
HAL Id: tel-00426903
https://theses.hal.science/tel-00426903

Submitted on 28 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On-line Handwriting Recognition using Support Vector
Machines and Hidden Markov Models approaches

Abdul Rahim Ahmad

To cite this version:
Abdul Rahim Ahmad. On-line Handwriting Recognition using Support Vector Machines and Hid-
den Markov Models approaches. Human-Computer Interaction [cs.HC]. Université de Nantes, 2008.
English. �NNT : �. �tel-00426903�

https://theses.hal.science/tel-00426903
https://hal.archives-ouvertes.fr


 
UNIVERSITE  DE  NANTES 

 
 
 

ÉCOLE   DOCTORALE 
 
 

SCIENCES  ET  TECHNOLOGIES 
DE  L’INFORMATION  ET  DES  MATHEMATIQUES 

 
 

 Année : 2008 
 
 

Thèse  de  Doctorat de l’Université de Nantes 
 

Discipline : Traitement du Signal et des Images 
Spécialité : Automatique et Informatique Appliquée 

 
 
 
 
 

Présentée et soutenue publiquement par 
 
 

Abdul Rahim AHMAD 
 

le 29 Decembre 2008 
 

à  Universiti Teknologi Malaysia 
 
 

« Reconnaissance de l’écriture manuscrite en-ligne par approche combinant  
systèmes à vastes marges et modèles de Markov cachés» 

 
 

Jury 
 
 
Rapporteurs : Jean-Marc OGIER    Professeur, Universite de La Rochelle 
  Chee Peng LIM    Professeur, Universiti Sains Malaysia 
 
Examinateurs : Sheikh Hussain SHAIKH SALLEH Professeur, Universiti Teknologi Malaysia 
  Patrick LE CALLET     Professeur, Universite de Nantes 
  Marzuki KHALID    Professeur, Universiti Teknologi Malaysia 
  Christian VIARD-GAUDI N   Professeur, Universite de Nantes 
 
 
Directeur de Thèse : Christian VIARD-GAUDI N 
Laboratoire : IRCCyN 
Co-encadrant : Marzuki KHALID 
Laboratoire : CAIRO, Universite  de Technologie de Malaisie 
 N° ED 0366-xxx 
 
 

 



i 
 

DEDICATION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To my wife and children. 
 



ii 
 

ACKNOWLEDGEMENTS 
 
 
I would like to thank: 
 

• God, for giving me interest to study, for giving me good health to be able to 
spend the time to study and for giving me the perseverance. 

 
• My supervisors, past and present :  

o Prof. Marzuki Khalid (UTM). 
o Prof. Christian Viard Gaudin (EPUN). 
o Prof. Dominic Barba (EPUN). 
o Prof. Dr. Rubiyah (UTM). 

 
• Universiti Tenaga Nasional (UNITEN) for providing me with the sponsorship 

for local study and later for full time 1 year study in Nantes. 
• Universiti Teknologi Malaysia (UTM) the first partner university in the joint 

PhD program. 
• Ecole Polytechnique de l’Universite de Nantes (EPUN) France, the second 

partner  institution in the joint PhD program.. 
• The French Embassy of Malaysia, for providing the 12 months bourse for my 

study in France between 2001 to 2005. 
• Professor Syed Abdul Kadir, Dean of College of Engineering, UNITEN, 

whom without fail, has supported my application for the leave to be away for 
the research study in EPUN. 

• Dr. Mohd. Sharifuddin and Dr. Zainuddin, Dean and Deputy Dean of College 
of IT, UNITEN, similarly for supporting my application for the leave. 

• Azizah, Alicia, Dr. Madan and Dr. Roslan for taking over or handling my 
teaching load in UNITEN while I was in France. 

• My wife, Azian Muhamad Ariff for being patient and understanding about 
my struggle to complete the PhD. 

• My children: Arifah, Afifah, Afiq and Atiqah for their patience to be without 
a father, while I am away in Nantes.. 

• Myself for believing that “I can do it”. 
 
Lastly, thanks to the Malaysia students in France who were always willing to host me 
when I visited them during my break from study. 



TABLE OF CONTENTS 

 

CHAPTER TOPIC PAGE 

 DEDICATION i 

 ACKNOWLEDGEMENT ii  

TABLE OF CONTENTS iii 

LIST OF TABLES x 

LIST OF FIGURES xii 

LIST OF SYMBOLS AND ABBREVIATIONS xv 

LIST OF APPENDICES xvii 

 

CHAPTER 1 INTRODUCTION 1 

1.1  Background 1 

1.2  Limitations of Handwriting Recognition System 5 

1.3  Overview of Handwriting Recognition System 7 

1.4  Statistical Pattern recognition 10 

1.5  Problems in Handwriting Recognition 11 

1.6  Recognition Modeling. 14 

1.6.1  Hidden Markov Model 14 

1.6.2  Neural Network 16 

1.6.3  Syntactic Modeling technique 17 

1.6.4  Support Vector Machine 17 

1.7  Scope and Objectives 20 



 iv

1.7.1  Thesis Layout 21 

 

CHAPTER 2 STATE OF THE ART IN HANDWRITING 

RECOGNITION 24 

2.1  Introduction 24 

2.2  Pattern Recognition 24 

2.2.1  Learning Approaches in Pattern Recognition 

Systems 26 

2.3  Developments in Speech Recognition 27 

2.4  State Of The Art in Handwriting Recognition 29 

2.4.1  Developments in Online Handwriting 

Recognition 32 

2.4.2  Developments in Offline Handwriting 

Recognition 37 

2.4.3  Issues in Preprocessing 38 

2.4.4  Issues in Segmentation Stage 40 

2.4.5  Issues in Word Recognition 42 

2.4.6  Issues in Post Processing Stage 45 

2.5  SVM in Speech and Handwriting Recognition 46 

2.5.1  SVM in Speech Recognition 46 

2.5.2  SVM with DTW Kernel in Character 

Recognition 47 

2.5.3  SVM as a Character Recognizer in a Hybrid 

System 47 

2.5.4  SVM in Multiple Classifier Methods 48 

2.5.5  SVM in Non Roman Handwriting 

Recognition 48 

2.6  Summary 49 



 v

CHAPTER 3 HIDDEN MARKOV MODEL 51 

3.1  Introduction 51 

3.2  Theory of  HMM 52 

3.2.1  Discrete-State Markov Process 53 

3.2.2  Extending Discrete-State Markov Processes 

to Hidden Markov Models 54 

3.2.3  Three Problems of HMM 56 

3.2.4  A Solution to the Evaluation Problem – The 

Forward Algorithm 57 

3.2.5  A Solution to the Decoding Problem – The 

Viterbi Algorithm 58 

3.2.6  A Solution to the Training Problem – The 

Baum-Welch Algorithm 60 

3.3  HMM Model Topology 62 

3.4  Using HMMs for On-line Handwriting Recognition 64 

3.4.1  Modeling Letters 64 

3.4.2  Modeling Words 65 

3.4.3  Modeling Sentences 67 

3.5  Discriminative Training of HMM 68 

3.5.1  Maximum Mutual Information (MMI) 

training 69 

3.5.2  Minimum Classification Error (MCE) 

training 72 

3.6  Discrete vs. Continuous Density HMM 74 

3.7  Hybrid of Neural Network and HMM 75 

3.8  Summary 76 

 



 vi

CHAPTER 4 SUPPORT VECTOR MACHINES 77 

4.1  Introduction 77 

4.2  Theoretical foundation 80 

4.2.1  Statistical Learning Theory 80 

4.2.2  Structural Risk Minimization 81 

4.3  SVM Formulation 83 

4.3.1  Linearly Separable Case 84 

4.3.2  Optimality Condition 88 

4.3.3  Linear Soft Margin and Non-Linear SVM 89 

4.3.4  Variations of the SVM Objective Function. 90 

4.4  SVM Implementations 91 

4.4.1  QP Optimization 92 

4.4.2  Multiclass SVM Implementation 96 

4.4.3  SVM Posterior Probability Output 96 

4.5  SVM Implementation Packages 98 

4.5.1  SVMTorch 98 

4.5.2  SVMLight 99 

4.5.3  LIBSVM 100 

4.6  Summary 100 

 

CHAPTER 5 HYBRID SVM/HMM HANDWRITING  

RECOGNITION SYSTEM 102 

5.1  Introduction 102 

5.2  Overview of the SVM based Character Recognizer 103 

5.2.1  Signal Representation 104 

5.2.2  Preprocessing and Normalization 106 



 vii

5.2.3  Feature Extraction 107 

5.2.4  Training and Recognition 108 

5.3  The online Word Recognition System 110 

5.3.1  Previous Systems 110 

5.3.2  General Description of the Hybrid 

SVM/HMM Word Recognition System. 112 

5.3.3  Preprocessing and Normalization 114 

5.3.4  Over Segmentation and Hypothesis 

Generation 116 

5.3.5  Feature Extraction 119 

5.3.6  Overview of Hybrid SVM/HMM Training 120 

5.3.7  Word Likelihood Computation 122 

5.3.8  SVM/HMM Framework 124 

5.4  Summary 128 

 

CHAPTER 6 DATABASE AND EXPERIMENTAL RESULTS 129 

6.1  Introduction 129 

6.2  Databases 130 

6.2.1  Data From UCI Repository 130 

6.2.2  IRONOFF Online and Offline Databases 131 

6.2.3  UNIPEN Online Character Database 134 

6.2.4  IRONOFF-UNIPEN Databases 135 

6.2.5  MNIST 136 

6.3  Experiments in Selecting an SVM package 136 

6.3.1  Comparing Training Time and Number of 

Support Vectors 137 

6.3.2  Comparing Number of Support Vectors 138 



 viii

6.3.3  Comparing Training and Test Accuracies 138 

6.4  Character Recognition Using SVM 140 

6.4.1  Experiments on SVM for Character 

Recognition 140 

6.4.2  Character Recognition Summary 143 

6.5  Experiences in Implementation of SVM in Other 

Areas 144 

6.5.1  SVM in Mathematical Expressions 

Recognition 144 

6.5.2  SVM in Electricity Fraud Prediction 146 

6.6  Word recognition Using Hybrid SVM/HMM 147 

6.6.1  A Word Recognition Example 148 

6.6.2  Comparing Word Recognition Performance 152 

6.6.3  Character Database Generation. 153 

6.6.4  Training of Character SVMs 155 

6.6.5  Recognition Result for Baseline Word 

Recognition System 156 

6.6.6  Retraining of SVMs 158 

6.6.7  Incorporation of Junk Characters in 

Retraining of SVMs 158 

6.6.8  Result Comparisons with Hybrid of TDNN 

and HMM approach. 160 

6.6.9  Analysis of Errors 160 

6.6.10  Conclusion 163 

6.7  Summary 164 

 

  



 ix

CHAPTER 7 CONCLUSIONS AND FUTURE 

RECOMMENDATIONS 165 

7.1  Dissertation Contributions 165 

7.2  Conclusion 166 

7.3  Future Work 167 

REFERENCES  168 



 x

LIST OF TABLES 

 

Table 2.1   Summary of Online Handwriting recognition systems 35 

Table 2.2 Offline handwritten word recognition systems 38 

Table 4.1 Commonly used Kernels for SVM 90 

Table 5.1  Comparison of the three handwriting systems developed 111 

Table 5.2 The 68 Character HMMs 125 

Table 6.1  Sample UCI Data Sets 130 

Table 6.2  Handwriting Databases 131 

Table 6.3  List of words in the IRONOFF lexicon 132 

Table 6.4  Words in the Check Word lexicon (30 words) 133 

Table 6.5  Words in the French Word lexicon (171 words) 133 

Table 6.6  Words in the English Word lexicon (26 words) 134 

Table 6.7  UNIPEN Benchmark Overview 135 

Table 6.8   UNIPEN Train-R01/V07 Dataset 135 

Table 6.9 Training Results for WBC data set (2 class) 137 

Table 6.10 Training Result (number of Support Vectors) 138 

Table 6.11  Training Accuracy (in %) 139 

Table 6.12 Summary of Test Accuracy (in %) 139 

Table 6.13  Detail Recognition performance of SVM on  IRONOFF-

UNIPEN character database 141 

Table 6.14 Comparing recognition performance between  TDNN and 

SVM for IRONOFF and UNIPEN  databases 141 



 xi

Table 6.15 Comparing recognition performance and number  of 

parameters using MLP, TDNN and  SVM for 

IRONOFF-UNIPEN database 142 

Table 6.16  SVM distance vs. probabilistic SVM based  recognition 

for IRONOFF and UNIPEN Databases 143 

Table 6.17 Comparison of TDNN and SVM on isolated Mathematical 

symbol recognition 145 

Table 6.18 Fraud prediction Accuray 146 

Table 6.19  Number of characters in generated character database 153 

Table 6.20  Word Recognition accuracy of during segmentation 155 

Table 6.21  Performance of the character SVMs 156 

Table 6.22 Word recognition rates of base recognizer 157 

Table 6.23 Improvements in Character and word recognizer  for the 

English Words 158 

Table 6.24 Recognition result Using TDNN for IRONOFF word 160 

 



 xii

LIST OF FIGURES 

 

Figure 1.1 Online vs. Offline handwriting system 3 

Figure 1.2 Offline signal and Online signal 3 

Figure 1.3 Categories of Handwriting Processing 4 

Figure 1.4 Handwriting Recognition (Plamondon, 1989) 5 

Figure 1.5 Problem with handwriting recognition systems 6 

Figure 1.6 Example of constraints imposed in Palm Grafitti 7 

Figure 1.7 Typical Handwriting Recognition System 8 

Figure 1.8 Variations in handwriting style –random sample 12 

Figure 1.9  Types of handwriting. Adapted from  (Tappert, 1994) 13 

Figure 1.10 Example of a 5 state HMM 15 

Figure 1.11  Thesis Layout 23 

Figure 2.1  A model of Pattern Recognition System 25 

Figure 2.2  English word “writing”, written in small letters 33 

Figure 2.3  English word “WRITING”, written in capital letters 33 

Figure 2.4  (a) INSEG based segmentation (left) showing 3 hypothesis 

σ3, σ4 and σ5 for INSEG method which are within slices 

1-2 and 2-3. (b) OUTSEG based segmentation (right) 

which shows segment σ4 within window 3-6 and 

overlapping windows σ5 and σ6 42 

Figure 3.1  A 3-state markov process 54 

Figure 3.2  A 3-state HMM with 2 observation symbols {0, 1} 56 

Figure 3.3  HMM Model Topology 63 



 xiii

Figure 3.4  HMM Modeling with emitting and non-emitting states 64 

Figure 3.5   Concatenation of character HMM models to form a word 

model 66 

Figure 4.1 Finding the optimal decision hyperplane 84 

Figure 4.2 Maximal Margin hyperplanes for two dimension examples 85 

Figure 5.1 Handwritten Character Recognition System 104 

Figure 5.2  Example portion of UNIPEN file showing the format  for 

online handwriting signal 105 

Figure 5.3  Resampling of Online character signal 106 

Figure 5.4  Direction features (above) and curvature feature  (below) 108 

Figure 5.5  The overall hybrid handwriting recognition system 112 

Figure 5.6  Normalization steps in word preprocessing 115 

Figure 5.7  The four Reference Lines 115 

Figure 5.8  Oversegmentation of the word “un” based on  minimum 

and maximum y points 117 

Figure 5.9     Character Hypothesis Generation: A simple example for 

offline  in slicing and generating hypothesis using the 

word “cts”, assuming 5 slices. 118 

Figure 5.10 Result of recognition and Segmentation 119 

Figure 5.11  Example of new x values for the hypothesis character.  

Shown in the table - only the first 4 points. Y 

coordinates remain. 120 

Figure 5.12  Character level training for word recogntion system 121 

Figure 5.13 Word Likelihood Computation – The best word is “cts”, 

through slice combination 1 & 2 for char c, 3 &4 for 

char t and slice 5 for character s. Bold and large P(i) 

indicates largest probability values for character i . 124 

Figure 5.14 An example character HMM with N states 125 



 xiv

Figure 5.15  Word HMM formed by concatenating  character HMM 126 

Figure 5.16 Word Recognition Graph 127 

Figure 6.1  Random examples from the IRONOFF Database 134 

Figure 6.2 Comparison of TDNN and SVM on isolated symbol 

recognition 145 

Figure 6.3 The online signals of the word "hi" 148 

Figure 6.4  The 6 Slices from the word "hi" 149 

Figure 6.5 Trellis for probability score of each hypothesis and the best 151 

Figure 6.6 Character Segmentation for the word “hi” 152 

Figure 6.7  Distribution of characters in the generated cheque word  

character database. Only a subset of lower case 

characters are present. 154 

Figure 6.8  Distribution of characters in the generated English word 

character database. Some character classes from 

character lexicon are not present. 154 

Figure 6.9  Distribution of characters in the generated french word 

character database.  All character classes in the 

character lexicon are present. 154 

Figure 6.10   Recognition accuracy during segmentation 155 

Figure 6.11 Word recognition rates for base recognizer 157 

Figure 6.12 Example error: reference line detection 161 

Figure 6.13 Example error: reference line detection 162 

Figure 6.14 Example error: wrong label. 162 

Figure 6.15 Example error: preprocessing 163 

 



 xv

LIST OF SYMBOLS AND ABBREVIATIONS 

 

ℜ  Real Numbers 

tO  Observation at time t  

)|( λOP  Word likelihood 

)|( Cxp  Character or class likelihood 

)|( OP λ  Word posterior probability 

)|( xCP  Character or class posterior probability 

)(xp  Probability density function (PDF) of continuous random 

variable x 

)(xP  Probability of a discrete random variable x 

α  Forward variable 

β  Backward variable 

a  Transition probability 

b  Observation probability 

)(xϕ  Kernel Mapping 

ANN Artificial Neural Networks 

RBF Radial Basis Function 

SVM Support Vector Machine 

HMM Hidden Markov Models 

MLP Multilayer Perceptrons 

MLE Maximum Likelihood Estimation 

MMI Maximum Mutual Information 



 xvi

MCE Minimum Classification Error 

DP Dynamic Programming 

SEGREC Segmentation by Recognition 

SDNN Space Displacement Neural Network 

TDNN Time Delay Neural Network 

RNN Recurrent Neural Network 

INSEG Input Space Segmentation 

OUTSEG Output Space Segmentation 

PDA Personal Digital Assistant 

IRONOFF IRESTE Online/Offline Isolated Handwritten Word Database  

UNIPEN Isolated Character Database collected by 

UNIPEN foundation 

IRONOFF-

UNIPEN 

Isolated Character Database which is a mixture of IRONOFF 

and UNIPEN character databases. 

MNIST Isolated Handwritten Digit Database Modified from NIST 

database 

 

  



 xvii

LIST OF APPENDICES 

 

 

APPENDIX A   PUBLISHED PAPERS 192 

APPENDIX B  LAGRANGE MULTIPLIERS METHOD AND  THE 

KARUSH-KUHN-TUCKER THEOREM 194 

1.  Problem formulation and the Lagrange function 195 

2.  Saddle points of the Lagrangian and Karush-Kuhn-

Tucker points 195 

APPENDIX C  Verbose output of recognition and segmentation 198 

 



CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Background 

 

Handwriting is one of the most important ways of communication. It was used 

since the Stone Age where symbols were drawn on stones in order to express or 

convey some meaningful information. Later, handwriting was done using pen and 

paper. Handwriting was used for personal benefits like writing reminders and notes 

for ourselves or for business purposes such as writing letters, statements and filling 

up forms. Thus handwriting then was by human to human for conveying 

information.  

 

The handwriting of each individual is unique because the process of handwriting 

is a physical process, which involves the mind, skeleton and muscles, controlled by 

the brain. Even so, individual handwriting could also differ, based on the mood and 

the state of mind of the person writing. The handwriting among the different stock of 

people (Europeans vs. Asian or French vs. Malaysian) are normally different, due to 

the conditioning and training during the period of growing up. However, even 

though the same stock of people has similar handwriting, it is an accepted fact that 

no two people have the same style of handwriting.  

 

Initially, in a modern computer, the most important device used to interface them 

to human is a keyboard. As computers are becoming ubiquitous and more people are 

using it, a more natural interface is needed. The most likely candidates could be 

voice or handwriting. Voice or speech recognition capability and handwriting 
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recognition capability built into a computer can simplify a lot of data entry, which 

was handled before by using keyboards. Handwriting recognition seems to be more 

practical than speech recognition because of the fact that in crowded rooms or public 

places one might not wish to speak to his or her computer due to the confidentiality 

or personal nature of the data. Another reason is that it might be annoying to others 

if someone keeps speaking to his or her machine. It is also already possible to have 

handwriting recognition in very small hand-held devices, while a speech recognition 

system is not yet suitable for use as a hand-held machine. However, on the contrary, 

in term of speed of data entry, speech system is apparently faster and it is much 

easier to dictate something than to write it.  

 

Pen-based interfaces in digital devices are popular lately and will play a more 

important role in human computer interfaces in the future. In personal digital 

assistant (PDA) which is a small handheld device, built-in pen-based handwriting 

recognition system is already used as an input method. The input method is 

interfaced to the applications in the PDA, such as personal agenda, address book and 

communication facilities. In personal computers, pen-based input device (pen or 

stylus and a pad) is sometimes used to replace the cumbersome mouse for 

handwriting capability and its small footprint.  

 

Automatic handwriting recognition is the transcription of handwritten data into 

text in digital format, for use by the computer. The area has been under investigation 

since the 1950’s. Since then there has been steady research effort into the area. Two 

categorizations are possible; first, in term of processing domains, second, in term of 

usage categories. Handwriting recognition can be categorized into two domains; 

online recognition, used in the pen-based interface or offline, used in automated 

recognition system for processing cheques, forms and the like. Figure 1.1  shows the 

difference between the two domains. In online handwriting recognition, handwriting 

signals are captured from the pen traces on the surface of a writing pad. The signals 

are the input to the recognizer, which then gives out the text of the handwritten 

input. In off-line handwriting recognition, static images of words written are used 

instead in the process. A difference between the two is that on-line handwriting 

recognition requires fast and immediate processing while off-line recognition can be 

performed within quite a relaxed time constrain. However, recently, this might not 
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always be the case because it is possible to collect forms containing online 

handwriting and then to process them in a batch system.   

 

 

Figure 1.1 Online vs. Offline handwriting system 

 

 In term of signals, online signals are normally the pen trajectories, recorded as the x 

and y coordinates of each point together with eventually the pressure and the time at 

each point, while offline signals are the image files recorded in a particular image 

format such as tiff or jpeg.  Figure 1.2  below shows the differences between the two 

signals.   

 

 

Figure 1.2 Offline signal and Online signal 

 

In the second categorization criteria, (Leedham, 1994) categorizes the automatic 

processing and recognition of handwriting into the categories as shown in  Figure 

1.3. 



 4

 

Figure 1.3 Categories of Handwriting Processing 

 

As seen in the diagram, handwriting processing can be divided into two major 

groups: (a) handwriting recognition and (b) handwriting analysis. Handwriting 

recognition aims to produce output for machine transcription. It can involve 

handwritten mathematical formulae, printed characters or cursive handwriting.  

Handwritten mathematical formulae can consist of numbers and alphabets as well as 

various mathematical symbols. Printed characters and cursive script handwriting 

involves whole words or separate characters or combinations of partly cursive and 

separate characters. Handwriting analysis on the other hand aims at using 

handwriting for authentication. Among applications in this area are: signature 

verification, writer identification, forgery identification and disguised writing 

identification.  

 

Another categorization is given by  (Plamondon, 1989) in Figure 1.4, (a more 

simplified version of Figure 1.3). They divided handwriting into text and signatures. 

A common application in both text and signature is in using them for verification. In 
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signature verification, handwritten signature is checked whether it belongs to a 

particular writer or not and does not normally identify the symbolic classes of 

characters in the signature. Signature identification is a biometric technique for 

personal identification where genuine signature signed by an authorized person is 

compared with the input signature of a person to be identified. 

 

Other pen computing related applications closely related to handwriting 

recognition is mathematical formula recognition where not just characters are 

recognized, their layout are also taken into account. Another one is in handwritten 

document retrieval, but here the so-called ink matching, does not identify the 

character classes. Finally, handwritten sketch recognition, is based mostly on non 

character data and typically ignores linguistic information. 

 

 

 

 

 

Figure 1.4 Handwriting Recognition (Plamondon, 1989) 

 

 

1.2 Limitations of Handwriting Recognition System 

 

Although there are many applications of handwriting recognition in both online 

and offline domain, the technology is not fully matured. There are many 

improvements that can still be made to make handwriting recognition more widely 

accepted in computer based applications. In online handwriting, the input signal 

consists of a time sequence of strokes. A stroke is the writing from the time when 



 6

the pen is touched down (pen down) to the time it is lifted (pen up). The characters 

in the writing signal are usually written in sequence, one character being completed 

before beginning the next, and the characters typically follow spatial order, from left 

to right except in certain characters like dots (i’s and j’s) and crosses (t’s and x’s). In 

these cases, the underlying portion of a word is first written, and then the word is 

completed by writing the crosses and dots. The presence of these delayed strokes 

posed some problems which if not handled will not provide a good recognition of 

input handwriting (Figure 1.5).   

 

In some applications and devices, in order to provide good recognition 

performance, constraints need to be imposed to user input, such as in the way in 

which handwriting need to be done. An example is in the “Graffiti” system used in 

the Palm devices (Figure 1.6).  Generally, there is no system that can be used in all 

environments. Each system is somewhat constrained to work in a particular target 

environment.  

 

 

Figure 1.5 Problem with handwriting recognition systems 

 

In many researches in handwriting recognition, other than constraining 

handwriting styles, those that work on unconstrained handwriting input, address only 

on a few specific areas such as writer dependent systems or systems that utilize only 

some special small lexicon. For example, they might only cater for the recognition of 

handwritten characters or numbers and recognition of words from a small specific 

lexicon. As constraints in the handwriting are reduced, the problem will become 

more complex because the recognition system needs to handle various limitations, 

thus, this will affect the recognition accuracy. 
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Figure 1.6 Example of constraints imposed in Palm Grafitti  

handwriting recognition system  
 

 

1.3 Overview of Handwriting Recognition System 

 

There are many different techniques for handwriting recognition. One generic 

model of handwritten word recognition system that can be used for our discussion is 

as follows. The description does not describe a standard but it is typical of most 

present recognition systems. Figure 1.7 gives a graphical summary of the 

description.  

 

The input to the system is the word to be recognized which is a word image in 

the case of off-line and a series of captured information representing the pen trace 

(the strokes or characters) of the word in the case of an online system. The 

discussion is similar for both offline system and online system except that the nature 

of the corresponding implementation of each process might be a little bit different. 

The output of the system is a text representation of the input word signal presented 

to the system. In the model, there are three main components; the front-end module, 

the recognition module and the post processing module. Each module performs their 

required functions depicted as sub modules within the modules.  
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Figure 1.7 Typical Handwriting Recognition System 
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First, the unknown handwritten word presented to the system needs to be 

transformed into a form understandable to the recognition computation engine. The 

front-end module needs to extract information from the presented word in the most 

efficient form for presentation to and processing by the recognition module. In the 

front-end processing, the word signal, first needs to be preprocessed to remove 

undesired variability that will cause difficulties in the recognition process. 

Operations like reference lines detection and correction to some variations like 

rotation, size and slant are performed. Secondly, words are segmented into a 

sequence of basic recognition unit such as characters or parts of characters. Most 

systems will perform this step; however, there are some that do not. In that case, the 

word is treated as a whole and recognition is a global process where characters are 

not first recognized. Thirdly, the segmented preprocessed unit needs to be 

transformed into a compact feature representation. This process involves extracting 

discriminant features to build up a list of feature vectors to be used in the recognition 

stage. 

 

The recognition module in the system involves using a trained module that 

recognizes basic individual units mentioned earlier and their concatenation in the 

formation of the word. The word recognition, as will be described in the next 

section, includes a comparison of the test pattern (the observed word) with each 

class reference pattern (words in the lexicon) and measuring a similarity score (in the 

form of distance or probability score) between the test pattern and the similarity 

pattern. The pattern similarity score is used to decide which pattern best matches the 

unknown pattern. The implementation of this recognition module in previous 

systems have been in a number of ways such as dynamic programming, hidden 

markov model, neural network, expert system, k-nearest neighbor and other 

combination of  techniques. Normally, the process of recognition provides a list of 

N-best word hypotheses where N can lie between 1 and 10. The list can be further 

post processed to obtain a better list of word hypotheses.  This approach taken 

during the stage of recognition falls under the category of statistical pattern 

recognition, the basis of which will be described in the following section. 

 

The post-processing module is used to verify the N-best list and may also 

perform rejection of unlikely hypotheses. With the help of some source of 
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knowledge in the form of a language model, some improvements in recognition can 

be obtained. A language model can be the lexicon, which is a library or list of 

possible words for recognition, or the words that are allowed as input to the 

recognition system, but can also include some statistical or structural properties of a 

given language. 

 

 

1.4 Statistical Pattern recognition 

 

As mentioned in section 1.3, at the recognition stage, the problem of handwriting 

is largely statistical in nature. It can be described by the following, according to 

statistical pattern recognition concept.  

 

The goal of word recognition is to find the most likely word representing the 

given handwriting signal or image.  If O is the observation sequence of a word 

signal, and W is the word in the lexicon, then the recognition system must choose a 

word 
^

W  that maximizes the probability that the word W was written given that the 

observation sequence O was observed: 

  

)|(maxarg
^

OWPW
W

=   (Eq. 1.1) 

.  

)|( OWP  is called the posterior probability. It is difficult to compute the above 

maximization. However, it can be simplified by using Bayes theorem, which states 

that: 

 

)(
)()|()|(

OP
WPWOPOWP =  (Eq. 1.2) 

 

where the probability )|( WOP  is the probability that the observation sequence O 

was observed if a word W was written or the likelihood of the observation. )(WP  is 

the a priori chance of the word being written and P(O) is the evidence or 
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normalization factor which represents the unconditional probability of the input 

signal. P(O) can be defined as follow: 

 

∑
=

=
K

k
kk WPWOPOP

1
)()|()(  (Eq. 1.3) 

 

where kW , k=1,2,…,K are the words in the lexicon and K is the total number of 

words. It is a scale factor that ensures that the posterior probabilities sum to unity. 

However, )(OP  is normally omitted because this term is common across all words.  

 

Therefore, ignoring )(OP , for a given new word signal input O, classification is 

made by selecting the word corresponding to the largest value of )|( OWP , that is: 

 

)()|(maxarg)|(maxarg
^

WPWOPOWPW
WW

==  (Eq. 1.4) 

 

Thus, the probability of the word being written is a product of the two 

probabilities. In short, this can be viewed as the discriminant function for a word, 

which is formed by joining the likelihood function and the prior probability. The 

process of finding these two probabilities and then, finding the resulting combined 

probabilities for all words in the lexicon and selecting the highest probability is what 

constitutes the recognition system. For a given input O, the probability of 

misclassification is minimized by choosing a word having the largest value of the 

product of the two probabilities.  

 

1.5 Problems in Handwriting Recognition 

 

Many researchers have conducted research in handwriting recognition in the last 

years. Although many problems have been solved, there are still many problems at 

hand. Despite the availability of computing power and progress made so far, the 

capability of handwriting recognition system is still incomparable to human 

recognition. As mentioned earlier, no two humans have exactly the same 

handwriting and even no two sets of handwritings of the same person for the same 
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word are exactly the same. Between people, the variability can include the slant, the 

size of characters, the shape and how cursive or disjoint the characters in the 

handwriting are. Variations in handwriting can also be in term of the applications, 

even if for off-line handwriting applications such as form processing, handwritings 

are normally guided by boxes.  Figure 1.8 shows a random sample of handwriting 

taken from IRONOFF database that demonstrates these differences. Figure 1.9 

adapted from (Tappert, 1994) show further variations. 

 

As mentioned in section 1.2, handwriting recognition can be performed by 

taking a word itself as a whole entity for recognition. This method has been used by 

a number of researchers. The model for recognition is the whole word model, which 

are trained to cater for variations and similarities within word such as co-articulation. 

Because the whole word is taken in training the system, segmentation is avoided. 

However, word model recognition is only applicable in cases where the lexicon is 

small.  

 

 

 

 

Figure 1.8 Variations in handwriting style –random sample  

of handwriting taken from IRONOFF database 



 13

 

 

Figure 1.9  Types of handwriting. Adapted from  (Tappert, 1994) 

 

For larger sized lexicon, whole word recognition is unfeasible. This is because 

since each words are treated individually, the recognition information they contain 

cannot be shared among words, which means that the larger the size of the lexicons, 

the larger the recognition model is. Because of this limitation, many word 

recognition systems uses smaller units as the basic model, either a character or an 

entity smaller than a character (sometimes termed as pseudo character or grapheme). 

Model used for word recognition is the concatenation of the basic model at the 

character or sub-character level. In this way also, having larger lexicon does not 

mean a bigger number of word model. It simply means constructing the new word 

model from existing smaller sub-unit model.  

 

Segmentation is then required to cut the words into smaller units. This creates 

another set of problems. Some words are written very cursively but some writers 

prefer to write disjoint characters when writing a word. Yet some, mix between 

cursive writing and disjoint without any particular order or rule, as can be seen in 

figure 1.8 and 1.9. In segmentation based word recognition system, the lexicon plays 

a very important role in the segmentation process itself as the recognition process 

determines the best and definitive segmentation points.  
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1.6 Recognition Modeling.  

 

There are many different methods of training and modeling of a handwriting 

recognition system. A few of them of relevance to the thesis will be discussed here 

with the aim of comparing the pros and cons between them and eventually focusing 

on the method  that have been used in this thesis. Among the existing methods are 

Hidden Markov Model (HMM), Neural Network (NN), Expert System, k-nearest 

neighbor and other techniques or combination of techniques. Some researchers 

divide these methods into two main descriptions; the syntactic, which involves 

describing character shapes in an abstract fashion and the statistics methods where 

the system learn from data directly without the implementer having to specify 

explicitly the structure or the knowledge into the system. HMM and NN falls under 

the statistical method. Support Vector Machine (SVM) which will be the focus of 

this thesis is another. 

 

1.6.1  Hidden Markov Model 

 

In many handwriting recognition systems, the basic modeling component for 

recognition is the Hidden Markov Model (HMM). This follows from its success in 

speech recognition. The ability to statistically model the variability of handwriting is 

its major strength. HMM uses Markov process, represented as a state machine to 

model the temporal evolution of handwriting.  The probability distribution 

associated with each state in an HMM, models the variability in the handwriting.  

 

In this section, a very brief description of HMM is given, to facilitate 

explanations in this introductory chapter. Detail accounts will be given later in 

chapter 3. Figure 1.10 depicts a simple five state HMM.  It can be attributed with the 

following parameters: N – the number of states in the model (5 states), probabilities 

of transition between states denoted by matrix A (consisting of probabilities a11, a12, 

etc) and probability of emission or output denoted by matrix B (consisting of 

probabilities b1(ot), b2(ot), etc where o is the input observation). B represents the 

probability of observing an input feature vectors in a given state. 
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Figure 1.10 Example of a 5 state HMM 

 

HMM uses Bayes classifiers, which gives likelihood ratio for classification. The 

output probability distributions could be parameterized in either discrete or 

continuous distribution. The choice depends on the level of modeling accuracy 

needed and the amount of training data available. Continuous distribution is more 

accurate, with the disadvantage of complexity in modeling and computation. The 

most commonly used probability distribution function used in HMM is the 

multivariate Gaussian distribution as follows: 
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∑
 

(Eq. 1.5) 

 

Where n is the dimension of the observation vector ot at time t and the 

subscript j indicates that the Gaussian under consideration belongs to the jth state of 

the HMM. ∑
j

is the covariance matrix which normally is taken to be a diagonal 

matrix taking assumption that each feature components are independent of each 

other.  

 

Using HMM, training is thus, estimating the parameters of the recognition 

model, using some parameter estimation model. One popular method is by using 

maximum likelihood estimation (MLE) to maximize the probability distribution that 

models the observation vector in the modified form of equation 1.5.  The 
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Expectation maximization (EM) algorithm is normally used in the MLE procedure. 

MLE procedure however, lacks discriminative power because only in-class data is 

used in modeling a particular class model. Fitting Gaussian and applying Bayes rule 

for classification also does not give an optimal classifier. There is always some 

classification error because the decision threshold always occurs inside one of the 

classes, which could be due to some overlapping features in the feature space of the 

classes. To obtain discriminative power, HMM could be trained by including out of 

class data, using a number of optimization methods such as minimum mutual 

information (MMI) estimation or the minimum classification error (MCE); two 

issues that will be discussed in chapter 3 .  

 

1.6.2  Neural Network 

 

Neural network (NN) is a discriminative classifier in that all in class and out of 

class data are used in the training. NN body of literature is enormous because it has 

been used very widely in many areas. NN have been used in handwriting recognition 

system with success. However, compared to HMM, they require more computation. 

In addition, and of more importance, is that, they are not able to model time 

variations in handwriting signal, which is important for word recognition. They are 

static classifiers which require fixed size feature vector. Due to that, they are 

normally used only in character or digit recognition. There are also some other 

weaknesses of NN as a discriminative classifier, some of which are as follows. 

 

a) In term of generalization property, NN is known to over fit data unless specific 

measures are taken to avoid that (Ganapathiraju, 2004).  Although cross-

validation can be done to avoid that, it is quite hard to achieve good 

generalization when only a limited amount of training data is available. 

 

b) The optimization process in gradient-based NN learning is according to the 

principle of empirical risk minimization (ERM) using the back-propagation (BP) 

algorithm (Rumelhart, 1986). Though this guarantees good performance on the 

training data, performance on the test data is difficult to obtain. 
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c) Choosing Model Topology is another issue. In most connectionist system, the 

topology is needs to be fixed prior to training (Bodenhausen, 1993). Often, this 

requires some expert knowledge of the data. Learning the topology automatically 

is possible but quite time and resource consuming. 

 

d) Training Convergence is considerably slower (as compared to ML estimation in 

HMM). In fact, NN training (for that matter, MLE training also) does not 

guarantee global optimum.   

 

1.6.3  Syntactic Modeling technique 

 

In Syntactic Modeling technique, handwriting recognition is based upon the idea 

that character shape can be described in an abstract fashion. Using expert system is 

one of the methods. Generally, an expert system incorporates human knowledge 

about the problem domain into stored knowledge. It basically consists of knowledge 

acquisition part that obtains knowledge and expertise from human experts in the 

form of rules, the knowledge representation part that provides methods used to 

represent human knowledge and expertise in the computer system and knowledge 

inferencing part that applies stored expertise to make decisions.  

 

Syntactical handwriting recognition does not require a large amount of data for 

training, not as much as used in statistical handwriting recognition. The success of 

this method has largely been limited because of the complexity and ambiguity of 

handwriting styles and difficulty in formulating general and reliable rules as well as 

in automating the generation of these rules from a large database of characters and 

words. However, this approach has been revived recently with the use of fuzzy rules 

and grammars that use statistical information on the frequency of occurrence of 

particular features (Parizeau, 1995) (Malaviya, 1994) (Anquetil, 1997). 

 

1.6.4  Support Vector Machine 

 

A good classifier needs to have good generalization, minimum risk, better 

convergence properties and better discrimination power and possess a model 



 18

topology that does not have to be fixed a priori. This has led to the support vector 

machines (SVM) which is the focus of this thesis.   

 

SVM had been proven to generalize well. SVM generalization properties allows 

for a bound on performance on a given test set to be part of the training process 

without having to actually test the system. Normally, empirical risk minimization 

(ERM) as used in NN is the most common optimization criteria used to estimate 

classifiers. However, using ERM, the solution is not unique. There are several 

configurations of the classifier that can achieve minimum risk specified in the ERM, 

on the training set (as seen in NN training). There is a need to decide on the 

configuration that has the least upper bound on the expected test set error. This is the 

principle of structural risk minimization (SRM). Support vector machines are based 

on this principle. With SRM, a classifier will have the least expected risk on the test 

set and therefore a good generalization. 

 

This section introduces SVM but in chapter 4, the theoretical principles of SVM 

will be discussed in detail. In the simplest form, SVM is a linear binary (2-class) 

hyper plane classifier. For a non-linear case, SVM implicitly transform the non-

linear data to a high dimensional linear space and construct a linear binary classifier 

in this space. This is done implicitly, without having to perform any computations in 

the high dimensional space. Because of this, data of high dimension or even sparse 

data pose no problem when implementing SVM. The eventual hyper plane in the 

high-dimensional transformed space actually results in complex decision surfaces in 

the input data space.  

 

There have been many successful cases of using SVM in many problems, 

classical or new.  In most cases, SVM consistently performed better than other non-

linear classifiers. Initial use of SVM reported was in classification of handwritten 

digit. However, widespread usage of SVM was initially hampered by the 

unavailability of an efficient optimization method, which can handle large data 

efficiently and fast without consuming much of computer memory. With ongoing 

development of efficient optimization methods, SVMs now handle the problem. 

There are many applications of SVM up until now, in many areas, too many to list 

all. Randomly picked list follows: e-learning, text classification, handwritten 
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character recognition, handwritten character categorization, image clustering, speech 

recognition, speaker verification, forecasting, fraud prediction, protein structure 

prediction, land cover classification, intrusion detection, cancer prognosis, particle 

and quark-flavor identification in high energy physics, object detection, text 

categorization and time series prediction. A detail reference will be provided in 

chapter 4. 

  

In speech recognition, SVM was used with HMM in the first SVM-based large 

vocabulary speech recognition system (Ganapathiraju, 2002). The hybrid system 

uses HMM to handle the temporal evolution of speech and SVM to discriminatively 

classify frames of speech. It was a first successful application of SVMs to 

continuous speech recognition. The system improves performance over traditional 

HMM-based systems.  The hybrid system achieves a 10% improvement relative to 

an HMM system, which is significant.  

 

Recent application of SVM in handwriting recognition was mainly at the 

character recognition level. Usually, SVM (with kernel) are designed to deal with 

data of fixed dimension. However, on-line handwriting data is not of a fixed 

dimension, but of a variable-length sequential form. In this respect, SVMs cannot be 

applied to HWR in a straightforward manner. (Bahlmann, 2002) uses a special SVM 

kernel for sequential data, the Gaussian dynamic time warping (GDTW) kernel that 

instead of the squared Euclidean distance in the usual Gaussian (RBF) kernel, it uses 

the dynamic time warping distance. Bahlmann achieved superior recognition rate in 

comparison to an HMM-based classifier. 

 

The last two applications of SVM described earlier provide the motivation 

for us to research into using SVM for handwriting recognition at a higher level. The 

author has already used SVM for character recognition and have achieved more 

satisfactory result than Bahlmann in term of character recognition using SVM 

(Ahmad, 2004b). A further investigation into using SVM in a hybrid system of SVM 

and HMM similar to the work of Ganapathyraju is the objective of this thesis. 
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1.7 Scope and Objectives 

 

The author has presented a brief description of the background of the issues and 

problems in handwriting recognition. A brief description of the tools used in 

handwriting recognition has also been given. Many problems are still not 

satisfactorily solved. Due to the wideness of the scope that falls in the arena of 

handwriting recognition, to tackle them all will require immense resources. Thus in 

this thesis, the focus is on a specific issue relating to improving the handwriting 

recognition system using new methods. The author has focused on the recognition 

aspect in a handwritten word recognition system. The aim is to investigate whether it 

is possible to increase the word recognition accuracy using segmentation based 

recognition method in the context of a hybrid system. Due to the emerging use of the 

learning method of Support Vector Machine (SVM) and the immense popularity of 

Hidden Markov Model (HMM), the author has chosen to investigate the 

effectiveness of using SVM in character recognition itself and its use in a hybrid 

environment of a segmentation based handwritten word recognition system. In this 

system, the discriminative property of SVM is exploited in tandem with the class 

representative property of a HMM. 

 

 The primary goal of this thesis is to propose a hybrid SVM/HMM handwritten 

word recognition system that caters for a medium sized lexicon. The system should 

be able to handle connected cursive handwritten words. The system borrows some 

ideas on existing systems based on discrete HMM and a hybrid of Neural network 

and HMM. Although the eventual aim is to adapt a simplified system based on word 

level discriminant training, in this thesis, emphasis is put in character level 

discriminant training, due to the difficulty in deriving correcting gradient from word 

level to character or sub-character level training. The final product is a working 

system which proven the concept and the tests done gives some ideas as to what are 

the problems and the recommendations in developing such a system.   

 

The main contributions of this thesis are as follows: 

 

a) Formulation and parameterisazion of SVM for handwriting recognition problem. 
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b) Testing of SVM on major character database, proving the effect of various 

parameterizations in improving character recognition. 

 

c) Adaptation of SVM for posterior probabilistic measures output. 

 

d) Method for segmentation and feature extraction of character segments from 

online word signal. 

 

e) Use of SVM in a hybrid situation with HMM in improving the discrimination 

ability of the overall recognizer. 

 

f) Comparison of SVM/HMM hybrid implementation with other hybrid systems in 

handwriting recognition. 

 

 

1.7.1  Thesis Layout 

 
The main content of this thesis is divided into 7 chapters. This first chapter 

presents some background, the issues related to handwriting recognition and the 

scope, aim and contribution of this thesis. Chapter 2 presents the state of the art of 

handwriting recognition. Pattern recognition concepts and statistical pattern 

recognition issues are first introduced. Then speech recognition issues which had 

direct influence in handwriting recognition is discussed, followed by online and 

offline handwriting recognition issues. Online handwriting recognition using 

Support Vector Machine and Hidden Markov Model are then elaborated.  Further 

issues on the use of SVM for character recognition are then discussed.  

 

In Chapter 3, theoretical foundation of Hidden Markov Model (HMM) is 

discussed. After introducing Markov chain, HMM parameter estimation and training 

are presented. Forward-backward, Baum-Welch, Viterbi algorithms and the usage of 

HMM in discrete handwriting recognition system are discussed. The uses of HMM 

in hybrid handwriting recognition systems are then given some accounts.  
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SVM is discussed in Chapter 4. The theoretical foundation of SVM is presented 

here. Issues like Empirical Risk Minimization (ERM), Structural Risk Minimization 

(SRM) and the concept of maximal margin classifier are introduced. Aspects of 

SVM estimation and training are then discussed. For the adaptation of SVM in the 

hybrid system, SVM probabilistic output is discussed. Then, the use of SVM for 

handwritten character and word recognition is presented. 

 

Chapter 5 provides an overall description of the online handwriting recognition 

system. After an overview, preprocessing is presented, followed with the training 

and recognition procedure in the SVM/HMM hybrid system. Chapter 6 outlines the 

experiments conducted and the experimental results. After providing some details 

about the overall databases in handwriting recognition and the ones used (UCI, 

MNIST, IRONOFF and UNIPEN), a description about the experiments conducted is 

given. Results for SVM Selection, the use of SVM in character recognition and the 

use of SVM in two other related areas that the author is involved in, namely 

mathematical symbol recognition and fraud prediction are discussed.   

 

Word recognition results using the hybrid SVM/HMM system are then given in 

chapter 6 together with some ad hoc comparisons with the results of other 

comparable systems, namely the ANN/HMM offline system and the hybrid 

SVM/HMM used in speech recognition. Error analyses of the system are also given 

in this chapter. Finally, in chapter 7, a conclusion and suggestion for future work are 

given.  Figure 1.11 summarizes the thesis layout in graphical form.  
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Figure 1.11  Thesis Layout 
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CHAPTER 2 

 

 

 

STATE OF THE ART IN HANDWRITING RECOGNITION 

 

 

 

2.1 Introduction 

 

 

In this chapter, a review the developments in the field of handwriting recognition 

are made. First, an introduction to pattern recognition concepts and statistical pattern 

recognition issues is given. As developments in speech recognition have had direct 

influence on handwriting recognition, the author review some aspects of the 

developments in speech recognition research in relation to handwriting recognition 

research. Then a look into the developments in handwriting recognition is made, 

both online and offline including elaborating on a few issues addressed earlier in the 

first chapter.  In both domains, much effort has been spent on the development of 

classification methods and algorithms. The most notable aim is to increase 

recognition accuracy or reduce error rate, while taking into consideration memory 

requirements and computation complexity. At the end of this chapter, a section is 

devoted towards discussing the perspective of the use of Support Vector Machine 

(SVM) in speech and handwriting recognition.  

 

2.2 Pattern Recognition        

 

Handwriting recognition is an application in the field of pattern recognition. 

Automatic recognition, description, classification and grouping of patterns are 

important problems in many engineering and scientific disciplines. (Watanabe, 
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1985) defines pattern as the opposite of chaos; an entity, vaguely defined that could 

be given a name, for example a fingerprint image, handwritten cursive word or 

human speech. Pattern recognition (PR) is the study of how machines can observe 

the environment, learn to distinguish patterns of interest from their background, and 

make sound and reasonable decisions about the categories of the patterns. The 

primary goal of pattern recognition depends on whether it is a supervised 

classification or unsupervised classification. In supervised classification, the input 

pattern is identified as a member of a predefined class. In  unsupervised 

classification the pattern is assigned to an unknown constructed class (Jain, 2000). 

Handwriting recognition really falls under supervised classifications as handwriting 

examples are used in building the recognizer. 

 

A model for pattern recognition is shown in Figure 2.1. As can be seen it is 

operated in two modes: training (learning) and classification (testing).  A PR system 

needs to be trained to obtain a recognition or classification model for use during 

classification. In training mode, features representing input patterns are extracted 

and used for training to partition the feature space. Some feedback from the learning 

stage allows the optimization of the preprocessing and feature extraction or selection 

strategies involved. At the end of training, parameter values for the classifier are 

obtained. In classification mode, the trained classifier is used to classify the input 

pattern into one of the pattern classes.   

 

 

 

Figure 2.1  A model of Pattern Recognition System 
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Depending on complexity, some PR application might require extensive 

computation during training, especially in applications involving the processing of 

large data. There can also be huge data sets needed during the training stage of the 

systems.  There are many approaches in PR but it is important to note that there is no 

single optimal approach for all and multiple methods and approaches might need to 

be combined and used in a single system. This applies to handwriting recognition as 

well. Figure 1.7, presented in chapter 1; match this model of pattern recognition 

system. 

 

2.2.1  Learning Approaches in Pattern Recognition Systems 

 

PR systems can use various approaches to learning. (Jain, 2000)  summarizes 

four general approaches of pattern recognition. They are template matching, 

statistical classification approach, syntactic or structural matching and neural 

networks (Jain, 2000). Such approaches are neither necessarily independent nor 

disjointed from each other. Occasionally, a technique in one approach can also be 

considered to be a member of other approaches (Bortolozzi, 2005). 

 

In template matching, a simple generic operation is used to determine the 

similarity between two entities of the same type (such as groups of pixels, shapes, 

curvatures, etc). A template or prototype of the pattern to be recognized is matched 

against the stored template. Matching techniques can be grouped into three classes: 

direct matching (Gader, 1991), deformable templates and elastic matching 

(Dimauro, 1997) and relaxation matching (Xie, 1988). 

 

In Statistical Approach, the concern is with statistical decision functions and a 

set of optimal criteria, which determine the probability of the observed pattern 

belonging to a certain class. Many handwriting recognition approaches belong to this 

domain, such as : k-Nearest-Neighbor (k-NN) classifier (Mico, 1999), Bayesian classifier 

(Duda, 2001), Polynomial Discriminant classifier (Schurmann, 1996),  Hidden Markov 

Model (HMM) (Rabiner, 1986b), Fuzzy set reasoning (Gader, 1996) and Support Vector 

Machine (SVM) (Burges, 1998). 
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In Syntactic approach, a pattern is viewed hierarchically. A complex pattern can 

be composed of simpler sub patterns, which are in turn built from yet simpler sub 

patterns (Fu, 1982). The simplest sub pattern is the primitive. Structure of a pattern 

can be compared with the syntax of a language where a pattern is viewed as a 

sentence of a language, primitives are viewed as the alphabet of the language, and 

the sentences are generated according to a grammar. Thus, a number of primitives 

and grammatical rules can be used to describe a collection of complex patterns 

where the grammar for each pattern class is inferred from training samples.  In 

relation to handwriting recognition, structural methods can be categorized into two classes 

(Bortolozzi, 2005): grammatical methods  (Shridhar, 1986) and graphical methods (Kim, 

1998).   

 

Finally, a Neural network (NN) can be viewed as a massively parallel computing 

systems with large number of processors and interconnections. Zhang (Zhang, 2000) 

gives a comprehensive review. NN models learn complex nonlinear input-output 

relationships using sequential training procedures in a network of weighted directed 

graphs of nodes and directed edges (with weights). The main advantages of neural 

networks is that it can be trained automatically using examples, gives good 

performance even with noisy data and can be implemented in parallel. The most 

widely studied and used neural network is the Multi-Layer Perceptron (MLP) 

(Bishop, 1996). The most popular neural network classifier and most frequently used 

traditional classifiers is the MLP trained with back-propagation  (LeCun, 1998b).  

Other types of NN include Convolutional Network (CN)  (LeCun, 1998a), Self-

Organized Maps (SOM) (Zhang, 1999),  Radial Basis Function (RBF)  (Bishop, 

1996), Space Displacement Neural Network (SDNN) (Matan, 1992b) and Time 

Delay Neural Network (TDNN)  (Lethelier, 1995).  

  

2.3 Developments in Speech Recognition  

 

Speech recognition, also known as automatic speech recognition (ASR) converts 

spoken words to machine-readable input (transcript an acoustic speech signal into its 

equivalent textual form).  It is used to interact with a computer, similar to textual 

input through a keyboard. It was supposed to replace, or reduce the reliability on, 

standard keyboard and mouse input. With that it should assist people who have little 
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keyboard skills or dyslexic people or people with physical disabilities that affect 

either their data entry, or ability to read or check what they have entered. 

 

In ASR applications such as phone-based automated timetable information, or 

ticketing purchasing, the user makes contact with the system, and speaks in response 

to commands and questions. Most ASR breaks down the spoken words into 

phonemes and analyzes them to see which string of these units’ best fits an 

acceptable phoneme string or structure that the system can derive from its dictionary.  

 

Speech recognition technology is more mature compared to handwriting 

recognition technology. The technology of ASR and transcription has progressed 

greatly over the past decades.  Research in ASR began in 1936, but it was not 

commercialized until the early 1980's when Hidden Markov Model (HMM) 

technology was introduced (Rabiner, 1986b). HMM has been the dominant approach 

to speech recognition since then. However in the late 1980’s, there seems to be a 

shift towards Neural Network, in particular Multilayer Perceptron (MLP) and Time 

Delay Neural Network (Weibel, 1989) as well as related method such as Learning 

Vector Quantization (LVQ) (Kohonen, 1988). This is due to their discriminative 

ability as compared to HMM which is trained with Maximum Likelihood Estimation 

(MLE) criteria. Anyhow, the introduction of an alternative optimization criterion 

such as the  Maximum Mutual Information (MMI) (Bahl, 1992) and Minimum 

Classification Error (MCE)  (Juang, 1992) in HMM improved the recognition 

accuracies in some systems which makes HMM still popular. 

 

 Today, speech recognition system which is based on single stand alone NN 

technology or HMM by itself is not common.  Since early 1990’s, hybrid systems 

combining HMM and NN were widely popular. The hybrid system takes advantage 

of NN for its discrimination ability and HMM for its excellence in sequential 

modeling (Bengio, 1991) (Rigoll, 1998). A comprehensive survey  on this hybrid 

method can be found in (Bourlard, 1998).  HMMs and NNs combined are proven to 

improve classification capabilities.  
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2.4 State Of The Art in Handwriting Recognition 

 

Various surveys have dealt with handwriting recognition from many aspects; 

online (Tappert, 1990), offline (Steinherz, 1999), machine-printed and cursive script 

handwritten characters  (Guyon, 1996) (Plamondon, 2000). Many papers also 

reviewed or described their specific research in handwriting recognition emphasizing 

issues within the many components involved in the overall system as described in 

section 1.3, such as in preprocessing and segmentation, feature extraction, 

recognition modeling as well as post processing stage.  

 

Research work in handwriting recognition started later than in speech 

recognition. The advent of the tablets in late 1950’s has resulted in active endeavor 

in handwriting recognition research lasting through the 1960’s. However, it ebbed in 

the 1970’s but was renewed in the 1980’s.  In on-line handwriting recognition, the 

renewed interest was due to the availability of more accurate electronic tablets, more 

compact and powerful computers, and better recognition algorithms. In addition, 

combined tablets and flat screen displays brings input and output together, which 

further permits the use of electronic ink, that is the instantaneous display of the trace 

of the motion of the stylus tip directly under the stylus. During this period also, 

office automation work, coupled with usability and user friendliness has increased 

interest in more natural methods of entering data into machines. Researcher’s then, 

starts to more clearly understand the applications appropriate for handwriting 

recognition. In offline handwriting recognition, progress was similar. As the need for 

automation in the postal and banking industries increased, new developments were 

made in the field to cater for the needs. This is also aided by progress made in 

computer processor hardware, speed and memory capacity available in those 

machines.  

 

During the last twenty years, there were much more development in handwriting 

recognition research. As mentioned earlier, this in part is very much due to the 

progress made in the speech recognition methods and algorithms, which have then 

been adapted into handwriting recognition. Usage of Hidden Markov Model (HMM) 

has been popular in handwriting recognition in similar context to speech recognition. 

HMMs gained growing interest in the handwriting recognition research community 



 30

because it was already in a mature state in the context of speech recognition. It is 

straightforward to transfer the HMM approach from speech recognition domain to 

the handwriting recognition, especially the on-line domain since pen-trajectory data 

can be viewed as a time series of samples similar to speech signal. 

 

Literatures in handwriting recognition generally divide handwriting recognizers 

into whole word (segmentation free) or segmentation based. Whole word (or holistic 

approach) based does not involve segmentation where recognizer look at the whole 

word, while in segmentation based; words need to be segmented for recognition. 

Segmentation based word recognizer can either be based on classical analytical 

segmentation or they are segmented into characters based on the recognition results. 

In classical analytical segmentation, words are analytically segmented into 

characters. In segmentation based recognition, words are explicitly or implicitly 

segmented into characters by over segmenting them into smaller than character 

slices (or rather a primitive or can be called something else) and later determining 

the correct characters segmentation alignment using dynamic programming based 

algorithms. These issues are further discussed in section 2.4.4. 

 

The earlier approach to recognition was based on classical analytical 

segmentation. In later work, researchers’ attempted the segmentation-free with great 

success; however, they are limited only to a very small lexicon. Then, segmentation 

approach was cleverly reapplied by taking into consideration that we need to know 

the word in order to segment it and we need to know the individual characters in the 

word, in order to recognize it, an idea called Syre’s paradox (Steinherz, 1999). That 

is when segmentation based recognition comes in. There are merits and 

disadvantages of either explicit segmentation or implicit segmentation which will be 

discussed later but in both cases, words are not actually presegmented. They are just 

cut at various places in the word based on certain criteria. The so called 

segmentation is the results of combining the slices at the right combination and the 

right points. To find the optimal segmentation points that form the best set of 

characters, combination of cuts are evaluated by a character classifier to score the 

combination. Finally, the word with the optimal score is generally found by applying 

Dynamic Programming or similar techniques.  
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Speech recognition were initially based purely on HMM with discrete or 

Continuous Mixture Densities (Rabiner, 1985). Later, hybrid system became 

popular.  Similarly, in handwriting recognition system which is mainly segmentation 

based, a hybrid NN and HMM became very popular as NN being a discriminative 

classifier fits well into HMM structure which handles the temporal nature of 

handwriting to create a better recognition system. The ANN/HMM hybrid were used 

in recognition at the character level as well as word level. With proper language 

model, sentence recognition can be handled.  

 

Also coming from successful usage in speech recognition, segmental modeling 

was later introduced in an attempt to achieve a more realistic modeling of the 

handwriting signal. In HMM, observation modeling is at the frame level, while in 

segmental modeling, a segment which is composed of several observations is 

modeled. In a way a segment corresponds to a homogeneous portion of the signal 

which typically can be a stroke in a character. Segment modeling allows automatic 

handling of different handwriting styles (Artieres, 2000). However, segment 

modeling requires more computation than the classic HMM. They are mainly used in 

the post processing stage and there are many possibilities of implementing the 

segment models which makes compromise between flexibility and robustness 

possible. 

 

Many researches in handwriting recognition systems implementing the methods 

mentioned are targeted to small–scale and constrained applications where the 

vocabulary or the lexicon of words are small. For dealing with large vocabulary 

system, researchers need to handle crucial issues such as improving recognition 

speed and computational efficiency while maintaining good recognition accuracy. 

(Koerich, 2002). Speed and recognition accuracy are two aspects of mutual conflict, 

but have been tackled by using better search strategies, use of verification steps after 

the coding, better decoding algorithm and post–processing of the N–best candidate 

list.  
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In the following subsections, developments in on-line and off-line handwriting 

recognition are reviewed separately. The author then looks at developments and 

issues in methods and techniques at the various stages of the recognition system 

which are applicable to both domains.  

  

 

2.4.1  Developments in Online Handwriting Recognition 

 

Research in online handwriting recognition started in the 1960s and has been 

receiving great interest from the 1980s. Tappert e. al. (Tappert., 1988) (Tappert, 

1990) reviewed the status of research and applications before 1990, while a recent 

survey done by Plamondon and Srihari, (Plamondon, 2000) gives an overview of the 

near recent situation, for both online and offline handwriting recognition, mainly 

concerning western handwriting.  Nakagawa, (Nakagawa, 1990) and Wakahara 

(Wakahara, 1992) provides some reviews and insights into early works of online 

Japanese character recognition. Liu et. al. (Liu, 2004) contributed a survey to online 

Chinese character recognition (OLCCR). Handwriting researchers also tackled on-

line handwritings at either character level or higher level at word or sentence level. 

Methods used for characters can be applied to higher level since they consists of 

basic low level entity. In this subsection, the author review the developments at all 

levels.  

 

The world of handwriting is no doubt dominated by English as it is the world 

major language. Other Western languages that use Latin are as widely used and 

important too. However, to be fair to the handwriting recognition community, other 

languages such as Chinese, Tamil, Japanese or Arabic has to also be regarded as 

important. Latin based handwritings are less complex than those of the other. In the 

English language, for example, there are only 26 letter alphabets and each letter has 

two forms, upper and lower case. English has two basic styles of writing which are; 

printed and cursive script. The average number of letters per word in English 

language is five. The number of strokes per letter is 2 for upper case, and only one 

for lower case, even less for cursive handwriting.  
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In English, the position and size of the letter is important. We can imagine a 

writing to be written within 4 reference lines; ascender, core, base and descender.  

 

 

Figure 2.2  English word “writing”, written in small letters 

 

Upper case letters sit on the baseline and are full sized. Lower case letters are 

smaller, and most are about half the height of upper case letters. Some lower case 

letters have an ascender, which extends upward to almost the height of the upper 

case letters, some have a descender, which extends down below the baseline, and 

some have both. These can be seen clearer Figure 2.2 which shows the word 

“writing” written in small letter and Figure 2.3 for the word “writing” written in 

capital. 

 

 

Figure 2.3  English word “WRITING”, written in capital letters 

 

Chinese, on the other hand has a much larger character set.  A character can also 

represent a word. There are about 50,000 Chinese characters. They can be written in 

block or cursive. Chinese characters consist of many strokes because there are a 

large number of them to be distinguished. The cursive style is written faster and with 

fewer strokes.  The Japanese is in the same category as Chinese since they contain a 

subset of Chinese characters called the Kanji. Kanji and Chinese characters have 

essentially the same meaning. Hiragana and Katakana are the Japanese phonetic 
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alphabet sets with 46 full-size characters each. Kanji, Hiragana and some English 

alphanumeric makes up a complete Japanese writing system (Tappert, 1990). 

 

Arabic handwriting is used by one-seventh of the world’s population, in the 

languages such as Arabic, Farsi, Urdu, Pashto, Kurdish and Malay. Arabic script 

consists of 28 basic letters, 12 additional special letters, and 8 diacritics (Biadsy, 

2006). Arabic is written from right to left, opposite to Latin based language. Nearly 

all letters can be written in four different letter shapes depending on their position in 

a word. Some letters are disconnected and stand alone.  Arabic script is similar to 

Roman in that it uses spaces and punctuation to separate words. It is however 

different because of the use of dots and strokes which makes the recognition of 

words in Arabic script more difficult than in Roman script. Many Arabic letters 

contain dots in addition to the letter body. Strokes can attach to a letter body to 

create new letters. The dots and strokes are delayed strokes and are written last in a 

handwritten word. A difference in the dot or stroke can produce a word other than 

the one that was intended.   

 

The author then review on online handwriting recognition for all languages. 

However, as there is more research literature for the Western Latin based languages, 

the bulk of the review will cover on that. A selection of the reviewed literature in 

online handwriting recognition is given in Table 2.1. In the table, the main authors 

of the cited literature reviewed and the methods used in the online handwriting 

recognition system are given. As each system is tailored for certain users and uses a 

particular database in their testing, the features and the lexicon size in the database 

used are also given. This can be used to compare the complexity of each system. For 

cursive handwriting recognition systems, many such systems involve a preprocessor, 

feature extractor, a trainable classifier and a language modeling post processor.  

 

Early works reported on online handwriting recognition were attributed to 

(Marmelstein, 1964).  Marmelstein’s method is based on what is now called the 

classical analytical method described earlier. It is based on the detection of the down 

stroke sequences and on a letter-by-letter recognition basis using features such as 

cusps, closures, and center-line crossings. In recognition, the most likely stroke 

sequence of the written word is first determined, with reference to the dictionary. 
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Table 2.1   Summary of Online Handwriting recognition systems  

Authors Method Features Lexicon 
(Marmelstein, 1964).   Classical 

Analytical 
Stroke sequence 254 words 

(Bengio, 1993) 
(Bengio , 1995) 

CNN/ HMM 
 

Annotated image 
AMAP 

25461 words 

(Bellagarda, 1995) HMM/ Kmeans 
clustering 

4 local (slope, 
curvature) , 3 global 

81 character 
alphabets  

(Cho, 1995) Neuro Fuzzy direction letters and digits 
 (Beigi, 1995) Discrete HMM 

/Beam search 
5 features - deltax, 
deltay, tan slope 
angles, abs. x, abs. y 

2000+ words 

(Hu, 1996) HMM subcharacter stroke 
(nebulous stroke) 

32 English words 

(Guyon, 1996) TDNN/HMM Slope, curvature speed 25,000 Lexicon 
(Artieres, 2000) Segmental Model 15 features: 

-  6 temp., 9 spatial 
UNIPEN chars. 

(Biem, 2001) HMM /MCE 9 features; local 
position and curvature 
info 

92 character set 

(Artieres, 2000) 
(Artieres, 2002) 

Segment level 
HMM/trajectory 
model 

36 fixed elementary 
stroke level rep. 

UNIPEN chars. 

(Bahlmann, 2002) SVM with 
GDTW kernel 

3 features per point UNIPEN chars.. 

(Bahlmann, 2004) CSDTW  3 features per point UNIPEN chars. 
 (Oudot, 2003) Activation-

verification 
cognitive model 

Geometrical 
and morphological 
informations 

 200 000 words 

(Biadsy, 2006) HMM 3 features per point Arabic 
(Caillault, 2006) TDNN/HMM 7 features per point IRONOFF 197 

words 
 

Note : All lexicons are English except otherwise stated.  

 

If no match is found, the stroke sequence is modified by accepting less likely 

stroke sequences until a match is found or until some likelihood threshold value is 

crossed and recognition attempts stops.  Marmelstein’s work is important because it 

emphasizes that more work is required to achieve practical unconstrained script 

recognition, either online or offline. During that period, not only that recognition is 

not reliable, but also the speed and cost of the recognition equipment are prohibitive.  

Due to the complexity of handwriting recognition tasks and lack of computing 

resources for the computation required, there was not much progress in the research 

within this area within the next few years running into the seventies.  
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Based on earlier work (Bengio, 1991) in NN/HMM global optimization in 

speech recognition (Bengio, 1993), (Bengio, 1995b) proposed a similar system for 

handwritten word recognition. He uses a combination of convolutional neural 

network (CNN) and HMM in a global optimization procedure for training the word 

recognizer. He also proposed word normalization using EM algorithm. For the 

features, he uses annotated images (AMAP) from the normalized pen trajectory. The 

replicated CNN spots and recognize characters while the HMM interprets the NN 

outputs into word score, taking word-level constraints into account. The NN and 

HMM are jointly trained to minimize an error measure at the word level. The system 

was called LeRec. Again, based on speech recognition work, (Bellegarda, 1994) 

described an unconstrained word recognizer using K-means clustering and HMM. 

He uses 7 features at the character level which consists of 4 local features (tracking 

slope and curvature) and 3 global features like point distance to base line and 

distance between penup and pendown whenever they occur.  

 

(Cho, 1995) uses neuro-fuzzy method in his online characters recognition. The 

idea is to train a number of NN classifiers and aggregating them with fuzzy logic. 

The method combines the outputs of separate NN with importance of each network, 

which is subjectively assigned as the nature of fuzzy logic. (Beigi, 1995) developed 

an HMM-based system for writer independent handwriting recognition using 3 state 

HMM and beam search. It caters for large lexicon size of more than 20,000 words. 

(Guyon, 1996) discusses a cursive script recognition system, described within the 

framework of Weighted Finite State Transductions previously used in speech 

recognition. It is also a writer independent system that can handle both cursive script 

and handprint. Time Delay Neural Network (TDNN) is used to estimate probabilities 

for characters in a word and HMM segments the word in a way which optimizes the 

global word scores for the given lexicon.   

 

(Artieres, 2000) uses segment models (SM) that model signals at a segment level 

rather than at observation level. A segment corresponds to portion of the signal 

which is homogeneous in some sense. For example, in a character, a segment could 

be a stroke. An observation sequence is assumed to be generated by a succession of 

SM states, each being responsible for a subsequence.  This allows handling of 

different handwriting styles.   (Artieres, 2002) also proposed another flexible 
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handwriting recognition system that is able to learn easily new symbols and to adapt 

easily to a specific user handwriting using stroke level HMMs. Each letter is 

modeled as a stochastic automaton, defined over a set of reference stroke level 

representations (SLR). This model can easily take into account new letters or writing 

styles. In all cases, the signal to stroke decoding step remains unchanged, and only 

the stroke-level system parameters have to be modified. 

 

(Bahlmann, 2002) describes an approach for online handwriting recognition 

which combines dynamic time warping (DTW) and support vector machines 

(SVMs) with a kernel he called Gaussian DTW (GDTW). The approach differs with 

HMM in that it does not assume independence between observations as in HMM 

and it directly addresses the problem of discrimination by creating class boundaries. 

Incorporating DTW in the kernel, variable-sized sequential data can be handled by 

the SVM. (Bahlmann, 2004) again uses SVM in a writer-independent online 

handwriting recognition system called “Frog On Hand”. The classification/training 

approach is using cluster generative statistical dynamic time warping (CSDTW). 

CSDTW is a general, scalable, HMM-based method that holistically combines 

cluster analysis and statistical sequence modeling.   

 

(Oudot, 2003) developed a very large lexicon (200,000 words) omni-user system 

that includes writer adaptation component. It is based on the activation-verification 

model in perceptive psychology field. Encoding experts of the input signal, extract 

probabilistic information at different levels of abstraction (geometrical and 

morphological) while neuronal expert of segmentation generates a trellis of 

segmentation hypotheses. The trellis is explored by a probabilistic fusion engine that 

uses information of the encoding experts and the lexicon in order to provide the best 

transcription of the input signal.  

 

2.4.2  Developments in Offline Handwriting Recognition 

 

Table 2.2 summarizes various works done in offline handwriting recognition. 

The method used, the size of the lexicon used and the types of system it can handle 

are given. Most techniques that are applied to online recognition are also applicable 

to offline recognition. As can be observed from the table, HMM and hybrid of HMM 
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and NN are popular. Dynamic programming is also widely applied. Most researchers 

handled small lexicon while a few caters for large lexicon size of more than 10,000 

words. 

 Table 2.2 Offline handwritten word recognition systems 

Author Method Lexicon 
Size 

Comments 

(Burges, 1993) DP/NN  1,000  UNC,OMNI  
(Cai, 1993) DP/Fuzzy  14  UNC  
(Cho, 1994) HMM  10,000  CUR, OMNI  
(Chen, 1994) HMM  271  UNC, OMNI  
(Gader, 1994) NN/DP  100  UNC, OMNI  
(Chen, 1995) HMM  1,000  UNC, OMNI  
(Bunke, 1995) HMM  150  CUR, WD, 5 Writers  
(Guillevic, 1995) HMM/kNN  30  UNC, OMNI  
(Gader, 1995) DP  746  HAND, OMNI  
(Mohamed, 1996) DP  100  UNC, OMNI  
(Kim, 1997) DP  1,000  UNC, OMNI  
(Farouz, 1998) HMM/NN  1,000  UNC, OMNI  
(Dzuba, 1998) DP  40,000  CUR, OMNI  
(Augustin, 1998) HMM/NN  28  CUR, OMNI  
(Lallican, 1999 ) HMM/ODREC 197 CUR, OMNI  
(Madhvanath, 1999) DP  1,000  CUR, OMNI  
(Saon, 1999) HMM  26  UNC, OMNI  
(Bippus, 1999) HMM  400  UNC, OMNI  
(Procter, 2000) HMM  713  CUR, WD, 1 Writer  
(Mohamed, 2000) HMM/Fuzzy  100  UNC, OMNI  
(Scagliola, 2000) DP  1,000  CUR, OMNI  
(Marti, 2000) HMM  7,719  UNC, OMNI, 250 Writers 
(Brakensiek, 2000) HMM  30,000  CUR, WD, 4 Writers  
(Favata, 2001) DP  1,000  UNC, OMNI  
(Tay, 2002) HMM/NN  197 CUR, OMNI  

 
UNC: Unconstrained, OMNI: Omniwriter, CUR: Cursive,  

WD: Writer–Dependent   HAND: Handprinted 
 

 

2.4.3  Issues in Preprocessing 

 

In online handwriting recognition system, preprocessing of the trajectory of 

input pattern facilitates the description of the input signal and improves the quality 

of the description as well. Preprocessing tasks of online character patterns includes; 

noise elimination, data reduction and signal normalization. Noise in handwriting 



 39

input signal can be due to users’ erratic hand motions and the imperfection in the 

process of digitization of the signal. The forms of noise elimination or more 

realistically, noise reduction are signal smoothing, filtering, wild point correction, 

and dot reduction. Wild point reduction can replace or eliminate occasional spurious 

points and dot reduction reduces dots to single points. As input devices quality 

improves, trajectory noise is less of a problem and normally smoothing only, will be 

sufficient.   

 

Data reduction can be accomplished by two approaches: equidistance sampling 

or line approximation (feature point detection). With equidistance sampling, the 

trajectory points are resampled so that adjacent points are of equal distance. 

Equidistance resampling however does not reduce the data very much. A better data 

reduction rate can be achieved by detecting feature points. Feature points are the 

corner points and the ends of a stroke trajectory.  The idea is to estimate the 

curvature at each point on the curve and retain the points of high curvature   

Complementary to detecting feature points, polygonal approximation, which 

recursively finds the vertex of maximum point-to-chord distance is also useful to 

reduce data representation and achieve better performance. Approximation of 

strokes by line is also popularly used to reduce data signal in many online 

recognition systems. The latter two are more popular in Chinese character based 

recognition. (Liu, 2004). 

 

Signal normalization is a standard procedure in almost every recognition system. 

Normalization can be linear or nonlinear. In linear normalization - the coordinates of 

stroke points are shifted and scaled such that all points are enclosed in a standard 

box. Another option in linear normalization is to use moment normalization, where 

the centroid of input pattern is shifted to the center of standard box and the second-

order moments are scaled to a standard value. As for nonlinear normalization, in 

offline signals, coordinates of stroke points are reassigned according to the line 

density distribution. The aim is to equalize the stroke spacing. For online signals, the 

line density can be computed directly from the online trajectory. Moment 

normalization yield comparable recognition accuracy to nonlinear normalization. 

(Beigi, 1994) describes methods for size normalization which have then been 

adapted by many authors. Referring to Figure 2.2 and Figure 2.3, a handwritten 
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word can be imagined to be written inside the four reference lines; the descender line 

at the bottom of the small letter “g”, the base line at the bottom of any small letter, 

the core line at the top of a small letter and the ascender line at the top of the capital 

letter.  To perform size normalization, the baseline and the core line need to be 

estimated. The area between the two lines is always non empty for any letter and 

reliable for any size normalization. Once an estimate for this area is obtained, a 

magnification factor can be computed from the ratio of this area and the input to be 

used to normalize the input signal. For other non Latin based languages, these are 

not applicable and the full height of the writing determines the magnification factor. 

Before size normalization can be done, slope correction needs to be done to align the 

writing with horizontal axis.  

 

An important aspect of preprocessing is delayed strokes processing (Hu, 1996). 

Delayed strokes refer to strokes such as the cross of “t” and “x” as well as the dots 

for “i” and “j”. The crosses are normally written last, thus called delayed stroke, 

which normally separates from the main body of the letter. In most online 

handwriting systems, delayed strokes are first detected in preprocessing and then 

either discarded or used later. If they are used, they are treated as special letters in 

the alphabet. A word with delayed strokes is given alternative spellings to 

accommodate different sequences with delayed strokes written in different order.   

 

 

2.4.4  Issues in Segmentation Stage 

 

In small vocabulary handwriting recognition, segmentation is not an issue as 

holistic method is normally used. As the size of the vocabulary gets larger, analytical 

approach is more preferred.  It involves segmentation of the handwriting into 

primitives such as strokes, pseudo-letters or letters. Segmentation issue have not 

been solved or even addressed fully. What kind of primitives to use and the methods 

to segment them is heuristically based on experience.  

 

Segmentation is the operation that seeks to decompose a word signal to a 

sequence of sub signals that contains isolated characters. Segmentation points can be 

at the extreme points in x and y axes, cusps or sharp corners, critical points or 
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multiple points. Segmentation is a critical phase of the single word recognition 

process. This is proven by the fact that character recognizer trained using isolated 

characters is better than character recognition trained using segmented characters 

from cursive words since isolated characters are “naturally segmented” by the writer. 

There are two main strategies for segmentation: (a) straight segmentation or referred 

to also as classical analytical approach to segmentation  and (b) recognition-based 

segmentation or referred to also as SegRec approach (Tay, 2002).  Straight 

segmentation tries to decompose the signal into a set of sub signal, each one 

corresponding to a character. Straight segmentation is difficult as it needs to perform 

some complex analysis. It is suitable only for tasks like segmentation of typewritten 

or hand printed words and thus may not be very appropriate to be applied for cursive 

or unconstrained handwritings.  

 

SegRec approach subdivides the word signal into a set of sub signals whose 

combinations are used to generate character candidates. The number of sub signals is 

greater than the number of characters in the word and the process is referred to also 

as over segmentation. During recognition, sub signals are combined to form 

character hypothesis. Character hypothesis are evaluated and combined to form a 

word which will be compared to each available word in the lexicon. Because words 

are formed by concatenation of smaller units such as characters, it is very easy to 

enlarge the word lexicon.  As can be seen, this lexicon-driven system involves 

tightly coupled segmentation and recognition process. Recognition-based 

segmentation driven by the lexicon solves the complex situation of having to first 

know the correct word in order to segment it and having to first segment the word 

correctly in order to be able to recognize it, a situation called Sayre’s paradox 

(Steinherz, 1999) mentioned earlier. The quality of the over segmentation process 

depends on whether or not we missed the detections of ligatures and the ratio of the 

number of primitive sub signals produced and the number of characters in the word. 

The optimal segmentation is determined by the optimal combination of sub signals 

in forming character hypothesis.  

 

(Bengio, 1995b) and (Tay, 2002) describes 2 methods of over segmentations in a 

word recognition system; the input segmentation (INSEG) and output segmentation 

(OUTSEG). Figure 2.4 compares the two segmentation approaches using the offline 
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word “clock”.  In INSEG, over segmented sub signals are combined heuristically 

and recognized as characters that are combined optimally by a decoder using 

dynamic programming feature of the HMM to produce the word score.  The size of 

each sub signal or cut is not fixed or uniform. They are based on the dynamics of the 

pen such as pen lift and pen velocity as well as geometrical clues such as spaces and 

corners.  In OUTSEG, entire word is accepted by the recognizer. The input word is 

cut or rather divided into overlapping cut windows of the same size. Each window 

will be separately recognized. The segmentation decisions are delayed until after the 

recognition. A sequence of scores for each character at each location in the input is 

produced. The HMM in the recognizer models the sequential structure of the word 

while a character recognizer (normally the convolution neural networks) spots and 

classify the characters.  

 

 
 

Figure 2.4  (a) INSEG based segmentation (left) showing 3 hypothesis σ3, σ4 

and σ5 for INSEG method which are within slices 1-2 and 2-3. (b) OUTSEG 

based segmentation (right) which shows segment σ4 within window 3-6 and 

overlapping windows σ5 and σ6 

 

 

2.4.5 Issues in Word Recognition  

 

Word recognition method depends on whether the recognition involves 

segmentation or not. In holistic or non segmentation based system, the whole world 

is recognized in one go. Normally, recognition of a word involves calculation of 

some similarity or distance measure between the features of the word and the words 
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contained in the lexicon. Methods such as the nearest neighbor or k-nearest neighbor 

can be used in the recognition where the minimum distance measure determines the 

class of words. HMM has also been used, especially for system with a small lexicon 

size. A useful function of this holistic word recognition is as a preprocessor of the 

segmentation based recognizer where it can be used to preselect a small subset of 

probable words. This in a way reduce the lexicon size before the segmentation based 

recognition performs more detailed recognition of each word in the reduced lexicon  

(Madhvanath, 2000). This also reduced the recognition time. Holistic recognition is 

quite robust. Its performance is not affected too much even if we have deformed 

handwriting. Thus it can also be used in the design of combination of multiple 

recognizers.  

 

As mentioned, segmentation based recognition can be divided into straight 

segmentation and SegRec. In straight segmentation based system, once the 

segmentation into characters has been done, the recognition is a straight forward 

step. A character recognizer trained on isolated character can be used without much 

change to produce recognition score for each character that have been segmented. 

NN has been a popular character recognizer for this approach. SVM can be one as 

well. The recognized word is formed by concatenating the characters. 

 

In SegRec approach, a character recognizer is used to recognize many hypothesis 

characters made up of combination of the smaller over segmented segments. The 

word recognizer combines the most suitable combination of hypothesis that gives 

the highest word score among all words in the lexicon. The best word score 

eventually determine the ultimate segmentation points of the word. As mentioned 

earlier, there are two ways to segment words in recognition-based segmentation; (a) 

the OUTSEG method and (b) the INSEG method.  

 

OUTSEG or Output Space Segmentation approach allows segmentation points to 

be decided at the output space. Initially, the word signal is segmented implicitly into 

uniform size entities which can be overlapping, that is smaller or equal to character. 

Then, the recognition is carried out at the output space by associating groups of these 

smaller entities to form a particular character in a word.  INSEG or Input Space 

Segmentation on the other hand requires segmentation points to be decided explicitly 
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by using spatial information in the word. All possible segmentation points are 

determined and cuts are made at these points. Then the cuts are combined into 

character hypotheses and passed to character recognizer. These character hypotheses 

can represent part of a character, a full character, a few characters, or part of a 

character combined with part of another characters. This is a big challenge for the 

character classifier, which has to deal with unseen patterns during training stage. 

Actually, they are outliers and classifiers such as NN behave inconsistently in this 

situation. The recognition process involves selecting only the character hypotheses 

that represents actual character signals forming a particular word.  

 

Normally, OUTSEG recognition method involves using convolutional neural 

network (CNN) and hidden Markov model in a hybrid system where the CNN spot 

and recognize the characters and the HMM perform the sequential modeling for the 

word. The CNN can be a Time delay Neural network (TDNN) used in online 

handwriting recognition or space displacement neural network (SDNN) for off-line 

handwriting recognition. These NN have some shift independent capabilities 

allowing to detect a character even when it is not currently centered in the window. 

 

For INSEG approach, the character recognizer can be based on a probability 

distribution function (PDF) classifier in the global HMM itself. This is the case of a 

discrete HMM. Sometimes, a continuous density HMM with Gaussian distribution 

function is used instead. The continuous HMM is proven to give better recognition 

result compared to discrete HMM.  PDF classifiers are not discriminant since its 

training only involves in class data, without taking into account the out of class data. 

To obtain a discriminant classifier, classifier giving output as posterior probability 

can be used. The most popular posterior probability based character recognizer used 

in this approach is the ANN trained with Back propagation (BP). In BP ANN, data 

from all classes are involved during training which makes it discriminant in nature 

thus able to better discriminate among classes. However, by using posterior 

probability based classifier, the output needs to be normalized because prior 

probability is embedded in the posterior (refer to Bayes theorem) resulting in a 

biased recognition. Normalizing the posterior probability output gives likelihood or 

similar probability.  Besides ANN, other discriminant classifiers that give posterior 
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probability or likelihood score as the output at the character level can be used in an 

INSEG based word recognition system. 

 

The final step in handwriting recognition is to compare the handwritten word 

that is being recognized with the reference patterns to determine their similarity to 

decide which pattern or model best represents the word being recognized. In this 

step also, the best segmentation of the word into characters is determined.  Language 

models may be used at this level. A few methods of implementing language model 

that are commonly used are lexicon trie or simple Markov model or n-gram (Guyon, 

1996). Lexicon trees store list of words with their frequency while character n-grams 

are used to predict the next character given a window of (n – 1) past characters. In 

sentence recognition, word n-grams are used to predict the next word given a 

window of (n – 1) past words.  

 

SegRec word recognition is essentially a best path problem that incorporates 

character classification scores, segmentation information and the language model. 

Character classification score can be pure probability values or negative log 

probabilities. The overall score for a path in the graph is given by the product of the 

character score of the arcs traversed. The probability of a given word is given by 

summing over all possible ways of character combinations to produce that word. The 

most probable word is the recognition result. The forward algorithm described in 

HMM is an efficient dynamic programming (DP) technique to compute the above 

sum.  The Viterbi algorithm which picks the best single path in the graph as the 

recognition is often used to approximate the forward algorithm, for computational 

reasons. This means replacing the sum in equation with the largest term to make this 

approximation. Approximate search procedures to find the most probable word are 

often preferable for computational reasons. These include beam search procedures 

(Ney, 1987) and the A* algorithm (Soong, 1991) and various fast match techniques 

can be used to narrow down the search space.  

 

2.4.6  Issues in Post Processing Stage 

 

Post processing stage may involve using search strategies and verification 

approaches that allow for achieving faster recognition and improvement in the 
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accuracy. Speed improvement can be obtained by various methods in the search 

techniques such as lexical tree search, standard and constrained lexicon–driven level 

building algorithms, two–level decoding algorithm, and a distributed recognition 

scheme.  The recognition accuracy can be improved by post–processing the list of 

the candidate N–best–scoring word hypotheses generated by the baseline recognition 

system. The list also contains the segmentation of such word hypotheses into 

characters. 

 

Verification module can be used to generate a score for each segmented 

character and in the end; the scores from the baseline recognition system and the 

verification module are combined to optimize performance.  A rejection mechanism 

can be introduced over the combination of the baseline recognition system with the 

verification module to improve significantly the word recognition. 

 

 

2.5 SVM in Speech and Handwriting Recognition 

 

This section reviews current usage of SVM from the perspective of handwriting 

recognition. A few references may be made to its usage in speech recognition as its 

application is similar to the one in handwriting recognition. In general, SVM have 

been used in handwriting recognition in a number of ways; as a standalone 

recognizer in a fixed feature based character recognition system (Ahmad, 2004a), as 

a replacement of HMM in a sequence processing based character or word 

recognition system (Bahlmann, 2002) or as a final decider in the final output of a 

handwriting recognition system. The author describe in the following subsections 

the various ways of SVM’s usage. 

 

2.5.1  SVM in Speech Recognition 

 

(Ganapathiraju, 2002) and (Ganapathiraju, 2004) describes application of SVM 

in a large vocabulary speech recognition. SVM is used in a hybrid HMM/SVM 

setting. Since SVMs is inherently a static classifier and HMMs have the ability to 

handle dynamic data, the two complements each other. An important issue that had 

to be addressed in this hybrid system is the fact that normally, SVMs output a 
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distance measure, while the Viterbi decoding algorithm typically uses likelihoods or 

posterior probabilities. Therefore SVM distances outputs are converted to posterior 

probabilities.  

 

 

2.5.2  SVM with DTW Kernel in Character Recognition 

 

(Bahlmann, 2002) describes an approach for on-line character recognition that 

combines dynamic time warping (DTW) and support vector machines (SVMs) by 

establishing a new SVM kernel. He called the kernel - Gaussian DTW (GDTW) 

kernel and his method as SVMGDTW. The kernel approach has an advantage over 

common HMM techniques because it does not model generative class conditional 

densities. Instead, it directly addresses the problem of discrimination by creating 

class boundaries and does not have modeling assumptions. By incorporating DTW 

in the kernel function, general classification problems with variable-sized sequential 

data can be handled. SVMGTDW method can in fact be applied to other similar 

problems such as speech recognition. Bahlmann compared his kernel approach to an 

HMM based technique on the UNIPEN handwriting database and showed that he 

achieve comparable results.  

 

In SVM research, work on kernels for sequential data has been done by 

(Jaakkola, 1999) and (Watkins, 2000). Jaakkola developed an SVM kernel in their 

application of protein homology detection and refer to it as Fisher kernel. Watkins 

developed several explicit kernels for sequential data and shows that they are proper 

SVM kernels under certain conditions. However, the kernels mentioned above are 

still based on an estimation of generative parameters. The GDTW kernel on the 

other hand presumes less model knowledge and is less complex. Comparing GDTW 

kernel to HMM-based classifier on the UNIPEN data shows that recognition rate is 

better for relatively small training sets but comparable for larger training sets. 

 

2.5.3  SVM as a Character Recognizer in a Hybrid System 

 

(Camastra, 2007) describes a cursive character recognizer as a module in an 

offline cursive word recognition system based on a segmentation and recognition 
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approach. The character classification is done by using Support Vector Machines 

(SVMs) and a Neural Gas. The Neural Gas is used to verify whether lower and 

upper case version of a certain letter can be joined in a single class or not. Once this 

is done for every letter, the character recognition is performed by SVMs.  

 

2.5.4  SVM in Multiple Classifier Methods  

 

To achieve an optimal recognition rate, many researches use different methods 

for combining multiple classifiers to compensate the weakness of one classifier, by 

the strength of the other classifiers. The combination method can use Local 

Accuracy Estimates, Local Learning Algorithm, Adaptive Mixtures of Local Experts 

or aggregation of the decisions obtained from individual classifiers to derive the best 

final decisions from a statistical point of view. The disadvantage of most of these 

methods is the complexity of optimization for each classifier and the definition of 

local area in terms of K-nearest neighbors which requires storing in the system 

memory all the training examples. These constraints are prohibitive in real 

handwriting recognition systems where some training sets can contain large number 

of examples.  

 

(Bellili, 2000) uses a combination of multilayer perceptron (MLP) neural 

network and SVM classifiers.  The SVMs are used to improve the performances of 

an MLP based digit recognizer. The hybrid SVM/MLP architecture is based on the 

idea that the correct digit class of the recognizer almost systematically belongs to the 

two maximum MLP outputs and that some pairs of digit classes constitute the 

majority of the recognizer errors. Specialized local SVMs are introduced to detect 

the correct class among these two classification hypotheses. The hybrid MLP-SVM 

recognizer achieves a recognition rate of 98.1%, for real mail zipcode digits 

recognition task, a performance better than several classifiers reported in recent 

researches. 

 

2.5.5  SVM in Non Roman Handwriting Recognition 

 

Support vector machines have also been observed to achieve reasonable 

generalization accuracy for non-Roman handwriting recognition such Thai 
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(Sanguansat, 2004) Arabic (Bentounsi, 2004)  and Devanagari/Telugu scripts 

(Chakravarthy, 2007).  

 

(Sanguansat, 2004) proposed a method for online Thai handwritten character 

recognition using HMMs and SVMs with a generalized Fisher kernels (called score-

space kernels) based on underlying generative models.  In the first phase, HMMs are 

used for multi-classification, then SVMs are applied to resolve any uncertainty 

remaining after the first-pass HMM-based recognizer (on certain classes only 

because the results of some classes are worse). Confusion matrix of the HMM-based 

recognizer is used to find the confused candidates in each class. If there is one 

candidate, it means there is no confusion in this class and HMMs alone are sufficient 

to classify. If there is more than one candidate, SVMs are applied.  If there are more 

than two, the multi-class method is applied. Symmetric likelihood ratio score-space 

was proposed where one observation sequence is mapped to only one score-vector. 

Experimental results show the average recognition rate improved from 89.9%, using 

baseline HMM, to 92.5%, using SVM with score space kernel. 

 

(Chakravarthy, 2007)  uses SVM for online handwritten character recognition for 

Indian scripts.  A number of separate feature vector combinations were used and 

compared. Features compared are stroke points, Fourier series coefficient and spatio-

structural features (shape feature), Hilbert transform, stroke points appended with 

stroke velocity, PCA based feature and Fisher linear discriminant (FLD) based 

feature vector. The standard gaussian kernel is used for training. Multiple classifiers 

approach were also taken where (1) the class corresponding to the maximum of 

normalized value among all the classifiers is selected as the best representative for 

the given test sample, (2) Majority vote is applied on the top K-output values from 

each classifier, (3) Normalized output value from each classifier is selected and 

concatenated and passed to another SVM based classifier.  

 

 

2.6 Summary 

 

In this chapter, we review pattern recognition and speech recognition as the lead 

towards describing in detail the reviews on state of the art for handwriting 
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recognition. We review both offline and online handwriting recognition with respect 

to the various stages in the recognition system; preprocessing, segmentation, feature 

extraction, recognition and post processing.  Finally, a review of the usage of SVM 

in speech and handwriting recognition is given. 
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CHAPTER 3 

 

 

 

HIDDEN MARKOV MODEL 

 

 

 

3.1 Introduction 

 

 

Handwritings are collection of signals captured by appropriate devices. Thus, as 

with any signal, they can be described theoretically by using a signal model. The 

model can be used is two ways; (a) to describe the process of writing, given a signal 

that gives some desired output, (b) to learn about the signal source by simulation 

without the source being available. Signal models are either deterministic or non-

deterministic (statistical). The differences between the two are that deterministic 

models use some known properties of the signal and only certain parameters need to 

be determined while non-deterministic or statistical models determines the statistical 

properties of the signal assuming that it can be characterized as a parametric random 

process such as Gaussian, Poisson or Markov processes. The signal is assumed to be 

well characterized and its related parameters can be determined or estimated in a 

precise and well-defined manner.  

 

Hidden Markov Model (HMM) is a statistical model of Markov process. It is 

rich in mathematical structures which can be used to model signals in real 

applications. An HMM is a variable-size collection of random variables with an 

appropriate set of conditional independence properties. Informally, an HMM is a 

variant of a finite state automata (FSA), which model a behavior composed of states, 

transitions and actions. However, HMM, unlike FSA, are not deterministic. A 
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normal FSA emits a deterministic symbol in a given state. Further, it also has 

deterministic transitions to another state. A stochastic FSA has either one of 

emission or transition which is probabilistic. HMM, on the other hand is doubly 

stochastic, both in the transition and emission.  Given an FSA to model a string of 

symbols it can be easily determined if the string has been generated by the FSA and 

if it is what the sequence of state transitions undertaken was (Boulard, 2003). With 

an HMM, the first stochastic process is represented by the probability that the HMM 

generated the string and the second by the sequence of state transitions undertaken 

which is “hidden", hence the name Hidden Markov Model. The stochastic emission 

models the local properties and the stochastic transition models the sequential 

properties. 

 

Early theory of HMM was published by Leonard E. Baum and other authors 

(Baum, 1970).  It has been successfully used to address complex sequential pattern 

recognition problems, among them continuous speech processing and recognition, 

cursive handwriting recognition, time series prediction and biological sequence 

analysis (Boulard, 2003). Its first usage was in speech processing as reported by 

(Baker, 1975) and (Jelinek, 1976). The usage was further popularized in speech 

recognition in the 80s by (Levinson, 1983) and (Rabiner, 1986a). During this time, 

several HMM-based speech recognition systems from AT&T, BBN, and CMU 

showed superior results (Chow, 1987) (Lee, 1988). The success of these systems 

dramatically increased interest in applying HMMs to speech recognition and other 

difficult pattern recognition problems such as handwriting recognition.  

 

Some usages of HMM in handwriting recognition can be traced in the following 

papers by (Nag, 1986), (Kundu, 1988), (Matan, 1992a) (Ha, 1993), (Schenkel, 

1993), (Schenkel, 1995) and (Bengio, 1995a).  This chapter introduces HMM and its 

usage in handwriting recognition.  

 

 

3.2 Theory of  HMM 

 

There are two types of HMMs classified by their observation probability 

densities: discrete-density HMMs and continuous-density HMMs. For simplicity, the 
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discussion here will be limited to discrete-density HMMs. A more detailed 

explanation of HMMs can be found in  (Rabiner, 1993), (Huang, 1990) and (Lee, 

1988). 

 

As mentioned earlier, HMM is a statistical model of Markov processes. To 

understand discrete-density HMMs, a review of the discrete-state Markov process is 

necessary.  

 

3.2.1  Discrete-State Markov Process 

 

A Markov process is a stochastic process that satisfies the Markov condition in 

which its future behavior depends only on its present state, not on the past. It is also 

called a memory less system. A discrete-state Markov process can be in one of a set 

of N distinct discrete states, S1, S2… SN at any given time.  Let Qn denote the state of 

the process at time n. The probability of the process being in state Si at time n is 

denoted by P(Qn = Si).  

 

Markov condition implies state-independence assumption. Simply stated, the 

present state depends only on the previous state. It can be formally stated as follows: 

),...,,|( 021 baninin SQSQSQSQP ===== −−    =  )|( 1 injn SQSQP == −    

                                                    baji ,,,∀  and n 

(Eq. 3.1)

Since a discrete-state Markov process satisfies the Markov condition, the initial 

state probabilities and the state transition probabilities from one state to the next 

together characterize the process completely. The probabilities of starting in a 

particular state or the initial state probabilities are denoted by }{ iπ=Π where  

)( 0 ii SQP ==π                       Ni ≤≤1  (Eq. 3.2)

                     with ∑
i

iπ = 1  

The state transition probabilities are denoted A = }{aij  , where: 

)|( 1 injnij SQSQPa === −         ∀  Ni ≤≤1  and (Eq. 3.3)

 
1∑ =

i
ija                                      (Eq. 3.4)
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Figure 3.1  A 3-state markov process 

 

As an example, a Markov process with 3 states (S1, S2 and S3) is shown in Figure 3.1. 

The circles are the states and the arrows indicate the transitions that are possible 

between the states.  In the diagram, aij is the state transition probability from state i 

to state j and πi is the initial state probability from state i. 
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(Eq. 3.5)

}{ kπ=Π  [ ]321 πππ=                                    (Eq. 3.6)

  

The duple },{ ΠA , completely parameterizes the discrete-state Markov process.  

 

 

3.2.2 Extending Discrete-State Markov Processes to Hidden Markov Models 

 

If we extend the discrete-state Markov process so that there is a non-

deterministic (or probabilistic) observation associated with each state, we have a 

Hidden Markov Model (HMM). Here, we assume that there is a symbol Oi that is 

observed when the process is in the state i, according to some probability. Thus, 

there is a sequence of observations that is observed and there are many possible state 
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sequences which generate an observation sequence.  The state sequence however is 

hidden. 

 

A formal definition for HMM is as follows. Let the number of distinct 

observation symbols that can be emitted in each state be M. Let On be the 

observation at time n and the event for which the observation symbol is k be denoted 

by vk. The state observation probabilities is denoted as  }{
kivbB =  where 

)|( inkniv SQvOPb
k

===       Ni ≤≤1 , and Mk ≤≤1   (Eq. 3.7)

          ∑ =
k

ivk
b 1 

Since HMM satisfies the output independence assumption, the probability of present 

observation given past observations, depends only on the current state. As such, we 

have  

),...,,|( 021 kncbnankn SQvQvOvOvOP ====== −−  

                                           = )|( knkn SQvOP ==  baji ,,,∀  and n 
(Eq. 3.8)

 

The triple, {A, B, Π}, normally denoted together by λ completely parameterizes an 

HMM. i.e., λ={A, B, Π} and Π is the initial state probabilities.  

 

Figure 3.2 shows a simple example of discrete density HMM with 3 states and 2 

observation symbols, i.e.: N = 3 and M = 2.  The state transition probabilities are: 
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(Eq. 3.9)

 

the state observation probabilities for the two symbols }2,1{ are: 
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The initial state probabilities are: 

}{ kπ=Π  [ ]321 πππ=                                    (Eq. 3.11)

 

 

Figure 3.2  A 3-state HMM with 2 observation symbols {0, 1} 

 

 

3.2.3  Three Problems of HMM 

 

Given the form of the HMM discussed in the previous section, there are three key 

problems of interest that must be solved for the model to be useful in real world 

applications. These problems are the following: 

 

(a) Given the observation sequence O = O1O2…OT and the HMM model      

λ={A, B, Π},  how to compute P(O| λ),  the  probability of the observation 

sequence. This is the Evaluation Problem. 

(b) Given the observation sequence O = O1O2…OT and the HMM model      

λ={A, B, Π}  how to choose a state  sequence Q = Q1Q2…QT which 

maximizes P(Q, O| λ). This is the Decoding Problem. 

(c) Given the observation sequence O = O1O2…OT and the HMM model      

λ={A, B, Π}, how to adjust the model parameters  λ={A, B, Π}   which 

maximize P(Q, O| λ). This is the Training Problem. 
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In (a), given a model and a sequence of observations, we compute the probability 

that the observed sequence was produced by the model or another words we evaluate 

the model. ie: by comparing the model with competing models, we can choose  

which is the best match to the observations.  In (b), we attempt to uncover the state 

sequence (hidden part of the model). Using an optimality criterion, the best state 

sequence which is found can be used to learn about the structure of the model, and to 

get average statistics, behavior, etc. within individual states. In (c), we attempt to 

optimize the model parameters so as to best describe how the observed sequence 

comes about. The training problem is crucial since it allows to optimally adapt 

model parameters to observed training data to create best models for real 

phenomena. 

 

3.2.4  A Solution to the Evaluation Problem – The Forward Algorithm 

 

The evaluation problem is to compute P(O|λ), the probability of the observation 

sequence, O = O1O2…OT, given the model parameter λ. Since the state sequence,    

Q = Q1Q2…QT, corresponding to the observation  sequence O is hidden, P(O|λ) has 

to be computed by summing P(O, Q|λ) over all  possible state sequences. 

P(O | λ) ∑=
allQ

QOP )|,( λ                                    (Eq. 3.12)

where P(O,Q | λ)= P(O|Q, λ)  P(Q | λ)                              (Eq. 3.13)

 

The state independence assumption (Eq. 3.1), allows us to write: 

P(Q | λ) =   12312
...1 −TTQQQQQQQ aaaπ                                  (Eq. 3.14)

 

 Also, the output independence assumption allows us to write : 

P(O,Q | λ) =   
TTOQOQOQ bbb ...

2211
                                 (Eq. 3.15)

Therefore, 

P(O | λ) ∑=
allQ

Q1
π )...(

12312 −TTQQQQQQ aaa )...(
2211 TTOQOQOQ bbb  (Eq. 3.16)
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The direct calculation of P(O|λ)  in (Eq. 3.16) involves calculations on the order 

of 2TNT. This computation becomes unfeasible as the number of possible states, N, 

or the length of the observation sequence T increases. This necessitates a more 

efficient way of computing P(O|λ). Fortunately, an efficient algorithm called 

Forward-Backward algorithm exists. First, let us define the forward variable: 

    αt(i)=  P(O1O2…Ot, Qt=Si| λ)                                (Eq. 3.17)

 

The variable αt(i) denotes the joint probability of the partial observation 

sequence, O1O2…Ot, and the state Si at time t, given the model λ. It can be calculated 

recursively:  
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(Eq. 3.18)

 

From the definition of the forward variable, it is observed that the probability of the 

entire sequence can be expressed as: 

P(Q | λ) =   ∑
=

N

i
T i

1

)(α                                  (Eq. 3.19)

 

 (Eq. 3.17) to (Eq. 3.19) illustrate how to compute P(O|λ) by first recursively 

evaluating the forward variables, αt(i), from t = 1 to t = T   and then summing all the 

forward variables at time T, the αT(i)’s. The above steps are often referred to as the 

forward algorithm. The number of calculations involved is on the order of TN2 

instead of 2TNT. Hence, the forward algorithm can be used to solve the evaluation 

problem much more efficiently. 

 

3.2.5  A Solution to the Decoding Problem – The Viterbi Algorithm 

 

The decoding problem involves finding an optimal state sequence given the 

observation sequence, O = O1O2…OT, and the model parameter λ.  The optimality 

criterion is to maximize P(Q,O|λ) which is the joint probability of the state sequence, 

Q = Q1Q2…QT, and the observation sequence O = O1O2…OT,  given the model λ. 
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The optimal state sequence is denoted by Q*. Viterbi algorithm which is a popular 

algorithm based on dynamic programming, can be used to solve this optimization 

problem. We use δt(i) to denote the maximum probability of the optimal partial state 

sequence,  Q1Q2…Qt-1, with the state Si at time t and observing the partial 

observation sequence, O1O2…Ot, given the model λ. 

  

      δt(i)=  
121 ...

max
−tQQQ

P(Q1Q2… Qt-1 Qt  = Si , O1O2…Ot | λ)                  (Eq. 3.20)

 

Similar to the forward variable αt(i), δt(i) can be calculated recursively as follows: 
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(Eq. 3.21)

 

From the definition of δt(i), it is clear that : 

 

     P(Q*, O|λ) =     )(max
1

iTNi
δ

≤≤
                              (Eq. 3.22)

 

Using (Eq. 3.21)  and (Eq. 3.22), we can compute the joint probability of the 

optimal state sequence and the observation sequence given the model, P(Q*, O|λ). 

Note that the memory usage is very efficient, i.e., at any time t, only N forward 

variables, δt(i) need to be stored. By keeping track of the argument i in both 

equations as P(Q, O|λ) is being maximized, we can recover the optimal state 

sequence completely. 

 

Also note that P(Q*, O|λ)  can be viewed as the biggest component of P(O|λ) in 

(Eq. 3.12). When P(Q*, O|λ) is a good approximation of P(O|λ), we can use the 

Viterbi algorithm instead of the forward algorithm for the evaluation problem. This 

will conserve computation. Since the computational complexity of the Viterbi 

algorithm is even less than that of the forward algorithm.  
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3.2.6  A Solution to the Training Problem – The Baum-Welch Algorithm 

 

The training problem is by far the most difficult of the three basic problems. The 

training problem computes the optimal model parameter, λ, given an observation 

sequence, O = O1O2…OT. Here, the optimality criterion is to maximize P(O|λ), the 

probability of the observation sequence given the model λ.  Generally we expect the 

optimal model to have the same number of states and observations. Intuitively, we 

want to think of training an HMM as methods for making slight adjustments to an 

already somewhat-working model.  

 

There is no known analytical solution that exists for the learning problem. There 

are however, popular iterative algorithms for addressing it: the Baum-Welch 

Algorithm, and Viterbi Training. In this section, we will focus on Baum-Welch 

Algorithm exclusively. The iterative procedures guarantee a locally optimal solution 

to the training problem. The Baum-Welch algorithm is a generalized expectation-

maximization (EM) algorithm for finding maximum likelihood estimates and 

posterior mode estimates for the parameters (transition and emission probabilities) of 

an HMM, when given only the observation training data.  EM algorithm alternates 

between performing an expectation (E) step, which computes an expectation of the 

likelihood and maximization (M) step, which computes the maximum likelihood 

estimates of the parameters by maximizing the expected likelihood found on the E 

step. The parameters found on the M step are then used to begin another E step, and 

the process is repeated. 

 

The two steps of the algorithm can be summarized as follows: (a) Calculating the 

forward probability and the backward probability for each HMM state; (b) On the 

basis of this, determining the frequency of the transition-observation pair values and 

dividing it by the probability of the entire string. This amounts to calculating the 

expected count of the particular transition-observation pair. Each time a particular 

transition is found, the value of the quotient of the transition divided by the 

probability of the entire string goes up, and this value can then be made the new 

value of the transition. 

 

To discuss HMM training in detail, first, let us define the backward variable:  
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 βt(i) = P(Ot+1 Ot+2 … OT|Qt=Si, λ) (Eq. 3.23)

  

The variable βt(i) denotes the probability of the partial observation sequence,       

Ot+1 Ot+2 … OT, given the state Si at time t and the model λ. The backward variable 

is similar to the forward variable. It can also be calculated recursively: 
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(Eq. 3.24)

 

From the definition of the backward variable (Eq. 3.23) and the definition of the 

initial state probabilities (Eq. 3.2) it is clear that 

P(Q | λ) =   i

N

i

i πβ∑
=1

1 )(                                  (Eq. 3.25)

 

Second, let us define ξt(i, j), the joint probability of the state Si at time t and the 

state Sj at time t+1, given the observation sequence O and the model λ.  

 ξt(i, j)= P(Qt =Si, Qt+1 =Sj | O, λ) (Eq. 3.26)

 

ξt(i, j) can be completely expressed in terms of the forward variable, the backward 

variable, and the model λ.  
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(Eq. 3.27)

 

Note that the denominator of (Eq. 3.27) needs to be calculated only once. This 

quantity, which is equivalent to P(O|λ), is often referred to as the alpha terminal. It 

indicates how well the model λ matches the observation sequence O. With the 
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current model as λ = (A, B, Π), we can iteratively re-estimate the model,    

),,( Π= BAλ ,   where   
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(Eq. 3.29)

and  
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),(ξπ  (Eq. 3.30)

ija can be seen as the ratio of the expected number of transitions from state Si to Sj  

to the expected number of transitions from state Si to any state. Similarly,  
kivb  can 

be seen as the ratio of the expected number of times in state i while observing the 

symbol vk to the expected number of times in state i. πi can be seen as the expected 

number of times in state Si at time t = 1. The above iterative procedure for updating 

the model λ is the essence of the Baum-Welch algorithm. Baum and others have 

proven that P(O| λ   )≥ P(O|λ) for every iteration of the algorithm. Hence, P(O| λ   ) 

≈ P(O|λ) is used as the stopping criterion for the algorithm. The likelihood function, 

P(O|λ) will eventually converge to a local maximum. 

 

 

3.3 HMM Model Topology 

 

In Baum-Welch algorithm, we refine an existing HMM so as to make it more 

suitable for a particular dataset. How to pick an initial HMM from scratch to match 

some empirical data is actually more of trial and error. We begin by making a 

“guess” at what a good model might be, and then use Baum-Welch to tune the 
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probabilities accordingly. The number of states and observations and the topology of 

the state transition graph need to be decided, which require some insight into the 

process being modeled. Normally, a few different models are tried before the best is 

picked.  

 

There exist many different HMM model topology. Figure 3.3 shows some 

example topologies for a 4 state HMM.  Left-to-right model is a model which allow 

only left to right transition and does not allow backward transition while Ergodic 

model allows transition from a state to any other states.  Linear model is a special 

case of left-to-right model without the skip between states while Bakis model is also 

a left-to-right model but allows a single state skip.  

 

 

 

 

 
(a) linear model – transition allowed to 

the current or next state.  

 
(b) Bakis model – transition allowed to 

the current, next or next 2 state. 

 

 

 

 
(c) Left-to-right model – transition 

allowed to current and all states to 

the right 

 
(d) Ergodic Model – transition allowed 

to current and any other states  

 

Figure 3.3  HMM Model Topology 
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3.4 Using HMMs for On-line Handwriting Recognition 

 

To use HMMs for solving handwriting recognition problem, we need to know 

how to model handwriting using HMM. Letters, words, and sentences can be 

modeled with HMMs. Building the model, ie: the training and the recognition of 

isolated words and sentences can be accomplished by using the solutions to the three 

basic HMM problems given in the previous section. In this section, the modeling of 

letters, words, and sentences are described respectively. 

 

3.4.1 Modeling Letters 

 

An HMM can model a letter. Normally a left-to-right HMM topology is used. 

The left-to-right HMM state index is non-decreasing as the time increases.  

i.e:      aij = P(Qn = Sj| Qn-1 = Si)  = 0,   i > j.  

 

Non-emitting states can be used in an HMM model to indicate start and end 

states.   

Figure 3.4 shows left-to-right and ergodic models using white circle as the 

emitting states and black circle as the non-emitting states. These states are used as 

the starting and ending point in the model which can be used in the concatenation 

between models.  

 

 
(a) 3 state Left-to-right model                            (b) 3-state Ergodic model 

 

Figure 3.4  HMM Modeling with emitting and non-emitting states 
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In training the HMM, we have samples of existing letters and their classes. 

Using the samples, an HMM is built for each letter in the set of letters. Thus, for 

each letter i, 1≤ i ≤ N, where N is the total letters in the letter set,  there is an HMM 

model λi={Ai, Bi, Πi} being built.  

 

For letter recognition, a new letter is given for recognition. The new letter is 

represented by the observation sequence, O = O1O2…OT.  We need to decide which 

one of letter models λi, 1≤ i ≤ N, best represent the observation sequence O. This is 

the evaluation problem of the HMM.  First, we can compute P(O|λi), which is the 

probability of the observation sequence O given the HMM model parameters for 

each of letters using the forward algorithm. Then the letter corresponding to the 

maximum probability, P(O|λi), is chosen as the optimal answer. According to 

Bayesian classification theory, picking this letter minimizes the probability of error, 

therefore:  

 

Nlettersl
ioptimal

OPl
∈

= )|(maxarg λ  (Eq. 3.31)

 

 

3.4.2  Modeling Words 

 

For handwriting recognition, a word can be modeled by an HMM if the lexicon 

is small in size. If the lexicon is large, normally the word HMM model is formed by 

concatenating letter HMMs since a word is made of a sequence of letters. In cursive 

writing, for words with the letters “i”, “j”, “x”, or “t”, where the writer adds the dots 

or crosses at the end of writing the word, these words are modeled with 

concatenating letter HMMs with letter-HMMs modeling these special characters, the 

“i” or “j” dot, the “t” cross, and the “x” cross, to the end of the HMM modeling these 

words. Some researchers, ignore these dots and crosses altogether. 

 

Since these dots and crosses can be written in an arbitrary order, each of these 

words would have multiple word-HMMs representing each of them. The number of 

word-HMMs representing the same word can grow quite large as the number of “i”, 

“j”, “x”, or “t” letters increase. Researchers use various methods to represent these. 
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The simplest may be to represent these special letters by a single letter, such as the 

“backspace” character. For example, the HMM model of the word ‘it’ consists of 

four individual letter HMMs, each of which represents the letter “i”, “t”, 

“backspace”, and “backspace”, respectively. Using HMM with white and black 

states, the concatenation is formed at the black states. In this case, if a character 

model is to be removed, it can be modeled as allowing a transition of the initial state 

of a model letter to the final state of this same model letter. 

 

 

 

 

 

 

 

 

Figure 3.5   Concatenation of character HMM models to form a word model 

  

 

A word HMM model therefore consists of a group of white emitting states and a 

group of black non-emitting states between initial state and final state of the model.  

In discrete density HMM, it is necessary to define a group of observation symbols 

and so, each white state has its own probability of emitting a symbol. The usual 

approach for defining the symbol is vector quantization method by using the k-

means algorithm. In continuous density HMM, the probability is estimated on the 

space of observation possible. Among the popular one is Gaussian distribution. 

 

For word recognition, word-HMMs built from the concatenation of letter 

HMMs are used to calculate the probability of the particular word given the 

observation sequence as described in section 1.4, using Bayes theorem. Words with 

the highest posterior probability are taken as the recognized word. 

 

 

…
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3.4.3  Modeling Sentences 

 

Sentence model is formed from concatenation of word HMMs. In a sentence 

recognition system, the number of all possible words is normally limited to a 

particular recognition task. However, the numbers of sentences that can be 

composed with these words are very large. To model each sentence explicitly is 

simply computationally impossible. Fortunately, a probabilistic sentence network 

can be constructed to represent all of the possible sentences. Words in a sentence can 

also be assumed to satisfy the Markov condition, i.e: the word in a sentence is only 

dependent on the previous word, and not any other previous words.  

 

The probability of a word given the previous word P(Wn|Wn-1) is called the 

bigram probability. We can similarly have n-gram probabilities; the probability of a 

word given n-1 previous words. The bigram probabilities and the initial word 

probabilities, P(W0), together specify a bigram grammar for sentences. The 

probability of any sentence composed of a set of words, W0W1…Wn-1Wn, can be 

approximated with this bigram grammar:   

P(W0W1…Wn-1Wn) ˜ P(W0)P(W1|W0),…P(Wn-1|Wn-2)P(Wn|Wn-1)  (Eq. 3.32)

 

The bigram grammar can be estimated from a sentence data corpus. The 

sentences from the corpus are used to compute the bigram probabilities and initial 

word probabilities. To model all possible sentences made of the allowable words 

with HMMs, a bigram grammar can be constructed with all of these words using the 

sentence data corpus. Each node of a bigram grammar is actually a word HMM. 

These composite HMMs can represent all possible sentences made of all the 

allowable words. 

 

In sentence recognition, new handwritten sentences in the form of the 

observation sequence O = O1O2…OT is given. A sentence corresponding to the 

observed sequence need to be obtained as the most probable sentence.  Here, the 

HMM model parameters of each letter, λi={Ai, Bi, Πi}, are known, and the 

parameters of the bigram grammar are also known. Therefore, first, we calculate the 

optimal state sequence, Q* =Q1*Q2*… QT* which corresponds to the observation 
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sequence using the Viterbi algorithm. Since the optimal state sequence is associated 

with a deterministic sequence of letters and words, this sequence of words is the 

desired result for the sentence.  

 

On the extreme, a unique HMM can be created for each sentence, but it would be 

necessary to compute the probability P(O|λi) for each sentence using forward 

algorithm. Since the number of possible sentences grows exponentially with the 

number of words, this method of utilizing the forward algorithm is computationally 

impractical. Therefore, it is necessary to use the Viterbi algorithm in order to solve 

the problem of sentence recognition. 

 

 

3.5 Discriminative Training of HMM 

 

Training of HMM using maximum likelihood estimation (MLE) approximation 

is known to be non-discriminative. This is due to the fact that only in-class examples 

are used in building the HMM models.  To be discriminative, information from all 

examples of different classes need to be used in the model building.  In MLE-based 

HMM training, the estimation process tries to optimize the modeling ability of the 

observation without having the measure of their classification ability. In real 

application, a good classifier needs to have the goal of better discrimination ability. 

There are some powerful HMM parameter estimation techniques and classifiers that 

use some form of discriminative information to achieve better classification. These 

other methods of training are the Maximum Mutual Information (MMI) training and 

the Minimum Classification Error Training (MCE) training. The motivation for 

MMI approach is based on the information theoretic concept and MCE approach is 

based on reducing classification error.  

 

In the global picture of discriminative training, the focus is on directly modeling 

the boundary between classes. In this respect, discriminative training can be 

classified into either structure-bound or structure-free. In structure-bound 

methodology, discrimination ability is embedded within a preset classifier structure 

and the algorithm cannot be used independently of the structure. Examples of this 

are k-nearest neighbor classifiers and kernel-based methods such as Support Vector 
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Machines (SVM). Structure-free methodology uses an objective function that is 

independent of the system in which it is implemented and the same criterion can be 

used with various classifier structures.  

 

MCE and MMI fall under Structure-free methodology. So are a few others like 

Minimum-Squared Error (MSE) and Cross-Entropy (CE). However, with the 

exception of MCE, the others are constrained on the architecture on which they are 

implemented. The CE criterion, which minimizes the cross-entropy between the 

target and the models, requires a probabilistic interpretation of the system’s output. 

The MMI criterion which maximizes the mutual information between the data and 

their classes also requires a probabilistic interpretation of the system outputs. The 

MSE criterion, widely used in Neural Network-based learning, requires a target 

function and attempts to minimize the squared distance between the output of the 

system and the target. 

 

In this section we review the two techniques for discriminative training of 

HMMs; the MMI and the MCE.   

 

 

3.5.1  Maximum Mutual Information (MMI) training 

 

The MMI criterion considers HMMs of all the classes simultaneously, during 

training. Parameters of the correct model are updated to enhance its contribution to 

the observations, while parameters of the alternative models are updated to reduce 

their contributions. This procedure gives a high discriminative ability to the system. 

In MMI training, we want to determine the components in the observation X that are 

most useful in distinguishing between the different classes in Y.  

 

The mutual information I between X and Y is defined as the average amount of 

uncertainty about the knowledge (or the entropy) of X given the knowledge of Y 

(Cover, 1991) (Kullback, 1997).  Mathematically this can be written as: 

I(X;Y) = H(X) – H(X | Y) (Eq. 3.33)
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The conditional entropy of X given Y is given by 

H(X | Y) = ∑
yx

yxP
,

),(  logP(x|y)  = -E[logP(x|y)] (Eq. 3.34)

Putting handwriting recognition system in this mutual information framework, 

let W and O denote the random variables corresponding to the words and observation 

vectors. Similarly,the mutual information between W and O is given by:  

I(W;O) = H(W) – H(W|Ο).  (Eq. 3.35)

 

Thus, the uncertainty in the word given the sequence of observations is the 

conditional entropy of W given O, that is: 

 H(W|O) = H(W) – I(W;O). (Eq. 3.36)

 

We do not know P(W,O) in general and need to estimate it. The conditional 

entropy of the words given the observations O can be shown to satisfy the following 

inequality: 

 Hλ(W |O) ≥ H(W |O) (Eq. 3.37)

 

where λ denotes a particular parametric estimate to the actual probability 

distribution. The equality holds only if Pλ(W |O) = P(W |O). Thus by minimizing the 

conditional entropy H(W|O) in (Eq. 3.36), we can get an estimate of the conditional 

distribution that minimizes the uncertainty of the data given the model. Minimizing 

H(W|O) implies the maximization of I(W;O), the mutual information, assuming a 

fixed H(W). Thus this process is called maximizing the mutual information (MMI). 

 

Using (Eq. 3.33) and (Eq. 3.34) we define an objective function, LMMI, for the 

MMI estimation of the parameters, similar to the ML-based estimation of HMM 

parameters, 

 LMMI(λ)  = Iλ(W;O)  =   Hλ (W) - E[logPλ (w|o)] (Eq. 3.38)

 

This objective function is the mutual information of the words given the 

observations under the parametric distribution. In this formulation we assume that 
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we have observations from a training set and that we can represent each observation 

as a composite HMM composed of a concatenation of letter HMMs representing the 

underlying observations.  

 

Replacing the expectations by the sample averages and assuming the training 

data consists of R observations, we can write  

 

LMMI(λ)  = ∑
=
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LMMI(λ)   = ∑
=

−−
R

r
rrr oPMoP

R 1
)}(log)|({log1

λλ  

 

In the above wr  is the word in the rth observation with a corresponding composite 

HMM model Mr.  or are the set of observation vectors corresponding to the word. 

The first term in the above equation is the likelihood of the data given the model. 

Maximizing LMMI(λ) can be achieved by maximizing this likelihood, which is 

equivalent to ML estimation.  However LMMI(λ) can also be maximized by 

simultaneously maximizing the first term in the right hand side of  (Eq. 3.39) and 

minimizing the second term. The second term, the probability of the observation 

under a particular parameterization of the model, is what differentiates MMI from 

ML-based estimation. The probability of the observation can be defined in terms of 

the probability of generating all possible words. 

 P(or) = )().|( rs
s

rsr MPMoP∑  (Eq. 3.40)

 

where s represents any possible words and Mrs  represents the composite observation 

model for a given word. Since the probability of the observation includes 

information comprised of both the correct and the incorrect hypothesis, this 

optimization process is more discriminative than the traditional ML-based 

estimation. 

 

Details of practical implementation of MMI are discussed in (Bahl, 1992, 

Garcia-Salicetti, 1996, Bahl, 1986) 
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3.5.2  Minimum Classification Error (MCE) training 

 

Both traditional ML and discriminative MMI techniques neither explicitly 

attempts to optimize the primary goal of a recognizer which is to maximize the rate 

of recognition, in other words, minimizing the error rate of recognition.  MCE 

training technique directly minimizes errors. Because of that, as we mentioned 

earlier, MCE criterion is not limited to HMM parameter estimation and has been 

used to optimize several other types of classifiers including prototype based 

classifiers and neural networks.  

 

The gist of MCE optimization is that we define a loss function in terms of the 

trainable parameters of the classifier that is proportional to the classification error. 

This loss function is then minimized using a suitable gradient-based technique. MCE 

training does not necessarily involve the estimation of probability distributions and 

hence no underlying probability distribution needs to be assumed. This circumvents 

a major drawback of ML estimation. MCE allows us to build classifiers that perform 

close to the Bayes error rate using the efficient method called Generalized 

Probabilistic Descent (GPD) which is based on Probabilistic Descent theorem by  

(Amari, 1967). The MCE/GPD paradigm was primarily applied to speech-related 

tasks, including acoustic modeling, word spotting, speaker recognition and 

adaptation, feature transformation, and feature extraction. Due to its success in 

speech recognition, recently, we have witnessed an increase in the number of MCE 

applications to handwriting recognition.(Biem, 2006 ) 

 

The misclassification error measure in a classification problem can be defined in 

terms of discriminant functions of the k classes Ck, which is  the word lexicon in the 

case of word recognition. We can choose a misclassification error such that it takes a 

value of zero for all correct classifications and non-zero values for 

misclassifications. This measure is not extremely useful because it does not provide 

a degree of separation between the correct and incorrect classes. In practice 

misclassification error measure with a gradual slope is preferred, such as the 

following: 
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where  gk is the discriminant function corresponding to the kth class, Φ  are 

parameters in the discriminant function, Ψ are parameters that controls the 

contribution of each misclassification towards the error metric and L is the number 

of classes in the classification problem. When Ψ is large, the most confusable class 

contributes the most to the summation. 

 

In using the MCE framework in HMM parameter estimation, we start with the 

definition of the discriminant function in terms of the parameters of an HMM. In 

choosing the form of the discriminant function, the primary requirement is that the 

discriminant function can be used as a distance metric to compare classes. Normally, 

the likelihood of the class, Cj, in terms of the transition and observation probabilities 

is often used.  

 

The likelihood is computed as the probability of all possible state sequences pθ , 

for the given data. An expression for one particular state sequence can be written as 

follows: 
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where a and b are the HMM transition and observation probabilities, 

respectively. Using the above definition of the likelihood, the discriminant function 

for the jth class can be defined as follows: 
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Note that when ξ is large, the most probable state sequence dominates the 

summation and the solution approach a Viterbi solution.  

 

A loss function d can now be defined as the misclassification error measure.  

(Eq. 3.41) defines a commonly used loss function. This loss function is then 

minimized using gradient descent approaches similar to MMI estimation. From 

Amari’s theorem, convergence to the local MCE optimum involves optimizing local 

loss functions. In general there are certain desirable properties for loss functions 

since GPD involves gradient computations. Near-binary functions are a desirable 

form for loss functions. Loss functions need to be first-order differentiable to apply 

GPD. A commonly used loss function that satisfies the above requirements is the 

sigmoid function: 

  
)(dl
 
= de α−+1

1
 

(Eq. 3.44)

 

where d is the misclassification error measure. 

 
 
3.6 Discrete vs. Continuous Density HMM 

 

A Comparison between continuous and discrete density HMM for cursive 

handwriting recognition has been done by (Rigoll, 1996). Discrete density HMM 

was shown to lead to better results than continuous Gaussian distribution HMM. 

This is generally not the case for HMM-based speech recognition systems. Although 

there are certain similarities between HMM-based speech recognition and 

handwriting recognition, different problems occur in both areas that it is not possible 

to handle the modeling problems for handwriting in exactly the same manner as for 

speech recognition.  (Rigoll, 1996) performed systematic comparison between 

continuous and discrete density HMM for handwriting recognition using exactly the 

same databases for training and testing and conclude that discrete density HMM 

gives better recognition, especially for bigger database.  Furthermore, discrete 

models allows for simpler feature extraction, data compression and speed advantage 

enabling towards a real time recognizer.   
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3.7 Hybrid of Neural Network and HMM  

 

HMM deals with temporal aspects of handwriting efficiently because of the 

efficient training and decoding algorithms. However, many of the assumptions made 

in building and optimizing it, limit their generality. For HMM trained with MLE, 

besides the poor discrimination ability mentioned earlier, it also suffer from several 

drawbacks; (a) there need to be a priori choice of topology and initial probability 

distribution, (b) the first order Markov assumption for the state sequences, (c) 

uncorrelated input observation assumptions meaning that possible temporal 

correlation across features associated with the same HMM are totally disregarded. 

 

To overcome the above problems, many researchers integrate neural network 

into the formalism of HMM. NN can approximate any kind of nonlinear 

discriminant function, flexible and do not need assumptions about the input 

distribution. The time sequences aspect that NN cannot handle is done by HMM. 

NN is used to estimate the probability of observation, which is the local posterior 

probabilities associated with each state in the HMM. These posterior probabilities 

are then turned into scaled likelihoods by dividing them by the estimated values of 

the class priors as observed in the training data. The scaled likelihoods are trained 

discriminatively using the ANN. During recognition, the scaled likelihoods are used 

in the Viterbi or forward computation to obtain an estimator of the global scaled 

likelihood. 

 

In another form of hybrid NN/HMM, ANN can be trained according to the 

maximum a posteriori (MAP) criterion. The overall resulting training called 

recursive estimation and maximization of posterior probabilities (REMAP) becomes 

a form of EM training where posteriors are involved in the M step which is the NN 

training.  

 

The NN can be one of the many possibilities available such as Time Delay 

Neural Network (TDNN), Space Displacement neural Network (SDNN), 

Convolutional Neural Network (CNN) etc.  
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3.8 Summary 

 

In this chapter, we build the description of HMM from Markov process. The 

three problems in HMM are stated and shown how to solve them. Description of 

how HMM can be implemented in order to be used in on-line handwriting 

recognition is given at the letter, word and sentence level. In order to obtain a 

discriminative recognizer, methods of training HMM to be discriminative are given 

along with the method of using NN in the context of HMM to obtain an overall 

discriminative recognizer. 
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CHAPTER 4 

 

 

 

SUPPORT VECTOR MACHINES 

 

 

4.1 Introduction 

 

In handwriting recognition systems based on Hidden Markov Model (HMM), 

handwriting is modeled by estimating a representation of the handwriting signal i.e. 

by estimating probability distributions of characters or words across the training 

data. The maximum likelihood (ML) based parameter estimation in an HMM tries to 

optimize the modeling ability without being able to measure their classification 

ability because only in-class data is used in the representation.  (Riis, 1998) 

 

Other useful HMM parameter estimation techniques discussed in chapter 3 use 

some form of discrimination information to achieve good classification.  The 

discrimination information is in the form of an objective criterion that gives the 

probability of the data given the wrong model. Using the discriminative-based 

estimation, in-class (positive) examples and out-of-class (negative) examples are 

both used. This allows for simultaneously learning a good representation for in-class 

data while discriminating out-of-class data. Neural networks are discriminative 

classifiers because they learn the separating surfaces using both negative and 

positive examples. Classifiers that estimate decision surfaces directly have better 

performance than those that estimate a probability distribution across the training 

data. 

 

In discriminative classifier point of view, handwriting recognition is a problem 

of supervised learning and classification. Handwriting data with known labels are 
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used to train a discriminative model. Then, for a new unseen handwriting, the model 

is used to predict the class label. A classifier can be a multiclass classifier such as in 

neural network or built from a number of basic two-class classifier into a multiclass 

classifier. The classifier model is said to generalize well if it can predict the correct 

classes well on a set of unseen test data.  

 

Support Vector Machine (SVM) is a discriminative classifier that learns the 

decision surface through a process of discrimination and has good generalization 

characteristics. SVM have been proven to be a good classifier on many classical 

pattern recognition problems, among others; text categorization (Joachims, 1998), 

image recognition, image classification (Chapelle, 1998) (Chapelle, 1999), objects 

recognition, cancer classification (Chu, 2005), spam categorization (Drucker, 1999), 

face recognition, motion detection (Xu, 2005, Sidenbladh, 2004), face detection  

(Osuna, 1997); (Li, 2001), electricity fraud prediction (Ahmad, 2007), electricity 

load forecasting (Zhang, 2005), signature verification (Edson, 2005), time series 

prediction (Van Gestel, 2001), system identification (Zhang, 2004), web document 

classification (Lung, 2004), stock market forecasting (Huang, 2005), speech 

recognition (Joachims, 1999)  (Ganapathiraju, 2004) and speaker verification (Wan, 

2005). 

 

SVM is quite a recent addition (1990s) to the various methods for classification. 

Its basic form implements a two-class classification method. It has been widely 

researched and used in recent years, for one, as an alternative to neural network. The 

main advantage of SVM, with respect to neural network, is that it provides a sound 

theoretical framework for taking into account not only the experimental data to 

design an optimal classifier, but also a structural behavior for allowing better 

generalization capability (Scholkopf, 1999). SVM generalization performance either 

matches or is significantly better than that of competing methods in most cases.  

 

SVM’s better generalization performance is based on the principle of structural 

risk minimization (SRM) (Vapnik, 1998). Its formulation approximates SRM 

principle by maximizing the margin of class separation. Thus, SVM classifier is also 

known as a large margin classifier. Basic SVM formulation is meant for linearly 

separable datasets. With a small modification, it can be used for non-linear datasets 
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by using kernel functions to indirectly map the nonlinear input space to a linear 

feature space where the maximum margin decision function is approximated  

(Burges, 1998). Outliers are handled through soft-margin SVM formulation. The 

general SVM formulation is non-linear soft-margin SVM in which linear and hard-

margin (non-separable) problems are special cases. 

 

SVM training involves approximating SRM by solving a convex quadratic 

programming problem with equality and inequality constraints. The final solution 

solves for nonzero parameters α in the formulation and extracts a subset of training 

data corresponding to the parameter. For training on small datasets, say less than 

1000 samples, it can be solved reasonably fast and can be performed on a reasonably 

configured PC. For large datasets, solving the quadratic function requires large 

computing power and large memory for storage of the kernel matrix during 

computation. The memory requirement grows with the square of the size of training 

datasets. 

 

A number of methods of SVM training have been developed over the years to 

improve on the memory requirement issue, speed up the training time and finding 

the best training model using appropriate kernel and the hyper parameters (Burges, 

1998). In addition, since basic SVM can only handle two-class classification, to 

obtain multiclass classifier, at the minimum requires training of many two class 

classifiers and in classification, voting schemes are used for selecting the correct 

class (Weston, 1998) (Hastie, 1996) (Hsu, 2002). Method of modifying the two class 

SVM formulation into single multiclass formulation for solving simultaneous 

multiclass problem has been proposed but currently not widely implemented yet.  

 

SVM have been made popular by the availability of stable implementation 

packages. There are a few implementation packages available publicly and have 

been popularly used as reported by many researchers. Among them are LIBSVM 

(Chang, 2001), SVMTorch (Collobert, 2001) and SVMLight (Joachims, 1999).  

 

This chapter will introduce the theory behind SVM and demonstrate SVM 

implementations. We present the formulation of SVM in the next section, followed 
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by discussion on the different methods of implementing SVM for two class 

classification problems and expanding it to multiclass problems in section 4.3. The 

three publicly available SVM implementation packages mentioned earlier which we 

have tested are presented and compared in section 4.4. 

 

 

 

4.2 Theoretical foundation 

 

Vapnik has formulated the idea of support Vector Machines in the framework of 

Statistical Learning Theory (Vapnik, 1998). We first briefly discuss some basic ideas 

of the theory. 

 

4.2.1  Statistical Learning Theory 

 

In statistical learning theory (SLT), the problem of classification in supervised 

learning is formulated as follows (Vapnik, 1999): 

 

We are given a set of l  training data and its class,
 

)},(),...,,(),,{( 21211 nn yxyxyx
 
 
 

in Rn × R sampled according to unknown joint probability distribution P(x,y) 

characterizing how the classes are spread in Rn × R.   

 

We assume that the training data has been drawn randomly and independently 

based on the joint distribution. The goal of a learning machine is to learn the 

mapping y = f(x). To learn the unknown mapping, we can perform either of the 

following: 

(a) Estimate a function that is “close” to the joint distribution under an 

appropriate metric. 

(b) Learn an optimal predictor or classifier of the systems output.  

 

In the former case, it is not sufficient for us to estimate a good predictor of the 

output. The goal is to estimate, the joint probability distribution. However, for data 

classification, we can actually pursue the goal of learning an optimal predictor or 
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classifier. Learning is then a process of choosing a function from a set of functions 

defined by the construction of the learning machine. For a gradient-based neural 

network classifier, the network structure is predefined, leading us to choose from 

only a finite set of functions. This is accomplished by finding the weights of the 

connections of the predefined network. The optimal network for the classifier is 

chosen based on some optimality criterion that measures the quality or performance 

of the learning machine.  SLT allows us to learn the optimal classifier by minimizing 

the structural risk.  

 

4.2.2  Structural Risk Minimization  

 

To measure the performance of the classifier, a loss function L(y,f(x)) is defined 

as follows: 

 

⎩
⎨
⎧

≠
=

=
f(x)1 if y
f(x)0 if y

L(y,f(x))  (Eq. 4.1) 

 

i.e. L(y,f(x)) is zero if f classifies x correctly, one otherwise.  

 

On average, how f performs can be described by the Risk functional  

 

∫= dP(x,y)L(y,f(x)) R(f)           (Eq. 4.2) 

                  

Since P(x,y) in unknown, an estimate of the risk (the empirical risk) can be 

obtained by induction using principle of empirical risk minimization (ERM) over a 

set of possible functions as follows: 

 

∑
=

=
l

1i
iiemp )) ,f(xL(y

l
1(f)R  (Eq. 4.3) 

 

ERM principle states that given the training set and a set of possible classifiers in 

the hypothesis space F, we should choose f ⊂ F that minimizes Remp(f). ERM is one 
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of the most commonly used optimization procedures in machine learning.  It is 

computationally simpler than attempting to minimize the actual risk as defined in 

(Eq. 4.2). ERM circumvents the need for the estimation of the joint probability 

density function. In many cases, ERM provides a good quality learning machine. A 

variety of loss functions can be used for the optimization process. One such example 

is,  

 

∑
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=
l
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l
1(f)R  (Eq. 4.4) 

 

where y is the output of the classifier and x is the input vector. This form of a loss 

function is common in learning binary classifiers. For example, to estimate the 

parameters of a multi-layered perceptron using the back-propagation algorithm, a 

loss function representing the squared error is used. 

 

However, ERM does not necessarily produce a good classifier, which 

generalizes well to unseen data due to overfitting phenomena. Remp(f) is a poor, over-

optimistic approximation of R(f), the true risk. There could be several configurations 

of the learning machine, which give us the same empirical risk (zero, in the case of 

binary classifiers). How then can we choose the best configuration?  
 

The normal practice to get a more realistic estimate of generalization error, as in 

neural network is to divide the available data into training and test set. Training set is 

used to find a classifier with minimal empirical error (optimize the weight of an 

MLP neural networks) while the test set is used to find the generalization error (error 

rate on the test set). 

 

If we have different sets of classifier hypothesis space F1, F2 … e.g. MLP neural 

networks with different topologies, we can select a classifier from each hypothesis 

space (each topology) with minimal Remp(f) and choose the final classifier with 

minimal generalization error. Of course, to do that requires designing and training 

potentially large number of individual classifiers.  
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Using SLT, we do not need to do that. Generalization error can be directly 

minimized by minimizing an upper bound of the risk functional R(f).  Let us analyze 

the relationship between the actual risk and the empirical risk. The bound given in 

(Eq. 4.5) holds for any distribution P(x,y) with probability of at least 1- η  

))log(,h(  (f)RR(f) emp ll
η

φ+≤  (Eq. 4.5) 

 

where the parameter h denotes the so called VC (Vapnik-Chervonenkis) dimension. 

φ is the confidence term defined by Vapnik  as : 
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η
ηφ
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=  (Eq. 4.6) 

 

ERM is not sufficient to find good classifier because even with small Remp(f), 

when h is large compared to l, φ will be large, so R(f)  will also be large, ie: not 

optimal. We actually need to minimize Remp(f) and the confidence term φ at the same 

time, a process which is called structural risk minimization (SRM). By SRM, we do 

not need the test set for model selection anymore.  Taking different sets of classifiers 

F1, F2 … with known h1, h2 … we can select f from one of the set with minimal 

Remp(f), compute )
l

)log(,
l
h( ηφ  and choose a classifier with minimal R(f). No more 

evaluation on test set is needed, at least in theory.  However, we still have to train 

potentially very large number of individual classifiers. To avoid this, we want to 

make h tunable (ie: to cascade a potential classifier Fi  with VC dimension = h and 

choose an optimal f from an optimal Fi in a single optimization step. This is done in 

large margin classification of which SVM is one. 

 

 

4.3 SVM Formulation 

 

SVM is realized from the above SLT framework. The simplest formulation of 

SVM is linear, where the decision hyper plane lies in the space of the input data x. In 

this case the hypothesis space is a subset of all hyper planes of the form:                  
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f(x) = w⋅x +b. SVM finds an optimal hyper plane as the solution to the learning 

problem which is geometrically the furthest from all classes since that will 

generalize best for future unseen data.  

 

There are two ways of finding the optimal decision hyper plane. The first is by 

maximizing the margin between two supporting planes as shown in Figure 4.1(a). 

The second is by finding a plane that bisects the two closest points of the two convex 

hulls defined by the set of points of each class, as shown in Figure 4.1(b). Both 

methods will produce the same optimal decision plane and the same set of points 

that support the solution (the points on the two parallel supporting planes in Figure 

4.1(a) or the closest points on the two convex hulls in Figure 4.1(b). These are called 

the support vectors.  

 

4.3.1  Linearly Separable Case 

 

Let’s consider SVM formulation for linearly separable case using the method of 

maximizing margin as outlined in Figure 4.1(a). For a set of l linearly separable data 

)},(),...,,(),,{( 111111 yxyxyx  where xi ∈ Rd and yi ∈ 1}{ ±   we would like to learn a linear 

separating hyper plane classifier f(x) = w.x + b that has the maximum separating 

margin with respect to the two classes where w is the normal of the hyperplane.  

 

 

  

(a) maximal margin between  

two supporting planes 

(b) Optimal plane bisects closest 

points in convex hulls 

 

Figure 4.1 Finding the optimal decision hyperplane 
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We specifically want to find the hyperplane: H: y = w.x + b = 0 and two hyper 

planes parallel to it and with equal distances to it,  

 

H1 :  y = w.x+b = +1   and  

H2: y = w.x  + b = -1   

 

with the condition that there are no data points between H1 and H2, and the distance 

or margin M between H1 and H2 is maximized.  Figure 4.2 show the hyper planes in 

the case of input data x with two dimensions.  

 

 

 

Figure 4.2 Maximal Margin hyperplanes for two dimension examples 

 

For any H, H1 and H2, we can always normalize the coefficients vector w so that: 

  H1 be y = w.x + b = +1, and  

  H2 be y = w.x  + b = -1.   

 

We want to maximize the distance between H1 and H2. Therefore, there will be some 

positive examples on H1 and some negative examples on H2. These are the support 
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vectors. The distance between H1 to H is  
w

bwx+
 = 

w
1  and thus between H1 and H2 

is 
w
2 . Therefore, to maximize the margin, we need to minimize www T=   with the 

condition that no data points lies between H1 and H2. This is satisfied when:  

        for yi = +1,  

        for yi = -1.  

 

Combining the two conditions, we have:  1).( ≥+ bxwyi    

 

For simplicity, the problem can be formulated as:  

   ww
2
1min T

w,b
,  

subject to     1).( ≥+ bxwyi .  

 

(Eq. 4.7) 

This can be solved by introducing Lagrange multipliers α1, α2,…, αl ≥ 0, for 

every training data (Klein, 2000). See appendix B for a discussion on Lagrange 

multipliers.  

 

 Thus, we have the following Lagrangian:  

 

∑ ∑
= =
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l

1i

l
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iiii

T αb)(wxyαww
2
1L(w,b ),α   (Eq. 4.8) 

 

This is called the primal formulation of the optimization problem and we often 

denote it as LP. The first term on the RHS, defined as half the square of the norm, is 

called the objective function and the other two terms are the optimization 

constraints. This is a convex quadratic problem (because the objective function itself 

is convex). We have to maximize LP with respect toα, subject to the constraint that 

the gradient of LP with respect to the primal variables w and b should be 0:  

 

1bx.w +≥+

1bx.w −≥+
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i.e: 0=
∂
∂

w
LP  and 0=

∂
∂

b
LP   and that α ≥ 0.   

 

Finding the gradient and solving for 0, we then have: 

∑
=

=
l

i
iii xyw

1

α  (Eq. 4.9) 

and 

∑
=

=
l

1i
ii 0yα  (Eq. 4.10) 

 

  Substituting them into LP, we have the Lagrangian dual LD where: 
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=

−=  (Eq. 4.11) 

using (Eq. 4.12).  Observe that the primal variables w and b are eliminated.  

 

Solving for αi, using LD constitute SVM learning.  In order to obtain the value of w 

we substitute αi into the formula ∑
=

=
l

1i
iii xyαw . The value of b can be averaged 

from the values of y – wx for each x in the training set, after w is obtained. Thus, we 

obtained the decision function as: 

)b.x)(xyαsgn(f(x)
l

1i
iii∑

=

+=  (Eq. 4.12) 

where the sign (sgn) is used to classify examples as either in-class or out-of-class.  

 

In other words the above equation defines the SVM classifier. Observe that the 

classifier is defined in terms of the training examples. However, all training 

examples do not contribute to the definition of the classifier. The training examples 

with non-zero multipliers, the Support Vectors, alone define the classifier. The 

dataset size can also define how complex the classifier needs to be. In simple 

classification problems the number of support vectors is normally small; and vice 

versa. The complexity of the classifier scales linearly with the number of support 
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vectors, because since there are M dot products involved in the definition of the 

classifier, where M is the number of support vectors.  

 

4.3.2  Optimality Condition 

 

In the above Eq. 4.11, the optimization of LD is subject to the positivity of αi 

and the constraints in Eq. 4.10. Because here we have the optimization of a convex 

function constrained by concave functions, Karush Kuhn-Tucker (KKT) theorem 

(Kuhn, 1951) applies. The theorem guarantees that non-negative Lagrange 

multipliers exist. See Appendix 2 for Discussion on Lagrange and KKT. 

 

An issue of importance in the optimization using Lagrange multipliers is on the 

existence of an optimum. In addition, if an optimal point exists, we need to know if 

it is guaranteed that there exists a single optimal point. The answer to this question 

lies in the KKT theorem that guarantees the existence of a solution and prescribes a 

set of necessary and sufficient conditions. The KKT theorem has been widely used 

in optimization problems involving convex objective functions. For SVM problem 

of finding the optimal hyperplane, the KKT conditions are used in formulating the 

constraints. The positivity constraint on the Lagrange multipliers as mentioned 

earlier is one such example.  

 

In the SVM optimization process, using the third KKT conditions with the Eq. 

4.7, and the condition 1).( ≥+ bxwyi , we get 

01)b)(x(yα iii =−+  (Eq. 4.13) 

 

The above equation implies that  αi is non zero only for examples that satisfy, 

1b)(xy ii =+  (Eq. 4.14) 

 

which are the support vectors. Eq. 4.13 also helps the optimization process in 

identifying examples that violate the KKT conditions, which will not be part of the 

support vectors. Identifying such examples helps in speeding up optimization 

process. It also allows the handling of large datasets efficiently.  
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4.3.3  Linear Soft Margin and Non-Linear SVM 

 

Due to nonlinearities or noise, real world data is usually not linearly 

separable. In the case of imperfectly separable input space, where noise in the input 

data is considered, there is no enforcement that there be no data points between the 

planes H1 and H2 mentioned in the previous section, but rather penalty C is enforced 

if data points cross the boundaries. So, the the problem can be formulated as: 

 

∑
=

+
l

1i
i

T

bw,
ξCww

2
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,ξ
 (Eq. 4.15) 

 

where C is the penalty term, subject to the condition ii 1)bx.w(y ξ−≥+ .  

Using similar formulation as in linear case, we obtained the same dual 

Lagrangian but with a different constraint for αi, which is bounded above by C (ie:  

0< αi < C ). For non-linearly separable input, they can be mapped to higher 

dimensional feature space as mentioned earlier. If the mapping function is Φ(.), we 

just solve: 

∑ ∑
=

ΦΦ−=
l

i ji
jijijiiD xxyyL

1 ,
)()(

2
1max ααα  (Eq. 4.16) 

 

Generally, if the dot product Φ(xi).Φ(xj) is equivalent to a kernel K(xi, xj), the 

mapping need not be done explicitly. Thus, equation above can be replaced by: 
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2
1Lmax ααα  (Eq. 4.17) 

 

Using the kernel in input space is equivalent to performing the map into feature 

space and applying dot product in that space. Many kernels can be used in that way 

as long as they satisfy Mercer’s condition. Table 4.1 gives a number of commonly 

used kernels. 
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Table 4.1 Commonly used Kernels for SVM 

 

Kernel type Equation 

Linear kernel y.x)y,x(K =  
Polynomial kernel d)1y.x()y,x(K +=  
Radial basis function (Gaussian) kernel 2

22
yx

e)yx(K σ
−−

=  
Hyperbolic tangent kernel )by.axtanh()y,x(K −=  

 

Beside the above kernels, user defined kernels can also be used as long as 

they satisfy Mercer’s condition (Joachims, 1999).   (Burges, 1998)  also gives a good 

description of Mercer’s condition. 

 

4.3.4  Variations of the SVM Objective Function. 

 

There are many possibilities of penalizing outliers. The most common one is 

by using l1 norm as in equation (Eq. 4.1). Another penalizing term would be squared 

quadratic norm l2. Using l2 norm, the problem can be formulated as: 
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 (Eq. 4.18) 

 

subject to the condition  ii 1)bx.w(y ξ−≥+ , 0≥α where C is the penalty term, 

and the dual optimization problem will have 
C
1  added to the every element of the 

kernel diagonal matrix. This is easier to solve than quadratic program with the 

additional constraint on α.  But solutions for SVM formulation with l2 norm are 

often less sparse than for the l1 norm resulting in more support vectors being used in 

the separating hyper plane. Sparseness can be enforced directly by using l1 norm for 

the normal w as well. This leads to the so-called linear programming (LP) SVM 

where the following linear program must be solved: 
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 (Eq. 4.19) 

 

subject to the condition   ii 1)bx.w(y ξ−≥+ , 0≥α  and 0≥ξ . LP SVM works 

well for very large linear data set and by the use of kernel; it can be turned to work 

for non-linear dataset quite well.  

 

Scholkopf (Scholkopf, 1999) proposed another SV algorithm called v-svm which 

uses  v parameter for controlling the number of support vectors. The formulation is 

as follows: 
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 (Eq. 4.20) 

                

subject to the condition  

        ii )bx.w(y ξρ −≥+ ,   10 ≤≤ν  and 0,0i ≥≥ ρξ . 

 

Most SVM formulations however, are based on the ‘classical’ formulation with l1 

and l2 norm on slack variables and l2 norm for w. Our implementation discussion in 

the next section is based on that formulation. 

 

4.4 SVM Implementations 

 

Implementing SVM training involves the following steps: 

 

• Select the parameter C (representing the tradeoff between minimizing the 

training error and margin maximization), kernel function and any kernel 

parameters. 

 

• Solve the dual QP (Eq. 3.10) or alternative problem formulation using 

appropriate QP or LP algorithm to obtain the support vectors. 

 

• Calculate threshold b using the support vectors. 
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SVM classification can then be done using the formula: 

 )).(sgn()(
1

∑
=

+=
N

i
iii bxxKyxf α .  

 

One of the problem in SVM training is to select the parameter values C and the 

kernel parameters. This is known as model selection. Kernel parameters are referred 

to as hyper parameters. Choosing hyper parameters involves minimizing an estimate 

of generalization error or some related performance measures. Among those 

estimates are k-fold cross-validation and leave-one-out (LOO) estimates which is the 

extreme of k-fold cross validation. In k-fold cross validation, training data is 

randomly split into k mutually exclusive subsets or folds of approximately equal 

size. SVM decision function is obtained using k-1 of the subsets and tested on the 

subset left out. This is repeated k times. Averaging over the k trials gives estimate of 

the expected generalization error. Other recent model selection strategies are based 

on some bound, which can be determined by a quantity, which is not obtained, using 

retraining with data points left out as in cross-validation or LOO.  

 

 

4.4.1  QP Optimization 

 

Typically, solving the QP or LP problem is a well-studied field of mathematical 

programming. The QP problem is solved by moving between the primal formulation 

and its dual formulation. However, existing general-purpose QP algorithms can only 

handle small sized problems.  They are not feasible if the kernel matrix is large (do 

not fit memory of the running computer) due to large number of training inputs.  

 

There are l free parameters in an SVM trained with l examples. The parameters 

are the αi’s. To find these parameters, the quadratic programming problem is solved 

subject to the constraints. Conceptually, the problem is to find a minimum of a bowl-

shaped objective function. The QP iteration has definite termination conditions, the 

Karush-Kuhn-Tucker conditions mentioned in section 4.2.4, that describe the set of 

αi that are the minima. In earlier SVM implementations, a QP optimizer routine is 
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normally used but it is slow and does not work well on large problems. Alternative 

optimization techniques that can be used are;  

(a) techniques in which kernel components are evaluated and discarded during 

learning,  

(b) decomposition method in which an evolving subset of data is used.  

(c) new optimization approaches that specifically exploit the structure of the 

SVM problem. 

 

Kernel Adatron (Friess, 1998) is one of the method which follows (a). It 

sequentially updates the alphas. It is very easy to implement but is not as fast as 

using QP routines. Technique (b) involves chunking and decomposition. Rather than 

sequentially updating the αi, the αi’s are updated in parallel but using only a small 

subset or working set of data at each stage.  There are many formal algorithms 

developed using chunking and decomposition for solving the optimization problem 

of support vector machines  Among them, are Chunking (Osuna, 1997), Sequential 

Minimal Optimization (SMO) (Platt, 1998b), (Platt, 1999b) and SVMlight 

(Joachims, 1999).  

 

In chunking, some QP optimization algorithm is used to optimize the dual QP on 

an initial arbitrary subset of the data. The support vectors found are retained and all 

other data points with αi equal zero are discarded. A new working set of data is then 

derived from these support vectors and additional data points that maximally violate 

the constraints. This chunking process is then iterated until the margin is maximized.  

The chunking algorithm starts with an arbitrary subset (chunk of data, working set) 

which can fit in the memory and solves the optimization problem on it by the general 

optimizer. Support vectors (SVs) remain in the chunk while other points are 

discarded and replaced by a new working set with gross violations of KKT (Karush-

Kuhn-Tucker) conditions  (Osuna, 1996). The rationale of this operation is that only 

support vectors contribute to the final form of a decision function. In addition, the 

chunking algorithm is based on the sparsity of SVM’s solution. That is, support 

vectors actually take up a small fraction of the whole data set. However, the 

problems with chunking is that there may be many more active candidate support 

vectors during the optimization process than the final ones so that their size can go 
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beyond the chunking space. The method of selecting a new working set by 

evaluating KKT conditions without efficient kernel caching may require high 

computation.  

 

Decomposition, use a fixed-sized subset of data – the working set with the 

remainder kept fixed. A much smaller QP or LP is solved for each working set. Thus, 

many small sub problems are solved instead of one massive one.   The limiting case 

of decomposition is in the sequential Minimal Optimization (SMO) by Platt (Platt, 

1998a). Platt decomposes the overall QP problem into size of two, ie: two αi are 

jointly optimize analytically at each iteration. This eliminates the need for a QP 

solver for the sub problem which is a plus point. Furthermore, an analytical solution 

for a two-point optimization problem can be given explicitly. The method consists of 

a heuristic step for finding the best parameters to optimize and use an analytic 

expression to ensure the dual objective function increases monotonically. Several 

heuristics have been suggested to select the working set. The original SMO, was 

then improved by Keerthi and Shevade (Shevade, 2000).    

 

Keerthi further enhance the performance of SMO by pointing out the 

inefficiency of updating one-thresholded parameters in Platt’s algorithm and 

replacing it with two-thresholded parameters. The important contribution of Keerthi 

et al.’s modification is that the pair of patterns chosen for optimization is 

theoretically determined by two-thresholded parameters and the optimization on this 

subset leads to a considerable advancement in the objective function. In practice, 

when the size of a data set grows bigger, the problem of determining the optimal pair 

at a low cost still exists.  

 

SVMlight (Joachims, 1999) is a general decomposition algorithm, where a good 

working set is selected by finding the steepest feasible direction of descent with q 

nonzero elements. The q variables that correspond to these elements compose the 

working set. When q is set equal to 2, Chang and Lin  (Chang, 2001)  pointed out 

that the selected working set corresponds to the optimal pair in Keerthi et al.’s 

modification of SMO. SVMlight caches q rows of kernel matrix (row caching) to 

avoid kernel reevaluations and LRU (Least Recently Used) is applied to update the 
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rows in the cache. However, when the size of the training set is very large, the 

number of cached rows becomes small due to the limited memory. As a result, the 

number of active variables is not large enough to achieve a fast optimization.  

 

The final approach is to directly attack the SVM problem from an optimization 

perspective and create algorithms that explicitly exploit the structure of the problem. 

These involve reformulation of the base SVM problem. The reformulation has been 

proved as effective as the original SVM in many cases. Keerthi (Keerthi, 1999b) 

proposed the nearest point algorithm (NPA) based on the idea described in section 

4.2., which is to find the two closest points in the convex hulls. This method 

however is not very popular. 

 

For solving SVM’s learning problem on a very large data set, many researchers 

propose different methods. Collobert et al. (Collobert, 2001) proposed a parallel 

mixture of SVMs. The model first trained many SVMs on small subsets and then 

combined their outputs using a gater such as linear hyper plane or multilayer 

perceptron. However, there are problems with that; first, is to determine the optimal 

number of local SVMs, second is that generalization performance in not well 

achieved.  

 

Another approach is to apply the Bayesian committee machine (BCM) (Tresp, 

2000) to the support vector machine resulting in Bayesian committee support vector 

machine (BC-SVM) (Schwaighofer, 2001). In the BCM, the data set is divided into 

M subsets of the same size and M models are derived from the individual sets. The 

predictions of the individual models are combined using a weight scheme, which is 

derived from a Bayesian perspective in the context of Gaussian process regression. 

That is, the weight for each individual model is the inverse covariance of its 

prediction. A good approximation requires that M subsets be pair wisely 

independent. Although the Bayesian committee support vector machine performs 

better than uniform mixture of individual SVMs on subsets, it has a slightly higher 

error rate than the full SVM on some data sets  (Schwaighofer, 2001), (Kuhn, 2006). 
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4.4.2  Multiclass SVM Implementation 

 

As opposed to neural network, SVM is a two class classifier. Multiclass SVM, is 

formulated in either one of two ways; first, by combining binary classifiers or 

second, by modifying 2 class SVM to incorporate multiclass learning (Hsu, 2002). 

In the first way, multiple 2-class classifiers such as 1 against 1 or 1 against the rest 

are constructed and during classification, each classifier outputs are combined in 

some way into multiclass classifiers.  

 

For 1 against 1 method, in a k class problem, k(k-1)/2 classifiers are constructed 

and for classification, voting method or directed acyclic graph (DAG) can be used to 

combine the two class classifiers. Using DAG, each internal node is a 1 against 1 

classifier and all leaf nodes are the classes. For recognition, the graph is traversed 

through from the root and arriving at the leaf with the correct classification. In 1 vs 

all method, k classifiers are constructed. For recognition, classifier with the highest 

output is chosen as the correct class.   

 

For the second way, multiclass classifier is constructed by solving one complex 

optimization problem involving large number of free parameters. This all-together 

method have been proposed by Weston  and Vapnik. (Weston, 1998). 1 against 1 

method with DAG is widely used since it is less complex, easy to construct and 

faster to train. 

 

 

4.4.3  SVM Posterior Probability Output 

 

In hybrid connectionist systems which are used in speech and handwriting 

recognition so far, neural network is the main technology used to estimate posterior 

probabilities of emission for each observation and HMM is used to model temporal 

evolution. When SVM is used in such a hybrid system in place of ANN, several 

issues arise due to SVM optimization method and the output that it gives. Basic 

SVM provides binary decision values (which are the two classes) and multiclass 

SVM gives m-ary decision values (which are the m classes). Most applications 

require posterior probability values that capture uncertainty in classification. An 
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example, for the 2-class SVM is P(y = 1 | x), the probability that the input belongs to 

one of the particular class. 

 

The first issue is how to estimate the output of the SVM into posterior 

probability. There is a lack of clear relationship between SVM output and the 

posterior class probability. (Ganapathiraju, 2002) in his thesis discussed ways of 

converting the posterior to a probability, such as fitting Gaussian and histogram 

approaches. However, these methods are not Bayesian in nature in that they do not 

account for the variability in the estimates of the SVM parameters. Ignoring this 

variability in the estimates often results in overly confident predictions by the 

classifiers on the test set.  

 

 (Allwein, 2000) and (Kwok, 1999) used moderated SVM outputs as estimates of 

the posterior probabilities. Kwok extend the use of moderated outputs to SVM by 

making use of a relationship between SVM and the evidence framework. The 

moderated output is in line with the Bayesian idea that the posterior weight 

distribution should be taken into account in prediction. It also alleviates the usual 

tendency of assigning overly high confidence to the estimated class memberships of 

the test patterns. Normally, unmoderated probability estimates based on maximum 

likelihood (ML) fitting can be fairly used as a trade-off between computational 

complexity and error performance. Mapping the output distances to posteriors is 

done using a sigmoid distribution: 

 

BAfe
fyp ++

==
1

1)|1(  (Eq. 4.21)

 

(Platt, 1999a) first trained an SVM and then train the parameters of the sigmoid 

function above to map the SVM output to probabilities. The values of A and B are 

found by minimizing the negative log likelihood of the training data. For example 

given a training set, a subset of l training data (N+ of them with class y = +1, and N- 

of them with class y = -1) can be used to solve the following maximum likelihood 

problem: 
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4.5 SVM Implementation Packages 

 

There are many publicly available SVM packages made available by researchers. 

They are either Matlab based toolbox modules or libraries implemented in C or C++ 

code.  This section introduces three most widely used SVM packages: SVMTorch, 

SVMlight  and LIBSVM.  In section 6.3, we compared each of the package for their 

suitability, in order to adapt one of them in our hybrid SVM/HMM handwriting 

recognizer. 

 

 

4.5.1   SVMTorch  

 

SVMTorch was developed by Ronan Collobert (Collobert, 2001). It follows the 

same principle as the one used in the other two packages and works both for 

classification and regression. It is tailored for large-scale problems (with > 20000 

examples, and input dimensions >100). The code is written in C++ and it is 

optimized for a working set of size 2. Working set selection follows the idea 

proposed by Joachim for his SVMlight. An internal cache for keeping part of the 
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kernel matrix in memory enables the program to solve large problems without the 

need to keep quadratic resources in memory and without the need to recompute 

every kernel evaluation. 

 

 Shrinking is an option where some variables whose values have been equal to 

the bounds 0 or C for a long time and probably will not change are removed. Input 

can be provided in either sparse, non sparse or binary file format. It can handle 

multiclass as well. The multiclass implementation in SVMTorch is based on one 

against all and selecting the highest score among all classifier outputs for 

classification. The package runs on Solaris, Linux and Windows platforms. The 

algorithm has been proved to converge for any working set size but without 

shrinking. SVMTorch consists of a learning module (svmtorch) and a classification 

module (svmtest).   

 

 

4.5.2  SVMLight 

 

SVMlight by Joachim (Joachims, 1999) implements SVM for classification, 

regression and ranking problems in C language. It uses a fast optimization algorithm 

based on decomposition. Working set selection is based on steepest feasible descent. 

Shrinking and caching of kernel evaluations are used. It can handle large data set 

(>100,000 training examples). It supports standard as well as user defined kernel 

functions. Input can be either dense or sparse. The optimization algorithms used in 

SVMlight has scalable memory requirements and can handle large problems 

efficiently.  The package also provides methods for assessing the generalization 

performance efficiently in the form of the XiAlpha-estimates and leave-one-out 

(LOO) testing of the error rate, the precision and the recall.  

 

Ranking functions (learning a function from preference examples, so that it 

orders a new set of objects as accurately as possible) and training of large-scale 

transductive SVMs are also provided in the tool package. SVMlight consists of a 

learning module (svm_learn) and a classification module (svm_classify).   
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4.5.3   LIBSVM  

 

LIBSVM (Chang, 2001) is an integrated package for support vector 

classification; C-SVC and nu-SVC, regression; epsilon-SVR and nu-SVR and 

distribution estimation or one-class SVM. It also supports multi-class classification. 

The basic algorithm is a simplification of both SMO by Platt and SVMLight by 

Joachims. It is also a simplification of the modification of SMO by Keerthi et al . 

(Keerthi, 1999a). 

 

LIBSVM was developed as a general-purpose SVM tool. It provides a simple 

interface to link the tool with the adapter of the tool. It is flexible in that it uses a 

number of different SVM formulations, user selectable via command line arguments. 

It also allows for automatic cross validation functionality for model selection. A 

contour of cross validation accuracy can be generated. In cases of unbalanced data 

the SVM can be configured so that it will function as weighted SVM. LIBSVM 

consists of a learning module (svmtrain) and a classification module (svmpredict).   

 

 

 

4.6 Summary 

 

In this chapter, we describe SVM as a discriminative classifier that learns the 

decision surface through a process of discrimination and has good generalization 

characteristics. SVM uses both training data and structural behavior to achieve better 

generalization capability than that of competing methods. We described the principle 

of structural risk minimization (SRM) which is the basis for SVM, a large margin 

classifier. We also discussed SRM and its relationship to ERM. The control over the 

generalization offered by SRM is what makes an SVM a very powerful machine 

learning technique. 

 

The design and construction of maximum margin hyper planes which form the 

core of SVM estimation was discussed. SVM formulation for linearly separable 

datasets and non-linear datasets using kernel functions are laid out. For non 

separable case, soft-margin SVM formulation was used.  Several issues related to 
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SVM training were discussed; in particular using the convex quadratic programming 

problem with equality and inequality constraints, ways of improving memory issues, 

speed of the training and selecting the best training model using appropriate kernel 

hyper parameters. Finally we discussed SVM implementation packages. 
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CHAPTER 5 

 

 

 

HYBRID SVM/HMM HANDWRITING  

RECOGNITION SYSTEM 

 

 

5.1 Introduction 

 

Chapter 3 and 4 has prepared us to describe the online handwriting recognition 

system used in this work. Our final aim is to build an INSEG based word recognizer 

using hybrid of support vector machine (SVM) and hidden markov model (HMM). 

In the final setting, the SVM which is used to recognize characters or sub characters 

needs to be trained with characters which are segmented from the word database. 

SVM trained using separate isolated characters is not suitable since an isolated 

character is different from the same character which is written as part of a word.  

 

In building the character recognizer, we started off by building a character 

recognizer trained using the isolated characters from IRONOFF and UNIPEN 

databases. We used this to compare recognition results of the SVM based character 

recognizer and other methods.  In this chapter, we first describe the character 

recognizer based on SVM. Then we describe the word recognition system that 

makes use of the SVM based character recognizer in a hybrid SVM and HMM 

situation. The training of the hybrid system is separately at the character and word 

level. In a way it is based on the original approach of hybrid Neural network (NN) 

and HMM by (Gilloux, 1995) but it is also influenced by work of (Tay, 2003) for 

offline handwriting.  
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5.2 Overview of the SVM based Character Recognizer 

 

The initial character recognition system makes use of isolated characters in its 

training. We trained and tested the character recognizer using isolated characters of 

IRONOFF and UNIPEN database separately and in combination of both (the 

IRONOFF-UNIPEN database).  For embedding SVM in the hybrid word recognition 

system later, we need to retrain it using characters cut from the word database. This 

is due to the fact that handwritten isolated characters are written differently from 

characters cut from a cursive word. Isolated characters also have similar origin 

making it unnecessary to perform comprehensive preprocessing steps required in the 

characters cut from words.  

 

The block diagram for an online character recognition system is depicted in 

figure 5.1. The diagram shows the training part on the left and the recognition part 

on the right. In the training, the character database is used to build the SVM 

recognizer model. In recognition, single character handwriting is input to the system 

and the output is given as the text representation of the character. For both training 

and recognition, the input character signal needs to be preprocessed and normalized 

before selected feature representation of the character can be extracted. The 

extracted feature will be fed to the recognizer which has been trained to recognize 

and produce the letter representing the handwritten input signal. The character 

recognition system has been trained to recognize characters which are used in 

English as well as some special characters specific to French. The recognizer was 

trained using LIBSVM. The result of the training procedure, produce a recognizer 

represented by an SVM model. SVM model consists of the values for various 

parameters and the feature values of input characters which have been selected as the 

support vectors.  

 

We describe the various stages involved in the training and recognition of the 

SVM recognizer in the following sub sections; namely on signal representation, 

preprocessing and normalization, feature extraction and training. 
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Figure 5.1 Handwritten Character Recognition System 

 

5.2.1  Signal Representation 

 
The input signal to the recognition system is a character signal which consists of 

a combination of strokes. Stroke is the trajectory traced by the pen from a pen-down 

event to a pen-up event. For storing the captured online signal into a file, the storage 

of the signal follows the UNIPEN format description shown in Figure 5.2.  UNIPEN 

format starts with comment lines where description of the writer and the signal to be 

captured can be recorded. Among the information stored in the comment portion are 

the signal recording quality in points per inch, dimension of the recording tablet in 

number of points and the information about the writer. In the data portion, a stroke is 

a list of coordinate points from after the .PEN_DOWN until a .PEN_UP.  Each point 

in the stroke can record the X and Y coordinates together with the pressure and time 

information. The number of points in a character signal depends on the number of 

strokes and the speed of writing.  
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Figure 5.2  Example portion of UNIPEN file showing the format  

for online handwriting signal 

 

A character can be written with more than one stroke. The total number of 

strokes and the total number of points in each character varies. This can cause 

problem to certain type of recognizers. In HMM based recognizer, character 

representation can be of variable length but SVM requires the feature vector 

representing the character to be of constant length. We have empirically chosen to 

use a standard 30 points to represent characters in our experiments. For characters 

having more or less points, resampling and interpolation was done during the 

preprocessing stage to standardize the number of points to 30.  
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5.2.2  Preprocessing and Normalization 

 
Preprocessing of the input signal is done to improve its quality which can lead to 

better feature representation and recognition. Noise, in the form of repeated points 

and others due to erratic hand motions and imperfections in the digitization process 

needs to be eliminated. Then a new signal which has uniform number of 30 

equidistant points is obtained by resampling and interpolation of the signal which 

have been cleaned up from noise. The procedure for resampling is straight forward 

as in Figure 5.3. In the case of signals with more than a stroke, total length of the 

signal is taken to be inclusive of the pen-up distances between strokes and imaginary 

pen-up points are inserted between strokes, i.e.: between the pen-up(s) and pen-

down(s). The number of equidistant points is decided based on experimentation done 

in the effect of recognition accuracy and time of training. 

 

 

Figure 5.3  Resampling of Online character signal 

 

Signal normalization is a standard procedure in almost every recognition system. 

In our case, the normalization done on the character signal is mainly to standardize 

the input signal so as to make it invariant to translation, spatial distortion, character 

size and style of handwriting. What have been done was to centre the coordinates of 

the signal and to rescale it according to a rescale factor determined based on the 

extreme coordinates of the character. Normalization of the character signal is 

simpler than word normalization which requires the detection of four reference lines; 

the descender line, the base line, the core line and the ascender line of the word.  
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5.2.3  Feature Extraction 

 

For training as well as recognition, the resulting signal after preprocessing and 

normalization is used to extract feature values for use in either the training or 

recognition. In our case, 7 feature values were extracted for each point resulting in 

210 feature values altogether. For all 30 points, the feature values for each point 

x(n), y(n) are as follows:  

 

(i) Normalized x(n) between -1 and 1.  

(ii) Normalized y(n) between -1 and 1.  

(iii) Cosine of the direction angle of the line between point x(n+1), y(n+1) 

and the point x(n-1), y(n-1) and x axis.  

(iv) Sine of the direction angle of the line between the point x(n+1), y(n+1) 

and the point x(n-1), y(n-1) and x axis.  

(v) Cosine of the curvature angle between the point x(n+2), y(n+2) and the 

point x(n-2), y(n-2) at x(n), y(n).  

(vi) Sine of the curvature angle between the point x(n+2), y(n+2) and the 

point x(n-2), y(n-2) at x(n), y(n).  

(vii) The binary value of +1 for pen-up or -1 for pen-down.   

 

Features (iii) and (iv) constitute the direction information and features (v) and 

(vi) constitute the curvature information.  Figure 5.4 show in better detail, the 4 

features related to directions and curvatures in (iii), (iv), (v) and (vi) above. The 210 

features extracted from the 30 points of the input signal are used together with all 

sample input handwriting to train the SVM. For recognition, the feature values for a 

single input character are used for its recognition. 
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Figure 5.4  Direction features (above) and curvature feature  (below) 

  
 

5.2.4 Training and Recognition 

 

SVM Training was done using all characters in the IRONOFF and UNIPEN 

databases and the special database which combines the two. Publicly available SVM 

library packages were compared in order to choose the most suitable for our use.  

We selected LIBSVM library after conducting some experiments using smaller 

databases from UCI repository (see section 6.3) and finally on the IRONOFF 

character databases. The integration of the library into our recognizer is straight 

forward. However, as most SVM implementer chooses to do, the sparse format 

representation was used in storing the feature in the process after feature extraction.  

 

The SVM character recognizer classifier equation is given as  

)).(sgn()(
1

∑
=

+=
N

i
iii bxxKyxf α  (Eq. 5.1) 

where the iα ’s are the Lagrange multipliers and b the bias that are solved during 

SVM training. The iα ’s are either positive or 0. When they are positive, the 
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corresponding example i contribute in the calculation of the output f of the 

recognizer. The variables xi and yi are the ith example and its label respectively and x 

is the character to be recognized. K is the kernel which indirectly performs the dot 

product for the examples in linear high dimension. There are 4 popular kernels used 

in SVM, as given in Table 4.1, linear, polynomial, Gaussian Radial Basis Function 

(RBF) and sigmoid . 

 

In our character recognizer training, we have tried both the polynomial kernel 
dryxyxK ).(),( += γ
 

and Gaussian RBF kernel )||exp(),( 2yxyxK −−= γ . The 

reasons why we only choose to try the two kernels are as follows. 

 

(a) RBF kernel and polynomial kernel are nonlinear kernels suitable for the case 

when the relation between class labels and attributes is nonlinear, as in 

handwriting recognition.  

 

(b) Linear kernel is just a special case of RBF as the linear kernel gives the same 

performance as the RBF kernel with some parameters C and γ
 
(Keerthi, 

2003). 

 

(c) Sigmoid kernel behaves like RBF for certain parameters (Lin, 2003) and 

sigmoid kernel is not valid (i.e. not the inner product of two vectors) under 

some parameters (Vapnik, 1995). 

 

Among the two kernels, Gaussian RBF kernel performs better and we have 

chosen to use RBF kernel in all our SVM trainings. A few reasons why we finally 

settle for RBF kernel are as follows;   

 

(a) RBF kernel has less number of hyper parameters than the polynomial kernel, 

which influences the complexity of the training. However, RBF kernel is not 

suitable when the number of features is very large. It is more suitable to use 

the linear kernel. This does not apply to our case as we have reasonably finite 

feature size. 
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(b) RBF kernel has less numerical difficulties. One key point is that RBF kernel 

values are between 0 and 1, while polynomial kernel values may go up to 

infinity or even 0 when the degree d is large.  

 

For both cases, 10-fold cross-validations were performed in order to search for 

the best values for the kernel parameter γ and the C values of the SVM. Once the 

best parameter values were obtained, the character SVM is retrained using those best 

parameters to obtain the final SVM model to be used in the recognizer. The results 

of recognition by the SVM character recognizer have been compared with other 

character recognizers such as TDNN and MLP Neural Networks (Caillault, 2005). 

The detail results on various databases used are presented in chapter 6.  

 

 

5.3 The online Word Recognition System 

 

5.3.1  Previous Systems 

 

The general layout of the architecture for the handwritten word recognition 

system used in our work is depicted in Figure 5.5. It is a segmentation-based 

recognizer (SegRec) and lexicon-driven which is similar in structure to some other 

works described in the literature, in particular by (Tay, 2002) and (Caillault, 2005) 

from the same laboratory.  

 

The work by (Tay, 2002), in off-line handwriting recognition uses hybrid of 

ANN and HMM for word recognition. The segmentation was INSEG based and the 

training of the system was using character level discriminant training where the 

ANN and HMM were independently optimized. Word level discriminant training 

where the ANN was optimized based on word level output by the HMM were also 

attempted and compared. In character level discriminant training, junk characters 

that are formed from the slice combinations which do not resemble any characters 

need to be handled. In word level training, error in word recognition is back 

propagated to the ANN using the maximum likelihood (ML) and also the maximum 

mutual information (MMI) criterions. 
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(Caillault, 2005) on the other hand worked in online handwriting recognition. 

She uses OUTSEG segmentation and makes use of a hybrid of Time Delay Neural 

Network (TDNN) and HMM for word recognition. The TDNN spot characters 

scanned by equal sized overlapping segment windows over the input handwriting. 

The character recognizer is used to produce posterior probabilities of characters for 

each segment and the Viterbi algorithm produces the score of each word from the 

combination of the segments.  

 

In both cases of (Tay, 2002) and (Caillault, 2005), the recognition score of the 

input word is compared against all words in the lexicon to obtain an n-best list. The 

recognition rate was evaluated based on the ranking of correct word recognition at 

top-n ranks, for example top-3 means the recognition rate in which the word is 

recognized correctly in either one of the top three positions.  In our case, we use a 

similar system as in (Tay, 2002) where INSEG segmentation is used but instead of 

offline, we focus on online handwriting recognition. The reason for using INSEG is 

due to the character level discriminant training approach that we adopted which does 

not allow OUTSEG segmentation. The main difference which is the centre of our 

thesis is the use an SVM in place of the ANN for the character recognizer. The 

training was done at the character level; the reason being that normally, SVM 

training does not involve correcting gradients like ANN but requires quadratic 

optimization. (Note: It is observed that Telstra Australia has patented a gradient-

based SVM training method for SVM recently (Kowalczyk, 2001)). Table 5.1 

compares our system with the other two systems above. 

 

Table 5.1  Comparison of the three handwriting systems developed  

 

Author Segment. 
method    

Domain Character 
Recognizer 

Training 
method 

Databases used in 
testing 

(Tay, 
2002) 

INSEG  Off-line ANN  Character and 
word  level 

IRONOFF, SRTP 
AWS, MNIST 

(Caillault, 
2005) 

OUTSEG On-line TDNN Word  level IRONOFF, UNIPEN, 
MNIST 

Our work INSEG On-line SVM with 
RBF kernel 

Character  
level 

IRONOFF, UNIPEN, 
MNIST 
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5.3.2  General Description of the Hybrid SVM/HMM Word Recognition System.  

 

Figure 5.5 shows the INSEG based hybrid handwritten word recognition system 

which was developed. It shows a trained system that receives a word to be 

recognized. Another input to the word recognizer is the list of words or the lexicon 

containing all the words in the recognition vocabulary. The output of the word 

recognizer is a list of top N words that resemble the input word signal, in the best 

resemblance order. A postprocessor can make use of the N-best list for selecting the 

final word output for the recognizer. The character recognizer used in the overall 

hybrid word recognizer has been trained optimally using SVM with the best 

segmented characters from the word database.  

 

 

Figure 5.5  The overall hybrid handwriting recognition system 
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We only make use of IRONOFF online word database for training and testing 

the hybrid word recognizer. The database is limited to the lexicon that consists of 

197 words from the English, French. 30 of the French words are French cheque 

words. A more detailed discussion of the databases is given in chapter 6. 

 

The initial hybrid SVM/HMM word recognition system needs a trained character 

recognizer. The character recognizer described in section 5.2 was used but the SVM 

was retrained using the set of characters which were cut from words in the 

IRONOFF word databases. This is necessary as isolated characters are different 

from characters cut from words. First, we used a commercial handwriting recognizer 

to cut the word database into our initial isolated character database. For testing and 

comparison purposes, we have trained separately the character SVMs for characters 

obtained from cheque words, characters obtained from French words and characters 

obtained from English words. These SVMs were used in separate hybrid word 

recognizers catering for the respective word types for testing purposes.  

 

In the final system, a single SVM character recognizer was used where the 

training of it makes use of combined characters from all the separate word databases 

together. The character SVM recognizer trained with the characters cut by the 

commercial recognizer is what we call as the bootstrap character recognizer which 

will be retrained to become a fully trained character recognizer during the training of 

the hybrid word recognizer.  

 

The training of word recognizer is described in detail in the following sub 

sections, starting with the front-end portion of the hybrid system. Figure 5.12 

portrays the overall training process of our word recognizer which was trained at the 

character level. The front-end involves preprocessing, segmentation, character 

hypothesis generation from the segments and feature extraction of the hypothesis. 

These are followed by the recognition portion of the system which involves the 

recognition of each character hypothesis by using the SVM character recognizer and 

the use of Viterbi algorithm or dynamic programming algorithm to find the word 

score for each word in the lexicon given the input word signal.  
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The word in the lexicon with the highest score is taken as the recognized word. 

To evaluate the word recognizer, we also look at the position of the correct word in 

the top N ranked words. The Viterbi algorithm yields the best segmentation points of 

the correctly recognized words which can be used to resegment the word database 

into character database for the next round of Character SVM training.  

 

 

5.3.3  Preprocessing and Normalization 

 

As can be seen in Figure 5.5, in the overall recognition system, input word signal 

need to be preprocessed in order to eliminate spurious signals which can have an 

effect on recognition. The preprocessing step during training stage is done to the 

whole word database so that input words are already preprocessed words. In a 

trained recognizer, preprocessing of input word is done within the system, before 

recognition. Preprocessing involves noise reduction and normalization.  

 

Noise reduction can be done by limiting the bandwidth of the frequency of the 

data using filtering, where cusps are treated as boundary points to avoid smoothing 

out important shape features. The cusp detection algorithm captures only dominant 

cusps while ignoring small wiggles caused by noise. In normalization, geometric 

variance due to writing style differences among different writers or within the same 

writer is reduced.   Normalization may include scaling of handwriting to a standard 

size, rotation of the text baseline and deslanting of slanted text.  In our system, we 

performed word rotation correction with reference to the baseline and size 

normalization as indicated in Figure 5.6. In order to do that, first, the set of maxima 

and minima points in the word are detected and the four reference lines need to be 

calculated from the raw input word.  

 

 



 115

 

Figure 5.6  Normalization steps in word preprocessing 

 

An example of the set of four reference lines for the word “neuf” is as shown in 

Figure 5.7. The reference lines are important during both size normalization and 

rotation correction. They are determined by a simplified algorithm based on 

Expectation Maximization (EM) algorithm for word normalization in (Bengio, 

1994).  Together with the a priori probability distribution of the line positions, the 

maximum and minimum points are used as the observations for the EM algorithm in 

order to estimate position and rotation angle of the four straight parallel reference 

lines. 

 

 

Figure 5.7  The four Reference Lines 

 

 
In the correction to word rotation angle, the reference lines are brought back to 

be parallel to the x axis by a rotation of angle α formed by the lines and the x axis. In 

word normalization, the size of word is normalized to tackle the possibly large 

variability in the different input that the recognizer is to support. The word is resized 

to have one unit size for the core line – baseline distance and standardized in both 
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dimensions so that it will not distort the appearance of the word. The deslanting of 

slanted text we mentioned earlier as part of word normalization was not done. It is 

intended that the variation will be adapted and absorbed in the character SVM 

modeling stage.   

 

One important step of preprocessing as mentioned in chapter 2 is the handling of 

the diacritical marks, i.e: the crosses of the “t” and “x”s and the dots in the “i” and 

“j”. The diacritical marks can be removed to create a clean word signal without 

diacritics following (Guyon, 1996). However, we did not perform this step. 

 

 

 

5.3.4  Over Segmentation and Hypothesis Generation 

 

In order to generate hypothesis for characters, input word is over segmented into 

slices. Figure 5.8 shows the over segmentation for the word “un”. Over 

segmentation are done based on maximum and minimum y coordinates in the word. 

This is considered a basic and very simple method. In the figure, the word “un” 

yields 8 slices as shown above. For longer words, there will be more slices. The 

slices are combined to form character hypothesis. The total numbers of hypothesis 

affect the complexity of our training process as well as the accuracy in the 

recognition. This number, in turn, depends on the minimum and maximum total 

number of slices to be included in a character hypothesis. The parameters; minimum 

and maximum number of slices were decided heuristically based on trial and error 

but supported by the knowledge of the average number of maxima and minima 

points that generally exist in a character. In order to create proper character 

hypothesis, the number of slices to combine is very important.  
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Figure 5.8  Oversegmentation of the word “un” based on  

minimum and maximum y points 

 

 

The total number of hypothesis can be calculated by the following formula: 

 
if (num < max) 
   tot=(num-min+1)*(num-min+2)/2; 
else 
   tot=(num-max)*(max-min+1)+(max-min+1)*(max-min+2)/2; 

 

 

where tot is the total number of hypothesis generated, num is the number of slices, 

min and max are the minimum and maximum slices in a hypothesis respectively. For 

the sake of illustration and clarity purposes, an example of slicing and hypothesis 

generation for offline handwriting is given in Figure 5.9 (It is easier to draw the 

diagram for offline compared to online). Here, num is 5, and assuming min is 1 and 

max is 3, tot is (5 - 3) * (3 – 1 + 1) + (3 – 1 + 1) * (3 – 1 + 2) / 2 = 2 * 3 + 3 * 2 = 12. 

Similarly, the total number of hypothesis for the example in Figure 5.8 is then (8 - 3) 

* (3 – 1 + 1) + (3 – 1 + 1) * (3 – 1 + 2) / 2 = 5 * 3 + 3 * 2 = 21. 



 118

 

 
 

Figure 5.9     Character Hypothesis Generation: A simple example for offline  

in slicing and generating hypothesis using the word “cts”, assuming 5 slices.  

 

The maximum number of slices for a character is chosen based on statistics on 

the training dataset. We found that a maximum value of 7 and minimum of 1 to be 

suitable since a lower case letter on average contains 5 slices. So as to cover all 

characters, we have taken into account the jaggedness at the beginning and within 

the writing, and choose the maximum value of 7.   This has also been verified 

experimentally. 
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Figure 5.10 Result of recognition and Segmentation 

 

In order to form a word, only the related non-overlapping hypotheses are used. 

The job of choosing the correct hypotheses which means correct character 

segmentation lies in the dynamic programming algorithm in the HMM.   Figure 5.10 

shows an example of the best segmentation which resulted in the best recognition. 

 

5.3.5  Feature Extraction 

 

Since our system caters for training of the SVM character recognizer, the 

features extracted are for each of the hypothesis character that have been formed by 

joining the over segmented slices. Before feature extraction, signal resampling is 

done on the hypothesis character to standardize the number of points in the character 

signal to 30 points. The number 30 is selected based on heuristics with the aim of 

having smaller feature dimensions. Note that our word recognizer did not perform 

resampling at the word signal since we are doing the resampling at the character 

stage similar to what has been done in isolated character recognizer.    
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We extract seven features per point as in the isolated character recognizer. 

However, since each character is now cut from a word, the first of the seven 

features, the x coordinates will be different from x coordinates of isolated characters. 

The original x coordinates undergo a translation relative to the beginning of the 

character. This in effect adjusts the x character coordinates to start from a common 

point of zero. Figure 5.11 shows the first 4 coordinates of the original character u 

and the new coordinates calculated for the feature values.  The new x coordinates for 

each point in the character hypothesis will be as follows: 

0xxoffset =         

             offsetnn xxx −=         n∀                     

(Eq. 5.2)

The other 6 features are essentially the same as in the isolated character 

recognizer, which are; the y coordinates, the 2 direction features, 2 curvature 

features and the pen-up/pen-down information (see section 5.2.3).  The output of 

feature extraction stage is a sequence of vectors containing the 210 required features, 

i.e: 7 features for the total of 30 points. The vector sequences are then provided as 

input to the SVM character recognizer.   

 

 

 

n xn yn New 
xn 

New
yn 

0 164 110 0 110 
1 170 104 6 104 
2 175 97 11 97 
3 177 94 13 94 

 

Figure 5.11  Example of new x values for the hypothesis character.  

Shown in the table - only the first 4 points. Y coordinates remain. 

 

 

5.3.6  Overview of Hybrid SVM/HMM Training 

 

The training process for the word recognizer is given in Figure 5.12.  The whole 

aim of the training is to optimize the character SVM by using the set of characters 
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which are the best segmented from the word as a result of the recognition. The 

quality of the word recognizer relies on the quality of the SVM character recognizer, 

which in turn relies on the segmentation made on the words into characters. Initial 

training uses the bootstrap SVM character recognizer. The objective in training of 

the system is then to try to improve further the initial bootstrap SVM character 

recognizer by improving the segmentation of the input word while recognizing it.  

 

 

 

Figure 5.12  Character level training for word recogntion system 

 

A hypothesis character is recognized by the trained SVM character recognizer 

and assigned a set of confidence values. There is one confidence value for each 

character class. The confidence values reflect the degree to which the primitive or 

union of primitives represents that class.  For each word in the lexicon, dynamic 

programming or the Viterbi algorithm is used to find the best sequence of hypothesis 

character to match the word input signal using the confidence values.  At the end of 

recognition of each input word, new segmentation points (if any) are determined by 
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the word recognizer output following the segmentation that gives the best word 

score.  

 

New segmentation points obtained determine a new and better set of segmented 

characters to be used in the character database generated for SVM retraining. Better 

segmentation generate better quality character database and eventually improve the 

quality of the SVM character recognizer in subsequent training. As character 

recognizer improves, it is hopeful that the new word recognizer will improve further 

and the resulting segmentation points will also be better. This cycle of improving 

character segmentation and retraining of SVM is repeated a few times until there are 

no more improvements in the word recognition rate.  

 

For training the word recognizer, we used word signals that have been 

preprocessed in a separate preprocessing step resulting in a new database of 

preprocessed words. However, for recognition, since raw word signals are given to 

be recognized, preprocessing is done within the real time recognition module just 

prior to recognition process.  

  

 

5.3.7  Word Likelihood Computation 

 

One crucial issue in training or recognition is the word likelihood computation. 

Given a word signal to recognize or the word observation O, and a lexicon of words, 

the word that is taken as the recognized word, 
^

W
 
is the one that has the highest score 

among all the words.  

)|(maxarg
^

OWPW
W

=   (Eq. 5.3) 

 

To calculate word likelihood for each word, we can formulate the problem in the 

hybrid SVM/HMM framework. The HMM is a left-right model with unity transition 

probability throughout. Word HMM is a concatenation of several character HMMs.  
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The hybrid framework uses SVM to compute the observation probability at each 

state in the word HMM. We can use either the Forward-backward or Viterbi 

algorithm to calculate the word likelihood. Word likelihood computation using the 

Forward-backward algorithm involves summing the likelihoods through all the 

possible paths for the particular word of the lexicon. However, Viterbi algorithm 

which finds the single best path is a good approximation that we use. Forward-

backward and Viterbi algorithm falls under dynamic programming approaches.  

 

The problem can also be straight forwardly approached as a search problem, 

without involving HMM framework. This is possible as we use a simple left-right 

HMM with unity state transition, which means that the emission probability is the 

only visible component in the calculation of the likelihood along the path; the 

emission probability being the character likelihood generated by the SVM. In this 

manner, other time saving search methods could be used such as beam search (Ney, 

1987), heuristic search etc.  

 

 Figure 5.13 shows in a general framework, the processes involved in word 

likelihood computation. Each character hypothesis is passed through the feature 

extractor and SVM character recognizer, which will output the probability scores for 

all the labels in the SVM model, in which it has been trained. Since the characters 

are cut from the words that we are training the word recognizer with, all character 

labels from the database should be covered by the SVM. Given all the arrays of 

character probabilities for each hypothesis, to calculate the word likelihood for a 

particular word in the lexicon, the Viterbi or the forward-backward algorithm is used 

to sum all the log values of character likelihood across allowable path which does 

not contain hypothesis which overlapped each other. The path shown at the bottom 

of the diagram through 3 hypotheses, the first which contains slice 1 and 2 followed 

by the second which contains slices 3 and 4 and finally the one that contains only 

slice 5 forms the best path.  
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Figure 5.13 Word Likelihood Computation – The best word is “cts”, through 

slice combination 1 & 2 for char c, 3 &4 for char t and slice 5 for character s. 

Bold and large P(i) indicates largest probability values for character i . 

 

5.3.8  SVM/HMM Framework  

 

As we mentioned earlier, we can understand the recognition system, in particular 

the word likelihood computation by putting the above in an SVM/HMM hybrid 

framework. At the character level, each character can be represented by a character 

HMM. We have considered 68 character HMMs to represent 68 letters and symbols. 

Out of that, 26 are for small letters, 26 for capital letters and 4 for symbols, for a 

total of 56. Since our databases cater for English and French words, 12 extra HMMs 
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for letters special to French are used, making the total of 68.  All the 68 letters and 

symbols are listed in Table 5.2.  

 

Table 5.2 The 68 Character HMMs 

a b c d e f g h i j 
k l m n o p q r s t 
u v w x Y z A B C D 
E F G H I J K L M N 
O P Q R S T U V W X 
Y Z - ' . , à â ç é 
è ê ë Î Ï ô ù û   

  

An example of a character HMM is given in Figure 5.14. Note that there is an 

entry node and an exit node which are used to concatenate between character 

HMMs.   

  

Figure 5.14 An example character HMM with N states 

 

The character HMM topology is a left-right topology with N states where N is 

the maximum number of slices allowable for each character. The nth hidden state 

represents the state where the character emitted is made up of n slices from starting 

slice up to the nth slice. For example at state S12 the character emitted consists of 2 

slices; 1 and 2. Once a character is emitted, transition will proceed to the exit state. If 

a character is not emitted, transition will be to the next state. The transition 

probability for the character HMM is set to 1 since we allow the HMM to move 

between states from left to right and to exit state with equal probability. The 
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emission probability is given by the SVM character likelihood score. Character 

HMMs are concatenated to form word HMM as shown in Figure 5.15. 

 

 

Figure 5.15  Word HMM formed by concatenating  

character HMM 

 

 

 Figure 5.16 shows an example of the word recognition graph for recognizing the 

word “cts”. For T number of slices, the observation sequence is O= O1O2O3,…,O5. 

In our SVM/HMM framework, we need to cater for each observation to have a 

maximum of N slices representing each hypothesis that is made up of slices ending 

with slice t. (In the diagram, T= 5, N = 3). The likelihood of each word-HMM, λ  

given observation sequence O , or )|( λOP ,  can be computed as below: 

 

∑∏
Γ =

−
=

T

t
tqqq ObaOP

ttt
1

)()|(
1

λ    (Eq 5.1)

 

where we use the transition probabilities 
tt qqa

1−
of 1.    

 

We use the Viterbi algorithm which gives a single best state sequence as discussed 

in section  3.2.5, to estimate the word score. We define the quantity  )(itδ  which 

represents the best score along a single path, at time t, which accounts for the first t 

observations and ends in state i as follows:  

 

)|,(max)( 321321,, 121

λδ ttqqqt OOOOiqqqqPi
t

LL
L

==
−

   (Eq 5.2)
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Figure 5.16 Word Recognition Graph 

 

By induction, we have  

)(])(max[)( 1+⋅= tjijtit Obaij δδ    (Eq 5.3)

The complete procedure to compute the word score using the Viterbi algorithm is : 

a) Initialization 

NiObi ii ≤≤= 1),()( 11 πδ    (Eq 5.4)
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b) Recursion 

NjObaij tjijtNit ≤≤⋅= −≤≤
1),(])([max)( 11

δδ    (Eq 5.5)

c) 3. Termination 

)]([max
1

* iP TNi
δ

≤≤
=    (Eq 5.6)

 

In the actual word score calculation, we made use of the log values of the 

observation probability, which turns the multiplication in the formula into addition. 

Figure 5.16 shows that the best path for the Viterbi algorithm as using character ‘c’ 

from hypothesis containing slices 1 and 2, then for character ‘t’ from hypothesis 

containing slices 3 and 4 and finally ‘s’ from hypothesis containing only slice 5. The 

circles with dark shades in the diagram are the hypothesis with the optimum log 

probability values which added together in the best path giving the best score. 

 

5.4 Summary  

 

In this chapter, the handwriting recognition being developed is discussed. We 

presented first, the SVM handwritten character recognizer, from the preprocessing 

stage through to normalization, feature extraction and training. The hybrid 

SVM/HMM word recognizer is then described from the same level of perspective. 

Finally, detail discussion on word likelihood computation is presented, making use 

of recognition graph and the Viterbi algorithm.  
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CHAPTER 6 

 

 

 

DATABASE AND EXPERIMENTAL RESULTS 

 

 

 

6.1 Introduction 

 

We have developed a complete online handwriting recognition system that 

implements the hybrid of HMM and SVM which is the focus of this thesis. There are 

various issues that need to be addressed in order to make the implementation of the 

system successful.  To test the system, we have conducted a number of experiments. 

We made use of some available databases for the experiments to test the validity and 

usefulness of our system at various stages of implementation.  

 

This chapter describes the databases that were used and the various experiments 

that have been performed. We first describe general public databases which were 

used to evaluate our SVM. There are a few subsets of the UCI datasets (Newman, 

1998) that we used in our very early experiments on SVM. Then we focus on the 

two main handwriting databases that have been used; the IRONOFF database 

(Viard-Gaudin, 1999) and the UNIPEN database (Guyon, 1994). IRONOFF consists 

of both online and offline data while UNIPEN provide only the online data. The 

online data of IRONOFF database was collected using the UNIPEN format. A 

combination of both UNIPEN and IRONOFF online databases was also generated 

and used in some experiments. We have also used the MNIST database (LeCun, 

1998a) in our SVM experiments. We describe the measure of performance that we 

used in this thesis and the experiments conducted together with their results. 
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6.2 Databases 

 

In the early stage of adapting SVM into the system, we have to decide on the 

implementation route of SVM. As we have mentioned, there are numerous SVM 

packages which can be used and adapted. We begin by performing tests on these 

SVM packages on simple datasets from UCI repository in order to choose the best 

implementation. Once an implementation have been decided and used within the 

hybrid system, we then use the handwriting databases as listed in Table 6.2 for 

experiments involving handwriting recognition at character or word level.  It is 

important to perform testing on public and widely available databases because the 

results obtained are more authentic and comparable. 

 

 

6.2.1  Data From UCI Repository 

 

UCI repository site at University of California, Irving provides various databases 

for evaluating learning algorithms. Currently,  the repository contains over 173 

different data sets as described in (Newman, 1998) and (Asuncion, 2007). Among 

the popular data sets, only Wisconsin Breast Cancer (WBC), Cleveland Heart 

Disease (CHD), Tic Tac Toe (TTT), Votes (VT) and Handwritten Digits (HWD) 

were used to compare and select the SVM implementation packages. Table 6.1 gives 

a summary of the datasets. 

 

Table 6.1  Sample UCI Data Sets 

Datasets Features 
Wisconsin Breast Cancer (WBC) 2 class, 569 samples, 30 features 
Cleveland Heart (CHD) 5 class, 297 samples, 13 features 
Tic Tac Toe (TTT) 2 class, 958 samples, 9 features 
Votes (VT) 2 class, 435 samples, 16 features 
Handwritten Digits (HWD) 10 class, 3826 samples 64 features 
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6.2.2  IRONOFF Online and Offline Databases 

 

The IRONOFF  database is collected by Viard-Gaudin (Viard-Gaudin, 1999) 

from IRESTE (currently known as IRCCyN at Ecole Polytechnique de l’Université 

de Nantes). It contains both online and offline handwriting data. The database 

contains in both formats, the following; 4,086 isolated digits, 10,685 isolated lower 

case letters, 10,679 isolated upper case letters together with 410 EURO signs, 31,346 

isolated words from a 197 word lexicon. The isolated words comprises both French 

and English words (28, 657 French words and 2,689 English words). Table 6.2 gives 

a summary for all handwriting databases used, including the IRONOFF databases. 

 

Table 6.2  Handwriting Databases 

(a) Character databases 

Type Database 
Name 

Detail 
Type 

Training 
Examples 

Test 
Examples 

Total 

Character 
 

IRONOFF 
 

Digit 3059 1510 4086 
Lowercase 7952 3916 10685 
Uppercase 7953 3926 10679 

UNIPEN-
IRONOFF 

 

Digit 13451 6270 19721 
Uppercase 42778 20172 62950 
Lowercase 25662 11621 37283 

UNIPEN 
 

Digit 10423 5212 15635 
Uppercase 34844 17423 52267 
Lowercase 17736 8869 26605 

MNIST Digit 60000 10000 70000 
 

(a) Word databases 

Type Database 
Name 

Detail 
Type 

Training 
Examples 

Test 
Examples 

Total 

Word 
IRONOFF 

 
Cheque word 7956 3978 11934 
English Word 1793 896 2689 
French Word 19105 9552 28657 

 

The database was collected from about 700 different writers, mainly of French 

nationality. Although the database contains both on-line and off-line information of 

the handwriting signals, only the on-line information is used for our experiments. 

The on-line data has been sampled with a spatial resolution of 300 dpi and a 

sampling rate of 100 points per second on an A4 sized tablet. The database is 
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available as ASCII files written in the UNIPEN format. Personal information of the 

writer for each sample such as sex, age, nationality, and whether the person is left or 

right handed are also provided.  

The database is divided exclusively into training set and test set. The scriptors of 

the two data sets are different, reflecting an omni-scriptor situation in which some 

types of handwriting styles are only available during the training of the system and 

not available in testing. Table 6.3 shows the complete lexicon of 197 words from 

IRONOFF database. 

 

Table 6.3  List of words in the IRONOFF lexicon 

Un 
deux 
trois 
quatre 
cinq 
six 
sept 
huit 
neuf 
dix 
onze 
douze 
treize 
quatorze 
quinze 
seize 
vingt 
trente 
quarante 
cinquante 
soixante 
cent 
mille 
million 
francs 
centimes 
euros 
et 
frs 
cts 
repêché 
blâmez 
affût 
l'élève 

rugby 
jusque 
chômé 
vodka 
gîtes 
whisky 
oeuvre 
voilà 
zèbre 
dépôt 
quelqu'un 
vêtir 
gâchez 
figeront 
buvez 
taxis 
fjord 
dégâts 
jazz 
buggy 
impôts 
conçu 
aïeux 
fonça 
galette 
flûte 
accident 
abbaye 
éclabousser 
déposerait 
thermonuclé 
aire 
sculpterai 
organisme 

secouraient 
monétaires 
malversation 
pédalerions 
compagnies 
pivoteras 
surgelées 
fréquemment 
fredonner 
moissonner 
polygonale 
père-noël 
frapperions 
Agglomération 
Boîtier 
Citoyen 
Démocratie 
Encouragement
Fréquence 
Gymnase 
Hôpital 
Imperméable 
Journal 
Kiosque 
Littérature 
Maître 
Neptune 
Occident 
Psychologue 
Quittance 
République 
Société 
Température 
Urgence 

Vacances 
Week-end 
Xénophobie 
Yaourt 
Zénith 
Apple 
Between 
Capability 
Directory 
Earth 
Fuzzy 
Giving 
Hydrogen 
Island 
Job 
Ku-Klux-Klan
Liberty 
Money 
North 
Obvious 
Parking 
Quiz 
Rabbit 
Smooth 
T-shirt 
User 
Voice 
Warehouse 
X-ray 
Yuppie 
Zero 
je 
tu 
il 

elle 
nous 
vous 
mais 
où 
donc 
or 
ni 
car 
puis 
ne 
pas 
à 
au 
de 
du 
des 
dans 
en 
par 
chez 
pour 
le 
la 
les 
ce 
cet 
cette 
ces 
cela 
ceci 
celle 
celui 
mon 

ton 
son 
si 
une 
même 
notre 
votre 
leur 
entre 
on 
sur 
sous 
plus 
moins 
avec 
ainsi 
qui 
que 
quoi 
quel 
quelle 
quand 
tout 
tous 
aussi 
dont 
dès 
autre 
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The experiments performed on the IRONOFF database can be divided according 

their categories namely; Check words, French words and English words. Table 6.4 

Table 6.5 and Table 6.6 give the lexicons for the three categories respectively. 

 

Table 6.4  Words in the Check Word lexicon (30 words) 

 Un 
deux 
trois 
quatre 
cinq 
 

six 
sept 
huit 
neuf 
dix 
 

onze 
douze 
treize 
quatorze 
quinze 
 

Seize 
vingt 
trente 
quarante 
cinquante 
 

soixante 
cent 
mille 
million 
francs 
 

centimes 
euros 
et 
frs 
cts 

 

Table 6.5  Words in the French Word lexicon (171 words) 

un 
deux 
trois 
quatre 
cinq 
six 
sept 
huit 
neuf 
dix 
onze 
douze 
treize 
quatorze 
quinze 
seize 
vingt 
trente 
quarante 
cinquante 
soixante 
cent 
mille 
million 
francs 
centimes 
euros 
et 
frs 
 

cts 
 repêché 
blâmez 
affût 
l'élève 
rugby 
jusque 
chômé 
vodka 
gîtes 
whisky 
oeuvre 
voilà 
zèbre 
dépôt 
quelqu'un 
vêtir 
gâchez 
figeront 
buvez 
taxis 
fjord 
dégâts 
jazz 
buggy 
impôts 
conçu 
aïeux 
fonça 
 

 galette 
flûte  
accident 
abbaye 
éclabousser 
déposerait 
thermonucléaire 
sculpterai 
organisme 
secouraient 
monétaires 
malversation 
pédalerions 
compagnies 
pivoteras 
surgelées 
fréquemment 
fredonner 
moissonner 
polygonale 
père-noël 
frapperions 
Agglomération 
Boîtier 
Citoyen 
Démocratie 
Encouragement 
Fréquence 
Gymnase 
 

Hôpital 
Imperméable 
Journal  
Kiosque 
Littérature 
Maître 
Neptune 
Occident 
Psychologue 
Quittance 
République 
Société 
Température 
Urgence 
Vacances 
Week-end 
Xénophobie 
Yaourt 
Zénith 
je 
tu 
il 
elle 
nous 
vous 
mais 
où 
donc 
or 
 

 ni 
car 
puis 
ne  
pas 
à 
au 
de 
du 
des 
dans 
en 
par 
chez 
pour 
le 
la 
les 
ce 
cet 
cette 
ces 
cela 
ceci 
celle 
celui 
mon 
ton 
son 
 

si 
une 
même 
notre 
votre 
 leur 
entre 
on 
sur 
sous 
plus 
moins 
avec 
ainsi 
qui 
que 
quoi 
quel 
quelle 
quand 
tout 
tous 
aussi 
dont 
dès 
autre 
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Table 6.6  Words in the English Word lexicon (26 words) 

Apple 
Between 
Capability
Directory 
Earth 

 Fuzzy 
Giving 
Hydrogen 
Island 
Job 

 Ku-Klux-
Klan 
Liberty 
Money 
North 
Obvious 

 Parking 
Quiz 
Rabbit 
Smooth 
T-shirt 

 User 
Voice 
Warehouse 

 X-ray 
Yuppie 
Zero 

 

The handwritings in the word database are unconstrained. It contains the 

variations mentioned in Figure 1.8 and Figure 1.9. This can be seen in the randomly 

selected sample words “centimes” and “capability” shown in Figure 6.1. 

 
 

centimes 
(writer 1) 

centimes 
(writer 2) 

Capability 
(writer 4) 

centimes 
(writer 3) 

Capability 
(writer 5) 

Capability 
(writer 6)  

 

Figure 6.1  Random examples from the IRONOFF Database 

 

 

6.2.3  UNIPEN Online Character Database 

 

UNIPEN online database (Guyon, 1994, Ratzlaff, 2003) is a database made 

available by the International Unipen Foundation. The publicly available data sets 

are named the UNIPEN Train-R01/V07 distribution while there is another set which 

is not publicly available called the DevTest-R01/V02 subset. Train-R01/V07 are 

available in 6 categories; namely 1a, 1b, 1c, 1d, 2 and 3.  Table 6.7 gives an 

overview of the overall UNIPEN benchmark database. Table 6.8 gives the detail of 

the dataset in the UNIPEN Train-R01/V07 distribution. 
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Table 6.7  UNIPEN Benchmark Overview 

Benchmark Description 
1a  Isolated digits  
1b  Isolated upper case  
1c  Isolated lower case  
1d  Isolated symbols (punctuations etc.)  
2  Isolated characters, mixed case  
3  Isolated characters in the context of words or texts  

4  Isolated printed words, not mixed with digits and 
symbols  

5  Isolated printed words, full character set  

6  Isolated cursive or mixed-style words (without digits and 
symbols)  

7  Isolated words, any style, full character set  

8  text: (minimally two words of) free text, full character 
set  

  

Table 6.8   UNIPEN Train-R01/V07 Dataset 

Category Type  Number of 
classes 

Total 
samples 

1a Digits 10 15635 
1b Uppercase letters 26 28069 
1c Lowercase letters 26 61360 
1d Punctuations and other 

symbols 
32 17286 

2 Mixed 94 122668 
3 Mixed 94 67352 

 

Several authors have published recognition results using this or related UNIPEN 

databases, thereby affording researchers some reference points for comparing the 

performance of their recognizers. We have further made a sub selection from the 

Train-R01/V07 distribution database for our use in the experiments. In particular we 

only made use of Dataset 1a, 1b and 1c for the digits, lowercase characters and 

uppercase characters. The actual subset of that we used is given as part of Table 6.2. 

 

6.2.4  IRONOFF-UNIPEN Databases 

 

A combination of IRONOFF and UNIPEN database called IRONOFF-UNIPEN 

is created and used in our experiments. The IRONOFF-UNIPEN combination 

basically consists of characters from IRONOFF character data sets and UNIPEN 
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character data sets. Selection of data from each database is made randomly. This 

data set has been used to compare character recognition by SVM with other 

methods, in particular using back propagation neural network (BPNN) and 

convolutional neural network (CNN) whose results we compare in this thesis. The 

detail of the database that we used is given as part of Table 6.2 

 

6.2.5 MNIST 

 

MNIST is a modified version of handwritten digit database from National 

Institute of Standard and Technology (NIST) compiled by LeCun (LeCun, 1995) 

(LeCun, 1998a). MNIST database is an off-line database. It has a training set of 

60,000 examples, and a test set of 10,000 examples. It is a subset of a larger data set 

available from NIST. The digits have been size-normalized and centered in a fixed-

size image. The original black and white (bi-level) images from NIST were size-

normalized to fit in a 20x20 pixel box while preserving their aspect ratio. The 

resulting images contain gray levels because of the anti-aliasing technique used by 

the normalization algorithm. The images were centered in a 28x28 image by 

computing the center of mass of the pixels, and translating the image to position this 

point at the center of the 28x28 field.  MINIST database have been popularly used 

by many authors to compare between various machine learning algorithms.  We 

have used MNIST database to compare our SVM implementation with other 

methods in the literature. 

 

 

6.3 Experiments in Selecting an SVM package  

 

As mentioned in chapter 4, there are many publicly available SVM packages 

made available by researchers and implementers. We have tested those 

implementation using libraries implemented in C or C++ code.  In this section we 

report the results of the tests on three most widely used SVM packages; SVMTorch, 

SVMlight and LIBSVM.  A few experiments were conducted using the three 

packages. The aim of the experiments is to compare them, using common training 

parameters and common datasets so that conclusions can be made on suitability, 

speed of training, accuracy and most importantly ease of use.  The  packages that we 
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used during the initial evaluation of SVM, were two class SVM for SVMLight and 

SVMTorch and multi-class SVM for LIBSVM. 

 

All the raw datasets were processed to obtain input files in the format needed for 

each package. In each case, the datasets were trained using the different kernels with 

different hyper parameters and penalty value C ranging from 0.01 to 100. The speed 

of training, numbers of support vectors, training accuracy and testing accuracy were 

observed. In the comparisons, we only use RBF and polynomial kernels, for the 

reasons we give in section 5.2.4. Table 6.9  to Table 6.12  reports the results of the 

various comparisons that have been made.   

 

6.3.1  Comparing Training Time and Number of Support Vectors 

 

Table 6.9 Training Results for WBC data set (2 class) 

SVM Tools Kernel C Number of 
iteration 

nSV 

LIBSVM 
 

RBF 1 1128 569 
10 1265 569 

Polynomial 1 490554122 32 
10 623912950 32 

SVMLight RBF 1 121 569 
10 121 569 

Polynomial 1 1237380 34 
10 1062198 34 

SVMTorch RBF 1 840 561 
10 952 561 

Polynomial 1 N/A 32 
10 N/A 32 

Note:  nSV – number of support vectors  
 N/A – very large number of iterations. 

 
 

Table 6.9 gives the training result comparison for all three tools on WBC dataset 

with C = 1 and C = 10. Training times, which is estimated in term of number of 

iteration, are compared. The resulting numbers of support vectors are compared. 

Using RBF kernel, all three tools finished in short number of iteration but produce 

consistently large number of support vectors. While using polynomial kernel, 

significantly higher number of iterations are needed. Using polynomial kernel, 

training was slowest in SVMLight while number of support vectors is reasonably 
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low. All three tools generate comparable number of support vectors for the same 

kernel even with different C values. 

 
6.3.2  Comparing Number of Support Vectors  

 
Comparative training results on all datasets using all three tools are provided in 

Table 6.10. All training exceeding a certain threshold of iteration and time using 

certain kernel and hyper parameters has been skipped and the results are entered in 

the table as N/A.  Only LIBSVM was trained for both binary and multiclass as 

SVMLight and SVMTorch that we used only implements two-class SVM. All tools 

generate reasonably the same number of support vectors when using RBF kernels.  

 

Table 6.10 Training Result (number of Support Vectors) 

SVM 
Package 

Kernel C Data Sets 
WBC CHD TTT VT HWD 

LIBSVM 
 

RBF 1 569 297 627 112 3811
10 569 297 423 76 3810 

Polynomial 1 32 173 626 126 728 
10 32 173 422 74 728 

SVM 
Light 

RBF 1 569 N/A 949 305 N/A 
10 569 N/A 949 306 N/A 

Polynomial 1 32 N/A 328 59 N/A 
10 32 N/A 848 58 N/A 

SVM 
Torch 

RBF 1 561 283 N/A N/A N/A 
10 561 279 N/A N/A N/A 

Polynomial 1 N/A N/A N/A N/A N/A 
10 N/A N/A N/A N/A N/A 

 
Note: WBC, TTT and VT are 2 class problems; CHD and HWD are 

multiclass problems. SVMLight and SVMTorch are 2 class packages. 
 

 
 

6.3.3  Comparing Training and Test Accuracies  

 

Table 6.11 gives the comparison of the training accuracy for each package. RBF 

kernel and Polynomial kernel of degree 2 were used.  The values of C = 10 are used 

in all cases.  LIBSVM produce on average the highest training accuracy.  
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Table 6.11  Training Accuracy (in %) 

 

SVM 
Package 

Kernel C Data Sets 
WBC CHD TTT VT HWD 

LIBSVM 
 

RBF  100  100 92.80  95.86  100  
10 100  100  98.33  98.85  100  

Polynomial 1 97.54  78.79  85.70  95.17  100  
10 97.36  80.47  90.71  97.93   100 

SVMLight RBF 1 100  N/A  100  95.63  N/A  
10 100  N/A  100  96.32  N/A  

Polynomial 1 97.89  N/A  98.33  99.77  N/A  
10 97.89  N/A  97.51  100  N/A  

SVMTorch RBF 1 100  95.63  N/A  N/A  100  
10 100  100  N/A  N/A  100  

Polynomial 1 N/A  N/A  N/A  N/A  100  
10 N/A  N/A  N/A  N/A  100  

 

 

A comparison of the test accuracy for the three tools was also made. Table 6.12 

gives the test accuracy for 10-fold cross-validation training using SVM with RBF 

kernel.  

 

Table 6.12 Summary of Test Accuracy (in %) 

SVM Package Data Sets 
WBC CHD TTT VT HWD 

LIBSVM 96.13 58.25 70.67 93.79 97.91  
SVMLight 96.24 N/A 70.67 93.79 N/A 
SVMTorch 95.43 N/A N/A N/A 96.54 

 

 

We finally selected LIBSVM as a base SVM package in our test of SVM for 

character recognition as well as in the hybrid SVM/HMM online word recognition 

system. The major reasons are; first ease of integration into the system where 

LIBSVM is an already multiclass solution while the other two are not; second it is 

better in training and test accuracies.  
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6.4 Character Recognition Using SVM 
 

After these preliminary experiments which allow to select the SVM package, 

more in-depth experiments were conducted to investigate the usage of SVM in 

online character recognition. In these experiments, we use the IRONOFF database, 

UNIPEN database and a combination of the two databases together called 

IRONOFF-UNIPEN. The description and details of each database are given in 

Section 6.2 and Table 6.2. 
 

6.4.1  Experiments on SVM for Character Recognition 
 

For the experiments, a feature extractor module extracts the 7 local features for 

each point of the online signal in the example character (see section 5.2.3). These 7 

features are chosen since they are simple to obtain and have been used by Poisson 

(Poisson, 2002) in other similar experiments using TDNN and MLP NN. Therefore, 

for each example character there are 210 feature values which are the inputs of the 

SVM. For our character recognition, we use LIBSVM library with RBF kernel, since 

RBF kernel has been shown to give better recognition result. Grid search on a 10-

fold cross validation were performed on the databases in order to choose the best 

values for the C and γ
 
parameters for the final SVM training.  

 

It is observed that C values between 2 and 8 and gamma values between 2-7 and 

2-5 yielded the best character recognition rate. We have chosen a single pair of C = 8 

and gamma = 2-5 for our training on all databases since the results obtained shows 

that individual grid search on the datasets yields almost similar C and gamma values 

for majority of the datasets.   

 

 Table 6.13 shows recognition performance for the recognizer using IRONOFF-

UNIPEN database. The table gives the total number of examples in the training and 

test set as well as the accuracy, number of support vectors and the training time 

taken. The training time and the number of support vectors seem to be proportional 

to the size of the training data, which is normally the case. The bigger the training 

size, the longer is the training time and the bigger the number of support vectors. 
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However, test accuracy for each dataset does not follow the normal case where a 

bigger dataset used in training gives better accuracy. This is due to the quality of the 

character in the different dataset. A digit, in particular, is normally written 

consistently uniformly if compared to lowercase or uppercase letter making them 

less varied thus less confusion during recognition.  
 

Table 6.13  Detail Recognition performance of SVM on  

IRONOFF-UNIPEN character database  

Data Set Training 
Set 

Test Set Test set  
accuracy (%) 

nSV Training 
time (s) 

Digit 13451 6270 98.68 3014 497 
Lowercase 42778 20172 93.76 15696 5897 
Uppercase 25662 11621 95.13 10035 2808 

 

 

When compared with two other character recognizers based on neural networks; 

the MLP and TDNN, our SVM based character recognizer consistently performs 

better. Table 6.15 shows the comparison between MLP NN, TDNN and SVM 

character recognizers, trained and tested on IRONOFF and UNIPEN databases.  

 

Table 6.14 Comparing recognition performance between  

TDNN and SVM for IRONOFF and UNIPEN  databases 

 IRONOFF database UNIPEN database 
Data Set MLP TDNN SVM MLP TDNN SVM 
Digit 98.2 98.4 98.83 97.5 97.9 98.33 
Lowercase 90.2 90.7 92.47 92.0 92.8 94.03 
Uppercase 93.6 94.2 95.46 92.8 93.5 94.81 

 

 

As can be observed, the recognition rate or the accuracy using SVM is better than 

TDNN and MLPNN for all datasets in the two databases. These are due to the 

effectiveness of maximal margin optimization and structural risk minimization 

(SRM) approach to learning used in SVM. NN which normally uses empirical risk 

minimization (ERM) does not give an optimal classifier since there can be many 

classifiers obtained given an initial set of parameters to start with. Better accuracies 

for SVM are also obtained for IRONOFF-UNIPEN database as seen in Table 6.15. 
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However, a fair comparison need not be just by looking at the recognition 

accuracy. A practical recognizer should be small in size, carrying as small as 

possible number of parameters. The free parameter columns for MLP, TDNN and 

nSV column for SVM in Table 6.15 gives a comparison for this. In such case, 

TDNN recognizer is a clear winner because the total number of free parameters is 

small. This is due to the weight sharing scheme within the structure of the TDNN. 

According to the table, SVM seems to have a small number of parameters indicated 

in the nSV column, which is the total number of support vectors.  
 

Table 6.15 Comparing recognition performance and number  

of parameters using MLP, TDNN and  

SVM for IRONOFF-UNIPEN database 

 MLP TDNN SVM 
Data Set Free 

par. 
Rec 

Rate(%)
Free 
par. 

Rec 
Rate(%)

nSV Rec 
Rate(%) 

Digit 36110 97.9 3790 98.4 3014 98.68 
Lowercase 37726 91.3 8926 92.7 15696 93.76 
Uppercase 37726 93.0 8926 94.5 10035 95.13 

 

 

Since a support vector is actually an example from the training set, its size is 

actually a multiple of the dimension of the feature vector representing the example. 

This can be large. In our SVM, this is 30 x 7 or 210. To fairly compare the number 

of parameters for each MLP, TDNN and SVM, let’s take the parameters for digit 

recognizer. For MLP, it is 36,110, for TDNN 3,790, but for SVM, it is 3,014 x 210 = 

632,940 or 18 times larger than MLP NN. One way to tackle this large model is to 

use compression. Parameters are stored in compressed form. During recognition, the 

model will be expanded dynamically as required.  

 

As discussed in section 4.4.3, SVM can be made to give posterior probability 

outputs. Since we will eventually use the SVM in the word recognizer, we decided 

to train and test the SVMs for handling probabilistic output using IRONOFF and 

UNIPEN databases. In the training, the SVM was trained with the option for 

probabilistic output and recognition were then done using the model for probabilistic 



 143

output which gives probability values for each class as the outputs. The correct 

recognition is the character class which gives the highest probability value. The 

recognition accuracy does not differ much between using SVM with probabilistic 

model or non probabilistic model, as seen in Table 6.16. 

 

Table 6.16  SVM distance vs. probabilistic SVM based  

recognition for IRONOFF and UNIPEN Databases 

 IRONOFF database UNIPEN database 
Data Set SVM SVM 

prob. 
SVM SVM 

prob. 
Digit 98.83 98.68 98.33 98.35 

Lowercase 92.47 92.42 94.03 94.14 
Uppercase 95.46 95.45 94.81 94.85 

 

 

6.4.2  Character Recognition Summary 
 

In all the experiments, the results have shown that the recognition rates of 

characters using SVM character recognizer are significantly better than other 

methods compared, due to structural risk minimization implemented by maximizing 

margin of separation in the decision function. However, the increase in recognition 

rate is not without some impact. SVM model size is characterized by the number of 

support vectors obtained in the training. Storing these support vectors for recognition 

requires larger memory as compared to NN weights since each support vector is a 

multidimensional feature vector. The number of support vectors can be reduced by 

selecting better C and gamma parameter values through a finer grid search and by 

reduced set selection (Burges, 1996) (Downs, 2001).  The comparison of recognition 

results of SVM with probabilistic output and SVM distance output shows that both 

are comparable. 

 

In section 6.6, we present the work on integrating the SVM character recognizer 

into the HMM based word recognition framework. However, we first describe some 

other works which makes use of SVM that the author has undertaken in the 

following section. 
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6.5 Experiences in Implementation of SVM in Other Areas 

 

This section reports some results of the author’s work in using SVM for 

applications in other areas. It provide some information regarding the effectiveness 

of SVM in two areas; first, an area very close to online handwriting recognition, 

which is on online handwritten mathematical expressions recognition and second; an 

area which is not directly related to handwriting recognition. The first result is on 

comparison of the usage of SVM and TDNN in mathematical expressions 

recognition which is part of a research (Awal, 2008) within the same laboratory. The 

second work (Ahmad, 2007) was performed for the state owned Malaysian power 

producer, Tenaga Nasional Berhad (TNB) on customer fraud prediction using SVM.  

 

 

6.5.1  SVM in Mathematical Expressions Recognition 

 

In a larger perspective, a framework for online handwritten mathematical 

expression recognition was proposed. The architecture aims at handling 

mathematical expression recognition as a simultaneous optimization of symbol 

segmentation, symbol recognition, and 2D structure recognition under a 

mathematical expression grammar. Its components are hypothesis generator that 

performs a 2D grouping of elementary strokes, a classifier that labels the hypothesis 

according to a predefined set of symbols, a cost function defining the global 

likelihood of a solution, and a dynamic programming scheme that gives the best 

global solution. For recognizing the elementary strokes, TDNN has been chosen to 

be the base recognizer. A TDNN was trained using large datasets of online 

handwritten mathematical symbols that has been collected. The database consists of 

Greek symbols, elastic symbols, arrows, functions as well as capital letters, small 

letters and digits. SVM has been used to compare the recognition results with TDNN 

using the same collected database. 
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6.5.2  SVM in Electricity Fraud Prediction 

 

In this second related work on SVM, we developed an intelligent system to detect 

fraudulent customers for a Malaysian power company, Tenaga Nasional Berhad 

(TNB).  The aim is to create a list of fraudulent customers from the company 

customer database using SVM so that instead of spending a lot of money on 

inspection campaign on customers, the list of likely fraudulent customers will be 

generated by using an SVM predictor trained using samples of verified customers.   

 

Of the 0.4 million customers of TNB from a particular state, an estimated 7.5% of 

the total customers have been checked by visiting selected customer premises. Out 

of that, only 6% have been confirmed fraudulent (the strike rate). With the use of the 

SVM based predictor, it was hoped that a predicted fraud list will give a high strike 

rate much better than the manual method of 6%, giving much cost saving from not 

having to perform manual inspection on large customer base. To train the SVM, data 

from 13,000 customers that have been checked are used. Features used are the 

electricity consumptions for the last 85 months resulting in an 85 dimensional 

feature data. Missing data are projected by using the average profile of all customers. 

For SVM parameter selection, 10-fold cross validation was used. In validating the 

predictor, we used a few different data sets. 

 

Table 6.18 Fraud prediction Accuray  

Dataset 10-fold cross 
validation accuracy 

332 customers initial set  76.51 
190 customers verified set  93.12 
2000 customers verified set  73.4 
13000 customers verified set 68.56 

 

 Table 6.18 gives a summary of the results obtained in the course of training and 

validation of the SVM predictor. The table gives the validation accuracy using 10-

fold cross validation for the different sample data that was used. A conclusion that 

can be made is that the SVM fraud predictor has been able to predict correctly the 
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fraudulent customers for more than 60% of the time which is more than 10 times 

better in accuracy than the strike rate of 6% by manual method. 

 

 

6.6 Word recognition Using Hybrid SVM/HMM 

 

The hybrid word recognition system that we developed was evaluated by 

conducting some experiments using the IRONOFF word database. We trained and 

tested the system on each of the databases in IRONOFF; the cheque word, English 

word, French word and the overall word databases separately. Cheque words 

database contains a lexicon of 30 words, while English contains 26 words, French 

171 words and the overall words altogether contains 197 words. The aim of the tests 

was to investigate if our method of preprocessing, feature extraction, segmentation 

and SVM training are suitable and gives good recognition results and with that we 

will make recommendations for the implementation of such hybrid system. 

 

First, initial Character SVMs were trained and tested for each databases before 

they are used in each baseline word recognition systems. Segmentation of words into 

characters for the baseline system was done by a commercial recognizer, guided by 

the actual label during recognition. The use of actual label is supposed to help the 

commercial recognizer during its recognition and thus gives a very good recognition 

for segmentation to be done perfectly, resulting in a good character database. With 

this we hope to start off with a good SVM.  As discussed in section 5.3.6, the 

process of training the system is done in a few cycles of resegmentation of word 

databases and retraining of character SVMs until there are no more improvements in 

the performance of the character SVMs.   

 

In the following subsections, we first discuss a simple example of the processes 

involved in all the steps for the word recognition and resegmentation for a simple 

word “hi”. The example demonstrate the processes involved in the hybrid system, 

showing the character recognition functionality of SVM and the dynamic 

programming functionality of the HMM in calculating the word probability for each 

word in the lexicon. For overall evaluation of the hybrid word recognition system, 

we discuss the results obtained during the overall process of the SVM training at the 
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character level and the recognition at word level and subsequently segmentation and 

retraining of the character SVMs for all the word databases. We then analyze the 

errors caused and discuss issues related to them. 

 

6.6.1 A Word Recognition Example 

 

For our word recognition system training, we demonstrate here the processes 

involved in the recognition and resegmentation of a simple example word consisting 

of two characters, the word “hi”. For this demonstration, the word “hi” have been 

added into the lexicon of English words and a character SVM trained with characters 

from the English words in the IRONOFF database was used. As can be seen in 

Figure 6.8, characters ‘h’ and ‘i’ are part of the characters in the words of the 

English word database.  The signal for the word “hi” is as shown in Figure 6.3. To 

make the analysis simple, in writing the word “hi”, the dot for the character ‘i’ was 

not written, so that the word “hi” is a word with only one stroke.   

 

The portions of the original signal and the pre-processed signal are shown in (a) 

and (b) respectively. It shows the change in coordinates after the preprocessing and 

normalization. For details of the preprocessing that we performed, refer to Section 

5.2.2  on preprocessing and normalization.  

 

 

Figure 6.3 The online signals of the word "hi" 
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The word “hi” contains only one stroke with 129 points. The already pre-

processed word signal is segmented into slices by a very simple algorithm which 

tracks each point from the beginning of the stroke, and groups them into slices from 

minimum to maximum points or minimum to maximum points repeatedly over the 

stroke. In our example here, the segmentation into slices of the word “hi” yields 6 

slices as shown in Figure 6.4. Once we have the slices, they are combined to form 

character hypothesis, which can contain the minimum of 1 slice up to a maximum 

number of ω slices.   

 

 

(a) Word signal – “hi” 
 

(b) The 6 slices 

Figure 6.4  The 6 Slices from the word "hi" 

 

 

In generating the hypothesis, the value for ω was chosen to be 5 for this example 

but a value of 7 was used in the rest of the system, as explained in section 5.3.4 and 

also by experimental results. The value of ω chosen affects the recognition accuracy 

and the time taken to perform the recognition. A large value of ω results in larger 

number of hypothesis and longer recognition time but with higher possibility for 

correct recognition.  These character hypotheses are preprocessed, resampled and 

recognized by the SVM character recognizer which gives the probabilities for the 

hypothesis to belong to any one of the character classes.  For each word in the 

lexicon, the dynamic programming step is used to find best path combining the 

hypothesis giving the best score for generating the particular word in the lexicon. 

 

In this example, using 6 slices, there are 20 character hypothesis possible and can 

be verified by the formula given on page 116.   The character hypotheses are then 

resampled to a uniform 30 points and 7 local features are extracted from each point, 

resulting in a 210 dimensional feature vectors. Each set of feature values are then 

passed to the character SVM to yield the probability array which keeps the 
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probabilities of character classes for all hypotheses. This probability array is kept in 

memory during the word score calculation for each word in the lexicon. Keeping it 

in memory reduces the computation time as character probabilities needed for each 

calculation are made available in the matrix and SVM need not be called every time 

to get their values.  

 

We show in Figure 6.5 the trellis which was constructed in order to evaluate the 

score for the lexicon word “hi” itself. The trellis to be constructed for the evaluation 

of the score for each word in the lexicon but for simplicity sake we show only this 

one trellis which happens to be the word to be recognized and segmented.  

 
Figure 6.5 matches the word recognition graph of Figure 5.16 except that it is 

rotated 90 degrees clockwise. In the trellis, each cell represents the probability of the 

hypothesis that combines the slice(s) from slice (t – q + 1) to slice t where t is the 

slice number and q is the number of slices.  For example, the circled value -0.13 

represents the probability that a hypothesis containing 4 slices - slice 0…3, is 

character ‘h’ and the value -0.04 to the left of -0.13 represents the probability that a 

hypothesis containing 3 slices – slice 1…3, is character ‘h’. This a constrained graph 

where for the first character, only hypothesis starting with slice 0 is valid and from 

one character hypothesis, the path lead to the next character hypothesis starting from 

the next slice after the last slice in the current hypothesis. The values indicated by –

INF are undefined since we cannot have a hypothesis with such slices, for example, 

it is not possible to have a hypothesis that have 4 slices ending with slice 2.  

 

In our example here, the best path for the word “hi” is as indicated by the arrow; 

for character ‘h’, it’s the hypothesis containing 4 slices – slice 0…4 having a log 

probability score of -0.13 and for character ‘i’, it is   the hypothesis containing 2 

slices – slice 4 and 5 with a probability score of -0.21, giving total word probability 

score of -0.34. The final normalized word score which is taken for comparison 

against other word lexicon is the total word probability divided by length of the 

word ‘hi’ giving the score of -0.17. For other words in the lexicon, the same thing is 

done to obtain the final normalized word score. The word with the highest 

normalized word score is chosen as the recognized word. The verbose output of the 
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recognition and segmentation process for the word “hi” using the English word 

lexicon is shown in Appendix C.    

 

 

 

 

Figure 6.5 Trellis for probability score of each hypothesis and the best  

path for scoring the lexicon word “hi” itself. 

 

As can be seen in appendix C, the score for some of the word lexicon are –INF. 

The value of –INF are assigned in the cases where the number of characters in a 

lexicon word is bigger than the number of slices cut from the word to be recognized, 

since there is not enough slice(s) to sufficiently represent each character. For our 

simple example given here, the highest word score (at position 1) is -0.17 which is 

for the lexicon word “hi” itself, meaning that our recognizer recognizes the word 

correctly.  The correct segmentation points for the word are such that for letter ‘h’, it 

consists of slice 0 to 3 and for letter ‘i’, it consists of slice 4 and 5 as seen in Figure 

6.6. Information about these correct segmentations is used to regenerate characters, 

hopefully better segmented ones. In the overall training which involves word 

databases, character databases can be generated for retraining of SVM. 
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Figure 6.6 Character Segmentation for the word “hi” 

 

6.6.2 Comparing Word Recognition Performance  

 

When we want to evaluate our hybrid word recognition system, we need to use 

the complete word database to measure the percentage of correctly recognized words 

from the database (those words having true class in position 1). However, other 

reasonable comparison of the performance would be to compare the percentage 

position of the true class in certain top position other than 1, between 2 to n. For 

example, we can take a word as “correctly recognized” if the true class is in the top 3 

position and compare recognition performances based on this. Other than that, the 

average position of the true class can also be used.  

 

In summary, the measures that can be used to evaluate the performance of a word 

recognizer are as follows: 

a) Top(n)  for  n = 1, …, N :  the percentage of samples for which the true class are 

in the top n position of the candidate list. For example, Top(3) performance 

measure of 95% means that 95% of the samples words tested have the true class 

to be among the top 3 positions.  

b) pos  : the average position of the true class in the candidate list generated by the 

recognizer. The value of 1.0 is the best, which can only be achieved if all the test 

data are correctly recognized. 

 

In the results for word recognition comparison for each training cycles which we 

report the results in section 6.6.5, we mainly used the Top(n) measures for n from 1 

to 10.  
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6.6.3 Character Database Generation. 

  

To bootstrap our system with a properly trained SVM, we trained character 

SVMs using characters segmented from the word database. As mentioned, each 

word in the word database was segmented using an API library of a commercial 

word recognizer to obtain database of characters. The size of the character databases 

generated (training set and testing set) for cheque words, English words, French 

words and all words databases are as in Table 6.19. The relative distribution of 

characters generated is shown in the charts of Figure 6.7, Figure 6.8 and Figure 6.9.  

 

Table 6.19  Number of characters in generated character database 

   Number of characters  
Word Database Training set Test set 

Cheque 39578 19675 
English 11270 5523 
French 107201 53634 
All Words 158049 78832 

 

 

As we can observe from the figures the database of cheque words characters only 

contain 21 of the lower case characters and also without the upper case and French 

accented characters. The database of English word characters contains a fair number 

of upper and lower case characters. In the French words character database, all 

character sets in the character lexicon are used. However, the number of examples of 

upper case characters is very low compared to the lower case characters. The 

number examples of French characters are also considerably adequate. This class 

imbalance in data sets affects the training of SVM.  
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Figure 6.7  Distribution of characters in the generated cheque word  

character database. Only a subset of lower case characters are present. 

 

 

Figure 6.8  Distribution of characters in the generated English word character 

database. Some character classes from character lexicon are not present.  

 

 

Figure 6.9  Distribution of characters in the generated french word character 

database.  All character classes in the character lexicon are present. 
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selecting the best parameter values ( γ and C) to train a final SVM, a 10 fold cross 

validation was done on the cheque word character database.  We obtained the RBF 

kernel parameter values of γ = 0.03125 and C = 2 to be optimum for training the 

SVMs. The same parameter values were used for training the other SVMs. Each 

SVM was trained using the characters from the training set and tested using 

characters from a separate test set indicated in Table 6.20.  

 

 

Table 6.21  Performance of the character SVMs 

Character 
Database 

Recognition 
rate (%) 

Number of 
Support Vectors 

Cheque 85.47 20,709 
English 80.46 8,591 
French 81.66 43,800 
All words 84.33 86,347 

 

We can make an observation here that the recognition rate of the trained SVM is 

not very high. This is not that important however, as the overall word recognition 

relies on combination of a number of SVM outputs where a low probability for a 

character in the word can be compensated by high probability in the other characters 

in the word. This is evident in the word recognition results in the following section, 

for English words. Although the character SVM for English words gives the lowest 

recognition rate among them, word recognition rate for English words is the highest 

among them (see Table 6.22). One thing to note however is the significant size of the 

number of support vectors.  Number of support vectors in each SVM is as large as 

50% of the total number of example characters in the generated character databases. 

This can be due to the values of the training parameters chosen. As understood, 

bigger number of support vectors means longer recognition time since each support 

vector is involved in the calculation of the output.  

 

6.6.5 Recognition Result for Baseline Word Recognition System 
 

The baseline system is the word recognizer using the character SVM trained with 

the characters segmented from the word with the commercial recognizer. We 



 157

performed recognition on the individual word databases and regenerate new 

character database using the segmentation points generated during the recognition.  

 

Table 6.22 Word recognition rates of base recognizer 

Database Lexicon 
size 

Recognition rate (%) 

Top(1) Top(2) Top(3) Top(10) 
English 26 98.77% 99.44% 99.50% 100% 
Cheque 30 76.71% 91.64% 95.71% 99.99% 
French 171 63.25%  77.90%  85.15%  98.86% 
All words 197 64.53% 79.05% 86.20% 99.91% 

 

 

We obtained the word recognition rates as shown in Table 6.22 and graphically 

represented in Figure 6.11. The result shows that Top(1) recognition rate is not very 

high, where all except English word databases gives below 98% recognition rate. 

However, the Top(10) recognition rate of almost or above 99%, indicates that 

although the recognizers made some errors in word recognition, they are still within 

the Top(10) positions. The analysis of the errors that occur during word recognition 

will be discussed in section 6.6.9. 

 

 

Figure 6.11 Word recognition rates for base recognizer 
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6.6.6  Retraining of SVMs 

 

To demonstrate further effectiveness of the system, we retrain the individual 

character SVM for the English word database. The character SVMs recognition rate, 

the number of support vectors for each character SVM and the word recognition rate 

of the word recognizer based on the new character SVM are given in Table 6.23.  

 

Table 6.23 Improvements in Character and word recognizer  

for the English Words 

Iteration Character SVM 
Rec.  Rate (%) 

nSV Word Rec.Rate 
Top(1)  

Baseline  80.46 8591 98.77% 
First iteration 74.37 8449 98.49% 
Second  iteration 74.27 8296 98.83% 
Third  iteration 74.32 8349 98.99% 

 

As observed from the table, the performance of the new character SVM were less 

than the baseline character recognizer but it did not change the word recognition rate 

too much. The word recognition rates were within 1% above and below the baseline 

word recognition rate. The number of support vectors is also generally lower than 

the baseline character recognizer which means the SVM model is getting smaller in 

size. As we performed word recognition and resegmentation repeatedly, the word 

recognition rate converges to around 98.9%.  

 

6.6.7  Incorporation of Junk Characters in Retraining of SVMs 

 

From Table 6.23, it can be observed that the SVM training performance did not 

actually improve after the many iterations and in turn does not improve very much 

the word recognition. The SVM character recognizer may have been presented with 

many of the “characters” it never have seen which are character hypotheses that does 

not look like any of the characters in the character classes. Worse still the hypothesis 

might look like a real character but is not the actual character of the word in the 

lexicon, for example, a part of the character ‘d’ can look like character ‘c’. We call 

the non characters as junk characters. These junk characters can contain part of a 
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character or combination of a few characters. In some cases it can give high score to 

a word in the lexicon which is not the true word. It might be a good idea to create a 

class for the SVM that represents these junk character hypotheses.  Junk examples 

can be created from the word signals and added to the character examples generated 

by the previous training stage. The combined database of characters and junk 

examples can then be used to retrain the SVM which have an extra class called junk.   

 

To select junk examples, the following guide can be used: 

 

(a) To only select a very small and relevant number of junks, we can select only one 

character hypothesis at each training stage that cause recognition error as junk 

example for each training word.  

 

(b) For choosing the best junk example, we can compare the character hypotheses 

that made up the true word label (true word) and the hypotheses that made up the 

word with the best score (best word). A value, say γ  that represents the 

probability that a given hypothesis is a true character hypothesis can be 

calculated for each hypothesis. A hypothesis that has their twoγ ’s from the true 

and best word differs the least, is taken as the junk character example.  

 

This idea of using junk class has been described and used by (Tay, 2002) in his 

work on hybrid NN/HMM for offline word recognition. We contemplate in using a 

junk class in our SVM; however, the idea was put off. In our work, since we do not 

use ligatures to represent concatenations between character hypotheses, we felt that 

it is not necessary to use a junk class. Our word HMMs are concatenations of 

character HMMs without the use of ligatures. In the work of (Tay, 2002), which uses 

NN, junk class and ligature class may compete as a ligature can be taken as a junk 

class. Furthermore the junk is only used to flatten out other character probabilities 

when a hypothesis is not a character. For our work, SVM probability outputs are 

representative enough for each character class.  
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6.6.8  Result Comparisons with Hybrid of TDNN and HMM approach. 

 

A comparison can be made of the results obtained earlier using a hybrid of SVM 

and HMM with the results obtained using a global word training using TDNN and 

HMM by Caillault (2005). Table 6.24 shows the recognition results obtained. In the 

table, the results were shown for TDNN with 1 state (état, in French), 2 states and 3 

states and four different training criteria; either maximum likelihood training (ML) 

or maximum mutual information (MMI) and a combination of MMI and ML and 

MMI, ML and TDNN. 

 

Table 6.24 Recognition result Using TDNN for IRONOFF word 

 

 

Comparing Table 6.22 and Table 6.24, it can be observed that the recognition rate 

using hybrid of SVM and HMM that we use gives a recognition rate of 64.53% for 

Top(1), 79.05% for Top(2) and 86.20% for Top(3). For the hybrid of TDNN and 

HMM, the recognition rate is from as low as 77.43% using ML estimation and 1-

state TDNN, reaching as high as around 92.78% using combination of MMI-ML-

TDNN estimation. As with most globally trained, or another word, a hybrid system 

trained at word level, recognition rate is always higher because the output at word 

level provides correction information to the character level. 

 

6.6.9  Analysis of Errors 

 

We analyze the errors made by our word recognition system on each of the word 

database. We have divided the errors into minor and major error. Minor error refers 

to an error that does not result in the first recognized position but still are in the other 
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two top 3 positions – either 2nd or 3rd.  Major error causes the recognition position 

to be outside the top 10 positions. Among the cause of errors that we observed are 

due to (a) errors in preprocessing or segmentation, (b) errors caused by wrong 

detection of the reference lines, (c) wrong word labels which differ from the actual 

word signal, (d) bad handwriting.  

 

For discussion of recognition errors, we use the English word examples. For the 

English word database, the words are correctly recognized within the Top(10) 

position with more than 99% within the Top(3) position. This is evident from the 

output summary of the recognition process. This may be due to the fact that English 

alphabets are without accented characters and can be well represented by the classes 

in the English character SVM as compared to French characters. Our preprocessing 

does not include taking into account those special accented characters and the 

presence of the extra stroke(s) for the accented characters which vary in the time 

they are written can affect the character feature representation.  

 

A few minor and major errors that we analyzed from the English word recognition 

results are as follows: 

 
c:\ironoff\F3\F3.champs19.unp_pre.unp ->Smooth 
Total slices = 28, Total hypothesis = 175 

 
 Top 1 : North -0.374712 
 Top 2 : Smooth -0.425938 
 Top 3 : Earth -0.711393 
 
True label: Smooth  score -0.425938  position 2 
 

  

 char : N, start: 9, end: 14 
 char : o, start: 15, end: 16 
 char : r, start: 17, end: 18 
 char : t, start: 19, end: 22 
 char : h, start: 23, end: 27 
 
 char : S, start: 0, end: 2 
 char : m, start: 3, end: 9 
 char : o, start: 10, end: 16 
 char : o, start: 17, end: 19 
 char : t, start: 20, end: 22 
 char : h, start: 23, end: 27 
 
 char : E, start: 8, end: 13 
 char : a, start: 14, end: 18 
 char : r, start: 19, end: 20 
 char : t, start: 21, end: 22 
 char : h, start: 23, end: 27

Figure 6.12 Example error: reference line detection 

 

For the example of Figure 6.12, the error in word recognition is caused by an 

error in the reference line detection. In the calculation of the cost of the best path for 

word lexicon “North”, the probability for starting character N at slice 9 is higher 

compared with the hypotheses combination that start from slice 0. This give the 
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word score for “North” to be higher than “Smooth”. Another observation that can be 

made is that all top three words end with the letters “th” but the ‘t’’s are represented 

by hypothesis from different slice combinations.  The case of example in Figure 6.13 

is similar where the word with the top score starts with hypothesis that do not 

contain slice 0. This again is due to a high probability of character B for that 

hypothesis against earlier hypothesis.  
c:\ironoff\F55\F55.champs11.unp_pre.unp ->Ku-
Klux-Klan 
Total slices = 36, Total hypothesis = 231 

 
 Top 1 : Between -0.787303 
 Top 2 : Voice -0.839355 
 Top 3 : Ku-Klux-Klan -0.874788 
 
True label: Ku-Klux-Klan  score -0.874788  
position 3 
 

 

 char : B, start: 8, end: 13 
 char : e, start: 14, end: 16 
 char : t, start: 17, end: 17 
 char : w, start: 18, end: 24 
 char : e, start: 25, end: 29 
 char : e, start: 30, end: 32 
 char : n, start: 33, end: 35 
 
 char : V, start: 16, end: 22 
 char : o, start: 23, end: 29 
 char : i, start: 30, end: 30 
 char : c, start: 31, end: 31 
 char : e, start: 32, end: 35 
 
 char : K, start: 0, end: 3 
 char : u, start: 4, end: 6 
 char : -, start: 7, end: 7 
 char : K, start: 8, end: 12 
 char : l, start: 13, end: 15 
 char : u, start: 16, end: 19 
 char : x, start: 20, end: 20 
 char : -, start: 21, end: 21 
 char : K, start: 22, end: 26 
 char : l, start: 27, end: 28 
 char : a, start: 29, end: 32 
 char : n, start: 33, end: 35

Figure 6.13 Example error: reference line detection 

Another example of error that we observed is an incorrect recognition caused by 

incorrect labeling. In the example shown in Figure 6.14, the image of the signal is 

clearly “North” but the label is “Job”. The Top(1) position correctly belongs to the 

word “North” with the highest score. 

 
Ex[1382]: 
c:\ironoff\F81\F81.champs10.unp_pre.unp ->Job 
Total slices = 18, Total hypothesis = 105  

 
 
 Top 1 : North -0.198316 
 Top 2 : Earth -0.576795 
 Top 3 : Money -0.776496 
 
True label: Job  score -1.221589  position 8 
 

 char : N, start: 0, end: 3 
 char : o, start: 4, end: 7 
 char : r, start: 8, end: 9 
 char : t, start: 10, end: 13 
 char : h, start: 14, end: 17 
 
 char : E, start: 0, end: 5 
 char : a, start: 6, end: 8 
 char : r, start: 9, end: 9 
 char : t, start: 10, end: 13 
 char : h, start: 14, end: 17 
 
 char : M, start: 0, end: 5 
 char : o, start: 6, end: 6 
 char : n, start: 7, end: 8 
 char : e, start: 9, end: 11 
 char : y, start: 12, end: 17 

Figure 6.14 Example error: wrong label. 
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Another example of error made during preprocessing is shown in Figure 6.15. 

This error is cause by an error during the preprocessing stage where the spurious 

signal at the first stroke in the top bar of character J that was not corrected due to our 

simple preprocessing procedure. This cause the bar to resemble an s. However the 

Top 1 score is very close to the true word at Top 2 score. 
 
 
 
 
Ex[7997]: c:\ironoff\F3\F3.champs10.unp_pre.unp 
->Job 
Total slices = 9, Total hypothesis = 42  

 
 
 Top 1 : son -0.361563 
 Top 2 : Job -0.366574 
 Top 3 : sous -0.508704 
True label: Job  score -0.366574  position 2 

  
  
 char : s, start: 0, end: 0 
 char : o, start: 1, end: 3 
 char : n, start: 4, end: 8 
 
 char : J, start: 0, end: 3 
 char : o, start: 4, end: 5 
 char : b, start: 6, end: 8 
 
 char : s, start: 0, end: 0 
 char : o, start: 1, end: 3 
 char : u, start: 4, end: 7 
 char : s, start: 8, end: 8 
 

Figure 6.15 Example error: preprocessing 

 

6.6.10 Conclusion 

 

Our hybrid word recognition system has been implemented with simple 

preprocessing, segmentation and feature extraction procedures but proven to work 

quite well, especially for English words due to its simpler character sets and smaller 

word lexicons.  In summary, for building SVM character recognizer, our SVM 

parameters have been chosen by 10-fold cross validation to give the best recognition 

when we make use of C parameter of 2 and gamma parameter of the RBF kernel to 

be 0.03125. For segmentation, we have sliced the word into slices from maximum to 

minimum or minimum to minimum y-axis points and selected the size of a 

hypothesis to be containing a maximum of 7 slices. We showed that our algorithm 

for word score calculation is able to give Top(10) word recognition score of greater 

than 99% for words in the IRONOFF database. 
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6.7 Summary 

 

In this chapter we describe the databases that are used in the course of testing the 

hybrid SVM/HMM word recognition system at the various stages of developments   

and the results obtained at each stage. We described the databases used for the 

evaluation and selection of the SVM tool, databases for the testing the character 

SVMs and databases for testing word recognition by our hybrid word recognition 

system. We then give the results in the testing of our SVM recognizer and the hybrid 

word recognizer and analyze some of the errors that occur in the recognition process. 

Finally, we made conclusions from the experiments and the results obtained. 
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CHAPTER 7 

 

 

CONCLUSIONS AND FUTURE RECOMMENDATIONS 

 

 

 

7.1 Dissertation Contributions 

 

As described in section 1.7, the aim of this work is to address the issue of 

discriminative training in the hybrid handwritten word recognition system. We have   

investigated the effectiveness of using SVM in character recognition and its use in a 

hybrid environment of a segmentation based handwritten word recognition system. 

In the hybrid system, the discriminative property of SVM is exploited in tandem 

with the class representative property of an HMM. 

 

We have implemented a hybrid SVM/HMM handwritten word recognition 

system that caters for a medium sized lexicon that handles connected cursive 

handwritten words. The system is similar in idea with some existing systems based 

on discrete HMM or a hybrid of HMM and NN. We recognized that the optimization 

of the HMM/NN based system can either be at the word level or at character level. 

In word level, both NN and HMM are optimized based on the output at word 

recognition level. In our system, we only emphasize optimization at the character 

level, meaning optimizing the character recognizer based on the segmentation done 

as a result of word recognition. This is due to the fact that conventional SVM 

training that we use involves quadratic programming optimization on the dual 

formulation. Correcting gradient does not propagate from the word level to character 

or sub-character level training of the SVM.  
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In the course of this thesis work, we made the following contributions: 

 

a) Evaluated various selection and parameterisazion of SVM for use in handwriting 

recognition problem. We have shown that SVM with RBF kernel are the most 

suitable for use. 

 

b) Tested SVM on a few major character databases, proving the effect of various 

parameterizations in improving character recognition.  

 

c) Implemented and tested SVM with posterior probabilistic measures output. 

Though they are now standard, we have verified its implementation and usage 

for handwriting recognition. 

 

d) Implemented a simple method for segmentation based on optimum coordinates 

points and feature extraction of character segments from words. 

 

e) Use of SVM in a hybrid situation with HMM, in particular the dynamic 

programming aspect of the Viterbi algorithm in the HMM. 

 

f) Compared SVM/HMM hybrid implementation with other hybrid systems in 

handwriting recognition and in speech recognition. 

  

 

7.2 Conclusion 

 

The result of recognition of the hybrid HMM/SVM system is not as promising. 

However, we believe that the work have not been attempted by other researchers and 

we have proven that it is possible to implement the hybrid of HMM and SVM 

similar to the speech recognition counterpart. We analyzed the errors and identified a 

number of issues that we faced during the implementation. We also listed some 

recommendation in terms of the training and implementation of SVM character 

recognizers.  
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7.3 Future Work 

 

SVM has been used in handwriting recognition by other researchers but mostly 

at the character recognition level. In our thesis, we have also implemented character 

recognizers using SVM and shown that SVM recognizers are better than NN based 

recognizers, in particular the TDNN’s and the MLP NN’s. However, at the word 

recognition level, NN based hybrid recognizers have the advantage that word level 

optimization can be done in parallel with character level optimization due to the 

gradient descent approach to training.  

 

In our work, we have taken the path of separate optimization for the character 

recognizer based on segmentation by the word recognizer. There is no information 

from the word recognizer in term of correcting gradients that are used by the 

character recognizer in its optimization. Our training of SVM has been by way of 

solving for the Lagrange multipliers introduced in the dual formulation for the large 

margin classification in SVM. This involved quadratic optimization and is complex, 

computationally inefficient and does not allow for outside error correcting 

information in the SVM training.  

 

A training method that is more efficient that alleviates the difficulties associated 

with operating in the dual problem is desired. (Kowalczyk, 2001) patented a method 

for a gradient based method for training SVM in 2006. The method executes an 

iterative process on the training data to determine the parameters of the SVM. The 

iterative process is executed on the basis of a differentiable form of a primal 

optimization problem for the SVM parameters. Generation of support vectors can be 

done by a method with differentiable penalty by direct minimization of the primal 

problem.  

 

A suggested future work can be to make use of this gradient based SVM training 

method in a hybrid SVM/HMM based word recognition system where correcting 

information from the word level can be used in the character SVM training, 

comparable to the hybrid NN/HMM system. In this case word level discriminant 

training which is known to give better recognition results can be performed. 
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APPENDIX B 

 

LAGRANGE MULTIPLIERS METHOD AND  

THE KARUSH-KUHN-TUCKER THEOREM 

 

 

The Lagrange multipliers method (named after Joseph Louis Lagrange, a French 

Italian Mathematician) is the basic tool in nonlinear constrained optimization. It is 

used to find the extrema of a function of several variables subject to one or more 

constraints. A set of conditions, the Karush–Kuhn–Tucker (KKT) conditions are 

necessary for a solution in the optimization to be optimal, provided some regularity 

conditions are satisfied.  KKT conditions were first published in the Master’s thesis 

of William Karush (Karush, 1939), but they were renowned only after a seminal 

conference paper by Kuhn and Tucker (Kuhn, 1951). 

 

The Lagrange multipliers method is able to determine where on a particular set 

of points a particular function is the optimum. The stationary points of the 

constrained function are computed. By Fermat's theorem, extrema occur either at 

these points, or on the boundary, or at points where the function is not differentiable.  

Finding stationary points of a constrained function in n variables with k constraints 

is reduced to finding stationary points of an unconstrained function in n+k variables.  

 

An unknown scalar variable (called the Lagrange multiplier) is introduced for 

each constraint, and a new function is defined (called the Lagrangian) in terms of the 

original function, the constraints, and the Lagrange multipliers.  
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1. Problem formulation and the Lagrange function 

 

Consider the following maximization problem 

            nRx
max

∈      f(x)  

        such that 0)( ≥xg j    m1j ,...,=     

      0)( =xhi    n1i ,...,=      

 

with ℜ→ℜNf:  , pN
j:g ℜ→ℜ , MN

i:h ℜ→ℜ   being continuously differentiable 

functions.  

 

2. Saddle points of the Lagrangian and Karush-Kuhn-Tucker points 

 

Define the Lagrange function of the problem as 

∑∑
==

++=
n

1i
ii

m

1j
jj (x)hμ(x)gλf(x))L(x, μλ ,  

Define a saddle point of the Lagrangian as a tuple  

  )~,~,~( μλx  such that  =)~,~,~( μλxL   ), μL(x,λmaxmin
x0μ,λ≥

  

We know that 

), μL(x,λmin
0μ,λ≥     ≤  ), μL(x,λmaxmin

x0μ,λ≥ ≤   ), μL(x,λmax
0μ,λ≥  

 

i.e: )~,~,~( μλx is a critical point of ), μL(x,λ , but neither a minimum nor a maximum. 

As a next step we want to establish the connection between a saddle point and the 

solution to the maximization problem. 

 

Consider the Lagrangian 

∑∑
==

++=
n

1i
ii

m

1j
jj (x)hμ(x)gλf(x))L(x, λ μ,  

and the first order condition (FOC) with respect to x, which characterize the critical 

points of ), μL(x,λ and are necessary for a maximum 
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)xf(x
~∇ + )x(gλ jx

m

1j
j

~∇∑
=

 + )x(hμ ix

n

1i
i

~∇∑
=

 = 0 

 

Furthermore, consider the FOC of ),~ μ,λxL(  with respect to ), μ(λ , which are 

necessary for a minimum of ),~ μ,λxL(  
 

∑∑
==

++=
n

1i
ii

m

1j
jj )x(hμ)x(gλ)xf(),λxL( ~~~,~ μ  

 
Define  

),( μλd = ),λxL( μ,~
 

 
The function ),( μλd  is also called the dual function of the problem. Notice that 

),( μλd is and affine function independent of the functional form of  f(x), gj(x), 

hi(x). Since it is a linear programming problem, the minimum of the function is 

either  )xf(~  or it does not exist. 

 

),(min
0,

μλ
λμ

d
≥ = ⎩

⎨
⎧

∞−
)~(xf

    else
if 0)~( ≥xg j

    
j∀

 
and 0)~( =xhi i∀

 

 

From this result, we can conclude that every saddle point must be a solution to the 

original maximization problem. To see why, consider two arguments:  

 

(a) A saddle point exists if and only if x~  is feasible for the maximization 

problem, i.e: 0)~( ≥xg j  j∀  ∧ 0)~( =xhi i∀  

 (Existence saddle point  ⇒  feasibility of x~  ) 

 

(b) The Lagrange function with )~,~( μλ  overestimates the objective function on 

the interior of the feasible set. To see this, consider the following equivalent 

problem 

  0)(x)I(h0)(x)I(gf(x)max
n

1i
i

m

1j
jx

=+≥+ ∑∑
==

 

 with 
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0)(x)I(gj ≥  =  ⎩
⎨
⎧

∞−
0

    else
if 0)~( ≥xg j

    
j∀

  

0)(x)I(hi =   =  ⎩
⎨
⎧

∞−
0

    else
if 0)~( =xhi

    
i∀

  

 

This means we penalize the function for violations of the constraints. This 

problem is equivalent to the first, if we assume that a solution exists. In a next step, 

we replace the”hard” penalty function by”weak” linear penalty functions. 

∑∑
==

++
n

1i
ii

m

1j
jjx

(x)hμ(x)gλf(x)max ~~
 

with   
0~

≥jλ ,    0~ ≥jμ   ji,∀  

For feasible values, i.e 

  0)( ≥xg j  and 0)( =xhi  

 

We clearly overestimate the true objective function. We, therefore, know that there 

are no other (feasible) choices  x̂  with a higher value of the objective function than 

the saddle point of the problem with value )ˆ( xf . 
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APPENDIX C 

 

Verbose output of recognition and segmentation 

 
 
Word dbdFileName    : C:\MyApps\dbd\hi.dbdnew.dbd  
modelFileName       : 
..\model\EnglishWord_train_unp.dbdnew.dbdchar.dbd.fe.mod  
pspFileName         : C:\MyApps\dbd\hi.dbdnew.dbd_psp.txt  
maxSlices chosen    : 5  
Total examples : 1 
wordLexiconFileName : ..\lex\Englishwordlexicon.lex  
charLexiconFilename : ..\lex\characterlexicon.lex  
 
Ex[1]: C:\myapps\unp\hi.unp_pre.unp ->hi 
 
Stroke (0) --> Total points 129 
 
Slice [0]: 40 points from stroke no. 0, point 0 to point 39 
Slice [1]: 24 points from stroke no. 0, point 40 to point 63 
Slice [2]: 14 points from stroke no. 0, point 64 to point 77 
Slice [3]: 14 points from stroke no. 0, point 78 to point 91 
Slice [4]: 16 points from stroke no. 0, point 92 to point 107 
Slice [5]: 21 points from stroke no. 0, point 108 to point 128 
 
Total slices = 6, Total hypothesis = 20  
========== 
Hypothesis [0]- num pts = 40, from slice 0, to 0  
Hypothesis [1]- num pts = 24, from slice 1, to 1  
Hypothesis [2]- num pts = 64, from slice 0, to 1  
Hypothesis [3]- num pts = 14, from slice 2, to 2  
Hypothesis [4]- num pts = 38, from slice 1, to 2  
Hypothesis [5]- num pts = 78, from slice 0, to 2  
Hypothesis [6]- num pts = 14, from slice 3, to 3  
Hypothesis [7]- num pts = 28, from slice 2, to 3  
Hypothesis [8]- num pts = 52, from slice 1, to 3  
Hypothesis [9]- num pts = 92, from slice 0, to 3  
Hypothesis [10]- num pts = 16, from slice 4, to 4  
Hypothesis [11]- num pts = 30, from slice 3, to 4  
Hypothesis [12]- num pts = 44, from slice 2, to 4  
Hypothesis [13]- num pts = 68, from slice 1, to 4  
Hypothesis [14]- num pts = 108, from slice 0, to 4  
Hypothesis [15]- num pts = 21, from slice 5, to 5  
Hypothesis [16]- num pts = 37, from slice 4, to 5  
Hypothesis [17]- num pts = 51, from slice 3, to 5  
Hypothesis [18]- num pts = 65, from slice 2, to 5  
Hypothesis [19]- num pts = 89, from slice 1, to 5  
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The probability matrix (20 hypothesis x 50 classes in SVM model). 
Classes : 3 32 47 50 41 4 28 43 29 36 39 52 5 45 30 42 8 49 34 9 31 
12 48 1 51 13 14 15 35 16 46 17 38 18 53 19 20 40 24 25 26 27 2 6 7 
10 11 21 22 23.  
(Match class number against character using character lexicon file
characterlexicon.lex) 
 
Hypothesis 0: 
-2.84 -1.31 -1.60 -2.25 -1.72 -3.20 -2.60 -2.60 -2.75 -0.95 -2.68 -
2.79 -2.85 -0.97 -2.12 -1.36 -2.90 -1.51 -2.93 -2.78 -2.66 -2.88 -
0.57 -0.70 -2.62 -2.95 -2.52 -2.28 -2.85 -2.70 -1.27 -2.77 -2.81 -
2.87 -2.79 -3.02 -2.69 -2.57 -2.35 -2.83 -2.92 -2.85 -2.67 -2.81 -
2.77 -2.78 -2.87 -2.86 -2.35 -2.30  
 
Hypothesis 1: 
 
 -3.30 -1.92 -0.98 -3.45 -2.78 -2.89 -2.74 -2.32 -2.90 -1.22 -0.13 -
3.03 -3.18 -2.61 -1.66 -2.86 -3.06 -3.42 -3.08 -3.14 -3.09 -3.30 -
3.34 -2.75 -2.63 -1.91 -3.27 -3.34 -2.89 -3.24 -2.27 -3.26 -3.02 -
3.02 -2.92 -3.28 -2.76 -3.45 -3.44 -3.01 -2.84 -3.13 -3.31 -3.25 -
3.08 -2.26 -2.84 -3.31 -2.92 -3.35  
 
Hypothesis 2: 
 
 -3.50 -0.11 -1.34 -3.52 -3.00 -3.45 -2.83 -3.19 -3.14 -0.99 -1.37 -
2.99 -3.46 -2.60 -2.34 -2.50 -3.54 -3.38 -3.62 -3.31 -2.94 -3.52 -
3.03 -3.14 -2.62 -3.32 -2.95 -3.40 -3.38 -3.21 -2.72 -3.36 -3.44 -
3.05 -3.40 -3.61 -3.14 -3.43 -3.56 -2.99 -3.02 -3.49 -3.38 -3.58 -
3.43 -3.39 -3.51 -3.39 -3.02 -3.44  
 
Hypothesis 3: 
 
 -3.70 -2.03 -1.33 -3.27 -2.13 -3.88 -3.33 -3.32 -3.56 -1.32 -3.37 -
3.62 -3.70 -0.08 -1.99 -2.26 -3.71 -2.25 -3.75 -3.65 -3.43 -3.75 -
2.46 -1.63 -3.39 -3.41 -3.27 -3.27 -3.70 -3.54 -2.54 -3.55 -3.65 -
3.63 -3.57 -3.69 -3.14 -3.33 -3.32 -3.61 -3.74 -3.54 -3.53 -3.61 -
3.53 -3.59 -3.63 -3.55 -3.43 -2.97  
 
Hypothesis 4: 
 
 -4.08 -3.17 -0.03 -3.95 -3.68 -3.49 -2.49 -2.51 -2.95 -2.13 -2.36 -
4.08 -4.05 -2.73 -2.88 -2.84 -2.70 -3.86 -3.58 -3.41 -3.29 -4.17 -
3.94 -3.67 -3.54 -1.66 -4.14 -3.90 -3.35 -3.70 -3.14 -4.04 -4.00 -
3.81 -3.20 -4.13 -3.65 -4.18 -3.81 -3.99 -3.79 -3.45 -4.06 -4.04 -
3.93 -3.64 -3.18 -4.06 -3.56 -3.83  
 
Hypothesis 5: 
 
 -2.53 -0.61 -0.68 -2.35 -1.98 -2.92 -1.81 -2.17 -1.19 -1.12 -1.32 -
2.09 -2.57 -1.02 -2.07 -1.62 -2.53 -2.24 -2.44 -2.47 -2.16 -2.52 -
2.13 -2.49 -2.06 -2.63 -2.38 -2.47 -2.01 -2.35 -1.74 -2.60 -2.42 -
2.28 -2.39 -2.66 -1.67 -2.53 -2.46 -2.44 -2.23 -2.51 -2.19 -2.47 -
2.38 -2.31 -2.46 -2.52 -2.57 -2.62  
 
Hypothesis 6: 
 
 -3.81 -2.62 -1.08 -3.66 -2.93 -3.52 -3.38 -3.43 -3.15 -0.11 -1.74 -
3.89 -3.75 -1.98 -2.33 -3.69 -3.72 -3.47 -3.82 -3.65 -3.48 -3.84 -
3.58 -2.90 -2.02 -1.09 -3.84 -3.62 -2.78 -3.99 -3.37 -3.85 -3.38 -
3.67 -3.37 -3.88 -3.57 -3.71 -3.54 -3.70 -3.79 -3.46 -3.82 -3.92 -
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3.91 -3.18 -3.64 -3.87 -3.65 -3.84  
 
Hypothesis 7: 
 
 -4.18 -3.02 -3.17 -4.12 -1.82 -4.39 -3.88 -4.05 -3.96 -1.21 -3.44 -
4.14 -4.38 -0.04 -3.19 -3.96 -4.49 -3.26 -4.50 -4.35 -4.11 -4.54 -
3.69 -3.73 -3.94 -3.67 -3.95 -4.24 -4.03 -4.11 -3.30 -4.37 -4.31 -
4.22 -4.27 -3.69 -3.81 -4.01 -4.35 -4.54 -4.26 -4.24 -4.06 -4.58 -
4.21 -4.29 -4.49 -4.50 -4.25 -3.81  
 
Hypothesis 8: 
 
 -3.77 -2.95 -2.53 -3.86 -2.54 -3.38 -2.41 -2.88 -2.24 -3.06 -3.27 -
3.79 -3.63 -2.95 -2.74 -3.15 -2.16 -3.41 -3.67 -3.43 -3.29 -3.50 -
3.08 -3.36 -2.24 -1.77 -3.36 -3.54 -0.04 -3.35 -3.38 -3.60 -1.92 -
3.05 -3.55 -3.63 -3.24 -3.45 -3.76 -2.67 -3.64 -3.30 -3.58 -3.56 -
3.68 -3.13 -3.35 -3.73 -2.97 -3.53  
 
Hypothesis 9: 
 
 -2.88 -1.70 -1.78 -2.52 -2.05 -3.36 -1.52 -2.48 -1.56 -1.89 -2.28 -
2.45 -2.89 -1.93 -2.02 -2.01 -2.87 -2.65 -2.74 -2.77 -2.63 -2.81 -
2.30 -2.88 -2.32 -2.87 -2.67 -2.73 -0.13 -2.80 -1.68 -2.93 -2.04 -
2.44 -2.65 -2.96 -2.38 -2.56 -2.68 -2.79 -2.61 -2.64 -2.26 -2.80 -
2.75 -2.58 -2.74 -2.79 -2.75 -2.90  
 
Hypothesis 10: 
 
 -3.14 -1.68 -1.41 -2.57 -1.82 -3.64 -2.77 -2.76 -2.99 -0.65 -2.97 -
3.12 -3.17 -0.31 -2.29 -1.67 -3.21 -1.49 -3.28 -3.07 -2.87 -3.19 -
1.25 -1.88 -2.87 -3.10 -2.68 -2.63 -3.23 -3.11 -1.40 -3.01 -3.13 -
3.17 -3.08 -3.31 -2.80 -2.94 -2.69 -3.10 -3.23 -3.17 -2.97 -3.05 -
3.00 -3.01 -3.12 -3.17 -2.80 -2.67  
 
Hypothesis 11: 
 
 -4.16 -3.53 -3.20 -3.07 -2.45 -4.36 -3.62 -3.99 -4.10 -1.10 -3.62 -
4.23 -4.16 -2.82 -3.28 -3.24 -4.06 -0.36 -4.31 -4.15 -4.16 -4.18 -
0.34 -2.72 -4.05 -3.65 -3.84 -3.80 -3.78 -3.61 -3.92 -4.17 -4.22 -
4.23 -4.11 -4.28 -3.99 -3.60 -2.60 -4.22 -4.29 -3.86 -4.30 -4.27 -
4.35 -4.30 -4.31 -4.30 -2.59 -2.84  
 
Hypothesis 12: 
 
 -3.53 -1.86 -1.98 -2.94 -1.68 -3.69 -3.13 -3.20 -3.00 -0.70 -2.85 -
3.45 -3.61 -0.26 -2.32 -2.37 -3.56 -0.99 -3.50 -3.68 -3.58 -3.77 -
1.30 -2.30 -3.38 -3.33 -3.32 -1.83 -3.12 -3.54 -2.75 -3.62 -3.44 -
3.54 -3.05 -3.64 -3.39 -3.07 -3.13 -3.66 -3.62 -3.35 -3.26 -3.70 -
3.62 -3.57 -3.56 -3.67 -3.14 -2.69  
 
Hypothesis 13: 
 
 -3.44 -2.81 -2.17 -3.23 -2.25 -3.44 -1.55 -3.14 -2.40 -2.45 -2.93 -
3.48 -3.28 -2.66 -2.46 -2.67 -2.62 -2.85 -3.50 -3.04 -2.67 -2.88 -
2.58 -3.11 -2.28 -2.26 -3.22 -3.22 -0.05 -2.99 -3.03 -3.27 -2.29 -
3.09 -3.28 -3.24 -3.04 -3.31 -2.86 -2.62 -3.40 -2.96 -3.35 -3.15 -
3.28 -3.17 -3.19 -3.40 -2.93 -3.17  
 
Hypothesis 14: 
 
 -2.60 -1.11 -1.52 -2.40 -1.64 -3.05 -0.69 -2.10 -0.89 -1.40 -1.99 -
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2.20 -2.71 -1.33 -1.95 -1.35 -2.60 -2.06 -2.42 -2.62 -2.35 -2.71 -
2.00 -2.64 -2.23 -2.49 -2.45 -2.39 -0.73 -2.71 -1.81 -2.72 -1.55 -
2.31 -2.34 -2.77 -1.76 -2.13 -2.56 -2.63 -2.48 -2.40 -2.08 -2.58 -
2.55 -2.41 -2.47 -2.63 -2.56 -2.68  
 
Hypothesis 15: 
 
 -3.04 -1.94 -1.43 -2.95 -1.88 -2.71 -2.37 -2.59 -2.20 -0.33 -1.62 -
2.88 -2.99 -1.93 -1.35 -2.71 -2.61 -2.75 -2.94 -2.87 -2.82 -2.84 -
2.52 -1.62 -2.10 -1.79 -2.85 -2.92 -0.57 -2.95 -2.50 -3.07 -2.14 -
2.81 -2.77 -2.98 -2.68 -2.63 -2.93 -2.90 -2.98 -2.67 -3.03 -2.95 -
3.04 -2.36 -2.90 -3.11 -2.60 -2.98  
 
Hypothesis 16: 
 
 -3.57 -0.58 -2.21 -3.44 -2.38 -3.68 -2.25 -3.13 -2.85 -0.21 -2.14 -
3.19 -3.63 -1.29 -2.12 -3.20 -3.65 -3.19 -3.45 -3.65 -3.42 -3.74 -
2.97 -3.27 -3.13 -3.03 -3.38 -3.53 -1.95 -3.67 -2.88 -3.70 -3.22 -
3.28 -3.33 -3.57 -3.22 -3.21 -3.61 -3.69 -3.32 -3.38 -3.39 -3.69 -
3.63 -3.45 -3.54 -3.51 -3.38 -3.58  
 
Hypothesis 17: 
 
 -3.57 -1.96 -3.00 -3.12 -1.17 -3.86 -2.30 -3.49 -3.31 -2.26 -2.69 -
2.22 -3.45 -2.52 -2.63 -2.23 -3.41 -2.52 -3.82 -2.47 -2.93 -2.72 -
0.09 -2.99 -3.15 -3.48 -2.46 -3.40 -3.23 -3.15 -3.41 -3.66 -3.29 -
2.01 -3.69 -3.21 -3.45 -3.10 -2.50 -3.35 -2.79 -3.52 -3.63 -3.70 -
3.61 -3.60 -3.72 -3.68 -1.42 -3.24  
 
Hypothesis 18: 
 
 -3.71 -2.76 -2.88 -3.16 -0.58 -3.93 -2.55 -3.35 -3.30 -2.35 -3.25 -
3.30 -3.67 -2.26 -3.10 -2.30 -3.53 -1.56 -3.81 -3.48 -3.19 -3.66 -
0.19 -2.81 -2.21 -3.48 -2.35 -2.98 -3.09 -3.51 -3.26 -3.70 -2.93 -
3.31 -3.34 -3.68 -3.49 -2.52 -3.48 -3.49 -3.60 -3.18 -3.55 -3.71 -
3.64 -3.59 -3.62 -3.76 -1.77 -2.90  
 
Hypothesis 19: 
 
 -2.38 -1.77 -1.94 -1.94 -0.88 -2.98 -1.07 -2.03 -1.52 -1.74 -2.24 -
2.30 -2.36 -1.70 -2.09 -1.59 -1.68 -2.12 -2.57 -1.85 -2.01 -1.79 -
1.20 -2.20 -1.80 -2.18 -1.85 -2.07 -1.05 -2.47 -2.33 -2.47 -0.74 -
2.21 -2.42 -2.38 -2.44 -1.28 -1.94 -2.21 -2.49 -2.30 -2.30 -2.15 -
2.37 -2.13 -2.25 -2.55 -2.05 -2.41  
 
 
Ex[1]: hi, Lex[0]:            hi (-0.17)|  
 
 (* trellis for lexicon word “hi”) 
 -2.85 -INF  -INF  -INF  -INF  -0.95 -INF  -INF  -INF  -INF   
 -2.89 -3.38 -INF  -INF  -INF  -1.22 -0.99 -INF  -INF  -INF   
 -3.70 -3.35 -2.01 -INF  -INF  -1.32 -2.13 -1.12 -INF  -INF   
 -2.78 -4.03 -0.04 -0.13 -INF  -0.11 -1.21 -3.06 -1.89 -INF   
 -3.23 -3.78 -3.12 -0.05 -0.73 -0.65 -1.10 -0.70 -2.45 -1.40  
 -0.57 -1.95 -3.23 -3.09 -1.05 -0.33 -0.21 -2.26 -2.35 -1.74  
 
lexicon word score =  -0.17  
….  
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(*Trellis for other word lexicon are not shown here*) 
 
Ex[1]: hi, Lex[1]:           Apple (-2.13)|  
Ex[1]: hi, Lex[2]:         Between (-INF) |  
Ex[1]: hi, Lex[3]:      Capability (-INF) |  
Ex[1]: hi, Lex[4]:       Directory (-INF) |  
Ex[1]: hi, Lex[5]:           Earth (-1.52)|  
Ex[1]: hi, Lex[6]:           Fuzzy (-3.05)|  
Ex[1]: hi, Lex[7]:          Giving (-1.87)|  
Ex[1]: hi, Lex[8]:        Hydrogen (-INF) |  
Ex[1]: hi, Lex[9]:          Island (-2.74)|  
Ex[1]: hi, Lex[10]:             Job (-2.20)|  
Ex[1]: hi, Lex[11]:    Ku-Klux-Klan (-INF) |  
Ex[1]: hi, Lex[12]:         Liberty (-INF) |  
Ex[1]: hi, Lex[13]:           Money (-2.35)|  
Ex[1]: hi, Lex[14]:           North (-1.43)|  
Ex[1]: hi, Lex[15]:         Obvious (-INF) |  
Ex[1]: hi, Lex[16]:         Parking (-INF) |  
Ex[1]: hi, Lex[17]:            Quiz (-2.23)|  
Ex[1]: hi, Lex[18]:          Rabbit (-2.43)|  
Ex[1]: hi, Lex[19]:          Smooth (-2.35)|  
Ex[1]: hi, Lex[20]:         T-shirt (-INF) |  
Ex[1]: hi, Lex[21]:            User (-2.10)|  
Ex[1]: hi, Lex[22]:           Voice (-1.88)|  
Ex[1]: hi, Lex[23]:       Warehouse (-INF) |  
Ex[1]: hi, Lex[24]:           X-ray (-2.25)|  
Ex[1]: hi, Lex[25]:          Yuppie (-2.60)|  
Ex[1]: hi, Lex[26]:            Zero (-1.77)|  
 
 Top 1 : hi -0.170282 
  char : h, start: 0, end: 3 
   char : i, start: 4, end: 5 
 
 Top 2 : North -1.432790 
  char : N, start: 0, end: 0 
  char : o, start: 1, end: 1 
  char : r, start: 2, end: 3 
  char : t, start: 4, end: 4 
  char : h, start: 5, end: 5 
 
 Top 3 : Earth -1.515201 
  char : E, start: 0, end: 0 
   char : a, start: 1, end: 1 
   char : r, start: 2, end: 3 
  char : t, start: 4, end: 4 
  char : h, start: 5, end: 5 
 
 True label: hi  score -0.170282  position 1 
 
  Recognition time    0.64 seconds 
 
 
 

 



 

 
Reconnaissance de l’écriture manuscrite en-ligne par approche combinant 

systèmes à vastes marges et modèles de Markov cachés 
 

 
Nos travaux concernent la reconnaissance de l’écriture manuscrite qui est l’un des domaines de prédilection pour 
la reconnaissance des formes et les algorithmes d’apprentissage. Dans le domaine de l’écriture en-ligne, les 
applications concernent tous les dispositifs de saisie permettant à un usager de communiquer de façon 
transparente avec les systèmes d’information. Dans ce cadre, nos travaux apportent une contribution pour 
proposer une nouvelle architecture de reconnaissance de mots manuscrits sans contrainte de style. Celle-ci se 
situe dans la famille des approches hybrides locale/globale où le paradigme de la segmentation/reconnaissance 
va se trouver résolu par la complémentarité d’un système de reconnaissance de type discriminant agissant au 
niveau caractère et d’un système par approche modèle pour superviser le niveau global. Nos choix se sont portés 
sur des Séparateurs à Vastes Marges (SVM) pour le classifieur de caractères et sur des algorithmes de 
programmation dynamique, issus d’une modélisation par Modèles de Markov Cachés (HMM). Cette 
combinaison SVM/HMM est unique dans le domaine de la reconnaissance de l’écriture manuscrite. Des 
expérimentations ont été menées, d’abord dans un cadre de reconnaissance de caractères isolés puis sur la base 
IRONOFF de mots cursifs. Elles ont montré la supériorité des approches SVM par rapport aux solutions à bases 
de réseaux de neurones à convolutions (Time Delay Neural Network) que nous avions développées 
précédemment, et leur bon comportement en situation de reconnaissance de mots. 
 
 
Mot-clefs: reconnaissance écriture manuscrite, classifieur, systèmes à vastes marges, modèles de Markov caches, 
réseau de neurones, programmation dynamique. 
 
 
 
 
 
 
 

On-line Handwriting Recognition using Support Vector Machines  
and Hidden Markov Models approaches 

 
 
Handwriting recognition is one of the leading applications of pattern recognition and machine learning. Despite 
having some limitations, handwriting recognition systems have been used as an input method of many electronic 
devices and helps in the automation of many manual tasks requiring processing of handwriting images. In 
general, a handwriting recognition system comprises three functional components; preprocessing, recognition 
and post-processing. There have been improvements made within each component in the system. However, to 
further open the avenues of expanding its applications, specific improvements need to be made in the 
recognition capability of the system. Hidden Markov Model (HMM) has been the dominant methods of 
recognition in handwriting recognition in offline and online systems. However, the use of Gaussian observation 
densities in HMM and representational model for word modeling often does not lead to good classification. 
Hybrid of Neural Network (NN) and HMM later improves word recognition by taking advantage of NN 
discriminative property and HMM representational capability. However, the use of NN does not optimize 
recognition capability as the use of Empirical Risk minimization (ERM) principle in its training leads to poor 
generalization. In this thesis, we focus on improving the recognition capability of a cursive online handwritten 
word recognition system by using an emerging method in machine learning, the support vector machine (SVM). 
We first evaluated SVM in isolated character recognition environment using IRONOFF and UNIPEN character 
databases. SVM, by its use of principle of structural risk minimization (SRM) have allowed simultaneous 
optimization of representational and discriminative capability of the character recognizer. We finally 
demonstrate the various practical issues in using SVM within a hybrid setting with HMM.  In addition, we tested 
the hybrid system on the IRONOFF word database and obtained favourable results.  
 

Keywords: handwriting recognition, on-line, support vector machine, hidden markov model, neural network, 
empirical risk minimization (ERM), structural risk minimization, dynamic programming. 
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