||
rotate treepx2;q; }}

Implementation:
The rewrite rules have been implemented in Java+tom.
tom extends Java to pattern match against tom/user-defined Java objects.
Each rewrite rule is less than 75 lines of code (i.e. manageable).
Use of tom’s strategies to fine tune optimizations.

69

List of Optimizations

Optimizations include:
parallelization (previous slides)
Improvement of temporal locality (omitted in this talk)
A generic optimization with 4 concrete applications: (omitted in this talk)

� Early lock releasing
� Late lock acquirement
� Early disposal
� Late allocation

70

GenericOptimization

tΞauCtΞpu (Frame Ξf)
tΞa �Ξf uCtΞp �Ξf u

tΘauC1tΘpu (Frame Θf)
tΘa �Θf uC1tΘp �Θf u (Seq)

tΞa �Ξf uC; C1tΞ1u

Ó GenericOptimization

tΘauC1tΘpu (Fr ...)
tΞa �Θa �ΞruC1tΞa �Θp �Ξru

tΞauCtΞpu (Fr ...)
t...uCtΞp �Θp �Ξru (Seq)

tΞa �Ξf uC1; CtΞ1u

Guard: Θf ô Ξp �Ξr

This optimization changes the program order.
ë The guard requires that C1 frames the postcondition of C (Ξp).

71

Locks in Separation Logic
Each lock guards a part of the heap called the lock’s resource invariant.
Resource invariants are exchanged between locks and threads:

1 When a lock is acquired, it lends its resource invariant to the acquiring thread.
2 When a lock is released, it claims back its resource invariant from the releasing

thread.

Formally:

Ξ is x’s resource invariant (Lock)
tempulockpxqtΞu

Ξ is x’s resource invariant (Unlock)
tΞuunlockpxqtempu

(emp represents the empty heap)
Next slide:
ë Instantiation of the generic optimization to optimize usage of locks

72

Locks in Separation Logic
Each lock guards a part of the heap called the lock’s resource invariant.
Resource invariants are exchanged between locks and threads:

1 When a lock is acquired, it lends its resource invariant to the acquiring thread.
2 When a lock is released, it claims back its resource invariant from the releasing

thread.

Formally:

Ξ is x’s resource invariant (Lock)
tempulockpxqtΞu

Ξ is x’s resource invariant (Unlock)
tΞuunlockpxqtempu

(emp represents the empty heap)

Next slide:
ë Instantiation of the generic optimization to optimize usage of locks

72

Locks in Separation Logic
Each lock guards a part of the heap called the lock’s resource invariant.
Resource invariants are exchanged between locks and threads:

1 When a lock is acquired, it lends its resource invariant to the acquiring thread.
2 When a lock is released, it claims back its resource invariant from the releasing

thread.

Formally:

Ξ is x’s resource invariant (Lock)
tempulockpxqtΞu

Ξ is x’s resource invariant (Unlock)
tΞuunlockpxqtempu

(emp represents the empty heap)
Next slide:
ë Instantiation of the generic optimization to optimize usage of locks

72

Instantiating GenericOpt.: EarlyUnlocking

tΞauCtΞpu (Fr Ξf)
tΞa �Ξf uCtΞp �Ξf u

Θa is x’s resource invariant
(Unlock)

tΘauunlockpxqtempu (Fr Θf)
tΘa �Θf uunlockpxqtΘf u

(Seq)
tΞa �Ξf uC; unlockpxqtΘf u

Ó EarlyUnlocking
Θa is x’s resource invariant

(Unlock)
tΘauunlockpxqtempu (Fr ...)

tΞa �Θa �ΞruunlockpxqtΞa �Ξru

tΞauCtΞpu
(Fr Ξr)

tΞa �ΞruCtΞp �Ξru
(Seq)

tΞa �Ξf uunlockpxq; CtΞp �Ξru

Guard: Θf ô Ξp �Ξr

(Ξp �Ξf ôΘa �Θf + guard) implies Ξf ôΘa �Ξr.
ë Command C does not access x’s resource invariant:

Better unlock x before executing C!

73

Example (2)

requires x ÞÑrval : s;
ensures emp;
copy and disposepx;q{
local v;
lockprc ÞÑrval: sq;

v :� xÑval;
cÑval� v;
disposepxq;

unlockprc ÞÑrval: sq;
}

Ñ

requires x ÞÑrval : s;
ensures emp;
copy and disposepx;q{
local v;
v :� xÑval;
disposepxq;
lockprc ÞÑrval: sq;

cÑval� v;
unlockprc ÞÑrval: sq;

}

r is a lock with resource invariant c ÞÑrval : s, i.e., one cell c with field val.

Optimizations:
The critical region is shortened.
Memory is disposed as soon as possible.

74

TemporalLocality

temporal locality ∆
� time between two accesses to the same heap cell

ë the smaller the better (no need to free/load processors’s caches)

75

TemporalLocality

Intuition below: C and C2 access the same part of the heap
ë Execute them successively

tΞuCtΞ1u
(Fr Θ)

tΞ�ΘuCtΞ1 �Θu

tΘuC1tΘ1u
(Fr Ξ1)

tΞ1 �ΘuC1tΞ1 �Θ1u
(Seq)

tΞ�ΘuC; C1tΞ1 �Θ1u

tΞ1uC2tΞ2u
(Fr Θ1)

tΞ1 �Θ1uC2tΞ2 �Θ1u
(Seq)

tΞ�ΘuC; C1; C2tΞ11 �Θ1u

Ó TemporalLocality

tΞuCtΞ1u tΞ1uC2tΞ2u
(Seq)

tΞuC; C2tΞ2u
(Fr Θ)

tΞ�ΘuC; C2tΞ11 �Θu

tΘuC1tΘ1u
(Fr Ξ2)

tΞ2 �ΘuC1tΞ2 �Θ1u
(Seq)

tΞ�ΘuC; C2; C1tΞ2 �Θ1u

76

Instantiating GenericOpt.: LateLocking

Ξp is x’s resource invariant
(Lock)

tempulockpxqtΞpu (Frame Ξf)
tΞf ulockpxqtΞp �Ξf u

tΘauC1tΘpu (Frame Θf)
tΘa �Θf uC1tΘp �Θf u

(Seq)
tΞf ulockpxq; C1tΘp �Θf u

Ó LateLocking

tΘauC1tΘpu
(Frame Ξr)

tΘa �ΞruC1tΘp �Ξru

Ξp is x’s resource invariant
(Lock)

tempulockpxqtΞpu (Frame Θp �Ξr)
tΘp �ΞrulockpxqtΞp �Θp �Ξru

(Seq)
tΞf uC1; lockpxqtΞp �Θp �Ξru

Guard: Θf ô Ξp �Ξr

ë The guard means that command C1 does not access x’s resource invariant:
Better lock x after executing C1!

77

Example (3)

requires tree(t); ensures emp;

disp tree(t) {
local i, j;
if(t � nil)tu else t

i :� tÑ l; j :� tÑr;
disp tree(i); disp tree(j);
disposeptq;
}
}

Ñ

requires tree(t); ensures emp;

disp tree(t) {
local i, j;
if(t � nil)tu else t

i :� tÑ l; j :� tÑr;
disposeptq }
(disp tree(i) } disp tree(j));
}
}

78

