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ABSTRACT

The overall aim of this thesis is the development of novel electroencephalography (EEG) and
magnetoencephalography (MEG) analysis methods to provide new insights to the functioning
of the human brain. MEG and EEG are non-invasive techniques that measure outside of the
head the electric potentials and the magnetic fields induced by the neuronal activity, respec-
tively. The objective of these functional brain imaging modalities is to be able to localize in
space and time the origin of the signal measured. To do so very challenging mathematical
and computational problems needs to be tackled. The first part of this work proceeds from
the biological origin the M/EEG signal to the resolution of the forward problem. Starting
from Maxwell’s equations in their quasi-static formulation and from a physical model of the
head, the forward problem predicts the measurements that would be obtained for a given
configuration of current generators. With realistic head models the solution is not known
analytically and is obtained with numerical solvers. The first contribution of this thesis in-
troduces a solution of this problem using a symmetric boundary element method (BEM) which
has an excellent precision compared to alternative standard BEM implementations. Once a
forward model is available the next challenge consists in recovering the current generators
that have produced the measured signal. This problem is referred to as the inverse problem.
Three types of approaches exist for solving this problem: parametric methods, scanning tech-
niques, and image-based methods with distributed source models. This latter technique offers
a rigorous formulation of the inverse problem without making strong modeling assumptions.
However, it requires to solve a severely ill-posed problem. The resolution of such problems
classically requires to impose constraints or priors on the solution. The second part of this the-
sis presents robust and tractable inverse solvers with a particular interest on efficient convex
optimization methods using sparse priors. The third part of this thesis is the most applied
contribution. It is a detailed exploration of the problem of retinotopic mapping with MEG
measurements, from an experimental protocol design to data exploration, and resolution of
the inverse problem using time frequency analysis. The next contribution of this thesis, aims
at going one step further from simple source localization by providing an approach to investi-
gate the dynamics of cortical activations. Starting from spatiotemporal source estimates the
algorithm proposed provides a way to robustly track the “hot spots” over the cortical mesh
in order to provide a clear view of the cortical processing over time. The last contribution of
this work addresses the very challenging problem of single-trial data processing. We propose
to make use of recent progress in graph-based methods in order to achieve parameter esti-
mation on single-trial data and therefore reduce the estimation bias produced by standard
multi-trial data averaging. Both the source code of our algorithms and the experimental data
are freely available to reproduce the results presented. The retinotopy project was done in
collaboration with the LENA team at the hopital La Pitié-Salpétriere (Paris).
Keywords:

Neuroimaging, magnetoencephalography (MEG), electroencephalography (EEG), human vi-
sion, retinotopy, boundary element method, inverse problem, convex optimization, sparse
regression, single-trial analysis, graph cuts.







RESUME

Cette these est consacrée a I'étude des signaux mesurés par Electroencéphalographie
(EEG) et Magnétoencéphalographie (MEG) afin d’améliorer notre compréhension du cerveau
humain. La MEG et 'EEG sont des modalités d’imagerie cérébrale non invasives. Elles
permettent de mesurer, hors de la téte, respectivement le potentiel électrique et le champ
magnétique induits par 'activité neuronale. Le principal objectif lié a ’exploitation de ces
données est la localisation dans I'espace et dans le temps des sources de courant ayant généré
les mesures. Pour ce faire, il est nécessaire de résoudre un certain nombre de problemes
mathématiques et informatiques difficiles. La premieére partie de cette thése part de la
présentation des fondements biologiques a 'origine des données M/EEG, jusqu’a la résolution
du probleme direct. Le probleme direct permet de prédire les mesures générées pour une con-
figuration de sources de courant donnée. La résolution de ce probléme a ’'aide des équations
de Maxwell dans 'approximation quasi-statique passe par la modélisation des générateurs
de courants, ainsi que de la géométrie du milieu conducteur, dans notre cas la téte. Cette
modélisation aboutit a un probleme direct linéaire qui n’admet pas de solution analytique
lorsque 'on considére des modeles de téte réalistes. Notre premiere contribution porte sur
I'implémentation d'une résolution numérique a base d’éléments finis surfaciques dont nous
montrons l'excellente précision comparativement aux autres implémentations disponibles.
Une fois le probleme direct calculé, 'étape suivante consiste a estimer les positions et les
amplitudes des sources ayant généré les mesures. Il s’agit de résoudre le probléeme inverse.
Pour ce faire, trois méthodes existent: les méthodes paramétriques, les méthodes dites de
“scanning”, et les méthodes distribuées. Cette derniére approche fournit un cadre rigoureux
a la résolution de probleme inverse tout en évitant de faire de trop importantes approxima-
tions dans la modélisation. Toutefois, elle impose de résoudre un probleme fortement sous-
contraint qui nécessite de fait d'imposer des a priori sur les solutions. Ainsi la deuxiéeme
partie de cette thése est consacrée aux différents types d’a priori pouvant étre utilisés dans
le probleme inverse. Leur présentation part des méthodes de résolution mathématiques
jusqu’aux détails d’'implémentation et a leur utilisation en pratique sur des tailles de problemes
réalistes. Un intérét particulier est porté aux a priori induisant de la parcimonie et con-
duisant a 'optimisation de problémes convexes non différentiables pour lesquels sont présentées
des méthodes d’optimisation efficaces a base d’itérations proximales. La troisiéme partie
porte sur I'utilisation des méthodes exposées précédemment afin d’estimer des cartes rétinotopiques
dans le systéme visuel a 'aide de données MEG. La présentation porte a la fois sur les aspects
expérimentaux liés au protocole d’acquisition jusqu’a la mise en ceuvre du probléme inverse
en exploitant des propriétés sur le spectre du signal mesuré. La contribution suivante ambi-
tionne d’aller plus loin que la simple localisation d’activités par le probléme inverse afin de
donner acces a la dynamique de I’activité corticale. Partant des estimations de sources sur
le maillage cortical, la méthode proposée utilise des méthodes d’optimisation combinatoires
a base de coupes de graphes afin d’effectuer de facon robuste le suivi de 'activité au cours
du temps. La derniére contribution de cette theése porte sur I'estimation de parametres sur
des données M/EEG brutes non moyennées. Compte tenu du faible rapport signal a bruit,
I’'analyse de données M/EEG dites “simple essai” est un probleme particulierement difficile
dont l'intérét est fondamental afin d’aller plus loin que 'analyse de données moyennées en
explorant la variabilité inter-essais. La méthode proposée utilise des outils récents a base
de graphes. Elle garantit des optimisations globales et s’affranchit de probléemes classiques
tels que l'initialisation des parameétres ou 'utilisation du signal moyenné dans I’estimation.
L'ensemble des méthodes développées durant cette these ont été utilisées sur des données
M/EEG réels afin de garantir leur pertinence dans le contexte expérimental parfois com-
plexe des signaux réelles M/EEG. Les implémentations et les données nécessaires a la re-



productibilité des résultats sont disponibles. Le projet de rétinotopie par l’exploitation de
données de MEG a été mené en collaboration avec ’équipe du LENA au sein de ’hépital de
La Pitié-Salpétriere (Paris).

Mots clés:
neuroimagerie, magnétoencéphalographie (MEQG), électroencéphalographie (EEG), vision, rétinotopie,
méthode des éléments frontieres, probleme inverse, optimization convexe, regression parci-
monieuse, analyse simple-essai, coupes de graphes.
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CONTEXT

With approximately 10'2 neurons in the central nervous system (CNS), 10! synaptic con-
nections releasing and absorbing 10'® neuro-transmitter and neuro-modulator molecules per
second, the human brain is an object of prodigious complexity. If it were a computer, it would
be capable to process 10'? Gigabits of information per second, all in about 1.6 Kg of weight and
with a power consumption of 10-15 Watts [68]. The study of the brain activity with medical
imaging methods is named functional neuroimaging.

In the last 30 years, neuroimaging has been a very active field of research. From 1985
to 2005, the number of related publications has increased by an order of magnitude. Func-
tional neuroimaging however has a history that dates back far earlier. Human brain activity
was first recorded by Hans Berger (1929) [98] who measured the first electroencephalogram
(EEG) in humans. Later, in the 60’s and 80’s, several other neuroimaging techniques were
introduced. The best known are magnetoencephalography (MEG), positron emission tomog-
raphy (PET), functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy
(nIRS). fMRI is the most popular functional neuroimaging modality. One reason is that MRI
scanners used for anatomical imaging can also be employed for functional imaging. EEG with
its cheap instrumentation cost comes next, followed by PET, MEG, and nIRS. Even if fMRI
is the most popular modality in the neuroimaging field, statistics prove that MEG and EEG
research received a growing interest in the 90’s, which can be explained by the improvement
of acquisition devices, by the development of MRI as an anatomical basis for M/EEG stud-
ies, and also by the development of new methods adapted from other research fields such as
signal and image processing, statistics, and scientific computing.

MEG and EEG (collectively M/EEG) are electromagnetic brain imaging modalities whose
interest comes from the electric nature of neuronal communications. Neurons communicate
with the displacements of electric charges that produce tiny currents. Neurons can be seen
as tiny current generators. In order to produce electromagnetic fields detectable outside of
the head, multiple neurons within a same structure need to act in concert. As opposed to
fMRI that measures differences of blood oxygenation associated with the neuronal activa-
tions, M/EEG have a direct and instantaneous access to the electric phenomena. Therefore,
MEG and EEG have an excellent temporal resolution.

In order to measure the electric potentials generated by neuronal activity an EEG device
consists of a set of electrodes that are applied on the scalp so to establish electrical contact
with the skin. Modern full head EEG caps can have nowadays more than a 200 electrodes.
The counterpart of EEG is MEG that measures the magnetic fields generated by the neuronal
activity. The first MEG measurements date back to the research of David Cohen in the 60’s
[35]; the first whole head MEG systems with hundreds of sensors capable of imaging the
entire brain became available in the early 90’s.

Traditionally, the EEG analysis has been based on inspection of the morphology of wave-
forms. As a matter of fact, most current practice of EEG in neurology is still based on these
first attempts. Typically, neurological clinics perform EEG examinations for epilepsy, sleep
disorder, migraine, and a few other pathological conditions for which the waveform bears di-
agnostic utility, as for spikes, spindles, generalized slowing, temporal theta, etc. Meanwhile,
basic electrophysiological research has taken a different path.

The development of digital computers, together with the advances of signal processing
methods contributed to transform M/EEG data analysis into a domain of research for engi-
neers, physicists and mathematicians. Assisted by the invention of the FFT algorithm in
1965 by Cooley and Tuckey, frequency-domain analysis of EEG time series, such as power
spectral density estimation or phase coherence, has been used since the 60’s for cognitive
and clinical studies. Time-frequency analysis of event-related synchronization and desyn-



26 LIST OF FIGURES

chronization (ERS/ERD) has provided means to study brain dynamics in the scale of tens
of milliseconds, preserving both spatial and spectral information. This has extended task-
related brain studies beyond evoked response potentials and morphology. More recently, in
the 90’s, the advances of anatomical MRI data, giving access to individual brain anatomy,
marked the transition into the era of functional localization of M/EEG activity.

Results of functional localization of M/EEG activity can be seen as 3D volumetric or 2D
surface images of the living brain. While a standard movie is streamed with 25 images per
second, accurate functional imaging with M/EEG could provide around a thousand images
of the brain per second. However accurate functional localization of M/EEG activity with
a temporal resolution of 1 kHz is a partially solved problem and is still a major challenge of
M/EEG data analysis. To reach this goal, various computational and mathematical challenges
need to be tackled, turning the study of the brain activations with M/EEG in a strongly
multidisciplinary field of research at the crossroads of neurophysiology, signal processing,
electromagnetism, multivariate statistics, and scientific computing.

In this thesis, various mathematical and computational aspects of M/EEG data analysis
are covered, with the constant objective of being able to achieve accurate localization in space
and reconstruction of the dynamics of neural activity. Our contributions start by the accurate
modeling of the head as a medium that propagates the electromagnetic fields produced by the
neurons. This problem, known as the forward problem, has a unique solution. The solution
can be obtained analytically for spherical head models but requires numerical solvers when
realistic head models are considered. Improving the speed and accuracy of such solvers, but
also facilitating their usability in the M/EEG community is the topic covered by the first part
of this thesis.

To estimate the current generators underlying noisy M/EEG data, one has to solve an
electromagnetic inverse problem. Theoretically, a specific electromagnetic field pattern may
be generated by an infinite number of current distributions. Fortunately, physiological and
anatomical information can be employed to constrain the solution. The problem is said to
be ill-posed. In this thesis we focus on distributed inverse solvers. The use of such solvers
is motivated by their ability to provide localization results for activation patterns involving
multiple generators distributed over the entire brain. In order to tackle this challenging prob-
lem, we provide in this thesis very efficient optimization methods in order to get algorithms
tractable on real datasets. Our methodological contributions go beyond the inverse problem
by proposing a method to robustly follow over time the activations on the cortex. The main
motivation for the development of the methods detailed in this thesis, was to contribute to the
study of human vision with MEG and EEG. Throughout this thesis, methods are tested with
real M/EEG data in order to prove their effectiveness and relevance for clinical and cognitive
M/EEG studies.
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ORGANIZATION AND CONTRIBUTIONS OF THIS THESIS

Chapter 1 - Neural basis of EEG and MEG

The EEG and MEG signals are generated by the electrical activity of the neurons. At the
cellular level, displacements of electric charges create tiny differences of potential. In the
cortex, groups of neurons, particularly pyramidal neurons in the cortex, form structured as-
semblies that, when simultaneously active, produce electromagnetic fields detectable outside
of the head. Human EEG recordings date back to 1929 with the German physiologist and
psychiatrist Hans Berger, while the first MEG recordings were obtained in the late 60’s by
David Cohen. In this first chapter, we review the physiological basis of the generation of the
signal measured by MEG and EEG and provide some details on the evolution of acquisition
devices from their discovery to the most recent systems.

Chapter 2 - The forward problem

Understanding how a current generator located inside the head can produce a distribution of
potential on the scalp or a magnetic field outside of the head is called the forward problem.
Because of the low frequency of the signals measured with M/EEG, the time derivatives in the
Maxwell’s equations can be neglected. In this quasi-static approximation, the forward mod-
eling implies that the signal measured on the sensors is the instantaneous sum of the signals
produced by each current generator. However, computing this linear operator, i.e., solving
the forward problem with a realistic head model can be mathematically and computationally
challenging. In this chapter, we review existing methods to solve the forward problem with
different assumptions for the conductor geometry of the head. With realistic head models the
solution is not known analytically and is obtained with numerical solvers. The first contribu-
tion of this thesis is on the efficient and precise numerical resolution of this problem using a
Boundary Element Method (BEM) called the Symmetric BEM. This approach is compared to
alternative open source solvers, demonstrating its excellent precision.

Chapter 3 - The inverse problem with distributed source models

While the forward problem provides the link between the measured signal and the neural
current generators, the inverse problem aims at estimating the positions and amplitudes of
these generators from a limited number of noisy measurements. Three types of approaches
exist: parametric methods also referred as dipole fitting, scanning techniques and image-
based methods with distributed source models. The latter approach formulates the inverse
problem as a deconvolution problem where the convolution operator, or smoothing kernel,
is the solution of the forward problem. Such an approach offers a rigorous formulation of
the inverse problem without making strong modeling assumptions. However, the problem is
strongly ill-posed. The solution of such problems classically requires to impose constraints
or priors on the solution. This chapter is dedicated to the presentation of priors based on
the ¢, norm. Implementation details and practical information are carefully detailed. The
presentation covers standard minimum-norm methods, noise normalized solutions (dSPM
and sLORETA), spatio-temporal solvers, and finally Bayesian approaches where the prior is
not fixed a priori but learned from the data.

Chapter 4 - M/EEG inverse modeling with non differentiable constraints and sparse
priors

Standard /5 priors lead to very convenient linear inverse solvers but produce source estimates
smeared out over the cortex. The /5 prior is said to lead to solutions with high diversity, as
opposed to solutions with high sparsity where only a few sources have non-zero activations.
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Such a behavior of the ¢/, norm can become problematic when one attempts to achieve pre-
cise localization of focal sources. In order to reduce this problem, Bayesian learning of the
prior can be an alternative. In this chapter, we investigate priors where the sparsity of the
reconstruction is induced by the choice of the prior. The ¢; norm has this interesting prop-
erty and has proved its ability to efficiently solve very challenging ill-posed problems in signal
processing and machine learning. Unfortunately, such a prior leads to non differentiable opti-
mization problems for which the solutions cannot be obtained in closed-form as in the /5 case.
In this chapter, we review some algorithms that can be used to efficiently solve ill-posed prob-
lems involving the ¢; norm. We promote iterative algorithms based on the use of proximity
operators and show that they provide a very general approach for solving inverse problems
previously introduced in the M/EEG literature. We also explain how structured sparsity with
mixed norms can be used to provide an efficient spatiotemporal solver and develop a new
framework to compute source estimates for multiple experimental conditions simultaneously
using an inter-condition prior.

Chapter 5 - Fast retinotopic mapping with MEG

This chapter presents a direct application of the previous chapters to a real case study. The
objective of this study was to achieve retinotopic mapping with MEG. The motivation for this
work was twofold. First, we wanted to demonstrate that MEG could reproduce the retinotopic
maps obtained by standard protocols in fMRI. Second, thanks to the excellent temporal res-
olution of MEG, we gain access to brain dynamics during visual processing. In this chapter,
we present the anatomical basis of the human visual system, detail the experimental proto-
col we contributed to design, and also the methodological tools we implemented in order to
provide retinotopic maps with MEG. The protocol is based on steady-state visual evoked po-
tentials. We discuss the algorithmic details of the signal extraction procedure and our method
for non-parametric statistical tests. We present results obtained with linear inverse solvers
and illustrate their limitations. To address these limitations, we propose to include all the
experimental conditions simultaneously in the analysis and to use an inter-condition sparse
prior based a mixed norm described in the previous chapter. Finally, we give some insight
on how timings and delays of propagation could be extracted from the phase of the Fourier
spectrum of the source activation time series.

Chapter 6 - Tracking cortical activations with graph cuts

The work presented in this chapter attempts to go one step further from source localization in
order to provide a clear representation of the cortical dynamics during neural processing. The
linear /5 inverse solvers are convenient to use but produce huge amounts of data out of which
the relevant information needs to be extracted. The purpose of our contribution presented
in this chapter, is to extract from the mass of data provided by distributed inverse solvers
the spatio-temporally consistent activations. The algorithm provides a robust and principled
way to track the “hot-spots”, i.e., active regions, over the triangulated cortical mesh. A vari-
ational formulation of the problem is derived and a very efficient optimization method based
on graph-cuts is detailed in order to find globally optimal solutions.

Chapter 7 - Graph-based estimation of 1-D variability in event related neural re-
sponses

The last contribution of this thesis addresses a particularly challenging problem in M/EEG
data processing: parameter estimation from single-trial data. In classical M/EEG data pro-
cessing pipelines, the signal-to-noise ratio of the measured data is improved by averaging
multiple recordings obtained under the same experimental conditions. By doing so, one as-
sumes that the signal of interest is the same in each repetition, also called a trial. This is



LIST OF FIGURES 29

unfortunately not true, as the neural response of the subject can vary, typically because of
habituation effects, anticipation strategies, or fatigue. This is particularly the case for brain
responses occurring late after the stimulation. Such late activations can correspond to higher
cognitive levels of processing and are therefore of major interest to better understand how
our brain performs complex cognitive tasks. The method uses advanced graph-based meth-
ods and has numerous advantages over alternative strategies: trial averaging is not used
in the estimation, they provide solutions with global optimality, thus avoiding initialisation
problems, finally thanks to the efficiency of the method, parameters can be rapidly estimated
by cross-validation and grid search.

Appendices

Appendix A - Kronecker products
This appendix is a brief introduction to the manipulation of Kronecker products. The Kro-

necker product is a valuable tool to manipulate spatiotemporal regularizations as illustrated
in chapter

Appendix B - Introduction to graph cuts
In this appendix, we present the basic concepts on graph cuts in order to facilitate the under-
standing of the optimization methods used in chapter [6|and chapter

Appendix C - Time frequency analysis with Gabor filters
This appendix contains a description of the Gabor filters used to compute the time-frequency
analysis results presented in chapter [5]

Appendix D - Publications of the author
In this appendix, we list the submitted and the already published material from the author.

Software contributions

Finally, we would like to point out that all the algorithms presented in this thesis are avail-
able on the INRIA Forge.

The forward solver OpenMEEG detailed in chapter [2]is available at:
https://gforge.inria.fr/projects/openmeeqg/

The Matlab interface we developed was integrated into the current release of Fieldtrip and is
available for download from the Fieldtrip home page:

http://fieldtrip.fcdonders.nl/

All the implementations of the inverse solvers presented in chapters[3|and[4] with also the
code to perform the tracking detailed in chapter 6] are available in a MATLAB Toolbox called
EMBAL (Electro-Magnetic Brain Activity Localization):

https://gforge.inria.fr/projects/embal

Most of the figures presented in this thesis are done with the functions implemented in EM-
BAL.

Finally the EEGLAB plugin to perform parameter estimation on single-trial M/EEG data
as described in chapter[7)is available here:

https://gforge.inria.fr/projects/eeglab-plugins/
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CHAPTER 1

NEURAL BASIS OF EEG AND MEG

MEG and EEG measure the electromagnetic signal produced by the activity of our brain. To
provide more insight into the physiological phenomena behind M/EEG measurements, this
first chapter discusses the biological aspects of the functioning of the human brain.
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1 1 ANATOMY AND ELECTROPHYSIOLOGY OF THE HUMAN
° BRAIN

1.1.1 General brain structures: From macro to nano

Together with the spinal cord, the brain forms the central nervous system (CNS). It is the
largest part of the nervous system and is itself composed of a lower part, the brainstem, and
an upper part, the prosencephalon, a.k.a., the forebrain. In figure[1.1]the brainstem includes
the mesencephalon, the medulla, and the pons. It connects the two remaining structures
that form the prosencephalon, i.e, the telencephalon and the diencephalon, to the spinal cord.
The medulla, or lower part of the brain stem, controls unconscious activity of muscles and
glands involved in breathing, heart contraction, salivation, etc. Just above the medulla, the
pons connects the two hemispheres of the cerebellum which is located in the inferior posterior
portion of the head (directly dorsal to the pons). The diencephalon is located in the midline of
the brain and contains the thalamus and the hypothalamus. The most superior structure, the
telencephalon, or cerebrum, includes the lateral ventricles, the basal ganglia and the cerebral
cortex.

[l Telencephalon

[l cerebellum

[l Pons

Diencephalon

Mesencephalon Medulla

Figure 1.1: Main anatomical structures of the vertebrate brain (Source wikipedia.org).

An axial slice (see figure for naming conventions) of the cerebrum presented in fig-
ure[1.2exhibits two main structures: the white matter and the gray matter. The gray matter
of the cerebrum forms the cerebral cortex, a.k.a., the neocortex. The neocortex forms the
majority of the cerebrum and corresponds to its most exterior part. It has a left and a right
hemisphere (see figure [1.4). It is assumed that the neocortex is a recently evolved structure,
and is associated with “higher” information processing by more fully evolved animals (such
as humans, primates, dolphins, etc.).

Each hemisphere of the neocortex is generally divided into 4 lobes as represented in fig-
ure

The following functions can be roughly related to each lobe:



Figure 1.2: Axial slide of the brain (Adapted from: dartmouth.edu).
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Figure 1.3: Standard naming conventions for planar slices through the brain.
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Left
Hemisphere

Right
Hemisphere

Figure 1.4: Brain hemispheres. At first glance the two hemispheres are very similar but their
detailed structure is clearly different.

Figure 1.5: The different lobes of the cerebral cortex: the occipital, the parietal, the temporal,
and the frontal lobes (From 20th U.S. edition of Gray’s Anatomy of the Human Body, 1918
(public domain)).
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e Frontal Lobe: associated with reasoning, planning, parts of speech, movement, emo-
tions, and problem solving.

e Parietal Lobe: associated with movement, orientation, recognition, perception of stim-
uli, and speech.

e Occipital Lobe: associated with visual processing.

e Temporal Lobe: associated with perception and recognition of auditory stimuli, memory,
and speech.

Lobes are separated by major fissures that are present in all individuals. This makes the
identification of the different lobes on a particular subject possible by simple visual inspec-
tion. For example, the parietal and the frontal lobes are separated by the central fissure,
a.k.a. the central sulcus, and the temporal lobe is separated from the parietal lobe and the
frontal by the Sylvian fissure (cf. figure[L.5). Fissures are also commonly called sulci.

The counterpart of the cortical fissures are the gyri. Gyri are the structures between the
fissures. The main gyri are presented in lateral and medial views in figure Some of the
gyri contain brain regions with known cognitive functions like the post-central gyrus that
includes the primary somatosensory cortex (S1), cf., figure|1.7

Such a knowledge on the localization of some brain functions is particularly interesting
from a methodological point of view as it provides a way to achieve validation. Many M/EEG
methodological tools are tested on datasets involving somesthetic stimulation. This is the
case, for example, in chapter [4 and chapter [6]

A closer look at the gray matter shows that its structure varies across the different re-
gions. The structural properties of the gray matter include the number of layers (see fig-
ure [1.8), the cell composition, the thickness and organization. These properties, called by
neuroanatomists cytoarchitectonic properties, are not the same over the whole surface of the
cortex. Their differences led, in 1909, the neuroanatomist Korbinian Brodmann to divide
the cortex into regions called Brodmann areas (see figure whose historical characteris-
tics were homogeneous [25]. Some functions were then assigned to some of these areas. For
example the visual cortex, which is the object of an MEG study in chapter |5 corresponds to
areas 17 and 18. Although, even if this subdivision of the cortex in Brodmann areas seems
very convenient, its utility in brain functional imaging studies are usually limited labelling
a particular brain region: it is more convenient to write Brodmann area 5 (BA5) than the
“posterior part of the post-central gyrus”.

Generally speaking, most of the cortex is made up of six layers of neurons, from layer I
at the surface of the cortex to layer VI, close to the white matter. For humans, the cortical
thickness varies from 3 to 6 mm. The organization of the cortex is not only laminar. It
has been observed that neurons one meets when moving perpendicular to the cortex tend
to be connected to each other and to respond to precise stimulations with similar activities
throughout the layers. They form a cortical column. This columnar organization of the cortex
was discovered by Mountcastle with a pioneering experiment in 1957 [157]. With electrode
recordings, he showed that neurons inside columns of 300 to 500 um of diameter displayed
similar activities. This is illustrated in figure More detailed information about cortical
structure and function can be found in [121], (124 [175].

The gray matter is composed of neurons and glial cells. The human brain contains around
10'2 neurons. The neurons are linked together and each neuron has up to 10000 connections.
The neuron is a cell with a special shape: it is composed of a soma or cell body, containing the
nucleus, a dendritic tree and an axon, as shown in figure The white matter is formed
predominantly by myelinated axons interconnecting different regions of the central nervous
system.
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(b) Gyri medial view

Figure 1.6: Main gyri presented in lateral (a) and medial (b) views (From 20th U.S. edition of
Gray’s Anatomy of the Human Body, 1918 (public domain)).


http://en.wikipedia.org/wiki/Grays_Anatomy
http://en.wikipedia.org/wiki/Grays_Anatomy
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Figure 1.7: Cortical homunculus by Wilder Graves Penfield [174]]. It represents the mapping
the primary sensory (S1) and primary motor (M1) cortex. S1 lies on the posterior wall of the
central sulcus (cf. post central gyrus in figure and M1 on the anterior part. These
maps were established by direct electrical stimulation on patients during surgery. Primary
auditory cortices (A1), left and right, are represented in the temporal lobes.

Figure 1.8: Cortical layers. Layer organization of the cortex (a) Weigert’s coloration shows
myelinated fibers (axons) and so the connections inside and between layers, (b) Nissl’s col-
oration only reveals cell bodies (c) Golgi’s coloration shows the whole cells (From [163]).
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(b) Lateral schematic view (From 20th U.S. edition of (c) Medial schematic view (From 20th U.S. edition of
Gray’s Anatomy of the Human Body, 1918 (public do- Gray’s Anatomy of the Human Body, 1918 (public do-
main)) main))

Figure 1.9: Brodmann areas. In 1909, Brodmann [25] divided the cortex into 52 cytoarchitec-
tonic areas according to the thickness of the cortical layers. For example, layer IV is very thin
in the primary motor cortex (area 4) while it is very thick in the primary visual cortex (area
17).
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Figure 1.10: Mouncastle’s experiment and the discovery of the columnar organization of the
cortex. When he moved an electrode perpendicular to the cortex surface, he encountered neu-
rons with similar electrical activities while moving the electrode obliquely gave him different
types of recordings. So he showed the existence of 300-500 pm wide columns in the cortex.


http://en.wikipedia.org/wiki/Grays_Anatomy
http://en.wikipedia.org/wiki/Grays_Anatomy
http://en.wikipedia.org/wiki/Grays_Anatomy
http://en.wikipedia.org/wiki/Grays_Anatomy
http://en.wikipedia.org/wiki/Grays_Anatomy
http://en.wikipedia.org/wiki/Grays_Anatomy

Dendrite
Axon Terminal

Node of

Node
Cell body o V'e

Schwann cell

Myelin sheath
Nucleus

Figure 1.11: Diagram of a neuron (Source wikipedia.org)..

Figure 1.12: Neurons observed with an electron microscope.
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1.1.2 How neurons produce electromagnetic fields

A neuron can be viewed as a signal receiver, processor and transmitter: the signal coming
from the dendrites is processed at the soma and generates (or not) an action potential which
is carried along the axon towards other neurons. During this process neurons produce elec-
tromagnetic fields at the basis of the M/EEG measurements.

The signals in the dendrites are called post-synaptic potentials (PSPs). The signal emitted,
moving along the axon, is called the action potential (AP).

Post-synaptic potential (PSP)

The junction between the axon terminal of a neuron and a dendrite or the soma of another
neuron is called a synapse. It can be a direct electrical junction, but synapses are mostly
chemical: when an action potential reaches the end of an axon terminal, it leads to the release
of neuro-transmitters. Neuro-transmitter molecules that reach an other neuron affect the
membrane permeability so that specific ions (Na+ and K+) penetrate inside, increasing the
resting state potential of about 10 mV with a duration of 10 ms. This is called a post-synaptic
potential, shown in figure[1.13]

Action potential

If many post-synaptic potentials sum up, the membrane potential of the soma can locally
reach a certain threshold which causes the neuron to “spike”: some voltage-sensitive chan-
nels open, allowing positive ions to flow inside the cell, and the potential inside the neuron
increases suddenly. The potential comes back rapidly to its resting state (in 1 ms), with the
help of other voltage-sensitive channels that allow a compensating outward current. Because
of this peak of potential, the nearby regions also reach the threshold: the action potential
thus propagates along the axon, as illustrated in figure See [[125] for more details on
the the ion mechanisms responsible for these two types of potentials.

Action Potentials

%
Axon !

Synapse ’

@\ Dendrite

Action Potentials

L
Axon

Neuron Spike
body initiation zone

Figure 1.13: From action potentials to post-synaptic potentials (PSP). Illustration with a
chemical synapse. The action potentials reach the neuron on its dendrites via chemical
synapses. It creates post-synaptic potentials that by summation generate other action po-
tentials that can propagate along the axon of the neuron.

These two types of potentials create some displacements of charges and therefore some
very small currents within the neuron: the intracellular or primary currents. These currents,
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Figure 1.14: Action potential propagation (Source kvhs.nbed.nb.ca).
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however, create very tiny electromagnetic fields that cannot be directly measured outside of
the head with M/EEG. In order to have measurable signals, these tiny fields need to sum
up. Action potentials have a temporal duration close to the millisecond making them hard
to synchronize in order to sum up. On the contrary, PSPs have a temporal duration around
10 ms. This makes PSPs much better candidates to produce measurable electromagnetic
fields outside the head. The temporal resolution of the phenomena points out a necessary but
not sufficient condition to get good M/EEG signals. Electrical currents are vectorial quanti-
fies. They have both an amplitude and a direction. In order to actually sum up, the currents
produced by the neurons need to have a common direction. Following the conclusions of [159]],
it is necessary to add the field amplitudes of about 10* neurons with dendrites having a com-
mon direction to produce a field amplitude that is detectable from outside the head. For
instance, stellate cells which have dendrites in all directions can not produce a measurable
field. Only neurons called pyramidal cells have the regular geometric structure organization
that is required to sum up the fields generated by their post synaptic potentials.

Pyramidal neurons

The bodies and dendrites of pyramidal neurons are located mostly in the gray matter of the
cortex, and they all have a thick dendrite (called apical dendrite) extending towards the ex-
terior of the cortex, perpendicularly to its surface, as shown in figure These neurons
constitute about 70%-80% of the neocortex, and their density is such that theoretically the
simultaneous activation of an area of 1 mm? of the cortex would be detectable. However,
an experimental study showed that the minimal detectable activity spreads over an area of
about 100 mm? [100].

(a) Pyramidal neurons (b) Pyramidal neurons and the produced intracellular
currents.

Figure 1.15: Pyramidal neurons in medial prefrontal cortex of macaque (Source brain-
maps.org).

This structured organization of pyramidal cells has been discovered by invasive studies
that provided experimental results like the one presented in figure Nowadays, due
to the progress of brain imaging devices like MRI, more precisely diffusion MRI, this or-
ganization can be observed non invasively. Diffusion MRI offers the possibility to measure
the anisotropy of the diffusion of water molecules in living tissues. This is presented in fig-
ure In order to obtain images with such a good signal-to-noise ratio, the acquisition
was performed ex-vivo with a very long period of scanning. Note that the principal directions
of diffusion in the gray matter follow the organization of the cortical layers and the general
structure of pyramidal neurons assemblies.
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(a) Principal eigenvector directions from tensor fitting (b) Tractlets rendered in 3D (courtesy of Gordon
superimposed on T1 MRI Kindlmann)

Figure 1.16: Principal directions of water molecules diffusion estimated with tensor fitting
on Diffusion MRI. Orientations appear to be very well organized with directions given by the
normals to the cortical mantle. (Data: Dr J McNab & Dr K Miller, FMRIB, Oxford 3T Siemens
ex-vivo whole-head diffusion imaging, .7x.7x.7mm).

Models of brain electric activity for EEG and MEG

The consequence of the latter observations for EEG and MEG is that the brain activity is
observed at a macroscopic scale with respect to the size of a neuron. They capture the elec-
trical activity of structured assemblies of neurons. The typical size of the neuron assemblies
observable with EEG or MEG is larger than the size of cortical columns but smaller than the
size of a cortical area. For the last three decades, neuroscientists have built models of neuron
assemblies [48], [76], (113}, 199, 226, 237], based on the knowledge of neuronal dynamics, but
these dynamics are far from being fully understood.

These observations lead us to the problem of modeling brain electric activity for EEG and
MEG. The main assumption is that the measurements corresponds to the activity of one or
several assemblies of neurons. For one assembly, the EEG or MEG measurements only reflect
its average activity, but usually the intrinsic dynamics of the group of neurons is unknown.
As a consequence, for EEG and MEG, the most common model of the brain activity assumes
that each source reflects the average activity within an assembly of neurons. The intrinsic
dynamics of an assembly of neurons is hidden due to this averaging. Note that such a model
agrees with the columnar organization of the cortex mentioned above. As explained in section
the area of a neuron assembly is small compared to the distance to the observation point
(the M/EEG sensors). Therefore, the electromagnetic fields produced by an active neuron
assembly at the sensor level is very similar to the fields produced by a current dipole. As a
first approximation, this makes current dipoles relatively good models for active brain regions

(cf. figure[1.17).

Assuming the simple dipolar model for current generators whose activity is measured by
M/EEG, the electric and magnetic fields produced by an active brain region can be schemat-
ically represented like in figure and figure The summation of the neural currents
produced by elementary generators can be approximated by an equivalent current dipole
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Figure 1.17: The activity of a small region of the brain can be approximated by a current
dipole. The position of the dipole (the dot) is at the center of the activated cortex area (in red)
and the moment of the dipole (the green arrow) corresponds to the average orientation of the
pyramidal neurons in this region (perpendicular to the cortical surface).

(ECD). The electromagnetic fields produced by this ECD are strong enough to be measured
outside the head. This raises the question of how to measure these fields.
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Figure 1.18: Electric field produced by neural currents modeled by an equivalent current
dipole (ECD)

1 2 INSTRUMENTATION FOR MEG AND EEG
o

1.2.1 Electroencephalography (EEG)

The first human EEG recordings date back to the first measurements by the German physi-
ologist and psychiatrist Hans Berger in 1929. The recording is obtained by placing electrodes
which measure the electric potential on the scalp of the subject (cf. figure|1.20).
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Figure 1.19: Magnetic field produced by neural currents modeled by an equivalent current
dipole (ECD)

(a) EEG recordings in 1949 (b) Modern EEG recordings (Odyssée project team, IN-
RIA Sophia Antipolis)

Figure 1.20: EEG equipment: the electrode helmet is placed on the head of the subject, then
the signal is processed through an amplifier.

To obtain congruence among different laboratories, a standard electrode placement scheme
was proposed by Jasper in 1958 [115], basing the positioning on head anatomical landmarks
(see figure [1.22). This standardization marked the beginning of modern electroencephalog-
raphy. The number of electrodes used in research has increased over the years from around
19 of Jasper’s time to as many as 512 today, however the 10-20 system with 19 electrodes is
still the dominant standard in clinical settings and most research is carried out with 19 to 64
electrodes.

In a modern EEG system, the electrodes are connected to an amplifier and the signals are
then digitized and stored on a computer. Signals measured by EEG sensors have an order of
magnitude in the range of a few V. An example of EEG recordings is presented in figure|1.21]

The advantage of this device is its simplicity and cheap cost. Unfortunately, the low con-
ductivity of the skull tends to diffuse the electric potential. As illustrated in figure at
the surface of the scalp, the potential only reflects roughly the underlying brain activity.
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Figure 1.21: Sample EEG recordings. Each time series is the signal measured by one elec-
trode. Electrodes have names (e.g., FP1, F3, C3 eic.) function of their position of the scalp (cf.

figure [1.22).
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Figure 1.22: The international 10-20 system seen from (A) left and (B) above the head. A =
Ear lobe, C = central, Pg = nasopharyngeal, P = parietal, F = frontal, Fp = frontal polar, O =
occipital. (C) Location and nomenclature of the intermediate 10% electrodes, as standardized
by the American Electroencephalographic Society. (Adapted from [67]).
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(a) 3D topography (b) 2D topography

Figure 1.23: The electric potential distribution measured with EEG on a somato-sensory
experiment 20 ms after stimulation (Adapted from [211]).

1.2.2 Magnetoencephalography (MEG)

The magnetic counterpart of EEG, the magnetoencephalogram, was recorded 40 years later
(1968), using room temperature coils and signal averaging on the basis of EEG [35]. Fur-
ther progress in MEG required highly sensitive magnetic detectors based on superconducting
and quantum phenomena and are called SQUIDs (superconducting quantum interference de-
vice). In 1969, Zimmerman and colleagues developed the first SQUIDs. They were first used
for MEG in 1972 by David Cohen [36]. After this pioneering work, the field of MEG devel-
oped first by using single-channel devices, followed by somewhat larger systems with 5 to 7
channels in the mid 1980s, then systems with 20 to 40 sensor arrays in the late 1980s and
early 1990s. The first MEG systems with a helmet covering the entire cortex were introduced
in 1992. Today MEG systems have several hundreds channels in a helmet arrangement (see
figure allowing to capture the signal originating from the whole brain simultaneously.
More details can be found in 217].

MEG measurements span a frequency range from about 10 mHz to 1 kHz and field mag-
nitudes from about 10 fT for spinal cord signals to about several pT for brain rhythms. To
realize how small the MEG signals are, it should be recalled that the Earth’s field magnitude
is about 0.5 mT and the urban magnetic noise about 1 nT to 1 uT, which corresponds to a
factor of 1 million to 1 billion larger than the MEG signals. Such large differences between
signal and noise demand noise cancellation with extraordinary accuracy.

A MEG system is very expensive compared to EEG, because the SQUID sensors need to op-
erate at very low temperature, and for this reason are immersed in liquid helium. Moreover,
most often a magnetic shielded room is necessary to use the system. The main advantage of
the magnetic field measurements is that it is much less sensitive to the detailed conductivity
geometry of the head than the electric potential. The magnetic field observed outside the
head offers a more precise representation of the underlying brain activity, see figure [1.25|in
comparison to figure That is why, in spite of their high cost, MEG systems are very
attractive for the exploration of the human brain.

1.2.3 Other modalities for brain functional imaging

Brain functional imaging modalities can be classified in two categories: direct and indirect
measures of the neuronal activity. The direct measures, like M/EEG, provide access to the
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(a) Schematic representation (b) Schematic represen- (c) Recent MEG device (Magnetoencephalogra-
of historical MEG device with tation of full head MEG phy center, La Timone, Marseille)
a small number of sensors device

Figure 1.24: MEG devices. SQUID sensors are immersed in liquid helium.

-2.5e-13

Figure 1.25: Magnetic field measured with MEG on a somato-sensory experiment. It is a 2D
topography 20 ms after stimulation. Image obtained from the data used in [150].
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Figure 1.26: Spatiotemporal resolution and invasivity of brain functional imaging modalities.

electrical activity. Indirect measures estimate the brain activations only via the metabolic
and hemodynamic processes caused by the actual neuronal activations.

Neuroimaging modalities have each some characteristic features. They can be classified
in term of spatial resolution, temporal resolution and invasivity. This is summarized in fig-

ure

Stereo-electroencephalography (sEEG)

Like M/EEG, stereoelectroencephalography (sEEG) provides access to the currents produced
by the neuronal activity. By implanting depth electrodes surgically into the brain tissues,
SEEG records the electrical potentials directly within the cortical layers. Electrodes are a
few centimeters long and contain multiple contacts. Each contact record the local electric
potential. Around the location of the activation are observed large deflections in the signal
waveforms typical to sEEG recordings (cf. figure [1.27).

In the treatment of epilepsy, this ability to precisely locate the origin of a neuronal acti-
vation contributes to define the boundaries of the “epileptogenic zone”, i.e., the area of brain
generating the epileptic seizures. It can be necessary to surgically resect this area to get rid of
the epileptic seizures. This technique was introduced by the group of the Ste Anne Hospital,
Paris, France, in the second half of the 20th century [111] [200].

However, this technique although has some drawbacks. The access to neuronal currents is
invasive and the number of electrodes limits the recordings to very specific brain regions. In
comparison, the spatial resolution of M/EEG is more limited but it records a very distributed
cortical activation and is therefore not restricted to predefined brain regions.

Functional magnetic resonance imaging (fMRI)

Functional magnetic resonance imaging, or fMRI, works by detecting the changes in blood
oxygenation and flow that occur in response to neural activity. An active brain area con