
HAL Id: tel-00426903
https://theses.hal.science/tel-00426903

Submitted on 28 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On-line Handwriting Recognition using Support Vector
Machines and Hidden Markov Models approaches

Abdul Rahim Ahmad

To cite this version:
Abdul Rahim Ahmad. On-line Handwriting Recognition using Support Vector Machines and Hid-
den Markov Models approaches. Human-Computer Interaction [cs.HC]. Université de Nantes, 2008.
English. �NNT : �. �tel-00426903�

https://theses.hal.science/tel-00426903
https://hal.archives-ouvertes.fr

UNIVERSITE DE NANTES

ÉCOLE DOCTORALE

SCIENCES ET TECHNOLOGIES
DE L’INFORMATION ET DES MATHEMATIQUES

 Année : 2008

Thèse de Doctorat de l’Université de Nantes

Discipline : Traitement du Signal et des Images
Spécialité : Automatique et Informatique Appliquée

Présentée et soutenue publiquement par

Abdul Rahim AHMAD

le 29 Decembre 2008

à Universiti Teknologi Malaysia

« Reconnaissance de l’écriture manuscrite en-ligne par approche combinant
systèmes à vastes marges et modèles de Markov cachés»

Jury

Rapporteurs : Jean-Marc OGIER Professeur, Universite de La Rochelle
 Chee Peng LIM Professeur, Universiti Sains Malaysia

Examinateurs : Sheikh Hussain SHAIKH SALLEH Professeur, Universiti Teknologi Malaysia
 Patrick LE CALLET Professeur, Universite de Nantes
 Marzuki KHALID Professeur, Universiti Teknologi Malaysia
 Christian VIARD-GAUDI N Professeur, Universite de Nantes

Directeur de Thèse : Christian VIARD-GAUDI N
Laboratoire : IRCCyN
Co-encadrant : Marzuki KHALID
Laboratoire : CAIRO, Universite de Technologie de Malaisie
 N° ED 0366-xxx

i

DEDICATION

To my wife and children.

ii

ACKNOWLEDGEMENTS

I would like to thank:

• God, for giving me interest to study, for giving me good health to be able to
spend the time to study and for giving me the perseverance.

• My supervisors, past and present :

o Prof. Marzuki Khalid (UTM).
o Prof. Christian Viard Gaudin (EPUN).
o Prof. Dominic Barba (EPUN).
o Prof. Dr. Rubiyah (UTM).

• Universiti Tenaga Nasional (UNITEN) for providing me with the sponsorship

for local study and later for full time 1 year study in Nantes.
• Universiti Teknologi Malaysia (UTM) the first partner university in the joint

PhD program.
• Ecole Polytechnique de l’Universite de Nantes (EPUN) France, the second

partner institution in the joint PhD program..
• The French Embassy of Malaysia, for providing the 12 months bourse for my

study in France between 2001 to 2005.
• Professor Syed Abdul Kadir, Dean of College of Engineering, UNITEN,

whom without fail, has supported my application for the leave to be away for
the research study in EPUN.

• Dr. Mohd. Sharifuddin and Dr. Zainuddin, Dean and Deputy Dean of College
of IT, UNITEN, similarly for supporting my application for the leave.

• Azizah, Alicia, Dr. Madan and Dr. Roslan for taking over or handling my
teaching load in UNITEN while I was in France.

• My wife, Azian Muhamad Ariff for being patient and understanding about
my struggle to complete the PhD.

• My children: Arifah, Afifah, Afiq and Atiqah for their patience to be without
a father, while I am away in Nantes..

• Myself for believing that “I can do it”.

Lastly, thanks to the Malaysia students in France who were always willing to host me
when I visited them during my break from study.

TABLE OF CONTENTS

CHAPTER TOPIC PAGE

 DEDICATION i

 ACKNOWLEDGEMENT ii

TABLE OF CONTENTS iii

LIST OF TABLES x

LIST OF FIGURES xii

LIST OF SYMBOLS AND ABBREVIATIONS xv

LIST OF APPENDICES xvii

CHAPTER 1 INTRODUCTION 1

1.1 Background 1

1.2 Limitations of Handwriting Recognition System 5

1.3 Overview of Handwriting Recognition System 7

1.4 Statistical Pattern recognition 10

1.5 Problems in Handwriting Recognition 11

1.6 Recognition Modeling. 14

1.6.1 Hidden Markov Model 14

1.6.2 Neural Network 16

1.6.3 Syntactic Modeling technique 17

1.6.4 Support Vector Machine 17

1.7 Scope and Objectives 20

 iv

1.7.1 Thesis Layout 21

CHAPTER 2 STATE OF THE ART IN HANDWRITING

RECOGNITION 24

2.1 Introduction 24

2.2 Pattern Recognition 24

2.2.1 Learning Approaches in Pattern Recognition

Systems 26

2.3 Developments in Speech Recognition 27

2.4 State Of The Art in Handwriting Recognition 29

2.4.1 Developments in Online Handwriting

Recognition 32

2.4.2 Developments in Offline Handwriting

Recognition 37

2.4.3 Issues in Preprocessing 38

2.4.4 Issues in Segmentation Stage 40

2.4.5 Issues in Word Recognition 42

2.4.6 Issues in Post Processing Stage 45

2.5 SVM in Speech and Handwriting Recognition 46

2.5.1 SVM in Speech Recognition 46

2.5.2 SVM with DTW Kernel in Character

Recognition 47

2.5.3 SVM as a Character Recognizer in a Hybrid

System 47

2.5.4 SVM in Multiple Classifier Methods 48

2.5.5 SVM in Non Roman Handwriting

Recognition 48

2.6 Summary 49

 v

CHAPTER 3 HIDDEN MARKOV MODEL 51

3.1 Introduction 51

3.2 Theory of HMM 52

3.2.1 Discrete-State Markov Process 53

3.2.2 Extending Discrete-State Markov Processes

to Hidden Markov Models 54

3.2.3 Three Problems of HMM 56

3.2.4 A Solution to the Evaluation Problem – The

Forward Algorithm 57

3.2.5 A Solution to the Decoding Problem – The

Viterbi Algorithm 58

3.2.6 A Solution to the Training Problem – The

Baum-Welch Algorithm 60

3.3 HMM Model Topology 62

3.4 Using HMMs for On-line Handwriting Recognition 64

3.4.1 Modeling Letters 64

3.4.2 Modeling Words 65

3.4.3 Modeling Sentences 67

3.5 Discriminative Training of HMM 68

3.5.1 Maximum Mutual Information (MMI)

training 69

3.5.2 Minimum Classification Error (MCE)

training 72

3.6 Discrete vs. Continuous Density HMM 74

3.7 Hybrid of Neural Network and HMM 75

3.8 Summary 76

 vi

CHAPTER 4 SUPPORT VECTOR MACHINES 77

4.1 Introduction 77

4.2 Theoretical foundation 80

4.2.1 Statistical Learning Theory 80

4.2.2 Structural Risk Minimization 81

4.3 SVM Formulation 83

4.3.1 Linearly Separable Case 84

4.3.2 Optimality Condition 88

4.3.3 Linear Soft Margin and Non-Linear SVM 89

4.3.4 Variations of the SVM Objective Function. 90

4.4 SVM Implementations 91

4.4.1 QP Optimization 92

4.4.2 Multiclass SVM Implementation 96

4.4.3 SVM Posterior Probability Output 96

4.5 SVM Implementation Packages 98

4.5.1 SVMTorch 98

4.5.2 SVMLight 99

4.5.3 LIBSVM 100

4.6 Summary 100

CHAPTER 5 HYBRID SVM/HMM HANDWRITING

RECOGNITION SYSTEM 102

5.1 Introduction 102

5.2 Overview of the SVM based Character Recognizer 103

5.2.1 Signal Representation 104

5.2.2 Preprocessing and Normalization 106

 vii

5.2.3 Feature Extraction 107

5.2.4 Training and Recognition 108

5.3 The online Word Recognition System 110

5.3.1 Previous Systems 110

5.3.2 General Description of the Hybrid

SVM/HMM Word Recognition System. 112

5.3.3 Preprocessing and Normalization 114

5.3.4 Over Segmentation and Hypothesis

Generation 116

5.3.5 Feature Extraction 119

5.3.6 Overview of Hybrid SVM/HMM Training 120

5.3.7 Word Likelihood Computation 122

5.3.8 SVM/HMM Framework 124

5.4 Summary 128

CHAPTER 6 DATABASE AND EXPERIMENTAL RESULTS 129

6.1 Introduction 129

6.2 Databases 130

6.2.1 Data From UCI Repository 130

6.2.2 IRONOFF Online and Offline Databases 131

6.2.3 UNIPEN Online Character Database 134

6.2.4 IRONOFF-UNIPEN Databases 135

6.2.5 MNIST 136

6.3 Experiments in Selecting an SVM package 136

6.3.1 Comparing Training Time and Number of

Support Vectors 137

6.3.2 Comparing Number of Support Vectors 138

 viii

6.3.3 Comparing Training and Test Accuracies 138

6.4 Character Recognition Using SVM 140

6.4.1 Experiments on SVM for Character

Recognition 140

6.4.2 Character Recognition Summary 143

6.5 Experiences in Implementation of SVM in Other

Areas 144

6.5.1 SVM in Mathematical Expressions

Recognition 144

6.5.2 SVM in Electricity Fraud Prediction 146

6.6 Word recognition Using Hybrid SVM/HMM 147

6.6.1 A Word Recognition Example 148

6.6.2 Comparing Word Recognition Performance 152

6.6.3 Character Database Generation. 153

6.6.4 Training of Character SVMs 155

6.6.5 Recognition Result for Baseline Word

Recognition System 156

6.6.6 Retraining of SVMs 158

6.6.7 Incorporation of Junk Characters in

Retraining of SVMs 158

6.6.8 Result Comparisons with Hybrid of TDNN

and HMM approach. 160

6.6.9 Analysis of Errors 160

6.6.10 Conclusion 163

6.7 Summary 164

 ix

CHAPTER 7 CONCLUSIONS AND FUTURE

RECOMMENDATIONS 165

7.1 Dissertation Contributions 165

7.2 Conclusion 166

7.3 Future Work 167

REFERENCES 168

 x

LIST OF TABLES

Table 2.1 Summary of Online Handwriting recognition systems 35

Table 2.2 Offline handwritten word recognition systems 38

Table 4.1 Commonly used Kernels for SVM 90

Table 5.1 Comparison of the three handwriting systems developed 111

Table 5.2 The 68 Character HMMs 125

Table 6.1 Sample UCI Data Sets 130

Table 6.2 Handwriting Databases 131

Table 6.3 List of words in the IRONOFF lexicon 132

Table 6.4 Words in the Check Word lexicon (30 words) 133

Table 6.5 Words in the French Word lexicon (171 words) 133

Table 6.6 Words in the English Word lexicon (26 words) 134

Table 6.7 UNIPEN Benchmark Overview 135

Table 6.8 UNIPEN Train-R01/V07 Dataset 135

Table 6.9 Training Results for WBC data set (2 class) 137

Table 6.10 Training Result (number of Support Vectors) 138

Table 6.11 Training Accuracy (in %) 139

Table 6.12 Summary of Test Accuracy (in %) 139

Table 6.13 Detail Recognition performance of SVM on IRONOFF-

UNIPEN character database 141

Table 6.14 Comparing recognition performance between TDNN and

SVM for IRONOFF and UNIPEN databases 141

 xi

Table 6.15 Comparing recognition performance and number of

parameters using MLP, TDNN and SVM for

IRONOFF-UNIPEN database 142

Table 6.16 SVM distance vs. probabilistic SVM based recognition

for IRONOFF and UNIPEN Databases 143

Table 6.17 Comparison of TDNN and SVM on isolated Mathematical

symbol recognition 145

Table 6.18 Fraud prediction Accuray 146

Table 6.19 Number of characters in generated character database 153

Table 6.20 Word Recognition accuracy of during segmentation 155

Table 6.21 Performance of the character SVMs 156

Table 6.22 Word recognition rates of base recognizer 157

Table 6.23 Improvements in Character and word recognizer for the

English Words 158

Table 6.24 Recognition result Using TDNN for IRONOFF word 160

 xii

LIST OF FIGURES

Figure 1.1 Online vs. Offline handwriting system 3

Figure 1.2 Offline signal and Online signal 3

Figure 1.3 Categories of Handwriting Processing 4

Figure 1.4 Handwriting Recognition (Plamondon, 1989) 5

Figure 1.5 Problem with handwriting recognition systems 6

Figure 1.6 Example of constraints imposed in Palm Grafitti 7

Figure 1.7 Typical Handwriting Recognition System 8

Figure 1.8 Variations in handwriting style –random sample 12

Figure 1.9 Types of handwriting. Adapted from (Tappert, 1994) 13

Figure 1.10 Example of a 5 state HMM 15

Figure 1.11 Thesis Layout 23

Figure 2.1 A model of Pattern Recognition System 25

Figure 2.2 English word “writing”, written in small letters 33

Figure 2.3 English word “WRITING”, written in capital letters 33

Figure 2.4 (a) INSEG based segmentation (left) showing 3 hypothesis

σ3, σ4 and σ5 for INSEG method which are within slices

1-2 and 2-3. (b) OUTSEG based segmentation (right)

which shows segment σ4 within window 3-6 and

overlapping windows σ5 and σ6 42

Figure 3.1 A 3-state markov process 54

Figure 3.2 A 3-state HMM with 2 observation symbols {0, 1} 56

Figure 3.3 HMM Model Topology 63

 xiii

Figure 3.4 HMM Modeling with emitting and non-emitting states 64

Figure 3.5 Concatenation of character HMM models to form a word

model 66

Figure 4.1 Finding the optimal decision hyperplane 84

Figure 4.2 Maximal Margin hyperplanes for two dimension examples 85

Figure 5.1 Handwritten Character Recognition System 104

Figure 5.2 Example portion of UNIPEN file showing the format for

online handwriting signal 105

Figure 5.3 Resampling of Online character signal 106

Figure 5.4 Direction features (above) and curvature feature (below) 108

Figure 5.5 The overall hybrid handwriting recognition system 112

Figure 5.6 Normalization steps in word preprocessing 115

Figure 5.7 The four Reference Lines 115

Figure 5.8 Oversegmentation of the word “un” based on minimum

and maximum y points 117

Figure 5.9 Character Hypothesis Generation: A simple example for

offline in slicing and generating hypothesis using the

word “cts”, assuming 5 slices. 118

Figure 5.10 Result of recognition and Segmentation 119

Figure 5.11 Example of new x values for the hypothesis character.

Shown in the table - only the first 4 points. Y

coordinates remain. 120

Figure 5.12 Character level training for word recogntion system 121

Figure 5.13 Word Likelihood Computation – The best word is “cts”,

through slice combination 1 & 2 for char c, 3 &4 for

char t and slice 5 for character s. Bold and large P(i)

indicates largest probability values for character i . 124

Figure 5.14 An example character HMM with N states 125

 xiv

Figure 5.15 Word HMM formed by concatenating character HMM 126

Figure 5.16 Word Recognition Graph 127

Figure 6.1 Random examples from the IRONOFF Database 134

Figure 6.2 Comparison of TDNN and SVM on isolated symbol

recognition 145

Figure 6.3 The online signals of the word "hi" 148

Figure 6.4 The 6 Slices from the word "hi" 149

Figure 6.5 Trellis for probability score of each hypothesis and the best 151

Figure 6.6 Character Segmentation for the word “hi” 152

Figure 6.7 Distribution of characters in the generated cheque word

character database. Only a subset of lower case

characters are present. 154

Figure 6.8 Distribution of characters in the generated English word

character database. Some character classes from

character lexicon are not present. 154

Figure 6.9 Distribution of characters in the generated french word

character database. All character classes in the

character lexicon are present. 154

Figure 6.10 Recognition accuracy during segmentation 155

Figure 6.11 Word recognition rates for base recognizer 157

Figure 6.12 Example error: reference line detection 161

Figure 6.13 Example error: reference line detection 162

Figure 6.14 Example error: wrong label. 162

Figure 6.15 Example error: preprocessing 163

 xv

LIST OF SYMBOLS AND ABBREVIATIONS

ℜ Real Numbers

tO Observation at time t

)|(λOP Word likelihood

)|(Cxp Character or class likelihood

)|(OP λ Word posterior probability

)|(xCP Character or class posterior probability

)(xp Probability density function (PDF) of continuous random

variable x

)(xP Probability of a discrete random variable x

α Forward variable

β Backward variable

a Transition probability

b Observation probability

)(xϕ Kernel Mapping

ANN Artificial Neural Networks

RBF Radial Basis Function

SVM Support Vector Machine

HMM Hidden Markov Models

MLP Multilayer Perceptrons

MLE Maximum Likelihood Estimation

MMI Maximum Mutual Information

 xvi

MCE Minimum Classification Error

DP Dynamic Programming

SEGREC Segmentation by Recognition

SDNN Space Displacement Neural Network

TDNN Time Delay Neural Network

RNN Recurrent Neural Network

INSEG Input Space Segmentation

OUTSEG Output Space Segmentation

PDA Personal Digital Assistant

IRONOFF IRESTE Online/Offline Isolated Handwritten Word Database

UNIPEN Isolated Character Database collected by

UNIPEN foundation

IRONOFF-

UNIPEN

Isolated Character Database which is a mixture of IRONOFF

and UNIPEN character databases.

MNIST Isolated Handwritten Digit Database Modified from NIST

database

 xvii

LIST OF APPENDICES

APPENDIX A PUBLISHED PAPERS 192

APPENDIX B LAGRANGE MULTIPLIERS METHOD AND THE

KARUSH-KUHN-TUCKER THEOREM 194

1. Problem formulation and the Lagrange function 195

2. Saddle points of the Lagrangian and Karush-Kuhn-

Tucker points 195

APPENDIX C Verbose output of recognition and segmentation 198

CHAPTER 1

INTRODUCTION

1.1 Background

Handwriting is one of the most important ways of communication. It was used

since the Stone Age where symbols were drawn on stones in order to express or

convey some meaningful information. Later, handwriting was done using pen and

paper. Handwriting was used for personal benefits like writing reminders and notes

for ourselves or for business purposes such as writing letters, statements and filling

up forms. Thus handwriting then was by human to human for conveying

information.

The handwriting of each individual is unique because the process of handwriting

is a physical process, which involves the mind, skeleton and muscles, controlled by

the brain. Even so, individual handwriting could also differ, based on the mood and

the state of mind of the person writing. The handwriting among the different stock of

people (Europeans vs. Asian or French vs. Malaysian) are normally different, due to

the conditioning and training during the period of growing up. However, even

though the same stock of people has similar handwriting, it is an accepted fact that

no two people have the same style of handwriting.

Initially, in a modern computer, the most important device used to interface them

to human is a keyboard. As computers are becoming ubiquitous and more people are

using it, a more natural interface is needed. The most likely candidates could be

voice or handwriting. Voice or speech recognition capability and handwriting

 2

recognition capability built into a computer can simplify a lot of data entry, which

was handled before by using keyboards. Handwriting recognition seems to be more

practical than speech recognition because of the fact that in crowded rooms or public

places one might not wish to speak to his or her computer due to the confidentiality

or personal nature of the data. Another reason is that it might be annoying to others

if someone keeps speaking to his or her machine. It is also already possible to have

handwriting recognition in very small hand-held devices, while a speech recognition

system is not yet suitable for use as a hand-held machine. However, on the contrary,

in term of speed of data entry, speech system is apparently faster and it is much

easier to dictate something than to write it.

Pen-based interfaces in digital devices are popular lately and will play a more

important role in human computer interfaces in the future. In personal digital

assistant (PDA) which is a small handheld device, built-in pen-based handwriting

recognition system is already used as an input method. The input method is

interfaced to the applications in the PDA, such as personal agenda, address book and

communication facilities. In personal computers, pen-based input device (pen or

stylus and a pad) is sometimes used to replace the cumbersome mouse for

handwriting capability and its small footprint.

Automatic handwriting recognition is the transcription of handwritten data into

text in digital format, for use by the computer. The area has been under investigation

since the 1950’s. Since then there has been steady research effort into the area. Two

categorizations are possible; first, in term of processing domains, second, in term of

usage categories. Handwriting recognition can be categorized into two domains;

online recognition, used in the pen-based interface or offline, used in automated

recognition system for processing cheques, forms and the like. Figure 1.1 shows the

difference between the two domains. In online handwriting recognition, handwriting

signals are captured from the pen traces on the surface of a writing pad. The signals

are the input to the recognizer, which then gives out the text of the handwritten

input. In off-line handwriting recognition, static images of words written are used

instead in the process. A difference between the two is that on-line handwriting

recognition requires fast and immediate processing while off-line recognition can be

performed within quite a relaxed time constrain. However, recently, this might not

 3

always be the case because it is possible to collect forms containing online

handwriting and then to process them in a batch system.

Figure 1.1 Online vs. Offline handwriting system

 In term of signals, online signals are normally the pen trajectories, recorded as the x

and y coordinates of each point together with eventually the pressure and the time at

each point, while offline signals are the image files recorded in a particular image

format such as tiff or jpeg. Figure 1.2 below shows the differences between the two

signals.

Figure 1.2 Offline signal and Online signal

In the second categorization criteria, (Leedham, 1994) categorizes the automatic

processing and recognition of handwriting into the categories as shown in Figure

1.3.

 4

Figure 1.3 Categories of Handwriting Processing

As seen in the diagram, handwriting processing can be divided into two major

groups: (a) handwriting recognition and (b) handwriting analysis. Handwriting

recognition aims to produce output for machine transcription. It can involve

handwritten mathematical formulae, printed characters or cursive handwriting.

Handwritten mathematical formulae can consist of numbers and alphabets as well as

various mathematical symbols. Printed characters and cursive script handwriting

involves whole words or separate characters or combinations of partly cursive and

separate characters. Handwriting analysis on the other hand aims at using

handwriting for authentication. Among applications in this area are: signature

verification, writer identification, forgery identification and disguised writing

identification.

Another categorization is given by (Plamondon, 1989) in Figure 1.4, (a more

simplified version of Figure 1.3). They divided handwriting into text and signatures.

A common application in both text and signature is in using them for verification. In

 5

signature verification, handwritten signature is checked whether it belongs to a

particular writer or not and does not normally identify the symbolic classes of

characters in the signature. Signature identification is a biometric technique for

personal identification where genuine signature signed by an authorized person is

compared with the input signature of a person to be identified.

Other pen computing related applications closely related to handwriting

recognition is mathematical formula recognition where not just characters are

recognized, their layout are also taken into account. Another one is in handwritten

document retrieval, but here the so-called ink matching, does not identify the

character classes. Finally, handwritten sketch recognition, is based mostly on non

character data and typically ignores linguistic information.

Figure 1.4 Handwriting Recognition (Plamondon, 1989)

1.2 Limitations of Handwriting Recognition System

Although there are many applications of handwriting recognition in both online

and offline domain, the technology is not fully matured. There are many

improvements that can still be made to make handwriting recognition more widely

accepted in computer based applications. In online handwriting, the input signal

consists of a time sequence of strokes. A stroke is the writing from the time when

 6

the pen is touched down (pen down) to the time it is lifted (pen up). The characters

in the writing signal are usually written in sequence, one character being completed

before beginning the next, and the characters typically follow spatial order, from left

to right except in certain characters like dots (i’s and j’s) and crosses (t’s and x’s). In

these cases, the underlying portion of a word is first written, and then the word is

completed by writing the crosses and dots. The presence of these delayed strokes

posed some problems which if not handled will not provide a good recognition of

input handwriting (Figure 1.5).

In some applications and devices, in order to provide good recognition

performance, constraints need to be imposed to user input, such as in the way in

which handwriting need to be done. An example is in the “Graffiti” system used in

the Palm devices (Figure 1.6). Generally, there is no system that can be used in all

environments. Each system is somewhat constrained to work in a particular target

environment.

Figure 1.5 Problem with handwriting recognition systems

In many researches in handwriting recognition, other than constraining

handwriting styles, those that work on unconstrained handwriting input, address only

on a few specific areas such as writer dependent systems or systems that utilize only

some special small lexicon. For example, they might only cater for the recognition of

handwritten characters or numbers and recognition of words from a small specific

lexicon. As constraints in the handwriting are reduced, the problem will become

more complex because the recognition system needs to handle various limitations,

thus, this will affect the recognition accuracy.

 7

Figure 1.6 Example of constraints imposed in Palm Grafitti

handwriting recognition system

1.3 Overview of Handwriting Recognition System

There are many different techniques for handwriting recognition. One generic

model of handwritten word recognition system that can be used for our discussion is

as follows. The description does not describe a standard but it is typical of most

present recognition systems. Figure 1.7 gives a graphical summary of the

description.

The input to the system is the word to be recognized which is a word image in

the case of off-line and a series of captured information representing the pen trace

(the strokes or characters) of the word in the case of an online system. The

discussion is similar for both offline system and online system except that the nature

of the corresponding implementation of each process might be a little bit different.

The output of the system is a text representation of the input word signal presented

to the system. In the model, there are three main components; the front-end module,

the recognition module and the post processing module. Each module performs their

required functions depicted as sub modules within the modules.

 8

Figure 1.7 Typical Handwriting Recognition System

 9

First, the unknown handwritten word presented to the system needs to be

transformed into a form understandable to the recognition computation engine. The

front-end module needs to extract information from the presented word in the most

efficient form for presentation to and processing by the recognition module. In the

front-end processing, the word signal, first needs to be preprocessed to remove

undesired variability that will cause difficulties in the recognition process.

Operations like reference lines detection and correction to some variations like

rotation, size and slant are performed. Secondly, words are segmented into a

sequence of basic recognition unit such as characters or parts of characters. Most

systems will perform this step; however, there are some that do not. In that case, the

word is treated as a whole and recognition is a global process where characters are

not first recognized. Thirdly, the segmented preprocessed unit needs to be

transformed into a compact feature representation. This process involves extracting

discriminant features to build up a list of feature vectors to be used in the recognition

stage.

The recognition module in the system involves using a trained module that

recognizes basic individual units mentioned earlier and their concatenation in the

formation of the word. The word recognition, as will be described in the next

section, includes a comparison of the test pattern (the observed word) with each

class reference pattern (words in the lexicon) and measuring a similarity score (in the

form of distance or probability score) between the test pattern and the similarity

pattern. The pattern similarity score is used to decide which pattern best matches the

unknown pattern. The implementation of this recognition module in previous

systems have been in a number of ways such as dynamic programming, hidden

markov model, neural network, expert system, k-nearest neighbor and other

combination of techniques. Normally, the process of recognition provides a list of

N-best word hypotheses where N can lie between 1 and 10. The list can be further

post processed to obtain a better list of word hypotheses. This approach taken

during the stage of recognition falls under the category of statistical pattern

recognition, the basis of which will be described in the following section.

The post-processing module is used to verify the N-best list and may also

perform rejection of unlikely hypotheses. With the help of some source of

 10

knowledge in the form of a language model, some improvements in recognition can

be obtained. A language model can be the lexicon, which is a library or list of

possible words for recognition, or the words that are allowed as input to the

recognition system, but can also include some statistical or structural properties of a

given language.

1.4 Statistical Pattern recognition

As mentioned in section 1.3, at the recognition stage, the problem of handwriting

is largely statistical in nature. It can be described by the following, according to

statistical pattern recognition concept.

The goal of word recognition is to find the most likely word representing the

given handwriting signal or image. If O is the observation sequence of a word

signal, and W is the word in the lexicon, then the recognition system must choose a

word
^

W that maximizes the probability that the word W was written given that the

observation sequence O was observed:

)|(maxarg
^

OWPW
W

= (Eq. 1.1)

.

)|(OWP is called the posterior probability. It is difficult to compute the above

maximization. However, it can be simplified by using Bayes theorem, which states

that:

)(
)()|()|(

OP
WPWOPOWP = (Eq. 1.2)

where the probability)|(WOP is the probability that the observation sequence O

was observed if a word W was written or the likelihood of the observation.)(WP is

the a priori chance of the word being written and P(O) is the evidence or

 11

normalization factor which represents the unconditional probability of the input

signal. P(O) can be defined as follow:

∑
=

=
K

k
kk WPWOPOP

1
)()|()((Eq. 1.3)

where kW , k=1,2,…,K are the words in the lexicon and K is the total number of

words. It is a scale factor that ensures that the posterior probabilities sum to unity.

However,)(OP is normally omitted because this term is common across all words.

Therefore, ignoring)(OP , for a given new word signal input O, classification is

made by selecting the word corresponding to the largest value of)|(OWP , that is:

)()|(maxarg)|(maxarg
^

WPWOPOWPW
WW

== (Eq. 1.4)

Thus, the probability of the word being written is a product of the two

probabilities. In short, this can be viewed as the discriminant function for a word,

which is formed by joining the likelihood function and the prior probability. The

process of finding these two probabilities and then, finding the resulting combined

probabilities for all words in the lexicon and selecting the highest probability is what

constitutes the recognition system. For a given input O, the probability of

misclassification is minimized by choosing a word having the largest value of the

product of the two probabilities.

1.5 Problems in Handwriting Recognition

Many researchers have conducted research in handwriting recognition in the last

years. Although many problems have been solved, there are still many problems at

hand. Despite the availability of computing power and progress made so far, the

capability of handwriting recognition system is still incomparable to human

recognition. As mentioned earlier, no two humans have exactly the same

handwriting and even no two sets of handwritings of the same person for the same

 12

word are exactly the same. Between people, the variability can include the slant, the

size of characters, the shape and how cursive or disjoint the characters in the

handwriting are. Variations in handwriting can also be in term of the applications,

even if for off-line handwriting applications such as form processing, handwritings

are normally guided by boxes. Figure 1.8 shows a random sample of handwriting

taken from IRONOFF database that demonstrates these differences. Figure 1.9

adapted from (Tappert, 1994) show further variations.

As mentioned in section 1.2, handwriting recognition can be performed by

taking a word itself as a whole entity for recognition. This method has been used by

a number of researchers. The model for recognition is the whole word model, which

are trained to cater for variations and similarities within word such as co-articulation.

Because the whole word is taken in training the system, segmentation is avoided.

However, word model recognition is only applicable in cases where the lexicon is

small.

Figure 1.8 Variations in handwriting style –random sample

of handwriting taken from IRONOFF database

 13

Figure 1.9 Types of handwriting. Adapted from (Tappert, 1994)

For larger sized lexicon, whole word recognition is unfeasible. This is because

since each words are treated individually, the recognition information they contain

cannot be shared among words, which means that the larger the size of the lexicons,

the larger the recognition model is. Because of this limitation, many word

recognition systems uses smaller units as the basic model, either a character or an

entity smaller than a character (sometimes termed as pseudo character or grapheme).

Model used for word recognition is the concatenation of the basic model at the

character or sub-character level. In this way also, having larger lexicon does not

mean a bigger number of word model. It simply means constructing the new word

model from existing smaller sub-unit model.

Segmentation is then required to cut the words into smaller units. This creates

another set of problems. Some words are written very cursively but some writers

prefer to write disjoint characters when writing a word. Yet some, mix between

cursive writing and disjoint without any particular order or rule, as can be seen in

figure 1.8 and 1.9. In segmentation based word recognition system, the lexicon plays

a very important role in the segmentation process itself as the recognition process

determines the best and definitive segmentation points.

 14

1.6 Recognition Modeling.

There are many different methods of training and modeling of a handwriting

recognition system. A few of them of relevance to the thesis will be discussed here

with the aim of comparing the pros and cons between them and eventually focusing

on the method that have been used in this thesis. Among the existing methods are

Hidden Markov Model (HMM), Neural Network (NN), Expert System, k-nearest

neighbor and other techniques or combination of techniques. Some researchers

divide these methods into two main descriptions; the syntactic, which involves

describing character shapes in an abstract fashion and the statistics methods where

the system learn from data directly without the implementer having to specify

explicitly the structure or the knowledge into the system. HMM and NN falls under

the statistical method. Support Vector Machine (SVM) which will be the focus of

this thesis is another.

1.6.1 Hidden Markov Model

In many handwriting recognition systems, the basic modeling component for

recognition is the Hidden Markov Model (HMM). This follows from its success in

speech recognition. The ability to statistically model the variability of handwriting is

its major strength. HMM uses Markov process, represented as a state machine to

model the temporal evolution of handwriting. The probability distribution

associated with each state in an HMM, models the variability in the handwriting.

In this section, a very brief description of HMM is given, to facilitate

explanations in this introductory chapter. Detail accounts will be given later in

chapter 3. Figure 1.10 depicts a simple five state HMM. It can be attributed with the

following parameters: N – the number of states in the model (5 states), probabilities

of transition between states denoted by matrix A (consisting of probabilities a11, a12,

etc) and probability of emission or output denoted by matrix B (consisting of

probabilities b1(ot), b2(ot), etc where o is the input observation). B represents the

probability of observing an input feature vectors in a given state.

 15

Figure 1.10 Example of a 5 state HMM

HMM uses Bayes classifiers, which gives likelihood ratio for classification. The

output probability distributions could be parameterized in either discrete or

continuous distribution. The choice depends on the level of modeling accuracy

needed and the amount of training data available. Continuous distribution is more

accurate, with the disadvantage of complexity in modeling and computation. The

most commonly used probability distribution function used in HMM is the

multivariate Gaussian distribution as follows:

)()(
2
1exp(

)2(

1)(1'
jt

j
jt

j

n

tj ooob μμ

π

−−−=
−∑

∑

(Eq. 1.5)

Where n is the dimension of the observation vector ot at time t and the

subscript j indicates that the Gaussian under consideration belongs to the jth state of

the HMM. ∑
j

is the covariance matrix which normally is taken to be a diagonal

matrix taking assumption that each feature components are independent of each

other.

Using HMM, training is thus, estimating the parameters of the recognition

model, using some parameter estimation model. One popular method is by using

maximum likelihood estimation (MLE) to maximize the probability distribution that

models the observation vector in the modified form of equation 1.5. The

 16

Expectation maximization (EM) algorithm is normally used in the MLE procedure.

MLE procedure however, lacks discriminative power because only in-class data is

used in modeling a particular class model. Fitting Gaussian and applying Bayes rule

for classification also does not give an optimal classifier. There is always some

classification error because the decision threshold always occurs inside one of the

classes, which could be due to some overlapping features in the feature space of the

classes. To obtain discriminative power, HMM could be trained by including out of

class data, using a number of optimization methods such as minimum mutual

information (MMI) estimation or the minimum classification error (MCE); two

issues that will be discussed in chapter 3 .

1.6.2 Neural Network

Neural network (NN) is a discriminative classifier in that all in class and out of

class data are used in the training. NN body of literature is enormous because it has

been used very widely in many areas. NN have been used in handwriting recognition

system with success. However, compared to HMM, they require more computation.

In addition, and of more importance, is that, they are not able to model time

variations in handwriting signal, which is important for word recognition. They are

static classifiers which require fixed size feature vector. Due to that, they are

normally used only in character or digit recognition. There are also some other

weaknesses of NN as a discriminative classifier, some of which are as follows.

a) In term of generalization property, NN is known to over fit data unless specific

measures are taken to avoid that (Ganapathiraju, 2004). Although cross-

validation can be done to avoid that, it is quite hard to achieve good

generalization when only a limited amount of training data is available.

b) The optimization process in gradient-based NN learning is according to the

principle of empirical risk minimization (ERM) using the back-propagation (BP)

algorithm (Rumelhart, 1986). Though this guarantees good performance on the

training data, performance on the test data is difficult to obtain.

 17

c) Choosing Model Topology is another issue. In most connectionist system, the

topology is needs to be fixed prior to training (Bodenhausen, 1993). Often, this

requires some expert knowledge of the data. Learning the topology automatically

is possible but quite time and resource consuming.

d) Training Convergence is considerably slower (as compared to ML estimation in

HMM). In fact, NN training (for that matter, MLE training also) does not

guarantee global optimum.

1.6.3 Syntactic Modeling technique

In Syntactic Modeling technique, handwriting recognition is based upon the idea

that character shape can be described in an abstract fashion. Using expert system is

one of the methods. Generally, an expert system incorporates human knowledge

about the problem domain into stored knowledge. It basically consists of knowledge

acquisition part that obtains knowledge and expertise from human experts in the

form of rules, the knowledge representation part that provides methods used to

represent human knowledge and expertise in the computer system and knowledge

inferencing part that applies stored expertise to make decisions.

Syntactical handwriting recognition does not require a large amount of data for

training, not as much as used in statistical handwriting recognition. The success of

this method has largely been limited because of the complexity and ambiguity of

handwriting styles and difficulty in formulating general and reliable rules as well as

in automating the generation of these rules from a large database of characters and

words. However, this approach has been revived recently with the use of fuzzy rules

and grammars that use statistical information on the frequency of occurrence of

particular features (Parizeau, 1995) (Malaviya, 1994) (Anquetil, 1997).

1.6.4 Support Vector Machine

A good classifier needs to have good generalization, minimum risk, better

convergence properties and better discrimination power and possess a model

 18

topology that does not have to be fixed a priori. This has led to the support vector

machines (SVM) which is the focus of this thesis.

SVM had been proven to generalize well. SVM generalization properties allows

for a bound on performance on a given test set to be part of the training process

without having to actually test the system. Normally, empirical risk minimization

(ERM) as used in NN is the most common optimization criteria used to estimate

classifiers. However, using ERM, the solution is not unique. There are several

configurations of the classifier that can achieve minimum risk specified in the ERM,

on the training set (as seen in NN training). There is a need to decide on the

configuration that has the least upper bound on the expected test set error. This is the

principle of structural risk minimization (SRM). Support vector machines are based

on this principle. With SRM, a classifier will have the least expected risk on the test

set and therefore a good generalization.

This section introduces SVM but in chapter 4, the theoretical principles of SVM

will be discussed in detail. In the simplest form, SVM is a linear binary (2-class)

hyper plane classifier. For a non-linear case, SVM implicitly transform the non-

linear data to a high dimensional linear space and construct a linear binary classifier

in this space. This is done implicitly, without having to perform any computations in

the high dimensional space. Because of this, data of high dimension or even sparse

data pose no problem when implementing SVM. The eventual hyper plane in the

high-dimensional transformed space actually results in complex decision surfaces in

the input data space.

There have been many successful cases of using SVM in many problems,

classical or new. In most cases, SVM consistently performed better than other non-

linear classifiers. Initial use of SVM reported was in classification of handwritten

digit. However, widespread usage of SVM was initially hampered by the

unavailability of an efficient optimization method, which can handle large data

efficiently and fast without consuming much of computer memory. With ongoing

development of efficient optimization methods, SVMs now handle the problem.

There are many applications of SVM up until now, in many areas, too many to list

all. Randomly picked list follows: e-learning, text classification, handwritten

 19

character recognition, handwritten character categorization, image clustering, speech

recognition, speaker verification, forecasting, fraud prediction, protein structure

prediction, land cover classification, intrusion detection, cancer prognosis, particle

and quark-flavor identification in high energy physics, object detection, text

categorization and time series prediction. A detail reference will be provided in

chapter 4.

In speech recognition, SVM was used with HMM in the first SVM-based large

vocabulary speech recognition system (Ganapathiraju, 2002). The hybrid system

uses HMM to handle the temporal evolution of speech and SVM to discriminatively

classify frames of speech. It was a first successful application of SVMs to

continuous speech recognition. The system improves performance over traditional

HMM-based systems. The hybrid system achieves a 10% improvement relative to

an HMM system, which is significant.

Recent application of SVM in handwriting recognition was mainly at the

character recognition level. Usually, SVM (with kernel) are designed to deal with

data of fixed dimension. However, on-line handwriting data is not of a fixed

dimension, but of a variable-length sequential form. In this respect, SVMs cannot be

applied to HWR in a straightforward manner. (Bahlmann, 2002) uses a special SVM

kernel for sequential data, the Gaussian dynamic time warping (GDTW) kernel that

instead of the squared Euclidean distance in the usual Gaussian (RBF) kernel, it uses

the dynamic time warping distance. Bahlmann achieved superior recognition rate in

comparison to an HMM-based classifier.

The last two applications of SVM described earlier provide the motivation

for us to research into using SVM for handwriting recognition at a higher level. The

author has already used SVM for character recognition and have achieved more

satisfactory result than Bahlmann in term of character recognition using SVM

(Ahmad, 2004b). A further investigation into using SVM in a hybrid system of SVM

and HMM similar to the work of Ganapathyraju is the objective of this thesis.

 20

1.7 Scope and Objectives

The author has presented a brief description of the background of the issues and

problems in handwriting recognition. A brief description of the tools used in

handwriting recognition has also been given. Many problems are still not

satisfactorily solved. Due to the wideness of the scope that falls in the arena of

handwriting recognition, to tackle them all will require immense resources. Thus in

this thesis, the focus is on a specific issue relating to improving the handwriting

recognition system using new methods. The author has focused on the recognition

aspect in a handwritten word recognition system. The aim is to investigate whether it

is possible to increase the word recognition accuracy using segmentation based

recognition method in the context of a hybrid system. Due to the emerging use of the

learning method of Support Vector Machine (SVM) and the immense popularity of

Hidden Markov Model (HMM), the author has chosen to investigate the

effectiveness of using SVM in character recognition itself and its use in a hybrid

environment of a segmentation based handwritten word recognition system. In this

system, the discriminative property of SVM is exploited in tandem with the class

representative property of a HMM.

 The primary goal of this thesis is to propose a hybrid SVM/HMM handwritten

word recognition system that caters for a medium sized lexicon. The system should

be able to handle connected cursive handwritten words. The system borrows some

ideas on existing systems based on discrete HMM and a hybrid of Neural network

and HMM. Although the eventual aim is to adapt a simplified system based on word

level discriminant training, in this thesis, emphasis is put in character level

discriminant training, due to the difficulty in deriving correcting gradient from word

level to character or sub-character level training. The final product is a working

system which proven the concept and the tests done gives some ideas as to what are

the problems and the recommendations in developing such a system.

The main contributions of this thesis are as follows:

a) Formulation and parameterisazion of SVM for handwriting recognition problem.

 21

b) Testing of SVM on major character database, proving the effect of various

parameterizations in improving character recognition.

c) Adaptation of SVM for posterior probabilistic measures output.

d) Method for segmentation and feature extraction of character segments from

online word signal.

e) Use of SVM in a hybrid situation with HMM in improving the discrimination

ability of the overall recognizer.

f) Comparison of SVM/HMM hybrid implementation with other hybrid systems in

handwriting recognition.

1.7.1 Thesis Layout

The main content of this thesis is divided into 7 chapters. This first chapter

presents some background, the issues related to handwriting recognition and the

scope, aim and contribution of this thesis. Chapter 2 presents the state of the art of

handwriting recognition. Pattern recognition concepts and statistical pattern

recognition issues are first introduced. Then speech recognition issues which had

direct influence in handwriting recognition is discussed, followed by online and

offline handwriting recognition issues. Online handwriting recognition using

Support Vector Machine and Hidden Markov Model are then elaborated. Further

issues on the use of SVM for character recognition are then discussed.

In Chapter 3, theoretical foundation of Hidden Markov Model (HMM) is

discussed. After introducing Markov chain, HMM parameter estimation and training

are presented. Forward-backward, Baum-Welch, Viterbi algorithms and the usage of

HMM in discrete handwriting recognition system are discussed. The uses of HMM

in hybrid handwriting recognition systems are then given some accounts.

 22

SVM is discussed in Chapter 4. The theoretical foundation of SVM is presented

here. Issues like Empirical Risk Minimization (ERM), Structural Risk Minimization

(SRM) and the concept of maximal margin classifier are introduced. Aspects of

SVM estimation and training are then discussed. For the adaptation of SVM in the

hybrid system, SVM probabilistic output is discussed. Then, the use of SVM for

handwritten character and word recognition is presented.

Chapter 5 provides an overall description of the online handwriting recognition

system. After an overview, preprocessing is presented, followed with the training

and recognition procedure in the SVM/HMM hybrid system. Chapter 6 outlines the

experiments conducted and the experimental results. After providing some details

about the overall databases in handwriting recognition and the ones used (UCI,

MNIST, IRONOFF and UNIPEN), a description about the experiments conducted is

given. Results for SVM Selection, the use of SVM in character recognition and the

use of SVM in two other related areas that the author is involved in, namely

mathematical symbol recognition and fraud prediction are discussed.

Word recognition results using the hybrid SVM/HMM system are then given in

chapter 6 together with some ad hoc comparisons with the results of other

comparable systems, namely the ANN/HMM offline system and the hybrid

SVM/HMM used in speech recognition. Error analyses of the system are also given

in this chapter. Finally, in chapter 7, a conclusion and suggestion for future work are

given. Figure 1.11 summarizes the thesis layout in graphical form.

 23

Figure 1.11 Thesis Layout

 24

CHAPTER 2

STATE OF THE ART IN HANDWRITING RECOGNITION

2.1 Introduction

In this chapter, a review the developments in the field of handwriting recognition

are made. First, an introduction to pattern recognition concepts and statistical pattern

recognition issues is given. As developments in speech recognition have had direct

influence on handwriting recognition, the author review some aspects of the

developments in speech recognition research in relation to handwriting recognition

research. Then a look into the developments in handwriting recognition is made,

both online and offline including elaborating on a few issues addressed earlier in the

first chapter. In both domains, much effort has been spent on the development of

classification methods and algorithms. The most notable aim is to increase

recognition accuracy or reduce error rate, while taking into consideration memory

requirements and computation complexity. At the end of this chapter, a section is

devoted towards discussing the perspective of the use of Support Vector Machine

(SVM) in speech and handwriting recognition.

2.2 Pattern Recognition

Handwriting recognition is an application in the field of pattern recognition.

Automatic recognition, description, classification and grouping of patterns are

important problems in many engineering and scientific disciplines. (Watanabe,

 25

1985) defines pattern as the opposite of chaos; an entity, vaguely defined that could

be given a name, for example a fingerprint image, handwritten cursive word or

human speech. Pattern recognition (PR) is the study of how machines can observe

the environment, learn to distinguish patterns of interest from their background, and

make sound and reasonable decisions about the categories of the patterns. The

primary goal of pattern recognition depends on whether it is a supervised

classification or unsupervised classification. In supervised classification, the input

pattern is identified as a member of a predefined class. In unsupervised

classification the pattern is assigned to an unknown constructed class (Jain, 2000).

Handwriting recognition really falls under supervised classifications as handwriting

examples are used in building the recognizer.

A model for pattern recognition is shown in Figure 2.1. As can be seen it is

operated in two modes: training (learning) and classification (testing). A PR system

needs to be trained to obtain a recognition or classification model for use during

classification. In training mode, features representing input patterns are extracted

and used for training to partition the feature space. Some feedback from the learning

stage allows the optimization of the preprocessing and feature extraction or selection

strategies involved. At the end of training, parameter values for the classifier are

obtained. In classification mode, the trained classifier is used to classify the input

pattern into one of the pattern classes.

Figure 2.1 A model of Pattern Recognition System

 26

Depending on complexity, some PR application might require extensive

computation during training, especially in applications involving the processing of

large data. There can also be huge data sets needed during the training stage of the

systems. There are many approaches in PR but it is important to note that there is no

single optimal approach for all and multiple methods and approaches might need to

be combined and used in a single system. This applies to handwriting recognition as

well. Figure 1.7, presented in chapter 1; match this model of pattern recognition

system.

2.2.1 Learning Approaches in Pattern Recognition Systems

PR systems can use various approaches to learning. (Jain, 2000) summarizes

four general approaches of pattern recognition. They are template matching,

statistical classification approach, syntactic or structural matching and neural

networks (Jain, 2000). Such approaches are neither necessarily independent nor

disjointed from each other. Occasionally, a technique in one approach can also be

considered to be a member of other approaches (Bortolozzi, 2005).

In template matching, a simple generic operation is used to determine the

similarity between two entities of the same type (such as groups of pixels, shapes,

curvatures, etc). A template or prototype of the pattern to be recognized is matched

against the stored template. Matching techniques can be grouped into three classes:

direct matching (Gader, 1991), deformable templates and elastic matching

(Dimauro, 1997) and relaxation matching (Xie, 1988).

In Statistical Approach, the concern is with statistical decision functions and a

set of optimal criteria, which determine the probability of the observed pattern

belonging to a certain class. Many handwriting recognition approaches belong to this

domain, such as : k-Nearest-Neighbor (k-NN) classifier (Mico, 1999), Bayesian classifier

(Duda, 2001), Polynomial Discriminant classifier (Schurmann, 1996), Hidden Markov

Model (HMM) (Rabiner, 1986b), Fuzzy set reasoning (Gader, 1996) and Support Vector

Machine (SVM) (Burges, 1998).

 27

In Syntactic approach, a pattern is viewed hierarchically. A complex pattern can

be composed of simpler sub patterns, which are in turn built from yet simpler sub

patterns (Fu, 1982). The simplest sub pattern is the primitive. Structure of a pattern

can be compared with the syntax of a language where a pattern is viewed as a

sentence of a language, primitives are viewed as the alphabet of the language, and

the sentences are generated according to a grammar. Thus, a number of primitives

and grammatical rules can be used to describe a collection of complex patterns

where the grammar for each pattern class is inferred from training samples. In

relation to handwriting recognition, structural methods can be categorized into two classes

(Bortolozzi, 2005): grammatical methods (Shridhar, 1986) and graphical methods (Kim,

1998).

Finally, a Neural network (NN) can be viewed as a massively parallel computing

systems with large number of processors and interconnections. Zhang (Zhang, 2000)

gives a comprehensive review. NN models learn complex nonlinear input-output

relationships using sequential training procedures in a network of weighted directed

graphs of nodes and directed edges (with weights). The main advantages of neural

networks is that it can be trained automatically using examples, gives good

performance even with noisy data and can be implemented in parallel. The most

widely studied and used neural network is the Multi-Layer Perceptron (MLP)

(Bishop, 1996). The most popular neural network classifier and most frequently used

traditional classifiers is the MLP trained with back-propagation (LeCun, 1998b).

Other types of NN include Convolutional Network (CN) (LeCun, 1998a), Self-

Organized Maps (SOM) (Zhang, 1999), Radial Basis Function (RBF) (Bishop,

1996), Space Displacement Neural Network (SDNN) (Matan, 1992b) and Time

Delay Neural Network (TDNN) (Lethelier, 1995).

2.3 Developments in Speech Recognition

Speech recognition, also known as automatic speech recognition (ASR) converts

spoken words to machine-readable input (transcript an acoustic speech signal into its

equivalent textual form). It is used to interact with a computer, similar to textual

input through a keyboard. It was supposed to replace, or reduce the reliability on,

standard keyboard and mouse input. With that it should assist people who have little

 28

keyboard skills or dyslexic people or people with physical disabilities that affect

either their data entry, or ability to read or check what they have entered.

In ASR applications such as phone-based automated timetable information, or

ticketing purchasing, the user makes contact with the system, and speaks in response

to commands and questions. Most ASR breaks down the spoken words into

phonemes and analyzes them to see which string of these units’ best fits an

acceptable phoneme string or structure that the system can derive from its dictionary.

Speech recognition technology is more mature compared to handwriting

recognition technology. The technology of ASR and transcription has progressed

greatly over the past decades. Research in ASR began in 1936, but it was not

commercialized until the early 1980's when Hidden Markov Model (HMM)

technology was introduced (Rabiner, 1986b). HMM has been the dominant approach

to speech recognition since then. However in the late 1980’s, there seems to be a

shift towards Neural Network, in particular Multilayer Perceptron (MLP) and Time

Delay Neural Network (Weibel, 1989) as well as related method such as Learning

Vector Quantization (LVQ) (Kohonen, 1988). This is due to their discriminative

ability as compared to HMM which is trained with Maximum Likelihood Estimation

(MLE) criteria. Anyhow, the introduction of an alternative optimization criterion

such as the Maximum Mutual Information (MMI) (Bahl, 1992) and Minimum

Classification Error (MCE) (Juang, 1992) in HMM improved the recognition

accuracies in some systems which makes HMM still popular.

 Today, speech recognition system which is based on single stand alone NN

technology or HMM by itself is not common. Since early 1990’s, hybrid systems

combining HMM and NN were widely popular. The hybrid system takes advantage

of NN for its discrimination ability and HMM for its excellence in sequential

modeling (Bengio, 1991) (Rigoll, 1998). A comprehensive survey on this hybrid

method can be found in (Bourlard, 1998). HMMs and NNs combined are proven to

improve classification capabilities.

 29

2.4 State Of The Art in Handwriting Recognition

Various surveys have dealt with handwriting recognition from many aspects;

online (Tappert, 1990), offline (Steinherz, 1999), machine-printed and cursive script

handwritten characters (Guyon, 1996) (Plamondon, 2000). Many papers also

reviewed or described their specific research in handwriting recognition emphasizing

issues within the many components involved in the overall system as described in

section 1.3, such as in preprocessing and segmentation, feature extraction,

recognition modeling as well as post processing stage.

Research work in handwriting recognition started later than in speech

recognition. The advent of the tablets in late 1950’s has resulted in active endeavor

in handwriting recognition research lasting through the 1960’s. However, it ebbed in

the 1970’s but was renewed in the 1980’s. In on-line handwriting recognition, the

renewed interest was due to the availability of more accurate electronic tablets, more

compact and powerful computers, and better recognition algorithms. In addition,

combined tablets and flat screen displays brings input and output together, which

further permits the use of electronic ink, that is the instantaneous display of the trace

of the motion of the stylus tip directly under the stylus. During this period also,

office automation work, coupled with usability and user friendliness has increased

interest in more natural methods of entering data into machines. Researcher’s then,

starts to more clearly understand the applications appropriate for handwriting

recognition. In offline handwriting recognition, progress was similar. As the need for

automation in the postal and banking industries increased, new developments were

made in the field to cater for the needs. This is also aided by progress made in

computer processor hardware, speed and memory capacity available in those

machines.

During the last twenty years, there were much more development in handwriting

recognition research. As mentioned earlier, this in part is very much due to the

progress made in the speech recognition methods and algorithms, which have then

been adapted into handwriting recognition. Usage of Hidden Markov Model (HMM)

has been popular in handwriting recognition in similar context to speech recognition.

HMMs gained growing interest in the handwriting recognition research community

 30

because it was already in a mature state in the context of speech recognition. It is

straightforward to transfer the HMM approach from speech recognition domain to

the handwriting recognition, especially the on-line domain since pen-trajectory data

can be viewed as a time series of samples similar to speech signal.

Literatures in handwriting recognition generally divide handwriting recognizers

into whole word (segmentation free) or segmentation based. Whole word (or holistic

approach) based does not involve segmentation where recognizer look at the whole

word, while in segmentation based; words need to be segmented for recognition.

Segmentation based word recognizer can either be based on classical analytical

segmentation or they are segmented into characters based on the recognition results.

In classical analytical segmentation, words are analytically segmented into

characters. In segmentation based recognition, words are explicitly or implicitly

segmented into characters by over segmenting them into smaller than character

slices (or rather a primitive or can be called something else) and later determining

the correct characters segmentation alignment using dynamic programming based

algorithms. These issues are further discussed in section 2.4.4.

The earlier approach to recognition was based on classical analytical

segmentation. In later work, researchers’ attempted the segmentation-free with great

success; however, they are limited only to a very small lexicon. Then, segmentation

approach was cleverly reapplied by taking into consideration that we need to know

the word in order to segment it and we need to know the individual characters in the

word, in order to recognize it, an idea called Syre’s paradox (Steinherz, 1999). That

is when segmentation based recognition comes in. There are merits and

disadvantages of either explicit segmentation or implicit segmentation which will be

discussed later but in both cases, words are not actually presegmented. They are just

cut at various places in the word based on certain criteria. The so called

segmentation is the results of combining the slices at the right combination and the

right points. To find the optimal segmentation points that form the best set of

characters, combination of cuts are evaluated by a character classifier to score the

combination. Finally, the word with the optimal score is generally found by applying

Dynamic Programming or similar techniques.

 31

Speech recognition were initially based purely on HMM with discrete or

Continuous Mixture Densities (Rabiner, 1985). Later, hybrid system became

popular. Similarly, in handwriting recognition system which is mainly segmentation

based, a hybrid NN and HMM became very popular as NN being a discriminative

classifier fits well into HMM structure which handles the temporal nature of

handwriting to create a better recognition system. The ANN/HMM hybrid were used

in recognition at the character level as well as word level. With proper language

model, sentence recognition can be handled.

Also coming from successful usage in speech recognition, segmental modeling

was later introduced in an attempt to achieve a more realistic modeling of the

handwriting signal. In HMM, observation modeling is at the frame level, while in

segmental modeling, a segment which is composed of several observations is

modeled. In a way a segment corresponds to a homogeneous portion of the signal

which typically can be a stroke in a character. Segment modeling allows automatic

handling of different handwriting styles (Artieres, 2000). However, segment

modeling requires more computation than the classic HMM. They are mainly used in

the post processing stage and there are many possibilities of implementing the

segment models which makes compromise between flexibility and robustness

possible.

Many researches in handwriting recognition systems implementing the methods

mentioned are targeted to small–scale and constrained applications where the

vocabulary or the lexicon of words are small. For dealing with large vocabulary

system, researchers need to handle crucial issues such as improving recognition

speed and computational efficiency while maintaining good recognition accuracy.

(Koerich, 2002). Speed and recognition accuracy are two aspects of mutual conflict,

but have been tackled by using better search strategies, use of verification steps after

the coding, better decoding algorithm and post–processing of the N–best candidate

list.

 32

In the following subsections, developments in on-line and off-line handwriting

recognition are reviewed separately. The author then looks at developments and

issues in methods and techniques at the various stages of the recognition system

which are applicable to both domains.

2.4.1 Developments in Online Handwriting Recognition

Research in online handwriting recognition started in the 1960s and has been

receiving great interest from the 1980s. Tappert e. al. (Tappert., 1988) (Tappert,

1990) reviewed the status of research and applications before 1990, while a recent

survey done by Plamondon and Srihari, (Plamondon, 2000) gives an overview of the

near recent situation, for both online and offline handwriting recognition, mainly

concerning western handwriting. Nakagawa, (Nakagawa, 1990) and Wakahara

(Wakahara, 1992) provides some reviews and insights into early works of online

Japanese character recognition. Liu et. al. (Liu, 2004) contributed a survey to online

Chinese character recognition (OLCCR). Handwriting researchers also tackled on-

line handwritings at either character level or higher level at word or sentence level.

Methods used for characters can be applied to higher level since they consists of

basic low level entity. In this subsection, the author review the developments at all

levels.

The world of handwriting is no doubt dominated by English as it is the world

major language. Other Western languages that use Latin are as widely used and

important too. However, to be fair to the handwriting recognition community, other

languages such as Chinese, Tamil, Japanese or Arabic has to also be regarded as

important. Latin based handwritings are less complex than those of the other. In the

English language, for example, there are only 26 letter alphabets and each letter has

two forms, upper and lower case. English has two basic styles of writing which are;

printed and cursive script. The average number of letters per word in English

language is five. The number of strokes per letter is 2 for upper case, and only one

for lower case, even less for cursive handwriting.

 33

In English, the position and size of the letter is important. We can imagine a

writing to be written within 4 reference lines; ascender, core, base and descender.

Figure 2.2 English word “writing”, written in small letters

Upper case letters sit on the baseline and are full sized. Lower case letters are

smaller, and most are about half the height of upper case letters. Some lower case

letters have an ascender, which extends upward to almost the height of the upper

case letters, some have a descender, which extends down below the baseline, and

some have both. These can be seen clearer Figure 2.2 which shows the word

“writing” written in small letter and Figure 2.3 for the word “writing” written in

capital.

Figure 2.3 English word “WRITING”, written in capital letters

Chinese, on the other hand has a much larger character set. A character can also

represent a word. There are about 50,000 Chinese characters. They can be written in

block or cursive. Chinese characters consist of many strokes because there are a

large number of them to be distinguished. The cursive style is written faster and with

fewer strokes. The Japanese is in the same category as Chinese since they contain a

subset of Chinese characters called the Kanji. Kanji and Chinese characters have

essentially the same meaning. Hiragana and Katakana are the Japanese phonetic

 34

alphabet sets with 46 full-size characters each. Kanji, Hiragana and some English

alphanumeric makes up a complete Japanese writing system (Tappert, 1990).

Arabic handwriting is used by one-seventh of the world’s population, in the

languages such as Arabic, Farsi, Urdu, Pashto, Kurdish and Malay. Arabic script

consists of 28 basic letters, 12 additional special letters, and 8 diacritics (Biadsy,

2006). Arabic is written from right to left, opposite to Latin based language. Nearly

all letters can be written in four different letter shapes depending on their position in

a word. Some letters are disconnected and stand alone. Arabic script is similar to

Roman in that it uses spaces and punctuation to separate words. It is however

different because of the use of dots and strokes which makes the recognition of

words in Arabic script more difficult than in Roman script. Many Arabic letters

contain dots in addition to the letter body. Strokes can attach to a letter body to

create new letters. The dots and strokes are delayed strokes and are written last in a

handwritten word. A difference in the dot or stroke can produce a word other than

the one that was intended.

The author then review on online handwriting recognition for all languages.

However, as there is more research literature for the Western Latin based languages,

the bulk of the review will cover on that. A selection of the reviewed literature in

online handwriting recognition is given in Table 2.1. In the table, the main authors

of the cited literature reviewed and the methods used in the online handwriting

recognition system are given. As each system is tailored for certain users and uses a

particular database in their testing, the features and the lexicon size in the database

used are also given. This can be used to compare the complexity of each system. For

cursive handwriting recognition systems, many such systems involve a preprocessor,

feature extractor, a trainable classifier and a language modeling post processor.

Early works reported on online handwriting recognition were attributed to

(Marmelstein, 1964). Marmelstein’s method is based on what is now called the

classical analytical method described earlier. It is based on the detection of the down

stroke sequences and on a letter-by-letter recognition basis using features such as

cusps, closures, and center-line crossings. In recognition, the most likely stroke

sequence of the written word is first determined, with reference to the dictionary.

 35

Table 2.1 Summary of Online Handwriting recognition systems

Authors Method Features Lexicon
(Marmelstein, 1964). Classical

Analytical
Stroke sequence 254 words

(Bengio, 1993)
(Bengio , 1995)

CNN/ HMM

Annotated image
AMAP

25461 words

(Bellagarda, 1995) HMM/ Kmeans
clustering

4 local (slope,
curvature) , 3 global

81 character
alphabets

(Cho, 1995) Neuro Fuzzy direction letters and digits
 (Beigi, 1995) Discrete HMM

/Beam search
5 features - deltax,
deltay, tan slope
angles, abs. x, abs. y

2000+ words

(Hu, 1996) HMM subcharacter stroke
(nebulous stroke)

32 English words

(Guyon, 1996) TDNN/HMM Slope, curvature speed 25,000 Lexicon
(Artieres, 2000) Segmental Model 15 features:

- 6 temp., 9 spatial
UNIPEN chars.

(Biem, 2001) HMM /MCE 9 features; local
position and curvature
info

92 character set

(Artieres, 2000)
(Artieres, 2002)

Segment level
HMM/trajectory
model

36 fixed elementary
stroke level rep.

UNIPEN chars.

(Bahlmann, 2002) SVM with
GDTW kernel

3 features per point UNIPEN chars..

(Bahlmann, 2004) CSDTW 3 features per point UNIPEN chars.
 (Oudot, 2003) Activation-

verification
cognitive model

Geometrical
and morphological
informations

 200 000 words

(Biadsy, 2006) HMM 3 features per point Arabic
(Caillault, 2006) TDNN/HMM 7 features per point IRONOFF 197

words

Note : All lexicons are English except otherwise stated.

If no match is found, the stroke sequence is modified by accepting less likely

stroke sequences until a match is found or until some likelihood threshold value is

crossed and recognition attempts stops. Marmelstein’s work is important because it

emphasizes that more work is required to achieve practical unconstrained script

recognition, either online or offline. During that period, not only that recognition is

not reliable, but also the speed and cost of the recognition equipment are prohibitive.

Due to the complexity of handwriting recognition tasks and lack of computing

resources for the computation required, there was not much progress in the research

within this area within the next few years running into the seventies.

 36

Based on earlier work (Bengio, 1991) in NN/HMM global optimization in

speech recognition (Bengio, 1993), (Bengio, 1995b) proposed a similar system for

handwritten word recognition. He uses a combination of convolutional neural

network (CNN) and HMM in a global optimization procedure for training the word

recognizer. He also proposed word normalization using EM algorithm. For the

features, he uses annotated images (AMAP) from the normalized pen trajectory. The

replicated CNN spots and recognize characters while the HMM interprets the NN

outputs into word score, taking word-level constraints into account. The NN and

HMM are jointly trained to minimize an error measure at the word level. The system

was called LeRec. Again, based on speech recognition work, (Bellegarda, 1994)

described an unconstrained word recognizer using K-means clustering and HMM.

He uses 7 features at the character level which consists of 4 local features (tracking

slope and curvature) and 3 global features like point distance to base line and

distance between penup and pendown whenever they occur.

(Cho, 1995) uses neuro-fuzzy method in his online characters recognition. The

idea is to train a number of NN classifiers and aggregating them with fuzzy logic.

The method combines the outputs of separate NN with importance of each network,

which is subjectively assigned as the nature of fuzzy logic. (Beigi, 1995) developed

an HMM-based system for writer independent handwriting recognition using 3 state

HMM and beam search. It caters for large lexicon size of more than 20,000 words.

(Guyon, 1996) discusses a cursive script recognition system, described within the

framework of Weighted Finite State Transductions previously used in speech

recognition. It is also a writer independent system that can handle both cursive script

and handprint. Time Delay Neural Network (TDNN) is used to estimate probabilities

for characters in a word and HMM segments the word in a way which optimizes the

global word scores for the given lexicon.

(Artieres, 2000) uses segment models (SM) that model signals at a segment level

rather than at observation level. A segment corresponds to portion of the signal

which is homogeneous in some sense. For example, in a character, a segment could

be a stroke. An observation sequence is assumed to be generated by a succession of

SM states, each being responsible for a subsequence. This allows handling of

different handwriting styles. (Artieres, 2002) also proposed another flexible

 37

handwriting recognition system that is able to learn easily new symbols and to adapt

easily to a specific user handwriting using stroke level HMMs. Each letter is

modeled as a stochastic automaton, defined over a set of reference stroke level

representations (SLR). This model can easily take into account new letters or writing

styles. In all cases, the signal to stroke decoding step remains unchanged, and only

the stroke-level system parameters have to be modified.

(Bahlmann, 2002) describes an approach for online handwriting recognition

which combines dynamic time warping (DTW) and support vector machines

(SVMs) with a kernel he called Gaussian DTW (GDTW). The approach differs with

HMM in that it does not assume independence between observations as in HMM

and it directly addresses the problem of discrimination by creating class boundaries.

Incorporating DTW in the kernel, variable-sized sequential data can be handled by

the SVM. (Bahlmann, 2004) again uses SVM in a writer-independent online

handwriting recognition system called “Frog On Hand”. The classification/training

approach is using cluster generative statistical dynamic time warping (CSDTW).

CSDTW is a general, scalable, HMM-based method that holistically combines

cluster analysis and statistical sequence modeling.

(Oudot, 2003) developed a very large lexicon (200,000 words) omni-user system

that includes writer adaptation component. It is based on the activation-verification

model in perceptive psychology field. Encoding experts of the input signal, extract

probabilistic information at different levels of abstraction (geometrical and

morphological) while neuronal expert of segmentation generates a trellis of

segmentation hypotheses. The trellis is explored by a probabilistic fusion engine that

uses information of the encoding experts and the lexicon in order to provide the best

transcription of the input signal.

2.4.2 Developments in Offline Handwriting Recognition

Table 2.2 summarizes various works done in offline handwriting recognition.

The method used, the size of the lexicon used and the types of system it can handle

are given. Most techniques that are applied to online recognition are also applicable

to offline recognition. As can be observed from the table, HMM and hybrid of HMM

 38

and NN are popular. Dynamic programming is also widely applied. Most researchers

handled small lexicon while a few caters for large lexicon size of more than 10,000

words.

 Table 2.2 Offline handwritten word recognition systems

Author Method Lexicon
Size

Comments

(Burges, 1993) DP/NN 1,000 UNC,OMNI
(Cai, 1993) DP/Fuzzy 14 UNC
(Cho, 1994) HMM 10,000 CUR, OMNI
(Chen, 1994) HMM 271 UNC, OMNI
(Gader, 1994) NN/DP 100 UNC, OMNI
(Chen, 1995) HMM 1,000 UNC, OMNI
(Bunke, 1995) HMM 150 CUR, WD, 5 Writers
(Guillevic, 1995) HMM/kNN 30 UNC, OMNI
(Gader, 1995) DP 746 HAND, OMNI
(Mohamed, 1996) DP 100 UNC, OMNI
(Kim, 1997) DP 1,000 UNC, OMNI
(Farouz, 1998) HMM/NN 1,000 UNC, OMNI
(Dzuba, 1998) DP 40,000 CUR, OMNI
(Augustin, 1998) HMM/NN 28 CUR, OMNI
(Lallican, 1999) HMM/ODREC 197 CUR, OMNI
(Madhvanath, 1999) DP 1,000 CUR, OMNI
(Saon, 1999) HMM 26 UNC, OMNI
(Bippus, 1999) HMM 400 UNC, OMNI
(Procter, 2000) HMM 713 CUR, WD, 1 Writer
(Mohamed, 2000) HMM/Fuzzy 100 UNC, OMNI
(Scagliola, 2000) DP 1,000 CUR, OMNI
(Marti, 2000) HMM 7,719 UNC, OMNI, 250 Writers
(Brakensiek, 2000) HMM 30,000 CUR, WD, 4 Writers
(Favata, 2001) DP 1,000 UNC, OMNI
(Tay, 2002) HMM/NN 197 CUR, OMNI

UNC: Unconstrained, OMNI: Omniwriter, CUR: Cursive,

WD: Writer–Dependent HAND: Handprinted

2.4.3 Issues in Preprocessing

In online handwriting recognition system, preprocessing of the trajectory of

input pattern facilitates the description of the input signal and improves the quality

of the description as well. Preprocessing tasks of online character patterns includes;

noise elimination, data reduction and signal normalization. Noise in handwriting

 39

input signal can be due to users’ erratic hand motions and the imperfection in the

process of digitization of the signal. The forms of noise elimination or more

realistically, noise reduction are signal smoothing, filtering, wild point correction,

and dot reduction. Wild point reduction can replace or eliminate occasional spurious

points and dot reduction reduces dots to single points. As input devices quality

improves, trajectory noise is less of a problem and normally smoothing only, will be

sufficient.

Data reduction can be accomplished by two approaches: equidistance sampling

or line approximation (feature point detection). With equidistance sampling, the

trajectory points are resampled so that adjacent points are of equal distance.

Equidistance resampling however does not reduce the data very much. A better data

reduction rate can be achieved by detecting feature points. Feature points are the

corner points and the ends of a stroke trajectory. The idea is to estimate the

curvature at each point on the curve and retain the points of high curvature

Complementary to detecting feature points, polygonal approximation, which

recursively finds the vertex of maximum point-to-chord distance is also useful to

reduce data representation and achieve better performance. Approximation of

strokes by line is also popularly used to reduce data signal in many online

recognition systems. The latter two are more popular in Chinese character based

recognition. (Liu, 2004).

Signal normalization is a standard procedure in almost every recognition system.

Normalization can be linear or nonlinear. In linear normalization - the coordinates of

stroke points are shifted and scaled such that all points are enclosed in a standard

box. Another option in linear normalization is to use moment normalization, where

the centroid of input pattern is shifted to the center of standard box and the second-

order moments are scaled to a standard value. As for nonlinear normalization, in

offline signals, coordinates of stroke points are reassigned according to the line

density distribution. The aim is to equalize the stroke spacing. For online signals, the

line density can be computed directly from the online trajectory. Moment

normalization yield comparable recognition accuracy to nonlinear normalization.

(Beigi, 1994) describes methods for size normalization which have then been

adapted by many authors. Referring to Figure 2.2 and Figure 2.3, a handwritten

 40

word can be imagined to be written inside the four reference lines; the descender line

at the bottom of the small letter “g”, the base line at the bottom of any small letter,

the core line at the top of a small letter and the ascender line at the top of the capital

letter. To perform size normalization, the baseline and the core line need to be

estimated. The area between the two lines is always non empty for any letter and

reliable for any size normalization. Once an estimate for this area is obtained, a

magnification factor can be computed from the ratio of this area and the input to be

used to normalize the input signal. For other non Latin based languages, these are

not applicable and the full height of the writing determines the magnification factor.

Before size normalization can be done, slope correction needs to be done to align the

writing with horizontal axis.

An important aspect of preprocessing is delayed strokes processing (Hu, 1996).

Delayed strokes refer to strokes such as the cross of “t” and “x” as well as the dots

for “i” and “j”. The crosses are normally written last, thus called delayed stroke,

which normally separates from the main body of the letter. In most online

handwriting systems, delayed strokes are first detected in preprocessing and then

either discarded or used later. If they are used, they are treated as special letters in

the alphabet. A word with delayed strokes is given alternative spellings to

accommodate different sequences with delayed strokes written in different order.

2.4.4 Issues in Segmentation Stage

In small vocabulary handwriting recognition, segmentation is not an issue as

holistic method is normally used. As the size of the vocabulary gets larger, analytical

approach is more preferred. It involves segmentation of the handwriting into

primitives such as strokes, pseudo-letters or letters. Segmentation issue have not

been solved or even addressed fully. What kind of primitives to use and the methods

to segment them is heuristically based on experience.

Segmentation is the operation that seeks to decompose a word signal to a

sequence of sub signals that contains isolated characters. Segmentation points can be

at the extreme points in x and y axes, cusps or sharp corners, critical points or

 41

multiple points. Segmentation is a critical phase of the single word recognition

process. This is proven by the fact that character recognizer trained using isolated

characters is better than character recognition trained using segmented characters

from cursive words since isolated characters are “naturally segmented” by the writer.

There are two main strategies for segmentation: (a) straight segmentation or referred

to also as classical analytical approach to segmentation and (b) recognition-based

segmentation or referred to also as SegRec approach (Tay, 2002). Straight

segmentation tries to decompose the signal into a set of sub signal, each one

corresponding to a character. Straight segmentation is difficult as it needs to perform

some complex analysis. It is suitable only for tasks like segmentation of typewritten

or hand printed words and thus may not be very appropriate to be applied for cursive

or unconstrained handwritings.

SegRec approach subdivides the word signal into a set of sub signals whose

combinations are used to generate character candidates. The number of sub signals is

greater than the number of characters in the word and the process is referred to also

as over segmentation. During recognition, sub signals are combined to form

character hypothesis. Character hypothesis are evaluated and combined to form a

word which will be compared to each available word in the lexicon. Because words

are formed by concatenation of smaller units such as characters, it is very easy to

enlarge the word lexicon. As can be seen, this lexicon-driven system involves

tightly coupled segmentation and recognition process. Recognition-based

segmentation driven by the lexicon solves the complex situation of having to first

know the correct word in order to segment it and having to first segment the word

correctly in order to be able to recognize it, a situation called Sayre’s paradox

(Steinherz, 1999) mentioned earlier. The quality of the over segmentation process

depends on whether or not we missed the detections of ligatures and the ratio of the

number of primitive sub signals produced and the number of characters in the word.

The optimal segmentation is determined by the optimal combination of sub signals

in forming character hypothesis.

(Bengio, 1995b) and (Tay, 2002) describes 2 methods of over segmentations in a

word recognition system; the input segmentation (INSEG) and output segmentation

(OUTSEG). Figure 2.4 compares the two segmentation approaches using the offline

 42

word “clock”. In INSEG, over segmented sub signals are combined heuristically

and recognized as characters that are combined optimally by a decoder using

dynamic programming feature of the HMM to produce the word score. The size of

each sub signal or cut is not fixed or uniform. They are based on the dynamics of the

pen such as pen lift and pen velocity as well as geometrical clues such as spaces and

corners. In OUTSEG, entire word is accepted by the recognizer. The input word is

cut or rather divided into overlapping cut windows of the same size. Each window

will be separately recognized. The segmentation decisions are delayed until after the

recognition. A sequence of scores for each character at each location in the input is

produced. The HMM in the recognizer models the sequential structure of the word

while a character recognizer (normally the convolution neural networks) spots and

classify the characters.

Figure 2.4 (a) INSEG based segmentation (left) showing 3 hypothesis σ3, σ4

and σ5 for INSEG method which are within slices 1-2 and 2-3. (b) OUTSEG

based segmentation (right) which shows segment σ4 within window 3-6 and

overlapping windows σ5 and σ6

2.4.5 Issues in Word Recognition

Word recognition method depends on whether the recognition involves

segmentation or not. In holistic or non segmentation based system, the whole world

is recognized in one go. Normally, recognition of a word involves calculation of

some similarity or distance measure between the features of the word and the words

 43

contained in the lexicon. Methods such as the nearest neighbor or k-nearest neighbor

can be used in the recognition where the minimum distance measure determines the

class of words. HMM has also been used, especially for system with a small lexicon

size. A useful function of this holistic word recognition is as a preprocessor of the

segmentation based recognizer where it can be used to preselect a small subset of

probable words. This in a way reduce the lexicon size before the segmentation based

recognition performs more detailed recognition of each word in the reduced lexicon

(Madhvanath, 2000). This also reduced the recognition time. Holistic recognition is

quite robust. Its performance is not affected too much even if we have deformed

handwriting. Thus it can also be used in the design of combination of multiple

recognizers.

As mentioned, segmentation based recognition can be divided into straight

segmentation and SegRec. In straight segmentation based system, once the

segmentation into characters has been done, the recognition is a straight forward

step. A character recognizer trained on isolated character can be used without much

change to produce recognition score for each character that have been segmented.

NN has been a popular character recognizer for this approach. SVM can be one as

well. The recognized word is formed by concatenating the characters.

In SegRec approach, a character recognizer is used to recognize many hypothesis

characters made up of combination of the smaller over segmented segments. The

word recognizer combines the most suitable combination of hypothesis that gives

the highest word score among all words in the lexicon. The best word score

eventually determine the ultimate segmentation points of the word. As mentioned

earlier, there are two ways to segment words in recognition-based segmentation; (a)

the OUTSEG method and (b) the INSEG method.

OUTSEG or Output Space Segmentation approach allows segmentation points to

be decided at the output space. Initially, the word signal is segmented implicitly into

uniform size entities which can be overlapping, that is smaller or equal to character.

Then, the recognition is carried out at the output space by associating groups of these

smaller entities to form a particular character in a word. INSEG or Input Space

Segmentation on the other hand requires segmentation points to be decided explicitly

 44

by using spatial information in the word. All possible segmentation points are

determined and cuts are made at these points. Then the cuts are combined into

character hypotheses and passed to character recognizer. These character hypotheses

can represent part of a character, a full character, a few characters, or part of a

character combined with part of another characters. This is a big challenge for the

character classifier, which has to deal with unseen patterns during training stage.

Actually, they are outliers and classifiers such as NN behave inconsistently in this

situation. The recognition process involves selecting only the character hypotheses

that represents actual character signals forming a particular word.

Normally, OUTSEG recognition method involves using convolutional neural

network (CNN) and hidden Markov model in a hybrid system where the CNN spot

and recognize the characters and the HMM perform the sequential modeling for the

word. The CNN can be a Time delay Neural network (TDNN) used in online

handwriting recognition or space displacement neural network (SDNN) for off-line

handwriting recognition. These NN have some shift independent capabilities

allowing to detect a character even when it is not currently centered in the window.

For INSEG approach, the character recognizer can be based on a probability

distribution function (PDF) classifier in the global HMM itself. This is the case of a

discrete HMM. Sometimes, a continuous density HMM with Gaussian distribution

function is used instead. The continuous HMM is proven to give better recognition

result compared to discrete HMM. PDF classifiers are not discriminant since its

training only involves in class data, without taking into account the out of class data.

To obtain a discriminant classifier, classifier giving output as posterior probability

can be used. The most popular posterior probability based character recognizer used

in this approach is the ANN trained with Back propagation (BP). In BP ANN, data

from all classes are involved during training which makes it discriminant in nature

thus able to better discriminate among classes. However, by using posterior

probability based classifier, the output needs to be normalized because prior

probability is embedded in the posterior (refer to Bayes theorem) resulting in a

biased recognition. Normalizing the posterior probability output gives likelihood or

similar probability. Besides ANN, other discriminant classifiers that give posterior

 45

probability or likelihood score as the output at the character level can be used in an

INSEG based word recognition system.

The final step in handwriting recognition is to compare the handwritten word

that is being recognized with the reference patterns to determine their similarity to

decide which pattern or model best represents the word being recognized. In this

step also, the best segmentation of the word into characters is determined. Language

models may be used at this level. A few methods of implementing language model

that are commonly used are lexicon trie or simple Markov model or n-gram (Guyon,

1996). Lexicon trees store list of words with their frequency while character n-grams

are used to predict the next character given a window of (n – 1) past characters. In

sentence recognition, word n-grams are used to predict the next word given a

window of (n – 1) past words.

SegRec word recognition is essentially a best path problem that incorporates

character classification scores, segmentation information and the language model.

Character classification score can be pure probability values or negative log

probabilities. The overall score for a path in the graph is given by the product of the

character score of the arcs traversed. The probability of a given word is given by

summing over all possible ways of character combinations to produce that word. The

most probable word is the recognition result. The forward algorithm described in

HMM is an efficient dynamic programming (DP) technique to compute the above

sum. The Viterbi algorithm which picks the best single path in the graph as the

recognition is often used to approximate the forward algorithm, for computational

reasons. This means replacing the sum in equation with the largest term to make this

approximation. Approximate search procedures to find the most probable word are

often preferable for computational reasons. These include beam search procedures

(Ney, 1987) and the A* algorithm (Soong, 1991) and various fast match techniques

can be used to narrow down the search space.

2.4.6 Issues in Post Processing Stage

Post processing stage may involve using search strategies and verification

approaches that allow for achieving faster recognition and improvement in the

 46

accuracy. Speed improvement can be obtained by various methods in the search

techniques such as lexical tree search, standard and constrained lexicon–driven level

building algorithms, two–level decoding algorithm, and a distributed recognition

scheme. The recognition accuracy can be improved by post–processing the list of

the candidate N–best–scoring word hypotheses generated by the baseline recognition

system. The list also contains the segmentation of such word hypotheses into

characters.

Verification module can be used to generate a score for each segmented

character and in the end; the scores from the baseline recognition system and the

verification module are combined to optimize performance. A rejection mechanism

can be introduced over the combination of the baseline recognition system with the

verification module to improve significantly the word recognition.

2.5 SVM in Speech and Handwriting Recognition

This section reviews current usage of SVM from the perspective of handwriting

recognition. A few references may be made to its usage in speech recognition as its

application is similar to the one in handwriting recognition. In general, SVM have

been used in handwriting recognition in a number of ways; as a standalone

recognizer in a fixed feature based character recognition system (Ahmad, 2004a), as

a replacement of HMM in a sequence processing based character or word

recognition system (Bahlmann, 2002) or as a final decider in the final output of a

handwriting recognition system. The author describe in the following subsections

the various ways of SVM’s usage.

2.5.1 SVM in Speech Recognition

(Ganapathiraju, 2002) and (Ganapathiraju, 2004) describes application of SVM

in a large vocabulary speech recognition. SVM is used in a hybrid HMM/SVM

setting. Since SVMs is inherently a static classifier and HMMs have the ability to

handle dynamic data, the two complements each other. An important issue that had

to be addressed in this hybrid system is the fact that normally, SVMs output a

 47

distance measure, while the Viterbi decoding algorithm typically uses likelihoods or

posterior probabilities. Therefore SVM distances outputs are converted to posterior

probabilities.

2.5.2 SVM with DTW Kernel in Character Recognition

(Bahlmann, 2002) describes an approach for on-line character recognition that

combines dynamic time warping (DTW) and support vector machines (SVMs) by

establishing a new SVM kernel. He called the kernel - Gaussian DTW (GDTW)

kernel and his method as SVMGDTW. The kernel approach has an advantage over

common HMM techniques because it does not model generative class conditional

densities. Instead, it directly addresses the problem of discrimination by creating

class boundaries and does not have modeling assumptions. By incorporating DTW

in the kernel function, general classification problems with variable-sized sequential

data can be handled. SVMGTDW method can in fact be applied to other similar

problems such as speech recognition. Bahlmann compared his kernel approach to an

HMM based technique on the UNIPEN handwriting database and showed that he

achieve comparable results.

In SVM research, work on kernels for sequential data has been done by

(Jaakkola, 1999) and (Watkins, 2000). Jaakkola developed an SVM kernel in their

application of protein homology detection and refer to it as Fisher kernel. Watkins

developed several explicit kernels for sequential data and shows that they are proper

SVM kernels under certain conditions. However, the kernels mentioned above are

still based on an estimation of generative parameters. The GDTW kernel on the

other hand presumes less model knowledge and is less complex. Comparing GDTW

kernel to HMM-based classifier on the UNIPEN data shows that recognition rate is

better for relatively small training sets but comparable for larger training sets.

2.5.3 SVM as a Character Recognizer in a Hybrid System

(Camastra, 2007) describes a cursive character recognizer as a module in an

offline cursive word recognition system based on a segmentation and recognition

 48

approach. The character classification is done by using Support Vector Machines

(SVMs) and a Neural Gas. The Neural Gas is used to verify whether lower and

upper case version of a certain letter can be joined in a single class or not. Once this

is done for every letter, the character recognition is performed by SVMs.

2.5.4 SVM in Multiple Classifier Methods

To achieve an optimal recognition rate, many researches use different methods

for combining multiple classifiers to compensate the weakness of one classifier, by

the strength of the other classifiers. The combination method can use Local

Accuracy Estimates, Local Learning Algorithm, Adaptive Mixtures of Local Experts

or aggregation of the decisions obtained from individual classifiers to derive the best

final decisions from a statistical point of view. The disadvantage of most of these

methods is the complexity of optimization for each classifier and the definition of

local area in terms of K-nearest neighbors which requires storing in the system

memory all the training examples. These constraints are prohibitive in real

handwriting recognition systems where some training sets can contain large number

of examples.

(Bellili, 2000) uses a combination of multilayer perceptron (MLP) neural

network and SVM classifiers. The SVMs are used to improve the performances of

an MLP based digit recognizer. The hybrid SVM/MLP architecture is based on the

idea that the correct digit class of the recognizer almost systematically belongs to the

two maximum MLP outputs and that some pairs of digit classes constitute the

majority of the recognizer errors. Specialized local SVMs are introduced to detect

the correct class among these two classification hypotheses. The hybrid MLP-SVM

recognizer achieves a recognition rate of 98.1%, for real mail zipcode digits

recognition task, a performance better than several classifiers reported in recent

researches.

2.5.5 SVM in Non Roman Handwriting Recognition

Support vector machines have also been observed to achieve reasonable

generalization accuracy for non-Roman handwriting recognition such Thai

 49

(Sanguansat, 2004) Arabic (Bentounsi, 2004) and Devanagari/Telugu scripts

(Chakravarthy, 2007).

(Sanguansat, 2004) proposed a method for online Thai handwritten character

recognition using HMMs and SVMs with a generalized Fisher kernels (called score-

space kernels) based on underlying generative models. In the first phase, HMMs are

used for multi-classification, then SVMs are applied to resolve any uncertainty

remaining after the first-pass HMM-based recognizer (on certain classes only

because the results of some classes are worse). Confusion matrix of the HMM-based

recognizer is used to find the confused candidates in each class. If there is one

candidate, it means there is no confusion in this class and HMMs alone are sufficient

to classify. If there is more than one candidate, SVMs are applied. If there are more

than two, the multi-class method is applied. Symmetric likelihood ratio score-space

was proposed where one observation sequence is mapped to only one score-vector.

Experimental results show the average recognition rate improved from 89.9%, using

baseline HMM, to 92.5%, using SVM with score space kernel.

(Chakravarthy, 2007) uses SVM for online handwritten character recognition for

Indian scripts. A number of separate feature vector combinations were used and

compared. Features compared are stroke points, Fourier series coefficient and spatio-

structural features (shape feature), Hilbert transform, stroke points appended with

stroke velocity, PCA based feature and Fisher linear discriminant (FLD) based

feature vector. The standard gaussian kernel is used for training. Multiple classifiers

approach were also taken where (1) the class corresponding to the maximum of

normalized value among all the classifiers is selected as the best representative for

the given test sample, (2) Majority vote is applied on the top K-output values from

each classifier, (3) Normalized output value from each classifier is selected and

concatenated and passed to another SVM based classifier.

2.6 Summary

In this chapter, we review pattern recognition and speech recognition as the lead

towards describing in detail the reviews on state of the art for handwriting

 50

recognition. We review both offline and online handwriting recognition with respect

to the various stages in the recognition system; preprocessing, segmentation, feature

extraction, recognition and post processing. Finally, a review of the usage of SVM

in speech and handwriting recognition is given.

 51

CHAPTER 3

HIDDEN MARKOV MODEL

3.1 Introduction

Handwritings are collection of signals captured by appropriate devices. Thus, as

with any signal, they can be described theoretically by using a signal model. The

model can be used is two ways; (a) to describe the process of writing, given a signal

that gives some desired output, (b) to learn about the signal source by simulation

without the source being available. Signal models are either deterministic or non-

deterministic (statistical). The differences between the two are that deterministic

models use some known properties of the signal and only certain parameters need to

be determined while non-deterministic or statistical models determines the statistical

properties of the signal assuming that it can be characterized as a parametric random

process such as Gaussian, Poisson or Markov processes. The signal is assumed to be

well characterized and its related parameters can be determined or estimated in a

precise and well-defined manner.

Hidden Markov Model (HMM) is a statistical model of Markov process. It is

rich in mathematical structures which can be used to model signals in real

applications. An HMM is a variable-size collection of random variables with an

appropriate set of conditional independence properties. Informally, an HMM is a

variant of a finite state automata (FSA), which model a behavior composed of states,

transitions and actions. However, HMM, unlike FSA, are not deterministic. A

 52

normal FSA emits a deterministic symbol in a given state. Further, it also has

deterministic transitions to another state. A stochastic FSA has either one of

emission or transition which is probabilistic. HMM, on the other hand is doubly

stochastic, both in the transition and emission. Given an FSA to model a string of

symbols it can be easily determined if the string has been generated by the FSA and

if it is what the sequence of state transitions undertaken was (Boulard, 2003). With

an HMM, the first stochastic process is represented by the probability that the HMM

generated the string and the second by the sequence of state transitions undertaken

which is “hidden", hence the name Hidden Markov Model. The stochastic emission

models the local properties and the stochastic transition models the sequential

properties.

Early theory of HMM was published by Leonard E. Baum and other authors

(Baum, 1970). It has been successfully used to address complex sequential pattern

recognition problems, among them continuous speech processing and recognition,

cursive handwriting recognition, time series prediction and biological sequence

analysis (Boulard, 2003). Its first usage was in speech processing as reported by

(Baker, 1975) and (Jelinek, 1976). The usage was further popularized in speech

recognition in the 80s by (Levinson, 1983) and (Rabiner, 1986a). During this time,

several HMM-based speech recognition systems from AT&T, BBN, and CMU

showed superior results (Chow, 1987) (Lee, 1988). The success of these systems

dramatically increased interest in applying HMMs to speech recognition and other

difficult pattern recognition problems such as handwriting recognition.

Some usages of HMM in handwriting recognition can be traced in the following

papers by (Nag, 1986), (Kundu, 1988), (Matan, 1992a) (Ha, 1993), (Schenkel,

1993), (Schenkel, 1995) and (Bengio, 1995a). This chapter introduces HMM and its

usage in handwriting recognition.

3.2 Theory of HMM

There are two types of HMMs classified by their observation probability

densities: discrete-density HMMs and continuous-density HMMs. For simplicity, the

 53

discussion here will be limited to discrete-density HMMs. A more detailed

explanation of HMMs can be found in (Rabiner, 1993), (Huang, 1990) and (Lee,

1988).

As mentioned earlier, HMM is a statistical model of Markov processes. To

understand discrete-density HMMs, a review of the discrete-state Markov process is

necessary.

3.2.1 Discrete-State Markov Process

A Markov process is a stochastic process that satisfies the Markov condition in

which its future behavior depends only on its present state, not on the past. It is also

called a memory less system. A discrete-state Markov process can be in one of a set

of N distinct discrete states, S1, S2… SN at any given time. Let Qn denote the state of

the process at time n. The probability of the process being in state Si at time n is

denoted by P(Qn = Si).

Markov condition implies state-independence assumption. Simply stated, the

present state depends only on the previous state. It can be formally stated as follows:

),...,,|(021 baninin SQSQSQSQP ===== −− =)|(1 injn SQSQP == −

 baji ,,,∀ and n

(Eq. 3.1)

Since a discrete-state Markov process satisfies the Markov condition, the initial

state probabilities and the state transition probabilities from one state to the next

together characterize the process completely. The probabilities of starting in a

particular state or the initial state probabilities are denoted by }{ iπ=Π where

)(0 ii SQP ==π Ni ≤≤1 (Eq. 3.2)

 with ∑
i

iπ = 1

The state transition probabilities are denoted A = }{aij , where:

)|(1 injnij SQSQPa === − ∀ Ni ≤≤1 and (Eq. 3.3)

1∑ =

i
ija (Eq. 3.4)

 54

Figure 3.1 A 3-state markov process

As an example, a Markov process with 3 states (S1, S2 and S3) is shown in Figure 3.1.

The circles are the states and the arrows indicate the transitions that are possible

between the states. In the diagram, aij is the state transition probability from state i

to state j and πi is the initial state probability from state i.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

333231

232221

131211

}{
aaa
aaa
aaa

aA ij and
(Eq. 3.5)

}{ kπ=Π []321 πππ= (Eq. 3.6)

The duple },{ ΠA , completely parameterizes the discrete-state Markov process.

3.2.2 Extending Discrete-State Markov Processes to Hidden Markov Models

If we extend the discrete-state Markov process so that there is a non-

deterministic (or probabilistic) observation associated with each state, we have a

Hidden Markov Model (HMM). Here, we assume that there is a symbol Oi that is

observed when the process is in the state i, according to some probability. Thus,

there is a sequence of observations that is observed and there are many possible state

 55

sequences which generate an observation sequence. The state sequence however is

hidden.

A formal definition for HMM is as follows. Let the number of distinct

observation symbols that can be emitted in each state be M. Let On be the

observation at time n and the event for which the observation symbol is k be denoted

by vk. The state observation probabilities is denoted as }{
kivbB = where

)|(inkniv SQvOPb
k

=== Ni ≤≤1 , and Mk ≤≤1 (Eq. 3.7)

 ∑ =
k

ivk
b 1

Since HMM satisfies the output independence assumption, the probability of present

observation given past observations, depends only on the current state. As such, we

have

),...,,|(021 kncbnankn SQvQvOvOvOP ====== −−

 =)|(knkn SQvOP == baji ,,,∀ and n
(Eq. 3.8)

The triple, {A, B, Π}, normally denoted together by λ completely parameterizes an

HMM. i.e., λ={A, B, Π} and Π is the initial state probabilities.

Figure 3.2 shows a simple example of discrete density HMM with 3 states and 2

observation symbols, i.e.: N = 3 and M = 2. The state transition probabilities are:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

333231

232221

131211

}{
aaa
aaa
aaa

aA ij and
(Eq. 3.9)

the state observation probabilities for the two symbols }2,1{ are:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

3231

2221

1211

}{
bb
bb
bb

bB
kiv and

(Eq. 3.10)

 56

The initial state probabilities are:

}{ kπ=Π []321 πππ= (Eq. 3.11)

Figure 3.2 A 3-state HMM with 2 observation symbols {0, 1}

3.2.3 Three Problems of HMM

Given the form of the HMM discussed in the previous section, there are three key

problems of interest that must be solved for the model to be useful in real world

applications. These problems are the following:

(a) Given the observation sequence O = O1O2…OT and the HMM model

λ={A, B, Π}, how to compute P(O| λ), the probability of the observation

sequence. This is the Evaluation Problem.

(b) Given the observation sequence O = O1O2…OT and the HMM model

λ={A, B, Π} how to choose a state sequence Q = Q1Q2…QT which

maximizes P(Q, O| λ). This is the Decoding Problem.

(c) Given the observation sequence O = O1O2…OT and the HMM model

λ={A, B, Π}, how to adjust the model parameters λ={A, B, Π} which

maximize P(Q, O| λ). This is the Training Problem.

 57

In (a), given a model and a sequence of observations, we compute the probability

that the observed sequence was produced by the model or another words we evaluate

the model. ie: by comparing the model with competing models, we can choose

which is the best match to the observations. In (b), we attempt to uncover the state

sequence (hidden part of the model). Using an optimality criterion, the best state

sequence which is found can be used to learn about the structure of the model, and to

get average statistics, behavior, etc. within individual states. In (c), we attempt to

optimize the model parameters so as to best describe how the observed sequence

comes about. The training problem is crucial since it allows to optimally adapt

model parameters to observed training data to create best models for real

phenomena.

3.2.4 A Solution to the Evaluation Problem – The Forward Algorithm

The evaluation problem is to compute P(O|λ), the probability of the observation

sequence, O = O1O2…OT, given the model parameter λ. Since the state sequence,

Q = Q1Q2…QT, corresponding to the observation sequence O is hidden, P(O|λ) has

to be computed by summing P(O, Q|λ) over all possible state sequences.

P(O | λ) ∑=
allQ

QOP)|,(λ (Eq. 3.12)

where P(O,Q | λ)= P(O|Q, λ) P(Q | λ) (Eq. 3.13)

The state independence assumption (Eq. 3.1), allows us to write:

P(Q | λ) = 12312
...1 −TTQQQQQQQ aaaπ (Eq. 3.14)

 Also, the output independence assumption allows us to write :

P(O,Q | λ) =
TTOQOQOQ bbb ...

2211
 (Eq. 3.15)

Therefore,

P(O | λ) ∑=
allQ

Q1
π)...(

12312 −TTQQQQQQ aaa)...(
2211 TTOQOQOQ bbb (Eq. 3.16)

 58

The direct calculation of P(O|λ) in (Eq. 3.16) involves calculations on the order

of 2TNT. This computation becomes unfeasible as the number of possible states, N,

or the length of the observation sequence T increases. This necessitates a more

efficient way of computing P(O|λ). Fortunately, an efficient algorithm called

Forward-Backward algorithm exists. First, let us define the forward variable:

 αt(i)= P(O1O2…Ot, Qt=Si| λ) (Eq. 3.17)

The variable αt(i) denotes the joint probability of the partial observation

sequence, O1O2…Ot, and the state Si at time t, given the model λ. It can be calculated

recursively:

 αt(i)=

⎪
⎪
⎩

⎪⎪
⎨

⎧

∑
=

−

N

j
iojit

ioi

t
baj

b

1
1)(

1

α

π

Tt

t

≤≤

=

2

,1

Ni

Ni

≤≤

≤≤

1

1

(Eq. 3.18)

From the definition of the forward variable, it is observed that the probability of the

entire sequence can be expressed as:

P(Q | λ) = ∑
=

N

i
T i

1

)(α (Eq. 3.19)

 (Eq. 3.17) to (Eq. 3.19) illustrate how to compute P(O|λ) by first recursively

evaluating the forward variables, αt(i), from t = 1 to t = T and then summing all the

forward variables at time T, the αT(i)’s. The above steps are often referred to as the

forward algorithm. The number of calculations involved is on the order of TN2

instead of 2TNT. Hence, the forward algorithm can be used to solve the evaluation

problem much more efficiently.

3.2.5 A Solution to the Decoding Problem – The Viterbi Algorithm

The decoding problem involves finding an optimal state sequence given the

observation sequence, O = O1O2…OT, and the model parameter λ. The optimality

criterion is to maximize P(Q,O|λ) which is the joint probability of the state sequence,

Q = Q1Q2…QT, and the observation sequence O = O1O2…OT, given the model λ.

 59

The optimal state sequence is denoted by Q*. Viterbi algorithm which is a popular

algorithm based on dynamic programming, can be used to solve this optimization

problem. We use δt(i) to denote the maximum probability of the optimal partial state

sequence, Q1Q2…Qt-1, with the state Si at time t and observing the partial

observation sequence, O1O2…Ot, given the model λ.

 δt(i)=
121 ...

max
−tQQQ

P(Q1Q2… Qt-1 Qt = Si , O1O2…Ot | λ) (Eq. 3.20)

Similar to the forward variable αt(i), δt(i) can be calculated recursively as follows:

δt(i)=
⎪
⎩

⎪
⎨

⎧

−≤≤ tiojitNi

ioi

baj

b

)(max 11

1

δ

π

Tt

t

≤≤

=

2

,1

Ni

Ni

≤≤

≤≤

1

1

(Eq. 3.21)

From the definition of δt(i), it is clear that :

 P(Q*, O|λ) =)(max
1

iTNi
δ

≤≤
 (Eq. 3.22)

Using (Eq. 3.21) and (Eq. 3.22), we can compute the joint probability of the

optimal state sequence and the observation sequence given the model, P(Q*, O|λ).

Note that the memory usage is very efficient, i.e., at any time t, only N forward

variables, δt(i) need to be stored. By keeping track of the argument i in both

equations as P(Q, O|λ) is being maximized, we can recover the optimal state

sequence completely.

Also note that P(Q*, O|λ) can be viewed as the biggest component of P(O|λ) in

(Eq. 3.12). When P(Q*, O|λ) is a good approximation of P(O|λ), we can use the

Viterbi algorithm instead of the forward algorithm for the evaluation problem. This

will conserve computation. Since the computational complexity of the Viterbi

algorithm is even less than that of the forward algorithm.

 60

3.2.6 A Solution to the Training Problem – The Baum-Welch Algorithm

The training problem is by far the most difficult of the three basic problems. The

training problem computes the optimal model parameter, λ, given an observation

sequence, O = O1O2…OT. Here, the optimality criterion is to maximize P(O|λ), the

probability of the observation sequence given the model λ. Generally we expect the

optimal model to have the same number of states and observations. Intuitively, we

want to think of training an HMM as methods for making slight adjustments to an

already somewhat-working model.

There is no known analytical solution that exists for the learning problem. There

are however, popular iterative algorithms for addressing it: the Baum-Welch

Algorithm, and Viterbi Training. In this section, we will focus on Baum-Welch

Algorithm exclusively. The iterative procedures guarantee a locally optimal solution

to the training problem. The Baum-Welch algorithm is a generalized expectation-

maximization (EM) algorithm for finding maximum likelihood estimates and

posterior mode estimates for the parameters (transition and emission probabilities) of

an HMM, when given only the observation training data. EM algorithm alternates

between performing an expectation (E) step, which computes an expectation of the

likelihood and maximization (M) step, which computes the maximum likelihood

estimates of the parameters by maximizing the expected likelihood found on the E

step. The parameters found on the M step are then used to begin another E step, and

the process is repeated.

The two steps of the algorithm can be summarized as follows: (a) Calculating the

forward probability and the backward probability for each HMM state; (b) On the

basis of this, determining the frequency of the transition-observation pair values and

dividing it by the probability of the entire string. This amounts to calculating the

expected count of the particular transition-observation pair. Each time a particular

transition is found, the value of the quotient of the transition divided by the

probability of the entire string goes up, and this value can then be made the new

value of the transition.

To discuss HMM training in detail, first, let us define the backward variable:

 61

 βt(i) = P(Ot+1 Ot+2 … OT|Qt=Si, λ) (Eq. 3.23)

The variable βt(i) denotes the probability of the partial observation sequence,

Ot+1 Ot+2 … OT, given the state Si at time t and the model λ. The backward variable

is similar to the forward variable. It can also be calculated recursively:

βt(i) =

⎪
⎪
⎩

⎪⎪
⎨

⎧

∑
=

+ +

N

j
joijt t

baj
1

1 1
)(

1

β

11

,

−≤≤

=

Tt

Tt

Ni

Ni

≤≤

≤≤

1

1

(Eq. 3.24)

From the definition of the backward variable (Eq. 3.23) and the definition of the

initial state probabilities (Eq. 3.2) it is clear that

P(Q | λ) = i

N

i

i πβ∑
=1

1)((Eq. 3.25)

Second, let us define ξt(i, j), the joint probability of the state Si at time t and the

state Sj at time t+1, given the observation sequence O and the model λ.

 ξt(i, j)= P(Qt =Si, Qt+1 =Sj | O, λ) (Eq. 3.26)

ξt(i, j) can be completely expressed in terms of the forward variable, the backward

variable, and the model λ.

 ξt(i, j)=)|(
)|,,(1

λ
λ

OP
OSQSQP jtit == +

 ∑∑
= =

+

+

+

+= N

i

N

j
tjOijt

tjOijt

jbai

jbai

t

t

1 1
1

1

)()(

)()(

1

1

βα

βα

(Eq. 3.27)

Note that the denominator of (Eq. 3.27) needs to be calculated only once. This

quantity, which is equivalent to P(O|λ), is often referred to as the alpha terminal. It

indicates how well the model λ matches the observation sequence O. With the

 62

current model as λ = (A, B, Π), we can iteratively re-estimate the model,

),,(Π= BAλ , where

∑∑

∑
−

− =

−

== 1

1 1

1

1

),(

),(

T

t

N

j
t

T

t
t

ij

ji

ji
a

ξ

ξ

,

(Eq. 3.28)

∑∑

∑ ∑

= =

=∩= == T

t

N

j
t

T

vOt

N

j
t

iv

ji

ji
b kt

k

1 1

1 1

),(

),(

ξ

ξ

(Eq. 3.29)

and

∑
=

=
N

j
ti ji

1
),(ξπ (Eq. 3.30)

ija can be seen as the ratio of the expected number of transitions from state Si to Sj

to the expected number of transitions from state Si to any state. Similarly,
kivb can

be seen as the ratio of the expected number of times in state i while observing the

symbol vk to the expected number of times in state i. πi can be seen as the expected

number of times in state Si at time t = 1. The above iterative procedure for updating

the model λ is the essence of the Baum-Welch algorithm. Baum and others have

proven that P(O| λ)≥ P(O|λ) for every iteration of the algorithm. Hence, P(O| λ)

≈ P(O|λ) is used as the stopping criterion for the algorithm. The likelihood function,

P(O|λ) will eventually converge to a local maximum.

3.3 HMM Model Topology

In Baum-Welch algorithm, we refine an existing HMM so as to make it more

suitable for a particular dataset. How to pick an initial HMM from scratch to match

some empirical data is actually more of trial and error. We begin by making a

“guess” at what a good model might be, and then use Baum-Welch to tune the

 63

probabilities accordingly. The number of states and observations and the topology of

the state transition graph need to be decided, which require some insight into the

process being modeled. Normally, a few different models are tried before the best is

picked.

There exist many different HMM model topology. Figure 3.3 shows some

example topologies for a 4 state HMM. Left-to-right model is a model which allow

only left to right transition and does not allow backward transition while Ergodic

model allows transition from a state to any other states. Linear model is a special

case of left-to-right model without the skip between states while Bakis model is also

a left-to-right model but allows a single state skip.

(a) linear model – transition allowed to

the current or next state.

(b) Bakis model – transition allowed to

the current, next or next 2 state.

(c) Left-to-right model – transition

allowed to current and all states to

the right

(d) Ergodic Model – transition allowed

to current and any other states

Figure 3.3 HMM Model Topology

 64

3.4 Using HMMs for On-line Handwriting Recognition

To use HMMs for solving handwriting recognition problem, we need to know

how to model handwriting using HMM. Letters, words, and sentences can be

modeled with HMMs. Building the model, ie: the training and the recognition of

isolated words and sentences can be accomplished by using the solutions to the three

basic HMM problems given in the previous section. In this section, the modeling of

letters, words, and sentences are described respectively.

3.4.1 Modeling Letters

An HMM can model a letter. Normally a left-to-right HMM topology is used.

The left-to-right HMM state index is non-decreasing as the time increases.

i.e: aij = P(Qn = Sj| Qn-1 = Si) = 0, i > j.

Non-emitting states can be used in an HMM model to indicate start and end

states.

Figure 3.4 shows left-to-right and ergodic models using white circle as the

emitting states and black circle as the non-emitting states. These states are used as

the starting and ending point in the model which can be used in the concatenation

between models.

(a) 3 state Left-to-right model (b) 3-state Ergodic model

Figure 3.4 HMM Modeling with emitting and non-emitting states

 65

In training the HMM, we have samples of existing letters and their classes.

Using the samples, an HMM is built for each letter in the set of letters. Thus, for

each letter i, 1≤ i ≤ N, where N is the total letters in the letter set, there is an HMM

model λi={Ai, Bi, Πi} being built.

For letter recognition, a new letter is given for recognition. The new letter is

represented by the observation sequence, O = O1O2…OT. We need to decide which

one of letter models λi, 1≤ i ≤ N, best represent the observation sequence O. This is

the evaluation problem of the HMM. First, we can compute P(O|λi), which is the

probability of the observation sequence O given the HMM model parameters for

each of letters using the forward algorithm. Then the letter corresponding to the

maximum probability, P(O|λi), is chosen as the optimal answer. According to

Bayesian classification theory, picking this letter minimizes the probability of error,

therefore:

Nlettersl
ioptimal

OPl
∈

=)|(maxarg λ (Eq. 3.31)

3.4.2 Modeling Words

For handwriting recognition, a word can be modeled by an HMM if the lexicon

is small in size. If the lexicon is large, normally the word HMM model is formed by

concatenating letter HMMs since a word is made of a sequence of letters. In cursive

writing, for words with the letters “i”, “j”, “x”, or “t”, where the writer adds the dots

or crosses at the end of writing the word, these words are modeled with

concatenating letter HMMs with letter-HMMs modeling these special characters, the

“i” or “j” dot, the “t” cross, and the “x” cross, to the end of the HMM modeling these

words. Some researchers, ignore these dots and crosses altogether.

Since these dots and crosses can be written in an arbitrary order, each of these

words would have multiple word-HMMs representing each of them. The number of

word-HMMs representing the same word can grow quite large as the number of “i”,

“j”, “x”, or “t” letters increase. Researchers use various methods to represent these.

 66

The simplest may be to represent these special letters by a single letter, such as the

“backspace” character. For example, the HMM model of the word ‘it’ consists of

four individual letter HMMs, each of which represents the letter “i”, “t”,

“backspace”, and “backspace”, respectively. Using HMM with white and black

states, the concatenation is formed at the black states. In this case, if a character

model is to be removed, it can be modeled as allowing a transition of the initial state

of a model letter to the final state of this same model letter.

Figure 3.5 Concatenation of character HMM models to form a word model

A word HMM model therefore consists of a group of white emitting states and a

group of black non-emitting states between initial state and final state of the model.

In discrete density HMM, it is necessary to define a group of observation symbols

and so, each white state has its own probability of emitting a symbol. The usual

approach for defining the symbol is vector quantization method by using the k-

means algorithm. In continuous density HMM, the probability is estimated on the

space of observation possible. Among the popular one is Gaussian distribution.

For word recognition, word-HMMs built from the concatenation of letter

HMMs are used to calculate the probability of the particular word given the

observation sequence as described in section 1.4, using Bayes theorem. Words with

the highest posterior probability are taken as the recognized word.

…

 67

3.4.3 Modeling Sentences

Sentence model is formed from concatenation of word HMMs. In a sentence

recognition system, the number of all possible words is normally limited to a

particular recognition task. However, the numbers of sentences that can be

composed with these words are very large. To model each sentence explicitly is

simply computationally impossible. Fortunately, a probabilistic sentence network

can be constructed to represent all of the possible sentences. Words in a sentence can

also be assumed to satisfy the Markov condition, i.e: the word in a sentence is only

dependent on the previous word, and not any other previous words.

The probability of a word given the previous word P(Wn|Wn-1) is called the

bigram probability. We can similarly have n-gram probabilities; the probability of a

word given n-1 previous words. The bigram probabilities and the initial word

probabilities, P(W0), together specify a bigram grammar for sentences. The

probability of any sentence composed of a set of words, W0W1…Wn-1Wn, can be

approximated with this bigram grammar:

P(W0W1…Wn-1Wn) ˜ P(W0)P(W1|W0),…P(Wn-1|Wn-2)P(Wn|Wn-1) (Eq. 3.32)

The bigram grammar can be estimated from a sentence data corpus. The

sentences from the corpus are used to compute the bigram probabilities and initial

word probabilities. To model all possible sentences made of the allowable words

with HMMs, a bigram grammar can be constructed with all of these words using the

sentence data corpus. Each node of a bigram grammar is actually a word HMM.

These composite HMMs can represent all possible sentences made of all the

allowable words.

In sentence recognition, new handwritten sentences in the form of the

observation sequence O = O1O2…OT is given. A sentence corresponding to the

observed sequence need to be obtained as the most probable sentence. Here, the

HMM model parameters of each letter, λi={Ai, Bi, Πi}, are known, and the

parameters of the bigram grammar are also known. Therefore, first, we calculate the

optimal state sequence, Q* =Q1*Q2*… QT* which corresponds to the observation

 68

sequence using the Viterbi algorithm. Since the optimal state sequence is associated

with a deterministic sequence of letters and words, this sequence of words is the

desired result for the sentence.

On the extreme, a unique HMM can be created for each sentence, but it would be

necessary to compute the probability P(O|λi) for each sentence using forward

algorithm. Since the number of possible sentences grows exponentially with the

number of words, this method of utilizing the forward algorithm is computationally

impractical. Therefore, it is necessary to use the Viterbi algorithm in order to solve

the problem of sentence recognition.

3.5 Discriminative Training of HMM

Training of HMM using maximum likelihood estimation (MLE) approximation

is known to be non-discriminative. This is due to the fact that only in-class examples

are used in building the HMM models. To be discriminative, information from all

examples of different classes need to be used in the model building. In MLE-based

HMM training, the estimation process tries to optimize the modeling ability of the

observation without having the measure of their classification ability. In real

application, a good classifier needs to have the goal of better discrimination ability.

There are some powerful HMM parameter estimation techniques and classifiers that

use some form of discriminative information to achieve better classification. These

other methods of training are the Maximum Mutual Information (MMI) training and

the Minimum Classification Error Training (MCE) training. The motivation for

MMI approach is based on the information theoretic concept and MCE approach is

based on reducing classification error.

In the global picture of discriminative training, the focus is on directly modeling

the boundary between classes. In this respect, discriminative training can be

classified into either structure-bound or structure-free. In structure-bound

methodology, discrimination ability is embedded within a preset classifier structure

and the algorithm cannot be used independently of the structure. Examples of this

are k-nearest neighbor classifiers and kernel-based methods such as Support Vector

 69

Machines (SVM). Structure-free methodology uses an objective function that is

independent of the system in which it is implemented and the same criterion can be

used with various classifier structures.

MCE and MMI fall under Structure-free methodology. So are a few others like

Minimum-Squared Error (MSE) and Cross-Entropy (CE). However, with the

exception of MCE, the others are constrained on the architecture on which they are

implemented. The CE criterion, which minimizes the cross-entropy between the

target and the models, requires a probabilistic interpretation of the system’s output.

The MMI criterion which maximizes the mutual information between the data and

their classes also requires a probabilistic interpretation of the system outputs. The

MSE criterion, widely used in Neural Network-based learning, requires a target

function and attempts to minimize the squared distance between the output of the

system and the target.

In this section we review the two techniques for discriminative training of

HMMs; the MMI and the MCE.

3.5.1 Maximum Mutual Information (MMI) training

The MMI criterion considers HMMs of all the classes simultaneously, during

training. Parameters of the correct model are updated to enhance its contribution to

the observations, while parameters of the alternative models are updated to reduce

their contributions. This procedure gives a high discriminative ability to the system.

In MMI training, we want to determine the components in the observation X that are

most useful in distinguishing between the different classes in Y.

The mutual information I between X and Y is defined as the average amount of

uncertainty about the knowledge (or the entropy) of X given the knowledge of Y

(Cover, 1991) (Kullback, 1997). Mathematically this can be written as:

I(X;Y) = H(X) – H(X | Y) (Eq. 3.33)

 70

The conditional entropy of X given Y is given by

H(X | Y) = ∑
yx

yxP
,

),(logP(x|y) = -E[logP(x|y)] (Eq. 3.34)

Putting handwriting recognition system in this mutual information framework,

let W and O denote the random variables corresponding to the words and observation

vectors. Similarly,the mutual information between W and O is given by:

I(W;O) = H(W) – H(W|Ο). (Eq. 3.35)

Thus, the uncertainty in the word given the sequence of observations is the

conditional entropy of W given O, that is:

 H(W|O) = H(W) – I(W;O). (Eq. 3.36)

We do not know P(W,O) in general and need to estimate it. The conditional

entropy of the words given the observations O can be shown to satisfy the following

inequality:

 Hλ(W |O) ≥ H(W |O) (Eq. 3.37)

where λ denotes a particular parametric estimate to the actual probability

distribution. The equality holds only if Pλ(W |O) = P(W |O). Thus by minimizing the

conditional entropy H(W|O) in (Eq. 3.36), we can get an estimate of the conditional

distribution that minimizes the uncertainty of the data given the model. Minimizing

H(W|O) implies the maximization of I(W;O), the mutual information, assuming a

fixed H(W). Thus this process is called maximizing the mutual information (MMI).

Using (Eq. 3.33) and (Eq. 3.34) we define an objective function, LMMI, for the

MMI estimation of the parameters, similar to the ML-based estimation of HMM

parameters,

 LMMI(λ) = Iλ(W;O) = Hλ (W) - E[logPλ (w|o)] (Eq. 3.38)

This objective function is the mutual information of the words given the

observations under the parametric distribution. In this formulation we assume that

 71

we have observations from a training set and that we can represent each observation

as a composite HMM composed of a concatenation of letter HMMs representing the

underlying observations.

Replacing the expectations by the sample averages and assuming the training

data consists of R observations, we can write

LMMI(λ) = ∑
=

−
R

r
rwP

R 1
)(log1

λ ∑
=

−
R

r r

rrr

oP
wPMoP

R 1)(
)()|(

log1

λ

λλ (Eq. 3.39)

LMMI(λ) = ∑
=

−−
R

r
rrr oPMoP

R 1
)}(log)|({log1

λλ

In the above wr is the word in the rth observation with a corresponding composite

HMM model Mr. or are the set of observation vectors corresponding to the word.

The first term in the above equation is the likelihood of the data given the model.

Maximizing LMMI(λ) can be achieved by maximizing this likelihood, which is

equivalent to ML estimation. However LMMI(λ) can also be maximized by

simultaneously maximizing the first term in the right hand side of (Eq. 3.39) and

minimizing the second term. The second term, the probability of the observation

under a particular parameterization of the model, is what differentiates MMI from

ML-based estimation. The probability of the observation can be defined in terms of

the probability of generating all possible words.

 P(or) =)().|(rs
s

rsr MPMoP∑ (Eq. 3.40)

where s represents any possible words and Mrs represents the composite observation

model for a given word. Since the probability of the observation includes

information comprised of both the correct and the incorrect hypothesis, this

optimization process is more discriminative than the traditional ML-based

estimation.

Details of practical implementation of MMI are discussed in (Bahl, 1992,

Garcia-Salicetti, 1996, Bahl, 1986)

 72

3.5.2 Minimum Classification Error (MCE) training

Both traditional ML and discriminative MMI techniques neither explicitly

attempts to optimize the primary goal of a recognizer which is to maximize the rate

of recognition, in other words, minimizing the error rate of recognition. MCE

training technique directly minimizes errors. Because of that, as we mentioned

earlier, MCE criterion is not limited to HMM parameter estimation and has been

used to optimize several other types of classifiers including prototype based

classifiers and neural networks.

The gist of MCE optimization is that we define a loss function in terms of the

trainable parameters of the classifier that is proportional to the classification error.

This loss function is then minimized using a suitable gradient-based technique. MCE

training does not necessarily involve the estimation of probability distributions and

hence no underlying probability distribution needs to be assumed. This circumvents

a major drawback of ML estimation. MCE allows us to build classifiers that perform

close to the Bayes error rate using the efficient method called Generalized

Probabilistic Descent (GPD) which is based on Probabilistic Descent theorem by

(Amari, 1967). The MCE/GPD paradigm was primarily applied to speech-related

tasks, including acoustic modeling, word spotting, speaker recognition and

adaptation, feature transformation, and feature extraction. Due to its success in

speech recognition, recently, we have witnessed an increase in the number of MCE

applications to handwriting recognition.(Biem, 2006)

The misclassification error measure in a classification problem can be defined in

terms of discriminant functions of the k classes Ck, which is the word lexicon in the

case of word recognition. We can choose a misclassification error such that it takes a

value of zero for all correct classifications and non-zero values for

misclassifications. This measure is not extremely useful because it does not provide

a degree of separation between the correct and incorrect classes. In practice

misclassification error measure with a gradual slope is preferred, such as the

following:

 73

 =Φ),(Odk

Ψ
−

≠

Ψ−
⎥⎦
⎤

⎢⎣
⎡

∑ Φ
−

+Φ−

1

),(
1

1),(
kj

jk Og
L

xg
(Eq. 3.41)

where gk is the discriminant function corresponding to the kth class, Φ are

parameters in the discriminant function, Ψ are parameters that controls the

contribution of each misclassification towards the error metric and L is the number

of classes in the classification problem. When Ψ is large, the most confusable class

contributes the most to the summation.

In using the MCE framework in HMM parameter estimation, we start with the

definition of the discriminant function in terms of the parameters of an HMM. In

choosing the form of the discriminant function, the primary requirement is that the

discriminant function can be used as a distance metric to compare classes. Normally,

the likelihood of the class, Cj, in terms of the transition and observation probabilities

is often used.

The likelihood is computed as the probability of all possible state sequences pθ ,

for the given data. An expression for one particular state sequence can be written as

follows:

)|),(1 ΦpTOf θ

=∏

=
−

T

t
tOba p

t
p

t
p

t
1

)(.
1 θθθ

(Eq. 3.42)

where a and b are the HMM transition and observation probabilities,

respectively. Using the above definition of the likelihood, the discriminant function

for the jth class can be defined as follows:

),(1 ΦT
j Og

=

ξ
ξθ

1

1)]|),([log ⎥
⎦

⎤
⎢
⎣

⎡
Φ∑

p

pTOf

(Eq. 3.43)

 74

Note that when ξ is large, the most probable state sequence dominates the

summation and the solution approach a Viterbi solution.

A loss function d can now be defined as the misclassification error measure.

(Eq. 3.41) defines a commonly used loss function. This loss function is then

minimized using gradient descent approaches similar to MMI estimation. From

Amari’s theorem, convergence to the local MCE optimum involves optimizing local

loss functions. In general there are certain desirable properties for loss functions

since GPD involves gradient computations. Near-binary functions are a desirable

form for loss functions. Loss functions need to be first-order differentiable to apply

GPD. A commonly used loss function that satisfies the above requirements is the

sigmoid function:

)(dl

= de α−+1

1

(Eq. 3.44)

where d is the misclassification error measure.

3.6 Discrete vs. Continuous Density HMM

A Comparison between continuous and discrete density HMM for cursive

handwriting recognition has been done by (Rigoll, 1996). Discrete density HMM

was shown to lead to better results than continuous Gaussian distribution HMM.

This is generally not the case for HMM-based speech recognition systems. Although

there are certain similarities between HMM-based speech recognition and

handwriting recognition, different problems occur in both areas that it is not possible

to handle the modeling problems for handwriting in exactly the same manner as for

speech recognition. (Rigoll, 1996) performed systematic comparison between

continuous and discrete density HMM for handwriting recognition using exactly the

same databases for training and testing and conclude that discrete density HMM

gives better recognition, especially for bigger database. Furthermore, discrete

models allows for simpler feature extraction, data compression and speed advantage

enabling towards a real time recognizer.

 75

3.7 Hybrid of Neural Network and HMM

HMM deals with temporal aspects of handwriting efficiently because of the

efficient training and decoding algorithms. However, many of the assumptions made

in building and optimizing it, limit their generality. For HMM trained with MLE,

besides the poor discrimination ability mentioned earlier, it also suffer from several

drawbacks; (a) there need to be a priori choice of topology and initial probability

distribution, (b) the first order Markov assumption for the state sequences, (c)

uncorrelated input observation assumptions meaning that possible temporal

correlation across features associated with the same HMM are totally disregarded.

To overcome the above problems, many researchers integrate neural network

into the formalism of HMM. NN can approximate any kind of nonlinear

discriminant function, flexible and do not need assumptions about the input

distribution. The time sequences aspect that NN cannot handle is done by HMM.

NN is used to estimate the probability of observation, which is the local posterior

probabilities associated with each state in the HMM. These posterior probabilities

are then turned into scaled likelihoods by dividing them by the estimated values of

the class priors as observed in the training data. The scaled likelihoods are trained

discriminatively using the ANN. During recognition, the scaled likelihoods are used

in the Viterbi or forward computation to obtain an estimator of the global scaled

likelihood.

In another form of hybrid NN/HMM, ANN can be trained according to the

maximum a posteriori (MAP) criterion. The overall resulting training called

recursive estimation and maximization of posterior probabilities (REMAP) becomes

a form of EM training where posteriors are involved in the M step which is the NN

training.

The NN can be one of the many possibilities available such as Time Delay

Neural Network (TDNN), Space Displacement neural Network (SDNN),

Convolutional Neural Network (CNN) etc.

 76

3.8 Summary

In this chapter, we build the description of HMM from Markov process. The

three problems in HMM are stated and shown how to solve them. Description of

how HMM can be implemented in order to be used in on-line handwriting

recognition is given at the letter, word and sentence level. In order to obtain a

discriminative recognizer, methods of training HMM to be discriminative are given

along with the method of using NN in the context of HMM to obtain an overall

discriminative recognizer.

 77

CHAPTER 4

SUPPORT VECTOR MACHINES

4.1 Introduction

In handwriting recognition systems based on Hidden Markov Model (HMM),

handwriting is modeled by estimating a representation of the handwriting signal i.e.

by estimating probability distributions of characters or words across the training

data. The maximum likelihood (ML) based parameter estimation in an HMM tries to

optimize the modeling ability without being able to measure their classification

ability because only in-class data is used in the representation. (Riis, 1998)

Other useful HMM parameter estimation techniques discussed in chapter 3 use

some form of discrimination information to achieve good classification. The

discrimination information is in the form of an objective criterion that gives the

probability of the data given the wrong model. Using the discriminative-based

estimation, in-class (positive) examples and out-of-class (negative) examples are

both used. This allows for simultaneously learning a good representation for in-class

data while discriminating out-of-class data. Neural networks are discriminative

classifiers because they learn the separating surfaces using both negative and

positive examples. Classifiers that estimate decision surfaces directly have better

performance than those that estimate a probability distribution across the training

data.

In discriminative classifier point of view, handwriting recognition is a problem

of supervised learning and classification. Handwriting data with known labels are

 78

used to train a discriminative model. Then, for a new unseen handwriting, the model

is used to predict the class label. A classifier can be a multiclass classifier such as in

neural network or built from a number of basic two-class classifier into a multiclass

classifier. The classifier model is said to generalize well if it can predict the correct

classes well on a set of unseen test data.

Support Vector Machine (SVM) is a discriminative classifier that learns the

decision surface through a process of discrimination and has good generalization

characteristics. SVM have been proven to be a good classifier on many classical

pattern recognition problems, among others; text categorization (Joachims, 1998),

image recognition, image classification (Chapelle, 1998) (Chapelle, 1999), objects

recognition, cancer classification (Chu, 2005), spam categorization (Drucker, 1999),

face recognition, motion detection (Xu, 2005, Sidenbladh, 2004), face detection

(Osuna, 1997); (Li, 2001), electricity fraud prediction (Ahmad, 2007), electricity

load forecasting (Zhang, 2005), signature verification (Edson, 2005), time series

prediction (Van Gestel, 2001), system identification (Zhang, 2004), web document

classification (Lung, 2004), stock market forecasting (Huang, 2005), speech

recognition (Joachims, 1999) (Ganapathiraju, 2004) and speaker verification (Wan,

2005).

SVM is quite a recent addition (1990s) to the various methods for classification.

Its basic form implements a two-class classification method. It has been widely

researched and used in recent years, for one, as an alternative to neural network. The

main advantage of SVM, with respect to neural network, is that it provides a sound

theoretical framework for taking into account not only the experimental data to

design an optimal classifier, but also a structural behavior for allowing better

generalization capability (Scholkopf, 1999). SVM generalization performance either

matches or is significantly better than that of competing methods in most cases.

SVM’s better generalization performance is based on the principle of structural

risk minimization (SRM) (Vapnik, 1998). Its formulation approximates SRM

principle by maximizing the margin of class separation. Thus, SVM classifier is also

known as a large margin classifier. Basic SVM formulation is meant for linearly

separable datasets. With a small modification, it can be used for non-linear datasets

 79

by using kernel functions to indirectly map the nonlinear input space to a linear

feature space where the maximum margin decision function is approximated

(Burges, 1998). Outliers are handled through soft-margin SVM formulation. The

general SVM formulation is non-linear soft-margin SVM in which linear and hard-

margin (non-separable) problems are special cases.

SVM training involves approximating SRM by solving a convex quadratic

programming problem with equality and inequality constraints. The final solution

solves for nonzero parameters α in the formulation and extracts a subset of training

data corresponding to the parameter. For training on small datasets, say less than

1000 samples, it can be solved reasonably fast and can be performed on a reasonably

configured PC. For large datasets, solving the quadratic function requires large

computing power and large memory for storage of the kernel matrix during

computation. The memory requirement grows with the square of the size of training

datasets.

A number of methods of SVM training have been developed over the years to

improve on the memory requirement issue, speed up the training time and finding

the best training model using appropriate kernel and the hyper parameters (Burges,

1998). In addition, since basic SVM can only handle two-class classification, to

obtain multiclass classifier, at the minimum requires training of many two class

classifiers and in classification, voting schemes are used for selecting the correct

class (Weston, 1998) (Hastie, 1996) (Hsu, 2002). Method of modifying the two class

SVM formulation into single multiclass formulation for solving simultaneous

multiclass problem has been proposed but currently not widely implemented yet.

SVM have been made popular by the availability of stable implementation

packages. There are a few implementation packages available publicly and have

been popularly used as reported by many researchers. Among them are LIBSVM

(Chang, 2001), SVMTorch (Collobert, 2001) and SVMLight (Joachims, 1999).

This chapter will introduce the theory behind SVM and demonstrate SVM

implementations. We present the formulation of SVM in the next section, followed

 80

by discussion on the different methods of implementing SVM for two class

classification problems and expanding it to multiclass problems in section 4.3. The

three publicly available SVM implementation packages mentioned earlier which we

have tested are presented and compared in section 4.4.

4.2 Theoretical foundation

Vapnik has formulated the idea of support Vector Machines in the framework of

Statistical Learning Theory (Vapnik, 1998). We first briefly discuss some basic ideas

of the theory.

4.2.1 Statistical Learning Theory

In statistical learning theory (SLT), the problem of classification in supervised

learning is formulated as follows (Vapnik, 1999):

We are given a set of l training data and its class,

)},(),...,,(),,{(21211 nn yxyxyx

in Rn × R sampled according to unknown joint probability distribution P(x,y)

characterizing how the classes are spread in Rn × R.

We assume that the training data has been drawn randomly and independently

based on the joint distribution. The goal of a learning machine is to learn the

mapping y = f(x). To learn the unknown mapping, we can perform either of the

following:

(a) Estimate a function that is “close” to the joint distribution under an

appropriate metric.

(b) Learn an optimal predictor or classifier of the systems output.

In the former case, it is not sufficient for us to estimate a good predictor of the

output. The goal is to estimate, the joint probability distribution. However, for data

classification, we can actually pursue the goal of learning an optimal predictor or

 81

classifier. Learning is then a process of choosing a function from a set of functions

defined by the construction of the learning machine. For a gradient-based neural

network classifier, the network structure is predefined, leading us to choose from

only a finite set of functions. This is accomplished by finding the weights of the

connections of the predefined network. The optimal network for the classifier is

chosen based on some optimality criterion that measures the quality or performance

of the learning machine. SLT allows us to learn the optimal classifier by minimizing

the structural risk.

4.2.2 Structural Risk Minimization

To measure the performance of the classifier, a loss function L(y,f(x)) is defined

as follows:

⎩
⎨
⎧

≠
=

=
f(x)1 if y
f(x)0 if y

L(y,f(x)) (Eq. 4.1)

i.e. L(y,f(x)) is zero if f classifies x correctly, one otherwise.

On average, how f performs can be described by the Risk functional

∫= dP(x,y)L(y,f(x)) R(f) (Eq. 4.2)

Since P(x,y) in unknown, an estimate of the risk (the empirical risk) can be

obtained by induction using principle of empirical risk minimization (ERM) over a

set of possible functions as follows:

∑
=

=
l

1i
iiemp)) ,f(xL(y

l
1(f)R (Eq. 4.3)

ERM principle states that given the training set and a set of possible classifiers in

the hypothesis space F, we should choose f ⊂ F that minimizes Remp(f). ERM is one

 82

of the most commonly used optimization procedures in machine learning. It is

computationally simpler than attempting to minimize the actual risk as defined in

(Eq. 4.2). ERM circumvents the need for the estimation of the joint probability

density function. In many cases, ERM provides a good quality learning machine. A

variety of loss functions can be used for the optimization process. One such example

is,

∑
=

=
l

1i
iiemp)| - f(x|y

l
1(f)R (Eq. 4.4)

where y is the output of the classifier and x is the input vector. This form of a loss

function is common in learning binary classifiers. For example, to estimate the

parameters of a multi-layered perceptron using the back-propagation algorithm, a

loss function representing the squared error is used.

However, ERM does not necessarily produce a good classifier, which

generalizes well to unseen data due to overfitting phenomena. Remp(f) is a poor, over-

optimistic approximation of R(f), the true risk. There could be several configurations

of the learning machine, which give us the same empirical risk (zero, in the case of

binary classifiers). How then can we choose the best configuration?

The normal practice to get a more realistic estimate of generalization error, as in

neural network is to divide the available data into training and test set. Training set is

used to find a classifier with minimal empirical error (optimize the weight of an

MLP neural networks) while the test set is used to find the generalization error (error

rate on the test set).

If we have different sets of classifier hypothesis space F1, F2 … e.g. MLP neural

networks with different topologies, we can select a classifier from each hypothesis

space (each topology) with minimal Remp(f) and choose the final classifier with

minimal generalization error. Of course, to do that requires designing and training

potentially large number of individual classifiers.

 83

Using SLT, we do not need to do that. Generalization error can be directly

minimized by minimizing an upper bound of the risk functional R(f). Let us analyze

the relationship between the actual risk and the empirical risk. The bound given in

(Eq. 4.5) holds for any distribution P(x,y) with probability of at least 1- η

))log(,h((f)RR(f) emp ll
η

φ+≤ (Eq. 4.5)

where the parameter h denotes the so called VC (Vapnik-Chervonenkis) dimension.

φ is the confidence term defined by Vapnik as :

l
h
lh

ll

)
4

log()12(log
))log(,h(

η
ηφ

−+
= (Eq. 4.6)

ERM is not sufficient to find good classifier because even with small Remp(f),

when h is large compared to l, φ will be large, so R(f) will also be large, ie: not

optimal. We actually need to minimize Remp(f) and the confidence term φ at the same

time, a process which is called structural risk minimization (SRM). By SRM, we do

not need the test set for model selection anymore. Taking different sets of classifiers

F1, F2 … with known h1, h2 … we can select f from one of the set with minimal

Remp(f), compute)
l

)log(,
l
h(ηφ and choose a classifier with minimal R(f). No more

evaluation on test set is needed, at least in theory. However, we still have to train

potentially very large number of individual classifiers. To avoid this, we want to

make h tunable (ie: to cascade a potential classifier Fi with VC dimension = h and

choose an optimal f from an optimal Fi in a single optimization step. This is done in

large margin classification of which SVM is one.

4.3 SVM Formulation

SVM is realized from the above SLT framework. The simplest formulation of

SVM is linear, where the decision hyper plane lies in the space of the input data x. In

this case the hypothesis space is a subset of all hyper planes of the form:

 84

f(x) = w⋅x +b. SVM finds an optimal hyper plane as the solution to the learning

problem which is geometrically the furthest from all classes since that will

generalize best for future unseen data.

There are two ways of finding the optimal decision hyper plane. The first is by

maximizing the margin between two supporting planes as shown in Figure 4.1(a).

The second is by finding a plane that bisects the two closest points of the two convex

hulls defined by the set of points of each class, as shown in Figure 4.1(b). Both

methods will produce the same optimal decision plane and the same set of points

that support the solution (the points on the two parallel supporting planes in Figure

4.1(a) or the closest points on the two convex hulls in Figure 4.1(b). These are called

the support vectors.

4.3.1 Linearly Separable Case

Let’s consider SVM formulation for linearly separable case using the method of

maximizing margin as outlined in Figure 4.1(a). For a set of l linearly separable data

)},(),...,,(),,{(111111 yxyxyx where xi ∈ Rd and yi ∈ 1}{ ± we would like to learn a linear

separating hyper plane classifier f(x) = w.x + b that has the maximum separating

margin with respect to the two classes where w is the normal of the hyperplane.

(a) maximal margin between

two supporting planes

(b) Optimal plane bisects closest

points in convex hulls

Figure 4.1 Finding the optimal decision hyperplane

 85

We specifically want to find the hyperplane: H: y = w.x + b = 0 and two hyper

planes parallel to it and with equal distances to it,

H1 : y = w.x+b = +1 and

H2: y = w.x + b = -1

with the condition that there are no data points between H1 and H2, and the distance

or margin M between H1 and H2 is maximized. Figure 4.2 show the hyper planes in

the case of input data x with two dimensions.

Figure 4.2 Maximal Margin hyperplanes for two dimension examples

For any H, H1 and H2, we can always normalize the coefficients vector w so that:

 H1 be y = w.x + b = +1, and

 H2 be y = w.x + b = -1.

We want to maximize the distance between H1 and H2. Therefore, there will be some

positive examples on H1 and some negative examples on H2. These are the support

 86

vectors. The distance between H1 to H is
w

bwx+
 =

w
1 and thus between H1 and H2

is
w
2 . Therefore, to maximize the margin, we need to minimize www T= with the

condition that no data points lies between H1 and H2. This is satisfied when:

 for yi = +1,

 for yi = -1.

Combining the two conditions, we have: 1).(≥+ bxwyi

For simplicity, the problem can be formulated as:

 ww
2
1min T

w,b
,

subject to 1).(≥+ bxwyi .

(Eq. 4.7)

This can be solved by introducing Lagrange multipliers α1, α2,…, αl ≥ 0, for

every training data (Klein, 2000). See appendix B for a discussion on Lagrange

multipliers.

 Thus, we have the following Lagrangian:

∑ ∑
= =

++−=
l

1i

l

1i
iiii

T αb)(wxyαww
2
1L(w,b),α (Eq. 4.8)

This is called the primal formulation of the optimization problem and we often

denote it as LP. The first term on the RHS, defined as half the square of the norm, is

called the objective function and the other two terms are the optimization

constraints. This is a convex quadratic problem (because the objective function itself

is convex). We have to maximize LP with respect toα, subject to the constraint that

the gradient of LP with respect to the primal variables w and b should be 0:

1bx.w +≥+

1bx.w −≥+

 87

i.e: 0=
∂
∂

w
LP and 0=

∂
∂

b
LP and that α ≥ 0.

Finding the gradient and solving for 0, we then have:

∑
=

=
l

i
iii xyw

1

α (Eq. 4.9)

and

∑
=

=
l

1i
ii 0yα (Eq. 4.10)

 Substituting them into LP, we have the Lagrangian dual LD where:

∑ ∑∑ ∑∑ ++−=

= j i
ijjj

l

1i i,
iii

j
jjjiiiD bxyxyαxyxyαL ααα).(.

jij

l

1i i,j
ijii xxyyαα

2
1α∑ ∑

=

−= (Eq. 4.11)

using (Eq. 4.12). Observe that the primal variables w and b are eliminated.

Solving for αi, using LD constitute SVM learning. In order to obtain the value of w

we substitute αi into the formula ∑
=

=
l

1i
iii xyαw . The value of b can be averaged

from the values of y – wx for each x in the training set, after w is obtained. Thus, we

obtained the decision function as:

)b.x)(xyαsgn(f(x)
l

1i
iii∑

=

+= (Eq. 4.12)

where the sign (sgn) is used to classify examples as either in-class or out-of-class.

In other words the above equation defines the SVM classifier. Observe that the

classifier is defined in terms of the training examples. However, all training

examples do not contribute to the definition of the classifier. The training examples

with non-zero multipliers, the Support Vectors, alone define the classifier. The

dataset size can also define how complex the classifier needs to be. In simple

classification problems the number of support vectors is normally small; and vice

versa. The complexity of the classifier scales linearly with the number of support

 88

vectors, because since there are M dot products involved in the definition of the

classifier, where M is the number of support vectors.

4.3.2 Optimality Condition

In the above Eq. 4.11, the optimization of LD is subject to the positivity of αi

and the constraints in Eq. 4.10. Because here we have the optimization of a convex

function constrained by concave functions, Karush Kuhn-Tucker (KKT) theorem

(Kuhn, 1951) applies. The theorem guarantees that non-negative Lagrange

multipliers exist. See Appendix 2 for Discussion on Lagrange and KKT.

An issue of importance in the optimization using Lagrange multipliers is on the

existence of an optimum. In addition, if an optimal point exists, we need to know if

it is guaranteed that there exists a single optimal point. The answer to this question

lies in the KKT theorem that guarantees the existence of a solution and prescribes a

set of necessary and sufficient conditions. The KKT theorem has been widely used

in optimization problems involving convex objective functions. For SVM problem

of finding the optimal hyperplane, the KKT conditions are used in formulating the

constraints. The positivity constraint on the Lagrange multipliers as mentioned

earlier is one such example.

In the SVM optimization process, using the third KKT conditions with the Eq.

4.7, and the condition 1).(≥+ bxwyi , we get

01)b)(x(yα iii =−+ (Eq. 4.13)

The above equation implies that αi is non zero only for examples that satisfy,

1b)(xy ii =+ (Eq. 4.14)

which are the support vectors. Eq. 4.13 also helps the optimization process in

identifying examples that violate the KKT conditions, which will not be part of the

support vectors. Identifying such examples helps in speeding up optimization

process. It also allows the handling of large datasets efficiently.

 89

4.3.3 Linear Soft Margin and Non-Linear SVM

Due to nonlinearities or noise, real world data is usually not linearly

separable. In the case of imperfectly separable input space, where noise in the input

data is considered, there is no enforcement that there be no data points between the

planes H1 and H2 mentioned in the previous section, but rather penalty C is enforced

if data points cross the boundaries. So, the the problem can be formulated as:

∑
=

+
l

1i
i

T

bw,
ξCww

2
1min

,ξ
 (Eq. 4.15)

where C is the penalty term, subject to the condition ii 1)bx.w(y ξ−≥+ .

Using similar formulation as in linear case, we obtained the same dual

Lagrangian but with a different constraint for αi, which is bounded above by C (ie:

0< αi < C). For non-linearly separable input, they can be mapped to higher

dimensional feature space as mentioned earlier. If the mapping function is Φ(.), we

just solve:

∑ ∑
=

ΦΦ−=
l

i ji
jijijiiD xxyyL

1 ,
)()(

2
1max ααα (Eq. 4.16)

Generally, if the dot product Φ(xi).Φ(xj) is equivalent to a kernel K(xi, xj), the

mapping need not be done explicitly. Thus, equation above can be replaced by:

∑ ∑
=

−=
l

1i j,i
jijijiiD)x,x(Kyy

2
1Lmax ααα (Eq. 4.17)

Using the kernel in input space is equivalent to performing the map into feature

space and applying dot product in that space. Many kernels can be used in that way

as long as they satisfy Mercer’s condition. Table 4.1 gives a number of commonly

used kernels.

 90

Table 4.1 Commonly used Kernels for SVM

Kernel type Equation

Linear kernel y.x)y,x(K =
Polynomial kernel d)1y.x()y,x(K +=
Radial basis function (Gaussian) kernel 2

22
yx

e)yx(K σ
−−

=
Hyperbolic tangent kernel)by.axtanh()y,x(K −=

Beside the above kernels, user defined kernels can also be used as long as

they satisfy Mercer’s condition (Joachims, 1999). (Burges, 1998) also gives a good

description of Mercer’s condition.

4.3.4 Variations of the SVM Objective Function.

There are many possibilities of penalizing outliers. The most common one is

by using l1 norm as in equation (Eq. 4.1). Another penalizing term would be squared

quadratic norm l2. Using l2 norm, the problem can be formulated as:

∑
=

+
l

1i

2
i

T

b,,w
C

2
1ww

2
1min ξ

ξ
 (Eq. 4.18)

subject to the condition ii 1)bx.w(y ξ−≥+ , 0≥α where C is the penalty term,

and the dual optimization problem will have
C
1 added to the every element of the

kernel diagonal matrix. This is easier to solve than quadratic program with the

additional constraint on α. But solutions for SVM formulation with l2 norm are

often less sparse than for the l1 norm resulting in more support vectors being used in

the separating hyper plane. Sparseness can be enforced directly by using l1 norm for

the normal w as well. This leads to the so-called linear programming (LP) SVM

where the following linear program must be solved:

 91

∑∑
==

+
l

1i
i

l

1i
ib,,w

Cwmin ξ
ξ

 (Eq. 4.19)

subject to the condition ii 1)bx.w(y ξ−≥+ , 0≥α and 0≥ξ . LP SVM works

well for very large linear data set and by the use of kernel; it can be turned to work

for non-linear dataset quite well.

Scholkopf (Scholkopf, 1999) proposed another SV algorithm called v-svm which

uses v parameter for controlling the number of support vectors. The formulation is

as follows:

∑∑
==

+−
l

1i

2
i

l

1i
ib,,w l

1wmin ξνρ
ξ

 (Eq. 4.20)

subject to the condition

 ii)bx.w(y ξρ −≥+ , 10 ≤≤ν and 0,0i ≥≥ ρξ .

Most SVM formulations however, are based on the ‘classical’ formulation with l1

and l2 norm on slack variables and l2 norm for w. Our implementation discussion in

the next section is based on that formulation.

4.4 SVM Implementations

Implementing SVM training involves the following steps:

• Select the parameter C (representing the tradeoff between minimizing the

training error and margin maximization), kernel function and any kernel

parameters.

• Solve the dual QP (Eq. 3.10) or alternative problem formulation using

appropriate QP or LP algorithm to obtain the support vectors.

• Calculate threshold b using the support vectors.

 92

SVM classification can then be done using the formula:

)).(sgn()(
1

∑
=

+=
N

i
iii bxxKyxf α .

One of the problem in SVM training is to select the parameter values C and the

kernel parameters. This is known as model selection. Kernel parameters are referred

to as hyper parameters. Choosing hyper parameters involves minimizing an estimate

of generalization error or some related performance measures. Among those

estimates are k-fold cross-validation and leave-one-out (LOO) estimates which is the

extreme of k-fold cross validation. In k-fold cross validation, training data is

randomly split into k mutually exclusive subsets or folds of approximately equal

size. SVM decision function is obtained using k-1 of the subsets and tested on the

subset left out. This is repeated k times. Averaging over the k trials gives estimate of

the expected generalization error. Other recent model selection strategies are based

on some bound, which can be determined by a quantity, which is not obtained, using

retraining with data points left out as in cross-validation or LOO.

4.4.1 QP Optimization

Typically, solving the QP or LP problem is a well-studied field of mathematical

programming. The QP problem is solved by moving between the primal formulation

and its dual formulation. However, existing general-purpose QP algorithms can only

handle small sized problems. They are not feasible if the kernel matrix is large (do

not fit memory of the running computer) due to large number of training inputs.

There are l free parameters in an SVM trained with l examples. The parameters

are the αi’s. To find these parameters, the quadratic programming problem is solved

subject to the constraints. Conceptually, the problem is to find a minimum of a bowl-

shaped objective function. The QP iteration has definite termination conditions, the

Karush-Kuhn-Tucker conditions mentioned in section 4.2.4, that describe the set of

αi that are the minima. In earlier SVM implementations, a QP optimizer routine is

 93

normally used but it is slow and does not work well on large problems. Alternative

optimization techniques that can be used are;

(a) techniques in which kernel components are evaluated and discarded during

learning,

(b) decomposition method in which an evolving subset of data is used.

(c) new optimization approaches that specifically exploit the structure of the

SVM problem.

Kernel Adatron (Friess, 1998) is one of the method which follows (a). It

sequentially updates the alphas. It is very easy to implement but is not as fast as

using QP routines. Technique (b) involves chunking and decomposition. Rather than

sequentially updating the αi, the αi’s are updated in parallel but using only a small

subset or working set of data at each stage. There are many formal algorithms

developed using chunking and decomposition for solving the optimization problem

of support vector machines Among them, are Chunking (Osuna, 1997), Sequential

Minimal Optimization (SMO) (Platt, 1998b), (Platt, 1999b) and SVMlight

(Joachims, 1999).

In chunking, some QP optimization algorithm is used to optimize the dual QP on

an initial arbitrary subset of the data. The support vectors found are retained and all

other data points with αi equal zero are discarded. A new working set of data is then

derived from these support vectors and additional data points that maximally violate

the constraints. This chunking process is then iterated until the margin is maximized.

The chunking algorithm starts with an arbitrary subset (chunk of data, working set)

which can fit in the memory and solves the optimization problem on it by the general

optimizer. Support vectors (SVs) remain in the chunk while other points are

discarded and replaced by a new working set with gross violations of KKT (Karush-

Kuhn-Tucker) conditions (Osuna, 1996). The rationale of this operation is that only

support vectors contribute to the final form of a decision function. In addition, the

chunking algorithm is based on the sparsity of SVM’s solution. That is, support

vectors actually take up a small fraction of the whole data set. However, the

problems with chunking is that there may be many more active candidate support

vectors during the optimization process than the final ones so that their size can go

 94

beyond the chunking space. The method of selecting a new working set by

evaluating KKT conditions without efficient kernel caching may require high

computation.

Decomposition, use a fixed-sized subset of data – the working set with the

remainder kept fixed. A much smaller QP or LP is solved for each working set. Thus,

many small sub problems are solved instead of one massive one. The limiting case

of decomposition is in the sequential Minimal Optimization (SMO) by Platt (Platt,

1998a). Platt decomposes the overall QP problem into size of two, ie: two αi are

jointly optimize analytically at each iteration. This eliminates the need for a QP

solver for the sub problem which is a plus point. Furthermore, an analytical solution

for a two-point optimization problem can be given explicitly. The method consists of

a heuristic step for finding the best parameters to optimize and use an analytic

expression to ensure the dual objective function increases monotonically. Several

heuristics have been suggested to select the working set. The original SMO, was

then improved by Keerthi and Shevade (Shevade, 2000).

Keerthi further enhance the performance of SMO by pointing out the

inefficiency of updating one-thresholded parameters in Platt’s algorithm and

replacing it with two-thresholded parameters. The important contribution of Keerthi

et al.’s modification is that the pair of patterns chosen for optimization is

theoretically determined by two-thresholded parameters and the optimization on this

subset leads to a considerable advancement in the objective function. In practice,

when the size of a data set grows bigger, the problem of determining the optimal pair

at a low cost still exists.

SVMlight (Joachims, 1999) is a general decomposition algorithm, where a good

working set is selected by finding the steepest feasible direction of descent with q

nonzero elements. The q variables that correspond to these elements compose the

working set. When q is set equal to 2, Chang and Lin (Chang, 2001) pointed out

that the selected working set corresponds to the optimal pair in Keerthi et al.’s

modification of SMO. SVMlight caches q rows of kernel matrix (row caching) to

avoid kernel reevaluations and LRU (Least Recently Used) is applied to update the

 95

rows in the cache. However, when the size of the training set is very large, the

number of cached rows becomes small due to the limited memory. As a result, the

number of active variables is not large enough to achieve a fast optimization.

The final approach is to directly attack the SVM problem from an optimization

perspective and create algorithms that explicitly exploit the structure of the problem.

These involve reformulation of the base SVM problem. The reformulation has been

proved as effective as the original SVM in many cases. Keerthi (Keerthi, 1999b)

proposed the nearest point algorithm (NPA) based on the idea described in section

4.2., which is to find the two closest points in the convex hulls. This method

however is not very popular.

For solving SVM’s learning problem on a very large data set, many researchers

propose different methods. Collobert et al. (Collobert, 2001) proposed a parallel

mixture of SVMs. The model first trained many SVMs on small subsets and then

combined their outputs using a gater such as linear hyper plane or multilayer

perceptron. However, there are problems with that; first, is to determine the optimal

number of local SVMs, second is that generalization performance in not well

achieved.

Another approach is to apply the Bayesian committee machine (BCM) (Tresp,

2000) to the support vector machine resulting in Bayesian committee support vector

machine (BC-SVM) (Schwaighofer, 2001). In the BCM, the data set is divided into

M subsets of the same size and M models are derived from the individual sets. The

predictions of the individual models are combined using a weight scheme, which is

derived from a Bayesian perspective in the context of Gaussian process regression.

That is, the weight for each individual model is the inverse covariance of its

prediction. A good approximation requires that M subsets be pair wisely

independent. Although the Bayesian committee support vector machine performs

better than uniform mixture of individual SVMs on subsets, it has a slightly higher

error rate than the full SVM on some data sets (Schwaighofer, 2001), (Kuhn, 2006).

 96

4.4.2 Multiclass SVM Implementation

As opposed to neural network, SVM is a two class classifier. Multiclass SVM, is

formulated in either one of two ways; first, by combining binary classifiers or

second, by modifying 2 class SVM to incorporate multiclass learning (Hsu, 2002).

In the first way, multiple 2-class classifiers such as 1 against 1 or 1 against the rest

are constructed and during classification, each classifier outputs are combined in

some way into multiclass classifiers.

For 1 against 1 method, in a k class problem, k(k-1)/2 classifiers are constructed

and for classification, voting method or directed acyclic graph (DAG) can be used to

combine the two class classifiers. Using DAG, each internal node is a 1 against 1

classifier and all leaf nodes are the classes. For recognition, the graph is traversed

through from the root and arriving at the leaf with the correct classification. In 1 vs

all method, k classifiers are constructed. For recognition, classifier with the highest

output is chosen as the correct class.

For the second way, multiclass classifier is constructed by solving one complex

optimization problem involving large number of free parameters. This all-together

method have been proposed by Weston and Vapnik. (Weston, 1998). 1 against 1

method with DAG is widely used since it is less complex, easy to construct and

faster to train.

4.4.3 SVM Posterior Probability Output

In hybrid connectionist systems which are used in speech and handwriting

recognition so far, neural network is the main technology used to estimate posterior

probabilities of emission for each observation and HMM is used to model temporal

evolution. When SVM is used in such a hybrid system in place of ANN, several

issues arise due to SVM optimization method and the output that it gives. Basic

SVM provides binary decision values (which are the two classes) and multiclass

SVM gives m-ary decision values (which are the m classes). Most applications

require posterior probability values that capture uncertainty in classification. An

 97

example, for the 2-class SVM is P(y = 1 | x), the probability that the input belongs to

one of the particular class.

The first issue is how to estimate the output of the SVM into posterior

probability. There is a lack of clear relationship between SVM output and the

posterior class probability. (Ganapathiraju, 2002) in his thesis discussed ways of

converting the posterior to a probability, such as fitting Gaussian and histogram

approaches. However, these methods are not Bayesian in nature in that they do not

account for the variability in the estimates of the SVM parameters. Ignoring this

variability in the estimates often results in overly confident predictions by the

classifiers on the test set.

 (Allwein, 2000) and (Kwok, 1999) used moderated SVM outputs as estimates of

the posterior probabilities. Kwok extend the use of moderated outputs to SVM by

making use of a relationship between SVM and the evidence framework. The

moderated output is in line with the Bayesian idea that the posterior weight

distribution should be taken into account in prediction. It also alleviates the usual

tendency of assigning overly high confidence to the estimated class memberships of

the test patterns. Normally, unmoderated probability estimates based on maximum

likelihood (ML) fitting can be fairly used as a trade-off between computational

complexity and error performance. Mapping the output distances to posteriors is

done using a sigmoid distribution:

BAfe
fyp ++

==
1

1)|1((Eq. 4.21)

(Platt, 1999a) first trained an SVM and then train the parameters of the sigmoid

function above to map the SVM output to probabilities. The values of A and B are

found by minimizing the negative log likelihood of the training data. For example

given a training set, a subset of l training data (N+ of them with class y = +1, and N-

of them with class y = -1) can be used to solve the following maximum likelihood

problem:

 98

)(min
),(

zF
BAz=

 (Eq. 4.22)

where

))1log()1()log(()(
1

∑
=

−−+−=
t

i
iiii ptptzF ,

BAfi e
fypp ++

===
1

1)|1(,)(ii xff = and

2
1

2
1

+

+
+

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

−

+

+

N

N
N

ti

1ify

1yif

i

i

−=

=

li ,...,2,1=

4.5 SVM Implementation Packages

There are many publicly available SVM packages made available by researchers.

They are either Matlab based toolbox modules or libraries implemented in C or C++

code. This section introduces three most widely used SVM packages: SVMTorch,

SVMlight and LIBSVM. In section 6.3, we compared each of the package for their

suitability, in order to adapt one of them in our hybrid SVM/HMM handwriting

recognizer.

4.5.1 SVMTorch

SVMTorch was developed by Ronan Collobert (Collobert, 2001). It follows the

same principle as the one used in the other two packages and works both for

classification and regression. It is tailored for large-scale problems (with > 20000

examples, and input dimensions >100). The code is written in C++ and it is

optimized for a working set of size 2. Working set selection follows the idea

proposed by Joachim for his SVMlight. An internal cache for keeping part of the

 99

kernel matrix in memory enables the program to solve large problems without the

need to keep quadratic resources in memory and without the need to recompute

every kernel evaluation.

 Shrinking is an option where some variables whose values have been equal to

the bounds 0 or C for a long time and probably will not change are removed. Input

can be provided in either sparse, non sparse or binary file format. It can handle

multiclass as well. The multiclass implementation in SVMTorch is based on one

against all and selecting the highest score among all classifier outputs for

classification. The package runs on Solaris, Linux and Windows platforms. The

algorithm has been proved to converge for any working set size but without

shrinking. SVMTorch consists of a learning module (svmtorch) and a classification

module (svmtest).

4.5.2 SVMLight

SVMlight by Joachim (Joachims, 1999) implements SVM for classification,

regression and ranking problems in C language. It uses a fast optimization algorithm

based on decomposition. Working set selection is based on steepest feasible descent.

Shrinking and caching of kernel evaluations are used. It can handle large data set

(>100,000 training examples). It supports standard as well as user defined kernel

functions. Input can be either dense or sparse. The optimization algorithms used in

SVMlight has scalable memory requirements and can handle large problems

efficiently. The package also provides methods for assessing the generalization

performance efficiently in the form of the XiAlpha-estimates and leave-one-out

(LOO) testing of the error rate, the precision and the recall.

Ranking functions (learning a function from preference examples, so that it

orders a new set of objects as accurately as possible) and training of large-scale

transductive SVMs are also provided in the tool package. SVMlight consists of a

learning module (svm_learn) and a classification module (svm_classify).

 100

4.5.3 LIBSVM

LIBSVM (Chang, 2001) is an integrated package for support vector

classification; C-SVC and nu-SVC, regression; epsilon-SVR and nu-SVR and

distribution estimation or one-class SVM. It also supports multi-class classification.

The basic algorithm is a simplification of both SMO by Platt and SVMLight by

Joachims. It is also a simplification of the modification of SMO by Keerthi et al .

(Keerthi, 1999a).

LIBSVM was developed as a general-purpose SVM tool. It provides a simple

interface to link the tool with the adapter of the tool. It is flexible in that it uses a

number of different SVM formulations, user selectable via command line arguments.

It also allows for automatic cross validation functionality for model selection. A

contour of cross validation accuracy can be generated. In cases of unbalanced data

the SVM can be configured so that it will function as weighted SVM. LIBSVM

consists of a learning module (svmtrain) and a classification module (svmpredict).

4.6 Summary

In this chapter, we describe SVM as a discriminative classifier that learns the

decision surface through a process of discrimination and has good generalization

characteristics. SVM uses both training data and structural behavior to achieve better

generalization capability than that of competing methods. We described the principle

of structural risk minimization (SRM) which is the basis for SVM, a large margin

classifier. We also discussed SRM and its relationship to ERM. The control over the

generalization offered by SRM is what makes an SVM a very powerful machine

learning technique.

The design and construction of maximum margin hyper planes which form the

core of SVM estimation was discussed. SVM formulation for linearly separable

datasets and non-linear datasets using kernel functions are laid out. For non

separable case, soft-margin SVM formulation was used. Several issues related to

 101

SVM training were discussed; in particular using the convex quadratic programming

problem with equality and inequality constraints, ways of improving memory issues,

speed of the training and selecting the best training model using appropriate kernel

hyper parameters. Finally we discussed SVM implementation packages.

 102

CHAPTER 5

HYBRID SVM/HMM HANDWRITING

RECOGNITION SYSTEM

5.1 Introduction

Chapter 3 and 4 has prepared us to describe the online handwriting recognition

system used in this work. Our final aim is to build an INSEG based word recognizer

using hybrid of support vector machine (SVM) and hidden markov model (HMM).

In the final setting, the SVM which is used to recognize characters or sub characters

needs to be trained with characters which are segmented from the word database.

SVM trained using separate isolated characters is not suitable since an isolated

character is different from the same character which is written as part of a word.

In building the character recognizer, we started off by building a character

recognizer trained using the isolated characters from IRONOFF and UNIPEN

databases. We used this to compare recognition results of the SVM based character

recognizer and other methods. In this chapter, we first describe the character

recognizer based on SVM. Then we describe the word recognition system that

makes use of the SVM based character recognizer in a hybrid SVM and HMM

situation. The training of the hybrid system is separately at the character and word

level. In a way it is based on the original approach of hybrid Neural network (NN)

and HMM by (Gilloux, 1995) but it is also influenced by work of (Tay, 2003) for

offline handwriting.

 103

5.2 Overview of the SVM based Character Recognizer

The initial character recognition system makes use of isolated characters in its

training. We trained and tested the character recognizer using isolated characters of

IRONOFF and UNIPEN database separately and in combination of both (the

IRONOFF-UNIPEN database). For embedding SVM in the hybrid word recognition

system later, we need to retrain it using characters cut from the word database. This

is due to the fact that handwritten isolated characters are written differently from

characters cut from a cursive word. Isolated characters also have similar origin

making it unnecessary to perform comprehensive preprocessing steps required in the

characters cut from words.

The block diagram for an online character recognition system is depicted in

figure 5.1. The diagram shows the training part on the left and the recognition part

on the right. In the training, the character database is used to build the SVM

recognizer model. In recognition, single character handwriting is input to the system

and the output is given as the text representation of the character. For both training

and recognition, the input character signal needs to be preprocessed and normalized

before selected feature representation of the character can be extracted. The

extracted feature will be fed to the recognizer which has been trained to recognize

and produce the letter representing the handwritten input signal. The character

recognition system has been trained to recognize characters which are used in

English as well as some special characters specific to French. The recognizer was

trained using LIBSVM. The result of the training procedure, produce a recognizer

represented by an SVM model. SVM model consists of the values for various

parameters and the feature values of input characters which have been selected as the

support vectors.

We describe the various stages involved in the training and recognition of the

SVM recognizer in the following sub sections; namely on signal representation,

preprocessing and normalization, feature extraction and training.

 104

Figure 5.1 Handwritten Character Recognition System

5.2.1 Signal Representation

The input signal to the recognition system is a character signal which consists of

a combination of strokes. Stroke is the trajectory traced by the pen from a pen-down

event to a pen-up event. For storing the captured online signal into a file, the storage

of the signal follows the UNIPEN format description shown in Figure 5.2. UNIPEN

format starts with comment lines where description of the writer and the signal to be

captured can be recorded. Among the information stored in the comment portion are

the signal recording quality in points per inch, dimension of the recording tablet in

number of points and the information about the writer. In the data portion, a stroke is

a list of coordinate points from after the .PEN_DOWN until a .PEN_UP. Each point

in the stroke can record the X and Y coordinates together with the pressure and time

information. The number of points in a character signal depends on the number of

strokes and the speed of writing.

 105

Figure 5.2 Example portion of UNIPEN file showing the format

for online handwriting signal

A character can be written with more than one stroke. The total number of

strokes and the total number of points in each character varies. This can cause

problem to certain type of recognizers. In HMM based recognizer, character

representation can be of variable length but SVM requires the feature vector

representing the character to be of constant length. We have empirically chosen to

use a standard 30 points to represent characters in our experiments. For characters

having more or less points, resampling and interpolation was done during the

preprocessing stage to standardize the number of points to 30.

 106

5.2.2 Preprocessing and Normalization

Preprocessing of the input signal is done to improve its quality which can lead to

better feature representation and recognition. Noise, in the form of repeated points

and others due to erratic hand motions and imperfections in the digitization process

needs to be eliminated. Then a new signal which has uniform number of 30

equidistant points is obtained by resampling and interpolation of the signal which

have been cleaned up from noise. The procedure for resampling is straight forward

as in Figure 5.3. In the case of signals with more than a stroke, total length of the

signal is taken to be inclusive of the pen-up distances between strokes and imaginary

pen-up points are inserted between strokes, i.e.: between the pen-up(s) and pen-

down(s). The number of equidistant points is decided based on experimentation done

in the effect of recognition accuracy and time of training.

Figure 5.3 Resampling of Online character signal

Signal normalization is a standard procedure in almost every recognition system.

In our case, the normalization done on the character signal is mainly to standardize

the input signal so as to make it invariant to translation, spatial distortion, character

size and style of handwriting. What have been done was to centre the coordinates of

the signal and to rescale it according to a rescale factor determined based on the

extreme coordinates of the character. Normalization of the character signal is

simpler than word normalization which requires the detection of four reference lines;

the descender line, the base line, the core line and the ascender line of the word.

 107

5.2.3 Feature Extraction

For training as well as recognition, the resulting signal after preprocessing and

normalization is used to extract feature values for use in either the training or

recognition. In our case, 7 feature values were extracted for each point resulting in

210 feature values altogether. For all 30 points, the feature values for each point

x(n), y(n) are as follows:

(i) Normalized x(n) between -1 and 1.

(ii) Normalized y(n) between -1 and 1.

(iii) Cosine of the direction angle of the line between point x(n+1), y(n+1)

and the point x(n-1), y(n-1) and x axis.

(iv) Sine of the direction angle of the line between the point x(n+1), y(n+1)

and the point x(n-1), y(n-1) and x axis.

(v) Cosine of the curvature angle between the point x(n+2), y(n+2) and the

point x(n-2), y(n-2) at x(n), y(n).

(vi) Sine of the curvature angle between the point x(n+2), y(n+2) and the

point x(n-2), y(n-2) at x(n), y(n).

(vii) The binary value of +1 for pen-up or -1 for pen-down.

Features (iii) and (iv) constitute the direction information and features (v) and

(vi) constitute the curvature information. Figure 5.4 show in better detail, the 4

features related to directions and curvatures in (iii), (iv), (v) and (vi) above. The 210

features extracted from the 30 points of the input signal are used together with all

sample input handwriting to train the SVM. For recognition, the feature values for a

single input character are used for its recognition.

 108

Figure 5.4 Direction features (above) and curvature feature (below)

5.2.4 Training and Recognition

SVM Training was done using all characters in the IRONOFF and UNIPEN

databases and the special database which combines the two. Publicly available SVM

library packages were compared in order to choose the most suitable for our use.

We selected LIBSVM library after conducting some experiments using smaller

databases from UCI repository (see section 6.3) and finally on the IRONOFF

character databases. The integration of the library into our recognizer is straight

forward. However, as most SVM implementer chooses to do, the sparse format

representation was used in storing the feature in the process after feature extraction.

The SVM character recognizer classifier equation is given as

)).(sgn()(
1

∑
=

+=
N

i
iii bxxKyxf α (Eq. 5.1)

where the iα ’s are the Lagrange multipliers and b the bias that are solved during

SVM training. The iα ’s are either positive or 0. When they are positive, the

 109

corresponding example i contribute in the calculation of the output f of the

recognizer. The variables xi and yi are the ith example and its label respectively and x

is the character to be recognized. K is the kernel which indirectly performs the dot

product for the examples in linear high dimension. There are 4 popular kernels used

in SVM, as given in Table 4.1, linear, polynomial, Gaussian Radial Basis Function

(RBF) and sigmoid .

In our character recognizer training, we have tried both the polynomial kernel
dryxyxK).(),(+= γ

and Gaussian RBF kernel)||exp(),(2yxyxK −−= γ . The

reasons why we only choose to try the two kernels are as follows.

(a) RBF kernel and polynomial kernel are nonlinear kernels suitable for the case

when the relation between class labels and attributes is nonlinear, as in

handwriting recognition.

(b) Linear kernel is just a special case of RBF as the linear kernel gives the same

performance as the RBF kernel with some parameters C and γ

(Keerthi,

2003).

(c) Sigmoid kernel behaves like RBF for certain parameters (Lin, 2003) and

sigmoid kernel is not valid (i.e. not the inner product of two vectors) under

some parameters (Vapnik, 1995).

Among the two kernels, Gaussian RBF kernel performs better and we have

chosen to use RBF kernel in all our SVM trainings. A few reasons why we finally

settle for RBF kernel are as follows;

(a) RBF kernel has less number of hyper parameters than the polynomial kernel,

which influences the complexity of the training. However, RBF kernel is not

suitable when the number of features is very large. It is more suitable to use

the linear kernel. This does not apply to our case as we have reasonably finite

feature size.

 110

(b) RBF kernel has less numerical difficulties. One key point is that RBF kernel

values are between 0 and 1, while polynomial kernel values may go up to

infinity or even 0 when the degree d is large.

For both cases, 10-fold cross-validations were performed in order to search for

the best values for the kernel parameter γ and the C values of the SVM. Once the

best parameter values were obtained, the character SVM is retrained using those best

parameters to obtain the final SVM model to be used in the recognizer. The results

of recognition by the SVM character recognizer have been compared with other

character recognizers such as TDNN and MLP Neural Networks (Caillault, 2005).

The detail results on various databases used are presented in chapter 6.

5.3 The online Word Recognition System

5.3.1 Previous Systems

The general layout of the architecture for the handwritten word recognition

system used in our work is depicted in Figure 5.5. It is a segmentation-based

recognizer (SegRec) and lexicon-driven which is similar in structure to some other

works described in the literature, in particular by (Tay, 2002) and (Caillault, 2005)

from the same laboratory.

The work by (Tay, 2002), in off-line handwriting recognition uses hybrid of

ANN and HMM for word recognition. The segmentation was INSEG based and the

training of the system was using character level discriminant training where the

ANN and HMM were independently optimized. Word level discriminant training

where the ANN was optimized based on word level output by the HMM were also

attempted and compared. In character level discriminant training, junk characters

that are formed from the slice combinations which do not resemble any characters

need to be handled. In word level training, error in word recognition is back

propagated to the ANN using the maximum likelihood (ML) and also the maximum

mutual information (MMI) criterions.

 111

(Caillault, 2005) on the other hand worked in online handwriting recognition.

She uses OUTSEG segmentation and makes use of a hybrid of Time Delay Neural

Network (TDNN) and HMM for word recognition. The TDNN spot characters

scanned by equal sized overlapping segment windows over the input handwriting.

The character recognizer is used to produce posterior probabilities of characters for

each segment and the Viterbi algorithm produces the score of each word from the

combination of the segments.

In both cases of (Tay, 2002) and (Caillault, 2005), the recognition score of the

input word is compared against all words in the lexicon to obtain an n-best list. The

recognition rate was evaluated based on the ranking of correct word recognition at

top-n ranks, for example top-3 means the recognition rate in which the word is

recognized correctly in either one of the top three positions. In our case, we use a

similar system as in (Tay, 2002) where INSEG segmentation is used but instead of

offline, we focus on online handwriting recognition. The reason for using INSEG is

due to the character level discriminant training approach that we adopted which does

not allow OUTSEG segmentation. The main difference which is the centre of our

thesis is the use an SVM in place of the ANN for the character recognizer. The

training was done at the character level; the reason being that normally, SVM

training does not involve correcting gradients like ANN but requires quadratic

optimization. (Note: It is observed that Telstra Australia has patented a gradient-

based SVM training method for SVM recently (Kowalczyk, 2001)). Table 5.1

compares our system with the other two systems above.

Table 5.1 Comparison of the three handwriting systems developed

Author Segment.
method

Domain Character
Recognizer

Training
method

Databases used in
testing

(Tay,
2002)

INSEG Off-line ANN Character and
word level

IRONOFF, SRTP
AWS, MNIST

(Caillault,
2005)

OUTSEG On-line TDNN Word level IRONOFF, UNIPEN,
MNIST

Our work INSEG On-line SVM with
RBF kernel

Character
level

IRONOFF, UNIPEN,
MNIST

 112

5.3.2 General Description of the Hybrid SVM/HMM Word Recognition System.

Figure 5.5 shows the INSEG based hybrid handwritten word recognition system

which was developed. It shows a trained system that receives a word to be

recognized. Another input to the word recognizer is the list of words or the lexicon

containing all the words in the recognition vocabulary. The output of the word

recognizer is a list of top N words that resemble the input word signal, in the best

resemblance order. A postprocessor can make use of the N-best list for selecting the

final word output for the recognizer. The character recognizer used in the overall

hybrid word recognizer has been trained optimally using SVM with the best

segmented characters from the word database.

Figure 5.5 The overall hybrid handwriting recognition system

 113

We only make use of IRONOFF online word database for training and testing

the hybrid word recognizer. The database is limited to the lexicon that consists of

197 words from the English, French. 30 of the French words are French cheque

words. A more detailed discussion of the databases is given in chapter 6.

The initial hybrid SVM/HMM word recognition system needs a trained character

recognizer. The character recognizer described in section 5.2 was used but the SVM

was retrained using the set of characters which were cut from words in the

IRONOFF word databases. This is necessary as isolated characters are different

from characters cut from words. First, we used a commercial handwriting recognizer

to cut the word database into our initial isolated character database. For testing and

comparison purposes, we have trained separately the character SVMs for characters

obtained from cheque words, characters obtained from French words and characters

obtained from English words. These SVMs were used in separate hybrid word

recognizers catering for the respective word types for testing purposes.

In the final system, a single SVM character recognizer was used where the

training of it makes use of combined characters from all the separate word databases

together. The character SVM recognizer trained with the characters cut by the

commercial recognizer is what we call as the bootstrap character recognizer which

will be retrained to become a fully trained character recognizer during the training of

the hybrid word recognizer.

The training of word recognizer is described in detail in the following sub

sections, starting with the front-end portion of the hybrid system. Figure 5.12

portrays the overall training process of our word recognizer which was trained at the

character level. The front-end involves preprocessing, segmentation, character

hypothesis generation from the segments and feature extraction of the hypothesis.

These are followed by the recognition portion of the system which involves the

recognition of each character hypothesis by using the SVM character recognizer and

the use of Viterbi algorithm or dynamic programming algorithm to find the word

score for each word in the lexicon given the input word signal.

 114

The word in the lexicon with the highest score is taken as the recognized word.

To evaluate the word recognizer, we also look at the position of the correct word in

the top N ranked words. The Viterbi algorithm yields the best segmentation points of

the correctly recognized words which can be used to resegment the word database

into character database for the next round of Character SVM training.

5.3.3 Preprocessing and Normalization

As can be seen in Figure 5.5, in the overall recognition system, input word signal

need to be preprocessed in order to eliminate spurious signals which can have an

effect on recognition. The preprocessing step during training stage is done to the

whole word database so that input words are already preprocessed words. In a

trained recognizer, preprocessing of input word is done within the system, before

recognition. Preprocessing involves noise reduction and normalization.

Noise reduction can be done by limiting the bandwidth of the frequency of the

data using filtering, where cusps are treated as boundary points to avoid smoothing

out important shape features. The cusp detection algorithm captures only dominant

cusps while ignoring small wiggles caused by noise. In normalization, geometric

variance due to writing style differences among different writers or within the same

writer is reduced. Normalization may include scaling of handwriting to a standard

size, rotation of the text baseline and deslanting of slanted text. In our system, we

performed word rotation correction with reference to the baseline and size

normalization as indicated in Figure 5.6. In order to do that, first, the set of maxima

and minima points in the word are detected and the four reference lines need to be

calculated from the raw input word.

 115

Figure 5.6 Normalization steps in word preprocessing

An example of the set of four reference lines for the word “neuf” is as shown in

Figure 5.7. The reference lines are important during both size normalization and

rotation correction. They are determined by a simplified algorithm based on

Expectation Maximization (EM) algorithm for word normalization in (Bengio,

1994). Together with the a priori probability distribution of the line positions, the

maximum and minimum points are used as the observations for the EM algorithm in

order to estimate position and rotation angle of the four straight parallel reference

lines.

Figure 5.7 The four Reference Lines

In the correction to word rotation angle, the reference lines are brought back to

be parallel to the x axis by a rotation of angle α formed by the lines and the x axis. In

word normalization, the size of word is normalized to tackle the possibly large

variability in the different input that the recognizer is to support. The word is resized

to have one unit size for the core line – baseline distance and standardized in both

 116

dimensions so that it will not distort the appearance of the word. The deslanting of

slanted text we mentioned earlier as part of word normalization was not done. It is

intended that the variation will be adapted and absorbed in the character SVM

modeling stage.

One important step of preprocessing as mentioned in chapter 2 is the handling of

the diacritical marks, i.e: the crosses of the “t” and “x”s and the dots in the “i” and

“j”. The diacritical marks can be removed to create a clean word signal without

diacritics following (Guyon, 1996). However, we did not perform this step.

5.3.4 Over Segmentation and Hypothesis Generation

In order to generate hypothesis for characters, input word is over segmented into

slices. Figure 5.8 shows the over segmentation for the word “un”. Over

segmentation are done based on maximum and minimum y coordinates in the word.

This is considered a basic and very simple method. In the figure, the word “un”

yields 8 slices as shown above. For longer words, there will be more slices. The

slices are combined to form character hypothesis. The total numbers of hypothesis

affect the complexity of our training process as well as the accuracy in the

recognition. This number, in turn, depends on the minimum and maximum total

number of slices to be included in a character hypothesis. The parameters; minimum

and maximum number of slices were decided heuristically based on trial and error

but supported by the knowledge of the average number of maxima and minima

points that generally exist in a character. In order to create proper character

hypothesis, the number of slices to combine is very important.

 117

Figure 5.8 Oversegmentation of the word “un” based on

minimum and maximum y points

The total number of hypothesis can be calculated by the following formula:

if (num < max)
 tot=(num-min+1)*(num-min+2)/2;
else
 tot=(num-max)*(max-min+1)+(max-min+1)*(max-min+2)/2;

where tot is the total number of hypothesis generated, num is the number of slices,

min and max are the minimum and maximum slices in a hypothesis respectively. For

the sake of illustration and clarity purposes, an example of slicing and hypothesis

generation for offline handwriting is given in Figure 5.9 (It is easier to draw the

diagram for offline compared to online). Here, num is 5, and assuming min is 1 and

max is 3, tot is (5 - 3) * (3 – 1 + 1) + (3 – 1 + 1) * (3 – 1 + 2) / 2 = 2 * 3 + 3 * 2 = 12.

Similarly, the total number of hypothesis for the example in Figure 5.8 is then (8 - 3)

* (3 – 1 + 1) + (3 – 1 + 1) * (3 – 1 + 2) / 2 = 5 * 3 + 3 * 2 = 21.

 118

Figure 5.9 Character Hypothesis Generation: A simple example for offline

in slicing and generating hypothesis using the word “cts”, assuming 5 slices.

The maximum number of slices for a character is chosen based on statistics on

the training dataset. We found that a maximum value of 7 and minimum of 1 to be

suitable since a lower case letter on average contains 5 slices. So as to cover all

characters, we have taken into account the jaggedness at the beginning and within

the writing, and choose the maximum value of 7. This has also been verified

experimentally.

 119

Figure 5.10 Result of recognition and Segmentation

In order to form a word, only the related non-overlapping hypotheses are used.

The job of choosing the correct hypotheses which means correct character

segmentation lies in the dynamic programming algorithm in the HMM. Figure 5.10

shows an example of the best segmentation which resulted in the best recognition.

5.3.5 Feature Extraction

Since our system caters for training of the SVM character recognizer, the

features extracted are for each of the hypothesis character that have been formed by

joining the over segmented slices. Before feature extraction, signal resampling is

done on the hypothesis character to standardize the number of points in the character

signal to 30 points. The number 30 is selected based on heuristics with the aim of

having smaller feature dimensions. Note that our word recognizer did not perform

resampling at the word signal since we are doing the resampling at the character

stage similar to what has been done in isolated character recognizer.

 120

We extract seven features per point as in the isolated character recognizer.

However, since each character is now cut from a word, the first of the seven

features, the x coordinates will be different from x coordinates of isolated characters.

The original x coordinates undergo a translation relative to the beginning of the

character. This in effect adjusts the x character coordinates to start from a common

point of zero. Figure 5.11 shows the first 4 coordinates of the original character u

and the new coordinates calculated for the feature values. The new x coordinates for

each point in the character hypothesis will be as follows:

0xxoffset =

 offsetnn xxx −= n∀

(Eq. 5.2)

The other 6 features are essentially the same as in the isolated character

recognizer, which are; the y coordinates, the 2 direction features, 2 curvature

features and the pen-up/pen-down information (see section 5.2.3). The output of

feature extraction stage is a sequence of vectors containing the 210 required features,

i.e: 7 features for the total of 30 points. The vector sequences are then provided as

input to the SVM character recognizer.

n xn yn New
xn

New
yn

0 164 110 0 110
1 170 104 6 104
2 175 97 11 97
3 177 94 13 94

Figure 5.11 Example of new x values for the hypothesis character.

Shown in the table - only the first 4 points. Y coordinates remain.

5.3.6 Overview of Hybrid SVM/HMM Training

The training process for the word recognizer is given in Figure 5.12. The whole

aim of the training is to optimize the character SVM by using the set of characters

 121

which are the best segmented from the word as a result of the recognition. The

quality of the word recognizer relies on the quality of the SVM character recognizer,

which in turn relies on the segmentation made on the words into characters. Initial

training uses the bootstrap SVM character recognizer. The objective in training of

the system is then to try to improve further the initial bootstrap SVM character

recognizer by improving the segmentation of the input word while recognizing it.

Figure 5.12 Character level training for word recogntion system

A hypothesis character is recognized by the trained SVM character recognizer

and assigned a set of confidence values. There is one confidence value for each

character class. The confidence values reflect the degree to which the primitive or

union of primitives represents that class. For each word in the lexicon, dynamic

programming or the Viterbi algorithm is used to find the best sequence of hypothesis

character to match the word input signal using the confidence values. At the end of

recognition of each input word, new segmentation points (if any) are determined by

 122

the word recognizer output following the segmentation that gives the best word

score.

New segmentation points obtained determine a new and better set of segmented

characters to be used in the character database generated for SVM retraining. Better

segmentation generate better quality character database and eventually improve the

quality of the SVM character recognizer in subsequent training. As character

recognizer improves, it is hopeful that the new word recognizer will improve further

and the resulting segmentation points will also be better. This cycle of improving

character segmentation and retraining of SVM is repeated a few times until there are

no more improvements in the word recognition rate.

For training the word recognizer, we used word signals that have been

preprocessed in a separate preprocessing step resulting in a new database of

preprocessed words. However, for recognition, since raw word signals are given to

be recognized, preprocessing is done within the real time recognition module just

prior to recognition process.

5.3.7 Word Likelihood Computation

One crucial issue in training or recognition is the word likelihood computation.

Given a word signal to recognize or the word observation O, and a lexicon of words,

the word that is taken as the recognized word,
^

W

is the one that has the highest score

among all the words.

)|(maxarg
^

OWPW
W

= (Eq. 5.3)

To calculate word likelihood for each word, we can formulate the problem in the

hybrid SVM/HMM framework. The HMM is a left-right model with unity transition

probability throughout. Word HMM is a concatenation of several character HMMs.

 123

The hybrid framework uses SVM to compute the observation probability at each

state in the word HMM. We can use either the Forward-backward or Viterbi

algorithm to calculate the word likelihood. Word likelihood computation using the

Forward-backward algorithm involves summing the likelihoods through all the

possible paths for the particular word of the lexicon. However, Viterbi algorithm

which finds the single best path is a good approximation that we use. Forward-

backward and Viterbi algorithm falls under dynamic programming approaches.

The problem can also be straight forwardly approached as a search problem,

without involving HMM framework. This is possible as we use a simple left-right

HMM with unity state transition, which means that the emission probability is the

only visible component in the calculation of the likelihood along the path; the

emission probability being the character likelihood generated by the SVM. In this

manner, other time saving search methods could be used such as beam search (Ney,

1987), heuristic search etc.

 Figure 5.13 shows in a general framework, the processes involved in word

likelihood computation. Each character hypothesis is passed through the feature

extractor and SVM character recognizer, which will output the probability scores for

all the labels in the SVM model, in which it has been trained. Since the characters

are cut from the words that we are training the word recognizer with, all character

labels from the database should be covered by the SVM. Given all the arrays of

character probabilities for each hypothesis, to calculate the word likelihood for a

particular word in the lexicon, the Viterbi or the forward-backward algorithm is used

to sum all the log values of character likelihood across allowable path which does

not contain hypothesis which overlapped each other. The path shown at the bottom

of the diagram through 3 hypotheses, the first which contains slice 1 and 2 followed

by the second which contains slices 3 and 4 and finally the one that contains only

slice 5 forms the best path.

 124

Figure 5.13 Word Likelihood Computation – The best word is “cts”, through

slice combination 1 & 2 for char c, 3 &4 for char t and slice 5 for character s.

Bold and large P(i) indicates largest probability values for character i .

5.3.8 SVM/HMM Framework

As we mentioned earlier, we can understand the recognition system, in particular

the word likelihood computation by putting the above in an SVM/HMM hybrid

framework. At the character level, each character can be represented by a character

HMM. We have considered 68 character HMMs to represent 68 letters and symbols.

Out of that, 26 are for small letters, 26 for capital letters and 4 for symbols, for a

total of 56. Since our databases cater for English and French words, 12 extra HMMs

 125

for letters special to French are used, making the total of 68. All the 68 letters and

symbols are listed in Table 5.2.

Table 5.2 The 68 Character HMMs

a b c d e f g h i j
k l m n o p q r s t
u v w x Y z A B C D
E F G H I J K L M N
O P Q R S T U V W X
Y Z - ' . , à â ç é
è ê ë Î Ï ô ù û

An example of a character HMM is given in Figure 5.14. Note that there is an

entry node and an exit node which are used to concatenate between character

HMMs.

Figure 5.14 An example character HMM with N states

The character HMM topology is a left-right topology with N states where N is

the maximum number of slices allowable for each character. The nth hidden state

represents the state where the character emitted is made up of n slices from starting

slice up to the nth slice. For example at state S12 the character emitted consists of 2

slices; 1 and 2. Once a character is emitted, transition will proceed to the exit state. If

a character is not emitted, transition will be to the next state. The transition

probability for the character HMM is set to 1 since we allow the HMM to move

between states from left to right and to exit state with equal probability. The

 126

emission probability is given by the SVM character likelihood score. Character

HMMs are concatenated to form word HMM as shown in Figure 5.15.

Figure 5.15 Word HMM formed by concatenating

character HMM

 Figure 5.16 shows an example of the word recognition graph for recognizing the

word “cts”. For T number of slices, the observation sequence is O= O1O2O3,…,O5.

In our SVM/HMM framework, we need to cater for each observation to have a

maximum of N slices representing each hypothesis that is made up of slices ending

with slice t. (In the diagram, T= 5, N = 3). The likelihood of each word-HMM, λ

given observation sequence O , or)|(λOP , can be computed as below:

∑∏
Γ =

−
=

T

t
tqqq ObaOP

ttt
1

)()|(
1

λ (Eq 5.1)

where we use the transition probabilities
tt qqa

1−
of 1.

We use the Viterbi algorithm which gives a single best state sequence as discussed

in section 3.2.5, to estimate the word score. We define the quantity)(itδ which

represents the best score along a single path, at time t, which accounts for the first t

observations and ends in state i as follows:

)|,(max)(321321,, 121

λδ ttqqqt OOOOiqqqqPi
t

LL
L

==
−

 (Eq 5.2)

 127

Figure 5.16 Word Recognition Graph

By induction, we have

)(])(max[)(1+⋅= tjijtit Obaij δδ (Eq 5.3)

The complete procedure to compute the word score using the Viterbi algorithm is :

a) Initialization

NiObi ii ≤≤= 1),()(11 πδ (Eq 5.4)

 128

b) Recursion

NjObaij tjijtNit ≤≤⋅= −≤≤
1),(])([max)(11

δδ (Eq 5.5)

c) 3. Termination

)]([max
1

* iP TNi
δ

≤≤
= (Eq 5.6)

In the actual word score calculation, we made use of the log values of the

observation probability, which turns the multiplication in the formula into addition.

Figure 5.16 shows that the best path for the Viterbi algorithm as using character ‘c’

from hypothesis containing slices 1 and 2, then for character ‘t’ from hypothesis

containing slices 3 and 4 and finally ‘s’ from hypothesis containing only slice 5. The

circles with dark shades in the diagram are the hypothesis with the optimum log

probability values which added together in the best path giving the best score.

5.4 Summary

In this chapter, the handwriting recognition being developed is discussed. We

presented first, the SVM handwritten character recognizer, from the preprocessing

stage through to normalization, feature extraction and training. The hybrid

SVM/HMM word recognizer is then described from the same level of perspective.

Finally, detail discussion on word likelihood computation is presented, making use

of recognition graph and the Viterbi algorithm.

 129

CHAPTER 6

DATABASE AND EXPERIMENTAL RESULTS

6.1 Introduction

We have developed a complete online handwriting recognition system that

implements the hybrid of HMM and SVM which is the focus of this thesis. There are

various issues that need to be addressed in order to make the implementation of the

system successful. To test the system, we have conducted a number of experiments.

We made use of some available databases for the experiments to test the validity and

usefulness of our system at various stages of implementation.

This chapter describes the databases that were used and the various experiments

that have been performed. We first describe general public databases which were

used to evaluate our SVM. There are a few subsets of the UCI datasets (Newman,

1998) that we used in our very early experiments on SVM. Then we focus on the

two main handwriting databases that have been used; the IRONOFF database

(Viard-Gaudin, 1999) and the UNIPEN database (Guyon, 1994). IRONOFF consists

of both online and offline data while UNIPEN provide only the online data. The

online data of IRONOFF database was collected using the UNIPEN format. A

combination of both UNIPEN and IRONOFF online databases was also generated

and used in some experiments. We have also used the MNIST database (LeCun,

1998a) in our SVM experiments. We describe the measure of performance that we

used in this thesis and the experiments conducted together with their results.

 130

6.2 Databases

In the early stage of adapting SVM into the system, we have to decide on the

implementation route of SVM. As we have mentioned, there are numerous SVM

packages which can be used and adapted. We begin by performing tests on these

SVM packages on simple datasets from UCI repository in order to choose the best

implementation. Once an implementation have been decided and used within the

hybrid system, we then use the handwriting databases as listed in Table 6.2 for

experiments involving handwriting recognition at character or word level. It is

important to perform testing on public and widely available databases because the

results obtained are more authentic and comparable.

6.2.1 Data From UCI Repository

UCI repository site at University of California, Irving provides various databases

for evaluating learning algorithms. Currently, the repository contains over 173

different data sets as described in (Newman, 1998) and (Asuncion, 2007). Among

the popular data sets, only Wisconsin Breast Cancer (WBC), Cleveland Heart

Disease (CHD), Tic Tac Toe (TTT), Votes (VT) and Handwritten Digits (HWD)

were used to compare and select the SVM implementation packages. Table 6.1 gives

a summary of the datasets.

Table 6.1 Sample UCI Data Sets

Datasets Features
Wisconsin Breast Cancer (WBC) 2 class, 569 samples, 30 features
Cleveland Heart (CHD) 5 class, 297 samples, 13 features
Tic Tac Toe (TTT) 2 class, 958 samples, 9 features
Votes (VT) 2 class, 435 samples, 16 features
Handwritten Digits (HWD) 10 class, 3826 samples 64 features

 131

6.2.2 IRONOFF Online and Offline Databases

The IRONOFF database is collected by Viard-Gaudin (Viard-Gaudin, 1999)

from IRESTE (currently known as IRCCyN at Ecole Polytechnique de l’Université

de Nantes). It contains both online and offline handwriting data. The database

contains in both formats, the following; 4,086 isolated digits, 10,685 isolated lower

case letters, 10,679 isolated upper case letters together with 410 EURO signs, 31,346

isolated words from a 197 word lexicon. The isolated words comprises both French

and English words (28, 657 French words and 2,689 English words). Table 6.2 gives

a summary for all handwriting databases used, including the IRONOFF databases.

Table 6.2 Handwriting Databases

(a) Character databases

Type Database
Name

Detail
Type

Training
Examples

Test
Examples

Total

Character

IRONOFF

Digit 3059 1510 4086
Lowercase 7952 3916 10685
Uppercase 7953 3926 10679

UNIPEN-
IRONOFF

Digit 13451 6270 19721
Uppercase 42778 20172 62950
Lowercase 25662 11621 37283

UNIPEN

Digit 10423 5212 15635
Uppercase 34844 17423 52267
Lowercase 17736 8869 26605

MNIST Digit 60000 10000 70000

(a) Word databases

Type Database
Name

Detail
Type

Training
Examples

Test
Examples

Total

Word
IRONOFF

Cheque word 7956 3978 11934
English Word 1793 896 2689
French Word 19105 9552 28657

The database was collected from about 700 different writers, mainly of French

nationality. Although the database contains both on-line and off-line information of

the handwriting signals, only the on-line information is used for our experiments.

The on-line data has been sampled with a spatial resolution of 300 dpi and a

sampling rate of 100 points per second on an A4 sized tablet. The database is

 132

available as ASCII files written in the UNIPEN format. Personal information of the

writer for each sample such as sex, age, nationality, and whether the person is left or

right handed are also provided.

The database is divided exclusively into training set and test set. The scriptors of

the two data sets are different, reflecting an omni-scriptor situation in which some

types of handwriting styles are only available during the training of the system and

not available in testing. Table 6.3 shows the complete lexicon of 197 words from

IRONOFF database.

Table 6.3 List of words in the IRONOFF lexicon

Un
deux
trois
quatre
cinq
six
sept
huit
neuf
dix
onze
douze
treize
quatorze
quinze
seize
vingt
trente
quarante
cinquante
soixante
cent
mille
million
francs
centimes
euros
et
frs
cts
repêché
blâmez
affût
l'élève

rugby
jusque
chômé
vodka
gîtes
whisky
oeuvre
voilà
zèbre
dépôt
quelqu'un
vêtir
gâchez
figeront
buvez
taxis
fjord
dégâts
jazz
buggy
impôts
conçu
aïeux
fonça
galette
flûte
accident
abbaye
éclabousser
déposerait
thermonuclé
aire
sculpterai
organisme

secouraient
monétaires
malversation
pédalerions
compagnies
pivoteras
surgelées
fréquemment
fredonner
moissonner
polygonale
père-noël
frapperions
Agglomération
Boîtier
Citoyen
Démocratie
Encouragement
Fréquence
Gymnase
Hôpital
Imperméable
Journal
Kiosque
Littérature
Maître
Neptune
Occident
Psychologue
Quittance
République
Société
Température
Urgence

Vacances
Week-end
Xénophobie
Yaourt
Zénith
Apple
Between
Capability
Directory
Earth
Fuzzy
Giving
Hydrogen
Island
Job
Ku-Klux-Klan
Liberty
Money
North
Obvious
Parking
Quiz
Rabbit
Smooth
T-shirt
User
Voice
Warehouse
X-ray
Yuppie
Zero
je
tu
il

elle
nous
vous
mais
où
donc
or
ni
car
puis
ne
pas
à
au
de
du
des
dans
en
par
chez
pour
le
la
les
ce
cet
cette
ces
cela
ceci
celle
celui
mon

ton
son
si
une
même
notre
votre
leur
entre
on
sur
sous
plus
moins
avec
ainsi
qui
que
quoi
quel
quelle
quand
tout
tous
aussi
dont
dès
autre

 133

The experiments performed on the IRONOFF database can be divided according

their categories namely; Check words, French words and English words. Table 6.4

Table 6.5 and Table 6.6 give the lexicons for the three categories respectively.

Table 6.4 Words in the Check Word lexicon (30 words)

 Un
deux
trois
quatre
cinq

six
sept
huit
neuf
dix

onze
douze
treize
quatorze
quinze

Seize
vingt
trente
quarante
cinquante

soixante
cent
mille
million
francs

centimes
euros
et
frs
cts

Table 6.5 Words in the French Word lexicon (171 words)

un
deux
trois
quatre
cinq
six
sept
huit
neuf
dix
onze
douze
treize
quatorze
quinze
seize
vingt
trente
quarante
cinquante
soixante
cent
mille
million
francs
centimes
euros
et
frs

cts
 repêché
blâmez
affût
l'élève
rugby
jusque
chômé
vodka
gîtes
whisky
oeuvre
voilà
zèbre
dépôt
quelqu'un
vêtir
gâchez
figeront
buvez
taxis
fjord
dégâts
jazz
buggy
impôts
conçu
aïeux
fonça

 galette
flûte
accident
abbaye
éclabousser
déposerait
thermonucléaire
sculpterai
organisme
secouraient
monétaires
malversation
pédalerions
compagnies
pivoteras
surgelées
fréquemment
fredonner
moissonner
polygonale
père-noël
frapperions
Agglomération
Boîtier
Citoyen
Démocratie
Encouragement
Fréquence
Gymnase

Hôpital
Imperméable
Journal
Kiosque
Littérature
Maître
Neptune
Occident
Psychologue
Quittance
République
Société
Température
Urgence
Vacances
Week-end
Xénophobie
Yaourt
Zénith
je
tu
il
elle
nous
vous
mais
où
donc
or

 ni
car
puis
ne
pas
à
au
de
du
des
dans
en
par
chez
pour
le
la
les
ce
cet
cette
ces
cela
ceci
celle
celui
mon
ton
son

si
une
même
notre
votre
 leur
entre
on
sur
sous
plus
moins
avec
ainsi
qui
que
quoi
quel
quelle
quand
tout
tous
aussi
dont
dès
autre

 134

Table 6.6 Words in the English Word lexicon (26 words)

Apple
Between
Capability
Directory
Earth

 Fuzzy
Giving
Hydrogen
Island
Job

 Ku-Klux-
Klan
Liberty
Money
North
Obvious

 Parking
Quiz
Rabbit
Smooth
T-shirt

 User
Voice
Warehouse

 X-ray
Yuppie
Zero

The handwritings in the word database are unconstrained. It contains the

variations mentioned in Figure 1.8 and Figure 1.9. This can be seen in the randomly

selected sample words “centimes” and “capability” shown in Figure 6.1.

centimes
(writer 1)

centimes
(writer 2)

Capability
(writer 4)

centimes
(writer 3)

Capability
(writer 5)

Capability
(writer 6)

Figure 6.1 Random examples from the IRONOFF Database

6.2.3 UNIPEN Online Character Database

UNIPEN online database (Guyon, 1994, Ratzlaff, 2003) is a database made

available by the International Unipen Foundation. The publicly available data sets

are named the UNIPEN Train-R01/V07 distribution while there is another set which

is not publicly available called the DevTest-R01/V02 subset. Train-R01/V07 are

available in 6 categories; namely 1a, 1b, 1c, 1d, 2 and 3. Table 6.7 gives an

overview of the overall UNIPEN benchmark database. Table 6.8 gives the detail of

the dataset in the UNIPEN Train-R01/V07 distribution.

 135

Table 6.7 UNIPEN Benchmark Overview

Benchmark Description
1a Isolated digits
1b Isolated upper case
1c Isolated lower case
1d Isolated symbols (punctuations etc.)
2 Isolated characters, mixed case
3 Isolated characters in the context of words or texts

4 Isolated printed words, not mixed with digits and
symbols

5 Isolated printed words, full character set

6 Isolated cursive or mixed-style words (without digits and
symbols)

7 Isolated words, any style, full character set

8 text: (minimally two words of) free text, full character
set

Table 6.8 UNIPEN Train-R01/V07 Dataset

Category Type Number of
classes

Total
samples

1a Digits 10 15635
1b Uppercase letters 26 28069
1c Lowercase letters 26 61360
1d Punctuations and other

symbols
32 17286

2 Mixed 94 122668
3 Mixed 94 67352

Several authors have published recognition results using this or related UNIPEN

databases, thereby affording researchers some reference points for comparing the

performance of their recognizers. We have further made a sub selection from the

Train-R01/V07 distribution database for our use in the experiments. In particular we

only made use of Dataset 1a, 1b and 1c for the digits, lowercase characters and

uppercase characters. The actual subset of that we used is given as part of Table 6.2.

6.2.4 IRONOFF-UNIPEN Databases

A combination of IRONOFF and UNIPEN database called IRONOFF-UNIPEN

is created and used in our experiments. The IRONOFF-UNIPEN combination

basically consists of characters from IRONOFF character data sets and UNIPEN

 136

character data sets. Selection of data from each database is made randomly. This

data set has been used to compare character recognition by SVM with other

methods, in particular using back propagation neural network (BPNN) and

convolutional neural network (CNN) whose results we compare in this thesis. The

detail of the database that we used is given as part of Table 6.2

6.2.5 MNIST

MNIST is a modified version of handwritten digit database from National

Institute of Standard and Technology (NIST) compiled by LeCun (LeCun, 1995)

(LeCun, 1998a). MNIST database is an off-line database. It has a training set of

60,000 examples, and a test set of 10,000 examples. It is a subset of a larger data set

available from NIST. The digits have been size-normalized and centered in a fixed-

size image. The original black and white (bi-level) images from NIST were size-

normalized to fit in a 20x20 pixel box while preserving their aspect ratio. The

resulting images contain gray levels because of the anti-aliasing technique used by

the normalization algorithm. The images were centered in a 28x28 image by

computing the center of mass of the pixels, and translating the image to position this

point at the center of the 28x28 field. MINIST database have been popularly used

by many authors to compare between various machine learning algorithms. We

have used MNIST database to compare our SVM implementation with other

methods in the literature.

6.3 Experiments in Selecting an SVM package

As mentioned in chapter 4, there are many publicly available SVM packages

made available by researchers and implementers. We have tested those

implementation using libraries implemented in C or C++ code. In this section we

report the results of the tests on three most widely used SVM packages; SVMTorch,

SVMlight and LIBSVM. A few experiments were conducted using the three

packages. The aim of the experiments is to compare them, using common training

parameters and common datasets so that conclusions can be made on suitability,

speed of training, accuracy and most importantly ease of use. The packages that we

 137

used during the initial evaluation of SVM, were two class SVM for SVMLight and

SVMTorch and multi-class SVM for LIBSVM.

All the raw datasets were processed to obtain input files in the format needed for

each package. In each case, the datasets were trained using the different kernels with

different hyper parameters and penalty value C ranging from 0.01 to 100. The speed

of training, numbers of support vectors, training accuracy and testing accuracy were

observed. In the comparisons, we only use RBF and polynomial kernels, for the

reasons we give in section 5.2.4. Table 6.9 to Table 6.12 reports the results of the

various comparisons that have been made.

6.3.1 Comparing Training Time and Number of Support Vectors

Table 6.9 Training Results for WBC data set (2 class)

SVM Tools Kernel C Number of
iteration

nSV

LIBSVM

RBF 1 1128 569
10 1265 569

Polynomial 1 490554122 32
10 623912950 32

SVMLight RBF 1 121 569
10 121 569

Polynomial 1 1237380 34
10 1062198 34

SVMTorch RBF 1 840 561
10 952 561

Polynomial 1 N/A 32
10 N/A 32

Note: nSV – number of support vectors
 N/A – very large number of iterations.

Table 6.9 gives the training result comparison for all three tools on WBC dataset

with C = 1 and C = 10. Training times, which is estimated in term of number of

iteration, are compared. The resulting numbers of support vectors are compared.

Using RBF kernel, all three tools finished in short number of iteration but produce

consistently large number of support vectors. While using polynomial kernel,

significantly higher number of iterations are needed. Using polynomial kernel,

training was slowest in SVMLight while number of support vectors is reasonably

 138

low. All three tools generate comparable number of support vectors for the same

kernel even with different C values.

6.3.2 Comparing Number of Support Vectors

Comparative training results on all datasets using all three tools are provided in

Table 6.10. All training exceeding a certain threshold of iteration and time using

certain kernel and hyper parameters has been skipped and the results are entered in

the table as N/A. Only LIBSVM was trained for both binary and multiclass as

SVMLight and SVMTorch that we used only implements two-class SVM. All tools

generate reasonably the same number of support vectors when using RBF kernels.

Table 6.10 Training Result (number of Support Vectors)

SVM
Package

Kernel C Data Sets
WBC CHD TTT VT HWD

LIBSVM

RBF 1 569 297 627 112 3811
10 569 297 423 76 3810

Polynomial 1 32 173 626 126 728
10 32 173 422 74 728

SVM
Light

RBF 1 569 N/A 949 305 N/A
10 569 N/A 949 306 N/A

Polynomial 1 32 N/A 328 59 N/A
10 32 N/A 848 58 N/A

SVM
Torch

RBF 1 561 283 N/A N/A N/A
10 561 279 N/A N/A N/A

Polynomial 1 N/A N/A N/A N/A N/A
10 N/A N/A N/A N/A N/A

Note: WBC, TTT and VT are 2 class problems; CHD and HWD are

multiclass problems. SVMLight and SVMTorch are 2 class packages.

6.3.3 Comparing Training and Test Accuracies

Table 6.11 gives the comparison of the training accuracy for each package. RBF

kernel and Polynomial kernel of degree 2 were used. The values of C = 10 are used

in all cases. LIBSVM produce on average the highest training accuracy.

 139

Table 6.11 Training Accuracy (in %)

SVM
Package

Kernel C Data Sets
WBC CHD TTT VT HWD

LIBSVM

RBF 100 100 92.80 95.86 100
10 100 100 98.33 98.85 100

Polynomial 1 97.54 78.79 85.70 95.17 100
10 97.36 80.47 90.71 97.93 100

SVMLight RBF 1 100 N/A 100 95.63 N/A
10 100 N/A 100 96.32 N/A

Polynomial 1 97.89 N/A 98.33 99.77 N/A
10 97.89 N/A 97.51 100 N/A

SVMTorch RBF 1 100 95.63 N/A N/A 100
10 100 100 N/A N/A 100

Polynomial 1 N/A N/A N/A N/A 100
10 N/A N/A N/A N/A 100

A comparison of the test accuracy for the three tools was also made. Table 6.12

gives the test accuracy for 10-fold cross-validation training using SVM with RBF

kernel.

Table 6.12 Summary of Test Accuracy (in %)

SVM Package Data Sets
WBC CHD TTT VT HWD

LIBSVM 96.13 58.25 70.67 93.79 97.91
SVMLight 96.24 N/A 70.67 93.79 N/A
SVMTorch 95.43 N/A N/A N/A 96.54

We finally selected LIBSVM as a base SVM package in our test of SVM for

character recognition as well as in the hybrid SVM/HMM online word recognition

system. The major reasons are; first ease of integration into the system where

LIBSVM is an already multiclass solution while the other two are not; second it is

better in training and test accuracies.

 140

6.4 Character Recognition Using SVM

After these preliminary experiments which allow to select the SVM package,

more in-depth experiments were conducted to investigate the usage of SVM in

online character recognition. In these experiments, we use the IRONOFF database,

UNIPEN database and a combination of the two databases together called

IRONOFF-UNIPEN. The description and details of each database are given in

Section 6.2 and Table 6.2.

6.4.1 Experiments on SVM for Character Recognition

For the experiments, a feature extractor module extracts the 7 local features for

each point of the online signal in the example character (see section 5.2.3). These 7

features are chosen since they are simple to obtain and have been used by Poisson

(Poisson, 2002) in other similar experiments using TDNN and MLP NN. Therefore,

for each example character there are 210 feature values which are the inputs of the

SVM. For our character recognition, we use LIBSVM library with RBF kernel, since

RBF kernel has been shown to give better recognition result. Grid search on a 10-

fold cross validation were performed on the databases in order to choose the best

values for the C and γ

parameters for the final SVM training.

It is observed that C values between 2 and 8 and gamma values between 2-7 and

2-5 yielded the best character recognition rate. We have chosen a single pair of C = 8

and gamma = 2-5 for our training on all databases since the results obtained shows

that individual grid search on the datasets yields almost similar C and gamma values

for majority of the datasets.

 Table 6.13 shows recognition performance for the recognizer using IRONOFF-

UNIPEN database. The table gives the total number of examples in the training and

test set as well as the accuracy, number of support vectors and the training time

taken. The training time and the number of support vectors seem to be proportional

to the size of the training data, which is normally the case. The bigger the training

size, the longer is the training time and the bigger the number of support vectors.

 141

However, test accuracy for each dataset does not follow the normal case where a

bigger dataset used in training gives better accuracy. This is due to the quality of the

character in the different dataset. A digit, in particular, is normally written

consistently uniformly if compared to lowercase or uppercase letter making them

less varied thus less confusion during recognition.

Table 6.13 Detail Recognition performance of SVM on

IRONOFF-UNIPEN character database

Data Set Training
Set

Test Set Test set
accuracy (%)

nSV Training
time (s)

Digit 13451 6270 98.68 3014 497
Lowercase 42778 20172 93.76 15696 5897
Uppercase 25662 11621 95.13 10035 2808

When compared with two other character recognizers based on neural networks;

the MLP and TDNN, our SVM based character recognizer consistently performs

better. Table 6.15 shows the comparison between MLP NN, TDNN and SVM

character recognizers, trained and tested on IRONOFF and UNIPEN databases.

Table 6.14 Comparing recognition performance between

TDNN and SVM for IRONOFF and UNIPEN databases

 IRONOFF database UNIPEN database
Data Set MLP TDNN SVM MLP TDNN SVM
Digit 98.2 98.4 98.83 97.5 97.9 98.33
Lowercase 90.2 90.7 92.47 92.0 92.8 94.03
Uppercase 93.6 94.2 95.46 92.8 93.5 94.81

As can be observed, the recognition rate or the accuracy using SVM is better than

TDNN and MLPNN for all datasets in the two databases. These are due to the

effectiveness of maximal margin optimization and structural risk minimization

(SRM) approach to learning used in SVM. NN which normally uses empirical risk

minimization (ERM) does not give an optimal classifier since there can be many

classifiers obtained given an initial set of parameters to start with. Better accuracies

for SVM are also obtained for IRONOFF-UNIPEN database as seen in Table 6.15.

 142

However, a fair comparison need not be just by looking at the recognition

accuracy. A practical recognizer should be small in size, carrying as small as

possible number of parameters. The free parameter columns for MLP, TDNN and

nSV column for SVM in Table 6.15 gives a comparison for this. In such case,

TDNN recognizer is a clear winner because the total number of free parameters is

small. This is due to the weight sharing scheme within the structure of the TDNN.

According to the table, SVM seems to have a small number of parameters indicated

in the nSV column, which is the total number of support vectors.

Table 6.15 Comparing recognition performance and number

of parameters using MLP, TDNN and

SVM for IRONOFF-UNIPEN database

 MLP TDNN SVM
Data Set Free

par.
Rec

Rate(%)
Free
par.

Rec
Rate(%)

nSV Rec
Rate(%)

Digit 36110 97.9 3790 98.4 3014 98.68
Lowercase 37726 91.3 8926 92.7 15696 93.76
Uppercase 37726 93.0 8926 94.5 10035 95.13

Since a support vector is actually an example from the training set, its size is

actually a multiple of the dimension of the feature vector representing the example.

This can be large. In our SVM, this is 30 x 7 or 210. To fairly compare the number

of parameters for each MLP, TDNN and SVM, let’s take the parameters for digit

recognizer. For MLP, it is 36,110, for TDNN 3,790, but for SVM, it is 3,014 x 210 =

632,940 or 18 times larger than MLP NN. One way to tackle this large model is to

use compression. Parameters are stored in compressed form. During recognition, the

model will be expanded dynamically as required.

As discussed in section 4.4.3, SVM can be made to give posterior probability

outputs. Since we will eventually use the SVM in the word recognizer, we decided

to train and test the SVMs for handling probabilistic output using IRONOFF and

UNIPEN databases. In the training, the SVM was trained with the option for

probabilistic output and recognition were then done using the model for probabilistic

 143

output which gives probability values for each class as the outputs. The correct

recognition is the character class which gives the highest probability value. The

recognition accuracy does not differ much between using SVM with probabilistic

model or non probabilistic model, as seen in Table 6.16.

Table 6.16 SVM distance vs. probabilistic SVM based

recognition for IRONOFF and UNIPEN Databases

 IRONOFF database UNIPEN database
Data Set SVM SVM

prob.
SVM SVM

prob.
Digit 98.83 98.68 98.33 98.35

Lowercase 92.47 92.42 94.03 94.14
Uppercase 95.46 95.45 94.81 94.85

6.4.2 Character Recognition Summary

In all the experiments, the results have shown that the recognition rates of

characters using SVM character recognizer are significantly better than other

methods compared, due to structural risk minimization implemented by maximizing

margin of separation in the decision function. However, the increase in recognition

rate is not without some impact. SVM model size is characterized by the number of

support vectors obtained in the training. Storing these support vectors for recognition

requires larger memory as compared to NN weights since each support vector is a

multidimensional feature vector. The number of support vectors can be reduced by

selecting better C and gamma parameter values through a finer grid search and by

reduced set selection (Burges, 1996) (Downs, 2001). The comparison of recognition

results of SVM with probabilistic output and SVM distance output shows that both

are comparable.

In section 6.6, we present the work on integrating the SVM character recognizer

into the HMM based word recognition framework. However, we first describe some

other works which makes use of SVM that the author has undertaken in the

following section.

 144

6.5 Experiences in Implementation of SVM in Other Areas

This section reports some results of the author’s work in using SVM for

applications in other areas. It provide some information regarding the effectiveness

of SVM in two areas; first, an area very close to online handwriting recognition,

which is on online handwritten mathematical expressions recognition and second; an

area which is not directly related to handwriting recognition. The first result is on

comparison of the usage of SVM and TDNN in mathematical expressions

recognition which is part of a research (Awal, 2008) within the same laboratory. The

second work (Ahmad, 2007) was performed for the state owned Malaysian power

producer, Tenaga Nasional Berhad (TNB) on customer fraud prediction using SVM.

6.5.1 SVM in Mathematical Expressions Recognition

In a larger perspective, a framework for online handwritten mathematical

expression recognition was proposed. The architecture aims at handling

mathematical expression recognition as a simultaneous optimization of symbol

segmentation, symbol recognition, and 2D structure recognition under a

mathematical expression grammar. Its components are hypothesis generator that

performs a 2D grouping of elementary strokes, a classifier that labels the hypothesis

according to a predefined set of symbols, a cost function defining the global

likelihood of a solution, and a dynamic programming scheme that gives the best

global solution. For recognizing the elementary strokes, TDNN has been chosen to

be the base recognizer. A TDNN was trained using large datasets of online

handwritten mathematical symbols that has been collected. The database consists of

Greek symbols, elastic symbols, arrows, functions as well as capital letters, small

letters and digits. SVM has been used to compare the recognition results with TDNN

using the same collected database.

S

All S
Gree
Elast
Arro
Func
Capi
Smal
Digit

As can

accuracy

validation

shows th

handwritin

Figure 6.2

0

20

40

60

80

100

120

Table 6

Symbols

Symbols
ek symbols
tic

ows
ctions
ital letters
ll letters
ts

n be seen i

for all typ

n procedure

at SVM is

ng related r

2 Compari

6.17 Compa

Mathem

Number
of

Classes
223
30
37
59
35
26
26
10

in Table 6.

pes of symb

e in the sele

s a robust

recognition.

ison of TDN

arison of T

matical sym

Training

40128
5400
6660

10619
6298
4680
4674
2719

17 and Fig

bol. These

ection of S

classifier

NN and SV

DNN and S

mbol recogn

g set Tes
s

8 22
0 30
0 36
9 59

8 35
0 26
4 26
9 13

gure 6.2 , S

are achiev

VM param

which can

VM on isola

SVM on iso

nition

sting
set

R
a

TD
2294 60
000 7
698 78
900 79
500 73
600 77
600 7
367 8

SVM gives

ved by a si

meters and t

n be adapte

ated symbol

olated

Recognition
accuracy (%
DNN SV
0.21 79.

72.7 85.
8.88 89.
9.95 92.
3.34 87.
7.42 94.

74.5 92.
87.5 96.

s better rec

mple 3-fold

he penalty

ed for use

l recognitio

TDNN

SVM

145

n
%)
VM

42
88
13
51
71
85
00
60

ognition

d cross-

term. It

in any

on

 146

6.5.2 SVM in Electricity Fraud Prediction

In this second related work on SVM, we developed an intelligent system to detect

fraudulent customers for a Malaysian power company, Tenaga Nasional Berhad

(TNB). The aim is to create a list of fraudulent customers from the company

customer database using SVM so that instead of spending a lot of money on

inspection campaign on customers, the list of likely fraudulent customers will be

generated by using an SVM predictor trained using samples of verified customers.

Of the 0.4 million customers of TNB from a particular state, an estimated 7.5% of

the total customers have been checked by visiting selected customer premises. Out

of that, only 6% have been confirmed fraudulent (the strike rate). With the use of the

SVM based predictor, it was hoped that a predicted fraud list will give a high strike

rate much better than the manual method of 6%, giving much cost saving from not

having to perform manual inspection on large customer base. To train the SVM, data

from 13,000 customers that have been checked are used. Features used are the

electricity consumptions for the last 85 months resulting in an 85 dimensional

feature data. Missing data are projected by using the average profile of all customers.

For SVM parameter selection, 10-fold cross validation was used. In validating the

predictor, we used a few different data sets.

Table 6.18 Fraud prediction Accuray

Dataset 10-fold cross
validation accuracy

332 customers initial set 76.51
190 customers verified set 93.12
2000 customers verified set 73.4
13000 customers verified set 68.56

 Table 6.18 gives a summary of the results obtained in the course of training and

validation of the SVM predictor. The table gives the validation accuracy using 10-

fold cross validation for the different sample data that was used. A conclusion that

can be made is that the SVM fraud predictor has been able to predict correctly the

 147

fraudulent customers for more than 60% of the time which is more than 10 times

better in accuracy than the strike rate of 6% by manual method.

6.6 Word recognition Using Hybrid SVM/HMM

The hybrid word recognition system that we developed was evaluated by

conducting some experiments using the IRONOFF word database. We trained and

tested the system on each of the databases in IRONOFF; the cheque word, English

word, French word and the overall word databases separately. Cheque words

database contains a lexicon of 30 words, while English contains 26 words, French

171 words and the overall words altogether contains 197 words. The aim of the tests

was to investigate if our method of preprocessing, feature extraction, segmentation

and SVM training are suitable and gives good recognition results and with that we

will make recommendations for the implementation of such hybrid system.

First, initial Character SVMs were trained and tested for each databases before

they are used in each baseline word recognition systems. Segmentation of words into

characters for the baseline system was done by a commercial recognizer, guided by

the actual label during recognition. The use of actual label is supposed to help the

commercial recognizer during its recognition and thus gives a very good recognition

for segmentation to be done perfectly, resulting in a good character database. With

this we hope to start off with a good SVM. As discussed in section 5.3.6, the

process of training the system is done in a few cycles of resegmentation of word

databases and retraining of character SVMs until there are no more improvements in

the performance of the character SVMs.

In the following subsections, we first discuss a simple example of the processes

involved in all the steps for the word recognition and resegmentation for a simple

word “hi”. The example demonstrate the processes involved in the hybrid system,

showing the character recognition functionality of SVM and the dynamic

programming functionality of the HMM in calculating the word probability for each

word in the lexicon. For overall evaluation of the hybrid word recognition system,

we discuss the results obtained during the overall process of the SVM training at the

 148

character level and the recognition at word level and subsequently segmentation and

retraining of the character SVMs for all the word databases. We then analyze the

errors caused and discuss issues related to them.

6.6.1 A Word Recognition Example

For our word recognition system training, we demonstrate here the processes

involved in the recognition and resegmentation of a simple example word consisting

of two characters, the word “hi”. For this demonstration, the word “hi” have been

added into the lexicon of English words and a character SVM trained with characters

from the English words in the IRONOFF database was used. As can be seen in

Figure 6.8, characters ‘h’ and ‘i’ are part of the characters in the words of the

English word database. The signal for the word “hi” is as shown in Figure 6.3. To

make the analysis simple, in writing the word “hi”, the dot for the character ‘i’ was

not written, so that the word “hi” is a word with only one stroke.

The portions of the original signal and the pre-processed signal are shown in (a)

and (b) respectively. It shows the change in coordinates after the preprocessing and

normalization. For details of the preprocessing that we performed, refer to Section

5.2.2 on preprocessing and normalization.

Figure 6.3 The online signals of the word "hi"

 149

The word “hi” contains only one stroke with 129 points. The already pre-

processed word signal is segmented into slices by a very simple algorithm which

tracks each point from the beginning of the stroke, and groups them into slices from

minimum to maximum points or minimum to maximum points repeatedly over the

stroke. In our example here, the segmentation into slices of the word “hi” yields 6

slices as shown in Figure 6.4. Once we have the slices, they are combined to form

character hypothesis, which can contain the minimum of 1 slice up to a maximum

number of ω slices.

(a) Word signal – “hi”

(b) The 6 slices

Figure 6.4 The 6 Slices from the word "hi"

In generating the hypothesis, the value for ω was chosen to be 5 for this example

but a value of 7 was used in the rest of the system, as explained in section 5.3.4 and

also by experimental results. The value of ω chosen affects the recognition accuracy

and the time taken to perform the recognition. A large value of ω results in larger

number of hypothesis and longer recognition time but with higher possibility for

correct recognition. These character hypotheses are preprocessed, resampled and

recognized by the SVM character recognizer which gives the probabilities for the

hypothesis to belong to any one of the character classes. For each word in the

lexicon, the dynamic programming step is used to find best path combining the

hypothesis giving the best score for generating the particular word in the lexicon.

In this example, using 6 slices, there are 20 character hypothesis possible and can

be verified by the formula given on page 116. The character hypotheses are then

resampled to a uniform 30 points and 7 local features are extracted from each point,

resulting in a 210 dimensional feature vectors. Each set of feature values are then

passed to the character SVM to yield the probability array which keeps the

 150

probabilities of character classes for all hypotheses. This probability array is kept in

memory during the word score calculation for each word in the lexicon. Keeping it

in memory reduces the computation time as character probabilities needed for each

calculation are made available in the matrix and SVM need not be called every time

to get their values.

We show in Figure 6.5 the trellis which was constructed in order to evaluate the

score for the lexicon word “hi” itself. The trellis to be constructed for the evaluation

of the score for each word in the lexicon but for simplicity sake we show only this

one trellis which happens to be the word to be recognized and segmented.

Figure 6.5 matches the word recognition graph of Figure 5.16 except that it is

rotated 90 degrees clockwise. In the trellis, each cell represents the probability of the

hypothesis that combines the slice(s) from slice (t – q + 1) to slice t where t is the

slice number and q is the number of slices. For example, the circled value -0.13

represents the probability that a hypothesis containing 4 slices - slice 0…3, is

character ‘h’ and the value -0.04 to the left of -0.13 represents the probability that a

hypothesis containing 3 slices – slice 1…3, is character ‘h’. This a constrained graph

where for the first character, only hypothesis starting with slice 0 is valid and from

one character hypothesis, the path lead to the next character hypothesis starting from

the next slice after the last slice in the current hypothesis. The values indicated by –

INF are undefined since we cannot have a hypothesis with such slices, for example,

it is not possible to have a hypothesis that have 4 slices ending with slice 2.

In our example here, the best path for the word “hi” is as indicated by the arrow;

for character ‘h’, it’s the hypothesis containing 4 slices – slice 0…4 having a log

probability score of -0.13 and for character ‘i’, it is the hypothesis containing 2

slices – slice 4 and 5 with a probability score of -0.21, giving total word probability

score of -0.34. The final normalized word score which is taken for comparison

against other word lexicon is the total word probability divided by length of the

word ‘hi’ giving the score of -0.17. For other words in the lexicon, the same thing is

done to obtain the final normalized word score. The word with the highest

normalized word score is chosen as the recognized word. The verbose output of the

 151

recognition and segmentation process for the word “hi” using the English word

lexicon is shown in Appendix C.

Figure 6.5 Trellis for probability score of each hypothesis and the best

path for scoring the lexicon word “hi” itself.

As can be seen in appendix C, the score for some of the word lexicon are –INF.

The value of –INF are assigned in the cases where the number of characters in a

lexicon word is bigger than the number of slices cut from the word to be recognized,

since there is not enough slice(s) to sufficiently represent each character. For our

simple example given here, the highest word score (at position 1) is -0.17 which is

for the lexicon word “hi” itself, meaning that our recognizer recognizes the word

correctly. The correct segmentation points for the word are such that for letter ‘h’, it

consists of slice 0 to 3 and for letter ‘i’, it consists of slice 4 and 5 as seen in Figure

6.6. Information about these correct segmentations is used to regenerate characters,

hopefully better segmented ones. In the overall training which involves word

databases, character databases can be generated for retraining of SVM.

 152

Figure 6.6 Character Segmentation for the word “hi”

6.6.2 Comparing Word Recognition Performance

When we want to evaluate our hybrid word recognition system, we need to use

the complete word database to measure the percentage of correctly recognized words

from the database (those words having true class in position 1). However, other

reasonable comparison of the performance would be to compare the percentage

position of the true class in certain top position other than 1, between 2 to n. For

example, we can take a word as “correctly recognized” if the true class is in the top 3

position and compare recognition performances based on this. Other than that, the

average position of the true class can also be used.

In summary, the measures that can be used to evaluate the performance of a word

recognizer are as follows:

a) Top(n) for n = 1, …, N : the percentage of samples for which the true class are

in the top n position of the candidate list. For example, Top(3) performance

measure of 95% means that 95% of the samples words tested have the true class

to be among the top 3 positions.

b) pos : the average position of the true class in the candidate list generated by the

recognizer. The value of 1.0 is the best, which can only be achieved if all the test

data are correctly recognized.

In the results for word recognition comparison for each training cycles which we

report the results in section 6.6.5, we mainly used the Top(n) measures for n from 1

to 10.

 153

6.6.3 Character Database Generation.

To bootstrap our system with a properly trained SVM, we trained character

SVMs using characters segmented from the word database. As mentioned, each

word in the word database was segmented using an API library of a commercial

word recognizer to obtain database of characters. The size of the character databases

generated (training set and testing set) for cheque words, English words, French

words and all words databases are as in Table 6.19. The relative distribution of

characters generated is shown in the charts of Figure 6.7, Figure 6.8 and Figure 6.9.

Table 6.19 Number of characters in generated character database

 Number of characters
Word Database Training set Test set

Cheque 39578 19675
English 11270 5523
French 107201 53634
All Words 158049 78832

As we can observe from the figures the database of cheque words characters only

contain 21 of the lower case characters and also without the upper case and French

accented characters. The database of English word characters contains a fair number

of upper and lower case characters. In the French words character database, all

character sets in the character lexicon are used. However, the number of examples of

upper case characters is very low compared to the lower case characters. The

number examples of French characters are also considerably adequate. This class

imbalance in data sets affects the training of SVM.

 154

Figure 6.7 Distribution of characters in the generated cheque word

character database. Only a subset of lower case characters are present.

Figure 6.8 Distribution of characters in the generated English word character

database. Some character classes from character lexicon are not present.

Figure 6.9 Distribution of characters in the generated french word character

database. All character classes in the character lexicon are present.

Segme

purposes,

process of

T

Table

commerci

Although

the label,

not come

contribute

6.6.4 Train

The ch

character

and Frenc

train

te

entations we

we noted

f doing the

Table 6.20

Word

Cheque
English
French
All Words

6.20 and F

ial recogniz

the recogn

we did not

from the e

e the charac

Figure 6

ning of Cha

haracter dat

SVMs. We

ch words, a

85.00 90

n

st

ere done on

the recogni

segmentatio

Word Rec

Database

s

Figure 1.1 sh

zer. The reco

nition proce

t get perfect

entire word

ters.

6.10 Recog

aracter SVM

tabases obta

e trained the

as well as a

0.00 95.00

nly on corr

ition accura

on.

ognition ac

R
Train

96
99
92
96

ow the wo

ognizer was

ess for the p

t recognitio

ds databases

gnition acc

Ms

ained from

e SVMs sep

all three tog

0 100.00

rectly recog

acy of the

ccuracy of d

Recognition a
ning set
6.76
9.72
2.00
6.16

rd recognit

s built using

purpose of

on and thus

s since onl

curacy duri

section 6.6

parately for

gether as th

105.00

gnized word

commercia

during segm

accuracy (%
Test s

96.03
99.44
94.33
96.60

tion accurac

g a hybrid o

segmentati

the charact

ly correctly

ing segmen

6.3 are then

cheque wo

he overall w

All Words
French
English
Cheque

ds. For com

al recognize

mentation

%)
set
3
4
3
0

cy obtained

of ANN and

on were gu

ters generat

y recognize

ntation

n used to t

ords, Englis

word datab

155

mparison

er in the

d by the

d HMM.

uided by

ted does

d words

train our

sh words

ase. For

 156

selecting the best parameter values (γ and C) to train a final SVM, a 10 fold cross

validation was done on the cheque word character database. We obtained the RBF

kernel parameter values of γ = 0.03125 and C = 2 to be optimum for training the

SVMs. The same parameter values were used for training the other SVMs. Each

SVM was trained using the characters from the training set and tested using

characters from a separate test set indicated in Table 6.20.

Table 6.21 Performance of the character SVMs

Character
Database

Recognition
rate (%)

Number of
Support Vectors

Cheque 85.47 20,709
English 80.46 8,591
French 81.66 43,800
All words 84.33 86,347

We can make an observation here that the recognition rate of the trained SVM is

not very high. This is not that important however, as the overall word recognition

relies on combination of a number of SVM outputs where a low probability for a

character in the word can be compensated by high probability in the other characters

in the word. This is evident in the word recognition results in the following section,

for English words. Although the character SVM for English words gives the lowest

recognition rate among them, word recognition rate for English words is the highest

among them (see Table 6.22). One thing to note however is the significant size of the

number of support vectors. Number of support vectors in each SVM is as large as

50% of the total number of example characters in the generated character databases.

This can be due to the values of the training parameters chosen. As understood,

bigger number of support vectors means longer recognition time since each support

vector is involved in the calculation of the output.

6.6.5 Recognition Result for Baseline Word Recognition System

The baseline system is the word recognizer using the character SVM trained with

the characters segmented from the word with the commercial recognizer. We

 157

performed recognition on the individual word databases and regenerate new

character database using the segmentation points generated during the recognition.

Table 6.22 Word recognition rates of base recognizer

Database Lexicon
size

Recognition rate (%)

Top(1) Top(2) Top(3) Top(10)
English 26 98.77% 99.44% 99.50% 100%
Cheque 30 76.71% 91.64% 95.71% 99.99%
French 171 63.25% 77.90% 85.15% 98.86%
All words 197 64.53% 79.05% 86.20% 99.91%

We obtained the word recognition rates as shown in Table 6.22 and graphically

represented in Figure 6.11. The result shows that Top(1) recognition rate is not very

high, where all except English word databases gives below 98% recognition rate.

However, the Top(10) recognition rate of almost or above 99%, indicates that

although the recognizers made some errors in word recognition, they are still within

the Top(10) positions. The analysis of the errors that occur during word recognition

will be discussed in section 6.6.9.

Figure 6.11 Word recognition rates for base recognizer

 158

6.6.6 Retraining of SVMs

To demonstrate further effectiveness of the system, we retrain the individual

character SVM for the English word database. The character SVMs recognition rate,

the number of support vectors for each character SVM and the word recognition rate

of the word recognizer based on the new character SVM are given in Table 6.23.

Table 6.23 Improvements in Character and word recognizer

for the English Words

Iteration Character SVM
Rec. Rate (%)

nSV Word Rec.Rate
Top(1)

Baseline 80.46 8591 98.77%
First iteration 74.37 8449 98.49%
Second iteration 74.27 8296 98.83%
Third iteration 74.32 8349 98.99%

As observed from the table, the performance of the new character SVM were less

than the baseline character recognizer but it did not change the word recognition rate

too much. The word recognition rates were within 1% above and below the baseline

word recognition rate. The number of support vectors is also generally lower than

the baseline character recognizer which means the SVM model is getting smaller in

size. As we performed word recognition and resegmentation repeatedly, the word

recognition rate converges to around 98.9%.

6.6.7 Incorporation of Junk Characters in Retraining of SVMs

From Table 6.23, it can be observed that the SVM training performance did not

actually improve after the many iterations and in turn does not improve very much

the word recognition. The SVM character recognizer may have been presented with

many of the “characters” it never have seen which are character hypotheses that does

not look like any of the characters in the character classes. Worse still the hypothesis

might look like a real character but is not the actual character of the word in the

lexicon, for example, a part of the character ‘d’ can look like character ‘c’. We call

the non characters as junk characters. These junk characters can contain part of a

 159

character or combination of a few characters. In some cases it can give high score to

a word in the lexicon which is not the true word. It might be a good idea to create a

class for the SVM that represents these junk character hypotheses. Junk examples

can be created from the word signals and added to the character examples generated

by the previous training stage. The combined database of characters and junk

examples can then be used to retrain the SVM which have an extra class called junk.

To select junk examples, the following guide can be used:

(a) To only select a very small and relevant number of junks, we can select only one

character hypothesis at each training stage that cause recognition error as junk

example for each training word.

(b) For choosing the best junk example, we can compare the character hypotheses

that made up the true word label (true word) and the hypotheses that made up the

word with the best score (best word). A value, say γ that represents the

probability that a given hypothesis is a true character hypothesis can be

calculated for each hypothesis. A hypothesis that has their twoγ ’s from the true

and best word differs the least, is taken as the junk character example.

This idea of using junk class has been described and used by (Tay, 2002) in his

work on hybrid NN/HMM for offline word recognition. We contemplate in using a

junk class in our SVM; however, the idea was put off. In our work, since we do not

use ligatures to represent concatenations between character hypotheses, we felt that

it is not necessary to use a junk class. Our word HMMs are concatenations of

character HMMs without the use of ligatures. In the work of (Tay, 2002), which uses

NN, junk class and ligature class may compete as a ligature can be taken as a junk

class. Furthermore the junk is only used to flatten out other character probabilities

when a hypothesis is not a character. For our work, SVM probability outputs are

representative enough for each character class.

 160

6.6.8 Result Comparisons with Hybrid of TDNN and HMM approach.

A comparison can be made of the results obtained earlier using a hybrid of SVM

and HMM with the results obtained using a global word training using TDNN and

HMM by Caillault (2005). Table 6.24 shows the recognition results obtained. In the

table, the results were shown for TDNN with 1 state (état, in French), 2 states and 3

states and four different training criteria; either maximum likelihood training (ML)

or maximum mutual information (MMI) and a combination of MMI and ML and

MMI, ML and TDNN.

Table 6.24 Recognition result Using TDNN for IRONOFF word

Comparing Table 6.22 and Table 6.24, it can be observed that the recognition rate

using hybrid of SVM and HMM that we use gives a recognition rate of 64.53% for

Top(1), 79.05% for Top(2) and 86.20% for Top(3). For the hybrid of TDNN and

HMM, the recognition rate is from as low as 77.43% using ML estimation and 1-

state TDNN, reaching as high as around 92.78% using combination of MMI-ML-

TDNN estimation. As with most globally trained, or another word, a hybrid system

trained at word level, recognition rate is always higher because the output at word

level provides correction information to the character level.

6.6.9 Analysis of Errors

We analyze the errors made by our word recognition system on each of the word

database. We have divided the errors into minor and major error. Minor error refers

to an error that does not result in the first recognized position but still are in the other

 161

two top 3 positions – either 2nd or 3rd. Major error causes the recognition position

to be outside the top 10 positions. Among the cause of errors that we observed are

due to (a) errors in preprocessing or segmentation, (b) errors caused by wrong

detection of the reference lines, (c) wrong word labels which differ from the actual

word signal, (d) bad handwriting.

For discussion of recognition errors, we use the English word examples. For the

English word database, the words are correctly recognized within the Top(10)

position with more than 99% within the Top(3) position. This is evident from the

output summary of the recognition process. This may be due to the fact that English

alphabets are without accented characters and can be well represented by the classes

in the English character SVM as compared to French characters. Our preprocessing

does not include taking into account those special accented characters and the

presence of the extra stroke(s) for the accented characters which vary in the time

they are written can affect the character feature representation.

A few minor and major errors that we analyzed from the English word recognition

results are as follows:

c:\ironoff\F3\F3.champs19.unp_pre.unp ->Smooth
Total slices = 28, Total hypothesis = 175

 Top 1 : North -0.374712
 Top 2 : Smooth -0.425938
 Top 3 : Earth -0.711393

True label: Smooth score -0.425938 position 2

 char : N, start: 9, end: 14
 char : o, start: 15, end: 16
 char : r, start: 17, end: 18
 char : t, start: 19, end: 22
 char : h, start: 23, end: 27

 char : S, start: 0, end: 2
 char : m, start: 3, end: 9
 char : o, start: 10, end: 16
 char : o, start: 17, end: 19
 char : t, start: 20, end: 22
 char : h, start: 23, end: 27

 char : E, start: 8, end: 13
 char : a, start: 14, end: 18
 char : r, start: 19, end: 20
 char : t, start: 21, end: 22
 char : h, start: 23, end: 27

Figure 6.12 Example error: reference line detection

For the example of Figure 6.12, the error in word recognition is caused by an

error in the reference line detection. In the calculation of the cost of the best path for

word lexicon “North”, the probability for starting character N at slice 9 is higher

compared with the hypotheses combination that start from slice 0. This give the

 162

word score for “North” to be higher than “Smooth”. Another observation that can be

made is that all top three words end with the letters “th” but the ‘t’’s are represented

by hypothesis from different slice combinations. The case of example in Figure 6.13

is similar where the word with the top score starts with hypothesis that do not

contain slice 0. This again is due to a high probability of character B for that

hypothesis against earlier hypothesis.
c:\ironoff\F55\F55.champs11.unp_pre.unp ->Ku-
Klux-Klan
Total slices = 36, Total hypothesis = 231

 Top 1 : Between -0.787303
 Top 2 : Voice -0.839355
 Top 3 : Ku-Klux-Klan -0.874788

True label: Ku-Klux-Klan score -0.874788
position 3

 char : B, start: 8, end: 13
 char : e, start: 14, end: 16
 char : t, start: 17, end: 17
 char : w, start: 18, end: 24
 char : e, start: 25, end: 29
 char : e, start: 30, end: 32
 char : n, start: 33, end: 35

 char : V, start: 16, end: 22
 char : o, start: 23, end: 29
 char : i, start: 30, end: 30
 char : c, start: 31, end: 31
 char : e, start: 32, end: 35

 char : K, start: 0, end: 3
 char : u, start: 4, end: 6
 char : -, start: 7, end: 7
 char : K, start: 8, end: 12
 char : l, start: 13, end: 15
 char : u, start: 16, end: 19
 char : x, start: 20, end: 20
 char : -, start: 21, end: 21
 char : K, start: 22, end: 26
 char : l, start: 27, end: 28
 char : a, start: 29, end: 32
 char : n, start: 33, end: 35

Figure 6.13 Example error: reference line detection

Another example of error that we observed is an incorrect recognition caused by

incorrect labeling. In the example shown in Figure 6.14, the image of the signal is

clearly “North” but the label is “Job”. The Top(1) position correctly belongs to the

word “North” with the highest score.

Ex[1382]:
c:\ironoff\F81\F81.champs10.unp_pre.unp ->Job
Total slices = 18, Total hypothesis = 105

 Top 1 : North -0.198316
 Top 2 : Earth -0.576795
 Top 3 : Money -0.776496

True label: Job score -1.221589 position 8

 char : N, start: 0, end: 3
 char : o, start: 4, end: 7
 char : r, start: 8, end: 9
 char : t, start: 10, end: 13
 char : h, start: 14, end: 17

 char : E, start: 0, end: 5
 char : a, start: 6, end: 8
 char : r, start: 9, end: 9
 char : t, start: 10, end: 13
 char : h, start: 14, end: 17

 char : M, start: 0, end: 5
 char : o, start: 6, end: 6
 char : n, start: 7, end: 8
 char : e, start: 9, end: 11
 char : y, start: 12, end: 17

Figure 6.14 Example error: wrong label.

 163

Another example of error made during preprocessing is shown in Figure 6.15.

This error is cause by an error during the preprocessing stage where the spurious

signal at the first stroke in the top bar of character J that was not corrected due to our

simple preprocessing procedure. This cause the bar to resemble an s. However the

Top 1 score is very close to the true word at Top 2 score.

Ex[7997]: c:\ironoff\F3\F3.champs10.unp_pre.unp
->Job
Total slices = 9, Total hypothesis = 42

 Top 1 : son -0.361563
 Top 2 : Job -0.366574
 Top 3 : sous -0.508704
True label: Job score -0.366574 position 2

 char : s, start: 0, end: 0
 char : o, start: 1, end: 3
 char : n, start: 4, end: 8

 char : J, start: 0, end: 3
 char : o, start: 4, end: 5
 char : b, start: 6, end: 8

 char : s, start: 0, end: 0
 char : o, start: 1, end: 3
 char : u, start: 4, end: 7
 char : s, start: 8, end: 8

Figure 6.15 Example error: preprocessing

6.6.10 Conclusion

Our hybrid word recognition system has been implemented with simple

preprocessing, segmentation and feature extraction procedures but proven to work

quite well, especially for English words due to its simpler character sets and smaller

word lexicons. In summary, for building SVM character recognizer, our SVM

parameters have been chosen by 10-fold cross validation to give the best recognition

when we make use of C parameter of 2 and gamma parameter of the RBF kernel to

be 0.03125. For segmentation, we have sliced the word into slices from maximum to

minimum or minimum to minimum y-axis points and selected the size of a

hypothesis to be containing a maximum of 7 slices. We showed that our algorithm

for word score calculation is able to give Top(10) word recognition score of greater

than 99% for words in the IRONOFF database.

 164

6.7 Summary

In this chapter we describe the databases that are used in the course of testing the

hybrid SVM/HMM word recognition system at the various stages of developments

and the results obtained at each stage. We described the databases used for the

evaluation and selection of the SVM tool, databases for the testing the character

SVMs and databases for testing word recognition by our hybrid word recognition

system. We then give the results in the testing of our SVM recognizer and the hybrid

word recognizer and analyze some of the errors that occur in the recognition process.

Finally, we made conclusions from the experiments and the results obtained.

 165

CHAPTER 7

CONCLUSIONS AND FUTURE RECOMMENDATIONS

7.1 Dissertation Contributions

As described in section 1.7, the aim of this work is to address the issue of

discriminative training in the hybrid handwritten word recognition system. We have

investigated the effectiveness of using SVM in character recognition and its use in a

hybrid environment of a segmentation based handwritten word recognition system.

In the hybrid system, the discriminative property of SVM is exploited in tandem

with the class representative property of an HMM.

We have implemented a hybrid SVM/HMM handwritten word recognition

system that caters for a medium sized lexicon that handles connected cursive

handwritten words. The system is similar in idea with some existing systems based

on discrete HMM or a hybrid of HMM and NN. We recognized that the optimization

of the HMM/NN based system can either be at the word level or at character level.

In word level, both NN and HMM are optimized based on the output at word

recognition level. In our system, we only emphasize optimization at the character

level, meaning optimizing the character recognizer based on the segmentation done

as a result of word recognition. This is due to the fact that conventional SVM

training that we use involves quadratic programming optimization on the dual

formulation. Correcting gradient does not propagate from the word level to character

or sub-character level training of the SVM.

 166

In the course of this thesis work, we made the following contributions:

a) Evaluated various selection and parameterisazion of SVM for use in handwriting

recognition problem. We have shown that SVM with RBF kernel are the most

suitable for use.

b) Tested SVM on a few major character databases, proving the effect of various

parameterizations in improving character recognition.

c) Implemented and tested SVM with posterior probabilistic measures output.

Though they are now standard, we have verified its implementation and usage

for handwriting recognition.

d) Implemented a simple method for segmentation based on optimum coordinates

points and feature extraction of character segments from words.

e) Use of SVM in a hybrid situation with HMM, in particular the dynamic

programming aspect of the Viterbi algorithm in the HMM.

f) Compared SVM/HMM hybrid implementation with other hybrid systems in

handwriting recognition and in speech recognition.

7.2 Conclusion

The result of recognition of the hybrid HMM/SVM system is not as promising.

However, we believe that the work have not been attempted by other researchers and

we have proven that it is possible to implement the hybrid of HMM and SVM

similar to the speech recognition counterpart. We analyzed the errors and identified a

number of issues that we faced during the implementation. We also listed some

recommendation in terms of the training and implementation of SVM character

recognizers.

 167

7.3 Future Work

SVM has been used in handwriting recognition by other researchers but mostly

at the character recognition level. In our thesis, we have also implemented character

recognizers using SVM and shown that SVM recognizers are better than NN based

recognizers, in particular the TDNN’s and the MLP NN’s. However, at the word

recognition level, NN based hybrid recognizers have the advantage that word level

optimization can be done in parallel with character level optimization due to the

gradient descent approach to training.

In our work, we have taken the path of separate optimization for the character

recognizer based on segmentation by the word recognizer. There is no information

from the word recognizer in term of correcting gradients that are used by the

character recognizer in its optimization. Our training of SVM has been by way of

solving for the Lagrange multipliers introduced in the dual formulation for the large

margin classification in SVM. This involved quadratic optimization and is complex,

computationally inefficient and does not allow for outside error correcting

information in the SVM training.

A training method that is more efficient that alleviates the difficulties associated

with operating in the dual problem is desired. (Kowalczyk, 2001) patented a method

for a gradient based method for training SVM in 2006. The method executes an

iterative process on the training data to determine the parameters of the SVM. The

iterative process is executed on the basis of a differentiable form of a primal

optimization problem for the SVM parameters. Generation of support vectors can be

done by a method with differentiable penalty by direct minimization of the primal

problem.

A suggested future work can be to make use of this gradient based SVM training

method in a hybrid SVM/HMM based word recognition system where correcting

information from the word level can be used in the character SVM training,

comparable to the hybrid NN/HMM system. In this case word level discriminant

training which is known to give better recognition results can be performed.

 168

REFERENCES

1. AHMAD, A. R., KHALID, M., YUSOF, R., VIARD-GAUDIN, C.

(2004a) Online Handwriting Recognition using Support Vector

Machine and Hidden Markov Model. International Conference on AI

in Engineering and Technology, ICAIET 2004. Sabah, Malaysia.

2. AHMAD, A. R., KHALID, M., VIARD-GAUDIN, C., POISSON, E.

(2004b) Online Handwriting Recognition Using Support Vector

Machine. IEEE Region 10 Conference TENCON 2004. . Chiangmai

Thailand.

3. AHMAD, A. R., MOHAMAD, A. M., ISMAIL, F.I., ABDUL

RAZAK, F. (2007) Intelligent System for Detection of Abnormalities

and Probable Fraud by Metered Customers. International Conference

on Electricity Distribution, CIRED2007. Vienna, Austria.

4. ALLWEIN, E., SCHAPIRE, R.E., SINGER, Y. (2000) Reducing

Multiclass to Binary: A Unifying Approach for Margin Classifiers,

Journal of Machine Learning Research, 1, 113-141.

5. AMARI, S. (1967) Theory of Adaptive Pattern Classifiers. IEEE

Transactions on Electronic Computers, 16, 299-307.

6. ANQUETIL, E. L., G. (1997) Perceptual model of handwriting

drawing. Application to thehandwriting segmentation problem.

Fourth International Conference on Document Analysis and

Recognition, 1997.

 169

7. ARTIERES, T. G., P. (2002) Stroke level HMMs for on-line

handwriting recognition. Eighth International Workshop on Frontiers

in Handwriting Recognition, 2002. .

8. ARTIERES, T. M., J.-M.; GALLINARI, P.; DORIZZI, B. (2000)

Multi-modal segmental models for online handwriting recognition.

15th International Conference on Pattern Recognition.

9. ASUNCION, A. N., D.J. (2007) UCI Machine Learning Repository ,

(). [Irvine, CA: University of California, School of Information and

Computer Science.

10. AUGUSTIN, E., BARET, O., PRICE, D. AND KNERR, S (1998)

Legal Amount Recognition on French Bank Checks Using a Neural

Network-Hidden Markov Model Hybrid. International Workshop on

Frontiers in Handwriting Recognition.

11. AWAL, A. M., COUSSEAU, R., VIARD-GAUDIN, C. (2008)

Convertisseur d’équations LATEX2Ink. Colloque International

Francophone sur l'Ecrit et le Document. Rouen, France.

12. BAHL, L. R., BROWN, P.F., SOUZE, P.V.DE, AND MERCER,

R.L. (1986) Maximum Mutual Information Estimation of Hidden

Markov Model Parameters for Speech Recognition. ICASSP 86.

13. BAHL, L. R., BROWN, P.F., SOUZE, P.V.DE, AND MERCER,

R.L. (1992) Maximum Mutual Information Estimation of Hidden

Markov Model Parameters for Speech Recognition. ICASSP 86.

14. BAHLMANN, C. B., H. (2004) The writer independent online

handwriting recognition system frog on hand and cluster generative

statistical dynamic time warping. Ieee Transactions on Pattern

Analysis and Machine Intelligence, 26, 299-310.

 170

15. BAHLMANN, C. H., B. BURKHARDT, H. (2002) Online

handwriting recognition with support vector machines - a kernel

approach. Eighth International Workshop on Frontiers in Handwriting

Recognition, 2002.

16. BAKER, J. (1975) Stochastic Modeling as a Means of Automatic

Speech Recognition. Carnegie Mellon University.

17. BAUM, L. E. P., T. , SOULES, G. AND WEISS N. (1970) A

maximization technique occurring in the statistical analysis of

probabilistic functions of Markov chains. Ann. Math. Statist, 41, 164

-171.

18. BEIGI, H. M. S., NATHAN, K., SUBRAHMONIA, J. (1995) Online

Uncostraint Handwriting Recognition Based on Probabilistic

Techniques.

19. BEIGI, H. S. M. N., K. CLARY, G.J. SUBRAHMONIA, J.

(1994) Size normalization in on-line unconstrained handwriting

recognition. IEEE International Conference Image Processing, 1994.

ICIP-94., . Austin, TX, USA.

20. BELLEGARDA, E. J. B., J.R. NAHAMOO, D. NATHAN, K.S.

(1994) A fast statistical mixture algorithm for on-line handwriting

recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 16, 1227-1233.

21. BELLILI, A., GILLOUX, M., GALLINARI, P. (2000) An Hybrid

MLP-SVM Handwritten Digit Recognizer.

22. BENGIO, Y., AND LECUN, Y. (1995a) LeRec: A NN/HMM Hybrid

for On-Line Handwriting Recognition. Neural Computing,, 7.

23. BENGIO, Y., AND LECUN, Y. (1995b) LeRec: A NN/HMM Hybrid

for On-Line Handwriting Recognition. Neural Computing Surveys, 7.

 171

24. BENGIO, Y., AND LECUN, Y. (1994) Word Normalization for On-

Line Handwritten Word Recognition. International Conference on

Pattern Recognition, ICPR’94. Jurusalem, Israel.

25. BENGIO, Y., LECUN, Y., AND HENDERSON, D. (Ed.) (1993)

Globally Trained Handwritten Word Recognizer Using Spatial

Representation, Space Displacement Neural Networks and Hidden

Markov Models, San Mateo CA.

26. BENGIO, Y., MORI, R.DE, FLAMMIA, G., AND KOMPE, R.

(1991) Global Optimization of a Neural Network-Hidden Markov

Model Hybrid. International Joint Conference on Neural Networks.

Seattle.

27. BENTOUNSI, H., BATOUCHE, M. (2004) Incremental support

vector machines for handwritten Arabic character recognition.

International Conference on Information and Communication

Technologies 2004.

28. BIADSY, F., EL-SANA, J., HABASH, N. (2006) Online Arabic

Handwriting Recognition Using Hidden Markov Models.

International Workshop on Frontiers in Handwriting Recognition, .

La Baulle, France.

29. BIEM, A. (2001) Minimum classification error training for online

handwriting recognition. Ieee Transactions on Pattern Analysis and

Machine Intelligence, 28, 1041-1051.

30. BIEM, A. (2006) Minimum Classification Error Training for Online

Handwriting Recognition IEEE Transactions on Pattern Analysis and

Machine Intelligence, 28, 1041-1051.

31. BIPPUS, R., MARGNER, V. (1999) Script recognition using

inhomogeneous p2dhmm and hierarchical search space reduction. 5th

 172

International Conference on Document Analysis and Recognition

(ICDAR1999). Bangalore, India.

32. BISHOP, C. M. (1996) Neural Networks for Pattern Recognition,

Oxford Univ Press, USA.

33. BODENHAUSEN, U., MANKE, S., WAIBEL, A. (1993)

Connectionist Architectural Learning for High Performance

Character and Speech Recognition. International Conference on

Acoustics Speech and Signal Processing. Minneapolis, MN, USA.

34. BORTOLOZZI, F., BRITTO JR,. A., OLIVEIRA, L. S. AND

MORITA, M., (Ed.) (2005) Recent Advances in Handwriting

Recognition. .

35. BOULARD, H., BENGIO, S. (2003) Hidden Markov Model, London

England, MIT Press.

36. BOURLARD, H., AND MORGAN, N. (Ed.) (1998) Hybrid

HMM/ANN Systems for Speech Recognition: Overview and New

Research Directions.

37. BRAKENSIEK, A., WILLETT, D., RIGOLL, G. (2000) Unlimited

vocabulary script recognition using character n-grams. 22. DAGM-

Symposium. Kiel, Germany, Tagungsband Springer-Verlag.

38. BUNKE, H., ROTH, M., AND SCHUKAT-TALAMAZZINI, E.G.

(1995) Off-line cursive Handwriting Recognition using Hidden

Markov Models. Pattern Recognition, 28, 1399--1413.

39. BURGES, C. J. (1996) Simplified support vector decision rules. IN

SAITTA, L. (Ed. 13th International Conference on Machine

Learning. San Mateo, California., Morgan Kaufmann.

 173

40. BURGES, C. J. C. (1998) A Tutorial on Support Vector Machines for

Pattern Recognition. Kluwer Academic Publishers, Boston.

41. BURGES, C. J. C., BEN, J. I., DENKER, J. S., LECUN, Y. , NOHL,

C. R. (1993) Off-line recognition of handwritten postal words using

neural networks. International Journal of Pattern Recognition and

Artificial Intelligence, 7, 689-704.

42. CAI, J., LIU, Z. Q. (1993) Off–line unconstrained handwritten word

recognition. International Journal of Pattern Recognition and

Artificial Intelligence, 14, 259–280.

43. CAILLAULT, E. (2005) Architecture et Apprentissage d’un Système

Hybride Neuro-Markovien pour la Reconnaissance de l’Écriture

Manuscrite En-Ligne. Ecole Doctoral Sciences et Technologie de

l'Information et des Materiaux (EDSTIM). Nantes, University of

Nantes.

44. CAILLAULT, E., VIARD-GAUDIN, C. (2006) Using Segmentation

Constraints in an Implicit Segmentation Scheme for On-line Word

Recognition. 10th International Workshop on Frontiers in

Handwriting Recognition (IWFHR 2006) La Baule, France.

45. CAMASTRA, F. (2007) A SVM-based cursive character recognizer.

Pattern Recognition, 40, 3721-3727.

46. CHAKRAVARTHY, V. S., CHANDRASEKHAR, C. (2007) Online

Handwritten Character Recognition Systems for Devanagari, Telugu

and Kannada. Online Handwritten Character Recognition

Consortium. Madras, India, Indian Institute of Technology.

47. CHANG, C. C., LIN, C. J. (2001) LIBSVM: a library for support

vector machines.

 174

48. CHAPELLE, O. (1998) Support Vector Machines for Image

Classification. Stage de deuxieme annee Lyon, Ecole Normale

Supeerieure de Lyon & Image Processing Reseach, AT&T, Redbank,

NJ, USA.

49. CHAPELLE, O. H., P. VAPNIK, V.N. (1999) Support vector

machines for histogram-based image classification. IEEE

Transactions on Neural Networks, 10, 1055-1064.

50. CHEN, M. Y., KUNDU, A., AND ZHOU, J. (1994) Off-Line

Handwritten Word Recognition Using Hidden Markov Model Type

Stochastic Network. IEEE Trans on PAMI, 16, 481-496.

51. CHEN, M. Y., KUNDU, A., SRIHARI, AND S.N. (1995) Variable

Duration Hidden Markov Mode and Morphological segmentation for

Handwritten Word Recognition. IEEE Trans. Image Processing, 14,

1675-1687.

52. CHO, S.-B. (1995) On-line handwriting recognition with a neuro-

fuzzy method. Fourth IEEE International Conference on Fuzzy

Systems 1995 and The Second International Fuzzy Engineering

Symposium.

53. CHO, W., KIM, J. H. (1994) Off-line recognition of cursive words

with network of hidden markov models. 4th International Workshop

on the Frontiers of Handwriting Recognition. Taipei, Taiwan.

54. CHOW, Y. L., DUNHAM, M. O., KIMBALL, O. A., KRASNER, M.

A., KUBALA, G. F., MAKHOUL, J., ROUCOS, S., SCHWARTZ,

R. M. (1987) BYBLOS: The BBN Continuous Speech Recognition

System. IEEE International Conference on Acoustics, Speech, and

Signal Processing, 1987.

 175

55. CHU, F., WANG, L. (2005) Application of Support Vector Machines

to Cancer Classification with Microarray Data. International Journal

of Neural Systems, World Scientific Publishing Company, 15, 475-

484.

56. COLLOBERT, R. (2001) SVMTorch: Support Vector Machines for

Large-Scale Regression Problems. Journal of Machine Learning

Research, 1, 143 - 160.

57. COVER, T. M., THOMAS, J.A. (1991) Elements of Information

Theory, New York, USA, John Wiley and Sons.

58. DIMAURO, G., IMPEDOVO, S., PIRLO, G., SALZO, A. (Ed.)

(1997) Automatic bankcheck processing: A new engineered system,

World Scientific.

59. DOWNS, T., GATES, K.E. , MASTERS, A. (2001) Exact

Simplification of Support Vector Solution. International Journal of

Machine Learning Research, 2, 293-297.

60. DRUCKER, H. D. W. V., V.N. (1999) Support vector machines for

spam categorization. IEEE Transactions on Neural Networks, 10,

1048-1054

61. DUDA, R. O., HART, P.E., AND STORK, D.G. (2001) Pattern

Classification, John Wiley & son.

62. DZUBA, G., FILATOV, A., GERSHUNY, D., KILL, I. (1998)

Handwritten word recognition - the approach proved by practice. 6th

International Workshop on Frontiers in Handwriting Recognition.

Taejon, Korea.

63. EDSON, J. R., BORTOLOZZIA, J. F., SABOURIN, R. (2005) A

comparison of SVM and HMM classifiers in the off-line signature

verification. Pattern Recognition Letters, 26, 1377-1385.

 176

64. FAROUZ, C., GILLOUX, M., AND BERTILLE, J-M. (1998)

Handwritten Word Recognition with Contextual Hidden Markov

Models. International Workshop on Frontiers in Handwriting

Recognition. Taejon.

65. FAVATA, J. T. (2001) Offline general handwritten word recognition

using an approximate beam matching algorithm. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 23, 1009-1021.

66. FRIESS, T., CRISTIANINI, N. AND CAMPBELL C. (1998) The

kernel adatron algorithm: a fast and simple learning procedure for

support vector machine. 15th International Conference on Machine

Learning. Morgan Kaufman Publishers.

67. FU, K. S. (1982) Syntactic Pattern Recognition and Applications.,

Englewood Cliffs, N.J., Prentice-Hall,.

68. GADER, P., MOHAMED, M., AND CHIANG, J.-H. (1994)

Handwritten Word Recognition with Character and Inter-character

Neural Networks. IEEE. Trans. System Man and Cybernetics, 27,

158-164.

69. GADER, P., WHALEN, M., GANZBERGER, M., HEPP, D. (1995)

Handprinted word recognition on a NIST data set. Machine Vision

and Applications, 8, 31– 41.

70. GADER, P. D., FORESTER, B., GANZBERGER, M., BILLIES, A.,

MITCHELL, B., WHALEN, M., YOUCUM, T. (1991) Recognition

of handwritten digits using template and model matching. Pattern

Recognition, 5, 421-431.

71. GADER, P. D., KELLER, J. M. (1996) Fuzzy Methods in

Handwriting Recognition: An Overview. Biennial Conference of the

 177

North American Fuzzy Information Processing Society, 1996.

NAFIPS. 1996 137 - 141.

72. GANAPATHIRAJU, A. (2002) Support Vector Machine For Speech

Recognition. Department of Electrical and Computer Engineering.

Mississippi, Mississippi State University.

73. GANAPATHIRAJU, A. H., J.E.; PICONE, J. (2004) Applications of

support vector machines to speech recognition. IEEE Transactions on

Signal Processing, 52, 2348 - 2355.

74. GARCIA-SALICETTI, S., DORIZZI, B., GALLINARI, P.,

WIMMER, Z. (1996) Discriminative Training of a Neural Predictive

System for on-line Word Recognition. Symposium on control,

optimization and supervision. Lille.

75. GILLOUX, M., LEMARIÉ, B., AND LEROUX, M. (1995) A Hybrid

Radial Basis Function/Hidden Markov Model Handwritten Word

Recognition System. International Conference on Document Analysis

and Recognition (ICDAR). Montreal.

76. GUILLEVIC, D. A. S., C.Y. (1995) Cursive Script Recognition

Applied to the Processing of Bank Cheques. International Conference

on Document Analysis and Recognition (ICDAR). Montreal.

77. GUYON, I., SCHENKEL, M., AND DENKER, J. (Ed.) (1996)

Overview and Synthesis of On-line Cursive Handwriting Recognition

Techniques, World Scientific Publishing Company.

78. GUYON, I., SCHOMAKER, L., PLAMONDON, R., LIBERMAN,

M. & JANET, S. (1994) UNIPEN project of on-line data exchange

and recognizer benchmarks. 12th International Conference on Pattern

Recognition, ICPR'94. Jerusalem, Israel, IAPR-IEEE.

 178

79. HA, J., OH, S., KIM, J. AND KWON, Y. (1993) Unconstrained

handwritten word recognition with interconnected hidden Markov

models. Third International Workshop on Frontiers in Handwriting

Recognition, IAPR. Buffalo.

80. HASTIE, T. A. T., R. (1996) Classification by pairwise coupling.

Technical report,. Stanford University and University of Toronto.

81. HSU, C. W. A. L., C.J (2002) A Comparison of Methods for

Multiclass Support Vector Machines. IEEE TRANSACTIONS ON

NEURAL NETWORKS, 13.

82. HU, J., BROWN, M.K. (1996) On-line handwriting recognition with

constrained N-best decoding. Proceedings of the 13th International

Conference on Pattern Recognition.

83. HUANG, W., NAKAMORIA, Y., WANG, S. Y. (2005) Forecasting

stock market movement direction with support vector machine.

Computers & Operations Research: Applications of Neural Networks,

32, 2513-2522.

84. HUANG, X. D., ARIKI, Y. AND JACK, M. (1990) Hidden Markov

Models for Speech Recognition, Edinburgh University Press.

85. JAAKKOLA, T., DIEKHANS, M., HAUSSLER, D. (1999) Using

the Fisher kernel method to detect remote protein homologies. IN AL,

T. L. E. (Ed. 7th Int. Conference on Intelligent Systtem for

Molecular Biology (ISMB-99).

86. JAIN, A. K., DUIN, R.P.W., AND MAO, J. (2000) Statistical Pattern

Recognition: A Review. IEEE Trans. on PAMI, 22, 4-37.

87. JELINEK, F. (1976) Continuous speech recognition by statistical

methods. Proceedings of the IEEE.

 179

88. JOACHIMS, T. (1998) Text Categorization with Suport Vector

Machines: Learning with Many Relevant Features. ECML 1998.

89. JOACHIMS, T. (1999) Making large-Scale SVM Learning Practical.

IN SCHÖLKOPF, B. B., C. AND SMOLA, A. (Ed.) Advances in

Kernel Methods - Support Vector Learning. MIT-Press.

90. JUANG, B.-H. K., S. (1992) Discriminative learning for minimum

error classification. IEEE Transactions on Signal Processing, 40,

3043 - 3054.

91. KARUSH, W. (1939) Minima of Functions of Several Variables with

Inequalities as Side Constraints. Dept. of Mathematics. Chicago,

Illinois, Univ. of Chicago.

92. KEERTHI, S. S., LIN, C.-J. (2003) Asymptotic behaviors of support

vector machines with Gaussian kernel. Neural Computation 15, 1667

- 1689.

93. KEERTHI, S. S., SHEVADE, S. K., BHATTACHARYYA, C AND

MURTHY, K. R. K. (1999a) Improvement to Platt's SMO Algorithm

for SVM Classifier Design. Singapore, National University of

Singapore.

94. KEERTHI, S. S., SHEVADE, S. K., BHATTACHARYYA, C AND

MURTHY, K. R. K. (1999b) A Fast Iterative Nearest Point

Algorithm for Support Vector Machine Classifier Design. Intelligent

Systems Lab, Indian Institute of Science, Bangalore.

95. KIM, G., GOVINDARAJU, V. (Ed.) (1997) Bankcheck recognition

using cross validation between legal and courtesy amounts, World

Scientific.

96. KIM, H. Y., KIM, J.H. (1998) Handwritten korean character

recognition based on hierarchical randon graph modeling. 6th

 180

International Workshop on Frontiers of Handwriting Recognition.

Taegon-Korea.

97. KLEIN, D. (2000) Lagrange Multipliers without Permanent Scarring.

University of Berkeley.

98. KOERICH, A. L., LEYDIER, Y., SABOURIN, R., SUEN, C. Y.

(2002) A Hybrid Large Vocabulary Handwritten Word Recognition

System using Neural Networks with Hidden Markov Models.

99. KOHONEN, T. (1988) Self-Organization and Associative Memory,

Springer.

100. KOWALCZYK, A. (2001) A Gradient Based Training Method for A

Support Vector Machine. IN LTD., T. R. D. M. P. (Ed. Patent Office,

Australia, Canberra. G06F 15/18 ed. Australia.

101. KUHN, H. W. T., A. W. (1951) Nonlinear programming. 2nd

Berkeley Symposium. Berkeley, University of California Press.

102. KUHN, M. (2006) The Karush-Kuhn-Tucker Theorem. Mannheim,

Germany, CDSEM Uni Mannheim.

103. KULLBACK, S. (1997) Information Theory and Statistics, Mineola,

New York, Dover Publications.

104. KUNDU, A., BAHL, L. (1988) Recognition of handwritten script: a

hidden Markov model based approach. International Conference on

Acoustics, Speech and Signal Processing. New York.

105. KWOK, J. (1999) Moderating the Outputs of Support Vector

Machine Classifiers. IEEE Trans. on Neural Networks, 10.

106. LALLICAN, P. M. (1999) Reconnaissance de l’Ecriture Manuscrite

Hors-ligne : Utilisation de la Chronologie Restaurée du Tracé.

 181

IRESTE, Ecole Doctorale Sciences pour l’Ingénieur de Nantes.

Universite de Nantes.

107. LECUN, Y., BOTOU, L., JACKEL, L., DRUCKER, H., CORTES,

C., DENKER, J., GUYON, I., MÜLLER, U., SÄCKINGER, E.,

SIMARD, P. AND VAPNIK, V. (1995) Learning Algorithms for

Classification: A Comparison on Handwritten Digit Recognition.

Neural Networks, 261--276.

108. LECUN, Y., BOTTOU, L., BENGIO, Y., HAFFNER, P. (1998a)

Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 86, 2278-2324. .

109. LECUN, Y., BOTTOU, L., ORR, G.B. AND MULLER, K.R. (Ed.)

(1998b) Efficient Backprop, Springer Lecture Notes in Computer

Sciences

110. LEE, K. F. (1988) Large-vocabulary speaker-independent continuous

speech recognition: The SPHINX system. Department of Computer

Science. Pittsburg, Pennsylvania, Carnegie-Mellon University.

111. LEEDHAM, C. G. (1994) Historical perspectives of Handwriting

Recognition Systems. IEE Journal, UK.

112. LETHELIER, L., M., GILLOUX, M. (1995) An automatic reading

system for handwritten numeral amounts on french checks. 3rd

International Conference on Document Analysis and Recognition.

Montreal-Canada.

113. LEVINSON, S., RABINER, L. AND SONDHI, M. (1983) An

introduction to the application of the theory of probabilistic functions

of a Markov process to automatic speech recognition. Bell System

Technical Journal, 64, 1035 - 1074.

 182

114. LI, S. Z., QINGDONG, GU, F. L., SCHOLKOPF, B., CHENG, Y.,

ZHANG, H. (2001) Kernel machine based learning for multi-view

face detection andpose estimation. Eighth IEEE International

Conference on Computer Vision, 2001. ICCV 2001. Vancouver, BC,

Canada.

115. LIN, H.-T., LIN, C.-J. (2003) A study on sigmoid kernels for SVM

and the training of non-PSD kernels by SMO-type methods. Taipei,

Department of Computer Science, National Taiwan University.

116. LIU, C.-L. J., S. NAKAGAWA, M. (2004) Online recognition of

Chinese characters: the state-of-the-art. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 26, 198 - 213.

117. LUNG, J. Z. (2004) SVM Multi-classifier and web document

Classification. Third International Conference on Machine Learning

and Cybernetics. Shanghai, Chine.

118. MADHVANATH, S., AND GOVINDARAJU, V. (2000) The Role

of Holistic Paradigms in Handwritten Word Recognition. IEEE

Transactions on PAMI, 23, 149-164.

119. MADHVANATH, S., KLEINBERG, E., GOVINDARAJU, V.

(1999) Holistic verification of handwritten phrases. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 21, 1344-

1356.

120. MALAVIYA, A. P., L. THEISSINGER, M. (1994) FOHDEL-a new

fuzzy language for online handwriting recognition. Third IEEE

Conference on Fuzzy Systems, 1994. IEEE World Congress on

Computational Intelligence. Orlando, FL, USA.

121. MARMELSTEIN, P., AND EDEN, M. (1964) A System for

Automatic Recognition of Handwritten Word. FJCC (AFIPS).

 183

122. MARTI, U., BUNKE, H. (2000) Handwritten sentence recognition.

15 th International Conference on Pattern Recognition. Barcelona,

Spain.

123. MATAN, O., BURGES, C.J.C., LECUN, Y. AND DENKER, J.S.

(1992a) Multi-digit Recognition Using a Space Displacement Neural

Network. Neural Information Processing Systems.

124. MATAN, O., BURGES, J. C., LECUN, Y. , DENKER, J. S. (Ed.)

(1992b) Multi-digit recognition using a space displacement neural

network, Morgan Kaufmann.

125. MICO, L., ONCINA, J. (1999) Comparison of fast nearest neighbour

classifier for handwritten character recogniton. Pattern Recognition

Letters, 19, 351-356.

126. MOHAMED, M. A., GADER, P. (2000) Generalized hidden markov

models - part ii: Application to handwritten word recognition. IEEE

Transactions on Fuzzy Systems, 8, 82–94.

127. MOHAMED, M. G., P. (1996) Handwritten word recognition using

segmentation-free hidden Markov modeling and segmentation-based

dynamic programming techniques. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 18.

128. NAG, R., WONG, K., FALLSIDE, F. (1986) Script recognition using

hidden Markov models. International Conference on Acoustics,

Speech and Signal Processing. Tokyo.

129. NAKAGAWA, M. (1990) Non-Keyboard Input of Japanese Text-On-

Line Recognition of Handwritten Characters as the Most Hopeful

Approach. Journal of Information Processing, 13, 15 - 34.

130. NEWMAN, D. J. H., S. & BLAKE, C.L. & MERZ, C.J. (1998) UCI

Repository of machine learning databases

 184

131. NEY, H., MERGEL, D., NOLL, A. , PAESELER, A. (1987) A data-

driven organization of the dynamic programming beam search for

continuous speech recognition. Proceedings of IEEE International

Conference on Acoustics, Speech, and Signal Processing

(ICASSP07). Dallas, Texas.

132. OSUNA, E., FREUND, R. AND GIROSI, F. (1997) Training

support vector machines: An application to face detection. Computer

Vision and Pattern Recognition (CVPR’97). New York.

133. OSUNA, E. E., FREUND, R. AND GIROSI, F. (1996) Support

Vector Machines : Training and Applications. MIT Report.

134. OUDOT, L. (2003) Fusion of information and adaptation for the

recognition of dynamic handwritten texts (French). Informatique.

Paris, Universit´e Pierre & Marie Curie.

135. PARIZEAU, M., AND PLAMONDON, R. (1995) A Fuzzy

Syntactical Approach to Allograph Modelling for Cursive Script

Recognition. IEEE Transactions on PAMI, 17, 702-712.

136. PLAMONDON, R., AND SRIHARI, S.N. (2000) On-Line and Off-

line Handwriting Recognition: A Comprehensive Survey. IEEE

Transactions on PAMI, 22, 63-84.

137. PLAMONDON, R., LORETTE, G. (1989) Automatic signature

verification and writer identification - The state of the art. Pattern

Recognition, 22, 107-131.

138. PLATT, J. (1998a) Sequential minimal optimization: A fast algorithm

for training support vector machines. Microsoft Res. Tech. Rep. , 98-

114.

 185

139. PLATT, J. (Ed.) (1999a) Probabilistic Outputs for Support Vector

Machines and Comparisons to Regularized Likelihood Methods,

Cambridge, Massachusettes, USA, MIT Press.

140. PLATT, J. C. (Ed.) (1998b) Fast training of support vector machines

using sequential minimal optimization, Cambridge, MA, MIT Press.

141. PLATT, J. C. (Ed.) (1999b) Using Analytic QP and Sparseness to

Speed Training of Support Vector Machines.

142. POISSON, E., VIARD-GAUDIN, C., LALLICAN, P.M. (2002)

Multi-modular architecture based on convolutional neural networks

for online handwritten character recognition. 9th International

Conference on Neural Information Processing, ICONIP'02 - IEEE

Neural Network Society,. Singapore.

143. PROCTER, S., ILLINGWORTH, J. (2000) Cursive Handwriting

Recognition using Hidden Markov Models and a Lexicon-driven

Level Building Algorithm. IEEE Proc. On Vision, Image and Signal

Processing, 147.

144. RABINER, L., JUANG, B.-H. (1993) Fundamentals of Speech

Recognition, Englewood Cliffs, New Jersey, Prentice-Hall, Inc.

145. RABINER, L. A. J., B. (1986a) An introduction to hidden Markov

models. IEEE ASSP Magazine, 257 - 285.

146. RABINER, L. R., JUANG, B.H., LEVINSON, S.E. , SONDHI, M.M.

(1985) Recognition Of Isolated Digits Using Hidden Markov Models

With Continuous Mixture Densities. AT&T Technical Journal, 21-31.

147. RABINER, L. R. A. J., B.H. . (1986b) An introduction to hidden

Markov models. IEEE ASSP Magazine, 4-16.

 186

148. RATZLAFF, E. H. (2003) Methods, reports and survey for the

comparison of diverse isolated character recognition results on the

UNIPEN database. Seventh International Conference on Document

Analysis and Recognition, 2003. . Edinburgh, Scotland.

149. RIGOLL, G. (1998) Hybrid Speech Recognition Systems: A Real

Alternative to Traditional Approaches? Survey Lecture, Proc.

International Workshop Speech and Computer (SPECOM'98). St.

Petersburg, Russia.

150. RIGOLL, G. K., A. RATTLAND, J. NEUKIRCHEN, C. (1996) A

Comparison Between Continuous and Discrete Density Hidden

Markov Models for Cursive Handwriting Recognition. 13th

International Conference on Pattern Recognition, 1996. Vienna,

Austria.

151. RIIS, S. K. (1998) Hidden Markov Models and Neural Networks for

Speech Recognition.

152. RUMELHART, D. E., HINTON, G.E. , R.J. WILLIAMS (Ed.)

(1986) Learning Internal Representation by Error Propagation,

Cambridge, MA, MIT Press.

153. SANGUANSAT, P., ASDORNWISED, W., JITAPUNKUL, S.

(2004) Online Thai handwritten character recognition using hidden

Markov models and support vector machines. International

Symposium on Communications and Information Technologies,

ISCIT 2004. Japan.

154. SAON, G. (1999) Cursive word recognition using a random field

based hidden markov model. International Journal on Document

Analysis and Recognition, 1, 199-208.

 187

155. SCAGLIOLA, C., NICCHIOTTI, G. (2000) Enhancing cursive word

recognition performance by the integration of all the available

information. 7th International Workshop on Frontiers in Handwriting

Recognition. Amsterdam, Netherlands.

156. SCHENKEL, M., GUYON, I, HENDERSON, D. (1995) Online

Cursive Script Recognition using Time Delay Neural Networks and

Hidden Markov Models. Machine Vision and Applications, 215-223.

157. SCHENKEL, M., WEISSMAN, H., GUYON, I. , NOHL, C. , AND

HENDERSON, D. (Ed.) (1993) Recognition-based segmentation of

on-line hand-printed words, Denver.

158. SCHOLKOPF, B., BURGES, C. AND SMOLA, A. (Ed.) (1999)

Advances in Kernel Methods: Support Vector Learning. , Cambridge,

MA, MIT Press.

159. SCHURMANN, J. (1996) Pattern Classification - A unified view of

statistical and neural approaches, Wiley interscience.

160. SCHWAIGHOFER, A. A. T., V. (2001) The Bayesian committee

support vector machine. IN DORFFNER, G., BISCHOF, H. AND

HORNIK, K. (Ed. Artificial Neural Networks - ICANN 2001.

Springer Verlag.

161. SHEVADE, S. K., KEERTHI, S. S., BHATTACHARYYA, C. AND

MURTHY, K. R. K. (2000) Improvements to the SMO Algorithm for

SVM Regression, IEEE TRANSACTIONS ON NEURAL

NETWORKS, 11.

162. SHRIDHAR, M., BADRELDIN, A. (1986) Recognition of isolated

and simply connected handwritten numerals. Pattern Recognition, 19,

1-12.

 188

163. SIDENBLADH, H. (2004) Detecting Human Motion with Support

Vector Machines. 17th IAPR International Conference on Pattern

Recognition. Cambridge, UK.

164. SOONG, F. K. H., E.-F. (1991) A tree-trellis based fast search for

finding the N-bestsentence hypotheses in continuous speech

recognition. International Conference on Acoustics, Speech, and

Signal Processing, 1991. ICASSP-91., 1991.

165. STEINHERZ, T., RIVLIN, E., AND INTRATOR, N. (1999) Off-

Line Cursive Script Word Recognition - A Survey. Int’l Journal of

Document Analysis and Recognition.

166. TAPPERT, C. C., SUEN, C. Y., WAKAHARA, T. (1994) The state

of the art in on-line handwriting recognition. IEEE Transactions on

Pattern Analysis and Artificial Intelligence, 12, 787 - 808.

167. TAPPERT, C. C., SUEN, C.Y., AND WAKAHARA, T. (1990) The

State of the Art in On-Line Handwriting Recognition. IEEE Trans.

On PAMI, 12.

168. TAPPERT., C. C., SUEN, C. Y., WAKAHARA, T (1988) Online

Handwriting Recognition - A Survey. 9th International Conference

on Pattern Recognition, 1988. Rome, Italy.

169. TAY, Y. H. (2002) Offline Handwriting Recognition using Artificial

Neural Network and Hidden Markov Model. Electrical Engineering.

Johor Bahru, Universiti Teknologi Malaysia and Ecole Polytechnic

University of Nantes.

170. TAY, Y. H., KHALID, M., YUSOF, R., VIARD-GAUDIN, C.

(2003) Offline Cursive Handwriting Recognition System based on

Hybrid Markov Model and Neural Network. IEEE Int’l Symp on

 189

Computational Intelligence in Robotics and Automation (CIRA-

2003) Kobe, Japan.

171. TRESP, V. (2000) A Bayesian Committee Machine. Neural

Computation, 12, 2719-2741.

172. VAN GESTEL, T. S., J.A.K. BAESTAENS, D.-E.

LAMBRECHTS, A. LANCKRIET, G. VANDAELE, B. DE

MOOR, B. VANDEWALLE, J. (2001) Financial time series

prediction using least squares support vectormachines within the

evidence framework. IEEE Transactions on Neural Networks, 12,

809-821.

173. VAPNIK, V. (1995) The Nature of Statistical Learning Theory, New

York, Springer-Verlag.

174. VAPNIK, V. (1998) Statistical Learning Theory, New York, Wiley.

175. VAPNIK, V. (1999) An Overview of Statistical Learning Theory.

IEEE Transactions On Neural Networks, 10.

176. VIARD-GAUDIN, C., LALLICAN, P.M., KNERR, S., AND

BINTER, P. (1999) The IRESTE On/Off (IRONOFF) Dual

Handwriting Database. International Conference on Document

Analysis and Recognition. Bangalore.

177. WAKAHARA, T., MURASE, H., ODAKA, K. (1992) On-Line

Handwriting Recognition. Proc. IEEE-ICPR, 80, 1181-1194.

178. WAN, V. R., S. (2005) Speaker verification using sequence

discriminant support vector machines. IEEE Transactions on Speech

and Audio Processing, 13, 203- 210.

 190

179. WATANABE, S. (1985) Pattern Recognition: Human and

Mechanical. NewYork, Wiley.

180. WATKINS, C. (Ed.) (2000) Dynamic alignment kernels. , MIT Press.

181. WEIBEL, A., HANAZAWA, T., HINTON, G., SHIKANO, K., AND

LANG, K. (1989) Phoneme Recognition Using TimeDelay Neural

Networks. IEEE Transactions on Acoustic, Speech and Signal

Processing, 37, 328-339.

182. WESTON, J., WATKINS, C. (1998) Multiclass Support Vector

Machines. Technical Report CSD-TR-98-04. Egham, Surrey,

England, Department of Computer Science, Royal Holloway,.

183. XIE, S. L., SUK, M. (1988) On machine recognition of hand-printed

chinese character by feature relaxation. Pattern Recognition, 21, 1-7.

184. XU, F., LIU, X., FUJIMURA, K. (2005) Pedestrian detection and

tracking with night vision. IEEE Transactions on Intelligent

Transportation Systems, 6, 63- 71.

185. ZHANG, G. P. (2000) Neural networks for classification: a survey.

IEEE Transactions on Systems, Man, and Cybernetics - Part C:

Applications and Reviews, 30, 451-462.

186. ZHANG, M. F., YAN, H., FABRI, M. A. (1999) Handwritten digit

recognition by adaptativesubspace self organizing map. . IEEE Trans.

on Neural Networks, 10, 939-945.

187. ZHANG, M. G. (2005) Short-term Load Forecasting Based On

Support Vector Machines Regression Fourth International

Conference on Machine Learning and Cybernetics. Guangzhou.

 191

188. ZHANG, M. G., YAN, W. W., YUAN, Z. T. (2004) Study of

Nonlinear System identification Based on Support Vector Machine.

Third International Conference on Machine Learning and

Cybernetics. Shanghai, China.

 192

APPENDIX A

PUBLISHED PAPERS

1. Ahmad, A. R., Wahap, A. R. Khalid, M., Yusof, R. (2002). A Neural Network

Based Bank Cheque Recognition system for Malaysian Cheques International

Conference on AI in Engineering and Technology, ICAIET 2002, Kota

Kinabalu, Sabah, Malaysia.

2. Ahmad, A. R., Wahap, A. R. Khalid, M., Yusof, R. (2002). Machine Learning

Using Support Vector Machine. Malaysian Science and Technology

Conference, MSTC 2002. Johor Bahru, Malaysia.

3. Ahmad, A. R., Khalid, M., Yusof, R. (2002). Support Vector Machine and

Kernel methods for Handwriting Recognition. Student Conference in Research

and Development SCORED 2002. Shah Alam, Malaysia.

4. Ahmad, A. R., Khalid, M., Yusof, R., Viard-Gaudin, C. (2003). Comparative

Study of SVM Tools for Data Classification. First Regional Malaysia-France

Workshop on Image Processing In Vision Systems and Multimedia

Communication, IMAGE2003. Sarawak, Malaysia.

5. Ahmad, A. R., Khalid, M., Yusof, R., Viard-Gaudin, C. (2004). Online

Handwriting Recognition using Support Vector Machine and Hidden Markov

Model. International Conference on AI in Engineering and Technology,

ICAIET 2004. Sabah, Malaysia.

6. Ahmad, A. R., Khalid, M., Viard-Gaudin, C. (2004). "Comparison of Support

Vector Machine and Neural Network in Character Level Discriminant Training

 193

for Online Word Recognition." UNITEN Students Conference on Research and

Development 2004, SCORED2004.

7. Ahmad, A. R., Khalid, M., Viard-Gaudin, C., Poisson, E. (2004). Online

Handwriting Recognition Using Support Vector Machine. IEEE Region 10

Conference TENCON 2004. . Chiangmai Thailand. 1: 311- 314.

8. Cailllaut, E., Viard-Gaudin, C. Ahmad, A. R. (2005). MS-TDNN with Global

Discriminant Trainings. Eighth International Conference on Document Analysis

and Recognition (ICDAR’05), Seoul, Korea.

9. Syed Ahmad, S. M., Ahmad, A. R., Shakil, A., Md. Anwar, R., Begum, S.

(2007). Hybrid Online and Offline Malaysian Signature and Malay Handwriting

Data Collection. Conference on IT Research & Applications, CITRA 2007.

Subang, Malaysia.

10. Syed Ahmad, S. M., Ahmad, A. R., Shakil, A., Mustafa Agil, M. B., Md.

Anwar, R., Begum, S. (2008). SIGMA- A Malaysian Signature's Database.

IEEE ACS International Conference on Computer Systems and Applications

(AICCSA2008). Doha, Qatar.

 194

APPENDIX B

LAGRANGE MULTIPLIERS METHOD AND

THE KARUSH-KUHN-TUCKER THEOREM

The Lagrange multipliers method (named after Joseph Louis Lagrange, a French

Italian Mathematician) is the basic tool in nonlinear constrained optimization. It is

used to find the extrema of a function of several variables subject to one or more

constraints. A set of conditions, the Karush–Kuhn–Tucker (KKT) conditions are

necessary for a solution in the optimization to be optimal, provided some regularity

conditions are satisfied. KKT conditions were first published in the Master’s thesis

of William Karush (Karush, 1939), but they were renowned only after a seminal

conference paper by Kuhn and Tucker (Kuhn, 1951).

The Lagrange multipliers method is able to determine where on a particular set

of points a particular function is the optimum. The stationary points of the

constrained function are computed. By Fermat's theorem, extrema occur either at

these points, or on the boundary, or at points where the function is not differentiable.

Finding stationary points of a constrained function in n variables with k constraints

is reduced to finding stationary points of an unconstrained function in n+k variables.

An unknown scalar variable (called the Lagrange multiplier) is introduced for

each constraint, and a new function is defined (called the Lagrangian) in terms of the

original function, the constraints, and the Lagrange multipliers.

 195

1. Problem formulation and the Lagrange function

Consider the following maximization problem

 nRx
max

∈ f(x)

 such that 0)(≥xg j m1j ,...,=

 0)(=xhi n1i ,...,=

with ℜ→ℜNf: , pN
j:g ℜ→ℜ , MN

i:h ℜ→ℜ being continuously differentiable

functions.

2. Saddle points of the Lagrangian and Karush-Kuhn-Tucker points

Define the Lagrange function of the problem as

∑∑
==

++=
n

1i
ii

m

1j
jj (x)hμ(x)gλf(x))L(x, μλ ,

Define a saddle point of the Lagrangian as a tuple

)~,~,~(μλx such that =)~,~,~(μλxL), μL(x,λmaxmin
x0μ,λ≥

We know that

), μL(x,λmin
0μ,λ≥ ≤), μL(x,λmaxmin

x0μ,λ≥ ≤), μL(x,λmax
0μ,λ≥

i.e:)~,~,~(μλx is a critical point of), μL(x,λ , but neither a minimum nor a maximum.

As a next step we want to establish the connection between a saddle point and the

solution to the maximization problem.

Consider the Lagrangian

∑∑
==

++=
n

1i
ii

m

1j
jj (x)hμ(x)gλf(x))L(x, λ μ,

and the first order condition (FOC) with respect to x, which characterize the critical

points of), μL(x,λ and are necessary for a maximum

 196

)xf(x
~∇ +)x(gλ jx

m

1j
j

~∇∑
=

 +)x(hμ ix

n

1i
i

~∇∑
=

 = 0

Furthermore, consider the FOC of),~ μ,λxL(with respect to), μ(λ , which are

necessary for a minimum of),~ μ,λxL(

∑∑
==

++=
n

1i
ii

m

1j
jj)x(hμ)x(gλ)xf(),λxL(~~~,~ μ

Define

),(μλd =),λxL(μ,~

The function),(μλd is also called the dual function of the problem. Notice that

),(μλd is and affine function independent of the functional form of f(x), gj(x),

hi(x). Since it is a linear programming problem, the minimum of the function is

either)xf(~ or it does not exist.

),(min
0,

μλ
λμ

d
≥ = ⎩

⎨
⎧

∞−
)~(xf

 else
if 0)~(≥xg j

j∀

and 0)~(=xhi i∀

From this result, we can conclude that every saddle point must be a solution to the

original maximization problem. To see why, consider two arguments:

(a) A saddle point exists if and only if x~ is feasible for the maximization

problem, i.e: 0)~(≥xg j j∀ ∧ 0)~(=xhi i∀

 (Existence saddle point ⇒ feasibility of x~)

(b) The Lagrange function with)~,~(μλ overestimates the objective function on

the interior of the feasible set. To see this, consider the following equivalent

problem

 0)(x)I(h0)(x)I(gf(x)max
n

1i
i

m

1j
jx

=+≥+ ∑∑
==

 with

 197

0)(x)I(gj ≥ = ⎩
⎨
⎧

∞−
0

 else
if 0)~(≥xg j

j∀

0)(x)I(hi = = ⎩
⎨
⎧

∞−
0

 else
if 0)~(=xhi

i∀

This means we penalize the function for violations of the constraints. This

problem is equivalent to the first, if we assume that a solution exists. In a next step,

we replace the”hard” penalty function by”weak” linear penalty functions.

∑∑
==

++
n

1i
ii

m

1j
jjx

(x)hμ(x)gλf(x)max ~~

with
0~

≥jλ , 0~ ≥jμ ji,∀

For feasible values, i.e

 0)(≥xg j and 0)(=xhi

We clearly overestimate the true objective function. We, therefore, know that there

are no other (feasible) choices x̂ with a higher value of the objective function than

the saddle point of the problem with value)ˆ(xf .

 198

APPENDIX C

Verbose output of recognition and segmentation

Word dbdFileName : C:\MyApps\dbd\hi.dbdnew.dbd
modelFileName :
..\model\EnglishWord_train_unp.dbdnew.dbdchar.dbd.fe.mod
pspFileName : C:\MyApps\dbd\hi.dbdnew.dbd_psp.txt
maxSlices chosen : 5
Total examples : 1
wordLexiconFileName : ..\lex\Englishwordlexicon.lex
charLexiconFilename : ..\lex\characterlexicon.lex

Ex[1]: C:\myapps\unp\hi.unp_pre.unp ->hi

Stroke (0) --> Total points 129

Slice [0]: 40 points from stroke no. 0, point 0 to point 39
Slice [1]: 24 points from stroke no. 0, point 40 to point 63
Slice [2]: 14 points from stroke no. 0, point 64 to point 77
Slice [3]: 14 points from stroke no. 0, point 78 to point 91
Slice [4]: 16 points from stroke no. 0, point 92 to point 107
Slice [5]: 21 points from stroke no. 0, point 108 to point 128

Total slices = 6, Total hypothesis = 20
==========
Hypothesis [0]- num pts = 40, from slice 0, to 0
Hypothesis [1]- num pts = 24, from slice 1, to 1
Hypothesis [2]- num pts = 64, from slice 0, to 1
Hypothesis [3]- num pts = 14, from slice 2, to 2
Hypothesis [4]- num pts = 38, from slice 1, to 2
Hypothesis [5]- num pts = 78, from slice 0, to 2
Hypothesis [6]- num pts = 14, from slice 3, to 3
Hypothesis [7]- num pts = 28, from slice 2, to 3
Hypothesis [8]- num pts = 52, from slice 1, to 3
Hypothesis [9]- num pts = 92, from slice 0, to 3
Hypothesis [10]- num pts = 16, from slice 4, to 4
Hypothesis [11]- num pts = 30, from slice 3, to 4
Hypothesis [12]- num pts = 44, from slice 2, to 4
Hypothesis [13]- num pts = 68, from slice 1, to 4
Hypothesis [14]- num pts = 108, from slice 0, to 4
Hypothesis [15]- num pts = 21, from slice 5, to 5
Hypothesis [16]- num pts = 37, from slice 4, to 5
Hypothesis [17]- num pts = 51, from slice 3, to 5
Hypothesis [18]- num pts = 65, from slice 2, to 5
Hypothesis [19]- num pts = 89, from slice 1, to 5

 199

The probability matrix (20 hypothesis x 50 classes in SVM model).
Classes : 3 32 47 50 41 4 28 43 29 36 39 52 5 45 30 42 8 49 34 9 31
12 48 1 51 13 14 15 35 16 46 17 38 18 53 19 20 40 24 25 26 27 2 6 7
10 11 21 22 23.
(Match class number against character using character lexicon file
characterlexicon.lex)

Hypothesis 0:
-2.84 -1.31 -1.60 -2.25 -1.72 -3.20 -2.60 -2.60 -2.75 -0.95 -2.68 -
2.79 -2.85 -0.97 -2.12 -1.36 -2.90 -1.51 -2.93 -2.78 -2.66 -2.88 -
0.57 -0.70 -2.62 -2.95 -2.52 -2.28 -2.85 -2.70 -1.27 -2.77 -2.81 -
2.87 -2.79 -3.02 -2.69 -2.57 -2.35 -2.83 -2.92 -2.85 -2.67 -2.81 -
2.77 -2.78 -2.87 -2.86 -2.35 -2.30

Hypothesis 1:

 -3.30 -1.92 -0.98 -3.45 -2.78 -2.89 -2.74 -2.32 -2.90 -1.22 -0.13 -
3.03 -3.18 -2.61 -1.66 -2.86 -3.06 -3.42 -3.08 -3.14 -3.09 -3.30 -
3.34 -2.75 -2.63 -1.91 -3.27 -3.34 -2.89 -3.24 -2.27 -3.26 -3.02 -
3.02 -2.92 -3.28 -2.76 -3.45 -3.44 -3.01 -2.84 -3.13 -3.31 -3.25 -
3.08 -2.26 -2.84 -3.31 -2.92 -3.35

Hypothesis 2:

 -3.50 -0.11 -1.34 -3.52 -3.00 -3.45 -2.83 -3.19 -3.14 -0.99 -1.37 -
2.99 -3.46 -2.60 -2.34 -2.50 -3.54 -3.38 -3.62 -3.31 -2.94 -3.52 -
3.03 -3.14 -2.62 -3.32 -2.95 -3.40 -3.38 -3.21 -2.72 -3.36 -3.44 -
3.05 -3.40 -3.61 -3.14 -3.43 -3.56 -2.99 -3.02 -3.49 -3.38 -3.58 -
3.43 -3.39 -3.51 -3.39 -3.02 -3.44

Hypothesis 3:

 -3.70 -2.03 -1.33 -3.27 -2.13 -3.88 -3.33 -3.32 -3.56 -1.32 -3.37 -
3.62 -3.70 -0.08 -1.99 -2.26 -3.71 -2.25 -3.75 -3.65 -3.43 -3.75 -
2.46 -1.63 -3.39 -3.41 -3.27 -3.27 -3.70 -3.54 -2.54 -3.55 -3.65 -
3.63 -3.57 -3.69 -3.14 -3.33 -3.32 -3.61 -3.74 -3.54 -3.53 -3.61 -
3.53 -3.59 -3.63 -3.55 -3.43 -2.97

Hypothesis 4:

 -4.08 -3.17 -0.03 -3.95 -3.68 -3.49 -2.49 -2.51 -2.95 -2.13 -2.36 -
4.08 -4.05 -2.73 -2.88 -2.84 -2.70 -3.86 -3.58 -3.41 -3.29 -4.17 -
3.94 -3.67 -3.54 -1.66 -4.14 -3.90 -3.35 -3.70 -3.14 -4.04 -4.00 -
3.81 -3.20 -4.13 -3.65 -4.18 -3.81 -3.99 -3.79 -3.45 -4.06 -4.04 -
3.93 -3.64 -3.18 -4.06 -3.56 -3.83

Hypothesis 5:

 -2.53 -0.61 -0.68 -2.35 -1.98 -2.92 -1.81 -2.17 -1.19 -1.12 -1.32 -
2.09 -2.57 -1.02 -2.07 -1.62 -2.53 -2.24 -2.44 -2.47 -2.16 -2.52 -
2.13 -2.49 -2.06 -2.63 -2.38 -2.47 -2.01 -2.35 -1.74 -2.60 -2.42 -
2.28 -2.39 -2.66 -1.67 -2.53 -2.46 -2.44 -2.23 -2.51 -2.19 -2.47 -
2.38 -2.31 -2.46 -2.52 -2.57 -2.62

Hypothesis 6:

 -3.81 -2.62 -1.08 -3.66 -2.93 -3.52 -3.38 -3.43 -3.15 -0.11 -1.74 -
3.89 -3.75 -1.98 -2.33 -3.69 -3.72 -3.47 -3.82 -3.65 -3.48 -3.84 -
3.58 -2.90 -2.02 -1.09 -3.84 -3.62 -2.78 -3.99 -3.37 -3.85 -3.38 -
3.67 -3.37 -3.88 -3.57 -3.71 -3.54 -3.70 -3.79 -3.46 -3.82 -3.92 -

 200

3.91 -3.18 -3.64 -3.87 -3.65 -3.84

Hypothesis 7:

 -4.18 -3.02 -3.17 -4.12 -1.82 -4.39 -3.88 -4.05 -3.96 -1.21 -3.44 -
4.14 -4.38 -0.04 -3.19 -3.96 -4.49 -3.26 -4.50 -4.35 -4.11 -4.54 -
3.69 -3.73 -3.94 -3.67 -3.95 -4.24 -4.03 -4.11 -3.30 -4.37 -4.31 -
4.22 -4.27 -3.69 -3.81 -4.01 -4.35 -4.54 -4.26 -4.24 -4.06 -4.58 -
4.21 -4.29 -4.49 -4.50 -4.25 -3.81

Hypothesis 8:

 -3.77 -2.95 -2.53 -3.86 -2.54 -3.38 -2.41 -2.88 -2.24 -3.06 -3.27 -
3.79 -3.63 -2.95 -2.74 -3.15 -2.16 -3.41 -3.67 -3.43 -3.29 -3.50 -
3.08 -3.36 -2.24 -1.77 -3.36 -3.54 -0.04 -3.35 -3.38 -3.60 -1.92 -
3.05 -3.55 -3.63 -3.24 -3.45 -3.76 -2.67 -3.64 -3.30 -3.58 -3.56 -
3.68 -3.13 -3.35 -3.73 -2.97 -3.53

Hypothesis 9:

 -2.88 -1.70 -1.78 -2.52 -2.05 -3.36 -1.52 -2.48 -1.56 -1.89 -2.28 -
2.45 -2.89 -1.93 -2.02 -2.01 -2.87 -2.65 -2.74 -2.77 -2.63 -2.81 -
2.30 -2.88 -2.32 -2.87 -2.67 -2.73 -0.13 -2.80 -1.68 -2.93 -2.04 -
2.44 -2.65 -2.96 -2.38 -2.56 -2.68 -2.79 -2.61 -2.64 -2.26 -2.80 -
2.75 -2.58 -2.74 -2.79 -2.75 -2.90

Hypothesis 10:

 -3.14 -1.68 -1.41 -2.57 -1.82 -3.64 -2.77 -2.76 -2.99 -0.65 -2.97 -
3.12 -3.17 -0.31 -2.29 -1.67 -3.21 -1.49 -3.28 -3.07 -2.87 -3.19 -
1.25 -1.88 -2.87 -3.10 -2.68 -2.63 -3.23 -3.11 -1.40 -3.01 -3.13 -
3.17 -3.08 -3.31 -2.80 -2.94 -2.69 -3.10 -3.23 -3.17 -2.97 -3.05 -
3.00 -3.01 -3.12 -3.17 -2.80 -2.67

Hypothesis 11:

 -4.16 -3.53 -3.20 -3.07 -2.45 -4.36 -3.62 -3.99 -4.10 -1.10 -3.62 -
4.23 -4.16 -2.82 -3.28 -3.24 -4.06 -0.36 -4.31 -4.15 -4.16 -4.18 -
0.34 -2.72 -4.05 -3.65 -3.84 -3.80 -3.78 -3.61 -3.92 -4.17 -4.22 -
4.23 -4.11 -4.28 -3.99 -3.60 -2.60 -4.22 -4.29 -3.86 -4.30 -4.27 -
4.35 -4.30 -4.31 -4.30 -2.59 -2.84

Hypothesis 12:

 -3.53 -1.86 -1.98 -2.94 -1.68 -3.69 -3.13 -3.20 -3.00 -0.70 -2.85 -
3.45 -3.61 -0.26 -2.32 -2.37 -3.56 -0.99 -3.50 -3.68 -3.58 -3.77 -
1.30 -2.30 -3.38 -3.33 -3.32 -1.83 -3.12 -3.54 -2.75 -3.62 -3.44 -
3.54 -3.05 -3.64 -3.39 -3.07 -3.13 -3.66 -3.62 -3.35 -3.26 -3.70 -
3.62 -3.57 -3.56 -3.67 -3.14 -2.69

Hypothesis 13:

 -3.44 -2.81 -2.17 -3.23 -2.25 -3.44 -1.55 -3.14 -2.40 -2.45 -2.93 -
3.48 -3.28 -2.66 -2.46 -2.67 -2.62 -2.85 -3.50 -3.04 -2.67 -2.88 -
2.58 -3.11 -2.28 -2.26 -3.22 -3.22 -0.05 -2.99 -3.03 -3.27 -2.29 -
3.09 -3.28 -3.24 -3.04 -3.31 -2.86 -2.62 -3.40 -2.96 -3.35 -3.15 -
3.28 -3.17 -3.19 -3.40 -2.93 -3.17

Hypothesis 14:

 -2.60 -1.11 -1.52 -2.40 -1.64 -3.05 -0.69 -2.10 -0.89 -1.40 -1.99 -

 201

2.20 -2.71 -1.33 -1.95 -1.35 -2.60 -2.06 -2.42 -2.62 -2.35 -2.71 -
2.00 -2.64 -2.23 -2.49 -2.45 -2.39 -0.73 -2.71 -1.81 -2.72 -1.55 -
2.31 -2.34 -2.77 -1.76 -2.13 -2.56 -2.63 -2.48 -2.40 -2.08 -2.58 -
2.55 -2.41 -2.47 -2.63 -2.56 -2.68

Hypothesis 15:

 -3.04 -1.94 -1.43 -2.95 -1.88 -2.71 -2.37 -2.59 -2.20 -0.33 -1.62 -
2.88 -2.99 -1.93 -1.35 -2.71 -2.61 -2.75 -2.94 -2.87 -2.82 -2.84 -
2.52 -1.62 -2.10 -1.79 -2.85 -2.92 -0.57 -2.95 -2.50 -3.07 -2.14 -
2.81 -2.77 -2.98 -2.68 -2.63 -2.93 -2.90 -2.98 -2.67 -3.03 -2.95 -
3.04 -2.36 -2.90 -3.11 -2.60 -2.98

Hypothesis 16:

 -3.57 -0.58 -2.21 -3.44 -2.38 -3.68 -2.25 -3.13 -2.85 -0.21 -2.14 -
3.19 -3.63 -1.29 -2.12 -3.20 -3.65 -3.19 -3.45 -3.65 -3.42 -3.74 -
2.97 -3.27 -3.13 -3.03 -3.38 -3.53 -1.95 -3.67 -2.88 -3.70 -3.22 -
3.28 -3.33 -3.57 -3.22 -3.21 -3.61 -3.69 -3.32 -3.38 -3.39 -3.69 -
3.63 -3.45 -3.54 -3.51 -3.38 -3.58

Hypothesis 17:

 -3.57 -1.96 -3.00 -3.12 -1.17 -3.86 -2.30 -3.49 -3.31 -2.26 -2.69 -
2.22 -3.45 -2.52 -2.63 -2.23 -3.41 -2.52 -3.82 -2.47 -2.93 -2.72 -
0.09 -2.99 -3.15 -3.48 -2.46 -3.40 -3.23 -3.15 -3.41 -3.66 -3.29 -
2.01 -3.69 -3.21 -3.45 -3.10 -2.50 -3.35 -2.79 -3.52 -3.63 -3.70 -
3.61 -3.60 -3.72 -3.68 -1.42 -3.24

Hypothesis 18:

 -3.71 -2.76 -2.88 -3.16 -0.58 -3.93 -2.55 -3.35 -3.30 -2.35 -3.25 -
3.30 -3.67 -2.26 -3.10 -2.30 -3.53 -1.56 -3.81 -3.48 -3.19 -3.66 -
0.19 -2.81 -2.21 -3.48 -2.35 -2.98 -3.09 -3.51 -3.26 -3.70 -2.93 -
3.31 -3.34 -3.68 -3.49 -2.52 -3.48 -3.49 -3.60 -3.18 -3.55 -3.71 -
3.64 -3.59 -3.62 -3.76 -1.77 -2.90

Hypothesis 19:

 -2.38 -1.77 -1.94 -1.94 -0.88 -2.98 -1.07 -2.03 -1.52 -1.74 -2.24 -
2.30 -2.36 -1.70 -2.09 -1.59 -1.68 -2.12 -2.57 -1.85 -2.01 -1.79 -
1.20 -2.20 -1.80 -2.18 -1.85 -2.07 -1.05 -2.47 -2.33 -2.47 -0.74 -
2.21 -2.42 -2.38 -2.44 -1.28 -1.94 -2.21 -2.49 -2.30 -2.30 -2.15 -
2.37 -2.13 -2.25 -2.55 -2.05 -2.41

Ex[1]: hi, Lex[0]: hi (-0.17)|

 (* trellis for lexicon word “hi”)
 -2.85 -INF -INF -INF -INF -0.95 -INF -INF -INF -INF
 -2.89 -3.38 -INF -INF -INF -1.22 -0.99 -INF -INF -INF
 -3.70 -3.35 -2.01 -INF -INF -1.32 -2.13 -1.12 -INF -INF
 -2.78 -4.03 -0.04 -0.13 -INF -0.11 -1.21 -3.06 -1.89 -INF
 -3.23 -3.78 -3.12 -0.05 -0.73 -0.65 -1.10 -0.70 -2.45 -1.40
 -0.57 -1.95 -3.23 -3.09 -1.05 -0.33 -0.21 -2.26 -2.35 -1.74

lexicon word score = -0.17
….

 202

(*Trellis for other word lexicon are not shown here*)

Ex[1]: hi, Lex[1]: Apple (-2.13)|
Ex[1]: hi, Lex[2]: Between (-INF) |
Ex[1]: hi, Lex[3]: Capability (-INF) |
Ex[1]: hi, Lex[4]: Directory (-INF) |
Ex[1]: hi, Lex[5]: Earth (-1.52)|
Ex[1]: hi, Lex[6]: Fuzzy (-3.05)|
Ex[1]: hi, Lex[7]: Giving (-1.87)|
Ex[1]: hi, Lex[8]: Hydrogen (-INF) |
Ex[1]: hi, Lex[9]: Island (-2.74)|
Ex[1]: hi, Lex[10]: Job (-2.20)|
Ex[1]: hi, Lex[11]: Ku-Klux-Klan (-INF) |
Ex[1]: hi, Lex[12]: Liberty (-INF) |
Ex[1]: hi, Lex[13]: Money (-2.35)|
Ex[1]: hi, Lex[14]: North (-1.43)|
Ex[1]: hi, Lex[15]: Obvious (-INF) |
Ex[1]: hi, Lex[16]: Parking (-INF) |
Ex[1]: hi, Lex[17]: Quiz (-2.23)|
Ex[1]: hi, Lex[18]: Rabbit (-2.43)|
Ex[1]: hi, Lex[19]: Smooth (-2.35)|
Ex[1]: hi, Lex[20]: T-shirt (-INF) |
Ex[1]: hi, Lex[21]: User (-2.10)|
Ex[1]: hi, Lex[22]: Voice (-1.88)|
Ex[1]: hi, Lex[23]: Warehouse (-INF) |
Ex[1]: hi, Lex[24]: X-ray (-2.25)|
Ex[1]: hi, Lex[25]: Yuppie (-2.60)|
Ex[1]: hi, Lex[26]: Zero (-1.77)|

 Top 1 : hi -0.170282
 char : h, start: 0, end: 3
 char : i, start: 4, end: 5

 Top 2 : North -1.432790
 char : N, start: 0, end: 0
 char : o, start: 1, end: 1
 char : r, start: 2, end: 3
 char : t, start: 4, end: 4
 char : h, start: 5, end: 5

 Top 3 : Earth -1.515201
 char : E, start: 0, end: 0
 char : a, start: 1, end: 1
 char : r, start: 2, end: 3
 char : t, start: 4, end: 4
 char : h, start: 5, end: 5

 True label: hi score -0.170282 position 1

 Recognition time 0.64 seconds

Reconnaissance de l’écriture manuscrite en-ligne par approche combinant

systèmes à vastes marges et modèles de Markov cachés

Nos travaux concernent la reconnaissance de l’écriture manuscrite qui est l’un des domaines de prédilection pour
la reconnaissance des formes et les algorithmes d’apprentissage. Dans le domaine de l’écriture en-ligne, les
applications concernent tous les dispositifs de saisie permettant à un usager de communiquer de façon
transparente avec les systèmes d’information. Dans ce cadre, nos travaux apportent une contribution pour
proposer une nouvelle architecture de reconnaissance de mots manuscrits sans contrainte de style. Celle-ci se
situe dans la famille des approches hybrides locale/globale où le paradigme de la segmentation/reconnaissance
va se trouver résolu par la complémentarité d’un système de reconnaissance de type discriminant agissant au
niveau caractère et d’un système par approche modèle pour superviser le niveau global. Nos choix se sont portés
sur des Séparateurs à Vastes Marges (SVM) pour le classifieur de caractères et sur des algorithmes de
programmation dynamique, issus d’une modélisation par Modèles de Markov Cachés (HMM). Cette
combinaison SVM/HMM est unique dans le domaine de la reconnaissance de l’écriture manuscrite. Des
expérimentations ont été menées, d’abord dans un cadre de reconnaissance de caractères isolés puis sur la base
IRONOFF de mots cursifs. Elles ont montré la supériorité des approches SVM par rapport aux solutions à bases
de réseaux de neurones à convolutions (Time Delay Neural Network) que nous avions développées
précédemment, et leur bon comportement en situation de reconnaissance de mots.

Mot-clefs: reconnaissance écriture manuscrite, classifieur, systèmes à vastes marges, modèles de Markov caches,
réseau de neurones, programmation dynamique.

On-line Handwriting Recognition using Support Vector Machines
and Hidden Markov Models approaches

Handwriting recognition is one of the leading applications of pattern recognition and machine learning. Despite
having some limitations, handwriting recognition systems have been used as an input method of many electronic
devices and helps in the automation of many manual tasks requiring processing of handwriting images. In
general, a handwriting recognition system comprises three functional components; preprocessing, recognition
and post-processing. There have been improvements made within each component in the system. However, to
further open the avenues of expanding its applications, specific improvements need to be made in the
recognition capability of the system. Hidden Markov Model (HMM) has been the dominant methods of
recognition in handwriting recognition in offline and online systems. However, the use of Gaussian observation
densities in HMM and representational model for word modeling often does not lead to good classification.
Hybrid of Neural Network (NN) and HMM later improves word recognition by taking advantage of NN
discriminative property and HMM representational capability. However, the use of NN does not optimize
recognition capability as the use of Empirical Risk minimization (ERM) principle in its training leads to poor
generalization. In this thesis, we focus on improving the recognition capability of a cursive online handwritten
word recognition system by using an emerging method in machine learning, the support vector machine (SVM).
We first evaluated SVM in isolated character recognition environment using IRONOFF and UNIPEN character
databases. SVM, by its use of principle of structural risk minimization (SRM) have allowed simultaneous
optimization of representational and discriminative capability of the character recognizer. We finally
demonstrate the various practical issues in using SVM within a hybrid setting with HMM. In addition, we tested
the hybrid system on the IRONOFF word database and obtained favourable results.

Keywords: handwriting recognition, on-line, support vector machine, hidden markov model, neural network,
empirical risk minimization (ERM), structural risk minimization, dynamic programming.

	AllChaptersNantes(saved).pdf
	CHAPTER 1 INTRODUCTION
	1.1 Background
	1.2 Limitations of Handwriting Recognition System
	1.3 Overview of Handwriting Recognition System
	1.4 Statistical Pattern recognition
	1.5 Problems in Handwriting Recognition
	1.6 Recognition Modeling.
	1.6.1 Hidden Markov Model
	1.6.2 Neural Network
	1.6.3 Syntactic Modeling technique
	1.6.4 Support Vector Machine

	1.7 Scope and Objectives
	1.7.1 Thesis Layout

	CHAPTER 2 STATE OF THE ART IN HANDWRITING RECOGNITION
	2.1 Introduction
	2.2 Pattern Recognition
	2.2.1 Learning Approaches in Pattern Recognition Systems

	2.3 Developments in Speech Recognition
	2.4 State Of The Art in Handwriting Recognition
	2.4.1 Developments in Online Handwriting Recognition
	2.4.2 Developments in Offline Handwriting Recognition
	2.4.3 Issues in Preprocessing
	2.4.4 Issues in Segmentation Stage
	2.4.5 Issues in Word Recognition
	2.4.6 Issues in Post processing Stage

	2.5 SVM in Speech and handwriting Recognition
	2.5.1 SVM in Speech Recognition
	2.5.2 SVM with DTW kernel in character recognition
	2.5.3 SVM as a character recognizer in a hybrid system
	2.5.4 SVM in Multiple Classifier methods
	2.5.5 SVM in Non Roman handwriting recognition

	2.6 Summary

	CHAPTER 3 HIDDEN MARKOV MODEL
	3.1 Introduction
	3.2 Theory of HMM
	3.2.1 Discrete-State Markov Process
	3.2.2 Extending Discrete-State Markov Processes to Hidden Markov Models
	3.2.3 Three Problems of HMM
	3.2.4 A Solution to the Evaluation Problem – The Forward Algorithm
	3.2.5 A Solution to the Decoding Problem – The Viterbi Algorithm
	3.2.6 A Solution to the Training Problem – The Baum-Welch Algorithm

	3.3 HMM model topology
	3.4 Using HMMs for On-line Handwriting Recognition
	3.4.1 Modeling Letters
	3.4.2 Modeling Words
	3.4.3 Modeling Sentences

	3.5 Discriminative Training of HMM
	3.5.1 Maximum Mutual Information (MMI) training
	3.5.2 Minimum Classification Error (MCE) training

	3.6 Discrete vs. Continuous Density HMM
	3.7 Hybrid of Neural network and HMM
	3.8 Summary

	CHAPTER 4 SUPPORT VECTOR MACHINES
	4.1 Introduction
	4.2 Theoretical foundation
	4.2.1 Statistical Learning Theory
	4.2.2 Structural Risk Minimization

	4.3 SVM formulation
	4.3.1 Linearly Separable Case
	4.3.2 Optimality Condition
	4.3.3 Linear Soft Margin and Non-Linear SVM
	4.3.4 Variations of the SVM Objective function.

	4.4 SVM Implementations
	4.4.1 QP Optimization
	4.4.2 Multiclass SVM Implementation
	4.4.3 SVM Posterior Probability output

	4.5 SVM Implementation Packages
	4.5.1 SVMTorch
	4.5.2 SVMLight
	4.5.3 LIBSVM

	4.6 Summary

	CHAPTER 5 HYBRID SVM/HMM HANDWRITING RECOGNITION SYSTEM
	5.1 Introduction
	5.2 Overview of the SVM based Character Recognizer
	5.2.1 Signal representation
	5.2.2 Preprocessing and Normalization
	5.2.3 Feature Extraction
	5.2.4 Training and Recognition

	5.3 The online Word recognition system
	5.3.1 Previous Systems
	5.3.2 General Description of the hybrid SVM/HMM word recognition system.
	5.3.3 Preprocessing and Normalization
	5.3.4 Over segmentation and Hypothesis Generation
	5.3.5 Feature Extraction
	5.3.6 Overview of Hybrid SVM/HMM Training
	5.3.7 Word likelihood Computation
	5.3.8 SVM/HMM Framework

	5.4 Summary

	CHAPTER 6 DATABASE AND EXPERIMENTAL RESULTS
	6.1 Introduction
	6.2 Databases
	6.2.1 Data from UCI Repository
	6.2.2 IRONOFF Online and Offline databases
	6.2.3 UNIPEN Online Character Database
	6.2.4 IRONOFF-UNIPEN Databases
	6.2.5 MNIST

	6.3 Experiments in Selecting an SVM package
	6.3.1 Comparing Training Time and Number of Support vectors
	6.3.2 Comparing Number of Support vectors
	6.3.3 Comparing Training and Test Accuracies

	6.4 Character Recognition using SVM
	6.4.1 Experiments on SVM for character recognition
	6.4.2 Character Recognition Summary

	6.5 Experiences in Implementation of SVM in Other Areas
	6.5.1 SVM in Mathematical Expressions Recognition
	6.5.2 SVM in Electricity Fraud Prediction

	6.6 Word recognition Using Hybrid SVM/HMM
	6.6.1 A word recognition example
	6.6.2 Comparing Word Recognition performance
	6.6.3 Character Database generation.
	6.6.4 Training of Character SVMs
	6.6.5 Recognition result for baseline word recognition system
	6.6.6 Retraining of SVMs
	6.6.7 Incorporation of junk characters in retraining of SVMs
	6.6.8 Analysis of Errors
	6.6.9 Conclusion

	6.7 Summary

	CHAPTER 7 CONCLUSIONS AND FUTURE RECOMMENDATIONS
	7.1 Dissertation Contributions
	7.2 Conclusion
	7.3 Future Work

	ThesisNantes.pdf
	AllChaptersNantes(saved).pdf
	CHAPTER 1 INTRODUCTION
	1.1 Background
	1.2 Limitations of Handwriting Recognition System
	1.3 Overview of Handwriting Recognition System
	1.4 Statistical Pattern recognition
	1.5 Problems in Handwriting Recognition
	1.6 Recognition Modeling.
	1.6.1 Hidden Markov Model
	1.6.2 Neural Network
	1.6.3 Syntactic Modeling technique
	1.6.4 Support Vector Machine

	1.7 Scope and Objectives
	1.7.1 Thesis Layout

	CHAPTER 2 STATE OF THE ART IN HANDWRITING RECOGNITION
	2.1 Introduction
	2.2 Pattern Recognition
	2.2.1 Learning Approaches in Pattern Recognition Systems

	2.3 Developments in Speech Recognition
	2.4 State Of The Art in Handwriting Recognition
	2.4.1 Developments in Online Handwriting Recognition
	2.4.2 Developments in Offline Handwriting Recognition
	2.4.3 Issues in Preprocessing
	2.4.4 Issues in Segmentation Stage
	2.4.5 Issues in Word Recognition
	2.4.6 Issues in Post processing Stage

	2.5 SVM in Speech and handwriting Recognition
	2.5.1 SVM in Speech Recognition
	2.5.2 SVM with DTW kernel in character recognition
	2.5.3 SVM as a character recognizer in a hybrid system
	2.5.4 SVM in Multiple Classifier methods
	2.5.5 SVM in Non Roman handwriting recognition

	2.6 Summary

	CHAPTER 3 HIDDEN MARKOV MODEL
	3.1 Introduction
	3.2 Theory of HMM
	3.2.1 Discrete-State Markov Process
	3.2.2 Extending Discrete-State Markov Processes to Hidden Markov Models
	3.2.3 Three Problems of HMM
	3.2.4 A Solution to the Evaluation Problem – The Forward Algorithm
	3.2.5 A Solution to the Decoding Problem – The Viterbi Algorithm
	3.2.6 A Solution to the Training Problem – The Baum-Welch Algorithm

	3.3 HMM model topology
	3.4 Using HMMs for On-line Handwriting Recognition
	3.4.1 Modeling Letters
	3.4.2 Modeling Words
	3.4.3 Modeling Sentences

	3.5 Discriminative Training of HMM
	3.5.1 Maximum Mutual Information (MMI) training
	3.5.2 Minimum Classification Error (MCE) training

	3.6 Discrete vs. Continuous Density HMM
	3.7 Hybrid of Neural network and HMM
	3.8 Summary

	CHAPTER 4 SUPPORT VECTOR MACHINES
	4.1 Introduction
	4.2 Theoretical foundation
	4.2.1 Statistical Learning Theory
	4.2.2 Structural Risk Minimization

	4.3 SVM formulation
	4.3.1 Linearly Separable Case
	4.3.2 Optimality Condition
	4.3.3 Linear Soft Margin and Non-Linear SVM
	4.3.4 Variations of the SVM Objective function.

	4.4 SVM Implementations
	4.4.1 QP Optimization
	4.4.2 Multiclass SVM Implementation
	4.4.3 SVM Posterior Probability output

	4.5 SVM Implementation Packages
	4.5.1 SVMTorch
	4.5.2 SVMLight
	4.5.3 LIBSVM

	4.6 Summary

	CHAPTER 5 HYBRID SVM/HMM HANDWRITING RECOGNITION SYSTEM
	5.1 Introduction
	5.2 Overview of the SVM based Character Recognizer
	5.2.1 Signal representation
	5.2.2 Preprocessing and Normalization
	5.2.3 Feature Extraction
	5.2.4 Training and Recognition

	5.3 The online Word recognition system
	5.3.1 Previous Systems
	5.3.2 General Description of the hybrid SVM/HMM word recognition system.
	5.3.3 Preprocessing and Normalization
	5.3.4 Over segmentation and Hypothesis Generation
	5.3.5 Feature Extraction
	5.3.6 Overview of Hybrid SVM/HMM Training
	5.3.7 Word likelihood Computation
	5.3.8 SVM/HMM Framework

	5.4 Summary

	CHAPTER 6 DATABASE AND EXPERIMENTAL RESULTS
	6.1 Introduction
	6.2 Databases
	6.2.1 Data from UCI Repository
	6.2.2 IRONOFF Online and Offline databases
	6.2.3 UNIPEN Online Character Database
	6.2.4 IRONOFF-UNIPEN Databases
	6.2.5 MNIST

	6.3 Experiments in Selecting an SVM package
	6.3.1 Comparing Training Time and Number of Support vectors
	6.3.2 Comparing Number of Support vectors
	6.3.3 Comparing Training and Test Accuracies

	6.4 Character Recognition using SVM
	6.4.1 Experiments on SVM for character recognition
	6.4.2 Character Recognition Summary

	6.5 Experiences in Implementation of SVM in Other Areas
	6.5.1 SVM in Mathematical Expressions Recognition
	6.5.2 SVM in Electricity Fraud Prediction

	6.6 Word recognition Using Hybrid SVM/HMM
	6.6.1 A word recognition example
	6.6.2 Comparing Word Recognition performance
	6.6.3 Character Database generation.
	6.6.4 Training of Character SVMs
	6.6.5 Recognition result for baseline word recognition system
	6.6.6 Retraining of SVMs
	6.6.7 Incorporation of junk characters in retraining of SVMs
	6.6.8 Analysis of Errors
	6.6.9 Conclusion

	6.7 Summary

	CHAPTER 7 CONCLUSIONS AND FUTURE RECOMMENDATIONS
	7.1 Dissertation Contributions
	7.2 Conclusion
	7.3 Future Work

	ThesisNantes.pdf
	AllChaptersNantes(saved).pdf
	CHAPTER 1 INTRODUCTION
	1.1 Background
	1.2 Limitations of Handwriting Recognition System
	1.3 Overview of Handwriting Recognition System
	1.4 Statistical Pattern recognition
	1.5 Problems in Handwriting Recognition
	1.6 Recognition Modeling.
	1.6.1 Hidden Markov Model
	1.6.2 Neural Network
	1.6.3 Syntactic Modeling technique
	1.6.4 Support Vector Machine

	1.7 Scope and Objectives
	1.7.1 Thesis Layout

	CHAPTER 2 STATE OF THE ART IN HANDWRITING RECOGNITION
	2.1 Introduction
	2.2 Pattern Recognition
	2.2.1 Learning Approaches in Pattern Recognition Systems

	2.3 Developments in Speech Recognition
	2.4 State Of The Art in Handwriting Recognition
	2.4.1 Developments in Online Handwriting Recognition
	2.4.2 Developments in Offline Handwriting Recognition
	2.4.3 Issues in Preprocessing
	2.4.4 Issues in Segmentation Stage
	2.4.5 Issues in Word Recognition
	2.4.6 Issues in Post processing Stage

	2.5 SVM in Speech and handwriting Recognition
	2.5.1 SVM in Speech Recognition
	2.5.2 SVM with DTW kernel in character recognition
	2.5.3 SVM as a character recognizer in a hybrid system
	2.5.4 SVM in Multiple Classifier methods
	2.5.5 SVM in Non Roman handwriting recognition

	2.6 Summary

	CHAPTER 3 HIDDEN MARKOV MODEL
	3.1 Introduction
	3.2 Theory of HMM
	3.2.1 Discrete-State Markov Process
	3.2.2 Extending Discrete-State Markov Processes to Hidden Markov Models
	3.2.3 Three Problems of HMM
	3.2.4 A Solution to the Evaluation Problem – The Forward Algorithm
	3.2.5 A Solution to the Decoding Problem – The Viterbi Algorithm
	3.2.6 A Solution to the Training Problem – The Baum-Welch Algorithm

	3.3 HMM model topology
	3.4 Using HMMs for On-line Handwriting Recognition
	3.4.1 Modeling Letters
	3.4.2 Modeling Words
	3.4.3 Modeling Sentences

	3.5 Discriminative Training of HMM
	3.5.1 Maximum Mutual Information (MMI) training
	3.5.2 Minimum Classification Error (MCE) training

	3.6 Discrete vs. Continuous Density HMM
	3.7 Hybrid of Neural network and HMM
	3.8 Summary

	CHAPTER 4 SUPPORT VECTOR MACHINES
	4.1 Introduction
	4.2 Theoretical foundation
	4.2.1 Statistical Learning Theory
	4.2.2 Structural Risk Minimization

	4.3 SVM formulation
	4.3.1 Linearly Separable Case
	4.3.2 Optimality Condition
	4.3.3 Linear Soft Margin and Non-Linear SVM
	4.3.4 Variations of the SVM Objective function.

	4.4 SVM Implementations
	4.4.1 QP Optimization
	4.4.2 Multiclass SVM Implementation
	4.4.3 SVM Posterior Probability output

	4.5 SVM Implementation Packages
	4.5.1 SVMTorch
	4.5.2 SVMLight
	4.5.3 LIBSVM

	4.6 Summary

	CHAPTER 5 HYBRID SVM/HMM HANDWRITING RECOGNITION SYSTEM
	5.1 Introduction
	5.2 Overview of the SVM based Character Recognizer
	5.2.1 Signal representation
	5.2.2 Preprocessing and Normalization
	5.2.3 Feature Extraction
	5.2.4 Training and Recognition

	5.3 The online Word recognition system
	5.3.1 Previous Systems
	5.3.2 General Description of the hybrid SVM/HMM word recognition system.
	5.3.3 Preprocessing and Normalization
	5.3.4 Over segmentation and Hypothesis Generation
	5.3.5 Feature Extraction
	5.3.6 Overview of Hybrid SVM/HMM Training
	5.3.7 Word likelihood Computation
	5.3.8 SVM/HMM Framework

	5.4 Summary

	CHAPTER 6 DATABASE AND EXPERIMENTAL RESULTS
	6.1 Introduction
	6.2 Databases
	6.2.1 Data from UCI Repository
	6.2.2 IRONOFF Online and Offline databases
	6.2.3 UNIPEN Online Character Database
	6.2.4 IRONOFF-UNIPEN Databases
	6.2.5 MNIST

	6.3 Experiments in Selecting an SVM package
	6.3.1 Comparing Training Time and Number of Support vectors
	6.3.2 Comparing Number of Support vectors
	6.3.3 Comparing Training and Test Accuracies

	6.4 Character Recognition using SVM
	6.4.1 Experiments on SVM for character recognition
	6.4.2 Character Recognition Summary

	6.5 Experiences in Implementation of SVM in Other Areas
	6.5.1 SVM in Mathematical Expressions Recognition
	6.5.2 SVM in Electricity Fraud Prediction

	6.6 Word recognition Using Hybrid SVM/HMM
	6.6.1 A word recognition example
	6.6.2 Comparing Word Recognition performance
	6.6.3 Character Database generation.
	6.6.4 Training of Character SVMs
	6.6.5 Recognition result for baseline word recognition system
	6.6.6 Retraining of SVMs
	6.6.7 Incorporation of junk characters in retraining of SVMs
	6.6.8 Analysis of Errors
	6.6.9 Conclusion

	6.7 Summary

	CHAPTER 7 CONCLUSIONS AND FUTURE RECOMMENDATIONS
	7.1 Dissertation Contributions
	7.2 Conclusion
	7.3 Future Work

