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ABSTRACT

The overall aim of this thesis is the development of novel electroencephalography (EEG) and

magnetoencephalography (MEG) analysis methods to provide new insights to the functioning

of the human brain. MEG and EEG are non-invasive techniques that measure outside of the

head the electric potentials and the magnetic fields induced by the neuronal activity, respec-

tively. The objective of these functional brain imaging modalities is to be able to localize in

space and time the origin of the signal measured. To do so very challenging mathematical

and computational problems needs to be tackled. The first part of this work proceeds from

the biological origin the M/EEG signal to the resolution of the forward problem. Starting

from Maxwell’s equations in their quasi-static formulation and from a physical model of the

head, the forward problem predicts the measurements that would be obtained for a given

configuration of current generators. With realistic head models the solution is not known

analytically and is obtained with numerical solvers. The first contribution of this thesis in-

troduces a solution of this problem using a symmetric boundary element method (BEM) which

has an excellent precision compared to alternative standard BEM implementations. Once a

forward model is available the next challenge consists in recovering the current generators

that have produced the measured signal. This problem is referred to as the inverse problem.

Three types of approaches exist for solving this problem: parametric methods, scanning tech-

niques, and image-based methods with distributed source models. This latter technique offers

a rigorous formulation of the inverse problem without making strong modeling assumptions.

However, it requires to solve a severely ill-posed problem. The resolution of such problems

classically requires to impose constraints or priors on the solution. The second part of this the-

sis presents robust and tractable inverse solvers with a particular interest on efficient convex

optimization methods using sparse priors. The third part of this thesis is the most applied

contribution. It is a detailed exploration of the problem of retinotopic mapping with MEG

measurements, from an experimental protocol design to data exploration, and resolution of

the inverse problem using time frequency analysis. The next contribution of this thesis, aims

at going one step further from simple source localization by providing an approach to investi-

gate the dynamics of cortical activations. Starting from spatiotemporal source estimates the

algorithm proposed provides a way to robustly track the “hot spots” over the cortical mesh

in order to provide a clear view of the cortical processing over time. The last contribution of

this work addresses the very challenging problem of single-trial data processing. We propose

to make use of recent progress in graph-based methods in order to achieve parameter esti-

mation on single-trial data and therefore reduce the estimation bias produced by standard

multi-trial data averaging. Both the source code of our algorithms and the experimental data

are freely available to reproduce the results presented. The retinotopy project was done in

collaboration with the LENA team at the hôpital La Pitié-Salpêtrière (Paris).

Keywords:

Neuroimaging, magnetoencephalography (MEG), electroencephalography (EEG), human vi-

sion, retinotopy, boundary element method, inverse problem, convex optimization, sparse

regression, single-trial analysis, graph cuts.
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RÉSUMÉ

Cette thèse est consacrée à l’étude des signaux mesurés par Electroencéphalographie

(EEG) et Magnétoencéphalographie (MEG) afin d’améliorer notre compréhension du cerveau

humain. La MEG et l’EEG sont des modalités d’imagerie cérébrale non invasives. Elles

permettent de mesurer, hors de la tête, respectivement le potentiel électrique et le champ

magnétique induits par l’activité neuronale. Le principal objectif lié à l’exploitation de ces

données est la localisation dans l’espace et dans le temps des sources de courant ayant généré

les mesures. Pour ce faire, il est nécessaire de résoudre un certain nombre de problèmes

mathématiques et informatiques difficiles. La première partie de cette thèse part de la

présentation des fondements biologiques à l’origine des données M/EEG, jusqu’à la résolution

du problème direct. Le problème direct permet de prédire les mesures générées pour une con-

figuration de sources de courant donnée. La résolution de ce problème à l’aide des équations

de Maxwell dans l’approximation quasi-statique passe par la modélisation des générateurs

de courants, ainsi que de la géométrie du milieu conducteur, dans notre cas la tête. Cette

modélisation aboutit à un problème direct linéaire qui n’admet pas de solution analytique

lorsque l’on considère des modèles de tête réalistes. Notre première contribution porte sur

l’implémentation d’une résolution numérique à base d’éléments finis surfaciques dont nous

montrons l’excellente précision comparativement aux autres implémentations disponibles.

Une fois le problème direct calculé, l’étape suivante consiste à estimer les positions et les

amplitudes des sources ayant généré les mesures. Il s’agit de résoudre le problème inverse.

Pour ce faire, trois méthodes existent: les méthodes paramétriques, les méthodes dites de

“scanning”, et les méthodes distribuées. Cette dernière approche fournit un cadre rigoureux

à la résolution de problème inverse tout en évitant de faire de trop importantes approxima-

tions dans la modélisation. Toutefois, elle impose de résoudre un problème fortement sous-

contraint qui nécessite de fait d’imposer des a priori sur les solutions. Ainsi la deuxième

partie de cette thèse est consacrée aux différents types d’a priori pouvant être utilisés dans

le problème inverse. Leur présentation part des méthodes de résolution mathématiques

jusqu’aux détails d’implémentation et à leur utilisation en pratique sur des tailles de problèmes

réalistes. Un intérêt particulier est porté aux a priori induisant de la parcimonie et con-

duisant à l’optimisation de problèmes convexes non différentiables pour lesquels sont présentées

des méthodes d’optimisation efficaces à base d’itérations proximales. La troisième partie

porte sur l’utilisation des méthodes exposées précédemment afin d’estimer des cartes rétinotopiques

dans le système visuel à l’aide de données MEG. La présentation porte à la fois sur les aspects

expérimentaux liés au protocole d’acquisition jusqu’à la mise en œuvre du problème inverse

en exploitant des propriétés sur le spectre du signal mesuré. La contribution suivante ambi-

tionne d’aller plus loin que la simple localisation d’activités par le problème inverse afin de

donner accès à la dynamique de l’activité corticale. Partant des estimations de sources sur

le maillage cortical, la méthode proposée utilise des méthodes d’optimisation combinatoires

à base de coupes de graphes afin d’effectuer de façon robuste le suivi de l’activité au cours

du temps. La dernière contribution de cette thèse porte sur l’estimation de paramètres sur

des données M/EEG brutes non moyennées. Compte tenu du faible rapport signal à bruit,

l’analyse de données M/EEG dites “simple essai” est un problème particulièrement difficile

dont l’intérêt est fondamental afin d’aller plus loin que l’analyse de données moyennées en

explorant la variabilité inter-essais. La méthode proposée utilise des outils récents à base

de graphes. Elle garantit des optimisations globales et s’affranchit de problèmes classiques

tels que l’initialisation des paramètres ou l’utilisation du signal moyenné dans l’estimation.

L’ensemble des méthodes développées durant cette thèse ont été utilisées sur des données

M/EEG réels afin de garantir leur pertinence dans le contexte expérimental parfois com-

plexe des signaux réelles M/EEG. Les implémentations et les données nécessaires à la re-
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productibilité des résultats sont disponibles. Le projet de rétinotopie par l’exploitation de

données de MEG a été mené en collaboration avec l’équipe du LENA au sein de l’hôpital de

La Pitié-Salpêtrière (Paris).

Mots clés:

neuroimagerie, magnétoencéphalographie (MEG), électroencéphalographie (EEG), vision, rétinotopie,

méthode des éléments frontières, problème inverse, optimization convexe, regression parci-

monieuse, analyse simple-essai, coupes de graphes.
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and taking the time to make insightful remarks and suggestions on my work. I am also ex-

tremely grateful to Sylvain Baillet, Eric Moulines and Elsa Angelini for their participation in

the jury.

Many people have contributed to the work presented in this thesis and I want to thank
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CONTEXT

With approximately 1012 neurons in the central nervous system (CNS), 1015 synaptic con-

nections releasing and absorbing 1018 neuro-transmitter and neuro-modulator molecules per

second, the human brain is an object of prodigious complexity. If it were a computer, it would

be capable to process 1012 Gigabits of information per second, all in about 1.6 Kg of weight and

with a power consumption of 10-15 Watts [68]. The study of the brain activity with medical

imaging methods is named functional neuroimaging.

In the last 30 years, neuroimaging has been a very active field of research. From 1985

to 2005, the number of related publications has increased by an order of magnitude. Func-

tional neuroimaging however has a history that dates back far earlier. Human brain activity

was first recorded by Hans Berger (1929) [98] who measured the first electroencephalogram

(EEG) in humans. Later, in the 60’s and 80’s, several other neuroimaging techniques were

introduced. The best known are magnetoencephalography (MEG), positron emission tomog-

raphy (PET), functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy

(nIRS). fMRI is the most popular functional neuroimaging modality. One reason is that MRI

scanners used for anatomical imaging can also be employed for functional imaging. EEG with

its cheap instrumentation cost comes next, followed by PET, MEG, and nIRS. Even if fMRI

is the most popular modality in the neuroimaging field, statistics prove that MEG and EEG

research received a growing interest in the 90’s, which can be explained by the improvement

of acquisition devices, by the development of MRI as an anatomical basis for M/EEG stud-

ies, and also by the development of new methods adapted from other research fields such as

signal and image processing, statistics, and scientific computing.

MEG and EEG (collectively M/EEG) are electromagnetic brain imaging modalities whose

interest comes from the electric nature of neuronal communications. Neurons communicate

with the displacements of electric charges that produce tiny currents. Neurons can be seen

as tiny current generators. In order to produce electromagnetic fields detectable outside of

the head, multiple neurons within a same structure need to act in concert. As opposed to

fMRI that measures differences of blood oxygenation associated with the neuronal activa-

tions, M/EEG have a direct and instantaneous access to the electric phenomena. Therefore,

MEG and EEG have an excellent temporal resolution.

In order to measure the electric potentials generated by neuronal activity an EEG device

consists of a set of electrodes that are applied on the scalp so to establish electrical contact

with the skin. Modern full head EEG caps can have nowadays more than a 200 electrodes.

The counterpart of EEG is MEG that measures the magnetic fields generated by the neuronal

activity. The first MEG measurements date back to the research of David Cohen in the 60’s

[35]; the first whole head MEG systems with hundreds of sensors capable of imaging the

entire brain became available in the early 90’s.

Traditionally, the EEG analysis has been based on inspection of the morphology of wave-

forms. As a matter of fact, most current practice of EEG in neurology is still based on these

first attempts. Typically, neurological clinics perform EEG examinations for epilepsy, sleep

disorder, migraine, and a few other pathological conditions for which the waveform bears di-

agnostic utility, as for spikes, spindles, generalized slowing, temporal theta, etc. Meanwhile,

basic electrophysiological research has taken a different path.

The development of digital computers, together with the advances of signal processing

methods contributed to transform M/EEG data analysis into a domain of research for engi-

neers, physicists and mathematicians. Assisted by the invention of the FFT algorithm in

1965 by Cooley and Tuckey, frequency-domain analysis of EEG time series, such as power

spectral density estimation or phase coherence, has been used since the 60’s for cognitive

and clinical studies. Time-frequency analysis of event-related synchronization and desyn-
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chronization (ERS/ERD) has provided means to study brain dynamics in the scale of tens

of milliseconds, preserving both spatial and spectral information. This has extended task-

related brain studies beyond evoked response potentials and morphology. More recently, in

the 90’s, the advances of anatomical MRI data, giving access to individual brain anatomy,

marked the transition into the era of functional localization of M/EEG activity.

Results of functional localization of M/EEG activity can be seen as 3D volumetric or 2D

surface images of the living brain. While a standard movie is streamed with 25 images per

second, accurate functional imaging with M/EEG could provide around a thousand images

of the brain per second. However accurate functional localization of M/EEG activity with

a temporal resolution of 1 kHz is a partially solved problem and is still a major challenge of

M/EEG data analysis. To reach this goal, various computational and mathematical challenges

need to be tackled, turning the study of the brain activations with M/EEG in a strongly

multidisciplinary field of research at the crossroads of neurophysiology, signal processing,

electromagnetism, multivariate statistics, and scientific computing.

In this thesis, various mathematical and computational aspects of M/EEG data analysis

are covered, with the constant objective of being able to achieve accurate localization in space

and reconstruction of the dynamics of neural activity. Our contributions start by the accurate

modeling of the head as a medium that propagates the electromagnetic fields produced by the

neurons. This problem, known as the forward problem, has a unique solution. The solution

can be obtained analytically for spherical head models but requires numerical solvers when

realistic head models are considered. Improving the speed and accuracy of such solvers, but

also facilitating their usability in the M/EEG community is the topic covered by the first part

of this thesis.

To estimate the current generators underlying noisy M/EEG data, one has to solve an

electromagnetic inverse problem. Theoretically, a specific electromagnetic field pattern may

be generated by an infinite number of current distributions. Fortunately, physiological and

anatomical information can be employed to constrain the solution. The problem is said to

be ill-posed. In this thesis we focus on distributed inverse solvers. The use of such solvers

is motivated by their ability to provide localization results for activation patterns involving

multiple generators distributed over the entire brain. In order to tackle this challenging prob-

lem, we provide in this thesis very efficient optimization methods in order to get algorithms

tractable on real datasets. Our methodological contributions go beyond the inverse problem

by proposing a method to robustly follow over time the activations on the cortex. The main

motivation for the development of the methods detailed in this thesis, was to contribute to the

study of human vision with MEG and EEG. Throughout this thesis, methods are tested with

real M/EEG data in order to prove their effectiveness and relevance for clinical and cognitive

M/EEG studies.
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ORGANIZATION AND CONTRIBUTIONS OF THIS THESIS

Chapter 1 - Neural basis of EEG and MEG

The EEG and MEG signals are generated by the electrical activity of the neurons. At the

cellular level, displacements of electric charges create tiny differences of potential. In the

cortex, groups of neurons, particularly pyramidal neurons in the cortex, form structured as-

semblies that, when simultaneously active, produce electromagnetic fields detectable outside

of the head. Human EEG recordings date back to 1929 with the German physiologist and

psychiatrist Hans Berger, while the first MEG recordings were obtained in the late 60’s by

David Cohen. In this first chapter, we review the physiological basis of the generation of the

signal measured by MEG and EEG and provide some details on the evolution of acquisition

devices from their discovery to the most recent systems.

Chapter 2 - The forward problem

Understanding how a current generator located inside the head can produce a distribution of

potential on the scalp or a magnetic field outside of the head is called the forward problem.

Because of the low frequency of the signals measured with M/EEG, the time derivatives in the

Maxwell’s equations can be neglected. In this quasi-static approximation, the forward mod-

eling implies that the signal measured on the sensors is the instantaneous sum of the signals

produced by each current generator. However, computing this linear operator, i.e., solving

the forward problem with a realistic head model can be mathematically and computationally

challenging. In this chapter, we review existing methods to solve the forward problem with

different assumptions for the conductor geometry of the head. With realistic head models the

solution is not known analytically and is obtained with numerical solvers. The first contribu-

tion of this thesis is on the efficient and precise numerical resolution of this problem using a

Boundary Element Method (BEM) called the Symmetric BEM. This approach is compared to

alternative open source solvers, demonstrating its excellent precision.

Chapter 3 - The inverse problem with distributed source models

While the forward problem provides the link between the measured signal and the neural

current generators, the inverse problem aims at estimating the positions and amplitudes of

these generators from a limited number of noisy measurements. Three types of approaches

exist: parametric methods also referred as dipole fitting, scanning techniques and image-

based methods with distributed source models. The latter approach formulates the inverse

problem as a deconvolution problem where the convolution operator, or smoothing kernel,

is the solution of the forward problem. Such an approach offers a rigorous formulation of

the inverse problem without making strong modeling assumptions. However, the problem is

strongly ill-posed. The solution of such problems classically requires to impose constraints

or priors on the solution. This chapter is dedicated to the presentation of priors based on

the ℓ2 norm. Implementation details and practical information are carefully detailed. The

presentation covers standard minimum-norm methods, noise normalized solutions (dSPM

and sLORETA), spatio-temporal solvers, and finally Bayesian approaches where the prior is

not fixed a priori but learned from the data.

Chapter 4 - M/EEG inverse modeling with non differentiable constraints and sparse

priors

Standard ℓ2 priors lead to very convenient linear inverse solvers but produce source estimates

smeared out over the cortex. The ℓ2 prior is said to lead to solutions with high diversity, as

opposed to solutions with high sparsity where only a few sources have non-zero activations.
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Such a behavior of the ℓ2 norm can become problematic when one attempts to achieve pre-

cise localization of focal sources. In order to reduce this problem, Bayesian learning of the

prior can be an alternative. In this chapter, we investigate priors where the sparsity of the

reconstruction is induced by the choice of the prior. The ℓ1 norm has this interesting prop-

erty and has proved its ability to efficiently solve very challenging ill-posed problems in signal

processing and machine learning. Unfortunately, such a prior leads to non differentiable opti-

mization problems for which the solutions cannot be obtained in closed-form as in the ℓ2 case.

In this chapter, we review some algorithms that can be used to efficiently solve ill-posed prob-

lems involving the ℓ1 norm. We promote iterative algorithms based on the use of proximity

operators and show that they provide a very general approach for solving inverse problems

previously introduced in the M/EEG literature. We also explain how structured sparsity with

mixed norms can be used to provide an efficient spatiotemporal solver and develop a new

framework to compute source estimates for multiple experimental conditions simultaneously

using an inter-condition prior.

Chapter 5 - Fast retinotopic mapping with MEG

This chapter presents a direct application of the previous chapters to a real case study. The

objective of this study was to achieve retinotopic mapping with MEG. The motivation for this

work was twofold. First, we wanted to demonstrate that MEG could reproduce the retinotopic

maps obtained by standard protocols in fMRI. Second, thanks to the excellent temporal res-

olution of MEG, we gain access to brain dynamics during visual processing. In this chapter,

we present the anatomical basis of the human visual system, detail the experimental proto-

col we contributed to design, and also the methodological tools we implemented in order to

provide retinotopic maps with MEG. The protocol is based on steady-state visual evoked po-

tentials. We discuss the algorithmic details of the signal extraction procedure and our method

for non-parametric statistical tests. We present results obtained with linear inverse solvers

and illustrate their limitations. To address these limitations, we propose to include all the

experimental conditions simultaneously in the analysis and to use an inter-condition sparse

prior based a mixed norm described in the previous chapter. Finally, we give some insight

on how timings and delays of propagation could be extracted from the phase of the Fourier

spectrum of the source activation time series.

Chapter 6 - Tracking cortical activations with graph cuts

The work presented in this chapter attempts to go one step further from source localization in

order to provide a clear representation of the cortical dynamics during neural processing. The

linear ℓ2 inverse solvers are convenient to use but produce huge amounts of data out of which

the relevant information needs to be extracted. The purpose of our contribution presented

in this chapter, is to extract from the mass of data provided by distributed inverse solvers

the spatio-temporally consistent activations. The algorithm provides a robust and principled

way to track the “hot-spots”, i.e., active regions, over the triangulated cortical mesh. A vari-

ational formulation of the problem is derived and a very efficient optimization method based

on graph-cuts is detailed in order to find globally optimal solutions.

Chapter 7 - Graph-based estimation of 1-D variability in event related neural re-

sponses

The last contribution of this thesis addresses a particularly challenging problem in M/EEG

data processing: parameter estimation from single-trial data. In classical M/EEG data pro-

cessing pipelines, the signal-to-noise ratio of the measured data is improved by averaging

multiple recordings obtained under the same experimental conditions. By doing so, one as-

sumes that the signal of interest is the same in each repetition, also called a trial. This is
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unfortunately not true, as the neural response of the subject can vary, typically because of

habituation effects, anticipation strategies, or fatigue. This is particularly the case for brain

responses occurring late after the stimulation. Such late activations can correspond to higher

cognitive levels of processing and are therefore of major interest to better understand how

our brain performs complex cognitive tasks. The method uses advanced graph-based meth-

ods and has numerous advantages over alternative strategies: trial averaging is not used

in the estimation, they provide solutions with global optimality, thus avoiding initialisation

problems, finally thanks to the efficiency of the method, parameters can be rapidly estimated

by cross-validation and grid search.

Appendices

Appendix A - Kronecker products

This appendix is a brief introduction to the manipulation of Kronecker products. The Kro-

necker product is a valuable tool to manipulate spatiotemporal regularizations as illustrated

in chapter 3.

Appendix B - Introduction to graph cuts

In this appendix, we present the basic concepts on graph cuts in order to facilitate the under-

standing of the optimization methods used in chapter 6 and chapter 7.

Appendix C - Time frequency analysis with Gabor filters

This appendix contains a description of the Gabor filters used to compute the time-frequency

analysis results presented in chapter 5.

Appendix D - Publications of the author

In this appendix, we list the submitted and the already published material from the author.

Software contributions

Finally, we would like to point out that all the algorithms presented in this thesis are avail-

able on the INRIA Forge.

The forward solver OpenMEEG detailed in chapter 2 is available at:

https://gforge.inria.fr/projects/openmeeg/

The Matlab interface we developed was integrated into the current release of Fieldtrip and is

available for download from the Fieldtrip home page:

http://fieldtrip.fcdonders.nl/

All the implementations of the inverse solvers presented in chapters 3 and 4, with also the

code to perform the tracking detailed in chapter 6, are available in a MATLAB Toolbox called

EMBAL (Electro-Magnetic Brain Activity Localization):

https://gforge.inria.fr/projects/embal

Most of the figures presented in this thesis are done with the functions implemented in EM-

BAL.

Finally the EEGLAB plugin to perform parameter estimation on single-trial M/EEG data

as described in chapter 7 is available here:

https://gforge.inria.fr/projects/eeglab-plugins/

https://gforge.inria.fr/projects/openmeeg/
http://fieldtrip.fcdonders.nl/
https://gforge.inria.fr/projects/embal
https://gforge.inria.fr/projects/eeglab-plugins/
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CHAPTER 1

NEURAL BASIS OF EEG AND MEG

MEG and EEG measure the electromagnetic signal produced by the activity of our brain. To

provide more insight into the physiological phenomena behind M/EEG measurements, this

first chapter discusses the biological aspects of the functioning of the human brain.
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1.1 ANATOMY AND ELECTROPHYSIOLOGY OF THE HUMAN
BRAIN

1.1.1 General brain structures: From macro to nano

Together with the spinal cord, the brain forms the central nervous system (CNS). It is the

largest part of the nervous system and is itself composed of a lower part, the brainstem, and

an upper part, the prosencephalon, a.k.a., the forebrain. In figure 1.1 the brainstem includes

the mesencephalon, the medulla, and the pons. It connects the two remaining structures

that form the prosencephalon, i.e, the telencephalon and the diencephalon, to the spinal cord.

The medulla, or lower part of the brain stem, controls unconscious activity of muscles and

glands involved in breathing, heart contraction, salivation, etc. Just above the medulla, the

pons connects the two hemispheres of the cerebellum which is located in the inferior posterior

portion of the head (directly dorsal to the pons). The diencephalon is located in the midline of

the brain and contains the thalamus and the hypothalamus. The most superior structure, the

telencephalon, or cerebrum, includes the lateral ventricles, the basal ganglia and the cerebral

cortex.

Figure 1.1: Main anatomical structures of the vertebrate brain (Source wikipedia.org).

An axial slice (see figure 1.3 for naming conventions) of the cerebrum presented in fig-

ure 1.2 exhibits two main structures: the white matter and the gray matter. The gray matter

of the cerebrum forms the cerebral cortex, a.k.a., the neocortex. The neocortex forms the

majority of the cerebrum and corresponds to its most exterior part. It has a left and a right

hemisphere (see figure 1.4). It is assumed that the neocortex is a recently evolved structure,

and is associated with “higher” information processing by more fully evolved animals (such

as humans, primates, dolphins, etc.).

Each hemisphere of the neocortex is generally divided into 4 lobes as represented in fig-

ure 1.5.

The following functions can be roughly related to each lobe:
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White matter

Gray matter

Figure 1.2: Axial slide of the brain (Adapted from: dartmouth.edu).
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Figure 1.3: Standard naming conventions for planar slices through the brain.

http://www.dartmouth.edu/~rswenson/Atlas/


34 CHAPTER 1. NEURAL BASIS OF EEG AND MEG

Left

Hemisphere

Right

Hemisphere

Figure 1.4: Brain hemispheres. At first glance the two hemispheres are very similar but their

detailed structure is clearly different.
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Figure 1.5: The different lobes of the cerebral cortex: the occipital, the parietal, the temporal,

and the frontal lobes (From 20th U.S. edition of Gray’s Anatomy of the Human Body, 1918

(public domain)).

http://en.wikipedia.org/wiki/Grays_Anatomy
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• Frontal Lobe: associated with reasoning, planning, parts of speech, movement, emo-

tions, and problem solving.

• Parietal Lobe: associated with movement, orientation, recognition, perception of stim-

uli, and speech.

• Occipital Lobe: associated with visual processing.

• Temporal Lobe: associated with perception and recognition of auditory stimuli, memory,

and speech.

Lobes are separated by major fissures that are present in all individuals. This makes the

identification of the different lobes on a particular subject possible by simple visual inspec-

tion. For example, the parietal and the frontal lobes are separated by the central fissure,

a.k.a. the central sulcus, and the temporal lobe is separated from the parietal lobe and the

frontal by the Sylvian fissure (cf. figure 1.5). Fissures are also commonly called sulci.

The counterpart of the cortical fissures are the gyri. Gyri are the structures between the

fissures. The main gyri are presented in lateral and medial views in figure 1.6. Some of the

gyri contain brain regions with known cognitive functions like the post-central gyrus that

includes the primary somatosensory cortex (S1), cf., figure 1.7.

Such a knowledge on the localization of some brain functions is particularly interesting

from a methodological point of view as it provides a way to achieve validation. Many M/EEG

methodological tools are tested on datasets involving somesthetic stimulation. This is the

case, for example, in chapter 4 and chapter 6.

A closer look at the gray matter shows that its structure varies across the different re-

gions. The structural properties of the gray matter include the number of layers (see fig-

ure 1.8), the cell composition, the thickness and organization. These properties, called by

neuroanatomists cytoarchitectonic properties, are not the same over the whole surface of the

cortex. Their differences led, in 1909, the neuroanatomist Korbinian Brodmann to divide

the cortex into regions called Brodmann areas (see figure 1.9) whose historical characteris-

tics were homogeneous [25]. Some functions were then assigned to some of these areas. For

example the visual cortex, which is the object of an MEG study in chapter 5, corresponds to

areas 17 and 18. Although, even if this subdivision of the cortex in Brodmann areas seems

very convenient, its utility in brain functional imaging studies are usually limited labelling

a particular brain region: it is more convenient to write Brodmann area 5 (BA5) than the

“posterior part of the post-central gyrus”.

Generally speaking, most of the cortex is made up of six layers of neurons, from layer I

at the surface of the cortex to layer VI, close to the white matter. For humans, the cortical

thickness varies from 3 to 6 mm. The organization of the cortex is not only laminar. It

has been observed that neurons one meets when moving perpendicular to the cortex tend

to be connected to each other and to respond to precise stimulations with similar activities

throughout the layers. They form a cortical column. This columnar organization of the cortex

was discovered by Mountcastle with a pioneering experiment in 1957 [157]. With electrode

recordings, he showed that neurons inside columns of 300 to 500 µm of diameter displayed

similar activities. This is illustrated in figure 1.10. More detailed information about cortical

structure and function can be found in [121, 124, 175].

The gray matter is composed of neurons and glial cells. The human brain contains around

1012 neurons. The neurons are linked together and each neuron has up to 10000 connections.

The neuron is a cell with a special shape: it is composed of a soma or cell body, containing the

nucleus, a dendritic tree and an axon, as shown in figure 1.11. The white matter is formed

predominantly by myelinated axons interconnecting different regions of the central nervous

system.
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(a) Gyri lateral view
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(b) Gyri medial view

Figure 1.6: Main gyri presented in lateral (a) and medial (b) views (From 20th U.S. edition of

Gray’s Anatomy of the Human Body, 1918 (public domain)).

http://en.wikipedia.org/wiki/Grays_Anatomy
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Figure 1.7: Cortical homunculus by Wilder Graves Penfield [174]. It represents the mapping

the primary sensory (S1) and primary motor (M1) cortex. S1 lies on the posterior wall of the

central sulcus (cf. post central gyrus in figure 1.6(a)) and M1 on the anterior part. These

maps were established by direct electrical stimulation on patients during surgery. Primary

auditory cortices (A1), left and right, are represented in the temporal lobes.

Figure 1.8: Cortical layers. Layer organization of the cortex (a) Weigert’s coloration shows

myelinated fibers (axons) and so the connections inside and between layers, (b) Nissl’s col-

oration only reveals cell bodies (c) Golgi’s coloration shows the whole cells (From [163]).
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Lateral

Surface

Medial

Surface

(a) Reproduction from original

(b) Lateral schematic view (From 20th U.S. edition of
Gray’s Anatomy of the Human Body, 1918 (public do-
main))

(c) Medial schematic view (From 20th U.S. edition of
Gray’s Anatomy of the Human Body, 1918 (public do-
main))

Figure 1.9: Brodmann areas. In 1909, Brodmann [25] divided the cortex into 52 cytoarchitec-

tonic areas according to the thickness of the cortical layers. For example, layer IV is very thin

in the primary motor cortex (area 4) while it is very thick in the primary visual cortex (area

17).
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Figure 1.10: Mouncastle’s experiment and the discovery of the columnar organization of the

cortex. When he moved an electrode perpendicular to the cortex surface, he encountered neu-

rons with similar electrical activities while moving the electrode obliquely gave him different

types of recordings. So he showed the existence of 300-500 µm wide columns in the cortex.

http://en.wikipedia.org/wiki/Grays_Anatomy
http://en.wikipedia.org/wiki/Grays_Anatomy
http://en.wikipedia.org/wiki/Grays_Anatomy
http://en.wikipedia.org/wiki/Grays_Anatomy
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http://en.wikipedia.org/wiki/Grays_Anatomy
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Figure 1.11: Diagram of a neuron (Source wikipedia.org)..

Figure 1.12: Neurons observed with an electron microscope.
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1.1.2 How neurons produce electromagnetic fields

A neuron can be viewed as a signal receiver, processor and transmitter: the signal coming

from the dendrites is processed at the soma and generates (or not) an action potential which

is carried along the axon towards other neurons. During this process neurons produce elec-

tromagnetic fields at the basis of the M/EEG measurements.

The signals in the dendrites are called post-synaptic potentials (PSPs). The signal emitted,

moving along the axon, is called the action potential (AP).

Post-synaptic potential (PSP)

The junction between the axon terminal of a neuron and a dendrite or the soma of another

neuron is called a synapse. It can be a direct electrical junction, but synapses are mostly

chemical: when an action potential reaches the end of an axon terminal, it leads to the release

of neuro-transmitters. Neuro-transmitter molecules that reach an other neuron affect the

membrane permeability so that specific ions (Na+ and K+) penetrate inside, increasing the

resting state potential of about 10 mV with a duration of 10 ms. This is called a post-synaptic

potential, shown in figure 1.13.

Action potential

If many post-synaptic potentials sum up, the membrane potential of the soma can locally

reach a certain threshold which causes the neuron to “spike”: some voltage-sensitive chan-

nels open, allowing positive ions to flow inside the cell, and the potential inside the neuron

increases suddenly. The potential comes back rapidly to its resting state (in 1 ms), with the

help of other voltage-sensitive channels that allow a compensating outward current. Because

of this peak of potential, the nearby regions also reach the threshold: the action potential

thus propagates along the axon, as illustrated in figure 1.14. See [125] for more details on

the the ion mechanisms responsible for these two types of potentials.
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Figure 1.13: From action potentials to post-synaptic potentials (PSP). Illustration with a

chemical synapse. The action potentials reach the neuron on its dendrites via chemical

synapses. It creates post-synaptic potentials that by summation generate other action po-

tentials that can propagate along the axon of the neuron.

These two types of potentials create some displacements of charges and therefore some

very small currents within the neuron: the intracellular or primary currents. These currents,
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Figure 1.14: Action potential propagation (Source kvhs.nbed.nb.ca).
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however, create very tiny electromagnetic fields that cannot be directly measured outside of

the head with M/EEG. In order to have measurable signals, these tiny fields need to sum

up. Action potentials have a temporal duration close to the millisecond making them hard

to synchronize in order to sum up. On the contrary, PSPs have a temporal duration around

10 ms. This makes PSPs much better candidates to produce measurable electromagnetic

fields outside the head. The temporal resolution of the phenomena points out a necessary but

not sufficient condition to get good M/EEG signals. Electrical currents are vectorial quanti-

fies. They have both an amplitude and a direction. In order to actually sum up, the currents

produced by the neurons need to have a common direction. Following the conclusions of [159],

it is necessary to add the field amplitudes of about 104 neurons with dendrites having a com-

mon direction to produce a field amplitude that is detectable from outside the head. For

instance, stellate cells which have dendrites in all directions can not produce a measurable

field. Only neurons called pyramidal cells have the regular geometric structure organization

that is required to sum up the fields generated by their post synaptic potentials.

Pyramidal neurons

The bodies and dendrites of pyramidal neurons are located mostly in the gray matter of the

cortex, and they all have a thick dendrite (called apical dendrite) extending towards the ex-

terior of the cortex, perpendicularly to its surface, as shown in figure 1.15. These neurons

constitute about 70%-80% of the neocortex, and their density is such that theoretically the

simultaneous activation of an area of 1 mm2 of the cortex would be detectable. However,

an experimental study showed that the minimal detectable activity spreads over an area of

about 100 mm2 [100].

(a) Pyramidal neurons

C
u
rr
e
n
t

(b) Pyramidal neurons and the produced intracellular
currents.

Figure 1.15: Pyramidal neurons in medial prefrontal cortex of macaque (Source brain-

maps.org).

This structured organization of pyramidal cells has been discovered by invasive studies

that provided experimental results like the one presented in figure 1.15(a). Nowadays, due

to the progress of brain imaging devices like MRI, more precisely diffusion MRI, this or-

ganization can be observed non invasively. Diffusion MRI offers the possibility to measure

the anisotropy of the diffusion of water molecules in living tissues. This is presented in fig-

ure 1.16. In order to obtain images with such a good signal-to-noise ratio, the acquisition

was performed ex-vivo with a very long period of scanning. Note that the principal directions

of diffusion in the gray matter follow the organization of the cortical layers and the general

structure of pyramidal neurons assemblies.
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(a) Principal eigenvector directions from tensor fitting
superimposed on T1 MRI

(b) Tractlets rendered in 3D (courtesy of Gordon
Kindlmann)

Figure 1.16: Principal directions of water molecules diffusion estimated with tensor fitting

on Diffusion MRI. Orientations appear to be very well organized with directions given by the

normals to the cortical mantle. (Data: Dr J McNab & Dr K Miller, FMRIB, Oxford 3T Siemens

ex-vivo whole-head diffusion imaging, .7x.7x.7mm).

Models of brain electric activity for EEG and MEG

The consequence of the latter observations for EEG and MEG is that the brain activity is

observed at a macroscopic scale with respect to the size of a neuron. They capture the elec-

trical activity of structured assemblies of neurons. The typical size of the neuron assemblies

observable with EEG or MEG is larger than the size of cortical columns but smaller than the

size of a cortical area. For the last three decades, neuroscientists have built models of neuron

assemblies [48, 76, 113, 199, 226, 237], based on the knowledge of neuronal dynamics, but

these dynamics are far from being fully understood.

These observations lead us to the problem of modeling brain electric activity for EEG and

MEG. The main assumption is that the measurements corresponds to the activity of one or

several assemblies of neurons. For one assembly, the EEG or MEG measurements only reflect

its average activity, but usually the intrinsic dynamics of the group of neurons is unknown.

As a consequence, for EEG and MEG, the most common model of the brain activity assumes

that each source reflects the average activity within an assembly of neurons. The intrinsic

dynamics of an assembly of neurons is hidden due to this averaging. Note that such a model

agrees with the columnar organization of the cortex mentioned above. As explained in section

2.2.1, the area of a neuron assembly is small compared to the distance to the observation point

(the M/EEG sensors). Therefore, the electromagnetic fields produced by an active neuron

assembly at the sensor level is very similar to the fields produced by a current dipole. As a

first approximation, this makes current dipoles relatively good models for active brain regions

(cf. figure 1.17).

Assuming the simple dipolar model for current generators whose activity is measured by

M/EEG, the electric and magnetic fields produced by an active brain region can be schemat-

ically represented like in figure 1.18 and figure 1.19. The summation of the neural currents

produced by elementary generators can be approximated by an equivalent current dipole
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Figure 1.17: The activity of a small region of the brain can be approximated by a current

dipole. The position of the dipole (the dot) is at the center of the activated cortex area (in red)

and the moment of the dipole (the green arrow) corresponds to the average orientation of the

pyramidal neurons in this region (perpendicular to the cortical surface).

(ECD). The electromagnetic fields produced by this ECD are strong enough to be measured

outside the head. This raises the question of how to measure these fields.

E
Electric Field

Neural

Current

(post synaptic)

Equivalent

Current

Dipole

Figure 1.18: Electric field produced by neural currents modeled by an equivalent current

dipole (ECD)

1.2 INSTRUMENTATION FOR MEG AND EEG

1.2.1 Electroencephalography (EEG)

The first human EEG recordings date back to the first measurements by the German physi-

ologist and psychiatrist Hans Berger in 1929. The recording is obtained by placing electrodes

which measure the electric potential on the scalp of the subject (cf. figure 1.20).
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Figure 1.19: Magnetic field produced by neural currents modeled by an equivalent current

dipole (ECD)

(a) EEG recordings in 1949 (b) Modern EEG recordings (Odyssée project team, IN-
RIA Sophia Antipolis)

Figure 1.20: EEG equipment: the electrode helmet is placed on the head of the subject, then

the signal is processed through an amplifier.

To obtain congruence among different laboratories, a standard electrode placement scheme

was proposed by Jasper in 1958 [115], basing the positioning on head anatomical landmarks

(see figure 1.22). This standardization marked the beginning of modern electroencephalog-

raphy. The number of electrodes used in research has increased over the years from around

19 of Jasper’s time to as many as 512 today, however the 10-20 system with 19 electrodes is

still the dominant standard in clinical settings and most research is carried out with 19 to 64

electrodes.

In a modern EEG system, the electrodes are connected to an amplifier and the signals are

then digitized and stored on a computer. Signals measured by EEG sensors have an order of

magnitude in the range of a few µV. An example of EEG recordings is presented in figure 1.21.

The advantage of this device is its simplicity and cheap cost. Unfortunately, the low con-

ductivity of the skull tends to diffuse the electric potential. As illustrated in figure 1.23, at

the surface of the scalp, the potential only reflects roughly the underlying brain activity.
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Figure 1.21: Sample EEG recordings. Each time series is the signal measured by one elec-

trode. Electrodes have names (e.g., FP1, F3, C3 etc.) function of their position of the scalp (cf.

figure 1.22).

Figure 1.22: The international 10-20 system seen from (A) left and (B) above the head. A =

Ear lobe, C = central, Pg = nasopharyngeal, P = parietal, F = frontal, Fp = frontal polar, O =

occipital. (C) Location and nomenclature of the intermediate 10% electrodes, as standardized

by the American Electroencephalographic Society. (Adapted from [67]).
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Figure 1.23: The electric potential distribution measured with EEG on a somato-sensory

experiment 20 ms after stimulation (Adapted from [211]).

1.2.2 Magnetoencephalography (MEG)

The magnetic counterpart of EEG, the magnetoencephalogram, was recorded 40 years later

(1968), using room temperature coils and signal averaging on the basis of EEG [35]. Fur-

ther progress in MEG required highly sensitive magnetic detectors based on superconducting

and quantum phenomena and are called SQUIDs (superconducting quantum interference de-

vice). In 1969, Zimmerman and colleagues developed the first SQUIDs. They were first used

for MEG in 1972 by David Cohen [36]. After this pioneering work, the field of MEG devel-

oped first by using single-channel devices, followed by somewhat larger systems with 5 to 7

channels in the mid 1980s, then systems with 20 to 40 sensor arrays in the late 1980s and

early 1990s. The first MEG systems with a helmet covering the entire cortex were introduced

in 1992. Today MEG systems have several hundreds channels in a helmet arrangement (see

figure 1.24) allowing to capture the signal originating from the whole brain simultaneously.

More details can be found in [100, 217].

MEG measurements span a frequency range from about 10 mHz to 1 kHz and field mag-

nitudes from about 10 fT for spinal cord signals to about several pT for brain rhythms. To

realize how small the MEG signals are, it should be recalled that the Earth’s field magnitude

is about 0.5 mT and the urban magnetic noise about 1 nT to 1 µT, which corresponds to a

factor of 1 million to 1 billion larger than the MEG signals. Such large differences between

signal and noise demand noise cancellation with extraordinary accuracy.

A MEG system is very expensive compared to EEG, because the SQUID sensors need to op-

erate at very low temperature, and for this reason are immersed in liquid helium. Moreover,

most often a magnetic shielded room is necessary to use the system. The main advantage of

the magnetic field measurements is that it is much less sensitive to the detailed conductivity

geometry of the head than the electric potential. The magnetic field observed outside the

head offers a more precise representation of the underlying brain activity, see figure 1.25 in

comparison to figure 1.23(b). That is why, in spite of their high cost, MEG systems are very

attractive for the exploration of the human brain.

1.2.3 Other modalities for brain functional imaging

Brain functional imaging modalities can be classified in two categories: direct and indirect

measures of the neuronal activity. The direct measures, like M/EEG, provide access to the
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Liquid

helium

Sensors

(a) Schematic representation
of historical MEG device with
a small number of sensors

(b) Schematic represen-
tation of full head MEG
device

(c) Recent MEG device (Magnetoencephalogra-
phy center, La Timone, Marseille)

Figure 1.24: MEG devices. SQUID sensors are immersed in liquid helium.
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Figure 1.25: Magnetic field measured with MEG on a somato-sensory experiment. It is a 2D

topography 20 ms after stimulation. Image obtained from the data used in [150].
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Figure 1.26: Spatiotemporal resolution and invasivity of brain functional imaging modalities.

electrical activity. Indirect measures estimate the brain activations only via the metabolic

and hemodynamic processes caused by the actual neuronal activations.

Neuroimaging modalities have each some characteristic features. They can be classified

in term of spatial resolution, temporal resolution and invasivity. This is summarized in fig-

ure 1.26.

Stereo-electroencephalography (sEEG)

Like M/EEG, stereoelectroencephalography (sEEG) provides access to the currents produced

by the neuronal activity. By implanting depth electrodes surgically into the brain tissues,

sEEG records the electrical potentials directly within the cortical layers. Electrodes are a

few centimeters long and contain multiple contacts. Each contact record the local electric

potential. Around the location of the activation are observed large deflections in the signal

waveforms typical to sEEG recordings (cf. figure 1.27).

In the treatment of epilepsy, this ability to precisely locate the origin of a neuronal acti-

vation contributes to define the boundaries of the “epileptogenic zone”, i.e., the area of brain

generating the epileptic seizures. It can be necessary to surgically resect this area to get rid of

the epileptic seizures. This technique was introduced by the group of the Ste Anne Hospital,

Paris, France, in the second half of the 20th century [111, 200].

However, this technique although has some drawbacks. The access to neuronal currents is

invasive and the number of electrodes limits the recordings to very specific brain regions. In

comparison, the spatial resolution of M/EEG is more limited but it records a very distributed

cortical activation and is therefore not restricted to predefined brain regions.

Functional magnetic resonance imaging (fMRI)

Functional magnetic resonance imaging, or fMRI, works by detecting the changes in blood

oxygenation and flow that occur in response to neural activity. An active brain area con-

sumes more oxygen. To meet this increased demand, blood flow in the active area increases.
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Figure 1.27: Electrode implantation and recordings with sEEG. (Reproduced from [72]).

Functional MRI can be used to produce volumetric activation maps showing which parts of

the brain are involved in a particular mental process (cf. figure 1.28).

Oxygen is delivered to neurons via haemoglobin carried by red blood cells. Haemoglobin

is diamagnetic when it is oxygenated while it is paramagnetic when deoxygenated. This

difference in magnetic properties leads to small differences in the MR signal. Since blood

oxygenation varies according to the levels of neural activity these differences can be used to

detect brain activity. This type of MRI is known as blood oxygenation level dependent (BOLD)

imaging.

One point to note is that the blood oxygenation increases following neural activation with

a delay of a few seconds. Due to the indirect measure of neural activation, temporal resolution

of fMRI is limited to the time scales of the measured hemodynamic processes. See [184] for a

historical perspective on fMRI development.

Positron Emission Tomography (PET)

Positron emission tomography (PET) is a nuclear medicine imaging technique which produces

a three-dimensional image of brain activations. The system detects pairs of gamma rays

emitted indirectly by a positron-emitting radionuclide, a tracer, which is injected into the

body on a biologically active molecule. Images of tracer concentration in 3D space within

the brain are then reconstructed by computer analysis, as illustrated in figure 1.29. Without

going into details, tracers used for brain PET scanning focus on the glucose consumption of

the different brain regions. Like fMRI, it gives access to neural activity indirectly via the

measurements of metabolic processes, but contrary to fMRI it requires the injection of an

invasive radioactive tracer.
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Figure 1.28: Sample fMRI activation map. The fMRI statistics (yellow) are overlaid on an

average of the brain anatomies of several humans (source: wikipedia.org)

Figure 1.29: Sample PET activation map (source: wikipedia.org).
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Single Photon Emission Computed Tomography (SPECT)

Single Photon Emission Computed Tomography (SPECT), is similar to PET in its use of ra-

dioactive tracer material and detection of gamma rays. In contrast to PET, however, the

tracer used in SPECT emits gamma radiation that is measured directly, whereas PET tracer

emits positrons which annihilate with electrons up to a few millimeters away, causing two

gamma photons to be emitted in opposite directions. A PET scanner detects these emissions

“coincident” in time, which provides more radiation event localization information and thus

higher resolution images than SPECT. SPECT scans, however, are significantly less expen-

sive than PET scans, in part because they are able to use longer-lived more easily-obtained

radioisotopes than PET.

Optical imaging with near-infrared spectroscopy (nIRS)

Near-infrared spectroscopy (nIRS) uses near infrared light to measure the absorption of

haemoglobin. It relies on the absorption spectrum of haemoglobin varying with its oxygena-

tion status and as a consequence on the level of neural activity in a specific brain region.

It has the interesting ability for measure both deoxygenated and oxygenated haemoglobin,

which is of particular interest for understanding hemodynamic processes. nIRS is more con-

venient than fMRI with babies for which the skull is more transparent. It is also less noisy

than fMRI systems and therefore more adapted to children. However, nIRS is restricted to

superficial sources. See for example [19, 88] for more details.
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1.3 CONCLUSION

As the electric activity of the neurons produces an electromagnetic field, and more

importantly because, the organization of neural assemblies enables the summation of these

fields, it is possible to detect and measure the brain activity outside of the head.

This offers the possibility to directly measure the neuronal activity in a non-invasive way.

The high temporal resolution of M/EEG measurements makes them particularly interesting

compared to other brain functional imaging modalities that are limited by the time scales

of metabolic and hemodynamic processes. More than simply localizing the origin of the mea-

sured signal, M/EEG offer the possibility to investigate the dynamics of the cortical processing

involved in different cognitive tasks.

In order to use M/EEG for brain functional imaging, some modeling and computation

need to be done. Prior to any localization of activation, the way the neuronal currents and

electromagnetic fields propagate within the different head tissues needs to be modeled. This

aspect of the work, that consists in quantifying how the neuronal activations produce a signal

on a given sensor involves physical considerations and is referred to as the direct (or forward)

problem. This problem is the subject of the following chapter. The aspect that consists in

localizing the activations based on the measured signal will be treated in chapters 3 and 4,

and is called the inverse problem.
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CHAPTER 2

THE FORWARD PROBLEM

In chapter 1, it was explained how neurons can induce electromagnetic fields that can be mea-

sured non-invasively outside of the head. The problem that consists in modeling the head in

order to compute the electric potential or the magnetic field that should be produced by a

given configuration of generators at the sensor level is called the forward problem. The solu-

tion of this problem is the first step in the M/EEG processing pipeline whose final objective

is the localization of brain activations. The accuracy of the solution of the forward problem is

fundamental in order to provide good localization results.

In the first part of this chapter, we review the equations and methods for solving the

forward problem. We then detail the software contributions made in this thesis mainly in

the OpenMEEG project that implements the symmetric BEM presented in this chapter. We

also provide a list of open source software projects that can be used for solving the M/EEG

forward problem. Finally, we provide some numerical evaluations that demonstrate that the

precision obtained by OpenMEEG clearly improves over concurrent implementations.
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2.1 THE PHYSICS OF EEG AND MEG

Notations

All vectors are denoted in bold characters. The vector indicating the position of a point

r of R
3 is denoted by r. In the following, we use vector calculus notation, with the “nabla”

operator ∇. For a real function f(r), ∇f is the gradient of f . For a vector field X(r), ∇ ·X is

the divergence of this field (a scalar) and ∇×X is the curl of this field (a vector).

2.1.1 Maxwell’s equations

Maxwell’s equations relate the electromagnetic field to the charge density and current den-

sity. We denote by E the electric field, B the magnetic field, ρ the charge density and J the

current density. Maxwell’s equations are a set of four partial differential equations:







































∇ ·E =
ρ

ǫ

∇×E = −∂B
∂t

∇ ·B = 0

∇×B = µ

(

J + ǫ
∂E

∂t

)

(2.1)

where ǫ is the electrical permittivity of the medium and µ is the magnetic permeability.

For human tissues, the magnetic permeability µ is the same as for vacuum µ = µ0,

whereas the relative electrical permittivity ǫr = ǫ
ǫ0

varies a lot depending on tissue and fre-

quency. For instance, at a frequency of 100 Hz, ǫr is around 4× 106 for gray matter, 5× 105 for

fat and 6× 103 for compact bone [83].

2.1.2 Quasi-static approximation

As described in section 1.1, the post-synaptic potentials have a duration of about 10 ms. As a

consequence, it is commonly accepted that the time frequencies of the brain electromagnetic

field that can be observed outside the head can rarely exceed 100 Hz. For such low frequencies,

the time derivatives in Maxwell’s equations can be neglected, this is called the quasi-static

approximation.

A justification of the quasi-static approximation can be found in [100]. Let us illustrate it

with some orders of magnitude. We know that in a simple medium, the general solution of

the electromagnetic wave equation can be written as a linear superposition of planar waves

of different frequencies and polarizations. Let us just consider one planar wave for the sake

of simplicity. Its equation is:

E(r, t) = E0e
i2πk·rei2πft , (2.2)

where i is the imaginary unit, E0 is a real amplitude vector contained in the wave plane, k is

a real spatial frequency vector normal to the wave plane (E0 · k = 0), and f is the temporal

frequency. Let us consider a Maxwell’s equation including a time derivative in a passive

conductive non-magnetic medium with conductivity σ:

∇×B = µ0

(

σE + ǫ
∂E

∂t

)

. (2.3)



58 CHAPTER 2. THE FORWARD PROBLEM

The current J is replaced by σE in (2.1) following Ohm’s law, J = σE.

To neglect the time derivative in (2.3), it is necessary that ‖ǫ∂E
∂t ‖ ≪ ‖σE‖. For the planar

wave, this is equivalent to κ = |2πf ǫ
σ | ≪ 1. At a frequency of 100 Hz, the average permittivity

of the head tissues is ǫ = 105ǫ0 and the average conductivity is σ = 0.3 Ω−1m−1. With these

values, κ = 1, 8× 10−3, hence the term ǫ∂E
∂t can be neglected.

More intuitively, we can just consider the spatial wavelength λ of our planar wave which

is given by the relation c = fλ, where c = 1√
µǫ is the speed of the wave in the medium and f

is the temporal frequency of the wave. With a frequency of 100 Hz, it gives us a wavelength of

about 105 m. Thus, at the scale of a human head, we can neglect the oscillations of the wave,

which gives ∇×E = 0 instead of ∇×E = −∂B
∂t .

The practical consequences of the quasi-static approximation are twofold. First, the elec-

tric component is decoupled from the magnetic component, allowing the computation of the

electric potential separately. Second, the delays of propagation of the signal from the neu-

ronal sources to the M/EEG sensors can be neglected. We can, therefore, assume that M/EEG

sensors measure at each instant the activity produced at the very same instant.

2.1.3 The electric potential equation

In the quasi-static approximation, we neglect all the time derivatives. As a consequence, the

curl of the electric field E is zero, meaning that it derives from a scalar potential V :

E = −∇V. (2.4)

In a medium with current generators, the total current can be decomposed in two parts:

a primary current flow Jp related to the current generators and a volume current flow Jv due

to the electric field in the volume.

Using Ohm’s Law, Jv = σE, we have:

J = Jp + Jv = Jp + σE = Jp − σ∇V . (2.5)

The volume currents, a.k.a., the ohmic currents, correspond to the displacements of charges

due to the gradient of potential in the medium.

Neglecting the time derivative in Maxwell equations leads to:

∇×B = µJ

⇒ ∇ · (∇×B) = ∇ · (µJ)

⇒ 0 = ∇ · (µJ)

⇒ 0 = ∇ · J

(2.6)

which finally leads to the potential equation:

∇ · (σ∇V ) = ∇ · Jp . (2.7)

2.1.4 The magnetic field equation: the Biot-Savart law

Because ∇ ·B = 0, there exists a vector field A such that:

B = ∇×A .

We use the classical gauge condition ∇ · A = 0 to avoid the indetermination caused by the

definition of A.
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This leads to:

∇×B = ∇×∇×A = ∇ (∇ ·A)−∆A = −∆A .

Maxwell’s equation ∇ × B = µ0J becomes ∆A = −µ0J, which is a Poisson equation. If we

impose A(|r| → ∞) = 0 (no magnetic field at infinity), it has a general solution in R
3 :

A(r) =
µ0

4π

∫

R3

J(r′)
‖r− r′‖dr

′ .

Taking the curl, we obtain the Biot-Savart law:

B(r) =
µ0

4π

∫

R3

J(r′)× (r− r′)
‖r− r′‖3 dr

′ .

Because the current can be written as J = Jp − σ∇V , we can transform the Biot-Savart

law into:

B(r) = B0(r)− µ0

4π

∫

R3 σ∇V (r′)× r−r′

‖r−r′‖3 dr
′ , (2.8)

with

B0(r) =
µ0

4π

∫

R3

Jp(r′)× (r− r′)
‖r− r′‖3 dr

′ .

With this formulation, B0 is often called the primary magnetic field while the second term is

called the secondary magnetic field.

Note that the primary magnetic field does not depend on the medium, which corresponds

to the head with M/EEG, and therefore it does not depend on the values of the conductivities.

2.2 UNBOUNDED HOMOGENEOUS MEDIUM

Let us consider an homogeneous volume conductor with a constant conductivity σ.

The equation (2.7) becomes:

∆V =
1

σ
∇ · Jp ,

which is a Poisson equation of general solution:

V (r) =
1

4πσ

∫

R3

∇ · Jp(r′)
‖r− r′‖ dr

′ ,

with V vanishing at infinity. Applying the divergence theorem, it yields

V (r) = 1
4πσ

∫

R3 Jp(r′) · (r−r′)
‖r−r′‖3 dr

′ . (2.9)

For the magnetic field, we take σ out of the integral in (2.8) because it is constant:

B(r) = B0(r)−
µ0σ

4π

∫

R3

∇V (r′)× (r− r′)
‖r− r′‖3 dr

′ . (2.10)

Using the identity

∇V (r′)× (r− r′)
‖r− r′‖3 = ∇×

( ∇V (r′)
‖r− r′‖

)

− ∇× (∇V (r′))
‖r− r′‖

and the fact that the curl of a gradient is null, the integral on the right hand side of (2.10)



60 CHAPTER 2. THE FORWARD PROBLEM

becomes
∫

R3

∇×
( ∇V (r′)
‖r− r′‖

)

dr′ .

Since V vanishes at infinity, using Stokes’ theorem, this integral is null. We obtain finally

that, in an infinite homogeneous medium, the magnetic field reduces to the primary field:

B(r) = B0(r) = µ0

4π

∫

R3 Jp(r′)× (r−r′)
‖r−r′‖3 dr

′ . (2.11)

In this special case, the passive current σE = −σ∇V does not contribute to the magnetic field.

2.2.1 Dipolar sources

If the primary current Jp is reduced to a single current dipole at position r0 with moment

q, then Jp(r) = q δr0(r), where δr0 is the Dirac distribution at r0. Using equations (2.9) and

(2.11) with such a primary current, we obtain that the potential and magnetic field in an

homogeneous space have very simple formulations:

Vdip(r) =
1

4πσ
q · r− r0

‖r− r0‖3
(2.12)

Bdip(r) =
µ0

4π
q× r− r0

‖r− r0‖3
(2.13)

Such formulas can also be obtained from a Taylor expansion of the function:

Φr(r
′) =

r− r′

‖r− r′‖3

Let us assume that the primary current sources lie in small volume δΩ (cf. figure 2.1). The

Taylor expansion of Φr at r′ = r0, where r0 is the centroid of the small volume δΩ, gives:

Φr(r
′) = Φr(r0) +∇r0

Φr(r0 − r′) + o(‖r′ − r0‖)

where ∇r0
Φr is the gradient of Φr taken at position r0.

By approximating Φr(r
′) by Φr(r0) the equations (2.9) and (2.11) write:

V (r) =
1

4πσ

∫

δΩ

Jp(r′)dr′ · r− r0

‖r− r0‖3

B(r) =
µ0

4π

∫

δΩ

Jp(r′)dr′ × r− r0

‖r− r0‖3
.

(2.14)

We obtain the formulas giving the potential and magnetic field of a dipolar source whose

moment is given by:

q =

∫

δΩ

Jp(r′)dr′ . (2.15)

As illustrated in figure 2.1, this approximation is justified if ‖r′ − r0‖ ≪ ‖r′ − r‖ in δΩ. This

implies that the primary currents produced by a region δΩ sufficiently small compared to the

distance to the observation point r can be correctly modeled by an equivalent current dipole

(ECD).

2.2.2 Multipolar sources

If the Taylor approximation at order 0 used to justify the dipolar source model does not hold,

it is necessary to consider more terms in the Taylor expansion. This leads to the multipolar
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Figure 2.1: Measurement at point r of the electromagnetic fields produced by a current dis-

tribution in a region δΩ when ‖r′ − r0‖ ≪ ‖r′ − r‖.

source models.

Using one more term we get:

Vmult(r) =
1

4πσ

(∫

δΩ

Jp(r′)dr′ · r− r0

‖r− r0‖3
+

∫

δΩ

∇r0
Φr(r0 − r′) · Jp(r′)dr′

)

= Vdip(r) + Vquad(r)

(2.16)

where Vquad stands for the quadrupolar term.

Borrowing the notation “:” for tensor contraction from [118], we rewrite the quadrupolar

term Vquad(r) as:

Vquad(r) =
1

4πσ
∇r0

Φr :

∫

δΩ

(r0 − r′)Jp(r′)dr′

where the term
∫

δΩ
(r0 − r′)Jp(r′)dr′, denoted by Qquad, is called the quadrupolar moment.

This term is a 3× 3 tensor.

Similarly, for the magnetic field we get:

Bmult(r) = Bdip(r) + Bquad(r)

where

Bquad(r) =
µ0

4π
∇r0Φr : Qquad

When considering more terms in the expansion, we add correcting terms in the expression

of the electric and magnetic fields.

2.3 THE SPHERICALLY SYMMETRIC HEAD MODEL

Obviously, the human head is not an infinite homogeneous conductor. First of all, it

is a bounded conductor and no electric current can flow outside the head (except at the neck).

Secondly, the electrical conductivity σ of the head is not constant: for instance, the skull is
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between 20 and 100 times less conductive than other head tissues. This must be taken into

account to get more accurate approximations of the potential and magnetic field generated

by the brain electrical activity. A first step towards head modeling is to consider the head as

a set of nested concentric spheres. Each volume enclosed between two spheres is supposed to

represent a different tissue with a constant isotropic conductivity. Figure 2.2 shows a sphere

model with three spheres. Without respect to proportions, it could represent the brain, the

skull and the scalp of a human head. This simple geometry allows one to find an analytic

solution for the electric potential generated by a dipole, like for the infinite homogeneous

medium (2.12).

Ω1

Ω2

Ω3

S1

S2

S3

σ1

σ2

σ3

r1

r2 r3

Figure 2.2: A spherical model with three layers.

2.3.1 Electric potential generated by a dipole

The key point is to take advantage of the spherical symmetry of the geometry. First, we

use spherical coordinates (r, θ, φ) instead of Cartesian coordinates, and second, we expand

the electric potential in spherical harmonics Y m
l (θ, φ). The spherical harmonics have the

following form:

Y m
l (θ, φ) = Nm

l P
m
l (cos θ)eimφ, l ∈ N,m ∈ Z, |m| < l ,

where Nm
l is a normalization coefficient and Pm

l is an associated Legendre function. In our

case, this is of particular interest because the general solution of Laplace’s equation ∆f = 0

in spherical coordinates can be written as a linear combination of spherical harmonics

f(r, θ, φ) =

∞
∑

l=0

l
∑

m=−l

(Almr
−1−l +Blmr

l)Y m
l (θ, φ) .

If f is a real function, it simplifies to

f(r, θ, φ) =

∞
∑

l=0

l
∑

m=0

(Almr
−1−l +Blmr

l)Pm
l (cos θ) cos(mφ) .

Now let us consider a current dipole inside the spherical model at location r0 with q its

moment. We use the notation of figure 2.2, with indices increasing from the innermost sphere
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to the outermost one. In all subregions Ωk where the dipole is not located, the potential

equation states that ∇ · (σk∇V ) = σk∆V = 0 because σk is constant. As a consequence, the

restriction Vk of V in each domain Ωk is harmonic and can be decomposed on the spherical

harmonic basis:

Vk(r, φ, θ) =
∑∞

l=0

∑l
m=0(A

k
lmr

−1−l +Bk
lmr

l)Pm
l (cos θ) cos(mφ) . (2.17)

In the domain Ωk∗ where the dipole is located, the potential V satisfies σk∗∆V = ∇ · Jp,

with Jp = q δr0
. So we can decompose the potential in V = v + u, where v is the potential

generated by the dipole in an infinite homogeneous domain of conductivity σk∗ , and u is an

harmonic function. The function v is defined as

v(r) =
1

4πσk∗
q · (r− r0)

‖r− r0‖3
.

This function can be decomposed in the spherical harmonic basis

v(r, φ, θ) =

{

∑∞
l=0

∑l
m=0 q

inf
lm rlPm

l (cos θ) cos(mφ) , r < r0
∑∞

l=0

∑l
m=0 q

sup
lm r−1−lPm

l (cos θ) cos(mφ) , r > r0

So if we denote Ak∗
lm and Bk∗

lm the coefficients of the decomposition of u, we have a decomposi-

tion of Vk∗ in the spherical harmonic basis

Vk∗(r, φ, θ) =

{

∑∞
l=0

∑l
m=0(A

k∗
lmr

−1−l + (qinf
lm +Bk∗

lm)rl)Pm
l (cos θ) cos(mφ) , r < r0

∑∞
l=0

∑l
m=0((A

k∗
lm + qsup

lm )r−1−l +Bk∗
lmr

l)Pm
l (cos θ) cos(mφ) , r > r0

(2.18)

Finally, to fully determine the potential in the whole domain Ω, one needs to fix the value

of the coefficients Ak
lm and Bk

lm. This is done by considering the boundary conditions at each

surface Sk. The electric potential and the current density must be continuous through the

interfaces:

{

Vk(rk, φ, θ) = Vk+1(rk, φ, θ)

σk
∂Vk

∂r (rk, φ, θ) = σk+1
∂Vk+1

∂r (rk, φ, θ)
(2.19)

From (2.17), (2.18) and (2.19), a linear system can be built for the Ak
lm and Bk

lm, which

leads to the determination of these coefficients. Because of the infinite series, in practi-

cal situations one has to choose at which order the series have to be truncated. For high

orders, the solution is more accurate but the computation is more expensive. Several ap-

proaches have been proposed for efficient computation of the electric potential in multilayer

spheres [18, 58, 238].

2.3.2 The magnetic field

In the case of the magnetic field, there is no need to use an infinite series based on a decom-

position in spherical harmonics. Indeed, in a spherical geometry, the magnetic field has a

simple closed-form.
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2.3.2.1 The radial component of the magnetic field

We again consider a spherical geometry as described in figure 2.2. With spherical coordinates,

the radial component of the magnetic field is

Br(r) = B(r) · er = B(r) · r
r
,

and the outward normal at each surface Sk is

n(r′) =
r′

r′
.

The spherical geometry in figure 2.2 is a special case of geometry with a piecewise constant

conductivity, so that the magnetic field can be expressed using the formula (2.28) described in

section 2.4.3. If we compute the radial component of the magnetic field, the following scalar

triple product appears in the surface integrals:

r− r′

‖r− r′‖3 ×
r′

r′
· r
r
.

This quantity is zero because r, r′ and (r − r′) are in a same plane. As a consequence, in a

spherical geometry, the radial component of the magnetic field is equal to the radial compo-

nent of the primary field:

Br(r) = B0(r) · er =
µ0

4π

∫

Ω

Jp × (r− r′)
‖r− r′‖3 · erdr

′ . (2.20)

2.3.2.2 Total magnetic field generated by a dipole

We assume that Jp is a dipole at position r0 with a moment q. Outside the domain Ω, there is

no current, the Maxwell’s equations in the quasi-static approximation state that ∇ ×B = 0.

As a consequence, outside Ω, B derives from a scalar potential U :

B = −∇U ,

with U vanishing at infinity. For r outside Ω, we can then write the following line integral:

U(r) = −
∫ ∞

0

∇U(r + ter) · erdt

=

∫ ∞

0

B(r + ter) · erdt

=

∫ ∞

0

Br(r + ter) · erdt

Using the expression of the radial magnetic field in (2.20) and the dipolar approximation from

(2.15), we obtain:

U(r) =
µ0

4π
q× (r− r0) · er

∫ ∞

0

1

‖r + ter − r0‖3
dt .

The computation of the integral in the right hand side leads to

U(r) = −µ0

4π

q× r0 · r
F

,
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where F = a(ra + r2 − r0 · r) with a = r − r0 and a = ‖a‖. Taking the gradient results in the

following formulation for the total magnetic field:

B(r) = µ0

4πF 2 (Fq× r0 − q× r0 · r∇F ) . (2.21)

This formula for the total magnetic field generated by a dipole in a spherical geometry was

found by Sarvas [192]. Interestingly, although it is different from the formula in an infinite

homogeneous medium, it is also independent of the conductivity σ of the domain Ω.

2.3.3 Magnetic field generated by a multipole

Considering multipolar expansions, Jerbi et al. showed in [118], that a similar expression as

(2.21) can be derived for the magnetic field when using spherical geometries.

Let Xr be the cross product tensor, defined by r × x = Xr · x. Using this notation, the

Sarvas formula can be rewritten for a current dipole:

Bdip(r) = − µ0

4πF 2
(FXr0 +∇F (r0 × r)) · q .

Borrowing again the notation “:” from [118], the magnetic field produced by a current

multipole can be obtained from:

Bmult(r) = − µ0

4πF 2
(FXr0 +∇F (r0 × r)) · q−∇r0

µ0

4πF 2
(FXr0 +∇F (r0 × r)) : Qquad (2.22)

The term q has 3 coefficients and Qquad has 9 coefficients. Yet, an analysis of this first

order multipole model [117] has shown that the forward field produced is only of rank 7. A

first order current multipole can therefore be modeled with 7 parameters instead of 12.

2.3.4 Limits of spherical models

The analytical or semi-analytical formulas of the electromagnetic field can be extended to non

concentric spheres [149], or to ellipsoidal geometries [54]. However, for EEG, several studies

have shown that such simplified models can not produce satisfactory results [33, 47, 109]. For

MEG data, the head modeling is not as crucial. With a spherical head model, the total mag-

netic field does not depend on the conductivities and it is observed with more complex head

geometries that this limited influence of the conductivities is maintained. This explains why

spherical models are very popular in MEG. With EEG, it is necessary to considerer realistic

head models with less constrained geometrical properties.

2.4 REALISTIC HEAD MODELS

To improve the accuracy of the forward calculation one needs to consider more realis-

tic head models. The geometry of such improved head models can be obtained from other

anatomical imaging modalities: computed tomography (CT) and structural magnetic reso-

nance imaging (sMRI). Structural MRI is here opposed to functional MRI (fMRI) used for

brain functional imaging with MRI (cf. section 1.2.3).

MRI consists in applying a strong external magnetic field to a volume, which consequently

aligns all the magnetic moments of nucleus like hydrogen with a fixed direction within this

volume. After stopping this magnetic field, MR machines are able to measure the relaxation
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Figure 2.3: On the left, a slice of a CT image. On the right, the same slice obtained with T1

MRI. We observe that CT offers a clear view of the skull while MRI provides a good contrast

in soft tissues. (Source gehealthcare.com)

time in voxels located on a 3D grid within the volume. The relaxation time is the time it takes

for the hydrogen to return to equilibrium. This relaxation time depends of the physical prop-

erties of each tissue offering the possibility to get 3D images with a high contrast especially

for soft tissues (white matter, gray matter, fat, muscle). MRI is however not very adapted to

the imaging of bones due to the reduced presence of hydrogen in such structures. Computed

tomography (CT) imaging modality is more appropriate for bones. However, based on X-ray,

this modality exposes the patients to the hazards of ionizing radiation and is therefore not

commonly used for M/EEG studies. Hence, precise models of the head tissues are often built

from structural MR images, but the skull is most of the time not clearly visible and the skull

models obtained from MRI are less accurate. CT and MRI images of the same subject are

shown in figure 2.3.

Volumetric anatomical data reveal the geometrical complexity of the head structures. We

will now present existing approaches and approximations to take this information into ac-

count for computing precise forward models. The different approaches that exist to compute

numerical solutions for the forward problem in M/EEG are Finite Difference Methods (FDM),

Finite Element Methods (FEM) and the Boundary Element Method (BEM).

2.4.1 The Finite Difference Method (FDM)

Finite difference methods provide numerical solutions to differential equations by approxi-

mating derivatives with finite differences, i.e., approximative equivalent difference quotients.

For instance, for a function f in 1D, the first order derivative is given by the limit:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
,

thus, for a small value of h, the derivative can be approximated by:

f ′(x) ≃ f(x+ h)− f(x)

h
.

For equation (2.7), we need to approximate the differential operator ∇ · (σ∇V ). In 3D, a

point has 6 neighbors, located at a distance of +h and −h in each direction. This approxima-
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tion leads to:

(∇ · σ∇V ) (r0) ≃
1

h2

(

α0V (r0)−
6
∑

i=1

αiV (ri)

)

, (2.23)

where the constants α0 and αi depend on the conductivities at the points r0 and ri. Please note

that this scheme corresponds exactly to Kirchhoff ’s law for the balance of currents, assuming

that the points form a network of resistors. Generally, the head volume is discretized using

a cubic grid with a regular spacing h, therefore the same scheme (2.23) can be used at every

point of the grid by computing differences between closest neighbors.

For the source, we need to approximate the divergence operator ∇ · Jp. The primary

currents are defined over the edges between the grid points. For example, a dipole can be

represented as a small current flowing over the edge linking two points r+ and r−, so that the

divergence is reduced to the source and sink of current, i.e., ∇ · Jp = Iδr+ − Iδr− , where I is

the amplitude of the current. Denoting by [Ji] the values of the primary currents between the

neighboring grid points, the term ∇ · Jp can be written in matrix form as B [Ji]. By denoting

[Vi] the values of the potential at grid points and plugging this expression into Kirchhoff ’s

law, we get that the potential [Vi] is solution of the linear problem:

A [Vi] = B [Ji]

The matrices involved are typically very large since the whole head domain has to be dis-

cretized. However the matrix A that needs to be inverted is highly sparse, because it has at

most six off-diagonal elements per line, which implies that iterative methods are efficient.

The main drawback of the FDM method for M/EEG forward modeling is that, due to the

cubic grid, the complex interfaces between brain structures and thin layers cannot be pre-

cisely modeled. Indeed, with a cubic grid, the interfaces have to follow the grid points which

leads to a “staircase” effect.

2.4.2 The Finite Element Method (FEM)

The FEM can work on an unstructured grid like a triangulated surface when computed in

2D or on a tetrahedrized volume in 3D. Figure 2.4 is an example of a tetrahedral mesh of

the head. The problem is first reformulated in its variational form, also called weak form.

Then, an approximate solution of the problem in its weak formulation is found by looking for

a solution in a finite dimensional vector space. The second step requires to properly choose

the finite dimensional space in order to guarantee the quality of the approximation. Once

discretized, the problem leads to a linear system that is solved numerically. Contrary to the

FDM, Finite Element Methods (FEM) do not suffer from the staircase effect.

To illustrate this, let us consider the equation (2.7) for the potential. We consider the

domain Ω describing the head and its boundary denoted ∂Ω. On the boundary, there is no

electric current flowing outside, so the differential equation with its boundary condition is

{ ∇ · (σ∇V ) = ∇ · Jp in Ω

σ∇V · n = 0 on ∂Ω
(2.24)

An important step of the FEM is to transform the differential equation (2.24) in its varia-

tional formulation. We assume that V lives in a certain Hilbert space E of regular functions.
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Figure 2.4: A tetrahedral mesh of the head. The different domains are shown with differ-

ent colors, from inside to outside: white matter, gray matter, CSF, skull, scalp (Adapted

from [229]).

If V is solution of (2.24), then for any function φ in E:

∫

Ω

∇ · Jpφ =

∫

Ω

∇ · (σ∇V )φ

=

∫

∂Ω

φσ∇V · n−
∫

Ω

σ∇V · ∇φ

= −
∫

Ω

σ∇V · ∇φ

The last equality is of the form a(V, φ) = f(φ) where a is a bilinear functional and f is

linear. This provides the weak formulation of (2.24):

∀φ ∈ E, a(V, φ) = f(φ) . (2.25)

The second step consists in solving equation (2.25) in a finite dimensional subspace Eh of

E. The parameter h refers to the precision of the approximation. Let (φi)i=1...n be a basis of

Eh. A solution V in Eh can be written V =
∑n

i=1 Viφi.

The variational formulation in Eh becomes:

∀j ∈ [1, . . . , n] ,

n
∑

i=1

Viah(φi, φj) = fh(φj) . (2.26)

The right hand side is given by:

fh(φj) =
∫

Ωh
∇ · Jpφj

=
∫

∂Ωh
φjJ

p · n−
∫

Ωh
Jp · ∇φj

= −
∫

Ωh
Jp · ∇φj ,

assuming that there are no sources on the boundary ∂Ωh and that partial integration is possi-

ble. For instance, for a dipole, Jp = qδr0
, where δr0

is the Dirac distribution at r0, the equality
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∫

Ωh
∇ · Jpφj = −

∫

Ωh
Jp · ∇φj leads to:

fh(φj) = q · ∇φj(r0) .

Like for the FDM, this leads to a linear system A [Vi] = b which completely determines

the values Vi. An approximate solution for the potential can then be obtained by solving

this linear system which can however be huge. The computation of the magnetic field is not

detailed here, but it can be obtained from the computed electric potential.

The success of the FEM comes from the idea that by using basis functions φi with a local

support, the matrix A can be very sparse. Iterative methods, like conjugate gradient methods,

can then perform well for solving this linear system.

Typical choices for the functions φi include the P0 and P1 elements. For instance, the

the subspace of the piecewise constant functions corresponds to a P0 discretization. With P0

elements the φi are indexed by the tetrahedron and are constant on the ith tetrahedron. With

P1 elements, the functions φi are indexed by the nodes of the tetrahedrization. Each function

φi takes the value 1 at node i, 0 at every other node, and is affine on the tetrahedra adjacent

to node i. With such compactly supported elements, we observe that ah(φi, φj) = 0 for two

non neighboring elements, which guarantees the sparsity of A. As shown by (2.8), once the

potential V is computed, the magnetic field can be obtained by numerical integration.

For the sake of clarity in the current presentation, the potential V is decomposed over

a set of basis functions (φi)i, and it is these same functions that are used as test functions,

a.k.a., evaluation functions. The approximation of (2.25) leads to (2.26) where only appear

the dot products ah(φi, φj). However, it is also possible to use different basis of functions for

the approximation of V and for the evaluation. If we consider different evaluation functions

(ψj)j , the discretization leads to the computation of ah(φi, ψj). A particular choice for these

functions leads to what is called collocation methods. With such methods, the test functions

(ψj)j are Dirac functions and the computation of ah(φi, ψj) leads to simple function evalu-

ation. A numerical method where P1 elements are used for the approximation and Dirac

functions are used for the evaluation is called “linear collocation” [155]. A collocation method

with P0 elements for the discretization of V is called “constant collocation”. Methods with

general test functions are referred to as “Galerkin methods”. For example, we call “linear

Galerkin” (resp. “constant Galerkin”) a method where both the approximation and the test

functions are P1 (resp. P0) elements.

2.4.3 The Boundary Element Method (BEM)

From a structural MRI of the subject, it is possible to extract the different structures of

the head (white matter, gray matter, etc.). In a first approximation, we can consider that

the conductivity within each of these structures is constant. The boundary element method

(BEM) is a numerical method for solving linear partial differential equations which have

been transformed into integral equations defined over the boundaries of the different domains

(white matter, gray matter, etc.). In order to achieve such a reformulation of the problem, one

needs to assume homogeneous conductivities of each domain.

The piecewise constant approximation

Figure 2.5 shows the kind of geometry that can be extracted from the MRI of a subject’s

head. In practice, each subregion corresponds to a certain type of head tissue which is sup-

posed to be sufficiently homogeneous to have a constant conductivity. The conductivity of the

head is only discontinuous at the interfaces between tissues.
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(a) Sagittal cross section of an anatomical MR vol-
ume image.

Ω1 : white matter

Ω2 : grey matter

Ω3 : cerebrospinal fluid

Ω4 : skull
Ω5 : scalp

S1

S2

S3

S4

S5

σ1

σ2

σ3

σ4

σ5

(b) The domains extracted from an MRI.

Figure 2.5: Example of piecewise constant head model.

With this approximation, we can model the head as a domain Ω composed of several sub-

regions Ωk separated by surfaces Sk, each with a constant conductivity σk, and with σ = 0

outside Ω. With the piecewise constant approximation, equations (2.7) and (2.8) can be trans-

formed into integral equations:

σk + σk+1

2
V (r) = V0(r)− 1

4π

∑

l(σl − σl+1)
∫

Sl
V (r′) r−r′

‖r−r′‖3 · nl(r
′)ds′ , (2.27)

B(r) = B0(r)− µ0

4π

∑

l(σl − σl+1)
∫

Sl
V (r′) (r−r′)

‖r−r′‖3 × nl(r
′)ds′ , (2.28)

where r ∈ Sk, V0 and B0 are the electric potential and magnetic field generated by the pri-

mary current distribution Jp in a homogeneous domain. These formulas are obtained from

Geselowitz [86, 87]. Details on how to derive these equations are given in section 2.4.4 via

the use of the representation theorem.

We observe that the integrals are defined over the boundaries of the domains, i.e, the inter-

faces. Provided with these equations and the triangulations of the interfaces (cf. figure 2.6),

an approximate solution is obtained. Let us denote by S = ∪kSk the union of the surfaces

Sk, and E the space of functions square integrable on S. We assume that the surfaces Sk are

approximated with a set of n triangles {Ti | i ∈ [1, . . . , n]}. Like for the FEM, the solution is

approximated in a subspace of finite dimension and this approximation is computed by using

test functions.

Just for illustration purposes, let us consider a constant collocation method. The potential

is discretized in the subspace of piecewise constant functions, which are constant on each

triangle (P0 discretization). The test functions are Dirac functions located at the center of

each triangle. We denote the approximation subspace Eh, where h is an index which stands

for the size of the largest triangle. A basis (φi)i of P0 elements for Eh is:

{

φi(r) = 1, r ∈ Ti

φi(r) = 0, r /∈ Ti

Any function f ∈ Eh can then be written f =
∑

i fiφi, where fi is the constant value of f
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(a) The scalp surface extracted from an MRI. (b) An approximation with triangles.

Figure 2.6: Example of triangulated surface used as interface in the boundary element

method.

on Ti. Injecting this expression into the equation (2.27) for the electric potential and testing

with Dirac functions leads to the problem:

Find V ∈ Eh such that:

∀i, Ti ∈ Sk,
σk + σk+1

2
Vi = V0(ri)−

1

4π

∑

l

(σl − σl+1)
∑

Tj∈Sl

Vj

∫

Tj

φj(r
′)

ri − r′

‖ri − r′‖3 · njds
′ ,

where ri is the center of triangle Ti and nj is the constant normal to triangle Tj . This last

equation is of the form

Vi = bi +
∑

j

aijVj ,

where the bi and aij are constant coefficients that can be computed. The problem takes again

the form of a linear system:

A [Vi] = b . (2.29)

The values Vi of V on each triangle are obtained by resolution of this linear system. This

matrix is however singular. The potential is defined up to an additive constant. In order

to obtain a non singular matrix another constraint needs to be added. This can be done by

forcing the average potential on all surfaces to be zero. This operation is generally referred

to as deflation. From this electric potential, an approximate solution of the magnetic field

generated by the same source can be computed with equation (2.28) [71].

Computationally, one advantage of the BEM is that the matrix A is generally sufficiently

small to use direct methods for the resolution of the linear system. Such methods use fac-

torizations of the matrix A (e.g., A = LU) which transform the linear system (2.29) in a new

linear system which can be solved very rapidly. Because the contribution of the source Jp only

appears in the right hand side b of the system (2.29), the factorization of the matrix (which

corresponds to the most computationally expensive part) has to be performed once for a given

head model, and then the solution of the forward problem can be computed rapidly for many

different source distributions.

The procedure described here, uses a piecewise constant discretization for the potential

(i.e., P0 elements) and collocation. This is a very coarse level of discretization. In order to

improve the numerical precision, it is preferable to discretize the potential with P1 elements,
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i.e., in the space of piecewise linear functions, and to use the same P1 functions as test func-

tions [57, 155].

However, the standard BEM derived from Geselowitz’s formulas is prone to certain nu-

merical errors. First, if there are large differences between the conductivities of the different

compartments of the head model, it can lead to an amplification of the numerical errors [148].

The Isolated Problem Approach can be used to reduce this effect [102]. Second, for sources

which are located close to an interface, typically at a distance smaller than the size of the

triangles used to describe the surfaces, the accuracy of the BEM drops severely. It is to cir-

cumvent this limitation of the BEM that a new formulation has been introduced [131, 132].

This formulation that we are going to present now is called the Symmetric BEM, since its

leads to a linear system where the matrix to be inverted is symmetric.

2.4.4 The Symmetric Boundary Element Method (SymBEM)

The Symmetric Boundary Elements Method (SymBEM) is intrinsically a reformulation of the

integral equations (2.27) and (2.28) at the origin of the standard BEM. This method is based

on advanced representation theorems originally developed in the group of J-C Nédelec [164].

Green Representation Theorem

The Green Representation Theorem states that a piecewise harmonic function can be ex-

pressed as a combination of boundary integrals of its discontinuities and the discontinuities

of its normal derivative across interfaces.

Let ∂nV = n ·∇V denote the partial derivative of V in the direction of a unit vector n. The

restriction of a function f to a surface Sj will be denoted fSj
. We define the discontinuity of a

function f : R
3 → R across Sj as

[f ]Sj
= f−Sj

− f+
Sj
,

where the functions f− and f+ on Sj are respectively the interior and exterior limits of f :

for r ∈ Sj , f±Sj
(r) = lim

α→0±
f(r + αn).

Let us consider an open region Ω and a function u such that ∆u = 0 in Ω and in R3\Ω. Let

G(r) = 1
4π‖r‖ be the fundamental solution of the Laplacian such that −∆G = δ0. The Green

Representation Theorem states that, for a point r belonging to ∂Ω,

u−(r) + u+(r)

2
= −

∫

∂Ω

[u] ∂n′G(r− r′)ds(r′) +

∫

∂Ω

[∂n′u]G(r− r′)ds(r′) .

As shown in [131], this representation also holds when Ω is the union of disjoint open sets:

Ω = Ω1 ∪ Ω2 ∪ . . .ΩN , with ∂Ω = S1 ∪ S2 ∪ . . . SN , as in figure 2.7. In this case, for r ∈ Si,

u−(r) + u+(r)

2
= −

N
∑

j=1

(

∫

Sj

[u]Sj
∂n′G(r− r′)ds(r′) +

∫

Sj

[∂n′u]Sj
G(r− r′)ds(r′)

)

(2.30)

The notation is simplified by introducing two integral operators, called the “double-layer”

and “single-layer” operators, which map a scalar function f on ∂Ω to another scalar function

on ∂Ω:
(

Df
)

(r) =

∫

∂Ω

∂n′G(r− r′)f(r′) ds(r′)
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Figure 2.7: The head is modeled as a set of nested regions Ω1, . . . ,ΩN+1 with constant isotropic

conductivities σ1, . . . , σN+1, separated by interfaces S1, . . . , SN . Arrows indicate the normal

directions (outward).

and
(

Sf
)

(r) =

∫

∂Ω

G(r− r′)f(r′) ds(r′) .

For a given operator A, its restriction which maps a function of Sj to a function of Si is denoted

Aij .

The double-layer BEM

To apply the representation theorem to the forward problem of EEG, a harmonic func-

tion which relates the potential and the sources must be produced. Let us decompose the

source term as f =
∑

i fi where the support of each fi lies inside homogeneous region Ωi,

and consider vΩi
such that ∆vΩi

= fi holds in all R
3. The function vd =

∑N
i=1 vΩi

satisfies

∆vd = f and is continuous across each surface Si, as well as its normal derivative ∂nvd. The

function u = σ V − vd is a harmonic function in Ω, to which (2.30) can be applied. Since

[u]Si
= (σi − σi+1)Vj and [∂nu] = 0, we obtain, on each surface Si,

σi + σi+1

2
Vj +

N
∑

j=1

(σj − σj+1) Dij Vj = vd . (2.31)

By noticing that:
(

Df
)

(r) =

∫

∂Ω

f(r′)
r− r′

‖r− r′‖3 ds(r′)

we get that this formula is exactly the formula established by Geselowitz (2.27). Hence, the

classical BEM corresponds to a double-layer potential formulation because it involves the

double-layer operator D.

An extension of the Green Representation Theorem represents the directional derivative

of a harmonic function as a combination of boundary integrals of higher order. This requires

two more integral operators: the adjoint D∗ of the double-layer operator, and a hyper-singular

operator N defined by:
(

Nf
)

(r) =

∫

∂Ω

∂n,n′G(r− r′)f(r′) ds(r′) .
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The theorem says that if r is a point of Si, then

− ∂nu
−(r) + ∂nu

+(r)

2
= +N[u]−D

∗[∂nu] (2.32)

The Geselowitz formula uses the first boundary integral representation equation (2.30), whereas

the Symmetric BEM [131] uses both (2.30) and (2.32) in a formulation combining single- and

double-layer potentials.

The symmetric BEM

The originality of the symmetric Boundary Element Method is to consider one piecewise

harmonic function per domain: the function uΩi
equal to V − vΩi

σi
within Ωi and to−vΩi

σi
outside

Ωi. This function uΩi
is indeed harmonic in R

3\∂Ωi, and the representation equations (2.30)

and (2.32) can be applied, leading to a system of integral equations involving two types of

unknowns: the potential Vi and the normal current (σ∂nV )i on each interface.

The surfaces are represented by triangular meshes. To fix ideas, we consider a three-

layer geometrical model for the head (cf. figure 2.7). Conductivities of each domain are re-

spectively denoted σ1, σ2 and σ3. The surfaces enclosing these homogeneous conductivity

regions are denoted S1 (inner skull boundary), S2 (skull-scalp interface) and S3 (scalp-air

interface). Denoting ψ
(k)
i the P0 function associated to triangle i on surface Sk, and φ

(l)
j

the P1 function associated to node j on surface Sl, the potential V on surface Sk is ap-

proximated as VSk
(r) =

∑

i x
(k)
i φ

(k)
i (r), while p = σ∂nV on surface Sk is approximated by

pSk
(r) =

∑

i y
(k)
i ψ

(k)
i (r).

As an illustration, considering the source term to be restricted to the brain compartment

Ω1, the variables
(

xk

)

i
= x

(k)
i and

(

yk

)

i
= y

(k)
i satisfy the linear system:













(σ1+σ2)N11 −2D
∗

11 −σ2N12 D
∗

12 0

−2D11 (σ−1
1 +σ

−1
2 )S11 D12 −σ

−1
2 S12 0

−σ2N21 D
∗

21 (σ2+σ3)N22 −2D
∗

22 −σ3N23

D21 −σ
−1
2 S21 −2D22 (σ−1

2 +σ
−1
3 )S22 D23

0 0 −σ3N32 D
∗

32 σ3N33

























x1

y1

x2

y2

x3













=















b1

c1

0

0

0















(2.33)

where b1 (resp. c1) are the coefficients of the P0 (resp. P1) boundary element decomposition

of the source term ∂nvΩ1 (resp. −σ−1
1 vΩ1).

The blocks Nij and Dij map a potential Vj on Sj to a quantity defined on Si. The blocks

Sij map a normal current pj on Sj to a quantity defined on Si. The resulting matrix is block-

diagonal, and symmetric, hence the name “symmetric BEM”.

With OpenMEEG, the deflation is done by forcing the average potential on the external

surface to be zero. One can prove that this can be done by correcting the last diagonal block

with a matrix filled with ones. With the three layer BEM, this corresponds to the replacement

of N33 by a matrix N33 + α11T , α > 0.

Compared to the standard BEM, the symmetric BEM introduces an additional unknown

into the problem: the continuity of the normal current through the interfaces is guaranteed.

By doing so the Symmetric BEM leads to larger system matrices but demonstrates signif-

icantly higher accuracy than the double-layer BEM [131]. This is illustrated in the next
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section where the implementation of the SymBEM we have contributed to develop via the

OpenMEEG software project, is compared in terms of precision to other available implemen-

tations of the BEM.

2.5 IMPLEMENTATION

We have seen during the presentation of the BEM and Symmetric BEM that the compu-

tation of the electric potential produced by a dipole leads to a linear system that we write for

simplicity:

A[V ] = b .

For the SymBEM the notation [V ] also contains the discretized normal derivative of the

potential, i.e., the normal current.

After applying the deflation to A, the potential (and the normal current with the SymBEM)

on each interface is therefore given by:

[V ] = A−1b.

In practice, the potential is only measured in EEG at the position of the electrodes on the

outer surface of the head model. As a consequence, the forward problem of EEG requires to

compute the linear operator, denoted E, that maps the potential defined on the interfaces to

the potential at the sensors positions. In practice, this is just an interpolation of the potential

computed on the outer surface. This leads to:

[Veeg] = EA−1b .

The forward field, denoted geeg, for EEG is therefore computed in 5 steps:

• computation of A

• inversion of A

• computation of b

• computation of E

• computation of geeg = EA−1b

With MEG, one needs to add the computation of the matrix that maps the primary cur-

rents directly to the MEG sensors. This corresponds to the B0 term in equation (2.8). Let

us denote by c this linear operator (considering only one dipolar source). Like with EEG,

one also need to compute the operator that computes the effects of the potential on the MEG

sensors. The matrix is denoted D.

The forward field, denoted gmeg, for MEG is then computed in 6 steps:

• computation of A

• inversion of A

• computation of b

• computation of D

• computation of c

• computation of gmeg = c + DA−1b

When considering multiple dipoles, like in chapter 3 for distributed source models, the

forward field for EEG and MEG is computed for each of them and the concatenation of all the
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Brainstorm Matlab GPL v2
√ √ √ √

Simbio Fortran/C++ GPL v2
√ √ √ √

Fieldtrip (dipoli) C Not open source
√ √ √

SPM & Fieldtrip

(BEMCP)
C/Matlab GPL v2

√ √

MNE C/C++ Not open source
√ √ √

OpenMEEG C++ Cecill-B
√

Table 2.1: Review of non commercial software computing the forward problem in M/EEG. DM

stands for Dipolar Model, MM for Multipolar Model and HM stands for Head Model.

forward fields leads to what is usually called the leadfield matrix, or the gain matrix, that

will be denoted G. Each column of G is the forward field of one dipole.

2.6 SOFTWARE

2.6.1 Review of non commercial available software

We now present a list of non commercial software packages that can be used to compute

the forward problem solutions presented within this chapter. Some of these packages are

completely open source: OpenMEEG, Simbio, Fieldtrip (BEMCP implementation) and Brain-

storm. The Fieldtrip Toolbox shares its code for M/EEG forward and inverse modeling with

the SPM toolbox. It offers two implementations of the BEM. The first one, called dipoli, was

written by Oostendorp and is not open source (only binary files for Linux are available), while

the second one, called BEMCP, is opensource and was written by Christoph Phillips during

his PhD [176]. The Simbio solver implements a linear Galerkin method (P1 elements with

P1 test functions) as described in [57], while dipoli and BEMCP implement linear collocation

methods. The dipoli implementation details can be found in [165]. The MNE Matlab Tool-

box also offers a linear collocation implementation of the BEM usable via binary files. This

information is summarized in Table 2.1.

We now describe the work accomplished in the OpenMEEG software package. The fol-

lowing paragraph can be read as a short manual for computing the forward problem with

OpenMEEG.
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2.6.2 OpenMEEG

Let us first present how the description in section 2.5 is transposed in the OpenMEEG nam-

ing conventions.

The matrix:

• A is called HeadMat or Head Matrix

• A−1 is the inverse of HeadMat

• B is called SourceMat or Source Matrix

• C is DipSource2MEGMat

• D is Head2MEGMat

• E is Head2EEGMat

The OpenMEEG package takes as input:

• subject.geom : a file describing the geometry of the head (see. table 2.2)

• subject.cond : a file containing the conductivity of each tissue of the head (see. ta-

ble 2.3)

• eeg electrodes.txt : a file containing the 3D positions of each EEG electrode (3

coordinates on each line)

• dipoles.txt : a file containing the 3D positions and orientations of each current dipole

(6 values on each line)

• meg squids.txt : a file containing the 3D positions and orientations of each MEG

sensor (6 values on each line). More complex sensors can also be modeled by integration,

or with finite differences like for basic gradiometers.

The different matrices are computed with the following command lines (.bin file extension

corresponds to matrix files stored in binary format):

OpenMEEG with the command line

Matrix A:

$ om assemble -HeadMat subject.geom subject.cond HeadMat.bin

Note: the abbreviated option names -HM or -hm can be used instead of -HeadMat.

Matrix A−1:

$ om minverser HeadMat.bin HeadMatInv.bin

Matrix B:
$ om assemble -DipSourceMat subject.geom subject.cond dipoles.txt

SourceMat.bin

Note: the abbreviated option names -DSM or -dsm can be used instead of -DSM.

Matrix E:
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# Domain Description 1.0

Interfaces 3 Mesh

skull.tri

brain.tri

scalp.tri

Domains 4

Domain Skin 1 -3

Domain Brain -2

Domain Air 3

Domain Skull 2 -1

Table 2.2: Sample geometry file for OpenMEEG. It provides the names of the meshes for

all the interfaces and the structure by specifying which regions are being separated by each

mesh, e.g., the Skin region is between the meshes skull.tri (1 means that Skin is outside the

first interface on the list, i.e., “skull.tri”) and scalp.tri (-3 means that the Skin is inside the

third interface on the list, i.e., “scalp.tri”).

# Properties Description 1.0 (Conductivities)

Air 0.0

Skin 1

Brain 1

Skull 0.0125

Table 2.3: Sample conductivity file for OpenMEEG. It specifies the conductivity values for

each tissue.
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$ om assemble -Head2EEGMat subject.geom subject.cond eeg electrodes.txt

Head2EEGMat.bin

Note: the abbreviated option names -H2EM or -h2em can be used instead of -Head2EEGMat.

Matrix D:
$ om assemble -Head2MEGMat subject.geom subject.cond meg squids.txt

Head2MEGMat.bin

Note: the abbreviated option names -H2MM or -h2mm can be used instead of -Head2MEGMat.

Matrix C:
$ om assemble -DipSource2MEGMat dipoles.txt meg squids.txt

Source2MEGMat.bin

Note: the abbreviated option names -DS2MM or -ds2mm can be used instead of -DipSource2MEGMat.

Matrix Geeg:

$ om gain -EEG HeadMatInv.bin SourceMat.bin Head2EEGMat.bin

GainEEGMat.bin

Matrix Gmeg:

$ om gain -MEG HeadMatInv.bin SourceMat.bin Head2MEGMat.bin

Source2MEGMat.bin GainMEGMat.bin

During this PhD we contributed to add a set of features to the OpenMEEG package:

• An scripting interface with Python: A demo script is provided in table 2.4, with its

output in table 2.5.

• Parallel processing with OpenMP to speed up computations on machines with multiple

processors (it required to rewrite part of the code used by the operators.). Computation

times with parallel processing enabled are available in figure 2.10. It can be observed

that our parallel implementation offers a significative improvement in terms of com-

putation time. The computation time of A and B decreases almost linearly with the

number of threads. The matrix inversion is not multithreaded which explains why the

computation of A−1 is not improved when increasing the number of threads. With 2 pro-

cessors, a gain matrix with a realistic head model (cf. figure 2.10(c)) is assembled about

2 times faster, while with 8 processors, the same gain matrix is assembled 3 times faster.

• An advanced testing procedure to guarantee the integrity of the results obtained by the

forward problem computation. Results can be compared at no cost to analytical solutions

obtained with 3 layer spherical head models like the one presented in figure 2.8. This

procedure is based on the CTest testing software. The output of the testing procedure is

presented in table 2.6.

• A Matlab interface within the Fieldtrip Toolbox and SPM Toolbox (see table 2.13).

• A multi platform packaging system based on CPack allowing easy deployment on all

architectures (Linux, Mac and Windows environments).

Thanks to the integration of the OpenMEEG software into the Fieldtrip Toolbox, we have

been able to demonstrate that the precision obtained by our numerical solution of the for-

ward problem clearly outperforms the standard BEM implementations offered by the SPM

and Fieldtrip Toolbox (dipoli and BEMCP). We have also been implicated in the development
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#!/usr/bin/env python

import openmeeg as om

# =============

# = Load data =

# =============

condFile=’om_demo.cond’

geomFile=’om_demo.geom’

dipoleFile=’cortex.dip’

squidsFile=’meg_squids.txt’

electrodesFile=’eeg_electrodes.txt’

geom = om.Geometry()

geom.read(geomFile,condFile)

dipoles = om.Matrix()

dipoles.load(dipoleFile)

squids = om.Sensors()

squids.load(squidsFile)

electrodes = om.Matrix()

electrodes.load(electrodesFile)

# =================================================

# = Compute forward problem (Build Gain Matrices) =

# =================================================

gaussOrder = 3; # Integration order over the triangles in the BEM

hm = om.HeadMat(geom,gaussOrder)

hminv = hm.inverse()

dsm = om.DipSourceMat(geom,dipoles,gaussOrder)

ds2mm = om.DipSource2MEGMat(dipoles,squids)

h2mm = om.Head2MEGMat(geom,squids)

h2em = om.Head2EEGMat(geom,electrodes)

gain_meg = om.GainMEG(hminv,dsm,h2mm,ds2mm)

gain_eeg = om.GainEEG(hminv,dsm,h2em)

print "hm : %d x %d"%(hm.nlin(),hm.ncol())

print "hminv : %d x %d"%(hminv.nlin(),hminv.ncol())

print "dsm : %d x %d"%(dsm.nlin(),dsm.ncol())

print "ds2mm : %d x %d"%(ds2mm.nlin(),ds2mm.ncol())

print "h2mm : %d x %d"%(h2mm.nlin(),h2mm.ncol())

print "h2em : %d x %d"%(h2mm.nlin(),h2mm.ncol())

print "gain_meg : %d x %d"%(gain_meg.nlin(),gain_meg.ncol())

print "gain_eeg : %d x %d"%(gain_eeg.nlin(),gain_eeg.ncol())

Table 2.4: Demo script for computing the forward problem with OpenMEEG in Python.
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Sorted List : 1 0 2

Sorted Domains : Brain Skull Scalp Air

Total number of points : 126

Total number of triangles : 240

Checking

Mesh 0 : internal conductivity = 1 and external conductivity = 0.0125

Mesh 1 : internal conductivity = 0.0125 and external conductivity = 1

Mesh 2 : internal conductivity = 1 and external conductivity = 0

OPERATOR S...

[********************]

OPERATOR S...

[********************]

OPERATOR S...

[********************]

OPERATOR N...

[********************]

OPERATOR N...

[********************]

OPERATOR N...

[********************]

OPERATOR D (Optimized)...

[********************]

OPERATOR D (Optimized)...

[********************]

OPERATOR D (Optimized)...

[********************]

OPERATOR D (Optimized)...

[********************]

OPERATOR S...

[********************]

OPERATOR S...

[********************]

OPERATOR N...

[********************]

OPERATOR N...

[********************]

OPERATOR D (Optimized)...

[********************]

[********************]

[********************]

hm : 286 x 286

hminv : 286 x 286

dsm : 286 x 42

ds2mm : 162 x 42

h2mm : 162 x 286

h2em : 162 x 286

gain_meg : 162 x 42

gain_eeg : 42 x 42

Table 2.5: Output of Python demo script presented in table 2.4.



82 CHAPTER 2. THE FORWARD PROBLEM

Running tests...

Start processing tests

Test project openmeeg_trunk

1/ 73 Testing matlibtest Passed

2/ 73 Testing HM-Head1 Passed

3/ 73 Testing HMINV-Head1 Passed

4/ 73 Testing SSM-Head1 Passed

5/ 73 Testing AI-Head1 Passed

6/ 73 Testing H2EM-Head1 Passed

7/ 73 Testing SurfGainEEG-Head1 Passed

8/ 73 Testing ESTEEG-Head1 Passed

9/ 73 Testing EEG-HEAT-Head1 Passed

10/ 73 Testing EEG-MN-Head1 Passed

11/ 73 Testing EEG-TV-Head1 Passed

12/ 73 Testing H2MM-Head1 Passed

13/ 73 Testing SS2MM-Head1 Passed

14/ 73 Testing SurfGainMEG-Head1 Passed

15/ 73 Testing ESTMEG-Head1 Passed

16/ 73 Testing MEG-HEAT-Head1 Passed

17/ 73 Testing MEG-MN-Head1 Passed

18/ 73 Testing MEG-TV-Head1 Passed

19/ 73 Testing DSM-Head1 Passed

20/ 73 Testing DS2MM-Head1 Passed

21/ 73 Testing DipGainEEG-Head1 Passed

22/ 73 Testing DipGainMEG-Head1 Passed

...

52/ 73 Testing compareEEGEST-dip-Head1-d1 Passed

53/ 73 Testing compareEEGEST-dip-Head2-d1 Passed

54/ 73 Testing compareEEGEST-dip-Head1-d2 Passed

55/ 73 Testing compareEEGEST-dip-Head2-d2 Passed

56/ 73 Testing compareEEGEST-dip-Head1-d3 Passed

57/ 73 Testing compareEEGEST-dip-Head2-d3 Passed

58/ 73 Testing compareEEGEST-dip-Head1-d4 ***Failed - supposed to fail

59/ 73 Testing compareEEGEST-dip-Head2-d4 Passed

60/ 73 Testing compareEEGEST-dip-Head1-d5 ***Failed - supposed to fail

61/ 73 Testing compareEEGEST-dip-Head2-d5 Passed

62/ 73 Testing compareMEGEST-dip-Head1-d1 Passed

63/ 73 Testing compareMEGEST-dip-Head2-d1 Passed

64/ 73 Testing compareMEGEST-dip-Head1-d2 Passed

65/ 73 Testing compareMEGEST-dip-Head2-d2 Passed

66/ 73 Testing compareMEGEST-dip-Head1-d3 Passed

67/ 73 Testing compareMEGEST-dip-Head2-d3 Passed

68/ 73 Testing compareMEGEST-dip-Head1-d4 Passed

69/ 73 Testing compareMEGEST-dip-Head2-d4 Passed

70/ 73 Testing compareMEGEST-dip-Head1-d5 Passed

71/ 73 Testing compareMEGEST-dip-Head2-d5 Passed

72/ 73 Testing compareMEGEST-dip-Head1-d6 ***Failed - supposed to fail

73/ 73 Testing compareMEGEST-dip-Head2-d6 Passed

100% tests passed, 0 tests failed out of 73

Table 2.6: Output of testing procedure for OpenMEEG. Output is systematically compared to

analytical solutions with spherical head models.
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of the SimBio package during this PhD allowing to add to the comparison the SimBio imple-

mentation of the BEM with ISA. The sample dataset used to demonstrate this is presented

in figure 2.8 with 5 dipoles at various distances from the inner layer. The quantification of

performance is based on the Relative Difference Measure (RDM) and the ratio of Magnitude

(MAG) between each numerical solution and the analytical solution. The analytical solutions

are computed with the formulas detailed in section 2.3.1.

The RDM between two forward fields is defined as:

RDM(gnumeric, ganalytic) =

∥

∥

∥

∥

gnumeric

‖gnumeric‖
− ganalytic

‖ganalytic‖

∥

∥

∥

∥

∈ [0 , 2] .

The closer to 0 is the RDM, the better it is.

The MAG between two forward fields is defined as:

MAG(gnumeric, ganalytic) =
‖gnumeric‖
‖ganalytic‖

The closer to 1 is the MAG, the better it is.

The results with EEG forward fields are presented in figure 2.9 for three-shell spherical

head models having 3 different point samplings on each interface. One with only 42 vertices

per interface and 42 EEG electrodes, one with 162 points per interface and 162 EEG elec-

trodes, and one with 642 points per interface and 642 EEG electrodes. The radii of the 3

shells, supposed to reproduce the inner surface of the skull, the outer surface of the skull and

the skin, were set to 88, 92 and 100. The conductivities of the three domains were set to the

ones commonly used in the literature: 1, 1/80 and 1.

From these simulations we can conclude that:

• The BEMCP implementation is clearly the less accurate solver.

• SimBio and DIPOLI give very similar results.

• Our implementation of the Symmetric BEM provides the most accurate solutions.

The numerical values plotted in figure 2.9 are reproduced in tables 2.7, 2.8, 2.9, 2.10, 2.11

and 2.12.

Remark. Late in our investigations, we also experimented the Matlab BEM Toolbox developed

by Matti Stenroos (avalaible at http://peili.hut.fi/BEM/). This software implements

the classical formulation of the BEM from Geselowitz with a linear collocation method. Our

first results with this toolbox demonstrate that it does not provide a better accuracy than

OpenMEEG either.

Distance to inner layer 45.5 20 11.5 7.25 3.85

BEMCP 1.87e-01 1.06e+00 1.77e+00 1.84e+00 1.86e+00

DIPOLI 1.12e-01 2.58e-01 5.12e-01 6.51e-01 7.36e-01

OpenMEEG 4.23e-02 9.99e-02 1.57e-01 2.03e-01 2.45e-01

SimBio 5.89e-02 1.88e-01 4.44e-01 5.63e-01 6.23e-01

Table 2.7: RDMs precision results with 42 vertices per interface.

http://peili.hut.fi/BEM/
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(a) 3 layers spherical head model (b) Zoom

Figure 2.8: Spherical head model with 5 dipoles close to the inner layer.

Distance to inner layer 45.5 20 11.5 7.25 3.85

BEMCP 1.59e-01 3.69e-01 1.44e+00 1.82e+00 1.86e+00

DIPOLI 5.45e-02 9.77e-02 1.34e-01 2.89e-01 5.59e-01

OpenMEEG 2.55e-02 5.23e-02 8.10e-02 1.03e-01 1.29e-01

SimBio 4.49e-02 7.73e-02 1.14e-01 2.77e-01 5.46e-01

Table 2.8: RDMs precision results with 162 vertices per interface.

Distance to inner layer 45.5 20 11.5 7.25 3.85

BEMCP 6.38e-02 1.83e-01 2.77e-01 6.62e-01 1.83e+00

DIPOLI 2.39e-02 4.32e-02 5.25e-02 5.97e-02 1.76e-01

OpenMEEG 2.76e-03 6.91e-03 1.03e-02 1.31e-02 1.77e-02

SimBio 1.91e-02 3.43e-02 4.15e-02 4.88e-02 1.79e-01

Table 2.9: RDMs precision results with 642 vertices per interface.

Distance to inner layer 45.5 20 11.5 7.25 3.85

BEMCP 2.66e+00 2.67e+00 1.44e+01 5.27e+01 2.40e+02

DIPOLI 8.09e-01 9.03e-01 1.60e+00 3.25e+00 9.45e+00

OpenMEEG 1.07e+00 1.04e+00 9.99e-01 9.62e-01 9.19e-01

SimBio 1.49e+00 1.31e+00 1.18e+00 1.09e+00 9.88e-01

Table 2.10: MAGs precision results with 42 vertices per interface.

Distance to inner layer 45.5 20 11.5 7.25 3.85

BEMCP 1.32e+00 1.48e+00 1.81e+00 1.16e+01 6.94e+01

DIPOLI 8.06e-01 7.87e-01 8.25e-01 1.07e+00 2.53e+00

OpenMEEG 1.11e+00 1.12e+00 1.15e+00 1.18e+00 1.21e+00

SimBio 8.11e-01 7.96e-01 8.38e-01 1.09e+00 2.58e+00

Table 2.11: MAGs precision results with 162 vertices per interface.
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(a) RDM 42 points per interface
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(b) MAG with 42 points per interface
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(c) RDM with 162 points per interface
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(d) MAG with 162 points per interface
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(e) RDM with 642 points per interface
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(f) MAG with 642 points per interface

Figure 2.9: Evaluation of precision of different implementations of the BEM with three layers

spherical head models. We observe that the Symmetric BEM outperforms in term of precision

the other methods.

Distance to inner layer 45.5 20 11.5 7.25 3.85

BEMCP 1.07e+00 1.11e+00 1.21e+00 9.49e-01 1.11e+01

DIPOLI 9.15e-01 9.05e-01 8.98e-01 9.01e-01 1.08e+00

OpenMEEG 1.00e+00 1.01e+00 1.01e+00 1.01e+00 1.01e+00

SimBio 9.28e-01 9.21e-01 9.16e-01 9.22e-01 1.12e+00

Table 2.12: MAGs precision results with 642 vertices per interface.
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(a) Head model with 3 spheres (162 points per
interface) and 1 dipole.
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(b) Head model with 3 spheres (642 points per
interface) and 1 dipole.
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(c) Realistic head model with 600, 638 and 625
points on the 3 interfaces and 14055 dipoles.

Figure 2.10: Computation times with parallel processing enabled for all the steps required to

compute an EEG leadfield. Tests on 3 head models: 2 spherical head models with 1 dipolar

source and 3 layers (162 and 642 vertices per interface) and 1 realistic head model with

600, 638 and 625 points on the 3 interfaces and 14055 dipolar sources. Computation was

performed on a Linux 64bit architecture with 8 processors and 64 GB of RAM. Thanks to

the parallel implementation of the operators, the computation time of A and B decreases

almost linearly with the number of threads. The matrix inversion is not multithreaded which

explains why the computation of A−1 is not improved when increasing the number of threads.
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1 % ===========================================

2 % = Generate a 3 layers spherical headmodel =

3 % ===========================================

4

5 % 3 Layers

6 r = [100 92 88]; % radius of each interface

7 c = [1 1/80 1]; % conductivity within each interface

8

9 [pnt,tri] = icosahedron162; % sphere with 162 vertices per interface

10

11 % create a set of electrodes on the outer surface

12 sens.pnt = max(r) * pnt;

13 sens.label = {};

14 nsens = size(sens.pnt,1);

15 for ii=1:nsens

16 sens.label{ii} = sprintf(’vertex%03d’, ii);

17 end

18

19 % Position of the dipole

20 pos = [0 0 70];

21

22 % create a BEM volume conduction model (3 nested interfaces)

23 vol = [];

24 for ii=1:length(r)

25 vol.bnd(ii).pnt = pnt * r(ii);

26 vol.bnd(ii).tri = tri;

27 end

28 vol.cond = c;

29

30 % =========================

31 % = Compute the leadfield =

32 % =========================

33

34 % compute the BEM

35 cfg.method = ’openmeeg’; % can be dipoli or bemcp

36 vol = prepare_bemmodel(cfg, vol);

37 lf_openmeeg = compute_leadfield(pos, sens, vol);

38

39 % lf_openmeeg is a 162 x 3 matrix

40 % each column of lf_openmeeg is the forward field of a dipole

41 % in one direction of the coordinate system

Table 2.13: Computing an EEG leadfield with Fieldtrip and OpenMEEG.
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2.7 CONCLUSION

Brain functional imaging with M/EEG requires an efficient and accurate forward model.

In this section, we have presented the general framework to achieve good forward modeling.

It implied to introduce the physics with Maxwell equations, to make a set of hypothesis like

the quasi-static approximation and to use simplified head models. We have presented the

theory and discussed some implementation details before finally demonstrating that the for-

ward modeling that we contributed to develop and promote in the M/EEG community is the

most accurate BEM solver available.

Before closing this chapter, we would like to mention recent and promising work on for-

ward modeling with anisotropic conductivity models [170], i.e., models where the conductivity

can vary inside the same tissue. This method avoids the meshing step required by the above

FEM and BEM methods and provides quite accurate solutions in a very reasonable amount

of time.

We will now move on to the other fundamental aspect of brain functional imaging with

MEG: the inverse problem.



CHAPTER 3

THE INVERSE PROBLEM WITH

DISTRIBUTED SOURCE MODELS

In chapter 2, we have seen how the tiny electromagnetic fields produced by the neural activity

is modeled to understand what is measured with M/EEG devices. This aspect of the process-

ing of M/EEG data is called the forward problem. Its counterpart is the inverse problem. The

inverse problem of M/EEG is the procedure that consists in recovering the distribution of the

neural generators that have produced the measurements. Three main types of approaches

exist to solve this problem:

1. The parametric models usually referred to as dipole fitting approaches.

2. The beamforming or scanning techniques.

3. The image-based methods with distributed source models.

In this chapter, the first two approaches are briefly explained and commented. The last

one, the image-based method, is presented in more detail. The M/EEG inverse problem is pre-

sented in a classical framework where the solution is penalized with a regularization prior.

Standard priors are based on ℓ2 norms, leading to differentiable optimization problems and

closed-form solutions. In this chapter, focus is put on such priors, going from the simple

“Minimum-Norm” (MN) approach to spatiotemporal solvers and learning-based methods re-

cently presented in the literature.

This chapter covers the methodological aspects of multiple inverse solvers based on ℓ2
priors. It presents for each of them the hypotheses made and the eventual limitations when

used with M/EEG data. The optimization strategies employed will also be commented and

discussed. For experimental results and simulation studies with the reviewed solvers, we

refer the reader to the original papers. We also provide the code snippets to use these solvers

using EMBAL , an open source toolbox that we wrote during this thesis.
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3.1 GENERAL INTRODUCTION TO INVERSE METHODS

Notations

All matrices and vectors are written in bold letters. Matrices, such as A, are written in

upper case, whereas vectors, such as b, are in lower case. A real valued matrix A ∈ R
n×p has

n rows and p columns. The notation ‖A‖F stands for the Frobenius norm of A, while |||A|||2,

or simply |||A|||, stands for the spectral norm. The notation ‖b‖2 stands for the ℓ2 norm of the

vector b. The matrix I stands for the identity matrix.

3.1.1 Parametric models and dipole fitting approaches

The dipole fitting approaches assume that the measured data have been produced by a small

number of active regions that can each be modeled by an equivalent current dipole (ECD). The

number of ECDs, denoted K, is fixed. Each dipole i has a position ri and a moment qi. The

strength of the dipole is given by xi = ‖qi‖2. We denote gi(ri,qi) the forward field produced by

this dipole and m the M/EEG measurements (cf. chapter 2). Since the forward field depends

linearly on xi, the forward field gi(ri,qi) can be rewritten gi(ri,
qi

‖qi‖ )xi. The data m can

correspond either to one time instant or to a block of time samples. If dipoles are allowed to

move during the time window of interest, the method is called moving dipole whereas if it can

only rotate it is referred to as rotating dipole. Parametric dipole fitting algorithms minimize

a data fit cost function such as the Frobenius norm of the residual [11, 156, 193]:

min
(ri,qi)i=1,...,K

∥

∥

∥

∥

∥

m−
K
∑

i=1

gi

(

ri,
qi

‖qi‖

)

xi

∥

∥

∥

∥

∥

2

F

.

This optimization problem is non linear, and solvers are easily trapped in local minima as

soon as K > 1. The optimization strategies employed range from Levenberg-Marquardt and

Nelder-Meade downhill simplex searches to global optimization schemes using multistart

methods, genetic algorithms and simulated annealing [209].

The main limitation with these methods is that the user has to fix a priori the number

of active regions. For these reasons, dipole fitting approaches are commonly used with only

one dipole, or sometimes a few, after one is set to a known position. These limitations imply

that such methods can only be used reliably with one very focal active region. This is usually

a valid assumption for brain activations occurring shortly after stimulation. However, when

other functional imaging data with high spatial resolution, like fMRI activation maps, are

available, the position of the dipoles can be supposed as known. In this case, multiple dipoles

can be manually positioned. Their amplitudes and eventually their orientations are the only

estimated parameters. Such an approach is illustrated in chapter 5 where investigations on

the human visual cortex with this methodology are presented.

3.1.2 Scanning methods: the beamformers

The Bearmforming approaches, a.k.a., scanning methods, avoid the convexity issue by scan-

ning a region of interest, typically the gray matter forming the cortical mantle. It is also

possible to sample dipoles on a regular grid within the cortical envelope. An estimator of

the contribution of each putative source location to the data can be derived either via spatial

filtering techniques or signal classification indices. Historically scanning methods were first

introduced in the radar and sonar community.
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1 clear options

2 % C is the covariance matrix

3 options.C = C;

4 % pct a percentage to regularize the inversion of C

5 options.pct = 10;

6 [X,W] = lcmv_inverse(M,G,options);

7 % W contains the spatial filters of all the dipoles

Table 3.1: Running a LCMV beamformer with EMBAL .

In its simplest presentation, a spatial filter is a vector w, function of the location and

orientation of the dipole of interest, that when correlated to the measurements m provides

an estimate of the moment’s amplitude. Equivalently:

x(r) = wT m

where x denotes the moment’s amplitude of the dipolar source considered. A well designed

spatial filter, should filter out sources which do not come from a small volume around r.

When considering dipolar sources with unconstrained orientation, the spatial filter w is a

matrix with 3 columns (one per orientation) and the result of wT m provides the moment of

the dipole.

The simplest spatial filter is called a matched filter. Let gi be the forward field of a dipole

at position ri with a normalized moment q (‖q‖2 = 1). The vector gi can be seen as the ith

column of the lead field and the matched filter is obtained by normalizing this column. The

spatial filter for this position and orientation is given by

w =
gi

‖gi‖2

This approach guarantees that, when only one source is active, the absolute maximum of the

estimate corresponds to the true maximum. In practice this assumption is usually not valid.

Since the correlation between the columns of the leadfield matrix is high, the spatial resolu-

tion of the matched filter is limited. The goal of more advanced spatial filters is to estimate

the activity at a source point while avoiding the crosstalk from other regions. By doing so,

the perturbing sources have little influence on the estimation in the region of interest.

The most common spatial filter is the Linearly Constrained Minimum Variance (LCMV)

beamformer [215]. It attempts to minimize the beamformer output power subject to a unity

gain constraint:

wLCMV = arg min
w

trace(wT Cw) subject to wT g = 1 (3.1)

where C is the data covariance matrix. By constraining the gain at the considered location

and minimizing the energy projected from elsewhere the LCMV beamformer limits the influ-

ence of the noise and the crosstalk between the different sources. The constrained optimiza-

tion problem (3.1) is solved with the method of Lagrange Multipliers under the assumptions

of decorrelation between different sources, and between the sources and the noise. The solu-

tion is given by:

wT
LCMV = (gT C−1g)−1gT C−1 .

The formula shows it is important to have a correct estimate of the covariance matrix C which

implies in practice to have a sufficient amount of data.

Synthetic aperture magnetometry (SAM) [217] is an alternative the LCMV beamformer.

Contrary to LCMV, SAM works on statistical quantities based on the differences between

https://gforge.inria.fr/projects/embal
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1 clear options

2 % k is the dimension of the signal subspace

3 options.k = k;

4 [X] = music_inverse(M,G,options);

5 % X contains the scores obtained by the MUSIC cost function

Table 3.2: Running MUSIC with EMBAL .

a control period and the period of activations. Therefore SAM integrates some additional

information linked to the design of the experimental paradigms.

An attractive feature of the beamformer methods is that they do not require any a pri-

ori on the number of underlying sources. However, they make the strong assumption that

the activations of the different sources are uncorrelated. This hypothesis is a particularly

critical point. Neural activations in different parts of the brain often co-activate, forming

what a network of correlated sources. Even if simulation results [194] and evaluation on

real data [97] seem to indicate LCMV-based beamforming methods are robust to moderate

levels of source/interference correlation, it is still a fundamental limitation of spatial filtering

methods.

The alternative to spatial filtering originates also from the radar and sonar community.

These methods are based on signal classification between signal and noise via signal sub-

spaces. The MUltiple SIgnal Classification (MUSIC) is the most popular of these methods

[154]. In the MUSIC algorithm the space spanned by the measurements m is divided with

an SVD between the signal space and the noise space. If we write the SVD of m = USVT

and estimate the rank of the signal space to r, the signal space is spanned by the r first

columns of U denoted Ur. Note that for the SVD to make sense, the measurements m have to

contain multiple time instants. The cost function associated to MUSIC in the beamforming

framework is given by:
‖(I−UrU

T
r )gi‖

‖gi‖
. (3.2)

The linear operator (I−UrU
T
r ) acts as an orthogonal projection onto the noise subspace. The

smaller is this score the more the ith dipole contributes to the measurements.

A greedy strategy that aims at modeling source configurations with multiple generators

has been inspired by the MUSIC algorithm. This variant is called Recursively APplied MU-

SIC (RAP MUSIC) [153] since it consists in applying the MUSIC cost function successively

after removing the contribution of the previously identified sources. Like matching pursuit

algorithms are used for sparse signal decomposition over dictionary of atoms [144], the RAP

MUSIC method adopts a greedy strategy to select the relevant dipoles in a dictionary of

sources.

The MUSIC algorithm is relatively popular in the M/EEG community, probably because of

its robustness to noise and its ability to present precise locations for the current generators.

However, the necessity to set a priori the size of the signal subspace can be an issue. When

the amplitudes of the singular values of m do not exhibit a sharp drop-down after singular

value r demonstrating that m can be approximated with a rank r matrix, the definition of

the rank is left to the experience of the user. One clear advantage of the MUSIC method over

the LCMV beamformer is the relaxation of the decorrelation constraint between the sources.

However, MUSIC requires that the active dipoles have linearly independent time series.

https://gforge.inria.fr/projects/embal
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3.1.3 Image-based methods

The alternative to dipole fitting and scanning methods is the image-based approach. With

this method source models, typically dipoles, are sampled, or distributed, over the source

space. The source space can be defined as a volume or as a surface. When considering dipo-

lar source models and a volumetric source space, dipoles are typically sampled on a regular

3D grid within the brain region. With surface-based source models, the dipoles are typically

distributed over the cortical mantle modeled as a triangular mesh. Such an approach was

pioneered by Dale and Sereno in [50], who presented surface-based reconstructions of the

neural activations. The neural activations are represented as scalar valued data, hence the

comparison with images. The difference comes from the discrete space over which the ac-

tivations are defined. Rather than having to deal with scalar valued data defined on a 2D

or 3D grid like in standard image processing applications, the space is a surface tessellation

defined with vertices and triangles. The surface-based distributed source model is illustrated

on a synthetic dataset presented in figure 3.1.

(a) Active region on inflated cortical mesh

(b) Active dipoles with constrained orientations (c) Zoom on active dipoles with constrained
orientations

Figure 3.1: Surface-based distributed dipolar sources illustration. The synthetic active re-

gion is located on the posterior part of the central sulcus where stands the human primary

somatosensory cortex (S1).

Source reconstructions on the cortical surface require to segment the cortex using a T1
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MRI image (this type of anatomic data was used to estimate the triangulated interfaces for

the BEM in section 2.4.3). This step is rather complex but well handled by software such

as BrainVisa [38] or FreeSurfer [51], which provide almost fully automatic pipelines to run

the segmentations. Such pipelines are generally not integrated in commercial M/EEG source

imaging software1 that therefore only provide volumetric source spaces with 3D grids.

The current generators that produce the electromagnetic fields are known to be located in

the gray matter forming the cortex. This implies that the estimated sources should at least

be constrained to be located within the gray matter. This is achieved with surface source

models. To argue even more in favor for such models, we would like to mention that the fMRI

community also tends to map the 3D data acquired onto cortical surfaces [66]. Another reason

for this is that anatomical landmarks are more easily defined on cortical segmentation than

on volumetric data.

Orientation vs. no orientation constraint

With distributed dipolar source models, the orientation of the dipoles can either be defined a

priori using the normal to the cortical mesh (cf. figure 3.1(c)), or left unconstrained. When

the dipoles orientations are left unconstrained, 3 orthogonal dipoles are positioned at each

location. With MEG, since sensors are blind to the radial component of the field, only 2 can

be used. Considering our knowledge on the structure of the neural assemblies formed by the

pyramidal neurons (cf. chapter 1), constraining the orientation is a reasonable assumption.

One can also argue that the more a priori are used to compute neural estimates, the better

it is. However, practice shows that the orientation is a critical parameter for a dipole since it

affects its forward field on the M/EEG sensors a lot more that its 3D position. This suggests

that if orientation constraints are used, the normals to the cortical mesh should be very

accurately estimated. Depending on the brain location of the sources this can be more or less

challenging.

In this chapter, many illustrations are presented on the somatosensory cortex lying on the

post-central gyrus. The central sulcus and central gyrus of the cortex are major structures

of the human cortex and are very well segmented with anatomical pipelines. For this reason

the orientation constraint is generally well justified in this brain region.

3.2 MINIMUM NORM SOLUTIONS AND ITS VARIANTS

When orientations are fixed and only the amplitudes of the dipolar current generators

need to be estimated, the forward problem results in the following linear problem:

M = GX + E (3.3)

where G stands the forward operator, M corresponds to the measurements (Electric potential

or/and magnetic field), X contains the unknown amplitudes of the sources and E is the noise.

We denote the number of sources by dx, the number of sensors by dm and the number of

time instants by dt. With these notations, we have, M ∈ R
dm×dt , G ∈ R

dm×dx , X ∈ R
dx×dt and

E ∈ R
dm×dt .

In practice, dm is in the range of 10, for low resolution EEG, and 400, for high resolution

MEG and EEG combined studies. The parameter dt is commonly between 1 and a few thou-

sand. With the digital amplifiers used in M/EEG, the sampling rate can be over 1000 Hz

1To our knowledge only the software package Curry from http://www.neuroscan.com/ provides segmentations
and surface-based reconstructions.

http://www.neuroscan.com/
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which leads to high values of dt when recording several seconds of signal. The number of

sources dx is given by the number of dipoles distributed over the cortical surface. In practice

the number of vertices on a typical segmented cortical surface ranges from 10000 to 50000.

With dipoles having their orientations constrained by the normal to the mesh the number of

dipoles corresponds to the number of vertices. When the orientation is not constrained the

number of dipoles can be three times bigger.

The conclusion of the latter remarks is that the M/EEG inverse problem with distributed

source models is strongly ill posed (dm ≪ dx). The number of unknowns is much bigger than

the number of equations. To get estimates of the sources X given only the the measurements

M requires therefore to consider priors on the solutions.

Setting a prior typically consists in assuming that the solution is small for a given norm

denoted just for now by ‖ ‖. In other words, we assume that a good estimate X∗ of the true

source distribution is given by the solution to the following optimization problem:

X∗ = arg min
X

‖M−GX‖F , subject to ‖X‖ ≤ η . (3.4)

The norm denoted by ‖‖F corresponds to the Frobenius norm of the matrix and the param-

eter η controls the regularity of the solution. We will refer to ‖M−GX‖F as the reconstruction

error or the norm of the residual. In other words, we want to minimize the reconstruction er-

ror while imposing the solution to be small for a given norm.

Problem (3.5) can also be presented as:

X∗ = arg min
X

‖X‖, subject to ‖M−GX‖F ≤ δ . (3.5)

In this case, we want to minimize the norm of the solution while imposing that the recon-

struction error is smaller than δ.

Remark. In statistics, the norm of ‖X‖ refers to the model complexity. By choosing the norm,

i.e, a prior, a model is assumed for the solution. By constraining ‖X‖we impose to the solution

to be simple according to a given measure of complexity. In other words, the optimal solution

is the “simplest” solution, for the model considered, that correctly explains the observed data.

In practice the problem (3.5) is more commonly presented in the Lagrangian formulation:

X∗ = arg min
X

‖M−GX‖2F + λ‖X‖, λ > 0 . (3.6)

The formulations in (3.6), (3.5) and (3.4) are equivalent if the problem is convex. We

will refer to (3.6) as the penalized formulation of the problem. The parameter λ controls

the “trade-off” between the fidelity to measurements and noise sensitivity. It balances the

reconstruction error and the regularity of the solution. The lower the level of noise present in

the measurements, the smaller should be the reconstruction error. There is a correspondence

between the parameter η and the parameter λ, although this link is usually not explicit.

In the following paragraphs, we will explore a series of approaches that can be cast into

this Lagrangian formulation. Focus will be put on a series of variants involving ℓ2 norms. For

priors involving non differentiable constraints and typically ℓ1 norms, we refer the reader to

chapter 4.

3.2.1 The Minimum-Norm solution

In the previous paragraph, we explained that the resolution of the inverse problem with dis-

tributed source models leads to an optimization problem where the fit of the data is balanced

by a penalization based on a particular norm. In this regard, any distributed inverse solver
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is a “minimum-norm” problem. However, in the M/EEG community, the Minimum-Norm

solution usually only refers to a minimization of an ℓ2 norm [101, 220].

Regularization of inverse problems with the ℓ2 norm was introduced by Tikhonov [203]

and is known in statistics as ridge regression.

3.2.1.1 Minimum-norm equations

The standard Minimum-Norm solution is obtained by solving:

X∗ = arg min
X

E(X) = arg min
X

‖M−GX‖2F + λ‖X‖2F , λ > 0 (3.7)

The solution of this unconstrained and differentiable problem is obtained by setting the

derivative with respect to X to 0:

dE

dX
= 0

⇔ −GT (M−GX) + λX = 0

⇔ (GT G + λI)X = GT M

⇔ X = (GT G + λI)−1GT M

(3.8)

The solution X∗ is given by a simple matrix multiplication:

X∗ = (GT G + λI)−1GT M . (3.9)

The fact that the inverse solution is given by a simple matrix multiplication is a general

property of ℓ2 based methods. This property makes them really attractive, although it can

happen that computing the inverse operator is intractable in practice.

To understand this, one can observe that equation (3.9) involves computing the matrix

GT G ∈ R
dx×dx , where dx is the dimensionality of the source space, and inverting a matrix of

this size. When considering realistic cortical models this computation becomes impossible.

To give an order of magnitude, a matrix in double precision with 10 000 lines and columns

contains 108 elements. A double precision number takes 8 bytes in memory which means that

the matrix requires 8 · 108 = 0.8 GB of RAM just for storage. On a standard computer, even

nowadays, inverting such a matrix can become a computational burden.

To circumvent these limitations, the following trick is used:

Lemma 3.1. Matrix Inversion (Woodbury matrix identity)

(A + UCV)−1 = A−1 −A−1U(C−1 + VA−1U)−1VA1 (3.10)

or with A = I and C = I

(I + UV)−1 = I−U(I + VU)−1V . (3.11)

Applying equation (3.11) to equation (3.9), with λ = 1 for simplicity, leads to

(GT G + I)−1GT

= (I−GT (I + GGT )−1G)GT

= GT (I + GGT )−1(I + GGT −GGT )

= GT (I + GGT )−1

(3.12)

The solution X∗ is now given by:

X∗ = GT (GGT + λI)−1M , (3.13)
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which involves the inversion of a small matrix in R
dm×dm .

By comparing the MN solution in (3.9) and the LCMV beamformer in (3.1), similarities

can be observed. This justifies the limited discussion on beamforming techniques and we

refer the reader to [152] where the authors detail how to relate linear beamformers such as

LCMV to the Minimum-Norm solutions.

3.2.1.2 Choosing the regularization parameter

The naive but quite efficient approach

The λ is related to the level of noise present in the measurements. Schematically, the larger

the noise amplitude, the larger the reconstruction error and the larger λ should be. If λ

increases, ‖X∗‖ decreases and the reconstruction error increases. In theory, this parameter

has to be estimated on each dataset since it depends on the data. However, a strategy exists

to get a reasonable estimate of λ. This strategy is used by the Brainstorm toolbox [10].

In order to understand this method, it is necessary to introduce the singular value decom-

position (SVD) of G:

G = USVT ,

where the matrices U and V are square unitary matrices, i.e., UT U = I and VT V = I, and

the matrix S is diagonal.

The diagonal entries of S are the singular values (si)i of G. The (si)i are ordered such that

|s1| > |s2| > · · · > |sdx
|. By replacing G by its SVD in equation (3.13) we get:

X∗ =GT (US2UT + λI)−1M

=GT (U(S2 + λI)UT )−1M

=GT U(S2 + λI)−1UT M

=VS(S2 + λI)−1UT M

(3.14)

The matrix (S2 + λI)−1 is also diagonal and its diagonal coefficients are (s2i + λ)i. The

λ should therefore take a value comparable to the (s2i )i. The heuristic choice of λ proposed

by the first strategy consists in setting λ = 0.01s21. This rule of thumb works quite well in

practice.

Brainstorm’s implementation also removes singular values for which s2i < dm10−7s21.

The L-curve

The L-curve approach was originally proposed by Hansen in [103]. The idea is to compute for

multiple values of λ the value of the norm ‖X∗‖ and the reconstruction error. By plotting the

norm of ‖X∗‖ as a function of the residual ‖M −GX∗‖ in loglog one gets a curve similar to

the curve presented in the illustration figure 3.2. This curves describes an “L” and the best

λ is obtained at the corner of the curve. It is estimated in practice by looking for the point

with the highest curvature. Hansen argues that when λ is smaller than this optimal value,

the inverse solver reconstructs part of the noise. In [103], Hansen lists a set of conditions to

guarantee that the resulting curve describes an L. One of the conditions is that the signal

measured in not too buried in noise. It is observed that when increasing the amplitude of the

additive noise, the corner of the curve, used to estimate the λ, becomes harder to see.

When increasing the λ from 0 to∞, the 2D point (‖M−GX∗‖, ‖X∗‖) goes from the upper

left extremity of the curve to the lower right extremity. Thus, for a larger λ the reconstruction

error increases.

The generalized cross-validation (GCV)

The generalized cross-validation (GCV) is an alternative to the L-curve from Hansen. It
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Figure 3.2: L-curve in Minimum-Norm estimator (loglog plot). The lambda is estimated by

searching the point of highest curvature.

was originally proposed by Wahba and Golub in [90, 218]. The idea behind the GCV is to

say that λ is correctly defined if the measurements on dm − 1 sensors can help to predict

the measurements of the left out sensor, hence the term cross-validation. Wahba and Golub

showed that this prediction error, averaged across all sensors, could be computed with a

closed-form for a given λ.

Let us denote the measurements on sensor j by Mj and by M|j the measurements ob-

tained by removing the jth sensor. The sources estimated with M|j are denoted X∗
|j and the

leadfield obtained after removing row j is denoted G|j . The jth row of G is denoted Gj . Using

3.13, we get

X∗
|j = GT

|j(G|jG
T
|j + λI)−1M|j

The generalized cross-validation error is defined as:

G(λ) =
∑

j

‖Mj −GjX
∗
|j‖2F

Wahba and Golub have shown that this function of λ can be easily computed with the

following formula:

G(λ) =
‖M−GX‖2F

(trace(I−GGT (GGT + λI)))2
(3.15)

Finding the best λ consists in minimizing this function with respect to λ. Such a function

G(λ) is illustrated in figure 3.3.

The equation (3.15) is obtained after assuming that the noise is independent and identi-

cally distributed across sensors. When this assumption does not hold the performance of the

GCV can be affected. This is a limitation pointed out by Hansen in his presentation of the

L-curve method. In practice, this issue can be addressed by pre-whitening the data.

3.2.2 Variants around the minimum-norm solution

We will now present some alternative approaches also based on ℓ2 penalization, namely, the

weighted minimum-norm (WMN), the dSPM [49] and the sLORETA [171] methods. All these

methods work time instant by time instant, and therefore do not make use of the temporal

correlations of the activations. Finally, we will present an ℓ2 based method that takes into
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Figure 3.3: Generalized Cross Validation with Minimum-Norm estimator. The vertical line

points the minimum of the GCV which provides the value of lambda.

Setting λ with a percentage like exposed in paragraph 3.2.1.2:

1 clear options

2 % 10 percents corresponds to Brainstorm’s default lambda

3 options.pct = 10;

4 [X,Ginv] = mn_inverse(M,G,options); % X = Ginv * M;

Or manually:

1 clear options

2 options.lambda = 1e-5;

3 [X,Ginv] = mn_inverse(M,G,options);

Or with generalized cross-validation:

1 clear options

2 options.use_gcv = true;

3 [X,Ginv] = mn_inverse(M,G,options);

Or with the L-curve:

1 clear options

2 options.use_lcurve = true;

3 [X,Ginv] = mn_inverse(M,G,options);

Table 3.3: Running a Minimum-Norm with EMBAL .

https://gforge.inria.fr/projects/embal
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account this temporal information.

3.2.2.1 The weighted minimum-norm (WMN)

When applying a simple Minimum-Norm solution, each dipolar source is penalized equiva-

lently, although the columns of the leadfield matrix G are not normalized. Sources that are

close to the sensors have a higher forward field, i.e., the effect on the sensors of a small acti-

vation is big. As a consequence, the minimum-norm solution is biased towards the superficial

sources. The WMN was originally proposed to cope with this problem.

The weighted Minimum-Norm solution corresponds to the problem:

X∗ = arg min
X

E(X) = arg min
X

‖M−GX‖2F + λ‖WX‖2F , λ > 0 . (3.16)

The matrix W ∈ R
dx×dx is the weighting matrix. To guarantee a valid penalization, it is

necessary to impose that W is not singular, i.e., W−1 exists. If W is singular, then the cost

function to minimize might not be strictly convex, leading to a non unique solution.

Setting Y = WX and replacing G by G̃ = GW−1 in equation (3.13) leads to

Y∗ = arg min
Y

E(X) = arg min
Y

‖M− G̃Y‖2F + λ‖Y‖2F , λ > 0 . (3.17)

Using (3.13), we get that

X∗ = W−1Y∗ = (WWT )−1GT (G(WWT )−1GT + λI)−1M . (3.18)

We observe that computing X∗ with a WMN using equation (3.18) requires to be able to

invert a big matrix WWT ∈ R
dx×dx , which is what was previously avoided thanks to the

matrix inversion lemma.

In order to make the equation (3.18) tractable the weighting matrices W have to be diago-

nal, or easily invertible. We will now show how such a diagonal matrix can be chosen in order

to avoid the bias towards superficial sources.

The amplitude of the forward field for a dipole close to the sensors is bigger than for a

dipole deep in the brain. Hence the standard minimum-norm that penalizes all the dipoles

equivalently tends to explain the measurements with superficial dipoles close to the sensors.

If a small amplitude for a superficial dipole can explain the measurements, the same effect

for a deeper source requires a much bigger amplitude of activation.

Let Gi denote the ith column of G and (wi)i the diagonal coefficients of W. The norm

‖Gi‖2 is the amplitude of the forward field of the dipole i. By setting wi = ‖Gi‖γ2 with γ > 0,

the bias is reduced. Typically γ is set to 1 or 0.5. In practice, setting the parameter γ is an

issue that has led to its empirical estimation with real and simulated data in [140].

In the case where we do not have access to (WWT )−1, the problem has to be solved from

the equation obtained after differentiating E(X):

(GT G + λWT W)X = GT M

Then for each column of M the problem can be solved separately using an iterative method

such as the conjugate gradient algorithm. Attention should be paid to avoid assembling and

storing the matrix GT G.

Examples that face this problem are what we call the Laplacian-based penalizations.

When trying to impose spatial smoothness on the solution a natural choice for W is to use the

surface Laplacian Lsurf of the cortical mesh. This method is generally called in the literature

the maximum smoothness solution and corresponds to the LORETA solution [172], although

LORETA was originally formulated on a grid of dipoles rather than on the cortical mesh.
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1 clear options

2 options.pct = 10;

3 options.W = sqrt(sum(G.*G))’; % Set weights

4 X = wmn_inverse(M,G,options);

Table 3.4: Running a Weighted Minimum-Norm with EMBAL .

An alternative to LORETA, that also uses a spatial smoothing prior consists in penalizing

the estimate with the ℓ2 norm of the surface gradient ∇surf . The discretization of ∇surf is

denoted in matrix form by Dsurf . This solution is referred to as the HEAT solution [5], since

it can be related to the heat equation defined over the mesh. The surface gradient Dsurf

verifies DT
surfDsurf = Lsurf , which implies that the HEAT solution is given by solving

(GT G + λLsurf )X = GT M .

Remark. The gradient and Laplacian are a bit more complex to compute on a tessellated

surface than on a grid since it involves a discretization with P1 elements of the activation

map. See chapter 2 for more details on P1 elements and their role in finite element methods.

We will come back to the Laplacian-based methods when considering spatiotemporal reg-

ularizations.

3.2.2.2 The ℓ2 priors and Gaussian models

Up to here, ℓ2 priors have been presented without much attention drawn onto the underlying

assumptions. In order to understand the link between ℓ2 priors and Gaussian models, it is

necessary to relate the ℓ2 penalization model (3.7) to Bayesian estimation.

Let us assume that M and X are random variables. According to Bayes’ rule, we have:

P (X|M) =
P (M|X)P (X)

P (M)
.

The optimal X is obtained by estimating a maximum a posteriori (MAP), i.e., solving:

X∗
MAP = arg max

X

P (X|M)

= arg max
X

P (M|X)P (X)

= arg min
X

−log(P (M|X))− log(P (X))

(3.19)

The noise and the source amplitudes are assumed to be Gaussian variables with zero

mean and respectively ΣE and ΣX as covariances. This leads to:

X∗
MAP = arg min

X

(M−GX)T Σ−1
E (M−GX) + XT Σ−1

X X

= arg min
X

‖M−GX‖2ΣE
+ ‖X‖2ΣX

(3.20)

We recall that ‖X‖Σ = trace(XT Σ−1X). Using a simple derivation and the matrix inver-

sion lemma 3.1, the solution of this problem is given by:

X∗
MAP = ΣXGT (GΣXGT + ΣE)−1M . (3.21)

We observe that the standard MN corresponds to the case where ΣX = I and ΣE = λI.

The Bayesian approach offers a convenient framework for modeling the noise. Note that

https://gforge.inria.fr/projects/embal
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in (3.21), the source covariance ΣX does not need to be inverted. This implies that if the

prior is defined on the covariance, there is no need to invert a matrix of size dx × dx. Another

interesting aspect of the Bayesian approach is its ability to formalize model selection methods.

This will be detailed later in section 3.3.2.

3.2.2.3 Noise normalized methods: dSPM and sLORETA

The central idea behind noise normalized methods, as they are being called in the M/EEG

community, is to represent on the cortex not the activity itself, but a dimensionless statis-

tical quantity. As we will see, using statistical quantities attenuates the bias towards the

superficial sources and also has the advantage of providing a natural way of thresholding the

reconstructed estimates.

For simplicity, we will restrict the presentation of both methods to the inverse problem

with constrained orientations.

The mathematical foundations of both of these methods come from the knowledge on

Student’s statistical distributions. Let (xi)i = 1, . . . , N be N normally distributed random

samples. We denote by x the empirical mean of the (xi)i and σemp the empirical standard

deviation:

x =
1

N

N
∑

i=1

xi ,

and

σemp =

√

√

√

√

1

N − 1

N
∑

i=1

(xi − x)2 .

One can prove that, if the true mean of the (xi)i equals µ, then the quantity defined as:

x− µ
σemp/

√
N

follows a T-distribution, also called Student’s distribution, with N − 1 degrees of freedom.

This quantity is the T-statistic of the sample.

Definition 3.1 (Student’s T-distribution). Student’s t-distribution with n degrees of freedom

has a probability density function given by:

p(x) =
Γ(n+1

2 )√
nπΓ(n

2 )

(

1 +
x2

n

)−n+1
2

,

where Γ is the Gamma function: Γ(x) =
∫∞
0
tx−1e−tdt.

When dealing with M/EEG data the classical question is to know whether a given exper-

imental stimulation created an effect in the subject’s brain and where. An effect is always

measured in comparison with a reference level usually estimated in the period before stim-

ulation, called the baseline period. To take the baseline period into account, a classical pre-

processing of the data is called the baseline correction. It consists in subtracting to every

sensor the mean value of the signal measured during the baseline period. This being done,

the model, mentioned is section 3.2.2.2, that assumes that the sources X and the noise E have

0 mean holds.

The relevant T-statistic to consider is therefore reduced to:

x

σemp/
√
N

.
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Without going into more details on statistical tests, under the Gaussianity assumption, if this

statistic is large in absolute value, an effect is detected.

The point where dSPM and sLORETA differ is on the way to estimate the empirical stan-

dard deviation.

Dynamic Statistical Parametric Mapping (dSPM)

With the dSPM method, the variability of the estimate is assumed to exist due to the

additive noise. The sources X are not supposed to be random variables, unlike the noise E. If

we assume that E is Gaussian and that the covariance matrix of each of its columns is given

by ΣE, using the MN inverse formula, we get that the covariance of each of the columns of X∗

is given by C = HΣEHT . The matrix H denotes here the MN inverse H = GT (GGT + ΣE)−1

obtained with (3.21). The dSPM method estimates the variances of the sources with the

diagonal elements of C. We get:

TdSPM = RX∗ , (3.22)

where R is a diagonal matrix whose coefficients are Rii = 1/
√

Cii.

Once the values of T are computed, we obtain statistical maps, instead of current esti-

mates, and active sources are detected by thresholding them. The threshold can be related to

a p-value according to the T-distribution calculated under Gaussianity assumptions.

Since the number of time samples used to calculate the noise covariance matrix C is quite

large (typically more than 100), the T-distribution approaches a unit normal distribution.

With a large number of samples, the empirical variance approaches the true variance and

the T-statistic becomes equivalent to a z-score, a.k.a., a standard score.

sLORETA

In the sLORETA method, the variability is supposed to come also from the sources. If we

denote by ΣX the covariance matrix of the sources, this implies that the covariance of the

source estimates is given by C = H(ΣE + GΣXGT )HT where the matrix H is now given by

H = ΣXGT (GΣXGT + ΣE)−1. The matrix C is often called the resolution matrix. The result

is obtained as with the dSPM method using (3.22).

In practice the source covariance is not observed and without any learning procedure, this

covariance has to be fixed a priori. Like for the standard minimum-norm, this covariance is

usually set to ΣX = I.

Remark. When considering multiple orientations at each cortical position the statistical quan-

tity considered follows an F-distribution (cf. equation 9 in [140]) but the philosophy of the

method is the same.

One can prove that in a noiseless case, if only one source is active, the sLORETA method

has no localization bias [171].

The dSPM solver is probably more classical, in the sense that the sources are fixed and

only the additive noise is a Gaussian random variable. With the sLORETA solver, the sources

are also Gaussian random variables, which relates this method to the Bayesian approaches

exposed later in this chapter.

3.2.2.4 Spatiotemporal minimum-norm estimation

In the previous paragraphs, we have seen how to set a spatial smoothness prior in the inverse

problem. This was done for example with a spatial Laplacian defined over the mesh. We will

now see how a similar approach can be used to impose temporal smoothness for the current

estimates X∗.
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(a) Result obtained with dSPM (b) Result obtained with sLORETA

Figure 3.4: Illustration of thresholded statistical map obtained with the dSPM and sLORETA

methods on somato sensory data recorded with MEG.

Let Ltime be a temporal Laplacian operator. For a 1D signal x = (xt)t, the Laplacian can

be approximated by:

(Ltimex)t =
xt−1 − 2xt + xt+1

4
.

With our notations, whereas the spatial Laplacian is applied by multiplication on the left,

the temporal Laplacian is applied by multiplication on the right. The currents X∗ are now

estimated by solving:

X∗ = arg min
X

‖M−GX‖2F + λ‖LsurfX‖2F + µ‖XLtime‖2F , (3.23)

where λ > 0 and µ > 0 are the spatial and temporal regularization parameters.

Equation equation (3.23) can be solved very elegantly using Kronecker products. We refer

the reader to Appendix A for an introduction to Kronecker products manipulation. We just

briefly recall that the stacking operator “vec” converts a matrix A to a vector by stacking all

the columns of A. The following equations make an extensive use of the following identity:

vec(AXB) = (BT ⊗A)vec(X) ,

assuming that the dimensions of the matrices A, B and X agree.

The cost function in equation (3.23) becomes:

‖M−GX‖2F + λ‖LsurfX‖2F + µ‖XLtime‖2F
=‖vec(M−GX)‖2F + λ‖vec(LsurfX)‖2F + µ‖vec(XLtime)‖2F
=‖vec(M)− (I⊗G)vec(X)‖2F + λ‖(I⊗ Lsurf )vec(X)‖2F + µ‖(LT

time ⊗ I)vec(X)‖2F
=‖vec(M)− G̃vec(X)‖2F + λ‖(I⊗ Lsurf )vec(X)‖2F + µ‖(LT

time ⊗ I)vec(X)‖2F

(3.24)

where G̃ stands for I⊗G.

By differentiating with respect to vec(X) and setting the derivative to 0 we get:

(G̃T G̃ + λ(I⊗ Lsurf )T (I⊗ Lsurf ) + µ(LT
time ⊗ I)T (LT

time ⊗ I))vec(X) = G̃T vec(M)

(G̃T G̃ + λ(I⊗ LT
surfLsurf ) + µ(LtimeL

T
time ⊗ I))vec(X) = G̃T vec(M)

(3.25)

The matrix on the left hand side is extremely large and cannot be stored in memory. How-

ever multiplying a vector by this matrix is not very computationally expensive since Lsurf

and Ltime are sparse matrices. The problem is solved using a conjugate gradient method.
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As with standard minimum-norm methods, i.e., with no temporal smoothness, the dif-

ferent techniques detailed above can be applied. The parameters can be set by GCV with

a function G(λ, µ). We can imagine an L-curve approach where we would look for a point of

highest curvature on a 2D surface parametrized by λ and µ [13, 26]. The dSPM and sLORETA

methods can also be extended. The only pitfall here is that, contrary to the standard MN, the

inverse matrices cannot be explicitly computed. We need for each pair (λ, µ) to run an itera-

tive solver, which can make the GCV and L-Curve methods particularly time consuming.

3.3 LEARNING-BASED METHODS

In previous sections, the ℓ2 priors used in the penalization of the inverse problem are de-

fined a priori. Following the explanations in section 3.2.2.2, this means that the proposed

methods assume a predefined covariance matrix for the sources. In the following paragraphs,

we will present inverse solvers that aim at designing a prior based on the data. The source

covariance matrix, i.e., the weights in the ℓ2 penalization term, is “learned”. We will also say

that the model is learned from the data [201].

For simplicity, we will present the following method in the context of instant-by-instant

inverse computation. The methods presented in this section use the Bayesian formulation of

the inverse problem with the assumption of no temporal correlations. We recall the Bayesian

framework from section 3.2.2.2:

p(X|M) =
p(M|X)p(X)

p(M)
. (3.26)

where we assume Gaussian variables:

E ∼ N (0,ΣE) (3.27)

X ∼ N (0,ΣX) (3.28)

and an additive model:

M = GX + E . (3.29)

If ΣE and ΣX are known, X is obtained by maximizing the likelihood which leads to:

X∗ = arg min
X

‖M−GX‖ΣE
+ ‖X‖ΣX

, (3.30)

which leads to:

X∗ = ΣXGT (GΣXGT + ΣE)−1M .

In this framework the prior is an ℓ2 norm and learning the prior means learning ΣX, i.e., the

source covariance matrix. One may also want to learn the noise covariance matrix ΣE. Note

that in the WMN framework, learning ΣX consists in learning the weights.

In the case where ΣX and ΣE are not fixed a priori, these parameters define the model

commonly denotedM. Bayes’ rule can be rewritten:

p(X|M,M) =
p(M|X,M)p(X|M)

p(M|M)
. (3.31)

p(X|M,M) is called the posterior.
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p(M|X,M) is called the likelihood.

p(X|M) is called the prior.

p(M|M) is called the model evidence.

3.3.1 Model selection using a multiresolution approach: MiMS

The Multiresolution Image Model Selection (MiMS) algorithm was proposed by Cottereau

et al. in [43]. Its principal motivation was to be able to reconstruct spatially extended active

regions, but also to quantify their extents. The idea behind this inverse solver is first to

estimate weights using a multiresolution approach, and second to use these weights in the

WMN framework. The multiresolution step is the learning step. The building blocks of the

MiMS source model are parcels of the cortical surface, designed at multiple spatial resolutions

in combination with anatomical and functional priors. The sources on the parcels are modeled

with current multipoles.

The procedure is iterative and goes from a coarse to a fine resolution. At each iteration k,

the source spaceMk is segmented into Nc parcels, or clusters, (Ck
j )j of elementary sources:

Mk = {Ck
j , j ∈ [1, Nc]}. (3.32)

A cluster is a cortical region, as illustrated in figure 3.5. The authors call Mk a piecewise

image model at resolution k.

From iteration k to iteration k + 1, some sources are eliminated. After removing these

sources, a new image model at resolution k + 1 is defined. The procedure is summarized by

the following steps:

1. Design of the piecewise image model Mk+1 at resolution k + 1 from the elementary

sources that survived previous eliminatory procedure of Step 3.

2. Compact parametric modeling of regional neural activity from each elementary cluster

Ck+1
j inMk+1.

3. Model selection: eliminate using generalized cross-validation (GCV) the least-significant

source cluster fromMk and loop back to Step 1.

We now briefly detail the technical aspects of the modeling and selection steps (see [6, 43]

for a full description). At each resolution k, the available cortical sources are clustered in Nc

patches Ck
j of similar surface area. For MEG, Jerbi et al. showed in [119] that the current

quadrupolar expansion was an adequate model for extended sources (> 5 cm2) with only 7

moment parameters accounting for the cortical activity generally supported by about 100

elementary dipoles in conventional imaging models (see section 2.3.3 ). At resolution k,

the activity of cluster Ck
j is modeled up to its quadrupolar expansion about its geometrical

centroid (cf. figure 3.5).

Let us denote H̄k the forward field of the parcels at resolution k, and Q̄k the parameters

of the multipoles. The model becomes:

M = H̄kQ̄k + noise . (3.33)

The operator H̄k has 7Nc columns. It is possible to enforce the problem to be overdetermined

by assuming that 7Nc is smaller than the number of sensors. With an MEG device with 151

sensors, this leads to 21 parcels at each resolution.
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Figure 3.5: Illustration of a 300 mm2 cortical patch. Moments of current quadrupolar ex-

pansion are obtained from the elementary dipole moments supporting the patch geometry,

expanded about the parcel centroid.

The least-significant cluster in the source model is removed by computing the Generalized

Cross-Validation error (GCV-error) for Nc submodels indexed by j consisting of all clusters in

Mk except Ck
j . The cluster Ck

j0
associated with the smallest GCV-error is supposed to be the

least significant and is removed at resolution k+1. At step k+1, the remaining Nc−1 regions

of the cortex are redivided in Nc parcels.

At the end of this exhaustive procedure when no more parcel can be removed, the best

model in the GCV-error sense is selected retrospectively (see figure 3.6). As the initial cortical

parcellation at k = 0 is arbitrary and coarse, the entire process is restarted L times. A

weighted summation of the individual GCV errors across the L best models yields a so-called

multiresolution clustering (MRC) frequency map of dipole amplitudes. It is this frequency

map that is used as weights in a WMN (see (3.18)) in order to get the current estimates.

Figure 3.6: GCV error vs. spatial resolution k in semilog scale. A selection of image source

modelsMk are shown with their associated cortical parcels. Here, the global minimum of the

GCV error is reached for k∗ = 62 and the corresponding imaging model M∗
k is magnified in

the green boxplot (Adapted from [43]).
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This method presents an interesting multiresolution approach and uses a relevant mod-

eling of active parcels via current quadrupoles. By doing so it provides a solution to the

challenging problem of estimating the spatial extent of active cortical regions. However, a

few critiques remain. First, this approach can only be used with spherical models in MEG (cf.

chapter 2 in section 2.2.2). It cannot be used with neither EEG nor MEG when considering

non spherical models. Second, it may appear relatively strange to use the frequency map

as estimators for source variances. Nevertheless, simulation studies [43] and experimental

results on retinotopic mapping [6, 42] obtained with this solver demonstrate its ability to

provide good localization results. The retinotopic data are presented in chapter 5.

3.3.2 Restricted Maximum Likelihood (ReML) and Sparse Bayesian

Learning (SBL)

More classical Bayesian learning methods use the evidence framework in order to learn

adaptive parametrized priors from the data itself. A MAP estimate only gives the maximum

of the posterior. In practice, this posterior might be multimodal implying that the maximum

is not representative of the full posterior. The following approaches aim at estimating the

posterior probability mass is order to provide better source estimates. This is done by maxi-

mizing the model evidence.

Restricted Maximum Likelihood (ReML)

Restricted Maximum Likelihood [105] was introduced to the neuroimaging community by

Friston et al. [81]. Even if this ReML method has been applied to other problems than M/EEG

source imaging, we will present it in this particular context. The general idea of this approach

is to estimate hidden variables also called hyperparameters with an iterative procedure that

amounts to Expectation-Maximization (EM) update rules [60]. The quantity that drives the

learning procedure is the model evidence: p(M|M).

The model is the following:

ΣE =
∑

i

µiQ
i
E (3.34)

ΣX =
∑

i

λiQ
i
X (3.35)

where the Qi
E and Qi

X are covariance matrices defined a priori. The µi and λi are positive

hyperparameters that need to be learned in order to estimate the “good” model.

Like a standard EM algorithm the procedure consists is maximizing a non-convex likeli-

hood by maximizing a convex surrogate functional for which the optimization is tractable.
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The likelihood that needs to be maximized is: p(M|M) = p(M|λ, µ). We have:

log(p(M|M)) = log

(∫

X

p(M,X|M)dX

)

= log

(∫

X

q(X|M)
p(M,X|M)

q(X|M)
dX

)

≥
∫

X

q(X|M)log

(

p(M,X|M)

q(X|M)

)

dX (Jensen Inequality)

≥
〈

log

(

p(M,X|M)

q(X|M)

)〉

q(X|M)

≥
〈

log

(

p(M|X, µ)p(X|λ)

q(X|M)

)〉

q(X|M)

≥ F(q,M) = F(q, λ, µ)

The surrogate functional F is called the free energy. It is a function of the probability

density function q and the hyperparameters (λ, µ).

The EM algorithm alternates an M-step and the E-step.

The M-step finds the Maximum Likelihood (ML) estimate of the hyperparameters:the val-

ues of (λ, µ) that maximize F while keeping q fixed:

(λk+1, µk+1) = arg max
λ,µ

F(qk, λ, µ) ,

where the values of (q, λ, µ) at iteration k are denoted: (qk, λk, µk).

Then the E-step consists in updating q using the new values of the hyperparameters

(λk+1, µk+1). It is a coordinate ascent on F :

qk+1 = arg max
q

F(q, λk+1, µk+1) ,

and one can prove that:

qk+1(X|M) = p(X|M, λk+1, µk+1) .

In their numerous contributions on this subject [78, 79, 80, 81, 146, 177, 178] the authors

present the algorithm as a maximization of a Restricted Maximum Likelihood. ReML can be

regarded as embedding the E-step into the M-step to provide a single log-likelihood objective

function.

The method presented here offers an interesting framework in order to avoid the a priori

setting of the ℓ2 prior, i.e., the source covariance matrix. Its ability to determine the regulari-

sation parameter is also particularly convenient. However, a few critiques can be made about

this approach. The optimization method requires a nonlinear search for each M-step (Fisher

scoring method) which does not guarantee a positive definite estimated covariance. While

shown to be successful in estimating a handful of hyperparameters in [146, 177, 178], this

could potentially be problematic when very large numbers of hyperparameters are present.

Also, the optimization proposed requires to invert a matrix whose number of rows is equal to

the number of hyperparameters. This is another limiting factor when using a large number

of priors.

When experimenting with the software provided in the SPM package, we observed that
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when using a large number of covariance priors, a fraction of the hyperparameters obtained

could be negative-valued. We also observed that the procedure may fail to converge and

oscillate between two sets of parameters. It is probably to avoid such problems that the SPM

implementation imposes a fixed number of EM iterations. This may appear rather surprising

since standard EM algorithms usually require many iterations to converge.

The following approach, based on what is referred to as Sparse Bayesian Learning (SBL)

and Automatic Relevance Determination (ARD), offers a more principled approach.

Sparse Bayesian Learning and γ −MAP

The Sparse Bayesian Learning (SBL) approach [142, 160] is an extremely important al-

ternative to the point estimate obtained by simple maximum likelihood. This approach is

also based on the maximization of the model evidence, but the procedure consists in selecting

among a very high number of priors, the ones that fit the best to the data. Contrary to the

ReML solver that is limited to a small number of priors, covariance templates in this case, the

following method is not. It achieves model selection with a sparsity inducing cost function.

In this context, SBL consists in maximizing a tractable Gaussian approximation of the

evidence, also known as the type-II likelihood or marginal likelihood:

p(M|ΣM) =

∫

p(M|X)p(X|ΣM)dX = N(0,ΣM) ,

where ΣM stands for the measurements covariance matrix. This is equivalent to minimizing

the negative log marginal likelihood:

L =− log p(M|ΣM)

=− log

(

1
√

(2π)dm |ΣM|
dt

exp

(

− trace
(

MT Σ−1
M M

)

2

))

. (3.36)

For convenience, the log marginal likelihood is simplified and redefined as:

L = dt log |ΣM|+ trace
(

MT Σ−1
M M

)

. (3.37)

With the additive model (3.29), ΣM is given by:

ΣM = GΣXGT + ΣE .

The model proposed for ΣX is ΣX =
∑ds

i=1 γiCi. The (γi)i are the hyperparameters and

the (Ci)i are the a priori source covariance matrices. With this model the likelihood L is

parameterized by the (γi)i. The (Ci)i can be defined as Ci = eie
T
i where ei is a vector with

zeros everywhere except at the ith element, where it is 1. Such covariance matrices model

isolated dipolar sources. It is also possible to use general covariance matrices and particularly

some that model extended activation, patches. This was proposed in [182].

The cost function (3.37) induces sparsity via the term log |ΣM|, a.k.a., volume-based regu-

larization. It penalizes a measure of the volume formed by the model covariance ΣM. In high

dimensions the volume is more efficiently reduced by setting a few dimensions to 0 rather

than by diminishing all of them by a small factor. This penalty term promotes a model covari-

ance that is maximally degenerate (or non-spherical), which pushes elements of γ to exactly

zero.

If we assume that Ci = eie
T
i , the diagonal matrix ΣX = Γ = diag(γi) is the prior source

covariance matrix which contains the vector of hyperparameters on the diagonal (i.e., the

variances). In the ARD framework, the precisions (i.e., inverse variances) are Gamma dis-
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tributed. The matrix ΣE is the noise covariance matrix, which is assumed here to be a mul-

tiple of the identity matrix (e.g., σ2
EI, where σ2

E is the noise variance, a hyperparameter that

can also be learned from the data or empirically obtained from the measurements).

The optimization is run with an iterative procedure that updates the (γi)i at each step.

Various update schemes exist to optimize (3.37).

First, the evidence maximization can be achieved by using an Expectation-Maximization

update rule:

γ
(k+1)
i =

1

dtri

∥

∥

∥

∥

γ
(k)
i GT

(:, i)

(

Σ
(k)
M

)−1

M

∥

∥

∥

∥

2

F

+
1

ri
trace

(

γ
(k)
i I− γ(k)

i GT
(:, i)

(

Σ
(k)
M

)−1

G(:, i)γ
(k)
i

)

,

where ri is the rank of G(:, i)G
T
(:, i), and G(:, i) is a matrix grouping the column vectors from

G that are controlled by the same hyperparameter γi [227].

It can also be achieved using a fixed-point gradient update rule (called MacKay updates):

γ
(k+1)
i =

γ
(k)
i

dt

∥

∥

∥

∥

GT
(:, i)

(

Σ
(k)
M

)−1

M

∥

∥

∥

∥

2

F

(

trace

(

GT
(:, i)

(

Σ
(k)
M

)−1

G(:, i)

))−1

,

or alternatively with:

γ
(k+1)
i =

γ
(k)
i√
dt

∥

∥

∥

∥

GT
(:, i)

(

Σ
(k)
M

)−1

M

∥

∥

∥

∥

F

(

trace

(

GT
(:, i)

(

Σ
(k)
M

)−1

G(:, i)

))− 1
2

.

Contrary to the MacKay updates, the latter scheme guarantees that the cost function de-

creases at each iteration. The proof is based on convex analysis and the introduction of a

surrogate function.

With fixed dipole orientations, G(:, i) is a vector, but with unconstrained orientations G(:, i)

is a dm × 3 matrix. For patch source models involving dipoles within a region, G(:, i) is a

matrix containing all gain vectors associated with the local patch of cortex. The last two

update schemes are much faster than the EM rule (cf. figure 3.7). It can be noticed that

one iteration of the gradient-based update is almost identical to the sLORETA algorithm,

which is expressed in a completely different framework. Once the optimal hyperparameters

have been learned, the source estimates are given by the classical closed-form solution of the

Minimum-Norm:

X∗ = E[X|M;ΣX] = ΣXGT (ΣM)
−1

M .

It is important to note that many SBL algorithms are distinguished by the parameterization

of the source covariance matrix. Here the model presented is ΣX =
∑ds

i=1 γiCi. It is referred

to as the γ-MAP inverse solver [227].

If we did not include the ReML framework from Friston and colleagues in the Sparse

Bayesian Learning framework, it is because their approach with a limited number of hy-

perparameters and diagonal covariances with no non-zero elements, cannot produce sparse

estimates.

Comments on Sparse Bayesian Learning. First a remark on the implementation. It

can be observed in the update schemes detailed above that once a γi is set to 0 it stays at 0.

It then requires no more updating. This means that the faster the γi are set to 0, the faster

the loop over i. It allows for example to run the γ-MAP solver with thousands of covariance

templates. Very rapidly only a handful of γi are concerned by the update and the algorithm

converges even faster.

The second remark is related to the practical use of this solver. With a classical event

related experimental setup, a subject is asked to perform a task or simply to respond to a
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Figure 3.7: Convergence rates observed with the three update schemes (EM,

MacKay,Convexity-Based Approach). The EM-based scheme appears clearly as the less ef-

ficient. Simulation was run with around 20000 covariance templates.

stimulation multiple times. For each repetition of the experiment, the M/EEG signals are

recorded, forming one trial. Let us suppose that dn trials are recorded and that each trial

contains dt successive time instants. By averaging all the dn trials, we obtain what is called

the evoked response. A first approach consists in using as input successive time frames of the

evoked response. The input data could for example be the measured evoked response between

40 and 50 ms or between 20 and 200 ms after the beginning of the stimulation. The problem

with the latter example is that source covariance is very likely to change during the time

interval. The (γi) might be different for early and late brain responses. In order to run the

inverse solver on the full temporal data, one might want to consider the possibility of letting

γi change over time. Indeed, the γ-MAP solver assumes that the noise and prior covariances

do not depend on time, which can be a problem for long time interval. Note that this remark

is at the origin of our contribution presented in chapter 6.

An alternative that does not suffer from the problem just mentioned consists in using as

input the data measured at a given time instant t∗ across the dn repetitions. This procedure

provides a set of (γi) and localization results at this particular time instant t∗ but does not

integrate temporal information. Moreover, this approach assumes no variability across trials.

The source configuration is considered to be the same at t∗ in each repetition. As illustrated

in our contribution in chapter 7, this assumption can be questioned.

Finally we would like to mention that our experience with the γ-MAP inverse solver

showed that it could provide very accurate results. While performing numerical simulations,

it showed its ability to recover very complex source configurations. However, it also proved its

sensitivity to the definition of the noise covariance matrix provided as input. A wrong noise

covariance matrix can strongly bias the localization result.

With real data, since this solver can provide with focal source estimates, we also observed

that the active source could be estimated on the wrong side of a gyrus, a location also con-

firmed by simple dipole fitting. In this example, the forward modeling was probably at the

origin of the problem. The point of this remark is that, a very precise inverse solver, requires

a very precise forward modeling.

The γ-MAP inverse solver with Ci = eie
T
i can be used with the code snippet in table 3.5

extracted from EMBAL .

https://gforge.inria.fr/projects/embal
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1 clear options

2 options.noise_cov = C; % Set noise covariance

3 options.maxit = 500; % Set maximum number of iterations of the gammas

4 [X,Ginv,gammas] = gmap_inverse(M,G,options);

Table 3.5: Running the Gamma-MAP inverse solver with EMBAL .

https://gforge.inria.fr/projects/embal
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3.4 CONCLUSION

This chapter was written to provide an overview of the state of the art of M/EEG inverse

solvers based on Gaussian assumptions and ℓ2 priors. The list of solvers presented is fairly

long but does not claim to be exhaustive.

All along this chapter, particular attention was drawn to implementation details, manda-

tory to have software able to deal with realistic datasets. We also took care of providing

personal comments on each algorithm by discussing their advantages but also their limita-

tions.

All the algorithms detailed in this chapter (except for MiMS that should soon be integrated

in the Brainstorm Toolbox) have been implemented and tested on synthetic and real MEG

data. The source code of the solvers and the demo scripts with synthetic and real data are

available in a Matlab toolbox called EMBAL (Electro-Magnetic Brain Activity Localization):

https://gforge.inria.fr/projects/embal

The following two chapters discuss additional aspects of the distributed source models:

priors other than ℓ2 and frequency domain analyses.

https://gforge.inria.fr/projects/embal
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CHAPTER 4

M/EEG INVERSE MODELING WITH

NON DIFFERENTIABLE

CONSTRAINTS AND SPARSE

PRIORS

In chapter 3, focus has been put on distributed inverse solvers with ℓ2 priors, either with

fixed priors or learning-based approaches. When using an ℓ2 norm to regularize the inverse

problem, the cost function to minimize is differentiable and strictly convex, which leads to a

convenient solution obtained in closed-form. The ℓ2 norm is known for its good robustness to

noise. However, the ℓ2 norm suffers from various pitfalls.

The main criticism that is addressed to standard Minimum-Norm solutions, i.e., without

Bayesian learning, results from their tendency to smear out the estimated cortical currents,

often leading to solutions that are too widely extended. This is intrinsically due to the ℓ2 norm

used to regularize the inverse problem. In order to reduce this effect, a natural choice is to

use a regularizing prior that tries to limit the number of active sources, i.e., that introduces

sparsity in the source space.

At the center of sparse priors are the ℓp norms with p < 2 and particularly the ℓ1 norm that

achieves sparsity while leading to a convex problem. Such priors lead to non differentiable

optimization problems for which numerous optimization methods have been proposed in the

last few years [34, 39, 55, 63, 77, 99, 161, 180, 202, 212]. What motivated such an interest

is the ability of sparse priors to improve the solution of ill-posed inverse problems present in

machine learning and signal processing.

The major motivation for using sparse priors in M/EEG originates from the fact that they

provide a natural way to integrate relevant a priori information in the inverse problem. Such

information includes the number of active sources, the spatial extent of active regions, the

spatial or temporal smoothness of the reconstructions or even anatomo-functional knowledge

between multiple experimental conditions.

In this chapter, we review previous contributions that introduced sparse priors in the

context of M/EEG inverse modeling. The proposed optimization methods are commented on

and, eventually, simpler and more efficient algorithms are proposed. We finish this chapter by

our contributions that concern the integration of the anatomo-functional knowledge between

experimental conditions in the prior [93, 128]. As it will be shown with simulations and real

MEG data, this approach offers a principled way to achieve functional mapping with M/EEG

with better results than classic MN estimators.

117
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4.1 WHY USE SPARSE PRIORS?

When using an ℓ2 norm to regularize the inverse problem, the cost function to mini-

mize is differentiable and strictly convex. The strict convexity implies that the solution nec-

essarily exists and is unique. The differentiability allows to find the optimum by just setting

the derivative with respect to X to 0. This is what provides, in the ℓ2 case, the solution in

closed-form. Here, we focus on strategies that do not exhibit such computational advantages,

but that offer the possibility to integrate other prior knowledge on the solution in order to

better constrain of the inverse problem.

Historically, sparse priors have been introduced for M/EEG inverse modeling [91, 145] to

address a problem raised by standard Minimum-Norm solutions (without Bayesian learning).

The MN estimator has a tendency to smear out the estimated cortical currents, often leading

to solutions that are too widely extended.

Such behavior of standard MN estimators is intrinsically due to the ℓ2 norm used to regu-

larize the inverse problem. In order to reduce this effect a natural choice is to use a regular-

izing prior that tries to limit the number of active sources, i.e., that introduces sparsity in the

source space. This can be achieved by using ℓp (quasi)-norms with p < 2.

Definition 4.1 (ℓp norms). Let x ∈ R
I . The ℓp norm for 1 ≤ p < ∞ and the quasi-norm for

0 ≤ p < 1 of the vector x is defined by:

‖x‖p =

(

∑

i

|xi|p
)

1
p

. (4.1)

Remarks.

• For p = 0, ‖x‖0 is equal to the number of non-zero coefficients of x.

• We only define quasi-norms with 0 ≤ p < 1 since the triangular inequality is not satis-

fied.

The ℓp norms with p close to 1 measure “diversity”. It is a notion that is opposed to “spar-

sity”. Hence, minimizing an ℓp norm with p close to 1, implies to minimize the diversity and to

increase the sparsity. A sparse vector is a vector with a small number of non zero coefficients.

Let us illustrate this concept with the classical formulation of the M/EEG inverse problem

with distributed source models:

X = arg min
X

E(X) = arg min
X

‖M−GX‖2F + λφ(X), λ > 0 , (4.2)

where φ(X) = ‖X‖1 or φ(X) = ‖X‖22 and X ∈ R
dx×dt . The ellipses in figure 4.1 represent the

isocontours of the datafit, while the circle and the square at the center correspond respectively

to the ℓ2 and ℓ1 “balls”. The isovalues for the ℓ1 prior are squares while the isovalues for the

ℓ2 prior are circles. At the optimum, the ellipses and the “balls” are tangent. If the tangent

point lies over a coordinate axis, a coefficient is set to zero and the solution is sparse. This

effect is illustrated in figure 4.1(c).

Popular choices for p are 0 and 1. The ℓ1 is attractive since it leads to convex optimization

problems whereas for p < 1 the problems become non convex. When computing the inverse

problem instant by instant, the ℓ1 norm is known in the M/EEG community as the Minimum

Current Estimate (MCE) inverse solution [145] while the ℓ0 norm refers to the FOCUSS

inverse solver [91, 92].
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(a) ℓ2 (b) ℓ2

(c) ℓ1 (d) ℓ1

Figure 4.1: Graphical illustration of the difference between ℓ1 and ℓ2 norms. The ℓ1 ball is very

likely to be tangent to the isovalues of the datafit represented by the ellipses at its corners

as in figure 4.1(c). This produces a solution that sets a coordinate to 0 inducing sparsity.

This is not likely to happen with the ℓ2 norm as illustrated in figure 4.1(a) and figure 4.1(b).

However it can happen that both coefficients are non zeros with the ℓ1 norm as illustrated in

figure 4.1(d).
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4.2 INVERSION WITH SPARSE PRIORS: METHODS

This section presents different algorithms that can be used for inverse computation

with sparse priors. Here, the methods assume that the inverse solution is computed instant

by instant like in the original contributions in the M/EEG community [91, 145]. The presen-

tation starts with Iterative Least Squares (IRLS) that consist in iteratively computing WMN

solutions with weights updated after each iteration [56, 139]. It is followed by a very brief

description of the LARS-LASSO algorithm [63, 202], that is an extremely powerful method

for solving the ℓ1 problem. The LARS-LASSO is a variant of the homotopy method from Os-

borne [180]. Finally methods based on proximity operators and iterative schemes are detailed

[39, 55, 161]. The latter methods are the ones used for the Total Variation (TV) problem and

the final contribution on inter-condition sparse priors.

There exist other methods for solving the ℓ1 penalization problem using iterative thresh-

olding like SPGL1 [212] and fixed point continuation [99] but their limited improvement over

simple proximal iterations does not justify their presentation here. The ℓ1 problem can also

be solved with simple coordinate descent [77] or by blockwise coordinate descent also called

Block Coordinate Relaxation (BCR) [27]. Depending on the problem of interest, the latter

methods can be very competitive.

4.2.1 Iterative Least Squares (IRLS)

IRLS with the ℓ1 norm

The Minimum Current Estimate (MCE) was introduced in the field of M/EEG by Matsuura

and Okabe [145]. As mentioned above, the MCE consists in solving instant by instant, the

inverse problem with an ℓ1 penalization. With dt = 1, the source amplitudes are denoted by a

vector x. The inverse problem with an ℓ1 prior then writes:

x∗
λ = arg min

x

1

2
‖m−Gx‖2F + λ‖x‖1, λ > 0 . (4.3)

This problem corresponds to the LASSO problem. Originally the authors in [145] proposed

to solve this problem using the simplex method by reformulating the problem as a Linear

Program (LP). This approach works. However, an optimal solution can be obtained by a

relatively simple IRLS algorithm.

The IRLS method is not very competitive in terms of convergence speed compared to cut-

ting edge methods for the ℓ1 prior and can suffer from numerical instabilities. However, due

to its link with Minimum-Norm solutions exposed in previous chapter, we start by presenting

this algorithm. It also has the advantage of providing the outline of the FOCUSS algorithm

for the ℓ0 prior.

Let Wk denote the weighting matrix used in the WMN at iteration k. The matrix Wk is

diagonal, Wk = diag(wk
i ). The WMN optimization problem related with Wk is:

min
x

1

2
‖m−Gx‖22 + λ

∑

i

wk
i |xi|2, λ > 0 .

In order to give an intuition about the algorithm, it can be noticed that the ℓ2 norm ‖x‖w,2 =
∑

i w
k
i |xi|2 is equal to the ℓ1 norm ‖x‖1 =

∑

i |xi|, when wk
i = 1/|xi|.

Algorithm 4.1 (IRLS ℓ1 solver).

• Initialization: W0 = I
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• Compute: xk+1 = (Wk)−1GT (G(Wk)−1GT + λI)−1m

• Update the weights: wk+1
i = 1/|xi|

• Stop if ‖xk+1 − xk‖ is smaller than a fixed tolerance value.

Proposition 4.1. Algorithm 4.1 converges to a minimizer of (4.3).

Sketch of the proof. Let a ∈ R+. One can prove that:

∀w ∈ R+, a ≤ fa(w) =
1

2

(

a2

w
+ w

)

and that fa(a) = a. The function fa is strictly convex on R+.

This gives:

min
x

1

2λ
‖m−Gx‖22 + ‖x‖1

= min
x

1

2λ
‖m−Gx‖22 +

∑

i

|xi|

= min
x,w

1

2λ
‖m−Gx‖22 +

1

2

∑

i

(

(xi)
2

wi
+ wi

)

(4.4)

The minimization is performed alternatively over w and x. For fixed x, the w at optimum is

given by: wi = |xi|. For fixed w, the problem corresponds to a weighted minimum-norm.

This proves that the algorithm 4.1 minimizes at each iteration the energy in (4.3). The

reader can refer to [56] for the proof that this iterative scheme actually leads to a minimum.

It is worth noting that the update rule for x is equivalent to:

xk+1 = ∆kGT (G∆kGT + λI)−1m ,

where ∆k is the diagonal matrix whose diagonal elements are the (|xk
i |)i. This prevents divi-

sion by zero when coefficients vanish as the solution becomes more and more sparse during

the iterations. More details on IRLS methods using sparse priors can be found in [56, 139].

As we have seen, the IRLS solver for the LASSO problem (4.3) is extremely simple to

implement. However, it may suffer from numerical instabilities due the limited precision of

the matrix inversion.

Note that a similar IRLS approach can also be used for a mixed norm involving grouped

variables as we will see in the section 4.4.2.

IRLS with the ℓ0 norm: FOCUSS (FOCal Underdetermined System Solver)

The FOCUSS algorithm as proposed in [91, 92], is an IRLS method used to compute,

instant by instant the inverse problem with an ℓ0 penalization. More generally, it works for

ℓp norms with p ≤ 1 [186].

The strategy is very similar to the IRLS solver used to compute the ℓ1 solution. With the

same notations it is given by:

Algorithm 4.2 (IRLS ℓ0 solver: FOCUSS).

• Initialization: W0 = I

• Compute: xk+1 = (Wk)−1GT (G(Wk)−1GT + λI)−1m
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1 clear options

2 options.p = 1; % for Lasso

3 options.maxit = 20; % Set maximum number of iterations

4 [X] = irls_inverse(M,G,options);

Table 4.1: Running an IRLS inverse solver with EMBAL . Here p is set to 1 in order to solve

the LASSO problem. If p is set to 0, the FOCUSS solver is used.

• Update the weights: wk+1
i = 1/|xi|2

• Stop if ‖xk+1 − xk‖ is smaller than a fixed tolerance value.

The difference between algorithm 4.1 and algorithm 4.2 comes from the update rule

for the weights. One can prove that updating the weights with wk+1
i = |xi|p−2 leads to a

solution of the ℓp penalized problem.

We refer to [91, 92] for details on how to circumvent the bias for superficial sources with

an ℓ0 prior.

This IRLS solver can be run with EMBAL using the code snippet in table 4.1.

4.2.2 LARS-LASSO with the ℓ1 norm

The LARS-LASSO algorithm is a powerful method to solve the LASSO problem (4.3) since it

allows to compute the optimum x∗ for all values of λ in one run. The acronym LARS stands

for Least angle regression. The LARS-LASSO algorithm is a “path algorithm”. It consists in

finding the solution for biggest value of λ and following an optimal path of solutions while

decreasing the λ. The reason for which such an approach is possible comes from the fact that

in the LASSO case this path is piecewise linear.

Let us denote Gi the ith column of G and more generally GΓ the concatenation of the

columns of G whose index belongs to a set of indices Γ.

Proposition 4.2. x∗
λ = (xi)i is optimal iff

∀i ∈ 1, . . . , p, |Gi
T (m−Gx∗

λ)| ≤ λ (4.5)

∀i/xi 6= 0, Gi
T (m−Gx∗

λ) = λ sign (xi) (4.6)

Sketch of the proof. Let us write the directional derivatives of E(x) around point x. One can

prove that this derivative in direction u is given by:

duE(x) = −uT GT (m−Gx) + λ

p
∑

i

{

ui sign (xi) if xi 6= 0

|ui| if xi = 0

In order for x to be optimal one needs to have, for all u: duE(x) > 0. For a given i, by

considering both cases (xi 6= 0 and xi = 0), one gets the constraints in (4.5) and (4.6).

Let us take Γ as the active set, i.e., Γ = {i/xi 6= 0}, and ǫΓ the sign of the active variables,

i.e., ǫΓ = sign (xΓ).

Then equation (4.6) leads to:

x∗
Γ(λ) = (GT

ΓGΓ)−1(GT
Γm− λǫΓ)

This equation stays valid as long as the optimality conditions in (4.5) and (4.6) are satisfied.

On each interval of λ where they are satisfied, the solution is an affine function of λ. To

https://gforge.inria.fr/projects/embal
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1 clear options

2 options.lambda = 1e-7;

3 X = lars_inverse(M,G,options);

Table 4.2: Running a LASSO inverse solver using the LARS algorithm with EMBAL .

compute the solution, on each interval, one has to follow the direction provided by vector

−(GT
ΓGΓ)−1ǫΓ. When an optimality condition does not hold anymore, the active set Γ needs

to be updated. We refer the reader to [63] for more details on the update rules. As a result,

we obtain the solution for all possible λ.

After each update, the optimal direction is obtained by inverting a square matrix in

R
dΓ×dΓ , where dΓ stands for the size of the active set. The complexity of the LARS is cu-

bic in the number of active variables and can therefore be outperformed by other methods

when the optimal active set is big.

In practice, the inverse can be efficiently computed using prior inversions. Between two

calls of the inverse method, a variable can either be added to the active set or removed.

Therefore one line and one column are being added or removed to the matrix to invert. In this

case, it is possible to update the inverse, using tricks like for example the matrix inversion

lemma or efficient Cholesky updates, yielding significant speed ups.

This LARS algorithm can be run with EMBAL using the code snippet in table 4.2.

4.2.3 Proximity operators and iterative schemes

When G = I, i.e., there is no smoothing kernel or “convolution” operator, the problem in (4.3)

corresponds to:

x∗ = arg min
x

1

2
‖y − x‖22 + λ‖x‖1, λ > 0

= arg min
x

∑

i

(

1

2
(yi − xi)

2 + λ|xi|
) (4.7)

In this case, the problem can be solved coordinate by coordinate, and one can easily prove

that an exact solution is given by a soft thresholding [61]:

∀i, x∗i = yi

(

1− λ

|yi|

)+

, (4.8)

where, by definition, we have (x)+
def
= max(x, 0). By convention, ·/0 = 0, meaning that if yi = 0

then x∗i = 0.

While the problem can be solved analytically when there is no convolution operator, G = I,

it is not the case with a general matrix G. In order to solve the general case in (4.3), one needs

to introduce the notion of proximity operator, well known in convex analysis, and the iterative

forward-backward algorithm [120].

Definition 4.2 (Proximity operator). Let φ : R
P → R be a lower semicontinuous, convex

function. The proximity operator associated with φ and λ ∈ R+ denoted by proxλφ : R
P → R

P

is given by

proxλφ(y) = arg min
x∈RP

1

2
‖y − x‖22 + λφ(x) .

Remark. When φ is the ℓ1 norm, the proximity operator is given by a soft thresholding (4.8).

https://gforge.inria.fr/projects/embal
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The following algorithm provides an optimization strategy for:

x∗
λ = arg min

x

1

2
‖m−Gx‖22 + λφ(x), λ > 0 . (4.9)

where φ is a lower semicontinuous, convex function.

Algorithm 4.3 (Forward-Backward Proximal iterations).

• Initialize: Choose x(0) ∈ R
dx (for example 0).

• Iterate:

x(k+1) = proxµλφ

(

x(k) + µGT (m−Gx(k))
)

where 0 < µ < 2|||GT G|||−1.

• Stop if ‖x(k+1) − x(k)‖/‖x(k)‖ is smaller than a fixed tolerance criterion.

Theorem 4.3. Algorithm 4.3 converges to a minimizer of (4.9), for any choice of µ ∈ [ǫ, 2|||GT G|||−1−
ǫ] , ǫ > 0.

Proof. The convergence of this algorithm is guaranteed by results by Combettes et al. in [39]

using the properties of forward-backward proximal iterations originally proposed by Moreau

in [120]. Daubechies et al. in [55] prove a similar result but end up with the condition 0 <

µ < |||GT G|||−1.

In practice, we set µ = |||GT G|||−1 as it appears to provide better results.

Remarks.

• The stopping criterion proposed here is based on the ratio ‖x(k+1)−x(k)‖/‖x(k)‖. This is

certainly not the most principled way to stop the algorithm but it appears in our context

to provide an acceptable strategy. A more rigorous criteria could be based on the size of

the duality gap [20]. This is, however, may not be trivial to compute for certain priors.

• The iterations in algorithm 4.3 are also called Landweber iterations.

The solution of (4.3) is obtained by setting φ = ‖ ‖1 and using for proxµλ‖ ‖1
the soft thresh-

olding detailed in (4.8). This algorithm is called ISTA (Iterative Soft Thresholding Algorithm)

in the signal processing community.

In order to better understand the idea behind this method, one needs to notice that the

term GT (m −Gx(k)) corresponds to the gradient of the reconstruction error. The algorithm

can therefore be understood as an alternated minimization over the regularization term, with

the proximity operator, and over the reconstruction error via simple gradient descent.

The convergence speed of this method can however be quite slow, especially if the condi-

tioning of the matrix G is bad. This is mainly due to the fact that the step size scaled by µ

is fixed and can be relatively small. This issue can be fixed using more complex optimiza-

tion schemes proposed by Nesterov[161]. A convenient rewriting of these algorithms using

proximity operators is presented in [224] in chapter 4. We rewrite it here, with our notation:

Algorithm 4.4 (Nesterov scheme with proximity operators).

• Initialize: Choose x(0) ∈ R
dx (for example 0).

• Set auxiliary variables: a = 0, g = 0, µ = |||GT G|||−1.

• Iterate:
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– t = 2µ

– b = t+
√

t2+4ta
2

– v = proxaλφ(x(0) − g)

– u = ax(k)+bv
a+b

– x(k+1) = proxλµφ(u + µGT (m−Gx(k)))

– g = g − bGT (m−Gx(k+1))

– a = a+ b

• Stop if ‖x(k+1) − x(k)‖/‖x(k)‖ is smaller than a fixed tolerance criterion.

Nesterov proved that E(x(k))−E(x∗) decreases in O(1/k2) and that this is the best conver-

gence rate that can be achieved by a first-order method. A first-order method is a method that

only requires to compute gradients, i.e., first derivatives. What can however be reproached to

this algorithm is that when modifying λ, the “history” of the gradients that have been used

in this multistep approach needs to be cleared. In this sense, knowing x∗ for a given λ does

not help much to find the optimum for another λ even close. Nesterov’s scheme does not

completely benefit from “warm restarts”.

In practice, for numerical stability of the algorithm, we observed that increasing µ can be

necessary. In our implementation we set µ = (1.05 · |||GT G|||)−1.

Each iteration in algorithm 4.4 contains two gradient computations and two calls to the

proximity operator. It is twice more than an iteration in algorithm 4.3 . However the cost is

fully justified by the speed of convergence (cf. figure 4.2).

Remark. We presented Nesterov’s optimization scheme using a quadratic reconstruction er-

ror. However Nesterov’s scheme can be applied to any functional of the form:

J (x) = ψ(x) + φ(x) ,

where ψ is differentiable with an L-Lipschitz derivative and φ a lower semicontinuous convex

function. In our case the Lipschitz constant L is given by the spectral norm |||GT G|||.
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Figure 4.2: Comparison of convergence speed between Landweber and Nesterov iterative

schemes. Computation was run with a real MEG leadfield and an ℓ1 prior.
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1 clear options

2 options.maxit = 500;

3 options.mode = ’nesterov’;

4 % options.mode = ’landweber’; % Or use landweber

5 options.lambda = 1e-7;

6 options.penalty = ’l1’; % Use an L1 prior \ie a Lasso

7 X = prox_inverse(M,G,options);

Table 4.3: Running an inverse solver using proximity operators with EMBAL .

Optimizing with a constraint on the reconstruction error

In practice, it happens that the inverse problem presented in its penalized form as in (4.9) is

not the most natural way to constrain the inverse problem. One may have a good estimate

of the noise amplitude, with the baseline period for example, and therefore of the norm of

the residual, a.k.a., the reconstruction error. Hence a natural formulation of the constrained

problem is:

x∗
λ = arg min

x

φ(x), s.t.‖m−Gx‖2 ≤ δ, δ > 0 . (4.10)

In order to solve this problem, we propose the following empirical strategy that consists

in updating the λ after p forward-backward iterations using the current value of the recon-

struction error. The parameter λ now depends on the iteration number and is indexed by k:

λ(k).

Algorithm 4.5 (Forward-Backward Proximal iterations with constraint on the residual).

• Initialize: Choose x(0) ∈ R
dx (for example 0).

• Iterate:

x(k+1) = proxµλ(k)φ

(

x(k) + µGT (m−Gx(k))
)

where 0 < µ < |||GT G|||−1.

• Update λ: If t+ 1 ≡ 0 (mod p)

λ(k+1) = λ(k) δ

‖m−Gx(k)‖2

• Stop if ‖x(k+1) − x(k)‖/‖x(k)‖ is smaller than a fixed tolerance criterion.

In practice, updating λ every 10 iterations, i.e., p = 10, is a good trade-off between the

computational cost of computing the residual and the speed of the convergence observed.

This trick that consists in dynamically changing the λ was proposed by Chambolle in [30]

when regularizing with the Total Variation. Our experience confirms that it also works with

all the convex priors detailed in this chapter.

It is possible to run this solver with a constraint on the reconstruction error with EMBAL

using the code snippet provided in table 4.4.

Mixing sparse-priors and ℓ2 priors

A sparse prior like a ℓ1 norm leads to a convex problem. In order to guarantee the unique-

ness of the solution, one needs a strictly convex problem. An easy way to achieve this is to

https://gforge.inria.fr/projects/embal
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Figure 4.3: Convergence of the optimization with constraint on the reconstruction error. The

error corresponds to δ − ‖m−Gx‖2 and converges to 0.

1 clear options

2 options.maxit = 3000;

3 options.delta = 1e-2;

4 options.mode = ’landweber’;

5 options.penalty = ’l1’; % Use an L1 prior \ie a Lasso

6 X = prox_inverse(M,G,options);

Table 4.4: Running an inverse solver using proximity operators with EMBAL and a con-

straint on the reconstruction error.

add an ℓ2 term to the cost function to minimize:

x∗
λ = arg min

x

1

2
‖m−Gx‖22 + λ

(

(1− ρ)φ(x) +
1

2
ρ‖Lx‖22

)

, λ > 0 . (4.11)

Adding an ℓ2 term to the Lasso problem was proposed in [239] and is called in the litera-

ture Elastic-Net. Using a gradient for the operator L was introduced under the name of the

Smooth-Lasso in [106]. In practice adding an ℓ2 term to the LASSO problem tends to produce

results that are less sensitive to the noise inherent to any real dataset. When using a gradi-

ent operator for L it also promotes neighboring active dipoles, which produces in the context

of M/EEG inverse modeling spatially consistent active patterns. This idea of mixing priors

can be found in [210].

Solving (4.11) can be done elegantly by noticing that the functional can be rewritten:

x∗
λ = arg min

x

1

2
‖m′ −G′x‖22 + λ(1− ρ)φ(x), λ > 0 . (4.12)

where:

m′ =

(

m

0

)

and

G′ =

(

G√
λρL

)

.

The algorithms 4.3 and 4.4 can now be reformulated for the new problem (4.11).

https://gforge.inria.fr/projects/embal
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1 clear options

2 options.maxit = 3000;

3 options.mode = ’nesterov’;

4 options.rho = 0.1;

5 options.L = mesh_gradientP1(points,faces);

6 options.lambda = 1e-7;

7 options.penalty = ’l1’; % Use an L1 prior \ie a Lasso

8 X = prox_inverse(M,G,options);

Table 4.5: Running an inverse solver with two priors (one non differentiable and an ℓ2 term)

using proximity operators with EMBAL .

Algorithm 4.6 (Forward-Backward Proximal iterations with an additive ℓ2 prior).

• Initialize: Choose x(0) ∈ R
dx (for example 0).

• Iterate:

x(k+1) = proxµλ(1−ρ)φ

(

x(k) + µ((1− ρ)GT (m−Gx(k))− ρLT Lx)
)

where 0 < µ < 2/(|||GT G|||+ λρ|||LT L|||).

• Stop if ‖x(k+1) − x(k)‖/‖x(k)‖ is smaller than a fixed tolerance criterion.

Algorithm 4.7 (Nesterov scheme with an additive ℓ2 prior).

• Initialize: Choose x(0) ∈ R
dx (for example 0).

• Set auxiliary variables: a = 0, g = 0, µ = (|||GT G|||+ λρ|||LT L|||)−1.

• Iterate:

– t = 2µ

– b = t+
√

t2+4ta
2

– v = proxaλ(1−ρ)φ(x(0) − g)

– u = ax(k)+bv
a+b

– x(k+1) = proxµλ(1−ρ)φ(u + µ(GT (m−Gx(k))− λρLT Lx(k)))

– g = g − bGT (m−Gx(k+1)) + λρLT Lx(k+1)

– a = a+ b

• Stop if ‖x(k+1) − x(k)‖/‖x(k)‖ is smaller than a fixed tolerance criterion.

This algorithm can run with EMBAL using the code in table 4.5.

4.3 SPARSITY AND SPATIALLY EXTENDED ACTIVATIONS: THE
TOTAL VARIATION

The ℓ1 and ℓ0 priors are not adapted to spatially extended activations. In order to understand

this, let us consider the case where the SNR is particularly bad. The lower is the SNR, the

bigger is the regularization parameter λ. By increasing λ, the sparsity of x∗ is increased.

This implies that the number of active dipoles gets smaller, i.e., the extent of the active re-

gion becomes more and more limited. Active regions become focal. Therefore, by increasing

https://gforge.inria.fr/projects/embal
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the additive noise at the sensor level, the ℓ1 and ℓ0 priors create a bias for very focal source

distributions. To tackle this limitation, the Total Variation (TV) prior can be used.

The TV prior penalizes the solution with the ℓ1 norm of the gradient, in the present case

the surface gradient: TV(x) = ‖∇surfx‖1. It is a seminorm, since it can be equal to 0 even if x

is non-zero. Assuming x corresponds to a discretization with P1 elements on the tessellation,

∇surfx is a constant vector of R
3 on each triangle. Let us denote it (∇x

px,∇y
px,∇z

px) ∈ R
3,

where p indexes triangles. More details on how to compute the surface gradient with a P1

discretization can be found in [4]. With these notations, TV(x) can be written:

TV(x) =
∑

p

√

(∇x
px)2 + (∇y

px)2 + (∇z
px)2

It can be proved that TV(x) is equal to the sum of the lengths of the isolevels of x [143]:

TV(x) =

∫

R

length(Ct)dt ,

where Ct = {r ∈ mesh s.t. x(r) = t} is the isolevel, or levelset, at level t. The consequence

is that penalizing the inverse problem with the Total Variation tends to produce piecewise

constant reconstructions with regular borders.

The TV norm has been widely used for image deconvolution and restoration [12, 30, 31].

It is related in functional analysis to the space of functions with bounded variations. For the

M/EEG inverse problem the TV prior was originally proposed in [5]. Here, we argue that the

TV regularization can be casted into the general framework of M/EEG inverse solvers with

sparsity inducing priors and that the iterative optimization schemes detailed above for the

standard ℓ1 norm can be directly adapted to invert with a TV prior.

The optimization problem considered is given by:

x∗ = arg min
x

1

2
‖m−Gx‖2F + λTV (x), λ > 0 . (4.13)

The TV is based on a ℓ1 norm, it is convex and lower semicontinuous. Hence, assuming

one knows how to compute the proximity operator associated to the TV norm, the Forward-

Backward iterations and Nesterov schemes can be used to optimize (4.13).

The proximity operator proxλ‖ ‖T V
corresponds to following problem:

x∗ = arg min
x

1

2
‖y − x‖2F + λTV (x), λ > 0 (4.14)

This problem is known in the literature as the ROF (Rudin, Osher and Fatemi) problem

[189]. Various solvers have been proposed in the literature to solve this problem [31, 32].

Here, we detail the dual approach from Chambolle [30]. It consists in using a gradient-based

algorithm for solving the dual problem that interestingly is a smooth optimization problem

over a convex set.

The duality between the ℓ1 norm and the ℓ∞ norm reads

TV (x) = ‖∇x‖1
= max

‖z‖∞≤1
〈∇x, z〉 . (4.15)

We also need the adjoint relation between the gradient and the divergence operator:

〈∇x,y〉 = −〈x,div y〉 (4.16)
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Minimization in equation (4.14) becomes:

min
x

(

1

2
‖y − x‖22 + λTV (x)

)

=λmin
x

(

1

2λ
‖y − x‖22 + max

‖z‖∞≤1
〈∇x, z〉

)

=λ max
‖z‖∞≤1

(

min
x

(

1

2λ
‖y − x‖22 + 〈∇x, z〉

))

=λ max
‖z‖∞≤1

(

min
x

(

1

2λ
‖y − x‖22 − 〈x,div z〉

))

(4.17)

The computation of the minimum and the maximum above can be exchanged because the

optimization over x is convex and the optimization over z is concave (see for example [188]).

By setting the derivative with respect to x to zero one gets:

x∗ = y + λ div z

Replacing x in previous expression leads to:

min
x

1

2
‖y − x‖22 + λTV (x)

=λ max
‖z‖∞≤1

λ

2
‖div z‖22 − 〈y,div z〉 − λ‖div z‖22

=λ max
‖z‖∞≤1

−λ
2
‖div z‖22 − 〈y,div z〉

=− λ min
‖z‖∞≤1

λ

2
‖div z‖22 + 〈y,div z〉

=− 1

2
min

‖z‖∞≤1
λ2‖div z‖22 + 2λ〈y,div z〉

=− 1

2
min

‖z‖∞≤1
‖λ div z + y‖22 − ‖y‖22

=− λ2

2
min

‖z‖∞≤1
‖div z +

y

λ
‖22 −

1

λ2
‖y‖22

(4.18)

Hence z∗ is obtained by:

z∗ = arg min
‖z‖∞≤1

‖div z +
y

λ
‖22

This provides the result from Chambolle [30].

This constrained problem can be solved by a projected gradient algorithm. The gradient

with respect to z is given by −∇(div z + y/λ) which gives the following iterative algorithm to

solve the ROF problem:











xn = y + λ div zn

zn+1
i =

zn
i + (τ/λ)(∇xn)i

max(1, |zn
i + (τ/λ)(∇xn)i|)

(4.19)

Where τ is the gradient step. In order to guarantee the algorithm convergence one needs to

have:

τ ≤ 2

|||div∇|||
where |||div∇||| stands for the spectral norm of the operator.

Note that Chambolle proposes an alternative strategy based on a fixed point method to
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solve this constrained problem, but, our experience is that the fixed-point method does not

actually provide faster convergence rates than the simple projected gradient method. Like in

any standard gradient descent, the projected gradient just detailed can be improved with a

multistep approach [1].

The ROF problem for which we just described an optimization scheme corresponds to the

proximity operator associated with the Total Variation penalization. The real solution can

then be obtained using forward-backward proximal iterations (algorithm 4.3) or Nesterov

iterations (algorithm 4.4).

To our knowledge, Nesterov schemes have never been applied to the inverse problem of

M/EEG, in particular with a surface TV prior. In [4], the optimization procedure used suf-

fered from a very slow convergence rate. In this work, Adde et al. implemented the forward-

backward algorithm 4.3 proposed for TV optimization in [12]. Due to its slow convergence

rate, the author suggested to use a fixed step gradient scheme that requires to make the TV

prior differentiable by replacing the TV by:

TV (x) =
∑

p

√

(∇x
px)2 + (∇y

px)2 + (∇z
px)2 + ǫ, ǫ > 0 .

Unfortunately, this scheme does not reach an optimal solution. However, in practice, it pro-

vides visually acceptable results in a small amount of time. The Nesterov scheme that we

propose here is a principled algorithm to solve (4.13) with guarantees of speed and optimal-

ity.

Figure 4.4 presents a result obtained with a TV prior with constrained orientations.

(a) Synthetic active region. (b) Reconstruction result obtained with a TV prior.

Figure 4.4: Simulation result using a TV prior. (a) The synthetic active region used to sim-

ulate MEG measurements. The measurements where corrupted with a small additive Gaus-

sian white noise (SNR=10). The activation pattern was designed to be piecewise constant

which is what is adapted for TV minimization. (b) The reconstruction result obtained by solv-

ing the inverse problem with a TV prior. The solution presents a clear “hot spot” at the correct

location and sets to 0 the majority of the remaining cortical surface.

The TV prior offers a principled to way to cope with spatially extended activations. How-

ever good care should be taken when applied with M/EEG data. Our experience shows that

when applied with too big values of λ, the TV prior tends to move the active regions towards

“flat” cortical regions. The complexe shape of the cortical mantle near the active region may

therefore in practice lead to localization errors. Also, to our knowledge, the bias towards

superficial sources has never been tackled with a TV prior. And finally, the case of dipolar

source spaces with unconstrained orientations has to our knowledge never been treated.

We are now done with the presentation of image-based inverse solvers that work on an
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instant-by-instant basis. We will know present solvers that make use of the temporal infor-

mation in the data.

4.4 SPARSITY AND SPATIOTEMPORAL DATA

The reason for using temporal information in the inverse problem seems relatively

natural. Two neighboring time instants carry a very similar information since the under-

lying physiological phenomena have a low frequency compared to the sampling rate of the

recordings. The noise that corrupts the measurements is also highly correlated in time. And

our knowledge about physiology favors a vision of the sources as a set of sources, of limited

number, whose activity is stable in time.

4.4.1 VESTAL

The VESTAL method [108] addresses the main critic that is made about MCE. When using

MCE during a small time window, the set of active dipoles can vary significantly between

two neighboring instants, although one would expect a very similar current distribution. The

MCE solver leads to “spiky” estimated time courses.

In order to fix this problem, the VESTAL solver proposes to run an ℓ1 inverse problem at

each time instant, like MCE, but projects the sample-wise l1-norm estimates into the signal

subspace defined by a set of temporal basis functions. Let us write the SVD of the measure-

ments, M = USVT . The first columns of V are used as temporal basis functions.

The critiques that can be made about the VESTAL solver are the following. First, the

optimization scheme proposed in [108] can be largely improved, using the LARS algorithm

for example. Second, the authors do not clearly state what cost function is actually optimized

by their procedure. The following algorithm proposes a much better approach with the same

objective of mixing time and space with a sparsity inducing prior.

4.4.2 ℓ1 over space and ℓ2 over time

An ℓ1 prior brings sparsity, i.e., a limited number of active sources, while an ℓ2 prior brings

what we call diversity, i.e., no zero coefficients. The ℓ2 norm spreads the energy over all the

sources and therefore brings smoothness. By using an ℓ1 prior over space while keeping an

ℓ2 prior over time, the problem of “spiky” activation times series faced by the MCE method is

addressed. We recall that the MCE solver runs on each time instant independently with an

ℓ1 prior.

The approach described above consists in penalizing the inverse problem with a mixed

norm given by:

‖X‖21 =
∑

i

√

∑

t

x2
it , (4.20)

where i indexes space and t indexes time. One will denote this norm ℓ21.

It can also be modified to take into account some weighting coefficients:

‖X‖w;21 =
∑

i

√

∑

t

wix2
it (4.21)

in order to reduce the bias for superficial sources.
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The optimization problem becomes:

X∗ = arg min
X

1

2
‖M−GX‖22 + λ‖X‖w;21, λ > 0 . (4.22)

This norm introduces an ℓ1 norm at a group level. Within a group the coefficients are

compared using an ℓ2 norm. In statistics and machine learning, it is known as the Group-

LASSO problem[235]. We also refer the reader to [141] for more details on mixed norms in

the signal processing context.

In the M/EEG community this norm was recently proposed in this exact form by Ou et

al. in [166]. Prior to this work, [74] proposed another grouping strategy this time between

orientations. In [166], the authors detail how to group both time and orientations. If the coef-

ficients of X are indexed by the position i, the orientation r, and the time t, the corresponding

prior is given:

‖X‖21 =
∑

i

√

∑

r

∑

t

x2
irt .

Integrating the orientations in the prior does not add any difficulty in the optimization.

In order to speed up the computation, it is proposed in [166] to reduce the rank of the

matrix M with an SVD and to work on the SVD components rather than on the raw temporal

data. When considering K SVD components, the size of the matrix to invert is dm ×K rather

than dm × dt. Due to the ℓ2 norm within the groups, this is perfectly justified. If we use all

the temporal components of the SVD, we project the data using a basis of orthogonal vectors

and the temporal ℓ2 norm is not changed.

However, in [166], the authors use an interior point methods to solve the optimization

problem. Interior point method, also referred to as barrier methods, are a certain class of

algorithms to solve linear and nonlinear convex optimization problems. They guarantee the

optimality of the solution in polynomial time but do not scale very well to large problems, i.e.,

source spaces with a high number of dipoles and a lot of time instants. The complexity of the

algorithm proposed in [166] is in fact cubic in the number of variables.

As for the ℓ1 problem, various methods exist to compute the inverse problem with an ℓ21
norm. The particular method that does not apply is the LARS. One can use a coordinate

descent algorithm [77], an IRLS solver similar to the one proposed for the LASSO or an

iterative method based on proximity operators similar to what has been presented for the ℓ1
and TV priors [55, 224].

To apply the forward-backward iterations or the optimal scheme from Nesterov, one needs

to compute the proximity operator associated to a ‖ · ‖21 prior.

Let us denote by Xi the ith row of X. By definition, the proximity operator associated to

the ℓ21 norm is given:

X∗ = proxλ‖ ‖21
(Y)

= arg min
X

1

2
‖Y −X‖2F + λ‖X‖21

(4.23)

The solution is obtained using the following proposition:

Proposition 4.4 (Group-LASSO proximity operator). The solution X∗ = proxλ‖ ‖21
(Y) of the

proximity operator associated to the Group-LASSO is given group by group (here row by row)

by:

Xi∗ = Yi

(

1− λ

‖Yi‖2

)+

. (4.24)

Using the algorithms 4.4 and 4.3 detailed for the ℓ1 prior, one can compute the optimiza-

tion in (4.22). The only difference comes from the modification of the proximity operator. If

order to run this algorithm with EMBAL , the code snippet in table 4.6 can be used.

https://gforge.inria.fr/projects/embal
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1 clear options

2 options.penalty = ’l21’; % Use L21 as Prior

3 options.project = 5; % Set K=5 (SVD of the measurements)

4 options.lambda = 1e-5;

5 X = prox_inverse(M,G,options);

Table 4.6: Runing sparse inverse modeling with temporal data using proximity operators and

EMBAL .

This strategy that consists in grouping time instants, achieves the same goal as the

VESTAL solver. It provides sparse solution over space and smooth solutions over time. How-

ever, the methodology behind the Group-LASSO is much more principled and is expected to

provide better results.

Due to the use of an ℓ1 prior over space, that favors focal sources with low SNR, this

approach is not adapted to the reconstruction of spatially extended activations. Another critic

that can be addressed to this approach is that the active set, i.e., the list of active dipoles, is

the same for the full time window of interest. This also implies that the length of the time

window considered has an influence on the active set and therefore the solution. The ℓ1 prior

implies that an optimal solution has fewer active sources than the number of sensors. By

extending the size of the time window to look for example at late responses, the active set

estimated just after stimulation might be changed. Indeed, the ℓ2 prior over time, and the

grouping of all time instants, implies that if a dipole has an activation at one time instant, it

has one during the full time period. There is no way with this method to see a dipole become

active in the middle of the time window of interest. It is however possible to handle such a

case, by using groups with overlaps. In the current setting, a variable xit belongs to only one

group, the ith. Setting the ith group to zero sets the activation of dipole i to zero for the full

time period. Introducing overlap between groups means allowing a variable xit to belong to

multiple groups. This would circumvent the limitations of the ℓ21 prior. Unfortunately, the

optimization with overlapping groups is not trivial to handle. We refer the reader to [116]

and [112] for more details on this topic.

4.5 SPARSE PRIORS WITH MULTIPLE EXPERIMENTAL CON-
DITIONS: ℓ212

In the previous paragraph, we have seen how the use of priors with mixed norms, like ℓ21,

allows to integrate structured sparsity. From a Bayesian point of view, using such a mixed

norm introduces some coupling between coefficients, instead of the independency hypothesis

associated with an ℓp norm. By grouping time instants, Ou et al. [166] introduced a coupling

between all time instants.

We now propose to integrate in a single framework a prior that brings structured sparsity

between space, time but also the experimental condition. The development of this method was

motivated by its application to the retinotopic mapping with MEG presented in chapter 5.

During an experiment, a subject is generally asked to perform different cognitive tasks or

to respond to various external stimuli. They are referred as different experimental conditions.

With a standard ℓ2 prior, it may occur, that the estimated active cortical regions in condition

1 overlap the active regions of condition 2, which may often be unrealistic considering what

is known about neuroanatomy. In order to take into account this anatomical knowledge, and

obtain more accurate mappings of some brain functional organization, we propose to use a

prior that penalizes overlap between active regions.

https://gforge.inria.fr/projects/embal


136 CHAPTER 4. INVERSE MODELING WITH SPARSE PRIORS

4.5.1 Method

In order to introduce such inter-condition sparsity constraints, currents corresponding to all

conditions have to be estimated simultaneously. Let dk denote the number of conditions. It

is achieved by concatenating all measurements, M ∈ R
dm×dkdt . Let X ∈ R

dx×dkdt have its

elements now indexed by (i, k, t), i indexes space, k the condition and t the time.

In chapter 5, the following norm is used with Fourier coefficients. Therefore, the follow-

ing definition and the following proposition, that gives the associated proximity operator, is

written with complex valued coefficients.

Definition 4.3 (Three level mixed norm). Let x ∈ C
dxdkdt be indexed by a triple index (i, k, t)

such that x = (xi,k,t). Let p, q, r ≥ 1 and w ∈ R
dxdkdt

+,∗ be a sequence of strictly positive weights

labelled by a triple index (i, k, t). We call mixed norm of x the norm ℓw;p,q,r defined by

‖x‖w;pqr =







dx
∑

i=1





dk
∑

k=1

(

dt
∑

t=1

wi,k,t|xi,k,t|p
)q/p





r/q






1/r

.

The problem that is addressed here is:

X∗ = arg min
X
‖M−GX‖2F + λ‖X‖2w;212 , λ ∈ R+ . (4.25)

A ℓ1 prior is set over the index k corresponding to the condition, while an ℓ2 prior is used

over space and time. By doing so, each dipole has an incentive to explain a small number

of conditions. The conditions are not supposed to change during the time window. Note that

‖X‖w;222 = ‖X‖w;F and that if dk = 1, i.e., only one condition, ‖X‖w;212 = ‖X‖w;F . This means

that in the case where only one condition is considered, the ℓw;212 solution corresponds to the

widely used MN and WMN (see section 3.2).

Here also, solving (4.25) is based on the computation of the proximity operator associated

to the ℓw;212 norm.

The proximity operator associated with the mixed norm ‖.‖2w;212 is analytically given by

the following proposition. We denote yi,k,• = (yi,k,1, yi,k,2, . . . , yi,k,T ).

Proposition 4.5. Let y ∈ C
dxdkdt be indexed by a triple index (i, k, t). Let w a sequence of

strictly positive weights such that ∀t, wi,k,t = wi,k. Let ri,k be defined as ri,k
def
= ‖yi,k,•‖w,2/wi,k

, where ‖yi,k,•‖w,2
def
=
√

wi,k

∑

t |yi,k,t|2. For each i, let the indexing denoted by k′i be defined

such that ∀k′i, ri,k′
i
+1 ≤ ri,k′

i
. Let the index Ki and the quantity Kwi

def
=
∑Ki

ki=1 wi,ki
be defined

such that

λ

Ki
∑

k′
i
=1

wi,k′
i

(

ri,k′
i
− ri,Ki

)

< ri,Ki
≤ λ

Ki+1
∑

k′
i
=1

wi,k′
i

(

ri,k′
i
− ri,Ki

)

.

Then the solution z = proxλ
2 ‖.‖2

w;212
(y) is given for each coordinate (i, k, t) by

zi,k,t = yi,k,t











1− λ
√
wi,k

1 + λKwi

Ki
∑

k′
i
=1

‖yi,k′
i
,•‖w,2

‖yi,k,•‖2











+

.

Proof. To simplify the notations in the demonstration, we remove the 1
2 in the proximity
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operator. We address here the equivalent problem:

x∗ = arg min
x

‖y − x‖22 + λ‖x‖2w;212 , (4.26)

with

‖x‖2w;212 =
∑

i





∑

j

(

∑

k

wi,j |xi,j,k|2
)1/2





2

.

To simplify the notations we write ‖yi,k,•‖2 and ‖yi,k,•‖w,2 respectively as ‖yi,k‖2 and ‖yi,k‖w,2.

Let us derive the functional in (4.26) with respect to xi,j,k. It leads to the following system

of variational equations:

{

|xi,j,k| = |yi,j,k| − λ
√
wi,j |xi,j,k|‖xi,j‖−1

2 ‖xi‖w;21

arg(xi,j,k) = arg(yi,j,k)

which gives:

|xi,j,k|
(

1 + λ
√
wi,j‖xi,j‖−1

2 ‖xi‖w;21

)

= |yi,j,k| (4.27)

⇒ |xi,j,k|2
(

1 + λ
√
wi,j‖xi,j‖−1

2 ‖xi‖w;21

)2
= |yi,j,k|2

By summing over k, we get:

‖xi,j‖2
(

1 + λ
√
wi,j‖xi,j‖−1

2 ‖xi‖w;21

)

= ‖yi,j‖2
⇒ ‖xi,j‖2 + λ

√
wi,j‖xi‖w;21 = ‖yi,j‖2 . (4.28)

We have that:

‖xi‖w;21 =
∑

l/‖xi,l‖2>0

√
wi,l‖xi,l‖2 .

which implies that:

‖xi,j‖2 = ‖yi,j‖2 − λ
√
wi,j

∑

k/‖xi,k‖2>0

√
wi,k‖xi,k‖2 . (4.29)

Using (4.28), we have, if j and k satisfy ‖xi,j‖2 > 0 and ‖xi,k‖2 > 0, that:

‖xi,k‖2√
wi,k

=
‖xi,j‖2√
wi,j

+
‖yi,k‖2√
wi,k

− ‖yi,j‖2√
wi,j

.

By injecting it in (4.29) we get:

‖xi,j‖2 = ‖yi,j‖2 − λ
√
wi,j

∑

k/‖xi,k‖2>0

wi,k

(‖xij‖2√
wi,j

+
‖yi,k‖2√
wi,k

− ‖yi,j‖2√
wi,j

)

⇔ ‖xi,j‖2 = ‖yi,j‖2 − λKwi
‖xi,j‖2 + λKwi

‖yi,j‖2 − λ
√
wi,j

∑

k/‖xi,k‖2>0

√
wi,k‖yi,k‖2

⇔ ‖xi,j‖2 = ‖yi,j‖2 −
λ
√
wi,j

1 + λKwi

∑

k/‖xi,k‖2>0

‖yi,k‖w;2

,

where Kwi
=
∑

k/‖xi,k‖2>0 wi,k. This provides the solution for ‖xi,j‖2 > 0. When

‖yi,j‖2 −
λ
√
wi,j

1 + λKwi

∑

k/‖xi,k‖2>0

‖yi,k‖w;2 ≤ 0
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it implies that ‖xi,j‖2 = 0.

We therefore have for all i:

‖xi,j‖2 =



‖yi,j‖2 −
λ
√
wi,j

1 + λKwi

∑

k/‖xi,k‖2>0

‖yi,k‖w;2





+

.

Let us introduce the indexing k′i such that ‖xi,k′
i
+1‖2 ≤ ‖xi,k′

i
‖2 and the index Ki such that

‖xi,Ki
‖2 > 0 and ‖xi,Ki+1‖2 = 0. After reordering, we have that:

‖yi,Ki
‖2 −

λ
√
wi,Ki

1 + λKwi

Ki
∑

k′
i
=1

‖yi,k′
i
‖w;2 > 0 ,

which leads to:

λ

Ki
∑

k′
i
=1

wi,k′
i

(

ri,k′
i
− ri,Ki

)

< ri,Ki
.

This provides the reordering in the proposition and the equation:

‖xi,j‖2 =



‖yi,j‖2 −
λ
√
wi,j

1 + λKwi

Ki
∑

k′
i
=1

‖yi,k′
i
‖w,2





+

. (4.30)

Let us rewrite (4.27):

|xi,j,k| =
|yi,j,k|

1 + λ
√
wi,j‖xi,j‖−1

2 ‖xi‖w;21

=
|yi,j,k|‖xi,j‖2

‖xi,j‖2 + λ
√
wi,j‖xi‖w;21

Using (4.28), we get:

|xi,j,k| =
|yi,j,k|‖xi,j‖2
‖yi,j‖2

.

By injecting the result in (4.30) in this equation we get:

|x∗i,j,k| =
|yi,j,k|

(

‖yi,j‖2 − λ
√

wi,j

1+λKwi

∑Ki

j=1 ‖yi,j‖w,2

)+

‖yi,j‖2

= |yi,j,k|
(

1− λ
√
wi,j

1 + λKwi

∑Ki

j=1 ‖yi,j‖w,2

‖yi,j‖2

)+

.

Remarks.

1. If T = 1, then proxλ‖.‖2
w;212

(y) = proxλ‖.‖2√
w;12

(y) which corresponds to the Elitist-Lasso

problem [129].

2. This proposition also provides the proximity operator for the ℓw;21 norm introduced in

section 4.4.2.

3. The proximity operator is known analytically. It is simply a shrinkage operator after a

sorting operation. It implies that the solution is exact and relatively fast to compute.
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Columns (G·i)i of M/EEG forward operators are not normalized. The closer is the dipole i

from the head surface, the bigger is ‖G·i‖2. This implies that a naive inverse procedure would

favor dipoles close to the head surface. Using a weighted norm is an alternative to cope with

this problem. With the mixed norm ‖.‖w,212, it is done by setting wi,k = wi = ‖G·i‖2.

ℓw;212 with unconstrained orientations

Up to here, the ℓw;212 prior was presented assuming a source space with constrained orien-

tations. It is however easy to integrate into the framework the unconstrained case. Let us

denote dr the number of oriented dipoles set at each brain location. The number of brain loca-

tions is denoted dx. Let X ∈ R
dxdr×dkdt have its elements now indexed by (i, r, k, t), i indexes

the position, r the orientation, k the condition and t the time. The prior is, in this case, given

by:

‖X‖w;212 =







dx
∑

i=1





dk
∑

k=1

√

√

√

√

dt
∑

t=1

dr
∑

r=1

wi|xi,r,k,t|2




2





1/2

.

This norm is still of the form of ℓw;212 and leads therefore to the same optimization strategy.

Like in the constrained case, bias for superficial sources can be corrected by setting:

wi =

√

∑

r

‖G·ir‖22 ,

where G·ir stands for the forward field of the dipole with position i and orientation r.

4.5.2 Simulations

By setting a ℓ1 prior between conditions, the mixed norm proposed penalizes overlap be-

tween active cortical regions. In order to illustrate this, we generated two synthetic datasets.

The first reproduces part of the organization of the primary somatosensory cortex (S1) [174].

Three, non overlapping, cortical regions with a similar area (cf. Fig. 4.6a), that could corre-

spond to the localization of 3 right hand fingers, have been computed and used to generate

synthetic measurements corrupted with an additive Gaussian random noise. The amplitude

of activation for the most temporal region (colored in red in Fig. 4.6), that could correspond

to the thumb, was set twice bigger than the amplitudes of the two other regions. This situa-

tion, where the source amplitudes differ between conditions, is relatively common with real

M/EEG data. The inverse problem was then computed with a standard ‖.‖w;F norm and the

‖.‖w;212 mixed norm. Within the 3 neighboring active regions, a label corresponding to the

condition giving the maximum of amplitude in each of the three conditions was assigned to

each dipole. Quantification of performance was done for multiple values of signal-to-noise

ratio (SNR) by counting the percentage of dipoles that have been incorrectly labeled. The

SNR is defined here as 20 times the log of the ratio between the norm of the signal and the

norm of the added noise. Results are also presented in Fig. 4.5. Results with an ℓ1 prior,

has also been added. It can be observed that the ‖.‖w;212 produces systematically the best

result. The ℓ1 is very rapidly affected by the decrease of SNR, which is known in the M/EEG

community. In order to have a fair comparison between all methods, λ was set in each case to

have ‖M−GX∗‖F equal to the norm of the added noise, known in the simulations.

Results are illustrated in Fig. 4.6b and 4.6c on a region of interest (ROI) around the left

primary somatosensory cortex. It can be observed that the extent of the most lateral region,

obtained with ‖.‖w;F , is overestimated while the result obtained with the ‖.‖w;212 mixed norm

is relatively accurate. Similar simulations have been performed in the primary visual cortex

(V1), reproducing the well known retinotopic organization of V1. Results are presented in
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Fig. 4.7. Simulations lead to the same conclusion about the superiority of the ‖.‖w;212 mixed

norm for the mapping of such brain functional organizations.
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Figure 4.5: Evaluation of ‖.‖w;F vs. ‖.‖w;212 vs. ‖.‖w;111 estimates on synthetic somatosensory

data. The error represents the percentage of wrongly labeled dipoles.

(a) Simulation data

(b) ‖.‖w;F result (ROI) (c) ‖.‖w;212 result (ROI)

Figure 4.6: Illustration of result on the primary somatosensory cortex (S1) (SNR = 20dB).

Neighboring active regions reproduce the organization of S1.



141

(a) Simulation data

(b) ‖.‖w;F result (ROI) (c) ‖.‖w;212 result (ROI)

Figure 4.7: Illustration of result on the primary visual cortex (V1) with SNR = 20dB. Neigh-

boring active regions reproduce the retinotopic organization of V1. When comparing the two

results in (b) and (c) with the simulation data in (a), it can be observed that the result in (c)

obtained with the ‖.‖w;212 prior provides the most accurate result.

4.5.3 MEG study

Results of the proposed algorithm using MEG data from a somatosensory experiment are

now presented. The data acquisition was done using a CTF Systems Inc. Omega 151 system

with a 1250 Hz sampling rate. The somatosensory stimulation was an electrical square-wave

pulse delivered randomly to the thumb, index, middle and little finger of each hand of a

healthy right-handed subject. Evoked data were computed by averaging 400 repetitions of

the stimulation of each finger. To produce precise localization results, the triangulation over

which cortical activations have been estimated was sampled with a very high number of

vertices (about 55 000). The forward modeling was performed with a spherical head model1

using dipoles with fixed orientations given by the normals to the cortex [50].

Prior to the current estimation, data were whitened using the noise covariance matrix Σ,

estimated on the period before stimulation. Let Σ = LT L the Cholesky factorization of Σ.

Whitening consists in replacing G by L−1G and M by L−1M. With an additive Gaussian

noise model this implies that the noise, given by M − GX ∈ R
dx×dkdt , is assumed to have

a standard normal distribution. This implies that a good estimate of ‖M −GX∗‖F is given

by
√
dxdkdt. Therefore, the regularization parameter λ was set in order for X∗ to be also the

solution of the constrained problem: X∗ = arg minX ‖X‖ subject to ‖M −GX‖F ≤
√
dxdkdt.

The optimization is done with the algorithm 4.5.

Results obtained with the right hand fingers during the period between 42 and 46 ms are

presented in figure 4.8. Knowing that for this somatosensory dataset active parcels should

1http://neuroimage.usc.edu/brainstorm/
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have negative activations around 45 ms, regions with positive activations were first removed.

Within the remaining regions, a label was assigned to each dipole based on its maximum am-

plitude across conditions. For each condition, equivalently each label, the biggest connected

component was kept. Each of the 4 estimated components, corresponding to the 4 right hand

fingers are presented in Fig. 4.8. Solutions using both norms ‖.‖w;F and ‖.‖w;212 are detailed.

With ‖.‖w;212 the well known organization of the primary somatosensory cortex [174] is suc-

cessfully recovered, while with ‖.‖w;F , the component corresponding to the index finger is

overestimated leading to an incorrect localization of the area corresponding to the thumb.

(a) Fingers color coded (a) ‖.‖w,212 result

(c) ‖.‖w,F result (ROI) (b) ‖.‖w,212 result (ROI)

Figure 4.8: Labeling results of the left primary somatosensory cortex in MEG.
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4.6 CONCLUSION

In this chapter we presented various approaches and algorithmic details necessary

to find the solution of the M/EEG inverse problem with a sparsity inducing prior. State-

of-the-art optimization techniques are presented and discussed in order to provide methods

tractable on big datasets. We have presented simple algorithms, which is particularly im-

portant to facilitate their adoption by the M/EEG community. And finally, we detailed fast

algorithms which are of major interest since real studies require to compute statistics in order

to validate neuroscientific hypotheses. Indeed, when using robust non-parametric statistics,

the inverse solver needs to be run thousands of times. This makes the speed of convergence

of the solver a very critical issue.

Our last contribution describes an inter-condition prior that improves the localization of

cortical activations by offering the possibility to use a prior between different experimental

conditions. By proposing to perform the inverse problem on multiple conditions simultane-

ously and to use a mixed norm that sets an ℓ1 prior between each condition, the method

penalizes current estimates with an overlap between the corresponding active regions. When

such an hypothesis holds anatomically, the more conditions are recorded and used in the in-

verse problem, the better is the localization of neuronal activity. By keeping an ℓ2 prior over

space and time, the proposed method guarantees a good robustness to noise, like standard ℓ2
based methods. This approach also improves over the smeared reconstructions observed with

standard ℓ2 inverse solutions. This is confirmed by the simulations and the MEG somatosen-

sory data, with which the method is successfully illustrated.

As for the previous chapter, all the algorithms detailed in this chapter have been imple-

mented and tested with synthetic and real MEG data. The source code of the solvers and the

demo scripts with synthetic and real data are available is a Matlab toolbox called EMBAL

(Electro-Magnetic Brain Activity Localization):

https://gforge.inria.fr/projects/embal

We refer the reader to the demo scripts running on synthetic MEG data:

• demo inverse l1.m: contains a comparison of LARS, IRLS, Landweber and Nesterov for

the ℓ1 problem.

• demo inverse l21.m: contains a comparison of IRLS, Landweber and Nesterov for the

ℓw,21 problem.

• demo inverse TV.m: contains a comparison of IRLS, simple gradient descent (with adap-

tive step size obtained with line search), Landweber and Nesterov for the TV problem.

Nothing was said in this chapter about the use of IRLS and simple gradient descent for

solving the TV problem as it only solves a “smoothed” version of the TV problem. Also, for the

IRLS solver, the presence of the gradient makes the solver even more numerically unstable

than in the ℓp case.

We finish the chapter by listing factors that could be investigated in future studies. Among

these is the ability to use a TV prior with dipoles having unconstrained orientations. This

can be related to an image deconvolution problem when considering a colored image with

3 channels (red, green and blue). Furthermore, the algorithms detailed in this chapter can

be directly applied to multichannel deconvolution problems. Also, we plan to investigate

recently proposed iterative algorithms with the same convergence rate as Nesterov’s scheme

[1] but with a smaller computational complexity. Finally, another major topic we would like to

explore is the case where the prior contains overlapping groups of variables. This would allow

to deal with temporal data where the active sources might not be flagged as active during the

https://gforge.inria.fr/projects/embal
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full time interval. This latter limitation will be addressed in chapter 6 with a completely

different approach based on a graph cuts optimization technique.



CHAPTER 5

FAST RETINOTOPIC MAPPING

WITH MEG

As demonstrated by research on computer vision in order to reproduce the capabilities of

human perception with computers, the human visual system is an amazingly complex ma-

chinery. Understanding how visual information is encoded and treated by our brain is still

a big challenge that brain functional imaging has been trying to tackle in the last decades

thanks to advanced techniques like fMRI [24, 62, 64, 204, 222, 223], PET [75], surface elec-

trodes [234], optical tomography [236], near-infrared spectroscopy [95], EEG [110, 213], and

MEG [69, 82, 151, 197].

The motivation for the work presented in this chapter is twofold. First we wanted to inves-

tigate how well MEG could reproduce the retinotopic maps obtained by standard protocols in

fMRI. Second, we wanted to exploit the excellent temporal resolution of MEG to get an access

to brain dynamics during visual processing.

In this chapter we start by presenting the basics of the human visual system and insist

particularly on the retinotopic properties of the primary visual cortex (V1). Results obtained

in the literature by functional imaging are then presented. We will then describe the exper-

imental protocol designed in order to explore the retinotopic mapping of V1 with MEG. The

methods used for data processing, functional mapping and timing include signal extraction

with spectral analysis, inverse modelling and statistics with resampling techniques using

permutations. Some information on our experimental protocol, analysis methods and results

are presented in [2, 42, 44, 45, 46].
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5.1 FROM THE EYES TO THE CORTEX

We start this section with a description of the path conveying the visual information from

the eyes to the primary visual cortex (V1). We then present briefly the organization of the

visual cortex. For more comprehensive description, see for instance [29, 124, 167].

Figure 5.1: The path of the visual information from the eyes to the primary visual

cortex (Adapted from http://homepage.psy.utexas.edu/homepage/Class/Psy308/

Salinas/Vision/Vision.html).

In primates, in particular in humans, the visual system includes many anatomical ele-

ments, from the eyes to the cortex. In the eye, light goes successively through the cornea, the

aqueous humor, and the pupil. Next it passes through the lens, before entering the vitreous

humor. It finally reaches the retina, which is covered with over 125 million photosensitive

receptors of two families. The cones form a population of around 8 millions cells. Mainly

concentrated in the center of the retina, also known as the fovea, the cones are responsible

for chromatic and normal lighting (photopic) condition vision (or photopic). About 120 million

rods are found everywhere except in the fovea. They deal with black and white perception

and low-lighting conditions (scotopic).

These photosensitive receptors translate lighting information into electrical information,

transmitted to the optical nerves via the ganglion cells. The two optical nerves meet, forming

the optic chiasm, after which information is transmitted separately for each visual hemifield

(separated vertically with respect to the head position): the information from the left (respec-

tively right) parts of both retina and corresponding to the right (left) visual field is brought

together to form the left (right) optical tractus (cf. figure 5.1).

The vast majority of the optical tracts fibers get projected to a part of the thalamic sen-

sory relay system, the Lateral Geniculate Nucleus (LGN). Visual signals from the two eyes

remain segregated in the LGN which approximately counts 1 million cells corresponding to

the number of optical fibers. Finally, the LGN axons form the optic radiations which reach

the primary visual cortex (V1), centered around the calcarine fissure (cf. figure 5.2).

V1, also known as Brodmann area 17 (cf. figure 1.9) or “striate cortex” due to its cytoar-

chitectonic properties, is viewed as the entry of the visual cortex. It receives most outputs of

the LGN.

http://homepage.psy.utexas.edu/homepage/Class/Psy308/Salinas/Vision/Vision.html
http://homepage.psy.utexas.edu/homepage/Class/Psy308/Salinas/Vision/Vision.html
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Figure 5.2: Schematic representation of the calcarine fissure in medial view (From 20th U.S.

edition of Gray’s Anatomy of the Human Body, 1918 (public domain)).

V1 contains a complete (mirror) representation of the contralateral hemifield. This is illus-

trated by figure 5.3 and figure 5.4. This property corresponds to the retinotopic organisation

of V1. A practical consequence of this organization, is that besides on patients who under-

went damage to the occipital lobe, the left (resp. right) visual hemifield projects to the right

(resp. left) occipital cortex.

Beyond this retinotopy, neurons in V1 are organized into sub-regions, each specialized in

the analysis of a given visual feature. Among these features are sensitivity to color, contrast,

orientations or direction of motion. The sensitivity and selectivity to orientation was first

measured by Hubel and Wiesel (Nobel Prize in Physiology or Medicine in 1981) in 1959. By

inserting a microelectrode into the primary visual cortex of an anesthetized cat they discov-

ered that some neurons responded more strongly to one particular orientation while other

neighboring neurons were more sensitive to other orientations. They called such neurons of

V1 “simple cells”. This observation motivated the design of the visual stimuli used in the

MEG experiment detailed below in section 5.4.

Next to V1 are other visual areas reported in the literature. Without going into much

detail, studies on macaque monkeys lead Felleman and Van Essen [70] to differentiate 30

areas based on four main criteria: (i) local cortical cells architecture, (ii) connectivity patterns

across areas, (iii) global functional selectivity and (iv) retinotopy. In humans, the last two

criteria were successfully used to unveil several areas. We make below a short list of areas

neighboring V1.

V2, also called prestriate area, is subdivided in each hemisphere into two parts: V2v (for

ventral) and V2d (for dorsal). They respectively represent the upper and lower contralateral

quarterfields. Together the four regions provide a complete map of the visual field. Area V2

mainly receives its inputs from V1. Functionally, V2 has many properties in common with

V1. Cells are tuned to simple properties such as orientation, spatial frequency and color.

V3, refers to the region of the cortex located immediately next to V2. Like V2, is sub-

http://en.wikipedia.org/wiki/Grays_Anatomy
http://en.wikipedia.org/wiki/Grays_Anatomy


149

Figure 5.3: Illustration of the retinotopic organization in V1. V1 contains a complete (mirror)

representation of the contralateral hemifield (Adapted from [219]).

Figure 5.4: Retinotopic organization of the primary visual cortex (V1): The visual field is

continuously mapped onto the visual cortex. A: A grid pattern made of con- centric circles

is presented to a macaque. The black box corresponds to the right visual field, that will be

transferred to the left hemisphere of the brain. B: The grid pattern is reproduced at the level

of the primary visual cortex (V1). The mapping from visual field to V1 is termed retinotopic,

because it continuously preserves the topology of the retina. The central zone of the visual

field is processed with great precision: It is processed by many neurons in V1, comparatively

to the periphery. Mathematically, the mapping from visual field to V1 is well approximated

by a log- polar scheme (Adapted from [205]).
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divided into two parts: V3v ventrally (sometimes also called VP, in reference to the Ventral

Posterior area in monkeys) and V3d dorsally. However, contrarily to V1 and V2, there is still

some controversy regarding its exact extent and its functional selectivity. Even if no con-

sensus exists for humans, we can consider that V3v represents the upper quadrant and V3d

represents the lower quadrant.

5.2 RETINOTOPIC MAPPING WITH FMRI

By looking at figure 5.4, it can be noticed that a natural coordinate system for the spatial

organization of V1 is the polar coordinate system. This observation led to the design of the

stimuli called wedges and rings. The wedges encode the polarity, i.e., the angular information,

while the rings encode the eccentricity, i.e., the radial information. Such stimuli are presented

in figure 5.5. Original results of retinotopic mapping with fMRI can be found in [64, 65, 195].

In standard fMRI protocols, the stimuli presented to the subjects are rotating wedges and

expanding rings. The measurements obtained with the rotating wedges provide a polarity

map (cf. figure 5.6(a)) while the expanding rings provide an eccentricity map (cf. figure 5.6(b)).

A position in the visual field is associated to a cortical position by intersecting the information

from the polarity map and the eccentricity map.

(a) Rings (b) Wedges

Figure 5.5: Rings and wedges visual stimuli used for retinotopic mapping with fMRI (Adapted

from [223]).

Once the polarity map and the eccentricity map have been computed, the visual areas can

be delineated. For example the border between V1 and V2d is given by the lower meridian

and the border between V1 and V2v is given by upper meridian. Delineation results are

presented in figure 5.7.

The conclusion of this brief presentation of retinotopic mapping with fMRI, is that the

spatial resolution of fMRI enables the precise delineation of visual areas like V1, V2 and V3.

However, due the low temporal resolution of fMRI, dynamical information remains unacces-

sible. Retinotopic mapping with M/EEG finds its principal motivation in the measurements

of such dynamics.

5.3 SOURCE LOCALIZATION WITH M/EEG IN THE VISUAL
CORTEX: PREVIOUS STUDIES
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(a) Orientation, i.e., polarity, map obtained by stimulation using the wedges in figure 5.5(b).

(b) Eccentricity map obtained by stimulation using the rings in figure 5.5(a).

Figure 5.6: Polarity, i.e., orientation, map and eccentricity map obtained by fMRI. Cortical

maps are flattened for 2D representation (Adapted from [223]).

Figure 5.7: Visual areas delineated by fMRI (Adapted from [223]).
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We now present a review of important previous studies involving M/EEG recordings for

non invasive investigations in the human visual cortex. This presentation is restricted to

contributions that achieve source localization.

The literature on the topic demonstrates that various experimental and methodological

strategies are possible. Designing a strategy implies to choose:

• the patterns used for stimulation,

• the experimental protocol (duration of presentation of the stimuli, number of repeti-

tions, etc.),

• the method for signal extraction (averaging, spectral analysis, etc.),

• forward modeling (Spherical head model, BEM, etc.),

• inverse modeling (dipole fitting, beamforming, distributed sources, etc.).

We now discuss the different possible choices.

Stimulation pattern

Neural response is generated by pattern onset stimuli. This response is however different

depending wether the stimuli is black and white or colored, if it is highly contrasted, if it is

oriented, etc. A good pattern should evoke a response in the visual cortex with a high SNR in

order to provide the best source localization results. Following fMRI protocols, most previous

M/EEG studies use black and white checkerboard patterns [69, 110, 151]. The patterns are

displayed on a gray background to be well contrasted. However, contrary to fMRI, the pat-

terns are presented in a portion of the visual field as illustrated in figure 5.8 with a circular

checkerboard pattern. This is done in order to avoid crosstalks between neural current gen-

erators. With expanding rings, currents produced by two sources on the walls of the left and

right cuneus (cf. figure 5.2) could cancel their effect on the sensors. Source localization would

then become impossible.

Figure 5.8: Circular checkerboard pattern used for visual stimulation in [151].

Experimental protocol and signal extraction

The experimental protocol details the way the pattern is presented but also what is asked of

the subject during the experiment. In requires to choose the duration of the pre-stimulation

and stimulation periods and also the inter-stimulation interval (ISI), usually set to be random

to limit habituation and anticipation of the subject. The pre-stimulation period is also known

as the baseline period. What drives the choice of the protocol is the way the signal of interest

is extracted from the measurements. For this purpose, two approaches exist.

The first, and most classical, consists in averaging the measurements of multiple record-

ings and using as signal of interest the averaged response at a particular time instant. This
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instant classically corresponds to a latency peak. Visual evoked potential (VEP) are elicited

by pattern onset stimuli. Like for all evoked potentials, the waveform of VEP exhibits char-

acteristic peaks. For VEP, some of these peaks are known as the C1 (a.k.a. N75), the P1

(a.k.a. P100) or the N1 (a.k.a. N145). A typical EEG VEP waveform is presented in fig-

ure 5.9. In [110, 214], the authors estimate source amplitudes using the C1. The C1 occurs

approximately 70 ms after pattern onset. According to previous fMRI studies and the results

described in [110, 214], the neural generators of the C1 are located in V1. With such proto-

cols, the pattern is presented a few hundred times and the pre-stimulation and stimulation

periods are respectively about 100 ms and 500 ms. The main problem of such approaches is

that the latency peak is not stable across subjects. This implies that the latency of interest

on each subject needs to be set manually.

Figure 5.9: A normal pattern reversal VEP measured in EEG (Adapted from [216])

The second consists is extracting the signal of interest from the spectrum of the measured

time series. This alternative to VEP is called steady-state visual evoked potential (SSVEP).

Rather than displaying multiple time locked pattern onsets, the pattern is flashed on the

screen with a known frequency. The stimulus is said to be tagged in frequency. We speak

of “frequency tagging”. While protocols based on standard VEP focus on the transient period

just after pattern onset, the experimental paradigms based on SSVEP exploit the stationarity

in the measured time series. The advantage of working with stationary time series is that

standard signal processing tools like Fourier analysis are well adapted to extract the signal of

interest. Contrary to the transient VEP signal, the SSVEP signal is easily quantified in the

frequency domain and can be rapidly extracted from background noise. A possible drawback

is that stimulation periods need to be sufficiently long to let the neural generators enter in a

stationary mode. Also, SSVEP are not particularly pleasant for the subject.

SSVEP were previously measured on anaesthetized cats [183] using invasive techniques

called multi-unit activity (MUA) and local field potentials (LFP). It was observed that about

300 ms after flicker onset, responses stabilized and exhibited a highly regular oscillatory

pattern precisely locked to the stimulus. The stationary period started after 300 ms. This du-

ration for the transient period was confirmed in humans with EEG in [187]. Using such fre-

quency tagged stimuli, Regan [187] observed also that using a “on-off” stimulation paradigm

or a reversing pattern does not produce neural activations with the same Fourier spectrum.

Pattern reversal stimulation produced a peak in the Fourier spectrum at the double of stimu-

lation frequency [69, 187, 191]. This can be explained by the observation that pattern reversal

produce a change of contrast in the visual field twice per period, i.e., twice per full cycle of

stimulation. The experimental results adapted from [69] presented in figure 5.10 confirm this

observation. The reversing pattern was presented for a long period of time, i.e., 14 s, for 4 dif-

ferent frequencies (2 Hz, 4 Hz, 8 Hz and 21 Hz). In [69] the stimulus consists both of square

wave modulated checkerboards or sinusoidally modulated checkerboards, while in [191] the
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checkerboards are only modulated by a sine wave. Fawcett et al. [69] report that the results

with both types of modulations are very similar.

Inverse modeling

As described in chapter 3, the inverse problem can be solved with three main categories

of methods: dipole fitting, beamforming and image-based methods with distributed source

models. Previous studies on the human vision with M/EEG make use of all three of them.

The most common is dipole fitting. In [214], a small number of dipoles are positioned

in the visual areas localized a priori with fMRI and their amplitudes are then estimated.

Note that such a procedure is made possible by the fMRI since, as reminded in chapter 3,

parametric dipole fitting is a non convex problem for more than one dipole. The positions and

orientations of multiple dipoles could not be robustly estimated with pure M/EEG. In [82],

the authors use single dipole fitting with MEG data to localize a generator in V1. In [191], Di

russo et al. use dipole fit with “proximity seeding” and fMRI localizers.

In [69], Fawcett et al. investigated with MEG the neural response of V1 to frequency

tagged stimuli with a beamforming technique called Synthetic Aperture Magnetometry (SAM).

The beamforming method provided the amplitude over time of a manually positioned source

in V1. The position of the source was set according to the known position of the pattern in

the visual field. The computed time frequency decomposition presented in [69] is reproduced

in figure 5.10.

Alternative to dipole fitting approaches and beamforming techniques are imaging methods

with distributed source models. In [110] is presented an EEG study with ℓ2 source estimates.

Localization results are compared to fMRI data and it is observed that with the proposed

data processing pipeline the spatial resolution of EEG is approximately 3◦ of visual angle.

This study is however limited to visual stimuli displayed on the horizontal meridian. No

retinotopic mapping is performed per se. In [197], Sharon et al. demonstrate that combining

MEG and EEG measurements can improve localisation results compared to pure MEG in-

verse modeling. The inverse solver is dSPM (cf. chapter 3) which is a noise normalized solver

based on an ℓ2 prior. In [197], no retinotopic maps are presented either.

In 2002, Moradi et al. [151] have proposed a quantitative comparison between localization

results with MEG and fMRI. The inverse problem is solved on a volumetric grid of distributed

dipolar sources and source amplitudes are estimated with an inverse method called Magnetic

Field Tomography (MFT) [3]. Results obtained by Moradi et al. are presented in figure 5.11.

Moradi et al. argue that distributed source models are more adapted than dipole fitting since

the neural activations evoked by stimulus onsets are very likely to come also from extra-

striate regions. Sources amplitudes are estimated at various peak latencies starting around

45 ms after visual presentation of the stimulus. Note that in this contribution, the sources

do not lie on a triangular mesh but on a 3D grid. With such a method, like with fMRI data,

obtaining retinotopic mapping requires to interpolate activations to the cortical surface.

The different studies detailed above demonstrate the ability of M/EEG to localize with a

good precision neural activations in the intricate occipital region around the calcarine sulcus.

This observation was also confirmed by the simulation study we published in [2]. However

none of these contributions provides a complete retinotopic mapping of V1. Dipole fitting

and beamforming approaches are certainly not adapted for such a purpose that can only be

achieved with a distributed source model and an image-based inverse solver. The methodolo-

gies developed in [110] and in [197] are probably the best attempt towards retinotopic map-

ping with MEG and therefore the closest related work to the contribution presented in this

chapter. These methods however work with VEP and therefore suffer from various drawbacks

like the problem of variable peak latencies between subjects. Their experimental results are

also limited to the horizontal meridians in [110] and the four quadrants in [197].

The use of frequency tagged stimuli in [69, 151] demonstrates the ability of M/EEG devices
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Figure 5.10: Time-frequency plots obtained using a checkerboard pattern flickering at various

frequencies in the bottom right quadrant of the screen. Time-frequency plots are calculated

using Morlet wavelet analysis from a voxel in the left (that is, contralateral) medial visual

cortex and averaged across multiple subjects to improve the SNR. The cortical harmonics

of the stimulus frequency can be clearly seen in the active phase, together with an onset

response shortly after the stimulus onset. The colour bar on the right of each figure shows

the event-related synchronization (ERS) and event related desynchronization (ERD) scale

used, expressed as a percentage of change from the baseline. (Adapted from [69])
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Figure 5.11: Localization results obtained by Moradi in [151] with fMRI and MEG. Results

are displayed on a 2D slice going through the calcarine fissure. In blue are the results ob-

tained by fMRI (p¡0.01) while in yellow and red are the active regions estimated with MEG

(p¡0.01 and p¡0.001). (Adapted from [151])

to capture with a good SNR the signal evoked by a flickering pattern. Contrary to variable

peak latencies observed with VEP on multiple subjects, the frequency tuning of the neural

response evoked by SSVEP appears to be much more stable across subjects.

For these reasons, the protocol proposed in the following section is based on SSVEP and

the inverse problem is solved with a distributed source model. Besides the protocol, our

contribution is on the efficient processing of the data, both for the signal extraction and the

inverse modeling.

5.4 MEG EXPERIMENTAL DESIGN

5.4.1 Stimulus design

The primary objective of the design of the stimulation pattern was to produce a good signal to

noise ratio (SNR) in the MEG measurements. Considering what has been said earlier on the

functional properties of the simple cells in the visual cortex, a good SNR can be obtained with

highly contrasted patterns presenting multiple orientations. By multiplying the number of

orientations, more simple cells get activated and the global amplitude of the evoked response

of the brain increases.

The stimuli that have been designed are presented in figure 5.12. In order to obtain a map-

ping of V1, the “star” like patterns have been placed at multiple positions of the visual field.

Each position corresponds to an experimental condition. There are two types of experimental

conditions: the quadrants and the meridians. Each quadrant contains a big single “star”.

Along the meridians 4 “stars” whose sizes increase in accordance to the cortical magnification

factor in V1 [52] are displayed.
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Stimuli were back-projected using a video projector (60 Hz refresh rate) on a translucent

screen located away 90 cm from the subjects. The Michelson contrast of the displayed patterns

was 96%. They were presented against a grey background (103 cd/m2; see figure 5.12).

The Michelson contrast is defined by:

CMichelson =
Lmax − Lmin

Lmax + Lmin

where Lmin and Lmax are respectively the minimum and the maximum luminances (cd/m2)

measured on the pattern.

In each quadrant, the pattern was 2.66◦ wide with an eccentricity of 8.85◦. For the merid-

ians the 4 patterns had varying sizes (Width: 0.22◦, 0.35◦, 0.71◦, 1.33◦) and were presented at

4 different eccentricities (0.62◦, 1.52◦, 3.3◦, 6.64◦ respectively).

(a) Upper left quadrant (b) Lower left quadrant (c) Upper Right quadrant

(d) Lower right quadrant (e) Left meridian (f) Right meridian

Figure 5.12: Stimuli displayed for retinotopic mapping with MEG. Each position corresponds

to an experimental condition. The subject is asked to look at the colored fixation point at the

center of the screen. The flickering patterns were displayed for 6.5 s at 7.5 Hz or 10 Hz in

each trial evoking a steady-state visual evoked potential (SSVEP).

5.4.2 Protocol design

The primary motivation for using SSVEP and frequency tagged stimuli is that for long enough

stimulation periods the visual system can be considered to be stationary. The complex dy-

namic phenomena that occur during the transient period just after a stimulus onset are not

considered. Since a SSVEP can be completely described in terms of the amplitude and phase

of each frequency component it can be quantified more unequivocally than an averaged tran-

sient evoked potential.

The choice of the stimulation frequency

In [69], Fawcett et al. presented a reversing pattern tagged with 4 different frequencies. The

time frequency maps presented in figure 5.10 demonstrate that the increase in synchroniza-

tion during stimulation, i.e, active period, exceeds 100% at 2, 4 and 8 Hz. At 21 Hz the

steady-state response is clearly reduced. Due to the reversing pattern, the actual frequency
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observed corresponds to the second harmonic. Similar experimental facts are reported by

Pastor et al. in [173] with EEG measurements and a flickering “on-off” pattern (no contrast

reversing). In order to estimate the best stimulation frequency for brain computer interface

(BCI) based on SSVEP, the authors measured the amplitude of the signal on the occipital

electrodes as a function of the stimulation frequency. As presented in figure 5.13, they ob-

served that the amplitude reached a maximum at 15 Hz and then fell with a plateau up to 27

Hz, declining at higher frequencies.

Figure 5.13: Average of the mean values of the amplitude of the FFT fundamental frequency

of the SSVEP recorded on three occipital EEG electrodes at the different stimulation fre-

quencies. The amplitude of the occipital neural response, expressed in microvolts, reached a

maximum at 15 Hz and then fell with a plateau up to 27 Hz, declining at higher frequencies.

(Adapted from [173])

These experimental observations indicate that the best frequency for a stimulation with

reversing pattern is between 5 and 10 Hz. Our hypothesis explaining the dependence of

the SSVEP amplitude on the stimulation frequency is that the retina is the limiting step

of the visual processing pipeline. This is confirmed by the experimental results from [196]

reproduced in figure 5.14. By measuring the response of ganglion cells in the retina of an

anesthetized cat while it was presented a sinusoidally modulated pattern, Shapley and Victor

concluded in 1978 that the retina is tuned to attenuate less the temporal frequencies between

10 and 20 Hz. These experimental results agree with the conclusion obtained by Pastor et al.

and Fawcett et al. with M/EEG measurements on humans.

Taking this into account in our experimental paradigm, stimuli were displayed at a fre-

quency of 7.5 Hz and 10 Hz. For experimental reasons, the stimulation frequency were con-

strained by the 60 Hz refresh rate of the screen. During the stimulation period, with 7.5 Hz,

the pattern was displayed during 4 successive frames before alternating with the reversed

pattern during the next 4 frames. At 10 Hz, the pattern was displayed during 3 successive

frames before alternating with the reversed pattern during the next 3 frames.

Pre-stimulation and stimulation periods

Stimulation consists of multiple repetitions of alternating pre-stimulation and stimulation

periods. A cycle of pre-stimulation and stimulation period is called a trial.

A trial started with the display of a colored fixation disk at the center of the screen during

600 ms. It was followed by one of the patterns displayed in figure 5.12 flickering in counter-

phase at 7.5 Hz or 10 Hz. Two successive trials were separated by a random inter stimulus

interval (ISI) of about 1.5 s (cf. figure 5.15).

We call “run” the successive presentation of multiple trials. One run was done for the

quadrants and one for the meridians. In each run, the conditions were randomly presented.

Each run contained 15 trials for each condition, i.e., position in the visual field. For example
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Figure 5.14: Amplitude of response of cat ON-center X ganglion cell, reproduced from Shapley

and Victor (1978). Stimulus consists of 4 sinusoids with different contrasts. It reveals that

the frequencies between 10 and 20 Hz are the less attenuated by the retina. (Adapted from

[228] and original data from [196])

the run for the quadrants had 60 trials with 15 trials for each quadrant.

Stimulation

period

Flickering star & Fixation point
Fixation

point

Inter-stimulation

period

Pre-stimulation

period

Time

≈1.5 s 0.6 s 6 s

...

t=0

Figure 5.15: A trial in the protocol for retinotopic mapping with MEG. Each trial is composed

of an inter trial period also called ISI (inter stimulus interval). This period has a random

length close to 1.5 s. At t=0 a fixation point appears and 600 ms later the stimulation starts.

During a trial, the fixation disk randomly changed color every second. To maintain the

attention of the subjects focussed and minimize eye movements, they were asked to report on

which color appeared more often at the end of the run.

5.5 MAPPING V1 WITH MEG

5.5.1 Data exploration

In order to confirm the presence of energy at the frequencies of stimulation on the data,

periodograms and spectrograms were computed on the signals measured by each MEG sensor.

The periodograms provide estimates of the power spectral density (PSD) of the signal

during the steady-state period. The stimulation started 0.6 s after the fixed point appeared

and the transient regime was estimated around 0.4 s. The beginning of the steady-state

period was therefore set to t = 1 s.

The periodogram can simply be computed with a standard FFT or in a more efficient
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way using a smooth periodogram technique introduced in [225]. This technique commonly

referred to as a multitaper method, consists in computing the PSD on different portions of

the data and to average all the results in order to reduce the variance of the PSD estimation.

Each portion of the data is tapered by a time domain window. This is illustrated in figure 5.16,

where 6 tapers with a 50% overlap are extracted from a single-trial measurement. For each

of the 6 signal windows, the PSD is computed. The 6 results are then averaged to provide

the periodogram. By doing so the periodogram is smoothed and the PSD estimate is biased.

The variance of the estimate is however divided by the number of windows which makes the

PSD estimate more accurate. It corresponds to the classical trade-off in statistical estimation

between bias and variance.

To illustrate this, PSD estimates computed on the grand average data during one con-

dition are represented in figure 5.17. It can be observed that using small windows lead to

a smoothed version of the periodogram. This procedure reduces the estimation bias called

spectral leakage. When estimating the PSD of finite-length signals or finite-length segments

of infinite signals, it happens that some energy leaks out of the original signal spectrum into

other frequencies. In the present case where the stimulation frequency produces a peak at

15 Hz, it happens that part of the signal of interests leaks to the frequency bins near 15 Hz.

The frequency bins are fixed by the FFT depending on the length on the input signal. There-

fore, they may not include a bin exactly at 15 Hz.

Figure 5.16: Multi-taper example on a single-trial MEG measurement

(a) 1 window of 5 s (b) 5 windows of 1.6 s (c) 12 windows of 0.8 s

Figure 5.17: Multi-taper periodogram obtained with 3 different sizes of windows. Each curve

corresponds to one sensor on the different groups of MEG sensors (OR: occipital right, OL:

occipital left, PR: parietal right, PL: parietal left, TR: temporal right, TL: temporal left). The

periodogram is estimated on the averaged data for one subject during stimulation of the lower

left quadrant at 7.5 Hz. One can observe the smoothing effect of the multitapering.

Once the PSD is estimated, the topography at the frequency of interest can be observed.
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In figure 5.18, the estimated PSD at 15 Hz (or at the closest frequency bin) is displayed. The

topography represents an energy and is therefore positive. A hot spot on the occipital sensors

can be observed which confirms the spatial localization of the signal.

Figure 5.18: PSD at 15 Hz represented on the sensors. A clear hot spot on the occipital region

confirms the presence of a source responding at 15 Hz in the occipital cortex.

Another convient way for exploring the spectral content of the data, consists in computing

time-frequency (TF) maps. Using filters banks localized in time and frequency, such repre-

sentations describe the location of energy in a time-frequency plot. Common filters used in

M/EEG are Gabor and Morlet filters. We refer the reader to Appendix C for more details on

how the Gabor filters used in this work were designed.

An interest of the TF representations is that they enable a comparison between the pre-

stimulation and the stimulation periods. Let us denote TF (t, f) the PSD estimated at time

t and frequency f . Let TFbase(t, f) the restriction of TF (t, f) to the pre-stimulation period

(0 < t < 0.6 s) and TFbase(f) the mean over t of TFbase(t, f). Let us call the Event Related

Synchronization / Event Related Desynchronization (ERS/ERD) coefficient the quantity:

ERS/ERD(t, f) =
TF (t, f)− TFbase(f)

TFbase(f)
.

If no difference is present between pre-stimulation and stimulation periods ERD/ERS(t, f)

is equal to 0. If ERD/ERS(t, f) is equal to 10, it means that the energy during stimulation

is 10 times bigger than during the pre-stimulation, a.k.a., the baseline period. To have a

representation that scales to possibly large values of ERD/ERS(t, f), we represented in the

TF plot the quantity:

sign(ERD/ERS(t, f)) log(1 + |ERD/ERS(t, f)|) ,

where sign(x) stands for the sign of x, i.e., sign(x) = x/|x| if x 6= 0 and 0 otherwise. The

function log stands for the decimal logarithm (log(10) = 1).

In figure 5.19, a sample TF plot is presented. Like in [69], the TF plot was computed on

the signal obtained by averaging all the trials corresponding to the condition of interest. We

can observe a strong increase of PSD at the harmonics of f = 7.5 Hz, especially 2f = 15 Hz,

after the stimulation onset at 0.6 s. The harmonic 4f = 30 Hz can also be observed. The

dashed vertical bar represents the beginning of the stimulation. This observation, done also

on different sensors and conditions, led us to the conclusion that the signal of interest could
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be extracted from the Fourier coefficients at 15 Hz.
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Figure 5.19: Sample time frequency map, a.k.a., spectrogram, estimated on the averaged

signal measured on the MLO11 sensor. Stimulation was performed at 7.5 Hz with a pattern

positioned on the lower left quadrant. Spectrogram was computed with Gabor filters with

ξ = 15 (cf. chapter C).

5.5.2 Method

5.5.2.1 How to invert?

In order to localize the current generators responding to the frequency tagged stimulation

pattern, the straightforward way consists in inverting the full temporal data in order to obtain

a time series per current dipole on the cortex. Then for each dipole the PSD can be computed.

The dipole having the highest PSD are the most likely to be active.

Using a linear inverse method based on an ℓ2 prior like the standard minimum-norm (MN)

solver, the source estimates are given by:

X = GT (GT G + λI)−1M .

Spectral estimation with Fourier analysis is linear. Let us denote Φ the dictionary of Fourier

atoms such that the Fourier transform of a temporal vector x can be written in a matrix

form Φx. The Fourier coefficients of the sources can then be written X̂ = XΦT . The ith

line of X̂ contains the Fourier transform of the temporal activation of the ith dipole on the

source space. By writing this in matrix form, it appears that the Fourier transform of the

sources can be obtained from the Fourier coefficients estimated on the sensors. We have that

X̂ = GT (GT G + λI)−1M̂ where M̂ = MΦT . The practical consequence of this observation is

that when using a linear inverse solver the FFT on the sources can be obtained at the price

of the computation of the FFT on the sensors. The PSD can then be obtained from the FFT.

Rather than inverting the full data, this suggests to invert only the portion of the spectrum

that contains the relevant information. In the current study, this information appears to be

contained in the Fourier coefficient at 15 Hz.

5.5.2.2 Estimating active regions with permutation tests

The inverse problem gives the current estimates. However, what is really of interest are the

locations where these estimates are sufficiently significant to be considered as active. In order

to locate these statistically significant activations, non-parametric statistical tests provide a
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robust and principled approach.

Basics of non-parametric statistical tests and permutations

H0 and H1. Like standard statistical tests, non-parametric tests are used to test the

validity of a hypothesis. There two hypotheses: the null hypothesis, denoted H0, that states

that observations result purely from chance, and the alternative hypothesis, denoted H1, that

the observations are influenced by a non random cause. Rejecting H0 with a certain level of

confidence means that the observations are not purely the result of chance.

In the context of brain functional imaging with M/EEG, the null hypothesis H0 classically

states that the stimulation has no effect on the neural activation in a given brain region,

while H1 states that the activation is influenced by the stimulation. When rejecting H0, the

brain region of interest is flagged as active.

Type I and type II errors. Two types of errors can be erroneously produced in statistics:

type I and type II. A type I error is made when the null hypothesis is erroneously rejected.

It corresponds to a false positive. Type II errors are made when the null hypothesis is erro-

neously accepted. It corresponds to a false negative. The statistical power of a test is related

to type II errors. The more powerful a test is, the less it will produce type II errors. In prac-

tice, one wants to use a statistical test with a high power and with a control of type I errors.

This control is given by the P-value.

Let us illustrate this with an example in the context of non-parametric tests.

Example. Let us consider two populations of 10 subjects each. The two populations,

denoted A and B, have been assigned to 2 different treatment conditions (conditions A and

B). If the null hypothesis H0 is true, no difference between the means of condition A and B

will be found at the end of the treatment. Under H0, i.e., if H0 is true, label A is not different

from label B, hence they can be exchanged without affecting the difference between means

A and B. In the same way, the 10 observations can be switched from A to B. Let us now

systematically rearrange the 20 observations by permuting the labels of the observations and

compute the difference between mean A and B. There are 210 = 1024 possible permutations of

the labels, leading to 1024 values of difference of the means between A and B under the null

hypothesis. We can now answer the following (inferential) question: Under H0, what is the

probability to obtain the difference in the means that we observed in the experimental data?

If this quantity is smaller than 5%, we say that the hypothesis H0 is rejected with a P-value

of 0.05.

Let us rewrite this with simple equations. Let us denote a = (al)l ∈ R
10 (resp. b = (bl)l ∈

R
10) the vector of measurements observed in population A (resp. B). The difference of the

means obtained with experimental data is:

Texp =
1

10

∑

l

(al − bl) =
1

10
(a− b)T · 1 ,

where 1 is a vector in R
10 filled with ones. It corresponds to the value of the statistic, denoted

T , with the experimental data. We denote it Texp. In order to compute a “permuted” version

of this statistic one can simply replace the vector 1 with a vector filled randomly with 1 and

−1. For a given permutation indexed by n we denote pn this random vector. We compute a

value of the statistic under H0 with:

Tn =
1

10
(a− b)T pn .
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Let us denote P ∈ R
10×1024 a matrix containing as columns all the possible vectors pn. The

distribution under H0 is obtained by:

(Tn)n =
1

10
(a− b)T P ∈ R

1024 .

The hypothesis H0 is rejected with a P-value of 0.05 if:

#{n/Tn ≥ Texp}
1024

≤ 0.05 .

General permutation test procedure.

1. Select a test statistic which measures the differences between conditions (here differ-

ence of the means).

2. Compute the test statistic for the original condition labeling (Texp).

3. For each resampling k, randomly rearrange the condition labels and compute the test

statistic Tk for the permuted data and add it to the null distribution.

4. Repeat step 3 until a predefined number of resamplings has been performed (or all

resamplings if it is tractable).

5. Compare the null distribution of the test statistic to the original data.

6. Accept or reject the null hypothesis based on the proportion of permuted test statistics

greater than or equal to the original.

Remarks. Using as statistics the difference of the means has the advantage that the pro-

cedure can be described with basic linear algebra formulas. This formulation with matrices

also has the advantage to provide a straightforward way to implement it and to benefit from

efficient linear algebra software packages like (BLAS/LAPACK or the Intel MKL).

In practice, one often has more than 10 observations per condition. Therefore testing all

the possible permutations is not always tractable. To circumvent this problem only a random

sample of all data permutations is selected. By doing so, the test loses of his statistical power

and the P-value is only an approximation. It can be observed that the P-value cannot be

smaller than 1/1024 or more generally 1/N , where N is the number of random permutations.

Non-parametric tests are very flexible compared to standard parametric tests. Any statis-

tic, such as a T-test, can be used depending of the application. Also, no assumption, such as

Gaussianity, on the statistical distribution of the random samples is required. More impor-

tantly, they offer a very easy way to correct for the problem of multiple comparisons.

Multiple comparisons. When running many times the same test, assuming the tests

are independent, the probability that one test will reject H0 increases. When running 100

tests with independent samples with a P-value of 0.01 this probability is equal to 1! The

null hypothesis will be rejected once almost surely. Therefore, when running multiple tests,

it is important to control for example the FWER (Familywise error rate). The FWER is the

probability of making one or more type I errors among all the hypotheses when performing

multiple tests.

Remark. The False Discovery Rate (FDR), often used in neuroimaging [85], is a different way

of controlling Type I errors when running multiple comparisons. FDR controls the expected

proportion of incorrectly rejected null hypotheses. If the FDR is controlled with a P-value of

0.05, it means that among 100 rejected null hypotheses, 5 are expected to be false positives.

With a control of the FDR, one rejects null hypotheses more “easily” than when controlling
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the FWER. The control of the FDR is sometimes said to be less conservative than the FWER.

With non-parametric tests, control of the FWER can be done using what is called the

statistic of the “max”. Let us assume that a test is performed at multiple brain locations,

indexed by i.

P (FWER) = P (∪i{T i ≥ u}|H0) (Prob. any position exceeds the threshold u)

= P (max
i
T i ≥ u|H0) (Prob. max position exceeds the threshold)

= 1− Fmax T |H0
(u) (1-cumulative density function of max position)

= 1− (1− α) = α

(5.1)

This means that controlling the probability that the maximum statistic over the brain

exceeds a threshold u under H0 provides a control of the FWER with the same probability α.

Let us come back to our example. Suppose now that we run the test of the two treatment

conditions A and B, I > 1 times. The measured results are stored in two matrices A ∈ R
10×I

and B ∈ R
10×I . The experimental values of the statistic are given by:

(T i
exp)i =

1

10
(A−B)T · 1 ∈ R

I .

Under H0 the distribution of the maximum is given by:

(Tmax
n )n = max

(

abs

(

1

10
(A−B)T P

))

∈ R
1×1024 ,

where the function max computes the maximum value of every column of its input and abs

computes the modulus of each coefficient of its input. The hypothesisH0 is rejected at position

i with a P-value of 0.05 if:
#{n/Tmax

n ≥ T i
exp}

1024
≤ 0.05 .

Sample histograms of (T i
exp)i and (Tmax

n )n are presented in figure 5.20. Data are extracted

from the retinotopy MEG dataset for which I is between 15000 and 40000 depending on the

number of dipoles considered on the cortical mesh.
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Figure 5.20: Example of histograms of (T i
exp)i, denoted T0, and histogram of the (Tmax

n )n,

denoted H0. The dashed vertical line represents the threshold of the statistic with a P-value

of 0.05. 5% of the (Tmax
n )n are above this line. The null hypothesis is rejected at all the

positions i such that T i
exp is above this threshold.
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Permutations tests with M/EEG data. In neuroimaging, and particularly with M/EEG

data, what is of interest is to know where and when a particular brain region is activated

by the stimulation. The control condition is then typically extracted from the measurements

recorded in the pre-stimulation period, a.k.a., the baseline period. Permutation tests were

introduced in the field of M/EEG in [168, 169].

5.5.2.3 The mapping procedure

The data exploration on the sensors in section 5.5.1 confirmed the presence of significant

information at 15 Hz. In section 5.5.2.1, it was explained how to restrict the computation

of the inverse problem to a portion of Fourier spectrum. And in section 5.5.2.2, basics of

non-parametric statistical tests have been presented. The mapping procedure that we now

present is based on all these remarks and results.

The frequency of interest is 15 Hz. Therefore, rather than computing an FFT to get the

Fourier coefficients at 15 Hz, or at the closest frequency bin, a simple correlation of the signal

with a complex sinusoid tuned at 15 Hz can be used. Such a sinusoid at a frequency f0 is

defined by

φf0(t) = exp(2iπf0t) .

The discretized version of φf0
is a vector denoted φf0

. By computing the correlation of the

measurements in each trial, indexed by l, with φf0
, we obtain a complex valued Fourier co-

efficient for each sensor in each trial. Let us denote Ml the measurements for trial l. The

coefficients for this trial are given by m̂l
f0

= Mlφf0
∈ R

dm . By concatenating all the m̂l
f0

for all the dl trials, we get a matrix of Fourier coefficients, M̂f0 ∈ R
dm×dl . For the sake of

simplicity, we will omit from now on the index f0 for the Fourier coefficients.

The data that we propose to invert is M̂. Using an ℓ2 prior, the Fourier coefficients in the

source space are given by:

X̂ = GT (GT G + λI)−1M̂ ∈ R
dx×dl .

In order to run statistical tests, the Fourier coefficients need to be estimated under two

conditions, here on the stimulation period and on the baseline period. Let us denote X̂stim

and X̂base the two sets of coefficients. If we were to consider the difference of the means as

statistic the distribution under H0 would be given by:

(Tmax
k )k = max

(

abs

(

1

dl
(X̂stim − X̂base)T P

))

∈ R
1×N .

The matrix P ∈ R
dl×N is the permutation matrix filled with 1 and -1.

In order to compensate for depth bias, it is classical with M/EEG to normalize the re-

constructed currents using an estimate of the variance of the noise. We refer the reader to

chapter 3 and particularly to section 3.2.2.3. The estimate of the noise variance is obtained

by computing the variance and standard deviation of each row vector in X̂base. We denote

this vector of standard deviations by σbase = (σbase
i )i ∈ R

dx . The noise normalized versions of

X̂stim and X̂base, denoted X̂stim
nn and X̂base

nn , are obtained by dividing each coefficient on line i

by the standard deviation σbase
i .

The experimental value of the statistic at position i, T i
exp, is then given by:

Texp =
1

dl
(X̂stim

nn − X̂base
nn )T · 1 ∈ R

dx , (5.2)
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and the distribution under H0 by:

(Tmax
k )k = max

(

abs

(

1

dl
(X̂stim

nn − X̂base
nn )T P

))

∈ R
1×N .

Again, the hypothesis H0 is rejected at position i with a P-value of 0.05 if:

#{n/Tmax
n ≥ T i

exp}
N

≤ 0.05 .

The vertices on the triangulated source space where H0 is rejected, are the active vertices.

Computation time. The Fourier coefficients of interest are obtained with a simple matrix

multiplication on both the stimulation and the baseline data. The inverse computation with

an ℓ2 prior, is also achieved with a simple matrix multiplication. Finally, thanks to our presen-

tation of the permutation tests procedure using also a matrix formulation in section 5.5.2.2,

the full procedure has a very limited computational demand. On a standard computer, the

mapping pipeline takes less than a 1 minute. This of course assumes that the forward models

have been previously computed.

Testing on the Fourier coefficients vs. on the Power spectral density. The procedure

just described works on the Fourier coefficients. An alternative strategy consists in working

on the power spectral densities (PSD). Rather than considering Texp as detailed in (5.2), the

statistic can be computed with:

Texp =
1

dl
(|X̂stim

nn |2 − |X̂base
nn |2)T · 1 ∈ R

dx .

The matrix |X̂nn|2 contains the squared modulus of the elements of X̂nn. A possible moti-

vation for using the PSD rather than the Fourier coefficients with the phase information is

that it allows to estimate the PSD using a multitaper approach. However, by neglecting the

phase, the statistical power of the test is reduced. But on the other hand, the quality of the

estimate of the PSD, or equivalently the modulus, is improved. In our study both approaches

were investigated.

5.5.3 Mapping results

5.5.3.1 Localization results with ℓ2 inverse solvers

The first step consists in computing X̂stim and X̂base. An estimate of the noise can be es-

timated from X̂base. This leads to the computation of X̂stim
nn and X̂base

nn , and finally Texp. A

example of Texp map is represented in figure 5.21. This image was obtained with a stimu-

lation in the lower left quadrant of the visual field with a pattern flickering at 7.5 Hz. The

quantity Texp was here computed using the Fourier coefficients at 15 Hz (not the PSD).

In order to interpret the values displayed, it can be noticed that the value Texp can be

related to a z-score. A value of 2 is a value twice bigger than the variance estimated on the

baseline. For a Gaussian distribution, a value twice bigger than the standard deviation is

relatively significant. However, the active regions were not designated with such a rule of

thumb. The map in figure 5.21 is thresholded using the non-parametric statistical procedure

detailed above. The resulting thresholded activation map is presented in figure 5.22. The

image was obtained with a p-value set to 0.05 and 15000 permutations. The experimental

data contained 15 trials which means that we used 15000 out of 215 = 32768 possible per-

mutations. In order to visually improve the result, we extracted from the thresholded map
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the connected component containing the highest activations (cf. figure 5.22(c)). We observe

in this result, that the estimated active region stands on the upper bank of the calcarine

fissure. According to the position of the stimulation pattern in the lower left quadrant, this

localization result agrees perfectly with our knowledge on the organization of the primary

visual cortex (cf. section 5.1).

Figure 5.21: Example of Texp map to be thresholded. The color represents at each position i
the value T i

exp computed on the Fourier coefficients at 15 Hz. Data correspond to the stimu-

lation in the lower left quadrant at a frequency of 7.5 Hz.

5.5.3.2 From localization to retinotopic maps

In previous section, we detailed the different intermediate steps to complete in order to ob-

tain a localization result. However, our interest goes beyond simple localization, since our

objective is to obtain a pipeline to achieve retinotopic mapping with MEG. This implies that

the same parameters should be used for all the experimental conditions, meaning here all

the localizations of the flickering pattern in the visual field. We would like to emphasize that

this can be relatively challenging and that this issue is rarely mentioned in classical studies

where the different experimental conditions are treated separately. This implies for example

that the regularization parameter in the inverse problem and that the statistical threshold

level should not be manually tuned for each experimental condition. When achieving a map-

ping like here, all the data for the different conditions are processed in the very same way.

Therefore, the processing pipeline needs to be robust to the variations that necessarily occur

between different experimental datasets.

In order to address the problem of retinotopic mapping, the results for all the positions

in the visual fields need to be displayed on a common source space, i.e., on a same triangula-

tion. When two different conditions both produce a significant activation at a same location,

the condition that is selected and displayed is the condition for which the value of Texp is

maximum.

In the following results, the position of the flickering pattern in the visual field is color

coded. Color conventions are given in figure 5.23. A result of retinotopic mapping obtained

with a minimum-norm is provided in figure 5.24. In order to obtain this result, the regulariza-

tion parameter in the minimum-norm was set using the 10% rule of thumb from Brainstorm

(cf. section 3.2.1.2). The Fourier coefficients were obtained during the steady-state period
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(a) Thresholded map on the cortex

(b) Thresholded map on the inflated cortex

(c) Thresholded map on the inflated cortex with only the
main connected component lying in V1.

Figure 5.22: Example of thresholded statistical map Texp (p=0.05 with 15000 permutations).

Data correspond to the stimulation of an lower left quadrant at a frequency of 7.5 Hz.
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in the stimulation time interval (after 400 ms of stimulation) and during the baseline. The

P-value was classically set to 0.05 and 15000 permutations were run for each condition.

In this result, it can be observed that the mapping for the left hemi visual field is partic-

ularly well recovered on the right hemisphere. The horizontal meridian is correctly mapped

in the calcarine sulcus while the upper and lower left visual fields are respectively mapped

on the the lower and upper banks. When observing the result for the right hemi visual field,

it can be observed that the lower quadrant is correctly mapped on the upper bank of the left

calcarine sulcus and that the right horizontal meridian produces an activation that includes

the left calcarine sulcus. However, it can also be observed that the Minimum-Norm tends to

over estimate the extent of the activation for this particular condition (cf. figure 5.24(a) and

figure 5.24(b)).

Please note that this is after observing such results that we investigated the use of the

ℓw;212 prior to improve the quality of retinotopic mapping with MEG.

Figure 5.23: Color conventions for each condition represented at their position in the visual

field.

5.5.3.3 Reconstruct on WM-GM or GM-CSF interface?

Depending on the M/EEG source analysis pipelines, neural current can be estimated over a

mesh separating the gray matter (GM) and the white matter (WM), or over a mesh separat-

ing the gray matter from the cerebro-spinal fluid (CSF). This latter interface corresponds to

the outer surface of the gray matter. For example the MNE software mentioned at the end

of chapter 2 generally presents source estimates on the WM-GM interface while users of the

Brainstorm toolbox usually work with the GM-CSF interface extracted with BrainVISA [38].

One reason for this is that the MNE software computes forward models with a 3 layer BEM

whose inner layer is the inner skull interface, which is very close to the GM/CSF, while Brain-

storm’s users work with spherical head models and therefore can use the GM-CSF interface

as source space.

During this thesis, we tried our retinotopic mapping pipeline on both interfaces. We

present in figure 5.25(a) and figure 5.25(b) two results obtained with the very same param-

eters for the reconstruction and for the statistical procedure. Some clear differences appear

between these two results, which demonstrate the influence of the source mesh on the results.

In both cases, the extent of the active region corresponding to the right meridian appears to

be overestimated. This is particularly problematic for GM-CSF interface since the active re-

gion for the meridian clears the active region for the lower right quadrant. This illustrates

particularly well the problem of working with multiple conditions simultaneously when no

parameter tuning is performed for each condition individually.

The ℓ212 mixed norm presented at the end of chapter 4 is the strategy we investigated

during this thesis in order to better control the extent of the active regions.



171

(a) Left hemisphere (Medial view) (b) Inflated left hemisphere (Medial view)

(c) Right hemisphere (Medial view). (d) Inflated right hemisphere (Medial view).

Figure 5.24: Retinotopic map result obtained using a minimum-norm inverse solver and sta-

tistical tests run on the Fourier coefficients (p=0.05 with 15000 permutations). Data corre-

spond to the stimulation at a frequency of 7.5 Hz.
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(a) Result on the GM-CSF interface.

(b) Result on the WM-GM interface.

Figure 5.25: Comparison of retinotopic map results obtained by reconstructing with MN on

the GM-CSF and on the WM-GM interfaces. Statistical tests were run on the Fourier coeffi-

cients (p=0.05 with 15000 permutations). Data correspond to the stimulation at a frequency

of 7.5 Hz.
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5.5.3.4 Localization results beyond simple ℓ2 inverse solvers.

The ℓ2-norm vs. the ℓ212-norm. As it has been observed above, a standard ℓ2 prior, a.k.a.

Minimum-Norm, tends to overestimate the extent of active regions. In order to reduce this

problematic behaviour of standard ℓ2 inverse solvers, we have proposed to invert all the ex-

perimental conditions simultaneously and to promote non overlapping activations by using

what we called in chapter 4 an inter-condition sparse prior. This prior described in detail

in section 4.5 is based on a mixed norm with 3 levels where sparsity is induced between

conditions using an ℓ1 norm. The inverse solver is not linear any more but the problem is

still convex, which offers the possibility to perform the current estimation with very efficient

algorithms. In the following results, the optimization with the ℓ212 prior is performed with

Nesterov’s iterative scheme (cf. algorithm 4.4 in chapter 4).

When working with an ℓ212 prior, the measurements are indexed with a triple index. Here

we concatenate the Fourier coefficients estimated on all trials. Each coefficient is indexed by

the sensor, the condition and the trial. Compared to what is presented in chapter 4, the last

index used here do not correspond to the time but to the trial. With 6 experimental conditions,

the matrix to invert is in R
dm×6dl . After running the inverse solver, the estimated Fourier

coefficients on the source space form a matrix in R
dx×6dl . The same statistical procedure as

for the MN is then used to threshold the activation maps.

A comparison of mapping results obtained with a simple MN and an ℓ212 prior is presented

in figure 5.26. It can be observed that the extent of the activation for the right horizontal

meridian is significantly improved by using the ℓ212 prior. The active region now clearly lies

only in the calcarine sulcus which is consistent with our knowledge about the organization

of the primary visual cortex. However the activation for the upper right quadrant is still not

correctly localized.

The full retinotopic maps obtained with the ℓ212 prior are presented in figure 5.27.

With the MiMS solver. The MiMS inverse solver (cf. section 3.3.1 ) was also experi-

mented on the same data by Benoit Cottereau during his thesis. Results obtained with his

method can be found in [6].

The MiMS solver belongs to the class of Bayesian inverse solvers in the sense that the

weights of an ℓ2 prior are learned. These weights are learned with a multi-resolution ap-

proach based on multipolar modeling of spatially extended cortical parcels (cf. section 3.3.1).

In the approach exposed in [6], the weights are learned on the full temporal data during the

stimulation period. Then the WMN linear inverse solver obtained with the learned weights is

used to get the source estimates. Cottereau then estimates the PSD at 15 Hz for each source

in each trial using a multitaper approach. The PSD estimator is based on Welch’s method (cf.

section 5.5.1 ). Finally, he performs on the PSDs a non-parametric permutation test similar

to the one we exposed above.

Our approach and his approach differ in a number of points. First, Cottereau learns

on the full data even though he is using only the Fourier coefficient at 15 Hz in his non-

parametric statistical test procedure. This means that he may exploit in his localization

pipeline information in a wider region of the spectrum than solely 15 Hz. In order to test

this hypothesis, it would be interesting to band pass filter the data around 15 Hz to see if the

MiMS inverse solver keeps providing the same localization results. Second, by learning the

weights with multipolar expansions, Cottereau limits the influence of the dipole orientations

on the results. Indeed, the multiresolution approach can be seen as a way to provide regions

of interest without really considering the orientation of each individual dipole. Once the

matrix used for linear inversion is computed, his strategy is very similar to one we used in

this chapter. However, it is necessarily slower since the PSDs are actually estimated in the

source space using the reconstructed time series.
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(a) Map obtained with MN.

(b) Map obtained with the ℓ212 prior.

Figure 5.26: Comparison of retinotopic mapping results obtained with a MN and with the ℓ212
prior. Results are presented on left hemisphere using the GM-CSF interface as source space.

Statistical tests were run on the Fourier coefficients (p=0.05 with 15000 permutations). Data

correspond to the stimulation at a frequency of 7.5 Hz.
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(a) Left hemisphere (Medial view) (b) Inflated left hemisphere (Medial view)

(c) Right hemisphere (Medial view). (d) Inflated right hemisphere (Medial view).

Figure 5.27: Retinotopic map result obtained with an inverse solver based on an ℓw;212 prior.

Statistical tests were run on the Fourier coefficients (p=0.05 with 15000 permutations). Data

correspond to the stimulation at a frequency of 7.5 Hz. Results are represented on the inter-

face between the gray matter and the cerebro-spinal fluid.



176 CHAPTER 5. FAST RETINOTOPIC MAPPING WITH MEG

To our knowledge, Cottereau uses an FFT to extract the PSDs. This is not required if

the interest is only in the spectral coefficient at 15 Hz. A simple correlation with a complex

sinusoid is enough. It also avoids the problems at the border of the time interval by not

requiring to compute a circular convolution like with a discrete Fourier transform.

Taking the best of both approaches would consist in plugging into our pipeline the mul-

tiresolution approach in order to improve the MN results with the weights learned by the

MiMS procedure. This would favor more spatially regular activation patterns and certainly

improve the mapping results while keeping a computationally efficient procedure.

5.5.3.5 Effect of the orientation constraint

As mentioned when discussing the mapping strategy based on MiMS, a possible limitation of

the solvers we experienced is their strong dependence on the orientation of the dipoles sam-

pled over the triangulated source space. A solution to circumvent this problem is to work with

unconstrained orientations. At each location of the source space lie 3 dipoles, each oriented in

the direction of a coordinate axis. This provides 3 coefficients at each location. The amplitude

of the activation at each location is then obtained by computing the norm of the vector formed

by these 3 coefficients. This provides a straightforward way to estimate the PSD at a given

location when no orientation contraints are used. The statistical test procedure can then be

identically computed on the PSDs estimated separately on the stimulation and the baseline

periods.

A result obtained with unconstrained orientation on the same data as in section 5.5.3.1

is presented in figure 5.28. It can be observed that the absence of orientation constraints

produces spatially smoother active regions. The border of the active region is less influenced

by the change of curvature in the source space. Results are consequently more robust to the

intricate structure of the cortical region neighboring the calcarine fissure. However, ignoring

the orientations tends to produce even wider active regions by spreading the currents esti-

mates over the banks of the calcarine fissure. As a result, retinotopic mapping with an ℓ2 prior

also appeared to be very challenging when using no orientation constraints. Improvement on

the robustness of the method to the complex anatomic structure of the occipital cortex has the

drawback of an increased tendency of the minimum-norm to smear the reconstructions over

wide cortical areas when the orientations are ignored.

5.6 TIMING VISUAL DYNAMICS WITH MEG

The primary reason for using M/EEG is to exploit its very good temporal resolution.

Up to here, we focused on the spatial precision of M/EEG source estimates and we exploited

the excellent temporal resolution of M/EEG by using a frequency tagged stimuli. By doing

so the SNR is improved which facilitates the localization. However, the ultimate objective

concerns the measurement of delays between cortical activations and particularly between

different visual areas.

5.6.1 Estimating timings in the visual cortex with M/EEG: Literature

review

Using EEG in [213], the authors address this issue with fitted dipoles whose positions were

constrained with fMRI localization results. Dipoles are located in V1, jointly V2v and V3v,

jointly V2d and V3d, left and right LOV5 (Lateral occipital V5). Once the amplitude time

series are estimated for each dipole, the peaks of the waveform can be compared. The delays

are estimated by measuring peak to peak time intervals. In [162, 190], delays of activation
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(a) Right hemisphere (Medial view).

(b) Right hemisphere (Medial view) on inflated cortex.

Figure 5.28: Example of localization obtained with no orientation constraint using a MN.

Statistical tests were run on the PSDs (p=0.05 with 15000 permutations). Data correspond

to the stimulation at a frequency of 7.5 Hz in the left lower quadrant of the visual field.
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in visual system are also obtained with fMRI localizers and dipole fitting. To our knowledge,

timing of activations in the visual cortex with MEG has always been done in conjunction with

fMRI data.

In all these studies, the delays observed correspond to a few milliseconds. This observa-

tion is of major interest with respect to the frequency used in our steady-state stimulations.

Measurements based on the phase are limited to the interval between 0 and 2π, or equiva-

lently −π and π. It corresponds to a full cycle which lasts, at a frequency of 15 Hz, 66.6 ms.

A measure of phase difference can therefore be related to a time delay as long as the delay

of interest is smaller than 66.6 ms. This is the case, in particular, for the delays between

activations in the visual cortex as it is reported in various studies [28, 162, 190, 213]. This

latter remark suggests that time delays could be extracted from the phase estimated on the

sources. A recent study from Di Russo et al. [191] tends to confirm this point.

5.6.2 Extracting information from the phase

The Fourier coefficients at 15 Hz at the source level are denoted X̂stim. The coefficient, de-

noted xstim
il , on line i and column l in X̂stim corresponds to the Fourier coefficient at 15 Hz for

the dipole at position i during trial l. In order to evaluate the quality of the phase information,

a quantity referred to in the M/EEG literature as phase lock can be computed [133].

We define in our case the phase lock, or phase locking value (PLV), for dipole at position i

by:

PLV(i) =
1

dl

∣

∣

∣

∣

∣

dl
∑

l=1

xstim
il

|xstim
il |

∣

∣

∣

∣

∣

.

It can be observed that PLV(i) ∈ [0, 1] and that PLV(i) is equal to 1 if all the angles, i.e., the

arguments, of the complex values xstim
il are the same. This means that, the bigger is PLV(i),

the more the phase is stable across trials. This is illustrated in figure 5.29.

PLV APLV

Figure 5.29: Schematic representation to illustrate the computation of the phase locking

value (PLV) and the angular information called APLV (see text).

A PLV map computed on the dataset that helped to illustrate section 5.5.3.1 is presented

in figure 5.30. A clear “hot spot” can be observed on the upper bank of the calcarine sulcus

which is consistent with the mapping results obtained above on the same dataset.

Once the PLV is computed in order to assert that the phase contains information stable

across trial, we can investigate the angular part of the average vector. Please note that if a

quantity is stable across trials, it means that it is related to the stimulation. While the abso-

lute value of the average vector provides the PLV, the angle contains the phase information
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Figure 5.30: Example of phase lock value (PLV) map. The closer is the PLV to 1, the more

the phase of the estimated Fourier coefficients is stable across trials. One can observe a clear

“hot spot” on the upper bank of the calcarine sulcus. This agrees with our knowledge on V1

for a stimulation in the lower left quadrant in the visual field.

which can provide information about delays. We call this quantity APLV and we define it by:

APLV(i) = ang

(

1

dl

dl
∑

l=1

xstim
il

|xstim
il |

)

∈ [−π, π] .

The computation of the APLV is illustrated in figure 5.29.

5.6.3 Preliminary results

In previous sections, we detailed our strategy for the analysis of the phase information at the

cortical level in order to investigate delays. The PLV provides a principled way to assert if the

phase is stable across trials and therefore if it contains information related to the stimulation.

If the PLV is close to 1, as it is the case with our example in figure 5.30, the APLV provides

an angular information also related to the stimulation which might lead to new insights on

the delays. A map of APLV restricted to the regions flagged as active by permutation tests on

the Fourier coefficients is provided in figure 5.31.

Such a map shows the presence of distinct values of angle in the occipital region. However,

it appears to be hard to directly interpret the differences of angle between two regions as a

delay of propagation. Due to the numerous steps to complete in order to obtain such an im-

age, we acknowledge that such an interpretation requires much more validation possibly by

testing with multiple stimulation frequencies. Our results on the phase are very preliminary

and are presented here just to motivate the study of delay estimation with MEG data and

steady-state visual stimulation. Also, we should recall that phase or delay estimation comes

after the mapping which means that the mapping procedure should first be considered as a

solved problem.

5.7 DISCUSSION

In this chapter, we demonstrated that fast retinotopic mapping of V1 with MEG

could be achieved using relatively simple mathematical and algorithmic tools. This was

made possible thanks to a set of technical decisions from the design of the protocol to the
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(a) Full right hemisphere. (b) Zoom on occipital cortex.

Figure 5.31: Sample phase map used for delay estimation. The quantity represented is the

APLV (see text) restricted to the active region delineated by permutation test on the Fourier

coefficients. Data correspond to the stimulation at a frequency of 7.5 Hz in the lower left

quadrant of the visual field. Results are represented on the inflated interface between the

white matter and the gray matter.

data analysis. The first decision was to use a steady-state stimulation protocol with a flicker-

ing pattern. With a steady-state stimulation and a frequency tagged stimulus, it is possible

to automatically extract from the spectrum of the signal the relevant information. It is not

the case with a standard study based on event related potentials (ERPs). With an ERP based

protocol, the information is extracted at the peak of the waveform in the time domain. The

peak of activation is not stable across conditions and subjects, therefore the extraction re-

quires a manual intervention. The second advantage of the frequency tagged stimulus is that

it allowed us to extract the signal of interest from raw data. All the results presented in this

chapter were obtained without any data cleaning. We used for the stimulation a contrasted

pattern with multiple orientations in order to increase the amplitude of the neural response

and consequently improve the SNR. Finally, we decided to solve the inverse problem with a

distributed source model in order to be able to reconstruct the activation pattern produced

by an unknown number of active sources but also to obtain mapping results with spatially

extended active regions. These concomitant choices of protocol and data analysis strategy

allowed us to obtain a fully automatic procedure for the retinotopic mapping of V1 with MEG.

Our understanding of the different steps in the pipeline enabled us to significantly speed

up the computation by limiting the computation of the solution of the inverse problem to

the Fourier coefficients of interest and by performing the non-parametric tests with simple

linear algebra. In this chapter, we argued that to actually achieve retinotopic mapping it is

necessary to have a pipeline where all the experimental conditions are processed with the

same parameters. In our analysis of the data, we tried to find solutions where manual tuning

was not required for each experimental condition independently. This led us to the conclusion

that a possible solution was to invert the measurements, or more precisely here the Fourier

coefficients, for all the conditions simultaneously.

Such a multi-condition analysis was presented above using a regularization prior based

on a ℓw;212 mixed norm. In section 5.5.3.4, we demonstrated that this prior can actually

improve the mapping results. Our experience with the ℓw;212 norm shows that it clearly helps
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to delineate the active regions for each condition. It sets the reconstructions to 0 over regions

where other conditions are more likely to be active and it enhances the amplitudes of the

reconstructions in other regions. By doing so it helps to control the spatial extent of active

patterns and it improves the mapping.

Using the ℓw;212 prior implies an increase in computation time. However, the efficient

algorithms detailed in chapter 4 allowed us to get results with a ℓw;212 prior in a few minutes

with highly sampled cortical meshes. However, our experience shows that the ℓw;212 prior

does not help to obtain significantly active dipoles for conditions where the MN has failed to

see something significant.

During our exploration of these data, we met a set of difficulties. Among these is the

approximative estimation of the dipole orientations when they are fixed by the normals to the

mesh. The cortical region neighboring the calcarine fissure can be very intricate which makes

the estimates of the normals to the gray matter quite noisy in this brain region. Sensitivity

of the results to the source space is clearly illustrated above, where reconstruction on the

WM/GM and GM/CSF interfaces are compared. However, using unconstrained orientations

creates other problems already discussed.

Our interest for other solvers than MN was largely motivated by the difficulties we met

when addressing the problem of retinotopic mapping with MEG. In our investigations on

these data, we tried to use the ℓ21 prior (cf. section 4.4.2) but as we could have expected it

did not provide very nice results as this solver by construction sets an ℓ1 norm over space

and consequently cannot really reconstruct spatially extended activations. We also tried to

use the Gamma-MAP inverse solver (cf. section 3.3.2) but it appeared quite difficult to have

good source covariance templates and a good noise covariance estimate to obtain good re-

sults. This is probably due to our limited expertise with this solver on real data. In order to

promote spatially smooth reconstructions, we also tried a prior based on the ℓ2 norm of the

surface gradient. We called this solver HEAT in chapter 3. However, results with this solver

show that such a prior can significantly change and degrade the localization results when the

cortical region of interest is particularly intricate.

In our investigations, we also tried to use other criteria than the 10% rule of thumb from

Brainstorm to estimate the lambda in the MN inverse solver. We present in figure 5.32 and

figure 5.33 a retinotopic mapping obtained using the GCV and the L-curve methods. The

lambda parameter was estimated independently with the Fourier coefficients obtained in

each trial (baseline and stimulation). This result presents smaller active regions in compari-

son to the results in figure 5.24(c). With the GCV, the active region for the upper left quadrant

of the visual field (lower bank of the calcarine sulcus on the right hemisphere) almost disap-

pears while with the L-curve it is completely removed. This suggests that the GCV and the

L-curve tend both to estimate a regularization parameter smaller than the one obtained with

Brainstorm’s 10% rule. Also, we can conclude from this example that the L-curve tends to

provide a value of lambda smaller than the GCV. This agrees with the recurrent claim that

the L-curve approach tends to “under regularize” the inverse problem of M/EEG.

From the investigations and preliminary results presented in this chapter we can draw

some conclusions. The first one in that using the phase of the Fourier coefficients when

performing statistics can be very useful to improve the mapping results. It actually increases

the power of the test. However, our experience tends to prove that estimates of the phase

require long periods of stimulation to be estimated robustly. In the results presented above,

the phase was estimated on a period of stimulation during 5 s. With the same dataset, we

tried our mapping pipeline after artificially shortening the period of stimulation. By doing so,

we observed that the mapping quality starts rapidly to degrade when the phase is estimated

on less than 3.5 s of MEG signal. We have also run the same computations when working with

only the PSDs. It appeared that the mapping is still relatively stable even when the periods

of stimulation last 3 s in each trial. This suggests that the phase of the Fourier coefficients
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(a) Left hemisphere with GCV.

(b) Left hemisphere with L-curve.

Figure 5.32: Comparison of mapping results obtained using the GCV and the L-curve meth-

ods to estimate the regularization parameter. Statistics are performed on the Fourier coeffi-

cients. Data correspond to the stimulation at a frequency of 7.5 Hz in the right visual field.

Results are represented on the WM/GM interface.
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(a) Right hemisphere with GCV.

(b) Right hemisphere with L-curve.

Figure 5.33: Comparison of mapping results obtained using the GCV and the L-curve meth-

ods to estimate the regularization parameter. Statistics are performed on the Fourier coef-

ficients. Data correspond to the stimulation at a frequency of 7.5 Hz in the left visual field.

Results are represented on the WM/GM interface.
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can be easily estimated incorrectly.
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5.8 CONCLUSION

While in the literature many studies involve both fMRI and M/EEG data when investigat-

ing the human visual cortex, we demonstrated in this chapter that basic retinotopic mapping

of V1 was possible with MEG data only. Our review of the literature showed that our ap-

proach based on MEG measurements, steady-state stimuli and distributed inverse solvers,

had never been done. The steady-state stimuli allowed us to have an automatic way to ex-

tract the signal of interest from raw data without any artifact rejection method or filtering.

Our expertise on inverse solvers allowed us to design a very efficient pipeline to estimate the

Fourier coefficients of interests at the source level. Finally, the non-parametric statistical

method we detailed above allowed us to extract significantly active regions very efficiently.

During this study, we faced a set of difficulties. The most important appeared when map-

ping multiple conditions. What was particularly challenging was the fact that the different

conditions i.e., position of the flickering pattern in the visual field, were producing data with

differences in quality and SNR. The amplitudes of the signal of interest were different at the

sensor level depending on the depth of the source, its orientation and its position (ventral or

dorsal). This issue motivated our methodological contribution as a solver where all the exper-

imental conditions are inverted simultaneously. This solver is based on a mixed norm where

the overlap of active regions is penalized using an ℓ1 norm. We called this regularization, an

inter-condition sparse prior.

To conclude this chapter, we would like to mention that this study was at the center of our

work during this thesis. It motivated most of our methodological investigations and contri-

butions. It was also our first occasion to participate in data acquisitions and the first time

we were confronted to the problem of controlling an experimental protocol. We can now fully

appreciate the fact that this step of the study is non trivial and particularly important when

dealing with brain functional imaging data.
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CHAPTER 6

TRACKING CORTICAL

ACTIVATIONS WITH

SPATIO-TEMPORAL CONSTRAINTS

The work presented in this chapter goes one step beyond inverse modeling and source local-

ization. It aims at providing a way to sketch the evolution of the cortical activations after

stimulus onset. The proposed method builds on top of standard and widely used linear in-

verse solvers and proposes a strategy to extract spatiotemporally consistent, i.e., physiolog-

ically relevant, active patterns. The limitations of classical linear inverse solvers are well

known. Indeed, as it is discussed in chapter 3, they tend to smear the estimated distributions

of currents over the cortex, and they do not achieve a selection of active regions by setting

coefficients to zero, as it could be done with a sparsity inducing prior. This work gives a prin-

cipled method to achieve such a selection and to remove spurious activations that might be

introduced by basic instant by instant linear inverse solvers.

Exploiting the graph structure of the triangulated cortical surface and the high time sam-

pling of M/EEG recordings, neural activations are tracked over time using a very efficient

graphcut-based algorithm. Such an approach computes a minimum cut on a particularly

designed weighted graph, imposing spatiotemporal regularity constraints on the activation

patterns. Labels are assigned to each node of the graph, distinguishing between active vs.

non-active conditions. The method works globally on the full time period of interest, can

cope with spatially extended active regions and allows the active domain to exhibit topology

changes over time. The algorithm is illustrated and validated on synthetic data. Application

of the method to two MEG datasets demonstrate the ability of the algorithm to track cortical

activations in the primary visual cortex and the somatosensory cortex.
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6.1 INTRODUCTION

By providing instantaneous measurements of the weak electromagnetic fields generated

by neural activations, M/EEG offer a way to estimate neural currents with a millisecond

temporal resolution. Given these current estimates, which can be seen as images of the active

brain, a new challenge consists in studying the spatiotemporal evolution of neural activities

rather than only localizing specific brain areas involved in experimental tasks [136].

A parallel can be drawn between the challenge proposed here and the problem referred

to as tracking in image processing (see [233] for a recent survey). Both applications have

some similarities and some differences. With neuroimaging data, activations can rapidly

move from one part of the brain to another one via white matter tracks; the signals in the

connecting axons are not captured by MEG or EEG. This phenomenon can be compared to

the occlusion problem in video sequences. Brain activations can move and appear while their

intensities and contrasts change over time, which has some similarity with the illumination

problem. On the other hand, there are also some fundamental differences. Brain activations

are not rigid objects making irrelevant constraints such as point-to-point correspondence be-

tween time instants [126], common motion constraints or shape priors [138]. The topology

and the shapes of the active brain regions can evolve over time. This suggests that the track-

ing methods developed in the computer vision community can provide principled methods to

capture the dynamics of active brain regions, but cannot be applied directly. In the context of

brain functional imaging with M/EEG where the activations are defined over a triangulated

cortex with a natural graph structure, combinatorial optimization techniques based on graph

cuts are the most relevant. Graph cut based techniques in the computer vision community

were first applied for image restoration [96] and segmentation [21, 231]. Examples of video

segmentation via graph cuts are presented in [21], where a complete set of frames is provided

as input to the algorithm that treats the entire sequence as a 3D grid of pixels. Related work

such as [122, 232] present results of object tracking using graph cuts by solving the prob-

lem frame by frame. In this chapter, a graph cut based approach is designed to achieve the

tracking of brain activations and a global optimization on the full temporal data is advocated.

As discussed in chapters 3 and 4, when considering distributed source models, the inverse

problem is ill-posed and requires therefore to set priors on the solution. These priors can,

for example, be based on the subject’s anatomy when constraining the sources to lie on the

triangulated cortex, or on results from other imaging modalities such as fMRI. Schematically,

setting a prior on the solution consists in defining a norm and finding the solution that has

the smallest norm among the ones that explain the measured data sufficiently well.

Commonly, this norm is a ℓ2 norm. Solutions obtained by such constraints lead to linear

solutions (cf. chapter 3). Even if these methods are known to smear the estimated distri-

butions of cortical currents, often leading to solutions that are too widely extended, they are

still considered as the standard methods. Technical reasons for the success of such inverse

procedures are that they are easy to implement, make very few assumptions on the solutions,

are very fast to compute and relatively robust considering the level of noise present in real

M/EEG datasets. More importantly, they are used in the M/EEG community because they

provide localization results that are sufficiently accurate. There are some cognitive neuro-

science studies where the precision of the localization is not critical. On the contrary extreme

precision should be required for pre-surgical recordings, e.g., for epileptic patients.

Basic inverse solvers do not integrate constraints on the spatial or temporal regularity of

the activations, although physiology imposes such regularity on cortical activations. Various

contributions have proposed methods to integrate such smoothness priors in an ℓ2 inverse

problem by adding for example spatial or temporal smoothing operators, like a Laplacian,

in the regularization (see section 3.2.2.4). Such Laplacian based methods appear to be diffi-
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ΩΩc

Time

Ωt

Figure 6.1: Schematic illustration of spatiotemporal active cortical regions. Ω (resp. Ωc)

indicates the active (resp. non-active region). Ωt is the restriction of Ω to time t.

cult to use with real data as it is unclear how the smoothness prior affects the localization.

Depending on the complexity of the cortical sheet structure around the active brain region,

a bad spatial smoothness prior can strongly bias the localization result. More recently, the

use of a mixed norm has been proposed to better constrain the M/EEG inverse problem (cf.

section section 4.4.2 ). However, such a method, based on an ℓ1 prior over space and an ℓ2
prior over time has difficulties to cope with spatially extended activations. With an ℓ1 prior

over space, the lower the SNR, the more the inverse problem is penalized and the more focal

is the active region. Also, no matter how good is the SNR, the ℓ1 prior implies that an optimal

solution has fewer active focal sources than the number of sensors. This implies that with a

detailed source space an extended region cannot be reconstructed using such a prior. In order

to cope with this problem, one could introduce a TV prior with temporal regularization, but

such a solver would not be very tractable on real datasets. Since [9], other techniques based

on Bayesian estimation have also been applied to the M/EEG inverse problem (cf. section 3.3).

Such methods aim at estimating the unknown source covariance matrix in order to learn the

good prior used to regularize the inverse problem. Localization precision obtained in simula-

tion studies using these methods is very promising but still these approaches are not flawless.

First, these methods rely on the assumption that the source covariance is stable in the time

window during which the learning step is achieved. This is not true with real data, especially

for long time windows that are considered when looking at late brain responses. Second, the

results obtained with these methods depend on the source covariance templates defined as

input. Even if the Bayesian estimators developed within these frameworks aim at selecting

the good templates, the choice of these templates can have a strong impact on the localization

results. We refer the reader to the end of chapter 3 for a discussion on this topic.

Such an observation leads to the conclusion that, even if various recent contributions

offer very promising methods to solve the M/EEG inverse problem, standard linear inverse

methods, and more specifically simple ℓ2 priors, provide sufficiently good neural currents

estimates, in order to track the dynamics of distributed and rapidly-evolving cortical current

patterns in a principled manner. The method presented in this contribution provides a way

to follow over time the “hot spots”, i.e., the active regions (cf. figure 6.1), while preserving

spatiotemporal regularity. In the framework detailed in this chapter, the topology of active

regions can change over time. They can appear, split, merge, and disappear. This makes the

method able to handle spatially extended active regions while allowing the active domain to

evolve during the time window of interest. To our knowledge no other existing method offers

such possibilities. Thanks to recent implementations of graph-based algorithms, the method

detailed here is tractable on real datasets and offers a very efficient tool to capture the brain

dynamics.

The rest of this chapter consists of two parts. Section 6.2 presents the optimization frame-

work that is used to select coherent spatiotemporal activations defined over a triangulated

mesh. A variational formulation of the tracking problem is introduced with its discretization

over a triangulation, leading to an optimization problem that can be very efficiently solved

using a graph cut algorithm. Section 6.2 concludes with a validation on synthetic datasets.
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Figure 6.2: From thresholding to tracking.

Section 6.3 presents the application of the algorithm to MEG data with two different datasets

exhibiting activations in the primary visual cortex and the somatosensory cortex. Even if the

results presented are obtained with MEG data, the method can be directly applied to neural

currents estimated from EEG data as well.

6.2 TRACKING WITH GRAPH CUTS ON A TRIANGULATED
SURFACE

6.2.1 From Thresholding to Tracking

Let f be a real valued function, defined over a domain ∆

f : ∆→ R

When ∆ contains a temporal dimension, finding an “active” region, denoted Ω, vs. a “non

active” region of ∆, denoted Ωc can be viewed as detecting activity over time. The regions Ω

and Ωc form a partition of ∆, i.e., Ω ∩ Ωc = ∅ and Ω ∪ Ωc = ∆. The function f encodes the

likelihood for an element of ∆ to be inactive, and is thus assumed to take small values in

active regions.

A coarse tracking result can be obtained by simple thresholding, i.e., Ω∗ = {x ∈ ∆ s.t. f(x) ≤
T} where T ∈ R is the thresholding value. However, results obtained by thresholding can be

very noisy when f is corrupted by noise. Results are considered to be noisy if the border of

the active region is irregular or if Ω consists of very small active regions. This is illustrated

in figure 6.2(a). It can be shown that the result obtained by thresholding is the solution of the

following variational problem:

Ω∗ = arg min
Ω

∫

Ω

f(x)dx+

∫

Ωc

Tdx = arg min
Ω
D(Ω) . (6.1)

D(Ω) is a data fidelity term. One can improve the thresholding by forcing the solution to be

regular. This is done using a Lagrangian approach that adds a term to (6.1) that penalizes

solutions Ω based on a measure of their regularity R(Ω) ∈ R+. Equation (6.1) becomes

Ω∗ = arg min
Ω
D(Ω) + λR(Ω) , λ ∈ R+ . (6.2)

To improve robustness to noise, the regularity measure should prevent the occurrence of

small isolated regions. If the domain ∆ is only spatial, such a regularity can be enforced by
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penalizing the solution Ω∗ by the length of its border ∂Ω∗ [158]. Figure 6.2(b) illustrates a

result obtained with such a regularization.

If ∆ is a spatiotemporal domain, imposing the regularity of ∂Ω can be achieved by en-

forcing the restriction of the domain at each time instant to have a small perimeter but

also by enforcing an overlap between neighboring time restrictions of Ω. The regularisa-

tion measure R(Ω) can be separated in two parts: a spatial regularisation measure, denoted

Rspace(Ω), and a temporal measure, denoted Rtime(Ω). A solution obtained using the penalty

term R(Ω) = Rspace(Ω) + Rtime(Ω) is illustrated in figure 6.2(c). By imposing to the active

region, Ω∗, to be regular over space and time, one creates the tubular structures that appear

in figure 6.2(c). Each of the tubular structures can be seen as an active region evolving over

time. Being able to exhibit such tubular structures on a triangulated domain, and therefore

to track the activations over time, is the objective of the algorithm proposed in this chapter.

6.2.2 Discretization on a Triangulation

Let us consider T a triangulation consisting of vertices xi and triangles np, and f a function

defined over the vertices of T and over time:

f : (xi)i × (tk)k=1,...,K → R (6.3)

The set of pairs of adjacent triangles is denoted by E , i.e., “np and nq are adjacent triangles” is

equivalent to “(p, q) ∈ E and (q, p) ∈ E”. The restriction of f to an instant tk is denoted by ftk
.

To clarify the presentation, K is first supposed to be equal to 1, f = ft1 . It corresponds to the

case where ∆ is only spatial, i.e., no temporal dimension. On a triangulation, partitioning ∆

in Ωc and Ω consists in assigning to each triangle np a label 0 or 1. The label 0 corresponds to

Ωc and 1 to Ω. The integrals in (6.2) can be rewritten:

∫

Ω

f(x)dx =

∫

Ω

ft1(x)dx =
∑

np∈Ω

∫

np

ft1(x)dx and

∫

Ωc

Tdx =
∑

nq∈Ωc

∫

nq

Tdx

The perimeter of the active region is obtained by the discretization of ∂Ω using the edges of

the triangulation. The regularization term is here given by the sum of the lengths of the

edges separating Ω from Ωc:

∫

∂Ω

dl =
∑

(p,q)∈E/np∈Ω, nq∈Ωc

lpq

where lpq stands for the length of the edge between triangle np and triangle nq. Furthermore,

this regularization term is weighted by a constant defined as λspace. The energy in (6.2)

becomes:

Ω∗ = arg min
Ω

∑

np∈Ω

Dp(1) +
∑

nq∈Ωc

Dq(0) + λspace

∑

(p,q)∈E/np∈Ω, nq∈Ωc

lpq (6.4)

where
∫

np
ft1(x)dx = Dp(1), and

∫

nq
Tdx = Dq(0) (0 and 1 refer to the 2 labels). If f is assumed

to be affine on each triangle, i.e, f is discretized with P1 elements, Dp(1) = ap(f(xp1)+f(xp2)+

f(xp3))/3 where p1, p2 and p3 are the indices of the vertices of the triangle np, and ap stands

for its area. Similarly, Dq(0) = aqT .

By rewriting (6.2) in this discrete form, the energy to minimize has been cast into a

Markov Random Field optimization framework [84] that can be very efficiently solved us-

ing graph-based methods [179]. These methods, that have recently been extensively used in

Computer Vision [23], establish the equivalence between energy minimization and finding
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Figure 6.3: Energy discretization on a triangulated mesh.

Table 6.1: Edge weights, i.e., link capacities, of the graph for tracking on a triangulated

mesh. Graph nodes np are indexed by a space index p. N-Links of type “Spatial” control

spatial regularization.
T-Links Weight

S → np Dp(0)
np → T Dp(1)

N-Links Weight Type

np ↔ nq λspacelpq Spatial

the minimal cut of a specially designed graph. They are commonly known as “graph-cut”

methods. The difficulty is to design a weighted graph providing a natural correspondence

between the partitioning of the graph and the energy that is minimized.

See Appendix B for a short introduction to graph cuts.

An illustration of the graph constructed for the current optimization is presented in fig-

ure 6.3. Such a construction is inspired by [96], where a similar graph is used for binary image

restoration. Contrarily to [96], or more recently to [21], where the graph is constructed on nD

grids, the current application imposes to work on temporal data defined on 2D triangulated

surfaces embedded in 3D.

Each triangle of the cortex mesh corresponds to one node of the graph. These nodes are

thus indexed like the triangles, i.e., using the notation np. There are two supplementary

terminal nodes : the “Source” S and “Sink” T that represent respectively the domains Ω

and Ωc. Each node np is linked to both S and T (these edges referred as T-links imply that

the triangle np can belong to one of the two domains represented by S or T ). Furthermore,

the graph contains edges between each of the nodes that correspond to adjacent triangles.

These edges are referred as N-links. Cutting the graph in two consists in separating the

“Source” from the “Sink” by removing some edges. With a minimal cut, each node will remain

connected to only one of the terminal nodes so that the remaining graph directly corresponds

to a partitioning of the mesh into two domains Ω and Ωc. Table 6.1 details the edge weights

corresponding to the energy (6.4). In practice, edge weights, i.e., link capacities, must be

positive. Therefore, prior to the computation of the minimum cut, edge weights are translated

to guarantee that they all satisfy this computational constraint.

One can notice that the cost associated to a cut, defined as the sum of the edge weights

along the path of the cut, is equal to an energy value. The minimum cut thus provides the

optimum. Graph partitioning via minimum cut is, in turn, known to be equivalent to a poly-

nomial problem: the max flow problem [73]. The fact that an exact solution is obtained by a

single binary cut guarantees the algorithm to be extremely fast (a few seconds for the prob-

lems addressed in this contribution) and also globally optimal [179]. In practice, the min-cut
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Table 6.2: Edge weights, i.e., link capacities, of the graph for tracking on a triangulated

mesh. Graph nodes np,k are indexed by a space index p, and a time index k. “Spatial” N-

Links control spatial regularization and “Temporal” ones control temporal overlap between

neighboring time instants thus temporal regularization. ap is the area of triangle p and lpq is

the length of the edge separating triangle p and triangle q.
T-Links Weight

S → np,k Dp,k(0)
np,k → T Dp,k(1)

N-Links Weight Type

np,k ↔ nq,k λspacelpq Spatial

np,k ↔ np,k+1 λtimeap Temporal

is therefore obtained via the computation of the max-flow using an open source implementa-

tion1 [22].

When considering multiple time instants, a similar approach is used. The nodes (np,k)p,k

are now indexed by the triangle index p and the time k. The full graph is obtained by stacking

spatial graphs obtained for each tk and adding N-links between triangles in neighboring time

instants. The number of nodes in the graph is now equal to the number of time instants times

the number of triangles. Both terminal nodes S and T are still unique. Edges weights can

now integrate temporal smoothness (See Table 6.2).

In the optimization framework detailed above, the smoothness term becomes λspaceRspace(Ω)+

λtimeRtime(Ω), where:

Rspace(Ω) =

K
∑

k=1

R(Ωtk
) =

K
∑

k=1





∑

(p,q)∈E/np,k∈Ωtk
, nq,k∈Ωc

tk

lpq





Rtime(Ω) =
K−1
∑

k=1







∑

p/np,k∈Ωtk
,np,k+1∈Ωc

tk+1

ap +
∑

p/np,k∈Ωc
tk

,np,k+1∈Ωtk+1

ap






.

(6.5)

In this formulation the regularization parameters λspace and λtime do not depend on the

position in space or in time. However they could be tuned independently for each edge (p, q).

One could think of using for example the curvature of the cortex to promote the cuts on

regions of high curvature. However, without such a priori and for the sake of simplicity λspace

and λtime were kept constant over space and over time.

The weights are detailed in Table 6.2. N-Links of type “Temporal” promote overlap be-

tween neighboring time instants and thus enforce temporal smoothness.

The complexity of the graph cut algorithm is O(N3) where N stands for the number of

nodes in the graph. However in practice, like observed in [22] with nD grids, computation

time appears to increase linearly with the number of nodes (cf. figure 6.4). More than the

computation time, the limiting factor when dealing with large graphs is the memory con-

sumption of the implementation used in this contribution.

6.2.3 Tracking Results with Synthetic Data

The tracking algorithm is now illustrated on two synthetic datasets. The first simulation on

a randomly triangulated sphere is designed to be simple and to demonstrate the influence

of the regularization parameters. The algorithm is then applied to a more realistic dataset

exhibiting three simultaneous moving “hot spots” on a Bunny triangulation.

For the first dataset, the domain ∆ consists of a triangulated sphere with 3 time instants.

About 30 000 vertices are randomly sampled over the sphere and the triangles are obtained

with a Delaunay triangulation. The f function was generated to simulate the displacement

1http://www.adastral.ucl.ac.uk/˜vladkolm/software.html
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Figure 6.4: Computation times measured on a synthetic dataset. The computation time of

the tracking algorithm appears in practice linear with the number of vertices in the mesh (a)

and the number of time frames (b). Computation was run on an Intel Core 2 Duo 2.3 GHz

CPU with 2 GB of RAM.

of an activation over time, with the addition of a small active region only at the second time

instant (see figure 6.5(a)). The function f taking the values 0 in active regions and 1 outside

was then corrupted by an additive Gaussian noise with a standard deviation equal to 1.

The tracking algorithm was applied to the data with a threshold T equal to 0.5. Results

are presented in two conditions: first, in figure 6.5(c), with only the spatial regularization

constraint, i.e., λspace = 2 and λtime = 0, and second, in figure 6.5(d), with both spatial and

temporal constraints active, λspace = 2 and λtime = 0.1. It can be observed that λspace > 0

induces spatially coherent regions while λtime > 0 causes the small region only present in

frame 2 to disappear. It can also be noticed that the result in figure 6.5(b) obtained with sim-

ple thresholding is extremely noisy. The method actually manages to select spatiotemporally

consistent activations.

In order to evaluate the sensitivity of the method to the choice of the regularization pa-

rameters, a simulation study has been performed. The computation has been run multiple

times with various pairs of parameters (λspace, λtime). For each pair, the result was compared

to the ground truth that was used to simulate the data, i.e, the active region in figure 6.5(a)

without the small false positive region in frame 2.

The error was quantified with 3 different measures. The first one is given by the ratio

between the number of mislabeled vertices and the total number of vertices, here 30000∗3 (cf.

figure 6.6). It can be observed with figure 6.6(b) that the method provides accurate results

with parameters in a wide range around the optimal obtained with λ∗space = 2.3 and λ∗time =

0.04. The second performance measure is based on the number of connected components

obtained in the result. The right number of connected components is 3, one per time frame.

The number of connected components for each pair of parameters is provided in figure 6.6(c).

One can observe that the right number of components is correctly estimated for a large range

of parameters. Finally, error in active areas is quantified using the Dice’s coefficient (DC)

between two domains Ω and Ω′:

DC(Ω,Ω′) = 2
area(Ω ∩ Ω′)

area(Ω) + area(Ω′)
(6.6)

which ranges from 0 (no overlap) to 1 (perfect overlap). One can observe in figure 6.6(d) that

the Dice’s coefficient stays close to 1 for a large range of parameters around (λ∗space, λ
∗
time).

These observations confirm that the method is robust to an approximate definition of the

parameters. This is also confirmed by the following results on synthetic and real MEG data,
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(a) Borders of simulated active regions. (b) Thresholding result: λspace = 0 and
λtime = 0.

(c) Tracking results with λspace = 2 > 0
and λtime = 0.

(d) Tracking results with λspace = 2 > 0
and λtime = 0.1 > 0.

Figure 6.5: Result of tracking using the graph cut algorithm on synthetic dataset defined on

a randomly triangulated sphere with 30 000 vertices. Colored lines correspond to the border

of the active regions and the color codes for the time instant. Initial data f represented in (a)

is equal to 0 in active regions and 1 outside. Prior to the tracking, Gaussian white noise with

a standard deviation equal to 1 was added to f .

for which the definition of regularization parameters never actually required a very fine tun-

ing.

In a second dataset, three “hot spots” are moving simultaneously during 100 time frames

over a “Bunny” triangulation with about 8000 vertices. These data, also used as a validation

set in [135], are presented at 5 different time instants in figure 6.7(a). Such data were de-

signed to provide a more complex and realistic synthetic dataset according to the geometry

but also to the time scales of the brain activations measured by M/EEG. In order to respect

the convention that f should take small values in active region, f was set to the opposite of

the actual activations defined over the mesh. According to the signal amplitude, the param-

eter T was set to −4 ∗ 10−3. Prior to the tracking, an additive Gaussian white noise with

standard deviation equal to 6 ∗ 10−3 was added to the synthetic data. Results of thresholding

and tracking are presented in figure 6.7(b) and figure 6.7(c). It can be noticed that the method

can actually cope with topology changes since figure 6.7(c) presents the merging of two active

regions. Here also, it can be observed that the tracking algorithm provides a clear view of the

dynamics of the activation defined over the triangulation.

6.3 APPLICATION TO M/EEG DATA
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(d) Dice’s coefficient

Figure 6.6: Labeling errors obtained by the tracking algorithm for various pairs of regular-

ization parameters (λspace, λtime). In (a) Error was quantified by the ratio between the number

of mislabeled vertices and the total number of vertices. The color-coded errors are presented

in logarithmic scale. The best performance is obtained with λspace = 2.3 and λtime = 0.04, but

the performances remain very acceptable with parameters in a wide interval around these

values. This is illustrated in (b) where is represented the region in which errors are smaller

than 1.5%. In (c) is represented the region where the number of components is correctly esti-

mated to 3. In (d) the performance is measured using the Dice’s coefficient (6.6). The closer it

is to 1, the better it is. All performance measures confirm that the result is relatively robust

to the definition of the parameters λspace and λtime.
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Frame 1 Frame 25 Frame 50 Frame 75 Frame 100
(a) Synthetic dataset on “Bunny” triangulation presented at multiple time instants.

(b) Tracking result with no regularization :
λspace = 0 and λtime = 0

(c) Tracking result with spatiotemporal regular-
ization : λspace > 0 and λtime > 0

Figure 6.7: Result of tracking using the graph cut algorithm on a synthetic dataset defined

on the “Bunny” triangulation with 8000 vertices and 100 time instants. The original data

consists of three moving “hot spots” illustrated in (a). Data were corrupted by an additive

Gaussian white noise with a standard deviation equal to 6 ∗ 10−3. Figure (c) demonstrates

the ability of the method to cope with topology changes. Between frame 0 and approximately

frame 30 the 2 activations on the head of the bunny merge.
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The tracking method presented above is now applied on two MEG datasets. The

first one is obtained with a visual stimulation paradigm that consists of a series of expanding

checkerboard rings. Such a stimulation creates a propagation of activation along the pri-

mary visual cortex (V1) that enables direct application of the tracking algorithm. The second

dataset consists of a somatosensory finger stimulation. For this dataset, due to the different

amplitude levels of activations within the various brain regions involved in the processing of

the task, a particular data fidelity cost is designed prior to the tracking algorithm.

6.3.1 Results on visual stimulation

In this experiment, expanding checkerboard rings extended radially from 0 to 4 degrees of vi-

sual eccentricity are presented periodically with a frequency of 5 Hz (see figure 6.8). Because

of the retinotopic organization along the calcarine fissure and V1, the optical flow generated

by the expanding checkerboard rings produces a posterior - anterior wave of activation as

illustrated by figure 6.9. It is this propagating wave within V1 that we propose to track.

Frame 1 Frame 2 Frame 3 Frame 4

Figure 6.8: One block of successive frames used to produce expanding checkerboard rings.

The block of 4 frames is projected periodically with a frequency of 5 Hz.
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Figure 6.9: Schematic representation of the cortical activation propagation produced by the

expanding checkerboard rings. The propagating wave covers the primary visual cortex (V1)

on both sides (superior and inferior) of the calcarine fissure, from the posterior to the anterior

part of the cortex (Adapted from 20th U.S. edition of Gray’s Anatomy of the Human Body,

1918, public domain).
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Data acquisition and analysis

The MEG data were acquired at 1250 samples/sec with a 151-SQUID sensor CTF MEG (CTF

System Inc.). In each trial, rings were presented for 2.5 s after a prestimulation period of

1.4 s. The first 500 ms of stimulation correspond to a transitory period before 2 s of steady

state period (cf. figure 6.10). In order to improve the signal-to-noise ratio, 33 trials were

averaged and the data were band pass filtered between 2.5 and 7.5 Hz. These data come

originally from the study presented by D. Cosmelli et al. in [41].

Steady state

period

Prestimulation

period

Transitory

period

Time

1.4 s 0.5 s 2 s

...

t=0

Figure 6.10: Experimental protocol for visual stimulation with the expanding checkerboard

rings. Prestimulation period lasts for 1.4 s before 2.5 s of stimulation. Stimulation period is

divided in two: the transitory period estimated around 0.5 s and the steady state period that

lasts for 2 s. Tracking is performed during the steady state period.

In order to estimate the source amplitudes, the forward problem was computed with a

spherical head model and a distributed source space consisting of a cortex triangulation with

about 50 000 vertices. An inverse solution was computed with an ℓ2 penalization term using

dipoles with unconstrained orientations. The source amplitudes, denoted sit (i indexes space

and t time), were computed by computing the norm of the equivalent current dipole at each

location. Using prestimulation recordings sit was then normalized. Assuming stimulation

starts at t = 0, this corresponds to: zit = sit/σi where σi is the standard deviation estimated

on (sit)t<0. By doing so, the zit are all positive and have large values in active brain regions.

Tracking

The tracking algorithm was run using as data term the computed zit. To follow previously

exposed conventions it leads to ft(i) = −zit. The threshold T was set manually in order to

obtain active regions lying approximately within V1. To limit computation time and memory

consumption during processing, the tracking was performed independently on each period

of stimulation during the steady state period. With the 5 Hz stimulation frequency, it corre-

sponds to a period of 200 ms. The results of the tracking algorithm are presented in figure 6.11

while a comparison between thresholding and tracking results is presented in figure 6.12. It

can be observed in figure 6.11 a clear propagation of the activation along the calcarine fissure

and V1, from the posterior part of the cortex towards its anterior part. By observing the de-

tailed comparison in figure 6.12, it appears clearly that the graph cut based spatiotemporal

regularization provides more consistent activation patterns by regularizing the propagation

front and removing false activations outside of the primary visual cortex.
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(a) Medial view (b) Zoom of the calcarine fissure

Figure 6.11: Tracking results obtained with visual stimulation of expanding checkerboard

rings (λspace = 3 , λtime = 1). Color codes for the first time of activation during the time

window considered, between 2310 and 2367 ms after the beginning of the stimulation. Col-

ormap was reduced to 6 colors to present a clearer representation of the propagation. Source

estimates were obtained with a spherical forward model and a minimum-norm inversion us-

ing unconstrained orientations. Source amplitudes at each position were normalized using

prestimulation recordings (see text). Triangulation has about 50 000 vertices. The graph cut

based spatiotemporal regularization provides consistent activation patterns by regularizing

the propagation front and exhibiting active regions in the primary visual cortex.

6.3.2 Results on somatosensory data

Data acquisition and analysis

Acquisition of the somatosensory data was done with the same MEG device that was used for

the visual stimulation paradigm. The somatosensory stimulation was an electrical square-

wave pulse delivered randomly to the thumb, index, middle, and little finger of each hand of

a healthy right-handed subject. The stimulus intensity was below the motor threshold. In

order to improve the SNR, 400 recordings were averaged for each finger. These data come

originally from the study presented by S. Meunier et al. in [150]. To produce precise tracking

results, the triangulation over which cortical activations have been estimated was sampled

with a very high number of vertices (about 55 000). The forward modeling was performed

with a spherical head model. The source activations were computed with an ℓ2 prior using

constrained orientations. The reason for using constrained orientations with this dataset, is

that the shape of the cortical mantle around the brain regions activated by such a stimulation

is much simpler than in the occipital region around the calcarine fissure. Dipole orientations

provided by the normals to the mesh obtained by segmentation of the gray matter are in this

case better estimated.

Somatosensory stimulation is commonly used to validate M/EEG methods since it is known

that somesthetic inputs project in precise brain areas [104]. Among these areas are the pri-

mary motor cortex (S1) and the secondary motor cortex (S2). While the amplitude of the

first activation in S1 is high, the activation that appears later after stimulation in S2 is

much weaker but still present. This leads to the conclusion that a same threshold for both

activations in S1 and S2 is bound to fail. This issue can be compared to the illumination

problem when tracking objects in video sequences. The object keeps moving but its intensity

and contrast can change over time. To tackle this problem, the tracking algorithm on the

somatosensory dataset requires as preprocessing to construct a particular data cost function
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Figure 6.12: Comparison between naive thresholding and tracking with spatiotemporal reg-

ularization. Tracking and thresholding results are presented at multiple time instants dur-

ing visual presentation of the expanding checkerboard rings. Thresholding corresponds to

λspace = 0 and λtime = 0, i.e., no regularization, while the tracking is performed with λspace = 3
and λtime = 1. (a) illustrates how the tracking manages to remove the spatially inconsistent

activation on the lower part of V1. (b) illustrates how the tracking makes the incorrect acti-

vation on the anterior part of the parieto-occipital fissure (cf. figure 6.9) disappear. (c) shows

how the tracking fills the hole in the active region. This is consistent with the retinotopic

organization of V1 and the rings used in the visual stimulation. (d) is another illustration of

the regularization, here during the half period when the activation leaves V1.
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that enables to define a common threshold at any time after stimulation while still using the

essential information that is the source amplitude.

Designing f with heterogeneous activation levels

M/EEG data have typically a sampling rate around 1000 Hz and the characteristic times of

the phenomena that are being recorded are about a few milliseconds. Although this time of

course depends on the type of neural activations, it suggests that an activity is significant if

it lasts for a few consecutive time instants. Hence, the construction of a function f based on

small time windows rather than each time instant is still relevant. From now on, k indexes

time windows rather than time instants. These windows are denoted by wk.

The natural idea behind the choice of f is that a vertex is very likely to be active during a

time window wk if its activity is close, in relative distance, to the activation of a source that

captures a significant amount of energy.

Let a0
i (k) denote the activation time series of vertex i during window wk (for the time being

the superscript 0 can just be ignored). The template a0
i0

(k) is defined as the time series that

captures the highest amount of energy (i0 = arg maxi ‖a0
i (k)‖2). The function f can now be

defined over window wk by:

fk(i) =
‖a0

i (k)− a0
i0

(k)‖2
2‖a0

i0
(k)‖2

∈ [0, 1] (6.7)

The function f is designed to take its values between 0 and 1 in order to facilitate the choice

of the threshold T . The influence of the activation level does not appear any more directly in

f but only in the choice of the template.

It is however possible to use multiple templates since activations are very likely to be

simultaneously localized in different regions having different temporal types of activations.

This is done using a greedy algorithm similar to standard matching pursuit algorithms. Note

that such greedy approaches have been successfully used in the field of M/EEG with the

RAP MUSIC inverse problem solver [153]. In both procedures, the most significant source

is first estimated. Its contribution to the data is then removed before looking for the next

significantly active dipole. This continues until the data have been sufficiently well explained.

Although the RAP MUSIC algorithm uses signal subspaces, the idea developed here using

temporal templates is fairly similar.

Let A0
k be the matrix of all activations during window k, A0

k = (a0
i (k))i. Each column

of A0
k contains the activation time series of one dipole. The objective is to select the best L

templates that capture most of the activity during window wk. The strategy to do so consists

in selecting them iteratively. Template l is obtained after template l−1 by finding the column

of Al
k = (al

i(k))i that has the biggest ℓ2 norm, il = arg maxi ‖al
i(k)‖2. The matrix Al+1

k is

obtained by projecting the columns of Al
k orthogonally to the vector al

il
.

Al+1
k = Πl

kA
l
k =

(

I− al
il
alT

il

‖al
il
‖22

)

Al
k (6.8)

The process ends when ‖Al
k‖2 becomes smaller than a certain percentage P ∈ [0, 1] of ‖A0

k‖2
(‖ ‖2 stands for the Frobenius norm). Note that since Πl

k is a projector, necessarily ‖Al+1
k ‖2 <

‖Al
k‖2 must hold. When considering multiple templates the function f is defined by:

fk(i) = max
l=0,...,L−1

‖al
i(k)− al

il
(k)‖2

2‖al
il
(k)‖2

∈ [0, 1] (6.9)

The procedure has the advantage that the time series a0
i0
, . . . ,a0

iL−1
correspond to particular
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brain locations. More fundamentally, this construction of f has the advantage of making the

threshold easy to set. However, during this work several other attempts were also made to

define f differently using statistical quantities. Using “noise normalized” inverse methods

like dSPM [49] and sLORETA [171], it appeared to be impossible to define a common thresh-

old leading to well localized activations both for the activation peak around 45 ms as well

as for later responses. Permutation tests [169] were also investigated using time dependent

thresholds computed based on a given p-value. Thresholds obtained using False Discovery

Rates (FDR) [85] were also experimented. Both of these approaches, particularly computa-

tionally time demanding, did not produce very satisfactory results. The proposed approach

has the advantage of speed and simplicity when it comes to selecting the parameters, making

the tool quite easy to use.

Tracking

The window size was set equal to 20 ms with an overlap between neighboring windows of

75%, i.e., 15 ms. For each window, f was computed using multiple templates with P = 0.2.

In practice, a maximum of 3 templates were chosen within each time window. The threshold

was set equal to T = 0.2. Results with the right index finger are presented in figure 6.13.

Color codes for time, or equivalently a window index, and indicates the border of the active

region in each time window. This result provides a representation of the brain dynamics

after stimulation of the right index finger. Cortical activations are successfully tracked over

time, as early as 30 ms after stimulus onset in left primary somatosensory cortex (S1), during

the displacement of neural activity along the postcentral gyrus all the way to the secondary

somatosensory cortex (left and right) and the left Brodmann area 5. This confirms what is

reported in [104] about the processing of such somatosensory tasks by the human brain. In

order to illustrate the influence of the spatiotemporal regularization on the solution, results

with no regularization at all, and no temporal regularization are provided in figure 6.14.

It can be observed that the spatiotemporal regularization is actually required to prune the

spurious activations.
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(a) Result on the partially inflated cortex. The green dot corresponds to the location of the equivalent
current dipole located at 44 ms after stimulation. Colored lines correspond to the border of the active
region at different time instants (1 to 3).

(b) Zoom on the tracking result in S1.

Figure 6.13: Result of tracking using the graph cut algorithm on somatosensory dataset.

Source estimates were obtained with a spherical forward model and a minimum-norm inver-

sion on MEG data obtained from a somatosensory evoked response study. Triangulation has

about 55 000 vertices. Data presented here are for the stimulation of the right index finger.

Cortical activations are tracked over time (λspace = 0.05 and λtime = 0.05), as early as 30 ms

after stimulus onset in left primary somatosensory cortex (S1), during the displacement of

neural activity along the postcentral gyrus all the way to the secondary somatosensory cortex

(left and right) and left Brodmann area 5 [104].
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(a) Tracking result on inflated cortex: Left hemi-
sphere

(b) Tracking result on inflated cortex: Right hemi-
sphere

(c) Result with no regularization (λspace = 0 , λtime =
0)

(d) Result with no temporal regularization (λspace > 0
, λtime = 0)

Figure 6.14: Influence on the regularization on the tracking result on the somatosensory

dataset. Source estimates were obtained with a spherical forward model and a minimum-

norm inversion on MEG data obtained from a somatosensory evoked response study. Trian-

gulation has about 55 000 vertices. Data presented here are for the right index finger. It can

be observed that the spatiotemporal regularization is actually required to prune the spurious

activations.
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6.4 CONLUSION

In this chapter a method has been proposed to address the challenging problem

of robustly estimating the spatiotemporal evolution of neural activities rather than just lo-

calizing specific brain areas involved in experimental tasks. The approach is based on an

optimization over the active domain that penalizes spurious activations and extracts activity

with spatiotemporal regularity. A Lagrangian formulation is derived and it is shown how the

functional obtained can be discretized over a triangulation and efficiently optimized with a

graph cut based procedure.

The principled method proposed here allows the active domain to have topology changes.

It implies that active regions can appear, split, merge and disappear during the time window

of interest. A source is not necessarily flagged as active during the full time period of interest.

Thanks to the use of a very efficient graph cut implementation, with a linear complexity

observed in practice, the optimization can be run in a few seconds on real M/EEG datasets

with highly discretized cortical meshes.

A possible perspective for this work is to integrate into the temporal regularisation term

a prior coming from diffusion MRI data. By measuring white matter anisotropy such data

provide insights on subcortical neural pathways. With the latter graph-based formulation

such an information could be easily integrated by adding temporal edges between triangles

strongly linked by the subcortical fiber bundles present in the white matter. Possibly, such

links could be defined between non neighboring time instants in order to model delays in the

propagation of the neural activations. Moreover, using the residual capacities of the edges

after computing the min-cut, it may be possible to quantify which subcortical edges have

influenced the solution, leading to fruitful insight about how the processing of the information

has been distributed across the different functional brain regions involved in the task.

The source code of the tracking algorithm and the demo scripts necessary to reproduce

the figures of this chapter are available in a Matlab toolbox called EMBAL (Electro-Magnetic

Brain Activity Localization):

https://gforge.inria.fr/projects/embal

https://gforge.inria.fr/projects/embal


CHAPTER 7

GRAPH-BASED ESTIMATION OF

1-D VARIABILITY IN

EVENT-RELATED NEURAL

RESPONSES

Up to here, much interest has been put on the forward and inverse problems assuming the

signal of interest had been accurately captured by the M/EEG sensors. As it is illustrated

in this chapter, various factors can cause the estimation of the evoked neural response to be

biased.

Classical source estimates are computed from data obtained by averaging many repeti-

tions of recordings measured under the same conditions. The measurements are realigned

in time according to a common reference, typically the stimulus onset, and then averaged to

get a clean evoked potential (EP). However, by doing so, it is assumed that the evoked neural

response stays the same across the different repetitions, a.k.a., trials. This is unfortunately

not true. The event related potential (ERP) can for example vary in latency, amplitude or

frequency typically because of habituation effects, anticipation strategies, or fatigue of the

subject.

In this chapter, we address the challenging problem of single-trial data processing. We

propose to make use of recent progress in graph-based methods in order to achieve param-

eter estimation on single-trial data and therefore limit the estimation bias on the evoked

response. The method exposed guarantees global optimality of the solution, hence avoiding

initialization problems. Contrary to many alternative methods, it also avoids the use of the

average data in the computation and the necessity to define an a priori model for the re-

sponse. The algorithm is data-driven and works in two steps. First, the graph Laplacian

offers a convenient way of reordering the dataset with respect to the response latency. And

second, the actual estimation of the response latency across trials is performed in a robust

way with a graph cuts algorithm. The full processing does not require any manual tuning

since a method to automatically set the parameters is also detailed.

Results of a simulation study are presented, demonstrating the ability of the method to

handle datasets with low SNR as it the case with M/EEG single-trial data. Results on an

EEG auditory oddball dataset are also presented.
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7.1 INTRODUCTION

Stimulus-locked averaging is applicable for very early (primary) responses whose charac-

teristics are very stable, such as early somatosensory evoked potentials. However, for later

responses, corresponding to a more complex treatment of information by the brain, charac-

teristics such as latencies and amplitudes are usually variable across trials, typically because

of habituation effects, anticipation strategies, or fatigue [130]. For responses with latency

variability, signals time-locked to the stimulus onset are not properly aligned with respect to

the timing of the single-trial brain responses, and this leads to considerable blurring when

the averaged evoked response is computed. The event related brain response is hence inaccu-

rately estimated, and this can lead to wrong conclusions about the latencies between neural

activations [123]. This chapter provides methodological tools to estimate the variability, e.g.,

the latency, of brain responses across trials, and thus to correct for the averaging bias.

Analysis of single-trial EEG was pioneered by Woody’s cross-correlation averaging [230].

In this work, the latency of single-trial event-related activity is estimated by using a tem-

plate, supposed to model accurately the evoked response. The algorithm alternately esti-

mates the template and corrects for the latency bias in each trial by finding the maximum

of a cross-correlation. In each iteration, the template is updated with the average of the

corrected data. Convergence is observed in practice, but not guaranteed. The obtained so-

lution may not be globally optimal since it depends on the time series used to initialize the

algorithm. Subsequent work has extended Woody’s idea by including amplitude variability

and by placing the estimation of single-trial parameters in a maximum likelihood frame-

work [114, 134, 147, 206, 207]. Direct denoising of EEG single-trial data with a time-scale

decomposition has been proposed [181], which designs a wavelet template from the aver-

age signal across trials. As in [230], the average signal is explicitly used as a template in

the computation. Several other methods, based on linear decompositions or wavelet analy-

sis [15, 16, 185, 221], make the assumption that the evoked response can be well represented

by a linear combination of functions within a dictionary. The dictionary is provided as a prior

to the algorithm or learned from the data, e.g., with a singular value decomposition (SVD).

All methods described above suffer from various pitfalls: the lack of proof of convergence

of the procedure, the dependence of the results on the initialization, the use of the average

data in the computation, and the necessity to define an a priori model for the waveform of the

response.

This chapter approaches cross-trial variability from a different perspective, in a data-

driven way, free of the pitfalls just enumerated. The problem is cast into an optimization

framework in which global optimality can be proved, and where initialization is not an issue.

Moreover, the solution can be found very efficiently by using associated fast algorithms. The

method proceeds in two stages. First, we propose to sort the trials automatically according to

the variability of the evoked potentials without estimating it explicitly. The estimation of the

variability is performed in a second stage.

As an illustration, figure 7.1 presents raster plots of a raw dataset (a) and a reordered

dataset (b): in these images, each line represents a trial. In figure 7.1(b), the trials have been

reordered according to the measured motor response of the subject. A structure thus becomes

visible and can be used to interpret the single-trial ERPs. Such representations of multi-trial

ERP recordings, called ERP images were pioneered in [123] and made generally available

through EEGLAB [59]. EEGLAB proposes several ways of reordering ERP images, according

to event triggers, or to the phase of time-frequency decompositions.

In this chapter, we propose a reordering, based only on the evoked response, without re-

lying on any external information. In some multi-trial ERP recordings, it is reasonable to

assume that a similar neural activation occurs in each repetition of the experiment, but with
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a latency between stimulation and response that is variable across trials. This leads to the

intuition that the latency of the response is the main “degree of freedom” within the data.

The single-trial time series then lie on a noisy one-dimensional manifold which can be pa-

rameterized by this latency. In order to capture this “degree of freedom”, manifold-learning

techniques are very well-suited: by providing low dimensional representation of the data,

they offer an efficient way of revealing the structure present in a dataset. We propose to use

methods based on eigendecompositions of graph Laplacians [14, 37]. Nonlinear dimensional-

ity reduction methods have been applied before to functional MRI data [7]. In [8] and [198],

low dimensional representations of fMRI datasets have been used to identify and classify

brain functional regions. For EEG data, our previous work [94] has shown how Laplacian

Eigenmaps [14] can be used to reveal the structure of an EEG dataset.

In this chapter, the nodes of the constructed graphs correspond to single-trial EEG time

series and it is shown on an EEG sample dataset that the “best” one dimensional represen-

tation of the data obtained with graph Laplacian procedures is monotonically related to the

response latency. Equivalently, it is shown that the first coordinate in the low dimensional

space can be used to reorder the dataset as in figure 7.1(b). We will refer to this step of the

method as the spectral reordering of the raster plot.
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(b) Raster plot reordered with the
measured motor response of the sub-
ject.

Figure 7.1: Illustation of raster plot reordering on real EEG recordings. Each line of the

image represents a time series and the color codes for the signal amplitude in µV . In this

dataset the measured latencies of the motor responses, represented by the dark semi-vertical

line in figure 7.1(b), are used to sort single-trial time series.

Spectral reordering reveals the structure present in the raster plot, but it does not ex-

plicitly estimate the trial-dependent parameters in each trial. This problem is tackled in the

second step of the procedure, eventually leading to optimized event-related averaging. Given

a reordered raster plot, estimating the latencies corresponds to finding an increasing function

similar to the one defined with the dark semi-vertical line in figure 7.1(b). This function takes

its values on the grid defined by the image, and can only assume a finite number of discrete

values. The problem of extracting the latency information from the reordered raster plots can

thus be viewed as a combinatorial problem, which can be very efficiently optimized using a

graph cut algorithm. This step is performed independently from the spectral reordering step,

and only requires a sorted raster plot as input.

The chapter is organized as follows. In section 7.2 we introduce Manifold Learning and

present the graph Laplacian method. In section 7.3, we apply it to the reordering of multi

trial EEG data and show how the proposed approach compares to the more classical Principal

Components Analysis (PCA). Section 7.4 focusses on latency estimation and formulates it

as a combinatorial optimization problem. An efficient solution to this problem is proposed

by computing a minimal cut on a specially designed graph. Finally, a strategy to estimate

the different parameters is detailed and the robustness of the procedure is investigated by
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numerical simulations. Results on synthetic and real data accompany each of the methods

presented.

7.2 MANIFOLD LEARNING

Let (xi)i=1,...,N be N elements of a metric space (X , dX ), which are distributed with a

probability distribution p on a low-dimensional smooth sub-manifoldM of X . In this chapter,

the (xi)i=1,...,N are time series and N the number of trials.

This section deals with manifold learning techniques: Section 7.2.1 presents a Principal

Components approach to variability analysis. Sections 7.2.2 and 7.2.3 recall notions on non-

linear embedding, leading to the Laplacian embedding algorithm. Differences between the

linear and non-linear approaches are emphasized on synthetic datasets in section 7.2.1 and

will also be illustrated in section 7.3.1.

7.2.1 Principal Component Analysis

Principal Component Analysis represents the data in a new coordinate system, obtained

through a rotation that diagonalizes the empirical covariance matrix. Although PCA per

se does not modify the dimensionality of the representation, by ordering the eigenvalues of

the empirical covariance matrix, one can represent the data in the leading PCA directions.

The PCA representation is a valuable tool for exploratory analysis as it can provide a repre-

sentation of the structure present in the data.

To take the example of latency variability, consider a dataset of translated versions of a

reference template xi(t) = x(t− τi). The data is wide-sense stationary, and its covariance ma-

trix Cx is diagonalized in the discrete Fourier basis. The Fourier transform of the translated

signal xi(t) = x(t− τi) is phase modulated: x̂i(ω) = eiτi ω x̂(ω), where ω denotes the frequency.

Principal Components correspond to the frequencies that dominate the power spectrum of

the signal Px(ω) (the Fourier transform of the covariance matrix Cx). Consider the dominant

frequency ω1: the coordinates of each trial xi in the two first PCA directions are cos(τiω1 +

φ)|x̂(ω1)| and sin(τiω1 + φ)|x̂(ω1)|, where φ is the phase of x̂(ω1). The data thus organize along

a one-dimensional manifold parameterized by latency τi.
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Figure 7.2: PCA analysis of a set of 500 jittered time series of 512 time samples.

To illustrate this, a set of 500 jittered time series, each with 512 time samples is displayed

as a raster plot in Figure 7.2(a). The projections of the data in the leading two and three

PCA dimensions, in Figure 7.2, cluster along curves, indicating the 1D structure of the data.

Reordering the time-courses with respect to latency is equivalent to finding a parameteriza-
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tion of the curves in Figure 7.2(b) and 7.2(c). In the next subsections, we present methods to

automatically reorder time series according to their 1D variability.

7.2.2 Nonlinear embedding
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Figure 7.3: Non-linear embedding into a low-dimensional Euclidian space

Given the distance dX and the points (xi), the aim is to recover the structure of M via

an embedding function f that maps the (xi) into a low-dimensional Euclidian space R
n (cf.

figure 7.3). The embedding f provides a low-dimensional representation of the dataset and

also a parameterization of the manifold. When M has a 1-d structure, the first coordinate

of f can be used to order the points (i.e., in our context, the time series), provided that the

function f satisfies a “regularity” constraint: if two points x and z are close in M, then so

must f(x) and f(z) in R
n. This is sometimes referred to as a minimal distortion property.

For n = 1, a Taylor expansion provides the following inequality [14]:

|f(z)− f(x)| ≤ dM(x, z)‖∇f(x)‖+ o(dM(x, z)) (7.1)

where ∇f stands for the gradient of f and dM is the geodesic distance on the manifold be-

tween points x and z. The notation g(z) = o(dM(x, z)) means that
g(z)

dM(x,z) tends to 0 as z tends

towards x. The inequality in equation (7.1) means that dM(x, z)‖∇f(x)‖ is a good first order

upper bound for |f(z)− f(x)|.
In order to obtain an embedding that satisfies the “regularity” constraint, Laplacian-based

methods try to control the smoothness of f globally by minimising

∫

M
||∇f(x)||2p(x)sdx ,

provided that
∫

M
||f(x)||2p(x)sdx = 1 (i).

The latter condition removes the scaling indetermination for the function f . The parameter

s controls the influence of the probability density on the solution. If s is strictly positive, the

regularity of f will be more constrained in high density regions.

The optimization problem under constraint (i) can be formulated as a saddle-point problem

for the Lagrangian L(f, λ):

L(f, λ) =

∫

M
||∇f(x)||2p(x)sdx+ λ

(

1−
∫

M
||f(x)||2p(x)sdx

)

. (7.2)

Introducing the s-weighted Laplacian operator defined as ∆sf , − 1
ps div(ps∇f) and 〈f, g〉M ,
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∫

M 〈f(x), g(x)〉p(x)sdx, L(f, λ) defined in equation (7.2) can be rewritten:

L(f, λ) =

∫

M
||∇f(x)||2p(x)sdx+ λ

(

1−
∫

M
||f(x)||2p(x)sdx

)

=

∫

M
〈∇f(x),∇f(x)〉p(x)sdx+ λ

(

1−
∫

M
〈f(x), f(x)〉p(x)sdx

)

=

∫

M
〈p(x)s∇f(x),∇f(x)〉dx+ λ

(

1−
∫

M
〈f(x), f(x)〉p(x)sdx

)

=

∫

M
−〈div(p(x)s∇f(x)), f(x)〉dx+ λ

(

1−
∫

M
〈f(x), f(x)〉p(x)sdx

)(*)

=

∫

M
〈∆sf(x), f(x)〉p(x)sdx+ λ

(

1−
∫

M
〈f(x), f(x)〉p(x)sdx

)

= 〈∆sf, f〉M + λ (1− 〈f, f〉M)

Step (*) comes from the fact that the gradient operator is the negative adjoint of the diver-

gence.

Differentiating L(f, λ) with respect to f leads to:

∂L(f, λ)

∂f
= ∆sf − λf

Therefore setting this derivative to zero imposes f to satisfy:

∆sf = λf

thus f to be an eigenvector of the operator ∆s associated to the eigenvalue λ.

Notice that if ∆sfi = λifi,

L(fi, λi) = λi

This implies that optimizing the constrained problem whose Lagrangian is given by L(f, λ)

requires to find the eigenvectors of ∆s with the smallest eigenvalues.

The constant function fcst equal to 1 everywhere is an eigenfunction of ∆s for the eigen-

value 0. To avoid this trivial embedding, the solution f is constrained to be orthogonal to the

function fcst, i.e.,
∫

M f(x)p(x)sdx = 0 (ii).

The optimal embedding f under constraints (i) and (ii) is the eigenfunction of ∆s corre-

sponding to the smallest non-zero eigenvalue.

In order to compute f from a manifold sampled with a limited number of points, the

operator ∆s needs to be approximated. Graph Laplacian methods approximate ∆s by the

Laplacian of a particularly designed graph. Let G = (V, E) be an undirected graph where

V are the nodes (xi)i=1,...,N and E are the edges. A weight wij is associated to every edge

(i, j) ∈ E , leading to a weighted graph G. The Laplacian L of the graph is a matrix defined by

L = D −W where W = (wij)ij and D is diagonal with Dii =
∑

j wij .

The random-walk Laplacian is a normalized version of L defined by Lrw = D−1L = I −
D−1W where I is the identity.

A weighting matrix W yielding a good approximation of ∆s must now be defined. This is

done with the help of a similarity measure k which is a non-increasing function of the distance

dX . Here, k is a Gaussian kernel with standard deviation σ:

k(xi, xj) = e−
dX (xi,xj)2

σ2 .

Results of [107] show that, for a given k, the random-walk Laplacian of G converges almost
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surely to ∆s when the sample size N goes to infinity, if

wij =
k(xi, xj)

(d(xi)d(xj))1−s/2
(7.3)

where d(x) =
∑N

i=1 k(x, xi) is an estimator of the probability density function over M, The

embedding function can therefore be obtained by computing the eigenvectors fq of Lrw satis-

fying:

(I −D−1W )fq = λqfq

(D −W )fq = λqDfq

Lfq = λqDfq

(7.4)

It can easily be proved that 0 is a trivial eigenvalue and also that L is a symmetric positive

matrix, which implies, since d(xi) ≥ 0 for all i, that the generalized eigenvalues λq are all

positive and can be ordered:

0 = λ0 ≤ λ1 ≤ · · · ≤ λq ≤ λq+1 ≤ · · · ≤ λN−1.

The embedding f into R
n is then given by:

f(xi) = (f1(i), f2(i), ..., fn(i)).

where fq(i) is the ith component of fq.

7.2.3 Laplacian embedding algorithm

Observe that, in the case of a uniform sampling over the manifold, the parameter s has no

influence. Numerical experiments on synthetic and real EEG data showed that s did not have

much influence on the results, and as a consequence s was set to 1. This corresponds to the

Diffusion Map algorithm [37]. The following algorithm details the different steps to compute.

Laplacian-based n-dimensional embedding:

• Set dX , σ and n the dimension of the embedding.

• Compute K with K(i, j) = e−
dX (xi,xj)

σ2 .

• Compute DK with DK(i, i) =
∑N

j=1K(i, j) and DK(i, j) = 0 if i 6= j.

• Compute W = D
−1/2
K KD

−1/2
K (equation (7.3) with s = 1)

• Compute D with D(i, i) =
∑N

j=1W (i, j) and D(i, j) = 0 if i 6= j.

• Find the n + 1 first generalized eigenvectors fk solution of (D − W )fk = λkDfk,

k = 0, . . . , n.

• The coordinates of point xi in R
n are (f1(i), f2(i), . . . , fn(i)).

Since L is symmetric, its first eigenvectors can be computed efficiently with an iterative

method, for example an Implicitly Restarted Arnoldi Method [137]. For computational effi-

ciency, it is possible to set to 0 the wij below a threshold, leading to sparse matrices, and re-

ducing the computational cost of matrix-vector multiplications at each iteration. Note should

be taken that too high a threshold leads to a very coarse approximation of the solution.
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In order to provide more insight on the discrete solution, it can be observed from equa-

tion (7.4) that the solution f1 also solves the following optimization problem:

arg min
fT Df=1, fT D1=0

fTLf

and that expanding fTLf gives:

fTLf =
1

2

∑

(i,j)∈N
wij(f(i)− f(j))2

Since each term of the sum is positive, minimizing fTLf requires to minimize each wij(f(i)−
f(j))2 which implies that if wij is big, i.e., dX (xi, xj) is small, (f(i) − f(j))2 should be small.

This can be directly related to the “regularity” constraint mentioned above. Although this

comment helps to bridge the gap between the discrete and the continuous formulations of the

problem, it can be noticed that, contrary to the continuous formulation, the discrete problem

does not provide much insight into the influence of the density p.

Manifold learning methods are “data driven”. They capture the structure of the dataset,

provided that the chosen distance dX is appropriate. When dealing with time series, many

distance functions can be used. In practice, dX does not need to be an actual distance, and

instead it can measure the difference between features of interest for two elements of the

dataset. One may even design dX to be blind to some features of the data, which are irrelevant

for the application at hand.

7.3 SPECTRAL REORDERING OF EEG TIMES SERIES

In this context, each xi is a time series, and X = R
T where T is the number of time

samples. The same stimulus has been delivered N times leading to N time series.

7.3.1 Toy examples

Once computed, the Laplacian embedding f provides a parameterization of the manifoldM,

which means that ifM has a noisy 1D structure, the first coordinate, f1, orders the elements

along the manifold. This is now illustrated with the noiseless synthetic dataset already pre-

sented in Section 7.2.1. It is simulated with T = 512 and N = 500 points. The embedding

was performed using the Euclidian distance and a Gaussian kernel. The embedded points

are represented in figure 7.4(c). It can be observed that the embedding unfolds the mani-

fold structure. The ordering provided by f1 can be encoded with a color, hence each point

of the PCA representation can be colored. The 2D and 3D PCA point clouds are presented

in figure 7.4(a) and figure 7.4(b): observe that the color changes continuously along the one

dimensional structure. Figure 7.4(d) presents the reordering of the raster plot already pre-

sented in figure 7.2(a).

To illustrate that the manifold learning method can capture more than a variability in

latency, a sample dataset with a variability in latency and scale has been designed (time series

are “stretched”). The reordered dataset and the 3D PCA colored embedding are presented in

figure 7.5.

The EEGLAB toolbox offers an alternative way of ordering signals, based on the phase

of a time-frequency decomposition using Gabor wavelets. The user is asked to provide the

latency of the response, the number of oscillations and the frequency of interest (the frequency
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(a) Points of the 2D PCA pro-
jection, colored with respect to
their first Laplacian embed-
ding coordinate

(b) Points of the 3D PCA projection,
colored with respect to their first
Laplacian embedding coordinate

(c) Embedded points colored with re-
spect to the first Laplacian embed-
ding coordinate.
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(d) Reordered raster plot

Figure 7.4: Illustration of manifold learning using graph Laplacian on the synthetic dataset

of Figure 7.2.

(a) Points of the 3D PCA pro-
jection, colored with respect to
their first Laplacian embed-
ding coordinate

(b) Embedded points colored with
respect to the first Laplacian embed-
ding coordinate.
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(c) Reordered raster plot

Figure 7.5: Illustration of manifold learning using graph Laplacian on a synthetic dataset

with latency and scale variability (time series are “stretched” in time with the increase of the

latency).



217

Time (ms)
T

ri
a

l

 

100 200 300 400 500

100

200

300

400

500

(a) Phase reordering on the
dataset in figure 7.2
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(b) Phase reordering on the
dataset in figure 7.5

Figure 7.6: Reordering results obtained on the datasets in figure 7.2 and figure 7.5 with the

EEGLAB reordering method based on the phase of a Gabor wavelet, with a priori defined

latency and frequency.

can also be automatically set as maximizing the Fourier spectrum). Once these parameters

are set, the phase for the corresponding Gabor function is computed and the raster plot is

reordered accordingly. The two datasets presented in figure 7.2 and figure 7.5 are shown,

reordered with EEGLAB, in figure 7.6. It can be noticed that the method fails to accurately

reorder the raster plots, for different reasons in the two examples. In the first one, the Gabor

waveform that has been translated has multiple cycles which implies that the phase in [0, 2π]

cannot capture the variability. In the second one, due to the temporal scaling, the frequency

slightly varies across trials. The EEGLAB procedure assumes a constant frequency across

trials, and estimating the phase when the frequency is not well defined leads to errors.

7.3.2 Spectral reordering with realistic time series

The manifold learning method has just been illustrated on synthetic toy examples. We now

apply it to a more challenging synthetic problem where the time series are corrupted by an

additive noise, and to real ERP recordings.

As a preprocessing, the time series are centered and normalized so that ‖xi‖ = 1. After

this normalization, the half Euclidian distance is given by ‖xi − xj‖2/2 =
√

(1− 〈xi, xj〉)/2,

which implies that it is equivalent to considering the correlation between time series.

As mentioned earlier dX may not be a real distance but just a similarity measure. To

investigate the use of different similarity measures, we propose to use:

dX ;r(xi, xj) =

(

1− 〈xi, xj〉
2

)r/2

(7.5)

where r is a power exponent applied to the classical Euclidian distance.

Such a similarity measure is sensitive to time shifting, and is therefore appropriate for

capturing the latency information. It also has the advantage that dX ;r(xi, xj) ∈ [0, 1] which

constrains the choice of σ (see Section 7.5).

The parameters used by the spectral embedding are s (fixed to 1 in practice), r and σ.

Section 7.5.1 provides a strategy to set these parameters.

The synthetic data consists in 100 time series (N = 100 and T = 500) computed from a

template (cf. figure 7.11(e), green curve) by translating the positive deflection with a random

time lag (with a Gaussian probability distribution of standard deviation σlag), and adding

noise with a SNR measured in variance ratio (variance of signal divided by variance of the

noise). Figure 7.7(a), presents a dataset with σlag = 50 ms and an additive autoregressive (AR)

noise (SNR=1.5=1.76dB). The AR model of order 8 was fitted on spontaneous EEG activity.

The second application of the method is to auditory oddball EEG data. This paradigm
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consists of alternating frequent tones and rare (“target”) tones. It is known to elicit a positive

EEG deflection to the rare tones, referred to as the “P300” or “P3” wave, more prominent on

the midline electrodes and occurring at a latency around 300 ms [17]. The data is recorded

from the central electrode Cz (cf. figure 1.22 in chapter 1), sampled at a rate of 256 Hz and

processed with a high-pass filter at 0.5 Hz (Butterworth Zero Phase Filter, Time constant

0.3183 s, 12 dB/oct) and a low-pass filter at 8 Hz (Butterworth Zero Phase Filter, 48 dB/oct).

The positive deflection of the P300 wave, in the 3-5 Hz range, is preserved. Figures 7.7(a) and

7.8(a) present raster plots of both data sets. The random nature of the time latency of the

P300, as first observed in [130], is obvious in the oddball raster plot.

Time (ms)

T
ria

l

100 200 300 400 500

20

40

60

80

100

(a) Raster plot of raw time series.
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(d) Reordered raster plot of time se-
ries using of the first coordinate of
the embedding f .

Figure 7.7: Spectral reordering results on synthetic data (σlag = 50 ms). Embedding was

performed with r = 2 and σ = 0.1.

In both cases, the time series were embedded into a two dimensional space (cf. figure 7.7(c)

and figure 7.8(c)). In both figures, it can be noticed that the points are clustered along an

elongated 1D structure, as it was the case with the toy example in figure 7.4. The first

coordinate can therefore be used to correctly parameterize the manifold and to order the

time series. By observing the reordered raster plots in figure 7.7(d) and figure 7.8(d), and

comparing them to a raster plot reordered using the externally measured motor response, it

appears that the first coordinate of f has correctly captured the latency information.

7.4 ROBUST LATENCY ESTIMATION VIA DISCRETE OPTI-
MIZATION

Once the raster plot has been correctly reordered, estimating the latency of the response

consists in tracing a non decreasing line through the extrema of the raster plot, like the dark

semi-vertical line in figure 7.1(b). Though this may appear a simple task, it is non trivial to
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Figure 7.8: Spectral reordering results on EEG oddball time series. The solid vertical line

in the raster plots corresponds to the stimulus onset. The vertical dashed lines provide the

limits on the time window used to reorder the data. Embedding was performed with r = 2
and σ = 0.05.
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automatize.

In order to automatically extract the latency corresponding to each time series from a

reordered plot, one should exploit the global information in the data and take into account the

a priori information that latencies are monotonically related in the reordered trials. Finding

an increasing function such as the one defined by the dark semi-vertical line in figure 7.1(b),

is equivalent to partitioning the raster plot in two, i.e., achieving a two class segmentation of

the ERP image, while taking into account the monotony constraint (cf. figure 7.9(b)).

7.4.1 Optimization framework

After reordering, it can be assumed that the latencies of brain responses of two neighboring

trials xi and xi+1 are close. Let us denote li the latency of the response for trial i. With the

Markov Random Field (MRF) optimization framework pioneered in [84], the robust estima-

tion of the (li)i=1,...,N amounts to solving:

(li)
∗
i=1,...,N = arg min

(li)i=1,...,N

E(li) with E(li) =

N
∑

i=1

Di(li) + α

N−1
∑

i=1

Vi(li, li+1) (7.6)

Each term Di(li), usually called a data term, tends to set li to the best latency value for

time series xi, regardless of the other series. When considering EEG evoked potentials, high

deflections of the signal from the baseline are of particular interest. Thus a reasonable choice

is to set li so that xi(li) is maximal (or minimal). In our optimization formulation, this leads

to Di(li) = φ(xi(li)), where φ is a positive decreasing function1. In practice, when looking for

positive deflections φ is defined by φ(xi(j)) = M − xi(j) ≥ 0 where M = maxi,jxi(j).

Since single-trial EEG recordings are heavily corrupted by noise, robust estimation of

lags is obtained by adding a second term to the energy E. This has been made possible by the

spectral reordering, that guarantees that for any i, the time series xi and xi+1 are similar, and

thus, neighboring latencies l∗i and l∗i+1 should be close. The smoothing term Vi(li, li+1) must

increase when the distance between li and li+1 increases. Without any prior information, it is

natural to set all the Vi to a unique function V that does not depend on i.

In our case, we choose V (li, li+1) = |li+1−li|while strongly imposing li ≤ li+1,∀i. Parameter

α penalizes the difference of latencies between two neighboring time series.

7.4.2 Graph Cuts algorithm
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Figure 7.9: Result of binary partitioning using the graph cut algorithm applied on the raster

plot reordered with motor response (cf. figure 7.1(b))

1Di(li) should be positive for technical reasons imposed by the Graph Cuts method – see Section 7.4.2.
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The unknown variables li take their values on the same time samples as the time series

xi, and can thus only take a finite number of discrete values. This implies that the problem

necessarily has a solution, which may however not be unique. In order to find a fast solu-

tion of such discrete combinatorial optimization problems, graph-based approaches are being

extensively used by the Computer Vision community [23].

MRF (cf. equation (7.6)) optimization with graph cuts is applicable depending both on the

discrete set of possible values for li and on the choice of the smoothing terms V . They can

yield global or local minima. When li can take only two values, i.e., labels, global optimal-

ity is guaranteed [96]. With multiple labels, global optimality is possible when the li can be

linearly ordered [23]. This is the case with the one-dimensional problem addressed in this

contribution. The optimal solution is here obtained by computing only one minimal cut of a

specially designed graph. More generally graph cuts methods are adapted for MRF optimiza-

tion when the smoothing terms lead to a sub-modular energy [127]. See Appendix B for a

short introduction to graph cuts.

To construct the graph in our case, it can be observed that a set of latencies satisfying the

constraints can be defined by partitioning the raster plot into two classes. This is illustrated

in figure 7.9(b) where the optimization has been performed on the raster plot reordered by

the motor response figure 7.9(a). The border between the two regions provides an estimation

of the latency. Our problem thus amounts to designing a weighted graph that provides a

natural correspondence between the partitioning and the energy detailed in equation (7.6).

With the previously defined V , a graph can be constructed as in figure 7.10. Each node of

the graph ni,j is indexed by trial number and by time, i.e., a line index i and a column index j,

except for the terminal nodes (“source” S and “sink” T ). Cutting the graph in two consists in

separating the “source” from the “sink”. Edge weights are detailed in table 7.1. Edges with∞
weights are used to guarantee the constraints: horizontal ∞ weighted edges guarantee that

the cut goes through each line once, i.e., li is unique for each time series, while vertical ∞
weighted edges guarantee that the solution is increasing.

One can notice that the cost associated to a cut, defined as the sum of the edge weights

along the path of the cut, is equal to an energy value. The minimum cut thus provides the op-

timum. The solution is obtained by a single binary cut, which makes the algorithm extremely

fast (a few milliseconds) and also globally optimal. Graph partitioning via minimum cut is, in

turn, known to be equivalent to a polynomial problem: the max flow problem [73]. We solve

the minimum cut problem with the max flow algorithm described in [22]2. The complexity

observed in practice is linear in the number of nodes in the graph, i.e., O(NT ).

The spectral reordering may provide a raster plot ordered from large latencies to small

latencies, in which case one should seek a non increasing partioning of the raster plot. This

is why, in practice, the graph cut algorithm is run twice on each dataset, once with the order

provided by the manifold learning algorithm and once with this order inverted. The order

that leads to the smallest energy is kept.

7.4.3 Result of single-trial latency extraction

The optimization procedure previously described was applied to the reordered datasets dis-

played in figure 7.7(d) and figure 7.8(d). Results are presented in figure 7.11(a) and fig-

ure 7.11(b). Such a lag extraction technique would have been inapplicable on the unordered

time series displayed in the raster plots of figure 7.7(a) and figure 7.8(a), and is only made

possible after reordering by the non linear embedding.

Figures 7.11(c) and 7.11(d) present the synthetic and the oddball datasets after realign-

ment, i.e., after raster plot reordering and lag correction. The evoked potentials were com-

puted by standard averaging with and without latency correction cf. figure 7.11(e) and fig-

2using the open source implementation http://www.adastral.ucl.ac.uk/˜vladkolm/software.html
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Figure 7.10: Graph illustration for an image N × T (N = 3 time series of length T = 4) with

an example of minimal cut in red. Time instants index the horizontal edges. In blue are the

nodes linked to the “source” node and in gray the nodes linked to the “sink” node after cutting

the graph. The corresponding energy is the sum of the weights on the edges (in red) crossed

by the minimum cut.

T-Links Weight

S → ni,1 ∞
ni,T+1 → T ∞

N-Links Weight

ni,j → ni+1,j ∞ (1)

ni,j ← ni+1,j α
ni,j → ni,j+1 Di(j) = φ(xi(j))
ni,j ← ni,j+1 ∞ (2)

Table 7.1: Edge weights, i.e., link capacities, of the graph for robust time delay estimation.

Graph nodes ni,j are indexed by a line index i, trial number, and a column index j corre-

sponding to time. The infinite weight (1) guarantees that l∗i is unique for i fixed, i.e., that the

cut intersects each line only once and (2) guarantees that l∗i+1 ≥ l∗i , i.e., that the function is

increasing. In practice φ(xi(j)) = M − xi(j) ≥ 0 where M = maxi,jxi(j).
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ure 7.11(f). In the synthetic case, we observe a very good match between the average of the

realigned time series and the reference used to generate the data. As expected, realigning the

time series provides higher and narrower deflections, because it greatly reduces the blurring

effect caused by the variable delays of the neural response.

Simulation Experiment
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Figure 7.11: Evoked potentials illustrations using single-trial latency estimation. Lags ex-

traction on reordered raster plot of synthetic time series (a) and oddball time series (b). Lags

correction on raster plot of synthetic time series (c) and oddball time series (d). (e) evoked po-

tential computed after reordering and lags correction on synthetic dataset (the green curve is

the template used to generate the data, the red curve is the evoked potential without reorder-

ing and the blue curve is the evoked potential after reordering). We observe a good fit between

the template and the evoked potential after reordering. (f) evoked potential computed after

reordering and lags correction on the auditory oddball dataset (the red curve is the evoked

potential without reordering and the blue curve is the evoked potential after reordering).

7.5 PARAMETER ESTIMATION AND ROBUSTNESS

The output of the spectral reordering depends on the definition of the distance dX and on
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the σ used in the Gaussian kernel. It also depends on the parameter s used to weight the

Laplacian with the density, although our experience is that the influence of s on the results

is negligible. In order to limit the computation time of the following procedure, s was set to

1 by default, corresponding to the Diffusion Map algorithm proposed in [37]. According to

our definition (7.5), dX depends on the exponent r. Once the reordering is done, the graph

cut method requires the setting of α used to control the regularity of the cut. We propose an

automatic way to set these parameters. The robustness of the procedure is evaluated with

numerical simulations.

7.5.1 Parameter estimation

The spectral reordering is good if it succeeds in exhibiting the monotonic structure observed

for example in figure 7.11(a) and figure 7.11(b). With a proper reordering, the graph cut pro-

cedure, constrained to provide non decreasing cuts, reaches lower energy levels. This obser-

vation motivates the following strategy to estimate the parameters of the spectral reordering.

Estimating the parameters of the spectral reordering

Let us denote the parameters of the spectral reordering θ = (r, σ) and E∗
α(θ) the value of the

energy reached by the graph cut algorithm with α fixed. The best θ∗ is simply obtained by:

θ∗ = arg min
θ

E∗
α(θ) .

In practice, the xi are normalized and dX ;r is designed to take its values in [0, 1]. For r and

s fixed, the tested values for σ were (0.1 + 0.1k)k with k = 1, . . . , 20. Using a fixed range of

values for σ is made possible by the constraint dX ;r ∈ [0, 1].

For a standard M/EEG dataset with a few hundreds of trials, testing all the different sets

of θ takes a few seconds. Lag extraction results for the oddball data are presented in fig-

ure 7.13 for different values of α. For α set to 0.1, Eα is displayed in figure 7.12 as a function

of σ with r = 1 and r = 2. The optimum is reached for r = 2 and α = 0.05.
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Figure 7.12: E∗
α as a function of r and σ. Computation is done on the oddball dataset with

α = 0.1.

Estimating α

For α fixed, the above procedure provides a way to estimate the parameters of the spectral

reordering. In order to find the α, we propose a method based on K-fold cross-validation.

In figure 7.11(e), it can be observed that the new evoked potential obtained after lag cor-

rection matches the template used in the simulation. This validates the procedure in the
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Figure 7.13: Reordered raster plots with lags estimate for different values of α. The σ are

automatically defined for α fixed as described in section 7.5.1. Results are obtained with

r = 2.

synthetic case. Unfortunately, in practice there is no “ground truth”. To circumvent this ob-

stacle, the proposed strategy consists in estimating the new evoked potential e(t) on a portion

of the data, called the learning set, and checking if it correlates well with the rest of the data

called the test set. The dataset is in practice partitioned into K disjoint subsets (Ck)k. For

k ∈ [1,K], the test set is the kth subset and the learning set is the rest. With K = 10, the

evoked potential ek(t) is estimated on 90% of the data and tested on the remaining 10%.

Since the lag is unknown for the test set, the correlation between the evoked potential

and each time series is given by the maximum of the cross correlation with arbitrary lag. The

score of generalization Sk is given by:

Sk =
∑

i∈Ck

max
τ
〈ek(·), xi(· − τ)〉

The procedure is run K times leading to a score S =
∑

k Sk.

The α that achieves the maximum score S is selected.

In practice the tested values for α were 0, 0.001, 0.01 and 0.1. As expected, with no noise,

the procedure automatically sets α to 0. On the oddball EEG dataset, the procedure leads

to α = 0.1. This also confirms that using smoothing terms Vi(li, li+1) is mandatory in the

presence noise to obtain a proper estimate of the latencies and subsequently of the evoked

response.

With 4 values for α and 10 values for σ, the computation time on the oddball dataset is

around 5 minutes per value of r. About half of the time is spent in the computation of the

eigenvectors. Note that for each set of parameters the computation is independent. This

allows easy parallel computing which could speed up the parameter estimation procedure.

7.5.2 Validation

In order to validate the procedure and also investigate its robustness to noise, various numer-

ical experiments were performed on simulated datasets. For each dataset, the parameters

were automatically set using the procedure described above. The resulting evoked potential

is denoted e∗(t). Assuming the latencies are known, by realigning the data and averaging,

one obtains the best evoked potential given the SNR of the dataset. This evoked potential,

obtained with the known real latencies, is denoted erl(t). The real template used to generate

the synthetic dataset is denoted eref (t). The error on the solution was then computed as:

Error =

∣

∣

∣

∣

〈 e
∗

‖e∗‖ ,
eref

‖eref‖
〉 − 〈 erl

‖erl‖
,
eref

‖eref‖
〉
∣

∣

∣

∣

∈ [0, 2] (7.7)
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The smaller the error, the better the estimation of the lags and of the evoked potential.

Results with 3 different templates (cf. figure 7.14(a)) are presented in figure 7.14(b). Sim-

ulations were performed with two different types of noise (uncorrelated white noise and noise

computed with an autoregressive filter whose coefficients were fitted on spontaneous EEG

activity.

First it can be observed that in the noiseless case, the error is equal to 0. This validates

the method and demonstrates that the estimation procedure is unbiased. Second it can be

noticed that the best performance is obtained with uncorrelated white noise and that the

errors remain small even with low SNR.

0 100 200 300 400 500
−0.2

−0.1

0

0.1

0.2

Time (ms)

 

 

 

Template 1

Template 2

Template 3

(a) The 3 different templates used in the
simulations.

−2 0 2 4 6
0

0.02

0.04

0.06

0.08

SNR (dB)

E
rr

o
r

 

 

 

AR noise

White noise

(b) Errors (see (7.7)) obtained with the 3
templates in (a) and 2 different types of
noise (uncorrelated white noise and noise
computed with an eighth-order autore-
gressive filter whose coefficients were fit-
ted on spontaneous EEG activity).

Figure 7.14: Simulation results and errors estimates with different types of evoked responses

(σlag = 50 ms). These values are the average errors obtained out of 10 repetitions of the

experiment. It can be observed that errors are equal to 0 with no noise. The worst error 0.1

is observed with SNR = −3dB on the template used in previous simulations. A correlation

error below 0.1 can be considered as satisfactory.

7.6 DISCUSSION

By making use of advanced graph-based methods, we have proposed a robust and very fast

two-step procedure for estimating the variability of evoked neural responses on single-trial

MEG or EEG data: spectral reordering by Laplacian embedding followed by an estimation

procedure by graph cuts. The whole process runs in a few seconds on real datasets of several

hundred trials covering several hundred time points. The approach is a model-free, “data

driven” algorithm, offering guarantees of global optimality for both of the steps. It does not

suffer from initialization problems and does not assume a model, e.g., imposing that the data

can be well represented in an a priori dictionary of waveforms [16]. The procedure has several

parameters that can be set automatically, as explained. Finally, numerical experiments on

synthetic datasets confirm the robustness to noise of the full procedure.

This contribution puts an emphasis on the latency estimation problem. However, as il-

lustrated in figure 7.5(c), the manifold learning method can handle other types of variability,

for whose estimation a graph cut procedure could be designed. As long as the model of a

1D manifold holds, i.e., that the variability can be parameterized by a single parameter, the

methodology of this chapter can be applied.
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Quantifying the variability of brain response delays, non invasively, in humans, can help

to improve our understanding of the cognitive treatment of information. As presented in this

chapter, once the delay has been corrected on each trial, the data can be realigned to the

neural response, improving the quality of the estimated evoked response. A better control of

the temporal aspects of the signal can moreover improve the spatial precision of the source

reconstructions when solving the inverse problem [11].

Another application of single-trial estimation is related to the correlations between dif-

ferent channels, coming from the correlations between latencies of different functional brain

regions. By computing delays of response independently on different channels, interactions

between delays can be investigated. We can hypothesize that two neural processes that are

independent exhibit uncorrelated delays while two sequential neural tasks have highly cor-

related delays. To quantify such interactions between various brain functional areas, simple

correlations can be computed. It would be interesting to investigate what difference the delay

correction, based on the data of one channel, makes to the amplitude of evoked potential on

other channels. An augmentation of this amplitude on an other channel could be interpreted

as a strong correlation between them, while an absence or very weak modification of this

amplitude would suggest on the contrary an absence of correlation or a very weak one. Such

questions, raised in the cognitive neurosciences community, can be addressed with the help

of the method proposed in this chapter.

Although our method was applied to time series coming from a single EEG channel, it

is also possible to estimate the delay of activations of an ICA component or more generally

any source configuration. By employing signal-space projectors [208], or by projecting the full

EEG or MEG recordings onto the forward field of a source configuration, we obtain a time

series for each repetition of the experiment, which is what our algorithm requires as input.

The method detailed in this chapter has been implemented as an EEGLAB plugin. The

code snippet in table 7.2 details how the plugin can be used from a Matlab script.



228 CHAPTER 7. SINGLE-TRIAL ANALYSIS WITH GRAPHS

1 % Example Matlab code for single-trial latency estimation

2 % Load data

3 load(’data/oddball3-num1-512Hz-chan10.set’,’-mat’);

4

5 % Set parameters

6 use_ica = false; % Set to true, if you want to realign based on an ICA component

7 channel = 1; % Index of channel or ICA component used for realignment

8 time_win = [150 500]; % (ms) : work on this time window

9 bad_trials = []; % set bad trials

10

11 clear options

12 options.sigma = [0.01:0.01:0.2];

13 options.alpha = [0.001,0.01,0.1];

14 [EEG, com, order, lags, event_type, E_lags] = ...

15 pop_extractlag( EEG , use_ica, channel, time_win, options);

16

17 % View ERP image reordered

18 figure;

19 pop_erpimage(EEG,1, [channel],[],EEG.chanlocs(channel).labels,1,1, ...

20 { event_type }, [],’latency’ ,’yerplabel’,’\muV’,’erp’,’cbar’);

21

22 % Re-epoch the data

23 EEG = pop_epoch( EEG, {event_type}, [-0.4 0.3]);

24

25 % View ERP image of re-epoched data

26 figure;

27 pop_erpimage(EEG,1, [channel],[],EEG.chanlocs(channel).labels,1,1,{},[],’’, ...

28 ’yerplabel’,’\muV’,’erp’,’cbar’);

Table 7.2: Running the lag extraction pipeline on an EEGLAB dataset from the command

line. Source code of the EEGLAB plug-in is available on the INRIA Forge https://gforge.

inria.fr/projects/eeglab-plugins/.

https://gforge.inria.fr/projects/eeglab-plugins/
https://gforge.inria.fr/projects/eeglab-plugins/
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7.7 CONCLUSION

The method presented in this chapter provides a computationally efficient and princi-

pled framework to address the challenging problem of estimating parameters on single-trial

M/EEG data. Single-trial data analysis is an important goal in the M/EEG community as

such analysis can give access to estimates that are not biased by the averaging process used

with classical ERP studies.

The source code and the demo scripts necessary to reproduce the figures of this chapter

are available in a Matlab EEGLAB Plug-in:

https://gforge.inria.fr/projects/eeglab-plugins/

https://gforge.inria.fr/projects/eeglab-plugins/
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In this thesis, the main methodological and theoretical aspects of M/EEG data processing

have been covered, from accurate solution of the forward problem to efficient approaches

to inverse problem in the context of distributed source models, including the challenging

problem of single-trial data processing. We have been the main contributor to an open source

software project, OpenMEEG, that offers to the M/EEG community the most accurate BEM

solver available today.

Our work with experimental data led us to the analysis and implementation of state-of-

the-art inverse solvers, domain to which we contributed by introducing a framework that

enables to include multiple experimental conditions simultaneously. This work was moti-

vated by the ambition to demonstrate that retinotopic mapping was possible with MEG. This

topic was investigated from the design of an experimental protocol and the exploration of the

data to the construction of principled methodology that allowed us to obtain promising results

even if the final objective that consists in achieving timing of cortical processing in the visual

cortex with only MEG is still for us an open problem.

Our interest on the research area motivated us to address some hard and still open ques-

tions in the field. Going beyond simple localization, we proposed a tracking algorithm working

on triangular meshes that offers interesting perspectives for the investigation of cortical dy-

namics. We applied this method to visual processing and somatosensory MEG data which

demonstrated that such an approach could provide insight into the timing of cortical process-

ing.

The last topic addressed during this thesis concerns the problem of extracting information

on single-trial M/EEG data, which is an issue of major interest, as such methods can give

access to neural response estimates that are not biased by the averaging process used with

classical ERP studies.

The contributions are thus threefold: theoretical, methodological and applied. Throughout

this thesis, we tried to make the right mathematical choices to model the problems of interest.

We believe this enabled us to propose appropriate and efficient algorithms so that we could

finally tackle challenging neuroscience questions.

To summarize:

• We contributed to provide to the M/EEG community the most precise forward problem

solver when considering realistic head models with piecewise constant conductivities.

• We presented the mathematical and computational details of the state-of-art inverse

problem methods. Our implementation of all these methods is freely available in an

open source project called EMBAL . The community has now access to simple but very

efficient convex optimization schemes that we hope will contribute to the widespread

use of such methods.

• We developed a framework for M/EEG inverse modeling able to integrate as a priori

anatomo-functional knowledge between experimental conditions.

• We contributed to set up a full experimental study from protocol design and data explo-

ration to the construction of a data analysis pipeline that offers promising results for

the study of the visual cortex with MEG.

• We proposed a novel approach to address the hard problem of single-trial data analy-

sis. We believe that this contribution can be a valuable tool to investigate inter-trial

variabilities, which is of major interest for cognitive neuroscience studies.

Finally, we hope that this thesis elucidates some aspects of M/EEG data processing in

order to improve the understanding but also the use of advanced methodological tools in the

community. Consequently, we hope that such a better understanding will improve the quality

https://gforge.inria.fr/projects/embal
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of results obtained with EEG and MEG in order for these brain functional imaging modalities

to have a higher impact on both basic neuroscience and clinical studies.

Research Perspectives

Single-trial analysis

In this thesis, we approached the challenging problem of single-trial data analysis. This

topic has a major interest especially in cognitive studies where the inter-trial variability can

provide valuable information. In the near future, we plan to apply our existing tools for

delay estimation to explore the human motor system. The next methodological step would

be to extend our approach to various kinds of inter-trial variabilities. This work is currently

starting in collaboration with Boris Burle in Marseille at CNRS / Université de Provence.

We would also be interested in single-trial inverse modeling with non-linear inverse solvers.

When considering linear inverse solvers, averaging the single-trial estimates or inverting the

averaged M/EEG measurements provides the same result. With non linear inverse solvers,

this does not hold. We would like to approach the problem using sparsity inducing priors

where the penalization would be on the time-frequency decompositions. M/EEG signals are

oscillatory. Therefore, using a time-frequency representation to constrain the inverse solvers

seems very reasonable.

Another problem we would like to address is “resting state M/EEG”. While in the last

two research problems the recordings were time locked to the beginning of the stimulation,

resting state M/EEG would impose to work on raw data without “time triggers” such as the

stimulus onsets. Independent component analysis (ICA) is an approach to address this prob-

lem but it suffers from some practical problems like the necessity to set a priori the number of

components. The approach we plan to consider is based on a research topic generally referred

to as “sparse coding”. Our preliminary results on this topic seem to confirm the power of the

approach.

Investigations of the visual system with MEG

The neuroscience topic that motivated this thesis is the understanding of human visual sys-

tem using M/EEG. To go one step further from where we arrived on the project of retinotopic

mapping with MEG, we would like to conduct more experiments and investigate the role

of the different stimulation parameters on the activation maps obtained. We would like to

investigate the comparison of mapping results using either classical visual evoked poten-

tials or steady state stimulations as in chapter 5. This would challenge the robustness and

ultimately improve our data processing pipeline for retinotopic mapping with MEG. If our

pipeline reaches a limit, we might consider going towards a generative model of the structure

of V1 and V2 to better constrain the inverse problem. To conclude, we believe that a necessary

condition for such a project to succeed is to have more interaction with experimentalists in

order to benefit from their expertise to achieve a good experimental control and an easy low

level processing of the data.

With well-designed experiments and robust data processing pipelines, the challenging

objective that is to achieve precise estimations of cortical dynamics could be addressed. Po-

tential approaches to this problem are based the analysis of phase differences as mentioned

in chapter 5 or using tracking methods like in chapter 6.

Multi-conditions inverse modeling
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During this thesis, we investigated the use of multiple experimental conditions simultane-

ously within the inverse modeling. The classical way consists in applying inverse solver to

the data from each condition individually and in a second step comparing the source esti-

mates obtained for each of them. However, this approach has limitations especially when

considering inverse modeling with sparse priors.

Being able to compare experimental conditions is of major interest for brain research. A

cognitive question that could be answered is: Is this part of the brain activated by condition 1

and condition 2 simultaneously? Or equivalently what activation pattern is shared between

condition 1 and 2, and what is different in the cognitive process?

We think our expertise on the field of M/EEG inverse modeling provides us good tools to

address such questions in a mathematically principled and computationally efficient way.

Improving the M/EEG data processing pipelines

As it appears clearly in this thesis, we devoted a lot of time to develop and disseminate

software, to detail implementation problems, and to provide practical tips to help analyze

M/EEG data. The motivation of this comes from the observation that analyzing M/EEG data

is difficult, time consuming, and sometimes even despairing when the results are not as nice

as expected.

When confronted with real data, we want to be confident about the tools we use. We do

not want to permanently wonder if the low quality of the result is due to the bad quality of

the data, to a bad choice of a method or, worse, to a “buggy” implementation.

To avoid this, the challenge is to set up M/EEG data processing pipelines whose building

blocks are reliable and easy to use. These building blocks start from data processing and

removal of artefacts, to the accurate and automatic forward modeling with realistic head

models, but also the fast and efficient computation of inverse solvers.

The best examples today of freely available software packages that attempt to achieve

these goals are EEGLAB, Fieldtrip, Brainstorm, and MNE. Each of these packages have

different ambitions, a different usability for a non expert, a different level of automatization,

and a different level of flexibility when comes the problem of integrating new tools in the

processing pipelines.

We believe that M/EEG research will benefit from the improvement of these processing

pipelines. By sharing data and software and by standardizing pipelines, one could guarantee

the reproducibility of the results and facilitate the comparison between methods. Sometimes,

we wonder if M/EEG research is not as popular as fMRI because of the complexity of each of

the steps to go from raw MEG data to clean cortical activations. The different steps require

mathematical and computing skills, a relatively good understanding of the physics, and an

ability to interpret the results for neuroscience. And as it is known “A chain breaks at its

weakest link”.
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APPENDIX A

KRONECKER PRODUCTS

Kronecker product is a very convenient tool that often enables compact and readable matrix

computations.

Definition A.1. Kronecker product Let A ∈ R
m×n and B ∈ R

p×q. Then the Kronecker

product (or tensor product) of A and B is defined as the matrix

A⊗B =







a11B · · · a1nB
...

. . .
...

am1B · · · amnB






∈ R

mp×nq (A.1)

PROPERTIES OF KRONECKER PRODUCTS

Theorem A.1. Let A ∈ R
m×n,B ∈ R

r×s,C ∈ R
n×p and D ∈ R

s×t. Then

(A⊗B)(C⊗D) = (AC⊗BD) ∈ R
mr×pt .

Theorem A.2. For all A and B, (A⊗B)
T

= AT ⊗BT

Theorem A.3. If A and B are non singular, (A⊗B)−1 = A−1 ⊗B−1

Theorem A.4. Let A ∈ R
m×n have a singular value decomposition UAΣAVT

A and let B ∈
R

p×q have a singular value decomposition UBΣBVT
B . Then

(UA ⊗UB)(ΣA ⊗ΣB)(VT
A ⊗VT

B)

yields a singular value decomposition of A ⊗ B (after a simple reordering of the diagonal

elements of ΣA ⊗ΣB and the corresponding right and left singular vectors).

Let A ∈ R
m×n. The matrix A can be converted to a vector by stacking all columns of A on

top of one another. Let a·i denote the ith column of A.

vec(A) =







a·1
...

a·n






∈ R

mn

Proposition A.5. Let A ∈ R
m×n and B ∈ R

p×q and X ∈ R
n×p. Then

vec(AXB) = (BT ⊗A)vec(X) .

The proposition provides the following result, allowing to compute the product of a vector

with a Kronecker product without actually assembling the full matrix A⊗B.
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For x ∈ R
nq,

(A⊗B)x = vec(Bmat(x)AT )

where the notation mat(x) denotes the matrix in R
q×n such that vec(mat(x)) is equal to x.



APPENDIX B

INTRODUCTION TO GRAPH-CUTS

Lets consider an oriented graph G = (V, E), where V is the set of vertices, often called nodes,

and E ⊂ V2 is the set of oriented edges, i.e., (a, b) 6= (b, a).

Lets consider the function w : E → R+ ∪ +∞, that assigns a weight, also called capacity,

to each edge. Notice that values of w are necessarily positive.

Among E are two particular vertices, S and T . S is called the source and does not have

any incoming edges while T is called the sink and does not have any outgoing edges.

Here is an example of such a graph:

S

T

4
5

1
2 1

3

2

Definition B.1 (Cut). : A cut (S,T) of the graph G is a partition of the vertices (i.e., S∪T = V
and S ∩T = ∅) such that S ∈ S and T ∈ T

Here is an example of cut:

S

T

4
5

1
2 1

3

2

Definition B.2 (Weight of a cut). : The weight of a cut (S,T) is defined as

c(S,T) =
∑

(p,q)∈E
p∈S,q∈T

w(p, q) (B.1)
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The weight of the cut presented in the figure above is given by the sum of the weights of

the red colored edges, i.e., 2 + 5 = 7.

Definition B.3 (Minimum cut - MinCut). : A cut is minimal if the weight of the cut is not

larger than the weight of any other cut.

The following figure presents a MinCut of G. Its weight is 2 + 3 = 5.

S

T

4
5

1
2 1

3

2

The minimum cut might however not be unique. In the figure below the two represented

cuts are both minimum with a weight of 5.

S

T

4
5

1
2 1

3

2

One of the fundamental results in combinatorial optimization is that the minimum cut

problem can be solved by finding a maximum flow from the source S to the sink T . Speaking

informally, maximum flow is the maximum “amount of water” that can be sent from the

source to the sink by interpreting graph edges as directed “pipes” with capacities equal to

edge weights. The theorem of Ford and Fulkerson [53] states that a maximum flow from S to

T saturates a set of edges in the graph dividing the nodes into two disjoint parts, S and T,

corresponding to a minimum cut. Thus, MinCut and MaxFlow problems are equivalent. In

fact, the maximum flow value is equal to the cost of the minimum cut.

Presented more formally it leads to:

Definition B.4 (Flow). Let G = (V, E) be a graph, w its capacity function, S and T the source

and the sink. A flow is a function f : E∗ → R+ (E∗ is the set of edges and their inverse)

satisfying the following properties:

- for each edge e = (p, q) ∈ E
f(p, q) = −f(q, p) (B.2)

- for each vertex p besides S and T ,

∑

e=(p,.)
e∈E∗

f(e) = 0 (B.3)
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- for each edge e ∈ E ,

f(e) ≤ w(e) (B.4)

The constraint in equation (B.3) corresponds to a conservation law similar to the Kirchoff

law. The constraint in equation (B.4) imposes the flow in edge e to be smaller then its capacity

w(e). Both equation (B.3) and equation (B.4) imply that:

∑

e=(S,.)

f(e) =
∑

e=(.,T )

f(e) (B.5)

Equivalently, the amount of liquid that comes out of the source S is equal to the amount of

liquid that goes into the sink T . The quantity is called the value of the flow.

Definition B.5 (Maximum flow - MaxFlow). : A flow is maximum if its value is not smaller

than the value of any other flow.

Theorem B.1 (MinCut - MaxFlow equivalence). The MinCut of a graph G as defined above,

is equal to the MaxFlow [53].

A MaxFlow on the example graph with a corresponding MinCut:

S

T

4/4
4/5

1/1
0/2 1/1

3/3

2/2

Our interest for problems that can be reformulated as a minimum cut problem comes from

the following theorem.

Theorem B.2 (MinCut - MaxFlow complexity). Finding the maximum flow, and equivalently

the minimum cut, of a graph is a problem that can be solved in polynomial time.

In other words, this theorem implies that the MinCut problems are “efficiently solvable”

or “tractable”. In practice, minimum cuts are not are obtained via computation of maximum

flows.

Algorithms for the MinCut and MaxFlow Problem

There are many standard polynomial time algorithms for MinCut/MaxFlow [40]. These al-

gorithms can be divided into two main groups: “push-relabel” style methods [89] and algo-

rithms based on augmenting paths. In practice the push-relabel algorithms perform better

for general graphs. In vision applications, however, the most common type of a graph is a

two or a higher dimensional grid. For regular graphs like grids, Boykov and Kolmogorov

[22] developed a fast augmenting path algorithm which often significantly outperforms the

push-relabel algorithm. Furthermore, its observed running time is linear.

We now explain briefly how the augmenting path algorithm works. Given a flow f, the

residual capacity r(p, q) of an edge e = (p, q) ∈ E linking node p to node q is the maximum

additional flow that can be sent from node p to node q using the edges (p,q) and (q,p). The

residual capacity r(p, q) has two components: the unused capacity of the edge (p,q): w(e)−f(e)
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and the current flow f(q, p) from node q to node p which can be reduced to increase the

flow from p to q. A residual graph G(f) of a graph G consists of the node set V and the

edges with positive residual capacity (with respect to the flow f ). The topology of G(f) is

identical to G. G(f) differs only in the capacity of its edges and so for zero flow, i.e., f(p, q) =

0 ∀(p, q) ∈ E , G(f) is same as G. An augmenting path is a path from the source to the sink along

unsaturated edges of the residual graph. Augmenting path based algorithms for solving the

max-flow problem work by repeatedly finding augmenting paths in the residual graph and

saturating them. When no more augmenting paths can be found, i.e., the source and sink are

disconnected in the residual graph, the maximum flow is obtained.
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TIME FREQUENCY ANALYSIS WITH

GABOR FILTERS

Gabor filters are linear filters localized in time and frequency. In time, they consist of complex

exponential functions modulated by a Gaussian with standard deviation σ. The parameter σ

controls the trade-off between temporal precision and spectral precision of the filter.

Let ψσ
t0,f0

denote the Gabor filter centered at time t0 and at frequency f0 (cf. figure C.1)

[143].

t0

f0

time

fr
e
q
u
e
n
cy

σt

σf

Figure C.1: Spectral support of the Gabor filter ψσ
t0,f0

. The parameter σ in the text corre-

sponds to σt in the figure.

The expression of ψσ
t0,f0

is given by:

ψσ
t0,f0

(t) = (πσ2)−1/4e2iπf0(t−t0)e−
(t−t0)2

2σ2 .

and its Fourier transform is given by:

ψ̂σ
t0,f0

(f) = (4πσ2)−1/4e−2iπft0e−
σ2

2 (2π(f−f0))
2

.

The temporal resolution of ψσ
t0,f0

is denoted σ and by application of the Fourier transform,

one can observe that its spectral resolution is proportional to 1/σ. It means that the area of

the box in figure C.1 is constant whatever the choice of σ. In order to be precise in time one

needs to reduce σ which implies to lose in spectral resolution.

M/EEG signals are oscillatory and typically consist of bursts of activations with a few

oscillations. These oscillations can be observed on the raw signal, especially at low frequen-

cies. For this reason, we prefer to parameterize Gabor filters with an oscillatory parameter ξ
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Figure C.2: Gabor atoms for different values of the oscillation parameter ξ (modified by vary-

ing f0 with a contant σ). A low oscillation parameter produces a transient wave, and a high

value a sustained oscillation.

rather than with σ [16]. The parameterization with σ is more classical in the signal process-

ing community. The parameter ξ is defined by:

ξ = 2πf0σ .

The parameter σ stretches or compresses the time support of the filter without modifying

its frequency, whereas ξ can be related to the number of visible oscillations of the filter (cf.

figure C.2). When f0 increases, the parameter σ decreases in order to maintain the number

of oscillations ξ constant.

One can observe in figure C.3 an example of time frequency decomposition obtained with

Gabor filters (ξ = 10). One can notice that the temporal resolution of the atoms increases

with the frequency.
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Figure C.3: Sample time frequency map, a.k.a. spectrogram, estimated with Gabor filters

with ξ = 10 on real MEG data extracted from the retinotopy study (cf. chapter 5).
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JOURNAL PAPERS

A. Gramfort, T. Papadopoulo, S. Baillet and M. Clerc, Tracking cortical activity with spatio-

temporal constraints using graph cuts, SIAM Imaging Science, (submitted).

A. Gramfort, R. Keriven and M. Clerc, Graph-based estimation of 1-D variability in event re-

lated neural responses, IEEE Transactions on Biomedical Engineering (TBME), (submitted).

A. Gramfort and M. Kowalski, M/EEG inverse problem with structured sparse priors: why

and how., In preparation.

A. Gramfort, T. Papadopoulo, E. Olivi and M. Clerc, OpenMEEG: opensource software for qua-

sistatic bioelectromagnetics., In preparation.
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A. Gramfort and M. Kowalski, Improving M/EEG source localization with an inter-condition

sparse prior, Proceedings International Symposium on Biomedical Imaging: From Nano to

Macro (ISBI), jun. 2009.
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cation à la localisation de sources en M/EEG, Proceedings GRETSI, sept. 2009.
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ric mapping of human visual areas, Human Brain Mapping, jun. 2009.
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B. Cottereau, A. Gramfort, J. Lorenceau, M. Clerc, B. Thirion and S. Baillet, Fast retinotopic

mapping of visual fields using MEG, Human Brain Mapping, jun. 2008.

A. Gramfort, B. Cottereau, M. Clerc, B. Thirion and S. Baillet, Challenging the estimation of

cortical activity from MEG with simulated fMRI-constrained retinotopic maps, Proceedings of
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A. Gramfort and M. Clerc, Low dimensional representations of MEG/EEG data using Lapla-
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SOFTWARE

OpenMEEG: C++ package to solve the M/EEG forward problem with the symmetric boundary

element method.

https://gforge.inria.fr/projects/openmeeg

EMBAL: Matlab Toolbox for M/EEG inverse modeling with distributed source models.

https://gforge.inria.fr/projects/embal

Matlab EEGLAB Plug-in for single-trial parameter estimation.

https://gforge.inria.fr/projects/eeglab-plugins/
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[97] J Gross, J Kujala, M Hämäläinen, and L Timmermann. Dynamic imaging of coherent

sources: studying neural interactions in the human brain. Proceedings of the National

Academy of Sciences, 98(2):694–699, Jan 2001.
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