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Un programme, qu’est ce que c’est ?

Un programme est une suite d’instructions.

Exemple de programme calculant la valeur d’une fraction:

lire n;
lire d;
affiche n / d;

Le but de cette thèse:
S’assurer que les programmes fonctionnent correctement.

ë Par exemple, le programme ci-dessus est-il correct ?
ë Hum, pas vraiment, on peut effectuer une division par zéro. . .
ë C.à.d. que ce programme peut planter.
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Un programme, qu’est ce que c’est ?

Un programme est une suite d’instructions.

Exemple de programme calculant la valeur d’une fraction:

lire n;
lire d;
si d � 0 alors affiche (n / d);
sinon affiche ‘‘Erreur : d doit etre different de zero.’’;

Le but de cette thèse:
S’assurer que les programmes fonctionnent correctement.

ë Par exemple, le programme ci-dessus est-il correct ?
ë Oui!
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Vérifier des programmes

Pour s’assurer du bon fonctionnement des programmes, on les vérifie.

Vérifier un programme P, ça consiste à:
Spécifier formellement P, c.à.d. exprimer ce que P est censé faire.
Vérifier que P satisfait sa spécification.

programme P programme P

spécification
formelle S

+ + P respecte S ?

spécification
informelle
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Sujets d’étude de cette thèse

programme P programme P

spécification
formelle S

+ + P respecte S ?

spécification
informelle

comment spécifier ?
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Sujets d’étude de cette thèse

programme P programme P

spécification
formelle S

+ + P respecte S ?

spécification
informelle

comment spécifier ? comment vérifier ?

Pour des programmes objets et multi-processeurs.
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Objectives of the thesis

To adapt separation logic to multithreaded Java

ë I.e. to support Java’s primitives for multithreading:
p1q fork/join
p2q Reentrant locks

By using variants of separation logic [Reynolds’02]:
� Separation logic for while programs with a parallel operator } [O’Hearn’07]
� Separation logic for sequential Java programs [Parkinson’05]

Side effects of the thesis:
Three analyses based on separation logic
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Our tool for reasoning: Separation Logic
Our assertion language is permission accounting separation logic

[Reynolds’02,Bornat et al.’05].
Formulas represent permissions to access the heap.

Formula x.f π
ÞÝÑ v has a dual meaning:

� x.f contains value v.
� Permission π to access field x.f .

Permissions π are fractions in p0,1s [Boyland’03].
� Permission 1 grants write and read access.
� Any permission   1 grants readonly access.

Abstract predicates represent complex formulas [Parkinson’05]:
They are defined in classes.
They have at least one parameter (the receiver)

Compared to the literature:
We mix object-orientation and permissions.
Classes can be parameterized by specification values.
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Objective 1: fork/join [AMAST’08]

fork and join are the two primitives used to create and wait threads
(in Java, C++, C, python, etc.):

t.fork() starts a new thread t.
t.join() waits until thread t terminates.

ë fork and join are more general than }.

In terms of resources (i.e. the heap), fork and join behave as follows:

t.fork() consumes the resource needed by t to execute.
t.join() gets back [a part of] t’s resource when t terminates.
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fork and join in terms of resources (1)

thread t0
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Fork and join in terms of resources (2)

thread t0

thread t2
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Hoare rules for fork and join

class Thread extends Object{

void fork();

void join();

void run() { null }

}

When t.fork() is called, t.run() is executed in parallel.
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Hoare rules for fork and join

class Thread extends Object{

pred preFork = true; // to be extended in subclasses

requires preFork; ensures true;
void fork();

void join();

requires preFork; ensures true;
void run() { null }

}

When t.fork() is called, t.run() is executed in parallel.

13



Hoare rules for fork and join

class Thread extends Object{

pred preFork = true;
pred postJoin = true; // to be extended in subclasses

requires preFork; ensures true;
void fork();

requires Join(this); ensures postJoin;
void join();

requires preFork; ensures postJoin;
void run() { null }

}

t.join() resumes when t terminates.
Join(t): the thread in which this formula appears can get back t’s
postcondition when t terminates.

ë But this does not allow concurrent joiners.
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Fork and join in terms of resources (2)

thread t0

thread t2

t1.fork()

thread t1
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Fork and join in terms of resources (2)
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t1.fork()

thread t1
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Hoare rules for fork and join

class Thread extends Object{

pred preFork = true;
pred postJoin<perm p> = true;

requires preFork; ensures true;
void fork();

requires Join(this,p); ensures postJoin<p>;
void join();

requires preFork; ensures postJoin<1>;
void run() { null }

}

ë We parameterize Join and postJoin by a permission.
Join(t,p) give access to fraction p of thread t’s postcondition.
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Hoare rules for fork and join

class Thread extends Object{

pred preFork = true;
group postJoin = true;

requires preFork; ensures true;
void fork();

requires Join(this,p); ensures postJoin<p>;
void join();

requires preFork; ensures postJoin<1>;
void run() { null }

}

For soundness:
postJoin is a special predicate: a group.

ë It satisfies @perm p.postJoin<p> *-* (postJoin<p{2>*postJoin<p{2>).
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Objective 2: reentrant locks [APLAS’08]
Reentrant locks are the main primitive to acquire/release locks in Java.

They can be acquired more than once (and released accordingly)
ë Convenient for programmers (no need to acquire conditionally)

class Set{

int size(){ // client and helper method

}

bool has(Element e){ // client method

}

}

18



Objective 2: reentrant locks [APLAS’08]
Reentrant locks are the main primitive to acquire/release locks in Java.

They can be acquired more than once (and released accordingly)
ë Convenient for programmers (no need to acquire conditionally)

class Set{

int size(){ // client and helper method

}

bool has(Element e){ // client method

}

}
18



Objective 2: reentrant locks [APLAS’08]
Reentrant locks are the main primitive to acquire/release locks in Java.

They can be acquired more than once (and released accordingly)
ë Convenient for programmers (no need to acquire conditionally)

class Set{

int size(){
lock(this);
...

unlock(this);
return ...;

}

bool has(Element e){
lock(this);
bool result;
if(size()==0) unlock(this); return false;
else ...; unlock(this); return ...;

}

}
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Objective 2: reentrant locks [APLAS’08]

In separation logic [O’Hearn’07]:
Each lock guards a part of the heap called the lock’s resource invariant.
Resource invariants are exchanged between locks and threads:

� When a lock is acquired, it lends its resource invariant to the acquiring thread.
� When a lock is released, it claims back its resource invariant from the releasing

thread.

Resource invariants are represented by the distinguished abstract predicate inv:

class Object{
pred inv = true;

}
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Separation Logic for Reentrant Locks

4 formulas to speak about locks (where S is a multiset):

Lockset(S) | S contains x | x.fresh | x.initialized

For each thread, we track the set of currently held locks:
Lockset(S): S is the multiset of currently held locks.
S contains x: lockset S contains lock x.

For each lock, we track its abstract lock state:
x.fresh: x’s resource invariant is not initialized
x.initialized: x’s resource invariant is initialized.
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Initializing Locks

C<π̄> : Γpxq
(New)

Γ$

ttrueu
x� new C<π̄>

tx.init * C classof x * �Γpuq :Object x!=u * x.freshu

ë After creation a lock cannot be acquired: x.initialized fails to match
(Lock)’s precondition.

(Commit)

Γ$
tLockset(S)*x.inv*x.freshu

x.commit
tLockset(S)* (S contains x)*x.initializedu

ë x.commit is a no-op.
ë After being committed a lock can be acquired: (Commit)’s postcondition entails

x.initialized.
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Acquiring Locks

(Lock)

Γ$
tLockset(S)*( S contains x)*x.initializedu

lockpxq
tLockset(x �S)*x.invu

ë First acquirement: resource invariants obtained.
ë Nothing special to handle subclassing.

(Re-Lock)
Γ$ tLockset(x �S)ulockpxqtLockset(x �x �S)u

ë Reentrant acquirement: x’s resource invariant not obtained.
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Releasing Locks

The 2 rules for releasing locks are dual to the rules for acquirement.
ë Hence, we do not discuss them.

26



Objectives 1 and 2: Achievements

A sound verification system for realistic multithreaded Java programs.
Usability tested against challenging case studies:

� Concurrent iterator
� Lock coupling algorithm (still some limitations)

Algorithmic verification still to be developed

After that:
3 new analyses based on separation logic

ë 2 of these analyses are sketched in the next slides

27



Objectives 1 and 2: Achievements

A sound verification system for realistic multithreaded Java programs.
Usability tested against challenging case studies:

� Concurrent iterator
� Lock coupling algorithm (still some limitations)

Algorithmic verification still to be developed

After that:
3 new analyses based on separation logic

ë 2 of these analyses are sketched in the next slides

27



1st Analysis: Fast Disproving of Entailment
[IWACO’09]

Goal:
Disprove entailment between separation logic formulas

ë I.e. to prove A& B

Usefulness:
Program verifiers spend their time checking entailment.

ë I.e. given the program’s state A, and the next command’s precondition B,
ë program verifiers have to find a F such that A$ B�F.

In full separation logic, $ is undecidable.
If we can prove that A& B, then we know that F cannot be found.

ë This avoids trying to prove unprovable programs.
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Disproving Technique

Soundness of the proof system:

A$ B implies p@h, h |ù AÑ h |ù Bq

Contraposition:

pDh,h |ù A^ h |ù Bq implies A& B

Goal of this work:
Take A and B and prove that A& B

By discriminating models of A and B
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Disproving Technique (classical semantics)

Objective:

Find h such that h |ù A and  h |ù B

We compute bounds on the size of models.
max : FormulaÑ Size
min : FormulaÑ Size
size : ModelÑ Size

max(A)

size(h)

min(A)

Properties of max and min (classical semantics):

@h,h |ù A implies minpAq ¤ sizephq ¤ maxpAq
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Disproving Technique (classical semantics)

pDh,h |ù A^ h |ù Bq implies A& B

@h,h |ù A implies minpAq ¤ sizephq ¤ maxpAq

Ó

maxpAq   minpBq implies A& B
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1st Analysis: Achievements

A fast technique to disprove entailment.
Two different trade offs between speed and precision

(two ways to define Size)
Proven correct in Coq
License-left proof scripts
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2nd Analysis: Optimizations by Proof Rewriting
[SAS’09]

We parallelize and optimize proven programs.

To parallelize programs, you need to know:
What data is accessed by programs.
What data is not accessed by programs.

The good thing is:
Separation logic proofs exhibit how data is accessed (or not):

� Antiframes exhibit data that is accessed. (explained next)
� The (Frame) rule exhibits data that is not accessed. (explained next)

Optimizations are expressed with a rewrite system between proof trees.
Proof trees are derivations of Hoare triplets.
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High-Level
Procedure program

verifier

program C

proof
treegenerator

C correct
C wrong

proof
tree

rewriter

C,P(P is C’s proof)

Copt,Popt

(Copt is C parallelized
and optimized)

contributions
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Separation Logic: (Frame) rule

tΞauCtΞa1u (Frame Ξf )
tΞa �ΞfuCtΞa1 �Ξfu

Ξf

Ξa

Ξf

Ξa′
C

Ξa is the antiframe Ð accessed data
Ξf is the frame Ð not-accessed data

Later, (Fr) sometimes abbreviates (Frame).
35



With Frames: Parallelization Is Easy

tΞuCtΘu
(Fr Ξ1)

tΞ�Ξ1uCtΘ�Ξ1u

tΞ1uC1tΘ1u
(Fr Θ)

tΘ�Ξ1uC1tΘ�Θ1u
(Seq)

tΞ�Ξ1uC; C1tΘ�Θ1u

Ó Parallelize

tΞuCtΘu tΞ1uC1tΘ1u
(Parallel)

tΞ�Ξ1uC } C1tΘ�Θ1u
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Parallelize’s left hand side
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Parallelize

tΞuCtΘu
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Ξ

Ξ′

Θ
C

Θ′C ′
Θ

Ó

Ξ′

Ξ

Θ′C ′
Θ

C
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2nd Analysis: Achievements

An entirely new technique to parallelize and optimize programs.
ë Other optimizations than parallelization have been studied.

No ad-hoc analyses: separation logic proofs are taken as analyses.
Can parallelize any code (i.e. not focused on loops).
Soundness is easier to prove than for classical approaches.
License-left prototype implementation.
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Related Work
Program verification:

Separation logic for sequential Java [Parkinson’05,Distefano et al.’08,Chin et
al.’08]
Separation logic for multithreaded C [Gotsman et al.’07,Appel et al.’07]
Boogie for multithreaded C# [Barnett et al.’04,Jacobs et al.’06]
ESC/Java2 for Java [Leino et al.’02,Kiniry et al.’04]

Algorithms for entailment/disproving:
Sound and complete entailment in Smallfoot [Berdine et al.’04]
Sound entailment in JStar [Parkinson et al.’08]
Sound and complete entailment and refutation [Galmiche et al.’08]

Automatic parallelization:
Many “classical” approaches
By using separation logic [Raza et al.’09]
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Main Publications
Separation Logic Contracts for a Java-like Language with Fork/Join; Haack and
Hurlin; AMAST’08

� Reasoning about Java’s Reentrant Locks; Haack, Huisman, and Hurlin;
APLAS’08

� Specifying and Checking Protocols of Multithreaded Classes; Hurlin; SAC’09
Resource Usage Protocols for Iterators; Haack and Hurlin; Journal of Object
Technology’09

� Size Does Matter: Two Certified Abstractions to Disprove Entailment in
Intuitionistic and Classical Separation Logic; Hurlin, Bobot, and Summers;
IWACO’09

� Automatic Parallelization and Optimization of Programs by Proof Rewriting;
Hurlin; SAS’09

Developments:
1 Some Coq proofs for the AMAST and APLAS papers.
2 ocaml implementation of some of the techniques described in the SAC paper.
3 Full Coq proofs for the IWACO paper.
4 ocaml and Java+tom prototype implementation of the SAS paper.
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Conclusion

First, we developed:
A sound verification system for multithreaded Java programs in separation logic,

ë that uses realistic primitives,
ë and that handles challenging examples (iterator, lock-coupling).

Second:
We extended previous work on protocols. (omitted in this talk)
We discovered a fast algorithm to disprove entailment.
We showed how to parallelize and optimize programs by rewriting their proofs.
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Future Work

For the verification system:
Implementing it!
Doing a large case study

For the disproving algorithm:
Extension to object-orientation

ë By keeping its simplicity and its usefulness (not straightforward)

For the parallelizing analysis:
Extension to object-oriented programs (easy)
Extension to loopsÑ to battle it out with classical parallelizers!
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Thank you



Fork and join in terms of resources (2)

thread t0
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thread t0 t1.fork()

thread t1
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Fork and join in terms of resources (2)

thread t0 t1.fork()

thread t1 t2.start()

thread t2

46



Releasing Locks

(Re-Unlock)
Γ$ tLockset(x �x �S)uunlockpxqtLockset(x �S)u

ë Releasing x but x’s reentrancy level ¡ 1: invariant not abandoned.

(Unlock)
Γ$ tLockset(x �S)*x.invuunlockpxqtLockset(S)u

ë x’s reentrancy level not known to be ¡ 1, x’s resource invariant abandoned.
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Disproving Technique (classical semantics)

pDh,h |ù A^ h |ù Bq implies A& B

@h,h |ù A implies minpAq ¤ sizephq ¤ maxpAq

Ó

maxpAq   minpBq implies A& B
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Defining size

sizephq ∆
� sum of h’s permissions

size: ModelÑ Perm

Models h are lists of triples of an address, a permission, and a value.
ë An example model is p42,π,3q :: p47,π 1,�5q :: p42,π2,0q :: rs.

sizepp42,π,3q :: p47,π 1,�5q :: p42,π2,0q :: rsq � π�π 1�π2
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Defining max/min (classical semantics)(excerpt)

maxp π
ÞÑ q�π

maxpA�Bq�maxpAq�π maxpBq
minp π

ÞÑ q�π

minpA�Bq�minpAq�π minpBq

h |ù a π
ÞÑ v iff h� pa,π,vq

h |ù A�B iff DhA,hB,h� hAZhB,hA |ù A and hB |ù B
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Defining max/min (classical semantics)(excerpt)

maxpA^Bq�minπ pmaxpAq,maxpBqq
maxpA_Bq�maxπpmaxpAq,maxpBqq

minpA^Bq�maxπpminpAq,minpBqq
minpA_Bq�minπ pminpAq,minpBqq

h |ù A^B iff h |ù A and h |ù B
h |ù A_B iff h |ù A or h |ù B
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h |ù a π
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max(A ? B)
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Defining max/min (classical semantics)

maxp π
ÞÑ q �π

maxpA�Bq �maxpAq�π maxpBq
maxpA -*Bq�maxpBq�π minpAq

minp π
ÞÑ q �π

minpA�Bq �minpAq�π minpBq
minpA -*Bq�minpBq�π maxpAq

h |ù a π
ÞÑ v iff h� pa,π,vq

h |ù A�B iff DhA,hB,h� hAZhB,hA |ù A and hB |ù B
h |ù A -*B iff @hA,hA |ù A and hA and h are compatible

implies hAZh |ù A�B
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Defining max/min (classical semantics)

maxp@π.Aq�maxpArπw{πsq
maxpDπ.Aq�maxpArπw{πsq
maxp@v.Aq � maxpDv.Aq � maxpAq

minp@π.Aq�minpArπw{πsq
minpDπ.Aq�minpArε{πsq
minp@v.Aq � minpDv.Aq � minpAq

ë Standard semantics of quantifiers (omitted)
ε is an infinitely small permission
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Defining max/min (classical semantics)

maxpbq�8 minpbq�π0

h |ù b iff oraclepbq

b is a pure formula, i.e., it does not depend on the heap h.
π0 is the minimal permission.
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Toy Example

Λ
n,m,k
x,y,z

∆
� x ÞÑrf : ns � y ÞÑrf : ms � z ÞÑrf : ks

(Mutate)
tΛxuxÑf � ntΛn

xu (Fr Λ ,
y,z)

tΛ , ,
x,y,zuxÑf � ntΛn, ,

x,y,zu

(Mutate)
tΛyuyÑf � mtΛm

y u
(Fr Λn,

x,z)
tΛn, ,

x,y,zuyÑf � mtΛn,m,
x,y,z u

(Mutate)
tΛzuzÑf � ktΛk

zu (Fr Λn,m
x,y )

tΛn,m,
x,y,z uzÑf � ktΛn,m,k

x,y,z u
(Seq)

tΛn, ,
x,y,zuyÑf � m; zÑf � ktΛn,m,k

x,y,z u
(Seq)

tΛ , ,
x,y,zuxÑf � n; yÑf � m; zÑf � ktΛn,m,k

x,y,z u

Ó

(Mutate)
tΛxuxÑf � ntΛn

xu

(Mutate)
tΛyuyÑf � mtΛm

y u
(Mutate)

tΛzuzÑf � ktΛk
zu

(Parallel)
tΛ ,

y,zuyÑf � m } zÑf � ktΛm,k
y,z u

(Parallel)
tΛ , ,

x,y,zuxÑf � n } pyÑf � m } zÑf � kqtΛn,m,k
x,y,z u

Hypothesis: the left hand side is a valid proof tree.
Soundness follows from the inclusion of the rhs’s leaves in the lhs’s leaves.
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Guarantees of the Rewrite System

The rewrite system modifies programs but preserves specifications:

P
tΞuCtΘu

Ó

Q
tΞuC1tΘu

The program and the proof are modified: P,C ÑQ,C1,
ë but specifications are preserved: Ξ,Θ Ñ Ξ,Θ.

Conjecture:
Programs related with Ñ are equivalent from a big step p.o.v.
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We Want the Frames �

The (Frame) rule is the central ingredient of our procedure.
Problem: Existing program verifiers (e.g. smallfoot) do not make frames explicit.

Π$ F � E . . . (Mutate)
tΠ ¦ F ÞÑrρsuEÑf � GtΠ ¦ F ÞÑrρ 1su

ë Π is “too big”: there exists a “smaller” antiframe Πa such that Πa $ F � E.
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Recall the big picture ?

program
verifier

program C

proof
treegenerator

C correct
C wrong

proof
tree

rewriter

C,P(P is C’s proof)

Copt,Popt

(Copt is C parallelized
and optimized)

In the proof tree generator:
Proof rules with explicit frames.
But still usage of the program’s
verifier normal rules for verification.

Next slides:

Proof rules with explicit {anti-,} frames

61



We Want the Frames

Berdine, Calcagno, and O’Hearn “Symbolic Execution with Separation Logic”

Π$ F � E . . . (Mutate)
tΠ ¦ F ÞÑrρsuEÑf � GtΠ ¦ F ÞÑrρ 1su

With explicit frames and antiframes

Πa $ F � E . . .
(Mutate)

tΠa ¦ F ÞÑrρsuEÑf � GtΠa ¦ F ÞÑrρ 1su
(Frame Ξf )

tpΠa ¦ F ÞÑrρsq �Ξf uEÑf � GtpΠa ¦ F ÞÑrρ 1sq �Ξf u
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We Want the Frames

Berdine, Calcagno, and O’Hearn “Symbolic Execution with Separation Logic”

. . . x1 fresh Π$ F � E (Lookup)
tΠ ¦ Σ�F ÞÑrρsux :� EÑ f t. . .^Πrx1{xs ¦ pΣ�F ÞÑrρsqrx1{xsu

With explicit frames and antiframes

x1 fresh . . .
Πa $ F � E
Ξ�Πarx1{xs^ . . . ¦ pΣa �F ÞÑrρsqrx1{xs

(Lookup)
tΠa ¦ Σa �F ÞÑrρsux :� EÑ f tΞu x R Ξf (Frame Ξf )

t pΠa ¦ Σa �F ÞÑrρsq
looooooooomooooooooon

antiframe needed to prove
E ÞÑrρs and affected by [x’/x]

� Ξfloomoon

frame unaffected
by [x’/x]

ux :� EÑ f tΞ�Ξf u
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We Want the Frames

Berdine, Calcagno, and O’Hearn “Symbolic Execution with Separation Logic”

Π$K (Inconsistent)
tΠ ¦ ΣuCtΘu

With explicit frames and antiframes

Πa $K (Inconsistent)
tΠa ¦ empuCtΘu

(Frame Πf ¦ Σf )
t Πa ¦ emp

loomoon

sufficient antiframe to prove K

�Πf ¦ Σfloomoon

frame

uCtΘu

emp
∆
� the heap is empty.
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Shape of Generated Trees

Because of the algorithm used in program verifiers,
ë proof trees have a special shape.

For successive commands C0,C1,C2, . . . , proof trees have this shape:

..
(Fr Ξ)

t..uC0t..u

..
(Fr Θ)

t..uC1t..u

..
(Fr Ξ1)

t..uC2t..u ..

t..uC2; ..t..u
(Seq)

t..uC1; C2; ..t..u
(Seq)

t..uC0; C1; C2; ..t..u

A (Frame) at each command.
ë Problem: Frames are redundant (i.e., ΞYΘYΞ1 �H).
ë In practice, this must be avoided for optimizations to fire.
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We Want the Frames �

We rewrite proof trees to frame multiple commands,
ë i.e., we factorize frames.

Below, Ξc is the factorized frame.

Guard: Ξf ô Ξf0 �Ξc and Θf ô Θf0 �Ξc

tΞauCtΞpu (Frame Ξf )
tΞa �Ξf uCtΞp �Ξf u

tΘauC1tΘpu (Frame Θf )
tΘa �Θf uC1tΘp �Θf u (Seq)

tΞa �Ξf uC; C1tΘp �Θf u

Ó FactorizeFrames
tΞauCtΞpu (Fr Ξf0)

tΞa �Ξf0uCtΞp �Ξf0u

tΘauC1tΘpu (Fr Θf0)
tΘa �Θf0uC

1tΘp �Θf0u (Seq)
tΞa �Ξf0uC; C1tΘp �Θf0u (Frame Ξc)
tΞa �Ξf uC; C1tΘp �Θf u
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FactorizeFrames’s left hand side

tΞauCtΞpu (Fr Ξf )
tΞa �Ξf uCtΞp �Ξf u

tΘauC1tΘpu (Fr Θf )
tΘa �Θf uC1tΘp �Θf u (Seq)

tΞa �Ξf uC; C1tΘp �Θf u

Ξf

Ξa

Ξf

Ξp
C

Guard: Ξf ô Ξf0 �Ξc and Θf ô Θf0 �Ξc

The part of the heap framed twice (in red) is the common frame Ξc.
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Ξf

Ξa

Ξf

Ξp
C

Θf

Θa

Θf

Θp
C ′

Guard: Ξf ô Ξf0 �Ξc and Θf ô Θf0 �Ξc
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We Want the Frames �

Guard: Ξf ô Ξf0 �Ξc and Θf ô Θf0 �Ξc

tΞauCtΞpu (Frame Ξf )
tΞa �Ξf uCtΞp �Ξf u

tΘauC1tΘpu (Frame Θf )
tΘa �Θf uC1tΘp �Θf u (Seq)

tΞa �Ξf uC; C1tΘp �Θf u

Ó FactorizeFrames

tΞauCtΞpu (Fr Ξf0)
tΞa �Ξf0uCtΞp �Ξf0u

tΘauC1tΘpu (Fr Θf0)
tΘa �Θf0uC

1tΘp �Θf0u (Seq)
tΞa �Ξf0uC; C1tΘp �Θf0u (Frame Ξc)
tΞa �Ξf uC; C1tΘp �Θf u

ë The common part of Ξf and Θf (i.e., Ξc) is framed separately.
ë The new application of (Frame) is on a longer command (C; C1) than before.
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Example
requires treepxq;
ensures treepxq;
rotate treepx;q{
local x1,x2;
ifpx� nilq{}
else{

x1 :� xÑ l;
x2 :� xÑr;
xÑl� x2;
xÑr � x1;
rotate treepx1;q;
rotate treepx2;q; }}

Ñ

requires treepxq;
ensures treepxq;
rotate treepx;q{
local x1,x2;
ifpx� nilq{}
else{

x1 :� xÑ l;
x2 :� xÑr;
pxÑl� x2; xÑr � x1q ||
rotate treepx1;q ||
rotate treepx2;q; }}

Implementation:
The rewrite rules have been implemented in Java+tom.
tom extends Java to pattern match against tom/user-defined Java objects.
Each rewrite rule is less than 75 lines of code (i.e. manageable).
Use of tom’s strategies to fine tune optimizations.
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List of Optimizations

Optimizations include:
parallelization (previous slides)
Improvement of temporal locality (omitted in this talk)
A generic optimization with 4 concrete applications: (omitted in this talk)

� Early lock releasing
� Late lock acquirement
� Early disposal
� Late allocation
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GenericOptimization

tΞauCtΞpu (Frame Ξf )
tΞa �Ξf uCtΞp �Ξf u

tΘauC1tΘpu (Frame Θf )
tΘa �Θf uC1tΘp �Θf u (Seq)

tΞa �Ξf uC; C1tΞ1u

Ó GenericOptimization

tΘauC1tΘpu (Fr ...)
tΞa �Θa �ΞruC1tΞa �Θp �Ξru

tΞauCtΞpu (Fr ...)
t...uCtΞp �Θp �Ξru (Seq)

tΞa �Ξf uC1; CtΞ1u

Guard: Θf ô Ξp �Ξr

This optimization changes the program order.
ë The guard requires that C1 frames the postcondition of C (Ξp).
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Locks in Separation Logic
Each lock guards a part of the heap called the lock’s resource invariant.
Resource invariants are exchanged between locks and threads:

1 When a lock is acquired, it lends its resource invariant to the acquiring thread.
2 When a lock is released, it claims back its resource invariant from the releasing

thread.

Formally:

Ξ is x’s resource invariant (Lock)
tempulockpxqtΞu

Ξ is x’s resource invariant (Unlock)
tΞuunlockpxqtempu

(emp represents the empty heap)
Next slide:
ë Instantiation of the generic optimization to optimize usage of locks
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Instantiating GenericOpt.: EarlyUnlocking

tΞauCtΞpu (Fr Ξf )
tΞa �Ξf uCtΞp �Ξf u

Θa is x’s resource invariant
(Unlock)

tΘauunlockpxqtempu (Fr Θf )
tΘa �Θf uunlockpxqtΘf u

(Seq)
tΞa �Ξf uC; unlockpxqtΘf u

Ó EarlyUnlocking
Θa is x’s resource invariant

(Unlock)
tΘauunlockpxqtempu (Fr ...)

tΞa �Θa �ΞruunlockpxqtΞa �Ξru

tΞauCtΞpu
(Fr Ξr)

tΞa �ΞruCtΞp �Ξru
(Seq)

tΞa �Ξf uunlockpxq; CtΞp �Ξru

Guard: Θf ô Ξp �Ξr

(Ξp �Ξf ôΘa �Θf + guard) implies Ξf ôΘa �Ξr.
ë Command C does not access x’s resource invariant:

Better unlock x before executing C!
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Example (2)

requires x ÞÑrval : s;
ensures emp;
copy and disposepx;q{
local v;
lockprc ÞÑrval: sq;

v :� xÑval;
cÑval� v;
disposepxq;

unlockprc ÞÑrval: sq;
}

Ñ

requires x ÞÑrval : s;
ensures emp;
copy and disposepx;q{
local v;
v :� xÑval;
disposepxq;
lockprc ÞÑrval: sq;

cÑval� v;
unlockprc ÞÑrval: sq;

}

r is a lock with resource invariant c ÞÑrval : s, i.e., one cell c with field val.

Optimizations:
The critical region is shortened.
Memory is disposed as soon as possible.
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TemporalLocality

temporal locality ∆
� time between two accesses to the same heap cell

ë the smaller the better (no need to free/load processors’s caches)
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TemporalLocality

Intuition below: C and C2 access the same part of the heap
ë Execute them successively

tΞuCtΞ1u
(Fr Θ)

tΞ�ΘuCtΞ1 �Θu

tΘuC1tΘ1u
(Fr Ξ1)

tΞ1 �ΘuC1tΞ1 �Θ1u
(Seq)

tΞ�ΘuC; C1tΞ1 �Θ1u

tΞ1uC2tΞ2u
(Fr Θ1)

tΞ1 �Θ1uC2tΞ2 �Θ1u
(Seq)

tΞ�ΘuC; C1; C2tΞ11 �Θ1u

Ó TemporalLocality

tΞuCtΞ1u tΞ1uC2tΞ2u
(Seq)

tΞuC; C2tΞ2u
(Fr Θ)

tΞ�ΘuC; C2tΞ11 �Θu

tΘuC1tΘ1u
(Fr Ξ2)

tΞ2 �ΘuC1tΞ2 �Θ1u
(Seq)

tΞ�ΘuC; C2; C1tΞ2 �Θ1u
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Instantiating GenericOpt.: LateLocking

Ξp is x’s resource invariant
(Lock)

tempulockpxqtΞpu (Frame Ξf )
tΞf ulockpxqtΞp �Ξf u

tΘauC1tΘpu (Frame Θf )
tΘa �Θf uC1tΘp �Θf u

(Seq)
tΞf ulockpxq; C1tΘp �Θf u

Ó LateLocking

tΘauC1tΘpu
(Frame Ξr)

tΘa �ΞruC1tΘp �Ξru

Ξp is x’s resource invariant
(Lock)

tempulockpxqtΞpu (Frame Θp �Ξr)
tΘp �ΞrulockpxqtΞp �Θp �Ξru

(Seq)
tΞf uC1; lockpxqtΞp �Θp �Ξru

Guard: Θf ô Ξp �Ξr

ë The guard means that command C1 does not access x’s resource invariant:
Better lock x after executing C1!
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Example (3)

requires tree(t); ensures emp;

disp tree(t) {
local i, j;
if(t � nil)tu else t

i :� tÑ l; j :� tÑr;
disp tree(i); disp tree(j);
disposeptq;
}
}

Ñ

requires tree(t); ensures emp;

disp tree(t) {
local i, j;
if(t � nil)tu else t

i :� tÑ l; j :� tÑr;
disposeptq }
(disp tree(i) } disp tree(j));
}
}
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