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2.2 Encadrement de thèse . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Encadrement de stages . . . . . . . . . . . . . . . . . . . . . . 5
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6.1 Instabilité de Taylor-Couette dans un fluide stratifié . . . . . 29
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1994–1998 Élève de l’École Normale Supérieure de Lyon.

1994–1998 Magistère des Sciences de la Matière (Lyon 1). Mention
Bien.

1995 – Stage de Licence (2 mois) au LEGI (Grenoble).
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1997 Agrégation de Physique (option phys.). Rang : 10ème.

1998-2001 Doctorat de l’Université Aix-Marseille I. Mention Très
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(Éd.), Barcelona, Spain, pp. 15-18.

3 R. Lagrange, C. Eloy, F. Nadal & P. Meunier (2008). “Instability
of a fluid inside a precessing cylinder”, Actes du 22nd International
Congress of Theoretical and Applied Mechanics, 24-29 août 2008, Ade-
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1 P. Meunier & T. Leweke (1999). ”Etude expérimentale de la fusion
de deux tourbillons corotatifs”, Visualisation et Traitement d’Images
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Toulouse, France.

12 P. Meunier, G. R. Spedding & L. G. Redekopp (2003). ”Prediction
and measurement of body-generated waves by submerged bodies in a
stratified fluid”, Bull. Am. Phys. Soc., 48 (10), p. 177.

13 G. R. Spedding & P. Meunier (2003). ”Momentumless and almost-
momentumless wakes in a stratified fluid”, Bull. Am. Phys. Soc., 48
(10), p. 77.

14 P. Meunier & E. Villermaux (2004). ”Enhanced mixing in vortices”,
Actes du 21st International Congress of Theoretical and Applied Me-
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24-28 août 2003, Toulouse, France.

16 G. R. Spedding & P. Meunier (2003). ”The effect of initial conditions
in far wakes of different-shaped objects in a linearly-stratified fluid”,
5th European Fluid Mechanics Conference, 24-28 août 2003, Toulouse,
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de précession”, GDR Turbulence, 21-22 mai 2007, Marseille, France.

25 N. Boulanger, P. Meunier & S. Le Dizes (2007). ”Dynamics of stratified
tilted vortex”, Workshop ”Vortices and vortex sheets”, 4-10 juin 2007,
Porquerolles, France.

25 X. Riedinger, P. Meunier & S. Le Dizes (2007). ”Instability of Lamb-
Oseen stratified vortex”, Workshop ”Vortices and vortex sheets”, 4-10
juin 2007, Porquerolles, France.

26 R. Lagrange, P. Meunier, F. Nadal & C. Eloy (2007). ”Instability of
a fluid inside a precessing cylinder”, Workshop ”Vortices and vortex
sheets”, 4-10 juin 2007, Porquerolles, France.

27 P. Meunier (2007). ”A physically-based numerical method for scalar
mixing”, SCAT meeting, 12-16 nov. 2007, Cozumel, Mexique.

28 P. Meunier (2008). ”Sillages lointains dans des fluids stratifiés”, Sémi-
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4 Transfert technologique, relations industrielles
et valorisation

J’ai participé à deux contrats européens C-Wake, et Far-Wake sur la
réduction des tourbillons de sillage d’avion, soutenus par Airbus. Le but de
ces contrats était de comprendre la génération des tourbillons dans le sillage
des avions, et de tenter de détruire ces tourbillons le plus rapidement pos-
sible. En effet, ces tourbillons posent de graves dangers dans les aéroports
car ils peuvent déstabiliser les avions suivants. L’industrie aéronautique tente
ainsi de détruire ces tourbillons de sillage afin de réduire les délais obliga-
toires entre l’atterrissage de deux avions. Ces contrats ont été validés par un
contrat industriel Awiator permettant d’appliquer les travaux de recherche
aux avions actuels. Nous participons ainsi activement à cette activité au sein
de notre équipe, en essayant d’amener les résultats fondamentaux jusqu’à
une application directe.

D’autre part, j’ai obtenu deux contrats avec le CEA/CESTA pour tra-
vailler sur la précession d’un container tournant. Les applications directes
concernent la stabilisation des satellites possédant des fluides carburants en
rotation. Ces contrats d’une valeur de 15kEuros chacun ont permis de mon-
ter l’expérience de précession. Ces travaux sont menés en collaboration avec
Christophe Eloy au laboratoire. Ces contrats ont donné lieu à une bourse
de thèse BDI CNRS/Entreprise qui a débuté au 1er octobre 2006 sous ma
direction. Cette bourse de thèse est accompagnée d’un contrat d’accompa-
gnement d’un montant de 22kEuros, qui a permis de modifier les expériences
de précession pour la thèse de Romain Lagrange.

De plus, j’ai participé à l’ACI Catastrophes Naturelles, dans le cadre
de l’étude de la ” Dynamique de Cyclones Intenses ”, piloté par Jan-Bert
Flor (LEGI, Grenoble). Le but de cette étude était de tenter d’expliquer
la formation de cyclones intenses par des grosses structures cycloniques, au
moyen de la déstabilisation du front. De plus, nous avons essayé de prédire
la dynamique d’un tourbillon soumis à une stratification. Cette ACI a ainsi
permis de monter le dispositif expérimental utilisé par Nicolas Boulanger au
cours de sa thèse sur l’inclinaison d’un vortex stratifié.

Enfin, je suis reponsable au laboratoire d’une ANR Flowing obtenue
pour l’étude des fronts météorologiques. Cette ANR 30kEuros) a permis de
monter l’expérience sur les instabilités d’un tourbillon vertical stratifié et sur
l’écoulement de Taylor-Couette dans un fluide stratifié. C’est dans le cadre
de cette ANR que rentre la thèse que Xavier Riedinger effectue sous ma
co-direction sur l’étude des ondes internes générées par un vortex stratifié.
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5 Résumé des travaux de recherche

Dans les années qui ont suivi ma thèse de doctorat, je me suis tourné
vers l’étude des fluides géophysiques. Les écoulements géophysiques peuvent
être séparés en deux catégories : d’une part la dynamique des océans et de
l’atmosphère sont regroupés dans la géophysique externe, et d’autre part
la dynamique du manteau et du noyau terrestre sont regroupés dans la
géophysique interne. On inclut parfois dans la géophysique interne le cas
des autres planètes que la terre.

La spécificité de ces écoulements géophysiques est qu’ils sont soumis à
l’influence de la stratification du fluide et à l’influence de la rotation de la
planète. En effet, les océans et l’atmosphère sont soumis à une forte stra-
tification qui confère au fluide une géométrie en couche mince. Ceci est un
élément fondamental pour la modélisation des écoulements en géophysique
externe. De plus, en géophysique interne et externe, les grandes échelles de
l’écoulement sont très sensibles à la force de Coriolis issue de la rotation de
la planète.

Au cours de mes 7 dernières années de recherche, je me suis concentré
sur la modélisation expérimentale de tels écoulements géophysiques dans un
laboratoire. Le but était de créer des expériences modèles qui soient suffi-
samment simples pour être expliquées de manière propre par des théories,
mais qui contiennent des éléments tels que la stratification ou la rotation
pour être suffisamment proches des écoulements géophysiques réels.

J’ai tout d’abord étudié l’influence d’une stratification sur un sillage. Puis
je me suis intéressé à la dynamique d’un tourbillon dans un fluide stratifié.
Enfin, j’ai regardé la dynamique d’un tourbillon (ou plus précisément d’un
cylindre tournant) dans un repère tournant, ce qui m’a conduit à étudier les
écoulements de précession. Enfin, j’ai regardé comment un scalaire passif (tel
que le sel pour les océans, l’humidité pour l’atmosphère ou la température
pour le noyau terrestre) est advecté par un écoulement géophysique. Je
développe dans la suite de ce mémoire ces quatre thèmes de recherche de
manière séparée.

5.1 Sillages d’objets non-profilés dans un fluide stratifié

J’ai effectué ces travaux de recherche au cours de mon post-doc entre
avril 2002 et janvier 2003 puis sur de courtes périodes en mars 2003, en
octobre 2003 et en aout 2005 pour finir les expériences en cours. Ces tra-
vaux ont été menés au sein de l’équipe “Geophysical Fluid Dynamics” du
“Aerospace and Mechanical Engineering Department” de l’ “University of
Southern California” à Los Angeles (Etats-Unis). Ces recherches étaient di-
rigées par G. Spedding pour les expériences, et ont été comparées avec des
résultats numériques obtenus par P. Diamessis. Ces résultats s’appliquent
directement au sillage des montagnes et des ı̂les dans l’atmosphère et dans
l’océan, mais aussi au sillage des sous-marins, justifiant ainsi la présence de
contrats américains avec l’Office of Naval Research au sein de l’University
of Southern California. Ce contrat visait à déterminer la durée de vie et la
possible détection d’un sillage dans un fluide stratifié, avec application aux
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sillages de sous-marins. Ces travaux ont donné lieu à quatre papiers publiés
dans des revues de rang A ainsi qu’à onze présentations dans des conférences
internationales.

5.1.1 Objets non propulsés

Le sillage d’un objet non profilé dans un fluide stratifié est différent d’un
sillage dans un fluide homogène. En effet, même pour de faibles stratifica-
tions, c’est à dire pour des faibles nombres de Froude (F=U/ND, U étant
la vitesse de l’objet, D son diamètre et N la fréquence de Brunt-Väisälä du
fluide stratifié), la vitesse du sillage diminue avec la distance rendant ainsi le
sillage lointain fortement stratifié [19, 7]. Les stades ultimes du sillage sont
ainsi bien décrits par une turbulence quasi-bidimensionnelle[35], comportant
de nombreux vortex horizontaux et de faibles vitesses verticales. Des mesures
quantitatives de vitesse 2D par Vélocimétrie par Images de Particules (PIV)
ont permis de construire une loi empirique [38, 39] prédisant la largeur Ly

et l’amplitude U0 du sillage en fonction du temps. Ces résultats ont été ob-
tenus pour différents nombres de Reynolds et de Froude, mais uniquement
pour une sphère, et ne pouvaient pas se généraliser à des objets possédant
des formes quelconques. Par des expériences sur des objets de différentes
formes (cylindre, ellipsöıde, disque, demi-sphère et cube), j’ai étendu cette
loi. En effet, si l’on utilise comme diamètre de l’objet un diamètre efficace
Deff = D(CD/2)1/2, basé sur le coefficient de trâınée de l’objet CD (dans un
fluide non stratifié), tous les résultats se ramènent à une loi universelle pour
la largeur Ly et pour l’amplitude U0 du sillage[24]. Ceci peut se comprendre
par le fait que ce diamètre effectif est en fait l’“épaisseur de quantité de mou-
vement”, correspondant à la quantité de fluide entrâınée derrière l’objet et
responsable de la trâınée. Grâce à ces mesures, il est possible de connâıtre la
force d’un sillage stratifié aux temps longs, dès que l’on connâıt le coefficient
de trâınée de l’objet (tabulé pour la plupart des formes standards).

5.1.2 Objets auto-propulsés

Pour des objets possédant un moyen de propulsion comme une hélice
ou un jet, la quantité de mouvement derrière l’objet n’est plus reliée au
coefficient de trâınée. En effet, la masse de fluide entrâınée derrière l’objet
par la trâınée est entièrement compensée par la masse d’eau éjectée dans
l’autre sens par le système de propulsion, lorsque l’objet se déplace à vitesse
constante. On s’attend ainsi à ce que la quantité de mouvement derrière un
objet auto-propulsé soit nulle.

Cependant, si le fluide est stratifié, l’objet émet des ondes internes qui
transportent de la quantité de mouvement en dehors du sillage, créant ainsi
une force de trâınée plus importante : le coefficient de trâınée peut être
augmenté jusqu’à 10%. Le sillage peut ainsi recouvrir de la quantité de
mouvement dans un fluide stratifié.

Expérimentalement, nous avons tiré un objet possédant une hélice tour-
nant à une vitesse donnée, mais avec différentes vitesses de translation de
l’objet. Nous avons ainsi montré que le sillage est entièrement dominé par la
quantité de mouvement résiduelle aux temps longs, si la différence entre la
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(a)

(b)

(c)

Fig. 1 – Champs de vorticité dans un plan horizontal du sillage d’un objet
propulsé en accélération (a), en régime de croisière (b) et possédant un angle
d’attaque (c).

vitesse de l’objet et la vitesse de croisière (qu’il aurait s’il n’était pas tracté)
est supérieure à 2%. C’est ce que l’on observe sur la figure 1. Lorsque la vi-
tesse de l’objet est suffisamment éloignée de sa vitesse de croisière, le sillage
moyen présente un jet (une couche de vorticité positive à coté d’une couche
de vorticité négative) qui contient de la quantité de mouvement. Cela cor-
respond ainsi au sillage d’un objet non-propulsé ou au sillage d’un objet
propulsé en accélération (Fig. 1a). Par contre, lorsque l’objet est tracté à sa
vitesse de croisière, le jet devient turbulent et ne contient plus jet et donc
de quantité de mouvement (Fig. 1b).

Théoriquement, il est possible de construire un modèle pour prédire la
structure du sillage. En supposant que la quantité de mouvement expulsée
par le système de propulsion ne dépend pas de la vitesse de l’objet, nous
avons pu calculer la quantité de mouvement derrière un objet auto-propulsé.
Grâce à la loi empirique générale obtenue pour des objets non propulsés (voir
paragraphe précédent), il est alors facile de prédire la forme et l’amplitude du
sillage d’un objet propulsé aux temps longs, ce qui est en bon accord avec les
résultats expérimentaux. Ces travaux ont fait l’objet d’une publication[25].

5.1.3 Sillage d’un objet possédant un angle d’attaque

Nous avons regardé expérimentalement comment le sillage se comportait
lorsque l’objet est exactement en régime de croisière. Nous avons vu que le
sillage devient turbulent si l’angle d’attaque est nul. Cependant, le sillage
peut devenir asymétrique si il existe un faible angle d’attaque comme le
montre la figure 1(c). Ces travaux ont fait l’objet d’une publication à Journal
of Fluids and Structures [10].
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5.1.4 Théorie auto-similaire

Nous avons enfin réussi à expliquer ces résultats expérimentaux par une
théorie auto-similaire, généralisant les théories classiques obtenues pour des
fluides non-stratifiés. Pour ce faire, nous avons supposé que le sillage s’étend
dans la direction verticale grâce à de la diffusion visqueuse uniquement
et à de la diffusion turbulente dans la direction horizontale [28]. Grâce à
cette théorie, nous avons retrouvé les différents stades du sillage stratifié,
trouvés expérimentalement. Nous avons aussi découvert deux autres stades
du sillage. Le premier stade doit être observé pour les nombres de Reynolds
élevés, lorsque les effets visqueux interviennent plus tard. Le deuxième stade
apparâıt à de très grandes distances derrière l’objet. Il s’agit d’un régime
complètement laminaire. Un conséquence intéressante de cette théorie est
que le sillage stratifié dure plus longtemps lorsque son nombre de Reynolds
est élevé. Ces prédictions théoriques sont en très bon accord avec tous les
résultats expérimentaux et numériques obtenus depuis 30 ans et elles offrent
donc une très bonne synthèse de la dynamique d’un sillage stratifié.

5.2 Instabilités d’un tourbillon dans un fluide stratifié

L’étude de l’interaction de deux tourbillons dans un fluide stratifié stable
a révélé la présence d’une nouvelle instabilité “zigzag ” [2]. Cependant,
comme pour le cas de l’instabilité de Crow [8], cette instabilité repose sur la
connaissance des modes de Kelvin d’un tourbillon stratifié. De plus, une nou-
velle instabilité a été découverte par Cariteau & Flor [6, 5] sur un tourbillon
stratifié unique. Il apparaissâıt donc intéressant d’étudier la dynamique d’un
tourbillon stratifié unique pour connâıtre les relations de dispersion de ses
modes de Kelvin comme dans le cas précédent et pour identifier cette nou-
velle instabilité.

5.2.1 Structure d’un vortex incliné par rapport à une stratifica-
tion

Dans un premier temps, nous nous sommes intéressé au cas d’un tour-
billon dont l’axe est incliné par rapport à la verticale. Pour cela, nous avons
construit une expérience adaptée, dans laquelle le tourbillon est généré par
une pale en rotation dans un fluide initialement stratifié. Nous pouvons faire
varier l’angle du tourbillon avec la verticale pour connâıtre l’état de base
(encore inconnu théoriquement) ainsi que ses instabilités. Ceci a constitué le
travail de thèse de Nicolas Boulanger qui effectue sa thèse de doctorat sous
la direction de Stéphane Le Dizès pour la partie théorique et sous ma direc-
tion pour la partie expérimentale. Ces travaux rentrent dans le cadre d’une
ACI sur les Catastrophes Naturelles (CatNat), dont la section “Dynamique
de Cyclones Intenses” est dirigée par Jan-Bert Flor au LEGI (Grenoble).
Sur cette expérience, nous avons monté un système de visualisation par om-
broscopie et par strioscopie. Quelques images typiques obtenues par cette
technique sont montrées dans la figure 2. Cette méthode peut être rendue
quantitative puisque l’intensité de l’image est reliée au Laplacien de la den-
sité.
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(a) (b) (c)

Fig. 2 – Visualisation par ombroscopie de l’instabilité d’un vortex incliné
par rapport à une stratification ambiante du fluide

Nous avons montré expérimentalement et théoriquement que le vortex
possède une couche critique au rayon où la vitesse angulaire du vortex est
égale à la fréquence de flottaison du fluide stratifié. Cette couche critique est
visible sur la photo de gauche de la figure ci-dessous. Ceci induit de fortes
vitesses axiales à ce rayon critique, ainsi que de forts cisaillements [3].

Théoriquement, la couche critique a été lissée par les termes visqueux,
montrant que l’amplitude de la vitesse axiale scale comme la racine du
nombre de Reynolds et que l’épaisseur de la couche critique scale comme
l’inverse de la racine du nombre de Reynolds. La solution théorique a été
comparée avec un excellent accord aux résultats expérimentaux. De plus,
nous avons lissé cette couche critique par des effets non-linéaires, montrant
que l’amplitude scale alors comme la racine cubique de l’angle d’inclinaison.

Ces forts cisaillements au niveau de la couche critique semblent être la
source d’une violente instabilité tri-dimensionnelle, sous la forme de rou-
leaux co-rotatifs de chaque côté du vortex[4]. Cette instabilité est visualisée
dans la figure 2. Une théorie locale a été mise en place, qui prouve que le
tourbillon est instable par rapport à une instabilité de Kelvin-Helmholtz de
l’écoulement vertical dans la couche critique.

Cette instabilité rend le vortex extrêmement turbulent, sans pour au-
tant détruire sa circulation. Elle crée un fort mélange au sein du vortex
(voir Fig. 2c). Cette inclinaison du vortex augmente donc drastiquement le
mélange dans la direction verticale, et pourrait être une source non négli-
geable de mélange dans les océans. Enfin, ces résultats s’appliquent aussi au
cas des tornades par rapport à des applications météorologiques.

5.2.2 Modes instables d’un tourbillon vertical dans une fluide
stratifié

Ces travaux constituent la suite de l’étude présentée au paragraphe
précédent sur l’instabilité d’un vortex incliné. En l’absence d’inclinaison
du vortex, on s’attend à ce que le vortex devienne stable. Cependant, des
résultats théoriques récents [17] ont montré par une analyse WKB que le vor-
tex possède des modes instables dans la limite des faibles nombres de Froude.
Il apparâıt donc nécessaire de trouver tous les modes instables en faisant une
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Fig. 3 – Taux de croissance des modes instables (de nombre d’onde azimu-
tal m=1) pour un tourbillon vertical dans un fluide stratifié. Les contours
correspondent aux résultats d’une analyse de stabilité linéaire numérique,
les symboles indiquent les expériences pour lesquelles l’instabilité a été ob-
servée.

étude systématique pour différents nombres de Froude et nombres de Rey-
nolds. Ceci constitue le travail de thèse de Xavier Riedinger, qui a débuté
sa thèse au 1er octobre 2006 encadré par Stéphane Le Dizès pour la partie
théorique et co-encadré par moi-même pour la partie expérimentale.

Il ressort de cette étude qu’un vortex placé dans un fluide stratifié est
instable à n’importe quel nombre de Reynolds dans une bande de nombre
de Froude autour de 1. Ceci est visible dans la figure 3 qui présente le taux
de croissance du mode le plus instable en fonction du nombre de Froude et
du nombre de Reynolds. Ces résultats ont été obtenus par une analyse de
stabilité linéaire, réalisée numériquement pour un nombre d’onde axial et
azimutal fixé. Tous les modes de nombre d’onde azimutal m supérieurs à 1
sont instables, mais c’est le mode m = 1 qui est le plus instable. La bande de
longueur d’onde instable dépend fortement du nombre de Froude. Pour de
faibles nombres de Froude, le mode instable apparâıt pour une large bande
de nombre d’onde axial. Lorsque le nombre de Froude augmente, l’instabilité
se restreint à des bandes de nombre d’onde très étroites, qui correspondent à
la résonance entre un mode de rayonnement du vortex et un mode de Kelvin
du vortex non stratifié.

De plus, des expériences ont été effectuées sur un vortex généré par une
pale mise en rotation dans un fluide stratifié. Nous avons observé que lorsque
le vortex passe dans la zone instable du diagramme de stabilité, une ondula-
tion apparâıt sur le vortex, comme le montre la figure 4(a). Ceci correspond
au mode instable du vortex, qui se superpose au vortex initial. Etant donné
que la perturbation crée une ondulation du vortex, on peut en déduire que
le mode instable contient deux lobes de vorticité de signe opposé placés de
chaque coté du centre du vortex, tel que pour le mode de déplacement du vor-
tex. C’est effectivement ce que l’on observe numériquement (4b) : dans une
section du vortex, le mode instable contient deux lobes de vorticité opposés
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(a) (b)

Fig. 4 – Structure du mode instable d’un vortex dans un écoulement stra-
tifié. L’instabilité est observée expérimentalement en vue de côté (a) et ob-
tenue numériquement dans une section du vortex (b).

au cœur, puis des ailes de vorticité qui sont la signature d’ondes rayonnées
par le vortex loin du cœur. C’est ainsi que l’on peut appeler ces modes, des
modes rayonnants du vortex car ils sont oscillants loin du vortex. Ceci veut
dire qu’un vortex, lorsqu’il est dans la zone instable du diagramme de sta-
bilité, peut rayonner des ondes internes et perdre ainsi progressivement son
énergie. Expérimentalement, ces ondes n’ont pu être observées car elles sont
très faibles (comparé à la vorticité des deux lobes centraux). La décroissance
du vortex n’a pas pu être observée non plus car les phénomènes visqueux
sont plus importants. Cependant, on peut penser que dans des conditions
gépohysiques réelles, à plus grand nombre de Reynolds, la décroissance du
vortex peut être importante. Enfin, des comparaisons quantitatives sur la
longueur d’onde instable ont été effectuées. La longueur d’onde observée
expérimentalement est en moyenne plus élevée que la prédiction numérique,
surtout pour les faibles stratifications.

Cette étude a donné lieu à 1 article en préparation, 1 article soumis et 2
présentations dans des conférences internationales.

5.3 Dynamique d’un fluide dans un cylindre en précession

Un des grands problèmes en géophysique interne consiste à comprendre
comment est généré le champ magnétique terrestre. Même si l’on sait à
l’heure actuelle que c’est le mouvement du fer liquide dans le noyau externe
qui crée ce champ magnétique par effet dynamo, divers questions restent
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sans réponse à ce sujet : quelle est la source d’énergie qui crée le mouve-
ment du fer liquide, quel est l’écoulement moyen dans le noyau, et comment
cet écoulement peut générer le champ magnétique par effet dynamo. Bien
que la convection dans le noyau semble être la source d’énergie principale
qui force l’écoulement dans le noyau, il existe deux autres candidats poten-
tiels qui sont liés aux des phénomènes purement inertiels du fluide. D’une
part, la précession de la terre pourrait générer un écoulement suffisamment
intense s’il était turbulent pour compenser l’énergie disipée par le champ
magnétique terrestre [21, 36, 12]. D’autre part, l’ellipticité des lignes de cou-
rant dans le noyau terrestre (liées au effets de marée), pourraient aussi créer
une instabilité elliptique qui viendrait modifier l’écoulement dans le noyau
terrestre. Il apparâıt donc intéressant d’étudier précisément l’écoulement
dans un objet en précession afin de pouvoir prédire l’effet de la précession
sur le champ magnétique terrestre. Les premières études menées dans un
cylindre en précession ont été faites par McEwan [23] et ont montré que les
modes de Kelvin dans le cylindre pouvaient résonner lorsque la fréquence de
précession correspondait à leur fréquence propre. Proche de ces résonances,
l’écoulement devient fortement turbulent [22] et semble forcer un écoulement
de rotation solide [14]. Bien que plusieurs théories aient été avancées pour
la déstabilisation du fluide dans un cylindre en précession, il n’existait à
l’heure actuelle aucune confirmation expérimentale.

Nous avons monté une expérience dans laquelle un cylindre en rotation
autour de son axe est placé sur une plateforme tournante avec un faible angle
de précession. En fonction du rapport des fréquence de rotation du cylindre
et de la plateforme, différents modes propres (les modes de Kelvin) du fluide
sont excités. Quelques exemples de modes propres sont montrés dans la
figure 5. Nous avons mesuré expérimentalement la forme et l’amplitude de
ces modes propres, et ainsi validé la théorie linéaire non-visqueuse.

L’amplitude de ces modes diverge lorsque la hauteur du cylindre est
égale à un multiple impair de la demi-longueur d’onde du mode propre.
Nous avons donc modifié la théorie afin de prendre en compte les effets non-
linéaires et visqueux à la résonance. Nous avons ainsi montré que l’amplitude
maximale du mode propre scale comme la racine du nombre de Reynolds
dans le régime visqueux et comme la racine cubique de l’angle de précession
dans le régime non-linéaire [29]. Cette théorie est en bon accord avec les
résultats expérimentaux.

Cependant, il est bien connu que cet écoulement se déstabilise pour des
nombres de Reynolds suffisamment élevés. Grace à des mesures PIV, nous
avons montré que l’écoulement se déstabilise en créant 2 modes de Kelvin
libres qui se superposent à l’écoulement de base qui contient un mode de
Kelvin forcé [15]. Ceci est illustré dans la figure 6, dans laquelle la vorticité
présente une structure de nombre d’onde azimutal m=6 (figure de gauche)
dans une section du cylindre et un nombre d’onde azimutal m=5 superposé
au mode de Kelvin forcé de nombre d’onde m=1 dans une autre section
(figure de droite).

Ces mesures prouvent ainsi que l’instabilité est une résonance triadique
entre ces trois modes de Kelvin, et une analyse de stabilité linéaire permet
de prédire le taux de croissance de l’instabilité de manière analytique. En
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(a) (b)

(c) (d)

Fig. 5 – Mesure de la vorticité du 1er, 2ème, 3ème et 5ème mode propre du
fluide dans un cylindre, excités par la précession du cylindre.
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(a) (b)

Fig. 6 – Mesure dans deux sections différentes de la vorticité lors de l’in-
stabilité du fluide dans un cylindre en précession, mettant en évidence la
présence de deux modes de nombre d’onde azimutal m=6 et m=5.

rajoutant les effets visqueux, il est même possible de prédire théoriquement le
diagramme de stabilité de l’écoulement dans un cylindre en précession (voir
figure 7). Les résultats expérimentaux sont en excellent accord avec cette
prédiction. Il est possible aussi d’inclure des effets de “detuning” lorsque la
fréquence de précession varie, ce qui fait apparâıtre d’autres modes instables.
Tout ceci a été confirmé expérimentalement.

De plus, en incluant des effets faiblement non-linéaires, il est possible
de prédire la saturation des modes instables. Ces modes forcent un mode
axisymétrique au travers des couches limites. Le mode axisymétrique limite
alors l’instabilité en changeant la fréquence des modes instables. La théorie
faiblement non-linéaire prédit non seulement la saturation de l’instabilité
mais aussi des régimes d’intermittence, puis de chaos. Toutes ces prédictions
sont en excellent accord avec les résultats expérimentaux, même pour des
nombres de Reynolds une décade au dessus du seuil d’instabilité, dans un
régime apparemment complètement turbulent. Il est donc intéressant de
voir qu’une théorie faiblement non-linéaire permet de donner des prédictions
quantitatives sur l’écoulement turbulent dans un cylindre en précession.

5.4 Mélange d’un scalaire passif

Une des questions actuelles en géophysique externe consiste à compren-
dre le mélange d’un scalaire passif tel que le dioxyde de carbone ou la tempé-
rature dans les océans. En effet, les mesures locales de diffusivité d’un sca-
laire dans les océans ne suffisent pas à expliquer la structure thermohaline
aux grandes échelles[30, 18, 37]. Le mélange vertical dans les océans est
extrêmement faible du fait de la stratification. Il est ainsi 10 plus faible que
la valeur qui est prise en compte dans les modèles océaniques globaux. Ceci
veut dire que 90% du mélange vertical dans les océans reste incompris. Or,
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Fig. 7 – Mesure dans deux sections différentes de la vorticité lors de l’in-
stabilité du fluide dans un cylindre en précession, mettant en évidence la
présence de deux modes de nombre d’onde azimutal m=6 et m=5.

ce mélange est primordial dans les modèles climatiques car il intervient dans
la modélisation des flux de chaleur entre les différentes latitudes et pour le
stockage du dioxyde de carbone. Mais il est aussi important pour les modèles
biologiques car il permet de faire remonter à la surface les nutriments dont
le phytoplancton a besoin, et c’est donc un paramètre pris en compte dans
les écosystèmes marins.

Les écoulements océaniques possèdent de forts tourbillons horizontaux et
une faible vitesse verticale. Nous nous sommes donc intéressés à l’advection
d’un scalaire passif dans un écoulement bi-dimensionnel, d’abord constitué
d’un unique tourbillon, puis d’un écoulement modélisant la turbulence bi-
dimensionnelle.

5.4.1 Mélange d’un scalaire dans un tourbillon

Cette étude a débuté de manière expérimentale et théorique à la fin de ma
thèse par une collaboration avec E. Villermaux sur les problèmes de mélange.
L’idée était de déterminer le mélange d’un scalaire passif dans le champ de
vitesse d’un tourbillon. Malgré la présence de quelques résultats théoriques
dans la littérature [34, 9, 1], il n’existait pas de résultats expérimentaux sur
ce sujet. Cette expérience est assez délicate car le scalaire passif (ici, un
colorant fluorescent) doit être injecté de manière uniforme et suffisamment
rapidement dans le vortex. Une première technique consiste à introduire le
colorant au moyen d’un tube parallèle à une pale. La mise en mouvement
de la pale crée un tourbillon suffisamment rapidement pour que le colorant
s’enroule autour du vortex. Cette évolution est présentée sur la figure 8.
Une deuxième technique consiste à bouger verticalement un fil imbibé de
fluorescéine dans un vortex déjà formé. Ceci donnait les mêmes résultats
mais cela permettait d’utiliser un fluide stratifié afin que le vortex survive

26



Fig. 8 – Visualisation de la spirale d’un colorant s’enroulant autour du
centre d’un vortex.

pendant un temps très long.
Pour expliquer ces résultats expérimentaux, nous avons construit une

théorie par une analyse locale de l’étirement du patch de scalaire. En pous-
sant la théorie le plus loin possible, nous avons obtenu une prédiction pour
la distribution spatiale et pour la PDF du scalaire, en excellent accord avec
les résultats expérimentaux [26]. La diffusion est accélérée par l’étirement lié
à la rotation différentielle du vortex, et il apparâıt un cusp dans la PDF du
scalaire lié à la présence d’un minimum d’étirement pour un rayon particu-
lier [27]. Il est à noter que l’hypothèse (couramment utilisée en turbulence
pour calculer des PDF) supposant que seuls les maximas locaux du scalaire
suffisent à déterminer la PDF mène à un résultat en fort désaccord avec
l’expérience et qu’il faut utiliser toute la distribution spatiale du scalaire
pour obtenir un bonne prédiction de la PDF.

5.4.2 Mélange d’un scalaire passif dans un écoulement turbulent

Cette étude numérique est la suite de l’étude expérimentale et théorique
sur le mélange d’un scalaire passif dans un vortex. Nous avions montré
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Fig. 9 – Simulation numérique d’un filament de scalaire advecté par un
écoulement de type ’Sine flow’ pour deux diffusivités différentes : D=10-7
(gauche) et D=10-10 (droite).

qu’il est possible de prédire le champ de concentration et la densité de pro-
babilité (PDF) d’un scalaire dans un vortex en faisant une analyse locale
autour du filament de scalaire. En effet, une tache de scalaire se déforme
rapidement en un filament de scalaire, qui se fait étirer par l’écoulement.
L’effet de l’étirement tend à rétrécir l’épaisseur du filament et ainsi à aug-
menter l’effet de la diffusion. La plupart des études se sont restreintes à
utiliser cette modélisation du scalaire pour des analyses théoriques dans
des écoulements modèles tels qu’un jet [41], un vortex [26] ou une turbu-
lence homogène [40]. Cependant, il est très facile d’utiliser cette modélisation
dans un écoulement quelconque, en calculant numériquement la position et
l’étirement du filament au cours du temps. Une analyse locale permet de
prédire quantitativement la diffusion du scalaire autour du filament pour
peu que l’étirement soit connu. Nous avons donc mis au point cette tech-
nique numérique et nous l’avons testée dans le cas d’un écoulement du type
“Sine flow ”. Les résultats sont présentés dans la figure ci-dessous. L’intérêt
de cette technique est qu’elle s’applique à des diffusions tendant vers 0,
puisque la méthode numérique ne diverge pas dans la limite non diffusive,
contrairement aux méthodes classiques basées sur l’intégration des équations
aux dérivées partielles sur un réseau carré. Cette méthode est extrêmement
efficace pour les faibles diffusions (grand nombre de Péclet), et elle permet
de connâıtre quantitativement l’épaisseur d’un filament et la concentration
maximale du filament même pour des faibles diffusivités. Un exemple de
résultat numérique est montré dans la figure 9. Bien que l’épaisseur du fila-
ment soit très fine, le code numérique reste stable, ce qui prouve l’efficacité
de cette technique numérique.
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De plus, en couplant cette étude aux résultats théoriques de Kalda
(2000), nous avons obtenu un modèle pour la PDF d’un scalaire dans un
écoulement turbulent 2D (dans le régime de Batchelor). Ce modèle est en
très bon accord avec les résultats numériques, bien qu’il ne contienne aucun
paramètre ajustable. Ces travaux ont donné lieu à un article en préparation.

6 Projet de recherche

Mes futures activités de recherche se situent d’une part dans la continuité
des résultats déjà obtenus. En effet, je m’intéresse toujours aux instabilités
liées à la présence de la stratification et de la précession. Et j’envisage aussi
d’analyser l’influence d’une paroi sur la dynamique d’un tourbillon. Mais je
compte aussi développer un nouveau thème de recherche, relié à la micro-
fluidique, dans lequel je m’intéresserai au sillage d’une sphère proche d’un
plan. Je détaille ci-dessous ces différents sujets de recherche.

6.1 Instabilité de Taylor-Couette dans un fluide stratifié

Il a été montré récemment que la présence d’une stratification stable du
fluide peut provoquer la déstabilisation de l’écoulement de Taylor-Couette
(obtenu entre deux cylindres tournants coaxiaux). Cette observation numé-
rique [42] et expérimentale [16] a été obtenue dans un régime où l’instabilité
centrifuge est absente et pour de faibles “gap”, c’est à dire lorsque le rayon
interne et externe sont proches. Dans cette géométrie, l’instabilité provient
d’une résonance des ondes de gravité entre les deux cylindres. Elle est donc
limitée à des bandes de nombre d’onde axiaux bien spécifiques. Cependant,
cet écoulement semble être aussi instable dans une configuration où le rayon
interne et le rayon externe sont très différents. Dans ce cas, l’instabilité
provient d’un mode rayonnant instable, identique au mode de rayonnement
d’un tourbillon Gaussien.

Expérimentalement, nous allons donc étudier l’instabilité de l’écoulement
de Taylor-Couette en présence de stratification. Dans un premier temps,
nous nous restreindrons au cas d’un rayon externe infini afin de faire le
lien avec l’instabilité d’un tourbillon libre. Dans un deuxième temps, nous
étudierons le cas d’un rapport fini entre le rayon interne et externe. Cet
écoulement dépend de quatre paramètres (nombre de Reynolds, nombre
de Froude, rapport des rayons et rapport des vitesses de rotation). Une
étude systématique risquerait donc d’être fastidieuse. De plus, l’expérience
ne permettra pas forcément d’atteindre tous les régimes instables. Ces études
expérimentales seront donc comparées à une étude numérique extensive par
analyse de stabilité linéaire.

6.2 Précession d’un ellipsoide

L’étude de l’écoulement de précession a été menée jusqu’à présent dans
un cylindre. Afin de se rapprocher de l’écoulement géophysique réel, il se-
rait intéressant de se placer dans une configuration ellipsöıdale. Diverses
questions peuvent alors apparâıtre. Quel est l’écoulement de base dans un
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ellipsöıde en précession ? Comment cet écoulement se déstabilise-t-il ? Quel
est le taux de turbulence dans l’écoulement après déstabilisation ?

Il existe une solution laminaire pour un ellipsöıde en précession [33].
Cette solution décrit correctement la vitesse du fluide dans le cas laminaire
et semble aussi bien représenter la vitesse moyenne du fluide dans le cas tur-
bulent [31]. Mais il est bien connu[21, 31] que cette solution devient instable
pour de forts taux de précession. Et on ne sait toujours pas si c’est une in-
stabilité globale [13] ou des instabilités locales [20] qui sont à l’origine de la
turbulence au sein du fluide. Il serait donc intéressant de pouvoir déterminer
la nature de la transition vers la turbulence dans un ellipsöıde en précession.
Il serait aussi intéressant de connâıtre le taux de turbulence et l’éventuelle
présence d’ondes inertielles.

Enfin, il serait intéressant de rajouter un champ magnétique dans un
tel écoulement de précession afin de voir quels sont les structures du champ
magnétique. Cela pourrait donner des indications sur le possible effet dy-
namo dans une planète en précession.

6.3 Interaction d’un vortex avec une paroi

Bien que la structure d’un tourbillon soit bien comprise pour un tour-
billon infini, les effets de bout viennent compliquer fortement l’analyse théo-
rique. En effet, un tourbillon n’est plus stable lorsqu’on considère qu’il n’est
pas d’extension axiale infinie. Un cas particulier consiste à couper le vor-
tex par une paroi perpendiculaire à l’axe du vortex. L’écoulement est alors
stable (aux faibles nombres de Reynolds) et génère une forte vitesse axiale
qui résulte du pompage d’Ekman. Des études théoriques récentes ont montré
que la structure du tourbillon peut devenir complexe lorsque le nombre de
Reynolds est augmenté. En effet, le profil radial de vitesse axiale peut de-
venir oscillant, ce qui induit des vitesses vers la paroi au centre du vortex.
Cette étude s’applique directement au cas d’un tornade qui est en générale
attachée au sol.

Expérimentalement, nous nous proposons de générer un vortex en met-
tant en rotation une pale qui glisse le long du fond. Ceci crée un tourbillon
qui descend jusqu’au fond, ce qui génère une forte vitesse axiale au coeur
du tourbillon. Il serait donc intéressant de savoir si cette vitesse axiale est
en accord avec les théories existantes et si on peut retrouver l’inversion de
vitesse axiale pour de grands nombres de Reynolds.

6.4 Sillage d’une sphère le long d’une paroi

Lorsqu’une sphère glisse le long d’un plan, il existe un point de cisaille-
ment infini entre la sphère et le plan. Cette singularité peut être résolue
par des méthodes asymptotiques qui prédisent que la pression diverge en ce
point lorsque la distance entre la sphère et le plan tend vers 0. Bien qu’il
existe quelques théories contradictoires sur ce problème [32, 11], il existe peu
d’expérience qui valide ces théories. Il apparâıt donc intéressant de traiter
ce problème de manière expérimentale.

Nous nous proposons donc d’étudier l’écoulement au voisinage du point
de glissement pour une sphère en translation le long d’un plan. Ce problème
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est intéressant pour de petites tailles de particules, pour lesquels l’écou-
lement reste laminaire. Nous nous restreindrons donc au cas des faibles
nombres de Reynolds. Pour obtenir des nombres de Reynolds suffisamment
faibles, nous utiliserons un fluide visqueux tel que la glycérine ou une huile
silicone. Ceci permettra ainsi de faire de la micro-fluidique à taille humaine.

Ce projet fait partie d’un projet de subvention par l’ANR dirigé par Ber-
nard Pouliny du CRPP à Bordeaux. Le but de ce projet est d’étudier l’effer-
vescence dans les fluides saturés en gaz dissous en présence de cisaillement.
Le dispositif d’une sphère glissant le long d’un plan permettrait de créer
des petites échelles dans l’écoulement et de créer ainsi de forts gradients de
vitesse, donc de fortes pressions, responsables de l’effervescence. C’est dans
ce cadre que nous nous proposons de monter cette nouvelle expérience au
laboratoire.
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In this paper we compare the wakes of various bluff bodies in a stratified fluid at moderately high
Froude numbers (F[2UB /ND.8) and Reynolds numbers~Re'5000!. The size and amplitude of
the long-lasting wakes clearly depend on the shape of the bluff body, the wake width being small for
a streamlined object and large for an object with sharp edges. However, the wake width can be
collapsed when it is normalized by an effective diameter based on the drag force, often called the
momentum thickness. General laws for the wake width, the velocity defect, and the Strouhal number
are thus deduced and fit the data well. Finally, the cross-fluctuations of the velocity and the turbulent
kinetic energy are analyzed. Their amplitudes and widths are proportional to those of the mean
profile. Thus, the wake remembers only the momentum flux given by the bluff body to the fluid and
not any other aspects of its geometry. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1630053#
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I. INTRODUCTION

Interest in stratified flows comes primarily from ge
physical applications, due to the stratification of atmosph
and oceans. One focus concerns the effect of a stable s
fication on homogeneous turbulence,1–3 while another con-
centrates on the evolution of wakes in stratified flows,4,5 es-
pecially for spheres.6–8All these results were obtained in th
presence of a strong stratification, i.e., for small Froude nu
bers. For the wake flows, the Froude number is defined
F[2UB /ND, whereD is the diameter of the body,UB the
towing velocity, andN5(g/r)1/2(]r/]z)1/2 the buoyancy~or
Brunt–Väisälä! frequency. For high Froude numbers, the
fect of the stratification is negligible at early stages. Ho
ever, since in wakes and in decaying turbulence the velo
decreases with time, the local Froude number will eventu
approach 1 and the buoyancy effects can no longer be
glected. A global mechanism for weakly stratified wakes w
proposed9 for spheres at high Reynolds numbers~Re.4000!
and can be decomposed into three stages.

In the first stage, the wake possess high velocities
creates a three-dimensional~3-D! flow, equivalent to that of a
nonstratified fluid.10–12 The velocity follows a power law in
time scaling with a decay exponent22/3 and the duration
(NDt'2) of this stage is fairly independent of the type
wake, in agreement with the general results of stratifi
turbulence.3 In units of downstream distance, the duration
this stage increases withF (Dx/D'F) and the second stag
will never occur for infinite Froude numbers, leaving th
wake in a three-dimensional state as in the case of nons
fied fluids.

The second stage starts as soon as the buoyancy ca
be neglected, which removes vertical velocities. The fl

a!Present address: Institut de Recherche sur les Phe´nomènes Hors E´quilibre,
49 rue F. Joliot-Curie, B.P. 146, F-13384 Marseille Cedex 13, France
2981070-6631/2004/16(2)/298/8/$22.00
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becomes more laminar and organizes into flat horizontal v
tices. The fluctuations of density, created by the first sta
collapse since they are no longer maintained by vertical
locity fluctuations and potential energy is transformed ba
into kinetic energy. This mechanism limits the decay of t
velocity defect, whose exponent has been determined exp
mentally to be close to20.25. This stage is a nonequilibrium
phase~NEQ!, where the flow transitions from the initial 3-D
regime to a last stage.

In the third stage, the wake begins to diffuse in the v
tical direction again,13 perhaps due to some kind of Ekma
pumping. This enhances the decay of the velocity def
although the wake is still very coherent. The decay expon
was found to be close to the 3-D case~22/3! and not to the
2-D case~21/2!, although the flow is very close to two
dimensional. This regime is thus named quasi-tw
dimensional~Q2-D!.

The presence of the second stage slows the decay o
velocity defect and the stratified flows are thus known
preserve the wake for longer times than in the absence
stratification. In nonstratified flows, Bevilaqua an
Lykoudis10 have shown that there can be a memory of
initial conditions in turbulent bluff body wakes, i.e., that th
structure of the flow depends on the shape of the bluff bo
The objective of this paper is to examine the effect of bo
geometry on the intermediate and late wake structure.
goal is both to determine the possibility of a long-ter
memory in the stratified wake, and to determine one spec
set of rescaling parameters if such parameters are found

II. EXPERIMENT AND ANALYSIS

The experiment has been described in detail in previ
papers,8,9 and only the main features of the apparatus, and
the data acquisition and treatment are outlined here.
© 2004 American Institute of Physics
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A. Experimental setup

The tank of dimensions 3803244 cm2 is filled up to a
height of 20 cm with stably stratified salted water, who
linear density gradient creates a buoyancy frequencyN
5(2g/r0)1/2(]r/]z)1/2'2 s21. A bluff body is towed at
mid-height of the tank between three guide cables, us
three thin towing cables under a strong tension. This se
prevents any oscillation of the body and the disturban
from the wire wakes are negligible. The bluff body is tow
at a velocityUB along thex axis, while thez axis is aligned
with the vertical, as shown in Fig. 1. To investigate the
fluence of the shape of the body, several objects are use
sphere for comparison with previous results, two slender
jects such as a 6:1 cylinder and a 6:1 prolate spheroid, a

FIG. 1. Schematic of a cube~a!, a 6:1 cylinder~b!, a 6:1 prolate spheroid
~c!, a sphere~d!, a hemisphere~e!, and a disk~f! towed at a velocityUB in
a stably stratified fluid.
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perpendicular to the towing direction, a hemisphere wh
flat face is turned backward and a cube with edges paralle
the axis~see Fig. 1!. The diameterD of the bluff bodies~D
being the size of the edges for the cube! was equal to 1.3 or
2.5 cm. These three quantities lead to two nondimensio
parameters: the Froude numberF[2UB /ND was equal to 8
or 32 and the Reynolds number Re[UBD/n ~n is the kine-
matic viscosity! was always close to 5000. In this paper w
focus on the shape of the bluff body, which can be char
terized by a third parameterA,14 or by measuring its drag
coefficient in a nonstratified fluid.

B. Definition of the flow characteristics

The evolution of the wake is analyzed by customiz
particle image velocimetry measurements, by introduc
small reflecting particles with the density of the midd
isopycnal. Digital images are analyzed by the correlation
age velocimetry algorithm15 to estimate instantaneous hor
zontal velocity fields (u,v) with dimensions 79356 cm2.
The vertical component of the vorticityvz5]v/]x2]u/]y
is shown in Fig. 2 for the prolate spheroid as a function
time. The vorticity fields are qualitatively similar for othe
objects~the case of the sphere being extensively shown8,9!
and reveal the presence of coherent alternate vortices, w
size increases due to merging. Such a behavior has b
already revealed by dye visualizations for various bl
bodies4 and for a moving momentum source.16

Mean profiles are analyzed in Sec. III A. Second, t
longitudinal distancelx between two vortices of the sam
sign defines a Strouhal number (St5D/lx), which is com-
pared to an extensive previous analysis on spheres.17 The
fluctuations of the velocity (u8,v8) are analyzed in Sec. IV
y
it.
FIG. 2. ~Color! The time series of the vertical vorticity distribution,vz(x,y,Nt) for the slender spheroid.F532, Re55.83103, and the time steps are equall
spaced fromNt55 ~top left! to Nt5300 ~bottom right!. The observation area has dimensions 61343 D and the spheroid passed from right to left through
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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In this towed configuration, mean quantities are obtained
averages over the streamwise direction and are plotted
function of timeNt or as a function of the downstream di
tancex/D ~they two are simply linked byx/D5Nt F/2).

III. A LOSS OF MEMORY?

Although the wakes are qualitatively similar, some qua
titative differences have been observed and we will exp
in this section how to collapse the results obtained on th
various objects.

A. Mean profiles

Mean profiles of the streamwise velocity have been m
sured as a function of the downstream distance for each b
body. They are shown in Fig. 3 for the slender spheroid
for the cylinder. The profiles are very close to Gaussian o
a large band of downstream distances, in agreement with
theory of self preserving three-dimensional wakes.18 They
can be fitted by a Gaussian function,

U~y!5^u&x~y!5U0e2y2/2Ls
2
, ~1!

characterized by amplitudeU0 and wake half-widthLs .
The wake widthLs is plotted in Fig. 4~a! as a function

of downstream distance for the various objects.
For the sphere, the growth has an exponent of10.35 and

is in very good agreement with the previous results9 ~solid

FIG. 3. Mean profiles of the streamwise velocity behind~a! the slender
spheroid and~b! the cylinder. The averages are calculated on the global fi
of view for a downstream distancex/D5170 ~j!, x/D51000 ~s!, and
x/D55000 ~3!. F532 and Re'5000. The solid lines correspond to th
nondimensionalized Gaussian profile defined by Eq.~1!.
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line!, also shown to be close to the nonstratified case.
magnitude of the wake width seems to be sensitive to
shape of the bluff body. For a streamlined object like t
slender spheroid, the wake width is 30% smaller, but
growth rate is similar. On the contrary, for objects with sha
edges~open symbols in Fig. 4!, the wake is slightly larger
~up to 20%! while the growth rate is again very similar.

The same analysis can be performed for the amplit
U0 of the mean profile, shown in Fig. 4~b!. Spedding9 has
shown that the amplitude should be plotted as a function
time Nt to collapse all the results at different Froude nu
bers in the NEQ regime. Figure 4~b! shows that the results
collapse for different Froude numbers in these coordina
and that they are in very good agreement with the result
Ref. 9. The velocity is much higher than in the absence
stratification due to the low decay in the NEQ regime. Fo
streamlined object such as the spheroid, the amplitude of
mean profile is smaller. The presence of sharp edges on
bluff body increases the amplitude. As for the wake wid
the growth/decay rates appear to be independent of the s
of the bluff body.

The results indicate that the growth mechanism of
wake might be identical for all bluff bodies and that th

d

FIG. 4. Temporal evolution of the wake widthLs ~a! and of the velocity
defectU0 ~b!, defined by Eq.~1!. The objects are a sphere~d!, a slender
spheroid~* !, a cylinder~n!, a disc~L!, a cube~h!, and a hemisphere~s!.
Small symbols correspond toF58 and large symbols toF532. Re'5000.
The solid line corresponds to the case of a sphere~Ref. 9! and the dotted line
to a nonstratified sphere wake~Ref. 10!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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shape of the bluff body only changes the scaling of the fl
We thus seek to explain these differences by finding ano
length scale, which takes into account the shapes of the
jects.

B. Toward universality

It seems intuitive that a streamlined object should hav
narrower and slower wake than the sphere, since less flu
entrained behind it. On the other hand, the presence of s
edges modifies the vortex shedding and might create big
vortices, leading to a thicker and more energetic wake.
appropriate length scale of the problem seems to be linke
the section of entrained fluid. The wakes of complex obje
are not very well known in the literature and we would lik
to use a better defined quantity. Such a length scale ha
ready been used theoretically by Tennekes and Lumle18

who showed that the momentum of the entrained fluid
unit time is exactly equal to the drag force on the object
the entrained fluid has a section of diameterDeff , also called
the momentum thickness, inside which the velocity isUB

and zero outside, then the drag force is

Fdrag5r0

pDeff
2

4
UB

2. ~2!

This definition of an effective diameterDeff is very con-
venient since the drag force has been extensively studie
the literature.19 It is thus easy to calculate the effective diam
eter for various shapes of bluff bodies, as shown in Tabl
where the results of Blevins19 are used. It can be noted th
for axisymmetric bluff bodies the drag coefficientcD is de-
fined by

Fdrag5
1

2
cDr0

pD2

4
UB

2, ~3!

leading to a simplified definition of the effective diamete
Deff5DAcD/2. Figure 5~a! shows the wake width normalize
by the effective diameter as a function of the downstre
distance~similarly normalized!. A reasonable collapse of th
results is obtained@cf. Fig. 4~a!#, indicating that the effective
diameter is a more relevant length scale than the phys
diameter of the bluff body. Moreover, the results for the a
plitude U0 also collapse when the Froude number is defin
using the effective diameter (Feff52UB /NDeff). It can be
noted that the same collapse occurs when plottingU0 /UB as
a function of x/Deff , since the two representations a
equivalent in the Q2-D stage~but not in the NEQ regime!.

The wake geometry depends only on the amount of
trained fluid and not on the real shape of the bluff body. T

TABLE I. Values of the effective diameterDeff for various bluff bodies
defined by Eq.~2! using the drag force. The values for the drag force
taken from Blevins~Ref. 19!.

Bluff body Spheroid Sphere Hemisphere Cylinder Disk Cu

Deff /D 0.30 0.45 0.46 0.65 0.74 0.82
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same conclusion was recently obtained by Voropayev
Smirnov16 in the case of a towed jet, by introducing the sam
length scale as in~2!.

The collapse of the results allows a prediction of t
wake width and amplitude for any bluff body, based only
its drag coefficient in a nonstratified fluid. Universal laws a
found empirically to be

Ls /Deff50.35~x/Deff!
0.35, ~4!

U0 /UBFeff
2/356.6~Nt!20.76. ~5!

The results collapse very well in these experiments si
the bluff bodies were moderately modified. When the nat
of the forcing from the body to the fluid is rather differen
e.g., when a large force doublet or force quadruplet is add
the results might be affected more strongly. However, Vo
payev et al.20 studied a maneuvering self-propelled bod
and found that even if the momentum is small compared
the force doublet, the final stage of the flow is mainly det
mined by the momentum, consistent with the differing dec
rates derived theoretically for a laminar21 or turbulent18 non-
stratified wake. Consequently, the relationships~4! and ~5!
might be quite general.

C. Strouhal number

The Strouhal number has been shown to decay w
downstream distance due to merging of like-signed vortice17

with constant exponent21/3. This is the inverse of the

FIG. 5. Temporal evolution of the wake widthLs ~a! and of the velocity
defectU0 ~b!, defined by Eq.~1!. Quantities are normalized using the effe
tive diameterDeff defined in Eq.~2! using the drag force. Symbols are as
Fig. 4. The solid line corresponds to the case of a sphere~Ref. 9! and the
dotted line to a nonstratified sphere wake~Ref. 10!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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growth rate ofLs , and can be explained by the fact that
the wake structure is self-preserved,lx is proportional to
Ls . Consequently, the Strouhal number should be larger
a streamlined object than for the sphere and slightly sma
for objects with sharp edges. This is clearly shown in F
6~a! for the two different Froude numbers. Moreover, t
results collapse very well when the Strouhal number is
fined by the effective diameter (Steff5Deff /l) instead of the
diameter of the bluff body. Hence,

Steff50.65~x/Deff!
20.34. ~6!

The results show that the global properties of the wa
depend only on the amount of entrained fluid, which can
linked to the drag force. They are quite insensitive to the r
shape of the bluff body and collapse very well using an
fective diameter defined by~2! instead of the body’s diam
eter. However, Bevilaqua and Lykoudis10 have shown in a
nonstratified wake that some memory could remain in
turbulent structure of the flow, even though the mean qu
tities follow the same evolution. The fluctuating quantiti
are examined in the next section.

IV. TURBULENT STRUCTURE OF THE WAKE

In three-dimensional turbulent wakes, Tennekes a
Lumley18 showed that the production of turbulence is due
the mean shear and can thus be modeled by an eddy vis
ity, which should be independent of the bluff body. Howev

FIG. 6. The Strouhal number obtained by the mean streamwise dist
between vortices. Quantities are normalized using~a! the real diameterD
and~b! the effective diameterDeff for a sphere~d!, a slender spheroid~* !,
a cylinder~n!, a disk~L!, a cube~h!, and a hemisphere~s!. Small sym-
bols correspond toF58 and large symbols toF532. Re'5000. The solid
line corresponds to the case of a sphere~Ref. 17! and the dotted line to a
nonstratified sphere wake at early stages~Ref. 26!.
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Bevilaqua and Lykoudis10 showed that the amount of turbu
lence was three times smaller in the wake of a porous d
than in the wake of a sphere~of equal drag!, at least for early
stages (x/D,110). Their explanation was that the size
the turbulent eddies is smaller in the case of a porous d
which would create a lower eddy viscosity.

In the theory of 3-D turbulence, the hypothesis of a co
stant eddy viscositynT requires the cross-velocity fluctua
tions ^u8v8& to be proportional to the mean shear:

^u8v8&5nT

]U

]y
. ~7!

The cross-fluctuation profile should thus be well fitted by t
derivative of a Gaussian function:

^u8v8&x~y!52u08
2 y

Ls8
e2y2/2Ls8

2
, ~8!

characterized by an amplitudeu08 and a widthLs8 . If Ls8 is
close to the mean wake widthLs the amplitudeu08 defines a
turbulent Reynolds number:

RT5
U0Ls

nT
5

U0
2

u08
2

. ~9!

Figure 7 shows the cross-fluctuation profile for the c
inder and for the spheroid at three downstream distan
They are very well fitted by the function defined in Eq.~8!
and Fig. 8~a! shows that the width of the fluctuationsLs8 is

ce
FIG. 7. Streamwise-averaged profile of the Reynolds stressu8v8 for the
slender spheroid~a! and the cylinder~b! at three downstream distance
x/D5170 ~j!, x/D51000~s!, andx/D55000~3!. F532 and Re'5000.
Solid lines correspond to the theoretical prediction~8! found in self-
preserving wakes.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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very close to the mean wake widthLs . This implies that the
hypothesis of a constant eddy viscosity is valid not only
early stages, where the flow is close to two-dimensional,
also at late stages, where the structure of the flow is Q2

To see if the eddy viscosity depends on the shape of
bluff body, Fig. 8~b! shows the turbulent Reynolds numb
for various objects. At early stages,RT is three times higher
for the cylinder and for the spheroid. This could be beca
the 3-D flows remember the shape of the bluff body, bu
could also be because the flow is not yet at equilibrium, si
this behavior is observed during the NEQ regime. Indeed
late stages, all the results collapse to a constant value o
turbulent Reynolds number:

RT'1565. ~10!

This value is in good agreement with the valueRT'20 that
can be deduced from the results of Spedding22 and it is close
to the values found for 3-D turbulent wakes, whereRT

ranges from 5 to 30,10 even though the physical mechanis
might be slightly different. The memory of the initial shap
of the bluff body is lost in the turbulent fluctuations, just as
was for the mean quantities.

A complete description of the fluctuating quantities mu
include the turbulent kinetic energy, which should be mai
contained in the horizontal components since, at late tim
(Nt*50), the vertical velocity is very small.17 The horizon-
tal turbulent kinetic energy can therefore be fit by a funct
characterized by an amplitudeu09 and a widthLs9 :

FIG. 8. Characteristics of the profile of the Reynolds stressu8v8 defined by
Eq. ~8!. ~a! Half-width Ls8 nondimensionalized by the wake widthLs of the
mean profile.~b! Turbulent Reynolds numberRT5U0

2/u08
2. The objects are

a sphere~d!, a slender spheroid~* !, a cylinder~n!, a disk~L!, a cube~h!,
and a hemisphere~s!. Small symbols correspond toF58 and large sym-
bols toF532. Re'5000.
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~^u821v82&x!
1/2~y!5u09S 11

y2

Ls8
2D e2y2/2Ls9

2
. ~11!

Such a fitting function has been introduced by Dommerm
et al.,23 to describe the results of Bevilaqua and Lykoudis10

in the nonstratified sphere wake. The experimental profi
are shown in Fig. 9. The noise in the measurements is v
high, and the profiles do not always present a double pe
However, the width of the fluctuating profileLs9 is in good
agreement with the widthLs of the mean profile, as show
in Fig. 10~a!. The amplitudeu09 of the kinetic energy is
shown in Fig. 10~b!. As for the cross-fluctuations, the ampl
tude is slightly smaller for the cylinder and the spheroid
early stages, but at late stages, the amplitude of all bluff b
data collapse onto

u09/U0'0.2560.05. ~12!

This value is in good agreement with values that can
derived from previous experimental (u09/U0'0.25) and nu-
merical (u09/U0'0.4) results on the sphere.22,23 Moreover, it
is very close to the value found for the nonstratified wake
a porous disk (u09/U0'0.24)10 but smaller than for the cas
of a nonstratified sphere wake (u09/U0'0.6).10 However,
this last result was obtained at relatively small downstre
distances, where the equilibrium might not be settled yet

FIG. 9. Streamwise-averaged profile of the turbulent kinetic energy for
slender spheroid~a! and the cylinder~b! at three downstream distance
x/D5170 ~j!, x/D51000~s!, andx/D55000~3!. F532 and Re'5000.
Solid lines correspond to the fitting function of Eq.~11!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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V. DISCUSSION

Even though measurable differences have been obse
in the wakes of different bluff bodies, the mean and fluc
ating quantities can be easily collapsed using an effec
diameter based on the drag coefficient. The wake does
remember the exact shape of the bluff body: it is only sen
tive to the amount of fluid entrained behind the object. T
idea suggests that the structure of the wake might be equ
lent among objects and that its characteristics could be
rived from this structure.

One may attempt to deduce the results of the previ
sections from a simple 2-D model of the flow. Th
wake is imagined to be a row of alternate vortices
circulation G, with a Gaussian profile of vorticity
@v5G/pa2 exp(2r2/a2)# of core sizea. Such a flow model
and its stability has been studied in detail in the case of p
vortices24 and in the case of vortex patches,25 but not in the
case of Gaussian vortices. If the vortices are separated blx

in the x direction and by 2b in the y direction, using the
periodicity of the flow, it can be shown that the mean profi
is

U~y!5
G

2b FerfS y1b

a D2erfS y2b

a D G . ~13!

This profile is close to a Gaussian fora/b close to 1 as is the
case in the experiment, sincea andb are of the order of the
vortex sizes. The result, obtained by a two-dimensio

FIG. 10. Characteristics of the kinetic energy profile defined by Eq.~11!. ~a!
Half-width Ls9 nondimensionalized by the wake widthLs of the mean pro-
file. ~b! Amplitude u09 nondimensionalized by the velocity defectU0 . The
objects are a sphere~d!, a slender spheroid~* !, a cylinder~n!, a disk~L!,
a cube~h!, and a hemisphere~s!. Small symbols correspond toF58 and
large symbols toF532. Re'5000.
Downloaded 26 Jan 2004 to 147.94.56.208. Redistribution subject to A
ed
-
e
ot
i-
s
a-
e-

s

f

nt

l

model, is thus in good agreement with the global proper
of the flow, although the flow is not two dimensional. Th
model does not predict the time evolution of wake width a
velocity defect, which might be achieved by calculating t
crossed fluctuations. However, a rough calculation sho
that the crossed fluctuations vanish if the flow is exac
periodic. The model of the flow is therefore too simple
explain the velocity fluctuations and either some noise in
velocity field, or some aperiodicity of the flow should b
taken into account.
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Stratified propelled wakes
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This paper presents experimental results on the wake of a propelled bluff body
towed at a constant horizontal speed in a linearly stratified fluid. Three regimes of the
wake have been found, depending on the angle of attack and on the ratio of drag force
to propeller thrust. Most of the experiments were obtained in a first regime where
a strong momentum flux is created in the wake, which can be oriented backward
or forward depending on the ratio of drag force to thrust of the propeller. The
velocity amplitude, wake width and Strouhal number of the wake can be predicted by
defining a momentum thickness based on the drag coefficient of the bluff body and
the thrust of the propeller. A second regime is obtained for a narrow band of towing
velocities, with a relative width of 4%, in which the momentum flux is found to
vanish. The wake is characterized by the velocity fluctuations; the scaling exponents
of the velocity, vorticity and width of the wake are measured. A third regime is
obtained for wakes with a small angle of attack, with a null momentum flux. The
mean profile of the wake is found to be asymmetric and its amplitude and wake width
are measured. Finally, the relevance of these results to the case of a real self-propelled
bluff body is discussed. The presence of weak internal waves or of weak fluctuations
of background velocity would lead to a wake in the regime with momentum flux, and
would allow prediction of the amplitude, width and Strouhal number of the wake.

1. Introduction
1.1. Towed-body wakes

Over a range of intermediate scales (1–100 m in the ocean, 100–1000 m in the
atmosphere) geophysical flows are strongly influenced by the background density
gradient, giving rise to numerous complex and interesting flow phenomena and
numerous problems for large-scale modelling efforts for which these complex processes
must appear as single coefficients modelling subgrid-scale processes. One of the
canonical problems receiving much attention has been the decay of initially turbulent
motions in a stably stratified environment. The review articles by Lin & Pao (1979) and
Riley & Lelong (2000) indicate the range of theoretical, numerical and experimental
approaches and progress over the years.

One such general problem involving decaying stratified turbulence is the bluff-
body wake at moderate and high Reynolds number, which also has certain practical
applications. The wakes of towed spheres are characterized by the persistence of large
coherent structures, even at high internal Froude number when such order might
not be expected to emerge and/or survive to late times (Lin & Pao 1979; Chomaz,

† Current address: Institut de Recherche sur les Phénomènes Hors Équilibre, UMR 6594
CNRS/Universités Aix-Marseille, 49 rue F. Joliot-Curie, F-13384 Marseille Cedex 13, France.
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Bonneton & Hopfinger 1993; Spedding, Browand & Fincham 1996; Spedding 1997).
Stratified fluids support internal wave motions and the waves emitted by both body
and wake have been studied in experiment and theory (Gilreath & Brandt 1985;
Bonneton, Chomaz & Hopfinger 1993; Spedding et al. 2000; Voisin 1991). Since
the coherent wake structures organize in a very ordered fashion (resembling a von
Kármán street), the pattern of wave packets emitted by them reflects that order.
Indeed if one characteristic were to be specified as diagnostic it is likely to be
the coherent structures themselves, and Spedding (2002) proposed that the spacing
and lengthscales of these structures, which could be rescaled over all experimentally
accessible Reynolds and Froude numbers, could be viewed this way. Voropayev &
Smirnov (2003) argued similarly based on experiments on low-Reynolds-number jets
in stratified fluids, deriving the same scaling law based on the momentum flux from
the jet source.

1.2. Computations and generalization

If all towed-sphere wakes are similar in mean and turbulent length and velocity
scales, and if the same scaling laws could be derived for objects that were not spheres
(essentially point momentum sources), then it seems plausible that the observed
characteristics are quite general and applicable to many cases of decaying flows in a
stratified fluid (Spedding 1997). It is reasonable to enquire whether the body geometry
has any influence at all in the far wake, and Meunier & Spedding (2004) showed
that all late wakes with a momentum defect can be rescaled by the momentum
flux, regardless of body geometry, for bluff, streamlined and sharp-edged bodies. As
a practical matter, the appropriate scaling can be looked up from published drag
coefficients for the different body shapes in non-stratifed flows.

The unimportance of initial conditions can also be inferred from the successful
simulation of the stratified wake by DNS (Gourlay et al. 2001) and LES computations
(Dommermuth et al. 2002; Diamessis, Domaradzki & Hesthaven 2005) where there
is no body, only a mean profile with turbulence superimposed upon it as a starting
condition for the flow. The simulations clearly show the emergence of the large-scale
(in the horizontal) coherent structures from the initially turbulent initial condition. In
the absence of the background density gradient, the same simulation conditions show
no emergent coherence.

1.3. Momentumless wakes

It seems then that all drag wakes can be treated similarly. However, another class
of application concerns the motion and disturbance field of underwater vehicles of
various types, and in this case, since they are self-propelled, the drag is balanced by
a local thrust, and the wake has no net momentum. The towed-sphere wake, where
turbulence production is due to the mean shear, might after all be a special case, not
only for naval applications, but also in geophysical flows, where different turbulence
production mechanisms may also have, at least on average, zero net momentum.

Indeed, if one searches analytically for similarity solutions, as in Tennekes & Lumley
(1972), Finson (1975) and Hassid (1980), then one finds scaling exponents for growth
of lengthscales and decay of mean and turbulence quantities that differ significantly
from the drag wake case. Using only the simplest eddy viscosity approximation,
for example, Tennekes & Lumley (1972) find that while axisymmetric wakes with
momentum show mean centreline velocities, UW ∼ x−2/3, and wake thickness, lW ∼ x1/3,
the solutions for the momentumless case are UW ∼ x−4/5, and lW ∼ x1/5. Finson (1975)
notes how the self-propelled wake represents a singular situation, requiring closure
approximations in higher-order turbulence quantities. Since production is no longer
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driven by a mean shear, it decays rapidly and does not balance the dissipation.
Consequently the far wake never becomes independent of initial conditions.

It may not be unrelated that the literature on experimental results is characterized
by some degree of scatter (Schooley & Stewart 1962; Naudascher 1965; Swanson,
Schetz & Jakubowski 1974; Chieng, Jakubowski & Schetz 1974; Lin & Pao 1974;
Schetz & Jakubowski 1975; Lin & Pao 1979; Higuchi & Kubota 1990; Sirviente
& Patel 1999, 2000a , b, 2001) as a wide variety of geometries and mechanisms for
production of the momentumless condition have been used. Higuchi & Kubota (1990)
in particular noted that the matched case of exact zero-momentum was different in
both mean and turbulence decay rates (they were significantly higher) and that a
sensitivity to initial conditions (degree of wall roughness) could be detected down to
x/D � 40–100.

With the exception of Schooley & Stewart (1962), Lin & Pao (1974) and Lin &
Pao (1979), none of the momentumless wakes have been in stratified conditions and
none have been studied at truly late times. The stratified sphere data of Spedding
et al. (1996), for example, extends to equivalent x/D � 4000. For most other studies,
x/D � 40–100. In stratified fluids, evolution times are expressed in units of buoyancy
frequency, N , and the data of Lin & Pao (1979) extend to Nt � 60, compared with
Nt � 3000 in Spedding et al. (1996). Focusing on the late-wake behaviour is not
simply an experimental expedient; it also avoids some of the confusion that results
when different wakes have different relaxation times to their asymptotic state, which
may only be observable very far downstream, as noted by Johansson, George &
Gourlay (2003).

Asymptotic theories for far wakes in both momentum and zero-momentum cases
have been given by Smirnov & Voropayev (2003) and Afanasyev (2004) but make no
statement on the appropriate form of the initial condition (in this case the distribution
of localized force doublets) and contain no notion of turbulence modelling. However,
such numerical modelling has been done recently by Chernykh, Demenkov &
Kostomakha (2001) and Chernykh, Ilyushin & Voropayeva (2003).

1.4. Objectives

There is, therefore, considerable uncertainty concerning the extension of previous
results from stratified, towed-body wakes to practical applications. Based on available
theoretical and experimental work, one would not expect similar scaling laws to apply
to either mean or turbulence quantities in the momentumless wake, and one might
also not expect the same insensitivity to details of the initial conditions. Currently,
there are no quantitative measurements to check these ideas for late wakes in stratified
flows. The objective of this paper is to measure wakes at, or close to, the self-propelled
point, under the same conditions as for the existing towed-body experiments. The
parameters varied will allow systematic investigation of the effect of the strength of
the background density gradient, the degree of thrust/under-thrust from the propeller,
and the shape of the solid body. The results will be compared for consistency, or
lack thereof, with the existing literature, and the relevance of such results to practical
flows will be re-examined.

2. Experiment and data analysis
2.1. Experimental devices

The materials and methods are similar to those described in detail in Spedding et al.
(1996). A bluff body with diameter D ≈ 3 cm is towed at a velocity UB along the
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Figure 1. Experimental set-up.

x-direction, in a water tank with horizontal dimensions 380×244 cm2. The bluff body
is maintained by three thin wires (d = 250 µm) under strong tension T , as shown on
figure 1. These tow wires slide along three guide cables with a minimum of vibration,
up to a tow speed of 1 m s−1. The disturbances created by the wakes of the tow wires
themselves (where Re < 250) are negligible in amplitude compared with the wake
of the bluff body. Furthermore, the obliquely mounted wires do not intersect the
measurement plane, which is at mid-body height in all experiments reported here.

The bluff body has a small propeller made of two flat plates with diameter close to
1 cm, which are fixed to a rotating axis with an angle of roughly 30◦ to the tow axis.
When the propeller rotates, some momentum is expelled backwards, which creates a
thrust on the bluff body. However, this does not change the velocity of the bluff body
which is fixed through the towing wires. The propeller axis is rotated by a motor
located inside the body, whose power comes from an external DC current generator.
The current is stopped when the body reaches the end of the tank, to prevent a strong
jet created by the propeller from impinging back upon the flow.

Two different bluff bodies have been studied, so the influence of the shape of
the object can be determined. The first is a cylinder with diameter D = 3.35 cm and
length of 15.6 cm. The sharp edges and the non-profiled shape create a very turbulent
wake. The second object is a prolate spheroid with diameter D = 2.54 cm and length
of 15.2 cm. The streamlined object creates a very weakly turbulent wake, and the
comparison between these two different body types – streamlined and sharp-edged –
can represent a range of possible initial conditions. The boundary layer remained
laminar since it was not tripped.

The tank is filled with stably stratified salt water, whose linear density gradient
creates a buoyancy frequency N = (−g/ρ0)

1/2(∂ρ/∂z)1/2 ≈ 2 rad s−1. The water depth,
H = 26 cm, is large compared to the diameter of the bluff bodies D ≈ 3 cm, and will be
considered infinite for the centreplane measurements described. Systematic variation
of D/H in Spedding (1997) showed no dependence for such values.

The flow is analysed by measuring horizontal two-dimensional instantaneous
velocity fields using particle image velocimetry. For flow seeding, small polystyrene
beads with a mean diameter 600–800 µm are carefully sorted in an auxiliary tank to
select a density of ρpart. = 1.0510 ± 0.0008. When introduced in the stratified fluid,
the particles settle at the specific height where the fluid has the same density ρpart.,
marking an isopycnal with a thickness �z ≈ 3 mm. The height of the isopycnal can
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be modified, by adding or removing small amounts of heavy fluid at the bottom of
the tank, so that it is located precisely at the mid-height centreplane of the bluff
body. The particles are illuminated by four 1 kW floodlights and their positions are
recorded on a Pulnix TM9701 CCD camera positioned above the tank, over a field
of view with dimensions 79 × 56 cm2. The digital images are treated by a variant of
the customized Correlation Image Velocimetry (CIV) algorithm described in detail
in Fincham & Spedding (1997). At each grid point, the cross-correlation peak is
estimated by a least-squares fit of a function constructed from an average of the
two spline-interpolated autocorrelation functions from each image correlation box.
The most serious contribution to peak-locking error is thus removed. The resulting
velocity fields correspond, at late stages, to the horizontal velocities (u, v) at the mid-
plane of the bluff body, since the vertical displacements vanish at late stages. The un-
certainties in the individual velocity measurements are of the order of 1%. The vertical
component of the vorticity ωz = ∂v/∂x − ∂u/∂y is calculated by a smoothing spline
interpolation of the velocity field with an uncertainty of less than 10%.

2.2. Parameters of the flow

Using the tow speed, UB , the diameter, D, of the bluff body, the kinematic viscosity of
the fluid ν =1.02 × 10−6 m2 s−1 and the buoyancy frequency N , two non-dimensional
parameters can be defined. The Reynolds number Re ≡ UBD/ν is varied between
5000 and 33 000. It was shown in Spedding et al. (1996) and Spedding (1997) that the
Reynolds number over this range has only a weak influence on late-time stratified
wakes and its independence has not been studied in further detail here. More attention
has been paid to the effect of the Froude number defined by F ≡ 2UB/ND, where N

is the buoyancy frequency. The Froude number is varied between 6 and 40, and for a
set of experiments with fixed N , it is proportional to the Reynolds number, since D

is not modified.
Meunier & Spedding (2004) demonstrated that for different shapes of bluff bodies,

all the characteristics of the wake rescale when using an effective diameter (introduced
as the momentum thickness by Tennekes & Lumley 1972, chapter 4) based on the
drag coefficient:

Deff = D
√

cD/2. (2.1)

In this formula, cD is the drag coefficient for an axisymmetric bluff body, based on
the surface area πD2/4 of the object in a plane normal to its axis. In this paper, Deff

is used to rescale the characteristics of the wakes with non-zero momentum. Since
Deff is the only relevant lengthscale in the late stages of the momentum wakes, an
effective Froude number can be defined as Feff = 2UB/NDeff .

The effective diameters of the bluff bodies were calculated from published
measurements of the drag coefficient (Blevins 1984) in a non-stratified fluid. For
the self-propelled cylinder, the drag coefficient of the cylinder alone is equal to
0.85, leading to an effective diameter Deff = 0.65D. The drag of the propeller is
neglected, since it does not significantly alter the drag coefficient. The drag coefficient
of a spheroid with aspect ratio 1:6 is equal to 0.176, for an effective diameter
Deff = 0.3D. The drag of the propeller has again been neglected, which is a reasonable
assumption when the propeller is rotating, i.e. when the towing velocity is close to
the momentumless velocity. However, when the propeller is not rotating, it creates an
additional drag which tends to increase Deff . This willl be discussed in more detail in
§ 4.
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2.3. Instantaneous and mean measurements

The non-dimensional downstream distance x/D, commonly used for non-stratified
wakes in water channels and wind tunnels, is related here to the elapsed time t in
the tow tank by x/D = UBt/D. However, in stratified wakes, time scales with the
buoyancy frequency at late stages, which defines a non-dimensional time Nt . The
downstream distance is thus related to the non-dimensional time by

x/D = F/2 Nt. (2.2)

Mean quantities are obtained by averages along the streamwise direction x at a given
time Nt and over the entire interrogation window length �x. They will be denoted
by 〈·〉x and were measured on 60–80 velocity vectors. They correspond to temporal
averages that would be obtained in a wind tunnel or a water channel configuration
at late stages. Indeed both averages are identical when the downstream distance x is
much larger than the interrogation window length �x. This approximation is valid
up to one order of magnitude for all cases here, when Nt is greater than 50.

The streamwise velocity is separated into mean and fluctuating parts,

(u, v) = (U, 0) + (u′, v′), (2.3)

and the following mean quantities are studied: the mean streamwise velocity U = 〈u〉x ,
the quadratic fluctuations of velocity u∗ = 〈u′2 + v′2〉1/2

x and the crossed fluctuations
of velocity 〈u′v′〉x . All of these quantities depend on the transverse coordinate y and
on the non-dimensional time Nt .

3. Three regimes of the wake
Seven series of experiments were run, three with the propelled cylinder and four

with the propelled spheroid. Each series was conducted in the same manner: the
angular velocity of the propeller was fixed at a constant rate, the bluff body was
towed with a constant velocity, and the velocity fields were estimated by CIV. From
one experiment to the next, the tow speed was increased.

The patterns of the vertical vorticity fields are summarized in figure 2. The vertical
component of the vorticity ωz is shown as a function of time for three different
tow speeds. The bluff bodies are always towed from right to left, i.e. in the positive
x-direction.

For low tow speeds, the momentum flux expelled by the propeller is much higher
than the momentum flux entrained by the bluff body due to the drag. The self-
propelled body thus creates a jet of fluid toward the right (i.e. in the −x-direction),
although the bluff body moves toward the left, as seen in figure 2(a), where the
coherent structures move slowly toward the right. Since the wake is composed of
two layers of opposite-signed vorticity, positive for y negative (y−) and negative for
y positive (y+), net momentum is ejected backward by the bluff body. The jet then
destabilizes into coherent vortices, which merge gradually, increasing the width of the
wake.

On the contrary, for high tow speeds, there is more momentum flux created by
the drag force than expelled by the propeller. Some fluid follows the bluff body
and creates a leftward-moving jet. The vorticity fields look very similar to those of
figure 2(a) except that the positive vorticity is found for y+ and the negative vorticity
for y−. The wake is similar to that of a non-propelled bluff body, which is recovered
when the drag force is much higher than the thrust of the propeller. In either of the
two previous cases (high or low velocities), some momentum is created by the bluff
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–0.2 s–1 +0.2 s–10

(a) (b) (c)

x

y

Nt Nt

Figure 2. Vorticity fields of a towed body with a rotating propeller for Nt =
[12, 30, 60, 120, 300] from top to bottom. The bodies are towed from right to left at a speed
(a) lower than the momentumless velocity, (b) equal to the mometumless velocity, and (c) equal
to the momentumless velocity with an angle of attack. The bluff body is a prolate spheroid for
(a) and (c) and a cylinder for (b). The field of view has dimensions 80 × 60 cm2, corresponding
to 32 × 23 diameters. F ≈ 20; Re ≈ 15 000.

body and the treatment of the data is essentially the same, as described in detail in
§ 4, which focuses on this momentum regime.

Between the two previous cases with a backward jet at small UB and a forward jet
at high UB , there is a limiting case where the jet eventually vanishes. It happens for
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a particular (critical) value of the tow speed UB = UC , where no net momentum is
created. Intuitively, its value is proportional to the angular velocity of the propeller.
UC is thus a way of measuring the angular velocity of the propeller, and to recalibrate
it with no need to take into account the shape of the propeller and the bluff body. In
the experiments, this critical momentumless velocity is defined by the criterion that
the sum of the mean profile vanishes:

UB = UC when

∫ ∞

−∞
〈u〉x dy = 0. (3.1)

This criterion defines UC to within ±2%, and if UB is changed by more than 2%, the
late stages of the wake resemble one of the cases mentioned above (high or low UB).
Only by careful matching of UB to UC was it possible to reach the momentumless
regime, for which the mean profile of velocity vanishes in the incoherent fluctuations
of the measurements. An example is shown in figure 2(b). The two layers of vorticity
found in the momentum regime have disappeared and the vorticity field contains many
vortices of both signs, with no organized longitudinal spatial structure. Like-signed
vortices merge, leading to larger scales of motion, whose peak vorticity magnitude
decreases gradually with time. This momentumless regime will be described in detail
in § 5.

Finally, a third regime has been found incidentally. In the first experiments, a
slight angle of attack was present between the axis of the bluff body and the towing
direction. The angle of attack (measured between the guide cable and the axis of
the propeller) was smaller than 1◦ and had no influence on the momentum regime.
However, when the tow speed was close to the momentumless velocity UC , the wake
became asymmetric. Since the bluff body was oriented slightly toward y+, the fluid
expelled by the propeller was slightly to y−. This leads to three layers of vorticity: two
layers of positive vorticity surround a layer of negative vorticity, as can be observed
in figure 2(c). This regime is very similar to the momentum regime except that there
are three layers of vorticity instead of two. These three layers destabilize into vortices,
as in the momentum regime, which merge into bigger vortices, thus increasing the
wake width. This regime will be described in detail in § 6.

4. Momentum regime
4.1. Mean profiles

In the momentum regime (figure 2a), the mean velocity is larger than the fluctuations.
Figure 3 shows the transverse profile of mean velocity U (y) = 〈u〉x(y) as filled symbols,
together with the profile of the quadratic fluctuations of velocity u∗ = 〈u′2 + v′2〉1/2

x as
open symbols. It is clear that the fluctuations are smaller than the mean velocity up
to Nt = 300.

Figure 3 shows that the mean profiles of velocity can be fitted well by a Gaussian
function (shown as a solid line on figure 3) with amplitude U0 and half-width L0,

U (y) = U0 e−y2 / 2L2
0 . (4.1)

As time increases, the amplitude U0 decreases and the wake width L0 increases, as is
found in both stratified and non-stratified wakes of non-propelled bodies.

In the case of propelled bodies, the amplitude U0 of the wake can be either positive
or negative, depending on whether the towing velocity UB is larger or smaller than
the critical velocity UC . Indeed, when UC is smaller than UB , i.e. when the propeller
rotates slowly, the bluff body is similar to a non-propelled body and the amplitude
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Figure 3. Profile of mean velocity (filled symbols) and quadratic fluctuations 〈u′2 + v′2〉1/2
x

(open symbols) at times Nt = 20 (�), Nt = 100 (�) and Nt = 300 (�). The spheroid is towed
at (a) a speed larger than the momentumless velocity (UB = 1.13UC) and (b) a speed smaller
than the momentumless velocity (UB = 0.88UC). The Froude and the Reynolds numbers are:
(a) F = 14, Re= 11 000; (b) F = 18, Re= 9000.

of the wake U0 is positive. This means that some fluid is entrained behind the body
by the drag. On the other hand, when UC is larger than UB , i.e. when the body is
towed slowly, some fluid is expelled backwards by the propeller, creating a jet in the
−x-direction, which gives a negative amplitude U0.

As UC/UB is increased (obtained in the experiments by decreasing UB and keeping
UC constant), the amplitude of the wake decreases continuously from positive to
negative values. This is shown in figure 4 where U0/UB F

2/3
eff is plotted as a function

of the ratio UC/UB for Nt = 100. All the results collapse well in these units. The curve
has a steep gradient at UC = UB so even a very small variation in UB can create a
large amplitude U0 in the wake. This explains why it was very hard in the experiment
to obtain a momentumless regime, and why most of the experiments were found to
be in the momentum regime. When the tow speed UB differs from the momentumless
velocity UC by more than 2%, the amplitude of the wake U0 cannot be neglected and
the wake is in the momentum regime.

4.2. A new definition of the momentum thickness for propelled bluff bodies

The absolute amplitude of a stratified wake depends strongly on the shape of the
bluff body (see Meunier & Spedding 2004). However, the results were found to
collapse when using an effective diameter based on the drag coefficient and defined
by equation (2.1), leading to a universal law for non-propelled bodies:

U0

UB

F
2/3
eff = 6.6(Nt)−0.76, (4.2)

where Feff = 2UB/NDeff . In the case of propelled bodies, this law is expected to apply
only when the propeller is not rotating, i.e. when UC = 0, shown as a star in figure 4.
It is 30% smaller than the experimental value for a spheroid, which can be explained
quantitatively by the additional drag created by the non-rotating propeller.

The evolution of U0(Nt) is shown in figure 5(a) for varying tow speeds UB . The
dashed line shows the empirical curve for non-propelled bodies given by equation (4.2).
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In all these experiments, the scaling exponent seems to be equal at late stages, but
the curves always remain below the non-propelled case. The model must therefore be
modified to take into account the action of the propeller.

In the case of non-propelled bodies, the dynamics of the wake are mainly governed
by the momentum flux, which is a conserved quantity of the wake. Indeed, the effective
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diameter Deff is simply the momentum thickness, already introduced in non-stratified
wakes by (Tennekes & Lumley 1972, chapter 4), and which is found by equating the
momentum flux J = ρ 1

4
πD2

effU 2
B and the drag force Fdrag = cD

1
2
ρU 2

B
1
4
πD2.

For propelled bodies, the momentum comes from fluid entrained by the drag, and
also from fluid expelled by the propeller, which creates the thrust: J =Fdrag − Fthrust.
By definition of the momentumless velocity UC , the thrust is equal to the drag
for UB =UC , which leads to an expression for the thrust: Fthrust = cD

1
2
ρU 2

C
1
4
πD2.

A momentum thickness can thus be defined in the case of propelled bodies as
ρ 1

4
πD2

momU 2
B = |J | = |Fdrag − Fthrust|, which can be simplified into

Dmom = D
√

cD/2
√∣∣1 − U 2

C/U 2
B

∣∣. (4.3)

The universal law (4.2) found for non-propelled bodies should be modified to

|U0|
UB

F 2/3
mom = 6.6(Nt)−0.76, (4.4)

where the momentum Froude number is defined using the momentum thickness,
Fmom = 2UB/NDmom. Equation (4.4) is plotted in figure 5(b) as a dashed line. All
the results collapse onto this prediction to within 25%, even though they were
initially as much as 6 times smaller. Furthermore, if the momentum Froude number
in equation (4.4) is explicitly written with (4.3) one arrives at an expression for the
amplitude U0 as a function of the ratio UC/UB ,

|U0|
UB

F
2/3
eff = 6.6(Nt)−0.76|1 − (UC/UB)2|1/3. (4.5)

This curve is plotted in figure 4 as a solid line. The vertical slope at UC = UB , observed
in the experimental data, comes from the power 1/3 of the term UB − UC in (4.5),
and the dependence on |UB − UC |1/3 explains the overall features of the curve.

4.3. Wake width and Strouhal number

The wake width L0 of the mean profile of velocity, defined by equation (4.1), is plotted
in figure 6 as a function of time. The wake width increases in time with a power law
close to 0.3. For non-propelled bodies, it was shown in Meunier & Spedding (2004)
that the wake width of different bluff bodies collapses when the lengthscale is defined
as the effective diameter Deff , and can be written as

L0

Deff

F −0.35
eff = 0.275(Nt)0.35. (4.6)

This prediction is plotted in figure 6(a) as a dashed line. The experimental values
obtained for propelled bodies are smaller than the theoretical prediction for non-
propelled bodies, by a factor almost two. Recall that the wake is slower for propelled
bodies, with a smaller amplitude U0, and the wake width thus increases more slowly
at early stages and remains smaller than for a non-propelled body.

To adapt the prediction made for non-propelled bodies to the case of propelled
bodies, the wake width can be normalized by the momentum thickness Dmom defined
in (4.3), rather than by the effective diameter Deff . If the Froude number is also
defined using the momentum thickness Dmom, (4.6) is modified to

L0

Dmom

F −0.35
mom = 0.275(Nt)0.35. (4.7)
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Figure 6. Wake half-width of the mean profile of velocity for a cylinder (open symbols)
and for a spheroid (closed symbols) using (a) the effective diameter and (b) the momentum
thickness. Symbols as in figure 5.

The modified prediction is shown in figure 6(b) by the dashed line. The experimental
data collapse reasonably well onto this power law at late stages. The measurements are
centred on the dashed line, although the variation in the measurements is relatively
high (close to 30%). The scatter is due to the small amplitude of the wake U0

compared to the towing velocity UB of the bluff body: U0/UB can be as small as
0.1%. It is surprising to see that the simple rescaling using the momentum thickness
Dmom is also efficient for the wake width, as it was for the velocity defect. It confirms
the fact that the late stages are mainly governed by the momentum, without memory
of the lengthscale of the bluff body. However, in the early stages, the wake width is
slightly higher than the value given by the prediction (4.7). This might be due to a
transient effect: when the towing velocity is close to the momentumless velocity, the
wake motions are very slow and it takes a longer time (which could be rescaled by
D/(UB − UC) rather than D/UB) for the wake to reach the asymptotic self-preserved
state.

The Strouhal number can be measured from the instantaneous vorticity fields, as
explained in Spedding et al. (1996) and Spedding (2002) for the stratified wake of a
sphere. The Strouhal number can be defined as

St = D/λx, (4.8)

where λx is the mean streamwise distance between two vortices of the same sign. It
was shown in Meunier & Spedding (2004) that a general law for the Strouhal number
can be found in the case of non-propelled bodies by defining the Strouhal number
using the effective diameter,

St eff = Deff/λx. (4.9)

With this definition all the measurements of different bluff bodies collapsed onto a
universal law,

St effF 0.34
eff = 0.823(Nt)−0.34, (4.10)

plotted in figure 7(a) as a dashed line. The experimental values are twice as large,
but decay at the same rate. Recall that propelled wakes develop more slowly than
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non-propelled wakes (since U0 is smaller), so the Strouhal number also decreases
more slowly at early stages, and stays larger than for non-propelled bodies.

If the Strouhal number is defined using the momentum thickness Dmom defined in
(4.3), and if the Froude number is also defined using the momentum thickness Dmom,
the prediction for non-propelled bodies is

StmomF 0.34
mom = 0.823(Nt)−0.34, (4.11)

and is plotted as a dashed line in figure 7(b). The experimental data collapse onto the
prediction, within 20%. This shows again that the wake is governed by the momentum
flux at late stages.

4.4. Fluctuating quantities

In self-preserved, turbulent wakes, the mean profile of the wake diffuses due to the
Reynolds stress, which is sustained by the mean shear. The hypothesis of a constant
eddy viscosity can be checked for the case of stratified and propelled wakes, and if
νT is constant, the profile of Reynolds stress may be supposed to be proportional to
the mean shear,

〈u′v′〉x = νT

∂U

∂y
. (4.12)

Profiles of Reynolds stress, or velocity cross-fluctuations, are shown in figure 8 for
tow speeds, UB , close to the critical momentumless velocity, UC . The Reynolds stress
are very weak and 〈u′v′〉1/2 is always smaller than 0.1% of UB . When UB >UC , the
mean profile has a positive amplitude U0; the mean shear is thus positive for y−

and negative for y+. Figure 8(a) shows that the cross-fluctuations follow the same
trend for UB > UC , supporting the assumption that the profile of Reynolds stress
is proportional to the mean shear, with a constant eddy viscosity. When the bluff
body is towed at a velocity smaller than the momentumless velocity, the amplitude
of the wake U0 is negative, which gives negative Reynolds stress for y− and positive
Reynolds stress for y+, as shown on figure 8(b), again proportional to the mean shear.
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Since the mean profile of velocity is approximated well by a Gaussian (4.1) with
amplitude U0, the Reynolds stress profile should be fitted well by the derivative of a
Gaussian function with an amplitude A and a width L′

0:

〈u′v′〉x(y) = −A
y

L′
0

e−y2/L′
0
2

. (4.13)

The amplitude A should be similar to νT U0 and the width L′
0 should be similar to

the wake width L0. These two fitting constants have been measured and are shown
in figure 9. The width of the cross-fluctuation profile L′

0 is close to the wake width
L0 (figure 9a) although the variation in the measurements is large. This supports
once again the hypothesis of a constant eddy viscosity. The amplitude A of the
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cross-fluctuation profile is linked to the turbulent Reynolds number RT by

RT =
|U0|L0

νT

=
U0|U0|

A
. (4.14)

The turbulent Reynolds number is plotted in figure 9(b) as a function of time. The
dashed line represents the value RT = 15 found for non-propelled bodies at late times
(Nt > 100). Initially, RT can be significantly higher than its asymptotic value for
Nt > 100, which is the same result as for towed bodies, suggesting that, just as in
the non-propelled case for these body shapes, an equilibrium state is only reached at
comparatively late times.

For a complete analysis of the turbulent fluctuations, the turbulent kinetic energy,
equal to half the quadratic fluctuations of velocity u∗ = 〈u′2 + v′2〉1/2 is measured. A
profile of quadratic fluctuations of velocity was shown in figure 3, and seen to be very
small compared to the mean profile. Moreover, the presence of large internal waves
in the tank creates a background of velocity variations, which are of the order of the
velocity fluctuations created by the wake. This background can be seen on figure 3
at the edges of the profile. The amplitude of the quadratic fluctuations was estimated
by measuring the difference between the maximum and the minimum of the profile
of quadratic fluctuations,

u′′
0 = max

(
〈u′2 + v′2〉1/2

)
− min

(
〈u′2 + v′2〉1/2

)
. (4.15)

This amplitude is plotted in figure 10(a) as a function of time. The measurements are
not very clean, but the ratio u′′

0/U0 is close to the value 0.25, which was found for
non-propelled bodies and which is shown as a dashed line on figure 10(a).

Finally, the width of the profile of quadratic fluctuations was estimated by a fitting
function introduced by Dommermuth et al. (2002):

〈u′2 + v′2〉1/2 = B + C
(
1 + y2

/
L′′

0
2)

e−y2/2L′′
0
2

. (4.16)

L′′
0 is normalized by the wake width L0 and plotted in figure 10(b). The ratio L′′

0/L0

is slightly smaller than one, as in the case of non-propelled bodies. This may be due
to transient effects, since the self-preserved state is only reached for very late stages.
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5. Momentumless regime
As demonstrated in § 3, the wake presents a different structure when the towing

velocity UB of the bluff body is equal to the momentumless velocity UC . The vorticity
fields do not contain two layers of opposite-sign vorticity, as in the momentum regime
(UB = UC), but they contain a disordered array of vortices of different signs. There
seems to be no organized structure, except that the vortices are located in a compact
domain that trails the body and widens with time.

The momentumless regime is only accessible when the relative difference between
UB and UC is smaller than 2%. The primary difficulty in the experiments was
in determining UC , which was done by iteration for each angular velocity of the
propeller, so that for each experiment, the mean velocity profile was measured and
the towing velocity was then adjusted for the next experiment. Since at least 20
minutes waiting time (frequently many times this, depending on flow conditions) was
required between two experiments for the fluid to be effectively at rest, a long time
(usually a few days) was needed to determine the exact momentumless velocity for
a given angular velocity of the propeller. Although this momentumless regime might
represent the wakes of self-propelled bodies, it was evidently very hard to obtain in
the experiments, and was very fragile compared with the momentum regime. The
question of whether the wake of a real self-propelled body is in the momentum or in
the momentumless regime will be discussed in § 7.

When |UB–UC |/UB < 2% the signal:noise ratio is (by definition) small, and
particular care was taken to repeat each experiment several times, and to remove
all spurious results caused by contamination from wave motions or imperfect
boundary conditions. All points shown are averages of the remaining two to four
clean experiments.

5.1. A null mean profile?

When UB > UC , U0 is positive and when UB <UC , U0 is negative, so U0 might be
expected to vanish when UB = UC . However, in the constant turbulent eddy viscosity
assumption of Tennekes & Lumley (1972), it is only the integral of the mean profile
that vanishes, and not the mean profile itself. The mean profile is supposed to contain
a central lobe with negative velocity, surrounded by two symmetric lobes of positive
velocity. This shape of the mean velocity profile ensures that the turbulent fluctuations
are still sustained by the mean shear. More sophisticated treatments (Finson 1975;
Hassid 1980) invoke assumptions on higher-order closure of the fluctuating velocities,
but some coherent form of the mean radial profile of the velocity differences is still
required. Some kind of assumption like this is a necessary condition in order to
impose self-similar solutions.

The measured mean velocity profiles are plotted in figure 11 as closed symbols, for
the wake of a cylinder and the wake of a spheroid. The mean profile has no coherent
shape, and seems to be smaller than the incoherent fluctuations in the measurements.
It does not contain the features described in non-stratified wakes, with a positive
lobe surrounded by two negative lobes. It is possible that such a structure of the
wake could be recovered if the measurement resolution were higher (or, equivalently,
at smaller x/D), or if the generating geometry were different. However, figure 11
shows that the quadratic fluctuations of velocity are larger than the mean velocity:
they can be as much as five times larger in the case of the cylinder. This contradicts
the assumption that the turbulent fluctuations are sustained by the mean shear. This
regime is best described as a turbulent flow, with no mean shear, which diffuses and
dissipates by self-induction. Such a description of the wake is consistent (of course)
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with the vorticity fields of figure 2(b), where no organized structure can be found.
Now, the evolution of the wake should be governed by the fluctuations of the velocity
rather than by the mean velocity of the wake.

5.2. Quadratic fluctuations

The profile of quadratic fluctuations of velocity u∗ = 〈u′2+v′2〉1/2 is plotted in figure 11
as open symbols, for a cylinder and for a spheroid. The quadratic fluctuations are
very small: between 0.1% and 0.5% of the towing velocity UB . Moreover, the bluff
body creates internal waves of large amplitude, propagating in the x-direction, which
remain in the tank for a long time due to reflection on the walls. Their amplitude can
be measured by the average of the streamwise velocity in the y-direction 〈u〉y(x) and
they were removed from the velocity field before measuring the quadratic fluctuations
of velocity. However, these internal waves also created some small-scale variations
which cannot be averaged out in this way, especially far from the wake (for large |y|),
which leads to a positive background in the profiles of quadratic velocity fluctuations.
Consequently the width of the wake cannot be measured accurately using the profile
of velocity fluctuations. It will be instead measured using the profile of vorticity
flucuations (see § 5.3), which are not perturbed by the internal waves since the
internal waves do not contain any vertical vorticity.

The maximum of the profile of velocity fluctuations can be relatively accurately
measured. It is plotted in figure 12 for the five different configurations studied for
this momentumless regime. Each curve is the average of two to four experiments. The
variation in the measurements is represented by the size of the symbols.

The maximum of the quadratic fluctuations u∗
max = max(〈u′2 + v′2〉1/2) is plotted as

u∗
max/UBF 0.75 so the results may be compared with the measurements obtained by

Lin & Pao (1979) for a streamlined spheroid, plotted as a solid line on this figure.
The current measurements are significantly smaller, the velocity being four times
smaller at early stages. Moreover, assuming the quadratic velocity has a power law
u∗

max ∼ (Nt)αu∗ , Lin & Pao measured a decay exponent of −0.76, whereas we find

αu∗ = −0.40 ± 0.04. (5.1)
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spheroid (closed symbols), a cylinder with a small propeller (open symbols) and a cylinder
with a large propeller (∗). The solid line corresponds to the experimental fit given by Lin &
Pao (1979), and the dashed line corresponds to the amplitude of the mean velocity of a towed
slender body given by Meunier and Spedding (2004). F =[15, 40, 12, 15, 25] for experiments
[�, �, ∗, �, �] with Re= [10, 25, 11, 13, 27] × 103 respectively.

The disagreement comes partly from the fact that the results of Lin & Pao (1979)
were restricted to the early stages of the wake: their scaling is valid for 1 < Nt < 20
while our results cover 10 <Nt < 300. At the early stages, the flow is mainly three-
dimensional, which might explain why they measure a decay exponent αu∗ = −0.76,
more in agreement with the theoretical prediction for a non-stratified self-propelled
wake (αu = −4/5). Upon close inspection, their measurements even show that the
quadratic fluctuations of velocity depart from the initial power law for Nt > 20, as
the authors noted. A decay exponent for this latter regime can be roughly estimated
to be αu = −0.4 for 20 < Nt < 60, in close agreement with our value for 10 <Nt < 300.

In figure 12, two experiments with the same bluff body (a cylinder) and with two
different sizes of propeller have been reported: the case of a large propeller is plotted
by stars and the case of a small propeller is plotted by open symbols. The velocity
fluctuations are 60% higher in the case of a small propeller. Evidently the results
cannot be collapsed by simply using the drag coefficient of the bluff body alone. The
amplitude of the quadratic fluctuations depends on the shape of the bluff body and
the propeller, and not only on the drag coefficient of the bluff body (here, the drag
of the propeller is small compared to the drag of the cylinder). It is possible that the
fluctuations depend on the shape of the bluff body close to the propeller, since the
propeller draws the fluid inward and deforms the set of streamlines that would be
created in the absence of a propeller. The small propeller may draw the fluid into a
smaller cross-section, forcing streamlines closer to the edges of the cylinder, and so
creating strong turbulence.

It can be noted that the measurements do not collapse with respect to the Froude
number when the velocity fluctuation is multiplied by F 0.75. A better collapse of
the measurements is obtained when the velocity fluctuation is multiplied by F 0.25.
However, the Froude number was varied with a factor 3 only, and the measurements
should be repeated on a larger range of Froude numbers for this result to be
confirmed.
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Figure 14. Amplitude of the maximum quadratic fluctuations of vorticity ω∗ = 〈ω2〉1/2
x for a

slender spheroid (closed symbols), a cylinder with a small propeller (open symbols) and a
cylinder with a large propeller (∗). Symbols as in figure 12.

5.3. Vorticity fluctuations

As noted in § 5.2, the vorticity profiles are not disturbed by internal waves which do not
contain any vertical vorticity. The profiles of mean vorticity 〈ω〉 and of the quadratic

fluctations of vorticity ω∗ =
√

〈ω2〉x are therefore less variable than the profiles
of velocity. They are plotted in figure 13 for a cylinder and a spheroid. The mean
vorticity is very small compared with the fluctuations. This shows again that the wake
seems to be disordered, closer to a layer of free turbulence rather than to turbulence
forced by the mean shear.

The maximum of the quadratic fluctuations of vorticity ω∗
max is plotted in figure 14

as a function of time for a cylinder and for a spheroid. As previously noted, it is not
possible to rescale the experiments by simply using the effective diameter of the bluff
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body, since the size of the propeller strongly modifies the amplitude of the vorticity
fluctuations. However, a reasonable collapse of the measurements has been obtained
by multiplying the amplitude by the Froude number to the power 0.5. This empirical
scaling (which has no external justification) needs to be verified since the Froude
number was only varied with of a factor 3. Assuming the vorticity fluctuations follow
a power law Ntαω , the decay exponent αω can be estimated as

αω = −0.61 ± 0.02. (5.2)

Finally, the maximum of the absolute value of the vorticity |ω|max on the centreplane
has been measured and is plotted as a function of time in figure 15; |ω|max is constant
and roughly equal to three times the maximum of the quadratic fluctuations of
vorticity, ω∗

max. This implies that some aspect of the spatial structure of the wake is
constant, and that the wake may be self-similar in this measure.

5.4. Wake width

Since the profiles of quadratic fluctuations are relatively clean, it is possible to measure
the width Lω of the profile at mid-height, defined as the range for which the quadratic
vorticity is larger than half the maximum quadratic vorticity:

ω∗(y) >
ω∗

max

2
for − Lω

2
< y <

Lω

2
. (5.3)

The width Lω is plotted in figure 16 for five different set of experiments. In figure 16(a),
the width is normalized using the effective diameter of the bluff body, as in the case
of a momentum wake (see § 4.3). It seems that the experiments for a cylinder with
a large (stars) and with a small propeller (open symbols) give the same result. This
indicates that the wake width may be independent of the real shape of the bluff body
and that it may be collapsed using the drag coefficient. Indeed, when plotting the
wake width multiplied by the drag coefficient to the power −0.8, an excellent collapse
is obtained for the case of both a spheroid and a cylinder, as is shown in figure 16(b).
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visualizations, and the dashed line corresponds to the mean velocity profile of a towed body
(Meunier & Spedding 2004). Symbols as in figure 12.

The best fit for all the data is given by

Lω

D
= 1.8(Nt)0.18F 0.2c0.8

D . (5.4)

This wake width is three times smaller than the one measured by Lin & Pao (1979),
plotted as a solid line on figure 16. However, this is not a real disagreement since they
measured the width for which the wake appeared turbulent on the corresponding
shadowgraph visualizations, which will be larger than the width at mid-height. The
main disagreement comes from the fact that the exponent for their power law is equal
to +0.4 whereas here it is

αLω
= +0.18 ± 0.05. (5.5)

Part of the discrepancy may again come from the fact that their measurements were
obtained for early stages (Nt < 20) and do not extrapolate simply to the late stages
(10 < Nt < 300) measured here, as noted previously.

An exponent for the wake width can also be estimated as follows. If the velocity
fluctuations have an exponent αu∗ and if the vorticity fluctuations have an exponent
αω, the wake width should have an exponent αLω

= αu∗ − αω since the vorticity scales
as ω ∼ u/L. This formula together with the measurements of αu∗ in (5.1) and αω in
(5.2) leads to a value of the exponent for the wake width αLω

= +0.21 ± 0.03, in good
agreement with (5.5).

6. Asymmetric momentumless regime
This section focuses on the flow obtained when a slight angle of attack is present

between the axis of the bluff body and the towing velocity. This configuration was
first obtained unintentionally, but it revealed interesting features of the flow, and is
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an example of the sensitive dependence on initial conditions that is a unique feature
of the momentumless case.

As shown in figure 2(c), the vorticity fields obtained in the asymmetric regime are
very organized, but differ from the ones obtained in the momentum regime (shown
on figure 2a). The instantaneous vorticity fields contain three layers of vorticity in the
asymmetric regime, whereas only two layers of vorticity are present in the momentum
regime. In this experiment, the angle of attack was positive (toward the left), i.e. the
nose of the bluff body was located at a small y+. This leads to a layer of negative
vorticity surrounded by two layers of positive vorticity. For such a distribution of
vorticity, it can be deduced that the velocity profile must be asymmetric, as the data in
figure 17 show. Although the angle of attack could not be measured accurately, it was
estimated to be between 0.5◦ and 1◦. The experiment was carried out for UB = UC ,
which means that the integral of the mean profile

∫
U (y)dy is equal to zero, as can be

seen on figure 17. The towing velocity UB had to be very close to the momentumless
velocity for the profile to be asymmetric: a relative difference of 1% was sufficient
to modify the profile from asymmetric to symmetric. In the asymmetric regime, the
mean profile of velocity contains two lobes, a negative lobe of velocity for y− and a
positive lobe for y+. This accords with the fact that the angle of attack is toward y+:
the propeller is located at a small y−, and more fluid is expelled backwards at y−,
creating a negative velocity for y−. On the other hand, for y+, the jet of the propeller
is weaker and more fluid is more entrained by the drag of the bluff body, creating a
positive lobe of velocity for y+.

Figure 17 also shows the quadratic fluctuations of velocity u∗ ≡ 〈u′2 + v′2〉1/2
x as

open symbols. These fluctuations are slightly smaller than the mean profile, indicating
that the wake may again be governed by the mean shear rather than by the turbulent
fluctuations, as in the momentum regime. The measurements of the mean profile are
clean enough and it is possible to fit the mean velocity by an odd function with an
amplitude U1 and a width L1,

U (y) = U1

y

L1

e−y/2L2
1 . (6.1)
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Figure 18. Amplitude (a) and wake width (b) of the mean profile of velocity for a spheroid
with a Froude number F = 25 and Re= 16 000.

This function is convenient because it is a self-similar solution of the diffusion
equation ∂U/∂t = νT ∂2U/∂y2 which governs the wake in a non-stratified fluid. The
fitting function is plotted in figure 17 as a solid line and shows a good fit to the
experimental data, and hence a reasonable determination of the amplitude U1 and
the width L1 of the wake as a function of time, which are plotted in figure 18 for
three experiments in the same configuration (angle of attack, Froude number and
Reynolds number).

The amplitude U1 of the asymmetric mean profile is plotted in figure 18(a) and is
compared with the prediction for a non-propelled bluff body given by equation (4.2),
shown as a dashed line. The amplitude U1 is four times weaker than in the
non-propelled case, as expected since the experiments are conducted close to the
momentumless velocity UC and with a slight angle of attack. The amplitude should
strongly depend on the angle of attack and it should vanish when the angle of
attack vanishes. Hence, there was no attempt to predict the multiplying factor for the
variation of U1. However, it is possible that the scaling exponent may be universal
in this regime, independent of the drag coefficient or the angle of attack. For this
experiment, assuming the amplitude scales as U1 ∼ NtαU1 , the best fit (plotted as a
solid line on figure 18a) is

αU1
= −0.6 ± 0.06. (6.2)

This value is smaller than the value αU = −0.76 found for momentum wakes, described
in detail in § 4, but it is larger than the value αu∗ = −0.4 found for the symmetric
momentumless wakes, described in § 5. Further experiments would be required to
confirm this result, and its possible dependence on Froude number and angle of
attack.

Figure 18(b) shows the wake width normalized by the effective diameter. It is slightly
smaller than in the case of a non-propelled wake, represented by the dashed line.
This tendency was also obtained in the momentum regime – the propeller decreased
the wake width (see figure 6a). However, in this case, it is not possible to use the
momentum thickness Dmom defined by equation (4.3), since it is zero.

The wake width might be collapsed using a lengthscale based upon the (small but
finite) angle of attack, but this was not feasible here since the angle of attack has not
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been measured with sufficient precision. Nevertheless, assuming that the wake width
scales as L1 ∼ NtαL1 , the scaling exponent of the wake width may yet be universal. A
best fit of the results (shown as a solid line on figure 18b) gives

αL1
= +0.31 ± 0.03, (6.3)

which is indistinguishable from the value of αL =+0.35 obtained for momentum
wakes but larger than the value of αLω

= +0.18 obtained for symmetric momentumless
wakes.

To conclude, it seems that in the asymmetric momentumless regime, the scaling
exponents are between the scaling exponents of the momentum regime and the scaling
exponents of the momentumless regime. This may come from the fact that the mean
profile of velocity is close to the quadratic fluctuations of velocity, meaning that the
wake is governed by the mean shear but also by the turbulent fluctuations. This
regime could be better analysed with a larger angle of attack and further experiments
could be done in this regime, both on the grounds that a small angle of attack may
not be that uncommon in practice and because the different balance between mean
and turbulence-driven fluctuations might be instructive.

7. Discussion
7.1. Momentumless wakes are not universal

The true momentumless wake, where |UB − UC | � 4%, has no coherent mean profile,
and no obviously self-preserving form of the velocity fluctuations. The late-time wake
decay exponents were found to depend on the initial conditions, as data for the
cylinder with small and large propeller do not collapse. No drag wake, or any other
case outside this particular limiting condition, has a measurable dependence on initial
conditions in the late wake.

The lack of universal scaling laws in the momentumless wake is consistent with
the observation that since, unlike drag wakes, there is no balance between turbulence
production and dissipation, then turbulence parameters determined in near-wake
initial conditions can continue to affect the far-wake similarity solutions (Finson
1975). It is also consistent with experimental observations in the literature for self-
propelled bodies in non-stratified flows, showing measurable differences in the wakes
of smooth and rough-walled bodies, and between wakes where the propulsion is
provided by propellers or momentum jets (Swanson et al. 1974; Chieng et al. 1974;
Higuchi & Kubota 1990; Sirviente & Patel 2000a , b).

It is important to note that this non-universality is measured here in the late
wake. The data extend to Nt = 500 and x/D = 104 and appear to have reached their
final, asymptotic state. There is experimental (e.g. Bevilaqua & Lykoudis 1978) and
theoretical (Johansson et al. 2003) evidence showing that velocity fluctuations in
particular may not reach a self-preserving form until far downstream, and many of
the self-propelled results in the literature are for x/D < 100.

The ability of the current experiments to access and differentiate between almost
and exactly self-propelled cases is due to the simultaneous operation of independent
towing and thrust generation mechanisms. In this respect, the experiment is similar to
that of Higuchi & Kubota (1990) where the thrust-producing central jet momentum
flux was varied independently of the tunnel mean speed around a drag-producing
body. In a similar systematic variation of the degree of propulsion, these authors also
noted the unique characteristics of the precise self-propelled point.
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The definition of momentumless here is different from other possible definitions,
such as drag = thrust. Only the condition

∫ ∞
−∞〈u〉xdy = 0 (equation (3.1)) is imposed

and only at the horizontal centreplane. The fact that the self-propelled point defined
this way (UB =UC) does lead to and correspond with a unique (almost singular in
the sense of Finson 1975) flow field suggests that it is useful operationally, even if it
does not account for all possible momentum fluxes (for example if surface or internal
wave drag were significant; see next section).

7.2. Momentumless wakes are unlikely

The exact self-propelled point is rarely attained, because a number of conditions will
pull the wake far enough away from it to enter a completely different regime. The
possible perturbations include non-steady motion of the body, non-steady motion in
the environment, and drag contributions from waves at boundaries, or (most likely
in stratified flows) internally within the fluid.

The acceleration of a self-propelled body times its mass m is equal to the sum of
the drag force and the thrust force. This can be rewritten, using the expressions for
the drag force and the thrust force, as

m
dUB

dt
= Fthrust − Fdrag = cD

1
2
ρ
(
U 2

C − U 2
B

)πD2

4
. (7.1)

Here, UB is the velocity of the bluff body and UC is a velocity for which the momentum
of the wake vanishes, proportional to the angular velocity of the propeller. When
the bluff body reaches a constant speed, the acceleration is zero and the velocity
of the bluff body equals the momentumless velocity UC . The wake is thus in the
momentumless regime. However, the time needed to reach this constant speed is
infinite, and during the phase of acceleration, the wake will be better represented by
the momentum regime.

We may estimate the time needed for the wake to reach the momentumless regime.
By integrating the differential equation (7.1), the velocity UB is governed by a law
UB = UC tanh(t/τ ) with τ = 4L/cDUC . For this result, the bluff body is assumed to be
cylindrical, so that the mass m of the bluff body is equal to the density of the fluid
ρ times the section of the bluff body πD2/4 times the length L of the bluff body
times a factor 2 to take into account the added mass. The velocity of the bluff body
is thus equal to the momentumless velocity within 2% after a time t = 2.3τ , which
represents a distance close to Lacc.phase ≈ 1.6τUC ≈ 6.4L/cD . For example, a bluff body
with a length of the order of 30 m leaves a momentum wake of a length close to
one kilometre each time it changes the velocity of its propellers. It is only after this
distance that the wake is in the momentum regime.

This calculation shows that the momentum regime may be representative of the
wake of a real self-propelled body, if the velocity of the bluff body is not exactly
constant. This is the case in the acceleration and deceleration phases. But it is also the
case if the fluid has its own fluctuations of velocity, for example created by oceanic
currents. If we assume that the length needed by the bluff body to reach its cruise
velocity is much larger than the lengthscale of the currents, the bluff body will have
a constant velocity and will experience variations in its momentumless velocity: the
velocity of the currents is equal to the difference between the velocity of the bluff body
UB and the momentumless velocity UC (ucurr. = UB − UC). Suppose the fluctuations
UB − UC are small compared to the velocity of the bluff body UB , but big enough for
the wake to be in the momentum regime. Then the mean absolute amplitude of the
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wake can be obtained by taking the average of equation (4.5):

〈|U0|〉 = 6.6(Nt)−0.76F
−2/3
eff

〈
|ucurr.|1/3

〉
U

1/3
B

UB. (7.2)

If the fluctuations are of the order of 10% of the velocity of the bluff body, the mean
absolute amplitude of the wake would be equal to 46% of the amplitude of the wake
without a propeller. Thus, even if the fluctuations of velocity of the ambient fluid are
small, the momentum can be high. We thus expect the wake to be in the momentum
regime most of the time.

In the above analysis, the drag was imagined to be due only to the fluid entrained
by the bluff body, as in a non-stratified fluid. However, in a stratified fluid, there is
an additional drag due to the internal waves. This drag can be as high as 10% of the
standard drag for Froude numbers between 2 and 10 (Lofquist & Purtell 1984). If
λ=Fint.waves/Fdrag is the ratio between the drag due to the internal waves and the drag
due to the entrained fluid, the thrust force can be calculated as Fthrust = (1+λ)Fdrag for
a constant speed of the body. Since the internal waves propagate away very rapidly,
the only momentum left in the wake at late stages is J = Fdrag − Fthrust, which leads
to a new definition of the momentum thickness,

Dmom = D
√

λcD/2 = Deff

√
λ. (7.3)

The wake is now governed by the momentum created by the drag from the internal
waves, in which case all the predictions made in § 4 remain valid if the momentum
thickness is defined by (7.3). The value of the amplitude U0 is easily found by
introducing (7.3) into (4.4), so

U0

UB

= −6.6(Nt)−0.76F
−2/3
eff λ1/3. (7.4)

If the drag due to the internal waves is of the order of 10% of the drag due to the
entrained fluid, the amplitude of the wake is still equal to 46% of the amplitude of the
wake in the absence of the propeller. The stratified wake remains in the momentum
regime even when the body is self-propelled, and moving at perfectly constant speed
in a perfectly still environment.

8. Conclusions
Exactly momentumless wakes are very fragile and peculiar flows. They contain

information from the initial conditions in the late wake: these include turbulence
parameters, body/propeller geometry and angle of attack of the body. Unlike the
drag wake, there is no single rescaling based only on wake momentum flux that
will collapse measurements or predict, in a general way, the wake dynamics. In
particular, the measurable turbulent fluctuations cannot be seen as being driven by
some self-similar mean shear profile. This would bode ill for extrapolation of these
kinds of results to practical applications, but for the fact that almost always some
kind of momentum excess (positive or negative) will be present. That being the
case, this paper establishes a set of universal scaling exponents that can be used to
describe the mean flow, turbulence quantities and vortex geometry for all stratified
(momentum) wakes, regardless of their origin. Some differences with literature results
remain to be explained, but may be due in part to the difficulty of maintaining precise
momentumless experiments, and partly to the fact that the experiments described
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here apply to stages of the wake evolution that are an order of magnitude later than
for other comparable data.
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Abstract

Initially turbulent wakes of a propelled cylinder at nonzero angles of yaw to the mean flow were measured in the

horizontal centerplane plane up to approximately 100 buoyancy times, where vertical velocities are very small. The

profiles of mean velocity were found to be antisymmetric throughout their lifetime, with both width and maximum

velocity decaying at the same rate as previously studied momentum wakes. The maximum velocity of the profile is

proportional to the angle of yaw, but the width is constant. Both the mean flow and fluctuating quantities show that the

late wake is self-similar, with scaling laws that are consistent with previous work on propelled and drag wakes.

r 2006 Elsevier Ltd. All rights reserved.

1. Introduction

In a homogeneous fluid, the late stages of a turbulent bluff-body wake can be described by the theory of a self-

preserved wake [see Tennekes and Lumley (1972)]. However, the presence of even a weak stable stratification can

significantly modify this picture, imposing an anisotropy that must be accounted for and bringing internal wave

motions into the dynamics. This is the case of the wakes of submarines and of mountains or islands, for which the ocean

and the atmosphere are stably stratified.

Lin and Pao (1979) showed that the stratification diminishes the vertical velocities and thus prevents the growth of

the wake in the vertical direction after a time Nt � 2 (N is the Brünt Vaisala frequency, N2 ¼ ðg=r0Þðqr=qzÞ, where z is

the vertical direction, r is the density and g is the gravitational acceleration), leading to coherent vortices that are small

in the vertical compared with the horizontal direction. Since horizontal growth rates do not increase commensurately,

the defect velocity decays more slowly, and can be as high as 10 times larger than in the absence of stratification.

Spedding (1997) showed that this stage lasts up to Nt � 502100, and that the defect velocity then decays again with the

same exponent as in a homogeneous fluid. Most of the late-wake measurements have been obtained for spheres [e.g.,

Chomaz et al. (1993), Spedding et al. (1996), Spedding (1997)]. The effect of the shape of the bluff body was investigated

by Meunier and Spedding (2004), who showed that all bluff-body wakes, regardless of body geometry, could be rescaled

with parameters that depended only on the initial momentum flux in the wake. Meunier and Spedding (2006) described

the wakes of propelled bodies, finding similarly general scaling behavior for all but a small class of wakes that were

almost exactly momentumless. Furthermore, if the wakes were at this (almost singular) point, a third class of

antisymmetric velocity profile was found behind a body having a small angle of yaw. This paper presents systematic and
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quantitative experimental results of such wakes behind a propelled cylinder at small angle of yaw. The important

parameters will be defined and quantified. Decay rates of velocity, turbulent Reynolds number and kinetic energy will

be compared with the existing values in the literature.

2. Procedure

2.1. Experimental set-up

A cylinder of diameter D ¼ 2:7 cm and length L ¼ 15:6 cm is towed through a 2:4� 2:4m water tank filled to a height

H ¼ 22 cm, as described in detail in Spedding et al. (1996). The tank is filled using the standard two-tank method,

mixing between fresh water ðrf ¼ 1:0 kg=m3Þ and salt water ðrs ¼ 1:1kg=m3Þ, to yield a linear vertical density gradient

so that N ¼ 1:8 rad=s; rf and rs are selected so polystyrene beads of diameter d ¼ 1mm and density r ¼
1:04965� 0:00005 kg=m3 rest on an isopycnal at the horizontal centerline of the cylinder. The beads are illuminated

using four 500W floodlights, and a custom digital particle imaging velocimetry method (DPIV) (Fincham and

Spedding, 1997) is used to determine velocity fields u; v in the x; y horizontal plane, together with their spatial gradients.

In order to accurately control the yaw angle, and in contrast to previous mounting methods, the cylinder is mounted

on a streamlined carriage via a hollow sting (3mm in diameter). A tight friction fit and set-screw to the carriage post

provide convenient submergence and removal of the body, and allow yaw angles to be reliably and precisely set. The

propulsion system inside the body consists of a small DC motor powered by a 4.8V battery through a 4 channel

75MHz FM RC transmitter and GWS ICS50 micro speed-control.

In the laboratory frame of reference, shown in Fig. 1, the body is towed steadily along the x-axis with speed Ub. An

experiment consists of one towing of the body through the length of the tank, and digital image acquisition using a

Pulnix TM9701 CCD camera mounted above the tank until Nt ¼ 300, with t ¼ 0 defined when the body center crosses

the center of the 84� 61 cm capture window. The propeller is started just before the body is towed and takes less than

0.5 s to reach the set angular velocity. It is shut off by the transmitter approximately 1–2 cm before the body comes to

rest, to prevent a jet from impinging upon the wake at late times. Since the resolution of towing speed is higher than that

of the propulsion system, the propeller angular velocity is held constant and experiments are conducted by

systematically varying the tow speed until the measured momentum flux in the wake is zero. Once this momentumless

speed, denoted Uc is known, experiments are repeated with a ¼ 2�; 3�; 5�.

2.2. Flow definitions

Two nondimensional parameters are used to classify flows in a stratified medium: the Reynolds number Re � UbD=n,
where n is the kinematic viscosity, and a Froude number based on cross-section radius, F � 2Ub=ND. Experiments were

conducted for Re ¼ 6600, F ¼ 10, for which the inner wake is fully turbulent, and the late-wake centerline flowfield is

not affected by the tank boundaries.

ARTICLE IN PRESS

Fig. 1. Top and side views of the carriage and propelled cylinder. The black dotted line at the body centerline represents the bead sheet.
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Because the inner wake is turbulent, the flow can be split into nonzero mean and fluctuating parts,

ðu; vÞ ¼ ðU ;V Þ þ ðu0; v0Þ. Mean profiles plotted for each Nt value are obtained by averaging the u velocity components

of one image along the x-axis (direction of travel) and are denoted hui. In these experiments, this is equivalent to a time

average over Nt ¼ 6, which is small compared to the total time span of the experiment. Consistent offsets in the profile

tails (typically uoffp10% of the peak defect magnitude) were removed by assuming that all averaged horizontal velocity

components should be zero far ðy415DÞ, from the wake centerline. These offsets were mainly due to slow back and

forth motion of the entire fluid in the tank caused by reflected internal waves. Apart from mean profiles, the cross-

fluctuations, hu0v0i and the quadratic fluctuations hu02 þ v02i1=2 of velocity are used to compare this flow with self-

preserved wakes found in the literature. It is useful to define the momentum thickness Dmom ¼ D
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcd=2Þ

p
of the bluff

body and its corresponding Froude number Fmom � 2Ub=NDmom in order to compare these results with the universal

laws found in stratified momentum wakes (Meunier and Spedding 2004).

3. Results

3.1. Flow structure

Experimentally, three regimes have been distinguished behind propelled bodies in stratified flows depending on the

ratio of tow-speed to the true self-propelled speed. These are shown in Fig. 2 in the form of instantaneous vertical

vorticity fields (the body was towed from right to left). The first regime, called the momentum-regime and shown in

Fig. 2(a), reveals two layers of opposite-signed vortices, which is equivalent to a mean Gaussian profile of velocity in the

wake. Here the tow speed is slightly greater than Uc, creating a net positive mean flow in the wake on the order of 7% of

Uc. Meunier and Spedding (2006) successfully re-scaled flow parameters of towed propelled bodies with those of simply

towed bodies based on the difference between the tow speed and the momentumless speed Uc, for which the net

momentum in the wake would be zero. Wakes of propelled bodies under such conditions are classified as within the

momentum-regime.

The second regime, truly momentumless, cannot be re-scaled in the same fashion, as the tow speed is exactly equal to

Uc. Attempts to quantify this flow regime in a general way have failed as there appears to be no organizing structure.

This can be seen in Fig. 2(b), where opposite-signed vortices lie within a band, but with no apparent order.

The third regime is also momentumless, but involves a slight asymmetry of the body. This regime was discovered

when the propelled body had a small angle of yaw. Fig. 2(c) shows the qualitatively different nature of this regime from

the previous case with zero angle of yaw. The wake is composed of three layers of alternating opposed-sign vortices,

whose pattern reverses for opposite angles of yaw. The organized layers lead to quantifiable mean profiles and

fluctuating quantities.

ARTICLE IN PRESS

Fig. 2. Vertical in-plane vorticity oz revealing three wake structures for towed-propelled bodies: in (a) when the towing speed is

different from the momentumless speed, in (b) when they are exactly equal, and in (c) for the same conditions as (b) but with a small

angle of yaw. The color bar extremes are scaled at 0:02; 0:04 and 0:02Ub=D, respectively.
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3.2. Mean flow

Using the Reynolds decomposition defined in Section 2.2, mean profiles can be plotted, for 4oNto300, and are

shown in Fig. 3. As can be seen in Fig. 3(a), these mean profiles are antisymmetric, and remain so throughout the

measurable lifetime of the wake. This is in contrast to profiles of wakes in the momentum-regime, which can be

described by Gaussian distributions. For propelled bodies at an angle of yaw, the resultant wake can be pictured as a

linear combination of a drag wake with mean negative velocity and a thrust jet of mean positive velocity. As shown in

Fig. 3(b), for increasing angles the negative peak (due to the drag) increases, and while the total momentum in the wake

is zero for a ¼ 20, there is a small net momentum at a ¼ 50. The tow speed was not increased for each angle, even

though it would correct for the increase in drag, because it would substantially increase the number of runs to yield one

usable experiment. For increasing a, as shown in Fig. 3(b), the defect amplitude also increases though the direct

correspondence to a is difficult to ascertain.

The profiles of hUi=Ub can be described as odd functions of y=D, whose maximum amplitude is

U1 ¼ maxðhUiÞ �minðhUiÞ and inner wake width is L1 ¼ ymax � ymin, where ymax is the y=D position of the maximum

value of the profile and ymin the position of the minimum.

The evolution of U1 and L1 as a function of Nt are plotted in Fig. 4, re-scaled with F to be comparable with previous

data in the literature. The re-scaling is needed in the momentum-regime to collapse data with varying F. In Fig. 4(a),
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L1 is seen to grow with Nt at a rate similar to the universal decay law for momentum wakes, defined as

L1

Dmom
F�0:35 ¼ 0:275ðNtÞ0:35, (1)

where Dmom ¼ D
ffiffiffiffiffiffiffiffiffiffi
cd=2

p
and plotted as a thick dashed line. cd is the drag coefficient for the body with no stratification

and can be looked up in reference texts; its use is appropriate at moderate to high F when the drag determined by the

near wake is not strongly influenced by stratification. Here L1 agrees well with the momentum case (the discrete jumps

in L1 are caused by the finite resolution of the original gridded data, which have not been further interpolated), and no

dependence on angle is apparent, which is reasonable at least for small angles.

U1 however, plotted in Fig. 4(b), shows a clear dependence on a. The decay law for the momentum-regime is shown

with a thick dashed line, defined by

U1

UB

F2=3 ¼ CðNtÞ�0:76 (2)

with C ¼ 6:6. In the asymmetric regime, this simple model also predicts U1 if we take CðaÞ ¼ að0:0055� 0:0005Þ. This
relationship is plotted in Fig. 4(b) for a ¼ 2�; 3�; 5�, and agrees quite well with the experimental data in the sense that the

ad hoc magnitude correction appears good and there are no systematic deviations from the straight lines over the three

angles considered. Direct proportionality apparently occurs at small angles, but obviously breaks down theoretically at

a ¼ p=2, and most probably earlier in experiments due to a more complex 3-D flow structure.
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3.3. Fluctuating quantities

In a turbulent flow, the cross-fluctuations of velocity can be related to the mean shear by

hu0v0i ¼ nT
qU

qy
, (3)

where nT is the turbulent eddy viscosity. The cross-fluctuation profiles are plotted in Fig. 5(a), and do seem proportional

to the derivative of the mean profiles plotted in Fig. 3(b). The three peaks of fluctuations align with the three areas of

maximum slope of the mean profile, and the signs are consistent. This supports the idea that the antisymmetric wake is

also self-preserved, and diffuses by the action of the cross-fluctuations of velocity hu0v0i, themselves driven by the mean

shear qU=qy. This regime, just as the drag or momentum-regimes, may therefore be described under the assumption of

a constant eddy viscosity nT . One can define a turbulent Reynolds number relating the mean flow magnitude to the

cross-fluctuations magnitude,

Rt ¼
jU1jL1

nT

¼
U2

1

hu0v0imax

, (4)

which in turn provides a check for the constant eddy-viscosity assumption. The results in Fig. 5(b), show Rt to be at best

weakly dependent on a, though the values are scattered. Overall a constant Rt approximation is reasonable for the full

range, and very good after Nt ¼ 100. A mean value of the turbulent Reynolds number for ap5� lies around

Rt ¼ 25� 20. For nonpropelled body experiments, Meunier and Spedding (2004) found a similar value of Rt ’ 15, and

concurred that it may not be considered constant until after Nt ¼ 100.

As noted in Spedding et al. (1996) for the case of a towed sphere, the turbulent kinetic energy in the inner wake

q ¼ hu02 þ v02i1=2max, can be expected to scale as

q

Ub

F2=3
ðNtÞ�2=3 (5)

for self-similar evolution. The averaged profiles of quadratic fluctuations are plotted in Fig. 6(a). They are wedge-

shaped, with a single peak in the center of the wake. The peak value can be used to compare the decay of the turbulent

kinetic energy with the expected power-law decay rate for a self-preserved wake. Both parts of Eq. (5) are plotted in

Fig. 6(b), and agree well for NtX80.

4. Discussion and conclusions

The wakes of propelled bodies in stratified fluids have previously been quantified both in the momentum and

momentumless regimes, for axisymmetric conditions and now with an angle of yaw. At nonzero angles of yaw, the

wakes are simpler to predict than for a ¼ 0.

The mean velocity profile is antisymmetric and decays stably. It can be described fully by L1 and U1 as a function of

a. Both the cross-fluctuations of velocity and the kinetic energy show that some theory of self-preserved wakes is

applicable, at least for NtX100. Since the antisymmetric profile can contain some momentum, the transition from a

Gaussian momentum wake to an asymmetric zero-momentum wake is smooth, unlike for a ¼ 0 as shown by Meunier

and Spedding (2006), though the asymmetric profile is quickly overtaken by the drag away from the zero-momentum

point.

This work provides further evidence that wakes of submerged bodies will almost always be different from those

discovered for the exactly momentumless case. It is rare that a body will travel at exactly zero degrees angle of

attack, unless the specified route is exactly aligned with the mean flow, or unless the mean flow is negligible (and

uniform, and steady). Moreover, almost any navigation or turning manoeuvre will put the flow into the small yaw angle

regime described here. Thus, the family of robust scaling relationships for initially turbulent bluff-body wakes is

expanded by those found in the small yaw angle regime, and they can be considered applicable to most practical

situations.
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A general model is described for drag wakes in a linearly stratified fluid, based on the
self-preservation of the flow. It is assumed that the buoyancy-controlled self-similar wake expands
in the horizontal direction due to turbulent diffusion and in the vertical direction due to viscous
diffusion. The mean characteristics of the wake �height, width and velocity defect� are analytically
derived and show good agreement with existing data from experimental and numerical results.
Moreover, the three regimes previously found in the literature that characterize different dynamical
phases of the wake evolution are recovered, and two new regimes are found. The model allows for
prediction of characteristic length and velocity scales at the high Reynolds numbers of large-scale
applications of geophysical and naval origin. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2361294�

I. INTRODUCTION

Research on stratified wakes has both meteorological
�flow over islands, mountains or sea-mounts� and naval ap-
plications �submerged bodies�. In each case, the Reynolds
number �Re=UBD /�, for an object of diameter D in a uni-
form freestream UB� is several orders of magnitude higher
than obtained in both laboratory experiments and numerical
simulations. By contrast, the appropriate internal Froude
number �F=2UB /ND, for a fluid of buoyancy frequency
N=�−�g /����� /�z�, which ranges from 10−1 to 103, can be
readily obtained experimentally and numerically. At suffi-
ciently large values of Reynolds number and Froude number,
the initial �near� wake is fully turbulent in all three direc-
tions. Chomaz et al.1 found the necessary criterion on F to be
F�4.5, and a minimum value of F�4 was shown in scaling
arguments2 and later in experiments,3 where F and Re were
varied independently. In Ref. 4, it was demonstrated that all
wakes for 4�F�240 have similar scaling behavior, pro-
vided Re is also sufficiently large �an approximate minimum
value of 5�103 was suggested�. Physically, the reason for
the similar scaling is that since local wake velocities de-
crease, while local length scales increase, then a local Froude
number based on these scales will decrease so that it be-
comes of order 1, and thus the late stages of even a weakly
stratified wake are eventually dominated by buoyancy ef-
fects.

The observations were consistent with previous experi-
ments, simulations and analysis of decaying stratified turbu-
lence, where buoyancy forces start to act at Nt�1 when the
local dynamics experience the onset of buoyancy control
�see Riley and Lelong5 for a review�. In experiments on self-
propelled slender bodies, Lin and Pao6 showed that buoy-
ancy begins to affect the flow at Nt=2, suspending the ex-

pansion of the wake in the vertical direction. This was
followed by the emergence of large coherent structures as
shown by dye pictures, which also showed that their aspect
ratio �horizontal length scale compared with vertical extent�
was large. The origin of these structures was later traced7 to
Kelvin-Helmholtz free shear-layer instabilities generated at
the edge of the near wake and the gradual suppression of
vertical motions by the density gradient ensures that only
these so-called pancake vortices persist into the late wake.

Reference 4 found that two different regimes could be
distinguished in the velocity field of the intermediate and late
wakes. Initially, decay rates of horizontal mean velocity were
found to be surprisingly low, with U��Nt�−0.25 �instances
where the defect velocity even increases have been
reported8�. There is then a transition to a steeper decay rate
with exponents of approximately −0.76, with the transition
time apparently constant in buoyancy time scales of
Nt�50. �While this transition time appeared to be indepen-
dent of F for the towed sphere experiments, a survey of the
literature suggested large variation from Nt=10 to Nt=180 in
the transition time between different laboratory or numerical
experiments.� The subsequent steeper decay rate was main-
tained for all measurable times up to Nt�2000. The preced-
ing intermediate regime is one where vertical velocities
gradually become small, associated with radiation of internal
waves from the wake to the ambient, and, it was conjectured,
with conversion of potential to kinetic energy close to the
wake center. This adjustment period was termed the nonequi-
librium regime �NEQ�. The subsequent, late wake is charac-
terized by the relative insignificance of vertical velocities
and largely horizontal motions account for almost all the
remaining kinetic energy in the flow. The flow field however,
is not two-dimensional �2D� �and its decay rate is not the
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same as for a two-dimensional wake, which would have a
−0.5 exponent� because there is significant variability in the
vertical, and the horizontal vorticity marking the shearing
between neighboring layers is stronger than the vertical
vorticity.9 This late wake regime was named the quasi-2D, or
Q2D regime.

During both NEQ and Q2D, the wake width grows as
Nt1/3 �or x /D1/3�, which is the same as would occur in a fully
three-dimensional, unstratified turbulent wake. Since growth
rates of vertical scales are very slow during NEQ, and since
the stratified wake does not grow laterally faster than its
three-dimensional �3D� counterpart, momentum conservation
requires that NEQ is associated with the observed low decay
rates. Finally, it was argued in Ref. 4 that the very early wake
at moderate to high F would most likely evolve with buoy-
ancy forces playing little part, and thus a sequence of
3D-NEQ-Q2D was identified as characterizing stratified
wakes.

The basic phenomenology of the NEQ and Q2D regimes
has been replicated also in numerical simulations,10,11 but
agreement on vertical length scales has been more elusive.
Chomaz et al.12 found that the wake height increases very
rapidly in the late wake, and a transition from almost zero
growth to rapid growth �but different growth rates than in
Ref. 12� of vertical length scales was reported in further
experiments by Spedding.9 Numerical simulations appeared
to share similar features,10,11 but the setting of the initial
vertical length scales according to F was never resolved as
the simulations would typically be run for only one finite
value of F. This vertical growth of the wake is not yet well
understood and precise measurements have been difficult to
obtain, both experimentally and numerically.

The experimental results were obtained for the particular
case of the wake of a sphere, but were successfully extended
to the general case of other bluff bodies,13 by considering the
momentum thickness as the proper length scale rather than
the body diameter. For an axisymmetric bluff body, the mo-
mentum thickness is defined as Dm=D�cD /2, where cD is the
drag coefficient for the bluff body in an unstratified fluid. In
fact, the very same wake scalings could be extended to al-
most all wakes generated by propelled bluff bodies14 �includ-
ing all those of practical interest�, if the momentum thickness
is defined as Dm=D�cD /2�1−UC

2 /UB
2 , where UC is the par-

ticular velocity of the self-propelled bluff body for which the
wake becomes momentumless. The relevant nondimensional
parameters become a momentum Reynolds number Rem

=UBDm /� and a momentum Froude number Fm=2UB /NDm.
The empirical scaling laws describing the velocity defect

and wake width as developed in Refs. 3, 4, 13, and 14 apply
to any bluff body wake or jet in a uniform, stable density
gradient. However, they remain empirical findings, linked by
incomplete arguments and a coherent theoretical framework
has not been proposed. Moreover, compared with practical
applications where Reynolds numbers are usually in the
range of 106–108, the limited range of Re of the experiments
upon which they are based makes the extrapolation of these
scaling arguments to higher Re somewhat speculative. The
laboratory experiments show no significant Re dependence

over Re� �5�103 ,2.8�104� and the largest Re in numerical
experiment was 105, indicating that the results might at least
be only weakly Re dependent. On the other hand, high-Re,
high-resolution, numerical simulations of a simple stratified
flow geometry15 have indicated that as Re increases, more
small-scale instabilities of the vertical shear layers develop,
becoming a continuous source of small-scale turbulence, and
raising the idea that at sufficiently high Re, the large-scale
coherent structures seen in laboratory experiment may never
develop, or survive. However in the range of Rel

� �800,6400�, where l is a numerically imposed initial
length scale of the Taylor-Green vortices, the large scales
were only weakly dependent on Rel, a finding that is consis-
tent with the increased fine structure of the higher Re wake
simulations of Dommermuth et al.,11 but which still pro-
duced large-scale structures in the late wake.

In this paper, some scaling relations are derived, based
on the evolution of self-similar solutions of reduced equa-
tions of motion for stratified momentum wakes with high
Reynolds number and high Froude number. Analytical re-
sults will be derived for the horizontal and vertical length
scales, and for the mean and turbulence profiles. The agree-
ment with existing data from laboratory and numerical ex-
periment will be shown to be good, and the scaling behavior
for high Reynolds number can be clearly shown.

II. A SELF-PRESERVING THEORY

A. General equations

We will suppose that the fluid is linearly stratified with a
constant buoyancy frequency N and a density �0 at the bluff
body’s height, and write the Navier-Stokes equations in the
Boussinesq approximation

�u

�t
+ �u · ��u =

− �p

�0
+ ��u +

�

�0
g �1�

together with the incompressibility condition

�u = 0 �2�

and the equation for the evolution of the density

��

�t
+ u · �� = ��� . �3�

Since the flow is stationary in the frame of reference moving
with the bluff body, U=U�y ,z�, the velocity can be decom-
posed as a temporal mean and a fluctuating part: u=U+u�.
The mean velocity is equal to the bluff body velocity UB in
the far field, and the wake has a defect velocity of the order
of U0, as indicated schematically in Fig. 1. We then follow
the standard analysis for the turbulent wake in a nonstratified
flow, found for example in Tennekes and Lumley.16 By av-
eraging the streamwise component of the momentum equa-
tion �1�, one arrives at
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U
�U

�x
+ V

�U

�y
+ W

�U

�z
+

�	u�2

�x

+
�	u�v�


�y
+

�	u�w�

�z

= −
1

�0

�P

�x
+ ��U . �4�

Note that on this component of velocity, stratification effects
are in fact absent, except insofar as they would lead to non-
zero mean values of 	u�w�
. This is a consequence of assum-
ing w to be small at late times, and thus retaining only the
streamwise momentum components. Now, following Ref. 16,
we assume that the flow is nearly parallel, so the length scale
l in the y and z directions is smaller than the length scale L in
the x direction. Since the focus is on late wake evolution, we
may also assume that the velocity amplitude U0 is much
smaller than the tow speed UB, which is valid at least far
from the bluff body. The second, third, and fourth terms in
Eq. �4� can therefore be neglected since they are of order
U0

2 /L, which is U0 /UB smaller than the first term. The pres-
sure term can be shown to be of the order of �	v2
 /�x by
inspection of the leading order terms in the cross-stream mo-
mentum equation, which are again negligible with respect to
the first term. At high Reynolds numbers, the viscous terms
could be entirely neglected at early stages, but will be re-
tained because they will reappear later, as the local Reynolds
number decreases in time. Here though, the term �2U /�x2 is
small compared with �2U /�y2 and may be omitted. Finally,
the mean velocity U can be replaced by UB in the first term,
which leads to a simple form for the streamwise momentum
equation

UB
�U

�x
= −

�	u�v�

�y

−
�	u�w�


�z
+ �� �2U

�y2 +
�2U

�z2 � . �5�

It has been shown experimentally that mean profiles are
close to Gaussian in both nonstratified wakes16 and also in
stratified wakes,3,4 and an example of the latter is shown in
Fig. 2�a� from Ref. 17. Thus, we may search for Gaussian
solutions to Eq. �5�, of the form

U = UB − U0 exp�−
y2

2Ly
2 −

z2

2Lz
2� , �6�

where the velocity defect U0, the wake width Ly and height
Lz are functions of x only. Other solutions might be found,18

but this Gaussian solution is convenient since it is the sim-
plest self-similar solution for a momentum wake.

Under the Boussinesq approximation, the momentum
flux J=�UB�U−UB�dydz is equal to �0UB�U
−UB�dydz. By integrating �5� on a transverse section, the
mean momentum flux can be shown to be independent of the
position x and equal to the drag force FD=cD�0UB

2�D2 /8,
where cD is the body drag coefficient. Thus, by defining the
momentum thickness as Dm=D�cD /2, the integration of �6�
leads to a relation between U0, Ly and Lz:

U0LyLz = UBDm
2 /8. �7�

B. Initial three-dimensional regime

At high Froude numbers, the stratification is negligible
in the early stages and the flow may be expected to be three-
dimensional and the mean velocity to be axisymmetric. It is
common practice to suppose that the Reynolds stress is pro-

FIG. 1. Schematic of the wake created by a bluff body of diameter D
translated horizontally at UB in a linearly stratified fluid.

FIG. 2. Profile of �a� the mean velocity U and �b� the Reynolds stresses
	u�v�
 and 	u�w�
 for a sphere wake at Nt=20 for F=4 and Re=5�103. The
data come from experimental results by Ref. 17 in the horizontal ��� and
vertical centerplane ���. The solid lines show a Gaussian profile for the
mean velocity and the derivative of a Gaussian profile for the Reynolds
stresses.

106601-3 Self-preservation in stratified momentum wakes Phys. Fluids 18, 106601 �2006�

Downloaded 23 Oct 2006 to 147.94.56.208. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



portional to the mean shear �	u�v�
=−�3�U /�y�, with an
eddy viscosity �3 independent of y and z in the 3D regime.
Partial experimental support for this notion has been found
in13,14 for stratified wakes. Based on the mixing length
model, or based on dimensional grounds, the eddy viscosity
should be proportional to U0Ly, which defines a turbulent
Reynolds number R3=U0Ly /�3 for the 3D regime. Bevilaqua
and Lykoudis19 found

R3 = 4

in the case of the sphere, for the same definitions of the mean
profile, and this value will be used in the following.

We will also assume that the Reynolds number is suffi-
ciently high to neglect the viscous terms in the 3D stage �it
will be shown to be true when F	Re3�. The momentum
equation thus becomes a standard diffusion equation,

UB
�U

�x
=

U0Ly

R3

�2U

�y2 +
U0Lz

R3

�2U

�z2 , �8�

except that the diffusion coefficient U0Ly /R3 is now x depen-
dent. Imposing a Gaussian form of the mean profile �6� into
�8�, leads to

U̇0

U0
+

y2

Ly
2

L̇y

Ly
+

z2

Lz
2

L̇z

Lz
=

U0

R3LyUB
� y2

Ly
2 − 1�

+
U0

R3LzUB
� z2

Lz
2 − 1� , �9�

where the dot denotes the derivative with respect to the

downstream distance �U̇0=dU0 /dx�.
The Gaussian form introduced in �6� is a solution of the

Navier-Stokes equations if and only if Eq. �9� is valid for any
y and z. Since this equation only contains three types of
terms �terms in y2, terms in z2, and terms independent of y
and z�, �6� is a solution if and only if their three coefficients
vanish, which leads to three independent equations:

L̇y =
U0

R3UB
, �10�

L̇z =
U0

R3UB
, �11�

U0

U0
= −

U0

R3LyUB
−

U0

R3LzUB
. �12�

Since there are three variables U0, Ly, and Lz, a Gaussian
solution can exist. By summing �10�/Ly+�11�/Lz+�12�, we re-
cover that U0LyLz is constant, as was found using the mo-
mentum flux equation �7�. Introducing this condition �7� into
�10� and �11�, we also recover the solution given by Ten-
nekes and Lumley:16

Ly = Lz = Dm� 3x

8R3Dm
�1/3

, �13�

U0 =
UB

8
� 3x

8R3Dm
�−2/3

. �14�

This solution is valid when the local Froude number �de-
fined as U0 /NLy� is larger than one, which is met only close
to the bluff body. Indeed, this local Froude number decreases
as 1/x and reaches unity for xI /Dm=R3Fm /6�0.66Fm. This
transition distance is in good agreement with previous ex-
perimental results,4,6 where it was shown, or inferred, that
the wake is 3D until Nt�2; i.e., until xI /Dm=Fm in our units.
We may also note that since the form of the reduced equa-
tions �5� and the presumed existence of self-similar solutions
�6� requires that x /D is large, then the simultaneous require-
ment of large x /D and large local F limits this model system
to flows with large initial F. Only then can a self-similar flow
be imagined before the transition distance, xI. In fact, the
exact value of this transition distance very weakly influences
the late stages and we will assume that the transition occurs
for xI /Dm=Fm. The vertical width of the wake at this point is
thus

Lv = Dm�3Fm

8R3
�1/3

. �15�

This classical solution, with no stratification effects, will now
be extended into the stratified regime, which occurs for x
larger than xI.

C. Stratified regime

In the late wake, vertical velocity fluctuations eventually
subside as one component of the wake disturbance propa-
gates away in the form of internal waves,17 leaving residual
motions whose time evolution is much slower.20,21 Conse-
quently, the vertical Reynolds stress 	u�w�
 becomes much
smaller than the horizontal Reynolds stress 	u�v�
 in the far-
wake, strongly stratified regime. The experimental results of
Fig. 2�b� compare these two terms at Nt=44 and show that
the first term is about an order of magnitude smaller than the
second. As a convenient simplifying assumption, valid at
least for the far wake, we will therefore neglect the vertical
Reynolds stress in the averaged momentum equation �5�.
However, we should note how neglecting 	u�w�
 removes
much physics from this intermediate regime. All contribu-
tions from internal wave motions which lead to significant
peaks in experimental measurements of 	u�w�
 as late as
Nt=15 �see Ref. 17� are omitted, as are any production terms
where energy is drawn to the mean flow from the turbulent
motions. Anisotropy of the dissipation rate tensor and of the
velocity and vorticity energy balance has been noted and
discussed in simulations of stratified turbulence22,23 and spe-
cifically for direct numerical simulations of stratified
wakes.10,11 The analysis that follows must be considered one
where such intermediate dynamics are ignored, valid at the
latter stages of the wake evolution only when w�0 and
	u�w�
	 	u�v�
. It will prove instructive to see how much �or
how little� of the mean flow dynamics can be found with this
strong simplification.

We may recall that one of the purposes of this model is
to find simplified expressions that both respect current results
from laboratory and computational work, and at the same
time give explicit predictions on how decaying turbulence
scales at the much higher Reynolds numbers characteristic of
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ocean conditions. Higher Reynolds number simulations are
just now becoming available, and some �see Ref. 15� raise
the question as to whether the pancake vortices may be un-
stable with respect to the mean shear. �See also Fig. 5�c� of
Waite and Bartello24 for small-scale instabilities at moderate
stratifications.� These instabilities �Kelvin-Helmholtz� could
lead to nonzero vertical Reynolds stresses, and if this is
shown to be the case then the strong assumption of 	u�w�

	 	u�v�
 will need to be modified.

The turbulent motion in the horizontal direction will
continue to be modeled as a turbulent diffusion and so we
will continue to assume that the horizontal Reynolds stress is
proportional to the mean shear �	u�v�
=�2�U /�y�, consistent
with available experimental evidence �see Fig. 2�b��. The
eddy viscosity is therefore now characterized by a two-
dimensional Reynolds number �R2=U0Ly /�2�. It is two-
dimensional because the suppression of vertical velocities by
the stratification at late times �Nt�40, for example� has al-
lowed us to assume that 	u�w�
	 	u�v�
. This flow regime is
denoted “BC” for buoyancy-controlled, where the effect of
the stratification is supposed to be sufficiently strong that the
averaged equations of motion in a horizontal plane have no
explicit buoyancy terms in them. Note that by neglecting the
buoyancy terms entirely, this approach differs from the usual
scaling expansion where F	1 �see, e.g., Refs. 20, 25, and
26�.

In late wakes of towed bluff bodies in stratified fluids, R2

was found to be close to 15, regardless of initial conditions
�within 30%�,13 so this numerical value is retained in the
following. By neglecting the vertical Reynolds stress while
retaining the horizontal Reynolds stress in �5�, we reach
again a standard diffusion equation for the buoyancy-
controlled flow:

UB
�U

�x
= �U0Ly

R2
+ �� �2U

�y2 + �
�2U

�z2 . �16�

As in the 3D regime, a Gaussian solution is introduced �6�
into �16�, which leads to an equation with only terms in y2,
terms in z2 and terms independent of y and z. The Gaussian
form �6� is thus a solution if and only if the three coefficients
of these terms vanish, corresponding to the three following
equations:

Ly =
U0

R2UB
+

�

UBLy
, �17�

Lz =
�

UBLz
, �18�

U0

U0
= −

U0

R2LyUB
−

�

UBLy
2 −

�

UBLz
2 . �19�

As before, the conservation of the momentum flux is recov-
ered �7� by summing �10�/Ly+�11�/Lz+�12�. The equation for
the vertical wake width �18� is characteristic of a laminar
diffusion and can be integrated by setting initial conditions
Lz=Lv at x /Dm=Fm to arrive at

Lz =�Lv
2 +

2Dm
2

Rem
�x/Dm − Fm� . �20�

This solution is plotted in Fig. 3�a� as a dotted line for
x /Dm
Fm, together with the nonstratified solution �13� for
x /Dm�Fm. For small x /D, Lz�Lv in Eq. �20� and vertical
growth is at first negligible. The second term eventually be-
comes larger than Lv

2 �i.e., at sufficiently large x /D�, and
when these two terms in the square root of Eq. �20� are of
equal magnitude, a second transition point can be identified
at a downstream distance of the order of the Reynolds num-
ber:

xII/Dm =
Rem

2
�3Fm

8R3
�2/3

. �21�

The wake height then increases as �x due to viscous diffu-
sion as the wake enters the quasi-2D regime �Q2D�. It can be

FIG. 3. Evolution of �a� the wake height Lz �dotted line� and wake width Ly

�dash-dotted line�, and of �b� the velocity defect U0, given by the model; see
Eqs. �20�, �22�, and �7�, respectively. The thin solid lines correspond to the
asymptotic predictions for each stage. The thin dashed line corresponds to
the standard theory for a homogeneous fluid �13� and �14�. Fm=20 and
Rem=50�103.
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noted that for higher Reynolds numbers, the NEQ and
buoyancy-controlled �BC� regimes will last longer. Since the
NEQ regime in particular is associated with quite rich dy-
namics and complex interactions between internal waves and
turbulence, the implication is that at full scale, these complex
fields will assume even more importance in turbulence evo-
lution in a stratified ambient. The possible consequences in
geophysical and naval applications will be discussed in the
conclusion.

To calculate the horizontal wake width, we introduce �7�
into �17�, which leads to

LyL̇y =
Dm

2

8LzR2
+

�

UB
.

This can be integrated by introducing the expression of the
vertical wake width �20�, with initial conditions Ly =Lv at
x /Dm=Fm:

Ly = �Lv
2 +

DmRem

4R2
��Lv

2 +
2Dm

2

Rem
� x

Dm
− Fm� − Lv�

+
2Dm

2

Rem
� x

Dm
− Fm��1/2

. �22�

The solution is plotted in Fig. 3�a� as a dash-dotted line. In
the BC regime �xI�x�xII�, the horizontal wake width in-
creases asymptotically �when Fm	x /Dm	Rem� as
�x /LvR2Dm /2, with the same power law that was found
theoretically for a two-dimensional nonstratified wake.16

This regime is entered only after passing through the NEQ
phase, which has been discovered experimentally.4,8 It ap-
pears here not as a regime defined explicitly, but as a tran-
sient between 3D and BC stages �note however, that this is
simply a consequence of modeling decisions made initially�.
This transient stage lasts until x /Dm=50Fm, independent of
the Reynolds number. The BC regime ends at xII defined
previously, giving rise to the quasi-2D regime �Q2D�, for
which the wake width increases more slowly as x1/4:
Ly ��Remx /2Dm�1/4Dm /�2R2. This approximation can be ob-
tained by a Taylor expansion of �22� assuming xI	xII	x.
Finally, at very late stages, a new regime appears, which we
denote the viscous 3D regime �V3D�, since now the wake
width also increases by viscous diffusion as �2�x /UB. This
regime starts for downstream distances larger than xIII, de-
fined as

xIII/Dm =
Rem

3

32R2
2 , �23�

which is obtained when the second and third terms inside the
square root of Eq. �22� are equal; i.e., when turbulent diffu-
sion in the horizontal is accompanied by equal or greater
molecular diffusion. The flow is expected to be laminar and
axisymmetric, since the horizontal and vertical wake widths
become equal again. It was assumed in the model that the
stratified effects would occur before the viscous effects,
which is valid if xI	xIII; i.e., when F	Re3, which is easily
met even for moderate Reynolds numbers.

Finally, the theory gives a prediction for the velocity
defect U0, by introducing �20� and �22� into �7�:

U0 =
UB

8
� Lv

2

Dm
2 +

2

Rem
� x

Dm
− Fm��−1/2

�� Lv
2

Dm
2 +

Rem

4R2
�� Lv

2

Dm
2 +

2

Rem
� x

Dm
− Fm� − Lv�

+
2

Rem
� x

Dm
− Fm��−1/2

. �24�

This solution is plotted in Fig. 3�b�. In the BC stage,
the velocity defect decreases as UBDm

�R2/xLv /4. This state
is reached after a transient �at least in this framework� stage
�the NEQ regime� in which the velocity decreases very
slowly. The BC regime is followed by the Q2D regime, in
which the velocity defect scales as x−3/4: U0

��R2�2Rem�1/4�x /Dm�−3/4UB /8. This regime ends at xIII /Dm,
and the wake then enters the viscous 3D regime �V3D�,
in which the velocity defect decreases even faster:
U0��UBDm� / �16Remx�. This regime has never been ob-
served experimentally as it occurs for very far downstream
distances.

The theory outlined above gives a universal prediction
for wake width, height and velocity defect in a stratified
wake given by �22�, �20�, and �24�. The model recovers the
approximate scaling behavior of the experimentally deter-
mined 3D-NEQ-Q2D progression from fully three-
dimensional to quasi-two-dimensional �strongly stratified�
flow. It also predicts a Reynolds number dependence in tran-
sition lengths between these regimes, and in particular, the
NEQ regime extends into a strongly buoyancy-controlled
�BC� regime, where the dominating influence of the stratifi-
cation is to constrain the flow to evolve in two-dimensional
layers, when the stratification then, paradoxically, has no di-
rect influence. At the end of the Q2D regime there appears a
viscous 3D regime �V3D�, in which the wake becomes lami-
nar and grows in all directions by diffusion only. Neither the
BC nor the V3D regimes has been observed yet, because
experiment Reynolds numbers and observation times have
not been large enough. The model predictions can now be
compared with laboratory and numerical experiment for spe-
cific values of the Reynolds and Froude number.

III. COMPARISON WITH EXPERIMENT

A. Variations with the downstream distance

The mean characteristics of the wake predicted by the
model were plotted in Fig. 3 at a high Reynolds number, and
for a large range of downstream distances. This was designed
to define clearly the different regimes and to show their
asymptotic behaviors. We will now focus on a common
Froude number and Reynolds number pair encountered in
the literature, to compare the model to data from both labo-
ratory and numerical experiment. A momentum Froude num-
ber of 8.89, and a momentum Reynolds number of 2250
correspond to F=4 and Re=5000 for the canonical towed-
sphere example, allowing comparisons with experimental re-
sults from three different facilities4,8,12 and with numerical
simulations that used three different methods.10,11,27
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First, we compare the horizontal wake width Ly in Fig. 4.
All experimental and numerical data fall on the model within
30%. The model is thus seemingly in good agreement with
the data, even though it does not contain any fitting param-
eter. Note, however, that the experimental growth rates �over
4�F�240 and 4.7�Re�10.6�104� have a constant
power law exponent of 0.35±0.03, which is different from
both the early �NEQ/BC: x1/2� and later �Q2D: x1/4� time
exponents of the model. The reason for the apparent agree-
ment in Fig. 3 is Re is low enough for the NEQ and BC
regimes to be barely distinguishable. The mixed result of
exponents between the two �0.5 and 0.25, respectively�,
combined with the initial phase of Q2D in the theory gives a
result that looks like the data. The prediction is that if Re is
high enough �for example, in a field measurement�, then the
separate regimes will be observed.

The vertical wake height Lz is compared in Fig. 5. This
measurement is hard to achieve experimentally, and there is
an observed dependence of initial wake height on F, which is
not taken into account in this figure. The results included
here of Chomaz et al.12 were re-analyzed and plotted by
assuming that the mean profiles were Gaussian so as to cal-
culate an equivalent quantitative value of the wake height.
Although these particular results do not all fall within the
agreement of the other experimental data �at least at moder-
ate x /D�, the slope is in fact quite consistent with a purely
viscous diffusion growth process, and not significantly accel-
erated, as seemed to be the case when shown in their original
form �see Ref. 12, Fig. 9�. In general, both numerical and
experimental results show a large plateau, followed by a
steep increase at later stages. This corresponds to the NEQ
and BC regimes in which the wake height is constant, fol-
lowed by the Q2D regime, in which the wake height in-

creases by viscous diffusion as �x. This basic phenomenon
therefore requires no more complex an explanation than ini-
tial suppression of vertical growth by stratification, followed
by viscous diffusion in the vertical at later times, as specified
in the model problem. However, it is also important to note
that considerable differences persist at late times �Q2D�, and
that any F dependence in NEQ/BC remains unaccounted for
in this plot.

The mean velocity defect U0 is compared in Fig. 6. In
experiment �dotted line in Fig. 6�, the initial decay rate is
imagined to be x−2/3 as for an unstratified wake, followed by
the nonequilibrium period when measured decay rates are

FIG. 4. Time evolution of the wake width Ly for a sphere at Fm=8.9 and
Rem=2.25�103. The model predictions �solid line� are compared with the
experimental results from Ref. 4 �dotted line�. Numerical simulations �open
symbols� from Ref. 11 ��� for Fm=8.9, Rem=4.5�103, from Ref. 10 ���
for Fm=22.2, Rem=4.5�103 and from Ref. 27 ��� for Fm=8.9, Rem=2.25
�103 are also shown. The uncertainties in the experimental results �Ref. 4�
is of the order of 25%.

FIG. 5. Temporal evolution of the wake height Lz for Fm=8.9 and Rem

=2.25�103. Same caption as in Fig. 4. Experimental results from Ref. 12
for Fm�8.9 and Rem�2.25�103 are also shown by � symbols. The un-
certainties in the experimental results �Ref. 4� are of the order of 25%.

FIG. 6. Time evolution of the mean velocity defect U0 for Fm=8.9 and
Rem=2.25�103. Same caption as in Fig. 4. Experimental results from Ref.
8 for Fm=13.3 and Rem�3�103 are also shown as � symbols. The uncer-
tainties in the experimental results �Ref. 4� is of the order of 40%.
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significantly lower x−0.25±0.04.4 �Measurements by Bonnier
and Eiff8 in fact show a possible increase in U0 at early-
NEQ, as shown by the crosses for one of their experiments.�
In the model, NEQ is supposed to last from x /Dm=Fm to
x /Dm�50Fm. In experiment, NEQ was found to begin at
Nt�2 and end at Nt�50 and the equivalent x /D varies with
F �as x /D=Nt F/2�. U0 then decreases more rapidly, as
x−0.75, which is characteristic of the Q2D regime: in experi-
ments, the decay exponent was found to be −0.76±0.12. The
agreement between model predictions �solid line� and labo-
ratory �dotted line, crosses� and numerical �open symbols�
experiment is good given that all numerical and experimental
measurements fall within 50% of the model prediction.
Again, the NEQ and BC regimes of the model are very close
at this Re, and the net effect is to mimic the experimental
results reasonably well. The collapse of points in the Q2D
regime is also good. Figure 6 can be viewed as a conse-
quence of momentum conservation, given Figs. 4 and 5, and
just as any F dependence is omitted from Fig. 5, so it is also
absent in Fig. 6.

The following section considers the F and Re depen-
dence in the model and experimental data in more detail.

B. Dependence on the Froude and the Reynolds
number

By varying the Froude number over almost two decades,
Spedding4 showed that the velocity defect scales as
�Nt�−0.76 F−2/3 at the beginning of the Q2D regime. This de-
pendence on the Froude number can be recovered theoreti-
cally by looking at the velocity defect in the BC regime,

where U0�1/�xLv��Nt�−1/2 F−2/3. The dependence differs
slightly in the Q2D regime �U0��Nt�−3/4 F−3/4�, but such
variations might be difficult to distinguish in practice.

The primary feature of stratified wakes is that the wake
height saturates at a specific vertical length scale Lv, which
can be readily deduced from experimental and numerical re-
sults by looking at the value of the initial plateau of the wake
height. These values are compared in Fig. 7 with the theo-
retical prediction given by Eq. �15�. The model predicts that

Lv scales as F1/3, while it was found to vary as F0.6

experimentally.9 The discrepancy is perhaps unsurprising,
given the complete neglect of physical mechanisms involv-
ing any correlation of vertical velocities, density field struc-
ture and internal wave dynamics. Further improvements in
the model will be especially important at high Froude num-
ber, for example, where Lv is underestimated by a factor of 2.
Although the numerical simulations show good agreement,
they do not predict the variation of Lv with the Froude num-
ber, since they were always performed at low F. Moreover, it
is far from a trivial matter knowing how a numerical simu-
lation should be initialized with correct initial length scales
where any Lv could be truly claimed to be an independent
outcome of the model, rather than an input.

Finally, we can determine the downstream distance xII at
which the transition between the BC and the Q2D regime
occurs. It is plotted in Fig. 8 as a function of the Froude and
the Reynolds number. While the general dependence of xII as
Rem Fm

2/3 is consistent with the data, for any given Rem or Fm,
the model always overestimates xII, which again shows that
the model might be improved. This might include improved
modeling and/or higher order correction of terms leading to
vertical transport, or some way of accounting for initial con-
ditions whose effect could be felt out to xII. Further experi-

FIG. 7. Variation of the initial vertical wake height with Froude number.
Experimental results ��� are taken from Ref. 9. Numerical results are from
Ref. 10 ���, Ref. 11 ���, and Ref. 27 ���. The solid line corresponds to
Eq. �15�.

FIG. 8. Downstream distance xII of the second transition, between a
buoyancy-controlled �BC� regime and a quasi-2D regime �Q2D�, as a func-
tion of �a� the Froude number and �b� the Reynolds number. Caption as in
Fig. 7. The solid line corresponds to Eq. �21�.
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ments and numerical simulations over a broad range of Re
and run for long times might help to point out ways in which
this can be done.

IV. CONCLUSIONS

The general theory developed here predicts the mean
profile evolution of a drag wake in a linearly stratified fluid.
The model is based on an assumption of eddy viscosity in the
horizontal direction, which allows the mean momentum
equations to be closed by assuming that the horizontal Rey-
nolds stress is proportional to the mean shear. The �constant�
value of the eddy viscosity is chosen from relevant experi-
ments in stratified wakes, and not as an a posteriori fitting
parameter. The evolution of the wake in the vertical is mod-
elled by viscous diffusion alone for Nt
1, which is reason-
able for the moderate Re in laboratory experiments and nu-
merical simulations. In this respect, the approach is
analagous to stratified dipole and turbulence evolution ex-
periments where experimental data were quite closely
matched by numerical models with turbulent and viscous
diffusion in the horizontal and vertical, respectively.28,29 The
averaged equations of motion show that a Gaussian solution
can be found and allow an analytical determination of the
wake height, the wake width, and the velocity defect.

Existing results from the literature for wake height, wake
width, and velocity defect, from both laboratory and numeri-
cal experiment, agree with the theoretical predictions within
50%. The three different regimes found in the literature that
characterize decaying stratified flows �3D, NEQ, and Q2D
regimes� are recovered, and two new regimes are proposed: a
buoyancy-controlled �BC� regime which should be observed
�as distinct from the NEQ regime� at very high Reynolds
numbers, and a viscous 3D regime, which should be ob-
served at very late stages. Note that since the formulation
involves self-similar solutions of simplified equations of mo-
tion, transients at relatively small x /D, such as the accelera-
tion phase noted by Ref. 8, are not accounted for.

These results apply to any self-similar shear flow in a
stratified fluid, where a momentum thickness is defined by
Dm=D�cD /2. Such a model can even be extended to the
majority of cases of self-propelled bodies,14 whenever the
wake momentum balance departs from zero by more than
2%; that will be the case for even small accelerations, when-
ever there is significant wave drag, and whenever the ambi-
ent is nonuniform.

The extension to high Reynolds numbers is of interest to
many practical geophysical and naval applications. Examples
include large-scale submerged bodies and atmospheric wakes
of mountains or oceanic wakes of islands and sea-mounts.
The mean characteristics of the wake are given analytically
by the model in Eqs. �20�, �22�, and �24� and the previous
experimental and numerical results can be extrapolated to
high Reynolds numbers using the similarity laws of the
model.

One of the principal consequences is that the Q2D re-
gime appears later for higher Reynolds numbers �at x /D
=Re F2/3, or Nt=Re F−1/3�. Since the mean velocity decay
rates in the intervening NEQ and BC regime are lower than

in either the surrounding 3D or Q2D regimes, this scaling
behaviour predicts that the high magnitude defect wakes that
have been observed in laboratory experiment should be even
more evident with higher Re. In this regard, the model de-
scribed in this paper bears a certain similarity with another,
spectrally based, theoretical model of localized stratified
turbulence,30 and despite fundamental differences in their
formulation, both models identify a signature of the initial
Re on the intermediate-to-late-time flow dynamics, which
persists for longer times with increasing Re.

The model could be extended to more specialized cases,
such as bluff body wakes with an angle of attack,31 and to the
particular case of exactly momentumless wakes. In both
cases, the mean profiles are not simple Gaussians and it
would be interesting to test other scaling functions.
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The structure of a columnar vortex in a stably stratified fluid is studied experimentally
and theoretically when the vortex axis is slightly tilted with respect to the direction
of stratification. When the Froude number of the vortex is larger than 1, we show
that tilting induces strong density variations and an intense axial flow in a rim
around the vortex. We demonstrate that these characteristics can be associated with a
critical-point singularity of the correction of azimuthal wavenumber m =1 generated
by tilting where the angular velocity of the vortex equals the Brunt–Väisälä frequency
of the stratified fluid. The theoretical structure obtained by smoothing this singularity
using viscous effects (in a viscous critical-layer analysis) is compared to particle image
velocimetry measurements of the axial velocity field and visualizations of the density
field and a good agreement is demonstrated.

1. Introduction
Small intense vortices, characterized by large Froude and Rossby numbers, are

present in both the atmosphere and the ocean. The goal of the present paper is to
determine their structure when the vortex axis is slightly tilted with respect to the
direction of stratification.

In the atmosphere, the dynamics is often governed by large-scale motion induced
by the baroclinic instability of thermal fronts. However, secondary instabilities have
also been evidenced (Neiman, Shapiro & Fedor 1993) and they may lead to the
formation of small intense cyclones (Polavarapu & Peltier 1993; Garnier, Métais &
Lesieur 1996). These vortices are often too small to be described by meteorological
models, but they can be very damaging during strong storms (Lesieur, Métais &
Garnier 2000). Understanding the dynamics of these structures constitutes one of
the motivations of this work. The most intense of these structures are columnar
vortices with large Froude numbers (their maximum angular velocity is larger than
the Brunt–Väisälä frequency of the fluid). We think that the analysis performed in
this paper could provide some information on their dynamics, when their axis is tilted
with respect to the direction of stratification.

Vortices are also observed in the ocean. For instance, they can form close to islands
or near headlands by a barotropic instability of the flow generated by the tide. The
resulting vortices are generally strongly tilted owing to the weak slope of coastal
regions (Pawlak et al. 2003) and it has been argued that this could be the cause of
intense vertical mixing (Farmer, Pawlowicz & Jiang 2002). Here, we shall see that,
if the vortices are sufficiently intense, tilt angle need not be important in inducing
strong vertical displacements.
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The effect of a stable stratification on the dynamics and stability of vortices has
been the subject of numerous works. The inviscid criteria for two-dimensional shear
instability and centrifugal instability are not affected by stratification (see for instance
Hopfinger & van Heijst 1993). However, other instabilities usually active when several
vortices interact are modified: the elliptic instability is stabilized (Kerswell 2002) and
the Crow instability is replaced by a new zigzag instability (Billant & Chomaz 2000)
when the stratification is sufficiently strong. For a single vortex with a large Froude
number, Cariteau & Flór (2003) also reported a new instability characterized by a rim
region of strong vertical mixing, but they did not propose any instability mechanism
(see Cariteau 2005). We shall argue below that this instability was probably due to a
misalignment of the vortex axis with the direction of stratification.

As far as we know, the effects of vortex tilting have not been studied in the
laboratory. When the vortex axis is tilted with respect to the direction of stratification,
the azimuthal symmetry of the vortex is broken and non-axisymmetric corrections of
azimuthal wavenumber m =1 are created. For large Reynolds numbers and Froude
numbers greater than 1, we shall see that these corrections are characterized by strong
density variations and intense axial flow near a particular radial location. We shall
associate this location with the critical-point singularity where the angular velocity
of the vortex is equal to the Brunt–Väisälä frequency of the fluid. These singularities,
which appear in the inviscid description of linear perturbations, are known to play
an important role in shear instabilities (Drazin & Reid 1981; Maslowe 1986), and
internal wave propagation (e.g. Booker & Bretherton 1967). They have also been
shown to be present in the analysis of the deformation of a vortex by a rotating strain
field (Le Dizès 2000). In this case, the critical-point singularity occurs in the m = 2
azimuthal correction at the location where the angular velocity of the vortex is equal
to the angular frequency of the strain. Le Dizès (2000) showed that the singularity
can be smoothed by introducing either viscous or nonlinear effects in the critical-layer
region as for planar shear flows.

The theoretical description of the correction induced by tilting will be obtained
by a similar method. We shall demonstrate that the characteristics obtained by
smoothing the critical-point singularity with viscous effects allows the reproduction
of the experimental observations and measurements.

The paper will be organized as follows. In § 2, the experimental set-up is presented
and the characteristics of the vortices when the axis is not tilted are discussed. In
§ 3, experimental evidence for the critical-layer region is given and the theoretical
framework is introduced. In § 4, the viscous critical-layer analysis is performed and
the theoretical predictions for axial flow velocities are compared to particle image
velocimetry (PIV) measurements. In the last section, the main results of the paper are
briefly summarized. We also introduce the instability which develops in the critical-
layer region and which is the subject of a companion paper (Boulanger, Meunier &
Le Dizès 2007).

2. Experimental set-up and base flow
2.1. Experimental details

The experimental set-up is represented schematically in figure 1. The experiments are
performed in a 1.50 m long, 0.75 m wide and 0.50 m high Plexiglas tank. The tank is
filled with linearly stratified fluid up to a height of 0.45 m. The linear stratification is
established by the two-tank method, using clear water in the first tank and salt water
with a density varying between 1100 kg m−3 and 1190 kg m−3 in the second tank. The
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α

Figure 1. Experimental set-up. The rotation of the grey plate around its upper edge
generates a vortex inclined at an angle α with respect to the vertical.

density gradient is deduced from density measurements of small samples of fluid every
5 cm, using a densitometer Anton Paar DMA 35N with an accuracy of 0.1 kg m−3.
By varying the effective depth of fluid between 0.2 m and 0.45 m, we have been able
to obtain a Brunt–Väisälä frequency ranging from 1.5 rad s−1 to 3 rad s−1. For small
depth of fluid, a uniform layer of maximal density (1190 kg m−3) and 0.10 m thickness
was added under the linearly stratified fluid in order to avoid bottom effects.

The vortex is created by impulsively rotating a flap in the fluid initially at rest. This
generates a two-dimensional shear layer detaching at the edge of the flap and rolling-
up in a vortex. This method is convenient since it creates a laminar two-dimensional
vortex. It has been used frequently for the study of three-dimensional instabilities
(Crow, elliptic, zigzag or centrifugal) of vortices (see Leweke & Williamson 1998;
Billant & Chomaz 2000; Meunier & Leweke 2005). In our set-up, the flap is made
of aluminium and has dimensions 0.1 × 0.6 m2, and is sharpened at its free edge,
i.e. where the shear layer detaches. It is rotated by a computer-controlled step-motor
as in Meunier & Leweke (2005). The motion of the flap has been chosen carefully,
through empirical improvements, to create a nearly Gaussian vortex, and to avoid
roll-up instabilities (Kelvin–Helmholtz instabilities of the shear layer) and stopping
vortices. The motion profile (angular velocity as function of angle in degrees) that
was finally adopted is

Θ̇ = Θ̇max

0.42

Θ + 0.017

[
1 + e−(Θ/0.26)5/4]

, (2.1)

and consists of a rapid acceleration of the flap, followed by a gradual slow-down
up to the angle of π/2 rad. The circulation of the vortex is varied by modifying the
maximum angular velocity Θ̇max between 0.01 and 0.5 rad s−1. The inclination of the
vortex is obtained by tilting the flap with respect to the vertical in the initial plane of
the flap (see figure 1).

Quantitative measurements of velocity fields are obtained by PIV. The flow is
seeded with particles of variable density so that they are homogeneously distributed
through the whole depth. We have used Sphericel hollow glass spheres 110P8 (Potter
Industries), with a density of approximately 1.1, and a diameter ranging from 11 to
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18 µm. The particles are illuminated by a luminous sheet of 3–5 mm thickness, created
by a continuous 5 W argon-ion lasr. Image pairs are recorded by a digital PIV camera
(Kodak Megaplus Es 4.0) with a resolution of 2048 × 2048 pixels at a rate of 5 fields
per second, and treated by a cross-correlation algorithm (Meunier & Leweke 2003).

Measurements have been made in three different planes. The first one is perpendi-
cular to the vortex axis and provides the characteristics of the initial vortex. The other
two planes correspond to two orthogonal longitudinal planes, one plane being vertical
(θ = 0) and the other being tilted (θ = π/2) (figure 1). In the vertical longitudinal plane,
the vortex appears tilted in the images, whereas in the tilted longitudinal plane, the
vortex appears vertical in the images. The displacement of the flap also induces a
weak background velocity field which slowly moves the vortex away from the flap.
This slow translating movement is used to scan the complete vortex volume without
moving the plane of measurement. It allows the determination of the axial component
of the velocity field in the whole three-dimensional space.

Shadowgraph visualizations were also carried out, to observe the two-dimensional
and three-dimensional spatial distribution of density inside the vortex. For this
purpose, the stratified fluid is illuminated by a large beam of parallel light, created
by an intense light placed behind a small diaphragm located 2 m from the tank. Since
the refraction index of the fluid depends on its density, the rays are bent toward the
larger densities. To first order, the rays are thus deviated toward the floor. To second
order, they will be deviated according to the spatial distribution of density inside the
vortex. By placing a large lens (of diameter 0.3 m and of focal distance 0.5 m) behind
the tank, it is thus possible to obtain an image of the density distribution. These
images are recorded by a 2000 × 2000 pixels grey-scale camera located behind the
focal point of the lens. For better visualizations, a small disk of 1 mm diameter has
been positioned exactly at the focal point of the lens. This process, called strioscopy,
allows us to mask the rays which are not deviated by the density perturbations of
the vortex, and enhances the contrast of the images. In strioscopy measurement, it
can be shown that the intensity of the images is proportional to the Laplacian of the
refraction index, i.e. of the density. However, this property will not be used. In our
experiments, we will simply use strioscopy to reveal the qualitative features of the
flow.

2.2. Vortex characteristics

Figure 2(a) shows a typical velocity field obtained by PIV measurements in a
horizontal plane, when the vortex axis is exactly vertical. The velocity field is very
close to axisymmetric. The spatial resolution is very high (approximatively 20 vectors
within the vortex core) such that the uncertainties on the velocity field are small. In
figure 2(a), the spatial resolution has been reduced by a factor 2 for visualization
purposes. The uncertainties on the vorticity field are larger, but still remain lower than
5%. Figure 2(b) presents the velocity profiles obtained from an angular averaging of
the velocity field shown in figure 2(a). The velocity profile is approximated well by
the profile of a Gaussian vortex (Lamb–Oseen), whose angular velocity is given by:

Ω0(r) =
vθ (r)

r
=

Γ

2πr2

(
1 − e−r2/a2)

. (2.2)

In our experiments, the circulation was varied between 17 and 42 cm2 s−1. The core
size a is slowly varying with time between 0.9 and 1.1 cm owing to viscous effects, but
this dependency can be neglected on the time scale we are considering.
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Figure 2. Velocity field of the vortex as obtained by PIV measurement in a horizontal
cross-section. (a) Two-dimensional velocity field and vorticity contours. (b) Azimuthal velocity
profile measured by PIV and fitted by (2.2) for a Gaussian vortex (solid line). Here, Re =370.

We will non-dimensionalize lengths by the vortex core size a, since it is the only
relevant length scale of the flow. Moreover, the inverse of the angular velocity at
the centre of the vortex Ω0(r = 0) = Γ/2πa2 will be used as the time scale of the
flow. This leads to non-dimensionalizing the velocity by aΩ0(0). Finally, we will
non-dimensionalize densities by the density of the fluid ρf at z = 0.

Our system is characterized by five non-dimensional parameters α, Re, F , Sc and
L. The first parameter α is the tilt angle between the vortex and the vertical. It was
varied between 0 and 0.26 rad. The Reynolds number Re characterizes the strength
of the vortex: it is defined from the circulation of the vortex by Re= Γ/(2πν)
(ν being the kinematic viscosity of the fluid) and ranges from 240 to 800. The
stratified fluid is characterized by its Brunt–Väisälä frequency N =

√
−(g/ρ)(∂ρ/∂z)

from which we define the Froude number F =Ω0(0)/N . In our experiments, the
Froude number ranges from 1.5 to 5. The Schmidt number Sc= ν/κ is the ratio
between the viscous diffusivity and the diffusivity of the salt; it is roughly equal to
700 for salted water, which renders the diffusion of salt negligible. The last parameter
L compares the vertical stratification length to the vortex core size: L = ρ/(a∂ρ/∂z).
In our experiments, this parameter ranges between 100 and 400.

3. A critical layer in tilted vortices
3.1. Experimental evidence

Figure 3(a) shows a side view of the vortex by strioscopic visualizations for an
inclination angle α = 0.12 rad. This photograph reveals two white strips going from
the bottom to the top of the image, with the same angle α = 0.12 rad. They are nearly
symmetrically located around the vortex axis, which is a barely visible blurry bright
line going through the centre of the image. These white strips appear progressively
during the vortex formation, and become brighter and brighter as time evolves. After a
saturation time of a few seconds they remain stationary during the whole experiment,
if the Reynolds number is sufficiently small. These strips reveal a strong density
variation (stronger than the radial variations induced by the vortex) concentrated in a
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(a) (b)

Figure 3. View of the vortex approximately five rotation periods after its formation, in a
vertical longitudinal plane. (a) Density contrast visualized by strioscopy (Re= 720, F = 5,
α = 0.12 rad and rc = 2.2a). (b) Instantaneous velocity field measured by PIV (Re=450,
F = 3.2, α = 0.07 rad and rc =1.7a). The grey-scale contours correspond to the vertical velocity
component.

thin region at the periphery of the vortex, which we shall see below can be attributed
to a critical-layer singularity.

Figure 3(b) represents the velocity field superimposed on the axial velocity contours
in the same vertical longitudinal plane as in figure 3(a), but with a smaller tilt angle
α = 0.07 rad. For a vertical vortex, the axial velocity is equal to zero. Here, for this
small value of the tilt angle, we observe a strong axial velocity field. This axial velocity
field is concentrated in two strips located symmetrically with respect to the vortex
axis. The velocity is downward on the upper side of the vortex and upward on
the lower side. These strips create a pattern similar to the density variation pattern
observed in figure 3(a).

This strip-like pattern is not observed for a vertical vortex. For large Reynolds
numbers, it appears as soon as the inclination angle is above 2◦–3◦. It is also observed
for moderate Froude numbers between 1 and 5, only. It is possible to measure the
radial position where these strips are located in both shadowgraph visualizations and
PIV velocity fields. This position is indicated by symbols in figure 4 as a function of
the inverse of the Froude number 1/F = N/Ω0(0). The solid curve gives the location
of the critical-point singularity rc at which the angular velocity Ω0(rc) is equal to the
Brunt–Väisälä frequency N . As can be observed, the symbols are very close to the
curve. This is the first indication that the strips could be associated with a critical-layer
phenomenon. We shall see below that this observation will allow the construction of
a theoretical model to describe the flow in the neighbourhood of the critical point.

This link between strips and critical points readily explains why strips have been
observed only for moderate Froude numbers above 1. When the Froude number is
smaller than unity, there is no critical-point singularity, so no strip is expected to
appear. When the Froude number is increased above unity, the critical point moves
away from the vortex centre and the strength of the singularity decreases. Density
variations and axial flow generation are thus expected to become weaker and to move
progressively outside the observation domain.
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Figure 4. Theoretical prediction (solid line) and experimental measurements (×) of the
position of the critical layer on shadowgraph visualizations, versus the inverse of the Froude
number 1/F = N/Ω0(0) for a Gaussian vortex. Here, α = 0.07 rad and Re varies between 240
and 560 with a fixed Brunt–Väisälä frequency N = 1.5 rad s−1.

3.2. Theoretical formulation of the problem

Our goal is to provide the basic flow solution for a vortex in a stratified fluid, whose
axis is tilted with an angle α with respect to the gravity (i.e. the density gradients). The
flow is governed by the Navier–Stokes equations together with the density equation
and the incompressibility condition, which are in dimensional form:

Du
Dt

= − 1

ρ
∇p − gez + ν
u, (3.1a)

Dρ

Dt
= κ
ρ, (3.1b)

∇ · u = 0. (3.1c)

As was discussed at the end of § 2.2, the non-dimensional problem is defined by
the angle α, the Froude number F , the length ratio L, the Reynolds number Re
and the Schmidt number Sc. In particular, note that the dimensionless form of the
acceleration due to gravity g is L/F 2.

To determine the tilted vortex solution, the main idea is to use the new variables:

x ′ = x − tan αz, y ′ = y, z′ = z. (3.2)

Equations (3.1) can then be written, in cylindrical coordinates, as:

Du

Dt
− v2

r ′ − w tan α
∂u

∂x ′ − w
tan α sin θ ′

r ′ v = − 1

ρ

∂p

∂r ′ +
(
′u)r

Re
, (3.3a)

Dv

Dt
+

uv

r ′ − w tan α
∂v

∂x ′ + w
tan α sin θ ′

r ′ u = − 1

ρr ′
∂p

∂θ ′ +
(
′u)θ

Re
, (3.3b)

Dw

Dt
− w tan α

∂w

∂x ′ = − 1

ρ

∂p

∂z′ +
tan α

ρ

∂p

∂x ′ − L

F 2
+


′w

Re
, (3.3c)
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Dρ

Dt
− w tan α

∂ρ

∂x ′ =

′ρ

Re Sc
, (3.3d)

1

r ′
∂(r ′u)

∂r ′ +
1

r ′
∂v

∂θ ′ +

(
∂

∂z′ − tan α
∂

∂x ′

)
w = 0, (3.3e)

with

D

Dt
=

(
∂

∂t
+ u

∂

∂r ′ +
v

r ′
∂

∂θ ′ + w
∂

∂z′

)
,

∂

∂x ′ = cos θ ′ ∂

∂r ′ − sin θ ′

r ′
∂

∂θ ′ .

In these equations, u and v are the radial and azimuthal components of the horizontal
velocity field in the polar coordinate system (r ′, θ ′) deduced from (x ′, y ′) while w is the
velocity component along the direction of the gravity field (z-axis). In the following,
the primes are dropped.

When the vortex is not tilted (α = 0), we recover the classical equations for the
dynamics of a vertical stratified vortex. A stationary axisymmetric solution is known
to exist in the form (u, v, w, p, ρ) = (0, rΩ0(r), 0, p0(r, z), ρ0(r, z)) provided that

rΩ2
0 =

1

ρ0

∂p0

∂r
, − 1

ρ0

∂p0

∂z
=

L

F 2
. (3.4a, b)

These two equations express the cyclostrophic and the hydrostatic equilibrium with
no interaction between the density field and the velocity field. If we further assume
that the stratification length L is independent of z, the general solution is found, for
any angular velocity profile Ω0(r) as:

ρ0 = e−z/L exp

(
F 2

L2

∫ r

r ′Ω2
0 (r

′) dr ′
)

, (3.5a)

p0 = N2L2 e−z/L exp

(
F 2

L2

∫ r

r ′Ω2
0 (r

′) dr ′
)

. (3.5b)

This solution has been obtained in the absence of the Boussinesq approximation.
We now wish to solve these equations for a finite tilt angle α.

3.3. Expansion for small tilt angles

For small α, inclination is expected to modify the flow field only weakly. Thus, it is
natural to use a perturbation approach. Velocity, pressure and density fields are thus
expanded as:

u = u0 + tan αu1 + · · · , (3.6a)

p = p0(1 + tan αp1(F/L)2 + · · ·), (3.6b)

ρ = ρ0(1 + tan αρ1/L + · · ·), (3.6c)

where (u0, p0, ρ0) is the vertical solution and (u1, p1, ρ1) is the non-dimensional
first-order correction due to inclination with α � 1 so that tan α ∼ α.

The introduction of (3.6) into (3.3) and linearizing with respect to α yields, at
leading order, a solution (u0, p0, ρ0) given by (3.5), as in the vertical case. At order α,
equations (3.3) become:(

∂

∂t
+ Ω0

∂

∂θ

)
u1 − 2Ω0v1 = −∂p1

∂r
− rΩ2

0

(
ρ1

L
− p1F

2

L2

)
+

(
u1)r
Re

, (3.7a)

(
∂

∂t
+ Ω0

∂

∂θ

)
v1 + ω0u1 = −1

r

∂p1

∂θ
+

(
u1)θ
Re

, (3.7b)
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∂

∂t
+ Ω0

∂

∂θ

)
w1 = −∂p1

∂z
− ρ1

F 2
+ rΩ2

0 cos θ +
p1

L
+


w1

Re
, (3.7c)

(
∂

∂t
+ Ω0

∂

∂θ

)
ρ1 = w1 − rΩ2

0F
2u1

L
+


ρ1

Re Sc
, (3.7d)

1

r

∂(ru1)

∂r
+

1

r

∂v1

∂θ
+

∂w1

∂z
= 0, (3.7e)

where ω0 = (1/r)(d(r2Ω0)/dr) is the vorticity of the vortex. Note that the only forcing
term in these equations corresponds to rΩ2

0 cos θ , which is a buoyancy force generated
by the inclination of the isolevels of pressure. This term can guide us to determine
the form of the solution.

To simplify the analysis, we shall now apply the Boussinesq approximation. This ap-
proximation amounts to considering the limit L → ∞ in the above equations. The first-
order corrections induced by non-Boussinesq effects are provided in the Appendix.
Under the Boussinesq approximation, a simple inviscid and stationary solution (that
is if we assume also Re → ∞) can be obtained as

u1 = v1 = p1 = 0, w1 =
rΩ3

0

Ω2
0 − F −2

sin θ, ρ1 = − rΩ2
0

Ω2
0 − F −2

cos θ. (3.8a, b, c)

This solution shows that inclination affects the axial component of the velocity and the
density field only. However, it can be noted that this solution diverges at the critical
point where the angular velocity Ω0(r) is equal to the Brunt–Väisälä frequency N .
This singularity can be understood as a resonance of the forcing created by the tilt of
the vortex with the natural oscillating frequency of the fluid. Note also that the axial
velocity in the vertical longitudinal plane (i.e. for θ = 0) should always be zero. This
is not what has been observed in the experiments (see figure 3b). We shall see below
that this can be explained by considering viscous effects in the neighbourhood of the
critical point.

4. Critical-layer region
4.1. Viscous critical-layer analysis

The critical-layer singularity which is observed in the linear inviscid solution (3.8)
can be smoothed by introducing additional effects such as viscosity, diffusivity or
nonlinearity. For small angles, it is natural to consider viscosity as the main effect
(we shall provide a more precise justification below by estimating the first nonlinear
terms). The structure of the solution near the critical-point singularity is thus provided
in a viscous critical layer. Viscous critical layers have been studied for many years in
shear flows (see Drazin & Reid (1981) for details and references).

The idea is to introduce a new local variable r̃ = (r −rc)Re1/3 on which are captured
the viscous variations. The critical-layer solution is then searched in the form

u1 = v1 = p1 = 0, w1 = Re1/3w̃1(r̃) eiθ + c.c. (4.1a, b)

ρ1 = Re1/3ρ̃1(r̃) eiθ + c.c., (4.1c)

where the condition of matching with the inviscid solution (3.8) requires that for
large r̃

w̃1 ∼ rcΩ
2
0c

2iΩ ′
0cr̃

, ρ̃1 ∼ − rcΩ0c

2Ω ′
0cr̃

. (4.2a, b)
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Figure 5. (a) Real part and (b) imaginary part of the critical-layer solution Hi(iξ ) versus ξ .

In the above expressions, the index c indicates values taken at rc; Ω ′
0c denotes the

derivative of Ω0(r) evaluated at rc. Note that the critical-layer condition implies
Ω0c = 1/F .

The equations for w̃1 and ρ̃1 are obtained by substituting (4.1) into (3.7) with
L = ∞ and by considering the leading order in the power of Re−1/3. This gives

ρ̃1 = −i
w̃1

Ω0c

, (4.3)

and (
1 +

1

Sc

)
d2w̃1

dr̃2
− 2iΩ ′

0cr̃w̃1 = −rcΩ
2
0c. (4.4)

Equation (4.4) is an inhomogeneous Airy equation. As explained in the Appendix
of Drazin & Reid (1981), the solution of (4.4) which has the asymptotic behaviour
(4.2a) is a ‘balanced’ generalized Airy function Bk(Kr̃, 1). This solution can also be
expressed in terms of the Scorer’s function Hi(ξ ) (see Abramowitz & Stegun 1965,
p. 448) which satisfies

d2Hi

dξ 2
− ξHi =

1

π
, (4.5a)

Hi(ξ ) ∼ − 1

πξ
as |ξ | → ∞ with |arg(ξ )| >

π

3
. (4.5b)

The axial velocity amplitude w̃1 thus reads

w̃1(r̃) =
πrcΩ

2
0c

|2Ω ′
0c|2/3

Hi
(
i|2Ω ′

0c|1/3r̃
)
, (4.6)

where we have implicitly assumed Sc= ∞. The same solution is also obtained when
the diffusion of the density is taken into account by multiplying the Reynolds number
by the factor (1 + 1/Sc)−1.

Equation (4.3) tells us that the density amplitude ρ̃1 exhibits the same variations as
the axial velocity but with a π/2 phase shift. The Scorer function Hi with a complex
argument has both a real and an imaginary part. Their variations with respect to its
argument are shown in figure 5. These variations imply that contrarily to the inviscid
outer solution, axial velocity and density are now expected to exhibit radial variations
in all angular directions. In the vertical longitudinal plane (θ = 0), the axial velocity
varies as Im(Hi(iz)) (figure 5a), while density varies as Re(Hi(iz)) (figure 5b). In the
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tilted longitudinal plane (θ = π/2), it is the opposite. These typical variations do not
depend on the vortex profile. However, the local value at the critical point rc of the
angular velocity and its radial derivative intervenes in the solution as scaling factors.

A few characteristic features of the solution in the vertical and tilted longitudinal
planes can easily be provided. In the vertical longitudinal plane, the axial velocity has
a jet-like profile. If we return to initial variables, the maximum velocity and the width
at mid-height of the jet are given, respectively, by

w( jet)
max = 0.81

rcΩ
2
0c

|Ω ′
0c|2/3

Re1/3 tan α, (4.7a)

δ( jet) =
2.3

|ReΩ ′
0c|1/3

. (4.7b)

In the tilted longitudinal plane, the axial velocity has a shear-layer profile. The maxi-
mum absolute velocity and the distance between minimum and maximum velocities
are, respectively,

w(shear)
max = 0.56

rcΩ
2
0c

|Ω ′
0c|2/3

Re1/3 tan α, (4.8a)

δ(shear) =
2.65

|ReΩ ′
0c|1/3

. (4.8b)

For instability considerations, it is also useful to compute the maximum vorticity of
the jet and shear-layer profiles. They are given by

ω( jet)
max = 0.6

rcΩ
2
0c

|Ω ′
0c|1/3

Re2/3 tan α, (4.9a)

ω(shear)
max = 0.74

rcΩ
2
0c

|Ω ′
0c|1/3

Re2/3 tan α. (4.9b)

For large Reynolds numbers or important α, viscosity may not be the dominant
effect in the critical layer. Nonlinearity may become more important. The importance
of nonlinear effects in the viscous critical-layer can be estimated by introducing the
viscous critical-layer solution into the governing equations (3.3) rewritten with the
viscous critical-layer variable. Under the Boussinesq approximation, the radial velocity
is deduced from (3.3e):

ũ = α2Re1/3Re(w̃1(r̃) eiθ ) + O(α2). (4.10)

This expression permits us to show that the dominant convective term αw∂x simplifies
with u∂r such that the nonlinear terms in the (3.3c) for w are only O(α3Re2/3). These
terms have to be compared to the viscous term 
w/Re which is O(α). They are
therefore negligible as long as αRe1/3 � 1. In view of (4.7), this condition is equivalent
to assuming that the amplitude of the axial velocity correction remains small. This
condition is therefore not restrictive, as a fully nonlinear regime is expected for O(1)
amplitudes. It is worth mentioning that a different conclusion is reached in classical
critical-layer studies (see for instance Maslowe 1986) where a nonlinear regime is
obtained for small amplitudes of order Re−2/3.

4.2. Experimental measurements

In this section, experimental measurements are compared to the theoretical profiles
predicted by the viscous critical-layer analysis performed in the previous section.



454 N. Boulanger, P. Meunier and S. Le Dizès

–2 –1 0 1 2
–0.2

–0.1

0

0.1

0.2

w
1/

(a
Ω

0(
0)

)

x/a y/a

(a)

–2 –1 0 1 2
–0.2

–0.1

0

0.1

0.2(b)

Figure 6. Theoretical (solid line) and experimental (circles) axial velocity profiles in two
different longitudinal planes, (a) θ = 0, (b) θ = π/2. Re= 560, F = 4.3 and α =0.07 rad.
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Figure 7. (a) Theoretical and (b) experimental axial velocity contours in a plane
perpendicular to the vortex axis. Re= 450, F = 3.2 and α = 0.07 rad.

As explained in § 2.1, visualizations and PIV measurements are made in two
perpendicular longitudinal planes corresponding to the θ = 0 and θ = π/2 directions.
Figure 6 shows the axial velocity profiles measured in these two planes. These profiles
have been obtained by averaging the PIV measurements along the vortex axis. They
are compared to theoretical profiles obtained from the critical-layer analysis for
the experimental parameters. Both the jet and shear-layer profiles are observed in
the critical-layer region in the θ =0 and θ = π/2 planes, respectively, in qualitative
agreement with the theory. The theory slightly underestimates the largest velocities,
but it provides a good estimate of the widths of the jet and of the shear layer.
However, note that between the two critical-layer regions, the experimental velocity
profile is not as smooth as expected from the theory. We think that this is due to the
strong diffraction of the luminous rays across the critical layer, which makes the PIV
images blurred near the vortex centre and therefore less accurate. It is also worth
mentioning that for the experimental data shown in figures 6 and 7, the parameter
αRe1/3 which measures the strength of the nonlinear effects is not very small (it is
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close to 0.5). The discrepancies in the critical layer could therefore also be due to
nonlinear effects.

In figure 7, the isocontours of axial velocity in a plane perpendicular to the vortex
axis are shown. The theoretical plot is obtained by using (4.1) and (4.6) for θ varying
between 0 and 2π. The experimental plot has been obtained by constructing the
data from measurements made in a longitudinal plane. We have used the properties
that the vortex slowly moves away from the flap, so that the whole volume can be
scanned by a fixed plane if this plane is placed perpendicular to the direction of
displacement of the vortex. Measurements in this plane of the axial velocity have
been made at a rate of 5 velocity fields per second. A total of 48 vertical velocity
fields have been used to reconstruct the velocity field in figure 7(b). We have not
been able to scan a larger volume because of lack of computer memory. Despite this
limitation, the main features of the critical-layer solutions are clearly visible in the
experimental measurements. Note, in particular, that the azimuthal dependency of the
solution is reproduced well. This result, together with the good agreement observed
for the radial profiles, validates the theoretical description in terms of the viscous
critical-layer solution.

5. Conclusion
The dynamics of a vortex in a stratified fluid whose axis is slightly tilted with respect

to the direction of stratification has been investigated theoretically and experimentally.
For moderate Froude number Fr ≈ 1–5 and large Reynolds numbers Re= 240–800,
we have observed by using strioscopic visualizations and PIV measurements that
strong density and axial flow variations are generated around the vortex near a
particular radial location when the vortex is tilted by a few degrees. We have shown
that this location corresponds to a critical point where the angular velocity of the
vortex equals the Brunt–Väisälä frequency of the stratified medium.

A theoretical model has been constructed to describe these experimental observa-
tions. The critical point has been shown to correspond to a singularity of the linear
inviscid correction to the vortex induced by tilting. A viscous critical-layer analysis
has been performed to smooth the singularity and the critical-layer solution has been
demonstrated to describe correctly the measured axial velocity profiles. The theory has
also provided the main characteristics of the flow generated by tilting. In particular,
we have shown that density variations can be deduced from axial velocity variations
by a π/2 angular phase shift. The axial velocity variations exhibit a strong shear with
a maximum vorticity of order αRe2/3 in the tilted longitudinal plane (θ = π/2) and a
jet-like structure in the vertical longitudinal plane (θ = 0).

Note also that when the Froude number is smaller than 1, that is, the Brunt–Väisälä
frequency is larger than any angular velocity of the vortex, there is no critical-point
singularity and the linear inviscid solution (3.8) is expected to provide a description,
at least for small angles, of the correction induced by tilting at any point.

It is important to remember that we have focused on small inclination angles and
large Reynolds numbers. For large inclination angles, nonlinear effects should become
important. For Froude numbers larger than 1, these effects are expected to appear
first near the critical point where the correction amplitude is the largest. As explained
above, the nonlinear transition should occur when αRe1/3 becomes large, that is when
axial velocity corrections become O(1).

The stability of the tilted stratified vortex solution we have obtained has not
been addressed in this paper. Experimental observations do demonstrate that a
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Figure 8. Instability of a stratified tilted vortex. Strioscopic visualization of the
configuration shown in figure 3(a), 3.5 rotation periods later.

three-dimensional instability is indeed active under certain conditions. Figure 8 is a
typical visualization by strioscopy of the density variations when instability is present.
Coherent co-rotating vortical structures apparently develop in the critical-layer region.
The characteristics of the critical-layer solution allow at least two possible instability
mechanisms: the strong shear generated in the critical layer could be responsible
for a Kelvin–Helmholtz-like instability whereas density variations coupled with the
centrifugal force could be the source of a Rayleigh–Taylor instability. The compre-
hensive analysis of this instability is the subject of a companion paper (Boulanger
et al. 2007).

We would like to stress that both the generation of the strong axial shear and
density variation and its further destabilization occur for very small inclination
angles. For this reason, we believe that this phenomenon is a generic feature affecting
any intense vortex in a stratified fluid, provided its Froude number is larger than 1.
The experiments performed by Cariteau (2005) have confirmed this point, as the same
phenomenology has been observed although the vortex was not supposed to be tilted.

Appendix. Non-Boussinesq corrections
In this section, we provide the first-order correction to the tilted vortex solution

induced by non-Boussinesq effects.
Outside the critical layer, the density and axial velocity perturbations are provided at

leading order by (3.8c). These variations induced small perturbations of order 1/L for
the radial and azimuthal velocity and the pressure. If we expand these components as

u1 =
u

(1)
1 sin θ

L
+ O

(
1

L2

)
, v1 =

v
(1)
1 cos θ

L
+ O

(
1

L2

)
, (A 1a, b)

p1 =
p

(1)
1 cos θ

L
+ O

(
1

L2

)
, (A 1c)
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we obtain the following equations for u
(1)
1 , v

(1)
1 and p

(1)
1 :

Ω0u
(1)
1 − 2Ω0v

(1)
1 = −dp

(1)
1

dr
+

r2Ω4
0

Ω2
0 − F −2

, Ω0v
(1)
1 − ω0u

(1)
1 = −p

(1)
1

r
, (A 2a, b)

dru
(1)
1

dr
= v

(1)
1 . (A 2c)

This system can be reduced to a single equation for u
(1)
1 :

d2u
(1)
1

dr2
+

3

r

du
(1)
1

dr
−

(
3Ω ′

0

rΩ0

+
Ω ′′

0

Ω0

)
u

(1)
1 = − Ω3

0

Ω2
0 − F −2

. (A 3)

Since Ω0(r) is the solution to the homogeneous part of this equation, a general
solution can be obtained by the variation of the constant as

u
(1)
1 = −Ω0(r)

∫ r

c1

1

Ω2
0 (x)x3

∫ x

c2

Ω4
0 (y)y3

Ω2
0 (y) − F −2

dy dx, (A 4)

where c1 and c2 are constants. These constants may be different in the regions (0, rc)
and (rc, +∞). From the boundary conditions, we find that c1 = c2 = 0 in (0, rc)
and c2 = +∞ in (rc, +∞). The latter constant can be derived from a condition
of matching with the critical-layer solution. The components v

(1)
1 and p

(1)
1 can be

obtained using (A 2b, c) and similar arguments.
In the critical layer, pressure corrections and radial and azimuthal velocity correc-

tions are also created by non-Boussinesq effects. These corrections can be calculated
from (3.7) using the viscous radial variable r̃ = (r − rc)Re1/3 and keeping first-order
non-Boussinesq terms only. We find that the complex amplitude of pressure and
radial and azimuthal velocities expand as

u1 =
ũ

(1)
1 (r̃)

LRe1/3
eiθ + O

(
1

L2

)
, v1 =

ṽ
(1)
1 (r̃)

L
eiθ + O

(
1

L2

)
, (A 5a, b)

p1 =
p̃

(1)
1 (r̃)

L
eiθ + O

(
1

L2

)
, (A 5c)

and satisfy the relations

dp̃
(1)
1

dr̃
= −rcΩ

2
0cρ̃1, ṽ

(1)
1 = − p̃

(1)
1

rcΩ0c

,
dũ

(1)
1

dr̃
= −i

ṽ
(1)
1

rc

, (A 6a, b, c)

where ρ̃1 is given by (4.3) and (4.6). Note that the non-Boussinesq corrections of
order α may be smaller than Boussinesq corrections of order α2. For instance, the
radial velocity correction given by (4.10) is larger than the correction induced by
non-Boussinesq effects as soon as αRe2/3L is large.
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This experimental and theoretical study considers the dynamics and the instability of
a Lamb–Oseen vortex in a stably stratified fluid. In a companion paper, it was shown
that tilting the vortex axis with respect to the direction of stratification induces the
formation of a rim of strong axial flow near a critical radius when the Froude number
of the vortex is larger than one.

Here, we demonstrate that this tilt-induced flow is responsible for a three-
dimensional instability. We show that the instability results from a shear instability
of the basic axial flow in the critical-layer region. The theoretical predictions for
the wavelength and the growth rate obtained by a local stability analysis of the
theoretical critical-layer profile are compared to experimental measurements and
a good agreement is observed. The late stages of the instability are also analysed
experimentally. In particular, we show that the tilt-induced instability does not lead
to the destruction of the vortex, but to a sudden decrease of its Froude number,
through the turbulent diffusion of its core size, when the initial Froude number is
close to 1. A movie is available with the online version of the paper.

1. Introduction
The presence of intense and small vortices in geophysical flows is problematic

for the oceanic and atmospheric models. These structures are unresolved when they
become smaller than the mesh size used in the numerical codes, although they might
influence the stability and mixing properties of larger scales. In this paper, we consider
the stability and dynamics of such an intense vortex when its axis is slightly tilted
with respect to the direction of stratification.

In the atmosphere, the large-scale structures (of a few thousand kilometres), created
by the baroclinic instability, have a very small Froude number and a small Rossby
number. These primary structures are mainly two-dimensional and not likely to be
subject to a three-dimensional instability. However, they can be unstable with respect
to two-dimensional instabilities (Nieman, Shapiro & Fedor 1993) and create secondary
vortices with a smaller length scale (Polavarapu & Peltier 1993; Garnier, Métais &
Lesieur 1996). These intense vortices can reach a size of 10 km, which gives a Rossby
number of order 10 and a Froude number of order 1. This paper will focus on this
type of intense vortex in which the stratified effects are comparable to advection, and
in which the effect of the global rotation can be neglected. Our goal is to show that
a weak inclination of the vortex can strongly affect its dynamics.

In oceans, vortices are often observed beyond coastal tips or behind islands. They
are generated by the tide or strong currents. These vortices are usually inclined with
respect to the stratification owing to the slope of coastal regions (see for instance
Pawlak et al. 2003). When their Froude number is larger than 1, they will be subject
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Figure 1. Schematic of the experimental set-up. The rotation of the grey plate around its
upper edge generates a vortex inclined with respect to the vertical with an angle α. The light,
lens and camera allow shadowgraph visualizations.

to the instability described in this paper. However, Coriolis effects might be expected
for these vortices since the Rossby number is of order 1 here.

In Boulanger, Meunier & Le Dizès (2007), the structure of a tilted vortex was
studied experimentally and theoretically in the limit of small inclination angles. When
the Froude number is larger than 1, a critical layer was shown to appear at the
radius where the angular velocity of the vortex equals the Brunt–Väisälä frequency.
In the viscous regime, this creates a strong vertical motion of order Re1/3 in a layer
of thickness scaling as Re−1/3.

As far as we know, no stability analysis of such a tilted vortex has been performed.
However, the effect of a stable stratification on various instabilities has been
extensively studied. In the case of several vortices, the stratification stabilizes the
elliptic instability (Kerswell 2002) and transforms the Crow instability (Crow 1970)
in a so-called zig-zag instability (Billant & Chomaz 2000). For a single vortex, the
two-dimensional shear instability and the centrifugal instability are not affected by
a stable stratification in the inviscid limit (Hopfinger & van Heijst 1993). However,
Cariteau & Flór (2003) reported a new columnar instability of a stratified vortex,
which creates some vertical motion in a thin rim around the vortex and leads to a
three-dimensional instability. Although they did not add any intentional tilting of
the vortex (Cariteau 2005), we will show that this instability is probably due to a
weak misalignment of the vortex with the stratification. This previous experimental
evidence indicates that this instability is very strong and can be effective even in the
presence of very weak tilt angles.

The paper will be organized as follows. In § 2, we describe the experimental set-up
and the two-dimensional base flow of a tilted vortex. In § 3, we show experimental
evidence of this new instability, followed by a local theory in § 4. The late stages of
the instability are considered in § 5, before the conclusion in § 6.

2. Experimental set-up and base flow
2.1. Experimental details

The experimental set-up (figure 1) is explained in detail in Boulanger et al. (2007) and
only the main features are recalled here. The experiments are performed in a 150 cm
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(a) (b) (c)

Figure 2. Location of PIV measurement planes. (a) Transverse plane (b) vertical
longitudinal plane θ = 0, and (c) tilted longitudinal plane, θ = π/2.

long, 75 cm wide and 50 cm high Plexiglas tank, filled with a linearly stratified fluid
(made using the two-tank method). The density gradient is deduced from density
measurements of small samples of fluid every 5 cm, using a densitometer Anton Paar
DMA 35N with an accuracy of 10−4 kg l −1. By varying the effective depth of fluid
between 20 cm and 45 cm and the maximal density between 1.1 and 1.19 kg l −1, we
have been able to obtain a Brunt–Väisälä frequency ranging from 1.5 to 3 rad s−1.

The vortex is created by rotating impulsively a 10 × 60 cm2 aluminium flap in
the fluid initially at rest, using a computer controlled step-motor. This flap motion
generates a two-dimensional shear layer around the flap which detaches at the
sharpened edge of the flap, and rolls up into a very laminar vortex. The motion
profile of the flap was chosen carefully to obtain a nearly Gaussian vortex and was
defined by imposing the angular velocity of the flap as a function of its angle as:

Θ̇ = Θ̇max

0.42

Θ + 0.017
[1 + exp (−(Θ/0.26)5/4)]. (2.1)

It consists of a rapid acceleration of the flap, followed by a gradual slow-down up
to the angle of π/2 rad. The circulation of the vortex is varied by modifying the
maximum angular velocity Θ̇max between 0.01 and 0.5 rad s−1. The inclination of the
vortex is obtained by tilting the flap with respect to the vertical in the initial plane of
the flap: it was varied in the range 0 to 0.38 rad.

Particle image velocimetry (PIV) measurements of velocity fields were obtained
by seeding the tank with Sphericel hollow glass spheres 110 P8 (Potter Industries),
whose diameter ranges from 11 to 18 µm and whose density is approximately 1.1.
The particles are illuminated by a luminous sheet of 3–5 mm thickness, created by a
continuous 5 W argon-ion laser. Image pairs are recorded by a digital PIV camera
(Kodak Megaplus Es 4.0) with a resolution of 2048 × 2048 pixels and treated by a
cross-correlation algorithm developed for flows with high-velocity gradients at the
laboratory (Meunier & Leweke 2003). PIV measurements have been made in three
different planes (figure 2). The first one is perpendicular to the vortex axis and provides
the horizontal characteristics of the initial vortex. The two other planes correspond
to two orthogonal longitudinal planes, one plane being vertical (θ = 0) and the
other being tilted (θ = π/2). These instantaneous two-dimensional velocity fields are
extremely useful for the study of the instability since they permit us to follow the
evolution of the vortex in time, which would be impossible using a two-dimensional
reconstruction of point measurements.

Shadowgraph visualizations were also carried out, to observe the two-dimensional
and three-dimensionl spatial distribution of density inside the vortex. For this purpose,
the stratified fluid is illuminated by a large beam of parallel light, created by an intense
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Figure 3. (a) Theoretical contours of the axial velocity of a tilted vortex in a transverse plane.
(b, c) Theoretical (solid line) and experimental (circles) axial velocity profiles in two different
longitudinal planes, (b) section A–A: θ = 0, (c) section B–B: θ = π/2. (a) The dashed line
indicates the location of the critical layer. Re= 450, F = 3.2, α = 0.07 rad.

light placed behind a small diaphragm located 2 m away from the tank. By placing a
large lens (of diameter 30 cm and of focal distance 50 cm) behind the tank, it is thus
possible to obtain an image of the density distribution. These images are recorded
by a 2000 × 2000 pixel greyscale camera located behind the focal point of the lens.
A small disk of 1 mm diameter was positioned exactly at the focal point of the lens,
which enhances the contrast of the images.

2.2. Characteristics of the tilted vortex

The vortex is completely defined by its profile of angular velocity, which is very close
in our experiments to the profile of a Gaussian (Lamb–Oseen) vortex:

Ω0(r) =
vθ (r)

r
=

Γ

2πr2
(1 − exp(−r2/a2)). (2.2)

In our experiments, the circulation Γ was varied between 17 and 42 cm2 s−1. The core
size a is slowly varying with time between 0.9 and 1.1 cm owing to viscous effects, but
this dependency can be neglected on the time scale of the instability we shall describe
below.

In Boulanger et al. (2007), it was shown that tilting the vortex with respect to the
direction of stratification with an angle α creates a critical layer at the radius rc where
the angular velocity of the vortex Ω0(r) is equal to the Brunt–Väisälä frequency. This
critical layer is observed for moderate Froude numbers larger than 1 only, such that
the critical radius rc exists (Ω0(r = 0) > N) and is located not too far from the vortex
centre (Ω0(r = 0) < 5N).

The axial velocity field created by tilting the vortex is plotted in figure 3(a) and
compared with the viscous critical-layer profiles in figure 3(b, c). These figures are
similar to those presented in Boulanger et al. (2007) with a minor modification to
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the velocity profiles: they have been enlarged around the critical layer. This velocity
field exhibits a complex spatial structure: in the vertical longitudinal plane (θ = 0),
the axial velocity has a jet-like profile (see figure 3b); in the tilted longitudinal plane,
it looks like a shear layer (see figure 3c). There is a good agreement between theory
and experiment on the structure and amplitude of the velocity field, although there
are some large uncertainties (of the order of 50%) for r < rc owing to the deformation
of the images by a strong refraction at the critical layer. The theory predicts that the
size of the critical layer scales as Re−1/3 and the amplitude of the density and the
vertical velocity scale as αRe1/3. This leads to a scaling of the azimuthal vorticity as
αRe2/3.

In the following, we will non-dimensionalize lengths by the vortex core size
a. Moreover, the inverse of the angular velocity at the centre of the vortex
Ω0(r = 0) = Γ/2πa2 will be used as the time scale of the flow. This leads to non-
dimensionalize velocities by Γ/2πa. Finally, we will non-dimensionalize densities
by the density of the fluid ρf at z =0. Our system is thus characterized by five
non-dimensional parameters. The inclination angle α is varied from 0 to 0.38 rad.
The Reynolds number Re = Γ/(2πν) (ν being the kinematic viscosity) is varied
between 160 and 800. The Froude number F = Γ/(2πa2N) ranges from 1.5 to 4.3. The
Schmidt number Sc = κ/ν is close to 700. The last parameter L compares the vertical
stratification length to the vortex core size: L = ρ/(a∂ρ/∂z). In our experiments, this
Boussinesq parameter ranges between 100 and 400, which justifies the use of the
Boussinesq approximation obtained by assuming L infinite.

3. Three-dimensional instability
3.1. Dye visualizations

For high Reynolds numbers, the vortex was found to be unstable with respect to
a three-dimensional perturbation. The time-sequence of figure 4 shows the temporal
evolution of the tilted vortex by shadowgraph visualizations. The vortex is viewed
from the side perpendicularly to the tilting plane. This view reveals the density
structures in the vertical plane (θ = 0). The vortex is thus tilted with an angle of
0.07 rad on the images.

At the beginning, just after the end of the flap motion (figure 4a), the vortex is
cylindrical and contains two strips created by the critical layer. At t = 1 s, these
strips are subject to a sinusoidal undulation (figure 4b), which breaks the invariance
along the axis of the vortex. This perturbation is initially confined within the strips.
At later stages (figure 4c, d), the perturbation grows and becomes visible all around
the vortex. This is due to an increase of the contrast associated with the increase
of ∂2ρ/∂z2 and not to a propagation of the perturbation around the vortex, as is
attested by other visualizations made from different view angles. The undulation of
the two strips is then amplified and gives birth to structures characteristic of vortices
rotating in the clockwise direction (figure 4d). The two alleys of vortices alternate on
each side of the vortex and the vortex centres are linked by two strips which create
a zigzag-like structure. This perturbation thus looks like a secondary spiral vortex
which is rolled-up around the tilted vortex in a helical mode. However, this is not
the case, because it would create vortices of opposite sign on each side of the vortex.
On the contrary, it can be seen clearly in figure 4(d) that the vortices are clockwise
(negative vorticity in this plane) on both sides of the vortex. It is thus a perturbation
which grows almost independently on both sides of the vortex. All of this suggests
that the instability is localized in the critical layer, and not influenced by the global
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(a) (b)

(c) (d)

(e) (f )

Figure 4. Shadowgraph sequence of the vortex instability in a vertical longitudinal plane
(θ = 0). The time interval is 1.1 rotation period. F =3, Re= 720, α =0.07 rad. A movie of the
same instability, obtained for slightly lower Reynolds and Froude numbers, is available with
the online version of the paper.

structure of the vortex. These shadowgraph visualizations are very similar to the
pictures presented by Cariteau (2005), and we suspect that it is the same instability
that they observed although they did not tilt the generating plate.
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(a) (b)

(c) (d)

(e) (f )

Figure 5. Shadowgraph sequence of the vortex instability in a tilted longitudinal plane
(θ = π/2). The time interval is 1.1 rotation period. F = 3, Re= 720, α = 0.07 rad.

At late stages, the instability saturates and the co-rotating vortices finally break
down, leading to a strong mixing, in which some coherent structures are still visible.

Figure 5 shows the temporal evolution of the vortex in the tilted plane (θ = π/2).
Although the perturbation starts as an undulation of the critical layer (figure 5a) as
in figure 4, the perturbation is then rather different. It rapidly creates an alley of
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alternate vortices on each side of the vortex (figures 5b–d). The instability thus looks
like a centrifugal instability, although the vortex is stable with respect to the Rayleigh
criterion. In fact, the structure of the instability is very similar to a von Kármán
vortex street on each side of the vortex. This could be related to the presence of a jet
in the critical layer.

In this section, the shadowgraph visualizations were used to reveal the spatial
structure of the density field from which the velocity field was inferred. However, it
is not clear that the density field is simply advected by the velocity field, and there
might be a three-dimensional perturbation of the density without any perturbation
of the velocity field. To confirm the validity of the previous arguments, we provide in
the following sections some PIV measurements, which give directly the velocity field
in these longitudinal planes.

3.2. PIV measurements

The time-sequence of figure 6 shows the temporal evolution of the azimuthal vorticity
in the tilted plane (i.e. θ = π/2) obtained by PIV measurements. In this plane, the
tilted vortex creates two critical layers on each side of the vortex, containing some
strong negative (black) vorticity (see figure 6a). This corresponds to the vorticity of
the shear layer created by tilting (see figure 3c). In fact, each critical layer is made
of one band of strong negative vorticity, surrounded by two smaller bands of weak
positive vorticity which are hardly visible on figure 6(a, b). At the vortex centre, the
vorticity field contains large errors, which are due to the presence of many spurious
vectors. This is caused by the images being blurry at the vortex centre owing to large
deviations of the luminous rays by the critical layer.

The perturbation appears at first as a periodic modulation of the negative vorticity
layers on both sides of the vortex (figure 6b, d). The instability does not induce any
motion in the vortex core: it is clearly localized in the critical layer. The perturbation
then leads to the formation of co-rotating vortices of negative vorticity (figure 6e, f ).
The wavelength is similar on both sides and the two alleys of vortices are alternate,
as was observed on the shadowgraph visualizations of figure 4. The positive layers
are only slightly modified by the perturbation: they split into weak vortices under
the influence of the negative-layer evolution. It can be noted that these vortices are
created extremely rapidly, in approximately half a rotation period 2π/Ω0(r) between
figures 6(b) and 6(e).

The presence of an alley of co-rotating vortices is characteristic of the shear
instability leading to Kelvin–Helmholtz billows at late stages. This explains why the
vortices rotate in the same direction on both sides of the vortex in the visualizations of
figure 4. It is thus a possible explanation of the instability. However, it is curious to see
that the structure observed on the velocity field of the tilted plane (θ = π/2) is observed
on the visualizations of the vertical plane (θ = 0) and not on the visualizations of the
tilted plane. In fact, the density structures are advected by the velocity field and the
amplitude of the density perturbation is thus maximal at the end of the forcing by
the velocity perturbation, i.e. a quarter of a turn later.

At late stages, the growth stops, and the structures lose their coherence, leading to
a partial reformation of the vorticity layers (see figure 6g). This non-uniform vorticity
layer sometimes creates again some isolated vortices, but the flow is found to be less
organized and very turbulent.

Figure 7 shows the azimuthal vorticity obtained by PIV measurements in the vertical
plane (i.e. θ = 0). The temporal evolution of the vorticity could not be obtained
because the vortex slowly moves inside the water tank and a fixed measurement plane
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Figure 6. PIV sequence of the instantaneous azimuthal vorticity field in a tilted longitudinal
plane (θ = π/2), starting 10 rotation periods after the flap motion. The time interval is 0.5
rotation period. F = 2.1, Re = 560, α = 0.12 rad.
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Figure 7. PIV measurement of the instantaneous azimuthal vorticity field in a vertical
longitudinal plane (θ = 0), approximately 12 rotation periods after the flap motion. F = 2.1,
Re= 560, α = 0.12 rad.

contains the axis of the vortex only at one instant in time. The centre of the vortex
was masked because it contains many spurious vectors (as in figure 6), owing to the
refraction of the luminous rays when they cross the critical layer.

In this vertical plane, the tilted vortex creates a jet on each side of the vortex.
Each jet creates two vertical layers of opposite vorticity. Figure 7 shows that the
perturbation is made of a periodic modulation of each vorticity layer, which creates
an alley of alternate counter-rotating vortices. This is characteristic of the sinuous
instability of a jet. This structure can be linked to the structure of the perturbation
observed on the shadowgraph visualization of figure 5. However, it is again surprising
to see that these structures are not observed in the same plane for the velocity field.
As in the case of the Kelvin–Helmholtz instability, it can be explained by the density
being advected by the vortex.

3.3. A local instability

The dye visualizations and the PIV measurements have shown that the instability is
localized in the critical layer and that it does not modify the vortex core. Moreover,
this instability appears rapidly compared to the advection time around the vortex.
These two arguments mean that the instability is linked to the local properties of the
critical layer rather than to the global structure of the vortex itself. This will justify
the local stability analysis of the critical layer in the next section. Figure 8 shows the
structure of the instability. The velocity profiles are plotted for each plane inside
the critical layer and the secondary vortices are represented by spirals as would be
obtained by the roll-up of a line of dye.

The critical layer has a complex structure and several instabilities are thus
candidates. In the tilted plane (θ = π/2), the velocity profile contains a strong shear
and is subject to the Kelvin–Helmholtz instability. In the vertical plane (θ = 0), the
velocity profile is a jet-like profile and is subject to jet instabilities. Moreover, in the
tilted plane, there is a strong density layer which, added to the centrifugal force,
could lead to a Rayleigh–Taylor instability. This last instability would also lead to an
undulation of the critical layer, as in the visualizations.
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Figure 8. Schematic of the tilt-induced instabilities occurring in the critical layer of the
vortex: a shear instability for θ = ± π/2 and a jet instability for θ = 0 and θ = π.

In order to determine which mechanism is responsible for the instability observed
in the tilted vortex, we must evaluate the growth rate associated with each of these
possible instabilities. Moreover, it is also important to quantify in which conditions
the local instability can be sufficiently strong not to be affected by the mean angular
advection around the vortex. The next section addresses these issues theoretically.

4. Stability analysis of the viscous critical-layer solution
In this section, we provide a theoretical analysis of the dynamics of the tilted vortex.

As demonstrated in Boulanger et al. (2007), it is convenient to analyse the flow with
new coordinates where x is modified into x − tan αz, and y and z are unchanged in
such a way that in each horizontal plane z = const the point x = y =0 corresponds
to the vortex centre. With these variables, the governing equations for the velocity
u = (u, v, w), pressure p and density ρ are in cylindrical coordinates:

Du

Dt
− v2

r
− w tan α

∂u

∂x
− w

tan α sin θ

r
v = − 1

ρ

∂p

∂r
+

1

Re
(
u)r , (4.1a)

Dv

Dt
+

uv

r
− w tan α

∂v

∂x
+ w

tan α sin θ

r
u = − 1

ρr

∂p

∂θ
+

1

Re
(
u)θ , (4.1b)

Dw

Dt
− w tan α

∂w

∂x
= − 1

ρ

∂p

∂z
+

tan α

ρ

∂p

∂x
− L

F 2
+

1

Re

w, (4.1c)

Dρ

Dt
− w tan α

∂ρ

∂x
= 0, (4.1d)

1

r

∂(ru)

∂r
+

1

r

∂v

∂θ
+

(
∂

∂z
− tan α

∂

∂x

)
w = 0, (4.1e)

with

D

Dt
=

(
∂

∂t
+ u

∂

∂r
+

v

r

∂

∂θ
+ w

∂

∂z

)
(4.2a)

∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
. (4.2b)
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The problem is characterized by the angle α, the Froude number F , the length ratio
L and the Reynolds number Re. The diffusion of density has been neglected. Note
that the gravity g is given by L/F 2 in term of these parameters.

As shown in Boulanger et al. (2007), a basic flow solution can be obtained in the
limit of small α, large Reynolds numbers and large L in the form

(ub, vb, wb, pb, ρb) = (0, V0(r), 0, p0(r, z), ρ0(r, z)) + α
(u1

L
,
v1

L
, w1,

p1

L
,
ρ1

L

)
eiθ + c.c.,

(4.3)
where the first term represents an axisymmetric vortex, and the second term the
first-order corrections in α and 1/L induced by tilting. This solution is singular at
the critical point rc defined by Ω0(rc) = 1/F , and a specific approximation with a
local viscous variable r̄ = Re1/3(r − rc) was constructed in Boulanger et al. (2007) to
describe the solution near this point. The viscous critical-layer solution was shown to
exhibit strong shear which is believed to be responsible for the instability observed
in the experiments. For this reason, we now perform a local stability analysis of the
critical-layer solution.

As shown in Boulanger et al. (2007), the basic flow expands in the critical layer as:

ub =
α

LRe1/3
Re[ū1(r̄ , θ)], (4.4a)

vb = V0c +
r̄V ′

0c

Re1/3
+

α

L
Re[v̄1(r̄ , θ)], (4.4b)

wb = αRe1/3Re[w̄1(r̄ , θ)], (4.4c)

pb =
ρ0cL

2e−z/L

F 2

(
1 +

αF 2

L3
Re[p̄1(r̄ , θ)]

)
, (4.4d)

ρb = ρ0ce
−z/L

(
1 +

αRe1/3

L
Re[ρ̄1(r̄ , θ)]

)
, (4.4e)

where we have kept the first-order terms in α and 1/L only. In these expressions, V0c

and V ′
0c are defined as the azimuthal velocity and its derivative at rc. The functions

ū1, v̄1, p̄1 and ρ̄1 are connected to the critical-layer solution

w̄1(r̄ , θ) =
πrc

F 2|2Ω ′
0c|2/3

Hi
(
i|2Ω ′

0c|1/3r̄
)
eiθ , (4.5)

via the relations

ρ̄1 = −iFw̄1 , (4.6a)

dp̄1

dr̄
= −rcρ̄1

F 2
, (4.6b)

v̄1 = −Fp̄1

rc

, (4.6c)

dū1

dr̄
= −i

v̄1

rc

. (4.6d)

The function Hi appearing in (4.5) is the Scorer’s function (see Abramowitz & Stegun
1965, p. 448) and Ω ′

0c is the derivative of the angular velocity at rc. The theoretical
profiles plotted in figures 3(b) and 3(c) for θ = 0 and θ = π/2 correspond to the real
part and imaginary part of (4.5), respectively.

As the base flow varies on a Re−1/3 radial length scale in the critical layer, it is natural
to search three-dimensional perturbations varying on a similar axial length scale and
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thus to introduce a new axial variable z̄ = Re1/3z. However, the angular variation
of the base flow is weak and no high azimuthal wavenumber perturbation has
been observed in the experiments. Therefore, we shall consider only small azimuthal
wavenumber perturbations.

In the limit of small α, large Reynolds numbers and large length ratio L, the
perturbation equations obtained by linearizing the system (4.1a)–(4.1e) around the
local base flow (4.4a)–(4.4e) can then be reduced into the following form:

(
∂

∂t
+

1

F

∂

∂θ
+ Re(w̄1)αRe2/3 ∂

∂z̄

)
u − 2

v

F
= −∂p

∂r̄
, (4.7a)

(
∂

∂t
+

1

F

∂

∂θ
+ Re(w̄1)αRe2/3 ∂

∂z̄

)
v + ω0cu = 0, (4.7b)

(
∂

∂t
+

1

F

∂

∂θ
+ Re(w̄1)αRe2/3 ∂

∂z̄

)
w + αRe2/3Re(w̄′

1)u = −∂p

∂z̄
− ρ

F 2
, (4.7c)

(
∂

∂t
+

1

F

∂

∂θ
+ Re(w̄1)αRe2/3 ∂

∂z̄

)
ρ + αRe2/3Re(ρ̄ ′

1)u − w = 0, (4.7d)

∂u

∂r̄
+

∂w

∂z̄
= 0 . (4.7e)

The O(Re−1/3) viscous forces, the O(1/L) non-Boussinesq effects and the O(αRe1/3)
advection terms of the base flow correction by the azimuthal velocity of the
perturbation, are all negligible with respect to the dominant O(1) or O(αRe2/3)
advection terms associated with the main rotation or the axial velocity field induced
by tilting. The O(α/L) radial buoyancy force induced by the radial variation of the
density, which is responsible for the Rayleigh–Taylor instability, is also negligible.

The above system of equations is complicated because it is inhomogeneous with
respect to both r̄ and θ . Local perturbations are advected around the vortex and
modified during their angular rotation owing to the dependency of w̄1 and ρ̄1 on θ . Yet,
the experimental observations discussed in the previous section tend to demonstrate
that the characteristics of the perturbations are mainly associated with the local
axial velocity profile, and that its growth results from a local process. In other
words, angular advection of the perturbation by the vortex is expected to be small
during the growth of the perturbation. This amounts to neglecting the term F −1∂θ

in the (4.7a)–(4.7d) in front of αRe2/3. This hypothesis has several consequences. The
terms −2v/F in (4.7a), ω0cu in (4.7b), ρ/F 2 in (4.7c) and w in (4.7d) also become
negligible. This means that if the dynamics of the perturbations is not affected by the
angular advection, it is neither affected by vertical stratification nor Coriolis effects
in these dimensionless variables. However, the instability is indirectly related to the
stratification through the position and amplitude of the critical layer (which define
the dimensionless variables). The perturbation then follows the dynamics of two-
dimensional perturbations in a parallel unstratified shear flow αRe2/3w̄1(r̄ , θ) where θ

can be considered as a parameter.
If we normalize spatial and time variables by

δc =
1

|Ω ′
0cRe|1/3 , (4.8a)

τc =
|Ω ′

0c|1/3F 2

rcαRe2/3
, (4.8b)
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Figure 9. (a) Maximum growth rate versus the axial wavenumber of the most unstable mode.
(b) Most unstable wavelength as a function of the Reynolds number. The theoretical lines
correspond to a jet profile (θ = 0) for a dashed line and to a mixing layer profile (θ = π/2) for
the solid line. Experimental data have been obtained for α = 0.03 rad (◦), α = 0.07 rad (�),
α = 0.14 rad (♦), α = 0.23 rad (+), α = 0.30 rad (∗), α = 0.38 rad (�).

such that

r̃ = r̄ |Ω ′
0c|1/3 = (r − rc)/δc, (4.9a)

z̃ = z̄|Ω ′
0c|1/3 = z/δc, (4.9b)

t̃ = t/τc, (4.9c)

w̃1 = αRe1/3w̄1τc/δc = Re

(
π

22/3
Hi

(
21/3r̃

)
eiθ

)
, (4.9d)

a familiar Rayleigh equation,

(−iω̃ + ik̃w̃1)

(
∂2

∂r̃2
− k̃2

)
ũ + ik̃w̃′′

1 ũ = 0, (4.10)

is obtained for the radial velocity amplitude ũ of the normal mode u(r̃ , z̃, t̃) =
ũ(r̃)eiω̃t̃−ik̃z̃.

The maximum growth rate Im(ω̃) versus k̃ of the perturbation to the profile w̃1

is plotted in figure 9 for θ = 0 and θ = π/2. We recall that θ =0 corresponds to
the vertical plane in which w̃1 has a jet profile (figure 3b). The other value θ = π/2
corresponds to the tilted plane in which w̃1 has a mixing layer profile (figure 3c).
As expected, the local mixing-layer profile is slightly more unstable than the jet, and
classical results of stability are recovered (see Drazin & Reid 1981). The most unstable
mode of the mixing layer is stationary with a growth rate

Im
(
ω̃max

ML

)
= σmax

ML τc ≈ 0.12, (4.11)

reached for

k̃max
ML = kmax

ML δc ≈ 0.68. (4.12)

The most unstable mode of the jet is a sinuous mode with

k̃max
J = kmax

J δc ≈ 0.75. (4.13)
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Figure 10. Evolution of the amplitude of the perturbations from shadowgraph visualizations
for Re = 700, F = 3.8 and α = 0.23 rad.

This mode has a growth rate

Im
(
ω̃max

J

)
= σmax

J τc ≈ 0.11, (4.14)

and contrarily to the mixing-layer mode, it is propagating with a phase velocity

cJ

τc

δc

≈ 0.24 . (4.15)

Experimental estimates for the growth rate have also been added in figure 9. They
have been obtained from shadowgraph visualizations in the vertical longitudinal
plane. For this purpose, the amplitude of the sinusoidal undulation of the critical
layer was measured manually on two wavelengths on each side of the vortex. This
leads to 10 determinations of the amplitude of the perturbation as a function of time.
They are plotted in figure 10 where the uncertainty can be as large as 20%. In this
figure, the amplitude increases exponentially, which leads to the determination of the
growth rate. However, these growth rate measurements contain a large uncertainty
for various reasons. First, the advection of the structures around the vortex can
drastically increase or decrease the growth of the amplitude if the perturbation is
not homogeneous in θ . Secondly, there is a competition between several wavelengths,
which makes it hard to follow exactly the same maximum and minimum of the
undulation. All of this induces a large uncertainty in the determination of the growth
rate, whose error can be as large as 50%.

Figure 9(a) shows that the growth rates measured experimentally are, in general,
smaller than the theoretical predictions and can be as small as half the theoretical
value. This is not surprising because the theory does not take into account the
stabilizing viscous and advection effects. Moreover, as explained above, the presence
of various wavelengths might introduce a small bias toward smaller values during
the experimental determination of the growth rate. Figure 9(b) shows the measured
wavelength as a function of the Reynolds number. It is very close to the theoretical
value of the maximum growth rate. The results are apparently slightly dependent
on the Reynolds number, showing that smaller wavelengths are obtained for larger
values of the Reynolds number. This is surprising because viscosity is expected to
damp preferentially the smaller wavelengths. Further data are required in order to
confirm this slight dependency.
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0c|1/3) versus

F . The dashed line is the asymptotic value 21/3 obtained for large F .

For large Froude numbers, a theoretical estimate for τc can be obtained. In this
limit, the critical layer is far from the vortex centre in a region where Ω0(r) ∼ 1/r2.
The critical radius rc and Ω ′

0c can therefore be expressed in terms of F such that
we obtain (F |Ω ′

0c|1/3/rc) ≈ 21/3 for large F . By plotting (F |Ω ′
0c|1/3/rc) versus F (see

figure 11), we can see that this estimate applies approximatively as soon as F > 1.5.
It follows that τc ∼ F/(21/3αRe2/3) for F > 1.5. The consequence is that the product
σmax

ML F , which compares the maximum growth rate to the angular advection frequency,
becomes independent of the Froude number. It is given (for F > 1.5) by

σmax
ML F ≈ 0.1αRe2/3. (4.16)

A priori, the theory requires that this product must be large, which means

αRe2/3 	 10. (4.17)

Figure 12 shows the experimental stability diagram of the tilt-induced instability.
Three types of behaviour have been observed. For high Reynolds numbers and high
tilt angles, the flow presents the instability described previously. The corresponding
parameter region has been marked as light grey in figure 12. As predicted by the
theory, this instability appears for Froude numbers larger than 1 and for αRe2/3

sufficiently large. When the Froude number is smaller than 1, the critical layer
disappears and no instability was observed. When the parameter αRe2/3 becomes
small (of the order of 5), we have observed that the critical-layer establishment is
followed by the development of non-stationary and non-persistent disturbances. After
the disappearance of the disturbances, the critical layer starts to beat at the Brunt–
Väisälä frequency. This regime is indicated in dark grey in figure 12. It is found for
αRe2/3 decreasing from 10 to 3 when the Froude number increases from 1 to 4. It
is not clear whether this region tends to αRe2/3 = 0 for larger Froude numbers. We
have not been able to explore this domain of parameters because it corresponds to
very small tilt angles which are too strongly affected by the remnant motions of the
fluid in the tank.

5. Late stages
We have also analysed the evolution of the tilted vortex when the instability is

strongly active. PIV measurements were made in a horizontal plane in order to study
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Figure 12. Experimental stability diagram of the tilt-induced instability for various inclination
angles α of the vortex. Each experiment can present a stable flow (�), an unstable flow (◦) or
a beating of the perturbation (∗).

the two-dimensional characteristics of the final vortex. The two-dimensional velocity
fields show that the vortex remains very close to axisymmetric and that the mean
velocity profile is fitted very well by the profile of a Gaussian vortex defined by
(2.2). The circulation and the core size were thus evaluated as a function of time
for three different tilt angles and for two different Reynolds numbers by fitting the
experimental data with the Gaussian vortex.

The circulation Γ of the vortex is shown in figure 13(a) as a function of time. The
uncertainty is very small, but it may depend slightly on the method used for the fit
of the experimental data. The overall error is smaller than 5%. The dotted symbols
correspond to a vertical vortex (used as a reference), for which the circulation remains
constant after a vortex formation time of approximately 5 s. Open symbols show the
results of a vortex tilted with an angle α = 0.12 rad. For this tilt angle, the three-
dimensional perturbation appears around t = 9 s for both Reynolds numbers. The
circulation is roughly constant, although it increases by about 30% for the smaller
Reynolds number and decreases by about 15% for the larger Reynolds number. The
vortex is not broken by the instability, even though the instability is very active. This is
consistent with Kelvin’s theorem predicting that the circulation should be conserved.
The small variations of the circulation are probably due to slight modifications of the
vortex profile during the instability.

The square of the core size a2 is plotted in figure 13(b) as a function of time. The
uncertainty for this parameter is slightly larger than for the circulation: the error can
be as high as 10% for the tilted vortex owing to strong refractions in the turbulent
regions. For a vertical vortex, it increases linearly with time owing to viscous diffusion,
with a slope 4ν (shown as thick lines) corresponding to a non-stratified Gaussian
vortex. For a vortex tilted with an angle α = 0.12 rad, the initial evolution of the
core size is similar, showing that the formation of the vortex is weakly influenced by
the tilt angle. However, the core size jumps suddenly to a large value after the onset
of the instability, when the Reynolds number is equal to 2000. This comes from the
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Figure 13. Temporal evolution of (a) the circulation and (b) the core size of a tilted vortex.
Dotted symbols are the reference vertical vortex. Open symbols correspond to a tilt angle
α = 0.12 rad and a Reynolds number Re = 2000 (◦) and Re = 4200 (�). (a) The solid lines
are experimental data fits. (b) The slope of the lines is calculated from the viscous evolution
of a Gaussian vortex and the grey area indicates the position and width of the critical layer
for the Re = 2000 (◦) experiment.

large dispersion caused by the instability which enhances the diffusion of the vorticity
and creates an artificial growth of the core size. The final vortex has a core size 50%
larger than in the absence of instability. Such a sudden increase of the core size has
not been observed for a higher Reynolds number (Re = 4200) although the instability
was more active there. This can be explained by the instability being located much
farther from the vortex centre in that case, because the Froude number is twice as
large. The position of the critical layer can be calculated for these two experiments.
For the lower Reynolds number, it is indicated in figure 13(b) by the grey area. We
can see that this region is close to the core radius when the instability develops.
On the contrary, the grey area would be outside the figure for the higher Reynolds
number, since it is located around r2

c ≈ 10 cm2. For the lower Reynolds number, the
sudden increase of the core size induces a sudden decrease of the Froude number and
a disappearance of the critical layer. This might explain why the instability saturates
and creates only a beating of the flow, probably associated with the oscillation of
a stable Kelvin mode. After the turbulence has slowed down, the core size seems to
increase again as for a Gaussian vortex.

We can infer from these observations that at high Reynolds numbers, the instability
of a tilted vortex will not break the vortex, but will increase its core size if its Froude
number is close to 1.

6. Conclusion
In this paper, we have analysed the dynamics of a tilted vortex in a stratified fluid for

small inclination angles, large Reynolds numbers and Froude numbers larger than 1.
In a previous paper (Boulanger et al. 2007), we showed that when F > 1, tilting

induces a strong axial flow and important density variations in a cylindrical region
located near a critical radius where the Brunt–Väisälä frequency is equal to the
angular velocity of the vortex. Moreover, it was also shown that these corrections to
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the rotating flow were captured well by a viscous critical-layer analysis: the axial flow
was demonstrated to have an m =1 azimuthal structure, and radial profiles which vary
from jet in the vertical plane (θ = 0) to mixing layer in the tilted plane (θ = π/2). Here,
we have demonstrated experimentally that the axial flow correction is responsible for
a violent instability characterized by the formation of small co-rotating vortices on
either side of the vortex. The growth rate and the spatial structure of the instability
mode have been obtained using visualizations and PIV measurements, and compared
to the theoretical predictions obtained from a local stability analysis of the radial
profile of axial flow in the viscous critical layer.

A good quantitative agreement has been obtained for the wavelength of the modes
supporting the hypothesis that the instability is mainly governed by the local stability
characteristics for the experimental parameters we have considered. However, we have
also observed that experimental estimates for the instability growth rate were up to a
factor 2 below the local theoretical predictions. We have attributed this discrepancy
to the large uncertainties found in the experimental measurements, to the possible
bias due to the competition between several wavelengths and to neglected viscous
and advection effects in the theory.

The theoretical description has permitted us to show that, as soon as F > 1.5, the
condition for the validity of the local approach does not depend on the Froude number
and only requires the product αRe2/3 to be large. This product is also expected to be
the parameter controlling the stability of the tilted vortex: the dimensional growth
rate is shown to be equal to 0.1αRe2/3N , N being the Brunt–Väisälä frequency. When
this product is small, the local instability is in competition with the angular advection
of the vortex: the vortex becomes stable because local perturbations do not have
time to grow sufficiently before being advected. In our experiments, we have observed
that the stability threshold was slightly Froude-number dependent: it varied from
αRe2/3 = 10 to αRe2/3 = 3 when the Froude number increases from 1 to 4.

We have also looked at the evolution of the vortex after the development of the
instability. We have observed that the instability does not break the vortex and its
circulation does not change significantly. However, the instability can increase the
core size of the vortex by 50% and hence decrease its Froude number below the
threshold for the instability. This effect is observed only when the Froude number
is small enough (between 1 and 3), such that the critical layer is close to the vortex
centre.

It is striking to see that this instability occurs for tilt angles as small as 0.03 rad
(2◦) at high Reynolds numbers, and is thus likely to happen in most situations. We
have observed that the tilt angle of the vortex could vary from at least 1◦ owing to
the remnant motions in the tank. We suspect that it was the case in the experiments
of Cariteau (2005), who observed exactly the same instability without any intentional
tilt of the vortex. We thus expect this instability to occur in real geophysical flows,
where the Reynolds numbers are much higher than in laboratory experiments. A
consequence would be that vortices with a Froude number close to 1 are subject
to this instability and will thus decrease their Froude number below 1, where the
instability disappears. Such a defect of vortices with Froude number close to 1 might
be visible in oceanic and atmospheric data.

Finally, it is clear that this instability creates a strong vertical mixing of the stratified
fluid. This mixing mechanism is different from the simple overturning mechanism
which is often invoked in the ocean (Farmer, Pawlowicz & Jiang 2002). It will be
now interesting to quantify its real contribution to the global mixing properties of the
ocean.
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We would also like to mention that Schecter, Montgomery & Reasor (2002) have
examined a situation in which a local tilting was created by a three-dimensional linear
Rossby wave. In their case, a critical layer is also present, but its role is to damp the
linear Rossby wave and then favour the realignment of the vortex with the direction
of stratification. It is not clear what the structure of the flow is in that critical layer
and whether secondary instabilities such as the one described here could develop.

The support of ACI grant ‘Prévention des catastrophes naturelles’ by the French
Ministry of Research is gratefully acknowledged.
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In this work, we analyse the linear stability of a frozen Lamb-Oseen vortex in a fluid
linearly stratified along the vortex axis. The temporal stability properties of 3D normal
modes are obtained under the Boussinesq approximation with a Chebychev collocation
spectral code for large ranges of Froude numbers and Reynolds numbers (the Schmidt
number being fixed to 700). A specific integration technique in the complex plane is
used in order to apply the condition of radiation at infinity. For large Reynolds num-
bers and small Froude numbers, we show that the vortex is unstable with respect to all
non-axisymmetrical waves. The most unstable mode is however always a helical radia-
tive mode (m = 1) which either resembles a displacement mode or a ring mode. The
displacement mode is found to be unstable whatever the Reynolds numbers for moderate
Froude numbers (F ∼ 1). The radiative ring mode is by contrast unstable only for large
Reynolds numbers above 104, and is the most unstable mode for large Froude numbers
(F > 2). The destabilization of this mode for large Froude numbers is shown to be
associated with a resonance mechanism which is analysed in detail. Explanations for the
scaling and the spatial structure of the different unstable modes are also provided.

1. Introduction

Vortices such as the Lamb-Oseen vortex are often considered as robust coherent struc-
tures in homogeneous fluids. The goal of this work is to demonstrate that when such a
vortex is placed in a stratified environment it becomes unstable.

Despite the important number of works, the linear stability of a Lamb-Oseen vortex in
a homogeneous medium has been demonstrated only recently (Fabre et al., 2006). Such
a vortex, which has a Gaussian vorticity profile, is considered as more realistic than other
discontinuous vortex models such as the Rankine vortex which have often been used in
the literature. As shown by Fabre et al. (2006), the linear normal mode perturbations
of the Lamb-Oseen vortex exhibit special properties owing to the continuous vorticity
profile. In particular, many inviscid waves, termed Kelvin modes, become damped due
to the appearance of a critical point singularity (Le Dizès, 2004; Le Dizès & Lacaze,
2005). In a homogeneous fluid, the Lamb-Oseen vortex is stable, and other effects have
to be added in order to destabilize it such as axial flow (Lessen & Paillet, 1974; Fabre
& Jacquin, 2004), strain field (Eloy & Le Dizès, 1999) or other vortices (Le Dizès &
Laporte, 2002; Meunier & Leweke, 2005).

The effect of stratification has mainly been considered in the context of oceanography
and atmospheric sciences under simplifying hypotheses. The first works have been per-
formed in the context of shallow water flows (see for instance Satomura, 1981; Hayashi &



2 X. Riedinger & S. Le Dizès & P. Meunier

Young, 1987; Knessl & Keller, 1992). For vortices, the destabilizing role of stratification
has been first demonstrated by Ford (1994). More recently, Schecter & Montgomery
(2004) have analysed the stability of a family of Rankine-like vortices under an hydro-
static hypothesis and obtained a formal expression for the instability growth rate. Further
studies have also been performed in a more applied context (Schecter & Montgomery,
2006; Schecter, 2008; Hodyss & Nolan, 2008). The stability of a strongly stratified Rank-
ine vortex has also been considered in Billant & Le Dizès (2009). Asymptotic expressions
in the small Froude number limit have been derived.

The analysis of stratified Lamb-Oseen vortex has started with the works of Miyazaki &
Fukumoto (1991) and Le Dizès (2008) who demonstrate the existence of neutral radiative
inviscid modes. The instability has been demonstrated only recently in Le Dizès & Billant
(2009) (see also Le Dizès & Billant, 2006). By using a large wavenumber asymptotic
approach (Le Dizès & Lacaze, 2005; Billant & Gallaire, 2005), Le Dizès & Billant (2009)
have shown how the emission of internal gravity waves can become destabilising and
obtained explicit formulae for the inviscid growth rate which compare very well with
numerical results for small Froude numbers. In the present work, this theory will also be
used to explain some of the characteristics of the instability for large Reynolds numbers.
Interestingly, we shall demonstrate that the Lamb-Oseen vortex is also unstable for small
Reynolds numbers and for large Froude numbers.

The effect of stratification on Taylor-Couette flows has been investigated for many
years. It was first thought that stratification stabilizes the centrifugal instability (With-
jack & Chen, 1974, 1975; Boubnov et al., 1995). But, it was recently found that strati-
fication can also have a destabilizing effect in particular regions of the parameter space
(Molemaker et al., 2001; Yavneh et al., 2001; Le Bars & Le Gal, 2007). This so-called
Strato-Rotational Instability is associated with a resonance of boundary modes. Such
a resonance mechanism has been obtained in several other contexts. Satomura (1981),
Hayashi & Young (1987) and Balmforth (1999) have demonstrated its occurrence in
shallow water shear flows. Sakai (1989) and more recently Gula et al. (2009) have anal-
ysed the different types of resonance for a two-layer channel model. Interestingly, we
shall demonstrate that in large Froude number regime, the Lamb-Oseen vortex is also
unstable due to a resonance of Kelvin and radiative modes.

It is also worth mentioning the works on acoustic modes in jets (Luo & Sandham,
1997) and in vortices (Broadbent & Moore, 1979) and on accretion disks (Papaloizou
& Pringle, 1984; Narayan et al., 1987) where the instability is also due to either wave
emission or wave resonance.

The paper is organised as follows. In section 2, the base flow and the linear stability
equations are given. We also discuss the radiative boundary conditions to apply to the
perturbations. We show that these boundary conditions can be implemented with a
spectral code to weakly damped modes by performing the integration in the complex
plane. The spectral collocation code is briefly presented in this section. In section 3,
the stability results are presented for the most unstable modes which correspond to
helical modes (m = 1). Two types of modes are shown to become the most unstable.
Stability diagrams (growth rate contours) are obtained for each mode as functions of the
Reynolds and Froude numbers. The structure of the eigenmodes is provided and the
role of the critical points in the damping of the modes is also discussed. An important
subsection is concerned with the mechanism of resonance which explains the instability
for large Froude numbers. A criterion for its occurrence is in particular provided. Results
for higher azimuthal wavenumbers m ≥ 2 are presented in section 4. The last section
provides a summary of the main results.
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2. Framework and numerical method

2.1. Base Flow and perturbation equations

We consider an axisymmetrical Lamb-Oseen vortex in a viscous fluid of kinematic vis-
cosity ν, stably stratified along the vortex axis. The stratification is assumed to be linear
with a constant Brunt-Väisälä frequency N =

√
−g∂zρ/ρ0 and a mass diffusivity D. The

vortex is characterized by its radius a and circulation Γ. It satisfies the Navier-Stokes
equations under the Boussinesq approximation (Boulanger et al., 2007) provided that the
radius a increases in time according to a =

√
a2
0

+ 4νt. In this study, this weak diffusion
is neglected such that the vortex is assumed “frozen” with a constant radius a.

Using a and 2πa/Γ as characteristic spatial and temporal scales respectively, the an-
gular velocity profile of the vortex can be written as

Ω(r) =
1

r2

(
1 − e−r2

)
. (2.1)

Under the Boussinesq approximation, the base flow is then defined by the three parame-
ters, the Reynolds number Re, the Froude number F and the Schmidt number Sc given
by

Re =
Γ

2πν
, (2.2a)

F =
Γ

2πN
, (2.2b)

Sc =
ν

D
. (2.2c)

Whereas the Froude number and the Reynolds number will be varied in a large range of
values, the Schmidt number will be fixed to 700, a value commonly used for salt water.

Infinitesimal disturbances of the velocity, pressure and density fields are considered in
the form of normal modes

(u′, v′, w′, p′, ρ′) = [u(r), v(r), w(r), p(r), ρ(r)] exp(ikz + imθ − iωt) , (2.3)

where u′, v′ and w′ are the radial, azimuthal and axial velocities, r the radial coordinate,
k and m the axial and azimuthal wavenumbers and ω the complex frequency. The normal
mode amplitudes satisfy the following equations obtained by linearizing the Navier-Stokes
equations under the Boussinesq approximation:

iφu − 2Ωv = −dp

dr
+

1

Re

(
∆u − u

r2
− 2im

r2
v

)
, (2.4a)

iφv +

(
2Ω + r

dΩ

dr

)
u = − imp

r
+

1

Re

(
∆v − v

r2
+

2im

r2
u

)
, (2.4b)

iφw = −ikp− 1

F 2
ρ +

1

Re
∆w , (2.4c)

iφρ = w +
1

ReSc
∆ρ , (2.4d)

1

r

d(ru)

dr
+

imv

r
+ ikw = 0 . (2.4e)

where ∆ = ∂2

∂r2 + 1

r
∂
∂r
−k2−m2

r2 is the Laplacian operator written in cylindrical coordinates
and

Φ = −ω + mΩ . (2.5)

This system can be further reduced by eliminating pressure and axial velocity to obtain a
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third order system of the form ωAf = Bf for f = [u(r), v(r), ρ(r)]. This reduced system
together with adequate boundary conditions at the origin and at infinity defines a gener-
alized eigenvalue problem for the frequency ω, for fixed base flow parameters (Re, F, Sc)
and fixed real axial wavenumber k and azimuthal wavenumber m. Our goal is to deter-
mine the unstable eigenmodes, that is those with a positive growth rate ℑm(ω), when all
the parameters (except Sc) are varied. Because we want to provide the marginal curves
of the unstable modes, we will also consider neutral and weakly damped eigenfrequencies.

2.2. The boundary conditions and the numerical method

The boundary conditions that we shall apply to the perturbations are prescribed by
causality. Because the fluid is at rest at infinity, we should be able to form the pertur-
bations from a compact initial condition. This condition implies that when the medium
can sustain waves at infinity, these waves must propagate outward. The condition of
causality is thus in that case a condition of radiation. The difficulty with this condition
is that it does not necessarily imply vanishing of the solution at infinity, when the modes
are neutral or damped (ℑm(ω) < 0).

In order to express the condition of radiation, it is necessary to determine the possible
behaviors of the perturbations at ∞. These can be easily derived by manipulating
equations (2.4a-e) in the large r limit. We obtain 8 independent solutions with an
asymptotic behavior of the form rαj e±iβjr where the radial wavenumbers βj satisfy the
equation:[(

(β2 + k2)2

Re2Sc
− iω

(β2 + k2)

Re
+

1

F 2
− ω2

)
(β2 + k2)

] (
(β2 + k2)

Re
− iω

)
= 0 . (2.6)

Two of the solutions of this equation, say ±β1, can be considered as “non-viscous” and
are such that β1 = kω/

√
F−2 − ω2 + O(1/

√
Re). The six others are associated with

diffusion processes and depend on the Reynolds number at leading order. The condition
of radiation means that the perturbations should be only composed of waves propagating
outward at infinity. The property of these waves is that they are spatially damped as r
increased when they correspond to a positive growth rate ℑm(ω) > 0. The condition of
radiation thus imposes that the solutions should behave near ∞ as

f ∼
4∑

j=1

fjr
αj eiβjr (2.7)

where the radial wavenumbers βj have been chosen such that ℑm(βj) > 0 when ℑm(ω) >
0. When ℑm(ω) ≤ 0, the βj should be obtained by continuity from their definition for
ℑm(ω) > 0. When ℑm(ω) > 0, the above condition is equivalent to the vanishing of
the solution at ∞. But, this is not always the case for ℑm(ω) ≤ 0. In particular, if
one ℑm(βj) has changed sign, the solution prescribed by the condition of radiation is
no longer bounded but increases exponentially as r goes to infinity. In that case, the
condition of radiation means that the inward wave corresponding to the exponentially
decreasing behavior rαj e−iβjr should not be part of the solution near infinity. This is
a priori a condition difficult to implement numerically with a spectral code. With the
spectral code we shall use, the condition we shall implicitly apply is the vanishing of the
solution at infinity. As a consequence, we will not be able to provide the eigenfrequencies
in frequency domains where the physical condition of radiation is not equivalent to the
vanishing of the solution.

To get round this difficult, we have used a trick. Our idea is to consider the problem
on a complex path of the form r = seiθ, s ∈ ℜ with a small fixed value of θ. The
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Figure 1. Continuous spectrum (solid lines) and “unphysical” domain (indicated by the letter
“U”) for Re = 200, F = 0.9, k = 3. (a) Real path θ = 0 (b) Complex path θ = π/10.

boundary conditions are then implemented in the complex plane by assuming that the
behavior prescribed by the condition of radiation is also valid along the complex path
as s goes to ∞. By doing so, we modify the frequency domain where the condition
of radiation is equivalent to the spectral condition of vanishing, and therefore change
the frequency domain which can be resolved numerically. This domain of the complex
ω plane is delimited by curves which define the so-called continuous spectrum. These
curves can be obtained by solving (2.6) with respect to ω. They are defined by the
parametric expressions:

ω = −i
β2 + k2

Re
, (2.8a)

ω = −i
β2 + k2

2Re
±

√
− (β2 + k2)2

4Re2
+

β2

F 2(β2 + k2)
+

β2 + k2

Re2Sc
. (2.8b)

When we stay on the real axis, the continuous spectrum is obtained by varying β with
ℑm(β) = 0. On a complex path of the form r = seiθ, β should be varied with the
condition ℑm(βeiθ) = 0. In figure 1, we have represented the continuous spectrum for
typical parameters for a real path and for a complex path with θ = π/10. As discussed
above, these curves delimit the “unphysical” frequency domain where the vanishing of
the solution does not correspond to the condition of radiation. This figure illustrates
the interest of using a complex path. We clearly see the deformation of the continuous
spectrum and the enlargement of the domain where the condition of radiation can be
correctly prescribed by the spectral code. Note in particular that the frequency domain
of interest indicated in gray is far from the unphysical domain only if the integration is
performed in the complex plane.

On the real axis or on the complex path, the numerical resolution of the eigenvalue
problem mainly follows the analysis which was performed by Fabre & Jacquin (2004)
for a vortex in a non-stratified fluid. We use a similar Chebychev spectral collocation
code, which was, for the present analysis, initially developed by Antkowiak & Brancher
with Matlab c© for non-stratified fluids. As in Fabre & Jacquin (2004), we have used the
parity properties of the solutions and implemented these symmetries on the Chebychev
decomposition to speed up the calculation. We have also used a similar mapping from
s ∈ [−∞;∞] to the Chebychev domain ξ ∈ [−1; 1] to avoid the treatment of the regular
singularity at the origin. With this mapping, the complex radial coordinate is connected



6 X. Riedinger & S. Le Dizès & P. Meunier

−0.5 0 0.5
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

ω
r

ω
i

−0.5 0 0.5
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

ω
r

ω
i

Correct eigenfrequency

(a) (b)

Figure 2. Close view of the numerical spectrum (dots) and theoretical continuous spectrum
(solid gray lines) near a correct damped eigenvalue (indicated by the arrow) for the parameters
of figure 1, and Np = 400 and H = 12. (a) Real path θ = 0 (b) Complex path θ = π/10.

to the Chebychev variable by the relation

r = (Hξ/(1 − ξ2))eiθ. (2.9)

We have usually taken values of H between 1 and 12 and of θ between 0 and π/10. Fabre
& Jacquin (2004) have shown that the eigenvalues automatically satisfy the boundary
conditions at the origin and we refer to their paper for more details. The number Np of
polynomials was varying between 80 and 500. In practice, Np = 80 was often sufficient
to describe correctly the modes. Larger values of Np were mainly used to test the
convergence of the eigenvalues.

The numerical spectrum obtained with Np = 400 and H = 12 for the parameters
of figure 1 is shown in figure 2. With these figures, we want to show that the genuine
eigenfrequency ω ≈ 0.128 − 0.028i, indicated by an arrow in figure 2(b) can only be
obtained with a complex path. With a real path, this frequency is behind the continuous
spectrum and is not obtained by the code. It is also interesting to note that for both
cases, most of the numerical eigenvalues align very well along with the curves of the
theoretical continuous spectrum.

Before presenting the results, we would like to mention a second advantage in perform-
ing the integration along a complex path. In the inviscid limit, the perturbation equations
possess critical point singularities where −ω+mΩ(r) = 0 or −ω+mΩ(r) = ±1/F . When
ω is real, these singularities can be on the real axis. By integrating along the line r = seiθ

with θ = π/10, these singularities are thus avoided. Moreover, for the eigenvalues that
we will consider which will satisfy 0 < ωr < m for m > 0 [see gray region in figure 1(b)],
the way they are avoided corresponds to the prescription obtained by causality. The
critical points are indeed in the negative imaginary half-plane when ℑm(ω) > 0: they
should therefore be avoided in the positive imaginary half plane. In the presence of a
small amount of viscosity, the singularities disappear but viscous scales appear close to
the critical points, as well as in large domains of the complex plane (Le Dizès, 2004).
By integrating in the complex plane, these viscous regions are avoided. The eigenmode
structure then remains mainly non-viscous on the integration contour. It can therefore
be better resolved with a small number of polynomials. The interest of such an approach
has also been demonstrated by Fabre et al. (2006).
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Figure 3. Frequency ωr (a) and growth rate ωi (b) of the first four more unstable modes for
Re = ∞, F = 0.9. Symbols: our results with Np = 150, H = 3, θ = π/10. Lines: results
obtained by the shooting method of Le Dizès & Billant (2009).

3. Instability of helical modes (m = 1)

Unstable modes have been obtained for m = 1, 2, 3 but not for m = 0. The helical
modes (m = 1) have been found to be the most unstable. They are presented first.

3.1. Unstable mode characteristics

Results in the inviscid and strongly stratified limits have been obtained and discussed in
Le Dizès & Billant (2009). They have used a shooting method to obtain the dispersion
relation of the unstable helical modes (m = 1). For small Froude numbers, they have
shown that the Lamb-Oseen vortex exhibits an infinite number of unstable inviscid modes
and that the frequencies of these modes only depend on the product kF . Their results
are compared to the present spectral code results for a Froude number F = 0.9 in figure
3. Only the first four unstable branches have been plotted. The good agreement with an
error smaller than 1% constitutes a validation of the code.

The first mode, which is the most unstable for these parameters, is particular as it is
unstable in a finite interval of kF (kF ∈ [0, 8] in fig. 3). It also exhibits a special structure
which, contrarily to the other modes, is mainly localized in the vortex core (see figure
4(a)). By contrast, all the other modes are unstable in an infinite wavenumber interval
[kn,∞[. As shown in Le Dizès & Billant (2009), the properties of these modes, as well
as the instability mechanism, can be understood by using a large wavenumber WKBJ
analysis. They have demonstrated that all these modes exhibit the same structure. They
are mainly localized in a ring region and discretized by the number of half-oscillations
in this region. All modes exhibit a radiative part which extends to infinity and which
is responsible for the destabilization. The density structure of the second mode, which
corresponds to the first ring mode is plotted in figure 4(b). Both the localization in a
ring and the radiative part are visible in this figure. Note also that the amplitude of the
ring mode is negligible in the vortex core, contrarily to the first mode shown in figure
4(a).

The effects of the viscosity and of the stratification on the first two modes are shown
in figures 5 and 7. In figure 5, inviscid characteristics are displayed for various Froude
numbers. We clearly see that the frequency and the growth rate are mainly functions
of kF for all F . For small F , this property is in agreement with the results of Le Dizès
& Billant (2009). Note, however, that for moderate Froude numbers, the growth rate of
the modes starts to be affected, especially the first mode. In particular, the growth rate
of the first mode strongly decreases as F increases above 1, and becomes negative when
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(a) (b)

Figure 4. Density structure of the first two most unstable helical modes for F = 0.9 and
Re = ∞. (a) First mode obtained for k = 2.5, ω = 0.126 + i0.0078; (b) Second mode (first ring
mode) obtained for k = 22.1, ω = 0.055 + i0.00206.
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Figure 5. Variation of the first two branches with respect to the Froude number in the weakly
stratified case for m = 1 and Re = ∞. (a) Frequency ωr and (b) growth rate ωi versus k, for
F = 0.1 (dotted line), F = 1 (solid line), F = 2 (dash line), and F = 3 (dash-dotted line).

F > 2.5. The second mode is, by contrast, less damped by an increase of F . It becomes
the dominant mode when F > 2. For F = 3, we can however note that the growth
rate curve changes and exhibits oscillations. As we shall see below, these oscillations are
associated with a phenomenon of resonance.

As mentioned above, the eigenmodes possess critical point singularities where either
−ω + mΩ(r) = 0 (type I) or −ω + mΩ(r) = ±1/F (type II). When the mode becomes
neutral some of these singularities are on the real axis. They do not affect the numerical
resolution because they remain far from the complex integration contour. For small
F , only critical points I are present. The role of these critical points was discussed in
Schecter & Montgomery (2004) in the limit of vanishing Froude numbers. For large F ,
both types of critical points can be present. Here, the critical points which tend to have
a stabilizing effect are of type II. These critical points have actually the same effects than
the regular critical points in non-stratified vortices (Le Dizès & Lacaze, 2005; Fabre et al.,
2006). By contrast, critical points of type I tend to have a destabilizing role (Le Dizès
& Billant, 2009).
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(a) (b)

Figure 6. (a) Density and (b) vorticity structure of the first helical mode (m = 1) for F = 1.5
Re = 105, k = 1.6, ω = 0.136 + 0.00538i.
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Figure 7. Variation of the first two branches with respect to the Reynolds number for m = 1,
F = 1,. (a) Frequency ωr and (b) growth rate ωi versus kF for Re = ∞ (solid line), Re = 106

(dash), Re = 3000 (dash-dot), Re = 200 (dotted)

In the present study, it is the appearance of critical points II which can explain the
progressive stabilisation of the eigenmodes when F is increased above 1. The trace of such
a critical point is visible in the eigenmode structure, as illustrated in figure 6. Compare,
in particular, the two figures 6(a) and 4(a) which display the density structure of the
first mode with and without critical layer respectively. Note also the phase change of
the vorticity structure across the critical layer [see figure 6(b)]. Such a phase change is
typical of viscous critical layers.

A critical point of type II is also present in the second mode when F exceeds 1 but it
has a weaker stabilizing effect. More precisely, its stabilizing effect is delayed to higher
values of the Froude number. This difference is associated with the different structure of
the second mode which is not localized in the vortex core. The critical point II indeed
reaches the region where the second mode is localized for much larger values of F . We
shall come back to this point in section 3.3 where the properties of the second mode will
be analysed in more details.

The effect of the Reynolds number on the first two branches is shown in figure 7. As
expected viscosity is stabilising and the larger the wavenumber the stronger the damping.
Note for instance that for Re = 3000, the second mode is completely stable and the
instability band of the first mode has moved to smaller wavenumbers. Surprisingly, we
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Figure 8. Maximum growth rate contours of the first helical mode (m = 1) as a function of
the base flow parameters F and Re. The dashed curve delimits the unstable region where the
first helical mode is not the most unstable mode.

shall see below that viscosity does not kill the instability and that the first mode remains
unstable whatever small the Reynolds number. This small Reynolds number behavior is
reminiscent of the Kelvin-Helmholtz instability which is also active for Reynolds numbers
of order 1 (Esch, 1957). Note however that for small Reynolds numbers, viscous diffusion
of the base flow is no longer negligible. The unstable character of the “frozen” base flow
for small Reynolds numbers may not be useful in practice.

3.2. Instability properties of the first helical mode

We now detail how the properties of the first helical mode vary with F and Re when
it is the most unstable mode. The maximum growth rate contours of the first helical
mode in the (Re, F ) plane are shown in figure 8. We have also indicated in this figure,
the parameter region where the first mode is no longer dominant. Maximum growth rate
curves for fixed Reynolds numbers are also shown in figure 9(b). The corresponding
frequency ωr and axial wavenumber of the most unstable mode are displayed in figures
9(a,c). A first point to note is that for Re > 200, the frequency of the most unstable
mode does not vary much with respect to the Froude number and is always between
0.1 and 0.14. The plots of figures 9(d) confirm the scaling already mentioned above:
the most unstable mode has a wavenumber which scales as k−

c (Re)/F for small Froude
numbers and large Reynolds numbers k−

c (∞) ≈ 2.3. Note, by contrast that for large
Froude numbers, the most unstable wavenumber is mainly constant.

Figure 9(b) demonstrates that for large Reynolds numbers, the mode is most unstable
for small Froude numbers. Its maximum growth rate ωmax

i = 8.75 10−3 is obtained in the
inviscid limit for F → 0. The scaling kmax ∼ k−

c (Re)/F explains the stabilisation of the
mode for small Froude numbers at a finite Reynolds number. This damping is a viscous
effect which becomes more and more important as F decreases due to the divergence
of the most unstable wavenumber for vanishing F . Whatever the Reynolds number, we
therefore expect a stabilisation for sufficiently small Froude numbers. For instance, for
Re = 106, the first helical mode becomes stable at F = 0.015. The stabilisation for large
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Figure 9. Characteristics of the most unstable first helical mode for Re = ∞ (solid line),
Re = 106 (dash), Re = 3000 (dash-dot), Re = 200 (dotted) as a function of the Froude number
F . (a) Frequency ωr, (b) Growth rate ωi, (c) Axial wavenumber k, (d) Product kF .

F is due to the appearance of a critical point of type II. As explained above, the first
mode is more affected by this critical point because it appears when F is increased above
1 in the region where this mode is localized. This also explains why the second mode
can become more unstable than the first mode for large Froude numbers. The region of
the parameters where the second mode is the most unstable has been indicated in figure
8. More details on this mode are given below.

Figure 8 shows that the first mode is not stabilized by viscosity and remains unsta-
ble for small Reynolds numbers in a large domain of Froude numbers. The peak of
instability of the Lamb-Oseen vortex is reached for a small Reynolds number Re = 26.
The characteristics of the most unstable mode over all the parameters are the following:
ω = 0.0198+ 0.00879i, k = 0.385, Re = 26 and F = 1.15. The vorticity structure of this
mode is given in figure 10(a). It is different from the most unstable mode obtained for
infinite Reynolds number and the same Froude number [see figure 10(b)]. It has a simple
dipolar structure and resembles a displacement mode. Interestingly, the modes structure
changes continuously from 10(b) to 10(a) as the Reynolds number is decreased. This
is illustrated in figure 10(c) where we have plotted the vorticity field of the eigenmode
obtained at an intermediate Reynolds number Re = 80. The continuous variation is also
visible in figure 11 where we have displayed the isocontours of the frequency and of the
product kF of the most unstable first mode in the (F, Re) plane. We clearly see that
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(a) (b) (c)

Figure 10. Axial vorticity contours in the plane of the first helical eigenmode for F = 1.15 (a)
Re = 26, k = 0.38, ω = 0.0195 + i0.00878 and (b) Re = ∞, k = 1.95, ω = 0.129 + i0.00706, (c)
Re = 80, k = 0.8, ω = 0.0682 + i0.00566.
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Figure 11. Characteristics of the most unstable first helical mode as function of F and Re.
(a) Isocontours of the frequency ωr; (b) Isocontours of the product kF .

there is no discontinuity and therefore no jump from one mode to another when either
the Reynolds number or the Froude number is varied.

When Re goes to 0, both the frequency and the wavenumber of the most unstable
mode tend to zero as seen in figures 11. Because the numerical method is not adapted to
compute very small wavenumber modes, we have stopped the calculation for k = 0.05.
The right marginal curve obtained in figures 8 and 11 thus correspond to the marginal
curve for a fixed wavenumber k = 0.05. We suspect that there is no critical Reynolds
number if k is allowed to go to zero.

3.3. Instability properties of the second helical mode

As discussed in section 3.1, there is an infinity of unstable helical modes in the inviscid
limit. In the previous section, we have given the property of the first mode which is the
most unstable mode in a large range of parameters. However, we have also seen that the
second mode, which is the first in the family of ring modes can become more unstable
for large Froude numbers. In this section, we want to provide more information on this
mode in this regime.

The maximum growth rate contours for this mode as function of the base flow param-
eters are shown in figure 12. This plot has to be compared with figure 8 which shows the
characteristics of the first mode. Contrarily to the first mode, the second mode possesses
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Figure 12. Maximum growth rate contours of the second helical mode (m = 1) as functions of
the base flow parameters F and Re. The dashed curves delimit the unstable region where the
first helical mode is more unstable.

a critical Reynolds number Rec ≈ 104 below which it is stable whatever the Froude
number. The instability domain extends to much larger values of the Froude number
than the first mode. A large domain of the parameters, which is above the dashed line
in figure 12 is then dominated by the second helical mode.

As for the first mode, we have represented in figure 13, the frequency and the wavenum-
ber of the most unstable mode for fixed values of the Reynolds number as a function of
the Froude number. The first point to note is that the growth rate curves of the second
mode shown in figure 13(b), though they extend to larger Froude numbers, are similar
to those of the first mode for the same large Reynolds numbers [see figure 9(b)]. The
maximum growth rate is also obtained in the inviscid limit as F goes to 0. It is equal
to σ ≈ 0.002. In this domain of parameters (small Froude, large Reynolds), the second
mode is however always less unstable than the first mode.

The interesting aspect of the second mode is seen in figures 13(a,c) : the frequency and
wavenumber curves exhibit discontinuities as F varies. No such behavior was observed
for the first mode. These discontinuities are associated with mode jumps. They can be
understood by looking at figure 14 where the growth rate of the second mode is plotted
versus k for different Froude numbers. We see in this figure that the growth rate curves
exhibit oscillations which become more and more pronounced as F increases. These
oscillations are limited to small values of k but they become sufficiently important for
large F to change qualitatively the form of the instability domain. For large F , the
second mode becomes unstable in instability bands centred on fixed wavenumbers which
are independent of the Froude number. Each discontinuity observed in the frequency
and wavenumber curves in figure 13 corresponds to a change in the most unstable peak.

The origin of these instability peaks can be attributed to a phenomenon of resonance.
In figure 15, we have considered a large Froude number case where this phenomenon is
clearly visible. We have plotted in figure 15(a) the frequencies of the modes involved in
the resonance. The almost vertical dotted lines correspond to damped Kelvin modes.
The solid oscillating curve corresponds to the second helical mode. This radiative mode
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Figure 13. Characteristics of the most unstable second helical mode for Re = ∞ (solid line)
and Re = 106 (dash) as a function of the Froude number F . (a) Frequency ωr, (b) Growth rate
ωi, (c) Axial wavenumber k, (d) Product kF .
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Figure 14. Maximum growth rate versus k of the second helical mode for Re = ∞. F = 2.5
(thick solid line), F = 3 (solid), F = 4 (dash), F = 5 (dash-dot), F = 7 (dotted)

is also damped except when its frequency matches the frequency of one of the Kelvin
modes. This is a clear evidence of the mechanism of resonance. The Kelvin modes can
also be destabilized by a resonance with the third helical mode (which is not plotted in
fig. 15(a) because it is too strongly damped). This leads to the bands of instability plotted
as dotted lines in fig. 15(b). The fact that the two types of modes do exist simultaneously
can be understood by using the results of the asymptotic theory performed in Le Dizès &
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Figure 15. Dispersion relation of the helical modes for Re = ∞ and F = 8. (a) Frequency
ωr and (b) growth rate ωi. The modes shown in fig. (a) are damped expect on the thick part
of the curve where the growth rate is given in fig. (b). Solid and dotted lines correspond to
radiative and Kelvin modes respectively. Modes with a growth rate smaller than −3 10−2 have
not been plotted in fig. (a). The horizontal dashed line in fig. (a) is the theoretical prediction
of maximum resonance.

Lacaze (2005) and Le Dizès & Billant (2009). In Le Dizès & Lacaze (2005), it was shown
that for infinite Froude number, inviscid Kelvin modes with frequencies 0 < ωr < 0.13 do
exist. These modes are localised in the vortex core between the centre and a (turning)
point rt(ωr) defined by ωr = ω−(rt) with

ω−(r) = mΩ(r) −
√

2Ω(r)(2Ω + r
dΩ

dr
) . (3.1)

When stratification is introduced, these Kelvin modes are still present and not imme-
diately affected by the critical point rc of type II which appears in their structure. As
explained in Le Dizès & Lacaze (2005), the Kelvin modes are expected to remain quasi-
neutral as long as this critical point is outside the region where the mode is localized,
that is as long as rt(ωr) < rc(ωr, F ). This is always the case when F < 2.59. However,
when F > 2.59, this limits the frequency of the quasi-neutral Kelvin modes to an interval
(0, ωl(F )), where ωl(F ) is defined by rt(ωl) = rc(ωl, F ) [see figure 16]. For the radiative
modes, we have the opposite problem. As shown by Le Dizès & Billant (2009), these
modes are known to be quasi-neutral in the strongly stratified case. In this limit, they
possess similar frequencies 0 < ωr < 0.13 as Kelvin modes in the non-stratified case and
are localised in the ring region delimited by the two turning points where ωr = ω−(r).
The left turning point of this region corresponds to the turning point delimiting the
Kelvin mode region. Therefore, both modes leave in different regions. As for the Kelvin
modes, we expect the radiative modes to remain quasi-neutral as long as the critical point
does not enter the region where the mode is localized. When F > 2.59, this provides
a constraint on the allowed frequencies which must satisfy ωl(F ) < ωr < 0.13. With
these large wavenumber analysis arguments, both types of modes are thus expected to
remain quasi-neutral in distinct frequency intervals having the frequency ωl(F ) as com-
mon boundary, [see figure 16]. It is therefore around this frequency that we expect a
possible mechanism of resonance. This is in agreement with the numerical results ob-
tained for F = 8. For this value of F , we have ωl(8) ≈ 0.114, which is close to the
value for which the mechanism of resonance is the most efficient [see figure 15]. Using
these arguments, we predict that the mechanism of resonance is active on the helical ring
modes for F satisfying 2.59 < F < 18.5. Above F = 18.5, the critical point is within
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the domain where the ring modes are localized whatever their frequency. The modes are
therefore expected to be too strongly damped to be resonantly excited.

The resonance mechanism is also visible in the structure of the modes. In figure 17(b-
d), we have plotted the density of the eigenmodes for two resonant wavenumbers (c,d)
and one non-resonant wavenumber (b) for a particular set of parameters. The frequency
of these modes has been indicated in figure 17(a). In order to plot these modes in the
physical space, especially the stable mode (b), we have used a particular integration
path which is real up to r = 20 and then complex on the line r = 20 + seiθ to satisfy
the condition of radiation. To facilitate the comparison of the different profiles, we
have normalised the density of the eigenmodes such that its maximum amplitude in the
radiative domain r ∈ [5; 20] is equal to 1. By doing so, we can remark that the amplitude
of the mode in the core region r < 1.6 is greater for the unstable cases. The stable mode
is by contrast more localized in the critical layer. It is also interesting to compare the
number of wavelength in the core region for the two successive resonant modes shown
in figures 17(c) and (d). We can notice that there is one more half wavelength in figure
17(d) than in 17(c). This is in agreement with the fact that the resonance occurs with
two successive Kelvin modes which possess this particular property (Le Dizès & Lacaze,
2005).

4. Instability of higher azimuthal wavenumbers: m = 2, 3, ...

For higher azimuthal wavenumbers (m ≥ 2), unstable modes have also been obtained.
Their structure and properties resemble those of the helical ring modes. In figures 18
and 19, we have plotted the first unstable branches for an inviscid and strongly stratified
case for m = 2 and m = 3 respectively. As for the helical ring modes, there are an infinite
number of unstable inviscid modes, which are all unstable in semi-infinite wavenumber
intervals. The frequency of each mode increases from zero to a finite value which is 0.4
for m = 2 and 1 for m = 3 as the wavenumber increases. However, the growth rate of
each mode reaches its maximum for a finite wavenumber. As for the case m = 1, we
have also observed that, for small Froude numbers, the dependence with respect to the
Froude number appears only via a rescaled wavenumber kF .

The density and vorticity structure of an unstable mode m = 2 has been illustrated
in figure 20. We can notice in figure 20(a) the radiative zone which extends far from the
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Figure 17. Structure of the resonant/non-resonant modes for m = 1, F = 3, Re = 105. (a)
Frequency of the third helical mode (second ring mode). Thick line: unstable domain. The
radial profile of the eigenmode density at the crosses is given in fig. (b-d). (b) kF = 7.2 (stable);
(c) kF = 6.7 (unstable); (d) kF = 7.7 (unstable).

vortex. In the vorticity plot [figure 20(b)], we also observe near rc ≈ 0.29 the trace of a
critical point of type I. Contrarily to the helical modes m = 1, the mode m = 2 extends in
the core region. This property can be understood from the large wavenumber asymptotic
theory already used above. Using this theory, we expect the eigenmodes to be localized
between two turning points corresponding to zeroes of the function ω−(r) defined in
(3.1). As the left turning point is closer to the centre than for the modes m = 1, the
extension of the mode towards the centre is thus more important. For higher azimuthal
wavenumbers m ≥ 3, the left turning point disappears, and all the mode becomes core
modes. For m = 2, the two turning points merge for ω ≈ 0.4. For m = 3, the right
turning point collapses to the centre for ω ≈ 1. We therefore do not expect eigenmodes
above these frequencies in agreement with the numerical results shown in figures 18 and
19. With this argument, we can also predict that there exist radiative core modes for all
m ≥ 3 with frequencies between 0 to m − 2.

For the case m = 2, the most unstable mode is the first mode [see figure 18]. The insta-
bility diagram for this azimuthal wavenumber can therefore be obtained by considering
the first mode only. In figure 21, we have plotted the maximum growth rate contours
of this first mode as functions of Re and F . If we compare this diagram with the one
obtained for the second helical mode [see figure 12], we can notice that the characteristics
of the growth rate contours with respect to these parameters are similar. Note however
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Figure 18. (a) Frequency ωr and (b) growth rate ωi for m = 2, Re = ∞ and F = 0.3
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Figure 19. (a) Frequency ωr and (b) growth rate ωi for m = 3, Re = ∞ and F = 0.2

(a) (b)

Figure 20. Structure of the eigenmode m = 2, k = 19.8 and ω = 0.244 + i0.00173 for F = 0.4
and Re = ∞. (a) Density contours, (b) Axial vorticity contours.
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Figure 22. Characteristics of the most unstable mode m = 2 as a function of the Froude
number for Re = ∞ (solid line), Re = 106 (dash). (a) Frequency ωr, (b) Growth rate ωi, (c)
Wavenumber k, (d) Product kF .

that, for m = 2, the growth rate values are smaller, the critical Reynolds number is larger
and the maximum growth rate tends to be reached for Froude number around 0.5 instead
of 1 for the modes m = 1. Yet, in the inviscid limit, the maximum growth rate is also
reached for vanishing Froude numbers [see figure 22(b)]. A similar scaling of the most
unstable wavenumber with respect to the Froude number is obtained: kmax is constant
for large F but proportional to 1/F for small F . The mechanism of resonance is also
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active for the modes m = 2 as it can be seen in figure 23. This leads to discontinuities in
the plots of the most unstable frequency and wavenumber [see figure 22(a,c,d)]. However,
using the theoretical arguments mentioned above, we predict that resonance is possible
for Froude numbers between 0.5 and 2.8 only.

For m = 3 and for larger m, similar characteristics are obtained but the modes are less
unstable, and therefore destabilized for larger Reynolds numbers. The large wavenumber
asymptotic theory also predicts that the unstable radiative modes are all core modes and
that no phenomenon of resonance is possible whatever the Froude number.

5. Conclusion

In this work, we have obtained the stability characteristics of a Lamb-Oseen vortex
stratified along its axis for a large range of Froude and Reynolds numbers. We have
shown that for moderate Froude number the vortex is unstable, whatever the Reynolds
number, with respect to a helical perturbation (m = 1) which resembles a displacement
mode with a radiative structure. For large Reynolds numbers (Re > 104) and large
Froude numbers (F > 2), the vortex becomes more unstable with respect to another
helical radiative mode which is localized in a ring. Moreover, we have shown that the
instability for large Froude numbers is boosted by a mechanism of resonance. We have
demonstrated that the radiative mode can enter in resonance with vortex Kelvin modes
for particular frequencies in a specific range of Froude numbers. This mechanism selects
particular wavenumbers which were found to be independent of the Froude number and
makes the vortex unstable up to F ≈ 10. Unstable perturbations with larger azimuthal
wavenumbers were also found. All these modes are less unstable than the helical ring
mode and exhibit a larger critical Reynolds number. The mechanism of resonance has
also been shown to be present for m = 2 but not for larger azimuthal wavenumbers.

The results obtained in this paper could have important consequences for geophysical
applications. We have shown that a generic vortex model as the Lamb-Oseen vortex is
unstable for large Reynolds numbers in a very large range of Froude numbers. The strong
small-scale cyclonic vortices sometimes observed in the atmosphere and the coherent
vortical structures generated by the tide in the oceans could therefore be affected by this
instability. Note also that for Froude numbers larger than 1, these vortical structures are
also affected by another instability mechanism as soon as they are slightly tilted with
respect to direction of stratification (Boulanger et al., 2007, 2008).

It is worth mentioning that background rotation has not been considered in the present
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work. Weak negative background rotation is known to be destabilising: the vortex be-
comes unstable with respect to the centrifugal instability. Positive background rotation
could by contrast have an opposite effect if we believe in the inviscid theoretical pre-
dictions (Schecter & Montgomery, 2004; Le Dizès & Billant, 2009). It will therefore be
interesting to quantify this stabilizing effect and determine whether it can suppress the
present instability.

It is important to emphasize the radiative nature of the unstable modes. We have
demonstrated that the geostrophic motion associated with the Lamb-Oseen vortex is
able to emit spontaneously internal gravity waves. This phenomenon is a clear illustra-
tion that balanced geostrophic motions and unbalanced oscillating motions are strongly
coupled and that the evolution of the vortex could not have been predicted by filtering
out the unbalanced motions associated with internal gravity waves. Similar interactions
between balanced and unbalanced motions have been documented in several recent stud-
ies (Molemaker et al., 2005; Williams et al., 2005; Vanneste & Yavneh, 2007; Gula et al.,
2009).
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2Commissariat à l’Energie Atomique, CESTA, 33114 le Barp, France

(Received 4 July 2007 and in revised form 18 December 2007)

In this paper, we report experimental and theoretical results on the flow inside
a precessing and rotating cylinder. Particle image velocimetry measurements have
revealed the instantaneous structure of the flow and confirmed that it is the sum
of forced inertial (Kelvin) modes, as predicted by the classical linear inviscid theory.
But this theory predicts also that the amplitude of a mode diverges when its natural
frequency equals the precession frequency. A viscous and weakly nonlinear theory
has therefore been developed at the resonance. This theory has been compared
to experimental results and shows a good quantitative agreement. For low Reynolds
numbers, the mode amplitude scales as the square root of the Reynolds number owing
to the presence of Ekman layers on the cylinder walls. When the Reynolds number
is increased, the amplitude saturates at a value which scales as the precession angle
to the power one-third for a given resonance. The nonlinear theory also predicts the
forcing of a geostrophic (axisymmetric) mode which has been observed and measured
in the experiments. These results allow the flow inside a precessing cylinder to be fully
characterized in all regimes as long as there is no instability.

1. Introduction
In the field of aerospace, the stability of spinning spacecraft containing propellant

liquids is still a topical question. For instance, the attitude of spinning satellites
(see Stewartson 1958; Gans 1984; Garg, Furunoto & Vanyo 1986; Agrawal 1993;
Bao & Pascal 1997) is likely to be disrupted by the hydrodynamics of the fluid
inside. Consequently, a good understanding of the behaviour of such a fluid–structure
coupled system requires a precise knowledge of the dynamics of the rotating contained
fluid. Moreover, rotating fluid dynamics occurs far beyond the field of aerospace: many
atmospheric phenomena (hurricanes, tornadoes) are closely connected with this class
of problems, due to the dominant role played by the Coriolis force at low Rossby
numbers (Vanyo 1993).

First experimental and theoretical studies on rotating fluids date from the end of the
19th century. Lord Kelvin (1880) suggested that the flow of a disturbed rotating fluid
could be decomposed into a sum of so-called normal Kelvin modes (i.e. inertia waves),
each of them corresponding to a well-defined frequency which is always less than
twice the basic rotation frequency. The inviscid approach of Kelvin can be extended in
the limit of large Reynolds numbers by taking into account viscous boundary layers
on the walls of the container as shown by Kudlick (1966) and Greenspan (1968). A
large set of experimental and numerical studies for the case of a completely filled
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cylinder (see Fultz 1959; McEwan 1970; Kobine 1995; Kerswell & Barenghi 1995)
has confirmed the values of the frequencies and viscous decay rates predicted by these
theories.

An important aspect of these rotating flows is that Kelvin modes have been shown
to become unstable for large Reynolds numbers. McEwan (1970) first showed that
when a rotating fluid cylinder is forced at a given frequency on one of its ends, Kelvin
modes are forced. One of these Kelvin modes can become resonant if its wavelength
matches the height of the cylinder. This leads to a resonant collapse (i.e. a breakdown
of the initial mode) degenerating into a fine-scale disordered flow. In some cases, this
very disordered flow can relaminarize into solid-body rotation, again leading to a cycle
of instability, breakdown and relaminarization. This behaviour has also been reported
when the Kelvin modes are forced in a partly filled and tilted cylinder (Thompson
1970) or in a completely filled cylinder in precession (Manasseh 1992; Mahalov 1993)
or when they are the natural modes of an instability such as the elliptic instability
(Malkus 1989; Eloy, Le Gal & Le Dizès 2000; Kerswell 2002; Eloy, Le Gal & Le Dizès
2003). The physical mechanism leading to the breakdown is still unclear but several
scenarios have been proposed. Kerswell (1999) proposed that a given Kelvin mode can
trigger a triad resonance with two other Kelvin modes leading to an instability (this
mechanism has similarity with the mechanism of the elliptic instability). The triggered
modes can themselves be unstable leading to a secondary instability and eventually to
a tertiary instability, and so on. This cascade of bifurcation may explain the transition
to turbulence observed in these flows. When nonlinear effects are important, another
aspect of these rotating flows is the generation of a geostrophic motion which slows
down the main solid body rotation and modifies its radial profile. Kobine (1995, 1996)
has proposed that, owing to this geostrophic motion, the main flow can be modified
enough to cause a centrifugal instability responsible for the breakdown. Finally the
observed breakdown could also be due to a boundary layer instability near the wall
of the container. So far, there is no clear experimental evidence to support any of
these scenarios.

The picture is different for an ellipsoidal container since there are no corners to
prevent the azimuthal circulation. For an inviscid fluid, Poincaré (1910) showed that
there exists a class of solution with uniform vorticity whose direction rotates around
the precession axis. In a real fluid, the presence of viscous boundary layers selects a
unique solution in which the viscous and pressure torques balance the precessional
torque (Lorenzani & Tilgner 2001). However, some (conical) inertial waves are still
generated by the breakdown of the Ekman layer at a critical latitude (Noir, Jault
& Cardin 2001). This can lead to an instability consisting of cylindrical waves
propagating around the axis of rotation of the fluid (Lorenzani & Tilgner 2001) and
generates a strong turbulent flow (Goto et al. 2007). It is thus unclear if this flow will
be unstable through local destabilization of the Ekman layers or through a global
instability (such as a triadic resonance) for large Reynolds numbers.

In this paper, we address the basic laminar flow in the case of a precessing cylinder
full of water. This flow can be decomposed into a sum of Kelvin modes which
are resonant if their wavelength is equal to 2H , 2H/3, 2H/5, etc. (where H is the
cylinder height). By performing particle image velocimetry (PIV) measurements in
the precessing frame, we investigate the primary inertial flow in both situations: far
from a resonance, where the linear inviscid theory is valid; then close to a resonance,
where viscous and nonlinear effects determine the amplitude of the resonant Kelvin
mode. Gans (1970) first gave a theoretical interpretation of the amplitude saturation
close to the resonance by taking into account the viscous effects only. In this paper,



A rotating fluid cylinder subject to weak precession 407

(a)

O ′

O

î

î
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Figure 1. Sketch of the problem. (a) A cylinder of radius Rc and height H rotates about its
axis at fixed angular frequency Ω1. The precession rate Ω2 and the nutation angle θ are also
fixed. (b) Polar coordinates (R, ϕ, Z) defined in the cylinder rotating frame.

the amplitude equations are derived by considering both viscous and nonlinear terms.
We have distinguished two different regimes of saturation. At low Reynolds numbers,
the main mode amplitude is saturated by viscosity (which is consistent with Gans’
results (Gans 1970), whereas the nonlinear effects prevail at higher Reynolds numbers
(Wood 1965). Such nonlinear couplings of Kelvin modes have been mainly studied
in the context of the elliptic instability (Waleffe 1989; Eloy et al. 2003; Mason &
Kerswell 1999).

The paper is organized as follows. Section 2 is dedicated to the general problem
formulation. The equations governing the fluid motion are first introduced then the
whole experimental setup is presented in detail in § 2.2. In § 3, the linear inviscid
theory is presented to express the Kelvin mode amplitudes when the flow is non-
resonant. Experimental flow fields are then shown and compared to these theoretical
predictions. In § 4 the viscous and nonlinear amplitude equations are derived and
compared to the PIV velocity fields measured at the resonance. Finally our results
are discussed in § 5.

2. Presentation of the problem
2.1. Formulation

We address the equations governing the flow inside a precessing cylinder full of fluid
of density ρ and kinematic viscosity ν. This problem is illustrated in figure 1(a).
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In the laboratory reference frame (O, x̂, ŷ, ẑ), we consider a turntable rotating at
constant angular frequency Ω2 = ψ̇ around the axis (O, ẑ). In the reference frame
of this turntable, a cylinder of radius Rc and height H rotates around its own axis

(O ′, k̂) at the angular frequency Ω1 = φ̇. The angle between these two axes of rotation
is the nutation angle θ . As shown in figure 1(a), the angles (ψ, θ, φ) are the classical
Euler coordinates of the cylinder.

In the reference frame of the cylinder (O ′, Î, ĺ̂, k̂), the radius vector R is located
by its cylindrical coordinates (R, ϕ, Z) as shown in figure 1(b). The time-dependent
rotation vector of the cylinder in the laboratory frame is

Ω = Ω1 k̂ + Ω2 ẑ. (2.1)

Since the cylinder frame is non-Galilean, the Navier–Stokes equations satisfied by the
velocity field U(R, T ) and the pressure field P (R, T ) take the form

∂U
∂T

+(U · ∇) U +2Ω × U +Ω × (Ω × R)+
dΩ

dT
× R +Γ O ′ = − 1

ρ
∇P +ν
U, (2.2a)

∇ · U = 0, (2.2b)

with the boundary condition U = 0 on the cylinder walls.
In the Navier–Stokes equation (2.2a), the first two terms are the usual inertial

terms, the third and the fourth terms are the Coriolis and centrifugal acceleration
respectively, the fifth term is due to the acceleration of the rotation vector and Γ O ′

refers to the acceleration of the centroid O ′ of the cylinder. Note that this latter term
is potential and corresponds to a hydrostatic pressure Γ O ′ · R.

The equations above are made dimensionless by using Rc and Ω−1 as characteristic
length and time, where

Ω = Ω · k̂ = Ω1 + Ω2 cos θ. (2.3)

Using lowercase letters for the dimensionless quantities, the Navier–Stokes equations
for the dimensionless velocity field u(r, t) become

∂u
∂t

+ 2 k̂ × u + ∇p = −2εζωr cos(ωt + ϕ) k̂ + u × (∇ × u) − 2εζ δ × u +
1

Re

u,

(2.4a)

∇ · u = 0, (2.4b)

with

ω =
Ω1

Ω
, ε =

∣∣∣∣Ω2 sin θ

Ω

∣∣∣∣ , ζ = sgn

(
Ω2 sin θ

Ω

)
, δ = cos ωt Î − sinωt ĺ̂, (2.5a–d )

and Re = ΩR2
c /ν the Reynolds number. In this dimensionless form, h = H/Rc is the

aspect ratio of the cylinder. The dimensionless pressure field p(r, t) is constructed to
include all the potential terms

p =
P

ρ Ω2R2
c

− 1
2
r2 + ε |1 − ω| rz cos(ωt + ϕ)

+ γ O ′ · r − 1
2
ε2[z2 + r2 sin2(ωt + ϕ)] + 1

2
u2, (2.6)

where γ O ′ = Γ O ′/RcΩ
2 is the dimensionless acceleration of the cylinder centroid. The

boundary condition of the velocity field is

u = 0 at the walls (r = 1 or z = ± h/2). (2.7)
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The Navier–Stokes equations (2.4 a, b) with the boundary condition (2.7) govern the
flow inside a precessing cylinder. This set of equations has been obtained without any
approximation and is thus valid for any value of the experimental parameters. It is
clear from these equations that the problem is entirely governed by four dimensionless
parameters: the forcing amplitude ε; the forcing frequency ω; the Reynolds number
Re; and the cylinder aspect ratio h. However, these equations cannot be solved easily
in the general case and we will limit ourselves hereinafter to the case of asymptotically
small amplitude ε and large Reynolds number Re. This is the relevant limit if one is
interested in the flow forced by the precession before it becomes unstable or at the
onset of instability.

For the sake of clarity and brevity, a four-component formulation for the velocity–
pressure field v = (u, p) expressed in cylindrical coordinates will be used. With this
formulation the Navier–Stokes equations (2.4 a, b) take the form

(
∂

∂t
I + M

)
v = εζ F0e

i(ωt+ϕ) + N(v, v) + εζ D ei(ωt+ϕ)v +
1

Re
L v + c.c., (2.8)

where the operators I, M, D, L, the forcing vector F0 and the bilinear function N
are defined in Appendix A. The symbol c.c. stands for the complex conjugate.

We will solve a linearized version of the above equation in § 3.1 and the weakly
nonlinear and viscous solution corresponding to the saturated resonant flow will be
given in § 4.1.

2.2. Experimental setup

The experimental setup is sketched in figure 2. It corresponds exactly to the
configuration depicted in figure 1. A right-circular polymethyl methacrylate (PMMA)
cylinder, filled with distilled water, rotates at the angular velocity Ω1 around its axis
and is mounted on a rotating platform. The cylinder axis is tilted relative to the
axis of the platform with an angle θ . The platform, which ensures the precessing
component of the motion, also rotates at a velocity Ω2. The platform is mounted on
a wide vertical axis in order to limit the vibrations of the structure at high precession
velocities.

The angular frequency Ω1 can be increased up to 60 rad s−1 and is measured with
an accuracy of 0.1%. The precession frequency Ω2 is limited to 6 rad s−1 and is
measured with an accuracy of 0.2% when the precession frequency is larger than
0.2 rad s−1. Each axis having its own driving motor, the angular velocities can be
varied independently so that the dimensionless frequency ω can be varied over the
whole range [−2, 2]. We used three different cylinders: a cylinder of aspect ratio
h = H/Rc =1.989 ± 0.3% (H =9.14 cm) was used first, but its principal resonance
was found for a vanishing precessing frequency (ω ≈ 1). A second cylinder with aspect
ratio h = 1.8±0.7% (H = 8.27 cm) was thus designed to study this resonance. Finally,
a third cylinder with the same aspect ratio 1.8 but smaller dimensions (H = 2.7 cm)
was been used to obtain data at smaller Reynolds numbers (by a factor almost 10).
The thickness of the cylinder walls is extremely large (2 cm) in order to avoid shaded
areas in the light sheet (because of refraction on the cylindrical wall).

The data acquisition computer is located on the rotating platform to limit the
number of rotating electrical contacts and improve the quality of the data. The power
is brought up to the platform by a rotating collector through the vertical axis and
is used to supply the cylinder motor, the video camera and the electromagnet of the
release device. The rotating collector also conveys the signal from the video camera
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Figure 2. Sketch of the experimental setup. The cylinder is directly mounted on the axis of
the motor which is located on the rotating platform, and can be tilted during the rotation
of the platform. The camera, located above the cylinder is fixed in the platform frame of
reference. The whole platform block, including the computer, rotates at angular frequency Ω2.

back to an auxiliary screen, which is used for observation and optical adjustment of
the PIV system.

A release device is mounted on the platform and is controlled externally, so that the
cylinder can be tilted during the rotation of the platform. It allows the observation of
the transient stage during which the observed Kelvin modes grow. The release device
is composed of an electromagnet designed to keep the cylinder in a vertical position
during the spin-up phase. Once the electromagnet is turned off, a drawback spring
pulls the cylinder into its tilted position. The electromagnet is then turned on again
to ensure the stability of the nutation angle θ during the experiment. This angle can
be varied from 0 to 15◦. Owing to the spring strength, we consider that the swing of
the axis occurs in a duration (about half a second) much smaller than the duration
of the transient stage (varying from 3 to 50 s).

The PIV measurement system is schematically presented in figure 2. The fluid is
seeded with small reflecting particles (Optimage Ltd.) of mean diameter 50 μm and
density 1000 ± 20 kg m−3. They are illuminated with a light sheet of thickness 2 mm,
created either by a Yag pulsed laser for large velocities or by an Argon Ion continuous
laser (through an optical fibre) for small velocities. The laser beam goes through a
cylindrical lens to provide the laser sheet. None of the lighting system is rotating so
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the laser sheet is fixed relative to the laboratory frame. Provided the tilt angle θ is
not too large (smaller than 5◦), the laser sheet, due to its thickness, can be considered
normal to the cylinder axis. This might introduce a bias at larger nutation angles and
the laser sheet should then be created on the rotating platform with a set of mirrors.
The height of the laser sheet can be varied along the height of the cylinder and was
chosen in a subtle way, depending on the type of experiment. First, to examine the
dependence of the amplitude on the frequency ω, we took a sheet close to the centre
of the cylinder (in order not to be at a node of the Kelvin mode): a good compromise
was taken as z =0.12h. Then, to study the first (resp. second) resonance of a Kelvin
mode, we took z = h/4 (resp. z = h/6) in order to measure a maximum transverse
velocity.

The images of particles are recorded by a PIV camera (Kodak Megaplus ES 1.0,
1008 × 1018 pixels) mounted on the rotating platform and aligned with the axis of
the cylinder. The time interval between two successive images is relatively large (from
5 ms to 1 s) such that the cylinder rotates by approximately 20◦ between the two
images. This creates large displacements of the particles at the periphery of the
cylinder (150 pixels), but the two images are rotated around the centre of the cylinder
in order to remove the solid-body rotation of the particles. The PIV thus gives
directly the velocity field in the cylinder reference frame. This procedure allows the
measurement of very small velocities down to 1% of the velocity of the cylinder wall.
Such measurements would not have been possible without the image rotation. The
pairs of images are then treated by a cross-correlation algorithm detailed in Meunier
& Leweke (2003) which gives velocity fields with 60 × 60 vectors.

For the acquisition of a PIV field, we proceed as follows. First the cylinder is kept
vertical and rotates at Ω1. The platform rotates at Ω2 so that the angular velocity of
the cylinder relative to the laboratory frame is (Ω1 + Ω2) ẑ. Once the spin-up stage is
completed, the cylinder is released to its tilted position. This allows the transient and
the spin-up phase to be studied independently.

Some preliminary visualizations were also performed with Kalliroscope particles,
in order to check that the resonances were in good agreement with the linear inviscid
theory, and to validate our set-up by comparison of these visualizations with those
from the literature (Manasseh 1992; Kobine 1995). However, no new quantitative
results were obtained and we will not present any of these visualizations in this paper.

3. Flow inside a non-resonant cylinder
3.1. Linear inviscid theory

We assume an asymptotically small forcing amplitude ε and asymptotically large
Reynolds number Re. In this limit, the velocity–pressure field v is O(ε) and the
Navier–Stokes equation (2.8) becomes at first order in ε(

∂

∂t
I + M

)
v = εζ F0e

i(ωt+ϕ) + c.c. (3.1)

For an inviscid fluid, the no-slip boundary condition (2.7) becomes a condition of no
outward flow

u · n = 0 at the walls (r = 1 or z = ± h/2), (3.2)

where n is a unitary vector normal to the wall.
Equations (3.1) and (3.2) form a linear system for the vector v = (u, p), with a

forcing term. It admits a particular solution of the form

vpart. = (0, 0, ε ζ i r ei(ωt+ϕ), 0) + c.c. (3.3)
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Unfortunately, this solution does not satisfy the boundary condition (3.2) at z = ±h/2.
Thus, one must complete this particular solution with a solution of the homogeneous
equation (without forcing), so that the boundary condition at the upper and lower
walls is satisfied. Owing to the time and azimuthal dependence of the forcing, the
homogeneous solution is to be sought as a sum of Kelvin modes of azimuthal
wavenumber m = 1 and angular frequency ω (see Greenspan 1968). Using (3.2) and
(3.3) and such a form of the homogeneous solution, one finds

v = vpart. + εζ

∞∑
i=1

aivi(r, z)ei(ωt+ϕ) + c.c., (3.4)

where vi(r, z)ei(ωt+ϕ) is a Kelvin mode of axial wavenumber ki , azimuthal wavenumber
m =1 and frequency ω

vi(r, z) =

⎛
⎜⎜⎜⎜⎝

ui(r) sin(kiz)

vi(r) sin(kiz)

wi(r) cos(kiz)

pi(r) sin(kiz)

⎞
⎟⎟⎟⎟⎠ with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui(r) = i
ωrδi J

′
1(δir) + 2J1(δir)

r(ω2 − 4)

vi(r) =
2rδi J

′
1(δir) + ωJ1(δir)

r(4 − ω2)

wi(r) =
i ki

ω
J1(δir)

pi(r) = J1(δir),

(3.5)

with Jν(x) the Bessel function of the first kind and J ′
ν(x) its x-derivative. The amplitude

ai of each Kelvin mode is

ai =
2 ω2

(ω − 2)(k2
i + 1) ki J1(δi) cos(ki h/2)

, (3.6)

the axial wavenumber ki is the positive root of the constitutive relation

δ2
i =

4 − ω2

ω2
k2

i , (3.7)

and the radial wavenumber δi is solution of Kelvin’s dispersion relation

ω δi J
′
1(δi) + 2J1(δi) = 0. (3.8)

As long as −2 <ω < 2, the dispersion relation admits an infinite, countable number
of roots δi which are numbered in ascending order. A Kelvin mode can be associated
with each root δi . The radial velocity ui(r) of the first Kelvin mode (corresponding
to δ1) is formed of one lobe and has no zero for 0 <r < 1, the second Kelvin mode
contains two lobes and one zero, the third contains three lobes and two zeros, and so
on. The velocity field of the first Kelvin mode is shown in figure 3(a): it contains two
counter-rotating vortices, due to the presence of a single lobe of radial velocity and
an azimuthal wavenumber m =1. In the general case, the ith Kelvin mode contains
2i vortices, and these Kelvin modes form a complete set. Their dispersion relation
(3.7)–(3.8) is plotted on figure 4. The precession excites only the Kelvin modes with a
given frequency ω corresponding to increasing wavenumbers ki (as shown on figure 4
for ω = ω3,4). When the wavenumber ki of a Kelvin mode is equal to π/h, 3π/h,
5π/h... the mode ‘fits’ inside the height of the cylinder and becomes resonant. When
ω is increased, each branch of the dispersion relation leads to an infinite number of
resonances, with the wavenumber ki of the Kelvin mode being equal to π(2n − 1)/h

(n being an integer). Strictly speaking, each resonance labelled (i, n) corresponds to a
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Figure 3. (a) Velocity field measured at ω = 0.9, i.e. close to the first resonance ω1,1 = 0.996
of mode i = 1 (Re = 5500, h = 2 and ε =1.7 × 10−3). (b) Radial velocity along the xψ -axis. The
circles (◦) correspond to the field displayed in (a). The triangles (�) correspond to a velocity
field at ω = 0.45 with ε = 9.6 × 10−3, i.e. close to ω1,2 = 0.51. The related linear theoretical
profiles are plotted as solid and dashed lines. The dotted line corresponds to the theoretical
profile for the third Kelvin mode.
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Figure 4. Dispersion relation of the Kelvin modes with azimuthal wavenumber m= 1, given
by (3.7) and (3.8). The dotted lines correspond to the resonances for an aspect ratio h = 1.8.

different Kelvin mode. In the following, all modes corresponding to the same branch
of the dispersion relation (same index i) will be collected into a family of modes
which will be called the ith Kelvin mode (for the sake of simplicity).

Equation (3.6) gives the amplitudes of the Kelvin modes forced by the precession.
This equation is valid as long as the cylinder aspect ratio is not resonant, i.e.
cos(kih/2) �= 0. In other words, the present linear analysis predicts a divergent
amplitude of the ith Kelvin mode if the forcing frequency ω is equal to one of
the natural frequencies ωi,n of the cylinder. Here, ωi,n refers to the frequency obtained
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through (3.7) and (3.8) by taking ki = π(2n − 1)/h, with n an integer. One can
show (Kudlick 1966) that the set of natural frequencies ωi,n is dense in the interval
−2 <ω < 2. This means that there is always a Kelvin mode arbitrarily close to
a resonance for any chosen forcing frequency ω. This emphasizes the need for a
theoretical prediction of the Kelvin mode amplitude at the resonance, as will be done
in § 4.1.

3.2. Kelvin modes: PIV measurements

We performed PIV measurements of the (u, v) transverse velocity field in the range
0.2 <ω < 1.9 and at Reynolds numbers between 2 × 103 and 2 × 105. The aim was to
extract, from the averaged velocity field in the permanent regime, the linear amplitudes
ai of the main modes as defined by (3.6).

In figure 3(a) the horizontal-velocity field is shown at a frequency ω =0.9 close to
the first resonance ω1,1 = 0.996 of the mode i =1, for Re = 5500 and θ = 1◦, the laser
sheet being at a height z = 0.29. As previously mentioned, the flow in the reference
frame of the cylinder mainly consists of two counter-rotating vortices corresponding
to the first Kelvin mode described by the above inviscid theory. However, note that
the mode is not exactly aligned with the xψ -axis. This tilt angle is due to the viscous
and nonlinear effects appearing at the resonance and will be analysed in detail in the
next section. Figure 3(b) shows the radial velocity profile along the xψ -axis of this
velocity field, as circles. The normalized value of the velocity decreases monotonically
between r = 0 and r = 1, and is very close to the curve found theoretically (solid line)
for the first Kelvin mode at this value of ω. Figure 3(b) also shows the radial velocity
profile obtained for ω = 0.45, i.e. close to the resonance of the second mode. It exhibits
a positive lobe for r < 0.5, a negative lobe for r > 0.5 and a zero for r � 0.5. This is
characteristic of the second Kelvin mode, whose theoretical radial velocity is plotted
as a dashed line. The third Kelvin mode (plotted as a dotted line) has three lobes
of opposite radial velocity, but in this case the experimental data are very noisy and
have not been plotted.

The presence of these Kelvin modes is better visualized by plotting the mean
vorticity fields as done in figure 5, since the small scatter in the velocity field
(such as a translation or a rotation) is hidden by the differentiation of u and
the modification of the colourbar. The Kelvin modes are thus clearly distinguished
by plotting the vorticity fields at various ω: even the fifth Kelvin mode is discernible
at its first resonance ω5,1 = 0.2. However, the spatial structure is a double spiral for
the highest modes, whereas the theory predicts a series of lobes since the vorticity
is expected to vanish for ϕ = π/2 − ωt . In fact, such a spiral structure has already
been observed theoretically for the Kelvin modes of a Gaussian vortex by Fabre,
Sipp & Jacquin (2006). We thus think that this discrepancy might be due to a slight
differential rotation in the geostrophic motion, arising from nonlinear and viscous
effects.

For each experiment outside the resonance, we have decomposed each velocity field
into a sum of Kelvin modes. For this purpose, we use the fact that the Kelvin modes
are orthogonal, such that the amplitude ai of each Kelvin mode is simply given by the
normalized scalar product 〈uexp|ui〉/〈ui |ui〉 (see Appendix B for the exact definition),
where uexp (resp. ui) are the two transverse components of the measured (resp.
theoretical) velocity field and the scalar product is defined as the average over the
whole section. In fact, the method needs to be slightly improved since this average can
only be calculated for r � 0.9 instead of r � 1 (due to spurious vectors at the cylinder
wall) and because the mode can have a tilt angle αi with respect to the xψ -axis. This
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Figure 5. Vorticity fields of the first (a), second (b), third (c) and fifth (d) Kelvin mode,
observed close to their first resonance (where ki is close to π/h). Here, h = 2 and the flows
are observed respectively for ω = 0.9, 0.45, 0.3, 0.2. The Reynolds number is equal to 5500
(a), 11 800 (b), 17 700 (c) and 26 600 (d) and the small parameter ε is equal to 1.7 × 10−3

(a), 9.6 × 10−3 (b), 1.2 × 10−2 (c) and 1.4 × 10−2 (d).

method, which is detailed in Appendix B, allows the precise determination of the
amplitude and tilt angle of the first two Kelvin modes for each instantaneous velocity
field.

In the permanent regime, the amplitude of the Kelvin modes is stationary and
depends only on the frequency ω. It is plotted in figure 6 for the first two Kelvin
modes and for two different Reynolds numbers. Despite a large scatter, experimental
results are clearly independent of the Reynolds number outside the resonances and
very well predicted by the linear inviscid theory. As far as we know, this is the first
exact measurement of the mode amplitudes forced by precession. The amplitudes
measured at the resonances for the first two modes are large and cannot be predicted
by the linear inviscid theory. A nonlinear and viscous theory is necessary to predict
the finite value of the amplitude in this case; this is the subject of § 4.
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Figure 6. Amplitude of the first mode (i = 1) (a) and second mode (i = 2) (b) for a cylinder of
radius Rc =4.66 cm and aspect ratio h = 2. The angular velocity of the cylinder Ω1 is equal to
2 rad s−1 (◦) and 8 rad s−1 (�) so that the Reynolds number lies between 2 × 103 and 2 × 105.
The solid line shows the prediction of the linear inviscid theory from § 3.1.
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Figure 7. (a) Transient dynamics of the first mode amplitude for forcing frequency ω = 0.8
and Reynolds number Re =6640. (b) Spectrum of the amplitude for ω = 0.8 (solid line) and
ω =1.1 (dashed line). The corresponding Reynolds numbers are Re = 6640 and Re = 4830
respectively. The Fourier transform of the temporal signals is plotted as a function of the
transient dimensionless frequency (Ωt − Ω1)/Ω (given in the cylinder frame). The thin solid
lines correspond to the first three resonances of the Kelvin mode i = 1: ω1,1 = 0.996, ω1,2 = 1.774,
ω1,3 = 1.912. Here, ε = 3.5 × 10−3 and h = 2.

3.3. Transient stage

The experimental results can also give indications of the transient stage, since the
amplitude ai of each mode can be extracted for each instantaneous velocity field.
Figure 7(a) shows the temporal evolution of the amplitude of the first Kelvin mode
just after the onset of the precession forcing, far from its resonance. The amplitude
oscillates very rapidly and converges toward its permanent value a0

1 which is plotted in
figure 6. This curve can be fitted by a decaying exponential a1(t) = a0

1[1−cos(ωt t)e
−t/ts ]

where ωt corresponds to the frequency of the oscillation and ts is the settling time.
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Since ωt corresponds to the frequency in the rotating-table reference frame, we have
to subtract the dimensionalized angular velocity of the cylinder ω to obtain the
frequency of the oscillation in the cylinder reference frame. By doing this, we find a
non-dimensional frequency ωt − ω close to −1.8, and this was observed for any ω

outside a resonance. This value is close to the frequency of the second resonance of
the first Kelvin mode ω1,2 = 1.774. This can be understood by the fact that, at t =0+,
the velocity field which is equal to 0 in the bulk of the cylinder is the sum of the
permanent solution (given by the inviscid theory) and a sum of free and decaying
Kelvin modes with frequencies −2 <ωi,n < 2, n varying from 1 to infinity. Another
method to evaluate experimentally the initial amplitude of each free Kelvin mode is
to plot the Fourier transform of the amplitude as a function of the dimensionalized
frequency ωt − ω, as shown on figure 7(b). A small peak is discernible around −1 (for
both values of ω), which corresponds to the free Kelvin mode ω1,1 = 0.996 and which
is indicated by a thin solid line on the figure. A large peak is located near −1.8, which
is close to all the other free Kelvin modes (with i =1), whose frequencies (ω1,n)n�2 lie
between 1.774 and 2. It is thus not clear whether this large peak is due to a large
amplitude of the second free Kelvin mode ω1,2 or to the constructive interference of
all these modes (ω1,n)n�2.

4. Flow inside a resonant cylinder
4.1. Nonlinear and viscous theory

As seen in § 3.1, when the forcing frequency ω is equal to a natural frequency of
the cylinder ωi,n, the linear inviscid theory predicts a divergent amplitude of the ith
Kelvin mode. To predict correctly the mode amplitude in this case, one has to take
into account the viscous effects or the nonlinear effects or both. As shown by Gans
(1970), if Ai is the mode amplitude, the secondary flow in the core of the cylinder due
to the viscous boundary layers is O(AiRe−1/2). If the nonlinear effects are negligible,
the correct scaling is obtained when this secondary flow is of the order of the forcing
amplitude ε. This gives a mode amplitude Ai =O(εRe1/2) which is factor Re1/2 larger
than the flow in the non-resonant case. On the other hand, if the viscous effects
are negligible, the secondary flow is due to the nonlinear interaction of the Kelvin
mode with itself. In this case, the secondary flow of the same Fourier components is
obtained at third order and is O(|Ai |2Ai). This gives a mode amplitude Ai =O(ε1/3).

The distinguished scaling is obtained when the viscous and nonlinear effects are
of the same order, that is ε2/3 = O(Re−1/2). This leads to the definition of a viscous
parameter η of order 1 and a slow time scale τ as follows:

η =Re−1/2ε−2/3, τ = ε2/3 t. (4.1a,b)

We now assume that the forcing frequency ω is close to a resonant frequency ωi,n for
the ith Kelvin mode. The four-component velocity–pressure field corresponding to
this Kelvin mode is expanded in powers of ε1/3 as follows:

V i = ε1/3 V 1 + ε2/3 V 2 + ε V 3 + ε4/3 V 4 + · · · . (4.2)

The real velocity field is obtained by adding the complex conjugate to the above
equation (the same is implicitly assumed in all the following equations). The nonlinear
and viscous amplitude equations are obtained by injecting the above expansion
(4.2) into the Navier–Stokes equation (2.8) and examining its different orders. The
procedure is similar to the one used by Gans (1970) except that here the nonlinear
effects are included and the forcing frequency ω is arbitrary, whereas Gans (1970)
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considered only the special case ω = 1 which corresponds to a nutation angle θ = π/2.
The present analysis has strong similarities with the weakly nonlinear analysis of
parametric instabilities in rotating flows such as the elliptic instability (Waleffe 1989;
Sipp 2000; Eloy et al. 2003) or the instability of a rotating gas that is periodically
compressed (Racz & Scott 2007). Because this calculation is quite lengthy, most of
its technical details are given in Appendices C, D and E.

4.1.1. Order ε1/3

At order ε1/3, the resonant flow satisfying the linear homogeneous equation
(

∂

∂t
I + M

)
V 1 = 0, (4.3)

is

V 1 = A(τ ) vi e
i(ωt+ϕ), (4.4)

where vi is the ith Kelvin mode given by (3.5), as has been shown in § 3.1. The
amplitude A of the Kelvin mode vi is assumed to vary on the slow time scale τ

and the other Kelvin modes (with j �= i) are assumed to be non resonant so their
amplitudes are given by (3.6).

The Kelvin mode vi satisfies an inviscid boundary condition. In a viscous boundary
layer of thickness O(Re−1/2), the complete flow is obtained by adding the viscous flow

Ṽ 1 such that V 1 + Ṽ 1 satisfies the viscous boundary condition (2.7). This viscous flow
takes the form

Ṽ 1 = A ṽi e
i(ωt+ϕ), (4.5)

where ṽi is the viscous counterpart of the Kelvin mode vi located in a viscous
boundary layer of thickness O(Re−1/2) near the walls (its complete expression is given
in Appendix D). At this order the viscous flow ṽi is parallel to the walls (it has to
compensate V 1 which is also parallel to the wall because of the inviscid boundary
condition). However, this viscous flow gives rise to an Ekman pumping at order ε

with a component perpendicular to the walls, Ṽ
⊥
3 =O(ηṼ 1). This gives a boundary

condition for the inviscid flow at order ε:

V 3 · n = −Ṽ
⊥
3 = −ηA ṽ3 · n ei(ωt+ϕ) on the walls, (4.6)

where n is the unitary vector normal to the wall and ṽ3 · n is a function of order 1
given in Appendix D.

4.1.2. Order ε2/3

As shown by Greenspan (1969), the nonlinear interaction of a Kelvin mode with
itself gives rise to two velocity components. For a Kelvin mode of wavenumbers–
frequency (k, m, ω) (where m is the azimuthal wavenumber, in our case m =1),
these two components are of the form (2k, 0, 0) and (0, 2m, 2ω). In other words, the
geostrophic mode (0, 0, 0) and the mode (2k, 2m, 2ω) are not forced by nonlinear
interactions.

At order ε2/3 the Navier–Stokes equation (2.8) becomes
(

∂

∂t
I + M

)
V 2 = N(V 1, V 1). (4.7)
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The solution of this equation is

V 2 = |A|2 v2k + A2 v2ωei(2ωt+2ϕ) +

∞∑
j=1

A
j

0(τ )vj

0 + o.t., (4.8)

where o.t. stands for ‘other terms’ of different Fourier components. The first two
terms of (4.8) correspond to the particular solution of (4.7) (see Waleffe 1989). In
agreement with Greenspan (1969), they are of the form (2k, 0, 0) and (0, 2, 2ω) (these
velocity fields are given explicitly in Appendix C).

The third term of (4.8) is the solution of (4.7) without forcing, where we have
only retained the axisymmetric geostrophic modes of Fourier components (k, m, ω) =
(0, 0, 0). It is easy to show that this flow is a stationary azimuthal velocity field whose
components can be written as v

j

0 = (0, v
j

0 (r), 0, p
j

0 (r)) in cylindrical coordinates. At
this point, the geostrophic flow is arbitrary and we choose to decompose it on the
basis of the Bessel functions of the first kind such that

v
j

0 (r) = −J1(dj r) with J1(dj ) = 0, (4.9)

with the roots dj sorted in ascending order such that dj = jπ+O(1). We chose to put a

minus sign in the above expression such that a positive amplitude A
j

0 corresponds to a
slow down of the basic solid-body rotation. As we will see below, this geostrophic flow
is forced at order ε4/3 by the nonlinear interactions in the endwall boundary layers.
Its saturation is due to viscous effects in the boundary layers and this geostrophic
mode therefore appears at order A0 = O(ε4/3Re1/2) = O(ε2/3).

The velocity field V 2 satisfies inviscid boundary conditions. As order ε1/3, we have

to add a viscous velocity field Ṽ 2 in a boundary layer of thickness O(Re−1/2) in order
to satisfy the viscous boundary condition at the walls. This viscous flow is decomposed
into several components. First, the velocity fields v2k and v2ω contribute to this viscous
velocity field. Then the geostrophic flow corresponds to viscous corrections ṽ

j

0 in the

endwall boundary layers. And finally, the nonlinear interactions of V with Ṽ and Ṽ
with itself act as a source term at order ε2/3 and give rise to a nonlinear part of the
viscous flow Ṽ

NL

2 . If we are only interested in the axisymmetric and stationnary part
of this viscous flow, it can be written as

Ṽ 2 = |A|2 ṽ2k + |A|2ṽNL

2 +

∞∑
j=1

A
j

0(τ )ṽ
j

0 + o.t., (4.10)

where the details of these velocity fields are given in Appendices D and E. This viscous

flow Ṽ 2 is parallel to the walls at this order but it gives rise to Ekman pumping at

the endwalls at order ε4/3 of the form Ṽ
⊥
4 = O(ηṼ 2). This pumping gives a boundary

condition for the inviscid flow of the form

V 4 · n = −Ṽ
⊥
4 = −η|A|2ṽNL

4 · n − η

∞∑
j=1

A
j

0(τ )ṽ
j

4 · n + o.t. on the walls, (4.11)

where the details of these fields are given in Appendices D and E and where we
have omitted the term due to ṽ2k because it does not contribute to the forcing of the
geostrophic mode at order ε4/3, as will be shown below.



420 P. Meunier, C. Eloy, R. Lagrange and F. Nadal

i, n ωi,n δi f μ σ ξ ν

1,1 1.088 2.691 −0.467 1.799 − 0.268i −0.058 1.524 10.3
1,2 1.812 2.447 0.0328 0.822 − 0.456i 11.37 170.2 33.4
1,3 1.927 2.420 −0.00522 0.486 − 0.342i 76.03 1897 82.0
2,1 0.566 5.912 −0.0771 1.707 + 0.041i −9.13 2.736 38.0
2,2 1.366 5.602 −0.0187 1.434 − 0.382i 15.35 75.51 58.8

Table 1. Values of the nonlinear and viscous parameters for aspect ratio h = 1.8.

4.1.3. Order ε

At order ε, the Navier–Stokes equation becomes

I ∂V 1

∂τ
+

(
∂

∂t
I + M

)
V 3 = ζ F0e

i(ωt+ϕ)+ N(V 1, V 2)+ N(V 2, V 1)+
ηL V 1

Re1/2
. (4.12)

The last term of this equation should not appear at this order but at order ε5/3.
However, we have decided to take it into account in the analysis because its importance
in evaluating the viscous decay has been shown in several papers (Kerswell & Barenghi
1995; Eloy et al. 2003; Racz & Scott 2007). The integration of equation (4.12) is not
needed. We introduce the scalar product

X � Y =

∫
V

(XrYr + XϕYϕ + XzYz + XpYp)d3V, (4.13)

where the overbar stands for complex conjugation and V is the volume of the cylinder.
A solvability condition for V 3 is obtained by forming the scalar product of vi e

i(ωt+ϕ)

with equation (4.12) and dividing by vi � I vi . It yields the following amplitude
equation for A:

∂A

∂τ
= if − η

(
μ +

ν

Re1/2

)
A + i

(
σ |A|2 −

∞∑
j=1

ξjA
j

0

)
A, (4.14)

where the calculation of the different coefficients is detailed in Appendices D and
C. Some useful numerical values are given in tables 1–3. In the above equation the
term f comes from the forcing F0, and the term ν is linked to the volume viscous
damping. The term σ originates from the nonlinear interaction of V 1 with v2k and
v2ω. The terms ξj come from the nonlinear interaction of V 1 with the geostrophic

modes v
j

0. The surface viscous damping term μ comes from the relation

vi e
i(ωt+ϕ) �

(
∂

∂t
I + M

)
V 3 =

∫
S

pi e
−i(ωt+ϕ)V 3 · n d2S = ημA (vi � I vi) , (4.15)

where S is the surface of the cylinder. This relation is obtained by integrating by
parts the scalar product and using the fact that vi e

i(ωt+ϕ) is in the kernel of the
operator (∂I/∂t + M) by construction. Since V 3 · n is known from relation (4.6) and
is proportional to ηA, (4.15) leads to the evaluation of μ in (4.14). This term is a
complex number whereas all the other coefficients of (4.14) are real. This means that
the viscous boundary layers have two effects: the damping of the flow (the real part
of μ is positive) and a detuning of the resonance (due to the non-zero imaginary part
of μ).
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i, n ωi,n δi f μ σ ξ ν

1,1 0.996 2.737 0.469 1.728 − 0.128i −0.232 0.910 9.96
1,2 1.774 2.456 0.0418 0.841 − 0.404i 7.799 94.28 28.2
1,3 1.911 2.424 −0.00696 0.497 − 0.322i 50.93 1032 67.6
2,1 0.510 5.960 −0.0737 1.579 + 0.112i −10.69 1.921 38.0
2,2 1.285 5.618 −0.0209 1.398 − 0.261i 9.962 45.70 53.8

Table 2. Values of the nonlinear and viscous parameters for an aspect ratio h = 2.

i, n h ξ1 ξ2 ξ3 ξ4 ξ5 χ1 χ2 χ3 χ4 χ5

1,1 1.8 0.277 0.144 −0.052 0.031 −0.021 4.743 1.308 −0.314 0.139 −0.077
1,2 1.8 0.701 0.062 −0.017 0.009 −0.006 240.2 27.56 −7.231 3.253 −1.811
1,3 1.8 0.767 0.049 −0.011 0.005 −0.003 2458 244.3 −64.13 28.82 −16.03
2,1 2 −0.516 −0.132 0.316 0.127 −0.044 2.331 −1.044 7.969 3.388 −0.907

Table 3. Values of the first parameters ξi and χi for different resonances i, n and different
aspect ratios h.

4.1.4. Order ε4/3

At order ε4/3, if we retain only the geostrophic terms, the Navier–Sokes equation
becomes

∞∑
j=1

∂A
j

0

∂τ
I v

j

0 + MV 4 =

∞∑
j=1

η A
j

0

Re1/2
L v

j

0 + o.t., (4.16)

where the volume viscous term on the right-hand side has been included for the same
reason as in (4.12). The terms N(V 2, V 2) and N(V 1, V 3) do not appear in the above
equation because they do not lead to geostrophic forcing.

The amplitude equation for the geostrophic mode can be found by forming the
scalar product (as defined by (4.13)) of v

j

0 with (4.16) and dividing by v
j

0 � I v
j

0. It
yields the amplitude equations for the geostrophic modes

∂A
j

0

∂τ
= ηχj |A|2 − η

(
2

h
+

d2
j

Re1/2

)
A

j

0. (4.17)

The last term comes from volume viscous effects by using the equality

v
j

0 � L v
j

0 = −d2
j v

j

0 � I v
j

0. (4.18)

The forcing term χj and the surface viscous damping 2/h originate from the relation

v
j

0 � MV 4 =

∫
S

p
j

0 V 4 · n d2S = η

(
−χj |A|2 +

2

h
A

j

0

)(
v

j

0 � I v
j

0

)
, (4.19)

where we have integrated by parts the scalar product and used the fact that v
j

0 is
in the kernel of M. The outward velocity V 4 · n is known from relation (4.11); it
allows calculation of the coefficients χj and 2/h as is detailed in Appendices D and
E. Here, the term due to ṽ2k in V 4 · n has no influence since we have only retained
the geostrophic part of the flow (independent of z) in (4.16). Physically, the forcing of
the geostrophic mode appears through the coefficient χj and is due to the nonlinear
interaction of the flow with itself in the endwall boundary layers. Therefore, to have
a geostrophic flow, both nonlinear and viscous effects are needed near the endwalls.
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4.2. Discussion

In this section, we will discuss the results of the nonlinear viscous theory presented
in § 4.1 and compare them with experimental measurements.

4.2.1. Amplitude equations

The amplitude equations (4.14) and (4.17) give the time dependence of the Kelvin
mode amplitude A and the amplitudes A

j

0 of the geostrophic modes. A further
simplification can be obtained by assuming that the Reynolds number is large when
the nonlinear effects come into play. In this case, the volume viscous term d2

j Re−1/2

in front of the surface viscous term 2/h can be neglected for the geostrophic modes.
With this assumption, all geostrophic modes have the same natural decay time
and one can define a single geostrophic amplitude A0 = A

j

0/χj such that all amplitude
equations for the geostrophic modes become identical. By defining a global parameter
ξ =

∑∞
j=1 χjξj , the final system can be reduced to two amplitude equations:

∂A

∂τ
= if

(
1 − A

ε2/3ai

)
− η

(
μ +

ν

Re1/2

)
A + i

(
σ |A|2 − ξA0

)
A, (4.20a)

∂A0

∂τ
= η

(
|A|2 − 2

h
A0

)
. (4.20b)

In these equations, we have assumed that the frequency ω is not exactly equal
to the resonant frequency ωi,n, which introduces an additional axial velocity in the
solvability condition at order ε, leading to the extra term if A/(ε2/3ai), where ai is
the amplitude of the Kelvin mode given by (3.6). This term vanishes at the resonance
since ai diverges in this case. On the other hand, if the forcing frequency is far enough
from the resonant frequency such that ai  ε2/3, we recover the inviscid solution
A= ε2/3ai of § 3.1.

The linear forcing parameter f and the nonlinear parameter σ (corresponding to
the interaction of the Kelvin mode with itself) are given analytically in Appendix C.
The surface and volume viscous parameters μ and ν are given in Appendix D. The
term ξ is due to the nonlinear interaction of the Kelvin mode with the geostrophic
modes and cannot be given analytically in a simple form. We thus show the variation
of this parameter as a function of the aspect ratio h in figure 8 for five different
resonances. It drastically decreases by ten decades when h increases from 0.1 to 10.
This is due to the fact that the nonlinear forcing of the geostrophic mode is generated
in the top and bottom boundary layers only, and is thus more efficient for small
aspect ratios h.

The amplitude equations (4.20 a, b) describe the transient stage and the saturation
of the mode amplitude A. They have been obtained for the distinguished scaling
ε2/3 = O(Re−1/2) which corresponds to η = O(1). However, one can easily obtain
simplified equations when viscous effects are dominant by taking the limit η � 1.
In this case, the amplitude equation for the geostrophic mode (4.20b) is not needed
anymore and the amplitude equation (4.20a) simplifies into a linear equation for
A with a forcing term. Its solution is an exponential convergence toward a fixed
point with a characteristic time scale which is the natural viscous decay time of the
Kelvin mode. The fixed point corresponds to A= O(η−1) which gives V i = O(εRe1/2)
in agreement with the results of Gans (1970). In this case, it is easy to show that the
mode amplitude is maximum when the detuning of the forcing frequency compensates
exactly the viscous detuning, i.e. f/(ε2/3ai) = −ηIm(μ). When this is true, A is a pure
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Figure 8. Numerical value of the nonlinear parameter ξ multiplied by h6 quantifying the
interaction of the resonant Kelvin mode with the geostrophic mode. The curves correspond
to the first (thick lines) and second (thin lines) Kelvin modes at their first (solid line), second
(dashed line) and third (dotted line) resonance.
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Figure 9. Phase portrait of the complex amplitude of the first Kelvin mode at its first
resonance, obtained by integrating equations (4.20a, b). The Reynolds number is equal to
2.5 × 104 (solid line), 2.2 × 105 (dashed line) and 2.5 × 106 (dotted line) for a small parameter
ε = 0.003 as in the experiments. This corresponds to η equal to 0.31, 0.10 and 0.03 respectively.

imaginary number, which means that the mode is oriented with an angle of π/2
compared to the non-resonant case of § 3.1.

When nonlinear effects are not negligible, the dynamics of the mode amplitude given
by (4.20 a, b) becomes more complex. Some typical trajectories of A in the complex
plane are shown in figure 9 for different values of the parameter η. If nonlinear
effects are small, which corresponds to η large (or Re small compared to ε−4/3), the



424 P. Meunier, C. Eloy, R. Lagrange and F. Nadal

0 50 100 150 200 250

0.02

0.04

0.06

0.08

0.12

0.10

t

|A|

Figure 10. Time evolution of the amplitude of the first mode at the second resonance
(ω = 1.812 and h = 1.8) for Re =720 (�), Re =2200 (�) and Re = 7400 (•). The thick line
corresponds to an exponential fit for Re = 720. The forcing amplitude is ε = 2.8 × 10−3.

amplitudes of the Kelvin mode A and geostrophic mode A0 converge toward a fixed
point. This fixed point is easily obtained by equating the time-derivative in (4.20 a, b)
to zero. It is worth pointing out that the first effect of nonlinearities is to detune the
Kelvin mode: the terms originating from the nonlinear interaction of the mode with
itself and with the geostrophic mode are both expressed as a real number multiplying
iA. This form is identical to that of the detuning term iAf/(ε2/3ai) and the viscous
detuning term −ηIm(μ)iA.

For larger values of the Reynolds number (or smaller values of η), the fixed
point may become unstable. In this case, the trajectory of A in the complex plane
converges toward a limit cycle as shown on figure 9. However, this cycle could not be
observed experimentally because it corresponds to experimental parameters leading
to instability as shown in the next section.

As noted by Gans (1970) in the viscous regime, the resonances are important when
the amplitude at the resonance (of the order of ε

√
Ref/μ in the viscous regime) is

much larger than the linear amplitude (of the order of ε) outside of the resonance.
Since the term f/μ decreases with the radial wavenumber δ as δ−7/2, we recover
that the resonances are visible if δ < Re1/7 in the viscous regime. Doing the same
analysis in the nonlinear regime, the resonance is visible only if the amplitude at the
resonance, which scales as (εf/σ )1/3, is larger than the linear amplitude ε outside of
the resonance. Since f/σ scales as δ−11/2, we find that the resonance is important when
δ < ε−4/11. In the general case, the resonances are thus visible if the radial wavenumber
δ is smaller than these two bounds scaling as Re1/7 and ε−4/11 respectively.

4.2.2. Experimental amplitude at the resonance

Figure 10 shows the experimental measurement of the amplitude of the first
Kelvin mode at its second resonance for three different Reynolds numbers. For
small Reynolds numbers, the temporal evolution of the amplitude is exponential,
Af (1 − e−t/ts ), with a final amplitude Af and a settling time ts which can be easily
obtained by a least-square fit. However, for higher Reynolds numbers, the amplitude
strongly oscillates before reaching a quasi-stationary final amplitude. This may be due



A rotating fluid cylinder subject to weak precession 425

(a)

–4
–4 –2 0 2 4 –4

4

3

2

1

0

–1

–2

–3

–4

–2 0 2 4

–3

–2

–1

0

1

2

3

4
0.5

0.4

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4

–0.5

0.25

0.20
0.15

0.10

0.05
0
–0.05

–0.10

–0.15

–0.20

–0.25

ξ/Ω ξ/Ω(b)

Figure 11. Instantaneous (a) and mean (b) vorticity field of the second resonance of the
first Kelvin mode (ω =1.812 and h =1.8) after destabilization of the flow (Re = 7400 and
ε = 2.8 × 10−3).

to the nonlinear effects (which create a decaying oscillation of the amplitude), but in
fact it mostly comes from the onset of a three-dimensional instability which is slowly
growing during the transient stage. This oscillation prevents the correct determination
of the final amplitude and introduces a large error, which is taken as the difference
between the maximum and the local minimum of the amplitude. This error is shown
in the following figures as error bars on the amplitude.

To clearly demonstrate that the flow has become three-dimensionally unstable at
high Reynolds numbers, we have plotted in figure 11(a) the instantaneous vorticity
field found in the cylinder for the second resonance of the first Kelvin mode. The
vorticity is made up of several small vortices, which completely hide the organized
structure of the initial Kelvin mode. However, this Kelvin mode is recovered (at a
smaller amplitude) when plotting the mean vorticity field calculated on 100 fields (i.e.
during 50 rotation periods), as in figure 11(b). It is striking to see that although the
flow seems completely turbulent, the resonant Kelvin mode is still present with an
amplitude only slightly oscillating in time. In this case, the current nonlinear theory no
longer applies because other Kelvin modes have appeared because of an instability.

By plotting the transient regimes for each frequency ω, we were able to measure the
final amplitude A decomposed on its norm |A| and argument α such that A= |A|eiα .
They are plotted in figure 12 as a function of the dimensionless frequency ω around the
second resonance of the first Kelvin mode and for η =0.22. This solution is compared
to the theoretical viscous solutions (linear and nonlinear). What is intended here
by viscous linear (respectively nonlinear) theory is the set of equations (4.20 a, b) in
the limit η � 1 (respectively η = O(1)). Despite the large error bars, the comparison
between experiment and theory clearly shows that both nonlinear and viscous effects
are needed to predict the correct amplitude of the mode. The viscous effects saturate
the amplitude of the mode at a finite value, and the nonlinear effects shift the
maximum of the peak toward smaller frequencies ω. The overall agreement is excellent
for the amplitude. However, the experimental determination of the orientation of the
mode α is closer to the linear theory than to the nonlinear theory. This discrepancy
may come from transient effects: the measurements can only be done for a small
duration, due to the presence of an instability. When looking at the solid line of
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Figure 12. Amplitude (a) and orientation (b) of the first Kelvin mode around its second
resonance. Experimental results (◦) are obtained for an aspect ratio h = 1.8, Reynolds number
Re = 2500 and ε varying between 2.3 × 10−2 and 3.3 × 10−2 . The solid line corresponds to
the nonlinear viscous theory at the second resonance of the first mode, the dashed line to the
linear viscous theory and the dotted line to the linear inviscid theory.

figure 9, we can see that the amplitude might be correctly predicted although the
argument is not at its final value.

4.2.3. Scaling at the resonance

Five series of experiments were conducted to study the dependence of the amplitude
on the Reynolds number when the frequency ω is exactly equal to the resonant
frequency ωi,n. For this purpose, Ω1 and Ω2 were varied in each experiment, keeping
a fixed dimensionless frequency ω. The experiments were done for the first three
resonances of the first Kelvin mode and for the first two resonances of the second
Kelvin mode. Figure 13 shows the final amplitude of the mode after the transient
stage. The results are in excellent agreement with the present theoretical predictions,
in view of there being no fitting parameters. They clearly show that the amplitude
scales with Re1/2 at low Reynolds numbers and saturates due to nonlinear effects at
large Reynolds numbers. This saturation value decreases rapidly with the number
of the resonance n. There is a large uncertainty in the nonlinear regime because of
the onset of the three-dimensional instability as discussed above, which makes the
validation of the nonlinear saturation more difficult. However, there is agreement up
to 50%. It can be noted that the exact theory given by (4.14) and (4.17) and plotted
as thin lines is so close to the approximate theory given by (4.20a, b) plotted as thick
lines as to be almost in distinguishable: this means that it is justified to neglect the
volume viscous damping of the geostrophic modes in the regime we have studied.

The dimensionless settling time ts measured during the transient response is also
plotted for these resonances in figure 14 as a function of the Reynolds number. It is
compared to the viscous time Re/(Re1/2μ + ν). Although there is a large scatter, the
agreement seems to be good. The settling time is only measured in the viscous regime
since it is impossible to determine the settling time in the nonlinear regime when the
transient response is no longer exponential (as shown in figure 10).

Figure 15 shows the argument α of the complex amplitude as a function of the
Reynolds number for the same five resonances. At low Reynolds numbers, the angles
are determined by the viscous theory and are equal to ±90◦ (if viscous detuning is
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Figure 13. Amplitude of the first (a) and second (b) Kelvin modes as a function of the
Reynolds number for the first (◦, solid line), second (�, dashed line), and third (�, dash-dotted
line) resonances. Filled symbols correspond to a small cylinder Rc =1.5 cm and open symbols
to a large cylinder Rc =4.6 cm. The thick lines correspond to the approximate theory (4.20) and
the thin lines to the exact theory (4.14) and (4.17) (note that they are almost indistinguishable).
For the first mode, h = 1.8; ε = 3.1 × 10−3, 2.8 × 10−3 and 3.2 × 10−2 for the first, second and
third resonance respectively. For the second mode h = 2; ε = 8.6 × 10−3 and ε = 5 × 10−3 for
the first and second resonance respectively.
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Figure 14. Settling time of the first (a) and second (b) modes as a function of the Reynolds
number, obtained at the first (◦, solid line), second (�, dashed line) and third (�, dash-dotted
line) resonances. Filled symbols correspond to a small cylinder and open symbols to a large
cylinder. Same experimental parameters as in figure 13.

neglected). It means that, at the resonance, the mode is perpendicular to its direction
in the linear inviscid theory (or far from the resonances). However, when the nonlinear
effects become large, the phase shift occurs at a frequency different from ωi,n, and the
angle is thus equal to 0◦ or 180◦ at ω = ωi,n. The agreement with the experimental
results is good for the first resonance of the first mode. However, there is a large
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Figure 15. Orientation of the first (a) and second (b) modes as function of the Reynolds
number, obtained at the first (◦, solid line), second (�, dashed line) and third (�, dash-dotted
line) resonances. Filled symbols correspond to a small cylinder and open symbols to a large
cylinder. The thick lines corresponds to the approximate theory (4.20) and the thin lines to the
exact theory (4.14) and (4.17). Same experimental parameters as in figure 13.
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Figure 16. Amplitudes of the first (a) and second (b) modes as a function of the parameter
ε (proportional to the precessing angle θ ), obtained at the first (◦, solid line) and second (�,
dashed line) resonances. For the first mode, h = 1.8 and Re = 11900 (resp. 2150) for the first
(resp. second) resonance. For the second mode, h = 2 and Re =9000 (resp. 3600) for the first
(resp. second) resonance.

scatter for the other resonances, and it is hard to check the validity of the theoretical
predictions.

Finally, we have measured the dependence of the amplitude A on the small
parameter ε by varying the precession angle from 0.5◦ to 10◦. The measured amplitudes
are plotted in figure 16 and compared to the theoretical predictions. We recover that
the amplitude scales as ε2/3 in the viscous regime and then saturates at a fixed value
for large precession angles. The agreement is again excellent in the viscous regime
and fairly good in the nonlinear regime although the theory slightly overestimates the
amplitude. This might be due once again to the appearance of a three-dimensional
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Figure 17. Velocity profile of the geostrophic mode (m= 0) for the first resonance of (a) the
first (ω = 1.088, h = 1.8, ε = 3.1 × 10−3) and (b) the second (ω = 0.51, h =2, ε = 8.6 × 10−3)
Kelvin mode. (a) Re = 1300 (◦, solid line), Re = 4900 (�, dashed line) and Re = 12 200, (�,
dotted line); (b) Re = 3900 (◦, solid line), Re = 7800 (�, dashed line) and Re =16 000 (�, dotted
line).

instability before the final amplitude has been reached. This relative discrepancy
could be also due to the fact that the theoretical derivation assumes that ε1/3 is
asymptotically small whereas it increases to 0.5 when the precession angle is large.

4.2.4. Geostrophic modes

As was previously stated in § 4.2.1, the nonlinear and viscous effects lead to the
generation of a geostrophic mode. This mode is mainly responsible for the saturation
of the mode amplitude since the parameter ξ is generally larger than the parameter
σ in (4.20 a) as shown in tables 1 and 2. It is thus essential to check if the theory
predicts an accurate amplitude of the geostrophic mode. Figure 17 shows the velocity
profile of the geostrophic mode for the first and second modes. It has been obtained
by taking an azimuthal average of the azimuthal velocity (in this way, the velocity
of the Kelvin modes are conveniently removed). For the first mode, the measured
profile is bell-shaped and depends very weakly on the Reynolds number. This is
in excellent agreement with the nonlinear theory. For the second Kelvin mode, the
geostrophic profile is more complex. It exhibits two velocity maxima, but still vanishes
for r =1. This is due to the simultaneous presence of several components J1(dj r) in
the geostrophic mode. The experiments are again in fairly good agreement with the
nonlinear theory, although the minimum is less pronounced in the former.

It is possible to decompose these profiles into the Bessel functions J1(dj r)(dj being
the roots of the Bessel function) in order to obtain the amplitudes A

j

0 of the geostrophic
mode as defined in (4.8) and (4.9). For the first Kelvin mode, the amplitude A1

0 is
much larger than the others since the geostrophic mode is mostly bell-shaped. We
have thus plotted this amplitude A1

0 as a function of the Reynolds number and the
parameter ε. In the viscous regime, the amplitude A1

0 roughly scales as the Reynolds
number and as ε4/3, since it scales as the square of the amplitude A, as shown in
figure 18. This means that the total geostrophic motion A0ε

2/3v0 scales as the square
of the forcing parameter ε. It can be noted that there are some small variations of the
scaling exponent among the resonances, which are due to the volumic diffusion terms
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Figure 18. Amplitude of the geostrophic mode as a function of the Reynolds number (a)
and the precession angle (b). The results are obtained with an aspect ratio h = 1.8 for the
first mode at its first resonance (◦, solid line, ω = 1.088), its second resonance (�, dashed
line, ω = 1.812) and its third resonance (�, dotted line, ω = 1.927). Closed symbols correspond
to a small cylinder and open symbols to a large cylinder. (a) ε = 3.1 × 10−3, 2.8 × 10−3 and
3.2 × 10−2 for the first, second and third resonance respectively; (b) Re = 12 200 for the first
resonance and Re = 2200 for the second resonance.

d2
j Re−1/2. In the nonlinear regime, the geostrophic amplitude A1

0 saturates because
the amplitude A also saturates. This means that the geostrophic motion scales as
ε2/3 in this regime. The agreement between the experiment and the theory is good
for the first two resonances: the scaling exponents and the multiplication factors are
correct, although the theory slightly overestimates the amplitude of the first mode in
the nonlinear regime. For the third resonance, the amplitude is much smaller in the
experiments than in the theory, but the velocity of the geostrophic mode is very small
in this case and the uncertainty is thus very high.

For the second Kelvin mode, the geostrophic profile contains more than one
component and we thus need to plot the amplitudes A

j

0, j varying from 1 to 3. They
are plotted in figure 19 and compared to the theory. It is surprising to see that here,
the theory underestimates the amplitudes by a factor 10. Again this discrepancy could
be due to the fact that ε1/3 is not very small and thus the asymptotic decomposition
may be no longer valid in this case.

5. Conclusion
In this paper we addressed both experimentally and theoretically the flow inside

a rotating cylinder subject to a weak precession. We have shown that this flow can
be expressed as a sum of Kelvin modes which have been measured for the first time
using particle image velocimetry. We have distinguished two cases depending on the
precession frequency. When this forcing frequency is not equal to a natural frequency
of a Kelvin mode, the flow is said to be non-resonant and a linear inviscid theory
can predict accurately the amplitude of the forced Kelvin modes in the limit of small
precession amplitude and large Reynolds number. However, if the forcing frequency
is resonant, this linear inviscid theory is unable to give the mode amplitude since it
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Figure 19. Amplitude of the geostrophic mode as a function of the Reynolds number, for
the first resonance of the second mode. The different curves correspond to the first component
A1

0 (solid line, ◦), the second component A2
0 (dashed line, �) and the third component A3

0

(dash-dotted line, �). The dimensionless parameters are h = 2, ε = 8.6 × 10−3.

diverges. In this case, a viscous and nonlinear theory has been introduced to predict
the finite value of the mode amplitude.

In the resonant case, there are two different regimes depending on the value of
the Reynolds number. For small enough Reynolds numbers, nonlinear effects are
negligible and taking into account the effects of both the viscous boundary layers
and the volume viscous damping is sufficient to predict the dynamics of the resonant
Kelvin mode, as has already been shown by Gans (1970) in the particular case of a
precession angle of 90◦. It yields a saturation of the mode amplitude which scales as
Re1/2 in excellent agreement with the experimental results.

For larger Reynolds numbers, weakly nonlinear effects have to be taken into
account together with viscous effects. It leads to the saturation of the mode amplitude
at a value which scales as θ1/3, where θ is the precession angle, supposed small. It is
thus independent of the Reynolds number. This scaling is correctly recovered experi-
mentally. An interesting point is that experiments show the presence of a geostrophic
motion, whose amplitude always scales as the square of the Kelvin mode amplitude,
as can be predicted by the nonlinear and viscous theory. This small geostrophic
motion has been observed and measured in the experiments and its amplitude has
been shown to be correctly predicted by the theory for the first Kelvin mode.

We have characterized the stable flow inside a precessing cylinder in all regimes. In
the future, these results could serve as a basis for a stability study of this flow; it is
known from McEwan (1970) and Manasseh (1992) that Kelvin modes can become
unstable and even turbulent for large Reynolds numbers. Such a breakdown of the
flow has been observed in our experiments, and always appeared at the transition
between the viscous and the nonlinear regime, i.e. when the nonlinear effects cease to
be negligible. The instability of the Kelvin modes is probably due to a triadic resonance
similarly to the elliptic instability (Kerswell 2002; Eloy et al. 2003). A theoretical and
experimental study is currently underway to understand this instability better.

Finally, it would be interesting to know if the present theoretical framework would
hold when the flow becomes unstable and eventually turbulent. The Kelvin modes
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are still excited in this case, although they are hidden by the presence of a very
disordered flow (which can still be expressed as a sum of Kelvin modes). This would
have important consequences for industrial and geophysical applications, for which
the Reynolds numbers are usually a few decades higher than in the laboratory
experiments.

We would like to thank Laurie Devesvre for preliminary results during the setting-
up of the laboratory experiment. This study has been carried out under the contract
CEA-CNRS N◦ 004746.

Appendix A. Four-component formulation
The operators appearing in equation (2.8) are defined by

I =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎠ , (A 1)

D =

⎛
⎜⎝

0 0 −i 0
0 0 1 0
i −1 0 0
0 0 0 0

⎞
⎟⎠ , (A 2)

L =
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and

M =
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The vectors F0 and N(v1, v2) are defined by

F0 =

⎛
⎜⎝

0
0

−rω

0

⎞
⎟⎠ , (A 6)
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and

N(v1, v2) =

(
u1 × (∇ × u2) + u1 × (∇ × u2)

0

)
. (A 7)

Appendix B. Extraction of the mode amplitude ai

The PIV measurements give the two components uexp = (uexp, vexp) of the (real)
transverse velocity field at a specific height z. We want to obtain the amplitudes ai

and the tilt angles αi of the first five Kelvin modes whose transverse components are
given in the reference frame of the rotating platform by ui(r, ϕ, z) = eiϕ(ui, vi) sin(kiz)
(ui and vi are given in (3.5)). We thus suppose that the experimental velocity field is
given by

uexp(r, ϕ, z) =
∑

i

ai

(−i sin(ϕ + αi)ui(r)

cos(ϕ + αi)vi(r)

)
. (B 1)

It can be noted that uexp is real since ui is purely imaginary and vi is purely real.

We introduce the scalar product 〈X |Y〉 =
∫ 2π

0

∫ 0.9

0
(XrYr + XϕYϕ) r dr dϕ for which

the Kelvin modes are almost orthogonal: they would be orthogonal if the integration
were achieved over the whole section 0 <r < 1. If we define the complex experimental
velocity (which can be easily derived numerically)

uc
exp(r, ϕ, z) = uexp(r, ϕ, z) − i uexp(r, ϕ + π/2, z) (B 2)

we find that the scalar product 〈ui |uc
exp〉 is equal to

〈ui |uc
exp〉 =

∑
j

Mijaje
iαj sin(kjz) (B 3)

where Mij = 2π
∫ 0.9

0
(uiuj + vivj )r dr . If we consider only the five first Kelvin modes,

we can invert numerically the 5 × 5 matrix M to obtain(
aie

iαi sin(kiz)
)

i=1,5
= M−1

(
〈ui |uc

exp〉
)

i=1,5
. (B 4)

The tilt angles αi of the Kelvin modes are thus equal to the argument of this expression
and the amplitudes ai to the modulus of this expression divided by (sin(kiz))i = 1,5.

Appendix C. Calculation of the nonlinear coefficients
The aim of this Appendix is to calculate the coefficients f , σ and ξj appearing in

the nonlinear amplitude equation (4.14).

C.1. Order ε2/3

At order ε2/3, the particular solution of (4.7) is given by (4.8) where

v2k =

⎛
⎜⎜⎜⎝

0

a2k cos(2kiz)

0

p2k cos(2kiz)

⎞
⎟⎟⎟⎠ , v2ω =

⎛
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i

r
a2ω

−1

2

da2ω

dr

0

p2ω
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⎟⎟⎟⎟⎟⎟⎟⎠

, (C 1a, b)
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with

a2k =
iki

ω

(
viwi − 1

2ki

∂(uivi)

∂r

)
, a2ω =

ωδ2
i

(ω2 − 4)2
[
J 2

1 (δir) − J 2
1 (δi) r2

]
. (C 2a, b)

C.2. Order ε

We first need to calculate the scalar product N , which is the norm of the velocity field

N = vi � I vi = 2πh
ω2
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i − 2
)
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J 2

1 (δi). (C 3)

It can be noted that the last term vanishes at the resonance. The forcing term comes
from

F = vi e
i(ωt+ϕ) � ζ F0e

i(ωt+ϕ) = 2πζ
2i

δ2
i

ω + 2

ω
sin

(
kih

2

)
J1(δi), (C 4)

which is a pure imaginary number. The coefficient of forcing f appearing in the
amplitude equation (4.14) is simply

f =
F

iN
, (C 5)

where N and F are given by (C 3) and (C 4).
The coefficient σ in (4.14) is separated into two parts. The first one comes from the

nonlinear interaction of V 1 with v2k

σ2k = vi e
i(ωt+ϕ) �

[
N

(
v2k, vi e

i(ωt+ϕ)
)

+ N
(
vi e

i(ωt+ϕ), v2k

)]
, (C 6a)

= 2πh
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0
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2ki a2k viwi − a2k

∂(uivi)

∂r

)
rdr, (C 6b)

with a2k given by (C 2a). The other term comes from the interaction of V 1 with v2ω

σ2ω = vi e
i(ωt+ϕ) � N

(
v2ωe2i(ωt+ϕ), vi e

−i(ωt+ϕ)
)
, (C 7a)

= 2πh
iki

ω
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0

(
da2ω

dr
uiwi − 2ia2ω

r
viwi

)
rdr, (C 7b)

where the term associated with N(vi , v2ω) has been omitted because its scalar product
with vi e

i(ωt+ϕ) is zero. The final coefficient σ used in the amplitude equation (4.14) is

σ =
σ2k + σ2ω

iN
, (C 8)

where N , σ2k and σ2ω are given by (C 3), (C 6b) and (C 7b). The integrals appearing
in the coefficients σ2k and σ2ω can be evaluated numerically. It is easy to see that σ2k

and σ2ω are pure imaginary and therefore σ is real.
Finally the coefficients ξj describe the nonlinear interaction of the Kelvin mode

with the j th geostrophic mode

Xj = vi e
i(ωt+ϕ) �

[
N

(
v

j

0, vi e
i(ωt+ϕ)

)
+ N

(
vi e

i(ωt+ϕ), v
j

0

)]
, (C 9a)

= −2πh

∫ 1

0

(
2iki

ω
v

j

0uiwi +
1

r

d
(
rv

j

0

)
dr

uivi

)
rdr, (C 9b)
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where v
j

0 is given by (4.9). The coefficient ξj of (4.14) is

ξj = −Xj

iN
, (C 10)

where N and Xj are given by (C 3) and (C 9b). Again, the integral in (C 9b) is
calculated numerically.

Some numerical values of the coefficients f , σ and ξj whose analytical expressions
are given by (C 5), (C 8) and (C 10) are given in tables 1, 2 and 3.

Appendix D. Linear viscous boundary layers (Ekman pumping)
In this Appendix we derive the viscous correction to the main flow V in the

boundary layers. This correction can be written as

Ṽ = ε1/3A(ṽi + Re−1/2 ṽ3)e
i(ωt+ϕ) + o.t., (D 1)

with the boundary conditions V + Ṽ = 0 on the walls and Ṽ tending to zero far from
the walls. In (D1), ṽi = (ũi , ṽi , w̃i, p̃i) and ṽ3 = (ũ3, ṽ3, w̃3, p̃3) are of order 1. The
added corrective flow (Ekman pumping) is denoted ṽ3 because, as we shall see below,
this flow constitutes the normal boundary condition for the bulk flow V 3 at order ε.
This calculation is classical and can be found in several sources (e.g. Greenspan 1968;
Gans 1970).

D.1. Lateral wall

First, let us focus on the lateral wall r = 1. By taking into account the viscous effects
in (2.8) and considering the rescaled coordinate

r̃ = Re−1/2 (1 − r), (D 2)

one can write the linear Navier–Stokes equation valid close to the lateral wall as(
iωI − Re1/2 ∂

∂r̃
Rl + Ml − ∂2

∂r̃2
I

)
Ṽ = O(Re−1Ṽ ), (D 3)

where the tensors Rl and Ml are defined as follows:

Rl =

⎛
⎜⎜⎜⎜⎝

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

⎞
⎟⎟⎟⎟⎠ and Ml =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −2 0 0

2 0 0 i

0 0 0
∂

∂z

1 i
∂

∂z
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (D 4)

At order Re1/2,

∂

∂r̃
(Rl ṽi) = 0, (D 5)

which leads to ũi = p̃i =0.
At order 1, (D 3) gives

∂

∂r̃
(Rl ṽ3) =

(
iωI + Ml − ∂2

∂r̃2
I

)
ṽi . (D 6)
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The solution of this linear system with the boundary conditions vi + ṽi = 0 at r̃ = 0
and ṽi vanishing to zero for r̃ � 1 is

ṽi(r̃ , z) = −vi(1) sin(kiz) e−κr̃ , w̃i(r̃ , z) = −wi(1) cos(kiz) e−κr̃ , (D 7)

where κ is given by

κ =
1 + i√

2

√
ω. (D 8)

and

ũ3 = ṽ3 · n = −αi J1(δi) sin kiz at r = 1, (D 9)

where

αi =
1 + i√

2

(δ2
i − 1) ω2 + 4

(4 − ω2) ω3/2
. (D 10)

D.2. Endwalls

An equivalent derivation can be done for the upper wall (the flow in the lower wall
boundary layer is formally identical). Using the local rescaled coordinate

z̃ = Re1/2

(
h

2
− z

)
, (D 11)

one can rewrite the Navier–Stokes equation valid close to the upper wall as(
iωI − Re1/2 ∂

∂z̃
Ru + Mu − ∂2

∂z̃2
I

)
Ṽ = O(Re−1Ṽ ), (D 12)

where the tensors Ru and Mu are defined as follows:

Ru =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎟⎠ and Mu =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −2 0
∂

∂r

2 0 0
i

r

0 0 0 0

1

r
+

∂

∂r

i

r
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D 13)

At order Re1/2, one finds w̃i = p̃i =0. At order 1, the projection of (D 12) onto the
radial, azimuthal and pressure directions with the proper boundary conditions gives

ũi(r, z̃) = i S(r) e−κs z̃ − iD(r) e−κd z̃, (D 14a)

ṽi(r, z̃) = S(r) e−κs z̃ + D(r) e−κd z̃, (D 14b)

where κs and κd are given by

κs =
1 + i√

2

√
ω + 2, κd =

1 − i√
2

√
2 − ω, (D 15)

and where S and D are given by

S(r) =
i ui − vi

2
sin(kih/2), D(r) =

−i ui − vi

2
sin(kih/2). (D 16)

The projection of (D 12) onto the vertical direction gives

w̃3 =

(
2iS

r
+ i

dS

dr

)
e−κs z̃

κs

− i
dD

dr

e−κd z̃

κd

, (D 17)
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such that

w̃3 = ṽ3 · n = −βi sin(kih/2) J1(δir) at z̃ = 0 i.e. z = h/2, (D 18)

where

βi =
1 − i

2
√

2
δ2
i

[
1

(2 − ω)3/2
+

i

(2 + ω)3/2

]
. (D 19)

D.3. Geostrophic flow

For the geostrophic flow, the viscous flow in the endwall boundary layers can be
calculated with a similar method as for the Kelvin mode in § D.2. This viscous flow
is of the form

Ṽ = ε2/3

∞∑
j=1

A
j

0(τ )
(
ṽ

j

0 + Re−1/2ṽ
j

4

)
+ o.t., (D 20)

where ṽ
j

0 = (ũj

0, ṽ
j

0 , w̃
j

0 , p̃
j

0 ). One finds w̃
j

0 = p̃
j

0 = 0 and

ũ
j

0 =
i

2
v

j

0 (−e−κ1 z̃ + e−κ2 z̃), ṽ
j

0 = −1

2
v

j

0 (e
−κ1 z̃ + e−κ2 z̃), (D 21)

where κ1 = 1 + i and κ2 = 1 − i. This leads to

w̃
j

4 = ṽ
j

4 · n = w̃
j

4 =
1

2

(
dv

j

0

dr
+

v
j

0

r

)
at z = h/2. (D 22)

D.4. Viscous coefficients

The surface viscous coefficients appearing in (4.14) and (4.17) can now be calculated.
If the surface of the cylinder is separated into two parts S = Sl + Se, where Sl is the
lateral wall and Se the endwalls, we have

μl =

∫
Sl

pi sin(kiz) ṽ3 · n d2S = −π [h − sin(kih)/ki)] αiJ
2
1 (δi), (D 23a)

μe =

∫
Se

pi sin(kiz) ṽ3 · n d2S = −2πβi

(
δ2
i − 1

)
ω2 + 4

δ2
i ω

2
J 2

1 (δi) sin2

(
kih

2

)
, (D 23b)

where we have used the formulation of ṽ3 · n found in (D 9) and (D 18). Now using
the relation (4.15) the viscous coefficient μ in (4.14) is simply

μ = −μl + μe

N
, (D 24)

where N is given by (C 3).
For the geostrophic flow, we obtain by integrating by parts

μ0 =

∫
Se

p
j

0 ṽ
j

4 · n d2S = −4π

∫ 1

0

v
j

0

2
rdr, (D 25)

where we have used ṽ
j

4 · n as given by (D22) and

N0 = v
j

0 � I v
j

0 = 2πh

∫ 1

0

v
j

0

2
rdr, (D 26)

which leads to a surface viscous coefficient μ0/N0 = −2/h which appears in the
amplitude equation (4.17).
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The volume viscous coefficient ν is simply

ν =
−vi � L vi

vi � I vi

=
(
k2

i + δ2
i

)
. (D 27)

Some useful numerical values of the viscous coefficients μ and ν obtained through
(D24) and (D 27) are given in tables 1 and 2.

Appendix E. Nonlinear viscous boundary layers
To calculate the forcing of the geostrophic flow by the Kelvin mode, we need to

perform a weakly nonlinear analysis in the endwall boundary layer. We choose to
focus on the upper-wall boundary layer z = h/2 (the calculation is symmetric for the
bottom wall) using the rescaled vertical coordinate z̃ as defined by (D11). Taking into
account the nonlinear effects and considering only the forcing of geostrophic modes
of angular frequency ω =0, the Navier–Stokes equation is(

−Re1/2 ∂

∂z̃
Ru + Mu − ∂2

∂z̃2
I

)
Ṽ = Nu(Ṽ , Ṽ ) + Nu(V , Ṽ ) + Nu(Ṽ , V ) + o.t., (E 1)

where the operators Ru and Mu are defined in (D 13) and Nu is similar to the bilinear
function N defined in (C 3) but adapted to the rescaled variable z̃.

We now need to evaluate the right-hand side of (E 1) at order ε2/3, focusing on the
geostrophic component (independent of t and φ). This leads to

Nu(Ṽ , Ṽ ) = ε2/3|A|2

⎛
⎜⎜⎜⎜⎝

γ1(r, z̃)

κ1(r, z̃)

0

0

⎞
⎟⎟⎟⎟⎠ + o.t. + O(ε), (E 2)

where

γ1 = ṽi

(
ṽi

r
− i

r
ũi

)
− ũi

∂ũi

∂r
− w̃3

∂ũi

∂z̃
, (E 3a)

κ1 = ũi

(
ṽi

r
− ∂ṽi

∂r

)
− ṽi

iṽi

r
− w̃3

∂ṽi

∂z̃
, (E 3b)

where ũi and ṽi are given by (D 14 a, b) and w̃3 is given by (D 17). The other two
terms are

Nu(V , Ṽ ) = ε2/3|A|2

⎛
⎜⎜⎜⎜⎝

γ2(r, z̃)

κ2(r, z̃)

0

0

⎞
⎟⎟⎟⎟⎠ + o.t. + O(ε), (E 4a)

Nu(Ṽ , V ) = ε2/3|A|2

⎛
⎜⎜⎜⎜⎝

γ3(r, z̃)

κ3(r, z̃)

0

0

⎞
⎟⎟⎟⎟⎠ + o.t. + O(ε), (E 4b)
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where

γ2 = sin
kih

2

[
vi

(
− i

r
ũi +

ṽi

r

)
+ ui

∂ũi

∂r
− w3

∂ũi

∂z̃
− ki z̃ wi

∂ũi

∂z̃

]
, (E 5a)

κ2 = sin
kih

2

[
ui

(
ṽi

r
+

∂ṽi

∂r

)
− i

r
vi ṽi − w3

∂ṽi

∂z̃
− ki z̃ wi

∂ṽi

∂z̃

]
, (E 5b)

γ3 = sin
kih

2

[
ṽi

(
− i

r
ui +

vi

r

)
+ ũi

∂ui

∂r

]
, (E 5c)

κ3 = sin
kih

2

[
−ũi

(
vi

r
+

∂vi

∂r

)
+

i

r
vi ṽi

]
, (E 5d )

where w3 = −w̃3(z̃ =0).
The solution of (E 1) forced by the right-hand side is sought at order ε2/3 of the

form

Ṽ = ε2/3|A|2
(
ṽ

NL

2 + Re−1/2 ṽ
NL

4

)
. (E 6)

Examinion of (E 1) at order ε2/3Re1/2 leads to w̃NL

2 = p̃NL

2 = 0. At order ε2/3, it leads to(
∂4

∂z̃4
+ 4

)
ũNL

2 = 2 (κ1 + κ2 + κ3) − ∂2

∂z̃2
(γ1 + γ2 + γ3) , (E 7a)

ṽNL

2 = −1

2

(
γ1 + γ2 + γ3 +

∂2ũNL

2

∂z̃2

)
. (E 7b)

The solution of the above system is a sum of the particular solution of (E 7 a) and the
solution of the homogeneous system of the form ũNL

2 = a1 exp(−1+i)z̃+a2 exp(−1−i)z̃.
The particular solution is found with a symbolic calculation software where the
coefficients a1 and a2 are adjusted to satisfy the boundary conditions ũNL

2 = ṽNL

2 = 0 in
z̃ = 0 (the boundary condition of vanishing ṽ

NL

2 for z̃ � 1 is ensured by the selection
of the vanishing exponential in the particular solution).

Taking (E 1) at order ε2/3 also gives the form of the flow orthogonal to the wall at
order ε2/3Re−1/2 which satisfies

∂

∂z̃
w̃NL

4 = −
(

1

r
+

∂

∂r

)
ũNL

2 . (E 8)

Once this is integrated, the normal flow is ṽ
NL

4 · n = w̃NL

4 (z̃ = 0). The coefficients χj

needed for the amplitude equation (4.17) can now be obtained as

χj =
4π

N0

∫ 1

0

p
j

0

(
ṽ

NL

4 · n − w̃SB

4

)
rdr + c.c., (E 9)

where N0 is given by (D 26), and

w̃SB

4 =

∫ 1

0

ṽ
NL

4 · n rdr + c.c., (E 10)

corresponds to the flow associated with a modification of the solid-body rotation
frequency.
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Instability of a fluid inside a precessing cylinder
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In this letter, we report experimental results on the stability of a fluid inside a precessing and
resonant cylinder. Above a critical Reynolds number, the Kelvin mode forced by precession triggers
an instability which saturates at intermediate Re and which leads to a turbulent flow at high
Reynolds numbers. Particle image velocimetry measurements in two different sections of the
cylinder have revealed the three-dimensional structure of this instability. It is composed of two free
Kelvin modes whose wavenumbers and frequencies respect the conditions for a triadic resonance
with the forced Kelvin mode, as is obtained for the elliptical instability. Moreover, an experimental
diagram of stability has been established by varying both the precessing angle and the Reynolds
number. It shows a good agreement with a scaling analysis based on a triadic resonance
mechanism. © 2008 American Institute of Physics. �DOI: 10.1063/1.2963969�

The knowledge of the flow forced by a precessional mo-
tion is of critical importance in several domains. In aeronau-
tics, the liquid propellant contained in a flying object can be
forced by precession. The resulting flow can create a desta-
bilizing torque on the object and thus modify its trajectory
dangerously. In geophysics the Earth’s precession modifies
the flow of its liquid core and is therefore of significant im-
portance in understanding the geodynamo �among other ef-
fects such as convection, boundary layers, and elliptic or
tidal instability1�. The flow inside a cylinder subjected to
precession can be decomposed as a sum of a shear along the
cylinder axis and a superposition of Kelvin modes which
become resonant for particular precession frequencies.
McEwan2 first observed that this flow can become unstable
and even turbulent for large Reynolds numbers. This behav-
ior has also been reported by Manasseh,3–5 and Kobine.6

Several scenarios have been proposed to explain this insta-
bility. Studying the case of an infinite cylinder, Mahalov7

proposed a mechanism of triadic resonance between the flow
shear and two Kelvin modes. Kerswell8 suggested that a
given Kelvin mode can trigger a triadic resonance with two
other Kelvin modes leading to an instability. Another sce-
nario, suggested by Kobine,6,9 is that the main flow could be
modified by a geostrophic mode �due to nonlinear effects�
eventually leading to a centrifugal instability.

An experimental setup has been built to study the pre-
cession of a cylinder of height H along its axis ẑ and radius
R, full of water of kinematic viscosity �. More details about
the setup can be found in Ref. 10. The cylinder rotates at the
angular frequency �1 �measured with an accuracy of 0.1%�
around its axis. It is mounted on a platform which rotates at
the angular frequency �2 �measured with an accuracy of
0.2%�. Once the spin-up stage is completed, the cylinder is
tilted with an angle � �determined with an absolute accuracy
of �0.1°� with respect to the rotation axis of the platform.
Particle image velocimetry �PIV� measurements in transverse

sections of the cylinder are made. To perform the acquisition
of a PIV field, we use small markers illuminated with a thin
light sheet created by a yttrium aluminum garnet �YAG�
pulsed laser. The particle images are recorded by a camera
mounted on the rotating platform. The horizontal velocity
and the axial vorticity fields in the cylinder frame of refer-
ence are thus measured. More details about PIV treatment
can be found in Ref. 11.

In the following, variables are made dimensionless by
using R and �=�1+�2 cos � as characteristic length and
characteristic frequency. The dynamics of this precessing
system depends on four dimensionless numbers: the aspect
ratio h=H /R, the frequency ratio �=�1 /�, the Rossby
number Ro=�2 sin � /�, and the Reynolds number Re
=�R2 /�. The cylindrical coordinates are used in the refer-
ence frame of the cylinder and noted �r ,� ,z�, where z=0
corresponds to the midheight section of the cylinder.

Figure 1 shows the axial and instantaneous flow vorticity
for a small precessing angle ��=1° � and different Reynolds
numbers. The laser sheet is at an altitude z�h /4. For Re
=3500 �Fig. 1�a��, the flow mainly consists of two stationary
counter-rotating vortices. A classical linear and inviscid
theory is sufficient to explain this observation. By assuming
a small Rossby number �weak precession, negligible nonlin-
ear effects� and a large Reynolds number �negligible viscous
effects�, the linearized Euler equation at order O�Ro� is

�v

�t
+ 2ẑ � v + �p = − 2Ro �r cos��t + ��ẑ , �1�

where 2ẑ�v is the dimensionless Coriolis force and p the
dimensionless pressure including all potential terms. The
right-hand side of Eq. �1� is the precession forcing which
forces a particular solution of Eq. �1�: vpart=−2Ro r sin��t
+��ẑ. This solution does not satisfy the boundary conditions
of no outward flow at z= �h /2. Thus, we must complete this
solution with a solution of the homogeneous equation �Eq.
�1� without forcing�, so that the boundary condition at thea�Electronic mail: lagrange@irphe.univ-mrs.fr.
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upper and lower walls is satisfied. Due to time and azimuthal
dependence of the forcing, the homogeneous solution is a
sum of Kelvin modes of azimuthal wavenumber m=1 and
angular frequency �. Finally the solution of Eq. �1� is

v = vpart + �
i=1

�

aivi�m = 1,�,ki� , �2�

where vi�m ,� ,ki� is a Kelvin mode of amplitude ai and
whose axial wavenumber ki depends on � by the dispersion
relation,

�ki
�4/�2 − 1Jm� �ki

�4/�2 − 1� + 2Jm�ki
�4/�2 − 1� = 0,

�3�

where Jm is the Bessel function of the first kind and Jm� its
derivative. The axial vorticity 	i of the ith Kelvin mode is

	i = Jm�ki
�4/�2 − 1r�sin�kiz�cos��t + m�� . �4�

When ki is equal to �2n+1�
 /h, with n an integer num-
ber, the ith Kelvin mode “fits” inside the height of the cyl-
inder and becomes resonant. In our experiments �i.e., for h
=1.62 and �=1.18� the first Kelvin mode �which is theoreti-
cally characterized by two lobes of vorticity� is resonant �its
axial wavenumber, noted k, is equal to 
 /h�. Because the
amplitude a1 is predicted to diverge by a linear analysis it is
necessary to include viscous12 and nonlinear effects. We
have shown in Ref. 10 that a1 scales as RoRe1/2 for low
Reynolds numbers �viscous regime, Re1/2Ro2/3�1� and as
Ro1/3 for large Reynolds numbers �nonlinear regime,
Re1/2Ro2/3�1�. Since the nonresonant mode amplitudes
scale as Ro, the resonant mode is always predominant.

Figure 1�b� is a PIV measurement of the axial and in-
stantaneous vorticity field for Re=6500. For such a value of
Re the flow seen in Fig. 1 is unstable and the unstable mode
exhibits a ring with ten lobes of vorticity with alternate sign.
It corresponds to a free Kelvin mode �i.e., a solution of Eq.
�1� without forcing� whose azimuthal wavenumber, noted
m1, equals 5. This mode m1=5 is superimposed to the forced
Kelvin mode m=1 shown in Fig. 1�a�. �As seen on Fig. 1�b�
the average vorticity is negative for x0 and positive for
x�0�. Such a flow, which is three-dimensional and nonsta-
tionary, corresponds to the instability discovered by
McEwan2 and studied by Manasseh3 using visualizations,
which was called “resonant collapse” since it decreases the
amplitude of the forced Kelvin mode. Indeed, the same struc-
ture has been observed for other aspect ratios �h=1.8 and h
=2� and it also leads to the decrease of the forced Kelvin
mode’s amplitude. The visualization of a sequence of instan-
taneous PIV fields shows that the free Kelvin mode rotates as
a function of time at a dimensionless frequency
�1=−0.34�11% in the cylinder frame of reference. For this
Reynolds number, the unstable mode beats probably due to a
nonlinear coupling with the geostrophic mode. However, the
amplitude of this unstable mode is stationary close to the
threshold �i.e., Re�4600�.

Figure 1�c� represents the axial and instantaneous vortic-
ity field for even larger Reynolds numbers �Re=24 400�. For
such a value of Re the flow is disordered and seems to be
turbulent. As suggested by Kerswell,8 this disordered flow
could be the result of successive instabilities: a cascade of
bifurcations could lead to a turbulent state. It can be noted

FIG. 1. Axial vorticity 	 of the flow for different Reynolds numbers at z
=h /4. �a� For Re=3500 the stable flow exhibits the forced Kelvin mode. �b�
For Re=6000 the flow is unstable and exhibits a free Kelvin mode with
m1=5 superimposed to the forced Kelvin mode. The temporal evolution of
the instability can be observed in the corresponding movie. �c� For Re
=24 400 the flow is turbulent. For these three cases h=1.62, �=1.18, and
Ro=0.0031 �enhanced online�.
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that the Kelvin mode m=1 forced by precession is still
present since the average vorticity is still negative for x0
and positive for x�0.

Figure 2 is a PIV measurement of the axial and instan-
taneous vorticity field measured in a section of the cylinder
lower than in Fig. 1. The laser sheet is at midheight of the
cylinder �z=0�. According to Eq. �4� the vorticity of the
forced Kelvin mode m=1 and of the free Kelvin mode m1

=5 is equal to 0. At this altitude a structure with 12 lobes of
alternate vorticity is clearly observed. It corresponds to a free
Kelvin mode whose azimuthal wavenumber, noted m2, is
equal to 6. Because it does not vanish at z=0 its axial vor-
ticity is given by Eq. �4�, where sin�k2z� has been changed in
cos�k2z�. This free Kelvin mode rotates at a dimensionless
angular frequency �2=0.79�2.5% in the cylinder frame of
reference.

The axial velocity �which is in quadrature with respect to
the axial vorticity given by Eq. �4�� of the free Kelvin mode
m1=5 �resp. m2=6� is a cosine �sine� function of z. Boundary
conditions of no outward flow at z= �h /2 imply that the
axial wavenumber of the free Kelvin mode m1=5 �resp. m2

=6� is discretized as follows: k1= �2n1+1�
 /h �resp. k2

=2n2
 /h�, n1 �resp. n2� being an integer.
Furthermore, Figs. 1�b� and 2 show that the unstable

Kelvin modes correspond to the first branch of the dispersion
relation since there is only one ring of vortices. We can thus
infer that k1=
 /h �resp. k2=2
 /h� since the point �k1

=
 /h, �1�−0.34� �resp. k2=2
 /h, �1�0.79� then falls
very close to the first branch of the dispersion relation �3� for
m1=5 �resp. m2=6� �Fig. 3�.

These experiments have allowed to determine the struc-
ture of the instability of a fluid inside a precessing and reso-
nant cylinder. We have found that the unstable flow is the
sum of three Kelvin modes: the forced one and two free
modes. The azimuthal wavenumber and the angular fre-
quency of these free modes have been measured and satisfy

the conditions for a triadic resonance with the forced Kelvin
mode,

m2 − m1 = 1, �2 − �1 � �, k2 − k1 = k , �5�

where k=
 /h is the axial wavenumber of the forced Kelvin
mode. This suggests that the nonlinear coupling of the three
Kelvin modes can trigger an instability, in a similar way as
for the elliptical instability.13,14

The resonant condition given in Eq. �5� corresponds to
the crossing points of the dashed and solid lines in Fig. 3,
where the two dispersion relations are plotted in the same
plane; the dispersion relation with m1=5 �resp. m2=6� being
horizontally �vertically� translated of k �resp. translated of
−��. It can be noted that there is an infinite and denumerable
number of possible resonances. However, the free Kelvin
modes observed experimentally correspond to the crossing
point surrounded by a circle on Fig. 3. These modes satisfy
exactly the boundary conditions at z= �h /2 �i.e., the cross-
ing point lies on a vertical dotted line in Fig. 3�. This exact
resonance is only valid for h=1.62. For h�1.62 “detuning”
effects shall come into play and thus decrease the instability
growth rate.

For h�1.62 two free Kelvin modes involving different
branches of the dispersion relations or different azimuthal
wavenumbers m1 and m2 can exactly resonate with the
forced Kelvin mode. Nevertheless, it can be shown that there
cannot be exact resonances for m1�4 for the first branches
of the dispersion relations. Thus, the aspect ratio h=1.62
corresponds to the exact resonance of the Kelvin modes with
the smallest wavenumbers. Since the volume viscous effects
increase with the wavenumbers of the free Kelvin modes,
h=1.62 is expected to be the aspect ratio for which the flow

FIG. 2. Vorticity field of the unstable flow at midheight of the cylinder for
the same parameters as in Fig. 1�b� �h=1.62, �=1.18, Ro=0.0031, and
Re=6500�.
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FIG. 3. Dispersion relations of the Kelvin modes. The solid lines �resp.
dashed lines� correspond to the first five branches of the Kelvin modes with
azimuthal wavenumber m1=5 �resp. m2=6�. The solid lines have been trans-
lated by k=
 /h and the dashed lines have been translated by �=1.18. The
vertical dotted lines correspond to k=n
 /h, with n an integer, �h=1.62,
�=1.18�.
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is the most unstable. However, the previous observations are
very general and do not depend on the fact that the triadic
resonance is exact or not. Indeed, experiments with an arbi-
trary aspect ratio �h=1.8� have shown exactly the same in-
stability.

Finally we have plotted in Fig. 4 the stability diagram of
this instability in the Re-Ro plane. The majority of the ex-
periments close to threshold are in the viscous domain for
the base flow. This means that the amplitude of the forced
mode scales as a1	RoRe1/2.10 Based on similarities with the
elliptic instability, the inviscid growth rate � of the present
triadic instability is expected to scale as the amplitude of the
forced Kelvin mode: �	a1. The natural decay rate of Kelvin
modes is due both to the boundary viscous layers and vol-
ume viscous effects. The surface �volume� decay rate �surf

��vol� scales as �surf	−Re−1/2 �resp. �vol�−�m1+k1
2�4 /�2

−1��Re−1�. In our experiments, �surf��vol for Re�3000.
When the instability is saturated by volume �i.e., Re3000�
�resp. boundary, i.e., Re�3000�, viscous effects, the ampli-
tude of the forced Kelvin mode at which the flow becomes
unstable satisfies a1c	Re−1 �resp. a1c	Re−1/2�. Thus the
Rossby number at which the flow becomes unstable scales as
Roc	Re−3/2 �resp. Roc	Re−1�. A “fit” of the experimental
threshold gives Roc	Re−1.38 �solid line�, which is coherent
with the theoretical scalings.

In this letter we studied experimentally the flow inside a

precessing and resonant cylinder. At a given Rossby number
the flow is stable for small enough Reynolds numbers and
exhibits a Kelvin mode forced by the precessional motion.
Increasing the Reynolds number above a critical value the
flow becomes unstable �and even turbulent for high Re�.
Measurements in two different cylinder sections have re-
vealed the presence of two Kelvin modes with high azi-
muthal wavenumbers. Their frequencies and their wavenum-
bers satisfy the conditions for a triadic resonance with the
forced Kelvin mode. Thus, this letter has confirmed the sce-
nario suggested by Kerswell8 that a Kelvin mode can be
destabilized by a triadic resonance mechanism. So, the pre-
cessional instability is very general since it appears as soon
as a Kelvin wave has been excited �through precession, com-
pression, in the nonlinear stages of the elliptical instability,
or in the turbulent flow of a rotating cylinder�. A stability
diagram has also been established and showed that the scal-
ing of the critical Ro as a function of Re is coherent with
standard scaling laws in triadic resonances.

A linear stability analysis based on a mechanism of tri-
adic resonance between Kelvin modes is currently under
progress and will be the subject of a foregoing paper.

This study has been carried out under CEA-CNRS Con-
tract No. 012171.
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How vortices mix

By P. Meunier and E. Villermaux
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The advection of a passive scalar blob in the deformation �eld of an axisymmetric

vortex is a simple mixing protocol for which the advection-di�usion problem is amenable

to a near-exact description. The blob rolls-up in a spiral which ultimately fades away in

the diluting medium. The complete transient concentration �eld in the spiral is accessible

from the Fourier equations in a properly chosen frame. The concentration histogram of

the scalar wrapped in the spiral presents unexpected singular transient features and its

long time properties are discussed in connection with mixtures from the real world.

1. Introduction

A central question in scalar mixing consists in o�ering a satisfactory description of

the histogram, or Probability Density Function (PDF) P (c) of the concentration levels

c of the substance being mixed. The question is particularly interesting, and relevant to

many applications when the substrate is stirred since in that case molecular di�usion is

altered, and in most cases enhanced, by the underlying substrate motions.

The interplay between molecular di�usion and simple deformation �elds is a classi-

cal problem. It is solved in a closed form in a variety of situations such as the saddle

point �ow, the simple shear in two dimensions (Ranz(1979), Mo�att(1983)), in three

dimensions (Villermaux & Rehab(2000)), and in the axisymmetric point vortex (Rhines

& Young(1983), Flohr & Vassilicos(1997)) or spreading vortex �ow (Marble(1988), Bajer

et al. (2001)).

Most of the attention has focussed on the kinetics of the di�usion process in the pres-

ence of stirring motion, particularly its dependence on the substrate rate of deformation

, and di�usion properties of the scalar (di�usivity D). Regarding the characteristic time

ts after which �uctuations start to decay from an initial scalar spatial distribution, of

crucial importance is the rate at which material lines grow in time due to the substrate

motions (Villermaux(2002)). If material lines grow like t, as it is the case in a point

vortex �ow, the mixing time of, say, a scalar blob of initial size s0 is ts � �1Pe1=3; if

material surfaces in three dimensions grow like (t)2, then ts � �1Pe1=5 and if material

lines are exponentially stretched like et, then ts � (2)�1 logPe where Pe = s20=D is

a Péclet number.

The times ts given above are the relevant mixing times as soon as the inverse of the

elongation rate �1 is smaller than the di�usive time of the blob constructed on its initial

size s20=D, that is for Pe > 1. In the limit Pe � 1, ts is essentially given by the time

needed to deform the blob �1 and molecular di�usion, although a crucial step in the

ultimate uniformization, plays only a weak correction role in the kinetics of the process.

Experiments or numerical simulations addressing this problem quantitatively are scarce,
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Figure 1. Roll-up of a blob of �uorescent dye in a point vortex at t = 0 (upper left), t = 2 sec

(upper right), t = 5 sec (lower left) and t = 10 sec (lower right). Each picture covers a �eld
4:8 � 4:8 cm2 wide and the circulation of the vortex is 14:2 cm2=s. The data come from experi-
ments described in section 2.

and are mostly limited to short times (i.e. t . ts), therefore re�ecting more the kinemat-

ics of the �ow than its mixing properties (see, however Cetegen & Mohamad(1993) and

Verzicco & Orlandi(1995)).

Based on a spatially and temporally resolved experiment, we study the mixing chronol-

ogy of a blob of dye embedded in the displacement �eld of a di�using, Lamb�Oseen type

vortex. The process is described, from the initial segregation of the blob to a state where

it is almost completely diluted in the surrounding medium, through the evolution of

the spatial scalar �eld, and associated transient evolution of the overall concentration

distribution P (c).

2. A di�usive spiral

2.1. Chronology

The phenomenon we analyze is illustrated on Figure 1. A uniform blob of dye (the dark

patch shown on Fig. 1(a))is deposed in a still transparent medium. Then a vortex is

formed by the roll-up of a vortex sheet in the vicinity of the blob, which wraps around
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Figure 2. (a) Velocity �eld in the plane of the vortex at t = 10 sec. (b) Radial pro�les of the
azimuthal velocity measured at t = 5 sec (Æ), t = 10 sec (�) and t = 20 sec (M). Solid lines corre-
spond to the pro�les expected from a Lamb-Oseen vortex de�ned by (2.1) with � = 14:2 cm2/s
and a0 = 0:3 cm. The dashed line corresponds to a point vortex de�ned by (3.1). (c) Core size of
the Lamb-Oseen vortex measured by a least-square �t of the two-dimensional measured velocity
�eld and compared to Eq. (2.2) (solid line).

the vortex as seen on Figure 1(b). Although it has been brought to a thin transverse size,

most of the �uid particles constitutive of the blob still bear the initial concentration. The

blob deforms in a spiral shape and after four turns (Fig. 1(c)), the dye concentration is

no more uniform along the spiral: it is weaker near the center of the vortex where the

spiral is very thin, and still close to the injection concentration in the outer region of the

spiral which is thicker there. On Fig. 1(d), the spiral has made more than seven turns and

is about to vanish in the diluting medium. The thickness of the spiral is fairly constant.

Molecular di�usion has clearly been enhanced by the vortex motion. The time lapse

between �gures 1(a) and 1(d) is 10 seconds, when the timescale of pure di�usion based

on the initial size s0 of the blob s20=D is about 103 seconds.

2.2. Flow �eld

The vortex is formed by the impulsive �ap motion of a long �at plate in a large tank

of water initially at rest. The vorticity layer formed at the surface of the plate rolls-up

and detaches at the plate end, producing an axisymmetric vortex which remains two-

dimensional long after the dye has been mixed. A thin uniform Argon-Ion laser sheet is

shed through the tank perpendicular to the plate, and the two-dimensional motion of

the vortex is analyzed by Particle Image Velocimetry (PIV) using a Kodak 1008� 1018
pixels digital camera aimed perpendicular to the laser sheet. Further information on the

set-up and PIV techniques can be found in Meunier & Leweke(2002a) and Meunier &

Leweke(2002b) respectively.

The dye is introduced, prior to the formation of the vortex, by a small tube positioned

below the laser sheet, and forming a slowly ascending column of dye, aligned with the

vortex axis. The dye concentration �eld (disodium Fluoresceine with initial concentration

c0 � 10�3 mol=l) is recorded with the same camera and stored on a disk. The overall

framing rate allows a complete roll-up sequence to be temporally resolved. The images are

digitized on 8 bits and the resulting background subtracted grey levels are proportional

to the dye concentration.

Figure 2(a) shows an example of the axisymmetric velocity �eld obtained by PIV after

the vortex creation. The radial pro�les of azimuthal velocity v� shown on Fig. 2(b) agree

well with that of a Lamb-Oseen vortex, de�ned in the cylindrical coordinates (r ; � ; z) by
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v� =
�

2�r

�
1� e�r

2
=a

2
�

(2.1)

Here, � = 14:2 cm2=s is the circulation of the vortex, and a its core size. This vortex

is an exact solution of the Navier-Stokes equations provided that

a2 = a20 + 4�t (2.2)

where � is the kinematic viscosity of the �uid, a law in close agreement with the

observed growth (Fig. 2(c)), a0 being the initial vortex radius equal to 0.3 cm.

The dashed line in Fig. 2(b) is the velocity pro�le of a point vortex with the same

circulation, de�ned by (3.1). It is tangent to the measured velocity pro�les for large radii

(r=a0 > 3).
Willing to decouple the problem of mixing from the (trivial) problem of the temporal

evolution of the velocity �eld itself, we have systematically deposed the blob of dye far

enough from the vortex core so that the velocity �eld remains that of a steady, point

vortex, throughout the whole mixing process.

3. Concentration �eld along the spiral

We consider the evolution of a blob of dye of initial size s0, in the two-dimensional,

incompressible �ow of a point vortex of circulation � (see Fig. 3a), whose azimuthal

velocity is

v� =
�

2�r
(3.1)

We �rst describe the kinematics of the blob deformation. A �uid particle of the blob

located at a distance r from the center of the vortex turns during time t by an angle �

�(r; t) =

Z t

0

v�

r
dt =

�t

2�r2
(3.2)

A scalar strip of initial length dr, located at a distance r from the vortex center

(Fig. 3(a)) is stretched so that its length equals at time t

dX =
p
dr2 + (rd�)2 = dr

s
1 + r2

�
d�

dr

�2

= dr

r
1 +

�2t2

�2r4
(3.3)

Meanwhile, the transverse, or striation thickness s(t) of the strip, in the absence of

di�usion, decreases so that the surface s(t)dX remains constant in this two dimensional

�ow

s(t) =
s0 dr

dX
=

s0q
1 + �2t2

�2r4

(3.4)

We now describe the scalar dissipation of the blob. The displacement �eld results locally

in a compression perpendicular to the strip, and in an extension along the strip. It is

convenient to introduce a frame of reference (O; X; Y ) whose X-axis is locally aligned
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Figure 3. Schematic of the scalar blob elongation. (a) initial state and (b) at time t

with the spiral as shown on Fig. 3(b). In that frame, the velocity �eld is prescribed by

the temporal evolution of the striation thickness s(t) as

U = �X

s

ds

dt
and V = Y

s

ds

dt
(3.5)

The evolution equation for the dye concentration c is the convection�di�usion equation

in the (X; Y ) coordinates

@c

@t
+ U

@c

@X
+ V

@c

@Y
= D

�
@2c

@X2
+

@2c

@Y 2

�
(3.6)

The ratio of the two convective terms V @c=@Y and U@c=@X is in magnitude propor-

tional to the strip aspect ratio 1 + (�2t2)=(�2r4): the concentration varies more slowly

along the spiral than in its transverse direction for �t=r2 > 1 so that Eq. (3.6) becomes

@c

@t
+
Y

s

ds

dt

@c

@Y
= D

@2c

@Y 2
(3.7)

A change of variables (see e.g. Ranz(1979), Marble(1988), Villermaux & Rehab(2000))

consisting in counting transverse distances in units of the striation thickness s(t) and

time in units of the current di�usion time s(t)2=D transforms Eq. (3.7) into a simple

di�usion equation

with � =
Y

s(t)
and �(r) =

Z
t

0

Ddt0

s(t0)2
=

Dt

s20
+

D�2t3

3�2r4s20
giving

@c

@�
=

@2c

@�2
(3.8)

If c0 is the initial concentration of the dye, the initial conditions at � = 0 are

�
c = c0 for j�j < 1=2
c = 0 for j�j > 1=2

(3.9)

The concentration pro�le at any time and radial position along the spiral is

c(�; �) =
c0

2

�
erf

�
� + 1=2

2
p
�

�
� erf

�
� � 1=2

2
p
�

��
(3.10)



6 P. Meunier and E. Villermaux

(a)

0.0

0.5

1.0

0 2 4 6 8

c/c0

r / a0 (b)

0.1

1.0

0.5 1.0

c/c0

t / ts(r/a0=4.4)

Figure 4. Comparison of the maximal dye concentrations obtained experimentally (symbols)
and theoretically (solid lines) by Eq.(3.11). (a) Radial dependence at t = 5 sec (Æ), t = 10 sec

(�) and t = 20 sec (M). (b) Temporal dependence for r=a0 = 4:4

The maximal concentration is obtained at the pro�le center � = 0

cM (r; t) = c0 erf

�
1

4
p
�

�
= c0 erf

0
@ 1

4
q

Dt

s20
+ D�2t3

3�2r4s20

1
A (3.11)

This relation can be examined from the experiment (� = 14:2 cm2/s, D = 5 � 10�6

cm2/s and s0 � 0:22 cm). Figure 4(a) shows the maximal dye concentrations as a function

of the radius r at a �xed time, for three di�erent times. The concentration falls to zero

more rapidly closer to the spiral center since the rate of elongation is higher there (see

Eq. (3.3)).

Conversely, the temporal evolution of the concentration at a �xed r�location is con-

stant ( Fig. 4(b)) up to the mixing time ts(r). This time makes the argument of the error

function in Eq. (3.11) of order unity i.e. � = O(1)

ts(r) =
r2

�

�
3�2

16

�1=3 �s0
r

�2=3 � �

D

�1=3

(3.12)

and displays the expected Péclet number dependence Pe1=3, with Pe = �=D charac-

teristic of �ows where material lines grow asymptotically linearly in time (see Eq. (3.3)).

After the mixing time, the maximal concentration cM decreases like t�3=2, in close agree-

ment with the trend shown on Fig. 4(b).

4. Probability Density Function

If A is the total surface area of the spiral bearing a non-zero concentration level, the

Probability Density Function (PDF) of the scalar P (c) is the fraction of the total area

whose concentration lies in the interval [c; c+dc]. It is convenient to compute P (c) in the

(r; �) coordinates where � is de�ned in (3.8) so that with dX =
p
1 + (�2t2)=(�2r4) dr

and dY = s d� = s0 d�=
p
1 + (�2t2)=(�2r4), one has
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Figure 5. (a) Perspective view and (b) contour plot of the concentration pro�le given in
Eq. (4.2). The white band corresponds to an iso-concentration c=c0 = 0:6. (c) Zoom of the
end of the spiral on Fig. 1 and same construction.

P (c)dc =

ZZ
c(X;Y )2[c; c+dc]

dX dY

A
=

ZZ
c(r;�)2[c; c+dc]

s0 dr d�

A
(4.1)

The scalar spatial distribution is given in Eq. (3.10) as the di�erence of two error

functions. However, after the mixing time, that is when the spiral thickness is very thin,

this di�erence approximates the derivative of the error function, providing a Gaussian

concentration pro�le

c(�; r) = c0 erf

 
1

4
p
�(r)

!
e��

2
=2�2� (4.2)

where �(r) is given by Eq. (3.8) and ��(r) is the standard deviation of the original

pro�le c(Y ) given in Eq. (3.10)

�2 =

R
Y 2c(Y ) dYR
c(Y ) dY

= s2(t)

R
�2c(�) d�R
c(�) d�

= s2(t)
1 + 24�(r)

12
; or �2� =

1 + 24�(r)

12
(4.3)

Note that the `spiral thickness' � �rst decreases as t�1, reaches a minimum at t = ts
and re-increases as t1=2 after the mixing time, when the spiral is locally nearly parallel

to the vortex streamlines.

The shape of the iso-concentration lines c(r ; �) = c in the (r; �) plane is shown in

Fig. 5

�(r; c) = ���(r)
r

2log
h
erf
�
1=4
p
�(r)

�i
� 2log(c=c0) (4.4)

This curve is de�ned for r > r�1(c) only, that is above the smallest radius bearing the

concentration c at time t
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Figure 6. Probability Density Functions at (a) t = 5 sec, (b) t = 8 sec, (c) t = 10 sec and (d)
t = 13 sec. Solid lines correspond to the theoretical prediction given by Eq. (4.6) and dashed
lines correspond to the PDF of the spatial maxima of concentration, de�ned by Eq. (4.7).

r�1(c) =

"
16

3�2
D�2t3

s20
�
erf�1(c=c0)

��2 � 16Dt

#1=4
(4.5)

If the scalar blob was initially delimited between the radii r1 and r2, the concentration

PDF is

P (c) =
2s0
A

Z r2

max[r1;r
�

1 (c)]

����@c@�
����
�1

dr (4.6)

The concentration pro�le across the spiral, and the evolution of the maximal concen-

tration along the spiral set the global PDF.

The above relation is compared on Fig. 6 with the experimental histograms recorded

with a blob initially located between r1 = 1:65 cm and r2 = 2:1 cm. At early stages,

(Fig. 6a), as long as most of the �uid particles constitutive of the spiral have not reached

the mixing time yet, the PDF is that of a Gaussian spatial pro�le 1=c
p
log(c=cM ) with

cM = c0 displaying a characteristic [ shape.
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As soon as di�usion becomes e�ective, the PDF nucleates a cusp located at the maximal

concentration cM (r1) obtained at the inner end of the spiral. The shape of the PDF for

cM (r1) < c < cM (r2) results from the superposition of the right branches of the [ shaped

distributions parameterized by cM (r) with r1 < r < r2 (Fig. 6b,c,d) and weighted by the

probability of �nding the maximal concentration cM , namely Q(cM ). This distribution is

the fraction of the spiral length dX whose concentration is in the interval [cM ; cM +dcM]

Q(cM ) =
1

L

����dcMdX

����
�1

(4.7)

where L is the spiral length L =
R r2
r1

dX. It is de�ned in the range [cM (r1); cM (r2)]

and shown as the dotted line on Fig. 6. At short times, P (c) and Q(cM ) are very di�erent
because the low concentration levels at a small radii r and � = 0 are as numerous as

the same levels at the edges of the Gaussian transverse pro�le (� 6= 0) at a higher r.

The spatial distribution c(�) contaminates the whole distribution P (c), inducing the

characteristic [ shape. At later stages (Fig. 6d), the low levels of concentration from the

edges of the Gaussian pro�le at large radii are rare in comparison to those at the center

of the spiral and � = 0. Therefore, Q(cM ) becomes a decreasing function of c and gets

closer to P (c). In the �nal stages, when �t=r2 � 1 and for ts(r) > 1 for all r, these two

distributions are both given by

P (c) � Q(cM = c) �
�

~r4s20
D�2t3

�1=4
1

c3=2
(4.8)

where ~r stands for (1=r1 + 1=r2)
�1.

5. Conclusions and implications

In the simple displacement �eld of a two-dimensional vortex, a direct connection exists

between the microscopic equations of di�usion, and the resulting global statistics of

the mixture through the scalar concentration PDF P (c) which, therefore, appears as a
reformulation of the microscopic convection�di�usion problem.

This one-to-one connection is possible because the �ow solely results in a spatial map-

ping of the �uid particles with no interaction between the particles themselves. The

concentration of a given �uid element evolves due to molecular di�usion and not because

it interacts with a nearby element; indeed, the arms of the spiral never reconnect. This

situation would lead to a completely di�erent route for the evolution of P (c). It is, to this
respect, useful to learn that the distribution Q(cM ) tends asymptotically towards P (c),
a hidden assumption made when considering mixtures evolution by particle interaction

(Curl(1963), Pope(1985), Pumir et al. (1991), Villermaux(2002)).

The simple stirring protocol considered here also provides an exact estimation of the

scalar dissipation rate � = � d
dt
hc2i = 2Dh(rc)2i, a quantity sometimes modeled in an

ad-hoc way. Here h�i denotes a spatial integration, therefore

� = 2D

Z r2

r1

dX

s(t)

Z +1

�1

�
@c

@�

�2

d� (5.1)
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With c(�) given in Eq. (3.10) and
R +1
�1

�
@c

@�

�2

d� � 1�e�1=8�(r)p
�(r)

, one sees that as soon

as �t=r2 > 1

(
� � �

s0

p
Dt when t < ts(r) for all r

� � s0p
D�

t�5=2 when t > ts(r) for all r
(5.2)

As long as most of the �uid particles constitutive of the spiral have not reached the

mixing time (i.e. while t < ts(r) and �(r) � 1), � re�ects both the di�usive smoothing

(� 1=
p
Dt) at the edges of the concentration pro�le c(�), and the increase of the con-

centration support length (� �t). When the mixing time has been reached all along the

spiral (i.e. when t > ts(r) and �(r) > 1), the maximal concentration cM decays as t�3=2,

the pro�le thickness � re-increases by pure di�usion like t1=2 and the spiral length still

increases like �t, thus, since � � (cM=�)2��t, providing the t�5=2 time dependence in

Eq. (5.2).
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Abstract

A general theory for the Probability Density Function (PDF) of a scalar stirred in an axisymmetric time-dependent flow is de-
rived. This theory reveals singularities, discontinuities and cusps occurring as soon as the spatial gradient of the scalar concentration
vanishes somewhere in the field. These singularities are similar to the Van Hove singularities obtained in the density of vibration
modes of a crystal. This feature, ubiquitous in convection–diffusion problems, is documented experimentally for the mixing of
a dye in a Lamb–Oseen vortex. To cite this article: P. Meunier, E. Villermaux, C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Singularités de Van Hove dans les densités de probabilité d’un scalaire. Nous dérivons une théorie générale pour la Densité
de Probabilité (PDF) d’un scalaire étiré dans un champ de vitesse axisymmétrique et dépendant du temps. Cette théorie révèle
des singularités (discontinuités et cusps), qui apparaissent dès lors que le gradient spatial du scalaire s’annule en un endroit du
champ. Ces singularités sont similaires aux singularités de Van Hove obtenue pour la densité des modes de vibration d’un cristal.
Ce phénomène, omniprésent dans les problèmes de diffusion–convection, est documenté expérimentalement pour le mélange d’un
colorant dans un vortex de Lamb–Oseen. Pour citer cet article : P. Meunier, E. Villermaux, C. R. Mecanique 335 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Keywords: Computational fluid mechanics; Mixing; Singularities; PDF

Mots-clés : Mécanique des fluides numérique ; Mélange ; Singularités ; PDF

The interplay between molecular diffusion and simple deformation fields is a classical problem. It is solved in
closed form in a variety of situations such as the saddle point flow, the simple shear in two dimensions [1–3], in three
dimensions [4], and in the axisymmetric point vortex [5,6] or spreading vortex flow [7,8]. In particular, simple situa-
tions are liable of a complete description of the overall Probability Density Function (PDF) of the scalar concentration
from the Fourier equation [9].
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1631-0721/$ – see front matter © 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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Fig. 1. Visualisation of the spiral formed by a dye lamellae wrapping around a Gaussian vortex. Images are obtained at t = 5 s, t = 50 s and t = 95 s
and cover 10 × 10 cm2 for a vortex of circulation Γ = 17 cm2 s−1.

Here, we discuss the condition under which the PDF presents a singularity. The phenomenon we analyse first is
illustrated on Fig. 1. A lamellae of weakly diffusive dye (D = 10−9 m2 s−1) with initial concentration c0 and width
s0 ≈ 2 mm is deposited in the velocity field of an axisymmetric, time-dependent vortex. The azimuthal velocity profile
is Gaussian, that of a Lamb–Oseen vortex [10]

vθ (r, t) = Γ

2πr

[
1 − exp

( −r2

a2
0 + 4νt

)]
(1)

with a circulation Γ = 17 cm2 s−1 and initial core size a0 = 1.3 cm. The lamellae first rolls-up around the vortex
(Fig. 1(a)), stretches and, conversely, gets thinner in its transverse direction. Diffusion is hasten by this stretching
motion [9] and indeed, Fig. 1(b) shows that the dye concentration is smaller where the elongation is higher, i.e. at
intermediate radii. Close to the vortex center in solid body rotation, and far from the vortex center where the velocity
magnitude is small and so is the stretching rate, the dye still bears a concentration close to the initial one. The process
goes on until at late stages (Fig. 1(c)), the dye has vanished in the diluting medium.

Compared to our first contribution on the topic [9], the set-up has been modified to allow the study of the late
stages. Previously, the vortex would experience an axial destabilization 15 seconds after its formation due to the end
effects. Here, the fluid is linearly stratified, stabilizing the vortex for 2 to 3 minutes. The dye is now injected by
slowly translating a thin iron wire coated with fluoresceine, forming a vertical sheet of dye aligned with the vortex
axis. A horizontal laser sheet allows the visualisation of a field cross-section, which is imaged from below (Fig. 1)
using a Kodak 8 bits 20482 pixels CCD array providing a 12 pixels/mm resolution. While our theory was limited to
a stationary point vortex vθ = Γ/2πr , we extend it here to the general case of a time-dependent axisymmetric flow
as in Eq. (1). Computing the stretching of a length element dr and using incompressibility, the distance between two
material points in the direction perpendicular to the lamellae (striation thickness) is

s(r, t) = s0

[
1 +

(
r

t∫
0

dt
∂(vθ/r)

∂r

)2]−1/2

where s0 is the initial lamellae thickness. In a frame of reference (O,x,y) tangent to the lamellae with y pointing
outwards, the convection–diffusion equation for the dye concentration c amounts to a pure diffusion equation ∂c/∂τ =
∂2c/∂ξ2, when the transverse coordinate y has been rescaled by the current striation thickness (ξ = y/s(t)) and time t

has been rescaled by the current diffusion time (dτ = D dt/s2). The dimensionless time τ is

τ(r, t) = Dt

s2
0

+ Dr2

s2
0

t∫ ( t ′∫
∂(vθ/r)

∂r
dt ′′

)2

dt ′ (2)
0 0
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At late stages, the dye concentration has a Gaussian profile in the transverse direction, with a maximum concentration
cM(r, t) = c0 erf(1/4

√
τ ) depending on τ only

c(r, ξ, t) ≈ c0 erf

(
1

4
√

τ(r)

)
exp

( −6 ξ2

1 + 24τ(r)

)
(3)

The PDF of such a spatial profile is easily obtained by integration over r in the range where the maximum concentra-
tion cM(r) is larger than a given concentration level c:

P(c) = 2s0

∫
cM(r)>c

|∂c/∂ξ |−1 dr/A

where A is a normalising constant equal to the surface area on which the PDF is calculated. Expressing ∂c/∂ξ =
−12ξc/(1 + 24τ), and inverting the function c(ξ), we find the general solution

P(c) = 2s0

cA

∫
max

(
0,

τ (r) + 1/24

log[erf(1/4
√

τ(r) )] − log[c/c0]
)1/2

dr (4)

The function ‘max(0, .)’ stands for the integrand to vanish when the maximum concentration cM(r) is smaller than c;
this allows the integration to be performed on the entire lamellae length at any time.

Defining the curvilinear abscissa σ along the lamellae (Fig. 1), this formula is extended to any two-dimensional
flow provided the stretching rate γ (σ, t) = −[ds(σ )/dt]/s(σ ) of all the lamellae elements is known at any time along
their Lagrangian trajectory. The integral is computed over σ instead of r for axisymmetric flows, giving

τ(σ, t) = D

s2
0

t∫
0

exp

(
2

t ′∫
0

γ (σ, t ′′)dt ′′
)

dt ′ (5)

Prediction (4) is plotted in Fig. 2 and shows good agreement with the measured distribution. The general solu-
tion (4) can be further simplified when τ(r) is rapidly varying with r . By a change of variable u = cM(r)/c, the
integral is modified into

∫ ∞
1 c du

√
τ + 1/24/

√
log(u) ∂cM/∂r . Since this function diverges for u = 1, the other terms

can be replaced by their values in u = 1, which corresponds to cM(r) = c, giving

P(c) ≈
√

τ + 1/24

∂cM/∂r
(6)

a result easily obtained by retaining the maximum of the concentration at each radius only in computing the PDF, with
a weight equal to the transverse size of the Gaussian profile

√
τ + 1/24, giving P(cM)dcM = √

τ + 1/24 dr . This
ansatz, also plotted in Fig. 2, reproduces the shape of the PDF correctly, and is off by a factor 2 in amplitude. This

Fig. 2. (a) Probability density function of the concentration c and (b) concentration field at t = 60 s. The solid line corresponds to the full model (4)
and the dashed line to the approximation (6) using the maximal concentration.
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discrepancy is a normalization artifact due to the fact that the PDF of the maximal concentration in Eq. (6) does not
represent levels smaller than the minimum of cM(r). This PDF is thus restricted to c > 0.09c0, where the minimum of
the maximal concentration over the dye lamellae is at that instant of time. This approximation is thus all the more valid
that the lamellae is deposited initially far from the vortex center, in a region where τ(r) is systematically decreasing
with r . There, this ansatz moreover predicts that P(c) ∼ t−3/4c−3/2, asymptotically [9].

These predictions seem to be good enough when τ(r) and thus cM(r) are monotonic functions of the radius.
However, both predictions reveal a singularity when τ(r) has an extremum, since formulas (4) and (6) diverge when
∂cM/∂r vanishes. We now focus on these critical points.

Fig. 2 shows that the theoretical PDF presents a singularity at c∗/c0 = 0.09. Before commenting on the experimen-
tal distribution, let us first recognize that such a phenomenon will obviously appear as soon as the gradient of the scalar
∂c/∂r vanishes somewhere in the concentration field. This was already noted by Van Hove [11] for the density of the
elastic vibration frequencies of a crystal (density of modes). Depending on the shape of the dispersion relation ω(k)

in the crystal, the density of modes D(ω) has a singularity where the group velocity ∂ω/∂k vanishes. We recall here
the different types of singularities, corresponding in our case to the different topologies of the concentration profile
where these events occur. Let us examine first concentration fields in two dimensions:

(i) First, consider a lamellae whose concentration profile presents a 2D saddle point: locally, the scalar concentration
is equivalent to c(x, y) = c∗ + αx2 − βy2 with α and β positive. This case is shown schematically on Fig. 3(a)
and can be obtained if the stretching is maximum somewhere along the lamellae. For c < c∗ the PDF is computed

by integrating on a square surface of size (R/
√

α,R/
√

β ): P(c) = 4
∫ R/

√
α

0 |∂c/∂y|−1 dx, and by expressing y

as a function of c and x: P(c) = 2 Arcsinh(R/
√

c∗ − c )/
√

αβ . The PDF is thus equivalent to − log(c∗ − c)

close to the critical level c∗. The same scaling can be obtained for c > c∗ and the PDF thus presents a logarithmic
singularity at c = c∗ in that case.

(ii) Second, consider the opposite case where the concentration has a local maximum on the lamellae, as can be
realized if there is a minimum of stretching along the lamellae, as shown schematically on Fig. 3(b). The scalar
concentration is locally equivalent to c(x, y) = c∗ − αx2 − βy2. The PDF is equal to zero for c > c∗ and equal
to π/

√
αβ for c < c∗. The PDF is thus discontinuous as soon as the scalar concentration profile has a maximum.

(iii) Third, the concentration profile presents a local minimum. This is not likely to happen in two dimensions since
the topology is rather that of an elongated lamellae, with a transverse concave concentration profile. However,
the PDF can be computed in this case also and is found to be discontinuous (0 for c < c∗ and π/

√
αβ for c > c∗).

The PDF of a concentration field in two-dimensions can thus present logarithmic singularities or discontinuities
at finite times i.e. as soon as the concentration profiles are affected by diffusion. One understands now why this
divergence is rendered on the experimental distribution (Fig. 2) as a weak cusp only. This is primarily due to the finite
size resolution of the digital images from which the concentration field is extracted. The logarithmic singularity comes
from a very restricted area around a single point, the one with c = c∗. The second reason comes from the finite binning
of the concentration levels, which enlarges and smooths the singularity. However, this singularity, which comes from

Fig. 3. Schematic of the singularities occurring in the scalar PDF of a 2D flow. (Top) Pseudo-color plot of the scalar distribution c(x, y). (Bottom)

The PDF is computed using P(c) = 4
∫ R/

√
α

0 |∂c/∂y|−1
y0(x)

dx, with y0(x) =
√

c∗ − c + αx2/
√

β for (a) and y0(x) =
√

c∗ − c − αx2/
√

β for (b).
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Fig. 4. Schematic of the singularities occurring in the scalar PDF of a 3D flow. (Left) Pseudo-color plot of the scalar distribution at the center of

the 3D sheet. (Right) The PDF is calculated using P(c) = 8
∫ R/

√
α

0

∫ R/
√

β
0 |∂c/∂z|−1

z0(x,y)
dx dy, with z0(x, y) defined such that c(x, y, z0) = c.

a maximum of the stretching along the spiral does exist (as clearly seen on Fig. 1(b)) and would be all the more
resolved that the uncertainty in the definition of the concentrations, and the spatial resolution are sharp enough.

Consider now three-dimensional flows, where the scalar is usually found in the form of sheets as a result of various
turbulent or chaotic motions [12–14]. These are shown schematically in Fig. 4 lying in the (x, y) plane. A singularity
in the corresponding concentration PDF may again appear when the concentration gradient ∂c/∂r vanishes. There
are thus four different cases depending on whether the concentration profile has a maximum or a minimum in each
direction:

(i) The first case corresponds to a concentration profile with a maximum of concentration: it is locally equivalent to
c(x, y, z) = c∗ − αx2 − βy2 − γ z2 (with α, β and γ positive). This can be obtained if the stretching has a local
minimum (see Fig. 4(a)). The PDF, computed on a volume of radius R is equal to π

√
c∗ − c/

√
αβγ for c < c∗

and vanishes for c > c∗. The PDF presents a cusp with an infinite (negative) slope for c < c∗, as indicated on
Fig. 4(a).

(ii) The second case corresponds to a concentration profile locally equivalent to c(x, y, z) = c∗ + αx2 − βy2 − γ z2,
which is obtained if the stretching of the sheet is maximum along y and minimum along x (see Fig. 4(b)). The
PDF is equal to π(

√
γR − √

c − c∗ )/
√

αβγ for c > c∗ and to πR/
√

αβ for c < c∗. The PDF presents a cusp
with an infinite slope for c > c∗, as indicated on Fig. 4(b).

(iii) The third case corresponds to a concentration profile locally equivalent to c(x, y, z) = c∗ + αx2 + βy2 − γ z2,
which is obtained if the stretching of the sheet has a maximum (see Fig. 4(c)). The PDF is equal to π(

√
γR −√

c∗ − c )/
√

αβγ for c < c∗ and to πR/
√

αβ for c > c∗. The PDF presents a cusp with an infinite slope for
c < c∗, as indicated on Fig. 4(c).

(iv) Finally, the fourth case would correspond to a local minimum concentration as c(x, y, z) = c∗ + αx2 + βy2 +
γ z2. It is not likely to be very frequent in 3D flows where the scalar has rather the topology of a sheet with
a transverse concave concentration profile. However, the PDF can be calculated in that case too and is equal to
π

√
c − c∗/

√
αβγ for c > c∗ and vanishes for c < c∗. The PDF again presents a cusp with an infinite slope for

c > c∗.

As in two dimensions and for the same reason, the PDF of a concentration field in three-dimensions can thus
present a cusp with an infinite slope each time the gradient of the scalar vanishes. This algebraic divergence is weaker
than the logarithmic one in two dimensions.

The singularities are prominent in simple fields, as the one generated by a Gaussian vortex in the present experi-
ment, where the concentration gradient vanishes at one location in the field only. In a complex flow stirred randomly,
the number of these singularities should increase with time as the scalar field is distorted by the underlying motion.
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Indeed, the more complex the spatial scalar distribution, the more likely it will contain saddle points and maxima.
However, these singularities will occur at an increasing number of different critical concentration levels c∗, at an in-
creasing number of spatial locations in the flow [15]. The scalar PDF, initially presenting one, then two, then a large
collection of singular cusps will progressively built-up in a continuous distribution, made of a continuous spectrum of
singularities. Being rooted in the local topology of the field, these singularities are, as noted above, robust and may be
found in 3D flows as well.
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We introduce a new numerical method for the study of scalar mixing in 2D advection
fields. The position of an advected material strip is computed kinematically, and the
associated convection-diffusion problem is solved using the computed local stretching
rate along the strip, assuming that the diffusing strip thickness is smaller than its local
radius of curvature. This widely legitimate assumption reduces the numerical problem to
the computation of a single variable along the strip, thus making the method extremely
fast and applicable to any Péclet number. The method is then used to document the
mixing properties of a chaotic Sine Flow, for which we relate the global quantities
(spectra, concentration PDFs, increments) to the distributed stretching of the strip
convoluted by the flow, possibly overlapping with itself. The numerical results indicate
that the PDF of the strip elongation is log-normal, a signature of random multiplicative
processes. This property leads to exact analytical predictions for the spectrum of the field
and for the PDF of the scalar concentration of a solitary strip. The present simulations
offer a unique way of discovering the interaction rule building complex mixtures which
are made of a random superposition of overlapping strips leading to concentration PDFs
stable by convolution.

1. Introduction
Fluid mechanics has for a long time relied on observations, experiments, data collection

rationalized by first principles theories or ad-hoc models and correlations. The output
was a corpus of formulas, abacus and charts made available to the engineer, meteorol-
ogist, physicist etc... for helping him to solve practical problems. Originally motivated
by weather forecasting issues, and since the basic equation describing fluids were known,
the idea of re-creating natural phenomena by artificial means using automatic calcula-
tions arose, probably first formalized in this form by Lewis Fry Richardson (Richardson
(1922)). Since then, the numerical simulation of fluid flows has undergone a dramatic
growth. And the methods are continuously improving to make the computations faster
and more faithful to reality.

As for scalar mixing, namely the equalization of a dye, or impurity in a prescribed
flow field, the existing methods can be roughly grouped into two main categories:

Lagrangian methods follow the position xi of passive tracers in the flow by integrating
the equation of motion

dxi

dt
= v(xi, t) (1.1)

in a velocity field v(xi, t) given a-priori. This method is useful to study trajectories,

† Also at: Institut Universitaire de France
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the flow kinematics and stirring properties; it is widely used in the context of chaos,
maps and ergodic theory for instance (e.g. Jones (1994); Phelps & Tucker (2006); Stur-
man et al. (2006); Robinson et al. (2008)). It does not, however, incorporate explicitly
diffusion effects, those which are nevertheless ultimately responsible for mixing.

Eulerian methods on the other hand deal with the markers concentration field c (the
number density of the markers coarse-grained on a grid) by solving a partial differential
equation, namely the diffusion-advection equation

∂c

∂t
+ v · ∇c = D4c (1.2)

where D is the tracers diffusivity. The method provides the whole concentration field
accounting explicitly for diffusion, but needs a discretization grid of space to compute
gradients, and remains therefore limited to smooth concentration fields with not too
sharp gradients for reasonable computation times and cost (Sukhatme & Pierrehumbert
(2002); Fereday & Haynes (2004); Perugini et al. (2004); Shankar & Kidambi (2009)).

Many other specific methods exist, particularly for turbulent flows, with possibly
an admixture of models to represent small unsolved sub-grid scales, and/or additional
effects such as buoyancy, chemical reactions, heat release etc... (see e.g. Yeung (2002);
Fox (2004)).

The Diffusive Strip Method we introduce here is an extension of ideas developed
to handle scalar diffusion on a moving substrate. The method amount to reduce the
full convection–diffusion problem in (1.2) to a simpler, analytically tractable diffusion
equation in suitably chosen coordinates as

∂c

∂τ
=

∂2c

∂ñ2
(1.3)

where τ and ñ are functions of space, time, scalar diffusivity and of the structure of
the velocity field. The method for going from equation (1.2) to equation (1.3) and find
closed form, nearly exact solutions has been used in the context of heat transfer (Lev-
èque (1928)), turbulence (Batchelor (1959); Villermaux & Duplat (2003)), combustion
(Marble & Broadwell (1977); Marble (1988)), engineering and process industry (Mohr
et al. (1957), Ranz (1979), Villermaux & Rehab (2000); Meunier & Villermaux (2003)),
geophysics (Rhines & Young (1983), Allègre & Turcotte (1986)), chaos (Ottino (1989),
Beigie et al. (1991)), physics (Moffatt (1983); Meunier & Villermaux (2007)) or mathe-
matics (Fannjiang et al. (2004)).

In all of these works, the method has been successfully used for computing mixing
times and length scales. However, the method can potentially provide more since it gives
access to the evolution of the whole concentration field, with a direct, nearly exact link
with the initial Fourier equation (1.2). For instance, in the simple case of a strip wrapping
around a vortex (Meunier & Villermaux (2003, 2007)), the position and the stretching
rate of the strip are known explicitly from the velocity field in a straightforward manner,
which allows to derive the whole concentration field analytically, at any time. Building
on this elementary step, we generalize here the method to a-priori any velocity field, as
complicated as it may be. We first present the method, its numerical implementation
and validation in section 2, and then apply it to study the mixing properties (internal
structure, interaction rule, concentration distribution, spectra, increments, kinetics) of a
prototype flow, namely the Sine Flow in sections 3 to 7. The details of the numerics and
the computational cost of the method are discussed in Appendix A.
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Figure 1. Schematic drawing of the evolution of a strip defined by the points xi and a
striation thickness si initially equal to s0.

2. The Diffusive Strip: a new numerical method
2.1. The method

The flow field v(x, t) is assumed to be given analytically, decoupled from the concen-
tration field itself (passive scalar), but not necessarily integrable. It is incompressible
and two-dimensional. A scalar strip is described by the position of tracers located in xi,
which are advected by solving numerically the equation of motion (1.1). The tracers are
initially separated by a length ∆x0

i , as shown in Fig. 1. We then suppose that the strip
contains a scalar c, whose concentration has initially a Gaussian transverse profile with
a striation thickness s0

c(n) = c0 e−n2/s2
0 at t = 0

Here, n is the local coordinate normal to the strip (see Fig. 1). The particular choice
of a Gaussian is not restrictive. It simply expresses that the strip is localized in space,
and has a typical width s0 initially. We wish to know how the transverse profile evolves
when the strip is advected by the flow. The evolution equation for the scalar c(x, t) is
the standard diffusion-advection equation (1.2).

In the absence of diffusion, the strip is stretched and thus experiences a contraction in
the transverse direction due to incompressibility. Its striation thickness si(t) decreases
with time and can be calculated numerically by applying the conservation of areas

si = s0∆x0
i /∆xi (2.1)

Here ∆xi = ||xi+1−xi|| is the distance between two consecutive tracers. Around a tracer
xi, the velocity field in a local frame of reference (σ, n) aligned with the strip is given
by

vσ =
σ

si

dsi

dt
+

∂vσ

∂n
n (2.2)

vn = − n

si

dsi

dt
(2.3)

It is a Taylor expansion at first order of the flow around xi. The velocity field at the
position of the tracer xi vanishes because the frame of reference is centered in xi. The
velocity gradient ∂vσ/∂σ is equal to dsi/dt by definition of the striation thickness. The
velocity gradient ∂vn/∂σ vanishes because the frame of reference is aligned with the strip
at any time. The velocity gradient ∂vn/∂n is equal to −dsi/dt due to incompressibility.
The velocity gradient ∂vσ/∂n is unknown. However, as time evolves, the lengthscale
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in the transverse direction gets much smaller than the lengthscale along the strip. The
transverse scalar gradient ∂c/∂n is thus much larger than the scalar gradient along the
strip ∂c/∂σ. We can thus neglect the term vσ∂c/∂σ in front of the term vn∂c/∂n in the
advection term of equation (1.2) (Dimotakis & Catrakis (1999)). The same reasoning
holds for the diffusion term such that the advection-diffusion equation (1.2) close to xi

becomes
∂c

∂t
+

n

si

dsi

dt

∂c

∂n
= D

∂2c

∂n2
(2.4)

This asymptotic partial differential equation has already been used in this form in the
works mentioned in the Introduction. The impact of the flow is all concentrated in
the rate of change of the striation thickness d ln si/dt. This equation holds in flows
which tend to form elongated structures (strips in two dimensions), as it is the case for
most flows in nature, may they be random, or deterministic (see the early drawings of
Welander (1955), and more recent observations, including in three dimensions, where
the flow form sheets Buch Jr & Dahm (1996); Fountain et al. (1998)). It does not
describe, however, regions of folded strips whose radius of curvature is of the order of
their thichness. We will come back to this (negligible in practice) point in section 2.5.
Equation (2.4) can be simplified by using a change of variable where the transverse
distance n is non-dimensionalized by the striation thickness ñ = n/si(t) and the time is
counted in units of the current diffusion time si(t)2/D as

dτi

dt
=

D

si(t)2
(2.5)

The dimensionless time τi for the tracer xi can be easily calculated numerically during
the integration of the equation of motion (1.1) since the striation thickness si is known
through (2.1). Using these new variables, the equation for the scalar c becomes a simple
diffusion equation

∂c

∂τ
=

∂2c

∂ñ2
(2.6)

The initial condition at τ = 0 (corresponding to t = 0) is c(ñ) = c0 exp(−ñ2). The
solution is a Gaussian profile at any time, which can be rewritten as a function of the
dimensional coordinate n as

c(n, t) =
c0√

1 + 4τi(t)
exp

(
−n2/si(t)2

1 + 4τi(t)

)
(2.7)

It is thus sufficient to compute numerically the position of the tracers xi, the striation
thickness si and the dimensionless time τi as a function of time by integrating equations
(1.1), (2.1) and (2.5) to know the transverse profile of the scalar c(n, t) across the strip,
and thus to have access to the spatial distribution of the scalar initially contained in the
strip. We will see in section 2.4 how to reconstruct numerically the scalar field c(x, t)
knowing these quantities.

The dimensionless time τ is proportional to the diffusivity D. It is thus sufficient to
make a single numerical calculation with D = 1 to get the result for any diffusivity
by multiplying τi by the desired value D at the end of the computation. The initial
striation thickness s0 can also be changed easily a posteriori since the striation thickness
si is proportional to s0 and the dimensionless time is proportional to s−2

0 .

2.2. An example
Let us take the simple example of a strip of initial thickness s0 and length L0, uniformly
stretched at a rate γ. Its current length is L(t) = L0e

γt while its striation thickness
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decreases as s0e
−γt. According to equation (2.7), the maximal concentration in the strip

(in ñ = 0) will start to decay when τ(t) becomes of order unity. From equation (2.5),
one has

τ(t) =
D

2γs2
0

(
e2γt − 1

)
(2.8)

and the condition τ(ts) = O(1) defines the mixing time ts depending on a Péclet number
Pe as

ts =
1
2γ

lnPe with Pe =
γs2

0

D
(2.9)

From this critical time, it is seen from equation (2.7) that the maximal concentration in
the strip decays exponentially as

c(0, t) ∼ e−γ(t−ts) (2.10)

and that the strip transverse size remains constant and equal to

s(ts) =

√
D

γ
= s0 Pe−1/2 (2.11)

the lengthscale equilibrating substrate compression and diffusion broadening. It is called
the Batchelor scale (Batchelor (1959)).

2.3. Strip refinement
The strip diffusion method is based on the property that the strip will be stretched by
the flow and thus becomes ever thinner and elongated. The main advantage is that it
allows to neglect diffusion along the strip since concentration gradients in that direction
essentially vanish. However, a direct consequence is that the distance between two con-
secutive tracers increases with time. We will see below that the total length of the strip
increases linearly in time for the case of a vortex (section 2.6) and exponentially in time
for the Sine flow (section 3). It is thus necessary to refine the strip such that it is always
well represented geometrically. This refinement was implemented every ten time steps,
and was thus very weakly time consuming.

The first idea would be to increase the number of points at each refinement such that
the distance between two tracers ||xi+1 − xi|| is equal to a constant, say ∆l. However,
disordered flows bend the strip and create cusps with a very high curvature, as can be
seen in Fig. 2 for the Sine flow. The refinement must then be denser in the regions with
high curvatures. A good criterion is to refine the strip such that the distance between
two consecutive points is equal to:

||xi+1 − xi|| =
∆l

1 + ακ
(2.12)

where κ is the curvature of the strip and ∆l and α are numerical constants. ∆l corre-
sponds to the distance between two tracers in the regions with low curvature. α governs
the number of tracers in the regions with high curvature: the algorithm adds a number
of points equal πα/∆l if the cusps makes a 180◦ turn. This refinement is illustrated
on Fig. 2, where the distance between two consecutive points is much smaller at the
cusp than in the other regions with low curvatures. The numerical method to do so is
presented in appendix B.

This refinement has shown to be very efficient, even in the case of the Sine flow,
which streches the strip exponentially in time and has thus a strong sensitivity to initial
conditions. The main disadvantage is that the size of the variables (xi, si, τi) increases
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Figure 2. Example of the position of the strip in a disordered flow (Sine flow), showing the
appearance of cusps along the strip. A zoom of a cusp shows that the distribution of points
along the strips is denser at the cusp, i.e. when the curvature increases. The numerical constants
defined by (2.12) are: ∆l = 0.01 and α = 10∆l/π.

with time and the algorithm gets slower and slower at late stages, although the algorithm
is extremely fast to compute the early stages. However, we will see in the following that
it is sufficient to reach the mixing time even for Péclet number up to 1010. This allows
to get very interesting properties of the diffusion process at these Péclet numbers, which
would otherwise be impossible using standard algorithms.

2.4. Reconstruction of the scalar field

We have shown in section 2.1 how to calculate numerically the transverse profile c(n)
of a strip of scalar given by equation (2.7) by integrating a simple equation (2.5) for
the dimensionless times τi during the integration of the motion of the tracers xi. We
wish to reconstruct the spatial distribution of scalar using this information. The easiest
method is to draw a line, with a color corresponding to the maximum of the transverse
profile. This means that each segment [xi xi+1] is plotted with a color corresponding to
c0/
√

1 + 4τi. An example is plotted in Fig. 3(a) and shows that it gives a very good
information on the position and concentration of the scalar. This method is extremely
useful for large Péclet numbers, when the strip is so thin that its thickness get smaller
than the resolution of the figure. Moreover, it is very fast and allows to draw a field of
scalar almost instantaneously. However, this technique is not suitable as soon as several
strips get so close to each other that their concentration profiles overlap.

We thus need to reconstruct the distribution of scalar on a 2D grid. This task is much
more tedious than the previous technique. It is very demanding in memory since the
grid must be as narrow as possible. And it is also very unstable at the cusps, where the
model fails. The correct treatment of the cusps is detailed in section 2.5.

The first step is to reinterpolate the strip such that the distance between two tracers
is constant and equal to ∆l. In the reconstruction process, ∆l was chosen equal to the
mean thickness of the strip which is easily calculated numerically as 〈si

√
1 + 4τi〉, with

si the striation thickness. Once the tracers are equally spaced, the distribution of scalar
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(a) (b)

Figure 3. Examples of the distribution of scalar obtained by plotting a line (a) and by recon-
structing the scalar on a grid using Eq. (2.13). The distance ∆l between two tracers during the
reconstruction is equal to 0.0065 and the mesh size is equal to 0.001. The flow is a Sine flow at
t = 4 and Pe = 105 and initial thickness of the strip is s0 = 0.05.

can be reconstructed by adding small Gaussian ellipses centered on each tracer

c(x) =
∑

i

c0/1.7726√
1 + 4τi

exp
{
− [(x− xi) · σ̂i]2

∆l2
− [(x− xi) · n̂i]2

s2
i (1 + 4τi)

}
(2.13)

Here, σ̂i and n̂i are the unit vectors tangent and normal to the strip. The ellipses have a
major axis oriented along the strip, with a parameter of the Gaussian profile equal to ∆l.
Their minor axis is normal to the strip with a parameter si

√
1 + 4τi as prescribed by the

model. The constant 1.7726 is due to the overlap of the ellipses: since they are separated
by ∆l and have a Gaussian profile along the strip with a parameter ∆l, the maximal
concentration is overestimated by a factor

∑j=+∞
j=−∞ e−j2

= 1.7726. It can be noted that
it is easier numerically to center the ellipses around the middle point of [xi xi+1] since
the unit vectors σ̂i and n̂i are then easier to calculate.

An example of such a reconstruction is plotted in Fig. 3(b). The picture is similar
to the one of Fig. 3(a). But here, the strip has a Gaussian transverse profile with the
correct thickness. The overlap of the ellipses along the strip is not visible although they
are separated by 5 times the mesh size. Different parts of the strip can mix together, for
example at x = (−0.55, 0.15), which shows that the model is still valid in the case of
strip overlap, or aggregation (see section 6.3 for a precise definition of this notion).

The strip is well defined in the regions with low curvatures. Its thickness is usually
small when its concentration is small. This is consistent with the diffusion process since
it corresponds to high stretching rates. The model thus describes well the diffusion of
the strip although its calculation was not implemented on a 2D grid but only modeled
assuming that the strip is thin. This assumption fails when the radius of curvature gets
of the order of the thickness of the strip, i.e. at the cusps. These regions are treated
separately in the next section.

2.5. Post-treatment of cusps
In regions with high curvature, the model fails because the thickness becomes of the
order of the radius of curvature. There, the diffusion problem is no more essentially
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Figure 4. Regularisation of the scalar field around a cusp during the reconstruction process.

one dimensional, contrary to the assumption leading to equation (2.4). This poses two
numerical problems in the reconstruction of the distribution of scalar. The first one arises
even in the absence of diffusion, and comes from the superposition of the strip from both
sides of the cusp. As shown in Fig. 4(a), if the distance d between these two sides of
the cusp is smaller than twice the thickness si of the strip, there will be some overlap
of these two parts of the strip and the concentration c of the scalar can be twice higher
than the initial concentration c0, which is not physical. The best way to prevent these
overlaps is to reduce the thickness of the strip by reducing the initial thickness s0. In our
simulation, an initial thickness s0 = 0.05 would lead to only 0.1% of the tracers where
the distance d is smaller than twice si. For these points, the algorithm modifies the
initial thickness only locally by decreasing si to d/2 and also changing the dimensionless
time τi accordingly: it is multiplied by a factor 4s2

i /d2 (since τ is proportional to s−2
0 ).

It is true that this procedure does not conserve the total quantity of scalar, but the loss
was usually less than 0.1 %. This procedure does not modify at all the PDF of scalar or
the spectra since these problems are localized in very small areas and do not contribute
appreciably to the global quantities. This treatment is only necessary to prevent small
dots of high concentration to appear in the spatial concentration distribution.

A second problem arises in the presence of diffusion. Indeed, for rather large diffusivi-
ties (Pe < 105), we observed some lines of high concentration of scalar centered around
the cusps. They are represented schematically on Fig. 4(a) by the two gray ellipses cen-
tered around the two tracers of the cusp. Such a numerical problem arises when the
thickness of the strip, equal to si

√
1 + 4τi, is larger than the distance ∆l between two

consecutive tracers. We observed this phenomenon at only a few points of the scalar
field (usually less than 10 cusps in the simulation of the Sine Flow in section 3), but
these ellipses would contaminate the whole field. We thus treated them by replacing the
ellipses by circles with the same area, such that the total quantity of scalar is conserved.
This procedure was very efficient to solve this numerical problem, although it is not a
clean treatment of theses cusps. However, as was said previously, these problems arise in
very small areas and do not contribute appreciably to the global quantities such as PDF
and spectra. It is thus sufficient to use these basic procedures. To properly treat these
cusps, it might be possible to modify the model such that the diffusion is calculated
numerically on a 2D mesh in the neighborhood of the cusp.



Diffusive Strip Method 9

(a) (b)

(c) (d)

Figure 5. Spiral of scalar created by the roll-up of a strip around a point vortex with a
circulation Γ = 14.2 cm2/s at t = 10s. The diffusivity is equal to (a) D = 10−8cm2/s, (b)
D = 10−6cm2/s, (c) D = 10−4cm2/s and (d) D = 10−2cm2/s. The scalar is injected initially
along the x-axis with 0.6cm< x < 1.8cm. The initial thickness of the strip is s0 = 0.11cm. In
(a), the strip is plotted as a line, whereas in (b,c,d), it is reconstructed on a 2D mesh.

2.6. Validation: Flow in a point vortex

In this section, meant to validate our method, we present the results of the strip diffusion
method for the case of a point vortex with circulation Γ = 14.2 cm2/s located in x = 0,
for which an experiment exists (Meunier & Villermaux (2003)). The scalar is injected
initially along the x-axis in order to mimic the experiment. The initial thickness s0 =
0.11 cm is chosen twice smaller than the experimental one (s0 = 0.22 cm) such that the
final theoretical profiles are equal. Indeed, in the original study of Meunier & Villermaux
(2003), s0 is the width of a square profile, whereas here, s0 is the parameter of a Gaussian
profile. Initially, the scalar is injected along the x-axis between x = 0.6 cm and x = 1.8
cm.

Figure 5 shows the distribution of scalar at t = 10 s for various diffusivities. As ob-
served experimentally, the strip rolls up around the vortex center and creates a spiral.
For a very small diffusivity (D = 10−8 cm2/s), the scalar has not yet reached the mixing
time and the maximal concentration across the strip is equal to the initial concentration
c0 almost everywhere (Fig. 5a). For a slightly larger diffusivity (D = 10−6cm2/s), the



10 P. Meunier and E. Villermaux

scalar has started to diffuse and its maximal concentration has decreased at some loca-
tions close to the vortex center. Since the stretching is larger at the center than at the
periphery, the diffusion is faster and the concentration smaller there. This is very similar
to the experimental result of Meunier & Villermaux (2003) except that here the strip
contains more turns because the scalar is located closer to the vortex center. For even
larger diffusivities (D = 10−4cm2/s), the scalar has a much lower concentration (note the
change in the colorbar) and the strip starts to mix with itself at the center of the vortex.
At a very high diffusivity (D = 10−2cm2/s), the aggregation of the strip is generalized
to the whole area, which creates a ring of scalar. The scalar has a higher concentration
close the center, since it is spread on an area smaller that at the periphery (proportional
to the radius). It can be noted that the numerical simulation describes well (at least
qualitatively at this stage) the aggregation of the strip. However, we expect the ring to
become a single circular patch at even larger diffusivities (without a hole at the center),
but this case cannot be described by the model since it corresponds to a thickness of the
strip of the order of the curvature radius.

To compare the numerical results quantitatively with the experiment, we have plotted
the maximal concentration as a function of the radius in Fig. 6. The numerical values
(plotted as small black symbols) are in excellent agreement with the experimental and
theoretical data taken from Fig. 4(a) of Meunier & Villermaux (2003). However, for
this figure, the maximal concentration has been taken equal to c0erf(1/

√
4τ) instead of

c0/
√

1 + 4τ as in equation (2.7) since it is the solution for a square initial transverse
profile with a width 2s0. The numerical values are slightly smaller than the theory at
large r and slightly larger for small r. But this error remains smaller than 3% and might
be due to numerical errors during the advection of the tracers xi. We now use this
method to study a more complex flow, where no analytical solution is available.

3. Mixing in a Sine flow
In the rest of the paper, we will analyze a case study of mixing at high Péclet number,

taking advantage of the new numerical technique of strip diffusion. The aim is to link the
local properties of stretching enhanced diffusion of a strip well captured by the numer-
ical technique, to the global properties of the mixture such as spectra and Probability
Distribution Functions (PDF) for a prototype chaotic flow to understand, using this new
tool, how the complex mixture at a given stage of its development has been built from
elementary objects (the stretched strips) and an appropriate interaction rule.

3.1. Definition of the Sine flow
We have chosen to analyse the case of a Sine flow, since it has been commonly studied
using several numerical methods (tracking of tracers and spectral methods). Moreover,
it is well known for its chaotic mixing behavior at high enough velocities. The Sine flow
(or random wave flow, Zeldovich (1982)) consists of alternating vertical and horizontal
sinusoidal shear flows. The randomness of the flow is introduced via phases χx and χy,
which are chosen randomly at each period, as introduced by Jean-Luc THIFFEAULT &
GIBBON (2004). The flow is defined as:

(vx, vy) = V0 [0, sin(2πx + χx
m)] for m < t < m + 1/2 (3.1)

(vx, vy) = V0 [sin(2πy + χy
m), 0] for m + 1/2 < t < m + 1 (3.2)

where the integer m is the period number, t is time and the amplitude of the flow V0 is
chosen equal to 1/

√
2 in order to be in a chaotic regime (see Alvarez et al. 1998). The

phases are chosen randomly between 0 and 2π. Their values are given in table 1. By



Diffusive Strip Method 11

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

                     r/a0

   
   

   
   

  c
/c

0

Figure 6. Maximal concentration of the scalar along the strip as a function of the radius at
t = 5s (circles), t = 10s (squares) and t = 20s (triangles). Experimental data (open symbols) and
theoretical predictions (lines) are taken from Meunier & Villermaux (2003). Numerical results
(black filled symbols) are obtained with a diffusivity (D = 5 10−6cm2/s). The experimental
vortex core size a0 is equal to 0.3cm.

m 0 1 2 3 4 5 6
χx 1.2154 4.2865 1.9023 3.4034 0.9480 4.3850 2.3774
χy 3.1199 5.6534 5.1624 4.0521 5.1395 4.1483 2.1487

Table 1. Phases of the Sine flow in the x and y direction at each period m.

‘chaotic’, we mean that the flow will not leave place for segregated, unmixed islands at
long times and that, although the flow will generate a non-trivial concentration distri-
bution P (c) (defined in section 6), that distribution will ultimately converge toward a
Dirac Delta centered around the average concentration 〈c〉

P (c) −−−→
t→∞

δ(c− 〈c〉) (3.3)

that is, in the language of Ergodic Theory, toward a measure of uniform probability over
the whole domain. In that sense, the flow in equation (3.2) is ‘mixing’ (Arnold & Avez
(1967)).

A strip of scalar is introduced at t = 0 along the x-axis between x = −0.5 and
x = +0.5. The initial transverse profile is supposed to be Gaussian (c(y) = c0e−y2/s2

0)
with an initial thickness equal to s0 = 0.05. The evolution of the scalar is governed by
the advection-diffusion equation (1.2) where the diffusivity D defines the Péclet number
as

Pe = 1/D, (3.4)
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meaning that the lengthscale is chosen equal to the wavelength (equal to 1), and the
typical velocity is chosen equal to V0

√
2.

3.2. Temporal evolution
Figure 7 shows the distributions of scalar at various times for a moderate Péclet number
(Pe = 105). The strip, initially straight, is bent and stretched by the flow. After one
period, its thickness has decreased due to the compression in its transverse direction.
However, the maximal concentration is still equal to the initial concentration c0 since
the mixing time has not yet been reached. After two periods, the scalar has started to
diffuse, leading to a grey color of the strip. This diffusion is a proof that the mixing time
has been reached, i.e. that the dimensionless time τ is of the order of one or larger. The
strip is thinner than after one period, and several parts of the strip get closer to each
other. However, there is no reconnection of the strip with itself.

After 4 periods (Fig. 7c), the strip has a very disordered shape. It is bent in many
places and contains a few cusps. Different parts of the strip are so close that they
have mixed because of diffusion. It is almost invisible except at the locations where the
different parts separate, as can be seen at the upper left loop (x = −0.7, y = 1.2). The
concentration of the scalar becomes smaller and smaller, and there is no remaining parts
still bearing the initial concentration c0. The thickness of the strip remains blocked at
the Batchelor scale

√
D/γ (see equation (2.11)), γ being the stretching rate of the strip,

as soon as the diffusion has started.
After 7 periods (Fig. 7d), the strip has been bent and reconnected many times. It

spreads on a large domain and very well shows the chaotic behavior of the flow. The
concentration is very small, such that the scalar is almost completely diluted in the
surrounding medium.

3.3. Influence of the Péclet number
The main advantage of the strip diffusion method is that the diffusivity can be varied
a posteriori by simply tuning the dimensionless time τ accordingly. It is thus extremely
easy to plot the distributions of scalar at any diffusivity (as high as wished in particular).
Two examples are given in Fig. 8 for Pe = 107 and Pe = 1010. Such numerical simu-
lations are impossible to do using a spectral code, since the number of points needed
would be too high. Indeed, it was impossible to reconstruct the scalar field on a 2D
mesh, and the strip has only been plotted as a line in Fig. 8. However, it is possible to
reconstruct the scalar field in 2D on a smaller area. This is shown in the insets of Fig.
8 and proves that the results are correct although it is impossible to visualize them on
the whole field.

At a Péclet number equal to 107, the strip has reached the mixing time in some places,
but some parts of the strip seem to have a concentration equal to c0. The inset shows
that the strip has reconnected with itself, leading to a rather blurry picture. On the
contrary, for Pe = 1010, the different parts of the strip remain separate, even at the
upper left corner of the inset, where two lines are extremely close, but also extremely
thin. This is in agreement with the fact that the mixing time has not been reached there,
which prevents the reconnection of the strip (due to the flow incompressibility). At such
a high Péclet number, the mixing time has not been reached almost everywhere, and the
concentration is equal to c0 almost everywhere. It is clear on this figure that the spatial
distribution of scalar is very complex and contains a lot of information, which is why the
numerical simulation gets very slow at these late stages. We are using in the following
these informations to analyse the mixing properties of the flow and relate them to the
stretching of the strip.
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(a) (b)

(c) (d)

Figure 7. Temporal evolution of a strip of scalar in a Sine flow for a Péclet number equal to
105. The fields of the scalar are given at (a) t = 1, (b) t = 2, (c) t = 4 and (d) t = 7.

4. A simple model of stretching
4.1. Temporal evolution of the strip length

It is well known that in a chaotic stirring flow sustaining a series of stretchings an fold-
ings, a strip of scalar is stretched exponentially in time; this is the paradigm of the
Baker Transform (Ottino (1989)). More generally, a succesion of random motion dis-
tributed in intensity and direction results in a global exponential lengthening of material
lines (Kraichnan (1974); Duplat & Villermaux (2000)). This is very well confirmed in
the present Sine flow, where the total length L of the strip increases as eγt, as shown
in Fig. 9. The numerical value of the mean stretching rate can be obtained accurately
γ = 0.91± 2%. This value will be the only constant needed for the theory developed in
the following.
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Figure 8. Distribution of a scalar in a Sine flow at t = 7 for (a) Pe = 107 and (b) Pe = 1010.
Due to a lack of printing resolution, the thickness of the strip has not been respected: the strip
has been plotteed as a line. However, the image has been zoomed 200 times in the inset to show
the correct thickness of the strips.
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Figure 9. Left: Total length of the strip as a function of time. The solid line corresponds to an
exponential growth with a mean stretching rate γ = 0.91. Right: PDF of elongation of the strip
for t = 2 (5, dotted line), t = 4 (?, dashed line) and t = 7 (◦, solid line). Lines correspond to
the theoretical prediction of Eq. (4.7).
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4.2. PDF of stretching factors

The total length of the strip is a global characteristic which does not give any information
about the variation of the elongation ρ along the strip, which are distributed according
to a well defined Probability Distribution Function (PDF) P (ρ). It is defined as the
probability to find a point on the final strip, where the strip has been stretched by a
factor ρ = ∆x/∆x0. Since the final refinement is done such that the tracers are equally
spaced along the strip, P (ρ) is easily calculated as the number of tracers for which
∆x/∆x0 is in the interval [ρ, ρ + dρ] divided by dρ. These PDF are plotted for t = 2,
4 and 7 in Fig. 9. The numerical results seem to be parabolic in this logarithmic scale,
which means that P (ρ) is a Gaussian function of log(ρ). It is clear that the parabola get
wider as time increases. Moreover, log(ρM ) increases linearly in time, where ρM is the
most probable stretching.

4.3. Multistep stretching

The above result and shape of P (ρ) is readily understood. Let us split the stretching
of the strip at one point into N successive random stretching operations. We assume
that a given tracer of the strip experiences a stretching ρ1 between t = 0 and t = δt,
a stretching ρ2 between t = δt and t = 2δt... The total stretching ρ of the strip after
N operations is thus the product of the elementary stretchings: ρ =

∏
ρi. If we assume

that the stretching operations are random and independent, the stretching rate ρ has a
log-normal law in virtue of the central limit theorem. This means that the probability
Q(ρ) that a point on the initial strip is stretched by a factor ρ is given by Q(ρ) =
exp[−(log(ρ)−Nµ)2/2Nσ2]/ρσ

√
2πN . where µ and θ are the mean and the variance of

log(ρ). However, the probability P (ρ) that a point on the final strip has experienced a
stretching ρ is proportional to ρQ(ρ) because the elementary length of such an interval
has been multiplied by ρ, thus weighting the probability by a factor ρ. Since the number
N of elementary stretchings is proportional to the time t in a permanently stirred flow,
one can rewrite the probability P (ρ) as

P (ρ) = A exp
[
− (log ρ− γpt)2

4κt

]
(4.1)

where γp = Nµ/t is the most probable stretching rate, κ = Nθ/t corresponds to a
diffusion of the stretching factors, and A is a normalising constant. This result has been
derived, also assuming that the stretching is operated in multiple discrete steps by Kalda
(2000), who showed that the probability P (log ρ) is the solution of a diffusion-advection
equation

∂P

∂t
+ γp

∂P

∂ log ρ
= κ

∂2P

(∂ log ρ)2
(4.2)

The advective term γp∂P/∂(log ρ) corresponds to a constant average stretching of the
strip meaning that the average length of the the strip ρ increases with time as eγpt. The
diffusive term κ∂2P/(∂ log ρ)2 comes from the distribution of the stretching intensities in
the flow, which is progressively explored by the strip as time progresses. Indeed, a sub-
part of the strip can be stretched at a rate slower or faster than γp, and this alternatively
and randomly as time evolves. The net result is a diffusion of an initial stretching log ρ to
neighboring stretchings, with an apparent rate κ reflecting the width of the distribution
of the stretching rates.
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4.4. Link with Richardson’s dispersion
An interesting analogy can also be drawn with Richardson’s vision of pair dispersion
in random flows (Richardson (1926)). Richardson proposed that the distribution of the
distance r between pairs of particles (tracers) P (r, t) at time t is ruled by a diffusion
equation with an effective diffusion coefficient D(r) depending solely on r as

∂P (r, t)
∂t

=
1
r

∂

∂r

[
D(r) r

∂P (r, t)
∂r

]
(4.3)

in two dimensions. Equation (4.3) can also be written

∂P (r, t)
∂t

=
1
r

∂D(r)
∂r

∂P

∂ log r
+
D(r)
r2

∂2P

(∂ log r)2
(4.4)

Now, for smooth flows (also called the Batchelor régime, a régime in which the Sine flow
is likely to fall), those for which the velocity gradient |∇v| is constant and thus where
typical velocity difference |δv(r)| is expected to increase in proportion of r itself as, say,
|δv(r)| = κr, the diffusion coefficient is D(r) = |δv(r)| r = κr2. In that case, equation
(4.4) coincides formally with equation (4.2) provided

γp = 2κ (4.5)

since the probability P (r, t) to have a distance r between two particles corresponds to the
probability P (ρ, t) that a strip has been stretched by a factor ρ at time t. This result is
consistent in smooth flows where stirring is dominated by a single lengthscale and where
no small scale activity in the underlying velocity field contributes to the wrinkling of an
advected material line. This result is no more true in rough, multiscale flows (Villermaux
& Gagne (1994)). The result (4.5) above is easily generalized to any dimensions of space
d and one has (Falkovich et al. (2001))

γp = d κ (4.6)

a relationship which has the interesting consequence that the parameters describing the
stretching field of the flow (γp, κ) reduce to a single parameter†.

4.5. Conclusion
A direct consequence of the stretching model above is that the length of the strip
increases exponentially in time (since L(t) = L0

∫
ρQ(ρ, t)dρ), with a mean stretching

rate equal to γ = γp + κ. Using this relation and the link between γp and κ in equation
(4.5), one can give explicitly the constants of the model as a function of the mean
stretching rate γ, which has been determined numerically accurately. The model does
not contain any fitting parameter any more, since the normalising constant A can also
be calculated explicitly. The probability P (ρ) that a point on the final strip has been
stretched by a factor ρ is given by

P (ρ) =
e−γt√
4πγt/3

exp
[
− (log ρ− 2γt/3)2

4γt/3

]
(4.7)

This law is plotted in Fig. 9 at various times. The agreement with the numerical sim-
ulations is fair. In particular, the most probable stretching factor is correctly predicted
as a function of time, although a best fit would give a most probable stretching rate

† Jaan Kalda (Private communication, 2008) has given a straightforward way to derive (4.6)

by considering a space-filling stationary flow in a closed box for which P (r) ∼ rd and relating

it to the stationary solution P (r) ∼ rγp/κ of (4.2).
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γp = 0.7 instead of γp = 2γ/3 = 0.6 as expected from the model. The broadening of the
PDF is also fairly well predicted, although a best fit would give a diffusivity κ = 0.22
instead of κ = γ/3 = 0.3 from the model. This result suggests that the hypothesis of a
Richardson’s pair dispersion of section 4.4 (which we have not checked directly) is fairly
consistent with the data.

We now use this model to infer global quantities of the concentration field, which we
compare to the simulation.

5. Spectrum of the scalar
We analyze the energy spectra of the scalar advected by the Sine flow presented in

section 3, and relate them to known results and issues.

5.1. Construction of the spectrum
The one-dimensional energy spectrum Γ(k) of the scalar is defined (see, e.g. Batchelor
1959) as the total 2D spatial spectrum Φ(k′)/2 contained in an annulus of width dk
divided by dk

Γ(k)dk =
∫ ∫

k<||k′||<k+dk

1
2
Φ(k′)dk′ (5.1)

The spatial spectrum Φ(k) is usually defined as the Fourier transform of the auto-
correlation function of the scalar 〈c(x)c(x+r)〉x. However, it is also equal to the squared
modulus of the Fourier transform c̃(k) of the scalar, due to the properties of the auto-
correlation function

Φ(k) =
1

4π2

∫ ∫ +∞

−∞
e−ik·r〈c(x)c(x + r)〉xdr =

4π2

A
|c̃(k)|2 (5.2)

where A is the total area of the domain of the simulation. Numerically, it is easy to
compute the 2D energy spectrum Φ(k) from the FFT of the scalar distribution c(x),
which has been reconstructed on a 2D grid. The 1D spectrum is then calculated by
integration on an annulus of width dk. However, this method is very demanding in
memory since it creates a 2D matrix of the scalar, whereas the strip is defined on a 1D
vector.

An alternative way is to use the fact that the scalar distribution is defined as a sum of
ellipses with a Gaussian shape as can be seen in Eq. (2.13). Since the Fourier transform
of a Gaussian is Gaussian, one can calculate directly c̃(k) from (2.13) as a sum over the
tracers xi (using a change of variable x′ = x− xi in the integral over x):

c̃(k) =
∑

i

c0∆lsi

4π × 1.7726
e−(k·σ̃i)

2∆l2/4 e−(k·ñi)
2s2

i (1+4τi)/4 e−ik·xi (5.3)

We recall that σ̃i and ñi are the unit vectors tangent and normal to the strip, ∆l is the
distance between two tracers, si is the striation thickness and τi the dimensionless time.
Since c̃(k) is here given by an analytical expression (and not a matrix), it is very simple
to calculate the spectrum at a given wavenumber k by integrating on a circle in the 2D
wavevector coordinates

Γ(k) = k

∫ θ=2π

θ=0

|c̃(k cos θ, k sin θ)|2dθ (5.4)

In our simulations, this formula is discretized on 20 or 50 angles θ, depending on the
accuracy needed. The main advantage of this method is that it calculates the energy
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Figure 10. Energy spectrum of the scalar at t = 7 for Pe = 105. The spectrum is calculated
by FFT of the scalar spatial distribution (grey symbols) and directly by integration along the
strip using Eq.(5.3) (black solid line).

spectrum at each wave number k independently, unlike the method using a numerical
FFT of the scalar distribution. The needs in memory is thus very low and the spectra
can be calculated on as many decades as wanted. Moreover, the distribution of wave
numbers can be chosen exponential, which is very interesting for spectra in logarithmic
scale.

An example of a spectrum is plotted in Fig. 10 using the two numerical methods
described previously. The method using an FFT of the reconstructed 2D scalar field
(plotted as symbols) is particularly good at large wavenumbers, since the integration
over the annulus of width dk contains many numerical data at large k (leading to an
efficient averaging). However, this method gives very few points at low wave number,
since k is a multiple of 2π/L, where the size of the domain L cannot be taken too large.
This method can only give the spectrum over 3 decades, since the maximum size of a
2D matrix is 40962.

The method based on an analytical value of c̃(k) is very efficient at low wave number:
it gives an almost continuous description of the spectrum, due to the very dense number
of data at low k. At high wavenumber, there seem to be some numerical oscillation of the
spectrum compared to the other method. This comes from the limited number of angles
θ in the discretization of the integration over an annulus, and can be reduced by using
more angles (up to 200 angles). The agreement between the two methods is excellent,
which validates the second method. In the following, we will use this alternative method
only since it is faster and more accurate.

5.2. Spectrum of a forced scalar
Figure 11 shows the energy spectrum of a scalar in a Sine flow for three different Péclet
numbers. A new strip of scalar has been injected at each period of the Sine flow to
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Figure 11. Energy spectrum of the scalar at t = 7, in a simulation where a new strip of scalar
is injected at t = 0, 1, 2, 3, 4, 5, 6, to mimic sustained turbulence. The Péclet number is equal to
Pe = 103 (•), Pe = 105 (4) and Pe = 107 (©). The solid line corresponds to the Batchelor
spectrum (5.5) and the dashed line corresponds to the solution (5.8) proposed by Kalda (2000)
for sustained turbulence. The scale for the wavenumber is (a) logarithmic and (b) linear.

mimic forced turbulence and reach a stationary state. In this way, there is a constant
injection of energy at low wavenumber, which is transferred to high wavenumbers by a
direct cascade. This is consistent with the mechanism presented by Batchelor (1959): the
wavenumbers increase, due to the stretching of the strip, up to the scale where the scalar
is dissipated (equation (2.11)). In this picture where the scalar variance is conserved as
k increases, the spectrum of a scalar is given by

Γ(k) =
χ

γk
e−Dk2/γ (5.5)

a result which holds for smooth flows characterized by a single mean stretching rate γ
and the dissipation rate χ

χ = 2D
∫ ∞

0

k2Γ(k)dk (5.6)

This prediction is plotted in Fig. 11 as a solid line. It is in excellent agreement with
the numerical results, which present a k−1 spectrum on three decades in the so-called
‘viscous-convective’ subrange (above the Batchelor scale). This clear evidence is possible
since the Péclet number is high (up to 107). It is less clear on the simulations made at
small Péclet number (Pe = 103), where the slope k−1 is hardly visible on one decade.

At high wavenumbers, the spectrum presents a cut-off around the Batchelor wavenum-
ber

√
γ/D. However, the numerical results lie above the Batchelor spectrum (5.5) at

high wavenumber. This disagreement is even more visible when plotting the spectrum
using a linear scale for the wavenumber (Fig. 11a). The numerical results show that the
spectrum has an exponential decay e−k instead of e−k2

. This exponential behavior is
consistent with Kraichnan (1974) who generalized the result of Batchelor (1959) to the
case of a random stretching field, leading to an exponential decay of the spectrum (see
also Toussaint et al. (2000) and Yeung et al. (2002)). This is qualitatively understood
by the fact that a distribution of stretching rates γ leads to a distribution of Batchelor
scales

√
D/γ, thus broadening the spectrum at high wavenumbers in a continuous fash-
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ion, and stretching the cut-off from e−k2
to e−k. This result can be recovered in a simple

way by using the equation (4.2) for the PDF of stretching rate P (ρ), as proposed by
Kalda (2000). Indeed, in the absence of diffusion, the quantity kΓ(k) remains unchanged
during the stretching by the flow, whereas the wave-number is multiplied by the same
amount as the stretching factor ρ. The PDF of stretching rate and kΓ are thus governed
by the same differential equation (4.2). However, the presence of diffusion adds a decay-
ing term in the equation for kΓ with a decay rate equal to −2Dk2, which leads to the
following equation for kΓ

∂(kΓ)
∂t

+
2γ

3
∂(kΓ)

∂(log k)
=

γ

3
∂2(kΓ)

∂(log k)2
− 2Dk2(kΓ) (5.7)

As explained in section 4, γ is the mean stretching rate of the strip, and has been
calculated numerically very accurately for the Sine flow (γ = 0.91). The stationary
solution of this equation is given by a Hankel function of order 1 (Kalda 2000)

Γ(k) = AH
(1)
1

(
ik
√

6D/γ
)

(5.8)

where A = H
(1)
1 (i

√
6D/γ)−1. This solution scales as k−1e−k

√
6D/γ at high wavenumbers,

i.e. for k �
√

γ/D. This exponential decay corresponds to the result predicted by
Kraichnan (1974) and is now tightly linked to the distribution of stretchings itself. This
solution (5.8) is plotted in Fig. 11 as a dashed line. It is, as expected, in very good
agreement with the numerical results at small wavenumbers (since it decays as k−1 like
the Batchelor spectrum). It is also in excellent agreement at higher wavenumbers, as can
be seen in Fig. 11(b), where the scale of the wavenumber is linear.

It might be surprising that the spectrum has an exponential decay at late stages.
Indeed, the PDF of stretching factors P (ρ) becomes more and more peaked as time
evolves, since the variance 〈(log ρ− 〈log ρ〉)2〉1/2 increases slower (as

√
t) than the mean

stretching factor 〈log ρ〉 (which increases as t). The spectrum should thus tend toward
the Batchelor spectrum at late stages (with a cut-off as e−k2

). However, even if a strip
is stretched by a factor ρ over a period t, it does not mean that the stretching rate
is constant and equal to γ = (log ρ)/t. The variation of the stretching rate with time
induces a variation of the Batchelor scale

√
D/γ, which broadens the final spectrum

although the stretching factors (integrated over time) are all equal.

5.3. Spectrum of a decaying scalar
We now turn to the case of the energy spectrum of the scalar when the strip is injected
at t = 0 only, as was described in section 3. This is now a decaying field. Figure 12 shows
the spectrum of the scalar field at t = 7 for three different Péclet numbers. It is clear that
the numerical results are below the Batchelor spectrum (5.5) at low wavenumbers. This
comes from the fact that the energy present at small wavenumbers at t = 0 has moved
toward the large wavenumbers, thus creating a defect of energy at low wavenumbers
since there is no injection of energy there. The disagreement is especially visible at high
Péclet number (Pe = 107) since the spectrum is resolved on three decades in k.

For a decaying scalar, the differential equation (5.7) is still valid, but we don’t look
for a stationary solution which respects a boundary condition at k = 0. We instead look
for a decaying solution which respects an initial condition at kΓ(k, t = 0) = δ(log k),
meaning that all the energy is in the initial lengthscale (k = 1) at t = 0. Kalda (2000)
showed that the solution tends toward a Hankel function of order 0 at late stages

Γ(k) = ie−γt/3H
(1)
0

(
ik
√

6D/γ
)

(5.9)
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Figure 12. Energy spectrum of the scalar at t = 7 obtained by direct integration along the
strip. The Péclet number is equal to Pe = 103 (•), Pe = 105 (4) and Pe = 107 (©). The
solid line corresponds to the Batchelor spectrum (5.5) and the dashed line corresponds to the
solution (5.9) proposed by Kalda (2000) for decaying turbulence. The scale for the wavenumber
is (a) logarithmic and (b) linear.

This solution is plotted as a dashed line in Fig. 12 and is in fairly good agreement
with the numerical result at low wavenumbers. This solution is not a pure power law at
low wavenumbers. Figure 5.9(b) shows that the solution is in excellent agreement with
the numerical results at high wavenumbers, with an exponential decay e−k as in the
Kraichnan model, due to distributed stretching rates.

To conclude, the model for the stretching rate allows to predict the energy spectra of
the scalar through a differential equation which is directly connected to the differential
equation of the PDF of stretching factors. The solutions do not contain any fitting
parameter and are in excellent agreement with the numerical results on 4 decades in k.
The simulation clearly makes the distinction between a stationary, and a decaying scalar
field on their respective spectral signature.

6. Probability Distribution Function (PDF) of the scalar.
6.1. Two methods to calculate the PDF

The central question in scalar mixing is to provide a description of the concentration
content P (c) of the mixture. P (c)dc is defined as the normalized number of pixels
(in the simulation, otherwise, regions of space) whose concentration is in the interval
[c, c + dc]. Numerically, it can be computed by calculating the histogram of the scalar
spatial distribution c(x) and renormalize it such that

∫
P (c)dc = 1. For the same reason

than in the previous section for the spectrum, this method is tedious since it needs a
reconstruction of the scalar distribution (very demanding in memory because c is a 2D
matrix).

However, there is, as for the spectrum, an alternative way to compute the PDF P (c).
Using the fact that the strip has a Gaussian profile defined by (2.7), each segment
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Figure 13. PDF of the scalar distribution for a strip in a Sine flow at t = 7 as in Fig. 7(d). The
Péclet number is equal to Pe = 1010 (a) and Pe = 105 (b). The true PDF (◦) are computed by
doing a histogram of the spatial distribution of scalar. Solid lines correspond to approximate
PDF, computed by doing an integration of the Gaussian profile along the strip using Eq.(6.1).
Dashed lines correspond to the prediction (6.3) using the log-normal model of stretching. Dotted
line is the PDF of maximal concentration given by (6.4) for the log-normal model of stretching.

[xi xi+1] has a histogram of concentration given by

N[xi xi+1](c) =
si∆l

c

√
1 + 4τi

− log(
√

1 + 4τi c/c0)
(6.1)

where ∆l is the length of the interval [xi xi+1]. In our simulations, the set of tracers xi is
reinterpolated before computing the PDF, such that the tracers are equally spaced (see
section 2). This histogram has a well known U-shape, with a divergence as 1/c at low
concentrations and a logarithmic divergence at the maximal concentration c0/

√
1 + 4τi.

It comes from the ‘large number of pixels’ with c = 0 (far from the strip), and the ‘large
number of pixels’ close to the maximum of the Gaussian at the maximal concentration
(at the center of the strip, i.e. at n = 0). A major problem of this histogram is that it
cannot be renormalised since

∫
P (c)dc diverges because of the divergence in c = 0. This

property comes from the fact that a Gaussian profile extends on an infinite domain. It
is intrinsic to the diffusion equation, which is in fact an ill-posed problem in an infinite
domain. The consequence is that the PDF are defined with a normalising constant which
cannot be calculated analytically.

The total PDF is obtained as the sum of the histograms of each segment P (c) =
A
∑

i N[xi xi+1](c) if the different intervals do not interfere between each other (A being
a normalising constant). This is the case at large Péclet number and/or at early stages
(see section 3). However, unlike the calculation of the spectrum, this method becomes
invalid if there is some overlap between different parts of the strip, because the PDF is
a nonlinear function of the concentration c. But, it is still interesting to use this method
and to compare its result to the exact PDF, since it precisely quantifies the amount of
self-overlap of the strip.
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6.2. PDF of a solitary strip

Figure 13 shows the PDF of concentration for a strip advected by the Sine flow presented
in section 3. The PDF is plotted at t = 7, which corresponds to the scalar distribution
shown in Fig. 8. At high Péclet number (Pe = 1010), the strip has not yet reached the
mixing time so that the maximal concentration is almost everywhere equal to the initial
concentration c0. The logarithmic divergence of each interval’s histogram is located at
c = c0. The total PDF is thus a U-shaped PDF between c = 0 and c = c0. It can be
recovered easily by assuming τi � 1 in equation (6.1), leading to a PDF proportional
to 1/c

√
− log(c/c0) (see also Meunier & Villermaux (2003)). There is a good agreement

between the two methods used to calculate the PDF since there is no aggregation at this
high Péclet number (as visible in the inset of Fig. 8b).

At moderate Péclet number (Pe = 105), the strip has started to diffuse, filling the
low levels of concentrations in the PDF. The logarithmic divergence disappears, because
there is no point on the strip where the maximal concentration is equal to c0. The PDF
becomes a decreasing function of c, with an inverted-S shape characteristic of flows with
a broad distribution of stretchings (Duplat et al. (2009)). There is, moreover, a slight
discrepancy between the two methods used to compute the PDF. This means that some
aggregation of the strip with itself has occured. The exact PDF (plotted as symbols) is
slightly above the ideal PDF that would be obtained if the strip was not overlapping
with itself (plotted as a solid line).

In order to understand these PDF, we use the model of multiple step stretching, which
leads to a log-normal law (4.7) for the PDF of stretching factors. The strip can thus be
modeled as a sum of segments of length P (ρ)dρ, which have been stretched by a factor
ρ in a time t. For a stretching rate assumed constant in time (equal to log(ρ)/t), the
striation thickness decreases exponentially in time and the dimensional time τ can be
calculated by integration of (2.5) as

τ(ρ) =
Dt

2s2
0

ρ2 − 1
log(ρ)

(6.2)

Equation (6.1) then leads to an analytical formula for the PDF of concentration, if ∆l
is replaced by P (ρ)dρ and s by s0/ρ:

P (c) =
A

c

∫
τ(ρ)<

(
c20
4c2

− 1
4

)
√

1 + 4τ(ρ)
− log(

√
1 + 4τ(ρ) c/c0)

e−
(log ρ−2γt/3)2

4γt/3
dρ

ρ
(6.3)

where A is a normalizing constant, and the mean stretching rate γ has been calculated
numerically for the Sine flow (γ = 0.91).

This solution is plotted in Fig. 13 as a dashed line. It is in very good agreement with
the numerical results at high Péclet number (Pe = 1010). This is not a surprise because
the dimensionless time τ is much smaller than 1 for the stretching factors which have
a high probability P (ρ), such that the integral in (6.3) simplifies into 1/

√
− log(c/c0),

leading to a U-shaped PDF.
For a moderate Péclet number (Pe = 105), the theoretical prediction is still in fairly

good agreement with the PDF obtained if there was no aggregation of the strip (plotted
as a solid line), especially at low concentrations. For such a moderate Péclet number
(where the mixing time has been reached everywhere), it is common to calculate the
PDF of maximal concentration Q(c), which is obtained by assuming that the strip has a
square profile of width s

√
1 + 4τ instead of a Gaussian profile. The PDF is then defined
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(a) (b)

Figure 14. Spatial distribution of a strip of scalar in a Sine flow at t = 7 for a Péclet number
equal to (a) 105 and (b) 103. All points of the strip have been translated into the unit square
in order to model a periodic initial condition (and flow) composed of a column of strips infinite
in x and located at y = ...− 2,−1, 0, 1, 2...

by Q(c)dc = s
√

1 + 4τ(ρ)P (ρ)dρ which gives an analytical expression for the PDF:

Q(c) ∼ P (ρ) log(ρ)2

c4(1− ρ2 + 2ρ2 log ρ)
with ρ = τ−1

[
c2
0 − c2

4c2

]
(6.4)

Here, τ−1 is the inverse function of τ(ρ) defined in (6.2). This solution is plotted in
Fig. 13(b) as dotted line. It is in fair agreement with the previous theoretical PDF at
low concentrations, because the PDF is there a decreasing function of c. However, there
is a small deviation at high concentrations. This reasoning would not work at high Péclet
number (Pe = 1010) because the PDF Q(c) is then the sum of two Dirac functions at
c = 0 and c = c0, whereas the exact PDF is U-shaped, corresponding to a Gaussian
profile.

6.3. PDF of a strip with reconnection
We have seen in the previous section that the PDF calculated by integrating along the
strip the histogram of a Gaussian profile (6.1) is not equal to the exact PDF (calculated
directly as a histogram of the scalar distribution) at late stages, and at moderate Péclet
numbers. This originates from the aggregation of different parts of the strip, which occurs
when the thickness of the strip (in the presence of diffusion) becomes of the order of the
distance between two adjacent elements of the folded strips. To understand better how
these reconnections modify the PDF, we have increased the number of reconnections by
placing initially several long strips in the Sine flow instead of a single short strip. This
can be done very easily (without further computation) if the strips are along the x-axis
and infinite at t = 0. Indeed, if the computation was done for a strip xi initially located
between x = −0.5 and x = 0.5, an initially infinite strip is obtained as the sum of strips
located in ... (xi−3, yi), (xi−2, yi), (xi−1, yi), (xi, yi), (xi+1, yi), (xi+2, yi), (xi+3, yi)
... because the Sine flow is periodic with a wavelength equal to 1 in the x-direction. The
same argument can be used in the y direction: an initial column of strips separated by
1 in the y direction is obtained as a sum of strips located in ... (xi, yi − 3), (xi, yi − 2),
(xi, yi−1), (xi, yi), (xi, yi +1), (xi, yi−2), (xi, yi +3) ... because the Sine flow is periodic
in the y direction with a wavelength equal to 1.

The distribution of scalar obtained for such an initial condition is plotted in Fig 14
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Figure 15. PDF of the scalar distribution for a strip in a Sine flow at t = 7, where the
flow has been made periodic as in Fig.14. The Péclet number is equal to Pe = 105 (a) and
Pe = 103 (b). Symbols are calculated by doing a histogram of the spatial distribution of scalar.
Black solid lines are calculated by doing an integration of the Gaussian profile along the strip
using Eq.(6.1). Grey solid lines correspond to the prediction (6.3) obtained using the log-normal
model of stretching. The dashed lines are computed by self-convolving N times the solid lines,
with (a) N = 4 and (b) N = 43, as predicted by Eq.(6.7).

for various Péclet numbers. It is only plotted for 0 < x < 1 and 0 < y < 1 because the
distribution is periodic. While the strips are still discernible for Pe = 105, the field is
almost homogeneous for the lowest Péclet number (Pe = 103). The density of strips is
so large that the mean distance between two strips is smaller than their mean width.

The PDF of concentration corresponding to these scalar fields are plotted in Fig. 15
as symbols. For Pe = 105, the PDF is decreasing at large concentrations but it presents
a plateau with a small maximum at c = 0.1c0. For Pe = 103, this maximum is clearly
visible, which corresponds to the fact that the field tends to be homogeneous with a
mean concentration equal to the total quantity of scalar

∫
c0L0e−n2/s2

0dn divided by the
area of the periodic domain (here, 〈c〉 =

√
πs0c0 = 0.0886c0).

These PDF are very different from those obtained by assuming that the strip has
evolved on its own, independently of its neighbors (calculated in equation (6.1)), which
are plotted as black solid lines. This strong difference is not surprising, since the PDF is a
highly nonlinear function of c, while the concentration levels of overlapping strips interact
in an additive fashion, owing to the linearity of the Fourier equation (Villermaux &
Duplat (2003)). Precisely, if two strips with concentrations c1 and c2 such that c = c1+c2

overlap, the total scalar field c has a PDF given by

P (c) =
∫

c=c1+c2

P1(c1)P2(c2)dc2 (6.5)

where P1(c1) is the PDF of the first strip and P2(c2) that of the second. If the concentra-
tion levels c1 and c2 in (6.5) are chosen at random among those available in the original
distributions P1 and P2, with no particular correlation or constraint, then equation (6.5)
defines a convolution of the original distributions. The consequence of this interaction
rule on the structure of P (c) itself has been discussed in several random flows (Viller-
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maux & Duplat (2003); Duplat & Villermaux (2008); Villermaux et al. (2008)), leading
to a family of distributions stable by self-convolution.

The present simulations offer a unique way of testing the relevance of this interaction
rule: In the case of a single strip which aggregates with itself, the PDF in the presence
of aggregation should be obtained as the convolution of the PDF without aggregation,
which we know from the solitary PDF Psingle(c) discussed in section 6.2. If the strip
reconnects several times with itself, the PDF must be convolved as many times. Let us
call this number of convolutions N , we thus expect

P (c) = Psingle(c)⊗N (6.6)

The result of this convolution is plotted in Fig. 15 as dashed lines and compared to the
true PDF characterizing the true field (plotted as symbols). The agreement is fair for
Pe = 105 and it is very good for Pe = 103: the self-convolved PDF indeed presents
a plateau around c = 0.1c0 and the width of the peak is well predicted. This actually
means that the aggregation of the strip with itself is indeed the process by which the
complex mixture has been built, and is well described by a self-convolution of the solitary
PDF with itself.

The number of convolutions N needed to adjust the self-convolved solitary PDF onto
the exact PDF is plotted in Fig. 16(a). It has been calculated in two different ways
by taking either the theoretical prediction (6.3) for the PDF of the solitary strip, corre-
sponding to the grey lines of Fig. 15, or by taking for the solitary strip the PDF obtained
numerically by integration of (6.1), corresponding to the black lines of Fig. 15. The num-
ber of convolutions N increases exponentially with an exponent very close to 2γ/3. This
is surprising because the total length of the strip (and thus its surface) increases as eγt

and we would expect the number of convolutions to be proportional to the surface of the
strip, leading to an exponent γ and not 2γ/3. Theses simulations reveal that the number
of convolutions is governed by the most probable stretching rate 2γ/3 and not by the
mean stretching rate γ.

This number of convolutions can be calculated in the simplified case where all strips
are subject to the same stretching rate γp = 2γ/3. In this situation, all strips have a
Gaussian normal profile c(n) ∼ e−γpn2/2D. By definition, two strips reconnect if their
levels are larger than a minimum level dc on a common area, which is achieved if their
distance is smaller than a minimum distance ∆ = 2

√
−2D log dc/γ for Gaussian profiles.

Since the mean distance between two strips decreases as d0e
−γpt (d0 being the initial

mean distance between two strips), each strip reconnects with a number of strips equal
to:

N = 2∆/(d0e
−γpt =

4
d0

√
−3D

γ
log(dc)e2γt/3 (6.7)

In our simulations, d0 is equal to 1 in the periodic case and dc is a numerical constant
for the scalar step, which is taken equal to 5 × 10−4. It can be noted that this analyt-
ical formula diverges when dc tends to 0, but this divergence is very slow (scaling as
log(dc)1/2, which makes it very weakly dependent on this numerical constant. This is in
fact a consequence of the fact that a Gaussian profile extends to infinity and has thus
a non-normalised PDF. This prediction is plotted in Fig. 16(a) as a solid line and is in
excellent agreement with the empirical determination of the number of convolutions.

To conclude, it is possible to use the theoretical prediction of the PDF (6.3) in the
absence of aggregation and to convolve it N times according to (6.7), giving a prediction
for the PDF expected in the presence of aggregation. These PDF are plotted in Fig. 16(b)
at various times. It predicts correctly the shape of the PDF in the three different regimes:
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Figure 16. (a) Temporal evolution of the number of self-convolutions N needed to transform
the PDF of a solitary strip (i.e. in the absence of reconnection) into the exact PDF (with
reconnections) obtained numerically by doing a histogram of the spatial distribution of scalar.
The PDF of the solitary strip is either (©) calculated numerically by integrating Eq. (6.1)
along the strip or (5) given by the theoretical prediction (6.3). The solid line corresponds to
the theoretical prediction (6.7) for the number of convolutions. (b) PDF of scalar obtained for
Pe = 103 at t = 0.1 (dotted line,•), at t = 2 (dashed line,×) and at t = 7 (solid line,©).
Symbols correspond to the exact numerical result. Lines correspond to the PDF given by (6.3)
and self-convolved N times with N given by (6.7).

a U-shaped PDF at early stages, a decreasing PDF at intermediate times and a peaked
PDF at late stages. The agreement is also quantitatively correct although it is not
perfect. It should be noted however that this analytical solution does not contain any
fitting parameter, since the mean stretching rate γ is known. It bridges a microscopic
description of diffusion on a stretched substrate with a global quantity such as the scalar
PDF in a non-trivial flow, from first principles.

6.4. Why does the convolution rule work so well ?

An interesting question to ask is why the convolution rule, which assumes the absence
of correlation between the concentration levels adding at random, works so well. A
possible justification is as follows: we have shown in section 5 that the Sine flow, like
all smooth random flows, has a spatial concentration field c(x) with a Γ(k) ∼ k−1

spectrum. This means that the correlation function of the field 〈c(x)c(x + r)〉x is equal
to a constant 〈c2〉 minus a rapidly varying function of r scaling as log(γ r2/D), the
inverse Fourier transform of k−1, making the correlation function essentially zero for
r �

√
D/γ. Distant concentration levels are thus very weakly correlated. The role of the

large scale advection of the flow is to bring close to each other (i.e. at distances smaller
than

√
D/γ) these distant concentration levels, which there merge under the blurring

action of diffusion, defining a new concentration level equal to their sum. But since
these concentration levels were basically uncorrelated, their addition is made at random,
with a probability equal to the product of their respective probability of occurrence
in the current distribution P (c). The proper interaction rule is thus indeed of a pure
convolution type, expressing an effective maximal randomness in the flow. We will have
a confirmation of this fact in section 7.
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Figure 17. Variance of the field of scalar as function of time for Pe = 103 (•) and Pe = 105

(5). Lines correspond to the theoretical prediction of equation (6.9).

6.5. Variance of the scalar
The knowledge of the full PDF P (c) solves the mixing problem. However, a traditional
way since Corrsin (1952) and Danckwerts (1952) of characterizing the progress of a mix-
ture towards uniformity, is to concentrate on the second moment of the PDF, namely the
variance of the scalar 〈c2〉. In a confined mixture with conserved average concentration
〈c〉, the variance decays and relaxes toward 〈c〉2 at late stages. The decay is prescribed
by that of the maximal concentration in the strips, and is therefore exponential in time
after the mixing time.

We have computed the scalar variance for the Sine flow directly using the Diffusive
Strip Method by reconstructing the scalar field on the domain −2 < x < 2 and −2.5 <
y < 2.5 (with an area A = 20), where the scalar is initially introduced for −0.5 < x < 0.5
as in section 3. The variance is plotted in Fig. 17 as a function of time for two different
Péclet numbers. It is indeed decaying exponentially after t = 2. The variance is smaller
for smaller Péclet numbers, for which the mixing time is smaller. The late evolution is
nevertheless independent in law of the Péclet number (i.e. exponential with the same
decay rate).

It is fairly easy to give an analytical solution for the variance for a solitary strip.
Indeed, the log-normal model for the strip stretching indicates that the length of the
strip which has been stretched by a factor ρ is equal to P (ρ, t)L(t) where L(t) = L0eγt

is the total length of the strip and P (ρ, t) is given by (4.7). For a given stretching factor
ρ, the transverse profile is Gaussian with a parameter s0

√
1 + 4τ/ρ and a maximal

concentration equal to c0/
√

1 + 4τ , where the dimensionless time τ is given by (6.2).
This leads to an integral of the squared concentration profile in its transverse direction
as ∫ +∞

−∞
c2(n)dn =

c2
0s0

√
π/2

ρ
√

1 + 4τ
(6.8)

The variance is then obtained as the sum along the strip of this integral multiplied by
the length P (ρ, t)L(t)dρ and divided by the total area A of the domain

〈c2〉 =
c2
0L0s0

A
√

8γt/3

∫ +∞

0

exp
[
−(log ρ− 2γt/3)2

4γt/3

]
dρ

ρ
√

1 + 4τ(ρ)
(6.9)
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This prediction is plotted in Fig. 17 for two different Péclet numbers. It overestimates the
numerical result, which may come from the aggregation of the strip with itself. However,
the theory recovers an exponential decay at late stages, with a correct decay rate. An
asymptotic formula can be obtained for τ � 1 by cutting the integral at log ρ = (γt)1/4

showing that at late stages the variance tends to

〈c2〉 =
c2
0L0s

2
0e
−γt/3

2A
√

D

( γ

6t

)1/4
∫ +∞

0

√
xe−x2/2dx,

with
∫ √

xe−x2/2dx = 1.0304. At leading order, the variance thus decays exponentially
with time, as seen in Fig. 17 with a decay rate γ/3 indeed correctly predicted.

It is curious to see that the variance, the number of convolutions N and the total
length of the strip have three different exponents. This is due to the log-normal law
P (ρ) which is very broad and contains large and small stretching factors ρ at the same
time. The total length of the strip is more sensitive to large stretching factors since
they create a larger interval on the final strip. The total length thus increases with a
rate γ which is larger than the most probable stretching rate 2γ/3. On the contrary,
the variance is more sensitive to the least elongated parts of the strip, since they have
higher levels of concentration. The variance thus decreases with a rate γ/3 smaller than
the most probable stretching rate. The number of convolutions N is sensitive to both
concentration levels and length of the strip. It thus increases at the most probable
stretching rate.

7. Probability Distribution Function of scalar increments
As a complement, it is useful to study the PDF of scalar increments because it gives

further insights into the spatial structure of the scalar distribution, and also because it
legitimates the use of the ‘maximal randomness’ property made in section 6.3.

We define the PDF of the increment ∆c = c(x)− c(x + ∆x e) of scalar concentration
between two points separated by a distance ∆x (e being a unit vector which has been
taken along x and along y in the simulations). These PDF are plotted in Fig. 18 for
two different Péclet numbers and aggregation conditions. In Fig 18(a), the initial scalar
distribution is a unique strip and the Péclet number is relatively high (Pe = 105) such
that there is basically no aggregation of the strip with itself at t = 7. In Fig 18(b), on
the contrary, the scalar is injected initially as a dense periodic pattern and the Péclet
number is smaller Pe = 103 so that reconnections of the strip with itself are more
frequent.

In the case of a solitary strip (no aggregation), the PDF of increments is extremely
peaked around 0 and has strong non-Gaussian tails. These large increments correspond
to the high values of scalar located on the unmixed regions of the strip. When the
distance ∆x increases, the PDF gets wider up to a certain distance η = 0.014 above
which it remains invariant whatever the value of ∆x. This is a direct proof that above
this distance, the concentration c(x) and c(x+∆x) are uncorrelated. Indeed, in this large
∆x limit, the probability to have an increment ∆c can be calculated as the probability
P (c1) that the concentration equals c1 in x multiplied by the probability P (c2) that
the concentration equals c2 in x + ∆x, with c1 + c2 = ∆c. When summing over c2 and
assuming that the probabilities are independent, one gets that the PDF of increments
P (∆c) is equal to the convolution product of the PDF of scalar P (c) with P (−c)

P∆x(∆c) = P (c)⊗ P (−c), for ∆x > η (7.1)

This solution is plotted as a thick solid line in Fig 18(a), where the PDF of concentra-
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Figure 18. PDF of increments of scalar ∆c for a strip in a Sine flow at t = 7. In (a) The Péclet
number is equal to Pe = 105 and the scalar is initially injected between −.5 < x < 0.5, which
leads to the distribution of scalar of Fig. 7(d). In (b), the Péclet number is equal to Pe = 103

and the scalar is initially periodic in both x and y direction, which leads to the distribution of
scalar of Fig. 14(b). The increment ∆c is taken between two points separated by ∆x = 0.003
(©), ∆x = 0.01 (O), ∆x = 0.05 (•) and ∆x = 0.2 (+). Thick solid lines are obtained as the
convolution P (c) ∗ P (−c) of the numerical PDF of scalar with its symmetric part. Thin solid
lines are deduced from this PDF by a dilatation with a factor ∆x/η where the Batchelor scale η
is equal to 0.014 in (a) and 0.12 in (b). Dashed lines correspond to the convolution P (c)∗P (−c)
of the theoretical PDF of scalar given by (6.3) and convolved with itself N times with N given
by (6.7): in (a) N = 1 and in (b) N = 48.

tion P (c) is given by the numerical simulation (the corresponding symbols are those of
Fig. 13b). There is an excellent agreement with the PDF of increments for ∆x larger
than η = 0.014, an agreement even better than the one achieved using for the field PDF
P (c) obtained in (6.3) convoluted N times and transformed according to (7.1).

For small distances ∆x, the PDF of increments becomes narrower. This is easily un-
derstood by the fact that the concentration c(x) is now correlated with the concentration
c(x + ∆x) since now ∆x explores the internal structure of the strip, or of a bundle of
strips in the process of merging. An easy way to calculate the PDF of increment is then
to assume that all the strips have the same thickness η. For ∆x < η, the increment
∆c is then proportional to ∆x (assuming that a triangle is a good caricature of the
strip transverse concentration profile), and the PDF of increment is squeezed by a factor
∆x/η

P∆x<η(∆c) =
η

∆x
P∆x>η

( η

∆x
∆c
)

(7.2)

This prediction is plotted as thin solid lines in Fig 18(a) with η = 0.014, and shows a
good agreement with the numerical values of the PDF of increments.

In the case of a strip with many aggregations (as in Fig 18b), the PDF is closer to
Gaussian at its center, but still presents substantial wings at large increments ∆c. As
in the case of the solitary strip, it gets wider when the distance ∆x increases, but it
now saturates at a larger value equal to η = 0.12 (the Péclet number is lower). As
previously discussed, this means that for large distances ∆x > η, the concentrations
c(x) and c(x+∆x) are uncorrelated and the PDF is given by (7.1) as the convolution of
P (c) and P (−c). This prediction is plotted as a thick solid line in Fig 18(b), where P (c)
is determined numerically (the corresponding symbols are those of Fig. 15b). There is
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an excellent agreement with the numerical result of P (∆c). However, the same remark
applies as for the solitary strip: the theoretical prediction of P (c) given by (6.3) convolved
N times and transformed according to (7.1), plotted as a thick dashed line, leads to a
less good agreement.

For small distances ∆x < η, the PDF of increment is again found by squeezing
the PDF of increment at large distances by a factor ∆x/η, as defined by (7.2). This
prediction is plotted in Fig. 18(b) by thin solid lines and show an excellent agreement
with the numerical results.

We have seen that the PDF of increment can be predicted using (7.1) for large dis-
tances (∆x > η) and using (7.2) for small distances (∆x < η). The question thus remains
to determine what controls this critical distance η. It reflects the distance over which
c(x) correlates with itself. It thus scales as the distance over which diffusion has blurred
the concentration differences. That distance is larger than the Batchelor scale

√
D/γ

itself since a bundle of elementary strips (whose width is
√

D/γ) in the process of ag-
gregating realize a smooth ensemble at the scale of the bundle itself. This coarse grained
scale is thus larger than the typical size of the concentration gradient in the flow (larger
than the spectrum diffusive cut-off) and has been found to decreases like Pe−1/2 as well
in exponential flows, like the Sine flow (Villermaux & Duplat (2006)). Fig. 18 shows that
η ≈ 4

√
D/γ in the present simulations.

8. Conclusion
We have introduced a new numerical method for the study of scalar mixing in 2D

advection fields. This method is inspired by the empirical observation that natural flows
tend to form elongated structures, making a mixture a collection of adjacent strips
(sheets in three dimensions), more or less diffuse and overlapping.

As explained in section 2, the position of an advected material strip is computed
kinematically, and the associated convection-diffusion problem is solved using the com-
puted local stretching rate along the strip, assuming that the diffusing strip thickness is
smaller than its local radius of curvature. This widely legitimate assumption reduces the
numerical problem to the computation of a single variable along the strip, thus making
the method extremely fast and applicable to any Péclet number. Since it is grounded on
the use of a near-exact solution of the Fourier equation, this method is also extremely
precise.

The method has then been used to document the mixing properties of a chaotic
Sine Flow (sections 3 to 7), for which we have related the global quantities (spectra,
concentration PDFs, increments) to the distributed stretching of the strip convoluted by
the flow, possibly overlapping with itself. The numerical results indicate that the PDF of
the strip elongation is log-normal, a signature of random multiplicative processes. This
property lead to exact analytical predictions for the spectrum of the field and for the
PDF of the scalar concentration of a solitary strip, in good agreement with the numerical
results. An interesting result is that if the total strip is stretched at a rate γ, the most
probable stretching rate is equal to 2γ/3 and the variance decreases as e−γt/3.

The present simulations, since they keep track of both the contribution of a solitary
strip, and of the global concentration PDF (as opposed to presently available experi-
ments where these two information are mingled) offer a unique way of discovering the
interaction rule building complex mixtures. That rule, formalized in equations (6.5) and
(6.6), expresses that a random mixture is made of a superposition of overlapping strips
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leading to concentration PDFs stable by convolution. Sections 6.4 and 7 make precise
what ‘random’ means.

A natural extension of this method would be to consider chemically reacting scalars,
in the spirit of the ‘Flamelet models’ used for turbulent diffusion flames (Peters (1984)).
The generalization of the method to three dimensional flows would, also, be welcome.

This work has been supported by the Agence Nationale de la Recherche (ANR)
through grant ANR-05-BLAN-0222-01. We thank Jérôme Duplat for numerous enlight-
ening discussions on scalar mixing.

Appendix A. Numerics, Computational Time and Cost
• Numerics: In the Matlab code of the Strip Diffusion Method, the equation of

motion (1.1) is integrated using an explicit Runge-Kutta (4,5) formula, given by Matlab
under the instruction ‘ode45’. The time step δt was chosen equal to 10−3 for the vortex
and a Sine flow with a period equal to 1 and a velocity equal to 0.5 (see section 3).
Equation (2.5) for the dimensionless time τ is integrated in the most simple manner
(τi(t + δt) = τi(t) + κδt/si(t)2), since it proved to be completely converged. Indeed, the
striation thickness si(t) usually decreases exponentially, making the integration of (2.5)
very stable.
• Computational time: The Strip Diffusion Method has been implemented on Mat-

lab, in order to use standard instructions for the resolution of ordinary differential
equations, and spline interpolation. This choice made the computation slower than us-
ing Fortran or C, but that was unnecessary since the method is extremely fast: The
Vortex in section 2.6 lasted one hour on a PC at 1.1GHz and 1.24Go of RAM. The Sine
flow computations (with ∆l = 0.005, a number of points per cusps given by α = 25∆l/π
and a time interval δt = 0.001) took 4 hours to calculate the field up to t = 4, and a
week to extend it to t = 7 due to the exponentially large number of tracers generated by
the method.
• Computational cost: The Strip Diffusion Method consists in following tracers along

a strip advected by a flow. In an exponential flow like the Sine flow, the number of tracers
defining the strip need to increase in proportion of the strip length, that is exponentially
fast in time. This might look as a drawback of the method. It is not in fact since in spite
of this, it remains competitive with grid-based methods computing the scalar gradients
directly: a standard Direct Numerical Simulation of equation (1.2) will need a number
of grid points of the order of

Np =

(
L√
D/γ

)2

∼ Pe (A 1)

for a domain size L in two dimensions, in order to resolve properly the concentration
gradients whose size scales as the Batchelor scale (2.11).
Now the Strip Diffusion Method has already characterized the mixing properties of the
flow (Spectrum, shape of PDF’s, presence or absence of aggregation etc...) at the mixing
time ts, or after a few mixing times. After that, the field is completely mixed and close to
uniformity (see e.g. Fig. 7). The maximal number of tracers needed to keep in memory
is thus given by the amount of line stretching at the mixing time

Np = eγts ∼
√

Pe (A 2)

with ts given by equation (2.9) a number which can be substantially smaller than the
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number of grid points needed for the same Péclet number, when Pe becomes large. This,
in addition to the advantage presented by the method that only one computation is
needed per flow, the Péclet number being varied at will a posteriori, as mentioned in
section 2.

Appendix B. Refinement numerical method
We detail here the technique used to add dynamically tracers on the strip during the

calculation, in order to respect the criterion (2.12). The best method to do so was to
calculate numerically the function Fi =

∫ σi

0
(1 + ακ(σ))dσ, where σi is the curvilinear

abscissa at the tracer xi (obtained numerically as the cumulative sum of the distance
∆xi between two consecutive points). The new set of tracers xj were then interpolated
such that the corresponding Fj are equally spaced with ∆l. In our algorithm, this rein-
terpolation was done separately on each component of the position xi = (xi, yi), by using
a natural cubic spline interpolation provided by Matlab under the instruction ’csape’ of
the Spline ToolboxHowever, the best results were obtained when the interpolation was
made with the position defined as a function of the curvilinear abscissa σj instead of
Fj (xj = interp(σi, xi, σj)). The reinterpolated abscissa σj were calculated using a basic
linear interpolation corresponding to Fj : σj = interp(Fi, σi, Fj ,

′ linear′).
To calculate the curvature κi at the tracer xi, the algorithm uses the formula:

κ =
|x′y′′ − x′′y′|
(x′2 + y′2)3/2

(B 1)

where x′ (resp. y′) is the derivative of the first (resp. second) component of x with
respect to the curvilinear abscissa, which is calculated numerically using the smoothing
cubic spline provided by Matlab under the instruction ‘csaps’. This allowed to calculate
in a stable way the curvature. It may not be exact since it is a smoothing algorithm,
but this did not modify the position of the strip but only the density of tracers along
the strip. It was also necessary to bound the curvature to 105 such that the number of
points would not diverge. This criterion did not seem to modify the final position of the
strip, even in the regions of the cusps.

During the refinement, the dimensional time τi needs also to be reinterpolated into
τj (corresponding to the refined positions xj). This was done using a simple linear
interpolation. However, some care had to be taken for the reinterpolation of the striation
thickness si. Indeed, the striation thickness is linked to the initial length between two
tracers ∆x0

i due to incompressibility. A major constraint is then to respect numerically
the conservation of the total quantity of scalar C = c0s0

∑
∆x0

i . For this purpose, the
algorithm stores the initial length ∆x0

i between the tracer xi and the tracer xi+1, instead
of the striation thickness si since they are related by (2.1). During the refinement from
xi into xj , the initial length ∆x0

i is divided into the corresponding intervals ∆x0
j such

that the total quantity of scalar between xi and xi+1 is conserved. In this way, the
total quantity of scalar is constant within the numerical accuracy. For example, in the
schematinc drawing of Fig. 19, the interval [xi xi+1] is divided into 3 intervals from xj to
xj+3. The quantity of scalar c0s0∆x0

i must be equal to c0s0∆x0
j+c0s0∆x0

j+1+c0s0∆x0
j+2.

Moreover, the intervals ∆x0
j must be proportional to the ∆xj , which allows to calculate

∆x0
j = ∆x0

i ∆xj/(∆xj + ∆xj+1 + ∆xj+2). The algorithm is sligthly more complex,
because xj does not correspond in fact to xi.

The numerical values of ∆l and α were chosen depending on the flow, such that the
final position of the strip is independent of these constants. For the vortex, a large
∆l = 0.05 was sufficient since the lengthscale of the vortex is rather large. Moreover,
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Figure 19. Schematic drawing explaining the calculation of the initial separation ∆x0
i during

the refinement. The set of tracers xi is reinterpolated during the refinement into xj . The
quantity of scalar between xi and xi+1 is spread into the three corresponding intervals.

since the vortex does not create any cusps, the constant α could be taken very small
(α = 5∆l/20π was chosen). For the Sine flow, a very small ∆l = 0.005 was necessary,
for the PDF of scalar to be converged. It might come from the sensitivity to initial
conditions of this flow, linked to its well known chaotic behavior. The constant α had
also to be taken very large since the flow creates many cusps. We needed to increase it
up to α = 25∆l/π.
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